

THE ART OF
COMPUTER PROGRAMMING
FASCICLE 1

MMIX

DONALD E. KNUTH Stanford University

ADDISON{WESLEY 677

-1

Internet page http://www-s-faulty.stanford.edu/~knuth/taop.html ontainsurrent information about this book and related books.See also http://www-s-faulty.stanford.edu/~knuth/mmix.html for downloadablesoftware, and http://mmixmasters.soureforge.net for general news about MMIX.Copyright 1999 by Addison{WesleyAll rights reserved. No part of this publiation may be reprodued, stored in a retrievalsystem, or transmitted, in any form, or by any means, eletroni, mehanial, photo-opying, reording, or otherwise, without the prior onsent of the publisher, exeptthat the oÆial eletroni �le may be used to print single opies for personal (notommerial) use.Zeroth printing (revision 15), 15 February 2004

-2

PREFACE
fas�i�le /fas_ ek el /n : : : 1: a small bundle : : : an inoresene onsisting ofa ompated yme less apitate than a glomerule: : : 2: one of the divisions of a book published in parts| P. B. GOVE, Webster's Third New International Ditionary (1961)

This is the first of a series of updates that I plan to make available atregular intervals as I ontinue working toward the ultimate editions of The Artof Computer Programming.I was inspired to prepare fasiles like this by the example of Charles Dikens,who issued his novels in serial form; he published a dozen installments of OliverTwist before having any idea what would beome of Bill Sikes! I was thinkingalso of James Murray, who began to publish 350-page portions of the OxfordEnglish Ditionary in 1884, �nishing the letter B in 1888 and the letter C in1895. (Murray died in 1915 while working on the letter T; my task is, fortunately,muh simpler than his.)Unlike Dikens and Murray, I have omputers to help me edit the material,so that I an easily make hanges before putting everything together in its �nalform. Although I'm trying my best to write omprehensive aounts that needno further revision, I know that every page brings me hundreds of opportunitiesto make mistakes and to miss important ideas. My �les are bursting with notesabout beautiful algorithms that have been disovered, but omputer siene hasgrown to the point where I annot hope to be an authority on all the materialI wish to over. Therefore I need extensive feedbak from readers before I an�nalize the oÆial volumes.In other words, I think these fasiles will ontain a lot of Good Stu�, and I'mexited about the opportunity to present everything I write to whoever wantsto read it, but I also expet that beta-testers like you an help me make itWay Better. As usual, I will gratefully pay a reward of $2.56 to the �rstperson who reports anything that is tehnially, historially, typographially,or politially inorret.Charles Dikens usually published his work one a month, sometimes onea week; James Murray tended to �nish a 350-page installment about one every18 months. My goal, God willing, is to produe two 128-page fasiles per year.Most of the fasiles will represent new material destined for Volumes 4 andhigher; but sometimes I will be presenting amendments to one or more of theearlier volumes. For example, Volume 4 will need to refer to topis that belongin Volume 3, but weren't invented when Volume 3 �rst ame out. With luk,the entire work will make sense eventually.iii

-3

iv PREFACEFasile Number One is about MMIX, the long-promised replaement for MIX.Thirty years have passed sine the MIX omputer was designed, and omputerarhiteture has been onverging during those years towards a rather di�erentstyle of mahine. Therefore I deided in 1990 to replae MIX with a new omputerthat would ontain even less saturated fat than its predeessor.Exerise 1.3.1{25 in the �rst three editions of Volume 1 spoke of an ex-tended MIX alled MixMaster, whih was upward ompatible with the old version.But MixMaster itself has long been hopelessly obsolete. It allowed for severalgigabytes of memory, but one ouldn't even use it with ASCII ode to printlowerase letters. And ouh, its standard subroutine alling onvention wasirrevoably based on self-modifying instrutions! Deimal arithmeti and self-modifying ode were popular in 1962, but they sure have disappeared quiklyas mahines have gotten bigger and faster. Fortunately the new RISC mahineshave a very appealing struture, so I've had a hane to design a new omputerthat is not only up to date but also fun.Many readers are no doubt thinking, \Why does Knuth replae MIX byanother mahine instead of just stiking to a high-level programming language?Hardly anybody uses assemblers these days." Suh people are entitled to theiropinions, and they need not bother reading the mahine-language parts of mybooks. But the reasons for mahine language that I gave in the prefae toVolume 1, written in the early 1960s, remain valid today:� One of the prinipal goals of my books is to show how high-level onstru-tions are atually implemented in mahines, not simply to show how theyare applied. I explain oroutine linkage, tree strutures, random numbergeneration, high-preision arithmeti, radix onversion, paking of data,ombinatorial searhing, reursion, et., from the ground up.� The programs needed in my books are generally so short that their mainpoints an be grasped easily.� People who are more than asually interested in omputers should have atleast some idea of what the underlying hardware is like. Otherwise theprograms they write will be pretty weird.� Mahine language is neessary in any ase, as output of some of the softwarethat I desribe.� Expressing basi methods like algorithms for sorting and searhing in ma-hine language makes it possible to arry out meaningful studies of the e�etsof ahe and RAM size and other hardware harateristis (memory speed,pipelining, multiple issue, lookaside bu�ers, the size of ahe bloks, et.)when omparing di�erent shemes.Moreover, if I did use a high-level language, what language should it be? Inthe 1960s I would probably have hosen Algol W; in the 1970s, I would thenhave had to rewrite my books using Pasal; in the 1980s, I would surely havehanged everything to C; in the 1990s, I would have had to swith to C++ andthen probably to Java. In the 2000s, yet another language will no doubt be de

-4

PREFACE vrigueur. I annot a�ord the time to rewrite my books as languages go in andout of fashion; languages aren't the point of my books, the point is rather whatyou an do in your favorite language. My books fous on timeless truths.Therefore I will ontinue to use English as the high-level language in The Artof Computer Programming, and I will ontinue to use a low-level languageto indiate how mahines atually ompute. Readers who only want to seealgorithms that are already pakaged in a plug-in way, using a trendy language,should buy other people's books.The good news is that programming for MMIX is pleasant and simple. Thisfasile presents1) a programmer's introdution to the mahine (replaing Setion 1.3.1 ofVolume 1);2) the MMIX assembly language (replaing Setion 1.3.2);3) new material on subroutines, oroutines, and interpretive routines (replaingSetions 1.4.1, 1.4.2, and 1.4.3).Of ourse, MIX appears in many plaes throughout Volumes 1{3, and dozens ofprograms need to be rewritten for MMIX. Readers who would like to help withthis onversion proess are enouraged to join the MMIXmasters, a happy groupof volunteers based at mmixmasters.soureforge.net.I am extremely grateful to all the people who helped me with the designof MMIX. In partiular, John Hennessy and Rihard L. Sites deserve speialthanks for their ative partiipation and substantial ontributions. Thanks alsoto Vladimir Ivanovi� for volunteering to be the MMIX grandmaster/webmaster.Stanford, California D. E. K.May 1999
You an, if you want, rewrite forever.| NEIL SIMON, Rewrites: A Memoir (1996)

-5

CONTENTS
Chapter 1|Basi Conepts . 11.3�. MMIX . 21.3.1�. Desription of MMIX . 21.3.2�. The MMIX Assembly Language 281.4�. Some Fundamental Programming Tehniques 521.4.1�. Subroutines . 521.4.2�. Coroutines . 661.4.3�. Interpretive Routines . 73Answers to Exerises . 94Index and Glossary . 127

1

1

2 BASIC CONCEPTS 1.3�1.3�. MMIXIn many plaes throughout this book we will have oasion to refer to a om-puter's internal mahine language. The mahine we use is a mythial omputeralled \MMIX." MMIX|pronouned EM-miks|is very muh like nearly everygeneral-purpose omputer designed sine 1985, exept that it is, perhaps, nier.The language of MMIX is powerful enough to allow brief programs to be writtenfor most algorithms, yet simple enough so that its operations are easily learned.The reader is urged to study this setion arefully, sine MMIX languageappears in so many parts of this book. There should be no hesitation aboutlearning a mahine language; indeed, the author one found it not unommon tobe writing programs in a half dozen di�erent mahine languages during the sameweek! Everyone with more than a asual interest in omputers will probably getto know at least one mahine language sooner or later. Mahine language helpsprogrammers understand what really goes on inside their omputers. And oneone mahine language has been learned, the harateristis of another are easyto assimilate. Computer siene is largely onerned with an understanding ofhow low-level details make it possible to ahieve high-level goals.Software for running MMIX programs on almost any real omputer an bedownloaded from the website for this book (see page ii). The omplete soureode for the author's MMIX routines appears in the book MMIXware [Leture Notesin Computer Siene 1750 (1999)℄; that book will be alled \the MMIXwaredoument" in the following pages.1.3.1�. Desription of MMIXMMIX is a polyunsaturated, 100% natural omputer. Like most mahines, it hasan identifying number|the 2009. This number was found by taking 14 atualomputers very similar to MMIX and on whih MMIX ould easily be simulated,then averaging their numbers with equal weight:�Cray I + IBM801 + RISCII + ClipperC300 + AMD29K + Motorola 88K+ IBM601 + Intel i960 + Alpha21164 + POWER2 + MIPSR4000+ Hitahi SuperH4 + StrongARM110 + Spar 64�=14= 28126=14 = 2009: (1)The same number may also be obtained in a simpler way by taking Romannumerals.Bits and bytes. MMIX works with patterns of 0s and 1s, ommonly alledbinary digits or bits, and it usually deals with 64 bits at a time. For example,the 64-bit quantity1001111000110111011110011011100101111111010010100111110000010110 (2)is a typial pattern that the mahine might enounter. Long patterns like thisan be expressed more onveniently if we group the bits four at a time and use

2

1.3.1� DESCRIPTION OF MMIX 3hexadeimal digits to represent eah group. The sixteen hexadeimal digits are0 = 0000;1 = 0001;2 = 0010;3 = 0011;
4 = 0100;5 = 0101;6 = 0110;7 = 0111;

8 = 1000;9 = 1001;a = 1010;b = 1011;
 = 1100;d = 1101;e = 1110;f = 1111: (3)

We shall always use a distintive typefae for hexadeimal digits, as shown here,so that they won't be onfused with the deimal digits 0{9; and we will usuallyalso put the symbol # just before a hexadeimal number, to make the distintioneven learer. For example, (2) beomes#9e3779b97f4a716 (4)in hexadeimalese. Upperase digits ABCDEF are often used instead of abdef,beause #9E3779B97F4A7C16 looks better than #9e3779b97f4a716 in someontexts; there is no di�erene in meaning.A sequene of eight bits, or two hexadeimal digits, is ommonly alleda byte. Most omputers now onsider bytes to be their basi, individuallyaddressable units of information; we will see that an MMIX program an referto as many as 264 bytes, eah with its own address from #0000000000000000 to#ffffffffffffffff. Letters, digits, and puntuation marks of languages likeEnglish are often represented with one byte per harater, using the AmerianStandard Code for Information Interhange (ASCII). For example, the ASCIIequivalent of MMIX is #4d4d4958. ASCII is atually a 7-bit ode with ontrolharaters #00{#1f, printing haraters #20{#7e, and a \delete" harater #7f[see CACM 8 (1965), 207{214; 11 (1968), 849{852; 12 (1969), 166{178℄. Itwas extended during the 1980s to an international standard 8-bit ode known asLatin-1 or ISO8859-1, thereby enoding aented letters: pât�e is #70e274e9.
\Of the 256th squadron?"\Of the �ghting 256th Squadron," Yossarian replied.: : : \That's two to the �ghting eighth power."| JOSEPH HELLER, Cath-22 (1961)

A 16-bit ode that supports nearly every modern language beame an inter-national standard during the 1990s. This ode, known as Uniode or ISO/IEC10646 UCS-2, inludes not only Greek letters like S and s (#03a3 and #033),Cyrilli letters like W and w (#0429 and #0449), Armenian letters like and(#0547 and #0577), Hebrew letters like Y (#05e9), Arabi letters like �(#0634), and Indian letters like f (#0936) or x (#09b6) or S (#0b36) or �(#0bb7), et., but also tens of thousands of East Asian ideographs suh as theChinese harater for mathematis and omputing, (#7b97). It even hasspeial odes for Roman numerals: MMIX = #216f216f21602169. OrdinaryASCII or Latin-1 haraters are represented by simply giving them a leadingbyte of zero: pât�e is #007000e2007400e9, �a l'Uniode.

3

4 BASIC CONCEPTS 1.3.1�We will use the onvenient term wyde to desribe a 16-bit quantity like thewide haraters of Uniode, beause two-byte quantities are quite important inpratie. We also need onvenient names for four-byte and eight-byte quantities,whih we shall all tetrabytes (or \tetras") and otabytes (or \otas"). Thus2 bytes = 1 wyde;2 wydes = 1 tetra;2 tetras = 1 ota:One otabyte equals four wydes equals eight bytes equals sixty-four bits.Bytes and multibyte quantities an, of ourse, represent numbers as well asalphabeti haraters. Using the binary number system,an unsigned byte an express the numbers 0 : : 255;an unsigned wyde an express the numbers 0 : : 65,535;an unsigned tetra an express the numbers 0 : : 4,294,967,295;an unsigned ota an express the numbers 0 : : 18,446,744,073,709,551,615.Integers are also ommonly represented by using two's omplement notation, inwhih the leftmost bit indiates the sign: If the leading bit is 1, we subtrat 2n toget the integer orresponding to an n-bit number in this notation. For example,�1 is the signed byte #ff; it is also the signed wyde #ffff, the signed tetrabyte#ffffffff, and the signed otabyte #ffffffffffffffff. In this waya signed byte an express the numbers �128 : : 127;a signed wyde an express the numbers �32;768 : : 32,767;a signed tetra an express the numbers �2;147;483;648 : : 2,147,483,647;a signed ota an express the numbers �9;223;372;036;854;775;808 : :9,223,372,036,854,775,807.Memory and registers. From a programmer's standpoint, an MMIX omputerhas 264 ells of memory and 28 general-purpose registers, together with 25speial registers (see Fig. 13). Data is transferred from the memory to theregisters, transformed in the registers, and transferred from the registers to thememory. The ells of memory are alled M[0℄, M[1℄, : : : , M[264 � 1℄; thus if x isany otabyte, M[x℄ is a byte of memory. The general-purpose registers are alled$0, $1, : : : , $255; thus if x is any byte, $x is an otabyte.The 264 bytes of memory are grouped into 263 wydes, M2[0℄ = M2[1℄ =M[0℄M[1℄, M2[2℄ = M2[3℄ = M[2℄M[3℄, : : : ; eah wyde onsists of two onseutivebytes M[2k℄M[2k+1℄ = M[2k℄� 28+M[2k+1℄, and is denoted either by M2[2k℄or by M2[2k + 1℄. Similarly there are 262 tetrabytesM4[4k℄ = M4[4k + 1℄ = � � � = M4[4k + 3℄ = M[4k℄M[4k + 1℄ : : :M[4k + 3℄;and 261 otabytesM8[8k℄ = M8[8k + 1℄ = � � � = M8[8k + 7℄ = M[8k℄M[8k + 1℄ : : :M[8k + 7℄:In general if x is any otabyte, the notations M2[x℄, M4[x℄, and M8[x℄ denotethe wyde, the tetra, and the ota that ontain byte M[x℄; we ignore the least

4

1.3.1� DESCRIPTION OF MMIX 5

$0:$1:$2:$254:$255:rA:rB:rZZ:M[0℄ M[1℄ M[2℄ M[3℄ M[4℄ M[5℄ M[6℄ M[7℄ M[8℄ M[264�1℄M[264�2℄M[264�3℄M[264�4℄M[264�5℄M[264�6℄M[264�7℄M[264�8℄M[264�9℄Fig. 13. The MMIX omputer, as seen by a programmer, has 256 general-purposeregisters and 32 speial-purpose registers, together with 264 bytes of virtual memory.Eah register holds 64 bits of data.signi�ant lg t bits of x when referring to Mt[x℄. For ompleteness, we also writeM1[x℄ = M[x℄, and we de�ne M[x℄ = M[xmod 264℄ when x < 0 or x � 264.The 32 speial registers of MMIX are alled rA, rB, : : : , rZ, rBB, rTT,rWW, rXX, rYY, and rZZ. Like their general-purpose ousins, they eah holdan otabyte. Their uses will be explained later; for example, we will see thatrA ontrols arithmeti interrupts while rR holds the remainder after division.Instrutions. MMIX's memory ontains instrutions as well as data. An in-strution or \ommand" is a tetrabyte whose four bytes are onventionally alledOP, X, Y, and Z. OP is the operation ode (or \opode," for short); X, Y, and Zspeify the operands. For example, #20010203 is an instrution with OP = #20,X = #01, Y = #02, and Z = #03, and it means \Set $1 to the sum of $2 and$3." The operand bytes are always regarded as unsigned integers.Eah of the 256 possible opodes has a symboli form that is easy to re-member. For example, opode #20 is ADD. We will deal almost exlusively withsymboli opodes; the numeri equivalents an be found, if needed, in Table 1below, and also in the endpapers of this book.The X, Y, and Z bytes also have symboli representations, onsistent withthe assembly language that we will disuss in Setion 1.3.2�. For example,the instrution #20010203 is onventionally written `ADD $1,$2,$3', and theaddition instrution in general is written `ADD $X,$Y,$Z'. Most instrutions havethree operands, but some of them have only two, and a few have only one. Whenthere are two operands, the �rst is X and the seond is the two-byte quantity YZ;the symboli notation then has only one omma. For example, the instrution

5

6 BASIC CONCEPTS 1.3.1�`INCL $X,YZ' inreases register $X by the amount YZ. When there is only oneoperand, it is the unsigned three-byte number XYZ, and the symboli notationhas no omma at all. For example, we will see that `JMP �+4*XYZ' tells MMIXto �nd its next instrution by skipping ahead XYZ tetrabytes; the instrution`JMP �+1000000' has the hexadeimal form #f003d090, beause JMP = #f0 and250000 = #03d090.We will desribe eah MMIX instrution both informally and formally. Forexample, the informal meaning of `ADD $X,$Y,$Z' is \Set $X to the sum of $Yand $Z"; the formal de�nition is `s($X) s($Y)+ s($Z)'. Here s(x) denotes thesigned integer orresponding to the bit pattern x, aording to the onventionsof two's omplement notation. An assignment like s(x) N means that x is tobe set to the bit pattern for whih s(x) = N . (Suh an assignment auses integeroverow if N is too large or too small to �t in x. For example, an ADD willoverow if s($Y) + s($Z) is less than �263 or greater than 263 � 1. When we'redisussing an instrution informally, we will often gloss over the possibility ofoverow; the formal de�nition, however, will make everything preise. In generalthe assignment s(x) N sets x to the binary representation of N mod 2n, wheren is the number of bits in x, and it signals overow if N < �2n�1 or N � 2n�1;see exerise 5.)Loading and storing. Although MMIX has 256 di�erent opodes, we will seethat they fall into a few easily learned ategories. Let's start with the instrutionsthat transfer information between the registers and the memory.Eah of the following instrutions has a memory address A obtained byadding $Y to $Z. Formally,A = �u($Y) + u($Z)�mod 264 (5)is the sum of the unsigned integers represented by $Y and $Z, redued to a 64-bitnumber by ignoring any arry that ours at the left when those two integers areadded. In this formula the notation u(x) is analogous to s(x), but it onsiders xto be an unsigned binary number.� LDB $X,$Y,$Z (load byte): s($X) s�M1[A℄�.� LDW $X,$Y,$Z (load wyde): s($X) s�M2[A℄�.� LDT $X,$Y,$Z (load tetra): s($X) s�M4[A℄�.� LDO $X,$Y,$Z (load ota): s($X) s�M8[A℄�.These instrutions bring data from memory into register $X, hanging the dataif neessary from a signed byte, wyde, or tetrabyte to a signed otabyte of thesame value. For example, suppose the otabyte M8[1002℄ = M8[1000℄ isM[1000℄M[1001℄ : : :M[1007℄ = #0123456789abdef: (6)Then if $2 = 1000 and $3 = 2, we have A = 1002, andLDB $1,$2,$3 sets $1 #0000000000000045 ;LDW $1,$2,$3 sets $1 #0000000000004567 ;LDT $1,$2,$3 sets $1 #0000000001234567 ;LDO $1,$2,$3 sets $1 #0123456789abdef :

6

1.3.1� DESCRIPTION OF MMIX 7But if $3 = 5, so that A = 1005,LDB $1,$2,$3 sets $1 #ffffffffffffffab ;LDW $1,$2,$3 sets $1 #ffffffffffff89ab ;LDT $1,$2,$3 sets $1 #ffffffff89abdef ;LDO $1,$2,$3 sets $1 #0123456789abdef :When a signed byte or wyde or tetra is onverted to a signed ota, its sign bitis \extended" into all positions to the left.� LDBU $X,$Y,$Z (load byte unsigned): u($X) u�M1[A℄�.� LDWU $X,$Y,$Z (load wyde unsigned): u($X) u�M2[A℄�.� LDTU $X,$Y,$Z (load tetra unsigned): u($X) u�M4[A℄�.� LDOU $X,$Y,$Z (load ota unsigned): u($X) u�M8[A℄�.These instrutions are analogous to LDB, LDW, LDT, and LDO, but they treat thememory data as unsigned ; bit positions at the left of the register are set tozero when a short quantity is being lengthened. Thus, in the example above,LDBU $1,$2,$3 with $2 + $3 = 1005 would set $1 #00000000000000ab.The instrutions LDO and LDOU atually have exatly the same behavior,beause no sign extension or padding with zeros is neessary when an otabyteis loaded into a register. But a good programmer will use LDO when the signis relevant and LDOU when it is not; then readers of the program an betterunderstand the signi�ane of what is being loaded.� LDHT $X,$Y,$Z (load high tetra): u($X) u�M4[A℄�� 232.Here the tetrabyte M4[A℄ is loaded into the left half of $X, and the right halfis set to zero. For example, LDHT $1,$2,$3 sets $1 #89abdef00000000,assuming (6) with $2 + $3 = 1005.� LDA $X,$Y,$Z (load address): u($X) A.This instrution, whih puts a memory address into a register, is essentiallythe same as the ADDU instrution desribed below. Sometimes the words \loadaddress" desribe its purpose better than the words \add unsigned."� STB $X,$Y,$Z (store byte): s�M1[A℄� s($X).� STW $X,$Y,$Z (store wyde): s�M2[A℄� s($X).� STT $X,$Y,$Z (store tetra): s�M4[A℄� s($X).� STO $X,$Y,$Z (store ota): s�M8[A℄� s($X).These instrutions go the other way, plaing register data into the memory.Overow is possible if the (signed) number in the register lies outside the rangeof the memory �eld. For example, suppose register $1 ontains the number�65536 = #ffffffffffff0000 . Then if $2 = 1000, $3 = 2, and (6) holds,STB $1,$2,$3 sets M8[1000℄ #0123006789abdef (with overow);STW $1,$2,$3 sets M8[1000℄ #0123000089abdef (with overow);STT $1,$2,$3 sets M8[1000℄ #ffff000089abdef ;STO $1,$2,$3 sets M8[1000℄ #ffffffffffff0000 :

7

8 BASIC CONCEPTS 1.3.1�� STBU $X,$Y,$Z (store byte unsigned):u�M1[A℄� u($X) mod 28.� STWU $X,$Y,$Z (store wyde unsigned):u�M2[A℄� u($X) mod 216.� STTU $X,$Y,$Z (store tetra unsigned):u�M4[A℄� u($X) mod 232.� STOU $X,$Y,$Z (store ota unsigned): u�M8[A℄� u($X).These instrutions have exatly the same e�et on memory as their signedounterparts STB, STW, STT, and STO, but overow never ours.� STHT $X,$Y,$Z (store high tetra): u�M4[A℄� �u($X)=232�.The left half of register $X is stored in memory tetrabyte M4[A℄.� STCO X,$Y,$Z (store onstant otabyte): u�M8[A℄� X.A onstant between 0 and 255 is stored in memory otabyte M8[A℄.Arithmeti operators. Most of MMIX's operations take plae stritly betweenregisters. We might as well begin our study of the register-to-register opera-tions by onsidering addition, subtration, multipliation, and division, beauseomputers are supposed to be able to ompute.� ADD $X,$Y,$Z (add): s($X) s($Y) + s($Z).� SUB $X,$Y,$Z (subtrat): s($X) s($Y)� s($Z).� MUL $X,$Y,$Z (multiply): s($X) s($Y)� s($Z).� DIV $X,$Y,$Z (divide): s($X) �s($Y)=s($Z)� [$Z 6=0℄, ands(rR) s($Y) mod s($Z).Sums, di�erenes, and produts need no further disussion. The DIV ommandforms the quotient and remainder as de�ned in Setion 1.2.4; the remainder goesinto the speial remainder register rR, where it an be examined by using theinstrution GET $X,rR desribed below. If the divisor $Z is zero, DIV sets $X 0and rR $Y (see Eq. 1.2.4{(1)); an \integer divide hek" also ours.� ADDU $X,$Y,$Z (add unsigned): u($X) �u($Y) + u($Z)�mod 264.� SUBU $X,$Y,$Z (subtrat unsigned): u($X) �u($Y)� u($Z)�mod 264.� MULU $X,$Y,$Z (multiply unsigned): u(rH $X) u($Y)� u($Z).� DIVU $X,$Y,$Z (divide unsigned): u($X) �u(rD $Y)=u($Z)�, u(rR) u(rD $Y) mod u($Z), if u($Z) > u(rD); otherwise $X rD, rR $Y.Arithmeti on unsigned numbers never auses overow. A full 16-byte produtis formed by the MULU ommand, and the upper half goes into the speial himultregister rH. For example, when the unsigned number #9e3779b97f4a716 in(2) and (4) above is multiplied by itself we getrH #618864680b583ea; $X #1bb32095dd51e4: (7)In this ase the value of rH has turned out to be exatly 264 minus the originalnumber #9e3779b97f4a716; this is not a oinidene! The reason is that (2)atually gives the �rst 64 bits of the binary representation of the golden ratio��1 = � � 1, if we plae a binary radix point at the left. (See Table 2 inAppendix A.) Squaring gives us an approximation to the binary representationof ��2 = 1� ��1, with the radix point now at the left of rH.

8

1.3.1� DESCRIPTION OF MMIX 9Division with DIVU yields the 8-byte quotient and remainder of a 16-bytedividend with respet to an 8-byte divisor. The upper half of the dividendappears in the speial dividend register rD, whih is zero at the beginning ofa program; this register an be set to any desired value with the ommandPUT rD,$Z desribed below. If rD is greater than or equal to the divisor,DIVU $X,$Y,$Z simply sets $X rD and rR $Y. (This ase always ariseswhen $Z is zero.) But DIVU never auses an integer divide hek.The ADDU instrution omputes a memory address A, aording to de�ni-tion (5); therefore, as disussed earlier, we sometimes give ADDU the alternativename LDA. The following related ommands also help with address alulation.� 2ADDU $X,$Y,$Z (times 2 and add unsigned):u($X) �u($Y)� 2 + u($Z)�mod 264.� 4ADDU $X,$Y,$Z (times 4 and add unsigned):u($X) �u($Y)� 4 + u($Z)�mod 264.� 8ADDU $X,$Y,$Z (times 8 and add unsigned):u($X) �u($Y)� 8 + u($Z)�mod 264.� 16ADDU $X,$Y,$Z (times 16 and add unsigned):u($X) �u($Y)� 16 + u($Z)�mod 264.It is faster to exeute the ommand 2ADDU $X,$Y,$Y than to multiply by 3, ifoverow is not an issue.� NEG $X,Y,$Z (negate): s($X) Y � s($Z).� NEGU $X,Y,$Z (negate unsigned): u($X) �Y � u($Z)�mod 264.In these ommands Y is simply an unsigned onstant, not a register number(just as X was an unsigned onstant in the STCO instrution). Usually Y is zero,in whih ase we an write simply NEG $X,$Z or NEGU $X,$Z.� SL $X,$Y,$Z (shift left): s($X) s($Y)� 2u($Z).� SLU $X,$Y,$Z (shift left unsigned): u($X) �u($Y)� 2u($Z)�mod 264.� SR $X,$Y,$Z (shift right): s($X) �s($Y)=2u($Z)�.� SRU $X,$Y,$Z (shift right unsigned): u($X) �u($Y)=2u($Z)�.SL and SLU both produe the same result in $X, but SL might overow whileSLU never does. SR extends the sign when shifting right, but SRU shifts zeros infrom the left. Therefore SR and SRU produe the same result in $X if and onlyif $Y is nonnegative or $Z is zero. The SL and SR instrutions are muh fasterthan MUL and DIV by powers of 2. An SLU instrution is muh faster than MULUby a power of 2, although it does not a�et rH as MULU does. An SRU instrutionis muh faster than DIVU by a power of 2, although it is not a�eted by rD. Thenotation y � z is often used to denote the result of shifting a binary value y tothe left by z bits; similarly, y � z denotes shifting to the right.� CMP $X,$Y,$Z (ompare):s($X) �s($Y) > s($Z)�� �s($Y) < s($Z)�.� CMPU $X,$Y,$Z (ompare unsigned):s($X) �u($Y) > u($Z)�� �u($Y) < u($Z)�.These instrutions eah set $X to either �1, 0, or 1, depending on whetherregister $Y is less than, equal to, or greater than register $Z.

9

10 BASIC CONCEPTS 1.3.1�Conditional instrutions. Several instrutions base their ations on whethera register is positive, or negative, or zero, et.� CSN $X,$Y,$Z (onditional set if negative): if s($Y) < 0, set $X $Z.� CSZ $X,$Y,$Z (onditional set if zero): if $Y = 0, set $X $Z.� CSP $X,$Y,$Z (onditional set if positive): if s($Y) > 0, set $X $Z.� CSOD $X,$Y,$Z (onditional set if odd): if s($Y) mod 2 = 1, set $X $Z.� CSNN $X,$Y,$Z (onditional set if nonnegative): if s($Y) � 0, set $X $Z.� CSNZ $X,$Y,$Z (onditional set if nonzero): if $Y 6= 0, set $X $Z.� CSNP $X,$Y,$Z (onditional set if nonpositive): if s($Y) � 0, set $X $Z.� CSEV $X,$Y,$Z (onditional set if even): if s($Y) mod 2 = 0, set $X $Z.If register $Y satis�es the stated ondition, register $Z is opied to register $X;otherwise nothing happens. A register is negative if and only if its leading(leftmost) bit is 1. A register is odd if and only if its trailing (rightmost) bit is 1.� ZSN $X,$Y,$Z (zero or set if negative): $X $Z [s($Y)< 0℄.� ZSZ $X,$Y,$Z (zero or set if zero): $X $Z [$Y=0℄.� ZSP $X,$Y,$Z (zero or set if positive): $X $Z [s($Y)> 0℄.� ZSOD $X,$Y,$Z (zero or set if odd): $X $Z [s($Y) mod 2=1℄.� ZSNN $X,$Y,$Z (zero or set if nonnegative): $X $Z [s($Y)� 0℄.� ZSNZ $X,$Y,$Z (zero or set if nonzero): $X $Z [$Y 6=0℄.� ZSNP $X,$Y,$Z (zero or set if nonpositive): $X $Z [s($Y)� 0℄.� ZSEV $X,$Y,$Z (zero or set if even): $X $Z [s($Y) mod 2=0℄.If register $Y satis�es the stated ondition, register $Z is opied to register $X;otherwise register $X is set to zero.Bitwise operations. We often �nd it useful to think of an otabyte x as avetor v(x) of 64 individual bits, and to perform operations simultaneously oneah omponent of two suh vetors.� AND $X,$Y,$Z (bitwise and): v($X) v($Y) ^ v($Z).� OR $X,$Y,$Z (bitwise or): v($X) v($Y) _ v($Z).� XOR $X,$Y,$Z (bitwise exlusive-or): v($X) v($Y)� v($Z).� ANDN $X,$Y,$Z (bitwise and-not): v($X) v($Y) ^ �v($Z).� ORN $X,$Y,$Z (bitwise or-not): v($X) v($Y) _ �v($Z).� NAND $X,$Y,$Z (bitwise not-and): �v($X) v($Y) ^ v($Z).� NOR $X,$Y,$Z (bitwise not-or): �v($X) v($Y) _ v($Z).� NXOR $X,$Y,$Z (bitwise not-exlusive-or): �v($X) v($Y)� v($Z).Here �v denotes the omplement of vetor v, obtained by hanging 0 to 1 and1 to 0. The binary operations ^, _, and �, de�ned by the rules0 ^ 0 = 0;0 ^ 1 = 0;1 ^ 0 = 0;1 ^ 1 = 1;
0 _ 0 = 0;0 _ 1 = 1;1 _ 0 = 1;1 _ 1 = 1;

0� 0 = 0;0� 1 = 1;1� 0 = 1;1� 1 = 0; (8)
are applied independently to eah bit. Anding is the same as multiplying ortaking the minimum; oring is the same as taking the maximum. Exlusive-oringis the same as adding mod 2.

10

1.3.1� DESCRIPTION OF MMIX 11� MUX $X,$Y,$Z (bitwise multiplex): v($X) �v($Y)^v(rM)�_�v($Z)^�v(rM)�.The MUX operation ombines two bit vetors by looking at the speial multiplexmask register rM, hoosing bits of $Y where rM is 1 and bits of $Z where rM is 0.� SADD $X,$Y,$Z (sideways add): s($X) s�P�v($Y) ^ �v($Z)��.The SADD operation ounts the number of bit positions in whih register $Y hasa 1 while register $Z has a 0.Bytewise operations. Similarly, we an regard an otabyte x as a vetor b(x)of eight individual bytes, eah of whih is an integer between 0 and 255; or wean think of it as a vetor w(x) of four individual wydes, or a vetor t(x) of twounsigned tetras. The following operations deal with all omponents at one.� BDIF $X,$Y,$Z (byte di�erene): b($X) b($Y) .� b($Z).� WDIF $X,$Y,$Z (wyde di�erene): w($X) w($Y) .� w($Z).� TDIF $X,$Y,$Z (tetra di�erene): t($X) t($Y) .� t($Z).� ODIF $X,$Y,$Z (ota di�erene): u($X) u($Y) .� u($Z).Here .� denotes the operation of saturating subtration,y .� z = max(0; y � z): (9)These operations have important appliations to text proessing, as well as toomputer graphis (when the bytes or wydes represent pixel values). Exerises27{30 disuss some of their basi properties.We an also regard an otabyte as an 8 � 8 Boolean matrix, that is, as an8�8 array of 0s and 1s. Let m(x) be the matrix whose rows from top to bottomare the bytes of x from left to right; and let mT(x) be the transposed matrix,whose olumns are the bytes of x. For example, if x = #9e3779b97f4a716 isthe otabyte (2), we have
m(x) =

0BBBBBBBBB�
1 0 0 1 1 1 1 00 0 1 1 0 1 1 10 1 1 1 1 0 0 11 0 1 1 1 0 0 10 1 1 1 1 1 1 10 1 0 0 1 0 1 00 1 1 1 1 1 0 00 0 0 1 0 1 1 0

1CCCCCCCCCA; mT(x) =
0BBBBBBBBB�
1 0 0 1 0 0 0 00 0 1 0 1 1 1 00 1 1 1 1 0 1 01 1 1 1 1 0 1 11 0 1 1 1 1 1 01 1 0 0 1 0 1 11 1 0 0 1 1 0 10 1 1 1 1 0 0 0

1CCCCCCCCCA: (10)
This interpretation of otabytes suggests two operations that are quite familiarto mathematiians, but we will pause a moment to de�ne them from srath.If A is an m� n matrix and B is an n� s matrix, and if Æ and � are binaryoperations, the generalized matrix produt A Æ� B is the m� s matrix C de�nedby Cij = (Ai1 �B1j) Æ (Ai2 �B2j) Æ � � � Æ (Ain �Bnj) (11)for 1 � i � m and 1 � j � s. [See K. E. Iverson, A Programming Language(Wiley, 1962), 23{24; we assume that Æ is assoiative.℄ An ordinary matrixprodut is obtained when Æ is + and � is �, but we obtain important operations

11

12 BASIC CONCEPTS 1.3.1�on Boolean matries if we let Æ be _ or �:(A _� B)ij = Ai1B1j _Ai2B2j _ � � � _AinBnj ; (12)(A �� B)ij = Ai1B1j �Ai2B2j � � � � �AinBnj : (13)Notie that if the rows of A eah ontain at most one 1, at most one term in (12)or (13) is nonzero. The same is true if the olumns of B eah ontain at mostone 1. Therefore A _�B and A��B both turn out to be the same as the ordinarymatrix produt A +� B = AB in suh ases.� MOR $X,$Y,$Z (multiple or): mT($X) mT($Y) _� mT($Z);equivalently, m($X) m($Z) _� m($Y). (See exerise 32.)� MXOR $X,$Y,$Z (multiple exlusive-or): mT($X) mT($Y) �� mT($Z);equivalently, m($X) m($Z) �� m($Y).These operations essentially set eah byte of $X by looking at the orrespondingbyte of $Z and using its bits to selet bytes of $Y; the seleted bytes are thenored or xored together. If, for example, we have$Z = #0102040810204080; (14)then both MOR and MXOR will set register $X to the byte reversal of register $Y:The kth byte from the left of $X will be set to the kth byte from the right of $Y,for 1 � k � 8. On the other hand if $Z = #00000000000000ff, MOR and MXORwill set all bytes of $X to zero exept for the rightmost byte, whih will beomeeither the OR or the XOR of all eight bytes of $Y. Exerises 33{37 illustrate someof the many pratial appliations of these versatile ommands.Floating point operators. MMIX inludes a full implementation of the famousIEEE/ANSI Standard 754 for oating point arithmeti. Complete details of theoating point operations appear in Setion 4.2 and in the MMIXware doument;a rough summary will suÆe for our purposes here.Every otabyte x represents a oating binary number f(x) determined asfollows: The leftmost bit of x is the sign (0 = `+', 1 = `�'); the next 11 bits arethe exponent E; the remaining 52 bits are the fration F. The value representedis then �0:0, if E = F = 0 (zero);�2�1074F, if E = 0 and F 6= 0 (denormal);�2E�1023(1 + F=252), if 0 < E < 2047 (normal);�1, if E = 2047 and F = 0 (in�nite);�NaN(F=252), if E = 2047 and F 6= 0 (Not-a-Number).The \short" oating point number f(t) represented by a tetrabyte t is similar,but its exponent part has only 8 bits and its fration has only 23; the normalase 0 < E < 255 of a short oat represents �2E�127(1 + F=223).� FADD $X,$Y,$Z (oating add): f($X) f($Y) + f($Z).� FSUB $X,$Y,$Z (oating subtrat): f($X) f($Y)� f($Z).� FMUL $X,$Y,$Z (oating multiply): f($X) f($Y)� f($Z).� FDIV $X,$Y,$Z (oating divide): f($X) f($Y)=f($Z).

12

1.3.1� DESCRIPTION OF MMIX 13� FREM $X,$Y,$Z (oating remainder): f($X) f($Y) rem f($Z).� FSQRT $X,$Z or FSQRT $X,Y,$Z (oating square root): f($X) f($Z)1=2.� FINT $X,$Z or FINT $X,Y,$Z (oating integer): f($X) int f($Z).� FCMP $X,$Y,$Z (oating ompare): s($X) [f($Y) > f($Z)℄�[f($Y) < f($Z)℄.� FEQL $X,$Y,$Z (oating equal to): s($X) [f($Y) = f($Z)℄.� FUN $X,$Y,$Z (oating unordered): s($X) [f($Y) k f($Z)℄.� FCMPE $X,$Y,$Z (oating ompare with respet to epsilon):s($X) �f($Y) � f($Z) �f(rE)��� �f($Y) � f($Z) �f(rE)��, see 4.2.2{(21).� FEQLE $X,$Y,$Z (oating equivalent with respet to epsilon):s($X) �f($Y) � f($Z) �f(rE)��, see 4.2.2{(24).� FUNE $X,$Y,$Z (oating unordered with respet to epsilon):s($X) �f($Y) k f($Z) �f(rE)��.� FIX $X,$Z or FIX $X,Y,$Z (onvert oating to �xed): s($X) int f($Z).� FIXU $X,$Z or FIXU $X,Y,$Z (onvert oating to �xed unsigned):u($X) �int f($Z)�mod 264.� FLOT $X,$Z or FLOT $X,Y,$Z (onvert �xed to oating): f($X) s($Z).� FLOTU $X,$Z or FLOTU $X,Y,$Z (onvert �xed to oating unsigned):f($X) u($Z).� SFLOT $X,$Z or SFLOT $X,Y,$Z (onvert �xed to short oat):f($X) f(T) s($Z).� SFLOTU $X,$Z or SFLOTU $X,Y,$Z (onvert �xed to short oat unsigned):f($X) f(T) u($Z).� LDSF $X,$Y,$Z or LDSF $X,A (load short oat): f($X) f(M4[A℄).� STSF $X,$Y,$Z or STSF $X,A (store short oat): f(M4[A℄) f($X).Assignment to a oating point quantity uses the urrent rounding mode todetermine the appropriate value when an exat value annot be assigned. Fourrounding modes are supported: 1 (ROUND_OFF), 2 (ROUND_UP), 3 (ROUND_DOWN),and 4 (ROUND_NEAR). The Y �eld of FSQRT, FINT, FIX, FIXU, FLOT, FLOTU, SFLOT,and SFLOTU an be used to speify a rounding mode other than the urrent one,if desired. For example, FIX $X,ROUND_UP,$Z sets s($X) �f($Z)�. OperationsSFLOT and SFLOTU �rst round as if storing into an anonymous tetrabyte T, thenthey onvert that number to otabyte form.The `int' operation rounds to an integer. The operation y rem z is de�nedto be y � nz, where n is the nearest integer to y=z, or the nearest even integerin ase of a tie. Speial rules apply when the operands are in�nite or NaN, andspeial onventions govern the sign of a zero result. The values +0:0 and �0:0have di�erent oating point representations, but FEQL alls them equal. All suhtehnialities are explained in the MMIXware doument, and Setion 4.2 explainswhy the tehnialities are important.Immediate onstants. Programs often need to deal with small onstantnumbers. For example, we might want to add or subtrat 1 from a register,or we might want to shift by 32, et. In suh ases it's a nuisane to load thesmall onstant from memory into another register. So MMIX provides a generalmehanism by whih suh onstants an be obtained \immediately" from an

13

14 BASIC CONCEPTS 1.3.1�instrution itself: Every instrution we have disussed so far has a variant inwhih $Z is replaed by the number Z, unless the instrution treats $Z as aoating point number.For example, `ADD $X,$Y,$Z' has a ounterpart `ADD $X,$Y,Z', meanings($X) s($Y) + Z; `SRU $X,$Y,$Z' has a ounterpart `SRU $X,$Y,Z', meaningu($X) �u($Y)=2Z�; `FLOT $X,$Z' has a ounterpart `FLOT $X,Z', meaningf($X) Z. But `FADD $X,$Y,$Z' has no immediate ounterpart.The opode for `ADD $X,$Y,$Z' is #20 and the opode for `ADD $X,$Y,Z'is #21; we use the same symbol ADD in both ases for simpliity. In general theopode for the immediate variant of an operation is one greater than the opodefor the register variant.Several instrutions also feature wyde immediate onstants, whih rangefrom #0000 = 0 to #ffff = 65535. These onstants, whih appear in the YZbytes, an be shifted into the high, medium high, medium low, or low wydepositions of an otabyte.� SETH $X,YZ (set high wyde): u($X) YZ� 248.� SETMH $X,YZ (set medium high wyde): u($X) YZ� 232.� SETML $X,YZ (set medium low wyde): u($X) YZ� 216.� SETL $X,YZ (set low wyde): u($X) YZ.� INCH $X,YZ (inrease by high wyde): u($X) �u($X) + YZ� 248�mod 264.� INCMH $X,YZ (inrease by medium high wyde):u($X) �u($X) + YZ� 232�mod 264.� INCML $X,YZ (inrease by medium low wyde):u($X) �u($X) + YZ� 216�mod 264.� INCL $X,YZ (inrease by low wyde): u($X) �u($X) + YZ�mod 264.� ORH $X,YZ (bitwise or with high wyde): v($X) v($X) _ v(YZ� 48).� ORMH $X,YZ (bitwise or with medium high wyde):v($X) v($X) _ v(YZ� 32).� ORML $X,YZ (bitwise or with medium low wyde):v($X) v($X) _ v(YZ� 16).� ORL $X,YZ (bitwise or with low wyde): v($X) v($X) _ v(YZ).� ANDNH $X,YZ (bitwise and-not high wyde): v($X) v($X) ^ �v(YZ� 48).� ANDNMH $X,YZ (bitwise and-not medium high wyde):v($X) v($X) ^ �v(YZ� 32).� ANDNML $X,YZ (bitwise and-not medium low wyde):v($X) v($X) ^ �v(YZ� 16).� ANDNL $X,YZ (bitwise and-not low wyde): v($X) v($X) ^ �v(YZ).Using at most four of these instrutions, we an get any desired otabyte into aregister without loading anything from the memory. For example, the ommandsSETH $0,#0123; INCMH $0,#4567; INCML $0,#89ab; INCL $0,#defput #0123456789abdef into register $0.The MMIX assembly language allows us to write SET as an abbreviation forSETL, and SET $X,$Y as an abbreviation for the ommon operation OR $X,$Y,0.

