

DONALD E. KNUTH Stanford University

'J ·' l

A
'YT ADDISON-WESLEY

An Imprint of Addison Wesley Longman, Inc.

Volume 1 / Fundamental Algorithms

THE ART OF

COMPUTER PROGRAMMING

THIRD EDITION

1,

Reading, Massachusetts · Harlow, England Menlo Park, California

Berkeley, California · Don Mills, Ontario · Sydney

Bonn · Amsterdam · Tokyo · Mexico City

'!EX is a trademark of the American Mathematical Society

METAFONT is a trademark of Addison-Wesley

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The art of computer programming : fundamental algorithms I Donald

Ervin Knuth. -- 3rd ed.
xx,650 p. 24 cm.
Includes bibliographical references and index.
ISBN 0-201-89683-4
1. Electronic digital computers--Programming.

algorithms. I. Title.
QA76.6.K64 1997
005.1--dc21

2. Computer

97-2147
CIP

Internet page http: //www-cs-faculty. stanford. edu;-knuth/taocp .html contains
current information about this book and related books.

Copyright© 1997 by Addison Wesley Longman

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-89683-4
Text printed on acid-free paper
1 2 3 4 5 6 7 8 9 MA 00999897
First printing, May 1997

PREFACE

Here is your book, the one your thousands of letters have asked us
to publish. It has taken us years to do, checking and rechecking countless

recipes to bring you only the best, only the interesting, only the perfect.
Now we can say, without a shadow of a doubt, that every single one of them,

if you follow the directions to the letter, will work for you exactly as well
as it did for us, even if you have never cooked before.

- McCall's Cookbook (1963)

THE PROCESS of preparing programs for a digital computer is especially attrac
tive, not only because it can be economically and scientifically rewarding, but
also because it can be an aesthetic experience much like composing poetry or
music. This book is the first volume of a multi-volume set of books that has been
designed to train the reader in various skills that go into a programmer's craft.

The following chapters are not meant to serve as an introduction to computer
programming; the reader is supposed to have had some previous experience. The
prerequisites are actually very simple, but a beginner requires time and practice
in order to understand the concept of a digital computer. The reader should
possess:

a) Some idea of how a stored-program digital computer works; not necessarily
the electronics, rather the manner in which instructions can be kept in the
machine's memory and successively executed.

b) An ability to put the solutions to problems into such explicit terms that a
computer can "understand" them. (These machines have no common sense;
they do exactly as they are told, no more and no less. This fact is the
hardest concept to grasp when one first tries to use a computer.)

c) Some knowledge of the most elementary computer techniques, such as loop
ing (performing a set of instructions repeatedly), the use of subroutines, and
the use of indexed variables.

d) A little knowledge of common computer jargon- "memory," "registers,"
"bits," "floating point," "overflow," "software." Most words not defined in
the text are given brief definitions in the index at the close of each volume.

These four prerequisites can per haps be summed up into the single requirement
that the reader should have already written and tested at least, say, four pro
grams for at least one computer.

I have tried to write this set of books in such a way that it will fill several
needs. In the first place, these books are reference works that summarize the

v

Vl PREFACE

knowledge that has been acquired in several important fields. In the second place,
they can be used as textbooks for self-study or for college courses in the computer
and information sciences. To meet both of these objectives, I have incorporated
a large number of exercises into the text and have furnished answers for most
of them. I have also made an effort to fill the pages with facts rather than with
vague, general commentary:

This set of books is intended for people who will be more than just casually
interested in computers, yet it is by no means only for the computer specialist.
Indeed, one of my main goals has been to make these programming techniques
more accessible to the many people working in other fields who can make fruitful
use of computers, yet who cannot afford the time to locate all of the necessary
information that is buried in technical journals.

We might call the subject of these books "nonnumerical analysis." Comput
ers have traditionally been associated with the solution of numerical problems
such as the calculation of the roots of an equation, numerical interpolation
and integration, etc., but such topics are not treated here except in passing.
Numerical computer programming is an extremely interesting and rapidly ex
panding field, and many books have been written about it. Since the early
1960s, however, computers have been used even more often for problems in which
numbers occur only by coincidence; the computer's decision-making capabilities
are being used, rather than its ability to do arithmetic. We have some use
for addition and subtraction in nonnumerical problems, but we rarely feel any
need for multiplication and division. Of course, even a person who is primarily
concerned with numerical computer programming will benefit from a study of
the nonnumerical techniques, for they are present in the background of numerical
programs as well.

The results of research in nonnumerical analysis are scattered throughout
numerous technical journals. My approach has been to try to distill this vast
litArature by studying the techniques that are most basic, in the sense that they
can be applied to many types of programming situations. I have attempted to
coordinate the ideas into more or less of a "theory," as well as to show how the
theory applies to a wide variety of practical problems.

Of course, "nonnumerical analysis" is a terribly negative name for this field
of study; it is much better to have a positive, descriptive term that characterizes
the subject. "Information processing" is too broad a designation for the material
I am considering, and "programming techniques" is too narrow. Therefore I wish
to propose analysis of algorithms as an appropriate name for the subject matter
covered in these books. This name is meant to imply "the theory of the properties
of particular computer algorithms."

The complete set of books, entitled The Art of Computer Programming, has
the following general outline:

Volume 1. Fundamental Algorithms

Chapter 1. Basic Concepts
Chapter 2. Information Structures

Volume 2. Seminumerical Algorithms

Chapter 3. Random Numbers
Chapter 4. Arithmetic

Volume 3. Sorting and Searching

Chapter 5. Sorting
Chapter 6. Searching

Volume 4. Combinatorial Algorithms

Chapter 7. Combinatorial Searching
Chapter 8. Recursion

Volume 5. Syntactical Algorithms

Chapter 9. Lexical Scanning
Chapter 10. Parsing

PREFACE vn

Volume 4 deals with such a large topic, it actually represents three separate books

(Volumes 4A, 4B, and 4C). Two additional volumes on more specialized topics

are also planned: Volume 6, The Theory of Languages; Volume 7, Compilers.

I started out in 1962 to write a single book with this sequence of chapters,

but I soon found that it was more important to treat the subjects in depth rather

than to skim over them lightly. The resulting length of the text has meant that

each chapter by itself contains more than enough material for a one-semester

college course; so it has become sensible to publish the series in separate volumes.

I know that it is strange to have only one or two chapters in an entire book, but

I have decided to retain the original chapter numbering in order to facilitate

cross-references. A shorter version of Volumes 1 through 5 is planned, intended

specifically to serve as a more general reference and/or text for undergraduate

computer courses; its contents will be a subset of the material in these books,

with the more specialized information omitted. The same chapter numbering

will be used in the abridged edition as in the complete work.

The present volume may be considered as the "intersection" of the entire set,

in the sense that it contains basic material that is used in all the other books.

Volumes 2 through 5, on the other hand, may be read independently of each

other. Volume 1 is not only a reference book to be used in connection with the

remaining volumes; it may also be used in college courses or for self-study as a

text on the subject of data structures (emphasizing the material of Chapter 2),

or as a text on the subject of discrete mathematics (emphasizing the material

of Sections 1.1, 1.2, 1.3.3, and 2.3.4), or as a text on the subject of machine

language programming (emphasizing the material of Sections 1.3 and 1.4).

The point of view I have adopted while writing these chapters differs from

that taken in most contemporary books about computer programming in that

I am not trying to teach the reader how to use somebody else's software. I am

concerned rather with teaching people how to write better software themselves.

My original goal was to bring readers to the frontiers of knowledge in every

subject that was treated. But it is extremely difficult to keep up with a field

vm PREFACE

that is economically profitable, and the rapid rise of computer science has made
such a dream impossible. The subject has become a vast tapestry with tens of
thousands of subtle results contributed by tens of thousands of talented people
all over the world. Therefore my new goal has been to concentrate on "classic"
techniques that are likely to remain important for many more decades, and to
describe them as well as I can. In particular, I have tried to trace the history
of each subject, and to provide a solid foundation for future progress. I have
attempted to choose terminology that is concise and consistent with current
usage. I have tried to include all of the known ideas about sequential computer
programming that are both beautiful and easy to state.

A few words are in order about the mathematical content of this set of books.
The material has been organized so that persons with no more than a knowledge
of high-school algebra may read it, skimming briefly over the more mathematical
portions; yet a reader who is mathematically inclined will learn about many
interesting mathematical techniques related to discrete mathematics. This dual
level of presentation has been achieved in part by assigning ratings to each of the
exercises so that the primarily mathematical ones are marked specifically as such,
and also by arranging most sections so that the main mathematical results are
stated before their proofs. The proofs are either left as exercises (with answers
to be found in a separate section) or they are given at the end of a section.

A reader who is interested primarily in programming rather than in the
associated mathematics may stop reading most sections as soon as the math
ematics becomes recognizably difficult. On the other hand, a mathematically
oriented reader will find a wealth of interesting material collected here. Much of
the published mathematics about computer programming has been faulty, and
one of the purposes of this book is to instruct readers in proper mathematical
approaches to this subject. Since I profess to be a mathematician, it is my duty
to maintain mathematical integrity as well as I can.

A knowledge of elementary calculus will suffice for most of the mathematics
in these books, since most of the other theory that is needed is developed herein.
However, I do need to use deeper theorems of complex variable theory, probability
theory, number theory, etc., at times, and in such cases I refer to appropriate
textbooks where those subjects are developed.

The hardest decision that I had to make while preparing these books con
cerned the manner in which to present the various techniques. The advantages of
flow charts and of an informal step-by-step description of an algorithm are well
known; for a discussion of this, see the article "Computer-Drawn Flowcharts"
in the ACM Communications, Vol. 6 (September 1963), pages 555-563. Yet a
formal, precise language is also necessary to specify any computer algorithm,
and I needed to decide whether to use an algebraic language, such as ALGOL
or FORTRAN, or to use a machine-oriented language for this purpose. Per
haps many of today's computer experts will disagree with my decision to use a
machine-oriented language, but I have become convinced that it was definitely
the correct choice, for the following reasons:

PREFACE IX

a) A programmer is greatly influenced by the language in which programs are
written; there is an overwhelming tendency to prefer constructions that are
simplest in that language, rather than those that are best for the machine.
By understanding a machine-oriented language, the programmer will tend
to use a much more efficient method; it is much closer to reality.

b) The programs we require are, with a few exceptions, all rather short, so with
a suitable computer there will be no trouble understanding the programs.

c) High-level languages are inadequate for discussing important low-level de
tails such as coroutine linkage, random number generation, multi-precision
arithmetic, and many problems involving the efficient usage of memory.

d) A person who is more than casually interested in computers should be well
schooled in machine language, since it is a fundamental part of a computer.

e) Some machine language would be necessary anyway as output of the software
programs described in many of the examples.

f) New algebraic languages go in and out of fashion every five years or so, while
I am trying to emphasize concepts that are timeless.

From the other point of view, I admit that it is somewhat easier to write programs
in higher-level programming languages, and it is considerably easier to debug
the programs. Indeed, I have rarely used low-level machine language for my
own programs since 1970, now that computers are so large and so fast. Many
of the problems of interest to us in this book, however, are those for which
the programmer's art is most important. For example, some combinatorial
calculations need to be repeated a trillion times, and we save about 11.6 days
of computation for every microsecond we can squeeze out of their inner loop.
Similarly, it is worthwhile to put an additional effort into the writing of software
that will be used many times each day in many computer installations, since the
software needs to be written only once.

Given the decision to use a machine-oriented language, which language
should be used? I could have chosen the language of a particular machine X,
but then those people who do not possess machine X would think this book is
only for X-people. Furthermore, machine X probably has a lot of idiosyncrasies
that are completely irrelevant to the material in this book yet which must be
explained; and in two years the manufacturer of machine X will put out machine
X + 1 or machine lOX, and machine X will no longer be of interest to anyone.

To avoid this dilemma, I have attempted to design an "ideal" computer
with very simple rules of operation (requiring, say, only an hour to learn), which
also resembles actual machines very closely. There is no reason why a student
should be afraid of learning the characteristics of more than one computer; once
one machine language has been mastered, others are easily assimilated. Indeed,
serious programmers may expect to meet many different machine languages in
the course of their careers. So the only remaining disadvantage of a mythical
machine is the difficulty of executing any programs written for it. Fortunately,
that is not really a problem, because many volunteers have come forward to

x PREFACE

write simulators for the hypothetical machine. Such simulators are ideal for
instructional purposes, since they are even easier to use than a real computer
would be.

I have attempted to cite the best early papers in each subject, together with
a sampling of more recent work. When referring to the literature, I use standard
abbreviations for the names of periodicals, except that the most commonly cited
journals are abbreviated as follows:

CACM = Communications of the Association for Computing Machinery

JACM = Journal of the Association for Computing Machinery

Comp. J. =The Computer Journal (British Computer Society)

Math. Comp. = Mathematics of Computation

AMM = American Mathematical Monthly

SICOMP = SIAM Journal on Computing

FOCS =IEEE Symposium on Foundations of Computer Science

SODA = ACM-SIAM Symposium on Discrete Algorithms

STOC = ACM Symposium on Theory of Computing

Crelle = Journal fiir die reine und angewandte Mathematik

As an example, "CACM 6 (1963), 555-563" stands for the reference given in a
preceding paragraph of this preface. I also use "CMath" to stand for the book
Concrete Mathematics, which is cited in the introduction to Section 1.2.

Much of the technical content of these books appears in the exercises. When
the idea behind a nontrivial exercise is not my own, I have attempted to give
credit to the person who originated that idea. Corresponding references to the
literature are usually given in the accompanying text of that section, or in the
answer to that exercise, but in many cases the exercises are based on unpublished
material for which no further reference can be given.

I have, of course, received assistance from a great many people during the
years I have been preparing these books, and for this I am extremely thankful.
Acknowledgments are due, first, to my wife, Jill, for her infinite patience, for
preparing several of the illustrations, and for untold further assistance of all
kinds; secondly, to Robert W. Floyd, who contributed a great deal of his time
towards the enhancement of this material during the 1960s. Thousands of other
people have also provided significant help- it would take another book just
to list their names! Many of them have kindly allowed me to make use of
hitherto unpublished work. My research at Caltech and Stanford was gener
ously supported for many years by the National Science Foundation and the
Office of Naval Research. Addison-Wesley has provided excellent assistance and
cooperation ever since I began this project in 1962. The best way I know how
to thank everyone is to demonstrate by this publication that their input has led
to books that resemble what I think they wanted me to write.

PREFACE xi

Preface to the Third Edition

After having spent ten years developing the TEX and METAFONT systems for
computer typesetting, I am now able to fulfill the dream that I had when I began
that work, by applying those systems to The Art of Computer Programming.
At last the entire text of this book has been captured inside my personal com
puter, in an electronic form that will make it readily adaptable to future changes
in printing and display technology. The new setup has allowed me to make
literally thousands of improvements that I have been wanting to incorporate for
a long time.

In this new edition I have gone over every word of the text, trying to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of old
exercises have been given new and improved answers.

~ The Art of Computer Programming is, however, still a work in progress.
l Therefore some parts of this book are headed by an "under construction"
icon, to apologize for the fact that the material is not up-to-date. My files are
bursting with important material that I plan to include in the final, glorious,
fourth edition of Volume 1, perhaps 15 years from now; but I must finish
Volumes 4 and 5 first, and I do not want to delay their publication any more
than absolutely necessary.

Most of the hard work of preparing the new edition was accomplished by
Phyllis Winkler and Silvio Levy, who expertly keyboarded and edited the text
of the second edition, and by Jeffrey Oldham, who converted nearly all of the
original illustrations to METAPOST format. I have corrected every error that
alert readers detected in the second edition (as well as some mistakes that, alas,
nobody noticed); and I have tried to avoid introducing new errors in the new
material. However, I suppose some defects still remain, and I want to fix them
as soon as possible. Therefore I will cheerfully pay $2.56 to the first finder of
each technical, typographical, or historical error. The webpage cited on page iv
contains a current listing of all corrections that have been reported to me.

Stan! ord, California
April 1997

D. E.K.

Things have changed in the past two decades.

- BILL GATES (1995)

1. Start in

2. Read
pp. xvii-xix

3. N +--1

4. Begin
Chapter N

5. Inter
esting?

Yes

8. "*"?

No

9. 2+2=5?

No

10. Check
formulas

No

Yes

6. N~ 2?

11. Skim
math

12. Work
exercises

No

Flow chart for reading this set of books.

Yes

18. Relax

No

17. N ~ 12?

16. Increase N

15. Sleep

Yes

14. Tired?

13. Check
answers

Procedure for Reading

This Set of Books

1. Begin reading this procedure, unless you have already begun to read it.
Continue to follow the steps faithfully. (The general form of this procedure
and its accompanying fl.ow chart will be used throughout this book.)

2. Read the Notes on the Exercises, on pages xv-xvii.

3. Set N equal to 1.

4. Begin reading Chapter N. Do not read the quotations that appear at the
beginning of the chapter.

5. Is the subject of the chapter interesting to you? If so, go to step 7; if not,
go to step 6.

6. Is N :::; 2? If not, go to step 16; if so, scan through the chapter anyway.
(Chapters 1 and 2 contain important introductory material and also a review
of basic programming techniques. You should at least skim over the sections
on notation and about MIX.)

7. Begin reading the next section of the chapter; if you have already reached
the end of the chapter, however, go to step 16.

8. Is section number marked with "*"? If so, you may omit this section on
first reading (it covers a rather specialized topic that is interesting but not
essential); go back to step 7.

9. Are you mathematically inclined? If math is all Greek to you, go to step 11;
otherwise proceed to step 10.

10. Check the mathematical derivations made in this section (and report errors
to the author). Go to step 12.

11. If the current section is full of mathematical computations, you had better
omit reading the derivations. However, you should become familiar with the
basic results of the section; they are usually stated near the beginning, or
in slanted type right at the very end of the hard parts.

12. Work the recommended exercises in this section in accordance with the hints
given in the Notes on the Exercises (which you read in step 2).

13. After you have worked on the exercises to your satisfaction, check your
answers with the answer printed in the corresponding answer section at the

xiii

xiv PROCEDURE FOR READING THIS SET OF BOOKS

rear of the book (if any answer appears for that problem). Also read the
answers to the exercises you did not have time to work. Note: In most cases

it is reasonable to read the answer to exercise n before working on exercise
n + 1, so steps 12-13 are usually done simultaneously.

14. Are you tired? If not, go back to step 7.

15. Go to sleep. Then, wake up, and go back to step 7.

16. Increase N by one. If N = 3, 5, 7, 9, 11, or 12, begin the next volume of
this set of books.

17. If N is less than or equal to 12, go back to step 4.

18. Congratulations. Now try to get your friends to purchase a copy of Volume 1

and to start reading it. Also, go back to step 3.

Woe be to him that reads but one book.

- GEORGE HERBERT, Jacu/a Prudentum, 1144 (1640)

Le defaut unique de tous /es ouvrages
c'est d'etre trop longs.

- VAUVENARGUES, Reflexions, 628 (1746)

Books are a triviality. Life alone is great.

- THOMAS CARLYLE, Journal (1839)

Chapter 1- Basic Concepts

1.1. Algorithms
1.2. Mathematical Preliminaries

1.2.1. Mathematical Induction
1.2.2. Numbers, Powers, and Logarithms
1.2.3. Sums and Products
1.2.4. Integer Functions and Elementary Number Theory
1.2.5. Permutations and Factorials
1.2.6. Binomial Coefficients
1.2.7. Harmonic Numbers .
1.2.8 Fibonacci Numbers .
1.2.9 Generating Functions
1.2.10 Analysis of an Algorithm

*1.2.11 Asymptotic Representations
*1.2.11.l The 0-notation . .
*1.2.11.2 Euler's summation formula
*1.2.11.3 Some asymptotic calculations

1.3 MIX

1.3.1. Description of MIX

1.3.2. The MIX Assembly Language
1.3.3. Applications to Permutations

1.4. Some Fundamental Programming Techniques
1.4.1. Subroutines
1.4.2. Coroutines
1.4.3. Interpretive Routines .

1.4.3.l. A MIX simulator
*1.4.3.2. Trace routines

1.4.4. Input and Output
1.4.5. History and Bibliography

Chapter 2- Information Structures

2.1. Introduction
2.2. Linear Lists

2.2.1. Stacks, Queues, and Deques
2.2.2. Sequential Allocation
2.2.3. Linked Allocation

xviii

CONTENTS

1

1
10
11
21
27
39
45
52
75
79
87
96

107
107
111
116
124
124
144
164
186
186
193
200
202
212
215
229

232

232
238
238
244
254

2.2.4. Circular Lists
2.2.5. Doubly Linked Lists
2.2.6. Arrays and Orthogonal Lists

2.3. Trees
2.3.1. Traversing Binary Trees
2.3.2. Binary Tree Representation of Trees
2.3.3. Other Representations of Trees .
2.3.4. Basic Mathematical Properties of Trees

2.3.4.1. Free trees
2.3.4.2. Oriented trees

*2.3.4.3. The "infinity lemma"
*2.3.4.4. Enumeration of trees
2.3.4.5. Path length

*2.3.4.6. History and bibliography
2.3.5. Lists and Garbage Collection .

2.4. Multilinked Structures
2.5. Dynamic Storage Allocation
2.6. History and Bibliography

Answers to Exercises . . .

Appendix A-Tables of Numerical Quantities

Fundamental Constants (decimal)
Fundamental Constants (octal) . .

CONTENTS xix

273
280
298
308
318
334
348
362
363
372
382
386
399
406
408
424
435
457

466

1.
2.
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

619

619
620
621

Appendix B- Index to Notations 623

Index and Glossary 628

CHAPTER ONE

BASIC CONCEPTS

Many persons who are not conversant with mathematical studies
imagine that because the business of [Babbage's Analytical Engine] is to

give its results in numerical notation, the nature of its processes must
consequently be arithmetical and numerical, rather than algebraical and

analytical. This is an error. The engine can arrange and combine its
numerical quantities exactly as if they were letters or any other general

symbols; and in fact it might bring out its results in algebraical notation,
were provisions made accordingly,

1.1. ALGORITHMS

- AUGUSTA ADA, Countess of Lovelace (1844)

Practice yourself, for heaven's sake, in little things;
and thence proceed to greater.

- EPICTETUS (Discourses IV. i)

THE NOTION of an algorithm is basic to all of computer programming, so we
should begin with a careful analysis of this concept.

The word "algorithm" itself is quite interesting; at first glance it may look
as though someone intended to write "logarithm" but jumbled up the first four
letters. The word did not appear in Webster's New World Dictionary as late as
1957; we find only the older form "algorism" with its ancient meaning, the process
of doing arithmetic using Arabic numerals. During the Middle Ages, abacists
computed on the abacus and algorists computed by algorism. By the time of the
Renaissance, the origin of this word was in doubt, and early linguists attempted
to guess at its derivation by making combinations like algiros (painful] +arithmos
[number]; others said no, the word comes from "King Algor of Castile." Finally,
historians of mathematics found the true origin of the word algorism: It comes
from the name of a famous Persian textbook author, Abu 'Abd Allah Mulfammad
ibn Musa al-Khwarizmi (c. 825)-literally, "Father of Abdullah, Mohammed,
son of Moses, native of Khwarizm." The Aral Sea in Central Asia was once
known as Lake Khwarizm, and the Khwarizm region is located in the Amu
River basin just south of that sea. Al-Khwarizmi wrote the celebrated book
Kitab al jabr wa '1-muqabala ("Rules of restoring and equating"); another word,
"algebra," stems from the title of his book, which was a systematic study of the
solution of linear and quadratic equations. [For notes on al-Khwarizmi's life and
work, see H. Zemanek, Lecture Notes in Computer Science 122 (1981), 1-81.)

1

2 BASIC CONCEPTS 1.1

Gradually the form and meaning of algorism became corrupted; as ex

plained by the Oxford English Dictionary, the word "passed through many

pseudo-etymological perversions, including a recent algorithm, in which it is

learnedly confused" with the Greek root of the word arithmetic. This change

from "algorism" to "algorithm" is not hard to understand in view of the fact

that people had forgotten the original derivation of the word. An early German

mathematical dictionary, Vollstandiges mathematisches Lexicon (Leipzig: 174 7),

gave the following definition for the word Algorithm us: "Under this designation

are combined the notions of the four types of arithmetic calculations, namely

addition, multiplication, subtraction, and division." The Latin phrase algorith

mus infinitesimalis was at that time used to denote "ways of calculation with

infinitely small quantities, as invented by Leibniz."

By 1950, the word algorithm was most frequently associated with Euclid's

algorithm, a process for finding the greatest common divisor of two numbers

that appears in Euclid's Elements (Book 7, Propositions 1 and 2). It will be

instructive to exhibit Euclid's algorithm here:

Algorithm E (Euclid's algorithm). Given two positive integers m and n, find

their greatest common divisor, that is, the largest positive integer that evenly

divides both m and n.

El. [Find remainder.] Divide m by n and let r be the remainder. (We will have

0 :::; r < n.)

E2. [Is it zero?] If r = 0, the algorithm terminates; n is the answer.

E3. [Reduce.] Set m +-- n, n +-- r, and go back to step El. I

Of course, Euclid did not present his algorithm in just this manner. The

format above illustrates the style in which all of the algorithms throughout this

book will be presented.
Each algorithm we consider has been given an identifying letter (E in the

preceding example), and the steps of the algorithm are identified by this letter

followed by a number (El, E2, E3). The chapters are divided into numbered

sections; within a section the algorithms are designated by letter only, but when

algorithms are referred to in other sections, the appropriate section number is

attached. For example, we are now in Section 1.1; within this section Euclid's

algorithm is called Algorithm E, while in later sections it is referred to as

Algorithm l.lE.
Each step of an algorithm, such as step El above, begins with a phrase in

brackets that sums up as briefly as possible the principal content of that step.

This phrase also usually appears in an accompanying flow chart, such as Fig. 1,

so that the reader will be able to picture the algorithm more readily.

After the summarizing phrase comes a description in words and symbols

of some action to be performed or some decision to be made. Parenthesized

comments, like the second sentence in step El, may also appear. Comments are

included as explanatory information about that step, often indicating certain

invariant characteristics of the variables or the current goals at that step. They

1.1 ALGORITHMS 3

No
El. Find remainder f-----;>t E2. Is it zero? ,___ __ ._ E3. Reduce

Yes

Fig. 1. Flow chart for Algorithm E.

do not specify actions that belong to the algorithm, but are meant only for the

reader's benefit as possible aids to comprehension.

The arrow "+--" in Step E3 is the all-important replacement operation,

sometimes called assignment or substitution: "m +-- n" means that the value of

variable m is to be replaced by the current value of variable n. When Algorithm E

begins, the values of m and n are the originally given numbers; but when it

ends, those variables will have, in general, different values. An arrow is used

to distinguish the replacement operation from the equality relation: We will

not say, "Set m = n," but we will perhaps ask, "Does m = n?" The "="
sign denotes a condition that can be tested, the "+--" sign denotes an action

that can be performed. The operation of increasing n by one is denoted by

"n +-- n + 1" (read "n is replaced by n + 1" or "n gets n + 1"). In general,

"variable +--formula" means that the formula is to be computed using the present

values of any variables appearing within it; then the result should replace the

previous value of the variable at the left of the arrow. Persons untrained in

computer work sometimes have a tendency to say "n becomes n + 1" and to

write "n ---+ n + 1" for the operation of increasing n by one; this symbolism can

only lead to confusion because of its conflict with standard conventions, and it

should be avoided.
Notice that the order of actions in step E3 is important: "Set m +-- n,

n +-- r" is quite different from "Set n +-- r, m +-- n," since the latter would imply

that the previous value of n is lost before it can be used to set m. Thus the

latter sequence is equivalent to "Set n +-- r, m +-- r." When several variables

are all to be set equal to the same quantity, we can use multiple arrows; for

example, "n +-- r, m +-- r" may be written "n +-- m +-- r." To interchange the

values of two variables, we can write "Exchange m +-+ n"; this action could also

be specified by using a new variable t and writing "Set t +-- m, m +-- n, n +-- t."

An algorithm starts at the lowest-numbered step, usually step 1, and it

performs subsequent steps in sequential order unless otherwise specified. In step

E3, the imperative "go back to step El" specifies the computational order in an

obvious fashion. In step E2, the action is prefaced by the condition "If r = O";

so if r I- 0, the rest of that sentence does not apply and no action is specified.

We might have added the redundant sentence, "If r I- 0, go on to step E3."

The heavy vertical line " I " appearing at the end of step E3 is used to

indicate the end of an algorithm and the resumption of text.

We have now discussed virtually all the notational conventions used in the

algorithms of this book, except for a notation used to denote "subscripted" or

4 BASIC CONCEPTS 1.1

"indexed" items that are elements of an ordered array. Suppose we have n

quantities, v1 , v2 , ... , vn; instead of writing Vj for the jth element, the notation

v[j] is often used. Similarly, a[i, j] is sometimes used in preference to a doubly

subscripted notation like aij. Sometimes multiple-letter names are used for

variables, usually set in capital letters; thus TEMP might be the name of a variable

used for temporarily holding a computed value, PRIME [K] might denote the Kth

prime number, and so on.
So much for the form of algorithms; now let us perf arm one. It should be

mentioned immediately that the reader should not expect to read an algorithm

as if it were part of a novel; such an attempt would make it pretty difficult to

understand what is going on. An algorithm must be seen to be believed, and the

best way to learn what an algorithm is all about is to try it. The reader should

always take pencil and paper and work through an example of each algorithm

immediately upon encountering it in the text. Usually the outline of a worked

example will be given, or else the reader can easily conjure one up. This is a

simple and painless way to gain an understanding of a given algorithm, and all

other approaches are generally unsuccessful.
Let us therefore work out an example of Algorithm E. Suppose that we are

given m = 119 and n = 544; we are ready to begin, at step El. (The reader

should now follow the algorithm as we give a play-by-play account.) Dividing

m by n in this case is quite simple, almost too simple, since the quotient is zero

and the remainder is 119. Thus, r +-- 119. We proceed to step E2, and since

r I- 0 no action occurs. In step E3 we set m +-- 544, n +-- 119. It is clear that if

m < n originally, the quotient in step El will always be zero and the algorithm

will always proceed to interchange m and n in this rather cumbersome fashion.

We could add a new step:

EO. [Ensure m ~ n.] If m < n, exchange m +-+ n.

This would make no essential change in the algorithm, except to increase its

length slightly, and to decrease its running time in about one half of all cases.

Back at step El, we find that ~i~ = 4 1
6
1
8
9 , so r +-- 68. Again E2 is

inapplicable, and at E3 we set m +-- 119, n +-- 68. The next round sets r +-- 51,

and ultimately m +-- 68, n +-- 51. Next r +-- 17, and m +-- 51, n +-- 17. Finally,

when 51 is divided by 17, we set r +-- 0, so at step E2 the algorithm terminates.

The greatest common divisor of 119 and 544 is 17.
So this is an algorithm. The modern meaning for algorithm is quite similar to

that of recipe, process, method, technique, procedure, routine, rigmarole, except

that the word "algorithm" connotes something just a little different. Besides

merely being a finite set of rules that gives a sequence of operations for solving

a specific type of problem, an algorithm has five important features:

1) Finiteness. An algorithm must always terminate after a finite number of

steps. Algorithm E satisfies this condition, because after step El the value of r

is less than n; so if r I- 0, the value of n decreases the next time step El is

encountered. A decreasing sequence of positive integers must eventually termi

nate, so step El is executed only a finite number of times for any given original

1.1 ALGORITHMS 5

value of n. Note, however, that the number of steps can become arbitrarily large;
certain huge choices of m and n will cause step El to be executed more than a
million times.

(A procedure that has all of the characteristics of an algorithm except that it

possibly lacks finiteness may be called a computational method. Euclid originally
presented not only an algorithm for the greatest common divisor of numbers, but
also a very similar geometrical construction for the "greatest common measure"
of the lengths of two line segments; this is a computational method that does
not terminate if the given lengths are incommensurable. Another example of a
nonterminating computational method is a reactive process, which continually
interacts with its environment.)

2) Definiteness. Each step of an algorithm must be precisely defined; the ac
tions to be carried out must be rigorously and unambiguously specified for each
case. The algorithms of this book will hopefully meet this criterion, but they
are specified in the English language, so there is a possibility that the reader
might not understand exactly what the author intended. To get around this
difficulty, formally defined programming languages or computer languages are
designed for specifying algorithms, in which every statement has a very definite
meaning. Many of the algorithms of this book will be given both in English
and in a computer language. An expression of a computational method in a
computer language is called a program.

In Algorithm E, the criterion of definiteness as applied to step El means that
the reader is supposed to understand exactly what it means to divide m by n

and what the remainder is. In actual fact, there is no universal agreement about
what this means if m and n are not positive integers; what is the remainder of
-8 divided by -Jr? What is the remainder of 59/13 divided by zero? Therefore
the criterion of definiteness means we must make sure that the values of m and n

are always positive integers whenever step El is to be executed. This is initially
true, by hypothesis; and after step El, r is a nonnegative integer that must be
nonzero if we get to step E3. Som and n are indeed positive integers as required.

3) Input. An algorithm has zero or more inputs: quantities that are given to it
initially before the algorithm begins, or dynamically as the algorithm runs. These
inputs are taken from specified sets of objects. In Algorithm E, for example, there
are two inputs, namely m and n, both taken from the set of positive integers.

4) Output. An algorithm has one or more outputs: quantities that have a
specified relation to the inputs. Algorithm E has one output, namely n in step E2,
the greatest common divisor of the two inputs.

(We can easily prove that this number is indeed the greatest common divisor,
as follows. After step El, we have

m = qn + r,
for some integer q. If r = 0, then m is a multiple of n, and clearly in such a case
n is the greatest common divisor of m and n. If r I- 0, note that any number
that divides both m and n must divide m - qn = r, and any number that divides

6 BASIC CONCEPTS 1.1

both n and r must divide qn + r = m; so the set of divisors of { m, n} is the

same as the set of divisors of { n, r }. In particular, the greatest common divisor

of { m, n} is the same as the greatest common divisor of { n, r}. Therefore step

E3 does not change the answer to the original problem.)

5) Effectiveness. An algorithm is also generally expected to be effective, in the .
sense that its operations must all be sufficiently basic that they can in principle

be done exactly and in a finite length of time by someone using pencil and

paper. Algorithm E uses only the operations of dividing one positive integer

by another, testing if an integer is zero, and setting the value of one variable

equal to the value of another. These operations are effective, because integers

can be represented on paper in a finite manner, and because there is at least

one method (the "division algorithm") for dividing one by another. But the

same operations would not be effective if the values involved were arbitrary real

numbers specified by an infinite decimal expansion, nor if the values were the

lengths of physical line segments (which cannot be specified exactly). Another

example of a noneffective step is, "If 4 is the largest integer n for which there is

a solution to the equation wn + xn + yn = zn in positive integers w, x, y, and z,

then go to step E4." Such a statement would not be an effective operation until

someone successfully constructs an algorithm to determine whether 4 is or is not

the largest integer with the stated property.

Let us try to compare the concept of an algorithm with that of a cookbook

recipe. A recipe presumably has the qualities of finiteness (although it is said

that a watched pot never boils), input (eggs, flour, etc.), and output (TV dinner,

etc.), but it notoriously lacks definiteness. There are frequent cases in which a

cook's instructions are indefinite: "Add a dash of salt." A "dash" is defined

to be "less than 1/s teaspoon," and salt is perhaps well enough defined; but

where should the salt be added-on top? on the side? Instructions like "toss

lightly until mixture is crumbly" or "warm cognac in small saucepan" are quite

adequate as explanations to a trained chef, but an algorithm must be specified

to such a degree that even a computer can follow the directions. Nevertheless,

a computer programmer can learn much by studying a good recipe book. (The

author has in fact barely resisted the temptation to name the present volume

"The Programmer's Cookbook." Perhaps someday he will attempt a book called

"Algorithms for the Kitchen.")

We should remark that the finiteness restriction is not really strong enough

for practical use. A useful algorithm should require not only a finite number

of steps, but a very finite number, a reasonable number. For example, there is

an algorithm that determines whether or not the game of chess can always be

won by White if no mistakes are made (see exercise 2.2.3-28). That algorithm

can solve a problem of intense interest to thousands of people, yet it is a safe

bet that we will never in our lifetimes know the answer; the algorithm requires

fantastically large amounts of time for its execution, even though it is finite. See

also Chapter 8 for a discussion of some finite numbers that are so large as to

actually be beyond comprehension.

1.1 ALGORITHMS 7

In practice we not only want algorithms, we want algorithms that are good
in some loosely defined aesthetic sense. One criterion of goodness is the length
of time taken to perform the algorithm; this can be expressed in terms of the
number of times each step is executed. Other criteria are the adaptability of the
algorithm to different kinds of computers, its simplicity and elegance, etc.

We often are faced with several algorithms for the same problem, and we
must decide which is best. This leads us to the extremely interesting and
all-important field of algorithmic analysis: Given an algorithm, we want to
determine its performance characteristics.

For example, let's consider Euclid's algorithm from this point of view. Sup
pose we ask the question, "Assuming that the value of n is known but m is
allowed to range over all positive integers, what is the average number of times,
Tn, that step El of Algorithm E will be performed?" In the first place, we need
to check that this question does have a meaningful answer, since we are trying
to take an average over infinitely many choices for m. But it is evident that
after the first execution of step El only the remainder of m after division by n is
relevant. So all we must do to find Tn is to try the algorithm form= 1, m = 2,
... , m = n, count the total number of times step El has been executed, and
divide by n.

Now the important question is to determine the nature of Tn; is it approxi
mately equal to !n, or fo, for instance? As a matter of fact, the answer to this
question is an extremely difficult and fascinating mathematical problem, not yet
completely resolved, which is examined in more detail in Section 4.5.3. For large
values of nit is possible to prove that Tn is approximately (12(1n2)/rr2)1nn,
that is, proportional to the natural logarithm of n, with a constant of propor
tionality that might not have been guessed offhand! For further details about
Euclid's algorithm, and other ways to calculate the greatest common divisor, see
Section 4.5.2.

Analysis of algorithms is the name the author likes to use to describe
investigations such as this. The general idea is to take a particular algorithm
and to determine its quantitative behavior; occasionally we also study whether
or not an algorithm is optimal in some sense. The theory of algorithms is another
subject entirely, dealing primarily with the existence or nonexistence of effective
algorithms to compute particular quantities.

So far our discussion of algorithms has been rather imprecise, and a mathe
matically oriented reader is justified in thinking that the preceding commentary
makes a very shaky foundation on which to erect any theory about algorithms.
We therefore close this section with a brief indication of one method by which the
concept of algorithm can be firmly grounded in terms of mathematical set theory.
Let us formally define a computational method to be a quadruple (Q, I, 0, !),
in which Q is a set containing subsets I and n, and f is a function from Q
into itself. Furthermore f should leave n pointwise fixed; that is, f (q) should
equal q for all elements q of n. The four quantities Q, I, 0, f are intended
to represent respectively the states of the computation, the input, the output,
and the computational rule. Each input x in the set I defines a computational

8 BASIC CONCEPTS 1.1

sequence, x 0 , x1 , x2 , ... , as follows:

Xo = X and

The computational sequence is said to terminate in k steps if k is the smallest
integer for which Xk is in n, and in this case it is said to produce the output
Xk from x. (Note that if Xk is in n, so is Xk+I, because Xk+l = Xk in such a
case.) Some computational sequences may never terminate; an algorithm is a
computational method that terminates in finitely many steps for all x in I.

Algorithm E may, for example, be formalized in these terms as follows: Let Q
be the set of all singletons (n), all ordered pairs (m, n), and all ordered quadruples
(m, n, r, 1), (m, n, r, 2), and (m, n,p, 3), where m, n, and pare positive integers
and r is a nonnegative integer. Let I be the subset of all pairs (m, n) and let n
be the subset of all singletons (n). Let f be defined as follows:

J((m, n)) = (m, n, 0, 1); f ((n)) = (n);

f ((m, n, r, 1)) = (m, n, remainder of m divided by n, 2);

J((m,n,r,2)) = (n) if r = 0, (m,n,r,3) otherwise;

J((m, n,p, 3)) = (n,p,p, 1).

The correspondence between this notation and Algorithm Eis evident.
This formulation of the concept of an algorithm does not include the re

striction of effectiveness mentioned earlier. For example, Q might denote infinite
sequences that are not computable by pencil and paper methods, or f might
involve operations that mere mortals cannot always perform. If we wish to
restrict the notion of algorithm so that only elementary operations are involved,
we can place restrictions on Q, I, n, and f, for example as follows: Let A be
a finite set of letters, and let A* be the set of all strings on A (the set of all
ordered sequences x 1x2 ... Xn, where n 2:: 0 and Xj is in A for 1 ::; j ::; n). The
idea is to encode the states of the computation so that they are represented by
strings of A*. Now let N be a nonnegative integer and let Q be the set of all
(<7,j), where O" is in A* and j is an integer, 0::; j::; N; let I be the subset of Q
with j = 0 and let n be the subset with j = N. If () and O" are strings in A*, we
say that () occurs in O" if O" has the form a.ew for strings a and w. To complete
our definition, let f be a function of the following type, defined by the strings
()j, </>j and the integers aj, b1 for 0::; j < N:

f (<7, j) = (<7, aj)

f (O", j) = (a¢jw, bj)

f (<7, N) = (<7, N).

if e1 does not occur in <7;

if a is the shortest possible string for which O" = a()jw;

Such a computational method is clearly effective, and experience shows
that it is also powerful enough to do anything we can do by hand. There are
many other essentially equivalent ways to formulate the concept of an effective
computational ·method (for example, using Turing machines). The formulation
above is virtually the same as that given by A. A. Markov in his book The

1.1 ALGORITHMS 9

Theory of Algorithms [1Tudy Mat. Inst. Akad. Nauk 42 (1954), 1-376], later
revised and enlarged by N. M. Nagorny (Moscow: Nauka, 1984; English edition,
Dordrecht: Kluwer, 1988).

EXERCISES
1. [1 O] The text showed how to interchange the values of variables m and n, using

the replacement notation, by setting t +-- m, m +-- n, n +-- t. Show how the values of
four variables (a, b, c, d) can be rearranged to (b, c, d, a) by a sequence of replacements.
In other words, the new value of a is to be the original value of b, etc. Try to use the
minimum number of replacements.

2. [15] Prove that m is always greater than n at the beginning of step El, except
possibly the first time this step occurs.

3. [20] Change Algorithm E (for the sake of efficiency) so that all trivial replacement
operations such as "m +-- n" are avoided. Write this new algorithm in the style of
Algorithm E, and call it Algorithm F.

4. [16] What is the greatest common divisor of 2166 and 6099?

..,. 5. [12] Show that the "Procedure for Reading This Set of Books" that appears in
the preface actually fails to be a genuine algorithm on three of our five counts! Also
mention some differences in format between it and Algorithm E.

6. [20] What is T5 , the average number of times step El is performed when n = 5?

..,. 7. [M21] Suppose that mis known and n is allowed to range over all positive integers;
let Urn be the average number of times that step El is executed in Algorithm E. Show
that Urn is well defined. Is Urn in any way related to T rn?

8. [M25] Give an "effective" formal algorithm for computing the greatest common
divisor of positive integers m and n, by specifying ()j, </>j, aj, bj as in Eqs. (3)· Let the
input be represented by the string a rn bn, that is, m a's followed by n b's. Try to make
your solution as simple as possible. [Hint: Use Algorithm E, but instead of division in
step El, set r +-- Im - nl, n +-- min(m, n).]

..,. 9. [M30] Suppose that C1 = (Q1,l1,fh,/i) and C2 = (Q2,h,fh,/2) are computa
tional methods. For example, C1 might stand for Algorithm E as in Eqs. (2), except
that m and n are restricted in magnitude, and C2 might stand for a computer program
implementation of Algorithm E. (Thus Q2 might be the set of all states of the machine,
i.e., all possible configurations of its memory and registers; f2 might be the definition
of single machine actions; and h might be the initial state, including the program for
determining the greatest common divisor as well as the values of m and n.)

Formulate a set-theoretic definition for the concept "C2 is a representation of C1"
or "C2 simulates C1 ." This is to mean intuitively that any computation sequence of C1
is mimicked by C2 , except that C2 might take more steps in which to do the computation
and it might retain more information in its states. (We thereby obtain a rigorous
interpretation of the statement, "Program X is an implementation of Algorithm Y.")

10 BASIC CONCEPTS 1.2

1.2. MATHEMATICAL PRELIMINARIES

IN THIS SECTION we shall investigate the mathematical notations that occur

throughout The Art of Computer Programming, and we'll derive several basic

formulas that will be used repeatedly. Even a reader not concerned with the

more complex mathematical derivations should at least become familiar with

the meanings of the various formulas, so as to be able to use the results of the

derivations.

Mathematical notation is used for two main purposes in this book: to

describe portions of an algorithm, and to analyze the performance character

istics of an algorithm. The notation used in descriptions of algorithms is quite

simple, as explained in the previous section. When analyzing the performance

of algorithms, we need to use other more specialized notations.

Most of the algorithms we will discuss are accompanied by mathematical

calculations that determine the speed at which the algorithm may be expected

to run. These calculations draw on nearly every branch of mathematics, and a

separate book would be necessary to develop all of the mathematical concepts

that are used in one place or another. However, the majority of the calculations

can be carried out with a knowledge of college algebra, and the reader with a

knowledge of elementary calculus will be able to understand nearly all of the

mathematics that appears. Sometimes we will need to use deeper results of

complex variable theory, group theory, number theory, probability theory, etc.;

in such cases the topic will be explained in an elementary manner, if possible, or

a reference to other sources of information will be given.

The mathematical techniques involved in the analysis of algorithms usually

have a distinctive flavor. For example, we will quite often find ourselves working

with finite summations of rational numbers, or with the solutions to recurrence

relations. Such topics are traditionally given only a light treatment in mathe

matics courses, and so the following subsections are designed not only to give a

thorough drilling in the use of the notations to be defined but also to illustrate

in depth the types of calculations and techniques that will be most useful to us.

Important note: Although the following subsections provide a rather extensive

training in the mathematical skills needed in connection with the study of com

puter algorithms, most readers will not see at first any very strong connections

between this material and computer programming (except in Section 1.2.1). The

reader may choose to read the following subsections carefully, with implicit faith

in the author's assertion that the topics treated here are indeed very relevant; but

it is probably preferable, for motivation, to skim over this section lightly at first,

and (after seeing numerous applications of the techniques in future chapters)

return to it later for more intensive study. If too much time is spent studying

this material when first reading the book, a person might never get on to the

computer programming topics! However, each reader should at least become

familiar with the general contents of these subsections, and should try to solve a

few of the exercises, even on first reading. Section 1.2.10 should receive particular

attention, since it is the point of departure for most of the theoretical material

1.2.1 MATHEMATICAL INDUCTION 11

developed later. Section 1.3, which follows 1.2, abruptly leaves the realm of
"pure mathematics" and enters into "pure computer programming."

An expansion and more leisurely presentation of much of the following
material can be found in the book Concrete Mathematics by Graham, Knuth,
and Patashnik, second edition (Reading, Mass.: Addison-Wesley, 1994). That
book will be called simply CMath when we need to refer to it later.

1.2.1. Mathematical Induction

Let P(n) be some statement about the integer n; for example, P(n) might be
"n times (n + 3) is an even number," or "if n > 10, then 2n > n 3 ." Suppose we
want to prove that P(n) is true for all positive integers n. An important way to
do this is:

a) Give a proof that P(l) is true.

b) Give a proof that "if all of P(l), P(2), ... , P(n) are true, then P(n + 1) is
also true"; this proof should be valid for any positive integer n.

As an example, consider the following series of equations, which many people
have discovered independently since ancient times:

1=12

'
1+3 = 22

,

1+3 + 5 = 32
,

1+3+5+7=42
,

1 + 3 + 5 + 7 + 9 = 52
.

We can formulate the general property as follows:

1+3 + · · · + (2n - 1) = n2
.

Let us, for the moment, call this equation P(n); we wish to prove that P(n) is
true for all positive n. Following the procedure outlined above, we have:

a) "P(l) is true, since 1=12 ."

b) "If all of P(l), ... , P(n) are true, then, in particular, P(n) is true, so Eq. (2)
holds; adding 2n + 1 to both sides we obtain

1 + 3 + · · · + (2n - 1) + (2n + 1) = n2 + 2n + 1 = (n + 1)2
,

which proves that P(n + 1) is also true."

We can regard this method as an algorithmic proof procedure. In fact, the
following algorithm produces a proof of P(n) for any positive integer n, assuming
that steps (a) and (b) above have been worked out:

Algorithm I (Construct a proof). Given a positive integer n, this algorithm
will output a proof that P(n) is true.

11. [Prove P(l).] Set k +--- 1, and, according to (a), output a proof of P(l).

12 BASIC CONCEPTS 1.2.1

12. [k = n?] If k = n, terminate the algorithm; the required proof has been
output.

13. [Prove P(k + 1).] According to (b), output a proof that "If all of P(l), ... ,
P(k) are true, then P(k + 1) is true." Also output "We have already proved
P(l), ... , P(k); hence .P(k + 1) is true."

14. [Increase k.] Increase k by 1 and go to step I2. I

-~ 11. Prove P(l) >----~

Fig. 2. Algorithm I: Mathematical induction.

Since this algorithm clearly presents a proof of P(n), for any given n, the
proof technique consisting of steps (a) and (b) is logically valid. It is called proof
by mathematical induction.

The concept of mathematical induction should be distinguished from what
is usually called inductive reasoning in science. A scientist takes specific observa
tions and creates, by "induction," a general theory or hypothesis that accounts
for these facts; for example, we might observe the five relations in (i), above,
and formulate (2). In this sense, induction is no more than our best guess about
the situation; mathematicians would call it an empirical result or a conjecture.

Another example will be helpful. Let p(n) denote the number of partitions
of n, that is, the number of different ways to write n as a sum of positive integers,
disregarding order. Since 5 can be partitioned in exactly seven ways,

1+1+1+1+1=2+1+1+1=2+2+1=3+1+1=3+2=4+1=5,

we have p(5) = 7. In fact, it is easy to establish the first few values,

p(l) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7.

At this point we might tentatively formulate, by induction, the hypothesis that
the sequence p(2), p(3), ... runs through the prime numbers. To test this
hypothesis, we proceed to calculate p(6) and behold! p(6) = 11, confirming
our conjecture.

[Unfortunately, p(7) turns out to be 15, spoiling everything, and we must
try again. The numbers p(n) are known to be quite complicated, although
S. Ramanujan succeeded in guessing and proving many remarkable things about
them. For further information, see G. H. Hardy, Ra.manujan (London: Cam
bridge University Press, 1940), Chapters 6 and 8.]

Mathematical induction is quite different from induction in the sense just
explained. It is not just guesswork, but a conclusive proof of a statement; indeed,
it is a proof of infinitely many statements, one for each n. It has been called
"induction" only because one must first decide somehow what is to be proved,

1.2.1 MATHEMATICAL INDUCTION 13

before one can apply the technique of mathematical induction. Henceforth in
this book we shall use the word induction only when we wish to imply proof by
mathematical induction.

There is a geometrical way to prove Eq. (2).
Figure 3 shows, for n = 6, n 2 cells broken into
groups of 1 + 3 + · · · + (2n - 1) cells. However, in
the final analysis, this picture can be regarded as a
"proof" only if we show that the construction can
be carried out for all n, and such a demonstration
is essentially the same as a proof by induction.

Our proof of Eq. (2) used only a special case
of (b); we merely showed that the truth of P(n)
implies the truth of P(n+l). This is an important
simple case that arises frequently, but our next
example illustrates the power of the method a little
more. We define the Fibonacci sequence Fo, F1,

11

9

i 7

5

3

1i1···
Fig. 3. The sum of odd
numbers is a square.

F2 , ... by the rule that F0 = 0, F1 = 1, and every further term is the sum of
the preceding two. Thus the sequence begins 0, 1, 1, 2, 3, 5, 8, 13, ... ; we will
investigate it in detail in Section 1.2.8. We will now prove that if¢ is the number
(1 + v'5) /2 we have

for all positive integers n. Call this formula P(n).
If n = 1, then F1 = 1 = ¢ 0 = ¢n-1, so step (a) has been done. For step (b)

we notice first that P(2) is also true, since F2 = 1 < 1.6 < ¢ 1 = ¢ 2
-

1
. Now, if all

of P(l), P(2), ... , P(n) are true and n > 1, we know in particular that P(n-1)
and P(n) are true; so Fn-l ::; ¢n-2 and Fn ::; ¢n-l. Adding these inequalities,
we get

The important property of the number ¢, indeed the reason we chose this number
for this problem in the first place, is that

1 + ¢ = ¢2.

Plugging (5) into (4) gives Fn+I ::; ¢n, which is P(n + 1). So step (b) has
been done, and (3) has been proved by mathematical induction. Notice that we
approached step (b) in two different ways here: We proved P(n+l) directly when
n = 1, and we used an inductive method when n > 1. This was necessary, since
when n = 1 our reference to P(n - 1) = P(O) would not have been legitimate.

Mathematical induction can also be used to prove things about algorithms.
Consider the following generalization of Euclid's algorithm.

Algorithm E (Extended Euclid's algorithm). Given two positive integers m
and n, we compute their greatest common divisor d and two integers a and b,
such that am+ bn = d.

El. [Initialize.] Set a' +--- b +--- 1, a +--- b' +--- 0, c +--- m, d +--- n.

14 BASIC CONCEPTS 1.2.l

E2. [Divide.] Let q and r be the quotient and remainder, respectively, of c
divided by d. (We have c = qd +rand 0::::; r < d.)

E3. [Remainder zero?] If r = 0, the algorithm terminates; we have in this case
am + bn = d as desired.

E4. [Recycle.] Set c +-- d, d +-- r, t +-- a', a' +-- a, a +-- t - qa, t +-- b', b' +-- b,
b +-- t - qb, and go back to E2. I

If we suppress the variables a, b, a', and b' from this algorithm and use m
and n for the auxiliary variables c and d, we have our old algorithm, 1.lE. The
new version does a little more, by determining the coefficients a and b. Suppose
that m = 1769 and n = 551; we have successively (after step E2):

a' a b' b c d q r

1 0 0 1 1769 551 3 116

0 1 1 -3 551 116 4 87

1 -4 -3 13 116 87 1 29

-4 5 13 -16 87 29 3 0

The answer is correct: 5 x 1769 - 16 x 551 = 8845 - 8816 = 29, the greatest
common divisor of 1769 and 551.

The problem is to prove that this algorithm works properly, for all m and n.
We can try to apply the method of mathematical induction by letting P(n) be
the statement "Algorithm E works for n and all integers m." However, that
approach doesn't work out so easily, and we need to prove some extra facts.
After a little study, we find that something must be proved about a, b, a', and
b', and the appropriate fact is that the equalities

a'm + b'n = c, am+ bn = d (6)

always hold whenever step E2 is executed. We may prove these equalities directly
by observing that they are certainly true the first time we get to E2, and that
step E4 does not change their validity. (See exercise 6.)

Now we are ready to show that Algorithm Eis valid, by induction on n: If
m is a multiple of n, the algorithm obviously works properly, since we are done
immediately at E3 the first time. This case always occurs when n = 1. The
only case remaining is when n > 1 and m is not a multiple of n. In such a
case, the algorithm proceeds to set c +-- n, d +-- r after the first execution, and
since r < n, we may assume by induction that the final value of d is the gcd
of n and r. By the argument given in Section 1.1, the pairs {m,n} and {n,r}
have the same common divisors, and, in particular, they have the same greatest
common divisor. Hence dis the gcd of m and n, and am+ bn = d by (6).

The italicized phrase in the proof above illustrates the conventional lan
guage that is so often used in an inductive proof: When doing part (b) of the
construction, rather than saying "We will now assume P(l), P(2), ... , P(n), and
with this assumption we will prove P(n + 1)," we often say simply "We will now
prove P(n); we may assume by induction that P(k) is true whenever 1 :::=; k < n."

1.2.1

El.

E2.

a' f--- 1
b' f--- 0

q f--- quotient (c --;- d)
r f--- remainder (c --;- d)

E3.

MATHEMATICAL INDUCTION

------Al: m>O, n>O.

---A2: c=m>O, d=n>O,
a= b' = 0, a' = b = 1.

15

---A3: am+bn=d, a'm+b'n=c=qd+r,
/ 0-:=:; r < d, gcd(c, d) = gcd(m, n).

/ - - - - - - - - - - - -A4: am+ bn = d = gcd(m, n).

~----~----~------------A5: am+ bn=d, a'm+b'n=c=qd+r,
0 < r < d, gcd(c, d) = gcd(m, n).

cf--- d, d f--- r;
E4. t f--- a', a' f--- a, a f--- t - qa;

t f--- b'' b' f--- b, bf--- t - qb.

--------------------A6: am+bn=d, a'm+b'n=c, d>O,
gcd(c, d) = gcd(m, n).

Fig. 4. Flow chart for Algorithm E, labeled with assertions that prove the validity of

the algorithm.

If we examine this argument very closely and change our viewpoint slightly,
we can envision a general method applicable to proving the validity of any

algorithm. The idea is to take a flow chart for some algorithm and to label
each of the arrows with an assertion about the current state of affairs at the
time the computation traverses that arrow. See Fig. 4, where the assertions
have been labeled Al, A2, ... , A6. (All of these assertions have the additional
stipulation that the variables are integers; this stipulation has been omitted to
save space.) A 1 gives the initial assumptions upon entry to the algorithm, and
A4 states what we hope to prove about the output values a, b, and d.

The general method consists of proving, for each box in the flow chart, that

if any one of the assertions on the arrows leading into the box
is true before the operation in that box is performed, then all of
the assertions on the arrows leading away from the box are true
after the operation.

Thus, for example, we must prove that either A2 or A6 before E2 implies A3
after E2. (In this case A2 is a stronger statement than A6; that is, A2 implies
A6. So we need only prove that A6 before E2 implies A3 after. Notice that the
condition d > 0 is necessary in A 6 just to prove that operation E2 even makes
sense.) It is also necessary to show that A3 and r = 0 implies A4; that A3 and
r # 0 implies A 5; etc. Each of the required proofs is very straightforward.

Once statement (7) has been proved for each box, it follows that all assertions
are true during any execution of the algorithm. For we can now use induction

16 BASIC CONCEPTS 1.2.l

on the number of steps of the computation, in the sense of the number of arrows
traversed in the flow chart. While traversing the first arrow, the one leading from
"Start", the assertion Al is true since we always assume that our input values
meet the specifications; so the assertion on the first arrow traversed is correct.
If the assertion that labels the nth arrow is true, then by (7) the assertion that
labels the (n + l)st arrow"is also true.

Using this general method, the problem of proving that a given algorithm
is valid evidently consists mostly of inventing the right assertions to put in the
flow chart. Once this inductive leap has been made, it is pretty much routine to
carry out the proofs that each assertion leading into a box logically implies each
assertion leading out. In fact, it is pretty much routine to invent the assertions
themselves, once a few of the difficult ones have been discovered; thus it is very
simple in our example to write out essentially what A2, A3, and A5 must be,
if only Al, A4, and A6 are given. In our example, assertion A6 is the creative
part of the proof; all the rest could, in principle, be supplied mechanically. Hence
no attempt has been made to give detailed formal proofs of the algorithms that
follow in this book, at the level of detail found in Fig. 4. It suffices to state
the key inductive assertions. Those assertions either appear in the discussion
following an algorithm or they are given as parenthetical remarks in the text of
the algorithm itself.

This approach to proving the correctness of algorithms has another aspect
that is even more important: It mirrors the way we understand an algorithm.
Recall that in Section 1.1 the reader was cautioned not to expect to read an
algorithm like part of a novel; one or two trials of the algorithm on some sample
data were recommended. This was done expressly because an example run
through of the algorithm helps a person formulate the various assertions mentally.
It is the contention of the author that we really understand why an algorithm is
valid only when we reach the point that our minds have implicitly filled in all the
assertions, as was done in Fig. 4. This point of view has important psychological
consequences for the proper communication of algorithms from one person to
another: It implies that the key assertions, those that cannot easily be derived
by an automaton, should always be stated explicitly when an algorithm is being
explained to someone else. When Algorithm E is being put forward, assertion
A 6 should be mentioned too.

An alert reader will have noticed a gaping hole in our last proof of Algo
rithm E, however. We never showed that the algorithm terminates; all we have
proved is that if it terminates, it gives the right answer!

(Notice, for example, that Algorithm E still makes sense if we allow its
variables m, n, c, and r to assume values of the form u + v .J2, where u and v
are integers. The variables q, a, b, a', b' are to remain integer-valued. If we start
the algorithm with m = 12 - 6 v'2 and n = 20 - 10 v'2, say, it will compute a
"greatest common divisor" d = 4 - 2 v'2 with a= +2, b = -1. Even under this
extension of the assumptions, the proofs of assertions Al through A 6 remain
valid; therefore all assertions are true throughout any execution of the algorithm.
But if we start the procedure with m = 1 and n = v'2, the computation never

1.2.1 MATHEMATICAL INDUCTION 17

terminates (see exercise 12). Hence a proof of assertions Al through A6 does
not logically prove that the algorithm is finite.)

Proofs of termination are usually handled separately. But exercise 13 shows
that it is possible to extend the method above in many important cases so that
a proof of termination is included as a by-product.

We have now twice proved the validity of Algorithm E. To be strictly logical,
we should also try to prove that the first algorithm in this section, Algorithm I,
is valid; in fact, we have used Algorithm I to establish the correctness of any
proof by induction. If we attempt to prove that Algorithm I works properly,
however, we are confronted with a dilemma-we can't really prove it without
using induction again! The argument would be circular.

In the last analysis, every property of the integers must be proved using
induction somewhere along the line, because if we get down to basic concepts, the
integers are essentially defined by induction. Therefore we may take as axiomatic
the idea that any positive integer n either equals 1 or can be reached by starting
with 1 and repetitively adding 1; this suffices to prove that Algorithm I is valid.
[For a rigorous study of fundamental concepts about the integers, see the article

"On Mathematical Induction" by Leon Henkin, AMM 67 (1960), 323-338.J
The idea behind mathematical induction is thus intimately related to the

concept of number. The first European to apply mathematical induction to
rigorous proofs was the Italian scientist Francesco Maurolico, in 1575. Pierre
de Fermat made further improvements, in the early 17th century; he called it
the "method of infinite descent." The notion also appears clearly in the later
writings of Blaise Pascal (1653). The phrase "mathematical induction" appar
ently was coined by A. De Morgan in the early nineteenth century. [See AMM
24 (1917), 199-207; 25 (1918), 197-201; Arch. Hist. Exact Sci. 9 (1972), 1-21.]
Further discussion of mathematical induction can be found in G. P6lya's book
Induction and Analogy in Mathematics (Princeton, N.J.: Princeton University
Press, 1954), Chapter 7.

The formulation of algorithm-proving in terms of assertions and induction,
as given above, is essentially due to R. W. Floyd. He pointed out that a semantic
definition of each operation in a programming language can be formulated as a
logical rule that tells exactly what assertions can be proved after the operation,
based on what assertions are true beforehand [see "Assigning Meanings to Pro
grams," Proc. Symp. Appl. Math., Amer. Math. Soc., 19 (1967), 19-32]. Similar
ideas were voiced independently by Peter Naur, BIT 6 (1966), 310-316, who
called the assertions "general snapshots." An important refinement, the notion
of "invariants," was introduced by C. A. R. Hoare; see, for example, CACM 14
(1971), 39-45. Later authors found it advantageous to reverse Floyd's direction,
going from an assertion that should hold after an operation to the "weakest
precondition" that must hold before the operation is done; such an approach
makes it possible to discover new algorithms that are guaranteed to be correct,
if we start from the specifications of the desired output and work backwards.
[See E. W. Dijkstra, CACM 18 (1975), 453-457; A Discipline of Programming
(Prentice-Hall, 1976).]

18 BASIC CONCEPTS 1.2.1

The concept of inductive assertions actually appeared in embryonic form in
1946, at the same time as fl.ow charts were introduced by H. H. Goldstine and
J. von Neumann. Their original fl.ow charts included "assertion boxes" that are
in close analogy with the assertions in Fig. 4. [See John von Neumann, Collected
Works 5 (New York: Macmillan, 1963), 91-99. See also A. M. Turing's early
comments about verificatioh in Report of a Conference on High Speed Automatic
Calculating Machines (Cambridge Univ., 1949), 67-68 and figures; reprinted
with commentary by F. L. Morris and C. B. Jones in Annals of the History of
Computing 6 (1984), 139-143.]

EXERCISES

The understanding of the theory of a routine
may be greatly aided by providing, at the time of construction

one or two statements concerning the state of the machine
at well chosen points. . ..

In the extreme form of the theoretical method
a watertight mathematical proof is provided for the assertions.

In the extreme form of the experimental method
the routine is tried out on the machine with a variety of initial

conditions and is pronounced fit if the assertions hold in each case.
Both methods have their weaknesses.

- A. M. TURING, Ferranti Mark I Programming Manual (1950)

1. [05] Explain how to modify the idea of proof by mathematical induction, in case
we want to prove some statement P(n) for all nonnegative integers-that is, for n = 0,
1, 2, ... instead of for n = 1, 2, 3,

.,.. 2. [15] There must be something wrong with the following proof. What is it?
"Theorem. Let a be any positive number. For all positive integers n we have
an-l = 1. Proof. If n = 1, an-l = a 1

-
1 = a0 = 1. And by induction, assuming

that the theorem is true for 1, 2, ... , n, we have

n-1 n-1 l X 1
a(n+l)-1 =an= a x a - -- - 1·

aCn-1)-1 - 1 - '

so the theorem is true for n + 1 as well."

3. [18] The following proof by induction seems correct, but for some reason the
equation for n = 6 gives ~ + i + 112 + 210 + 310 = ~ on the left-hand side, and ~ - i = ~
on the right-hand side. Can you find a mistake? "Theorem.

1 1 1 3 1 --+--+· .. + =---.
1 x 2 2 x 3 (n - 1) x n 2 n

Proof. We use induction on n. For n = 1, clearly 3/2 -1/n = 1/(1 x 2); and, assuming
that the theorem is true for n,

1 1 1 --+···+ +----1 x 2 (n - 1) x n n x (n + 1)

3 1 1 3 1 (1 1) 3 1
= 2 - ;; + n(n + 1) = 2 - ;; + ;; - n + 1 = 2 - n + 1 ·"

4. [20] Prove that, in addition to Eq. (3), Fibonacci numbers satisfy Fn 2: <Pn- 2
•

1.2.l MATHEMATICAL INDUCTION 19

5. [21] A prime number is an integer > 1 that has no exact divisors other than 1
and itself. Using this definition and mathematical induction, prove that every integer
> 1 may be written as a product of one or more prime numbers.

6. [20] Prove that if Eqs. (6) hold before step E4 is performed, they hold afterwards
also.

7. [23] Formulate and prove by induction a rule for the sums 12
, 22 -12

, 32
- 22 +1 2

,

42
- 32 + 22

- 12
, 52

- 42 + 32
- 22 + 12

, etc.

~ 8. [25] (a) Prove the following theorem of Nicomachus (A.D. c. 100) by induction:
13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, 43 = 13 + 15 + 17 + 19, etc. (b) Use this result to
prove the remarkable formula 13 + 23 + · · · + n 3 = (1+2 + · · · + n) 2

•

[Note: An attractive geometric interpretation of this formula, suggested to the author
by R. W. Floyd, is shown in Fig. 5. The idea is related to Nicomachus's theorem and
Fig. 3. Other "look-see" proofs can be found in books by Martin Gardner, Knotted
Doughnuts (New York: Freeman, 1986), Chapter 16; J. H. Conway and R. K. Guy,
The Book of Numbers (New York: Copernicus, 1996), Chapter 2.]

Side = 5 + 5 + 5 + 5 + 5 + 5 = 5 · (5 + 1)

Side= 5+4+3+2+1+1+2+3+4+5
= 2(1+2+·. ·+5)

Area= 4· 12 +4·2 · 22 +4·3 ·32 +4· 5 · 5
2

= 4(1 3 +23 +·· ·+53
)

Fig. 5. Geometric version of exercise 8(b).

9. [20] Prove by induction that if 0 <a< 1, then (1 - at ~ 1 - na.
10. [M22] Prove by induction that if n ~ 10, then 2n > n 3

•

11. [M30] Find and prove a simple formula for the sum

13

14 + 4

33 53 (-lt(2n+ 1)3

34 + 4 + 54 + 4 - · · · + (2n + 1)4 + 4 ·

12. [M25] Show how Algorithm E can be generalized as stated in the text so that
it will accept input values of the form u + v v'2, where u and v are integers, and the
computations can still be done in an elementary way (that is, without using the infinite
decimal expansion of v'2). Prove that the computation will not terminate, however, if
m = 1 and n = v'2.

~ 13. [M23] Extend Algorithm Eby adding a new variable T and adding the operation
"T +-- T + 1" at the beginning of each step. (Thus, Tis like a clock, counting the number
of steps executed.) Assume that T is initially zero, so that assertion A 1 in Fig. 4
becomes "m > 0, n = 0, T = 0." The additional condition "T = 1" should similarly be
appended to A2. Show how to append additional conditions to the assertions in such a
way that any one of Al, A2, ... , A6 implies T:::; 3n, and such that the inductive proof
can still be carried out. (Hence the computation must terminate in at most 3n steps.)

20 BASIC CONCEPTS 1.2.1

14. [50] (R. W. Floyd.) Prepare a computer program that accepts, as input, programs
in some programming language together with optional assertions, and that attempts to
fill in the remaining assertions necessary to make a proof that the computer program
is valid. (For example, strive to get a program that is able to prove the validity of
Algorithm E, given only assertions Al, A4, and A6. See the papers by R. W. Floyd
and J. C. King in the IFIP. Congress proceedings, 1971, for further discussion.)

~ 15. [Hl\128] (Generalized induction.) The text shows how to prove statements P(n)
that depend on a single integer n, but it does not describe how to prove statements
P(m,n) depending on two integers. In these circumstances a proof is often given by
some sort of "double induction," which frequently seems confusing. Actually, there
is an important principle more general than simple induction that applies not only to
this case but also to situations in which statements are to be proved about uncountable
sets-for example, P(x) for all real x. This general principle is called well-ordering.

Let "-<" be a relation on a set S, satisfying the following properties:

i) Given x, y, and z in S, if x-< y and y-< z, then x-< z.
ii) Given x and y in S, exactly one of the following three possibilities is true: x -< y,

x = y, or y -< x.
iii) If A is any nonempty subset of S, there is an element x in A with x :::Sy (that is,

x -< y or x = y) for all y in A.

This relation is said to be a well-ordering of S. For example, it is clear that the positive
integers are well-ordered by the ordinary "less than" relation, <.

a) Show that the set of all integers is not well-ordered by <.
b) Define a well-ordering relation on the set of all integers.
c) Is the set of all nonnegative real numbers well-ordered by <?
d) (Lexicographic order.) Let S be well-ordered by -<, and for n > 0 let Tn be the

set of all n-tuples (x1, x2, ... , Xn) of elements Xj in S. Define (x1, x2, ... , xn) -<
(y1, Y2, ... , Yn), if there is some k, 1 ~ k ~ n, such that XJ = Yj for 1 ~ j < k, but
Xk -< Yk in S. Is -< a well-ordering of Tn?

e) Continuing part (d), let T= Un>iTn; define (x1,x2, ... ,xm)-< (y1,y2, ... ,yn) if
Xj = Yj for 1 ~ j < k and Xk ..=< Yk, for some k ~ min(m,n), or if m < n and
Xj = Y] for 1 ~ j ~ m. Is -< a well-ordering of T?

f) Show that -< is a well-ordering of S if and only if it satisfies (i) and (ii) above and
there is no infinite sequence x1, x2, X3, ... with XJ+1 -< Xj for all j ~ 1.

g) Let S be well-ordered by-<, and let P(x) be a statement about the element x of S.
Show that if P(x) can be proved under the assumption that P(y) is true for all
y-< x, then P(x) is true for all x in S.

[Notes: Part (g) is the generalization of simple induction that was promised; in the case
S = positive integers, it is just the simple case of mathematical induction treated in the
text. In that case we are asked to prove that P(l) is true if P(y) is true for all positive
integers y < 1; this is the same as saying we should prove P(l), since P(y) certainly is
(vacuously) true for all such y. Consequently, one finds that in many situations P(l)
need not be proved using a special argument.

Part (d), in connection with part (g), gives us a powerful method of n-tuple
induction for proving statements P(m1, ... , mn) about n positive integers m 1, ... , mn.

Part (f) has further application to computer algorithms: If we can map each state x
of a computation into an element f(x) belonging to a well-ordered set S, in such a way
that every step of the computation takes a state x into a state y with f(y)-< f(x), then

1.2.2 NUMBERS, POWERS, AND LOGARITHMS 21

the algorithm must terminate. This principle generalizes the argument about strictly
decreasing values of n, by which we proved the termination of Algorithm l.lE.]

1.2.2. Numbers, Powers, and Logarithms

Let us now begin our study of numerical mathematics by taking a good look at
the numbers we are dealing with. The integers are the whole numbers

... ' -3, -2, -1, 0, 1, 2, 3, ...

(negative, zero, or positive). A rational number is the ratio (quotient) of two
integers, p/ q, where q is positive. A real number is a quantity x that has a
decimal expansion

where n is an integer, each di is a digit between 0 and 9, and the sequence of
digits doesn't end with infinitely many 9s. The representation (1) means that

d1 d2 dk d1 d2 dk 1
n + 10 + 100 + ... + lOk :::; x < n + 10 + 100 + ... + lOk + lOk' (2)

for all positive integers k. Examples of real numbers that are not rational are

7f = 3.14159265358979 ... , the ratio of circumference to diameter in a circle;

</> = 1.61803398874989 ... , the golden ratio (1 + V5)/2 (see Section 1.2.8).

A table of important constants, to forty decimal places of accuracy, appears in
Appendix A. We need not discuss the familiar properties of addition, subtrac
tion, multiplication, division, and comparison of real numbers.

Difficult problems about integers are often solved by working with real
numbers, and difficult problems about real numbers are often solved by working
with a still more general class of values called complex numbers. A complex
number is a quantity z of the form z = x + iy, where x and y are real and i is
a special quantity that satisfies the equation i 2 = -1. We call x and y the real
part and the imaginary part of z, and we define the absolute value of z to be

izl = Jx2 + y2. (3)

The complex conjugate of z is z = x - iy, and we have zz = x2 + y2 = izl 2
. The

theory of complex numbers is in many ways simpler and more beautiful than
the theory of real numbers, but it is usually considered to be an advanced topic.
Therefore we shall concentrate on real numbers in this book, except when real
numbers turn out to be unnecessarily complicated.

If u and v are real numbers with u :::; v, the closed interval [u .. v] is the set
of real numbers x such that u ::=:; x :::; v. The open interval (u .. v) is, similarly,
the set of x such that u < x < v. And half-open intervals [u .. v) or (u .. v] are
defined in an analogous way. We also allow u to be -oo or v to be oo at an
open endpoint, meaning that there is no lower or upper bound; thus (-oo .. oo)
stands for the set of all real numbers, and [O .. oo) denotes the nonnegative reals.

22 BASIC CONCEPTS 1.2.2

Throughout this section, let the letter b stand for a positive real number. If
n is an integer, then bn is defined by the familiar rules

b0 = 1, bn = bn-Ib if n > 0, bn = bn+Ijb if n < 0. (4)

It is easy to prove by induction that the laws of exponents are valid:

whenever x and y are integers.
If u is a positive real number and if m is a positive integer, there is always

a unique positive real number v such that vm = u; it is called the mth root of v,
and denoted v = VU.

We now define br for rational numbers r as follows:

(6)

This definition, due to Oresme (c. 1360), is a good one, since bap/aq = bP/q, and
since the laws of exponents are still correct even when x and y are arbitrary
rational numbers (see exercise 9).

Finally, we define bx for all real values of x. Suppose first that b > 1; if x is
given by Eq. (i), we want

This defines bx as a unique positive real number, since the difference between the
right and left extremes in Eq. (7) is bn+di/lO+···+dk/lOk (b1110k -1); by exercise 13
below, this difference is less than bn+1(b- l)/lOk, and if we take k large enough,
we can therefore get any desired accuracy for bx.

For example, we find that

10°·30102999 = 1.9999999739 ... ' 10°·30103000 = 2.0000000199 ... ; (8)

therefore if b = 10 and x = 0.30102999 ... , we know the value of 1ox with an
accuracy of better than one part in 10 million (although we still don't even know
whether the decimal expansion of lOx is 1.999 ... or 2.000 ...).

When b < 1, we define bx = (1/b)-x; and when b = 1, F = 1. With these
definitions, it can be proved that the laws of exponents (5) hold for any real
values of x and y. These ideas for defining bx were first formulated by John
Wallis (1655) and Isaac Newton (1669).

Now we come to an important question. Suppose that a positive real number
y is given; can we find a real number x such that y = bx? The answer is "yes"
(provided that bf. 1), for we simply use Eq. (7) in reverse to determine n and
d 1 , d2, ... when bx = y is given. The resulting number x is called the logarithm
of y to the base b, and we write this as x = logb y. By this definition we have

X = blogb x = logb(bx). (9)

As an example, Eqs. (8) show that

log10 2 = 0.30102999

1.2.2 NUMBERS, POWERS, AND LOGARITHMS 23

From the laws of exponents it follows that

logb(xy) = logb x + logb y, if x > 0, y > 0 (11)

and

Equation (10) illustrates the so-called common logarithms, which we get
when the base is 10. One might expect that in computer work binary logarithms
(to the base 2) would be more useful, since most computers do binary arithmetic.
Actually, we will see that binary logarithms are indeed very useful, but not only
for that reason; the reason is primarily that a computer algorithm often makes
two-way branches. Binary logarithms arise so frequently, it is wise to have a
shorter notation for them. Therefore we shall write

lgx = log2 x,

following a suggestion of Edward M. Reingold.
The question now arises as to whether or not there is any relationship

between lg x and log10 x; fortunately there is,

log10 x = log10 (21
g x) = (lg x)(log10 2),

by Eqs. (g) and (12). Hence lg x = log10 x/log10 2, and in general we find that

1
_ logb x

ogc x - 1
ogbc

Equations (11), (12), and (14) are the fundamental rules for manipulating log
arithms.

It turns out that neither base 10 nor base 2 is really the most conve
nient base to work with in most cases. There is a real number, denoted by
e = 2. 718281828459045 ... , for which the logarithms have simpler properties.
Logarithms to the base e are conventionally called natural logarithms, and we
write

ln x = loge x. (15)

This rather arbitrary definition (in fact, we haven't really defined e) probably
doesn't strike the reader as being a very "natural" logarithm; yet we'll find that
ln x seems more and more natural, the more we work
with it. John Napier actually discovered natural
logarithms (with slight modifications, and without
connecting them with powers) before the year 1590,
many years before any other kind of logarithm was
known. The following two examples, proved in ev
ery calculus text, shed some light on why Napier's
logarithms deserve to be called "natural": (a) In
Fig. 6 the area of the shaded portion is ln x. (b) If a (1, o) (x, o)

bank pays compound interest at rater, compounded Fig. 6 . Natural logarithm.
semiannually, the return on each dollar is (1 + r /2) 2

24 BASIC CONCEPTS 1.2.2

dollars; if it is compounded quarterly, you get (1 + r / 4)4 dollars; and if it is

compounded daily you probably get (1 + r /365) 365 dollars. Now if the interest

were compounded continuously, you would get exactly er dollars for every dollar

(ignoring roundoff error). In this age of computers, many bankers have now

actually reached the limiting formula.
The interesting history of the concepts of logarithm and exponential has

been told in a series of articles by F. Cajori, AMM 20 (1913), 5-14, 35-47,

75-84, 107-117, 148-151, 173-182, 205-210.

We conclude this section by considering how to compute logarithms. One

method is suggested immediately by Eq. (7): If we let bx = y and raise all parts

of that equation to the lOk-th power, we find that

for some integer m. All we have to do to get the logarithm of y is to raise y to

this huge power and find which powers (m, m + 1) of b the result lies between;

then m/lOk is the answer to k decimal places.

A slight modification of this apparently impractical method leads to a simple

and reasonable procedure. We will show how to calculate log10 x and to express

the answer in the binary system, as

First we shift the decimal point of x to the left or to the right so that we have

1 :::; x /Ion < 10; this determines the integer part, n. To obtain b1, b2, ... , we

now set x 0 = x/Ion and, for k 2: 1,

bk= 0, Xk = X~-1'
bk = 1, Xk = X~-1/10,

if x~_ 1 < 10;

if x~_ 1 2: 10.

The validity of this procedure follows from the fact that

1 < x = x2k/102k(n+bi/2+···+bk/2k) < 10
- k '

for k = 0, 1, 2, ... , as is easily proved by induction.
In practice, of course, we must work with only finite accuracy, so we cannot

set Xk = x~_ 1 exactly. Instead, we set Xk = x~_ 1 rounded or truncated to a

certain number of decimal places. For example, here is the evaluation of log10 2

rounded to four significant figures:

Xo 2.000;
X1 4.000, b1 O·

'
X5 1.845, b5 1·

'
X2 1.600, b2 1·

'
X7 3.404, b7 0·

'
X3 2.560, b3 O·

'
Xg 1.159, bs 1·

'
X4 6.554, b4 O·

'
Xg 1.343, bg 0·

'
X5 4.295, b5 1·

' X10 1.804, bw O·
'

etc.

Computational error has caused errors to propagate; the true rounded value of

xw is 1.798. This will eventually cause b19 to be computed incorrectly, and

1.2.2 NUMBERS, POWERS, AND LOGARITHMS 25

we get the binary value 0.0100110100010000011 ... , which corresponds to the
decimal equivalent 0.301031 ... rather than the true value given in Eq. (10).

With any method such as this it is necessary to examine the amount of
computational error due to the limitations imposed. Exercise 27 derives an
upper bound for the error; working to four figures as above, we find that the
error in the value of the logarithm is guaranteed to be less than 0.00044. Our
answer above was more accurate than this primarily because x 0 , x 1 , x2 , and x 3

were obtained exactly.
This method is simple and quite interesting, but it is probably not the

best way to calculate logarithms on a computer. Another method is given in
exercise 25.

EXERCISES

1. [00] What is the smallest positive rational number?

2. [00] Is 1 + 0. 239999999 ... a decimal expansion?

3. [02] What is (-3)-3 ?

~ 4. [05] What is (0.125)- 2/ 3 7

5. [05] We defined real numbers in terms of a decimal expansion. Discuss how we
could have defined them in terms of a binary expansion instead, and give a definition
to replace Eq. (2).

6. [10] Let x = m + O.d1d2 ••. and y = n + O.e1e2 ... be real numbers. Give a rule
for determining whether x = y, x < y, or x > y, based on the decimal representation.

7. [M23] Given that x and y are integers, prove the laws of exponents, starting from
the definition given by Eq. (4)·

8. [25] Let m be a positive integer. Prove that every positive real number u has a
unique positive mth root, by giving a method to construct successively the values n,
d 1 , d2 , . . . in the decimal expansion of the root.

9. [M23] Given that x and y are rational, prove the laws of exponents under the
assumption that the laws hold when x and y are integers.

10. [18] Prove that log10 2 is not a rational number.

~ 11. [10] If b = 10 and x ~ log10 2, to how many decimal places of accuracy will we
need to know the value of x in order to determine the first three decimal places of
the decimal expansion of bx? (Note: You may use the result of exercise 10 in your
discussion.)

12. [02] Explain why Eq. (10) follows from Eqs. (8).

~ 13. [M23] (a) Given that xis a positive real number and n is a positive integer, prove
the inequality \/'1 + x-1 :::; x/n. (b) Use this fact to justify the remarks following (7)·

14. [15] Prove Eq. (12).

15. [10] Prove or disprove:

logb x/y = logb x - logb y, if x, y > 0.

16. [00] How can log10 x be expressed in terms of ln x and ln 10?

~ 17. [05] What islg32? log7f7r? lne? logbl? logb(-1)?

26 BASIC CONCEPTS 1.2.2

18. [1 OJ Prove or disprove: log8 x = ~lg x .

.,.. 19. [20] If n is an integer whose decimal representation is 14 digits long, will the value
of n fit in a computer word with a capacity of 4 7 bits and a sign bit?

20. [1 OJ Is there any simple relation between log10 2 and log2 10?

21. [15] (Logs of logs.) Express logb logb x in terms of ln ln x, ln ln b, and ln b . .
.,.. 22. [20] (R. W. Hamming.) Prove that

lgx ~ lnx + log10 x,

with less than 13 error! (Thus a table of natural logarithms and of common logarithms
can be used to get approximate values of binary logarithms as well.)

23. [M25] Give a geometric proof that ln xy = ln x + ln y, based on Fig. 6.

24. [15] Explain how the method used for calculating logarithms to the base 10 at
the end of this section can be modified to produce logarithms to base 2.

25. [22] Suppose that we have a binary computer and a number x, 1 _s; x < 2.
Show that the following algorithm, which uses only shifting, addition, and subtraction
operations proportional to the number of places of accuracy desired, may be used to
calculate an approximation to y = logb x:

Ll. [Initialize.] Set y +-- 0, z +-- x shifted right 1, k +-- 1.

L2. [Test for end.] If x = 1, stop.

L3. [Compare.] If x - z < 1, set z +-- z shifted right 1, k +-- k + 1, and repeat this
step.

L4. [Reduce values.] Set x +-- x-z, z +-- x shifted right k, y +-- y+logb(2k/(2k-l)),

and go to L2. I
[Notes: This method is very similar to the method used for division in computer
hardware. The idea goes back in essence to Henry Briggs, who used it (in decimal
rather than binary form) to compute logarithm tables, published in 1624. We need
an auxiliary table of the constants logb 2, logb(4/3), logb(8/7), etc., to as many values
as the precision of the computer. The algorithm involves intentional computational
errors, as numbers are shifted to the right, so that eventually x will be reduced to 1
and the algorithm will terminate. The purpose of this exercise is to explain why it will
terminate and why it computes an approximation to logb x.]

26. [M27] Determine upper bounds on the accuracy of the algorithm in the previous
exercise, based on the precision used in the arithmetic operations .

.,.. 27. [M25] Consider the method for calculating log10 x discussed in the text. Let x~
denote the computed approximation to Xk, determined as follows: x(l - c5) _s; lOnx~ _s;
x(l + E); and in the determination of x~ by Eqs. (18), the quantity Yk is used in place
of (x~_ 1)2, where (x~_ 1)2(1- c5) _s; Yk _s; (x~_ 1) 2 (1 + E) and 1 _s; Yk < 100. Here c5
and E are small constants that reflect the upper and lower errors due to rounding or
truncation. If log' x denotes the result of the calculations, show that after k steps we
have

log10 x + 2 log10 (1 - c5) - l/2k <log' x _s; log10 x + 2 log10 (1 + E).

28. [M30] (R. Feynman.) Develop a method for computing bx when 0 _s; x < 1, using
only shifting, addition, and subtraction (similar to the algorithm in exercise 25), and
analyze its accuracy.

1.2.3 SUMS AND PRODUCTS 27

29. [.HM"20] Let x be a real number greater than 1. (a) For what real number b > 1 is
b logb x a minimum? (b) For what integer b > 1 is it a minimum? (c) For what integer
b > 1 is (b + 1) logb x a minimum?

1.2.3. Sums and Products
Let a 1 , a 2 , ... be any sequence of numbers. We are often interested in sums such
as ai + a 2 + · · · + an, and this sum is more compactly written using either of the
following equivalent notations:

n

or

If n is zero, the value of this summation is defined to be zero. In general, if R(j)
is any relation involving j, the symbol

LaJ
R(j)

means the sum of all a1 where j is an integer satisfying the condition R(j). If
no such integers exist, notation (2) denotes zero. The letter j in (1) and (2)
is a dummy index or index variable, introduced just for the purposes of the
notation. Symbols used as index variables are usually the letters i, j, k, m, n, r,
s, t (occasionally with subscripts or accent marks). Large summation signs like
those in (i) and (2) can also be rendered more compactly as "E7=l aj or "L,R(j) aj.

The use of a "L, and index variables to indicate summation with definite limits
was introduced by J. Fourier in 1820.

Strictly speaking, the notation "Ei:::;J:::;n aj is ambiguous, since it does not
clarify whether the summation is taken with respect to j or to n. In this
particular case it would be rather silly to interpret it as a sum on values of
n 2: j; but meaningful examples can be constructed in which the index variable
is not clearly specified, as in Lj:Sk (l/_kk). In such cases the context must make
clear which variable is a dummy variable and which variable has a significance
that extends beyond its appearance in the sum. The example in the preceding
sentence would presumably be used only if either j or k (not both) has exterior
significance.

In most cases we will use notation (2) only when the sum is finite-that is,
when only a finite number of values j satisfy R(j) and have a1 i 0. If an infinite
sum is required, for example

00

L = L a1 = ai + a2 + a3 + · · ·
j=l j~l

with infinitely many nonzero terms, the techniques of calculus must be employed;
the precise meaning of (2) is then

L aJ = (}i~ L a1) + (}i~ L a1) ' (3)
R(j) R(j) R(j)

O:SJ:Sn O:SJ:Sn

28 BASIC CONCEPTS 1.2.3

provided that both limits exist. If either limit fails to exist, the infinite sum is
divergent; it does not exist. Otherwise it is convergent.

When two or more conditions are placed under the L sign, as in (3), we
mean that all conditions must hold.

Four simple algebraic operations on sums are very important, and familiarity
with them makes the solution of many problems possible. We shall now discuss
these four operations.

a) The distributive law, for products of sums:

To understand this law, consider for example the special case

(ta,) (t, b;) =(a,+ a,)(bi+ b,+ bs)

= (a1b1 + a1b2 + a1b3) + (a2b1 + a2b2 + a2b3)

It is customary to drop the parentheses on the right-hand side of (4); a double
summation such as LR(i) (Ls(j) aij) is written simply LR(i) Ls(j) aij·

b) Change of variable:

L ai = L aj = L ap(j).
R(i) R(j) R(p(j))

This equation represents two kinds of transformations. In the first case we are
simply changing the name of the index variable from i to j. The second case is
more interesting: Here p(j) is a function of j that represents a permutation of
the range; more precisely, for each integer i satisfying the relation R(i), there
must be exactly one integer j satisfying the relation p(j) = i. This condition is
always satisfied in the important cases p(j) = c + j and p(j) = c - j, where c is
an integer not depending on j, and these are the cases used most frequently in
applications. For example,

(6)

The reader should study this example carefully.
The replacement of j by p(j) cannot be done for all infinite sums. The

operation is always valid if p(j) = c ± j, as above, but in other cases some
care must be used. [For example, see T. M. Apostol, Mathematical Analysis
(Reading, Mass.: Addison-Wesley, 1957), Chapter 12. A sufficient condition to

1.2.3 SUMS AND PRODUCTS 29

guarantee the validity of (5) for any permutation of the integers, p(j), is that
LR(j) laj I exists.]

c) Interchanging order of summation:

R(i) S(j) S(j) R(i)

Let us consider a very simple special case of this equation:

2

L L aij = L (ai1 + ai2),

R(i) j=l R(i)

2

L L aij = Lai1 + Lai2·
j=l R(i) R(i) R(i)

By Eq. (1), these two are equal; this says no more than

L(bi +Ci)= Lbi + L Ci, (8)
R(i) R(i) R(i)

where we let bi = ai1 and Ci = ai2·

The operation of interchanging the order of summation is extremely useful,
since it often happens that we know a simple form for LR(i) aij, but not for
Ls(j) aij· We frequently need to interchange the summation order also in a
more general situation, where the relation S(j) depends on i as well as j. In such
a case we can denote the relation by "S (i, j)." The interchange of summation
can always be carried out, in theory at least, as follows:

(g)
R(i) S(i,j) S' (j) R' (i,j)

where S' (j) is the relation "there is an integer i such that both R(i) and S (i, j)
are true"; and R' (i, j) is the relation "both R(i) and S (i, j) are true." For

example, if the summation is 'L~=l L~=l aij, then S' (j) is the relation "there is
an integer i such that 1~i~nand1 ~ j ~ i," that is, 1 ~ j ~ n; and R'(i,j)
is the relation "l ~ i ~ n and 1 ~ j ~ i," that is, j ~ i ~ n. Thus,

n i n n

L Laij = L Laij·
i=l j=l j=l i=j

[Note: As in case (b), the operation of interchanging order of summation is not
always valid for infinite series. If the series is absolutely convergent-that is, if
LR(i) Ls(j) laiJI exists-it can be shown that Eqs. (7) and (g) are valid. Also
if either one of R(i) or S(j) specifies a finite sum in Eq. (1), and if each infinite
sum that appears is convergent, then the interchange is justified. In particular,
Eq. (8) is always true for convergent infinite sums.]

30 BASIC CONCEPTS 1.2.3

d) Manipulating the domain. If R(j) and 8(j) are arbitrary relations, we

have

Laj+Laj= L aj+ L aj. (n)
R(j) S(j) R(j) or S(j) R(j) and S(j)

For example,

assuming that 1 < m < n. In this case "R(j) and 8(j)" is simply "j = m," so we
have reduced the second sum to simply "am." In most applications of Eq. (n),
either R(j) and 8(j) are simultaneously satisfied for only one or two values of j,
or else it is impossible to have both R(j) and 8(j) true for the same j. In the
latter case, the second sum on the right-hand side of Eq. (11) simply disappears.

Now that we have seen the four basic rules for manipulating sums, let's

study some further illustrations of how to apply these techniques.

Example 1.

L aj = L aj + L aj by rule (d)

O~j~n O~j~n O~j~n
j even j odd

2= a2j + 2= a2j+1 by rule (b)
0~2j~n 0~2j+l~n
2j even 2j+l odd

2= a2j + 2= a2j+1 ·

O~j~n/2 O~j<n/2

The last step merely consists of simplifying the relations below the l:'s.

Example 2. Let

n i n n

81 = L Laiaj = L Laiaj by rule (c) [see Eq. (1 o)]
i=O j=O j=O i=j

n n

= L Laiaj by rule (b),
i=O j=i

interchanging the names i and j and recognizing that ajai = aiaj. If we denote
the latter sum by 82 , we have

by Eq. (8)

by rule (d)
[see Eq. (12)]

1.2.3 SUMS AND PRODUCTS 31

n n n

= L Laiaj + L:aiai by Eq. (8)
i=O j=O i=O

(~a;)(~ a1) + (~ af) by rule (a)

= (~a,y +(~a;) by rule (b).

Thus we have derived the important identity

Example 3 (The sum of a geometric progression). Assume that x i 1, n > O.

Then

a + ax + · · · + axn = L axj
OSjSn

=a+ L axj
lSjSn

=a+ x L axj-l
lSjSn

=a+ x L axj
OSjSn-1

by definition (2)

by rule (d)

by a very special case of (a)

by rule (b) [see Eq. (6)]

=a+ x L axj - axn+I by rule (d).
OSjSn

Comparing the first relation with the last, we have

(1-x) L axj =a-axn+l;
OSjSn

hence we obtain the basic formula

(
1- xn+l) L axj =a 1-x .

OSjSn

Example 4 (The sum of an arithmetic progression). Assume that n 2: 0. Then

a + (a+ b) + · · · + (a + nb)

= I: (a+ bj) by definition (2)
OSjSn

32 BASIC CONCEPTS

L (a + b(n - j))
O~n-j~n

= L (a + bn - bj)
O~j~n

= L (2a~bn)- L (a+bj)
O~j~n O~j~n

=(n+1)(2a+bn)- L (a+bj),
O~j~n

1.2.3

by rule (b)

by simplification

by Eq. (8)

since the first sum simply adds together (n + 1) terms that do not depend on j.
Now by equating the first and last expressions and dividing by 2, we obtain

L (a+ bj) = a(n + 1) + ~bn(n + 1).
O~j~n

This is n + 1 times ~ (a + (a + bn)), which can be understood as the number of
terms times the average of the first and last terms.

Notice that we have derived the important equations (i3), (i4), and (i5)
purely by using simple manipulations of sums. Most textbooks would simply
state those formulas, and prove them by induction. Induction is, of course, a
perfectly valid procedure; but it does not give any insight into how on earth
a person would ever have dreamed the formula up in the first place, except by
some lucky guess. In the analysis of algorithms we are confronted with hundreds
of sums that do not conform to any apparent pattern; by manipulating those
sums, as above, we can often get the answer without the need for ingenious
guesses.

Many manipulations of sums and other formulas become considerably sim
pler if we adopt the following bracket notation:

{
1 if the statement is true;

[statement] = o'. if the statement is false.

Then we can write, for example,

L a1 = L a1 [R(j)] ,
Fl(j) j

where the sum on the right is over all integers j, because the terms of that
infinite sum are zero when R(j) is false. (We assume that a1 is defined for all j.)

With bracket notation we can derive rule (b) from rules (a) and (c) in an
interesting way:

L ap(j) = L ap(j) [R(p(j))]
Fl(p(j)) j

=LL ai [R(i)] [i = p(j)]
j i

1.2.3 SUMS AND PRODUCTS 33

= L ai [R(i)] L [i = p(j)] .
j

The remaining sum on j is equal to 1 when R(i) is true, if we assume that pis a

permutation of the range as required in (5); hence we are left with Li ai[R(i)],

which is LR(i) ai. This proves (5)· If pis not a permutation of the range, (18)

tells us the true value of LR(p(j)) ap(j).

The most famous special case of bracket notation is the so-called Kronecker

delta symbol,

s; [. "] { 1, if i = j'
Uij = 'l =) = Q .f . _;_ .

, 1 'l I J,

introduced by Leopold Kronecker in 1868. More general notations such as (16)

were introduced by K. E. Iverson in 1962; therefore (16) is often called Iverson's

convention. [See D. E. Knuth, AMM 99 (1992), 403-422.]

There is a notation for products, analogous to our notation for sums: The

symbols

IT aj
R(j)

stand for the product of all aj for which the integer j satisfies R(j). If no such

integer j exists, the product is defined to have the value 1 (not 0).

Operations (b), (c), and (d) are valid for the IT-notation as well as for the

2::-notation, with suitable simple modifications. The exercises at the end of this

section give a number of examples of product notation in use.

We conclude this section by mentioning another notation for multiple sum

mation that is often convenient: A single 2::-sign may be used with one or

more relations in several index variables, meaning that the sum is taken over all

combinations of variables that meet the conditions. For example,

This notation gives no preference to one index of summation over any other, so

it allows us to derive (10) in a new way:

n

L L aij = L aij [1 ~ i ~ n][1 ~ j ~ n] = L aij [1 ~ j ~ n][j ~ i :::; n]
i=l j=l i,j i,j

n n

= L:L:aij,
j=l i=j

using the fact that [l~i~n][l~j:::;i] = [l:::;j~i:::;n] = [l~j~n][j:::;i:::;n].
The more general equation (9) follows in a similar way from the identity

[R(i)] [S(i,j)] = [R(i) and S(i,j)] = [S'(j)] [R'(i,j)]. (21)

34 BASIC CONCEPTS 1.2.3

A further example that demonstrates the usefulness of summation with

several indices is

h +···+in=n
h2::···2::in2::0

a· .
)l···Jn'

where a is an n-tuply subs~ripted variable; for example, if n = 5 this notation

stands for

(See the remarks on partitions of a number in Section 1.2.1.)

EXERCISES- First Set

1. [01J What does the notation L:i< ·<n aj mean, if n = 3.14?
J

2. [1 OJ Without using the L:-notation, write out the equivalent of

and also the equivalent of
1

I: 2n2 +1 ·
O:Sn2 :S5

.,.. 3. [13J Explain why the two results of the previous exercise are different, in spite of

rule (b).

4. [1 OJ Without using the L:-notation, write out the equivalent of each side of

Eq. (10) as a sum of sums for the case n = 3 .

.,.. 5. [l:lM20J Prove that rule (a) is valid for arbitrary infinite series, provided that the

series converge.

6. [l:lM20J Prove that rule (d) is valid for an arbitrary infinite series, provided that

any three of the four sums exist.

7. [l:lM23J Given that c is an integer, show that L:R(j) aj = L:R(c-j) ac-j, even if
both series are infinite.

8. [l:lM25J Find an example of infinite series in which Eq. (7) is false .

.,.. 9. [05J Is the derivation of Eq. (14) valid even if n = -1?

10. [05J Is the derivation of Eq. (14) valid even if n = -2?

11. [03J What should the right-hand side of Eq. (14) be if x = 1?

12. [lOJ What is 1 + ~ + 4
1
9 + 3~3 + · · · + (~r?

13. [1 OJ Using Eq. (15) and assuming that m s;; n, evaluate L:7=m j.

14. [11J Using the result of the previous exercise, evaluate L:7=m L:~=rjk .

.,.. 15. [M22J Compute the sum 1 x 2 + 2 x 22 + 3 x 23 + · · · + n2n for small values of n. Do

you see the pattern developing in these numbers? If not, discover it by manipulations

similar to those leading up to Eq. (14).

1.2.3 SUMS AND PRODUCTS 35

16. [M22] Prove that

n . j _ nxn+2 - (n + l)xn+l + X

?=JX - (x-1)2 '
J=O

if x =j:. l, without using mathematical induction .

.,.. 17. [MOO] Let S be a set of integers. What is L:jES 1?

18. [M20] Show how to interchange the order of summation as in Eq. (g) given that
R(i) is the relation "n is a multiple of i" and S(i, j) is the relation "1 _s; j < i."

19. [20] What is L:;=m(aj - aj-1)?

.,.. 20. [25] Dr. I. J. Matrix has observed a remarkable sequence of formulas:

9 x 1 + 2 = 11, 9 x 12 + 3 = 111, 9 x 123 + 4 = 1111, 9 x 1234 + 5 = 11111.

a) Write the good doctor's great discovery in terms of the L:-notation.

b) Your answer to part (a) undoubtedly involves the number 10 as base of the decimal
system; generalize this formula so that you get a formula that will perhaps work
in any base b.

c) Prove your formula from part (b) by using formulas derived in the text or in
exercise 16 above .

.,.. 21. [M25] Derive rule (d) from rule (a), using the bracket notation (16) .

.,.. 22. [20] State the appropriate analogs of Eqs. (5), (7), (8), and (11) for products
instead of sums.

23. [1 OJ Explain why it is a good idea to define L:R(j) aj and ITR(j) aj as zero and
one, respectively, when no integers satisfy R(j).

24. [20] Suppose that R(j) is true for only finitely many j. By induction on the
number of integers satisfying R(j), prove that logb ITR(j) aj = L:R(j) (logb aj), assuming
that all aj > 0 .

.,.. 25. [15] Consider the following derivation; is anything amiss?

26. [25] Show that IT7=o rr~=O aiaj may be expressed in terms of IT7=o ai by manip
ulating the IT-notation as stated in exercise 22.

27. [M20] Generalize the result of exercise 1.2.1-9 by proving that

n n

j=l j=l

assuming that 0 < aj < 1.

28. [M22] Find a simple formula for f1;=2 (1- 1/j2) .

.,.. 29. [M30] (a) Express L:7=o L:~=D L:{=o aiajak in terms of the multiple-sum notation
explained at the end of the section. (b) Express the same sum in terms of L:7=o ai,
L:7=o a7, and L:7=o ar [see Eq. (13)].

36 BASIC CONCEPTS 1.2.3

.,.. 30. [M23] (J. Binet, 1812.) Without using induction, prove the identity

(t, a1 x 1) (t, b;y1) (t, am) (t, b; x;) +
1

~;;.~ n (a;bk - a,b;) (X;Yk - XkY;).

[An important special case arises when w1, ... , Wn, z1, ... , Zn are arbitrary complex

numbers and we set aj = Wj,.bj = Zj, Xj = Wj, Yj = Zj:

The terms lwjZk - WkZj 1

2 are nonnegative, so the famous Cauchy-Schwarz inequality

is a consequence of Binet's formula.]

n

> LWjZj
j=l

2

31. [M20] Use Binet's formula to express the sum L:i:s;j<k'.Sn(uj - Uk)(vj - Vk) m

terms of L:7=i UjVj, L:7= 1 Uj, and L:7=i Vj.

32. [M20] Prove that

n m

II 2=aij =
j=l i=l

.,.. 33. [M30] One evening Dr. Matrix discovered some formulas that might even be

classed as more remarkable than those of exercise 20:

1 1 1 0 -----+ + =
(a-b)(a-c) (b-a)(b-c) (c-a)(c-b) '

a b c -----+ + =0
(a-b)(a-c) (b-a)(b-c) (c-a)(c-b)

a2 b2 c2
-----+ + =1
(a-b)(a-c) (b-a)(b-c) (c-a)(c-b) '

a3 b3 c3

-----+ + =a+b+c.
(a-b)(a-c) (b-a)(b-c) (c-a)(c-b)

Prove that these formulas are a special case of a general law; let x 1 , x2, ... , Xn be

distinct numbers, and show that

34. [M25] Prove that

if 0 s;; r < n - 1;
if r = n - l;
if r = n.

1.2.3 SUMS AND PRODUCTS 37

provided that 1 ~ m ~ n and xis arbitrary. For example, if n = 4 and m = 2, then

x(x - 2)(x - 3) (x + l)(x - l)(x - 2) (x + 2)x(x - 1) (x + 3)(x + l)x _
1

(-1)(-2)(-3) + (1)(-1)(-2) + (2)(1)(-1) + (3)(2)(1) - .

35. [Hl\120] The notation supR(j) aj is used to denote the least upper bound of the
elements aj, in a manner exactly analogous to the L:- and IT-notations. (When R(j)
is satisfied for only finitely many j, the notation maxR(j) aj is often used to denote the
same quantity.) Show how rules (a), (b), (c), and (d) can be adapted for manipulation
of this notation. In particular discuss the following analog of rule (a):

(supR(i) ai) + (supS(j) bj) = supR(i)(sup 3 (j)(ai + bj)),

and give a suitable definition for the notation when R(j) is satisfied for no j.

EXERCISES- Second Set
Determinants and matrices. The following interesting problems are for the reader
who has experienced at least an introduction to determinants and elementary matrix
theory. A determinant may be evaluated by astutely combining the operations of: (a)
factoring a quantity out of a row or column; (b) adding a multiple of one row (or
column) to another row (or column); (c) expanding by cofactors. The simplest and
most often used version of operation (c) is to simply delete the entire first row and
column, provided that the element in the upper left corner is + 1 and the remaining
elements in either the entire first row or the entire first column are zero; then evaluate
the resulting smaller determinant. In general, the cofactor of an element aij in an
n x n determinant is (-l)i+j times the (n - 1) x (n - 1) determinant obtained by
deleting the row and column in which aij appeared. The value of a determinant is
equal to L: aij · cofactor(aij) summed with either i or j held constant and with the
other subscript varying from 1 to n.

If (bij) is the inverse of matrix (aij), then bij equals the cofactor of aji (not aij),
divided by the determinant of the whole matrix.

The following types of matrices are of special importance:

Vandermonde 's matrix, Combinatorial matrix,

i aij = Xj aij = y + bijX

Xl X2 Xn x+y y y

xi x~ x2 n y x+y y

x1 x2 xn n y y x+y

Cauchy's matrix,

aij = l/(xi +Yi)

l/(x1 +y1) l/(x1 + y2) l/(x1 +Yn)

l/(x2 + y1) l/(x2 + y2) l/(x2 + Yn)

l/(xn + Yn)

38 BASIC CONCEPTS 1.2.3

36. [M23] Show that the determinant of the combinatorial matrix is xn- 1 (x + ny) .

.,.. 37. [M24] Show that the determinant of Vandermonde's matrix is

II Xj II (xj - Xi)·
l'.Sj'.Sn l'.Si<j'.Sn

.,.. 38. [M25] Show that the determinant of Cauchy's matrix is

39. [M23] Show that the inverse of a combinatorial matrix is a combinatorial matrix
with the entries bij = (-y + bij (x + ny))/x(x + ny).

40. [M24] Show that the inverse of Vandermonde's matrix is given by

Don't be dismayed by the complicated sum in the numerator - it is just the coefficient
of xj-l in the polynomial (x1 - x) ... (xn - x)/(xi - x).

41. [M26] Show that the inverse of Cauchy's matrix is given by
..

bij = (II (xi + Yk)(xk +Yi)) /(xi+ Yi) (II (xi - Xk)) (II (Yi - Yk)).
l'.Sk'.Sn l'.Sk'.Sn I'.Sk'.Sn

k::j.j k::j.i

42. [M18] What is the sum of all n 2 elements in the inverse of the combinatorial
matrix?

43. [M24] What is the sum of all n 2 elements in the inverse of Vandermonde's matrix?
[Hint: Use exercise 33.]

.,.. 44. [M26] What is the sum of all n 2 elements in the inverse of Cauchy's matrix?

.,.. 45. [M25] A Hilbert matrix, sometimes called an nxn segment of the (infinite) Hilbert
matrix, is a matrix for which aij = 1/(i + j - 1). Show that this is a special case of
Cauchy's matrix, find its inverse, show that each element of the inverse is an integer,
and show that the sum of all elements of the inverse is n 2

• (Note: Hilbert matrices
have often been used to test various matrix manipulation algorithms, because they
are numerically unstable, and they have known inverses. However, it is a mistake
to compare the known inverse, given in this exercise, to the computed inverse of a
Hilbert matrix, since the matrix to be inverted must be expressed in rounded numbers
beforehand; the inverse of an approximate Hilbert matrix will be somewhat different
from the inverse of an exact one, due to the instability present. Since the elements
of the inverse are integers, and since the inverse matrix is just as unstable as the
original, the inverse can be specified exactly, and one could try to invert the inverse.
The integers that appear in the inverse are, however, quite large.) The solution to
this problem requires an elementary knowledge of factorials and binomial coefficients,
which are discussed in Sections 1.2.5 and 1.2.6 .

.,.. 46. [M30] Let A be an m x n matrix, and let B be an n x m matrix. Given that
1 :S: ji, h, ... , jm ::;; n, let Aiih ... jm denote the m x m matrix consisting of columns

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 39

ji, ... , jm of A, and let Bhh-··Jm denote them x m matrix consisting of rows ji, ... , jm

of B. Prove the Binet-Cauchy identity

<let (AB)=

(Note the special cases: (i) m = n, (ii) m = 1, (iii) B = AT, (iv) m > n, (v) m = 2.)

47. [M27] (C. Krattenthaler.) Prove that

(

(x + q2)(x + q3) (x + p1)(x + q3) (x + p1)(x + p2))
<let (y + q2)(y + q3) (y + p1)(y + q3) (y + p1)(y + p2)

(z + q2)(z + q3) (z + p1)(z + q3) (z + P1)(z + p2)

= (x - y)(x - z)(y - z)(p1 - q2)(p1 - q3)(p2 - q3),

and generalize this equation to an identity for an n x n determinant in 3n - 2 variables

xi, ... , Xn, pi, ... , Pn-l, q2, ... , qn. Compare your formula to the result of exercise 38.

1.2.4. Integer Functions and Elementary Number Theory

If x is any real number, we write

L x J = the greatest integer less than or equal to x (the floor of x);

Ix l = the least integer greater than or equal to x (the ceiling of x).

The notation [x] was often used before 1970 for one or the other of these functions,

usually the former; but the notations above, introduced by K. E. Iverson in the

1960s, are more useful, because both L x J and Ix l occur about equally often in

practice. The function L x J is sometimes called the entier function, from the

French word for "integer."
The following formulas and examples are easily verified:

1 l-2J = -1 (not zero!);

Ix l = L x J if and only if x is an integer,

Ix l = L x J + 1 if and only if x is not an integer;

L-xJ=-lxl; x-l<LxJ~x~lxl<x+l.

Exercises at the end of this section list other important formulas involving the

floor and ceiling operations.

If x and y are any real numbers, we define the following binary operation:

xmody=x-ylx/yj, ifyfO; xmodO = x.

From this definition we can see that, when y i 0,

x lxJ x mody
o~-y- Y = Y <l.

Consequently

a) if y > 0, then 0 ~ x mod y < y;

b) if y < 0, then 0 2: x mod y > y;

40 BASIC CONCEPTS 1.2.4

c) the quantity x - (x mod y) is an integral multiple of y.

We call x mod y the remainder when xis divided by y; similarly, we call Lx/yj
the quotient.

When x and y are integers, "mod" is therefore a familiar operation:

5 mod 3 = 2,. 18mod3 = 0, -2 mod 3 = 1.

We have x mod y = 0 if and only if xis a multiple of y, that is, if and only if x is
divisible by y. The notation y\x, read "y divides x," means that y is a positive
integer and x mod y = 0.

The "mod" operation is useful also when x and y take arbitrary real values.
For example, with trigonometric functions we can write

tan x = tan (x mod 11}

The quantity x mod 1 is the fractional part of x; we have, by Eq. (1),

x = L x J + (x mod 1).

Writers on number theory often use the abbreviation "mod" in a different
but closely related sense. We will use the following form to express the number
theoretical concept of congruence: The statement

x y (modulo z)

means that x mod z = y mod z; it is the same as saying that x - y is an integral
multiple of z. Expression (5) is read, "x is congruent toy modulo z."

Let's turn now to the basic elementary properties of congruences that will
be used in the number-theoretical arguments of this book. All variables in the
following formulas are assumed to be integers. Two integers x and y are said
to be relatively prime if they have no common factor, that is, if their greatest
common divisor is 1; in such a case we write x 1- y. The concept of relatively
prime integers is a familiar one, since it is customary to say that a fraction is in
"lowest terms" when the numerator is relatively prime to the denominator.

Law A. If a band x y, then a± x b ± y and ax by (modulo m),

Law B. If ax by and a b, and if a 1- m, then x y (modulo m).

Law C. a b (modulo m) if and only if an bn (modulo mn), when n i 0.

Law D. If r 1- s, then a b (modulo rs) if and only if a b (modulo r) and
a b(modulos).

Law A states that we can do addition, subtraction, and multiplication
modulo m just as we do ordinary addition, subtraction, and multiplication.
Law B considers the operation of division and shows that, when the divisor
is relatively prime to the modulus, we can also divide out common factors. Laws
C and D consider what happens when the modulus is changed. These laws are
proved in the exercises below.

The following important theorem is a consequence of Laws A and B.

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 41

Theorem F (Fermat's theorem, 1640). If p is a prime number, then aP a
(modulo p) for all integers a.

Proof. If a is a multiple of p, obviously aP 0 a (modulo p). So we need
only consider the case a mod p i 0. Since p is a prime number, this means that
a 1- p. Consider the numbers

0 modp, a modp, 2a modp, ... ' (p- l)a modp. (6)

These p numbers are all distinct, for if ax mod p = ay mod p, then by defini
tion (5) ax ay (modulo p); hence by Law B, x y (modulo p).

Since (6) gives p distinct numbers, all nonnegative and less than p, we see
that the first number is zero and the rest are the integers 1, 2, ... , p- 1 in some
order. Therefore by Law A,

(a)(2a) ... ((p - l)a) 1 · 2 ... (p - 1) (modulo p).

Multiplying each side of this congruence by a, we obtain

aP(1·2 ... (p-1)) a(1·2 ... (p-1)) (modulop); (8)

and this proves the theorem, since each of the factors 1, 2, ... , p- 1 is relatively
prime top and can be canceled by Law B. I

EXERCISES

1. [00] What are LLlJ, L-1.lJ, l-1.ll, L0.99999J, and Llg35J?

.,. 2. [01] What is llxJl?

3. [M10] Let n be an integer, and let x be a real number. Prove that
a) LxJ < n if and only if x < n; b) n s;; LxJ if and only if n s;; x;
c) Ix l s;; n if and only if x s;; n; d) n < Ix l if and only if n < x;
e) L x J = n if and only if x - 1 < n s;; x, and if and only if n s;; x < n + 1;
f) Ix l = n if and only if x s;; n < x + 1, and if and only if n - 1 < x s;; n.

[These formulas are the most important tools for proving facts about L x J and Ix l ·]
.,. 4. [M10] Using the previous exercise, prove that L-xJ = -lxl

5. [16] Given that x is a positive real number, state a simple formula that expresses
x rounded to the nearest integer. The desired rounding rule is to produce L x J when
x mod 1 < ~, and to produce Ix l when x mod 1 ~ ~. Your answer should be a single
formula that covers both cases. Discuss the rounding that would be obtained by your
formula when x is negative.

"" 6. [20] Which of the following equations are true for all positive real numbers x?

(a) L vlxJ J = L v'X J ; (b) I vTxT l = I v'X l ; (c) I vlxJ l = I v'X l
7. [M15] Show that LxJ + LYJ s;; Lx + yJ and that equality holds if and only if

x mod 1 + y mod 1 < 1. Does a similar formula hold for ceilings?

8. [00] What are 100 mod 3, 100 mod 7, -100 mod 7, -100 mod O?

9. [05] What are 5 mod -3, 18 mod -3, -2 mod -3?

"" 10. [10] What are 1.1 mod 1, 0.11 mod .1, D.11 mod -.1?

11. [00] What does "x = y (modulo O)" mean by our conventions?

42 BASIC CONCEPTS 1.2.4

12. [00] What integers are relatively prime to 1?

13. [MOO] By convention, we say that the greatest common divisor of 0 and n is lnl.
What integers are relatively prime to O?

.,.. 14. [12] If x mod 3 = 2 and x mod 5 = 3, what is x mod 15?

15. [10] Prove that z(x mo~ y) = (zx) mod (zy). [Law C is an immediate consequence
of this distributive law.]

16. [M10] Assume that y > 0. Show that if (x - z)/y is an integer and if 0 ~ z < y,
then z = xmody.

1 7. [M 15] Prove Law A directly from the definition of congruence, and also prove half
of Law D: If a= b (modulo rs), then a= b (modulo r) and a= b (modulo s). (Here r
and s are arbitrary integers.)

18. [M15] Using Law B, prove the other half of Law D: If a= b (modulo r) and a= b
(modulo s), then a= b (modulo rs), provided that r l_ s .

.,.. 19. [M10] (Law of inverses.) If n l_ m, there is an integer n' such that nn' = 1
(modulo m). Prove this, using the extension of Euclid's algorithm (Algorithm 1.2.lE).

20. [M15] Use the law of inverses and Law A to prove Law B.

21. [M22] (Fundamental theorem of arithmetic.) Use Law Band exercise 1.2.1-5 to
prove that every integer n > 1 has a unique representation as a product of primes
(except for the order of the factors. In other words, show that there is exactly one way
to write n = P1P2 .. ·Pk, where each Pj is prime and P1 ~ p2 ~···~Pk·

.,.. 22. [M10] Give an example to show that Law Bis not always true if a is not relatively
prime tom.

23. [M10] Give an example to show that Law Dis not always true if r is not relatively
prime to s .

.,.. 24. [M20] To what extent can Laws A, B, C, and D be generalized to apply to
arbitrary real numbers instead of integers?

25. [M02] Show that, according to Theorem F, ap-l modp = [a is not a multiple
of p], whenever p is a prime number.

26. [M15] Let p be an odd prime number, let a be any integer, and let b = a<p-l)/2.

Show that b mod p is either 0 or 1 or p - 1. [Hint: Consider (b + l)(b - l).]

27. [M15] Given that n is a positive integer, let 'P(n) be the number of values among
{O, 1, ... , n - 1} that are relatively prime to n. Thus 'P(l) = 1, 'P(2) = 1, 'P(3) = 2,
'P(4) = 2, etc. Show that 'P(P) = p - 1 if pis a prime number; and evaluate 'P(Pe),
when e is a positive integer .

.,.. 28. [M25] Show that the method used to prove Theorem F can be used to prove the
following extension, called Euler's theorem: acp(m) = 1 (modulo m), for any positive
integer m, when a l_ m. (In particular, the number n' in exercise 19 may be taken to
be ncp(m)-l mod m.)

29. [M22] A function J(n) of positive integers n is called multiplicative if J(rs) =
J(r)f(s) whenever r l_ s. Show that each of the following functions is multiplicative:
(a) f(n) = nc, where c is any constant; (b) J(n) = [n is not divisible by k 2 for any
integer k > 1]; (c) f(n) =ck, where k is the number of distinct primes that divide n;
(d) the product of any two multiplicative functions.

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 43

30. [M30] Prove that the function 'P(n) of exercise 27 is multiplicative. Using this

fact, evaluate 'P(lOOOOOO), and give a method for evaluating 'P(n) in a simple way once

n has been factored into primes.

31. [M22] Prove that if J(n) is multiplicative, so is g(n) = L:d\n J(d).

32. [M18] Prove the double-summation identity

L Lf(c,d) = L L J(c,cd),
d\n c\d c\n d\(n/c)

for any function J(x, y).

33. [M18] Given that m and n are integers, evaluate (a) l~(n + m)j + l~(n - m + l)j;

(b) I ~(n + m)l + I ~(n - m + l)l. (The special case m = 0 is worth noting.)

.,.. 34. [M21] What conditions on the real number b > 1 are necessary and sufficient to

guarantee that L logb x J = L logb L x J J for all real x 2: 1?

.,.. 35. [M20] Given that m and n are integers and n > 0, prove that

L(x+m)/nJ = L(LxJ +m)/nj

for all real x. (When m = 0, we have an important special case.) Does an analogous

result hold for the ceiling function?

36. [M23] Prove that L:~=l Lk/2J = Ln
2
/4J; also evaluate L:~= 1 lk/2l

.,.. 37. [M30] Let m and n be integers, n > 0. Show that

L lmkn+xj = (m-l;(n-1) +d;l +dlx/dJ,

O~k<n

where dis the greatest common divisor of m and n, and x is any real number.

38. [M26] (E. Busche, 1909.) Prove that, for all real x and y with y > 0,

L l x + ~ J = L xy + L x + 1 J(I Y l - y) J .
0:5_k<y y

In particular, when y is a positive integer n, we have the important formula

L x J + l x + ~ J + · · · + l x + n :
1 J = L nx J.

39. [HM"35] A function f for which J(x) + J(x + ~) + · · · + J(x + n;;- 1
) = f(nx),

whenever n is a positive integer, is called a replicative function. The previous exercise

establishes the fact that L x J is replicative. Show that the following functions are

replicative:

a) f(x) = x - ~;
b) f(x) =[xis an integer];
c) J(x) =[xis a positive integer];
d) J(x) =[there exists a rational number rand an integer m such that x=r7r+m];

e) three other functions like the one in (d), with r and/or m restricted to positive

values;
f) f(x) =log l2sin7rxl, if the value f(x) = -oo is allowed;

g) the sum of any two replicative functions;

h) a constant multiple of a replicative function;

i) the function g(x) = f(x - LxJ), where f(x) is replicative.

44 BASIC CONCEPTS 1.2.4

40. [1:lM"46] Study the class ofreplicative functions; determine all replicative functions
of a special type. For example, is the function in (a) of exercise 39 the only continuous
replicative function? It may be interesting to study also the more general class of
functions for which

f (x) + f (x ~ ~) + · · · + f (X + n : l) = an f (nx) + bn.

Here an and bn are numbers that depend on n but not on x. Derivatives and (if bn = 0)
integrals of these functions are of the same type. If we require that bn = 0, we have,
for example, the Bernoulli polynomials, the trigonometric functions cot ?TX and csc2 ?Tx,
as well as Hurwitz's generalized zeta function ((s, x) = L:k>o l/(k + x) 5 for fixed s.
With bn =j:. O we have still other well-known functions, such as the psi function.

41. [M23] Let a 1 , a2 , a3 , ••• be the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ... ; find an
expression for an in terms of n, using the floor and/or ceiling function.

42. [M24] (a) Prove that

n n-l

L ak =nan - L k(ak+l - ak), if n > 0.
k=l k=l

(b) The preceding formula is useful for evaluating certain sums involving the floor
function. Prove that, if b is an integer 2: 2,

n

LllogbkJ = (n + l)LlogbnJ - (bllogbnJ+l - b)/(b- l).
k=l

43. [M23] Evaluate L:~=l L Vk J.

44. [M24] Show that L:k>O L:i< '<b L(n + jbk)/bk+ 1 J = n, if b and n are integers,
- _J

n 2: 0, and b 2: 2. What is the value of this sum when n < O?

.,.. 45. [M28] The result of exercise 37 is somewhat surprising, since it implies that

This "reciprocity relationship" is one of many similar formulas (see Section 3.3.3). Show
that for any function f, we have

L f (l 7/ j) = L 1:1 (f(r -1) - f(r)) +nf(m- l).
O~j<n O~r<m

In particular, prove that

[Hint: Consider the change of variable r = Lmj/nJ. Binomial coefficients (';;) are
discussed in Section 1.2.6.]

46. [M29] (General reciprocity law.) Extend the formula of exercise 45 to obtain an
expression for L:o~j<cm f(Lmj/nJ), where a is any positive real number.

1.2.5 PERMUTATIONS AND FACTORIALS 45

~ 47. [M31] When p is an odd prime number, the Legendre symbol (~) is defined to
be +1, 0, or -1, depending on whether q(p-l)/ 2 modp is 1, 0, or p - 1. (Exercise 26

proves that these are the only possible values.)

a) Given that q is not a multiple of p, show that the numbers

(-l)L2kq/pj (2kq modp), 0 < k < p/2,

are congruent in some order to the numbers 2, 4, ... , p - 1 (modulo p). Hence

(~) = (-l)a where e5 = L:o~k<p/ 2 L2kq/pj.
b) Use the result of (a) to calculate (~).
c) Given that q is odd, show that L:o~k<p/ 2 L2kq/pj = L:o~k<p/2 Lkq/pj (modulo 2).

[Hint: Consider the quantity L (p - 1 - 2k) q / p J .]
d) Use the general reciprocity formula of exercise 46 to obtain the law of quadratic

reciprocity, (~) (~) = (-l)(p-l)(q-l)/4, given that p and q are distinct odd primes.

48. [M26] Prove or disprove the following identities, for integers m and n:

49. [M30] Suppose the function J(x) satisfies the two laws (i) f(x + 1) = J(x) + 1;
(ii) J(x) = J(f(nx)/n) for all positive integers n. Prove that either J(x) = LxJ for all
rational x, or f(x) = rxl for all rational x.

1.2.5. Permutations and Factorials

A permutation of n objects is an arrangement of n distinct objects in a row.
There are six permutations of three objects {a, b, c }:

ab c, a c b, ba c, be a, cab, c b a.

The properties of permutations are of great importance in the analysis of
algorithms, and we will deduce many interesting facts about them later in this
book.* Our first task is simply to count them: How many permutations of n
objects are possible? There are n ways to choose the leftmost object, and once
this choice has been made there are n - 1 ways to select a different object to place
next to it; this gives us n(n - 1) choices for the first two positions. Similarly, we
find that there are n - 2 choices for the third object distinct from the first two,
and a total of n(n - l)(n - 2) possible ways to choose the first three objects. In
general, if Pnk denotes the number of ways to choose k objects out of n and to
arrange them in a row, we see that

Pnk = n(n - 1) ... (n - k + 1).

The total number of permutations is therefore Pnn = n(n - 1) ... (1).
The process of constructing all permutations of n objects in an inductive

manner, assuming that all permutations of n - 1 objects have been constructed,

* In fact, permutations are so important, Vaughan Pratt has suggested calling them
"perms." As soon as Pratt's convention is established, textbooks of computer science will
be somewhat shorter (and perhaps less expensive).

46 BASIC CONCEPTS 1.2.5

is very important in our applications. Let us rewrite (1) using the numbers

{ 1, 2, 3} instead of the letters {a, b, c }; the permutations are then

12 3, 13 2, 213, 2 31, 312, 3 2 1.

Consider how to get from this array to the permutations of {1, 2, 3, 4}. There

are two principal ways to go from n - 1 objects ton objects.

Method 1. For each permutation al a2 ... an-1 of {1, 2, ... , n-1}, form n

others by inserting the number n in all possible places, obtaining

... '

For example, from the permutation 2 3 1 in (3), we get 4 2 3 1, 2 4 3 1, 2 3 4 1,

2 3 1 4. It is clear that all permutations of n objects are obtained in this manner

and that no permutation is obtained more than once.

Method 2. For each permutation a 1 a2 ... an-l of {1, 2, ... , n-1}, form n

others as follows: First construct the array

... '

Then rename the elements of each permutation using the numbers {1, 2, ... , n },

preserving order. For example, from the permutation 2 3 1 in (3) we get

231~, 231~, 231~, 231~

and, renaming, we get

3421, 3412, 2413, 2314.

Another way to describe this process is to take the permutation a 1 a 2 ... an-l

and a number k, 1 ~ k ~ n; add one to each aj whose value is ~ k, thus

obtaining a permutation b1 b2 ... bn-l of the elements {1, ... , k -1, k + 1, ... , n };

then blb2 ... bn_ 1k is a permutation of {1, ... , n}.

Again it is clear that we obtain each permutation of n elements exactly once

by this construction. Putting k at the left instead of the right, or putting k in

any other fixed position, would obviously work just as well.

If Pn is the number of permutations of n objects, both of these methods show

that Pn = nPn- 1 ; this offers us two further proofs that Pn = n(n - 1) ... (1), as

we already established in Eq. (2).
The important quantity Pn is called n factorial and it is written

n

n! = 1 · 2 · ... · n = IT k.
k=l

Our convention for vacuous products (Section 1.2.3) gives us the value

O! = 1,

and with this convention the basic identity

n! = (n - 1)! n

is valid for all positive integers n.

(6)

1.2.5 PERMUTATIONS AND FACTORIALS 47

Factorials come up sufficiently often in computer work that the reader is
advised to memorize the values of the first few:

O! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120.

The factorials increase very rapidly; for example, 1000! is an integer with over
2500 decimal digits.

It is helpful to keep the value 10! = 3,628,800 in mind; one should remember
that 10! is about 3~ million. In a sense, this number represents an approximate
dividing line between things that are practical to compute and things that are
not. If an algorithm requires the testing of more than 10! cases, it may consume
too much computer time to be practical. On the other hand, if we decide to
test 10! cases and each case requires, say, one millisecond of computer time,
then the entire run will take about an hour. These comments are very vague, of
course, but they can be useful to give an intuitive idea of what is computationally
feasible.

It is only natural to wonder what relation n! bears to other quantities in
mathematics. Is there any way to tell how large 1000! is, without laboriously
carrying out the multiplications implied in Eq. (4)? The answer was found by
James Stirling in his famous work Metbodus Differentialis (1730), page 137; we
have

The "~" sign that appears here denotes "approximately equal," and "e" is the
base of natural logarithms introduced in Section 1.2.2. We will prove Stirling's
approximation (7) in Section 1.2.11.2. Exercise 24 gives a simple proof of a less
precise result.

As an example of the use of this formula, we may compute

40320 = 8! ~ 4y'7f (~)8 = 226 y'7re- 8 ~ 67108864-1.77245· 0.00033546 ~ 39902.

In this case the error is about 13; we will see later that the relative error is
approximately 1/(12n).

In addition to the approximate value given by Eq. (1), we can also rather
easily obtain the exact value of n! factored into primes. In fact, the prime p is a
divisor of n! with the multiplicity

µ = l~ J + l; J + l; J + · · · = L l; J ·
k>O

(8)

For example, if n = 1000 and p = 3, we have

µ=ll~OJ+ll~OJ+ll~~OJ+ll~~OJ+l~~J+l~~J
= 333 + 111 + 37 + 12 + 4 + 1 = 498,

so 1000! is divisible by 3498 but not by 3499
• Although formula (8) is written as an

infinite sum, it is really finite for any particular values of n and p, because all of

48 BASIC CONCEPTS 1.2.5

the terms are eventually zero. It follows from exercise 1.2.4-35 that ln/pk+I J =
l l n /pk J / p J ; this fact facilitates the calculation in Eq. (8), since we can just
divide the value of the previous term by p and discard the remainder.

Eq. (8) follows from the fact that ln/pk J is the number of integers among
{1, 2, ... , n} that are multiples of pk. If we study the integers in the product
(4), any integer that is- divisible by pJ but not by pJ+I is counted exactly j
times: once in l n / p J, once in l n / p2 J, ... , once in l n / pJ J. This accounts for all
occurrences of p as a factor of n!.

Another natural question arises: Now that we have defined n! for non
negative integers n, perhaps the factorial function is meaningful also for rational
values of n, and even for real values. What is (~) !, for example? Let us illustrate
this point by introducing the "termial" function

n

n? = 1 + 2 + · · · + n = L k, (g)
k=l

which is analogous to the factorial function except that we are adding instead
of multiplying. We already know the sum of this arithmetic progression from
Eq. 1.2.3-(15):

n? = ~n(n + 1).

This suggests a good way to generalize the "termial" function to arbitrary n,
by using (io) instead of (g). We have(~)?=~·

Stirling himself made several attempts to generalize n! to noninteger n. He
extended the approximation (7) into an infinite sum, but unfortunately the sum
did not converge for any value of n; his method gave extremely good approxi
mations, but it couldn't be extended to give an exact value. [For a discussion
of this somewhat unusual situation, see K. Knopp, Theory and Application of
Infinite Series, 2nd ed. (Glasgow: Blackie, 1951), 518-520, 527, 534.]

Stirling tried again, by noticing that

n! = 1 + (1 - !_)n + (1 - !._ + !_)n(n - 1)
1! 1! 2!

(
1 1 1) + 1 - l! + 2! - 3

! n(n - l)(n - 2) + · · ·.

(We will prove this formula in the next section.) The apparently infinite sum
in Eq. (11) is in reality finite for any nonnegative integer n; however, it does
not provide the desired generalization of n!, since the infinite sum does not exist
except when n is a nonnegative integer. (See exercise 16.)

Still undaunted, Stirling found a sequence a 1 , a 2 , ... such that

Inn!= a1n + a2n(n - 1) + · · · = L ak+1 IT (n - j). (i2)
k~O 0'5:J5:k

He was unable to prove that this sum defined n! for all fractional values of n,
although he was able to deduce the value of (~) ! =fa /2.

1.2.5 PERMUTATIONS AND FACTORIALS 49

At about the same time, Leonhard Euler considered the same problem, and
he was the first to find the appropriate generalization:

mnm! n' = lim .
· m-too(n+l)(n+2) ... (n+m)

Euler communicated this idea in a letter to Christian Goldbach on October 13,
1729. His formula defines n! for any value of n except negative integers (when
the denominator becomes zero); in such cases n! is taken to be infinite. Exercises
8 and 22 explain why Eq. (13) is a reasonable definition.

Nearly two centuries later, in 1900, C. Hermite proved that Stirling's idea
(12) actually does define n! successfully for nonintegers n, and that in fact Euler's
and Stirling's generalizations are identical.

Many notations were used for factorials in the early days. Euler actually
wrote [n], Gauss wrote II n, and the symbols lB:_ and BJ were popular in England
and Italy. The notation n!, which is universally used today when n is an
integer, was introduced by a comparatively little known mathematician, Chris
tian Kramp, in an algebra text [Elemens d'Arithmetique Universelle (Cologne:
1808)].

When n is not an integer, however, the notation n! is less common; instead
we customarily employ a notation due to A. M. Legendre:

n! = I'(n + 1) = nI'(n).

This function r(x) is called the gamma function, and by Eq. (13) we have the
definition

x! mxm!
r(x) = - = lim .

x m-toox(x+l)(x+2) ... (x+m)

A graph of r(x) is shown in Fig. 7.
Equations (13) and (15) define factorials and the gamma function for com

plex values as well as real values; but we generally use the letter z, instead of n
or x, when thinking of a variable that has both real and imaginary parts. The
factorial and gamma functions are related not only by the rule z! = I'(z + 1) but
also by

7r
(-z)! r(z) = . '

Slll7rZ
(16)

which holds whenever z is not an integer. (See exercise 23.)
Although r(z) is infinite when z is zero or a negative integer, the function

1/I'(z) is well defined for all complex z. (See exercise 1.2.7-24.) Advanced
applications of the gamma function often make use of an important contour
integral formula due to Hermann Hankel:

1 1 f et dt
r(z) = 27ri p;

the path of complex integration starts at -oo, then circles the ongm in a
counterclockwise direction and returns to -oo. [Zeitscbrift fiir Math. und Pbysik
9 (1864), 1-21.]

50 BASIC CONCEPTS

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

.

u

v

""'
I ~

,.,

(4,6)
J

I
I

\ 3,2) I
\ /

1, 1) x (2, 1 J

-6
-4 -3 -2 -1 0 1 2 3 4

1.2.5

Fig. 7. The function r(x) = (x - 1)!. The local minimum at X has the coordinates

(1.46163 21449 68362 34126 26595, 0.88560 3194410888 70027 88159).

Many formulas of discrete mathematics involve factorial-like products known

as factorial powers. The quantities xis and xk (read, "x to the k falling" and "x
to the k rising") are defined as follows, when k is a positive integer:

k-1

xis = x(x - 1) ... (x - k + 1) = II (x - j);
j=O

k-1

xk = x(x + 1) ... (x + k - 1) = II (x + j);
j=O

Thus, for example, the number Pnk of (2) is just nls. Notice that we have

(x + k - l)ls

The general formulas
k x!

x- = (x - k)!'

(i8)

(i9)

can be used to define factorial powers for other values of k. [This notation xk is
due to A. Capelli, Giornale di Matematicbe di Battaglini 31 (1893), 291-313.]

The interesting history of factorials from the time of Stirling to the present
day is traced in an article by P. J. Davis, "Leonhard Euler's integral: A historical
profile of the gamma function," AMM 66 (1959), 849-869. See also J. Dutka,
Archive for History of Exact Sciences 31 (1984), 15-34.

1.2.5 PERMUTATIONS AND FACTORIALS 51

EXERCISES
1. [00] How many ways are there to shuffie a 52-card deck?

2. [10] In the notation of Eq. (2), show that Pn(n-l) = Pnn, and explain why this
happens.

3. [10] What permutations of {1, 2, 3, 4, 5} would be constructed from the permuta
tion 3 1 2 4 using Methods 1 and 2, respectively?

.,,.. 4. [13] Given the fact that log10 1000! = 2567.60464 ... , determine exactly how
many decimal digits are present in the number 1000!. What is the most significant
digit? What is the least significant digit?

5. [15] Estimate 8! using the following more exact version of Stirling's approxi-
mation:

n! ~ ~ (~)n (1 + l~n)·
.,,.. 6. [11] Using Eq. (8), write 20! as a product of prime factors.

7. [M10] Show that the "generalized termial" function in Eq. (io) satisfies the
identity x? = x + (x - 1)? for all real numbers x.

8. [B.2\115] Show that the limit in Eq. (i3) does equal n! when n is a nonnegative
integer.

9. [M10] Determine the values of r(~) and r(-~), given that 0)! = ft /2 .

.,,.. 10. [B.2\120] Does the identity r(x + 1) = xr(x) hold for all real numbers x? (See
exercise 7.)

11. [M 15] Let the representation of n in the binary system be n = 2ei + 2e2 + · · · + 2er,
where ei > e2 > · · · >er 2: 0. Show that n! is divisible by 2n-r but not by 2n-r+1

.

.,,.. 12. [M22] (A. Legendre, 1808.) Generalizing the result of the previous exercise, let
p be a prime number, and let the representation of n in the p-ary number system be
n = akpk + ak-lPk-l + · · · + a1p + a0 • Express the number µ of Eq. (8) in a simple
formula involving n, p, and a 's.

13. [M23] (Wilson's theorem, actually due to Leibniz, 1682.) If p is prime, then
(p - 1)! modp = p - 1. Prove this, by pairing off numbers among {1, 2, ... , p - 1}
whose product modulo p is 1.

.,,.. 14. [M28] (L. Stickelberger, 1890.) In the notation of exercise 12, we can determine
n! mod p in terms of the p-ary representation, for any positive integer n, thus general
izing Wilson's theorem. In fact, prove that n!/pµ. = (-1)µ.ao! ai ! ... ak! (modulo p).

15. [B.2\115] The permanent of a square matrix is defined by the same expansion as
the determinant except that each term of the permanent is given a plus sign while the
determinant alternates between plus and minus. Thus the permanent of

GiD
is aei + bfg + cdh + gee + hja + idb. What is the permanent of

(

1x1
2 x 1

nxl

1 x 2
2 x 2

nx2

lxn) 2xn
. ?

nxn

52 BASIC CONCEPTS 1.2.5

16. [HM15] Show that the infinite sum in Eq. (11) does not converge unless n is a

nonnegative integer.

17. [HM20] Prove that the infinite product

IT (n + a1) ... (n + O'.k)

n>l (n + ,81) ... (n +,Bk)

equals r(l + ,81) ... r(l + ,Bk)/r(l + 0'.1) ... r(l + O'.k), if 0'.1 + ... + O'.k = ,81 + ... +,Bk

and if none of the ,B's is a negative integer.

18. [M20] Assume that n /2 = f · ~ · ~ · t · ~ · * · · · ·. (This is "Wallis's product,"

obtained by J. Wallis in 1655, and we will prove it in exercise 1.2.6-43.) Using the

previous exercise, prove that (~)! = fa /2.

19. [HM22] Denote the quantity appearing after "limrn-+oo" in Eq. (i5) by r rn(x).

Show that

rrn(x)= 1=(1-!)rntx-1 dt=mx fo\1-t)=tx- 1 dt, ifx>O.

20. [HM21] Using the fact that 0 :S e-t - (1 - t/m)= :S t 2e-t/m, if 0 :St :Sm, and

the previous exercise, show that r(x) = f0
00 e-ttx-l dt, if x > 0.

21. [HM25] (L. F. A. Arbogast, 1800.) Let D~u represent the kth derivative of a

function u with respect to x. The chain rule states that n;w = D~w n;u. If we apply

this to second derivatives, we find n;w = D~w(D;u) 2 + D~w n;u. Show that the

general formula is

n

D~w=L
j=O ki +k2+···+kn=j

ki +2k2+···+nkn=n
ki,k2, ... ,kn2:0

.,,.. 22. [HM20] Try to put yourself in Euler's place, looking for a way to generalize n!

to noninteger values of n. Since (n + ~)!/n! times ((n + ~) + ~)!/(n +~)!equals

(n + 1)!/n! = n + 1, it seems natural that (n + ~)!/n! should be approximately fa.

Similarly, (n + ~) ! / n! should be ~ ifn. Invent a hypothesis about the ratio (n + x) ! / n!

as n approaches infinity. Is your hypothesis correct when x is an integer? Does it tell

anything about the appropriate value of x! when x is not an integer?

23. [HM20] Prove (16), given that nz TI~=l (1 - z 2/n 2
) = sin nz .

.,,.. 24. [HM21] Prove the handy inequalities

integer n 2: 1.

[Hint: 1 + x :Sex for all real x; hence (k + 1)/k :S e1 /k :S k/(k -1).]

25. [M20] Do factorial powers satisfy a law analogous to the ordinary law of expo

nents, x=+n = x=xn?

1.2.6. Binomial Coefficients

The combinations of n objects taken k at a time are the possible choices of

k different elements from a collection of n objects, disregarding order. The

1.2.6 BINOMIAL COEFFICIENTS 53

combinations of the five objects {a, b, c, d, e} taken three at a time are

abc, abd, abe, acd, ace, ade, bed, bee, bde, cde. (i)

It is a simple matter to count the total number of k-combinations of n objects:
Equation (2) of the previous section told us that there are n(n - 1) ... (n - k + 1)
ways to choose the first k objects for a permutation; and every k-combination
appears exactly kl times in these arrangements, since each combination appears
in all its permutations. Therefore the number of combinations, which we denote
by G), is

(
n) = n(n - 1) ... (n - k + 1).
k k(k - 1) ... (1)

For example,

(
5) 5.4.3

= = 10,
3 3. 2 · 1

which is the number of combinations we found in (1).
The quantity (~), read "n choose k," is called a binomial coefficient; these

numbers have an extraordinary number of applications. They are probably the
most important quantities entering into the analysis of algorithms, so the reader
is urged to become familiar with them.

Equation (2) may be used to define (~) even when n is not an integer. To
be precise, we define the symbol G) for all real numbers r and all integers k as
follows:

(
r) = r(r - 1) ... (r - k + 1) = r~ = IT r + ~ - j,
k k(k - 1) ... (1) k. j=l J

integer k :'.'.: 0;

(~) = 0,

In particular cases we have

(~) = 1,

integer k < 0.

r(r - 1)
2

Table 1 gives values of the binomial coefficients for small integer values of r
and k; the values for 0 :s; r :s; 4 should be memorized.

Binomial coefficients have a long and interesting history. Table 1 is called
"Pascal's triangle" because it appeared in Blaise Pascal's Traite du Triangle
Aritbmetique in 1653. This treatise was significant because it was one of the first
works on probability theory, but Pascal did not invent the binomial coefficients
(which were well-known in Europe at that time). Table 1 also appeared in the
treatise Szu-yiian Yii-cbien ("The Precious Mirror of the Four Elements") by the
Chinese mathematician Shih-Chieh Chu in 1303, where they were said to be an
old invention. The earliest known detailed discussion of binomial coefficients is
in a tenth-century commentary, due to Halayudha, on an ancient Hindu classic,
Pingala's Chandal;i-sii.tra. [See G. Chakravarti, Bull. Calcutta Math. Soc. 24
(1932), 79-88.] In about 1150 the Hindu mathematician Bhaskara Acharya gave

54 BASIC CONCEPTS

Table 1
TABLE OF BINOMIAL COEFFICIENTS (PASCAL'S TRIANGLE)

r (~) (~) (;) (;) (~) (;)
0 1 0 JJ 0 0 0
1 1 1 0 0 0 0
2 1 2 1 0 0 0
3 1 3 3 1 0 0
4 1 4 6 4 1 0
5 1 5 10 10 5 1
6 1 6 15 20 15 6
7 1 7 21 35 35 21
8 1 8 28 56 70 56
9 1 9 36 84 126 126

a very clear exposition of binomial coefficients in
his book Lilavatf, Section 6, Chapter 4. For small
values of k, they were known much earlier; they
appeared in Greek and Roman writings with a
geometric interpretation (see Fig. 8). The nota
tion G) was introduced by Andreas von Ettings
hausen in his book Die combinatoriscbe Analysis
(Vienna: 1826).

(~) (;) (;) (~)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
7 1 0 0

28 8 1 0
84 36 9 1

1.2.6

The reader has probably noticed several in
teresting patterns in Table 1. Binomial coeffi
cients satisfy literally thousands of identities, and
for centuries their amazing properties have been
continually explored. In fact, there are so many
relations present that when someone finds a new
identity, not many people get excited about it any

t th d . I d t · Fig. 8. Geometric interpre-more, excep e iscoverer. n or er o mamp- . n+2
ulate the formulas that arise in the analysis of tation of (3) ' n = 4.
algorithms, a facility for handling binomial coefficients is a must, and so an
attempt has been made in this section to explain in a simple way how to
maneuver with these numbers. Mark Twain once tried to reduce all jokes to
a dozen or so primitive kinds (farmer's daughter, mother-in-law, etc.); we will
try to condense the thousands of identities into a small set of basic operations
with which we can solve nearly every problem involving binomial coefficients
that we will meet.

In most applications, both of the numbers r and k that appear in (~) will
be integers, and some of the techniques we will describe are applicable only in
such cases. Therefore we will be careful to list, at the right of each numbered
equation, any restrictions on the variables that appear. For example, Eq. (3)
mentions the requirement that k is an integer; there is no restriction on r. The
identities with fewest restrictions are the most useful.

1.2.6 BINOMIAL COEFFICIENTS 55

Now let us study the basic techniques for operating on binomial coefficients:

A. Representation by factorials. From Eq. (3) we have immediately

(n) n! integer n ~integer k ~ 0.
k - k! (n - k)!'

(5)

This allows combinations of factorials to be represented as binomial coefficients
and conversely.

B. Symmetry condition. From Eqs. (3) and (5), we have

(n) - (n) integer n ~ 0, integer k.
k - n-k '

(6)

This formula holds for all integers k. When k is negative or greater than n, the
binomial coefficient is zero (provided that n is a nonnegative integer).

C. Moving in and out of parentheses. From the definition (3), we have

(~) = ~(~ = ~), integer k # 0.

This formula is very useful for combining a binomial coefficient with other parts
of an expression. By elementary transformation we have the rules

!(r)=!(r-1)
r k k k-1 '

the first of which is valid for all integers k, and the second when no division by
zero has been performed. We also have a similar relation:

(~) = r : k (r ~ 1) , integer k # r. (8)

Let us illustrate these transformations, by proving Eq. (8) using Eqs. (6)
and (7) alternately:

(r) (r) r (r - 1) r (r - 1)
k = r-k =r-k r-1-k =r-k k ·

[Note: This derivation is valid only when r is a positive integer # k, because of
the constraints involved in Eqs. (6) and (1); yet Eq. (8) claims to be valid for
arbitrary r # k. This can be proved in a simple and important manner: We
have verified that

for infinitely many values of r. Both sides of this equation are polynomials in r.
A nonzero polynomial of degree n can have at most n distinct zeros; so (by
subtraction) if two polynomials of degree ~ n agree at n + 1 or more different
points, the polynomials are identically equal. This principle may be used to
extend the validity of many identities from integers to all real numbers.]

56 BASIC CONCEPTS 1.2.6

D. Addition formula. The basic relation

(~) = (r ~ 1) + (~ = ~) , integer k, (g)

is clearly valid in Table 1 (every value is the sum of the two values above and

to the left) and we may ~asily verify it in general from Eq. (3). Alternatively,

Eqs. (7) and (8) tell us that

Equation (g) is often useful in obtaining proofs by induction on r, when r is an

integer.

E. Summation formulas. Repeated application of (g) gives

(~) = (r ~ 1) + (~ = ~) = (r ~ 1) + (~ = ~) + (~ = ~) = ... ;

or

(~) = (~=~) + (r~l) = (~=~) + (~=~) + (r~2) = ···.

Thus we are led to two important summation formulas that can be expressed as

follows:

integer n ~ 0. (10)

integer m ~ 0, integer n ~ 0. (n)

Equation (n) can easily be proved by induction on n, but it is interesting

to see how it can also be derived from Eq. (10) with two applications of Eq. (6):

=O+ (m+(n-m)+l) = (n+l),
n-m m+l

assuming that n ~ m. If n < m, Eq. (n) is obvious.

Equation (n) occurs very frequently in applications; in fact, we have already

derived special cases of it in previous sections. For example, when m = 1, we

have our old friend, the sum of an arithmetic progression:

1.2.6 BINOMIAL COEFFICIENTS 57

Suppose that we want a simple formula for the sum 12 + 22 + · · · + n 2
. This

can be obtained by observing that k2 = 2(~) + (~); hence

f>2=f=(2(~)+(~))=2c;1)+C~1).
k=O k=O

And this answer, obtained in terms of binomial coefficients, can be put back into
polynomial notation if desired:

2 (n+l)n(n-1) (n+l)n
1 + 22 + · · · + n 2 = 2

6
+

2
= ~n(n + ~)(n + 1). (12)

The sum 13 + 23 + · · · + n3 can be obtained in a similar way; any polynomial
ao + a1k + a 2k2 + · · · + amkm can be expressed as bo(~) + b1 (~) + · · · + bm(!)
for suitably chosen coefficients bo, ... , bm. We will return to this subject later.

F. The binomial theorem. Of course, the binomial theorem is one of our
principal tools:

(x +yr= L (~) xkyr-k, integer r ~ 0.
k

For example, (x + y) 4 = x4 + 4x3 y + 6x2 y2 + 4xy3 + y4 . (At last we are able to

justify the name "binomial coefficient" for the numbers G).)
It is important to notice .that we have written Lk in Eq. (13), rather than

l:~=O as might have been expected. If no restriction is placed on k, we are
summing over all integers, -oo < k < +oo; but the two notations are exactly
equivalent in this case, since the terms in Eq. (13) are zero when k < 0 or
k > r. The simpler form Ek is to be preferred, since all manipulations with
sums are simpler when the conditions of summation are simpler. We save a
good deal of tedious effort if we do not need to keep track of the lower and/ or
upper limits of summation, so the limits should be left unspecified whenever
possible. Our notation has another advantage also: If r is not a nonnegative
integer, Eq. (13) becomes an infinite sum, and the binomial theorem of calculus
states that Eq. (13) is valid for all r, if lx/yl < 1.

It should be noted that formula (13) gives

o0 = 1. (14)

We will use this convention consistently.
The special case y = 1 in Eq. (13) is so important, we state it specially:

L:(~)xk = (1 + xr,
k

integer r > 0 or !xi < 1.

The discovery of the binomial theorem was announced by Isaac Newton in
letters to Oldenburg on June 13, 1676 and October 24, 1676. (See D. Struik,
Source Book in Mathematics (Harvard Univ. Press, 1969), 284-291.) But he
apparently had no real proof of the formula; at that time the necessity for rigorous
proof was not fully realized. The first attempted proof was given by L. Euler

58 BASIC CONCEPTS 1.2.6

in 177 4, although his effort was incomplete. Finally, C. F. Gauss gave the first
actual proof in 1812. In fact, Gauss's work represented the first time anything
about infinite sums was proved satisfactorily.

Early in the nineteenth century, N. H. Abel found a surprising generalization
of the binomial formula (13):

(x + Yt = L (~)x(~ - kz)k- 1 (y + kzr-k, integer n > 0, x -I 0. (16)
k

This is an identity in three variables, x, y, and z (see exercises 50 through 52).
Abel published and proved this formula in Volume 1 of A. L. Crelle's soon
to-be-famous Journal fiir die reine und angewandte Mathematik (1826), pages
159-160. It is interesting to note that Abel contributed many other papers to the
same Volume 1, including his famous memoirs on the unsolvability of algebraic
equations of degree 5 or more by radicals, and on the binomial theorem. See
H. W. Gould, AMM 69 (1962), 572, for a number of references to Eq. (16).

G. Negating the upper index. The basic identity

(~) = (-1)k (k - ~ - 1
), integer k,

follows immediately from the definition (3) when each term of the numerator is
negated. This is often a useful transformation on the upper index.

One easy consequence of Eq. (17) is the summation formula

integer n.

(18)

This identity could be proved by induction using Eq. (9), but we can use Eqs. (17)
and (10) directly:

Another important application of Eq. (17) can be made when r is an integer:

(mn)-- (-l)n-m (-n(m_+ml))' . > 0 . mteger n _ , mteger m.

(Set r = n and k = n - min Eq. (17) and use (6).) We have moved n from the
upper position to the lower.

H. Simplifying products. When products of binomial coefficients appear, they
can usually be reexpressed in several different ways by expanding into factorials
and out again using Eq. (5). For example,

(mr)(mk)--(rk)(mr-_kk)' integer m, integer k.

1.2.6 BINOMIAL COEFFICIENTS 59

It suffices to prove Eq. (20) when r is an integer > m (see the remarks after
Eq. (8)), and when 0 < k < m. Then

(
r) (m) r!m! r! (r-k)! (r) (r-k)
m k - m! (r-m)! k! (m-k)! - k! (r-k)! (m-k)! (r-m)! - k m-k ·

Equation (20) is very useful when an index (namely m) appears in both the
upper and the lower position, and we wish to have it appear in one place rather
than two. Notice that Eq. (7) is the special case of Eq. (20) when k = 1.

I. Sums of products. To complete our set of binomial-coefficient manipu
lations, we present the following very general identities, which are proved in
the exercises at the end of this section. These formulas show how to sum over a
product of two binomial coefficients, considering various places where the running
variable k might appear:

L (~) (n ~ k) = (r :
8

) , integer n.
k

~(m:k)(n:k) = c~;:n}
integer m, integer n, integer r > 0. (22)

~(r-k)(s)(-l)k-t=(r-t-s),
~ m k-t r-t-m
k=O

integer t > 0, integer r > 0, integer m > 0. (24)

t(r-k)(s+k) = (r+s+l),
m n m+n+l

k=O
integer n > integer s > 0, integer m > 0, integer r > 0. (25)

L(r - tk) (s - t(n - k)) r __ (r + s - tn),
k n - k r - tk n

k>O

integer n.

Of these identities, Eq. (21) is by far the most important, and it should be
memorized. One way to remember it is to interpret the right-hand side as the
number of ways to select n people from among r men and s women; each term
on the left is the number of ways to choose k of the men and n - k of the
women. Equation (21) is commonly called Vandermonde's convolution, since
A. Vandermonde published it in Mem. Acad. Roy. Sciences Paris (1772), 489-
498. However, it had appeared already in Shih-Chieh Chu's 1303 treatise men
tioned earlier [see J. Needham, Science and Civilization in China 3 (Cambridge
University Press, 1959), 138-139).

60 BASIC CONCEPTS 1.2.6

If r = tk in Eq. (26), we avoid the zero denominator by canceling with
a factor in the numerator; therefore Eq. (26) is a polynomial identity in the
variables r, s, t. Obviously Eq. (21) is a special case of Eq. (26) with t = 0.

We should point out a nonobvious use of Eqs. (23) and (25): It is often
helpful to replace the simple binomial coefficient on the right-hand side by the
more complicated expre,.ssion on the left, interchange the order of summation,
and simplify. We may regard the left-hand sides as expansions of

(s) (s+nk). in terms of
n+a

Formula (23) is used for negative a, formula (25) for positive a.
This completes our study of binomial-coefficientology. The reader is advised

to learn especially Eqs. (5), (6), (1), (g), (13), (17), (20), and (21)-frame them
with your favorite highlighter pen!

With all these methods at our disposal, we should be able to solve almost
any problem that comes along, in at least three different ways. The following
examples illustrate the techniques.

Example 1. When r is a positive integer, what is the value of L (~) (~) k?

Solution. Formula (7) is useful for disposing of the outside k: k

Now formula (22) applies, with n = -1. The answer is therefore

I:(~)(~) k = (r ~ ~ ~ 1)s, integer r > O.
k

~(n + k) (2k) (-l)k ~xample 2. What is the value of~
2

k k k
1

, if n is a nonnegative
mteger? k +
Solution. This problem is tougher; the summation index k appears in six places!
First we apply Eq. (20), and we obtain

~(n+k)(n)(-l)k
~ k k k+l·

k

We can now breathe more easily, since several of the menacing characteristics
of the original formula have disappeared. The next step should be obvious; we
apply Eq. (7) in a manner similar to the technique used in Example 1:

L(n + k) (n + 1) (-l)k.
k k k+l n+l

Good, another k has vanished. At this point there are two equally promising
lines of attack. We can replace the (nkk) by (n~k), assuming that k > 0, and

1.2.6 BINOMIAL COEFFICIENTS 61

evaluate the sum with Eq. (23):

L (n + k) (n + 1) (-l)k
n k+l n+l

k"20

= __ 1_ "'""'(n -1 + k) (n + 1)(-l)k + _1_ (n-1)
n+1L..- n k n+l n

k"20

1 (n-1) 1 (n-1) 1 (n-1)
= - n + 1 (- l) n+

1
-1 + n + 1 n = n + 1 n ·

The binomial coefficient (n~ 1) equals zero except when n = _O, in which case it
equals one. So we can conveniently state the answer to our problem as [n = 0),
using Iverson's convention (Eq. 1.2.3-(16)), or as Ono, using the Kronecker delta
(Eq. 1.2.3-(19)).

Another way to proceed from Eq. (27) is to use Eq. (17), obtaining

"'""'(-(n + 1)) (n + 1) _1 .
L..- k k+l n+l

k

We can now apply Eq. (22), which yields the sum

(
n+l-(n+l)) = (0)_1 __
n+l-1+0 n n+l

Once again we have derived the answer:

"'""'(n + k) (2k) (-l)k = 0
L_., 2k k k + 1 nO'

k

integer n > 0.

(
n+k)(2k)(-l)k Example 3. What is the value of L m

2
k k k

1
, for positive inte-

gers m and n? k + +
Solution. If m were zero, we would have the same formula to work with that
we had in Example 2. However, the presence of m means that we cannot even
begin to use the method of the previous solution, since the first step there was
to use Eq. (20)-which no longer applies. In this situation it pays to complicate
things even more by replacing the unwanted c;;:;k) by a sum of terms of the
form (xi/), since our problem will then become a sum of problems that we know
how to solve. Accordingly, we use Eq. (25) with

r = n + k - 1, m = 2k, s = 0, n = m - 1,

and we have

"'""' "'""' (n+k-1-j)(2k)(j)(-l)k. (29)
L..- L..- 2k k m - 1 k + 1

k O~j~n+k-1

62 BASIC CONCEPTS 1.2.6

We wish to perform the summation on k first; but interchanging the order of
summation demands that we sum on the values of k that are> 0 and> j-n+ 1.
Unfortunately, the latter condition raises problems, because we do not know the
desired sum if j > n. Let us save the situation, however, by observing the terms
of (29) are zero when n < j < n + k - 1. This condition implies that k > 1; thus
0 < n + k - 1 - j < k - i < 2k, and the first binomial coefficient in (29) will
vanish. We may therefore replace the condition on the second sum by 0 < j < n,
and the interchange of summation is routine. Summing on k by Eq. (28) now
gives

and all terms are zero except when j = n - 1. Hence our final answer is

(n-1).
m-1

The solution to this problem was fairly complicated, but not really myste
rious; there was a good reason for each step. The derivation should be studied
closely because it illustrates some delicate maneuvering with the conditions in
our equations. There is actually a better way to attack this problem, however;
it is left to the reader to figure out a way to transform the given sum so that
Eq. (26) applies (see exercise 30).

Example 4. Prove that

L Ak(r, t)An-k(s, t) = An(r + s, t), integer n > 0, (30)
k

where An(x, t) is the nth degree polynomial in x that satisfies

(
x - nt) x

An(x, t) = ,
n x-nt

for x # nt.

Solution. We may assume that r # kt # s for 0 < k < n, since both sides of
(30) are polynomials in r, s, t. Our problem is to evaluate

~ (r - kt) (s - (n - k)t) r s
~ k n - k r - kt s - (n - k)t'

k

which, if anything, looks much worse than our previous horrible problems! Notice
the strong similarity to Eq. (26), however, and also note the case t = 0.

We are tempted to change

(
r - kt) r

k r - kt
to (

r - kt- 1) ~
k-1 k'

except that the latter tends to lose the analogy with Eq. (26) and it fails when
k = 0. A better way to proceed is to use the technique of partial fractions,

1.2.6 BINOMIAL COEFFICIENTS 63

whereby a fraction with a complicated denominator can often be replaced by a
sum of fractions with simpler denominators. Indeed, we have

1 1

r - kt s - (n - k)t
1 (1 1)

r + s - nt r - kt + s - (n - k)t ·

Putting this into our sum we get

s '"""(r-kt)(s-(n-k)t) r
r + s - nt ~ k n - k r - kt

k

r '"""(r-kt) (s-(n-k)t) s
+ r + s -nt ~ k n- k s - (n- k)t'

k

and Eq. (26) evaluates both of these formulas if we change k to n - k in the
second; the desired result follows immediately. Identities (26) and (30) are due
to H. A. Rothe, Formula:; de Serierum Reversione (Leipzig: 1793); special cases of
these formulas are still being "discovered" frequently. For the interesting history
of these identities and some generalizations, see H. W. Gould and J. Kaucky,
Journal of Combinatorial Theory 1 (1966), 233-248.

Example 5. Determine the values of ao, a1, a2, ... such that

n! = ao + a1n + a2n(n - 1) + a3n(n - l)(n - 2) + · · · (31)

for all nonnegative integers n.

Solution. Equation 1.2.5-(11), which was presented without proof in the previous
section, gives the answer. Let us pretend that we don't know it yet. It is clear
that the problem does have a solution, since we can set n = 0 and determine a0 ,

then set n = 1 and determine a 1 , etc.
First we would like to write Eq. (31) in terms of binomial coefficients:

n! = ~G)k! a.. (32)

The problem of solving implicit equations like this for ak is called the inversion
problem, and the technique we shall use applies to similar problems as well.

The idea is based on the special case s = 0 of Eq. (23):

~G) (~)Hr-•= (n ~ J =Snr. integer n, integer r?: 0. (33)

The importance of this formula is that when n -=/:- r, the sum is zero; this enables
us to solve our problem since a lot of terms cancel out as they did in Example 3:

Ln! (:)(-l)m-n = L L(~)k!ak(:)(-l)m-n
n n k

= L k! ak I:(:)(:) (-l)m-n
k n

= Lk!akOkm = m!am·
k

64 BASIC CONCEPTS 1.2.6

Notice how we were able to get an equation in which only one value am appears,
by adding together suitable multiples of Eq. (32) for n = 0, 1, We have now

~()m-n n! (m) ~ (-l)m-n (-lr
am=~ -1 - 1 = ~ (_)' L n! m. n m n.

n2:0 OSnSm OSnSm

This completes the solution to Example 5. Let us now take a closer look at
the implications of Eq. (33): When r and m are nonnegative integers we have

I:(~)(-1r-k (co(~) +c1(~) +···+cm(~)) =cr,
k .

since the other terms vanish after summation. By properly choosing the coeffi
cients Ci, we can represent any polynomial in k as a sum of binomial coefficients
with upper index k. We find therefore that

L (~) (-1r-k(bo + b1k + · · · + brkr) = r! br, integer r :'.'.: 0, (34)
k

where b0 + · · · + brkr represents any polynomial whatever of degree r of less.
(This formula will be of no great surprise to students of numerical analysis,

since Lk G) (-1t-k J(x + k) is the "rth difference" of the function J(x).)
Using Eq. (34), we can immediately obtain many other relations that appear

complicated at first and that are often given very lengthy proofs, such as

L(~)(s~kt)(-l)k=tr, integerr>O. (35)
k

It is customary in textbooks such as this to give a lot of impressive examples
of neat tricks, etc., but never to mention simple-looking problems where the
techniques fail. The examples above may have given the impression that all
things are possible with binomial coefficients; it should be mentioned, however,
that in spite of Eqs. (io), (n), and (i8), there seems to be no simple formula
for the analogous sum

t(7) = (~) + (7) +···+ (:),
k=O

when n < m. (For n = m the answer is simple; what is it? See exercise 36.)
On the other hand this sum does have a closed form as a function of n when

m is an explicit negative integer; for example,

i:(~2) = (-1r In; 1 l
k=O

(37)

There is also a simple formula

t(7) (k-;) =-;(m;l)
k=O

for a sum that looks as though it should be harder, not easier.

1.2.6 BINOMIAL COEFFICIENTS 65

How can we decide when to stop working on a sum that resists simplification?

Fortunately, there is now a good way to answer that question in many important

cases: An algorithm due to R. W. Gosper and D. Zeilberger will discover closed

forms in binomial coefficients when they exist, and will prove the impossibility

when they do not exist. The Gosper-Zeilberger algorithm is beyond the scope

of this book, but it is explained in CMath §5.8. See also the book A= B by

Petkovsek, Wilf, and Zeilberger (Wellesley, Mass.: A. K. Peters, 1996).

The principal tool for dealing with sums of binomial coefficients in a sys

tematic, mechanical way is to exploit the properties of hypergeometric functions,

which are infinite series defined as follows in terms of rising factorial powers:

()

k k k
F a1' ... ' am I z = L al ... am ~ .

b1, · · · , bn bk bk kl
k ?-_O 1 · · · n ·

(39)

An introduction to these important functions can be found in Sections 5.5 and

5.6 of CMath. See also J. Dutka, Archive for History of Exact Sciences 31 (1984),

15-34, for historical references.
The concept of binomial coefficients has several significant generalizations,

which we should discuss briefly. First, we can consider arbitrary real values of the

lower index kin G); see exercises 40 through 45. We also have the generalization

(1 _ qr)(l _qr-I) ... (1 _ qr-k+I)

(1 - qk)(l - qk-1) ... (1 - ql)

which becomes the ordinary binomial coefficient G) 1 = G) when q approaches

the limiting value 1; this can be seen by dividing each term in numerator and

denominator by 1 - q. The basic properties of such "q-nomial coefficients" are

discussed in exercise 58.
However, for our purposes the most important generalization is the multi-

nomial coefficient

(
k1 + k2 + · · · + km) __ (k1 + k2 + · · · + km)!

k1,k2, ... ,km k1!k2! ... km! '
integer ki > 0.

The chief property of multinomial coefficients is the generalization of Eq. (i3):

(x1+x2+···+xmr= L (k kn k)x~1 x~2
••• x~rn. (42)

k +k + +k _ 1, 2, · · · , m
1 2 ··· rn-n

It is important to observe that any multinomial coefficient can be expressed in

terms of binomial coefficients:

(
k1+k2+···+km) = (k1+k2) (k1+k2+k3) ... (k1+k2+···+km), (43

)

k1, k2, ···,km k1 k1 +k2 k1 +···+km-I

so we may apply the techniques that we already know for manipulating binomial

coefficients. Both sides of Eq. (20) are the trinomial coefficient

(km-: r-m)·
' '

66 BASIC CONCEPTS 1.2.6

Table 2
STIRLING NUMBERS OF BOTH KINDS

n [~] [~] [;] [;] [~] [~] [~] [~] [~]
0 1 0 0 0 . 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0
3 0 2 3 1 0 0 0 0 0
4 0 6 11 6 1 0 0 0 0
5 0 24 50 35 10 1 0 0 0
6 0 120 274 225 85 15 1 0 0
7 0 720 1764 1624 735 175 21 1 0
8 0 5040 13068 13132 6769 1960 322 28 1

n {~} {~} {;} {;} {~} {~} {~} {~} {~}
0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0
3 0 1 3 1 0 0 0 0 0
4 0 1 7 6 1 0 0 0 0
5 0 1 15 25 10 1 0 0 0
6 0 1 31 90 65 15 1 0 0
7 0 1 63 301 350 140 21 1 0
8 0 1 127 966 1701 1050 266 28 1

For approximations valid when n is large, see L. Moser and M. Wyman, J. London Math.

Soc. 33 (1958), 133-146; Duke Math. J. 25 (1958), 29-43; D. E. Barton, F. N. David, and

M. Merrington, Biometrika 47 (1960), 439-445; 50 (1963), 169-176; N. M. Temme, Studies in

Applied Math. 89 (1993), 233-243; H. S. Wilf, J. Combinatorial Theory A64 (1993), 344-349;
H.-K. Hwang, J. Combinatorial Theory A71 (1995), 343-351.

We conclude this section with a brief analysis of the transformation from
a polynomial expressed in powers of x to a polynomial expressed in binomial
coefficients. The coefficients involved in this transformation are called Stirling
numbers, and these numbers arise in the study of numerous algorithms.

Stirling numbers come in two flavors: We denote Stirling numbers of the first
kind by [~], and those of the second kind by { ~}. These notations, due to Jovan
Karamata [Mathematica (Cluj) 9 (1935), 164-178], have compelling advantages
over the many other symbolisms that have been tried [see D. E. Knuth, AMM
99 (1992), 403-422]. We can remember the curly braces in {~} because curly

braces denote sets, and {~} is the number of ways to partition a set of n elements

into k disjoint subsets (exercise 64). The other Stirling numbers [~] also have

a combinatorial interpretation, which we will study in Section 1.3.3: [~] is the
number of permutations on n letters having k cycles.

Table 2 displays Stirling's triangles, which are in some ways analogous to
Pascal's triangle.

1.2.6 BINOMIAL COEFFICIENTS 67

Stirling numbers of the first kind are used to convert from factorial powers
to ordinary powers:

x!! = x (x - 1) ... (x - n + 1)

= [~Jxn-[n n 1Jxn-1+···+(-1t[~J
= L (-l)n-k [~]xk.

k

For example, from Table 2,

(x) x5
1 = ____::_, = -(x5

- 10x4 + 35x3
- 50x2 + 24x).

5 5. 120

Stirling numbers of the second kind are used to convert from ordinary powers
to factorial powers:

xn = {~} x!! + · .. + {~} xl + {~} xQ = L {~} x~. (45)
k

This formula was, in fact, Stirling's original reason for studying the numbers
{~} in his Methodus Differentialis (London: 1730). From Table 2 we have, for
example,

x 5 = x§ + 10x1 + 25xQ + 15x~ + xl

We shall now list the most important identities involving Stirling numbers.
In these equations, the variables m and n always denote nonnegative integers.

Addition formulas:

[n;l] =n[:J + [m~l];

{ n; 1} = m{:} + { m ~ 1}.
Inversion formulas (compare with Eq. (33)):

Special values:

(~) = [~] = {~} = 6no, (~) = [~] = {~} = 1; (48)

[nn1J={nn1}=(~); (49)

68 BASIC CONCEPTS 1.2.6

[n+l] = 1 1 n.,

Expansion formulas:

(53)

~(m-n) (m+n){m+k} = [n],
~ m+k n+k k n-m

k

~(m-n)(m+n) [m+k] = { n };
~ m+k n+k k n-m

k

(54)

L [k J n! = [n + 1 J ,
m k! m+l

k~n

Some other fundamental Stirling number identities appear in exercises 1.2.6-61
and 1.2.7-6, and in Eqs. (23), (26), (27), and (28) of Section 1.2.9.

Eq. (49) is just one instance of a general phenomenon: The Stirling num

bers [n~mJ and {n~m} are polynomials in n of degree 2m, whenever m is a
nonnegative integer. For example, the formulas for m = 2 and m = 3 are

[n J = (n) (n+ 1) { n } = (n+ 1) (n)
n-2 4 +2

4 ' n-2 4 +2
4 '

[n n 3 J = (~) + 8 (n; 1) + 6 (n; 2) ; { n n 3 } = (n; 2) + 8 (n; 1) + 6 (~) .
(57)

Therefore it makes sense to define the numbers [r_:-mJ and t_:-m} for arbitrary
real (or complex) values of r. With this generalization, the two kinds of Stirling
numbers are united by an interesting duality law

1.2.6 BINOMIAL COEFFICIENTS 69

which was implicit in Stirling's original discussion. Moreover, Eq. (45) remains
true in general, in the sense that the infinite series

zr = L { r : k} zr-k
k

converges whenever the real part of z is positive. The companion formula,
Eq. (44), generalizes in a similar way to an asymptotic (but not convergent)
sen es:

m

zr: = L [r: k] (-l)kzr-k + O(zr-m-1).
k=O

(60)

(See exercise 65.) Sections 6.1, 6.2, and 6.5 of CMath contain additional informa
tion about Stirling numbers and how to manipulate them in formulas. See also
exercise 4. 7-21 for a general family of triangles that includes Stirling numbers
as a very special case.

EXERCISES

1. [00] How many combinations of n things taken n - 1 at a time are possible?

2. [00] What is (~)?

3. [00] How many bridge hands (13 cards out of a 52-card deck) are possible?

4. [1 OJ Give the answer to exercise 3 as a product of prime numbers.

~ 5. [05] Use Pascal's triangle to explain the fact that 114 = 14641.

~ 6. [10] Pascal's triangle (Table 1) can be extended in all directions by use of the
addition formula, Eq. (g). Find the three rows that go on top of Table 1 (i.e., for
r = -1, -2, and -3).

1. [12] If n is a fixed positive integer, what value of k makes (~) a maximum?

8. [00] What property of Pascal's triangle is reflected in the "symmetry condition,"
Eq. (6)?

9. [01] What is the value of C)? (Consider all integers n.)

~ 10. [M25] If pis prime, show that:

a) (;) l; j (modulo p).

b) (~) 0 (modulo p), for 1:::; k:::; p - 1.

c) (p:
1

) _ (-l)k (modulo p), for 0:::; k:::; p - 1.

d) (p :
1

) 0 (modulo p), for 2 < k :::; p - 1.

e) (E. Lucas, 1877.)

f) If the p-ary number system representations of n and k are

n = arpr + ... + aip + ao,

k = brpr + · · · + bip + bo,
then (~) (~:) ... (~~)(~~) (modulop).

70 BASIC CONCEPTS 1.2.6

~ 11. [M20] (E. Kummer, 1852.) Let p be prime. Show that if pn divides

but pn+i does not, then n is equal to the number of carries that occur when a is added
to bin the p-ary number system. [Hint: See exercise 1.2.5-12.]

12. [M22] Are there any positive integers n for which all the nonzero entries in the
nth row of Pascal's triangle are odd? If so, find all such n.

13. [M13] Prove the summation formula, Eq. (10).

14. [M21] Evaluate l::~=o k4
.

15. [M15] Prove the binomial formula, Eq. (13).

16. [M15] Given that n and k are positive integers, prove the symmetrical identity

(-1r(-n) = (-1)k(-k).
k-l n-l

~ 17. [M18] Prove the Chu-Vandermonde formula (21) from Eq. (15), using the idea
that (1 + xr+s = (1 + xr(1 + x) 8

•

18. [M15] Prove Eq. (22) using Eqs. (21) and (6).

19. [M18] Prove Eq. (23) by induction.