14

1.3.1� DESCRIPTION OF MMIX 15Jumps and branhes. Instrutions are normally exeuted in their naturalsequene. In other words, the ommand that is performed after MMIX has obeyedthe tetrabyte in memory loation � is normally the tetrabyte found in memoryloation � + 4. (The symbol � denotes the plae where we're \at.") But jumpand branh instrutions allow this sequene to be interrupted.� JMP RA (jump): � RA.Here RA denotes a three-byte relative address, whih ould be written moreexpliitly as �+4�XYZ, namely XYZ tetrabytes following the urrent loation �.For example, `JMP �+4*2' is a symboli form for the tetrabyte #f0000002; if thisinstrution appears in loation #1000, the next instrution to be exeuted willbe the one in loation #1008. We might in fat write `JMP #1008'; but then thevalue of XYZ would depend on the loation jumped from.Relative o�sets an also be negative, in whih ase the opode inreasesby 1 and XYZ is the o�set plus 224. For example, `JMP �-4*2' is the tetrabyte#f1fffffe. Opode #f0 tells the omputer to \jump forward" and opode #f1tells it to \jump bakward," but we write both as JMP. In fat, we usuallywrite simply `JMP Addr' when we want to jump to loation Addr, and the MMIXassembly program �gures out the appropriate opode and the appropriate valueof XYZ. Suh a jump will be possible unless we try to stray more than about 67million bytes from our present loation.� GO $X,$Y,$Z (go): u($X) �+ 4, then � A.The GO instrution allows us to jump to an absolute address, anywhere in mem-ory; this address A is alulated by formula (5), exatly as in the load and storeommands. Before going to the spei�ed address, the loation of the instrutionthat would ordinarily have ome next is plaed into register $X. Therefore weould return to that loation later by saying, for example, `GO $X,$X,0', withZ = 0 as an immediate onstant.� BN $X,RA (branh if negative): if s($X) < 0, set � RA.� BZ $X,RA (branh if zero): if $X = 0, set � RA.� BP $X,RA (branh if positive): if s($X) > 0, set � RA.� BOD $X,RA (branh if odd): if s($X) mod 2 = 1, set � RA.� BNN $X,RA (branh if nonnegative): if s($X) � 0, set � RA.� BNZ $X,RA (branh if nonzero): if $X 6= 0, set � RA.� BNP $X,RA (branh if nonpositive): if s($X) � 0, set � RA.� BEV $X,RA (branh if even): if s($X) mod 2 = 0, set � RA.A branh instrution is a onditional jump that depends on the ontents ofregister $X. The range of destination addresses RA is more limited than it waswith JMP, beause only two bytes are available to express the relative o�set; butstill we an branh to any tetrabyte between �� 218 and � + 218 � 4.� PBN $X,RA (probable branh if negative): if s($X) < 0, set � RA.� PBZ $X,RA (probable branh if zero): if $X = 0, set � RA.� PBP $X,RA (probable branh if positive): if s($X) > 0, set � RA.� PBOD $X,RA (probable branh if odd): if s($X) mod 2 = 1, set � RA.� PBNN $X,RA (probable branh if nonnegative): if s($X) � 0, set � RA.

15

16 BASIC CONCEPTS 1.3.1�� PBNZ $X,RA (probable branh if nonzero): if $X 6= 0, set � RA.� PBNP $X,RA (probable branh if nonpositive): if s($X) � 0, set � RA.� PBEV $X,RA (probable branh if even): if s($X) mod 2 = 0, set � RA.High-speed omputers usually work fastest if they an antiipate when a branhwill be taken, beause foreknowledge helps them look ahead and get ready forfuture instrutions. Therefore MMIX enourages programmers to give hints aboutwhether branhing is likely or not. Whenever a branh is expeted to be takenmore than half of the time, a wise programmer will say PB instead of B.*Subroutine alls. MMIX also has several instrutions that failitate eÆientommuniation between subprograms, via a register stak. The details are some-what tehnial and we will defer them until Setion 1.4�; an informal desriptionwill suÆe here. Short programs do not need to use these features.� PUSHJ $X,RA (push registers and jump): push(X) and set rJ � + 4, thenset � RA.� PUSHGO $X,$Y,$Z (push registers and go): push(X) and set rJ �+ 4, thenset � A.The speial return-jump register rJ is set to the address of the tetrabyte followingthe PUSH ommand. The ation \push(X)" means, roughly speaking, that loalregisters $0 through $X are saved and made temporarily inaessible. Whatused to be $(X+1) is now $0, what used to be $(X+2) is now $1, et. Butall registers $k for k � rG remain unhanged; rG is the speial global thresholdregister, whose value always lies between 32 and 255, inlusive.Register $k is alled global if k � rG. It is alled loal if k < rL; here rL is thespeial loal threshold register, whih tells how many loal registers are urrentlyative. Otherwise, namely if rL � k < rG, register $k is alled marginal, and$k is equal to zero whenever it is used as a soure operand in a ommand. Ifa marginal register $k is used as a destination operand in a ommand, rL isautomatially inreased to k + 1 before the ommand is performed, therebymaking $k loal.� POP X,YZ (pop registers and return): pop(X), then � rJ + 4 �YZ.Here \pop(X)" means, roughly speaking, that all but X of the urrent loalregisters beome marginal, and then the loal registers hidden by the most reent\push" that has not yet been \popped" are restored to their former values. Fulldetails appear in Setion 1.4�, together with numerous examples.� SAVE $X,0 (save proess state): u($X) ontext.� UNSAVE $Z (restore proess state): ontext u($Z).The SAVE instrution stores all urrent registers in memory at the top of theregister stak, and puts the address of the topmost stored otabyte into u($X).Register $X must be global; that is, X must be � rG. All of the urrently loaland global registers are saved, together with speial registers like rA, rD, rE,rG, rH, rJ, rM, rR, and several others that we have not yet disussed. TheUNSAVE instrution takes the address of suh a topmost otabyte and restoresthe assoiated ontext, essentially undoing a previous SAVE. The value of rL isset to zero by SAVE, but restored by UNSAVE. MMIX has speial registers alled

16

1.3.1� DESCRIPTION OF MMIX 17the register stak o�set (rO) and register stak pointer (rS), whih ontrol thePUSH, POP, SAVE, and UNSAVE operations. (Again, full details an be found inSetion 1.4�.)*System onsiderations. Several opodes, intended primarily for ultrafastand/or parallel versions of the MMIX arhiteture, are of interest only to ad-vaned users, but we should at least mention them here. Some of the assoiatedoperations are similar to the \probable branh" ommands, in the sense thatthey give hints to the mahine about how to plan ahead for maximum eÆieny.Most programmers do not need to use these instrutions, exept perhaps SYNCID.� LDUNC $X,$Y,$Z (load ota unahed): s($X) s�M8[A℄�.� STUNC $X,$Y,$Z (store ota unahed): s�M8[A℄� s($X).These ommands perform the same operations as LDO and STO, but they alsoinform the mahine that the loaded or stored otabyte and its near neighborswill probably not be read or written in the near future.� PRELD X,$Y,$Z (preload data).Says that many of the bytes M[A℄ through M[A+X℄ will probably be loaded orstored in the near future.� PREST X,$Y,$Z (prestore data).Says that all of the bytes M[A℄ through M[A + X℄ will de�nitely be written(stored) before they are next read (loaded).� PREGO X,$Y,$Z (prefeth to go).Says that many of the bytes M[A℄ through M[A + X℄ will probably be used asinstrutions in the near future.� SYNCID X,$Y,$Z (synhronize instrutions and data).Says that all of the bytes M[A℄ through M[A +X℄ must be fethed again beforebeing interpreted as instrutions. MMIX is allowed to assume that a program'sinstrutions do not hange after the program has begun, unless the instrutionshave been prepared by SYNCID. (See exerise 57.)� SYNCD X,$Y,$Z (synhronize data).Says that all of bytes M[A℄ through M[A + X℄ must be brought up to date inthe physial memory, so that other omputers and input/output devies anread them.� SYNC XYZ (synhronize).Restrits parallel ativities so that di�erent proessors an ooperate reliably;see MMIXware for details. XYZ must be 0, 1, 2, or 3.� CSWAP $X,$Y,$Z (ompare and swap otabytes).If u(M8[A℄) = u(rP), where rP is the speial predition register, set u(M8[A℄) u($X) and u($X) 1. Otherwise set u(rP) u(M8[A℄) and u($X) 0. Thisis an atomi (indivisible) operation, useful when independent omputers share aommon memory.� LDVTS $X,$Y,$Z (load virtual translation status).This instrution, desribed in MMIXware, is for the operating system only.

17

18 BASIC CONCEPTS 1.3.1�*Interrupts. The normal ow of instrutions from one tetrabyte to the nextan be hanged not only by jumps and branhes but also by less preditableevents like overow or external signals. Real-world mahines must also opewith suh things as seurity violations and hardware failures. MMIX distinguishestwo kinds of program interruptions: \trips" and \traps." A trip sends ontrolto a trip handler, whih is part of the user's program; a trap sends ontrol to atrap handler, whih is part of the operating system.Eight kinds of exeptional onditions an arise when MMIX is doing arith-meti, namely integer divide hek (D), integer overow (V), oat-to-�x over-ow (W), invalid oating operation (I), oating overow (O), oating under-ow (U), oating division by zero (Z), and oating inexat (X). The speialarithmeti status register rA holds urrent information about all these exep-tions. The eight bits of its rightmost byte are alled its event bits, and they arenamed D_BIT (#80), V_BIT (#40), : : : , X_BIT (#01), in order DVWIOUZX.The eight bits just to the left of the event bits in rA are alled the enablebits; they appear in the same order DVWIOUZX. When an exeptional ondi-tion ours during some arithmeti operation, MMIX looks at the orrespondingenable bit before proeeding to the next instrution. If the enable bit is 0, theorresponding event bit is set to 1; otherwise the mahine invokes a trip handlerby \tripping" to loation #10 for exeption D, #20 for exeption V, : : : , #80for exeption X. Thus the event bits of rA reord the exeptions that have notaused trips. (If more than one enabled exeption ours, the leftmost one takespreedene. For example, simultaneous O and X is handled by O.)The two bits of rA just to the left of the enable bits hold the urrent roundingmode, mod 4. The other 46 bits of rA should be zero. A program an hangethe setting of rA at any time, using the PUT ommand disussed below.� TRIP X,Y,Z or TRIP X,YZ or TRIP XYZ (trip).This ommand fores a trip to the handler at loation #00.Whenever a trip ours, MMIX uses �ve speial registers to reord the urrentstate: the bootstrap register rB, the where-interrupted register rW, the exeutionregister rX, the Y operand register rY, and the Z operand register rZ. First rBis set to $255, then $255 is set to rJ, and rW is set to �+ 4. The left half of rXis set to #80000000, and the right half is set to the instrution that tripped. Ifthe interrupted instrution was not a store ommand, rY is set to $Y and rZ isset to $Z (or to Z in ase of an immediate onstant); otherwise rY is set to A(the memory address of the store ommand) and rZ is set to $X (the quantityto be stored). Finally ontrol passes to the handler by setting � to the handleraddress (#00 or #10 or � � � or #80).� TRAP X,Y,Z or TRAP X,YZ or TRAP XYZ (trap).This ommand is analogous to TRIP, but it fores a trap to the operating system.Speial registers rBB, rWW, rXX, rYY, and rZZ take the plae of rB, rW, rX,rY, and rZ; the speial trap address register rT supplies the address of the traphandler, whih is plaed in �. Setion 1.3.2� desribes several TRAP ommandsthat provide simple input/output operations. The normal way to onlude a

18

1.3.1� DESCRIPTION OF MMIX 19program is to say `TRAP 0'; this instrution is the tetrabyte #00000000, so youmight run into it by mistake.The MMIXware doument gives further details about external interrupts,whih are governed by the speial interrupt mask register rK and interruptrequest register rQ. Dynami traps, whih arise when rK ^ rQ 6= 0, are handledat address rTT instead of rT.� RESUME 0 (resume after interrupt).If s(rX) is negative, MMIX simply sets � rW and takes its next instrutionfrom there. Otherwise, if the leading byte of rX is zero, MMIX sets � rW � 4and exeutes the instrution in the lower half of rX as if it had appeared inthat loation. (This feature an be used even if no interrupt has ourred.The inserted instrution must not itself be RESUME.) Otherwise MMIX performsspeial ations desribed in the MMIXware doument and of interest primarily tothe operating system; see exerise 1.4.3�{14.The omplete instrution set. Table 1 shows the symboli names of all 256opodes, arranged by their numeri values in hexadeimal notation. For example,ADD appears in the upper half of the row labeled #2x and in the olumn labeled#0 at the top, so ADD is opode #20; ORL appears in the lower half of the rowlabeled #Ex and in the olumn labeled #B at the bottom, so ORL is opode #EB.Table 1 atually says `ADD[I℄', not `ADD', beause the symbol ADD reallystands for two opodes. Opode #20 arises from ADD $X,$Y,$Z using register $Z,while opode #21 arises from ADD $X,$Y,Z using the immediate onstant Z.When a distintion is neessary, we say that opode #20 is ADD and opode #21is ADDI (\add immediate"); similarly, #F0 is JMP and #F1 is JMPB (\jump bak-ward"). This gives every opode a unique name. However, the extra I and B aregenerally dropped for onveniene when we write MMIX programs.We have disussed nearly all of MMIX's opodes. Two of the stragglers are� GET $X,Z (get from speial register): u($X) u(g[Z℄), where 0 � Z < 32.� PUT X,$Z (put into speial register): u(g[X℄) u($Z), where 0 � X < 32.Eah speial register has a ode number between 0 and 31. We speak of registersrA, rB, : : : , as aids to human understanding; but register rA is really g[21℄ fromthe mahine's point of view, and register rB is really g[0℄, et. The ode numbersappear in Table 2 on page 21.GET ommands are unrestrited, but ertain things annot be PUT: No valuean be put into rG that is greater than 255, less than 32, or less than the urrentsetting of rL. No value an be put into rA that is greater than #3ffff. If aprogram tries to inrease rL with the PUT ommand, rL will stay unhanged.Moreover, a program annot PUT anything into rC, rN, rO, rS, rI, rT, rTT, rK,rQ, rU, or rV; these \extraspeial" registers have ode numbers in the range 8{18.Most of the speial registers have already been mentioned in onnetion withspei� instrutions, but MMIX also has a \lok register" or yle ounter, rC,whih keeps advaning; an interval ounter, rI, whih keeps dereasing, andwhih requests an interrupt when it reahes zero; a serial number register, rN,whih gives eah MMIX mahine a unique number; a usage ounter, rU, whih

19

20 BASIC CONCEPTS 1.3.1�Table 1THE OPCODES OF MMIX#0 #1 #2 #3 #4 #5 #6 #7TRAP 5� FCMP � FUN � FEQL � FADD 4� FIX 4� FSUB 4� FIXU 4�#0x #0xFLOT[I℄ 4� FLOTU[I℄ 4� SFLOT[I℄ 4� SFLOTU[I℄ 4�FMUL 4� FCMPE 4� FUNE � FEQLE 4� FDIV 40� FSQRT 40� FREM 4� FINT 4�#1x #1xMUL[I℄ 10� MULU[I℄ 10� DIV[I℄ 60� DIVU[I℄ 60�ADD[I℄ � ADDU[I℄ � SUB[I℄ � SUBU[I℄ �#2x #2x2ADDU[I℄ � 4ADDU[I℄ � 8ADDU[I℄ � 16ADDU[I℄ �CMP[I℄ � CMPU[I℄ � NEG[I℄ � NEGU[I℄ �#3x #3xSL[I℄ � SLU[I℄ � SR[I℄ � SRU[I℄ �BN[B℄ �+� BZ[B℄ �+� BP[B℄ �+� BOD[B℄ �+�#4x #4xBNN[B℄ �+� BNZ[B℄ �+� BNP[B℄ �+� BEV[B℄ �+�PBN[B℄ 3��� PBZ[B℄ 3��� PBP[B℄ 3��� PBOD[B℄ 3���#5x #5xPBNN[B℄ 3��� PBNZ[B℄ 3��� PBNP[B℄ 3��� PBEV[B℄ 3���CSN[I℄ � CSZ[I℄ � CSP[I℄ � CSOD[I℄ �#6x #6xCSNN[I℄ � CSNZ[I℄ � CSNP[I℄ � CSEV[I℄ �ZSN[I℄ � ZSZ[I℄ � ZSP[I℄ � ZSOD[I℄ �#7x #7xZSNN[I℄ � ZSNZ[I℄ � ZSNP[I℄ � ZSEV[I℄ �LDB[I℄ �+� LDBU[I℄ �+� LDW[I℄ �+� LDWU[I℄ �+�#8x #8xLDT[I℄ �+� LDTU[I℄ �+� LDO[I℄ �+� LDOU[I℄ �+�LDSF[I℄ �+� LDHT[I℄ �+� CSWAP[I℄ 2�+2� LDUNC[I℄ �+�#9x #9xLDVTS[I℄ � PRELD[I℄ � PREGO[I℄ � GO[I℄ 3�STB[I℄ �+� STBU[I℄ �+� STW[I℄ �+� STWU[I℄ �+�#Ax #AxSTT[I℄ �+� STTU[I℄ �+� STO[I℄ �+� STOU[I℄ �+�STSF[I℄ �+� STHT[I℄ �+� STCO[I℄ �+� STUNC[I℄ �+�#Bx #BxSYNCD[I℄ � PREST[I℄ � SYNCID[I℄ � PUSHGO[I℄ 3�OR[I℄ � ORN[I℄ � NOR[I℄ � XOR[I℄ �#Cx #CxAND[I℄ � ANDN[I℄ � NAND[I℄ � NXOR[I℄ �BDIF[I℄ � WDIF[I℄ � TDIF[I℄ � ODIF[I℄ �#Dx #DxMUX[I℄ � SADD[I℄ � MOR[I℄ � MXOR[I℄ �SETH � SETMH � SETML � SETL � INCH � INCMH � INCML � INCL �#Ex #ExORH � ORMH � ORML � ORL � ANDNH � ANDNMH � ANDNML � ANDNL �JMP[B℄ � PUSHJ[B℄ � GETA[B℄ � PUT[I℄ �#Fx #FxPOP 3� RESUME 5� [UN℄SAVE 20�+� SYNC � SWYM � GET � TRIP 5�#8 #9 #A #B #C #D #E #F� = 2� if the branh is taken, � = 0 if the branh is not takeninreases by 1 whenever spei�ed opodes are exeuted; and a virtual translationregister, rV, whih de�nes a mapping from the \virtual" 64-bit addresses used inprograms to the \atual" physial loations of installed memory. These speialregisters help make MMIX a omplete, viable mahine that ould atually bebuilt and run suessfully; but they are not of importane to us in this book.The MMIXware doument explains them fully.� GETA $X,RA (get address): u($X) RA.This instrution loads a relative address into register $X, using the same on-ventions as the relative addresses in branh ommands. For example, GETA $0,�will set $0 to the address of the instrution itself.

20

1.3.1� DESCRIPTION OF MMIX 21Table 2SPECIAL REGISTERS OF MMIX ode saved? put?rA arithmeti status register 21 p prB bootstrap register (trip) 0 p prC yle ounter 8rD dividend register 1 p prE epsilon register 2 p prF failure loation register 22 prG global threshold register 19 p prH himult register 3 p prI interval ounter 12rJ return-jump register 4 p prK interrupt mask register 15rL loal threshold register 20 p prM multiplex mask register 5 p prN serial number 9rO register stak o�set 10rP predition register 23 p prQ interrupt request register 16rR remainder register 6 p prS register stak pointer 11rT trap address register 13rU usage ounter 17rV virtual translation register 18rW where-interrupted register (trip) 24 p prX exeution register (trip) 25 p prY Y operand (trip) 26 p prZ Z operand (trip) 27 p prBB bootstrap register (trap) 7 prTT dynami trap address register 14rWW where-interrupted register (trap) 28 prXX exeution register (trap) 29 prYY Y operand (trap) 30 prZZ Z operand (trap) 31 p
� SWYM X,Y,Z or SWYM X,YZ or SWYM XYZ (sympathize with your mahinery).The last of MMIX's 256 opodes is, fortunately, the simplest of all. In fat, itis often alled a no-op, beause it performs no operation. It does, however,keep the mahine running smoothly, just as real-world swimming helps to keepprogrammers healthy. Bytes X, Y, and Z are ignored.Timing. In later parts of this book we will often want to ompare di�erentMMIX programs to see whih is faster. Suh omparisons aren't easy to make,in general, beause the MMIX arhiteture an be implemented in many di�erentways. Although MMIX is a mythial mahine, its mythial hardware exists inheap, slow versions as well as in ostly high-performane models. The runningtime of a program depends not only on the lok rate but also on the number of

21

22 BASIC CONCEPTS 1.3.1�funtional units that an be ative simultaneously and the degree to whih theyare pipelined; it depends on the tehniques used to prefeth instrutions beforethey are exeuted; it depends on the size of the random-aess memory that isused to give the illusion of 264 virtual bytes; and it depends on the sizes andalloation strategies of ahes and other bu�ers, et., et.For pratial purposes, the running time of an MMIX program an often beestimated satisfatorily by assigning a �xed ost to eah operation, based onthe approximate running time that would be obtained on a high-performanemahine with lots of main memory; so that's what we will do. Eah operationwill be assumed to take an integer number of �, where � (pronouned \oops")*is a unit that represents the lok yle time in a pipelined implementation.Although the value of � dereases as tehnology improves, we always keep up withthe latest advanes beause we measure time in units of �, not in nanoseonds.The running time in our estimates will also be assumed to depend on the numberof memory referenes or mems that a program uses; this is the number of loadand store instrutions. For example, we will assume that eah LDO (load ota)instrution osts �+ �, where � is the average ost of a memory referene. Thetotal running time of a program might be reported as, say, 35�+1000�, meaning\35 mems plus 1000 oops." The ratio �=� has been inreasing steadily for manyyears; nobody knows for sure whether this trend will ontinue, but experienehas shown that � and � deserve to be onsidered independently.Table 1, whih is repeated also in the endpapers of this book, displays theassumed running time together with eah opode. Notie that most instrutionstake just 1�, while loads and stores take �+�. A branh or probable branh takes1� if predited orretly, 3� if predited inorretly. Floating point operationsusually take 4� eah, although FDIV and FSQRT ost 40�. Integer multipliationtakes 10�; integer division weighs in at 60�.Even though we will often use the assumptions of Table 1 for seat-of-the-pants estimates of running time, we must remember that the atual running timemight be quite sensitive to the ordering of instrutions. For example, integerdivision might ost only one yle if we an �nd 60 other things to do betweenthe time we issue the ommand and the time we need the result. Several LDB(load byte) instrutions might need to referene memory only one, if they referto the same otabyte. Yet the result of a load ommand is usually not readyfor use in the immediately following instrution. Experiene has shown thatsome algorithms work well with ahe memory, and others do not; therefore �is not really onstant. Even the loation of instrutions in memory an havea signi�ant e�et on performane, beause some instrutions an be fethedtogether with others. Therefore the MMIXware pakage inludes not only a simplesimulator, whih alulates running times by the rules of Table 1, but also aomprehensive meta-simulator, whih runs MMIX programs under a wide range ofdi�erent tehnologial assumptions. Users of the meta-simulator an speify the* The Greek letter upsilon (�) is wider than an itali letter vee (v), but the author admitsthat this distintion is rather subtle. Readers who prefer to say vee instead of oops are free todo as they wish. The symbol is, however, an upsilon.

22

1.3.1� DESCRIPTION OF MMIX 23harateristis of the memory bus and the parameters of suh things as ahes forinstrutions and data, virtual address translation, pipelining and simultaneousinstrution issue, branh predition, et. Given a on�guration �le and a program�le, the meta-simulator determines preisely how long the spei�ed hardwarewould need to run the program. Only the meta-simulator an be trusted to givereliable information about a program's atual behavior in pratie; but suhresults an be diÆult to interpret, beause in�nitely many on�gurations arepossible. That's why we often resort to the muh simpler estimates of Table 1.No benhmark result should ever be taken at fae value.| BRIAN KERNIGHAN and CHRISTOPHER VAN WYK (1998)MMIX versus reality. A person who understands the rudiments of MMIXprogramming has a pretty good idea of what today's general-purpose omputersan do easily; MMIX is very muh like all of them. But MMIX has been idealizedin several ways, partly beause the author has tried to design a mahine thatis somewhat \ahead of its time" so that it won't beome obsolete too quikly.Therefore a brief omparison between MMIX and the omputers atually beingbuilt at the turn of the millennium is appropriate. The main di�erenes betweenMMIX and those mahines are:� Commerial mahines do not ignore the low-order bits of memory addresses,as MMIX does when aessing M8[A℄; they usually insist that A be a multipleof 8. (We will �nd many uses for those preious low-order bits.)� Commerial mahines are usually de�ient in their support of integer arith-meti. For example, they almost never produe the true quotient bx=y andtrue remainder xmod y when x is negative or y is negative; they often throwaway the upper half of a produt. They don't treat left and right shifts asstrit equivalents of multipliation and division by powers of 2. Sometimesthey do not implement division in hardware at all; and when they do handledivision, they usually assume that the upper half of the 128-bit dividend iszero. Suh restritions make high-preision alulations more diÆult.� Commerial mahines do not perform FINT and FREM eÆiently.� Commerial mahines do not (yet?) have the powerful MOR and MXOR opera-tions. They usually have a half dozen or so ad ho instrutions that handleonly the most ommon speial ases of MOR.� Commerial mahines rarely have more than 64 general-purpose registers. The256 registers of MMIX signi�antly derease program length, beause manyvariables and onstants of a program an live entirely in those registersinstead of in memory. Furthermore, MMIX's register stak is more exiblethan the omparable mehanisms in existing omputers.All of these pluses for MMIX have assoiated minuses, beause omputer designalways involves tradeo�s. The primary design goal for MMIX was to keep themahine as simple and lean and onsistent and forward-looking as possible,without sari�ing speed and realism too greatly.

23

24 BASIC CONCEPTS 1.3.1�And now I see with eye sereneThe very pulse of the mahine.| WILLIAM WORDSWORTH, She Was a Phantom of Delight (1804)
Summary. MMIX is a programmer-friendly omputer that operates on 64-bitquantities alled otabytes. It has the general harateristis of a so-alled RISC(\redued instrution set omputer"); that is, its instrutions have only a fewdi�erent formats (OP X,Y, Z or OP X,YZ or OP XYZ), and eah instrutioneither transfers data between memory and a register or involves only registers.Table 1 summarizes the 256 opodes and their default running times; Table 2summarizes the speial registers that are sometimes important.The following exerises give a quik review of the material in this setion.Most of them are quite simple, and the reader should try to do nearly all of them.EXERCISES1. [00 ℄ The binary form of 2009 is (11111011001)2; what is 2009 in hexadeimal?2. [05 ℄ Whih of the letters fA; B; C; D; E; F; a; b; ; d; e; fg are odd when onsidered as(a) hexadeimal digits? (b) ASCII haraters?3. [10 ℄ Four-bit quantities | half-bytes, or hexadeimal digits | are often allednybbles. Suggest a good name for two-bit quantities, so that we have a omplete binarynomenlature ranging from bits to otabytes.4. [15 ℄ A kilobyte (kB or KB) is 1000 bytes, and a megabyte (MB) is 1000 kB. Whatare the oÆial names and abbreviations for larger numbers of bytes?5. [M13 ℄ If � is any string of 0s and 1s, let s(�) and u(�) be the integers that itrepresents when regarded as a signed or unsigned binary number. Prove that, if x isany integer, we havex = s(�) if and only if x � u(�) (modulo 2n) and �2n�1 � x < 2n�1;where n is the length of �.x 6. [M20 ℄ Prove or disprove the following rule for negating an n-bit number in two'somplement notation: \Complement all the bits, then add 1." (For example, #0 : : : 01beomes #f : : : fe, then #f : : : ff; also #f : : : ff beomes #0 : : : 00, then #0 : : : 01.)7. [M15 ℄ Could the formal de�nitions of LDHT and STHT have been stated ass($X) s(M4[A℄)� 232 and s(M4[A℄) bs($X)=232;thus treating the numbers as signed rather than unsigned?8. [10 ℄ If registers $Y and $Z represent numbers between 0 and 1 in whih the binaryradix point is assumed to be at the left of eah register, (7) illustrates the fat that MULUforms a produt in whih the assumed radix point appears at the left of register rH.Suppose, on the other hand, that $Z is an integer, with the radix point assumed at itsright, while $Y is a fration between 0 and 1 as before. Where does the radix point lieafter MULU in suh a ase?9. [M10 ℄ Does the equation s($Y) = s($X) � s($Z) + s(rR) always hold after theinstrution DIV $X,$Y,$Z has been performed?

24

1.3.1� DESCRIPTION OF MMIX 2510. [M16 ℄ Give an example of DIV in whih overow ours.11. [M16 ℄ True or false: (a) Both MUL $X,$Y,$Z and MULU $X,$Y,$Z produe the sameresult in $X. (b) If register rD is zero, both DIV $X,$Y,$Z and DIVU $X,$Y,$Z produethe same result in $X.x 12. [M20 ℄ Although ADDU $X,$Y,$Z never signals overow, we might want to know ifa arry ours at the left when adding $Y to $Z. Show that the arry an be omputedwith two further instrutions.13. [M21 ℄ Suppose MMIX had no ADD ommand, only its unsigned ounterpart ADDU.How ould a programmer tell whether overow ourred when omputing s($Y)+s($Z)?14. [M21 ℄ Suppose MMIX had no SUB ommand, only its unsigned ounterpart SUBU.How ould a programmer tell whether overow ourred when omputing s($Y)�s($Z)?15. [M25 ℄ The produt of two signed otabytes always lies between �2126 and 2126,so it an always be expressed as a signed 16-byte quantity. Explain how to alulatethe upper half of suh a signed produt.16. [M23 ℄ Suppose MMIX had no MUL ommand, only its unsigned ounterpart MULU.How ould a programmer tell whether overow ourred when omputing s($Y)�s($Z)?x 17. [M22 ℄ Prove that unsigned integer division by 3 an always be done by multipli-ation: If register $Y ontains any unsigned integer y, and if register $1 ontains theonstant #aaaaaaaaaaaaaaab, then the sequeneMULU $0,$Y,$1; GET $0,rH; SRU $X,$0,1puts by=3 into register $X.18. [M23 ℄ Continuing the previous exerise, prove or disprove that the instrutionsMULU $0,$Y,$1; GET $0,rH; SRU $X,$0,2put by=5 in $X if $1 is an appropriate onstant.x 19. [M26 ℄ Continuing exerises 17 and 18, prove or disprove the following statement:Unsigned integer division by a onstant an always be done using \high multipliation"followed by a right shift. More preisely, if 2e < z < 2e+1 we an ompute by=z byomputing bay=264+e, where a = d264+e=ze, for 0 � y < 264.20. [16 ℄ Show that two leverly hosen MMIX instrutions will multiply by 25 fasterthan the single instrution MUL $X,$Y,25, if we assume that overow will not our.21. [15 ℄ Desribe the e�ets of SL, SLU, SR, and SRU when the unsigned value inregister $Z is 64 or more.x 22. [15 ℄ Mr. B. C. Dull wrote a program in whih he wanted to branh to loationCase1 if the signed number in register $1 was less than the signed number in register $2.His solution was to write `SUB $0,$1,$2; BN $0,Case1'.What terrible mistake did he make? What should he have written instead?x 23. [10 ℄ Continuing the previous exerise, what should Dull have written if his prob-lem had been to branh if s($1) was less than or equal to s($2)?24. [M10 ℄ If we represent a subset S of f0; 1; : : : ; 63g by the bit vetor([02S ℄; [12S ℄; : : : ; [632S ℄);the bitwise operations ^ and _ orrespond respetively to set intersetion (S \ T) andset union (S [T). Whih bitwise operation orresponds to set di�erene (S n T)?

25

26 BASIC CONCEPTS 1.3.1�25. [10 ℄ The Hamming distane between two bit vetors is the number of positionsin whih they di�er. Show that two MMIX instrutions suÆe to set register $X equalto the Hamming distane between v($Y) and v($Z).26. [10 ℄ What's a good way to ompute 64 bit di�erenes, v($X) v($Y) .� v($Z)?x 27. [20 ℄ Show how to use BDIF to ompute the maximum and minimum of eight bytesat a time: b($X) max(b($Y); b($Z)), b($W) min(b($Y); b($Z)).28. [16 ℄ How would you alulate eight absolute pixel di�erenes jb($Y) � b($Z)jsimultaneously?29. [21 ℄ The operation of saturating addition on n-bit pixels is de�ned by the formulay _+ z = min(2n � 1; y + z):Show that a sequene of three MMIX instrutions will set b($X) b($Y) _+ b($Z).x 30. [25 ℄ Suppose register $0 ontains eight ASCII haraters. Find a sequene of threeMMIX instrutions that ounts the number of blank spaes among those haraters. (Youmay assume that auxiliary onstants have been preloaded into other registers. A blankspae is ASCII ode #20.)31. [22 ℄ Continuing the previous exerise, show how to ount the number of haratersin $0 that have odd parity (an odd number of 1 bits).32. [M20 ℄ True or false: If C = A Æ� B then CT = BT Æ� AT. (See (11).)33. [20 ℄ What is the shortest sequene of MMIX instrutions that will ylially shifta register eight bits to the right? For example, #9e3779b97f4a716 would beome#169e3779b97f4a7.x 34. [21 ℄ Given eight bytes of ASCII haraters in $Z, explain how to onvert them tothe orresponding eight wyde haraters of Uniode, using only two MMIX instrutionsto plae the results in $X and $Y. How would you go the other way (bak to ASCII)?x 35. [22 ℄ Show that two leverly hosen MOR instrutions will reverse the left-to-rightorder of all 64 bits in a given register $Y.x 36. [20 ℄ Using only two instrutions, reate a mask that has #ff in all byte positionswhere $Y di�ers from $Z, #00 in all byte positions where $Y equals $Z.x 37. [HM30 ℄ (Finite �elds.) Explain how to use MXOR for arithmeti in a �eld of 256elements; eah element of the �eld should be represented by a suitable otabyte.38. [20 ℄ What does the following little program do?SETL $1,0; SR $2,$0,56; ADD $1,$1,$2; SLU $0,$0,8; PBNZ $0,�-4*3.x 39. [20 ℄ Whih of the following equivalent sequenes of ode is faster, based on thetiming information of Table 1?a) BN $0,�+4*2; ADDU $1,$2,$3 versus ADDU $4,$2,$3; CSNN $1,$0,$4.b) BN $0,�+4*3; SET $1,$2; JMP �+4*2; SET $1,$3 versusCSNN $1,$0,$2; CSN $1,$0,$3.) BN $0,�+4*3; ADDU $1,$2,$3; JMP �+4*2; ADDU $1,$4,$5 versusADDU $1,$2,$3; ADDU $6,$4,$5; CSN $1,$0,$6.d, e, f) Same as (a), (b), and (), but with PBN in plae of BN.40. [10 ℄ What happens if you GO to an address that is not a multiple of 4?

26

1.3.1� DESCRIPTION OF MMIX 2741. [20 ℄ True or false:a) The instrutions CSOD $X,$Y,0 and ZSEV $X,$Y,$X have exatly the same e�et.b) The instrutions CMPU $X,$Y,0 and ZSNZ $X,$Y,1 have exatly the same e�et.) The instrutions MOR $X,$Y,1 and AND $X,$Y,#ff have exatly the same e�et.d) The instrutions MXOR $X,$Y,#80 and SR $X,$Y,56 have exatly the same e�et.42. [20 ℄ What is the best way to set register $1 to the absolute value of the numberin register $0, if $0 holds (a) a signed integer? (b) a oating point number?x 43. [28 ℄ Given a nonzero otabyte in $Z, what is the fastest way to ount how manyleading and trailing zero bits it has? (For example, #13fd8124f32434a2 has threeleading zeros and one trailing zero.)x 44. [M25 ℄ Suppose you want to emulate 32-bit arithmeti with MMIX. Show that it iseasy to add, subtrat, multiply, and divide signed tetrabytes, with overow ourringwhenever the result does not lie in the interval [�231 : : 231).45. [10 ℄ Think of a way to remember the sequene DVWIOUZX.46. [05 ℄ The all-zeros tetrabyte #00000000 halts a program when it ours as an MMIXinstrution. What does the all-ones tetrabyte #ffffffff do?47. [05 ℄ What are the symboli names of opodes #DF and #55?48. [11 ℄ The text points out that opodes LDO and LDOU perform exatly the sameoperation, with the same eÆieny, regardless of the operand bytes X, Y, and Z. Whatother pairs of opodes are equivalent in this sense?x 49. [22 ℄ After the following \number one" program has been exeuted, what hangesto registers and memory have taken plae? (For example, what is the �nal settingof $1? of rA? of rB?)NEG $1,1STCO 1,$1,1CMPU $1,$1,1STB $1,$1,$1LDOU $1,$1,$1INCH $1,116ADDU $1,$1,$1MULU $1,$1,$1PUT rA,1STW $1,$1,1SADD $1,$1,1FLOT $1,$1PUT rB,$1XOR $1,$1,1PBOD $1,�-4*1NOR $1,$1,$1SR $1,$1,1SRU $1,$1,1x 50. [14 ℄ What is the exeution time of the program in the preeding exerise?51. [14 ℄ Convert the \number one" program of exerise 49 to a sequene of tetrabytesin hexadeimal notation.52. [22 ℄ For eah MMIX opode, onsider whether there is a way to set the X, Y, and Zbytes so that the result of the instrution is preisely equivalent to SWYM (exept that

27

28 BASIC CONCEPTS 1.3.1�the exeution time may be longer). Assume that nothing is known about the ontentsof any registers or any memory loations. Whenever it is possible to produe a no-op,state how it an be done. Examples: INCL is a no-op if X = 255 and Y = Z = 0. BZ isa no-op if Y = 0 and Z = 1. MULU an never be a no-op, sine it a�ets rH.53. [15 ℄ List all MMIX opodes that an possibly hange the value of rH.54. [20 ℄ List all MMIX opodes that an possibly hange the value of rA.55. [21 ℄ List all MMIX opodes that an possibly hange the value of rL.x 56. [28 ℄ Loation #2000000000000000 ontains a signed integer number, x. Writetwo programs that ompute x13 in register $0. One program should use the minimumnumber of MMIXmemory loations; the other should use the minimum possible exeutiontime. Assume that x13 �ts into a single otabyte, and that all neessary onstants havebeen preloaded into global registers.x 57. [20 ℄ When a program hanges one or more of its own instrutions in memory, it issaid to have self-modifying ode. MMIX insists that a SYNCID ommand be issued beforesuh modi�ed ommands are exeuted. Explain why self-modifying ode is usuallyundesirable in a modern omputer.58. [50 ℄ Write a book about operating systems, whih inludes the omplete designof an NNIX kernel for the MMIX arhiteture.
Them fellers is a-mommixin' everything.| V. RANDOLPH and G. P. WILSON, Down in the Holler (1953)1.3.2�. The MMIX Assembly LanguageA symboli language is used to make MMIX programs onsiderably easier to readand to write, and to save the programmer from worrying about tedious lerialdetails that often lead to unneessary errors. This language, MMIXAL (\MMIXAssembly Language"), is an extension of the notation used for instrutions inthe previous setion. Its main features are the optional use of alphabeti namesto stand for numbers, and a label �eld to assoiate names with memory loationsand register numbers.MMIXAL an readily be omprehended if we onsider �rst a simple example.The following ode is part of a larger program; it is a subroutine to �nd themaximum of n elements X[1℄, : : : , X[n℄, aording to Algorithm 1.2.10M.Program M (Find the maximum). Initially n is in register $0, and the addressof X[0℄ is in register x0, a global register de�ned elsewhere.Assembled ode Line no. LABEL OP EXPR Times Remarks01 j IS $0 j02 m IS $1 m03 kk IS $2 8k04 xk IS $3 X[k℄05 t IS $255 Temp storage06 LOC #100#100: #39 02 00 03 07 Maximum SL kk,$0,3 1 M1. Initialize. k n, j n.#104: #8 01 fe 02 08 LDO m,x0,kk 1 m X[n℄.#108: #f0 00 00 06 09 JMP DerK 1 To M2 with k n� 1.

28

1.3.2� THE MMIX ASSEMBLY LANGUAGE 29#10: #8 03 fe 02 10 Loop LDO xk,x0,kk n� 1 M3. Compare.#110: #30 ff 03 01 11 CMP t,xk,m n� 1 t [X[k℄ > m℄� [X[k ℄ < m℄.#114: #5 ff 00 03 12 PBNP t,DerK n� 1 To M5 if X[k℄ � m.#118: #1 01 03 00 13 ChangeM SET m,xk A M4. Change m. m X[k℄.#11: #3d 00 02 03 14 SR j,kk,3 A j k.#120: #25 02 02 08 15 DerK SUB kk,kk,8 n M5. Derease k. k k � 1.#124: #55 00 ff fa 16 PBP kk,Loop n M2. All tested? To M3 if k>0.#128: #f8 02 00 00 17 POP 2,0 1 Return to main program.This program is an example of several things simultaneously:a) The olumns headed \LABEL", \OP", and \EXPR" are of prinipal interest;they ontain a program in the MMIXAL symboli mahine language, and we shallexplain the details of this program below.b) The olumn headed \Assembled ode" shows the atual numeri mahinelanguage that orresponds to the MMIXAL program. MMIXAL has been designedso that any MMIXAL program an easily be translated into numeri mahinelanguage; the translation is usually arried out by another omputer programalled an assembly program or assembler. Thus, programmers an do all of theirmahine language programming in MMIXAL, never bothering to determine theequivalent numeri odes by hand. Virtually all MMIX programs in this book arewritten in MMIXAL.) The olumn headed \Line no." is not an essential part of the MMIXAL pro-gram; it is merely inluded with MMIXAL examples in this book so that we anreadily refer to parts of the program.d) The olumn headed \Remarks" gives explanatory information about theprogram, and it is ross-referened to the steps of Algorithm 1.2.10M. The readershould ompare that algorithm (page 96) with the program above. Notie that alittle \programmer's liense" was used during the transription into MMIX ode;for example, step M2 has been put last.e) The olumn headed \Times" will be instrutive in many of the MMIX pro-grams we will be studying in this book; it represents the pro�le, the numberof times the instrution on that line will be exeuted during the ourse of theprogram. Thus, line 10 will be performed n�1 times, et. From this informationwe an determine the length of time required to perform the subroutine; it isn� + (5n + 4A + 5)�, where A is the quantity that was analyzed arefully inSetion 1.2.10. (The PBNP instrution osts (n� 1 + 2A)�.)Now let's disuss the MMIXAL part of Program M. Line 01, `j IS $0', saysthat symbol j stands for register $0; lines 02{05 are similar. The e�et of lines01 and 03 an be seen on line 14, where the numeri equivalent of the instrution`SR j,kk,3' appears as #3d 00 02 03, that is, `SR $0,$2,3'.Line 06 says that the loations for sueeding lines should be hosen sequen-tially, beginning with #100. Therefore the symbol Maximum that appears in thelabel �eld of line 07 beomes equivalent to the number #100; the symbol Loopin line 10 is three tetrabytes further along, so it is equivalent to #10.On lines 07 through 17 the OP �eld ontains the symboli names of MMIXinstrutions: SL, LDO, et. But the symboli names IS and LOC, found in

29

30 BASIC CONCEPTS 1.3.2�the OP olumn of lines 01{06, are somewhat di�erent; IS and LOC are alledpseudo-operations, beause they are operators of MMIXAL but not operators ofMMIX. Pseudo-operations provide speial information about a symboli program,without being instrutions of the program itself. Thus the line `j IS $0' onlytalks about Program M; it does not signify that any variable is to be set equal tothe ontents of register $0 when the program is run. Notie that no instrutionsare assembled for lines 01{06.Line 07 is a \shift left" instrution that sets k n by setting kk 8n. Thisprogram works with the value of 8k, not k, beause 8k is needed for otabyteaddresses in lines 08 and 10.Line 09 jumps the ontrol to line 15. The assembler, knowing that this JMPinstrution is in loation #108 and that DerK is equivalent to #120, omputesthe relative o�set (#120�#108)=4 = 6. Similar relative addresses are omputedfor the branh ommands in lines 12 and 16.The rest of the symboli ode is self-explanatory. As mentioned earlier,Program M is intended to be part of a larger program; elsewhere the sequeneSET $2,100PUSHJ $1,MaximumSTO $1,Maxwould, for example, jump to Program M with n set to 100. Program M wouldthen �nd the largest of the elements X[1℄, : : : , X[100℄ and would return to theinstrution `STO $1,Max' with the maximum value in $1 and with its position, j,in $2. (See exerise 3.)Let's look now at a program that is omplete, not merely a subroutine. If thefollowing program is named Hello, it will print out the famous message `Hello,world' and stop.Program H (Hail the world).Assembled ode Line LABEL OP EXPR Remarks01 argv IS $1 The argument vetor02 LOC #100#100: #8f ff 01 00 03 Main LDOU $255,argv,0 $255 address of program name.#104: #00 00 07 01 04 TRAP 0,Fputs,StdOut Print that name.#108: #f4 ff 00 03 05 GETA $255,String $255 address of ", world".#10: #00 00 07 01 06 TRAP 0,Fputs,StdOut Print that string.#110: #00 00 00 00 07 TRAP 0,Halt,0 Stop.#114: #2 20 77 6f 08 String BYTE ", world",#a,0 String of haraters#118: #72 6 64 0a 09 with newline#11: #00 10 and terminatorReaders who have aess to an MMIX assembler and simulator should take amoment to prepare a short omputer �le ontaining the LABEL OP EXPR portionsof Program H before reading further. Name the �le `Hello.mms' and assembleit by saying, for example, `mmixal Hello.mms'. (The assembler will produe a�le alled `Hello.mmo'; the suÆx .mms means \MMIX symboli" and .mmo means\MMIX objet.") Now invoke the simulator by saying `mmix Hello'.

30

1.3.2� THE MMIX ASSEMBLY LANGUAGE 31The MMIX simulator implements some of the simplest features of a hypo-thetial operating system alled NNIX. If an objet �le alled, say, foo.mmo ispresent, NNIX will launh it when a ommand line suh asfoo bar xyzzy (1)is given. You an obtain the orresponding behavior by invoking the simulatorwith the ommand line `mmix hoptionsi foo bar xyzzy', where hoptionsi is asequene of zero or more speial requests. For example, option -P will print apro�le of the program after it has halted.An MMIX program always begins at symboli loation Main. At that timeregister $0 ontains the number of ommand line arguments, namely the numberof words on the ommand line. Register $1 ontains the memory address of the�rst suh argument, whih is always the name of the program. The operatingsystem has plaed all of the arguments into onseutive otabytes, starting atthe address in $1 and ending with an otabyte of all zeros. Eah argument isrepresented as a string, meaning that it is the address in memory of a sequeneof zero or more nonzero bytes followed by a byte that is zero; the nonzero bytesare the haraters of the string.For example, the ommand line (1) would ause $0 to be initially 3, and wemight have $1=#4000000000000008 Pointer to the �rst stringM8[#4000000000000008℄ =#4000000000000028 First argument, the string "foo"M8[#4000000000000010℄ =#4000000000000030 Seond argument, the string "bar"M8[#4000000000000018℄ =#4000000000000038 Third argument, the string "xyzzy"M8[#4000000000000020℄ =#0000000000000000 Null pointer after the last argumentM8[#4000000000000028℄ =#666f6f0000000000 'f','o','o',0,0,0,0,0M8[#4000000000000030℄ =#6261720000000000 'b','a','r',0,0,0,0,0M8[#4000000000000038℄ =#78797a7a79000000 'x','y','z','z','y',0,0,0NNIX sets up eah argument string so that its haraters begin at an otabyteboundary; strings in general an, however, start anywhere within an otabyte.The �rst instrution of Program H, in line 03, puts the string pointer M8[$1℄into register $255; this string is the program name `Hello'. Line 04 is a speialTRAP instrution, whih asks the operating system to put string $255 into thestandard output �le. Similarly, lines 05 and 06 ask NNIX to ontribute `, world'and a newline harater to the standard output. The symbol Fputs is prede�nedto equal 7, and the symbol StdOut is prede�ned to equal 1. Line 07, `TRAP0,Halt,0', is the normal way to terminate a program. We will disuss all suhspeial TRAP ommands at the end of this setion.The haraters of the string output by lines 05 and 06 are generated bythe BYTE ommand in line 08. BYTE is a pseudo-operation of MMIXAL, not anoperation of MMIX; but BYTE is di�erent from pseudo-ops like IS and LOC, beauseit does assemble data into memory. In general, BYTE assembles a sequene ofexpressions into one-byte onstants. The onstrution ", world" in line 08 isMMIXAL's shorthand for the list',',' ','w','o','r','l','d'

31

32 BASIC CONCEPTS 1.3.2�of seven one-harater onstants. The onstant #a on line 08 is the ASCII newlineharater, whih auses a new line to begin when it appears in a �le being printed.The �nal `,0' on line 08 terminates the string. Thus line 08 is a list of nineexpressions, and it leads to the nine bytes shown at the left of lines 08{10.Our third example introdues a few more features of the assembly language.The objet is to ompute and print a table of the �rst 500 prime numbers, with10 olumns of 50 numbers eah. The table should appear as follows, when thestandard output of our program is listed as a text �le:First Five Hundred Primes0002 0233 0547 0877 1229 1597 1993 2371 2749 31870003 0239 0557 0881 1231 1601 1997 2377 2753 31910005 0241 0563 0883 1237 1607 1999 2381 2767 3203... ...0229 0541 0863 1223 1583 1987 2357 2741 3181 3571We will use the following method.Algorithm P (Print table of 500 primes). This algorithm has two distintparts: Steps P1{P8 prepare an internal table of 500 primes, and steps P9{P11print the answer in the form shown above.P1. [Start table.℄ Set PRIME[1℄ 2, n 3, j 1. (In this program, n runsthrough the odd numbers that are andidates for primes; j keeps trak ofhow many primes have been found so far.)P2. [n is prime.℄ Set j j + 1, PRIME[j℄ n.P3. [500 found?℄ If j = 500, go to step P9.P4. [Advane n.℄ Set n n+ 2.P5. [k 2.℄ Set k 2. (PRIME[k℄ will run through n's possible primedivisors.)P6. [PRIME[k℄nn?℄ Divide n by PRIME[k℄; let q be the quotient and r theremainder. If r = 0 (hene n is not prime), go to P4.P7. [PRIME[k℄ large?℄ If q � PRIME[k℄, go to P2. (In suh a ase, n mustbe prime; the proof of this fat is interesting and a little unusual| seeexerise 11.)P8. [Advane k.℄ Inrease k by 1, and go to P6.P9. [Print title.℄ Now we are ready to print the table. Output the title lineand set m 1.P10. [Print line.℄ Output a line that ontains PRIME[m℄, PRIME[50 +m℄, : : : ,PRIME[450 +m℄ in the proper format.P11. [500 printed?℄ Inrease m by 1. If m � 50, return to P10; otherwise thealgorithm terminates.Program P (Print table of 500 primes). This program has deliberately beenwritten in a slightly lumsy fashion in order to illustrate most of the features ofMMIXAL in a single program.

32

1.3.2� THE MMIX ASSEMBLY LANGUAGE 33
P1. Start table
P2. n is prime
P3. 500 found? P4. Advane n P5. k 2

P6. PRIME[k℄nn?P7. PRIME[k℄ large?
P8. Advane k

P9. Print title P10. Print line P11. 500 printed?Yes
Yes

No NoYes
YesNoNo

Fig. 14. Algorithm P.01 % Example program ... Table of primes02 L IS 500 The number of primes to �nd03 t IS $255 Temporary storage04 n GREG 0 Prime andidate05 q GREG 0 Quotient06 r GREG 0 Remainder07 jj GREG 0 Index for PRIME[j℄08 kk GREG 0 Index for PRIME[k℄09 pk GREG 0 Value of PRIME[k℄10 mm IS kk Index for output lines11 LOC Data_Segment12 PRIME1 WYDE 2 PRIME[1℄ = 213 LOC PRIME1+2*L14 ptop GREG � Address of PRIME[501℄15 j0 GREG PRIME1+2-� Initial value of jj16 BUF OCTA 0 Plae to form deimal string1718 LOC #10019 Main SET n,3 P1. Start table. n 3.20 SET jj,j0 j 1.21 2H STWU n,ptop,jj P2. n is prime. PRIME[j+1℄ n.22 INCL jj,2 j j + 1.23 3H BZ jj,2F P3. 500 found?24 4H INCL n,2 P4. Advane n.25 5H SET kk,j0 P5. k 2.26 6H LDWU pk,ptop,kk P6. PRIME[k℄nn?27 DIV q,n,pk q bn=PRIME[k℄.28 GET r,rR r nmod PRIME[k℄.29 BZ r,4B To P4 if r = 0.30 7H CMP t,q,pk P7. PRIME[k℄ large?31 BNP t,2B To P2 if q � PRIME[k℄.32 8H INCL kk,2 P8. Advane k. k k + 1.33 JMP 6B To P6.

33

34 BASIC CONCEPTS 1.3.2�34 GREG � Base address35 Title BYTE "First Five Hundred Primes"36 NewLn BYTE #a,0 Newline and string terminator37 Blanks BYTE " ",0 String of three blanks38 2H LDA t,Title P9. Print title.39 TRAP 0,Fputs,StdOut40 NEG mm,2 Initialize m.41 3H ADD mm,mm,j0 P10. Print line.42 LDA t,Blanks Output " ".43 TRAP 0,Fputs,StdOut44 2H LDWU pk,ptop,mm pk prime to be printed.45 0H GREG #2030303030000000 " 0000",0,0,046 STOU 0B,BUF Prepare bu�er for deimal onversion.47 LDA t,BUF+4 t position of units digit.48 1H DIV pk,pk,10 pk bpk=10.49 GET r,rR r next digit.50 INCL r,'0' r ASCII digit r.51 STBU r,t,0 Store r in the bu�er.52 SUB t,t,1 Move one byte to the left.53 PBNZ pk,1B Repeat on remaining digits.54 LDA t,BUF Output " " and four digits.55 TRAP 0,Fputs,StdOut56 INCL mm,2*L/10 Advane by 50 wydes.57 PBN mm,2B58 LDA t,NewLn Output a newline.59 TRAP 0,Fputs,StdOut60 CMP t,mm,2*(L/10-1) P11. 500 printed?61 PBNZ t,3B To P10 if not done.62 TRAP 0,Halt,0The following points of interest should be noted about this program:1. Line 01 begins with a perent sign and line 17 is blank. Suh \omment"lines are merely explanatory; they have no e�et on the assembled program.Eah non-omment line has three �elds alled LABEL, OP, and EXPR, sep-arated by spaes. The EXPR �eld ontains one or more symboli expressionsseparated by ommas. Comments may follow the EXPR �eld.2. As in ProgramM, the pseudo-operation IS sets the equivalent of a symbol.For example, in line 02 the equivalent of L is set to 500, whih is the number ofprimes to be omputed. Notie that in line 03, the equivalent of t is set to $255,a register number, while L's equivalent was 500, a pure number. Some symbolshave register number equivalents, ranging from $0 to $255; others have pureequivalents, whih are otabytes. We will generally use symboli names thatbegin with a lowerase letter to denote registers, and names that begin with anupperase letter to denote pure values, although MMIXAL does not enfore thisonvention.3. The pseudo-op GREG on line 04 alloates a global register. Register $255is always global; the �rst GREG auses $254 to be global, and the next GREG does

34

1.3.2� THE MMIX ASSEMBLY LANGUAGE 35the same for $253, et. Lines 04{09 therefore alloate six global registers, andthey ause the symbols n, q, r, jj, kk, pk to be respetively equivalent to $254,$253, $252, $251, $250, $249. Line 10 makes mm equivalent to $250.If the EXPR �eld of a GREG de�nition is zero, as it is on lines 04{09, the globalregister is assumed to have a dynamially varying value when the program is run.But if a nonzero expression is given, as on lines 14, 15, 34, and 45, the globalregister is assumed to be onstant throughout a program's exeution. MMIXALuses suh global registers as base addresses when subsequent instrutions referto memory. For example, onsider the instrution `LDA t,BUF+4' in line 47.MMIXAL is able to disover that global register ptop holds the address of BUF;therefore `LDA t,BUF+4' an be assembled as `LDA t,ptop,4'. Similarly, theLDA instrutions on lines 38, 42, and 58 make use of the nameless base addressintrodued by the instrution `GREG �' on line 34. (Reall from Setion 1.3.1�that � denotes the urrent loation.)4. A good assembly language should mimi the way a programmer thinksabout mahine programs. One example of this philosophy is the automatialloation of global registers and base addresses. Another example is the idea ofloal symbols suh as the symbol 2H, whih appears in the label �eld of lines 21,38, and 44.Loal symbols are speial symbols whose equivalents an be rede�ned asmany times as desired. A global symbol like PRIME1 has but one signi�anethroughout a program, and if it were to appear in the label �eld of more thanone line an error would be indiated by the assembler. But loal symbols havea di�erent nature; we write, for example, 2H (\2 here") in the LABEL �eld, and2F (\2 forward") or 2B (\2 bakward") in the EXPR �eld of an MMIXAL line:2B means the losest previous label 2H;2F means the losest following label 2H.Thus the 2F in line 23 refers to line 38; the 2B in line 31 refers bak to line 21;and the 2B in line 57 refers to line 44. The symbols 2F and 2B never refer totheir own line. For example, the MMIXAL instrutions2H IS $102H BZ 2B,2F2H IS 2B-4are virtually equivalent to the single instrutionBZ $10,�-4 :The symbols 2F and 2B should never be used in the LABEL �eld; the symbol2H should never be used in the EXPR �eld. If 2B ours before any appearaneof 2H, it denotes zero. There are ten loal symbols, whih an be obtained byreplaing `2' in these examples by any digit from 0 to 9.The idea of loal symbols was introdued by M. E. Conway in 1958, inonnetion with an assembly program for the UNIVAC I. Loal symbols free usfrom the obligation to hoose a symboli name when we merely want to refer to

35

36 BASIC CONCEPTS 1.3.2�an instrution a few lines away. There often is no appropriate name for nearbyloations, so programmers have tended to introdue meaningless symbols likeX1, X2, X3, et., with the potential danger of dupliation.5. The referene to Data_Segment on line 11 introdues another new idea. Inmost embodiments of MMIX, the 264-byte virtual address spae is broken into twoparts, alled user spae (addresses #0000000000000000 : : #7fffffffffffffff)and kernel spae (addresses #8000000000000000 : : #ffffffffffffffff). The\negative" addresses of kernel spae are reserved for the operating system.User spae is further subdivided into four segments of 261 bytes eah. Firstomes the text segment ; the user's program generally resides here. Then omesthe data segment, beginning at virtual address #2000000000000000 ; this is forvariables whose memory loations are alloated one and for all by the assembler,and for other variables alloated by the user without the help of the systemlibrary. Next is the pool segment, beginning at #4000000000000000 ; ommandline arguments and other dynamially alloated data go here. Finally the staksegment, whih starts at #6000000000000000, is used by the MMIX hardware tomaintain the register stak governed by PUSH, POP, SAVE, and UNSAVE. Threesymbols, Data_Segment = #2000000000000000;Pool_Segment = #4000000000000000;Stak_Segment = #6000000000000000;are prede�ned for onveniene in MMIXAL. Nothing should be assembled intothe pool segment or the stak segment, although a program may refer to datafound there. Referenes to addresses near the beginning of a segment mightbe more eÆient than referenes to addresses that ome near the end; for ex-ample, MMIX might not be able to aess the last byte of the text segment,M[#1fffffffffffffff ℄, as fast as it an read the �rst byte of the data segment.Our programs for MMIX will always onsider the text segment to be read-only : Everything in memory loations less than #2000000000000000 will remainonstant one a program has been assembled and loaded. Therefore Program Pputs the prime table and the output bu�er into the data segment.6. The text and data segments are entirely zero at the beginning of aprogram, exept for instrutions and data that have been loaded in aordanewith the MMIXAL spei�ation of the program. If two or more bytes of data aredestined for the same ell of memory, the loader will �ll that ell with theirbitwise exlusive-or.7. The symboli expression `PRIME1+2*L' on line 13 indiates that MMIXALhas the ability to do arithmeti on otabytes. See also the more elaborateexample `2*(L/10-1)' on line 60.8. As a �nal note about Program P, we an observe that its instrutionshave been organized so that registers are ounted towards zero, and tested againstzero, whenever possible. For example, register jj holds a quantity that is relatedto the positive variable j of Algorithm P, but jj is normally negative; this hange

36

1.3.2� THE MMIX ASSEMBLY LANGUAGE 37makes it easy for the mahine to deide when j has reahed 500 (line 23). Lines40{61 are partiularly noteworthy in this regard, although perhaps a bit triky.The binary-to-deimal onversion routine in lines 45{55, based on division by 10,is simple but not the fastest possible. More eÆient methods are disussed inSetion 4.4.It may be of interest to note a few of the statistis observed when Program Pwas atually run. The division instrution in line 27 was exeuted 9538 times.The total time to perform steps P1{P8 (lines 19{33) was 10036�+641543�; stepsP9{P11 ost an additional 2804�+124559�, not ounting the time taken by theoperating system to handle TRAP requests.Language summary. Now that we have seen three examples of what anbe done in MMIXAL, it is time to disuss the rules more arefully, observing inpartiular the things that annot be done. The following omparatively few rulesde�ne the language.1. A symbol is a string of letters and/or digits, beginning with a letter. Theundersore harater `_' is regarded as a letter, for purposes of this de�nition,and so are all Uniode haraters whose ode value exeeds 126. Examples:PRIME1, Data_Segment, Main, __, pât�e.The speial onstrutions dH, dF, and dB, where d is a single digit, are ef-fetively replaed by unique symbols aording to the \loal symbol" onventionexplained above.2. A onstant is eithera) a deimal onstant, onsisting of one or more deimal digits f0; 1; 2; 3; 4;5; 6; 7; 8; 9g, representing an unsigned otabyte in radix 10 notation; orb) a hexadeimal onstant, onsisting of a hash mark # followed by one ormore hexadeimal digits f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; a; b; ; d; e; f; A; B; C; D; E; Fg,representing an unsigned otabyte in radix 16 notation; or) a harater onstant, onsisting of a quote harater ' followed by anyharater other than newline, followed by another quote '; this representsthe ASCII or Uniode value of the quoted harater.Examples: 65, #41, 'A', 39, #27, ''', 31639, #7B97, ' '.A string onstant is a double-quote harater " followed by one or moreharaters other than newline or double-quote, followed by another double-quote ". This onstrution is equivalent to a sequene of harater onstantsfor the individual haraters, separated by ommas.3. Eah appearane of a symbol in an MMIXAL program is said to be eithera \de�ned symbol" or a \future referene." A de�ned symbol is a symbol thathas appeared in the LABEL �eld of a preeding line of this MMIXAL program. Afuture referene is a symbol that has not yet been de�ned in this way.A few symbols, like rR and ROUND_NEAR and V_BIT and W_Handler andFputs, are prede�ned beause they refer to onstants assoiated with the MMIX

37

38 BASIC CONCEPTS 1.3.2�hardware or with its rudimentary operating system. Suh symbols an be re-de�ned, beause MMIXAL does not assume that every programmer knows all theirnames. But no symbol should appear as a label more than one.Every de�ned symbol has an equivalent value, whih is either pure (anunsigned otabyte) or a register number ($0 or $1 or : : : or $255).4. A primary is eithera) a symbol; orb) a onstant; or) the harater �, denoting the urrent loation; ord) an expression enlosed in parentheses; ore) a unary operator followed by a primary.The unary operators are + (aÆrmation, whih does nothing), - (negation,whih subtrats from zero), ~ (omplementation, whih hanges all 64 bits), and$ (registerization, whih onverts a pure value to a register number).5. A term is a sequene of one or more primaries separated by strong binaryoperators; an expression is a sequene of one or more terms separated by weakbinary operators. The strong binary operators are * (multipliation), / (divi-sion), // (frational division), % (remainder), << (left shift), >> (right shift), and& (bitwise and). The weak binary operators are + (addition), - (subtration),| (bitwise or), and ^ (bitwise exlusive-or). These operations at on unsignedotabytes; x==y denotes b264x=y if x < y, and it is unde�ned if x � y. Binaryoperators of the same strength are performed from left to right; thus a/b/ is(a/b)/ and a-b+ is (a-b)+.Example: #ab<<32+k&~(k-1) is an expression, the sum of terms #ab<<32and k&~(k-1). The latter term is the bitwise and of primaries k and ~(k-1).The latter primary is the omplement of (k-1), a parenthesized expression thatis the di�erene of two terms k and 1. The term 1 is also a primary, and also aonstant, in fat it is a deimal onstant. If symbol k is equivalent to #def00,say, the entire expression #ab<<32+k&~(k-1) is equivalent to #ab00000100.Binary operations are allowed only on pure numbers, exept in ases like$1+2 = $3 and $3�$1 = 2. Future referenes annot be ombined with anythingelse; an expression like 2F+1 is always illegal, beause 2F never orresponds to ade�ned symbol.6. An instrution onsists of three �elds:a) the LABEL �eld, whih is either blank or a symbol;b) the OP �eld, whih is either an MMIX opode or an MMIXAL pseudo-op;) the EXPR �eld, whih is a list of one or more expressions separated byommas. The EXPR �eld an also be blank, in whih ase it is equivalent tothe single expression 0.7. Assembly of an instrution takes plae in three steps:

38

1.3.2� THE MMIX ASSEMBLY LANGUAGE 39a) The urrent loation � is aligned, if neessary, by inreasing it to the nextmultiple of 8, if OP is OCTA;4, if OP is TETRA or an MMIX opode;2, if OP is WYDE.b) The symbol in LABEL, if present, is de�ned to be �, unless OP = IS orOP = GREG.) If OP is a pseudo-operation, see rule 8. Otherwise OP is an MMIX instrution;the OP and EXPR �elds de�ne a tetrabyte as explained in Setion 1.3.1�, and� advanes by 4. Some MMIX opodes have three operands in the EXPR �eld,others have two, and others have only one.If OP is ADD, say, MMIXAL will expet three operands, and will hek that the�rst and seond operands are register numbers. If the third operand is pure,MMIXAL will hange the opode from #20 (\add") to #21 (\add immediate"),and will hek that the immediate value is less than 256.If OP is SETH, say, MMIXAL will expet two operands. The �rst operand shouldbe a register number; the seond should be a pure value less than 65536.An OP like BNZ takes two operands: a register and a pure number. The purenumber should be expressible as a relative address; in other words, its valueshould be expressible as �+ 4k where �65536 � k < 65536.Any OP that refers to memory, like LDB or GO, has a two-operand form $X,Aas well as the three-operand forms $X,$Y,$Z or $X,$Y,Z. The two-operandoption an be used when the memory address A is expressible as the sum $Y+Zof a base address and a one-byte value; see rule 8(b).8. MMIXAL inludes the following pseudo-operations.a) OP = IS: The EXPR should be a single expression; the symbol in LABEL, ifpresent, is made equivalent to the value of this expression.b) OP = GREG: The EXPR should be a single expression with a pure equivalent, x.The symbol in LABEL, if present, is made equivalent to the largest previouslyunalloated global register number, and this global register will ontain xwhen the program begins. If x 6= 0, the value of x is onsidered to be a baseaddress, and the program should not hange that global register.) OP = LOC: The EXPR should be a single expression with a pure equivalent, x.The value of � is set to x. For example, the instrution `T LOC �+1000'de�nes symbol T to be the address of the �rst of a sequene of 1000 bytes,and advanes � to the byte following that sequene.d) OP = BYTE, WYDE, TETRA, or OCTA: The EXPR �eld should be a list of pureexpressions that eah �t in 1, 2, 4, or 8 bytes, respetively.9. MMIXAL restrits future referenes so that the assembly proess an workquikly in one pass over the program. A future referene is permitted onlya) in a relative address: as the operand of JMP, or as the seond operand of abranh, probable branh, PUSHJ, or GETA; orb) in an expression assembled by OCTA.

39

40 BASIC CONCEPTS 1.3.2�% Example program ... Table of primesL IS 500 The number of primes to findt IS $255 Temporary storagen GREG ;; Prime andidateq GREG /* Quotient */r GREG // Remainderjj GREG 0 Index for PRIME[j℄...PBN mm,2BLDA t,NewLn; TRAP 0,Fputs,StdOutCMP t,mm,2*(L/10-1) ; PBNZ t,3B; TRAP 0,Halt,0Fig. 15. Program P as a omputer �le: The assembler tolerates many formats.MMIXAL also has a few additional features relevant to system programmingthat do not onern us here. Complete details of the full language appear in theMMIXware doument, together with the omplete logi of a working assembler.A free format an be used when presenting an MMIXAL program to theassembler (see Fig. 15). The LABEL �eld starts at the beginning of a line andontinues up to the �rst blank spae. The next nonblank harater begins the OP�eld, whih ontinues to the next blank, et. The whole line is a omment if the�rst nonblank harater is not a letter or digit; otherwise omments start afterthe EXPR �eld. Notie that the GREG de�nitions for n, q, and r in Fig. 15 have ablank EXPR �eld (whih is equivalent to the single expression `0'); therefore theomments on those lines need to be introdued by some sort of speial delimiter.But no suh delimiter is neessary on the GREG line for jj, beause an expliitEXPR of 0 appears there.The �nal lines of Fig. 15 illustrate the fat that two or more instrutionsan be plaed on a single line of input to the assembler, if they are separatedby semiolons. If an instrution following a semiolon has a nonblank label, thelabel must immediately follow the `;'.A onsistent format would obviously be better than the hodgepodge ofdi�erent styles shown in Fig. 15, beause omputer �les are easier to read whenthey aren't so haoti. But the assembler itself is very forgiving; it doesn't mindoasional sloppiness.Primitive input and output. Let us onlude this setion by disussingthe speial TRAP operations supported by the MMIX simulator. These operationsprovide basi input and output funtions on whih failities at a muh higherlevel ould be built. A two-instrution sequene of the formSET $255,hargi; TRAP 0,hfuntioni,hhandlei (2)is usually used to invoke suh a funtion, where hargi points to a parameter andhhandlei identi�es the relevant �le. For example, Program H usesGETA $255,String; TRAP 0,Fputs,StdOutto put a string into the standard output �le, and Program P is similar.

40

1.3.2� THE MMIX ASSEMBLY LANGUAGE 41After the TRAP has been servied by the operating system, register $255will ontain a return value. In eah ase this value will be negative if and onlyif an error ourred. Programs H and P do not hek for �le errors, beausethey assume that the orretness or inorretness of the standard output willspeak for itself; but error detetion and error reovery are usually important inwell-written programs.� Fopen(handle ;name ;mode). Eah of the ten primitive input/output trapsapplies to a handle, whih is a one-byte integer. Fopen assoiates handle withan external �le whose name is the string name , and prepares to do input and/oroutput on that �le. The third parameter, mode , must be one of the valuesTextRead, TextWrite, BinaryRead, BinaryWrite, or BinaryReadWrite, all ofwhih are prede�ned in MMIXAL. In the three ...Write modes, any previous �leontents are disarded. The value returned is 0 if the handle was suessfullyopened, otherwise �1.The alling sequene for Fopen isLDA $255,Arg; TRAP 0,Fopen,hhandlei (3)where Arg is a two-otabyte sequeneArg OCTA hnamei,hmodei (4)that has been plaed elsewhere in memory. For example, to all the funtionFopen(5; "foo"; BinaryWrite) in an MMIXAL program, we ould putArg OCTA 1F,BinaryWrite1H BYTE "foo",0into, say, the data segment, and then give the instrutionsLDA $255,Arg; TRAP 0,Fopen,5 :This would open handle 5 for writing a new �le of binary output,* to be named"foo".Three handles are already open at the beginning of eah program: Thestandard input �le StdIn (handle 0) has mode TextRead; the standard output�le StdOut (handle 1) has mode TextWrite; the standard error �le StdErr(handle 2) also has mode TextWrite.� Flose(handle). If handle has been opened, Flose auses it to be losed,hene no longer assoiated with any �le. Again the result is 0 if suessful, or�1 if the �le was already losed or unlosable. The alling sequene is simplyTRAP 0,Flose,hhandlei (5)beause there is no need to put anything in $255.* Di�erent omputer systems have di�erent notions of what onstitutes a text �le and whatonstitutes a binary �le. Eah MMIX simulator adopts the onventions of the operating systemon whih it resides.

41

42 BASIC CONCEPTS 1.3.2�� Fread(handle ; bu�er ; size). The �le handle should have been opened withmode TextRead, BinaryRead, or BinaryReadWrite. The next size bytes areread from the �le into MMIX's memory starting at address bu�er . The valuen� size is returned, where n is the number of bytes suessfully read and stored,or �1� size if an error ourred. The alling sequene isLDA $255,Arg; TRAP 0,Fread,hhandlei (6)with two otabytes for the other argumentsArg OCTA hbu�eri,hsizei (7)as in (3) and (4).� Fgets(handle ; bu�er ; size). The �le handle should have been opened withmode TextRead, BinaryRead, or BinaryReadWrite. One-byte haraters areread into MMIX's memory starting at address bu�er , until either size�1 haratershave been read and stored or a newline harater has been read and stored; thenext byte in memory is then set to zero. If an error or end of �le ours beforereading is omplete, the memory ontents are unde�ned and the value �1 isreturned; otherwise the number of haraters suessfully read and stored isreturned. The alling sequene is the same as (6) and (7), exept of ourse thatFgets replaes Fread in (6).� Fgetws(handle ; bu�er ; size). This ommand is the same as Fgets, exeptthat it applies to wyde haraters instead of one-byte haraters. Up to size � 1wyde haraters are read; a wyde newline is #000a.� Fwrite(handle ; bu�er ; size). The �le handle should have been opened withone of the modes TextWrite, BinaryWrite, or BinaryReadWrite. The nextsize bytes are written from MMIX's memory starting at address bu�er . The valuen � size is returned, where n is the number of bytes suessfully written. Thealling sequene is analogous to (6) and (7).� Fputs(handle ; string). The �le handle should have been opened with modeTextWrite, BinaryWrite, or BinaryReadWrite. One-byte haraters are writ-ten from MMIX's memory to the �le, starting at address string , up to but notinluding the �rst byte equal to zero. The number of bytes written is returned,or �1 on error. The alling sequene isSET $255,hstringi; TRAP 0,Fputs,hhandlei. (8)� Fputws(handle ; string). This ommand is the same as Fputs, exept thatit applies to wyde haraters instead of one-byte haraters.� Fseek(handle ; o�set). The �le handle should have been opened with modeBinaryRead, BinaryWrite, or BinaryReadWrite. This operation auses thenext input or output operation to begin at o�set bytes from the beginning ofthe �le, if o�set � 0, or at�o�set�1 bytes before the end of the �le, if o�set < 0.(For example, o�set = 0 \rewinds" the �le to its very beginning; o�set = �1

42

1.3.2� THE MMIX ASSEMBLY LANGUAGE 43moves forward all the way to the end.) The result is 0 if suessful, or �1 if thestated positioning ould not be done. The alling sequene isSET $255,ho�seti; TRAP 0,Fseek,hhandlei. (9)An Fseek ommand must be given when swithing from input to output or fromoutput to input in BinaryReadWrite mode.� Ftell(handle). The given �le handle should have been opened with modeBinaryRead, BinaryWrite, or BinaryReadWrite. This operation returns theurrent �le position, measured in bytes from the beginning, or �1 if an error hasourred. The alling sequene is simplyTRAP 0,Ftell,hhandlei : (10)Complete details about all ten of these input/output funtions appear in theMMIXware doument, together with a referene implementation. The symbolsFopen = 1;Flose = 2;Fread = 3;Fgets = 4;Fgetws = 5;
Fwrite = 6;Fputs = 7;Fputws = 8;Fseek = 9;Ftell = 10;

TextRead = 0;TextWrite = 1;BinaryRead = 2;BinaryWrite = 3;BinaryReadWrite = 4 (11)
are prede�ned in MMIXAL; also Halt = 0.EXERCISES|First set1. [05 ℄ (a) What is the meaning of `4B' in line 29 of Program P? (b) Would theprogram still work if the label of line 24 were hanged to `2H' and the EXPR �eld ofline 29 were hanged to `r,2B'?2. [10 ℄ Explain what happens if an MMIXAL program ontains several instanes of theline 9H IS 9B+1and no other ourrenes of 9H.x 3. [23 ℄ What is the e�et of the following program?LOC Data_SegmentX0 IS �N IS 100x0 GREG X0h Insert Program M here iMain GETA t,9F; TRAP 0,Fread,StdInSET $0,N<<31H SR $2,$0,3; PUSHJ $1,MaximumLDO $3,x0,$0SL $2,$2,3STO $1,x0,$0; STO $3,x0,$2SUB $0,$0,1<<3; PBNZ $0,1BGETA t,9F; TRAP 0,Fwrite,StdOutTRAP 0,Halt,09H OCTA X0+1<<3,N<<3

43

44 BASIC CONCEPTS 1.3.2�4. [10 ℄ What is the value of the onstant #112233445566778899?5. [11 ℄ What do you get from `BYTE 3+"pills"+6'?x 6. [15 ℄ True or false: The single instrution TETRA hexpr1i,hexpr2i always has thesame e�et as the pair of instrutions TETRA hexpr1i; TETRA hexpr2i.7. [05 ℄ John H. Quik (a student) was shoked, shoked to �nd that the instrutionGETA $0,�+1 gave the same result as GETA $0,�. Explain why he should not have beensurprised.x 8. [15 ℄ What's a good way to align the urrent loation � so that it is a multipleof 16, inreasing it by 0 : : 15 as neessary?9. [10 ℄ What hanges to Program P will make it print a table of 600 primes?x 10. [25 ℄ Assemble Program P by hand. (It won't take as long as you think.) Whatare the atual numerial ontents of memory, orresponding to that symboli program?11. [HM20 ℄ (a) Show that every nonprime n > 1 has a divisor d with 1 < d � pn.(b) Use this fat to show that n is prime if it passes the test in step P7 of Algorithm P.12. [15 ℄ The GREG instrution on line 34 of Program P de�nes a base address that isused for the string onstants Title, NewLn, and Blank on lines 38, 42, and 58. Suggesta way to avoid using this extra global register, without making the program run slower.13. [20 ℄ Uniode haraters make it possible to print the �rst 500 primes astÛ¿×Ä Ên·�Ä unÛË �Ì� ¾×3187 2749 2371 1993 1597 1229 0877 0547 0233 00023191 2753 2377 1997 1601 1231 0881 0557 0239 00033203 2767 2381 1999 1607 1237 0883 0563 0241 0005... ...3571 3181 2741 2357 1987 1583 1223 0863 0541 0229with \authenti" Arabi numerals. One simply uses wyde haraters instead of bytes,translating the English title and then substituting Arabi-Indi digits #0660 {#0669for the ASCII digits #30 {#39. (Arabi sript is written from right to left, but numbersstill appear with their least signi�ant digits at the right. The bidiretional presentationrules of Uniode automatially take are of the neessary reversals when the output isformatted.) What hanges to Program P will aomplish this?x 14. [21 ℄ Change Program P so that it uses oating point arithmeti for the divisibilitytest in step P6. (The FREM instrution always gives an exat result.) Use pn insteadof q in step P7. Do these hanges inrease or derease the running time?x 15. [22 ℄ What does the following program do? (Do not run it on a omputer, �gureit out by hand!)* Mystery Programa GREG '*'b GREG ' ' GREG Data_SegmentLOC #100Main NEG $1,1,75SET $2,02H ADD $3,$1,753H STB b,,$2ADD $2,$2,1

44

1.3.2� THE MMIX ASSEMBLY LANGUAGE 45SUB $3,$3,1PBP $3,3BSTB a,,$2INCL $2,1INCL $1,1PBN $1,2BSET $255,; TRAP 0,Fputs,StdOutTRAP 0,Halt,016. [46 ℄ MMIXAL was designed with simpliity and eÆieny in mind, so that people aneasily prepare mahine language programs for MMIX when those programs are relativelyshort. Longer programs are usually written in a higher-level language like C or Java,ignoring details at the mahine level. But sometimes there is a need to write large-saleprograms spei�ally for a partiular mahine, and to have preise ontrol over eahinstrution. In suh ases we ought to have a mahine-oriented language with a muhriher struture than the line-for-line approah of a traditional assembler.Design and implement a language alled PL/MMIX, whih is analogous to NiklausWirth's PL/360 language [JACM 15 (1968), 37{74℄. Your language should also inor-porate the ideas of literate programming [D. E. Knuth, Literate Programming (1992)℄.EXERCISES|Seond setThe next exerises are short programming problems, representing typial omputerappliations and overing a wide range of tehniques. Every reader is enouraged tohoose a few of these problems in order to get some experiene using MMIX, as wellas to pratie basi programming skills. If desired, these exerises may be workedonurrently as the rest of Chapter 1 is being read. The following list indiates thetypes of programming tehniques that are involved:The use of swithing tables for multiway deisions: exerise 17.Computation with two-dimensional arrays: exerises 18, 28, and 35.Text and string manipulation: exerises 24, 25, and 35.Integer and saled deimal arithmeti: exerises 21, 27, 30, and 32.Elementary oating point arithmeti: exerises 27 and 32.The use of subroutines: exerises 23, 24, 32, 33, 34, and 35.List proessing: exerise 29.Real-time ontrol: exerise 34.Typographi display: exerise 35.Loop and pipeline optimization: exerises 23 and 26.Whenever an exerise in this book says \write an MMIX program" or \write anMMIX subroutine," you need only write symboli MMIXAL ode for what is asked. Thisode will not be omplete in itself; it will merely be a fragment of a (hypothetial)omplete program. No input or output need be done in a ode fragment, if the datais to be supplied externally; one need write only LABEL, OP, and EXPR �elds of MMIXALinstrutions, together with appropriate remarks. The numeri mahine language, linenumber, and \Times" olumns (see Program M) are not required unless spei�allyrequested, nor will there be a Main label.On the other hand, if an exerise says \write a omplete MMIX program," it impliesthat an exeutable program should be written in MMIXAL, inluding in partiular theMain label. Suh programs should preferably be tested with the help of an MMIXassembler and simulator.

45

46 BASIC CONCEPTS 1.3.2�x 17. [25 ℄ Register $0 ontains the address of a tetrabyte that purportedly is a valid,unprivileged MMIX instrution. (This means that $0 � 0 and that the X, Y, and Z bytesof M4[$0℄ obey all restritions imposed by the OP byte, aording to the rules of Setion1.3.1�. For example, a valid instrution with opode FIX will have Y � ROUND_NEAR;a valid instrution with opode PUT will have Y = 0 and either X < 8 or 18 < X < 32.The opode LDVTS is always privileged, for use by the operating system only. But mostopodes de�ne instrutions that are valid and unprivileged for all X, Y, and Z.) Writean MMIX subroutine that heks the given tetrabyte for validity in this sense; try tomake your program as eÆient as possible.Note: Inexperiened programmers tend to takle a problem like this by writinga long series of tests on the OP byte, suh as \SR op,tetra,24; CMP t,op,#18;BN t,1F; CMP t,op,#98; BN t,2F; : : : ". This is not good pratie! The best wayto make multiway deisions is to prepare an auxiliary table ontaining informationthat enapsulates the desired logi. For example, a table of 256 otabytes, one foreah opode, ould be aessed by saying \SR t,tetra,21; LDO t,Table,t", followedperhaps by a GO instrution if many di�erent kinds of ations need to be done. Atabular approah often makes a program dramatially faster and more exible.x 18. [31 ℄ Assume that a 9� 8 matrix of signed one-byte elements0BBBB�
a11 a12 a13 : : : a18a21 a22 a23 : : : a28... ...a91 a92 a93 : : : a98

1CCCCA
has been stored so that aij is in loation A + 8i + j for some onstant A. The matrixtherefore appears as follows in MMIX's memory:0BBBB�

M[A+ 9℄ M[A+ 10℄ M[A+ 11℄ : : : M[A+ 16℄M[A+ 17℄ M[A+ 18℄ M[A+ 19℄ : : : M[A+ 24℄... ...M[A+ 73℄ M[A+ 74℄ M[A+ 75℄ : : : M[A+ 80℄
1CCCCA :

An m� n matrix is said to have a \saddle point" if some position is the smallestvalue in its row and the largest value in its olumn. In symbols, aij is a saddle point ifaij = min1�k�n aik = max1�k�m akj :Write an MMIX program that omputes the loation of a saddle point (if there is at leastone) or zero (if there is no saddle point), and puts this value in register $0.19. [M29 ℄ What is the probability that the matrix in the preeding exerise has asaddle point, assuming that the 72 elements are distint and assuming that all 72!permutations are equally likely? What is the orresponding probability if we assumeinstead that the elements of the matrix are zeros and ones, and that all 272 suhmatries are equally likely?20. [HM42 ℄ Two solutions are given for exerise 18 (see page 102), and a third issuggested; it is not lear whih of them is better. Analyze the algorithms, using eahof the assumptions of exerise 19, and deide whih is the better method.

46

1.3.2� THE MMIX ASSEMBLY LANGUAGE 4721. [25 ℄ The asending sequene of all redued frations between 0 and 1 that havedenominators � n is alled the \Farey series of order n." For example, the Farey seriesof order 7 is01 ; 17 ; 16 ; 15 ; 14 ; 27 ; 13 ; 25 ; 37 ; 12 ; 47 ; 35 ; 23 ; 57 ; 34 ; 45 ; 56 ; 67 ; 11 :If we denote this series by x0=y0, x1=y1, x2=y2, : : : , exerise 22 proves thatx0 = 0; y0 = 1; x1 = 1; y1 = n;xk+2 = b(yk + n)=yk+1xk+1 � xk;yk+2 = b(yk + n)=yk+1yk+1 � yk:Write an MMIX subroutine that omputes the Farey series of order n, by storing thevalues of xk and yk in tetrabytes X+4k and Y+4k, respetively. (The total number ofterms in the series is approximately 3n2=�2; thus we may assume that n < 232.)22. [M30 ℄ (a) Show that the numbers xk and yk de�ned by the reurrene in thepreeding exerise satisfy the relation xk+1yk�xkyk+1 = 1. (b) Show that the frationsxk=yk are indeed the Farey series of order n, using the fat proved in (a).23. [25 ℄ Write an MMIX subroutine that sets n onseutive bytes of memory to zero,given a starting address in $0 and an integer n � 0 in $1. Try to make your subroutineblazingly fast, when n is large; use an MMIX pipeline simulator to obtain realistirunning-time statistis.x 24. [30 ℄ Write an MMIX subroutine that opies a string, starting at the address in $0, tobytes of memory starting at the address in $1. Strings are terminated by null haraters(that is, bytes equal to zero). Assume that there will be no overlap in memory betweenthe string and its opy. Your routine should minimize the number of memory referenesby loading and storing eight bytes at a time when possible, so that long strings areopied eÆiently. Compare your program to the trivial byte-at-a-time odeSUBU $1,$1,$0;1H LDBU $2,$0,0; STBU $2,$0,$1; INCL $0,1; PBNZ $2,1Bwhih takes (2n+ 2)�+ (4n+ 7)� to opy a string of length n.25. [26 ℄ A ryptanalyst wants to ount how often eah harater ours in a longstring of iphertext. Write an MMIX program that omputes 255 frequeny ounts, onefor eah nonnull harater; the �rst null byte ends the given string. Try for a solutionthat is eÆient in terms of the \mems and oops" riteria of Table 1 in Setion 1.3.1�.x 26. [32 ℄ Improve the solution to the previous exerise by optimizing its performanewith respet to realisti on�gurations of the MMIX pipeline simulator.27. [26 ℄ (Fibonai approximations.) Equation 1.2.8{(15) states that the formulaFn = round(�n=p5) holds for all n � 0, where `round' denotes rounding to the nearestinteger. (a) Write a omplete MMIX program to test how well this formula behaveswith respet to oating point arithmeti: Compute straightforward approximations to�n=p5 for n = 0, 1, 2, : : : , and �nd the smallest n for whih the approximation does notround to Fn. (b) Exerise 1.2.8{28 proves that Fn = round(�Fn�1) for all n � 3. Findthe smallest n � 3 for whih this equation fails when we ompute �Fn�1 approximatelyby �xed point multipliation of unsigned otabytes. (See Eq. 1.3.1�{(7).)28. [26 ℄ A magi square of order n is an arrangement of the numbers 1 through n2 ina square array in suh a way that the sum of eah row and olumn is n(n2 +1)=2, andso is the sum of the two main diagonals. Figure 16 shows a magi square of order 7.

47

48 BASIC CONCEPTS 1.3.2�
22 47 16 41 10 35 0405 23 48 17 42 11 2930 06 24 49 18 36 1213 31 07 25 43 19 3738 14 32 01 26 44 2021 39 08 33 02 27 4546 15 40 09 34 03 28

5 4
6

138
7

2 START

Fig. 16. A magi square. Fig. 17. Josephus's problem, n = 8, m = 4.The rule for generating it is easily seen: Start with 1 just below the middle square,then go down and to the right diagonally until reahing a �lled square; if you run o�the edge, \wrap around" by imagining an entire plane tiled with squares. When youreah a nonempty position, drop down two spaes from the most-reently-�lled squareand ontinue. This method works whenever n is odd.Using memory alloated in a fashion like that of exerise 18, write a ompleteMMIX program to generate a 19� 19 magi square by the method above, and to formatthe result in the standard output �le. [This algorithm is due to Ibn al-Haytham, whowas born in Basra about 965 and died in Cairo about 1040. Many other magi squareonstrutions make good programming exerises; see W. W. Rouse Ball, MathematialRereations and Essays, revised by H. S. M. Coxeter (New York: Mamillan, 1939),Chapter 7.℄29. [30 ℄ (The Josephus problem.) There are n men arranged in a irle. Beginningat a partiular position, we ount around the irle and brutally exeute every mthman; the irle loses as men die. For example, the exeution order when n = 8 andm = 4 is 54613872, as shown in Fig. 17: The �rst man is �fth to go, the seond manis fourth, et. Write a omplete MMIX program that prints out the order of exeutionwhen n = 24, m = 11. Try to design a lever algorithm that works at high speedwhen m and n are large (it may save your life). Referene: W. Ahrens, MathematisheUnterhaltungen und Spiele 2 (Leipzig: Teubner, 1918), Chapter 15.30. [31 ℄ We showed in Setion 1.2.7 that the sum 1 + 12 + 13 + � � � beomes in�nitelylarge. But if it is alulated with �nite auray by a omputer, the sum atuallyexists, in some sense, beause the terms eventually get so small that they ontributenothing to the sum if added one by one. For example, suppose we alulate the sumby rounding to one deimal plae; then we have 1 + 0:5 + 0:3 + 0:2 + 0:2 + 0:2 + 0:1 +0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:0 + � � � = 3:7.More preisely, let rn(x) be the number x rounded to n deimal plaes, roundingto an even digit in ase of ties. For the purposes of this problem we an use the formularn(x) = d10nx� 12e=10n. Then we wish to �ndSn = rn(1) + rn(12)+ rn(13)+ � � � ;we know that S1 = 3:7, and the problem is to write a omplete MMIX program thatalulates and prints Sn for 1 � n � 10.