20. [M20] Prove Eq. (24) by using Eqs. (21) and (lg), then show that another use of
Eq. (lg) yields Eq. (25).

~ 21. [MOS] Both sides of Eq. (25) are polynomials in s; why isn't that equation an
identity in s?

22. [M20] Prove Eq. (26) for the special case s = n - 1 - r + nt.

23. [M13] Assuming that Eq. (26) holds for (r, s, t, n) and (r, s - t, t, n - 1), prove
it for (r, s + 1, t, n).

24. [M15] Explain why the results of the previous two exercises combine to give a
proof of Eq. (26).

25. [HMSO] Let the polynomial An(x, t) be defined as in Eq. (30). Let z = xt+i - xt.
Prove that L:k Ak(r, t)zk = xr, provided z is small enough. [Note: If t = 0, this result
is essentially the binomial theorem, and this equation is an important generalization
of the binomial theorem. The binomial theorem (15) may be assumed in the proof.]
Hint: Start with the identity

26. [HM25] Using the assumptions of the previous exercise, prove that

(r-tk) k xr+l
2= k z = (t + 1)x - t ·

k

27. [HM21] Solve Example 4 in the text by using the result of exercise 25; and prove
Eq. (26) from the preceding two exercises. [Hint: See exercise 17.]

1.2.6 BINOMIAL COEFFICIENTS 71

28. [M25] Prove that

if n is a nonnegative integer.

29. [M20] Show that Eq. (34) is just a special case of the general identity proved in
exercise 1.2.3-33.

~ 30. [M24] Show that there is a better way to solve Example 3 than the way used in
the text, by manipulating the sum so that Eq. (26) applies.

~ 31. [M20] Evaluate

L(m-;+s) (n::~s) (:::)
k

in terms of r, s, m, and n, given that m and n are nonnegative integers. Begin by
replacing

(
r+k) m+n by

32. [M20] Show that L:k [~]xk = x 1
\ where xn is the rising factorial power defined in

Eq. 1.2.5-(19).

33. [M20] (Capelli 's sum.) Show that the binomial formula is valid also when it
involves rising factorial powers instead of the ordinary powers; that is, prove the identity

(x + y);,, = L:k (~)xkyn-k.

34. [M23] (Torelli's sum.) In the light of the previous exercise, show that Abel's
generalization, Eq. (i6), of the binomial formula is true also for rising powers:

(x + y)n = L (~)x(x - kz + l)k- 1(y + kz)n-k.
k

35. [M23] Prove the addition formulas (46) for Stirling numbers directly from the

definitions, Eqs. (44) and (45).

36. [M10] What is the sum L:k (~) of the numbers in each row of Pascal's triangle?

What is the sum of these numbers with alternating signs, L:k G) (-1)k?

37. [M10] From the answers to the preceding exercise, deduce the value of the sum

of every other entry in a row, (~) + G) + (~) + · · ·.
38. [HM30] (C. Ramus, 1834.) Generalizing the result of the preceding exercise, show
that we have the following formula, given that 0:::; k < m:

(n) (n) (n) 1 """""' (jrr)n j(n - 2k)rr + + + ... = - L..t 2 cos - cos .
k m + k 2m + k m m m

osj<rn

For example,

[Hint: Find the right combinations of these coefficients multiplied by mth roots of
unity.] This identity is particularly remarkable when m 2: n.

72 BASIC CONCEPTS 1.2.6

39. [M10] What is the sum L:k [~] of the numbers in each row of Stirling's first

triangle? What is the sum of these numbers with alternating signs? (See exercise 36.)

40. [Hi'\.J17] The beta function B(x, y) is defined for positive real numbers x, y by the

formula B(x, y) = f
0

1 tx-l (1 - t)y-l dt.

a) Show that B(x, 1) = B(l,x) = l/x.
b) Show that B(x + 1, y'J+ B(x, y + 1) = B(x,y).
c) Show that B(x, y) = ((x + y)/y) B(x, y + 1).

41. [HM22] We proved a relation between the gamma function and the beta function

in exercise 1.2.5-19, by showing that r rn(x) = mxB(x, m+ 1), if mis a positive integer.

a) Prove that

b) Show that

r rn(y)mx
B(x, y) = r () B(x, y + m + 1).

rn X + Y

B(x y) = r(x)r(y).
' r(x + y)

42. [HM10] Express the binomial coefficient G) in terms of the beta function defined

above. (This gives us a way to extend the definition to all real values of k.)

43. [HM20] Show that B(l/2, 1/2) = 1r. (From exercise 41 we may now conclude that

r(1/2) = yl1r.)

44. [HM20] Using the generalized binomial coefficient suggested in exercise 42, show

that

45. [HM21] Using the generalized binomial coefficient suggested in exercise 42, find

limr-+oo G) / rk.

~ 46. [M21] Using Stirling's approximation, Eq. 1.2.5-(7), find an approximate value

of (x;y), assuming that both x and y are large. In particular, find the approximate

size of (2;) when n is large.

47. [M21] Given that k is an integer, show that

Give a simpler formula for the special case r = -1/2.

~ 48. [M25] Show that

(n) (-l)k n! 1

L k k+x = x(x+l) ... (x+n) = x(n+x)'
k20 n

if the denominators are not zero. [Note that this formula gives us the reciprocal of a

binomial coefficient, as well as the partial fraction expansion of l/x(x + 1) ... (x + n).]

49. [M20] Show that the identity (1 + xf = (1 - x 2 f (1 - x)-r implies a relation on

binomial coefficients.

50. [M20] Prove Abel's formula, Eq. (i6), in the special case x + y = 0.

51. [M21] Prove Abel's formula, Eq. (i6), by writing y = (x + y) - x, expanding the

right-hand side in powers of (x + y), and applying the result of the previous exercise.

1.2.6 BINOMIAL COEFFICIENTS 73

52. [HM11] Prove that Abel's binomial formula (16) is not always valid when n is not
a nonnegative integer, by evaluating the right-hand side when n = x = -1, y = z = 1.

53. [M25] (a) Prove the following identity by induction on m, where m and n are
integers:

(b) Making use of important relations from exercise 47,

(
-1/2) = (-lt (2n) (1/2) = (-l)n-l (2n) = (-l)n-l (2n-l)-1'no,

n 22n n ' n 22n(2n-1) n 22n- 1 (2n-1) n

show that the following formula can be obtained as a special case of the identity in
part (a):

.;:.._ (2k - 1) (2n - 2k) -1 = n - m (2m) (2n - 2m) + I_ (2n) .
L...t k n - k 2k - 1 2n m n - m 2 n
k=O

(This result is considerably more general than Eq. (26) in the case r = -1, s = 0,
t = -2.)

54. [M21] Consider Pascal's triangle (as shown in Table 1) as a matrix. What is the
inverse of that matrix?

55. [M21] Considering each of Stirling's triangles (Table 2) as matrices, determine
their inverses.

56. [20] (The combinatorial number system.) For each integer n = 0, 1, 2, ... , 20,
find three integers a, b, c for which n = (~) + (~) + (~) and 0 :::;_ a < b < c. Can you see
how this can be continued for higher values of n?

~ 57. [M22] Show that the coefficient arn in Stirling's attempt at generalizing the fac
torial function, Eq. 1.2.5-(12), is

(-l)rn "°'(-l)k (m - 1) ln k.
m! L...t k- l

k2:l

58. [M23] In the notation ofEq. (40), prove the "q-nomial theorem":

(1 + x)(l + qx) ... (1 + qn-lx) = L (~) qk(k-l)/2xk.
k q

Find q-nomial generalizations of the fundamental identities (17) and (21).

59. [M25] A sequence of numbers Ank, n ~ O, k ~ O, satisfies the relations Ano = 1,
Aok = 8ok, Ank = A(n-l)k + A(n-l)(k-1) + G) for nk > 0. Find Ank·

~ 60. [M23] We have seen that G) is the number of combinations of n things, k at
a time, namely the number of ways to choose k different things out of a set of n.
The combinations with repetitions are similar to ordinary combinations, except that we
may choose each object any number of times. Thus, the list (1) would be extended to
include also aaa, aab, aac, aad, aae, abb, etc., if we were considering combinations with
repetition. How many k-combinations of n objects are there, if repetition is allowed?

74 BASIC CONCEPTS 1.2.6

61. [M25] Evaluate the sum

thereby obtaining a compan,,ion formula for Eq. (55).

~ 62. [M23] The text gives formulas for sums involving a product of two binomial
coefficients. Of the sums involving a product of three binomial coefficients, the following
one and the identity of exercise 31 seem to be most useful:

L(-l)k(l+m)(m+n)(n+l)-- (l+m+n)!' integer l, m, n 2: 0.
l + k m + k n + k l ! m! n!

k

(The sum includes both positive and negative values of k.) Prove this identity.

[Hint: There is a very short proof, which begins by applying the result of exercise 31.J

63. [M30] If Z, m, and n are integers and n 2: O, prove that

L) _ 1)j +k (j + k) (~) (n) (s + n - j. - k) = (_ 1) z (n + r) (s - r) .
. k+l J k m-J n+l m-n-l

J,k

~ 64. [M20] Show that {;:.} is the number of ways to partition a set of n elements
into m nonempty disjoint subsets. For example, the set {1, 2, 3, 4} can be partitioned
into two subsets in{~}= 7 ways: {1,2,3}{4}; {1,2,4}{3}; {1,3,4}{2}; {2,3,4}{1};
{1, 2}{3, 4}; {1, 3}{2, 4}; {1, 4}{2, 3}. Hint: Use Eq. (46).

65. [HM35] (B. F. Logan.) Prove Eqs. (59) and (60).

66. [M29] Let n be a positive integer, and suppose x and y are real numbers satisfying

n :S y :S x :S y + 1. Then (n~ 1) :S (n:1) :S (~!i) = (n~l) + (~), so there is a unique
real number z such that

n - 1 :S z :Sy.

Prove that

[Hint: Consider the expansion (n: 1) = (~!~) + L:k2 o (~::::~)(x-~~i+k) .]

~ 61. [M20] We often need to know that binomial coefficients aren't too large. Prove
the easy-to-remember upper bound

when n 2: k 2: 0.

68. [M25] (A. De Moivre.) Prove that, if n is a nonnegative integer,

1.2.7 HARMONIC NUMBERS 75

1.2. 7. Harmonic Numbers

The following sum will be of great importance in our later work:

1 1 1 n 1
Hn = 1 + 2 + 3 + ... + n = L k' n > 0.

k=l

This sum does not occur very frequently in classical mathematics, and there is

no standard notation for it; but in the analysis of algorithms it pops up nearly

every time we turn around, and we will consistently call it Hn. (Besides Hn,

the notations hn and Sn and '!jJ(n + 1) +/are found in mathematical literature.

The letter H stands for "harmonic," and we speak of Hn as a harmonic number

because (1) is customarily called the harmonic series.)

It may seem at first that Hn does not get too large when n has a large value,

since we are always adding smaller and smaller numbers. But actually it is not

hard to see that Hn will get as large as we please if we taken to be big enough,

because
m

H2= > 1 + -. - 2

This lower bound follows from the observation that, form> 0, we have

So as m increases by 1, the left-hand side of (2) increases by at least ~.

It is important to have more detailed information about the value of Hn

than is given in Eq. (2). The approximate size of Hn is a well-known quantity

(at least in mathematical circles) that may be expressed as follows:

1 1 1
Hn = ln n +I+ 2n - 12n2 + 120n4 - E,

1
O < E < 252n6 . (3)

Here/= 0.5772156649 ... is Euler's constant, introduced by Leonhard Euler in

Commentarii Acad. Sci. Imp. Pet. 7 (1734), 150-161. Exact values of Hn for

small n, and a 40-place value for/, are given in the tables in Appendix A. We

shall derive Eq. (3) in Section 1.2.11.2.

Thus Hn is reasonably close to the natural logarithm of n. Exercise 7(a)

demonstrates in a simple way that Hn has a somewhat logarithmic behavior.

In a sense, Hn just barely goes to infinity as n gets large, because the similar

sum
1 1 1

1 + - + - + ... + - (4)
2r 3r nr

stays bounded for all n, when r is any real-valued exponent greater than unity.

(See exercise 3.) We denote the sum in Eq. (4) by H~r)_
When the exponent r in Eq. (4) is at least 2, the value of H~r) is fairly close

to its maximum value Ht), except for very small n. The quantity Ht) is very

76 BASIC CONCEPTS 1.2.7

well known in mathematics as Riemann's zeta function:

Ht)= ((r) = L :r.
k2:1

If r is an even integer, the value of ((r) is known to be equal to .
H(r) = ~ IB I (27rr

oo 2 r r! ' integer r /2 > 1, (6)

where Br is a Bernoulli number (see Section 1.2.11.2 and Appendix A). In
particular,

2 4 6 8
H(2) = ~ (4) - ~ H(6) = !!__ H(s) = _!!__ (7)

00 6 ' Hoo - 90' 00 945' 00 9450"

These results are due to Euler; for discussion and proof, see CMath, §6.5.
Now we will consider a few important sums that involve harmonic numbers.

First,
n

LHk = (n+ l)Hn - n. (8)
k=l

This follows from a simple interchange of summation:

Formula (8) is a special case of the sum :E~=l (!)Hk, which we will now
determine using an important technique called summation by parts (see exer
cise 10). Summation by parts is a useful way to evaluate 2: akbk whenever the
quantities 2: ak and (bk+l - bk) have simple forms. We observe in this case that

and therefore

(~)Hk = (~: ~) (Hk+1 - k ! 1) - (m: 1)Hk;

hence

(n+ 1) (1) 1 n (k) 1 (O) = Hn+1- Hi--- +--m+l m+l m+1L m m+l m ·
k=O

1.2.7 HARMONIC NUMBERS 77

Applying Eq. 1.2.6-(11) yields the desired formula:

(g)

(This derivation and its final result are analogous to the evaluation of

J.n xm lnxdx = :m:~ (inn - m ~ 1) + (m ~ l) 2

using what calculus books call integration by parts.)
We conclude this section by considering a different kind of sum, :Ek G)xk Hk,

which we will temporarily denote by Sn for brevity. We find that

1 """°"'(n+ 1) k = Sn + X Sn + ~ ~ k X •

+ k>l

Hence Sn+i = (x + l)Sn + ((x + 1r+1
- 1) /(n + 1), and we have

Sn+l Sn 1 1
(x + l)n+l = (x + l)n + n + 1 - (n + l)(x + l)n+l ·

This equation, together with the fact that S1 = x, shows us that

S n 1
(x +nl)n = Hn - ~ k(x + l)k.

The remaining sum is part of the infinite series for ln(l/(1 - 1/(x + 1)))
ln(l + 1/x), and when x > 0, the series is convergent; the difference is

1 1 1 1
L k(x + l)k < (n + l)(x + l)n+l L (x + l)k = (n + l)(x + l)nx ·
k>n k;::::o

This proves the following theorem:

Theorem A. If x > 0, then

where 0<E<1/(x(n+1)). I

EXERCISES

1. [01] What are Ho, H 1, and H 2?

2. [13] Show that the simple argument used in the text to prove that H2= 2: l+m/2
can be slightly modified to prove that H2= :S 1 + m.

78 BASIC CONCEPTS 1.2.'i

3. [M21] Generalize the argument used in the previous exercise to show that, foi
r > 1, the sum H~r) remains bounded for all n. Find an upper bound.

~ 4. [1 OJ Decide which of the following statements are true for all positive integers n:
(a) Hn <Inn. (b) Hn >Inn. (c) Hn >Inn+/·

5. [15] Give the value of H 10000 to 15 decimal places, using the tables in Appendix A.

6. [M15] Prove that the harmonic numbers are directly related to Stirling's numbers,
which were introduced in the previous section; in fact,

1. [M21] Let T(m,n) = Hrn + Hn - Hrnn· (a) Show that when morn increases,
T(m,n) never increases (assuming that m and n are positive). (b) Compute the
minimum and maximum values of T(m, n) form, n > 0.

8. [HM18] Compare Eq. (8) with 2:~= 1 ln k; estimate the difference as a function
of n.

~ 9. [M18] Theorem A applies only when x > O; what is the value of the sum consid
ered when x = -1?

10. [M20] (Summation by parts.) We have used special cases of the general method
of summation by parts in exercise 1.2.4-42 and in the derivation of Eq. (g). Prove the
general formula

1sk<n

~ 11. [M21] Using summation by parts, evaluate

1 L k(k- l)Hk.
l<ksn

~ 12. [Ml OJ Evaluate Hf;;000
) correct to at least 100 decimal places.

13. [M22] Prove the identity

~ xk = H ~ (n) (x - 1)k
~k n+~k k
k=l k=l

(Note in particular the special case x = 0, which gives us an identity related to exercise
1.2.6-48.)

14. [M22] Show that L:~=l Hk/k = HH~ + H~2)), and evaluate L:~=l Hk/(k + 1).
~ 15. [M23] Express L:~=l H~ in terms of n and Hn.

16. [18] Express the sum 1 + ~ + · · · + 2n~l in terms of harmonic numbers.

17. [M24] (E. Waring, 1782.) Let p be an odd prime. Show that the numerator of
Hp-1 is divisible by p.

18. [M33] (J. Selfridge.) What is the highest power of 2 that divides the numerator
of 1 + .!. + ... + - 1-? 3 2n-l

~ 19. [M30] List all nonnegative integers n for which Hn is an integer. [Hint: If Hn
has odd numerator and even denominator, it cannot be an integer.]

1.2.8 FIBONACCI NUMBERS 79

20. [HN!22] There is an analytic way to approach summation problems such as the one
leading to Theorem A in this section: If f (x) = L k >o a k xk, and this series converges
for x = xo, prove that -

L kH -11
f(xo) - f(xoy) d akxo k - Y·

l-y
k>O O

21. [M24] Evaluate l::~=l Hk/(n + 1 - k).

22. [M28] Evaluate l::~=O HkHn-k.

23. [HNI20] By considering the function r'(x)/r(x), show how we can get a natural
generalization of Hn to noninteger values of n. You may use the fact that r' (1) = -1,
anticipating the next exercise.

24. [HNI21] Show that

"fX IT ((X) -x/k) _ 1 xe l+k e -r(x)"
k>l

(Consider the partial products of this infinite product.)

1.2.8. Fibonacci Numbers

The sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... '

in which each number is the sum of the preceding two, plays an important role
in at least a dozen seemingly unrelated algorithms that we will study later. The
numbers in the sequence are denoted by F n, and we formally define them as

Fo = O;

This famous sequence was published in 1202 by Leonardo Pisano (Leonardo
of Pisa), who is sometimes called Leonardo Fibonacci (Filius Bonaccii, son of
Bonaccio). His Liber Abaci (Book of the Abacus) contains the following exercise:
"How many pairs of rabbits can be produced from a single pair in a year's time?"
To solve this problem, we are told to assume that each pair produces a new pair
of offspring every month, and that each new pair becomes fertile at the age of
one month. Furthermore, the rabbits never die. After one month there will be
2 pairs of rabbits; after two months, there will be 3; the following month the
original pair and the pair born during the first month will both usher in a new
pair and there will be 5 in all; and so on.

Fibonacci was by far the greatest European mathematician of the Middle
Ages. He studied the work of al-Khwarizmi (after whom "algorithm" is named,
see Section 1.1) and he added numerous original contributions to arithmetic and
geometry. The writings of Fibonacci were reprinted in 1857 [B. Boncompagni,
Scritti di Leonardo Pisano (Rome, 1857-1862), 2 vols.; Fn appears in Vol. 1, 283-
285). His rabbit problem was, of course, not posed as a practical application to
biology and the population explosion; it was an exercise in addition. In fact,
it still makes a rather good computer exercise about addition (see exercise 3);

80 BASIC CONCEPTS 1.2.8

Fibonacci wrote: "It is possible to do [the addition] in this order for an infinite
number of months."

Before Fibonacci wrote his work, the sequence Fn had already been discussed
by Indian scholars, who had long been interested in rhythmic patterns that
are formed from one-beat and two-beat notes or syllables. The number of
such rhythms having n beats altogether is Fn+1 ; therefore both Gopala (before
1135) and Hemachandra (c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13,
21, ... explicitly. [See P. Singh, Historia Math. 12 (1985), 229-244; see also
exercise 4.5.3-32.]

The same sequence also appears in the work of Johann Kepler, 1611, who
was musing about the numbers he saw around him [J. Kepler, The Six-Cornered
Snowflake (Oxford: Clarendon Press, 1966), 21]. Kepler was presumably unaware
of Fibonacci's brief mention of the sequence. Fibonacci numbers have often been
observed in nature, probably for reasons similar to the original assumptions of
the rabbit problem. [See Conway and Guy, The Book of Numbers (New York:
Copernicus, 1996), 113-126, for an especially lucid explanation.]

A first indication of the intimate connections between Fn and algorithms
came to light in 1837, when E. Leger used Fibonacci's sequence to study the
efficiency of Euclid's algorithm. He observed that if the numbers m and n in
Algorithm 1.lE are not greater than Fk, step E2 will be executed at most k + 1
times. This was the first practical application of Fibonacci's sequence. (See
Theorem 4.5.3F.) During the 1870s the mathematician E. Lucas obtained very
profound results about the Fibonacci numbers, and in particular he used them to
prove that the 39-digit number 2127 -1 is prime. Lucas gave the name "Fibonacci
numbers" to the sequence (Fn), and that name has been used ever since.

We already have examined the Fibonacci sequence briefly in Section 1.2.1
(Eq. (3) and exercise 4), where we found that c/>n- 2 < Fn < c/>n-l if n is a positive
integer and if

c/> = ~(1 + v15).
We will see shortly that this quantity, ¢, is intimately connected with the
Fibonacci numbers.

The number c/> itself has a very interesting history. Euclid called it the
"extreme and mean ratio"; the ratio of A to B is the ratio of A + B to A, if the
ratio of A to B is ¢. Renaissance writers called it the "divine proportion"; and
in the last century it has commonly been called the "golden ratio." Many artists
and writers have said that the ratio of c/> to 1 is the most aesthetically pleasing
proportion, and their opinion is confirmed from the standpoint of computer
programming aesthetics as well. For the story of ¢, see the excellent article "The
Golden Section, Phyllotaxis, and Wythoff's Game," by H. S. M. Coxeter, Scripta
Math. 19 (1953), 135-143; see also Chapter 8 of The 2nd Scientific American
Book of Mathematical Puzzles and Diversions, by Martin Gardner (New York:
Simon and Schuster, 1961). Several popular myths about c/> have been debunked
by George Markowsky in College Math. J. 23 (1992), 2-19. The fact that the
ratio Fn+i/ Fn approaches ¢ was known to the early European reckoning master

1.2.8 FIBONACCI NUMBERS 81

Simon Jacob, who died in 1564 [see P. Schreiber, Historia Math. 22 (1995),
422-424].

The notations we are using in this section are a little undignified. In much
of the sophisticated mathematical literature, Fn is called Un instead, and c/> is
called T. Our notations are almost universally used in recreational mathematics
(and some crank literature!) and they are rapidly coming into wider use. The
designation ¢ comes from the name of the Greek artist Phidias who is said
to have used the golden ratio frequently in his sculpture. The notation Fn is in
accordance with that used in the Fibonacci Quarterly, where the reader may find
numerous facts about the Fibonacci sequence. A good reference to the classical
literature about Fn is Chapter 17 of L. E. Dickson's History of the Theory of
Numbers 1 (Carnegie Inst. of Washington, 1919).

The Fibonacci numbers satisfy many interesting identities, some of which
appear in the exercises at the end of this section. One of the most commonly
discovered relations, mentioned by Kepler in a letter he wrote in 1608 but first
published by J. D. Cassini [Histoire Acad. Roy. Paris 1 (1680), 201], is

which is easily proved by induction. A more esoteric way to prove the same
formula starts with a simple inductive proof of the matrix identity

(
Fn+l Fn) (1 l)n (

5
)

Fn Fn-1 1 0 .

We can then take the determinant of both sides of this equation.
Relation (4) shows that Fn and Fn+l are relatively prime, since any common

divisor would have to be a divisor of (-1) n.

From the definition (2) we find immediately that

Fn+3 = Fn+2 + Fn+l = 2Fn+l + Fn; Fn+4 = 3Fn+l + 2Fn;

and, in general, by induction that

Fn+m = FmFn+l + Fm-lFn

for any positive integer m.
If we take m to be a multiple of n in Eq. (6), we find inductively that

Fnk is a multiple of Fk.

(6)

Thus every third number is even, every fourth number is a multiple of 3, every
fifth is a multiple of 5, and so on.

In fact, much more than this is true. If we write gcd(m, n) to stand for the
greatest common divisor of m and n, a rather surprising theorem emerges:

Theorem A (E. Lucas, 1876). A number divides both Fm and Fn if and only
if it is a divisor of Fd, where d = gcd(m, n); in particular,

gcd(Fm, Fn) = Fgcd(m,n)·

82 BASIC CONCEPTS 1.2.8

Proof. This result is proved by using Euclid's algorithm. We observe that
because of Eq. (6) any common divisor of Fm and Fn is also a divisor of Fn+mi
and, conversely, any common divisor of Fn+m and Fn is a divisor of FmFn+l·
Since Fn+l is relatively prime to Fn, a common divisor of Fn+m and Fn also
divides Fm. Thus we have proved that, for any number d,

d divides Fm ·and Fn if and only if d divides Fm+n and Fn· (8)

We will now show that any sequence, Fn, for which statement (8) holds and for
which F0 = 0, satisfies Theorem A.

First it is clear that statement (8) may be extended by induction on k to
the rule

d divides Fm and Fn if and only if d divides Fm+kn and Fn,

where k is any nonnegative integer. This result may be stated more succinctly:

d divides Fm mod n and Fn if and only if d divides Fm and Fn. (g)

Now if r is the remainder after division of m by n, that is, if r = m mod n,

then the common divisors of {Fm, Fn} are the common divisors of {Fn, Fr}. It
follows that throughout the manipulations of Algorithm l.lE the set of common
divisors of {Fm, Fn} remains unchanged as m and n change; finally, when r = 0,

the common divisors are simply the divisors of Fo = 0 and Fgcd(m,n). I

Most of the important results involving Fibonacci numbers can be deduced
from the representation of Fn in terms of¢, which we now proceed to derive.
The method we shall use in the following derivation is extremely important, and
the mathematically oriented reader should study it carefully; we will study the
same method in detail in the next section.

We start by setting up the infinite series

G(z) = Fo + Fiz + F2z2 + F3z3 + F4z4 + · · ·
2 2 3 3 4 =z+z + z + z +···.

We have no a priori reason to expect that this infinite sum exists or that the
function G(z) is at all interesting-but let us be optimistic and see what we
can conclude about the function G(z) if it does exist. The advantage of such a
procedure is that G(z) is a single quantity that represents the entire Fibonacci
sequence at once; and if we find out that G(z) is a "known" function, its
coefficients can be determined. We call G(z) the generating function for the

sequence (Fn)·
We can now proceed to investigate G(z) as follows:

zG(z) = Foz + Fiz2 + F2z3 + F3z4 + · · ·,
z2 G(z) = Foz2 + Fiz3 + F2z4 + · · ·;

by subtraction, therefore,

(1- z - z2)G(z) = Fo + (F1 - Fo)z + (F2 - Fi - Fo)z2

+ (F3 - F2 - Fi)z3 + (F4 - F3 - F2)z4 + · · ·.

1.2.8 FIBONACCI NUMBERS 83

All terms but the second vanish because of the definition of Fn, so this expression
equals z. Therefore we see that, if G(z) exists,

G(z) = z/(1 - z - z2
). (11)

In fact, this function can be expanded in an infinite series in z (a Taylor series);
working backwards we find that the coefficients of the power series expansion of
Eq. (11) must be the Fibonacci numbers.

We can now manipulate G(z) and find out more about the Fibonacci se
quence. The denominator 1 - z - z2 is a quadratic equation with the two roots
~ (-1 ± J5); after a little calculation we find that G (z) can be expanded by the
method of partial fractions into the form

1 (1 1)
G(z)= J5 1-¢z-1-$'z '

where

The quantity 1/(1 - ¢z) is the sum of the infinite geometric series 1 + ¢z +
¢ 2z2 + · · ·, so we have

G(z) = ~ (1 + c/>z + ¢2z2 + ·· · -1- $'z- $' 2z2
- ...).

J5
We now look at the coefficient of zn, which must be equal to Fn, and we find
that

This is an important closed form expression for the Fibonacci numbers, first
discovered by A. De Moivre early in the eighteenth century. (See De Moivre's
Miscellanea Analytica (London: 1730), 26-42, where the solution to general linear
recurrences is obtained in essentially the way we have derived (14).)

We could have merely stated Eq. (14) and proved it by induction. However,
the point of the rather long derivation above was to show how it would be
possible to discover the equation in the first place, using the important method
of generating functions, which is a valuable technique for solving a wide variety
of problems.

Many things can be proved from Eq. (14). First we observe that $' is a
negative number (-0.61803 ...) whose magnitude is less than unity, so $'n gets
very small as n gets large. In fact, the quantity $'n / J5 is always small enough
so that we have

Fn = c/>n / J5 rounded to the nearest integer.

Other results can be obtained directly from G(z); for example,

2 1(1 1 2)
G(z) = 5 (1 - ¢z) 2 + (1 - $'z)2 - 1 - z - z2 '

84 BASIC CONCEPTS 1.2.8

and the coefficient of zn in G(z)2 is I::~=O FkFn-k· We deduce therefore that
n

k=O
= t ((n + l)(Fn + 2Fn-1) - 2Fn+1)

= t(n - l)Fn + ~nFn-1·
(The second step in this derivation follows from the result of exercise 11.)

EXERCISES
1. [10] What is the answer to Leonardo Fibonacci's original problem: How many

pairs of rabbits are present after a year?

~ 2. [20] In view of Eq. (15), what is the approximate value of Fiooo? (Use logarithms
found in Appendix A.)

3. [25] Write a computer program that calculates and prints Fi through Fiooo in
decimal notation. (The previous exercise determines the size of numbers that must be
handled.)

~ 4. [14] Find all n for which Fn = n.

5. [20] Find all n for which Fn = n 2
.

6. [HM10] Prove Eq. (5)·
~ 1. [15] If n is not a prime number, Fn is not a prime number (with one exception).

Prove this and find the exception.

8. [15] In many cases it is convenient to define Fn for negative n, by assuming that
Fn+2 = Fn+i + Fn for all integers n. Explore this possibility: What is F _i? What is
F_2? Can F-n be expressed in a simple way in terms of Fn?

9. [M20] Using the conventions of exercise 8, determine whether Eqs. (4), (6), (14),
and (15) still hold when the subscripts are allowed to be any integers.
10. [15] Is ¢n/y'5 greater than Fn or less than Fn?

11. [M20] Show that c/>n = Fnc/> + Fn-i and q;n = Fn(fi + Fn-i, for all integers n.
~ 12. [M26] The "second order" Fibonacci sequence is defined by the rule

Fo = 0, Fi = 1, Fn+2 = Fn+i + Fn + Fn.

Express Fn in terms of Fn and Fn+i· [Hint: Use generating functions.]
~ 13. [M22] Express the following sequences in terms of the Fibonacci numbers, when

r, s, and c are given constants:

a) ao = r, ai = s; an+2 = an+i +an, for n 2: 0.
b) bo = 0, bi = 1; bn+2 = bn+i + bn + c, for n 2: 0.

14. [M28] Let m be a fixed positive integer. Find an, given that

ao = 0, ai = 1;

15. [M22] Let f(n) and g(n) be arbitrary functions, and for n 2:. 0 let

ao = 0,
bo = 0,
Co= 0,

ai = 1,
bi= 1,
Ci= 1,

an+2 = an+i +an+ f(n);
bn+2 = bn+l + bn + g(n);
Cn+2 = Cn+i + Cn + xf(n) + yg(n).

Express Cn in terms of x, y, an, bn, and Fn.

1.2.8 FIBONACCI NUMBERS 85

16. [M20] Fibonacci numbers appear implicitly in Pascal's triangle if it is viewed from
the right angle. Show that the following sum of binomial coefficients is a Fibonacci
number:

17. [M24] Using the conventions of exercise 8, prove the following generalization of
Eq. (4): Fn+kFrn-k - FnFrn = (-l)n Frn-n-kFk.

18. [20] Is F~ + F~+ 1 always a Fibonacci number?

· 19. [M27] What is cos 36°?

20. [Ml 6] Express E~=O Fk in terms of Fibonacci numbers.

21. [M25] What is L:;=o Fkxk?

~ 22. [M20] Show that Lk (~)Frn+k is a Fibonacci number.

23. [M23] Generalizing the preceding exercise, show that Lk (~) Ftk Ft:_-./ F rn+k is
always a Fibonacci number.

24. [HM20] Evaluate the n x n determinant

1 -1 0 0 0 0 0
1 1 -1 0 0 0 0
0 1 1 -1 0 0 0

0 0 0 0 1 1 -1

0 0 0 0 0 1 1

25. [M21] Show that
2nFn = 2 L (~)5(k-1)/2.

kodd

~ 26. [M20] Using the previous exercise, show that FP 5(p-l)/2 (modulo p) if pis an
odd prime.

27. [M20] Using the previous exercise, show that if pis a prime different from 5, then
either Fp-1 or Fp+l (not both) is a multiple of p.

28. [M21] What is Fn+1 - ¢Fn?

~ 29. [M23] (Fibonomial coefficients.) Edouard Lucas defined the quantities

(
n) = FnFn-1 ... Fn-k+l =IT (Fn-k+j)
k :F FkFk-1 ... F1 . F3· J=l

in a manner analogous to binomial coefficients. (a) Make a table of (~)F for 0 :S k _:::;

n :S 6. (b) Show that G)F is always an integer because we have

(~):F =Fk-l(n~l):F +Fn-k+l(~=~):F·
~ 30. [M38] (D. Jarden, T. Motzkin.) The sequence of mth powers of Fibonacci num

bers satisfies a recurrence relation in which each term depends on the preceding m + 1
terms. Show that

L (;) (-1) f(rn-k)/21 F:'+~l = 0, if m > 0.
k :F

For example, when m = 3 we get the identity F~ - 2F~+ 1 - 2F~+2 + F~+3 = 0.

86 BASIC CONCEPTS 1.2.8

31. [M20] Show that F2n¢ mod 1 = 1 - ¢-2n and F2n+1¢ mod 1 = ¢-2n-l.
32. [M24] The remainder of one Fibonacci number divided by another is ± a Fibo
nacci number: Show that, modulo Fn,

if mmod4 = O;
if m mod 4 = 1;
if m mod 4 = 2;
if mmod4 = 3.

33. [HM24] Given that z = 7r /2 + i ln ¢, show that sin nz/sin z = i 1-n Fn.
~ 34. [M24] (The Fibonacci number system.) Let the notation k » m mean that k 2:

m + 2. Show that every positive integer n has a unique representation n = Fk 1 + Fk 2 +
· · · + Fkr' where k1 » k2 » · · · » kr » 0.
35. [M24] (A phi number system.) Consider real numbers written with the digits 0
and 1 using base ¢; thus (100.1)¢ = ¢ 2 + ¢-1. Show that there are infinitely many
ways to represent the number 1; for example, 1 = (.11)¢ = (.011111 ...)¢· But if
we require that no two adjacent ls occur and that the representation does not end
with the infinite sequence 01010101. .. , then every nonnegative number has a unique
representation. What are the representations of integers?

~ 36. [M32] (Fibonacci strings.) Let S1 = "a", S2 = "b", and Sn+2 = Sn+1Sn, n > O;
in other words, Sn+2 is formed by placing Sn at the right of Sn+l · We have S3 = "ba",
S4 = "bab", S5 = "babba", etc. Clearly Sn has Fn letters. Explore the properties of
Sn. (Where do double letters occur? Can you predict the value of the kth letter of Sn?
What is the density of the b's? And so on.)

~ 37. [M35] (R. E. Gaskell, M. J. Whinihan.) Two players compete in the following
game: There is a pile containing n chips; the first player removes any number of chips
except that he cannot take the whole pile. From then on, the players alternate moves,
each person removing one or more chips but not more than twice as many chips as the
preceding player has taken. The player who removes the last chip wins. (For example,
suppose that n = 11; player A removes 3 chips; player B may remove up to 6 chips,
and he takes 1. There remain 7 chips; player A may take 1 or 2 chips, and he takes 2;
player B may remove up to 4, and he picks up 1. There remain 4 chips; player A now
takes 1; player B must take at least one chip and player A wins in the following turn.)

What is the best move for the first player to make if there are initially 1000 chips?
38. [35] Write a computer program that plays the game described in the previous
exercise and that plays optimally.

39. [M24] Find a closed form expression for an, given that ao = 0, a 1 = 1, and
an+2 = an+i + 6an for n 2: 0.
40. [M25] Solve the recurrence

J(l) = O; J(n) = min max(l + J(k), 2 + f(n - k)), for n > 1. O<k<n

~ 41. [M25] (Yuri Matiyasevich, 1990.) Let J(x) = lx + ¢-1J. Prove that if n =
Fk 1 + · · · + Fkr is the representation of n in the Fibonacci number system of exercise 34,
then Fk 1+i + · · · + Fkr+l = J(¢n). Find a similar formula for Fk1 -1 + · · · + Fkr-l·
42. [M26] (D. A. Klarner.) Show that if m and n are nonnegative integers, there is a
unique sequence of indices k1 » k2 » · · · » kr such that

m = Fk 1 + Fk 2 + · · · + Fkr, n = Fk 1 +i + Fk 2 +i + · · · + Fkr+l·
(The k's may be negative, and r may be zero.)

1.2.9 GENERATING FUNCTIONS 87

1.2.9. Generating Functions

Whenever we want to obtain information about a sequence of numbers (an) =

a0 , a 1 , a 2 , ... , we can set up an infinite sum in terms of a "parameter" z,

G(z) = ao + aiz + a2z
2 + · · · = L anzn.

n2'.0

We can then try to obtain information about the function G. This function is a
single quantity that represents the whole sequence; if the sequence (an) has been
defined inductively (that is, if an has been defined in terms of ao, a 1 , ... , an-l)
this is an important advantage. Furthermore, we can recover the individual
values of a0 , a 1 , ... from the function G(z), assuming that the infinite sum in
Eq. (i) exists for some nonzero value of z, by using techniques of differential
calculus.

We call G(z) the generating function for the sequence a0 , a1, a2, The
use of generating functions opens up a whole new range of techniques, and
it broadly increases our capacity for problem solving. As mentioned in the
previous section, A. De Moivre introduced generating functions in order to solve
the general linear recurrence problem. De Moivre's theory was extended to
slightly more complicated recurrences by James Stirling, who showed how to
apply differentiation and integration as well as arithmetic operations [Methodus
Differentialis (London: 1730), Proposition 15]. A few years later, L. Euler began
to use generating functions in several new ways, for example in his papers on
partitions [Commentarii Acad. Sci. Pet. 13 (1741), 64-93; Novi Comment. Acad.
Sci. Pet. 3 (1750), 125-169)]. Pierre S. Laplace developed the techniques further
in his classic work Theorie Analytique des Probabilites (Paris: 1812).

The question of convergence of the infinite sum (1) is of some importance.
Any textbook about the theory of infinite series will prove that:

a) If the series converges for a particular value of z = z0 , then it converges for
all values of z with lzl < lzol·

b) The series converges for some z =J. 0 if and only if the sequence (v'fa:i) is
bounded. (If this condition is not satisfied, we may be able to get a conver
gent series for the sequence (an/n!) or for some other related sequence.)

On the other hand, it often does not pay to worry about convergence of
the series when we work with generating functions, since we are only exploring
possible approaches to the solution of some problem. When we discover the
solution by any means, however sloppy, we may be able to justify the solu
tion independently. For example, in the previous section we used a generating
function to deduce Eq. (14); yet once such an equation has been found, it is a
simple matter to prove it by induction, and we need not even mention that we
used generating functions to discover it. Furthermore one can show that most
(if not all) of the operations we do with generating functions can be rigorously
justified without regard to the convergence of the series. See, for example, E. T.
Bell, Trans. Amer. Math. Soc. 25 (1923), 135-154; Ivan Niven, AMM 76 (1969),

88 BASIC CONCEPTS 1.2.9

871-889; Peter Henrici, Applied and Computational Complex Analysis 1 (Wiley,
197 4), Chapter 1.

Let us now study the principal techniques used with generating functions.

A. Addition. If G(z) is the generating function for (an) = a0 , a 1,... and
H(z) is the generating function for (bn) = b0 , b1, ... , then aG(z) + {3H(z) is the
generating function for (aan + f3bn) = aao + f3bo, aa1 + f3b1, ... :

B. Shifting. If G(z) is the generating function for (an) = a0 , a 1, ... then
zmG(z) is the generating function for (an-m) = 0, ... , 0, ao, a1, ... :

(3)

The last summation may be extended over all n 2:: 0 if we regard an = 0 for any
negative value of n.

Similarly, (G(z) - a0 - a1z- · · · - am_ 1zm-l) / zm is the generating function
for (an+m) =am, am+l, · · ·:

z-m L an Zn = L an+mZn. (4)
n?_m n>O

We combined operations A and B to solve the Fibonacci problem in the
previous section: G(z) was the generating function for (Fn), zG(z) for (Fn- 1),
z2G(z) for (Fn-2), and (1 - z - z2)G(z) for (Fn - Fn-1 - Fn-2). Then, since
Fn - Fn-l - Fn_ 2 is zero when n 2:: 2, we found that (1 - z - z2)G(z) is a
polynomial. Similarly, given any linearly recurrent sequence, that is, a sequence
where an= c1an-l + · · · + Cman-m, the generating function will be a polynomial
divided by (1 - C1Z - · · · - Cmzm).

Let us consider the simplest example of all: If G(z) is the generating func
tion for the constant sequence 1, 1, 1, ... , then zG(z) generates 0, 1, 1, ... , so
(1 - z)G(z) = 1. This gives us the simple but very important formula

1 2 --=l+z+z +
l-z

C. Multiplication. If G(z) is the generating function for a0 , a 1 , ... and H(z)
is the generating function for bo, b1 , ... , then

G(z)H(z) = (a0 + a1z + a2z2 + · · ·)(bo + b1z + b2z2 + · · ·)
= (ao + bo) + (aob1 + a1bo)z + (aob2 + a1b1 + a2bo)z2 + · · ·;

thus G (z) H (z) is the generating function for the sequence c0 , c1 , ... , where

n

Cn = L akbn-k·
k=O

(6)

1.2.9 GENERATING FUNCTIONS 89

Equation (3) is a very special case of this. Another important special case occurs
when each bn is equal to unity:

1 2
--G(z) = ao + (ao + ai)z + (ao + a1 + a2)z + · · ·.
l-z

Here we have the generating function for the sums of the original sequence.
The rule for a product of three functions follows from (6); F(z)G(z)H(z)

generates d0 , d1 , d2, ... , where

dn = L aibjck.
i,j,k~O

i+j+k=n

(8)

The general rule for products of any number of functions (whenever this is
meaningful) is

IT L ajkZk = L zn L aokoalk1 ... (9)
j~O k~O n~O k0 ,k1,. .. ~o

k0 +k1 +···=n

When the recurrence relation for some sequence involves binomial coeffi
cients, we often want to get a generating function for a sequence c0 , c1, . . . defined
by

Cn = L(~)akbn-k· (io)
k

In this case it is usually better to use generating functions for the sequences
(an/n!), (bn/n!), (cn/n!), since we have

(
ao a i a2 2) (bo b1 b2 2) -+-z+-z +... -+-z+-z + ...
O! 1! 2! O! 1! 2!

-+-z+-z + ... (
Co C1 C2 2)
O! 1! 2! '

(n)
where Cn is given by Eq. (10).

D. Change of z. Clearly G (cz) is the generating function for the sequence
ao,ca1,c2a2, As a particular case, the generating function for 1,c,c2,c3 , ...

is 1/(1 - cz).
There is a familiar trick for extracting alternate terms of a series:

~(G(z) + G(-z)) = ao + a2z2 + a4z4 +
~(G(z) - G(-z)) = a1z + a3z3 + a5 z 5 + · · ·.

Using complex roots of unity, we can extend this idea and extract every mth
term: Let w = e27ri/m = cos(27r/m) + isin(27r/m); we have

1 L anzn=- L w-krG(wkz), O:Sr<m. (i3)
m

n mod m=r O'.Sk<m

(See exercise 14.) For example, if m = 3 and r = 1, we have w = - ~ + Vf i,
a complex cube root of unity; it follows that

a1z + a4z4 + a1z7 + · · · = ! (G(z) + w-1G(wz) + w- 2G(w2 z)).

90 BASIC CONCEPTS 1.2.9

E. Differentiation and integration. The techniques of calculus give us further
operations. If G (z) is given by Eq. (1), the derivative is

G'(z) = a1 +2a2z+3a3z2 + · · · = L(k + l)ak+1zk. (i4)
k>O

The generating function (or the sequence (nan) is zG'(z). Hence we can combine
the nth term of a sequence with polynomials inn by manipulating the generating
function.

Reversing the process, integration gives another useful operation:

1z 1 2 1 3 "'"' 1 k
G(t) dt = aoz + 2a1z + 3a2z + · · · = ~ kak-1Z .

0 k>O

As special cases, we have the derivative and integral of (5):

1
(l _ z) 2 = 1 + 2z + 3z2 + · · · = L(k + l)zk.

k"20

ln-
1
- = z+ ~z2 + ~z3 + · · · = "'"'~zk.

l-z 2 3 ~k
k>I

We can combine the second formula with Eq. (1) to get the generating function
for the harmonic numbers:

1 1 3 2 u 3 I: k --ln--=z+-z +-z +···= Hkz.
l-z l-z 2 6 k>O

F. Known generating functions. Whenever it is possible to determine the
power series expansion of a function, we have implicitly found the generating
function for a particular sequence. These special functions can be quite useful
in conjunction with the operations described above. The most important power
series expansions are given in the following list.

i) Binomial theorem.

(1 + z r = 1 + r z + r(r ~ 1) z 2 + ... = I: (:) zk.
k"20

When r is a negative integer, we get a special case already reflected in Eqs. (5)
and (i6):

1 =""'(-n-l)(-z)k=""'(n+k)zk.
(l-z)n+I ~ k ~ n

k"20 k"20

There is also a generalization, which was proved in exercise 1.2.6-25:

r r (r - 2t - 1) 2 L (r - kt) r k
x = 1 + rz + z + · · · = z

2 k r - kt '
k"20

if xis the continuous function of z that solves the equation xt+1 = xt + z, where
x = 1 when z = 0.

1.2.9 GENERATING FUNCTIONS

ii) Exponential series.

z 1 2 ~ 1 k
exp z = e = 1 + z + I z + .. · = L_.., -k, z .

2. .
k"2:0

In general, we have the following formula involving Stirling numbers:

iii) Logarithm series (see (17) and (18)).

1 1 (-l)k+l
ln(l + z) = z - -z2 + -z3

- · · · = ~ zk
2 3 L_.., k '

k"2: 1

(l - \m+l ln(l ~ z) = L (Hm+k - Hm) (m: k) zk.
z k"2:1

Stirling numbers, as in (23), give us a more general equation:

(1)n 1 [n + 1] [k] ln-- =zn+-- zn+I+···=n!~ zk/k!.
l-z n+l n L_.., n

k

91

Further generalizations, including many sums of harmonic numbers, appear in
papers by D. A. Zave, Inf Proc. Letters 5 (1976), 75-77; J. Spiefi, Math. Comp.
55 (1990)' 839-863.

iv) Miscellaneous.

z(z+l) ... (z+n-l) = L[~Jzk,
k

(1 - z) (1 - 2: ~ . . . (1 - nz) = ~ { ~ } zk'

z = 1 - ~z + -2:._z2 + ... = ~ Bkzk.
ez - 1 2 12 L_.., k!

k?_O

The coefficients Bk that appear in the last formula are the Bernoulli numbers;
they will be examined further in Section 1.2.11.2. A table of Bernoulli numbers
appears in Appendix A.

The next identity, analogous to (21), will be proved in exercise 2.3.4.4-29:

r r(r + 2t) 2 L r(r + kt)k-I k
x = 1 + rz + z + · · · = z

2 k! '
k"2:0

(30)

if x is the continuous function of z that solves the equation x = ezxt, where x = 1
when z = 0. Significant generalizations of (21) and (30) are discussed in exercise
4.7-22.

92 BASIC CONCEPTS 1.2.9

G. Extracting a coefficient. It is often convenient to use the notation

for the coefficient of zn in G(z). For example, if G(z) is the generating function
in (i) we have [zn] G(z) = an and [zn] G(z)/(l - z) = I:~=O ak. One of the
most fundamental resul'ts in the theory of complex variables is a formula of
A. L. Cauchy [Exercices de Math. 1 (1826), 95-113 = CEuvres (2) 6, 124-145,
Eq. (n)], by which we can extract any desired coefficient with the help of a
contour integral:

if G(z) converges for z = z0 and 0 < r < lzol· The basic idea is that flzl=r zm dz
is zero for all integers m except m = -1, when the integral is

Equation (32) is of importance primarily when we want to study the approximate
value of a coefficient.

We conclude this section by returning to a problem that was only partially
solved in Section 1.2.3. We saw in Eq. 1.2.3-(13) and exercise 1.2.3-29 that

In general, suppose that we have n numbers x 1 , x2, ... , Xn and we want the
sum

(33)

If possible, this sum should be expressed in terms of S1 , S2, ... , Sm, where

n

Sj = Lx{, (34)
k=l

the sum of jth powers. Using this more compact notation, the formulas above
b h - 1 52 1 s . h - 1 53 1 s s 1 s ecome 2 - 2 1 + 2 2, 3 - 6 1 + 2 i 2 + 3 3.

We can attack this problem by setting up the generating function

G(z) = 1 + h1z + h2z2 + · · · = L hkzk.
k>O

(35)

1.2.9 GENERATING FUNCTIONS 93

By our rules for multiplying series, we find that

G(z) = (1 + x 1z + xiz2 + · ..)(1 + x2z + x~z2 + .. ·) ... (1 + XnZ + x;z2 + .. ·)
1

So G(z) is the reciprocal of a polynomial. It often helps to take the logarithm
of a product, and we find from (17) that

1 1
lnG(z) = ln + · · · + ln---

1- x1z l-XnZ

=(I: xt:k) + ... +(I: x~kzk) = L Skkzk.
k~l k~l k~l

(37)

Now lnG(z) has been expressed in terms of the S's; so all we must do to obtain
the answer to our problem is to compute the power series expansion of G(z)
again, with the help of (22) and (9):

(
S zk) k G(z) = elnG(z) =exp L + = IT eSkz /k

k>l k>l - -

(38)

The parenthesized quantity is hm. This rather imposing sum is really not
complicated when it is examined carefully. The number of terms for a particular
value of mis p(m), the number of partitions of m (Section 1.2.1). For example,
one partition of 12 is

12 = 5 + 2 + 2 + 2 + 1;

this corresponds to a solution of the equation k1 + 2k2 + · · · + 12k12 = 12, where
kJ is the number of j's in the partition. In our example k1 = 1, k2 = 3, k5 = 1,
and the other k's are zero; so we get the term

S1 S~ S5 _ 1 S 3

111! 23 3! 511! - 240 152 55

as part of the expression for h12 . By differentiating (37) it is not difficult to
derive the recurrence

n > 1. (39)

An enjoyable introduction to the applications of generating functions has
been given by G. P6lya, "On picture writing," AMM 63 (1956), 689-697; his
approach is continued in CMath, Chapter 7. See also the book generatingfunc
tionology by H. S. Wilf, second edition (Academic Press, 1994).

94 BASIC CONCEPTS 1.2.9

A generating function is a clothesline
on which we hang up a sequence of numbers for display.

- H. S. WILF (1989)

EXERCISES

1. [M12] What is the generating function for the sequence 2, 5, 13, 35, ... = (2n+3n)?

~ 2. [M13] Prove Eq. (11).

3. [HM21] Differentiate the generating function (18) for (Hn), and compare this with
the generating function for ('L:~=o Hk). What relation can you deduce?

4. [M01] Explain why Eq. (19) is a special case of Eq. (21).

5. [M20] Prove Eq. (23) by induction on n.

~ 6. [HM15] Find the generating function for

(2= k(n~k)\;
O<k<n j

differentiate it and express the coefficients in terms of harmonic numbers.

7. [M15] Verify all the steps leading to Eq. (38).

8. [M23] Find the generating function for p(n), the number of partitions of n.

9. [M11] In the notation of Eqs. (34) and (35), what is h4 in terms of Si, S2, S3,
and S4?

~ 10. [M25] An elementary symmetric function is defined by the formula

(This is the same as hm of Eq. (33), except that equal subscripts are not allowed.) Find
the generating function for am, and express am in terms of the Sj in Eq. (34). Write
out the formulas for a i, a2, a3, and a4.

~ 11. [M25] Equation (39) can also be used to express the S's in terms of the h's: We
find Si = hi, S2 = 2h2 - hi, S3 = 3h3 - 3hih2 +hr, etc. What is the coefficient of
h~ 1 h;2

••• h~rn in this representation of Sm, when ki + 2k2 + · · · + mkm = m?

~ 12. [M20] Suppose we have a doubly subscripted sequence amn form, n = 0, 1, ... ;
show how this double sequence can be represented by a single generating function of
two variables, and d~termine the generating function for the sequence amn = (;;J .
13. [HM22] The Laplace transform of a function f(x) is the function

Lf(s) = 1= e-st f(t) dt.

Given that a0 , ai, a2, ... is an infinite sequence having a convergent generating function,
let f(x) be the step function l:k ak [O ~ k ~ x]. Express the Laplace transform of f(x)
in terms of the generating function G for this sequence.

14. [HM21] Prove Eq. (13).

1.2.9 GENERATING FUNCTIONS 95

15. [M28] By considering H(w) = Ln>oGn(z)wn, find a closed form for the gener-
ating function -

16. [M22] Give a simple formula for the generating function Gnr(z) = Lk ankrZk,
where ankr is the number of ways to choose k out of n objects, subject to the condition
that each object may be chosen at most r times. (If r = 1, we have G) ways, and if
r 2: k, we have the number of combinations with repetitions as in exercise 1.2.6-60.)

1 7. [M25] What are the coefficients of 1 / (1 - z) w if this function is expanded into a
double power series in terms of both z and w?

~ 18. [M25] Given positive integers n and r, find a simple formula for the value of the
following sums: (a) 2=i::::ki<k2 <-·-<kr::::n k1k2 ... kr; (b) "L:i::::ki::::k2 ::; ... ::;kr::::n k1k2 ... kr.

(For example, when n = 3 and r = 2 the sums are, respectively, 1·2+1 · 3 + 2 · 3 and
1. 1+1. 2 + 1. 3 + 2. 2 + 2. 3 + 3. 3.)

19. [HM32] (C. F. Gauss, 1812.) The sums of the following infinite series are well
known:

1 1 1
1 - '2 + '3 - '4 + · · · = ln 2;

1 1 1 7r
1 - - + - - - + ... = -·

3 5 7 4'

1 1 1 7rv3 1
1- - + - - - + .. · = -- + -ln2.

4 7 10 9 3

Using the definition

(
1 1

Hx=~ ---)
6 n n+x
n2':1

found in the answer to exercise 1.2.7-24, these series may be written respectively as

3 1 1
- - -Hi/6 + -H2;3.
4 6 6

Prove that, in general, Hp/q has the value

q 7r p ~ 2pk . k
- - - cot -Jr - ln 2q + 2 6 cos -Jr · ln sin -Jr,

p 2 q O<k<q/2 q q

when p and q are integers with 0 < p < q. [Hint: By Abel's limit theorem the sum is

1. 2= (1 1) p+nq im - - x
x-+1- n n + p/q ·

n2':1

Use Eq. (13) to express this power series in such a way that the limit can be evaluated.]

20. [M21] For what coefficients Cmk is Ln::'.".O nmzn = L:;;=O CmkZk/(l - z)k+i7

21. [HM30] Set up the generating function for the sequence (n!) and study properties
of this function.

22. [M21] Find a generating function G(z) for which

96 BASIC CONCEPTS 1.2.9

23. [M33] (L. Garlitz.) (a) Prove that for all integers m 2: 1 there are polynomials
fm(z1, ... , Zm) and 9m(z1, ... , Zm) such that the formula

is an identity for all integers n 2: r 2: 0.
(b) Generalizing exercise 15, find a closed form for the sum

in terms of the functions f m and 9m in part (a).
(c) Find a simple expression for Sn(z1, ... , Zm) when z1 = · · · = Zm = z.

24. [M22] Prove that, if G(z) is any generating function, we have

~ (7) [zn-k] G(z)k = [zn] (1 + zG(z))m.

Evaluate both sides of this identity when G(z) is (a) 1/(1 - z); (b) (ez - l)/z.

~ 25. [M23] Evaluate the sum Lk G) (2~:=~k) (-2)k by simplifying the equivalent for

mula L:dwk] (1- 2wr [zn-k] (1 + z) 2n- 2 k.

26. [M40] Explore a generalization of the notation (31) according to which we might
write, for example, [z2 - 2z5] G(z) = a2 - 2as when G(z) is given by (1).

1.2.10. Analysis of an Algorithm

Let us now apply some of the techniques of the preceding sections to the study
of a typical algorithm.

Algorithm M (Find the maximum). Given n elements X[l], X[2], ... , X[n], we
will find m and j such that m = X[j] = max1<i<n X[i], where j is the largest
index that satisfies this relation.

Ml. [Initialize.] Set j +-- n, k +-- n-1, m +-- X[n]. (During this algorithm we
will have m = X[j] = maxk<i:Sn X[i].)

M2. [All tested?] If k = 0, the algorithm terminates.

M3. [Compare.] If X[k] ::; m, go to M5.

M4. [Change m.] Set j +-- k, m +-- X[k]. (This value of m is a new current
maximum.)

M5. [Decrease k.] Decrease k by one and return to M2. I

This rather obvious algorithm may seem so trivial that we shouldn't bother
to analyze it in detail; but it actually makes a good demonstration of the way
in which more complicated algorithms may be studied. Analysis of algorithms
is quite important in computer programming, because there are usually several
algorithms available for a particular application and we would like to know which
is best.

1.2.10 ANALYSIS OF AN ALGORITHM 97

n-1

,----'---~No,------....
Ml. Initialize M2. All tested? M3. Compare M4. Change m

1 n-1 A A '---~~---'
1 Yes

M5. Decrease k
1

m2:X[k] n-1-A

Fig. 9. Algorithm M. Labels on the arrows indicate the number of times each path
is taken. Note that "Kirchhoff's first law" must be satisfied: The amount of fl.ow into
each node must equal the amount of fl.ow going out.

Algorithm M requires a fixed amount of storage, so we will analyze only the
time required to perform it. To do this, we will count the number of times each
step is executed (see Fig. 9):

Step number
Ml
M2
M3
M4
M5

Number of times
1
n

n-1
A

n-1

Knowing the number of times each step is executed gives us the information
necessary to determine the running time on a particular computer.

In the table above we know everything except the quantity A, which is the
number of times we must change the value of the current maximum. To complete
the analysis, we shall study this interesting quantity A.

The analysis usually consists of finding the minimum value of A (for op
timistic people), the maximum value of A (for pessimistic people), the average
value of A (for probabilistic people), and the standard deviation of A (a quanti
tative indication of how close to the average we may expect the value to be).

The minimum value of A is zero; this happens if

X[n] = max X[k].
1 :S:k::; n

The maximum value is n - 1; this happens in case

X[l] > X[2] > · · · > X[n].

Thus the average value lies between 0 and n - 1. Is it ~n? Is it fo?
To answer this question we need to define what we mean by the average; and
to define the average properly, we must make some assumptions about the
characteristics of the input data X[l], X[2], ... , X[n]. We will assume that the
X[k] are distinct values, and that each of then! permutations of these values
is equally likely. (This is a reasonable assumption to make in most situations,
but the analysis can be carried out under other assumptions, as shown in the
exercises at the end of this section.)

98 BASIC CONCEPTS 1.2.10

The performance of Algorithm M does not depend on the precise values
of the X[k]; only the relative order is involved. For example, if n = 3 we are
assuming that each of the following six possibilities is equally probable:

Situation Value of A Situation Value of A

X[l] < X[2] < X[3] · 0 X[2] < X[3] < X[l] 1

X[l] < X[3] < X[2] 1 X[3] < X[l] < X[2] 1

X[2] < X[l] < X[3] 0 X[3] < X[2] < X[l] 2

The average value of A when n = 3 comes to (0 + 1+0+1+1+2)/6 = 5/6.
It is clear that we may take X[l], X[2], ... , X[n] to be the numbers 1, 2, ... , n

in some order; under our assumption we regard each of the n! permutations as
equally likely. The probability that A has the value k will be

Pnk = (number of permutations of n objects for which A= k)/n!. (i)

For example, from our table above, P3o = ~' P31 = ~' p32 = i·
The average ("mean" or "expected") value is defined, as usual, to be

The variance Vn is defined to be the average value of (A-An) 2
; we have therefore

Vn = L(k - An)
2
Pnk = L k 2

Pnk - 2 An L kPnk +A~ LPnk
k k k k

= L k 2Pnk - 2 AnAn +A~ = L k 2Pnk - A~. (3)
k k

Finally, the standard deviation (J'n is defined to be ~.
The significance of (J'n can perhaps best be understood by noting that, for

all r 2: 1, the probability that A fails to lie within r(J'n of its average value is
less than 1/r2 . For example, IA- Anl > 2(J'n with probability < 1/4. (Proof:
Let p be the stated probability. Then if p > 0, the average value of (A - An) 2

is more than p · (r(J'n) 2 + (1 - p) · O; that is, Vn > pr2Vn.) This is usually called
Chebyshev's inequality, although it was actually discovered first by J. Bienayme
[Comptes Rendus Acad. Sci. Paris 37 (1853), 320-321].

We can determine the behavior of A by determining the probabilities Pnk.
It is not hard to do this inductively: By Eq. (1) we want to count the number of
permutations on n elements that have A = k. Let this number be Pnk = n! Pnk.

Consider the permutations X1X2 ... Xn on {1, 2, ... , n }, as in Section 1.2.5.
If X1 = n, the value of A is one higher than the value obtained on x 2 ... Xn; if
X1 =J. n, the value of A is exactly the same as its value on x2 ... Xn· Therefore
we find that Pnk = Pcn-l)(k-l) + (n - l)P(n-k)ki or equivalently

1 n-1
Pnk = - P(n-l)(k-1) + --P(n-l)k·

n n

1.2.10 ANALYSIS OF AN ALGORITHM 99

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 10. Probability distribution for step M4, when n = 12. The mean is 58301/27720,
or approximately 2.10. The variance is approximately 1.54.

This equation will determine Pnk if we provide the initial conditions

P1k = Ook; Pnk = 0 if k < 0.

We can now get information about the quantities Pnk by using generating
functions. Let

Gn(z) = Pno + Pn1Z + · · · = LPnkZk.
k

(6)

We know that A~ n -1, so Pnk = 0 for large values of k; thus Gn(z) is actually
a polynomial, even though an infinite sum has been specified for convenience.

From Eq. (5) we have G1 (z) = 1; and from Eq. (4) we have

z n-l z+n-l
Gn(z) = - Gn-1(z) + -- Gn-1(z) = Gn-1(z). (7) n n n

(The reader should study the relation between Eqs. (4) and (7) carefully.) We
can now see that

G() _z+n-lG ()_z+n-lz+n-2 0 ()-·. n Z - n-1 Z - n-2 Z - · n n n-l
1

= -,(z + n - l)(z + n - 2) ... (z + 1)
n.

= _l_(z+n). (S)
z+n n

So Gn (z) is essentially a binomial coefficient!
This function appears in the previous section, Eq. 1.2.9-(27), where we have

Gn(z) = ~! L [~] zk-l.
k

Therefore Pnk can be expressed in terms of Stirling numbers:

Pnk = [k: 1] / n!. (9)

Figure 10 shows the approximate sizes of Pnk when n = 12.

100 BASIC CONCEPTS 1.2.10

Now all we must do is plug this value of Pnk into Eqs. (2) and (3) and we
have the desired average value. But this is easier said than done. It is, in fact,
unusual to be able to determine the probabilities Pnk explicitly; in most problems
we will know the generating function Gn(z), but we will not have any special
knowledge about the actual probabilities. The important fact is that we can
determine the mean and va~iance easily from the generating function itself.

To see this, let's suppose that we have a generating function whose coeffi
cients represent probabilities:

G (z) = Po + PI z + P2 z
2 + · · · .

Here Pk is the probability that some event has a value k. We wish to calculate
the quantities

mean(G) = L kpk, var(G) = L k2pk - (mean(G))
2

. (lo)
k k

Using differentiation, it is not hard to discover how to do this. Note that

G(l) = 1, (11)

since G(l) = p0 +PI + p 2 + · · · is the sum of all possible probabilities. Similarly,
since G'(z) = I:k kpkzk-I, we have

mean(G) = L kpk = G'(l).
k

Finally, we apply differentiation again and we obtain (see exercise 2)

var(G) = G"(l) + G'(l) - G'(1) 2
.

Equations (12) and (13) give the desired expressions of the mean and variance
in terms of the generating function.

In our case, we wish to calculate G~(l) =An. From Eq. (7) we have

'(1 () z+n-l, () Gn z) = -Gn-I z + Gn-I z ;
n n

G~(l) = ~ + G~_I(l).
n

From the initial condition G~ (1) = 0, we find therefore

An= G~(l) = Hn - 1.

This is the desired average number of times step M 4 is executed; it is approxi
mately ln n when n is large. [Note: The rth moment of A+ l, namely the quantity
I:k(k + ltPnk, is [zn] (1 - z)-I I:k {~} (ln I~z)k, and it has the approximate
value (lnnt; see P. B. M. Roes CACM 9 (1966), 342. The distribution of A
was first studied by F. G. Foster and A. Stuart, J. Roy. Stat. Soc. B16 (1954),
1-22.]

We can proceed similarly to calculate the variance Vn. Before doing this,
let us state an important simplification:

1.2.10 ANALYSIS OF AN ALGORITHM 101

Theorem A. Let G and H be two generating functions with G(l) = H(l) = 1.
If the quantities mean(G) and var(G) are defined by Eqs. (12) and (13), we have

mean(GH) = mean(G) + mean(H); var(GH) = var(G) + var(H). (15)

We will prove this theorem later. It tells us that the mean and variance of
a product of generating functions may be reduced to a sum. I

Letting Qn(z) = (z + n - l)/n, we have Q~(l) = l/n, Q~(l) = O; hence

1
mean(Qn) = -,

n

1 1
var(Qn) = - - 2·

n n

Finally, since Gn(z) = f1~=2 Qk(z), it follows that

n n l
mean(Gn) = 2..::mean(Qk) = L k = Hn - l

k=2 k=2

n n (l 1) ·
var(Gn) = f;var(Qk) = ~ k - k2 = Hn - H~2).

Summing up, we have found the desired statistics related to quantity A:

A= (min 0, ave Hn - l, max n-1, dev JHn - H~2)). (16)

The notation used in Eq. (16) will be used to describe the statistical character
istics of other probabilistic quantities throughout this book.

We have completed the analysis of Algorithm M; the new feature that has
appeared in this analysis is the introduction of probability theory. Elementary
probability theory is sufficient for most of the applications in this book: The
simple counting techniques and the definitions of mean, variance, and standard
deviation already given will answer most of the questions we want to ask. More
complicated algorithms will help us develop an ability to reason fluently about
probabilities.

Let us consider some simple probability problems, to get a little more
practice using these methods. In all probability the first question that comes
to mind is a coin-tossing problem: Suppose we flip a coin n times and there is a
probability p that heads turns up after any particular toss; what is the average
number of heads that will occur? What is the standard deviation?

We will consider our coin to be biased; that is, we will not assume that
p = ~. This makes the problem more interesting, and, furthermore, every real
coin is biased (or we could not tell one side from the other).

Proceeding as before, we let Pnk be the probability that k heads will occur,
and let Gn(z) be the corresponding generating function. We have clearly

Pnk = PP(n-l)(k-1) + QP(n-l)k,

where q = 1 - p is the probability that tails turns up. As before, we argue from

Eq. (17) that Gn(z) = (q+pz)Gn-1(z); and from the obvious initial condition

102 BASIC CONCEPTS 1.2.10

G1(z) = q + pz we have

Hence, by Theorem A,

mean(Gn) = n mean(G1) = pn;

var(G~) = n var(G1) = (p- p2)n = pqn.

For the number of heads, we have therefore

(min 0, ave pn, max n, dev .JP<iii,).

Figure 11 shows the values of Pnk when p = ~' n = 12. When the standard devi
ation is proportional to fa and the difference between maximum and minimum
is proportional to n, we may consider the situation "stable" about the average.

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 11. Probability distribution for coin-tossing: 12 independent tosses with a chance
of success equal to 3/5 at each toss.

Let us work one more simple problem. Suppose that in some process there
is equal probability of obtaining the values 1, 2, ... , n. The generating function
for this situation is

1 1 1 1 zn+l - z
G (z) = - z + - z2 + · · · + - z n = - . (20)

n n n n z-l

We find after some rather laborious calculation that

1
nzn+l - (n+ l)zn + 1.

G (z) = n(z - 1) 2 '

G"(z) = n(n - l)zn+l - 2(n + l)(n - l)zn + n(n + l)zn-l - 2
n(z - 1)3

Now to calculate the mean and variance, we need to know G'(l) and G"(l); but
the form in which we have expressed these equations reduces to 0/0 when we
substitute z = 1. This makes it necessary to find the limit as z approaches unity,
and that is a nontrivial task.

Fortunately there is a much simpler way to proceed. By Taylor's theorem
we have

G" (1)
G(l+z)=G(l)+G'(l)z+

21
z2 +···;

1.2.10 ANALYSIS OF AN ALGORITHM 103

therefore we merely have to replace z by z + 1 in (20) and read off the coefficients:

G()
1 (1 + zr+1

- 1 - z n + 1 (n + l)(n - 1) 2
1 + z = - = 1 + --z + z +

n z 2 6

It follows that G'(l) = ~(n + 1), G"(l) = ~(n + l)(n -1), and the statistics for
the uniform distribution are

(min 1,
n+l

ave--
2 '

maxn, J (n + l)(n - 1)) dev
12

.

In this case the deviation of approximately 0.289n gives us a recognizably un
stable situation.

We conclude this section by proving Theorem A and relating our notions
to classical probability theory. Suppose X is a random variable that takes on
only nonnegative integer values, where X = k with probability Pk· Then G(z) =
Po+ p1z + p2z2 + · · · is called the probability generating function for X, and the
quantity G(eit) = p0 +p1eit+p2 e2it+· · · is conventionally called the characteristic
function of this distribution. The distribution given by the product of two such
generating functions is called the convolution of the two distributions, and it
represents the sum of two independent random variables belonging to those
respective distributions.

The mean or average value of a random quantity X is often called its expected
value, and denoted by EX. The variance of X is then E X 2 - (EX) 2. In this
notation, the probability generating function for Xis G(z) = E zX, the expected
value of zx, in cases when X takes only nonnegative integer values. Similarly,
if X is a statement that is either true or false, the probability that X is true is
Pr(X) = E[X], using Iverson's convention (Eq. 1.2.3-(16)).

The mean and variance are just two of the so-called semi-invariants or
cumulants introduced by Thiele in 1903. The semi-invariants K. 1 , K.2, K.3, ... are
defined by the rule

K.1t K.1t2 K.3t3 t -+-+- + ··· =lnG(e).
1! 2! 3!

We have

in particular,

because G(l) = "f:,kpk = 1, and

e2tG"(et) etG'(et) e2tG'(et)2 I
""2 = + - = G"(l) + G'(l) - G'(1) 2.

G(et) G(et) G(et) 2 t=o

Since the semi-invariants are defined in terms of the logarithm of a generating
function, Theorem A is obvious, and, in fact, it can be generalized to apply to
all of the semi-invariants.

104 BASIC CONCEPTS 1.2.10

A normal distribution is one for which all semi-invariants are zero except
the mean and variance. In a normal distribution, we can improve significantly
on Chebyshev's inequality: The probability that a normally distributed random
value differs from the mean by less than the standard deviation is

-- e-t2;2 dt 1 J+l

V'h -1 '

that is, about 68.2689492137093 of the time. The difference is less than twice
the standard deviation about 95.4499736103643 of the time, and it is less than
three times the standard deviation about 99.7300203936743 of the time. The
distributions specified by Eqs. (8) and (18) are approximately normal when n is
large (see exercises 13 and 14).

We often need to know that a random variable is unlikely to be much larger
or smaller than its mean value. Two extremely simple yet powerful formulas,
called the tail inequalities, provide convenient estimates of such probabilities.
If X has the probability generating function G(z), then

Pr(X::; r) ::; x-rc(x)

Pr(X 2". r) ::; x-rc(x)

for 0 < x ::; 1;

for x 2". 1.

The proofs are easy: If G(z) =Po+ p1z + p2z2 +···,we have

Pr(X ::Sr) =po+P1+ .. ·+PLrJ ::S x-rpo+x1-rP1+ .. ·+xlrJ-rPLrJ ::S x-rc(x)

when 0 < x::; 1, and

Pr(X 2". r) = Pirl + Pirl+l + ... ::; xlrl-rPirl + xlrl+l-rPirl+l + ... ::; x-rG(x)

when x 2 1. By choosing values of x that minimize or approximately minimize
the right-hand sides of (24) and (25), we often obtain upper bounds that are
fairly close to the true tail probabilities on the left-hand sides.

Exercises 21-23 illustrate the tail inequalities in several important cases.
These inequalities are special cases of a more general principle first pointed out
by A. N. Kolmogorov in his book Grundbegriffe der Wahrscheinlichkeitsrechnung
(Springer, 1933): If f (t) 2 s > 0 for all t 2 r, then Pr(X 2 r) ::; s-1 E J(X)
whenever E J(X) exists. We obtain (25) when f(t) = xt ands= xr.

EXERCISES
1. [10] Determine the value of Pno from Eqs. (4) and (5) and interpret this result

from the standpoint of Algorithm M.

2. [HM"16] Derive Eq. (13) from Eq. (10).

3. [M15] What are the minimum, maximum, average, and standard deviation of
the number of times step M4 is executed, if we are using Algorithm M to find the
maximum of 1000 randomly ordered, distinct items? (Give your answer as decimal
approximations to these quantities.)

4. [M 1 OJ Give an explicit, closed formula for the values of Pnk in the coin-tossing
experiment, Eq. (17).

5. [M13] What are the mean and standard deviation of the distribution in Fig. 11?

1.2.10 ANALYSIS OF AN ALGORITHM 105

6. [Hlv127] We have computed the mean and the variance of the important probabil
ity distributions (8), (18), (20). What is the third semi-invariant, "'3, in each of those
cases?

~ 7. [M27] In our analysis of Algorithm M, we assumed that all the X[k] were distinct.
Suppose, instead, that we make only the weaker assumption that X[l], X[2], ... , X[n]
contain precisely m distinct values; the values are otherwise random, subject to this
constraint. What is the probability distribution of A in this case?

~ 8. [M20] Suppose that each X[k] is taken at random from a set of M distinct
elements, so that each of the Mn possible choices for X[l], X[2], ... , X[n] is considered
equally likely. What is the probability that all the X[k] will be distinct?

9. [M25] Generalize the result of the preceding exercise to find a formula for the
probability that exactly m distinct values occur among the X's. Express your answer
in terms of Stirling numbers.

10. [M20] Combine the results of the preceding three exercises to obtain a formula
for the probability that A = k under the assumption that each X is selected at random
from a set of M objects.

~ 11. [M15] What happens to the semi-invariants of a distribution if we change G(z)
to F(z) = znG(z)?

12. [Hlv121] When G(z) =po+ p1z + p2z2 + · · · represents a probability distribution,
the quantities Mn= 2-:::k knpk and mn = 2.:::k(k-M1rPk are called the "nth moment"
and "nth central moment," respectively. Show that G(et) = 1 + M1t + M2t2/2! + · · ·;
then use Arbogast's formula (exercise 1.2.5-21) to show that

"'n= 2=
ki,k2, ... ,kn?'.O
ki +2k2+··· =n

(-l)ki+k2+···+kn- 1n! (k1 + k2 +···+kn - 1)! ki k2 kn
k ' lk1k ' !k2 k ' !kn Ml M2 ... Mn . i.l. 2.2 n.n.

In particular, "'1 = M1, "'2 = M2-Mf (as we already knew), "'3 = M3-3M1M2+2M{,
and /'l,4 = M4 - 4M1M3 + 12Mf M2 - 3M? - 6Mt. What are the analogous expressions
for "'n in terms of the central moments m2, m3, ... , when n ~ 2?

13. [Hlv138] A sequence of probability generating functions Gn(z) with means µn and
deviations an is said to approach a normal distribution if

1. -itµ,n/anG (it/an)_ -t
2/2

Im e n e - e
n-+cx:>

for all real values oft. Using Gn(z) as given by Eq. (8), show that Gn(z) approaches
a normal distribution.

Note: "Approaching the normal distribution," as defined here, can be shown to
be equivalent to the fact that

1. b b"l" (Xn - µn <) 1 Jx -t2/2 d im pro a I ity _ x = ~ e t,
n-+CX> an y 27r -CX>

where Xn is a random quantity whose probabilities are specified by Gn(z). This is
a special case of P. Levy's important "continuity theorem," a basic result in mathe
matical probability theory. A proof of Levy's theorem would take us rather far afield,
although it is not extremely difficult [for example, see Limit Distributions for Sums
of Independent Random Variables by B. V. Gnedenko and A. N. Kolmogorov, tr. by
K. L. Chung (Reading, Mass.: Addison-Wesley, 1954)].

106 BASIC CONCEPTS 1.2.10

14. [HMSO] (A. De Moivre.) Using the conventions of the previous exercise, show that
the binomial distribution Gn(z) given by Eq. (i8) approaches the normal distribution.

15. [HM23] When the probability that some quantity has the value k is e-µ,(µk/k!),

it is said to have the Poisson distribution with mean µ.

a) What is the generating function for this set of probabilities?
b) What are the values of the semi-invariants?
c) Show that as n ---too the Poisson distribution with mean np approaches the normal

distribution in the sense of exercise 13.

16. [M25] Suppose X is a random variable whose values are a mixture of the proba
bility distributions generated by g1(z), g2(z), ... , 9r(z), in the sense that it uses gk(z)

with probability Pk, where p1 + p2 + · · · +Pr = 1. What is the generating function
for X? Express the mean and variance of X in terms of the means and variances of g1,

g2, · · ·, 9r·

"" 17. [M27] Let f(z) and g(z) be generating functions that represent probability dis
tributions.

a) Show that h(z) = g(f(z)) is also a generating function representing a probability
distribution.

b) Interpret the significance of h(z) in terms of f(z) and g(z). (What is the meaning
of the probabilities represented by the coefficients of h(z)?)

c) Give formulas for the mean and variance of h in terms of those for f and g.

18. [M28] Suppose that the distinct values taken on by X[l], X[2], ... , X[n] in Algo
rithm M include exactly k1 ones, k2 twos, ... , kn n's, arranged in random order. (Here

ki + k2 + · · · + kn = n.

The assumption in the text is that ki = k2 = · · · = kn = 1.) Show that in this
generalized situation, the generating function (8) becomes

(
kn-lZ +kn) (kn-2Z + kn-1 +kn) ... (k1z + k2 +···+kn)'
kn-1 +kn kn-2 + kn-1 +kn ki + k2 +···+kn

using the convention 0/0 = 1.

19. [M21] If ak > aj for 1 ~ j < k, we say that ak is a left-to-right maximum of the
sequence ai a2 ... an. Suppose ai a2 ... an is a permutation of {1, 2, ... , n }, and let
bi b2 ... bn be the inverse permutation, so that ak = l if and only if bz = k. Show that
ak is a left-to-right maximum of a 1 a2 ... an if and only if k is a right-to-left minimum
of bi b2 ... bn.

""20. [M22] Suppose we want to calculate max{la1 - bil, la2 - b21, ... , Ian - bnl} when
bi ~ b2 < · · · ~ bn. Show that it is sufficient to calculate max{mL, mR}, where

mL = max{ ak - bk I ak is a left-to-right maximum of a1, a2 ... an} ,

mR = max{bk - ak I ak is a right-to-left minimum of ai, a2 ... an}.

[Thus, if the a's are in random order, the number of k's for which a subtraction must
be performed is only about 2 ln n.]

"" 21. [HM21] Let X be the number of heads that occur when a random coin is flipped
n times, with generating function (i8). Use (25) to prove that

Pr(X;:::: n(p + c)) ~ e-e
2
n/(2q)

when E > 0, and obtain a similar estimate for Pr(X ~ n(p - E)).

1.2.11.l THE 0-NOTATION 107

"" 22. [HM22] Suppose X has the generating function (q1 +p1z)(q2 +p2z) ... (qn +pnz),
where Pk+ qk = 1 for 1 ~ k ~ n. Letµ= EX= p1 + p2 + · · · + Pn· (a) Prove that

Pr(X ~ µr) ~ (r-r er-1)1"", when 0 < r ~ 1;

Pr(X > µr) ~ (r-r er-l)'"", when r > 1.

(b) Express the right-hand sides of these estimates in convenient form when r ~ 1.

(c) Show that if r is sufficiently large we have Pr(X ~ µr) ~ 2-µr.

23. [HM23] Estimate the tail probabilities for a random variable that has the negative

binomial distribution generated by (q - pz)-n, where q = p + 1.

*1.2.11. Asymptotic Representations

We often want to know a quantity approximately, instead of exactly, in order to

compare it to another. For example, Stirling's approximation to n! is a useful
representation of this type, when n is large, and we have also made use of the

fact that Hn ~ ln n + r· The derivations of such asymptotic formulas generally
involve higher mathematics, although in the following subsections we will use
nothing more than elementary calculus to get the results we need.

*1.2.11.1. The 0-notation. Paul Bachmann introduced a very convenient
notation for approximations in his book Analytische Zahlentheorie (1894). It is
the 0-notation, which allows us to replace the "~" sign by "=" and to quantify

the degree of accuracy; for example,

Hn =lnn+1+0(~)- (i)

(Read, "H sub n equals the natural log of n plus Oiler's constant plus big-oh of
one over n.")

In general, the notation O(f(n)) may be used whenever f(n) is a function
of the positive integer n; it stands for a quantity that is not explicitly known,
except that its magnitude isn't too large. Every appearance of O(f(n)) means
precisely this: There are positive constants M and n0 such that the number Xn

represented by O(f(n)) satisfies the condition lxnl < M lf(n)I, for all integers
n > no. We do not say what the constants M and n0 are, and indeed those
constants are usually different for each appearance of 0.

For example, Eq. (i) means that IHn - ln n -11 < M/n when n > n0 .

Although the constants M and n0 are not stated, we can be sure that the quantity

0(1/n) will be arbitrarily small if n is large enough.
Let's look at some more examples. We know that

12 + 22 + · · · + n 2 = ln(n + l)(n + 1) = ln3 + ln2 + ln·
3 2 3 2 6 '

so it follows that

12 + 22 + · · · + n 2 = 0 (n 4),

12 + 22 + · · · + n 2 = O(n3
),

12 + 22 + · · · + n 2 = ~n3 + O(n2
).

108 BASIC CONCEPTS 1.2.11.1

Equation (2) is rather crude, but not incorrect; Eq. (3) is a stronger statement;

and Eq. (4) is stronger yet. To justify these equations we shall prove that if

P(n) = a0 +a1 +· · ·+amnm is any polynomial of degree m or less, P(n) = O(nm).

This follows because

IP(n)I < laol + la1I n + · · · + laml nm= (laol /nm+ la1I /nm-l + · · · + laml)nm

• < (laol + la1I +···+lam I) nm,

when n 2: 1. So we may take M = laol + la1I + · · · + laml and no= l. Or we

could take, say, M = laol/2m + la1l/2m-l + · · · + laml and no= 2.
The 0-notation is a big help in approximation work, since it describes briefly

a concept that occurs often and it suppresses detailed information that is usually

irrelevant. Furthermore, it can be manipulated algebraically in familiar ways,

although certain important differences need to be kept in mind. The most impor

tant consideration is the idea of one-way equalities: We write !n2 + n = O(n2),
but we never write O(n2) = !n2 + n. (Or else, since -i-n2 = O(n2), we might

come up with the absurd relation -i-n2 = !n2 + n.) We always use the convention

that the right-hand side of an equation does not give more information than the

left-hand side; the right-hand side is a "crudification" of the left.

This convention about the use of "=" may be stated more precisely as

follows: Formulas that involve the 0 (f (n))-notation may be regarded as sets

of functions of n. The symbol 0 (f (n)) stands for the set of all functions g of

integers such that there exist constants M and no with lg(n)I < M lf(n)I for

all integers n > n0 . If S and T are sets of functions, then S + T denotes the

set {g + h I g E Sand h E T}; we define S + c, S - T, S · T, log S, etc., in a

similar way. If a(n) and {3(n) are formulas that involve the 0-notation, then

the notation a(n) = {3(n) means that the set of functions denoted by a(n) is

contained in the set denoted by {3(n).
Consequently we may perform most of the operations we are accustomed to

doing with the "=" sign: If a(n) = {3(n) and {3(n) = 1(n), then a(n) = 1(n).

Also, if a(n) = {3(n) and if b(n) is a formula resulting from the substitution of

{3(n) for some occurrence of a(n) in a formula 1(n), then 1(n) = b(n). These two

statements imply, for example, that if g(x1, x2, ... , Xm) is any real function what

ever, and if ak(n) = f3k(n) for 1 < k < m, then g(a1(n),a2(n), ... ,am(n))

g (!31 (n), !32 (n) , ... , f3m (n)) .
Here are some of the simple operations we can do with the 0-notation:

f(n) = O(f(n)),

c·O(f(n)) =O(f(n)),

O(f(n)) + O(f(n)) = O(f(n)),

O(O(f(n))) = O(f(n)),

O(f(n))O(g(n)) = O(f(n)g(n)),

O(f(n)g(n)) = f(n)O(g(n)).

if c is a constant,

(5)

(6)

(7)

(8)

(g)

(10)

1.2.11.l THE 0-NOTATION 109

The 0-notation is also frequently used with functions of a complex variable z,
in the neighborhood of z = 0. We write O(f(z)) to stand for any quantity g(z)
such that lg(z)I < M lf(z)I whenever lzl < r. (As before, Mand rare unspecified
constants, although we could specify them if we wanted to.) The context of 0-
notation should always identify the variable that is involved and the range of
that variable. When the variable is called n, we implicitly assume that O(f (n))
refers to functions of a large integer n; when the variable is called z, we implicitly
assume that 0 (f (z)) refers to functions of a small complex number z.

Suppose that g(z) is a function given by an infinite power series

g(z) = L akzk
k>O

that converges for z = z0 . Then the sum of absolute values l:k>o lakzkl also
converges whenever lzl < lzol- If zo i- 0, we can therefore always write

g(z) = ao + a1z + · · · + amzm + O(zm+1). (n)

For we have g(z) = ao + a1z + · · · + amzm + zm+1(am+1 + am+2z +···);we need
only show that the parenthesized quantity is bounded when lzl S r, for some
positiver, and it is easy to see that lam+1I + lam+2I r + lam+31 r 2 + · · · is an
upper bound whenever lzl Sr< lzol-

For example, the generating functions listed in Section 1.2.9 give us many
important asymptotic formulas valid when z is sufficiently small, including

ez = 1 + z + 2._z2 + · · · + _!._zm + O(zm+l) (i2)
2! m! '

1 (l)m+l
ln(l + z) = z - 2z2 + · · · + - m zm + O(zm+1), (i3)

(1+z)a=1 + az + (~)z2 + · · · + (:)zm + O(zm+1),

1 1 H 2 H m 0(m+l) --ln--=z+ 2Z +···+ mZ + z ,
1-z 1-z

for all nonnegative integers m. It is important to note that the hidden constants
M and r implied by any particular 0 are related to each other. For example,
the function ez is obviously 0(1) when lzl < r, for any fixed r, since lezl S elzl;
but there is no constant M such that I ez I s M for all value of z. Therefore we
need to use larger and larger bounds M as the ranger increases.

Sometimes an asymptotic series is correct although it does not correspond
to a convergent infinite series. For example, the basic formulas that express
factorial powers in terms of ordinary powers,

m

nr = L [r: k] nr-k + O(nr-m-1),
k=O

m

n!: = L (-l)k [r: k] nr-k + O(nr-m-1),
k=O

(16)

110 BASIC CONCEPTS 1.2.11.l

are asymptotically valid for any real r and any fixed integer m > 0, yet the sum

f [1/2] n1/2-k

k=O 1/2 - k

diverges for all n. (See exercise 12.) Of course, when r is a nonnegative integer,
n r and nr are simply po:tynomials of degree r, and (1 7) is essentially the same
as 1.2.6-(44). When r is a negative integer and lnl > lrl, the infinite sum
2:::%°=o [r:k] nr-k does converge to nr = l/(n-1)-r; this sum can also be written
in the more natural form 2:::%°=o {k__::-;}nr-k, using Eq. 1.2.6--(58).

Let us give one simple example of the concepts we have introduced so far.
Consider the quantity yin; as n gets large, the operation of taking an nth root
tends to decrease the value, but it is not immediately obvious whether yin
decreases or increases. It turns out that yin decreases to unity. Let us consider
the slightly more complicated quantity n (yin - 1). Now (yin - 1) gets smaller
as n gets bigger; what happens ton(yin - 1)?

This problem is easily solved by applying the formulas above. We have

yin= elnn/n = 1 + (Inn/n) + O((lnn/n) 2
), (18)

because ln n/n -7 0 as n -7 oo; see exercises 8 and 11. This equation proves our
previous contention that yin -7 1. Furthermore, it tells us that

n(vn- 1) = n(Inn/n + O((lnn/n) 2
)) =Inn+ 0((1nn)2/n). (ig)

In other words, n(yin - 1) is approximately equal to ln n; the difference is
0((1nn) 2/n), which approaches zero as n approaches infinity.

People often abuse 0-notation by assuming that it gives an exact order of
growth; they use it as if it specifies a lower bound as well as an upper bound. For
example, an algorithm to sort n numbers might be called inefficient "because its
running time is O(n2)." But a running time of O(n2

) does not necessarily imply
that the running time is not also O(n). There's another notation, Big Omega,
for lower bounds: The statement

g(n) = n(f(n))

means that there are positive constants L and n0 such that

I g (n) I ~ L If (n) I for all n > n0 .

Using this notation we can correctly conclude that a sorting algorithm whose
running time is O(n2) will not be as efficient as one whose running time is
0 (n log n), if n is large enough. However, without knowing the constant factors
implied by 0 and n, we cannot say anything about how large n must be before
the 0 (n log n) method will begin to win.

Finally, if we want to state an exact order of growth without being precise
about constant factors, we can use Big Theta notation:

g(n) = 8(f(n)) g(n) = O(f(n)) and g(n) = n(f(n)).

1.2.11.2 EULER'S SUMMATION FORMULA 111

EXERCISES

1. [HM01] What is limn-+= O(n- 113)?

"" 2. [M10] Mr. B. C. Dull obtained astonishing results by using the "self-evident"
formula O(f(n)) - O(f(n)) = 0. What was his mistake, and what should the right
hand side of his formula have been?

3. [M15] Multiply (lnn+')'+O(l/n)) by (n+O(y'n")), and express your answer in
0-notation.

"" 4. [M15] Give an asymptotic expansion of n(Va - 1), if a > O, to terms 0(1/n3
).

5. [M20] Prove or disprove: O(f(n) + g(n)) = f(n) + O(g(n)), if f(n) and g(n) are
positive for all n. (Compare with (io).)

"" 6. [M20] What is wrong with the following argument? "Since n = O(n), and 2n =
O(n), ... , we have

n n

L kn= L O(n) = O(n
2
)."

7. [HM15] Prove that if m is any integer, there is no M such that ex ~ Mxm for
arbitrarily large values of x.

8. [HM20] Prove that as n --too, (lnn)m/n --t 0.

9. [HM20] Show that e0 <zm) = 1 + O(zm), for all fixed m 2: 0.

10. [HM22] Make a statement similar to that in exercise 9 about ln(l + O(zm)).

"" 11. [M11] Explain why Eq. (i8) is true.

12. [.HM25] Prove that [1 }£~k] n-k does not approach zero ask --too for any integer n,

using the fact that [1 }£~k] = (-~)~ [zk] (zez/(ez -1)) 112
.

""13. [M10] Prove or disprove: g(n) = n(f(n)) if and only if f(n) = O(g(n)).

*1.2.11.2. Euler's summation formula. One of the most useful ways to obtain
good approximations to a sum is an approach due to Leonhard Euler. His method
approximates a finite sum by an integral, and gives us a means to get better
and better approximations in many cases. (Commentarii Academi~ Scientiarum
Petropolitan~ 6 (1732), 68-97.]

1 2 3 4 5 6 7

Fig. 12. Comparing a sum with an integral.

Figure 12 shows a comparison of f1n f(x) dx and 2=~:i f(k), when n = 7.
Euler's strategy leads to a useful formula for the difference between these two
quantities, assuming that f (x) is a differentiable function.

112 BASIC CONCEPTS 1.2.11.2

For convenience we shall use the notation

{ x} = x mod 1 = x - l x J . (i)

Our derivation starts with the following identity:

• k+l

1

k+l 1k+l
k ({ x} - ~) J' (x) dx = (x - k - ~) f (x) I k - k f (x) dx

rk+l
= ~ (f(k + 1) + f(k)) - Jk f(x) dx.

(This follows from integration by parts.) Adding both sides of this equation for

1 S k < n, we find that

f n ({ x} - ~) t (x) dx = I: 1 (k) + ~ u (n) - 1 (1)) - rn 1 (x) dx;
1 lSk<n J1

that is,

L f (k) = f n f(x) dx - ~ (f (n) - f (1)) + f n B1 ({x})J'(x) dx, (3)
lSk<n 1 1

where B 1 (x) is the polynomial x- ~· This is the desired connection between the

sum and the integral.
The approximation can be carried further if we continue to integrate by

parts. Before doing this, however, we shall discuss the Bernoulli numbers, which

are the coefficients in the following infinite series:

z B2z2 L Bkzk
--=Bo+B1z+--+···= --.
ez - 1 2! kl

k?_O

The coefficients of this series, which occur in a wid~ variety of problems, were

introduced by Jacques Bernoulli in his Ars Conjectandi, published posthumously

in 1713. Curiously, they were also discovered at about the same time by Taka

kazu Seki in Japan-and first published in 1712, shortly after his death. (See

Takakazu Seki's Collected Works (Osaka: 1974), 39-42.]

We have

Bo= 1, B1 = _!_
2'

B - 1
2 - 5,

further values appear in Appendix A. Since

z z z ez + 1
ez - 1 + 2 = 2 ez - 1

is an even function, we see that

z e-z + 1
2 e-z - 1

(5)

(6)

1.2.11.2 EULER'S SUMMATION FORMULA 113

If we multiply both sides of the defining equation (4) by ez - 1, and equate
coefficients of equal powers of z, we obtain the formula

L(~)Bk = Bn + bnl·
k

(See exercise l.) We now define the Bernoulli polynomial

Bm(x) = 2=(7)Bkxm-k.
k

(8)

If m = 1, then B1(x) = B0 x + B 1 = x - ~' corresponding to the polynomial
used above in Eq. (3)- If m > 1, we have Bm(l) = Bm = Bm(O), by (1); in other
words, Bm({ x}) has no discontinuities at integer points x.

The relevance of Bernoulli polynomials and Bernoulli numbers to our prob
lem will soon be clear. We find by differentiating Eq. (8) that

B~(x) = 2=(7)(m-k)Bkxm-k-l
k

= m L(m; 1)Bkxm-1-k
k

= mBm-1(x), (9)

and therefore when m 2: 1, we can integrate by parts as follows:

2t {n Bm({x})f(m)(x)dx = (1
)' (Bm+1(l)f(m)(n)-Bm+1(0)f(m)(l))

m. J1 m + 1.

- (m~l)! J.n Bm+1({x})f(m+l)(x)dx.

From this result we can continue to improve the approximation, Eq. (3), and we
obtain Euler's general formula:

L f(k) = f,n f(x) dx - ~ (f(n) - f(l)) + B~ (f'(n) - J'(l)) + · · ·
1 2 2. l:=;k<n

+ (-l)~Bm (J(m-l)(n) - J(m-1)(1)) + Rmn
m.

= [f(x) dx + t, ~~ (j<k-l) (n) - J(k-l)(l)) + Rmno (10)

using (6), where

Rmn = (-l)~+l Jn Bm({x})f(m)(x)dx.
m. 1

(11)

The remainder Rmn will be small when Bm({ x})J(m) (x)/m! is very small, and
in fact, one can show that

Bm({x})
m!

< _IB_ml < _4_
- m! (27r)m

114 BASIC CONCEPTS 1.2.11.2

when mis even. (See CMath, §9.5.] On the other hand, it usually turns out that

the magnitude of J(m)(x) gets large as m increases, so there is a "best" value of

m at which IRmnl has its least value when n is given.

It is known that, when m is even, there is a number () such that

provided that j(m+2)(x) j(m+4)(x) > 0 for 1 < x < n. So in these circumstances

the remainder has the same sign as, and is less than, the first discarded term. A

simpler version of this result is proved in exercise 3.

Let us now apply Euler's formula to some important examples. First, we

set f(x) = 1/x. The derivatives are j(m) = (-l)mm!/xm+i, so we have, by

Eq. (lo),

Now we find

~Bk k-l (1)
H n-1 = ln n + ~ k (-1) n k - 1 + Rmn.

k=l

m B
/ = lim (Hn-1 - ln n) = "'"""'_kk (-l)k + lim Rmn·

n~= ~ n~=
k=l

The fact that limn~= Rmn = ± J1= Bm ({ x}) dx / xm+l exists proves that the

constant I does in fact exist. We can therefore put Eqs. (14) and (15) together,

to deduce a general approximation for the harmonic numbers:

m-1 (-l)k-1Bk 1

= ln n +I+ L knk + 0 (nm).
k=l

Replacing m by m + 1 yields

m (-l)k- 1Bk (1)
Hn-1 = ln n +I+ L knk + 0 nm+l .

k=l
(16)

Furthermore, by Eq. (13) we see that the error is less than the first term

discarded. As a particular case we have (adding 1 / n to both sides)

1 1 1
Hn = ln n +I+ 2n - 12n2 + 12Qn4 - E,

B 6 1
O<E<-= .

6n6 252n6

This is Eq. 1.2.7-(3). The Bernoulli numbers Bk for large k get very large

(approximately (-1) 1+k/22(k!/(21T")k) when k is even), so Eq. (16) cannot be

extended to a convergent infinite series for any fixed value of n.

1.2.11.2 EULER'S SUMMATION FORMULA 115

The same technique can be applied to deduce Stirling's approximation. This
time we set f(x) = lnx, and Eq. (io) yields

1 """"" Bk(-l)k(1)
ln(n-l)!=nlnn-n+l- 2 lnn+ 6 k(k-l) nk-l -1 +Rmn· (i7)

l<k:Sm

Proceeding as above, we find that the limit

B (-l)k+1
lim (ln n! - n Inn+ n - -2

1 ln n) = 1 + """"" ~(k) + lim Rmn
n-too 6 - 1 n-too

l<k:Sm

exists; let it be called a ("Stirling's constant") temporarily. We get Stirling's
result

1 _ 1 _ """"" Bk(-l)k (~) (
Inn. - (n + 2)lnn n +a+ 6 k(k - l)nk-l + 0 nm . 18)

l<k:Sm

In particular, let m = 5; we have

ln n! = (n + l) ln n - n + a + -
1
- -

1
+ O (~) . 2 12n 360n3 n 5

Now we can take the exponential of both sides:

n! = e"Vn(~)" exp(l~n - 36~3 + °Cs)}
Using the fact that ea = V2if (see exercise 5), and expanding the exponential,
we get our final result:

nl _ 27r (~)n (l _1 1 _ 139 _ 571 (~))
· - yl2;;, e + 12n + 288n2 51840n3 248832Qn4 + O n5 · (ig)

EXERCISES
1. [M18] Prove Eq. (1).
2. [HM20] Note that Eq. (g) follows from Eq. (8) for any sequence En, not only for

the sequence defined by Eq. (4). Explain why the latter sequence is necessary for the
validity of Eq. (io).

3. [HM20] Let Cmn = ((-l)m Bm/m!)(f(m-ll(n)-f(m-l)(l)) be the mth correction
term in Euler's summation formula. Assuming that f(m) (x) has a constant sign for
1 ~ x ~ n, prove that IRmnl ~ ICmnl when m = 2k > O; in other words, show that the
remainder is not larger in absolute value than the last term computed.

"" 4. [HM20] (Sums of powers.) When f(x) = xm, the high-order derivatives off are
all zero, so Euler's summation formula gives an exact value for the sum

in terms of Bernoulli numbers. (It was the study of Sm(n) for m = 1, 2, 3, ... that
led Bernoulli and Seki to discover those numbers in the first place.) Express Sm (n) in
terms of Bernoulli polynomials. Check your answer for m = 0, 1, and 2. (Note that
the desired sum is performed for 0 ~ k < n instead of 1 ~ k < n; Euler's summation
formula may be applied with 0 replacing 1 throughout.)

116 BASIC CONCEPTS 1.2.11.2

5. [HM30] Given that

show that"'= v12"rr by using Wallis's product (exercise 1.2.5-18). [Hint: Consider (2:)
for large values of n.]

~ 6. [HM30] Show that Stirling's approximation holds for noninteger n as well:

[Hint: Let j(x) = ln(x + c) in Euler's summation formula, and apply the definition of
r(x) given in Section 1.2.5.)

~ 7. [HM32] What is the approximate value of 11 22 33
... nn?

8. [M23] Find the asymptotic value ofln(an2 +bn)! with absolute error O(n- 2
). Use

it to compute the asymptotic value of (c~2)/cn(:2) with relative error O(n-2
), when c

is a positive constant. Here absolute error E means that (truth) = (approximation)+ t:;
relative error E means that (truth) = (approximation)(l + t:)

~ 9. [M25] Find the asymptotic value of (2:) with a relative error of O(n-3
), in two

ways: (a) via Stirling's approximation; (b) via exercise 1.2.6-47 and Eq. 1.2.11.1-(16).

*1.2.11.3. Some asymptotic calculations. In this subsection we shall inves
tigate the following three intriguing sums, in order to deduce their approximate
values:

n-1 n-2n-2 ~(n-k)k(n-k)!
P(n) = l+-n-+-n- n-1 +··· = ~ n! '

k=O

n - 1 n - 1 n - 2 ~ n!
Q(n) = l+-n-+-n- --n-+··· = ~ (n-k)!nk'

k=l

n n n n!nk
R(n) = 1 +n+1+n+1n+2 + ... = L (n + k)! ·

k?_O

These functions, which are similar in appearance yet intrinsically different, arise
in several algorithms that we shall encounter later. Both P(n) and Q(n) are
finite sums, while R(n) is an infinite sum. It seems that when n is large, all
three sums will be nearly equal, although it is not obvious what the approximate
value of any of them will be. Our quest for approximate values of these functions
will lead us through a number of very instructive side results. (You may wish to
stop reading temporarily and try your hand at studying these functions before
going on to see how they are attacked here.)

First, we observe an important connection between Q(n) and R(n):

Q(n) + R(n) = n! ((1 + n + ... + nn-1) + (nn + nn+l + ...))
nn (n - 1)! n! (n + 1)!

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 117

Stirling's formula tells us that n! en/nn is approximately ~' so we can guess
that Q(n) and R(n) will each turn out to be roughly equal to Fn/2.

To get any further we must consider the partial sums of the series for en.
By using Taylor's formula with remainder,

j(n) (0) Xn 1x tn
f(x) = f(O) + J'(O)x + · · · + + -f(n+l)(x - t) dt,

n! 0 n!
(5)

we are soon led to an important function known as the incomplete gamma
function:

(6)

We shall assume that a> 0. By exercise 1.2.5-20, we have !'(a, oo) = I'(a); this
accounts for the name "incomplete gamma function." It has two useful series
expansions in powers of x (see exercises 2 and 3):

From the second formula we see the connection with R(n):

R(n) = n!en (!'(n,n)).
nn (n - 1)!

(g)

This equation has purposely been written in a more complicated form than
necessary, since !'(n, n) is a fraction of !'(n, oo) = I'(n) = (n - 1)!, and n! en/nn
is the quantity in (4).

The problem boils down to getting good estimates of !'(n, n) / (n - 1) !. We
shall now determine the approximate value of !'(x + 1, x + y)/I'(x + 1), when y
is fixed and x is large. The methods to be used here are more important than
the results, so the reader should study the following derivation carefully.

By definition, we have

---'---'-- = e-ttx dt l'(x+l x+y) 1 1x+y
r(x+l) r(x+l) 0

Let us set

1 rX) 1 rx+y
= 1- r(x + 1) ix e-ttx dt + r(x + 1) ix e-ttx dt.

11 = f,00

e-ttx dt,

rx+y
12 = ix e-ttx dt,

and consider each integral in turn.

118 BASIC CONCEPTS 1.2.11.3

Estimate of Ii: We convert Ii to an integral from 0 to infinity by substituting

t = x(l + u); we further substitute v = u - ln(l + u), dv = (1 - 1/(1 + u)) du,

which is legitimate since v is a monotone function of u:

Ji= e-xxx fo00

xe~xu(l + ut du= e-xxx fo00

xe-xv (1 + ~) dv. (n)

In the last integral we will replace 1+1/u by a power series in v. We have

v = .!.u2 - .!.u3 + .!.u4 - .!.u5 + · · · = (u2/2)(1 - ~u + .!.u2 - ~u3 + · · ·)
2 3 4 5 3 2 5 .

Setting w = ../2V, we have therefore

w = u(l - ~u + .!.u2 _ ~u3 + ...)1/2 = u _ .!.u2 + lu3 _ 73 u4 + 1331 u5 + O(u6)
3 2 5 3 36 540 12960 .

(This expansion may be obtained by the binomial theorem; efficient methods for

performing such transformations, and for doing the other power series manipu

lations needed below, are considered in Section 4.7.) We can now solve for u as

a power series in w:

1 1 1 1
u = w + -w2 + -w3 - -w4 + --w5 + O(w6

)·
3 36 270 4320 '

1 1 1 1 2 2 1 3 (4
1 + -;: = 1 + w - 3 + 12 w - 135 w + 864 w + 0 w)

1 2 v'2 4 v'2
= -v-1/2 + - + -v1/2 - -v + -v3/2 + O(v2). (i2)

v'2 3 12 135 432

In all of these formulas, the 0-notation refers to small values of the argu

ment, that is, lul ::; r, lvl ::; r, lwl ::; r for sufficiently small positive r. Is this

good enough? The substitution of 1+1/u in terms of v in Eq. (n) is supposed

to be valid for 0 ::; v < oo, not only for lvl ::; r. Fortunately, it turns out that

the value of the integral from 0 to oo depends almost entirely on the values of

the integrand near zero. In fact, we have (see exercise 4)

loo xe-xv (1 + ~) dv = O(e-rx)

for any fixed r > 0 and for large x. We are interested in an approximation up

to terms O(x-m), and since 0((1/ery) is much smaller than O(x-m) for any

positive r and m, we need integrate only from 0 to r, for any fixed positive r. We

therefore take r to be small enough so that all the power series manipulations

done above are justified (see Eqs. 1.2.11.1-(11) and 1.2.11.3-(13)).

Now

100 1 100
1 xe-xvva dv = - e-qqa dq = -I'(a + 1), if a> -1;

0 xa 0 xa

so by plugging the series (i2) into the integral (n) we have finally

Ii = e-xxx (f!!_x1;2 + ~ + V'iir x-1/2 _ ~x-1 + V'iir x-3/2 + O(x-2)) v 2 3 24 135 576 .

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 119

Estimate of 12: In the integral 12, we substitute t = u + x and obtain

h = e-xxx foY e-u(1 + ~r du.

Now

e-" (1+ ;)'=exp (-u + xln(l+ ~)) = expC~' + 3:, + O(x-3
))

u2 u4 u3
= 1 - - + - + - + O(x-3

)
2x 8x2 3x2

for 0 ~ u ~ y and large x. Therefore we find that

12 = e-xxx (y - Y
3
x-1 + (y4

+ y
5
)x-2 + O(x-3)). (i7)

6 12 40

Finally, we analyze the coefficient e-xxx/r(x + 1) that appears when we
multiply Eqs. (i5) and (i7) by the factor 1/r(x + 1) in (io). By Stirling's
approximation, which is valid for the gamma function by exercise 1.2.11.2-6, we

, have

e-xxx e-1/12x+O(x- 3
)

r(x + 1) V2JrX
1 1 1

= --x-1/2 _ x-3/2 + x-5/2 + O(x-1/2). (iS)
V27r 12y'21f 288v'21f

And now the grand summing up: Equations (io), (i5), (i7), and (i8) yield

Theorem A. For large values of x, and E.xed y,

!'(x + 1, x + y) = ~ + (y - 2/3) x_ 112 + _1_ (23 _ _]!_ _ y
3

) x_ 312
r(x + 1) 2 v'21f v'21f 270 12 6

+ O(x-512
). I (ig)

The method we have used shows how this approximation could be extended to
further powers of x as far as we please.

Theorem A can be used to obtain the approximate values of R(n) and Q(n),
by using Eqs. (4) and (g), but we shall defer that calculation until later. Let us
now turn to P(n), for which somewhat different methods seem to be required.
We have

P(n) = ~ kn-kk! = y'21f ~ kn+l/2e-k (1 + _1_ + O(k-2)). (20)
6 n! n! 6 12k
k=O k=O

Thus to get the values of P(n), we must study sums of the form

n L kn+l/2e-k.

k=O

120 BASIC CONCEPTS 1.2.11.3

Let f(x) = xn+ 1! 2e-x and apply Euler's summation formula:

t kn+l/2e-k = 1" xn+l/2e-x dx + !nn+I/2e-n + ,~nn-l/2e-n - R.

k=O O

A crude analysis of the remainder (see exercise 5) shows that R = O(nne-n);

and since the integral is ~n incomplete gamma function, we have

n L kn+l/2e-k = !'(n + ~' n) + ~nn+l/2e-n + O(nne-n). (22)

k=O

Our formula, Eq. (20), also requires an estimate of the sum

n L kn-1/2e-k = L. k(n-1)+1/2e-k + n n-1/2e-n,

k=O O~k~n-1

and this can also be obtained by Eq. (22).
We now have enough formulas at our disposal to determine the approximate

values of P(n), Q(n), and R(n), and it is only a matter of substituting and

multiplying, etc. In this process we shall have occasion to use the expansion

(n + a)"+fi = nn+fiea (1+ a (!3 - ~H + O(n- 2
)} (23)

which is proved in exercise 6. The method of (21) yields only the first two terms

in the asymptotic series for P(n); further terms can be obtained by using the

instructive technique described in exercise 14.
The result of all these calculations gives us the desired asymptotic formulas:

The functions studied here have received only light treatment in the pub

lished literature. The first term ~ in the expansion of P(n) was given by

H. B. Demuth [Ph.D. thesis (Stanford University, October 1956), 67-68]. Using

this result, a table of P(n) for n ~ 2000, and a good slide rule, the author

proceeded in 1963 to deduce the empirical estimate P(n) ~ ~ - 0.6667 +
0.575/ yn. It was natural to conjecture that 0.6667 was really an approximation

to 2/3, and that 0.575 would perhaps turn out to be an approximation to

')' = 0.57721 ... (why not be optimistic?). Later, as this section was being

written, the correct expansion of P(n) was developed, and the conjecture 2/3

was verified; for the other coefficient 0.575 we have not I' but ~! F/2 ~ 0.5744.

This nicely confirms both the theory and the empirical estimates.

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 121

Formulas equivalent to the asymptotic values of Q(n) and R(n) were first
determined by the brilliant self-taught Indian mathematician S. Ramanujan,
who posed the problem of estimating n! en/2nn - Q(n) in J. Indian Math. Soc.
3 (1911), 128; 4 (1912), 151-152. In his answer to the problem, he gave the

t t . . 1 4 -1 8 -2 I -3 + h" h "d bl asymp o IC senes 3 + I35
n - 2835 n - 8505 n · · ·, w IC goes consI era y

beyond Eq. (25). His derivation was somewhat more elegant than the method
described above; to estimate Ii, he substituted t = x + u-/2x, and expressed
the integrand as a sum of terms of the form Cjk f0

00
exp(-u2)ujx-kl2 du. The

integral h can be avoided completely, since wy(a, x) = xae-x +!'(a+ 1, x) when
a> O; see (8). An even simpler approach to the asymptotics of Q(n), perhaps
the simplest possible, appears in exercise 20. The derivation we have used,
which is instructive in spite of its unnecessary complications, is due to R. Furch
[Zeitschrift fiir Physik 112 (1939), 92-95], who was primarily interested in the
value of y that makes I' (x + 1, x + y) = r (x + 1) / 2. The asymptotic properties
of the incomplete gamma function were later extended to complex arguments by
F. G. Tricomi [Math. Zeitschrift 53 (1950), 136-148). See also N. M. Temme,
Math. Comp. 29 (1975), 1109-1114; SIAM J. Math. Anal. 10 (1979), 757-766.
H. W. Gould has listed references to several other investigations of Q(n) in AMM
75 (1968), 1019-1021.

Our derivations of the asymptotic series for P(n), Q(n), and R(n) use only
simple techniques of elementary calculus; notice that we have used different
methods for each function! Actually we could have solved all three problems
using the techniques of exercise 14, which are explained further in Sections 5.1.4
and 5.2.2. That would have been more elegant but less instructive.

For additional information, interested readers should consult the beautiful
book Asymptotic Methods in Analysis by N. G. de Bruijn (Amsterdam: North
Holland, 1961). See also the more recent survey by A. M. Odlyzko [Handbook
of Combinatorics 2 (MIT Press, 1995), 1063-1229), which includes 65 detailed
examples and an extensive bibliography.

EXERCISES

1. [HM"20] Prove Eq. (s) by induction on n.

2. [Illv120] Obtain Eq. (7) from Eq. (6).

3. [M20] Derive Eq. (8) from Eq. (7)·

~ 4. [Illv110] Prove Eq. (i3).

5. [HM"24] Show that R in Eq. (21) is O(nne-n).

~ 6. [Illv120] Prove Eq. (23).

~ 7. [Illv130] In the evaluation of h, we had to consider 1Y e-u (1 + ~ r du. Give an
asymptotic representation of o x

to terms of order O(x- 2
), when y is fixed and x is large.

122 BASIC CONCEPTS 1.2.11.3

8. [HMSO] If f(x) = O(xr) as x-+ oo and 0 ~ r < 1, show that

l
f(x) e-u (1 + ~)x du= lf(x) exp (-u2 + ~ - ... + (-l)rn-lurn) du+ O(x-s)

0 x 0 2x 3x2 mxrn-l

if m = r (s + 2r) I (1 - r) l [This proves in particular a result due to Tricomi: If

f (x) = 0 (ft) , then

l

f(x))x lf(x)/~ 2

0

e-u(1+;- du=-/2x
0

e-t dt+O(l).]

~ 9. [HM"36] What is the behavior of "f(x + 1, px)/f(x + 1) for large x? (Here pis a

real constant; and if p < 0, we assume that x is an integer, so that tx is well defined for

negative t.) 0 btain at least two terms of the asymptotic expansion, before resorting

to 0-terms.

10. [HM"34] Under the assumptions of the preceding problem, with p I- 1, obtain the

asymptotic expansion of 'Y (x + 1, px + py / (p - 1)) - "((x + 1, px), for fixed y, to terms

of the same order as obtained in the previous exercise.

~ 11. [HM"35] Let us generalize the functions Q(n) and R(n) by introducing a parame-

ter x:
n-l n-ln-2 2

Qx(n)=l+--x+----x + .. ·,
n n n
n n n 2

Rx (n) = 1 + n + 1 x + n + 1 n + 2 x +

Explore this situation and find asymptotic formulas when x I- 1.

12. [HM"20] The function fox e-t
2
/

2 dt that appeared in connection with the normal

distribution (see Section 1.2.10) can be expressed as a special case of the incomplete

gamma function. Find values of a, b, and y such that b"((a, y) equals fox e-t
2
/

2 dt.

13. [HM"42] (S. Ramanujan.) Prove that R(n) - Q(n) = t + 8/(135(n + e(n))),

where 2
2
1 ~ e(n) ~ 4

8
5 • (This implies the much weaker result R(n + 1) - Q(n + 1) <

R(n) - Q(n).)

~ 14. [HM"39] (N. G. de Bruijn.) The purpose of this exercise is to find the asymptotic

expansion of L~=O kn+o:e-k for fixed a, as n -+ oo.

a) Replacing k by n-k, show that the given sum equals nn+o:e-nL:~=O e-k
2
/2nf(k, n),

where

f(k,n) = (1- ~)o: exp(-}!_-.!{_ - · · ·).
n 3n2 4n3

b) Show that for all m 2' 0 and E > 0, the quantity f(k, n) can be written in the form

. ·k2i+j -i-j + 0((m+l)(-1/2+3c)) c,1 n n ,

c) Prove that as a consequence of (b), we have

n L e-k2/2n f(k, n) = L Cijn-i-j L ei+je-k2/2n + O(n-rn/2+8),

k=O O:Si'.Sj'.Srn k;::::o

for all 6 > 0. [Hint: The sums over the range n 1l 2
+c < k < oo are O(n-r) for

all r.]

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 123

d) Show that the asymptotic expansion of Lk>O kte-k
2

/
2n for fixed t > 0 can be

obtained by Euler's summation formula. -
e) Finally therefore

L
n kn+a -k n+a -n (ffn 1 (1 1 1 2) ff 0(-1)) e = n e - - - - a+ - + -a+ -a - + n ·

2 6 12 2 2 2n '
k=O

this computation can in principle be extended to O(n-r) for any desired r.

15. [HM20] Show that the following integral is related to Q(n):

loo (1 + ;) n e-z dz.

16. [M24] Prove the identity

L(-l)k (~) kn- 1Q(k) = (-lf (n - 1)!, when n > 0.
k

17. [HM29] (K. W. Miller.) Symmetry demands that we consider also a fourth series,
which is to P(n) as R(n) is to Q(n):

S(n) = 1 + _n_ + _n_ n + 1 + ... = """" (n + k - 1)!
n+l n+2 n+2 ~(n-l)!(n+k)k"

What is the asymptotic behavior of this function?

18. [M25] Show that the sums L (~)kk(n - k)n-k and L (~) (k + l)k(n - k)n-k can
be expressed very simply in terms of the Q function.

19. [HM30] (Watson's lemma.) Show that if the integral Cn = J
0
= e-nx f(x) dx exists

for all large n, and if f(x) = O(x°') for 0 :S x :S r, where r > 0 and a > -1, then
Cn = O(n- 1-°').

~ 20. [HM30] Let u = w + 1w2 + }6 w
3

- 2 ~0 w
4 + · · · = L:~=l Ck Wk be the power series

solution to the equation w = (u 2
- ~u3 + iu4

- ~u5 + · · ·)112
, as in (i2). Show that

m-1 1-k/2

Q(n) + 1 = L kckf(k/2) (~) + O(nl-m/2
)

k=l

for all m 2: 1. [Hint: Apply Watson's lemma to the identity of exercise 15.)

I feel as if I should succeed in doing something in mathematics,
although I cannot see why it is so very important.

- HELEN KELLER (1898)

124 BASIC CONCEPTS 1.3

1.3. MIX
IN MANY PLACES throughout this book we will have occasion to refer to a com
puter's internal machine language. The machine we use is a mythical computer
called "MIX." MIX is very much like nearly every computer of the 1960s and
1970s, except that it is, perhaps, nicer. The language of MIX has been designed
to be powerful enough ta allow brief programs to be written for most algorithms,
yet simple enough so that its operations are easily learned.

The reader is urged to study this section carefully, since MIX language
appears in so many parts of this book. There should be no hesitation about
learning a machine language; indeed, the author once found it not uncommon to
be writing programs in a half dozen different machine languages during the same
week! Everyone with more than a casual interest in computers will probably get
to know at least one machine language sooner or later. MIX has been specially
designed to preserve the simplest aspects of historic computers, so that its
characteristics are easy to assimilate.

~ However, it must be admitted that MIX is now quite obsolete. Therefore
l MIX will be replaced in subsequent editions of this book by a new machine
called MMIX, the 2009. MMIX will be a so-called reduced instruction set computer
(RISC), which will do arithmetic on 64-bit words. It will be even nicer than MIX,
and it will be similar to machines that have become dominant during the 1990s.

The task of converting everything in this book from MIX to MMIX will take a
long time; volunteers are solicited to help with that conversion process. Mean
while, the author hopes that people will be content to live for a few more years
with the old-fashioned MIX architecture - which is still worth knowing, because
it helps to provide a context for subsequent developments.

1.3.1. Description of MIX

MIX is the world's first polyunsaturated computer. Like most machines, it has
an identifying number-the 1009. This number was found by taking 16 actual
computers very similar to MIX and on which MIX could easily be simulated, then
averaging their numbers with equal weight:

l(360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220

+ 82000 + 920 + 601 + H800 + PDP-4 +II) /16 j = 1009. (1)

The same number may also be obtained in a simpler way by taking Roman
numerals.

MIX has a peculiar property in that it is both binary and decimal at the same
time. MIX programmers don't actually know whether they are programming a
machine with base 2 or base 10 arithmetic. Therefore algorithms written in
MIX can be used on either type of machine with little change, and MIX can be
simulated easily on either type of machine. Programmers who are accustomed
to a binary machine can think of MIX as binary; those accustomed to decimal
may regard MIX as decimal. Programmers from another planet might choose to
think of MIX as a ternary computer.

1.3.1 DESCRIPTION OF MIX 125

Words. The basic unit of information is a byte. Each byte contains an unspecified
amount of information, but it must be capable of holding at least 64 distinct
values. That is, we know that any number between 0 and 63, inclusive, can be
contained in one byte. Furthermore, each byte contains at most 100 distinct
values. On a binary computer a byte must therefore be composed of six bits; on
a decimal computer we have two digits per byte.*

Programs expressed in MIX's language should be written so that no more
than sixty-four values are ever assumed for a byte. If we wish to treat the
number 80, we should always leave two adjacent bytes for expressing it, even
though one byte is sufficient on a decimal computer. An algorithm in MIX should
work properly regardless of how big a byte is. Although it is quite possible to
write programs that depend on the byte size, such actions are anathema to the
spirit of this book; the only legitimate programs are those that would give correct
results with all byte sizes. It is usually not hard to abide by this ground rule,
and we will thereby find that programming a decimal computer isn't so different
from programming a binary one after all.

Two adjacent bytes can express the numbers 0 through 4095.
Three adjacent bytes can express the numbers 0 through 262,143.
Four adjacent bytes can express the numbers 0 through 16, 777,215.
Five adjacent bytes can express the numbers 0 through 1,073,741,823.
A computer word consists of E.ve bytes and a sign. The sign portion has

only two possible values, + and -.

Registers. There are nine registers in MIX (see Fig. 13):

The A-register (Accumulator) consists of five bytes and a sign.
The X-register (Extension), likewise, comprises five bytes and a sign.
The I-registers (Index registers) 11, I2, I3, I4, I5, and I6 each hold two bytes

together with a sign.
The J-register (Jump address) holds two bytes; it behaves as if its sign is

always+.

We shall use a small letter "r", prefixed to the name, to identify a MIX register.
Thus, "rA" means "register A."

The A-register has many uses, especially for arithmetic and for operating
on data. The X-register is an extension on the "right-hand side" of rA, and it
is used in connection with rA to hold ten bytes of a product or dividend, or
it can be used to hold information shifted to the right out of rA. The index
registers rll, rl2, rl3, rl4, rl5, and rl6 are used primarily for counting and for
referencing variable memory addresses. The J-register always holds the address
of the instruction following the most recent "jump" operation, and it is primarily
used in connection with subroutines.

* Since 1975 or so, the word "byte" has come to mean a sequence of precisely eight binary
bits, capable of representing the numbers 0 to 255. Real-world bytes are therefore larger than
the bytes of the hypothetical MIX machine; indeed, MIX's old-style bytes are just barely bigger
than nybbles. When we speak of bytes in connection with MIX we shall confine ourselves to the
former sense of the word, harking back to the days when bytes were not yet standardized.

126 BASIC CONCEPTS

~MIX~
Register A

Register 11
I ± I 114 I 115 I

Register 12

I ± I 1241 1251
Register 13

I ± I 1341 1351
Register 14

I ± I 1441 1451

Register 15

I ± I 15411551

Register l6

I± lrn4 Jrn5 I
Register J

I + I J4 I J5 I

~ Overflow
~ toggle

0000:

0001:

0002:

0003:

3998:

3999:

Register X

@ Comparison
@ @ indicator

Memory cells

.....
"'t:l~"'t:l- ~$ '"'~
'"'"'C <:) ~~ ~o..

Magnetic tape units Disks and drums i:.s ~ i:.s § ~ i:.s
+----------------U ~ U o.. ~ ~ p., ~

j uo I u1 I · · · I u1 I us j · · · lu14ju15lul6ju11ju1sju19I
Fig. 13. The MIX computer.

Besides its registers, MIX contains

an overflow toggle (a single bit that is either "on" or "off");

1.3.1

a comparison indicator (having three values: LESS, EQUAL, or GREATER);

memory (4000 words of storage, each word with five bytes and a sign);

and input-output devices (cards, tapes, disks, etc.).

Partial fields of words. The five bytes and sign of a computer word are

numbered as follows:

0 1 2 3 4 5

± Byte Byte Byte Byte Byte

1.3.1 DESCRIPTION OF MIX 127

Most of the instructions allow a programmer to use only part of a word if desired.

In such cases a nonstandard "field· specification" can be given. The allowable

fields are those that are adjacent in a computer word, and they are represented

by (L: R), where 1 is the number of the left-hand part and R is the number of

the right-hand part of the field. Examples of field specifications are:

(0:0), the sign only.
(0: 2), the sign and the first two bytes.

(0: 5), the whole word; this is. the most common field specification.

(1: 5), the whole word except for the sign.

(4: 4), the fourth byte only.
(4: 5), the two least significant bytes.

The use of field specifications varies slightly from instruction to instruction,

and it will be explained in detail for each instruction where it applies. Each

field specification (1: R) is actually represented inside the machine by the single

number 81 + R; notice that this number fits easily in one byte.

Instruction format. Computer words used for instructions have the following

form:

The rightmost byte, C, is the operation code telling what operation is to

be performed. For example, C = 8 specifies the operation LDA, "load the A

register."
The F-byte holds a modification of the operation code. It is usually a field

specification (1:R) = 81 + R; for example, if C = 8 and F = 11, the operation

is "load the A-register with the (1 : 3) field." Sometimes F is used for other

purposes; on input-output instructions, for example, F is the number of the

relevant input or output unit.
The left-hand portion of the instruction, ±AA, is the address. (Notice that

the sign is part of the address.) The I-field, which comes next to the address,

is the index specification, which may be used to modify the effective address.

If I = 0, the address ±AA is used without change; otherwise I should contain

a number i between 1 and 6, and the contents of index register Ii are added

algebraically to ±AA before the instruction is carried out; the result is used as

the address. This indexing process takes place on every instruction. We will use

the letter M to indicate the address after any specified indexing has occurred.

(If the addition of the index register to the address ±AA yields a result that

does not fit in two bytes, the value of M is undefined.)

In most instructions, M will refer to a memory cell. The terms "memory

cell" and "memory location" are used almost interchangeably in this book. We

assume that there are 4000 memory cells, numbered from 0 to 3999; hence every

memory location can be addressed with two bytes. For every instruction in which

M refers to a memory cell we must have 0 ~ M ~ 3999, and in this case we will

write CONTENTS (M) to denote the value stored in memory location M.

128 BASIC CONCEPTS 1.3.1

On certain instructions, the "address" M has another significance, and it

may even be negative. Thus, one instruction adds M to an index register, and

such an operation takes account of the sign of M.

Notation. To discuss instructions in a readable manner, we will use the notation

OP ADDRESS,I(F) (4)

to denote an instruction like (3). Here OP is a symbolic name given to the

operation code (the C-part) of the instruction; ADDRESS is the ±AA portion; I

and F represent the I- and F-fields, respectively.

If I is zero, the ",I" is omitted. If F is the normal F-specification for this

particular operator, the "(F)" need not be written. The normal F-specification

for almost all operators is (0: 5), representing a whole word. If a different F is

normal, it will be mentioned explicitly when we discuss a particular operator.

For example, the instruction to load a number into the accumulator is called

LDA and it is operation code number 8. We have

Conventional representation Actual numeric instruction

LDA 2000,2(0:3)

LDA 2000, 2 (1: 3)

LDA 2000(1:3)

LDA 2000

LDA -2000,4

+ 2000

+ 2000

+ 2000

+ 2000

- 2000

2

2

0

0

4

3 8

11 8

11 8

5 8

5 8

The instruction "LDA 2000, 2 (0: 3)" may be read "Load A with the contents of

location 2000 indexed by 2, the zero-three field."

To represent the numerical contents of a MIX word, we will always use a box

notation like that above. Notice that in the word

I + : 20:00 1 2 1 3 1 s 1

the number +2000 is shown filling two adjacent bytes and sign; the actual

contents of byte (1: 1) and of byte (2: 2) will vary from one MIX computer to

another, since byte size is variable. As a further example of this notation for MIX

words, the diagram

represents a word with two fields, a three-byte-plus-sign field containing -10000

and a two-byte field containing 3000. When a word is split into more than one

field, it is said to be "packed."

Rules for each instruction. The remarks following (3) above have defined

the quantities M, F, and C for every word used as an instruction. We will now

define the actions corresponding to each instruction.

1.3.1 DESCRIPTION OF MIX 129

Loading operators.

• LDA (load A). C = 8; F = field.

The specified field of CONTENTS (M) replaces the previous contents of register A.

On all operations where a partial field is used as an input, the sign is used

if it is a part of the field, otherwise the sign + is understood. The field is shifted

over to the right-hand part of the register as it is loaded.

Examples: If F is the normal field specification (0: 5), everything in location

Mis copied into rA. IfF is (1:5), the absolute value of CONTENTS(M) is loaded

with a plus sign. If M contains an instruction word and if Fis (0:2), the "±AA"

field is loaded as

Suppose location 2000 contains the word

(6)

then we get the following results from loading various partial fields:

Instruction Contents of r A afterwards

LDA 2000 - 80 3 5 4

LDA 2000(1: 5) + 80 3 5 4

LDA 2000(3:5) + 0 0 3 5 4

LDA 2000(0:3) - 0 0 80 3

LDA 2000(4:4) + 0 0 0 0 5

LDA 2000(0:0) - 0 0 0 0 0

LDA 2000(1:1) + 0 0 0 0 ?

(The last example has a partially unknown effect, since byte size is variable.)

• LDX (load X). C = 15; F = field.

This is the same as LDA, except that rX is loaded instead of rA.

• LDi (load i). C = 8 + i; F =field.

This is the same as LDA, except that rli is loaded instead of rA. An index register

contains only two bytes (not five) and a sign; bytes 1, 2, 3 are always assumed

to be zero. The LDi instruction is undefined if it would result in setting bytes 1,

2, or 3 to anything but zero.

In the description of all instructions, "i" stands for an integer, 1 :;_ i :;_ 6.

Thus, LDi stands for six different instructions: LD1, LD2, ... , LD6.

• LDAN (load A negative). C = 16; F = field.

• LDXN (load X negative). C = 23; F = field.

• LDiN (load i negative). C = 16 + i; F = field.

These eight instructions are the same as LDA, LDX, LDi, respectively, except that

the opposite sign is loaded.

130 BASIC CONCEPTS 1.3.1

Storing operators.

• STA (store A). C = 24; F = field.
A portion of the contents of r A replaces the field of CONTENTS (M) specified by F.

The other parts of CONTENTS (M) are unchanged.

On a store operation the field F has the opposite significance from the load

operation: The number of bytes in the field is taken from the right-hand of

the register and shifted left if necessary to be inserted in the proper field of

CONTENTS (M). The sign is not altered unless it is part of the field. The contents

of the register are not affected. ·

Examples: Suppose that location 2000 contains

and register A contains

Then:
Instruction Contents of location 2000 afterwards

STA 2000 + 6 7 8 9 0

STA 2000(1:5) - 6 7 8 9 0

STA 2000(5:5) - 1 2 3 4 0

STA 2000(2:2) - 1 0 3 4 5

STA 2000(2:3) - 1 9 0 4 5

STA 2000(0:1) + 0 2 3 4 5

• STX (store X), C = 31; F = field.
Same as STA, except that rX is stored rather than rA.

• STi (store i). C = 24 + i; F = field.
Same as STA, except that rli is stored rather than rA. Bytes 1, 2, 3 of an index

register are zero; thus if r 11 contains

it behaves as though it were

• STJ (store J). C = 32; F =field.
Same as STi, except that rJ is stored and its sign is always +.

With ST J the normal field specification for F is (0: 2), not (0: 5). This is

natural, since ST J is almost always done into the address field of an instruction.

• STZ (store zero). C = 33; F = field.

Same as STA, except that plus zero is stored. In other words, the specified field

of CONTENTS (M) is cleared to zero.

1.3.1 DESCRIPTION OF MIX 131

Arithmetic operators. On the add, subtract, multiply, and divide operations,
a field specification is allowed. A field specification of "(O: 6)" can be used to
indicate a "floating point" operation (see Section 4.2), but few of the programs
we will write for MIX will use this feature, since we will primarily be concerned
with algorithms on integers.

The standard field specification is, as usual, (0: 5). Other fields are treated
as in LDA. We will use the letter V to indicate the specified field of CONTENTS (M);

thus, Vis the value that would have been loaded into register A if the operation
code were LDA.

• ADD. C = 1; F = field.
V is added to rA. If the magnitude of the result is too large for register A, the
overflow toggle is set on, and the remainder of the addition appearing in rA is as
though a "1" had been carried into another register to the left of A. (Otherwise
the setting of the overflow toggle is unchanged.) If the result is zero, the sign of
rA is unchanged.

Example: The sequence of instructions below computes the sum of the five
bytes of register A.

STA 2000
LDA 2000(5:5)
ADD 2000(4:4)
ADD 2000(3:3)
ADD 2000(2:2)
ADD 2000 (1: 1)

This is sometimes called "sideways addition."
Overflow will occur in some MIX computers when it would not occur in

others, because of the variable definition of byte size. We have not said that
overflow will occur definitely if the value is greater than 1073741823; overflow
occurs when the magnitude of the result is greater than the contents of five bytes,
depending on the byte size. One can still write programs that work properly and
that give the same final answers, regardless of the byte size.

• SUB (subtract). C = 2; F =field.
Vis subtracted from rA. (Equivalent to ADD but with -Vin place of V.)

• MUL (multiply). C = 3; F = field.
The 10-byte product, V times rA, replaces registers A and X. The signs of rA
and rX are both set to the algebraic sign of the product (namely, + if the signs
of V and rA were the same, - if they were different).

•DIV (divide). C = 4; F =field.
The value of rA and rX, treated as a 10-byte number with the sign of rA, is
divided by the value V. If V = 0 or if the quotient is more than five bytes in
magnitude (this is equivalent to the condition that jrAI 2'.: !VI), registers A and X
are filled with undefined information and the overflow toggle is set on. Otherwise
the quotient ±l!rA/VIJ is placed in rA and the remainder ±(lrAI mod !VI) is
placed in rX. The sign of rA afterwards is the algebraic sign of the quotient

132 BASIC CONCEPTS 1.3.1

(namely, + if the signs of V and rA were the same, - if they were different).
The sign of rX afterwards is the previous sign of rA.

Examples of arithmetic instructions: In most cases, arithmetic is done only
with MIX words that are single five-byte numbers, not packed with several fields.
It is, however, possible to. operate arithmetically on packed MIX words, if some
caution is used. The following examples should be studied carefully. (As before,
? designates an unknown value.)

ADD 1000

SUB 1000

MUL 1000

MUL 1000(1:1)

MUL 1000

DIV 1000

+ 1234

+ 100

+ 1334

- 1234

- 2000

+ 766

+ 1 1

+ 1 1

+ 0 1

+ 5 4

1 150

5 50

6 200

oio 9

150 0

149 ?

1 1 1

1 1 1

2 3 4

3 2 1

rA before

Cell 1000

rA after

rA before

Cell 1000

rA after

rA before

Cell 1000

rA after

rX after

112 rA before

? 2 ? ? ? ? Cell 1000

- 50 0

- 2 0

+ 100

+ 8 0

+

?

+

+

+

0 rA after

224 rX after

112 4 rA before

Cell 1000

rA after

rX after

0

0

0

0 0

224

0 0

0

17

3

5

2

rA before

rX before

Cell 1000

rA after

rX after

1.3.1

-
+ 1235 0

- 0 0 0

DIV 1000 + 0 617

- 0 0 0

3

2

?

?

DESCRIPTION OF MIX

0

1

0

?

1

rA before

rX before

Cell 1000

rA after

rX after

133

(These examples have been prepared with the philosophy that it is better to give

a complete, baffling description than an incomplete, straightforward one.)

Address transfer operators. In the following operations, the (possibly in

dexed) "address" M is used as a signed number, not as the address of a cell in

memory.

• ENTA (enter A). C = 48; F = 2.

The quantity M is loaded into r A. The action is equivalent to "LDA" from a

memory word containing the signed value of M. If M = 0, the sign of the

instruction is loaded.

Examples: "ENTA O" sets rA to zeros, with a + sign. "ENTA 0, 1" sets rA

to the current contents of index register 1, except that -0 is changed to +0.

"ENTA -0, 1" is similar, except that +O is changed to -0.

• ENTX (enter X). C = 55; F = 2.

• ENTi (enter i). C = 48 + i; F = 2.

Analogous to ENTA, loading the appropriate register.

• ENNA (enter negative A). C = 48; F = 3.

• ENNX (enter negative X). C = 55; F = 3.

• ENNi (enter negative i). C = 48 + i; F = 3.

Same as ENTA, ENTX, and ENTi, except that the opposite sign is loaded.

Example: "ENN3 0, 3" replaces rl3 by its negative, although -0 remains -0.

• INCA (increase A). C = 48; F = 0.

The quantity Mis added to rA; the action is equivalent to "ADD" from a memory

word containing the value of M. Overflow is possible and it is treated just as

in ADD.

Example: "INCA 1" increases the value of rA by one.

• INCX (increase X). C = 55; F = 0.

The quantity M is added to rX. If overflow occurs, the action is equivalent to

ADD, except that rX is used instead of rA. Register A is never affected by this

instruction.

• INCi (increase i). C = 48 + i; F = 0.

Add M to rli. Overflow must not occur; if M + rli doesn't fit in two bytes, the

result of this instruction is undefined.

134 BASIC CONCEPTS 1.3.1

• DECA (decrease A). C = 48; F = 1.

• DECX (decrease X). C = 55; F = 1.

• DECi (decrease i). C = 48 + i; F = 1.

These eight instructions are the same as INCA, INCX, and INCi, respectively,

except that M is subtracted from the register rather than added.

Notice that the operation code C is the same for ENTA, ENNA, INCA, and

DECA; the F-field is used to distinguish the various operations from each other.

Comparison operators. MIX's comparison operators all compare the value

contained in a register with a value contained in memory. The comparison

indicator is then set to LESS, EQUAL, or GREATER according to whether the value

of the register is less than, equal to, or greater than the value of the memory

cell. A minus zero is equal to a plus zero.

• CMPA (compare A). C = 56; F = field.

The specified field of A is compared with the same field of CONTENTS (M). If F

does not include the sign position, the fields are both considered nonnegative;

otherwise the sign is taken into account in the comparison. (An equal comparison

always occurs when Fis (0:0), since minus zero equals plus zero.)

• CMPX (compare X). C = 63; F = field.

This is analogous to CMPA.

• CMPi (compare i). C = 56 + i; F =field.

Analogous to CMPA. Bytes 1, 2, and 3 of the index register are treated as zero in

the comparison. (Thus if F = (1: 2), the result cannot be GREATER.)

Jump operators. Instructions are ordinarily executed in sequential order; in

other words, the command that is performed after the command in location P

is usually the one found in location P + 1. But several "jump" instructions

allow this sequence to be interrupted. When a typical jump takes place, the

J-register is set to the address of the next instruction (that is, to the address oi

the instruction that would have been next if we hadn't jumped). A "store J"

instruction then can be used by the programmer, if desired, to set the address

field of another command that will later be used to return to the original place

in the program. The J-register is changed whenever a jump actually occurs in

a program, except when the jump operator is JSJ, and it is never changed by

non-Jumps.

• JMP (jump). C = 39; F = 0.
Unconditional jump: The next instruction is taken from location M.

• JSJ (jump, save J). C = 39; F = 1.
Same as JMP except that the contents of rJ are unchanged.

• JOV (jump on overflow). C = 39; F = 2.

If the overflow toggle is on, it is turned off and a JMP occurs; otherwise nothing

happens.

• JNOV (jump on no overflow). C = 39; F = 3.

If the overflow toggle is off, a JMP occurs; otherwise it is turned off.

1.3.1 DESCRIPTION OF MIX 135

• JL, JE, JG, JGE, JNE, JLE (jump on less, equal, greater, greater-or-equal,

unequal, less-or-equal). C = 39; F = 4, 5, 6, 7, 8, 9, respectively.
Jump if the comparison indicator is set to the condition indicated. For example,

. JNE will jump if the comparison indicator is LESS or GREATER. The comparison

indicator is not changed by these instructions.

• JAN, JAZ, JAP, JANN, JANZ, JANP (jump A negative, zero, positive, nonnegative,

nonzero, nonpositive). C = 40; F = 0, 1, 2, 3, 4, 5, respectively.

If the contents of r A satisfy the stated condition, a JMP occurs, otherwise nothing

happens. "Positive" means greater than zero (not zero); "non positive" means

the opposite, namely zero or negative.

• JXN, JXZ, JXP, JXNN, JXNZ, JXNP (jump X negative, zero, positive, nonnegative,

nonzero, nonpositive). C = 47; F = 0, 1, 2, 3, 4, 5, respectively.

• JiN, JiZ, JiP, JiNN, JiNZ, JiNP (jump i negative, zero, positive, nonnegative,

nonzero, nonpositive). C = 40 + i; F = 0, 1, 2, 3, 4, 5, respectively. These are

analogous to the corresponding operations for r A.

Miscellaneous operators.

• SLA, SRA, SLAX, SRAX, SLC, SRC (shift left A, shift right A, shift left AX, shift

right AX, shift left AX circularly, shift right AX circularly). C = 6; F = 0, 1, 2,

3, 4, 5, respectively.
These are the "shift" commands, in which M specifies a number of MIX bytes to

be shifted left or right; M must be nonnegative. SLA and SRA do not affect rX;

the other shifts affect both registers A and X as though they were a single 10-

byte register. With SLA, SRA, SLAX, and SRAX, zeros are shifted into the register

at one side, and bytes disappear at the other side. The instructions SLC and SRC

call for a "circulating" shift, in which the bytes that leave one end enter in at

the other end. Both rA and rX participate in a circulating shift. The signs of

registers A and X are not affected in any way by any of the shift commands.

Examples: Register A Register X

Initial contents

SRAX 1

SLA 2

SRC 4

SRA 2

SLC 501

• MOVE. C = 7; F = number.

+

+

+

+

+

+

1

0

2

6

0

0

2 3 4

1 2 3

3 4 0

7 8 9

0 6 7

6 7 8

5 - 6 7 8 9

4 - 5 6 7 8

0 - 5 6 7 8

2 - 3 4 0 0

8 - 3 4 0 0

3 - 4 0 0 5

10

9

9

5

5

0

The number of words specified by F is moved, starting from location M to the

location specified by the contents of index register l. The transfer occurs one

word at a time, and rll is increased by the value of F at the end of the operation.

If F = 0, nothing happens.
Care must be taken when the groups of locations involved overlap; for

example, suppose that F = 3 and M = 1000. Then if rll = 999, we transfer

136 BASIC CONCEPTS 1.3.1

CONTENTS(lOOO) to CONTENTS(999), CONTENTS(1001) to CONTENTS(lOOO), and
CONTENTS (1002) to CONTENTS (1001); nothing unusual occurred here. But if rll
were 1001 instead, we would move CONTENTS (1000) to CONTENTS (1001), then
CONTENTS (1001) to CONTENTS (1002), then CONTENTS (1002) to CONTENTS (1003),

so we would have moved the same word CONTENTS (1000) into three places.

• NOP (no operation). C • 0.

No operation occurs, and this instruction is bypassed. F and M are ignored.

• HLT (halt). C = 5; F = 2.
The machine stops. When the computer operator restarts it, the net effect is
equivalent to NOP.

Input-output operators. MIX has a fair amount of input-output equipment
(all of which is optional at extra cost). Each device is given a number as follows:

Unit number Peripheral device Block size

t Tape unit number t (0 < t S 7) 100 words
d Disk or drum unit number d (8 S d S 15) 100 words

16 Card reader 16 words
17 Card punch 16 words
18 Line printer 24 words
19 Typewriter terminal 14 words
20 Paper tape 14 words

Not every MIX installation will have all of this equipment available; we will
occasionally make appropriate assumptions about the presence of certain devices.
Some devices may not be used both for input and for output. The number of
words mentioned in the table above is a fixed block size associated with each unit.

Input or output with magnetic tape, disk, or drum units reads or writes full
words (five bytes and a sign). Input or output with units 16 through 20, however,
is always done in a character code where each byte represents one alphameric
character. Thus, five characters per MIX word are transmitted. The character
code is given at the top of Table 1, which appears at the close of this section and
on the end papers of this book. The code 00 corresponds to "u", which denotes
a blank space. Codes 01-29 are for the letters A through Z with a few Greek
letters thrown in; codes 30-39 represent the digits 0, 1, ... , 9; and further codes
40, 41, ... represent punctuation marks and other special characters. (MIX's
character set harks back to the days before computers could cope with lowercase
letters.) We cannot use character code to read in or write out all possible values
that a byte may have, since certain combinations are undefined. Moreover, some
input-output devices may be unable to handle all the symbols in the character
set; for example, the symbols I: and II that appear amid the letters will perhaps
not be acceptable to the card reader. When character-code input is being done,
the signs of all words are set to+; on output, signs are ignored. If a typewriter is
used for input, the "carriage return" that is typed at the end of each line causes
the remainder of that line to be filled with blanks.

1.3.1 DESCRIPTION OF MIX 137

The disk and drum units are external memory devices each containing 100-

word blocks. On every IN, OUT, or roe instruction as defined below, the particular

100-word block referred to by the instruction is specified by the current contents

of rX, which should not exceed the capacity of the disk or drum involved.

• IN (input). C = 36; F = unit.
This instruction initiates the transfer of information from the input unit specified

into consecutive locations starting with M. The number of locations transferred

is the block size for this unit (see the table above). The machine will wait at

this point if a preceding operation for the same unit is not yet complete. The

transfer of information that starts with this instruction will not be complete

until an unknown future time, depending on the speed of the input device, so a

program must not refer to the information in memory until then. It is improper

to attempt to read any block from magnetic tape that follows the latest block

written on that tape.

• OUT (output). C = 37; F =unit.
This instruction starts the transfer of information from memory locations start

ing at M to the output unit specified. The machine waits until the unit is ready,

if it is not initially ready. The transfer will not be complete until an unknown

future time, depending on the speed of the output device, so a program must

not alter the information in memory until then.

• roe (input-output control). C = 35; F = unit.
The machine waits, if necessary, until the specified unit is not busy. Then a

control operation is performed, depending on the particular device being used.

The following examples are used in various parts of this book:

Magnetic tape: If M = 0, the tape is rewound. If M < 0 the tape is skipped

backward - M blocks, or to the beginning of the tape, whichever comes first.

If M > 0, the tape is skipped forward; it is improper to skip forward over any

blocks following the one last written on that tape.
For example, the sequence "OUT 1000 (3); roe -1 (3); IN 2000 (3)" writes

out one hundred words onto tape 3, then reads it back in again. Unless the

tape reliability is questioned, the last two instructions of that sequence are only

a slow way to move words 1000-1099 to locations 2000-2099. The sequence

"OUT 1000(3); IOe +1(3)" is improper.
Disk or drum: M should be zero. The effect is to position the device

according to rX so that the next IN or OUT operation on this unit will take

less time if it uses the same rX setting.
Line printer: M should be zero. "roe 0 (18)" skips the printer to the top

of the following page.
Paper tape: M should be zero. "roe 0 (20)" rewinds the tape.

• JRED (jump ready). C = 38; F = unit.
A jump occurs if the specified unit is ready, that is, finished with the preceding

operation initiated by IN, OUT, or IOe.

• JBUS (jump busy). C = 34; F =unit.
Analogous to JRED, but the jump occurs when the specified unit is not ready.

138 BASIC CONCEPTS 1.3.l

Example: In location 1000, the instruction "JBUS 1000 (16)" will be exe
cuted repeatedly until unit 16 is ready.

The simple operations above complete MIX's repertoire of input-output in
structions. There is no "tape check" indicator, etc., to cover exceptional con
ditions on the peripheral devices. Any such condition (e.g., paper jam, unit
turned off, out of tape, etc.) causes the unit to remain busy, a bell rings, and
the skilled computer operator fixes things manually using ordinary maintenance
procedures. Some more complicated peripheral units, which are more expensive
and more representative of contemporary equipment than the fixed-block-size
tapes, drums, and disks described here, are discussed in Sections 5.4.6 and 5.4.9.

Conversion Operators.

• NUM (convert to numeric). C = 5; F = 0.
This operation is used to change the character code into numeric code. M is
ignored. Registers A and X are assumed to contain a 10-byte number in character
code; the NUM instruction sets the magnitude of rA equal to the numerical value
of this number (treated as a decimal number). The value of rX and the sign of
rA are unchanged. Bytes 00, 10, 20, 30, 40, ... convert to the digit zero; bytes
01, 11, 21, ... convert to the digit one; etc. Overflow is possible, and in this case
the remainder modulo b5 is retained, where b is the byte size.

• CHAR (convert to characters). C = 5; F = 1.
This operation is used to change numeric code into character code suitable for
output to punched cards or tape or the line printer. The value in rA is converted
into a 10-byte decimal number that is put into register A and X in character
code. The signs of rA and rX are unchanged. Mis ignored.

Examples:

Initial contents

NUM 0

INCA 1

CHAR 0

Register A

00 00 31 32 39 +

12977700 +

12977699 +

30 30 31 32 39 +

Register X

37 57 47 30 30

37 57 47 30 30

37 57 47 30 30

37 37 36 39 39

Timing. To give quantitative information about the efficiency of MIX programs,
each of MIX's operations is assigned an execution time typical of vintage-1970
computers.

ADD, SUB, all LOAD operations, all STORE operations (including STZ), all shift
commands, and all comparison operations take two units of time. MOVE requires
one unit plus two for each word moved. MUL, NUM, CHAR each require 10 units and
DIV requires 12. The execution time for floating point operations is unspecified.
All remaining operations take one unit of time, plus the time the computer may
be idle on the IN, OUT, IOC, or HLT instructions.

Notice in particular that ENTA takes one unit of time, while LDA takes two
units. The timing rules are easily remembered because of the fact that, except

1.3.1 DESCRIPTION OF MIX 139

for shifts, conversions, MUL, and DIV, the number of time units equals the number
of references to memory (including the reference to the instruction itself).

MIX's basic unit of time is a relative measure that we will denote simply
by u. It may be regarded as, say, 10 microseconds (for a relatively inexpensive
computer) or as 10 nanoseconds (for a relatively high-priced machine).

Example: The sequence LDA 1000; INCA 1; STA 1000 takes exactly 5u.

And now I see with eye serene
The very pulse of the machine.

- WILLIAM WORDSWORTH,
She Was a Phantom of Delight (1804)

Summary. We have now discussed all the features of MIX, except for its
"GO button," which is discussed in exercise 26. Although MIX has nearly 150
different operations, they fit into a few simple patterns so that they can easily
be remembered. Table 1 summarizes the operations for each C-setting. The
name of each operator is followed in parentheses by its default F-field.

The following exercises give a quick review of the material in this section.
They are mostly quite simple, and the reader should try to do nearly all of them.

EXERCISES
1. [00] If MIX were a ternary (base 3) computer, how many "trits" would there be

per byte?

2. [02] If a value to be represented within MIX may get as large as 99999999, how
many adjacent bytes should be used to contain this quantity?

3. [02] Give the partial field specifications, (L:R), for the (a) address field, (b) index
field, (c) field field, and (d) operation code field of a MIX instruction.

4. [00] The last example in (5) is "LDA -2000, 4". How can this be legitimate, in
view of the fact that memory addresses should not be negative?

5. [10] What symbolic notation, analogous to (4), corresponds to (6) if (6) is re
garded as a MIX instruction?

~ 6. [1 OJ Assume that location 3000 contains

What is the result of the following instructions? (State if any of them are undefined
or only partially defined.) (a) LOAN 3000; (b) LD2N 3000(3:4); (c) LDX 3000(1:3);
(d) LD6 3000; (e) LDXN 3000(0:0).

7. [M15] Give a precise definition of the results of the DIV instruction for all cases
in which overflow does not occur, using the algebraic operations X mod Y and LX/YJ.

8. [15] The last example of the DIV instruction that appears on page 133 has "rX

before" equal to I + I 12~5 I 0 13 I 1 I . If this were I - I 12~4 I 0 13 I 1 I instead, but

other parts of that example were unchanged, what would registers A and X contain
after the DIV instruction?

140 BASIC CONCEPTS 1.3.l

Table 1

Character code: oo 01 02 03 04 05 06 01 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

u A B C D E F G H I 6 J K L M N 0 P Q R E IT S T U

00 I 1

No operation

NOP(O)

08 I 2

rA~V

LDA(0:5)

16 I 2
rA~ -V

LDAN(0:5)

24 I 2

M(F) ~ rA

STA(0:5)

32 I 2

M(F) ~ rJ

STJ(0:2)

40 I 1

rA :0, jump

JA[+]

48 I 1

rA ~ [rA]?±M

INCA(O) DECA(1)
ENTA(2) ENNA(3)

56 I 2

CI~ rA(F) :V

CMPA(0:5)
FCMP(6)

General form:

c I t

Description

OP(F)

01 I 2 02 I 2 03 I 10

rA ~ rA+ V rA ~ rA-V rAX ~ rA x V

ADD(0:5) SUB(0:5) MUL(0:5)
FADD(6) FSUB(6) FMUL(6)

09 I 2 10 I 2 11 I 2

rll ~ V rl2 ~ v rl3 ~ v

LD1(0:5) LD2(0:5) LD3(0:5)

17 I 2 18 I 2 19 I 2

rll ~ -V rl2 ~ -V rl3 ~ -V

LD1N(O: 5) LD2N(0:5) LD3N(0:5)

25 I 2 26 I 2 27 I 2

M(F) ~ rll M(F) ~ rl2 M(F) ~ rl3

ST1(0:5) ST2(0:5) ST3(0:5)

33 I 2 34 I 1 35 I 1+T

M(F) ~ 0 Unit F busy? Control, unit F

STZ(0:5) JBUS(O) IOC(O)

41 I 1 42 I 1 43 I 1

rll :0, jump rl2 :0, jump rl3:0, jump

J1[+] J2[+ J J3[+ J

49 I 1 50 I 1 51 I 1

rll ~ [rll]? ± M rl2 ~ [rI2]? ± M rl3 ~ [rI3]? ± M

INC1 (0) DEC1 (1) INC2(0) DEC2(1) INC3(0) DEC3(1)
ENT1(2) ENN1(3) ENT2(2) ENN2(3) ENT3(2) ENN3(3)

57 I 2 58 I 2 59 I 2

CI~ rll(F): V CI~ rI2(F): V CI ~ rI3(F) : V

CMP1(0:5) CMP2(0:5) CMP3(0:5)

C = operation code, (5: 5) field of instruction
F = op variant, (4 : 4) field of instruction

M = address of instruction after indexing
V = M(F) =contents of F field of location M

DP = symbolic name for operation
(F) = normal F setting

t = execution time; T = interlock time

1.3.1 DESCRIPTION OF MIX 141

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

v w x y z 0 1 2 3 4 5 6 7 8 9 . , () + - * I = $ < > @ ; : I

04 I 12

rA ~ rAX/V
rX ~remainder

DIV(0:5)
FDIV(6)

12 I 2
rl4 ~ v

LD4(0:5)

20 I 2
rl4 ~ -V

LD4N(0:5)

28 I 2
M(F) ~ rl4

ST4(0:5)

36 I 1+T
Input, unit F

IN(O)

44 I 1

rl4 :0, jump

J4[+]

52 I 1

rl4 ~ [rI4]? ± M

INC4(0) DEC4(1)
ENT4(2) ENN4(3)

60 I 2
CI ~ rl4(F) : V

CMP4(0:5)

05 I 10 06 I 2

Special Shift M bytes
NUM(O) SLA(O) SRA(1)
CHAR(1) SLAX(2) SRAX(3)
HLT(2) SLC(4) SRC(5)

13 I 2 14 I 2

rl5 ~ v rl6 ~ v

LD5(0:5) LD6(0:5)

21 I 2 22 I 2

rl5 ~ -V rl6 ~ -V

LD5N(0:5) LD6N(0:5)

29 I 2 30 I 2

M(F) ~ rl5 M(F) ~ rl6

ST5(0:5) ST6(0:5)

37 I 1+T 38 I 1

Output, unit F Unit F ready?

OUT(O) JRED(O)

45 I 1 46 I 1

rl5 :0, jump rl6 :0, jump

J5 [+ J J6 [+ J

53 I 1 54 I 1

rI5 ~ [rI5]? ± M rl6 ~ [rI6]? ± M

INC5 (0) DEC5 (1) INC6(0) DEC6(1)
ENT5(2) ENN5(3) ENT6(2) ENN6(3)

61 I 2 62 I 2
CI ~ rI5(F): V CI ~ rI6(F) : V

CMP5(0:5) CMP6(0:5)

r A = register A
rX = register X

rAX =registers A and X as one
rli = index register i, 1 ::::; i ::::; 6
rJ =register J
CI= comparison indicator

07 I 1+ 2F
Move F words
from M to rll

MOVE(1)

15 I 2
rx~v

LDX(0:5)

23 I 2
rX~-V

LDXN(0:5)

31 I 2
M(F) ~ rX

STX(0:5)

39 I 1

Jumps
JMP(O) JSJ (1)
JOV(2) JNOV(3)
also [* J below

47 I 1

rX:O, jump

JX[+]

55 I 1

rX ~ [rX]? ±M

INCX(O) DECX(1)
ENTX(2) ENNX(3)

63 I 2
CI~ rX(F) :V

CMPX(0:5)

[* J :
JL(4)
JE(5)
JG(6)

JGE(7)
JNE(8)
JLE (9)

[+ J:
< N(O)
= Z(1)
> P(2)
> NN(3)
NZ(4)
< NP(5)

142 BASIC CONCEPTS 1.3.1

~ 9. [15] List all the MIX operators that can possibly affect the setting of the overflow
toggle. (Do not include floating point operators.)

10. [15] List all the MIX operators that can possibly affect the setting of the compar
ison indicator.

~ 11. [15] List all the MIX operators that can possibly affect the setting of r 11.

12. [1 OJ Find a single instr·uction that has the effect of multiplying the current con
tents of rl3 by two and leaving the result in rl3.

~ 13. [1 OJ Suppose location 1000 contains the instruction "JOV 1001". This instruction
turns off the overflow toggle if it is on (and the next instruction executed will be in
location 1001, in any case). If this instruction were changed to "JNOV 1001, would
there be any difference? What if it were changed to "JOV 1000" or "JNOV 1000"?

14. [20] For each MIX operation, consider whether there is a way to set the ±AA,
I, and F portions so that the result of the instruction is precisely equivalent to NOP

(except that the execution time may be longer). Assume that nothing is known about
the contents of any registers or any memory locations. Whenever it is possible to
produce a NOP, state how it can be done. Examples: INCA is a no-op if the address and
index parts are zero. JMP can never be a no-op, since it affects rJ.

15. [1 OJ How many alphameric characters are there in a typewriter or paper-tape
block? in a card-reader or card-punch block? in a line-printer block?

16. [20] Write a program that sets memory cells 0000-0099 all to zero and is (a) as
short a program as possible; (b) as fast a program as possible. [Hint: Consider using
the MOVE command.]

1 7. [26] This is the same as the previous exercise, except that locations 0000 through
N, inclusive, are to be set to zero, where N is the current contents of rl2. Your
programs (a) and (b) should work for any value 0 :S N :S 2999; they should start in
location 3000.

~ 18. [22] After the following "number one" program has been executed, what changes
to registers, toggles, and memory have taken place? (For example, what is the final
setting of rll? of rX? of the overflow and comparison indicators?)

STZ 1
ENNX 1
STX 1(0:1)
SLAX 1
ENNA 1
INCX 1
ENT! 1

SRC 1
ADD 1
DEC! -1
STZ 1
CMPA 1
MOVE -1, 1 (1)

NUM 1
CHAR 1

HLT 1 I
~ 19. [14] What is the execution time of the program in the preceding exercise, not

counting the HLT instruction?

1.3.1 DESCRIPTION OF MIX 143

20. [20] Write a program that sets all 4000 memory cells equal to a "HLT" instruction,

and then stops.

~ 21. [24] (a) Can the J-register ever be zero? (b) Write a program that, given a number

Nin rI4, sets register J equal to N, assuming that 0 < N :::; 3000. Your program should

start in location 3000. When your program has finished its execution, the contents of

all memory cells must be unchanged.

~ 22. [28] Location 2000 contains an integer number, X. Write two programs that

compute X 13 and halt with the result in register A. One program should use the

minimum number of MIX memory locations; the other should require the minimum

execution time possible. Assume that X 13 fits into a single word.

23. [27] Location 0200 contains a word

write two programs that compute the "reflected" word

and halt with the result in register A. One program should do this without using MIX's

to load and store partial fields of words. Both programs should take the minimum pos

sible number of memory locations under the stated conditions (including all locations

used for the program and for temporary storage of intermediate results).

24. [21] Assuming that registers A and X contain

and

respectively, write two programs that change the contents of these registers to

and

respectively, using (a) minimum memory space and (b) minimum execution time.

~ 25. [30] Suppose that the manufacturer of MIX wishes to come out with a more

powerful computer ("Mixmaster" ?), and he wants to convince as many as possible

of those people now owning a MIX computer to invest in the more expensive machine.

He wants to design this new hardware to be an extension of MIX, in the sense that

all programs correctly written for MIX will work on the new machines without change.

Suggest desirable things that could be incorporated in this extension. (For example,

can you make better use of the I-field of an instruction?)

~ 26. [32] This problem is to write a card-loading routine. Every computer has its own

peculiar "bootstrapping" problems for getting information initially into the machine

and for starting a job correctly. In MIX's case, the contents of a card can be read only

in character code, and the cards that contain the loading program itself must meet this

restriction. Not all possible byte values can be read from a card, and each word read

in from cards is positive.
MIX has one feature that has not been explained in the text: There is a "GO

button,'' which is used to get the computer started from scratch when its memory

contains arbitrary information. When this button is pushed by the computer operator,

the following actions take place:

1) A single card is read into locations 0000-0015; this is essentially equivalent to the

instruction "IN 0(16)".

144 BASIC CONCEPTS 1.3.1

2) When the card has been completely read and the card reader is no longer busy, a
JMP to location 0000 occurs. The J-register is also set to zero.

3) The machine now begins to execute the program it has read from the card.

Note: MIX computers without card readers have their GO-button attached to another
input device. But in this problem we will assume the presence of a card reader, unit 16.

The loading routine ta be written must satisfy the following conditions:

i) The input deck should begin with the loading routine, followed by information
cards containing the numbers to be loaded, followed by a "transfer card" that shuts
down the loading routine and jumps to the beginning of the program. The loading
routine should fit onto two cards.

ii) The information cards have the following format:

Columns 1-5, ignored by the loading routine.
Column 6, the number of consecutive words to be loaded on this card (a num

ber between 1 and 7, inclusive).
Columns 7-10, the location of word 1, which is always greater than 100 (so

that it does not overlay the loading routine).
Columns 11-20, word 1.
Columns 21-30, word 2 (if column 6 2': 2).

Columns 71-80, word 7 (if column 6 = 7).
The contents of words 1, 2, ... , are punched numerically as decimal numbers. If a
word is to be negative, a minus ("11-punch") is overpunched over the least significant
digit, e.g., in column 20. Assume that this causes the character code input to be 10,
11, 12, ... , 19 rather than 30, 31, 32, ... , 39. For example, a card that has

ABCDE31000012345678900000000010000000100

punched in columns 1-40 should cause the following data to be loaded:

1000: +0123456789; 1001: +0000000001; 1002: -0000000100.

iii) The transfer card has the format TRANSOnnnn in columns 1-10, where nnnn is the
place where execution should start.
iv) The loading routine should work for all byte sizes without any changes to the cards

bearing the loading routine. No card should contain any of the characters corresponding
to bytes 20, 21, 48, 49, 50, ... (namely, the characters E, II, =, $, <, ...), since these
characters cannot be read by all card readers. In particular, the ENT, INC, and CMP
cannot be used; they can't necessarily be punched on a card.

1.3.2. The MIX Assembly Language

A symbolic language is used to make MIX programs considerably easier to read
and to write, and to save the programmer from worrying about tedious cleri
cal details that often lead to unnecessary errors. This language, MIXAL ("MIX
Assembly Language"), is an extension of the notation used for instructions in
the previous section. Its main features are the optional use of alphabetic names
to stand for numbers, and a location field to associate names with memory
locations.

1.3.2 THE MIX ASSEMBLY LANGUAGE 145

MIXAL can readily be comprehended if we consider first a simple example.

The following code is part of a larger program; it is a subroutine to find the

maximum of n elements X[l], ... , X[n], according to Algorithm 1.2.lOM.

Program M (Find the maximum). Register assignments: rA m, rll n,

rl2 j, rl3 k, X[i] CONTENTS (X + i).

Assembled instructions Line no.

01

3000:

3001:

3002:

3003:

3004:

3005:

3006:

3007:

3008:

3009:

+

+

+

+

+

+

+

+

+

+

3009

0

3005

1000

3007

0

1000

1

3003

3009

0 2

1 2

0 0

3 5

0 7

3 2

3 5

0 1

0 2

0 0

32

51

39

56

39

50

08

51

43

39

02

03

04
05
06
07

08
09
10
11
12

LDC OP

x EQU

ORIG

MAXIMUM STJ

!NIT ENT3

JMP

LOOP CMPA

JGE

CHANG EM ENT2

LDA

DEC3

J3P

EXIT JMP

ADDRESS Times Remarks

1000

3000

EXIT 1 Subroutine linkage

0,1 1 Ml. Initialize. k +- n.

CHANG EM 1 j+-n, m+-X[n], k+-n-1.

X,3 n-1 M3. Compare.

*+3 n-1 To MS if m 2: X[k].

0,3 A+l M4. Change m. j +- k.

X,3 A+l m +- X[k].

1 n MS. Decrease k.

LOOP n M2. All tested? To M3 if k > 0.

* 1 Return to main program. I

This program is an example of several things simultaneously:

a) The columns headed "LDC OP ADDRESS" are of principal interest; they con

tain a program in the MIXAL symbolic machine language, and we shall explain

the details of this program below.

b) The column headed "Assembled instructions" shows the actual numeric

machine language that corresponds to the MIXAL program. MIXAL has been

designed so that any MIXAL program can easily be translated into numeric

machine language; the translation is usually carried out by another computer

program called an assembly program or assembler. Thus, programmers may

do all of their machine language programming in MIXAL, never bothering to

determine the equivalent numeric codes by hand. Virtually all MIX programs in

this book are written in MIXAL.

c) The column headed "Line no." is not an essential part of the MIXAL program;

it is merely included with MIXAL examples in this book so that we can readily

refer to parts of the program.

d) The column headed "Remarks" gives explanatory information about the

program, and it is cross-referenced to the steps of Algorithm 1.2.lOM. The reader

should compare that algorithm (page 96) with the program above. Notice that

a little "programmer's license" was used during the transcription into MIX code;

for example, step M2 has been put last. The "register assignments" stated at

the beginning of Program M show what components of MIX correspond to the

variables in the algorithm.

e) The column headed "Times" will be instructive in many of the MIX programs

we will be studying in this book; it represents the profile, the :r:umber of times the

instruction on that line will be executed during the course of the program. Thus,

146 BASIC CONCEPTS 1.3.2

line 06 will be performed n-1 times, etc. From this information we can determine

the length of time required to perform the subroutine; it is (5 + 5n + 3A)u, where

A is the quantity that was carefully analyzed in Section 1.2.10.

Now let's discuss the MIXAL part of Program M. Line 01,

X EQU 1000,

says that symbol Xis to be equivalent to the number 1000. The effect of this may

be seen on line 06, where the numeric equivalent of the instruction "CMPA X, 3"

appears as

I + ! 1 o:oo I 3 1 s ! s6 i ,
that is, "CMPA 1000, 3".

Line 02 says that the locations for succeeding lines should be chosen sequen

tially, originating with 3000. Therefore the symbol MAXIMUM that appears in the

LDC field of line 03 becomes equivalent to the number 3000, !NIT is equivalent

to 3001, LOOP is equivalent to 3003, etc.
On lines 03 through 12 the OP field contains the symbolic names of MIX

instructions: STJ, ENT3, etc. But the symbolic names EQU and ORIG, which

appear in the OP column of lines 01 and 02, are somewhat different; EQU and

ORIG are called pseudo-operations, because they are operators of MIXAL but not of

MIX. Pseudo-operations provide special information about a symbolic program,

without being instructions of the program itself. Thus the line

X EQU 1000

only talks about Program M, it does not signify that any variable is to be set

equal to 1000 when the program is run. Notice that no instructions are assembled

for lines 01 and 02.
Line 03 is a "store J" instruction that stores the contents of register J into

the (0: 2) field of location EXIT. In other words, it stores rJ into the address part

of the instruction found on line 12.
As mentioned earlier, Program Mis intended to be part of a larger program;

elsewhere the sequence
ENT1 100
JMP MAXIMUM
STA MAX

would, for example, jump to Program M with n set to 100. Program M would

then find the largest of the elements X[l], ... , X[lOO] and would return to the

instruction "STA MAX" with the maximum value in r A and with its position, j,

in rI2. (See exercise 3.)
Line 05 jumps the control to line 08. Lines 04, 05, 06 need no further

explanation. Line 07 introduces a new notation: An asterisk (read "self") refers

to the location of the line on which it appears; "*+3" ("self plus three") therefore

refers to three locations past the current line. Since line 07 is an instruction that

corresponds to location 3004, the "*+3" appearing there refers to location 3007.

The rest of the symbolic code is self-explanatory. Notice the appearance of

an asterisk again on line 12 (see exercise 2).

1.3.2 THE MIX ASSEMBLY LANGUAGE 147

Our next example introduces a few more features of the assembly language.
The object is to compute and print a table of the first 500 prime numbers, with
10 columns of 50 numbers each. The table should appear as follows on the
line printer:

FIRST FIVE HUNDRED PRIMES
0002 0233 0547 0877 1229 1597 1993 2371 2749 3187
0003 0239 0557 0881 1231 1601 1997 2377 2753 3191
0005 0241 0563 0883 1237 1607 1999 2381 2767 3203
0007 0251 0569 0887 1249 1609 2003 2383 2777 3209
0011 0257 0571 0907 1259 1613 2011 2389 2789 3217

0229 0541 0863 1223 1583 1987 2357 2741 3181 3571

We will use the following method.

Algorithm P (Print table of 500 primes). This algorithm has two distinct
parts: Steps Pl-PS prepare an internal table of 500 primes, and steps P9-Pll
print the answer in the form shown above. The latter part of the program uses
two "buffers," in which line images are formed; while one buffer is being printed,
the other is being filled.

Pl. [Start table.] Set PRIME [lJ +--- 2, N +--- 3, J +--- 1. (In this program, N runs
through the odd numbers that are candidates for primes; J keeps track of
how many primes have been found so far.)

P2. [N is prime.] Set J +--- J + 1, PRIME [JJ +--- N.

P3. [500 found?] If J = 500, go to step P9.

P4. [Advance N.] Set N +--- N + 2.

P5. [K +--- 2.] Set K +--- 2. (PRIME [KJ will run through the possible prime divisors
of N.)

P6. [PRIME [KJ \N?] Divide N by PRIME [KJ; let Q be the quotient and R the
remainder. If R = 0 (hence N is not prime), go to P4.

P7. [PRIME [KJ large?] If Q ::::; PRIME [KJ , go to P2. (In such a case, N must
be prime; the proof of this fact is interesting and a little unusual- see
exercise 6.)

PS. [Advance K.] Increase K by 1, and go to P6.

P9. [Print title.] Now we are ready to print the table. Advance the printer
to the next page. Set BUFFER [OJ to the title line and print this line. Set
B +--- 1, M +--- 1.

PlO. [Set up line.] Put PRIME [MJ, PRIME [50 + MJ, ... , PRIME [450 + MJ into
BUFFER [BJ in the proper format.

Pll. [Print line.] Print BUFFER[BJ; set B +--- 1 - B (thereby switching to the
other buffer); and increase M by 1. If M::::; 50, return to PIO; otherwise the
algorithm terminates. I

148 BASIC CONCEPTS 1.3.2

Pl. Start table P8. Advance K

No
Yes

P2. N is prime -------1 P7. PRIME[K] large? -------.

P3. 500 found? ,_N_o ____ _ P4. Advance N

Yes

P9. Print title 1-------- PlO. Set up line Pll. Print line

Done

Fig. 14. Algorithm P.

Program P (Print table of 500 primes). This program has deliberately been
·written in a slightly clumsy fashion in order to illustrate most of the features of
MIXAL in a single program. rll J - 500; rI2 N; rI3 K; rI4 indicates B; rI5
is M plus multiples of 50.

01 * EXAMPLE PROGRAM
02 *
03 L EQU 500
04 PRINTER EQU 18
05 PRIME EQU -1
06 BUFO EQU 2000
07 BUF1 EQU BUF0+25
08 ORIG 3000
09 START roe O(PRINTER)
10 LD1 =1-L=
11 LD2 =3=
12 2H INC1 1
13 ST2 PRIME+L,1
14 J1Z 2F
15 4H INC2 2
16 ENT3 2
17 6H ENTA 0
18 ENTX 0,2
19 DIV PRIME,3
20 JXZ 4B
21 CMPA PRIME,3
22 INC3 1
23 JG 6B
24 JMP 2B

TABLE OF PRIMES

The number of primes to find
Unit number of the line printer
Memory area for table of primes
Memory area for BUFFER [OJ
Memory area for BUFFER [1]

Skip to new page.
P 1. Start table. J +- 1.

N +- 3.
P2. N is prime. J +- J + 1.

PRIME [J] t- N.

P3. 500 found?
P4. Advance N.

P5. Kt- 2.
P6. PRIME [K] \N?

rAX t- N.

rA t- Q, rX t- R.
To P4 if R = 0.

P7. PRIME [K] large?
PB. Advance K.

To P6 if Q > PRIME [K] .
Otherwise N is prime.

1.3.2 THE MIX ASSEMBLY LANGUAGE 149

25 2H OUT TITLE(PRINTER) P9. Print title.

26 ENT4 BUF1+10 Set B t- 1.

27 ENT5 -50 Set Mt- 0.

28 2H INC5 L+1 Advance M.

29 4H LDA PRIME,5 P 1 O. Set UQ line. (Right to left)

30 CHAR Convert PRIME [M] to decimal.

31 STX 0,4(1:4)
32 DEC4 1
33 DEC5 50 (rI5 goes down by 50 until

34 J5P 4B it becomes nonpositive)

35 OUT 0,4(PRINTER) Pll. Print line.

36 LD4 24,4 Switch buffers.

37 J5N 2B If rl5 = 0, we are done.

38 HLT
39 * INITIAL CONTENTS OF TABLES AND BUFFERS
40 ORIG PRIME+!
41 CON 2 The first prime is 2.

42 ORIG BUF0-5
43 TITLE ALF FIRST Alphabetic information for

44 ALF FIVE title line

45 ALF HUND
46 ALF RED P
47 ALF RIMES
48 ORIG BUF0+24
49 CON BUF1+10 Each buffer refers to the other.

50 ORIG BUF1+24
51 CON BUF0+10
52 END START End of routine. I

The following points of interest should be noted about this program:

1. Lines 01, 02, and 39 begin with an asterisk: This signifies a "comment"

line that is merely explanatory, having no actual effect on the assembled program.

2. As in Program M, the pseudo-operation EQU in line 03 sets the equivalent

of a symbol; in this case, the equivalent of L is set to 500. (In the program of lines

10-24, L represents the number of primes to be computed.) Notice that in line

05 the symbol PRIME gets a negative equivalent; the equivalent of a symbol may

be any signed five-byte number. In line 07 the equivalent of BUF1 is calculated

as BUF0+25, namely 2025. MIXAL provides a limited amount of arithmetic on

numbers; another example appears on line 13, where the value of PRIME+L (in

this case, 499) is calculated by the assembly program.

3. The symbol PRINTER has been used in the F-part on lines 25 and 35. The

F-part, which is always enclosed in parentheses, may be numeric or symbolic,

just as the other portions of the ADDRESS field are. Line 31 illustrates the partial

field specification " (1: 4)", using a colon.

4. MIXAL provides several ways to specify non-instruction words. Line 41

uses the pseudo-operation CON to specify an ordinary constant, "2"; the result

150 BASIC CONCEPTS 1.3.2

of line 41 is to assemble the word

Line 49 shows a slightly more complicated constant, "BUF1 +10", which assembles

as the word

A constant may be enclosed in equal signs, in which case we call it a literal

constant (see lines 10 and 11). The assembler automatically creates internal

names and inserts "CON" lines for literal constants. For example, lines 10 and 11

of Program P are effectively changed to

10
11

LD1 conl
LD2 con2

and then at the end of the program, between lines 51 and 52, the lines

51a conl
51b con2

CON 1-L

CON 3

are effectively inserted as part of the assembly procedure. Line 51a will assemble

into the word

The use of literal constants is a decided convenience, because it means that

programmers do not have to invent symbolic names for trivial constants, nor

do they have to remember to insert constants at the end of each program.

Programmers can keep their minds on the central problems and not worry

about such routine details. (However, the literal constants in Program P aren't

especially good examples, because we would have had a slightly better program

if we had replaced lines 10 and 11 by the more efficient commands "ENT 1 1-L"

and "ENT2 3" .)

5. A good assembly language should mimic the way a programmer thinks

about machine programs. One example of this philosophy is the use of literal

constants, as we have just mentioned; another example is the use of "*", which

was explained in Program M. A third example is the idea of local symbols such

as the symbol 2H, which appears in the location field of lines 12, 25, and 28.

Local symbols are special symbols whose equivalents can be redefined as

many times as desired. A global symbol like PRIME has but one significance

throughout a program, and if it were to appear in the location field of more than

one line an error would be indicated by the assembler. But local symbols have a

different nature; we write, for example, 2H ("2 here") in the location field, and

2F ("2 forward") or 2B ("2 backward") in the address field of a MIXAL line:

2B means the closest previous location 2H;

2F means the closest fallowing location 2H.

1.3.2 THE MIX ASSEMBLY LANGUAGE 151

Thus the "2F" in line 14 refers to line 25; the "2B" in line 24 refers back to line
12; and the "2B" in line 37 refers to line 28. An address of 2F or 2B never refers
to its own line; for example, the three lines of MIXAL code

2H
2H
2H

EQU
MOVE
EQU

10
2F(2B)
2B-3

are virtually equivalent to the single line

MOVE *-3(10).

The symbols 2F and 2B should never be used in the location field; the symbol
2H should never be used in the address field. There are ten local symbols, which
can be obtained by replacing "2" in these examples by any digit from 0 to 9.

The idea of local symbols was introduced by M. E. Conway in 1958, in
connection with an assembly program for the UNIVAC I. Local symbols relieve
programmers from the necessity of choosing symbolic names for every address,
when all they want to do is refer to an instruction a few lines away. There often
is no appropriate name for nearby locations, so programmers have tended to
introduce meaningless symbols like X1, X2, X3, etc., with the potential danger
of duplication. Local symbols are therefore quite useful and natural in an
assembly language.

6. The address part of lines 30 and 38 is blank. This means that the
assembled address will be zero. We could have left the address blank in line 17
as well, but the program would have been less readable without the redundant 0.

7. Lines 43-47 use the "ALF" operation, which creates a five-byte constant
in MIX alphameric character code. For example, line 45 causes the word

to be assembled, representing "uHUND" -part of the title line in Program P's
output.

All locations whose contents are not specifi.ed in the MIXAL program are
ordinarily set to zero (except the locations that are used by the loading routine,
usually 3700-3999). Thus there is no need to set the other words of the title line
to blanks, after line 47.

8. Arithmetic may be used together with ORIG: See lines 40, 42, and 48.

9. The last line of a complete MIXAL program always has the OP-code "END".
The address on this line is the location at which the program is to begin, once
it has been loaded into memory.

10. As a final note about Program P, we can observe that the instructions
have been organized so that index registers are counted towards zero, and tested
against zero, whenever possible. For example, the quantity J-500, not J, is kept
in rll. Lines 26-34 are particularly noteworthy, although perhaps a bit tricky.

152 BASIC CONCEPTS

PRIHTER E U 18

• EXAl'IPLE PROGRAM ••• TABLE ar PRIMES
I I I I I Ill II I I I I

I Ill Ill I I I I II I
11
1JJ411111111RD•R•DRR•ftttDM••v···~D•M••a••••aa~•·Q···~aaMaasaa••••M••n••~~DDM••n•••

11

2222222222222222222222221222222222221222

33333llllllll333llllllllll33

14444144444444441444444444444444441444

55155555155555555555555555155555555155

11

11

111•11

999999999991991999999999999999991199
12J411111WttUU•R•RRR•ftttDM••D•••~a•M••a••••aa~•·Q···~~UM9anaa•nnaMB•n••~~DDMDMD~~·

CllllDlll

* EXAMPLE PROGRAM

*
L EQU 500
PRINTER EQU 18
PRIME EQU -1
BUFO EQU 2000
BUF1 EQU BUF0+25

ORIG 3000
START roe O(PRINTER)

LD1 =1-L=

TABLE OF PRIMES

1.3.2

Fig. 15. The first lines of Program P punched onto cards, or typed on a terminal.

It may be of interest to note a few of the statistics observed when Program P
was actually run. The division instruction in line 19 was executed 9538 times;
the time to perform lines 10-24 was 182144u.

MIXAL programs can be punched onto cards or typed on a computer terminal,
as shown in Fig. 15. The following format is used in the case of punched cards:

Columns 1-10
Columns 12-15
Columns 17-80
Columns 11, 16

LDC (location) field;
OP field;
ADDRESS field and optional remarks;
blank.

However, if column 1 contains an asterisk, the entire card is treated as a com
ment. The ADDRESS field ends with the first blank column following column 16;
any explanatory information may be punched to the right of this first blank
column with no effect on the assembled program. (Exception: When the OP field
is ALF, the remarks always start in column 22.)

When the input comes from a terminal, a less restrictive format is used:
The LDC field ends with the first blank space, while the OP and ADDRESS fields
(if present) begin with a nonblank character and continue to the next blank; the
special OP-code ALF is, however, followed either by two blank spaces and five
characters of alphameric data, or by a single blank space and five alphameric

1.3.2 THE MIX ASSEMBLY LANGUAGE 153

characters, the first of which is nonblank. The remainder of each line contains
optional remarks.

The MIX assembly program accepts input files prepared in this manner and
converts them to machine language programs in loadable form. Under favorable
circumstances the reader will have access to a MIX assembler and MIX simulator,
on which various exercises in this book can be worked out.

Now we have seen what can be done in MIXAL. We conclude this section by
describing the rules more carefully, and in particular we shall observe what is not
allowed in MIXAL. The following comparatively few rules define the language.

1. A symbol is a string of one to ten letters and/ or digits, containing at least
one letter. Examples: PRIME, TEMP, 20BY20. The special symbols dH, dF, and
dB, where d is a single digit, will for the purposes of this definition be replaced
by other unique symbols according to the "local symbol" convention described
earlier.

2. A number is a string of one to ten digits. Example: 00052.

3. Each appearance of a symbol in a MIXAL program is said to be either a
"defined symbol" or a "future reference." A defined symbol is a symbol that has
appeared in the LDC field of a preceding line of this MIXAL program. A future
ref ere nee is a symbol that has not yet been defined in this way.

4. An atomic expression is either

a) a number, or

b) a defined symbol (denoting the numerical equivalent of that symbol, see
rule 13), or

c) an asterisk (denoting the value of ®; see rules 10 and 11).

5. An expression is either

a) an atomic expression, or

b) a plus or minus sign followed by an atomic expression, or

c) an expression followed by a binary operation followed by an atomic expres
sion.

The six admissible binary operations are +, - , *, I, I I, and : . They are
defined on numeric MIX words as follows:

c = A+B LDA AA; ADD BB; STA CC.
c = A-B LDA AA; SUB BB; STA CC.
c = A*B LDA AA; MUL BB; STX CC.
c = A/B LDA AA; SRAX 5; DIV BB; STA CC.
c = A//B LDA AA; ENTX O; DIV BB; STA CC.
c = A:B LDA AA; MUL =8=; SLAX 5; ADD BB; STA CC.

Here AA, BB, and cc denote locations containing the respective values of the
symbols A, B, and C. Operations within an expression are carried out from left

154 BASIC CONCEPTS 1.3.2

to right. Examples:

-1+5 equals 4.
-1+5*20/6 equals 4*20/6 equals 80/6 equals 13 (going from left to right).

equals a MIX word whose value is approximately b5/3 where 1//3

b is the byte size; that is., a word representing the fraction ~

with radix point at the left.
equals 11 (usually used in partial field specification).

equals ® minus three.
equals ® times ® .

6. An A-part (which is used to describe the address field of a MIX instruction)

is either

a) vacuous (denoting the value zero), or

b) an expression, or

c) a future reference (denoting the eventual equivalent of the symbol; see

rule 13), or

d) a literal constant (denoting a reference to an internally created symbol; see

rule 12).

7. An index part (which is used to describe the index field of a MIX instruc

tion) is either

a) vacuous (denoting the value zero), or

b) a comma followed by an expression (denoting the value of that expression).

8. An F-part, which is used to describe the F-field of a MIX instruction, is

either

a) vacuous (denoting the normal F -setting, based on the OP field as shown in

Table 1.3.1-1), or

b) a left parenthesis followed by an expression followed by a right parenthesis

(denoting the value of the expression).

9. A W-value (which is used to describe a full-word MIX constant) is either

a) an expression followed by an F-part (in which case a vacuous F-part denotes

(0: 5)), or

b) a W-value followed by a comma followed by a W-value of the form (a).

AW-value denotes the value of a numeric MIX word determined as follows:

Let the W-value have the form "E1 (F1) ,E2 (F2), ... ,En (Fn)", where n 2:: 1,

the E's are expressions, and the F's are fields. The desired result is the final

value that would appear in memory location WVAL if the following hypothetical

program were executed:

STZ WVAL; LDA C1; STA WVAL(F1); ... ; LDA Cn; STA WVAL(Fn).

1.3.2 THE MIX ASSEMBLY LANGUAGE 155

Here C1 , ... , Cn denote locations containing the values of expressions Ei,
En. Each Fi must have the form 8Li + ~ where 0 :S Li :S Ri :S 5. Examples:

... '

1

1,-1000(0:2)

-1000(0:2),1

is the word

is the word

is the word

+

-

+

1

1000 I 1

1

10. The assembly process makes use of a value denoted by ® (called the
location counter), which is initially zero. The value of ® should always be a
nonnegative number that can fit in two bytes. When the location field of a line
is not blank, it must contain a symbol that has not been previous defined. The
equivalent of that symbol is then defined to be the current value of®·

11. After processing the LDC field as described in rule 10, the assembly
process depends on the value of the OP field. There are six possibilities for OP:

a) OP is a symbolic MIX operator (see Table 1 at the end of the previous section).
The chart defines the normal C and F values for each MIX operator. In this
case the ADDRESS should be an A-part (rule 6), followed by an index part
(rule 7), followed by an F-part (rule 8). We thereby obtain four values: C,
F, A, and I. The effect is to assemble the word determined by the sequence
"LDA C; STA WORD; LDA F; STA WORD(4:4); LDA I; STA WORD(3:3); LDA A;
STA WORD(0:2)" into the location specified by®, and to advance® by 1.

b) OP is "EQU". The ADDRESS should be a W-value (see rule 9). If the LDC field
is nonblank, the equivalent of the symbol appearing there is set equal to the
value specified in ADDRESS. This rule takes precedence over rule 10. The
value of® is unchanged. (As a nontrivial example, consider the line

BYTESIZE EQU 1(4:4)

which allows the programmer to have a symbol whose value depends on the
byte size. This is an acceptable situation so long as the resulting program
is meaningful with each possible byte size.)

c) OP is "ORIG". The ADDRESS should be a W-value (see rule 9); the location
counter, ®, is set to this value. (Notice that because of rule 10, a symbol
appearing in the LDC field of an ORIG line gets as its equivalent the value of
® before it has changed. For example,

TABLE ORIG *+100

sets the equivalent of TABLE to the first of 100 locations.)

d) OP is "CON". The ADDRESS should be a W-value; the effect is to assemble a
word, having this value, into the location specified by ®, and to advance ®
by 1.

e) OP is "ALF". The effect is to assemble the word of character codes formed
by the first five characters of the address field, otherwise behaving like CON.

156 BASIC CONCEPTS 1.3.2

f) OP is "END". The ADDRESS should be a W-value, which specifies in its (4: 5)

field the location of the instruction at which the program begins. The END

line signals the end of a MIXAL program. The assembler effectively inserts

additional lines just before the END line, in arbitrary order, corresponding

to all undefined symbols and literal constants (see rules 12 and 13). Thus a

symbol in the LDC field. of the END line will denote the first location following

the inserted words.

12. Literal constants: A W-value that is less than 10 characters long may

be enclosed between "=" signs and used as a future reference. The effect is to

create a new symbol internally and to insert a CON line defining that symbol,

just before the END line (see remark 4 following Program P).

13. Every symbol has one and only one equivalent value; this is a full

word MIX number that is normally determined by the symbol's appearance in

LDC according to rule 10 or rule ll(b). If the symbol never appears in LDC,

a new line is effectively inserted before the END line, having OP = "CON" and

ADDRESS = "O" and the name of the symbol in LDC.

Note: The most significant consequence of the rules above is the restriction

on future references. A symbol that has not yet been defined in the LDC field

of a previous line may not be used except as the A-part of an instruction. In

particular, it may not be used (a) in connection with arithmetic operations; or

(b) in the ADDRESS field of EQU, ORIG, or CON. For example,

LDA 2F+1

and
CON 3F

are both illegal. This restriction has been imposed in order to allow more efficient

assembly of programs, and the experience gained in writing this set of books has

shown that it is a mild limitation that rarely makes much difference.

Actually MIX has two symbolic languages for low-level programming: MIXAL,*

a machine-oriented language that is designed to facilitate one-pass translation

by a very simple assembly program; and PL/MIX, which more adequately reflects

data and control structures and which looks rather like the Remarks field of

MIXAL programs. PL/MIX will be described in Chapter 10.

EXERCISES- First set

1. [00] The text remarked that "X EQU 1000" does not assemble any instruction that

sets the value of a variable. Suppose that you are writing a MIX program in which you

wish to set the value contained in a certain memory cell (whose symbolic name is X)

equal to 1000. How could you write this in MIXAL?

~ 2. [10] Line 12 of Program M says "JMP *",where* denotes the location of that line.

Why doesn't the program go into an infinite loop, endlessly repeating this instruction?

* The author was astonished to learn in 1971 that MIXAL is also the name of a laundry

detergent in Yugoslavia, developed for use with avtomate [automatics].

1.3.2 THE MIX ASSEMBLY LANGUAGE 157

~ 3. [23] What is the effect of the following program, if it is used in conjunction with
Program M?

START IN X+1(0)
JBUS *(O)
ENT1 100

1H JMP MAXIMUM
LDX x, 1
STA x, 1
STX X,2
DEC1 1
J1P 1B

OUT X+1(1)
HLT
END START I

~ 4. [25] Assemble Program P by hand. (It won't take as long as you think.) What
are the actual numerical contents of memory, corresponding to that symbolic program?

5. [11] Why doesn't Program P need a JBUS instruction to determine when the line
printer is ready?

6. [HM20] (a) Show that if n is not prime, n has a divisor d with 1 :S d :S vfri. (b) Use
this fact to show that the test in step P7 of Algorithm P proves that N is prime.

7. [10] (a) What is the meaning of "4B" in line 34 of Program P? (b) What effect,
if any, would be caused if the location of line 15 were changed to "2H" and the address
of line 20 were changed to "2B"?

~ 8. [24] What does the following program do? (Do not run it on a computer, figure
it out by hand!)

* MYSTERY PROGRAM
BUF ORIG *+3000
1H ENT1 1

ENT2 0
LDX 4F

2H ENT3 0,1
3H STZ BUF,2

INC2 1
DEC3 1
J3P 3B
STX BUF,2
INC2 1
INC1 1
CMP1 =75=
JL 2B
ENN2 2400
OUT BUF+2400,2(18)
INC2 24
J2N *-2
HLT

4H ALF AAAAA
END 1B I

158 BASIC CONCEPTS 1.3.2

EXERCISES -Second set

These exercises are short programming problems, representing typical computer

applications and covering a wide range of techniques. Every reader is encouraged to

choose a few of these problems, in order to get some experience using MIX as well as

a good review of basic programming skills. If desired, these exercises may be worked

concurrently as the rest of Chapter 1 is being read.

The following list indicates the types of programming techniques that are involved:

The use of switching tables for multiway decisions: exercises 9, 13, and 23.

The use of index registers with two-dimensional arrays: exercises 10, 21, and 23.

Unpacking characters: exercises 13 and 23.

Integer and scaled decimal arithmetic: exercises 14, 16, and 18.

The use of subroutines: exercises 14 and 20.

Input buffering: exercise 13.

Output buffering: exercises 21 and 23.

List processing: exercise 22.

Real-time control: exercise 20.

Graphical display: exercise 23.

Whenever an exercise in this book says, "write a MIX program" or "write a MIX

subroutine," you need only write symbolic MIXAL code for what is asked. This code

will not be complete in itself, it will merely be a fragment of a (hypothetical) complete

program. No input or output need be done in a code fragment, if the data is to be

supplied externally; one need write only LDC, DP, and ADDRESS fields of MIXAL lines,

together with appropriate remarks. The numeric machine language, line number, and

"times" columns (see Program M) are not required unless specifically requested, nor

will there be an END line.

On the other hand, if an exercise says, "write a complete MIX program," it implies

that an executable program should be written in MIXAL, including in particular the

final END line. Assemblers and MIX simulators on which such complete programs can

be tested are widely available.

~ 9. [25] Location INST contains a MIX word that purportedly is a MIX instruction.

Write a MIX program that jumps to location GOOD if the word has a valid C-field,

valid ±AA-field, valid I-field, and valid F-field, according to Table 1.3.1-1; your pro

gram should jump to location BAD otherwise. Remember that the test for a valid F-field

depends on the C-field; for example, if C = 7 (MOVE), any F-field is acceptable, but if C

= 8 (LDA), the F-field must have the form SL+ R where 0::;; L::;; R::;; 5. The "±AA"

field is to be considered valid unless C specifies an instruction requiring a memory

address and I = 0 and ±AA is not a valid memory address.

Note: Inexperienced programmers tend to tackle a problem like this by writing a

long series of tests on the C-field, such as "LDA C; JAZ 1F; DECA 5; JAN 2F; JAZ 3F;

DECA 2; JAN 4F; ... ". This is not good practice! The best way to make multiway

decisions is to prepare an auxiliary table containing information that encapsulates the

desired logic. If there were, for example, a table of 64 entries, we could write "LD1 C;

LD1 TABLE, 1; JMP 0, 1" -thereby jumping very speedily to the desired routine. Other

useful information can also be kept in such a table. A tabular approach to the present

problem makes the program only a little bit longer (including the table) and greatly

increases its speed and flexibility.

1.3.2 THE MIX ASSEMBLY LANGUAGE 159

~ 10. [31] Assume that we have a 9 x 8 matrix

stored in memory so that aij is in location 1000 +Si+ j. In memory the matrix therefore
appears as follows:

(1009)

(1017)

(1073)

(1010)

(1018)

(1074)

(1011)

(1019)

(1075)

(1016)

(1024)

(1080)

A matrix is said to have a "saddle point" if some position is the smallest value in
its row and the largest value in its column. In symbols, aij is a saddle point if

Write a MIX program that computes the location of a saddle point (if there is at least
one) or zero (if there is no saddle point), and stops with this value in rll.

11. [M29] What is the probability that the matrix in the preceding exercise has a
saddle point, assuming that the 72 elements are distinct and assuming that all 72!
arrangements are equally probable? What is the corresponding probability if we assume
instead that the elements of the matrix are zeros and ones, and that all 272 such matrices
are equally probable?

12. [M4 7] Two solutions are given for exercise 10 (see page 512), and a third is
suggested; it is not clear which of them is better. Analyze the algorithms, using each
of the assumptions of exercise 11, and decide which is the better method.

13. [28] A cryptanalyst wants a frequency count of the letters in a certain code. The
code has been punched on paper tape; the end is signaled by an asterisk. Write a
complete MIX program that reads in the tape, counts the frequency of each character
up to the first asterisk, and then types out the results in the form

A 0010257
B 0000179
D 0794301

etc., one character per line. The number of blanks should not be counted, nor should
characters for which the count is zero (like C in the above) be printed. For efficiency,
"buffer" the input: While reading a block into one area of memory you can be counting
characters from another area. You may assume that an extra block (following the one
that contains the terminating asterisk) is present on the input tape.

~ 14. [31] The following algorithm, due to the Neapolitan astronomer Aloysius Lilius
and the German Jesuit mathematician Christopher Clavius in the late 16th century, is
used by most Western churches to determine the date of Easter Sunday for any year
after 1582.

160 BASIC CONCEPTS 1.3.2

Algorithm E (Date of Easter). Let Y be the year for which the date of Easter is
desired.

El. [Golden number.] Set G +-- (Y mod 19) + 1. (G is the so-called "golden
number" of the year in the 19-year Metonic cycle.)

E2. [Century.] Set C +-- LY/lOOJ + 1. (When Y is not a multiple of 100, C is the
century number; for"example, 1984 is in the twentieth century.)

E3. [Corrections.] Set X +-- L3C/4J -12, Z +-- L(SC + 5)/25J - 5. (Here Xis the
number of years, such as 1900, in which leap year was dropped in order to
keep in step with the sun; Z is a special correction designed to synchronize
Easter with the moon's orbit.)

E4. [Find Sunday.] Set D +-- L5Y/4J-X -10. [March ((-D) mod 7) actually will
be a Sunday.]

E5. [Epact.] Set E +-- (llG + 20 + Z - X) mod 30. If E = 25 and the golden
number G is greater than 11, or if E = 24, then increase Eby 1. (This number
Eis the epact, which specifies when a full moon occurs.)

E6. [Find full moon.] Set N +-- 44 - E. If N < 21 then set N +-- N + 30. (Easter
is supposedly the first Sunday following the first full moon that occurs on or
after March 21. Actually perturbations in the moon's orbit do not make this
strictly true, but we are concerned here with the "calendar moon" rather than
the actual moon. The Nth of March is a calendar full moon.)

E7. [Advance to Sunday.] Set N +-- N + 7 - ((D + N) mod 7).

E8. [Get month.] If N > 31, the date is (N - 31) APRIL; otherwise the date is
N MARCH. I

Write a subroutine to calculate and print Easter date given the year, assuming
that the year is less than 100000. The output should have the form "dd MONTH, yyyyy"

where dd is the day and yyyyy is the year. Write a complete MIX program that uses
this subroutine to prepare a table of the dates of Easter from 1950 through 2000.

15. [M30] A fairly common error in the coding of the previous exercise is to fail to
realize that the quantity (llG + 20 + Z - X) in step E5 may be negative; therefore the
positive remainder mod 30 might not be computed properly. (See CACM 5 (1962),
556.) For example, in the year 14250 we would find G = 1, X = 95, Z = 40; so if
we had E = -24 instead of E = +6 we would get the ridiculous answer "42 APRIL".

Write a complete MIX program that finds the earliest year for which this error would
actually cause the wrong date to be calculated for Easter.

16. [31] We showed in Section 1.2.7 that the sum 1 + ~ + ~ + · · · becomes infinitely
large. But if it is calculated with finite accuracy by a computer, the sum actually
exists, in some sense, because the terms eventually get so small that they contribute
nothing to the sum if added one by one. For example, suppose we calculate the sum
by rounding to one decimal place; then we have 1+0.5 + 0.3 + 0.3 + 0.2 + 0.2 + 0.1 +
0.1 + 0.1+0.1+0.1+0.1+0.1+0.1 + 0.1 + 0.1 + 0.1 + 0.1+0.1+0.1 = 3.9.

More precisely, let rn(x) be the number x rounded ton decimal places; we define
rn(x) = llOnx + ~J/10n. Then we wish to find

Sn= rn(l) + rnO) + rnO) + · · ·;

we know that S1 = 3.9, and the problem is to write a complete MIX program that
calculates and prints Sn for n = 2, 3, 4, and 5.

1.3.2 THE MIX ASSEMBLY LANGUAGE 161

Note: There is a much faster way to do this than the simple procedure of adding

rn(l/m), one number at a time, until rn(l/m) becomes zero. For example, we have
r 5 (1/m) = 0.00001 for all values of m from 66667 to 200000; it's wise to avoid
calculating 1/m all 133334 times! An algorithm along the following lines should rather

be used:
A. Start with mh = 1, S = 1.

B. Set me = mh + 1 and calculate rn(l/me) = r.

C. Find mh, the largest m for which rn(l/m) = r.
D. Add (mh - me+ l)r to S and return to Step B.

17. [HM"30] Using the notation of the preceding exercise, prove or disprove the formula

limn--too(Sn+l - Sn) = ln 10.

18. [25] The ascending sequence of all reduced fractions between 0 and 1 that have
denominators ::; n is called the "Farey series of order n." For example, the Farey series

of order 7 is

0 1 1 1 1 2 1 2 3 1 4 3 2 5 3 4 5 6 1

l' 7' 6' 5' 4' 7' 3' 5' 7' 2' 7' 5' 3' 7' 4' 5' 6' 7' i

If we denote this series by xo /yo, xi/ y1, x2 / Y2, ... , exercise 19 proves that

xo = 0, yo = 1; x1 = 1, y1 = n;

Xk+2 = L(Yk + n)/Yk+1J Xk+1 - xk;

Yk+2 = L(Yk + n)/Yk+1J Yk+1 - Yk·

Write a MIX subroutine that computes the Farey series of order n, by storing the values
of Xk and Yk in locations X + k, Y + k, respectively. (The total number of terms in the
series is approximately 3n2/7r2, so you may assume that n is rather small.)

19. [M30] (a) Show that the numbers Xk and Yk defined by the recurrence in the

preceding exercise satisfy the relation Xk+1Yk-XkYk+1 = 1. (b) Show that the fractions
Xk/Yk are indeed the Farey series of order n, using the fact proved in (a).

~ 20. [33] Assume that MIX's overflow toggle and X-register have been wired up to the
traffic signals at the corner of Del Mar Boulevard and Berkeley A venue, as follows:

rX(2: 2) = Del Mar traffic light}
X(3 3) B k 1 t ffi 1

. ht 0 off, 1 green, 2 amber, 3 red;
r : = er e ey ra c 1g

rX(4: 4) = Del Mar pedestr~an l~ght} O off l "WALK" 2 "DON, T WALK".
rX(5: 5) =Berkeley pedestrian light ' '

Cars or pedestrians wishing to travel on Berkeley across the boulevard must trip a
switch that causes the overflow toggle of MIX to go on. If this condition never occurs,
the light for Del Mar should remain green.

Cycle times are as follows:

Del Mar traffic light is green ~ 30 sec, amber 8 sec;
Berkeley traffic light is green 20 sec, amber 5 sec.

When a traffic light is green or amber for one direction, the other direction has a red
light. When the traffic light is green, the corresponding WALK light is on, except that

162 BASIC CONCEPTS 1.3.2

22 47 16 41 10 35 04

05 23 48 17 42 11 29
START

30 06 24 49 18 36 12

13 31 07 25 43 19 ~ 37

38 14 32 01 26 44 20

21 39 08 33 02 27 45

46 15 40 09 34 03 28

Fig. 16. A magic square. Fig. 17. Josephus's problem, n = 8, m = 4.

DON'T WALK flashes for 12 sec just before a green light turns to amber, as follows:

DON'T WALK .!. sec} i repeat 8 times;
off 2 sec

DON'T WALK 4 sec (and remains on through amber and red cycles).

If the overflow is tripped while the Berkeley light is green, the car or pedestrian
will pass on that cycle, but if it is tripped during the amber or red portions, another
cycle will be necessary after the Del Mar traffic has passed.

Assume that one MIX time unit equals 10 µsec. Write a complete MIX program
that controls this traffic light by manipulating rX, according to the input given by the
overflow toggle. The stated times are to be followed exactly unless it is impossible to
do so. Note: The setting of rX changes precisely at the completion of a LDX or INCX
instruction.

21. [28] A magic square of order n is an arrangement of the numbers 1 through n 2 in
a square array in such a way that the sum of each row and column is n(n2 +1)/2, and so
is the sum of the two main diagonals. Figure 16 shows a magic square of order 7. The
rule for generating it is easily seen: Start with 1 jumt below the middle square, then go
down and to the right diagonally-when running off the edge imagine an entire plane
tiled with squares - until reaching a filled square; then drop down two spaces from the
most-recently-filled square and continue. This method works whenever n is odd.

Using memory allocated in a fashion like that of exercise 10, write a complete MIX
program to generate the 23 x 23 magic square by the method above, and to print the
result. [This algorithm is due to Manuel Moschopoulos, who lived in Constantinople
about 1300. For numerous other interesting magic square constructions, many of which
are good programming exercises, see W.W. Rouse Ball, Mathematical Recreations and
Essays, revised by H. S. M. Coxeter (New York: Macmillan, 1939), Chapter 7.]

2 2. [31] (The Josephus problem.) There are n men arranged in a circle. Beginning at
a particular position, we count around the circle and brutally execute every mth man;
the circle closes as men die. For example, the execution order when n = 8 and m = 4 is
54613872, as shown in Fig. 17: The first man is fifth to go, the second man is fourth,
etc. Write a complete MIX program that prints out the order of execution when n = 24,
m = 11. Try to design a clever algorithm that works at high speed when n and m are
large (it may save your life). Reference: W. Ahrens, Mathematische Unterhaltungen
und Spiele 2 (Leipzig: Teubner, 1918), Chapter 15.

1.3.2 THE MIX ASSEMBLY LANGUAGE 163

23. [37] This is an exercise designed to give some experience in the many applications

of computers for which the output is to be displayed graphically rather than in the usual

tabular form. In this case, the object is to "draw" a crossword puzzle diagram.

You are given as input a matrix of zeros and
ones. An entry of zero indicates a white square; a

one indicates a black square. The output should be a

diagram of the puzzle, with the appropriate squares
numbered for words across and down.

For example, given the matrix

1 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 1

1 3

4 6

7

14

Fig. 18. Diagram corresponding
to the matrix in exercise 23.

the corresponding puzzle diagram would be as shown in Fig. 18. A square is numbered

if it is a white square and either (a) the square below it is white and there is no white

square immediately above, or (b) the square to its right is what and there is no white

square immediately to its left. If black squares occur at the edges, they should be

removed from the diagram. This is illustrated in Fig. 18, where the black squares at

the corners were dropped. A simple way to accomplish this is to artificially insert rows

and columns of -1 's at the top, bottom, and sides of the given input matrix, then to

change every +l that is adjacent to a -1 into a -1 until no +l remains next to any -1.

The following method should be used to print the final diagram on a line printer:

Each box of the puzzle should correspond to 5 columns and 3 rows of the output page,

where the 15 positions are filled as follows:

Unnumbered uuuu+

white squares: uuuu+

+++++

Number nn nnuu+

white squares: uuuu+

+++++

Black +++++

squares: +++++

+++++

"-1" squares, depending on whether there are -1 's to the right or below:

uuuu+

uuuu+
+++++

uuuu+

uuuu+

uuuu+

uuuuu

uuuuu
+++++

uuuuu

uuuuu

uuuu+

uuuuu

uuuuu

uuuuu

The diagram shown in Fig. 18 would then be printed as shown in Fig. 19.

The width of a printer line-120 characters - +++++++++++++++++++++

is enough to allow up to 23 columns in the cross- :01 ! :02 !03 !

word puzzle. The data supplied as input will be a +++++++++++++++++++++++++++++++

23 f h h +04 + ++++++05 + +06 +
x 23 matrix o zeros and ones, eac row punc ed + + ++++++ + + +

in columns 1-23 of an input card. For example, +++++++++++++++++++++++++++++++
+07 + +08 + ++++++ +

the card corresponding to the matrix above would + + + + ++++++ +

be punched "10000111111111111111111". The dia- +++++++++++++++++++++++++++++++
+ ++++++09 + +10 + +

gram will not necessarily be symmetrical, and it + ++++++ + + + +

might have long paths of black squares that are +++++++++++++++++++++++++++++++
+11 +12 + ++++++13 + +

connected to the outside in strange ways. + + + ++++++ + +
+++++++++++++++++++++++++++++++

+14 + + + +

Fig. 19. Representation of Fig. 18 on a line printer. + + + + +
+++++++++++++++++++++

164 BASIC CONCEPTS 1.3.3

1.3.3. Applications to Permutations

In this section we shall give several more examples of MIX programs, and at the
same time introduce some important properties of permutations. These inves
tigations will also bring out some interesting aspects of computer programming
in general.

Permutations were dis
0

cussed earlier in Section 1.2.5; we treated the per
mutation c df be a as an arrangement of the six objects a, b, c, d, e, f in a
straight line. Another viewpoint is also possible: We may think of a permutation
as a rearrangement or renaming of the objects. With this interpretation it is
customary to use a two-line notation, for example,

(
a b c de f)
c d f b e a '

to mean "a becomes c, b becomes d, c becomes f, d becomes b, e becomes e,
f becomes a." Considered as a rearrangement, this means that object c moves
to the place formerly occupied by object a; considered as a renaming, it means
that object a is renamed c. The two-line notation is unaffected by changes in
the order of the columns; for example, the permutation (1) could also be written

(
cdfbae)
fbadce

and in 718 other ways.
A cycle notation is often used in connection with this interpretation. Permu

tation (1) could be written
(a c f) (b d) , (2)

again meaning "a becomes c, c becomes f, f becomes a, b becomes d, d be
comes b." A cycle (x 1 x 2 ... Xn) means "x1 becomes x2, ... , Xn-I becomes Xn,

Xn becomes x 1 ." Since e is fixed under the permutation, it does not appear
in the cycle notation; that is, singleton cycles like "(e)" are conventionally not
written. If a permutation fixes all elements, so that there are only singleton
cycles present, it is called the identity permutation, and we denote it by "()".

The cycle notation is not unique. For example,

(b d) (a c !), (cf a) (bd), (db)(fac),

etc., are all equivalent to (2). However, "(a f c) (bd)" is not the same, since it
says that a goes to f.

It is easy to see why the cycle notation is always possible. Starting with
any element x 1 , the permutation takes x 1 into x2, say, and x2 into x 3 , etc., until
finally (since there are only finitely many elements) we get to some element Xn+I

that has already appeared among x 1 , ... , Xn· Now Xn+I must equal x 1 . For if it
were equal to, say, x3, we already know that X2 goes into x3; but by assumption,
Xn i= X2 goes to Xn+I · So Xn+I = X1, and we have a cycle (x1 X2 ... Xn) as
part of our permutation, for some n 2': 1. If this does not account for the entire
permutation, we can find another element Y1 and get another cycle (y1 Y2 ... Ym)

1.3.3 APPLICATIONS TO PERMUTATIONS 165

in the same way. None of the y's can equal any of the x's, since Xi =Yi implies
that xi+I = Y]+I, etc., and we would ultimately find Xk = YI for some k,
contradicting the choice of YI. All cycles will eventually be found.

One application of these concepts to programming comes up whenever some
set of n objects is to be put into a different order. If we want to rearrange
the objects without moving them elsewhere, we must essentially follow the cycle
structure. For example, to do the rearrangement (1), namely to set

(a, b, c, d, e, f) +-- (c, d, f, b, e, a),

we would essentially follow the cycle structure (2) and successively set

t +-- a, a +-- c, c +-- f, f +-- t; t +-- b, b +-- d, d +-- t.

It is frequently useful to realize that any such transformation takes place in
disjoint cycles.

Products of permutations. We can multiply two permutations together, with
the understanding that multiplication means the application of one permutation
after the other. For example, if permutation (1) is followed by the permutation

(
a b c d e !)
bdcafe'

we have a becomes c, which then becomes c; b becomes d, which becomes a; etc.:

(
a b c de !) x (a b c d e !)
cdfbea bdcafe

= (~ ~ ; ~ : ~) x (~ ~ ~ ~ ; ~)
_(a b c d e !)
- caedfb ·

It should be clear that multiplication of permutations is not commutative;
in other words, 7rI x 7r2 is not necessarily equal to 7r2 x 7rI when 7rI and 7r2 are
permutations. The reader may verify that the product in (4) gives a different
result if the two factors are interchanged (see exercise 3).

Some people multiply permutations from right to left rather than the some
what more natural left-to-right order shown in (4). In fact, mathematicians are
divided into two camps in this regard; should the result of applying transforma
tion TI, then T2, be denoted by TIT2 or by T2TI? Here we use TIT2.

Equation (4) would be written as follows, using the cycle notation:

(a c f) (b d) (a b d) (e f) = (a c e f b).

Note that the multiplication sign "x" is conventionally dropped; this does not
conflict with the cycle notation since it is easy to see that the permutation
(a cf) (b d) is really the product of the permutations (a cf) and (b d).

166 BASIC CONCEPTS 1.3.3

Multiplication of permutations can be done directly in terms of the cycle
notation. For example, to compute the product of several permutations

(a c f g) (b c d) (a e d) (f a d e) (b g f a e), (6)

we find (proceeding from left to right) that "a goes to c, then c goes to d, then
d goes to a, then a goes 0to d, then d is unchanged"; so the net result is that
a goes to d under (6), and we write down "(ad" as the partial answer. Now
we consider the effect on d: "d goes to b goes to g"; we have the partial result
"(adg". Considering g, we find that "g goes to a, toe, to f, to a", and so the
first cycle is closed: "(adg)". Now we pick a new element that hasn't appeared
yet, say c; we find that c goes to e, and the reader may verify that ultimately
the answer "(ad g) (c e b)" is obtained for (6).

Let us now try to do this process by computer. The following algorithm
formalizes the method described in the preceding paragraph, in a way that is
amenable to machine calculation.

Al. First pass

A3. Set CURRENT

A2. Open 1------"

A6. Close

CURRENT
matched

A4. Scan formula

A5. CURRENT= START?

Fig. 20. Algorithm A for multiplying permutations.

Algorithm A (Multiply permutations in cycle form). This algorithm takes a
product of cycles, such as (6), and computes the resulting permutation in the
form of a product of disjoint cycles. For simplicity, the removal of singleton cycles
is not described here; that would be a fairly simple extension of the algorithm.
As this algorithm is performed, we successively "tag" the elements of the input
formula; that is, we mark somehow those symbols of the input formula that have
been processed.

Al. [First pass.] Tag all left parentheses, and replace each right parenthesis by
a tagged copy of the element that follows its matching left parenthesis. (See
the example in Table 1.)

A2. [Open.] Searching from left to right, find the first untagged element of the
input. (If all elements are tagged, the algorithm terminates.) Set START
equal to it; output a left parenthesis; output the element; and tag it.

A3. [See CURRENT.] Set CURRENT equal to the next element of the formula.

A4. [Scan formula.] Proceed to the right until either reaching the end of the
formula, or finding an element equal to CURRENT; in the latter case, tag it
and go back to step A3.

1.3.3

After
step START CURRENT (

Al (

A2 a (

A3 a c

A4 a c

A4 a d

A4 a a (

A5 a d (

A5 a g (

A5 a a

A6 a a '

A2 c a (

A5 c e {

A5 c b

A6 c c ;

A6 f f ~'

APPLICATIONS TO PERMUTATIONS

Table 1
ALGORITHM A APPLIED TO (6)

acf ga (b cdb (aeda (fadef

a cf g 11 (b c d (,1
,, aedu (fadef \

.Jc f g a f b c d h ' a e du (f adef

0 cJJ gr: (b c d f; (aedu I f adef

'·'cf g ii. (b (Jd h (a e d o r, fadef

cfg b db ~ (fade r u i i a e a u ,J

l,i c f g (I r b db r aeda (f aJd e f \

(l c f g (l [b 1: d b i a e d u (f udef

'} cfga (b c d h (a e r/ il I fadef

cfyu (b (' d b r (1 e d If (fudcf \

ucfr;u \ b db (ciedo { fadrf \ '
() /It c { (b 1· dh r a e d a (fadcf " • .1 .}. '
r: t' J {' ;·• (b (.'. d l.1 / a e d a (f U d I f •i, ,, ,J .l, \

u 1.'. f g u. (b r: d b f ff, du (f ' . {} (/. (: r
J

(: f f} (! (' (' d f; ((f (' d a (f ude f (} {)

r:. ! '
.({ {, c d l· I (l c d fj (fade J:

,I fj ll ' ,f \ ,/

(bgfae b

(bgfae h

(bgfae b

(bgfae b

r bgfae ii
(bgfae b

(bgfae b

(bgfae t{
hgfae t{

(bgfae r{
(bgfae bJ
(bgfae b

(l g f 11 e _} ' '·' l{
(bgfac l:J "
(bgf ae bJ
(hyfuf l{

167

Output

(a

d

g

(c

e

b

)

(f)

Here J represents a cursor following the element just scanned; tagged elements are light gray.

A5. [CURRENT = START?) If CURRENT -=/= START, output CURRENT and go back to
step A4 starting again at the left of the formula (thereby continuing the
development of a cycle in the output).

A6. [Close.] (A complete cycle in the output has been found.) Output a right
parenthesis, and go back to step A2. I

For example, consider formula (6); Table 1 shows successive stages in its
processing. The first line of that table shows the formula after right parentheses
have been replaced by the leading element of the corresponding cycle; succeeding
lines show the progress that is made as more and more elements are tagged.
A cursor shows the current point of interest in the formula. The output is
"(ad g) (c e b) (!)"; notice that singleton cycles will appear in the output.

A MIX program. To implement this algorithm for MIX, the "tagging" can be
done by using the sign of a word. Suppose our input is punched onto cards in the
following format: An 80-column card is divided into 16 five-character fields. Each
field is either (a) "uuuu (", representing the left parenthesis beginning a cycle;
(b) ") uuuu", representing the right parenthesis ending a cycle; (c) "uuuuu",

all blanks, which may be inserted anywhere to fill space; or (d) anything else,
representing an element to be permuted. The last card of the input is recognized
by having columns 76-80 equal to "uuuu=". For example, (6) might be punched

168 BASIC CONCEPTS 1.3.3

on two cards as follows:

(A c F G) (B c D) (A E D)

(F A D E) (B G F A E)

The output of our program will consist of a verbatim copy of the input, followed
by the answer in essentially the same format.

Program A (Multiply permutations in cycle form). This program implements
Algorithm A, and it also includes provision for input, output, and the removing
of singleton cycles.

01 MAXWDS EQU 1200 Maximum length of input
02 PERM ORIG *+MAXWDS The input permutation
03 ANS ORIG *+MAXWDS Place for answer
04 OUTBUF ORIG *+24 Place for printing
05 CARDS EQU 16 Unit number for card reader
06 PRINTER EQU 18 Unit number for printer
07 BEGIN IN PERM(CARDS) Read first card.
08 ENT2 0
09 LDA EQUALS
10 1H JBUS *(CARDS) Wait for cycle complete.
11 CMPA PERM+15,2
12 JE *+2 Is it the last card?
13 IN PERM+16,2(CARDS) No, read another.
14 ENT1 OUTBUF
15 JBUS *(PRINTER) Print a copy of
16 MOVE PERM,2(16) the input card.
17 OUT OUTBUF(PRINTER)
18 JE 1F
19 INC2 16
20 CMP2 =MAXWDS-16=
21 JLE 1B Repeat until input is complete.
22 HLT 666 Too much input!
23 1H INC2 15 1 At this point, rl2 words of
24 ST2 SIZE 1 input are in PERM, PERM+ 1, ...
25 ENT3 0 1 Al. First pass.
26 2H LOAN PERM,3 A Get next element of input.
27 CMP A LP REN (1 : 5) A Is it "("?
28 JNE 1F A
29 STA PERM,3 B If so, tag it.
30 INC3 1 B Put the next nonblank element
31 LDXN PERM,3 B in rX.
32 JXZ *-2 B
33 1H CMP A RP REN (1 : 5) c
34 JNE *+2 c
35 STX PERM,3 D Replace ")" by tagged rX.
36 INC3 1 c
37 CMP3 SIZE c Have all elements been processed?
38 JL 2B c

1.3.3 APPLICATIONS TO PERMUTATIONS 169

39 LDA LP REN 1 Prepare for main program.

40 ENT1 ANS 1 r 11 = place to store next answer

41 OPEN ENT3 0 E A2. Open.

42 1H LDXN PERM,3 F Look for untagged element.

43 JXN GO F

44 INC3 1 G

45 CMP3 SIZE G

46 JL 1B G

47 * All are tagged. Now comes the output.

48 DONE CMP1 =ANS=
49 JNE *+2 Is answer the identity permutation?

50 MOVE LPREN(2) If so, change to "() ".

51 MOVE =O= Put 23 words of blanks after answer.

52 MOVE -1,1(22)
53 ENT3 0
54 OUT ANS,3(PRINTER)
55 INC3 24
56 LDX ANS,3 Print as many lines as necessary.

57 JXNZ *-3
58 HLT
59 *
60 LPREN ALF (Constants used in the program
61 RP REN ALF)

62 EQUALS ALF =
63 *
64 GO MOVE LPREN H Open a cycle in the output.

65 MOVE PERM,3 H
66 STX START H
67 succ STX PERM,3 J Tag an element.
68 INC3 1 J Move one step to the right.
69 LDXN PERM , 3 (1 : 5) J A3. Set CURRENT (namely rX).
70 JXN 1F J Skip past blanks.
71 JMP *-3 0
72 5H STX 0,1 Q Output CURRENT.
73 INC1 1 Q

74 ENT3 0 Q Scan formula again.
75 4H CMPX PERM,3(1:5) K A4. Scan formula.
76 JE succ K Element = CURRENT?
77 1H INC3 1 L Move to right.
78 CMP3 SIZE L End of formula?
79 JL 4B L
80 CMPX START(!: 5) p A5. CURRENT = START?
81 JNE 5B p

82 CLOSE MOVE RPREN R A6. Close.
83 CMPA -3,1 R Note: rA = "(".
84 JNE OPEN R
85 INC1 -3 s Suppress singleton cycles.
86 JMP OPEN s
87 END BEGIN I

170 BASIC CONCEPTS 1.3.3

This program of approximately 75 instructions is quite a bit longer than
the programs of the previous section, and indeed it is longer than most of the
programs we will meet in this book. Its length is not formidable, however, since
it divides into several small parts that are fairly independent. Lines 07-22 read
in the input cards and print a copy of each card; lines 23-38 accomplish step
Al of the algorithm, the !'reconditioning of the input; lines 39-46 and 64-86
do the main business of Algorithm A; and lines 48-57 output the answer. The
reader will find it instructive to study as many of the MIX programs given in
this book as possible -it is exceedingly important to acquire skill in reading
other people's computer programs, yet such training has been sadly neglected
in too many computer courses and it has led to some horribly inefficient uses of
computing machinery.

Timing. The parts of Program A that are not concerned with input-output
have been decorated with frequency counts, as we did for Program 1.3.2M; thus,
line 30 is supposedly executed B times. For convenience it has been assumed
that no blank words appear in the input except at the extreme right end; under
this assumption, line 71 is never executed and the jump in line 32 never occurs.

By simple addition the total time to execute the program is

(7 + 5A + 6B + 7C + 2D + E + 3F + 4G + 8H + 6J

+3K+4L+3P+4Q+6R+2S)u, (7)

plus the time for input and output. In order to understand the meaning of
formula (1), we need to examine the fifteen unknowns A, B, C, D, E, F, G, H,
J, K, L, P, Q, R, S and we must relate them to pertinent characteristics of the
input. We will now illustrate the general principles of attack for problems of this
kind.

First we apply "Kirchhoff's first law" of electrical circuit theory: The number
of times an instruction is executed must equal the number of times we transfer
to that instruction. This seemingly obvious rule often relates several quantities
in a nonobvious way. Analyzing the flow of Program A, we get the following
equations.

From lines

26, 38
33, 28
41, 84, 86
42, 46
64, 43
67, 70, 76
75, 79
82, 72

We deduce

A=l+(C-1)
C = B +(A- B)
E= l+R
F=E+(G-1)
H=F-G
J = H + (K - (L - J))
K = Q+ (L-P)
R=P-Q

The equations given by Kirchhoff's law will not all be independent; in the present
case, for example, we see that the first and second equations are obviously
equivalent. Furthermore, the last equation can be deduced from the others,

1.3.3 APPLICATIONS TO PERMUTATIONS 171

since the third, fourth, and fifth imply that H = R; hence the sixth says that
K = L - R. At any rate we have already eliminated six of our fifteen unknowns:

A=C, E=R+l, F=R+G, H=R, K=L-R
'

Q = P- R. (8)

Kirchhoff's first law is an effective tool that is analyzed more closely in Section
2.3.4.1.

The next step is to try to match up the variables with important character
istics of the data. We find from lines 24, 25, 30, and 36 that

B + C =number of words of input = 16X - 1,

where X is the number of input cards. From line 28,

(g)

B = number of "(" in input = number of cycles in input. (10)

Similarly, from line 34,

D = number of ")" in input = number of cycles in input. (11)

Now (io) and (n) give us a fact that could not be deduced by Kirchhoff's law:

B=D.

From line 64,

H =number of cycles in output (including singletons). (i3)

Line 82 says R is equal to this same quantity; the fact that H = R was in this
case deducible from Kirchhoff's law, since it already appears in (8).

Using the fact that each nonblank word is ultimately tagged, and lines 29,
35, and 67, we find that

J = Y-2B,

where Y is the number of nonblank words appearing in the input permutations.
From the fact that every distinct element appearing in the input permutation is
written into the output just once, either at line 65 or line 72, we have

P = H + Q =number of distinct elements in input.

(See Eqs. (8).) A moment's reflection makes this clear from line 80 as well.
Finally, we see from line 85 that

S = number of singleton cycles in output.

Clearly the quantities B, C, H, J, P, and S that we have now interpreted
are essentially independent parameters that may be expected to enter into the
timing of Program A.

The results we have obtained so far leave us with only the unknowns G
and L to be analyzed. For these we must use a little more ingenuity. The scans
of the input that start at lines 41 and 7 4 always terminate either at line 4 7 (the
last time) or at line 80. During each one of these P + 1 loops, the instruction

172 BASIC CONCEPTS 1.3.3

"INC3 1" is performed B + C times; this takes place only at lines 44, 68, and 77,
so we get the nontrivial relation

G + J + L = (B + C) (P + 1)

connecting our unknowns G and L. Fortunately, the running time (7) is a func
tion of G+L (it involves~- ·+3F+4G · · ·+3K +4L+· · · = · · ·+7G+· · ·+7L+· · ·),
so we need not try to analyze the individual quantities G and L any further.

Summing up all these results, we find that the total time exclusive of input
output comes to

(112NX + 304X - 21\!l - Y + llU + 2V - ll)u;

in this formula, new names for the data characteristics have been used as follows:

X = number of cards of input,
Y = number of nonblank fields in input (excluding final "="),
M = number of cycles in input,
N = number of distinct element names in input,
U = number of cycles in output (including singletons),
V = number of singleton cycles in output.

In this way we have found that analysis of a program like Program A is in many
respects like solving an amusing puzzle.

We will show below that, if the output permutation is assumed to be random,
the quantities U and V will be HN and 1, respectively, on the average.

Another approach. Algorithm A multiplies permutations together much as
people ordinarily do the same job. Quite often we find that problems to be solved
by computer are very similar to problems that have confronted humans for many
years; therefore time-honored methods of solution, which have evolved for use
by mortals such as we, are also appropriate procedures for computer algorithms.

Just as often, however, we encounter new methods that turn out to be
superior for computers, although they are quite unsuitable for human use. The
central reason is that a computer "thinks" differently; it has a different kind of
memory for facts. An instance of this difference may be seen in our permutation
multiplication problem: Using the algorithm below, a computer can do the
multiplication in one sweep over the formula, remembering the entire current
state of the permutation as its cycles are being multiplied. The human-oriented
Algorithm A scans the formula many times, once for each element of the output,
but the new algorithm handles everything in one scan. This is a feat that could
not be done reliably by homo sapiens.

What is this computer-oriented method for permutation multiplication?
Table 2 illustrates the basic idea. The column below each character of the cycle
form in that table says what permutation is represented by the partial cycles to
the right; for example, the fragmentary formula " ... d e)(b g f a e)" represents

1.3.3 APPLICATIONS TO PERMUTATIONS

Table 2
MULTIPLYING PERMUTATIONS IN ONE PASS

(acfg)(bcd)(aed)(fade)(bgfae)

a-+ ddaaaaaaaaaaaddddddeeeeeeeeaa

b-+ ccccccccggggggggggggggggbbbbb

c-+ eeeddddddcccccccccccccccccccc

d-+ggggggg))) dd))) bbbbbddddddddd

e-+ bbbbbbbbbbbbbbaaa)))) bb))))) e

f-+ffffeeeeeeeeeeeeeeaaaaaaaafff

g-+a))))ffffffffffffffffffffgggg

the permutation

(
a b c de f g)
egcb?af'

which appears under the rightmost d of the table.

173

Inspection of Table 2 shows that it can be created systematically, if we
start with the identity permutation on the right and work backward from right
to left. The column below letter x differs from the column to its right (which
records the previous status) only in row x; and the new value in row x is the one
that disappeared in the preceding change. More precisely, we have the following
algorithm:

Algorithm B (Multiply permutations in cycle form). This algorithm accom
plishes essentially the same result as Algorithm A. Assume that the elements per
muted are named x 1 ,x2 , ... ,xn. We use an auxiliary table T[l],T[2], ... ,T[n];
upon termination of this algorithm, Xi goes to Xj under the input permutation
if and only if T[i] = j.

Bl. [Initialize.] Set T[k] +- k for 1 ~ k ~ n. Also, prepare to scan the input
from right to left.

B2. [Next element.] Examine the next element of the input (right to left). If
the input has been exhausted, the algorithm terminates. If the element is a
")", set Z +- 0 and repeat step B2; if it is a "(", go to B4. Otherwise the
element is Xi for some i; go on to B3.

B3. [Change T[i] .] Exchange Z +-+ T[i]. If this makes T[i] = 0, set j +- i. Return
to step B2.

B4. [Change T[j].] Set T[j] +- Z. (At this point, j is the row that shows a ")"
entry in the notation of Table 2, corresponding to the right parenthesis that
matches the left parenthesis just scanned.) Return to step B2. I

Of course, after this algorithm has been performed, we still must output the
contents of table T in cycle form; this is easily done by a "tagging" method, as
we shall see below.

174 BASIC CONCEPTS 1.3.3

Bl. Initialize B4. Change T[j]

Fig. 21. Algorithm B for multiplying permutations.

Let us now write a MIX program based on the new algorithm. We wish to use
the same ground rules as those in Program A, with input and output in the same
format as before. A slight problem presents itself; namely, how can we implement
Algorithm B without knowing in advance what the elements x1 , x2 , ... , Xn are?
We don't know n, and we don't know whether the element named b is to be
x 1 , or x2 , etc. A simple way to solve this problem is to maintain a table of the
element names that have been encountered so far, and to search for the current
name each time (see lines 35-44 in the program below).

Program B (Same effect as Program A). rX Z; rl4 i; rll j; rl3 = n, the
number of distinct names seen.

01 MAXWDS EQU 1200 Maximum length of input
02 x ORIG *+MAXWDS The table of names
03 T ORIG *+MAXWDS The auxiliary state table
04 PERM ORIG *+MAXWDS The input permutation
05 ANS EQU PERM Place for answer
06 OUTBUF ORIG *+24 Place for printing
07 CARDS EQU 16 } Same as lines 05-22 of Program A
24 HLT 666 At this point, rl2 words of
25 1H INC2 15 1 input are in PERM, PERM + 1, ...
26 ENT3 1 1 and we haven't seen any names yet.
27 RIGHT ENTX 0 A Set Z +-- 0.
28 SCAN DEC2 1 B B2. Next element.
29 LDA PERM,2 B
30 JAZ CYCLE B Skip over blanks.
31 CMPA RPREN c
32 JE RIGHT c Is the next element ")''?
33 CMPA LPREN D
34 JE LEFT D Is it "("?
35 ENT4 1,3 E Prepare for the search.
36 STA x E Store at beginning of table.
37 2H DEC4 1 F Search through names table.
38 CMPA X,4 F
39 JNE 2B F Repeat until match found.
40 J4P FOUND G Has the name appeared before?
41 INC3 1 H No; increase the table size.
42 STA X,3 H Insert the new name Xn.

1.3.3 APPLICATIONS TO PERMUTATIONS 175

43 ST3 T,3 H Set T[n] +-- n,

44 ENT4 0,3 H i +-- n.

45 FOUND LDA T,4 J B3. Change T[iL.

46 STX T,4 J Store Z.

47 SRC 5 J Set Z.

48 JANZ SCAN J
49 ENT1 0,4 K If Z was zero, set j +-- i.
50 JMP SCAN K
51 LEFT STX T, 1 L B4. Change T[iL.
52 CYCLE J2P SCAN p Return to B2, unless finished.
53 *
54 OUTPUT ENT1 ANS 1 All input has been scanned.
55 J3Z DONE 1 The x and T tables contain the answer.
56 1H LOAN X,3 Q Now we construct cycle notation.
57 JAP SKIP Q Has name been tagged?
58 CMP3 T,3 R Is there a singleton cycle?
59 JE SKIP R
60 MOVE LPREN s Open a cycle.
61 2H MOVE X,3 T
62 STA X,3 T Tag the name.
63 LD3 T,3 T Find successor of element.

64 LOAN X,3 T
65 JAN 2B T Is it already tagged?
66 MOVE RPREN w Yes, cycle closes.
67 SKIP DEC3 1 z Move to next name.
68 J3P 1B z
69 *
70 DONE CMP1 =ANS=

} Same as lines 48-62 of Program A
84 EQUALS ALF =
85 END BEGIN I

Lines 54-68, which construct the cycle notation from the T table and the table
of names, make a rather pretty little algorithm that merits some study. The
quantities A, B, ... , R, S, T, W, Z that enter into the timing of this program
are, of course, different from the quantities of the same name in the analysis of
Program A. The reader will find it an interesting exercise to analyze these times
(see exercise 10).

Experience shows that the main portion of the execution time of Program B
will be spent in searching the names table - this is quantity F in the timing.
Much better algorithms for searching and building dictionaries of names are
available; they are called symbol table algorithms, and they are of great impor
tance in computer applications. Chapter 6 contains a thorough discussion of
efficient symbol table algorithms.

Inverses. The inverse rr- of a permutation 7r is the rearrangement that undoes
the effect of rr; if i goes to j under rr, then j goes to i under rr-. Thus the
product rrrr- equals the identity permutation, and so does the product 7r-7r.

176 BASIC CONCEPTS 1.3.3

People often denote the inverse by 7r-1 instead of 7r-, but the superscript 1 is
redundant (for the same reason that x 1 = x).

Every permutation has an inverse. For example, the inverse of

(
a b c d e f) is
cdfbea • (

c d f be a)= (ab c de!)
abcdef fdabec ·

We will now consider some simple algorithms for computing the inverse of a
permu ta ti on.

In the rest of this section, let us assume that we are dealing with permuta
tions of the numbers {1, 2, ... , n }. If X[l] X[2] ... X[n] is such a permutation,
there is a simple method to compute its inverse: Set Y[X[k]] +-- k for 1 ~ k ~ n.
Then Y[l] Y[2] ... Y[n] is the desired inverse. This method uses 2n memory cells,
namely n for X and n for Y.

Just for fun, however, let's suppose that n is very large and suppose also
that we wish to compute the inverse of X[l] X[2] ... X[n] without using much
additional memory space. We want to compute the inverse "in place," so that
after our algorithm is finished the array X[l] X[2] ... X[n] will be the inverse
of the original permutation. Merely setting X[X[k]] +-- k for 1 ~ k ~ n will
certainly fail, but by considering the cycle structure we can derive the following
simple algorithm:

Algorithm I (Inverse in place). Replace X[l]X[2] ... X[n], a permutation of
{1, 2, ... , n }, by its inverse. This algorithm is due to Bing-Chao Huang [Inf.
Proc. Letters 12 (1981), 237-238].

11. [Initialize.] Set m +-- n, j +-- -1.

12. [Next element.] Set i +-- X[m]. If i < 0, go to step I5 (the element has
already been processed).

13. [Invert one.] (At this point j < 0 and i = X[m]. If mis not the largest ele
ment of its cycle, the original permutation had X [- j] = m.) Set X [m] +-- j,
j +-- -m, m +-- i, i +-- X[m].

14. [End of cycle?] If i > 0, go back to I3 (the cycle has not ended); otherwise
set i +-- j. (In the latter case, the original permutation had X[-j] = m, and
m is largest in its cycle.)

15. [Store final value.] Set X[m] +-- -i. (Originally X[i] was equal to m.)

16. [Loop on m.] Decrease m by 1. If m > 0, go back to I2; otherwise the
algorithm terminates. I

See Table 3 for an example of this algorithm. The method is based on inversion
of successive cycles of the permutation, tagging the inverted elements by making
them negative, afterwards restoring the correct sign.

Algorithm I resembles parts of Algorithm A, and it very strongly resembles
the cycle-finding algorithm in Program B (lines 54-68). Thus it is typical
of a number of algorithms involving rearrangements. When preparing a MIX
implementation, we find that it is most convenient to keep the value of -i in a
register instead of i itself:

1.3.3 APPLICATIONS TO PERMUTATIONS 177

Table 3
COMPUTING THE INVERSE OF 6 2 15 4 3 BY ALGORITHM I

After step: 12 13 13 13 15* 12 13 13 15 12 15 15 13 15 15

X[l] 6 6 6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 3

X[2] 2 2 2 2 2 2 2 2 2 2 2 2 -4 2 2

X[3] 1 1 -6 -6 -6 -6 -6 -6 -6 -6 -6 6 6 6 6

X[4] 5 5 5 5 5 5 5 -5 -5 -5 5 5 5 5 5

X[5] 4 4 4 4 4 4 -1 -1 4 4 4 4 4 4 4

X[6] 3 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1
m 6 3 1 6 6 5 4 5 5 4 4 3 2 2 1

J -1 -6 -3 -1 -1 -1 -5 -4 -4 -4 -4 -4 -2 -2 -2

i 3 1 6 -1 -1 4 5 -1 -4 -5 -5 -6 -4 -2 -3

Read the columns from left to right. At point *, the cycle (16 3) has been inverted.

Program I (Inverse in place). rll m; rl2 -i; rl3 j; and n = N, a symbol

to be defined when this program is assembled as part of a larger routine.

01 INVERT ENT1 N 1 I1. Initialize. m +- n.
02 ENT3 -1 1 j +- -1.
03 2H LD2N X,1 N 12. Next element. i +- X[m].

04 J2P 5F N To 15 if i < 0.
05 3H ST3 X,1 N 13. Invert one. X[m] +-j.
06 ENN3 0,1 N j +- -m.
07 ENN1 0,2 N m +-i.
08 LD2N X,1 N i +- X[m].
09 4H J2N 3B N I4. End of cycle? To 13 if i > 0.

10 ENN2 0,3 c Otherwise set i +- j.
11 5H ST2 X,1 N 15. Store fJ.nal value. X[m] +- -i.

12 6H DEC1 1 N 16. Loop on m.
13 J1P 2B N To 12 if m > 0. I

The timing for this program is easily worked out in the manner shown earlier;

every element X[m] is set first to a negative value in step 13 and later to a positive

value in step 15. The total time comes to (14N + C + 2)u, where N is the size of

the array and C is the total number of cycles. The behavior of C in a random

permutation is analyzed below.
There is almost always more than one algorithm to do any given task, so

we would expect that there may be another way to invert a permutation. The

following ingenious algorithm is due to J. Boothroyd:

Algorithm J (Inverse in place). This algorithm has the same effect as Algo

rithm I but uses a different method.

Jl. [Negate all.] Set X[k] +- -X[k], for 1:::; k:::; n. Also set m +- n.

J2. [Initialize j.] Set j +- m.

J3. [Find negative entry.] Set i +- X[j]. If i > 0, set j +- i and repeat this step.

J4. [Invert.] Set X[j] +- X[-i], X[-i] +- m.

J5. [Loop on m.] Decrease m by 1; if m > 0, go back to J2. Otherwise the

algorithm terminates. I

178 BASIC CONCEPTS 1.3.3

Table 4
COMPUTING THE INVERSE OF 6 2 15 4 3 BY ALGORITHM J

After step: J2 J3 J5 J3 J5 J3 J5 J3 J5 J3 J5 J3 J5
X[l] -6 -6 -6 -6 -6 -6 -6 -6 3 3 3 3 3
X[2] -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2
X[3] -1 -1 6 6 6 6 6 6 6 6 6 6 6 .
X[4] -5 -5 -5 -5 5 5 5 5 5 5 5 5 5
X[5] -4 -4 -4 -4 -5 -5 4 4 4 4 4 4 4
X[6] -3 -3 -1 -1 -1 -1 -1 -1 -6 -6 -6 -6 1

m 6 6 5 5 4 4 3 3 2 2 1 1 0
i -3 -3 -4 -4 -5 -5 -1 -1 -2 -2 -6 -6

J 6 6 6 5 5 5 5 6 6 2 2 6 6

See Table 4 for an example of Boothroyd's algorithm. Again the method is
essentially based on the cycle structure, but this time it is less obvious that the
algorithm really works! Verification is left to the reader (see exercise 13).

Program J (Analogous to Program I). rll m; rl2 j; rl3 -i.

01 INVERT ENN1 N 1 J1. Negate all.
02 ST1 X+N+1, 1(O:0) N Set sign negative.
03 INC1 1 N
04 J1N *-2 N More?
05 ENT1 N 1 m +- n.
06 2H ENN3 0, 1 N J2. Initialize i. i +- m.
07 ENN2 0,3 A j +- i.
08 LD3N X, 2 A J3. Find negative entry.
09 J3N *-2 A i > O?
10
11
12
13
14

LDA X,3
STA X,2
ST1 X,3
DEC1 1
J1P 2B

N J4. Invert.
N X[j] +- X[-i].
N X[-i] +-m.
N J5. Loop on m.
N To J2 if m > 0. I

To decide how fast this program runs, we need to know the quantity A; this
quantity is so interesting and instructive, it has been left as an exercise (see
exercise 14) .

Although Algorithm J is deucedly clever, analysis shows that Algorithm I is
definitely superior. In fact, the average running time of Algorithm J turns out
to be essentially proportional to n ln n, while that of Algorithm I is essentially
proportional to n. Maybe some day someone will find a use for Algorithm J (or
some related modification); it is a bit too pretty to be forgotten altogether.

An unusual correspondence. We have already remarked that the cycle
notation for a permutation is not unique; the six-element permutation(1 6 3) (4 5)
may be written (5 4)(3 1 6), etc. It will be useful to consider a canonical form
for the cyclic notation; the canonical form is unique. To get the canonical form,
proceed as follows:

a) Write all singleton cycles explicitly.

1.3.3 APPLICATIONS TO PERMUTATIONS 179

b) Within each cycle, put the smallest number first.
c) Order the cycles in decreasing order of the first number in the cycle.

For example, starting with (3 1 6)(5 4) we would get

(a): (3 1 6) (5 4) (2); (b): (1 6 3) (4 5) (2); (c): (4 5) (2) (1 6 3). (20)

The important property of this canonical form is that the parentheses may
be dropped and uniquely reconstructed again. Thus there is only one way to
insert parentheses in "4 5 2 1 6 3" to get a canonical cycle form: One must insert
a left parenthesis just before each left-to-right minimum (namely, just before
each element that is preceded by no smaller elements).

This insertion and removal of parentheses gives us an unusual one-to-one
correspondence between the set of all permutations expressed in cycle form
and the set of all permutations expressed in linear form. For example, the
permutation 6 2 1 5 4 3 in canonical cycle form is (4 5) (2) (1 6 3); remove
parentheses to get 4 5 2 1 6 3, which in cycle form is (2 5 6 3) (1 4); remove
parentheses to get 2 5 6 3 1 4, which in cycle form is (3 6 4) (1 2 5); etc.

This correspondence has numerous applications to the study of permutations
of different types. For example, let us ask "How many cycles does a permutation
of n elements have, on the average?" To answer this question we consider the set
of all n! permutations expressed in canonical form, and drop the parentheses; we
are left with the set of all n! permutations in some order. Our original question
is therefore equivalent to, "How many left-to-right minima does a permutation of
n elements have, on the average?" We have already answered the latter question
in Section 1.2.10; this was the quantity (A+ 1) in the analysis of Algorithm
1.2. lOM, for which we found the statistics

(Actually, we discussed the average number of right-to-left maxima, but that's
clearly the same as the number ofleft-to-right minima.) Furthermore, we proved
in essence that a permutation of n objects has k left-to-right minima with prob
ability [~] /n!; therefore a permutation of n objects has k cycles with probability

[~]/n!.
We can also ask about the average distance between left-to-right minima,

which becomes equivalent to the average length of a cycle. By (21), the total

number of cycles among all then! permutations is n! Hn, since it is n! times the
average number of cycles. If we pick one of these cycles at random, what is its
average length?

Imagine all n! permutations of {1, 2, ... , n} written down in cycle notation;
how many three-cycles are present? To answer this question, let us consider how
many times a particular three-cycle (x y z) appears: It clearly appears in exactly
(n - 3)! of the permutations, since this is the number of ways the remaining
n - 3 elements may be permuted. Now the number of different possible three
cycles (x y z) is n(n - l)(n - 2)/3, since there are n choices for x, (n - 1) for y,
(n - 2) for z, and among these n(n - l)(n - 2) choices each different three-cycle

180 BASIC CONCEPTS 1.3.3

has appeared in three forms (x y z), (y z x), (z x y). Therefore the total number
of three-cycles among all n! permutations is n(n - l)(n - 2)/3 times (n - 3)!,
namely n!/3. Similarly, the total number of m-cycles is n!/m, for 1 :::; m :::; n.
(This provides another simple proof of the fact that the total number of cycles
is n! H n; hence the average number of cycles in a random permutation is H n,
as we already knew.) Exercise 17 shows that the average length of a randomly
chosen cycle is n/Hn, if we consider then! Hn cycles to be equally probable; but
if we choose an element at random in a random permutation, the average length
of the cycle containing that element is somewhat greater than n/Hn.

To complete our analyses of Algorithms A and B, we would like to know
the average number of singleton cycles in a random permutation. This is an
interesting problem. Suppose we write down the n! permutations, listing first
those with no singleton cycles, then those with just one, etc.; for example, if
n = 4,

no fixed elements:

one fixed element:

two fixed elements:

three fixed elements:

2143 2341 2413 3142 3412 3421 4123 4312 4321

1342 1423 3241 4213 24~1 41~2 2311 3121

1243 14~2 1321 4231 3211 2134

four fixed elements: 1234

(Singleton cycles, which are the elements that remain fixed by a permutation,
have been specially marked in this list.) Permutations with no fixed elements
are called derangements; the number of derangements is the number of ways to
put n letters into n envelopes, getting them all wrong.

Let Pnk be the number of permutations of n objects having exactly k fixed
elements, so that for example,

P40 = 9, P41 = 8, P42 = 6, ?43 = 0, ?44 = 1.

An examination of the list above reveals the principal relationship between these
numbers: We can get all permutations with k fixed elements by first choosing
the k that are to be fixed (this can be done in (~) ways) and then permuting
the remaining n - k elements in all P(n-k)O ways that leave no further elements
fixed. Hence

Pnk = (~) P(n-k)O·

We also have the rule that "the whole is the sum of its parts":

n! = Pnn + Pn(n-1) + Pn(n-2) + Pn(n-3) + · · · .
Combining Eqs. (22) and (23) and rewriting the result slightly, we find that

Pao P10 P20 P30
n! = ()! + nll + n(n - 1)2! + n(n - l)(n - 2)3! + · · ·, (24)

an equation that must be true for all positive integers n. This equation has
already confronted us before-it appears in Section 1.2.5 in connection with

1.3.3 APPLICATIONS TO PERMUTATIONS 181

Stirling's attempt to generalize the factorial function- and we found a simple

derivation of its coefficients in Section 1.2.6 (Example 5). We conclude that

P mO = l _ !__ + !__ _ ... + (- l)m ~.
ml 1! 2! ml

Now let Pnk be the probability that a permutation of n objects has exactly

k singleton cycles. Since Pnk = Pnk/n!, we have from Eqs. (22) and (25)

1 (1 1 n-k 1)
Pnk = kl l - 1! + 2! - ... + (-l) (n - k)l .

The generating function Gn(z) = Pno + Pn1Z + Pn2z2 + · · · is therefore

1 1 ""'1 .
Gn(z) = 1 + -

1
, (z - 1) + .. · + 1 (z - 1r = L 1 (z - 1)1 .
. n. J.

05,j5,n

From this formula it follows that G~(z) = Gn-i(z), and with the methods of

Section 1.2.10 we obtain the following statistics on the number of singleton cycles:

(min 0, ave 1, max n, dev 1), if n > 2.

A somewhat more direct way to count the number of permutations having

no singleton cycles follows from the principle of inclusion and exclusion, which is

an important method for many enumeration problems. The general principle of

inclusion and exclusion may be formulated as follows: We are given N elements,

and M subsets, S1 , S2 , ... , SM, of these elements; and our goal is to count how

many of the elements lie in none of the subsets. Let \S\ denote the number of

elements in a set S; then the desired number of objects in none of the sets Sj is

15,j~M l5,j<k5,M

+(-1)M\S1n ... nsM\· (29)

(Thus we first subtract the number of elements in S1 , ... , SM from the total

number, N; but this underestimates the desired total. So we add back the

number of elements that are common to pairs of sets, sj n sk' for each pair

Sj and Sk; this, however, gives an overestimate. So we subtract the elements

common to triples of sets, etc.) There are several ways to prove this formula,

and the reader is invited to discover one of them. (See exercise 25.)

To count the number of permutations on n elements having no singleton

cycles, we consider the N = nl permutations and let Sj be the set of permutations

in which element j forms a singleton cycle. If 1 ::; j 1 < j2 < · · · < jk ::; n, the

number of elements in Sj1 n Sj2 n · · · n SJk is the number of permutations in

which J1, ... ,jk are singleton cycles, and this is clearly (n - k)!. Thus formula

(29) becomes

n! - (~) (n - 1)! + (~) (n - 2)l - (~) (n - 3)! + · · · + (-1r (~) O!,

in agreement with (25).

182 BASIC CONCEPTS 1.3.3

The principle of inclusion and exclusion is due to A. De Moivre [see his
Doctrine of Chances (London: 1718), 61-63; 3rd ed. (1756, reprinted by Chelsea,
1957), 110-112], but its significance was not generally appreciated until it was
popularized and developed further by W. A. Whitworth in the well-known book
Choice and Chance (Cambridge: 1867).

Combinatorial properttes of permutations are explored further in Section 5 .1.

EXERCISES
1. [02] Consider the transformation of {O, 1, 2, 3, 4, 5, 6} that replaces x by 2x mod 7.

Show that this transformation is a permutation, and write it in cycle form.

2. [10] The text shows how we might set (a, b, c, d, e, f) +- (c, d, f, b, e, a) by using a
series of replacement operations (x +- y) and one auxiliary variable t. Show how to do
the job by using a series of exchange operations (x +-+ y) and no auxiliary variables.

3. [03] Compute the product (~ ~ ~ : ; ~) x (~ ~ 'f ~ : ~), and express the answer

in two-line notation. (Compare with Eq. (4).)
4. [1 O] Express (ab d) (e f) (a cf) (b d) as a product of disjoint cycles.

~ 5. [Ml OJ Equation (3) shows several equivalent ways to express the same permuta
tion in cycle form. How many different ways of writing that permutation are possible,
if all singleton cycles are suppressed?

6. [M23] What changes are made to the timing of Program A if we remove the
assumption that all blank words occur at the extreme right?

7. [10] If Program A is presented with the input (6), what are the quantities X,
Y, M, N, U, and V of (ig)? What is the time required by Program A, exclusive of
input-output?

~ 8. [23] Would it be feasible to modify Algorithm B to go from left to right instead
of from right to left through the input?

9. [1 O] Both Programs A and B accept the same input and give the answer in
essentially the same form. Is the output exactly the same under both programs?

~ 10. [M28] Examine the timing characteristics of Program B, namely, the quantities
A, B, ... , Z shown there; express the total time in terms of the quantities X, Y, M, N,
U, V defined in (ig), and of F. Compare the total time for Program B with the total
time for Program A on the input (6), as computed in exercise 7.

11. [15] Find a simple rule for writing n-1 in cycle form, if the permutation 7r is given
in cycle form.

12. [M27] (Transposing a rectangular matrix.) Suppose an mxn matrix (aij), m #- n,
is stored in memory in a fashion like that of exercise 1.3.2-10, so that the value of aij
appears in location L + n(i-1) + (j -1), where L is the location of a11 . The problem is
to find a way to transpose this matrix, obtaining an n x n matrix (bij), where bij = aji
is stored in location L + m(i - 1) + (j - 1). Thus the matrix is to be transposed "on
itself." (a) Show that the transposition transformation moves the value that appears
in cell L + x to cell L + (mx mod N), for all x in the range 0 ~ x < N = mn - 1.
(b) Discuss methods for doing this transposition by computer.

~ 13. [M24] Prove that Algorithm J is valid.

~ 14. [M34] Find the average value of the quantity A in the timing of Algorithm J.

15. [M12] Is there a permutation that represents exactly the same transformation
both in the canonical cycle form without parentheses and in the linear form?

1.3.3 APPLICATIONS TO PERMUTATIONS 183

16. [M15] Start with the permutation 1324 in linear notation; convert it to canonical

cycle form and then remove the parentheses; repeat this process until arriving at the

original permutation. What permutations occur during this process?

17. [M24] (a) The text demonstrates that there are n! Hn cycles altogether, among

all the permutations on n elements. If these cycles (including singleton cycles) are

individually written on n! Hn slips of paper, and if one of these slips of paper is chosen

at random, what is the average length of the cycle that is thereby picked? (b) If we write

the n! permutations on n! slips of paper, and if we choose a number k at random and

also choose one of the slips of paper, what is the probability that the cycle containing

the element k is an m-cycle? What is the average length of the cycle containing k?

~ 18. [M27] What is Pnkrn, the probability that a permutation of n objects has exactly

k cycles of length m? What is the corresponding generating function Gnrn(z)? What

is the average number of m-cycles and what is the standard deviation? (The text

considers only the case m = 1.)

19. [HM"21] Show that, in the notation of Eq. (25), the number Pno of derangements

is exactly equal to n!/ e rounded to the nearest integer, for all n 2: 1.

20. [M20] Given that all singleton cycles are written out explicitly, how many different

ways are there to write the cycle notation of a permutation that has a 1 one-cycles, a 2

two-cycles, ... ? (See exercise 5.)

21. [M22] What is the probability P(n; 0:1, 0:2, ...) that a permutation of n objects

has exactly 0:1 one-cycles, 0:2 two-cycles, etc.?

~ 22. [HM"34] (The following approach, due to L. Shepp and S. P. Lloyd, gives a con

venient and powerful method for solving problems related to the cycle structure of

random permutations.) Instead of regarding the number, n, of objects as fixed, and

the permutation variable, let us assume instead that we independently choose the

quantities 0:1, 0:2, a 3 ••• appearing in exercises 20 and 21 according to some probability

distribution. Let w be any real number between 0 and 1.

a) Suppose that we choose the random variables a 1, 0:2, a 3 , ••• according to the rule

that "the probability that O:rn = k is f(w,m,k)," for some function f(w,m,k).

Determine the value of f(w, m, k) so that the following two conditions hold:

(i) Lk>o f(w, m, k) = 1, for 0 < w < 1 and m 2: 1; (ii) the probability that

0:1 + 202 + 30:3 + · · · = n and that 0:1 = k1, 0:2 = k2, 0:3 = k3, ... equals

(1- w)wn P(n; k1, k2, k3, ...), where P(n: k1, k2, k3, ...) is defined in exercise 21.

b) A permutation whose cycle structure is 0:1, 0:2, 0:3, ... clearly permutes exactly

0:1+20:2 + 30:3 + · · · objects. Show that if the a's are randomly chosen according to

the probability distribution in part (a), the probability that a 1 +2a2+3a3+· · · = n

is (1 - w)wn; the probability that 0:1 + 20:2 + 30:3 + · · · is infinite is zero.

c) Let ¢(0:1, 0:2, ...) be any function of the infinitely many numbers a 1, 0:2, Show

that if the a's are chosen according to the probability distribution in (a), the

average value of</> is (1 - w) Ln>o wn</>n; here </>n denotes the average value of

</> taken over all permutations of n objects, where the variable O'.j represents the

number of j-cycles of a permutation. [For example, if ¢(a 1, a 2, ...) = a 1, the

value of </>n is the average number of singleton cycles in a random permutation of

n objects; we showed in (28) that </>n = 1 for all n.]

d) Use this method to find the average number of cycles of even length in a random

permutation of n objects.

e) Use this method to solve exercise 18.

184 BASIC CONCEPTS 1.3.3

23. [Jll\,142] (Golomb, Shepp, Lloyd.) If Zn denotes the average length of the longest
cycle in a permutation of n objects, show that Zn ~ >..n + ~>.., where >.. ~ 0.62433 is a
constant. Prove in fact that limn-+oo(ln - >..n- t>..) = 0.

24. [M41] Find the variance of the quantity A that enters into the timing of Algo

rithm J. (See exercise 14.)

25. [M22] Prove Eq. (29). •

~ 26. [M24] Extend the principle of inclusion and exclusion to obtain a formula for
the number of elements that are in exactly r of the subsets S1, S2, ... , SM. (The text
considers only the case r = 0.)

27. [M20] Use the principle of inclusion and exclusion to count the number of integers
n in the range 0 ~ n < am1m 2 ... mt that are not divisible by any of m1, m2, ... , mt.
Here m 1, m 2, ... , mt, and a are positive integers, with mj _L mk when j #- k.

28. [M21] (I. Kaplansky.) If the "Josephus permutation" defined in exercise 1.3.2-
22 is expressed in cycle form, we obtain (1 5 3 6 8 2 4)(7) when n = 8 and m = 4.
Show that this permutation in the general case is the product (n n- l . . . 2 1) rn- l x
(n n-l ... 2)rn-l ... (n n-l)rn-l.

29. [M25] Prove that the cycle form of the Josephus permutation when m = 2 can be
obtained by first expressing the "doubling" permutation of {1, 2, ... , 2n }, which takes
j into (2j) mod (2n + 1), in cycle form, then reversing left and right and erasing all
the numbers greater than n. For example, when n = 11 the doubling permutation
is (1 2 4 8 16 9 18 13 3 6 12)(5 10 20 17 11 22 21 19 15 7 14) and the Josephus
permutation is (7 11 10 5)(6 3 9 8 4 2 1).

30. [M24] Use exercise 29 to show that the fixed elements of the Josephus permutation
when m = 2 are precisely the numbers (2d-l - 1)(2n + 1)/(2d - 1) for all positive
integers d such that this is an integer.

31. [Jll\,133] Generalizing exercises 29 and 30, prove that the kth man to be executed,
for general m and n, is in position x, where x may be computed as follows: Set x +- km,
then repeatedly set x +- l(m(x - n) - 1)/(m - l)j until x ~ n. Consequently the
average number of fixed elements, for 1 ~ n ~ N and fixed mas N-+ oo, approaches
Lk>l (m - l)k/(mk+1 - (m - l))k. [Since this value lies between (m - 1)/m and 1, the
Josephus permutations have slightly fewer fixed elements than random ones do.]

32. [M25] (a) Prove that any permutation 7r = 7r17r2 ... 7r2rn+1 of the form

7f = (2 3)e2 (4 5)q ... (2m 2m+l)e2
"' (1 2)ei (3 4)e3 ••• (2m-1 2m)e2=- 1 ,

where each ek is 0 or 1, has Ink - kl ~ 2 for 1 ~ k ~ 2m + 1.
(b) Given any permutation p of {1, 2, ... , n}, construct a permutation 7r of the

stated form such that pn is a single cycle. Thus every permutation is "near" a cycle.

33. [M33] If m = 2
21

and n = 221 +1, show how to construct sequences of permutations
(aj1,aj2, ... ,ajn;{3j1,f3j2, ... ,{3jn) for 0 ~ j < m with the following "orthogonality"
property:

Each Ojk and {3jk should be a permutation of {1, 2, 3, 4, 5}.

if i = j;
if i #- j.

~ 34. [M25] (Transposing blocks of data.) One of the most common permutations
needed in practice is the change from a{3 to {3a, where a and {3 are substrings of an array.

1.3.3 APPLICATIONS TO PERMUTATIONS 185

In other words, if XoX1 ... Xrn-l =a and XrnXrn+l ... Xrn+n-l = {3, we want to change
the array XoX1 ... Xrn+n-l = a{3 to the array XrnXrn+l ... Xrn+n-1XoX1 ... Xrn-l = {3a;

this is the permutation on {O, 1, ... ,m+n-1} that takes k into (k+m) mod (m+n).
Show that every such "cyclic-shift" permutation has a simple cycle structure, and
exploit that structure to devise a simple algorithm for the desired rearrangement.

35. [M30] Continuing the previous exercise, let xox1 ... Xz+rn+n-l = af31 where a,

{3, and r are strings of respective lengths l, m, and n, and suppose that we want to
change af31 to 1f3a. Show that the corresponding permutation has a convenient cycle
structure that leads to an efficient algorithm. [Exercise 34 considered the special case
m = 0.] Hint: Consider changing (a{3)(rf3) to (r{3)(a{3).

36. [27] Write a MIX subroutine for the algorithm in the answer to exercise 35, and
analyze its running time. Compare it with the simpler method that goes from af31 to
(af31)R = 1Rf3RaR to 1f3a, where O'R denotes the left-right reversal of the string CJ'.

186 BASIC CONCEPTS

1.4. SOME FUNDAMENTAL PROGRAMMING TECHNIQUES

1.4.1. Subroutines

1.4

WHEN A CERTAIN task is to be performed at several different places in a program,

it is usually undesirable to repeat the coding in each place. To avoid this

situation, the coding (caUed a subroutine) can be put into one place only, and a

few extra instructions can be added to restart the outer program properly after

the subroutine is finished. Transfer of control between subroutines and main

programs is called subroutine linkage.

Each machine has its own peculiar manner for achieving efficient subroutine

linkage, usually involving special instructions. In MIX, the J-register is used for

this purpose; our discussion will be based on MIX machine language, but similar

remarks will apply to subroutine linkage on other computers.

Subroutines are used to save space in a program; they do not save any time,

other than the time implicitly saved by having less space -for example, less time

to load the program, or fewer passes necessary in the program, or better use of

high-speed memory on machines with several grades of memory. The extra time

taken to enter and leave a subroutine is usually negligible.

Subroutines have several other advantages. They make it easier to visualize

the structure of a large and complex program; they form a logical segmentation

of the entire problem, and this usually makes debugging of the program easier.

Many subroutines have additional value because they can be used by people

other than the programmer of the subroutine.

Most computer installations have built up a large library of useful sub

routines, and such a library greatly facilitates the programming of standard

computer applications that arise. A programmer should not think of this as the

only purpose of subroutines, however; subroutines should not always be regarded

as general-purpose programs to be used by the community. Special-purpose

subroutines are just as important, even when they are intended to appear in

only one program. Section 1.4.3.1 contains several typical examples.

The simplest subroutines are those that have only one entrance and one exit,

such as the MAXIMUM subroutine we have already considered (see Section 1.3.2,

Program M). For reference, we will recopy that program here, changing it so

that a fixed number of cells, 100, is searched for the maximum:

*MAXIMUM OF X[1 .. 100]
MAX100 ST J EXIT Subroutine linkage

ENT3 100
JMP 2F

1H CMPA X,3
JGE *+3

2H ENT2 0,3
LDA X,3
DEC3 1
J3P 1B

EXIT JMP *

Ml. Initialize.

M3. Compare.

M4. Change m.
New maximum found
MS. Decrease k.
M2. All tested?
Return to main program. I

1.4.1 SUBROUTINES 187

In a larger program containing this coding as a subroutine, the single instruction
"JMP MAX100" would cause register A to be set to the current maximum value
of locations X + 1 through X + 100, and the position of the maximum would
appear in rl2. Subroutine linkage in this case is achieved by the instructions
"MAX100 STJ EXIT" and, later, "EXIT JMP *". Because of the way the J-register
operates, the exit instruction will then jump to the location following the place
where the original reference to MAX100 was made.

~ Newer computers, such as the machine MMIX that is destined to replace MIX,
Y have better ways to remember return addresses. The main difference is that
program instructions are no longer modifi.ed in memory; the relevant information
is kept in registers or in a special array, not within the program itself (See
exercise 7.) The next edition of this book will adopt the modern view, but for
now we will stick to the old-time practice of self-modifying code.

It is not hard to obtain quantitative statements about the amount of code
saved and the amount of time lost when subroutines are used. Suppose that
a piece of coding requires k locations and that it appears in m places in the
program. Rewriting this as a subroutine, we need an extra instruction STJ and
an exit line for the subroutine, plus a single JMP instruction in each of the m
places where the subroutine is called. This gives a total of m + k + 2 locations,
rather than mk, so the amount saved is

(m - l)(k - 1) - 3.

If k is 1 or m is 1 we cannot possibly save any space by using subroutines; this,
of course, is obvious. If k is 2, m must be greater than 4 in order to gain, etc.

The amount of time lost is the time taken for the extra JMP, ST J, and JMP
instructions, which are not present if the subroutine is not used; therefore if the
subroutine is used t times during a run of the program, 4t extra cycles of time
are required.

These estimates must be taken with a grain of salt, because they were given
for an idealized situation. Many subroutines cannot be called simply with a
single JMP instruction. Furthermore, if the coding is repeated in many parts of a
program, without using a subroutine approach, the coding for each part can be
customized to take advantage of special characteristics of the particular part of
the program in which it lies. With a subroutine, on the other hand, the coding
must be written for the most general case, not a specific case, and this will often
add several additional instructions.

When a subroutine is written to handle a general case, it is expressed in
terms of parameters. Parameters are values that govern the subroutine's actions;
they are subject to change from one call of the subroutine to another.

The coding in the outside program that transfers control to the subroutine
and gets it properly started is known as the calling sequence. Particular values
of parameters, supplied when the subroutine is called, are known as arguments.
With our MAX100 subroutine, the calling sequence is simply "JMP MAX100", but

188 BASIC CONCEPTS 1.4.l

a longer calling sequence is generally necessary when arguments must be sup

plied. For example, Program 1.3.2M is a generalization of MAX100 that finds the

maximum of the first n elements of the table. The parameter n appears in index

register 1, and its calling sequence

LD1 =n= ENT! n .
JMP MAXIMUM

or
JMP MAXIMUM

involves two steps.
If the calling sequence takes c memory locations, formula (2) for the amount

of space saved changes to

(m - 1) (k - c) - constant (3)

and the time lost for subroutine linkage is slightly increased.

A further correction to the formulas above can be necessary because certain

registers might need to be saved and restored. For example, in the MAX100

subroutine, we must remember that by writing "JMP MAX100" we are not only

getting the maximum value in register A and its position in register I2; we are

also setting register I3 to zero. A subroutine may destroy register contents, and

this must be kept in mind. In order to prevent MAX100 from changing the setting

of rl3, it would be necessary to include additional instructions. The shortest and

fastest way to do this with MIX would be to insert the instruction "ST3 3F (0: 2)"

just after MAX100 and then "3H ENT3 *" just before EXIT. The net cost would

be an extra two lines of code, plus three machine cycles on every call of the

subroutine.
A subroutine may be regarded as an extension of the computer's machine

language. With the MAX100 subroutine in memory, we now have a single in

struction (namely, "JMP MAX100") that is a maximum-finder. It is important

to define the effect of each subroutine just as carefully as the machine language

operators themselves have been defined; a programmer should therefore be sure

to write down the characteristics of each subroutine, even though nobody else

will be making use of the routine or its specification. In the case of MAXIMUM as

given in Section 1.3.2, the characteristics are as follows:

Calling sequence: JMP MAXIMUM. l
Entry conditions: rll = n; assume that n 2:: 1.

Exit conditions: rA = max CONTENTS(X + k) = CONTENTS(X + rl2); (4)
l~k~n

rl3 = O; rJ and CI are also affected.

(We will customarily omit mention of the fact that register J and the compar

ison indicator are affected by a subroutine; it has been mentioned here only

for completeness.) Note that rX and rll are unaffected by the action of the

subroutine, for otherwise these registers would have been mentioned in the exit

conditions. A specification should also mention all memory locations external

to the subroutine that might be affected; in this case the specification allows us

to conclude that nothing has been stored, since (4) doesn't say anything about

changes to memory.

1.4.l SUBROUTINES 189

Now let's consider multiple entrances to subroutines. Suppose we have a
program that requires the general subroutine MAXIMUM, but it usually wants to use
the special case MAX100 in which n = 100. The two can be combined as follows:

MAX100 ENT3 100 First entrance
MAXN STJ EXIT Second entrance

JMP 2F Continue as in (i). (5)

EXIT JMP * Return to main program. I

Subroutine (5) is essentially the same as (1), with the first two instructions
interchanged; we have used the fact that "ENT3" does not change the setting of
the J-register. If we wanted to add a third entrance, MAXSO, to this subroutine,
we could insert the code

MAXSO ENT3 50
JSJ MAXN

(6)

at the beginning. (Recall that "JSJ" means jump without changing register J.)
When the number of parameters is small, it is often desirable to transmit

them to a subroutine either by having them in convenient registers (as we have
used rl3 to hold the parameter n in MAXN and as we used rll to hold the parameter
n in MAXIMUM), or by storing them in fixed memory cells.

Another convenient way to supply arguments is simply to list them after
the JMP instruction; the subroutine can refer to its parameters because it knows
the J-register setting. For example, if we wanted to make the calling sequence
for MAXN be

JMP MAXN (7) CON n

then the subroutine could be written as follows:

MAXN STJ *+1
ENT! * rll +- rJ.
LD3 0,1 r13 +- n.
JMP 2F Continue as in (i). (8)

J3P 1B
JMP 1,1 Return. I

On machines like System/360, for which linkage is ordinarily done by putting the
exit location in an index register, a convention like this is particularly convenient.
It is also useful when a subroutine needs many arguments, or when a program
has been written by a compiler. The technique of multiple entrances that we
used above often fails in this case, however. We could "fake it" by writing

MAX100 STJ 1F
JMP MAXN
CON 100

1H JMP *

but this is not as attractive as (5).

190 BASIC CONCEPTS 1.4.l

A technique similar to that of listing arguments after the jump is normally
used for subroutines with multiple exits. Multiple exit means that we want the
subroutine to return to one of several different locations, depending on conditions
detected by the subroutine. In the strictest sense, the location to which a
subroutine exits is a parameter; so if there are several places to which it might
exit, depending on the circumstances, they should be supplied as arguments.
Our final example of the "maximum" subroutine will have two entrances and
two exits. The calling sequence is:

For general n For n = 100

ENT3 n
JMP MAXN JMP MAX100
Exit here if max::; 0 or max 2: rX
Exit here if 0 <max< rX

Exit here if max::; 0 or max 2: rX
Exit here if 0 <max< rX

(In other words, exit is made to the location two past the jump when the
maximum value is positive and less than the contents of register X.) The
subroutine for these conditions is easily written:

MAX100 ENT3 100 Entrance for n = 100
MAXN STJ EXIT Entrance for general n

JMP 2F Continue as in (i).

J3P 1B
JANP EXIT Take normal exit if the max is ~ 0. (g)
STX TEMP
CMPA TEMP
JGE EXIT Take normal exit if the max is 2: rX.
ENT3 1 Otherwise take the second exit.

EXIT JMP *,3 Return to proper place. I

Subroutines may call on other subroutines; in complicated programs it is not
unusual to have subroutine calls nested more than five deep. The only restriction
that must be followed when using linkage as described here is that no subroutine
may call on any other subroutine that is (directly or indirectly) calling on it. For
example, consider the following scenario:

[Main program]

JMP A

[Subroutine A]

A STJ EXITA B

JMP B

[Subroutine B]

STJ EXITB C

JMP C

[Subroutine C]

STJ EXIT C

JMP A

EXITA JMP * EXITB JMP * EXITC JMP * (io)

If the main program calls on A, which calls B, which calls C, and then C

calls on A, the address in EXITA referring to the main program is destroyed,
and there is no way to return to that program. A similar remark applies to all
temporary storage cells and registers used by each subroutine. It is not difficult

1.4.1 SUBROUTINES 191

to devise subroutine linkage conventions that will handle such recursive situations
properly; Chapter 8 considers recursion in detail.

We conclude this section by discussing briefly how we might go about writing
a complex and lengthy program. How can we decide what kind of subroutines
we will need, and what calling sequences should be used? One successful way to
determine this is to use an iterative procedure:

Step 0 (Initial idea). First we decide vaguely upon the general plan of
attack that the program will use.

Step 1 (A rough sketch of the program). We start now by writing the "outer
levels" of the program, in any convenient language. A somewhat systematic way
to go about this has been described very nicely by E. W. Dijkstra, Structured
Programming (Academic Press, 1972), Chapter 1, and by N. Wirth, CACM
14 (1971), 221-227. We may begin by breaking the whole program into a
small number of pieces, which might be thought of temporarily as subroutines,
although they are called only once. These pieces are successively refined into
smaller and smaller parts, having correspondingly simpler jobs to do. Whenever
some computational task arises that seems likely to occur elsewhere or that has
already occurred elsewhere, we define a subroutine (a real one) to do that job.
We do not write the subroutine at this point; we continue writing the main
program, assuming that the subroutine has performed its task. Finally, when
the main program has been sketched, we tackle the subroutines in turn, trying
to take the most complex subroutines first and then their sub-subroutines, etc.
In this manner we will come up with a list of subroutines. The actual function
of each subroutine has probably already changed several times, so that the first
parts of our sketch will by now be incorrect; but that is no problem, it is merely
a sketch. For each subroutine we now have a reasonably good idea about how it
will be called and how general-purpose it should be. It usually pays to extend
the generality of each subroutine a little.

Step 2 (First working program). This step goes in the opposite direction
from step 1. vVe now write in computer language, say MIXAL or PL/MIX or
a higher-level language; we start this time with the lowest level subroutines,
and do the main program last. As far as possible, we try never to write any
instructions that call a subroutine before the subroutine itself has been coded.
(In step 1, we tried the opposite, never considering a subroutine until all of its
calls had been written.)

As more and more subroutines are written during this process, our con
fidence gradually grows, since we are continually extending the power of the
machine we are programming. After an individual subroutine is coded, we should
immediately prepare a complete description of what it does, and what its calling
sequences are, as in (4)- It is also important not to overlay temporary storage
cells; it may very well be disastrous if every subroutine refers to location TEMP,
although when preparing the sketch in step 1, it was convenient not to worry
about such problems. An obvious way to overcome overlay worries is to have
each subroutine use only its own temporary storage, but if this is too wasteful

192 BASIC CONCEPTS 1.4.1

of space, another scheme that does fairly well is to name the cells TEMP!, TEMP2,
etc.; the numbering within a subroutine starts with TEMPj, where j is one higher
than the greatest number used by any of the sub-subroutines of this subroutine.

Step 3 (Reexamination). The result of step 2 should be very nearly a
working program, but it may be possible to improve on it. A good way is to
reverse direction again, studying for each subroutine all of the calls made on it.
It may well be that the subroutine should be enlarged to do some of the more
common things that are always done by the outside routine just before or after
it uses the subroutine. Perhaps several subroutines should be merged into one;
or perhaps a subroutine is called only once and should not be a subroutine at
all. (Perhaps a subroutine is never called and can be dispensed with entirely.)

At this point, it is often a good idea to scrap everything and start over
again at step 1! This is not intended to be a facetious remark; the time spent in
getting this far has not been wasted, for we have learned a great deal about the
problem. With hindsight, we will probably have discovered several improvements
that could be made to the program's overall organization. There's no reason to
be afraid to go back to step 1-it will be much easier to go through steps 2
and 3 again, now that a similar program has been done already. Moreover, we
will quite probably save as much debugging time later on as it will take to rewrite
everything. Some of the best computer programs ever written owe much of their
success to the fact that all the work was unintentionally lost, at about this stage,
and the authors had to begin again.

On the other hand, there is probably never a point when a complex computer
program cannot be improved somehow, so steps 1 and 2 should not be repeated
indefinitely. When significant improvement can clearly be made, it is well worth
the additional time required to start over, but eventually a point of diminishing
returns is reached.

Step 4 (Debugging). After a final polishing of the program, including
perhaps the allocation of storage and other last-minute details, it is time to
look at it in still another direction from the three that were used in steps 1,
2, -and 3-now we study the program in the order in which the computer will
perform it. This may be done by hand or, of course, by machine. The author
has found it quite helpful at this point to make use of system routines that trace
each instruction the first two times it is executed; it is important to rethink the
ideas underlying the program and to check that everything is actually taking
place as expected.

Debugging is an art that needs much further study, and the way to approach
it is highly dependent on the facilities available at each computer installation.
A good start towards effective debugging is often the preparation of appropriate
test data. The most effective debugging techniques seem to be those that are
designed and built into the program itself- many of today's best programmers
will devote nearly half of their programs to facilitating the debugging process
in the other half; the first half, which usually consists of fairly straightforward
routines that display relevant information in a readable format, will eventually
be thrown away, but the net result is a surprising gain in productivity.

1.4.2 COROUTINES 193

Another good debugging practice is to keep a record of every mistake made.
Even though this will probably be quite embarrassing, such information is in
valuable to anyone doing research on the debugging problem, and it will also
help you learn how to reduce the number of future errors.

Note: The author wrote most of the preceding comments in 1964, after he
had successfully completed several medium-sized software projects but before
he had developed a mature programming style. Later, during the 1980s, he
learned that an additional technique, called structured documentation or literate
programming, is probably even more important. A summary of his current beliefs
about the best way to write programs of all kinds appears in the book Literate
Programming (Cambridge Univ. Press, first published in 1992). Incidentally,
Chapter 11 of that book contains a detailed record of all bugs removed from the
TEX program during the period 1978-1991.

EXERCISES

Up to a point it is better to let the snags {bugs] be there
than to spend such time in design that there are none

(how many decades would this course take?).

- A. M. TURING, Proposals for ACE (1945)

1. [10] State the characteristics of subroutine (5), just as (4) gives the characteristics
of Subroutine 1.3.2M.

2. [10] Suggest code to substitute for (6) without using the JSJ instruction.

3. [M15] Complete the information in (4) by stating precisely what happens to
register J and the comparison indicator as a result of the subroutine; state also what
happens if register 11 is not positive .

.,.. 4. [21] Write a subroutine that generalizes MAXN by finding the maximum value of
X [a] , X [a + r] , X [a + 2r] , ... , X [n] , where r and n are parameters and a is the smallest
positive number with a= n (modulo r), namely a= 1 + (n - 1) mod r. Give a special
entrance for the case r = 1. List the characteristics of your subroutine, as in (4).

5. [21] Suppose MIX did not have a J-register. Invent a means for subroutine linkage
that does not use register J, and give an example of your invention by writing a MAX100
subroutine effectively equivalent to (1). State the characteristics of this subroutine in
a fashion similar to (4). (Retain MIX's conventions of self-modifying code.)

.,.. 6. [26] Suppose MIX did not have a MOVE operator. Write a subroutine entitled MOVE
such that the calling sequence "JMP MOVE; NOP A,I(F)" has an effect just the same as
"MOVE A, I (F)" if the latter were admissible. The only differences should be the effect
on register J and the fact that the time to execute the subroutine will be somewhat
longer .

.,.. 1. [20] Why is self-modifying code now frowned on?

1.4.2. Coroutines

Subroutines are special cases of more general program components, called co
routines. In contrast to the unsymmetric relationship between a main routine
and a subroutine, there is complete symmetry between coroutines, which call on
each other.

194 BASIC CONCEPTS 1.4.2

To understand the coroutine concept, let us consider another way of thinking
about subroutines. The viewpoint adopted in the previous section was that a
subroutine merely was an extension of the computer hardware, introduced to
save lines of coding. This may be true, but another point of view is possible:
We may consider the main program and the subroutine as a team of programs,
each member of the team "having a certain job to do. The main program, in
the course of doing its job, will activate the subprogram; the subprogram will
perform its own function and then activate the main program. We might stretch
our imagination to believe that, from the subroutine's point of view, when it
exits it is calling the main routine; the main routine continues to perform its
duty, then "exits" to the subroutine. The subroutine acts, then calls the main
routine again.

This somewhat far-fetched philosophy actually takes place with coroutines,
for which it is impossible to distinguish which is a subroutine of the other.
Suppose we have coroutines A and B; when programming A, we may think of B as
our subroutine, but when programming B, we may think of A as our subroutine.
That is, in coroutine A, the instruction "JMP B" is used to activate coroutine B.
In coroutine B the instruction "JMP A" is used to activate coroutine A again.
Whenever a coroutine is activated, it resumes execution of its program at the
point where the action was last suspended.

The coroutines A and B might, for example, be two programs that play chess.
We can combine them so that they will play against each other.

With MIX, such linkage between coroutines A and Bis done by including the
following four instructions in the program:

A STJ BX
AX JMP A1

B STJ AX
BX JMP B1

This requires four machine cycles for transfer of control each way. Initially AX and
BX are set to jump to the starting places of each coroutine, A1 and B1. Suppose we
start up coroutine A first, at location AL When it executes "JMP B" from location
A2, say, the instruction in location B stores rJ in AX, which then says "JMP A2+1".
The instruction in BX gets us to location B1, and after coroutine B begins its
execution, it will eventually get to an instruction "JMP A" in location B2, say. We
store rJ in BX and jump to location A2+1, continuing the execution of coroutine
A until it again jumps to B, which stores J in AX and jumps to B2+1, etc.

The essential difference between routine-subroutine and coroutine-coroutine
linkage, as can be seen by studying the example above, is that a subroutine is
always initiated at its beginning, which is usually a fixed place; the main routine
or a coroutine is always initiated at the place following where it last terminated.

Coroutines arise most naturally in practice when they are connected with
algorithms for input and output. For example, suppose it is the duty of corou
tine A to read cards and to perform some transformation on the input, reducing
it to a sequence of items. Another coroutine, which we will call B, does further
processing of these items, and prints the answers; B will periodically call for the
successive input items found by A. Thus, coroutine B jumps to A whenever it

1.4.2 COROUTINES 195

wants the next input item, and coroutine A jumps to B whenever an input item
has been found. The reader may say, "Well, B is the main program and A is
merely a subroutine for doing the input." This, however, becomes less true when
the process A is very complicated; indeed, we can imagine A as the main routine
and B as a subroutine for doing the output, and the above description remains
valid. The usefulness of the coroutine idea emerges midway between these two
extremes, when both A and B are complicated and each one calls the other in
numerous places. It is rather difficult to find short, simple examples of coroutines
that illustrate the importance of the idea; the most useful coroutine applications
are generally quite lengthy.

In order to study coroutines in action, let us consider a contrived example.
Suppose we want to write a program that translates one code into another. The
input code to be translated is a sequence of alphameric characters terminated
by a period, such as

A2B5E3426FGOZYW3210PQ89R.

This has been punched onto cards; blank columns appearing on these cards are
to be ignored. The input is to be understood as follows, from left to right: If the
next character is a digit 0, 1, ... , 9, say n, it indicates (n + 1) repetitions of the
following character, whether the following character is a digit or not. A nondigit
simply denotes itself. The output of our program is to consist of the sequence
indicated in this manner and separated into groups of three characters each,
until a period appears; the last group may have fewer than three characters. For
example, (2) should be translated by our program into

ABB BEE EEE E44 446 66F GZY W22 220 OPQ 999 999 999 R. (3)

Note that 3426F does not mean 3427 repetitions of the letter F; it means 4 fours
and 3 sixes followed by F. If the input sequence is '1. ',the output is simply'.',
not ' .. ', because the first period terminates the output. Our program should
punch the output onto cards, with sixteen groups of three on each card except
possibly the last.

To accomplish this translation, we will write two coroutines and a subrou
tine. The subroutine, called NEXTCHAR, is designed to find nonblank characters
of the input, and to put the next such character into register A:

01 * SUBROUTINE FOR CHARACTER INPUT
02 READER EQU 16 Unit number of card reader
03 INPUT ORIG *+16 Place for input cards
04 NEXTCHAR STJ 9F Entrance to subroutine
05 JXNZ 3F Initially rX = 0
06 1H J6N 2F Initially rl6 = 0
07 IN INPUT(READER) Read next card.
08 JBUS *(READER) Wait for completion.
09 ENN6 16 Let rl6 point to the first word.
10 2H LDX INPUT+16,6 Get the next word of input.
11 INC6 1 Advance pointer.

196 BASIC CONCEPTS 1.4.2

12 3H ENTA 0
13 SLAX 1 Next character--+ rA.
14 9H JANZ * Skip blanks.
15 JMP NEXTCHAR+1 I

This subroutine has the following characteristics: .
Calling sequence: JMP NEXTCHAR.
Entry conditions: rX = characters yet to be used; rl6 points to next word, or

rl6 = 0 indicating that a new card must be read.

Exit conditions: rA =next nonblank character of input; rX and rl6 are set for
next entry to NEXTCHAR.

Our first coroutine, called IN, finds the characters of the input code with
the proper replication. It begins initially at location IN1:

16 * FIRST COROUTINE
17 2H INCA 30 Nondigit found
18 JMP OUT Send it to OUT coroutine.
19 IN1 JMP NEXT CHAR Get character.
20 DECA 30
21 JAN 2B Is it a letter?
22 CMPA =10=
23 JGE 2B Is it a special character?
24 STA *+1(0:2) Digit n found
25 ENTS * rI5 +- n.
26 JMP NEXT CHAR Get next character.
27 JMP OUT Send it to OUT coroutine.
28 DECS 1 Decrease n by 1.
29 JSNN *-2 Repeat if necessary.
30 JMP IN1 Begin new cycle. I

(Recall that in MI X's character code, the digits 0-9 have codes 30-39.) This
coroutine has the following characteristics:

Calling sequence:
Exit conditions (when

jumping to OUT):

Entry conditions
(upon return):

JMP IN.

rA =next character of input with proper replication; rl4
unchanged from its value at entry.

rA, rX, rl5, rl6 should be unchanged from their values
at the last exit.

The other coroutine, called OUT, puts the code into three-digit groups and
punches the cards. It begins initially at OUT!:

31 * SECOND COROUTINE
32 ALF
33 OUTPUT ORIG *+16
34 PUNCH EQU 1 7
35 OUT! ENT4 -16

Constant used for blanking
Buff er area for answers
Unit number for card punch
Start new output card.

1.4.2 COROUTINES 197

36 ENT! OUTPUT
37 MOVE -1,1(16) Set output area to blanks.
38 1H JMP IN Get next translated character.
39 STA OUTPUT+16,4(1:1) Store it in the (1: 1) field.

40 CMPA PERIOD Is it ". "?
41 JE 9F
42 JMP IN If not, get another character.

43 STA OUTPUT+16,4(2:2) Store it in the (2: 2) field.

44 CMPA PERIOD Is it ". "?
45 JE 9F
46 JMP IN If not, get another character.
47 STA OUTPUT+16,4(3:3) Store it in the (3: 3) field.
48 CMPA PERIOD Is it "."?
49 JE 9F
50 INC4 1 Move to next word in output buffer.
51 J4N 1B End of card?
52 9H OUT OUTPUT(PUNCH) If so, punch it.
53 JBUS *(PUNCH) Wait for completion.
54 JNE OUT! Return for more, unless
55 HLT ". " was sensed.
56 PERIOD ALF UUUU• I

This coroutine has the following characteristics:

Calling sequence: JMP OUT.
Exit conditions (when

jumping to IN): rA, rX, rl5, rl6 unchanged from their value at entry; rll
possibly affected; previous character recorded in output.

Entry conditions
(upon return): rA =next character of input with proper replication; rl4

unchanged from its value at the last exit.

To complete the program, we need to write the coroutine linkage (see (1))
and to provide the proper initialization. Initialization of coroutines tends to be
a little tricky, although not really difficult.

57 * INITIALIZATION AND LINKAGE
58 START ENT6 0 Initialize rl6 for NEXTCHAR.
59 ENTX 0 Initialize rX for NEXTCHAR.
60 JMP OUT! Start with OUT (see exercise 2).
61 OUT STJ INX Coroutine linkage
62 OUTX JMP OUT!
63 IN STJ OUTX
64 INX JMP IN1
65 END START I

This completes the program. The reader should study it carefully, noting in
particular how each coroutine can be written independently as though the other
coroutine were its subroutine.

198 BASIC CONCEPTS 1.4.2

The entry and exit conditions for the IN and OUT coroutines mesh perfectly in

the program above. In general, we would not be so fortunate, and the coroutine

linkage would also include instructions for loading and storing appropriate regis

ters. For example, if OUT would destroy the contents of register A, the coroutine

linkage would become

OUT STJ INX
STA HOLDA Store A when leaving IN.

OUTX JMP OUT! (4)
IN STJ OUTX

LDA HOLDA Restore A when leaving OUT.

INX JMP IN1 I

There is an important relation between coroutines and multiple-pass algo

rithms. For example, the translation process we have just described could have

been done in two distinct passes: We could first have done just the IN coroutine,

applying it to the entire input and writing each character with the proper amount

of replication onto magnetic tape. After this was finished, we could rewind the

tape and then do just the OUT coroutine, taking the characters from tape in

groups of three. This would be called a "two-pass" process. (Intuitively, a

"pass" denotes a complete scan of the input. This definition is not precise,

and in many algorithms the number of passes taken is not at all clear; but the

intuitive concept of "pass" is useful in spite of its vagueness.)

Figure 22(a) illustrates a four-pass process. Quite often we will find that

the same process can be done in just one pass, as shown in part (b) of the figure,

if we substitute four coroutines A, B, C, D for the respective passes A, B, C, D.

Coroutine A will jump to B when pass A would have written an item of output on

tape 1; coroutine B will jump to A when pass B would have read an item of input

from tape 1, and B will jump to C when pass B would have written an item of
output on tape 2; etc. UNIXExit conditions (when users will recognize this as

a "pipe," denoted by "PassA I PassB I Passe I PassD". The programs for

Passes A, B, and C are sometimes referred to as "filters."

Conversely, a process done by n coroutines can often be transformed into an

n-pass process. Due to this correspondence it is worthwhile to compare multipass

algorithms with one-pass algorithms.

a) Psychological difference. A multipass algorithm is generally easier to create

and to understand than a one-pass algorithm for the same problem. Breaking a

process down into a sequence of small steps that happen one after the other is

easier to comprehend than an involved process in which many transformations

take place simultaneously.

Also, if a very large problem is being tackled and if many people are to

co-operate in producing a computer program, a multipass algorithm provides a

natural way to divide up the job.

These advantages of a multipass algorithm are present in coroutines as well,

since each coroutine can be written essentially separate from the others, and the

linkage makes an apparently multipass algorithm into a single-pass process.

1.4.2 COROUTINES 199

Pass A

Pass B Coroutine B

Pass C Coroutine C

Pass D

Fig. 22. Passes: (a) a four-pass algorithm, and (b) a one-pass algorithm.

b) Time difference. The time required to pack, write, read, and unpack the

intermediate data that flows between passes (for example, the information on

tapes in Fig. 22) is avoided in a one-pass algorithm. For this reason, a one-pass

algorithm will be faster.

c) Space difference. The one-pass algorithm requires space to hold all the

programs in memory simultaneously, while a multipass algorithm requires space

for only one at a time. This requirement may affect the speed, even to a greater

extent than indicated in statement (b). For example, many computers have a

limited amount of "fast memory" and a larger amount of slower memory; if each

pass just barely fits into the fast memory, the result will be considerably faster

than if we use coroutines in a single pass (since the use of coroutines would

presumably force most of the program to appear in the slower memory or to be

repeatedly swapped in and out of fast memory).

Occasionally there is a need to design algorithms for several computer con

figurations at once, some of which have larger memory capacity than others. In

such cases it is possible to write the program in terms of coroutines, and to let

the memory size govern the number of passes: Load together as many coroutines

as feasible, and supply input or output subroutines for the missing links.

Although this relationship between coroutines and passes is important, we

should keep in mind that coroutine applications cannot always be split into

multipass algorithms. If coroutine B gets input from A and also sends back

crucial information to A, as in the example of chess play mentioned earlier, the

sequence of actions can't be converted into pass A followed by pass B.

Conversely, it is clear that some multipass algorithms cannot be converted

to coroutines. Some algorithms are inherently multipass; for example, the second

pass may require cumulative information from the first pass (like the total

200 BASIC CONCEPTS 1.4.2

number of occurrences of a certain word in the input). There is an old joke
worth noting in this regard:

Little old lady, riding a bus. "Little boy, can you tell me how to get off
at Pasadena Street?"

Little boy. "Just watch me, and get off two stops before I do." .
(The joke is that the little boy gives a two-pass algorithm.)

So much for multipass algorithms. We will see further examples of coroutines
in numerous places throughout this book, for example, as part of the buffering
schemes in Section 1.4.4. Coroutines also play an important role in discrete
system simulation; see Section 2.2.5. The important idea of replicated coroutines
is discussed in Chapter 8, and some interesting applications of this idea may be
found in Chapter 10.

EXERCISES

1. [10] Explain why short, simple examples of coroutines are hard for the author of
a textbook to find .

.,.. 2. [20] The program in the text starts up the OUT coroutine first. What would
happen if IN were the first to be executed - that is, if line 60 were changed from
"JMP OUT1" to "JMP IN1"?

3. [20] True or false: The three "CMPA PERIOD" instructions within OUT may all be
omitted, and the program would still work. (Look carefully.)

4. [20] Show how coroutine linkage analogous to (1) can be given for real-life com
puters you are familiar with.

5. [15] Suppose both coroutines IN and OUT want the contents of register A to remain
untouched between exit and entry; in other words, assume that wherever the instruction
"JMP IN" occurs within OUT, the contents of register A are to be unchanged when control
returns to the next line, and make a similar assumption about "JMP OUT" within IN.
What coroutine linkage is needed? (Compare with (4).)

.,.. 6. [22] Give coroutine linkage analogous to (1) for the case of three coroutines, A, B,
and C, each of which can jump to either of the other two. (Whenever a coroutine is
activated, it begins where it last left off.)

.,.. 1. [30] Write a MIX program that reverses the translation done by the program in the
text; that is, your program should convert cards punched like (3) into cards punched
like (2). The output should be as short a string of characters as possible, so that the
zero before the Z in (2) would not really be produced from (3).

1.4.3. Interpretive Routines

In this section we will investigate a common type of computer program, the
interpretive routine (which will be called interpreter for short). An interpretive
routine is a computer program that performs the instructions of another pro
gram, where the other program is written in some machine-like language. By a
machine-like language, we mean a way of representing instructions, where the
instructions typically have operation codes, addresses, etc. (This definition, like
most definitions of today's computer terms, is not precise, nor should it be; we

1.4.3 INTERPRETIVE ROUTINES 201

cannot draw the line exactly and say just which programs are interpreters and

which are not.)
Historically, the first interpreters were built around machine-like languages

designed specially for simple programming; such languages were easier to use

than a real machine language. The rise of symbolic languages for programming

soon eliminated the need for interpretive routines of that kind, but interpreters

have by no means begun to die out. On the contrary, their use has continued

to grow, to the extent that an effective use of interpretive routines may be

regarded as one of the essential characteristics of modern programming. The

new applications of interpreters are made chiefly for the following reasons:

a) a machine-like language is able to represent a complicated sequence of deci

sions and actions in a compact, efficient manner; and

b) such a representation provides an excellent way to communicate between

passes of a multipass process.

In such cases, special purpose machine-like languages are developed for use in

a particular program, and programs in those languages are often generated only

by computers. (Today's expert programmers are also good machine designers, as

they not only create an interpretive routine, they also define a virtual machine

whose language is to be interpreted.)

The interpretive technique has the further advantage of being relatively

machine-independent- only the interpreter must be rewritten when changing

computers. Furthermore, helpful debugging aids can readily be built into an

interpretive system.
Examples of interpreters of type (a) appear in several places later in this

series of books; see, for example, the recursive interpreter in Chapter 8 and the

"Parsing Machine" in Chapter 10. We typically need to deal with a situation in

which a great many special cases arise, all similar, but having no really simple

pattern.
For example, consider writing an algebraic compiler in which we want to gen

erate efficient machine-language instructions that add two quantities together.

There might be ten classes of quantities (constants, simple variables, temporary

storage locations, subscripted variables, the contents of an accumulator or index

register, fixed or floating point, etc.) and the combination of all pairs yields 100

different cases. A long program would be required to do the proper thing in

each case. The interpretive solution to this problem is to make up an ad hoc

language whose "instructions" fit in one byte. Then we simply prepare a table

of 100 "programs" in this language, where each program ideally fits in a single

word. The idea is then to pick out the appropriate table entry and to perform

the program found there. This technique is simple and efficient.

An example interpreter of type (b) appears in the article "Computer-Drawn

Flowcharts" by D. E. Knuth, CACM 6 (1963), 555-563. In a multipass program,

the earlier passes must transmit information to the later passes. This information

is often transmitted most efficiently in a machine-like language, as a set of

instructions for the later pass; the later pass is then nothing but a special purpose

202 BASIC CONCEPTS 1.4.3

interpretive routine, and the earlier pass is a special purpose "compiler." This
philosophy of multipass operation may be characterized as telling the later pass
what to do, whenever possible, rather than simply presenting it with a lot of
facts and asking it to figure out what to do.

Another example of a type-(b) interpreter occurs in connection with com
pilers for special language£. If the language includes many features that are not
easily done on the machine except by subroutine, the resulting object programs
will be very long sequences of subroutine calls. This would happen, for example,
if the language were concerned primarily with multiple precision arithmetic. In
such a case the object program would be considerably shorter if it were expressed
in an interpretive language. See, for example, the book ALGOL 60 Implementa
tion, by B. Randell and L. J. Russell (New York: Academic Press, 1964), which
describes a compiler to translate from ALGOL 60 into an interpretive language,
and which also describes the interpreter for that language; and see "An ALGOL
60 Compiler," by Arthur Evans, Jr., Ann. Rev. Auto. Programming 4 (1964),
87-124, for examples of interpretive routines used within a compiler. The rise of
microprogrammed machines and of special-purpose integrated circuit chips has
made this interpretive approach even more valuable.

The TEX program, which produced the pages of the book you are now
reading, converted a file that contained the text of this section into an interpretive
language called DVI format, designed by D. R. Fuchs in 1979. [See D. E. Knuth,
TeX: The Program (Reading, Mass.: Addison-Wesley, 1986), Part 31.] The
DVI file that TEX produced was then processed by an interpreter called dvips,
written by T. G. Rokicki, and converted to a file of instructions in another inter
pretive language called PostScript® [Adobe Systems Inc., PostScript Language
Reference Manual, 2nd edition (Reading, Mass.: Addison-Wesley, 1990)]. The
PostScript file was sent to the publisher, who sent it to a commercial printer,
who used a PostScript interpreter to produce printing plates. This three-pass
operation illustrates interpreters of type (b); TEX itself also includes a small
interpreter of type (a) to process the so-called ligature and kerning information
for characters of each font of type [JEX: The Program, §545].

There is another way to look at a program written in interpretive language:
It may be regarded as a series of subroutine calls, one after another. Such a pro
gram may in fact be expanded into a long sequence of calls on subroutines, and,
conversely, such a sequence can usually be packed into a coded form that is read
ily interpreted. The advantages of interpretive techniques are the compactness of
representation, the machine independence, and the increased diagnostic capabil
ity. An interpreter can often be written so that the amount of time spent in inter
pretation of the code itself and branching to the appropriate routine is negligible.

1.4.3.1. A MIX simulator. When the language presented to an interpretive
routine is the machine language of another computer, the interpreter is often
called a simulator (or sometimes an emulator).

In the author's opinion, entirely too much programmers' time has been
spent in writing such simulators and entirely too much computer time has been

1.4.3.1 A MIX SIMULATOR 203

wasted in using them. The motivation for simulators is simple: A computer
installation buys a new machine and still wants to run programs written for
the old machine (rather than rewriting the programs). However, this usually
costs more and gives poorer results than if a special task force of programmers
were given temporary employment to do the reprogramming. For example, the
author once participated in such a reprogramming project, and a serious error
was discovered in the original program, which had been in use for several years;
the new program worked at five times the speed of the old, besides giving the
right answers for a change! (Not all simulators are bad; for example, it is usually
advantageous for a computer manufacturer to simulate a new machine before it
has been built, so that software for the new machine may be developed as soon as
possible. But that is a very specialized application.) An extreme example of the
inefficient use of computer simulators is the true story of machine A simulating
machine B running a program that simulates machine Cl This is the way to
make a large, expensive computer give poorer results than its cheaper cousin.

In view of all this, why should such a simulator rear its ugly head in this
book? There are two reasons:

a) The simulator we will describe below is a good example of a typical interpre
tive routine; the basic techniques employed in interpreters are illustrated here.
It also illustrates the use of subroutines in a moderately long program.

b) We will describe a simulator of the MIX computer, written in (of all things)
the MIX language. This will facilitate the writing of MIX simulators for most
computers, which are similar; the coding of our program intentionally avoids
making heavy use of MIX-oriented features. A MIX simulator will be of advantage
as a teaching aid in conjunction with this book and possibly others.

Computer simulators as described in this section should be distinguished
from discrete system simulators. Discrete system simulators are important pro
grams that will be discussed in Section 2.2.5.

Now let's turn to the task of writing a MIX simulator. The input to our
program will be a sequence of MIX instructions and data, stored in locations
0000-3499. We want to mimic the precise behavior of MIX's hardware, pretending
that MIX itself is interpreting those instructions; thus, we want to implement
the specifications that were laid down in Section 1.3.1. Our program will, for
example, maintain a variable called AREG that will hold the magnitude of the
simulated A-register; another variable, SIGNA, will hold the corresponding sign.
A variable called CLOCK will record how many MIX units of simulated time have
elapsed during the simulated program execution.

The numbering of MIX's instructions LDA, LD1, ... , LDX and other similar
commands suggests that we keep the simulated contents of these registers in
consecutive locations, as follows:

AREG, I1REG, I2REG, I3REG, I4REG, ISREG, I6REG, XREG, JREG, ZERO.

Here ZERO is a "register" filled with zeros at all times. The positions of JREG and
ZERO are suggested by the op-code numbers of the instructions ST J and STZ.

204 BASIC CONCEPTS 1.4.3.1

In keeping with our philosophy of writing the simulator as though it were not
really done with MIX hardware, we will treat the signs as independent parts of
a register. For example, many computers cannot represent the number "minus
zero", while MIX definitely can; therefore we will ahvays treat signs specially
in this program. The locations AREG, I1REG, ... , ZERO will always contain the
absolute values of the cor_responding register contents; another set of locations in
our program, called SIGNA, SIGN!, ... , SIGNZ will contain +1 or -1, depending
on whether the sign of the corresponding register is plus or minus.

An interpretive routine generally has a central control section that is called
into action between interpreted instructions. In our case, the program transfers
to location CYCLE at the end of each simulated instruction.

The control routine does the things common to all instructions, unpacks the
instruction into its various parts, and puts the parts into convenient places for
later use. The program below sets

rl6 = location of the next instruction;
rl5 = M (address of the present instruction, plus indexing);
rl4 = operation code of the present instruction;
rl3 = F-field of the present instruction;

INST = the present instruction.

Program M.

001 * MIX SIMULATOR
002 ORIG 3500 Simulated memory is in locations 0000 up.
003 BEGIN STZ TIME(0:2)
004 STZ OVTOG OVTOG is the simulated overflow toggle.
005 STZ COMP! COMPI, ±1 or 0, is comparison indicator.
006 ENT6 0 Take first instruction from location zero.
007 CYCLE LDA CLOCK Beginning of control routine:
008 TIME INCA 0 This address is set to the execution time
009 STA CLOCK of the previous instruction see line 033.
010 LDA 0,6 rA +-- instruction to simulate.
011 STA INST
012 INC6 1 Advance the location counter.
013 LDX INST(!: 2) Get absolute value of the address.
014 SLAX 5 Attach sign to the address.
015 STA M
016 LD2 INST(3:3) Examine the index field.
017 J2Z 1F Is it zero?
018 DEC2 6
019 J2P INDEXERROR Illegal index specified?
020 LDA SIGN6,2 Get sign of the index register.
021 LDX I6REG,2 Get magnitude of the index register.
022 SLAX 5 Attach the sign.
023 ADD M Do signed addition for indexing.
024 CMPA ZERO (1: 3) Is the result too large?
025 JNE ADDRERROR If so, simulate an error.
026 STA M Otherwise the address has been found.

.4.3.1

127 1H
128
729
730
731
732
733

734
)35

736

LD3 INST(4:4)
LDS M
LD4 INST(5:5)
DEC4 63
J4P OPERROR
LDA OPTABLE,4(4:4)
STA TIME(0:2)
LD2 OPTABLE,4(0:2)
JNOV 0,2
JMP 0,2

rl3 +- F-field.
rl5 +- M.
rl4 +- C-field.

A MIX SIMULATOR 205

Is the op code 2:_ 64?
Get execution time from the table.

Get address of the proper routine.
Jump to operator.
(Protect against overflows.) I

The reader's attention is called particularly to lines 034-036: A "switching
;able" of the 64 operators is part of the simulator, allowing it to jump rapidly to
;he correct routine for the current instruction. This is an important time-saving
;echnique (see exercise 1.3.2-9).

The 64-word switching table, called OPTABLE, gives also the execution time
for the various operators; the following lines indicate the contents of that table:

037 NOP CYCLE(!) Operation code table;
038 ADD ADD(2) typical entry is
039 SUB SUB(2) "DP routine(time)"
040 MUL MUL(10)
041 DIV DIV(12)
042 HLT SPEC(!)
043 SLA SHIFT(2)
044 MOVE MOVE(!)
045 LDA LOAD(2)
046 LD1 LOAD, 1 (2)

051 LD6 LOAD, 1(2)
052 LDX LOAD(2)
053 LDAN LOADN(2)
054 LD1N LOADN,1(2)

060 LDXN LOADN(2)
061 STA STORE(2)

069 STJ STORE(2)
070 STZ STORE(2)
071 JBUS JBUS(1)
072 roe IOC(1)
073 IN IN(1)
074 OUT OUT(!)
075 JRED JRED(1)
076 JMP JUMP(!)
077 JAP REGJUMP(1)

084 JXP REGJUMP(1)
085 INCA ADDROP(1)

206 BASIC CONCEPTS 1.4.3.1

086 INC1 ADDROP, 1 (1)

092 INCX ADDROP (1)

093 CMPA COMPARE(2)

100 OPTABLE CMPX COMPARE(2) I .
(The entries for operators LDi, LDiN, and INCi have an additional ", 1" to set the

(3: 3) field nonzero; this is used below in lines 289-290 to indicate the fact that

the size of the quantity within the corresponding index register must be checked

after simulating these operations.)
The next part of our simulator program merely lists the locations used to

contain the contents of the simulated registers:

101 AREG CON 0 Magnitude of A-register

102 I1REG CON 0 Magnitude of index registers

107 I6REG CON 0
108 XREG CON 0 Magnitude of X-register

109 JREG CON 0 Magnitude of J-register

110 ZERO CON 0 Constant zero, for "STZ"

111 SIGN A CON 1 Sign of A-register

112 SIGN! CON 1 Sign of index registers

117 SIGN6 CON 1
118 SIGNX CON 1 Sign of X-register
119 SIGNJ CON 1 Sign of J-register
120 SIGNZ CON 1 Sign stored by "STZ"

121 INST CON 0 Instruction being simulated

122 COMP! CON 0 Comparison indicator

123 OVTOG CON 0 Overflow toggle

124 CLOCK CON 0 Simulated execution time I

Now we will consider three subroutines used by the simulator. First comes

the MEMORY subroutine:

Calling sequence: JMP MEMORY.
Entry conditions: rl5 = valid memory address (otherwise the subroutine will

jump to MEMERROR).
Exit conditions: rX =sign of word in memory location rl5; rA =magnitude of

word in memory location rl5.

125 * SUBROUTINES
126 MEMORY STJ 9F Memory fetch subroutine:

127 J5N MEMERROR
128 CMP5 =BEGIN= The simulated memory is in

129 JGE MEMERROR locations 0000 to BEGIN - 1.

130 LDX 0,5
131 ENTA 1
132 SRAX 5 rX +---sign of word.

1.4.3.1 A MIX SIMULATOR 207

133 LDA 0, 5 (1: 5) rA +---magnitude of word.

134 9H JMP * Exit. I

The FCHECK subroutine processes a partial field specification, making sure

that it has the form SL+ R with L < R < 5.

Calling sequence: JMP FCHECK .
Entry conditions: rl3 = valid field specification (otherwise the subroutine will

jump to FERROR).
Exit conditions: rA = rll = L, rX = R.

135 FCHECK
136
137
138
139
140
141
142
143
144
145 9H
146

STJ 9F
ENTA 0
ENTX 0,3
DIV =8=
CMPX =5=
JG FERROR
STX R
STA L
LD1 L
CMPA R
JLE *
JMP FERROR I

Field check subroutine:

r AX +--- field specification.
rA +--- L, rX +--- R.
Is R > 5?

rll +--- L.

Exit unless L > R.

The last subroutine, GETV, finds the quantity V (namely, the appropriate
field of location M) used in various MIX operators, as defined in Section 1.3.l.

Calling sequence: JMP GETV.
Entry conditions: rl5 = valid memory address; rl3 = valid field. (If invalid, an

error will be detected as above.)

Exit conditions: rA =magnitude of V; rX =sign of V; rll = L; rl2 = -R.
Second entrance: JMP GET AV, used only in comparison operators to extract a

field from a register.

147 GETAV
148
149 GETV
150
151
152 1H
153
154
155
156 2H
157
158 9H

STJ 9F
JMP 1F
STJ 9F
JMP FCHECK
JMP MEMORY
J1Z 2F
ENTX 1
SLA -1,1
SRA -1,1
LD2N R
SRA 5,2
JMP *

Special entrance, see line 300.

Subroutine to find V:
Process the field and set r 11 +--- L.
rA +---memory magnitude, rX +---sign.
Is the sign included in the field?
If not, set the sign positive.
Zero out all bytes to the left

of the field.
Shift right into the

proper position.
Exit. I

Now we come to the routines for each individual operator. These routines
are given here for completeness, but the reader should study only a few of them
unless there's a compelling reason to look closer; the SUB and JUMP operators are
recommended as typical examples for study. Notice the way in which routines

208 BASIC CONCEPTS 1.4.3.1

for similar operations can be neatly combined, and notice how the JUMP routine

uses another switching table to govern the type of jump.

159 * INDIVIDUAL OPERATORS
160 ADD JMP GETV Get the value of Vin rA and rX.

161 ENT1 0 Let r 11 indicate the A register.

162 JMP INC" Go to the "increase" routine.

163 SUB JMP GETV Get the value of Vin rA and rX.

164 ENT1 0 Let r 11 indicate the A register.

165 JMP DEC Go to the "decrease" routine.

166 *
167 MUL JMP GETV Get the value of Vin rA and rX.

168 CMPX SIGNA Are signs the same?

169 ENTX 1
170 JE *+2 Set r X to the result sign.

171 ENNX 1
172 STX SIGN A Put it in both simulated registers.

173 STX SIGNX
174 MUL AREG Multiply the operands.

175 JMP STOREAX Store the magnitudes.

176 *
177 DIV LDA SIGN A Set the sign of the remainder.

178 STA SIGNX
179 JMP GETV Get the value of Vin rA and rX.

180 CMPX SIGNA Are signs the same?

181 ENTX 1
182 JE *+2 Set rX to the result sign.

183 ENNX 1
184 STX SIGN A Put it in the simulated rA.

185 STA TEMP
186 LDA AREG Divide the operands.
187 LDX XREG
188 DIV TEMP
189 STOREAX STA AREG Store the magnitudes.
190 STX XREG
191 OVCHECK JNOV CYCLE Did overflow just occur?
192 ENTX 1 If so, set the simulated
193 STX OVTOG overflow toggle on.

194 JMP CYCLE Return to control routine.

195 *
196 LOADN JMP GETV Get the value of Vin rA and rX.

197 ENT1 47,4 rl1 +--- C - 16; indicates register.
198 LOADN1 STX TEMP Negate the sign.
199 LDXN TEMP
200 JMP LOAD! Change LDADN to LOAD.

201 LOAD JMP GETV Get the value of Vin rA and rX.
202 ENT1 55,4 r 11 +--- C - 8, indicates register.
203 LOAD! STA AREG,1 Store the magnitude.

204 STX SIGNA,1 Store the sign.

1.4.3.1 A MIX SIMULATOR 209

205 JMP SIZECHK Check if the magnitude is too large.

206 *
207 STORE JMP FCHECK rll +--- L.

208 JMP MEMORY Get contents of memory location.

209 J1P 1F Is the sign included in the field?

210 ENT1 1 If so, change L to 1

211 LDX SIGNA+39,4 and "store" the register's sign.

212 1H LD2N R rI2 +--- -R.

213 SRAX 5,2 Save the area to the field's right.

214 LDA AREG+39,4 Insert register in the field.

215 SLAX 5,2
216 ENN2 0,1 rl2 +--- -L.

217 SRAX 6,2
218 LDA 0,5 Restore the area to the field's left.

219 SRA 6,2
220 SRAX -1, 1 Attach the sign.

221 STX 0,5 Store in memory.

222 JMP CYCLE Return to control routine.

223 *
224 JUMP DEC3 9 Jump operators:

225 J3P FERROR Is F too large?

226 LDA COMP I r A +--- comparison indicator.

227 JMP JTABLE,3 Jump to appropriate routine.

228 JMP ST6 JREG Set the simulated J-register.

229 JMP JSJ
230 JMP JOV
231 JMP JNOV
232 JMP LS
233 JMP EQ
234 JMP GR
235 JMP GE
236 JMP NE
237 JTABLE JMP LE End of the jump table

238 JOV LDX OVTOG Check whether to jump on

239 JMP *+3 overflow.

240 JNOV LDX OVTOG
241 DECX 1 Get complement of overflow toggle.

242 STZ OVTOG Shut off overflow toggle.

243 JXNZ JMP Jump.

244 JMP CYCLE Don't jump.

245 LE JAZ JMP Jump if rA zero or negative.

246 LS JAN JMP Jump if rA negative.

241 JMP CYCLE Don't jump.

248 NE JAN JMP Jump if rA negative or positive.

249 GR JAP JMP Jump if rA positive.

250 JMP CYCLE Don't jump.
251 GE JAP JMP Jump if rA positive or zero.

252 EQ JAZ JMP Jump if rA zero.

253 JMP CYCLE Don't jump.

210 BASIC CONCEPTS 1.4.3.1

254 JSJ JMP MEMORY Check for valid memory address.
255 ENT6 0,5 Simulate a jump.
256 JMP CYCLE Return to main control routine.

257 *
258 REGJUMP LDA AREG+23,4 Register jumps:
259 JAZ *+2 Is register zero? .
260 LDA SIGNA+23,4 If not, put sign into rA.
261 DEC3 5
262 J3NP JTABLE,3 Change to a conditional JMP, unless
263 JMP FERROR the F-specification is too large.

264 *
265 AD DROP DEC3 3 Address transfer operators:
266 J3P FERROR Is F too large?
267 ENTX 0,5
268 JXNZ *+2 Find the sign of M.
269 LDX INST
270 ENTA 1
271 SRAX 5 r X +--- sign of M.
272 LDA M(1: 5) r A +--- magnitude of M.
273 ENT1 15,4 r 11 indicates the register.
274 JMP 1F,3 Four-way jump.
275 JMP INC Increase.
276 JMP DEC Decrease.
277 JMP LOAD! Enter.
278 1H JMP LOADN1 Enter negative.
279 DEC STX TEMP Reverse the sign.
280 LDXN TEMP Reduce DEC to INC.
281 INC CMPX SIGNA,1 Addition routine:
282 JE 1F Are signs the same?
283 SUB AREG,1 No; subtract magnitudes.
284 JANP 2F Sign change needed?
285 STX SIGNA,1 Change the register's sign.
286 JMP 2F
287 1H ADD AREG,1 Add magnitudes.
288 2H STA AREG,1(1:5) Store magnitude of the result.
289 SIZECHK LD1 OPTABLE,4(3:3) Have we just loaded an
290 J1Z OVCHECK index register?
291 CMPA ZERO (1: 3) If so, make sure that the result
292 JE CYCLE fits in two bytes.
293 JMP SIZEERROR
294 *
295 COMPARE JMP GETV Get the value of Vin rA and rX.
296 SRAX 5 Attach the sign.
297 STX v
298 LDA XREG,4 Get field F of the appropriate register.
299 LDX SIGNX,4
300 JMP GET AV
301 SRAX 5 Attach the sign.
302 CMPX V Compare (note that -0 = +o).

1.4.3.1 A MIX SIMULATOR 211

303 STZ COMP I Set comparison indicator to

304 JE CYCLE either zero, plus one,
305 ENTA 1 or minus one.
306 JG *+2
307 ENNA 1
308 STA COMP I
309 JMP CYCLE Return to control routine.
310 *
311 END BEGIN I

The code above adheres to a subtle rule that was stated in Section 1.3.1: The

instruction "ENTA -0" loads minus zero into register A, as does ENTA -5, 1" when

index register 1 contains +5. In general, when Mis zero, ENTA loads the sign of the

instruction and ENNA loads the opposite sign. The need to specify this condition

was overlooked when the author prepared his first draft of Section 1.3.l; such

questions usually come to light only when a computer program is being written

to follow the rules.
In spite of its length, the program above is incomplete in several respects:

a) It does not recognize floating point operations.
b) The coding for operation codes 5, 6, and 7 has been left as an exercise.

c) The coding for input-output operators has been left as an exercise.

d) No provision has been made for loading simulated programs (see exercise 4).

e) The error routines

INDEXERROR, ADDRERROR, OPERROR, MEMERROR, FERROR, SIZEERROR

have not been included; they handle error conditions that are detected in

the simulated program.
f) There is no provision for diagnostic facilities. (A useful simulator should,

for example, make it possible to print out the register contents as a program
is being executed.)

EXERCISES

1. [14] Study all the uses of the FCHECK subroutine in the simulator program. Can
you suggest a better way to organize the code? (See step 3 in the discussion at the end
of Section 1.4.1.)

2. [20] Write the SHIFT routine, which is missing from the program in the text
(operation code 6).

~ 3. [22] Write the MOVE routine, which is missing from the program in the text
(operation code 7).

4. [14] Change the program in the text so that it begins as though MIX's "GD button"
had been pushed (see exercise 1.3.1-26).

~ 5. [24] Determine the time required to simulate the LDA and ENTA operators, com
pared with the actual time for MIX to execute these operators directly.

6. [28] Write programs for the input-output operators JBUS, IDC, IN, OUT, and JRED,
which are missing from the program in the text, allowing only units 16 and 18. Assume

212 BASIC CONCEPTS 1.4.3.l

that the operations "read-card" and "skip-to-new-page" take T = lOOOOu, while "print
line" takes T = 7500u. (Note: Experience shows that the JBUS instruction should be
simulated by treating "JBUS *" as a special case; otherwise the simulator seems to
stop!)

~ 7. [32] Modify the solutions of the previous exercise in such a way that execution
of IN or OUT does not cause I/O transmission immediately; the transmission should
take place after approximately half of the time required by the simulated devices has
elapsed. (This will prevent a frequent student error, in which IN and OUT are used
improperly.)

8. [20] True or false: Whenever line 010 of the simulator program is executed, we
have 0:::; rl6 <BEGIN.

*1.4.3.2. Trace routines. When a machine is being simulated on itself (as
MIX was simulated on MIX in the previous section) we have the special case of
a simulator called a trace or monitor routine. Such programs are occasionally
used to help in debugging, since they print out a step-by-step account of how
the simulated program behaves.

The program in the preceding section was written as though another com
puter were simulating MIX. A quite different approach is used for trace programs;
we generally let registers represent themselves and let the operators perform
themselves. In fact, we usually contrive to let the machine execute most of
the instructions by itself. The chief exception is a jump or conditional jump
instruction, which must not be executed without modification, since the trace
program must remain in control. Each machine also has idiosyncratic features
that make tracing more of a challenge; in MIX's case, the J-register presents the
most interesting problem.

The trace routine given below is initiated when the main program jumps to
location ENTER, with register J set to the address for starting to trace and reg
ister X set to the address where tracing should stop. The program is interesting
and merits careful study.

01 * TRACE ROUTINE
02 ENTER STX TEST(0:2) Set the exit location.
03 STX LEAVEX(0:2)
04 STA AREG Save the contents of r A.
05 STJ JREG Save the contents of r J.
06 LDA JREG(0:2) Get the start location for tracing.
07 CYCLE STA PREG(0:2) Store the location of the next instruction.
08 TEST DECA * Is it the exit location?
09 JAZ LEAVE
10 PREG LDA * Get the next instruction.
11 STA INST Copy it.
12 SRA 2
13 STA INST1(0:3) Store the address and index parts.
14 LDA INST(5:5) Get the operation code, C.
15 DECA 38
16 JANN 1F Is C 2:: 38 (JRED)?

1.4.3.2

17
18
19
20
21 JREG
22
23
24 2H
25
26
27 1H
28
29 3H
30
31 2H
32 *
33 *
34 INST
35
36 INCP
37
38
39 SH
40 JUMP
41
42
43
44
45
46 INST!
47
48 LEAVE
49 LEAVEX
50 AREG

INCA 6
JANZ 2F
LDA INST(0:4)
STA *+2(0:4)
ENTA *
STA *
JMP INCP
DECA 2
JANZ 2F
JMP 3F
DECA 9
JAP 2F
LDA 8F(0:3)
STA INST(0:3)
LDA AREG

NOP *
STA AREG
LDA PREG(0:2)
INCA 1
JMP CYCLE
JSJ JUMP
LDA 8B(4:5)
SUB INST(4:5)
JAZ *+4
LDA PREG(0:2)
INCA 1
STA JREG(0:2)
ENTA *
JMP CYCLE
LDA AREG
JMP *
CON 0

TRACE ROUTINES

Is Co/= 32 (STJ)?

Change ST J to ST A.
r A +--- simulated r J contents.

Is C # 34 (JBUS)?

Test for jump instructions.
Is C > 4 7 (JXL)?
We detected a jump instruction;

change its address to "JUMP".
Restore register A.
All registers except J now have proper

213

values with respect to the external program.

The instruction is executed.
Store register A again.
Move to the next instruction.

Constant for lines 29 and 40
A jump has occurred.
Was it JSJ?

If not, update the simulated
J-register.

Move to the address of the jump.
Restore register A.
Stop tracing.
Simulated r A contents I

The following things should be noted about trace routines in general and

this one in particular.

1) We have presented only the most interesting part of a trace program,

the part that retains control while executing another program. For a trace to

be useful, there must also be a routine for writing out the contents of registers,

and this has not been included. Such a routine distracts from the more subtle

features of a trace program, although it certainly is important; the necessary

modifications are left as an exercise (see exercise 2).
2) Space is generally more important than time; that is, the program should

be written to be as short as possible. Then the trace routine will be able to coexist

with extremely large programs. The running time is consumed by output anyway.

3) Care was taken to avoid destroying the contents of most registers; in fact,

the program uses only MIX's A-register. Neither the comparison indicator nor

214 BASIC CONCEPTS 1.4.3.2

the overflow toggle are affected by the trace routine. (The less we use, the less
we need to restore.)

4) When a jump to location JUMP occurs, it is not necessary to "STA AREG",

since r A cannot have changed.
5) After leaving the trace routine, the J-register is not reset properly. Exer

cise 1 shows how to remedy this.
6) The program being traced is subject to only three restrictions:

a) It must not store anything into the locations used by the trace program.
b) It must not use the output device on which tracing information is being

recorded (for example, JBUS would give an improper indication).
c) It will run at a slower speed while being traced.

EXERCISES

1. [22] Modify the trace routine of the text so that it restores register J when leaving.
(You may assume that register J is not zero.)

2. [26] Modify the trace routine of the text so that before executing each program
step it writes the following information on tape unit 0.

Word 1, (0: 2) field: location.
Word 1, (4: 5) field: register J (before execution).
Word 1, (3: 3) field: 2 if comparison is greater, 1 if equal, 0 if less; plus 8 if overflow

is not on before execution.
Word 2: instruction.
Word 3: register A (before execution).
Words 4-9: registers 11-16 (before execution).
Word 10: register X (before execution).

Words 11-100 of each 100-word tape block should contain nine more ten-word groups,
in the same format.

3. [1 O] The previous exercise suggests having the trace program write its output
onto tape. Discuss why this would be preferable to printing directly.

~ 4. [25] What would happen if the trace routine were tracing itself? Specifically,
consider the behavior if the two instructions ENTX LEAVEX; JMP *+1 were placed just
before ENTER.

5. [28] In a manner similar to that used to solve the previous exercise, consider
the situation in which two copies of the trace routine are placed in different places in
memory, and each is set up to trace the other. What would happen?

~ 6. [40] Write a trace routine that is capable of tracing itself, in the sense of exercise 4:
It should print out the steps of its own program at slower speed, and that program will
be tracing itself at still slower speed, ad infinitum, until memory capacity is exceeded.

~ 7. [25] Discuss how to write an efficient jump trace routine, which emits much less
output than a normal trace. Instead of displaying the register contents, a jump trace
simply records the jumps that occur. It outputs a sequence of pairs (x1, y1), (x2, y2),

... , meaning that the program jumped from location x1 to yi, then (after performing
the instructions in locations y1, y1 + 1, ... , x2) it jumped from x2 to y2, etc. [From
this information it is possible for a subsequent routine to reconstruct the flow of the
program and to deduce how frequently each instruction was performed.]

1.4.4 INPUT AND OUTPUT 215

1.4.4. Input and Output

Perhaps the most outstanding differences between one computer and the next are

the facilities available for doing input and output, and the computer instructions

that govern those peripheral devices. We cannot hope to discuss in a single

book all of the problems and techniques that arise in this area, so we will

confine ourselves to a study of typical input-output methods that apply to most

computers. The input-output operators of MIX represent a compromise between

the widely varying facilities available in actual machines; to give an example of

how to think about input-output, let us discuss in this section the problem of

getting the best MIX input-output.

~ Once again the reader is asked to be indulgent about the anachronistic

Y MIX computer with its punched cards, etc. Although such old-fashioned

devices are now quite obsolete, they still can teach important lessons. The MMIX

computer, when it comes, will of course teach those lessons even better.

Many computer users feel that input and output are not actually part of

"real" programming; input and output are considered to be tedious tasks that

people must perform only because they need to get information in and out of

a machine. For this reason, the input and output facilities of a computer are

usually not learned until after all other features have been examined, and it

frequently happens that only a small fraction of the programmers of a particular

machine ever know much about the details of input and output. This attitude

is somewhat natural, because the input-output facilities of machines have never

been especially pretty. However, the situation cannot be expected to improve

until more people give serious thought to the subject. We shall see in this section

and elsewhere (for example, in Section 5.4.6) that some very interesting things

arise in connection with input-output, and some pleasant algorithms do exist.

A brief digression about terminology is perhaps appropriate here. Although

dictionaries of English formerly listed the words "input" and "output" only as

nouns ("What kind of input are we getting?"), it is now customary to use them

grammatically as adjectives ("Don't drop the input tape.") and as transitive

verbs ("Why did the program output this garbage?"). The combined term

"input-output" is most frequently referred to by the abbreviation "I/O". In

putting is often called reading, and outputting is, similarly, called writing. The

stuff that is input or output is generally known as "data" - this word is, strictly

speaking, a plural form of the word "datum," but it is used collectively as if it

were singular ("The data has not been read."), just as the word "information"

is both singular and plural. This completes today's English lesson.

Suppose now that we wish to read from magnetic tape. The IN operator

of MIX, as defined in Section 1.3.1, merely initiates the input process, and the

computer continues to execute further instructions while the input is taking

place. Thus the instruction "IN 1000 (5)" will begin to read 100 words from

tape unit number 5 into memory cells 1000-1099, but the ensuing program must

not refer to these memory cells until later. The program can assume that input

is complete only after (a) another I/O operation (IN, OUT, or IOC) referring

216 BASIC CONCEPTS 1.4.4

to unit 5 has been initiated, or (b) a conditional jump instruction JBUS (5) or
JRED (5) indicates that unit 5 is no longer "busy."

The simplest way to read a tape block into locations 1000-1099 and to have
the information present is therefore the sequence of two instructions

J:N 1000(5); JBUS *(5).

We have used this rudimentary method in the program of Section 1.4.2 (see lines
07-08 and 52-53. The method is generally wasteful of computer time, however,
because a very large amount of potentially useful calculating time, say lOOOu or
even lOOOOu, is consumed by repeated execution of the "JBUS" instruction. The
program's running speed can be as much as doubled if this additional time is
utilized for calculation. (See exercises 4 and 5.)

One way to avoid such a "busy wait" -is to use two areas of memory for the
input: We can read into one area while computing with the data in the other.
For example, we could begin our program with the instruction

IN 2000(5) Begin reading first block.

Subsequently, we may give the following five commands whenever a tape block
is desired:

ENT1 1000
JBUS *(5)
MOVE 2000(50)
MOVE 2050(50)
IN 2000(5)

Prepare for MOVE operator.
Wait until unit 5 is ready.
(2000-2049) -+ (1000-1049).
(2050-2099) -+ (1050-1099).
Begin reading next block.

This has the same overall effect as (1), but it keeps the input tape busy while
the program works on the data in locations 1000-1099.

The last instruction of (3) begins to read a tape block into locations 2000-
2099 before the preceding block has been examined. This is called "reading
ahead" or anticipated input- it is done on faith that the block will eventually be
needed. In fact, however, we might discover that no more input is really required,
after we begin to examine the block in 1000-1099. For example, consider the
analogous situation in the coroutine program of Section 1.4.2, where the input
was coming from punched cards instead of tape: A "." appearing anywhere in
the card meant that it was the final card of the deck. Such a situation would
make anticipated input impossible, unless we could assume that either (a) a
blank card or special trailer card of some other sort would follow the input deck,
or (b) an identifying mark (e.g., ". ") would appear in, say, column 80 of the final
card of the deck. Some means for terminating the input properly at the end of
the program must always be provided whenever input has been anticipated.

The technique of overlapping computation time and I/O time is known as
buffering, while the rudimentary method (1) is called unbuffered input. The
area of memory 2000-2099 used to hold the anticipated input in (3), as well as
the area 1000-1099 to which the input was moved, is called a buffer. Webster's
New World Dictionary defines "buffer" as "any person or thing that serves to
lessen shock," and the term is appropriate because buffering tends to keep I/O

1.4.4 INPUT AND OUTPUT 217

devices running smoothly. (Computer engineers often use the word "buffer" in
another sense, to denote a part of the I/O device that stores information during
the transmission. In this book, however, "buffer" will signify an area of memory
used by a programmer to hold I/ 0 data.)

The sequence (3) is not always superior to (1), although the exceptions are
rare. Let us compare the execution times: Suppose T is the time required to
input 100 words, and suppose C is the computation time that intervenes between
input requests. Method (1) requires a time of essentially T + C per tape block,
while method (3) takes essentially max(C, T) + 202u. (The quantity 202u is the
time required by the two MOVE instructions.) One way to look at this running
time is to consider "critical path time" - in this case, the amount of time the
I/O unit is idle between uses. Method (1) keeps the unit idle for C units of time,
while method (3) keeps it idle for 202 units (assuming that C < T).

The relatively slow MOVE commands of (3) are undesirable, particularly
because they take up critical path time when the tape unit must be inactive.
An almost obvious improvement of the method allows us to avoid these MOVE
instructions: The outside program can be revised so that it refers alternately
to locations 1000-1099 and 2000-2099. While we are reading into one buffer
area, we can be computing with the information in the other; then we can begin
reading into the second buffer while computing with the information in the first.
This is the important technique known as buffer swapping. The location of the
current buffer of interest will be kept in an index register (or' if no index registers
are available, in a memory location). We have already seen an example of buffer
swapping applied to output in Algorithm l.3.2P (see steps P9-Pll) and the
accompanying program.

As an example of buffer swapping on input, suppose that we have a computer
application in which each tape block consists of 100 separate one-word items. The
following program is a subroutine that gets the next word of input and begins
to read in a new block if the current one is exhausted.

01 WORDIN STJ 1F Store the exit location.
02 INC6 1 Advance to the next word.
03 2H LDA 0,6 Is it the end of the
04 CMPA =SENTINEL= buffer?
05 1H JNE * If not, exit.
06 IN -100,6(U) Refill this buff er.
07 LD6 1,6 Switch to the other

(4) 08 JMP 2B buffer and return.
09 INBUF1 ORIG *+100 First buffer
10 CON SENTINEL Sentinel at end of buffer
11 CON *+1 Address of other buffer
12 INBUF2 ORIG *+100 Second buff er
13 CON SENTINEL Sentinel at end of buffer
14 CON INBUF1 Address of other buffer I

In this routine, index register 6 is used to address the last word of input; we
assume that the calling program does not affect this register. The symbol U

218 BASIC CONCEPTS 1.4.4

refers to a tape unit, and the symbol SENTINEL refers to a value that is known
(from characteristics of the program) to be absent from all tape blocks.

Several things about this subroutine should be noted:

1) The sentinel constant appears as the lOlst word of each buffer, and it
makes a convenient test for. the end of the buffer. In many applications, however,
the sentinel technique will not be reliable, since any word may appear on tape.
If we were doing card input, a similar method (with the 17th word of the buffer
equal to a sentinel) could always be used without fear of failure; in that case,
any negative word could serve as a sentinel, since MIX input from cards always
gives nonnegative words.

2) Each buffer contains the address of the other buffer (see lines 07, 11,
and 14). This "linking together" facilitates the swapping process.

3) No JBUS instruction was necessary, since the next input was initiated
before any word of the previous block was accessed. If the quantities C and T
refer as before to computation time and tape time, the execution time per tape
block is now max (C, T); it is therefore possible to keep the tape going at full
speed if C < T. (Note: MIX is an idealized computer in this regard, however,
since no I/ 0 errors must be treated by the program. On most machines some
instructions to test the successful completion of the previous operation would be
necessary just before the "IN" instruction here.)

4) To make subroutine (4) work properly, it will be necessary to get things
started out right when the program begins. Details are left to the reader (see
exercise 6) .

5) The WORDIN subroutine makes the tape unit appear to have a block length
of 1 rather than 100 as far as the rest of the program is concerned. The idea
of having several program-oriented records filling a single actual tape block is
called blocking of records.

The techniques that we have illustrated for input apply, with minor changes,
to output as well (see exercises 2 and 3).

Fig. 23. A circle of buffers (N = 6).

Multiple buffers. Buffer swapping is just the special case N = 2 of a general
method involving N buffers. In some applications it is desirable to have more
than two buffers; for example, consider the following type of algorithm:

1.4.4 INPUT AND OUTPUT

Step 1. Read five blocks in rapid succession.
Step 2. Perform a fairly long calculation based on this data.

Step 3. Return to step 1.

219

Here five or six buffers would be desirable, so that the next batch of five blocks

could be read during step 2. This tendency for I/O activity to be "bunched"

makes multiple buffering an improvement over buffer swapping.

Suppose we have N buffers for some input or output process using a single

I/O device; we will imagine that the buffers are arranged in a circle, as in
Fig. 23. The program external to the buffering process can be assumed to have

the following general form with respect to the I/O unit of interest:

ASSIGN

RELEASE

ASSIGN

RELEASE

in other words, we can assume that the program alternates between an action
called "ASSIGN" and an action called "RELEASE", separated by other computa

tions that do not affect the allocation of buffers.

ASSIGN means that the program acquires the address of the next buffer area;
this address is assigned as the value of some program variable.

RELEASE means that the program is done with the current buffer area.

Between ASSIGN and RELEASE the program is communicating with one of the

buffers, called the current buffer area; between RELEASE and ASSIGN, the pro
gram makes no reference to any buffer area.

Conceivably, ASSIGN could immediately follow RELEASE, and discussions of
buffering have often been based on this assumption. However, if RELEASE is done
as soon as possible, the buffering process has more freedom and will be more

effective; by separating the two essentially different functions of ASSIGN and
RELEASE we will find that the buffering technique remains easy to understand,

and our discussion will be meaningful even if N = 1.
To be more explicit, let us consider the cases of input and output separately.

For input, suppose we are dealing with a card reader. The action ASSIGN means

that the program needs to see information from a new card; we would like to set
an index register to the memory address at which the next card image is located.
The action RELEASE occurs when the information in the current card image is no
longer needed- it has somehow been digested by the program, perhaps copied

220 BASIC CONCEPTS 1.4.4

to another part of memory, etc. The current buffer area may therefore be filled

with further anticipated input.
For output, consider the case of a line printer. The action ASSIGN occurs

when a free buffer area is needed, into which a line image is to be placed for

printing. We wish to set an index register equal to the memory address of such

an area. The action RELEASE occurs when this line image has been fully set up

in the buffer area, in a form ready to be printed.

Example: To print the contents of locations 0800-0823, we might write

JMP ASSIGNP (Sets rl5 to buffer location)
ENT1 0,5
MOVE 800 (24) Move 24 words into the output buffer.

JMP RELEASEP

where ASSIGNP and RELEASEP represent subroutines to do the two buffering

functions for the line printer.

In an optimal situation, from the standpoint of the computer, the ASSIGN

operation will require virtually no execution time. This means, on input, that

each card image will have been anticipated, so that the data is available when

the program is ready for it; and on output, it means that there will always be

a free place in memory to record the line image. In either case, no time will be

spent waiting for the I/ 0 device.
To help describe the buffering algorithm, and to make it more colorful, we

will say that buffer areas are either green, yellow, or red (shown as G, Y, and R

in Fig. 24).
Green means that the area is ready to be ASSIGNed; this means that it has

been filled with anticipated information (in an input situation), or that it is a

free area (in an output situation).
Yellow means that the area has been ASSIGN ed, not RELEASEd; this means

that it is the current buffer, and the program is communicating with it.

Red means that the area has been RELEASEd; thus it is a free area (in an

input situation) or it has been filled with information (in an output situation).

Figure 23 shows two "pointers" associated with the circle of buffers. These

are, conceptually, index registers in the program. NEXTG and NEXTR point to

the "next green" and "next red" buffer, respectively. A third pointer, CURRENT

(shown in Fig. 24), indicates the yellow buffer when one is present.

The algorithms below apply equally well to input or output, but for defi

niteness we will consider first the case of input from a card reader. Suppose that

a program has reached the state shown in Fig. 23. This means that four card

images have been anticipated by the buffering process, and they reside in the

green buffers. At this moment, two things are happening simultaneously: (a) The

program is computing, following a RELEASE operation; (b) a card is being read

into the buffer indicated by NEXTR. This state of affairs will continue until the

input cycle is completed (the unit will then go from "busy" to "ready"), or until

the program does an ASSIGN operation. Suppose the latter occurs first; then the

buffer indicated by NEXTG changes to yellow (it is assigned as the current buffer),

1.4.4 INPUT AND OUTPUT 221

Fig. 24. Buffer transitions, (a) after ASSIGN, (b) after I/ 0 complete, and (c) after
RELEASE.

NEXTG moves clockwise, and we arrive at the position shown in Fig. 24(a). If
now the input is completed, another anticipated block is present; so the buffer
changes from red to green, and NEXTR moves over as shown in Fig. 24(b). If the
RELEASE operation follows next, we obtain Fig. 24(c).

For an example concerning output, see Fig. 27 on page 226. That illustration
shows the "colors" of buffer areas as a function of time, in a program that opens
with four quick outputs, then produces four at a slow pace, and finally issues two
in rapid succession as the program ends. Three buffers appear in that example.

The pointers NEXTR and NEXTG proceed merrily around the circle, each at an
independent rate of speed, moving clockwise. It is a race between the program
(which turns buffers from green to red) and the I/O buffering process (which
turns them from red to green). Two situations of conflict can occur:

a) if NEXTG tries to pass NEXTR, the program has gotten ahead of the I/O device
and it must wait until the device is ready.

b) if NEXTR tries to pass NEXTG, the I/O device has gotten ahead of the program
and we must shut it down until the next RELEASE is given.

Both of these situations are depicted in Fig. 27. (See exercise 9.)
Fortunately, in spite of the rather lengthy explanation just given of the ideas

behind a circle of buffers, the actual algorithms for handling the situation are
quite simple. In the following description,

N = total number of buffers;
n = current number of red buffers.

(6)

The variable n is used in the algorithm below to avoid interference between
NEXTG and NEXTR.

Algorithm A (ASSIGN). This algorithm includes the steps implied by ASSIGN

within a computational program, as described above.

Al. [Wait for n < N.] If n = N, stall the program until n < N. (If n = N,
no buffers are ready to be assigned; but Algorithm B below, which runs in
parallel with this one, will eventually succeed in producing a green buffer.)

222 BASIC CONCEPTS 1.4.4

A2. [CURRENT +--- NEXTG.] Set CURRENT +--- NEXTG (thereby assigning the current
buffer).

A3. [Advance NEXTG.] Advance NEXTG to the next clockwise buffer. I

Algorithm R (RELEASE). This algorithm includes the steps implied by RELEASE

within a computational pwgram, as. described above.

Rl. [Increase n.] Increase n by one. I

Algorithm B (Buffer control). This algorithm performs the actual initiation
of I/O operators in the machine; it is to be executed "simultaneously" with the
main program, in the sense described below.

Bl. [Compute.] Let the main program compute for a short period of time; step
B2 will be executed after a certain time delay, at a time when the I/O device
is ready for another operation.

B2. [n = O?] If n = 0, go to Bl. (Thus, if no buffers are red, no I/O action can
be performed.)

B3. [Initiate I/O.] Initiate transmission between the buffer area designated by
NEXTR and the I/O device.

B4. [Compute.] Let the main program run for a period of time; then go to
step B5 when the I/O operation is completed.

B5. [Advance NEXTR.] Advance NEXTR to the next clockwise buffer.

B6. [Decrease n.] Decrease n by one, and go to B2. I

In these algorithms, we have two independent processes going on "simultane
ously," the buffering control program and the computation program. These pro
cesses are, in fact, coroutines, which we will call CONTROL and COMPUTE. Coroutine
CONTROL jumps to COMPUTE in steps Bl and B4; coroutine COMPUTE jumps to
CONTROL by interspersing "jump ready" instructions at sporadic intervals in its
program.

Coding this algorithm for MIX is extremely simple. For convenience, assume
that the buffers are linked so that the word preceding each one is the address of
the next; for example, with N = 3 buffers we have CONTENTS (BUF1 - 1) = BUF2,
CONTENTS(BUF2 - 1) = BUF3, and CONTENTS(BUF3 - 1) = BUF1.

Program A (ASSIGN, a subroutine within the COMPUTE coroutine). rl4
CURRENT; rl6 n; calling sequence is JMP ASSIGN; on exit, rX contains NEXTG.

ASSIGN ST J 9F Subroutine linkage
1H JRED CONTROL (U) Al. Wait for n < N.

CMP6 =N=
JE 1B
LD4 NEXTG A2. CURRENT +--- NEXTG.

LDX -1,4 A3. Advance NEXTG.

STX NEXTG
9H JMP * Exit. I

1.4.4 INPUT AND OUTPUT 223

ASSIGN

Al. A2.
Wait for n<N CURRENT t-NEXTG

BUFFER CONTROL

B3.
Initiate I/O

A3.
Advance NEXTG

B4.
Compute

B5.
Advance

NEXTR

Fig. 25. Algorithms for multiple buffering.

RELEASE

B6.
Decrease n

Program R (RELEASE, code used within the COMPUTE coroutine). rl6 n. This
short code is to be inserted wherever RELEASE is desired.

INC6 1 Rl. Increase n.
JRED CONTROL(U) Possible jump to CONTROL coroutine I

Program B (The CONTROL coroutine). rl6 n, rl5 NEXTR.

CONT! JMP COMPUTE Bl. Compute.
1H J6Z *-1 B2. n = O?

IN 0, 5 (U) B3. Initiate I/O.
JMP COMPUTE B4. Compute.
LD5 -1, 5 BS. Advance NEXTR.
DEC6 1 B6. Decrease n.
JMP 1B I

Besides the code above, we also have the usual coroutine linkage

CONTROL STJ COMPUTEX COMPUTE STJ CONTROLX

CONTROLX JMP CONT! COMPUTEX JMP COMP!

and the instruction "JRED CONTROL (U)" should be placed within COMPUTE about
once in every fifty instructions.

Thus the programs for multiple buffering essentially amount to only seven
instructions for CONTROL, eight for ASSIGN, and two for RELEASE.

It is perhaps remarkable that exactly the same algorithm will work for both
input and output. What is the difference -how does the control routine know
whether to anticipate (for input) or to lag behind (for output)? The answer lies
in the initial conditions: For input we start out with n = N (all buffers red) and
for output we start out with n = 0 (all buffers green). Once the routine has been
started properly, it continues to behave as either an input process or an output
process, respectively. The other initial condition is that NEXTR = NEXTG, both
pointing at one of the buffers.

At the conclusion of the program, it is necessary to stop the I/O process (if
it is input) or to wait until it is completed (for output); details are left to the
reader (see exercises 12 and 13).

224 BASIC CONCEPTS 1.4.4

It is important to ask what is the best value of N to use. Certainly as N
gets larger, the speed of the program will not decrease, but it will not increase
indefinitely either and so we come to a point of diminishing returns. Let us refer
again to the quantities C and T, representing computation time between I/O
operators and the I/O time itself. More precisely, let C be the amount of time
between successive ASSIGN&", and let T be the amount of time needed to transmit
one block. If C is always greater than T, then N = 2 is adequate, for it is not
hard to see that with two buffers we keep the computer busy at all times. If
C is always less than T, then again N = 2 is adequate, for we keep the I/O
device busy at all times (except when the device has special timing constraints
as in exercise 19). Larger values of N are therefore useful chiefly when C varies
between small values and large values; the average number of consecutive small
values, plus 1, may be right for N, if the large values of Care significantly longer
than T. (However, the advantage of buffering is virtually nullified if all input
occurs at the beginning of the program and if all output occurs at the end.)
If the time between ASSIGN and RELEASE is always quite small, the value of N
may be decreased by 1 throughout the discussion above, with little effect on
running time.

This approach to buffering can be adapted in many ways, and we will
mention a few of them briefly. So far we have assumed that only one I/O device
was being used; in practice, of course, several devices will be in use at the
same time.

There are several ways to approach the subject of multiple units. In the
simplest case, we can have a separate circle of buffers for each device. Each
unit will have its own values of n, N, NEXTR, NEXTG, and CURRENT, and its own
CONTROL coroutine. This will give efficient buffering action simultaneously on
every I/O device.

It is also possible to "pool" buffer areas that are of the same size, so that two
or more devices share buffers from a common list. This can be handled by using
the linked memory techniques of Chapter 2, with all red input buffers linked
together in one list and all green output buffers linked together in another. It
becomes necessary to distinguish between input and output in this case, and
to rewrite the algorithms without using n and N. The algorithm may get
irrevocably stuck, if all buffers in the pool are filled with anticipated input;
so a check should be made that there is always at least one buffer (preferably
one for each device) that is not input-green; only if the COMPUTE routine is stalled
at step Al for some input device should we allow input into the final buffer of
the pool from that device.

Some machines have additional constraints on the use of input-output units,
so that it is impossible to be transmitting data from certain pairs of devices at
the same time. (For example, several units might be attached to the computer by
means of a single "channel.") This constraint also affects our buffering routine;
when we must choose which I/O unit to initiate next, how is the choice to be
made? This is called the problem of "forecasting." The best forecasting rule for
the general case would seem to give preference to the unit whose buffer circle

1.4.4 INPUT AND OUTPUT 225

Fig. 26. Input and output from the same circle.

has the largest value of n/ N, assuming that the number of buffers in the circles
has been chosen wisely.

Let's conclude this discussion by taking note of a useful method for doing
both input and output from the same buffer circle, under certain conditions.
Figure 26 introduces a new kind of buffer, which has the color purple. In this
situation, green buffers represent anticipated input; the program ASSIGNs and
a green buffer becomes yellow, then upon RELEASE it turns red and represents
a block to be output. The input and output processes follow around the circle
independently as before, except that now we turn red buffers to purple after
the output is done, and convert purple to green on input. It is necessary to
ensure that none of the pointers NEXTG, NEXTR, NEXTP pass each other. At
the instant shown in Fig. 26, the program is computing between ASSIGN and
RELEASE, while accessing the yellow buffer; simultaneously, input is going into
the buffer indicated by NEXTP; and output is coming from the buffer indicated
by NEXTR.

EXERCISES
1. [05] Would sequence (3) still be correct if the MOVE instructions were placed before

the JBUS instruction instead of after it? What if the MOVE instructions were placed after
the IN command?

2. [10] The instructions "OUT 1000(6); JBUS *(6)" may be used to output a tape
block in an unbuffered fashion, just as the instructions (1) did this for input. Give a
method analogous to (2) and (3) that buffers this output, by using MOVE instructions
and an auxiliary buffer in locations 2000-2099.

~ 3. [22] Write a buffer-swapping output subroutine analogous to (4). The subroutine,
called WORDOUT, should store the word in rA as the next word of output, and if a buffer
is full it should write 100 words onto tape unit V. Index register 5 should be used to
refer to the current buffer position. Show the layout of buffer areas and explain what
instructions (if any) are necessary at the beginning and end of the program to ensure
that the first and last blocks are properly written. The final block should be filled out
with zeros if necessary

4. [M20] Show that if a program refers to a single 1/0 device, we might be able to
cut the running time in half by buffering the 1/0, in favorable circumstances; but we
can never decrease the running time by more than a factor of two, with respect to the
time taken by unbuffered 1/0.

226 BASIC CONCEPTS 1.4.4

Output 0 0 0 0 0 0 0 0 0 0

unit

Com- AAAA A A A A AA

puter 1111111· --H ..
R R R RRR R R R R

M
J-<

~
;::l

co
C'l

J-<

~
;::l

co
,...,

J-<

~
;::l

co
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 lt") 0 lt") 0 lt") 0 lt") 0 lt") 0 lt") 0 lt") 0 lt") 0 lt")

0 0 ,..., ,..., C'l C'l M M "tj< "tj< lt") lt") '° '° t-- t-- 00 00

Time--+

Green Red I Device active

t~
Assign

buffer buffer
Legend Release

Yellow Red buffer
: Device idle Initiate output

buffer being output

Fig. 27. Output with three buffers (see exercise 9).

~ 5. [M21] Generalize the situation of the preceding exercise to the case when the

program refers ton I/0 devices instead of just one.

6. [12] What instructions should be placed at the beginning of a program so that

the WORDIN subroutine (4) gets off to the right start? (For example, index register 6
must be set to something.)

7. [22] Write a subroutine called WORD IN that is essentially like (4) except that it
does not make use of a sentinel.

8. [11] The text describes a hypothetical input scenario that leads from Fig. 23
through parts (a), (b), and (c) of Fig. 24. Interpret the same scenario under the

assumption that output to the line printer is being done, instead of input from cards.