48

1.3.2� THE MMIX ASSEMBLY LANGUAGE 49Note: There is a muh faster way to do this than the simple proedure of addingrn(1=m), one number at a time, until rn(1=m) beomes zero. For example, we haver5(1=m) = 0:00001 for all values of m from 66667 to 199999; it's wise to avoidalulating 1=m all 133333 times! An algorithm along the following lines is better.H1. Start with m1 = 1, S 1, k 1.H2. Calulate r rn(1=(mk + 1)), and stop if r = 0.H3. Find mk+1, the largest m for whih rn(1=m) = r.H4. Set S S + (mk+1 �mk)r, k k + 1, and return to H2.31. [HM30 ℄ Using the notation of the preeding exerise, prove or disprove the formulalimn!1(Sn+1 � Sn) = ln 10:x 32. [31 ℄ The following algorithm, due to the Neapolitan astronomer Aloysius Liliusand the German Jesuit mathematiian Christopher Clavius in the late 16th entury, isused by most Western hurhes to determine the date of Easter Sunday for any yearafter 1582.Algorithm E (Date of Easter). Let Y be the year for whih Easter date is desired.E1. [Golden number.℄ Set G (Y mod 19) + 1. (G is the so-alled \goldennumber" of the year in the 19-year Metoni yle.)E2. [Century.℄ Set C bY=100 + 1. (When Y is not a multiple of 100, C is theentury number; for example, 1984 is in the twentieth entury.)E3. [Corretions.℄ Set X b3C=4 � 12, Z b(8C + 5)=25 � 5. (Here X is thenumber of years, suh as 1900, in whih leap year was dropped in order tokeep in step with the sun; Z is a speial orretion designed to synhronizeEaster with the moon's orbit.)E4. [Find Sunday.℄ Set D b5Y=4�X�10. (Marh ((�D) mod 7) will atuallybe a Sunday.)E5. [Epat.℄ Set E (11G + 20 + Z � X) mod 30. If E = 25 and the goldennumber G is greater than 11, or if E = 24, inrease E by 1. (This number Eis the epat, whih spei�es when a full moon ours.)E6. [Find full moon.℄ Set N 44�E. If N < 21 then set N N + 30. (Easteris supposedly the �rst Sunday following the �rst full moon that ours on orafter Marh 21. Atually perturbations in the moon's orbit do not make thisstritly true, but we are onerned here with the \alendar moon" rather thanthe atual moon. The Nth of Marh is a alendar full moon.)E7. [Advane to Sunday.℄ Set N N + 7� ((D +N) mod 7).E8. [Get month.℄ If N > 31, the date is (N � 31) APRIL; otherwise the date isN MARCH.Write a subroutine to alulate and print Easter date given the year, assumingthat the year is less than 100000. The output should have the form \dd MONTH, yyyyy"where dd is the day and yyyyy is the year. Write a omplete MMIX program that usesthis subroutine to prepare a table of the dates of Easter from 1950 through 2000.33. [M30 ℄ Some omputers|not MMIX!|give a negative remainder when a negativenumber is divided by a positive number. Therefore a program for alulating thedate of Easter by the algorithm in the previous exerise might fail when the quantity(11G + 20 + Z �X) in step E5 is negative. For example, in the year 14250 we obtainG = 1, X = 95, Z = 40; so if we had E = �24 instead of E = +6 we would get

49

50 BASIC CONCEPTS 1.3.2�the ridiulous answer \42 APRIL". [See CACM 5 (1962), 556.℄ Write a omplete MMIXprogram that �nds the earliest year for whih this error would atually ause the wrongdate to be alulated for Easter.x 34. [33 ℄ Assume that an MMIX omputer has been wired up to the traÆ signalsat the orner of Del Mar Boulevard and Berkeley Avenue, via speial \�les" named/dev/lights and /dev/sensor. The omputer ativates the lights by outputting onebyte to /dev/lights, speifying the sum of four two-bit odes as follows:Del Mar traÆ light: #00 o�, #40 green, #80 amber, #0 red;Berkeley traÆ light: #00 o�, #10 green, #20 amber, #30 red;Del Mar pedestrian light: #00 o�, #04 WALK, #0 DON'T WALK;Berkeley pedestrian light: #00 o�, #01 WALK, #03 DON'T WALK.Cars or pedestrians wishing to travel on Berkeley aross the boulevard must ativate asensor; if this ondition never ours, the light for Del Mar should remain green. WhenMMIX reads a byte from /dev/sensor, the input is nonzero if and only if the sensor hasbeen ativated sine the previous input.Cyle times are as follows:Del Mar traÆ light is green � 30 se, amber 8 se;Berkeley traÆ light is green 20 se, amber 5 se.When a traÆ light is green or amber for one diretion, the other diretion has a redlight. When the traÆ light is green, the orresponding WALK light is on, exept thatDON'T WALK ashes for 12 se just before a green light turns to amber, as follows:DON'T WALK 12 seo� 12 se� repeat 8 times;DON'T WALK 4 se (and remains on through amber and red yles).If the sensor is ativated while the Berkeley light is green, the ar or pedestrianwill pass on that yle. But if it is ativated during the amber or red portions, anotheryle will be neessary after the Del Mar traÆ has passed.Write a omplete MMIX program that ontrols these lights, following the statedprotool. Assume that the speial lok register rC inreases by 1 exatly � times perseond, where the integer � is a given onstant.35. [37 ℄ This exerise is designed to give some experiene in the many appliations ofomputers for whih the output is to be displayed graphially rather than in the usualtabular form. The objet is to \draw" a rossword puzzle diagram.You are given as input a matrix of zeros andones. An entry of zero indiates a white square; aone indiates a blak square. The output should gen-erate a diagram of the puzzle, with the appropriatesquares numbered for words aross and down.For example, given the matrix0BBBBB�
1 0 0 0 0 10 0 1 0 0 00 0 0 0 1 00 1 0 0 0 00 0 0 1 0 01 0 0 0 0 1

1CCCCCA ;

1 2 34 5 67 89 1011 12 1314Fig. 18. Diagram orrespondingto the matrix in exerise 35.

50

1.3.3� APPLICATIONS TO PERMUTATIONS 51the orresponding puzzle diagram would be as shown in Fig. 18. A square is numberedif it is a white square and either (a) the square below it is white and there is no whitesquare immediately above, or (b) the square to its right is white and there is no whitesquare immediately to its left. If blak squares our at the edges, they should beremoved from the diagram. This is illustrated in Fig. 18, where the blak squares atthe orners were dropped. A simple way to aomplish this is to arti�ially insert rowsand olumns of �1's at the top, bottom, and sides of the given input matrix, then tohange every +1 that is adjaent to a �1 into a �1 until no +1 remains next to any �1.Figure 18 was produed by the METAPOST program shown in Fig. 19. Simplehanges to the uses of line and blak, and to the oordinates in the for loop, willprodue any desired diagram.Write a omplete MMIX program that reads a 25 � 25 matrix of zeros and onesin the standard input �le and writes a suitable METAPOST program on the standardoutput �le. The input should onsist of 25 lines, eah onsisting of 25 digits followedby \newline"; for example, the �rst line orresponding to the matrix above would be`1000011111111111111111111', using extra 1s to extend the original 6 � 6 array. Thediagram will not neessarily be symmetrial, and it might have long paths of blaksquares that are onneted to the outside in strange ways.beginfig(18)transform t; t=identity rotated -90 saled 17pt;def line(expr i,j,ii,jj) =draw ((i,j)--(ii,jj)) transformed t;enddef;def blak(expr i,j) =fill ((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--yle) transformed t;enddef;line (1,2,1,6); line (2,1,2,7); line (3,1,3,7); line (4,1,4,7);line (5,1,5,7); line (6,1,6,7); line (7,2,7,6);line (2,1,6,1); line (1,2,7,2); line (1,3,7,3); line (1,4,7,4);line (1,5,7,5); line (1,6,7,6); line (2,7,6,7);numeri n; n=0;for p = (1,2),(1,4),(1,5), (2,1),(2,4),(2,6),(3,1),(3,3), (4,3),(4,5), (5,1),(5,2),(5,5), (6,2):n:=n+1; label.lrt(deimal n infont "mr8", p transformed t);endforblak(2,3); blak(3,5); blak(4,2); blak(5,4);endfig;Fig. 19. The METAPOST program that generated Fig. 18.
1.3.3�. Appliations to PermutationsThe MIX programs in the former Setion 1.3.3 will all be onverted to MMIXprograms, and so will the MIX programs in Chapters 2, 3, 4, 5, and 6. Anyonewho wishes to help with this instrutive onversion projet is invited to join theMMIXmasters (see page v).

51

52 BASIC CONCEPTS 1.4�1.4�. SOME FUNDAMENTAL PROGRAMMING TECHNIQUES1.4.1�. SubroutinesWhen a ertain task is to be performed at several di�erent plaes in a pro-gram, we usually don't want to repeat the oding over and over. To avoid thissituation, the oding (alled a subroutine) an be put into one plae only, anda few extra instrutions an be added to restart the main routine properly afterthe subroutine is �nished. Transfer of ontrol between subroutines and mainprograms is alled subroutine linkage.Eah mahine has its own peuliar way to ahieve eÆient subroutine link-age, usually by using speial instrutions. Our disussion will be based on MMIXmahine language, but similar remarks will apply to subroutine linkage on mostother general-purpose omputers.Subroutines are used to save spae in a program. They do not save anytime, other than the time impliitly saved by having less spae| for example,less time to load the program, and better use of high-speed memory on mahineswith several grades of memory. The extra time taken to enter and leave asubroutine is usually negligible, exept in ritial innermost loops.Subroutines have several other advantages. They make it easier to visualizethe struture of a large and omplex program; they form a logial segmentationof the entire problem, and this usually makes debugging of the program easier.Many subroutines have additional value beause they an be used by peopleother than the programmer of the subroutine.Most omputer installations have built up a large library of useful sub-routines, and suh a library greatly failitates the programming of standardomputer appliations that arise. A programmer should not think of this as theonly purpose of subroutines, however; subroutines should not always be regardedas general-purpose programs to be used by the ommunity. Speial-purposesubroutines are just as important, even when they are intended to appear inonly one program. Setion 1.4.3� ontains several typial examples.The simplest subroutines are those that have only one entrane and one exit,suh as the Maximum subroutine we have already onsidered (see Program M inSetion 1.3.2� and exerise 1.3.2�{3). Let's look at that program again, reastingit slightly so that a �xed number of ells, 100, is searhed for the maximum:* Maximum of X[1..100℄j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3Max100 SETL kk,100*8 M1. Initialize.LDO m,x0,kkJMP 1F3H LDO xk,x0,kk M3. Compare.CMP t,xk,mPBNP t,5F4H SET m,xk M4. Change m.1H SR j,kk,35H SUB kk,kk,8 M5. Derease k.PBP kk,3B M2. All tested?6H POP 2,0 Return to main program.
(1)

52

1.4.1� SUBROUTINES 53This subroutine is assumed to be part of a larger program in whih the symbol thas been de�ned to stand for register $255, and the symbol x0 has been de�nedto stand for a global register suh that X[k℄ appears in loation x0+8k. In thatlarger program, the single instrution \PUSHJ $1,Max100" will ause register $1to be set to the urrent maximum value of fX[1℄; : : : ;X[100℄g, and the positionof the maximum will appear in $2. Linkage in this ase is ahieved by thePUSHJ instrution that invokes the subroutine, together with \POP 2,0" at thesubroutine's end. These MMIX instrutions ause loal registers to be renumberedwhile the subroutine is ative; furthermore, the PUSHJ inserts a return addressinto speial register rJ, and the POP jumps to this loation.We an also aomplish subroutine linkage in a simpler, rather di�erent way,by using MMIX's GO instrution instead of pushing and popping. We might, forinstane, use the following ode in plae of (1):* Maximum of X[1..100℄j GREG ;m GREG ;kk GREG ;xk GREGGREG � Base addressGoMax100 SETL kk,100*8 M1. Initialize.LDO m,x0,kkJMP 1F3H ... (Continue as in (1))PBP kk,3B M2. All tested?6H GO kk,$0,0 Return to main program.
(2)

Now the instrution \GO $0,GoMax100" will transfer ontrol to the subrou-tine, plaing the address of the following instrution into $0; the subsequent\GO kk,$0,0" at the subroutine's end will return to this address. In this asethe maximum value will appear in global register m, and its loation will be inglobal register j. Two additional global registers, kk and xk, have also beenset aside for use by this subroutine. Furthermore, the \GREG �" provides abase address so that we an GO to GoMax100 in a single instrution; otherwisea two-step sequene like \GETA $0,GoMax100; GO $0,$0,0" would be neessary.Subroutine linkage like (2) is ommonly used on mahines that have no built-inregister stak mehanism.It is not hard to obtain quantitative statements about the amount of odesaved and the amount of time lost when subroutines are used. Suppose thata piee of oding requires k tetrabytes and that it appears in m plaes in theprogram. Rewriting this as a subroutine, we need a PUSHJ or GO instrutionin eah of the m plaes where the subroutine is alled, plus a single POP or GOinstrution to return ontrol. This gives a total of m+ k + 1 tetrabytes, ratherthan mk, so the amount saved is(m� 1) (k � 1)� 2: (3)If k is 1 or m is 1 we annot possibly save any spae by using subroutines; this,of ourse, is obvious. If k is 2, m must be greater than 3 in order to gain, et.The amount of time lost is the time taken for the PUSHJ, POP, and/or GOinstrutions in the linkage. If the subroutine is invoked t times during a run of the

53

54 BASIC CONCEPTS 1.4.1�program, and if we assume that running time is governed by the approximationsin Table 1.3.1�{1, the extra ost is 4t� in ase (1), or 6t� in ase (2).These estimates must be taken with a grain of salt, beause they were givenfor an idealized situation. Many subroutines annot be alled simply with a singlePUSHJ or GO instrution. Furthermore, if ode is repliated in many parts of aprogram without using a subroutine approah, eah instane an be ustomizedto take advantage of speial harateristis of the partiular part of the programin whih it lies. With a subroutine, on the other hand, the ode must be writtenfor the most general ase; this will often add several additional instrutions.When a subroutine is written to handle a general ase, it is expressed interms of parameters. Parameters are values that govern a subroutine's ations;they are subjet to hange from one all of the subroutine to another.The oding in the outside program that transfers ontrol to a subroutineand gets it properly started is known as the alling sequene. Partiular valuesof parameters, supplied when the subroutine is alled, are known as arguments.With our GoMax100 subroutine, the alling sequene is simply \GO $0,GoMax100",but a longer alling sequene is generally neessary when arguments must besupplied.For example, we might want to generalize (2) to a subroutine that �nds themaximum of the �rst n elements of an array, given any onstant n, by plaing nin the instrution stream with the two-step alling sequeneGO $0,GoMax; TETRA n: (4)The GoMax subroutine ould then take the form* Maximum of X[1..n℄j GREG ;m GREG ;kk GREG ;xk GREGGREG � Base addressGoMax LDT kk,$0,0 Feth the argument.SL kk,kk,3LDO m,x0,kkJMP 1F3H ... (Continue as in (1))PBP kk,3B6H GO kk,$0,4 Return to aller.
(5)

Still better would be to ommuniate the parameter n by putting it into aregister. We ould, for example, use the two-step alling sequeneSET $1,n; GO $0,GoMax (6)together with a subroutine of the formGoMax SL kk,$1,3 Feth the argument.LDO m,x0,kk...6H GO kk,$0,0 Return. (7)
This variation is faster than (5), and it allows n to vary dynamially withoutmodifying the instrution stream.

54

1.4.1� SUBROUTINES 55Notie that the address of array element X[0℄ is also essentially a parameterto subroutines (1), (2), (5), and (7). The operation of putting this address intoregister x0 may be regarded as part of the alling sequene, in ases when thearray is di�erent eah time.If the alling sequene oupies tetrabytes of memory, formula (3) for theamount of spae saved hanges to(m� 1) (k �)� onstant (8)and the time lost for subroutine linkage is slightly inreased.A further orretion to the formulas above an be neessary beause ertainregisters might need to be saved and restored. For example, in the GoMaxsubroutine we must remember that by writing \SET $1,n; GO $0,GoMax" weare not only omputing the maximum value in register m and its position inregister j, we are also hanging the values of global registers kk and xk. Wehave implemented (2), (5), and (7) with the impliit assumption that registerskk and xk are for the exlusive use of the maximum-�nding routine, but manyomputers are not blessed with a large number of registers. Even MMIX will runout of registers if a lot of subroutines are present simultaneously. We mighttherefore want to revise (7) so that it will work with kk � $2 and xk � $3, say,without lobbering the ontents of those registers. We ould do this by writingj GREG ;m GREG ;kk IS $2 ;xk IS $3GREG � Base addressGoMax STO kk,Tempkk Save previous register ontents.STO xk,TempxkSL kk,$1,3 Feth the argument.LDO m,x0,kk...LDO kk,Tempkk Restore previous register ontents.LDO xk,Tempxk6H GO $0,$0,0 Return.
(9)

and by setting aside two otabytes alled Tempkk and Tempxk in the data segment.Of ourse this hange adds potentially signi�ant overhead ost to eah use ofthe subroutine.A subroutine may be regarded as an extension of the omputer's mahinelanguage. For example, whenever the GoMax subroutine is present in memory wehave a single mahine instrution (namely, \GO $0,GoMax") that is a maximum-�nder. It is important to de�ne the e�et of eah subroutine just as arefullyas the mahine language operators themselves have been de�ned; a programmershould therefore be sure to write down the relevant harateristis, even thoughnobody else will be making use of the routine or its spei�ation. In the ase ofGoMax as given in (7) or (9), the harateristis are as follows:Calling sequene: GO $0,GoMax.Entry onditions: $1 = n � 1; x0 = address of X[0℄.Exit onditions: m = max1�k�nX[k℄ = X[j℄. (10)

55

56 BASIC CONCEPTS 1.4.1�A spei�ation should mention all hanges to quantities that are external to thesubroutine. If registers kk and xk are not onsidered \private" to the variant ofGoMax in (7), we should inlude the fat that those registers are a�eted, as part ofthat subroutine's exit onditions. The subroutine also hanges register t, namelyregister $255; but that register is onventionally used for temporary quantitiesof only momentary signi�ane, so we needn't bother to list it expliitly.Now let's onsider multiple entranes to subroutines. Suppose we have aprogram that requires the general subroutine GoMax, but it usually wants to usethe speial ase GoMax100 in whih n = 100. The two an be ombined as follows:GoMax100 SET $1,100 First entraneGoMax ... Seond entrane; ontinue as in (7) or (9). (11)We ould also add a third entrane, say GoMax50, by putting the odeGoMax50 SET $1,50; JMP GoMaxin some onvenient plae.A subroutine might also have multiple exits, meaning that it is supposed toreturn to one of several di�erent loations, depending on onditions that it hasdeteted. For example, we an extend subroutine (11) yet again by assumingthat an upper bound parameter is given in global register b; the subroutine isnow supposed to exit to one of the two tetrabytes following the GO instrutionthat alls it:Calling sequene for general n Calling sequene for n = 100SET $1,n; GO $0,GoMax GO $0,GoMax100Exit here if m � 0 or m � b. Exit here if m � 0 or m � b.Exit here if 0 < m < b. Exit here if 0 < m < b.(In other words, we skip the tetrabyte after the GO when the maximum valueis positive and less than the upper bound. A subroutine like this would beuseful in a program that often needs to make suh distintions after omputinga maximum value.) The implementation is easy:* Maximum of X[1..n℄ with bounds hekj GREG ;m GREG ;kk GREG ;xk GREGGREG � Base addressGoMax100 SET $1,100 Entrane for n = 100GoMax SL kk,$1,3 Entrane for general nLDO m,x0,kkJMP 1F3H ... (Continue as in (1))PBP kk,3BBNP m,1F Branh if m � 0.CMP kk,m,bBN kk,2F Branh if m < b.1H GO kk,$0,0 Take �rst exit if m � 0 or m � b.2H GO kk,$0,4 Otherwise take seond exit.

(12)

56

1.4.1� SUBROUTINES 57Notie that this program ombines the instrution-stream linking tehnique of (5)with the register-setting tehnique of (7). The loation to whih a subroutine ex-its is, stritly speaking, a parameter; hene the loations of multiple exits must besupplied as arguments. When a subroutine aesses one of its parameters all thetime, the orresponding argument is best passed in a register, but when an argu-ment is onstant and not always needed it is best kept in the instrution stream.Subroutines may all on other subroutines. Indeed, ompliated programsoften have subroutine alls nested more than �ve deep. The only restritionthat must be followed when using the GO-type linkage desribed above is that alltemporary storage loations and registers must be distint; thus no subroutinemay all on any other subroutine that is (diretly or indiretly) alling on it. Forexample, onsider the following senario:[Main program℄ [Subroutine A℄ [Subroutine B℄ [Subroutine C℄A B C...GO $0,A GO $1,B GO $2,C GO $0,A...GO $0,$0,0 GO $1,$1,0 GO $2,$2,0
(13)

If the main program alls A, whih alls B, whih alls C, and then C alls on A,the address in $0 referring to the main program is destroyed, and there is no wayto return to that program.Using a memory stak. Reursive situations like (13) do not often arisein simple programs, but a great many important appliations do have a nat-ural reursive struture. Fortunately there is a straightforward way to avoidinterferene between subroutine alls, by letting eah subroutine keep its loalvariables on a stak. For example, we an set aside a global register alled sp(the \stak pointer") and use GO $0,Sub to invoke eah subroutine. If the odefor the subroutine has the formSub STO $0,sp,0ADD sp,sp,8...SUB sp,sp,8LDO $0,sp,0GO $0,$0,0 (14)
register $0 will always ontain the proper return address; the problem of (13) nolonger arises. (Initially we set sp to an address in the data segment, following allother memory loations needed.) Moreover, the STO/ADD and SUB/LDO instru-tions of (14) an be omitted if Sub is a so-alled leaf subroutine|a subroutinethat doesn't all any other subroutines.A stak an be used to hold parameters and other loal variables besidesthe return addresses stored in (14). Suppose, for example, that subroutine Subneeds 20 otabytes of loal data, in addition to the return address; then we an

57

58 BASIC CONCEPTS 1.4.1�use a sheme like this:Sub STO fp,sp,0 Save the old frame pointer.SET fp,sp Establish a new frame pointer.INCL sp,8*22 Advane the stak pointer.STO $0,fp,8 Save the return address....LDO $0,fp,8 Restore the return address.SET sp,fp Restore the stak pointer.LDO fp,sp,0 Restore the frame pointer.GO $0,$0,0 Return to aller.
(15)

Here fp is a global register alled the frame pointer. Within the \..." part ofthe subroutine, loal quantity number k is equivalent to the otabyte in memoryloation fp+ 8k + 8, for 1 � k � 20. The instrutions at the beginning are saidto \push" loal quantities onto the \top" of the stak; the instrutions at theend \pop" those quantities o�, leaving the stak in the ondition it had whenthe subroutine was entered.Using the register stak. We have disussed GO-type subroutine linkageat length beause many omputers have no better alternative. But MMIX hasbuilt-in instrutions PUSHJ and POP, whih handle subroutine linkage in a moreeÆient way, avoiding most of the overhead in shemes like (9) and (15). Theseinstrutions allow us to keep most parameters and loal variables entirely inregisters, instead of storing them into a memory stak and loading them againlater. With PUSHJ and POP, most of the details of stak maintenane are doneautomatially by the mahine.The basi idea is quite simple, one the general idea of a stak is understood.MMIX has a register stak onsisting of otabytes S[0℄, S[1℄, : : : , S[� � 1℄ forsome number � � 0. The topmost L otabytes in the stak (namely S[� � L℄,S[��L+1℄, : : : , S[��1℄) are the urrent loal registers $0, $1, : : : , $(L�1); theother � �L otabytes of the stak are urrently inaessible to the program, andwe say they have been \pushed down." The urrent number of loal registers,L, is kept in MMIX's speial register rL, although a programmer rarely needs toknow this. Initially L = 2, � = 2, and loal registers $0 and $1 represent theommand line as in Program 1.3.2�H.MMIX also has global registers, namely $G, $(G+1), : : : , $255; the value of Gis kept in speial register rG, and we always have 0 � L � G � 255. (In fat, wealso always have G � 32.) Global registers are not part of the register stak.Registers that are neither loal nor global are alled marginal. These regis-ters, namely $L, $(L+ 1), : : : , $(G� 1), have the value zero whenever they areused as input operands to an MMIX instrution.The register stak grows when a marginal register is given a value. Thismarginal register beomes loal, and so do all marginal registers with smallernumbers. For example, if eight loal registers are urrently in use, the instrutionADD $10,$20,5 auses $8, $9, and $10 to beome loal; more preisely, if rL = 8,the instrution ADD $10,$20,5 sets $8 0, $9 0, $10 5, and rL 11.(Register $20 remains marginal.)

58

1.4.1� SUBROUTINES 59If $X is a loal register, the instrution PUSHJ $X,Sub dereases the numberof loal registers and hanges their e�etive register numbers: Loal registerspreviously alled $(X+1), $(X+2), : : : , $(L�1) are alled $0, $1, : : : , $(L�X�2)inside the subroutine, and the value of L dereases by X + 1. Thus the registerstak remains unhanged, but X + 1 of its entries have beome inaessible; thesubroutine annot damage those entries, and it has X+1 newly marginal registersto play with.If X � G, so that $X is a global register, the ation of PUSHJ $X,Sub issimilar, but a new entry is plaed on the register stak and then L+1 registers arepushed down instead of X+1. In this ase L is zero when the subroutine begins;all of the formerly loal registers have been pushed down, and the subroutinestarts out with a lean slate.The register stak shrinks only when a POP instrution is given, or whena program expliitly dereases the number of loal registers with an instrutionsuh as PUT rL,5. The purpose of POP X,YZ is to make the items pushed down bythe most reent PUSHJ aessible again, as they were before, and to remove itemsfrom the register stak if they are no longer neessary. In general the X �eld of aPOP instrution is the number of values \returned" by the subroutine, if X � L.If X > 0, the main value returned is $(X � 1); this value is removed from theregister stak, together with all entries above it, and the return value is plaedin the position spei�ed by the PUSHJ ommand that invoked the subroutine.The behavior of POP is similar when X > L, but in this ase the register stakremains intat and zero is plaed in the position of the PUSHJ.The rules we have just stated are a bit ompliated, beause many di�erentases an arise in pratie. A few examples will, however, make everything lear.Suppose we are writing a routine A and we want to all subroutine B; supposefurther that routine A has 5 loal registers that should not be aessible to B.These registers are $0, $1, $2, $3, and $4. We reserve the next register, $5, for themain result of subroutine B. If B has, say, three parameters, we set $6 arg0,$7 arg1, and $8 arg2, then issue the ommand PUSHJ $5,B; this invokes Band the arguments are now found in $0, $1, and $2.If B returns no result, it will onlude with the ommand POP 0,YZ; thiswill restore $0, $1, $2, $3, and $4 to their former values and set L 5.If B returns a single result x, it will plae x in $0 and onlude with theommand POP 1,YZ. This will restore $0, $1, $2, $3, and $4 as before; it willalso set $5 x and L 6.If B returns two results x and a, it will plae the main result x in $1 andthe auxiliary result a in $0. Then POP 2,YZ will restore $0 through $4 and set$5 x, $6 a, L 7. Similarly, if B returns ten results (x; a0; : : : ; a8), it willplae the main result x in $9 and the others in the �rst nine registers: $0 a0,$1 a1, : : : , $8 a8. Then POP 10,YZ will restore $0 through $4 and set$5 x, $6 a0, : : : , $14 a8. (The urious permutation of registers thatarises when two or more results are returned may seem strange at �rst. But itmakes sense, beause it leaves the register stak unhanged exept for the mainresult. For example, if subroutine B wants arg0, arg1, and arg2 to reappear in

59

60 BASIC CONCEPTS 1.4.1�$6, $7, and $8 after it has �nished its work, it an leave them as auxiliary resultsin $0, $1, and $2 and then say POP 4,YZ.)The YZ �eld of a POP instrution is usually zero, but in general the instru-tion POP X,YZ returns to the instrution that is YZ+1 tetrabytes after the PUSHJthat invoked the urrent subroutine. This generality is useful for subroutineswith multiple exits. More preisely, a PUSHJ subroutine in loation � sets speialregister rJ to � + 4 before jumping to the subroutine; a POP instrution thenreturns to loation rJ + 4YZ.We an now reast the programs previously written with GO linkage so thatthey use PUSH/POP linkage instead. For example, the two-entrane, two-exitsubroutine for maximum-�nding in (12) takes the following form when MMIX'sregister stak mehanism is used:* Maximum of X[1..n℄ with bounds hekj IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3Max100 SET $0,100 Entrane for n = 100Max SL kk,$0,3 Entrane for general nLDO m,x0,kkJMP 1F... (Continue as in (12))BNZ kk,2F1H POP 2,0 Take �rst exit if max � 0 or max � b.2H POP 2,1 Otherwise take seond exit.
(16)

Calling sequene for general n Calling sequene for n = 100SET $A,n; PUSHJ $R,Max (A = R+1) PUSHJ $R,Max100Exit here if $R � 0 or $R � b. Exit here if $R � 0 or $R � b.Exit here if 0 < $R < b. Exit here if 0 < $R < b.The loal result register $R in the PUSHJ of this alling sequene is arbitrary,depending on the number of loal variables the aller wishes to retain. Theloal argument register $A is then $(R + 1). After the all, $R will ontain themain result (the maximum value) and $A will ontain the auxiliary result (thearray index of that maximum). If there are several arguments and/or auxiliaries,they are onventionally alled A0, A1, : : : , and we onventionally assume thatA0 = R+1, A1 = R+2, : : : when PUSH/POP alling sequenes are written down.A omparison of (12) and (16) shows only mild advantages for (16): Thenew form does not need to alloate global registers for j, m, kk, and xk, nordoes it need a global base register for the address of the GO ommand. (Reallfrom Setion 1.3.1� that GO takes an absolute address, while PUSHJ has a relativeaddress.) A GO instrution is slightly slower than PUSHJ; it is no slower thanPOP, aording to Table 1.3.1�{1, although high-speed implementations of MMIXould implement POP more eÆiently. Programs (12) and (16) both have thesame length.The advantages of PUSH/POP linkage over GO linkage begin to manifest them-selves when we have non-leaf subroutines (namely, subroutines that all othersubroutines, possibly themselves). Then the GO-based ode of (14) an be re-

60

1.4.1� SUBROUTINES 61plaed by Sub GET retadd,rJ...PUT rJ,retaddPOP X,0 (17)
where retadd is a loal register. (For example, retadd might be $5; its registernumber is generally greater than or equal to the number of returned results X,so the POP instrution will automatially remove it from the register stak.) Nowthe ostly memory referenes of (14) are avoided.A non-leaf subroutine with many loal variables and/or parameters is signi�-antly better o� with a register stak than with the memory stak sheme of (15),beause we an often perform the omputations entirely in registers. We shouldnote, however, that MMIX's register stak applies only to loal variables that aresalar, not to loal array variables that must be aessed by address omputation.Subroutines that need non-salar loal variables should use a sheme like (15) forall suh variables, while keeping salars on the register stak. Both approahesan be used simultaneously, with fp and sp updated only by subroutines thatneed a memory stak.If the register stak beomes extremely large, MMIX will automatially storeits bottom entries in the stak segment of memory, using a behind-the-senesproedure that we will study in Setion 1.4.3�. (Reall from Setion 1.3.2� thatthe stak segment begins at address #6000000000000000.) MMIX stores registerstak items in memory also when a SAVE ommand saves a program's entireurrent ontext. Saved stak items are automatially restored from memorywhen a POP ommand needs them or when an UNSAVE ommand restores a savedontext. But in most ases MMIX is able to push and pop loal registers withoutatually aessing memory, and without atually hanging the ontents of verymany internal mahine registers.Staks have many other uses in omputer programs; we will study their basiproperties in Setion 2.2.1. We will get a further taste of nested subroutinesand reursive proedures in Setion 2.3, when we onsider operations on trees.Chapter 8 studies reursion in detail.*Assembly language features. The MMIX assembly language supports thewriting of subroutines in three ways that were not mentioned in Setion 1.3.2�.The most important of these is the PREFIX operation, whih makes it easy tode�ne \private" symbols that will not interfere with symbols de�ned elsewherein a large program. The basi idea is that a symbol an have a strutured formlike Sub:X (meaning symbol X of subroutine Sub), possibly arried to severallevels like Lib:Sub:X (meaning symbol X of subroutine Sub in library Lib).Strutured symbols are aommodated by extending rule 1 of MMIXAL inSetion 1.3.2� slightly, allowing the olon harater `:' to be regarded as a\letter" that an be used to onstrut symbols. Every symbol that does notbegin with a olon is impliitly extended by plaing the urrent pre�x in frontof it. The urrent pre�x is initially `:', but the user an hange it with the

61

62 BASIC CONCEPTS 1.4.1�PREFIX ommand. For example,ADD x,y,z means ADD :x,:y,:zPREFIX Foo: urrent pre�x is :Foo:ADD x,y,z means ADD :Foo:x,:Foo:y,:Foo:zPREFIX Bar: urrent pre�x is :Foo:Bar:ADD :x,y,:z means ADD :x,:Foo:Bar:y,:zPREFIX : urrent pre�x reverts to :ADD x,Foo:Bar:y,Foo:z means ADD :x,:Foo:Bar:y,:Foo:zOne way to use this idea is to replae the opening lines of (16) byPREFIX Max:j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3x0 IS :x0 ;b IS :b ;t IS :t External symbols:Max100 SET $0,100 Entrane for n = 100:Max SL kk,$0,3 Entrane for general nLDO m,x0,kkJMP 1F... (Continue as in (16))
(18)

and to add \PREFIX :" at the end. Then the symbols j, m, kk, and xk arefree for use in the rest of the program or in the de�nition of other subroutines.Further examples of the use of pre�xes appear in Setion 1.4.3�.MMIXAL also inludes a pseudo-operation alled LOCAL. The assembly om-mand \LOCAL $40" means, for example, that an error message should be givenat the end of assembly if GREG ommands alloate so many registers that $40will be global. (This feature is needed only when a subroutine uses more than32 loal registers, beause \LOCAL $31" is always impliitly true.)A third feature for subroutine support, BSPEC : : : ESPEC, is also provided.It allows information to be passed to the objet �le so that debugging routinesand other system programs know what kind of linkage is being used by eahsubroutine. This feature is disussed in the MMIXware doument; it is primarilyof interest in the output of ompilers.Strategi onsiderations. When ad ho subroutines are written for speial-purpose use, we an a�ord to use GREG instrutions liberally, so that plenty ofglobal registers are �lled with basi onstants that make our program run fast.Comparatively few loal registers are needed, unless the subroutines are usedreursively.But when dozens or hundreds of general-purpose subroutines are written forinlusion in a large library, with the idea of allowing any user program to inludewhatever subroutines it needs, we obviously an't allow eah subroutine toalloate a substantial number of globals. Even one global variable per subroutinemight be too muh.Thus we want to use GREG generously when we have only a few subroutines,but we want to use it sparingly when the number of subroutines is potentiallyhuge. In the latter ase we probably an make good use of loal variables withouttoo muh loss of eÆieny.

62

1.4.1� SUBROUTINES 63Let's onlude this setion by disussing briey how we might go aboutwriting a omplex and lengthy program. How an we deide what kind ofsubroutines we will need? What alling sequenes should be used? One suessfulway to determine this is to use an iterative proedure:Step 0 (Initial idea). First we deide vaguely upon the general plan ofattak that the program will use.Step 1 (A rough sketh of the program). We start now by writing the \outerlevels" of the program, in any onvenient language. A somewhat systemati wayto go about this has been desribed very niely by E. W. Dijkstra, StruturedProgramming (Aademi Press, 1972), Chapter 1, and by N. Wirth, CACM14 (1971), 221{227. First we break the whole program into a small number ofpiees, whih might be thought of temporarily as subroutines although they arealled only one. These piees are suessively re�ned into smaller and smallerparts, having orrespondingly simpler jobs to do. Whenever some omputationaltask arises that seems likely to our elsewhere or that has already ourredelsewhere, we de�ne a subroutine (a real one) to do that job. We do not writethe subroutine at this point; we ontinue writing the main program, assumingthat the subroutine has performed its task. Finally, when the main programhas been skethed, we takle the subroutines in turn, trying to take the mostomplex subroutines �rst and then their sub-subroutines, et. In this manner wewill ome up with a list of subroutines. The atual funtion of eah subroutinehas probably already hanged several times, so that the �rst parts of our skethwill by now be inorret; but that is no problem, sine we are merely making asketh. We now have a reasonably good idea about how eah subroutine will bealled and how general-purpose it should be. We should onsider extending thegenerality of eah subroutine, at least a little.Step 2 (First working program). The next step goes in the opposite dire-tion from step 1. We now write in omputer language, say MMIXAL or PL/MMIXor|most probably|a higher-level language. We start this time with the lowestlevel subroutines, and do the main program last. As far as possible, we try neverto write any instrutions that all a subroutine before the subroutine itself hasbeen oded. (In step 1, we tried the opposite, never onsidering a subroutineuntil all of its alls had been written.)As more and more subroutines are written during this proess, our on-�dene gradually grows, sine we are ontinually extending the power of themahine we are programming. After an individual subroutine is oded, we shouldimmediately prepare a omplete desription of what it does, and what its allingsequenes are, as in (10). It is also important to be sure that global variablesare not used for two oniting purposes at the same time; when preparing thesketh in step 1, we didn't have to worry about suh problems.Step 3 (Reexamination). The result of step 2 should be very nearly aworking program, but we may be able to improve it. A good way is to reversediretion again, studying for eah subroutine all of the plaes it is alled. Perhapsthe subroutine should be enlarged to do some of the more ommon things that

63

64 BASIC CONCEPTS 1.4.1�are always done by the outside routine just before or after the subroutine isalled. Perhaps several subroutines should be merged into one; or perhaps asubroutine is alled only one and should not be a subroutine at all. Perhaps asubroutine is never alled and an be dispensed with entirely.At this point, it is often a good idea to srap everything and start overagain at step 1, or even at step 0! This is not intended to be a faetious remark;the time spent in getting this far has not been wasted, for we have learned agreat deal about the problem. With hindsight, we will probably have disoveredseveral improvements that ould be made to the program's overall organization.There's no reason to be afraid to go bak to step 1| it will be muh easier to gothrough steps 2 and 3 again, now that a similar program has been done already.Moreover, we will quite probably save as muh debugging time later on as it willtake to rewrite everything. Some of the best omputer programs ever writtenowe muh of their suess to the fat that all the work was unintentionally lost,at about this stage, and the authors were fored to begin again.On the other hand, there is probably never a point when a omplex omputerprogram annot be improved somehow, so steps 1 and 2 should not be repeatedinde�nitely. When signi�ant improvements an learly be made, the additionaltime required to start over is well spent, but eventually a point of diminishingreturns is reahed.Step 4 (Debugging). After a �nal polishing of the program, inludingperhaps the alloation of storage and other last-minute details, it is time tolook at it in still another diretion from the three that were used in steps 1, 2,and 3: Now we study the program in the order in whih the omputer willperform it. This may be done by hand or, of ourse, by mahine. The authorhas found it quite helpful at this point to make use of system routines that traeeah instrution the �rst two times it is exeuted; it is important to rethink theideas underlying the program and to hek that everything is atually takingplae as expeted.Debugging is an art that needs muh further study, and the way to approahit is highly dependent on the failities available at eah omputer installation.A good start towards e�etive debugging is often the preparation of appropriatetest data. The most suessful debugging tehniques are typially designed andbuilt into the program itself: Many of today's best programmers devote nearlyhalf of their programs to failitating the debugging proess in the other half. The�rst half, whih usually onsists of fairly straightforward routines that displayrelevant information in a readable format, will eventually be of little importane,but the net result is a surprising gain in produtivity.Another good debugging pratie is to keep a reord of every mistake made.Even though this will probably be quite embarrassing, suh information is in-valuable to anyone doing researh on the debugging problem, and it will alsohelp you learn how to ope with future errors.Note: The author wrote most of the preeding omments in 1964, after hehad suessfully ompleted several medium-sized software projets but beforehe had developed a mature programming style. Later, during the 1980s, he

64

1.4.1� SUBROUTINES 65learned that an additional tehnique, alled strutured doumentation or literateprogramming, is probably even more important. A summary of his urrentbeliefs about the best way to write programs of all kinds appears in the bookLiterate Programming (Cambridge University Press, �rst published in 1992).Inidentally, Chapter 11 of that book ontains a detailed reord of all bugsremoved from the TEX program during the period 1978{1991.Up to a point it is better to let the snags [bugs℄ be therethan to spend suh time in design that there are none(how many deades would this ourse take?).| A. M. TURING, Proposals for ACE (1945)EXERCISES1. [20 ℄ Write a subroutine GoMaxR that generalizes Algorithm 1.2.10M by �nding themaximum value of fX[a℄; X[a + r℄; X[a + 2r℄; : : : ; X[n℄g, where r and n are positiveparameters and a is the smallest positive number with a � n (modulo r), namelya = 1 + (n � 1) mod r. Give a speial entrane GoMax for the ase r = 1, using aGO-style alling sequene so that your subroutine is a generalization of (7).2. [20 ℄ Convert the subroutine of exerise 1 from GO linkage to PUSHJ/POP linkage.3. [15 ℄ How an sheme (15) be simpli�ed when Sub is a leaf subroutine?4. [15 ℄ The text in this setion speaks often of PUSHJ, but Setion 1.3.1� mentionsalso a ommand alled PUSHGO. What is the di�erene between PUSHJ and PUSHGO?5. [0 ℄ True or false: The number of marginal registers is G� L.6. [10 ℄ What is the e�et of the instrution DIVU $5,$5,$5 if $5 is a marginalregister?7. [10 ℄ What is the e�et of the instrution INCML $5,#abd if $5 is a marginalregister?8. [15 ℄ Suppose the instrution SET $15,0 is performed when there are 10 loalregisters. This inreases the number of loal registers to 16; but the newly loal registers(inluding $15) are all zero, so they still behave essentially as if they were marginal. Isthe instrution SET $15,0 therefore entirely redundant in suh a ase?9. [20 ℄ When a trip interrupt has been been enabled for some exeptional onditionlike arithmeti overow, the trip handler might be alled into ation at unpreditabletimes. We don't want to lobber any of the interrupted program's registers; yet a triphandler an't do muh unless it has \elbow room." Explain how to use PUSHJ and POPso that plenty of loal registers are safely available to a handler.x 10. [20 ℄ True or false: If an MMIX program never uses the instrutions PUSHJ, PUSHGO,POP, SAVE, or UNSAVE, all 256 registers $0, $1, : : : , $255 are essentially equivalent, inthe sense that the distintion between loal, global, and marginal registers is irrelevant.11. [20 ℄ Guess what happens if a program issues more POP instrutions than PUSHinstrutions.x 12. [10 ℄ True or false:a) The urrent pre�x in an MMIXAL program always begins with a olon.b) The urrent pre�x in an MMIXAL program always ends with a olon.) The symbols : and :: are equivalent in MMIXAL programs.

65

66 BASIC CONCEPTS 1.4.1�x 13. [21 ℄ Write two MMIX subroutines to alulate the Fibonai number Fn mod 264,given n. The �rst subroutine should all itself reursively, using the de�nitionFn = n if n � 1; Fn = Fn�1 + Fn�2 if n > 1:The seond subroutine should not be reursive. Both subroutines should use PUSH/POPlinkage and should avoid global variables entirely.x 14. [M21 ℄ What is the running time of the subroutines in exerise 13?x 15. [21 ℄ Convert the reursive subroutine of exerise 13 to GO-style linkage, using amemory stak as in (15) instead of MMIX's register stak. Compare the eÆieny of thetwo versions.x 16. [25 ℄ (Nonloal goto statements.) Sometimes we want to jump out of a subroutine,to a loation that is not in the alling routine. For example, suppose subroutine A allssubroutine B, whih alls subroutine C, whih alls itself reursively a number of timesbefore deiding that it wants to exit diretly to A. Explain how to handle suh situationswhen using MMIX's register stak. (We an't simply JMP from C to A; the stak must beproperly popped.)1.4.2�. CoroutinesSubroutines are speial ases of more general program omponents, alled o-routines. In ontrast to the unsymmetri relationship between a main routineand a subroutine, there is omplete symmetry between oroutines, whih all oneah other.To understand the oroutine onept, let us onsider another way of thinkingabout subroutines. The viewpoint adopted in the previous setion was that asubroutine was merely an extension of the omputer hardware, introdued to savelines of oding. This may be true, but another point of view is also possible:We may onsider the main program and the subroutine as a team of programs,eah member of the team having a ertain job to do. The main program, inthe ourse of doing its job, will ativate the subprogram; the subprogram willperform its own funtion and then ativate the main program. We might strethour imagination to believe that, from the subroutine's point of view, when itexits it is alling the main routine; the main routine ontinues to perform itsduty, then \exits" to the subroutine. The subroutine ats, then alls the mainroutine again.This egalitarian philosophy may sound far-fethed, but it atually ringstrue with respet to oroutines. There is no way to distinguish whih of twooroutines is subordinate to the other. Suppose a program onsists of oroutinesA and B; when programming A, we may think of B as our subroutine, but whenprogramming B, we may think of A as our subroutine. Whenever a oroutine isativated, it resumes exeution of its program at the point where the ation waslast suspended.The oroutines A and B might, for example, be two programs that play hess.We an ombine them so that they will play against eah other.Suh oroutine linkage is easy to ahieve with MMIX if we set aside twoglobal registers, a and b. In oroutine A, the instrution \GO a,b,0" is used to

66

1.4.2� COROUTINES 67ativate oroutine B; in oroutine B, the instrution \GO b,a,0" is used to ativateoroutine A. This sheme requires only 3� of time to transfer ontrol eah way.The essential di�erene between routine-subroutine and oroutine-oroutinelinkage an be seen by omparing the GO-type linkage of the previous setionwith the present sheme: A subroutine is always initiated at its beginning, whihis usually a �xed plae; the main routine or a oroutine is always initiated at theplae following where it last terminated.Coroutines arise most naturally in pratie when they are onneted withalgorithms for input and output. For example, suppose it is the duty of orou-tine A to read a �le and to perform some transformation on the input, reduingit to a sequene of items. Another oroutine, whih we will all B, does furtherproessing of those items, and outputs the answers; B will periodially all forthe suessive input items found by A. Thus, oroutine B jumps to A whenever itwants the next input item, and oroutine A jumps to B whenever an input itemhas been found. The reader may say, \Well, B is the main program and A ismerely a subroutine for doing the input." This, however, beomes less true whenthe proess A is very ompliated; indeed, we an imagine A as the main routineand B as a subroutine for doing the output, and the above desription remainsvalid. The usefulness of the oroutine idea emerges midway between these twoextremes, when both A and B are ompliated and eah one alls the other innumerous plaes. It is not easy to �nd short, simple examples of oroutines thatillustrate the importane of the idea; the most useful oroutine appliations aregenerally quite lengthy.In order to study oroutines in ation, let us onsider a ontrived example.Suppose we want to write a program that translates one ode into another. Theinput ode to be translated is a sequene of 8-bit haraters terminated by aperiod, suh as a2b5e3426fg0zyw3210pq89r. (1)This ode appears on the standard input �le, interspersed with whitespaeharaters in an arbitrary fashion. For our purposes a \whitespae harater"will be any byte whose value is less than or equal to #20, the ASCII ode for ' '.All whitespae haraters in the input are ignored; the other haraters should beinterpreted as follows, when they are read in sequene: (1) If the next harateris one of the deimal digits 0 or 1 or � � � or 9, say n, it indiates (n+1) repetitionsof the following harater, whether the following harater is a digit or not. (2) Anondigit simply denotes itself. The output of our program is to onsist of theresulting sequene separated into groups of three haraters eah, until a periodappears; the last group may have fewer than three haraters. For example, (1)should be translated intoabb bee eee e44 446 66f gzy w22 220 0pq 999 999 999 r. (2)Notie that 3426f does not mean 3427 repetitions of the letter f; it means 4fours and 3 sixes followed by f. If the input sequene is `1.', the output issimply `.', not `..', beause the �rst period terminates the output. The goal of

67

68 BASIC CONCEPTS 1.4.2�our program is to produe a sequene of lines on the standard output �le, with16 three-harater groups per line (exept, of ourse, that the �nal line might beshorter). The three-harater groups should be separated by blank spaes, andeah line should end as usual with the ASCII newline harater #a.To aomplish this translation, we will write two oroutines and a subrou-tine. The program begins by giving symboli names to three global registers,one for temporary storage and the others for oroutine linkage.01 * An example of oroutines02 t IS $255 Temporary data of short duration03 in GREG 0 Address for resuming the �rst oroutine04 out GREG 0 Address for resuming the seond oroutineThe next step is to set aside the memory loations used for working storage.05 * Input and output buffers06 LOC Data_Segment07 GREG � Base address08 OutBuf TETRA " ",#a,0 (see exerise 3)09 Period BYTE '.'10 InArgs OCTA InBuf,100011 InBuf LOC #100Now we turn to the program itself. The subroutine we need, alled NextChar,is designed to �nd non-whitespae haraters of the input, and to return the nextsuh harater:12 * Subroutine for harater input13 inptr GREG 0 (the urrent input position)14 1H LDA t,InArgs Fill the input bu�er.15 TRAP 0,Fgets,StdIn16 LDA inptr,InBuf Start at beginning of bu�er.17 0H GREG Period18 CSN inptr,t,0B If error ourred, read a '.'.19 NextChar LDBU $0,inptr,0 Feth the next harater.20 INCL inptr,121 BZ $0,1B Branh if at end of bu�er.22 CMPU t,$0,' '23 BNP t,NextChar Branh if harater is whitespae.24 POP 1,0 Return to aller.This subroutine has the following harateristis:Calling sequene: PUSHJ $R,NextChar.Entry onditions: inptr points to the �rst unread harater.Exit onditions: $R = next non-whitespae harater of input;inptr is ready for the next entry to NextChar.The subroutine also hanges register t, namely register $255; but we usuallyomit that register from suh spei�ations, as we did in 1.4.1�{(10).