(For example, what things are happening at the time shown in Fig. 23?)

~ 9. [21] A program that leads to the buffer contents shown in Fig. 27 may be char-
acterized by the following list of times:

A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000,
A, 7000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000,
A, 1000, R, 1000, A, 2000, R, 1000.

This list means "assign, compute for lOOOu, release, compute for lOOOu, assign, ... ,

compute for 2000u, release, compute for lOOOu." The computation times given do not

include any intervals during which the computer might have to wait for the output

device to catch up (as at the fourth "assign" in Fig. 27). The output device operates
at a speed of 7500u per block.

1.4.4 INPUT AND OUTPUT 227

The following chart specifies the actions shown in Fig. 27 as time passes:

Time Action Time Action

0 ASSIGN(BUF1) 38500 OUT BUF3
1000 RELEASE, OUT BUF1 40000 ASSIGN(BUF1)
2000 ASSIGN(BUF2) 46000 Output stops.
3000 RELEASE 47000 RELEASE, OUT BUF1
4000 ASSIGN(BUF3) 52000 ASSIGN(BUF2)
5000 RELEASE 54500 Output stops.
6000 ASSIGN (wait) 59000 RELEASE, OUT BUF2
8500 BUF1 assigned, OUT BUF2 64000 ASSIGN(BUF3)
9500 RELEASE 65000 RELEASE

10500 ASSIGN (wait) 66000 ASSIGN(BUF1)
16000 BUF2 assigned, OUT BUF3 66500 OUT BUF3
23000 RELEASE 68000 RELEASE
23500 OUT BUF1 69000 Computation stops.
28000 ASSIGN(BUF3) 74000 OUT BUF1
31000 OUT BUF2 81500 Output stops.
35000 RELEASE

The total time required was therefore 81500u; the computer was idle from 6000-8500,
10500-16000, and 69000-81500, or 20500u altogether; the output unit was idle from
0-1000, 46000-4 7000, and 54500-59000, or 6500u.

Make a time-action chart like the above for the same program, assuming that there
are only two buffers.

10. [21] Repeat exercise 9, except with four buffers.

11. [21] Repeat exercise 9, except with just one buffer.

12. [24] Suppose that the multiple buffering algorithm in the text is being used for
card input, and suppose the input is to terminate as soon as a card with "." in column
80 has been read. Show how the CONTROL coroutine (Algorithm B and Program B)
should be changed so that input is shut off in this way.

13. [20] What instructions should be included at the end of the COMPUTE coroutine
in the text, if the buffering algorithms are being applied to output, to ensure that all
information has been output from the buffers?

~ 14. [20] Suppose the computational program does not alternate between ASSIGN and
RELEASE, but instead gives the sequence of actions ... ASSIGN ... ASSIGN ... RELEASE ...
RELEASE. What effect does this have on the algorithms described in the text? Is it
possibly useful?

~ 15. [22] Write a complete MIX program that copies 100 blocks from tape unit 0 to
tape unit 1, using just three buffers. The program should be as fast as possible.

16. [29] Formulate the "green-yellow-red-purple" algorithm, suggested by Fig. 26,
in the manner of the algorithms for multiple buffering given in the text, using three
coroutines (one to control the input device, one for the output device, and one for the
computation).

17. [40] Adapt the multiple-buffer algorithm to pooled buffers; build in methods that
keep the process from slowing down, due to too much anticipated input. Try to make
the algorithm as elegant as possible. Compare your method to nonpooling methods,
applied to real-life problems.

228 BASIC CONCEPTS 1.4.4

~ 18. [30] A proposed extension of MIX allows its computations to be interrupted, as
explained below. Your task in this exercise is to modify Algorithms and Programs A,
R, and B of the text so that they use these interrupt facilities instead of the "JRED"
instructions.

The new MIX features include an additional 3999 memory cells, locations -3999
through -0001. The machine. has two internal "states," normal state and control state.
In normal state, locations -3999 through -0001 are not admissible memory locations
and the MIX computer behaves as usual. When an "interrupt" occurs, due to conditions
explained later, locations -0009 through -0001 are set equal to the contents of MIX's
registers: rA in -0009; rll through rl6 in -0008 through -0003; rX in -0002; and rJ,
the overflow toggle, the comparison indicator, and the location of the next instruction
are stored in -0001 as

the machine enters control state, at a location depending on the type of interrupt.
Location -0010 acts as a "clock": Every lOOOu of time, the number appearing

in this location is decreased by one, and if the result is zero an interrupt to location
-0011 occurs.

The new MIX instruction "INT" (C = 5, F = 9) works as follows: (a) In normal state,
an interrupt occurs to location -0012. (Thus a programmer may force an interrupt,
to communicate with a control routine; the address of INT has no effect, although the
control routine may use it for information to distinguish between types of interrupt.)
(b) In control state, all MIX registers are loaded from locations -0009 to -0001, the
computer goes into normal state, and it resumes execution. The execution time for INT
is 2u in each case.

An IN, OUT, or IOC instruction given in control state will cause an interrupt to occur
as soon as the I/O operation is completed. The interrupt goes to location -(0020+
unit number).

No interrupts occur while in control state; any interrupt conditions are "saved"
until after the next INT operation, and interrupt will occur after one instruction of the
normal state program has been performed.

~ 19. [M28] -Special considerations arise when input or output involves short blocks on
a rotating device like a magnetic disk. Suppose a program works with n 2'.: 2 consecutive
blocks of information in the following way: Block k begins to be input at time tk, where
ti = 0. It is assigned for processing at time Uk 2'.: tk + T and released from its buffer at
time Vk = uk + C. The disk rotates once every P units of time, and its reading head
passes the start of a new block every L units; so we must have tk = (k-l)L (modulo P).
Since the processing is sequential, we must also have Uk 2'.: Vk-i for 1 < k ::=; n. There
are N buffers, hence tk 2'.: Vk-N for N < k :::; n.

How large does N have to be so that the finishing time Vn has its minimum possible
value, T + C + (n - 1) max(L, C)? Give a general rule for determining the smallest
such N. Illustrate your rule when L = 1, P = 100, T = .5, n = 100, and (a) C = .5;
(b) C = 1.0; (c) C = 1.01; (d) C = 1.5; (e) C = 2.0; (f) C = 2.5; (g) C = 10.0;
(h) c = 50.0; (i) c = 200.0.

1.4.5 HISTORY AND BIBLIOGRAPHY 229

1.4.5. History and Bibliography
Most of the fundamental techniques described in Section 1.4 have been developed
independently by a number of different people, and the exact history of the ideas
will probably never be known. An attempt has been made to record here the
most important contributions to the history, and to put them in perspective.

Subroutines were the first labor-saving devices invented for programmers.
In the 19th century, Charles Babbage envisioned a library of routines for his
Analytical Engine [see Charles Babbage and His Calculating Engines, edited by
Philip and Emily Morrison (Dover, 1961), 56]; and we might say that his dream
came true in 1944 when Grace M. Hopper wrote a subroutine for computing
sin x on the Harvard Mark I calculator [see Mechanization of Thought Processes
(London: Nat. Phys. Lab., 1959), 164]. However, these were essentially "open
subroutines," meant to be inserted into a program where needed instead of being
linked up dynamically. Babbage's planned machine was controlled by sequences
of punched cards, as on the Jacquard loom; the Mark I was controlled by a
number of paper tapes. Thus they were quite different from today's stored
program computers.

Subroutine linkage appropriate to stored-program machines, with the return
address supplied as a parameter, was discussed by Herman H. Goldstine and
John von Neumann in their widely circulated monograph on programming,
written during 1946 and 1947; see von Neumann's Collected Works 5 (New York:
Macmillan, 1963), 215-235. The main routine of their programs was responsible
for storing parameters into the body of the subroutine, instead of passing the
necessary information in registers. In England, A. M. Turing had designed
hardware and software for subroutine linkage as early as 1945; see Proceedings of
a Second Symposium on Large-Scale Digital Calculating Machinery (Cambridge,
Mass.: Harvard University, 1949), 87-90; B. E. Carpenter and R. W. Doran,
editors, A. M. Turing's ACE Report of 1946 and Other Papers (Cambridge,
Mass.: MIT Press, 1986), 35-36, 76, 78-79. The use and construction of a
very versatile subroutine library is the principal topic of the first textbook of
computer programming, The Preparation of Programs for an Electronic Digital
Computer, by M. V. Wilkes, D. J. Wheeler, and S. Gill, 1st ed. (Reading, Mass.:
Addison-Wesley, 1951).

The word "coroutine" was coined by M. E. Conway in 1958, after he had
developed the concept, and he first applied it to the construction of an assembly
program. Coroutines were independently studied by J. Erdwinn and J. Merner,
at about the same time; they wrote a paper entitled "Bilateral Linkage," which
was not then considered sufficiently interesting to merit publication, and un
fortunately no copies of that paper seem to exist today. The first published
explanation of the coroutine concept appeared much later in Conway's article
"Design of a Separable Transition-Diagram Compiler," CACM 6 (1963), 396-
408. Actually a primitive form of coroutine linkage had already been noted briefly
as a "programming tip" in an early UNIVAC publication [The Programmer 1, 2
(February 1954), 4]. A suitable notation for coroutines in ALGOL-like languages
was introduced in Dahl and Nygaard's SIMULA I [CACM 9 (1966), 671-678],

230 BASIC CONCEPTS 1.4.5

and several excellent examples of coroutines (including replicated coroutines)
appear in the book Structured Programming by 0.-J. Dahl, E.W. Dijkstra, and
C. A. R. Hoare, Chapter 3.

The first interpretive routine may be said to be the "Universal Turing
Machine," a Turing machine capable of simulating any other Turing machines.
Turing machines are not actual computers; they are theoretical constructions
used to prove that certain problems are unsolvable by algorithms. Interpretive
routines in the conventional sense were mentioned by John Mauchly in his
lectures at the Moore School in 1946. The most notable early interpreters, chiefly
intended to provide a convenient means of doing floating point arithmetic, were
certain routines for the Whirlwind I (by C. W. Adams and others) and for the
Illiac I (by D. J. Wheeler and others). Turing took a part in this development
also; interpretive systems for the Pilot ACE computer were written under his
direction. For references to the state of interpreters in the early fifties, see
the article "Interpretative Sub-routines" by J. M. Bennett, D. G. Prinz, and
M. L. Woods, Proc. ACM Nat. Conf. (1952), 81-87; see also various papers
in the Proceedings of the Symposium on Automatic Programming for Digital
Computers (1954), published by the Office of Naval Research, Washington, D.C.

The most extensively used early interpretive routine was probably John
Backus's "IBM 701 Speedcoding system" [see JACM 1 (1954), 4-6]. This
interpreter was slightly modified and skillfully rewritten for the IBM 650 by
V. M. Wolontis and others of the Bell Telephone Laboratories; their routine,
called the "Bell Interpretive System," became extremely popular. The IPL
interpretive systems, which were designed beginning in 1956 by A. Newell, J. C.
Shaw, and H. A. Simon for applications to quite different problems (see Section
2.6), were used extensively for list processing. Modern uses of interpreters, as
mentioned in the introduction to Section 1.4.3, are often mentioned in passing
in the computer literature; see the references listed in that section for articles
that discuss interpreters in somewhat more detail.

The first tracing routine was developed by Stanley Gill in 1950; see his
interesting article in Proceedings of the Royal Society of London, series A,
206 (1951), 538-554. The text by Wilkes, Wheeler, and Gill mentioned above
includes several programs for tracing. Perhaps the most interesting of them is
subroutine C-10 by D. J. Wheeler, which includes a provision for suppressing
the trace upon entry to a library subroutine, executing the subroutine at full
speed, then continuing the trace. Published information about trace routines
is quite rare in the general computer literature, primarily because the methods
are inherently oriented to a particular machine. The only other early reference
known to the author is H. V. Meek, "An Experimental Monitoring Routine
for the IBM 705," Proc. Western Joint Computer Conf. (1956), 68-70, which
discusses a trace routine for a machine on which the problem was particularly
difficult. Nowadays the emphasis on trace routines has shifted to software that
provides selective symbolic output and measurements of program performance;
one of the best such systems was developed by E. Satterthwaite, and described
in Software Practice & Experience 2 (1972), 197-217.

1.4.5 HISTORY AND BIBLIOGRAPHY 231

Buffering was originally performed by computer hardware, in a manner
analogous to the code 1.4.4-(3); an internal buffer area inaccessible to the pro
grammer played the role of locations 2000-2099, and the instructions 1.4.4-(3)
were implicitly performed behind the scenes when an input command was given.
During the late 1940s, software buffering techniques that are especially useful for
sorting were developed by early programmers of the UNIVAC (see Section 5.5).
For a good survey of the prevailing philosophy towards I/O in 1952, see the
proceedings of the Eastern Joint Computer Conference held in that year.

The DYSEAC computer [Alan L. Leiner, JACM 1 (1954), 57-81] introduced
the idea of input-output devices communicating directly with memory while a
program is running, then interrupting the program upon completion. Such a
system implies that buffering algorithms had been developed, but the details
went unpublished. The first published reference to buffering techniques in the
sense we have described gives a highly sophisticated approach; see 0. Mock
and C. J. Swift, "Programmed Input-Output Buffering," Proc. ACM Nat. Conf.
(1958), paper 19, and JACM 6 (1959), 145-151. (The reader is cautioned that
both articles contain a good deal of local jargon, which may take some time
to understand, but neighboring articles in JACM 6 will help.) An interrupt
system that enabled buffering of input and output was independently developed
by E. W. Dijkstra in 1957 and 1958, in connection with B. J. Loopstra's and
C. S. Scholten's X-1 computer [see Comp. J. 2 (1959), 39-43]. Dijkstra's doc
toral thesis, "Communication with an Automatic Computer" (1958), discussed
buffering techniques, which in this case involved very long circles of buffers since
the routines were primarily concerned with paper tape and typewriter I/O;
each buffer contained either a single character or a single number. He later
developed the ideas into the important general notion of semaphores, which are
basic to the control of all sorts of concurrent processes, not just input-output
[see Programming Languages, ed. by F. Genuys (Academic Press, 1968), 43-112;
BIT 8 (1968), 174-186; Acta Informatica 1 (1971), 115-138]. The paper "lnput
Output Buffering and FORTRAN" by David E. Ferguson, JACM 7 (1960), 1-9,
describes buffer circles and gives a detailed description of simple buffering with
many units at once.

About 1000 instructions is a reasonable upper limit
for the complexity of the problems new envisioned.

- HERMAN GOLDSTINE and JOHN VON NEUMANN (1946)

CHAPTER TWO

2.1. INTRODUCTION

INFORMATION STRUCTURES

I think that I shall never see
A poem lovely as a tree.

- JOYCE KILMER (1913)

Yea, from the table of my memory
I'll wipe away all trivial fond records.

- Hamlet (Act I, Scene 5, Line 98)

COMPUTER PROGRAMS usually operate on tables of information. In most cases
these tables are not simply amorphous masses of numerical values; they involve
important structural relationships between the data elements.

In its simplest form, a table might be a linear list of elements, when its
relevant structural properties might include the answers to such questions as:
Which element is first in the list? Which is last? Which elements precede and
follow a given one? How many elements are in the list? A lot can be said about
structure even in this apparently simple case (see Section 2.2).

In more complicated situations, the table might be a two-dimensional array
(a matrix or grid, having both a row and a column structure), or it might be
an n-dimensional array for higher values of n; it might be a tree structure,
representing hierarchical or branching relationships; or it might be a complex
multilinked structure with a great many interconnections, such as we may find
in a human brain.

In order to use a computer properly, we need to understand the structural
relationships present within data, as well as the basic techniques for representing
and manipulating such structure within a computer.

The present chapter summarizes the most important facts about information
structures: the static and dynamic properties of different kinds of structure;
means for storage allocation and representation of structured data; and efficient
algorithms for creating, altering, accessing, and destroying structural informa
tion. In the course of this study, we will also work out several important examples
that illustrate the application of such methods to a wide variety of problems.
The examples include topological sorting, polynomial arithmetic, discrete system
simulation, sparse matrix transformation, algebraic formula manipulation, and
applications to the writing of compilers and operating systems. Our concern
will be almost entirely with structure as represented inside a computer; the

232

2.1 INTRODUCTION 233

conversion from external to internal representations is the subject of Chapters 9

and 10.
Much of the material we will discuss is often called "List processing," since

a number of programming systems such as LISP have been designed to facilitate

working with general kinds of structures called Lists. (When the word "list"

is capitalized in this chapter, it is being used in a technical sense to denote

a particular type of structure that is highlighted in Section 2.3.5.) Although

List processing systems are useful in a large number of situations, they impose

constraints on the programmer that are often unnecessary; it is usually better to

use the methods of this chapter directly in one's own programs, tailoring the data

format and the processing algorithms to the particular application. Many people

unfortunately still feel that List processing techniques are quite complicated (so

that it is necessary to use someone else's carefully written interpretive system or

a prefabricated set of subroutines), and that List processing must be done only

in a certain fixed way. We will see that there is nothing magic, mysterious, or

difficult about the methods for dealing with complex structures; these techniques

are an important part of every programmer's repertoire, and we can use them

easily whether we are writing a program in assembly language or in an algebraic

language like FORTRAN, C, or JAVA.

We will illustrate methods of dealing with information structures in terms

of the MIX computer. A reader who does not care to look through detailed

MIX programs should at least study the ways in which structural information is

represented in MIX's memory.
It is important at this point to define several terms and notations that we

will be using frequently from now on. The information in a table consists of a

set of nodes (called "records," "entities," or "beads" by some authors); we will

occasionally say "item" or "element" instead of "node." Each node consists of

one or more consecutive words of the computer memory, divided into named

parts called fields. In the simplest case, a node is just one word of memory, and

it has just one field comprising that whole word. As a more interesting example,

suppose the elements of our table are intended to represent playing cards; we

might have two-word nodes broken into five fields, TAG, SUIT, RANK, NEXT, and

TITLE:
+ TAG I SUIT I RANK I NEXT

+ TITLE

(This format reflects the contents of two MIX words. Recall that a MIX word

consists of five bytes and a sign; see Section 1.3.l. In this example we assume

that the signs are + in each word.) The address of a node, also called a link,

pointer, or reference to that node, is the memory location of its first word. The

address is often taken relative to some base location, but in this chapter for

simplicity we will take the address to be an absolute memory location.

The contents of any field within a node may represent numbers, alphabetic

characters, links, or anything else the programmer may desire. In connection

with the example above, we might wish to represent a pile of cards that might

234 INFORMATION STRUCTURES 2.1

appear in a game of solitaire: TAG= 1 means that the card is face down, TAG= 0
means that it is face up; SUIT = 1, 2, 3, or 4 for clubs, diamonds, hearts, or
spades, respectively; RANK = 1, 2, ... , 13 for ace, deuce, ... , king; NEXT is a link

to the card below this one in the pile; and TITLE is a five-character alphabetic

name of this card, for use in printouts. A typical pile might look like this:

Actual cards

3

• 2
+ • • +

c;

Computer representation

100:

101:

386:

387:

242:

243:

+ 1 1 10

+ u 1 0

+ 0 4 3

+ u u 3

+ 0 2 2

+ u u 2

A

u c

100

u s

386

u D

The memory locations in the computer representation are shown here as 100,
386, and 242; they could have been any other numbers as far as this example
is concerned, since each card links to the one below it. Notice the special link
"A" in node 100; we use the capital Greek letter Lambda to denote the null link,
the link to no node. The null link A appears in node 100 since the 10 of clubs
is the bottom card of the pile. Within the machine, A is represented by some
easily recognizable value that cannot be the address of a node. We will generally
assume that no node appears in location O; consequently, A will almost always
be represented as the link value 0 in MIX programs.

The introduction of links to other elements of data is an extremely important
idea in computer programming; links are the key to the representation of complex
structures. When displaying computer representations of nodes it is usually
convenient to represent links by arrows, so that example (2) would appear thus:

TOP 4 : I ~ ! ~ ! ~ ! u Yti : I ~ ! ~ ! : ! u ~ : I ~ ! : ! 10° ! u W= (3)

The actual locations 242, 386, and 100 (which are irrelevant anyway) no longer
appear in representation (3). Electrical circuit notation for a "grounded" wire
is used to indicate a null link, shown here at the right of the diagram. Notice
also that (3) indicates the top card by an arrow from "TOP"; here TOP is a link

variable, often called a pointer variable, namely a variable whose value is a link.
All references to nodes in a program are made directly through link variables (or
link constants), or indirectly through link fields in other nodes.

2.1 INTRODUCTION 235

Now we come to the most important part of the notation, the means of
referring to fields within nodes. This is done simply by giving the name of the
field followed by a link to the desired node in parentheses; for example in (1),
(2), and (3) we have

RANK(100) = 10;

TITLE(TOP) = "uu2uD";

SUIT (TOP) = 2;

RANK (NEXT (TOP)) = 3.

The reader should study these examples carefully, since such field notations
will be used in many algorithms of this chapter and the following chapters. To
make the ideas clearer, we will now state a simple algorithm for placing a new
card face up on top of the pile, assuming that NEWCARD is a link variable whose
value is a link to the new card:

Al. Set NEXT(NEWCARD) +- TOP. (This puts the appropriate link into the new
card node.)

A2. Set TOP +- NEWCARD. (This keeps TOP pointing to the top of the pile.)

A3. Set TAG (TOP) +- 0. (This marks the card as "face up.") I

Another example is the following algorithm, which counts the number of cards
currently in the pile:

Bl. Set N +- 0, X +-TOP. (Here N is an integer variable, Xis a link variable.)

B2. If X =A, stop; N is the number of cards in the pile.

B3. Set N +- N + 1, X +- NEXT(X), and go back to step B2. I

Notice that we are using symbolic names for two quite different things in
these algorithms: as names of variables (TOP, NEWCARD, N, X) and as names of
fields (TAG, NEXT). These two usages must not be confused. If F is a field name
and L -=fa A is a link, then F (L) is a variable; but F itself is not a variable - it
does not possess a value unless it is qualified by a nonnull link.

Two further notations are used, to convert between addresses and the values
stored there, when we are discussing low-level machine details:

a) CONTENTS always denotes a full-word field of a one-word node. Thus
CONTENTS (1000) denotes the value stored in memory location 1000; it is a
variable having this value. If V is a link variable, CONTENTS (V) denotes the
value pointed to by V (not the value V itself).

b) If V is the name of some value held in a memory cell, LDC (V) denotes the
address of that cell. Consequently, if V is a variable whose value is stored in a
full word of memory, we have CONTENTS(LOC(V)) = V.

It is easy to transform this notation into MIXAL assembly language code,
although MIXAL's notation is somewhat backwards. The values of link variables
are put into index registers, and the partial-field capability of MIX is used to refer

236 INFORMATION STRUCTURES 2.1

to the desired field. For example, Algorithm A above could be written thus:

NEXT EQU 4:5 Definition of the NEXT
TAG EQU 1:1 and TAG fields for the assembler

LD1 NEW CARD Al. rll +---NEWGARD.
LOA TOP rA +---TOP. (5)
STA O,t(NEXT) NEXT(rll) +--- rA.
ST1 TOP A2. TOP +--- rll.
STZ 0,1(TAG) A3. TAG(rll) +--- 0. I

The ease and efficiency with which these operations can be carried out in a
computer is the primary reason for the importance of the "linked memory"
concept.

Sometimes we have a single variable that denotes a whole node; its value is
a sequence of fields instead of just one field. Thus we might write

CARD +--- NODE (TOP) , (6)

where NODE is a field specification just like CONTENTS, except that it refers to an
entire node, and where CARD is a variable that assumes structured values like
those in (i). If there are c words in a node, the notation (6) is an abbreviation
for the c low-level assignments

CONTENTS(LOC(CARD) + j) +--- CONTENTS(TOP + j), 0 ~ j < c. (7)

There is an important distinction between assembly language and the no
tation used in algorithms. Since assembly language is close to the machine's
internal language, the symbols used in MIXAL programs stand for addresses
instead of values. Thus in the left-hand columns of (5), the symbol TOP actually
denotes the address where the pointer to the top card appears in memory; but
in (6) and (7) and in the remarks at the right of (5), it denotes the value of
TOP, namely the address of the top card node. This difference between assembly
language and higher-level language is a frequent source of confusion for beginning
programmers, so the reader is urged to work exercise 7. The other exercises also
provide useful drills on the notational conventions introduced in this section.

EXERCISES

1. [04] In the situation depicted in (3), what is the value of (a) SUIT(NEXT(TOP));
(b) NEXT(NEXT(NEXT(TOP)))?

2. [10] The text points out that in many cases CDNTENTS(LOC(V)) = V. Under what
conditions do we have LDC (CONTENTS (V)) = V?

3. [11] Give an algorithm that essentially undoes the effect of Algorithm A: It
removes the top card of the pile (if the pile is not empty) and sets NEWGARD to the
address of this card.

4. [18] Give an algorithm analogous to Algorithm A, except that it puts the new
card face down at the bottom of the pile. (The pile may be empty.)

~ 5. [21] Give an algorithm that essentially undoes the effect of exercise 4: Assuming
that the pile is not empty and that its bottom card is face down, your algorithm should

.1 INTRODUCTION 237

;move the bottom card and make NEWGARD link to it. (This algorithm is sometimes
:tlled "cheating" in solitaire games.)

6. [06] In the playing card example, suppose that CARD is the name of a variable
rhose value is an entire node as in (6). The operation CARD +--- NODE(TOP) sets the
elds of CARD respectively equal to those of the top of the pile. After this operation,
rhich of the following notations stands for the suit of the top card? (a) SUIT (CARD);
b) SUIT(LOC(CARD)); (c) SUIT(CONTENTS(CARD)); (d) SUIT(TOP)?

7. [04] In the text's example MIX program, (5), the link variable TOP is stored in the
!IX computer word whose assembly language name is TOP. Given the field structure (1),
vhich of the following sequences of code brings the quantity NEXT (TOP) into register A?
~xplain why the other sequence is incorrect.

a) LDA TOP (NEXT) b) LD1 TOP
LDA 0, 1 (NEXT)

8. [18] Write a MIX program corresponding to Algorithm B.

9. [23] Write a MIX program that prints out the alphabetic names of the current
:ontents of the card pile, starting at the top card, with one card per line, and with
parentheses around cards that are face down.

238 INFORMATION STRUCTURES 2.2

2.2. LINEAR LISTS

2.2.1. Stacks, Queues, and Deques

DATA USUALLY HAS much more structural information than we actually want to
represent directly in a computer. For example, each "playing card" node in the

preceding section had a NEXT field to specify what card was beneath it in the pile,
but we provided no direct way to find what card, if any, was above a given card,
or to find what pile a given card was in. And of course we totally suppressed
most of the characteristic features of real playing cards: the details of the design
on the back, the relation to other objects in the room where the game was being
played, the individual molecules within the cards, etc. It is conceivable that such
structural information would be relevant in certain computer applications, but
obviously we never want to store all of the structure that is present in every
situation. Indeed, for most card-playing situations we would not need all of the
facts retained in the earlier example; the TAG field, which tells whether a card is
face up or face down, will often be unnecessary.

We must decide in each case how much structure to represent in our tables,
and how accessible to make each piece of information. To make such decisions,
we need to know what operations are to be performed on the data. For each
problem considered in this chapter, therefore, we consider not only the data
structure but also the class of operations to be done on the data; the design of
computer representations depends on the desired function of the data as well as
on its intrinsic properties. Indeed, an emphasis on function as well as form is
basic to design problems in general.

In order to illustrate this point further, let's consider a related aspect of
computer hardware design. A computer memory is often classified as a "random
access memory," like MIX's main memory; or as a "read-only memory," which
is supposed to contain essentially constant information; or a "secondary bulk
memory," like MIX's disk units, which cannot be accessed at high speed al
though large quantities of information can be stored; or an "associative memory,"
more properly called a "content-addressed memory," for which information is
addressed by its value rather than by its location; and so on. The intended
function of each kind of memory is so important that it enters into the name of
the particular memory type; all of these devices are "memory" units, but the
purposes to which they are put profoundly influence their design and their cost.

A linear list is a sequence of n 2:: 0 nodes X [1], X [2], ... , X [n] whose
essential structural properties involve only the relative positions between items
as they appear in a line. The only things we care about in such structures are the
facts that, if n > 0, X [1] is the first node and X [n] is the last; and if 1 < k < n,

the kth node X [k] is preceded by X [k - 1] and followed by X [k + 1].

The operations we might want to perform on linear lists include, for example,
the following.

i) Gain access to the kth node of the list to examine and/or to change the
contents of its fields.

2.2.1 STACKS, QUEUES, AND DEQUES 239

ii) Insert a new node just before or after the kth node.
iii) Delete the kth node.
iv) Combine two or more linear lists into a single list.

v) Split a linear list into two or more lists.
vi) Make a copy of a linear list.

vii) Determine the number of nodes in a list.
viii) Sort the nodes of the list into ascending order based on certain fields of the

nodes.
ix) Search the list for the occurrence of a node with a particular value in some

field.

In operations (i), (ii), and (iii) the special cases k = 1 and k = n are of principal
importance, since the first and last items of a linear list may be easier to get at
than a general element is. We will not discuss operations (viii) and (ix) in this
chapter, since those topics are the subjects of Chapters 5 and 6, respectively.

A computer application rarely calls for all nine of these operations in their
full generality, so we find that there are many ways to represent linear lists
depending on the class of operations that are to be done most frequently. It
is difficult to design a single representation method for linear lists in which all
of these operations are efficient; for example, the ability to gain access to the
kth node of a long list for random k is comparatively hard to do if at the same
time we are inserting and deleting items in the middle of the list. Therefore we
distinguish between types of linear lists depending on the principal operations to
be performed, just as we have noted that computer memories are distinguished
by their intended applications.

Linear lists in which insertions, deletions, and accesses to values occur almost
always at the first or the last node are very frequently encountered, and we give
them special names:

A stack is a linear list for which all insertions and deletions (and usually all
accesses) are made at one end of the list.

A queue is a linear list for which all insertions are made at one end of the
list; all deletions (and usually all accesses) are made at the other end.

A deque ("double-ended queue") is a linear list for which all insertions and
deletions (and usually all accesses) are made at the ends of the list.

A deque is therefore more general than a stack or a queue; it has some properties
in common with a deck of cards, and it is pronounced the same way. We also
distinguish output-restricted or input-restricted deques, in which deletions or
insertions, respectively, are allowed to take place at only one end.

In some disciplines the word "queue" has been used in a much broader sense,
to describe any kind of list that is subject to insertions and deletions; the special
cases identified above are then called various "queuing disciplines." Only the
restricted use of the term "queue" is intended in this book, however, by analogy
with orderly queues of people waiting in line for service.

240 INFORMATION STRUCTURES

Fig. 1. A stack represented as a rail
way switching network.

2.2.1

Output from stack Input to stack

Sometimes it helps to understand the mechanism of a stack in terms of an
analogy from the switching of railroad cars, as suggested by E. W. Dijkstra (see
Fig. 1). A corresponding picture for deques is shown in Fig. 2.

This track closed on input-restricted deque

This track closed on output-restricted deque

Fig. 2. A deque represented as a railway switching network.

With a stack we always remove the "youngest" item currently in the list,
namely the one that has been inserted more recently than any other. With a
queue just the opposite is true: The "oldest" item is always removed; the nodes
leave the list in the same order as they entered it.

Many people who have independently realized the importance of stacks and
queues have given them otp.er names: Stacks have been called push-down lists,
reversion storages, cellars, nesting stores, piles, last-in-first-out ("LIFO") lists,
and even yo-yo lists. Queues are sometimes called circular stores or first-in-first
out ("FIFO") lists. The terms LIFO and FIFO have been used for many years
by accountants, as names of methods for pricing inventories. Still another term,
"shelf," has been applied to output-restricted deques, and input-restricted deques
have been called "scrolls" or "rolls." This multiplicity of names is interesting in
itself, since it is evidence for the importance of the concepts. The words stack
and queue are gradually becoming standard terminology; of all the other words
listed above, only "push-down list" is still reasonably common, particularly in
connection with automata theory.

Stacks arise quite frequently in practice. We might, for example, go through
a set of data and keep a list of exceptional conditions or things to do later; after
we're done with the original set, we can then do the rest of the processing by

2.2.1 STACKS, QUEUES, AND DEQUES 241

coming back to the list, removing entries until it becomes empty. (The "saddle
point" problem, exercise 1.3.2-10, is an instance of this situation.) Either a stack
or a queue will be suitable for such a list, but a stack is generally more convenient.

We all have "stacks" in our minds when we are solving problems: One problem
leads to another and this leads to another; we stack up problems and subproblems

and remove them as they are solved. Similarly, the process of entering and
leaving subroutines during the execution of a computer program has a stack-like
behavior. Stacks are particularly useful for the processing of languages with a
nested structure, like programming languages, arithmetic expressions, and the
literary German "Schachtelsatze." In general, stacks occur most frequently in
connection with explicitly or implicitly recursive algorithms, and we will discuss
this connection thoroughly in Chapter 8.

(a) Stack

Top

Next to top

Third from top

Fourth from top

Bottom

Delete

Front

Leftmost

Insert or
delete

Second Third

(b) Queue

Second Second
from left from right

(c) Deque

Fig. 3. Three important classes of linear lists.

Insert

Rear

Rightmost

Insert or
delete

Special terminology is generally used when algorithms refer to these struc
tures: We put an item onto the top of a stack, or take the top item off (see
Fig. 3a). The bottom of the stack is the least accessible item, and it will not be
removed until all other items have been deleted. (People often say that they push

an item down onto a stack, and pop the stack up when the top item is deleted.
This terminology comes from an analogy with the stacks of plates often found in
cafeterias. The brevity of the words "push" and "pop" has its advantages, but
these terms falsely imply a motion of the whole list within computer memory.
Nothing is physically pushed down; items are added onto the top, as in haystacks
or stacks of boxes.) With queues, we speak of the front and the rear of the queue;
things enter at the rear and are removed when they ultimately reach the front po
sition (see Fig. 3b). When referring to deques, we speak of the left and right ends
(Fig. 3c). The concepts of top, bottom, front, and rear are sometimes applied

242 INFORMATION STRUCTURES 2.2.l

to deques that are being used as stacks or queues, with no standard conventions

as to whether top, front, and rear should appear at the left or the right.

Thus we find it easy to use a rich variety of descriptive words from English in

our algorithms: "up-down" terminology for stacks, "waiting in line" terminology

for queues, and "left-right" terminology for deques.

A little bit of additional notation has proved to be convenient for dealing

with stacks and queues: We write

A-¢=x

(when A is a stack) to mean that the value x is inserted on top of stack A,

or (when A is a queue) to mean that x is inserted at the rear of the queue.

Similarly, the notation

is used to mean that the variable x is set equal to the value at the top of stack A

or at the front of queue A, and this value is deleted from A. Notation (2) is

meaningless when A is empty-that is, when A contains no values.

If A is a nonempty stack, we may write

top(A)

to denote its top element.

EXERCISES

1. [06] An input-restricted deque is a linear list in which items may be inserted at

one end but removed from either end; clearly an input-restricted deque can operate

either as a stack or as a queue, if we consistently remove all items from one of the two

ends. Can an output-restricted deque also be operated either as a stack or as a queue?

~ 2. [15] Imagine four railroad cars positioned on the input side of the track in Fig. 1,

numbered 1, 2, 3, and 4, from left to right. Suppose we perform the following sequence

of operations (which is compatible with the direction of the arrows in the diagram and

does not require cards to "jump over" other cars): (a) move car 1 into the stack; (b)

move car 2 into the stack; (c) move car 2 into the output; (d) move car 3 into the stack;

(e) move car 4 into the stack; (f) move car 4 into the output; (g) move car 3 into the

output; (h) move car 1 into the output.

As a result of these operations the original order of the cars, 1234, has been

changed into 2431. It is the purpose of this exercise and the following exercises to

examine what permutations are obtainable in such a manner from stacks, queues, or

deques.
If there are six railroad cars numbered 123456, can they be permuted into the

order 325641? Can they be permuted into the order 154623? (In case it is possible,

show how to do it.)

3. [25] The operations (a) through (h) in the previous exercise can be much more

concisely described by the code SSXSSXXX, where S stands for "move a car from the

input into the stack," and X stands for "move a car from the stack into the output."

Some sequences of S's and X's specify meaningless operations, since there may be no

cars available on the specified track; for example, the sequence SXXSSXXS cannot be

carried out, since we assume that the stack is initially empty.

2.2.l STACKS, QUEUES, AND DEQUES 243

Let us call a sequence of S's and X's admissible if it contains n S's and n X's, and

if it specifies no operations that cannot be performed. Formulate a rule by which it is

easy to distinguish between admissible and inadmissible sequences; show furthermore

that no two different admissible sequences give the same output permutation.

4. [M34] Find a simple formula for an, the number of permutations on n elements

that can be obtained with a stack like that in exercise 2.

~ 5. [M28] Show that it is possible to obtain a permutation P1P2 ... Pn from 12 ... n

using a stack if and only if there are no indices i < j < k such that Pi <Pk <Pi·

6. [00] Consider the problem of exercise 2, with a queue substituted for a stack.

What permutations of 12 ... n can be obtained with use of a queue?

~ 7. [25] Consider the problem of exercise 2, with a deque substituted for a stack.

(a) Find a permutation of 1234 that can be obtained with an input-restricted deque,

but it cannot be obtained with an output-restricted deque. (b) Find a permutation

of 1234 that can be obtained with an output-restricted deque but not with an input

restricted deque. [As a consequence of (a) and (b), there is definitely a difference

between input-restricted and output-restricted deques.] (c) Find a permutation of 1234

that cannot be obtained with either an input-restricted or an output-restricted deque.

8. [22] Are there any permutations of 12 ... n that cannot be obtained with the use

of a deque that is neither input- nor output-restricted?

9. [M20] Let bn be the number of permutations on n elements obtainable by the use

of an input-restricted deque. (Note that b4 = 22, as shown in exercise 7.) Show that

bn is also the number of permutations on n elements with an output-restricted deque.

10. [M25] (See exercise 3.) Let S, Q, and X denote respectively the operations of in

serting an element at the left, inserting an element at the right, and emitting an element

from the left, of an output-restricted deque. For example, the sequence QQXSXSXX

will transform the input sequence 1234 into 1342. The sequence SXQSXSXX gives the

same transformation.
Find a way to define the concept of an admissible sequence of the symbols S, Q,

and X, so that the following property holds: Every permutation of n elements that

is attainable with an output-restricted deque corresponds to precisely one admissible

sequence.

~ 11. [M40] As a consequence of exercises 9 and 10, the number bn is the number of

admissible sequences of length 2n. Find a closed form for the generating function

.L:n20 bnzn.

12. [HM34] Compute the asymptotic values of the quantities an and bn in exercises

4 and 11.

13. [M48] How many permutations of n elements are obtainable with the use of a

general deque? [See Rosenstiehl and Tarjan, J. Algorithms 5 (1984), 389-390, for an

algorithm that decides in O(n) steps whether or not a given permutation is obtainable.]

~ 14. [26] Suppose you are allowed to use only stacks as data structures. How can you

implement a queue efficiently with two stacks?

244 INFORMATION STRUCTURES 2.2.2

2.2.2. Sequential Allocation

The simplest and most natural way to keep a linear list inside a computer is to

put the list items in consecutive locations, one node after the other. Then we

will have
LDC (X [j + 1]) = LDC ex [j]) + c, .

where c is the number of words per node. (Usually c = 1. When c > 1, it is

sometimes more convenient to split a single list into c "parallel" lists, so that

the kth word of node X [j] is stored a fixed distance from the location of the

first word of X [j], depending on k. We will continually assume, however, that

adjacent groups of c words form a single node.) In general,

LDC (X [j]) =Lo+ cj,

where Lo is a constant called the base address, the location of an artificially

assumed node X [OJ .
This technique for representing a linear list is so obvious and well-known

that there seems to be no need to dwell on it at any length. But we will be

seeing many other "more sophisticated" methods of representation later on in

this chapter, and it is a good idea to examine the simple case first to see just

how far we can go with it. It is important to understand the limitations as well

as the power of the use of sequential allocation.
Sequential allocation is quite convenient for dealing with a stack. We simply

have a variable T called the stack pointer. When the stack is empty, we let T = 0.

To place a new element Y on top of the stack, we set

T +- T + 1; X [T] +- Y.

And when the stack is not empty, we can set Y equal to the top node and delete

that node by reversing the actions of (2):

Y +- X [T]; T+-T-1.

(Inside a computer it is usually most efficient to maintain the value cT instead

of T, because of (i). Such modifications are easily made, so we will continue our

discussion as though c = 1.)
The representation of a queue or a more general deque is a little trickier. An

obvious solution is to keep two pointers, say F and R (for the front and rear of

the queue), with F = R = 0 when the queue is empty. Then inserting an element

at the rear of the queue would be

R +-R+ 1; X [R] +- Y. (4)

Removing the front node (F points just below the front) would be

F +- F + 1; Y +- X [F]; if F = R, then set F +- R +- 0.

But note what can happen: If R always stays ahead of F (so that there is

always at least one node in the queue) the table entries used are X [1] , X [2] ,

... , X [1000], ... , ad infinitum, and this is terribly wasteful of storage space.

The simple method of (4) and (5) should therefore be used only in the situation

2.2.2 SEQUENTIAL ALLOCATION 245

when F is known to catch up to R quite regularly- for example, if all deletions
come in spurts that empty the queue.

To circumvent the problem of the queue overrunning memory, we can set
aside M nodes X [l], ... , X [M] arranged implicitly in a circle with X [1] following
X [M]. Then processes (4) and (5) above become

if R = M then R +-- 1, otherwise R +-- R + 1;

if F = M then F +-- 1, otherwise F +-- F + 1;

X [R] +-- Y.

Y +-- X [F].

(6)

(7)

We have, in fact, already seen circular queuing action like this, when we looked
at input-output buffering in Section 1.4.4.

Our discussion so far has been very unrealistic, because we have tacitly
assumed that nothing could go wrong. When we deleted a node from a stack or
queue, we assumed that there was at least one node present. When we inserted
a node into a stack or queue, we assumed that there was room for it in memory.
But clearly the method of (6)and (7) allows at most M nodes in the entire queue,
and methods (2), (3), (4), (5) allow T and R to reach only a certain maximum
amount within any given computer program. The following specifications show
how the actions should be rewritten for the common case where we do not assume
that these restrictions are automatically satisfied:

{

T +-- T + 1;
X -¢== Y (insert into stack): if T > M, then OVERFLOW;

X [T] +-- Y.

{

if T = 0, then UNDERFLOW;
Y -¢== X (delete from stack): Y +-- X [T] ;

T+-T-1.

{

if R = M, then R +-- 1, otherwise R +-- R + 1;
X-¢== Y (insert into queue): if R = F, then OVERFLOW; (6a)

X[R] +-- Y.

{

if F = R, then UNDERFLOW;
Y-¢== X (delete from queue): if F = M, then F +-- 1, otherwise F +-- F + 1; (1a)

Y +-- X [F].

Here we assume that X [1] , ... , X [M] is the total amount of space allowed for the
list; OVERFLOW and UNDERFLOW mean an excess or deficiency of items. The initial
setting F = R = 0 for the queue pointers is no longer valid when we use (6a) and
(1a), because overflow will not be detected when F = O; we should start with
F = R = 1, say.

The reader is urged to work exercise 1, which discusses a nontrivial aspect
of this simple queuing mechanism.

The next question is, "What do we do when UNDERFLOW or OVERFLOW oc
curs?" In the case of UNDERFLOW, we have tried to remove a nonexistent item;
this is usually a meaningful condition - not an error situation - that can be
used to govern the flow of a program. For example, we might want to delete
items repeatedly until UNDERFLOW occurs. An OVERFLOW situation, however, is

246 INFORMATION STRUCTURES 2.2.2

usually an error; it means that the table is full already, yet there is still more

information waiting to be put in. The usual policy in case of OVERFLOW is to

report reluctantly that the program cannot go on because its storage capacity

has been exceeded; then the program terminates.

Of course we hate to give up in an OVERFLOW situation when only one list

has gotten too large, whiM other lists of the same program may very well have

plenty of room remaining. In the discussion above we were primarily thinking of

a program with only one list. However, we frequently encounter programs that

involve several stacks, each of which has a dynamically varying size. In such a

situation we don't want to impose a maximum size on each stack, since the size

is usually unpredictable; and even if a maximum size has been determined for

each stack, we will rarely find all stacks simultaneously filling their maximum

capacity.
When there are just two variable-size lists, they can coexist together very

nicely if we let the lists grow toward each other:

Program and
fixed-size tables

Beginning
of memory

Bottom

List 1

Top

Available
space List 2

Top

Program and
fixed-size tables

Bottom End of
memory

Here list 1 expands to the right, and list 2 (stored in reverse order) expands to

the left. OVERFLOW will not occur unless the total size of both lists exhausts all

memory space. The lists may independently expand and contract so that the

effective maximum size of each one could be significantly more than half of the

available space. This layout of memory space is used very frequently.

We can easily convince ourselves, however, that there is no way to store three

or more variable-size sequential lists in memory so that (a) OVERFLOW will occur

only when the total size of all lists exceeds the total space, and (b) each list has

a fixed location for its "bottom" element. When there are, say, ten or more

variable-size lists - and this is not unusual- the storage allocation problem

becomes very significant. If we wish to satisfy condition (a), we must give up

condition (b); that is, we must allow the "bottom" elements of the lists to change

their positions. This means that the location Lo of Eq. (1) is not constant any

longer; no reference to the table may be made to an absolute memory address,

since all references must be relative to the base address L0 . In the case of MIX,

the coding to bring the Ith one-word node into register A is changed from

LD1 I
to, for example,

LDA Lo,1

LD1 I
LDA BASE(0:2)
STA *+1(0:2)
LDA *,1

(8)

where BASE contains I : Lo : I 0 I 0 I 0 /. Such relative addressing evidently

takes longer than fixed-base addressing, although it would be only slightly slower

if MIX had an "indirect addressing" feature (see exercise 3).

2.2.2 SEQUENTIAL ALLOCATION. 247

An important special case occurs when each of the variable-size lists is a
stack. Then, since only the top element of each stack is relevant at any time, we
can proceed almost as efficiently as before. Suppose that we have n stacks; the
insertion and deletion algorithms above become the following, if BASE [i] and
TOP [i] are link variables for the ith stack, and if each node is one word long:

Insertion: TOP [i] t- TOP [i] + 1; if TOP [i] > BASE [i + 1], then

OVERFLOW; otherwise set CONTENTS (TOP [i]) t- Y. (g)

Deletion: if TOP [i] = BASE [i] , then UNDERFLOW; otherwise

set Y t- CONTENTS (TOP [i]), TOP [i] t- TOP [i] - 1. (10)

Here BASE [i + 1] is the base location of the (i + 1) st stack. The condition
TOP [i] =BASE [i] means that stack i is empty.

In (g), OVERFLOW is no longer such a crisis as it was before; we can "repack
memory," making room for the table that overflowed by taking some away from
tables that aren't yet filled. Several ways to do the repacking suggest themselves;
we will now consider some of them in detail, since they can be quite important
when linear lists are allocated sequentially. We will start by giving the simplest
of the methods, and will then consider some of the alternatives.

Assume that there are n stacks, and that the values BASE [i] and TOP [i] are
to be manipulated as in (g) and (io). These stacks are all supposed to share a
common memory area consisting of all locations L with Lo < L :S L00 • (Here Lo

and L00 are constants that specify the total number of words available for use.)
We might start out with all stacks empty, and

BASE [j] = TOP [j] = Lo for 1 :S j :S n. (11)

We also set BASE [n + 1] = L00 so that (g) will work properly for i = n.
When OVERFLOW occurs with respect to stack i, there are three possibilities:

a) We find the smallest k for which i < k :S n and TOP [k] < BASE [k + 1], if
any such k exist. Now move things up one notch:

Set CONTENTS (L + 1) t- CONTENTS (L), for TOP [k] ~ L >BASE [i + 1].

(This must be done for decreasing, not increasing, values of L to avoid losing
information. It is possible that TOP [k] = BASE [i + 1] , in which case nothing
needs to be moved.) Finally we set BASE [j] t- BASE [j] + 1 and TOP [j] t

TOP [j] + 1, for i < j :S k.

b) No k can be found as in (a), but we find the largest k for which 1 :S k < i
and TOP [k] <BASE [k + 1]. Now move things down one notch:

Set CONTENTS (L - 1) t- CONTENTS (L), for BASE [k + 1] < L :S TOP [i].

(This must be done for increasing values of L.) Then set BASE [j] t

BASE [j] - 1 and TOP [j] t- TOP [j] - 1, for k < j :S i.

c) We have TOP [k] = BASE [k + 1] for all k #- i. Then obviously we cannot
find room for the new stack entry, and we must give up.

248 INFORMATION STRUCTURES 2.2.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t ,...., ,...., ,...., ,...., ,...., ,...., ,...., ,...., ,....,
....... N N ('I) ('I) "<t' "<t'

Ii)

L....I L....I L....I L....I L....I L....I L....I L....I
L....I

l'.LI 0.. l'.LI 0.. l'.LI 0.. l'.LI 0.. l'.LI
U) a U) a U) ~ ~. a U)

< E--t < E--t < E--t <
IXl IXl IXl IXl IXl

Fig. 4. Example of memory configuration after several insertions and deletions.

Figure 4 illustrates the configuration of memory for the case n = 4, L0 = 0,

Loo = 20, after the successive actions

(Here Ij and D j refer to insertion and deletion in stack j, and an asterisk refers

to an occurrence of OVERFLOW, assuming that no space is initially allocated to

stacks 1, 2, and 3.)
It is clear that many of the first stack overflows that occur with this method

could be eliminated if we chose our initial conditions w:isely, instead of allocating

all space initially to the nth stack as suggested in (11). For example, if we expect

each stack to be of the same size, we can start out with

BASE[j] = TOP[j] = l c: l)(L= - Lo) J +Lo, for 1 ~ j ~ n.

Operating experience with a particular program may suggest better starting

values; however, no matter how well the initial allocation is set up, it can save

at most a fixed number of overflows, and the effect is noticeable only in the early

stages of a program run. (See exercise 1 7.)

Another possible way to improve the method above would be to make room

for more than one new entry each time memory is repacked. This idea has

been exploited by J. Garwick, who suggests a complete repacking of memory

when overflow occurs, based on the change in size of each stack since the last

repacking. His algorithm uses an additional array, called OLDTOP [j], 1 ~ j ~ n,

which retains the value that TOP [j] had just after the previous allocation of

memory. Initially, the tables are set as before, with OLDTOP [j] = TOP [j]. The

algorithm proceeds as follows:

Algorithm G (Reallocate sequential tables). Assume that OVERFLOW has oc

curred in stack i, according to (g). After Algorithm G has been performed,

either we will find the memory capacity exceeded or the memory will have been

rearranged so that the action NODE(TOP [i]) +-- Y may be done. (Notice that

TOP [i] has already been increased in (g) before Algorithm G takes place.)

Gl. [Initialize.] Set SUM+-- L00 - Lo, INC +-- 0. Then do step G2 for 1 ~ j ~ n.

(The effect will be to make SUM equal to the total amount of memory space

left, and INC equal to the total amount of increases in table sizes since the

last allocation.) After this has been done, go on to step G3.

2.2.2 SEQUENTIAL ALLOCATION 249

G2. [Gather statistics.] Set SUM t- SUM - (TOP [j] - BASE [j]). If TOP [j] >
OLDTOP [j] , set D [j] t- TOP [j] - OLDTOP [j] and INC t- INC + D [j] ;

otherwise set D [j] t- 0.

G3. [Is memory full?] If SUM< 0, we cannot proceed.

G4. [Compute allocation factors.] Set a t- 0.1 x SUM/n, /3 t- 0.9 x SUM/INC.

(Here a and f3 are fractions, not integers, which are to be computed to
reasonable accuracy. The following step awards the available space to indi
vidual lists as follows: Approximately 10 percent of the memory presently
available will be shared equally among the n lists, and the other 90 percent
will be divided proportionally to the amount of increase in table size since
the previous allocation.)

G5. [Compute new base addresses.] Set NEWBASE [1] t- BASE [1] and O' t-

0; then for j = 2, 3, ... , n set T t- O' + a + D [j - 1J /3, NEWBASE [j] t

NEWBASE [j - lJ + TOP [j - lJ - BASE [j - lJ + LT J - LO' J , and O' t- T.

G6. [Repack.] Set TOP [i] t- TOP [i] - 1. (This reflects the true size of the ith
list, so that no attempt will be made to move information from beyond
the list boundary.) Perform Algorithm R below, and then reset TOP [i] t

TOP [i] + 1. Finally set OLDTOP [j] t- TOP [j] for 1 :S j :S n. I

Perhaps the most interesting part of this whole algorithm is the general
repacking process, which we shall now describe. Repacking is not trivial, since
some portions of memory shift up and others shift down; it is obviously important
not to overwrite any of the good information in memory while it is being moved.

Algorithm R (Relocate sequential tables). For 1 :S j :S n, the information
specified by BASE [j] and TOP [j] in accord with the conventions stated above
is moved to new positions specified by NEWBASE [j] , and the values of BASE [j]

and TOP [j] are suitably adjusted. This algorithm is based on the easily verified
fact that the data to be moved downward cannot overlap with any data that is
to be moved upward, nor with any data that is supposed to stay put.

Rl. [Initialize.] Set j t- 1.

R2. [Find start of shift.] (Now all lists from 1 to j that were to be moved down
have been shifted into the desired position.) Increase j in steps of 1 until
finding either
a) NEWBASE [j] <BASE [j]: Go to R3; or
b) j > n: Go to R4.

R3. [Shift list down.] Set J t- BASE [j] - NEWBASE [j] . Set CONTENTS (L - J) t

CONTENTS (L), for L =BASE [j] + 1, BASE [j] + 2, ... , TOP [j]. (It is possible
for BASE [j] to equal TOP [j] , in which case no action is required.) Set
BASE [j] t- NEWBASE [j], TOP [j] t- TOP [j] - J. Go back to R2.

R4. [Find start of shift.] (Now all lists from j to n that were to be moved up
have been shifted into the desired position.) Decrease j in steps of 1 until
finding either
a) NEWBASE [j] > NEWBASE [j]: Go to R5; or
b) j = 1: The algorithm terminates.

250 INFORMATION STRUCTURES 2.2.2

R5. [Shift list up.] Set J t- NEWBASE [j] - BASE [j]. Set CONTENTS (L + J) t

CONTENTS (L), for L =TOP [j], TOP [j] -1, ... , BASE [j] + 1. (As in step R3,

no action may actually be needed here.) Set BASE [j] t- NEWBASE [j] ,

TOP [j] t- TOP [j] + J. Go back to R4. I

Notice that stack 1 never needs to be moved. Therefore we should put the

largest stack first, if we know which one will be largest.

In Algorithms G and R we have purposely made it possible to have

OLDTOP [j] D [j] NEWBASE [j + 1]

for 1 :S j :S n; that is, these three tables can share common memory locations

since their values are never needed at conflicting times.

We have described these repacking algorithms for stacks, but it is clear that

they can be adapted to any relatively addressed tables in which the current

information is contained between BASE [j] and TOP [j]. Other pointers (for

example, FRONT [j] and REAR [j]) could also be attached to the lists, making

them serve as a queue or deque. See exercise 8, which considers the case of a

queue in detail.
The mathematical analysis of dynamic storage-allocation algorithms like

those above is extremely difficult. Some interesting results appear in the exercises

below, although they only begin to scratch the surface as far as the general

behavior is concerned.
As an example of the theory that can be derived, suppose we consider the

case when the tables grow only by insertion; deletions and subsequent insertions

that cancel their effect are ignored. Let us assume further that each table is

expected to fill at the same rate. This situation can be modeled by imagining

a sequence of m insertion operations a1, a2, ... , am, where each ai is an integer

between 1 and n (representing an insertion on top of stack ai)· For example,

the sequence 1, 1, 2, 2, 1 means two insertions to stack 1, followed by two

to stack 2, followed by another onto stack 1. We can regard each of the nm

possible specifications a 1 , a 2 , ... , am as equally likely, and then we can ask for

the average number of times it is necessary to move a word from one location to

another during the repacking operations as the entire table is built. For the first

algorithm, starting with all available space given to the nth stack, this question

is analyzed in exercise 9. We find that the average number of move operations

required is

Thus, as we might expect, the number of moves is essentially proportional to the

square of the number of times the tables grow. The same is true if the individual

stacks aren't equally likely (see exercise 10).

The moral of the story seems to be that a very large number of moves will

be made if a reasonably large number of items is put into the tables. This

is the price we must pay for the ability to pack a large number of sequential

tables together tightly. No theory has been developed to analyze the average

2.2.2 SEQUENTIAL ALLOCATION 251

behavior of Algorithm G, and it is unlikely that any simple model will be able to
describe the characteristics of real-life tables in such an environment. However,
exercise 18 provides a worst-case guarantee that the running time will not be
too bad if the memory doesn't get too full.

Experience shows that when memory is only half loaded (that is, when the
available space equals half the total space), we need very little rearranging of the
tables with Algorithm G. The important thing is perhaps that the algorithm
behaves well in the half-full case and that it at least delivers the right answers
in the almost-full case.

But let us think about the almost-full case more carefully. When the tables
nearly fill memory, Algorithm R takes rather long to perform its job. And to
make matters worse, OVERFLOW is much more frequent just before the memory
space is used up. There are very few programs that will come close to filling
memory without soon thereafter completely overflowing it; and those that do
overflow memory will probably waste enormous amounts of time in Algorithms G
and R just before memory is overrun. Unfortunately, undebugged programs will
frequently overflow memory capacity. To avoid wasting all this time, a possible
suggestion would be to stop Algorithm G in step G3 if SUM is less than Smin,

where the latter is chosen by the programmer to prevent excessive repacking.
When there are many variable-size sequential tables, we should not expect to
make use of 100 percent of the memory space before storage is exceeded.

Further study of Algorithm G has been made by D. S. Wise and D. C.
Watson, BIT 16 (1976), 442-450. See also A. S. Fraenkel, Inf Proc. Letters 8
(1979), 9-10, who suggests working with pairs of stacks that grow towards each
other.

EXERCISES
.._ 1. [15) In the queue operations given by (6a) and (1a), how many items can be in

the queue at one time without OVERFLOW occurring?

9'- 2. [22] Generalize the method of (6a) and (1a) so that it will apply to any deque with
fewer than M elements. In other words, give specifications for the other two operations,
"delete from rear" and "insert at front."

3. [21] Suppose that MIX is extended as follows: The I-field of each instruction is to
have the form 8I 1 + I2, where 0 :S I 1 < 8, 0 :S I2 < 8. In assembly language one writes
"OP ADDRESS, Ii : I2" or (as presently) "OP ADDRESS, I2" if I 1 = 0. The meaning is to
perform first the "address modification" I1 on ADDRESS, then to perform the "address
modification" I 2 on the resulting address, and finally to perform the OP with the new
address. The address modifications are defined as follows:

0: M =A
1: M =A +rll
2: M =A +rl2

6: M =A +rl6
7: M = resulting address defined from the "ADDRESS, I 1 : I 2" fields found in loca

tion A. The case I 1 = I 2 = 7 in location A is not allowed. (The reason
for the latter restriction is discussed in exercise 5.)

252 INFORMATION STRUCTURES 2.2.2

Here A denotes the address before the operation, and M denotes the resulting address
after the address modification. In all cases the result is undefined if the value of M
does not fit in two bytes and a sign. The execution time is increased by one unit for
each "indirect-addressing" (modification 7) operation performed.

As a nontrivial example, suppose that location 1000 contains "NOP 1000, 1: 7";
location 1001 contains "NOP 1.000, 2"; and index registers 1 and 2 respectively contain
1 and 2. Then the command "LDA 1000, 7: 2" is equivalent to "LDA 1004", because

1000,7:2 = (1000,1:7),2 = (1001,7),2 = (1000,2),2=1002,2=1004.

a) Using this indirect addressing feature (if necessary), show how to simplify the
coding on the right-hand side of (8) so that two instructions are saved per reference to
the table. How much faster is your code than (8)?

b) Suppose there are several tables whose base addresses are stored in locations
BASE+ 1, BASE+ 2, BASE+ 3, ... ; how can the indirect addressing feature be used to
bring the Ith element of the Jth table into register A in one instruction, assuming that
I is in rll and J is in rl2?

c) What is the effect of the instruction "ENT4 X, 7", assuming that the (3: 3)-field
in location X is zero?

4. [25] Assume that MIX has been extended as in exercise 3. Show how to give a
single instruction (plus auxiliary constants) for each of the following actions:

a) To loop indefinitely because indirect addressing never terminates.
b) To bring into register A the value LINK(LINK(x)), where the value of link variable

x is stored in the (0: 2) field of the location whose symbolic address is X, the value
of LINK(x) is stored in the (0:2) field of location x, etc., assuming that the (3:3)
fields in these locations are zero.

c) To bring into register A the value LINK(LINK(LINK(x))), under assumptions like
those in (b).

d) To bring into register A the contents of location rll + rl2 + rl3 + rl4 + r15 + rl6.
e) To quadruple the current value of r16 .

.._ 5. [35] The extension of MIX suggested in exercise 3 has an unfortunate restriction
that "7: 7" is not allowed in an indirectly addressed location.

a) Give an example to indicate that, without this restriction, it would probably be
necessary for the MIX hardware to be capable of maintaining a long internal stack
of three-bit items. (This would be prohibitively expensive hardware, even for a
mythical computer like MIX.)

b) Explain why such a stack is not needed under the present restriction; in other
words, design an algorithm with which the hardware of a computer could perform
the desired address modifications without much additional register capacity.

c) Give a milder restriction than that of exercise 3 on the use of 7: 7 that alleviates the
difficulties of exercise 4(iii), yet can be cheaply implemented in computer hardware.

6. [10] Starting with the memory configuration shown in Fig. 4, determine which of
the following sequences of operations causes overflow or underflow:

(a) 11; (b) h; (c) Is; (d) l4l4l4l4l4; (e) D2D2hhh.

7. [12] Step G4 of Algorithm G indicates a division by the quantity INC. Can INC

ever be zero at that point in the algorithm?

.._ 8. [26] Explain how to modify (g), (io), and the repacking algorithms for the case
that one or more of the lists is a queue being handled circularly as in (6a) and (7a).

2.2.2 SEQUENTIAL ALLOCATION 253

9'- 9. [M27] Using the mathematical model described near the end of the text, prove

that Eq. (i4) is the expected number of moves. (Note that the sequence 1, 1, 4, 2, 3,

1, 2, 4, 2, 1specifies0+0 + 0 + 1+1+3+2+0 + 3 + 6 = 16 moves.)

10. [M28] Modify the mathematical model of exercise 9 so that some tables are

expected to be larger than others: Let Pk be the probability that aj = k, for 1 ::; J. ::; m,

1 ::; k ::; n. Thus p1 +p2 + ·: · +Pn = 1; the previous exercise considered the special case

Pk = 1/n for all k. Determine the expected number of moves, as in Eq. (14), for this

more general case. It is possible to rearrange the relative order of the n lists so that

the lists expected to be longer are put to the right (or to the left) of the lists that are

expected to be shorter; what relative order for the n lists will minimize the expected

number of moves, based on p1, p2, ... , Pn?

11. [M30] Generalize the argument of exercise 9 so that the first t insertions in any

stack cause no movement, while subsequent insertions are unaffected. Thus if t = 2,

the sequence in exercise 9 specifies 0+0+0+0+0+3+0+0+3+6 = 12 moves. What

is the average total number of moves under this assumption? [This is an approximation

to the behavior of the algorithm when each stack starts with t available spaces.]

12. [M28] The advantage of having two tables coexist in memory by growing towards

each other, rather than by having them kept in separate independently bounded areas,

may be quantitatively estimated (to a certain extent) as follows. Use the model of

exercise 9 with n = 2; for each of the 2m equally probable sequences a1, a2, ... , am, let

there be k1 ls and k2 2s. (Here k1 and k2 are the respective sizes of the two tables

after the memory is full. We are able to run the algorithm with m = k1 + k2 locations

when the tables are adjacent, instead of 2 max (k1, k2) locations to get the same effect

with separate tables.)

What is the average value of max (k1, k2)?

13. [Jll\.142] The value max(k1, k2) investigated in exercise 12 will be even greater if

larger fluctuations in the tables are introduced by allowing random deletions as well as

random insertions. Suppose we alter the model so that with probability p the sequence

value aj is interpreted as a deletion instead of an insertion; the process continues until

k1 + k2 (the total number of table locations in use) equals m. A deletion from an empty

list causes no effect.

For example, if m = 4 it can be shown that we get the following probability

distribution when the process stops:

(0,4) (1,3) (2,2) (3,1) (4, 0)

6-6p+2p2 1

16-12p+4p2 ' 4' with probability
1 1

16-12p+4p2 ' 4'

1

16-12p+4p2 .

Thus as p increases, the difference between k1 and k 2 tends to increase. It is not

difficult to show that in the limit as p approaches unity, the distribution of k1 becomes

essentially uniform, and the limiting expected value of max(k1, k2) is exactly 1m +

4!n [m odd]. This behavior is quite different from that in the previous exercise (when

p = O); however, it may not be extremely significant, since when p approaches unity,

the amount of time taken to terminate the process rapidly approaches infinity. The

problem posed in this exercise is to examine the dependence of max(k1, k2) on p and

m, and to determine asymptotic formulas for fixed p (like p = ~) as m approaches

infinity. The case p = ~ is particularly interesting.

254 INFORMATION STRUCTURES 2.2.2

14. [Jll\.143] Generalize the result of exercise 12 to arbitrary n 2: 2, by showing that,

when n is fixed and m approaches infinity, the quantity

ml L max(k1, k2, ... , kn)

nm ki! k2! ... kn!
ki +k2+···+kn=m

.
has the asymptotic form m I n+cn rm+o (1). Determine the constants c2' C3' C4' and C5.

15. [40] Using a Monte Carlo method, simulate the behavior of Algorithm G under

varying distributions of insertions and deletions. What do your experiments imply

about the efficiency of Algorithm G? Compare its performance with the algorithm

given earlier that shifts up and down one node at a time.

16. [20] The text illustrates how two stacks can be located so they grow towards each

other, thereby making efficient use of a common memory area. Can two queues, or a

stack and a queue, make use of a common memory area with the same efficiency?

17. [30] If a- is any sequence of insertions and deletions such as (12), let s0 (a-) be the

number of stack overflows that occur when the simple method of Fig. 4 is applied to a

with initial conditions (11), and let s1 (O') be the corresponding number of overflows

with respect to other initial conditions such as (13). Prove that so (O') ::; s1 (O') + L00 - Lo .

.._ 18. [M30] Show that the total running time for any sequence of m insertions and/ or

deletions by Algorithms G and R is O(m+n '2:~ 1 ak/(1-ak)), where ak is the fraction

of memory occupied on the most recent repacking previous to the kth operation; ak = 0

before the first repacking. (Therefore if the memory never gets more than, say, 90%

full, each operation takes at most O(n) units of time in an amortized sense, regardless

of the total memory size.) Assume that L00 - Lo 2: n 2
•

.._ 19. [16] (0-origin indexing.) Experienced programmers learn that it is generally wise

to denote the elements of a linear list by X [OJ , X [lJ , ... , X [n - lJ , instead of using the

more traditional notation X [lJ , X [2J , ... , X [nJ . Then, for example, the base address

Lo in (1) points to the smallest cell of the array.

Revise the insertion and deletion methods (2a), (3a), (6a), and (1a) for stacks and

queues so that they conform to this convention. In other words, change them so that

the list elements will appear in the array X [OJ, X [lJ, ... , X [M - lJ, instead of X [lJ,

X [2J , ... , X [MJ .

2.2.3. Linked Allocation

Instead of keeping a linear list in sequential memory locations, we can make use

of a much more flexible scheme in which each node contains a link to the next

node of the list.

Sequential allocation: Linked allocation:

Address Contents Address Contents

Lo +c: Item 1 A: Item 1 B

Lo+ 2c: Item 2 B: Item 2 c
Lo+ 3c: Item 3 C: Item 3 D

Lo+ 4c: Item 4 D: Item 4 E

Lo+ 5c: Item 5 E: Item 5 A

2.2.3 LINKED ALLOCATION 255

Here A, B, C, D, and E are arbitrary locations in the memory, and A is the null

link (see Section 2.1). The program that uses this table in the case of sequential

allocation would have an additional variable or constant whose value indicates

that the table is five items in length, or else this information would be specified

by a sentinel code within item 5 or in the following location. A program for

linked allocation would have a link variable or link constant that points to A; all

the other items of the list can be found from address A.

Recall from Section 2.1 that links are often shown simply by arrows, since

the actual memory locations occupied are usually irrelevant. The linked table

above might therefore be shown as follows:

FIRST -~>J Item 1 J ~ Item 2 I~ Item 3 J ~ Item 4 J ~ Item 5 111
=

Here FIRST is a link variable pointing to the first node of the list.

We can make several obvious comparisons between these two basic forms of

storage:
1) Linked allocation takes up additional memory space for the links. This

can be the dominating factor in some situations. However, we frequently find

that the information in a node does not take up a whole word anyway, so there

is already space for a link field present. Also, it is possible in many applications

to combine several items into one node so that there is only one link for several

items of information (see exercise 2.5-2). But even more importantly, there is

often an implicit gain in storage by the linked memory approach, since tables

can overlap, sharing common parts; and in many cases, sequential allocation will

not be as efficient as linked allocation unless a rather large number of additional

memory locations are left vacant anyway. For example, the discussion at the end

of the previous section explains why the systems described there are necessarily

inefficient when memory is densely loaded.
2) It is easy to delete an item from within a linked list. For example, to

delete item 3 we need only change the link associated with item 2. But with

sequential allocation such a deletion generally implies moving a large part of the

list up into different locations.
3) It is easy to insert an item into the midst of a list when the linked scheme

is being used. For example, to insert an item 2~ into (i) we need to change only

two links:

FIRST _ __,.,>! Item 1 I ~~I_te_m_2~I1 1 Item 3 I +?I Item 4 I ~ Item 5 I 1 I
I Item 2t 111 ~2)

By comparison, this operation would be extremely time-consuming in

sequential table.
a long

4) References to random parts of the list are much faster in the sequential

case. To gain access to the kth item in the list, when k is a variable, takes a fixed

time in the sequential case, but we need k iterations to march down to the right

256 INFORMATION STRUCTURES 2.2.3

place in the linked case. Thus the usefulness of linked memory is predicated on
the fact that in the large majority of applications we want to walk through lists
sequentially, not randomly; if items in the middle or at the bottom of the list

are needed, we try to keep an additional link variable or list of link variables

pointing to the proper places.
5) The linked scheme makes it easier to join two lists together, or to break

one apart into two that will grow independently.

6) The linked scheme lends itself immediately to more intricate structures
than simple linear lists. We can have a variable number of variable-size lists;
any node of the list may be a starting point for another list; the nodes may
simultaneously be linked together in several orders corresponding to different
lists; and so on.

7) Simple operations, like proceeding sequentially through a list, are slightly
faster for sequential lists on many computers. For MIX, the comparison is between
"INC1 c" and "LD1 0, 1 (LINK)", which is only one cycle different, but many
machines do not enjoy the property of being able to load an index register from
an indexed location. If the elements of a linked list belong to different pages in
a bulk memory, the memory accesses might take significantly longer.

Thus we see that the linking technique, which frees us from any constraints
imposed by the consecutive nature of computer memory, gives us a good deal
more efficiency in some operations, while we lose some capabilities in other cases.
It is usually clear which allocation technique will be most appropriate in a given
situation, and both methods are often used in different lists of the same program.

In the next few examples we will assume for convenience that a node has
one word and that it is broken into the two fields INFO and LINK:

The use of linked allocation generally implies the existence of some mecha
nism for finding empty space available for a new node, when we wish to insert
some newly created information onto a list. This is usually done by having a
special list called the list of available space. We will call it the AVAIL list (or the
AVAIL stack, since it is usually treated in a last-in-first-out manner). The set of
all nodes not currently in use is linked together in a list just like any other list;
the link variable AVAIL refers to the top element of this list. Thus, if we want
to set link variable X to the address of a new node, and to reserve that node for
future use, we can proceed as follows:

X +--AVAIL, AVAIL+-- LINK(AVAIL).

This effectively removes the top of the AVAIL stack and makes X point to the
node just removed. Operation (4) occurs so often that we have a special notation
for it: "X ~AVAIL" will mean Xis set to point to a new node.

When a node is deleted and no longer needed, process (4) can be reversed:

LINK(X) +--AVAIL, AVAIL+-- X.

2.2.3 LINKED ALLOCATION 257

This operation puts the node addressed by X back onto the list of raw material;
we denote (5) by "AVAIL ~ X".

Several important things have been omitted from this discussion of the AVAIL
stack. We did not say how to set it up at the beginning of a program; clearly
this can be done by (a) linking together all nodes that are to be used for linked
memory, (b) setting AVAIL to the address of the first of these nodes, and (c)
making the last node link to A. The set of all nodes that can be allocated is
called the storage pool.

A more important omission in our discussion was the test for overflow: We
neglected to check in (4) if all available memory space has been taken. The
operation X ~AVAIL should really be defined as follows:

if AVAIL = A, then OVERFLOW;

otherwise X +--AVAIL, AVAIL+-- LINK(AVAIL). (6)

The possibility of overflow must always be considered. Here OVERFLOW generally
means that we terminate the program with regrets; or else we can go into a
"garbage collection" routine that attempts to find more available space. Garbage
collection is discussed in Section 2.3.5.

There is another important technique for handling the AVAIL stack: We
often do not know in advance how much memory space should be used for the
storage pool. There may be a sequential table of variable size that wants to
coexist in memory with the linked tables; in such a case we do not want the
linked memory area to take any more space than is absolutely necessary. So
suppose that we wish to place the linked memory area in ascending locations
beginning with Lo and that this area is never to extend past the value of variable
SEQMIN (which represents the current lower bound of the sequential table). Then
we can proceed as follows, using a new variable POOLMAX:

a) Initially set AVAIL +-- A and POOLMAX +-- L0 .

b) The operation X ~ AVAIL becomes the following:

"If AVAIL =f. A, then X +-AVAIL, AVAIL+-- LINK(AVAIL).
Otherwise set X +-- POOLMAX and POOLMAX +-- X + c, where c is the (7)

node size; OVERFLOW now occurs if POOLMAX > SEQMIN."

c) When other parts of the program attempt to decrease the value of SEQMIN,
they should sound the OVERFLOW alarm if SEQMIN < POOLMAX.

d) The operation AVAIL~ Xis unchanged from (5)·

This idea actually represents little more than the previous method with a special
recovery procedure substituted for the OVERFLOW situation in (6). The net
effect is to keep the storage pool as small as possible. Many people like to
use this idea even when all lists occupy the storage pool area (so that SEQMIN is
constant), since it avoids the rather time-consuming operation of initially linking
all available cells together and it facilitates debugging. We could, of course, put
the sequential list on the bottom and the pool on the top, having POOLMIN and
SEQMAX instead of POOLMAX and SEQMIN.

258 INFORMATION STRUCTURES

Thus it is quite easy to maintain a pool of available
nodes, in such a way that free nodes can efficiently be
found and later returned. These methods give us a source
of raw material to use in linked tables. Our discussion
was predicated on the implicit assumption that all nodes
have a fixed size, c; the cases that arise when different
sizes of nodes are present are very important, but we
will defer that discussion until Section 2.5. Now we will
consider a few of the most common list operations in the
special case where stacks and queues are involved.

2.2.3

T
The simplest kind of linked list is a stack. Figure 5

shows a typical stack, with a pointer T to the top of the
stack. When the stack is empty, this pointer will have
the value A. Fig. 5. A linked stack.

It is clear how to insert ("push down") new information Y onto the top of
such a stack, using an auxiliary pointer variable P.

P ~AVAIL, INFO (P) +-- Y, LINK(P) +-- T, T +-P. (8)

Conversely, to set Y equal to the information at the top of the stack and to "pop
up" the stack:

If T = A, then UNDERFLOW;

otherwisesetP+-T, T+-LINK(P), Y+-INFO(P), AVAIL~P. (g)

These operations should be compared with the analogous mechanisms for se
quentially allocated stacks, (2a) and (3a) in Section 2.2.2. The reader should
study (8) and (g) carefully, since they are extremely important operations.

Before looking at the case of queues, let us see how the stack operations can
be expressed conveniently in programs for MIX. A program for insertion, with
P rll, can be written as follows:

INFO EQU 0:3 Definition of the INFO field
LINK EQU 4:5 Definition of the LINK field

LD1 AVAIL Pf- AVAIL. }
J1Z OVERFLOW ls AVAIL= A? p ¢::AVAIL
LDA 0, !(LINK)
STA AVAIL AVAIL+- LINK(P). (io)
LDA y

STA 0, !(INFO) INFO (P) +- Y.

LDA T
STA 0, !(LINK) LINK (P) +- T.

ST1 T T +- P. I
This takes 17 cycles, compared to 12 cycles for the comparable operation with a
sequential table (although OVERFLOW in the sequential case would in many cases
take considerably longer). In this program, as in others to follow in this chapter,
OVERFLOW denotes either an ending routine or a subroutine that finds more space
and returns to location rJ - 2.

2.2.3 LINKED ALLOCATION 259

A program for deletion is equally simple:

LD1 T p +- T.

J1Z UNDERFLOW Is T =A?
LDA 0,1(LINK)
STA T T +- LINK(P).

LDA 0,1(INFO) (n)
STA y Y +- INFO (P).

LDA AVAIL
STA 0,1(LINK) LINK(P) f- AVAIL.} AVAIL<= P
ST1 AVAIL AVAIL+- P. I

It is interesting to observe that each of these operations involves a cyclic
permutation of three links. For example, in the insertion operation let P be the
value of AVAIL before the insertion; if P =/=-A, we find that after the operation

the value of AVAIL has become the previous value of LINK(P),
the value of LINK(P) has become the previous value of T, and
the value of T has become the previous value of AVAIL.

So the insertion process (except for setting INFO (P) +-- Y) is the cyclic permuta
tion

Similarly in the case of deletion, where P has the value of T before the operation
and we assume that P =/=- A, we have Y +-- INFO (P) and

('AVAIL"\

T LINK(P)
~

The fact that the permutation is cyclic is not really a relevant issue, since any
permutation of three elements that moves every element is cyclic. The important
point is rather that precisely three links are permuted in these operations.

The insertion and deletion algorithms of (8) and (g) have been described
for stacks, but they apply much more generally to insertion and deletion in any
linear list. Insertion, for example, is performed just before the node pointed to
by link variable T. The insertion of item 2~ in (2) above would be done by using
operation (8) with T = LINK(LINK(FIRST)).

Linked allocation applies in a particularly convenient way to queues. In this
case it is easy to see that the links should run from the front of the queue towards
the rear, so that when a node is removed from the front, the new front node is
directly specified. We will make use of pointers F and R, to the front and rear:

F R

Except for R, this diagram is abstractly identical to Fig. 5 on page 258.

260 INFORMATION STRUCTURES 2.2.3

Whenever the layout of a list is designed, it is important to specify all
conditions carefully, particularly for the case when the list is empty. One of the
most common programming errors connected with linked allocation is the failure
handle empty lists properly; the other common error is to forget about changing
some of the links when a structure is being manipulated. In order to avoid the
first type of error, we should always examine the "boundary conditions" carefully.
To avoid making the second type of error, it is helpful to draw "before and after"
diagrams and to compare them, in order to see which links must change.

Let's illustrate the remarks of the preceding paragraph by applying them to
the case of queues. First consider the insertion operation: If (12) is the situation
before insertion, the picture after insertion at the rear of the queue should be

F ---?'I R

AVAIL =>

(The notation used here implies that a new node has been obtained from the
AVAIL list.) Comparing (12) and (13) shows us how to proceed when inserting
the information Y at the rear of the queue:

P ~AVAIL, INFD(P) +-- Y, LINK(P) +--A, LINK(R) +-- P, R +-- P. (14)

Let us now consider the "boundary" situation when the queue is empty: In
this case the situation before insertion is yet to be determined, and the situation
"after" is

F~R
1t -

AVAIL -

It is desirable to have operations (14) apply in this case also, even if insertion
into an empty queue means that we must change both F and R, not only R.

We find that (14) will work properly if R = LDC (F) when the queue is empty,
assuming that F LINK (LDC (F)); the value of variable F must be stored in the
LINK field of its location if this idea is to work. In order to make the testing for
an empty queue as efficient as possible, we will let F = A in this case. Our policy
is therefore that

an empty queue is represented by F = A and R = LDC (F).

If the operations (14) are applied under these circumstances, we obtain (15).
The deletion operation for queues is derived in a similar fashion. If (12) is

the situation before deletion, the situation afterwards is

F~I 1-=H
.IJ. -= AVAIL

For the boundary conditions we must make sure that the deletion operation
works when the queue is empty either before or after the operation. These

2.2.3 LINKED ALLOCATION 261

considerations lead us to the following way to do queue deletion in general:

If F = A, then UNDERFLOW;
otherwise set P +- F, F +-- LINK(P), Y +-- INFO(P), AVAIL~ P, (i7)

I

and if F = A, then set R +-- LDC (F).

Notice that R must be changed when the queue becomes empty; this is precisely
the type of "boundary condition" we should always be watching for.

These suggestions are not the only way to represent queues in a linearly
linked fashion; exercise 30 describes a somewhat more natural alternative, and
we will give other methods later in this chapter. Indeed, none of the operations
above are meant to be prescribed as the only way to do something; they are
intended as examples of the basic means of operating with linked lists. The
reader who has had only a little previous experience with such techniques will
find it helpful to reread the present section up to this point before going on.

So far in this chapter we have discussed how to perform certain operations
on tables, but our discussions have always been "abstract," in the sense that
we never exhibited actual programs in which the particular techniques were
useful. People aren't generally motivated to study abstractions of a problem until
they've seen enough special instances of the problem to arouse their interest. The
operations discussed so far- manipulations of variable-size lists of information
by insertion and deletion, and the use of tables as stacks or queues- are of such
wide application, it is hoped that the reader will have encountered them often
enough already to grant their importance. But now we will leave the realm of
the abstract as we begin to study a series of significant practical examples of the
techniques of this chapter.

Our first example is a problem called topological sorting, which is an impor
tant process needed in connection with network problems, with so-called PERT
charts, and even with linguistics; in fact, it is of potential use whenever we have
a problem involving a partial ordering. A partial ordering of a set S is a relation
between the objects of S, which we may denote by the symbol "--<", satisfying
the following properties for any objects x, y, and z (not necessarily distinct)
in S:

i) If x --< y and y --< z, then x --< z. (Transitivity.)

ii) If x --< y and y --< x, then x = y. (Antisymmetry.)

iii) x --< x. (Reflexivity.)

The notation x --< y may be read "x precedes or equals y." If x --< y and x =/=- y,
we write x --< y and say "x precedes y." It is easy to see from (i), (ii), and (iii)
that we always have

i') If x--< y and y--< z, then x--< z. (Transitivity.)

ii') If x --< y, then y -/, x. (Asymmetry.)

iii') x-/, x. (Irreflexivity.)

262 INFORMATION STRUCTURES 2.2.3

The relation denoted by y -/, x means "y does not precede x." If we start with
a relation -< satisfying properties (i'), (ii'), and (iii'), we can reverse the process
above and define x -< y if x -< y or x = y; then properties (i), (ii), and (iii) are
true. Therefore we may regard either properties (i), (ii), (iii) or properties (i'),
(ii'), (iii') as the definition of partial order. Notice that property (ii') is actually
a consequence of (i') and (iii'), although (ii) does not follow from (i) and (iii).

Partial orderings occur quite frequently in everyday life as well as in math
ematics. As examples from mathematics we can mention the relation x < y
between real numbers x and y; the relation x C y between sets of objects;
the relation x\y (x divides y) between positive integers. In the case of PERT
networks, S is a set of jobs that must be done, and the relation "x -< y" means
"x must be done before y."

Fig. 6. A partial ordering.

We will naturally assume that Sis a finite set, since we want to work with S
inside a computer. A partial ordering on a finite set can always be illustrated
by drawing a diagram such as Fig. 6, in which the objects are represented by
small boxes and the relation is represented by arrows between these boxes; x -< y
means there is a path from the box labeled x to box y that follows the direction
of the arrows. Property (ii) of partial ordering means there are no closed loops
(no paths that close on themselves) in the diagram. If an arrow were drawn from
4 to 1 in Fig. 6, we would no longer have a partial ordering.

The problem of topological sorting is to embed the partial order in a linear
order; that is, to arrange the objects into a linear sequence a1a2 ... an such that
whenever aj -< ak, we have j < k. Graphically, this means that the boxes are to
be rearranged into a line so that all arrows go towards the right (see Fig. 7). It
is not immediately obvious that such a rearrangement is possible in every case,
although such a rearrangement certainly could not be done if any loops were
present. Therefore the algorithm we will give is interesting not only because it
does a useful operation, but also because it proves that this operation is possible
for every partial ordering.

As an example of topological sorting, imagine a large glossary containing
definitions of technical terms. We can write w2 -< w 1 if the definition of word w 1

2.2.3 LINKED ALLOCATION 263

Fig. 7. The ordering relation of Fig. 6 after topological sorting.

depends directly or indirectly on that of word w2. This relation is a partial
ordering provided that there are no "circular" definitions. The problem of
topological sorting in this case is to find a way to arrange the words in the
glossary so that no term is used before it has been defined. Analogous problems
arise in writing programs to process the declarations in certain assembly and
compiler languages; they also arise in writing a user's manual describing a
computer language or in writing textbooks about information structures.

There is a very simple way to do topological sorting: We start by taking an
object that is not preceded by any other object in the ordering. This object may
be placed first in the output. Now we remove this object from the set S; the
resulting set is again partially ordered, and the process can be repeated until the
whole set has been sorted. For example, in Fig. 6 we could start by removing 1
or 9; after 1 has been removed, 3 can be taken, and so on. The only way in which
this algorithm could fail would be if there were a nonempty partially ordered set
in which every element was preceded by another; for in such a case the algorithm
would find nothing to do. But if every element is preceded by another, we could
construct an arbitrarily long sequence b1 , b2, b3, ... in which bj+I -< bj. Since S
is finite, we must have bj = bk for some j < k; but this implies that bk -< bj+I,
contradicting (ii).

In order to implement this process efficiently by computer, we need to
be ready to perform the actions described above, namely to locate objects
that are not preceded by any others, and to remove them from the set. Our
implementation is also influenced by the desired input and output characteristics.
The most general program would accept alphabetic names for the objects and
would allow gigantic sets of objects to be sorted- more than could possibly fit
in the computer memory at once. Such complications would obscure the main
points we are trying to make here, however; the handling of alphabetic data can
be done efficiently by using the methods of Chapter 6, and the handling of large
networks is left as an interesting project for the reader.

Therefore we will assume that the objects to be sorted are numbered from 1
ton in any order. The input of the program will be on tape unit 1: Each tape
record contains 50 pairs of numbers, where the pair (j, k) means that object j
precedes object k. The first pair, however, is (0, n), where n is the number of
objects. The pair (0, 0) terminates the input. We shall assume that n plus the
number of relation pairs will fit comfortably in memory; and we shall assume
that it is not necessary to check the input for validity. The output is to be the
numbers of the objects in sorted order, followed by the number 0, on tape unit 2.

264 INFORMATION STRUCTURES 2.2.3

As an example of the input, we might have the pairs

9-< 2, 3-< 7, 7-< 5, 5-< 8, 8-< 6, 4-< 6, 1 -< 3, 7-< 4, 9-< 5, 2-< 8. (i8)

It is not necessary to give any more pairs than are needed to characterize the
desired partial ordering. Thus, additional relations like 9 -< 8 (which can be
deduced from 9 -< 5 and S -< 8) may be omitted from or added to the input
without harm. In general, it is necessary to give only the pairs corresponding to
arrows on a diagram such as Fig. 6.

The algorithm that follows uses a sequential table X [1], X [2], ... , X [n],
and each node X [k] has the form

I + I o I couN! [kJ I TOP:[kJ I .
Here COUNT [k] is the number of direct predecessors of object k (the number
of pairs j -< k that have appeared in the input), and TOP [k] is a link to the
beginning of the list of direct successors of object k. The latter list contains
entries in the format

where SUC is a direct successor of k and NEXT is the next item of the list. As an
example of these conventions, Fig. 8 shows the schematic contents of memory
corresponding to the input (i8).

k

eOUNT[k]

TOP[k]

sue

NEXT

sue

NEXT

1

0

3

2

1

8

3

1

7

4

1

6

5

2

8

7

1

4

5

8

2

6

9

0

5

2

Fig. 8. Computer representation of Fig. 6 corresponding to the relations (18).

Using this memory layout, it is not difficult to work out the algorithm.
We want to output the nodes whose COUNT field is zero, then to decrease the
COUNT fields of all successors of those nodes by one. The trick is to avoid doing
any "searching" for nodes whose COUNT field is zero, and this can be done by
maintaining a queue containing those nodes. The links for this queue are kept
in the COUNT field, which by now has served its previous purpose; for clarity in
the algorithm below, we use the notation QLINK [k] to stand for COUNT [k] when
that field is no longer being used to keep a count.

2.2.3 LINKED ALLOCATION 265

Algorithm T (Topological sort). This algorithm inputs pairs of relations j -< k,
indicating that object j precedes object k in a certain partial ordering, assuming
that 1 < j, k < n. The output is the set of n objects embedded in linear order.
The internal tables used are: QLINK [OJ , COUNT [lJ = QLINK [lJ , COUNT [2J =
QLINK [2J , ... , COUNT [nJ = QLINK [nJ ; TOP [lJ , TOP [2J , ... , TOP [nJ ; a storage
pool with one node for each input relation and with SUC and NEXT fields as shown
above; P, a link variable used to refer to the nodes in the storage pool; F and R,
integer-valued variables used to refer to the front and rear of a queue whose links
are in the QLINK table; and N, a variable that counts how many objects have yet
to be output.

Tl. [Initialize.] Input the value of n. Set COUNT [kJ +-- 0 and TOP [kJ +-- A for
1 < k < n. Set N +-- n.

T2. [Next relation.] Get the next relation "j -< k" from the input; if the input
has been exhausted, however, go to T4.

T3. [Record the relation.] Increase COUNT [kJ by one. Set

P ~AVAIL, SUC(P) +-- k, NEXT(P) +--TOP [jJ, TOP [jJ +-- P.

(This is operation (8).) Go back to T2.

T4. [Scan for zeros.] (At this point we have completed the input phase; the input
(i8) would now have been transformed into the computer representation
shown in Fig. 8. The next job is to initialize the queue of output, which
is linked together in the QLINK field.) Set R +-- 0 and QLINK [OJ +-- 0. For
1 < k < n examine COUNT [kJ , and if it is zero, set QLINK [RJ +-- k and
R +-- k. After this has been done for all k, set F +- QLINK [OJ (which will
contain the first value k encountered for which COUNT [kJ was zero).

T5. [Output front of queue.] Output the value of F. If F = 0, go to T8; otherwise,
set N +-- N - 1, and set P +-- TOP [FJ. (Since the QLINK and COUNT tables
overlap, we have QLINK [RJ = O; therefore the condition F = 0 occurs when
the queue is empty.)

T6. [Erase relations.] If P =A, go to T7. Otherwise decrease COUNT[SUC(P)J
by one, and if it has thereby gone down to zero, set QLINK[RJ +-- SUC(P)
and R +-- SUC(P). Set P +-- NEXT(P) and repeat this step. (We are removing
all relations of the form "F -< k" for some k from the system, and putting
new nodes into the queue when all their predecessors have been output.)

T7. [Remove from queue.] Set F +-- QLINK [FJ and go back to T5.

T8. [End of process.] The algorithm terminates. If N = 0, we have output all of
the object numbers in the desired "topological order," followed by a zero.
Otherwise the N object numbers not yet output contain a loop, in violation
of the hypothesis of partial order. (See exercise 23 for an algorithm that
prints out the contents of one such loop.) I

The reader will find it helpful to try this algorithm by hand on the input
(i8). Algorithm T shows a nice interplay between sequential memory and linked

266 INFORMATION STRUCTURES 2.2.3

memory techniques. Sequential memory is used for the main table X [1], ... ,
X [n], which contains the COUNT [k] and TOP [k] entries, because we want to
make references to "random" parts of this table in step T3. (If the input were
alphabetic, however, another type of table would be used for speedier search, as
in Chapter 6.) Linked memory is used for the tables of "immediate successors,"
since those table entries have no particular order in the input. The queue of
nodes waiting to be output is kept in the midst of the sequential table by linking
the nodes together in output order. This linking is done by table index instead
of by address; in other words, when the front of the queue is X [k], we have
F = k instead of F = LDC (X [k]). The queue operations used in steps T4, T6,
and T7 are not identical to those in (i4) and (i7), since we are taking advantage
of special properties of the queue in this system; no nodes need to be created or
returned to available space during this part of the algorithm.

The coding of Algorithm T in MIX assembly language has a few additional
points of interest. Since no deletion from tables is made in the algorithm (because
no storage must be freed for later use), the operation P ¢:: AVAIL can be done
in an extremely simple way, as shown in lines 19 and 32 below; we need not
keep any linked pool of memory, and we can choose new nodes consecutively.
The program includes complete input and output with magnetic tape, according
to the conventions mentioned above, but buffering is omitted for the sake of
simplicity. The reader should not find it very difficult to follow the details of
the coding in this program, since it corresponds directly to Algorithm T. The
efficient use of index registers, which is an important aspect of linked memory
processing, is illustrated here.

Program T (Topological sort). In this program, the following equivalences
should be noted: rl6 N, rl5 buffer pointer, rl4 k, rl3 j and R, rl2
AVAIL and P, rll F, TOP [j] X + j(4: 5), COUNT [j] QLINK [k] X + k(2: 3).

01 * BUFFER AREA AND FIELD DEFINITIONS
02 COUNT EQU 2:3
03 QLINK EQU 2:3
04 TOP EQU 4:5
05 sue EQU 2:3
06 NEXT EQU 4:5
07 TAPEIN EQU 1
08 TAPEOUT EQU 2
09 BUFFER ORIG *+100
10 CON -1
11 * INPUT PHASE
12 TOPS ORT IN BUFFER(TAPEIN) 1
13 JBUS *(TAPEIN)
14 1H LD6 BUFFER+! 1
15 ENT4 0,6 1
16 STZ X,4 n+l
17 DEC4 1 n+l
18 J4NN *-2 n+l
19 ENT2 X,6 1

Definition of symbolic
names of fields

Input is on tape unit 1
Output is on tape unit 2
Tape buffer area
Sentinel at end of buffer

Tl. Initialize. Read in the first
tape block; wait for completion.

N +- n.

Set COUNT [k] +- 0 and TOP [k] +-A,
for 0 ::; k ::; n.

(Anticipate QLINK [OJ +- 0 in step T 4.)
Available storage starts after X [n] .

2.2.3

20
21 2H
22
23
24
25
26
27
28 3H
29
30
31
32
33
34
35
36
37
38
39 4H
40
41
42
43 4H
44
45
46
47
48

LINKED ALLOCATION

Tl. Initialize

-- T3. Record
T2. Next relation the relation

No more

T4. Scan __ T5. Output front ,____
for zeros of queue

T6. Erase
relations

Empty

TS. End of
process

No more

T7. Remove
from queue

Fig. 9. Topological sorting.

267

ENT5 BUFFER+2 1 Prepare to read the first pair (j, k).
LD3 0,5 m+b T2. Next relation.
J3P 3F m+b Is j > O?
J3Z 4F b Is input exhausted?
IN BUFFER(TAPEIN) b- l Sentinel sensed; read another
JBUS *(TAPEIN) tape block, wait for completion.
ENT5 BUFFER b-l Reset the buffer pointer.
JMP 2B b-l
LD4 1,5 m T3. Record the relation.
LDA X,4(COUNT) m COUNT [k]
INCA 1 m +1
STA X,4(COUNT) m -+COUNT [k].
INC2 1 m AVAIL +-AVAIL+ 1.
LDA X,3(TOP) m TOP[j]
STA 0,2(NEXT) m -+ NEXT(P).
ST4 0,2(SUC) m k-+ SUC(P).
ST2 X,3(TOP) m P-+ TOP [j].
INC5 2 m Increase buffer pointer.
JMP 2B m
me O(TAPEIN) 1 Rewind the input tape.
ENT4 0,6 1 T4. Scan for zeros. k +- n.
ENT5 -100 1 Reset buffer pointer for output.
ENT3 0 1 R +- 0.
LDA X,4(COUNT) n Examine COUNT [k].
JAP *+3 n Is it nonzero?
ST4 X,3(QLINK) a QLINK [R] +- k.
ENT3 0,4 a R +- k.
DEC4 1 n
J4P 4B n n2:k>l.

268 INFORMATION STRUCTURES 2.2.3

49 * SORTING PHASE
50 LD1 X(QLINK) 1 F +- QLINK [OJ .
51 5H JBUS *(TAPEOUT) TS. Oute_ut front of gueue.

52 ST1 BUFFER+100,5 n+l Store F in buffer area.

53 J1Z SF n+l Is F zero?

54 INC5 1 n Advance buffer pointer.

55 J5N *+3 n Test if buffer is full.
56 OUT BUFFER(TAPEOUT) c-1 If so, output a tape block.
57 ENT5 -100 c-1 Reset the buffer pointer.

58 DEC6 1 n N+-N-1.
59 LD2 X, 1(TOP) n P +-TOP [F].
60 J2Z 7F n T6. Erase relations.

61 6H LD4 0,2(SUC) m r14 +- SUC(P).
62 LDA X,4(COUNT) m COUNT [rl4]
63 DECA 1 m ·-1

64 STA X,4(COUNT) m -+ COUNT [rl4].
65 JAP *+3 m Has zero been reached?
66 ST4 X,3(QLINK) n-a If so, set QLINK [R] +- rl4.
67 ENT3 0,4 n-a R +- rl4.
68 LD2 0,2(NEXT) m P +- NEXT(P).
69 J2P 6B m If P =/=- A, repeat.
70 7H LD1 X, 1(QLINK) n T7. Remove from gueue.
71 JMP 5B n F +- QLINK (F), go to T5.
72 SH OUT BUFFER(TAPEOUT) 1 T8. End of process.
73 IOC O(TAPEOUT) 1 Output last block and rewind.

74 HLT 0,6 1 Stop, displaying Non console.
75 x END TOPS ORT Beginning of table area I

The analysis of Algorithm T is quite simple with the aid of Kirchhoff's law;

the execution time has the approximate form c1m + c2 n, where mis the number

of input relations, n is the number of objects, and c1 and c2 are constants. It

is hard to imagine a faster algorithm for this problem! The exact quantities in

the analysis are given with Program T above, where a= number of objects with

no predecessor, b = number of tape records in input = f (m + 2)/501, and c =
number of tape records in output = f(n + 1)/lOOl Exclusive of input-output

operations, the total running time in this case is only (32m+24n+7b+2c+ 16)u.

A topological sorting technique similar to Algorithm T (but without the

important feature of the queue links) was first published by A. B. Kahn, CACM 5
(1962), 558-562. The fact that topological sorting of a partial ordering is always

possible was first proved in print by E. Szpilrajn, Fundamenta Mathematica 16

(1930), 386-389; he proved it for infinite sets as well as finite sets, and mentioned

that the result was already known to several of his colleagues.

In spite of the fact that Algorithm T is so efficient, we will study an even

better algorithm for topological sorting in Section 7.4.l.

EXERCISES

""' 1. [1 OJ Operation (g) for popping up a stack mentions the possibility of UNDERFLOW
why doesn't operation (8), pushing down a stack, mention the possibility of OVERFLOW?

2.2.3 LINKED ALLOCATION 269

2. [22] Write a "general purpose" MIX subroutine to do the insertion operation, (10).
This subroutine should have the following specifications (as in Section 1.4.1):

Calling sequence: JMP INSERT Jump to subroutine.
NOP T Location of pointer variable

Entry conditions: rA =information to be put into the INFO field of a new node.
Exit conditions: The stack whose pointer is the link variable T has the new node on

top; rll = T; rI2, rI3 are altered.
3. [22] Write a "general purpose" MIX subroutine to do the deletion operation, (ll).

This subroutine should have the following specifications:

Calling sequence: JMP
NOP

DELETE
T

JMP UNDERFLOW
Entry conditions: None

Jump to subroutine.
Location of pointer variable
First exit, if UNDERFLOW sensed

Exit conditions: If the stack whose pointer is the link variable T is empty, the first
exit is taken; otherwise the top node of that stack is deleted, and exit
is made to the third location following "JMP DELETE". In the latter
case, rll = T and rA is the contents of the INFO field of the deleted
node. In either case, rI2 and rl3 are used by this subroutine.

4. [22] The program in (10) is based on the operation P ¢::: AVAIL, as given in
(6). Show how to write an OVERFLOW subroutine so that, without any change in the
coding (10), the operation P ¢:::AVAIL makes use of SEQMIN, as given by (1). For general
purpose use, your subroutine should not change the contents of any registers, except
rJ and possibly the comparison indicator. It should exit to location rJ - 2, instead of
the usual rJ.

5. [24] Operations (14) and (17) give the effect of a queue; show how to define the
further operation "insert at front" so as to obtain all the actions of an output-restricted
deque. How could the operation "delete from rear" be defined (so that we would have
a general deque)?

6. [21] In operation (14) we set LINK(P) +-A, while the very next insertion at the
rear of the queue will change the value of this same link field. Show how the setting of
LINK (P) in (14) could be avoided if we make a change to the testing of "F = A" in (1 7).

7. [23] Design an algorithm to "invert" a linked linear list such as (1), that is, to
change its links so that the items appear in the opposite order. [If, for example, the
list (1) were inverted, we would have FIRST linking to the node containing item 5; that
node would link to the one containing item 4; etc.] Assume that the nodes have the
form (3)·

8. [24] Write a MIX program for the problem of exercise 7, attempting to design your
program to operate as fast as possible.

9. [20] Which of the following relations is a partial ordering on the specified set S?
[Note: If the relation "x -< y" is defined below, the intent is to define the relation
"x :::; y (x -< y or x = y)," and then to determine whether :::; is a partial ordering.]
(a) S = all rational numbers, x -< y means x > y. (b) S = all people, x -< y means
x is an ancestor of y. (c) S = all integers, x :::; y means x is a multiple of y (that is,
x mod y = 0). (d) S = all the mathematical results proved in this book, x-< y means
the proof of y depends upon the truth of x. (e) S = all positive integers, x :::; y means
x + y is even. (f) S = a set of subroutines, x -< y means "x calls y ," that is, y may be
in operation while x is in operation, with recursion not allowed.

270 INFORMATION STRUCTURES 2.2.3

10. [M21] Given that "C" is a relation that satisfies properties (i) and (ii) of a partial

ordering, prove that the relation ":::S", defined by the rule "x :::S y if and only if x = y

or x C y," satisfies all three properties of a partial ordering.

""' 11. [24] The result of topological sorting is not always completely determined, since

there may be several ways to arrange the nodes and to satisfy the conditions of

topological order. Find all possible ways to arrange the nodes of Fig. 6 into topological

order.

12. [M20] There are 2n subsets of a set of n elements, and these subsets are partially

ordered by the set-inclusion relation. Given two interesting ways to arrange these

subsets in topological order.

13. [M48] How many ways are there to arrange the 2n subsets described in exercise 12

into topological order? (Give the answer as a function of n.)

14. [M21] A linear ordering of a set S, also called a total ordering, is a partial ordering

that satisfies the additional "comparability" condition

(iv) For any two objects x, y in S, either x :::Sy or y ::::; x.

Prove directly from the definitions given that a topological sort can result in only one

possible output if and only if the relation::::; is a linear ordering. (You may assume that

the set S is finite.)

15. [M25] Show that for any partial ordering on a finite set S there is a unique set

of irredundant pairs of relations that characterizes this ordering, as in (i8) and Fig. 6.

Is the same fact true also when S is an infinite set?

16. [M22] Given any partial ordering on a set S = {x1, ... , xn}, we can construct its

incidence matrix (aij), where aij = 1 if Xi ::::; Xj, and aij = 0 otherwise. Show that

there is a way to permute the rows and columns of this matrix so that all entries below

the diagonal are zero.

""'17. [21] What output does Algorithm T produce if it is presented with the input (18)?

18. [20] What, if anything, is the significance of the values of QLINK [OJ , QLINK [1] ,

... , QLINK [n] when Algorithm T terminates?

19. [18] In Algorithm T we examine the front position of the queue in step T5, but

do not remove that element from the queue until step T7. What would happen if we

set F +- QLINK [F] at the conclusion of step T5, instead of in T7?

""' 20. [24] Algorithm T uses F, R, and the QLINK table to obtain the effect of a queue that

contains those nodes whose COUNT field has become zero but whose successor relations

have not yet been removed. Could a stack be used for this purpose instead of a queue?

If so, compare the resulting algorithm with Algorithm T.

21. [21] Would Algorithm T still perform a valid topological sort if one of the relations

"j -< k" were repeated several times in the input? What if the input contained a relation

of the form "j -< j"?

22. [23] Program T assumes that its input tape contains valid information, but a

program that is intended for general use should always make careful tests on its input so

that clerical errors can be detected, and so that the program cannot "destroy itself." For

example, if one of the input relations for k were negative, Program T may erroneously

change one of its own instructions when storing into X [k]. Suggest ways to modify

Program T so that it is suitable for general use.

2.2.3 LINKED ALLOCATION 271

""' 23. [27] When the topological sort algorithm cannot proceed because it has detected
a loop in the input (see step T8), it is usually of no use to stop and say, "There was
a loop." It is helpful to print out one of the loops, thereby showing part of the input
that was in error. Extend Algorithm T so that it will do this additional printing of a
loop when necessary. [Hint: The text gives a proof for the existence of a loop when
N > 0 in step TS; that proof suggests an algorithm.]

24. [24] Incorporate the extensions of Algorithm T made in exercise 23 into Pro
gram T.

2 5. [4 7] Design as efficient an algorithm as possible for doing a topological sort of very
large sets S having considerably more nodes than the computer memory can contain.
Assume that the input, output, and temporary working space are done with magnetic
tape. [Possible hint: A conventional sort of the input allows us to assume that all
relations for a given node appear together. But then what can be done? In particular,
we must consider the worst case in which the given ordering is already a linear ordering
that has been wildly permuted; exercise 24 in the introduction to Chapter 5 explains
how to handle this case with 0 (log n) 2 passes over the data.]

26. [29] (Subroutine allocation.) Suppose that we have a tape containing the main
subroutine library in relocatable form, for a 1960s-style computer installation. The
loading routine wants to determine the amount of relocation for each subroutine used,
so that it can make one pass through the tape to load the necessary routines. The
problem is that some subroutines require others to be present in memory. Infrequently
used subroutines (which appear toward the end of the tape) may call on frequently
used subroutines (which appear toward the beginning of the tape), and we want to
know all of the subroutines that are required, before passing through the tape.

One way to tackle this problem is to have a ''tape directory" that fits in memory.
The loading routine has access to two tables:

a) The tape directory. This table is composed of variable-length nodes having
the form

or

where SPACE is the number of words of memory required by the subroutine; LINK is a
link to the directory entry for the subroutine that appears on the tape following this
subroutine; SUB!, SUB2, ... , SUBn (n 2: 0) are links to the directory entries for any
other subroutines required by this one; B = 0 on all words except the last, B = -1 on
the last word of a node. The address of the directory entry for the first subroutine on
the library tape is specified by the link variable FIRST.

b) The list of subroutines directly referred to by the program to be loaded. This is
stored in consecutive locations X [1], X [2], ... , X [NJ, where N 2: 0 is a variable known
to the loading routine. Each entry in this list is a link to the directory entry for the
subroutine desired.

The loading routine also knows MLOC, the amount of relocation to be used for the
first subroutine loaded.

272 INFORMATION STRUCTURES 2.2.3

As a small example, consider the following configuration:

Tape directory List of subroutines needed

B SPACE LINK x [1] 1003
1000: 0 20 1005 X[2] 1010
1001: -1 1002 0
1002: -1 30 1010 N = 2
1003: 0 200 1007 FIRST = 1002
1004: -1 1000 1006 MLOC = 2400
1005: -1 100 1003
1006: -1 60 1000
1007: 0 200 0
1008: 0 1005 1002
1009: -1 1006 0
1010: -1 20 1006

The tape directory in this case shows that the subroutines on tape are 1002, 1010,
1006, 1000, 1005, 1003, and 1007 in that order. Subroutine 1007 takes 200 locations
and implies the use of subroutines 1005, 1002, and 1006; etc. The program to be loaded
requires subroutines 1003 and 1010, which are to be placed into locations 2: 2400. These
subroutines in turn imply that 1000, 1006, and 1002 must also be loaded.

The subroutine allocator is to change the X-table so that each entry X [1], X [2], ...
has the form

(except the last entry, which is explained below), where SUB is a subroutine to be loaded,
and BASE is the amount of relocation. These entries are to be in the order in which the
subroutines appear on tape. One possible answer for the example above would be

x [1]:

x [2]:
X[3]:

BASE

2400
2430
2450

SUB

1002
1010
1006

x [4]:
X[5]:
x [6]:

BASE

2510
2530
2730

The last entry contains the first unused memory address.

SUB

1000
1003

0

(Clearly, this is not the only way to treat a library of subroutines. The proper way
to design a library is heavily dependent upon the computer used and the applications
to be handled. Large modern computers require an entirely different approach to
subroutine libraries. But this is a nice exercise anyway, because it involves interesting
manipulations on both sequential and linked data.)

The problem in this exercise is to design an algorithm for the stated task. Your
allocator may transform the tape directory in any way as it prepares its answer,
since the tape directory can be read in anew by the subroutine allocator on its next
assignment, and the tape directory is not needed by other parts of the loading routine.

27. [25] Write a MIX program for the subroutine allocation algorithm of exercise 26.

28. [40] The following construction shows how to "solve" a fairly general type of two
person game, including chess, nim, and many simpler games: Consider a finite set of
nodes, each of which represents a possible position in the game. For each position there
are zero or more moves that transform that position into some other position. We say
that position x is a predecessor of position y (and y is a successor of x) if there is a
move from x to y. Certain positions that have no successors are classified as won or

2.2.4 CIRCULAR LISTS 273

lost positions. The player to move in position x is the opponent of the player to move
in the successors of position x.

Given such a configuration of positions, we can compute the complete set of won
positions (those in which the next player to move can force a victory) and the complete
set of lost positions (those in which the player must lose against an expert opponent)
by repeatedly doing the following operation until it yields no change: Mark a position
"lost" if all its successors are marked "won"; mark a position "won" if at least one of
its successors is marked "lost."

After this operation has been repeated as many times as possible, there may be
some positions that have not been marked at all; a player in such a position can neither
force a victory nor be compelled to lose.

This procedure for obtaining the complete set of won and lost positions can be
adapted to an efficient algorithm for computers that closely resembles Algorithm T.
We may keep with each position a count of the number of its successors that have not
been marked "won," and a list of all its predecessors.

The problem in this exercise is to work out the details of the algorithm that has
just been so vaguely described, and to apply it to some interesting games that do not
involve too many possible positions [like the "military game": E. Lucas, Recreations
Mathematiques 3 (Paris: 1893) 105-116; E. R. Berlekamp, J. H. Conway, and R. K.
Guy, Winning Ways 2 (Academic Press, 1982), Chapter 21].

""' 29. [21] (a) Give an algorithm to "erase" an entire list like (1), by putting all of its
nodes on the AVAIL stack, given only the value of FIRST. The algorithm should operate
as fast as possible. (b) Repeat part (a) for a list like (12), given the values of F and R.

30. [17] Suppose that queues are represented as in (12), but with an empty queue
represented by F = A and R undefined. What insertion and deletion procedures should
replace (14) and (1 7)?

2.2.4. Circular Lists

A slight change in the manner of linking furnishes us with an important alter
native to the methods of the preceding section.

A circularly linked list (briefly: a circular list) has the property that its last
node links back to the first instead of to A. It is then possible to access all of
the list starting at any given point; we also achieve an extra degree of symmetry,
and if we choose we need not think of the list as having a last or first node.

The following situation is typical:

~--'-~---' ~--'-~-.__~_,"='._~ __ Jj_k - PTR
(i)

Assume that the nodes have two fields, INFO and LINK, as in the preceding
section. There is a link variable PTR that points to the rightmost node of the
list, and LINK (PTR) is the address of the leftmost node. The following primitive
operations are most important:

a) Insert Y at left: P {::::AVAIL, INFO(P) t--Y, LINK(P) f-- LINK(PTR),
LINK (PTR) f-- P.

b) Insert Y at right: Insert Y at left, then PTR f-- P.
c) Set Y to left node and delete: P f-- LINK (PTR), Y f-- INFO (P), LINK (PTR) +

LINK (P), AVAIL {:::: P.

274 INFORMATION STRUCTURES 2.2.4

Operation (b) is a little surprising at first glance; the operation PTR f- LINK (PTR)
effectively moves the leftmost node to the right in the diagram (1), and this is
quite easy to understand if the list is regarded as a circle instead of as a straight
line with connected ends.

The alert reader will observe that we have made a serious mistake in oper
ations (a), (b), and (c). What is it? Answer: We have forgotten to consider the
possibility of an empty list. If, for example, operation (c) is applied five times
to the list (i), we will have PTR pointing to a node in the AVAIL list, and this
can lead to serious difficulties; for example, imagine applying operation (c) once
more! If we take the position that PTR will equal A in the case of an empty
list, we could remedy the operations by inserting the additional instructions "if
PTR =A, then PTR f- LINK (P) f- P; otherwise ... " after "INFO (P) f- Y" in (a);
preceding (c) by the test "if PTR = A, then UNDERFLOW" ; and following (c) by "if
PTR = P, then PTR f- A':

Notice that operations (a), (b), and (c) give us the actions of an output
restricted deque, in the sense of Section 2.2.1. Therefore we find in particular
that a circular list can be used as either a stack or a queue. Operations (a)
and (c) combined give us a stack; operations (b) and (c) give us a queue. These
operations are only slightly less direct than their counterparts in the previous
section, where we saw that operations (a), (b), and (c) can be performed on
linear lists using two pointers F and R.

Other important operations become efficient with circular lists. For example,
it is very convenient to "erase" a list, that is, to put an entire circular list onto
the AVAIL stack at once:

If PTR -f- A, then AVAIL +-+ LINK (PTR) .

[Recall that the "+-+" operation denotes interchange: P f- AVAIL, AVAIL +
LINK (PTR), LINK (PTR) f- P .] Operation (2) is clearly valid if PTR points any
where in the circular list. Afterwards we should of course set PTR f- A.

Using a similar technique, if PTR1 and PTR2 point to disjoint circular lists 1 1

and 1 2, respectively, we can insert the entire list 12 at the right of 1 1 :

If PTR2 -f- A, then

(if PTR1 -f- A, then LINK (PTR1) +-+ LINK (PTR2);

set PTR 1 f- PTR2, PTR2 f- A).

Splitting one circular list into two, in various ways, is another simple opera
tion that can be done. These operations correspond to the concatenation and
deconcatenation of strings.

Thus we see that a circular list can be used not only to represent inherently
circular structures, but also to represent linear structures; a circular list with one
pointer to the rear node is essentially equivalent to a straight linear list with two
pointers to the front and rear. The natural question to ask, in connection with
this observation, is "How do we find the end of the list, when there is circular
symmetry?" There is no A link to signal the end! The answer is that when we

2.2.4 CIRCULAR LISTS 275

are operating on an entire list, moving from one node to the next, we should stop
when we get back to our starting place (assuming, of course, that the starting
place is still present in the list).

An alternative solution to the problem just posed is to put a special, recog
nizable node into each circular list, as a convenient stopping place. This special
node is called the list head, and in applications we often find it is quite convenient
to insist that every circular list have exactly one node that is its list head. One
advantage is that the circular list will then never be empty. With a list head,
diagram (1) becomes

List head

I I~~-'~~ I~ 1-=H I~ !11
~~~~~~~~~~~~~~~~~~~~~~~-:7 

References to lists like (4) are usually made via the list head, which is often in 
a fixed memory location. The disadvantage of list heads is that don't have a 
pointer to the right end, so we must sacrifice operation (b) stated above. 

Diagram (4) may be compared with 2.2.3-(1) at the beginning of the previ
ous section, in which the link associated with "item 5" now points to LDC (FIRST) 

instead of to A; the variable FIRST is now thought of as a link within a node, 
namely the link that is in NODE (LDC (FIRST)). The principal difference between 
(4) and 2.2.3-( 1) is that (4) makes it possible (though not necessarily efficient) 
to get to any point of the list from any other point. 

As an example of the use of circular lists, we will discuss arithmetic on 
polynomials in the variables x, y, and z, with integer coefficients. There are 
many problems in which a scientist wants to manipulate polynomials instead of 
just numbers; we are thinking of operations like the multiplication of 

by (x2 
- 2xy + y 2

) 

to get 
(x6 

- 6xy5 + 5y6
). 

Linked allocation is a natural tool for this purpose, since polynomials can grow to 
unpredictable sizes and we may want to represent many polynomials in memory 
at the same time. 

We will consider here the two operations of addition and multiplication. Let 
us suppose that a polynomial is represented as a list in which each node stands 
for one nonzero term, and has the two-word form 

COEF 

± A B C LINK 

Here COEF is the coefficient of the term in xAyB zc. We will assume that the 
coefficients and exponents will always lie in the range allowed by this format, and 
that it is not necessary to check the ranges during our calculations. The notation 
ABC will be used to stand for the± ABC fields of the riode (5), treated as a single 
unit. The sign of ABC, namely the sign of the second word in (5), will always be 



276 INFORMATION STRUCTURES 2.2.4 

plus, except that there is a special node at the end of every polynomial that has 
ABC = -1 and COEF = 0. This special node is a great convenience, analogous to 
our discussion of a list head above, because it provides a convenient sentinel and 
it avoids the problem of an empty list (corresponding to the polynomial 0). The 
nodes of the list always appear in decreasing order of the ABC field, if we follow 
the direction of the links, -except that the special node (which has ABC = -1) 
links to the largest value of ABC. For example, the polynomial x 6 

- 6xy5 + 5y6 

would be represented thus: PTR 

± 

Algorithm A (Addition of polynomials). This algorithm adds polynomial (P) 

to polynomial(Q), assuming that P and Q are pointer variables pointing to 
polynomials having the form above. The list P will be unchanged; the list Q 
will retain the sum. Pointer variables P and Q return to their starting points 
at the conclusion of this algorithm; auxiliary pointer variables Q1 and Q2 are 
also used. 

Al. [Initialize.] Set P t- LINK (P), Q1 f- Q, Q f- LINK (Q). (Now both P and Q 
point to the leading terms of their polynomials. Throughout most of this 
algorithm the variable Q1 will be one step behind Q, in the sense that Q = 
LINK(Q1) .) 

A2. [ABC (P): ABC (Q) .] If ABC (P) < ABC (Q), set Q1 f- Q and Q f- LINK (Q) and 
repeat this step. If ABC (P) = ABC (Q), go to step A3. If ABC (P) > ABC (Q), 
go to step A5. 

A3. [Add coefficients.] (We've found terms with equal exponents.) If ABC (P) < 0, 
the algorithm terminates. Otherwise set COEF ( Q) f- COEF ( Q) + COEF (P) . 

Now if COEF (Q) = 0, go to A4; otherwise, set P f- LINK (P), Q1 f- Q, 
Q f- LINK(Q), and go to A2. (Curiously the latter operations are identical 
to step Al.) 

A4. [Delete zero term.] Set Q2 f- Q, LINK(Q1) f- Q f- LINK(Q), and AVAIL¢:: 
Q2. (A zero term created in step A3 has been removed from polynomial(Q) .) 
Set P f- LINK (P) and go back to A2. 

A5. [Insert new term.] (Polynomial (P) contains a term that is not present 
in polynomial(Q), so we insert it in polynomial(Q) .) Set Q2 ¢:: AVAIL, 
COEF (Q2) f- COEF (P), ABC (Q2) f- ABC (P), LINK (Q2) f- Q, LINK (Q1) f- Q2, 
Q1 f- Q2, P f- LINK (P), and return to step A2. I 

One of the most noteworthy features of Algorithm A is the manner in which 
the pointer variable Q1 follows the pointer Q around the list. This is very typical 
of list processing algorithms, and we will see a dozen more algorithms with the 
same characteristic. Can the reader see why this idea was used in Algorithm A? 

A reader who has little prior experience with linked lists will find it very 
instructive to study Algorithm A carefully; as a test case, try adding x + y + z 

to x2 - 2y - z. 



2.2.4 CIRCULAR LISTS 277 

Given Algorithm A, the multiplication operation is surprisingly easy: 

Algorithm M (Multiplication of polynomials). This algorithm, analogous to 
Algorithm A, replaces polynomial(Q) by 

polynomial ( Q) + polynomial (M) x polynomial ( P) . 

Ml. [Next multiplier.] Set M f- LINK (M). If ABC (M) < 0, the algorithm termi
nates. 

M2. [Multiply cycle.] Perform Algorithm A, except that wherever the notation 
"ABC (P)" appears in that algorithm, replace it by "if ABC (P) < 0 then -1, 
otherwise ABC (P) +ABC (M) ";wherever "COEF (P)" appears in that algorithm 
replace it by "COEF (P) x COEF (M)". Then go back to step Ml. I 

The programming of Algorithm A in MIX language shows again the ease with 
which linked lists are manipulated in a computer. In the following code we 
assume that OVERFLOW is a subroutine that either terminates the program (due 
to lack of memory space) or finds further available space and exits to rJ - 2. 

Program A (Addition of polynomials). This is a subroutine written so that it 
can be used in conjunction with a multiplication subroutine (see exercise 15). 

Calling sequence: JMP ADD 
Entry conditions: rll = P, rl2 = Q. 
Exit conditions: polynomial(Q) has been replaced by polynomial(Q) + poly

nomial(P); rll and rl2 are unchanged; all other registers have 
undefined contents. 

In the coding below, P rll, Q rl2, Q1 rl3, and Q2 rl6, in the notation of 
Algorithm A. 

01 LINK EQU 4:5 Definition of LINK field 
02 ABC EQU 0:3 Definition of ABC field 
03 ADD STJ 3F 1 Entrance to subroutine 
04 1H ENT3 0,2 1 +m" Al. Initialize. Set Q1 +- Q. 

05 LD2 1,3(LINK) 1 +m" Q +- LINK(Q1). 

06 OH LD1 1,1(LINK) l+p P +- LINK(P). 

07 SW1 LDA 1, 1 l+p rA(O: 3) +- ABC(P). 

08 2H CMPA 1,2(ABC) x A2. ABC(P) :ABC(Q). 

09 JE 3F x If equal, go to A3. 
10 JG 5F p' +q' If greater, go to A5. 
11 ENT3 0,2 I If less, set Q1 +- Q. q 
12 LD2 1,3(LINK) I Q +- LINK(Q1). q 
13 JMP 2B I Repeat. q 
14 3H JAN * m+l A3. Add coefficients. 
15 SW2 LDA 0,1 m CDEF(P) 

16 ADD 0,2 m + COEF(Q) 

17 STA 0,2 m -+ COEF(Q). 

18 JANZ 1B m Jump if nonzero. 



278 INFORMATION STRUCTURES 2.2.4 

19 ENT6 0,2 m' A4. Delete zero term. Q2 +- Q. 

20 LD2 1,2(LINK) m' Q +- LINK(Q). 

21 LDX AVAIL m' 
} AVAIL¢ Q2. 22 STX 1,6(LINK) m' 

23 ST6 AVAIL I m 
24 ST2 1,3(LINK) m' LINK(Q1) +- Q. 

25 JMP OB m' Go to advance P. 

26 5H LD6 AVAIL I 
} A5. Insert new term. p 

27 J6Z OVERFLOW p' 
28 LDX 1,6(LINK) p' 

Q2 <=AVAIL. 

29 STX AVAIL p' 
30 STA 1,6 I ABC(Q2) +-ABC(P). p 
31 SW3 LDA 0,1 p' rA +- CDEF(P). 

32 STA 0,6 p' COEF(Q2) +- rA. 
33 ST2 1,6(LINK) I LINK(Q2) +- Q. p 
34 ST6 1,3(LINK) p' LINK(Q1) +- Q2. 

35 ENT3 0,6 p' Q1 +- Q2. 

36 JMP OB p' Go to advance P. I 

Note that Algorithm A traverses each of the two lists just once; it is not 
necessary to loop around several times. Using Kirchhoff's law, we find that 
an analysis of the instruction counts presents no difficulties; the execution time 
depends on four quantities 

m' = number of matching terms that cancel with each other; 
m" = number of matching terms that do not cancel; 
p' = number of unmatched terms in polynomial (P) ; 

q' = number of unmatched terms in polynomial ( Q) . 

The analysis given with Program A uses the abbreviations 

m = m' + m", I p=m+p, q = m + q', x = 1 + m + p' + q'; 

the running time for MIX is (27m' + 18m" + 27p' + 8q' + 13)u. The total number 
of nodes in the storage pool needed during the execution of the algorithm is at 
least 2 + p + q, and at most 2 + p + q + p'. 

EXERCISES 

1. [ 21] The text suggests at the beginning of this section that an empty circular list 
could be represented by PTR = A. It might be more consistent with the philosophy 
of circular lists to have PTR = LDC (PTR) indicate an empty list. Does this convention 
facilitate operations (a), (b), or (c) described at the beginning of this section? 

2. [20] Draw "before and after" diagrams illustrating the effect of the concatenation 
operation (3), assuming that PTR1 and PTR2 are#- A . 

.,.. 3. [20] What does operation (3) do if PTR1 and PTR2 are both pointing to nodes in 
the same circular list? 

4. [ 20] State insertion and deletion operations that give the effect of a stack, using 
representation (4)· 



2.2.4 

A3. Add 
coefficients O 

Sentinel 

A4. Delete 
zero term 

CIRCULAR LISTS 

A5. Insert 
new term 

Fig. 10. Addition of polynomials . 

279 

.,.. 5. [21] Design an algorithm that takes a circular list such as (1) and reverses the 
direction of all the arrows. 

6. [18] Give diagrams of the list representation for the polynomials (a) xz-3; (b) 0. 

7. [ 1 OJ Why is it useful to assume that the ABC fields of a polynomial list appear in 
decreasing order? 

.,.. 8. [10] Why is it useful to have Q1 trailing one step behind Qin Algorithm A? 

.,.. 9. [23] Would Algorithm A work properly if P = Q (i.e., both pointer variables point 
at the same polynomial)? Would Algorithm M work properly if P = M, if P = Q, or if 
M = Q? 

.,.. 10. [20] The algorithms in this section assume that we are using three variables x, y, 
and z in the polynomials, and that their exponents individually never exceed b - 1 
(where b is the byte size in MIX's case). Suppose instead that we want to do addition 
and multiplication of polynomials in only one variable, x, and to let its exponent take 
on values up to b3 

- 1. What changes should be made to Algorithms A and M? 

11. [ 24] (The purpose of this exercise and many of those following is to create a pack
age of subroutines useful for polynomial arithmetic, in conjunction with Program A.) 
Since Algorithms A and M change the value of polynomialCQ), it is sometimes desirable 
to have a subroutine that makes a copy of a given polynomial. Write a MIX subroutine 
with the following specifications: 

Calling sequence: JMP COPY 
Entry conditions: rll = P 
Exit conditions: rl2 points to a newly created polynomial equal to polynomial(P); 

rll is unchanged; other registers are undefined. 

12. [ 21] Compare the running time of the program in exercise 11 with that of Algo
rithm A when polynomial(Q) = 0. 

13. [20] Write a MIX subroutine with the following specifications: 

Calling sequence: JMP ERASE 
Entry conditions: rll = P 
Exit conditions: polynomial(P) has been added to the AVAIL list; all register contents 

are undefined. 

[Note: This subroutine can be used in conjunction with the subroutine of exercise 11 
in the sequence "LD1 Q; JMP ERASE; LD1 P; JMP COPY; ST2 Q" to achieve the effect 
"polynomial ( Q) +- polynomial (P)" . ] 



280 INFORMATION STRUCTURES 

14. [22] Write a MIX subroutine with the following specifications: 

Calling sequence: JMP ZERO 
Entry conditions: None 

2.2.4 

Exit conditions: rl2 points to a newly created polynomial equal to O; other register 
contents are undefined. 

15. [24] Write a MIX subroutine to 'perform Algorithm M, having the following specifi
cations: 

Calling sequence: JMP MULT 

Entry conditions: rll = P, rl2 = Q, rl4 = M. 
Exit conditions: polynomial(Q) +- polynomial(Q) +polynomial(M) x polynomial(P); 

rll, rl2, rl4 are unchanged; other registers undefined. 

(Note: Use Program A as a subroutine, changing the settings of SW1, SW2, and SW3.) 

16. [M28] Estimate the running time of the subroutine in exercise 15 in terms of some 
relevant parameters . 

.,.. 17. [22] What advantage is there in representing polynomials with a circular list as 
in this section, instead of with a straight linear linked list terminated by A as in the 
previous section? 

.,.. 18. [25] Devise a way to represent circular lists inside a computer in such a way that 
the list can be traversed efficiently in both directions, yet only one link field is used 
per node. [Hint: If we are given two pointers, to two successive nodes Xi-l and Xi, it 
should be possible to locate both Xi+l and Xi-2·] 

2.2.5. Doubly Linked Lists 

For even greater flexibility in the manipulation of linear lists, we can include two 
links in each node, pointing to the items on either side of that node: 

LEFT RIGHT (1) 

Here LEFT and RIGHT are pointer variables to the left and right of the list. Each 
node of the list includes two links, called, for example, LLINK and RLINK. The 
operations of a general deque are readily performed with such a representation; 
see exercise 1. However, manipulations of doubly linked lists almost always 
become much easier if a list head node is part of each list, as described in the 
preceding section. When a list head is present, we have the following typical 
diagram of a doubly linked list: 

List head 

(2) 
The RLINK and LLINK fields of the list head take the place of LEFT and RIGHT 
in (1). There is complete symmetry between left and right; the list head could 
equally well have been shown at the right of (2). If the list is empty, both link 
fields of the list head point to the head itself. 

The list representation ( 2) clearly satisfies the condition 

RLINK(LLINK(X)) =LLINK(RLINK(X)) =X (3) 



2.2.5 DOUBLY LINKED LISTS 281 

if X is the location of any node in the list (including the head). This fact is the 
principal reason that representation ( 2) is preferable to (I). 

A doubly linked list usually takes more memory space than a singly linked 
one does (although there is sometimes room for another link in a node that 
doesn't fill a complete computer word). But the additional operations that can be 
performed efficiently with two-way links are often more than ample compensation 
for the extra space requirement. Besides the obvious advantage of being able to 
go back and forth at will when examining a doubly linked list, one of the principal 
new abilities is the fact that we can delete NODE (X) from the list it is in, given 
only the value of X. This deletion operation is easy to derive from a "before and 
after" diagram (Fig. 11) and it is very simple: 

RLINK (LLINK (X) ) f- RLINK (X) , LLINK (RLINK (X)) f- LLINK (X), 
(4) 

AVAIL¢:: X. 

In a list that has only one-way links, we cannot delete NODE (X) without 
knowing which node precedes it in the chain, since the preceding node needs to 
have its link altered when NODE (X) is deleted. In all the algorithms considered in 
Sections 2.2.3 and 2.2.4 this additional knowledge was present whenever a node 
was to be deleted; see, in particular, Algorithm 2.2.4A, where we had pointer Q1 

following pointer Q for just this purpose. But we will meet several algorithms 
that require removing random nodes from the middle of a list, and doubly linked 
lists are frequently used just for this reason. (We should point out that in a 
circular list it is possible to delete NODE (X), given X, if we go around the entire 
circle to find the predecessor of X. But this operation is clearly inefficient when 
the list is long, so it is rarely an acceptable substitute for doubly linking the list. 
See also the answer to exercise 2.2.4-8.) 

x 

1 
l~I l~I 

Before 

111T mi 
After .lJ.. 

AVAIL 

Fig. 11. Deletion from 
a doubly linked list. 

Similarly, a doubly linked list permits the easy insertion of a node adjacent 
to NODE (X) at either the left or the right. The steps 

P¢::AVAIL, LLINK(P) t-X, RLINK(P) t-RLINK(X), 

LLINK(RLINK(X)) t-P, RLINK(X) t-P 

do such an insertion to the right of NODE (X); and by interchanging left and 
right we get the corresponding algorithm for insertion to the left. Operation 
(5) changes the settings of five links, so it is a little slower than an insertion 
operation in a one-way list where only three links need to be changed. 



282 INFORMATION STRUCTURES 2.2.5 

As an example of the use of doubly linked lists, we will now consider the 
writing of a discrete simulation program. "Discrete simulation" means the 
simulation of a system in which all changes in the state of the system may 
be assumed to happen at certain discrete instants of time. The "system" being 
simulated is usually a set of individual activities that are largely independent 
although they interact with each other; examples are customers at a store, ships 
in a harbor, people in a corporation. In a discrete simulation, we proceed by 
doing whatever is to be done at a certain instant of simulated time, then advance 
the simulated clock to the next time when some action is scheduled to occur. 

By contrast, a "continuous simulation" would be simulation of activities that 
are under continuous changes, such as traffic moving on a highway, spaceships 
traveling to other planets, etc. Continuous simulation can often be satisfactorily 
approximated by discrete simulation with very small time intervals between 
steps; however, in such a case we usually have "synchronous" discrete simulation, 
in which many parts of the system are slightly altered at each discrete time 
interval, and such an application generally calls for a somewhat different type of 
program organization than the kind considered here. 

The program developed below simulates the elevator system in the Mathe
matics building of the California Institute of Technology. The results of such a 
simulation will perhaps be of use only to people who make reasonably frequent 
visits to Caltech; and even for them, it may be simpler just to try using the 
elevator several times instead of writing a computer program. But, as is usual 
with simulation studies, the methods we will use are of much more interest than 
the answers given by the program. The methods to be discussed below illustrate 
typical implementation techniques used with discrete simulation programs. 

The Mathematics building has five floors: sub-basement, basement, first, 
second, and third. There is a single elevator, which has automatic controls 
and can stop at each floor. For convenience we will renumber the floors 0, 1, 
2, 3, and 4. 

On each floor there are two call buttons, one for UP and one for DOWN. 

(Actually floor 0 has only UP and floor 4 has only DOWN, but we may ignore 
that anomaly since the excess buttons will never be used.) Corresponding to 
these buttons, there are ten variables CALLUP [j] and CALLDOWN [j] , 0 :::; j :::; 4. 
There are also variables CALLCAR [j] , 0 :::; j :::; 4, representing buttons within 
the elevator car, which direct it to a destination floor. When a person presses a 
button, the appropriate variable is set to 1; the elevator clears the variable to 0 
after the request has been fulfilled. 

So far we have described the elevator from a user's point of view; the 
situation is more interesting as viewed by the elevator. The elevator is in one of 
three states: GOINGUP, GOINGDOWN, or NEUTRAL. (The current state is indicated 
to passengers by lighted arrows inside the elevator.) If it is in NEUTRAL state and 
not on floor 2, the machine will close its doors and (if no command is given by 
the time its doors are shut) it will change to GOINGUP or GOINGDOWN, heading 
for floor 2. (This is the "home floor," since most passengers get in there.) On 
floor 2 in NEUTRAL state, the doors will eventually close and the machine will wait 



2.2.5 DOUBLY LINKED LISTS 283 

silently for another command. The first command received for another floor 
sets the machine GOINGUP or GOINGDOWN as appropriate; it stays in this state 
until there are no commands waiting in the same direction, and then it switches 
direction or switches to NEUTRAL just before opening the doors, depending on 
what other commands are in the CALL variables. The elevator takes a certain 
amount of time to open and close its doors, to accelerate and decelerate, and 
to get from one floor to another. All of these quantities are indicated in the 
algorithm below, which is much more precise than an informal description can 
be. The algorithm we will now study may not reflect the elevator's true principles 
of operation, but it is believed to be the simplest set of rules that explain all 
the phenomena observed during several hours of experimentation by the author 
during the writing of this section. 

The elevator system is simulated by using two coroutines, one for the pas
sengers and one for the elevator; these routines specify all the actions to be 
performed, as well as various time delays that are to be used in the simulation. 
In the following description, the variable TIME represents the current value of 
the simulated time clock. All units of time are given in tenths of seconds. There 
are also several other variables: 

FLOOR, the current position of the elevator; 
D1, a variable that is zero except during the time people are getting in or 

out of the elevator; 
D2, a variable that becomes zero if the elevator has sat on one floor without 

moving for 30 sec or more; 
D3, a variable that is zero except when the doors are open but nobody is 

getting in or out of the elevator; 
STATE, the current state of the elevator (GOINGUP, GOINGDOWN, or NEUTRAL). 

Initially FLOOR= 2, D1 = D2 = D3 = 0, and STATE =NEUTRAL. 

Coroutine U (Users). Everyone who enters the system begins to perform the 
actions specified below, starting at step Ul. 

Ul. [Enter, prepare for successor.] The following quantities are determined in 
some manner that will not be specified here: 

IN, the floor on which the new user has entered the system; 
OUT, the floor to which this user wants to go (OUT =/= IN); 
GIVEUPTIME, the amount of time this user will wait for the elevator before 

running out of patience and deciding to walk; 
INTERTIME, the amount of time before another user will enter the system. 

After these quantities have been computed, the simulation program sets 
things up so that another user enters the system at TIME+ INTERTIME. 

U2. [Signal and wait.] (The purpose of this step is to call for the elevator; some 
special cases arise if the elevator is already on the right floor.) If FLOOR = IN 
and if the elevator's next action is step E6 below (that is, if the elevator doors 
are now closing), send the elevator immediately to its step E3 and cancel its 



284 INFORMATION STRUCTURES 2.2.5 

activity E6. (This means that the doors will open again before the elevator 
moves.) If FLOOR= IN and if D3 =I 0, set D3 f- 0, set D1 to a nonzero value, 
and start up the elevator's activity E4 again. (This means that the elevator 
doors are open on this floor, but everyone else has already gotten on or 
off. Elevator step E4 is a sequencing step that grants people permission to 
enter the elevator according to normal laws of courtesy; therefore, restarting 
E4 gives this user a chance to get in before the doors close.) In all other 
cases, the user sets CALLUP [IN] f- 1 or CALLDOWN [IN] f- 1, according as 
OUT > IN or OUT < IN; and if D2 = 0 or the elevator is in its "dormant" 
position El, the DECISION subroutine specified below is performed. (The 
DECISION subroutine is used to take the elevator out of NEUTRAL state at 
certain critical times.) 

U3. [Enter queue.] Insert this user at the rear of QUEUE [IN], which is a linear 
list representing the people waiting on this floor. Now the user waits 
patiently for GIVEUPTIME units of time, unless the elevator arrives first -
more precisely, unless step E4 of the elevator routine below sends this user 
to U5 and cancels the scheduled activity U4. 

U4. (Give up.] If FLOOR =ft IN or D1 = 0, delete this user from QUEUE [IN] 

and from the simulated system. (The user has decided that the elevator is 
too slow, or that a bit of exercise will be better than an elevator ride.) If 
FLOOR = IN and D 1 =I 0, the user stays and waits (knowing that the wait 
won't be long). 

U5. [Get in.] This user now leaves QUEUE [IN] and enters ELEVATOR, which is 
a stack-like list representing the people now on board the elevator. Set 
CALLCAR [OUT] f- 1. 

Now if STATE = NEUTRAL, set STATE f- GOINGUP or GOINGDOWN as 
appropriate, and set the elevator's activity E5 to be executed after 25 units 
of time. (This is a special feature of the elevator, allowing the doors to close 
faster than usual if the elevator is in NEUTRAL state when the user selects a 
destination floor. The 25-unit time interval gives step E4 the opportunity 
to make sure that D1 is properly set up by the time step E5, the door-closing 
action, occurs.) 

Now the user waits until being sent to step U6 by step E4 below, when 
the elevator has reached the desired floor. 

U6. [Get out.] Delete this user from the ELEVATOR list and from the simulated 
system. I 

Coroutine E (Elevator). This coroutine represents the actions of the elevator; 
step E4 also handles the control of when people get in and out. 

El. [Wait for call.] (At this point the elevator is sitting at floor 2 with the doors 
closed, waiting for something to happen.) If someone presses a button, the 
DECISION subroutine will take us to step E3 or E6. Meanwhile, wait. 

E2. (Change of state?] If STATE = GOINGUP and CALLUP [j] = CALLDOWN [j] = 

CALLCAR[j] = 0 for all j > FLOOR, then set STATE f- NEUTRAL or STATE f-



2.2.5 DOUBLY LINKED LISTS 285 

GOINGDOWN, according as CALLCAR [j] = 0 for all j < FLOOR or not, and set 
all CALL variables for the current floor to zero. If STATE = GOINGDOWN, do 
similar actions with directions reversed. 

E3. [Open door.] Set D1 and D2 to any nonzero values. Set elevator activity 
E9 to start up independently after 300 units of time. (This activity may be 
canceled in step E6 below before it occurs. If it has already been scheduled 
and not canceled, we cancel it and reschedule it.) Also set elevator activity 
E5 to start up independently after 76 units of time. Then wait 20 units of 
time (to simulate opening of the doors) and go to E4. 

E4. [Let people out, in.] If anyone in the ELEVATOR list has OUT =FLOOR, send 
the user of this type who has most recently entered immediately to step U6, 
wait 25 units, and repeat step E4. If no such users exist, but QUEUE [FLOOR] 
is not empty, send the front person of that queue immediately to step U5 
instead of U4, wait 25 units, and repeat step E4. But if QUEUE [FLOOR] 
is empty, set D1 f- 0, make D3 nonzero, and wait for some other activity 
to initiate further action. (Step E5 will send us to E6, or step U2 will 
restart E4.) 

E5. [Close door.] If D1 =/= 0, wait 40 units and repeat this step (the doors flutter 
a little, but they spring open again, since someone is still getting out or in). 
Otherwise set D3 f- 0 and set the elevator to start at step E6 after 20 units 
of time. (This simulates closing the doors after people have finished getting 
in or out; but if a new user enters on this floor while the doors are closing, 
they will open again as stated in step U2.) 

E6. (Prepare to move.] Set CALLCAR[FLOOR] to zero; also set CALLUP [FLOOR] 
to zero if STATE =/= GOINGDOWN, and also set CALLDOWN [FLOOR] to zero if 
STATE=/= GOINGUP. (Note: If STATE= GOINGUP, the elevator does not clear 
out CALLDOWN, since it assumes that people who are going down will not 
have entered; but see exercise 6.) Now perform the DECISION subroutine. 

If STATE = NEUTRAL even after the DECISION subroutine has acted, go 
to El. Otherwise, if D2 =/= 0, cancel the elevator activity E9. Finally, if 
STATE = GOINGUP, wait 15 units of time (for the elevator to build up speed) 
and go to E7; if STATE= GOINGDOWN, wait 15 units and go to E8. 

E7. [Go up a floor.] Set FLOOR f- FLOOR+ 1 and wait 51 units of time. If 
now CALLCAR [FLOOR] = 1 or CALLUP [FLOOR] = 1, or if ((FLOOR = 2 or 
CALLDOWN [FLOOR] = 1) and CALLUP [j] = CALLDOWN [j] = CALLCAR [j] = 0 
for all j > FLOOR), wait 14 units (for deceleration) and go to E2. Otherwise, 
repeat this step. 

E8. [Go down a floor.] This step is like E7 with directions reversed, and also 
the times 51 and 14 are changed to 61 and 23, respectively. (It takes the 
elevator longer to go down than up.) 

E9. [Set inaction indicator.] Set D2 f- 0 and perform the DECISION subroutine. 
(This independent action is initiated in step E3 but it is almost always 
canceled in step E6. See exercise 4.) I 



Table 1 ~ 
(XJ 

SOME ACTIONS OF THE ELEVATOR SYSTEM 
Ol 

TIME STATE FLOOR D1 D2 D3 step action TIME STATE FLOOR D1 D2 D3 step action 
....... z 

0000 N 2 0 0 0 Ul User 1 arrives at floor 0, destination is 2. 10S3 D 1 x x 0 U6 User 4 gets out, leaves the system. >Tj 

0035 D 2 0 0 0 ES Elevator moving down 110S D 1 x x 0 U6 User 3 gets out, leaves the system. 0 
~ 

003S D 1 0 0 0 Ul User 2 arrives at floor 4, destination is 1. 1133 D 1 x x 0 U6 User 5 gets out, leaves the system. ~ 
0096 D 1 0 0 0 ES Elevator moving down 1139 D 1 x x 0 E5 Doors flutter. 

~ 
0136 D 0 0 0 0 Ul User 3 arrives at floor 2, destination is 1. 115S D 1 x x 0 U6 User 2 gets out, leaves the system. 

0141 D 0 0 0 0 Ul User 4 arrives at floor 2, destination is 1. 1179 D 1 x x 0 E5 Doors flutter. 
....... 
0 

0152 D 0 0 0 0 U4 User 1 decides to give up, leaves the system. 11S3 D 1 x x 0 U5 User 7 gets in. z 
OlSO D 0 0 0 0 E2 Elevator stops. 120S D 1 x x 0 U5 User S gets in. w 
OlSO N 0 0 x 0 E3 Elevator doors start to open. 1219 D 1 x x 0 E5 Doors flutter. .., 
0200 N 0 x x 0 E4 Doors open, nobody is there. 1233 D 1 x x 0 U5 User 9 gets in. ~ 
0256 N 0 0 x x E5 Elevator doors start to close. 1259 D 1 0 x x E5 Elevator doors start \o close. 

0291 u 0 0 x 0 Ul User 5 arrives at floor 3, destination is 1. 1294 D 1 0 x 0 ES Elevator moving down Q .., 
0291 u 0 0 x 0 E7 Elevator moving up 137S D 0 0 x 0 E2 Elevator stops. e 
0342 u 1 0 x 0 E7 Elevator moving up 137S u 0 0 x 0 E3 Elevator doors start to open. ~ 

0364 u 2 0 x 0 Ul User 6 arrives at floor 2, destination is 1. 139S u 0 x x 0 U6 User S gets out, leaves the system. t_Tj 

0393 u 2 0 x 0 E7 Elevator moving up 1423 u 0 x x 0 U5 User 10 gets in. 
w 

0444 u 3 0 x 0 E7 Elevator moving up 1454 u 0 0 x x E5 Elevator doors start to close. 

0509 u 4 0 x 0 E2 Elevator stops. 14S9 u 0 0 x 0 E7 Elevator moving up 

0509 N 4 0 x 0 E3 Elevator doors start to open. 1554 u 1 0 x 0 E2 Elevator stops. 

0529 N 4 x x 0 U5 User 2 gets in. 1554 u 1 0 x 0 E3 Elevator doors start to open. 

0540 D 4 x x 0 U4 User 6 decides to give up, leaves the system. 1630 u 1 0 x x E5 Elevator doors start to close. 

0554 D 4 0 x x E5 Elevator doors start to close. 1665 u 1 0 x 0 E7 Elevator moving up 

05S9 D 4 0 x 0 ES Elevator moving down 

0602 D 3 0 x 0 Ul User 7 arrives at floor 1, destination is 2. 4257 N 2 0 x 0 El Elevator dormant 

0673 D 3 0 x 0 E2 Elevator stops. 43S4 N 2 0 x 0 Ul User 17 arrives at floor 2, destination is 3. 

0673 D 3 0 x 0 E3 Elevator doors start to open. 4404 N 2 0 x 0 E3 Elevator doors start to open. 

0693 D 3 x x 0 U5 User 5 gets in. 4424 N 2 x x 0 U5 User 17 gets in. 

0749 D 3 0 x x E5 Elevator doors start to close. 4449 u 2 0 x x E5 Elevator doors start to close. 

07S4 D 3 0 x 0 ES Elevator moving down 44S4 u 2 0 x 0 E7 Elevator moving up 

OS27 D 2 0 x 0 Ul User S arrives at floor 1, destination is 0. 4549 u 3 0 x 0 E2 Elevator stops. 

OS6S D 2 0 x 0 E2 Elevator stops. 4549 N 3 0 x 0 E3 Elevator doors start to open. 

OS6S D 2 0 x 0 E3 Elevator doors start to open. 4569 N 3 x x 0 U6 User 17 gets out, leaves the system. 

OS76 D 2 x x 0 Ul User 9 arrives at floor 1, destination is 3. 4625 N 3 0 x x E5 Elevator doors start to close. 

osss D 2 x x 0 U5 User 3 gets in. 4660 D 3 0 x 0 ES Elevator moving down 

0913 D 2 x x 0 U5 User 4 gets in. 4744 D 2 0 x 0 E2 Elevator stops. 

0944 D 2 0 x x E5 Elevator doors start to close. 4744 N 2 0 x 0 E3 Elevator doors start to open. 

0979 D 2 0 x 0 ES Elevator moving down 4764 N 2 x x 0 E4 Doors open, nobody is there. 

104S D 1 0 x 0 Ul User 10 arrives at floor 0, destination is 4. 4S20 N 2 0 x 0 E5 Elevator doors start to close. 

1063 D 1 0 x 0 E2 Elevator stops. 4S40 N 2 0 x 0 El Elevator dormant 
~ 

1063 D 1 0 x 0 E3 Elevator doors start to open. 
~ 

01 



2.2.5 DOUBLY LINKED LISTS 287 

Subroutine D (DECISION subroutine). This subroutine is performed at certain 

critical times, as specified in the coroutines above, when a decision about the 

elevator's next direction is to be made. 

Dl. [Decision necessary?] If STATE =J. NEUTRAL, exit from this subroutine. 

D2. [Should door open?] If the elevator is positioned at El and if GALLUP [2], 

CALLCAR [2] , and CALLDOWN [2] are not all zero, cause the elevator to start 

its activity E3 after 20 units of time, and exit from this subroutine. (If 

the DECISION subroutine is currently being invoked by the independent 

activity E9, it is possible for the elevator coroutine to be positioned at El.) 

D3. [Any calls?] Find the smallest j =J. FLOOR for which GALLUP [j], CALLCAR[j], 

or CALLDOWN [j] is nonzero, and go on to step D4. But if no such j exists, 

then set j +- 2 if the DECISION subroutine is currently being invoked by 

step E6; otherwise exit from this subroutine. 

D4. [Set STATE.] If FLOOR > j, set STATE +- GOINGDOWN; if FLOOR < j, set 

STATE+- GOINGUP. 

D5. [Elevator dormant?] If the elevator coroutine is positioned at step El, and 

if j =J. 2, set the elevator to perform step E6 after 20 units of time. Exit 

from the subroutine. I 

The elevator system described above is quite complicated by comparison 

with other algorithms we have seen in this book, but the choice of a real-life 

system is more typical of a simulation problem than any cooked-up "textbook 

example" would ever be. 
To help understand the system, consider Table 1, which gives part of the 

history of one simulation. It is perhaps best to start by examining the simple 

case starting at time 4257: The elevator is sitting idly at floor 2 with its doors 

shut, when a user arrives (time 4384); let's say the user's name is Don. Two 

seconds later, the doors open, and Don gets in after two more seconds. By 

pushing button "3" he starts the elevator moving up; ultimately he gets off at 

floor 3 and the elevator returns to floor 2. 

The first entries in Table 1 show a much more dramatic scenario: A user 

calls the elevator to floor 0, but loses patience and gives up after 15.2 sec. The 

elevator stops at floor 0 but finds nobody there; then it heads to floor 4, since 

there are several calls wanting to go downward; etc. 

The programming of this system for a computer (in our case, MIX) merits 

careful study. At any given time during the simulation, we may have many 

simulated users in the system (in various queues and ready to "give up" at various 

times), and there is also the possibility of essentially simultaneous execution of 

steps E4, E5, and E9 if many people are trying to get out as the elevator is 

trying to close its doors. The passing of simulated time and the handling of 

"simultaneity" may be programmed by having each entity represented by a node 

that includes a NEXTTIME field (denoting the time when the next action for this 

entity is to take place) and a NEXT INST field (denoting the memory address where 

this entity is to start executing instructions, analogous to ordinary coroutine 



288 INFORMATION STRUCTURES 2.2.5 

QUEUE[!] 

ELEVATOR 

Fig. 12. Some lists used in the elevator simulation program. (List heads appear at 

the left.) 

linkage). Each entity waiting for time to pass is placed in a doubly linked list 

called the WAIT list; this "agenda" is sorted on the NEXTTIME fields of its nodes, so 

that the actions may be processed in the correct sequence of simulated times. The 

program also uses doubly linked lists for the ELEVATOR and for the QUEUE lists. 

Each node representing an activity (whether a user or an elevator action) 

has the form 

+ IN LLINK1 RLINK1 

+ NEXTTIME 
(6) 

+ NEXTINST 0 0 39 

+ OUT LLINK2 RLINK2 

Here LLINK1 and RLINK1 are the links for the WAIT list; LLINK2 and RLINK2 are 

used as links in the QUEUE lists or the ELEV ATOR. The latter two fields and the 

IN and OUT field are relevant when node (6) represents a user, but they are not 

relevant for nodes that represent elevator actions. The third word of the node is 

actually a MIX "JMP" instruction. 

Figure 12 shows typical contents of the WAIT list, ELEVATOR list, and one of 

the QUEUE lists; each node in the QUEUE list is simultaneously in the WAIT list 

with NEXTINST = U4, but this has not been indicated in the figure, since the 

complexity of the linking would obscure the basic idea. 

Now let us consider the program itself. It is quite long, although (as with all 

long programs) it divides into small parts each of which is quite simple in itself. 



2.2.5 DOUBLY LINKED LISTS 289 

First comes a number of lines of code that just serve to define the initial contents 

of the tables. There are several points of interest here: We have list heads for the 

WAIT list (lines 010-011), the QUEUE lists (lines 026-031), and the ELEVATOR list 

(lines 032-033). Each of them is a node of the form (6), but with unimportant 

words deleted; the WAIT list head contains only the first two words of a node, 

and the QUEUE and ELEVATOR list heads require only the last word of a node. 

We also have four nodes that are always present in the system (lines 012-023): 

USER!, a node that is always positioned at step Ul ready to enter a new user 

into the system; ELEV!, a node that governs the main actions of the elevator 

at steps El, E2, E3, E4, E6, E7, and E8; and ELEV2 and ELEV3, nodes that 

are used for the elevator actions E5 and E9, which take place independently of 

other elevator actions with respect to simulated time. Each of these four nodes 

contains only three words, since they never appear in the QUEUE or ELEVATOR 

lists. The nodes representing each actual user in the system will appear in a 

storage pool following the main program. 

001 * THE ELEVATOR SIMULATION 
002 IN EQU 1:1 Definition of fields 

003 LLINK1 EQU 2:3 within nodes 

004 RLINK1 EQU 4:5 
005 NEXTINST EQU 0:2 
006 OUT EQU 1:1 
001 LLINK2 EQU 2:3 
008 RLINK2 EQU 4:5 

009 * FIXED-SIZE TABLES AND LIST HEADS 
010 WAIT CON *+2(LLINK1),*+2(RLINK1) List head for WAIT list 

011 CON 0 NEXTTIME = 0 always 

012 USER! CON *-2(LLINK1),*-2(RLINK1) This node represents action 

013 CON 0 Ul and it is initially the 

014 JMP U1 sole entry in the WAIT list. 

015 ELEV! CON 0 This node represents the 

016 CON 0 elevator actions, except 

011 JMP El for E5 and E9. 

018 ELEV2 CON 0 This node represents the 

019 CON 0 independent elevator 

020 JMP E5 action at E5. 

021 ELEV3 CON 0 This node represents the 

022 CON 0 independent elevator 

023 JMP E9 action at E9. 

024 AVAIL CON 0 Link to available nodes 

025 TIME CON 0 Current simulated time 

026 QUEUE EQU *-3 
021 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE [OJ 

028 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE [1] 

029 CON *-3(LLINK2),*-3(RLINK2) All queues initially 

030 CON *-3(LLINK2),*-3(RLINK2) are empty 
031 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE [ 4] 



290 INFORMATION STRUCTURES 2.2.5 

032 ELEVATOR EQU *-3 
033 CON *-3(LLINK2),*-3(RLINK2) List head for ELEV ATOR 

034 CON 0 

035 CON 0 } "Padding" for CALL table 

036 CON 0 (see lines 183-186) 

037 CON 0 

038 CALL CON 0 CALLUP[O], CALLCAR[O], CALLDOWN[O] 

039 CON 0 CALLUP[l], CALLCAR[l], CALLDOWN[l] 

040 CON 0 CALLUP[2], CALLCAR[2], CALLDOWN[2] 

041 CON 0 CALLUP[3], CALLCAR[3], CALLDOWN[3] 

042 CON 0 CALLUP[4], CALLCAR[4], CALLDOWN[4] 

043 CON 0 

044 CON 0 } "Padding" for CALL table 

045 CON 0 (see lines 178-181) 

046 CON 0 

041 D1 CON 0 Indicates door open, activity 

048 D2 CON 0 Indicates no prolonged standstill 

049 D3 CON 0 Indicates door open, inactivity I 

The next part of the program coding contains basic subroutines and the 

main control routines for the simulation process. Subroutines INSERT and DELETE 

perform typical manipulations on doubly linked lists; they put the current node 

into or take it out of a QUEUE or ELEVATOR list. (In the program, the "current 

node" C is always represented by index register 6.) There are also subroutines for 

the WAIT list: Subroutine SORTIN adds the current node to the WAIT list, sorting 

it into the right place based on its NEXTTIME field. Subroutine IMMED inserts the 

current node at the front of the WAIT list. Subroutine HOLD puts the current node 

into the WAIT list, with NEXTTIME equal to the current time plus the amount in 

register A. Subroutine DELETEW deletes the current node from the WAIT list. 

The routine CYCLE is the heart of the simulation control: It decides which 

activity is to act next (namely, the first element of the WAIT list, which we know 

is nonempty), and jumps to it. There are two special entrances to CYCLE: CYCLE! 

first sets NEXTINST in the current node, and HOLDC is the same with an additional 

call on the HOLD subroutine. Thus, the effect of the instruction "JMP HOLDC" with 

amount t in register A is to suspend activity for t units of simulated time and 

then to return to the following location. 

050 * SUBROUTINES AND CONTROL ROUTINE 
051 INSERT STJ 9F Insert NODE ( C) to left of NODE (r 11): 

052 LD2 3,1(LLINK2) rl2 t- LLINK2(rll). 
053 ST2 3,6(LLINK2) LLINK2(C) t- rl2. 

054 ST6 3,1(LLINK2) LLINK2 (rll) t- C. 
055 ST6 3,2(RLINK2) RLINK2 (rl2) t- C. 
056 ST1 3,6(RLINK2) RLINK2(C) t- rll. 
057 9H JMP * Exit from subroutine. 
058 DELETE STJ 9F Delete NODE(C) from its list: 
059 LD1 3,6(LLINK2) Pt- LLINK2(C). 
060 LD2 3,6(RLINK2) Q t- RLINK2 ( C) . 



2.2.5 DOUBLY LINKED LISTS 291 

061 ST1 3,2(LLINK2) LLINK2(Q) t- P. 

062 ST2 3,1(RLINK2) RLINK2(P) t- Q. 

063 9H JMP * Exit from subroutine. 
064 IMMED STJ 9F Insert NODE(C) first in WAIT list: 
065 LDA TIME 
066 STA 1,6 Set NEXTTIME(C) t- TIME. 

061 ENT! WAIT P t- LOC(WAIT). 

068 JMP 2F Insert NODE ( C) to right of NODE (P). 

069 HOLD ADD TIME rA t- TIME+ rA. 
010 SORTIN STJ 9F Sort NODE (C) into WAIT list: 
011 STA 1,6 Set NEXTTIME(C) t- rA. 
012 ENT! WAIT P t- LDC (WAIT). 

013 LD1 0,1(LLINK1) P t- LLINK1 (P). 

014 CMPA 1,1 Compare NEXTTIME fields, right to left. 
015 JL *-2 Repeat until NEXTTIME(C) ;::: NEXTTIME(P). 

016 2H LD2 0,1(RLINK1) Q t- RLINK1 (P). 

011 ST2 0,6(RLINK1) RLINK1(C) t- Q. 

078 ST1 0,6(LLINK1) LLINK1(C) t-P. 
079 ST6 0,1(RLINK1) RLINK1 (P) t- C. 
080 ST6 0,2(LLINK1) LLINK1 (Q) t- C. 

081 9H JMP * Exit from subroutine. 
082 DELETEW STJ 9F Delete NODE(C) from WAIT list: 
083 LD1 0,6(LLINK1) (This is same as lines 058-063 
084 LD2 0,6(RLINK1) except LLINK1, RLINK1 are used 
085 ST1 0, 2 (LLINK1) instead of LLINK2, RLINK2.) 
086 ST2 0, 1(RLINK1) 
081 9H JMP * 
088 CYCLE! STJ 2,6(NEXTINST) Set NEXTINST(C) t- rJ. 
089 JMP CYCLE 
090 HD LDC STJ 2,6(NEXTINST) Set NEXTINST ( C) t- r J. 
091 JMP HOLD Insert NDDE(C) in WAIT, delay rA. 
092 CYCLE LD6 WAIT(RLINK1) Set current node C t- RLINK1 (LDC (WAIT)). 
093 LDA 1,6 

094 STA TIME TIME t- NEXTTIME(C). 
095 JMP DELETEW Remove NODE ( C) from WAIT list. 
096 JMP 2,6 Jump to NEXTINST ( C) . I 

Now comes the program for Coroutine U. At the beginning of step Ul, 
the current node C is USER! (see lines 012-014 above), and lines 099-100 of the 
program cause USER! to be reinserted into the WAIT list so that the next user 
will be generated after INTERTIME units of simulated time. The following lines 
101-114 take care of setting up a node for the newly generated user; the IN and 
OUT floors are recorded in this node position. The AVAIL stack is singly linked 
in the RLINK1 field of each node. Note that lines 101-108 perform the action 
"C -<== AVAIL" using the POOLMAX technique, 2.2.3-(7); no test for OVERFLOW is 
necessary here, since the total size of the storage pool (the number of users in 
the system at any one time) rarely exceeds 10 nodes ( 40 words). The return of 
a node to the AVAIL stack appears in lines 156-158. 



292 INFORMATION STRUCTURES 2.2.5 

Throughout the program, index register 4 equals the variable FLOOR, and 

index register 5 is positive, negative, or zero, depending on whether STATE = 

GOINGUP, GOINGDOWN, or NEUTRAL. The variables GALLUP [j], CALLCAR [j] , and 

CALLDOWN[j] occupy the respective fields (1:1), (3:3), and (5:5) of location 

CALL+ j. 

097 * COROUTINE U Ul. Enter,_Rre12are for successor. 

098 U1 JMP VALUES Compute IN, OUT, GIVEUPTIME, INTERTIME. 

099 LDA INTERTIME INTERTIME is computed by VALUES subroutine. 

100 JMP HOLD Put NODE(C) in WAIT, delay INTERTIME. 

101 LD6 AVAIL Ct- AVAIL. 
102 J6P 1F If AVAIL=/= A, jump. 

103 LD6 POOLMAX 
104 INC6 4 C t- POOLMAX + 4. 

105 ST6 POOLMAX POOLMAX t- C. 
106 JMP *+3 Assume that memory overflow won't happen. 

107 1H LDA 0,6(RLINK1) 
108 STA AVAIL AVAIL t- RLINK1(AVAIL). 

109 LD1 INFLOOR rll t- INFLOOR (computed by VALUES above). 

110 ST! 0,6(IN) IN(C) t- rll. 

111 LD2 OUTFLOOR rl2 t- OUTFLOOR (computed by VALUES). 

112 ST2 3,6(0UT) OUT(C) t-rl2. 
113 ENTA 39 Put constant 39 ( JMP operation code) 

114 STA 2,6 into third word of node format (6). 

115 U2 ENTA 0,4 U2. Signal and wait. Set rA t- FLOOR. 

116 DECA 0,1 FLOOR - IN. 
111 ST6 TEMP Save value of C. 
118 JANZ 2F Jump if FLOOR=/= IN. 
119 ENT6 ELEV! Set Ct- LOC(ELEV1). 
120 LDA 2,6(NEXTINST) Is elevator positioned at E6? 

121 DECA E6 
122 JANZ 3F 
123 ENTA E3 If so, reposition it at E3. 

124 STA 2,6(NEXTINST) 
125 JMP DELETEW Remove it from WAIT list 

126 JMP 4F and reinsert it at front of WAIT. 
121 3H LDA D3 
128 JAZ 2F Jump if D3 = 0. 
129 ST6 D1 Otherwise make D1 nonzero. 

130 STZ D3 Set D3 t- 0. 
131 4H JMP IMMED Insert ELEV! at front of WAIT list. 

132 JMP U3 (rll and rl2 have changed.) 

133 2H DEC2 0,1 rl2 t- OUT - IN. 
134 ENTA 1 
135 J2P *+3 Jump if going up. 

136 STA CALL, 1(5: 5) Set CALLDOWN [IN] t- 1. 

137 JMP *+2 
138 STA CALL, 1(1: 1) Set CALLUP [IN] t- 1. 

139 LDA D2 



2.2.5 

140 JAZ *+3 
141 LDA ELEV1+2(NEXTINST) 
142 DECA El 
143 JAZ DECISION 
144 U3 LD6 TEMP 
145 LD1 0,6(IN) 
146 ENT! QUEUE, 1 
141 JMP INSERT 
148 U4A LDA GIVEUPTIME 
149 JMP HOLDC 
150 U4 LDA 0,6(IN) 
151 DECA 0,4 
152 JANZ *+3 
153 LDA D1 
154 JANZ U4A 
155 U6 JMP DELETE 
156 LDA AVAIL 
151 STA 0, 6 (RLINK1) 
158 ST6 AVAIL 
159 JMP CYCLE 
160 U5 JMP DELETE 
161 ENT! ELEVATOR 
162 JMP INSERT 
163 ENTA 1 
164 LD2 3,6(0UT) 
165 STA CALL,2(3:3) 
166 J5NZ CYCLE 
161 DEC2 0,4 
168 ENT5 0,2 
169 ENT6 ELEV2 
110 JMP DELETEW 
111 ENTA 25 
112 JMP E5A 

DOUBLY LINKED LISTS 293 

If D2 = 0, call the DECISION subroutine. 

If the elevator is at El, call 
the DECISION subroutine. 

U3. Enter queue. 

rll t- LOC(QUEUE[IN] ). 
Insert NODE ( C) at right end of QUEUE [IN] . 

Wait GIVEUPTIME units. 
U4. Give UR.:. 
IN(C) - FLOOR. 

FLOOR = IN(C). 
See exercise 7. 
U6. Get out. NODE(C) is deleted 

from QUEUE or ELEV A TOR. 
AVAIL¢= C. 

Continue simulation. 
U5. Get in. NODE(C) is deleted 

from QUEUE. 
Insert it at right of ELEVATOR. 

Set CALLCAR[OUT(C)] t- 1. 

Jump if STATE=/= NEUTRAL. 
rl2 t- OUT(C) - FLOOR. 
Set STATE to proper direction. 
Set Ct- LOC(ELEV2). 
Remove E5 action from WAIT list. 

Restart E5 action 25 units from now. I 

The program for coroutine E is a rather straightforward rendition of the 

semiformal description given earlier. Perhaps the most interesting portion is the 

preparation for the elevator's independent actions in step E3, and the searching 

of the ELEV A TOR and QUEUE lists in step E4. 

113 
114 
115 
116 
111 
118 
119 
180 
181 
182 

* COROUTINE E 
E1A JMP CYCLE! 
El EQU * 
E2A JMP HOLDC 
E2 J5N 1F 

LDA CALL+1,4 
ADD CALL+2,4 
ADD CALL+3,4 
ADD CALL+4,4 
JAP E3 

Set NEXTINST t- El, go to CYCLE. 
El. Wait for call. (no action) 

E2. Change of state? 
State is GOINGUP. 

Are there calls for higher floors? 



294 INFORMATION STRUCTURES 2.2.5 

183 LDA CALL-1,4(3:3) If not, have passengers in the 

184 ADD CALL-2,4(3:3) elevator called for lower floors? 

185 ADD CALL-3,4(3:3) 

186 ADD CALL-4,4(3:3) 

181 JMP 2F 

188 1H LDA CALL-1,4 State is GOINGDOWN. 

189 ADD CALL-2,4 Actions are like lines 178-186. 

196 ADD CALL+4,4(3:3) 

191 2H ENN5 0,5 Reverse direction of STATE. 

198 STZ CALL,4 Set CALL variables to zero. 

199 JANZ E3 Jump if called to the opposite direction; 

200 ENT5 0 otherwise set STATE t- NEUTRAL. 

201 E3 ENT6 ELEV3 E3. Open door. 

202 LDA 0,6 If activity E9 is already scheduled, 

203 JANZ DELETEW remove it from the WAIT list. 

204 ENTA 300 
205 JMP HOLD Schedule activity E9 after 300 units. 

206 ENT6 ELEV2 
201 ENTA 76 
208 JMP HOLD Schedule activity E5 after 76 units. 

209 ST6 D2 Set D2 nonzero. 

210 ST6 D1 Set D1 nonzero. 

211 ENTA 20 
212 E4A ENT6 ELEV! 
213 JMP HD LDC 

214 E4 ENTA 0,4 E4. Let people out1 in. 
215 SLA 4 Set OUT field of rA to FLOOR. 

216 ENT6 ELEVATOR Ct- LOC(ELEVATOR). 

211 1H LD6 3, 6 (LLINK2) Ct- LLINK2(C). 

218 CMP6 =ELEVATOR= Search ELEVATOR list, right to left. 

219 JE 1F If C = LOC(ELEVATOR), search is complete. 

220 CMPA 3,6(0UT) Compare OUT(C) with FLOOR. 

221 JNE 1B If not equal, continue searching; 

222 ENTA U6 otherwise prepare to send user to U6. 
223 JMP 2F 

224 1H LD6 QUEUE+3,4(RLINK2) Set C t- RLINK2 (LDC (QUEUE [FLOOR])). 

225 CMP6 3,6(RLINK2) Is C = RLINK2 (C)? 

226 JE 1F If so, the queue is empty. 

221 JMP DELETEW If not, cancel action U4 for this user. 

228 ENTA U5 Prepare to replace U4 by U5. 
229 2H STA 2, 6 (NEXT INST) Set NEXT INST ( C) . 

230 JMP IMMED Put user at the front of the WAIT list. 

231 ENTA 25 

232 JMP E4A Wait 25 units and repeat E4. 
233 1H STZ D1 Set D1 t- 0. 
234 ST6 D3 Set D3 nonzero. 

235 JMP CYCLE Return to simulate other events. 



2.2.5 DOUBLY LINKED LISTS 295 

236 E5A JMP HOLDC 
237 E5 LDA D1 E5. Close door. 
238 JAZ *+3 Is D1 = O? 
239 ENTA 40 If not, people are still getting in or out. 

240 JMP E5A Wait 40 units, repeat E5. 

241 STZ D3 If D1 = 0, set D3 +- 0. 

242 ENT6 ELEV1 
243 ENTA 20 
244 JMP HO LDC Wait 20 units, then go to E6. 

245 E6 J5N *+2 E6. Pre12are to move. 

246 STZ CALL,4(1:3) If STATE=/= GOINGDOWN, CALLUP and CALLCAR 
247 J5P *+2 on this floor are reset. 

248 STZ CALL,4(3:5) If=/= GOINGUP, reset CALLCAR and CALLDOWN. 
249 J5Z DECISION Perform DECISION subroutine. 

250 E6B J5Z E1A If STATE= NEUTRAL, go to El and wait. 
251 LDA D2 
252 JAZ *+4 
253 ENT6 ELEV3 Otherwise, if D2 =/= 0, 

254 JMP DELETEW cancel activity E9 
255 STZ ELEV3 (see line 202). 
256 ENT6 ELEV1 
257 ENTA 15 Wait 15 units of time. 
258 J5N E8A If STATE= GOINGDOWN, go to ES. 
259 E7A JMP HO LDC 
260 E7 INC4 1 E7. Go up a floor. 
261 ENTA 51 
262 JMP HO LDC Wait 51 units. 
263 LDA CALL,4(1:3) Is CALLCAR [FLOOR] or CALLUP [FLOOR] =/= 0? 

264 JAP 1F 
265 ENT1 -2,4 If not, 
266 J1Z 2F is FLOOR= 2? 
267 LDA CALL,4(5:5) If not, is CALLDOWN [FLOOR] =/= 0? 
268 JAZ E7 If not, repeat step E7. 
269 2H LDA CALL+1,4 
270 ADD CALL+2,4 
271 ADD CALL+3,4 
272 ADD CALL+4,4 
273 JANZ E7 Are there calls for higher floors? 

274 1H ENTA 14 It is time to stop the elevator. 
275 JMP E2A Wait 14 units and go to E2. 
276 E8A JMP HO LDC 

(See exercise 8.) 

292 JMP E2A 
293 E9 STZ 0,6 E9. Set inaction indicator. (See line 202.) 
294 STZ D2 D2 t- 0. 
295 JMP DECISION Perform DECISION subroutine. 
296 JMP CYCLE Return to simulation of other events. I 



296 INFORMATION STRUCTURES 2.2.5 

We will not consider here the DECISION subroutine (see exercise 9), nor the 
VALUES subroutine that is used to specify the demands on the elevator. At the 
very end of the program comes the code 

BEGIN ENT4 2 Start with FLOOR = 2 
ENT5 0 and ST ATE = NEUTRAL. 
JMP CYCLE

0 

Begin simulation. 
POOLMAX CON POOL 
POOL END BEGIN Storage pool follows literals, temp storage. I 

The program above does a fine job of simulating the elevator system, as it 
goes through its paces. But it would be useless to run this program, since there 
is no output! Actually, the author added a PRINT subroutine that was called at 
most of the critical steps in the program above, and this was used to prepare 
Table 1; the details have been omitted, since they are very straightforward but 
they only clutter up the code. 

Several programming languages have been devised that make it quite easy 
to specify the actions in a discrete simulation, and to use a compiler to translate 
these specifications into machine language. Assembly language was used in this 
section, of course, since we are concerned here with the basic techniques of linked 
list manipulation, and we want to see the details of how discrete simulations can 
actually by performed by a computer that has a one-track mind. The technique 
of using a WAIT list or agenda to control the sequencing of coroutines, as we have 
done in this section, is called quasi-parallel processing. 

It is quite difficult to give a precise analysis of the running time of such a long 
program, because of the complex interactions involved; but large programs often 
spend most of their time in comparatively short routines doing comparatively 
simple things. Therefore we can usually get a good indication of the overall 
efficiency by using a special trace routine called a profiler, which executes the 
program and records how often each instruction is performed. This identifies the 
"bottlenecks," the places that should be given special attention. [See exercise 
1.4.3.2-7. See also Software Practice & Experience 1 (1971), 105-133, for 
examples of such studies on randomly selected FORTRAN programs found in 
wastebaskets at the Stanford Computer Center.] The author made such an 
experiment with the elevator program above, running it for 10000 units of 
simulated elevator time; 26 users entered the simulated system. The instructions 
in the SORTIN loop, lines 073-075, were executed by far the most often, 1432 
times, while the SORTIN subroutine itself was called 437 times. The CYCLE 

routine was performed 407 times; so we could gain a little speed by not calling 
the DELETEW subroutine at line 095: The four lines of that subroutine could be 
written out in full (to save 4u each time CYCLE is used). The profiler also showed 
that the DECISION subroutine was called only 32 times and the loop in E4 (lines 
216-218) was executed only 142 times. 

It is hoped that some reader will learn as much about simulation from the 
example above as the author learned about elevators while the example was 
being prepared. 



2.2.5 DOUBLY LINKED LISTS 297 

EXERCISES 

1. [ 21 J Give specifications for the insertion and deletion of information at the left 
end of a doubly linked list represented as in ( 1). (With the dual operations at the right 
end, which are obtained by symmetry, we therefore have all the actions of a general 
deque.) 

~ 2. [22] Explain why a list that is singly linked cannot allow efficient operation as a 
general deque; the deletion of items can be done efficiently at only one end of a singly 
linked list. 

~ 3. [22] The elevator system described in the text uses three call variables, CALLUP, 
CALLCAR, and CALLDOWN, for each floor, representing buttons that have been pushed by 
the users in the system. It is conceivable that the elevator actually needs only one or 
two binary variables for the call buttons on each floor, instead of three. Explain how 
an experimenter could push buttons in a certain sequence with this elevator system to 
prove that there are three independent binary variables for each floor (except the top 
and bottom floors). 

4. [ 24 J Activity E9 in the elevator coroutine is usually canceled by step E6; and 
even when it hasn't been canceled, it doesn't do very much. Explain under what 
circumstances the elevator would behave differently if activity E9 were deleted from 
the system. Would it, for example, sometimes visit floors in a different order? 

5. [ 20] In Table 1, user 10 arrived on floor 0 at time 1048. Show that if user 10 had 
arrived on floor 2 instead of floor O, the elevator would have gone up after receiving 
its passengers on floor 1, instead of down, in spite of the fact that user 8 wants to go 
down to floor 0. 

6. [23] During the time period 1183-1233 in Table 1, users 7, 8, and 9 all get in the 
elevator on floor 1; then the elevator goes down to floor 0 and only user 8 gets out. 
Now the elevator stops again on floor 1, presumably to pick up users 7 and 9 who are 
already aboard; nobody is actually on floor 1 waiting to get in. (This situation occurs 
not infrequently at Caltech; if you get on the elevator going the wrong way, you must 
wait for an extra stop as you go by your original floor again.) In many elevator systems, 
users 7 and 9 would not have boarded the elevator at time 1183, since lights outside 
the elevator would show that it was going down, not up; those users would have waited 
until the elevator came back up and stopped for them. On the system described, there 
are no such lights and it is impossible to tell which way the elevator is going to go until 
you are in it; hence Table 1 reflects the actual situation. 

What changes should be made to coroutines U and E if we were to simulate the 
same elevator system, but with indicator lights, so that people do not get on the elevator 
when its state is contrary to their desired direction? 

7. [ 25] Although bugs in programs are often embarrassing to a programmer, if we 
are to learn from our mistakes we should record them and tell other people about them 
instead of forgetting them. The following error (among others) was made by the author 
when he first wrote the program in this section: Line 154 said "JANZ CYCLE" instead 
of "JANZ U4A". The reasoning was that if indeed the elevator had arrived at this user's 
floor, there was no need to perform the "give up" activity U4 any more, so we could 
simply go to CYCLE and continue simulating other activities. What was the error? 

8. [21] Write the code for step E8, lines 277-292, which has been omitted from the 
program in the text. 



298 INFORMATION STRUCTURES 2.2.5 

9. [23] Write the code for the DECISION subroutine, which has been omitted from 
the program in the text. 

10. [40] It is perhaps significant to note that although the author had used the 
elevator system for years and thought he knew it well, it wasn't until he attempted 
to write this section that he realized there were quite a few facts about the elevator's 
system of choosing directions. that he did not know. He went back to experiment with 
the elevator six separate times, each time believing he had finally achieved a complete 
understanding of its modus operandi. (Now he is reluctant to ride it for fear that some 
new facet of its operation will appear, contradicting the algorithms given.) We often 
fail to realize how little we know about a thing until we attempt to simulate it on a 
computer. 

Try to specify the actions of some elevator you are familiar with. Check the 
algorithm by experiments with the elevator itself (looking at its circuitry is not fair!); 
then design a discrete simulator for the system and run it on a computer. 

~ 11. [21] (A sparse-update memory.) The following problem often arises in synchro
nous simulations: The system has n variables V [1] , ... , V [n] , and at every simulated 
step new values for some of them are calculated from the old values. These calculations 
are assumed done "simultaneously" in the sense that the variables do not change to 
their new values until after all assignments have been made. Thus, the two statements 

v [1] +---- v [2] and v [2] +---- v [1] 

appearing at the same simulated time would interchange the values of V [1] and V [2] ; 

this is quite different from what would happen in a sequential calculation. 
The desired action can of course be simulated by keeping an additional table 

NEWV [1], ... , NEWV [n]. Before each simulated step, we could set NEWV [k] +---- V [k] for 
1 ::; k ::; n, then record all changes of V [k] in NEWV [k], and finally, after the step 
we could set V [k] +---- NEWV [k], 1 ::; k ::; n. But this "brute force" approach is not 
completely satisfactory, for the following reasons: ( 1) Often n is very large, but the 
number of variables changed per step is rather small. (2) The variables are often not 
arranged in a nice table V [1], ... , V [n], but are scattered throughout memory in a 
rather chaotic fashion. ( 3) This method does not detect the situation (usually an error 
in the model) when one variable is given two values in the same simulated step. 

Assuming that the number of variables changed per step is rather small, design 
an efficient algorithm that simulates the desired actions, using two auxiliary tables 
NEWV [k] and LINK [k], 1 ::; k ::; n. If possible, your algorithm should give an error stop 
if the same variable is being given two different values on the same step. 

~ 12. [22] Why is it a good idea to use doubly linked lists instead of singly linked or 
sequential lists in the simulation program of this section? 

2.2.6. Arrays and Orthogonal Lists 

One of the simplest generalizations of a linear list is a two-dimensional or higher
dimensional array of information. For example, consider the case of an m x n 
matrix 

A [1, 1] 

A [2, 1] 

A [1, 2] 

A [2, 2] 

A[m,1] A[m,2] 

A [l, n] 

A [2, n] 

A [m ,n] 



2.2.6 ARRAYS AND ORTHOGONAL LISTS 299 

In this two-dimensional array, each node A [j , kJ belongs to two linear lists: the 
"row j" list A [j, 1], A [j, 2J, ... , A [j, nJ and the "column k" list A [1, kJ, A [2, kJ, 
... , A [m, kJ. These orthogonal row and column lists essentially account for 
the two-dimensional structure of a matrix. Similar remarks apply to higher
dimensional arrays of information. 

Sequential Allocation. When an array is stored in sequential memory loca
tions, storage is usually allocated so that 

LDC (A [J, KJ ) = ao + a1 J + a2K, 

where ao, a 1, and a 2 are constants. Let us consider a more general case: 
Suppose we have a four-dimensional array with one-word elements Q [I, J, K, LJ 
for 0 < I < 2, 0 ::; J ::; 4, 0 ::; K ::; 10, 0 ::; L ::; 2. We would like to allocate 
storage so that 

This means that a change in I, J, K, or L leads to a readily calculated change in 
the location of Q [I , J, K, LJ . The most natural (and most commonly used) way 
to allocate storage is to arrange the array elements according to the lexicographic 
order of their indices (exercise 1. 2 .1-15 ( d)) , sometimes called "row major order" : 

Q[0,0,0,0J, Q[0,0,0,lJ, Q[0,0,0,2J, Q[0,0,1,0J, Q[0,0,1,lJ, ... , 

Q [O, 0, 10, 2J, Q [O, 1, 0, OJ, ... , Q [O, 4, 10, 2J, Q [1, 0, 0, OJ, ... ' 
Q [2 '4' 10' 2J . 

It is easy to see that this order satisfies the requirements of (3), and we have 

LDC (Q [I, J, K, LJ) = LDC (Q [O, 0, 0, OJ) + 165! + 33J + 3K + L. (4) 

In general, given a k-dimensional array with c-word elements A [!1 , I 2 , ... , IkJ 
for 

0 ::; I1 ::; d1, 0 ::; I2 ::; d2, 

we can store it in memory as 

LDC(A[I1,I2, ... ,IkJ) 

... ' 

=LDC(A[O,O, ... ,OJ) +c(d2+1) ... (dk+l)I1 +· · ·+c(dk+l)Ik-1 +elk 

=LDC(A[O,O, ... ,OJ)+ L arir, (5) 
l_:Sr_:Sk 

where 

ar = C IJ ( ds + 1). (6) 
r<sS:k 

To see why this formula works, observe that ar is the amount of memory needed 
to store the subarray A [!1, ... , Ir, Jr+l, ... , JkJ if ! 1, ... , Ir are constant and 
Jr+1, ... , Jk vary through all values 0::; Jr+l ::; dr+1, ... , 0 ::; Jk ~ dk; hence 
by the nature of lexicographic order the address of A [!1, ... , IkJ should change 
by precisely this amount when Ir changes by 1. 



300 INFORMATION STRUCTURES 2.2.6 

Formulas (5) and (6) correspond to the value of the number I 1 I 2 ... Ik in a 
mixed-radix number system. For example, if we had the array TIME[W ,D,H,M,SJ 

with 0 ~ W < 4, 0 ::; D < 7, 0 ~ H < 24, 0 ~ M < 60, and 0 ~ S < 60, the 
location of TIME [W, D, H, M, SJ would be the location of TIME [O, 0, 0, 0, OJ plus 
the quantity "W weeks + D days + H hours + M minutes + S seconds" converted to 
seconds. Of course, it takes a pretty fancy application to make use of an array 
that has 2,419,200 elements. 

The normal method for storing arrays is generally suitable when the array 
has a complete rectangular structure, so that all elements A [Ii, I2, ... , IkJ are 

present for indices in the independent ranges li ~ Ii ::; u1, l2 ::; I2 ::; u2, ... , 
lk ~ Ik ~ uk. Exercise 2 shows how to adapt (5) and (6) to the case when the 
lower bounds (li, l2, ... , lk) are not (0, 0, ... , 0). 

But there are many situations in which an array is not perfectly rectangular. 
Most common is the triangular matrix, where we want to store only the entries 
A[j,kJ for, say, 0::; k ~ j ~ n: 

A [O, OJ 

A [l, OJ A [1, lJ 

A[n,OJ A[n,lJ A[n,nJ 

We may know that all other entries are zero, or that A [j, kJ = A [k ,jJ, so that 
only half of the values need to be stored. If we want to store the lower triangular 
matrix (7) in ~(n + l)(n + 2) consecutive memory positions, we are forced to 
give up the possibility of linear allocation as in Eq. (2), but we can ask instead 
for an allocation arrangement of the form 

LDC (A [J, KJ ) = ao + Ji (J) + h (K) (8) 

where Ji and h are functions of one variable. (The constant a0 may be absorbed 
into either Ji or h if desired.) When the addressing has the form (8), a random 
element A [j, kJ can be quickly accessed if we keep two (rather short) auxiliary 
tables of the values of Ji and h; therefore these functions need to be calculated 
only once. 

It turns out that lexicographic order of indices for the array ( 7) satisfies 
condition (8), and with one-word entries we have in fact the simple formula 

LOC(A[J,K]) =LOC(A[0,0]) + J(J:l) +K. (g) 

But there is actually a far better way to store triangular matrices, if we are 
fortunate enough to have two of them with the same size. Suppose that we want 
to store both A [j, kJ and B [j, kJ for 0 ::; k ::; j ~ n. Then we can fit them both 
into a single matrix C [j, kJ for 0 ~ j ~ n, 0 ~ k ~ n + 1, using the convention 

A [j, kJ = C [j, kJ, B [j, kJ = C [k ,j + lJ. 



2.2.6 ARRAYS AND ORTHOGONAL LISTS 301 

Thus 

c [O, OJ C [O, lJ C [O, 2J ... C [O, n + lJ A [O, OJ B [O, OJ B [l , OJ ... B [n, OJ 

C [1 , OJ C [1 , lJ C [1 , 2J ... C [1 , n + lJ A [1 , OJ A [1 , lJ B [1 , lJ ... B [n, lJ 

C [n , OJ C [n , lJ C [n , 2J ... C [n , n + lJ A [n, OJ A [n, lJ A [n , 2J ... B [n, nJ 

The two triangular matrices are packed together tightly within the space of 
(n + l)(n + 2) locations, and we have linear addressing as in (2). 

The generalization of triangular matrices to higher dimensions is called a 
tetrahedral array. This interesting topic is the subject of exercises 6 through 8. 

As an example of typical programming techniques for use with sequentially 
stored arrays, see exercise 1.3.2-10 and the two answers given for that exercise. 
The fundamental techniques for efficient traversal of rows and columns, as well 
as the uses of sequential stacks, are of particular interest within those programs. 

Linked Allocation. Linked memory allocation also applies to higher-dimen
sional arrays of information in a natural way. In general, our nodes can contain 
k link fields, one for each list the node belongs to. The use of linked memory is 
generally for cases in which the arrays are not strictly rectangular in character. 

PERSON [6] 

PERSON[5] 

PERSON[4] 

PERSON[3] 

PERSON[2] 

PERSON[1] 

' 

' 

= 

I ., 
' 

" 

T ., 
T 
J. 

I I ., ., ,, 
T 
'f 

' 
,, 

' 

T 
-- -- -

I ., 
.T 
'f 

T 
T 

' 
T 

-- J.~-== 

Female, age 21, brown eyes, dark hair 

Male, age 24, brown eyes, dark hair 

Female, age 22, green eyes, blonde hair 

Male, age 28, hazel eyes, blond hair 

Female, age 22, blue eyes, red hair 

Female, age 21, blue eyes, blonde hair 

Fig. 13. Each node in four different lists. 

As an example, we might have a list in which every node represents a person, 
with four link fields: SEX, AGE, EYES, and HAIR. In the EYES field we link together 
all nodes with the same eye color, etc. (See Fig. 13.) It is easy to visualize efficient 
algorithms for inserting new people into the list; deletion would, however, be 
much slower, unless we used double linking. We can also conceive of algorithms 
of varying degrees of efficiency for doing things like "Find all blue-eyed blonde 
women of ages 21 through 23"; see exercises 9 and 10. Problems in which each 
node of a list is to reside in several kinds of other lists at once arise rather 
frequently; indeed, the elevator system simulation described in the preceding 
section has nodes that are in both the QUEUE and WAIT lists simultaneously. 



302 INFORMATION STRUCTURES 2.2.6 

As a detailed example of the use of linked allocation for orthogonal lists, 

we will consider the case of sparse matrices (that is, matrices of large order in 

which most of the elements are zero). The goal is to operate on these matrices 

as though the entire matrix were present, but to save great amounts of time 

and space because the zero entries need not be represented. One way to do 

this, intended for random references to elements of the matrix, would be to use 

the storage and retrieval methods of Chapter 6, to find A [j, k] from the key 

"[j, k]"; however, there is another way to deal with sparse matrices that is often 

preferable because it reflects the matrix structure more appropriately, and this 

is the method we will discuss here. 
The representation we will discuss consists of circularly linked lists for each 

row and column. Every node of the matrix contains three words and five fields: 

ROW UP 

COL LEFT (n) 

VAL 

Here ROW and COL are the row and column indices of the node; VAL is the value 

stored at that part of the matrix; LEFT and UP are links to the next nonzero 

entry to the left in the row, or upward in the column, respectively. There are 

special list head nodes, BASEROW [i] and BASECOL [j] , for every row and column. 

These nodes are identified by 

COL (LDC (BASEROW [i] ) ) < 0 and ROW(LOC(BASECOL[j])) < 0. 

As usual in a circular list, the LEFT link in BASEROW [i] is the location of the 

rightmost value in that row, and UP in BASECOL [j] points to the bottom-most 

value in that column. For example, the matrix 

0 
0 
0 
0 

0 
20 

0 
-60 

would be represented as shown in Fig. 14. 

!) 
Using sequential allocation of storage, a 200 x 200 matrix would take 40000 

words, and this is more memory than many computers used to have; but a 

suitably sparse 200 x 200 matrix can be represented as above even in MIX's 

4000-word memory. (See exercise 11.) The amount of time taken to access a 

random element A [j, k] is also quite reasonable, if there are but few elements 

in each row or column; and since most matrix algorithms proceed by walking 

sequentially through a matrix, instead of accessing elements at random, this 

linked representation often works faster than a sequential one. 

As a typical example of a nontrivial algorithm dealing with sparse matrices 

in this form, we will consider the pivot step operation, which is an important 

part of algorithms for solving linear equations, for inverting matrices, and for 



2.2.6 ARRAYS AND ORTHOGONAL LISTS 303 

2 3 20 

4 4 4 4 

LEFT I UP 
Fig. 14. Representation of matrix (i2), with nodes in the format ROW I COL I VAL 

List heads appear at the left and at the top. 

solving linear programming problems by the simplex method. A pivot step is 

the following matrix transformation: 

Pivot row 

Any other row 

Before pivot step 

Any 
Pivot other 

column column 

a b 

c d 

After pivot step 

Pivot 
column 

1/a 

-c/a 

Any 
other 

column 

b/a 

d - be/a 

It is assumed that the pivot element, a, is nonzero. For example, a pivot step 

applied to matrix (12), with the element 10 in row 2 column 1 as pivot, leads to 

-5 0 -100 0 

0.1 0 

0 0 

2 0 

0 0 

3 0 0 5 



304 INFORMATION STRUCTURES 2.2.6 

Our goal is to design an algorithm that performs this pivot operation on 
sparse matrices that are represented as in Fig. 14. It is clear that the trans
formation ( i3) affects only those rows of a matrix for which there is a nonzero 
element in the pivot column, and it affects only those columns for which there 

is a nonzero entry in the pivot row. 
The pivoting algorithm is in many ways a straightforward application of 

linking techniques we have already discussed; in particular, it bears strong 
resemblances to Algorithm 2.2.4A for addition of polynomials. There are two 
things, however, that make the problem a little tricky: If in (13) we have b # 0 
and c # 0 but d = 0, the sparse matrix representation has no entry for d and we 
must insert a new entry; and if b # 0, c # 0, d # 0, but d - be/ a = 0, we must 
delete the entry that was formerly there. These insertion and deletion operations 
are more interesting in a two-dimensional array than in the one-dimensional case; 
to do them we must know what links are affected. Our algorithm processes the 
matrix rows successively from bottom to top. The efficient ability to insert and 
delete involves the introduction of a set of pointer variables PTR [j] , one for each 
column considered; these variables traverse the columns upwards, giving us the 
ability to update the proper links in both dimensions. 

Algorithm S (Pivot step in a sparse matrix). Given a matrix represented as 
in Fig. 14, we perform the pivot operation ( i3). Assume that PIVOT is a link 
variable pointing to the pivot element. The algorithm makes use of an auxiliary 
table of link variables PTR [j] , one for each column of the matrix. The variable 
ALPHA and the VAL field of each node are assumed to be floating point or rational 
quantities, while everything else in this algorithm has integer values. 

Sl. (Initialize.] Set ALPHA f-1.0/VAL(PIVOT), VAL(PIVOT) f-1.0, and 

IO f- ROW (PIVOT), 

JO f- COL (PIVOT) , 

PO f- LDC (BASEROW [IO]); 

QO f- LDC (BASECOL [JO]). 

S2. (Process pivot row.] Set PO f- LEFT(PO), J f- COL(PO). If J < 0, go on 
to step S3 (the pivot row has been traversed). Otherwise set PTR [J] f

LOC (BASECOL [J]) and VAL (PO) f- ALPHA x VAL (PO) , and repeat step S2. 

S3. [Find new row.] Set QO f- UP(QO). (The remainder of the algorithm deals 
successively with each row, from bottom to top, for which there is an entry 
in the pivot column.) Set If- ROW(QO). If I< 0, the algorithm terminates. 
If I = IO, repeat step S3 (we have already done the pivot row). Otherwise 
set P f- LDC (BASEROW [I]), P1 f- LEFT (P). (The pointers P and P1 will now 
proceed across row I from right to left, as PO goes in synchronization across 
row IO; Algorithm 2.2.4A is analogous. We hq,ve PO = LDC (BASEROW [IO]) 

at this point.) 

S4. (Find new column.] Set PO f- LEFT(PO), J f- COL(PO). If J < 0, set 
VAL(QO) f- -ALPHA x VAL(QO) and return to S3. If J = JO, repeat step S4. 
(Thus we process the pivot column entry in row I after all other column 
entries have been processed; the reason is that VAL ( QO) is needed in step S 7.) 



2.2.6 ARRAYS AND ORTHOGONAL LISTS 305 

S5. [Find I, J element.] If COL(P1) > J, set Pf--- P1, P1 f--- LEFT(P), and repeat 
step S5. If COL(P1) = J, go to step S7. Otherwise go to step S6 (we need 

to insert a new element in column J of row I). 

S6. (Insert I, J element.] If ROW(UP(PTR[J])) > I, set PTR[J] f--- UP(PTR[J]), 

and repeat step S6. (Otherwise, we will have ROW (UP (PTR [J] ) ) < I; the new 
element is to be inserted just above NODE (PTR [J]) in the vertical dimension, 
and just left of NODE(P) in the horizontal dimension.) Otherwise set X -{:=: 
AVAIL, VAL(X) f--- 0, ROW(X) f--- I, COL(X) f--- J, LEFT(X) f--- P1, UP(X) f--
UP (PTR [J]), LEFT (P) f--- X, UP (PTR [J]) f--- X, P1 f--- X. 

S7. (Pivot.] Set VAL(P1) f---VAL(P1)-VAL(QO) xVAL(PO). IfnowVAL(P1) = 0, 

go to S8. (Note: When floating point arithmetic is being used, this test 
"VAL(P1) = O" should be replaced by "IVAL(P1) I < EPSILON" or better yet 
by the condition "most of the significant figures of VAL (P1) were lost in the 
subtraction.") Otherwise, set PTR[J] f--- P1, Pf--- P1, P1 f--- LEFT(P), and go 

back to S4. 

S8. [Delete I, J element.] If UP(PTR[J]) # P1 (or, what is essentially the same 
thing, if ROW(UP(PTR[J])) > I), set PTR[J] f--- UP(PTR[J]) and repeat 
step S8; otherwise, set UP(PTR[J]) f--- UP(P1), LEFT(P) f--- LEFT(P1), 
AVAIL-{:=: P1, P1 f--- LEFT(P). Go back to S4. I 

The programming of this algorithm is left as a very instructive exercise for 

the reader (see exercise 15). It is worth pointing out here that it is necessary to 
allocate only one word of memory to each of the nodes BASEROW [i] , BASECOL [j] , 

since most of their fields are irrelevant. (See the shaded areas in Fig. 14, and see 

the program of Section 2.2.5.) Furthermore, the value -PTR [j] can be stored as 
ROW (LDC (BASECOL [j] ) ) for additional storage space economy. The running time 

of Algorithm S is very roughly proportional to the number of matrix elements 
affected by the pivot operation. 

This representation of sparse matrices via orthogonal circular lists is in
structive, but numerical analysts have developed better methods. See Fred G. 

Gustavson, ACM Trans. on Math. Software 4 (1978), 250-269; see also the graph 
and network algorithms in Chapter 7. 

EXERCISES 
1. [ 17] Give a formula for LDC (A [J, K] ) if A is the matrix of ( 1), and if each node 

of the array is two words long, assuming that the nodes are stored consecutively in 
lexicographic order of the indices. 

~ 2. [21] Formula (6) has been derived from the assumption 0 :S Ir :S dr for 1 :Sr :S k; 

give a general formula that applies to the case lr :S I :S Ur, where lr and Ur are any 
lower and upper bounds on the dimensionality. 

3. [ 21 J The text considers lower triangular matrices A [j, k] for 0 ::; k ::; j ::; n. How 
can the discussion of such matrices readily be modified for the case that subscripts 
start at 1 instead of 0, so that 1 ::; k ::; j ::; n? 

4. [ 22] Show that if we store the upper triangular array A [j, k] for 0 ::; j ::; k ::; n 

in lexicographic order of the indices, the allocation satisfies the condition of Eq. (8). 
Find a formula for LDC (A [J, K] ) in this sense. 



306 INFORMATION STRUCTURES 2.2.6 

5. [ 20] Show that it is possible to bring the value of A [J, K] into register A in one 
MIX instruction, using the indirect addressing feature of exercise 2.2.2-3, even when 
A is a triangular matrix as in (g). (Assume that the values of J and K are in index 
registers.) 

_. 6. [M24] Consider the "tetrahedral arrays" A[i,j,k], B[i,j,k], where 0 :S k :S j :S 
i :S n in A, and 0 :::; i :::; j .:::; k :S n in B. Suppose that both of these arrays are 
stored in consecutive memory locations in lexicographic order of the indices; show that 
LOC(A [I, J ,K]) = ao + fi (I) + h (J) + h (K) for certain functions Ji, f2, f3. Can 
LDC (B [I, J, K] ) be expressed in a similar manner? 

7. [ M23] Find a general formula to allocate storage for the k-dimensional tetrahedral 
array A[i1,i2, ... ,ik], where 0 :S ik :S ··· :S i2 :S i1 :Sn. 

8. [ 33] (P. Wegner.) Suppose we have six tetrahedral arrays A [I, J, K], B [I, J, K], 
C [I, J, K], D [I, J, K], E [I, J, K], and F [I, J, K] to store in memory, where 0 :S K :S J :S 
I :S n. Is there a neat way to accomplish this, analogous to ( 10) in the two-dimensional 
case? 

9. [22] Suppose a table, like that indicated in Fig. 13 but much larger, has been 
set up so that all links go in the same direction as shown there (namely, LINK(X) < X 
for all nodes and links). Design an algorithm that finds the addresses of all blue-eyed 
blonde women of ages 21 through 23, by going through the various link fields in such 
a way that upon completion of the algorithm at most one pass has been made through 
each of the lists FEMALE, A21, A22, A23, BLOND, and BLUE. 

10. [26] Can you think of a better way to organize a personnel table so that searches 
as described in the previous exercise would be more efficient? (The answer to this 
exercise is not merely "yes" or "no.") 

11. [11] Suppose that we have a 200 x 200 matrix in which there are at most four 
nonzero entries per row. How much storage is required to represent this matrix as in 
Fig. 14, if we use three words per node except for list heads, which will use one word? 

_. 12. [20] What are VAL(QO), VAL(PO), and VAL(P1) at the beginning of step S7, in 
terms of the notation a, b, c, d used in (i3)? 

., 13. [22] Why were circular lists used in Fig. 14 instead of straight linear lists? Could 
Algorithm S be rewritten so that it does not make use of the circular linkage? 

14. [22] Algorithm S actually saves pivoting time in a sparse matrix, since it avoids 
consideration of those columns in which the pivot row has a zero entry. Show that 
this savings in running time can be achieved in a large sparse matrix that is stored 
sequentially, with the help of an auxiliary table LINK [j] , 1 :S j :S n . 

., 15. [29] Write a MIXAL program for Algorithm S. Assume that the VAL field is a 
floating point number, and that MIX's floating point arithmetic operators FADD, FSUB, 
FMUL, and FDIV can be used for operations on this field. Assume for simplicity that 
FADD and FSUB return the answer zero when the operands added or subtracted cancel 
most of the significance, so that the test "VAL(P1) = O" may safely be used in step S7. 
The floating point operations use only rA, not rX. 

16. [25] Design an algorithm to copy a sparse matrix. (In other words, the algorithm 
is to yield two distinct representations of a matrix in memory, having the form of 
Fig. 14, given just one such representation initially.) 

1 7. [ 26] Design an algorithm to multiply two sparse matrices; given matrices A and B, 
form a new matrix C, where C [i ,J·] = l:k A [i, k] B [k ,J·]. The two input matrices and 
the output matrix should be represented as in Fig. 14. 



2.2.6 ARRAYS AND ORTHOGONAL LISTS 307 

18. [22] The following algorithm replaces a matrix by the inverse of that matrix, 
assuming that the entries are A [i ,j], for 1 :::; i, j :::; n: 

i) For k = 1, 2, ... , n do the following: Search row k in all columns not yet used 
as a pivot column, to find an entry with the greatest absolute value; set C [k] equal to 
the column in which this entry was found, and do a pivot step with this entry as pivot. 
(If all such entries are zero, the matrix is singular and has no inverse.) 

ii) Permute rows and columns so that what was row k becomes row C [k], and 
what was column C [k] becomes column k. 

The problem in this exercise is to use the stated algorithm to invert the matrix 

O~D 
by hand calculation. 

19. [ 31] Modify the algorithm described in exercise 18 so that it obtains the inverse 
of a sparse matrix that is represented in the form of Fig. 14. Pay special attention to 
making the row- and column-permutation operations of step (ii) efficient. 

20. [20] A tridiagonal matrix has entries aij that are zero except when Ii - jj :::; 1, 
for 1 :::; i, j :::; n. Show that there is an allocation function of the form 

which represents all of the relevant elements of a tridiagonal matrix in (3n - 2) consec
utive locations. 

21. [20] Suggest a storage allocation function for n x n matrices where n is variable. 
The elements A [I, J] for 1 :::; I, J :::; n should occupy n 2 consecutive locations, regardless 
of the value of n. 

22. [M25] (P. Chawla, 1961.) Find a polynomial p(i1, ... ,ik) that assumes each 
nonnegative integer value exactly once as the indices (i1, ... , ik) run through all k-
dimensional nonnegative integer vectors, with the additional property that i1 +· · ·+ik < 
j1 +···+jk impliesp(i1, ... ,ik) <p(j1, ... ,jk)· 

23. [23] An extendible matrix is initially 1 x 1, then it grows from size m x n either 
to size (m + 1) x nor to size m x (n + 1) by adding either a new row or a new column. 
Show that such a matrix can be given a simple allocation function in which the elements 
A [I, J] occupy mn consecutive locations, for 0 :::; I < m and 0 :::; J < n; no elements 
change location when the matrix grows . 

., 24. [ 25] (The sparse array trick.) Suppose you want to use a large array for random 
access, although you won't actually be referring to very many of its entries. You want 
A[k] to be zero the first time you access it, yet you don't want to spend the time to 
set every location to zero. Explain how it is possible to read and write any desired 
elements A[k] reliably, given k, without assuming anything about the actual initial 
memory contents, by doing only a small fixed number of additional operations per 
array access. 



308 INFORMATION STRUCTURES 2.3 

2.3. TREES 

WE NOW TURN to a study of trees, the most important nonlinear structures 
that arise in computer algorithms. Generally speaking, tree structure means a 
"branching" relationship between nodes, much like that found in the trees of 
nature. . 

Let us define a tree formally as a finite set T of one or more nodes such that 

a) there is one specially designated node called the root of the tree, root(T); 
and 

b) the remaining nodes (excluding the root) are partitioned into m 2: 0 disjoint 
sets T1 , ... , Tm, and each of these sets in turn is a tree. The trees T1 , ... , Tm 
are called the subtrees of the root. 

The definition just given is recursive: We have defined a tree in terms of 
trees. Of course, there is no problem of circularity involved here, since trees 
with one node must consist of only the root, and trees with n > 1 nodes are 
defined in terms of trees with fewer than n nodes; hence the concept of a tree 
with two nodes, three nodes, or ultimately any number of nodes, is determined 
by the definition given. There are nonrecursive ways to define trees (for example, 
see exercises 10, 12, and 14, and Section 2.3.4), but a recursive definition seems 
most appropriate since recursion is an innate characteristic of tree structures. 
The recursive character of trees is present also in nature, since buds on young 
trees eventually grow into subtrees with buds of their own, and so on. Exercise 3 
illustrates how to give rigorous proofs of important facts about trees based on a 
recursive definition such as the one above, by using induction on the number of 
nodes in a tree. 

It follows from our definition that every node of a tree is the root of some 
subtree contained in the whole tree. The number of subtrees of a node is called 
the degree of that node. A node of degree zero is called a terminal node, or 
sometimes a leaf. A nonterminal node is often called a branch node. The level 
of a node with respect to T is defined recursively: The level of root(T) is zero, 
and the level of any other node is one higher than that node's level with respect 
to the subtree of root(T) containing it. 

These concepts are illustrated in Fig. 15, which shows a tree with seven 
nodes. The root is A, and it has the two subtrees {B} and {C, D, E, F, G}. The 
tree { C, D, E, F, G} has node C as its root. Node C is on level 1 with respect to 
the whole tree, and it has three subtrees {D}, {E}, and {F, G}; therefore Chas 
degree 3. The terminal nodes in Fig. 15 are B, D, E, and G; F is the only node 
with degree 1; G is the only node with level 3. 

If the relative order of the subtrees T1 , ... , Tm in (b) of the definition is 
important, we say that the tree is an ordered tree; when m 2: 2 in an ordered 
tree, it makes sense to call T2 the "second subtree" of the root, etc. Ordered trees 
are also called "plane trees" by some authors, since the manner of embedding 
the tree in a plane is relevant. If we do not care to regard two trees as different 
when they differ only in the respective ordering of subtrees of nodes, the tree 
is said to be oriented, since only the relative orientation of the nodes, not their 



2.3 TREES 309 

Level 3 

Level 2 D 

Level 1 B B 

Level 0 A 

Fig. 15. A tree. Fig. 16. Another tree. 

order, is being considered. The very nature of computer representation defines 
an implicit ordering for any tree, so in most cases ordered trees are of greatest 
interest to us. We will therefore tacitly assume that all trees we discuss are 
ordered, unless explicitly stated otherwise. Accordingly, the trees of Figs. 15 
and 16 will generally be considered to be different, although they would be the 
same as oriented trees. 

A forest is a set (usually an ordered set) of zero or more disjoint trees. 
Another way to phrase part (b) of the definition of tree would be to say that the 
nodes of a tree excluding the root form a forest. 

There is very little distinction between abstract forests and trees. If we 
delete the root of a tree, we have a forest; conversely, if we add just one node to 
any forest and regard the trees of the forest as subtrees of the new node, we get a 
tree. Therefore the words tree and forest are often used almost interchangeably 
during informal discussions about data structures. 

B B 

D 

(b) 

Fig. 17. How shall we draw a tree? 

Trees can be drawn in many ways. Besides the diagram of Fig. 15, three of 
the principal alternatives are shown in Fig. 17, depending on where the root is 
placed. It is not a frivolous joke to worry about how tree structures are drawn 
in diagrams, since there are many occasions in which we want to say that one 
node is "above" or "higher than" another node, or to refer to the "rightmost" 
element, etc. Certain algorithms for dealing with tree structures have become 
known as "top down" methods, as opposed to "bottom up." Such terminology 
leads to confusion unless we adhere to a uniform convention for drawing trees. 

It may seem that the form of Fig. 15 would be preferable simply because that 
is how trees grow in nature; in the absence of any compelling reason to adopt 



310 INFORMATION STRUCTURES 

Anne- . 
Ed --Caroline ---........_ 

wyn Cecilia~ 
Anne - Ch 1 --------- ares 
William Elizabeth 

Henrietta --- F / \ 
--- ranees ---------Oswald Cl d ,.... au e ~ 

Charlotte --- Cl d -------- ..c: 
Thomas -- au e t 

..0 
Augusta -- M • "' ary ........__ ., 
Adolphus --- ---- M I;:::; ary .... 
Claudine -- F . ------- ~ 

-- ranc1s ~ 
Alexander George VI 

Louise --Alexandra / 
Christian IX~ '--.... G V eorge 
Victoria -- d d II / 
Albert --E war V 

Victoria -- Al" 
1 -- ice........__ 

A bert ---- v· . 
ictoria~ 

Elisabeth --- L . IV ~ 
-- OUIS 

Char~es Alice ~ 
Sophie-- / 
M . -- Julia........______ 

~urice. Louis 
Wilhelmma .__ Al d / _ 
Louis II -- exan er :§' 

rn 
Q) 

;:: 

"' ..c: 
0 

Louise --Al ~ __.,..,..- Ashkenaz 
Joseph '- Ol Gomer --Riphath -- exandra '- I ~ . 
Charlotte --- . / ga ~ t Magog ~ Togarmah 

.--- Konstantin ~ 
Nicholas I A d M d ·~ Elishah n rew r / a ai 
Charlotte --- . / / C::::..-- Tarshish 
w·1r -- Lomse -------- Japheth - Javan ~ . . 

i iam George I ~~ ~ Kittim 
Lo.uise --Christian IX/ \\Tubal Dodanim 
William -- Meschech 

(a) 
Tiras 

/;

Ludim 

Anamim 

VLehabim 
/ Mizraim -- Naphtuhim 

Ham ~~ Pathrusim 

Noah -------- ~ Casluhim 

\ ""' Caphtorim 

Phut '/ £~~:ite 
//// Amorite 
~Girgasite 

Canaan,~ ~i~i~:: 
Arvadite 

Zemarite 

Hamathite 

Elam 

2.3 

Fig. 18. Family trees: (a) pedigree; 
(b) lineal chart. [References: Burke's 
Peerage (1959); Almanacb de Gotba 
(1871); Genealogiscbes Handbucb des 
Adels: Fiirstlicbe Hauser, 1; Genesis 
10: 1-25.] 

Asshur p 1 
-- eeg 

Sh 
~ Arphaxad - Salah -- Eber --

em:--- Joktan 
"" - Lud U "'A ?-H:l 

ram~Gether 
Mash 

(b) 



2.3 TREES 311 

any of the other three forms, we might as well adopt nature's time-honored 
tradition. With this in mind, the author consistently followed a root-at-the
bottom convention as the present set of books was being prepared, but after 
two years of trial it was found to be a mistake: Observations of the computer 
literature and numerous informal discussions with computer scientists about a 
wide variety of algorithms showed that trees were drawn with the root at the 
top in more than 80 percent of the cases examined. There is an overwhelming 
tendency to make hand-drawn charts grow downwards instead of upwards (and 
this is easy to understand in view of the way we write); even the word "subtree," 
as opposed to "supertree," tends to connote a downward relationship. From 
these considerations we conclude that Fig. 15 is upside down. Henceforth we 
will almost always draw trees as in Fig. 17(b ), with the root at the top and 
leaves at the bottom. Corresponding to this orientation, we should perhaps call 
the root node the apex of the tree, and speak of nodes at shallow and deep levels. 

It is necessary to have good descriptive terminology for talking about trees. 
Instead of making somewhat ambiguous references to "above" and "below," we 
generally use genealogical words taken from the terminology of family trees. 
Figure 18 shows two common types of family trees. The two types are quite 
different: A pedigree shows the ancestors of a given individual, while a lineal 
chart shows the descendants. 

If "cross-breeding" occurs, a pedigree is not really a tree, because different 
branches of a tree (as we have defined it) can never be joined together. To 
compensate for this discrepancy, Fig. 18( a) mentions Queen Victoria and Prince 
Albert twice in the sixth generation; King Christian IX and Queen Louise 
actually appear in both the fifth and sixth generations. A pedigree can be 
regarded as a true tree if each of its nodes represents, not a person, but "a 
person in the role of mother or father of so-and-so." 

Standard terminology for tree structures is taken from the second form of 
family tree, the lineal chart: Each root is said to be the parent of the roots of 
its subtrees, and the latter are said to be siblings; they are children of their 
parent. The root of the entire tree has no parent. For example, in Fig. 19, 
Chas three children, D, E, and F; E is the parent of G; B and C are siblings. 
Extension of this terminology-for example, A is the great-grandparent of G; 
B is an aunt or uncle of F; H and F are first 
cousins -is clearly possible. Some authors use the 
masculine designations "father, son, brother" in
stead of "parent, child, sibling"; others use "mother, 
daughter, sister." In any case a node has at most 
one parent or progenitor. We use the words ancestor 
and descendant to denote a relationship that may 
span several levels of the tree: The descendants of C F" 19 c t" 1 1g. . onven 10na 
in Fig. 19 are D, E, F, and G; the ancestors of G tree diagram. 
are E, C, and A. 

The pedigree in Figure 18(a) is an example of a binary tree, which is another 
important type of tree structure. The reader has undoubtedly seen binary trees 



312 INFORMATION STRUCTURES 2.3 

in connection with tennis tournaments or other sporting events. In a binary tree 
each node has at most two subtrees; and when only one subtree is present, we 
distinguish between the left and right subtree. More formally, let us define a 
binary tree as a finite set of nodes that either is empty, or consists of a root 
and the elements of two disjoint binary trees called the left and right subtrees 
of the root. 

This recursive definition of binary tree should be studied carefully. Notice 
that a binary tree is not a special case of a tree; it is another concept entirely 
(although we will see many relations between the two concepts). For example, 
the binary trees 

and 

are distinct-the root has an empty right subtree in one case and a nonempty 
right subtree in the other - although as trees these diagrams would represent 
identical structures. A binary tree can be empty; a tree cannot. Therefore we 
will always be careful to use the word "binary" to distinguish between binary 
trees and ordinary trees. Some authors define binary trees in a slightly different 
manner (see exercise 20). 

Tree structure can be represented graphically in several other ways bearing 
no resemblance to actual trees. Figure 20 shows three diagrams that reflect the 
structure of Fig. 19: Figure 20(a) essentially represents Fig. 19 as an oriented 
tree; this diagram is a special case of the general idea of nested sets, namely 
a collection of sets in which any pair of sets is either disjoint or one contains 
the other. (See exercise 10.) Part (b) of the figure shows nested sets in a line, 
much as part (a) shows them in a plane; in part (b) the ordering of the tree is 
also indicated. Part (b) may also be regarded as an outline of an algebraic 
formula involving nested parentheses. Part ( c) shows still another common 
way to represent tree structure, using indentation. The number of different 
representation methods in itself is ample evidence for the importance of tree 
structures in everyday life as well as in computer programming. Any hierarchical 
classification scheme leads to a tree structure. 

(a) 

(A(B(H) ( J)) ( C(D) (E( G)) (F) )) 

(b) 

A 
B 

c 
H 
J 

D 
E 

F~G== 
(c) 

Fig. 20. Further ways to show tree structure: (a) nested sets; (b) nested parentheses; 
( c) indentation. 



2.3 TREES 313 

An algebraic formula defines an implicit tree structure that is often conveyed 
by other means instead of, or in addition to, the use of parentheses. For example, 
Figure 21 shows a tree corresponding to the arithmetic expression 

a - b(c/d + e/ !). 

Standard mathematical conventions, according to which multiplication and divi
sion take precedence over addition and subtraction, allow us to use a simplified 
form like ( 2) instead of the fully parenthesized form "a - ( b x ( ( c / d) + ( e / !) ) ) ". 
This connection between formulas and trees is very important in applications. 

a 

Fig. 21. Tree representation of formula ( 2). 

Notice that the indented list in Fig. 20( c) looks very much the table of 
contents in a book. Indeed, this book itself has a tree structure; the tree structure 
of Chapter 2 is shown in Fig. 22. Here we notice a significant idea: The method 
used to number sections in this book is another way to specify tree structure. 
Such a method is often called "Dewey decimal notation" for trees, by analogy 
with the similar classification scheme of this name used in libraries. The Dewey 
decimal notation for the tree of Fig. 19 is 

1 A; 1.1 B; 1.1.1 H; 1.1.2 J; 1.2 C; 
1.2. l D; 1.2.2 E; 1.2.2.1 G; 1.2.3 F. 

Dewey decimal notation applies to any forest: The root of the kth tree in the 
forest is given number k; and if a is the number of any node of degree m, its 
children are numbered a.1, a.2, ... , a.m. The Dewey decimal notation satisfies 
many simple mathematical properties, and it is a useful tool in the analysis 
of trees. One example of this is the natural sequential ordering it gives to the 
nodes of an arbitrary tree, analogous to the ordering of sections within this book. 
Section 2.3 precedes Section 2.3.1, and follows Section 2.2.6. 

There is an intimate relation between Dewey decimal notation and the 
notation for indexed variables that we have already been using extensively. If 
F is a forest of trees, we may let F[l] denote the subtrees of the first tree, so 
that F[1][2] F[l, 2] stands for the subtrees of the second subtree of F[l], and 
F[l, 2, 1] stands for the first subforest of the latter, and so on. Node a.b.c.d in 
Dewey decimal notation is parent(F[a, b, c, d]). This notation is an extension of 
ordinary index notation, because the admissible range of each index depends on 
the values in the preceding index positions. 



314 INFORMATION STRUCTURES 

2 Information 
Structures 

2.1 Introduction 

2.2 

2.3 Trees 

2.2.1 Stacks, queues, 
and deques 

2.2.2 Sequential 
allocation 

2.2.3 Linked 
allocation 

2.2.4 Circular lists 

2.2.5 Doubly linked 
lists 

2.2.6 Arrays and 
orthogonal lists 

2.3.1 Traversing 
binary trees 

2.3.2 Binary tree repre-
sentation of trees 

2.3.3 Other represen-
tations of trees 

2.3.4 Basic mathematical 
properties of trees 

2.3.5 Lists and garbage 
collection 

2.4 Multilinked 
structures 

2.5 Dynamic storage 
allocation 

2.6 History and 
bibliography 

2.3 

2.3.4.1 Free trees 

2.3.4.2 Oriented trees 

2.3.4.3 The infinity lemma 

2.3.4.4 Enumeration 

2.3.4.5 Path length 

2.3.4.6 History 

Fig. 22. The structure of Chapter 2. 



2.3 TREES 315 

Thus, in particular, we see that any rectangular array can be thought of 
as a special case of a tree or forest structure. For example, here are two 
representations of a 3 x 4 matrix: 

( A[l, 1] A[l, 2] A[l, 3] A[l, 4]) 

/~~ 
~ N ~ 

A[2, 1] A[2, 2] A[2, 3] A[2, 4] 
'--' '--' 

~ ~ ~ 

A[3, 1] A[3, 2] A[3, 3] A[3, 4] //\\ //\\ //\\ 
~NM~ ~NM~ ~N°'M~ .... .... .... .... .... ............ ................ 
~ ~ ~ ~ N N N N MM MM .____. '-----' .____. .____. .____. .____. .____... .____. i_._._: L-----1 .____. .____. 

~~~~ ~~~~ ~~~~ 

It is important to observe, however, that this tree structure does not faithfully
reflect all of the matrix structure; the row relationships appear explicitly in the
tree but the column relationships do not.

A forest can, in turn, be regarded as a special case of what is commonly
called a list structure. The word "list" is being used here in a very technical
sense, and to distinguish the technical use of the word we will always capitalize it:
"List." A List is defined (recursively) as a finite sequence of zero or more atoms
or Lists. Here "atom" is an undefined concept referring to elements from any
universe of objects that might be desired, so long as it is possible to distinguish
an atom from a List. By means of an obvious notational convention involving
commas and parentheses, we can distinguish between atoms and Lists and we
can conveniently display the ordering within a List. As an example, consider

L =(a, (b, a, b), (), c, (((2)))), (3)

which is a List with five elements: first the atom a, then the List (b, a, b), then
the empty List (), then the atom c, and finally the List (((2))). The latter List
consists of the List ((2)), which consists of the List (2), which consists of the
atom 2.

The following tree structure corresponds to L:

(4)

The asterisks in this diagram indicate the definition and appearance of a List,
as opposed to the appearance of an atom. Index notation applies to Lists as it
does to forests; for example, L[2] = (b, a, b), and L[2, 2] =a.

No data is carried in the nodes for the Lists in (4) other than the fact that
they are Lists. But it is possible to label the nonatomic elements of Lists with
information, as we have done for trees and other structures; thus

A= (a:(b,c), d:())

316 INFORMATION STRUCTURES 2.3

would correspond to a tree that we can draw as follows:

.
The big difference between Lists and trees is that Lists may overlap (that

is, sub-Lists need not be disjoint) and they may even be recursive (may contain

themselves). The List
M= (M)

corresponds to no tree structure, nor does the List

N = (a:M,b:M,c,N). (6)

(In these examples, capital letters refer to Lists, lower case letters to labels and

atoms.) We might diagram (5) and (6) as follows, using an asterisk to denote

each place where a List is defined:

*(N]
/!\~

a*[M] b[M] c (N]
I

(M]

Actually, Lists are not so complicated as the examples above might indicate.

They are, in essence, a rather simple generalization of the linear lists that we

have considered in Section 2.2, with the additional proviso that the elements of

linear Lists may be link variables that point to other linear Lists (and possibly

to themselves).

Summary: Four closely related kinds of information structures-trees, for

ests, binary trees, and Lists - arise from many sources, and they are therefore

important in computer algorithms. We have seen various ways to diagram these

structures, and we have considered some terminology and notations that are

useful in talking about them. The following sections develop these ideas in

greater detail.

EXERCISES

1. [18] How many different trees are there with three nodes, A, B, and C?

2. [20] How many different oriented trees are there with three nodes, A, B, and C?

3. [M20] Prove rigorously from the definitions that for every node X in a tree there is

a unique path up to the root, namely a unique sequence of k 2': 1 nodes X 1 , X 2 , .•• , Xk

such that X1 is the root of the tree, Xk = X, and Xj is the parent of Xj+ 1 for1 ::::; j < k.

(This proof will be typical of the proofs of nearly all the elementary facts about tree

structures.) Hint: Use induction on the number of nodes in the tree.

4. [01] True or false: In a conventional tree diagram (root at the top), if node X has

a higher level number than node Y, then node X appears lower in the diagram than

node Y.

2.3 TREES 317

5. [02] If node A has three siblings and B is the parent of A, what is the degree

of B?

6. [21] Define the statement "X is an mth cousin of Y, n times removed" as a

meaningful relation between nodes X and Y of a tree, by analogy with family trees, if

m > 0 and n ~ 0. (See a dictionary for the meaning of these terms in regard to family

trees.)

7. [23] Extend the definition given in the previous exercise to all m ~ -1 and to all

integers n ~ -(m + 1) in such a way that for any two nodes X and Y of a tree there

are unique m and n such that Xis an mth cousin of Y, n times removed.

8. [03] What binary tree is not a tree?

9. [00] In the two binary trees of (1), which node is the root (B or A)?

10. [M20] A collection of nonempty sets is said to be nested if, given any pair X, Y

of the sets, either X ~ Y or X 2 Y or X and Y are disjoint. (In other words, X n Y

is either X, Y, or 0.) Figure 20(a) indicates that any tree corresponds to a collection

of nested sets; conversely, does every such collection correspond to a tree?

11. [HM32] Extend the definition of tree to infinite trees by considering collections of

nested sets as in exercise 10. Can the concepts of level, degree, parent, and child be

defined for each node of an infinite tree? Give examples of nested sets of real numbers

that correspond to a tree in which
a) every node has uncountable degree and there are infinitely many levels;

b) there are nodes with uncountable level;
c) every node has degree at least 2 and there are uncountably many levels.

12. [M23] Under what conditions does a partially ordered set correspond to an un

ordered tree or forest? (Partially ordered sets are defined in Section 2.2.3.)

13. [10] Suppose that node Xis numbered a1.a2. ···.akin the Dewey decimal system;

what are the Dewey numbers of the nodes in the path from X to the root (see

exercise 3)?

14. [M22] Let S be any nonempty set of elements having the form "l.a1 • · • · .ak",

where k ~ 0 and ai, ... , ak are positive integers. Show that S specifies a tree when it

is finite and satisfies the following condition: "If o:.m is in the set, then so is o:.(m -1)

if m > 1, or o: if m = 1." (This condition is clearly satisfied in the Dewey decimal

notation for a tree; therefore it is another way to characterize tree structure.)

15. [20] Invent a notation for the nodes of binary trees, analogous to the Dewey

decimal notation for nodes of trees.

16. [20] Draw trees analogous to Fig. 21 corresponding to the arithmetic expressions

(a) 2(a - b/c); (b) a+ b + 5c.

17. [01] If F is Fig. 19 regarded as a forest, what node is parent(F[l, 2, 2])?

18. [08] In List (3), what is £[5, 1, 1]? What is L[3, 1]?

19. [15] Draw a List diagram analogous to (7) for the List L =(a, (L)). What is £[2]

in this list? What is £[2, 1, 1]?

20. [M21] Define a 0-2-tree as a tree in which each node has exactly zero or two

children. (Formally, a 0-2-tree consists of a single node, called its root, plus 0 or 2

disjoint 0-2-trees.) Show that every 0-2-tree has an odd number of nodes; and give a

one-to-one correspondence between binary trees with n nodes and (ordered) 0-2-trees

with 2n + 1 nodes.

318 INFORMATION STRUCTURES 2.3

21. [M22] If a tree has n 1 nodes of degree 1, n2 nodes of degree 2, ... , and nm nodes

of degree m, how many terminal nodes does it have?

~ 22. [21] Standard European paper sizes AO, Al, A2, ... are rectangles whose sides

are in the ratio .J2 to 1. Therefore if we cut a sheet of An paper in half, we get two

sheets of A(n+ 1) paper. Use this principle to design a graphic representation of binary

trees, and illustrate your ide~ by drawing the representation of 2.3.1-(1) below.

2.3.1. Traversing Binary Trees

It is important to acquire a good understanding of the properties of binary

trees before making further investigations of trees, since general trees are usually

represented in terms of some equivalent binary tree inside a computer.

We have defined a binary tree as a finite set of nodes that either is empty,

or consists of a root together with two binary trees. This definition suggests a

natural way to represent binary trees within a computer: We can have two links,

LLINK and RLINK, within each node, and a link variable T that is a "pointer to

the tree." If the tree is empty, T = A; otherwise T is the address of the root node

of the tree, and LL INK (T), RLINK (T) are pointers to the left and right subtrees of

the root, respectively. These rules recursively define the memory representation

of any binary tree; for example,

D

is represented by

This simple and natural memory representation accounts for the special

importance of binary tree structures. We will see in Section 2.3.2 that general

trees can conveniently be represented as binary trees. Moreover, many trees

that arise in applications are themselves inherently binary, so binary trees are of

interest in their own right.

2.3.1 TRAVERSING BINARY TREES 319

There are many algorithms for manipulation of tree structures, and one

idea that occurs repeatedly in these algorithms is the notion of traversing or

"walking through" a tree. This is a method of examining the nodes of the tree

systematically so that each node is visited exactly once. A complete traversal

of the tree gives us a linear arrangement of the nodes, and many algorithms are

facilitated if we can talk about the "next" node following or preceding a given

node in such a sequence.
Three principal ways may be used to traverse a binary tree: We can visit

the nodes in preorder, inorder, or postorder. These three methods are defined

recursively. When the binary tree is empty, it is "traversed" by doing nothing;

otherwise the traversal proceeds in three steps:

Preorder traversal

Visit the root
Traverse the left subtree
Traverse the right subtree

Inorder traversal

Traverse the left subtree
Visit the root
Traverse the right subtree

Postorder traversal

Traverse the left subtree
Traverse the right subtree
Visit the root

If we apply these definitions to the binary tree of (1) and (2), we find that the

nodes in preorder are

A B D C E G F H J

(First comes the root A, then comes the left subtree

I
in preorder, and finally we traverse the right subtree in preorder.) For inorder we

visit the root between visits to the nodes of each subtree, essentially as though

the nodes were "projected" down onto a single horizontal line, and this gives the

sequence
D B A E G C H F J (4)

The postorder for the nodes of this binary tree is, similarly,

D B G E H J F C A.

We will see that these three ways of arranging the nodes of a binary tree into

a sequence are extremely important, as they are intimately connected with most

of the computer methods for dealing with trees. The names preorder, inorder,

and postorder come, of course, from the relative position of the root with respect

to its subtrees. In many applications of binary trees, there is symmetry between

the meanings of left subtrees and right subtrees, and in such cases the term

symmetric order is used as a synonym for inorder. Inorder, which puts the root

320 INFORMATION STRUCTURES 2.3.1

P +- LLINK(P)

Tl. Initialize ,__ ___ __..,.
No

1-----~ T3. Stack¢= P

Yes P +- RLINK(P)

T4. P ¢=Stack ,__ ____ TS. Visit P

Empty

Fig. 23. Algorithm T for inorder traversal.

in the middle, is essentially symmetric between left and right: If the binary tree
is reflected about a vertical axis, the symmetric order is simply reversed.

A recursively stated definition, such as the one just given for the three basic
orders, must be reworked in order to make it directly applicable to computer
implementation. General methods for doing this are discussed in Chapter 8; we
usually make use of an auxiliary stack, as in the following algorithm:

Algorithm T (Traverse binary tree in inorder). Let T be a pointer to a binary
tree having a representation as in (2); this algorithm visits all the nodes of the
binary tree in inorder, making use of an auxiliary stack A.

Tl. [Initialize.) Set stack A empty, and set the link variable P f- T.

T2. [P =A?) If P =A, go to step T4.

T3. [Stack -¢:= P.) (Now P points to a nonempty binary tree that is to be
traversed.) Set A -¢:= P; that is, push the value of P onto stack A. (See
Section 2.2.1.) Then set Pf- LLINK(P) and return to step T2.

T4. [P -¢:= Stack.) If stack A is empty, the algorithm terminates; otherwise set
p-¢:= A.

T5. [Visit P.) Visit NODE(P). Then set Pf- RLINK(P) and return to step T2. I

In the final step of this algorithm, the word "visit" means that we do
whatever activity is intended as the tree is being traversed. Algorithm T runs like
a coroutine with respect to this other activity: The main program activates the
coroutine whenever it wants P to move from one node to its inorder successor.
Of course, since this coroutine calls the main routine in only one place, it is
not much different from a subroutine (see Section 1.4.2). Algorithm T assumes
that the external activity deletes neither NODE (P) nor any of its ancestors from
the tree.

The reader should now attempt to play through Algorithm T using the
binary tree (2) as a test case, in order to see the reasons behind the procedure.
When we get to step T3, we want to traverse the binary tree whose root is
indicated by pointer P. The idea is to save P on a stack and then to traverse the
left subtree; when this has been done, we will get to step T4 and will find the

2.3.1 TRAVERSING BIN ARY TREES 321

old value of P on the stack again. After visiting the root, NODE(P), in step T5,

the remaining job is to traverse the right subtree.
Algorithm T is typical of many other algorithms that we will see later, so

it is instructive to look at a formal proof of the remarks made in the preceding

paragraph. Let us now attempt to prove that Algorithm T traverses a binary tree

of n nodes in inorder, by using induction on n. Our goal is readily established if

we can prove a slightly more general result:

Starting at step T2 with P a pointer to a binary tree of n nodes and with
the stack A containing A [1] ... A [m] for some m > 0, the procedure of steps

T2-T5 will traverse the binary tree in question, in inorder, and will then
arrive at step T4 with stack A returned to its original value A [1] ... A [m] .

This statement is obviously true when n = 0, because of step T2. If n > 0,

let Po be the value of P upon entry to step T2. Since Po I- A, we will perform

step T3, which means that stack A is changed to A [1] ... A [m] Po and P is set

to LLINK(Po). Now the left subtree has fewer than n nodes, so by induction we

will traverse the left subtree in inorder and will ultimately arrive at step T4 with

A [1] ... A [m] Po on the stack. Step T4 returns the stack to A [1] ... A [m] and

sets Pf- Po. Step T5 now visits NODE(Po) and sets Pf- RLINK(P0). Now the

right subtree has fewer than n nodes, so by induction we will traverse the right

subtree in inorder and arrive at step T4 as required. The tree has been traversed

in inorder, by the definition of that order. This completes the proof.

An almost identical algorithm may be formulated that traverses binary trees

in preorder (see exercise 12). It is slightly more difficult to achieve the traversal

in postorder (see exercise 13), and for this reason postorder is not as important

for binary trees as the others are.
It is convenient to define a new notation for the successors and predecessors

of nodes in these various orders. If P points to a node of a binary tree, let

P* = address of successor of NODE(P) in preorder;

P$ = address of successor of NODE (P) in inorder;

P~ = address of successor of NODE(P) in postorder;

*p = address of predecessor of NODE(P) in preorder;

$P = address of predecessor of NODE(P) in inorder;

~p = address of predecessor of NODE (P) in postorder.

(6)

If there is no such successor or predecessor of NODE(P), the value LOC(T) is

generally used, where T is an external pointer to the tree in question. We have

(P) = (*P)* = P, $(P$) = ($P)$ = P, and ~(P~) = (~P)~ = P. As an example of

this notation, let INFO(P) be the letter shown in NODE(P) in the tree (2); then

if P points to the root, we have INFO(P) =A, INFO(P*) = B, INFO(P$) = E,
INFO ($P) = B, INFO (~P) = C, and P~ = *P =LDC (T).

At this point the reader will perhaps experience a feeling of insecurity about

the intuitive meanings of P*, P$, etc. As we proceed further, the ideas will

gradually become clearer; exercise 16 at the end of this section may also be of

help. The "$" in "P$" is meant to suggest the letter S, for "symmetric order."

322 INFORMATION STRUCTURES 2.3.l

There is an important alternative to the memory representation of binary
trees given in (2), which is somewhat analogous to the difference between circular
lists and straight one-way lists. Notice that there are more null links than other
pointers in the tree (2), and indeed this is true of any binary tree represented by
the conventional method (see exercise 14). But we don't really need to waste all
that memory space. For example, we could store two "tag" indicators with each
node, which would tell in just two bits of memory whether or not the LLINK or
RLINK, or both, are null; the memory space for terminal links could then be used
for other purposes.

An ingenious use of this extra space has been suggested by A. J. Perlis
and C. Thornton, who devised the so-called threaded tree representation. In this
method, terminal links are replaced by "threads" to other parts of the tree, as
an aid to traversal. The threaded tree equivalent to (2) is

A

· .. ·. ·····

Here dotted lines represent the "threads," which always go to a higher node of the
tree. Every node now has two links: Some nodes, like C, have two ordinary links
to left and right subtrees; other nodes, like H, have two thread links; and some
nodes have one link of each type. The special threads emanating from D and J
will be explained later. They appear in the "leftmost" and "rightmost" nodes.

In the memory representation of a threaded binary tree it is necessary to
distinguish between the dotted and solid links; this can be done as suggested
above by two additional one-bit fields in each node, LTAG and RTAG. The threaded
representation may be defined precisely as follows:

U nthreaded representation

LLINK(P) =A
LLINK (P) = Q -/= A
RLINK(P) =A
RLINK(P) = Q-/= A

Threaded representation

LTAG(P) = 1, LLINK(P) = $P
LTAG (P) = 0, LLINK (P) = Q

RTAG(P) = 1, RLINK(P) =P$
RTAG(P) = 0, RLINK(P) = Q

According to this definition, each new thread link points directly to the
predecessor or successor of the node in question, in symmetric order (inorder).
Figure 24 illustrates the general orientation of thread links in any binary tree.

In some algorithms it can be guaranteed that the root of any subtree always
will appear in a lower memory location than the other nodes of the subtree.
Then LTAG(P) will be 1 if and only if LLINK(P) < P, so LTAG will be redundant.
The RTAG bit will be redundant for the same reason.

2.3.1 TRAVERSING BIN ARY TREES 323

k=O k=l k=2 General k

General k k=2 k=l k=O

Fig. 24. General orientation of left and right thread links in a threaded binary tree.

Wavy lines indicate links or threads to other parts of the tree.

The great advantage of threaded trees is that traversal algorithms become
simpler. For example, the following algorithm calculates P$, given P:

Algorithm S (Symmetric (inorder) successor in a threaded binary tree). If P

points to a node of a threaded binary tree, this algorithm sets Q f- P$.

Sl. [RLINK (P) a thread?] Set Q f- RLINK (P). If RTAG (P) = 1, terminate the
algorithm.

S2. [Search to left.] If LTAG(Q) = 0, set Q f- LLINK(Q) and repeat this step.

Otherwise the algorithm terminates. I

Notice that no stack is needed here to accomplish what was done using a
stack in Algorithm T. In fact, the ordinary representation (2) makes it impossible
to find P$ efficiently, given only the address of a random point Pin the tree. Since
no links point upward in an unthreaded representation, there is no clue to what
nodes are above a given node, unless we retain a history of how we reached that
point. The stack in Algorithm T provides the necessary history when threads
are absent.

We claim that Algorithm S is "efficient," although this property is not
immediately obvious, since step S2 can be executed any number of times. In
view of the loop in step S2, would it perhaps be faster to use a stack after all,

324 INFORMATION STRUCTURES 2.3.1

as Algorithm T does? To investigate this question, we will consider the average
number of times that step 82 must be performed if P is a "random" point in
the tree; or what is the same, we will determine the total number of times that
step 82 is performed if Algorithm 8 is used repeatedly to traverse an entire tree.

At the same time as this analysis is being carried out, it will be instructive
to study complete programs•for both Algorithms 8 and T. As usual, we should
be careful to set all of our algorithms up so that they work properly with empty
binary trees; and if T is the pointer to the tree, we would like to have LDC (T) *
and LOC(T)$ be the first nodes in preorder or symmetric order, respectively. For
threaded trees, it turns out that things will work nicely if NODE (LDC (T)) is made
into a "list head" for the tree, with

LLINK(HEAD) = T,

RLINK(HEAD) =HEAD,

LTAG (HEAD) = 0,
RTAG (HEAD) = 0.

(8)

(Here HEAD denotes LDC (T), the address of the list head.) An empty threaded
tree will satisfy the conditions

LLINK (HEAD) =HEAD, LTAG (HEAD) = 1. (g)

The tree grows by having nodes inserted to the left of the list head. (These
initial conditions are primarily dictated by the algorithm to compute P*, which
appears in exercise 17.) In accordance with these conventions, the computer
representation for the binary tree (1), as a threaded tree, is

With these preliminaries out of the way, we are now ready to consider MIX
versions of Algorithms 8 and T. The following programs assume that binary tree
nodes have the two-word form

LTAG LLINK INFO!

RTAG RLINK INF02

In an unthreaded tree, LTAG and RTAG will always be "+" and terminal links will
be represented by zero. In a threaded tree, we will use "+" for tags that are O
and "-" for tags that are 1. The abbreviations LLINKT and RLINKT will be used
to stand for the combined LTAG-LLINK and RTAG-RLINK fields, respectively.

2.3.1 TRAVERSING BINARY TREES 325

~ The two tag bits occupy otherwise-unused sign positions of a MIX word, so
Y they cost nothing in memory space. Similarly, with the MMIX computer we
will be able to use the least significant bits of link fi.elds as tag bits that come
"for free," because pointer values will generally be even, and because MMIX will
make it easy to ignore the low-order bits when addressing memory.

The following two programs traverse a binary tree in symmetric order (that
is, inorder), jumping to location VISIT periodically with index register 5 pointing

to the node that is currently of interest.

Program T. In this implementation of Algorithm T, the stack is kept in loca

tions A+ 1, A+ 2, ... , A+ MAX; rl6 is the stack pointer and rl5 P. OVERFLOW
occurs if the stack grows too large. The program has been rearranged slightly

from Algorithm T (step T2 appears thrice), so that the test for an empty stack
need not be made when going directly from T3 to T2 to T4.

01 LLINK EQU 1: 2
02 RLINK EQU 1 : 2
03 Tl LD5 HEAD (LLINK) 1 Tl. Initialize. Set Pr T.

04 T2A J5Z DONE 1 Stop if P =A.
05 ENT6 0 1
06 T3
01
08
09
10
11 T2B
12 T4
13
14 T5
15
16 T2C
11
18 DONE

DEC6 MAX
J6NN OVERFLOW
INC6 MAX+!
ST5 A,6
LD5 0,5(LLINK)
J5NZ T3
LD5 A,6
DEC6 1
JMP VISIT
LD5 1,5(RLINK)
J5NZ T3
J6NZ T4

n T3. Stack <= P.
n Has that stack reached capacity?
n If not, increase the stack pointer.
n Store P in the stack.
n Pr LLINK(P).

n To T3 if P -:j::. A.
n T4. P <= Stack.
n Decrease the stack pointer.
n T5. Visit P.
n PrRLINK(P).

n T2. P =A?
a Test if the stack is empty.

I

Program S. Algorithm S has been augmented with initialization and termina-
tion conditions to make this program comparable to Program T.

01 LLINKT EQU 0:2
02 RLINKT EQU 0:2
03 so ENT5 HEAD 1 SO. Initialize. Set Pr HEAD.

04 JMP 2F 1
05 S3 JMP VISIT n S3. Visit P.

06 S1 LD5N 1,5(RLINKT) n Sl. RLINK(P) a thread?
01 J5NN 1F n Jump if RTAG(P) = 1.
08 ENN6 0,5 n-a Otherwise set Qr RLINK(P).

09 S2 ENT5 0,6 n S2. Search to left. Set P r Q.

10 2H LD6 0,5(LLINKT) n+l Q r LLINKT (P).

11 J6P S2 n+l If LTAG(P) = 0, repeat.
12 1H ENT6 -HEAD,5 n+l
13 J6NZ S3 n+l Visit unless P =HEAD. I

326 INFORMATION STRUCTURES 2.3.1

An analysis of the running time appears with the code above. These quan
tities are easy to determine, using Kirchhoff's law and the facts that

i) in Program T, the number of insertions onto the stack must equal the number
of deletions;

ii) in Program S, the LLINK and RLINK of each node are examined precisely .
once;

iii) the number of "visits" is the number of nodes in the tree.

The analysis tells us Program T takes 15n +a+ 4 units of time, and Program S
takes lln - a+ 7 units, where n is the number of nodes in the tree and a is the
number of terminal right links (nodes with no right subtree). The quantity a
can be as low as 1, assuming that n =/:- 0, and it can be as high as n. If left and
right are symmetrical, the average value of a is (n + 1) /2, as a consequence of
facts proved in exercise 14.

The principal conclusions we may reach on the basis of this analysis are that

i) Step S2 of Algorithm S is performed only once on the average per execution
of that algorithm, if P is a random node of the tree.

ii) Traversal is slightly faster for threaded trees, because it requires no stack
manipulation.

iii) Algorithm T needs more memory space than Algorithm S because of the
auxiliary stack required. In Program T we kept the stack in consecutive
memory locations; therefore we needed to put an arbitrary bound on its
size. It would be very embarrassing if this bound were exceeded, so it must
be set reasonably large (see exercise 10); thus the memory requirement
of Program T is significantly more than Program S. Not infrequently a
complex computer application will be independently traversing several trees
at once, and a separate stack will be needed for each tree under Program T.
This suggests that Program T might use linked allocation for its stack (see
exercise 20); its execution time then becomes 30n +a+ 4 units, roughly
twice as slow as before, although the traversal speed may not be terribly
important when the execution time for the other coroutine is added in. Still
another alternative is to keep the stack links within the tree itself in a tricky
way, as discussed in exercise 21.

iv) Algorithm S is, of course, more general than Algorithm T, since it allows us
to go from P to P$ when we are not necessarily traversing the entire binary
tree.

So a threaded binary tree is decidedly superior to an unthreaded one, with
respect to traversal. These advantages are offset in some applications by the
slightly increased time needed to insert and delete nodes in a threaded tree. It
is also sometimes possible to save memory space by "sharing" common subtrees
with an unthreaded representation, while threaded trees require adherence to a
strict tree structure with no overlapping of subtrees.

Thread links can also be used to compute P*, $P, and UP with efficiency
comparable to that of Algorithm S. The functions *P and PU are slightly harder

2.3.1 TRAVERSING BINARY TREES 327

to compute, just as they are for unthreaded tree representations. The reader is

urged to work exercise 17.
Most of the usefulness of threaded trees would disappear if it were hard to

set up the thread links in the first place. What makes the idea really work is that

threaded trees grow almost as easily as ordinary ones do. We have the following

algorithm:

Algorithm I (Insertion into a threaded binary tree). This algorithm attaches

a single node, NODE(Q), as the right subtree of NODE(P), if the right subtree is

empty (that is, if RTAG(P) = 1); otherwise it inserts NODE(Q) between NODE(P)

and NODE(RLINK(P)), making the latter node the right child of NODE(Q). The

binary tree in which the insertion takes place is assumed to be threaded as in

(io); for a modification, see exercise 23.

11. (Adjust tags and links.] Set RLINK(Q) +--- RLINK(P), RTAG(Q) +--- RTAG(P),

RLINK(P) +--- Q, RTAG(P) +--- 0, LLINK(Q) +--- P, LTAG(Q) +--- 1.

12. (Was RLINK (P) a thread?] If RTAG (Q) = 0, set LLINK (Q$) +--- Q. (Here Q$ is

determined by Algorithm S, which will work properly even though LLINK (Q$)

now points to NODE (P) instead of NODE (Q) . This step is necessary only when

inserting into the midst of a threaded tree instead of merely inserting a new

leaf.) I

By reversing the roles of left and right (in particular, by replacing Q$ by $Q

in step 12), we obtain an algorithm that inserts to the left in a similar way.

Our discussion of threaded binary trees so far has made use of thread links

both to the left and to the right. There is an important middle ground between

the completely unthreaded and completely threaded methods of representation:

A right-threaded binary tree combines the two approaches by making use of

threaded RLINKs, while representing empty left subtrees by LLINK = A. (Simi

larly, a left-threaded binary tree threads only the null LLINKs.) Algorithm S does

not make essential use of threaded LLINKs; if we change the test "LTAG = O" in

step S2 to "LLINK =/:- A", we obtain an algorithm for traversing right-threaded

binary trees in symmetric order. Program S works without change in the right

threaded case. A great many applications of binary tree structures require only

a left-to-right traversal of trees using the functions P$ and/or P*, and for these

applications there is no need to thread the LLINKs. We have described threading

in both the left and right directions in order to indicate the symmetry and

possibilities of the situation, but in practice one-sided threading is much more

common.
Let us now consider an important property of binary trees, and its con

nection to traversal. Two binary trees T and T' are said to be similar if they

have the same structure; formally, this means that (a) they are both empty, or

(b) they are both nonempty and their left and right subtrees are respectively

similar. Similarity means, informally, that the diagrams of T and T' have the

same "shape." Another way to phrase similarity is to say that there is a one-to

one correspondence between the nodes of T and T' that preserves the structure:

328 INFORMATION STRUCTURES 2.3.1

If nodes u 1 and u 2 in T correspond respectively to u~ and u~ in T', then u1 is in
the left subtree of u 2 if and only if u~ is in the left subtree of u~, and the same
is true for right subtrees.

The binary trees T and T' are said to be equivalent if they are similar and if
corresponding nodes contain the same information. Formally, let info(u) denote
the information contained ·in a node u; the trees are equivalent if and only if
(a) they are both empty, or (b) they are both nonempty and info(root(T))
info (root(T')) and their left and right subtrees are respectively equivalent.

As examples of these definitions, consider the four binary trees

w

c D z

in which the first two are dissimilar. The second, third, and fourth are similar
and, in fact, the second and fourth are equivalent.

Some computer applications involving tree structures require an algorithm
to decide whether two binary trees are similar or equivalent. The following
theorem is useful in this regard:

Theorem A. Let the nodes of binary trees T and T' be respectively

and

in preorder. For any node u let

l(u)=l
r(u) = 1

if u has a nonempty left subtree,
if u has a nonempty right subtree,

Then T and T' are similar if and only if n = n' and

l(u) = 0
r(u) = 0

otherwise;
otherwise.

for 1 < j ::; n.

Moreover, T and T' are equivalent if and only if in addition we have

info(Uj) = info(uj) for 1 ::; j ::; n.

(n)

Notice that land rare the contents of the LTAG and RTAG bits in a threaded
tree. This theorem characterizes any binary tree structure in terms of two
sequences of Os and ls.

Proof. It is clear that the condition for equivalence of binary trees will follow
immediately if we prove the condition for similarity; furthermore the conditions
n = n' and (i2) are certainly necessary, since corresponding nodes of similar
trees must have the same position in preorder. Therefore it suffices to prove that
the conditions (12) and n = n' are sufficient to guarantee the similarity of T
and T'. The proof is by induction on n, using the following auxiliary result:

2.3.1 TRAVERSING BIN ARY TREES 329

Lemma P. Let the nodes of a nonempty binary tree be u 1, u2, ... , Un in preorder,

and let f(u) = l(u) + r(u) - 1. Then

f(u1)+ J(u2)+· · ·+ J(un) = -1, and J(u1)+· · ·+ J(uk) > 0, 1 :S k < n. (i4)

Proof. The result is clear for n = 1. If n > 1, the binary tree consists of its
root u 1 and further nodes. If f (ui) = 0, then either the left subtree or the right
subtree is empty, so the condition is obviously true by induction. If f(u 1) = 1,
let the left subtree have n1 nodes; by induction we have

J(ui) + · · · + J(uk) > 0 for 1 < k :S n1, J(ui) + · · · + f(u1+1) = 0, (i5)

and the condition (14) is again evident. I

(For other theorems analogous to Lemma P, see the discussion of Polish
notation in Chapter 10.)

To complete the proof of Theorem A, we note that the theorem is clearly
true when n = 0. If n > 0, the definition of preorder implies that u 1 and u~ are
the respective roots of their trees, and there are integers n 1 and n~ (the sizes of
the left subtrees) such that

u 2 , ... , un +I and u~, ... , u~'+I are the left subtrees of T and T';
l l

un +2 , .•. , un and u~'+2 , ... , u~ are the right subtrees of T and T'.
l l

The proof by induction will be complete if we can show n1 = n~. There are three
cases:

if l(u1) = 0, then n 1 = 0 = n~;

if l(u1) = 1, r(u1) = 0, then n 1 = n - 1 = n~;

if l(u1) = r(u1) = 1, then by Lemma P we can find the least k > 0 such
that f(ui) + · · · + J(uk) = O; and n 1 = k - 1 = n~ (see (i5)). I

As a consequence of Theorem A, we can test two threaded binary trees for
equivalence or similarity by simply traversing them in preorder and checking
the INFO and TAG fields. Some interesting extensions of Theorem A have been
obtained by A. J. Blikle, Bull. de l'Acad. Polonaise des Sciences, Serie des
Sciences Math., Astr., Phys., 14 (1966), 203-208; he considered an infinite class
of possible traversal orders, only six of which (including preorder) were called
"addressless" because of their simple properties.

We conclude this section by giving a typical, yet basic, algorithm for binary
trees, one that makes a copy of a binary tree into different memory locations.

Algorithm C (Copy a binary tree). Let HEAD be the address of the list head
of a binary tree T; thus, Tis the left subtree of HEAD, reached via LLINK (HEAD).
Let NODE (U) be a node with an empty left subtree. This algorithm makes a copy
of T and the copy becomes the left subtree of NODE (U). In particular, if NODE (U)
is the list head of an empty binary tree, this algorithm changes the empty tree
into a copy of T.

Cl. [Initialize.] Set P +---HEAD, Q +--- U. Go to C4.

330 INFORMATION STRUCTURES 2.3.1

C2. [Anything to right?] If NODE(P) has a nonempty right subtree, set R ~

AVAIL, and attach NODE(R) to the right of NODE(Q). (At the beginning of
step C2, the right subtree of NODE(Q) was empty.)

C3. [Copy INFO.] Set INFO (Q) +--- INFO (P). (Here INFO denotes all parts of the
node that are to be copied, except for the links.) .

C4. [Anything to left?] If NODE(P) has a nonempty left subtree, set R ~AVAIL,

and attach NODE (R) to the left of NODE (Q) . (At the beginning of step C4,
the left subtree of NODE(Q) was empty.)

C5. [Advance.] Set P +--- P*, Q +--- Q*.

C6. [Test if complete.] If P = HEAD (or equivalently if Q = RLINK (U), assuming
that NODE(U) has a nonempty right subtree), the algorithm terminates;
otherwise go to step C2. I

This simple algorithm shows a typical application of tree traversal. The
description here applies to threaded, unthreaded, or partially threaded trees.
Step C5 requires the calculation of preorder successors P* and Q*; for unthreaded
trees, this generally is done with an auxiliary stack. A proof of the validity
of Algorithm C appears in exercise 29; a MIX program corresponding to this
algorithm in the case of a right-threaded binary tree appears in exercise 2.3.2-13.
For threaded trees, the "attaching" in steps C2 and C4 is done using Algorithm I.

The exercises that follow include quite a few topics of interest relating to
the material of this section.

EXERCISES

Binary or dichotomous systems, although regulated by a principle,
are among the most artificial arrangements

that have ever been invented.

- WILLIAM SWAINSON, A Treatise on the Geography and
Classification of Animals (1835)

1. [01] In the binary tree (2), let INFO(P) denote the letter stored in NODE(P). What
is INFO (LLINK (RLINK (RLINK (T))))? {A

2. [11] List the nodes of the binary tree 2 3 in (a) preorder; (b) symmetric
order; (c) postorder. 4 s 6 1

3. [20] Is the following statement true or false? "The terminal nodes of a binary
tree occur in the same relative position in preorder, inorder, and postorder."

~ 4. [20] The text defines three basic orders for traversing a binary tree; another
alternative would be to proceed in three steps as follows:

a) Visit the root,
b) traverse the right subtree,
c) traverse the left subtree,

using the same rule recursively on all nonempty subtrees. Does this new order bear
any simple relation to the three orders already discussed?

2.3.1 TRAVERSING BINARY TREES 331

5. [22] The nodes of a binary tree may be identified by a sequence of zeros and
ones, in a notation analogous to "Dewey decimal notation" for trees, as follows: The
root (if present) is represented by the sequence "1". Roots (if present) of the left
and right subtrees of the node represented by a are respectively represented by aO
and al. For example, the node Hin (i) would have the representation "1110". (See
exercise 2.3-15.)

Show that preorder, inorder, and postorder can be described conveniently in terms
of this notation.

6. [M22] Suppose that a binary tree has n nodes that are u1 u2 ... Un in preorder
and Up1 Up2 ••• uPn in inorder. Show that the permutation p1p2 ... Pn can be obtained
by passing 12 ... n through a stack, in the sense of exercise 2.2.1-2. Conversely, show
that any permutation p 1p2 ... Pn obtainable with a stack corresponds to some binary
tree in this way.

7. [22] Show that if we are given the preorder and the inorder of the nodes of a
binary tree, the binary tree structure may be constructed. Does the same result hold
true if we are given the preorder and postorder (instead of inorder)? Or if we are given
the inorder and postorder?

8. [20] Find all binary trees whose nodes appear in exactly the same sequence in
both (a) preorder and inorder; (b) preorder and postorder; (c) in order and postorder.

9. [M20] When a binary tree having n nodes is traversed using Algorithm T, state
how many times each of the steps Tl, T2, T3, T4, and T5 is performed (as a function
of n).

· 10. [20] What is the largest number of entries that can be in the stack at once,
during the execution of Algorithm T, if the binary tree has n nodes? (The answer
to this question is very important for storage allocation, if the stack is being stored
consecutively.)

11. [HM"41] Analyze the average value of the largest stack size occurring during the
execution of Algorithm T as a function of n, given that all binary trees with n nodes
are considered equally probable.

12. [22] Design an algorithm analogous to Algorithm T that traverses a binary tree
in preorder, and prove that your algorithm is correct.

• 13. [24] Design an algorithm analogous to Algorithm T that traverses a binary tree
in postorder.

14. [22] Show that if a binary tree with n nodes is represented as in (2), the total
number of A links in the representation can be expressed as a simple function of n; this
quantity does not depend on the shape of the tree.

15. [15] In a threaded-tree representation like (10), each node except the list head has
exactly one link pointing to it from above, namely the link from its parent. Some of the
nodes also have links pointing to them from below; for example, the node containing C
has two pointers coming up from below, while node E has just one. Is there any
simple connection between the number of links pointing to a node and some other
basic property of that node? (We need to know how many links point to a given node
when we are changing the tree structure.)

... 16. [22] The diagrams in Fig. 24 help to provide an intuitive characterization of the
position of NODE(Q$) in a binary tree, in terms of the structure near NODE(Q): If NODE(Q)
has a nonempty right subtree, consider Q = P, Q =Pin the upper diagrams; NODE(Q$)

332 INFORMATION STRUCTURES 2.3.1

is the "leftmost" node of that right subtree. If NODE(Q) has an empty right subtree,

consider Q =Pin the lower diagrams; NODE(Q$) is located by proceeding upward in the

tree until after the first upward step to the right.
Give a similar "intuitive" rule for finding the position of NODE (Q*) in a binary tree

in terms of the structure near NODE(Q).

~ 17. [22] Give an algorithm.analogous to Algorithm S for determining P* in a threaded

binary tree. Assume that the tree has a list head as in (8), (g), and (10).

18. [24] Many algorithms dealing with trees like to visit each node twice instead of

once, using a combination of preorder and inorder that we might call double order.

Traversal of a binary tree in double order is defined as follows: If the binary tree is

empty, do nothing; otherwise

a) visit the root, for the first time;
b) traverse the left subtree, in double order;
c) visit the root, for the second time;
d) traverse the right subtree, in double order.

For example, traversal of (1) in double order gives the sequence

A1B1D1D2B2A2C1E1E2G1 G2C2FiH1H2F2Ji J2,

where A1 means that A is being visited for the first time.
If P points to a node of the tree and if d = 1 or 2, define (P, d)e:. = (Q, e) if the

next step in double order after visiting NODE(P) the dth time is to visit NODE(Q) the eth

time; or, if (P, d) is the last step in double order, we write (P, d)e:. = (HEAD, 2), where

HEAD is the address of the list head. We also define (HEAD, l)e:. as the first step in double

order.
Design an algorithm analogous to Algorithm T that traverses a binary tree in

double order, and also design an ·algorithm analogous to Algorithm S that computes

(P, d)e:.. Discuss the relation between these algorithms and exercises 12 and 17.

~ 19. [27] Design an algorithm analogous to Algorithm S for the calculation of PU in

(a) a right-threaded binary tree; (b) a fully threaded binary tree. If possible, the

average running time of your algorithm should be at most a small constant, when P is

a random node of the tree.

20. [23] Modify Program Tso that it keeps the stack in a linked list, not in consecutive

memory locations.

~ 21. [33] Design an algorithm that traverses an unthreaded binary tree in inorder

without using any auxiliary stack. It is permissible to alter the LLINK and RLINK fields

of the tree nodes in any manner whatsoever during the traversal, subject only to the

condition that the binary tree should have the conventional representation illustrated

in (2) both before and after your algorithm has traversed the tree. No other bits in the

tree nodes are available for temporary storage.

22. [25] Write a MIX program for the algorithm given in exercise 21 and compare its

execution time to Programs S and T.

23. [22] Design algorithms analogous to Algorithm I for insertion to the right and

insertion to the left in a right-threaded binary tree. Assume that the nodes have the

fields LLINK, RLINK, and RTAG.

24. [M20] Is Theorem A still valid if the nodes of T and T' are given in symmetric

order instead of preorder?

2.3.1 TRAVERSING BINARY TREES 333

25. [M24] Let T be a set of binary trees in which the value of each info field belongs
to a given set S, where Sis linearly ordered by a relation "::::S" (see exercise 2.2.3-14).
Given any trees T, T' in T, let us now define T ::::S T' if and only if

i) T is empty; or
ii) T and T' are not empty, and info(root(T)) -< info(root(T')); or

iii) T and T' are not empty, info(root(T)) = info(root(T')), left(T) ::::S left(T'), and
left(T) is not equivalent to left(T'); or

iv) T and T' are not empty, info(root(T)) = info(root(T')), l~ft(T) is equivalent to
left(T'), and right(T) ::::S right(T').

Here left(T) and right(T) denote the left and right subtrees ofT. Prove that (a) T::::S T'
and T' ::::S T" implies T ::::S T"; (b) T is equivalent to T' if and only if T ::::S T' and T' ::::S T;
(c) for any T, T' in T we have either T ::::ST' or T' ::::ST. [Thus, if equivalent trees in T
are regarded as equal, the relation ::::S induces a linear ordering on T. This ordering has
many applications (for example, in the simplification of algebraic expressions). When
S has only one element, so that the "info" of each node is the same, we have the special
case that equivalence is the same as similarity.]

26. [M24] Consider the ordering T ::::S T' defined in the preceding exercise. Prove
a theorem analogous to Theorem A, giving a necessary and sufficient condition that
T ::::ST', and making use of double order as defined in exercise 18.

~ 27. [28] Design an algorithm that tests two given trees T and T' to see whether
T -< T', T >- T', or T is equivalent to T', in terms of the relation defined in exercise 25,
assuming that both binary trees are right-threaded. Assume that each node has the
fields LLINK, RLINK, RTAG, INFO; use no auxiliary stack.

28. [00] After Algorithm C has been used to make a copy of a tree, is the new binary
tree equivalent to the original, or similar to it?

29. [M25] Prove as rigorously as possible that Algorithm C is valid.

~ 30. [22] Design an algorithm that threads an unthreaded tree; for example, it should
transform (2) into (io). Note: Always use notations like P* and P$ when possible,
instead of repeating the steps for traversal algorithms like Algorithm T.

31. [23] Design an algorithm that "erases" a right-threaded binary tree. Your algo
rithm should return all of the tree node except the list head to the AVAIL list, and make
the list head signify an empty binary tree. Assume that each node has the fields LLINK,
RLINK, RTAG; use no auxiliary stack.

32. [21] Suppose that each node of a binary tree has four link fields: LLINK and RLINK,
which point to left and right subtrees or A, as in an unthreaded tree; sue and PRED,
which point to the successor and predecessor of the node in symmetric order. (Thus
SUC(P) = P$ and PRED(P) = $P. Such a tree contains more information than a threaded
tree.) Design an algorithm like Algorithm I for insertion into such a tree.

~ 33. [30] There is more than one way to thread a tree! Consider the following repre-
sentation, using three fields LTAG, LLINK, RLINK in each node:

LTAG(P): defined the same as in a threaded binary tree;
LLINK (P): always equal to P*;
RLINK (P): defined the same as in an unthreaded binary tree.

Discuss insertion algorithms for such a representation, and write out the copying
algorithm, Algorithm C, in detail for this representation.

334 INFORMATION STRUCTURES 2.3.1

34. [22] Let P point to a node in some binary tree, and let HEAD point to the list head

of an empty binary tree. Give an algorithm that (i) removes NODE(P) and all of its

subtrees from whatever tree it was in, and then (ii) attaches NODE(P) and its subtrees

to NODE(HEAD). Assume that all the binary trees in question are right-threaded, with

fields LLINK, RTAG, RLINK in each node.

35. [40] Define a ternary tree (and, more generally, a t-ary tree for any t 2: 2) in a

manner analogous to our definition of a binary tree, and explore the topics discussed

in this section (including topics found in the exercises above) that can be generalized

to t-ary trees in a meaningful way.

36. [M23] Exercise 1.2.1-15 shows that lexicographic order extends a well-ordering of

a set Stoa well-ordering of then-tuples of elements of S. Exercise 25 above shows that

a linear ordering of the information in tree nodes can be extended to a linear ordering

of trees, using a similar definition. If the relation -< well-orders S, is the extended

relation of exercise 25 a well-ordering of T?

~ 37. [24] (D. Ferguson.) If two computer words are necessary to contain two link fields

and an INFO field, representation (2) requires 2n words of memory for a tree with n

nodes. Design a representation scheme for binary trees that uses less space, assuming

that one link and an INFO field will fit in a single computer word.

2.3.2. Binary Tree Representation of Trees

We turn now from binary trees to just plain trees. Let us recall the basic

differences between trees and binary trees as we have defined them:

1) A tree always has a root node, so it is never empty; each node of a tree can

have 0, 1, 2, 3, ... children.
2) A binary tree can be empty, and each of its nodes can have 0, 1, or 2 children;

we distinguish between a "left" child and a "right" child.

Recall also that a forest is an ordered set of zero or more trees. The subtrees

immediately below any node of a tree form a forest.
There is a natural way to represent any forest as a binary tree. Consider

the following forest of two trees:

B G

The corresponding binary tree is obtained by linking together the children of

each family and removing vertical links except from a parent to a first child:

2.3.2 BINARY TREE REPRESENTATION OF TREES 335

Then, tilt the diagram 45° and tweak it slightly, obtaining a binary tree:

K

G

Conversely, it is easy to see that any binary tree corresponds to a unique forest
of trees by reversing the process.

The transformation from (1) to (3) is extremely important; it is called the
natural correspondence between forests and binary trees. In particular, it gives
a correspondence between trees and a special class of binary trees, namely the
binary trees that have a root but no right subtree. (We might also change our
viewpoint slightly and let the root of a tree correspond to the list head of a binary
tree, thus obtaining a one-to-one correspondence between trees with n + 1 nodes
and binary trees with n nodes.)

Let F = (Ti , T2, ... , T n) be a forest of trees. The binary tree B (F) corre
sponding to F can be defined rigorously as follows:

a) If n = 0, B(F) is empty.
b) If n > 0, the root of B(F) is root(Ti); the left subtree of B(F) is B(Tu, Ti2,

... , Tim), where Tu, Ti2, ... , Tim are the subtrees of root(Ti); and the right
subtree of B(F) is B(T2, ... , Tn)·

These rules specify the transformation from (1) to (3) precisely.
It will occasionally be convenient to draw our binary tree diagram as in (2),

without the 45° rotation. The threaded binary tree corresponding to (i) is
z. ..

·····

(compare with Fig. 24, giving the latter a 45° change in orientation). Notice
that right thread links go from the rightmost child of a family to the parent.

336 INFORMATION STRUCTURES 2.3.2

Left thread links do not have such a natural interpretation, due to the lack of
symmetry between left and right.

The ideas about traversal explored in the previous section can be recast
in terms of forests (and, therefore, trees). There is no simple analog of the
inorder sequence, since there is no obvious place to insert a root among its
descendants; but preorder and postorder carry over in an obvious manner. Given
any nonempty forest, the two basic ways to traverse it may be defined as follows:

Preorder traversal Postorder traversal

Visit the root of the first tree
Traverse the subtrees of the first tree

Traverse the subtrees of the first tree
Visit the root of the first tree

Traverse the remaining trees Traverse the remaining trees

In order to understand the significance of these two methods of traversal,
consider the following notation for expressing tree structure by nested parenthe-
ses:

(A(B, C(K)), D(E(H), F(J), G)).

This notation corresponds to the forest (1): We represent a tree by the informa
tion written in its root, followed by a representation of its subtrees; we represent
a nonempty forest by a parenthesized list of the representations of its trees,
separated by commas.

If (1) is traversed in preorder, we visit the nodes in the sequence A B CK D
EH F JG; this is simply (5) with the parentheses and commas removed. Preorder
is a natural way to list the nodes of a tree: We list the root first, then the
descendants. If a tree structure is represented by indentation as in Fig. 20(c),
the rows appear in preorder. The section numbers of this book itself (see Fig. 22)
appear in preorder; thus, for example, Section 2.3 is followed by Section 2.3.1,
then come Sections 2.3.2, 2.3.3, 2.3.4, 2.3.4.1, ... , 2.3.4.6, 2.3.5, 2.4, etc.

It is interesting to note that preorder is a time-honored concept that might
meaningfully be called dynastic order. At the death of a king, duke, or earl, the
title passes to the first son, then to descendants of the first son, and finally if
these all die out it passes to other sons of the family in the same way. (English
custom also includes daughters in a family on the same basis as sons, except
that they come after all the sons.) In theory, we could take a lineal chart of all
the aristocracy and write out the nodes in preorder; then if we consider only the
people presently living, we would obtain the order of succession to the throne
(except as modified by Acts of Abdication).

Postorder for the nodes in (i) is BK CA HE J F GD; this is analogous
to preorder, except that it corresponds to the similar parenthesis notation

((B, (K)C)A, ((H)E, (J)F, G)D), (6)

in which a node appears just after its descendants instead of just before.
The definitions of preorder and postorder mesh very nicely with the natural

correspondence between trees and binary trees, since the subtrees of the first
tree correspond to the left binary subtree, and the remaining trees correspond to
the right binary subtree. By comparing these definitions with the corresponding

2.3.2 BINARY TREE REPRESENTATION OF TREES 337

definitions on page 319, we find that traversing a forest in preorder is exactly

the same as traversing the corresponding binary tree in preorder. Traversing a

forest in postorder is exactly the same as traversing the corresponding binary

tree in inorder. The algorithms developed in Section 2.3.1 may therefore be

used without change. (Note that postorder for trees corresponds to inorder,

not postorder, for binary trees. This is fortunate, since we have seen that it

is comparatively hard to traverse binary trees in postorder.) Because of this

equivalence, we use the notation P$ for the postorder successor of node P in a

tree, while it denotes the inorder successor in a binary tree.

As an example of the application of these methods to a practical problem,

we will consider the manipulation of algebraic formulas. Such formulas are

most properly regarded as representations of tree structures, not as one- or two

dimensional configurations of symbols, nor even as binary trees. For example,

the formula y = 3 ln(x + 1) - a/ x2 has the tree representation

·························· ...
····· ...

Here the illustration on the left is a conventional tree diagram like Fig. 21, in

which the binary operators+, -, x, /,and t (the latter denotes exponentiation)

have two subtrees corresponding to their operands; the unary operator "ln" has

one subtree; variables and constants are terminal nodes. The illustration on the

right shows the equivalent right-threaded binary tree, including an additional

node y that is a list head for the tree. The list head has the form described in

2.3.1-(8).
It is important to note that, even though the left-hand tree in (7) bears

a superficial resemblance to a binary tree, we are treating it here as a tree,

and representing it by a quite different binary tree, shown at the right in (7).

Although we could develop routines for algebraic manipulations based directly

on binary tree structures - the so-called "three-address code" representations of

algebraic formulas - several simplifications occur in practice if we use the general

tree representation of algebraic formulas, as in (7), because postorder traversal

is easier in a tree.

338 INFORMATION STRUCTURES

The nodes of the left-hand tree in (7) are

x 3 In + x 1 / a t x 2

3 x 1 + ln x a x 2 t /

2.3.2

in preorder; (8)
in postorder. (g)

Algebraic expressions like (8) and (g) are very important, and they are known
as "Polish notations" because form (8) was introduced by the Polish logician,
Jan Lukasiewicz. Expression (8) is the prefix notation for formula (7), and (g)
is the corresponding postfix notation. We will return to the interesting topic of
Polish notation in later chapters; for now let us be content with the knowledge
that Polish notation is directly related to the basic orders of tree traversal.

We shall assume that tree structures for the algebraic formulas with which
we will be dealing have nodes of the following form in MIX programs:

RTAG RLINK TYPE LLINK

INFO

Here RLINK and LLINK have the usual significance, and RTAG is negative for thread
links (corresponding to RT AG = 1 in the statements of algorithms). The TYPE
field is used to distinguish different kinds of nodes: TYPE = 0 means that the node
represents a constant, and INFO is the value of the constant. TYPE = 1 means
that the node represents a variable, and INFO is the five-letter alphabetic name
of this variable. TYPE 2: 2 means that the node represents an operator; INFO is
the alphabetic name of the operator and the value TYPE= 2, 3, 4, ... is used to
distinguish the different operators +, - , x, /, etc. We will not concern ourselves
here with how the tree structure has been set up inside the computer memory
in the first place, since this topic is analyzed in great detail in Chapter 10; let us
merely assume that the tree already appears in our computer memory, deferring
questions of input and output until later.

We shall now discuss the classical example of algebraic manipulation, finding
the derivative of a formula with respect to the variable x. Programs for algebraic
differentiation were among the first symbol-manipulation routines ever written
for computers; they were used as early as 1952. The process of differentiation il
lustrates many of the techniques of algebraic manipulation, and it is of significant
practical value in scientific applications.

Readers who are not familiar with mathematical calculus may consider this
problem as an abstract exercise in formula manipulation, defined by the following
rules:

D(x) = 1

D(a) = 0, if a is a constant or a variable f x
D(ln u) = D(u)/u, if u is any formula

D(-u) = -D(u)
D(u + v) = D(u) + D(v)
D(u - v) = D(u) - D(v)
D(u xv)= D(u) x v+u x D(v)

(11)
(12)
(13)

(14)

(15)

(16)

(17)

2.3.2 BINARY TREE REPRESENTATION OF TREES 339

D(u / v) = D(u)/v - (u x D(v))/(v t 2) (18)

D(u t v) = D(u) x (v x (u t (v - 1))) + ((lnu) x D(v)) x (u t v) (19)

These rules allow us to evaluate the derivative D(y) for any formula y composed

of the operators listed. The "-" sign in rule (14) is a unary operator, which

is different from the binary " - " in (16); we will use "neg" to stand for unary

negation in the tree nodes below.
Unfortunately rules (n)-(19) don't tell the whole story. If we apply them

blindly to a rather simple formula like

y = 3ln(x + 1) - a/x2
,

we get

D(y) = 0 · ln(x + 1) + 3((1+O)/(x+1))

- (O/x2
- (a(1(2x2

-
1

) + ((lnx) · O)x2))/(x2
)

2
), (20)

which is correct but totally unsatisfactory. To avoid so many redundant opera

tions in the answer, we must recognize the special cases of adding or multiplying

by zero, multiplying by one, or raising to the first power. These simplifications

reduce (20) to

D(y) = 3(1/(x + 1)) - ((-(a(2x)))/(x2
)

2
),

which is more acceptable but still not ideal. The concept of a really satisfactory

answer is not well-defined, because different mathematicians will prefer formulas

to be expressed in different ways; however, it is clear that (21) is not as simple

as it could be. In order to make substantial progress over formula (21), it is

necessary to develop algebraic simplification routines (see exercise 17), which

would reduce (21) to, for example,

D(y) = 3(x + 1)-1 + 2ax-3
.

We will content ourselves here with routines that can produce (21), not (22).
Our main interest in this algorithm is, as usual, in the details of how the

process is carried out inside a computer. Many higher-level languages and special

routines are available at most computer installations, with built-in facilities

to simplify algebraic manipulations like these; but the purpose of the present

example is to gain more experience in fundamental tree operations.

The idea behind the following algorithm is to traverse the tree in postorder,

forming the derivative of each node as we go, until eventually the entire derivative

has been calculated. Using postorder means that we will arrive at an operator

node (like "+") after its operands have been differentiated. Rules (n) through

(19) imply that every subformula of the original formula will have to be differen

tiated, sooner or later, so we might as well do the differentiations in postorder.

By using a right-threaded tree, we avoid the need for a stack during the

operation of the algorithm. On the other hand, a threaded tree representation

has the disadvantage that we will need to make copies of subtrees; for example,

in the rule for D(u t v) we might need to copy u and v three times each. If we

340 INFORMATION STRUCTURES 2.3.2

had chosen to use a List representation as in Section 2.3.5 instead of a tree, we

could have avoided such copying.

Algorithm D (Differentiation). If Y is the address of a list head that points to

a formula represented as described above, and if DY is the address of the list head

for an empty tree, this al&orithm makes NODE(DY) point to a tree representing

the analytic derivative of Y with respect to the variable "X".

Dl. [Initialize.] Set P +-- Y$ (namely, the first node of the tree, in postorder,

which is the first node of the corresponding binary tree in inorder).

D2. [Differentiate.] Set Pl+-- LLINK (P); and if Pl f A, also set Ql +-- RLINK (Pl).

Then perform the routine DIFF [TYPE(P) J, described below. (The routines

DIFF [OJ, DIFF [1J, etc., will form the derivative of the tree with root P, and

will set pointer variable Q to the address of the root of the derivative. The

variables Pl and Ql are set up first, in order to simplify the specification of

the DIFF routines.)

D3. [Restore link.] If TYPE(P) denotes a binary operator, set RLINK(Pl) +-- P2.

(See the next step for an explanation.)

D4. [Advance to P$.] Set P2 +-- P, P +-- P$. Now if RTAG(P2) = 0 (that is, if

NODE(P2) has a sibling to the right), set RLINK(P2) +-- Q. (This is the tricky

part of the algorithm: We temporarily destroy the structure of tree Y, so

that a link to the derivative of P2 is saved for future use. The missing link

will be restored later in step D3. See exercise 21 for further discussion of

this trick.)

D5. [Done?] If P f Y, return to step D2. Otherwise set LLINK (DY) +-- Q and

RLINK(Q) +--DY, RTAG(Q) +-- 1. I

The procedure described in Algorithm D is just the background routine

for the differentiation operations that are performed by the processing routines

DIFF [OJ , DIFF [1] , ... , called in step D2. In many ways, Algorithm D is like the

control routine for an interpretive system or machine simulator, as discussed in

Section 1.4.3, but it traverses a tree instead of a simple sequence of instructions.

To complete Algorithm D we must define the routines that do the actual

differentiation. In the following discussion, the statement "P points to a tree"

means that NODE(P) is the root of a tree stored as a right-threaded binary tree,

although both RLINK(P) and RTAG(P) will be meaningless so far as this tree is

concerned. We will make use of a tree construction function that makes new

trees by joining smaller ones together: Let x denote some kind of node, either a

constant, variable, or operator, and let U and V denote pointers to trees; then

TREE (x, U, V) makes a new tree with x in its root node and with U and V

the subtrees of the root: W ¢:: AVAIL, INFO(W) +-- x, LLINK(W) +-- U,

RLINK(U) +-- V, RTAG(U) +-- 0, RLINK(V) +-- W, RTAG(V) +-- 1.

TREE(x, U) similarly makes a new tree with only one subtree: W ¢:: AVAIL,

INFO(W) +-- x, LLINK(W) +-- U, RLINK(U) +-- W, RTAG(U) +-- 1.

TREE (x) makes a new tree with x as a terminal root node: W ¢:: AVAIL,

INFO (W) +-- x, LLINK (W) +-- A.

2.3.2 BINARY TREE REPRESENTATION OF TREES 341

Furthermore TYPE(W) is set appropriately, depending on x. In all cases, the
value of TREE is W, that is, a pointer to the tree just constructed. The reader
should study these three definitions carefully, since they illustrate the binary
tree representation of trees. Another function, COPY (U) , makes a copy of the
tree pointed to by U and has as its value a pointer to the tree thereby created.
The basic functions TREE and COPY make it easy to build up a tree for the
derivative of a formula, step by step.

N ullary operators (constants and variables). For these operations, NODE (P)
is a terminal node, and the values of Pl, P2, Ql, and Q before the operation are
irrelevant.

DIFF [OJ: (NODE(P) is a constant.) Set Q +-- TREE(O).

DIFF[l]: (NODE(P) is a variable.) If INFO(P) = "X", set Q +--TREE(!);
otherwise set Q +-- TREE (0) .

Unary operators (logarithm and negation). For these operations, NODE(P) has
one child, U, pointed to by Pl, and Q points to D(U). The values of P2 and Ql
before the operation are irrelevant.

DIFF[2]: (NODE(P) is "ln".) IfINFO(Q) fO, set Q+--TREE("j",Q,COPY(Pl)).

DIFF [3]: (NODE (P) is "neg".) If INFO (Q) f 0, set Q +-- TREE ("neg" , Q).

Binary operators (addition, subtraction, multiplication, division, exponentia
tion). For these operations, NODE(P) has two children, U and V, pointed to
respectively by Pl and P2; Ql and Q point respectively to D(U), D(V).

DIFF[4]: ("+"operation.) If INFO(Ql) = 0, set AVAIL¢:: QL Otherwise if
INFO(Q) = 0, set AVAIL¢:: Q and Q +-- Ql; otherwise set Q +-TREE("+" ,Ql,Q).

DIFF[5]: ("-" operation.) If INFO(Q) = 0, set AVAIL ¢:: Q and Q +-- QL
Otherwise if INFO (Q 1) = 0, set AV AIL ¢:: Q 1 and set Q +-- TREE ("neg" , Q);
otherwise set Q +-- TREE (" - " , Q 1 , Q) .

DIFF[6]: ("x"operation.) IfINFO(Ql) f0,setQ1+--MULT(Q1,COPY(P2)).
Then if INFO(Q) f 0, set Q +-- MULT(COPY(Pl) ,Q). Then go to DIFF[4].

Here MULT (U, V) is a new function that constructs a tree for U x V but also
makes a test to see if U or V is equal to 1:

if INFO(U) = 1 and TYPE(U) = 0, set AVAIL¢:: U and MULT(U, V) +--V;
if INFO(V) = 1 and TYPE(V) = 0, set AVAIL¢:: V and MULT(U, V) +-- U;

otherwise set MULT (U, V) +-- TREE ("x", U, V).

DIFF[7]: ("/"operation.) If INFO(Ql) f 0, set

Ql +-TREE("/" ,Q1,COPY(P2)).

Then if INFO (Q) f 0, set

Q +-- TREE ("/", MULT (COPY (Pl) , Q) , TREE ("t" , COPY (P2) , TREE (2))).

Then go to DIFF [5] .

DIFF [8] : ("t" operation.) See exercise 12.

342 INFORMATION STRUCTURES 2.3.2

We conclude this section by showing how all of the operations above are
readily transformed into a computer program, starting "from scratch" with only
MIX machine language as a basis.

Program D (Differentiation). The following MIXAL program performs Algo
rithm D, with rll P, rl,3 P2, rl4 Pl, rl5 Q, rl6 QL The order of
computations has been rearranged a little, for convenience.

001 * DIFFERENTIATION IN A RIGHT-THREADED TREE
002 LLINK EQU 4: 5 Definition of fields, see (10)
003 RLINK EQU 1 : 2
004 RLINKT EQU 0:2
005 TYPE EQU 3: 3
006 * MAIN CONTROL ROUTINE Dl. Initialize.
007 D1 STJ 9F
008 LD4 Y(LLINK)
009 1H ENT2 0 ,4
010 2H LD4 0,2(LLINK)
011 J4NZ 1B
012 D2 LD1 0, 2 (TYPE)
013
014
015
016
017
018
019
020
021
022
023 D3
024 D4
025
026
027
028
029 1H
030 D5
031
032
033
034
035
036
037 9H

JMP *+1,1
JMP CONSTANT
JMP VARIABLE
JMP LN
JMP NEG
JMP ADD
JMP SUB
JMP MUL
JMP DIV
JMP PWR
ST3 0,4(RLINK)
ENT3 0,2
LD2 0,2(RLINKT)
J2N 1F
ST5 0,3(RLINK)
JMP 2B
ENN2 0,2
ENT! -Y,2
LD4 0,2(LLINK)
LD6 0,4(RLINK)
J1NZ D2
ST5 DY(LLINK)
ENNA DY
STA 0,5(RLINKT)
JMP *

Treat the whole procedure as a subroutine.
Pi +--- LLINK (Y) , prepare to find Y$.
P +--- PL
Pi +--- LLINK (P).
If Pi f. A, repeat.
D2. Differentiate.
Jump to DIFF [TYPE(P)].
Switch to table entry for DIFF [OJ .

DIFF [1].
DIFF[2].
DIFF [3].
DIFF [4].
DIFF[5].
DIFF[6].
DIFF[7].
DIFF[8].

D3. Restore link. RLINK(Pi) +--- P2.
D4. Advance to P$. P2 +--- P.
P +--- RLINKT(P).
Jump if RTAG(P) = 1;

otherwise set RLINK (P2) +--- Q.
Note that NODE(P$) will be terminal.

D5. Done?
Pi +--- LLINK (P), prepare for step D2.
Qi +--- RLINK(Pi).
Jump to D2 if P f. Y;

otherwise set LLINK (DY) +--- Q.

RLINK(Q) +---DY, RTAG(Q) +--- 1.
Exit from differentiation subroutine. I

The next part of the program contains the basic subroutines TREE and COPY. The
former has three entrances TREEO, TREE!, and TREE2, according to the number
of subtrees of the tree being constructed. Regardless of which entrance to the
subroutine is used, rA will contain the address of a special constant indicating

2.3.2 BINARY TREE REPRESENTATION OF TREES 343

what type of node forms the root of the tree being constructed; these special

constants appear in lines 105-124.

038 * BASIC SUBROUTINES FOR TREE CONSTRUCTION
039 TREEO STJ 9F TREE(rA) function:

040 JMP 2F
041 TREE! ST! 3F(0:2) TREE(rA,rll) function:

042 JSJ 1F
043 TREE2 STX 3F(0:2) TREE(rA,rX,rll) function:

044 3H ST! *(RLINKT) RLINK(rX) +-- rll, RTAG(rX) +-- 0.

045 1H STJ 9F
046 LDXN AVAIL
047 JXZ OVERFLOW
048 STX 0,1(RLINKT) RLINK(rll) +--AVAIL, RTAG(rll) +--1.

049 LDX 3B(0:2)
050 STA *+1(0: 2)
051 STX *(LLINK) Set LLINK of next root node.

052 2H LD1 AVAIL rll -¢:::AVAIL.
053 J1Z OVERFLOW
054 LDX 0,1(LLINK)
055 STX AVAIL
056 STA *+1(0:2) Copy root info to new node.

057 MOVE *(2)
058 DEC! 2 Reset rll to point to the new root.

059 9H JMP * Exit from TREE, rll points to new tree.

060 COPYP1 ENT! 0,4 COPY(P1), special entrance to COPY

061 JSJ COPY
062 COPYP2 ENT! 0,3 COPY(P2), special entrance to COPY

063 COPY STJ 9F COPY(rll) function:

(see exercise 13)

104 9H JMP * Exit from COPY, rll points to new tree.

105 CONO CON 0 Node representing the constant "O"
106 CON 0
107 CON! CON 0 Node representing "1"
108 CON 1
109 CON2 CON 0 Node representing "2"
110 CON 2
111 LOG CON 2(TYPE) Node representing "ln"
112 ALF LN
113 NEGOP CON 3(TYPE) Node representing "neg"

114 ALF NEG
115 PLUS CON 4(TYPE) Node representing "+"
116 ALF +
117 MINUS CON 5(TYPE) Node representing "-"
118 ALF
119 TIMES CON 6(TYPE) Node representing "x"
120 ALF *
121 SLASH CON ?(TYPE) Node representing "/"
122 ALF I

344 INFORMATION STRUCTURES 2.3.2

123 UPARROW CON 8(TYPE) Node representing "t"
124 ALF ** I
The remaining portion of the program corresponds to the differentiation routines

DIFF [OJ , DIFF [1] , ... ; these routines are written to return control to step D3

after processing a binary operator, otherwise they return to step D4.

125 * DIFFERENTIATION ROUTINES
126 VARIABLE LDX 1,2
127 ENTA CON!
128 CMPX 2F Is INFO (P) = "X"?

129 JE *+2 If so, call TREE(!).

130 CONSTANT ENTA CONO Call TREE(O).

131 JMP TR EEO
132 1H ENT5 0,1 Q +-- location of new tree.
133 JMP D4 Return to control routine.

134 2H ALF x
135 LN LDA 1,5
136 JAZ D4 Return to control routine if INFO (Q) = O;

137 JMP COPYP1 otherwise set rll +-- COPY(Pi).

138 ENTX 0,5
139 ENTA SLASH
140 JMP TREE2 rll +--TREE("/", Q ,rll).

141 JMP 1B Q +-- rll, return to control.

142 NEG LDA 1,5
143 JAZ D4 Return if INFO(Q) = 0.

144 ENTA NEGOP
145 ENT! 0,5
146 JMP TREE! r 11 +-- TREE ("neg" , Q) .

147 JMP 1B Q +-- rll, return to control.

148 ADD LDA 1,6
149 JANZ 1F Jump unless INFO(Qi) = 0.
150 3H LDA AVAIL AVAIL-¢::: Qi.

151 STA 0,6(LLINK)
152 ST6 AVAIL
153 JMP D3 Return to control, binary operator.

154 1H LDA 1,5
155 JANZ 1F Jump unless INFO (Q) = 0.
156 2H LDA AVAIL AVAIL-¢::: Q.

157 STA 0,5(LLINK)
158 ST5 AVAIL
159 ENT5 0,6 Q +--Qi.

160 JMP D3 Return to control.
161 1H ENTA PLUS Prepare to call TREE ("+",Qi, Q).

162 4H ENTX 0,6
163 ENT! 0,5
164 JMP TREE2
165 ENT5 0,1 Q +--TREE("±", Qi, Q).

166 JMP D3 Return to control.
167 SUB LDA 1,5
168 JAZ 2B Jump if INFO (Q) = 0.

2.3.2 BINARY TREE REPRESENTATION OF TREES 345

169 LDA 1,6
170 JANZ 1F Jump unless INFO (Qi) = 0.

171 ENTA NEGOP
172 ENT! 0,5
173 JMP TREE!
174 ENT5 0,1 Q +-- TREE ("neg" , Q) .

175 JMP 3B AVAIL-¢::: Qi and return.

176 1H ENTA MINUS Prepare to call TREE("-" ,Qi,Q).

177 JMP 4B
178 MUL LDA 1,6
179 JAZ 1F Jump if INFO (Qi) = O;

180 JMP COPY2 otherwise set rll +-- COPY(P2).

181 ENTA 0,6
182 JMP MULT rll +-- MULT(Qi,COPY(P2)).

183 ENT6 0,1 Qi +-- rll.

184 1H LDA 1,5
185 JAZ ADD Jump if INFO (Q) = O;
186 JMP COPYP1 otherwise set rll +-- COPY(Pi).

187 ENTA 0,1
188 ENT! 0,5
189 JMP MULT rll +-- MULT(COPY(Pi), Q).

190 ENT5 0,1 Q +-- rll.
191 JMP ADD
192 MULT STJ 9F MULT(rA,rll) subroutine:

193 STA 1F(0:2) Let rA = U, rll = V.
194 ST2 SF(0:2) Save rl2.
195 1H ENT2 * rl2 +-- U.
196 LDA 1,2 Test if INFO (U) = 1
197 DECA 1
198 JANZ 1F
199 LDA 0,2(TYPE) and if TYPE (U) = 0.
200 JAZ 2F
201 1H LDA 1,1 If not, test if INFO (V) = 1

202 DECA 1
203 JANZ 1F
204 LDA 0,1(TYPE) and if TYPE (V) = 0.
205 JANZ 1F
206 ST! *+2(0:2) If so, interchange U +-+ V.
207 ENT! 0,2
208 ENT2 *
209 2H LDA AVAIL AVAIL-¢::: U.
210 STA 0,2(LLINK)
211 ST2 AVAIL
212 JMP SF Result is V.
213 1H ENTA TIMES
214 ENTX 0,2
215 JMP TREE2 Result is TREE("x" ,U, V).
216 SH ENT2 * Restore rl2 setting.
217 9H JMP * Exit MULT with result in rll. I

346 INFORMATION STRUCTURES 2.3.2

The other two routines DIV and PWR are similar and they have been left as

exercises (see exercises 15 and 16).

EXERCISES

~ 1. [20] The text gives a formal definition of B(F), the binary tree corresponding to

a forest F. Give a formal definition that reverses the process; in other words, define

F(B), the forest corresponding to a binary tree B.

~ 2. [20] We defined Dewey decimal notation for forests in Section 2.3, and for binary

trees in exercise 2.3.1-5. Thus the node "J" in (i) is represented by "2.2.1", and in

the equivalent binary tree (3) it is represented by "11010". If possible, give a rule

that directly expresses the natural correspondence between trees and binary trees as a

correspondence between the Dewey decimal notations.

3. [22] What is the relation between Dewey decimal notation for the nodes of a

forest and the preorder and postorder of those nodes?

4. [19] Is the following statement true or false? "The terminal nodes of a tree occur

in the same relative position in preorder and postorder."

5. [23] Another correspondence between forests and binary trees could be defined by
letting RLINK (P) point to the rightmost child of NODE(P), and LLINK (P) to the nearest

sibling on the left. Let F be a forest that corresponds in this way to a binary tree B.

What order, on the nodes of B, corresponds to (a) preorder (b) postorder on F?

6. [25] Let T be a nonempty binary tree in which each node has 0 or 2 children. If

we regard T as an ordinary tree, it corresponds (via the natural correspondence) to

another binary tree T'. Is there any simple relation between preorder, inorder, and

postorder of the nodes of T (as defined for binary trees) and the same three orders for

the nodes of T'?

7. [M20] A forest may be regarded as a , if we say that each node precedes its
descendants in the tree. Are the nodes topologically sorted (as defined in Section 2.2.3)

when they are listed in (a) preorder? (b) postorder? (c) reverse preorder? (d) reverse
postorder?

8. [M20] Exercise 2.3.1-25 shows how an ordering between the information stored

in the individual nodes of a binary tree may be extended to a linear ordering of all

binary trees. The same construction leads to an ordering of all trees, under the natural
correspondence. Reformulate the definition of that exercise, in terms of trees.

9. [M21] Show that the total number of nonterminal nodes in a forest has a simple
relation to the total number of right links equal to A in the corresponding unthreaded

binary tree.

10. [M23] Let F be a forest of trees whose nodes in preorder are u 1 , u 2 , ••• , Un, and

let F' be a forest whose nodes in preorder are u~, u;, ... , u~,. Let d(u) denote the

degree (the number of children) of node u. In terms of these ideas, formulate and prove

a theorem analogous to Theorem 2.3.lA.

11. [15] Draw trees analogous to those shown in (7), corresponding to the formula
-x2

y = e

12. [M21] Give specifications for the routine DIFF[8] (the "t" operation), which was
omitted from the algorithm in the text.

2.3.2 BINARY TREE REPRESENTATION OF TREES 347

~ 13. [26] Write a MIX program for the COPY subroutine (which fits in the program
of the text between lines 063-104). [Hint: Adapt Algorithm 2.3.lC to the case of
right-threaded binary trees, with suitable initial conditions.]

~ 14. [M21] How long does it take the program of exercise 13 to copy a tree with n
nodes?

15. [23] Write a MIX program for the DIV routine, corresponding to DIFF [7] as speci
fied in the text. (This routine should be added to the program in the text after line 217.)

16. [24] Write a MIX program for the PWR routine, corresponding to DIFF[8] as speci
fied in exercise 12. (This routine should be added to the program in the text after the
solution to exercise 15.)

17. [M40] Write a program to do algebraic simplification capable of reducing, for
example, (20) or (21) to (22). [Hints: Include a new field with each node, representing
its coefficient (for summands) or its exponent (for factors in a product). Apply algebraic
identities, like replacing ln(u t v) by v In u; remove the operations - , /, t, and neg when
possible by using equivalent addition or multiplication operations. Make + and x into
n-ary instead of binary operators; collect like terms by sorting their operands in tree
order (exercise 8); some sums and products will now reduce to zero or unity, presenting
perhaps further simplifications. Other adjustments, like replacing a sum of logarithms
by the logarithm of a product, also suggest themselves.]

~ 18. [25] An oriented tree specified by n links PARENT[j] for 1 :::; j :::; n implicitly defines
an ordered tree if the nodes in each family are ordered by their location. Design an
efficient algorithm that constructs a doubly linked circular list containing the nodes of
this ordered tree in preorder. For example, given

j=l2345678
P ARENT[j] = 3 8 4 0 4 8 3 4

your algorithm should produce

LLINK[j] = 3 8 4 6 7 2 1 5
RLINK[j] = 7 6 1 3 8 4 5 2

and it should also report that the root node is 4.

19. [M35] A free lattice is a mathematical system, which (for the purposes of this
exercise) can be simply defined as the set of all formulas composed of variables and
two abstract binary operators "V" and "/\". A relation "X t Y" is defined between
certain formulas X and Y in the free lattice by the following rules:

i) X V Y t W /\ Z if and only if X V Y t W or X V Y t Z or X >- W /\ Z or
Y t W /\ Z;

ii) X /\ Y t Zif and only if X t Zand Y t Z;

iii) X t Y V Z if and only if X t Y and X t Z;

iv) x t Y /\ Z if and only if x t Y or x t Z, when x is a variable;

v) XV Y t z if and only if X t z or Y t z, when z is a variable;

vi) x t y if and only if x = y, when x and y are variables.

For example, we find a/\ (b V c) t (a/\ b) V (a/\ c) 1'.: a/\ (b V c).
Design an algorithm that tests whether or not X t Y, given two formulas X and Y

in the free lattice.

348 INFORMATION STRUCTURES 2.3.2

~ 20. [M22] Prove that if u and v are nodes of a forest, u is an ancestor of v if and only
if u precedes v in preorder and u follows v in postorder.

21. [25] Algorithm D controls the differentiation activity for binary operators, unary
operators, and nullary operators, thus for trees whose nodes have degree 2, 1, and O; but
it does not indicate explicitly how the control would be handled for ternary operators
and nodes of higher degree. (For example, exercise 17 suggests making addition and
multiplication into operators with any number of operands.) Is it possible to extend
Algorithm D in a simple way so that it will handle operators of degree more than 2?

~ 22. [M26] If T and T' are trees, let us say T can be embedded in T', written T ~ T',
if there is a one-to-one function f from the nodes of Tinto the nodes of T' such that
f preserves both preorder and postorder. (In other words, u precedes v in preorder
for T if and only if f (u) precedes f (v) in preorder for T', and the same holds for
postorder. See Fig. 25.)

c'

c

d f

Fig. 25. One tree embedded in another (see exercise 22).

If T has more than one node, let l(T) be the leftmost subtree of root(T) and let
r(T) be the rest of T, that is, T with l(T) deleted. Prove that T can be embedded in
T' if (i) T has just one node, or (ii) both T and T' have more than one node and either
T ~ l(T'), or T ~ r(T'), or (l(T) ~ l(T') and r(T) ~ r(T')). Does the converse hold?

2.3.3. Other Representations of Trees

LLINK in tree There are many ways to represent tree structures inside a com
puter besides the LLINK-RLINK (left child-right sibling) method given in the
previous section. As usual, the proper choice of representation depends heavily
on what kind of operations we want to perform on the trees. In this section we
will consider a few of the tree representation methods that have proved to be
especially useful.

First we can use sequential memory techniques. As in the case of linear lists,
this mode of allocation is most suitable when we want a compact representation
of a tree structure that is not going to be subject to radical dynamic changes in
size or shape during program execution. There are many situations in which we
need essentially constant tables of tree structures for reference within a program,
and the desired form of these trees in memory depends on the way in which the
tables are to be examined.

The most common sequential representation of trees (and forests) corres
ponds essentially to the omission of LLINK fields, by using consecutive addressing

2.3.3 OTHER REPRESENTATIONS OF TREES 349

instead. For example, let us look again at the forest

(A(B, C(K)), D(E(H)), F(J), G))

considered in the previous section, which has the tree diagrams

A
and

B G

The preorder sequential representation has the nodes appearing in preorder,
with the fields INFO, RLINK, and LTAG in each node:

RLINK
INFO
LTAG

Here nonnull RLINKs have been indicated by arrows, and LTAG = 1 (for terminal
nodes) is indicated by "J". LLINK is unnecessary, since it would either be null
or it would point to the next item in sequence. It is instructive to compare (i)
with (3)·

This representation has several interesting properties. In the first place,
all subtrees of a node appear immediately after that node, so that all subtrees
within the original forest appear in consecutive blocks. [Compare this with the
"nested parentheses" in (1) and in Fig. 20(b).] In the second place, notice that
the RLINK arrows never cross each other in (3); this will be true in general, for
in a binary tree all nodes between X and RLINK (X) in preorder lie in the left
subtree of X, hence no outward arrows will emerge from that part of the tree.
In the third place, we may observe that the LTAG field, which indicates whether
a node is terminal or not, is redundant, since "J" occurs only at the end of the
forest and just preceding every downward pointing arrow.

Indeed, these remarks show that the RLINK field itself is almost redundant;
all we really need to represent the structure is RTAG and LTAG. Thus it is possible
to deduce (3) from much less data:

RTAG
INFO
LTAG

(4)

As we scan (4) from left to right, the positions with RTAG -/:- "l" correspond
to nonnull RLINKs that must be filled in. Each time we pass an item with
LTAG = "J", we should complete the most recent instance of an incomplete
RLINK. (The locations of incomplete RLINKs can therefore be kept on a stack.)
We have essentially proved Theorem 2.3.lA again.

The fact that RLINK or LTAG is redundant in (3) is of little or no help to
us unless we are scanning the entire forest sequentially, since extra computation
is required to deduce the missing information. Therefore we often need all of

350 INFORMATION STRUCTURES 2.3.3

the data in (3)· However, there is evidently some wasted space, since more than
half of the RLINK fields are equal to A for this particular forest. There are two
common ways to make use of the wasted space:

1) Fill the RLINK of each node with the address following the subtree below
that node. The field is now often called "SCOPE" instead of RLINK, since it
indicates the right bounda:.y of the "influence" (descendants) of each node.
Instead of (3), we would have

SCOPE

INFO
I n1 ?ti 1 rll riJ
A B C K D E H F J G

1 i
The arrows still do not cross each other. Furthermore, LTAG(X) = "J" is char
acterized by the condition SCOPE (X) = X + c, where c is the number of words per
node. One example of the use of this SCOPE idea appears in exercise 2.4-12.

2) Decrease the size of each node by removing the RLINK field, and add
special "link" nodes just before nodes that formerly had a nonnull RLINK:

INFO
LTAG

* A (6)

Here "*" indicates the special link nodes, whose INFO somehow characterizes
them as links pointing as shown by the arrows. If the INFO and RLINK fields of
(3) occupy roughly the same amount of space, the net effect of the change to (6)
is to consume less memory, since the number of "*" nodes is always less than
the number of non-"*" nodes. Representation (6) is somewhat analogous to a
sequence of instructions in a one-address computer like MIX, with the "*" nodes
corresponding to conditional jump instructions.

Another sequential representation analogous to (3) may be devised by omit
ting RLINKs instead of LLINKs. In this case we list the nodes of the forest in a new
order that may be called family order since the members of each family appear
together. Family order for any forest may be defined recursively as follows:

Visit the root of the first tree.
Traverse the remaining trees (in family order).
Traverse the subtrees of the root of the first tree (in family order).

(Compare this with the definitions of preorder and postorder in the previous sec
tion. Family order is identical with the reverse of postorder in the corresponding
binary tree.)

The family order sequential representation of the trees (2) is

LL INK
INFO
RTAG

I r-il
A 1J E

In this case the RTAG entries serve to delimit the families. Family order begins
by listing the roots of all trees in the forest, then continues by listing individual
families, successively choosing the family of the most recently appearing node
whose family has not yet been listed. It follows that the LLINK arrows will

2.3.3 OTHER REPRESENTATIONS OF TREES 351

never cross; and the other properties of preorder representation carry over in a

similar way.
Instead of using family order, we could also simply list the nodes from left

to right, one level at a time. This is called "level order" [see G. Salton, CACM 5

(1962), 103-114], and the level order sequential representation of (2) is

LL INK
INFO
RTAG

I I t
A 1J B

i i l (8)

This is like (7), but the families are chosen in first-in-first-out fashion rather than

last-in-first-out. Either (7) or (8) may be regarded as a natural analog, for trees,

of the sequential representation of linear lists.

The reader will easily see how to design algorithms that traverse and analyze

trees represented sequentially as above, since the LLINK and RLINK information

is essentially available just as though we had a fully linked tree structure.

Another sequential method, called postorder with degrees, is somewhat dif

ferent from the techniques above. We list the nodes in postorder and give the

degree of each node instead of links:

DEGREE
INFO

0 0 1 2 0 1 0 1 0 3
BKCAHEJFGD

(g)

For a proof that this is sufficient to characterize the tree structure, see exercise

2.3.2-10. This order is useful for the "bottom-up" evaluation of functions defined

on the nodes of a tree, as in the following algorithm.

Algorithm F (Evaluate a locally defined function in a tree). Suppose f is a

function of the nodes of a tree, such that the value off at a node x depends only

on x and the values off on the children of x. The following algorithm, using an

auxiliary stack, evaluates f at each node of a nonempty forest.

Fl. [Initialize.] Set the stack empty, and let P point to the first node of the forest

in postorder.

F2. [Evaluate f .] Set d +-- DEGREE(P). (The first time this step is reached, d will

be zero. In general, when we get to this point, it will always be true that

the top d items of the stack are f (Xd), ... , f (x1) - from the top of the

stack downward-where x1, ... , Xd are the children of NODE(P) from left

to right.) Evaluate f(NODE(P)), using the values of f(xd), ... , f(x1) found
on the stack.

F3. [Update the stack.] Remove the top d items of the stack; then put the value

f (NODE(P)) on top of the stack.

F4. [Advance.] If P is the last node in postorder, terminate the algorithm.

(The stack will then contain f(root(Tm)), ... , f(root(Ti)), from top to

bottom, where Ti, ... , Tm are the trees of the given forest.) Otherwise

set P to its successor in postorder (this would be simply P +-- P + 1 in the

representation (g)), and return to step F2. I

352 INFORMATION STRUCTURES 2.3.3

The validity of Algorithm F follows by induction on the size of the trees

processed (see exercise 16). This algorithm bears a striking similarity to the

differentiation procedure of the previous section (Algorithm 2.3.2D), which eval

uates a function of a closely related type; see exercise 3. The same idea is used

in many interpretive routines in connection with the evaluation of arithmetic

expressions in postfix notation; we will return to this topic in Chapter 8. See

also exercise 17, which gives another important procedure similar to Algorithm F.

Thus we have seen various sequential representations of trees and forests.

There are also a number of linked forms of representation, which we shall now

consider.
The first idea is related to the transformation that takes (3) into (6): We

remove the INFO fields from all nonterminal nodes and put this information as

a new terminal node below the previous node. For example, the trees (2) would

become

A D G

This new form shows that we may assume (without loss of generality) that

all INFO in a tree structure appears in its terminal nodes. Therefore in the

natural binary tree representation of Section 2.3.2, the LLINK and INFO fields

are mutually exclusive and they can share the same field in each node. A node

might have the fields

J LTAG J LLIN:K or :INFO J RL~NK

where the sign LTAG tells whether the second field is a link or not. (Compare

this representation with, for example, the two-word format of (io) in Section

2.3.2.) By cutting INFO down from 6 bytes to 3, we can fit each node into one

word. However, notice that there are now 15 nodes instead of 10; the forest (io)

takes 15 words of memory while (2) takes 20, yet the latter has 60 bytes of INFO

compared to 30 in the other. There is no real gain in memory space in (io)

unless the excess INFO space was going to waste; the LLINKs replaced in (10)
are removed at the expense of about the same number of new RLINKs in the

added nodes. Precise details of the differences between the two representations

are discussed in exercise 4.
In the standard binary tree representation of a tree, the LLINK field might

be more accurately called the LCHILD field, since it points from a parent node to

its leftmost child. The leftmost child is usually the "youngest" of the children

in the tree, since it is easier to insert a node at the left of a family than at the

right; so the abbreviation LCHILD may also be thought of as the "last child" or

"least child."

2.3.3 OTHER REPRESENTATIONS OF TREES 353

Many applications of tree structures require rather frequent references up

ward in the tree as well as downward. A threaded tree gives us the ability to

go upward, but not with great speed; we can sometimes do better if we have a

third link, PARENT, in each node. This leads to a triply linked tree, where each

node has LCHILD, RLINK, and PARENT links. Figure 26 shows a triply linked

tree representation of (2). For an example of the use of triply linked trees, see

Section 2.4.

INFO PARENT
LCHILD RLINK

=

Fig. 26. A triply linked tree.

It is clear that the PARENT link all by itself is enough to specify any oriented

tree (or forest) completely. For we can draw the diagram of the tree if we know all

the upward links. Every node except the root has just one parent, but there may

be several children; so it is simpler to give upward links than downward ones.

Why then haven't we considered upward links much earlier in our discussion?

The answer, of course, is that upward links by themselves are hardly adequate

in most situations, since it is very difficult to tell quickly if a node is terminal

or not, or to locate any of its children, etc. There is, however, a very important

application in which upward links are sufficient by themselves: We now turn to ·

a brief study of an elegant algorithm for dealing with equivalence relations, due

to M. J. Fischer and B. A. Galler.
An equivalence relation " " is a relation between the elements of a set of

objects S satisfying the following three properties for any objects x, y, and z

(not necessarily distinct) in S:

i) If x y and y z, then x z. (Transitivity.)
ii) If x y, then y x. (Symmetry.)

iii) x x. (Reflexivity.)

(Compare this with the definition of a partial ordering relation in Section 2.2.3;

equivalence relations are quite different from partial orderings, in spite of the fact

that two of the three defining properties are the same.) Examples of equivalence

relations are the relation "=",the relation of congruence (modulo m) for integers,

the relation of similarity between trees as defined in Section 2.3.1, etc.

354 INFORMATION STRUCTURES 2.3.3

The equivalence problem is to read in pairs of equivalences and to determine
later whether two particular elements can be proved equivalent or not on the basis
of the given pairs. For example, suppose that S is the set {1, 2, 3, 4, 5, 6, 7, 8, 9}

and suppose that we are given the pairs

1 5, 6 8, .7 2, 9 8, 3 7, 4 2, 9 3. (11)

It follows that, for example, 2 6, since 2 7 3 9 8 6. But we cannot
show that 1 6. In fact, the pairs (11) divide S into two classes

{1, 5} and {2, 3, 4, 6, 7, 8, 9},

such that two elements are equivalent if and only if they belong to the same
class. It is not difficult to prove that any equivalence relation partitions its set S

into disjoint classes (called the equivalence classes), such that two elements are
equivalent if and only if they belong to the same class.

Therefore a solution to the equivalence problem is a matter of keeping track
of equivalence classes like (12). We may start with each element alone in its
class, thus:

{1} {2} {3} {4} {5} {6} {7} {8} {9}
Now if we are given the relation 1 5, we put {1, 5} together in a class. After
processing the first three relations 1 5, 6 8, and 7 2, we will have changed
(13) to

{1,5} {2, 7} {3} {4} {6,8} {9}.
Now the pair 9 8 puts {6, 8, 9} together, etc.

The problem is to find a good way to represent situations like (12), (13),
and (14) within a computer so that we can efficiently perform the operations of
merging classes together and of testing whether two given elements are in the
same class. The algorithm below uses oriented tree structures for this purpose:
The elements of S become nodes of an oriented forest; and two nodes are
equivalent, as a consequence of the pairs of equivalences read so far, if and only if

they belong to the same tree. This test is easy to make, since two elements are in
the same tree if and only if they are below the same root element. Furthermore,
it is easy to merge two oriented trees together, by simply attaching one as a new
subtree of the other's root.

Algorithm E (Process equivalence relations). Let S be the set of numbers
{1, 2, ... , n }, and let PARENT [1], PARENT [2], ... , PARENT [n] be integer vari
ables. This algorithm inputs a set of relations such as (11) and adjusts the PARENT

table to represent a set of oriented trees, so that two elements are equivalent as
a consequence of the given relations if and only if they belong to the same
tree. (Note: In a more general situation, the elements of S would be symbolic
names instead of simply the numbers from 1 to n; then a search routine, as in
Chapter 6, would locate nodes corresponding to the elements of S, and PARENT

would be a field in each node. The modifications for this more general case are
straightforward.)

2.3.3 OTHER REPRESENTATIONS OF TREES 355

El. [Initialize.] Set PARENT [k] +-- 0 for 1 :::; k :::; n. (This means that all trees

initially consist of a root alone, as in (13).)

E2. [Input new pair.] Get the next pair of equivalent elements "j k" from the

input. If the input is exhausted, the algorithm terminates.

E3. [Find roots.] If PARENT [j] > 0, set j +-- PARENT [j] and repeat this step.

If PARENT [k] > 0, set k +-- PARENT [k] and repeat this step. (After this

operation, j and k have moved up to the roots to two trees that are to be

made equivalent. The input relation j k was redundant if and only if we

now have j = k.)

E4. [Merge trees.] If j -/:- k, set PARENT [j] +-- k. Go back to step E2. I

The reader should try this algorithm on the input (n). After processing

1 5, 6 8, 7 2, and 9 8, we will have

PARENT[k]: 5 0 0 0 0 8 2 0 8
k 1 2 3 4 5 6 7 8 9

which represents the trees

~
0 0

% ~·
After this point, the remaining relations of (11) are somewhat more interesting;

see exercise 9.
This equivalence problem arises in many applications. We will discuss

significant refinements of Algorithm E in Section 7.4.1, when we study the

connectivity of graphs. A more general version of the problem, which arises when

a compiler processes "equivalence declarations" in languages like FORTRAN, is

discussed in exercise 11.

Fig. 27. A ring structure.

There are still more ways to represent trees in computer memory. Recall that

we discussed three principal methods for representing linear lists in Section 2.2:

the straight representation with terminal link A, the circularly linked lists, and

the doubly linked lists. The representation of unthreaded binary trees described

in Section 2.3.1 corresponds to a straight representation in both LLINKs and

(a) Fields

UP EXP RIGHT
LEFT CV DOWN

(b) Polynomial = c (constant)

=

(d) Example: 3 + x 2 + xyz + z 3 - 3xz3

= = =

-= -=

Fig. 28. Representation of polynomials using four-directional links. Shaded areas of nodes indicate information that is irrelevant in
the context considered.

2.3.3 OTHER REPRESENTATIONS OF TREES 357

RLINKs. It is possible to get eight other binary tree representations by indepen

dently using any of these three methods in the LLINK and RLINK directions. For

example, Fig. 27 shows what we get if circular linking is used in both directions.

If circular links are used throughout as in the figure, we have what is called a

ring structure; ring structures have proved to be quite flexible in a number of

applications. The proper choice of representation depends, as always, on the

types of insertions, deletions, and traversals that are needed in the algorithms

that manipulate these structures. A reader who has looked over the examples

given so far in this chapter should have no difficulty understanding how to deal

with any of these memory representations.

We close this section with an example of modified doubly linked ring struc

tures applied to a problem we have considered before: arithmetic on polynomials.

Algorithm 2.2.4A performs the addition of one polynomial to another, given that

the two polynomials are expressed as circular lists; various other algorithms in

that section give other operations on polynomials. However, the polynomials

of Section 2.2.4 are restricted to at most three variables. When multi-variable

polynomials are involved, it is usually more appropriate to use a tree structure

instead of a linear list.
A polynomial either is a constant or has the form

L 9jXej'

0:5,j'.5,n

where x is a variable, n > 0, 0 = eo < e1 < · · · < en, and go, ... , 9n are

polynomials involving only variables alphabetically less than x; g1 , ... , 9n are not

zero. This recursive definition of polynomials lends itself to tree representation

as indicated in Fig. 28. Nodes have six fields, which in the case of MIX might fit

in three words:

+ 0 LEFT RIGHT

+ EXP UP DOWN

CV

Here LEFT, RIGHT, UP, and DOWN are links; EXP is an integer representing an

exponent; and CV is either a constant (coefficient) or the alphabetic name of a

variable. The root node has UP= A, EXP= 0, LEFT= RIGHT= * (self).

The following algorithm illustrates traversal, insertion, and deletion in such

a four-way-linked tree, so it bears careful study.

Algorithm A (Addition of polynomials). This algorithm adds polynomial (P) to

polynomial (Q), assuming that P and Qare pointer variables that link to the roots

of distinct polynomial trees having the form shown in Fig. 28. At the conclusion

of the algorithm, polynomial(P) will be unchanged, and polynomial(Q) will

contain the sum.

AL [Test type of polynomial.] If DOWN (P) = A (that is, if P points to a

constant), then set Q +--- DOWN (Q) zero or more times until DOWN (Q) = A

358 INFORMATION STRUCTURES 2.3.3

and go to A3. If DOWN(P) -=f. A, then if DOWN(Q) =A or if CV(Q) < CV(P),

go to A2. Otherwise if CV(Q) = CV(P), set P +--- DOWN(P), Q +--- DOWN(Q)

and repeat this step; if CV (Q) > CV (P), set Q +--- DOWN (Q) and repeat this

step. (Step Al either finds two matching terms of the polynomials or

else determines that an insertion of a new variable must be made into the

current part of polynomial(Q) .)

A2. [Downward insertion.] Set R -¢= AVAIL, S +--- DOWN(Q). If S =I- A, set

UP(S) +--- R, S +--- RIGHT(S) and if EXP(S) -=f. 0, repeat this operation

until ultimately EXP(S) = 0. Set UP(R) +--- Q, DOWN(R) +--- DOWN(Q),

LEFT(R) +--- R, RIGHT(R) +--- R, CV(R) +--- CV(Q) and EXP(R) +--- 0. Finally,

set CV(Q) +--- CV(P) and DOWN(Q) +--- R, and return to Al. (We have inserted

a "dummy" zero polynomial just below NODE (Q), to obtain a match with

a corresponding polynomial found within P's tree. The link manipulations

done in this step are straightforward and may be derived easily using

"before-and-after" diagrams, as explained in Section 2.2.3.)

A3. [Match found.] (At this point, P and Q point to corresponding terms of

the given polynomials, so addition is ready to proceed.) Set CV(Q) +--

CV(Q) + CV(P). If this sum is zero and if EXP(Q) -=J. 0, go to step A8. If

EXP(Q) = 0, go to A7.

A4. [Advance to left.] (After successfully adding a term, we look for the next

term to add.) Set P +--- LEFT(P). If EXP(P) = 0, go to A6. Otherwise

set Q +--- LEFT(Q) one or more times until EXP(Q) < EXP(P). If then

EXP(Q) = EXP(P), return to step Al.

A5. (Insert to right.] Set R-¢= AVAIL. Set UP(R) +--- UP(Q), DOWN(R) +---A,

CV(R) +--- 0, LEFT(R) +--- Q, RIGHT(R) +--- RIGHT(Q), LEFT(RIGHT(R)) +--- R,

RIGHT(Q) +--- R, EXP(R) +--- EXP(P), and Q +--- R. Return to step Al. (We

needed to insert a new term in the current row, just to the right of NODE (Q),

in order to match a corresponding exponent in polynomial(P). As in

step A2, a "before-and-after" diagram makes the operations clear.)

A6. [Return upward.] (A row of polynomial (P) has now been completely tra

versed.) Set P +--- UP(P).

A7. [Move Q up to right level.] If UP(P) = A, go to All; otherwise set

Q +--- UP (Q) zero or more times until CV (UP (Q)) = CV (UP (P)) . Return

to step A4.

AS. (Delete zero term.] Set R +--- Q, Q +--- RIGHT(R), S +--- LEFT(R), LEFT(Q) +--- S,

RIGHT(S) +--- Q, and AVAIL-¢= R. (Cancellation occurred, so a row element

of polynomial(Q) is deleted.) If now EXP(LEFT(P)) = 0 and Q = S, go

to A9; otherwise return to A4.

A9. [Delete constant polynomial.] (Cancellation has caused a polynomial to

reduce to a constant, so a row of polynomial(Q) is deleted.) Set R +--- Q,

Q +--- UP (Q), DOWN (Q) +--- DOWN (R) , CV (Q) +--- CV (R) , and AVAIL -¢= R. Set

S +--- DOWN(Q); if S -=f. A, set UP(S) +--- Q, S +--- RIGHT(S), and if EXP(S) -=f. 0,

repeat this operation until ultimately EXP(S) = 0.

2.3.3 OTHER REPRESENTATIONS OF TREES 359

AlO. (Zero detected?] If DOWN (Q) = A, CV (Q) = 0, and EXP (Q) -j. 0, set P +

UP (P) and go to A8; otherwise go to A6.

All. [Terminate.] Set Q +--- UP(Q) zero or more times until UP(Q) = A (thus

bringing Q to the root of the tree). I

This algorithm will actually run much faster than Algorithm 2.2.4A if poly

nomial(P) has few terms and polynomial(Q) has many, since it is not necessary

to pass over all of polynomial(Q) during the addition process. The reader will

find it instructive to simulate Algorithm A by hand, adding the polynomial

xy - x 2 - xyz - z3 + 3xz3 to the polynomial shown in Fig. 28. (This case does

not demonstrate the efficiency of the algorithm, but it makes the algorithm go

through all of its paces by showing the difficult situations that must be handled.)

For further commentary on Algorithm A, see exercises 12 and 13.

No claim is being made here that the representation shown in Fig. 28 is the

"best" for polynomials in several variables; in Chapter 8 we will consider another

format for polynomial representation, together with arithmetic algorithms using

an auxiliary stack, with significant advantages of conceptual simplicity when

compared to Algorithm A. Our main interest in Algorithm A is the way it

typifies manipulations on trees with many links.

EXERCISES

~ 1. [20] If we had only LTAG, INFO, and RTAG fields (not LLINK) in a level order

sequential representation like (8), would it be possible to reconstruct the LLINKs? (In
other words, are the LLINKs redundant in (8), as the RLINKs are in (3)?)

2. [22] (Burks, Warren, and Wright, Math. Comp. 8 (1954), 53-57.) The trees (2)

stored in preorder with degrees would be

DEGREE
INFO

2 0 1 0 3 1 0 1 0 0
ABCKDEHFJG

[compare with (g), where postorder was used]. Design an algorithm analogous to

Algorithm F to evaluate a locally defined function of the nodes by going from right to

left in this representation.

~ 3. [24] Modify Algorithm 2.3.2D so that it follows the ideas of Algorithm F, placing

the derivatives it computes as intermediate results on a stack, instead of recording their

locations in an anomalous fashion as is done in step D3. (See exercise 2.3.2-21.) The

stack may be maintained by using the RLINK field in the root of each derivative.

4. [18] The trees (2) contain 10 nodes, five of which are terminal. Representation

of these trees in the normal binary-tree fashion involves 10 LLINK fields and 10 RLINK

fields (one for each node). Representation of these trees in the form (10), where LLINK

and INFO share the same space in a node, requires 5 LLINKs and 15 RLINKs. There are

10 INFO fields in each case.
Given a forest with n nodes, m of which are terminal, compare the total number of

LLINKs and RLINKs that must be stored using these two methods of tree representation.

5. [16] A triply linked tree, as shown in Fig. 26, contains PARENT, LCHILD, and RLINK

fields in each node, with liberal use of A-links when there is no appropriate node to

mention in the PARENT, LCHILD, or RLINK field. Would it be a good idea to extend this

360 INFORMATION STRUCTURES 2.3.3

representation to a threaded tree, by putting "thread" links in place of the null LCHILD

and RLINK entries, as we did in Section 2.3.1?

~ 6. [24] Suppose that the nodes of an oriented forest have three link fields, PARENT,

LCHILD, and RLINK, but only the PARENT link has been set up to indicate the tree
structure. The LCHILD field of each node is A and the RLINK fields are set as a linear
list that simply links the nodes together in some order. The link variable FIRST points
to the first node, and the last node has RLINK = A.

Design an algorithm that goes through these nodes and fills in the LCHILD and
RLINK fields compatible with the PARENT links, so that a triply linked tree representation
like that in Fig. 26 is obtained. Also, reset FIRST so that it now points to the root of
the first tree in this representation.

7. [15] What classes would appear in (12) if the relation 9 - 3 had not been given
in (11)?

8. [15] Algorithm E sets up a tree structure that represents the given pairs of
equivalences, but the text does not mention explicitly how the result of Algorithm E
can be used. Design an algorithm that answers the question, "Is j _ k?", assuming
that 1 S j S n, 1 S k S n, and that Algorithm E has set up the PARENT table for some
set of equivalences.

9. [20] Give a table analogous to (15) and a diagram analogous to (16) that shows
the trees present after Algorithm E has processed all of the pairs of equivalences in (11)
from left to right.

10. [28] In the worst case, Algorithm E may take order n 2 steps to process n equiv
alences. Show how to modify the algorithm so that the worst case is not this bad.

~ 11. [24] (Equivalence declarations.) Several compiler languages, notably FORTRAN,
provide a facility for overlapping the memory locations assigned to sequentially stored
tables. The programmer gives the compiler pairs of relations of the form "X [jJ
Y [kJ ," which means that variable X [j + sJ is to be assigned to the same location as
variable Y [k + sJ for all s. Each variable is also given a range of allowable subscripts:
"ARRAY X [l: uJ" means that space is to be set aside in memory for the table entries
X [lJ, X [l + lJ, ... , X [uJ. For each equivalence class of variables, the compiler reserves
as small a block of consecutive memory locations as possible, to contain all the table
entries for the allowable subscript values of these variables.

For example, suppose we have ARRAY X[[O:lOJ, ARRAY Y[3:10J, ARRAY A[l:lJ, and
ARRAY Z [-2:0J, plus the equivalences X [7J Y [3J, Z [OJ A [OJ, and Y [lJ A [SJ.

We must set aside 20 consecutive locations

Xo X1 X2 X3 X4 X5 X5 X7 Xs Xg X10

•

for these variables. (The location following A [lJ is not an allowable subscript value for
any of the arrays, but it must be reserved anyway.)

The object of this exercise is to modify Algorithm E so that it applies to the
more general situation just described. Assume that we are writing a compiler for
such a language, and the tables inside our compiler program itself have one node for
each array, containing the fields NAME, PARENT, DELTA, LBD, and UBD. Assume that
the compiler program has previously processed all the ARRAY declarations, so that if

2.3.3 OTHER REPRESENTATIONS OF TREES 361

"ARRAY X [l: u]" has appeared and if P points to the node for X, then

NAME(P) = "X", PARENT(P) =A, DELTA(P) = 0,

LBD(P) = l, UBD(P) = u.

The problem is to design an algorithm that processes the equivalence declarations, so
that, after this algorithm has been performed,

PARENT (P) = A means that locations X [LBD (P)], ... , X [UBD (P)] are to be reserved
in memory for this equivalence class;

PARENT(P) = Q f. A means that location X[k] equals location Y[k+DELTA(P)],

where NAME(Q) = "Y".

For example, before the equivalences listed above we might have the nodes

p NAME(P) PARENT(P) DELTA(P) LBD(P) UBD(P)

a x A 0 0 10
{3 y A 0 3 10

I A A 0 1 1
8 z A 0 -2 0

After the equivalences are processed, the nodes might appear thus:

{3

I
8

x
y

A
z

A
a
8

("*" denotes irrelevant information.)

*
4
0

-3

-5

*
*
*

14

*
*
*

Design an algorithm that makes this transformation. Assume that inputs to your
algorithm have the form (P, j, Q, k), denoting "X [j] Y [k] ", where NAME (P) = "X"
and NAME(Q) = "Y". Be sure to check whether the equivalences are contradictory; for
example, X [1] - Y [2] contradicts X [2] - Y [1] .

12. [21] At the beginning of Algorithm A, the variables P and Q point to the roots of
two trees. Let Po and Q0 denote the values of P and Q before execution of Algorithm A.
(a) After the algorithm terminates, is Q0 always the address of the root of the sum of
the two given polynomials? (b) After the algorithm terminates, have P and Q returned
to their original values Po and Q0 ?

~ 13. [M29] Give an informal proof that at the beginning of step AS of Algorithm A we
always have EXP(P) =EXP(Q) and CV(UP(P)) = CV(UP(Q)). (This fact is important to
the proper understanding of that algorithm.)

14. [40] Give a formal proof (or disproof) of the validity of Algorithm A.

15. [40] Design an algorithm to compute the product of two polynomials represented
as in Fig. 28.

16. [M24] Prove the validity of Algorithm F.

~ 17. [25] Algorithm F evaluates a "bottom-up" locally defined function, namely, one
that should be evaluated at the children of a node before it is evaluated at the node.
A "top-down" locally defined function f is one in which the value of f at a node x
depends only on x and the value off at the parent of x. Using an auxiliary stack,
design an algorithm analogous to Algorithm F that evaluates a "top-down" function f
at each node of a tree. (Like Algorithm F, your algorithm should work efficiently on
trees that have been stored in postorder with degrees, as in (g).)

362 INFORMATION STRUCTURES 2.3.3

~ 18. [28] Design an algorithm that, given the two tables INF01[j] and RLINK [j] for

1 S j S n corresponding to preorder sequential representation, forms tables INF02 [j]

and DEGREE [j] for 1 s j s n, corresponding to postorder with degrees. For example,

according to (3) and (g), your algorithm should transform

J 1 2 3 4 5 6 7 8 9 10

INF01 [j] A B ·c K D E H F J G

RLINK[j] 5 3 0 0 0 8 0 10 0 0

into

INF02 [j] B K c A H E J F G D

DEGREE [j] 0 0 1 2 0 1 0 1 0 3

19. [M27] Instead of using SCOPE links in (5), we could simply list the number of

descendants of each node, in preorder:

DESC 3 0 1 0 5 1 0 1 0 0

INFO A B C K D E H F J G

Let did2 ... dn be the sequence of descendant numbers of a forest, obtained in this way.

a) Show that k+dk Sn for 1 S k Sn, and that k S j S k+dk implies j+d1 S k+dk.

b) Conversely, prove that if di d2 ... dn is a sequence of nonnegative integers satisfying

the conditions of (a), it is the sequence of descendant numbers of a forest.

c) Suppose di d2 ... dn and d~ d~ ... d~ are the descendant number sequences for two

forests. Prove that there is a third forest whose descendant numbers are

min(di, d~) min(d2, d~) ... min(dn, d~).

2.3.4. Basic Mathematical Properties of Trees

Tree structures have been the object of extensive mathematical investigations for

many years, long before the advent of computers, and many interesting facts have

been discovered about them. In this section we will survey the mathematical

theory of trees, which not only gives us more insight into the nature of tree

structures but also has important applications to computer algorithms.

Nonmathematical readers are advised to skip to subsection 2.3.4.5, which

discusses several topics that arise frequently in the applications we shall study

later.
The material that follows comes mostly from a larger area of mathematics

known as the theory of graphs. Unfortunately, there will probably never be

a standard terminology in this field, and so the author has followed the usual

practice of contemporary books on graph theory, namely to use words that are

similar but not identical to the terms used in any other books on graph theory.

An attempt has been made in the following subsections (and, indeed, throughout

this book) to choose short, descriptive words for the important concepts, selected

from those that are in reasonably common use and that do not sharply conflict

with other common terminology. The nomenclature used here is also biased

towards computer applications. Thus, an electrical engineer may prefer to call a

"tree" what we call a "free tree"; but we want the shorter term "tree" to stand for

the concept that is generally used in the computer literature and that is so much

2.3.4.1 FREE TREES 363

A

B
c

D
A B

E
F G I

E

J
K

L

c D N

Fig. 29. A graph. Fig. 30. A free tree.

more important in computer applications. If we were to follow the terminology
of some authors on graph theory, we would have to say

1
"finite labeled rooted

ordered tree" instead of just "tree," and "topological bifurcating arborescence"
instead of "binary tree" !

2.3.4.1. Free trees. A graph is generally defined to be a set of points (called
vertices) together with a set of lines (called edges) joining certain pairs of distinct
vertices. There is at most one edge joining any pair of vertices. Two vertices
are called adjacent if there is an edge joining them. If V and V' are vertices
and if n > 0, we say that (Vo, V1 , ... , Vn) is a path of length n from V to V' if
V =Vo, Vk is adjacent to Vk+l for 0 < k < n, and Vn = V'. The path is simple
if Vo, V1 , ... , Vn-l are distinct and if V1 , ... , Vn-1, Vn are distinct. A graph is
connected if there is a path between any two vertices of the graph. A cycle is a
simple path of length three or more from a vertex to itself.

These definitions are illustrated in Fig. 29, which shows a connected graph
with five vertices and six edges. Vertex C is adjacent to A but not to B; there
are two paths oflength two from B to C, namely (B, A, C) and (B, D, C). There
are several cycles, including (B, D, E, B).

A free tree or "unrooted tree" (Fig. 30) is defined to be a connected graph
with no cycles. This definition applies to infinite graphs as well as to finite ones,
although for computer applications we naturally are most concerned with finite
trees. There are many equivalent ways to define a free tree; some of them appear
in the following well-known theorem:

Theorem A. If G is a graph, the following statements are equivalent:

a) G is a free tree.

b) G is connected, but if any edge is deleted, the resulting graph is no longer
connected.

c) If V and V' are distinct vertices of G, there is exactly one simple path from
V to V'.

Furthermore, if G is flnite, containing exactly n > 0 vertices, the following
statements are also equivalent to (a), (b) and (c):

d) G contains no cycles and has n - 1 edges.

e) G is connected and has n - 1 edges.

364 INFORMATION STRUCTURES 2.3.4.1

Proof. (a) implies (b), for if the edge V - V' is deleted but G is still connected,

there must be a simple path (V, V1 , ... , V') of length two or more-see exer

cise 2 - and then (V, V1 , ... , V', V) would be a cycle in G.

(b) implies (c), for there is at least one simple path from V to V'. And if

there were two such paths (V, V1 , ... , V') and (V, V{, ... , V'), we could find the

smallest k for which Vk =fa V~; deleting the edge Vk-1 Vk would not disconnect

the graph, since there would still be a path (Vk_ 1, v:, ... , V', ... , Vk) from Vk-1

to vk that does not use the deleted edge.

(c) implies (a), for if G contains a cycle (V, V1 , ... , V), there are two simple

paths from V to V1 .

To show that (d) and (e) are also equivalent to (a), (b), and (c), let us first

prove an auxiliary result: If G is any finite graph that has no cycles and at least

one edge, then there is at least one vertex that is adjacent to exactly one other

vertex. For we take an arbitrary vertex V1 and an adjacent vertex V2; fork 2: 2

either Vk is adjacent to Vk-l and no other, or it is adjacent to a vertex that

we may call Vk+l -=/=- Vk-l· Since there are no cycles, V1, V2, ... , Vk+1 must be

distinct vertices, so this process must ultimately terminate.

Now assume that G is a tree with n > 1 vertices, and let Vn be a vertex that

is adjacent to only one other vertex, namely Vn-l· If we delete Vn and the edge

Vn-l - Vn, the remaining graph G' is a tree, since Vn appears in no simple path

of G except as the first or the last element. This argument proves (by induction

on n) that G has n - 1 edges; hence (a) implies (d).

Assume that G satisfies (d) and let Vn, Vn_ 1, G' be as in the preceding

paragraph. Then the graph G is connected, since Vn is connected to Vn_ 1,

which (by induction on n) is connected to all other vertices of G'. Thus (d)

implies (e).
Finally assume that G satisfies (e). If G contains a cycle, we can delete any

edge appearing in that cycle and G would still be connected. We can therefore

continue deleting edges in this way until we obtain a connected graph G' with

n - 1 - k edges and no cycles. But since (a) implies (d), we must have k = 0,

that is, G = G'. I

The idea of a free tree can be applied directly to the analysis of computer

algorithms. In Section 1.3.3, we discussed the application of Kirchhoff's first

law to the problem of counting the number of times each step of an algorithm

is performed; we found that Kirchhoff's law does not completely determine the

number of times each step is executed, but it reduces the number of unknowns

that must be specially interpreted. The theory of trees tells us how many

independent unknowns will remain, and it gives us a systematic way to find them.

It is easier to understand the method that follows if an example is studied,

so we will work an example as the theory is being developed. Figure 31 shows an

abstracted fl.ow chart for Program 1.3.3A, which was subjected to a "Kirchhoff's

law" analysis in Section 1.3.3. Each box in Fig. 31 represents part of the

computation, and the letter or number inside the box denotes the number of

times that computation will be performed during one run of the program, using

2.3.4.1 FREE TREES 365

Fig. 31. Abstracted flow chart of Program l.3.3A.

the notation of Section 1.3.3. An arrow between boxes represents a possible
jump in the program. The arrows have been labeled e1, e2, ... , e27· Our goal is
to find all relations between the quantities A, B, C, D, E, F, G, H, J, K, L, P,
Q, R, and S that are implied by Kirchhoff's law, and at the same time we hope
to gain some insight into the general problem. (Note: Some simplifications have
already been made in Fig. 31; for example, the box between C and E has been
labeled "l", and this in fact is a consequence of Kirchhoff's law.)

Let E1 denote the number of times branch e1 is taken during the execution
of the program being studied; Kirchhoff's law is

sum of E's into box= value in box= sum of E's leaving box; (i)

for example, in the case of the box marked K we have

In the discussion that follows, we will regard E 1 , E2, ... , E21 as the unknowns,
instead of A, B, ... , S.

The fl.ow chart in Fig. 31 may be abstracted further so that it becomes
a graph G as in Fig. 32. The boxes have shrunk to vertices, and the arrows
e 1 , e2 , . . . now represent edges of the graph. (A graph, strictly speaking, has
no implied direction in its edges, and the direction of the arrows should be
ignored when we refer to graph-theoretical properties of G. Our application
to Kirchhoff's law, however, makes use of the arrows, as we will see shortly.)
For convenience an extra edge e0 has been drawn from the Stop vertex to the
Start vertex, so that Kirchhoff's law applies uniformly to all parts of the graph.
Figure 32 also includes some other minor changes from Fig. 31: An extra vertex
and edge have been added to divide e13 into two parts e~ 3 and e73, so that the
basic definition of a graph (no two edges join the same two vertices) is valid; e19

has also been split up in this way. A similar modification would have been made
if we had any vertex with an arrow leading back to itself.

Some of the edges in Fig. 32 have been drawn much heavier than the others.
These edges form a free subtree of the graph, connecting all the vertices. It
is always possible to find a free subtree of the graphs arising from fl.ow charts,
because the graphs must be connected and, by part (b) of Theorem A, if G is
connected and not a free tree, we can delete some edge and still have the resulting

366 INFORMATION STRUCTURES 2.3.4.1

eo

eg

es

Fig. 32. Graph corresponding to Fig. 31, including a free subtree.

graph connected; this process can be iterated until we reach a subtree. Another
algorithm for finding a free subtree appears in exercise 6. We can in fact always
discard the edge e0 (which went from the Stop to the Start vertex) first; thus we
may assume that e0 does not appear in the subtree chosen.

Let G' be a free subtree of the graph G found in this way, and consider
any edge V - V' of G that is not in G'. We may now note an important
consequence of Theorem A: G' plus this new edge V - V' contains a cycle; and
in fact there is exactly one cycle, having the form (V, V', ... , V), since there is
a unique simple path from V' to V in G'. For example, if G' is the free subtree
shown in Fig. 32, and if we add the edge e2 , we obtain a cycle that goes along
e2 and then (in the direction opposite to the arrows) along e4 and e3. This cycle
may be written algebraically as "e2 - e4 - e3", using plus signs and minus signs
to indicate whether the cycle goes in the direction of the arrows or not.

If we carry out this process for each edge not in the free subtree, we obtain
the so-called fundamental cycles, which in the case of Fig. 32 are

Co: eo + e1 + e3 + e4 + e5 + e1 + eg + e10 + eu + e12 + e14,

C2: e2 - e4 - e3,

C5: e5 - e1 - e5,

Cs: es+ e3 + e4 + e5 + e1,

elf • If + + I 13· e13 e12 e13,

C17: e17 + e22 + e24 + e27 + eu + e15 + e15,

elf • If + + I 19· e19 e1s e19,

C20: e20 + e1s + e22 + e23,

C21: e21 - e15 - e15 - eu - e27 - e24 - e22 - e1s,

C25: e25 + e26 - e27·

(3)

2.3.4.1 FREE TREES 367

Obviously an edge ej that is not in the free subtree will appear in only one of
the fundamental cycles, namely cj.

We are now approaching the climax of this construction. Each fundamental
cycle represents a solution to Kirchhoff's equations; for example, the solution
corresponding to C2 is to let E 2 = +1, E4 = -1, E3 = -1, and all other E's= 0.
It is clear that flow around a cycle in a graph always satisfies the condition
(i) of Kirchhoff's law. Moreover, Kirchhoff's equations are "homogeneous,"
so the sum or difference of solutions to (1) yields another solution. Therefore
we may conclude that the values of E 0 , E2, E 5, ... , E25 are independent in the
following sense:

If x0 , x 2, ... , x 25 are any real numbers (one Xj for each ej not in the free
subtree G'), there is a solution to Kirchhoff's equations (i) such that (4)
Eo = Xo, E2 = x2, ... , E25 = X25.

Such a solution is found by going x0 times around the cycle C0 , x2 times around
cycle C2 , etc. Furthermore, we find that the values of the remaining variables
E 1, E3, E4, ... are completely dependent on the values Eo, E2, ... , E25:

The solution mentioned in statement (4) is unique. (5)

For if there are two solutions to Kirchhoff's equations such that Eo = x0 , ... ,

E 25 = x 25 , we can subtract one from the other and we thereby obtain a solution
in which E0 = E2 = E 5 = · · · = E25 = 0. But now all Ej must be zero, for it is
easy to see that a nonzero solution to Kirchhoff's equations is impossible when
the graph is a free tree (see exercise 4). Therefore the two assumed solutions
must be identical. We have now proved that all solutions of Kirchhoff's equations
may be obtained as sums of multiples of the fundamental cycles.

When these remarks are applied to the graph in Fig. 32, we obtain the
following general solution of Kirchhoff's equations in terms of the independent
variables Eo, E2, ... , E25:

E1 = Eo, E14 = Eo,

E3 = Eo - E2 +Es, E15 = E11 - E21,

E4 = Eo - E2 +Es, El6 = E11 - E21,

E6 = Eo - E5 +Es, Eis = E~'9 + E2o - E21,

E1 = Eo - E5 +Es, E~g E" - 19,
(6)

Eg = Eo, E22 = E11 + E20 - E21,

E10 = Eo, E23 = E2o,

Eu= Eo+E11-E21, E24 = E11 - E21,

E 12 = Eo + E~'3 , E26 = E25,

· E' E" 13 - 13' E21 = E11 - E21 - E25·

To obtain these equations, we merely list, for each edge ej in the subtree, all Ek
for which Ej appears in cycle Ck, with the appropriate sign. [Thus, the matrix
of coefficients in (6) is just the transpose of the matrix of coefficients in (3).]

368 INFORMATION STRUCTURES 2.3.4.1

Strictly speaking, C0 should not be called a fundamental cycle, since it
involves the special edge e0 . We may call Co minus the edge eo a fundamental
path from Start to Stop. Our boundary condition, that the Start and Stop boxes
in the flow chart are performed exactly once, is equivalent to the relation

Eo = 1.

The preceding discussion shows how to obtain all solutions to Kirchhoff's
law; the same method may be applied (as Kirchhoff himself applied it) to
electrical circuits instead of program flow charts. It is natural to ask at this
point whether Kirchhoff's law is the strongest possible set of equations that can
be given for the case of program fl.ow charts, or whether more can be said: Any
execution of a computer program that goes from Start to Stop gives us a set of
values E 1, E 2, ... , E 27 for the number of times each edge is traversed, and these
values obey Kirchhoff's law; but are there solutions to Kirchhoff's equations that
do not correspond to any computer program execution? (In this question, we do
not assume that we know anything about the given computer program, except
its flow chart.) If there are solutions that meet Kirchhoff's conditions but do
not correspond to actual program execution, we can give stronger conditions
than Kirchhoff's law. For the case of electrical circuits Kirchhoff himself gave
a second law [Ann. Physik und Chemie 64 (1845), 497-514]: The sum of the
voltage drops around a fundamental cycle must be zero. This second law does
not apply to our problem.

There is indeed an obvious further condition that the E's must satisfy, if
they are to correspond to some actual path in the fl.ow chart from Start to Stop;
they must be integers, and in fact they must be nonnegative integers. This is
not a trivial condition, since we cannot simply assign any arbitrary nonnegative
integer values to the independent variables E2, E5, ... , E25; for example, if we
take E 2 = 2 and Es = 0, we find from (6) and (7) that E3 = -1. (Thus,
no execution of the fl.ow chart in Fig. 31 will take branch e2 twice without
taking branch es at least once.) The condition that all the E's be nonnegative
integers is not enough either; for example, consider the solution in which E~'9 = 1,
E2 = E5 = · · · = E11 = E2o = E21 = E25 = O; there is no way to get to e1s
except via e15 . The following condition is a necessary and sufficient condition
that answers the problem raised in the previous paragraph: Let E2, E 5, ... , E25
be any given values, and determine E 1, E3, ... , E27 according to (6), (1). Assume
that all the E's are nonnegative integers, and assume that the graph whose edges
are those ej for which Ej > 0, and whose vertices are those that touch such ej, is
connected. Then there is a path from Start to Stop in which edge ej is traversed
exactly Ej times. This fact is proved in the next section (see exercise 2.3.4.2-24).

Let us now summarize the preceding discussion:

Theorem K. If a flow chart (such as Fig. 31) contains n boxes (including Start
and Stop) and m arrows, it is possible to fi.nd m - n + 1 fundamental cycles
and a fundamental path from Start to Stop, such that any path from Start
to Stop is equivalent (in terms of the number of times each edge is traversed)

2.3.4.1 FREE TREES 369

to one traversal of the fundamental path plus a uniquely determined number
of traversals of each of the fundamental cycles. (The fundamental path and
fundamental cycles may include some edges that are to be traversed in a direction
opposite that shown by the arrow on the edge; we conventionally say that such
edges are being traversed -1 times.)

Conversely, for any traversal of the fundamental path and the fundamental
cycles in which the total number of times each edge is traversed is nonnegative,
and in which the vertices and edges corresponding to a positive number of
traversals form a connected graph, there is at least one equivalent path from
Start to Stop. I

The fundamental cycles are found by picking a free subtree as in Fig. 32; if
we choose a different subtree we get, in general, a different set of fundamental
cycles. The fact that there are m - n + 1 fundamental cycles follows from
Theorem A. The modifications we made to get from Fig. 31 to Fig. 32, after
adding e0 , do not change the value of m - n + 1, although they may increase
both m and n; the construction could have been generalized so as to avoid these
trivial modifications entirely (see exercise 9).

Theorem K is encouraging because it says that Kirchhoff's law (which con
sists of n equations in the m unknowns E 1 , E2, ... , Em) has just one "redun
dancy": These n equations allow us to eliminate n - 1 unknowns. However, the
unknown variables throughout this discussion have been the number of times the
edges have been traversed, not the number of times each box of the fl.ow chart
has been entered. Exercise 8 shows how to construct another graph whose edges
correspond to the boxes of the flow chart, so that the theory above can be used
to deduce the true number of redundancies between the variables of interest.

Applications of Theorem K to software for measuring the performance of
programs in high-level languages are discussed by Thomas Ball and James R.
Larus in ACM Trans. Prog. Languages and Systems 16 (1994), 1319-1360.

EXERCISES
1. [14] List all cycles from B to B that are present in the graph of Fig. 29.

2. [M20] Prove that if V and V' are vertices of a graph and if there is a path from
V to V', then there is a simple path from V to V'.

3. [15] What path from Start to Stop is equivalent (in the sense of Theorem K) to
one traversal of the fundamental path plus one traversal of cycle C2 in Fig. 32?

~ 4. [M20] Let G' be a finite free tree in which arrows have been drawn on its edges
e1, ... , en-1; let E1, ... , En-1 be numbers satisfying Kirchhoff's law (1) in G'. Show
that E1 = · · · = En-1 = 0.

5. [20] Using Eqs. (6), express the quantities A, B, ... , S that appear inside the
boxes of Fig. 31 in terms of the independent variables E2, E5, ... , E25.

~ 6. [M27] Suppose a graph has n vertices Vi, ... , Vn and m edges e1 , ... , em. Each
edge e is represented by a pair of integers (a, b) if it joins Va to Vb. Design an algorithm
that takes the input pairs (a 1 , b1), ... , (am, bm) and prints out a subset of edges that
forms a free tree; the algorithm reports failure if this is impossible. Strive for an efficient
algorithm.

370 INFORMATION STRUCTURES 2.3.4.1

7. [22] Carry out the construction in the text for the flow chart

using the free subtree consisting of edges e1, e2, e3, e4, eg. What are the fundamental
cycles? Express E 1, E2, E3, E4, Eg in terms of E5, E6, E1, and Es.

~ 8. [M25] When applying Kirchhoff's first law to program flow charts, we usually are
interested only in the vertex flows (the number of times each box of the flow chart
is performed), not the edge flows analyzed in the text. For example, in the graph of
exercise 7, the vertex flows are A = E2 + E4, B = E5, C = E3 + E1 + Es, D = E6 + Eg.

If we group some vertices together, treating them as one "supervertex," we can
combine edge flows that correspond to the same vertex flow. For example, edges e2
and e4 can be combined in the fl.ow chart above if we also put B with D:

(Here e0 has also been added from Stop to Start, as in the text.) Continuing this
procedure, we can combine e3 + e7, then (e3 + e1) +es, then e5 + eg, until we obtain
the reduced flow chart having edges s = e1, a = e2 + e4, b = e5, c = e3 + e1 +es,
d = e6 + e9 , t = e0 , precisely one edge for each vertex in the original flow chart:

d

By construction, Kirchhoff's law holds in this reduced flow chart. The new edge
flows are the vertex flows of the original; hence the analysis in the text, applied to the
reduced flow chart, shows how the original vertex flows depend on each other.

Prove that this reduction process can be reversed, in the sense that any set of
flows {a, b, .. . } satisfying Kirchhoff's law in the reduced flow chart can be "split up"
into a set of edge flows {e0 , e1 , ... } in the original flow chart. These flows ej satisfy
Kirchhoff's law and combine to yield the given flows {a, b, . .. }; some of them might,
however, be negative. (Although the reduction procedure has been illustrated here for
only one particular fl.ow chart, your proof should be valid in general.)

9. [M22] Edges e13 and e19 were split into two parts in Fig. 32, since a graph is not
supposed to have two edges joining the same two vertices. However, if we look at the
final result of the construction, this splitting into two parts seems quite artificial since
E~3 = E~'3 and E~ 9 = E~'9 are two of the relations found in (6), while E~'3 and E~'9 are
two of the independent variables. Explain how the construction could be generalized
so that an artificial splitting of edges may be avoided.

2.3.4.1 FREE TREES 371

10. [16] An electrical engineer, designing the circuitry for a computer, has n terminals
Ti, T2, ... , T n that should be at essentially the same voltage at all times. To achieve
this, the engineer can solder wires between any pairs of terminals; the idea is to make
enough wire connections to that there is a path through the wires from any terminal to
any other. Show that the minimum number of wires needed to connect all the terminals
is n - 1, and n - 1 wires achieve the desired connection if and only if they form a free
tree (with terminals and wires standing for vertices and edges).