68

1.4.2� COROUTINES 69Our �rst oroutine, alled In, �nds the haraters of the input ode withthe proper repliation. It begins initially at loation In1:25 * First oroutine26 ount GREG 0 (the repetition ounter)27 1H GO in,out,0 Send a harater to the Out oroutine.28 In1 PUSHJ $0,NextChar Get a new harater.29 CMPU t,$0,'9'30 PBP t,1B Branh if it exeeds '9'.31 SUB ount,$0,'0'32 BN ount,1B Branh if it is less than '0'.33 PUSHJ $0,NextChar Get another harater.34 1H GO in,out,0 Send it to Out.35 SUB ount,ount,1 Derease the repetition ounter.36 PBNN ount,1B Repeat if neessary.37 JMP In1 Otherwise begin a new yle.This oroutine has the following harateristis:Calling sequene (from Out): GO out,in,0.Exit onditions (to Out): $0 = next input harater with proper repliation.Entry onditions(upon return): $0 unhanged from its value at exit.Register ount is private to In and need not be mentioned.The other oroutine, alled Out, puts the ode into three-harater groupsand sends them to the standard output �le. It begins initially at Out1:38 * Seond oroutine39 outptr GREG 0 (the urrent output position)40 1H LDA t,OutBuf Empty the output bu�er.41 TRAP 0,Fputs,StdOut42 Out1 LDA outptr,OutBuf Start at beginning of bu�er.43 2H GO out,in,0 Get a new harater from In.44 STBU $0,outptr,0 Store it as the �rst of three.45 CMP t,$0,'.'46 BZ t,1F Branh if it was '.'.47 GO out,in,0 Otherwise get another harater.48 STBU $0,outptr,1 Store it as the seond of three.49 CMP t,$0,'.'50 BZ t,2F Branh if it was '.'.51 GO out,in,0 Otherwise get another harater.52 STBU $0,outptr,2 Store it as the third of three.53 CMP t,$0,'.'54 BZ t,3F Branh if it was '.'.55 INCL outptr,4 Otherwise advane to next group.56 0H GREG OutBuf+4*1657 CMP t,outptr,0B58 PBNZ t,2B Branh if fewer than 16 groups.59 JMP 1B Otherwise �nish the line.

69

70 BASIC CONCEPTS 1.4.2�60 3H INCL outptr,1 Move past a stored harater.61 2H INCL outptr,1 Move past a stored harater.62 0H GREG #a (newline harater)63 1H STBU 0B,outptr,1 Store newline after period.64 0H GREG 0 (null harater)65 STBU 0B,outptr,2 Store null after newline.66 LDA t,OutBuf67 TRAP 0,Fputs,StdOut Output the �nal line.68 TRAP 0,Halt,0 Terminate the program.The harateristis of Out are designed to omplement those of In:Calling sequene (from In): GO in,out,0.Exit onditions (to In): $0 unhanged from its value at entry.Entry onditions(upon return): $0 = next input harater with proper repliation.To omplete the program, we need to get everything o� to a good start.Initialization of oroutines tends to be a little triky, although not really diÆult.69 * Initialization70 Main LDA inptr,InBuf Initialize NextChar.71 GETA in,In1 Initialize In.72 JMP Out1 Start with Out (see exerise 2).This ompletes the program. The reader should study it arefully, noting inpartiular how eah oroutine an be read and written independently as thoughthe other oroutine were its subroutine.We learned in Setion 1.4.1� that MMIX's PUSHJ and POP instrutions aresuperior to the GO ommand with respet to subroutine linkage. But withoroutines the opposite is true: Pushing and popping are quite unsymmetrial,and MMIX's register stak an get hopelessly entangled if two or more oroutinestry to use it simultaneously. (See exerise 6.)There is an important relation between oroutines and multipass algorithms.For example, the translation proess we have just desribed ould have been donein two distint passes: We ould �rst have done just the In oroutine, applyingit to the entire input and writing eah harater with the proper amount ofrepliation into an intermediate �le. After this was �nished, we ould haveread that �le and done just the Out oroutine, taking the haraters in groups ofthree. This would be alled a \two-pass" proess. (Intuitively, a \pass" denotes aomplete san of the input. This de�nition is not preise, and in many algorithmsthe number of passes taken is not at all lear; but the intuitive onept of \pass"is useful in spite of its vagueness.)Figure 22(a) illustrates a four-pass proess. Quite often we will �nd thatthe same proess an be done in just one pass, as shown in part (b) of the �gure,if we substitute four oroutines A, B, C, D for the respetive passes A, B, C, D.Coroutine A will jump to B when pass A would have written an item of outputon File 1; oroutine B will jump to A when pass B would have read an item ofinput from File 1, and B will jump to C when pass B would have written an item

70

1.4.2� COROUTINES 71of output on File 2; et. UNIX R users will reognize this as a \pipe," denoted by\PassA | PassB | PassC | PassD". The programs for passes B, C, and D aresometimes referred to as \�lters."
Input Pass A File 1
File 1 Pass B File 2
File 2 Pass C File 3
File 3 Pass D Output

Input Coroutine A
Coroutine B
Coroutine C
Coroutine D OutputFig. 22. Passes: (a) a four-pass algorithm, and (b) a one-pass algorithm.Conversely, a proess done by n oroutines an often be transformed into ann-pass proess. Due to this orrespondene it is worthwhile to ompare multipassalgorithms with one-pass algorithms.a) Psyhologial di�erene. A multipass algorithm is generally easier to reateand to understand than a one-pass algorithm for the same problem. A proessthat has been broken into a sequene of small steps, whih happen one afterthe other, is easier to omprehend than an involved proess in whih manytransformations take plae simultaneously.Also, if a very large problem is being takled and if many people are supposedto ooperate in produing a omputer program, a multipass algorithm providesa natural way to divide up the job.These advantages of a multipass algorithm are present in oroutines as well,sine eah oroutine an be written essentially separate from the others. Thelinkage makes an apparently multipass algorithm into a single-pass proess.b) Time di�erene. The time required to pak, write, read, and unpak theintermediate data that ows between passes (for example, the information inthe �les of Fig. 22) is avoided in a one-pass algorithm. For this reason, a one-pass algorithm will be faster.) Spae di�erene. The one-pass algorithm requires spae to hold all theprograms in memory simultaneously, while a multipass algorithm requires spaefor only one at a time. This requirement may a�et the speed, even to a greaterextent than indiated in statement (b). For example, many omputers have alimited amount of \fast memory" and a larger amount of slower memory; if eah

71

72 BASIC CONCEPTS 1.4.2�pass just barely �ts into the fast memory, the result will be onsiderably fasterthan if we use oroutines in a single pass (sine the use of oroutines wouldpresumably fore most of the program to appear in the slower memory or to berepeatedly swapped in and out of fast memory).Oasionally there is a need to design algorithms for several omputer on-�gurations at one, some of whih have larger memory apaity than others. Insuh ases it is possible to write the program in terms of oroutines, and to letthe memory size govern the number of passes: Load together as many oroutinesas feasible, and supply input or output subroutines for the missing links.Although this relationship between oroutines and passes is important, weshould keep in mind that oroutine appliations annot always be split intomultipass algorithms. If oroutine B gets input from A and also sends bakruial information to A, as in the example of hess play mentioned earlier, thesequene of ations an't be onverted into pass A followed by pass B.Conversely, it is lear that some multipass algorithms annot be onvertedto oroutines. Some algorithms are inherently multipass; for example, the seondpass may require umulative information from the �rst pass, like the total numberof ourrenes of a ertain word in the input. There is an old joke worth notingin this regard:Little old lady, riding a bus. \Little boy, an you tell me how to get o�at Pasadena Street?"Little boy. \Just wath me, and get o� two stops before I do."(The joke is that the little boy gives a two-pass algorithm.)So muh for multipass algorithms. Coroutines also play an important role indisrete system simulation; see Setion 2.2.5. When several more-or-less indepen-dent oroutines are ontrolled by a master proess, they are often alled threadsof a omputation. We will see further examples of oroutines in numerous plaesthroughout this series of books. The important idea of repliated oroutines isdisussed in Chapter 8, and some interesting appliations of this idea may befound in Chapter 10.EXERCISES1. [10 ℄ Explain why short, simple examples of oroutines are hard for the author ofa textbook to �nd.x 2. [20 ℄ The program in the text starts up the Out oroutine �rst. What wouldhappen if In were the �rst to be exeuted instead|that is, if lines 71 and 72 werehanged to \GETA out,Out1; JMP In1"?3. [15 ℄ Explain the TETRA instrution on line 08 of the program in the text. (Thereare exatly �fteen blank spaes between the double-quote marks.)4. [20 ℄ Suppose two oroutines A and B want to treat MMIX's remainder register rRas if it were their private property, although both oroutines do division. (In otherwords, when one oroutine jumps to the other, it wants to be able to assume that theontents of rR will not have been altered when the other oroutine returns.) Devise aoroutine linkage that allows them this freedom.

72

1.4.3� INTERPRETIVE ROUTINES 735. [20 ℄ Could MMIX do reasonably eÆient oroutine linkage by using its PUSH andPOP instrutions, without any GO ommands?6. [20 ℄ The program in the text uses MMIX's register stak only in a very limited way,namely when In alls NextChar. Disuss to what extent two ooperating oroutinesould both make use of the register stak.x 7. [30 ℄ Write an MMIX program that reverses the translation done by the program inthe text. That is, your program should onvert a �le ontaining three-harater groupslike (2) into a �le ontaining ode like (1). The output should be as short a stringof haraters as possible, exept for newlines; thus, for example, the zero before the zin (1) would not really be produed from (2).1.4.3�. Interpretive RoutinesIn this setion we will investigate a ommon type of program known as aninterpretive routine, often alled an interpreter for short. An interpretive routineis a omputer program that performs the instrutions of another program, wherethe other program is written in some mahine-like language. By a mahine-likelanguage, we mean a way of representing instrutions, where the instrutionstypially have operation odes, addresses, et. (This de�nition, like most def-initions of today's omputer terms, is not preise, nor should it be; we annotdraw the line exatly and say just whih programs are interpreters and whihare not.)Historially, the �rst interpreters were built around mahine-like languagesdesigned speially for simple programming; suh languages were easier to usethan a real mahine language. The rise of symboli languages for programmingsoon eliminated the need for interpretive routines of that kind, but interpretershave by no means begun to die out. On the ontrary, their use has ontinuedto grow, to the extent that an e�etive use of interpretive routines may beregarded as one of the essential harateristis of modern programming. Thenew appliations of interpreters are made hiey for the following reasons:a) a mahine-like language is able to represent a ompliated sequene of dei-sions and ations in a ompat, eÆient manner; andb) suh a representation provides an exellent way to ommuniate betweenpasses of a multipass proess.In suh ases, speial purpose mahine-like languages are developed for use ina partiular program, and programs in those languages are often generated onlyby omputers. (Today's expert programmers are also good mahine designers:They not only reate an interpretive routine, they also de�ne a virtual mahinewhose language is to be interpreted.)The interpretive tehnique has the further advantage of being relativelymahine-independent, sine only the interpreter must be revised when hangingomputers. Furthermore, helpful debugging aids an readily be built into aninterpretive system.Examples of type (a) interpreters appear in several plaes later in this seriesof books; see, for example, the reursive interpreter in Chapter 8 and the \Parsing

73

74 BASIC CONCEPTS 1.4.3�Mahine" in Chapter 10. We typially need to deal with situations in whih agreat many speial ases arise, all similar, but having no really simple pattern.For example, onsider writing an algebrai ompiler in whih we want to gen-erate eÆient mahine-language instrutions that add two quantities together.There might be ten lasses of quantities (onstants, simple variables, subsriptedvariables, �xed or oating point, signed or unsigned, et.) and the ombinationof all pairs yields 100 di�erent ases. A long program would be required to do theproper thing in eah ase. The interpretive solution to this problem is to make upan ad ho language whose \instrutions" �t in one byte. Then we simply preparea table of 100 \programs" in this language, where eah program ideally �ts ina single word. The idea is then to pik out the appropriate table entry and toperform the program found there. This tehnique is simple and eÆient.An example interpreter of type (b) appears in the artile \Computer-DrawnFlowharts" by D. E. Knuth, CACM 6 (1963), 555{563. In a multipass program,the earlier passes must transmit information to the later passes. This informationis often transmitted most eÆiently in a mahine-like language, as a set ofinstrutions for the later pass; the later pass is then nothing but a speial purposeinterpretive routine, and the earlier pass is a speial purpose \ompiler." Thisphilosophy of multipass operation may be haraterized as telling the later passwhat to do, whenever possible, rather than simply presenting it with a lot offats and asking it to �gure out what to do.Another example of a type-(b) interpreter ours in onnetion with om-pilers for speial languages. If the language inludes many features that are noteasily done on the mahine exept by subroutine, the resulting objet programswill be very long sequenes of subroutine alls. This would happen, for example,if the language were onerned primarily with multiple preision arithmeti. Insuh a ase the objet program would be onsiderably shorter if it were expressedin an interpretive language. See, for example, the book ALGOL 60 Implementa-tion, by B. Randell and L. J. Russell (New York: Aademi Press, 1964), whihdesribes a ompiler to translate from ALGOL 60 into an interpretive language,and whih also desribes the interpreter for that language; and see \An ALGOL60 Compiler," by Arthur Evans, Jr., Ann. Rev. Auto. Programming 4 (1964),87{124, for examples of interpretive routines used within a ompiler. The rise ofmiroprogrammed mahines and of speial-purpose integrated iruit hips hasmade this interpretive approah even more valuable.The TEX program, whih produed the pages of the book you are nowreading, onverted a �le that ontained the text of this setion into an interpretivelanguage alled DVI format, designed by D. R. Fuhs in 1979. [See D. E.Knuth, TEX: The Program (Reading, Mass.: Addison{Wesley, 1986), Part 31.℄The DVI �le that TEX produed was then proessed by an interpreter alleddvips, written by T. G. Rokiki, and onverted to a �le of instrutions inanother interpretive language alled PostSript R [Adobe Systems In., PostSriptLanguage Referene, 3rd edition (Reading, Mass.: Addison{Wesley, 1999)℄. ThePostSript �le was sent to the publisher, who sent it to a ommerial printer,who used a PostSript interpreter to produe printing plates. This three-pass

74

1.4.3� INTERPRETIVE ROUTINES 75operation illustrates interpreters of type (b); TEX itself also inludes a smallinterpreter of type (a) to proess the so-alled ligature and kerning informationfor haraters that are being printed [TEX: The Program, x545℄.There is another way to look at a program written in interpretive language:It may be regarded as a series of subroutine alls, one after another. Suh a pro-gram may in fat be expanded into a long sequene of alls on subroutines, and,onversely, suh a sequene an usually be paked into a oded form that is read-ily interpreted. The advantages of interpretive tehniques are the ompatness ofrepresentation, the mahine independene, and the inreased diagnosti apabil-ity. An interpreter an often be written so that the amount of time spent in inter-pretation of the ode itself and branhing to the appropriate routine is negligible.*An MMIX simulator. When the language presented to an interpretive routineis the mahine language of another omputer, the interpreter is often alled asimulator (or sometimes an emulator).In the author's opinion, entirely too muh programmers' time has beenspent in writing suh simulators and entirely too muh omputer time has beenwasted in using them. The motivation for simulators is simple: A omputerinstallation buys a new mahine and still wants to run programs written forthe old mahine (rather than rewriting the programs). However, this usuallyosts more and gives poorer results than if a speial task fore of programmerswere given temporary employment to do the reprogramming. For example, theauthor one partiipated in suh a reprogramming projet, and a serious errorwas disovered in the original program, whih had been in use for several years;the new program worked at �ve times the speed of the old, besides giving theright answers for a hange! (Not all simulators are bad; for example, it is usuallyadvantageous for a omputer manufaturer to simulate a new mahine before ithas been built, so that software for the new mahine may be developed as soon aspossible. But that is a very speialized appliation.) An extreme example of theineÆient use of omputer simulators is the true story of mahine A simulatingmahine B running a program that simulates mahine C . This is the way tomake a large, expensive omputer give poorer results than its heaper ousin.In view of all this, why should suh a simulator rear its ugly head in thisbook? There are three reasons:a) The simulator we will desribe below is a good example of a typial interpre-tive routine; the basi tehniques employed in interpreters are illustrated here.It also illustrates the use of subroutines in a moderately long program.b) We will desribe a simulator of the MMIX omputer, written in (of all things)the MMIX language. This will reinfore our knowledge of the mahine. It also willfailitate the writing of MMIX simulators for other omputers, although we willnot plunge deeply into the details of 64-bit integer or oating point arithmeti.) Our simulation of MMIX explains how the register stak an be implementedeÆiently in hardware, so that pushing and popping are aomplished with verylittle work. Similarly, the simulator presented here lari�es the SAVE and UNSAVEoperators, and it provides details about the behavior of trip interrupts. Suh

75

76 BASIC CONCEPTS 1.4.3�things are best understood by looking at a referene implementation, so that wean see how the mahine really works.Computer simulators as desribed in this setion should be distinguishedfrom disrete system simulators. Disrete system simulators are important pro-grams that will be disussed in Setion 2.2.5.Now let's turn to the task of writing an MMIX simulator. We begin bymaking a tremendous simpli�ation: Instead of attempting to simulate all thethings that happen simultaneously in a pipelined omputer, we will interpretonly one instrution at a time. Pipeline proessing is extremely instrutive andimportant, but it is beyond the sope of this book; interested readers an �nd aomplete program for a full-edged pipeline \meta-simulator" in the MMIXwaredoument. We will ontent ourselves here with a simulator that is blithelyunaware of suh things as ahe memory, virtual address translation, dynamiinstrution sheduling, reorder bu�ers, et., et. Moreover, we will simulate onlythe instrutions that ordinary MMIX user programs an do; privileged instrutionslike LDVTS, whih are reserved for the operating system, will be onsiderederroneous if they arise. Trap interrupts will not be simulated by our programunless they perform rudimentary input or output as desribed in Setion 1.3.2�.The input to our program will be a binary �le that spei�es the initialontents of memory, just as the memory would be set up by an operating systemwhen running a user program (inluding ommand line data). We want to mimithe behavior of MMIX's hardware, pretending that MMIX itself is interpreting theinstrutions that begin at symboli loation Main; thus, we want to implementthe spei�ations that were laid down in Setion 1.3.1�, in the run-time envi-ronment that was disussed in Setion 1.3.2�. Our program will, for example,maintain an array of 256 otabytes g[0℄, g[1℄, : : : , g[255℄ for the simulated globalregisters. The �rst 32 elements of this array will be the speial registers listed inTable 1.3.1�{2; one of those speial registers will be the simulated lok, rC. Wewill assume that eah instrution takes a �xed amount of time, as spei�ed byTable 1.3.1�{1; the simulated rC will inrease by 232 for eah � and by 1 for eah �.Thus, for example, after we have simulated Program 1.3.2�P, the simulated rCwill ontain #00003228000bb091, whih represents 12840�+ 766097�.The program is rather long, but it has many points of interest and we willstudy it in short easy piees. It begins as usual by de�ning a few symbols and byspeifying the ontents of the data segment. We put the array of 256 simulatedglobal registers �rst in that segment; for example, the simulated $255 will be theotabyte g[255℄, in memory loation Global+8*255. This global array is followedby a similar array alled the loal register ring, where we will keep the top itemsof the simulated register stak. The size of this ring is set to 256, although 512or any higher power of 2 would also work. (A large ring of loal registers ostsmore, but it might be notieably faster when a program uses the register stakheavily. One of the purposes of a simulator is to �nd out whether additionalhardware would be worth the expense.) The main portion of the data segment,starting at Chunk0, will be devoted to the simulated memory.

76

1.4.3� INTERPRETIVE ROUTINES 77001 * MMIX Simulator (Simplified)002 t IS $255 Volatile register for temporary info003 lring_size IS 256 Size of the loal register ring004 LOC Data_Segment Start at loation #2000000000000000005 Global LOC �+8*256 256 otabytes for global registers006 g GREG Global Base address for globals007 Loal LOC �+8*lring_size lring_size otabytes for loal registers008 l GREG Loal Base address for loals009 GREG � Base address for IOArgs and Chunk0010 IOArgs OCTA 0,BinaryRead (See exerise 20)011 Chunk0 IS � Beginning of simulated memory area012 LOC #100 Put everything else in the text segment.One of the key subroutines we will need is alled MemFind. Given a 64-bitaddress A, this subroutine returns the resulting address R where the simulatedontents of M8[A℄ an be found. Of ourse 264 bytes of simulated memoryannot be squeezed into a 261-byte data segment; but the simulator remembersall addresses that have ourred before, and it assumes that all loations not yetenountered are equal to zero.Memory is divided into \hunks" of 212 bytes eah. MemFind looks at theleading 64� 12 = 52 bits of A to see what hunk it belongs to, and extends thelist of known hunks, if neessary. Then it omputes R by adding the trailing 12bits of A to the starting address of the relevant simulated hunk. (The hunk sizeould be any power of 2, as long as eah hunk ontains at least one otabyte.Small hunks ause MemFind to searh through longer lists of hunks-in-hand;large hunks ause MemFind to waste spae for bytes that will never be aessed.)Eah simulated hunk is enapsulated in a \node," whih oupies 212 + 24bytes of memory. The �rst otabyte of suh a node, alled the KEY, identi�es thesimulated address of the �rst byte in the hunk. The seond otabyte, alled theLINK, points to the next node on MemFind's list; it is zero on the last node ofthe list. The LINK is followed by 212 bytes of simulated memory alled the DATA.Finally, eah node ends with eight all-zero bytes, whih are used as padding inthe implementation of input-output (see exerises 15{17).MemFind maintains its list of hunk nodes in order of use: The �rst node,pointed to by head, is the one that MemFind found on the previous all, and itlinks to the next-most-reently-used hunk, et. If the future is like the past,MemFind will therefore not have to searh far down its list. (Setion 6.1 disussessuh \self-organizing" list searhes in detail.) Initially head points to Chunk0,whose KEY and LINK and DATA are all zero. The alloation pointer allo is setinitially to the plae where the next hunk node will appear when it is needed,namely Chunk0+nodesize.We implement MemFind with the PREFIX operation of MMIXAL disussed inSetion 1.4.1�, so that the private symbols head, key, addr, et., will not onitwith any symbols in the rest of the program. The alling sequene will beSET arg,A; PUSHJ res,MemFind (1)after whih the resulting address R will appear in register res.

77

78 BASIC CONCEPTS 1.4.3�013 PREFIX :Mem: (Begin private symbols for MemFind)014 head GREG 0 Address of �rst hunk015 urkey GREG 0 KEY(head)016 allo GREG 0 Address of next hunk to alloate017 Chunk IS #1000 Bytes per hunk, must be a power of 2018 addr IS $0 The given address A019 key IS $1 Its hunk address020 test IS $2 Temporary register for key searh021 newlink IS $3 The seond most reently used node022 p IS $4 Temporary pointer register023 t IS :t External temporary register024 KEY IS 0025 LINK IS 8026 DATA IS 16027 nodesize GREG Chunk+3*8028 mask GREG Chunk-1029 :MemFind ANDN key,addr,mask030 CMPU t,key,urkey031 PBZ t,4F Branh if head is the right hunk.032 BN addr,:Error Disallow negative addresses A.033 SET newlink,head Prepare for the searh loop.034 1H SET p,head p head:035 LDOU head,p,LINK head LINK(p).036 PBNZ head,2F Branh if head 6= 0.037 SET head,allo Otherwise alloate a new node.038 STOU key,head,KEY039 ADDU allo,allo,nodesize040 JMP 3F041 2H LDOU test,head,KEY042 CMPU t,test,key043 BNZ t,1B Loop bak if KEY(head) 6= key.044 3H LDOU t,head,LINK Adjust pointers: t LINK(head),045 STOU newlink,head,LINK LINK(head) newlink,046 SET urkey,key urkey key,047 STOU t,p,LINK LINK(p) t.048 4H SUBU t,addr,key t hunk o�set.049 LDA $0,head,DATA $0 address of DATA(head).050 ADDU $0,t,$0051 POP 1,0 Return R.052 PREFIX : (End of the `:Mem:' pre�x)053 res IS $2 Result register for PUSHJ054 arg IS res+1 Argument register for PUSHJWe ome next to the most interesting aspet of the simulator, the imple-mentation of MMIX's register stak. Reall from Setion 1.4.1� that the registerstak is oneptually a list of � items S[0℄, S[1℄, : : : , S[� � 1℄. The �nal itemS[� � 1℄ is said to be at the \top" of the stak, and MMIX's loal registers $0, $1,: : : , $(L�1) are the topmost L items S[� �L℄, S[� �L+1℄, : : : , S[� �1℄; here Lis the value of speial register rL. We ould simulate the stak by simply keeping

78

1.4.3� INTERPRETIVE ROUTINES 79it entirely in the simulated memory; but an eÆient mahine wants its registersto be instantly aessible, not in a relatively slow memory unit. Therefore wewill simulate an eÆient design that keeps the topmost stak items in an arrayof internal registers alled the loal register ring.The basi idea is quite simple. Suppose the loal register ring has � elements,l[0℄, l[1℄, : : : , l[�� 1℄. Then we keep loal register $k in l[(� + k) mod �℄, where� is an appropriate o�set. (The value of � is hosen to be a power of 2, so thatremainders mod � require no expensive omputation. Furthermore we want �to be at least 256, so that there is room for all of the loal registers.) A PUSHoperation, whih renumbers the loal registers so that what one was, say, $3 isnow alled $0, simply inreases the value of � by 3; a POP operation restores theprevious state by dereasing �. Although the registers hange their numbers, nodata atually needs to be pushed down or popped up.Of ourse we need to use memory as a bakup when the register stak getslarge. The status of the ring at any time is best visualized in terms of threevariables, �, �, and :

�
�

 L (2)
Elements l[�℄, l[� + 1℄, : : : , l[� � 1℄ of the ring are the urrent loal registers$0, $1, : : : , $(L � 1); elements l[�℄, l[� + 1℄, : : : , l[� 1℄ are urrently unused;and elements l[℄, l[+ 1℄, : : : , l[� � 1℄ ontain items of the register stak thathave been pushed down. If 6= �, we an inrease by 1 if we �rst store l[℄in memory. If 6= �, we an derease by 1 if we then load l[℄. MMIX has twospeial registers alled the stak pointer rS and the stak o�set rO, whih holdthe memory addresses where l[℄ and l[�℄ will be stored, if neessary. The valuesof �, �, and are related to rL, rS, and rO by the formulas� = (rO=8) mod �; � = (�+ rL) mod �; = (rS=8) mod �: (3)The simulator keeps most of MMIX's speial registers in the �rst 32 positionsof the global register array. For example, the simulated remainder register rR isthe otabyte in loation Global+8*rR . But eight of the speial registers, inlud-ing rS, rO, rL, and rG, are potentially relevant to every simulated instrution,so the simulator maintains them separately in its own global registers. Thus, forexample, register ss holds the simulated value of rS, and register ll holds eighttimes the simulated value of rL:055 ss GREG 0 The simulated stak pointer, rS056 oo GREG 0 The simulated stak o�set, rO057 ll GREG 0 The simulated loal threshold register, rL, times 8058 gg GREG 0 The simulated global threshold register, rG, times 8

79

80 BASIC CONCEPTS 1.4.3�059 aa GREG 0 The simulated arithmeti status register, rA060 ii GREG 0 The simulated interval ounter, rI061 uu GREG 0 The simulated usage ounter, rU062 GREG 0 The simulated yle ounter, rCHere is a subroutine that obtains the urrent value of the simulated register$k, given k. The alling sequene isSLU arg,k,3; PUSHJ res,GetReg (4)after whih the desired value will be in res.063 lring_mask GREG 8*lring_size-1064 :GetReg CMPU t,$0,gg Subroutine to get $k:065 BN t,1F Branh if k < G.066 LDOU $0,g,$0 Otherwise $k is global; load g[k℄.067 POP 1,0 Return the result.068 1H CMPU t,$0,ll t [$k is loal℄.069 ADDU $0,$0,oo070 AND $0,$0,lring_mask071 LDOU $0,l,$0 Load l[(�+ k) mod �℄.072 CSNN $0,t,0 Zero it if $k is marginal.073 POP 1,0 Return the result.Notie the olon in the label �eld of line 064. This olon is redundant, beause theurrent pre�x is `:' (see line 052); the olon on line 029 was, however, neessaryfor the external symbol MemFind, beause at that time the urrent pre�x was`:Mem:'. Colons in the label �eld, redundant or not, give us a handy way toadvertise the fat that a subroutine is being de�ned.The next subroutines, StakStore and StakLoad, simulate the operationsof inreasing by 1 and dereasing by 1 in the diagram (2). They returnno result. StakStore is alled only when 6= �; StakLoad is alled onlywhen 6= �. Both of them must save and restore rJ, beause they are not leafsubroutines.074 :StakStore GET $0,rJ Save the return address.075 AND t,ss,lring_mask076 LDOU $1,l,t $1 l[℄.077 SET arg,ss078 PUSHJ res,MemFind079 STOU $1,res,0 M8[rS℄ $1.080 ADDU ss,ss,8 Inrease rS by 8.081 PUT rJ,$0 Restore the return address.082 POP 0 Return to aller.083 :StakLoad GET $0,rJ Save the return address.084 SUBU ss,ss,8 Derease rS by 8.085 SET arg,ss086 PUSHJ res,MemFind087 LDOU $1,res,0 $1 M8[rS℄.088 AND t,ss,lring_mask

80

1.4.3� INTERPRETIVE ROUTINES 81089 STOU $1,l,t l[℄ $1.090 PUT rJ,$0 Restore the return address.091 POP 0 Return to aller.(Register rJ on lines 074, 081, 083, and 090 is, of ourse, the real rJ, not thesimulated rJ. When we simulate a mahine on itself, we have to remember tokeep suh things straight!)The StakRoom subroutine is alled when we have just inreased �. It hekswhether � = and, if so, it inreases .092 :StakRoom SUBU t,ss,oo093 SUBU t,t,ll094 AND t,t,lring_mask095 PBNZ t,1F Branh if (rS�rO)=8 6� rL (modulo �).096 GET $0,rJ Oops, we're not a leaf subroutine.097 PUSHJ res,StakStore Advane rS.098 PUT rJ,$0 Restore the return address.099 1H POP 0 Return to aller.Now we ome to the heart of the simulator, its main simulation loop. An in-terpretive routine generally has a entral ontrol setion that is alled into ationbetween interpreted instrutions. In our ase, the program transfers to loationFeth when it is ready to simulate a new ommand. We keep the address � ofthe next simulated instrution in the global register inst_ptr. Feth usuallysets lo inst_ptr and advanes inst_ptr by 4; but if we are simulatinga RESUME ommand that inserts the simulated rX into the instrution stream,Feth sets lo inst_ptr�4 and leaves inst_ptr unhanged. This simulatoronsiders an instrution to be ineligible for exeution unless its loation lo isin the text segment (that is, lo < #2000000000000000).100 * The main loop101 lo GREG 0 Where the simulator is at102 inst_ptr GREG 0 Where the simulator will be next103 inst GREG 0 The urrent instrution being simulated104 resuming GREG 0 Are we resuming an instrution in rX?105 Feth PBZ resuming,1F Branh if not resuming.106 SUBU lo,inst_ptr,4 lo inst_ptr� 4.107 LDTU inst,g,8*rX+4 inst right half of rX.108 JMP 2F109 1H SET lo,inst_ptr lo inst_ptr.110 SET arg,lo111 PUSHJ res,MemFind112 LDTU inst,res,0 inst M4[lo℄.113 ADDU inst_ptr,lo,4 inst_ptr lo+ 4.114 2H CMPU t,lo,g115 BNN t,Error Branh if lo � Data_Segment.The main ontrol routine does the things ommon to all instrutions. Itunpaks the urrent instrution into its various parts and puts the parts into

81

82 BASIC CONCEPTS 1.4.3�onvenient registers for later use. Most importantly, it sets global register f to64 bits of \info" orresponding to the urrent opode. A master table, whihstarts at loation Info, ontains suh information for eah of MMIX's 256 opodes.(See Table 1 on page 88.) For example, f is set to an odd value if and only if theZ �eld of the urrent opode is an \immediate" operand or the opode is JMP;similarly f ^ #40 is nonzero if and only if the instrution has a relative address.Later steps of the simulator will be able to deide quikly what needs to be donewith respet to the urrent instrution beause most of the relevant informationappears in register f.116 op GREG 0 Opode of the urrent instrution117 xx GREG 0 X �eld of the urrent instrution118 yy GREG 0 Y �eld of the urrent instrution119 zz GREG 0 Z �eld of the urrent instrution120 yz GREG 0 YZ �eld of the urrent instrution121 f GREG 0 Paked information about the urrent opode122 xxx GREG 0 X �eld times 8123 x GREG 0 X operand and/or result124 y GREG 0 Y operand125 z GREG 0 Z operand126 xptr GREG 0 Loation where x should be stored127 ex GREG 0 Arithmeti exeptions128 Z_is_immed_bit IS #1 Flag bits possibly set in f129 Z_is_soure_bit IS #2130 Y_is_immed_bit IS #4131 Y_is_soure_bit IS #8132 X_is_soure_bit IS #10133 X_is_dest_bit IS #20134 Rel_addr_bit IS #40135 Mem_bit IS #80136 Info IS #1000137 Done IS Info+8*256138 info GREG Info (Base address for the master info table)139 255 GREG 8*255 (A handy onstant)140 256 GREG 8*256 (Another handy onstant)141 MOR op,inst,#8 op inst� 24.142 MOR xx,inst,#4 xx (inst� 16) ^ #ff.143 MOR yy,inst,#2 yy (inst� 8) ^ #ff.144 MOR zz,inst,#1 zz inst ^ #ff.145 0H GREG -#10000146 ANDN yz,inst,0B147 SLU xxx,xx,3148 SLU t,op,3149 LDOU f,info,t f Info[op℄.150 SET x,0 x 0 (default value).151 SET y,0 y 0 (default value).152 SET z,0 z 0 (default value).153 SET ex,0 ex 0 (default value).

82

1.4.3� INTERPRETIVE ROUTINES 83The �rst thing we do, after having unpaked the instrution into its various�elds, is onvert a relative address to an absolute address if neessary.154 AND t,f,Rel_addr_bit155 PBZ t,1F Branh if not a relative address.156 PBEV f,2F Branh if op isn't JMP or JMPB.157 9H GREG -#1000000158 ANDN yz,inst,9B yz inst ^ #ffffff (namely XYZ).159 ADDU t,yz,9B t XYZ� 224.160 JMP 3F161 2H ADDU t,yz,0B t YZ� 216.162 3H CSOD yz,op,t Set yz t if op is odd (\bakward").163 SL t,yz,2164 ADDU yz,lo,t yz lo+ yz� 2.The next task is ritial for most instrutions: We install the operandsspei�ed by the Y and Z �elds into global registers y and z. Sometimes we alsoinstall a third operand into global register x, spei�ed by the X �eld or omingfrom a speial register like the simulated rD or rM.165 1H PBNN resuming,Install_X Branh unless resuming < 0.... (See exerise 14.)174 Install_X AND t,f,X_is_soure_bit175 PBZ t,1F Branh unless $X is a soure.176 SET arg,xxx177 PUSHJ res,GetReg178 SET x,res x $X.179 1H SRU t,f,5180 AND t,t,#f8 t speial register number, times 8.181 PBZ t,Install_Z182 LDOU x,g,t If t 6= 0, set x g[t℄.183 Install_Z AND t,f,Z_is_soure_bit184 PBZ t,1F Branh unless $Z is a soure.185 SLU arg,zz,3186 PUSHJ res,GetReg187 SET z,res z $Z.188 JMP Install_Y189 1H CSOD z,f,zz If Z is immediate, z Z.190 AND t,op,#f0191 CMPU t,t,#e0192 PBNZ t,Install_Y Branh unless #e0 � op < #f0.193 AND t,op,#3194 NEG t,3,t195 SLU t,t,4196 SLU z,yz,t z yz� (48; 32; 16; or 0).197 SET y,x y x.198 Install_Y AND t,f,Y_is_immed_bit199 PBZ t,1F Branh unless Y is immediate.200 SET y,yy y Y.201 SLU t,yy,40202 ADDU f,f,t Insert Y into left half of f.

83

84 BASIC CONCEPTS 1.4.3�203 1H AND t,f,Y_is_soure_bit204 BZ t,1F Branh unless $Y is a soure.205 SLU arg,yy,3206 PUSHJ res,GetReg207 SET y,res y $Y.When the X �eld spei�es a destination register, we set xptr to the memoryaddress where we will eventually store the simulated result; this address will beeither in the Global array or the Loal ring. The simulated register stak growsat this point if the destination register must be hanged from marginal to loal.208 1H AND t,f,X_is_dest_bit209 BZ t,1F Branh unless $X is a destination.210 XDest CMPU t,xxx,gg211 BN t,3F Branh if $X is not global.212 LDA xptr,g,xxx xptr address of g[X℄.213 JMP 1F214 2H ADDU t,oo,ll215 AND t,t,lring_mask216 STCO 0,l,t l[(�+ L) mod �℄ 0.217 INCL ll,8 L L+ 1. ($L beomes loal.)218 PUSHJ res,StakRoom Make sure � 6= .219 3H CMPU t,xxx,ll220 BNN t,2B Branh if $X is not loal.221 ADD t,xxx,oo222 AND t,t,lring_mask223 LDA xptr,l,t xptr address of l[(�+X) mod �℄.Finally we reah the limax of the main ontrol yle: We simulate theurrent instrution by essentially doing a 256-way branh, based on the urrentopode. The left half of register f is, in fat, an MMIX instrution that we performat this point, by inserting it into the instrution stream via a RESUME ommand.For example, if we are simulating an ADD ommand, we put \ADD x,y,z" intothe right half of rX and lear the exeption bits of rA; the RESUME ommandwill then ause the sum of registers y and z to be plaed in register x, and rAwill reord whether overow ourred. After the RESUME, ontrol will pass toloation Done, unless the inserted instrution was a branh or jump.224 1H AND t,f,Mem_bit225 PBZ t,1F Branh unless inst aesses memory.226 ADDU arg,y,z227 CMPU t,op,#A0 t [op is a load instrution℄.228 BN t,2F229 CMPU t,arg,g230 BN t,Error Error if storing into the text segment.231 2H PUSHJ res,MemFind res address of M[y+ z℄.232 1H SRU t,f,32233 PUT rX,t rX left half of f.234 PUT rM,x rM x (prepare for MUX).235 PUT rE,x rE x (prepare for FCMPE, FUNE, FEQLE).

84

1.4.3� INTERPRETIVE ROUTINES 85236 0H GREG #30000237 AND t,aa,0B t urrent rounding mode.238 ORL t,U_BIT<<8 Enable underow trip (see below).239 PUT rA,t Prepare rA for arithmeti.240 0H GREG Done241 PUT rW,0B rW Done.242 RESUME 0 Exeute the instrution in rX.Some instrutions an't be simulated by simply \performing themselves" likean ADD ommand and jumping to Done. For example, a MULU ommand mustinsert the high half of its omputed produt into the simulated rH. A branhommand must hange inst_ptr if the branh is taken. A PUSHJ ommandmust push the simulated register stak, and a POP ommand must pop it. SAVE,UNSAVE, RESUME, TRAP, et., all need speial are; therefore the next part of thesimulator deals with all ases that don't �t the nie \x equals y op z" pattern.Let's start with multipliation and division, sine they are easy:243 MulU MULU x,y,z Multiply y by z, unsigned.244 GET t,rH Set t upper half of the produt.245 STOU t,g,8*rH g[rH℄ upper half produt.246 JMP XDone Finish by storing x.247 Div DIV x,y,z... (For division, see exerise 6.)If the simulated instrution was a branh ommand, say \BZ $X,RA", themain ontrol routine will have onverted the relative address RA to an absoluteaddress in register yz (line 164), and it will also have plaed the ontents of thesimulated $X into register x (line 178). The RESUME ommand will then exeutethe instrution \BZ x,BTaken" (line 242); and ontrol will pass to BTaken insteadof Done if the simulated branh is taken. BTaken adds 2� to the simulatedrunning time, hanges inst_ptr, and jumps to Update.254 BTaken ADDU ,,4 Inrease rC by 4�.255 PBTaken SUBU ,,2 Derease rC by 2�.256 SET inst_ptr,yz inst_ptr branh address.257 JMP Update Finish the ommand.258 Go SET x,inst_ptr GO instrution: Set x lo+ 4.259 ADDU inst_ptr,y,z inst_ptr (y+ z) mod 264.260 JMP XDone Finish by storing x.(Line 257 ould have jumped to Done, but that would be slower; a shortut toUpdate is justi�ed beause a branh ommand doesn't store x and annot ausean arithmeti exeption. See lines 500{541 below.)A PUSHJ or PUSHGO ommand pushes the simulated register stak down byinreasing the � pointer of (2); this means inreasing the simulated rO, namelyregister oo. If the ommand is \PUSHJ $X,RA" and if $X is loal, we push X+ 1otabytes down by �rst setting $X X and then inreasing oo by 8(X + 1).(The value we have put in $X will be used later by POP to determine how torestore oo to its former value. Simulated register $X will then be set to the

85

86 BASIC CONCEPTS 1.4.3�result of the subroutine, as explained in Setion 1.4.1�.) If $X is global, we pushrL + 1 otabytes down in a similar way.261 PushGo ADDU yz,y,z yz (y+ z) mod 264.262 PushJ SET inst_ptr,yz inst_ptr yz.263 CMPU t,xxx,gg264 PBN t,1F Branh if $X is loal.265 SET xxx,ll Pretend that X = rL.266 SRU xx,xxx,3267 INCL ll,8 Inrease rL by 1.268 PUSHJ 0,StakRoom Make sure � 6= in (2).269 1H ADDU t,xxx,oo270 AND t,t,lring_mask271 STOU xx,l,t l[(�+X) mod �℄ X.272 ADDU t,lo,4273 STOU t,g,8*rJ g[rJ℄ lo+ 4.274 INCL xxx,8275 SUBU ll,ll,xxx Derease rL by X + 1.276 ADDU oo,oo,xxx Inrease rO by 8(X + 1).277 JMP Update Finish the ommand.Speial routines are needed also to simulate POP, SAVE, UNSAVE, and severalother opodes inluding RESUME. Those routines deal with interesting detailsabout MMIX, and we will onsider them in the exerises; but we'll skip them fornow, sine they do not involve any tehniques related to interpretive routinesthat we haven't seen already.We might as well present the ode for SYNC and TRIP, however, sine thoseroutines are so simple. (Indeed, there's nothing to do for \SYNC XYZ" exept tohek that XYZ � 3, sine we aren't simulating ahe memory.) Furthermore,we will take a look at the ode for TRAP, whih is interesting beause it illustratesthe important tehnique of a jump table for multiway swithing:278 Syn BNZ xx,Error Branh if X 6= 0.279 CMPU t,yz,4280 BNN t,Error Branh if YZ � 4.281 JMP Update Finish the ommand.282 Trip SET xx,0 Initiate a trip to loation 0.283 JMP TakeTrip (See exerise 13.)284 Trap STOU inst_ptr,g,8*rWW g[rWW℄ inst_ptr.285 0H GREG #8000000000000000286 ADDU t,inst,0B287 STOU t,g,8*rXX g[rXX℄ inst+ 263.288 STOU y,g,8*rYY g[rYY℄ y.289 STOU z,g,8*rZZ g[rZZ℄ z.290 SRU y,inst,6291 CMPU t,y,4*11292 BNN t,Error Branh if X 6= 0 or Y > Ftell.293 LDOU t,g,255 t g[255℄.