11. [M27] (R. C. Prim, Bell System Tech. J. 36 (1957), 1389-1401.) Consider the
wire connection problem of exercise 10 with the additional proviso that a cost c(i, j) is
given for each i < j, denoting the expense of wiring terminal Ti to terminal Tj. Show
that the following algorithm gives a connection tree of minimum cost: "If n = 1, do
nothing. Otherwise, renumber terminals { 1, ... , n - 1} and the associated costs so that
c(n - 1, n) = mini~i<n c(i, n); connect terminal Tn-i to Tn; then change c(j, n - 1)
to min(c(j, n - 1), c(j,n)) for 1 ~ j < n - 1, and repeat the algorithm for n - 1
terminals Ti, ... , Tn-i using these new costs. (The algorithm is to be repeated with
the understanding that whenever a connection is subsequently requested between the
terminals now called T1 and Tn-i, the connection is actually made between terminals
now called Tj and Tn if it is cheaper; thus Tn-i and Tn are being regarded as though
they were one terminal in the remainder of the algorithm.)" This algorithm may also
be stated as follows: "Choose a particular terminal to start with; then repeatedly make
the cheapest possible connection from an unchosen terminal to a chosen one, until all
have been chosen."

Fig. 33. Free tree
of minimum cost.
(See exercise 11.)

5

4

3
(a)

2

1

Ti

T3

T1

1 2

T2

T4

T5 T5 (b)

Ts
Tg

3 4 5

For example, consider Fig. 33(a), which shows nine terminals on a grid; let the
cost of connecting two terminals be the wire length, namely the distance between them.
(The reader may wish to try to find a minimal cost tree by hand, using intuition instead
of the suggested algorithm.) The algorithm would first connect Ts to Tg, then T6 to
Ts, T5 ton, T2 ton, Ti to T2, T3 to Ti, T1 to T3, and finally T4 to either T2 or T5.
A minimum cost tree (wire length 7 + 2 v'2 + 2 v'5) is shown in Fig. 33(b).

~ 12. [29] The algorithm of exercise 11 is not stated in a fashion suitable for direct
computer implementation. Reformulate that algorithm, specifying in more detail the
operations that are to be done, in such a way that a computer program can carry out
the process with reasonable efficiency.

13. [M24] Consider a graph with n vertices and m edges, in the notation of exercise 6.
Show that it is possible to write any permutation of the integers {1, 2, ... , n} as
a product of transpositions (ak1 bk1) (ak2 bk2) .•• (akt bkt) if and only if the graph is
connected. (Hence there are sets of n - 1 transpositions that generate all permutations
on n elements, but no set of n - 2 will do so.)

372 INFORMATION STRUCTURES 2.3.4.2

2.3.4.2. Oriented trees. In the previous section, we saw that an abstracted
flow chart may be regarded as a graph, if we ignore the direction of the arrows
on its edges; the graph-theoretic ideas of cycle, free subtree, etc., were shown to
be relevant in the study of fl.ow charts. There is a good deal more that can be
said when the direction of each edge is given more significance, and in this case
we have what is called a "directed graph" or "digraph."

Let us define a directed graph formally as a set of vertices and a set of arcs,
each arc leading from a vertex V to a vertex V'. If e is an arc from V to V'
we say V is the initial vertex of e, and V' is the final vertex, and we write
V = init(e), V' = fin(e). The case that init(e) = fin(e) is not excluded (although
it was excluded from the definition of edge in an ordinary graph), and several
different arcs may have the same initial and final vertices. The out-degree of a
vertex Vis the number of arcs leading out from it, namely the number of arcs e
such that init(e) = V; similarly, the in-degree of V is defined to be the number
of arcs with fin(e) = V.

The concepts of paths and cycles are defined for directed graphs in a manner
similar to the corresponding definitions for ordinary graphs, but some important
new technicalities must be considered. If e1, e2, ... , en are arcs (with n 2: 1),
we say that (e 1, e2, ... , en) is an oriented path of length n from V to V' if
V = init(e1), V' = fin(en), and fin(ek) = init(ek+1) for 1 ~ k < n. An oriented
path (e1, e2, ... , en) is called simple if init(e1), ... , init(en) are distinct and
fin(e 1), ... , fin(en) are distinct. An oriented cycle is a simple oriented path
from a vertex to itself. (An oriented cycle can have length 1 or 2, but such short
cycles were excluded from our definition of "cycle" in the previous section. Can
the reader see why this makes sense?)

As examples of these straightforward definitions, we may refer to Fig. 31 in
the previous section. The box labeled "J" is a vertex with in-degree 2 (because
of the arcs e15, e21) and out-degree 1. The sequence (e17, e19, e1s, e22) is an
oriented path of length 4 from J to P; this path is not simple since, for example,
init(e19) = L = init(e22). The diagram contains no oriented cycles of length 1,
but (e1s, e19) is an oriented cycle of length 2.

A directed graph is said to be strongly connected if there is an oriented path
from V to V' for any two vertices V # V'. It is said to be rooted if there is at
least one root, that is, at least one vertex R such that there is an oriented path
from V to R for all V # R. "Strongly connected" always implies "rooted,'' but
the converse does not hold. A fl.ow chart such as Fig. 31 in the previous section
is an example of a rooted digraph, with R the Stop vertex; with the additional
arc from Stop to Start (Fig. 32) it becomes strongly connected.

Every directed graph G corresponds in an obvious manner to an ordinary
graph G0 , if we ignore orientations and discard duplicate edges or loops. For
mally speaking, G0 has an edge from V to V' if and only if V # V' and G has an
arc from V to V' or from V' to V. We can speak of (unoriented) paths and cycles
in G with the understanding that these are paths and cycles of G0 ; we can say
that G is connected-this is a much weaker property than "strongly connected,''
even weaker than "rooted" - if the corresponding graph G0 is connected.

2.3.4.2

An oriented tree (see Fig. 34), sometimes called
a "rooted tree" by other authors, is a directed graph
with a specified vertex R such that:

a) Each vertex V # R is the initial vertex of exactly

one arc, denoted by e[V].

b) R is the initial vertex of no arc;

c) R is a root in the sense defined above (that is,
for each vertex V # R there is an oriented path
from V to R).

It follows immediately that for each vertex V # R

ORIENTED TREES 373

there is a unique oriented path from V to R; and Fig. 34. An oriented tree.

hence there are no oriented cycles.

Our previous definition of "oriented tree" (at the beginning of Section 2.3)

is easily seen to be compatible with the new definition just given, when there

are finitely many vertices. The vertices correspond to nodes, and the arc e[V] is

the link from V to PARENT [VJ .

The (undirected) graph corresponding to an oriented tree is connected,

because of property (c). Furthermore, if (Vo, Vi, ... , Vn) is an undirected cycle

with n 2: 3, and if the edge between V0 and Vi is e[Vi], then the edge between

Vi and V2 must be e[V2], and similarly the edge between Vk-l and Vk must be

e[Vk] for 1 ~ k ~ n, contradicting the absence of oriented cycles. If the edge

between V0 and Vi is not e[Vi], it must be e[Vo], and the same argument applies

to the cycle

(Vi, Vo, Vn-1, ... , Vi).

Therefore there are no cycles; an oriented tree is a free tree when the direction

of the arcs is neglected.
Conversely, it is important to note that we can reverse the process just

described. If we start with any nonempty free tree, such as that in Fig. 30, we

can choose any vertex as the root R, and assign directions to the edges. The

intuitive idea is to "pick up" the graph at vertex R and shake it; then assign

upward-pointing arrows. More formally, the rule is this:

Change the edge V - V' to an arc from V to V' if and only if the simple

path from V to R leads through V', that is, if it has the form (V0 , Vi, ... , Vn),

where n > 0, Vo = V, Vi = V', Vn = R.

To verify that such a construction is valid, we need to prove that each edge

V - V' is assigned the direction V +---- V' or the direction V --+ V'; and this

is easy to prove, for if (V, Vi, ... , R) and (V', V{, ... , R) are simple paths, there

is a cycle unless V = V{ or Vi = V'. This construction demonstrates that the

directions of the arcs in an oriented tree are completely determined if we know

which vertex is the root, so they need not be shown in diagrams when the root

is explicitly indicated.

374 INFORMATION STRUCTURES 2.3.4.2

d

b c c b b

d d e a

c

Fig. 35. Three tree structures.

We now see the relation between three types of trees: the (ordered) tree,
which is of principal importance in computer programs, as defined at the be
ginning of Section 2 .3; the oriented tree (or unordered tree); and the free tree.
Both of the latter two types arise in the study of computer algorithms, but not
as often as the first type. The essential distinction between these types of tree
structure is merely the amount of information that is taken to be relevant. For
example, Fig. 35 shows three trees that are distinct if they are considered as
ordered trees (with root at the top). As oriented trees, the first and second are
identical, since the left-to-right order of subtrees is immaterial; as free trees, all
three graphs in Fig. 35 are identical, since the root is immaterial.

An Eulerian circuit in a directed graph is an oriented path (e1 , e2, ... , em)
such that every arc in the directed graph occurs exactly once, and fin(em) =
init(e1). This is a "complete traversal" of the arcs of the digraph. (Eulerian
circuits get their name from Leonhard Euler's famous discussion in 1736 of the
impossibility of traversing each of the seven bridges in the city of Konigsberg
exactly once during a Sunday stroll. He treated the analogous problem for
undirected graphs. Eulerian circuits should be distinguished from "Hamiltonian
circuits," which are oriented cycles that encounter each vertex exactly once; see
Chapter 7.)

A directed graph is said to be balanced (see Fig. 36) if every vertex V has
the same in-degree as its out-degree, that is, if there are just as many edges
with V as their initial vertex as there are with V as their final vertex. This
condition is closely related to Kirchhoff's law (see exercise 24). If a directed
graph has an Eulerian circuit, it must obviously be connected and balanced
unless it has isolated vertices, which are vertices with in-degree and out-degree
both equal to zero.

So far in this section we've looked at quite a few definitions (directed graph,
arc, initial vertex, final vertex, out-degree, in-degree, oriented path, simple
oriented path, oriented cycle, oriented tree, Eulerian circuit, isolated vertex,
and the properties of being strongly connected, rooted, and balanced), but there
has been a scarcity of important results connecting these concepts. Now we are
ready for meatier material. The first basic result is a theorem due to I. J. Good
[J. London Math. Soc. 21 (1947), 167-169], who showed that Eulerian circuits
are always possible unless they are obviously impossible:

2.3.4.2 ORIENTED TREES 375

Fig. 36. A balanced directed graph.

Theorem G. A fi.nite, directed graph with no isolated vertices possesses an
Eulerian circuit if and only if it is connected and balanced.

Proof. Assume that G is balanced, and let

P = (e1, ... , em)

be an oriented path of longest possible length that uses no arc twice. Then if
V =fin(em), and if k is the out-degree of V, all k arcs e with init(e) = V must
already appear in P; otherwise we could add e and get a longer path. But if
init(ej) = V and j > 1, then fin(ej_i) = V. Hence, since G is balanced, we must
have

init(e1) = V =fin(em),

otherwise the in-degree of V would be at least k + 1.
Now by the cyclic permutation of Pit follows that any arc e not in the path

has neither initial nor final vertex in common with any arc in the path. So if
P is not an Eulerian circuit, G is not connected. I

There is an important connection between Eulerian circuits and oriented
trees:

Lemma E. Let (e1 , ... , em) be an Eulerian circuit of a directed graph G having
no isolated vertices. Let R = fin(em) = init(e1). For each vertex Vi= R let e[V]
be the last exit from V in the circuit; that is,

e[V] = ej if init(ej) = V and init(ek) i= V for j < k ~ m.

Then the vertices of G with the arcs e[V] form an oriented tree with root R.

Proof. Properties (a) and (b) of the definition of oriented tree are evidently
satisfied. By exercise 7 we need only show that there are no oriented cycles
among the e[V]; but this is immediate, since if fin(e[V]) = V' = init(e[V']),
where e[V] = ej and e[V'] = ej', then j < j'. I

This lemma can perhaps be better understood if we turn things around and
consider the "first entrances" to each vertex; the first entrances form an un
ordered tree with all arcs pointing away from R. Lemma E has a surprising and
important converse, proved by T. van Aardenne-Ehrenfest and N. G. de Bruijn
[Simon Stevin 28 (1951), 203-217]:

376 INFORMATION STRUCTURES 2.3.4.2

Theorem D. Let G be a fi.nite, balanced, directed graph, and let G' be an
oriented tree consisting of the vertices of G plus some of the arcs of G. Let R
be the root of G' and let e[V] be the arc of G' with initial vertex V. Let e1 be
any arc of G with init(e1) = R. Then P = (e1, e2, ... , em) is an Eulerian circuit
if it is an oriented path for which

i) no arc is used more th~n once; that is, ej # ek when j # k.
ii) e[V] is not used in P unless it is the only choice consistent with rule (i);

that is, if ej = e[V] and if e is an arc with init(e) = V, then e = ek for some
k ~ j.

iii) P terminates only when it cannot be continued by rule (i); that is, ifinit(e) =

fi.n(em), then e = ek for some k.

Proof. By (iii) and the argument in the proof of Theorem G, we must have
fin(em) = init(e1) = R. Now if e is an arc not appearing in P, let V = fin(e).
Since G is balanced, it follows that V is the initial vertex of some arc not in P;
and if V # R, condition (ii) tells us that e[V] is not in P. Now use the same
argument with e = e[V], and we ultimately find that R is the initial vertex of
some arc not in the path, contradicting (iii). I

The essence of Theorem Dis that it shows us a simple way to construct an
Eulerian circuit in a balanced directed graph, given any oriented subtree of the
graph. (See the example in exercise 14.) In fact, Theorem D allows us to count
the exact number of Eulerian circuits in a directed graph; this result and many
other important consequences of the ideas developed in this section appear in
the exercises that follow.

EXERCISES

1. [M20] Prove that if V and V' are vertices of a directed graph and if there is an
oriented path from V to V', then there is a simple oriented path from V to V'.

2. [15] Which of the ten "fundamental cycles" listed in (3) of Section 2.3.4.1 are
oriented cycles in the directed graph (Fig. 32) of that section?

3. [16] Draw the diagram for a directed graph that is connected but not rooted.

~ 4. [M20] The concept of topological sorting can be defined for any finite directed
graph G as a linear arrangement of the vertices Vi Vi ... Vn such that init(e) precedes
fin(e) in the ordering for all edges e of G. (See Section 2.2.3, Figs. 6 and 7.) Not
all finite directed graphs can be topologically sorted; which ones can be? (Use the
terminology of this section to give the answer.)

5. [M16] Let G be a directed graph that contains an oriented path (e 1 , ... , en) with
fin(en) = init(e 1). Give a proof that G is not an oriented tree, using the terminology
defined in this section.

6. [M21] True or false: A directed graph that is rooted and contains no cycles and
no oriented cycles is an oriented tree.

~ 7. [M22] True or false: A directed graph satisfying properties (a) and (b) of the
definition of oriented tree, and having no oriented cycles, is an oriented tree.

2.3.4.2 ORIENTED TREES 377

8. [HM40] Study the properties of automorphism groups of oriented trees, namely
the groups consisting of all permutations 7r of the vertices and arcs for which we have
init(en) = init(e)n, fin(en) = fin(e)n.

9. [18] By assigning directions to the edges, draw the oriented tree corresponding to
the free tree in Fig. 30 on page 363, with Gas the root.

10. [22] An oriented tree with vertices Vi, ... , Vn can be represented inside a computer
by using a table P[l], ... , P[n] as follows: If Vj is the root, P[j] = O; otherwise P[j] = k,
if the arc e [Vj] goes from Vj to Vk. (Thus P[1], ... , P[n] is the same as the "parent"
table used in Algorithm 2.3.3E.)

The text shows how a free tree can be converted into an oriented tree by choosing
any desired vertex to be the root. Consequently, it is possible to start with an
oriented tree that has root R, then to convert this into a free tree by neglecting the
orientation of the arcs, and finally to assign new orientations, obtaining an oriented
tree with any specified vertex as the root. Design an algorithm that performs this
transformation: Starting with a table P[l], ... , P[n], representing an oriented tree, and
given an integer j, 1 ~ j ~ n, design the algorithm to transform the F table so that it
represents the same free tree but with Vj as the root.

~ 11. [28] Using the assumptions of exercise 2.3.4.1-6, but with (ak, bk) representing
an arc from Vak to Vbk, design an algorithm that not only prints out a free subtree as
in that algorithm, but also prints out the fundamental cycles. [Hint: The algorithm
given in the solution to exercise 2.3.4.1-6 can be combined with the algorithm in the
preceding exercise.]

12. [M10] In the correspondence between oriented trees as defined here and oriented
trees as defined at the beginning of Section 2.3, is the degree of a tree node equal to
the in-degree or the out-degree of the corresponding vertex?

~ 13. [M24] Prove that if R is a root of a (possibly infinite) directed graph G, then
G contains an oriented subtree with the same vertices as G and with root R. (As a
consequence, it is always possible to choose the free subtree in flow charts like Fig. 32
of Section 2.3.4.1 so that it is actually an oriented subtree; this would be the case in
that diagram if we had selected e~3 , e~9 , e2o, and e17 instead of e~ 3 , e~ 9 , e23, and e1 5 .)

14. [21] Let G be the balanced digraph shown in Fig. 36, and let G' be the oriented
subtree with vertices Vo, Vi, Vi and arcs e0 1, e21· Find all paths P that meet the_
conditions of Theorem D, starting with arc e1 2.

15. [M20] True or false: A directed graph that is connected and balanced is strongly
connected.

~ 16. [M24] In a popular solitaire game called "clock," the 52 cards of an ordinary deck
of playing cards are dealt face down into 13 piles of four each; 12 piles are arranged
in a circle like the 12 hours of a clock and the thirteenth pile goes in the center. The
solitaire game now proceeds by turning up the top card of the center pile, and then
if its face value is k, by placing it next to the kth pile. (The numbers 1, 2, ... , 13 are
equivalent to A, 2, ... , 10, J, Q, K.) Play continues by turning up the top card of the
kth pile and putting it next to its pile, etc., until we reach a point where we cannot
continue since there are no more cards to turn up on the designated pile. (The player
has no choice in the game, since the rules completely specify what to do.) The game is
won if all cards are face up when play terminates. [Reference: E. D. Cheney, Patience
(Boston: Lee & Shepard, 1870), 62-65; the game was called "Travellers' Patience" in

378 INFORMATION STRUCTURES 2.3.4.2

England, according to M. Whitmore Jones, Games of Patience (London: L. Upcott
Gill, 1900), Chapter 7.]

Show that the game will be won if and only if the following directed graph is an
oriented tree: The vertices are V1, V2, ... , V13; the arcs are e1, e2, ... , e12, where ej goes
from Vj to vk if k is the bottom card in pile j after the deal.

(In particular, if the bottom card of pile j is a "j", for j # 13, it is easy to see
that the game is certainly lo;t, since this card could never be turned up. The result
proved in this exercise gives a much faster way to play the game!)

17. [M32] What is the probability of winning the solitaire game of clock (described
in exercise 16), assuming the deck is randomly shuffied? What is the probability that
exactly k cards are still face down when the game is over?

18. [M30] Let G be a graph with n+l vertices Vo, Vi, ... , Vn and m edges e1, ... , ern.

Make G into a directed graph by assigning an arbitrary orientation to each edge; then
construct the m x (n + 1) matrix A with

a .. -{ ~11,
•J - '

0,

if init(ei) = Vj;
if fin(ei) = Vj;
otherwise.

Let Ao be the m x n matrix A with column 0 deleted.

a) If m = n, show that the determinant of Ao is equal to 0 if G is not a free tree, and
equal to ±1 if G is a free tree.

b) Show that for general m the determinant of A6 A 0 is the number of free subtrees
of G (namely the number of ways to choose n of the m edges so that the resulting
graph is a free tree). [Hint: Use (a) and the result of exercise 1.2.3-46.]

19. [M31] (The matrix tree theorem.) Let G be a directed graph with n + 1 vertices
Vo, V1, ... , Vn. Let A be the (n + 1) x (n + 1) matrix with

a ., - {-k,
•J - t,

if i =F j and there are k arcs from Vi to Vj;
if i = j and there are t arcs from Vj to other vertices.

(It follows that aio + ai1 + · · · + ain = 0 for 0 ~ i ~ n.) Let Ao be the same matrix
with row 0 and column 0 deleted. For example, if G is the directed graph of Fig. 36,
we have

A=(-~-~-~)
-1 -1 2

(3 -2)
Ao= -1 2 .

a) Show that if a00 = 0 and ajj = 1 for 1 ~ j ~ n, and if G contains no arcs from a
vertex to itself, then <let Ao = [G is an oriented tree with root Vo].

b) Show that in general, det Ao is the number of oriented subtrees of G rooted at V0

(namely the number of ways to select n of the arcs of G so that the resulting
directed graph is an oriented tree, with Vo as the root). [Hint: Use induction on
the number of arcs.]

20. [M21] If G is an undirected graph on n + 1 vertices V0 , ... , Vn, let B be the n x n
matrix defined as follows for 1 ~ i, j ~ n:

{

t,
bij = -1,

0,

if i = j and there are t edges touching Vj;
if i # j and Vi is adjacent to Vj;
otherwise.

2.3.4.2 ORIENTED TREES 379

For example, if G is the graph of Fig. 29 on page 363, with (Vo, Vi, V2, V3, Vi) =
(A, B, C, D, E), we find that

B = (~ -1
-1

0 -1
2 -1

-1 3
0 -1

-~)
-1

2

Show that the number of free subtrees of G is <let B. [Hint: Use exercise 18 or 19.]

21. [HM38] (T. van Aardenne-Ehrenfest and N. G. de Bruijn.) Fig. 36 is an example
of a directed graph that is not only balanced, it is regular, which means that every
vertex has the same in-degree and out-degree as every other vertex. Let G be a regular
digraph with n + 1 vertices V0 , Vi, ... , Vn, in which every vertex has in-degree and
out-degree equal tom. (Hence there are (n + l)m arcs in all.) Let G* be the graph
with (n + 1) m vertices corresponding to the arcs of G; let a vertex of G* corresponding
to an arc from Vj to Vk in G be denoted by Vjk. An arc goes from Vjk to Vj'k' in G*
if and only if k = j'. For example, if G is the directed graph of Fig. 36, G* is shown in
Fig. 37. An Eulerian circuit in G is a Hamiltonian circuit in G* and conversely.

Prove that the number of oriented subtrees of G* is m<n+l)(rn-l) times the number
of oriented subtrees of G. [Hint: Use exercise 19.]

Fig. 37. Arc digraph corresponding to Fig. 36. (See exercise 21.)

380 INFORMATION STRUCTURES 2.3.4.2

~ 22. [M26] Let G be a balanced, directed graph with vertices V1, V2, ... , Vn and no

isolated vertices. Let CJ 1 be the out-degree of V1. Show that the number of Eulerian

circuits of G is
n

(C71 + CJ2 + · · · + C7n) T II (C7j - 1)!,
j=l

where T is the number of o•riented subtrees of G with root V1. [Note: The factor

(C71 +· · · +CJn), which is the number of arcs of G, may be omitted if the Eulerian circuit

(e1, ... , ern) is regarded as equal to (ek, ... , ern, e1, ... , ek-1).]

~ 23. [M33] (N. G. de Bruijn.) For each sequence of nonnegative integers x1, ... , xk

less than m, let f (x1, ... , x k) be a nonnegative integer less than m. Define an infinite

sequence as follows: X1 = X2 = · · · = Xk = O; Xn+k+1 = J(Xn+k, ... ,Xn+1) when
k

n ~ 0. For how many of the m = possible functions f is this sequence periodic

with a period of the maximum length mk? [Hint: Construct a directed graph with

vertices (x1, ... , Xk-1) for all 0 ~ Xj < m, and with arcs from (x1, x2, ... , Xk-1) to

(x2, ... , Xk-1, xk); apply exercises 21 and 22.]

~ 24. [M20] Let G be a connected digraph with arcs eo, e1, ... , ern. Let Eo, E 1, ... , Ern

be a set of positive integers that satisfy Kirchhoff's law for G; that is, for each vertex V,

fin(ej)=V

Assume further that Eo = 1. Prove that there is an oriented path in G from fin(e0) to

init(eo) such that edge e1 appears exactly E1 times, for 1 ~ j ~ m, while edge e0 does

not appear. [Hint: Apply Theorem G to a suitable directed graph.]

25. [26] Design a computer representation for directed graphs that generalizes the

right-threaded binary tree representation of a tree. Use two link fields ALINK, BLINK

and two one-bit fields ATAG, BTAG; and design the representation so that: (i) there is

one node for each arc of the directed graph (not for each vertex); (ii) if the directed

graph is an oriented tree with root R, and if we add an arc from R to a new vertex H,

then the representation of this directed graph is essentially the same as a right-threaded

representation of this oriented tree (with some order imposed on the children in each

family), in the sense that ALINK, BLINK, BTAG are respectively the same as LLINK,

RLINK, RTAG in Section 2.3.2; and (iii) the representation is symmetric in the sense that

interchanging ALINK, ATAG, with BLINK, BTAG is equivalent to changing the direction on

all the arcs of the directed graph.

~ 26. [HM39] (Analysis of a random algorithm.) Let G be a directed graph on the

vertices V1, V2, ... , Vn. Assume that G represents the flow chart for an algorithm,

where V1 is the Start vertex and Vn is the Stop vertex. (Therefore Vn is a root of G.)

Suppose each arc e of G has been assigned a probability p(e), where the probabilities

satisfy the conditions

0 < p(e) ~ 1; L p(e) = 1 for 1 ~ j < n.
init(e)=Vj

Consider a random path, which starts at V1 and subsequently chooses branch e of G
with probability p(e), until Vn is reached; the choice of branch taken at each step is to

be independent of all previous choices.

2.3.4.2 ORIENTED TREES 381

For example, consider the graph of exercise 2.3.4.1-7, and assign the respective

probabilities 1, ~, ~' ~, 1, ~, ~,~,~to arcs e1,e2, ... ,e9. Then the path "Start-A

B-C-A-D-B-C-Stop" is chosen with probability 1 · .!. · 1 · .!. · .!. · ~ · 1 · .!. = _L 2 2 2 4 4 128.

Such random paths are called Markov chains, after the Russian mathematician
Andrei A. Markov, who first made extensive studies of stochastic processes of this
kind. The situation serves as a model for certain algorithms, although our requirement
that each choice must be independent of the others is a very strong assumption. The
purpose of this exercise is to analyze the computation time for algorithms of this kind.

The analysis is facilitated by considering the n x n matrix A = (aij), where
aij = L.: p(e) summed over all arcs e that go from Vi to Vj. If there is no such arc,
aij = 0. The matrix A for the example considered above is

0 1 0 0 0 0

0 0 1 0 1 0 2 2
0 0 0 1 0 0

0 1 0 0 1 1
2 4 4

0 0 3 0 0 1
4 4

0 0 0 0 0 0

It follows easily that (A k)ij is the probability that a path starting at Vi will be at V1
after k steps.

Prove the following facts, for an arbitrary directed graph G of the stated type:
a) The matrix (J - A) is nonsingular. [Hint: Show that there is no nonzero vector x

with xAn = x.]
b) The average number of times that vertex Vj appears in the path is

(I - A);:j1 = cofactor11(J - A)/det(J - A), for 1 ~ j ~ n.

[Thus in the example considered we find that the vertices A, B, C, Dare traversed
respectively ~3 , i, i, ~ times, on the average.]

c) The probability that Vj occurs in the path is

a1 = cofactor11(J - A)/cofactor11(I - A);

furthermore, an = 1, so the path terminates in a finite number of steps with
probability one.

d) The probability that a random path starting at Vj will never return to Vj is
b1 =<let (J - A)/cofactor11(I - A).

e) The probability that Vj occurs exactly k times in the path is a1(l - b1)k-1b1, for
k ~ 1, 1 ~ j ~ n.

27. [M30] (Steady states.) Let G be a directed graph on vertices Vi, ... , Vn, whose
arcs have been assigned probabilities p(e) as in exercise 26. Instead of having Start
and Stop vertices, however, assume that G is strongly connected; thus each ver
tex Vj is a root, and we assume that the probabilities p(e) are positive and satisfy
L.:init(e)=Vi p(e) = 1 for all j. A random process of the kind described in exercise 26 is

said to have a "steady state" (x 1, ... , x n) if

Xj = L p(e) Xinit(e)'

fin(e)=Vj

1 ~ j ~ n.

382 INFORMATION STRUCTURES 2.3.4.2

Let t1 be the sum, over all oriented subtrees T1 of G that are rooted at Vj, of the
products f1eET· p(e). Prove that (ti, ... , tn) is a steady state of the random process.

J

~ 28. [M35] Consider the (m +n) x (m +n) determinant illustrated here form= 2 and
n = 3:

a10 +an + a12 + a13 0 an a12 a13

0 a2o + <t21 + a22 + a23 a21 a22 a23

<let bn b12 b10 + bn + b12 0 0
b21 b22 0 b20 + b21 + b22 0
b31 b32 0 0 b3o + b31 + b32

Show that when this determinant is expanded as a polynomial in the a's and b's, each
nonzero term has coefficient + 1. How many terms appear in the expansion? Give a
rule, related to oriented trees, that characterizes exactly which terms are present.

*2.3.4.3. The "infinity lemma." Until now we have concentrated mainly on
trees that have only finitely many vertices (nodes), but the definitions we have
given for free trees and oriented trees apply to infinite graphs as well. Infinite
ordered trees can be defined in several ways; we can, for example, extend the
concept of "Dewey decimal notation" to infinite collections of numbers, as in
exercise 2.3-14. Even in the study of computer algorithms there is occasionally
a need to know the properties of infinite trees-for example, to prove by contra
diction that a certain tree is not infinite. One of the most fundamental properties
of infinite trees, first stated in its full generality by D. Konig, is the following:

Theorem K. (The "infinity lemma.") Every infi.nite oriented tree in which
every vertex has fi.nite degree has an infi.nite path to the root, that is, an infi.nite
sequence of vertices V0 , V1 , V2, ... in which Vo is the root and fin(e[Vj+ 1]) = Vj
for all j 2 0.

Proof. We define the path by starting with V0 , the root of the oriented tree.
Assume that j 2 0 and that Vj has been chosen having infinitely many de
scendants. The degree of Vj is finite by hypothesis, so Vj has finitely many
children U1 , ... , Un. At least one of these children must possess infinitely many
descendants, so we take Vj + 1 to be such a child of Vj.

Now Vo, V1 , V2, ... is an infinite path to the root. I

Students of calculus may recognize that the argument used here is essentially
like that used to prove the classical Bolzano-Weierstrass theorem, "A bounded
infinite set of real numbers has an accumulation point." One way of stating
Theorem K, as Konig observed, is this: "If the human race never dies out,
somebody now living has a line of descendants that will never die out."

Most people think that Theorem K is completely obvious when they first
encounter it, but after more thought and a consideration of further examples
they realize that there is something profound about it. Although the degree of
each node of the tree is finite, we have not assumed that the degrees are bounded
(less than some number N for all vertices), so there may be nodes with higher
and higher degrees. It is at least conceivable that everyone's descendants will
ultimately die out although there will be some families that go on a million

2.3.4.3 THE "INFINITY LEMMA" 383

generations, others a billion, and so on. In fact, H. W. Watson once published a
"proof" that under certain laws of biological probability carried out indefinitely,
there will be infinitely many people born in the future but each family line will
die out with probability one. His paper [J. Anthropological Inst. Gt. Britain and
Ireland 4 (1874), 138-144) contains important and far-reaching theorems in spite
of the minor slip that caused him to make this statement, and it is significant
that he did not find his conclusions to be logically inconsistent.

The contrapositive of Theorem K is directly applicable to computer algo
rithms: If we have an algorithm that periodically divides itself up into fi.nitely
many subalgorithms, and if each chain of subalgorithms ultimately terminates,
then the algorithm itself terminates.

Phrased yet another way, suppose we have a set S, finite or infinite, such
that each element of Sis a sequence (x1, x2, ... , Xn) of positive integers of finite
length n 2:: 0. If we impose the conditions that

i) if (x 1 , ... , Xn) is in S, so is (x1 , ... , Xk) for 0 :::;; k :::;; n;
ii) if (x1 , ... , Xn) is in S, only finitely many Xn+l exist for which (x1 , ... ,

Xn, Xn+1) is also in S;
iii) there is no infinite sequence (x1 , x2 , ...) all of whose initial subsequences

(x1, X2, ... , Xn) lie in S;

then S is essentially an oriented tree, specified essentially in a Dewey decimal
notation, and Theorem K tells us that S is finite.

One of the most convincing examples of the potency of Theorem K arises in
connection with a family of interesting tiling problems introduced by Hao Wang.
A tetrad type is a square divided into four parts, each part having a specified
number in it, such as

The problem of tiling the plane is to take a finite set of tetrad types, with an
infinite supply of tetrads of each type, and to show how to place one in each
square of an infinite plane (without rotating or reflecting the tetrad types) in -
such a way that two tetrads are adjacent only if they have equal numbers where
they touch. For example, we can tile the plane using the six tetrad types

~1 ~1 ~~2 ~2 1 2 2 3 13 11 11 12 12 13
12 22 1 11 21

in essentially only one way, by repeating the rectangle

(3)

384 INFORMATION STRUCTURES 2.3.4.3

over and over. The reader may easily verify that there is no way to tile the plane

with the three tetrad types

Wang's observation [Scientiflc American 213, 5 (November 1965), 98-106] is

that if it is possible to tile the upper right quadrant of the plane, it is possible

to tile the whole plane. This is certainly unexpected, since a method for tiling

the upper right quadrant involves a "boundary" along the x and y axes, and it

would seem to give no hint as to how to tile the upper left quadrant of the plane

(since tetrad types may not be rotated or reflected). We cannot get rid of the

boundary merely by shifting the upper-quadrant solution down and to the left,

since it does not make sense to shift the solution by more than a finite amount.

But Wang's proof runs as follows: The existence of an upper-right-quadrant

solution implies that there is a way to tile a 2n x 2n square, for all n. The set

of all solutions to the problem of tiling squares with an even number of cells on

each side forms an oriented tree, if the children of each 2n x 2n solution x are

the possible (2n + 2) x (2n + 2) solutions that can be obtained by bordering x.

The root of this oriented tree is the 0 x 0 solution; its children are the 2 x 2

solutions, etc. Each node has only finitely many children, since the problem of

tiling the plane assumes that only finitely many tetrad types are given; hence by

the infinity lemma there is an infinite path to the root. This means that there

is a way to tile the whole plane (although we may be at a loss to find it)!

For later developments in tetrad tiling, see the beautiful book Tilings and

Patterns by B. Griinbaum and G. C. Shephard (Freeman, 1987), Chapter 11.

EXERCISES

1. [M10] The text refers to a set S containing finite sequences of positive integers,

and states that this set is "essentially an oriented tree." What is the root of this

oriented tree, and what are the arcs?

2. [20] Show that if rotation of tetrad types is allowed, it is always possible to tile

the plane.

~ 3. [M23] If it is possible to tile the upper right quadrant of the plane when given an

infinite set of tetrad types, is it always possible to tile the whole plane?

4. [M25] (H. Wang.) The six tetrad types (2) lead to a toroidal solution to the

tiling problem, that is, a solution in which some rectangular pattern - namely (3) -
is replicated throughout the entire plane.

Assume without proof that whenever it is possible to tile the plane with a finite

set of tetrad types, there is a toroidal solution using those tetrad types. Use this

assumption together with the infinity lemma to design an algorithm that, given the

specifications of any finite set of tetrad types, determines in a finite number of steps

whether or not there exists a way to tile the plane with these types.

5. [M40] Show that using the following 92 tetrad types it is possible to tile the plane,

but that there is no toroidal solution in the sense of exercise 4.

2.3.4.3 THE "INFINITY LEMMA" 385

To simplify the specification of the 92 types, let us first introduce some notation.
Define the following "basic codes":

8 = (4, 3, 4, 3)

d=(, ,S,T)
a = (1, 2, 1, 2)

a = (Q, D, P, R)

N = (Y, ,X,)
R = (, , R, R)

f3 = (3, 4, 2, 1)

b = (, , L, P)
J = (D,U, ,X)
L = (, , L, L)

T = (, , T, T)

U = (U,U, ,)

'Y = (2, 1, 3, 4)

c = (U, Q, T, S)

K = (, Y, R, L)

P = (, , P, P)

X = (, ,X,X)

D = (D,D,

B = (' ' ')

Y = (Y, Y,

The tetrad types are now

a{a, b, c, d}
j3{Y {B, U, Q}{P, T}, {B, U, D, Q}{P, S, T}, K{B, U, Q}}
'Y{ { {X, B}{L, P, S, T}, R}{B, Q}, J{L, P, S, T}}
8{X{L, P, S, T}{B, Q}, Y {B, U, Q}{P, T}, N{a, b, c, d},

S = (, , S, S)

Q = (Q,Q, ')

[4 types]

[21 types]

[22 types]

J{L, P, S, T}, K{B, U, Q}, {R, L, P, S, T}{B, U, D, Q}} [45 types]

These abbreviations mean that the basic codes are Jto be put together component by
component and sorted into alphabetic order in each component; thus

j3Y{B, U, Q}{P, T}

stands for six types j3YBP, j3YUP, j3YQP, j3YBT, j3YUT, j3YQT. The type /3YQT is

(3,4,2,l)(Y,Y, ,)(Q,Q, ,)(, ,T,T)=(3QY,4QY,2T,lT)

after multiplying corresponding components and sorting into order.
This is intended to correspond to the tetrad type shown on the right,
where we use strings of symbols instead of numbers in the four quarters
of the type. Two tetrad types can be placed next to each other only if
they have the same string of symbols at the place they touch.

A /3-tetrad is one that has a f3 in its specification as given above. To get started
on the solution to this exercise, note that any /3-tetrad must have an a-tetrad to its
left and to its right, and a 8-tetrad above and below. An aa-tetrad must have j3KB or
j3KU or j3KQ to its right, and then must come an ab-tetrad, etc.

(This construction is a simplified version of a similar one given by Robert Berger,
who went on to prove that the general problem in exercise 4, without the invalid
assumption, cannot be solved. See Memoirs Amer. Math. Soc. 66 (1966).)

~ 6. [M23] (Otto Schreier.) In a famous paper [Nieuw Archie[voor Wiskunde (2) 15
(1927), 212-216], B. L. van der Waerden proved the following theorem:

If k and m are positive integers, and if we have k sets S 1 , ... , S k of positive integers
with every positive integer included in at least one of these sets, then at least one
of the sets Sj contains an arithmetic progression of length m.

(The latter statement means there exist integers a and 8 > 0 such that a+ 8, a+ 28,
... , a + m8 are all in Si.) If possible, use this result and the infinity lemma to prove
the following stronger statement:

If k and m are positive integers, there is a number N such that if we have k sets
81, ... , S k of integers with every integer between 1 and N included in at least one
of these sets, then at least one of the sets Sj contains an arithmetic progression of
length m.

386 INFORMATION STRUCTURES 2.3.4.3

~ 7. [M30] If possible, use van der Waerden's theorem of exercise 6 and the infinity
lemma to prove the following stronger statement:

If k is a positive integer, and if we have k sets S1, ... , Sk of integers with every
positive integer included in at least one of these sets, then at least one of the
sets Si contains an infinitely long arithmetic progression.

~ 8. [M39] (J. B. Kruskal.) lf T and T' are (finite, ordered) trees, let the notation
T ~ T' signify that T can be embedded in T', as in exercise 2.3.2-22. Prove that if
T1 , T2 , T3 , • • • is any infinite sequence of trees, there exist integers j < k such that
Tj ~ Tk. (In other words, it is impossible to construct an infinite sequence of trees in
which no tree contains any of the earlier trees of the sequence. This fact can be used
to prove that certain algorithms must terminate.)

*2.3.4.4. Enumeration of trees. Some of the most instructive applications of
the mathematical theory of trees to the analysis of algorithms are connected with
formulas for counting how many different trees there are of various kinds. For
example, if we want to know how many different oriented trees can be constructed
having four indistinguishable vertices, we find that there are just 4 possibilities:

For our first enumeration problem, let us determine the number an of
structurally different oriented trees with n vertices. Obviously, ai = 1. If n > 1,
the tree has a root and various subtrees; suppose there are j 1 subtrees with 1
vertex, j2 with 2 vertices, etc. Then we may choose jk of the ak possible k-vertex
trees in

(ak + ~k - 1)
ways, since repetitions are allowed (exercise 1.2.6-60), and so we see that

an= L (a1+!1-l)···(an-1~jn-1-l), forn>l. (2)
·+2·+ 1)1 Jn-1 J1 J2 ···=n-

If we consider the generating function A(z) = l:n anzn, with a0 = 0, we find
that the identity

together with (2) implies

z
A(z) - ---------- (1 _ z)ai(l _ z2)a2(l _ z3)a3 •••

This is not an especially nice form for A(z), since it involves an infinite product
and the coefficients a 1 , a 2 , ... appear on the right-hand side. A somewhat more
aesthetic way to represent A(z) is given in exercise 1; it leads to a reasonably

2.3.4.4 ENUMERATION OF TREES 387

efficient formula for calculating the values an (see exercise 2) and, in fact, it also
can be used to deduce the asymptotic behavior of an for large n (see exercise 4).
We find that

A(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8

+ 286z9 + 719z10 + 1842z11 + · · ·. (4)

Now that we have essentially found the number of oriented trees, it is quite
interesting to determine the number of structurally different free trees with n
vertices. There are just two distinct free trees with four vertices, namely

and

because the first two and last two oriented trees of (1) become identical when
the orientation is dropped.

We have seen that it is possible to select any vertex X of a free tree and to
assign directions to the edges in a unique way so that it becomes an oriented tree
with X as root. Once this has been done, for a given vertex X, suppose there are
k subtrees of the root X, with s1, s2, ... , Bk vertices in these respective subtrees.
Clearly, k is the number of arcs touching X, and s1 + s2 + · · · + sk = n - 1. In
these circumstances we say that the weight of Xis max(s1, s2, ... , sk)· Thus in
the tree

B E F
It

C D A------- G (6)

J K H

the vertex D has weight 3 (each of the subtrees leading from D has three of the
nine remaining vertices), and vertex E has weight max(7, 2) = 7. A vert~x with
minimum weight is called a centroid of the free tree.

Let X and s 1 , s2, ... , Bk be as above, and let Y1, Y2, ... , Yk be the roots of
the subtrees emanating from X. The weight of Y1 must be at least n - s1 =
1 + s2 + · · · + Bk, since when Y1 is the assumed root there are n - s1 vertices in
its subtree through X. If there is a centroid Y in the Y1 subtree, we have

weight(X) =max (s1, s2, ... , sk) 2: weight (Y) 2: 1 + s2 + · · · + sk,

and this is possible only if s1 > s2 +···+Bk· A similar result may be derived if
we replace Y1 by Yj in this discussion. So at most one of the subtrees at a vertex
can contain a centroid.

This is a strong condition, for it implies that there are at most two centroids
in a free tree, and if two centroids exist, they are adjacent. (See exercise 9.)

Conversely, if s1 > s2 + · · · +Bk, there is a centroid in the Y1 subtree, since

weight (Y1) ~max (s1 - 1, 1 + s2 + · · · + sk) ~ s 1 =weight (X),

388 INFORMATION STRUCTURES 2.3.4.4

and the weight of all nodes in the Y2 , ... , Yk subtrees is at least s1 + 1. We have
proved that the vertex X is the only centroid of a free tree if and only if

for 1 < j ~ k.

Therefore the number of free trees with n vertices, having only one centroid,
is the number of oriented trees with n vertices minus the number of such oriented
trees violating condition (7); the latter consist essentially of an oriented tree with
s j vertices and another oriented tree with n - s j ::; s j vertices. The number with
one centroid therefore comes to

(8)

A free tree with two centroids has an even number of vertices, and the weight of
each centroid is n/2 (see exercise 10). So if n = 2m, the number of bicentroidal
free trees is the number of choices of 2 things out of am with repetition, namely

To get the total number of free trees, we therefore add ~an;2 (an; 2 + 1) to (8)
when n is even. The form of Eq. (8) suggests a simple generating function, and
indeed, we find without difficulty that the generating function for the number of
structurally different free trees is

F(z) = A(z) - ~A(z) 2 + ~A(z2)

= z + z2 + z3 + 2z4 + 3z5 + 6z6 + llz 7 + 23z8

+ 47z9 + 106z10 + 235z11 +.... (g)

This simple relation between F(z) and A(z) is due primarily to C. Jordan, who
considered the problem in 1869.

Now let us turn to the question of enumerating ordered trees, which are our
principal concern with respect to computer programming algorithms. There are
five structurally different ordered trees with four vertices:

The first two are identical as oriented trees, so only one of them appeared in (1)
above.

Before we examine the number of different ordered tree structures, let us
first consider the case of binary trees, since this is closer to the actual computer
representation and it is easier to study. Let bn be the number of different binary
trees with n nodes. From the definition of binary tree it is apparent that b0 = 1,
and for n > 0 the number of possibilities is the number of ways to put a binary

2.3.4.4 ENUMERATION OF TREES 389

tree with k nodes to the left of the root and another with n - 1 - k nodes to the

right. So

From this relation it is clear that the generating function

B(z) = bo +biz+ b2z2 + · · ·
satisfies the equation

zB(z) 2 = B(z) - 1.

n?. 1. (11)

Solving this quadratic equation and using the fact that B(O) = 1, we obtain

B(z) = ~ (1 - JI - 4z) = ~ (i -L (~) (-4z)k)
2z 2z k

k>O

= 2 L (~) (-4zt = "°"" (-~) (-4z)n
n+l ~ n n+l

n~O n~O

=I: (
2
:) n~1

n~O

= 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7

+ 1430z8 + 4862z9 + 16796z10 + · · ·. (13)

(See exercise 1.2.6-47.) The desired answer is therefore

bn = _1 (2n).
n+ 1 n

By Stirling's formula, this is asymptotically 4n/nvrn + 0(4nn-5!2). Some

important generalizations of Eq. (14) appear in exercises 11 and 32.

Returning to our question about ordered trees with n nodes, we can see that

this is essentially the same question as the number of binary trees, since we have

a natural correspondence between binary trees and forests, and a tree minus its

root is a forest. Hence the number of (ordered) trees with n vertices is bn_1 , the

number of binary trees with n - 1 vertices.
The enumerations performed above assume that the vertices are indistin

guishable points. If we label the vertices 1, 2, 3, 4 in (1) and insist that 1 is to

be the root, we now get 16 different oriented trees:

1 1 1 1 1 1

2 2 3 3 4 4

3 4 2 4 2 3

4 3 4 2 3 2

1

If\
(15) 2 3 4

390 INFORMATION STRUCTURES 2.3.4.4

The question of enumeration for labeled trees is clearly quite different from the
one solved above. In this case it can be rephrased as follows: "Consider drawing
three lines, pointing from each of the vertices 2, 3, and 4 to another vertex;
there are three choices of lines emanating from each vertex, so there are 33 = 27
possibilities in all. How many of these 27 ways will yield oriented trees with 1
as the root?" The answer, as we have seen, is 16. A similar reformulation of the
same problem, this time for the case of n vertices, is the following: "Let J(x) be
an integer-valued function such that f (1) = 1 and 1 ~ J (x) ~ n for all integers
1 :S x :S n. We call f a tree mapping if J[nl(x), that is, f(f(· · · (f(x)) · · ·))
iterated n times, equals 1, for all x. How many tree mappings are there?" This
problem comes up, for example, in connection with random number generation.
We will find, rather surprisingly, that on the average exactly one out of every n
such functions f is a tree mapping.

The solution to this enumeration problem can readily be derived using the
general formulas for counting subtrees of graphs that have been developed in
previous sections (see exercise 12). But there is a much more informative way
to solve the problem, one that gives us a new and compact manner to represent
oriented tree structure.

Suppose that we've been given an oriented tree with vertices {1, 2, ... , n}
and with n - 1 arcs, where the arcs go from j to J(j) for all j except the root.
There is at least one terminal (leaf) vertex; let Vi be the smallest number of a
leaf. If n > 1, write down /(V1) and delete both V1 and the arc Vi ---+ f (Vi)
from the tree; then let V2 be the smallest number whose vertex is terminal in
the resulting tree. If n > 2, write down f (V2) and delete both V2 and the arc
V2 ---+ f (Vi) from the tree; and proceed in this way until all vertices have been
deleted except the root. The resulting sequence of n - 1 numbers,

!(Vi), J(V2), ... , J(Vn_i), l:Sf(Vj)~n,

is called the canonical representation of the original oriented tree.
For example, the oriented tree

2

8

with 10 vertices has the canonical representation 1, 3, 10, 5, 10, 1, 3, 5, 3.
The important point here is that we can reverse this process and go from

any sequence of n - 1 numbers (16) back to the oriented tree that produced it.
For if we have any sequence x1 , x2 , ... , Xn-1 of numbers between 1 and n, let
V1 be the smallest number that does not appear in the sequence x1, ... , Xn-l;

then let Vi be the smallest number f. Vi that does not appear in the sequence
X2, ... , Xn-1; and so on. After obtaining a permutation V1 V2 ... Vn of the integers
{ 1, 2, ... , n} in this way, draw arcs from vertex Vj to vertex x j, for 1 ~ j < n.
This gives a construction of a directed graph with no oriented cycles, and by

2.3.4.4 ENUMERATION OF TREES 391

exercise 2.3.4.2-7 it is an oriented tree. Clearly, the sequence X1, X2, ... , Xn-1 is

the same as the sequence (16) for this oriented tree.
Since the process is reversible, we have obtained a one-to-one correspondence

between (n - 1)-tuples of numbers {1, 2, ... , n} and oriented trees on these
vertices. Hence there are nn-l distinct oriented trees with n labeled vertices. If
we specify that one vertex is to be the root, there is clearly no difference between
one vertex and another, so there are n n-

2 distinct oriented trees on { 1, 2, ... , n}
having a given root. This accounts for the 16 = 44 -

2 trees in (15). From this
information it is easy to determine the number of free trees with labeled vertices

(see exercise 22). The number of ordered trees with labeled vertices is also easy to

determine, once we know the answer to that problem when no labels are involved
(see exercise 23). So we have essentially solved the problems of enumerating the

three fundamental classes of trees, with both labeled and unlabeled vertices.

It is interesting to see what would happen if we were to apply our usual
method of generating functions to the problem of enumerating labeled oriented
trees. For this purpose we would probably find it easiest to consider the quantity

r(n, q), the number of labeled directed graphs with n vertices, with no oriented
cycles, and with one arc emanating from each of q designated vertices. The
number of labeled oriented trees with a specified root is therefore r(n, n - 1). In

this notation we find by simple counting arguments that, for any fixed integer m,

r(n, q) = L (~) r (m + k, k) r (n - m - k, q - k), if 0 :::; m :::; n - q, (18)
k

r (n, q) = L (~) r (n - 1, q - k), if q = n - 1. (19)
k

The first of these relations is obtained if we partition the undesignated vertices
into two groups A and B, with m vertices in A and n - q - m vertices in B;
then the q designated vertices are partitioned into k vertices that begin paths
leading into A, and q - k vertices that begin paths leading into B. Relation (19)

is obtained by considering oriented trees in which the root has degree k.

The form of these relations indicates that we can work profitably with the
generating function

r(m + 2, 2)z2 '"""'r(k + m, k)zk
Gm(z) = r(m,O) + r(m + 1, l)z + 2! + · · · = ~ kl

k

In these terms Eq. (18) says that Gn-q(z) = Gm(z)Gn-q-m(z), and therefore by
induction on m, we find that Gm(z) = G1(z)m. Now from Eq. (19), we obtain

Gl(z) = L r(n, n - l)zn-l = L '"""'r(n - 1, n - 1 - k)zn-1
(n-1)! ~ k!(n-1-k)!

n2:1 k2:0 n2:1

392 INFORMATION STRUCTURES 2.3.4.4

In other words, putting G1 (z) = w, the solution to our problem comes from
the coefficients of the solution to the transcendental equation

This equation can be ~olved with the use of Lagrange's inversion formula:
z = (/ f (() implies that

where 9n(() = f(()n, when f is analytic in the neighborhood of the origin, and
f(O) =/:- 0 (see exercise 4.7-16). In this case, we may set (= zw, J(() = eC, and
we deduce the solution

(n + l)n-1 n w='l::: I Z, n.
n2:0

in agreement with the answer obtained above.
G. N. Raney has shown that we can extend this method in an important

way to obtain an explicit power series for the solution to the considerably more
general equation

solving for w in terms of a power series in Y1, ... , Ys and z1, ... , Zs. For this
generalization, let us consider s-dimensional vectors of integers

and let us write for convenience

Suppose that we haves colors C1, C2, ... , Cs, and consider directed graphs
in which each vertex is assigned a color; for example,

7tRed

1 Blue 2

6 Yellow

Red

Let r(n, q) be the number of ways to draw arcs and to assign colors to the
vertices {1, 2, ... , n }, such that

i) for 1 :S i :S s there are exactly ni vertices of color Ci (hence n = I:n);
ii) there are q arcs, one leading from each of the vertices {1, 2, ... , q};

iii) for 1 :S i ::; s there are exactly qi arcs leading to vertices of color Ci (hence
q = l:q);

iv) there are no oriented cycles (hence q < n, unless q = n = 0).

Let us call this an (n,q)-construction.

2.3.4.4 ENUMERATION OF TREES 393

For example, if C1 = red, C2 = yellow, and C3 = blue, then (23) shows
a ((3, 2, 2), (1, 2, 2))-construction. When there is only one color, we have the
oriented tree problem that we have already solved. Raney's idea is to generalize
the one-dimension construction to s dimensions.

Let n and q be fixed s-place vectors of nonnegative integers, and let n =.En,
q = I:q. For each (n,q)-construction and each number k, 1 ::; k ::; n, we will
define a canonical representation consisting of four things:

a) a number t, with q < t ::; n;
b) a sequence of n colors, with ni of color Ci;
c) a sequence of q colors, with qi of color Ci;
d) for 1 ::; i ::; s, a sequence of qi elements of the set {1, 2, ... , ni}·

The canonical representation is defined thus: First list the vertices {1, 2, ... , q}
in the order V1, V2, ... , Vq of the canonical representation of oriented trees (as
given above), and then write below vertex Vj the number J(Vj) of the vertex on
the arc leading from Vj. Let t = f (Vq); and let the sequence (c) of colors be the
respective colors of the vertices /(V1), ... , J(Vq)· Let the sequence (b) of colors
be the respective colors of the vertices k, k + 1, ... , n, 1, ... , k - 1. Finally, let
the ith sequence in (d) be Xi1,Xi2, ... ,Xiqi, where Xij = m if the jth Ci-colored
element of the sequence f (V1), ... , J (Vq) is the mth Ci-colored element of the
sequence k, k + 1, ... , n, 1, ... , k - 1.

For example, consider construction (23) and let k = 3. We start by listing
V1, ... , V5 and /(V1), ... , f(V5) below them as follows:

1 2 4 5 3

7 6 3 3 6

Hence t = 6, and sequence (c) represents the respective colors of 7, 6, 3, 3, 6,
namely red, yellow, blue, blue, yellow. Sequence (b) represents the respective
colors of 3, 4, 5, 6, 7, 1, 2, namely blue, yellow, red, yellow, red, blue, red.
Finally, to get the sequences in (d), proceed as follows:

elements this color elements this color encode column 3
color in 3,4,5,6,7,1,2 in 7, 6, 3, 3, 6 by column 2

red 5, 7,2 7 2
yellow 4,6 6,6 2,2
blue 3,1 3,3 1,1

Hence the (d) sequences are 2; 2, 2; and 1, 1.
From the canonical representation, we can recover both the original (n,q)

construction and the number k as follows: From (a) and (c) we know the color of
vertex t. The last element of the (d) sequence for this color tells us, in conjunction
with (b), the position oft in the sequence k, ... , n, 1, ... , k - 1; hence we know
k and the colors of all vertices. Then the subsequences in (d) together with
(b) and (c) determine /(Vi), J(V2), ... , J(Vq), and finally the directed graph is
reconstructed by locating V1, ... , Vq as we did for oriented trees.

394 INFORMATION STRUCTURES 2.3.4.4

The reversibility of this canonical representation allows us to count the
number of possible (n,q)-constructions, since there are n - q choices for (a),
and the multinomial coefficient

choices for (b), and

choices for (c), and ni1 n~2
••• n~s choices for (d). Dividing by the n choices for k,

we have the general result

()
_ n - q n! q! qi q2 qs

r n, q - -- I I I I nl n2 ... ns .
n ni ns. qi qs.

Furthermore, we can derive analogs of E~s. (18) and (19):

r(n,q)= L
k,t

l:(t-k)=m

(~~) r(t, k) r(n - t, q - k) if 0 :Sm :S I:(n - q), (25)

with the convention that r(O, 0) = 1, and r(n, q) = 0 if any ni or qi is negative
or if q > n;

where ei is the vector with 1 in position i and zeros elsewhere. Relation (25)
is based on breaking the vertices { q + 1, ... , n} into two parts having m and
n - q - m elements, respectively; the second relation is derived by removing
the unique root and considering the remaining structure. We now obtain the
following result:

Theorem R (George N. Raney, Canadian J. Math. 16 (1964), 755-762). Let

W= '""" r(n,q) ni ns qi q8
~ (I:q)! Y1 · · · Ys Z1 ···Zs ,

l:(n-q)=l

where r(n, q) is defi.ned by (24), and where n, q are s-dimensional integer vectors.
Then w satisfi.es the identity

Proof. By (25) and induction on m, we find that

n,q
l:(n-q)=m

2.3.4.4 ENUMERATION OF TREES 395

Now by (26),

The special case where s = 1 and z1 = 1 in (27) and (28) is especially
important in applications, so it has become known as the "tree function"

n-1
T(y) = '"""''!!__yn = yeT(y).

~ n!
n2:1

See Corless, Connet, Hare, Jeffrey, and Knuth, Advances in Computational
Math. 5 (1996), 329-359, for a discussion of some of this function's remarkable
properties.

A survey of enumeration formulas for trees, based on skillful manipulations
of generating functions, has been given by I. J. Good [Proc. Cambridge Philos.
Soc. 61 (1965), 499-517; 64 (1968), 489]. More recently, a mathematical theory
of species developed by Andre Joyal [Advances in Math. 42 (1981), 1-82] has
led to a high-level viewpoint in which algebraic operations on generating func
tions correspond directly to combinatorial properties of structures. The book
Combinatorial Species and Tree-like Structures by F. Bergeron, G. Labelle, and
P. Leroux (Cambridge Univ. Press, 1997), presents numerous examples of this
beautiful and instructive theory, generalizing many of the formulas derived above.

EXERCISES

1. [M20] (G. P6lya.) Show that

A(z) = z ·exp (A(z) + ~A(z2) + ~A(z3) + ...).

[Hint: Take logarithms of (3).]

2. [HM24] (R. Otter.) Show that the numbers an satisfy the following condition:

where

Snk = 2= an+l-jk·

l'5J5:n/k

(These formulas are useful for the calculation of the an, since Snk = S(n-k)k + an+l-k·)

396 INFORMATION STRUCTURES 2.3.4.4

3. [M40] Write a computer program that determines the number of (unlabeled) free

trees and of oriented trees with n vertices, for n ::::; 100. (Use the result of exercise 2.)

Explore arithmetical properties of these numbers; can anything be said about their

prime factors, or their residues modulo p?

~ 4. [HM39] (G. Polya, 1937.) Using complex variable theory, determine the asymp

totic value of the number of oriented trees as follows:

a) Show that there is a real number a between 0 and 1 for which A(z) has radius of

convergence a and A(z) converges absolutely for all complex z such that jzj ::::; a,

having maximum value A(a) = a < oo. [Hint: When a power series has nonnega

tive coefficients, it either is entire or has a positive real singularity; and show that

A(z)/z is bounded as z -ta-, by using the identity in exercise 1.]
b) Let

F(z, w) =exp (zw + ~A(z2) + ~A(z3) + · · ·) - w.

Show that in a neighborhood of (z,w) = (a,a/a), F(z,w) is analytic in each

variable separately.
c) Show that at the point (z, w) =(a, a/a), we have aF/aw = O; hence a= 1.

d) At the point (z, w) =(a, 1/a) show that

aF _ {3 _ -2 ~ k-2A'(k) - -a +L....ia a,
{)z k22

and
{)2 F
{)w2 =a.

e) When jzj = a and z i=- a, show that aF/aw i=- O; hence A(z) has only one

singularity on jzj =a.
f) Prove that there is a region larger than jzj <a in which

_! A(z) = _!_ - J2f3(1 - z/a) + (1 - z/a)R(z),
z a

where R(z) is an analytic function of vz-=-a.
g) Prove that consequently

an=
1

1
Jf3/27rn+O(n- 5! 2 a-n).

an- n

(Note: 1/a ~ 2.955765285652, and a/73fi7f ~ 0.439924012571.)

~ 5. [M25] (A. Cayley.) Let en be the number of (unlabeled) oriented trees having

n leaves (namely, vertices with in-degree zero) and having at least two subtrees at

every other vertex. Thus c3 = 2, by virtue of the two trees

Find a formula analogous to (3) for the generating function

n

6. [M25] Let an "oriented binary tree" be an oriented tree in which each vertex has

in-degree two or less. Find a reasonably simple relation that defines the generating

function G(z) for the number of distinct oriented binary trees with n vertices, and find

the first few values.

2.3.4.4 ENUMERATION OF TREES 397

7. [HM40] Obtain asymptotic values for the numbers of exercise 6. (See exercise 4.)

8. [20] According to Eq. (9), there are six free trees with six vertices. Draw them,
and indicate their centroids.

9. [M20] From the fact that at most one subtree of a vertex in a free tree can contain
a centroid, prove there are at most two centroids in a free tree; furthermore if there are
two, then they must be adjacent.

~ 10. [M22] Prove that a free tree with n vertices and two centroids consists of two free
trees with n/2 vertices, joined by an edge. Conversely, if two free trees with m vertices
are joined by an edge, we obtain a free tree with 2m vertices and two centroids.

~ 11. [M28] The text derives the number of different binary trees with n nodes (14)·
Generalize this to find the number of different t-ary trees with n nodes. (See exercise
2.3.1-35; a t-ary tree is either empty or consists of a root and t disjoint t-ary trees.)
Hint: Use Eq. (21) of Section 1.2.9.

12. [M20] Find the number of labeled oriented trees with n vertices by using deter
minants and the result of exercise 2.3.4.2-19. (See also exercise 1.2.3-36.)

13. [15] What oriented tree on the vertices {1, 2, ... , 10} has the canonical represen
tation 3, 1, 4, 1, 5, 9, 2, 6, 5?

14. [10] True or false: The last entry, f(Vn-i), in the canonical representation of an
oriented tree is always the root of that tree.

15. [21] Discuss the relationships that exist (if any) between the topological sort
algorithm of Section 2.2.3 and the canonical representation of an oriented tree.

16. [25] Design an algorithm (as efficient as possible) that converts from the canonical
representation of an oriented tree to a conventional computer representation using
PARENT links.

~ 17. [M26] Let f(x) be an integer-valued function, where 1::; f(x) ::; m for all integers
1::; x::; m. Define x = y if f[rl(x) = f[sl(y) for some r,s 2: 0, where f[0l(x) = x and
f[r+ll(x) = J(f[rl(x)). By using methods of enumeration like those in this section,
show that the number of functions such that x = y for all x and y is m=- 1Q(m),
where Q(m) is the function defined in Section 1.2.11.3.

18. [24] Show that the following method is another way to define a one-to-one cor
respondence between (n - 1)-tuples of numbers from 1 to n and oriented trees with
n labeled vertices: Let the leaves of the tree be V1 , ... , Vk in ascending order. Let
(V1, Vk+1, Vk+2, ... , Vq) be the path from V1 to the root, and write down the vertices
Vq, ... , Vk+2, Vk+l· Then let (Vi, Vq+1, Vq+2, ... , Vr) be the shortest oriented path from
Vi such that Vr has already been written down, and write down Vr, ... , Vq+2, Vq+l·
Then let (Vi, Vr+1, ... , Vs) be the shortest oriented path from Vi such that Vs has
already been written, and write Vs, ... , Vr+ 1; and so on. For example, the tree (i7)
would be encoded as 3, 1, 3, 3, 5, 10, 5, 10, 1. Show that this process is reversible,
and in particular, draw the oriented tree with vertices {1, 2, ... , 10} and representation
3, 1, 4, 1, 5, 9, 2, 6, 5.

19. [M24] How many different labeled, oriented trees are there having n vertices, k of
which are leaves (have in-degree zero)?

20. [M24] (J. Riordan.) How many different labeled, oriented trees are there having
n vertices, ko of which have in-degree 0, k1 have in-degree 1, k 2 have in-degree 2, ... ?
(Note that necessarily ko + k1 + k2 + · · · = n, and k1 + 2k2 + 3k3 + · · · = n - 1.)

398 INFORMATION STRUCTURES 2.3.4.4

~ 21. [M21] Enumerate the number of labeled oriented trees in which each vertex has
in-degree zero or two. (See exercise 20 and exercise 2.3-20.)

22. [M20] How many labeled free trees are possible with n vertices? (In other words, if

we are given n vertices, there are 2G) possible graphs having these vertices, depending
on which of the (;) possible edges are incorporated into the graph; how many of these
graphs are free trees?)

23. [M21] How many ordered trees are possible with n labeled vertices? (Give a
simple formula involving factorials.)

24. [M16] All labeled oriented trees with vertices 1, 2, 3, 4 and with root 1 are shown
in (i5). How many would there be if we listed all labeled ordered trees with these
vertices and this root?

25. [M20] What is the value of the quantity r(n, q) that appears in Eqs. (i8) and
(ig)? (Give an explicit formula; the text only mentions that r(n, n - 1) = nn- 1

.)

26. [20] In terms of the notation at the end of this section, draw the ((3, 2, 4), (1, 4, 2))
construction, analogous to (23), and find the number k that corresponds to the canon
ical representation having t = 8, the sequences of colors "red, yellow, blue, red, yellow,
blue, red, blue, blue" and "red, yellow, blue, yellow, yellow, blue, yellow", and the
index sequences 3; 1, 2, 2, 1; 2, 4.

~ 27. [M28] Let U1, U2 , ..• , Up, ... , Uq; V1, Vi, ... , Vr be vertices of a directed graph,
where 1 ::::; p ::::; q. Let f be any function from the set {p + 1, ... , q} into the set
{1, 2, ... , r }, and let the directed graph contain exactly q - p arcs, from Uk to Vf(k) for
p < k ::::; q. Show that the number of ways to add r additional arcs, one from each of the
V's to one of the U's, such that the resulting directed graph contains no oriented cycles,
is qr- 1p. Prove this by generalizing the canonical representation method; that is, set
up a one-to-one correspondence between all such ways of adding r further arcs and the
set of all sequences of integers a1, a2, . .. , ar, where 1 ::::; ak ::::; q for 1 ::::; k < r, and
1 ::::; ar ::::; p.

28. [M22] (Bipartite trees.) Use the result of exercise 27 to enumerate the number
of labeled free trees on vertices U1, ... , Um, Vi, ... , Vn, such that each edge joins
Ui to Vk for some j and k.

29. [HM26] Prove that if Ek(r, t) = r(r + kt)k- 1/k!, and if zxt = lnx, then

xr = L Ek(r, t)zk
k20

for fixed t and for sufficiently small jzj and jx - lj. [Use the fact that Gm(z) = G1(z)m
in the discussion following Eq. (19).] In this formula, r stands for an arbitrary real
number. [Note: As a consequence of this formula we have the identity

n

L Ek(r, t)En-k(s, t) = En(r + s, t);
k=O

this implies Abel's binomial theorem, Eq. (i6) of Section 1.2.6. Compare also Eq. (30)
of that section.]

30. [M23] Let n, x, y, z1, ... , Zn be positive integers. Consider a set of x + y + z1 +
···+Zn+ n vertices Ti, Sjk, ti (1::::; i::::; x + y, 1::::; j::::; n, 1 ::::; k::::; Zj), in which arcs
have been drawn from Sjk to ti for all j and k. According to exercise 27, there are
(x + y)(x + y + z1 + · · · + znt- 1 ways to draw one arc from each of t 1, ... , tn to other

2.3.4.5 PATH LENGTH 399

vertices such that the resulting directed graph contains no oriented cycles. Use this to

prove Hurwitz's generalization of the binomial theorem:

"""' (ei+ +e 1 (() ())n-l-€1-···-€n
L.JX x+c1z1+···+EnZn) ... n- y y+ l-€1 z1+···+ 1-En Zn

= (x+y)(x+y+z1 +· · ·+znr-
1,

where the sum is over all 2n choices of E1, ... , En equal to 0 or 1.

31. [M24] Solve exercise 5 for ordered trees; that is, derive the generating function for

the number of unlabeled ordered trees with n terminal nodes and no nodes of degree 1.

32. [M37] (A. Erdelyi and I. M. H. Etherington, Edinburgh Math. Notes 32 (1940),

7-12). How many (ordered, unlabeled) trees are there with no nodes of degree 0, n 1 of

degree 1, ... , nm of degree m, and none of degree higher than m? (An explicit solution

to this problem can be given in terms of factorials, thereby considerably generalizing

the result of exercise 11.)

~ 33. [M28] The text gives an explicit power series solution for the equation w =

y 1 ez 1 w + · · · + Yrezrw, based on enumeration formulas for certain oriented forests.

Similarly, show that the enumeration formula of exercise 32 leads to an explicit power

series solution to the equation

expressing w as a power series in z1, ... , Zr. (Here e 1, ... , er are fixed nonnegative

integers, at least one of which is zero.)

2.3.4.5. Path length. The concept of the "path length" of a tree is of great

importance in the analysis of algorithms, since this quantity is often directly

related to the execution time. Our primary concern is with binary trees, since

they are so close to actual computer representations.

In the following discussion we will extend each binary tree diagram by adding

special nodes wherever a null subtree was present in the original tree, so that

becomes

The latter is called an extended binary tree. After the square-shaped nodes have

been added in this way, the structure is sometimes more convenient to deal with,

and we shall therefore meet extended binary trees frequently in later chapters.

It is clear that every circular node has two children and every square node has

none. (Compare with exercise 2.3-20.) If there are n circular nodes ands square

nodes, we have n + s - 1 edges (since the diagram is a free tree); counting another

400 INFORMATION STRUCTURES 2.3.4.5

way, by the number of children, we see that there are 2n edges. Hence it is clear
that

s = n + 1;

in other words, the number of "external" nodes just added is one more than
the number of "internal" • nodes we had originally. (For another proof, see
exercise 2.3.1-14.) Formula (2) is correct even when n = 0.

Assume that a binary tree has been extended in this way. The external path
length of the tree, E, is defined to be the sum- taken over all external (square)
nodes - of the lengths of the paths from the root to each node. The internal
path length, I, is the same quantity summed over the internal (circular) nodes.
In (1) the external path length is

E = 3 + 3 + 2 + 3 + 4 + 4 + 3 + 3 = 25,

and the internal path length is

1=2+1+0+2+3+1+2=11.

These two quantities are always related by the formula

E =I+ 2n,

where n is the number of internal nodes.
To prove formula (3), consider deleting an internal node V at a distance k

from the root, where both children of V are external. The quantity E goes down
by 2(k + 1), since the children of V are removed, then it goes up by k, since V
becomes external; so the net change in E is - k - 2. The net change in I is -k,
so (3) follows by induction.

It is not hard to see that the internal path length (and hence the external
path length also) is greatest when we have a degenerate tree with linear structure;
in that case the internal path length is

n 2 -n
(n - 1) + (n - 2) + · · · + 1 + 0 =

2
·

It can be shown that the "average" path length over all binary trees is essentially
proportional to nfo (see exercise 5).

Consider now the problem of constructing a binary tree with n nodes that
has minimum path length. Such a tree will be important, since it will minimize
the computation time for various algorithms. Clearly, only one node (the root)
can be at zero distance from the root; at most two nodes can be at distance 1
from the root, at most four can be 2 away, and so on. Therefore the internal
path length is always at least as big as the sum of the E.rst n terms of the series

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,

This is the sum .Z:~=l Llg k J, which we know from exercise 1.2.4-42 is

(n + 1) q - 2q+ 1 + 2, q = l lg (n + 1) J .

2.3.4.5 PATH LENGTH 401

The optimum value (4) is n lg n+O(n), since q =lg n+O(l); it is clearly achieved
in a tree that looks like this (illustrated for n = 12):

A tree such as (5) is called the complete binary tree with n internal nodes.
In the general case we can number the internal nodes 1, 2, ... , n; this numbering
has the useful property that the parent of node k is node l k / 2 J , and the children
of node k are nodes 2k and 2k + 1. The external nodes are numbered n + 1
through 2n + 1, inclusive.

It follows that a complete binary tree may simply be represented in sequen
tial memory locations, with the structure implicit in the locations of the nodes
(not in links). The complete binary tree appears explicitly or implicitly in many
important computer algorithms, so the reader should give it special attention.

These concepts have important generalizations to ternary, quaternary, and
higher-order trees. We define a t-ary tree as a set of nodes that is either empty
or consists of a root and t ordered, disjoint t-ary trees. (This generalizes the
definition of binary tree in Section 2.3.) The complete ternary tree with 12
internal nodes is

It is easy to see that the same construction works for any t 2: 2. In the complete
t-ary tree with internal nodes { 1, 2, ... , n}, the parent of node k is node

l(k + t - 2)/tj = f (k - 1)/tl'

and the children of node k are

t(k - 1) + 2, t(k - 1) + 3, ... ' tk + 1.

402 INFORMATION STRUCTURES 2.3.4.5

This tree has the minimum internal path length among all t-ary trees with n
internal nodes; exercise 8 proves that its internal path length is

(
1) (tq+ 1

- t)
n + t - 1 q - (t - 1) 2 '

q = l logt ((t - 1) n + 1) J . (7)

These results have another import ant generalization if we shift our point
of view slightly. Suppose that we are given m real numbers W1, W2, ... , Wm;

the problem is to find an extended binary tree with m external nodes, and to
associate the numbers w1 , ... , Wm with these nodes in such a way that the sum
L Wjlj is minimized, where lj is the length of path from the root and the sum is
taken over all external nodes. For example, if the given numbers are 2, 3, 4, 11,
we can form extended binary trees such as these three:

(8)

Here the "weighted" path lengths L Wjlj are 34, 53, and 40, respectively. (There
fore a perfectly balanced tree does not give the minimum weighted path length
when the weights are 2, 3, 4, and 11, although we have seen that it does give the
minimum in the special case W1 = W2 = · · · = Wm = 1.)

Several interpretations of weighted path length arise in connection with
different computer algorithms; for example, we can apply it to the merging of
sorted sequences of respective lengths w 1 , w2, ... , Wm (see Chapter 5). One of
the most straightforward applications of this idea is to consider a binary tree
as a general search procedure, where we start at the root and then make some
test; the outcome of the test sends us to one of the two branches, where we may
make further tests, etc. For example, if we want to decide which of four different
alternatives is true, and if these possibilities will be true with the respective
probabilities 2

2
0 , 2

3
0 , 2~, and ~i, a tree that minimizes the weighted path length

will constitute an optimal search procedure. [These are the weights shown in (8),
times a scale factor.)

An elegant algorithm for finding a tree with minimum weighted path length
was discovered by D. Huffman (Proc. IRE 40 (1951), 1098-1101]: First find the
two w's oflowest value, say w 1 and w2. Then solve the problem for m-1 weights
W1 + w2, W3, ... , Wm, and replace the node

(9)

2.3.4.5 PATH LENGTH 403

in this solution by

As an example of Huffman's method, let us find the optimal tree for the
weights 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41. First we combine 2 + 3,
and look for the solution to 5, 5, 7, ... , 41; then we combine 5 + 5, etc. The
computation is summarized as follows:

2 -3 5 7 11 13 17 19 23 29 31 37 41
Q _Q_ 7 11 13 17 19 23 29 31 37 41

10 I 11 13 17 19 23 29 31 37 41
17 11 13 17 19 23 29 31 37 41
17 24 17 19 23 29 31 37 41

24 34 19 23 29 31 37 41
24 34 42 29 31 37 41

34 42 53 31 37 41
42 53 65 37 41
42 53 65 78

95 65 78
95 143

238

Therefore the following tree corresponds to Huffman's construction:

(11)

(The numbers inside the circular nodes show the correspondence between this
tree and our computation; see also exercise 9.)

It is not hard to prove that this method does in fact minimize the weighted
path length, by induction on m. Suppose we have W1 ~ w2 ~ W3 :::; · · · ~ Wm,

where m 2: 2, and suppose that we are given a tree that minimizes the weighted
path length. (Such a tree certainly exists, since only finitely many binary trees
with m terminal nodes are possible.) Let V be an internal node of maximum
distance from the root. If w1 and w2 are not the weights already attached to the

404 INFORMATION STRUCTURES 2.3.4.5

children of V, we can interchange them with the values that are already there;
such an interchange does not increase the weighted path length. Thus there is
a tree that minimizes the weighted path length and contains the subtree (10).
Now it is easy to prove that the weighted path length of such a tree is minimized
if and only if the tree with (10) replaced by (9) has minimum path length for
the weights w1 + w2, w3, • ... , Wm· (See exercise 9.)

Every time this construction combines two weights, they are at least as big as
the weights previously combined, if the given wi were nonnegative. This means
that there is a neat way to find Huffman's tree, provided that the given weights
have been sorted into nondecreasing order: We simply maintain two queues, one
containing the original weights and the other containing the combined weights.
At each step the smallest unused weight will appear at the front of one of the
queues, so we never have to search for it. See exercise 13, which shows that the
same idea works even when the weights might be negative.

In general, there are many trees that minimize 'L,wjlj. If the algorithm
sketched in the preceding paragraph always uses an original weight instead of a
combined weight in case of ties, then the tree it constructs has the smallest value
of max l j and of L l j among all trees that minimize 'L, w j l j. If the weights are
positive, this tree actually minimizes 'L,wjf(lj) for any convex function f, over
all such trees. [See E. S. Schwartz, Information and Control 7 (1964), 37-44;
G. Markowsky, Acta Informatica 16 (1981), 363-370.)

Huffman's method can be generalized to t-ary trees as well as binary trees.
(See exercise 10.) Another important generalization of Huffman's method is
discussed in Section 6.2.2. Further discussion of path length appears in Sections
5.3.1, 5.4.9, and 6.3.

EXERCISES

1. [12] Are there any other binary trees with 12 internal nodes and minimum path
length, besides the complete binary tree (s)?

2. [17] Draw an extended binary tree with terminal nodes containing the weights
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, having minimum weighted path length.

~ 3. [M24] An extended binary tree with m external nodes determines a set of path
lengths li, b, ... , lm that describe the lengths of paths from the root to the respective
external nodes. Conversely, if we are given a set of numbers li, b, ... , lm, is it always
possible to construct an extended binary tree in which these numbers are the path
lengths in some order? Show that this is possible if and only if L:j: 1 2-li = 1.

~ 4. [M25] (E. S. Schwartz and B. Kallick.) Assume that w1 ::S w2 ::S · · · ::S Wm· Show
that there is an extended binary tree that minimizes L: Wjlj and for which the terminal
nodes in left to right order contain the respective values w1, w2, ... , Wm. [For example,
tree (11) does not meet this condition since the weights appear in the order 19, 23,
11, 13, 29, 2, 3, 5, 7, 17, 31, 37, 41. We seek a tree for which the weights appear in
ascending order, and this does not always happen with Huffman's construction.]

5. [Hlvf26] Let

B(w,z) = L bnpWpzn,
n,p:'.:O

2.3.4.5 PATH LENGTH 405

where bnp is the number of binary trees with n nodes and internal path length p. [Thus,

B(w, z) = 1+z+2wz2 + (w2 + 4w3)z3 + (4w
4 + 2w5 + 8w6)z4 + · · ·;

B(l, z) is the function B(z) of Eq. (i3) in Section 2.3.4.4.]
a) Find a functional relation that characterizes B(w, z), generalizing 2.3.4.4-(12).
b) Use the result of (a) to determine the average internal path length of a binary tree

with n nodes, assuming that each of the n~l (
2:) trees is equally probable.

c) Find the asymptotic value of this quantity.

6. [16] If a t-ary tree is extended with square nodes as in (i), what is the relation
between the number of square and circular nodes corresponding to Eq. (2)?

7. [M21] What is the relation between external and internal path length in a t-ary
tree? (See exercise 6; a generalization of Eq. (3) is desired.)

8. [M23] Prove Eq. (7)·

9. [M21] The numbers that appear in the circular nodes of (11) are equal to the
sums of the weights in the external nodes of the corresponding subtree. Show that the
sum of all values in the circular nodes is equal to the weighted path length.

· 10. [M26] (D. Huffman.) Show how to construct a t-ary tree with minimum weighted
path length, given nonnegative weights w1, w2, ... , Wm· Construct an optimal ternary
tree for weights 1, 41 9, 16, 25, 36, 49, 64, 81, 100.

11. [16] Is there any connection between the complete binary tree (5) and the "Dewey
decimal notation" for binary trees described in exercise 2.3.1-5?

· 12. [M20] Suppose that a node has been chosen at random in a binary tree, with each
node equally likely. Show that the average size of the subtree rooted at that node is
related to the path length of the tree.

13. [22] Design an algorithm that begins with m weights w1 ::::; w2 ::::; · · · ::::; Wm and
constructs an extended binary tree having minimum weighted path length. Represent
the final tree in three arrays

A[l] ... A[2m - 1], L[l] ... L[m - 1], R[l] ... R[m - 1];

here L[i] and R[i] point to the left and right children of internal node i, the root is
node 1, and A[i] is the weight of node i. The original weights should appear as the
external node weights A[m], ... , A[2m - 1]. Your algorithm should make fewer than
2m weight-comparisons. Caution: Some or all of the given weights may be negative!

14. [25] (T. C. Hu and A. C. Tucker.) After k steps of Huffman's algorithm, the
nodes combined so far form a forest of m - k extended binary trees. Prove that this
forest has the smallest total weighted path length, among all forests of m - k extended
binary trees that have the given weights.

15. [M25] Show that a Huffman-like algorithm will find an extended binary tree that
minimizes (a) max(w1 + li, ... , Wm+ lm); (b) w1x11 + · · · + Wmx 1=, given x > 1.

16. [M25] (F. K. Hwang.) Let w1 ::::; · · · ::::; Wm and w~ ::::; · · · ::::; w:n be two sets of
weights with

k k

~w- < ~w'· 0 J-0 J
j=l j=l

for 1::::; k::::; m.

Prove that the minimum weighted path lengths satisfy I:;:1 Wjlj ::::; I:;:1 wjlj.

406 INFORMATION STRUCTURES 2.3.4.5

17. [HM30] (C. R. Glassey and R. M. Karp.) Let s1, ... , Srn-1 be the numbers
inside the internal (circular) nodes of an extended binary tree formed by Huffman's
algorithm, in the order of construction. Lets~, ... , s~- 1 be the internal node weights
of any extended binary tree on the same set of weights { W1, ... , Wrn}, listed in any
order such that each nonroot internal node appears before its parent. (a) Prove that
:z=7=1 Sj::; :z=7=1 sj for 1 :=:; k.< m. (b) The result of (a) is equivalent to

rn-1 rn-1
Lf(sj):=; Lf(sj)
j=l j=l

for every nondecreasing concave function f, namely every function f with J'(x) 2: 0
and J"(x) :=:; 0. [See Hardy, Littlewood, and P6lya, Messenger of Math. 58 (1939),
145-152.] Use this fact to show that the minimum value in the recurrence

F (n) = f (n) + min (F (k) + F (n - k)) ,
l~k<n

F(l) = 0

always occurs when k = 2flg(n/ 3)l, given any function f(n) with the property that
b.f(n) = f(n + 1) - f(n) 2: 0 and b.2 f(n) = b.f(n + 1) - b.f(n) ::; 0.

*2.3.4.6. History and bibliography. Trees have of course been in existence
since the third day of creation, and through the ages tree structures (especially
family trees) have been in common use. The concept of tree as a formally defined
mathematical entity seems to have appeared first in the work of G. Kirchhoff
[Annalen der Physik und Chemie 72 (1847), 497-508, English translation in
IRE Transactions CT-5 (1958), 4-7]; Kirchhoff used free trees to find a set of
fundamental cycles in an electrical network in connection with the law that bears
his name, essentially as we did in Section 2.3.4.l. The concept also appeared at
about the same time in the book Geometrie der Lage (pp. 20-21) by K. G. Chr.
von Staudt. The name "tree" and many results dealing mostly with enumeration
of trees began to appear ten years later in a series of papers by Arthur Cayley [see
Collected Mathematical Papers of A. Cayley 3 (1857), 242-246; 4 (1859), 112-
115; 9 (1874), 202-204; 9 (1875), 427-460; 10 (1877), 598-600; 11 (1881), 365-
367; 13 (1889), 26-28]. Cayley was unaware of the previous work of Kirchhoff
and von Staudt; his investigations began with studies of the structure of algebraic
formulas, and they were later inspired chiefly by applications to the problem of
isomers in chemistry. Tree structures were also independently studied by C. W.
Borchardt [Crelle 57 (1860), 111-121]; J. B. Listing [Gottinger Abhandlungen,
Math. Classe, 10 (1862), 137-139]; and C. Jordan [Crelle 70 (1869), 185-190].

The "infinity lemma" was formulated first by Denes Konig [Fundamenta
Math. 8 (1926), 114-134], and he gave it a prominent place in his classic book
Theorie der endlichen und unendlichen Graphen (Leipzig: 1936), Chapter 6.
A similar result called the "fan theorem" occurred slightly earlier in the work
of L. E. J. Brouwer [Verhandelingen Akad. Amsterdam 12 (1919), 7], but this
involved much stronger hypotheses; see A. Heyting, Intuitionism (1956), Sec
tion 3.4, for a discussion of Brouwer's work.

Formula (3) of Section 2.3.4.4 for enumerating unlabeled oriented trees was
given by Cayley in his first paper on trees. In his second paper he enumerated

2.3.4.6 HISTORY AND BIBLIOGRAPHY 407

unlabeled ordered trees; an equivalent problem in geometry (see exercise 1) had
already been proposed and solved by J. von Segner and L. Euler 100 years
earlier [Novi Commentarii Academire Scientiarum Petropolitanre 7 (1758-1759),
13-15, 203-210], and it was the subject of seven papers by G. Lame, E. Catalan,
0. Rodrigues, and J. Binet in Journal de mathematiques 3, 4 (1838, 1839);
additional references appear in the answer to exercise 2.2.1-4. The corresponding
numbers are now commonly called "Catalan numbers." A Mongolian Chinese
mathematician, An-T'u Ming, had encountered the Catalan numbers before 1750
in his study of infinite series, but he did not relate them to trees or other
combinatorial objects [see J. Luo, Acta Scientiarum Naturalium Universitatis
Intramongolicre 19 (1988), 239-245; Combinatorics and Graph Theory (World
Scientific Publishing, 1993), 68-70]. Catalan numbers occur in an enormous
number of different contexts; Richard Stanley explains more than 60 of them in
his magnificent book Enumerative Combinatorics 2 (Cambridge Univ. Press, to
appear), Chapter 6. Perhaps most surprising of all is the Catalan connection
to certain arrangements of numbers that H. S. M. Coxeter has called "frieze
patterns" because of their symmetry; see exercise 4.

The formula nn- 2 for the number of labeled free trees was discovered by J. J.
Sylvester [Quart. J. Pure and Applied Math. 1 (1857), 55-56], as a byproduct
of his evaluation of a certain determinant (exercise 2.3.4.2-28). Cayley gave
an independent derivation of the formula in 1889 [see the reference above];
his discussion, which was extremely vague, hinted at a connection between
labeled oriented trees and (n - 1)-tuples of numbers. An explicit correspondence
demonstrating such a connection was first published by Heinz Priifer [Arch.
Math. und Phys. 27 (1918), 142-144], quite independently of Cayley's prior work.
A large literature on this subject has developed, and the classical results are
surveyed beautifully in J. W. Moon's book, Counting Labelled Trees (Montreal:
Canadian Math. Congress, 1970).

A very important paper on the enumeration of trees and many other kinds
of combinatorial structures was published by G. P6lya in Acta Math. 68 (1937),
145-253. For a discussion of enumeration problems for graphs and an excellent
bibliography of the early literature, see the survey by Frank Harary in Graph
Theory and Theoretical Physics (London: Academic Press, 1967), 1-41.

The principle of minimizing weighted path length by repeatedly combining
the smallest weights was discovered by D. Huffman [Proc. IRE 40 (1952), 1098-
1101], in connection with the design of codes for minimizing message lengths.
The same idea was independently published by Seth Zimmerman [AMM 66
(1959), 690-693].

Several other noteworthy papers about the theory of tree structures have
been cited in Sections 2.3.4.1through2.3.4.5 in connection with particular topics.

EXERCISES

.,. 1. [21] Find a simple one-to-one correspondence between binary trees with n nodes
and dissections of an (n + 2)-sided convex polygon into n triangles, assuming that the
sides of the polygon are distinct.

408 INFORMATION STRUCTURES 2.3.4.6

.,. 2. [M26] T. P. Kirkman conjectured in 1857 that the number of ways to draw k non
overlapping diagonals in an r-sided polygon is (~~~) (r~ 3)/(r + k).

a) Extend the correspondence of exercise 1 to obtain an equivalent problem about
the enumeration of trees.

b) Prove Kirkman's conjecture by using the methods of exercise 2.3.4.4-32 .

.,. 3. [M30] Consider all ways.of partitioning the vertices of a convex n-gon into k non
empty parts, in such a way that no diagonal between two vertices of one part crosses
a diagonal between two vertices of another part.

a) Find a one-to-one correspondence between noncrossing partitions and an interest
ing class of tree structures.

b) Given n and k, how many ways are there to make such a partition?

.,. 4. [M38] (Conway and Coxeter.) A frieze pattern is an infinite array such as

1 1
3 1

1 1
4 1

1 1 1 1 1 1 1
3 1 3

5 2 2

1 1
1 4

2 3

1 1
1 2

3 1

1 1
3 1

5 2 2 2 3 3
5 2

2 3

1 1
2 3

1 5
1 3 1 4

2 2 2 3
3 3 1 5 2

1 4 1 2 3
3 3 1

1 4 1 2
1 1 1

5

1

2 2
3 1

1 1

2 3
3 1

1 1

3 1 2 2
4 1 1 3

1 1 1 1 1 1 1 1 1 1 1

in which the top and bottom rows consist entirely of ls, and each diamond of adjacent
values a b d satisfies ad - be = 1. Find a one-to-one correspondence between n-node

c

binary trees and (n + 1)-rowed frieze patterns of positive integers.

2.3.5. Lists and Garbage Collection

Near the beginning of Section 2.3 we defined a List informally as "a finite
sequence of zero or more atoms or Lists."

Any forest is a List; for example,

e
/~

f g

may be regarded as the List

(a:(b,c,d),e:(f,g:(h))),
and the corresponding List diagram would be

I
h

The reader should review at this point the introduction to Lists given earlier,
in particular (3), (4), (5), (6), (7) in the opening pages of Section 2.3. Recall that,
in (2) above, the notation "a: (b, c, d)" means that (b, c, d) is a List of three atoms,
which has been labeled with the attribute "a". This convention is compatible

2.3.5 LISTS AND GARBAGE COLLECTION 409

with our general policy that each node of a tree may contain information besides

its structural connections. However, as was discussed for trees in Section 2.3.3,

it is quite possible and sometimes desirable to insist that all Lists be unlabeled,

so that all the information appears in the atoms.
Although any forest may be regarded as a List, the converse is not true.

The following List is perhaps more typical than (2) and (3) since it shows how

the restrictions of tree structure might be violated:

L = (a: N, b, c: (d: N), e: L), N = (!: (), g: (h: L, j: N))

which may be diagrammed as

*[L]
//\~

a*[N] b C* e[L]
I\ I

f* 9* d[N]
I\

h[L] j[N]

(4)

[Compare with the example in 2.3-(7). The form of these diagrams need not be

taken too seriously.]
As we might expect, there are many ways to represent List structures within

a computer memory. These methods are usually variations on the same basic

theme by which we have used binary trees to represent general forests of trees:

One field, say RLINK, is used to point to the next element of a List, and another

field DLINK may be used to point to the first element of a sub-List. By a natural

extension of the memory representation described in Section 2.3.2, we would

represent the List (5) as follows:

..+---b (atom) ----e f l'---'-1-'---'

=

(6)

=

h

=

Unfortunately, this simple idea is not quite adequate for the most common

List processing applications. For example, suppose that we have the List L =

(A, a, (A, A)), which contains three references to another List A= (b, c, d). One

of the typical List processing operations is to remove the leftmost element of A,
so that A becomes (c, d); but this requires three changes to the representation

of L, if we are to use the technique shown in (6), since each pointer to A points

410 INFORMATION STRUCTURES 2.3.5

to the element b that is being deleted. A moment's reflection will convince the

reader that it is extremely undesirable to change the pointers in every reference

to A just because the first element of A is being deleted. (In this example we

could try to be tricky, assuming that there are no pointers to the element c, by

copying the entire element c into the location formerly occupied by b and then

deleting the old element c. But this trick fails to work when A loses its last

element and becomes empty.)
For this reason the representation scheme (6) is generally replaced by another

scheme that is similar, but uses a List head to begin each List, as was introduced

in Section 2.2.4. Each List contains an additional node called its List head, so

that the configuration (6) would, for example, be represented thus:

b (atom)

(7)

The introduction of such header nodes is not really a waste of memory space

in practice, since many uses for the apparently unused fields - the shaded areas

in diagram (7)-generally present themselves. For example, there is room for a

reference count, or a pointer to the right end of the List, or an alphabetic name,

or a "scratch" field that aids traversal algorithms, etc.

In our original diagram (6), the node containing bis an atom while the node

containing f specifies an empty List. These two things are structurally identical,

so the reader would be quite justified in asking why we bother to talk about

"atoms" at all; with no loss of generality we could have defined Lists as merely

"a finite sequence of zero or more Lists," with our usual convention that each

node of a List may contain data besides its structural information. This point

of view is certainly defensible and it makes the concept of an "atom" seem very

artificial. There is, however, a good reason for singling out atoms as we have

done, when efficient use of computer memory is taken into consideration, since

atoms are not subject to the same sort of general-purpose manipulation that is

desired for Lists. The memory representation (6) shows there is probably more

room for information in an atomic node, b, than in a List node, f; and when

List head nodes are also present as in (7), there is a dramatic difference between

the storage requirements for the nodes b and f. Thus the concept of atoms is

introduced primarily to aid in the effective use of computer memory. Typical

2.3.5 LISTS AND GARBAGE COLLECTION 411

Lists contain many more atoms than our example would indicate; the example of
(4)-(7) is intended to show the complexities that are possible, not the simplicities
that are usual.

A List is in essence nothing more than a linear list whose elements may
contain pointers to other Lists. The common operations we wish to perform on
Lists are the usual ones desired for linear lists (creation, destruction, insertion,
deletion, splitting, concatenation), plus further operations that are primarily of
interest for tree structures (copying, traversal, input and output of nested infor
mation). For these purposes any of the three basic techniques for representing
linked linear lists in memory-namely straight, circular, or double linkage-can
be used, with varying degrees of efficiency depending on the algorithms being
employed. For these three types of representation, diagram (7) might appear in
memory as follows:

Memory Straight linkage
location INFO DLINK RLINK

010:
020:
030:
040:
050:
060:
070:
080:
090:
100:
110:
120:
130:
140:

a
b
c
e

f
g

d

h

J

head
060

atom
090
010

head
110
120

head
060

head
head
010
060

020
030
040
050
A

070
080
A

100
A
A

130
140
A

Circular linkage
INFO DLINK RLINK

a
b
c
e

f
g

d

h

J

head
060

atom
090
010

head
110
120

head
060

head
head
010
060

020
030
040
050
010
070
080
060
100
090
110
130
140
120

Double linkage
INFO DLINK LLINK RLINK

a
b
c
e

f
g

d

h

J

head
060

atom
090
010

head
110
120

head
060

head
head
010
060

050 020
010 030
020 040
030 050
040 010
080 070
060 080
070 060
100 100
090 090
110 110
140 130
120 140
130 120

(8)

Here "LLINK" is used for a pointer to the left in a doubly linked representation.
The INFO and DLINK fields are identical in all three forms.

There is no need to repeat here the algorithms for List manipulation in any ·
of these three forms, since we have already discussed the ideas many times. The
following important points about Lists, which distinguish them from the simpler
special cases treated earlier, should however be noted:

1) It is implicit in the memory representation above that atomic nodes are
distinguishable from nonatomic nodes; furthermore, when circular or doubly
linked Lists are being used, it is desirable to distinguish header nodes from the
other types, as an aid in traversing the Lists. Therefore each node generally
contain a TYPE field that tells what kind of information the node represents.
This TYPE field is often used also to distinguish between various types of atoms
(for example, between alphabetic, integer, or floating point quantities, for use
when manipulating or displaying the data).

2) The format of nodes for general List manipulation with the MIX computer
might be designed in one of the following two ways.

412 INFORMATION STRUCTURES 2.3.5

a) Possible one-word format, assuming that all INFO appears in atoms:

(g)

S (sign): Mark bit used in garbage collection (see below).

T (type): T = 0 for List head; T = 1 for sub-List element; T > 1 for atoms.

REF:

RLINK:

When T = 0, REF is a reference count (see below); when T = 1,

REF points to the List head of the sub-List in question; when

T > 1, REF points to a node containing a mark bit and five bytes

of atomic information.

Pointer for straight or circular linkage as in (8).

b) Possible two-word format:

S, T: As in (g).

S T LLINK RLINK

INFO

LLINK, RLINK: The usual pointers for double linkage as in (8).

INFO: A full word of information associated with this node; for a
header node this may include a reference count, a running

pointer to the interior of the List to facilitate linear traversal,

an alphabetic name, etc. When T = 1 this information

includes DLINK.

3) It is clear that Lists are very general structures; indeed, it seems fair to

state that any structure whatsoever can be represented as a List when appropri

ate conventions are made. Because of this universality of Lists, a large number

of programming systems have been designed to facilitate List manipulation, and

there are usually several such systems available at any computer installation.

Such systems are based on a general-purpose format for nodes such as (g) or

(10) above, designed for flexibility in List operations. Actually, it is clear that

this general-purpose format is usually not the best format suited to a partic

ular application, and the processing time using the general-purpose routines

is noticeably slower than a person would achieve by hand-tailoring the system

to a particular problem. For example, it is easy to see that nearly all of the

applications we have worked out so far in this chapter would be encumbered by

a general-List representation as in (g) or (lo) instead of the node format that was

given in each case. A List manipulation routine must often examine the T-field

when it processes nodes, and that was not needed in any of our programs so

far. This loss of efficiency is repaid in many instances by the comparative ease

of programming and the reduction of debugging time when a general-purpose

system is used.
4) There is also an extremely significant difference between algorithms for

List processing and the algorithms given previously in this chapter. Since a single

2.3.5 LISTS AND GARBAGE COLLECTION 413

List may be contained in many other Lists, it is by no means clear exactly when
a List should be returned to the pool of available storage. Our algorithms so far
have always said "AVAIL <¢== X", whenever NODE(X) was no longer needed. But
since general Lists can grow and die in a completely unpredictable manner, it is
often quite difficult to tell just when a particular node is superfluous. Therefore
the problem of maintaining the list of available space is considerably more
difficult with Lists than it was in the simple cases considered previously. We will
devote the rest of this section to a discussion of the storage reclamation problem.

Let us imagine that we are designing a general-purpose List processing
system that will be used by hundreds of other programmers. Two principal
methods have been suggested for maintaining the available space list: the use
of reference counters, and garbage collection. The reference-counter technique
makes use of a new field in each node, which contains a count of how many
arrows point to this node. Such a count is rather easy to maintain as a program
runs, and whenever it drops to zero, the node in question becomes available.
The garbage-collection technique, on the other hand, requires a new one-bit field
in each node called the mark bit. The idea in this case is to write nearly all
the algorithms so that they do not return any nodes to free storage, and to let
the program run merrily along until all of the available storage is gone; then a
"recycling" algorithm makes use of the mark bits to identify all nodes that are
not currently accessible and to return them to available storage, after which the
program can continue.

Neither of these two methods is completely satisfactory. The principal
drawback of the reference-counter method is that it does not always free all
the nodes that are available. It works fine for overlapped Lists (Lists that
contain common sub-Lists); but recursive Lists, like our examples L and N in
(4), will never be returned to storage by the reference-counter technique. Their
counts will be nonzero (since they refer to themselves) even when no other List
accessible to the running program points to them. Furthermore, the reference
counter method uses a good chunk of space in each node (although this space is
sometimes available anyway due to the computer word size).

The difficulty with the garbage-collection technique, besides the annoying
loss of a bit in each node, is that it runs very slowly when nearly all the memory
space is in use; and in such cases the number of free storage cells found by the
reclamation process is not worth the effort. Programs that exceed the capacity
of storage (and many undebugged programs do!) often waste a good deal of time
calling the garbage collector several almost fruitless times just before storage is
finally exhansted. A partial solution to this problem is to let the programmer
specify a number k, signifying that processing should not continue after a garbage
collection run has found k or fewer free nodes.

Another problem is the occasional difficulty of determining exactly what
Lists are not garbage at a given stage. If the programmer has been using any
nonstandard techniques or keeping any pointer values in unusual places, chances
are good that the garbage collector will go awry. Some of the greatest mysteries
in the history of debugging have been caused by the fact that garbage collection

414 INFORMATION STRUCTURES 2.3.5

suddenly took place at an unexpected time during the running of programs
that had worked many times before. Garbage collection also requires that
programmers keep valid information in all pointer fields at all times, although
we often find it convenient to leave meaningless information in fields that the
program doesn't use-for example, the link in the rear node of a queue; see
exercise 2.2.3-6.

Although garbage collection requires one mark bit for each node, we could
keep a separate table of all the mark bits packed together in another memory
area, with a suitable correspondence between the location of a node and its mark
bit. On some computers this idea can lead to a method of handling garbage
collection that is more attractive than giving up a bit in each node.

J. Weizenbaum has suggested an interesting modification of the reference
counter technique. Using doubly linked List structures, he puts a reference
counter only in the header of each List. Thus, when pointer variables traverse
a List, they are not included in the reference counts for the individual nodes. If
we know the rules by which reference counts are maintained for entire Lists, we
know (in theory) how to avoid referring to any List that has a reference count
of zero. We also have complete freedom to explicitly override reference counts
and to return particular Lists to available storage. These ideas require careful
handling; they prove to be somewhat dangerous in the hands of inexperienced
programmers, and they've tended to make program debugging more difficult due
to the consequences of referring to nodes that have been erased. The nicest part
of Weizenbaum's approach is his treatment of Lists whose reference count has just
gone to zero: Such a List is appended at the end of the current available list -
this is easy to do with doubly linked Lists- and it is considered for available
space only after all previously available cells are used up. Eventually, as the
individual nodes of this List do become available, the reference counters of Lists
they refer to are decreased by one. This delayed action of erasing Lists is quite
efficient with respect to running time; but it tends to make incorrect programs
run correctly for awhile! For further details see CACM 6 (1963), 524-544.

Algorithms for garbage collection are quite interesting for several reasons.
In the first place, such algorithms are useful in other situations when we want to
mark all nodes that are directly or indirectly referred to by a given node. (For
example, we might want to find all subroutines called directly or indirectly by a
certain subroutine, as in exercise 2.2.3-26.)

Garbage collection generally proceeds in two phases. We assume that the
mark bits of all nodes are initially zero (or we set them all to zero). Now the first
phase marks all the nongarbage nodes, starting from those that are immediately
accessible to the main program. The second phase makes a sequential pass over
the entire memory pool area, putting all unmarked nodes onto the list of free
space. The marking phase is the most interesting, so we will concentrate our
attention on it. Certain variations on the second phase can, however, make it
nontrivial; see exercise 9.

When a garbage collection algorithm is running, only a very limited amount
of storage is available to control the marking procedure. This intriguing problem

2.3.5 LISTS AND GARBAGE COLLECTION 415

will become clear in the following discussion; it is a difficulty that is not appre

ciated by most people when they first hear about the idea of garbage collection,

and for several years there was no good solution to it.

The following marking algorithm is perhaps the most obvious.

Algorithm A (Marking). Let the entire memory used for List storage be

NDDE(l), NODE(2), ... , NODE(M), and suppose that these words either are atoms

or contain two link fields ALINK and BLINK. Assume that all nodes are initially

unmarked. The purpose of this algorithm is to mark all of the nodes that can be

reached by a chain of ALINK and/or BLINK pointers in nonatomic nodes, starting

from a set of "immediately accessible" nodes, that is, nodes pointed to by certain

fixed locations in the main program; these fixed pointers are used as a source for

all memory accesses.

Al. [Initialize.] Mark all nodes that are immediately accessible. Set K *- 1.

A2. [Does NODE(K) imply another?] Set K1 *- K + 1. If NODE(K) is an atom

or unmarked, go to step A3. Otherwise, if NODE(ALINK(K)) is unmarked:

Mark it and, if it is not at atom, set K1 *- min(K1, ALINK(K)). Similarly,

if NODE (BLINK (K)) is unmarked: Mark it and, if it is not an atom, set

K *- min(K1, BLINK (K)).

A3. [Done?] Set K *- KL If K ~ M, return to step A2; otherwise the algorithm

terminates. I

Throughout this algorithm and the ones that follow in this section, we will

assume for convenience that the nonexistent node "NODE(A)" is marked. (For

example, ALINK (K) or BLINK (K) may equal A in step A2.)

A variant of Algorithm A sets K1 *- M + 1 in step Al, removes the operation

"Ki *- K + 1" from step A2, and instead changes step A3 to

A3'. [Done?] Set K *- K + 1. If K ~ M, return to step A2. Otherwise if K1 ~ M,

set K *- K1 and K1 *- M+ 1 and return to step A2. Otherwise the algorithm
terminates.

It is very difficult to give a precise analysis of Algorithm A, or to determine .

whether it is better or worse than the variant just described, since no meaningful

way to describe the probability distribution of the input presents itself. We can

say that it takes up time proportional to nM in the worst case, where n is the

number of cells it marks; and, in general, we can be sure that it is very slow

when n is large. Algorithm A is too slow to make garbage collection a usable

technique.
Another fairly evident marking algorithm is to follow all paths and to record

branch points on a stack as we go:

Algorithm B (Marking). This algorithm achieves the same effect as Algo

rithm A, using STACK [1], STACK [2], ... as auxiliary storage to keep track of all

paths that have not yet been pursued to completion.

Bl. [Initialize.] Let T be the number of immediately accessible nodes; mark

them and place pointers to them in STACK [1], ... , STACK [T].

416 INFORMATION STRUCTURES

B2. [Stack empty?] If T = 0, the algorithm terminates.

B3. [Remove top entry.] Set K *--STACK [TJ, T *-- T - 1.

2.3.5

B4. [Examine links.] If NODE(K) is an atom, return to step B2. Otherwise, if
NODE(ALINK(K)) is unmarked, mark it and set T *-- T+ 1, STACK[TJ *
ALINK(K); if NODE(BLINK(K)) is unmarked, mark it and set T *-- T + 1,
STACK [TJ *-- BLINK (K) .°Return to B2. I

Algorithm B clearly has an execution time essentially proportional to the
number of cells it marks, and this is as good as we could possibly expect; but it
is not really usable for garbage collection because there is no place to keep the
stack! It does not seem unreasonable to assume that the stack in Algorithm B
might grow up to, say, five percent of the size of memory; but when garbage
collection is called, and all available space has been used up, there is only a
fixed (rather small) number of cells to use for such a stack. Most of the early
garbage collection procedures were essentially based on this algorithm. If the
special stack space was used up, the entire program had to be terminated.

A somewhat better alternative is possible, using a fixed stack size, by com
bining Algorithms A and B:

Algorithm C (Marking). This algorithm achieves the same effect as Algo
rithms A and B, using an auxiliary table of H cells, STACK [OJ, STACK [lJ, ... ,
STACK [H - lJ.

In this algorithm, the action "insert X on the stack" means the following:
"Set T *-- (T + 1) mod H, and STACK [TJ *-- X. If T = B, set B *-- (B + 1) mod Hand
K1 *-- min(K1, STACK [BJ)." (Note that T points to the current top of the stack,
and B points one place below the current bottom; STACK essentially operates as
an input-restricted deque.)

Cl. [Initialize.] Set T *-- H - 1, B *-- H - 1, K1 *-- M + 1. Mark all the immediately
accessible nodes, and successively insert their locations onto the stack (as
just described above).

C2. [Stack empty?] If T = B, go to C5.

C3. [Remove top entry.] Set K *--STACK [TJ, T *-- (T - 1) mod H.

C4. [Examine links.] If NODE(K) is an atom, return to step C2. Otherwise, if
NODE (AL INK (K)) is unmarked, mark it and insert ALINK (K) on the stack.
Similarly, if NODE (BLINK (K)) is unmarked, mark it and insert BLINK (K) on
the stack. Return to C2.

C5. [Sweep.] If K1 > M, the algorithm terminates. (The variable K1 represents
the smallest location where there is a possibility of a new lead to a node
that should be marked.) Otherwise, if NODE(K1) is an atom or unmarked,
increase K1 by 1 and repeat this step. If NODE(K1) is marked, set K *-- K1,
increase K1 by 1, and go to C4. I

This algorithm and Algorithm B can be improved if X is never put on the
stack when NODE(X) is an atom; moreover, steps B4 and C4 need not put items
on the stack when they know that the items will immediately be removed. Such

2.3.5 LISTS AND GARBAGE COLLECTION 417

modifications are straightforward and they have been left out to avoid making
the algorithms unnecessarily complicated.

Algorithm C is essentially equivalent to Algorithm A when H = 1, and to
Algorithm B when H = M; it gradually becomes more efficient as H becomes
larger. Unfortunately, Algorithm C defies a precise analysis for the same reason
as Algorithm A, and we have no good idea how large H should be to make this
method fast enough. It is plausible but uncomfortable to say that a value like
H = 50 is sufficient to make Algorithm C usable for garbage collection in most
applications.

Algorithms B and C use a stack kept in sequential memory locations; but we
have seen earlier in this chapter that linked memory techniques are well suited to
maintaining stacks that are not consecutive in memory. This suggests the idea
that we might keep the stack of Algorithm B somehow scattered through the
same memory area in which we are collecting garbage. This could be done easily
if we were to give the garbage collection routine a little more room in which
to breathe. Suppose, for example, we assume that all Lists are represented as
in (g), except that the REF fields of List head nodes are used for garbage collection
purposes instead of as reference counts. We can then redesign Algorithm B so
that the stack is maintained in the REF fields of the header nodes:

Algorithm D (Marking). This algorithm achieves the same effect as Algorithms
A, B, and C, but it assumes that the nodes have S, T, REF, and RLINK fields as
described above, instead of ALINKs and BLINKs. The S field is used as the mark
bit, so that S(P) = 1 means that NODE(P) is marked.

Dl. [Initialize.] Set TOP *- A. Then for each pointer P to the head of an
immediately accessible List (see step Al of Algorithm A), if S(P) = 0, set
S(P) *- 1, REF(P) *-TOP, TOP*- P.

D2. [Stack empty?] If TOP= A, the algorithm terminates.

D3. [Remove top entry.] Set P *-TOP, TOP*- REF(P).

D4. [Move through List.] Set P *- RLINK (P); then if P = A, or if T (P) = 0, go
to D2. Otherwise set S(P) *- 1. If T(P) > 1, set S(REF(P)) *- 1 (thereby
marking the atomic information). Otherwise (TCP) = 1), set Q *- REF(P);
if Q #- A and S(Q) = 0, set S(Q) *- 1, REF(Q) *-TOP, TOP *- Q. Repeat
step D4. I

Algorithm D may be compared to Algorithm B, which is quite similar, and
its running time is essentially proportional to the number of nodes marked.
However, Algorithm D is not recommended without qualification, because its
seemingly rather mild restrictions are often too stringent for a general List
processing system. This algorithm essentially requires that all List structures
be well-formed, as in (1), whenever garbage collection is called into action.
But algorithms for List manipulations momentarily leave the List structures
malformed, and a garbage collector such as Algorithm D must not be used during
those momentary periods. Moreover, care must be taken in step Dl when the
program contains pointers to the middle of a List.

418 INFORMATION STRUCTURES 2.3.5

After After
ALINK BLINK

El.
Initialize

E2.
Mark

E4. E5.
Down r-----,oi Down f-----3'1 E6. Up
ALINK Marked BLINK Marked

'----~ already ~-~ already

Fig. 38. Algorithm E for marking with no auxiliary stack space.

These considerations bring us to Algorithm E, which is an elegant marking
method discovered independently by Peter Deutsch and by Herbert Schorr and
W. M. Waite in 1965. The assumptions used in this algorithm are just a little
different from those of Algorithms A through D.

Algorithm E (Marking). Assume that a collection of nodes is given having the
following fields:

MARK (a one-bit field),
ATOM (another one-bit field),
ALINK (a pointer field),
BLINK (a pointer field).

When ATOM = 0, the ALINK and BLINK fields may contain A or a pointer to
another node of the same format; when ATOM= 1, the contents of the ALINK and
BLINK fields are irrelevant to this algorithm.

Given a nonnull pointer PO, this algorithm sets the MARK field equal to 1 in
NODE(PO) and in every other node that can be reached from NODE(PO) by a chain
of ALINK and BLINK pointers in nodes with ATOM = MARK = 0. The algorithm
uses three pointer variables, T, Q, and P. It modifies the links and control bits in
such a way that all ATOM, ALINK, and BLINK fields are restored to their original
settings after completion, although they may be changed temporarily.

El. [Initialize.] Set T *-- A, P *-- PO. (Throughout the remainder of this
algorithm, the variable T has a dual significance: When T -=/:- A, it points
to the top of what is essentially a stack as in Algorithm D; and the node
that T points to once contained a link equal to P in place of the "artificial"
stack link that currently occupies NODE (T) .)

E2. [Mark.] Set MARK (P) *-- l.

E3. [Atom?] If ATOM(P) = 1, go to E6.

E4. [Down ALINK.] Set Q *-- ALINK (P). If Q -=/:- A and MARK (Q) = 0, set
ATOM(P) *-- 1, ALINK(P) *-- T, T *-- P, P *-- Q, and go to E2. (Here the
ATOM field and ALINK fields are temporarily being altered, so that the list
structure in certain marked nodes has been rather drastically changed. But
these changes will be restored in step E6.)

E5. [Down BLINK.] Set Q *-- BLINK(P). If Q -=/:- A and MARK(Q) = 0, set
BLINK(P) *-- T, T *-- P, P *-- Q, and go to E2.

2.3.5 LISTS AND GARBAGE COLLECTION 419

ALINK[MARK] b[O] A[l] b a
BLINK[ATOM] c[O] [1] [OJ A c

b
AL INK [MARK] -[OJ [1]
BLINK[ATOM] -[1]

c ALINK[MARK] b[O] [1]
BLINK[ATOM] d[O] a d

d ALINK[MARK] e[O] c[l] e
BLINK[ATOM] d[O] [1] [OJ

e ALINK[MARK] A[O] [1]
BLINK[ATOM] c[O]

T A a a A a a c d d d c c a A

p a b b a c c d e e e d d c a

Next step El E2 E2 E6 E5 E2 E5 E2 E2 E5 E6 E5 E6 E6 E6

I
L__J

I I I I I I I I Nesting

Fig. 39. A structure marked by Algorithm E. (The table shows only changes that
have occurred since the previous step.)

E6. [Up.] (This step undoes the link switching made in step E4 or E5; the
setting of ATOM(T) tells whether ALINK(T) or BLINK(T) is to be restored.)
If T = A, the algorithm terminates. Otherwise set Q *- T. If ATOM(Q) = 1,
set ATOM(Q) *- 0, T *- ALINK(Q), ALINK(Q) *- P, P *- Q, and return to E5.
If ATOM(Q) = 0, set T *- BLINK(Q), BLINK(Q) *- P, P *- Q, and repeat E6. I

An example of this algorithm in action appears in Fig. 39, which shows the
successive steps encountered for a simple List structure. The reader will find it
worthwhile to study Algorithm Every carefully; notice how the linking structure
is artificially changed in steps E4 and E5, in order to maintain a stack analogous
to the stack in Algorithm D. When we return to a previous state, the ATOM
field is used to tell whether ALINK or BLINK contains the artificial address. The
"nesting" shown at the bottom of Fig. 39 illustrates how each nonatomic node
is visited three times during Algorithm E: The same configuration (T ,P) occurs
at the beginning of steps E2, E5, and E6.

420 INFORMATION STRUCTURES 2.3.5

A proof that Algorithm E is valid can be formulated by induction on the

number of nodes that are to be marked. We prove at the same time that P

returns to its initial value PO at the conclusion of the algorithm; for details, see

exercise 3. Algorithm E will run faster if step E3 is deleted and if special tests

for "ATOM(Q) = l" and appropriate actions are made in steps E4 and E5, as

well as a test "ATOM(PO) = ·l" in step El. We have stated the algorithm in its

present form for simplicity; the modifications just stated appear in the answer

to exercise 4.
The idea used in Algorithm E can be applied to problems other than garbage

collection; in fact, its use for tree traversal has already been mentioned in

exercise 2.3.1-21. The reader may also find it useful to compare Algorithm E

with the simpler problem solved in exercise 2.2.3-7.

Of all the marking algorithms we have discussed, only Algorithm D is

directly applicable to Lists represented as in (g). The other algorithms all

test whether or not a given node P is an atom, and the conventions of (g) are

incompatible with such tests because they allow atomic information to fill an

entire word except for the mark bit. However, each of the other algorithms

can be modified so that they will work when atomic data is distinguished from

pointer data in the word that links to it instead of by looking at the word

itself. In Algorithms A or C we can simply avoid marking atomic words until

all nonatomic words have been properly marked; then one further pass over all

the data suffices to mark all the atomic words. Algorithm B is even easier to

modify, since we need merely keep atomic words off the stack. The adaptation of

Algorithm Eis almost as simple, although if both ALINK and BLINK are allowed

to point to atomic data it will be necessary to introduce another 1-bit field in

nonatomic nodes. This is generally not hard to do. (For example, when there

are two words per node, the least significant bit of each link field may be used

to store temporary information.)
Although Algorithm E requires a time proportional to the number of nodes

it marks, this constant of proportionality is not as small as in Algorithm B;

the fastest garbage collection method known combines Algorithms B and E, as

discussed in exercise 5.
Let us now try to make some quantitative estimates of the efficiency of

garbage collection, as opposed to the philosophy of "AVAIL <== X" that was

used in most of the previous examples in this chapter. In each of the previous

cases we. could have omitted all specific mention of returning nodes to free

space and we could have substituted a garbage collector instead. (In a special

purpose application, as opposed to a set of general-purpose List manipulation

subroutines, the programming and debugging of a garbage collector is more

difficult than the methods we have used, and, of course, garbage collection

requires an extra bit reserved in each node; but we are interested here in the

relative speed of the programs once they have been written and debugged.)

The best garbage collection routines known have an execution time essen

tially of the form c1N + c2M, where c1 and c2 are constants, N is the number of

nodes marked, and M is the total number of nodes in the memory. Thus M - N is

2.3.5 LISTS AND GARBAGE COLLECTION 421

the number of free nodes found, and the amount of time required to return these

nodes to free storage is (c1N + c2M)/(M - N) per node. Let N = pM; this figure

becomes (c1 p+ c2) / (1-p). So if p = ~, that is, if the memory is three-fourths full,

we spend 3c1 + 4c2 units of time per free node returned to storage; when p = ~,
the corresponding cost is only ~c1 + ~c2 . If we do not use the garbage collection

technique, the amount of time per node returned is essentially a constant, c3 ,

and it is doubtful that c3 /c1 will be very large. Hence we can see to what extent

garbage collection is inefficient when the memory becomes full, and how it is

correspondingly efficient when the demand on memory is light.

Many programs have the property that the ratio p = N /M of good nodes to

garbage is quite small. When the pool of memory becomes full in such cases,

it might be best to move all the active List data to another memory pool of

equal size, using a copying technique (see exercise 10) but without bothering to

preserve the contents of the nodes being copied. Then when the second memory

pool fills up, we can move the data back to the first one again. With this method

more data can be kept in high-speed memory at once, because link fields tend

to point to nearby nodes. Moreover, there's no need for a marking phase, and

storage allocation is simply sequential.
It is possible to combine garbage collection with some of the other methods

of returning cells to free storage; these ideas are not mutually exclusive, and some

systems employ both the reference counter and the garbage collection schemes,

besides allowing the programmer to erase nodes explicitly. The idea is to employ

garbage collection only as a "last resort" whenever all other methods of returning

cells have failed. An elaborate system, which implements this idea and also

includes a mechanism for postponing operations on reference counts in order to

achieve further efficiency, has been described by L. P. Deutsch and D. G. Bobrow

in CACM 19 (1976), 522-526.
A sequential representation of Lists, which saves many of the link fields at

the expense of more complicated storage management, is also possible. See N. E.

Wiseman and J. 0. Hiles, Comp. J. 10 (1968), 338-343; W. J. Hansen, CACM
12 (1969), 499-506; and C. J. Cheney, CACM 13 (1970), 677-678.

Daniel P. Friedman and David S. Wise have observed that the reference

counter method can be employed satisfactorily in many cases even when Lists

point to themselves, if certain link fields are not included in the counts [Inf. Proc.

Letters 8 (1979), 41-45].
A great many variants and refinements of garbage collection algorithms

have been proposed. Jacques Cohen, in Computing Surveys 13 (1981), 341-

367, presents a detailed review of the literature prior to 1981, with important

comments about the extra cost of memory accesses when pages of data are

shuttled between slow memory and fast memory.

Garbage collection as we have described it is unsuitable for "real time"

applications, where each basic List operation must be quick; even if the garbage

collector goes into action infrequently, it requires large chunks of computer time

on those occasions. Exercise 12 discusses some approaches by which real-time

garbage collection is possible.

422 INFORMATION STRUCTURES 2.3.5

EXERCISES

It is a very sad thing nowadays
that there is so little useless information.

- OSCAR WILDE (1894)

.,. 1. [M21] In Section 2.3.4 .we saw that trees are special cases of the "classical"
mathematical concept of a directed graph. Can Lists be described in graph-theoretic
terminology?

2. [20] In Section 2.3.1 we saw that tree traversal can be facilitated using a threaded
representation inside the computer. Can List structures be threaded in an analogous
way?

3. [M26] Prove the validity of Algorithm E. [Hint: See the proof of Algorithm
2.3.lT.]

4. [28] Write a MIX program for Algorithm E, assuming that nodes are represented as
one MIX word, with MARK the (0: 0) field["+" = 0, "-" = 1], ATOM the (1: 1) field, ALINK
the (2: 3) field, BLINK the (4: 5) field, and A = 0. Also determine the execution time
of your program in terms of relevant parameters. (In the MIX computer the problem
of determining whether a memory location contains -0 or +o is not quite trivial, and
this can be a factor in your program.)

5. [25] (Schorr and Waite.) Give a marking algorithm that combines Algorithms B
and E as follows: The assumptions of Algorithm E with regard to fields within the
nodes, etc., are retained; but an auxiliary stack STACK [1], STACK [2], ... , STACK [N] is
used as in Algorithm B, and the mechanism of Algorithm Eis employed only when the
stack is full.

6. [00] The quantitative discussion at the end of this section says that the cost of
garbage collection is approximately c1N + c2M units of time; where does the "c2M" term
come from?

7. [24] (R. W. Floyd.) Design a marking algorithm that is similar to Algorithm E in
using no auxiliary stack, except that (i) it has a more difficult task to do, because each
node contains only MARK, ALINK, and BLINK fields-there is no ATOM field to provide
additional control; yet (ii) it has a simpler task to do, because it marks only a binary
tree instead of a general List. Here ALINK and BLINK are the usual LLINK and RLINK in
a binary tree .

.,. 8. [27] (L. P. Deutsch.) Design a marking algorithm similar to Algorithms D and E
in that it uses no auxiliary memory for a stack, but modify the method so that it
works with nodes of variable size and with a variable number of pointers having the
following format: The first word of a node has two fields MARK and SIZE; the MARK field
is to be treated as in Algorithm E, and the SIZE field contains a number n ~ 0. This
means that there are n consecutive words after the first word, each containing two
fields MARK (which is zero and should remain so) and LINK (which is A or points to the
first word of another node). For example, a node with three pointers would comprise
four consecutive words:

First word
Second word
Third word
Fourth word

MARK= 0 (will be set to 1) SIZE= 3
MARK = 0 LINK = first pointer
MARK= 0 LINK= second pointer
MARK = 0 LINK = third pointer.

Your algorithm should mark all nodes reachable from a given node PO.

2.3.5 LISTS AND GARBAGE COLLECTION 423

.,. 9. [28] (D. Edwards.) Design an algorithm for the second phase of garbage collection
that "compacts storage" in the following sense: Let NODE(l), ... , NODE(M) be one-word
nodes with fields MARK, ATOM, ALINK, and BLINK, as described in Algorithm E. Assume
that MARK = 1 in all nodes that are not garbage. The desired algorithm should relocate
the marked nodes, if necessary, so that they all appear in consecutive locations NODE (1),

... , NODE (K), and at the same time the ALINK and BLINK fields of nonatomic nodes
should be altered if necessary so that the List structure is preserved .

.,. 10. [28] Design an algorithm that copies a List structure, assuming that an internal
representation like that in (7) is being used. (Thus, if your procedure is asked to copy
the List whose head is the node .at the upper left corner of (7), a new set of Lists having
14 nodes, and with structure and information identical to that shown in (7), should
be created.)

Assume that the List structure is stored in memory using S, T, REF, and RLINK

fields as in (g), and that NODE(PO) is the head of the List to be copied. Assume further
that the REF field in each List head node is A; to avoid the need for additional memory
space, your copying procedure should make use of the REF fields (and reset them to A
again afterwards).

11. [M30] Any List structure can be "fully expanded" into a tree structure by repeat
ing all overlapping elements until none are left; when the List is recursive, this gives an
infinite tree. For example, the List (5) would expand into an infinite tree whose first
four levels are

~;*~
a* b C* e*

/""' I A~ f * 9* d* a* b C* e*

/\ /\ /\ I //~
h* j * f * 9* f * 9* d* a* b C* e*

//\\ I \ I \ I \ I \ I \ I //\\

Design an algorithm to test the equivalence of two List structures, in the sense
that they have the same diagram when fully expanded. For example, Lists A and B
are equivalent in this sense, if

A= (a: C, b, a: (b: D))

B =(a: (b:D),b,a:E))

C = (b: (a: C))

D =(a: (b:D))

E = (b: (a: C)).

12. [30] (M. Minsky.) Show that it is possible to use a garbage collection method
reliably in a "real time" application, for example when a computer is controlling
some physical device, even when stringent upper bounds are placed on the maximum
execution time required for each List operation performed. [Hint: Garbage collection
can be arranged to work in parallel with the List operations, if appropriate care is
taken.]

424 INFORMATION STRUCTURES 2.4

2.4. MULTILINKED STRUCTURES

Now THAT WE have examined linear lists and tree structures in detail, the
principles of representing structural information within a computer should be
evident. In this section we will look at another application of these techniques,
this time for the typical case in which the structural information is slightly more
complicated: In higher-level applications, several types of structure are usually
present simultaneously.

A "multilinked structure" involves nodes with several link fields in each
node, not just one or two as in most of our previous examples. We have already
seen some examples of multiple linkage, such as the simulated elevator system
in Section 2.2.5 and the multivariate polynomials in Section 2.3.3.

We shall see that the presence of many different kinds of links per node does
not necessarily make the accompanying algorithms any more difficult to write
or to understand than the algorithms already studied. We will also discuss the
important question, "How much structural information ought to be explicitly
recorded in memory?"

The problem we will consider arises in connection with writing a compiler
program for the translation of COBOL and related languages. A programmer who
uses COBOL may give alphabetic names to program variables on several levels;
for example, the program might refer to files of data for sales and purchases,
having the following structure:

1 SALES 1 PURCHASES
2 DATE 2 DATE

3 MONTH 3 DAY
3 DAY 3 MONTH
3 YEAR 3 YEAR

2 TRANSACTION 2 TRANSACTION
3 ITEM 3 ITEM (i)
3 QUANTITY 3 QUANTITY
3 PRICE 3 PRICE
3 TAX 3 TAX
3 BUYER 3 SHIPPER

4 NAME 4 NAME
4 ADDRESS 4 ADDRESS

This configuration indicates that each item in SALES consists of two parts, the
DATE and the TRANSACTION; the DATE is further divided into three parts, and the
TRANSACTION likewise has five subdivisions. Similar remarks apply to PURCHASES.
The relative order of these names indicates the order in which the quantities
appear in external representations of the file (for example, magnetic tape or
printed forms); notice that in this example "DAY" and "MONTH" appear in opposite
order in the two files. The programmer also gives further information, not shown
in this illustration, that tells how much space each item of information occupies
and in what format it appears; such considerations are not relevant to us in this
section, so they will not be mentioned further.

2.4 MULTILINKED STRUCTURES 425

A COBOL programmer first describes the file layout and the other program
variables, then specifies the algorithms that manipulate those quantities. To
refer to an individual variable in the example above, it would not be sufficient
merely to give the name DAY, since there is no way of telling if the variable called
DAY is in the SALES file or in the PURCHASES file. Therefore a COBOL programmer
is given the ability to write "DAY OF SALES" to refer to the DAY part of a SALES

item. The programmer could also write, more completely,

"DAY OF DATE OF SALES",

but in general there is no need to give more qualification than necessary to avoid
ambiguity. Thus,

"NAME OF SHIPPER OF TRANSACTION OF PURCHASES"

may be abbreviated to

"NAME OF SHIPPER"

since only one part of the data has been called SHIPPER.

These rules of COBOL may be stated more precisely as follows:

a) Each name is immediately preceded by an associated positive integer called
its level number. A name either refers to an elementary item or it is the
name of a group of one or more items whose names follow. In the latter
case, each item of the group must have the same level number, which must
be greater than the level number of the group name. (For example, DATE
and TRANSACTION above have level number 2, which is greater than the level
number 1 of SALES.)

b) To refer to an elementary item or group of items named A0 , the general
form is

Ao OF A1 OF ... OF An,

where n > 0 and where, for 0 < j < n, Aj is the name of some item
contained directly or indirectly within a group named Aj+l · There must be
exactly one item Ao satisfying this condition.

c) If the same name Ao appears in several places, there must be a way to refer
to each use of the name by using qualification.

As an example of rule (c), the data configuration

1 AA

2 BB
3 cc
3 DD

2 cc
would not be allowed, since there is no unambiguous way to refer to the second
appearance of CC. (See exercise 4.)

426 INFORMATION STRUCTURES 2.4

COBOL has another feature that affects compiler writing and the application
we are considering, namely an option in the language that makes it possible to
refer to many items at once. A COBOL programmer may write

MOVE CORRESPONDING a TO {3

which moves all items with corresponding names from data area a to data area {3.
For example, the COBOL statement

MOVE CORRESPONDING DATE OF SALES TO DATE OF PURCHASES

would mean that the values of MONTH, DAY and YEAR from the SALES file are to
be moved to the variables DAY, MONTH, YEAR in the PURCHASES file. (The relative
order of DAY and MONTH is thereby interchanged.)

The problem we will investigate in this section is to design three algorithms
suitable for use in a COBOL compiler, which are to do the following things:

Operation 1. To process a description of names and level numbers such
as (i), putting the relevant information into tables within the compiler for use
in operations 2 and 3.

Operation 2. To determine if a given qualified reference, as in rule (b), is
valid, and when it is valid to locate the corresponding data item.

Operation 3. To find all corresponding pairs of items indicated by a given
CORRESPONDING statement.

We will assume that our compiler already has a "symbol table subroutine"
that will convert an alphabetic name into a link that points to a table entry for
that name. (Methods for constructing symbol table algorithms are discussed in
detail in Chapter 6.) In addition to the Symbol Table, there is a larger table
that contains one entry for each item of data in the COBOL source program that
is being compiled; we will call this the Data Table.

Clearly, we cannot design an algorithm for operation 1 until we know what
kind of information is to be stored in the Data Table, and the form of the Data
Table depends on what information we need in order to perform operations 2
and 3; thus we look first at operations 2 and 3.

In order to determine the meaning of the COBOL reference

Ao OF Ai OF . . . OF An, n 2: 0, (3)

we should first look up the name A0 in the Symbol Table. There ought to be
a series of links from the Symbol Table entry to all Data Table entries for this
name. Then for each Data Table entry we will want a link to the entry for the
group item that contains it. Now if there is a further link field from the Data
Table items back to the Symbol Table, it is not hard to see how a reference like
(3) can be processed. Furthermore, we will want some sort of links from the
Data Table entries for group items to the items in the group, in order to locate
the pairs indicated by "MOVE CORRESPONDING".

2.4 MULTILINKED STRUCTURES 427

We have thereby found a potential need for five link fields in each Data
Table entry:

PREV (a link to the previous entry with the same name, if any);

PARENT (a link to the smallest group, if any, containing this item);

NAME (a link to the Symbol Table entry for this item);

CHILD (a link to the first subitem of a group);

SIB (a link to the next subitem in the group containing this item).

It is clear that COBOL data structures like those for SALES and PURCHASES above
are essentially trees; and the PARENT, CHILD, and SIB links that appear here are
familiar from our previous study. (The conventional binary tree representation
of a tree consists of the CHILD and SIB links; adding the PARENT link gives what
we have called a "triply linked tree." The five links above consist of these three
tree links together with PREV and NAME, which superimpose further information
on the tree structure.)

Perhaps not all five of these links will turn out to be necessary, or sufficient,
but we will try first to design our algorithms under the tentative assumption
that Data Table entries will involve these five link fields (plus further information
irrelevant to our problems). As an example of the multiple linking used, consider
the two COBOL data structures

1 A 1 H

3 B 5 F
7 c 8 G
7 D 5 B (4)

3 E 5 c
3 F 9 E

4 G 9 D

9 G

They would be represented as shown in (5) (with links indicated symbolically) ..
The LINK field of each Symbol Table entry points to the most recently encoun
tered Data Table entry for the symbolic name in question.

The first algorithm we require is one that builds the Data Table in such
a form. Note the flexibility in choice of level numbers that is allowed by the
COBOL rules; the left structure in (4) is completely equivalent to

1 A
2 B

3 c
3 D

2 E

2 F
3 G

because level numbers do not have to be sequential.

42S INFORMATION STRUCTURES 2.4

Symbol Table

LINK

Data Table

PREV PARENT NAME CHILD SIB

A: Al
B: B5
C: C5
D: D9
E: E9
F: F5
G: G9
H: Hl

Al:
B3~

C7:
D7:
E3:
F3:
G4:
Hl:
F5:

A

A

A

A

A

A

A

A

F3

A A B3 Hl
Al B C7 E3
B3 c A D7
B3 D A A

Al E A F3
Al F G4 A

F3 G A A

A H F5 A

Hl F GS B5
Empty boxes indicate
additional information
not relevant here

GS:
B5:

G4 F5
B3 Hl

G A A

B A C5
C5: C7 Hl c E9 A

E9: E3 C5 E A D9
D9: D7 C5 D A G9
G9: GS C5 G A A

Some sequences of level numbers are illegal, however; for example, if the
level number of D in (4) were changed to "6" (in either place) we would have
a meaningless data configuration, violating the rule that all items of a group
must have the same number. The following algorithm therefore makes sure that
COBOL's rule (a) has not been broken.

Algorithm A (Build Data Table). This algorithm is given a sequence of pairs
(L, P), where L is a positive integer "level number" and P points to a Symbol
Table entry, corresponding to COBOL data structures such as (4) above. The
algorithm builds a Data Table as in the example (5) above. When P points to a
Symbol Table entry that has not appeared before, LINK (P) will equal A. This
algorithm uses an auxiliary stack that is treated as usual (using either sequential
memory location, as in Section 2.2.2, or linked allocation, as in Section 2.2.3).

Al. [Initialize.] Set the stack contents to the single entry (0, A). (The stack
entries throughout this algorithm are pairs (L, P), where Lis an integer and
P a pointer; as this algorithm proceeds, the stack contains the level number
and pointers to the most recent data entries on all levels higher in the tree
than the current level. For example, just before encountering the pair "3 F"
in the example above, the stack would contain

(0, A) (1, Al) (3, E3)

from bottom to top.)

2.4 MULTILINKED STRUCTURES 429

A2. [Next item.] Let (L, P) be the next data item from the input. If the input

is exhausted, however, the algorithm terminates. Set Q ~ AVAIL (that is,

let Q be the location of a new node in which we can put the next Data Table

entry).

A3. [Set name links.] Set

PREV(Q) +-- LINK(P), LINK (P) +-- Q, NAME(Q) +-- P.

(This properly sets two of the five links in NODE(Q). We now want to set

PARENT, CHILD, and SIB appropriately.)

A4. [Compare levels.] Let the top entry of the stack be (L1, P1). If L1 < L, set

CHILD (P1) +-- Q (or, if P1 = A, set FIRST +-- Q, where FIRST is a variable

that will point to the first Data Table entry) and go to A6.

A5. [Remove top level.] If L1 > L, remove the top stack entry, let (L1, P1) be the

new entry that has just come to the top of the stack, and repeat step A5. If

L1 < L, signal an error (mixed numbers have occurred on the same level).

Otherwise, namely when L1 = L, set SIB(P1) +-- Q, remove the top stack

entry, and let (L1, P1) be the pair that has just come to the top of the stack.

A6. [Set family links.] Set PARENT (Q) +-- P1, CHILD (Q) +-- A, SIB (Q) +-- A.

A 7. [Add to stack.] Place (L, Q) on top of the stack, and return to step A2. I

The introduction of an auxiliary stack, as explained in step Al, makes this

algorithm so transparent that it needs no further explanation.

The next problem is to locate the Data Table entry corresponding to a

reference
Ao OF Ai OF . . . OF An, n 2: 0. (6)

A good compiler will also check to ensure that such a reference is unambiguous.

In this case, a suitable algorithm suggests itself immediately: All we need to do

is to run through the list of Data Table entries for the name Ao and make sure

that exactly one of these entries matches the stated qualification A1 , ... , An.

Algorithm B (Check a qualified reference). Corresponding to reference (6), a

Symbol Table subroutine will find pointers Po, P 1 , ... , Pn to the Symbol Table

entries for Ao, Ai, ... , An, respectively.
The purpose of this algorithm is to examine P0 , P 1 , ... , Pn and either to

determine that reference (6) is in error, or to set variable Q to the address of the

Data Table entry for the item referred to by (6).

B 1. [Initialize.] Set Q +-- A, P +-- LINK (P0).

B2. [Done?] If P = A, the algorithm terminates; at this point Q will equal A if

(6) does not correspond to any Data Table entry. But if P -=/:- A, set S +-- P

and k +-- 0. (Sis a pointer variable that will run from Pup the tree through

PARENT links; k is an integer variable that goes from 0 ton. In practice, the

pointers Po, ... , Pn would often be kept in a linked list, and instead of k, we

would substitute a pointer variable that traverses this list; see exercise 5.)

430 INFORMATION STRUCTURES 2.4

B3. [Match complete?] If k < n go on to B4. Otherwise we have found a
matching Data Table entry; if Q -=/:- A, this is the second entry found, so an
error condition is signaled. Set Q +-- P, P +-- PREV(P), and go to B2.

B4. [Increase k.] Set k +-- k + 1.

B5. [Move up tree.] Set ~ +-- PARENT(S). If S = A, we have failed to find a
match; set P = PREV (P) and go to B2.

B6. [Ak match?] If NAME(S) =Pk, go to B3, otherwise go to B5. I

Note that the CHILD and SIB links are not needed by this algorithm.

At top

Bl. Initialize B4. Increase k B5. Move up tree

Yes

Second
time

Error

Yes

Fig. 40. Algorithm for checking a COBOL reference.

B6. Ak match?

The third and final algorithm that we need concerns "MOVE CORRESPONDING";
before we design such an algorithm, we must have a precise definition of what is
required. The COBOL statement

MOVE CORRESPONDING a TO {3

where a and {3 are references such as (6) to data items, is an abbreviation for
the set of all statements

MOVE a' TO {3'

where there exists an integer n ~ 0 and n names Ao, AI, ... , An-I such that

a'= Ao OF AI OF ... OF An-I OF a

{3' =Ao OF AI OF ... OF An-I OF {3
(8)

and either a' or {3' is an elementary item (not a group item). Furthermore we
require that the first levels of (8) show complete qualifications, namely that AJ+I
be the parent of A1 for 0 ~ j < n; a' and {3' must be exactly n levels farther
down in the tree than a and {3 are.

With respect to our example (4),

MOVE CORRESPONDING A TO H

is therefore an abbreviation for the statements

MOVE B OF A TO B OF H
MOVE G OF F OF A TO G OF F OF H

The algorithm to recognize all corresponding pairs a', {3' is quite interesting
although not difficult; we move through the tree whose root is a, in preorder,

2.4 MULTILINKED STRUCTURES 431

simultaneously looking in the {3 tree for matching names, and skipping over
subtrees in which no corresponding elements can possibly occur. The names
Ao, ... , An-I of (8) are discovered in the opposite order An-I, ... , A 0 .

Algorithm C (Find CORRESPONDING pairs). Given PO and QO, which point to
Data Table entries for a and {3, respectively, this algorithm successively finds
all pairs (P, Q) of pointers to items (a', {3') satisfying the constraints mentioned
above.

Cl. [Initialize.] Set P +-- PO, Q +-- QO. (In the remainder of this algorithm, the
pointer variables P and Q will walk through trees having the respective roots
a and {3.)

C2. [Elementary?] If CHILD(P) =A or CHILD(Q) =A, output (P, Q) as one of the
desired pairs and go to C5. Otherwise set P +-- CHILD (P), Q +-- CHILD (Q).

(In this step, P and Q point to items a' and {3' satisfying (8), and we wish to
MOVE a' TO {3' if and only if either a' or {3' (or both) is an elementary item.)

C3. [Match name.] (Now P and. Q point to data items that have respective
qualifications of the forms

Ao OF AI OF ... OF An-I OF a

and
Bo OF AI OF ... OF An-I OF {3.

The object is to see if we can make B0 = Ao by examining all the names
of the group AI OF ... OF An-I OF {3.) If NAME(P) = NAME(Q), go to C2
(a match has been found). Otherwise, if SIB(Q) =I A, set Q +-- SIB(Q) and
repeat step C3. (If SIB (Q) = A, no matching name is present in the group,
and we continue on to step C4.)

C4. [Move on.] If SIB (P) # A, set P +-- SIB (P) and Q +-- CHILD (PARENT (Q)),

and go back to C3. If SIB(P) =A, set P +-- PARENT(P) and Q +-- PARENT(Q).

C5. [Done?] If P =PO, the algorithm terminates; otherwise go to C4. I

A flow chart for this algorithm is shown in Fig. 41. A proof that this algorithm
is valid can readily be constructed by induction on the size of the trees involved
(see exercise 9).

Q+-SIB(Q)
Yes

Cl.
Initialize

No C3. No
Match name match

C4. P+-PARENT(P)
Move 1-------~

on

Match P+-SIB(P) No
Yes

Fig. 41. Algorithm for "MOVE CORRESPONDING."

432 INFORMATION STRUCTURES 2.4

At this point it is worthwhile to study the ways in which the five link fields

PREV, PARENT, NAME, CHILD, and SIB are used by Algorithms B and C. The

striking feature is that these five links constitute a "complete set" in the sense

that Algorithms B and C do virtually the minimum amount of work as they

move through the Data Table. Whenever they need to refer to another Data

Table entry, its address i~ immediately available; there is no need to conduct a

search. It would be difficult to imagine how Algorithms B and C could possibly

be made any faster if any additional link information were present in the table.

(See exercise 11, however.)
Each link field may be viewed as a clue to the program, planted there in

order to make the algorithms run faster. (Of course, the algorithm that builds

the tables, Algorithm A, runs correspondingly slower, since it has more links to

fill in. But table-building is done only once.) It is clear, on the other hand, that

the Data Table constructed above contains much redundant information. Let us

consider what would happen if we were to delete certain of the link fields.

The PREV link, while not used in Algorithm C, is extremely important for

Algorithm B, and it seems to be an essential part of any COBOL compiler unless

lengthy searches are to be carried out. A field that links together all items of

the same name therefore seems essential for efficiency. We could perhaps modify

the strategy slightly and adopt circular linking instead of terminating each list

with A, but there is no reason to do this unless other link fields are changed or

eliminated.
The PARENT link is used in both Algorithms B and C, although its use in

Algorithm C could be avoided if we used an auxiliary stack in that algorithm, or

if we augmented SIB so that thread links are included (as in Section 2.3.2). So we

see that the PARENT link has been used in an essential way only in Algorithm B. If

the SIB link were threaded, so that the items that now have SIB= A would have

SIB= PARENT instead, it would be possible to locate the parent of any data item

by following the SIB links; the added thread links could be distinguished either

by having a new TAG field in each node that says whether the SIB link is a thread,

or by the condition "SIB (P) < P" if the Data Table entries are kept consecutively

in memory in order of appearance. This would mean a short search would be

necessary in step B5, and the algorithm would be correspondingly slower.

The NAME link is used by the algorithms only in steps B6 and C3. In

both cases we could make the tests "NAME(S) = Pk", NAME(P) = NAME(Q)"

in other ways if the NAME link were not present (see exercise 10), but this would

significantly slow down the inner loops of both Algorithms B and C. Here again

we see a trade-off between the space for a link and the speed of the algorithms.

(The speed of Algorithm C is not especially significant in COBOL compilers, when

typical uses of MOVE CORRESPONDING are considered; but Algorithm B should be

fast.) Experience indicates that other important uses are found for the NAME link

within a COBOL compiler, especially in printing diagnostic information.

Algorithm A builds the Data Table step by step, and it never has occasion

to return a node to the pool of available storage; so we usually find that Data

Table entries take consecutive memory locations in the order of appearance of

2.4 MULTILINKED STRUCTURES 433

the data items in the COBOL source program. Thus in our example (5), locations
Al, B3, ... would follow each other. This sequential nature of the Data Table
leads to certain simplifications; for example, the CHILD link of each node is
either A or it points to the node immediately following, so CHILD can be reduced
to a 1-bit field. Alternatively, CHILD could be removed in favor of a test if
PARENT(P + c) = P, where c is the node size in the Data Table.

Thus the five link fields are not all essential, although they are helpful from
the standpoint of speed in Algorithms B and C. This situation is fairly typical
of most multilinked structures.

It is interesting to note that at least half a dozen people writing COBOL

compilers in the early 1960s arrived independently at this same way to maintain
a Data Table using five links (or four of the five, usually with the CHILD link
missing). The first publication of such a technique was by H. W. Lawson, Jr.
[ACM National Conference Digest (Syracuse, N.Y.: 1962)]. But in 1965 an
ingenious technique for achieving the effects of Algorithms B and C, using only
two link fields and sequential storage of the Data Table, without a very great
decrease in speed, was introduced by David Dahm; see exercises 12 through 14.

EXERCISES

1. [00] Considering COBOL data configurations as tree structures, are the data items
listed by a COBOL programmer in preorder, postorder, or neither of those orders?

2. [10] Comment about the running time of Algorithm A.

3. [22] The PL/I language accepts data structures like those in COBOL, except that
any sequence of level numbers is possible. For example, the sequence

1 A
3 B

5 c
4 D
2 E

is equivalent to

1 A
2 B

3 c
3 D

2 E

In general, rule (a) is modified to read, "The items of a group must have a sequence
of nonincreasing level numbers, all of which are greater than the level number of the.
group name." What modifications to Algorithm A would change it from the COBOL
convention to this PL/I convention?

.,.. 4. [26] Algorithm A does not detect the error if a COBOL programmer violates rule
(c) stated in the text. How should Algorithm A be modified so that only data structures
satisfying rule (c) will be accepted?

5. [20] In practice, Algorithm B may be given a linked list of Symbol Table references
as input, instead of what we called "Po, P1, ... , Pn." Let T be a pointer variable such
that

INFO(T) =Po, INFO(RLINK(T)) =Pi, ... , INFO(RLINK[nl(T)) =Pn, RLINK[n+l](T) =A.

Show how to modify Algorithm B so that it uses such a linked list as input.

6. [23] The PL/I language accepts data structures much like those in COBOL, but
does not make the restriction of rule (c); instead, we have the rule that a qualified
reference (3) is unambiguous if it shows "complete" qualification - that is, if Ai+ 1 is

434 INFORMATION STRUCTURES 2.4

the parent of Aj for 0 :=::; j < n, and if An has no parent. Rule (c) is now weakened
to the simple condition that no two items of a group may have the same name. The
second "CC" in (2) would be referred to as "CC OF AA" without ambiguity; the three
data items 1 A

2 A

3 A

would be referred to as "A", "A OF A", "A OF A OF A" with respect to the PL/I con
vention just stated. (Note: Actually the word "OF" is replaced by a period in PL/I,
and the order is reversed; "CC OF AA" is really written "AA. CC" in PL/I, but this is not
important for the purposes of the present exercise.) Show how to modify Algorithm B
so that it follows the PL/I convention.

7. [15] Given the data structures in (i), what does the COBOL statement "MOVE

CORRESPONDING SALES TO PURCHASES" mean?

8. [1 OJ Under what circumstances is "MOVE CORRESPONDING a TO (3" exactly the
same as "MOVE a TO (3", according to the definition in the text?

9. [M23] Prove that Algorithm C is correct.

10. [23] (a) How could the test "NAME(S) =Pk" in step B6 be performed if there were
no NAME link in the Data Table nodes? (b) How could the test "NAME(P) = NAME(Q)"
in step C3 be performed if there were no NAME link in the Data Table entries? (Assume
that all other links are present as in the text.)

.,.. 11. [23] What additional links or changes in the strategy of the algorithms of the text
could make Algorithm B or Algorithm C faster?

12. [25] (D. M. Dahm.) Consider representing the Data Table in sequential locations
with just two links for each item:

PREV (as in the text);

SCOPE (a link to the last elementary item in this group).

We have SCOPE(P) = P if and only if NODE(P) represents an elementary item. For
example, the Data Table of (5) would be replaced by

PREV SCOPE PREV SCOPE PREV SCOPE

Al: A G4 F3: A G4 B5: B3 B5
B3: A D7 G4: A G4 C5: C7 G9
C7: A C7 Hl: A G9 E9: E3 E9
D7: A D7 F5: F3 G8 D9: D7 D9
E3: A E3 G8: G4 G8 G9: G8 G9

(Compare with (5) of Section 2.3.3.) Notice that NODE(P) is part of the tree below
NODE(Q) if and only if Q < P :=::; SCOPE(Q). Design an algorithm that performs the
function of Algorithm B when the Data Table has this format .

.,.. 13. [24] Give an algorithm to substitute for Algorithm A when the Data Table is to
have the format shown in exercise 12 .

.,.. 14. [28] Give an algorithm to substitute for Algorithm C when the Data Table has
the format shown in exercise 12.

15. [25] (David S. Wise.) Reformulate Algorithm A so that no extra storage is used
for the stack. [Hint: The SIB fields of all nodes pointed to by the stack are A in the
present formulation.]

2.5 DYNAMIC STORAGE ALLOCATION 435

2.5. DYNAMIC STORAGE ALLOCATION

WE HAVE SEEN how the use· of links implies that data structures need not be

sequentially located in memory; a number of tables may independently grow and

shrink in a common pooled memory area. However, our discussions have always

tacitly assumed that all nodes have the same size - that every node occupies a

certain fixed number of memory cells.
For a great many applications, a suitable compromise can be found so that

a uniform node size is indeed used for all structures (for example, see exercise 2).

Instead of simply taking the maximum size that is needed and wasting space in

smaller nodes, it is customary to pick a rather small node size and to employ

what may be called the classical linked-memory philosophy: "If there isn't room

for the information here, let's put it somewhere else and plant a link to it."

For a great many other applications, however, a single node size is not

reasonable; we often wish to have nodes of varying sizes sharing a common

memory area. Putting this another way, we want algorithms for reserving and

freeing variable-size blocks of memory from a larger storage area, where these

blocks are to consist of consecutive memory locations. Such techniques are

generally called dynamic storage allocation algorithms.
Sometimes, often in simulation programs, we want dynamic storage alloca

tion for nodes of rather small sizes (say one to ten words); and at other times,

often in operating systems, we are dealing primarily with rather large blocks of

information. These two points of view lead to slightly different approaches to

dynamic storage allocation, although the methods have much in common. For

uniformity in terminology between these two approaches, we will generally use

the terms block and area rather than "node" in this section, to denote a set of

contiguous memory locations.
Several authors began about 1975 to call the pool of available memory a

"heap." But in the present series of books, we will use that word only in its

more traditional sense related to priority queues (see Section 5.2.3).

A. Reservation. Figure 42 shows a typical memory map or "checkerboard," a

chart showing the current state of some memory pool. In this case the memory is·

shown partitioned into 53 blocks of storage that are "reserved," or in use, mixed

together with 21 "free" or "available" blocks that are not in use. After dynamic

storage allocation has been in operation for a while, the computer memory will

perhaps look something like this. Our first problem is to answer two questions:

a) How is this partitioning of available space to be represented inside the

computer?
b) Given such a representation of the available spaces, what is a good algorithm

for finding a block of n consecutive free spaces and reserving them?

The answer to question (a) is, of course, to keep a list of the available space

somewhere; this is almost always done best by using the available space itself to

contain such a list. (An exception is the case when we are allocating storage for

a disk file or other memory in which nonuniform access time makes it better to

maintain a separate directory of available space.)

436

00000

20000

40000

60000

80000

100000

120000

INFORMATION STRUCTURES 2.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
I I ' ' I ' ' ' I

- . ~ . . .,
.

~
I •f .

. .

I
Reserved area: ~

Free area: I I

Fig. 42. A memory map.

Thus, we can link together the available segments: The first word of each
free storage area can contain the size of that block and the address of the next
free area. The free blocks can be linked together in increasing or decreasing order
of size, or in order of memory address, or in essentially random order.

For example, consider Fig. 42, which illustrates a memory of 131,072 words,
addressed from 0 to 131071. If we were to link together the available blocks in
order of memory location, we would have one variable AVAIL pointing to the
first free block (in this case AVAIL would equal 0), and the other blocks would
be represented as follows:

location SIZE LINK

0 101 632
632 42 1488

[17 similar entries]
73654 1909 77519
77519 53553 A [special marker for last link]

Thus locations 0 through 100 form the first available block; after the reserved
areas 101-290 and 291-631 shown in Fig. 42, we have more free space in location
632-673; etc.

As for question (b), if we want n consecutive words, clearly we must locate
some block of m 2'.: n available words and reduce its size to m - n. (Furthermore,
when m = n, we must also delete this block from the list.) There may be several
blocks with n or more cells, and so the question becomes, which area should be
chosen?

Two principal answers to this question suggest themselves: We can use the
best-fit method or the first-fit method. In the former case, we decide to choose
an area with m cells, where m is the smallest value present that is n or more.
This might require searching the entire list of available space before a decision
can be made. The first-fit method, on the other hand, simply chooses the first
area encountered that has 2'.: n words.

Historically, the best-fit method was widely used for several years; this
naturally appears to be a good policy since it saves the larger available areas

2.5 DYNAMIC STORAGE ALLOCATION 437

for a later time when they might be needed. But several objections to the best
fit technique can be raised: It is rather slow, since it involves a fairly long search;
if best-fit is not substantially better than first-fit for other reasons, this extra
searching time is not worthwhile. More importantly, the best-fit method tends
to increase the number of very small blocks, and proliferation of small blocks is
usually undesirable. There are certain situations in which the first-fit technique
is demonstrably better than the best-fit method; for example, suppose we are
given just two available areas of memory, of sizes 1300 and 1200, and suppose
there are subsequent requests for blocks of sizes 1000, 1100, and 250:

memory available areas, available areas,
request first-fit best-fit

1300, 1200 1300, 1200 (i)
1000 300, 1200 1300, 200
1100 300, 100 200, 200

250 50, 100 stuck

(A contrary example appears in exercise 7.) The point is that neither method
clearly dominates the other, hence the simple first-fit method can be recom
mended.

Algorithm A (First-fit method). Let AVAIL point to the first available block
of storage, and suppose that each available block with address P has two fields:
SIZE(P), the number of words in the block; and LINK(P), a pointer to the next
available block. The last pointer is A. This algorithm searches for and reserves
a block of N words, or reports failure.

Al. [Initialize.] Set Q +- LOC(AVAIL). (Throughout the algorithm we use two
pointers, Q and P, which are generally related by the condition P = LINK(Q).
We assume that LINK(LOC(AVAIL)) =AVAIL.)

A2. [End of list?] Set P +- LINK (Q). If P = A, the algorithm terminates
unsuccessfully; there is no room fo:r a block of N consecutive words.

A3. [Is SIZE enough?] If SIZE(P) > N, go to A4; otherwise set Q +- P and return .
to step A2.

A4. (Reserve N.] Set K +- SIZE(P) - N. If K = 0, set LINK(Q) +- LINK(P)
(thereby removing an empty area from the list); otherwise set SIZE(P) +- K.
The algorithm terminates successfully, having reserved an area of length N
beginning with location P + K. I

This algorithm is certainly straightforward enough. However, a significant
improvement in its running speed can be made with only a rather slight change
in strategy. This improvement is quite important, and the reader will find it a
pleasure to discover it without being told the secret (see exercise 6).

Algorithm A may be used whether storage allocation is desired for small N
or large N. Let us assume temporarily, however, that we are primarily interested
in large values ofN. Then notice what happens when SIZE(P) is equal to N+l in
that algorithm: We get to step A4 and reduce SIZE(P) to 1. In other words, an

438 INFORMATION STRUCTURES 2.5

available block of size 1 has just been created; this block is so small it is virtually
useless, and it just clogs up the system. We would have been better off if we had
reserved the whole block of N + 1 words, instead of saving the extra word; it is
often better to expend a few words of memory to avoid handling unimportant
details. Similar remarks apply to blocks of N + K words when K is very small.

If we allow the possibi}ity of reserving slightly more than N words it will be
necessary to remember how many words have been reserved, so that later when
this block becomes available again the entire set of N + K words is freed. This
added amount of bookkeeping means that we are tying up space in every block
in order to make the system more efficient only in certain circumstances when
a tight fit is found; so the strategy doesn't seem especially attractive. However,
a special control word as the first word of each variable-size block often turns
out to be desirable for other reasons, and so it is usually not unreasonable to
expect the SIZE field to be present in the first word of all blocks, whether they
are available or reserved.

In accordance with these conventions, we would modify step A4 above to
read as follows:

A4'. [Reserve 2: N.] Set K +- SIZE(P) - N. If K < c (where c is a small positive
constant chosen to reflect an amount of storage we are willing to sacrifice in
the interests of saving time), set LINK (Q) +- LINK (P) and L +- P. Otherwise
set SIZE(P) +- K, L +- P + K, SIZE(L) +- N. The algorithm terminates
successfully, having reserved an area of length N or more beginning with
location L.

A value for the constant c of about 8 or 10 is suggested, although very little
theory or empirical evidence exists to compare this with other choices. When
the best-fit method is being used, the test of K < c is even more important than
it is for the first-fit method, because tighter fits (smaller values of K) are much
more likely to occur, and the number of available blocks should be kept as small
as possible for that algorithm.

B. Liberation. Now let's consider the inverse problem: How should we return
blocks to the available space list when they are no longer needed?

It is perhaps tempting to dismiss this problem by using garbage collection
(see Section 2.3.5); we could follow a policy of simply doing nothing until space
runs out, then searching for all the areas currently in use and fashioning a new
AVAIL list.

The idea of garbage collection is not to be recommended, however, for all
applications. In the first place, we need a fairly "disciplined" use of pointers if we
are to be able to guarantee that all areas currently in use will be easy to locate,
and this amount of discipline is often lacking in the applications considered here.
Secondly, as we have seen before, garbage collection tends to be slow when the
memory is nearly full.

There is another more important reason why garbage collection is not satis
factory, due to a phenomenon that did not confront us in our previous discussion
of the technique: Suppose that there are two adjacent areas of memory, both

2.5 DYNAMIC STORAGE ALLOCATION 439

of which are available, but because of the garbage-collection philosophy one of
them (shown shaded) is not in the AVAIL list.

In this diagram, the heavily shaded areas at the extreme left and right are
unavailable. We may now reserve a section of the area known to be available:

(3)

If garbage collection occurs at this point, we have two separate free areas,

(4)

Boundaries between available and reserved areas have a tendency to perpetuate
themselves, and as time goes on the situation gets progressively worse. But if
we had used a philosophy of returning blocks to the AVAIL list as soon as they
become free, and collapsing adjacent available areas together, we would have
collapsed (2) into

-'----------- (5)

and we would have obtained

(6)

which is much better than (4)· This phenomenon causes the garbage-collection
technique to leave memory more broken up than it should be.

In order to remove this difficulty, we can use garbage collection together
with the process of compacting memory, that is, moving all the reserved blocks
into consecutive locations, so that all available blocks come together whenever
garbage collection is done. The allocation algorithm now becomes completely
trivial by contrast with Algorithm A, since there is only one available block at all
times. Even though this technique takes time to recopy all the locations that are
in use, and to change the value of the link fields therein, it can be applied with.
reasonable efficiency when there is a disciplined use of pointers, and when there
is a spare link field in each block for use by the garbage collection algorithms.
(See exercise 33.)

Since many applications do not meet the requirements for the feasibility of
garbage collection, we shall now study methods for returning blocks of memory
to the available space list. The only difficulty in these methods is the collapsing
problem: Two adjacent free areas should be merged into one. In fact, when an
area bounded by two available blocks becomes free, all three areas should be
merged together into one. In this way a good balance is obtained in memory
even though storage areas are continually reserved and freed over a long period
of time. (For a proof of this fact, see the "fifty-percent rule" below.)

The problem is to determine whether the areas at either side of the returned
block are currently available; and if they are, we want to update the AVAIL list
properly. The latter operation is a little more difficult than it sounds.

440 INFORMATION STRUCTURES 2.5

The first solution to these problems is to maintain the AVAIL list in order of

increasing memory locations.

Algorithm B (Liberation with sorted list). Under the assumptions of Algo

rithm A, with the additional assumption that the AVAIL list is sorted by memory

location (that is, if P points to an available block and LINK (P) f- A, then

LINK (P) > P), this algorithm adds the block of N consecutive cells beginning

at location PO to the AVAIL list. We naturally assume that none of these N cells

is already available.

Bl. [Initialize.] Set Q +- LOC(AVAIL). (See the remarks in step Al above.)

B2. [Advance P.] Set P +- LINK(Q). If P = A, or if P > PO, go to B3; otherwise

set Q +- P and repeat step B2.

B3. [Check upper bound.] If PO+ N = P and P f- A, set N +- N + SIZE(P) and

set LINK(PO) +- LINK(P). Otherwise set LINK(PO) +- P.

B4. [Check lower bound.] If Q + SIZE(Q) =PO (we assume that

SIZE(LOC(AVAIL)) = 0,

so this test always fails when Q = LOC(AVAIL)), set SIZE(Q) +- SIZE(Q) +N

and LINK(Q) +- LINK(PO). Otherwise set LINK(Q) +-PO, SIZE(PO) +- N. I

Steps B3 and B4 do the desired collapsing, based on the fact that the pointers

Q < PO < P are the beginning locations of three consecutive available areas.

If the AVAIL list is not maintained in order of locations, the reader can see

that a "brute force" approach to the collapsing problem would require a complete

search through the entire AVAIL list; Algorithm B reduces this to a search through

about half of the AVAIL list (in step B2) on the average. Exercise 11 shows how

Algorithm B can be modified so that, on the average, only about one-third of the

AVAIL list must be searched. But obviously, when the AVAIL list is long, all of

these methods are much slower than we want them to be. Isn't there some way

to reserve and free storage areas so that we don't need to do extensive searching

through the AVAIL list?

We will now consider a method that eliminates all searching when storage

is returned and that can be modified, as in exercise 6, to avoid almost all of

the searching when storage is reserved. The technique makes use of a TAG field

at both ends of each block, and a SIZE field in the first word of each block;

this overhead is negligible when reasonably large blocks are being used, although

it is perhaps too much of a penalty to pay in situations when the blocks have a

very small average size. Another method described in exercise 19 requires only

one bit in the first word of each block, at the expense of a little more running

time and a slightly more complicated program.

At any rate, let us now assume that we don't mind adding a little bit of

control information, in order to save a good deal of time over Algorithm B when

the AVAIL list is long. The method we will describe assumes that each block has

2.5 DYNAMIC STORAGE ALLOCATION

the following form:

Reserved block (TAG = "+") Free block (TAG = "-")

+ I SIZE I First word SIZE LINK

LINK l Second word r

J SIZE-2 words l
1----.---,----,-~.,.---,----i ~~~~~~~~~

+\ Last word SIZE

441

The idea in the following algorithm is to maintain a doubly linked AVAIL list,
so that entries may conveniently be deleted from random parts of the list. The
TAG field at either end of a block can be used to control the collapsing process,
since we can tell easily whether or not both adjacent blocks are available.

Double linking is achieved in a familiar way, by letting the LINK in the first
word point to the next free block in the list, and letting the LINK in the second
word point back to the previous block; thus, if P is the address of an available
block, we always have

LINK(LINK(P) + 1) = P = LINK(LINK(P + 1)). (8)

To ensure proper "boundary conditions," the list head is set up as follows:

LOC(AVAIL)+l: - - ~ 0 0
LOC(AVAIL): 1-1 : 0 I 0 I ~to first block in available space list (g)

~ to last block in available space list

A first-fit reservation algorithm for this technique may be designed very
much like Algorithm A, so we shall not consider it here (see exercise 12). The
principal new feature of this method is the way the block can be freed in
essentially a fixed amount of time:

Algorithm C (Liberation with boundary tags). Assume that blocks of locations
have the forms shown in (7), and assume that the AVAIL list is doubly linked, as
described above. This algorithm puts the block of locations starting with address
PO into the AVAIL list. If the pool of available storage runs from locations mo
through m 1 , inclusive, the algorithm assumes for convenience that

TAG(mo -1) = TAG(m1+1) = "+".

Cl. [Check lower bound.] If TAG(PO - 1) = "+", go to C3.

C2. [Delete lower area.] Set P +- PO-SIZE(PO - 1), and then set P1 +- LINK(P),
P2 +- LINK(P + 1), LINK(P1+1) +- P2, LINK(P2) +- P1, SIZE(P) +
SIZE(P) + SIZE(PO), PO+- P.

C3. (Check upper bound.] Set P +-PO+ SIZE(PO). If TAG(P) = "+", go to C5.

C4. (Delete upper area.] Set P1 +- LINK(P), P2 +- LINK(P+l), LINK(P1+1) +
P2, LINK(P2) +- P1, SIZE(PO) +- SIZE(PO) + SIZE(P), P +- P + SIZE(P).

442 INFORMATION STRUCTURES 2.5

C5. (Add to AVAIL list.] Set SIZE(P - 1) +- SIZE(PO), LINK(PO) +- AVAIL,
LINK(PO + 1) +- LOC(AVAIL), LINK(AVAIL + 1) +- PO, AVAIL +- PO,
TAG (PO) +-TAG (P - 1) +- "-". I

The steps of Algorithm C are straightforward consequences of the storage
layout (7); a slightly longer algorithm that is a little faster appears in exercise 15.
In step C5, AVAIL is an abt>reviation for LINK(LOC(AVAIL)), as shown in (g).

C. The "buddy system." We will now study another approach to dynamic
storage allocation, suitable for use with binary computers. This method uses one
bit of overhead in each block, and it requires all blocks to be of length 1, 2, 4,
8, or 16, etc. If a block is not 2k words long for some integer k, the next higher
power of 2 is chosen and extra unused space is allocated accordingly.

The idea of this method is to keep separate lists of available blocks of each
size 2k, 0 ~ k :::; m. The entire pool of memory space under allocation consists
of 2m words, which can be assumed to have the addresses 0 through 2m - 1.
Originally, the entire block of 2m words is available. Later, when a block of
2k words is desired, and if nothing of this size is available, a larger available
block is split into two equal parts; ultimately, a block of the right size 2k will
appear. When one block splits into two (each of which is half as large as the
original), these two blocks are called buddies. Later when both buddies are
available again, they coalesce back into a single block; thus the process can be
maintained indefinitely, unless we run out of space at some point.

The key fact underlying the practical usefulness of this method is that if we
know the address of a block (the memory location of its first word), and if we
also know the size of that block, we know the address of its buddy. For example,
the buddy of the block of size 16 beginning in binary location 101110010110000
is a block starting in binary location 101110010100000. To see why this must be
true, we first observe that as the algorithm proceeds, the address of a block of
size 2k is a multiple of 2k. In other words, the address in binary notation has at
least k zeros at the right. This observation is easily justified by induction: If it
is true for all blocks of size 2k+1, it is certainly true when such a block is halved.

Therefore a block of size, say, 32 has an address of the form xx ... xOOOOO
(where the x's represent either 0 or 1); if it is split, the newly formed buddy blocks
have the addresses xx ... xOOOOO and xx ... xlOOOO. In general, let buddyk(x) =
address of the buddy of the block of size 2k whose address is x; we find that

buddy (x) = { x + 2k, if x mod 2k+l = O;
k x - 2k, if x mod 2k+l = 2k.

This function is readily computed with the "exclusive or" instruction (sometimes
called "selective complement" or "add without carry") usually found on binary
computers; see exercise 28.

The buddy system makes use .of a one-bit TAG field in each block:

TAG(P) = 0,
TAG(P) = 1,

if the block with address P is reserved;
if the block with address P is available.

(11)

2.5 DYNAMIC STORAGE ALLOCATION 443

Besides this TAG field, which is present in all blocks, available blocks also have

two link fields, LINKF and LINKB, which are the usual forward and backward

links of a doubly linked list; and they also have a KVAL field to specify k when

their size is 2k. The algorithms below make use of the table locations AVAIL [OJ ,
AVAIL [1], ... , AVAIL [m], which serve respectively as the heads of the lists of

available storage of sizes 1, 2, 4, ... , 2m. These lists are doubly linked, so as

usual the list heads contain two pointers (see Section 2.2.5):

AVAILF[k] = LINKF(LOC(AVAIL[k])) =link to rear of AVAIL[k] list;

AVAILB[k] = LINKB(LOC(AVAIL[k])) =link to front of AVAIL[k] list.

Initially, before any storage has been allocated, we have

AVAILF[m] =AVAILB[m] =0,

LINKF(O) = LINKB(O) = LOC(AVAIL[m]),

TAG(O) = 1, KVAL(O) = m

(indicating a single available block of length 2m, beginning in location 0), and

AVAILF[k] =AVAILB[k] =LDC(AVAIL[k]), for 0::; k < m

(indicating empty lists for available blocks of lengths 2k for all k < m).

From this description of the buddy system, the reader may find it enjoyable

to design the necessary algorithms for reserving and freeing storage areas before

looking at the algorithms given below. Notice the comparative ease with which

blocks can be halved in the reservation algorithm.

Algorithm R (Buddy system reservation). This algorithm finds and reserves

a block of 2k locations, or reports failure, using the organization of the buddy

system as explained above.

Rl. [Find block.] Let j be the smallest integer in the range k ::; j ::; m for

which AVAILF[j] i- LOC(AVAIL[j]), that is, for which the list of available

blocks of size 2j is not empty. If no such j exists, the algorithm terminates

unsuccessfully, since there are no known available blocks of sufficient size to·

meet the request.

R2. (Remove from list.] Set L +- AVAILF [j], P +- LINKF (L), AVAILF [j] +- P,

LINKB(P) +- LOC(AVAIL[j]), and TAG(L) +- 0.

R3. [Split required?] If j = k, the algorithm terminates (we have found and

reserved an available block starting at address L).

R4. (Split.] Decrease j by 1. Then set P +- L + 2j, TAG(P) +- 1, KVAL(P) +- j,

LINKF(P) +- LINKB(P) +- LOC(AVAIL[j]), AVAILF[j] +- AVAILB[j] +- P.

(This splits a large block and enters the unused half in the AVAIL [j] list,

which was empty.) Go back to step R3. I

Algorithm S (Buddy system liberation). This algorithm returns a block of 2k

locations, starting in address L, to free storage, using the organization of the

buddy system as explained above.

444 INFORMATION STRUCTURES 2.5

SL [Is buddy available?] Set P +- buddyk(L). (See Eq. (io).) If k = m or if

TAG(P) = 0, or if TAG(P) = 1 and KVAL(P) -f- k, go to S3.

82. [Combine with buddy.] Set

LINKF(LINKB(P)) +- LINKF(P), LINKB (LINKF (P)) +- LINKB (P).

(This removes block P· from the A VAIL [k] list.) Then set k +- k + 1, and if

P < L set L +- P. Return to Sl.

83. [Putonlist.] SetTAG(L) +-1,P+-AVAILF[k],LINKF(L) +-P,LINKB(P) +-L,

KVAL(L) +-k, LINKB(L) +-LDC(AVAIL[k]), AVAILF[k] +-L. (This puts

block Lon the AVAIL [k] list.) I

D. Comparison of the methods. The mathematical analysis of these dynamic

storage-allocation algorithms has proved to be quite difficult, but there is one

interesting phenomenon that is fairly easy to analyze, namely the "fifty-percent

rule":

If Algorithms A and B are used continually in such a way that the system

tends to an equilibrium condition, where there are N reserved blocks in

the system, on the average, each equally likely to be the next one deleted,

and where the quantity K in Algorithm A takes on nonzero values (or, more

generally, values 2: c as in step A4') with probability p, then the average

number of available blocks tends to approximately ~pN.

This rule tells us approximately how long the AVAIL list will be. When the

quantity p is near 1-this will happen if c is very small and if the block sizes are

infrequently equal to each other- we have about half as many available blocks

as unavailable ones; hence the name "fifty-percent rule."

It is not hard to derive this rule. Consider the following memory map:

AB CCB A BB BCB B

ltll --- -
This shows the reserved blocks divided into three categories:

A: when freed, the number of available blocks will decrease by one;

B: when freed, the number of available blocks will not change;

C: when freed, the number of available blocks will increase by one.

Now let N be the number of reserved blocks, and let M be the number of

available ones; let A, B, and C be the number of blocks of the types identified

above. We have
N=A+B+C

M = H2A+B+E)

where E = 0, 1, or 2 depending on conditions at the lower and upper boundaries.

Let us assume that N is essentially constant, but that A, B, C, and E are

random quantities that reach a stationary distribution after a block is freed and a

(slightly different) stationary distribution after a block is allocated. The average

change in M when a block is freed is the average value of (C-A)/N; the average

change in M when a block is allocated is 1 - p. So the equilibrium assumption

2.5 DYNAMIC STORAGE ALLOCATION 445

tells us that the average value of C - A - N + pN is zero. But then the average
value of 2M is pN plus the average value of E, since 2M = N +A - C + E by (15).
The fifty-percent rule follows.

Our assumption that each deletion applies to a random reserved block will
be valid if the lifetime of a block is an exponentially distributed random variable.
On the other hand, if all blocks have roughly the same lifetime, this assumption
is false; John E. Shore has pointed out that type A blocks tend to be "older"
than type C blocks when allocations and liberations tend to have a somewhat
first-in-first-out character, since a sequence of adjacent reserved blocks tends to
be in order from youngest to oldest and since the most recently allocated block
is almost never type A. This tends to produce a smaller number of available
blocks, giving even better performance than the fifty-percent rule would predict.
[See CACM 20 (1977), 812-820.]

For more detailed information about the fifty-percent rule, see D. J. M.
Davies, BIT 20 (1980), 279-288; C. M. Reeves, Comp. J. 26 (1983), 25-35;
G. Ch. Pflug, Comp. J. 27 (1984), 328-333.

Besides this interesting rule, our knowledge of the performance of dynamic
storage allocation algorithms is based almost entirely on Monte Carlo exper
iments. Readers will find it instructive to conduct their own simulation ex
periments when they are choosing between storage allocation algorithms for a
particular machine and a particular application or class of applications. The
author carried out several such experiments just before writing this section (and,
indeed, the fifty-percent rule was noticed during those experiments before a
proof for it was found); let us briefly examine the methods and results of those
experiments here.

The basic simulation program ran as follows, with TIME initially zero and
with the memory area initially all available:

Pl. Advance TIME by 1.

P2. Free all blocks in the system that are scheduled to be freed at the current
value of TIME.

P3. Calculate two quantities S (a random size) and T (a random lifetime), based
on some probability distributions, using the methods of Chapter 3.