86

1.4.3� INTERPRETIVE ROUTINES 87294 0H GREG �+4295 GO y,0B,y Jump to � + 4 + 4Y.296 JMP SimHalt Y = Halt: Jump to SimHalt.297 JMP SimFopen Y = Fopen: Jump to SimFopen.298 JMP SimFlose Y = Flose: Jump to SimFlose.299 JMP SimFread Y = Fread: Jump to SimFread.300 JMP SimFgets Y = Fgets: Jump to SimFgets.301 JMP SimFgetws Y = Fgetws: Jump to SimFgetws.302 JMP SimFwrite Y = Fwrite: Jump to SimFwrite.303 JMP SimFputs Y = Fputs: Jump to SimFputs.304 JMP SimFputws Y = Fputws: Jump to SimFputws.305 JMP SimFseek Y = Fseek: Jump to SimFseek.306 JMP SimFtell Y = Ftell: Jump to SimFtell.307 TrapDone STO t,g,8*rBB Set g[rBB℄ t.308 STO t,g,255 A trap ends with g[255℄ g[rBB℄.309 JMP Update Finish the ommand.(See exerises 15{17 for SimFopen, SimFlose, SimFread, et.)Now let's look at the master Info table (Table 1), whih allows the simulatorto deal rather painlessly with 256 di�erent opodes. Eah table entry is anotabyte onsisting of (i) a four-byte MMIX instrution, whih will be invokedby the RESUME instrution on line 242; (ii) two bytes that de�ne the simulatedrunning time, one byte for � and one byte for � ; (iii) a byte that names a speialregister, if suh a register ought to be loaded into x on line 182; and (iv) a bytethat is the sum of eight 1-bit ags, expressing speial properties of the opode.For example, the info for opode FIX isFIX x,0,z; BYTE 0,4,0,#26 ;it means that (i) the instrution FIX x,0,z should be performed, to round aoating point number to a �xed point integer; (ii) the simulated running timeshould be inreased by 0� + 4� ; (iii) no speial register is needed as an inputoperand; and (iv) the ag byte#26 = X_is_dest_bit + Y_is_immed_bit + Z_is_soure_bitdetermines the treatment of registers x, y, and z. (The Y_is_immed_bit atuallyauses the Y �eld of the simulated instrution to be inserted into the Y �eld of\FIX x,0,z"; see line 202.)One interesting aspet of the Info table is that the RESUME ommand ofline 242 exeutes the instrution as if it were in loation Done-4, sine rW =Done. Therefore, if the instrution is a JMP, the address must be relative toDone-4; but MMIXAL always assembles JMP ommands with an address relativeto the assembled loation �. We trik the assembler into doing the right thingby writing, for example, \JMP Trap+�-O", where O is de�ned to equal Done-4.Then the RESUME ommand will indeed jump to loation Trap as desired.After we have exeuted the speial instrution inserted by RESUME, we nor-mally get to loation Done. From here on everything is antilimati; but

87

88 BASIC CONCEPTS 1.4.3�Table 1MASTER INFORMATION TABLE FOR SIMULATOR CONTROLO IS Done-4LOC InfoJMP Trap+�-O; BYTE 0,5,0,#0a (TRAP)FCMP x,y,z; BYTE 0,1,0,#2a (FCMP)FUN x,y,z; BYTE 0,1,0,#2a (FUN)FEQL x,y,z; BYTE 0,1,0,#2a (FEQL)FADD x,y,z; BYTE 0,4,0,#2a (FADD)FIX x,0,z; BYTE 0,4,0,#26 (FIX)FSUB x,y,z; BYTE 0,4,0,#2a (FSUB)FIXU x,0,z; BYTE 0,4,0,#26 (FIXU)FLOT x,0,z; BYTE 0,4,0,#26 (FLOT)FLOT x,0,z; BYTE 0,4,0,#25 (FLOTI)FLOTU x,0,z; BYTE 0,4,0,#26 (FLOTU)...FMUL x,y,z; BYTE 0,4,0,#2a (FMUL)FCMPE x,y,z; BYTE 0,4,rE,#2a (FCMPE)FUNE x,y,z; BYTE 0,1,rE,#2a (FUNE)FEQLE x,y,z; BYTE 0,4,rE,#2a (FEQLE)FDIV x,y,z; BYTE 0,40,0,#2a (FDIV)FSQRT x,0,z; BYTE 0,40,0,#26 (FSQRT)FREM x,y,z; BYTE 0,4,0,#2a (FREM)FINT x,0,z; BYTE 0,4,0,#26 (FINT)MUL x,y,z; BYTE 0,10,0,#2a (MUL)MUL x,y,z; BYTE 0,10,0,#29 (MULI)JMP MulU+�-O; BYTE 0,10,0,#2a (MULU)JMP MulU+�-O; BYTE 0,10,0,#29 (MULUI)JMP Div+�-O; BYTE 0,60,0,#2a (DIV)JMP Div+�-O; BYTE 0,60,0,#29 (DIVI)JMP DivU+�-O; BYTE 0,60,rD,#2a (DIVU)JMP DivU+�-O; BYTE 0,60,rD,#29 (DIVUI)ADD x,y,z; BYTE 0,1,0,#2a (ADD)ADD x,y,z; BYTE 0,1,0,#29 (ADDI)ADDU x,y,z; BYTE 0,1,0,#2a (ADDU)...CMPU x,y,z; BYTE 0,1,0,#29 (CMPUI)NEG x,0,z; BYTE 0,1,0,#26 (NEG)NEG x,0,z; BYTE 0,1,0,#25 (NEGI)NEGU x,0,z; BYTE 0,1,0,#26 (NEGU)NEGU x,0,z; BYTE 0,1,0,#25 (NEGUI)SL x,y,z; BYTE 0,1,0,#2a (SL)...BN x,BTaken+�-O; BYTE 0,1,0,#50 (BN)BN x,BTaken+�-O; BYTE 0,1,0,#50 (BNB)BZ x,BTaken+�-O; BYTE 0,1,0,#50 (BZ)...PBNP x,PBTaken+�-O; BYTE 0,3,0,#50 (PBNPB)PBEV x,PBTaken+�-O; BYTE 0,3,0,#50 (PBEV)PBEV x,PBTaken+�-O; BYTE 0,3,0,#50 (PBEVB)CSN x,y,z; BYTE 0,1,0,#3a (CSN)CSN x,y,z; BYTE 0,1,0,#39 (CSNI)...ZSEV x,y,z; BYTE 0,1,0,#2a (ZSEV)ZSEV x,y,z; BYTE 0,1,0,#29 (ZSEVI)

LDB x,res,0; BYTE 1,1,0,#aa (LDB)LDB x,res,0; BYTE 1,1,0,#a9 (LDBI)...JMP Cswap+�-O; BYTE 2,2,0,#ba (CSWAP)JMP Cswap+�-O; BYTE 2,2,0,#b9 (CSWAPI)LDUNC x,res,0; BYTE 1,1,0,#aa (LDUNC)LDUNC x,res,0; BYTE 1,1,0,#a9 (LDUNCI)JMP Error+�-O; BYTE 0,1,0,#2a (LDVTS)JMP Error+�-O; BYTE 0,1,0,#29 (LDVTSI)SWYM 0; BYTE 0,1,0,#0a (PRELD)SWYM 0; BYTE 0,1,0,#09 (PRELDI)SWYM 0; BYTE 0,1,0,#0a (PREGO)SWYM 0; BYTE 0,1,0,#09 (PREGOI)JMP Go+�-O; BYTE 0,3,0,#2a (GO)JMP Go+�-O; BYTE 0,3,0,#29 (GOI)STB x,res,0; BYTE 1,1,0,#9a (STB)STB x,res,0; BYTE 1,1,0,#99 (STBI)...STO xx,res,0; BYTE 1,1,0,#8a (STCO)STO xx,res,0; BYTE 1,1,0,#89 (STCOI)STUNC x,res,0; BYTE 1,1,0,#9a (STUNC)STUNC x,res,0; BYTE 1,1,0,#99 (STUNCI)SWYM 0; BYTE 0,1,0,#0a (SYNCD)SWYM 0; BYTE 0,1,0,#09 (SYNCDI)SWYM 0; BYTE 0,1,0,#0a (PREST)SWYM 0; BYTE 0,1,0,#09 (PRESTI)SWYM 0; BYTE 0,1,0,#0a (SYNCID)SWYM 0; BYTE 0,1,0,#09 (SYNCIDI)JMP PushGo+�-O; BYTE 0,3,0,#2a (PUSHGO)JMP PushGo+�-O; BYTE 0,3,0,#29 (PUSHGOI)OR x,y,z; BYTE 0,1,0,#2a (OR)OR x,y,z; BYTE 0,1,0,#29 (ORI)...SET x,z; BYTE 0,1,0,#20 (SETH)SET x,z; BYTE 0,1,0,#20 (SETMH)...ANDN x,x,z; BYTE 0,1,0,#30 (ANDNL)SET inst_ptr,yz; BYTE 0,1,0,#41 (JMP)SET inst_ptr,yz; BYTE 0,1,0,#41 (JMPB)JMP PushJ+�-O; BYTE 0,1,0,#60 (PUSHJ)JMP PushJ+�-O; BYTE 0,1,0,#60 (PUSHJB)SET x,yz; BYTE 0,1,0,#60 (GETA)SET x,yz; BYTE 0,1,0,#60 (GETAB)JMP Put+�-O; BYTE 0,1,0,#02 (PUT)JMP Put+�-O; BYTE 0,1,0,#01 (PUTI)JMP Pop+�-O; BYTE 0,3,rJ,#00 (POP)JMP Resume+�-O; BYTE 0,5,0,#00 (RESUME)JMP Save+�-O; BYTE 20,1,0,#20 (SAVE)JMP Unsave+�-O; BYTE 20,1,0,#02 (UNSAVE)JMP Syn+�-O; BYTE 0,1,0,#01 (SYNC)SWYM x,y,z; BYTE 0,1,0,#00 (SWYM)JMP Get+�-O; BYTE 0,1,0,#20 (GET)JMP Trip+�-O; BYTE 0,5,0,#0a (TRIP)Entries not shown here expliitly follow a pattern that is easily dedued from theexamples shown. (See, for example, exerise 1.)

88

1.4.3� INTERPRETIVE ROUTINES 89we an take satisfation in the fat that an instrution has been simulatedsuessfully and the urrent yle is nearly �nished. Only a few details stillneed to be wrapped up: We must store the result x in the appropriate plae, ifthe X_is_dest_bit ag is present, and we must hek if an arithmeti exeptionhas triggered a trip interrupt:500 Done AND t,f,X_is_dest_bit501 BZ t,1F Branh unless $X is a destination.502 XDone STOU x,xptr,0 Store x in simulated $X.503 1H GET t,rA504 AND t,t,#ff t new arithmeti exeptions.505 OR ex,ex,t ex ex _ t.506 AND t,ex,U_BIT+X_BIT507 CMPU t,t,U_BIT508 PBNZ t,1F Branh unless underow is exat.509 0H GREG U_BIT<<8510 AND t,aa,0B511 BNZ t,1F Branh if underow is enabled.512 ANDNL ex,U_BIT Ignore U if exat and not enabled.513 1H PBZ ex,Update514 SRU t,aa,8515 AND t,t,ex516 PBZ t,4F Branh unless trip interrupt needed.... (See exerise 13.)539 4H OR aa,aa,ex Reord new exeptions in rA.Line number 500 is used here for onveniene, although several hundred instru-tions and the entire Info table atually intervene between line 309 and this partof the program. Inidentally, the label Done on line 500 does not onit withthe label Done on line 137, beause both of them de�ne the same equivalent valuefor this symbol.After line 505, register ex ontains the bit odes for all arithmeti exep-tions triggered by the instrution just simulated. At this point we must deal witha urious asymmetry in the rules for IEEE standard oating point arithmeti:An underow exeption (U) is suppressed unless the underow trip has beenenabled in rA or unless an inexat exeption (X) has also ourred. (We had toenable the underow trip in line 238 for preisely this reason; the simulator endswith the ommandsLOC U_Handler; ORL ex,U_BIT; JMP Done (5)so that ex will properly reord underow exeptions in ases where a oatingpoint omputation was exat but produed a denormal result.)Finally|Hurray!|we are able to lose the yle of operations that beganlong ago at loation Feth. We update the runtime loks, take a deep breath,and return to Feth again:540 0H GREG #0000000800000004541 Update MOR t,f,0B 232mems + oops

89

90 BASIC CONCEPTS 1.4.3�542 ADDU ,,t Inrease the simulated lok, rC.543 ADDU uu,uu,1 Inrease the usage ounter, rU.544 SUBU ii,ii,1 Derease the interval ounter, rI.545 AllDone PBZ resuming,Feth Go to Feth if resuming = 0.546 CMPU t,op,#F9 Otherwise set t [op= RESUME℄.547 CSNZ resuming,t,0 Clear resuming if not resuming,548 JMP Feth and go to Feth.Our simulation program is now omplete, exept that we still must initializeeverything properly. We assume that the simulator will be run with a ommandline that names a binary �le. Exerise 20 explains the simple format of that�le, whih spei�es what should be loaded into the simulated memory beforesimulation begins. One the program has been loaded, we launh it as follows:At line 576 below, register lo will ontain a loation from whih a simulatedUNSAVE ommand will get the program o� to a good start. (In fat, we simulatean UNSAVE that is being simulated by a simulated RESUME. The ode is triky,perhaps, but it works.)549 Infile IS 3 (Handle for binary input �le)550 Main LDA Mem:head,Chunk0 Initialize MemFind.551 ADDU Mem:allo,Mem:head,Mem:nodesize552 GET t,rN553 INCL t,1554 STOU t,g,8*rN g[rN℄ (our rN) + 1.555 LDOU t,$1,8 t binary �le name (argv [1℄).556 STOU t,IOArgs557 LDA t,IOArgs (See line 010)558 TRAP 0,Fopen,Infile Open the binary �le.559 BN t,Error... Now load the �le (see exerise 20).576 STOU lo,g,255 g[255℄ plae to UNSAVE.577 SUBU arg,lo,8*13 arg plae where $255 appears.578 PUSHJ res,MemFind579 LDOU inst_ptr,res,0 inst_ptr Main.580 SET arg,#90581 PUSHJ res,MemFind582 LDTU x,res,0 x M4[#90℄.583 SET resuming,1 resuming 1.584 CSNZ inst_ptr,x,#90 If x 6= 0, set inst_ptr #90.585 0H GREG #FB<<24+255586 STOU 0B,g,8*rX g[rX℄ \UNSAVE $255".587 SET gg,255 G 255.588 JMP Feth Start the ball rolling.589 Error NEG t,22 t �22 for error exit.590 Exit TRAP 0,Halt,0 End of simulation.591 LOC Global+8*rK; OCTA -1592 LOC Global+8*rT; OCTA #8000000500000000593 LOC Global+8*rTT; OCTA #8000000600000000594 LOC Global+8*rV; OCTA #369200400000000

90

1.4.3� INTERPRETIVE ROUTINES 91The simulated program's Main starting address will be in the simulated register$255 after the simulated UNSAVE. Lines 580{584 of this ode implement afeature that wasn't mentioned in Setion 1.3.2�: If an instrution is loaded intoloation #90, the program begins there instead of at Main. (This feature allowsa subroutine library to initialize itself before starting a user program at Main.)Lines 591{594 initialize the simulated rK, rT, rTT, and rV to appropriateonstant values. Then the program is �nished; it ends with the trip-handlerinstrutions of (5).Whew! Our simulator has turned out to be pretty long| longer, in fat,than any other program that we will enounter in this book. But in spite of itslength, the program above is inomplete in several respets beause the authordid not want to make it even longer:a) Several parts of the ode have been left as exerises.b) The program simply branhes to Error and quits, when it detets a problem.A deent simulator would distinguish between di�erent types of error, andwould have a way to keep going.) The program doesn't gather any statistis, exept for the total runningtime () and the total number of instrutions simulated (uu). A moreomplete program would, for example, remember how often the user guessedorretly with respet to branhes versus probable branhes; it would alsoreord the number of times the StakLoad and StakStore subroutinesneed to aess simulated memory. It might also analyze its own algorithms,studying for example the eÆieny of the self-organizing searh tehniqueused by MemFind.d) The program has no diagnosti failities. A useful simulator would, forexample, allow interative debugging, and would output seleted snapshotsof the simulated program's exeution; suh features would not be diÆultto add. The ability to monitor a program easily is, in fat, one of the mainreasons for the importane of interpretive routines in general.EXERCISES1. [20 ℄ Table 1 shows the Info entries only for seleted opodes. What entries areappropriate for (a) opode#3F (SRUI)? (b) opode#55 (PBPB)? () opode#D9 (MUXI)?(d) opode#E6 (INCML)?x 2. [26 ℄ How muh time does it take the simulator to simulate the instrutions(a) ADDU $255,$Y,$Z; (b) STHT $X,$Y,0; () PBNZ $X,�-4?3. [23 ℄ Explain why 6= � when StakRoom alls StakStore on line 097.x 4. [20 ℄ Critiize the fat that MemFind never heks to see if allo has gotten toolarge. Is this a serious blunder?x 5. [20 ℄ If the MemFind subroutine branhes to Error, it does not pop the registerstak. How many items might be on the register stak at suh a time?6. [20 ℄ Complete the simulation of DIV and DIVU instrutions, by �lling in the missingode of lines 248{253.7. [21 ℄ Complete the simulation of CSWAP instrutions, by writing appropriate ode.

91

92 BASIC CONCEPTS 1.4.3�8. [22 ℄ Complete the simulation of GET instrutions, by writing appropriate ode.9. [23 ℄ Complete the simulation of PUT instrutions, by writing appropriate ode.10. [24 ℄ Complete the simulation of POP instrutions, by writing appropriate ode.Note: If the normal ation of POP as desribed in Setion 1.4.1� would leave rL > rG,MMIX will pop entries o� the top of the register stak so that rL = rG. For example, ifthe user pushes 250 registers down with PUSHJ and then says \PUT rG,32; POP", only32 of the pushed-down registers will survive.11. [25 ℄ Complete the simulation of SAVE instrutions, by writing appropriate ode.Note: SAVE pushes all the loal registers down and stores the entire register stak inmemory, followed by $G, $(G + 1), : : : , $255, followed by rB, rD, rE, rH, rJ, rM, rR,rP, rW, rX, rY, and rZ (in that order), followed by the otabyte 256rG + rA.12. [26 ℄ Complete the simulation of UNSAVE instrutions, by writing appropriate ode.Note: The very �rst simulated UNSAVE is part of the initial loading proess (see lines583{588), so it should not update the simulated loks.13. [27 ℄ Complete the simulation of trip interrupts, by �lling in the missing ode oflines 517{538.14. [28 ℄ Complete the simulation of RESUME instrutions, by writing appropriate ode.Note: When rX is nonnegative, its most signi�ant byte is alled the \ropode";ropodes 0, 1, 2 are available for user programs. Line 242 of the simulator usesropode 0, whih simply inserts the lower half of rX into the instrution stream.Ropode 1 is similar, but the instrution in rX is performed with y rY and z rZin plae of the normal operands; this variant is allowed only when the �rst hexadeimaldigit of the inserted opode is #0, #1, #2, #3, #6, #7, #C, #D, or #E. Ropode 2sets $X rZ and ex Q, where X is the third byte from the right of rX and Q isthe third byte from the left; this makes it possible to set the value of a register andsimultaneously raise any subset of the arithmeti exeptions DVWIOUZX. Ropodes1 and 2 an be used only when $X is not marginal. Your solution to this exeriseshould ause RESUME to set resuming 0 if the simulated rX is negative, otherwiseresuming (1;�1;�2) for ropodes (0; 1; 2). You should also supply the ode that ismissing from lines 166{173.x 15. [25 ℄ Write the routine SimFputs, whih simulates the operation of outputting astring to the �le orresponding to a given handle.x 16. [25 ℄ Write the routine SimFopen, whih opens a �le orresponding to a givenhandle. (The simulator an use the same handle number as the user program.)x 17. [25 ℄ Continuing the previous exerises, write the routine SimFread , whih readsa given number of bytes from a �le orresponding to a given handle.x 18. [21 ℄ Would this simulator be of any use if lring_size were less than 256, for ex-ample if lring_size = 32?19. [14 ℄ Study all the uses of the StakRoom subroutine (namely in line 218, line 268,and in the answer to exerise 11). Can you suggest a better way to organize the ode?(See step 3 in the disussion at the end of Setion 1.4.1�.)20. [20 ℄ The binary �les input by the simulator onsist of one or more groups ofotabytes eah having the simple form�; x0; x1; : : : ; xl�1; 0

92

1.4.3� INTERPRETIVE ROUTINES 93for some l � 0, where x0, x1, : : : , and xl�1 are nonzero; the meaning isM8[�+ 8k℄ xk; for 0 � k < l.The �le ends after the last group. Complete the simulator by writing MMIX ode to loadsuh input (lines 560{575 of the program). The �nal value of register lo should bethe loation of the last otabyte loaded, namely �+ 8(l � 1).x 21. [20 ℄ Is the simulation program of this setion able to simulate itself? If so, is itable to simulate itself simulating itself? And if so, is it � � � ?x 22. [40 ℄ Implement an eÆient jump trae routine for MMIX. This is a program thatreords all transfers of ontrol in the exeution of another given program by reordinga sequene of pairs (x1; y1), (x2; y2), : : : , meaning that the given program jumped fromloation x1 to y1, then (after performing the instrutions in loations y1; y1+1; : : : ; x2)it jumped from x2 to y2, et. [From this information it is possible for a subsequentroutine to reonstrut the ow of the program and to dedue how frequently eahinstrution was performed.℄A trae routine di�ers from a simulator beause it allows the traed program tooupy its normal memory loations. A jump trae modi�es the instrution streamin memory, but does so only to the extent neessary to retain ontrol. Otherwise itallows the mahine to exeute arithmeti and memory instrutions at full speed. Somerestritions are neessary; for example, the program being traed shouldn't modifyitself. But you should try to keep suh restritions to a minimum.

93

ANSWERS TO EXERCISES
SECTION 1.3.1�1. #7d9 or #7D9.2. (a) fB; D; F; b; d; fg. (b) fA; C; E; a; ; eg. An odd fat of life.3. (Solution by Gregor N. Purdy.) 2 bits = 1 nyp; 2 nyps = 1 nybble; 2 nybbles =1 byte. Inidentally, the word \byte" was oined in 1956 by members of IBM's Strethomputer projet; see W. Buhholz, BYTE 2, 2 (February 1977), 144.4. 1000 MB = 1 gigabyte (GB), 1000 GB = 1 terabyte (TB), 1000 TB = 1 petabyte(PB), 1000 PB = 1 exabyte (EB), 1000 EB = 1 zettabyte (ZB), 1000 ZB = 1 yottabyte(YB), aording to the 19th Conf�erene G�en�erale des Poids et Mesures (1990).(Some people, however, use 210 instead of 1000 in these formulas, laiming forexample that a kilobyte is 1024 bytes. To resolve the ambiguity, suh units shouldpreferably be alled large kilobytes, large megabytes, et., and denoted by KKB, MMB,: : : to indiate their binary nature.)5. If �2n�1 � x < 2n�1, then �2n < x � s(�) < 2n; hene x 6= s(�) implies thatx 6� s(�) (modulo 2n). But s(�) = u(�)� 2n[� begins with 1℄ � u(�) (modulo 2n).6. Using the notation of the previous exerise, we have u(��) = 2n � 1� u(�); heneu(��) + 1 � �u(�) (modulo 2n), and it follows that s(��) + 1 = �s(�). Overow mightour, however, when adding 1. In that ase � = 10 : : : 0, s(�) = �2n�1, and �s(�) isnot representable.7. Yes. (See the disussion of shifting.)8. The radix point now falls between rH and $X. (In general, if the binary radixpoint is m positions from the end of $Y and n positions from the end of $Z, it is m+npositions from the end of the produt.)9. Yes, exept when X = Y, or X = Z, or overow ours.10. $Y = #8000000000000000, $Z = #ffffffffffffffff is the only example!11. (a) True, beause s($Y) � u($Y) and s($Z) � u($Z) (modulo 264) by exerise 5.(b) Clearly true if s($Y) � 0 and s($Z) � 0, beause s($Y) = u($Y) and s($Z) = u($Z)in suh a ase. Also true if $Z = 0 or $Z = 1 or $Z = $Y or $Y = 0. Otherwise false.12. If X 6= Y, say `ADDU $X,$Y,$Z; CMPU arry,$X,$Y; ZSN arry,arry,1'. But ifX = Y = Z, say `ZSN arry,$X,1; ADDU $X,$X,$X'.13. Overow ours on signed addition if and only if $Y and $Z have the same signbut their unsigned sum has the opposite sign. ThusXOR $0,$Y,$Z; ADDU $X,$Y,$Z; XOR $1,$X,$Y; ANDN $1,$1,$0; ZSN ovfl,$1,1determines the presene or absene of overow when X 6= Y.94

94

1.3.1� ANSWERS TO EXERCISES 9514. Interhange X and Y in the previous answer. (Overow ours when omputingx = y � z if and only if it ours when omputing y = x+ z.)15. Let _y and _z be the sign bits of y and z, so that s(y) = y�264 _y and s(z) = z�264 _z;we want to alulate s(y)s(z) mod 2128 = (yz � 264(_yz + y _z))mod 2128. Thus theprogram MULU $X,$Y,$Z; GET $0,rH; ZSN $1,$Y,$Z; SUBU $0,$0,$1; ZSN $1,$Z,$Y;SUBU $0,$0,$1 puts the desired otabyte in $0.16. After the instrutions in the previous answer, hek that the upper half is the signextension of the lower half, by saying `SR $1,$X,63; CMP $1,$0,$1; ZSNZ ovfl,$1,1'.17. Let a be the stated onstant, whih is (265+1)=3. Then ay=265 = y=3+y=(3 �265),so bay=265 = by=3 for 0 � y < 265.18. By a similar argument, bay=266 = by=5 for 0 � y < 266 when a = (266 + 1)=5 =#d.19. This statement is widely believed, and it has been implemented by ompiler writerswho did not hek the math. But it is false when z = 7, 21, 23, 25, 29, 31, 39, 47, 49,53, 55, 61, 63, 71, 81, 89, : : : , and in fat for 189 odd divisors z less than 1000!Let � = ay=264+e � y=z = (z � r)y=(264+ez), where r = 264+e mod z. Then0 < � < 2=z, hene trouble an arise only when y � �1 (modulo z) and � � 1=z.It follows that the formula bay=264+e = by=z holds for all unsigned otabytes y,0 � y < 264, if and only if it holds for the single value y = 264 � 1� (264 mod z).(The formula is, however, always orret in the restrited range 0 � y < 263.And Mihael Yoder observes that high-multipliation by d264+e+1=ze�264, followed byaddition of y and right-shift by e+ 1, does work in general.)20. 4ADDU $X,$Y,$Y; 4ADDU $X,$X,$X.21. SL sets $X to zero, overowing if $Y was nonzero. SLU and SRU set $X to zero. SRsets $X to 64 opies of the sign bit of $Y, namely to �[$Y< 0℄. (Notie that shiftingleft by �1 does not shift right.)22. Dull's program takes the wrong branh when the SUB instrution auses overow.For example, it treats every nonnegative number as less than �263; it treats 263 � 1 asless than every negative number. Although no error arises when $1 and $2 have thesame sign, or when the numbers in $1 and $2 are both less than 262 in absolute value,the orret formulation `CMP $0,$1,$2; BN $0,Case1' is muh better. (Similar errorshave been made by programmers and ompiler writers sine the 1950s, often ausingsigni�ant and mysterious failures.)23. CMP $0,$1,$2; BNP $0,Case1.24. ANDN.25. XOR $X,$Y,$Z; SADD $X,$X,0.26. ANDN $X,$Y,$Z.27. BDIF $W,$Y,$Z; ADDU $X,$Z,$W; SUBU $W,$Y,$W.28. BDIF $0,$Y,$Z; BDIF $X,$Z,$Y; OR $X,$0,$X.29. NOR $0,$Y,0; BDIF $0,$0,$Z; NOR $X,$0,0. (This sequene omputes 2n � 1�max(0; (2n � 1� y)� z) in eah byte position.)30. XOR $1,$0,$2; BDIF $1,$3,$1; SADD $1,$1,0 when $2 = #2020202020202020and $3 = #0101010101010101.31. MXOR $1,$4,$0; SADD $1,$1,0 when $4 = #0101010101010101.32. CTji = Cij = (AT1i � BTj1) Æ � � � Æ (ATni �BTjn) = (BT Æ� AT)ji if � is ommutative.

95

96 ANSWERS TO EXERCISES 1.3.1�33. MOR (or MXOR) with the onstant #0180402010080402.34. MOR $X,$Z,[#0080004000200010℄; MOR $Y,$Z,[#0008000400020001℄. (Here weuse brakets to denote registers that ontain auxiliary onstants.)To go bak, also heking that an 8-bit ode is suÆient:PUT rM,[#00ff00ff00ff00ff℄MOR $0,$X,[#4020100804020180℄MUX $1,$0,$YBNZ $1,BadCaseMUX $1,$Y,$0MOR $Z,$1,[#8020080240100401℄35. MOR $X,$Y,$Z; MOR $X,$Z,$X; here $Z is the onstant (14).36. XOR $0,$Y,$Z; MOR $0,[-1℄,$0. Notes: Changing XOR to BDIF gives a mask forthe bytes where $Y exeeds $Z. Given suh a mask, AND it with #8040201008040201and MOR with #ff to get a one-byte enoding of the relevant byte positions.37. Let the elements of the �eld be polynomials in the Boolean matrix0BBBBBBBB�
0 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 11 0 0 0 1 1 1 0

1CCCCCCCCA :
For example, this matrix is m(#402010080402018e), and if we square it with MXOR weget the matrix m(#2010080402018e47). The sum and produt of suh �eld elementsare then obtained by XOR and MXOR, respetively.(A �eld with 2k elements for 2 � k � 7 is obtained in a similar way from poly-nomials in the matries #0103, #020105, #04020109, #0804020112, #100804020121,#20100804020141. Matries of size up to 16� 16 an be represented as four otabytes;then multipliation requires eight MXORs and four XORs. We an, however, do multipli-ation in a �eld of 216 elements by performing only �ve MXORs and three XORs, if werepresent the large �eld as a quadrati extension of the �eld of 28 elements.)38. It sets $1 to the sum of the eight signed bytes initially in $0; it also sets $2 tothe rightmost nonzero suh byte, or zero; and it sets $0 to zero. (Changing SR to SRUwould treat the bytes as unsigned. Changing SLU to SL would often overow.)39. The assumed running times are (a) (3� or 2�) versus 2�; (b) (4� or 3�) versus 2�;() (4� or 3�) versus 3�; (d) (� or 4�) versus 2�; (e) (2� or 5�) versus 2�; (f) (2� or5�) versus 3�. So we should use the onditional instrutions in ases (a, d) and (, f),unless $0 is negative with probability > 2=3; in the latter ase we should use the PBNvariants, (d) and (f). The onditionals always win in ases (b, e).If the ADDU ommands had been ADD, the instrutions would not have been equiv-alent, beause of possible overows.40. Suppose you GO to address #101; this sets � #101. The tetrabyte M4[#101℄ isthe same as the tetrabyte M4[#100℄. If the opode of that instrution is, say, PUSHJ,register rJ will be set to #105. Similarly, if that instrution is GETA $0,�, register $0will be set to #101. In suh situations the value for � in MMIX assembly language isslightly di�erent from the atual value during program exeution.

96

1.3.1� ANSWERS TO EXERCISES 97Programmers ould use these priniples to send some sort of signal to a subroutine,based on the two trailing bits of �. (Triky, but hey, why not use the bits we've got?)41. (a) True. (b) True. () True. (d) False, but true with SRU in plae of SR.42. (a) NEGU $1,$0; CSNN $1,$0,$0. (b) ANDN $1,$0,[#8000000000000000℄.43. Trailing zeros (solution by J. Dallos): SUBU $0,$Z,1; SADD $0,$0,$Z.Leading zeros: FLOTU $0,1,$Z; SRU $0,$0,52; SUB $0,[1086℄,$0. (If $Z ouldbe zero, add the ommand CSZ $0,$Z,64.) This is the shortest program, but not thefastest; we save 2� if we reverse all bits (exerise 35) and ount trailing zeros.44. Use \high tetra arithmeti," in whih eah 32-bit number appears in the left halfof a register. LDHT and STHT load and store suh quantities (see exerise 7); SETMHloads an immediate onstant. To add, subtrat, multiply, or divide high tetras $Yand $Z, produing a high tetra $X with orret attention to integer overow and dividehek, the following ommands work perfetly: (a) ADD $X,$Y,$Z. (b) SUB $X,$Y,$Z.() SR $X,$Z,32; MUL $X,$Y,$X (assuming that we have X 6= Y). (d) DIV $X,$Y,$Z;SL $X,$X,32; now rR is the high tetra remainder.46. It auses a trip to loation 0.47. #DF is MXORI (\multiple exlusive-or immediate"); #55 is PBPB (\probable branhpositive bakward"). But in a program we use the names MXOR and PBP; the assemblersilently adds the I and B when required.48. STO and STOU; also the \immediate" variants LDOI and LDOUI, STOI and STOUI;also NEGI and NEGUI, although NEG is not equivalent to NEGU; also any two of the fouropodes FLOTI, FLOTUI, SFLOTI, and SFLOTUI.(Every MMIX operation on signed numbers has a orresponding operation on un-signed numbers, obtained by adding 2 to the opode. This onsisteny makes themahine design easier to learn, the mahine easier to build, and the ompilers easier towrite. But of ourse it also makes the mahine less versatile, beause it leaves no roomfor other operations that might be desired.)49. Otabyte M8[0℄ is set to #0000010000000001; rH is set to #0000012343210000;M2[#0244420000000122℄ is set to #0121; rA is set to #00041 (beause overow ourson the STW); rB is set to f(7) = #401000000000000; and $1 #6ff8ffffffffffff.(Also rL 2, if rL was originally 0 or 1.) We assume that the program is not loatedin suh a plae that the STCO, STB, or STW instrutions ould lobber it.50. 4�+34� = �+ (�+�) + �+ (�+�)+ (�+�)+ �+ �+10�+ �+ (�+�)+ �+4�+� + � + � + � + 3� + � + � + �.51. 35010001b501010133010101 a00101018e010101e4010001 2e0101011a010101f7150001 a5010101db01010108010001 f600000170101015701ffff 40101013d0101013f01010152. Opodes ADDI, ADDUI, SUBI, SUBUI, SLI, SLUI, SRI, SRUI, ORI, XORI, ANDNI, BDIFI,WDIFI, TDIFI, ODIFI: X = Y = 255, Z = 0. Opode MULI: X = Y = 255, Z = 1.Opodes INCH, INCMH, INCML, INCL, ORH, ORMH, ORML, ORL, ANDNH, ANDNMH, ANDNML,ANDNL: X = 255, Y = Z = 0. Opodes OR, AND, MUX: X = Y = Z = 255. Opodes CSN,CSZ, : : : , CSEV: X = Z = 255, Y arbitrary. Opodes BN, BZ, : : : , PBEV: X arbitrary,Y = 0, Z = 1. Opode JMP: X = Y = 0, Z = 1. Opodes PRELD, PRELDI, PREGO,PREGOI, SWYM: X, Y, Z arbitrary. (Subtle point: An instrution that sets register $Xis not a no-op when X is marginal, beause it auses rL to inrease; and all registersexept $255 are marginal when rL = 0 and rG = 255.)

97

98 ANSWERS TO EXERCISES 1.3.1�53. MULU, MULUI, PUT, PUTI, UNSAVE.54. FCMP, FADD, FIX, FSUB, : : : , FCMPE, FEQLE, : : : , FINT, MUL, MULI, DIV, DIVI, ADD,ADDI, SUB, SUBI, NEG, SL, SLI, STB, STBI, STW, STWI, STT, STTI, STSF, STSFI, PUT, PUTI,UNSAVE. (This was not quite a fair question, beause the omplete rules for oatingpoint operations appear only elsewhere. One �ne point is that FCMP might hange theI_BIT of rA, if $Y or $Z is Not-a-Number, but FEQL and FUN never ause exeptions.)55. FCMP, FUN, : : : , SRUI, CSN, CSNI, : : : , LDUNCI, GO, GOI, PUSHGO, PUSHGOI, OR, ORI,: : : , ANDNL, PUSHJ, PUSHJB, GETA, GETAB, PUT, PUTI, POP, SAVE, UNSAVE, GET.56. Minimum spae: LDO $1,xSET $0,$1SETL $2,12 MUL $0,$0,$1SUB $2,$2,1PBP $2,�-4*2Spae = 6� 4 = 24 bytes, time = �+ 149�. Faster solutions are possible.Minimum time: The assumption that jx13j � 263 implies that jxj < 25 and x8 <239. The following solution, based on an idea of Y. N. Patt, exploits this fat.LDO $0,x $0 = xMUL $1,$0,$0 $1 = x2MUL $1,$1,$1 $1 = x4SL $2,$1,25 $2 = 225x4SL $3,$0,39 $3 = 239xADD $3,$3,$1 $3 = 239x+ x4MULU $1,$3,$2 u($1) = 225x8, rH = x5 + 225x4 [x< 0℄GET $2,rH $2 � x5 (modulo 225)PUT rM,[#1ffffff℄MUX $2,$2,$0 $2 = x5SRU $1,$1,25 $1 = x8MUL $0,$1,$2 $0 = x13Spae = 12�4 = 48 bytes, time = �+48�. At least �ve multipliations are \neessary,"aording to the theory developed in Setion 4.6.3; yet this program uses only four!And in fat there is a way to avoid multipliation altogether.True minimum time: As R. W. Floyd points out, we have jxj � 28, so the minimumexeution time is ahieved by referring to a table (unless � > 45�):LDO $0,x $0 = x8ADDU $0,$0,[Table℄LDO $0,$0,8*28 $0 = x13...Table OCTA -28*28*28*28*28*28*28*28*28*28*28*28*28OCTA -27*27*27*27*27*27*27*27*27*27*27*27*27...OCTA 28*28*28*28*28*28*28*28*28*28*28*28*28Spae = 3� 4 + 57� 8 = 468 bytes, time = 2�+ 3�.57. (1) An operating system an alloate high-speed memory more eÆiently if pro-gram bloks are known to be \read-only." (2) An instrution ahe in hardware will befaster and less expensive if instrutions annot hange. (3) Same as (2), with \pipeline"in plae of \ahe." If an instrution is modi�ed after entering a pipeline, the pipelineneeds to be ushed; the iruitry needed to hek this ondition is omplex and time-onsuming. (4) Self-modifying ode annot be used by more than one proess at one.(5) Self-modifying ode an defeat tehniques for \pro�ling" (that is, for omputingthe number of times eah instrution is exeuted).

98

1.3.2� ANSWERS TO EXERCISES 99SECTION 1.3.2�1. (a) It refers to the label of line 24. (b) No indeed. Line 23 would refer to line 24instead of line 38; line 31 would refer to line 24 instead of line 21.2. The urrent value of 9B will be a running ount of the number of suh lines thathave appeared earlier.3. Read in 100 otabytes from standard input; exhange their maximum with thelast of them; exhange the maximum of the remaining 99 with the last of those; et.Eventually the 100 otabytes will beome ompletely sorted into nondereasing order.The result is then written to the standard output. (Compare with Algorithm 5.2.3S.)4. #2233445566778899. (Large values are redued mod 264.)5. BYTE "silly"; but this trik is not reommended.6. False; TETRA �,� is not the same as TETRA �; TETRA �.7. He forgot that relative addresses are to tetrabyte loations; the two trailing bitsare ignored.8. LOC 16*((�+15)/16) or LOC -�/16*-16 or LOC (�+15)&-16, et.9. Change 500 to 600 on line 02; hange Five to Six on line 35. (Five-digit numbersare not needed unless 1230 or more primes are to be printed. Eah of the �rst 6542primes will �t in a single wyde.)10. M2[#2000000000000000℄ = #0002, and the following nonzero data goes into thetext segment: #100: #e3 fe 00 03#104: #1 fb f7 00#108: #a6 fe f8 fb#10: #e7 fb 00 02#110: #42 fb 00 13#114: #e7 fe 00 02#118: #1 fa f7 00#11: #86 f9 f8 fa#120: #1 fd fe f9#124: #fe f 00 06#128: #43 f ff fb#12: #30 ff fd f9#130: #4d ff ff f6#134: #e7 fa 00 02#138: #f1 ff ff f9#13: #46 69 72 73#140: #74 20 46 69#144: #76 65 20 48#148: #75 6e 64 72#14: #65 64 20 50#150: #72 69 6d 65#154: #73 0a 00 20#158: #20 20 00 00

#15: #23 ff f6 00#160: #00 00 07 01#164: #35 fa 00 02#168: #20 fa fa f7#16: #23 ff f6 1b#170: #00 00 07 01#174: #86 f9 f8 fa#178: #af f5 f8 00#17: #23 ff f8 04#180: #1d f9 f9 0a#184: #fe f 00 06#188: #e7 f 00 30#18: #a3 f ff 00#190: #25 ff ff 01#194: #5b f9 ff fb#198: #23 ff f8 00#19: #00 00 07 01#1a0: #e7 fa 00 64#1a4: #51 fa ff f4#1a8: #23 ff f6 19#1a: #00 00 07 01#1b0: #31 ff fa 62#1b4: #5b ff ff ed(Notie that SET beomes SETL in #100, but ORI in #104. The urrent loation � isaligned to #15 at line 38, aording to rule 7(a).) When the program begins, rG willbe #f5, and we will have $248 = #20000000000003e8, $247 = #fffffffffffff1a,$246 = #13, $245 = #2030303030000000.

99

100 ANSWERS TO EXERCISES 1.3.2�11. (a) If n is not prime, by de�nition n has a divisor d with 1 < d < n. If d > pn,then n=d is a divisor with 1 < n=d < pn. (b) If n is not prime, n has a primedivisor d with 1 < d � pn. The algorithm has veri�ed that n has no prime divisors �p = PRIME[k℄; also n = pq + r < pq + p � p2 + p < (p+ 1)2. Any prime divisor of n istherefore greater than p+ 1 > pn.We must also prove that there will be a suÆiently large prime less than n when nis prime, namely that the (k + 1)st prime pk+1 is less than p2k + pk; otherwise k wouldexeed j and PRIME[k℄ would be zero when we needed it to be large. The neessaryproof follows from \Bertrand's postulate": If p is prime there is a larger prime lessthan 2p.12. We ould move Title, NewLn, and Blank to the data segment following BUF, wherethey ould use ptop as their base address. Or we ould hange the LDA instrutions onlines 38, 42, and 58 to SETL, knowing that the string addresses happen to �t in twobytes beause this program is short. Or we ould hange LDA to GETA; but in that asewe would have to align eah string modulo 4, for example by sayingTitle BYTE "First Five Hundred Primes",#a,0LOC (�+3)&-4NewLn BYTE #a,0LOC (�+3)&-4Blanks BYTE " ",0(See exerises 7 and 8.)13. Line 35 gets the new title; hange BYTE to WYDE on lines 35{37. Change Fputs toFputws in lines 39, 43, 55, 59. Change the onstant in line 45 to #0020066006600660.Change BUF+4 to BUF+2*4 on line 47. And hange lines 50{52 toINCL r,'0'; STWU r,t,0; SUB t,t,2 :Inidentally, the new title line might look likeTitle WYDE "tÛ¿×Ä Ên·�Ä unÛË �Ì� ¾×"when it is printed bidiretionally, but in the omputer �le the individual haratersatually appear in \logial" order without ligatures. Thus a spelled-out sequene likeTitle WYDE '','×','¾',' ','�','Ê','�',' ',...,'¾','Ý','s'would give an equivalent result, by the rule for string onstants (rule 2).14. We an, for example, replae lines 26{30 of Program P byfn GREG 0sqrtn GREG 0FLOT fn,nFSQRT sqrtn,fn6H LDWU pk,ptop,kkFLOT t,pkFREM r,fn,tBZ r,4B7H FCMP t,sqrtn,tThe new FREM instrution is performed 9597 times, not 9538, beause the new test instep P7 is not quite as e�etive as before. In spite of this, the oating point alulationsredue the running time by 426192� � 59�, a notable improvement (unless of ourse

100

1.3.2� ANSWERS TO EXERCISES 101�=� > 7000). An additional savings of 38169� an be ahieved if the primes are storedas short oats instead of as unsigned wydes.The number of divisibility tests an atually be redued to 9357 if we replae qby pn� 1:9999 in step P7 (see the answer to exerise 11). But the extra subtrationsost more than they save, unless �=� > 15.15. It prints a string onsisting of a blank spae followed by an asterisk followed bytwo blanks followed by an asterisk : : : followed by k blanks followed by an asterisk : : :followed by 74 blanks followed by an asterisk; a total of 2+3+� � �+75 = �762 ��1 = 2849haraters. The total e�et is one of OP art.17. The following subroutine returns zero if and only if the instrution is OK.a IS #ffffffff Table entry when anything goesb IS #ffff04ff Table entry when Y � ROUND_NEAR IS #001f00ff Table entry for PUT and PUTId IS #ff000000 Table entry for RESUMEe IS #ffff0000 Table entry for SAVEf IS #ff0000ff Table entry for UNSAVEg IS #ff000003 Table entry for SYNCh IS #ffff001f Table entry for GETtable GREG �TETRA a,a,a,a,a,b,a,b,b,b,b,b,b,b,b,b 0xTETRA a,a,a,a,a,b,a,b,a,a,a,a,a,a,a,a 1xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 2xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 3xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 4xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 5xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 6xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 7xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 8xTETRA a,a,a,a,a,a,a,a,0,0,a,a,a,a,a,a 9xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a AxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a BxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a CxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a DxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a ExTETRA a,a,a,a,a,a,,,a,d,e,f,g,a,h,a Fxtetra IS $1maxXYZ IS $2InstTest BN $0,9F Invalid if address is negative.LDTU tetra,$0,0 Feth the tetrabyte.SR $0,tetra,22 Extrat its opode (times 4).LDT maxXYZ,table,$0 Get Xmax;Ymax;Zmax.BDIF $0,tetra,maxXYZ Chek if any max is exeeded.PBNP maxXYZ,9F If not a PUT, we are done.ANDNML $0,#ff00 Zero out the OP byte.BNZ $0,9F Branh if any max is exeeded.MOR tetra,tetra,#4 Extrat the X byte.CMP $0,tetra,18CSP tetra,$0,0 Set X 0 if 18 < X < 32.

101

102 ANSWERS TO EXERCISES 1.3.2�ODIF $0,tetra,7 Set $0 X .� 7.9H POP 1,0 Return $0 as the answer.This solution does not onsider a tetrabyte to be invalid if it would jump to a negativeaddress, nor is `SAVE $0,0' alled invalid (although $0 an never be a global register).18. The ath to this problem is that there may be several plaes in a row or olumnwhere the minimum or maximum ours, and eah is a potential saddle point.Solution 1: In this solution we run through eah row in turn, making a list of allolumns in whih the row minimum ours and then heking eah olumn on the listto see if the row minimum is also a olumn maximum. Notie that in all ases theterminating ondition for a loop is that a register is � 0.* Solution 1t IS $255a00 GREG Data_Segment Address of \a00"a10 GREG Data_Segment+8 Address of \a10"ij IS $0 Element index and return registerj GREG 0 Column indexk GREG 0 Size of list of minimum indiesx GREG 0 Current minimum valuey GREG 0 Current elementSaddle SET ij,9*8RowMin SET j,8LDB x,a10,ij Candidate for row minimum2H SET k,0 Set list empty.4H INCL k,1STB j,a00,k Put olumn index in list.1H SUB ij,ij,1 Go left one.SUB j,j,1BZ j,ColMax Done with row?3H LDB y,a10,ijSUB t,x,yPBN t,1B Is x still minimum?SET x,yPBP t,2B New minimum?JMP 4B Remember another minimum.ColMax LDB $1,a00,k Get olumn from list.ADD j,$1,9*8-81H LDB y,a10,jCMP t,x,yPBN t,No Is row min < olumn element?SUB j,j,8PBP j,1B Done with olumn?Yes ADD ij,ij,$1 Yes; ij index of saddle.LDA ij,a10,ijPOP 1,0No SUB k,k,1 Is list empty?BP k,ColMax If not, try again.PBP ij,RowMin Have all rows been tried?POP 1,0 Yes; $0 = 0, no saddle.

102

1.3.2� ANSWERS TO EXERCISES 103Solution 2: An infusion of mathematis gives a di�erent algorithm.Theorem. Let R(i) = minj aij , C(j) = maxi aij . The element ai0j0 is a saddle pointif and only if R(i0) = maxiR(i) = C(j0) = minj C(j).Proof. If ai0j0 is a saddle point, then for any �xed i, R(i0) = C(j0) � aij0 � R(i); soR(i0) = maxiR(i). Similarly C(j0) = minj C(j). Conversely, we have R(i) � aij �C(j) for all i and j; hene R(i0) = C(j0) implies that ai0j0 is a saddle point.(This proof shows that we always have maxiR(i) � minj C(j). So there is nosaddle point if and only if all the R's are less than all the C's.)Aording to the theorem, it suÆes to �nd the smallest olumn maximum, thento searh for an equal row minimum.* Solution 2t IS $255a00 GREG Data_Segment Address of \a00"a10 GREG Data_Segment+8 Address of \a10"a20 GREG Data_Segment+8*2 Address of \a20"ij GREG 0 Element indexii GREG 0 Row index times 8j GREG 0 Column indexx GREG 0 Current maximumy GREG 0 Current elementz GREG 0 Current min maxans IS $0 Return registerPhase1 SET j,8 Start at olumn 8.SET z,1000 z 1 (more or less).3H ADD ij,j,9*8-2*8LDB x,a20,ij1H LDB y,a10,ijCMP t,x,y Is x < y?CSN x,t,y If so, update the maximum.2H SUB ij,ij,8 Move up one.PBP ij,1BSTB x,a10,ij Store olumn maximum.CMP t,x,z Is x < z?CSN z,t,x If so, update the min max.SUB j,j,1 Move left a olumn.PBP j,3BPhase2 SET ii,9*8-8 (At this point z = minj C(j).)3H ADD ij,ii,8 Prepare to searh a row.SET j,81H LDB x,a10,ijSUB t,z,x Is z > aij?PBP t,No There's no saddle in this row.PBN t,2FLDB x,a00,j Is aij = C(j)?CMP t,x,zCSZ ans,t,ij If so, remember a possible saddle point.

103

104 ANSWERS TO EXERCISES 1.3.2�2H SUB j,j,1 Move left in row.SUB ij,ij,1PBP j,1BLDA ans,a10,ans A saddle point was found here.POP 1,0No SUB ii,ii,8PBP ii,3B Try another row.SET ans,0POP 1,0 ans = 0; no saddle.We leave it to the reader to invent a still better solution in whih Phase 1 reordsall possible rows that are andidates for the row searh in Phase 2. It is not neessaryto searh all rows, just those i0 for whih C(j0) = minj C(j) implies ai0j0 = C(j0).Usually there is at most one suh row.In some trial runs with elements seleted at random from f�2;�1; 0; 1; 2g, So-lution 1 required approximately 147� + 863� to run, while Solution 2 took about95�+510�. Given a matrix of all zeros, Solution 1 found a saddle point in 26�+188�,Solution 2 in 96�+ 517�.If an m � n matrix has distint elements, and m � n, we an solve the problemby looking at only O(m + n) of them and doing O(m log n) auxiliary operations. SeeBienstok, Chung, Fredman, Sh�a�er, Shor, and Suri, AMM 98 (1991), 418{419.19. Assume an m � n matrix. (a) By the theorem in the answer to exerise 18, allsaddle points of a matrix have the same value, so (under our assumption of distintelements) there is at most one saddle point. By symmetry the desired probability ismn times the probability that a11 is a saddle point. This latter is 1=(mn)! times thenumber of permutations with a12 > a11, : : : , a1n > a11, a11 > a21, : : : , a11 > am1; andthis is 1=(m+n�1)! times the number of permutations of m+n�1 elements in whihthe �rst is greater than the next (m� 1) and less than the remaining (n� 1), namely(m� 1)! (n� 1)!. The answer is thereforemn(m� 1)! (n� 1)!=(m+ n� 1)! = (m+ n).�m+ nn �:In our ase this is 17=�178 �, only one hane in 1430. (b) Under the seond assumption,an entirely di�erent method must be used sine there an be multiple saddle points;in fat either a whole row or whole olumn must onsist entirely of saddle points. Theprobability equals the probability that there is a saddle point with value zero plus theprobability that there is a saddle point with value one. The former is the probabilitythat there is at least one olumn of zeros; the latter is the probability that there is atleast one row of ones. The answer is (1� (1� 2�m)n)+ (1� (1� 2�n)m); in our ase,924744796234036231/18446744073709551616, about 1 in 19.9. An approximate answeris n2�m +m2�n.20. M. Hofri and P. Jaquet [Algorithmia 22 (1998), 516{528℄ have analyzed thease when the m � n matrix entries are distint and in random order. The runningtimes of the two MMIX programs are then (mn+mHn + 2m+ 1+ (m+ 1)=(n� 1))�+(6mn+7mHn +5m+11+ 7(m+1)=(n� 1))�+O((m+n)2=�m+nm �) and (m+1)n�+(5mn+ 6m+ 4n+ 7Hn + 8)� +O(1=n) +O((log n)2=m), respetively, as m!1 andn!1, assuming that (log n)=m! 0.21. Farey SET y,1; : : : POP.

104

1.3.2� ANSWERS TO EXERCISES 105This answer is the �rst of many in Volumes 1{3 for whih MMIXmasters are beingasked to ontribute elegant solutions. (See the website information on page ii.)The fourth edition of this book will present the best parts of the best programssubmitted. Note: Please reveal your full name, inluding all middle names, if youenter this ompetition, so that proper redit an be given!22. (a) Indution. (b) Let k � 0 and X = axk+1 � xk, Y = ayk+1 � yk, wherea = b(yk + n)=yk+1. By part (a) and the fat that 0 < Y � n, we have X ? Y andX=Y > xk+1=yk+1. So if X=Y 6= xk+2=yk+2 we have, by de�nition, X=Y > xk+2=yk+2.But this implies that 1Y yk+1 = Xyk+1 � Y xk+1Y yk+1 = XY � xk+1yk+1= �XY � xk+2yk+2�+ �xk+2yk+2 � xk+1yk+1�� 1Y yk+2 + 1yk+1yk+2 = yk+1 + YY yk+1yk+2> nY yk+1yk+2 � 1Y yk+1 :Historial notes: C. Haros gave a (more ompliated) rule for onstruting suhsequenes, in J. de l' �Eole Polytehnique 4, 11 (1802), 364{368; his method was orret,but his proof was inadequate. Several years later, the geologist John Farey indepen-dently onjetured that xk=yk is always equal to (xk�1 + xk+1)=(yk�1 + yk+1) [Philos.Magazine and Journal 47 (1816), 385{386℄; a proof was supplied shortly afterwards byA. Cauhy [Bull. Soi�et�e Philomathique de Paris (3) 3 (1816), 133{135℄, who attahedFarey's name to the series. For more of its interesting properties, see G. H. Hardy andE. M. Wright, An Introdution to the Theory of Numbers, Chapter 3.23. The following routine should do reasonably well on most pipeline and ahe on-�gurations.a IS $0n IS $1z IS $2t IS $2551H STB z,a,0SUB n,n,1ADD a,a,1Zero BZ n,9FSET z,0AND t,a,7BNZ t,1BCMP t,n,64PBNN t,3FJMP 5F2H STCO 0,a,0

SUB n,n,8ADD a,a,83H AND t,a,63PBNZ t,2BCMP t,n,64BN t,5F4H PREST 63,a,0SUB n,n,64CMP t,n,64STCO 0,a,0STCO 0,a,8STCO 0,a,16STCO 0,a,24STCO 0,a,32STCO 0,a,40STCO 0,a,48

STCO 0,a,56ADD a,a,64PBNN t,4B5H CMP t,n,8BN t,7F6H STCO 0,a,0SUB n,n,8ADD a,a,8CMP t,n,8PBNN t,6B7H BZ n,9F8H STB z,a,0SUB n,n,1ADD a,a,1PBNZ n,8B9H POP24. The following routine merits areful study; omments are left to the reader. Afaster program would be possible if we treated $0 � $1 (modulo 8) as a speial ase.

105

106 ANSWERS TO EXERCISES 1.3.2�in IS $2out IS $3r IS $4l IS $5m IS $6t IS $7mm IS $8tt IS $9flip GREG #0102040810204080ones GREG #0101010101010101LOC #100StrCpy AND in,$0,#7SLU in,in,3AND out,$1,#7SLU out,out,3SUB r,out,inLDOU out,$1,0SUB $1,$1,$0NEG m,0,1SRU m,m,inLDOU in,$0,0PUT rM,mNEG mm,0,1BN r,1FNEG l,64,rSLU tt,out,rMUX in,in,ttBDIF t,ones,inAND t,t,mSRU mm,mm,rPUT rM,mmJMP 4F1H NEG l,0,rINCL r,64

SUB $1,$1,8SRU out,out,lMUX in,in,outBDIF t,ones,inAND t,t,mSRU mm,mm,rPUT rM,mmPBZ t,2FJMP 5F3H MUX out,tt,outSTOU out,$0,$12H SLU out,in,lLDOU in,$0,8INCL $0,8BDIF t,ones,in4H SRU tt,in,rPBZ t,3BSRU mm,t,rMUX out,tt,outBNZ mm,1FSTOU out,$0,$15H INCL $0,8SLU out,in,lSLU mm,t,l1H LDOU in,$0,$1MOR mm,mm,flipSUBU t,mm,1ANDN mm,mm,tMOR mm,mm,flipSUBU mm,mm,1PUT rM,mmMUX in,in,outSTOU in,$0,$1POP 0The running time, approximately (n=4 + 4)� + (n + 40)� plus the time to POP, is lessthan the ost of the trivial ode when n � 8 and � � �.25. We assume that register p initially ontains the address of the �rst byte, and thatthis address is a multiple of 8. Other loal or global registers a, b, : : : have also beendelared. The following solution starts by ounting the wyde frequenies �rst, sinethis requires only half as many operations as it takes to ount byte frequenies. Thenthe byte frequenies are obtained as row and olumn sums of a 256� 256 matrix.* Cryptanalysis Problem (CLASSIFIED)LOC Data_Segmentount GREG � Base address for wyde ountsLOC �+8*(1<<16) Spae for the wyde frequeniesfreq GREG � Base address for byte ountsLOC �+8*(1<<8) Spae for the byte frequeniesp GREG �BYTE "abraadabraa",0,"ab" Trivial test data

106

1.3.2� ANSWERS TO EXERCISES 107ones GREG #0101010101010101LOC #1002H SRU b,a,45 Isolate next wyde.LDO ,ount,b Load old ount.INCL ,1STO ,ount,b Store new ount.SLU a,a,16 Delete one wyde.PBNZ a,2B Done with otabyte?
9>>>>>>=>>>>>>;

mainloop,shouldrun asfast aspossiblePhase1 LDOU a,p,0 Start here: Feth the next eight bytes.INCL p,8BDIF t,ones,a Test if there's a zero byte.PBZ t,2B Do main loop, unless near the end.2H SRU b,a,45 Isolate next wyde.LDO ,ount,b Load old ount.INCL ,1STO ,ount,b Store new ount.SRU b,t,48SLU a,a,16BDIF t,ones,aPBZ b,2B Continue unless done.Phase2 SET p,8*255 Now get ready to sum rows and olumns.1H SL a,p,8LDA a,ount,a a address of row p.SET b,8*255LDO ,a,0SET t,p2H INCL t,#800LDO x,ount,t Element of olumn pLDO y,a,b Element of row pADD ,,xADD ,,ySUB b,b,8PBP b,2BSTO ,freq,pSUB p,p,8PBP p,1BPOPHow long is \long"? This two-phase method is inferior to a simple one-phase approahwhen the string length n is less than 217, but it takes only about 10/17 as muh timeas the one-phase sheme when n � 106. A slightly faster routine an be obtained by\unrolling" the inner loop, as in the next answer.Another approah, whih uses a jump table and keeps the ounts in 128 registers,is worthy of onsideration when �=� is large.[This problem has a long history. See, for example, Charles P. Bourne andDonald F. Ford, \A study of the statistis of letters in English words," Informationand Control 4 (1961), 48{67.℄26. The wyde-ounting trik in the previous solution will bak�re if the mahine'sprimary ahe holds fewer than 219 bytes, unless omparatively few of the wyde ounts

107

108 ANSWERS TO EXERCISES 1.3.2�are nonzero. Therefore the following program omputes only one-byte frequenies. Thisode avoids stalls, in a onventional pipeline, by never using the result of a LDO in theimmediately following instrution.Start LDOU a,p,0INCL p,8BDIF t,ones,aBNZ t,3F2H SRU b,a,53LDO ,freq,bSLU bb,a,8INCL ,1SRU bb,bb,53STO ,freq,bLDO ,freq,bbSLU b,a,16INCL ,1SRU b,b,53STO ,freq,bbLDO ,freq,b...SLU bb,a,56

INCL ,1SRU bb,bb,53STO ,freq,bLDO ,freq,bbLDOU a,p,0INCL p,8INCL ,1BDIF t,ones,aSTO ,freq,bbPBZ t,2B3H SRU b,a,53LDO ,freq,bINCL ,1STO ,freq,bSRU b,b,3SLU a,a,8PBNZ b,3BPOPAnother solution works better on a supersalar mahine that issues two instru-tions simultaneously:Start LDOU a,p,0INCL p,8BDIF t,ones,aSLU bb,a,8BNZ t,3F2H SRU b,a,53SRU bb,bb,53LDO ,freq,bLDO ,freqq,bbSLU bbb,a,16SLU bbbb,a,24INCL ,1INCL ,1SRU bbb,bbb,53SRU bbbb,bbbb,53STO ,freq,bSTO ,freqq,bbLDO ,freq,bbbLDO ,freqq,bbbbSLU b,a,32SLU bb,a,40...

SLU bbb,a,48SLU bbbb,a,56INCL ,1INCL ,1SRU bbb,bbb,53SRU bbbb,bbbb,53STO ,freq,bSTO ,freqq,bbLDO ,freq,bbbLDO ,freqq,bbbbLDOU a,p,0INCL p,8INCL ,1INCL ,1BDIF t,ones,aSLU bb,a,8STO ,freq,bbbSTO ,freqq,bbbbPBZ t,2B3H SRU b,a,53...In this ase we must keep two separate frequeny tables (and ombine them at theend); otherwise an \aliasing" problem would lead to inorret results in ases where band bb both represent the same harater.

108

1.3.2� ANSWERS TO EXERCISES 10927. (a)t IS $255n IS $0new GREGold GREGphi GREGrt5 GREGa GREGf GREGLOC #100Main FLOT t,5FSQRT rt5,tFLOT t,1FADD phi,t,rt5INCH phi,#fff0FDIV a,phi,rt5SET n,1SET new,11H ADDU new,new,oldINCL n,1CMPU t,new,oldBN t,9FSUBU old,new,oldFMUL a,a,phiFIXU f,aCMP t,f,newPBZ t,1BSET t,19H TRAP 0,Halt,0

(b)t IS $255n IS $0new GREGold GREGphii GREG #9e3779b97f4a716lo GREGhi GREGhihi GREGLOC #100Main SET n,2SET old,1SET new,11H ADDU new,new,oldINCL n,1CMPU t,new,oldBN t,9FSUBU old,new,oldMULU lo,old,phiiGET hi,rHADDU hi,hi,oldADDU hihi,hi,1CSN hi,lo,hihiCMP t,hi,newPBZ t,1BSET t,19H TRAP 0,Halt,0
Program (a) halts with t = 1 and n = 71; the oating point representation of �is slightly high, hene errors ultimately aumulate until �71=p5 is approximatedby F71 + :7, whih rounds to F71 + 1. Program (b) halts with t = �1 and n = 94;unsigned overow ours before the approximation fails. (Indeed, F93 < 264 < F94.)29. The last man is in position 15. The total time before output is : : :MMIXmasters, please help! What is the neatest program that is analogous to thesolution to exerise 1.3.2{22 in the third edition? Also, what would D. Ingalls doin the new situation? (Find a trik analogous to his previous sheme, but do not useself-modifying ode.)An asymptotially faster method appears in exerise 5.1.1{5.30. Work with saled numbers, Rn = 10nrn. Then Rn(1=m) = R if and only if10n=(R+ 12) � m < 10n=(R � 12); thus we �nd mk+1 = b(2 � 10n � 1)=(2R � 1).* Sum of Rounded Harmoni SeriesMaxN IS 10a GREG 0 Aumulator GREG 0 2 � 10nd GREG 0 Divisor or digitr GREG 0 Saled reiproal

109

110 ANSWERS TO EXERCISES 1.3.2�s GREG 0 Saled summ GREG 0 mkmm GREG 0 mk+1nn GREG 0 n� MaxNLOC Data_Segmentde GREG �+3 Deimal point loationBYTE " ."LOC #100Main NEG nn,MaxN-1 n 1.SET ,201H SET m,1SR s,,1 S 10n.JMP 2F3H SUB a,,1SL d,r,1SUB d,d,1DIV mm,a,d4H SUB a,mm,mMUL a,r,aADD s,s,aSET m,mm k k + 1.2H ADD a,,m2ADDU d,m,2DIV r,a,dPBNZ r,3B5H ADD a,nn,MaxN+1SET d,#a NewlineJMP 7F6H DIV s,s,10 Convert digits.GET d,rRINCL d,'0'7H STB d,de,aSUB a,a,1BZ a,�-4PBNZ s,6B8H SUB $255,de,3TRAP 0,Fputs,StdOut9H INCL nn,1 n n+ 1.MUL ,,10PBNP nn,1BTRAP 0,Halt,0The outputs are respetively 3.7, 6.13, 8.445, 10.7504, 13.05357, 15.356255, 17.6588268,19.96140681, 22.263991769, 24.5665766342, in 82�+40659359�. The alulation wouldwork for n up to 17 without overow, but the running time is of order 10n=2. (Weould save about half the time by alulating Rn(1=m) diretly when m < 10n=2, andby using the fat that Rn(mk+1) = Rn(mk � 1) for larger values of m.)31. LetN = b2�10n=(2m+1). Then Sn = HN+O(N=10n)+Pmk=1(d2�10n=(2k�1)e�d2 � 10n=(2k + 1)e)k=10n = HN + O(m�1) + O(m=10n)� 1 + 2H2m �Hm = n ln 10 +2 � 1 + 2 ln 2 +O(10�n=2) if we sum by parts and set m � 10n=2.

110

1.3.2� ANSWERS TO EXERCISES 111Our approximation to S10 is � 24:5665766209, whih is loser than predited.32. To make the problem more hallenging, the following ingenious solution due inpart to uses a lot of trikery in order to redue exeution time. Can the readersqueeze out any more nanoseonds?MMIXmasters: Please help �ll in the blanks! Note, for example, that remaindersmod 7, 19, and 30 are most rapidly omputed by FREM; division by 100 an beredued to multipliation by 1//100+1 (see exerise 1.3.1�{19); et.[To alulate Easter in years � 1582, see CACM 5 (1962), 209{210. The �rstsystemati algorithm for alulating the date of Easter was the anon pashalis due toVitorius of Aquitania (A.D. 457). There are many indiations that the sole nontrivialappliation of arithmeti in Europe during the Middle Ages was the alulation ofEaster date, hene suh algorithms are historially signi�ant. See Puzzles and Para-doxes by T. H. O'Beirne (London: Oxford University Press, 1965), Chapter 10, forfurther ommentary; and see the book Calendrial Calulations by E. M. Reingold andN. Dershowitz (Cambridge Univ. Press, 2001) for date-oriented algorithms of all kinds.℄33. The �rst suh year is A.D. 10317, although the error almost leads to failure inA.D. 10108 + 19k for 0 � k � 10.Inidentally, T. H. O'Beirne pointed out that the date of Easter repeats witha period of exatly 5,700,000 years. Calulations by Robert Hill show that the mostommon date is April 19 (220400 times per period), while the earliest and least ommonis Marh 22 (27550 times); the latest, and next-to-least ommon, is April 25 (42000times). Hill found a nie explanation for the urious fat that the number of times anypartiular day ours in the period is always a multiple of 25.34. The following program follows the protool to within a dozen or so � ; this is morethan suÆiently aurate, sine � is typially more than 108, and �� = 1 se. Allomputation takes plae in registers, exept when a byte is input.* Traffi Signal Problemrho GREG 250000000 Assume 250 MHz lok ratet IS $255Sensor_Buf IS Data_SegmentGREG Sensor_BufLOC #100Lights IS 3 Handle for /dev/lightsSensor IS 4 Handle for /dev/sensorLights_Name BYTE "/dev/lights",0Sensor_Name BYTE "/dev/sensor",0Lights_Args OCTA Lights_Name,BinaryWriteSensor_Args OCTA Sensor_Name,BinaryReadRead_Sensor OCTA Sensor_Buf,1Boulevard BYTE #77,0 Green/red, WALK/DON'TBYTE #7f,0 Green/red, DON'T/DON'TBYTE #73,0 Green/red, o�/DON'TBYTE #bf,0 Amber/red, DON'T/DON'TAvenue BYTE #dd,0 Red/green, DON'T/WALKBYTE #df,0 Red/green, DON'T/DON'TBYTE #d,0 Red/green, DON'T/o�BYTE #ef,0 Red/amber, DON'T/DON'T

111

112 ANSWERS TO EXERCISES 1.3.2�goal GREG 0 Transition time for lightsMain GETA t,Lights_Args Open the �les: Fopen(Lights,TRAP 0,Fopen,Lights "/dev/lights",BinaryWrite)GETA t,Sensor_Args Fopen(Sensor,TRAP 0,Fopen,Sensor "/dev/sensor",BinaryRead)GET goal,rCJMP 2FGREG �delay_go GREGDelay GET t,rC Subroutine for busy-waiting:SUBU t,t,goal (N.B. Not CMPU; see below)PBN t,Delay Repeat until rC passes goal.GO delay_go,delay_go,0 Return to aller.flash_go GREGn GREG 0 Iteration ountergreen GREG 0 Boulevard or Avenuetemp GREGFlash SET n,8 Subroutine to ash the lights:1H ADD t,green,2*1TRAP 0,Fputs,Lights DON'T WALKADD temp,goal,rhoSR t,rho,1ADDU goal,goal,tGO delay_go,DelayADD t,green,2*2TRAP 0,Fputs,Lights (o�)SET goal,tempGO delay_go,DelaySUB n,n,1PBP n,1B Repeat eight times.ADD t,green,2*1TRAP 0,Fputs,Lights DON'T WALKMUL t,rho,4ADDU goal,goal,tGO delay_go,Delay Hold for 4 se.ADD t,green,2*3TRAP 0,Fputs,Lights DON'T WALK, amberGO flash_go,flash_go,0 Return to aller.Wait GET goal,rC Extend the 18 se green.1H GETA t,Read_SensorTRAP 0,Fread,SensorLDB t,Sensor_BufBZ t,Wait Repeat until sensor is nonzero.GETA green,BoulevardGO flash_go,Flash Finish the boulevard yle.MUL t,rho,8ADDU goal,goal,tGO delay_go,Delay Amber for 8 se.

112

1.4.1� ANSWERS TO EXERCISES 113GETA t,AvenueTRAP 0,Fputs,Lights Green light for Berkeley.MUL t,rho,8ADDU goal,goal,tGO delay_go,DelayGETA green,AvenueGO flash_go,Flash Finish the avenue yle.GETA t,Read_SensorTRAP 0,Fread,Sensor Ignore sensor during green time.MUL t,rho,5ADDU goal,goal,tGO delay_go,Delay Amber for 5 se.2H GETA t,BoulevardTRAP 0,Fputs,Lights Green light for Del Mar.MUL t,rho,18ADDU goal,goal,tGO delay_go,Delay At least 18 se to WALK.JMP 1BThe SUBU instrution in the Delay subroutine is an interesting example of a ase wherethe omparison should be done with SUBU, not with CMPU, in spite of the omments inexerise 1.3.1�{22. The reason is that the two quantities being ompared, rC and goal,\wrap around" modulo 264.SECTION 1.4.1�1. j GREG ;m GREG ;kk GREG ;xk GREG ;rr GREGGREG � Base addressGoMax SET $2,1 Speial entrane for r = 1GoMaxR SL rr,$2,3 Multiply arguments by 8.SL kk,$1,3LDO m,x0,kk... (Continue as in (1))5H SUB kk,kk,rr k k � r.PBP kk,3B Repeat if k > 0.6H GO kk,$0,0 Return to aller.The alling sequene for the general ase is SET $2,r; SET $1,n; GO $0,GoMaxR.2. j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3 ;rr IS $4Max100 SET $0,100 Speial entrane for n = 100 and r = 1Max SET $1,1 Speial entrane for r = 1MaxR SL rr,$1,3 Multiply arguments by 8.SL kk,$0,3LDO m,x0,kk... (Continue as in (1))5H SUB kk,kk,rr k k � r.PBP kk,3B Repeat if k > 0.6H POP 2,0 Return to aller.In this ase the general alling sequene is SET $A1,r; SET $A0,n; PUSHJ $R,MaxR,where A0 = R + 1 and A1 = R+ 2.3. Just Sub ...; GO $0,$0,0. The loal variables an be kept entirely in registers.

113

114 ANSWERS TO EXERCISES 1.4.1�4. PUSHJ $X,RA has a relative address, allowing us to jump to any subroutine within�218 bytes of our urrent loation. PUSHGO $X,$Y,$Z or PUSHGO $X,A has an absoluteaddress, allowing us to jump to any desired plae.5. True. There are 256�G globals and L loals.6. $5 rD and rR 0 and rL 6. All other newly loal registers are also set tozero; for example, if rL was 3, this DIVU instrution would set $3 0 and $4 0.7. $L 0, : : : , $4 0, $5 #abd0000, rL 6.8. Usually suh an instrution has no essential impat, exept that ontext swithingwith SAVE and UNSAVE generally take longer when fewer marginal registers are present.However, an important di�erene an arise in ertain senarios. For example, a subse-quent PUSHJ $255,Sub followed by POP 1,0 would leave a result in $16 instead of $10.9. PUSHJ $255,Handler will make at least 32 marginal registers available (beauseG � 32); then POP 0 will restore the previous loal registers, and two additional instru-tions \GET $255,rB; RESUME" will restart the program as if nothing had happened.10. Basially true. MMIX will start a program with rG set to 255 minus the numberof assembled GREG operations, and with rL set to 2. Then, in the absene of PUSHJ,PUSHGO, POP, SAVE, UNSAVE, GET, and PUT, the value of rG will never hange. Thevalue of rL will inrease if the program puts anything into $2, $3, : : : , or $(rG � 1),but the e�et will be the same as if all registers were equivalent. The only registerwith slightly di�erent behavior is $255, whih is a�eted by trip interrupts and usedfor ommuniation in I/O traps. We ould permute register numbers $2, $3, : : : , $254arbitrarily in any PUSH/POP/SAVE/UNSAVE/RESUME-free program that does not GET rLor PUT anything into rL or rG; the permuted program would produe idential results.The distintion between loal, global, and marginal is irrelevant also with respetto SAVE, UNSAVE, and RESUME, in the absene of PUSH and POP, exept that the destina-tion register of SAVE must be global and the destination register of ertain instrutionsinserted by RESUME mustn't be marginal (see exerise 1.4.3�{14).11. The mahine tries to aess virtual address #5ffffffffffffff8, whih is justbelow the stak segment. Nothing has been stored there, so a \page fault" ours andthe operating system aborts the program.(The behavior is, however, muh more bizarre if a POP is given just after a SAVE,beause SAVE essentially begins a new register stak immediately following the savedontext. Anybody who tries suh things is asking for trouble.)12. (a) True. (Similarly, the name of the urrent \working diretory" in a UNIX shellalways begins with a slash.) (b) False. But onfusion an arise if suh pre�xes arede�ned, so their use is disouraged. () False. (In this respet MMIXAL's struturedsymbols are not analogous to UNIX diretory names.)13. Fib CMP $1,$0,2PBN $1,1FGET $1,rJSUB $3,$0,1PUSHJ $2,FibSUB $4,$0,2PUSHJ $3,FibADDU $0,$2,$3PUT rJ,$11H POP 1,0

Fib1 CMP $1,$0,2BN $1,1FSUB $2,$0,1SET $0,1SET $1,02H ADDU $0,$0,$1SUBU $1,$0,$1SUB $2,$2,1PBNZ $2,2B1H POP 1,0

Fib2 CMP $1,$0,1BNP $1,1FSUB $2,$0,1SET $0,02H ADDU $0,$0,$1ADDU $1,$0,$1SUB $2,$2,2PBP $2,2BCSZ $0,$2,$11H POP 1,0

114

1.4.2� ANSWERS TO EXERCISES 115Here Fib2 is a faster alternative to Fib1. In eah ase the alling sequene has the form\SET $A,n; PUSHJ $R,Fib...", where A = R+ 1.14. Mathematial indution shows that the POP instrution in Fib is exeuted exatly2Fn+1 � 1 times and the ADDU instrution is exeuted Fn+1 � 1 times. The instrutionat 2H is performed n� [n 6=0℄ times in Fib1, bn=2 times in Fib2. Thus the total ost,inluding the two instrutions in the alling sequene, omes to (19Fn+1�12)� for Fib,(4n+ 8)� for Fib1, and (4bn=2+ 12)� for Fib2, assuming that n > 1.(The reursive subroutine Fib is a terrible way to ompute Fibonai numbers,beause it forgets the values it has already omputed. It spends more than 1022� unitsof time just to ompute F100.)15. n GREGfn IS nGREG �Fib CMP $1,n,2PBN $1,1FSTO fp,sp,0SET fp,spINCL sp,8*4STO $0,fp,8STO n,fp,16SUB n,n,1

GO $0,FibSTO fn,fp,24LDO n,fp,16SUB n,n,2GO $0,FibLDO $0,fp,24ADDU fn,fn,$0LDO $0,fp,8SET sp,fpLDO fp,sp,01H GO $0,$0,0The alling sequene is SET n,n; GO $0,Fib; the answer is returned in global register fn.The running time omes to (8Fn+1 � 8)� + (32Fn+1 � 23)�, so the ratio between thisversion and the register stak subroutine of exerise 13 is approximately (8�=�+32)=19.(Although exerise 14 points out that we shouldn't really alulate Fibonai numbersreursively, this analysis does demonstrate the advantage of a register stak. Even ifwe are generous and assume that � = �, the memory stak osts more than twie asmuh in this example. A similar behavior ours with respet to other subroutines,but the analysis for Fib is partiularly simple.)In the speial ase of Fib we an do without the frame pointer, beause fp isalways a �xed distane from sp. A memory-stak subroutine based on this observationruns about (6�=� + 29)=19 slower than the register-stak version; it's better than theversion with general frames, but still not very good.16. This is an ideal setup for a subroutine with two exits. Let's assume for onvenienethat B and C do not return any value, and that they eah save rJ in $1 (beause they arenot leaf subroutines). Then we an proeed as follows: A alls B by saying PUSHJ $R,Bas usual. B alls C by saying PUSHJ $R,C; PUT rJ,$1; POP 0,0 (with perhaps a di�erentvalue of R than used by subroutine A). C alls itself by saying PUSHJ $R,C; PUT rJ,$1;POP 0,0 (with perhaps a di�erent value of R than used by B). C jumps to A by sayingPUT rJ,$1; POP 0,0. C exits normally by saying PUT rJ,$1; POP 0,2.Extensions of this idea, in whih values are returned and an arbitrary jump addressan be part of the returned information, are learly possible. Similar shemes apply tothe GO-oriented memory stak protool of (15).SECTION 1.4.2�1. If one oroutine alls the other only one, it is nothing but a subroutine; so weneed an appliation in whih eah oroutine alls the other in at least two distintplaes. Even then, it is often easy to set some sort of swith or to use some property

115

116 ANSWERS TO EXERCISES 1.4.2�of the data, so that upon entry to a �xed plae within one oroutine it is possible tobranh to one of two desired plaes; again, nothing more than a subroutine would berequired. Coroutines beome orrespondingly more useful as the number of referenesbetween them grows larger.2. The �rst harater found by In would be lost.3. This is an MMIXAL trik to make OutBuf ontain �fteen tetrabytes TETRA ' ',followed by TETRA #a, followed by zero; and TETRA ' ' is equivalent to BYTE 0,0,0,' '.The output bu�er is therefore set up to reeive a line of 16 three-harater groupsseparated by blank spaes.4. If we inlude the ode rR_A GREGrR_B GREGGREG �A GET rR_B,rRPUT rR,rR_AGO t,a,0B GET rR_A,rRPUT rR,rR_BGO t,b,0then A an invoke B by \GO a,B" and B an invoke A by \GO b,A".5. If we inlude the ode a GREGb GREGGREG �A GET b,rJPUT rJ,aPOP 0B GET a,rJPUT rJ,bPOP 0then A an invoke B by \PUSHJ $255,B" and B an invoke A by \PUSHJ $255,A". Notiethe similarity between this answer and the previous one. The oroutines should notuse the register stak for other purposes exept as permitted by the following exerise.6. Suppose oroutine A has something in the register stak when invoking B. Then Bis obliged to return the stak to the same state before returning to A, although B mightpush and pop any number of items in the meantime.Coroutines might, of ourse, be suÆiently ompliated that they eah do requirea register stak of their own. In suh ases MMIX's SAVE and UNSAVE operations an beused, with are, to save and restore the ontext needed by eah oroutine.SECTION 1.4.3�1. (a) SRU x,y,z; BYTE 0,1,0,#29 . (b) PBP x,PBTaken+�-O; BYTE 0,3,0,#50 .() MUX x,y,z; BYTE 0,1,rM,#29 . (d) ADDU x,x,z; BYTE 0,1,0,#30 .2. The running time of MemFind is 9�+(2�+8�)C+(3�+6�)U+(2�+11�)A, whereC is the number of key omparisons on line 042, U = [key 6= urkey℄, and A = [newnode needed℄. The running time of GetReg is � + 6� + 6�L, where L = [$k is loal℄.

116

1.4.3� ANSWERS TO EXERCISES 117If we assume that C = U = A = L = 0 on eah all, the time for simulation an bebroken down as follows: (a) (b) ()fething (lines 105{115) �+ 17� �+ 17� �+ 17�unpaking (lines 141{153) �+ 12� �+ 12� �+ 12�relating (lines 154{164) 2� 2� 9�installing X (lines 174{182) 7� �+ 17� �+ 17�installing Z (lines 183{197) �+ 13� 6� 6�installing Y (lines 198{207) �+ 13� �+ 13� 6�destining (lines 208{231) 8� 23� 6�resuming (lines 232{242) 14� �+ 14� 16� � �postproessing (lines 243{539) �+ 10� 11� 11� � 4�updating (lines 540{548) 5� 5� 5�total 5�+ 101� 5�+ 120� 3�+ 105� � 5�To these times we must add 6� for eah ourrene of a loal register as a soure,plus penalties for the times when MemFind doesn't immediately have the orret hunk.In ase (b), MemFind must miss on line 231, and again on line 111 when fething thefollowing instrution. (We would be better o� with two MemFind routines, one for dataand one for instrutions.) The most optimisti net ost of (b) is therefore obtainedby taking C = A = 2, for a total running time of 13� + 158�. (On long runs ofthe simulator simulating itself, the empirial average values per all of MemFind wereC � :29, U � :00001, A � :16.)3. We have � = and L > 0 on line 097. Thus � = an arise, but only inextreme irumstanes when L = 256 (see line 268 and exerise 11). Lukily L willsoon beome 0 in that ase.4. No problem an our until a node invades the pool segment, whih begins ataddress #4000000000000000 ; then remnants of the ommand line might interfere withthe program's assumption that a newly alloated node is initially zero. But the datasegment is able to aommodate b(261 � 212 � 24)=(212 + 24) = 559;670;633;304;293nodes, so we will not live long enough to experiene any problem from this \bug."5. Line 218 alls StakRoom alls StakStore alls MemFind; this is as deep as it gets.Line 218 has pushed 3 registers down; StakRoom has pushed only 2 (sine rL = 1on line 097); StakStore has pushed 3. The value of rL on line 032 is 2 (althoughrL inreases to 5 on line 034). Hene the register stak ontains 3 + 2 + 3 + 2 = 10unpopped items in the worst ase.The program halts shortly after branhing to Error; and even if it were to ontinue,the extra garbage at the bottom of the stak won't hurt anything|we ould simplyignore it. However, we ould lear the stak by providing seond exits as in exerise1.4.1�{16. A simpler way to ush an entire stak is to pop repeatedly until rO equalsits initial value, Stak_Segment.6. 247 Div DIV x,y,z Divide y by z, signed.248 JMP 1F249 DivU PUT rD,x Put simulated rD into real rD.250 DIVU x,y,z Divide y by z, unsigned.251 1H GET t,rR252 STO t,g,8*rR g[rR℄ remainder.253 JMP XDone Finish by storing x.

117

118 ANSWERS TO EXERCISES 1.4.3�7. (The following instrutions should be inserted between line 309 of the text andthe Info table, together with the answers to the next several exerises.)Cswap LDOU z,g,8*rPLDOU y,res,0CMPU t,y,zBNZ t,1F Branh if M8[A℄ 6= g[rP℄.STOU x,res,0 Otherwise set M8[A℄ $X.JMP 2F1H STOU y,g,8*rP Set g[rP℄ M8[A℄.2H ZSZ x,t,1 x result of equality test.JMP XDone Finish by storing x.8. Here we store the simulated registers that we're keeping in atual registers. (Thisapproah is better than a 32-way branh to see whih register is being gotten; it's alsobetter than the alternative of storing the registers every time we hange them.)Get CMPU t,yz,32BNN t,Error Make sure that YZ < 32.STOU ii,g,8*rI Put the orret value into g[rI℄.STOU ,g,8*rC Put the orret value into g[rC℄.STOU oo,g,8*rO Put the orret value into g[rO℄.STOU ss,g,8*rS Put the orret value into g[rS℄.STOU uu,g,8*rU Put the orret value into g[rU℄.STOU aa,g,8*rA Put the orret value into g[rA℄.SR t,ll,3STOU t,g,8*rL Put the orret value into g[rL℄.SR t,gg,3STOU t,g,8*rG Put the orret value into g[rG℄.SLU t,zz,3LDOU x,g,t Set x g[Z℄.JMP XDone Finish by storing x.9. Put BNZ yy,Error Make sure that Y = 0.CMPU t,xx,32BNN t,Error Make sure that X < 32.CMPU t,xx,rCBN t,PutOK Branh if X < 8.CMPU t,xx,rFBN t,1F Branh if X < 22.PutOK STOU z,g,xxx Set g[X℄ z.JMP Update Finish the ommand.1H CMPU t,xx,rGBN t,Error Branh if X < 19.SUB t,xx,rLPBP t,PutA Branh if X = rA.BN t,PutG Branh if X = rG.PutL SLU z,z,3 Otherwise X = rL.CMPU t,z,llCSN ll,t,z Set rL min(z; rL).JMP Update Finish the ommand.0H GREG #40000

118

1.4.3� ANSWERS TO EXERCISES 119PutA CMPU t,z,0BBNN t,Error Make sure z � #3ffff.SET aa,z Set rA z.JMP Update Finish the ommand.PutG SRU t,z,8BNZ t,Error Make sure z < 256.CMPU t,z,32BN t,Error Make sure z � 32.SLU z,z,3CMPU t,z,llBN t,Error Make sure z � rL.JMP 2F1H SUBU gg,gg,8 G G� 1. ($G beomes global.)STCO 0,g,gg g[G℄ 0. (Compare with line 216.)2H CMPU t,z,ggPBN t,1B Branh if G < z.SET gg,z Set rG z.JMP Update Finish the ommand.In this ase the nine ommands that branh to either PutOK, PutA, PutG, PutL, orError are tedious, yet still preferable to a 32-way swithing table.10. Pop SUBU oo,oo,8BZ xx,1F Branh if X = 0.CMPU t,ll,xxxBN t,1F Branh if X > L.ADDU t,xxx,ooAND t,t,lring_maskLDOU y,l,t y result to return.1H CMPU t,oo,ssPBNN t,1F Branh unless � = .PUSHJ 0,StakLoad1H AND t,oo,lring_maskLDOU z,l,t z number of additional registers to pop.AND z,z,#ff Make sure z � 255 (in ase of weird error).SLU z,z,31H SUBU t,oo,ssCMPU t,t,zPBNN t,1F Branh unless z registers not all in the ring.PUSHJ 0,StakLoad (See note below.)JMP 1B Repeat until all neessary registers are loaded.1H ADDU ll,ll,8CMPU t,xxx,llCSN ll,t,xxx Set L min(X; L+ 1).ADDU ll,ll,z Then inrease L by z.CMPU t,gg,llCSN ll,t,gg Set L min(L;G).CMPU t,z,llBNN t,1F Branh if returned result should be disarded.AND t,oo,lring_maskSTOU y,l,t Otherwise set l[(�� 1) mod �℄ y.

119

120 ANSWERS TO EXERCISES 1.4.3�1H LDOU y,g,8*rJSUBU oo,oo,z Derease � by 1 + z.4ADDU inst_ptr,yz,y Set inst_ptr g[rJ℄ + 4YZ.JMP Update Finish the ommand.Here it is onvenient to derease oo in two steps, �rst by 8 and then by 8 times z. Theprogram is ompliated in general, but in most ases omparatively little omputationatually needs to be done. If � = when the seond StakLoad all is given, weimpliitly derease � by 1 (thereby disarding the topmost item of the register stak).That item will not be needed unless it is the value being returned, but the latter valuehas already been plaed in y.11. Save BNZ yz,Error Make sure YZ = 0.CMPU t,xxx,ggBN t,Error Make sure $X is global.ADDU t,oo,llAND t,t,lring_maskSRU y,ll,3STOU y,l,t Set $L L, onsidering $L to be loal.INCL ll,8PUSHJ 0,StakRoom Make sure � 6= .ADDU oo,oo,llSET ll,0 Push down all loal registers and set rL 0.1H PUSHJ 0,StakStoreCMPU t,ss,ooPBNZ t,1B Store all pushed down registers in memory.SUBU y,gg,8 Set k G� 1. (Here y � 8k.)4H ADDU y,y,8 Inrease k by 1.1H SET arg,ssPUSHJ res,MemFindCMPU t,y,8*(rZ+1)LDOU z,g,y Set z g[k℄.PBNZ t,2FSLU z,gg,56-3ADDU z,z,aa If k = rZ+ 1, set z 256rG + rA.2H STOU z,res,0 Store z in M8[rS℄.INCL ss,8 Inrease rS by 8.BNZ t,1F Branh if we just stored rG and rA.CMPU t,y,255BZ t,2F Branh if we just stored $255.CMPU t,y,8*rRPBNZ t,4B Branh unless we just stored rR.SET y,8*rP Set k rP.JMP 1B2H SET y,8*rB Set k rB.JMP 1B1H SET oo,ss rO rS.SUBU x,oo,8 x rO� 8.JMP XDone Finish by storing x.(The speial registers saved are those with odes 0{6 and 23{27, plus (rG; rA).)