P4. Reserve a new block of length S, which is due to be freed at (TIME+ T).
Return to P 1. I

Whenever TIME was a multiple of 200, detailed statistics about the performance
of the reservation and liberation algorithms were printed. The same sequence
of values of S and T was used for each pair of algorithms tested. After TIME
advanced past 2000, the system usually had reached a more or less steady state
that gave every indication of being maintained indefinitely thereafter. However,
depending on the total amount of storage available and on the distributions of
S and T in step P3, the allocation algorithms would occasionally fail to find
enough space and the simulation experiment was then terminated.

446 INFORMATION STRUCTURES 2.5

Let C be the total number of memory locations available, and let S and t
denote the average values of 8 and Tin step P3. It is easy to see that the expected
number of unavailable words of memory at any given time is St, once TIME
is sufficiently large. When st was greater than about ~C in the experiments,
memory overflow usually occurred, often before C words of memory were actually
needed. The memory was.able to become over 90 percent filled when the block
size was small compared to C, but when the block sizes were allowed to exceed
tc (as well as taking on much smaller values) the program tended to regard the
memory as "full" when fewer than ~ C locations were actually in use. Empirical
evidence suggests strongly that block sizes larger than 1

1
0 C should not be used

with dynamic storage allocation if effective operation is expected.
The reason for this behavior can be understood in terms of the fifty-percent

rule: If the system reaches an equilibrium condition in which the size f of an
average free block is less than the sizer of an average block in use, we can expect
to get an unfillable request unless a large free block is available for emergencies.
Hence f > r in a saturated system that doesn't overflow, and we have C =
f M + rN > rM + rN ~ (~p + l)rN. The total memory in use is therefore
r N < C / (~p + 1); when p ~ 1 we are unable to use more than about ~ of the
memory cells.

The experiments were conducted with three size distributions for 8:

(81) an integer chosen uniformly between 100 and 2000;
(82) sizes (1, 2, 4, 8, 16, 32) chosen with respective probabilities(~,~'~'

1 1 1) .
16' 32' 32 '

(83) sizes (10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 500, 1000, 2000, 3000, 4000) selected with equal probability.

The time distribution T was usually a random integer chosen uniformly between
1 and t, for fixed t = 10, 100, or 1000.

Experiments were also made in which Twas chosen uniformly between 1 and
min(l~UJ, 12500) in step P3, where U is the number of time units remaining
until the next scheduled freeing of some currently reserved block in the system.
This time distribution was meant to simulate an "almost-last-in-first-out" be
havior: For if T were always chosen < U, the storage allocation system would
degenerate into simply a stack operation requiring no complex algorithms. (See
exercise 1.) The stated distribution causes T to be chosen greater than U about
20 percent of the time, so we have almost, but not quite, a stack operation. When
this distribution was used, algorithms such as A, B, and C behaved much better
than usual; there were rarely, if ever, more than two items in the entire AVAIL
list, while there were about 14 reserved blocks. On the other hand, the buddy
system algorithms, Rand S, were slower when this distribution was used, because
they tend to split and coalesce blocks more frequently in a stack-like operation.
The theoretical properties of this time distribution appear to be quite difficult
to deduce (see exercise 32).

Figure 42, which appeared near the beginning of this section, was the
configuration of memory at TIME= 5000, with size distribution (81) and with the

2.5

00000

20000

40000

60000

80000

100000

120000

DYNAMIC STORAGE ALLOCATION 447

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
I I I I I I I I I

~ . ·
: .· :

I .
I I I . . , I I

.

Fig. 43. Memory map obtained with the best-fit method. (Compare this with Fig. 42,

which shows the first-fit method, and Fig. 44, which shows the buddy system, for the

same sequence of storage requests.)

time distribution chosen randomly between 1 and 100, using the first-fit method

just as in Algorithms A and B above. For this experiment, the probability p

that enters into the "fifty-percent rule" was essentially 1, so we would expect

about half as many available blocks as reserved blocks. Actually Fig. 42 shows

21 available and 53 reserved. This does not disprove the fifty-percent rule:

For example, at TIME = 4600 there were 25 available and 49 reserved. The

configuration in Fig. 42 merely shows how the fifty-percent rule is subject to

statistical variations. The number of available blocks generally ranged between

20 and 30, while the number of reserved blocks was generally between 45 and 55.

Figure 43 shows the configuration of memory obtained with the same data

as Fig. 42 but with the best-fit method used instead of the first-fit method. The

constant c in step A4' was set to 16, to eliminate small blocks, and as a result

the probability p dropped to about 0. 7 and there were fewer available areas.

When the time distribution was changed to vary from 1 to 1000 instead of

1 to 100, situations precisely analogous to those shown in Figs. 42 and 43 were

obtained, with all appropriate quantities approximately multiplied by 10. For

example, there were 515 reserved blocks; and 240 free blocks in the equivalent

of Fig. 42, 176 free blocks in the equivalent of Fig. 43.

In all experiments comparing the best-fit and first-fit methods, the latter

always appeared to be superior. When memory size was exhausted, the first-fit

method actually stayed in action longer than the best-fit method before memory

overflow occurred, in most instances.

The buddy system was also applied to the same data that led to Figs. 42

and 43, and Fig. 44 was the result. Here, all sizes in the range 257 to 512 were

treated as 512, those between 513 and 1024 were raised to 1024, etc. On the

average this means that about four thirds as much memory was requested (see

exercise 21); the buddy system, of course, works better on size distributions like

that of (82) above, instead of (81). Notice that there are available blocks of

sizes 29
, 210, 211 , 212, 213, and 214 in Fig. 44.

Simulation of the buddy system showed that it performs much better than

might be expected. It is clear that the buddy system will sometimes allow two

adjacent areas of the same size to be available without merging them into one

448 INFORMATION STRUCTURES 2.5

217

216

215

214

213

212

210

Fig. 44. Memory map obtained with the buddy system. (The tree structure indicates
the division of certain large blocks into buddies of half the size. Squares indicate
available blocks.)

(if they are not buddies); but this situation is not present in Fig. 44 and, in
fact, it is rare in practice. In cases where memory overflow occurred, memory
was 95 percent reserved, and this reflects a surprisingly good allocation balance.
Furthermore, it was very seldom necessary to split blocks in Algorithm R, or to
merge them in Algorithm S; the tree remained much like Fig. 44, with available
blocks on the most commonly used levels. Some mathematical results that give
insight into this behavior, at the lowest level of the tree, have been obtained by
P. W. Purdom, Jr., and S. M. Stigler, JACM 17 (1970), 683-697.

Another surprise was the excellent behavior of Algorithm A after the modifi
cation described in exercise 6; only 2.8 inspections of available block sizes were
necessary on the average (using size distribution (81) and times chosen uniformly
between 1 and 1000), and more than half of the time only the minimum value,
one iteration, was necessary. This was true in spite of the fact that about
250 available blocks were present. The same experiment with Algorithm A
unmodified showed that about 125 iterations were necessary on the average
(so about half of the AVAIL list was being examined each time); 200 or more
iterations were found to be necessary about 20 percent of the time.

This behavior of Algorithm A unmodified can, in fact, be predicted as a
consequence of the fifty-percent rule. At equilibrium, the portion of memory
containing the last half of the reserved blocks will also contain the last half of
the free blocks; that portion will be involved half of the time when a block is
freed, and so it must be involved in half of the allocations in order to maintain
equilibrium. The same argument holds when one-half is replaced by any other
fraction. (These observations are due to J. M. Robson.)

2.5 DYNAMIC STORAGE ALLOCATION 449

The exercises below include MIX programs for the two principal methods

that are recommended as a consequence of the remarks above: (i) the boundary

tag system, as modified in exercises 12 and 16; and (ii) the buddy system. Here

are the approximate results:

Boundary tag system:
Buddy system:

Time for reservation Time for liberation

33+7A
19 + 25R

18, 29, 31, or 34
27 + 268

Here A> 1 is the number of iterations necessary when searching for an available

block that is large enough; R > 0 is the number of times a block is split in two

(the initial difference of j - kin Algorithm R); and 8 > 0 is the number of times

buddy blocks are reunited during Algorithm S. The simulation experiments

indicate that under the stated assumptions with size distribution (81) and time

chosen between 1 and 1000, we may take A = 2.8, R = 8 = 0.04 on the average.

(The average values A= 1.3, R = 8 = 0.9 were observed when the "almost-last

in-first-out" time distribution was substituted as explained above.) This shows

that both methods are quite fast, with the buddy system slightly faster in MIX's

case. Remember that the buddy system requires about 44 percent more space

when block sizes are not constrained to be powers of 2.
A corresponding time estimate for the garbage collection and compacting

algorithm of exercise 33 is about 104 units of time to locate a free node, assuming

that garbage collection occurs when the memory is approximately half full, and

assuming that the nodes have an average length of 5 words with 2 links per

node. The pros and cons of garbage collection are discussed in Section 2.3.5.

When the memory is not heavily loaded and when the appropriate restrictions

are met, garbage collection and compacting is very efficient; for example, on the

MIX computer, the garbage collection method is faster than the other two, if the

accessible items never occupy more than about one-third of the total memory

space, and if the nodes are relatively small.
If the assumptions underlying garbage collection are met, the best strategy

may be to divide the pool of memory into two halves and to do all allocation -

sequentially within one half. Instead of freeing blocks as they become available,

we simply wait until the current active half of memory is full; then we can copy all

active data to the other half, simultaneously removing all holes between blocks,

with a method like that of exercise 33. The size of each half pool might also be

adjusted as we switch from one half to the other.

The simulation techniques mentioned above were applied also to some other

storage allocation algorithms. The other methods were so poor by comparison

with the algorithms of this section that they will be given only brief mention here:

a) Separate AVAIL lists were kept for each size. A single free block was

occasionally split into two smaller blocks when necessary, but no attempt was

made to put such blocks together again. The memory map became fragmented

into finer and finer parts until it was in terrible shape; a simple scheme like this

is almost equivalent to doing separate allocation in disjoint areas, one area for

each block size.

450 INFORMATION STRUCTURES 2.5

b) An attempt was made to do two-level allocation: The memory was divided

into 32 large sectors. A brute-force allocation method was used to reserve large

blocks of 1, 2, or 3 (rarely more) adjacent sectors; each large block such as this

was subdivided to meet storage requests until no more room was left within

the current large block, and then another large block was reserved for use in

subsequent allocations. Eath large block was returned to free storage only when

all space within it became available. This method almost always ran out of

storage space very quickly.
Although this particular method of two-level allocation was a failure for

the data considered in the author's simulation experiments, there are other

circumstances (which occur not infrequently in practice) when a multiple-level

allocation strategy can be beneficial. For example, if a rather large program

operates in several stages, we might know that certain types of nodes are needed

only within a certain subroutine. Some programs might also find it desirable

to use quite different allocation strategies for different classes of nodes. The

idea of allocating storage by zones, with possibly different strategies employed

in each zone and with the ability to free an entire zone at once, is discussed by

Douglas T. Ross in CACM 10 (1967), 481-492.

For further empirical results about dynamic storage allocation, see the arti

cles by B. Randell, CACM 12 (1969), 365-369, 372; P. W. Purdom, S. M. Stigler,

and T. 0. Cheam, BIT 11 (1971), 187-195; B. H. Margolin, R. P. Parmelee, and

M. Schatzoff, IBM Systems J. 10 (1971), 283-304; J. A. Campbell, Comp. J.
14 (1971), 7-9; John E. Shore, CACM 18 (1975), 433-440; Norman R. Nielsen,

CACM 20 (1977), 864-873.

*E. Distributed fit. If the distribution of block sizes is known in advance, and

if each block present is equally likely to be the next one freed regardless of when

it was allocated, we can use a technique that has substantially better memory

utilization than the general-purpose techniques described so far, by following the

suggestions of E. G. Coffman, Jr., and F. T. Leighton [J. Computer and System
Sci. 38, (1989), 2-35]. Their "distributed fit" method works by partitioning

memory into roughly N + VN lg N slots, where N is the desired maximum

number of blocks to be handled in steady state. Each slot has a fixed size,

although different slots may have different sizes; the main point is that any

given slot has fixed boundaries, and it will either be empty or contain a single

allocated block.
The first N slots in Coffman and Leighton's scheme are laid out according

to the assumed distribution of sizes, while the last VN lg N slots all have the

maximum size. For example, if we assume that the block sizes will be uniformly

distributed between 1 and 256, and if we expect to handle N = 214 such blocks,

we would divide the memory into N /256 = 26 slots of each size 1, 2, ... , 256,

followed by an "overflow area" that contains VN lg N = 27 · 14 = 1792 blocks of

size 256. When the system is operating at full capacity, we expect it to handle

N blocks of average size 2 ~7 , occupying 2 ~7 N = 221 + 213 = 2,105,344 locations;

this is the amount of space we have allocated to the first N slots. We have also

2.5 DYNAMIC STORAGE ALLOCATION 451

set aside an additional 1792 · 256 = 458, 752 locations to handle the effects of
random variations; this additional overhead amounts to O(N- 1/ 2 log N) of the
total space, rather than a constant multiple of N as in the buddy system, so it
becomes a negligible fraction when N --+ oo. In our example, however, it still
amounts to about 183 of the total allocation.

The slots should be arranged in order so that the smaller slots precede the
larger ones. Given this arrangement, we can allocate blocks by using either the
first-fit or the best-fit technique. (Both methods are equivalent in this case,
because the slot sizes are ordered.) The effect, under our assumptions, is to
start searching at an essentially random place among the first N slots whenever
a new allocation request comes in, and to continue until we find an empty slot.

If the starting slot for each search is truly random between 1 and N, we will
not have to invade the overflow area very often. Indeed, if we insert exactly N
items starting at random slots, overflow will occur only 0(ffi) times, on the
average. The reason is that we can compare this algorithm to hashing with linear
probing (Algorithm 6.4L), which has the same behavior except that the search
for an empty cell wraps around from N to 1 instead of going into an overflow
area. The analysis of Algorithm 6.4L in Theorem 6.4K shows that, when N
items have been inserted, the average displacement of each item from its hash
address is ~(Q(N) - 1) '""' .j7rN/8; by circular symmetry this average is easily
seen to be the same as the average number of times a search goes from slot k
to slot k + 1, for each k. Overflows in the distributed-fit method correspond to
searches that go from slot N to slot 1, except that our situation is even better
because we avoid some congestion by not wrapping around. Therefore fewer than
.j7rN/8 overflows will occur, on the average. This analysis does not take account
of deletions, which preserve the assumptions of Algorithm 6.4L only if we move
blocks back when deleting another block that intervened between their starting
slots and their allocated slots (see Algorithm 6.4R); again, however, moving
them back would only increase the chance of overflow. Our analysis also fails to
account for the effect of having more than N blocks present at once; this can
happen if we assume only that the arrival time between blocks is about one Nth
of the residence time. For the case of more than N blocks we need to extend the
analysis of Algorithm 6.4L, but Coffman and Leighton proved that the overflow
area will almost never need more than ffi lg N slots; the probability of running
off the end is less than O(N-M) for all M.

In our example, the starting slot for the search during an allocation is not
uniform among slots 1, 2, ... , N; it is, instead, uniform among slots 1, 65, 129,
... , N - 63, because there are N /256 = 64 slots of each size. But this deviation
from the random model considered in the previous paragraph makes overflow
even less likely than predicted. All bets are off, of course, if the assumptions
about block size distribution and occupancy time are violated.

F. Overflow. What do we do when no more room is available? Suppose there
is a request for, say, n consecutive words, when all available blocks are too small.
The first time this happens, there usually are more than n available locations

452 INFORMATION STRUCTURES 2.5

present, but they are not consecutive; compacting memory (that is, moving
some of the locations that are in use, so that all available locations are brought
together) would mean that we could continue processing. But compacting is slow,
and it requires a disciplined use of pointers; moreover, the vast majority of cases
in which the first-fit method runs out of room will soon thereafter run completely
out of space anyway, no matter how much compacting and re-compacting is
done. Therefore it is generally not worthwhile to write a compacting program,
except under special circumstances in connection with garbage collection, as
in exercise 33. If overflow is expected to occur, some method for removing
items from memory and storing them on an external memory device can be
used, with provision for bringing the information back again when it is needed.
This implies that all programs referring to the dynamic memory area must be
severely restricted with regard to the allowable references they make to other
blocks, and special computer hardware (for example, interrupt on absence of
data, or automatic "paging") is generally required for efficient operation under
these conditions.

Some decision procedure is necessary to decide which blocks are the most
likely candidates for removal. One idea is to maintain a doubly linked list of the
reserved blocks, in which a block is moved up to the front of the list each time
it is accessed; then the blocks are effectively sorted in order of their last access,
and the block at the rear of the list is the one to remove first. A similar effect
can be achieved more simply by putting the reserved blocks into a circular list
and including a "recently used" bit in each block; the latter is set to 1 whenever
the block is accessed. When it is time to remove a block, a pointer moves along
the circular list, resetting all "recently used" bits to 0 until finding a block that
has not been used since the last time the pointer reached this part of the circle.

J.M. Robson has shown [JACM 18 (1971), 416-423] that dynamic storage
allocation strategies that never relocate reserved blocks cannot possibly be guar
anteed to use memory efficiently; there will always be pathological circumstances
in which the method breaks down. For example, even when blocks are restricted
to be of sizes 1 and 2, overflow might occur with the memory only about ~ full,
no matter what allocation algorithm is used! Robson's interesting results are
surveyed in exercises 36-40, and in exercises 42-43 where he has shown that the
best-fit method has a very bad worst case by comparison with first-fit.

G. For further reading. A comprehensive survey and critical review of
dynamic storage allocation techniques, based on many more years of experience
than were available to the author when the material above was written, has
been compiled by Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David
Boles, Lecture Notes in Computer Science 986 (1995), 1-116.

EXERCISES
1. [20] What simplifications can be made to the reservation and liberation algo

rithms of this section, if storage requests always appear in a "last-in-first-out" manner,
that is, if no reserved block is freed until after all blocks that were reserved subsequently
have already been freed?

2.5 DYNAMIC STORAGE ALLOCATION 453

2. [I:lM"23] (E. Wolman.) Suppose that we want to choose a fixed node size for
variable-length items, and suppose also that when each node has length k and when an
item has length l, it takes ll/(k - b)l nodes to store this item. (Here bis a constant,
signifying that b words of each node contain control information, such as a link to
the next node.) If the average length l of an item is L, what choice of k minimizes
the average amount of storage space required? (Assume that the average value of
(l/(k - b)) mod 1 is equal to 1/2, for any fixed k, as l varies.)

3. [40] By computer simulation, compare the best-fit, first-fit, and worst-fit methods
of storage allocation; in the latter method, the largest available block is always chosen.
Is there any significant difference in the memory usage?

4. [22] Write a MIX program for Algorithm A, paying special attention to making
the inner loop fast. Assume that the SIZE field is (4: 5), the LINK field is (0: 2), and
A< O.

~ 5. [18] Suppose it is known that N is always 100 or more in Algorithm A. Would it
be a good idea to set c = 100 in the modified step A4'?

~ 6. [23] (Next fit.) After Algorithm A has been used repeatedly, there will be a strong
tendency for blocks of small SIZE to remain at the front of the AVAIL list, so that it will
often be necessary to search quite far into the list before finding a block of length N or
more. For example, notice how the size of the blocks essentially increases in Fig. 42,
for both reserved and free blocks, from the beginning of memory to the end. (The
AV AIL list used while Fig. 42 was being prepared was kept sorted by order of location,
as required by Algorithm B.) Can you suggest a way to modify Algorithm A so that
(a) short blocks won't tend to accumulate in a particular area, and (b) the AV AIL list
may still be kept in order of increasing memory locations, for purposes of algorithms
like Algorithm B?

7. [1 OJ The example (1) shows that first-fit can sometimes be definitely superior to
best-fit. Give a similar example that shows a case where best-fit is superior to first-fit.

8. [21] Show how to modify Algorithm A in a simple way to obtain an algorithm for
the best-fit method, instead of first-fit.

~ 9. [26] In what ways could a reservation algorithm be designed to use the best-fit
method, without searching through the whole AVAIL list? (Try to think of ways that
cut down the necessary search as much as possible.)

10. [22] Show how to modify Algorithm B so that the block of N consecutive cells
beginning at location PO is made available, without assuming that each of these N cells
is currently unavailable; assume, in fact, that the area being freed may actually overlap
several blocks that are already free.

11. [M25] Show that the improvement to Algorithm A suggested in the answer to
exercise 6 can also be used to lead to a slight improvement in Algorithm B, which cuts
the average length of search from half the length of the AVAIL list to one-third this
length. (Assume that the block being freed will be inserted into a random place within
the sorted AVAIL list.)

~ 12. [20] Modify Algorithm A so that it follows the boundary-tag conventions of
(7)-(9), uses the modified step A4' described in the text, and also incorporates the
improvement of exercise 6.

13. [21] Write a MIX program for the algorithm of exercise 12.

454 INFORMATION STRUCTURES 2.5

14. [21] What difference would it make to Algorithm C and the algorithm of exer
cise 12, (a) if the SIZE field were not present in the last word of a free block? or (b) if
the SIZE field were not present in the first word of a reserved block?

~ 15. [24] Show how to speed up Algorithm C at the expense of a slightly longer
program, by not changing any more links than absolutely necessary in each of four
cases depending on whether .TAG(PO - 1), TAG(PO + SIZE(PO)) are plus or minus.

16. [24] Write a MIX program for Algorithm C, incorporating the ideas of exercise 15.

17. [10] What should the contents ofLOC(AVAIL) and LOC(AVAIL) +1 be in (g) when
there are no available blocks present?

~ 18. [20] Figs. 42 and 43 were obtained using the same data, and essentially the same
algorithms (Algorithms A and B), except that Fig. 43 was prepared by modifying
Algorithm A to choose best-fit instead of first-fit. Why did this cause Fig. 42 to have a
large available area in the higher locations of memory, while in Fig. 43 there is a large
available area in the lower locations?

~ 19. [24] Suppose that blocks of memory have the form of (7), but without the TAG or
SIZE fields required in the last word of the block. Suppose further that the following
simple algorithm is being used to make a reserved block free again: Q r AVAIL,
LINK(PO) r Q, LINK(PO +1) r LOC(AVAIL), LINK(Q +1) r PO, AVAIL r PO, TAG(PO) r
"-". (This algorithm does nothing about collapsing adjacent areas together.)

Design a reservation algorithm, similar to Algorithm A, that does the necessary
collapsing of adjacent free blocks while searching the AVAIL list, and at the same time
avoids any unnecessary fragmentation of memory as in (2), (3), and (4).

20. [00] Why is it desirable to have the AVAIL [k] lists in the buddy system doubly
linked instead of simply having straight linear lists?

21. [Hl\,{25] Examine the ratio an/bn, where an is the sum of the first n terms of
1+2+4 + 4 + 8 + 8 + 8 + 8 + 16 + 16 +···,and bn is the sum of the first n terms of
1+2+3+4 + 5 + 6 + 7 + 8 + 9 + 10 + · · ·, as n goes to infinity.

~ 22. [21] The text repeatedly states that the buddy system allows only blocks of size 2k
to be used, and exercise 21 shows this can lead to a substantial increase in the storage
required. But if an 11-word block is needed in connection with the buddy system, why
couldn't we find a 16-word block and divide it into an 11-word piece together with two
free blocks of sizes 4 and 1?

23. [05] What is the binary address of the buddy of the block of size 4 whose binary
address is 011011110000? What would it be if the block were of size 16 instead of 4?

24. [20] According to the algorithm in the text, the largest block (of size 2m) has no
buddy, since it represents all of storage. Would it be correct to define buddym(O) = 0
(namely, to make this block its own buddy), and then to avoid testing k =min step Sl?

~ 25. [22] Criticize the following idea: "Dynamic storage allocation using the buddy
system will never reserve a block of size 2m in practical situations (since this would fill
the whole memory), and, in general, there is a maximum size 2n for which no blocks of
greater size will ever be reserved. Therefore it is a waste of time to start with such large
blocks available, and to combine buddies in Algorithm S when the combined block has
a size larger than 2n."

~ 26. [21] Explain how the buddy system could be used for dynamic storage allocation
in memory locations 0 through M-1 even when M does not have the form 2m as required
in the text.

2.5 DYNAMIC STORAGE ALLOCATION 455

27. [24] Write a MIX program for Algorithm R, and determine its running time.

28. [25] Assume that MIX is a binary computer, with a new operation code XOR defined

as follows (using the notation of Section 1.3.1): "C = 5, F = 5. For each bit position in

location M that equals 1, the corresponding bit position in register A is complemented

(changed from 0 to 1or1 to O); the sign of rA is unaffected. The execution time is 2u."

Write a MIX program for Algorithm S, and determine its running time.

29. [20] Could the buddy system do without the tag bit in each reserved block?

30. [M48] Analyze the average behavior of Algorithms R and S, given reasonable

distributions for the sequence of storage requests.

31. [M40] Can a storage allocation system analogous to the buddy system be designed

using the Fibonacci sequence instead of powers of two? (Thus, we might start with Fm

available words, and split an available block of Fk words into two buddies of respective

lengths Fk-1 and Fk-2·)

32. [Hl\,{4 7] Determine limn-+oo an, if it exists, where an is the mean value of tn in

a random sequence defined as follows: Given the values of tk for 1 < k < n, let tn be

chosen uniformly from {1, 2, ... , 9n}, where

9n = l ~ min(lOOOO, f(tn-1 - 1), f(tn-2 - 2), · ·., f(t1 - (n - 1)))J,

and f(x) = x if x > 0, f(x) = oo if x < 0. (Note: Some limited empirical tests indicate

that an might be approximately 14, but this is probably not very accurate.)

~ 33. [28] (Garbage collection and compacting.) Assume that memory locations 1, 2,

... , AVAIL - 1 are being used as a storage pool for nodes of varying sizes, having the

following form: The first word of NODE(P) contains the fields

SIZE(P) = number of words in NODE(P);
T(P) =number of link fields in NODE(P); T(P) < SIZE(P);

LINK (P) = special link field for use only during garbage collection.

The node immediately following NODE(P) in memory is NODE(P + SIZE(P)). Assume

that the only fields in NODE(P) that are used as links to other nodes are LINK (P + 1),

LINK (P + 2), ... , LINK (P + T (P)), and each of these link fields is either A or the address

of the first word of another node. Finally, assume that there is one further link variable

in the program, called USE, and it points to one of the nodes.

Design an algorithm that (i) determines all nodes accessible directly or indirectly

from the variable USE, (ii) moves these nodes into memory locations 1 through K - 1, for

some K, changing all links so that structural relationships are preserved, and (iii) sets

AVAIL r K.
For example, consider the following contents of memory, where INFO (L) denotes

the contents of location L, excluding LINK (L):

1: SIZE = 2, T = 1
2: LINK = 6, INFO = A
3: SIZE = 3, T = 1
4: LINK = 8, INFO = B
5: CONTENTS= C

6: SIZE = 2, T = 0
7: CONTENTS= D
8: SIZE = 3, T = 2
9: LINK = 8, INFO = E

10: LINK = 3, INFO = F

Your algorithm should transform this into

1: SIZE = 3, T = 1 4: SIZE = 3, T = 2

2: LINK = 4, INFO = B 5: LINK = 4, INFO = E
3: CONTENTS = C 6: LINK = 1, INFO = F

AVAIL= 11,
USE= 3.

AVAIL= 7,
USE= 1.

456 INFORMATION STRUCTURES 2.5

34. [29] Write a MIX program for the algorithm of exercise 33, and determine its
running time.

35. [22] Contrast the dynamic storage allocation methods of this section with the
techniques for variable-size sequential lists discussed at the end of Section 2.2.2.

11>- 36. [20] A certain lunch counter in Hollywood, California, contains 23 seats in a row.
Diners enter the shop in grQups of one or two, and a glamorous hostess shows them
where to sit. Prove that she will always be able to seat people immediately without
splitting up any pairs, if no customer who comes alone is assigned to any of the seats
numbered 2, 5, 8, ... , 20, provided that there never are more than 16 customers present
at a time. (Pairs leave together.)

11>- 37. [26] Continuing exercise 36, prove that the hostess can't always do such a good
job when there are only 22 seats at the counter: No matter what strategy she uses,
it will be possible to reach a situation where two friends enter and only 14 people are
seated, but no two adjacent seats are vacant.

38. [M21] (J.M. Robson.) The lunch-counter problem in exercises 36 and 37 can be
generalized to establish the worst-case performance of any dynamic storage allocation
algorithm that never relocates reserved blocks. Let N (n, m) be the smallest amount of
memory such that any series of requests for allocation and liberation can be handled
without overflow, provided that all block sizes are~ m and the total amount of space
requested never exceeds n. Exercises 36 and 37 prove that N(16, 2) = 23; determine
the exact value of N(n, 2) for all n.

39. [HM23] (J.M. Robson.) In the notation of exercise 38, show that N(n 1 +n2 , m) ~
N(n1, m)+N(n2 , m)+N(2m-2, m); hence for fixed m, limm-+oo N(n,m)/n = N(m)
exists.

40. [HMSO] Continuing exercise 39, determine N(3), N(4), and limn-+= N(m)/lgm
if it exists.

41. [M27] The purpose of this exercise is to consider the worst-case memory usage
of the buddy system. A particularly bad case occurs, for example, if we start with an
empty memory and proceed as follows: First reserve n = 2r+l blocks of length 1, which
go into locations 0 through n - 1; then for k = 1, 2, ... , r, liberate all blocks whose
starting location is not divisible by 2k, and reserve 2-k-ln blocks of length 2k, which
go into locations ~ (1 + k) n through ~ (2 + k) n - 1. This procedure uses 1 + ~ r times
as much memory as is ever occupied.

Prove that the worst case cannot be substantially worse than this: When all
requests are for block sizes 1, 2, ... , 2r, and if the total space requested at any time
never exceeds n, where n is a multiple of 2r, the buddy system will never overflow a
memory area of size (r + 1)n.

42. [M40] (J.M. Robson, 1975.) Let NsF(n, m) be the amount of memory needed to
guarantee non-overflow when the best-fit method is used for allocation as in exercise 38.
Find an attacking strategy to show that NsF(n, m) 2'.'_ mn - O(n + m 2

).

43. [HM35] Continuing exercise 42, let NFF(n, m) be the memory needed when the
first-fit method is used. Find a defensive strategy to show that NFF(n, m) ~ Hmn/ln2.
(Hence the worst case of first-fit is not far from the best possible worst case.)

44. [M21] Suppose the distribution function F(x) = (probability that a block has
size~ x) is continuous. For example, F(x) is (x - a)/(b - a) for a~ x ~ b if the sizes
are uniformly distributed between a and b. Give a formula that expresses the sizes of
the first N slots that should be set up when we use the distributed-fit method.

2.6 HISTORY AND BIBLIOGRAPHY 457

2.6. HISTORY AND BIBLIOGRAPHY
LINEAR LISTS and rectangular arrays of information kept in consecutive memory
locations were widely used from the earliest days of stored-program computers,
and the earliest treatises on programming gave the basic algorithms for traversing
these structures. [For example, see J. von Neumann, Collected Works 5, 113-
116 (written 1946); M. V. Wilkes, D. J. Wheeler, S. Gill, The Preparation
of Programs for an Electronic Digital Computer (Reading, Mass.: Addison
Wesley, 1951), subroutine V-1; and see especially also the work of Konrad Zuse,
Berichte der Gesellschaft fiir Mathematik und Datenverarbeitung 63 (Bonn:
1972), written in 1945. Zuse was the first to develop nontrivial algorithms
that worked with lists of dynamically varying lengths.] Before the days of
index registers, operations on sequential linear lists were done by performing
arithmetic on the machine language instructions themselves, and the need to do
such arithmetic was one of the early motivations for having a computer whose
programs share memory space with the data they manipulate.

Techniques that permit variable-length linear lists to share sequential loca
tions, in such a way that they shift back and forth when necessary as described
in Section 2.2.2, were apparently a much later invention. J. Dunlap of Digitek
Corporation developed such techniques before 1963 in connection with the de
sign of a series of compiler programs; about the same time the idea appeared
independently in the design of a COBOL compiler at IBM Corporation, and a
collection of related subroutines called CITRUS was subsequently used at various
installations. The techniques remained unpublished until after they had been
developed independently by Jan Garwick of Norway; see BIT 4 (1964), 137-140.

The idea of having linear lists in nonsequential locations seems to have orig
inated in connection with the design of computers with rotating drum memories.
After executing the instruction in location n, such a computer was usually not
ready to get its next instruction from location n + 1, because the drum had
already rotated past that point. Depending on the instruction being performed,
the most favorable position for the next instruction might be n + 7 or n + 18,
say, and the machine could operate up to six or seven times faster if its in
structions were located optimally rather than consecutively. [For a discussion
of the interesting problems concerning the best placement of instructions, see
the author's article in JACM 8 (1961), 119-150.] Therefore an extra address
field was provided in each machine language instruction, to serve as a link to
the next command. This idea, called "one-plus-one addressing," was discussed
by John Mauchly in 1946 [Theory and Techniques for the Design of Electronic
Computers 4 (U. of Pennsylvania, 1946), Lecture 37]; it contained the notion
of linked lists in embryonic form, although the dynamic insertion and deletions
operations that we have used so frequently in this chapter were still unknown.
Another early appearance of links in programs was in H. P. Luhn's 1953 memo
randum suggesting the use of "chaining" for external searching; see Section 6.4.

Linked memory techniques were really born when A. Newell, J. C. Shaw,
and H. A. Simon began their investigations of heuristic problem-solving by
machine. As an aid to writing programs that searched for proofs in mathematical

458 INFORMATION STRUCTURES 2.6

logic, they designed the first List-processing language, IPL-II, in the spring of
1956. (IPL was an acronym for Information Processing Language.) This was
a system that made use of pointers and included important concepts like the
list of available space, but the concept of stacks was not yet well developed.
IPL-III, designed a year later, included "push down" and "pop up" for stacks as
important basic operations.· [For references to IPL-II see IRE Transactions IT-2
(September 1956), 61-70; Proc. Western Joint Comp. Conf. 9 (1957), 218-240.
Material on IPL-III first appeared in course notes given at the University of
Michigan in the summer of 1957.]

The work of Newell, Shaw, and Simon inspired many other people to use
linked memory, which was often referred to as NSS memory at the time, but
mostly for problems dealing with simulation of human thought processes. Grad
ually, the techniques became recognized as basic computer-programming tools;
the first article describing the usefulness of linked memory for "down-to-earth"
problems was published by J. W. Carr, III, in CACM 2, 2 (February 1959), 4-6.
Carr pointed out in this article that linked lists can readily be manipulated in
ordinary programming languages, without requiring sophisticated subroutines
or interpretive systems. See also G. A. Blaauw, "Indexing and control-word
techniques," IBM J. Res. and Dev. 3 (1959), 288-301.

At first, one-word nodes were used for linked tables, but about 1959 the
usefulness of several consecutive words per node and "multilinked" lists was
gradually being discovered by several different groups of people. The first article
dealing specifically with this idea was published by D. T. Ross, CACM 4 (1961),
147-150. At that time he used the term "plex" for what has been called a "node"
in this chapter, but he subsequently used the word "plex" in a different sense to
denote a class of nodes combined with associated algorithms for their traversal.

Notations for referring to fields within nodes are generally of two kinds: The
name of the field either precedes or follows the pointer designation. Thus, while
we have written "INFO (P)" in this chapter, some other authors write, for exam
ple, "P. INFO". At the time this chapter was prepared, the two notations seemed
to be equally prominent. The notation adopted here has the great advantage
that it translates immediately into FORTRAN, COBOL, or similar languages, if
we define INFO and LINK arrays and use P as the index. Furthermore it seems
natural to use mathematical functional notation to describe attributes of a node.
Note that "INFO (P)" is pronounced "info of P" in conventional mathematical
verbalization, just as f (x) is rendered "f of x." The alternative notation P. INFO
has less of a natural flavor, since it tends to put the emphasis on P, although it
can be read "P's info"; the reason INFO (P) seems preferable is apparently the
fact that P is variable, but INFO has a fixed significance when the notation is
employed. By analogy, we could consider a vector A = (A[l], A[2], ... , A[lOO])
to be a node having 100 fields named 1, 2, ... , 100. Now the second field would
be referred to as "2 (P)" in our notation, where P points to the vector A; but
if we are referring to the jth element of the vector, we find it more natural to
write A[j], putting the variable quantity "j" second. Similarly it seems most
appropriate to put the variable quantity "P" second in the notation INFO (P).

2.6 HISTORY AND BIBLIOGRAPHY 459

Perhaps the first people to recognize that the concepts "stack" (last-in-first
out) and "queue" (first-in-first-out) are important objects of study were cost
accountants interested in reducing income tax assessments; for a discussion of
the "LIFO" and "FIFO" methods of pricing inventories, see any intermediate ac
counting textbook, e.g., C. F. and W. J. Schlatter, Cost Accounting (New York:
Wiley, 1957), Chapter 7. In the mid-1940s, A. M. Turing developed a stack mech
anism called Reversion Storage for subroutine linkage, local variables, and pa
rameters. His names for "push" and "pop" were "bury" and "disinter/unbury."
(See the references in Section 1.4.5.) No doubt simple uses of stacks kept in
sequential memory locations were common in computer programming from the
earliest days, since a stack is such an intuitive concept. The programming of
stacks in linked form appeared first in IPL, as stated above; the name "stack"
stems from IPL terminology (although "pushdown list" was the more official IPL
wording), and it was also independently introduced by E. W. Dijkstra [Numer.
Math. 2 (1960), 312-318]. "Deque" is a term coined by E. J. Schweppe in 1966.

The origin of circular and doubly linked lists is obscure; presumably these
ideas occurred naturally to many people. A strong factor in the popularization
of such techniques was the existence of general List-processing systems based on
them [principally the Knotted List Structures, CACM 5 (1962), 161-165, and
Symmetric List Processor, CACM 6 (1963), 524-544, of J. Weizenbaum]. Ivan
Sutherland introduced the use of independent doubly linked lists within larger
nodes, in his Sketchpad system (Ph.D. thesis, Mass. Inst. of Technology, 1963).

Various methods for addressing and traversing multidimensional arrays of
information were developed independently by clever programmers since the ear
liest days of computers, and thus another part of the unpublished computer
folklore was born. This subject was first surveyed in print by H. Hellerman,
CACM 5 (1962), 205-207. See also J. C. Gower, Comp. J. 4 (1962), 280-286.

Tree structures represented explicitly in computer memory were originally
used for applications to algebraic formula manipulation. The machine language
for several early computers used a three-address code to represent the compu
tation of arithmetic expressions; the latter is equivalent to the INFO, LLINK,
and RLINK of a binary tree representation. In 1952, H. G. Kahrimanian devel
oped algorithms for differentiating algebraic formulas represented in an extended
three-address code; see Symposium on Automatic Programming (Washington,
D.C.: Office of Naval Research, May 1954), 6-14.

Since then, tree structures in various guises have been studied independently
by many people in connection with numerous computer applications, but the
basic techniques for tree manipulation (not general List manipulation) have
seldom appeared in print except in detailed description of particular algorithms.
The first general survey was made in connection with a more general study of
all data structures by K. E. Iverson and L. R. Johnson [IBM Corp. research
reports RC-390, RC-603, 1961; see Iverson, A Programming Language (New
York: Wiley, 1962), Chapter 3]. See also G. Salton, CACM 5 (1962), 103-114.

The concept of threaded trees is due to A. J. Perlis and C. Thornton, CACM
3 (1960), 195-204. Their paper also introduced the important idea of traversing

460 INFORMATION STRUCTURES 2.6

trees in various orders, and gave numerous examples of algebraic manipulation
algorithms. Unfortunately, this important paper was prepared hastily and it
contains many misprints. The threaded lists of Perlis and Thornton were only
"right-threaded trees" in our terminology; binary trees that are threaded in
both directions were independently discovered by A. W. Holt, A Mathematical
and Applied Investigation of Tree Structures (Thesis, U. of Pennsylvania, 1963).
Postorder and preorder for the nodes of trees were called "normal along order"
and "dual along order" by Z. Pawlak [Colloquium on the Foundation of Math
ematics, Tihany, 1962 (Budapest: Akademiai Kiad6, 1965), 227-238]. Preorder
was called "subtree order" by Iverson and Johnson in the references cited above.
Graphical ways to represent the connection between tree structures and cor
responding linear notations were described by A. G. Oettinger, Proc. Harvard
Symp. on Digital Computers and their Applications (April 1961), 203-224. The
representation of trees in preorder by degrees, with associated algorithms relating
this representation to Dewey decimal notation and other properties of trees, was
presented by S. Gorn, Proc. Symp. Math. Theory of Automata (Brooklyn: Poly.
Inst., 1962), 223-240.

The history of tree structures as mathematical entities, together with a
bibliography of the subject, is reviewed in Section 2.3.4.6.

At the time this section was first written in 1966, the most widespread
knowledge about information structures was due to programmers' exposure to
List processing systems, which played a very important part in this history.
The first widely used system was IPL-V (a descendant of IPL-III, developed late
in 1959); IPL-V was an interpretive system in which a programmer learned a
machine-like language for List operations. At about the same time, FLPL (a set
of FORTRAN subroutines for List manipulation, also inspired by IPL but using
subroutine calls instead of interpretive language) was developed by H. Gelernter
and others. A third system, LISP, was designed by J. McCarthy, also in 1959.
LISP was quite different from its predecessors: Its programs were (and still
are) expressed in mathematical functional notation combined with "conditional
expressions," then converted into a List representation. Many List processing
systems came into existence during the 1960s; the most prominent among these
from a historical standpoint was J. Weizenbaum's SLIP, a set of subroutines that
implemented doubly linked Lists in FORTRAN.

An article by Bobrow and Raphael, CACM 7 (1964), 231-240, may be
read as a brief introduction to IPL-V, LISP, and SLIP; it gives a comparison
of these systems. An excellent early introduction to LISP was published by
P. M. Woodward and D. P. Jenkins, Comp. J. 4 (1961), 47-53. See also the
authors' discussions of their own systems, which are articles of considerable
historical importance: "An introduction to IPL-V" by A. Newell and F. M. Tonge,
CACM 3 (1960), 205-211; "A FORTRAN-compiled List Processing Language"
by H. Gelernter, J. R. Hansen, and C. L. Gerberich, JACM 7 (1960), 87-
101; "Recursive functions of symbolic expressions and their computation by
machine, I" by John McCarthy, CACM 3 (1960), 184-195; "Symmetric List
Processor" by J. Weizenbaum, CACM 6 (1963), 524-544. Weizenbaum's article

2.6 HISTORY AND BIBLIOGRAPHY 461

included a complete description of all of the algorithms used in SLIP. Of all these
early systems, only LISP had the necessary ingredients to survive the ensuing
decades of further progress. McCarthy has described LISP's early history in
History of Programming Languages (Academic Press, 1981), 173-197.

Several string manipulation systems also appeared during the 1960s; they
were primarily concerned with operations on variable-length strings of alphabetic
information- looking for occurrences of certain substrings and replacing them
by others, etc. The most important of these from a historical perspective were
COMIT [V. H. Yngve, CACM 6 (1963), 83-84] and SNOBOL [D. J. Farber, R.
E. Griswold, and I. P. Polonsky, JACM 11 (1964), 21-30]. String manipulation
systems were used widely, and they were composed primarily of algorithms like
the ones we have seen in this chapter, but they played a comparatively small
role in the history of the techniques of information structure representation; users
of such systems were isolated from the details of the actual internal processes
carried on by the computer. For a survey of early string manipulation techniques,
see S. E. Madnick, CACM 10 (1967), 420-424.

The IPL-V and FLPL systems for List-processing did not use either a garbage
collection or a reference count technique for the problem of shared Lists; instead,
each List was "owned" by one List and "borrowed" by all other Lists that referred
to it, and a List was erased when its "owner" allowed it to disappear. Hence, the
programmer was enjoined to make sure that no List was still borrowing any Lists
that were being erased. The reference counter technique for Lists was introduced
by G. E. Collins, CACM 3 (1960), 655-657, and explained further in CACM 9
(1966), 578-588. Garbage collection was first described in McCarthy's article of
1960; see also Weizenbaum's remarks in CACM 7 (1964), 38, and an article by
Cohen and Trilling, BIT 7 (1967), 22-30.

An increasing realization of the importance of link manipulations led natu
rally to their inclusion in algebraic programming languages designed after 1965.
The new languages allowed programmers to choose suitable forms of data rep
resentation without resorting to assembly language or paying the overhead of
completely general List structures. Some of the fundamental steps in this de
velopment were the work of N. Wirth and H. Weber [CACM 9 (1966), 13-23, ·
25, 89-99]; H. W. Lawson [CACM 10 (1967), 358-367]; C. A. R. Hoare [Symbol
Manipulation Languages and Techniques, ed. by D. G. Bobrow (Amsterdam:
North-Holland, 1968), 262-284]; 0.-J. Dahl and K. Nygaard [CACM 9 (1966),
671-678]; A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, and C. H. A.
Koster [Numerische Math. 14 (1969), 79-218]; Dennis M. Ritchie [History of
Programming Languages-II (ACM Press, 1996), 671-698].

Dynamic storage allocation algorithms were in use several years before they
were ever described in print. A very readable discussion was prepared by W. T.
Comfort in 1961 and published in CACM 7 (1964), 357-362. The boundary
tag method, introduced in Section 2.5, was designed by the author in 1962 for
use in an operating system for the Burroughs B5000 computer. The buddy
system was first used by H. Markowitz in connection with the SIMSCRIPT
programming system in 1963, and it was independently discovered and published

462 INFORMATION STRUCTURES 2.6

by K. Knowlton, CACM 8 (1965), 623-625; see also CACM 9 (1966), 616-625.
For additional early discussions of dynamic storage allocation, see the articles
by Iliffe and Jodeit, Comp. J. 5 (1962), 200-209; Bailey, Barnett, and Burleson,
CACM 7 (1964), 339-346; A. T. Berztiss, CACM 8 (1965), 512-513; and D. T.
Ross, CACM 10 (1967), 481-492.

A general discussion af information structures and their relation to program
ming was prepared by Mary d'Imperio, "Data Structures and their Representa
tion in Storage," Annual Review in Automatic Programming 5 (Oxford: Perga
mon Press, 1969). Her paper is a valuable guide to the history of the topic, since
it includes a detailed analysis of the structures used in connection with twelve
List processing and string manipulation systems. See also the proceedings of two
symposia, CACM 3 (1960), 183-234 and CACM 9 (1966), 567-643, for further
historical details. (Several of the individual papers from those proceedings have
already been cited above.)

An excellent annotated bibliography of early work on symbol manipulation
and algebraic formula manipulation, having numerous connections with the ma
terial of this chapter, was compiled by Jean E. Sammet; see Computing Reviews
7 (July-August 1966), Bl-B31.

In this chapter we have looked at particular types of information structures
in great detail, and (lest we fail to see the forest for the trees) it is perhaps
wise to take stock of what we have learned and to summarize briefly the general
subject of information structures from a broader perspective. Starting with the
basic idea of a node as an element of data, we have seen many examples that
illustrate convenient ways to represent structural relationships either implicitly
(based on the relative order in which nodes are stored in computer memory) or
explicitly (by means of links in the nodes, which point to other nodes). The
amount of structural information that ought to be represented within the tables
of a computer program depends on the operations that are to be performed on
the nodes.

For pedagogic reasons, we have largely concentrated on the connections
between information structures and their machine representations, instead of
discussing those issues separately. However, to gain a deeper understanding it is
helpful to consider the subject from a more abstract point of view, distilling off
several layers of ideas that can be studied by themselves. Several noteworthy ap
proaches of this kind have been developed, and the following thought-provoking
papers are especially recommended from the early literature: G. Mealy, "Another
look at data," Proc. AFIPS Fall Joint Computer Conf. 31 (1967), 525-534;
J. Earley, "Toward an understanding of data structures," CACM 14 (1971), 617-
627; C. A. R. Hoare, "Notes on data structuring," in Structured Programming
by 0.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare (Academic Press, 1972), 83-
174; Robert W. Engles, "A tutorial on data-base organization," Annual Review
in Automatic Programming 7 (1972), 3-63.

The discussion in this chapter does not cover the entire subject of informa
tion structures in full generality; at least three important aspects of the subject
have not been treated here:

2.6 HISTORY AND BIBLIOGRAPHY 463

a) We often want to search through a table to find a node or set of nodes
possessing a certain value, and the need for such an operation often has a
profound effect on the structure of the table. This situation is explored in detail
in Chapter 6.

b) We have primarily been concerned with the internal representation of
structure within a computer; but that is obviously only part of the story, since
structure must also be represented in the external input and output data. In
simple cases, external structure can be treated by essentially the same techniques
that we have been considering; but the processes of converting between strings of
characters and more complex structures are also very important. Those processes
are analyzed in Chapters 9 and 10.

c) We have primarily discussed representations of structures within a high
speed random-access memory. When slower memory devices such as disks or
tapes are being used, we find that all of the structural problems are intensified;
it becomes much more crucial to have efficient algorithms and efficient schemes
for data representation. Nodes that link to each other in such cases ought to
go into nearby areas of the memory. Usually the problems are highly dependent
on the characteristics of individual machines, so it is difficult to discuss them in
general. The simpler examples treated in this chapter should help to prepare the
reader for solving the more difficult problems that arise in connection with less
ideal memory devices; Chapters 5 and 6 discuss some of these problems in detail.

What are the main implications of the subjects treated in this chapter?
Perhaps the most important conclusion we can reach is that the ideas we have
encountered are not limited to computer programming alone; they apply more
generally to everyday life. A collection of nodes containing fields, some of which
point to other nodes, appears to be a very good abstract model for structural
relationships of all kinds. This model shows how we can build up complicated
structures from simple ones, and we have seen that corresponding algorithms for
manipulating the structure can be designed in a natural manner.

Therefore it seems appropriate to develop much more theory about linked .
sets of nodes than we know at this time. Perhaps the most obvious way to
start such a theory is to define a new kind of abstract machine or "automaton"
that deals with linked structures. For example, such a device might be defined
informally as follows: There are numbers k, l, r, ands, such that the automaton
processes nodes containing k link fields and r information fields; it has l link
registers and s information registers, which enable it to control the processes
it is performing. The information fields and registers may contain any symbols
from some given set of information symbols; each of the link fields and link
registers either contains A or points to a node. The machine can (i) create
new nodes (putting a link to the node into a register), (ii) compare information
symbols or link values for equality, and (iii) transfer information symbols or link
values between registers and nodes. Only nodes pointed to by link registers
are immediately accessible. Suitable restrictions on the machine's behavior will
make it equivalent to several other species of automata.

464 INFORMATION STRUCTURES 2.6

A related model of computation was proposed by A. N. Kolmogorov as
early as 1952. His machine essentially operates on graphs G, having a specially
designated starting vertex v0 . The action at each step depends only on the
subgraph G' consisting of all vertices at distance < n from Vo in G, replacing
G' in G by another graph G" = f(G'), where G" includes Vo and the vertices
at distance exactly n from v0 , and possibly other vertices (which are newly
created); the remainder of graph G is left unaltered. Here n is a fixed number
specified in advance for any particular algorithm, but it can be arbitrarily large.
A symbol from a finite alphabet is attached to each vertex, and restrictions
are made so that no two vertices with the same symbol can be adjacent to a
common vertex. (See A. N. Kolmogorov, Uspekhi Mat. Nauk 8, 4 (1953), 175-
176; Kolmogorov and Uspensky, Uspekhi Mat. Nauk 13, 4 (1958), 3-28; Amer.
Math. Soc. Translations, series 2, 29 (1963), 217-245.)

Linking automata can easily simulate graph machines, taking at most a
bounded number of steps per graph step. Conversely, however, it is unlikely that
graph machines can simulate arbitrary linking automata without unboundedly
increasing the running time, unless the definition is changed from undirected to
directed graphs, in view of the restriction to vertices of bounded degree. The
linking model is, of course, quite close to the operations available to programmers
on real machines, while the graph model is not.

Some of the most interesting problems to solve for such devices would be
to determine how fast they can solve certain problems, or how many nodes
they need to solve certain problems (for example, to translate certain formal
languages). At the time this chapter was first written, several interesting results
of this kind had been obtained (notably by J. Hartmanis and R. E. Stearns) but
only for special classes of Turing machines having multiple tapes and read/write
heads. The Turing machine model is comparatively unrealistic, so these results
tended to have little to do with practical problems.

We must admit that, as the number n of nodes created by a linking automa
ton approaches infinity, we don't know how to build such a device physically,
since we want the machine operations to take the same amount of time regardless
of the size of n; if linking is represented by using addresses as in a computer
memory, it is necessary to put a bound on the number of nodes, since the link
fields have a fixed size. A multitape Turing machine is therefore a more realistic
model when n approaches infinity. Yet it seems reasonable to believe that a
linking automaton as described above leads to a more appropriate theory of
the complexity of algorithms than Turing machines do, even when asymptotic
formulas for large n are considered, because the theory is more likely to be
relevant for practical values of n. Furthermore when n gets bigger than 1030

or so, not even a one-tape Turing machine is realistic: It could never be built.
Relevance is more important than realism.

Many years have passed since the author wrote most of the comments above,
and everybody can be glad that substantial progress has indeed been made on
the theory of linking automata (now called pointer machines). But of course
much still remains to be done.

2.6 HISTORY AND BIBLIOGRAPHY 465

General rules for programming have been discovered.
Most of them have been used in the

Kansas City freight yards for a long time.

- DERRICK LEHMER (1949)

You will, I am sure, agree with me . . . that if page
534 finds us only in the second chapter, the length of

the first one must have been really intolerable.

- SHERLOCK HOLMES, in The Valley of Fear (1888)

ANSWERS TO EXERCISES

I am not bound to please thee with my answers.

- Shylock, in The Merchant of Venice (Act IV, Scene 1, Line 65)

NOTES ON THE EXERCISES

1. An average problem for a mathematically inclined reader.

4. See W. J. LeVeque, Topics in Number Theory 2 (Reading, Mass.: Addison-Wesley,

1956), Chapter 3; P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York:

Springer-Verlag, 1979); A. Wiles, Annals of Mathematics 141 (1995), 443-551.

SECTION 1.1

1. t +-- a, a +-- b, b +-- c, c +-- d, d +-- t.

2. After the first time, the values of the variables m and n are the previous values of

n and r, respectively; and n > r.

3. Algorithm F (Euclid's algorithm). Given two positive integers m and n, find

their greatest common divisor.

Fl. [Remainder m/n.] Divide m by n and let m be the remainder.

F2. [Is it zero?] If m = 0, the algorithm terminates with answer n.

F3. [Remainder n/m.] Divide n by m and let n be the remainder.

F4. [Is it zero?] If n = 0, the algorithm terminates with answer m; otherwise go

back to step Fl. I

4. By Algorithm E, n = 6099, 2166, 1767, 399, 171, 57. Answer: 57.

5. Not finite nor definite nor effective, perhaps no output; in format, no letter is given

before step numbers, no summary phrase appears, and there is no "I".

6. Trying Algorithm E with n = 5 and m = 1, 2, 3, 4, 5, we find that step El is

executed 2, 3, 4, 3, 1 times, respectively. So the average is 2.6 = T5 .

7. In all but a finite number of cases, n > m. And when n > m, the first iteration of

Algorithm E merely exchanges these numbers; so Urn= Trn + 1.

466

1.1 ANSWERS TO EXERCISES 467

8. Let A= {a,b,c}, N = 5. The algorithm will terminate with the string agcd(rn,n)_

j ()j ¢i bj ai
0 ab (empty) 1 2 Remove one a and one b, or go to 2.

1 (empty) c 0 0 Add cat extreme left, go back to 0.

2 a b 2 3 Change all a's to b's.

3 c a 3 4 Change all e's to a's.

4 b b 0 5 If b's remain, repeat.

9. For example we can say C2 represents Ci if there is a function g from Ii into h,
a function h from Q2 into Qi taking n2 into ni' and a function j from Q2 into the
positive integers, satisfying the following conditions:

a) If x is in Ii, Ci produces the output y from x if and only if there exists a y' in 02
for which C2 produces the output y' from g(x) and h(y') = y.

b) If q is in Q2 then fi(h(q)) = h(!Ji(q)](q)), where JJi(q)] means that the function
h is to be iterated j(q) times.

For example, let Ci be as in (2) and let C2 have h = {(m,n)}, 02 = {(m,n,d)},
Q2 = h u n2 u {(m,n,a,b,l)} u {(m,n,a,b,r,2)} u {(m,n,a,b,r,3)} u {(m,n,a,b,
r,4)} U {(m,n,a,b,5)}. Let h((m,n)) = (m,n,m,n,l); h((m,n,d)) = (m,n,d);
h((m,n,a,b,l)) = (m,n,a,b,amodb,2); h((m,n,a,b,r,2)) = (m,n,b) if r = 0,
otherwise (m,n,a,b,r,3); h((m,n,a,b,r,3)) = (m,n,b,b,r,4); h((m,n,a,b,r,4))
(m,n,a,r,5); h((m,n,a,b,5)) = h((m,n,a,b,l)).

Now let h((m, n)) = g((m, n)) = (m, n); h((m, n, d)) = (d); h((m, n, a, b, 1))
(a,b,O,l); h((m,n,a,b,r,2)) = (a,b,r,2); h((m,n,a,b,r,3)) = (a,b,r,3); h((m,n,a,
b,r,4)) = h(h((m,n,a,b,r,4))); h((m,n,a,b,5)) = (a,b,b,l); j((m,n,a,b,r,3)) =
j((m,n,a,b,r,4)) = 2, otherwise j(q) = 1. Then C2 represents Ci.

Notes: It is tempting to try to define things in a more simple way-for example,
to let g map Qi into Q2 and to insist only that when xo, xi, ... is a computational
sequence in Ci then g(x0), g(xi), ... is a subsequence of the computational sequence in
C2 that begins with g(x0). But this is inadequate; in the example above, Ci forgets
the original value of m and n but C2 does not.

If C2 represents Ci by means of functions g, h, j, and if C3 represents C2 by means
of functions g', h', j', then C3 represents Ci by means of functions g", h", j", where

g"(x) = g'(g(x)), h"(x) = h(h'(x)), and .// () J q =
O~k<j(h'(q))

if qo = q and qk+i = JJi'(qk)l(qk)· Hence the relation defined above is transitive. We
can say C2 directly represents Ci if the function j is bounded; this relation is also
transitive. The relation "C2 represents Ci" generates an equivalence relation in which
two computational methods apparently are equivalent if and only if they compute
isomorphic functions of their inputs; the relation "C2 directly represents Ci" generates
a more interesting equivalence relation that perhaps matches the intuitive idea of being
"essentially the same algorithm."

For an alternative approach to simulation, see R. W. Floyd and R. Beigel, The
Language of Machines (Computer Science Press, 1994), Section 3.3.

468 ANSWERS TO EXERCISES 1.2.l

SECTION 1.2.1
1. (a) Prove P(O). (b) Prove that P(O), ... , P(n) implies P(n + 1), for all n 2 O.

2. The theorem has not been proved for n = 2; in the second part of the proof, take
n = 1; we assume there that a-1 = 1. If this condition is true (so that a = 1), the
theorem is indeed valid.

3. The correct answer is r- l/n. The mistake occurs in the proof for n = 1, when
the formula on the left either may be assumed to be meaningless, or it may be assumed
to be zero (since there are n - 1 terms).

5. If n is prime, it is trivially a product of one or more primes. Otherwise n has
factors, son= km for some k and m with 1 < k, m < n. Since both k and mare less
than n, by induction they can be written as products of primes; hence n is the product
of the primes appearing in the representations of k and m.

6. In the notation of Fig. 4, we prove A5 implies A6. This is clear since A5 implies
(a' - qa)m + (b' - qb)n = (a'm + b'n) - q(am + bn) = c - qd = r.

7. n2
- (n-1)2 + · · · - (-1t12 = 1+2 + · · · + n = n(n + 1)/2.

8. (a) We will show (n 2 -n+l)+(n2 -n+3)+· · ·+(n2 +n-l) equals n3
. The sum is

(1+3+· · ·+(n2 +n-1))-(1+3+· · ·+(n2 -n-l)) = ((n2 +n)/2)2-((n2 -n)/2)
2

= n 3
•

We have used Eq. (2); however, an inductive proof was requested, so another approach
should be taken! For n = 1, the result is obvious. Let n 2 1; (n + 1)2

- (n + 1) =
n2

- n + 2n, so the first terms for n + 1 are 2n larger; thus the sum for n + 1 is the
sum for n plus

2n + · · · + 2n +(n + 1)2 + (n + 1) - 1;

n times

this equals n3 + 2n2 + n2 + 3n + 1 = (n + 1)3
. (b) We have shown that the first

term for (n + 1) 3 is two greater than the last term for n 3 . Therefore by Eq. (2),

13 + 23 + · · · + n 3 = sum of consecutive odd numbers starting with unity= (number of
terms) 2 = (1 + 2 + ... + n) 2

.

10. Obvious for n = 10. If n 2 10, we have 2n+l = 2 · 2n > (1 + 1
1
0)

3 2n and by
induction this is greater than (1 + l/n) 3 n 3 = (n + 1)3

.

11. (-lt(n + 1)/(4(n + 1)2 + 1).

12. The only nontrivial part of the extension is the calculation of the integer q in E2.
This can be done by repeated subtraction, reducing to the problem of determining
whether u + v.J2 is positive, negative, or zero, and the latter problem is readily solved.

It is easy to show that whenever u + v.J2 = u' + v' .J2, we must have u = u' and
v = v', since .J2 is irrational. Now it is clear that 1 and .J2 have no common divisor,
if we define divisor in the sense that u + v .J2 divides a(u + v .J2) if and only if a is an
integer. The algorithm extended in this way computes the regular continued fraction
of the ratio of its inputs; see Section 4.5.3.

(Note: However, if we extend the concept of divisor so that u+v.J2 is said to divide
a(u+v .J2) if and only if a has the form u' +v' .J2 for integers u' and v', there is a way to
extend Algorithm E so that it always will terminate: If in step E2 we have c = u + v .J2
and d = u' +v' .J2, compute c/d = c(u' -v'.J2)/(u'2 -2v'2

) = x+y.J2 where x and y are
rational. Now let q = u" + v" .J2, where u" and v" are the nearest integers to x and y;
and let r = c- qd. If r = u"' + v"' .J2, it follows that ju"' 2 -2v'"2 j < ju'2 -2v'2 j, hence
the computation will terminate. For further information, see "quadratic Euclidean
domains" in number theory text books.)

1.2.2 ANSWERS TO EXERCISES 469

13. Add "T ~ 3(n-d) + k" to assertions A3, A4, A5, A6, where k takes the respective
values 2, 3, 3, 1. Also add "d > O" to A4.

15. (a) Let A= Sin (iii); every nonempty well-ordered set has a least element.
(b) Let x ~ y if jxj < jyj or if jxj = jyj and x < 0 < y.

(c) No, the subset of all positive reals fails to satisfy (iii). (Note: Using the so
called axiom of choice, a rather complicated argument can be given to show that every
set can be well-ordered somehow; but nobody has yet been able to define an explicit
relation that well-orders the real numbers.)

(d) To prove (iii) for Tn, use induction on n: Let A be a nonempty subset of Tn

and consider Ai, the set of first components of A. Since Ai is a nonempty subset of S,
and S is well-ordered, Ai contains a smallest element x. Now consider Ax, the subset
of A in which the first component equals x; Ax may be considered a subset of Tn-i

if its first component is suppressed, so by induction Ax contains a smallest element
(x, x2, ... , Xn) that in fact is the smallest element of A.

(e) No, although properties (i) and (ii) are valid. If S contains at least two distinct
elements, a~ b, the set (b), (a, b), (a, a, b), (a, a, a, b), (a, a, a, a, b), ... has no least ele
ment. On the other hand T can be well-ordered if we define (xi, ... , Xrn) ~ (yi, ... , Yn)

whenever m < n, or m = n and (xi ... , Xn) ~ (yi, ... , Yn) in Tn.
(f) Let S be well-ordered by ~- If such an infinite sequence exists, the set A

consisting of the members of the sequence fails to satisfy property (iii), for no element
of the sequence can be smallest. Conversely if~ is a relation satisfying (i) and (ii) but
not (iii), let A be a nonempty subset of S that has no smallest element. Since A is not
empty, we can find xi in A; since xi is not the smallest element of A, there is x 2 in A
for which x2 ~xi; since x2 is not the smallest element either, we can find x 3 ~ x2; etc.

(g) Let A be the set of all x for which P(x) is false. If A is not empty, it contains a
smallest element x 0 • Hence P(y) is true for ally ~ xo. But this implies P(xo) is true,
so xo is not in A (a contradiction). Therefore A must be empty: P(x) is always true.

SECTION 1.2.2
1. There is none; if r is a positive rational, r /2 is smaller.

2. Not if infinitely many nines appear in a row; in that case the decimal expansion
of the number is 1 + .24000000 ... , according to Eq. (2).

3. -1/27, but the text hasn't defined it.

4. 4.

6. The decimal expansion of a number is unique, so x = y if and only if m = n and
di= ei for all i ~ 1. If x ::f. y, one may compare m vs. n, di vs. ei, d2 vs. e2, etc.; when
the first inequality occurs, the larger quantity belongs to the larger of { x, y}.

7. One may use induction on x, first proving the laws for x positive, and then for x

negative. Details are omitted here.

8. By trying n = 0, 1, 2, ... we find the value of n for which nrn ~ u < (n + l)rn.
Assuming inductively that n, di, ... , dk-i have been determined, dk is the digit such
that

470 ANSWERS TO EXERCISES 1.2.2

10. If log10 2 = p/q, with p and q positive, then 2q = lQP, which is absurd since the
right-hand side is divisible by 5 but the left-hand side isn't.

11. Infinitely many! No matter how many digits of x are given, we will not know
whether lOx = 1.99999 ... or 2.00000 ... , if x's digits agree with the digits of log10 2.
There is nothing mysterious or paradoxical in this; a similar situation occurs in addition,
if we are adding .444444 ... io .55555

12. They are the only values of d1 , ... , ds that satisfy Eq. (7).

13. (a) First prove by induction that if y > 0, 1 + ny ~ (1 + y)n. Then set y = x/n,
and take nth roots. (b) x = b - 1, n = lOk.

14. Set x = logb c in the second equation of (5), then take logarithms of both sides.

15. Prove it, by transposing "logb y" to the other side of the equation and using (11).

16. ln x /ln 10.

17. 5; 1; 1; O; undefined.

18. No, log8 x =lg x/lg 8 = ~lg x.

19. Yes, since lgn < (log10 n)/.301<14/.301 < 47.

20. They are reciprocals.

21. (lnlnx - lnlnb)/ lnb.

22. From the tables in Appendix A, lg x ~ 1.442695 ln x; log10 x ~ .4342945 ln x. The
relative error is ~ (1.442695 - 1.4342945)/1.442695 ~ 0.5823.

23. Take the figure of area ln y, and divide its height by x while multiplying its length
by x. This deformation preserves its area and makes it congruent to the piece left when
ln x is removed from ln xy, since the height at point x + xt in the diagram for ln xy is
l/(x + xt) = (1/(1 + t))/x.

24. Substitute 2 everywhere 10 appears.

25. Note that z = 2-pl2p-kxj, when pis the precision (the number of binary digits
after the radix point). The quantity y + logb x stays approximately constant.

27. Prove by induction on k that

x2k (1- <5)2k+l_1 ~ l02k(n+b1/2+···+bk/2k)x~ ~ x2k (1 + E)2k+1_1

and take logarithms.

28. The following solution uses the same auxiliary table as before.

El. [Initialize.] If 1 - E is the largest possible value of x, set y +- (nearest
approximation to b1-e), x +- 1 - E, k +- 1. (The quantity yb-x will remain
approximately constant in the following steps.)

E2: [Test for end.] If x = 0, stop.

E3. [Compare.] If x < logb(2k/(2k - 1)), increase k by 1 and repeat this step.

E4. [Reduce values.] Set x +- x - logb(2k/(2k - 1)), y +- y - (y shifted right k),
and go to E2. I

If y is set to b1-e(l + Eo) in step El, the subsequent computational error arises
when x +- x + logb(l - 2-k) + b'j and y +- y(l - 2-k)(l + Ej) during the jth execution
of step E4, for certain small errors b'j and Ej. When the algorithm terminates we have
computed y = bx-r.c5j nj(l + Ej)· Further analysis depends On b and the computer
word size. Notice that both in this case and in exercise 26, it is possible to refine the

1.2.3 ANSWERS TO EXERCISES 471

error estimates somewhat if the base is e, since for most values of k the table entry
ln(2k/(2k -1)) can be given with high accuracy: It equals 2-k + ~2-2 k + ~2-3 k +

Note: Similar algorithms can be given for trigonometric functions; see J. E.
Meggitt, IBM J. Res. and Dev. 6 (1962), 210-226; 7 (1963), 237-245. See also T. C.
Chen, IBM J. Res. and Dev. 16 (1972), 380-388; V. S. Linsky, Vychisl. Mat. 2 (1957),
90-119; D. E. Knuth, METAFONT: The Program (Reading, Mass.: Addison-Wesley,
1986), §120-§147.

29. e; 3; 4.

SECTION 1.2.3

1. al + a2 + a3.
2 l+l+l+l+l+l·l+l+l+l+l . 1 3 5 7 9 ll' 9 3 1 3 g·
3. The rule for p(j) is violated; in the first place, n 2 = 3 occurs for no n, and in the

second place n 2 = 4 occurs for two n. [See Eq. (18).]

4. (an)+ (a21 + a22) + (a31 + a32 + a33) =(an+ a21 + a31) + (a22 + a32) + (a33).

5. It is only necessary to use the rule a LR(i) Xi = LR(i) (axi):

(~a;) (~b;) = ~a;(~b;) = ~(~a;b}
7. Use Eq. (3); the two limits are interchanged and the terms between ao and ac

must be transferred from one limit to the other.

8. Let a(i+l)i = +1, and ai(i+l) = -1, for all i ~ 0, and all other aii zero; let
R(i) = S(i) = "i ~ 0". The left-hand side is -1, the right-hand side is +1.

9, 10. No; the applications of rule (d) assume that n ~ 0. (The result is correct for
n = -1 but the derivation isn't.)

11. (n + l)a.

12. i(l - 1/7n+l).

13. m(n - m + 1) + H n - m) (n - m + 1); or, H n(n + 1) - m(m - 1)).

14. Hn(n + 1) - m(m - l))(s(s + 1) - r(r - 1)), if m ~ n and r ~ s.

15, 16. Key steps:

L jxi = x L jxi-l = x L (j + 1) xi
O~j~n l~j~n O~j~n-1

= x L jxj - nxn+l + x L xi.
O~j~n O~j~n-1

1 7. The number of elements in S.

18. S'(j) = "1 ~ j < n". R'(i,j) = "n is a multiple of i and i > j".

19. an - arn-1·

20. (b- 1) 2::~=0 (n - k)bk + n + 1 = L~=o bk; this formula follows from (14) and the
result of exercise 16.

21. LR(j) ai + Ls(j) ai = Lj ai [R(j)] + Lj ai [S(j)] = Lj ai([R(j)] + [S(j)l); now
use the fact that [R(j)] + [S(j)] = [R(j) or S(j)] + [R(j) and S(j)]. In general, bracket
notation gives us the ability to manipulate "on the line" instead of "below the line."

472 ANSWERS TO EXERCISES 1.2.3

22. For (5) and (7), just change L torr. We also have rrR(i) biCi = (ITR(i) bi)(ITR(i) Ci)
and

(II ai) (II ai) = (II ai) (II ai)·
R(j) S(j) R(j) or S(j) R(j) and S(j)

23. 0 + x = x and 1 . x = x. This makes many operations and equations simpler, such
as rule (d) and its analog in the previous exercise.

25. The first step and last step are OK. The second step uses i for two different
purposes at once. The third step should probably be L::~=l n.

26. Key steps, after transforming the problem as in Example 2:

f!(ll. a;a;) = }](a~+1g a;)

(}] a~+l) (f!(ll. a;))=(}] a;f+'
The answer is (IT~=o ait+2

•

28. (n + 1)/2n.

29. (a) Losksisisn aiajak. (b) Let Sr = L::~=o ai- Solution: ~S3 + ~S1S2 +~Sr.
The general solution to this problem, as the number of indices gets larger, may be
found in Section 1.2.9, Eq. (38).

30. Write the left side as Ll<. k<n ajbkXjYk, and do a similar thing on the right.
_J, -

(This identity is the special case m = 2 of exercise 46.)

31. Set ai = Uj, bi = 1, Xj = Vj, and Yi = 1, to obtain the answer n Ej=1 UjVj -

(LJ=l Uj)(LJ=l Vj).

33. This can be proved by induction on n, if we rewrite the formula as

1 (t xj(xj - Xn-1) _ t xj(xj - Xn)) .

Xn - Xn-1 i=l IT1sksn, k#i(xi - Xk) i=l ITisksn, k#i(xi - Xk)

Each of these sums now has the form of the original sum, except on n - 1 elements,
and the values turn out nicely by induction when 0 ~ r ~ n - 1. When r = n, consider
the identity

~ rr~=l (xj - Xk) ~ xj - (x1 + ... + Xn)xj-
1 + P(xj)

0 - L.,.. - L.,..
- i=l IT1sk~n, k#i(xi - Xk) - i=l IT1sksn, k#i(xi - Xk)

where P(xi) is a polynomial of degree n - 2; from the solution for r = 0, 1, ... , n - 1
we obtain the desired answer.

Notes: Dr. Matrix was anticipated in this discovery by L. Euler, who wrote to
Christian Goldbach about it on 9 November 1762. See Euler's Institutionum Calculi
Integralis 2 (1769), §1169; and E. Waring, Phil. Trans. 69 (1779), 64-67. The following
alternative method of proof, using complex variable theory, is less elementary but more
elegant: By the residue theorem, the value of the given sum is

1 1 · Zr dz

27ri lzl=R (z - x1) ... (z - Xn)

1.2.3 ANSWERS TO EXERCISES 473

where R > jx1 J, ... , Jxn J. The Laurent expansion of the integrand converges uniformly
on I z J = R; it is

r-n (1) (1)
Z 1 - x1/ Z · ·. 1 - Xn/ Z

= Zr-n + (x1 + · · · + Xn)Zr-n-l +(xi + X1X2 + · · ·)zr-n-2 + · · ·.

Integrating term by term, everything vanishes except the coefficient of z-1
. This

method gives us the general formula for an arbitrary integer r ~ 0:

ii +···+in=r-n+l
ji, ... ,jn?:_O

[J. J. Sylvester, Quart. J. Math. 1 (1857), 141-152.]

34. If the reader has tried earnestly to solve this problem, without getting the answer,
perhaps its purpose has been achieved. The temptation to regard the numerators as
polynomials in x rather than as polynomials in k is almost overwhelming. It would
undoubtedly be easier to prove the considerably more general result

~ fli::;rsn-1 (Yk - Zr)
~ --------- = 1,
k=l f11::;r::;n,r#k(Yk -yr)

which is an identity in 2n - 1 variables!

35. If R(j) never holds, the value should be -oo. The stated analog of rule (a) is based
on the identity a+ max(b, c) =max(a+ b, a+ c). Similarly if all ai, bj are nonnegative,
we have

SUPR(i) ai SUPs(j) bj = SUPR(i) SUPs(j) aibj.

Rules (b), (c) do not change; for rule (d) we get the simpler form

sup(supR(j) aj, SUPs(j) aj) = supR(j)orS(j) aj.

36. Subtract column one from columns 2, ... , n. Add rows 2, ... , n to row one. The
result is a triangular determinant.

37. Subtract column one from columns 2, ... , n. Then subtract x1 times row k - 1
from row k, fork= n, n- l, ... , 2 (in that order). Now factor x 1 out of the first column
and factor Xk-X1 out of columns k = 2, ... , n, obtaining x1 (x2-x1) ... (xn - x1) times
a Vandermonde determinant of order n - 1. The process continues by induction.

Alternative proof, using "higher" mathematics: The determinant is a polynomial
in the variables x1 , ... , Xn of total degree 1+2+· · ·+n. It vanishes if Xj = 0 or if Xi= Xj
(i < j), and the coefficient of xi x~ ... x~ is + 1. These facts characterize its value. In
general, if two rows of a matrix become equal for Xi = Xj, their difference is usually
divisible by Xi - Xj, and this observation often speeds the evaluation of determinants.

38. Subtract column one from columns 2, ... , n, and factor out

(x1 + y1)-l. · · (xn + Y1)-1(Y1 - y2) · · · (y1 - Yn)

from rows and columns. Now subtract row one from rows 2, ... , n and factor out
(x1 -x2) ... (x1 -xn)(x1 +y2)-1 ... (x1 +Yn)-1; we are left with the Cauchy determinant
of order n - 1.

39. Let I be the identity matrix ('5ij), and J the matrix of all ones. Since J 2 = nJ,
we have (xI + yJ)((x + ny)I - yJ) = x(x + ny)I.

474 ANSWERS TO EXERCISES 1.2.3

40. t bitX~ = Xj II (xk - Xj)/xi II (xk - Xi)= ~ij·
t=l l<k<n l<k<n

k#i k#i

41. This follows immediately from the relation of an inverse matrix to its cofactors.

It may also be interesting to give a direct proof here: We have

when x = 0. This is a polynomial of degree at most n - 1 in x. If we set x = Xj + Ys,

1 ~ s ~ n, the terms are zero except when s = t, so the value of this polynomial is

These polynomials of degree at most n - 1 agree at n distinct points x, so they agree

also for x = O; hence

42. n/(x + ny).

43. 1 - rr~=l (1 - l/xk)· This is easily verified if any Xi = 1, since the inverse of

any matrix having a row or column all of ones must have elements whose sum is 1.

If none of the Xi equals one, sum the elements of row i as in exercise 44 and obtain

nk#i(xk - l)/xi nk#i(Xk - Xi)· We can now sum this on i using exercise 33, with

r = 0 (multiply numerator and denominator by (Xi - 1)).

44. We find

Cj = t bij = IT (xj + Yk)/ II (xj - Xk),
i=l k=l l~k~n

k#j

after applying exercise 33. And

45. Let Xi = i, Yj = j - 1. From exercise 44, the sum of the elements of the inverse is

(1+2 + · · · + n) + ((n-1) + (n - 2) + · · · + 0) = n2
• From exercise 38, the elements

of the inverse are

(-l)i+j(i + n-1)! (j + n-1)!
bij = (i + j - l)(i - 1)!2 (j - 1)!2 (n - i)! (n - j)! ·

This quantity can be put into several forms involving binomial coefficients, for example

(~l)~+jij (-i) (~) (-j) (~) = (-l)i+jj(i~j-2) (i~n-1) (j+n~l) (~).
i+J-1 n i n J i-1 i-1 n-i J

1.2.3 ANSWERS TO EXERCISES 475

From the latter formula we see that bii is not only an integer, it is divisible by i, j, n,
i + j - 1, i + n - 1, j + n - 1, n - i + 1, and n - j + 1. Perhaps the prettiest formula
for bii is

(i + j - 1) (i ~ j - 2)
2
(-(i + !)) (-(i + !)) .

i-1 n-i n-J

The solution to this problem would be extremely difficult if we had not realized
that a Hilbert matrix is a special case of a Cauchy matrix; the more general problem is
much easier to solve than its special case! It is frequently wise to generalize a problem
to its "inductive closure," i.e., to the smallest generalization such that all subproblems
that arise in an attempted proof by mathematical induction belong to the same class. In
this case, we see that cofactors of a Cauchy matrix are Cauchy matrices, but cofactors
of Hilbert matrices are not Hilbert matrices. [For further information, see J. Todd,
J. Res. Nat. Bur. Stand. 65 (1961), 19-22.]

46. For any integers ki, k2, ... , krn, let E(k1, ... , krn) = sign(fli<i< "<rn(ki-ki)), where
- J_

signx = [x > 0]- [x < 0]. If (li, ... , lrn) ~s equal to (k1, ... , krn) except for the fact that
ki and ki have been interchanged, we have E(li, ... , lrn) = -E(k1, ... , krn)· Therefore
we have the equation det(Bk1 ... k,.,J = E(k1, ... , krn) det(Bii ... i,.,J, if j1 ~ · · · ~ irn are
the numbers k1, ... , krn rearranged into nondecreasing order. Now by definition of the
determinant,

L aik1 ... arnk"' det(Bk1 ... k"')
l:'Sk1,. . .,k"':'Sn

L E(k1, ... , krn)a1k1 ... arnk"' det(Bji ... i=)
l:'Sk1, .. .,k=:'Srn

L det(Aii .. ·i=) det(Bii .. ·i=).
l~ii~ .. ·~i=:'Sn

Finally, if two j's are equal, det(Aii .. ·i=) = 0. [J. de l'Ecole Polytechnique 9 (1813),
280--354; 10 (1815), 29-112. Binet and Cauchy presented their papers on the same day ·
in 1812.]

47. Let aii = (IT{:i(xi+Pk))(IT~=i+l(xi+qk)). Subtract column k-1 from column k
and factor out Pk-i - qk, for k = n, n - 1, ... , j + 1 (in that order), for j = 1,
2, ... , n - 1 (in that order). This leaves ITi:-:;i<i:'Sn (Pi - qi) times det(bii) where
bii = fl~=Hl (xi + qk)· Now subtract qk+i times column k + 1 from column k for

k = 1, ... , n - j, and for j = 1, ... , n - 1; this leaves det(Cij), where Cij = x~-i
essentially defines a Vandermonde matrix. We can now proceed as in exercise 37,
operating on rows instead of columns, obtaining

det(aii) = IJ (xi - xi)(Pi - qi).
l:'Si<i:'Sn

When Pi = qi = Yi for 1 ~ j ~ n, the matrix in this exercise is a Cauchy matrix
with row i multiplied by fl7=i (xi +Yi). Therefore this result generalizes exercise 38
by adding n - 1 independent parameters. [Manuscripta Math. 69 (1990), 1 77-178.]

476 ANSWERS TO EXERCISES 1.2.4

SECTION 1.2.4

1. 1, -2, -1, 0, 5.

2. lxJ.

3. By definition, l x J is the greatest integer less than or equal to x; therefore l x J is

an integer, lxJ _:::; x, and lxJ + 1 > x. The latter properties, plus the fact that when m

and n are integers we have -:ri < n if and only if m _:::; n - 1, lead to an easy proof of

propositions (a) and (b). Similar arguments prove (c) and (d). Finally, (e) and (f) are

just combinations of previous parts of this exercise.

4. x - l < lxJ _:::; x; so -x + 1 > -lxJ ~ -x; hence the result.

5. lx + ~J. The value of (-x rounded) will be the same as -(x rounded), except

when x mod 1 = ~. In the latter case, the negative value is rounded towards zero and

the positive value is rounded away from zero.

6. (a) is true: l y'xJ = n <==:} n 2
_:::; x < (n + 1)2

<==:} n 2
_:::; lx J < (n + 1)2

<==:}

l JTzj J = n. Similarly, (b) is true. But (c) fails when xis, say, 1.1.

7. l x + y J = l l x J + x mod 1 + lY J + y mod 1 J = l x J + lY J + l x mod 1 + y mod 1 J .
The inequality should be ~ for ceilings, and then equality holds if and only if either x

or y is an integer or x mod 1 + y mod 1 > 1.

8. 1, 2, 5, -100.

9. -1, 0, -2.

10. 0.1, 0.01, -0.09.

11. x = y.

12. All.

13. +1, -1.

14. 8.

15. Multiply both sides of Eq. (1) by z; the result is also easily verified if y = 0.

17. As an example, consider the multiplication portion of Law A: We have a = b + qm

and x = y +rm, for some integers q and r; so ax= by+ (br + yq + qrm)m.

18. We have a - b = kr for some integer k, and also kr = 0 (modulo s). Hence by

Law B, k = 0 (modulo s), so a - b = qsr for some integer q.

20. Multiply both sides of the congruence by a'.

21. There is at least one such representation, by the previously proved exercise. If there

are two representations, n = p1 .. ·Pk = qi ... qrn, we have q1 ... qrn = 0 (modulo p1);

so if none of the q's equals p1 we could cancel them all by Law B and obtain 1 = 0

(modulo P1). The latter is impossible since pi is not equal to 1. So some qi equals p1,

and n/p1 = p2 .. ·Pk = qi ... qj-1qj+1 ... qrn. Either n is prime, when the result is

clearly true, or by induction the two factorizations of n/p1 are the same.

22. Let m =ax, where a> 1 and x > 0. Then ax= 0 but x "¥=. 0 (modulo m).

24. Law A is always valid for addition and subtraction; Law C is always valid.

26. If bis not a multiple of p, then b2
- 1 is, so one of the factors must be.

27. A number is relatively prime to pe if and only if it is not a multiple of p. So we

count those that are not multiples of p and get cp(pe) = pe - pe- 1.

1.2.4 ANSWERS TO EXERCISES 477

28. If a and bare relatively prime to m, so is ab mod m, since any prime dividing the
latter and m must divide a or b also. Now simply let x1, ... , Xcp(rn) be the numbers
relatively prime to m, and observe that ax1 mod m, ... , axcp(rn) mod m are the same
numbers in some order, etc.

29. We prove (b): If r J.. sand if k 2 divides rs, then p 2 divides rs for some prime p,

sop divides r (say) and cannot divides; so p 2 divides r. We see that /(rs)= 0 if and
only if f(r) = 0 or f(s) = 0.

30. Supposer J.. s. One idea is to prove that the 'P(rs) numbers relatively prime to rs
are precisely the 'P(r)'P(s) distinct numbers (sxi + ryi) mod (rs) where x1, ... , xcp(r)
and y1, ... , Ycp(s) are the corresponding values for r and s.

Since 'P is multiplicative, 'P(106
) = 'P(26)'P(56

) = (26
- 25)(56

- 55
) = 400000.

And in general when n = p~1
• •• p~r, we have 'P(n) = (p~ 1

- p~1 - 1) ... (p~r - p~r-l) =
n fip\n,pprime(l - l/p). (Another proof appears in exercise 1.3.3-27.)

31. Use the fact that the divisors of rs may be uniquely written in the form cd where
c divides r and d divides s. Similarly, if f(n) ~ 0, one can show that the function
maxd\n f(d) is multiplicative (see exercise 1.2.3-35).

33. Either n + m or n - m + 1 is even, so one of the quantities inside the brackets is
an integer; so equality holds in exercise 7, and we obtain (a) n; (b) n + 1.

34. b must be an integer ~ 2. (Set x = b.) The sufficiency is proved as in exercise 6.
The same condition is necessary and sufficient for pogb x l = pogb Ix 11 ·

Note: R. J. McEliece has pointed out the following generalization: Let f be a
continuous, strictly increasing function defined on an interval A, and assume that both
l x J and Ix l are in A whenever x is in A. Then the relation lf (x)J = lf (l x J)j holds
for all x in A if and only if the relation r f (x) l = If (Ix l) l holds for all x in A,
if and only if the following condition i satisfied for all x in A: "f (x) is an integer
implies xis an integer." The condition is obviously necessary, for if f(x) is an integer
and it equals l! (l x J) J or If (r x l) l then x must equal l x J or r x l · Conversely if, say,
l!(lxJ)J < lf(x)J then by continuity there is some y with lxJ < y ~ x for which f(y)
is an integer; but y cannot be an integer.

35. x + m _ 1 = x + m _ ~ _ n - 1 < l x J + m _ n - 1 ~ l l x J + m J ~ x + m;
n n n n n n n n

apply exercise 3. Use of exercise 4 gives a similar result for the ceiling function. Both
identities follow as a special case of McEliece's theorem in exercise 34.

36. Assume first that n = 2t. Then

hence

by exercise 33. And if n = 2t + 1, we have t 2 + ln/2J = t 2 + t = n 2/4 - 1/4. For the
second sum we get, similarly, r n(n + 2)/4l

478 ANSWERS TO EXERCISES 1.2.4

37. ~ mk + x = m(n - l) + x. Let {y} denote y mod 1; we must subtract
~ n 2

O~k<n

.
This quantity S consists of d copies of the same sum, since if t = n / d we have

Let u = m/d; then

L { mk + x} = L { ~ + uk} ,
o~k<t n o~k<t n t

and since t J.. u this sum may be rearranged to equal

+ +-+···+ +--. {
x mod d } { x mod d 1 } { x mod d t - 1 }

n n t n t

Finally, since (x mod d)/n < l/t, the braces in this sum may be removed and we have

S = d c (x :od d) + t ~ 1) .
An application of exercise 4 yields the similar identity

L r mk + x l = (m + 1) (n - 1) - d - 1 + d r x I dl .
I n 2 2

O~k<n

This formula would become symmetric in m and n if it were extended over the range
0 :'.S k :'.Sn. (The symmetry can be explained by drawing the graph of the summand as
a function of k, then reflecting about the line y = x.)

38. Both sides increase by I y l when x increases by 1, so we can assume that 0 :'.S x < 1.
Then both sides are zero when x = 0, and both sides increase by 1 when x increases
past the values 1 - k/y for y > k ~ 0. [Orelle 136 (1909), 42; the case y = n is due to
C. Hermite, Acta Math. 5 (1884), 315.J

39. Proof of part (f): Consider the more general identity flo<k<n2sin7r(x + k/n) =
2sin7rnx, which can be demonstrated as follows: Since 2sin0 = (eie - e-i8)/i =
(1 - e-2i8)ei8-i 11-f2, the identity is a consequence of the two formulas

II e7r<x-(1/2)+(k/n)) = e7r(nx-1/2). II (1- e-27r(x+ik/n)) = 1 - e-21rnX and

O~k<n O~k<n

The latter is true since the function x - ! is replicative; and the former is true because
we may set z = 1 in the factorization of the polynomial z': - an = (z - a)(z - wa) ...
(z - wn- 1a), where w = e-21ri/n.

40. (Note by N. G. de Bruijn.) If f is replicative, J(nx + 1) - f(nx) = f(x + 1) - f(x)
for all n > 0. Hence if f is continuous, f(x + 1) - f(x) = c for all x, and g(x) =
f(x) - clxJ is replicative and periodic. Now

[1 e21rinxg(x) dx = .!. [1 e27ryg(y) dy;
lo n lo

1.2.4 ANSWERS TO EXERCISES 479

expanding in Fourier series shows that g(x) (x - ~)a for 0 < x < 1. It follows
that f (x) = (x - ~)a. In general, this argument shows that any replicative locally
Riemann-integrable function has the form (x- ~)a+b max(lxJ, O)+c min(lx J, 0) almost
everywhere. For further results see L. J. Mardell, J. London Math. Soc. 33 (1958), 371-
375; M. F. Yoder, .!Equationes Mathematicre 13 (1975), 251-261.

41. We want an = k when ~k(k - 1) < n ~ ~k(k + 1). Since n is an integer, this is
equivalent to

k(k - 1) 1 k(k + 1) 1
2 + 8 < n < 2 + 8'

i.e., k- ~ < ffn < k + ~- Hence an= l ffn + ~ J, the nearest integer to ffn. Other

correct answers are lffn-~l, j(v'8n+l-l)/2l, l(v'8n-7+1)/2j,etc.

42. (a) See exercise 1.2.7-10. (b) The given sum is nllogb nJ - S, where

S=
l<k<n 1::;t:::;togb n

k+l is a power of b

43. lv'nJ (n - ~(2lv'nJ + 5)(lv'nJ -1)).

44. The sum is n + 1 when n is negative.

45. lmj/nJ = r if and only if 1:1 ~ j < r(r :l)nl' and we find that the given

sum is therefore

The stated result follows by rearranging the latter sum, grouping the terms with a
particular value of I rn/m l The second formula is immediate by the substitution

f(x) = (x; 1).
46. Lo~j<am f(lmj/nJ) = Lo::;r<arnf rn/ml(f(r -1)- f(r)) + f anlf(laml -1).

47. (a) The numbers 2, 4, ... , p - 1 are the even residues (modulo p); since 2kq =
pl2kq/pj + (2kq) modp, the number (-1)l2kq/pJ((2kq) modp) will be an even residue·
or an even residue minus p, and each even residue clearly occurs just once. Hence
(-l)crq(p-l)/22 ·4 ... (p-1) = 2 ·4 ... (p-1). (b) Let q = 2. If p = 4n + 1, u = n; if
p = 4n + 3, u = n + 1. Hence (~) = (1, -1, -1, 1) according asp mod 8 = (1, 3, 5, 7),
respectively. (c) Fork< p/4, we have

l(p-l-2k)q/pj = q-f(2k+l)q/pl = q-l-l(2k+l)q/pj = l(2k+l)q/pj (modulo 2).

Hence we may replace the last terms l(p- l)q/pj, l(p- 3)q/pj, ... by lq/pj, l3q/pj,
etc. (d) Lo::;k<p/2lkq/pj + Lo::;r<q/2f rp/ql = fp/2l(f q/2l -1) = (p + l)(q -1)/4.
Also Lo::;r<q/2 r rp/q l = Lo::;r<q/2 lrp/qj + (q -1)/2. The idea of this proof goes back
to G. Eisenstein, Orelle 28 (1844), 246-248; Eisenstein also gave several other proofs
of this and other reciprocity laws in the same volume.

48. (a) This is clearly not always true when n < O; when n > 0 it is easy to verify.
(b) l(n + 2- ln/25J)/3J = j(n- ln/25J)/3l = j(n + r-n/251)/31 = lf24n/25l/3l =
f8n/25l = l(8n + 24)/25 J. The penultimate equality is justified by exercise 35.

480 ANSWERS TO EXERCISES 1.2.4

49. Since f(O) = J(f(O)) = J(f(O) + 0) = f(O) + f(O), we have f(n) = n for all
integers n. If f(~) = k ~ 0, we have k = J(i!2kf(~ - k)) = J(i!2k(f(~) - k)) =
f(O) = 0. And if f(n~l) = 0 we have f(~) = f(~-f(l + n~ 1)) = f(n~l) = O;

furthermore 1 ~ m < n implies J(';:) = f(~f(a;:')) = f(~) = 0, for a= In/ml,
by induction on m. Thus f(~) :'.S 0 implies f(x) = lxJ for all rational x. On the
other hand, if f(~) > 0 the.function g(x) = -f(-x) satisfies (i) and (ii) and has
g(~) = 1 - f(~) ~ O; hence f(x) = -g(-x) = -l-xJ = f xl for all rational x.
[P. Eisele and K. P. Hadeler, AMM 97 (1990), 475-477.]

It does not follow, however, that f (x) = l x J or Ix l for all real values of x. If, for
example, h(x) is any function with h(l) = 1 and h(x + y) = h(x) + h(y) for all real x
and y, then the function f(x) = lh(x)J satisfies (i) and (ii); but h(x) may be unbounded
and highly erratic when 0 < x < 1 [G. Hamel, Math. Annalen 60 (1905), 459-462].

SECTION 1.2.5
1. 52!. For the curious, this number is 806 58175 17094 38785 71660 63685 64037

66975 28950 54408 83277 82400 00000 00000. (!)

2. Pnk = Pn(k-l)(n - k + 1). After the first n - 1 objects have been placed, there is
only one possibility for the last object.

3. 5 312 4, 3 5124, 315 2 4, 312 5 4, 312 4 5; 4 2 3 51, 413 5 2, 412 5 3, 312 5 4, 312 4 5.

4. There are 2568 digits. The leading digit is 4 (since log 10 4 = 2 log10 2 ~ .602). The
least significant digit is zero, and in fact by Eq. (8) the low order 249 digits are all zero.
The exact value of 1000! was calculated by H. S. Uhler using a desk calculator and much
patience over a period of several years, and appears in Scripta Mathematica 21 (1955),
266-267. It begins with 402 38726 00770 (The last step in the calculation, to
multiply the two numbers 750! and f1~~~51 k, was performed on UNIVAC I by John W.
Wrench, Jr., "in the extraordinary time of 21/2 minutes." Nowadays, of course, a
desktop machine easily produces 1000! in a fraction of a second, and we can confirm
that Uhler's value was 1003 correct.)

5. (39902)(97 /96) ~ 416 + 39902 = 40318.

6. 218 . 38 . 54 . 72 . 11 . 13 . 17. 19.

8. It is limrn-too mnm!/((n + m)!/n!) = n! limrn-too mn/((m + 1) ... (m + n)) = n!,
since m/(m + k) ~ 1.

9. yf7r and -2yf7r. (Exercise 10 used.)

10. Yes, except when x is zero or a negative integer. For we have

mxm' (m) r(x + 1) = x lim . .
rn-too x(x + 1) ... (x + m) x + m + 1

11, 12. µ = (akpk-l +···+al)+ (akpk- 2 + · · · + a2) + · · · + ak

= ak(Pk-l + · · · +p+ 1) +···+al= (ak(Pk -1) + · · · + ao(p0 -1))/(p-1)

= (n - ak - · · · - al - ao) / (p - 1).

13. For each n, 1 ~ n < p, determine n' as in exercise 1.2.4-19. There is exactly
one such n', by Law 1.2.4D; and (n')' = n. Therefore we can pair off the numbers in
groups of two, provided that n' =/= n. If n' = n, we have n2 = 1 (modulo p); hence, as
in exercise 1.2.4-26, n = 1 or n = p-1. So (p-1)! = 1 · l ... 1 · (-1), since 1 and p-1
are the only unpaired elements.

1.2.5 ANSWERS TO EXERCISES 481

14. Among the numbers {1, 2, ... , n} that are not multiples of p, there are ln/pj

complete sets of p - 1 consecutive elements, each with a product congruent to -1

(modulo p) by Wilson's theorem. There are also a0 left over, which are congruent

to ao! (modulo p); so the contribution from the factors that are not multiples of p is

(-l)ln/pJa0 !. The contribution from the factors that are multiples of pis the same as

the contribution in l n / p J !; this argument can therefore be repeated to get the desired

formula.

15. (n!) 3
. There are n! terms. Each term has one entry from each row and each

column, so it has the value (n!)2.

16. The terms do not approach zero, since the coefficients approach 1/ e.

17. Express the gamma functions as limits by Eq. (15).

II _n ___ n_ = r(~)r(~) = 2r(~)2
n - l n + l r(1)r(1) 2 .

n>l 2 2

18.

[Wallis's own heuristic "proof" can be found in D. J. Struik's Source Book in Mathe

matics (Harvard University Press, 1969), 244-253.]

19. Change of variable t =mt, integration by parts, and induction.

20. [For completeness, we prove the stated inequality. Start with the easily verified

inequality 1 + x ~ ex; set x = ±t / n and raise to the nth power to get (1 ± t / n) n ~ e±t.
Hence e-t ~ (l-t/n)n = e-t(l-t/ntet ~ e-t(l-t/n)n(l+t/n)n = e-t(l-t2/n2)n ~

e-t(l - t2/n) by exercise 1.2.1-9.]

Now the given integral minus r rn (x) is

As m ~ oo, the first of these integrals approaches zero, since tx-i < et/2 for large t;

and the second is less than

21. If c(n, j, ki, k2, ...) denotes the appropriate coefficient, we find

c(n+ 1, j, ki, ...) = c(n,j- l, ki -1, k2, ...) + (k1 + l)c(n, j, ki + 1, k2-1, k3, ...)

+ (k2 + 1) c(n, j, ki, k2 + 1, k3 -1, k4, ...) + · · · ,

by differentiation. The equations k1 + k2 + · · · = j and k1 + 2k2 + · · · = n are preserved

in this induction relationship. We can easily factor n!/ (k1 ! (l!)k1 k 2 ! (2!)k2 •••) out of

each term appearing on the right-hand side of the equation for c(n + 1, j, k1, ...), and

we are left with ki + 2k2 + 3k3 + · · · = n + 1. (In the proof it is convenient to assume

that there are infinitely many k's, although clearly kn+l = kn+2 = · · · = 0.)

The solution just given makes use of standard techniques, but it doesn't give

a satisfactory explanation of why the formula has this form, nor how it could have

been discovered in the first place. Let us examine this question using a combinatorial

argument suggested by H. S. Wall [Bull. Amer. Math. Soc. 44 (1938), 395-398]. Write
. . k

for convenience Wj = D~w, Uk= Dxu. Then Dx(wj) = Wj+1u1 and Dx(uk) = Uk+i·

482 ANSWERS TO EXERCISES 1.2.5

By these two rules and the rule for derivative of a product we find

D!w = w1u1

n;w = (w2u1u1 + w1u2)

D;w = ((w3U1U1U1 + W2U2U1 + W2U1U2) + (w2U1U2 + W1U3)), etc.

Analogously we may set up a corresponding tableau of set partitions thus:

'Dl = {1}

'D2 = ({2}{1} + {2, 1})

1)
3 = (({3}{2}{1} + {3, 2}{1} + {2}{3, 1}) + ({3}{2, 1} + {3, 2, 1})), etc.

Formally, if a 1a 2 ... ai is a partition of the set {1, 2, ... , n - 1 }, define

'Da1a2 ... ai = {n}a1a2 ... ai + (a1 U {n})a2 ... ai

+ ai(a2 U {n}) .. . ai + · · · + aia2 ... (ai U {n}).

This rule is an exact parallel of the rule

Dx(WjUr1Ur2 ... Urj) = Wj+1U1Ur1Ur2 ... Urj +WjUr1+lUr2 ... Urj

+ WjUr1 Ur2 +1 ... Uri + · · · + WjUr1 Ur2 ... Urj+li

if we let the term WjUr1 Ur2 ... Uri correspond to a partition aia2 ... aj with rt elements
in at, 1 ~ t ~ j. So there is a natural mapping from vn onto D-;;w, and furthermore
it is easy to see that vn includes each partition of the set {1, 2, ... , n} exactly once.
(See exercise 1.2.6-64.)

From these observations we find that if we collect like terms in D-;;w, we obtain a
sum of terms c(k1 , k 2, ...)wiu~1 u;2 ... , where j = ki + k2 + · · · and n = ki + 2k2 + · · ·,
and where c(k1 , k2 , •••) is the number of partitions of {1, 2, ... , n} into j subsets such
that there are kt subsets having t elements.

It remains to count these partitions. Consider an array of kt boxes of capacity t:

k2 k

3

[]

0~1 .oDD ... 000 ... D ...
The number of ways to put n different elements into these boxes is the multinomial
coefficient

(
n) n!

1,1, ... ,1,2,2, ... ,2,3,3,.,.,3,4, ... - l!k12!k23!k3 ... ·

To get c(k1 , k 2, k 3, ...) we should divide this by ki ! k2 ! k3 ! ... , since the boxes in each
group of kt are indistinguishable from each other; they may be permuted in kt! ways
without affecting the set partition.

Arbogast's original proof [Du Calcul des Derivations (Strasbourg: 1800), §52] was
based on the fact that n;u/k! is the coefficient of zk in u(x + z) and D~w/j! is the

1.2.6 ANSWERS TO EXERCISES 483

coefficient of yi in w(u + y), hence the coefficient of zn in w(u(x + z)) is

n~,w = I:J:. DJ,w L k,1kf..k.1 (Dfiuf (D~uf. .. (D:n··
ki +k2+···+kn =j

ki +2k2+ .. ·+nkn =n
ki ,k2, .. .,kn ?_O

His formula was forgotten for many years, then rediscovered independently by F. Faa
di Bruno [Quarterly J. Math. 1 (1857), 359-360], who observed that it can also be
expressed as a determinant

(n~l)u1 (n~l)u2 (n-1) 2 U3 (n-1)
n-2 Un-1

(n-1) n-1 Un

-1 (n~2)u1 (n-2)
1 u2 (n-2)

n-3 Un-2
(n-2)
n-2 Un-1

n; = det 0 -1 (n-;;-3) u1 (n-3)
n-4 Un-3

(n-3)
n-3 Un-2

0 0 0 -1 (g)u1

where Uj = (Diu) Du; both sides of this equation are differential operators to be applied
tow. For a generalization of Arbogast's formula to functions of several variables, and
a list of references to other related work, see the paper by I. J. Good, Annals of
Mathematical Statistics 32 (1961), 540-541.

22. The hypothesis that limn--+oo(n+x)!/(n! nx) = 1 is valid for integers x; for example,
if xis positive, the quantity is (1+1/n)(1+2/n) ... (l+x/n), which certainly approaches
unity. If we also assume that x! = x(x - 1)!, the hypothesis leads us to conclude
immediately that

1
. (n + x) !

1 1
. (x + 1) ... (x + n)

1 = lm = x. im '
n--+oo n! nX n--+oo n! nX

which is equivalent to the definition given in the text.

23. z (-z)! r(z) = limrn--+oo rr:=l (1- z/n)-1(1 + z/n)-1 by (13) and (15).

24. nn/n! = rr~:i(k + l)k/kk ~ rr~:i e; n!/nn+l = rr~:i kk+lj(k + l)k+l <
rrn-1 -1

k=l e ·

25. xrn+n = x~(x - m)~; xrn+n = x~(x - m);;,. These laws hold also when m and ri
are nonintegers, by (21).

SECTION 1.2.6
1. n, since each combination leaves out one item.

2. 1. There's exactly one way to choose nothing from the empty set.

3. G~). The actual number is 635013559600.

4. 24
. 52 . 72 . 17. 23. 41. 43. 47.

5. (10 + 1)4 = 10000 + 4(1000) + 6(100) + 4(10) + 1.

6. r = -3: 1 -3 6 -10 15 -21 28 -36
r = -2: 1 -2 3 -4 5 -6 7 -8 .. .
r = -1: 1 -1 1 -1 1 -1 1 -1 .. .

7. ln/2J; or, alternatively, f n/2l It is clear from (3) that for smaller values the
binomial coefficient is strictly increasing, and afterwards it decreases to zero.

484 ANSWERS TO EXERCISES 1.2.6

8. The nonzero entries in each row are the same from left to right as from right to left.

9. One if n is positive or zero; zero if n is negative.

10. (a), (b) and (f) follow immediately from (e); (c) and (d) follow from (a), (b), and
Eq. (9). Thus it suffices to prove (e). Consider (~) as a fraction, given by Eq. (3) with
factors in numerator and denominator. The first k mod p factors have no p's in the
denominator, and in the numerator and denominator these terms are clearly congruent
to the corresponding terms of

(
nmodp)
kmodp '

which differ by multiples of p. (When dealing with non-multiples of p we may work
modulo pin both numerator and denominator, since if a= c and b = d and a/b, c/d
are integers, then a/b = c/d.) There remain k - k modp factors, which fall into lk/pj
groups of p consecutive values each. Each group contains exactly one multiple of p;
the other p - 1 factors in a group are congruent (modulo p) to (p - 1)! so they cancel
in numerator and denominator. It remains to investigate the lk/pj multiples of pin
numerator and denominator; we divide each of them by p and are left with the binomial
coefficient

(
l(n - k modp)/pj)

lk/pj .

If k mod p ~ n mod p, this equals

(
ln/pj)
lk/pj

as desired; and if k mod p > n mod p, the other factor (~ :~~ ~) is zero, so the formula
holds in general. [American J. Math. 1 (1878), 229-230; see also N. J. Fine, AMM 54
(1947), 589-592.]

11. If a = arpr + · · · + ao, b = brpr + · · · + bo, and a+ b = CrPr +···+Co, the value
of n (according to exercise 1.2.5-12 and Eq. (5)) is

(ao + · · · + ar + bo + · · · + br - Co - · · · - Cr)/ (p - 1).

A carry decreases Cj by p and increases Cj+i by 1, giving a net change of +1 in this
formula. [Similar results hold for q-nomial and Fibonomial coefficients; see Knuth and
Wilf, Orelle 396 (1989), 212-219.]

12. By either of the two previous exercises, n must be one less than a power of 2. More
generally, (~) is never divisible by the prime p, 0 ~ k ~ n, if and only if n = aprn - 1,
1~a<p,m~0.

14. 24 (n ;
1

) + 36 (n ;
1

) + 14 (n ;
1

) + (n ;
1

)

n5 n 4 n 3 n n(n + l)(n + ~)(3n2 + 3n - 1)
= 5 + 2 + 3 - 30 = 15 .

15. Induction and (9).

1 7. We may assume that r and s are positive integers. Also

L(r:s)xn = (l+xr+s = L(~)xkL(~)xrn
n k rn

= ;;=G)x• ~(n ~ k)r• = ~(;;=G)(n~ k))x"
for all x, so the coefficients of xn must be identical.

1.2.6 ANSWERS TO EXERCISES 485

21. The left-hand side is a polynomial of degree n, the right-hand side is a polynomial
of degree m + n + 1. We have agreement at n + 1 points. This is not enough to prove
them equal (although when m = 0 it proves that the two sides are multiples of some
polynomial; and indeed in the case m = 0 we find that the equation is an identity ins,
since it is Eq. (11)).

22. Assume n > 0. The kth term is

~!(~)II (r-tk-j) II (n-l-r+tk-j)
O<j<k O~j<n-k

(l)k-1)
= - n! (~ II (-r + tk + j) II (-r + tk + j)

O<j<k k~j<n

and the two products give a polynomial of degree n - 1 ink, so the sum over k is zero
by Eq. (34).

24. The proof is by induction on n. If n :'.S 0 the identity is obvious. If n > 0, we
prove it holds for (r, n - r + nt + m, t, n), by induction on the integer m ~ 0, using the
previous two exercises and the validity for n-1. This establishes the identity (r, s, t, n)
for infinitely many s, and it holds for all s since both sides are polynomials in s.

25. Using the ratio test and straightforward estimates for large values of k we can
prove convergence. (Alternatively using complex variable theory we know that the
function is analytic in the neighborhood of x = 1.) We have

1 = L(-l)j (~) (r -jt) _r __ wk= L(-l)j_r __ L(~) (r -jt)wk
. J k r - Jt . r - Jt J k

k,3 J k

= ~ (-l)~r ~ (r -. jt) (r - jt ~ j) wk = ~(-l)j Aj(r, t)(l + wr-jt-jwj.
~ r - Jt ~k J k - J ~

J J

Now let x = 1/(l+w), z = -w/(l+w)1+t. This proof is due to H. W. Gould [AMM 63
(1956), 84-91]. See also the more general formulas in exercises 2.3.4.4-33 and 4.7-22.

26. We could start with identity (35) in the form

and proceed as in exercise 25. Another way is to differentiate the formula of that
exercise with respect to z; we get

hence we can obtain the value of

27. For Eq. (26), multiply the series for xr+ 1j((t + l)x - t) by the series for X
8

, and
get a series for xr+s+1j((t + l)x - t) in which coefficients of z may be equated to the
coefficients arising from the series for x (r+ s)+ 1

/ ((t + 1) x - t).

486 ANSWERS TO EXERCISES

28. Denoting the left-hand side by f(r, s, t, n), we find

(r: 8) + tf(r - t - 1, s + t, t, n - 1) = f(r, s, t, n)

by considering the identity

29.

30.

~(r+tk)(s-tk) r +~(r+tk)(s-tk) tk =f(r,s,t,n).
L....t k n - k r + tk L....t k n - k r + tk

k k

(-l)k(~) /ni = (-l)k /(k! (n - k)!) = (-1r/ II (k-j).
O~j~n

Apply (7), (6), and (19) to get #k

~(-m -2k- l) (2k + 1) (-1r-m
L....t n - m - k k 2k + 1
k?;O

1.2.6

Now we can apply Eq. (26) with (r, s, t, n) = (1, m - 2n - 1, -2, n - m), obtaining

(-lr-m (-m) = (n - 1).
n-m n-m

This result is the same as our previous formula, when n is positive, but when n = 0 the

answer we have obtained is correct while (;-=:.;) is not. Our derivation has a further

bonus, since the answer (:..:=-,!J is valid for n ~ 0 and all integers m.

31. [This sum was first obtained in closed form by J. F. Pfaff, Nova Acta Acad. Scient.

Petr. 11 (1797), 38-57.] We have

LL(m-r+s)(n+r-s)(r .)(~)
k j k n-k m+n-J J

=~~(m-~+s)(n+r-s)(r .)(m-r+~-j)
L;'~ J n-k m+n-J k-J

=~(m-~+s)(r .)(m+n~j).
L....t J m+n-J n-J

J

Changing (m~~ji) to (m+;-j) and applying (20) again, we get

32. Replace x by -x in (44).

33, 34. [Giornale di Mat. Battaglini 31 (1893), 291-313; 33 (1895), 179-182.] We

have xn = n! (x+:-1
). The equation may therefore be transformed into

(
x + y + n - 1) = L (x + (1 - z) k) (y - 1 + nz + (n - k) (1 - z)) x ,

n k k n-k x+(l-z)k

which is a case of (26). Similarly, (x + y)!} = 2:k (~)x(x - kz - l)k- 1(y + kz)n-k.

35. For example, we prove the first formula:

~(-l)n+l-k (n [~] + [k: 1]) xk = -nx!} +xx!}= xn+1.

1.2.6 ANSWERS TO EXERCISES 487

36. By (13), assuming that n is a nonnegative integer, we get 2n and b'no, respectively.
37. When n > 0, 2n-1. (The odd and even terms cancel, so each equals half the total
sum.)

38. Let w = e2-rri/m. Then

Now

L (l+wjtw-jk=L L (:)wi<t-k)_
O=Sj<m t O=Sj<m

L wrj = m [r 0 (modulo m)]
O=Sj<m

(it is the sum of a geometric progression), so the right-hand sum is m L (:).
t mod m=k

The original sum on the left is

L....t w w w - L....t cos w .
m

~ (-j/2 + j/2)n j(n/2-k) _ ~ (2 jn)n j(n/2-k)

O=Sj<m O=Sj<m

Since the quantity is known to be real, we may take the real part and obtain the stated
formula.

The cases m = 3 and m = 5 have special properties discussed in CMath, exercises
5.75 and 6.57.

39. n!; b'no -b'n1· (The row sums in the second triangle are not so simple; we will find
(exercise 64) that 2:k G} is the number of ways to partition a set of n elements into
disjoint sets, which is the number of equivalence relations on {1, 2, ... , n }.)
40. Proof of (c): By parts,

B(x + 1, y) = - tx(l - t)Y 11+~11 tx-1(1- t)Y dt.
y 0 y 0

Now use (b).

41. mxB(x, m + 1)-+ r(x) as m-+ oo, regardless of whether m runs through integer
values or not (by monotonicity). Hence, (m + yrB(x, m + y + 1) -+ r(x), and
(m/(m + y)t-+ 1.

42. 1/((r + l)B(k + 1, r - k + 1)), if this is defined according to exercise 41(b). In
general when z and w are arbitrary complex numbers we define

(z) l" 1. (! =1m1m ,
w (-+zw-+w w! ((- w)!

where(!= r((+ 1);

the value is infinite when z is a negative integer and w is not an integer.
With this definition, the symmetry condition (6) holds for all complex n and k,

except when n is a negative integer and k is an integer; Eqs. (7), (g), and (20) are
never false, although they may occasionally take indeterminate forms such as 0 · oo or
oo + oo. Eq. (17) becomes

(
z) = sin n(~ - z - 1) (w - z - 1).

W SlllJrZ W

We can even extend the binomial theorem (13) and Vandermonde's convolution (21),
obtaining 2=k (a:k)za+k = (1 + zr and 2=k c:k) (13_'.'_k) = (:!~);these formulas hold
for all complex r, s, z, a, and /3 whenever the series converge, provided that complex
powers are suitably defined. [See L. Ramshaw, Inf. Proc. Letters 6 (1977), 223-226.]

488 ANSWERS TO EXERCISES 1.2.6

43. f0

1
dt/(t112 (l - t) 112

) = 2 f0
1 du/(l - u 2

)
112 = 2 arcsin ui~ = 1r.

1 ~ 1 (1 - k/r)k 1
45. For larger, kr(k) y ~ ek (1- k/r)r -+ r(k + 1).

46. J 2~ (~ + ~) (1 + ~r (1 + ;y, and (
2
:) ~ 4n/Vffi . .

47. Each quantity is <5ko when k < 0, and is multiplied by (r - k)(r - ~ - k)/(k + 1)2

when k is replaced by k + 1. When r = - ~ this implies (-V 2
) = (-1/4)k (2;).

48. This can be proved by induction, using the fact that

0 = "'(n)(-l)k = "'(n) (-l)kk + L(n) (-l)kx
~ k ~ k k+x k k+x k k k

when n > 0. Alternatively, we have

(In fact, the stated sum equals B(x, n + 1) for noninteger n also, when the series
converges.)

49. (:) =I:(~) (m -=._r2k) (-l)m+k, integer m. (See exercise 17.)
k

50. The kth summand is (~) (-lt-k(x - kzt-1x. Apply Eq. (34).

51. The right-hand side is

~ (n: k) x(x - kz)k-1 ;;= (n ~ k) (x + y)i (-x + kzr-k-i

= ;;=(~) (x + y)i ~(n: ~ ~ k)x(x - kz)k-
1
(-x + kzr-k-i

= L (~) (x + y)jon-j = (x + y)n.
"< J J_n

The same device may be used to prove Torelli's sum (exercise 34).
Another neat proof of Abel's formula comes from the fact that it is readily trans

formed into the more symmetric identity derived in exercise 2.3.4.4-29:

I:(~)x(x + kz)k- 1y(y + (n - k)zr-k-l = (x + y)(x + y + nzr-1.
k

Abel's theorem has been generalized even further by A. Hurwitz [Acta Mathema
tica 26 (1902), 199-203] as follows:

L x(x + E1Z1 + · · · + EnZnri+··+en- 1(y - E1Z1 - • • • - EnZnr-ei-···-en = (x + y)n

where the sum is over all 2n choices of E1, ••• , En = 0 or 1 independently. This is an
identity in x, y, z1, ... , Zn, and Abel's formula is the special case z1 = z2 =···=Zn.
Hurwitz's formula follows from the result in exercise 2.3.4.4-30.

1.2.6 ANSWERS TO EXERCISES 489

52. 2:k>o(k + 1)-2 = n 2/6. [M. L. J. Hautus observes that the sum is absolutely
convergent for all complex x, y, z, n whenever z =I= 0, since the terms for large k

are always of order 1 / k 2
• This convergence is uniform in bounded regions, so we may

differentiate the series term by term. If f(x, y, r) is the value of the sum when z = 1, we
find (a/ ay) f (x, y, n) = r f (x, y, n - 1) and (a/ ax) f (x, y, n) = n f (x - 1, y + 1, n - 1).
These formulas are consistent with f (x, y, n) = (x + y) n; but actually the latter equality
seems to hold rarely, if ever, unless the sum is finite. Furthermore the derivative with
respect to z is almost always nonzero.]

53. For (b), set r =~ands=-~ in the result of (a).

54. Insert minus signs in a checkerboard pattern as shown.

(-l
-1

-0 0
1 -0

-2 1
3 -3

-~)
-0

1

This is equivalent to multiplying aij by (-l)i+i. The result is the desired inverse, by
Eq. (33).

55. Insert minus signs in one triangle, as in the previous exercise, to get the inverse of
the other. (Eq. (47).)

56. 012 013 023 123 014 024 124 034 134 234 015 025 125 035 135 235 045 145 245
345 016. With c fixed, a and b run through the combinations of c things two at a time;
with c and b fixed, a runs through the combinations of b things one at a time.

Similarly, we could express all numbers in the form n = (~) + (~) + (~) + (:) with
0 ~ a < b < c < d; the sequence begins 0123 0124 0134 0234 1234 0125 0135 0235
We can find the combinatorial representation by a "greedy" method, first choosing the
largest possible d, then the largest possible c for n - (:), etc. [Section 7.2.1 discusses
further properties of this representation.]

58. By induction, since

(n) =(n-1) +(n=l)qn-k=(n-l)l+(n=l).
kq k q k lq k q k lq

It follows that the q-generalization of (21) is

L(r) (~) q(r-k)(n-k) = L(r) (~) q(s-n+k)k = (r+s).
kqn kq kqn kq n q

k k

And the identity 1- qt= -qt(l - q-t) makes it easy to generalize (17) to

(~)q = (-l)k (k- ~ -1 \ lr-k(k-1)/2.

The q-nomial coefficients arise in many diverse applications; see, for example, Section
5.1.2, and the author's note in J. Combinatorial Theory AlO (1971), 178-180.

Useful facts: When n is a nonnegative integer, (~) q is a polynomial of degree

k(n - k) in q with nonnegative integer coefficients, and it satisfies the reflective laws

(n) = (:) = l(n-k) (n) .
k q n k q k q-1

If lql < 1 and lxl < 1, the q-nomial theorem holds when n is an arbitrary real number,
·if we replace the left-hand side by Tik:;:::o((l + qkx)/(l + qn+kx)). Properties of power

490 ANSWERS TO EXERCISES 1.2.6

series make it necessary to verify this only when n is a positive integer, because we can
set qn = y; the identity has then been verified for infinitely many values of y. Now we
can negate the upper index in the q-nomial theorem, obtaining

IJ (1 ~ ~+::
1

x) = L (-r k- 1) l(k-1)/2(-qr+lx)k = L (k: r) xk,
k2:0 (q) "Jg. q k q

a formula due to Cauchy [Oomptes Rendus Acad. Sci. Paris 17 (1843), 523] and Heine
[Orelle 34 (1847), 285-328]. For further information, see G. Gasper and M. Rahman,
Basic Hypergeometric Series (Cambridge Univ. Press, 1990).

59. (n + 1)(~) - (k~1).

(n+kk-l). 60. This formula can be remembered easily, since it is

n(n + 1) ... (n + k - 1)
k(k- 1) ... 1

like Eq. (2) except that the numbers in the numerator go up instead of down. A
slick way to prove it is to note that we want to count the number of integer solutions
(a1, ... , ak) to the relations 1 ~ ai ~ a2 ~ · · · ~ ak ~ n. This is the same as
0 < ai < a2 + 1 < · · · < ak + k - 1 < n + k; and the number of solutions to

0 < bi < b2 < · · · < bk < n + k

is the number of choices of k distinct things from the set {1, 2, ... , n + k - 1}. (This
trick is due to H. F. Scherk, Orelle 3 (1828), 97; curiously it was also given by W. A.
Forstemann in the same journal, 13 (1835), 237, who said "One would almost believe
this must have been known long ago, but I have found it nowhere, even though I have
consulted many works in this regard.")

61. If amn is the desired quantity, we have amn = nam(n-1) + <5mn by (46) and
(47). Hence the answer is [n ~ m] n!/m!. The same formula is also easily obtained
by inversion of (56).

62. Use the identity of exercise 31, with (m,n,r,s,k) f- (m+k, l-k, m+n, n+l, j):

L(-l)k(l+m) (m+n) (n+l)
k l+k m+k n+k

=""'(-l)k(l+m)(l+_k)(m-k.)(m+n+j)
~ l+k J l-k-J m+l
J,k

=""' _1 k(2l-2j) (m+n+j)!
~() l - j + k (2l - 2j)! j! (m - l + j)! (n + j - l)!'
J,k

by rearranging the factorial signs. The sum on k now vanishes unless j = l.
The case l = m = n of this identity was published by A. C. Dixon [Messenger

of Math. 20 (1891), 79-80], who established the general case twelve years later [Proc.
London Math. Soc. 35 (1903), 285-289]. However, L. J. Rogers had already published
a much more general formula in the meantime [Proc. London Math. Soc. 26 (1895),
15-32, §8]. See also papers by P.A. MacMahon, Quarterly Journal of Pure and Applied
Math. 33 (1902), 274-288, and John Dougall, Proc. Edinburgh Math. Society 25

1.2.6 ANSWERS TO EXERCISES 491

(1907), 114-132. The corresponding q-nomial identities are

L(m-r+s) (n+:-s) (r+k) qm-r+s-k)(n-k)= (r) (s),
k k q n k q m+n q m q n q

L(-l)k(l+m) (m+n) (n+l) q(3k2-k)/ 2 = (l;m 1+~)!q' k l + k q m + k q n + k q l.qm.qn·q

where n!q = n~=l (1 + q + ... + l-1).
63. See CMath, exercises 5.83 and 5.106.

64. Let f(n, m) be the number of partitions of {1, 2, ... , n} into m parts. Clearly
f(l, m) = b'im· If n > 1, the partitionings are of two varieties: (a) The element
n alone forms a set of the partition; there are f(n - 1, m - 1) ways to construct
partitions like this. (b) The element n appears together with another element; there
are m ways to insert n into any m-partition of {1, 2, ... , n - 1}, hence there are
mf(n - 1, m) ways to construct partitions like this. We conclude that f(n, m) =
f(n - 1, m - 1) + mf(n - 1, m), and f(n, m) = { ;;J by induction.

65. See AMM 99 (1992), 410-422.

66. Notice first that (n:1) ~ (n~ 1). This is obvious if z ~ n, since z ~ y; otherwise

n-l ~ z ~ n, hence (n:i) ~ 0 ~ (n~l). Therefore (~!~) = (n:i) + (~) ~ (n~l) + (~) =

(n:1), and we have x ~ z + 1.
Now we can prove that every term of the sum

t = (x-z-l+k)-(y-z-l+k)
k k+l k+l '

is nonnegative. The coefficient (~::::~) is nonnegative, since z ~ n - 1; and so is
(x-~~~+k), since x ~ z + 1. Therefore z ~ y ~ x implies (Y-~~~+k) ~ (x-~~~+k).

The desired result is obvious when x = y and z = n - 1. Otherwise

because to - 1 = x - y - 1 ~ 0. [L. Lovasz, Combinatorial Problems a.nd Exercises,
Problem 13.31(a).]

67. If k > 0, exercise 1.2.5-24 gives the slightly sharper (but less memorable) upper
bounds(~)= njj;/k! ~ nk/k! ~ ~(';nk ~ (k~1)k. The corresponding lower bound is

(n) > ((n-k)e)k __!__.
k - k ek

68. Let tk = kG)Pk(l - p)n+l-k; then tk - tk+i = (~)pk(l - p)n-k(k - np). So the
stated sum is

L (tk+1 - tk) + L (tk - tk+1) = 2trnpl.
k<fnpl k2'.fnpl

[De Moivre stated this identity in Miscellanea Analytica (1730), 101, in the case that
np is an integer; H. Poincare proved the general case in his Calcul des Probabilites
(1896), 56-60. See P. Diaconis and S. Zabell, Statistical Science 6 (1991), 284-302, for
the interesting history of this identity and for a variety of similar formulas.]

492 ANSWERS TO EXERCISES 1.2.7

SECTION 1.2. 7

1. 0, 1, and 3/2.

2. Replace each term 1/(2m + k) by the upper bound 1/2m.

3 H(r) <" 2k/2kr. 2r-1/(2r-l - 1) is an upper bound
• 2m-1 - L..,Q:Sk<m ' ·

4. (b) and (c).

5. 9.78760 60360 44382 ...

6. Induction and Eq. 1.2.6-(46).

7. T(m+l,n)-T(m,n) = l/(m+l)-l/(mn+l)-···-l/(mn+n) ~ 1/(m+l)

(1/(mn + n) + · · · + l/(mn + n)) = 1/(m + 1) - n/(mn + n) = 0. The maximum

value occurs at m = n = 1, and the minimum is approached when m and n get very

large. By Eq. (3) the greatest lower bound is /, which is never actually attained. A

generalization of this result appears in AMM 70 (1963), 575-577.

8. By Stirling's approximation, ln n! is approximately (n + ~) ln n - n + ln .J'27r; also

2:~=1 Hk is approximately (n+l) lnn-n(l-1)+(/+~); the difference is approximately

/n +~Inn+ .158.

9. -l/n.

10. Break the left side into two sums; change k to k + 1 in the second sum.

11. 2 - Hn/n - l/n, for n > 0.

12. 1.000 ... is correct to more than three hundred decimal places.

13. Use induction as in the proof of Theorem A. Or use calculus: Differentiate with

respect to x, also evaluate at x = 1.

14. See Section 1.2.3, Example 2. The second sum is HH~+1 - H~~1).

15. 2:j=1 (1/ j) 2:~=j Hk can be summed by formulas in the text; the answer comes to

(n + l)H~ - (2n + l)Hn + 2n.

16. H2n-1 - ~Hn-1·

17. First solution (elementary): Taking the denominator to be (p - 1)!, which is a

multiple of the true denominator but not a multiple of p, we must show only that the

corresponding numerator, (p - 1)!/1 + (p - 1)!/2 + · · · + (p - 1)!/(p - 1), is a multiple

of p. Modulo p, (p - 1)!/k _ (p - 1)! k', where k' can be determined by the relation

kk' modp = 1. The set {1', 2', ... , (p - 1)'} is just the set {1, 2, ... , p - 1}; so the

numerator is congruent to (p - 1)! (1 + 2 + · · · + p - 1) - 0.
Second solution (advanced): By exercise 4.6.2-6, we have xP xP - x (modulo p);

hence [~] - ~kp - ~ki, by exercise 1.2.6-32. Now apply exercise 6.
The numerator of Hp-l is in fact known to be a multiple of p 2 when p > 3; see

Hardy and Wright, An Introduction to the Theory of Numbers, Section 7.8.

18. If n = 2km where mis odd, the sum equals 22km1/m2 where m1 and m 2 are both

odd. [AMM 67 (1960), 924-925.]

19. Only n = 0, n = 1. For n ~ 2, let k = llg n J. There is precisely one term whose

denominator is 2k, so 2k-l Hn - ~ is a sum of terms involving only odd primes in the

denominator. If Hn were an integer, 2k-l Hn - ~ would have a denominator equal to 2.

20. Expand the integrand term by term. See also AMM 69 (1962), 239, and an article

by H. W. Gould, Mathematics Magazine 34 (1961), 317-321.

21 H 2 H(2)
• n+l - n+l·

1.2.8 ANSWERS TO EXERCISES 493

22. (n + l)(H~ - H~2)) - 2n(Hn - 1).

23. r'(n + 1)/r(n + 1) = l/n + r'(n)/r(n), since r(x + 1) = xr(x). Hence Hn =
/ + r'(n + 1)/r(n + 1). The function 'lj;(x) = r'(x)/r(x) = Hx-1 - /is called the psi
function or the digamma function. Some values for rational x appear in Appendix A.

24. It is

1. (Hn-lnn)x IIn ((1 x) -x/k) l" x(x + 1) ... (x + n) xime +-ke =1m
n-+oo n-+oo nxn!

k=l

Note: The generalization of Hn considered in the previous exercise is therefore equal
to H~r) = 2:k>o(l/(k + lf - l/(k + 1 + xf), when r = 1; the same idea can be used
for larger values of r. The infinite product converges for all complex x.

SECTION 1.2.8

1. After k months there are Fk+2 pairs, so the answer is F14 = 377 pairs.

2. ln(¢1000
/ -J5) = 1000 ln ¢ - ~ ln 5 = 480.40711; log10 F1ooo is 1/ (ln 10) times this,

or 208.64; F10oo is therefore a 209-digit number whose leading digit is 4.

4. 0, 1, 5; afterwards Fn increases too fast.

5. 0, 1, 12.

6. Induction. (The equation holds for negative n also; see exercise 8.)

7. If d is a proper divisor of n, Fd divides Fn. Now Fd is greater than one and less
than Fn provided d is greater than 2. The only nonprime number that has no proper
factor greater than 2 is n = 4; F4 = 3 is the only exception.

8. F-1=1; F-2 = -1; F_n = (-l)n+l Fn by induction on n.

9. Not (15). The others are valid, by an inductive argument that proves something
true for n - 1 assuming it true for n and greater.

10. When n is even, it is greater; when n is odd, it is less. (See Eq. (14).)

11. Induction; see exercise 9. This is a special case of exercise 13(a).

12. If Q(z) = 2: Fnzn, (1 - z - z2)Q(z) = z + Foz2 + Fiz3 + · · · = z + z 2G(z). Hence
F(z) = G(z) + zG(z)2; from Eq. (17) we find Fn = ((3n + 3)/5)Fn - (n/5)Fn+1·

13. (a) an = rFn-1 + sFn. (b) Since (bn+2 + c) = (bn+l + c) + (bn + c), we may
consider the new sequence b~ = bn + c. Applying part (a) to b~, we obtain the answer
cFn-1 + (c + l)Fn - c.

14. an =Fm+1Fn-1+(Fm+2+l)Fn-(:)-(:~~)-···-(n~m).
15. Cn = xan + ybn + (1 - x - y)Fn.

16. Fn+l· Induction, and (n + ~ - k) = (n ~ k) + ((n - li = ik - l)).

17. In general, the quantity (xn+k - yn+k)(xm-k - ym-k) - (xn - yn)(xm - ym) is
equal to (xy)n(xm-n-k - ym-n-k)(xk -yk). Set x = ¢, y =(/),and divide by (-J5)2.

18. It is F2n+l·

19. Let u = cos 72°, v = cos 36°. We have u = 2v 2
- 1; v = 1 - 2 sin218° = 1 - 2u2.

Hence u + v = 2(v2 - u 2
), i.e., 1 = 2(v - u) = 2v - 4v2 + 2. We conclude that v = ~¢.

(Also u = ~¢-1, sin36° = ~51 / 4qi- 1 ! 2, sin 72° = ~51 1 4¢1 1 2.)

494 ANSWERS TO EXERCISES 1.2.8

20. Fn+2 - 1.

21. Multiply by x2 + x - 1; the solution is (xn+I Fn+l + xn+2 Fn - x)/(x2 + x - 1). If
the denominator is zero, x is 1/ ¢ or 1/ <[J; then the solution is

((n + l)xn Fn+l + (n + 2)xn+l Fn - l)/(2x + 1).

22. Fm+2n; sett= 2 in the"next exercise.

23. J_ "'(n) (,.1..k pk pn-k ,.1..m _ :;;:;k pk pn-k :;;:;m) v'5 L....t k <p t t-1 <p <p t t-1 <p

k

= ~(</>m(</>Ft +Ft-it - q;m(f Ft+ Ft-it)= Fm+tn·

24. Fn+I (expand by cofactors in the first row).

25. 2nvf5Fn = (1 + vf5)n - (1-vf5)n.

26. By Fermat's theorem, 2p-l 1; now apply the previous exercise and exercise
1.2.6-lO(b).

27. The statement is true if p = 2. Otherwise Fp-1Fp+1 - F: = -1; hence, from the
previous exercise and Fermat's theorem, Fp-1Fp+1 0 (modulo p). Only one of these
factors can be a multiple of p, since Fp+I = Fp + Fp-l·

28. q;n. Note: The solution to the recurrence an+ I = Aan + Bn, ao = 0, is

an= (An - Bn)/(A - B) if A I= B, an = nA n-l if A= B.

29. (a) (~)y: (7)F (;)y: (~)F (~)F (~)F (~)y:
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 2 2 1 0 0 0
1 3 6 3 1 0 0
1 5 15 15 5 1 0
1 8 40 60 40 8 1

(b) follows from (6). [E. Lucas, Amer. J. Math. 1 (1878), 201-204.]

30. We argue by induction on m, the statement being obvious when m = 1:

(a) 2:(7) (-l)f(m-k)/2lF~A:2Fk=FmL(7.:=-:) (-l)f(m-k)/2lF~A:2=0.
k F k F

(b) 2:(7) (-l)f(m-k)/2lF~A:2(-l)kFm-k
k F

= (-l)m Fm L (m; 1) (-1) f(m-l-k)/21 F~k2 = 0.
k F

(c) Since (-l)k Fm-k = Fk-1Fm - FkFm-l and Fm /= 0, we conclude from (a)
and (b) that 2:k (',;)y:(-1)f(m-k)/ 21F~A:2 Fk-l = 0.

(d) Since Fn+k = Fk-1Fn + FkFn+I the result follows from (a) and (c). This
result may also be proved in slightly more general form by using the q-nomial theorem
of exercise 1.2.6-58. References: Dov Jarden, Recurring Sequences, 2nd ed. (Jerusalem,
1966), 30-33; J. Riordan, Duke Math. J. 29 (1962), 5-12.

31. Use exercises 8 and 11.

32. Modulo Fn the Fibonacci sequence is 0, 1, ... , Fn-li 0, Fn-i, -Fn-2,

•

1.2.8 ANSWERS TO EXERCISES 495

33. Note that cos z = ~(eiz + e-iz) = -i/2, for this particular z; then use the fact
that sin(n + l)z + sin(n - l)z = 2 sin nz cos z, for all z.

34. Prove that the only possible value for Fk 1 is the largest Fibonacci number less
than or equal to n; hence n - Fk 1 is less than Fk1 _1, and by induction there is a unique
representation of n - Fk 1 • The outline of this proof is quite similar to the proof of the
unique factorization theorem. The Fibonacci number system is due to E. Zeckendorf
[see Simon Stevin 29 (1952), 190-195; Bull. Soc. Royale des Sciences de Liege 41
(1972), 179-182]; generalizations are discussed in exercise 5.4.2-10.

35. See G. M. Bergman, Mathematics Magazine 31 (1957), 98-110. To represent x >0,
find the largest k with q} ~ x and represent x as <Pk plus the representation of x - <Pk.

The representation of nonnegative integers can also be obtained from the following
all-integer recursive rules, starting with the trivial representations of 0 and 1: Let
Ln = ¢n + q;n = Fn+l + Fn-1 · The representation of L2n + m for 0 ~ m ~ L2n-1 and
n 2: 1 is ¢ 2n + ¢-2n plus the representation of m. The representation of L2n+1 + m
for 0 < m < L 2 n and n 2: 0 is ¢ 2n+l + ¢-2n- 2 plus the representation of m - ¢ 2n,
where the latter is obtained by applying the rule ¢k - ¢k- 2j = ¢k-l + ... + ¢k-2J+1.
It turns out that all strings a of Os and ls, such that a begins with 1 and has no
adjacent ls, occur to the left of the radix point in the representation of exactly one
positive integer, except for the strings that end with 102kl; the latter strings never
occur in such representations.

36. We may consider the infinite string S=, since Sn for n > 1 consists of the first Fn
letters of S=. There are no double a's, no triple b's. The string Sn contains Fn-2 a's
and Fn-1 b's. If we express m - 1 in the Fibonacci number system as in exercise 34,
the mth letter of S00 is a if and only if kr = 2. The kth letter of S= is b if and
only if l(k + 1)¢-1 J - lk¢-1 J = 1; the number of b's in the first k letters is therefore
l(k + 1)¢-1J. Also, the kth letter is b if and only if k = lm¢J for some positive
integer m. This sequence was studied by Jean Bernoulli III in the 18th century, by
A. A. Markov in the 19th, and by many other mathematicians since then; see K. B.
Stolarsky, Canadian Math. Bull. 19 (1976), 473-482.

37. [Fibonacci Quart. 1 (December 1963), 9-12.] Consider the Fibonacci number
system of exercise 34; if n = Fk1 + · · · + Fk,. > 0 in that system, let µ(n) = Fk,.. Let
µ(0) = oo. We find that: (A) If n > 0, µ(n - µ(n)) > 2µ(n). Proof: µ(n - µ(n)) =

Fk,._ 1 2: Fk,.+2 > 2Fk,. since kr 2: 2. (B) If 0 < m < Fk, µ(m) ~ 2(Fk -m). Proof: Let
µ(m) = Fj; m ~ Fk-1 + Fk-3 + · · · + FJ+(k-1-j) mod 2 = -Fj-l+(k-1-j) mod 2 + Fk ~
-~Fj +Fk. (C) If 0 < m < µ(n), µ(n-µ(n) +m) ~ 2(µ(n)-m). Proof: This follows
from (B). (D) If 0 < m < µ(n), µ(n - m) ~ 2m. Proof: Set m = µ(n) - min (C).

Now we will prove that if there are n chips, and if at most q may be taken in the
next turn, there is a winning move if and only if µ(n) ~ q. Proof: (a) If µ(n) > q all
moves leave a position n', q' with µ(n') ~ q'. [This follows from (D), above.] (b) If
µ(n) ~ q, we can either win on this move (if q 2: n) or we can make a move that leaves
a position n', q' with µ(n') > q'. [This follows from (A) above: Our move is to take
µ(n) chips.] It can be seen that the set of all winning moves, if n = Fk 1 + · · · + Fk,.,
is to remove Fki + · · · + Fk,., for some j with 1 ~ j ~ r, provided that j = 1 or
Fkj-i > 2(Fki + · · · + Fk,.)·

The Fibonacci representation of 1000 is 987+13; the only lucky move to force a vic
tory is to take 13 chips. The first player can always win unless n is a Fibonacci number.

The solution to considerably more general games of this type has been obtained
by A. Schwenk [Fibonacci Quarterly 8 (1970), 225-234].

496 ANSWERS TO EXERCISES 1.2.8

39. (3n - (-2t)/5.
40. We prove, by induction on m, that f(n) = m for Fm < n ~ Fm+1: First, f(n) ~
max(l + f(Fm), 2 + f(n - Fm)) = m. Second, if f(n) < m there is some k < n with
1 + f(k) < m (hence k ~ Fm-l) and 2 + f(n -k) < m (hence n-k ~ Fm-2); but then
n ~ Fm-l + Fm-2. [Thus the Fibonacci trees defined in Section 6.2.1 minimize the
maximum root-to-leaf cost when a right branch costs twice as much as a left branch.]

41. Fk1 +1 + · · · + Fkr+l = ¢n + (q;ki + · · · + ;pk,.) is an integer, and the parenthesized
quantity lies between (/) 3 + (/)5 + · · · = ¢-1 - 1 and (/) 2 + (/) 4 + · · · = ¢-1. Similarly,
Fk1 - 1 +···+Fk,.-l = ¢-1n+(q;ki +···+<Pk")= f(¢-1n). [Such Fibonacci shifting is
a convenient way to convert mentally between miles and kilometers; see CMath, §6.6.]

42. [Fibonacci Quarterly 6 (1968), 235-244.] If such a representation exists, we have

for all integers N; hence two different representations would contradict exercise 34.
Conversely, we can prove the existence of such joint representations for all non

negative m and n by induction. But it is more interesting to use the previous exercise,
and to prove that such joint representations exist for possibly negative integers m and n
if and only if m + ¢n ~ 0: Let N be large enough so that lmq;N-l + n<PNI < ¢-2,
and represent mFN-l + nFN as in(*). Then mFN + nFN+1 = ¢(mFN-1 + nFN) +
(mq;N-l +n(/JN) = f(</>(mFN-1 + nFN)) = Fki+N+1 + · · · + Fkr+N+i, and it follows
that (*) holds for all N. Now set N = 0 and N = 1.

SECTION 1.2.9

1. 1/(1- 2z) + 1/(1 - 3z).

2. It follows from (6), since (~) = n!/k!(n - k)!.

3. G'(z) = ln(l/(1 - z))/(1 - z) 2 + 1/(1 - z) 2. From this and the significance of
G(z)/(l - z), we have l:~:i Hk = nHn - n; this agrees with Eq. 1.2.7-(8).

4. Putt= 0.

5. The coefficient of zk is, by (11) and (22),.

{
j } k (n -1)! ~ ()

~ n-l j ·
O~j<k

Now apply Eqs. 1.2.6-(46) and 1.2.6-(52). (Or, differentiate and use 1.2.6-(46).)

6. (ln(l/(1 - z))) 2
; the derivative is twice the generating function for the harmonic

numbers; the sum is therefore 2Hn-1/n.

8. 1/((1 - z)(l - z2)(1 - z 3
) •••). [This is historically one of the first applications

of generating functions. For an interesting account of L. Euler's eighteenth-century
researches concerning this generating function, see G. P6lya, Induction a.nd Analogy in
Mathematics (Princeton: Princeton University Press, 1954), Chapter 6.]

9. 214 st+ i-Si S2 + ~s~ + ~S1S3 + tS4.
10. G(z) = (1 + x 1z) ... (1 + xnz). Taking logarithms as in the derivation of Eq. (38),
we have the same formulas except that (24) replaces (1 7), and the answer is exactly the
same except that S2, S4, S5, ... are replaced by -S2, -S4, -S5, We have al = S1,
a2 =~Si - ~S2, a3 =~Si - ~S1S2 + ~S3, a4 = 2

1
4S{ - tSiS2 + ~S~ + ~S1S3 - tS4.

(See exercise 9.) The recurrence analogous to (39) is nan = S1an-1 - S2an-2 + · · ·.

1.2.9 ANSWERS TO EXERCISES 497

Note: The equations in this recurrence are called Newton's identities, since they were

first published in Isaac Newton's Arithmetica Universalis (1707); see D. J. Struik's

Source Book in Mathematics (Harvard University Press, 1969), 94-95.

11. Since 2=m>l Smzm/m = ln G(z) = 2:k>l (-l)k-l (h1z+ h2z2 + · · ·)k/k, the desired

coefficient is (-=-i)k1 +k2 +···+km- 1m(k1 + k2 +···+km - l)!/k1 ! k2! ... km!. [Multiply by

(-1) m-l to get the coefficient of a~1 a;2 ••• a~m when Sm is expressed in terms of the

a's of exercise 10. Albert Girard stated the formulas for 81, 82, 83, and 84 in terms

of ai, a2 , a 3 , and a 4 near the end of his Invention Nouvelle en Algebre (Amsterdam:

1629); this was the birth of the theory of symmetric functions.]

12. L amnWmZn = L (:)wmzn = L(l + wtzn = 1/(1- z - wz).

m,n2:0 m,n2:0 n2:0

13. J:+ 1 e-st f(t) dt = (ao + · · · + an)(e-sn - e-s(n+l))/s. Adding these expressions

together for all n, we find Lf(s) = G(e-s) / s.

14. See exercise 1.2.6-38.

15. Gn(z) = Gn-1(z) + zGn-2(z) + b'no, so we find H(w) = 1/(1 - w - zw2). Hence,

ultimately, we find

Gn(z)= ((l+v21+4z)n+1 -(1-v'21+4z)n+1) /v1+4z whenz#-i;

Gn(-i) = (n + l)/2n for n 2: 0.

16. (
1 _ zr+l)n

Gnr(z) = (1 + z + · · · + zrt = . [Note the case r = oo.]
l-z

L (-w) (-z)k = L w(w + 1) ... (w + k - 1) zk = L [k] zkwn/k!.
k k(k - 1) ... 1 n

k k n,k
17.

(Alternatively, write it as ew In(l/(l-z)) and expand first by powers of w.)

18. (a) For fixed n and varying r, the generating function is

G n (z) = (1 + z) (1 + 2z) ... (1 + nz) = z n+
1

(l) (~ + 1) (l + 2) . . . (l + n)

= ~ [n; 1] zn+l-k

by Eq. (27). Hence the answer is [n~i~r]· (b) Similarly, the generating function is

1 1 . 1 = L { k }zk-n
1 - nz k n

--·---
1- z l - 2z

by Eq. (28), so the answer is {n!r}.

19. 2=n2:l (l/n - l/(n + p/q))xp+nq = 2:k;:;~ w-kp ln(l -wkx) - xP ln(l - xq) + !xP =

f(x) + g(x), where w = e2-rri/q and

q-1

f(x) = L w-kp ln(l - wkx),

k=l

q l - xq
g (x) = (1 - xP) ln (1 - x) + - xP - xP ln

1
.

p -x

498 ANSWERS TO EXERCISES 1.2.9

Now limx-+l- g(x) = q/p - lnq. From the identity

. (. eie/2 _ e-iB/2) ()
ln(l - e'9) = ln 2e•(B-7r)/ 2

2
i = ln2 +ti(()- 7!") + lnsin 2,

we may write f(x) =A+ B where

~ k (• i7l" ik1l") i7l" '/,7!"
A = ~ w- P ln 2 - 2 + q = - ln 2 + 2 + (w-P _ 1) ;

k=l
q-1

B = I:w-kplnsin~7!" = L (w-kp +w-(q-k)p)lnsin~7!"
k=l q O<k<q/2 q

~ 2pk . k
= 2 ~ cos -7!" · lnsm -7!".

q q
O<k<q/2

Finally,

i i i (1 + wP) i (wPl
2 + w-P/

2
) 1 p - + - - - - - - cot - 7l"

2 (w-P - 1) - 2 1 - wP - 2 wP/2 - w-P/2 - 2 q ·

[Gauss derived these results in §33 of his monograph on hypergeometric series, Eq. [75],
but with insufficient proof; Abel provided a justification in Orelle 1 (1826), 314-315.]

20. Cmk = k!{~}, by Eq. 1.2.6-(45).

21. We find z2G'(z) + zG(z) = G(z) - 1. The solution to this differential equation is
G(z) = (-1/ z) e-l/z (E1 (-1/ z) + C), where E1 (x) = fz= e-t dt/t and C is a constant.
This function is very ill-behaved in the neighborhood of z = 0, and G(z) has no power
series expansion. Indeed, since Vnl ~ n/e is not bounded, the generating function
does not converge in this case; it is, however, an asymptotic expansion for the stated
function, when z < 0. [See K. Knopp, Infinite Sequences a.nd Series (Dover, 1956),
Section 66.]

22. G(z) = (1 + zr(1 + z2r(l + z4r(l + z 8r ... = (1 - z)-r. It follows that the
stated sum is (r+~- l).
23. When m = 1 this is the binomial theorem, with fi (z) = z and 91 (z) = 1 + z.
When m 2: 1 we can increase m by 1 if we replace Zm by zm(l + z;;;,~ 1) and let

f m+l (z1,. · ·, Zm+1) = Zm+1fm(z1, · · ·, Zm-1, Zm(l + z;;;,~1)), 9m+1 (z1, · · ·, Zm+l) =
Zm+19m(zi, ... , Zm-1, Zm(l + z;;;,~ 1)). Thus g2(z1, z2) = z1 + z2 + z1z2 and

-1
9m(z1, ... , Zm) l Z1
~--'---------'-- = +~--~---
fm(z1, ... , Zm) z-1

2
1+-----

1+

1 -1
+zm

Both polynomials fm and 9m satisfy the same recurrence fm = Zmfm-1 + Zm-1fm-2,
9m = Zm9m-1 +zm-19m-2, with the initial conditions f-1 = 0, fo = 9-1 =go= zo = 1.
It follows that 9m is the sum of all terms obtainable by starting with z1 ... Zm and
striking out zero or more nonadjacent factors; there are Fm+2 ways to do this. A
similar interpretation applies to f m, except that z1 must remain. In part (b) we will
encounter the polynomial hm = Zm9m-1 + Zm-if m-2; this is the sum of all terms

1.2.9 ANSWERS TO EXERCISES 499

obtained from z1 ... Zm by striking out factors that are not cyclically adjacent. For

example, h3 = Z1Z2Z3 + Z1Z2 + Z1Z3 + Z2Z3.
(b) By part (a), Sn(z1, ... ,Zm-1,z) = [z:::i] L,~= 0 zrz::i-rr;:,-rg~; hence

S () = ~ (r)(n-r) r-sbs sdn-r-s n Z1, ... ,Zm L....t a C ,
s s o:::;s:::;r:::;n

where a= Zm9m-1, b = Zm-19m-2, c = Zmfm-1, d = Zm-lfm-2· Multiplying this

equation by zn and summing first on n, then on r, then on s, yields the closed form

Sn(z1, ... , Zm) = [zn] ()(l l d) b 2 1- az - z - cz

where 1 - (a+ d)z +(ad - bc)z2 = (1 - pz)(l - az). Here a+ d = hm, and ad - be

simplifies to (-1) m z1 ... Zm. [We have, incidentally, established the recurrence Sn =

hmSn-1 - (-l)m z1 ... zmSn-2, a relation that is not easy to derive without the help

of generating functions.]

(c) Let p1 = (z + v' z2 + 4z)/2 and a 1 = (z - v' z2 + 4z)/2 be the roots when

m = 1; then Pm= p"{' and am= ai.
Garlitz used this result to deduce a surprising fact: The characteristic polynomial

det(xJ - A) of then x n matrix

A=

0

0

0

0

0

(~)

of "right justified binomial coefficients" is L,k (~)F (-1) f(n-k)/21 xk, with Fibonomial

coefficients (see exercise 1.2.8-30). He also showed, using similar methods, that

L (k1 ~ k2) (k2 ~ k3) ... (km k: ki) z;1
••• z~=

ki, ... ,km2:0

1

[Collectanea Math. 27 (1965), 281-296.]

24. Both sides are equal to L,k ('~) [zn](zG(z))k. When G(z) = 1/(1-z), the identity

becomes L,k ('~)(~:=k) = (m+;- 1
), a case of 1.2.6-(21). When G(z) = (ez - 1)/ z, it

becomes L,k m!-?G} = mn, Eq. 1.2.6-(45).

25. L,k[wk](l-2wt [zn] zk(l+z)2n-2k = [zn] (l+z) 2n L,k[wk] (l-2w)n(z/(l+z)2)k,

which equals [zn] (1 + z) 2n(l - 2z/(l + z) 2r = [zn] (1 + z2)n = (n/2)[n even]. Sim-

ilarly, we find L,k (~)(2~=~k)(-4)k = (-l)n(2:). Many examples of this summation

technique can be found in G. P. Egorychev's book Integral Representation and the

Computation of Combinatorial Sums (Amer. Math. Soc., 1984), translated from the

Russian edition of 1977.

26. [F(z)] G(z) denotes the constant term of F(z-1)G(z). See the discussion by D. E.

Knuth in A Classical Mind (Prentice-Hall, 1994), 247-258.

500 ANSWERS TO EXERCISES 1.2.10

SECTION 1.2.10
1. Gn(O) = l/n; this is the probability that X[n] is the largest.

2. G"(l) = 2:k k(k - l)pk, G'(l) = 2:k kpk.

3-. (min 0, ave 6.49, max 999, dev 2.42). Note that H~2) is approximately n 2/6; see

Eq. 1.2.7-(7).

4. (~)pkqn-k.

5. The mean is 36/5 = 7.2; the standard deviation is 6v'2/5 ~ 1.697.

6. For (18), the formula

t t2 t3 t2 t3
ln(q + pe) = ln(l +pt+ p2 + p

6
+ · · · =pt+ p(l - p) 2 + p(l - p)(l - 2p)6 + · · ·

tells us that K 3 /n = p(l - p)(l - 2p) = pq(q- p). (This nice pattern does not continue

to the coefficient of t 4
.) Setting p = k-1 gives us K3 = 2:~=2 k- 1 (1 - k- 1)(1 - 2k-1

) =

Hn - 3H~2) + 2H~3) in the case of distribution (8). And for (20), we have lnG(et) =

t + H(nt) -H(t) where H(t) = ln((et -1)/t). Since H'(z) =et /(et -1) - l/t, we have

Kr= (nr - l)Br/r for all r ~ 2 in this case; in particular, K3 = 0.

7. The probability that A = k is Pmk. For we may consider the values to be

1, 2, ... , m. Given any partitioning of then positions into m disjoint sets, there are ml

ways to assign the numbers 1, ... , m to these sets. Algorithm M treats these values as

if only the rightmost element of each set were present; so Pmk is the average for any

fixed partitioning. For example, if n = 5, m = 3, one partition is

{X[l], X[4]} {X[2], X[5]} {X[3]};

the arrangements possible are 12312, 13213, 21321, 23123, 31231, 32132. In every

partition we get the same percentage of arrangements with A= k.
On the other hand, the probability distribution does change if more information

is given. If n = 3 and m = 2, for example, our argument in the previous paragraph

considers the six possibilities 122, 212, 221, 211, 121, 112; if we know that there are

two 2s and one 1, then only the first three of these possibilities should be considered.

But this interpretation is not consistent with the statement of the exercise.

8. M'[!, /((M - n)l Mn). The larger Mis, the closer this probability gets to one.

9. Let qnm be the probability that exactly m distinct values occur; then from the

recurrence

we deduce that

qnm =Ml{:} /(M- m)lMn.

See also exercise 1.2.6-64.

10. This is qnmPmk summed over all m, namely M-n 2=m (~){;;J [k':i]. There does

not appear to be a simple formula for the average, which is one less than

HM- tl (i- :rm-1
= H.+ ~ (G)-1) s.M-kk-

1

11. Since this is a product, we add the semi-invariants of each term. If H(z) = zn,

H(et) = ent, so we find Ki = n and all others are zero. Therefore, mean(F) = n +

1.2.10 ANSWERS TO EXERCISES 501

mean(G), and all other semi-invariants are unchanged. (This accounts for the name

"semi-invariant.")

12. The first identity is obvious by writing out the power series for ekt. For the second,

let u = 1 + Mlt + M 2t2/2! + · · ·; when t = 0 we have u = 1 and Dfu = Mk. Also,

Dl (ln u) = (-1)j - l (j - 1) ! / uj. By exercise 11, the same formula applies for central

moments except that we leave out all terms with k1 > O; thus K2 = m2, K3 = m 3,

K4 = m4 - 3m~.

13. Gn(z) = r(n+z) = e-z(n+zy-1 (1+ ~)n (l+O(n-1)) = nz-1 (l+O(n-1)).
r(z+l)n! r(z+l) n r(z+l)

Let Zn = eit/un. When n -+ 00 and t is fixed, we have Zn -+ 1; hence r(zn + 1) -+ 1,

and

lim z;;:Jl.nGn(zn) = lim exp (-itµn + (eit/un - 1) ln n)
n~= n~= Un

1. (-t 2
ln n 0 (1)) -t2; 2

= lm exp + = e .
n~= 2a~ ..J log n

Notes: This is a theorem of Goncharov [Izv. Akad. Nauk SSSR Ser. Math. 8 (1944),

3-48]. P. Flajolet and M. Soria [Disc. Math. 114 (1993), 159-180] have extended the

analysis to show that Gn(z) and a large family of related distributions not only are

approximately normal near their mean values, they also have uniformly exponential

tails, in the sense that

probability (I Xn a~ µn \ > x) < e-ax

for some positive constant a and for all n and x.]

14. e-itpn/...;;;;;;,(q+peit/...;;;;;;,)n = (qe-itp/...;;;;;;,+peitq/...;;;;;;,)n. Expand the exponen

tials in power series, to get (1-t2/2n+O(n-3l2)r = exp(nln(l-t2/2n+O(n-312))) =
exp(-t2/2 + O(n- 112

)) -+ exp(-t2/2).

15. (a) 2:k>o e-µ.(µz)k/k! = eµ.(z-l). (b) lneµ.(et-l) =µ(et - 1), so all semi-invariants

equalµ. (c)-exp(-itnp/ ylnP) exp(np(it/ ylnP + -t2 /2np + O(n-312))) = exp(-t2 /2 +

O(n-1;2)).

16. g(z) = 2:k Pk9k(z); mean(g) = 2:kPk mean(gk); and var(g) = 2:k Pk var(gk) +
2:j<kPjPk(mean(gj) - mean(gk)) 2.

17. (a) The coefficients of f(z) and g(z) are nonnegative, and f(l) = g(l) = 1. Clearly

h(z) shares these same characteristics, since h(l) = g(f(l)), and the coefficients of hare

polynomials in those off and g, with nonnegative coefficients. (b) Let f(z) = 2:PkZk

where Pk is the probability that some event yields a "score" of k. Let g(z) = 2: qkzk

where qk is the probability that the event described by f happens exactly k times

(each occurrence of the event being independent of the others). Then h(z) = 2: TkZk,

where rk is the probability that the sum of the scores of the events that occurred

is equal to k. (This is easy to see if we observe that f(z)k = 2: Stzt, where St is

the probability that a total score t is obtained in k independent occurrences of the

event.) Example: If f gives the probabilities that a man has k male offspring, and if

g gives the probabilities that there are k males in the nth generation, then h gives the

probabilities that there are k males in the (n+ l)st generation, assuming independence.

(c) mean(h) = mean(g) mean(!); var(h) = var(g) mean2 (f) + mean(g) var(!).

502 ANSWERS TO EXERCISES 1.2.10

18. Consider the choice of X[l], ... , X[n] as a process in which we first place all the

n's, then place all the (n - l)'s among these n's, ... , finally place the ones among the

rest. As we place the r's among the numbers r + 1, ... , n, the number of local maxima

from right to left increases by one if and only if we put an r at the extreme right. This

happens with probability kr/(kr + kr+i +···+kn).

19. Let ak = l. Then ak •is a left-to-right maximum of ai ... an {:::=} j < k

implies ai < l {:::=} ai > l implies j > k {:::=} j > l implies bi > k {:::=} k is

a right-to-left minimum of bi ... bn.

20. We have ffiL = max{ai - bi, ... ,an - bn}· Proof: If not, let k be the smallest

subscript such that ak - bk > m£. Then ak is not a left-to-right maximum, so there is

a j < k with aj 2: ak. But then ai - bj 2: ak - bk > mL, contradicting the minimality

of k. Similarly, ffiR = max{bi -ai, ... , bn-an}·

21. The result is trivial when€ 2: q, so we may assume that€< q. Setting x = p!e q'!_e

in (25) gives Pr(X 2: n(p + E) ~ ((p~e)p+e(q'!._e)q-er. Now (p~e)p+e ~ e-e since

t < t-i £ 11 1 t A d () 1 q i 2 -i i 3 -2 < i 2 _ e or a rea . n q - E n q-e = E - rrE q - 3-2€ q - · · · _ - 2qE .

(A more detailed analysis yields the slightly stronger estimate exp(-E2 n/(2pq)) when

p 2: ~; still further work yields the upper bound exp(-2E2 n) for all p.)

By reversing the roles of heads and tails we find

Pr(X ~ n(p - E)) = Pr(n - X 2: n(q + E)) ~ e-e
2
n/(2P).

(One should not confuse "tails" with the tail of a probability distribution.)

22. (a) Set x = r in (24) and (25), and note that qk + PkT = 1 + (r - l)Pk ~ e(r-i)Pk.

[See H. Chernoff, Annals of Math. Stat. 23 (1952), 493-509.]
(b) Let r = 1 + <5 where 1<51 ~ 1. Then r-r er-i =exp(- 2\ <5 2 + 3~2 <53

- ···),which

is< e
82

l 2 when <5 < 0 and < e82
/

3 when <5 > 0.

- (c) The function r-ii=:.r-i decreases from 1 to 0 as r increases from 1 to oo. If

r 2: 2 it is~ tei/2 < .825; if r 2: 4.32 it is < t-
Incidentally, the tail inequalities with x = r give precisely the same estimate

(r-r er-i)!"' when X has the Poisson distribution of exercise 15.

23. Setting x = p;e q'!._e in (24) gives Pr(X ~ n(p - E)) ~ ((p~e)P-e(q~e)q-et ~

e-e
2
nl(2pq)_ Similarly, x = p!e q+e yields Pr(X 2: n(p+E)) ~ ((p~e)P+e(q~e)q+er. Let

f(E) = (q + E) ln(1 + ~) - (p+ E) ln(l +*),and note that J'(E) = ln(l + ~) -ln(l + *).

It follows that f(E) ~ -E
2/(6pq).

SECTION 1.2.11.1
1. Zero.

2. Each 0 symbol represents a different approximate quantity; since the left-hand side

might be f(n)-(- f(n)) = 2f(n), the best we can say is O(f (n))-O(f (n)) = O(f(n)),
which follows from (6) and (7). To prove (7), note that if lxnl ~ Mlf(n)I for n 2: no

and lx~I ~ M'lf(n)I for n 2: n~, then lxn ± x~I ~ lxnl + lx~I ~ (M + M')lf(n)I for
n 2: max(no,n~). (Signed, J. H. Quick, student.)

. 3. n(lnn) + 1n + O(y'nlnn).

4. Ina+ (lna) 2/2n + (lna) 3/6n2 + O(n- 3
).

5. If f(n) = n 2 and g(n) = 1, then n belongs to the set O(f(n) + g(n)) but not to

the set f(n) + O(g(n)). So the statement is false.

1.2.11.2 ANSWERS TO EXERCISES 503

6. A variable number, n, of 0-symbols has been replaced by a single 0-symbol, falsely

implying that a single value of M will suffice for each term lknl ~ Mn. The given sum is

actually 8(n3), as we know. The last equality, 2:;=1 O(n) = O(n2), is perfectly valid.

7. If xis positive, the power series 1.2.9-(22) tells us that ex> xm+ 1/(m+ 1)!; hence

the ratio of ex/ xm is unbounded by any M.

8. Replace n by en and apply the previous exercise.

9. If if(x)I ~ Mlzlm for lzl ~ r, then ef(z) ~ eMlzl"' = 1 + lzlm(M + M 2lzlm/2! +

M31zl2m/3! + ...) ~ 1 + lzlm(M + M2rm/2! + M3r2m/3! + ...).

10. ln(l + O(zm)) = O(zm), if mis a positive integer. Proof: If f(z) = O(zm), there

exist positive numbers r < 1, r' < 1, and a constant M such that lf(z)I ~ Mlzlm ~ r'

when lzl ~ r. Then lln(l + f(z))I ~ lf(z)I + tlf(z)l 2 + · · · ~ lzlm M(l +tr'+···).

11. We can apply Eq. (12) with m = 1 and z = ln n / n. This is justified since ln n / n ~ r

for any given r > 0, when n is sufficiently large.

12. Let f(z) = (zez/(ez-1)) 112. If [1;£:kJ were O(nk), the stated identity would show

that [zk] f(z) = O(nk/(n-l)!), so f(z) would converge when z = 27ri. But f(27ri) = oo.

13. Proof: We may take L = l/M in the definitions of 0 and fl.

SECTION 1.2.11.2

1. Bo+B1z+B2z2/2!+· · ·)ez = (Bo+B1z+B2z2/2!+· · ·)+z; apply Eq. 1.2.9-(11).

2. The function Bm+l ({ x}) must be continuous, for the integration by parts.

3. IRmnl ~ IBm/(m)!j f1n lf(m)(x)I dx. [Notes: We have Bm(x) = (-l)m Bm(l - x),

and Bm(x) is m! times the coefficient of zm in zexz/(ez - 1). In particular, since

ezl2/(ez - 1) = l/(ez/2 - 1) - l/(ez - 1) we have Bm(t) = (21-m - l)Bm. It is not

difficult to prove that the maximum of I Bm - Bm (x) I for 0 ~ x ~ 1 occurs at x = t when

m is even. Now when m = 2k ~ 4, let us write simply Rm and Cm for the quantities

Rmn and Cmn• We have Rm-2 = Cm+ Rm = I1n(Bm - Bm({x}))f(m)(x) dx/m!,

and Bm - Bm({x}) is between 0 and (2 - 21-m)Bm; hence Rm-2 lies between 0 and

(2 - 21-m)Cm. It follows that Rm lies between -Cm and (1 - 21-m)Cm, a slightly

stronger result. According to this argument we see that if J(m+2) (x) f(m+4) (x) > O

for 1 < x < n, the quantities Cm+2 and Cm+4 have opposite signs, while Rm has the

sign of Cm+2 and Rm+2 has the sign of Cm+4 and IRm+2I ~ ICm+2I; this proves (13).

See J. F. Steffensen, Interpolation (Baltimore: 1937), §14.]

m+l m B I 1 1
4 ~ km n ~ k m. m-k+l B () B

• L....t = l+m +L....tkf (m-k+l)!n = m+l m+l n - m+l m+l·
O~k<n k=l

5. It follows that

. 22n(n!)2
/'i, = v12 hm vn()'; n-+oo n 2n .

/'i,2 = lim ~ n
2
(n - 1)

2
... (1)

2
= 4 2 · 2 · 4 · 4 · · · · = 27r.

n-+oo n (n-t)2(n-~)2 ... (t)2 1·3·3·5····

6. Assume that c > 0 and consider l:o~k<n ln(k + c). We find

ln(c(c + 1) ... (c + n - 1)) = (n + c) ln(n + c) - cln c - n - t ln(n + c) + t ln c

~ Bk(-l)k (1
+ L....t k(k - 1) (n + c)k-1
l<k~m

1) .
- ck-1 + Rmn·

504 ANSWERS TO EXERCISES 1.2.11.2

Also

_ 1 __ ! _ ~ Bk(-l)k(-l-)-2_1
00

Bm({x})dx
ln(n 1).-(n 2)1nn n+a+ L....t k(k-l) nk-l m xm ·

l<k:Sm n

Now lnr n-l (c) = cln(n -1) + ln(n -1)! - ln(c ... (c+ n -1)); substituting and letting

n-+ oo, we get

1 Bk(-l)k 1 1= Bm({x})dx
in r (c) = -c + (c - 2) inc + a + I: k(k _ 1) ck-1 - m

0
(x + c) m ·

l<k:Sm

This shows that r(c + 1) = ce1nr(c) has the same expansion we derived for c!.

7. Ann
2

/
2+n/2+1 ! 12 e-n

2
/ 4 where A is a constant. To obtain this result, apply Euler's

summation formula to l:~:i k ln k. A more accurate formula is obtained if we multiply
the answer above by

exp(-B4/(2 · 3 · 4n2) - · · · - B2t/((2t - 2)(2t - 1)(2t)n2t- 2) + 0(1/n2t)).

The number A is "Glaisher's constant" 1.2824271 ... [Messenger of Math. 7 (1877),

43-47], which can be shown to equal e1/12-('(-l) = (2?Te"Y-('(2)/((2))1/12 [de Bruijn,

Asymptotic Methods in Analysis, §3.7].

8. We have, for example, ln(an2 + bn) = 2lnn +Ina+ ln(l + b/(an)). Thus the

answer to the first question is found to be 2an2 ln n + a(ln a - l)n2 + 2bn ln n + bn ln a+
ln n + b2 /(2a) +a+ (3a - b2)b/(6a2n) + O(n-2). Massive cancellation occurs when we

compute the quantity ln(cn2)!-ln(cn2 -n)!-n ln c-ln n 2!+ln(n2-n)! = (c-1)/(2c)

(c - 1)(2c - 1)/(6c2n) + O(n-2). The answer is therefore

e(c-1)/(2c) (1 _ (c - ~c~2~ - 1)) (l + O(n-2)).

Incidentally, (c~
2

)/cn(:
2

) can be written n;==}(l + a.j/(n2
- j)) where a.= 1-1/c.

9. (a) We have ln(2n)! = (2n + ~) ln2n - 2n +a+ 2ln + O(n-3
), and ln(n!)2 =

(2n + 1) ln n - 2n + 2a + 6~ + O(n-3
); hence (2:) = exp(2n ln 2 - ~ ln ?Tn - 8~ +

O(n-3
) = 22n(1Tn)-1 12(l- ~n-1 + 1 ~8 n-2 + O(n-3

)). (b) Since (2:) = 22n(n-~12) and

(n-~/ 2) = r(n + 1/2)/(nr(n)r(l/2)) = n-1n 112 /v1Jr, we obtain the same result from
1.2.11.1-(16) because

[
1/2]
1/2 = l, [1/2] = (1/2) = -~

-1/2 2 8' [1/2] = (1/2) 2(3/2) =-1.
-3/2 4 + 4 128

Method (b) explains why the denominators in

(
2n) _ 22n (l - n-1 n-2 5n-3

_ 21n-4 _ 399n-5 869n- 6
_ 7)

n - .JITTi, 8 + 128 + 1024 32768 262144 + 4194304 + O(n)

are all powers of 2 [Knuth and Vardi, AMM 97 (1990), 629-630].

SECTION 1.2.11.3

1. Integrate by parts.

2. Substitute the series for e-t in the integral.

3. See Eq. 1.2.9-(11) and exercise 1.2.6-48.

1.2.11.3 ANSWERS TO EXERCISES 505

4. 1 + l/u is bounded as a function of v, since it goes to zero as v goes from r to

infinity. Replace it by M and the resulting integral is M e-rx.

5. J"(x) = f(x)((n + 1/2)(n - l/2)/x2 - (2n + l)/x + 1) changes sign at the point

r = n + 1/2 - Jn+ 1/2, so IRI = O(J0n IJ"(x)I dx) = O(J; J"(x) dx - frn f"(x) dx) =
O(f'(n) - 2f'(r) + J'(O)) = O(f(n)/yln).

6. It is nn+f3 exp((n + {3)(a./n - a.2/2n2 + O(n-3))), etc.

7. The integrand as a power series in x-1 has the coefficient of x-n as O(u2n). After

integration, terms in x-3 are Cu7/x 3 = O(x-514), etc. To get O(x-2) in the answer,

we can discard terms un/xm with 4m - n 2: 9. Thus, an expansion of the product

exp(-u2/2x) exp(u3/3x2) ... leads ultimately to the answer

yxl/4 _ 'Y._x-1/4 +'Y._x-3/4 +'Y._x-1 _ Jj__x-5/4 _ 'Y._x-3/2 + _Y __ 'Y._ x-7 /4 +O(x-2). 3 5 4 7 6 (9 5)

6 40 12 336 36 3456 20

8. (Solution by Miklos Simonovits.) We have if(x)i < x if x is large enough. Let

R(x) = Jt(x)(e-g(u,x) - e-h(u,x)) du be the difference between the two given integrals,

where g(u, x) = u-x ln(l+u/x) and h(u, x) = u2/2x-u 3/3x 2 +· · · +(-l)mum/mxm-1.

Notice that g(u,x) 2: 0 and h(u,x) 2: 0 when lul < x; also g(u,x) = h(u,x) +
0(um+i;xm).

According to the mean value theorem, ea - eb = (a - b) ec for some c between

a and b. Therefore lea - eb I ~ la - bl when a, b ~ 0. It follows that

1

\f(x)I (1Mxr um+ldu)
IR(x)I~ lg(u,x)-h(u,x)ldu=O m

-lf(x)I -Mxr X

= O(x(m+2)r-m) = O(x-s).

9. We may assume that p =I= l, since p = 1 is given by Theorem A. We also assume

that p =I= 0, since the case p = 0 is trivial.
Case 1: p < 1. Substitute t = px(l - u) and then v = - ln(l - u) - pu. We have

dv = ((1 - p + pu)/(l - u)) du, so the transformation is monotone for 0 ~ u ~ 1, and

we obtain an integral of the form

loo xe-xvdv(l-u).
o l-p+pu

Since the parenthesized quantity is (1 - p)-1(1- v(l - p)- 2 +···),the answer is

1 ~ P (pe1-pr r(:x::) (1 - (p _\)2x + O(x-2)) .

Case 2: p > 1. This is 1 - JP': (). In the latter integral, substitute t = px(l + u),

then v = pu - ln(l + u), and proceed as in Case 1. The answer turns out to be the

same formula as Case 1, plus one. Notice that pe1-p < 1, so (pe 1-p)x is very small.

The answer to exercise 11 gives another way to solve this problem.

lO _P_(l-p)x -x x (l _ -y _ e-Y(eY - 1 - y - y
2
/2) + O(_2))

. p _ 1 pe e x e x(p _ 1)2 x .

11. First, xQx(n) + R 1;x(n) = n! (x/n)nen/x generalizes (4). Next, we have Rx(n) =
n! (ex/nx)n1(n, nx)/(n -1)!, generalizing (9). Since a1(a, x) = 1(a + 1, x) + e-xxa we

can also write Rx(n) = 1+(ex/nxt1(n+1, nx), relating this problem to exercise 9.

506 ANSWERS TO EXERCISES 1.2.11.3

Moreover, we can tackle Qx(n) and Rx(n) directly by using Eqs. 1.2.9-(27) and (28)

to derive series expansions involving Stirling numbers:

~ k k k ~ (-l)rn [k] k
1 + xQx(n) = ~ x n-/n = ~ nrn k _ m x ;

k20 k,rn

~ k k k ~ (-l)rn{k+m} k
Rx (n) = ·~ x n / (n + 1) = ~ nrn k X •

k20 k,rn

The sums over k are convergent for fixed m when \x\ < 1, and when \x\ > 1 we can use

the relation between Qx(n) and R 1;x(n); this leads to the formulas

Q ()
1 X (-l)rnqrn(x) O(-1-rn)

x n = 1 - x - (1 - x)3n + ... + (1- x)2rn+lnrn + n '

R ()
_ 1 x (-l)rnrrn(x) O(-1-rn) f

x n - -- - + · · · + + n , i x < 1;
l-x (l-x)3n (l-x)2rn+lnrn

Q ()
_ n! xn-len/x 1 X (-l)rnqrn(x) + O(-1-rn)

xn- +--- +···+ n)
nn l-x (l-x)3n (l-x)2rn+lnrn

R () n! enx 1 X (-l)rnrrn(x) O(-1-rn)
1
-f X > 1.

xn =--+--- +···+ + n)
nnxn l - x (l - x)3n (1- x)2rn+lnrn

Here

and

are polynomials whose coefficients are "second-order Eulerian numbers" [CMath §6.2;

see L. Garlitz, Proc. Amer. Math. Soc. 16 (1965), 248-252]. The case x = -1 is

somewhat delicate, but it can be handled by continuity, because the bound implied by

0 (n - l-rn) is independent of x when x < 0. It is interesting to note that R-1 (n) -

Q-1(n) = (-l)nn!/ennn ~ (-l)n~/e2n is extremely small.

12. 1'0, ~x2);!2.