120

1.4.3� ANSWERS TO EXERCISES 12112. Unsave BNZ xx,Error Make sure X = 0.BNZ yy,Error Make sure Y = 0.ANDNL z,#7 Make sure z is a multiple of 8.ADDU ss,z,8 Set rS z+ 8.SET y,8*(rZ+2) Set k rZ+ 2. (y � 8k)1H SUBU y,y,8 Derease k by 1.4H SUBU ss,ss,8 Derease rS by 8.SET arg,ssPUSHJ res,MemFindLDOU x,res,0 Set x M8[rS℄.CMPU t,y,8*(rZ+1)PBNZ t,2FSRU gg,x,56-3 If k = rZ+ 1, initialize rG and rA.SLU aa,x,64-18SRU aa,aa,64-18JMP 1B2H STOU x,g,y Otherwise set g[k℄ x.3H CMPU t,y,8*rPCSZ y,t,8*(rR+1) If k = rP, set k rR+ 1.CSZ y,y,256 If k = rB, set k 256.CMPU t,y,ggPBNZ t,1B Repeat the loop unless k = G.PUSHJ 0,StakLoadAND t,ss,lring_maskLDOU x,l,t x the number of loal registers.AND x,x,#ff Make sure x � 255 (in ase of weird error).BZ x,1FSET y,x Now load x loal registers into the ring.2H PUSHJ 0,StakLoadSUBU y,y,1PBNZ y,2BSLU x,x,31H SET ll,xCMPU t,gg,xCSN ll,t,gg Set rL min(x; rG).SET oo,ss Set rO rS.PBNZ uu,Update Branh, if not the �rst time.BZ resuming,Update Branh, if �rst ommand is UNSAVE.JMP AllDone Otherwise lear resuming and �nish.

A straightforward answeris as good as a kiss of friendship.| Proverbs 24 : 26

121

122 ANSWERS TO EXERCISES 1.4.3�13. 517 SET xx,0518 SLU t,t,55 Loop to �nd highest trip bit.519 2H INCL xx,1520 SLU t,t,1521 PBNN t,2B522 SET t,#100 Now xx = index of trip bit.523 SRU t,t,xx t orresponding event bit.524 ANDN ex,ex,t Remove t from ex.525 TakeTrip STOU inst_ptr,g,8*rW g[rW℄ inst_ptr.526 SLU inst_ptr,xx,4 inst_ptr xx� 4.527 INCH inst,#8000528 STOU inst,g,8*rX g[rX℄ inst+ 263.529 AND t,f,Mem_bit530 PBZ t,1F Branh if op doesn't aess memory.531 ADDU y,y,z Otherwise set y (y+ z) mod 264,532 SET z,x z x.533 1H STOU y,g,8*rY g[rY℄ y.534 STOU z,g,8*rZ g[rZ℄ z.535 LDOU t,g,255536 STOU t,g,8*rB g[rB℄ g[255℄.537 LDOU t,g,8*rJ538 STOU t,g,255 g[255℄ g[rJ℄.14. Resume SLU t,inst,40BNZ t,Error Make sure XYZ = 0.LDOU inst_ptr,g,8*rW inst_ptr g[rW℄.LDOU x,g,8*rXBN x,Update Finish the ommand if rX is negative.SRU xx,x,56 Otherwise let xx be the ropode.SUBU t,xx,2BNN t,1F Branh if the ropode is � 2.PBZ xx,2F Branh if the ropode is 0.SRU y,x,28 Otherwise the ropode is 1:AND y,y,#f y k, the leading nybble of the opode.SET z,1SLU z,z,y z 2k.ANDNL z,#70f Zero out the aeptable values of z.BNZ z,Error Make sure the opode is \normal."1H BP t,Error Make sure the ropode is � 2.SRU t,x,13AND t,t,255CMPU y,t,llBN y,2F Branh if $X is loal.CMPU y,t,ggBN y,Error Otherwise make sure $X is global.2H MOR t,x,#8CMPU t,t,#F9 Make sure the opode isn't RESUME.BZ t,ErrorNEG resuming,xx

122

1.4.3� ANSWERS TO EXERCISES 123CSNN resuming,resuming,1 Set resuming as spei�ed.JMP Update Finish the ommand.166 LDOU y,g,8*rY y g[rY℄.167 LDOU z,g,8*rZ z g[rZ℄.168 BOD resuming,Install_Y Branh if ropode was 1.169 0H GREG #C1<<56+(x-$0)<<48+(z-$0)<<40+1<<16+X_is_dest_bit170 SET f,0B Otherwise hange f to an ORI instrution.171 LDOU ex,g,8*rX172 MOR ex,ex,#20 ex third-from-left byte of rX.173 JMP XDest Continue as for ORI.15. We need to deal with the fat that the string to be output might be split arosstwo or more hunks of the simulated memory. One solution is to output eight bytes ata time with Fwrite until reahing the last otabyte of the string; but that approahis ompliated by the fat that the string might start in the middle of an otabyte.Alternatively, we ould simply Fwrite only one byte at a time; but that would bealmost obsenely slow. The following method is muh better:SimFputs SET xx,0 (xx will be the number of bytes written)SET z,t Set z virtual address of string.1H SET arg,zPUSHJ res,MemFindSET t,res Set t atual address of string.GO $0,DoInst (See below.)BN t,TrapDone If error ourred, pass the error to user.BZ t,1F Branh if the string was empty.ADD xx,xx,t Otherwise aumulate the number of bytes.ADDU z,z,t Find the address following the string output.AND t,z,Mem:maskBZ t,1B Continue if string ended at hunk boundary.1H SET t,xx t number of bytes suessfully put.JMP TrapDone Finish the operation.Here DoInst is a little subroutine that inserts inst into the instrution stream. Weprovide it with additional entranes that will be useful in the next answers:GREG � Base address:SimInst LDA t,IOArgs DoInst to IOArgs and return.JMP DoInstSimFinish LDA t,IOArgs DoInst to IOArgs and �nish.SimFlose GETA $0,TrapDone DoInst and �nish.:DoInst PUT rW,$0 Put return address into rW.PUT rX,inst Put inst into rX.RESUME 0 And do it.16. Again we need to worry about hunk boundaries (see the previous answer), but abyte-at-a-time method is tolerable sine �le names tend to be fairly short.SimFopen PUSHJ 0,GetArgs (See below.)ADDU xx,Mem:allo,Mem:nodesizeSTOU xx,IOArgsSET x,xx (We'll opy the �le name into this open spae.)1H SET arg,zPUSHJ res,MemFind

123

124 ANSWERS TO EXERCISES 1.4.3�LDBU t,res,0STBU t,x,0 Copy byte M[z℄.INCL x,1INCL z,1PBNZ t,1B Repeat until the string has ended.GO $0,SimInst Now open the �le.3H STCO 0,x,0 Now zero out the opied string.CMPU z,xx,xSUB x,x,8PBN z,3B Repeat until it is surely obliterated.JMP TrapDone Pass the result t to the user.Here GetArgs is a subroutine that will be useful also in the implementation of otherI/O ommands. It sets up IOArgs and omputes several other useful results in globalregisters.:GetArgs GET $0,rJ Save the return address.SET y,t y g[255℄.SET arg,tPUSHJ res,MemFindLDOU z,res,0 z virtual address of �rst argument.SET arg,zPUSHJ res,MemFindSET x,res x internal address of �rst argument.STO x,IOArgsSET xx,Mem:ChunkAND zz,x,Mem:maskSUB xx,xx,zz xx bytes from x to hunk end.ADDU arg,y,8PUSHJ res,MemFindLDOU zz,res,0 zz seond argument.STOU zz,IOArgs+8 Convert IOArgs to internal form.PUT rJ,$0 Restore the return address.POP 017. This solution, whih uses the subroutines above, works also for SimFwrite(!).SimFread PUSHJ 0,GetArgs Massage the input arguments.SET y,zz y number of bytes to read.1H CMP t,xx,yPBNN t,SimFinish Branh if we an stay in one hunk.STO xx,IOArgs+8 Oops, we have to work pieewise.SUB y,y,xxGO $0,SimInstBN t,1F Branh if an error ours.ADD z,z,xxSET arg,zPUSHJ res,MemFindSTOU res,IOArgs Redue to the previous problem.STO y,IOArgs+8ADD xx,Mem:mask,1JMP 1B

124

1.4.3� ANSWERS TO EXERCISES 1251H SUB t,t,y Compute the orret number of missing bytes.JMP TrapDoneSimFwrite IS SimFread ;SimFseek IS SimFlose ;SimFtell IS SimFlose(The program assumes that no �le-reading error will our if the �rst Fread wassuessful.) Analogous routines for SimFgets, SimFgetws, and SimFputws an be foundin the �le sim.mms, whih is one of many demonstration �les inluded with the author'sMMIXware programs.18. The stated algorithms will work with any MMIX program for whih the number ofloal registers, L, never exeeds �� 1, where � is the lring_size.19. In all three ases the preeding instrution is INCL ll,8, and a value is stored inloation l+ ((oo+ ll) ^ lring_mask). So we ould shorten the program slightly.20. 560 1H GETA t,OtaArgs561 TRAP 0,Fread,Infile Input � into g[255℄.562 BN t,9F Branh if end of �le.563 LDOU lo,g,255 lo �.564 2H GETA t,OtaArgs565 TRAP 0,Fread,Infile Input an otabyte x into g[255℄.566 LDOU x,g,255567 BN t,Error Branh on unexpeted end of �le.568 SET arg,lo569 BZ x,1B Start a new sequene if x = 0.570 PUSHJ res,MemFind571 STOU x,res,0 Otherwise store x in M8[lo℄.572 INCL lo,8 Inrease lo by 8.573 JMP 2B Repeat until enountering a zero.574 9H TRAP 0,Flose,Infile Close the input �le.575 SUBU lo,lo,8 Derease lo by 8.Also put \OtaArgs OCTA Global+8*255,8" in some onvenient plae.21. Yes it is, up to a point; but the question is interesting and nontrivial.To analyze it quantitatively, let sim.mms be the simulator in MMIXAL, and letsim.mmo be the orresponding objet �le produed by the assembler. Let Hello.mmobe the objet �le orresponding to Program 1.3.2�H. Then the ommand line `Hello'presented to MMIX's operating system will output `Hello, world' and stop after �+17� ,not ounting the time taken by the operating system to load it and to take are ofinput/output operations.Let Hello0.mmb be the binary �le that orresponds to the ommand line `Hello',in the format of exerise 20. (This �le is 176 bytes long.) Then the ommand line `simHello0.mmb' will output `Hello, world' and stop after 168�+ 1699�.Let Hello1.mmb be the binary �le that orresponds to the ommand line `simHello0.mmb'. (This �le is 5768 bytes long.) Then the ommand line `sim Hello1.mmb'will output `Hello, world' and stop after 10549�+ 169505�.Let Hello2.mmb be the binary �le that orresponds to the ommand line `simHello1.mmb'. (This �le also turns out to be 5768 bytes long.) Then the ommand line`sim Hello2.mmb' will output `Hello, world' and stop after 789739� + 15117686�.Let Hello3.mmb be the binary �le that orresponds to the ommand line `simHello2.mmb'. (Again, 5768 bytes.) Then the ommand line `sim Hello3.mmb' willoutput `Hello, world' if we wait suÆiently long.

125

126 ANSWERS TO EXERCISES 1.4.3�Now let reurse.mmb be the binary �le that orresponds to the ommand line`sim reurse.mmb'. Then the ommand line `sim reurse.mmb' runs the simulatorsimulating itself simulating itself simulating itself � � � ad in�nitum. The �le handleInfile is �rst opened at time 3� + 13�, when reurse.mmb begins to be read by thesimulator at level 1. That handle is losed at time 1464� + 16438� when loading isomplete; but the simulated simulator at level 2 opens it at time 1800�+ 19689�, andbegins to load reurse.mmb into simulated simulated memory. The handle is losedagain at time 99650�+1484347�, then reopened by the simulated simulated simulatorat time 116999� + 1794455�. The third level �nishes loading at time 6827574� +131658624� and the fourth level starts at time 8216888� + 159327275�.But the reursion annot go on forever; indeed, the simulator running itself isa �nite-state system, and a �nite-state system annot produe Fopen{Flose eventsat exponentially longer and longer intervals. Eventually the memory will �ll up (seeexerise 4) and the simulation will go awry. When will this happen? The exat answeris not easy to determine, but we an estimate it as follows: If the kth level simulatorneeds nk hunks of memory to load the (k + 1)st level simulator, the value of nk+1 isat most 4+ d(212 +16+ (212 +24)nk)=212e, with n0 = 0. We have nk = 6k for k < 30,but this sequene eventually grows exponentially; it �rst surpasses 261 when k = 6066.Thus we an simulate at least 1006065 instrutions before any problem arises, if weassume that eah level of simulation introdues a fator of at least 100 (see exerise 2).22. The pairs (xk; yk) an be stored in memory following the trae program itself,whih should appear after all other instrutions in the text segment of the programbeing traed. (The operating system will give the trae routine permission to modifythe text segment.) The main idea is to san ahead from the urrent loation inthe traed program to the next branh or GO or PUSH or POP or JMP or RESUME orTRIP instrution, then to replae that instrution temporarily in memory with a TRIPommand. The tetrabytes in loations #0, #10, #20, : : : , #80 of the traed programare hanged so that they jump to appropriate loations within the trae routine; thenall ontrol transfers will be traed, inluding transfers due to arithmeti interrupts.The original instrutions in those loations an be traed via RESUME, as long as theyare not themselves RESUME ommands.

126

INDEX AND GLOSSARYWhen an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.: (olon), 61{62, 65, 80." (double-quote), 31, 37, 44, 72, 100._ (undersore), 37.� (at sign), 15, 35, 38, 81.$0, 31, 58.$1, 31, 58.2ADDU (times 2 and add unsigned), 9.4ADDU (times 4 and add unsigned), 9.8ADDU (times 8 and add unsigned), 9.16ADDU (times 16 and add unsigned), 9.$255, 34, 40{43, 56, 68, 114.� (average memory aess time), 22.� (golden ratio), 8, 47.� (instrution yle time), 22.Absolute address, 15.Absolute di�erene, 26.Absolute value, 26, 27.ACE omputer, 65.ADD, 8.Addition, 8, 12, 14, 25.Addition hains, 98.ADDU (add unsigned), 8.Adobe Systems, 74.Ahrens, Wilhelm Ernst Martin Georg, 48.ALGOL language, 74.Algol W language, iv.Alhazen, see Ibn al-Haytham.Aliasing, 108.Alignment, 39, 44.Alpha 21164 omputer, 2.AMD 29000 omputer, 2.AND (bitwise and), 10.ANDN (bitwise and-not), 10.ANDNH (bitwise and-not high wyde), 14.ANDNL (bitwise and-not low wyde), 14.ANDNMH (bitwise and-not medium highwyde), 14.ANDNML (bitwise and-not medium lowwyde), 14.ANSI: The Amerian National StandardsInstitute, 12.Arabi numerals, 44.Arabi sript, 44, 100.Arguments, 54.Arithmeti exeptions, 18, 89.Arithmeti operators of MMIX, 8{9.Arithmeti overow, 6, 7, 18, 25, 27,65, 84, 95, 109.Arithmeti status register, 18.ASCII: Amerian Standard Code forInformation Interhange, iv, 3, 26,32, 34, 37, 44, 67.

Assembly language for MMIX, 28{44.Assembly program, 29, 30, 40.Assoiative law: (a Æ b) Æ = a Æ (b Æ), 11.At sign (�), 15, 35, 38, 81.Atomi instrution, 17.b(x), 11.Ball, Walter William Rouse, 48.Base address, 35, 39.BDIF (byte di�erene), 11, 26, 101.Bertrand, Joseph Louis Fran�ois,postulate, 100.BEV (branh if even), 15.Bidiretional typesetting, 44.Bienstok, Daniel, 104.Big-endian onvention: Most signi�antbyte �rst, 4{7, 116.Binary �le, 41.for programs, 90, 92{93, 125.Binary number system, 4.Binary operators in MMIXAL, 38.Binary radix point, 8, 24.Binary-to-deimal onversion, 37.BinaryRead mode, 43.BinaryReadWrite mode, 43.BinaryWrite mode, 43.Bit: \Binary digit", either zero or unity, 2.Bit di�erene, 26.Bit reversal, 26, 97.Bit vetors, 10.Bitwise di�erene, 14.Bitwise operators of MMIX, 10, 14, 25.Blank spae, 26, 40, 67.BN (branh if negative), 15.BNN (branh if nonnegative), 15.BNP (branh if nonpositive), 15.BNZ (branh if nonzero), 15.BOD (branh if odd), 15.Boolean matrix, 11, 96.Bootstrap register, 18.Bourne, Charles Pery, 107.BP (branh if positive), 15.Branh operators of MMIX, 15, 85.BSPEC (begin speial data), 62.Buhholz, Werner, 94.Byte: An 8-bit quantity, 3, 24, 94.Byte di�erene, 11, 26.BYTE operator, 31, 39.Byte reversal, 12.BZ (branh if zero), 15.127

127

128 INDEX AND GLOSSARYC language, iv, 45.C++ language, iv.Cahe memory, 17, 22{23, 72, 98, 105, 107.Calendar, 49.Calling sequene, 54{56, 60, 68{70.Carry, 25.Cauhy, Augustin Louis, 105.Ceiling, 13.Charater onstant, 37.Chess, 66.Chung, Fan Rong King (), 104.Chunks, 77, 123.Clavius, Christopher, 49.Clipper C300 omputer, 2.Clok register, 19, 76, 112.CMP (ompare), 9.CMPU (ompare unsigned), 9, 113.Colon (:), 61, 65, 80.Command line arguments, 31, 90, 125.Comments, 29.Commutative law: a Æ b = b Æ a, 95.Comparison operators of MMIX, 9,13, 25, 113.Compiler algorithms, 62, 74.Complement, 10, 24.Complete MMIX program, 30, 45.Conditional operators of MMIX, 10, 26.Conversion operators of MMIX, 13.Conway, Melvin Edward, 35.Copying a string, 47.Coroutines, 66{73.linkage, 66, 72{73.Counting bits, 11.Coxeter, Harold Sott Madonald, 48.CRAY I omputer, 2.Crossword puzzle, 50{51.Cryptanalysis, 47.CSEV (onditional set if even), 10.CSN (onditional set if negative), 10.CSNN (onditional set if nonnegative), 10.CSNP (onditional set if nonpositive), 10.CSNZ (onditional set if nonzero), 10.CSOD (onditional set if odd), 10.CSP (onditional set if positive), 10.CSWAP (ompare and swap), 17, 91.CSZ (onditional set if zero), 10.Current pre�x, 61, 65.Cyle ounter, 19.Cyli shift, 26.D_BIT (integer divide hek bit), 18.Dallos, J�ozsef, 97.Data segment of memory, 36, 57,76{77, 81, 117.Debugging, 64{65, 73, 91.Deimal onstant, 37.De�ned symbol, 37.Denormal oating point number, 12, 89.Dershowitz, Nahum (UIAEYXC MEGP), 111.

Dikens, Charles John Hu�am, iii.Ditionaries, iii.Dijkstra, Edsger Wijbe, 63.Disrete system simulators, 76.DIV (divide), 8, 24{25.Divide hek, 8, 18.Dividend register, 9.Division, 9, 13, 24{25, 49, 91.by small onstants, 25.by zero, 18.onverted to multipliation, 25, 111.DIVU (divide unsigned), 8.Double-quote ("), 31, 37, 44, 72, 100.Dull, Brutus Cylops, 25.DVWIOUZX, 18, 27, 89, 92.Dynami traps, 19.Easter date, 49.Emulator, 75.Enable bits, 18, 85.Ending a program, 19, 31.Entranes to subroutines, 52{57, 123.Epsilon register, 13.Equivalent of MMIXAL symbol, 38.Error reovery, 91.ESPEC (end speial data), 62.Evaluation of powers, 28, 98.Evans, Arthur, Jr., 74.Event bits, 18, 85.Exabyte, 94.Exeptions, 18, 89.Exeution register, 18.Exiting from a program, 19, 31.Exits from subroutines, 52{57, 115.Exponent of a oating point number, 12.Exponentiation, 28.EXPR �eld of MMIXAL line, 29, 38.Expression, in MMIXAL, 38.Extending the sign bit, 7, 9, 95.f(x), 12.FADD (oating add), 12.Fallaies, 95.Farey, John, 105.series, 47.Fasiles, iii.Flose operation, 41, 43.FCMP (oating ompare), 13, 98.FCMPE (oating ompare with respetto epsilon), 13.FDIV (oating divide), 12.FEQL (oating equal to), 13, 98.FEQLE (oating equivalent with respetto epsilon), 13.Fgets operation, 42, 43.Fgetws operation, 42, 43.Fibonai, Leonardo, of Pisa.numbers, 47, 66.Filters, 71.Finite �elds, 26.

128

INDEX AND GLOSSARY 129FINT (oating integer), 13, 23.FIX (onvert oating to �xed), 13.Fixed point arithmeti, 45.FIXU (onvert oating to �xed unsigned), 13.Flag bits, 82, 87.Floating binary number, 12.Floating point arithmeti, 12{13, 44, 45, 89.Floating point operators of MMIX, 12{13.FLOT (onvert �xed to oating), 13.FLOTU (onvert �xed to oating unsigned),13, 97.Floyd, Robert W, 98.FMUL (oating multiply), 12.Fopen operation, 41, 43, 92.Ford, Donald Floyd, 107.Forward referene, see Future referene.Fputs operation, 42, 43, 92.Fputws operation, 42, 43.Fration of a oating point number, 12.Frame pointer, 58, 115.Fread operation, 42, 43, 92.Fredman, Mihael Lawrene, 104.FREM (oating remainder), 13, 23, 44, 111.Fseek operation, 42, 43.FSQRT (oating square root), 13.FSUB (oating subtrat), 12.Ftell operation, 43.Fuhs, David Raymond, 27, 74.FUN (oating unordered), 13, 98.FUNE (oating unordered with respetto epsilon), 13.Future referene, 37, 39.Fwrite operation, 42, 43, 124.Generalized matrix produt, 11, 26.GET (get from speial register), 19, 92.GETA (get address), 20, 100.Gigabyte, 94.Global registers, 16, 34, 58, 65, 79,80, 84, 92.Global threshold register, 16.GO, 15, 26, 53{58.Gove, Philip Babok, iii.Graphial display, 50{51.Graphis, 11, 26.GREG (alloate global register), 34{35, 39, 62.Half-bytes, 24.Halt operation, 31, 43.Handles, 41.Handlers, 18, 65, 89.Hardy, Godfrey Harold, 105.Harmoni onvergene, 48.Harmoni series, 48{49.Haros, C., 105.Heller, Joseph, 3.Hello, world, 30{32, 125.Hennessy, John LeRoy, v.Hexadeimal onstants, 37.

Hexadeimal digits, 3, 24.Hexadeimal notation, 3, 19.High tetra arithmeti, 97.Hill, Robert, 111.Himult register, 8.Hints to MMIX, 16{17.Hitahi SuperH4 omputer, 2.Hofri, Miha (IXTG DKIN), 104.
I_BIT (invalid oating operation bit), 18, 98.IBM 601 omputer, 2.IBM 801 omputer, 2.Ibn al-Haytham, Ab�u `Al� al-H. asan (=Alhazen, Í{ÛÔ¿m Ñp Ñ��¿m ÞÀ« Øp), 48.IEC: The International EletrotehnialCommission, 3.IEEE: The Institute of Eletrial andEletronis Engineers.oating point standard, 12, 89.Immediate onstants, 13{14, 19.INCH (inrease by high wyde), 14.INCL (inrease by low wyde), 14.INCMH (inrease by medium high wyde), 14.INCML (inrease by medium low wyde), 14.Inexat exeption, 18, 89.Ingalls, Daniel Henry Holmes, 109.Initialization, 31, 91.of oroutines, 70.In�nite oating point number, 12.int x, 13.Input-output operations, 19, 31, 40{43, 92.Instrution, mahine language: A odethat, when interpreted by the iruitryof a omputer, auses the omputerto perform some ation.in MMIX, 5{28.numeri form, 27{29, 44.symboli form, 28{40.Integer overow, 6, 7, 18, 25, 27, 65,84, 95, 109.Intel i960 omputer, 2.Internet, ii, v.Interpreter, 73{75.Interrupt mask register, 19.Interrupt request register, 19.Interrupts, 18{19, 86, 89, 92.Interval ounter, 19.Invalid oating operation, 18.IS, 30, 34, 39.ISO: The International Organization forStandardization, 3.Ivanovi�, Vladimir Gresham, v.Iverson, Kenneth Eugene, 11.

129

130 INDEX AND GLOSSARYJaquet, Philippe Pierre, 104.Java language, iv, 45.JMP (jump), 15.Joke, 72.Josephus, Flavius, son of Matthias(DIZZN OA SQEI = Fl�bio >I¸shpoMatj�ou), problem, 48.Jump operators of MMIX, 15.Jump table, 86{87.Jump trae, 93.Kernel spae, 36.Kernighan, Brian Wilson, 23.Kilobyte, 24, 94.KKB (large kilobyte), 94.Knuth, Donald Ervin (), i, v,45, 65, 74, 89.LABEL �eld of MMIXAL line, 29, 38.Large kilobyte, 94.Large programs, 63{65.LDA (load address), 7, 9, 100.LDB (load byte), 6.LDBU (load byte unsigned), 7.LDHT (load high tetra), 7, 24, 97.LDO (load ota), 6.LDOU (load ota unsigned), 7.LDSF (load short oat), 13.LDT (load tetra), 6.LDTU (load tetra unsigned), 7.LDUNC (load ota unahed), 17.LDVTS (load virtual translation status), 17.LDW (load wyde), 6.LDWU (load wyde unsigned), 7.Leaf subroutine, 57, 65, 80.Library of subroutines, 52, 61, 62, 91.Lilius, Aloysius, 49.Linked alloation, 77{78.Literate programming, 45, 65.Little-endian onvention: Least signi�antbyte �rst, see Bidiretional typesetting,Byte reversal.Loader, 36.Loading operators of MMIX, 6{7.LOC (hange loation), 30, 39.LOCAL (guarantee loality), 62.Loal registers, 16, 58, 65, 80, 84, 92.ring of, 76, 79{81, 92.Loal symbols, 35{37, 43.Loal threshold register, 16.Loop optimization, 115.m(x), 11.Mahine language, 2.Magi squares, 47{48.Main loation, 31, 91.Marginal registers, 16, 58, 65, 80, 84, 97.Matrix: A two-dimensional array, 46, 106.Matrix multipliation, generalized, 11, 26.

Maximum, 26.subroutine, 28{29, 52{56.Megabyte, 24, 94.MemFind subroutine, 77{78, 91, 116{117.Memory: Part of a omputer systemused to store data, 4{6.address, 6.hierarhy, 17, 22{23, 72, 98, 105, 107.Memory stak, 57{58, 115.Mems: Memory aesses, 22.Meta-simulator, 22{23, 47, 76.METAPOST language, 51.Minimum, 26.Minus zero, 13.MIPS 4000 omputer, 2.MIX omputer, iv..mmb (MMIX binary �le), 125.MMB (Large megabyte), 94.MMIX omputer, iv, 2{28.MMIX simulator, 22{23, 30.in MMIX, 75{93.MMIXAL: MMIX Assembly Language,28{44, 61{62.MMIXmasters, v, 51, 105, 111.MMIXware doument, 2..mmo (MMIX objet �le), 30, 125..mms (MMIX symboli �le), 30, 125.MOR (multiple or), 12, 23, 26.Motorola 88000 omputer, 2.Move-to-front heuristi, 77{78.Mu (�), 22.MUL (multiply), 8.Multipass algorithms, 70{72, 74.Multiple entranes, 56, 123.Multiple exits, 56{57, 60, 115.Multiplex mask register, 11.Multipliation, 8, 12, 25, 85.by small onstants, 9, 25.Multiway deisions, 45, 46, 82, 86{88, 119.MULU (multiply unsigned), 8, 25.Murray, James Augustus Henry, iii.MUX (multiplex), 11.MXOR (multiple exlusive-or), 12, 23, 26.NaN (Not-a-Number), 12, 98.NAND (bitwise not-and), 10.NEG (negate), 9.Negation, 9, 24.NEGU (negate unsigned), 9.Newline, 32, 42.NNIX operating system, 28, 31.No-op, 21, 28.Nonloal goto statements, 66, 91, 117.NOR (bitwise not-or), 10.Normal oating point number, 12.Not-a-Number, 12, 98.

130

INDEX AND GLOSSARY 131Notational onventions:b(x), 11.f(x), 12.int x, 13.m(x), 11.s(x), 6, 24.t(x), 11.u(x), 6, 24.v(x), 10.�v(x), 10.w(x), 11.x .� y, 11.x � y, 9.x � y, 9.x ^ y, 10.x _ y, 10.x � y, 10.x rem y, 13.XYZ, 6.YZ, 5{6.NXOR (bitwise not-exlusive-or), 10.Nybble: A 4-bit quantity, 24.Nyp: A 2-bit quantity, 94.O_BIT (oating overow bit), 18.O'Beirne, Thomas Hay, 111.Objet �le, 30{31, 125.Ota: Short form of \otabyte", 4.OCTA operator, 39.Otabyte: A 64-bit quantity, 4.ODIF (ota di�erene), 11, 102.Oops, 22.OP �eld of MMIXAL line, 29, 38.Opode: Operation ode, 5, 19.hart, 20.Operands, 5, 83{84.Operating system, 28, 36, 40{43.Optimization of loops, 47.OR (bitwise or), 10.ORH (bitwise or with high wyde), 14.ORL (bitwise or with low wyde), 14.ORMH (bitwise or with medium highwyde), 14.ORML (bitwise or with medium low wyde), 14.ORN (bitwise or-not), 10.Overow, 6, 7, 18, 25, 27, 65, 84, 95, 109.Oxford English Ditionary, iii.Paked data, 82, 87{88.Page fault, 114.Parameters, 54.Parity, 26.Pasal language, iv.Pass, in a program, 70{72.Patt, Yale Nane, 98.PBEV (probable branh if even), 16.PBN (probable branh if negative), 15.PBNN (probable branh if nonnegative), 15.PBNP (probable branh if nonpositive), 16.

PBNZ (probable branh if nonzero), 16.PBOD (probable branh if odd), 15.PBP (probable branh if positive), 15.PBZ (probable branh if zero), 15.Petabyte, 94.Phi (�), 8, 47.Pipe, 71.Pipeline, 22, 47, 76, 98.Pixel values, 11, 26.PL/360 language, 45.PL/MMIX language, 45, 63.Pool segment of memory, 36, 117.POP (pop registers and return), 16,53, 59, 73, 92.Population ounting, 11.PostSript language, 74.POWER 2 omputer, 2.Power of number, evaluation, 28.Prede�ned symbols, 36{38, 43.Predition register, 17.PREFIX spei�ation, 61{62, 65, 77{78, 80.Prefething, 17, 22.Pre�xes for units of measure, 94.PREGO (prefeth to go), 17.PRELD (preload data), 17.PREST (prestore data), 17.Primary, in MMIXAL, 38.Prime numbers, program to ompute,32{34, 37.Privileged instrutions, 46, 76.Probable branh, 15{16, 22, 26, 85.Pro�le of a program: The number oftimes eah instrution is performed,29, 31, 93, 98.Program onstrution, 63{65.Programming languages, iv, 63.Pseudo-operations, 30{31.Purdy, Gregor Neal, 94.PUSHGO (push registers and go), 16,65, 73, 85{86.PUSHJ (push registers and jump), 16,53, 59, 73, 85{86.PUT (put into speial register), 19, 92.Quik, Jonathan Horatio, 44.rA (arithmeti status register), 18, 28.RA (relative address), 15.Radix point, 8, 24.Randell, Brian, 74.Randolph, Vane, 28.Rational numbers, 47.rB (bootstrap register for trips), 18.rBB (bootstrap register for traps), 18.rC (yle ounter), 19, 112.rD (dividend register), 9.rE (epsilon register), 13.Reahability, 51.Read-only aess, 36.

131

132 INDEX AND GLOSSARYReursive use of subroutines, 57, 66,125{126.Register $0, 31, 58.Register $1, 31, 58.Register $255, 34, 40{43, 56, 68, 114.Register number, 34, 58.Register stak, 16, 58{61, 65{66, 70, 73,78{81, 84{86, 115.Register stak o�set, 17.Register stak pointer, 17.Registers: Portions of a omputer'sinternal iruitry in whih data ismost aessible.of MMIX, 4{5, 21, 23, 76, 79.saving and restoring, 55; see alsoSAVE, UNSAVE.Reingold, Edward Martin (CLEBPIIX,MIIG OA DYN WGVI), 111.Relative addresses, 15{16, 20, 30, 83, 87, 99.Remainder, 8, 13, 49.Remainder register, 8.Repliated oroutines, 72.Reprogramming, 75.RESUME (resume after interrupt), 19,84, 92, 114, 126.Return-jump register, 16.Reversal of bits and bytes, 12, 26, 97.Rewinding a �le, 42.Rewrites, v, 64.rG (global threshold register), 16, 58, 92.rH (himult register), 8, 28, 85, 94.rI (interval ounter), 19.Ring of loal registers, 76, 79{81, 92.RISC: Redued Instrution SetComputer, 24.RISC II omputer, 2.rJ (return-jump register), 16, 60, 80, 81.rK (interrupt mask register), 19, 90{91.rL (loal threshold register), 16, 28, 58,79, 92, 97, 117.rM (multiplex mask register), 11.rN (serial number), 19.rO (register stak o�set), 17, 79.Rokiki, Tomas Gerhard, 74.Roman numerals, 2, 3.Ropodes, 19, 92.ROUND_DOWN mode, 13.ROUND_NEAR mode, 13, 37.ROUND_OFF mode, 13.ROUND_UP mode, 13.Rounding, 13, 18, 47, 48.Row major order, 46.rP (predition register), 17.rQ (interrupt request register), 19.rR (remainder register), 8.rS (register stak pointer), 17, 79.rT (trap address register), 18, 90{91.rTT (dynami trap address register),19, 90{91.

rU (usage ounter), 19.Running time, 20{23.Russell, Lawford John, 74.rV (virtual translation register), 20, 90{91.rW (where-interrupted register for trips), 18.rWW (where-interrupted register fortraps), 18.rX (exeution register for trips), 18.rXX (exeution register for traps), 18.rY (Y operand register for trips), 18.rYY (Y operand register for traps), 18.rZ (Z operand register for trips), 18.rZZ (Z operand register for traps), 18.s(x), 6, 24.SADD (sideways add), 11.Saddle point, 46.Saturating addition, 26.Saturating subtration, 11.SAVE (save proess state), 16, 61, 92,114, 116.Saving and restoring registers, 55; seealso SAVE, UNSAVE.Salar variables, 61.Sh�a�er, Alejandro Alberto, 104.Segments of user spae, 36.Self-modifying ode, iv, 28, 93.Self-organizing list searh, 77{78.Self-referene, 126, 132.Sequential array alloation, 46.Serial number register, 19.SET, 14, 99.Set di�erene, 25.Set intersetion, 25.Set union, 25.SETH (set high wyde), 14.SETL (set low wyde), 14, 100.SETMH (set medium high wyde), 14, 97.SETML (set medium low wyde), 14.SFLOT (onvert �xed to short oat), 13.SFLOTU (onvert �xed to short oatunsigned), 13.Shift operators of MMIX, 9.Shor, Peter Williston, 104.Short oat format, 12{13.Sideways addition, 11.Sign extension, 7, 9, 95.Sign of oating point number, 12.Signed integers, 4, 6{7, 25.Sikes, William, iii.Simon, Marvin Neil, v.Simulation of omputers, 75{76.Sites, Rihard Lee, v.SL (shift left), 9, 25.SLU (shift left unsigned), 9, 25.Small onstant numbers, 9, 13.division by, 25.multipliation by, 9, 25.Spar 64 omputer, 2.Speial registers of MMIX, 5, 19, 21, 76, 118.

132

INDEX AND GLOSSARY 133Square root, 13.SR (shift right), 9, 25.SRU (shift right unsigned), 9, 25.Stak o�set register, 79.Stak operators of MMIX, 16{17.Stak pointer register, 57{58, 79.Stak segment of memory, 36, 61, 114, 117.Staks, seeMemory stak, Register stak.Stalling a pipeline, 108.Standard error �le, 41.Standard input �le, 41.Standard output �le, 31, 41.Starting a program, 31, 70, 91.STB (store byte), 7.STBU (store byte unsigned), 8.STCO (store onstant otabyte), 8.StdErr (standard error �le), 41.StdIn (standard input �le), 41.StdOut (standard output �le), 30{31, 41.STHT (store high tetra), 8, 24, 97.STO (store ota), 7.Storing operators of MMIX, 7{8.STOU (store ota unsigned), 8.Streth omputer, 94.String onstant in MMIXAL, 31, 37, 100.String manipulation, 26, 47.Strong binary operators, 38.StrongArm 110 omputer, 2.Strutured symbols, 61{62, 65, 77{78, 80.STSF (store short oat), 13.STT (store tetra), 7.STTU (store tetra unsigned), 8.STUNC (store ota unahed), 17.STW (store wyde), 7.STWU (store wyde unsigned), 8.SUB (subtrat), 8.Subroutines, 30, 45, 52{70, 75, 77{81, 92.linkage of, 52{61.Subsets, representation of, 25.Subtration, 8, 12, 25.SUBU (subtrat unsigned), 8.Supersalar mahine, 108.Suri, Subhash (s� BAq s�rF), 104.Swithing tables, 45, 46, 82, 86{88, 119.SWYM (sympathize with your mahinery), 21.SYNC (synhronize), 17, 86.SYNCD (synhronize data), 17.SYNCID (synhronize instrutions anddata), 17, 28.System operators of MMIX, 17.System/360 omputer, 45.t(x), 11.Table-driven omputation, 45, 46, 82,86{88, 119.TDIF (tetra di�erene), 11.Terabyte, 94.Term, in MMIXAL, 38.Terminating a program, 19, 31.

Tetra: Short form of \tetrabyte", 4.Tetra di�erene, 11.TETRA operator, 39, 72.Tetrabyte: A 32-bit quantity, 4.Tetrabyte arithmeti, 27.TEX, 65, 74{75.Text �le, 41.Text segment of memory, 36, 77, 81.TextRead mode, 43.TextWrite mode, 43.Threads, 72.Trae routine, 64, 93.TraÆ signals, 50.TRAP (fore trap interrupt), 18{19, 40, 86{87.Trap address register, 18.Trap handlers, 18{19.TRIP (fore trip interrupt), 18, 86.Trip handlers, 18, 89.Trip interrupts, 65, 92.Turing, Alan Mathison, 65.Twist, Oliver, iii.Two's omplement notation, 4, 24.u(x), 6, 24.U_BIT (oating underow bit), 18, 85, 89.U_Handler: Address of an underow trip, 89.UCS: Universal Multiple-Otet CodedCharater Set, 3.Underow, 18, 89.Undersore (_), 37.Uniode, 3, 26, 37, 44.Units of measure, 94.UNIVAC I omputer, 35.UNIX operating system, 71, 114.Unpaking, 82.Unrolling a loop, 107.UNSAVE (restore proess state), 16, 61,90, 92, 116.Unsigned integers, 4, 6{8.Upsilon (�), 22.Usage ounter, 19.User spae, 36.v(x), �v(x), 10.V_BIT (integer overow bit), 18.Valid MMIX instrution, 46.Van Wyk, Christopher John, 23.Vetor, 10.Vitorius of Aquitania, 111.Virtual address translation, 17.Virtual mahine, 73.Virtual translation register, 20.

133

134 INDEX AND GLOSSARYw(x), 11.W_BIT (oat-to-�x overow bit), 18.W_Handler: Address of a oat-to-�xoverow trip, 37.WDIF (wyde di�erene), 11.Weak binary operators, 38.Webster, Noah, iii.Where-interrupted register, 18.Whitespae harater, 67.Wide strings, 42.Wilson, George Pikett, 28.Wirth, Niklaus Emil, 45, 63.Wordsworth, William, 24.Wright, Edward Maitland, 105.Wyde: A 16-bit quantity, 4.Wyde di�erene, 11.Wyde immediate, 14.WYDE operator, 39.X �eld of MMIX instrution, 5.X_BIT (oating inexat bit), 18, 89.XOR (bitwise exlusive-or), 10.XYZ �eld of MMIX instrution, 6.

Y �eld of MMIX instrution, 5.Y operand register, 18.Yoder, Mihael Franz, 95.Yossarian, John, 3.Yottabyte, 94.YZ �eld of MMIX instrution, 5{6.Z �eld of MMIX instrution, 5.as immediate onstant, 14.Z operand register, 18.Z_BIT (oating division by zero bit), 18.Zero or set instrutions of MMIX, 10.Zettabyte, 94.ZSEV (zero or set if even), 10.ZSN (zero or set if negative), 10.ZSNN (zero or set if nonnegative), 10.ZSNP (zero or set if nonpositive), 10.ZSNZ (zero or set if nonzero), 10.ZSOD (zero or set if odd), 10.ZSP (zero or set if positive), 10.ZSZ (zero or set if zero), 10.

134

ASCII CHARACTERS#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b # #d #e #f#2x ! " # $ % & ' () * + , - . / #2x#3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ? #3x#4x � A B C D E F G H I J K L M N O #4x#5x P Q R S T U V W X Y Z [\ ℄ ^ _ #5x#6x ` a b d e f g h i j k l m n o #6x#7x p q r s t u v w x y z { | } ~ #7x#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b # #d #e #fMMIX OPERATION CODES#0 #1 #2 #3 #4 #5 #6 #7TRAP 5� FCMP � FUN � FEQL � FADD 4� FIX 4� FSUB 4� FIXU 4�#0x #0xFLOT[I℄ 4� FLOTU[I℄ 4� SFLOT[I℄ 4� SFLOTU[I℄ 4�FMUL 4� FCMPE 4� FUNE � FEQLE 4� FDIV 40� FSQRT 40� FREM 4� FINT 4�#1x #1xMUL[I℄ 10� MULU[I℄ 10� DIV[I℄ 60� DIVU[I℄ 60�ADD[I℄ � ADDU[I℄ � SUB[I℄ � SUBU[I℄ �#2x #2x2ADDU[I℄ � 4ADDU[I℄ � 8ADDU[I℄ � 16ADDU[I℄ �CMP[I℄ � CMPU[I℄ � NEG[I℄ � NEGU[I℄ �#3x #3xSL[I℄ � SLU[I℄ � SR[I℄ � SRU[I℄ �BN[B℄ �+� BZ[B℄ �+� BP[B℄ �+� BOD[B℄ �+�#4x #4xBNN[B℄ �+� BNZ[B℄ �+� BNP[B℄ �+� BEV[B℄ �+�PBN[B℄ 3��� PBZ[B℄ 3��� PBP[B℄ 3��� PBOD[B℄ 3���#5x #5xPBNN[B℄ 3��� PBNZ[B℄ 3��� PBNP[B℄ 3��� PBEV[B℄ 3���CSN[I℄ � CSZ[I℄ � CSP[I℄ � CSOD[I℄ �#6x #6xCSNN[I℄ � CSNZ[I℄ � CSNP[I℄ � CSEV[I℄ �ZSN[I℄ � ZSZ[I℄ � ZSP[I℄ � ZSOD[I℄ �#7x #7xZSNN[I℄ � ZSNZ[I℄ � ZSNP[I℄ � ZSEV[I℄ �LDB[I℄ �+� LDBU[I℄ �+� LDW[I℄ �+� LDWU[I℄ �+�#8x #8xLDT[I℄ �+� LDTU[I℄ �+� LDO[I℄ �+� LDOU[I℄ �+�LDSF[I℄ �+� LDHT[I℄ �+� CSWAP[I℄ 2�+2� LDUNC[I℄ �+�#9x #9xLDVTS[I℄ � PRELD[I℄ � PREGO[I℄ � GO[I℄ 3�STB[I℄ �+� STBU[I℄ �+� STW[I℄ �+� STWU[I℄ �+�#Ax #AxSTT[I℄ �+� STTU[I℄ �+� STO[I℄ �+� STOU[I℄ �+�STSF[I℄ �+� STHT[I℄ �+� STCO[I℄ �+� STUNC[I℄ �+�#Bx #BxSYNCD[I℄ � PREST[I℄ � SYNCID[I℄ � PUSHGO[I℄ 3�OR[I℄ � ORN[I℄ � NOR[I℄ � XOR[I℄ �#Cx #CxAND[I℄ � ANDN[I℄ � NAND[I℄ � NXOR[I℄ �BDIF[I℄ � WDIF[I℄ � TDIF[I℄ � ODIF[I℄ �#Dx #DxMUX[I℄ � SADD[I℄ � MOR[I℄ � MXOR[I℄ �SETH � SETMH � SETML � SETL � INCH � INCMH � INCML � INCL �#Ex #ExORH � ORMH � ORML � ORL � ANDNH � ANDNMH � ANDNML � ANDNL �JMP[B℄ � PUSHJ[B℄ � GETA[B℄ � PUT[I℄ �#Fx #FxPOP 3� RESUME 5� [UN℄SAVE 20�+� SYNC � SWYM � GET � TRIP 5�#8 #9 #A #B #C #D #E #F� = 2� if the branh is taken, � = 0 if the branh is not taken

	Art of Comuter Programming - Volume 1: MMIX - A RISC Computer for the New Millennium (Cover)
	Title
	Copyright 1999
	Preface
	Contents
	Section 1.3: MMIX
	Section 1.4: Fundamental Programming Techniques