13. See P. Flajolet, P. Grabner, P. Kirschenhofer, and H. Prodinger, J. Computational

and Applied Math. 58 (1995), 103-116.

15. Expanding the integrand by the binomial theorem, we obtain 1 + Q(n).

16. Write Q(k) as a sum, and interchange the order of summation using Eq. 1.2.6-(53).

17. S(n) = V:;rn;2 + ~ - 2
1
4 ~ - 1~5 n-

1 + 1i;2 y'rr/2n3 + O(n-2
). [Note that

S(n + 1) + P(n) = :Lk2 o kn-kk!/n!, while Q(n) + R(n) = :Lk2 o n!/k! nn-k.]

18. Let Sn(x, y) = :Lk (~) (x + k)k(y + n - k)n-k. Then for n > 0 we have Sn(x, y) =
x :Lk G) (x + k)k-l(y + n - k)n-k + n :Lk (n~l) (x + 1 + k)k(y + n - 1 - k)n-1-k =

(x + y + n)n + nSn-1 (x + 1, y) by Abel's formula 1.2.6-(16); consequently Sn(x, y) =

:Lk (~)k! (x + y + n)n-k. [This formula is due to Cauchy, who proved it using the

calculus of residues; see his <Euvres (2) 6, 62-73.] The stated sums are therefore equal

respectively to nn(l + Q(n)) and (n + l)nQ(n + 1).

1.3.1 ANSWERS TO EXERCISES 507

19. Suppose Cn exists for all n 2: N and IJ(x)I ::::; Mx 0 for 0 < x::::; r. Let F(x) =
I: e-Nt f(t) dt. Then when n > N we have

\Cn\ ::=:; 1r e-nxlf(x)I dx + 1= e-(n-N)xe-Nx J(x) dx

::=:; M 1r e-nxxa dx + (n - N) 1= e-(n-N)x F(x) dx

:SM r= e-nxxa dx + (n - N) sup!F(x)l 1= e-(n-N)x dx
Jo x:2'.r r

= Mr(a + l)n-l-a + sup!F(x)le-(n-N)r = O(n- 1- 0
).

x:2'.r

[E.W. Barnes, Phil. Trans. A206 (1906), 249-297; G. N. Watson, Proc. London Math.
Soc. 17 (1918), 116-148.]

20. [C. C. Rousseau, Applied Math. Letters 2 (1989), 159-161.] We have Q(n) + 1 =
n Io= e-nx(l + x)n dx = n Io= e-n(x-ln(l+x)) dx = n Io= e-nug(u) du, by substituting

u = x - ln(l + x) and letting g(u) = dx/du. Notice that x = L::::=l ck(2u)k/2 when u

is sufficiently small. Hence g(u) = L:::=-;_1 ck(2u)k/2
-

1 + O(u=/2
-

1
), and we can apply

Watson's lemma to Q(n) + 1- n Io= e-nu L:::=-;_1 kck(2u)k/ 2
-

1 du.

SECTION 1.3.1

1. Four; each byte would then contain 34 = 81 different values.

2. Five, since five bytes is always adequate but four is not.

3. (0:2); (3:3); (4:4); (5:5).

4. Presumably index register 4 contains a value greater than or equal to 2000, so that
a valid memory address results after indexing.

5. "DIV -80,3(0:5)" or simply "DIV -80,3".

6. (a) rA +--1-1511 I 2?01151. (b) rl2 +-- -200. (c) rX +-I+ I 0I01511 I? I·
(d) Undefined; we can't load such a big value into an index register. (e) rX +--

1-1 o ! o ! o Io i o \.
7. Let n = \rAX\ be the magnitude of registers A and X before the operation, and

let d = \V\ be the magnitude of the divisor. After the operation the magnitude of rA is
Ln/dJ, and the magnitude ofrX is nmodd. The sign of rX afterwards is the previous
sign of rA; the sign of rA afterwards is + if the previous signs of rA and V were the
same, otherwise it is - .

Stating this another way: If the signs of rA and V are the same, rA +-- LrAX/VJ
and rX +-- rAXmod V. Otherwise rA +-- \rAX/Vl and rX +-- rAXmod-V.

8. rA +- I + I 0 I 6:171 0 ! 1 I; rX +--1-1 0 I 0 I 0 ! 1 ! 1 I·
9. ADD, SUB, DIV, NUM, JOV, JNOV, INCA, DECA, INCX, DECX.

10. CMPA, CMP1, CMP2, CMP3, CMP4, CMP5, CMP6, CMPX. (Also FCMP, for floating point.)

11. MOVE, LD1, LD1N, INC!, DEC!, ENT!, ENN1.

12. INC3 0,3.

508 ANSWERS TO EXERCISES 1.3.l

13. "JOV 1000" makes no difference except time. "JNOV 1001" makes a different

setting of rJ in most cases. "JNOV 1000" makes an extraordinary difference, since

it may lock the computer in an infinite loop.

14. NOP with anything; ADD, SUB with F = (0:0) or with address equal to* (the location

of the instruction) and F = (3:3); HLT (depending on how you interpret the statement

of the exercise); any shift with address and index zero; SLC or SRC with index 0 and

address a multiple of 10; MOVE with F = O; JSJ *+1; any of the INC or DEC instructions

with address and index zero. But "ENT! 0, 1" is not always a no-op, because it might

change rll from -0 to +o.

15. 70; 80; 120. (The block size times 5.)

16. (a) STZ O; ENT! 1; MOVE 0(49); MOVE 0(50). If the byte size were known to equal

100, only one MOVE instruction would have been necessary, but we are not allowed to

make assumptions about the byte size. (b) Use 100 STZ's.

17. (a) STZ 0, 2; DEC2 1; J2NN 3000.

(b) STZ 0
ENT! 1
JMP 3004

(3003) MOVE 0(63)
(3004) DEC2 63

J2P 3003
INC2 63
ST2 3008(4:4)

(3008) MOVE 0

(A slightly faster, but quite preposterous, program uses 993 STZ's: JMP 3995; STZ 1,2;

STZ 2, 2; ... ; STZ 993, 2; J2N 3999; DEC2 993; J2NN 3001; ENN1 0, 2; JMP 3000, 1.)

18. (If you have correctly followed the instructions, an overflow will occur on the ADD,

with minus zero in register A afterwards.) Answer: Overflow is set on, comparison is

set EQUAL, rA is set to I - l30!30!30!3ol3ol, rX is set to I -131!3ol30!3ol3ol, rll is

set to +3, and memory locations 0001, 0002 are set to +o. (Unless the program itself

begins in location 0000.)

19. 42u = (2 + 1+2+2+1+1+1+2+2+1 + 2 + 2 + 3 + 10 + lO)u.

20. (Solution by H. Fukuoka.)

(3991) ENT! 0
MOVE 3995

(3993) MOVE 0(43)
JMP 3993

(3995) HLT 0

(standard F for MOVE is 1)
(3999 = 93 times 43)

21. (a) Not unless it can be set to zero by external means (see the "GO button",

exercise 26), since a program can set rJ +- N only by jumping from location N - 1.

(b)

(3004)
(3005)

LDA
LDX
STX
JMP
JMP
STA

-1,4
3004
-1,4
-1,4
3005
-1,4

1.3.1 ANSWERS TO EXERCISES 509

22. Minimum time: If b is the byte size, the assumption that I X 13 j < b5 implies that
X 2 < b, so X 2 can be contained in one byte. The following ingenious solution due to
Y. N. Patt makes use of this fact. The sign of rA is a sign of X.

(3000) LDA 2000
MUL 2000(1: 5) rA rX
STX 3500 (1: 1)

SRC 1 x2! o 0 0 0 0 0 0 0 0

MUL 3500 x4 0 0 0 0 0 0 0 0

STA 3501 x4 0 0 0 0 0 0 0 0

ADD 2000 x4 0 0 x 0 0 0 0 0

MUL 3501(1:5) xs 0 x5 0 0 0

STX 3501 xs 0 x5 0 0 0

MUL 3501(1:5) o! x13 0 0 0 0

SLAX 1 x13 0 0 0 0 0

HLT 0
(3500) NOP 0
(3501) NOP 0

space = 14; time = 54u.

At least five multiplications are "necessary," according to the theory developed in
Section 4.6.3, yet this program uses only four! And in fact there is an even better
solution below.

Minimum space: (3000) ENT4 12
LDA 2000

(3002) MUL 2000

DEC4 1
J4P 3002
HLT 0

SLAX 5 space = 7; time = l 7lu.

True minimum time: As R. W. Floyd points out, the conditions imply that IX\ :<:S 5,
so the minimum execution time is achieved by referring to a table:

(3000) LD1 2000
LDA 3500,1
HLT 0

(3495) (-5)13
(3496) (-4)13

(3505) (+5)13

space = 14; time = 4u.

23. The following solution by R. D. Dixon appears to satisfy all the conditions:

(3000) ENT! 4 DEC! 1
(3001) LDA 200 J1NN 3001

SRA 0,1 SLAX 5
SRAX 1 HLT 0 I

24. (a) DIV 3500, where 3500 = I + ! 1 I 0 I 0 I 0 I 0 I ·
(b) SRC 4; SRA 1; SLC 5.

510 ANSWERS TO EXERCISES 1.3.1

25. Some ideas: (a) Obvious things like faster memory, more input-output devices. (b)

The I field could be used for J-register indexing, and/or multiple indexing (to specify

two different index registers) and/or "indirect addressing" (exercises 2.2.2-3, 4, 5).

(c) Index registers and J register could be extended to a full five bytes; therefore

locations with higher addresses could be referred to only by indexing, but that would

not be so intolerable if multiple indexing were available as in (b). (d) An interrupt

capability could be added, us°ing negative memory addresses as in exercise 1.4.4-18.

(e) A "real time clock" could be added, in a negative memory address. (f) Bitwise

operations, jumps on register even or odd, and binary shifts could be added to binary

versions of MIX (see, for example, exercises 2.5-28, 5.2.2-12, and 6.3-9; also Program

4.5.2B, 6.4-(24), and Section 7.1). (g) An "execute" command, meaning to perform

the instruction at location M, could be another variant of C = 5. (h) Another variant

of C = 48, ... , 55 could set CI +- register: M.

26. It is tempting to use a (2:5) field to get at columns 7-10 of the card, but this cannot

be done since 2 · 8 + 5 = 21. To make the program easier to follow, it is presented here

in symbolic language, anticipating Section 1.3.2.
characters

BUFF EQU 29 Buffer area is 0029-0044 punched on card:

ORIG 0
00 LDC IN 16 (16) Read in second card. uDu06

01 READ IN BUFF(16) Read next card. uZu06

02 LD1 0(0:0) rll +- 0. uuuuI
03 JBUS *(16) Wait for read to finish. uCu04

04 LDA BUFF+! rA +-columns 6-10. uOuEH
05 =1= SLA 1 uAuuF
06 SRAX 6 rAX +-columns 7-10. uFuCF

01 =30= NUM 30 uOuuE
08 STA LDC LDC +- starting location. uuuEU
09 LDA BUFF+! (1: 1) uOuIH
10 SUB =30=(0:2) uGuBB
11 LOOP LD3 LDC rl3 +-LDC. uuuEJ
12 JAZ 0,3 Jump, if transfer card. uuCA.
13 STA BUFF BUFF+- count. uZuEU

14 LDA LDC uuuEH
15 ADD =1=(0:2) uEuBA

16 STA LDC LDC+- LDC+ 1. uuuEU
11 LDA BUFF+3,1(5:5) u2A-H

18 SUB =25=(0:2) uSuBB
19 STA 0,3(0:0) Store the sign. uuCuU
20 LDA BUFF+2,1 u1AEH
21 LDX BUFF+3,1 u2AEN
22 =25= NUM 25 uVuuE
23 STA 0,3(1:5) Store the magnitude. uuCLU

24 MOVE 0,1(2) rll +- rll + 2. (!) uuABG
25 LDA BUFF uZuEH
26 SUB =1=(0:2) Decrease the count. uEuBB
21 JAP LOOP Repeat until the count is zero. uuuB.
28 JMP READ Now read a new card. uAuu9

1.3.2 ANSWERS TO EXERCISES 511

SECTION 1.3.2

1. ENTX 1000; STX X.

2. The ST J instruction in line 03 resets this address. (It is conventional to denote the
address of such instructions by "*", both because it is simple to write, and because it
provides a recognizable test of an error condition in a program, in case a subroutine
has not been entered properly because of some oversight. Some people prefer "*-*".)

3. Read in 100 words from tape unit zero; exchange their maximum with the last of
them; exchange the maximum of the remaining 99 with the last of those; etc. Eventually
the 100 words will become completely sorted into nondecreasing order. The result is
then written onto tape unit one. (Compare with Algorithm 5.2.38.)

4. Nonzero locations:

3000:

3001:

3002:

3003:

3004:

3005:

3006:

3007:

3008:

3009:

3010:

3011:

3012:

3013:

3014:

3015:

3016:

3017:

3018:

3019:

3020:

+

+

+

+

+

+

+

+

+

+

-

+

-

+

+

+

+

+

-

+

-

0000

2051

2050

0001

0499

3016

0002

0002

0000

0000

0001

3006

0001

0001

3008

3003

1995

2035

0050

0501

0001

00 18 35

00 05 09

00 05 10

00 00 49

01 05 26

00 01 41

00 00 50

00 02 51

00 02 48

02 02 55

03 05 04

00 01 47

03 05 56

00 00 51

00 06 39

00 00 39

00 18 37

00 02 52

00 02 53

00 00 53

05 05 08

3021:

3022:

3023:

3024:

3025:

3026:

3027:

3028:

3029:

0000:

1995:

1996:

1997:

1998:

1999:

2024:

2049:

2050:

2051:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

0000 00

0000 04

0001 00

0050 00

3020 00

0000 04

0024 04

3019 00

0000 00

06 09 19

00 06 09

00 08 24

19 05 04

19 09 14

01 05

12 31

01 52

01 53

02 45

18 37

05 12

00 45

02 05

2

22 23

25 05

15 04

00 17

05 22

2035

2010

3

499

(the latter two may be interchanged, with
corresponding changes to 3001 and 3002)

5. Each OUT waits for the previous printer operation to finish (from the other buffer).

6. (a) If n is not prime, by definition n has a divisor d with 1 < d < n. If d > yfii,
then n/d is a divisor with 1 < n/d < yfii. (b) If N is not prime, N has a prime
divisor d with 1 < d ~ JN. The algorithm has verified that N has no prime divisors~
p = PRIME[K]; also N = pQ + R < pQ + p ~ p2 + p < (p + 1)2

• Any prime divisor of N is
therefore greater than p + 1 > JN.

512 ANSWERS TO EXERCISES 1.3.2

We must also prove that there will be a sufficiently large prime less than N when N

is prime, namely that the (k + l)st prime Pk+l is less than p~ + Pki otherwise K would

exceed J and PRIME [K] would be zero when we needed it to be large. The necessary

proof follows from "Bertrand's postulate": If p is prime there is a larger prime less

than 2p.

7. (a) It refers to the locati@n of line 29. (b) The program would then fail; line 14

would refer to line 15 instead of line 25; line 24 would refer to line 15 instead of line 12.

8. It prints 100 lines. If the 12000 characters on these lines were arranged end to

end, they would reach quite far and would consist of five blanks followed by five A's

followed by ten blanks followed by five A's followed by fifteen blanks ... followed by

5k blanks followed by five A's followed by 5(k + 1) blanks ... until 12000 characters

have been printed. The third-from-last line ends with AAAAA and 35 blanks; the final

two lines are entirely blank. The total effect is one of OP art.

9. The (4: 4) field of each entry in the following table holds the maximum F setting;

the (1: 2) field is the location of an appropriate validity-check routine.

B EQU 1(4:4) BEGIN LDA INST

BMAX EQU B-1 CMPA VALID(3:3)

UMAX EQU 20 JG BAD I field > 6?

TABLE NOP GOOD(BMAX) LD1 INST(5:5)

ADD FLOAT(5:5) DEC! 64

SUB FLOAT(5:5) J1NN BAD C field> 64?

MUL FLOAT(5:5) CMPA TABLE+64,1(4:4)

DIV FLOAT(5:5) JG BAD F field > F max?

HLT GOOD LD1 TABLE+64,1(1:2) Jump to special

SRC GOOD JMP 0,1 routine.

MOVE MEMORY(BMAX) FLOAT CMPA VALID(4:4) F = 6 allowed on

LDA FIELD(5:5) JE GOOD arithmetic op

FIELD ENTA 0

STZ FIELD(5:5) LDX INST(4:4) This is a tricky

JBUS MEMORY(UMAX) DIV =9= way to check

IOC GOOD(UMAX) STX *+1(0:2) for a valid

IN MEMORY(UMAX) INCA 0 partial field.

OUT MEMORY(UMAX) CMPA =5=

JRED MEMORY(UMAX) JG BAD

JLE MEMORY MEMORY LDX INST(3:3)

JANP MEMORY JXNZ GOOD If I = 0,
LDX INST(0:2) ensure the

JXNP MEMORY JXN BAD address is a

ENNA GOOD CMPX =3999= valid memory

JLE GOOD location.

ENNX GOOD JMP BAD

CMPA FLOAT(5:5) VALID CMPX 3999,6(6) I
CMP1 FIELD(5:5)

CMPX FIELD(5:5)

10. The catch to this problem is that there may be several places in a row or column

where the minimum or maximum occurs, and each is a potential saddle point.

1.3.2 ANSWERS TO EXERCISES 513

Solution 1: In this solution we run through each row in turn, making a list of all columns
in which the row minimum occurs and then checking each column on the list to see if
the row minimum is also a column maximum. rX - current min; rll traces through the
matrix, going from 72 down to zero unless a saddle point is found; rI2 - column index
of rll; rl3 = size of list of minima. Notice that in all cases the terminating condition
for a loop is that an index register is < 0.

* SOLUTION 1
A10 EQU 1008
LIST EQU 1000

START ENT! 9*8
ROWMIN ENT2 8
2H LDX A10,1

ENT3 0
4H INC3 1

1H
ST2 LIST,3
DEC! 1
DEC2 1

Location of aio

Begin at the lower right corner.
Now rll is at column 8 of its row.
Candidate for row minimum
List empty

Put column index in list.
Go left one.

J2Z COLMAX Done with row?
3H CMPX A10,1

JL 1B
JG 2B
JMP 4B

Is rX still minimum?
New minimum?
Remember another minimum.

COLMAX LD2 LIST,3 Get column from list.

1H
INC2 9*8-8
CMPX A10,2
JL NO
DEC2 8

Is row min< column element?

J2P 1B Done with column?
YES INC! A10+8, 2 Yes; rll +- address of saddle.

HLT
NO DEC3 1 Is list empty?

J3P COLMAX No; try again.
J 1P ROWMIN Have all rows been tried?
HLT Yes; rll = 0, no saddle. I

Solution 2: An infusion of mathematics gives a different algorithm.

Theorem. Let R(i) = mini aij, C (j) = maxi aij. The element aioio is a saddle point
if and only if R(io) =maxi R(i) = C(j0) =mini C(j).

Proof. If aioio is a saddle point, then for any fixed i, R(io) = C(jo) 2: aiio 2: R(i); so
R(io) = maxi R(i). Similarly C(j0) = mini C(j). Conversely, we have R(j) ::::; aii ::::;

C(j) for all i and j; hence R(io) = C(jo) implies that aioio is a saddle point. I
(This proof shows that we always have maxi R(i) ::::; mini C(j). So there is no

saddle point if and only if all the R's are less than all the C's.)
According to the theorem, it suffices to find the smallest column maximum, then

to search for an equal row minimum. During Phase 1, rll column index; rI2 runs
through the matrix. During Phase 2, rll possible answer; rI2 runs through the
matrix; rl3 _row index times 8; rI4 column index.

514 ANSWERS TO EXERCISES 1.3.2

* SOLUTION 2
CMAX EQU 1000
A10 EQU CMAX+8
PHASE! ENT! 8 Start at column 8.

3H ENT2 9*8-8,1
JMP 2F

1H CMPX A10,2 Is rX still maximum?
JGE *+2

2H LDX A10,2 New maximum in column
DEC2 8
J2P 1B
STX CMAX+8,2 Store column maximum.
J2Z 1F First time?
CMPA CMAX+8,2 rA still min max?
JLE *+2

1H LDA CMAX+8,2
DEC! 1 Move left a column.
J1P 3B

PHASE2 ENT3 9*8-8 At this point r A = minj C (j)
3H ENT2 8,3 Prepare to search a row.

ENT4 8
1H CMPA A10,2 Is minj C(j) > a[i, j]?

JG NO No saddle in this row
JL 2F
CMPA CMAX,4 Is a[i, j] = C(j)?
JNE 2F
ENT! A10,2 Remember a possible saddle point.

2H DEC4 1 Move left in row.
DEC2 1
J4P 1B
HLT A saddle point was found.

NO DEC3 8

ENT! 0 Try another row.
J3P 3B
HLT rll = O; no saddle. I

We leave it to the reader to invent a still better solution in which Phase 1 records

all possible rows that are candidates for the row search in Phase 2. It is not necessary

to search all rows, just those io for which C(jo) = minj C(j) implies aio]o = C(jo).
Usually there is at most one such row.

In some trial runs with elements selected at random from {O, 1, 2, 3, 4}, solution 1

required approximately 730u to run, while solution 2 took about 540u. Given a matrix

of all zeros, solution 1 found a saddle point in l37u, solution 2 in 524u.

If an m x n matrix has distinct elements, we can solve the problem by looking

at only 0(m + n) elements and doing 0(m log n) auxiliary operations. See Bienstock,

Chung, Fredman, Schaffer, Shor, and Suri, AMM 98 (1991), 418-419.

11. Assume an m x n matrix. (a) By the theorem in the answer to exercise 10, all

saddle points of a matrix have the same value, so (under our assumption of distinct

elements) there is at most one saddle point. By symmetry the desired probability is

1.3.2 ANSWERS TO EXERCISES 515

mn times the probability that au is a saddle point. This latter is 1/(mn)! times the
number of permutations with a12 >au, ... , ain > a11, au > a21, ... , au > am1; this
is 1/(m + n - 1)! times the number of permutations of m + n - 1 elements in which
the first is greater than the next (m - 1) and less than the remaining (n - 1), namely
(m - 1)! (n - 1)!. The answer is therefore

mn(m-l)!(n-1)!/(m+n-1)! = (m+n)/(m:n).
In our case this is 17 / (1;), only one chance in 1430. (b) Under the second assumption,
an entirely different method must be used since there can be multiple saddle points;
in fact either a whole row or whole column must consist entirely of saddle points.
The probability equals the probability that there is a saddle point with value zero
plus the probability that there is a saddle point with value one. The former is the
probability that there is at least one column of zeros; the latter is the probability that
there is at least one row of ones. The answer is (1- (1- 2-m)n) + (1- (1- 2-n)m);
in 924744796234036231 our case, 924744796234036231/18446744073709551616, about
1 in 19.9. An approximate answer is n2-m + m2-n.

13. * CRYPTANALYST PROBLEM (CLASSIFIED)
TAPE EQU 20 Input unit number
TYPE EQU 19 Output unit number
SIZE EQU 14 Input block size
OSIZE EQU 14 Output block size
TABLE EQU 1000 Table of counts

ORIG TABLE (initially zero
CON -1 except entries for
ORIG TABLE+46 blank space and
CON -1 asterisk)
ORIG 2000

BUF1 ORIG *+SIZE First buff er area
CON -1 "Sentinel" at end of buffer
CON *+1 Reference to second buff er

BUF2 ORIG *+SIZE Second buff er
CON -1 "Sentinel"
CON BUF1 Reference to first buff er

BEGIN IN BUF1 (TAPE) Input first block.
ENT6 BUF2

1H IN 0,6(TAPE) Input next block.
LD6 SIZE+1,6 During this input, prepare
ENT5 0,6 to process the previous one.
JMP 4F

2H INCA 1
main STA TABLE,1 Update table entry.
loop, 3H SLAX 1

STA *+1(2:2) rll +-next char.
should

ENT! 0 run as
fast as LDA TABLE,1
possible JANN 2B Normal character?

J1NZ 3F Asterisk?
JXP 3B Skip over a blank.

516 ANSWERS TO EXERCISES 1.3.2

INC5 1
4H LDX 0,5 rX +-five chars.

JXNN 3B Jump if not a sentinel.
JMP 1B Done with block.

3H ENT! 1 Begin the endgame: rll +- "A".
2H LDA TABLE,1

JANP 1F Skip zero answers.
CHAR Convert to decimal.
JBUS *(TYPE) Wait till the typewriter is ready.
ST1 CHAR(!: 1)
STA CHAR(4:5)
STX FREQ
OUT ANS(TYPE) Type one answer.

1H CMP1 =63=
INC! 1 Up to 63 character
JL 2B codes are counted
HLT

ANS ALF The output buffer
ALF

CHAR ALF c NN
FREQ ALF NNNNN

ORIG ANS+OSIZE Rest of buffer is blank
END BEGIN The literal constant =63= comes here. I

For this problem, buffering of output is not desirable since it could save at most 7u of
time per line output. For information about letter frequencies, see Charles P. Bourne
and Donald F. Ford, "A study of the statistics of letters in English words," Information
and Control 4 (1961), 48-67.

14. To make the problem more challenging, the following solution due in part to
J. Petolino uses a lot of trickery in order to reduce execution time. Can the reader
squeeze out any more microseconds?

* DATE OF EASTER
EASTER STJ EA STX

STX y

ENTA 0 El.
DIV =19=
STX GMINUS1(0:2)
LDA y E2.
MUL =1//100+1= (see
INCA 61 below)
STA CPLUS60(1:2)
MUL =3//4+1=
STA XPLUS57(1:2)

CPLUS60 ENTA *
MUL =8//25+1= rA +- Z + 24.

GMINUS1 ENT2 * E5.
ENT! 1,2 rll +- G.
INC2 1,1
INC2 0,2

1.3.2

INC2 0,1
INC2 0,2
INC2 773,1

XPLUS57 INCA -*,2
SRAX 5
DIV =30=
DECX 24
JXN 4F
DECX 1
JXP 2F
JXN 3F
DEC! 11
J1NP 2F

3H INCX 1

ANSWERS TO EXERCISES

rl2 +- llG + 773.
rA +- llG + Z - X + 20 + 24 · 30 (2': 0).

rX +- E.

2H DECX 29 E6.
4H STX 20MINUSN(0:2)

LDA Y E4.
MUL =1//4+1=
ADD Y
SUB XPLUS57(1 :2) rA +- D - 47.

20MINUSN ENN1 *

1H

2H

EA STX
MARCH
APRIL
ANS
DAY
MONTH

YEAR

INCA 67, 1 E7.
SRAX 5 rX +- D + N
DIV =7=
SLAX 5
DECA -4,1
JAN 1F
DECA 31
CHAR
LDA MARCH
JMP 2F
CHAR
LDA APRIL
JBUS *(18)
STA MONTH
STX DAY(1:2)
LDA y

CHAR
STX YEAR
OUT ANS (18)
JMP *
ALF MARCH
ALF APRIL
ALF
ALF DD
ALF MMMMM
ALF

' ALF yyyyy

ORIG *+20

rA +- 31-N
EB.

Print

517

518 ANSWERS TO EXERCISES

BEGIN ENTX 1950
ENT6 1950-2000
JMP EASTER
INC6 1
ENTX 2000,6
J6NP EASTER+! .
HLT

END BEGIN

"driver"
routine,
uses the
subroutine
above.

I

1.3.2

A rigorous justification for the change from division to multiplication in several places

can be based on the fact that the number in rA is not too large. The program works

with all byte sizes.
[To calculate Easter in years ::::; 1582, see CACM 5 (1962), 209-210. The first

systematic algorithm for calculating the date of Easter was the canon paschalis due to

Victorius of Aquitania (A.D. 457). There are many indications that the sole nontrivial

application of arithmetic in Europe during the Middle Ages was the calculation of

Easter date, hence such algorithms are historically significant. See Puzzles and Para

doxes by T. H. O'Beirne (London: Oxford University Press, 1965), Chapter 10, for

further commentary; and see the book Calendrical Calculations by E. M. Reingold and

N. Dershowitz (Cambridge Univ. Press, 1997) for date-oriented algorithms of all kinds.]

15. The first such year is A.D. 10317, although the error almost leads to failure in

A.D. 10108 + l9k for 0 ::::; k ::::; 10.
Incidentally, T. H. O'Beirne pointed out that the date of Easter repeats with

a period of exactly 5, 700,000 years. Calculations by Robert Hill show that the most

common date is April 19 (220400 times per period), while the earliest and least common

is March 22 (27550 times); the latest, and next-to-least common, is April 25 (42000

times). Hill found a nice explanation for the curious fact that the number of times any

particular day occurs in the period is always a multiple of 25.

16. Work with scaled numbers, Rn = lOnrn. Then Rn(l/m) = R if and only if

lOn/(R+ ~) < m ::=:; lOn/(R- ~);thus we find mh = L2·10n/(2R-1)J.

* SUM OF HARMONIC SERIES
BUF ORIG *+24
START ENT2 0

ENT! 3
ENTA 20

OUTER MUL =10=
STX CONST
DIV =2=
ENTX 2
JMP 1F

INNER STA R
ADD R
DECA 1
STA TEMP
LDX CONST
ENTA 0
DIV TEMP
INCA 1
STA TEMP

5-n

2R-1

mh+l

1.3.2

SUB M
MUL R
SLAX 5
ADD s
LDX TEMP

1H STA s
STX M
LDA M
ADD M
STA TEMP
LDA CONST
ADD M
SRAX 5
DIV TEMP
JAP INNER
LDA s
CHAR
SLAX 0,1
SLA 1
INCA 40
STA BUF,2
STX BUF+1,2
INC2 3
DEC! 1
LDA CONST
J1NN OUTER
OUT BUF(18)
HLT

ANSWERS TO EXERCISES

Partial sum
m=me

Compute R = Rn(l/m) =
l(2 · lOn + m)/(2m)J.

Neat formatting

Decimal point

END START I

The output is

0006.16 0008.449 0010.7509 0013.05363

519

in 65595u plus output time. (It would be faster to calculate Rn(l/m) directly when
m < 10nl2 y'2, and then to apply the suggested procedure.)

17. Let N = l2·10n /(2m+l)J. Then Sn= HN+O(N/lOn)+ 2:;1=1 (l2·10n /(2k-l)j
l2·10n/(2k + l)J)k/lOn = Hn + O(m-1

) + O(m/lOn) -1 + H2m -Hm = nlnlO +
21 - 1+2ln2 + 0(10-nl2

) if we sum by parts and set m ~ 10nl2
•

Incidentally, the next several values are 56 = 15.356262, 57 = 17.6588276, Ss =
19.96140690, Sg = 22.263991779, and 510 = 24.5665766353; our approximation to 510

is ~ 24.566576621, which is closer than predicted.

18. FAREY STJ 9F
STZ X
ENTX 1
STX Y
STX X+1
ST1 Y+1
ENT2 0

Assume that rll contains n, where n > 1.
Xo +- 0.

Yo +- 1.
X1 +- 1.
Y1 +- n.
k +- 0.

520 ANSWERS TO EXERCISES 1.3.2

1H LDX Y,2
INCX 0,1
ENTA 0
DIV Y+1,2
STA TEMP L(Yk + n)/Yk+1J
MUL Y+1,2
SLAX 5
SUB Y,2
STA Y+2,2 Yk+2
LDA TEMP
MUL X+1,2
SLAX 5
SUB X,2
STA X+2,2 Xk+2
CMPA Y+2,2 Test if Xk+2 < Yk+2.
INC2 1 k+-k+l.
JL 1B If so, continue.

9H JMP * Exit from subroutine. I

19. (a) Induction. (b) Let k 2'.: 0 and X = axk+l - Xk, Y = ayk+l - Yk, where

a = l(Yk + n)/Yk+1J. By part (a) and the fact that 0 < Y ~ n, we have X 1- Y and

X/Y > Xk+1/Yk+l· So if X/Y f Xk+2/Yk+2 we have, by definition, X/Y > Xk+2/Yk+2·

But this implies that

1 XYk+1 - Yxk+1

YYk+1

> 1 1
- y +

Yk+2 Yk+1Yk+2

Historical notes: C. Haros gave a (more complicated) rule for constructing such

sequences, in J. de l'Ecole Polytechnique 4, 11 (1802), 364-368; his method was correct,

but his proof was inadequate. Several years later, the geologist John Farey indepen

dently conjectured that Xk/Yk is always equal to (xk-1 + Xk+1)/(Yk-1 + Yk+i) [Philos.

Magazine and Journal 47 (1816), 385-386]; a proof was supplied shortly afterwards by

A. Cauchy [Bull. Societe Philomathique de Paris (3) 3 (1816), 133-135], who attached

Farey's name to the series. For more of its interesting properties, see G. H. Hardy and

E. M. Wright, An Introduction to the Theory of Numbers, Chapter 3.

20. * TRAFFIC SIGNAL PROBLEM
BSIZE EQU 1(4:4)
2BSIZE EQU 2(4:4)
DELAY STJ 1F

DECA 6
DECA 2
JAP *-1
JAN *+2
NOP

1H JMP *

Bytesize
Twice bytesize
If rA contains n,

this subroutine
waits max(n, 7)u
exactly, not including
the jump to the subroutine

1.3.2 ANSWERS TO EXERCISES 521

FLASH STJ 2F 4 This subroutine flashes the
ENT2 8 5 appropriate DON'T WALK light

1H LDA =49991= 7
JMP DELAY 8
DECX 0,1 9 Turn light off.
LDA =49996= 2
JMP DELAY 3
INCX 0,1 4 "DON'T WALK"
DEC2 1 1
J2Z 1F 2 Repeat eight times.
LDA *= 4
JMP 1B 5 Get back in synch.

1H LDA =399992= 4 Set amber 2u after exit.
JMP DELAY 5

2H JMP * 6
WAIT JNOV * 5 Del Mar green until tripped
TRIP INCX BSIZE 6 DON'T WALK on Del Mar

ENT! 2BSIZE 1
JMP FLASH 2 Flash Del Mar.
LDX BAMBER 8 Amber on boulevard
LDA =799995= 2
JMP DELAY 3 Wait 8 seconds.
LDX AGREEN 5 Green for avenue
LDA =799996= 2
JMP DELAY 3 Wait 8 seconds.
INCX 1 4 DON'T WALK on Berkeley
ENT! 2 1
JMP FLASH 2 Flash Berkeley.
LDX AAMBER 8 Amber on avenue
JOV *+1 1 Cancel redundant trip.
LDA =499994= 3
JMP DELAY 4 Wait 5 seconds.

BEGIN LDX BGREEN 6 Green on boulevard
LDA =1799994= 2
JMP DELAY 3 Wait at least 18
JMP WAIT 4 seconds.

AGREEN ALF CABA Green for avenue
AAMBER ALF CBBB Amber for avenue
BGREEN ALF ACAB Green for boulevard
BAMBER ALF BCBB Amber for boulevard

END BEGIN I
22. * JOSEPHUS PROBLEM

N EQU 24
M EQU 11
x ORIG *+N
OH ENT! N-1 1 Set each cell to the

STZ X+N-1 1 number of the next man
ST1 X-1,1 N-1 in the sequence.
DEC! 1 N-1
J1P *-2 N-1

522 ANSWERS TO EXERCISES

ENTA 1 1
1H ENT2 M-2 N-1

LD1 x, 1 (M - 2)(N -1)
DEC2 1 (M - 2)(N -1)
J2P *-2 (M - 2)(N -1)
LD2 x, 1 N-1
LD3 X,2 N-1
CHAR N-1
STX X,2(4:5) N-1
NUM N-1
INCA 1 N-1
ST3 x, 1 N-1
ENT! 0,3 N-1
CMPA =N= N-1
JL 1B N-1
CHAR 1
STX X,1(4:5) 1
OUT X(18) 1
HLT 1
END OB

(Now rll = 0)
(Assume M > 2)
Count around

the circle.

rll lucky man
r 12 doomed man
rl3 next man
Store execution number.

Take man from circle.

One man left;
he is clobbered too.

Print the answer.

I

1.3.2

The last man is in position 15. The total time before output is (4(N-l)(M +7.5)+16)u.
Several improvements are possible, such as D. Ingalls's suggestion to have three-word
packets of code "DEC2 1; J2P NEXT; JMP OUT", where OUT modifies the NEXT field so as
to delete a packet. An asymptotically faster method appears in exercise 5.1.1-5.

SECTION 1.3.3

1. (1 2 4)(3 6 5).

2. a++ c, c ++ f; b ++ d. The generalization to arbitrary permutations is clear.

3. (~ ~ f ~ : ~).
4. (adcfe).

5. 12. (See exercise 20.)

6. The total time is increased by 4u for every blank word with the preceding nonblank
word a "(", plus 5u for every blank word with the preceding nonblank word a name.
Initial blanks and blanks between cycles do not affect the execution time. The position
of blanks has no effect whatever on Program B.

7. X = 2, Y = 29, M = 5, N = 7, U = 3, V = 1. Total, by Eq. (18), 2161u.

8. Yes; we would then keep the inverse of the permutation, so that Xi goes to XJ if

and only if T[j] = i. (The final cycle form would then be constructed from right to
left, using the T table.)

9. No. For example, given (6) as input, Program A will produce "(ADG) (CEB)" as
output, while Program B produces "(CEB) (DGA)". The answers are equivalent but not
identical, due to the nonuniqueness of cycle notation. The first element chosen for a

cycle is the leftmost available name, in the case of Program A, and the last available
distinct name to be encountered from right to left, in Program B.

1.3.3 ANSWERS TO EXERCISES 523

10. (1) Kirchhoff's law yields A= 1 + C - D; B =A+ J + P - 1; C = B - (P - L);
E = D - L; G = E; Q = Z; W = S. (2) Interpretations: B = number of words of
input= 16X - 1; C =number of nonblank words= Y; D = C - M; E = D - M;
F = number of comparisons in names table search; H = N; K = M; Q = N; R = U;
S = R - V; T = N - V since each of the other names gets tagged. (3) Summing up,
we have (4F + l6Y +SOX+ 21N -19M + 9U - l6V)u, which is somewhat better than
Program A since F is certainly less than 16NX. The time in the stated case is 983u,
since F = 74.

11. "Reflect" it. For example, the inverse of (acf)(bd) is (db)(fca).

12. (a) The value in cell L+mn-l is fixed by the transposition, so we may omit it from
consideration. Otherwise if x = n(i -1) + (j - 1) < mn - 1, the value in L + x should
go to cell L + mx mod N = L + (mn(i - 1) + m (j - 1)) mod N = L + m (j - 1) + (i - 1),
since mn 1 (modulo N) and 0 ~ m(j - 1) + (i - 1) < N. (b) If one bit in each
memory cell is available (for example, the sign), we can "tag" elements as we move
them, using an algorithm like Algorithm I. [See M. F. Berman, JACM 5 (1958), 383-
384.] If there is no room for a tag bit, tag bits can be kept in an auxiliary table, or
else a list of representatives of all non-singleton cycles can be used: For each divisor
d of N, we can transpose those elements that are multiples of d separately, since m is
prime to N. The length of the cycle containing x, when gcd(x, N) = d, is the smallest
integer r > 0 such that mr 1 (modulo N/d). For each d, we want to find r.p(N/d)/r
representatives, one from each of these cycles. Some number-theoretic methods are
available for this purpose, but they are not simple enough to be really satisfactory.
An efficient but rather complicated algorithm can be obtained by combining number
theory with a small table of tag bits. [See N. Brenner, CACM 16 (1973), 692-694.]
Finally, there is a method analogous to Algorithm J; it is slower, but needs no auxiliary
memory, and it performs any desired permutation in situ. [See P. F. Windley, Comp. J.
2 (1959), 47-48; D. E. Knuth, Proc. IFIP Congress (1971), 1, 19-27; E. G. Cate and
D. W. Twigg, ACM Trans. Math. Software 3 (1977), 104-110; F. E. Fich, J. I. Munro,
and P. V. Poblete, SICOMP 24 (1995), 266-278.]

13. Show by induction that, at the beginning of step J2, X[i] = +j if and only if
j > m and j goes to i under 7r; X[i] = -j if and only if i goes to j under 7rk+1, where
k is the smallest nonnegative integer such that 7rk takes i into a number ~ m.

14. Writing the inverse of the given permutation in canonical cycle form and dropping
parentheses, the quantity A - N is the sum of the number of consecutive elements
greater than a given element and immediately to its right. For example, if the original
permutation is (1 6 5)(3 7 8 4), the canonical form of the inverse is (3 4 8 7)(2)(1 5 6);
set up the array

3 4 8 7 2

• • • • •
• • •

• •

1 5 6

• • •
..--...

•
and the quantity A is the number of "dots," 16. The number of dots below the kth
element is the number of right-to-left minima in the first k elements (there are 3 dots
below 7 in the example above, since there are 3 right-to-left minima in 3487). Hence
the average is H1 + H2 + · · · + Hn = (n + l)Hn - n.

15. If the first character of the linear representation is 1, the last character of the
canonical representation is 1. If the first character of the linear representation is m > 1,

524 ANSWERS TO EXERCISES 1.3.3

then " ... lm ... " appears in the canonical representation. So the only solution is the

permutation of a single object. (Well, there's also the permutation of no objects.)

16. 1324,4231,3214,4213,2143,3412,2413, 1243,3421,1324,

17. (a) The probability that the cycle is an m-cycle is n!/m divided by n! Hn, so

Pm= l/(mHn)· The average length is p1 +2p2 +3p3 + · · · = 2=::i=l (m/mHn) = n/ Hn.

(b) Since the total number of m-cycles is n!/m, the total number of appearances of

elements in m-cycles is n!. Each element appears as often as any other, by symmetry,

so k appears n!/n times in m-cycles. In this case, therefore, Pm = l/n for all k and m;

the average is 2=:=1 m/n = (n + 1)/2.

18. See exercise 22(e).

19. IPno - n!/el = l/(n + 1)! - l/(n + 2)! + · · ·, an alternating series of decreasing

magnitudes, which is less than 1/(n + 1)!::; ~·

20. There are 0:1 + o:2 + · · · cycles in all, which can be permuted among one another,

and each m-cycle can be independently written in m ways. So the answer is

()lla12a23a3 0:1 + 0:2 +...

21. l/(0:1! 1°1o:2! 2°2 ...) if n = o: 1 + 2o:2 +···;zero otherwise.

Proof. Write out o:1 1-cycles, o:2 2-cycles, etc., in a row, with empty positions; for

example if 0:1=1, 0:2 = 2, 0:3 = o:4 = ··· = 0, we would have"(-)(--)(--)". Fill

the empty positions in all n! possible ways; we obtain each permutation of the desired

form exactly o:1 ! 1 ° 1 o:2 ! 2°2 . . . times.

22. (a) If ki +2k2+· · · = n, the probability in (ii) is TI ·>o f(w,j, kj), which is assumed
J_

to equal (1 - w)wn/kil 1 ki k2! 2k2 ... ; hence

f(w, m, km+ 1) (IT))-l IT (Wm

f(k)
f(w,j,kj f w, j, kj +bjm) = m(k + l)"

W,m, m ·>o '>O m
J_ J_

Therefore by induction

f(w,m,k)= ~' (W::rf(w,m,o).

Condition (i) now implies that

f(w,m,k) = ~! (W::)\-w"'/m.

[In other words, O:m is chosen with a Poisson distribution; see exercise 1.2.10-15.]

(b) »+2~ ··=n (}] f(w,j, k;)) = (1 - w)w" k, +2~ .. =• P(n; ki, k,, ...)

ki ,k2 , ... 20 ki ,k2 , ... 20

=(l-w)wn.

Hence the probability that o:1 +2o:2 + · · · ::; n is (1- w)(l + w + · · · + wn) = 1- wn+1.

(c) The average of ¢ is

L (L ¢(k1, k2, ...) Pr (0:1 = ki, 0:2 = k2, ...))

n20 ki +2k2+··=n

= (l-w) Lwn(L ¢(k1,k2, ...)/k1!lk1k2!2k2 ...).

n20 ki +2k2+···=n

1.3.3 ANSWERS TO EXERCISES 525

(d) Let ¢(o:1, o:2, ...) = o:2 + o:4 + 0:6 + · · ·. The average value of the linear
combination¢ is the sum of the average values of 0:2, 0:4, 0:6, ... ; and the average value
of O:m is

Lkf(w,m,k) = L (k~l)T (W::re-w"'/m = w;:.
k20 k21

Therefore the average value of ¢ is

w
2

w
4

w
6

1 - w (2 3 4 5 6) -+-+-+···=-- H1w +H1w +H2w +H2w +H3w +···. 2 4 6 2

The desired answer is ~Hln/2J.
(e) Set ¢(0:1, o:2, ...) = za"', and observe that the average value of¢ is

L J(w, m, k)zk = L ~! (w:zr e-w"'/m = ew"'(z-1)/m = L w~j (z: 1 y
k20 k20 i20 J

Hence

= (1-w) ~ w" c~~/m J, (z;;; 1 Y)
= (1 - w) L wnGnm(z).

n20

'°' 1 (z - 1)j Gnm(z)= ~ --:-i -- ;
J· m 0:5:_j:5:_n/m

1
Pnkm = ---,;:-kl L m . 0:5:_j:5:_n/m-k

(-1/m)i .,
J.

the statistics are (min 0, ave 1/m, max ln/mJ, dev ~),when n 2'.: 2m.
23. The constant>. is f

0

00 exp(-t-E1(t))dt, where E1(x) = fx00 e-tdt/t. See Trans.
Amer. Math. Soc. 121 (1966), 340-357, where many other results are proved, in par
ticular that the average length of the shortest cycle is approximately e--r ln n. Further
terms of the asymptotic representation of ln have been found by Xavier Gourdon [to
appear]; the series begins

>.n + !>.- ..!...e-Yn-1 + (..!...e'Y - !(-l)n)n-2 + (_!l_e-Y + ! (-l)n + !.wl-n + !.wn-l)n-3
2 24 48 8 3840 8 6 6 '

where w = e2
7ri/

3
. William C. Mitchell has calculated a high-precision value of >. =

.62432 99885 43550 87099 29363 83100 83724 41796+ [Math. Comp. 22 (1968), 411-
415]; no relation between >.and classical mathematical constants is known. The same
constant had, however, been computed in another context by Karl Dickman in Arkiv
for Mat., Astron. och Fys. 22A, 10 (1930), 1-14; the coincidence wasn't noticed until
many years later [Theor. Comp. Sci. 3 (1976), 373].

24. See D. E. Knuth, Proc. IFIP Congress (1971), 1, 19-27.
25. One proof, by induction on N, is based on the fact that when the Nth element is
a member of s of the sets it contributes exactly

(~) - (~) + (;) - · · · = (1 - 1) 8
= bso

to the sum. Another proof, by induction on M, is based on the fact that the number
of elements that are in SM but not in S1 U · · · U SM-1 is

1:5,_j<k<M

526 ANSWERS TO EXERCISES 1.3.3

26. Let No = N and let

Then the desired formula is

Nr - ("r ~ l)Nr+l + (r ~ 2)Nr+2 - · · ·.

This may be proved from the principle of inclusion and exclusion itself, or by using the
formula

as in exercise 25.

27. Let Si be the multiples of mi in the stated range and let N = am1 ... mt. Then
ISi n Ski= N/mimk, etc., so the answer is

N - N ""'· 2_ + N ""'
1

- · · · = N (1 - 2_) · · · (1 - __!__) •
~ m· ~ m·mk m1 mt
l~j9 J l~j<k~t J

This also solves exercise 1.2.4-30, if we let m 1, ... , mt be the primes dividing N.

29. When passing over a man, assign him a new number (starting with n + 1). Then
the kth man executed is number 2k, and man number j for j > n was previously
number (2j) mod (2n + 1).

31. See CMath, Section 3.3.

32. (a) In fact, k - 1 ~ 7rk ~ k + 2 when k is even; k - 2 ~ 7rk ~ k + 1 when k is odd.
(b) Choose the exponents from left to right, setting ek = 1 if and only if k and k + 1 are
in different cycles of the permutation so far. [Steven Alpern, J. Combinatorial Theory
B25 (1978), 62-73.]

33. For l = 0, let (ao1,ao2;,601,,602) = (7r,p;E,E) and (a11,a12;,611,.812) = (E,Ej7r,p),
where 7r = (14)(2 3), p = (15)(2 4), and€= ().

Suppose we have made such a construction for some l 2 0, where a]k = ,6Jk = ()
for 0 ~ j < m and 1 ~ k ~ n. Then the permutations

(A(jm+j')l l • • ·, A(jm+j')(4n)i B(jm+j')l l • • • 'B(jm+j')(4n)) =

have the property that

(u- Oj10", ... , O"- OjnO", T- Oj'l T, ... , T- Oj'nT,

O"- ,6jnO", ... , O"- ,6j10", T- .Bj'nT, ... , T- ,6j'l Tj

O"- ,6j10", ... , 0"-,6jnO", T- ,6j'l T, ... , T- .Bj'nT,

O"- OjnO", ... , O"- Oj10", T- Oj'nT, ..• , T- Oj'l r)

A(im+i')lB(jm+j')l · · · A(im+i')(4n)B(jm+j')(4n) =

u- (123 4 5)u r- (123 4 5)r u-(5 4 3 2 1) u r- (5 4 3 21)r

if i = j and i' = j', otherwise the product is (). Choosing u = (2 3)(4 5) and r = (3 4 5)
will make the product (12345) as desired, when im + i' = jm + j'.

The construction that leads from l to l + 1 is due to David A. Barrington [J. Comp.
Syst. Sci. 38 (1989), 150-164], who proved a general theorem by which any Boolean

1.4.l ANSWERS TO EXERCISES 527

function can be represented as a product of permutations of {1, 2, 3, 4, 5}. With a
similar construction we can, for example, find sequences of permutations (aj1, ... , Ojni

/3j1, ... , /3in) such that

l
for 0 ~ i, j < m = 22 when n = 51+1

- 41+1
.

if i < j;
if i ?_ j;

34. Let N = m + n. If m J_ n there is only one cycle, because every element can be
written in the form am mod N for some integer a. And in general if d = gcd(m, n),
there are exactly d cycles C0 , C1 , •.• , Cd-l, where Ci contains the elements {j, j + d,
... , j + N - d} in some order. To carry out the permutation, we can therefore proceed
as follows for 0 ~ j < d (in parallel, if convenient): Set t +-- Xj and k +-- j; then
while (k + m) mod N =/= j, set Xk +-- X(k+m) mod N and k +-- (k + m) mod N; finally
set Xk +-- t. In this algorithm the relation (k + m) mod N =/= j will hold if and only if
(k + m) mod N ?_ d, so we can use whichever test is more efficient.

35. Let M = l + m + n and N = l + 2m + n. The cycles for the desired rearrangement
are obtained from the cycles of the permutation on {O, 1, ... , N - 1} that takes k to
(k + l + m) mod N, by simply striking out all elements of each cycle that are ?_ M.
(Compare this behavior with the similar situation in exercise 29.) Proof: When the
hinted interchange sets Xk +-- Xk' and Xk' +-- Xk" for some k with k' = (k+l+m) mod N

and k" = (k' + l + m) mod N and k' ?_ M, we know that Xk' = Xk"i hence the
rearrangement a/31-+ 1/3a replaces Xk by Xk".

It follows that there are exactly d = gcd(l + m, m + n) cycles, and we can use an
algorithm similar to the one in the previous exercise.

A slightly simpler way to reduce this problem to the special case in exercise 34 is
also noteworthy, although it makes a few more references to memory: Suppose I = 1' 1"

where If" I = I a I· Then we can change a/31' 1" to 1" /31' a, and interchange 1" with
/31'. A similar approach works if lal > lfl. [See J. L. Mohammed and C. S. Subi,
J. Algorithms 8 (1987), 113-121.]

SECTION 1.4.1

1. Calling sequence: JMP MAXN; or, JMP MAX100 if n = 100.
Entry conditions: For the MAXN entrance, rI3 = n; assume n ?_ 1.
Exit conditions: Same as in (4).

2. MAX50 STJ EXIT

ENT3 50

JMP 2F

3. Entry conditions: n = rll if rll > O; otherwise n = 1.
Exit conditions: rA and rI2 as in (4); rll unchanged; rI3 = min(O, rll); rJ =

EXIT+ 1; CI unchanged if n = 1, otherwise CI is greater, equal,
or less, according as the maximum is greater than X[l], equal
to X[l], and rI2 > 1, or equal to X[l] with rl2 = 1.

(The analogous exercise for (g) would of course be somewhat more complicated.)

4. SMAX1 ENT! 1 r = 1

SMAX STJ EXIT generalr
JMP 2F continue as before

528 ANSWERS TO EXERCISES

DEC3 0,1
J3P 1B

decrease by r

EXIT JMP * exit.

Calling sequence: JMP SMAX; or, JMP SMAX1 if r = 1.

1.4.1

Entry conditions: rl3 = n, assumed positive; for the SMAX entrance, rll = r, assumed
positive. •

Exit conditions: rA = maxo~k<n/r CONTENTS(X + n - kr) = CONTENTS(X + rl2); and
r 13 = (n - 1) mod r + 1 - r = -((-n) mod r).

5. Any other register can be used. For example,

Calling sequence: ENT A *+2
JMP MAX100

Entry conditions: None.
Exit conditions: Same as in (4).

The code is like (1), but the first instruction becomes "MAX100 STA EXIT(0:2)".

6. (Solution by Joel Goldberg and Roger M. Aarons.)

MOVE STJ 3F

2H

6H

1H
5H
3H

4H

STA 4F
ST2 5F(0:2)
LD2 3F(0:2)
LDA 0,2(0:3)
STA *+2(0:3)
LD2 5F(0:2)
ENTA *
LD2 3F(0:2)
LD2N 0,2(4:4)
J2Z 1F
DECA 0,2
STA 2F(0:2)
DEC! 0,2
ST1 6F(0:2)
LDA *,2
STA *,2
INC2 1
J2N 2B
LDA 4F
ENT2 *
JMP *
CON 0 I

Save rA and rl2.

r 12 +-- address of "NOP A, I (F) ".
rA +-- "A,I".

Restore rl2, because I might be 2.
r A +-- indexed address.

rl2 +-- -F.

rll +-- rll + F.

Increase rl2 until it becomes zero.

Restore r A and r 12.

Exit to the NOP instruction.

7. (1) An operating system can allocate high-speed memory more efficiently if pro
gram blocks are known to be "read-only." (2) An instruction cache in hardware will be
faster and less expensive if instructions cannot change. (3) Same as (2), with "pipeline"
in place of "cache." If an instruction is modified after entering a pipeline, the pipeline
needs to be flushed; the circuitry needed to check this condition is complex and time
consuming. (4) Self-modifying code cannot be used by more than one process at once.
(5) Self-modifying code can defeat a jump-trace routine (exercise 1.4.3.2-7), which is
an important diagnostic tool for "profiling" (that is, for computing the number of times
each instruction is executed).

1.4.2 ANSWERS TO EXERCISES 529

SECTION 1.4.2
1. If one coroutine calls the other only once, it is nothing but a subroutine; so we

need an application in which each coroutine calls the other in at least two distinct
places. Even then, it is often easy to set some sort of switch or to use some property
of the data, so that upon entry to a fixed place within one coroutine it is possible to
branch to one of two desired places; again, nothing more than a subroutine would be
required. Coroutines become correspondingly more useful as the number of references
between them grows larger.

2. The first character found by IN would be lost. [We started OUT first because lines
58-59 do the necessary initialization for IN. If we wanted to start IN first, we'd have
to initialize OUT by saying "ENT4 -16", and clearing the output buffer if it isn't known
to be blank. Then we could make line 62 jump first to line 39.]

3. Almost true, since "CMPA =10=" within IN is then the only comparison instruction
of the program, and since the code for "." is 40. (!) But if the final period were
preceded by a replication digit, the test would go unnoticed. (Note: The most nitpick
ingly efficient program would probably remove lines 40, 44, and 48, and would insert
"CMPA PERIOD" between lines 26 and 27. If the state of the comparison indicator is
to be used across coroutines, however, it must be recorded as part of the coroutine
characteristics in the documentation of the program.)

4. Here are examples from three rather different computers of historic importance:
(i) On the IBM 650, using SOAP assembly language, we would have the calling se
quences "LDD A" and "LDD B", and linkage "A STD BX AX" and "B STD AX BX"

(with the two linkage instructions preferably in core). (ii) On the IBM 709, using
common assembly languages, the calling sequences would be "TSX A, 4" and "TSX B, 4";

the linkage instructions would be as follows:

A SXA BX,4 B
AX AXT 1-A1,4 BX

SXA

AXT

AX,4
1-B1,4

TRA 1,4 TRA 1,4

(iii) On the CDC 1604, the calling sequences would be "return jump" (SLJ 4) to A or B,

and the linkage would be, for example,

in two consecutive 48-bit words.

A: SLJ B1; ALS 0

B: SLJ A1; SLJ A

5. "STA HOLDAIN; LDA HOLDAOUT'' between OUT and OUTX, and "STA HOLDAOUT; LDA

HOLDAIN" between IN and INX.

6. Within A write "JMP AB" to activate B, "JMP AC" to activate C. Locations BA, BC,

CA, and CB would, similarly, be used within B and C. The linkage is:

AB STJ AX BC STJ BX CA STJ ex

BX JMP B1 ex JMP c1 AX JMP A1

CB STJ ex AC STJ AX BA STJ BX

JMP BX JMP ex JMP AX

(Note: With n coroutines, 2(n - l)n cells would be required for this style of linkage. If
n is large, a "centralized" routine for linkage could of course be used; a method with
3n + 2 cells is not to invent. But in practice the faster method above requires just 2m
cells, where mis the number of pairs (i,j) such that coroutine i jumps to coroutine j.
When there are many coroutines each independently jumping to others, the sequence
of control is usually under external influence, as discussed in Section 2.2.5.)

530 ANSWERS TO EXERCISES 1.4.3.1

SECTION 1.4.3.1

1. FCHECK is used only twice, both times immediately followed by a call on MEMORY.
So it would be slightly more efficient to make FCHECK a special entrance to the MEMORY
subroutine, and also to make it put -R in rl2.

2. SHIFT J5N ADDRERROR 3. MOVE J3Z CYCLE
DEC3 5 JMP MEMORY
J3P FERROR SRAX 5
LDA AREG LD1 I1REG
LDX XREG LDA SIGN!
LD1 1F,3(4:5) JAP *+3
ST1 2F(4:5) J1NZ MEMERROR
J5Z CYCLE STZ SIGN1(0:0)

2H SLA 1 CMP1 =BEGIN=
DEC5 1 JGE MEMERROR
J5P 2B STX 0,1
JMP STOREAX LDA CLOCK
SLA 1 INCA 2
SRA 1 STA CLOCK
SLAX 1 INC! 1
SRAX 1 ST1 I1REG
SLC 1 INC5 1

1H SRC 1 I DEC3 1
JMP MOVE I

4. Just insert "IN 0(16)" and "JBUS *(16)" between lines 003 and 004. (Of course
on another computer this would be considerably different since it would be necessary
to convert to MIX character code.)

5. Central control time is 34u, plus l5u if indexing is required; the GETV subroutine
takes 52u, plus 5u if L =/= O; extra time to do the actual loading is llu for LDA or LDX,
l3u for LDi, 21u for ENTA or ENTX, 23u for ENTi (add 2u to the latter two times if
M = 0). Summing up, we have a total time of 97u for LDA and 55u for ENTA, plus l5u
for indexing, and plus 5u or 2u in certain other circumstances. It would seem that
simulation in this case is causing roughly a 50:1 ratio in speeds. (Results of a test run
that involved 178u of simulated time required 8422u of actual time, a 47:1 ratio.)

7. Execution of IN or OUT sets a variable associated with the appropriate input device
to the time when transmission is desired. The "CYCLE" control routine interrogates
these variables on each cycle, to see if CLOCK has exceeded either (or both) of them;
if so, the transmission is carried out and the variable is set to oo. (When more than
two 1/0 units must be handled in this way, there might be so many variables that it
would be preferable to keep them in a sorted list using linked memory techniques; see
Section 2.2.5.) We must be careful to complete the 1/0 when simulating HLT.

8. False; rl6 can equal BEGIN, if we "fall through" from the location BEGIN - 1. But
then a MEMERROR will occur, trying to STZ into TIME! On the other hand, we always do
have 0 ~ rl6 ~BEGIN, because of line 254.

SECTION 1.4.3.2

1. Change lines 48 and 49 to the following sequence:

1.4.3.2 ANSWERS TO EXERCISES 531

XREG ORIG *+2 JMP -1,1
LEAVE STX XREG 1H JMP *+1

ST1 XREG+1 STA -1,1
LD1 JREG(0:2) LD1 XREG+1
LDA -1,1 LDX XREG
LDX 1F LDA AREG
STX -1,1 LEAVEX JSJ *

The operator "JSJ" here is, of course, particularly crucial.

2. * TRACE ROUTINE STA BUF+1,1(4:5)
ORIG *+99 ENTA 8

BUF CON 0 JNOV 1F
.............. lines 02-04 ADD BIG

ST1 I1REG 1H JL 1F
.............. lines 05-07 INCA 1
PTR ENT! -100 JE 1F

JBUS *(0) INCA 1
STA BUF+1,1(0:2) 1H STA BUF+1,1(3:3)

.............. lines 08-11 INC! 10
STA BUF+2,1 J1N 1F

.............. lines 12-13 OUT BUF-99(0)
LDA AREG ENT! -100
STA BUF+3,1 1H ST1 PTR(0:2)
LDA I1REGlines 14-31
STA BUF+4,1 LD1 I1REG
ST2 BUF+5,1 lines 32-35
ST3 BUF+6,1 ST1 I1REG
ST4 BUF+7,1 lines 36-48
ST5 BUF+8,1 LD1 I1REG
ST6 BUF+9,1 lines 49-50
STX BUF+10,1 B4 EQU 1(1:1)
LDA JREG(0:2) BIG CON B4-8,B4-1(1:1) I

A supplementary routine that writes out the final buffer and rewinds tape 0 should
be called after all tracing has been performed.

3. Tape is faster; and the editing of this information into characters while tracing
would consume far too much space. Furthermore the tape contents can be selectively
printed.

4. A true trace, as desired in exercise 6, would not be obtained, since restriction (a)
mentioned in the text is violated. The first attempt to trace CYCLE would cause a loop
back to tracing ENTER+!, because PREG is clobbered.

6. Suggestion: Keep a table of values of each memory location within the trace area
that has been changed by the outer program.

7. The routine should scan the program until finding the first jump (or conditional
jump) instruction; after modifying that instruction and the one following, it should
restore registers and allow the program to execute all its instructions up to that point,
in one burst. [This technique can fail if the program modifies its own jump instructions,
or changes non-jumps into jumps. For practical purposes we can outlaw such practices,
except for ST J, which we probably ought to handle separately anyway.]

532 ANSWERS TO EXERCISES 1.4.4

SECTION 1.4.4

1. (a) No; the input operation might not yet be complete. (b) No; the input operation
might be going just a little faster than the MOVE. This proposal is much too risky.

2. ENT! 2000
JBUS *(6)
MOVE 1000(50)
MOVE 1050(50)
OUT 2000(6) I

3. WORDOUT STJ 1F

STA 0,5
INC5 1

2H CMP5 BUFMAX
1H JNE *

OUT -100,5(V)
LD5 0,5
ST5 BUFMAX

DEC5 100
JMP 2B

BUFMAX CON ENDBUF1
* BUFFER AREAS
OUTBUF1 ORIG *+100
ENDBUF1 CON ENDBUF2
OUTBUF2 ORIG *+100
ENDBUF2 CON ENDBUF1 I

At the beginning of the program, give the instruction "ENT5 OUTBUF1". At the end of
the program, say

LDA BUFMAX
DECA 100,5
JAZ *+6
STZ 0,5

INC5 1
CMP5 BUFMAX
JNE *-3
OUT -100,5(V)

4. If the calculation time exactly equals the 1/0 time (which is the most favorable
situation), both the computer and the peripheral device running simultaneously will
take half as long as if they ran separately. Formally, let C be the calculation time for
the entire program, and let T be the total 1/0 time required; then the best possible
running time with buffering is max(C, T), while the running time without buffering is
C + T; and of course !(C + T) ~ max(C, T) ~ C + T.

However, some devices have a "shutdown penalty" that causes an extra amount
of time to be lost if too long an interval occurs between references to that unit; in such
a case, better than 2:1 ratios are possible. (See, for example, exercise 19.)

5. The best ratio is (n + 1):1.

6 {IN INBUF1(U)} or {IN INBUF2(U)}
. ENT6 INBUF2+99 ENT6 INBUF1+99

(possibly preceded by IOC 0 (U) to rewind the tape just in case it is necessary).

7. One way to use coroutines:

INBUF1 ORIG *+100 INC6 1
INBUF2 ORIG *+100 J6N 2B
1H LDA INBUF2+100,6 IN INBUF1(U)

JMP MAIN ENN6 100
INC6 1 JMP 1B
J6N 1B WORD IN STJ MAINX

WORDIN1 IN INBUF2(U) WORDINX JMP WORDIN1
ENN6 100 MAIN STJ WORDINX

2H LDA INBUF1+100,6 MAINX JMP * I
JMP MAIN

1.4.4 ANSWERS TO EXERCISES 533

Adding a few more instructions to take advantage of special cases will actually make
this routine faster than (4).

8. At the time shown in Fig. 23, the two red buffers have been filled with line images,
and the one indicated by NEXTR is being printed. At the same time, the program is
computing between RELEASE and ASSIGN. When the program ASSIGNs, the green buffer
indicated by NEXTG becomes yellow; NEXTG moves clockwise and the program begins to
fill the yellow buffer. When the output operation is complete, NEXTR moves clockwise,
the buffer that has just been printed turns green, and the remaining red buffer begins
to be printed. Finally, the program RELEASEs the yellow buffer and it too is ready for
subsequent printing.

9, 10, 11.

time action (N = 1) action (N = 2) action (N = 4)

0
1000
2000
3000
4000
5000
6000
7000
8000

ASSIGN(BUF1)
RELEASE, OUT BUF1
ASSIGN (wait)

8500 BUF1 assigned, output stops
9500 RELEASE, OUT BUF1

10500 ASSIGN (wait)
15500

ASSIGN(BUF1)
RELEASE, OUT BUF1
ASSIGN(BUF2)
RELEASE
ASSIGN (wait)

BUF1 assigned, OUT BUF2
RELEASE
ASSIGN (wait)

ASSIGN(BUF1)
RELEASE, OUT BUF1
ASSIGN(BUF2)
RELEASE
ASSIGN(BUF3)
RELEASE
ASSIGN(BUF4)
RELEASE
ASSIGN (wait)
BUF1 assigned, OUT BUF2

RELEASE

and so on. Total time when N = 1 is llOOOOu; when N = 2 it is 89000u; when N = 3
it is 81500u; and when N ~ 4 it is 76000u.

12. Replace the last three lines of Program B by

STA 2F
LDA 3F
CMPA 15,5(5:5)
LDA 2F
LD5 -1,5
DEC6 1
JNE 1B
JMP COMPUTE
JMP *-1 (or JMP COMPUTEX)

2H CON 0
3H ALF UUUU• I

13. JRED CONTROL(U)
J6NZ *-1 I

14. If N = 1 the algorithm breaks down (possibly re,ferring to the buffer while 1/0 is
in progress); otherwise the construction will have the effect that there are two yellow
buffers. This can be useful if the computational program wants to refer to two buffers at
once, although it ties up buffer space. In general, the excess of ASSIGNs over RELEASEs
should be nonnegative and not greater than N.

534 ANSWERS TO EXERCISES 1.4.4

15. u EQU 0 IN BUF3(U)
v EQU 1 OUT BUF2(V)
BUF1 ORIG *+100 IN BUF1(U)
BUF2 ORIG *+100 OUT BUF3(V)
BUF3 ORIG *+100 DEC! 3
TAPECPY IN BUF1(U) J1P 1B

ENT! 99 OUT BUF1 (V)
1H IN BUF2(U) HLT

OUT BUF1(V) END TAPECPY I
This is a special case of the algorithm indicated in Fig. 26.

18. Partial solution: In the algorithms below, t is a variable that equals 0 when the
I/0 device is idle, and 1 when it is active.

Algorithm A (ASSIGN, a normal state subroutine).

This algorithm is unchanged from Algorithm 1.4.4A.

Algorithm R (RELEASE, a normal state subroutine).

Rl. Increase n by one.

R2. If t = O, force an interrupt, goint to step B3 (using the INT operator). I

Algorithm B (Buffer control routine, which processes interrupts).

Bl. Restart the main program.

B2. If n = 0, set t +-- 0 and go to Bl.

B3. Set t +-- 1, and initiate I/0 from the buffer area specified by NEXTR.

B4. Restart the main program; an "I/0 complete" condition will interrupt it and
lead to step B5.

B5. Advance NEXTR to the next clockwise buffer.

B6. Decrease n by one, and go to step B2. I
19. If C ~ L we can have tk = (k - l)L, Uk = tk + T, and Vk =Uk+ C if and only if
NL 2 T + C. If C > L the situation is more complex; we can have Uk= (k- l)C + T
and Vk = kC + T if and only if there are integers a1 ~ a2 ~ • • • ~ an such that
tk = (k - l)L + akP satisfies Uk - T 2 tk 2 Vk-N for N < k ~ n. An equivalent
condition is that NC 2 bk for N < k ~ n, where bk= C +T + ((k- l)(C-L)) mod P.

Let Ct = max{bt+1 , ••• , bn, O}; then Ct decreases as l increases, and the smallest value
of N that keeps the process going steadily is the minimum l such that Ct/l ~ C.
Since Ct < C + T + P and Ct ~ L + T + n(C - L), this value of N never exceeds
rmin{C + T + P,L + T + n(C- L)}/Cl [See A. Itai and Y. Raz, CACM 31 (1988),
1339-1342.]

In the stated example we have therefore (a) N = 1; (b) N = 2; (c) N = 3,
CN = 2.5; (d) N = 35, CN = 51.5; (e) N = 51, CN = 101.5; (f) N = 41, CN = 102;
(g) N = 11, CN = 109.5; (h) N = 3, CN = 149.5; (i) N = 2, CN = 298.5.

SECTION 2.1
1. (a) SUIT(NEXT(TOP)) = SUIT(NEXT(242)) = SUIT(386) = 4. (b) A.

2. Whenever V is a link variable (else CONTENTS(V) makes no sense) whose value is
not A. It is wise to avoid using LDC in contexts like this.

3. Set NEWCARD +-- TOP, and if TOP =/= A set TOP +-- NEXT (TOP).

2.1 ANSWERS TO EXERCISES 535

4. CL Set X +-- LOC(TOP). (For convenience we make the reasonable assumption
that TOP = NEXT (LDC (TOP)), namely that the value of TOP appears in the
NEXT field of the location where it is stored. This assumption is compatible
with program (5), and it saves us the bother of writing a special routine for
the case of an empty pile.)

C2. If NEXT(X) =/= A, set X +-- NEXT(X) and repeat this step.

C3. Set NEXT(X) +-- NEWCARD, NEXT(NEWCARD) +--A, TAG(NEWCARD) +-- 1. I

5. Dl. Set X +-- LOC(TOP), Y +-- TOP. (See step Cl above. By hypothesis, Y =/=A.
Throughout the algorithm that follows, X trails one step behind Y in the sense
that Y = NEXT(X) .)

D2. If NEXT(Y) =/=A, set X +-- Y, Y +-- NEXT(Y), and repeat this step.

D3. (Now NEXT(Y) = A, so Y points to the bottom card; also X points to the
next-to-last card.) Set NEXT(X) +--A, NEWCARD +-- Y. I

6. Notations (b) and (d). Not (a)! CARD is a node, not a link to a node.

7. Sequence (a) gives NEXT (LDC (TOP)), which in this case is identical to the value of
TOP; sequence (b) is correct. There is no need for confusion; consider the analogous
example when X is a numeric variable: To bring X into register A, we write LDA X, not
ENTA X, since the latter brings LOC(X) into the register.

8. Let rA = N, rll = X.

ENTA 0 Bl. N +-- 0. INCA 1 B3. N +-- N + 1.
LD1 TOP X +--TOP. LD1 0,1(NEXT) X +-- NEXT(X).
J1Z *+4 B2. Is X =A? J1NZ *-2 I

9. Let rl2 = X.

PRINTER EQU 18 Unit number for line printer
TAG EQU 1:1
NEXT EQU 4:5 Definition of fields
NAME EQU 0:5
PBUF ALF PILE Message printed in case

ALF EMPTY pile is empty
ORIG PBUF+24

BEGIN LD2 TOP Set X +-- TOP.
J2Z 2F Is the pile empty?

1H LDA 0,2(TAG) rA +-- TAG(X).
ENT! PBUF Get ready for MOVE instruction.
JBUS *(PRINTER) Wait until printer is ready.
JAZ *+3 Is TAG= 0 (is card face up)?
MOVE PAREN(3) No: Copy parentheses.
JMP *+2
MOVE BLANKS(3) Yes: Copy blanks.
LDA 1,2(NAME) rA +-- NAME(X).
STA PBUF+1
LD2 0,2(NEXT) Set X +-- NEXT(X).

2H OUT PBUF(PRINTER) Print the line.
J2NZ 1B If X =/= A, repeat the print loop.

DONE HLT

536 ANSWERS TO EXERCISES 2.1

FAREN ALF (
BLANKS ALF

ALF)
ALF I

SECTION 2.2.1

1. Yes. (Consistently insert all items at one of the two ends.)

2. To obtain 325641, do SSSXXSSXSXXX (in the notation of the following exercise).
The order 154623 cannot be achieved, since 2 can precede 3 only if it is removed from
the stack before 3 has been inserted.

3. An admissible sequence is one in which the number of X's never exceeds the number
of S's if we read from the left to the right.

Two different admissible sequences must give a different result, since if the two
sequences agree up to a point where one has S and the other has X, the latter sequence
outputs a symbol that cannot possibly be output before the symbol just inserted by
the S of the former sequence.

4. This problem is equivalent to many other interesting problems, such as the enumer
ation of binary trees, the number of ways to insert parentheses into a formula, and the
number of ways to divide a polygon into triangles, and it appeared as early as 1759 in
notes by Euler and von Segner (see Section 2.3.4.6).

The following elegant solution uses a "reflection principle" due to D. Andre (1878):
There are obviously (2

:) sequences of S's and X's that contain n of each. It remains
to evaluate the number of inadmissible sequences (those that contain the right number
of S's and X's but violate the other condition). In any inadmissible sequence, locate
the first X for which the X's outnumber the S's. Then in the partial sequence leading
up to and including this X, replace each X by S and each S by X. The result is
a sequence with (n + 1) S's and (n -1) X's. Conversely for every sequence of the
latter type we can reverse the process and find the inadmissible sequence of the former
type that leads to it. For example, the sequence XXSXSSSXXSSS must have come
from SSXSXXXXXSSS. This correspondence shows that the number of inadmissible
sequences is (n2

:\). Hence an = (2:) - (n2-~\).
Using the same idea, we can solve the more general "ballot problem" of probability

theory, which essentially is the enumeration of all partial admissible sequences with a
given number of S's and X's. This problem was actually resolved as early as 1708
by Abraham De Moivre, who showed that the number of sequences containing l A's
and m B's, and containing at least one initial substring with n more A's than B's, is
J(l, m, n) = (min~!i7;-n)). In particular, an = (2

:) - J(n, n, 1) as above. (De Moivre
stated this result without proof [Pbilos. Trans. 27 (1711), 262-263]; but it is clear from
other passages in his paper that he knew how to prove it, since the formula is obviously
true when l 2 m + n, and since his generating-function approach to similar problems
yields the symmetry condition J(l, m, n) = f(m + n, l - n, n) by simple algebra.) For
the later history of the ballot problem and some generalizations, see the comprehensive
survey by D. E. Barton and C. L. Mallows, Annals of Math. Statistics 36 (1965),
236-260; see also exercise 2.3.4.4-32 and Section 5.1.4.

We present here a new method for solving the ballot problem with the use of
double generating functions, since this method lends itself to the solution of more
difficult problems such as the question in exercise 11.

2.2.l ANSWERS TO EXERCISES 537

Let 9nm be the number of sequences of S's and X's of length n, in which the
number of X's never exceeds the number of S's if we count from the left, and in which
there are m more S's than X's in all. Then an = 9(2n)O· Obviously 9nm is zero unless
m + n is even. We see easily that these numbers can be defined by the recurrence
relations

9(n+l)m = 9n(m-l) + 9n(m+I), m 2: 0, n > o· - ' 9om =born·

Consider the double generating function G(x, z) = L 9nmXm zn, and let g(z) n,m
G(O, z). The recurrence above is equivalent to the equation

(
i) i i x + - G(x,z) = -g(z) + -(G(x,z)-i),
x x z

i.e., G(x z) - zg(z) - x
' - z (x 2 + i) - x

This equation unfortunately tells us nothing if we set x = 0, but we can proceed by
factoring the denominator as z (i - r 1 (z) x) (i - r 2 (z) x) where

r 1 (z) =
2
iz (i +Ji - 4z2), r2(z) =

2
iz (i - Ji - 4z2).

(Note that' r1 + r2 = i / z; r 1 r2 = 1.) We now proceed heuristically; the problem is to
find some value of g(z) such that G(x, z) as given by the formula above has an infinite
power series expansion in x and z. The function r2(z) has a power series, and r 2 (0) = O;
moreover, for fixed z, the value x = r2(z) causes the denominator of G(x, z) to vanish.
This suggests that we should choose g(z) so that the numerator also vanishes when
x = r2(z); in other words, we probably ought to take zg(z) = r2(z). With this choice,
the equation for G(x,z) simplifies to

G() _ r2(z) _ ~(())n+l n -1
x, z - () - ~ r2 z x z .

z i - r2(z)x n2'.:0

This is a power series expansion that satisfies the original equation, so we must have
found the right function g(z).

The coefficients of g(z) are the solution to our problem. Actually we can go further
and derive a simple form for all the coefficients of G(x, z): By the binomial theorem,

() - ~ 2k+ 1 (2k + i) i
r2 z - ~ z k 2k i .

k2'.:0 +

Let w = z2 and r2(z) = zf(w). Then J(w) = Lk>o Ak(i, -2)wk in the notation of
exercise 1.2.6-25; hence -

We now have

so the general solution is

J(wf = LAk(r, -2)wk.
k2'.:0

n,m

(
2n + i) 2m + i (2n) (2n)

9(2n)(2m) = = - ;
n - m 2n + i n - m n - m - i

(
2n + 2) 2m + 2 (2n + i) (2n + i)

9(2n+l)(2m+l) = 2 + 2 = - i · n-m n n-m n-m-

538 ANSWERS TO EXERCISES 2.2.1

5. If j < k and P] < Pk, we must have taken pj off the stack before Pk was put on; if
pj >Pk, we must have left Pk on the stack until after P] was put on. Combining these
two rules, the condition i < j < k and pj < Pk < Pi is impossible, since it means that
pj must go off before Pk and after Pi, yet Pi appears after Pk·

Conversely, the desired permutation can be obtained by using the following algo
rithm: "For j = 1, 2, ... , n, input zero or more items (as many as necessary) until Pj
first appears in the stack; th~n output Pj·" This algorithm can fail only if we reach a
j for which pj is not at the top of the stack but it is covered by some element Pk for
k > j. Since the values on the stack are always monotone increasing, we have Pj <Pk·
And the element Pk must have gotten there because it was less than Pi for some i < j.

P. V. Ramanan [SICOMP 13 (1984), 167-169] has shown how to characterize
the permutations obtainable when m auxiliary storage locations can be used freely in
addition to a stack. (This generalization of the problem is surprisingly difficult.)

6. Only the trivial one, 12 ... n, by the nature of a queue.

7. An input-restricted deque that first outputs n must simply put the values 1, 2,
... , n on the deque in order as its first n operations. An output-restricted deque that
first outputs n must put the values p 1 p 2 ••• Pn on its deque as its first n operations.
Therefore we find the unique answers (a) 4132, (b) 4213, (c) 4231.

8. When n _s; 4, no; when n = 5, there are four (see exercise 13).

9. By operating backwards, we can get the reverse of the inverse of the reverse of
any input-restricted permutation with an output-restricted deque, and conversely. This
rule sets up a one-to-one correspondence between the two sets of permutations.

10. (i) There should be n X's and n combined S's and Q's. (ii) The number of X's
must never exceed the combined number of S's and Q's, if we read from the left. (iii)
Whenever the number of X's equals the combined number of S's and Q's (reading from
the left), the next character must be a Q. (iv) The two operations XQ must never be
adjacent in this order.

Clearly rules (i) and (ii) are necessary. The extra rules (iii) and (iv) are added to
remove ambiguity, since S is the same as Q when the deque is empty, and since XQ
can always be replaced by QX. Thus, any obtainable sequence corresponds to at least
one admissible sequence.

To show that two admissible sequences give different permutations, consider se
quences that are identical up to a point, and then one sequence has an S while the other
has an X or Q. Since by (iii) the deque is not empty, clearly different permutations
(relative to the order of the element inserted by S) are obtained by the two sequences.
The remaining case is where sequences A, B agree up to a point and then sequence A
has Q, sequence B has X. Sequence B may have further X's at this point, and by (iv)
they must be followed by an S, so again the permutations are different.

11. Proceeding as in exercise 4, we let 9nm be the number of partial admissible
sequences of length n, leaving m elements on the deque, not ending in the symbol X;
hnm is defined analogously, for those sequences that do end with X. We have 9(n+l)m =
2gn(m-l) + hn(m-l)[m > 1], and h(n+l)m = 9n(m+I) + hn(m+l)· Define G(x, z) and
H(x, z) by analogy with the definition in exercise 4; we have

G() 2 2 3 3 (4 2) 4 (5 3) 5 x, z = xz + 2x z + 4x z + 8x + 2x z + l6x + 8x z + · · · ;
H(x, z) = z

2 + 2xz3 + (4x2 + 2)z 4 + (8x
3 + 6x)z

5 + · · ·.

2.2.l ANSWERS TO EXERCISES 539

Setting h(z) = H(O, z), we find z-1G(x, z) = 2xG(x, z) + x(H(x, z) - h(z)) + x, and
z-1 H(x, z) = x-1G(x, z) + x-1 (H(x, z) - h(z)); consequently

G(x, z) = xz(x - z - xh(z)) .
x - z - 2x2 z + xz2

As in exercise 4, we try to choose h(z) so that the numerator cancels with a factor of
the denominator. We find G(x, z) = xz/(i - 2xr2(z)) where

r2(z) = _!_(z2 + i - J(z2 + i) 2 - 8z2).
4z

Using the convention b0 = i, the desired generating function comes to

H3 - z - Ji - 6z + z2) = i + z + 2z
2

+ 6z3
+ 22z

4
+ 90z5

+ · · ·.

By differentiation we find a recurrence relation that is handy for calculation: nbn =
3(2n - 3)bn-l - (n - 3)bn-2, n 2 2.

Another way to solve this problem, suggested by V. Pratt, is to use context-free
grammars for the set of strings (see Chapter 10). The infinite grammar with produc
tions S --+ qn(Bx)n, B --+ sqn(Bx)n+l B, for all n 2 0, and B --+ E, is unambiguous,
and it allows us to count the number of strings with n x's, as in exercise 2.3.4.4-31.
12. We have an = 4n/v;:;;J + 0(4nn- 5l 2) by Stirling's formula. To analyze bn, let
us first consider the general problem of estimating the coefficient of wn in the power
series for JT=-w Ji - aw when lal < 1. We have

Ji -w Ji - aw= Ji -w Ji - a+ a(i -w) = y'I-=a L (i~2),ek(i -w)k+l/2,
k

where ,B = a/(i - a); hence the desired coefficient is (-i)nvr-=c;z=k (1~2),Bk (k+~l2).
Now

(-i)n(k+i/2) = (n-k-3/2) = r(n-k-i/2) = - (k+i/2)~ n-k-1/2,
n n r(n+i)r(-k-i/2) ..[irn

and n-k-l/2 = z=;:
0
[_~~~}£~J n-k-l/2-i +O(n-k-3 / 2-m) by Eq. l.2.il.i-(16). Thus

we obtain the asymptotic series [wn] JT=-wy'i - aw = c0 n-3l 2 + c1 n- 5
/
2 + · · · +

Cmn-m- 3 / 2 + O(n-m- 5 / 2) where

= -Ji - a ~(i/2)(k l)k+l { j + i/2} ak .
CJ 7r t:o k + 2 k+i/2 (i-a)k

For bn, we write i - 6z + z2 = (i - (3 + v's)z)(i -(3-v's)z) and let w = (3 + v's)z,
a = (3 - v's)/(3 + v's), obtaining the asymptotic formula

(v'2 - i)(3 + v's)n -1 (v'2 + i)2n-l -1
bn = 23/47rl/2n3/2 (i + O(n)) = 23/47rl/2n3/2 (i + O(n)) ·

13. V. Pratt has found that a permutation is unobtainable if and only if it contains a
subsequence whose relative magnitudes are respectively

5, 2, 7, 4, ... , 4k+i, 4k-2, 3, 4k, i or 5, 2, 7, 4, ... , 4k+3, 4k, i, 4k+2, 3

for some k 2 i, or the same with the last two elements interchanged, or with the i
and 2 interchanged, or both. Thus the forbidden patterns fork= i are 5234i, 523i4,
5i342, 5i324, 5274i63, 5274i36, 5i 74263, 5i 74236. [STOC 5 (i973), 268-277.]

540 ANSWERS TO EXERCISES 2.2.1

14. (Solution by R. Melville, 1980.) Let Rand S be stacks such that the queue runs
from top to bottom of R followed by bottom to top of S. When R is empty, pop the
elements of S onto R until S becomes empty. To delete from the front, pop the top
of R, which will not be empty unless the entire queue is empty. To insert at the rear,
push onto S (unless R is empty). Each element is pushed at most twice and popped
at most twice before leaving the queue . .
SECTION 2.2.2

1. M - 1 (not M). If we allowed M items, as (6) and (7) do, it would be impossible to
distinguish an empty queue from a full one by examination of R and F, since only M

possibilities can be detected. It is better to give up one storage cell than to make the
program overly complicated.

2. Delete from rear: If R = F then UNDERFLOW; Y +-- X [R]; if R = 1 then R +-- M,
otherwise R +-- R - 1. Insert at front: Set X [F] +-- Y; if F = 1 then F +-- M, otherwise
F +-- F - 1; if F = R then OVERFLOW.

3. (a) LD1 I; LDA BASE, 7: 1. This takes 5 cycles instead of 4 or 8 as in (8).
(b) Solution 1: LDA BASE,2:7 where each base address is stored with I 1 = 0,

I2 = 1. Solution 2: If it is desired to store the base addresses with I 1 = I2 = 0, we
could write LDA 2, 7: 1 where location X2 contains NOP BASE, 2: 7. The second solution
takes one more cycle, but it allows the base table to be used with any index registers.

(c) This is equivalent to "LD4 X (0: 2)", and takes the same execution time, except
that r 14 will be set to +o when X (O: 2) contains -0.

4. (i) NOP *,7. (ii) LDA X,7:7(0:2). (iii) This is impossible; the code LDA Y,7:7

where location Y contains NOP X, 7: 7 breaks the restriction on 7: 7. (See exercise 5.)
(iv) LDA X, 7: 1 with the auxiliary constants

X NOP *+1,7:2
NOP *+1,7:3

NOP *+1,7:4
NOP 0,5:6

The execution time is 6 units. (v) INC6 X, 7: 6 where X contains NOP 0, 6: 6.

5. (a) Consider the instruction ENTA 1000, 7: 7 with the memory configuration

location ADDRESS I1 I2

1000: 1001 7 7
1001: 1004 7 1
1002: 1002 2 2
1003: 1001 1 1
1004: 1005 1 7
1005: 1006 1 7
1006: 1008 7 7
1007: 1002 7 1
1008: 1003 7 2

and with rll = 1, rl2 = 2. We find that 1000,7,7 = 1001,7,7,7 = 1004,7,1,7,7 =
1005,1,7,1,7,7 = 1006,7,1,7,7 = 1008,7,7,1,7,7 = 1003,7,2,7,1,7,7 = 1001,l,1,2,7,l,7,7
= 1002,l,2,7,l,7,7 = 1003,2,7,1,7,7 = 1005,7,1,7,7 = 1006,1,7,1,7,7 = 1007,7,1,7,7 =
1002,7,1,1,7,7 = 1002,2,2,l,1,7,7 = 1004,2,1,l,7,7 = 1006,1,1,7,7 = 1007,1,7,7 = 1008,7,7
= 1003,7,2,7 = 1001,1,1,2,7 = 1002,1,2,7 = 1003,2,7 = 1005,7 = 1006,1,7 = 1007,7 =

2.2.2 ANSWERS TO EXERCISES 541

1002,7,1 = 1002,2,2,1 = 1004,2,1 = 1006,1 = 1007. (A faster way to do this derivation
by hand would be to evaluate successively the addresses specified in locations 1002,
1003, 1007, 1008, 1005, 1006, 1004, 1001, 1000, in this order; but a computer evidently
needs to go about the evaluation essentially as shown.) The author tried out several
fancy schemes for changing the contents of memory while evaluating the address, with
everything to be restored again by the time the final address has been obtained. Similar
algorithms appear in Section 2.3.5. However, these attempts were unfruitful and it
appears that there is just not enough room to store the necessary information.

(b,c) Let Hand C be auxiliary registers and let N be a counter. To get the effective
address M, for the instruction in location L, do the following:

AL [Initialize.] Set H +-- 0, C +-- L, N+-- 0. (In this algorithm, C is the "current"
location, H is used to add together the contents of various index registers, and
N measures the depth of indirect addressing.)

A2. (Examine address.] Set M +-- ADDRESS(C). If I1 (C) = j, 1 s; j s; 6, set
M +-- M+ rij. If I 2(C) = j, 1 s; j s; 6, set H +-- H + rij. If I 1 (C) = I2(C) = 7,
set N +-- N + 1, H +-- 0.

A3. [Indirect?] If either I 1 (C) or I 2 (C) equals 7, set C +-- M and go to A2.
Otherwise set M +-- M + H, H +-- 0.

A4. [Reduce depth.] If N > 0, set C +-- M, N +-- N - 1, and go to A2. Otherwise Mis
the desired answer. I

This algorithm will handle any situation correctly except those in which I 1 = 7
and 1 s; I 2 s; 6 and the evaluation of the address in ADDRESS involves a case with
I1 = I2 = 7. The effect is as if I2 were zero. To understand the operation of Algo
rithm A, consider the notation of part (a); the state "L,7,1,2,5,2,7,7,7,7" is represented
by C or M = L, N = 4 (the number of trailing 7s), and H = rll + rI2 + rI5 + rI2 (the
post-indexing). In a solution to part (b) of this exercise, the counter N will always be
either 0 or 1.

6. (c) causes OVERFLOW. (e) causes UNDERFLOW, and if the program resumes it causes
OVERFLOW on the final I2.

7. No, since TOP [i] must be greater than OLDTOP [i].

8. With a stack, the useful information appears at one end with the vacant informa
tion at the other:

A B c

where A = BASE [j] , B = TOP [j] , C = BASE [j + 1]. With a queue or deque, the useful
information appears at the ends with the vacant information somewhere in the middle:

A B c D

or in the middle with the vacant information at the ends:

A c B D

where A = BASE [j], B = REAR [j] , C = FRONT [j] , D = BASE [j + 1]. The two cases
are distinguished by the conditions B s; C and B > C, respectively, in a nonempty

542 ANSWERS TO EXERCISES 2.2.2

queue; or, if the queue is known not to have overflowed, the distinguishing conditions

are respectively B < C and B ~ C. The algorithms should therefore be modified in an

obvious way so as to widen or narrow the gaps of vacant information. (Thus in case

of overflow, when B = C, we make empty space between Band C by moving one part

and not the other.) In the calculation of SUM and D [j] in step G 2, each queue should

be considered to occupy one more cell than it really does (see exercise 1) . .
9. Given any sequence specification a 1 , a2, ... , am there is one move operation re

quired for every pair (j, k) such that j < k and ai > ak. (Such a pair is called an

"inversion"; see Section 5.1.1.) The number of such pairs is therefore the number of

moves required. Now imagine all nm specifications written out, and for each of the

(1;) pairs (j, k) with j < k count how many specifications have ai > ak. Clearly this
equals (~), the number of choices for ai and ak, times nm-2, the number of ways to fill

in the remaining places. Hence the total number of moves among all specifications is
(7;) (~)nm-2 . Divide this by nm to get the average, Eq. (14).

10. As in exercise 9 we find that the expected value is

(;) L PiPk = ~(;)((P1 + "· +Pn)
2 -(pi+"· +p~))

l~j~k~n

= ~ (;) (1 - (Pi + · · · + P~)) ·
For this model, it makes absolutely no difference what the relative order of the lists

is! (A moment's reflection explains why; if we consider all possible permutations of a
given sequence a 1 , •.. , am we find the total number of moves summed over all these

permutations depends only on the number of pairs of distinct elements ai #- ak.)

11. Counting as before, we find that the expected number is

Here s represents j - 1 in the terminology of the answer above, and r is the number

of entries in a1, a2, ... , as that equal a1. This formula can be simplified slightly, by
writing generating functions that correspond to it, until we arrive at

1
2nt

E (t _ ~ + k) (m -; _ k) (1 _ ~) k+l,

k=O

fort~ 0.

Is there a simpler way yet to give the answer? Apparently not, since the generating
function for given n and t is

m n - l z
2

(z)t
EmntZ = -- · L 2n (1 - z) 3 n - (n - l)z

m

12. If m = 2k, the average is 2-2k times

(
2
:) 2k + (

2
1k) (2k - 1) + ... + (

2
:) k + (k ~ 1) (k + 1) + ... + (~~) 2k.

The latter sum is

(2k) ((2k - 1) (2k - 1))
k k + 2 k 2k + ... + 2k - 1 2k (2k)k + 4k. ~. 22k-l

k 2 .

2.2.2 ANSWERS TO EXERCISES 543

A similar argument may be used when m = 2k + 1. The answer is

; + 27: (~/2~) .
13. A. C. Yao has proved that we have Emax(k1, k 2) = ~m + (27r(l - 2p))- 112 v1ffi +

O(m-112(1ogm)2) for large m, when p < ~· [SICOMP 10 (1981), 398-403.] And

P. Flajolet has extended the analysis, showing in particular that the expected value is

asymptotically am when p = ~, where

a= ~ + 8 ~ sin(n7r /2) cosh(n7r /2) ~ 0.6753144833.
2 6 n27r2 sinh n7r

n2'.l

Moreover, when p > ~ the final value of k1 tends to be uniformly distributed as m --+ oo,

so Emax(k1, k2) ~ ~m. [See Lecture Notes in Comp. Sci. 233 (1986), 325-340.]

14. Let ki = n/m +yin Xj. (This idea was suggested by N. G. de Bruijn.) Stirling's
approximation implies that

-m m!
n ki! ... kn!max(k1, ... ,kn)

= (y/2;)l-nnn/2 (: + Vm max(x1, ... , Xn))

x exp (-~(xi+ ... + x~)) (vm)l-m (1+0 ()m)) '
when ki + · · ·+kn = m and when the x 's are uniformly bounded. The sum of the latter

quantity over all nonnegative k1, ... , kn satisfying this condition is an approximation

to a Riemann integral; we may deduce that the asymptotic behavior of the sum is

an(m/n) + CnVm + 0(1), where

an= (y/2;)
1
-nnn/21 exp(-~(xi+···+x~)) dx2 ... dxn,

x1 + .. ·+xn=O 2

Cn = (y/2;)
1
-nnn/

21 max(x1, ... ,xn)exp(-~(xi+···+x~)) dx2 ... dxn,
x1 +···+xn=O

since it is possible to show that the corresponding sums come within€ of an and Cn for
any€.

We know that an = 1, since the corresponding sum can be evaluated explicitly.

The integral that appears in the expression for Cn equals nf 1, where

I1 = r X1 exp (-~(xi+ ... + x~)) dx2 ... dxn·
} x1 + .. ·+xn=O 2

°'12'.x2 ,. . .,xn

We may make the substitution

1
X1 = -(y2+···+Yn), X2 =X1-y2, X3 =X1-y3,

n

then we find I1 = h/n, where

... '

I2 = f, (y2 + · · · + Yn) exp (- ~) dy2 ... dyn,
Y2 ,. . .,yn 2'.0

544 ANSWERS TO EXERCISES 2.2.2

and Q = n(y~ + · · · + y~) - (y2 + · · · + Yn) 2. Now by symmetry, I2 is (n -1) times the
same integral with (y2 + · · · + Yn) replaced by y2; hence h = (n - l)h, where

h= 1 (ny2-(Y2+· .. +Yn))exp(-~)dy2 ... dyn
Y2 , .. .,yn 2'.0

here Qo is Q with y2 replaced by zero. [When n = 2, let h = l.] Now let Zj =
VnYj - (y3 + · .. + Yn)/(vf2 +yin), 3 s; j s; m. Then Qo = z~ + · .. + z~, and we
deduce that h = f4/n(n- 3)!2vf2, where

1 (2 2) Z3 + ... +Zn
f4 = exp -

2
dz3 ... dzn

Y3 , .. .,yn 2'.0

Z3 +···+Zn n-2 J (2 2)
=On exp -

2
dz3 ... dzn = On(y/2;) ,

where On is the "solid angle" in (n - 2)-dimensional space spanned by the vectors
(n+ffn, 0, ... ,0)-(1,1, ... ,1), ... , (O,O, ... ,n+ffn)-(l,l, ... ,l), divided by
the total solid angle of the whole space. Hence

(n - l)vfn
en = 2y'7f On·

We have 02 = 1, o 3 = ~' o 4 = 7r- 1 arctan v'2 ~ .304, and

1 3 1
05 = - + - arctan lo~ .206.

8 47r v 8

[The value of e3 was found by Robert M. Kozelka, Annals of Math. Stat. 27 (1956),
507-512, but the solution to this problem for higher values of n has apparently never
appeared in the literature.]

16. Not unless the queues meet the restrictions that apply to the primitive method of
(4) and (5).

17. First show that BASE [j] 0 s; BASE [j] 1 at all times. Then observe that each overflow
for stack i in so (a) that does not also overflow in s 1 (a) occurs at a time when stack i
has gotten larger than ever before, yet its new size is not less than the original size
allocated to stack i in s 1 (a).

18. Suppose the cost of an insertion is a, plus bN +en if repacking is needed, where
N is the number of occupied cells; let the deletion cost be d. After a repacking that
leaves N cells occupied and S = M - N cells vacant, imagine that each insertion until
the next repacking costs a+ b + lOe + lO(b + e)nN/S = 0(1 + no/(l - o)), where
o = N/M. If p insertions and q deletions occur before that repacking, the imagined
cost is p(a +b+ lOe+ lO(b+ e)nN/ S) + qd, while the actual cost is pa+ bN' +en+ qd s;
pa+ pb + bN +en+ qd. The latter is less than the imagined cost, because p > .lS/n;
our assumption that M 2 n 2 implies that eS/n + (b + e)N 2 bN +en.

19. We could simply decrease all the subscripts by 1; the following solution is slightly
nicer. Initially T = F = R = 0.

Push Y onto stack X: If T = M then OVERFLOW; X [T] +-- Y; T +-- T + 1.
Pop Y from stack X: If T = 0 then UNDERFLOW; T +-- T - 1; Y +-- X [T].

2.2.3 ANSWERS TO EXERCISES 545

Insert Y into queue X: X [R] +- Y; R +- (R + 1) mod M; if R = F then OVERFLOW.
Delete Y from queue X: if F = R then UNDERFLOW; Y +- X [F] ; F +- (F + 1) mod M.

As before, T is the number of elements on the stack, and (R - F) mod M is the number
of elements on the queue. But the top stack element is now X [T - 1], not X [T].

Even though it is almost always better for computer scientists to start counting
at 0, the rest of the world will probably never change to 0-origin indexing. Even Edsger
Dijkstra counts "1-2-3-4 \ 1-2-3-4" when he plays the piano!

SECTION 2.2.3
1. OVERFLOW is implicit in the operation P ¢:AVAIL.

2. INSERT STJ 1F Store location of "NOP T".
STJ 9F Store exit location.
LD1 AVAIL rll ¢:AVAIL.
J1Z OVERFLOW
LD3 0,1(LINK)
ST3 AVAIL
STA 0, !(INFO) INFO (rll) +- Y.

1H LD3 *(0:2) rI3 +- LOC(T).
LD2 0,3 rl2 +- T.
ST2 0,1(LINK) LINK(rll) +- T.
ST1 0,3 T +- rll.

9H JMP * I
3. DELETE STJ 1F Store location of "NOP T".

STJ 9F Store exit location.
1H LD2 * (0: 2) rI2 +-LDC (T).

LD3 0,2 rI3 +- T.
J3Z 9F Is T =A?
LD1 0,3(LINK) rll +-LINK (T).
ST1 0,2 T +- rll.
LDA 0,3(INFO) rA +- INFO(rll).
LD2 AVAIL AVAIL¢: rI3.
ST2 0,3(LINK)
ST3 AVAIL
ENT3 2 Prepare for second exit.

9H JMP *,3 I
4. OVERFLOW STJ 9F Store setting of r J.

ST1 8F(0:2) Save rll setting.
LD1 POOLMAX
ST1 AVAIL Set A VAIL to new location.
INC! c
ST1 POOLMAX Increment POOLMAX.
CMP1 SEQMIN
JG TOOBAD Has storage been exceeded?
STZ -c, 1 (LINK) Set LINK(AVAIL) +-A.

9H ENT! * Take rJ setting.
DEC! 2 Subtract 2.
ST1 *+2(0:2) Store exit location.

8H ENT! * Restore r 11.
JMP * Return. I

546 ANSWERS TO EXERCISES 2.2.3

5. Inserting at the front is essentially like the basic insertion operation (8), with an
additional test for empty queue: P {::::::AVAIL, INFO(P) +-- Y, LINK(P) +-- F; if F =A then
R +-- P; F +-- P.

To delete from the rear, we would have to find which node links to NODE(R), and
that is necessarily inefficient since we have to search all the way from F. This could be
done, for example, as follows:.

a) If F =A then UNDERFLOW, otherwise set P +-- LOC(F).
b) If LINK(P) -f. R then set P +-- LINK(P) and repeat this step until LINK(P) = R.
c) Set Y +-- INFO(R), AVAIL{:::::: R, R +-- P, LINK(P) +--A.

6. We could remove the operation LINK(P) +--A from (14), if we delete the commands
"F +-- LINK (P)" and "if F = A then set R +-- LDC (F)" from (17); the latter are to be
replaced by "if F = R then F +--A and R +-- LOC(F), otherwise set F +-- LINK(P)".

The effect of these changes is that the LINK field of the rear node in the queue will
contain spurious information that is never interrogated by the program. A trick like
this saves execution time and it is quite useful in practice, although it violates one of
the basic assumptions of garbage collection (see Section 2.3.5) so it cannot be used in
conjunction with such algorithms.

7. (Make sure that your solution works for empty lists.)

11. Set P +-- FIRST, Q +-- A.

12. If P i- A, set R +-- Q, Q +-- P, P +--LINK (Q), LINK (Q) +-- R, and repeat this step.

13. Set FIRST +-- Q. I
In essence we are popping nodes off one stack and pushing them onto another.

8. LD1 FIRST 1 Il. P =: rll +--FIRST.
ENT2 0 1 Q =: rl2 +--A.
J1Z 2F 1 12. If the list is empty, jump.

1H ENTA 0,2 n R =: rA +-- Q.
ENT2 0,1 n Q +-- P.
LD1 0,2(LINK) n P +-- LINK (Q).

STA 0,2(LINK) n LINK (Q) +-- R.
J1NZ 1B n lsP-f.A?

2H ST2 FIRST 1 13. FIRST +-- Q. I
The time is (7n + 6)u. Better speed (5n + constant)u is attainable; see exercise 1.1-3.

9. (a) Yes. (b) Yes, if biological parenthood is considered; no, if legal parenthood
is considered (a man's daughter might marry his father, as in the song "I'm My Own
Grampa"). (c) No (-1 -< 1and1 -< -1). (d) Let us hope so, or else there is a circular
argument. (e) 1 -< 3 and 3 -< 1. (f) The statement is ambiguous. If we take the
position that the subroutines called by y are dependent upon which subroutine calls y,
we would have to conclude that the transitive law does not necessarily hold. (For
example, a general input-output subroutine might call on different processing routines
for each 1/0 device present, but these processing subroutines are usually not all needed
in a single program. This is a problem that plagues many automatic programming
systems.)

10. For (i) there are three cases: x = y; x C y and y = z; x C y and y C z. For (ii)
there are two cases: x = y; x i- y. Each case is handled trivially, as is (iii).

11. "Multiply out" the following to get all 52 solutions: 13749(25 + 52)86 + (1379 +
1397+1937 + 9137)(4258 + 4528 + 2458 + 5428 + 2548 + 5248 + 2584 + 5284)6 + (1392 +
1932 + 1923 + 9123 + 9132 + 9213)7(458 + 548 + 584)6.

2.2.3 ANSWERS TO EXERCISES 547

12. For example: (a) List all sets with k elements (in any order) before all sets with
k + 1 elements, 0 ~ k < n. (b) Represent a subset by a sequence of Os and ls showing
which elements are in the set. This gives a correspondence between all subsets and the
integers 0 through 2n - 1, via the binary number system. The order of correspondence
is a topological sequence.

13. Sha and Kleitman, Discrete Math. 63 (1987), 271-278, have proved that the

number is at most fl~==O G) (~). This exceeds the obvious lower bound fl~==O G) ! =

22n(n+O(l)) by a factor of 22n+o(n); they conjecture that the lower bound is closer to
the truth.

14. If a1 a2 . .. an and b1 b2 ... bn are two possible topological sorts, let j be minimal
such that aj i- bj; then ak = bj and aj = bm for some k, m > j. Now bj ~ aj since
k > j, and aj ~ bj since m > j, hence (iv) fails. Conversely if there is only one
topological sort ai a2 ... an, we must have aj ~ aJ+1 for 1 ~ j < n, since otherwise aj
and aH1 could be interchanged. This and transitivity imply (iv).

Note: The following alternative proofs work also for infinite sets. (a) Every partial
ordering can be embedded in a linear ordering. For if we have two elements with xo i Yo
and Yo ~ xo we can generate another partial ordering by the rule "x ~ y or x ~ x 0 and
Yo ~ y". The latter ordering "includes" the former and has xo ~ y0 . Now apply Zorn's
lemma or transfinite induction in the usual way to complete the proof. (b) Obviously
a linear ordering cannot be embedded in any different linear ordering. (c) A partial
ordering that has incomparable elements xo and Yo as in (a) can be extended to two
linear orderings in which xo ~ Yo and Yo ~ xo, respectively, so at least two linear
orderings exist.

15. If S is finite, we can list all relations a -< b that are true in the given partial
ordering. By successively removing, one at a time, any relations that are implied by
others, we arrive at an irredundant set. The problem is to show there is just one such
set, no matter in what order we go about removing redundant relations. If there were
two irred undant sets U and V, in which "a -< b" appears in U but not in V, there are
k + 1 relations a -< c1 -< · · · -< Ck -< b in V for some k 2:. 1. But it is possible to deduce
a -< c1 and c1 -< b from U, without using the relation a -< b (since b ~ c1 and c1 ~ a),
hence the relation a -< bis redundant in U.

The result is false for infinite sets S, when there is at most one irredundant set
of relations. For example if S denotes the integers plus the element oo and we define
n -< n + 1 and n -< oo for all n, there is no irredundant set of relations that characterizes
this partial ordering.

16. Let Xp 1 Xp2 ••• xPn be a topological sorting of S; apply the permutation P1P2 ... Pn
to both rows and columns.

17. If k increases from 1 to n in step T4, the output is 1932745860. If k decreases
from n to 1 in step T4, as it does in Program T, the output is 9123745860.

18. They link together the items in sorted order: QLINK [OJ first, QLINK [QLINK [OJ]

second, and so on; QLINK [last] = 0.

19. This would fail in certain cases; when the queue contains only one element in
step T5, the modified method would set F = 0 (thereby emptying the queue), but other
entries could be placed in the queue in step T6. The suggested modification would
therefore require an additional test of F = 0 in step T6.

20. Indeed, a stack could be used, in the following way. (Step T7 disappears.)

548 ANSWERS TO EXERCISES 2.2.3

T4. Set T +-- 0. For 1 :::; k ::S n if COUNT [k] is zero do the following: Set
SLINK[k] +--T, T +-- k. (SLINK[k] := QLINK[k].)

T5. Output the value of T. If T = 0, go to T8; otherwise, set N +-- N - 1, P +--TOP [T],
T +--SLINK [T].

T6. Same as before, except go to T5 instead of T7; and when COUNT[SUC(P)] goes
down to zero, set SLINK[SUC(P)] +-- T and T +-- SUC(P).

21. Repeated relations only make the algorithm a little slower and take up more space
in the storage pool. A relation "j -< j" would be treated like a loop (an arrow from a
box to itself in the corresponding diagram), which violates partial order.

22. To make the program "fail-safe" we should (a) check that 0 < n <some appropri
ate maximum; (b) check each relation j -< k for the conditions 0 < j, k ::Sn; (c) make
sure that the number of relations doesn't overflow the storage pool area.

23. At the end of step T5, add "TOP [F] +-- A". (Then at all times TOP [1], ... , TOP [n]

point to all the relations not yet canceled.) In step T8, if N > 0, print "LOOP DETECTED
IN INPUT:", and set QLINK [k] +-- 0 for 1 ::S k ::S n. Now add the following steps:

T9. For 1 ::S k ::S n set P +-- TOP [k], TOP [k] +-- 0, and perform step TlO. (This
will set QLINK [j] to one of the predecessors of object j, for each j not yet
output.) Then go to Tl1.

TlO. If P #-A, set QLINK[SUC(P)] +-- k, P +-- NEXT(P), and repeat this step.

Tl 1. Find a k with QLINK [k] i- 0.

T12. Set TOP [k] +-- 1 and k +-- QLINK [k]. Now if TOP [k] = 0, repeat this step.

T13. (We have found the start of a loop.) Print the value of k, set TOP [k] +-- 0,
k +-- QLINK [k] , and if TOP [k] = 1 repeat this step.

T14. Print the value of k (the beginning and end of the loop) and stop. (Note:
The loop has been printed backwards; if it is desired to print the loop in
forward order, an algorithm like that in exercise 7 should be used between
steps T12 and Tl3.) I

24. Insert three lines in the program of the text:

08a PRINTER EQU 18
14a ST6 NO
59a STZ X,1(TOP) TOP [F] +--A.

Replace lines 74-75 by the following:

14 J6Z DONE
15 OUT LINE! (PRINTER) Print indication of loop.
16 LD6 NO
77 STZ X,6(QLINK) QLINK [k] +-- 0.
18 DEC6 1
19 J6P *-2 n~k~l.
80 LD6 NO
81 T9 LD2 X,6(TOP) P +-- TOP [k] .
82 STZ X,6(TOP) TOP [k] +-- 0.
83 J2Z T9A Is P =A?
84 T10 LD1 0,2(SUC) rll +-- SUC(P).
85 ST6 X,1(QLINK) QLINK [r 11] +-- k.
86 LD2 0,2(NEXT) P +-- NEXT(P).

2.2.3 ANSWERS TO EXERCISES 549

81 J2P T10 Is P #A?
88 T9A DEC6 1
89 J6P T9 n2:k2:l.
90 T11 INC6 1
91 LDA X,6(QLINK)
92 JAZ *-2 Find k with QLINK [k] # 0.
93 T12 ST6 X,6(TOP) TOP [k] +-- k.

94 LD6 X,6(QLINK) k +-- QLINK [k].

95 LD1 X,6(TOP)
96 J1Z T12 Is TOP [k] = O?
91 T13 ENTA 0,6
98 CHAR· Convert k to alpha.
99 JBUS *(PRINTER)

100 STX VALUE Print.
101 OUT LINE2(PRINTER)
102 J1Z DONE Stop when TOP [k] = 0.
103 STZ X,6(TOP) TOP [k] +-- 0.
104 LD6 X,6(QLINK) k +-- QLINK [k].
105 LD1 X,6(TOP)
106 JMP T13
101 LINE! ALF LOOP Title line
108 ALF DETEC
109 ALF TED I
110 ALF N INP
111 ALF UT:
112 LINE2 ALF Succeeding lines
113 VALUE EQU LINE2+3
114 ORIG LINE2+24
115 DONE HLT End of computation
116 x END TOPS ORT I

Nate: If the relations 9 --< 1 and 6 --< 9 are added to the data (i 8), this program
will print "9, 6, 8, 5, 9" as the loop.

26. One solution is to proceed in two phases as follows:

Phase 1. (We use the X table as a (sequential) stack as we mark B = 1 or 2 for each
subroutine that needs to be used.)

AO. For 1:::; J:::; N set B(X[J]) +-- B(X[J]) + 2, if B(X[J]):::; 0.

AL If N = 0, go to phase 2; otherwise set P +-- X [NJ and decrease N by 1.

A2. If IB(P) I= 1, go to Al, otherwise set P +-- P + 1.

A3. If B(SUB1(P)) :::; 0, set N +-- N + 1, B(SUB1(P)) +-- B(SUB1(P)) + 2, X[N] +
SUB! (P). If SUB2 (P) # 0 and B (SUB2 (P)) :::; 0, do a similar set of actions with
SUB2 (P). Go to A2. I

Phase 2. (We go through the table and allocate memory.)

Bl. Set P +--FIRST.

B2. If P =A, set N +-- N+l, BASE(LOC(X[N])) +-- MLOC, SUB(LOC(X[N])) +-- 0, and
terminate the algorithm.

550 ANSWERS TO EXERCISES 2.2.3

B3. If B(P) > 0, set N +-- N + 1, BASE(LOC(X[N])) +-- MLOC, SUB(LOC(X[N])) +-- P,
MLOC +-- MLOC + SPACE (P) .

B4. Set P +-- LINK (P) and return to B2. I

27. Comments on the following code are left to the reader.

B EQU 0:1 . A1 J1Z B1 INC! 1
SPACE EQU 2:3 LD2 x, 1 INCA 2
LINK EQU 4:5 DEC! 1 STA 0,3(B)
SUB! EQU 2:3 A2 LDA 0,2(1:1) ST3 x, 1
SUB2 EQU 4:5 DECA 1 JMP A2
BASE EQU 0:3 JAZ A1 B1 ENT2 FIRST
SUB EQU 4:5 INC2 1 LDA MLOC
AO LD2 N A3 LD3 0,2(SUB1) JMP 1F

J2Z B1 LDA 0,3(B) B3 LDX 0,2(B)
1H LD3 X,2 JAP 9F JXNP B4

LDA 0,3(B) INC! 1 INC! 1
JAP *+3 INCA 2 ST2 X,1(SUB)
INCA 2 STA 0,3(B) ADD 0,2(SPACE)
STA 0,3(B) ST3 x, 1 1H STA X+1, 1 (BASE)
DEC2 1 9H LD3 0,2(SUB2) B4 LD2 0,2(LINK)
J2P 1B J3Z A2 B2 J2NZ i33
LD1 N LDA 0,3(B) STZ X+1,1(SUB) I

JAP A2

28. We give here only a few comments related to the military game. Let A be the
player with three men whose pieces start on nodes A13; let B be the other player. In
this game, A must "trap" B, and if B can cause a position to be repeated for a second
time we can consider B the winner. To avoid keeping the entire past history of the
game as an integral part of the positions, however, we should modify the algorithm in
the following way: Start by marking the positions 157-4, 789-B, 359-6 with Bto move
as "lost" and apply the suggested algorithm. Now the idea is for player A to move
only to B's lost positions. But A must also take precautions against repeating prior
moves. A good computer game-playing program will use a random number generator
to select between several winning moves when more than one is present, so an obvious
technique would be to make the computer, playing A, just choose randomly among
those move that lead to a lost position for B. But there are interesting situations
that make this plausible procedure fail! For example,
consider position 258-7 with A to move; this is a
won position. From position 258-7, player A might
try moving to 158-7 (which is a lost position for B,
according to the algorithm). But then B plays to
158-B, and this forces A to play to 258-B, after which
B plays back to 258-7; B has won, since the former
position has been repeated! This example shows that

. the algorithm must be re-invoked after every move
has been made, starting with each position that has
previously occurred marked "lost" (if A is to move) or
"won" (if Bis to move). The military game makes a Board for the "military game."

very satisfactory computer demonstration program.

2.2.4 ANSWERS TO EXERCISES 551

29. (a) If FIRST = A, do nothing; otherwise set P +-- FIRST, and then repeatedly set
P +-- LINK(P) zero or more times until LINK(P) =A. Finally set LINK(P) +--AVAIL and
AVAIL +--FIRST (and probably also FIRST+-- A). (b) If F =A, do nothing; otherwise
set LINK(R) +--AVAIL and AVAIL+-- F (and probably also F +--A, R +-- LOC(F)).

30. To insert, set P -¢= AVAIL, INFO(P) +-- Y, LINK(P) +-- A, if F = A then F +-- P
else LINK(R) +-- P, and R +-- P. To delete, do (g) with F replacing T. (Although it
is convenient to let R be undefined for an empty queue, this lack of discipline might
confuse a garbage collection algorithm, as in exercise 6.)

SECTION 2.2.4

1. No, it does not help; it seems to hinder, if anything. (The stated convention is not
especially consistent with the circular list philosophy, unless we put NODE (LDC (PTR))
into the list as its list head.)

2. Before:

After:
J:TR1

~~~~~l~~~~~~~'~~~_=:b~rl l-t4 l-t4 = 

3. If PTR1 = PTR2, the only effect is PTR2 +-- A. If PTR1 i- PTR2, the exchange of links 
breaks the list into two parts, as if a circle had been broken in two by cutting at two 
points; the second part of the operation then makes PTR1 point to a circular list that 
consists of the nodes that would have been traversed if, in the original list, we followed 
the links from PTR1 to PTR2. 

4. Let HEAD be the address of the list head. To push down Y onto the stack: Set 
P-¢= AVAIL, INFO(P) +-- Y, LINK(P) +-- LINK(HEAD), LINK(HEAD) +-- P. To pop up the 
stack onto Y: If LINK (HEAD) = HEAD then UNDERFLOW; otherwise set P +-- LINK (HEAD), 
LINK (HEAD) +-- LINK (P), Y +-- INFO (P) , A VAIL -¢= P. 

5. (Compare with exercise 2.2.3-7.) Set Q +-- A, P +-- PTR, and then while P i- A 
repeatedly set R +-- Q, Q +-- P, P +-- LINK ( Q) , LINK ( Q) +-- R. (Afterwards Q = PTR.) 

6. 

(a) 

(b) 

d·i1i0 i1i ;+1.ioioioi g};1-ioioi1ij 0 I 
d-i 0 i0 i1i/I 

7. Matching terms in the polynomial are located in one pass over the list, so repeated 
random searches are avoided. Also, increasing order would be incompatible with the 
"-1" sentinel. 

8. We must know what node points to the current node of interest, if we are going to 
delete that node or to insert another one ahead of it. There are alternatives, however: 
We could delete NODE(Q) by setting Q2 +-- LINK(Q) and then setting NODE(Q) +-
NODE(Q2), AVAIL -¢= Q2; we could insert a NODE(Q2) in front of NODE(Q) by first 
interchanging NODE(Q2) +-+ NODE(Q), then setting LINK(Q) +-- Q2, Q +-- Q2. These 



552 ANSWERS TO EXERCISES 2.2.4 

clever tricks allow the deletion and insertion without knowing which node links to 
NODE(Q); they were used in early versions of IPL. But they have the disadvantage that 
the sentinel node at the end of a polynomial will occasionally move, and other link 
variables may be pointing to this node. 

9. Algorithm A with P = Q simply doubles polynomial(Q), as it should-except 
in the anomalous case that COEF = 0 for some term with ABC > 0, when it fails . -
badly. Algorithm M with P = M also gives the expected result. Algorithm M with 
P = Q sets polynomial(P) +-- polynomial(P) times (1 + ti)(l + t2) ... (1 + tk) if 
M = ti + t2 + · · · + tk (although this is not immediately obvious). When M = Q, 
Algorithm M surprisingly gives the expected result, polynomial(Q) +-- polynomial(Q) 
+ polynomial(Q) x polynomial(P), except that the computation blows up when the 
constant term of polynomial (P) is -1. 

10. None. (The only possible difference would be in step M2, removing error checks 
that A, B, or C might individually overflow; these error checks were not specified because 
we assumed that they were not necessary.) In other words, the algorithms in this section 
may be regarded as operations on the polynomial f ( xb

2
, xb, x) instead of on f ( x, y, z). 

11. COPY STJ 9F (comments ST6 1,3(LINK) 
ENT3 9F are ENT3 0,6 
LDA 1,1 left LD1 1,1(LINK) 

1H LD6 AVAIL to LDA 1,1 
J6Z OVERFLOW the JANN 1B 
LDX 1,6(LINK) reader) LD2 8F(LINK) 
STX AVAIL ST2 1,3(LINK) 
STA 1,6 9H JMP * 
LDA 0,1 SH CON 0 I 
STA 0,6 

12. Let the polynomial copied have p terms. Program A takes (29p + l3)u, and to 
make it a fair comparison we should add the time to create a zero polynomial, say 18u 
with exercise 14. The program of exercise 11 takes (21p + 3l)u, about 1 as much. 

13. ERASE STJ 9F 
LDX AVAIL 
LDA 1,1(LINK) 
STA AVAIL 
STX 1,1(LINK) 

9H JMP * I 
14. ZERO STJ 9F MOVE 1F(2) 

LD1 AVAIL ST2 1,2(LINK) 
J1Z OVERFLOW 9H JMP * 
LDX 1,1(LINK) 1H CON 0 
STX AVAIL CON -1 (ABC) I 
ENT2 0,1 

15. MULT STJ 9F Entrance to subroutine 
LDA 5F Change settings of switches 
STA SW1 
LDA 6F 
STA SW2 
STA SW3 



2.2.5 

2H 
1H 

JMP *+2 
JMP ADD 
LD4 1 , 4 (LINK) 
LDA 1,4 
JANN 2B 

SH LDA 7F 
STA SW1 
LDA SF 
STA SW2 
STA SW3 

9H JMP * 
5H JMP *+1 

LDA 0,1 
MUL 0,4 
LDA 1, !(ABC) 
JAN *+2 
ADD 1,4(ABC) 
SLA 2 
STX OF 
JMP SW1+1 

ANSWERS TO EXERCISES 

M2. MultiQ]}r_g_cle. 
Ml. Next multiplier. M +-- LINK(M). 

To M2 if ABC (M) 2: 0. 
Restore settings of switches. 

Return. 
New setting of SW1 

rX +-- COEF(P) x COEF(M). 
ABC(P) 

+ ABC(M), if ABC(P) 2: 0. 
Move into 0 :3 field of rA. 
Save rX for use in SW2 and SW3. 

6H LDA OF New setting of SW2 and SW3 
7H LDA 1, 1 Usual setting of SW1 
SH LDA 0, 1 Usual setting of SW2 and SW3 
OH CON 0 Temp storage I 

553 

16. Let r be the number of terms in polynomial(M). The subroutine requires 2lpr + 
38r + 29 + 27 L m' + 18 L m" + 27 L p' + 8 L q' units of time, where the summations 
refer to the corresponding quantities during the r activations of Program A. The 
number of terms in polynomial(Q) goes up by p' - m' each activation of Program A. If 
we make the not unreasonable assumption that m' = 0 and p' = a.p where 0 <a.< 1, 
we get the respective sums equal to 0, (1- a.)pr, a.pr, and rqb + a.p(r(r - 1)/2), where 
qb is the value of q' in the first iteration. The grand total is 4a.pr2 + 40pr + 4a.pr + 
8qbr + 38r + 29. This analysis indicates that the multiplier ought to have fewer terms 
than the multiplicand, since we have to skip over unmatching terms in polynomial(Q) 
more often. (See exercise 5.2.3-29 for a faster algorithm.) 

17. There actually is very little advantage; addition and multiplication routines with 
either type of list would be virtually the same. The efficiency of the ERASE subroutine 
(see exercise 13) is apparently the only important difference. 

18. Let the link field of node Xi contain LOC(xi+1) EB LOC(Xi-1), where "EB" denotes 
"exclusive or." Other invertible operations, such as addition or subtraction modulo the 
pointer field size, could also be used. It is convenient to include two adjacent list heads 
in the circular list, to help get things started properly. (The origin of this ingenious 
technique is unknown.) 

SECTION 2.2.5 
1. Insert Y at the left: P ¢=AVAIL; INFO(P) +-- Y; LLINK(P) +--A; RLINK(P) +--LEFT; 

if LEFT #- A then LLINK (LEFT) +-- P else RIGHT +-- P; LEFT +-- P. Set Y to leftmost and 
delete: if LEFT = A then UNDERFLOW; P +-- LEFT; LEFT +-- RLINK (P); if LEFT = A then 
RIGHT+-- A, else LLINK(LEFT) +--A; Y +-- INFO(P); AVAIL¢= P. 



554 ANSWERS TO EXERCISES 2.2.5 

2. Consider the case of several deletions (at the same end) in succession. After each 
deletion we must know what to delete next, so the links in the list must point away 
from that end of the list. Deletion at both ends therefore implies that the links must 
go both ways. On the other hand, exercise 2.2.4-18 explains how to represent two links 
in a single link field; in that way general deque operations are possible. 

3. To show the independence of CALLUP from CALLDOWN, notice for example that in 
Table 1 the elevator did not stop at floors 2 or 3 at time 0393-0444 although there were 
people waiting; these people had pushed CALLDOWN, but if they had pushed CALLUP the 
elevator would have stopped. 

To show the independence of CALLCAR from the others, notice that in Table 1, when 
the doors start to open at time 1378, the elevator has already decided to be GOINGUP. 

Its state would have been NEUTRAL at that point if CALLCAR [1] = CALLCAR [2] = 

CALLCAR[3] = CALLCAR[4] = 0, according to step E2, but in fact CALLCAR[2] and 
CALLCAR [3] have been set to 1 by users 7 and 9 in the elevator. (If we envision the 
same situation with all floor numbers increased by 1, the fact that STATE = NEUTRAL 

or STATE = GOINGUP when the doors open would affect whether the elevator would 
perhaps continue to go downward or would unconditionally go upward.) 

4. If a dozen or more people were getting out at the same floor, STATE might be 
NEUTRAL all during this time, and when E9 calls the DECISION subroutine this may set 
a new state before anyone has gotten in on the current floor. It happens very rarely 
indeed (and it certainly was the most puzzling phenomenon observed by the author 
during his elevator experiments). 

5. The state from the time the doors start to open at time 1063 until user 7 gets in 
at time 1183 would have been NEUTRAL, since there would have been no calls to floor 0 

and nobody on board the elevator. Then user 7 would set CALLCAR [2] +-- 1 and the 
state would correspondingly change to GOINGUP. 

6. Add the condition "if OUT< IN then STATE#- GOINGUP; if OUT> IN then STATE -f. 
GOINGDOWN" to the condition "FLOOR = IN" in steps U2 and U 4. In step E4, accept 
users from QUEUE [FLOOR] only if they are headed in the elevator's direction, unless 
STATE= NEUTRAL (when we accept all comers). 

(Stanford's math department has just such an elevator, but its users don't actually 
pay much attention to the indicator lights; people tend to get on as soon as they can, 
regardless of direction. Why didn't the elevator designers realize this, and design the 
logic accordingly by clearing both CALL UP and CALLDOWN? The whole process would be 
faster, since the elevator wouldn't have to stop as often.] 

7. In line 227 this user is assumed to be in the WAIT list. Jumping to U4A makes sure 
that this assumption is valid. It is assumed that GIVEUPTIME is positive, and indeed 
that it is probably 100 or more. 

8. Comments are left to the reader. 

277 ES DEC4 1 

218 ENTA 61 

219 JMP HO LDC 

280 LDA CALL,4(3:5) 

281 JAP 1F 

282 ENT! -2,4 

283 J1Z 2F 

284 LDA CALL,4(1:1) 



2.2.5 ANSWERS TO EXERCISES 555 

285 JAZ ES 
286 2H LDA CALL-1,4 
281 ADD CALL-2,4 
288 ADD CALL-3,4 
289 ADD CALL-4,4 
290 JANZ ES 
291 1H ENTA 23 
292 JMP E2A 

9. 01 DECISION STJ 9F Store exit location. 
02 J5NZ 9F Dl. Decision necessary? 
03 LDX ELEV1+2(NEXTINST) 
04 DECX E1 D2. Should door open? 
05 JXNZ 1F Jump if elevator not at El. 
06 LDA CALL+2 
01 ENT3 E3 Prepare to schedule E3, 
08 JANZ SF if there is a call on floor 2. 
09 1H ENT! -4 D3. Any calls? 
10 LDA CALL+4,1 Search for a nonzero call variable. 
11 JANZ 2F 
12 1H INC! 1 rll = j - 4 
13 J1NP *-3 
14 LDA 9F(0:2) All CALL [j] , j #- FLOOR, are zero 
15 DECA E6B Is exit location = line 250? 
16 JANZ 9F 
11 ENT! -2 Set j +-- 2. 
18 2H ENT5 4, 1 D4. Set STATE. 
19 DEC5 0,4 STATE+-- j - FLOOR. 
20 J5NZ *+2 
21 JANZ 1B j = FLOOR not allowed in general. 
22 JXNZ 9F D5. Elevator dormant? 
23 J5Z 9F Jump if not at El or if j = 2. 
24 ENT3 E6 Otherwise schedule E6. 
25 SH ENTA 20 Wait 20 units of time. 
26 ST6 SF(0:2) Save r16. 
21 ENT6 ELEV! 
28 ST3 2,6(NEXTINST) Set NEXTINST to E3 or E6. 
29 JMP HOLD Schedule the activity. 
30 SH ENT6 * Restore rl6. 
31 9H JMP * Exit from subroutine. 

11. Initially let LINK [k] = 0, 1 ::; k ::; n, and HEAD = -1. During a simulation step that 
changes V [k] , give an error indication if LINK [k] i- O; otherwise set LINK [k] +-- HEAD, 
HEAD +-- k and set NEWV [k] to the new value of V [k]. After each simulation step, set 
k +--HEAD, HEAD +-- -1, and do the following operation repeatedly zero or more times 
until k < 0: set V [k] +-- NEWV [k], t +-- LINK [k], LINK [k] +-- 0, k +-- t. 

Clearly this method is readily adapted to the case of scattered variables, if we 
include a NEWV and LINK field in each node associated with a variable field V. 

12. The WAIT list has deletions from the left to the right, but insertions are sorted 
in from the right to the left (since the search is likely to be shorter from that side). 



556 ANSWERS TO EXERCISES 2.2.5 

Also we delete nodes from all three lists in several places when we do not know the 
predecessor or successor of the node being deleted. Only the ELEVATOR list could be 
converted to a one-way list, without much loss of efficiency. 

Note: It may be preferable to use a nonlinear list as the WAIT list in a discrete 
simulator, to reduce the time for sorting in. Section 5.2.3 discusses the general problem 
of maintaining priority queues, or "smallest in, first out" lists, such as this. Several 
ways are known in which on°iy O(log n) operations are needed to insert or delete when 
there are n elements in the list, although there is of course no need for such a fancy 
method when n is known to be small. 

SECTION 2.2.6 
1. (Here the indices run from 1 ton, not from 0 ton as in Eq. (6).) LOC(A[J ,KJ) = 

LDC (A [O, OJ) + 2nJ + 2K, where A [O, OJ is an assumed node that is actually nonexistent. 
If we set J = K = 1, we get LOC(A [l, lJ) = LOC(A [O ,OJ) + 2n + 2, so the answer can 
be expressed in several ways. The fact that LDC (A [O, OJ ) might be negative has led to 
many bugs in compilers and loading routines. 

2. LOC(A[I1, ... ,Ik]) = LOC(A[O, ... ,O]) + Li<r<ka,.I,. = LOC(A[l1, ... ,h]) + 

L1:sr:Sk a,.I,. - L1:sr:Sk a,.l,., where a,.= c Tir<s:Sk(us - ls+ 1). 

Note: For a generalization to the structures occurring in programming languages 
such as C, and a simple algorithm to compute the relevant constants, see P. Deuel, 
CACM 9 (1966), 344-347. 

3. 1 ::; k ::; j ::; n if and only if 0 ::; k - 1 ::; j - 1 ::; n - 1; so replace k, j, n 
respectively by k - 1, j - 1, n - 1 in all formulas derived for lower bound zero. 

4. LOC(A[J ,KJ) = LOC(A[O,OJ) + nJ - J(J -1)/2 + K. 

5. Let AO = LOC(A [O, OJ). There are at least two solutions, assuming that J is in 
rll and K is in rl2. (i) "LDA TA2,1:7", where location TA2+j is "NOP j+1*j/2+A0,2"; 
(ii) "LDA C1, 7: 2", where location C1 contains "NOP TA, 1: 7" and location TA+j says 
"NOP j+1*j/2+AO". The latter takes one more cycle but doesn't tie the table down to 
index register 2. 

6. (a) LOC(A[I,J,K]) = LOC(A[O,O,O]) +(I; 
2

) + ( J; l) + (~)· 
(b) LOC(B[I,J,KJ) =LDC(B[O,O,OJ) 

+ (n;3)-(n+:-I) + (n+~-I)-(n+~-J) +K-J, 

hence the stated form is possible in this case also. 

'"""' ( I,.+k-r) . 7. LOC(A [I1, ... , h]) = LOC(A [O, ... ,OJ)+ L l k-r . See exercise 1.2.6-56. 
l:Sr:Sk + 

8. (Solution by P. Nash.) Let X[I,J,KJ be defined for 0::; I::; n, 0::; J::; n + 1, 
0 ::; K ::; n + 2. We can let A[I,J,KJ = X[I,J,KJ; B[I,J,KJ = X[J,I + l,KJ; 
C[I,J,KJ = X[I,K,J + lJ; D[I,J,KJ = X[J,K,I + 2J; E[I,J,KJ = X[K,I + l,J + lJ; 
F [I, J, KJ = X [K, J + 1, I + 2J . This scheme is the best possible, since it packs the 
(n + l)(n + 2)(n + 3) elements of the six tetrahedral arrays into consecutive locations 
with no overlap. Proof: A and B exhaust all cells X[i,j ,kJ with k = min(i,j, k); 
C and D exhaust all cells .with j = min(i,j, k) i- k; E and F exhaust all cells with 
i = min( i, j, k) i- j, k. 

(The construction generalizes tom dimensions, if anybody ever wants to pack the 
elements of m! generalized tetrahedral arrays into ( n + 1) ( n + 2) ... ( n + m) consecutive 



2.2.6 ANSWERS TO EXERCISES 557 

locations. Associate a permutation a1 a2 ... am with each array, and store its elements 
in X [Ia1 + b1, Ia2 + b2, ... , Iam + bmJ, where b1 b2 ... bm is the inversion table for 
aia2 ... am as defined in Section 5.2.1.) 

9. Gl. Set pointer variables P1, P2, P3, P4, P5, P6 to the first locations of the lists 
FEMALE, A21, A22, A23, BLOND, BLUE, respectively. Assume in what follows 
that the end of each list is given by link A, and A is smaller than any other 
link. If P6 =A, stop (the list, unfortunately, is empty). 

G2. (Many possible orderings of the following actions could be done; we have 
chosen to examine EYES first, then HAIR, then AGE, then SEX.) Set P5 +-
HAIR(P5) zero or more times until P5 :S P6. If now P5 < P6, go to step G5. 

G3. Set P4 +-- AGE(P4) repeatedly if necessary until P4 :S P6. Similarly do the 
same to P3 and P2 until P3 :S P6 and P2 :S P6. If now P4, P3, P2 are all 
smaller than P6, go to G5. 

G4. Set P1 +-- SEX(P1) until P1 :S P6. If P1 = P6, we have found one of the young 
ladies desired, so output her address, P6. (Her age can be determined from 
the settings of P2, P3, and P4.) 

G5. Set P6 +--EYES (P6). Now stop if P6 =A; otherwise return to G2. I 
This algorithm is interesting but not the best way to organize a list for such a search. 

10. See Section 6.5. 

11. At most 200 + 200 + 3 · 4 · 200 = 2800 words. 

12. VAL(QO) = c, VAL(PO) = b/a, VAL(P1) = d. 

13. It is convenient to have at the end of each list a sentinel that "compares low" in 
some field on which the list is ordered. A straight one-way list could have been used, for 
example by retaining just the LEFT links in BASEROW [i] and the UP links in BASECOL [j] , 

by modifying Algorithm S thus: In S2, test if PO = A before setting J +-- COL (PO) ; if 
so, set PO +-- LOC(BASEROW [IO]) and go to S3. In S3, test if QO = A; if so, terminate. 
Step S4 should change by analogy with step S2. In S5, test if P1 = A; if so, act as if 
COL(P1) < 0. In S6, test if UP(PTR[J]) =A; if so, act as if its ROW field were negative. 

These modifications make the algorithm more complicated and save no storage 
space except a ROW or COL field in the list heads (which in the case of MIX is no saving 
at all). 

14. One could first link together those columns that have a nonzero element in the 
pivot row, so that all other columns could be skipped as we pivot on each row. Rows 
in which the pivot column is zero are skipped over immediately. 

15. Let rll := PIVOT, J, rl2 := PO, rI3 := QO, rI4 := P, rI5 := P1, X; LOC(BASEROW [i]) 

BROW + i; LDC (BAS ECOL [j] ) := BCOL + j; PTR [j] := BCOL + j ( 1 : 3). 

01 ROW EQU 0:3 
02 UP EQU 4:5 
03 COL EQU 0:3 

04 LEFT EQU 4:5 
05 PTR EQU 1:3 
06 PIVOTSTEP STJ 9F Subroutine entrance, rll =PIVOT 
01 S1 LD2 0,1(ROW) Sl. Initialize. 
08 ST2 IO IO +-- ROW(PIVOT). 
09 LD3 1, !(COL) 



558 ANSWERS TO EXERCISES 2.2.6 

10 ST3 JO JO +-- COL (PIVOT). 

11 LDA =1.0= Floating point constant 1 

12 FDIV 2,1 

13 STA ALPHA ALPHA+-- l/VAL(PIVOT). 

14 LDA =1.0= 

15 STA 2,1 VAL(PIVOT) +-- 1. . 
16 ENT2 BRDW,2 PO+-- LOC(BASEROW[IO]). 

11 ENT3 BCOL,3 QO +-- LOC(BASECOL[JO]). 

18 JMP S2 

19 2H ENTA BCDL,1 

20 STA BCOL,1(PTR) PTR [J] +-- LDC (BASECOL [J] ) . 

21 LDA 2,2 

22 FMUL ALPHA 

23 STA 2,2 VAL(PO) +--ALPHA x VAL(PO). 

24 S2 LD2 1,2(LEFT) S2. Process pivot row. PO+-- LEFT(PO). 

25 LD1 1,2(COL) J +-- COL (PO). 

26 J1NN 2B If J 2: 0, process J. 

21 S3 LD3 0,3(UP) S3. Find new row. QO +--UP (QO). 

28 LD4 0,3(ROW) rl4 +-- ROW(QO). 

29 9H J4N * If rl4 < 0, exit. 

30 CMP4 IO 

31 JE S3 If rl4 = IO, repeat. 

32 ST4 I(ROW) I +-- rl4. 

33 ENT4 BROW,4 P +-- LDC (BASEROW [I] ) . 

34 S4A LD5 1,4(LEFT) P1 +-- LEFT(P). 

35 S4 LD2 1,2(LEFT) S4. Find new column. PO +-- LEFT (PO). 

36 LD1 1,2(COL) J +-- COL (PO). 

31 CMP1 JO 

38 JE S4 Repeat if J =JO. 

39 ENTA 0,1 

40 SLA 2 rA(O: 3) +-- J. 

41 J1NN S5 

42 LDAN 2,3 If J < 0, 

43 FMUL ALPHA set VAL ( QO) +-- -ALPHA x VAL ( QO) . 

44 STA 2,3 

45 JMP S3 

46 1H ENT4 0,5 p +-- P1. 

41 LD5 1,4(LEFT) P1 +-- LEFT(P). 

48 S5 CMPA 1,5(COL) S5. Find I, J element. 
49 JL 1B Loop until COL(P1) ~ J. 

50 JE S7 If=, go right to 87. 

51 S6 LD5 BCDL, 1 (PTR) S6. Insert I, J element. rl5 +-- PTR[J]. 

52 LDA I rA(O: 3) +-- I. 

53 2H ENT6 0,5 r16 +-- rl5. 

54 LD5 0,6(UP) rl5 +-- UP(r16). 

55 CMPA 0,5(RDW) 

56 JL 2B Jump if ROW(rl5) >I. 

51 LD5 AVAIL X-¢= AVAIL. 

58 J5Z OVERFLOW 



2.2.6 ANSWERS TO EXERCISES 559 

59 LDA 0,5(UP) 

60 STA AVAIL 
61 LDA 0,6(UP) 

62 STA 0,5(UP) UP (X) +--UP (PTR [J]). 

63 LDA 1,4(LEFT) 

64 STA 1,5(LEFT) LEFT(X) +-- LEFT(P). 

65 ST1 1,5(COL) COL(X) +-- J. 

66 LDA I(ROW) 

61 STA 0,5(ROW) ROW (X) +-- I. 

68 STZ 2,5 VAL (X) +-- 0. 

69 ST5 1,4(LEFT) LEFT(P) +-- X. 

10 ST5 0,6(UP) UP (PTR [J] ) +-- X. 

11 S7 LDAN 2,3 S7. Pivot. -VAL(QO) 

12 FMUL 2,2 x VAL(PO) 

13 FADD 2,5 + VAL(P1). 

14 JAZ SS If significance lost, to 88. 
15 STA 2,5 Otherwise store in VAL (P 1) . 
16 ST5 BCOL, 1 (PTR) PTR [J] +-- P 1. 
77 ENT4 0,5 P +-- PL 
18 JMP S4A P1 +-- LEFT(P), to 84. 

19 SS LD6 BCOL,1(PTR) SS. Delete I, J element. r 16 +-- PTR [J] . 

80 JMP *+2 
81 LD6 0,6(UP) rl6 +-- UP(r16). 

82 LDA 0,6(UP) 

83 DECA 0,5 Is UP (rl6) = P1? 

84 JANZ *-3 Loop until equal. 
85 LDA 0,5(UP) 

86 STA 0,6(UP) UP(rl6) +-- UP(P1). 

81 LDA 1,5(LEFT) 

88 STA 1,4(LEFT) LEFT (P) +-- LEFT (P 1). 
89 LDA AVAIL AVAIL-¢= PL 
90 STA 0,5(UP) 
91 ST5 AVAIL 
92 JMP S4A P1 +-- LEFT(P), to 84. I 

Note: Using the conventions of Chapter 4, lines 71-74 would actually be coded 

LDA 2,3; FMUL 2,2; FCMP 2,5; JESS; STA TEMP; LDA 2,5; FSUB TEMP; 

with a suitable parameter EPSILON in location zero. 

17. For each row i and each element A[i,k] i- 0, add A[i,k] times row k ofB to row i 
of C. Maintain only the COL links of C while doing this; the ROW links are easily filled in 
afterwards. [A. 8choor, Inf. Proc. Letters 15 (1982), 87-89.) 

18. The three pivot steps, in respective columns 3, 1, 2, yield respectively 



560 ANSWERS TO EXERCISES 2.2.6 

after the final permutations, we have the answer 

G -~ -D · 
20. ao = LDC (A [1, 1J) - 3, .a.1 = 1 or 2, a2 = 3 - al. 

21. For example, M +-- max( I, J), LDC(A [I, J]) = LDC(A [l, 1]) + M(M - 1) + I - J. 
(Such formulas have been proposed independently by many people. A. L. Rosen
berg and H. R. Strong have suggested the following k-dimensional generalization: 
LDC(A [I1, ... ,h]) = Lk where Ll = LDC(A [l, ... , 1]) +I1 -1, L,. = L,._1 +(M,.-I,.) x 
(M~- 1 - (M,. - 1y-1 ), and M,. = max(I1, ... , I,.) [IBM Tech. Disclosure Bull. 14 (1972), 
3026-3028). See Current Trends in Programming Methodology 4 (Prentice-Hall, 1978), 
263-311, for further results of this kind.) 

22. According to the combinatorial number system (exercise 1.2.6-56), we can let 

c . )-(i1) (i1+i2+l) ... (i1+i2+···+ik+k-l) 
p Z1, ... , Zk - l + 

2 
+ + k 

[Det Kongelige Norske Videnskabers Selskabs Forhandlinger 34 (1961), 8-9.) 

23. Let c[ J) = LDC (A [O, JJ ) = LDC (A [O, OJ ) +mJ, if there were m rows when the matrix 
grew from J to J + 1 columns; similarly, let r[I] = LDC (A [I, OJ) =LDC (A [O, OJ) + nI, if 
there were n columns when we created row I. Then we can use the allocation function 

{
I+ c[J), 

LDC(A[I,J]) = J+r[I), 
if c[J) 2: r[I); 
otherwise. 

It is not hard to prove that c[J) 2: r[I] implies c[J) 2: r[I) + J, and c[J) ~ r[I] implies 
c[J) +I ~ r[I); therefore the relation 

LDC(A [I, JJ) =max( I+ LDC(A [O, JJ), J + LDC(A [I, OJ)) 

also holds. We need not restrict allocation to mn consecutive locations; the only 
constraint is that, when the matrix grows, we allocate m or n consecutive new cells in 
locations greater than those previously used. This construction is due to E. J. Otoo 
and T. H. Merrett [Computing 31(1983),1-9), who also generalized it to k dimensions. 

24. [Aho, Hopcroft, and Ullman, The Design and Analysis of Computer Algorithms 
(Addison-Wesley, 1974), exercise 2.12.) Besides the array A, maintain also a verification 
array V of the same size, and a list L of the locations used. Let n be the number of 
items in L; initially n = 0 and the contents of L, A, and V are arbitrary. Whenever you 
want to access A [kJ for a value of k that you might not have used before, first check 
whether 0 ~ V [kJ < n and L [V [kJ J = k. If not, set V [kJ +-- n, L [nJ +-- k, A [kJ +-- 0, 
and n +-- n + 1. Otherwise you can be sure that A [kJ already contains legitimate data. 
(By a slight extension of this method, it is possible to save and eventually restore the 
contents of all entries of A and V that change during the computation.) 

SECTION 2.3 

1. There are three ways to choose the root. Once the root has been chosen, say A, 
there are three ways to partition the other nodes into subtrees: {B}, {C}; {C}, {B}; 
{ B, C}. In the latter case there are two ways to make { B, C} into a tree, depending 



2.3 

on which is the root. Hence we get 
the four trees shown when A is the 
root, and 12 in all. This problem is 
solved for any number n of nodes 
in exercise 2.3.4.4-23. 

ANSWERS TO EXERCISES 561 

2. The first two trees in the answer to exercise 1 are the same, as oriented trees, so 
we get only 9 different possibilities in this case. For the general solution, see Section 
2.3.4.4, where the formula nn-l is proved. 

3. Part 1: To show there is at least one such sequence. Let the tree haven nodes. The 
result is clear when n = 1, since X must be the root. If n > 1, the definition implies 
there is a root X 1 and subtrees T1, T2 , ••• , Tm; either X = X1 or Xis a member of a 
unique Tj. In the latter case, there is by induction a path X2, ... , X where X2 is the 
root of Tj, and since X 1 is the parent of X2 we have a path X1, X2, ... , X. 

Part 2: To show there is at most one such sequence. We will prove by induction 
that if Xis not the root of the tree, X has a unique parent (so that Xk determines Xk-l 
determines Xk_ 2 , etc.) If the tree has one node, there is nothing to prove; otherwise 
Xis in a unique Ti. Either Xis the root of Tj, in which case X has a unique parent 
by definition; or X is not the root of Tj, in which case X has a unique parent in Tj by 
induction, and no node outside of Tj can be X's parent. 

4. True (unfortunately). 

5. 4. 

6. Let parentf0l(X) denote X, and let parentfk+1l(X) = parent(parentfkl(X)), so 
that parentf1l(x) is X's parent, and parentf2l(x) is X's grandparent; when k 2: 2, 
parentfk] (X) is X's "(great-)k-2grandparent." The requested cousinship condition is 
that parentfm+l] (X) = parent(m+n+l] (Y) but parent(m] (X) i- parent[m+n] (Y). When 

n > 0, this relation is not symmetrical with respect to X and Y, although people 
usually treat it as symmetrical in everyday conversation. 

7. Use the (unsymmetric) condition defined in exercise 6, with the convention that 
parentfil(X) i- parentfkl(Y) if either j or k (or both) is -1. To show that this relation 
is always valid for some unique m and n, consider the Dewey decimal notation for X 
and Y, namely l.a1. · · · .ap.b1. · · · .bq and l.a1. · · · .ap.c1. · · · .c,., where p 2: 0, q 2: 0, 
r 2: 0 and (if qr i- 0) b1 i- c1. The Dewey numbers of any pair of nodes can be written 
in this form, and clearly we must take m = q - 1 and m + n = r - 1. 

8. No binary tree is really a tree; the concepts are quite separate, even though the 
diagram of a nonempty binary tree may look treelike. 

9. A is the root, since we conventionally put the root at the top. 

10. Any finite collection of nested sets corresponds to a forest as defined in the text, as 
follows: Let Ai, ... , An be the sets of the collection that are contained in no other. For 
fixed j, the sub-collection of all sets contained in Aj is nested; hence we may assume 
that this sub-collection corresponds to a tree (unordered) with Aj as the root. 

11. In a nested collection C let X = Y if there is some Z E C such that X U Y ~ Z. 
This relation is obviously reflexive and symmetric, and it is in fact an equivalence 
relation since W = X and X = Y implies that there are Z1 and Z2 in C with W ~ Z1, 
X ~ Z1 n Z2, and Y ~ Z2. Since Z 1 n Z2 i- 0, either Z1 ~ Z2 or Z2 ~ Z1; hence 
WU Y ~ Z1 U Z2 E C. Now if C is a nested collection, define an oriented forest 



562 ANSWERS TO EXERCISES 2.3 

corresponding to C by the rule "X is an ancestor of Y, and Y is a descendant of X, if 
and only if X :J Y." Each equivalence class of C corresponds to an oriented tree, which is 
an oriented forest with X = Y for all X, Y. (We thereby have generalized the definitions 
of forest and tree that were given for finite collections.) In these terms, we may define 
the level of X as the cardinal number of ancestors(X). Similarly, the degree of X is 
the cardinal number of equivalence classes in the nested collection descendants(X). We 
say X is the parent of Y, arid Y is a child of X, if X is an ancestor of Y but there is 
no Z such that X :J Z :J Y. (It is possible for X to have descendants but no children, 
ancestors but no parent.) To get ordered trees and forests, order the equivalence classes 
mentioned above in some ad hoc manner, for example by embedding the relation ~ 
into linear order as in exercise 2.2.3-14. 

Example (a): Let Sak = { x I x = .d1d2d3 ... in decimal notation, where o: = 
.e1e2e3 ... in decimal notation, and dj = ej if j mod 2k i- 0}. The collection C = 
{Sak I k 2: 0, 0 < o: < 1} is nested, and gives a tree with infinitely many levels and 
uncountable degree for each node. 

Example (b), ( c): It is convenient to define this set in the plane, instead of in terms 
of real numbers, and this is sufficient since there is a one-to-one correspondence between 
the plane and the real numbers. Let Samn = {(o:, y) I m/2n ~ y < (m + 1)/2n}, 
and let Ta = {(x, y) I x ~ o:}. The collection C = {So:mn I 0 < o: < 1, n 2: 0, 
0 ~ m < 2n} U {To: I 0 < o: < 1} is easily seen to be nested. The children of 
Samn are So:(2m)(n+l) and Sa(2m+l)(n+l), and Ta has the child So:oo plus the subtree 
{S,amn I /3 < o:} U {T,a I f3 < o:}. So each node has degree 2, and each node has 
uncountably many ancestors of the form Ta. This construction is due to R. Bigelow. 

Note: If we take a suitable well-ordering of the real numbers, and if we define 
Ta = {(x, y) I x >- o:}, we can improve this construction slightly, obtaining a nested 
collection where each node has uncountable level, degree 2, and two children. 

12. We impose an additional condition on the partial ordering (analogous to that of 
"nested sets") to ensure that it corresponds to a forest: If x :::S y and x :::S z then either 
y :::S z or z :::Sy. In other words, the elements larger than any given element are linearly 
ordered. To make a tree, also assert the existence of a largest element r such that x :::Sr 
for all x. A proof that this gives an unordered tree as defined in the text, when the 
number of nodes is finite, runs like the proof for nested sets in exercise 10. 

13. ai, ai.a2, ... , ai.a2. · · · .ak. 

14. Since S is nonempty, it contains an element l.a1. · · · .ak where k is as small as 
possible; if k > 0 we also take ak as small as possible in S, and we immediately see that 
k must be 0. In other words, S must contain the element 1. Let 1 be the root. All other 
elements have k > 0, and so the remaining elements of S can be partitioned into sets 
Sj = {l.j.a2. · · · .ak}, 1 ~ j ~ m, for some m 2: 0. If m i- 0 and Sm is nonempty, we 
deduce by reasoning as above that l.j is in Sj for each Sj; hence each Sj is nonempty. 
Then it is easy to see that the sets Sj = {l.a2. · · · .ak I 1.j.a2. · · · .ak is in Sj} satisfy 
the same condition as S did. By induction, each of the Sj forms a tree. 

15. Let the root be 1, and let the roots of the left and right subtrees of o: be o:.0 
and o:.l, respectively, when such roots exist. For example, King Christian IX appears 
in two positions of Fig. 18(a), namely 1.0.0.0.0 and 1.1.0.0.1.0. For brevity we may 
drop the decimal points and write merely 10000 and 110010. Note: This notation is 
due to Francis Galton; see Natural Inheritance (Macmillan, 1889), 249. For pedigrees, 
it is more mnemonic to use F and M in place of 0 and 1 and to drop the initial 1; 
thus Christian IX is Charles's MFFMF, his mother's father's father's mother's father. 



2.3 ANSWERS TO EXERCISES 563 

The 0 and 1 convention is interesting for another reason: It gives us an important 
correspondence between nodes in a binary tree and positive integers expressed in the 
binary system (namely, memory addresses in a computer). 

16. (a) (b) or or 

b 

17. parent(F[l]) =A; parent(F[l, 2]) = C; parent(F[l, 2, 2]) = E. 

18. L[5, 1, 1] = (2). L[3, 1] is nonsense, since L[3] is an empty List. 

19. *[L] L[2] = (L); L[2, 1, 1] =a. 

/ ""' a * 
I 

[L] 
20. (Intuitively, the correspondence between 0-2-trees and binary trees is obtained by 
removing all terminal nodes of the 0-2-tree; see the important construction in Section 
2.3.4.5.) Let a 0-2-tree with one node correspond to the empty binary tree; and let 
a 0-2-tree with more than one node, consisting therefore of a root r and 0-2-trees T1 
and T2, correspond to the binary tree with root r, left subtree T{, and right subtree T~ 
where T1 and T2 correspond respectively to T{ and T~. 

21. 1+0 · ni + 1 · n2 + · · · + (m - 1) ·nm. Proof: The number of nodes in the tree 
is no+ ni + n2 +···+nm, and this also equals 1 +(number of children in the tree) 
= 1 + 0 · no + 1 · ni + 2 · n2 + · · · + m · nm. 

22. The basic idea is to proceed recursively, with the representation of a nonempty 
binary tree defined to be the representation of its root plus half-size-and-rotated rep
resentations of its left and right subtrees. Thus an arbitrarily large binary tree can be 
represented on a single sheet of paper, if one has a sufficiently powerful magnifying glass. 

Many variations on this theme are possible. For example, one idea is to represent 
the root by a line from the center of a given landscape-oriented page to the top edge, 
and to rotate the left-subtree representation by 90° clockwise in the left halfpage, the 
right-subtree representation by 90° counterclockwise in the right halfpage. Each node 
is then represented by a line. (When this method is applied to a complete binary tree 
having 2k -1 nodes on k levels, it yields so-called "H-trees," which are the most efficient 
layouts of such binary trees on a VLSI chip; see R. P. Brent and H. T. Kung, Inf. Proc. 
Letters 11 (1980), 46-48.) 

J H .0 DD 
A . H F J 

D F DD 
B A c 

B c ODD DE~ E 

G 



564 ANSWERS TO EXERCISES 2.3 

Another idea is to represent an empty binary tree by some sort of box, and to rotate the 

subtree representations of nonempty binary trees so that left subsubtrees are alternately 

to the left of or below the corresponding right subsubtrees, depending on whether the 

depth of recursion is even or odd. Then the boxes correspond to external nodes in 

an extended binary tree (see Section 2.3.4.5). This representation, which is strongly 

related to the 2-D trees and q_uadtrees discussed in Section 6.5, is especially appropriate 

when the external nodes carry information but the internal nodes do not. 

SECTION 2.3.1 

1. INFO(T) =A, INFO(RLINK(T)) = C, etc.; the answer is H. 

2. Preorder: 1245367; symmetric order: 4251637; postorder: 4526731. 

3. The statement is true; notice, for example, that nodes 4, 5, 6, 7 always appear in 

this order in exercise 2. The result is immediately proved by induction on the size of 

the binary tree. 

4. It is the reverse of postorder. (This is easily proved by induction.) 

5. In the tree of exercise 2, for example, preorder is 1, 10, 100, 101, 11, 110, 111, using 

binary notation (which is in this case equivalent to the Dewey system). The strings of 

digits have been sorted, like words in a dictionary. 
In general, the nodes will be listed in preorder if they are sorted lexicographically 

from left to right, with "blank" < 0 < 1. The nodes will be listed in postorder if they 

are sorted lexicographically with 0 < 1 < "blank". For inorder, use 0 < "blank" < 1. 

(Moreover, if we imagine the blanks at the left and treat the Dewey labels as 

ordinary binary numbers, we get level order; see 2.3.3-(8).) 

6. The fact that p1p2 ... Pn is obtainable with a stack is readily proved by induction 

on n, or in fact we may observe that Algorithm T does precisely what is required in 

its stack actions. (The corresponding sequence of S's and X's, as in exercise 2.2.1-3, is 

the same as the sequence of ls and 2s as subscripts in double order; see exercise 18.) 

Conversely, if p1 p2 ... Pn is obtainable with a stack and if Pk = 1, then p1 ... Pk-l is 

a permutation of {2, ... , k} and Pk+l ... Pn is a permutation of { k + 1, ... , n }; these are 
the permutations corresponding to the left and right subtrees, and both are obtainable 
with a stack. The proof now proceeds by induction. 

1. From the preorder, the root is known; then from the inorder, we know the left 

subtree and the right subtree; and in fact we know the preorder and inorder of the 

nodes in the latter subtrees. Hence the tree is readily constructed (and indeed it 

is quite amusing to construct a simple algorithm that links the tree together in the 

normal fashion, starting with the nodes linked together in preorder in LLINK and in 

inorder in RLINK). Similarly, postorder and inorder together characterize the structure. 

But preorder and postorder do not; there are two binary trees having AB as preorder 

and BA as postorder. If all nonterminal nodes of a binary tree have both branches 

nonempty, its structure is characterized by preorder and postorder. 

8. (a) Binary trees with all LLINKs null. (b) Binary trees with zero or one nodes. 
( c) Binary trees with all RLINKs null. 

9. Tl once, T2 2n+l times, T3 n times, T4 n+l times, T5 n times. These counts 
can be derived by induction or by Kirchhoff's law, or by examining Program T. 

10. A binary tree with all RLINKs null will cause all n node addresses to be put in the 
stack before any are removed. 



2.3.1 ANSWERS TO EXERCISES 565 

11. Let ank be the number of binary trees with n nodes for which the stack in 
Algorithm T never contains more than k items. If 9k(z) = Ln ankZn, we find g1 (z) = 
1/(1- z), g2(z) = 1/(1- z/(1- z)) = (1- z)/(1- 2z), ... , 9k(z) = 1/(1- Z9k-l (z)) = 
qk-i(z)/qk(z) where q-1(z) = qo(z) = 1, qk+1(z) = qk(z) - zqk-1(z); hence 9k(z) = 
(f1(z)k+I - f2(z)k+1)/(f1(z)k+ 2 

- f2(z)k+ 2) where f1(z) = ~(l ± v'l -4z ). It can 
now be shown that ank = [un] (1 - u)(l + u) 2n(l - uk+1)/(l - uk+2); hence Sn = 
Lk>l k(ank - an(k-l)) is [un+l] (1 - u) 2 (1 + u) 2n Lj>l u1/(l - u1), minus ann· The 
tecnnique of exercise 5.2.2-52 now yields the asymptotlc series 

- 1-::: 3 11 fi -3/2 Sn/ann - y7rn - 2 + 24 y;;, + O(n ). 

[N. G. de Bruijn, D. E. Knuth, and S. 0. Rice, in Graph Theory and Computing, ed. 
by R. C. Read (New York: Academic Press, 1972), 15-22.] 

When the binary tree represents a forest as described in Section 2.3.2, the quantity 
analyzed here is the height of that forest (the furthest distance between a node and a 
root, plus one). Generalizations to many other varieties of trees have been obtained by 
Flajolet and Odlyzko [J. Computer and System Sci. 25 (1982), 171-213]; the asymptotic 
distribution of heights, both near the mean and far away, was subsequently analyzed by 
Flajolet, Gao, Odlyzko, and Richmond [Combinatorics, Probability, and Computing 2 
(1993), 145-156]. 

12. Visit NODE (P) between step T2 and T3, instead of between step T4 and T2. For the 
proof, demonstrate the validity of the statement "Starting at step T2 with ... original 
value A [1] ... A [m] ," essentially as in the text. 

13. (Solution by S. Araujo, 1976.) Let steps Tl through T4 be unchanged, except 
that a new variable Q is initialized to A in step Tl; Q will point to the last node visited, 
if any. Step T5 becomes two steps: 

T5. [Right branch done?] If RLINK (P) = A or RLINK (P) = Q, go on to T6; 
otherwise set A-¢= P, P +-- RLINK(P) and return to T2. 

T6. [Visit P.] "Visit" NODE(P), set Q +-- P, and return to T4. 
A similar proof applies. (Steps T4 and T5 can be streamlined so that nodes are not 
taken off the stack and immediately reinserted.) 

14. By induction, there are always exactly n + 1 A links (counting T when it is null). 
There are n nonnull links, counting T, so the remark in the text about the majority of 
null links is justified. 

15. There is a thread LL INK or RLINK pointing to a node if and only if it has a nonempty 
right or left subtree, respectively. (See Fig. 24.) 

16. If LTAG(Q) = 0, Q* is LLINK(Q); thus Q* is one step down and to the left. Otherwise 
Q* is obtained by going upwards in the tree (if necessary) repeatedly until the first time 
it is possible to go down to the right without retracing steps; typical examples are the 
trips from P to P* and from Q to Q* in the following tree: 

... 



566 ANSWERS TO EXERCISES 2.3.1 

17. If LTAG(P) = 0, set Q +--- LLINK(P) and terminate. Otherwise set Q +--- P, then set 
Q +--- RLINK(Q) zero or more times until finding RTAG(Q) = O; finally set Q +--- RLINK(Q) 
once more. 

18. Modify Algorithm T by inserting a step T2.5, "Visit NODE(P) the first time"; in 
step T5, we are visiting NODE(P) the second time. 

Given a threaded tree the traversal is extremely simple: 

(P, 1)~ = (LLINK(P), 1) if LTAG(P) = 0, otherwise (P, 2); 

(P, 2)~ = (RLINK(P), 1) if RTAG(P) = 0, otherwise (RLINK(P), 2). 

In each case, we move at most one step in the tree; in practice, therefore, double order 
and the values of d and e are embedded in a program and not explicitly mentioned. 

Suppressing all the first visits gives us precisely Algorithms T and S; suppressing 
all the second visits gives us the solutions to exercises 12 and 17. 

19. The basic idea is to start by finding the parent Q of P. Then if P =!= LLINK(Q) we 
have PU = Q; otherwise we can find PU by repeatedly setting Q +--- Q$ zero or more times 
until RTAG(Q) = 1. (See, for example, P and PU in the tree shown.) 

.. 
: .... .· 

·· ..... . 

..... 

There is no efficient algorithm to find the parent of P in a general right-threaded 
tree, since a degenerate right-threaded tree in which all left links are null is essentially a 
circular list in which the links go the wrong way. Therefore we cannot traverse a right
threaded tree in postorder with the same efficiency as the stack method of exercise 13, 
if we keep no history of how we have reached the current node P. 

But if the tree is threaded in both directions, we can find P's parent efficiently: 

Fl. Set Q +--- P and R +--- P. 

F2. If LTAG(Q) = RTAG(R) = 0, set Q +--- LLINK(Q) and R +--- RLINK(R) and repeat 
this step. Otherwise go to F4 if RTAG(R) = 1. 

F3. Set Q +--- LLINK(Q), and terminate if P = RLINK(Q). Otherwise set R +-
RLINK(R) zero or more times until RTAG(R) = 1, then set Q +--- RLINK(R) and 
terminate. 

F 4. Set R +--- RLINK (R), and terminate with Q +--- R if P = LL INK (R). Otherwise set 
Q +--- LLINK(Q) zero or more times until LTAG(Q) = 1, then set Q +--- LLINK(Q) 
and terminate. I 

The average running time of Algorithm F is 0(1) when P is a random node of the tree. 
For if we count only the steps Q +--- LLINK(Q) when P is a right child, or only the steps 
R +--- RLINK (R) when P is a left child, each link is traversed for exactly one node P. 



2.3.1 ANSWERS TO EXERCISES 567 

20. Replace lines 06-09 by: Replace lines 12-13 by: 

T3 ENT4 0,6 LD4 0,6(LINK) 
LD6 AVAIL LD5 0,6(INFO) 
J6Z OVERFLOW LDX AVAIL 
LDX 0, 6(LINK) STX 0, 6 (LINK) 
STX AVAIL ST6 AVAIL 
ST5 0,6(INFO) ENT6 0,4 
ST4 0,6(LINK) 

If two more lines of code are added at line 06 

T3 LD3 0,5(LLINK) 
J3Z T5 To T5 if LLINK(P) =A. 

with appropriate changes in lines 10 and 11, the running time goes down from (30n + 
a + 4)u to (27a + 6n - 22)u. (This same device would reduce the running time of 
Program T to (12a + 6n - 7)u, which is a slight improvement, if we set a= (n + 1)/2.) 

21. The following solution by Joseph M. Morris [Inf. Proc. Letters 9 (1979), 197-200] 
traverses also in preorder (see exercise 18). 

Ul. [Initialize.] Set P +--- T and R +--- A. 

U2. [Done?] If P = A, the algorithm terminates. 

U3. [Look left.] Set Q +--- LLINK(P). If Q = A, visit NODE(P) in preorder and go 
to U6. 

U4. [Search for thread.] Set Q +--- RLINK(Q) zero or more times until either Q = R 
or RLINK(Q) =A. 

U5. [Insert or remove thread.] If Q-=/= R, set RLINK(Q) +--- P and go to U8. Otherwise 
set RLINK(Q) +--- A (it had been changed temporarily to P, but we've now 
traversed P's left subtree). 

U6. [Inorder visit.] Visit NODE(P) in inorder. 

U7. [Go to right or up.] Set R +--- P, P +--- RLINK(P), and return to U2. 

US. [Preorder visit.] Visit NODE(P) in preorder. 

U9. [Go to left.] Set P +--- LLINK(P) and return to step U3. I 
Morris also suggested a slightly more complicated way to traverse in postorder. 

A completely different solution was found by J. M. Robson [Inf. Proc. Letters 2 
(1973), 12-14]. Let's say that a node is "full" if its LLINK and RLINK are nonnull, 
"empty" if its LLINK and RLINK are both empty. Robson found a way to maintain a 
stack of pointers to the full nodes whose right subtrees are being visited, using the link 
fields in empty nodes! 

Yet another way to avoid an auxiliary stack was discovered independently by G. 
Lindstrom and B. Dwyer, Inf. Proc. Letters 2 (1973), 47-51, 143-145. Their algorithm 
traverses in triple order - it visits every node exactly three times, once in each of 
preorder, inorder, and postorder-but it does not know which of the three is currently 
being done. 

Wl. [Initialize.] Set P +--- T and Q +--- S, where S is a sentinel value-any number 
that is known to be different from any link in the tree (e.g., -1). 

W2. [Bypass null.] If P =A, set P +--- Q and Q +---A. 

W3. [Done?] If P = S, terminate the algorithm. (We will have Q = T at termina
tion.) 



568 ANSWERS TO EXERCISES 2.3.1 

W 4. [Visit.] Visit NODE(P). 

W5. [Rotate.] Set R +--- LLINK(P), LLINK(P) +--- RLINK(P), RLINK(P) +--- Q, Q +--- P, 

P +--- R, and return to W2. I 

Correctness follows from the fact that if we start at W2 with P pointing to the root of 

a binary tree T and Q pointing to X, where X is not a link in that tree, the algorithm 

will triple traverse the tree and reach step W3 with P = X and Q = T. 

If a(T) = x 1 x 2 ... x 3 n is the resulting sequence of nodes in triple order, we have 

a(T) = T a(LLINK(T)) T a(RLINK(T)) T. Therefore, as Lindstrom observed, the three 

subsequences X1X4 ... X3n-2, X2X5 ••. X3n-l, X3X5 ... X3n each include every tree node 

just once. (Since XJ+l is either the parent or child of Xj, these subsequences visit the 

nodes in such a way that each is at most three links away from its predecessor. Section 

7.2.1 describes a general traversal scheme called prepostorder that has this property 

not only for binary trees but for trees in general.) 

22. This program uses the conventions of Programs T and S, with Qin rl6 and/or rl4. 

The old-fashioned MIX computer is not good at comparing index registers for equality, 

so variable R is omitted and the test "Q = R" is changed to "RLINK(Q) = P". 

01 U1 LD5 HEAD(LLINK) 1 Ul. Initialize. P +--- T. 

02 U2A J5Z DONE 1 Stop if P =A. 

03 U3 LD6 0, 5(LLINK) n+a-l U3. Look left. Q +--- LLINK(P). 

04 J6Z U6 n+a-l To U6 if Q =A. 

05 U4 CMP5 1,6(RLINK) 2n-2b U4. Search for thread. 

06 JE 5F 2n-2b Jump if RLINK(Q) = P. 

07 ENT4 0,6 2n-2b-a+ 1 rI4 +--- Q. 

08 LD6 1,6(RLINK) 2n-2b-a+l 

09 J6NZ U4 2n-2b-a+ 1 To U4 with Q +--- RLINK(Q) if it's=/= 0. 

10 U5 ST5 1,4(RLINK) a-l U5a. Insert thread. RLINK(Q) +--- P. 

11 U9 LD5 0,5(LLINK) a-l U9. Go to left. P +--- LLINK (P). 

12 JMP U3 a-l To U3. 

13 5H STZ 1,6(RLINK) a-l U5b. Remove thread. RLINK(Q) +---A. 

14 U6 JMP VISIT n U6. Inorder visit. 

15 U7 LD5 1,5(RLINK) n U7. Go to right or u.e:_ P +--- RLINK (P). 

16 U2 J5NZ U3 n U2. Done? To U3 if P =/=A. 

17 DONE ... 

The total running time is 2ln + 6a - 3 - l4b, where n is the number of nodes, a is 

the number of null RLINKs (hence a - 1 is the number of nonnull LLINKs), and bis the 

number of nodes on the tree's "right spine" T, RLINK(T), RLINK(RLINK(T)), etc. 

23. Insertion to the right: RLINKT(Q) +--- RLINKT(P), RLINK(P) +--- Q, RTAG(P) +--- 0, 

LLINK(Q) +--- A. Insertion to the left, assuming LLINK(P) = A: Set LLINK(P) +--- Q, 

LLINK(Q) +--- A, RLINK(Q) +--- P, RTAG(Q) +--- 1. Insertion to the left, between P and 

LLINK(P) =/=A: Set R +--- LLINK(P), LLINK(Q) +--- R, and then set R +--- RLINK(R) zero or 

more times until RTAG(R) = 1; finally set RLINK(R) +--- Q, LLINK(P) +--- Q, RLINK(Q) +--- P, 

RTAG(Q) +--- 1. 

(A more efficient algorithm for the last case can be used if we know a node F such 

that P = LLINK(F) or P = RLINK(F); assuming the latter, for example, we could set 

INFO(P) +-+ INFO(Q), RLINK(F) +--- Q, LLINK(Q) +--- P, RLINK(P) +--- Q, RTAG(P) +--- 1; this 

takes a fixed amount of time, but it is generally not recommended because it switches 

nodes around in memory.) 



2.3.1 ANSWERS TO EXERCISES 569 

24. No: 

A E 

E 

25. We first prove (b), by induction on the number of nodes in T, and similarly (c). 
Now (a) breaks into several cases; write T :::S1 T' if (i) holds, T :::S2 T' if (ii) holds, etc. 
Then T :::S 1 T' and T' :::S T" implies T :::S1 T"; T :::S2 T' and T' :::S T" implies T :::S2 T"; 
and the remaining two cases are treated by proving (a) by induction on the number of 
nodes in T. 

26. If the double order of Tis (u1, di), (u2, d2), ... , (u2n, d2n) where the u's are nodes 
and the d's are 1or2, form the "trace" of the tree (v1, s1), (v2, s2), ... , (v2n, s2n), where 
Vj = info(uj), and Sj = l(uj) or r(uj) according as dj = 1or2. Now T:::S T' if and only 
if the trace of T (as defined here) lexicographically precedes or equals the trace of T'. 
Formally, this means that we have either n ~ n' and ( Vj, Sj) = ( vj, sj) for 1 ~ j ~ n, 
or else there is a k for which ( Vj, Sj) = ( vj, sj) for 1 ~ j < k and either Vk --< v~ or 

I d I Vk = vk an Sk < sk. 

27. Rl. [Initialize.] Set P +--- HEAD, P' +--- HEAD'; these are the respective list heads of 
the given right-threaded binary trees. Go to R3. 

R2. [Check INFO.] If INFO(P) --< INFO(P'), terminate (T --< T'); if INFO(P) >
INFO (P'), terminate (T >- T'). 

R3. [Go to left.] If LLINK(P) = A = LLINK(P'), go to R4; if LLINK(P) = A =/= 
LLINK(P'), terminate (T --< T'); if LLINK(P) =/= A = LLINK(P'), terminate 
(T >- T'); otherwise set P +--- LLINK(P), P' +--- LLINK(P') and go to R2. 

R4. [End of tree?] If P = HEAD (or, equivalently, if P' = HEAD'), terminate 
(T is equivalent to T'). 

R5. [Go to right.] If RTAG(P) = 1 = RTAG(P'), set P +--- RLINK(P), P' +--- RLINK(P'), 
and go to R4. If RTAG(P) = 1 =/= RTAG(P'), terminate (T--< T'). If RTAG(P) =/= 
1 = RTAG(P'), terminate (T >- T'). Otherwise, set P +--- RLINK(P), P' +-
RLINK(P'), and go to R2. I 

To prove the validity of this algorithm (and therefore to understand how it works), 
one may show by induction on the size of the tree To that the following statement is 
valid: Starting at step R2 with P and P' pointing to the roots of two nonempty right
threaded binary trees To and T~, the algorithm will terminate if To and T~ are not 
equivalent, indicating whether To --< T~ or To >- T~; the algorithm will reach step R4 
if To and T~ are equivalent, with P and P' then pointing respectively to the successor 
nodes of To and T~ in symmetric order. 

28. Equivalent and similar. 

29. Prove by induction on the size of T that the following statement is valid: Starting 
at step C2 with P pointing to the root of a nonempty binary tree T and with Q pointing 
to a node that has empty left and right subtrees, the procedure will ultimately arrive 
at step C6 after setting INFO (Q) +--- INFO (P) and attaching copies of the left and right 
subtrees of NODE(P) to NODE(Q), and with P and Q pointing respectively to the preorder 
successor nodes of the trees T and NODE ( Q) . 



570 ANSWERS TO EXERCISES 2.3.1 

30. Assume that the pointer Tin (2) is LLINK(HEAD) in (10). 

Ll. [Initialize.] Set Q +---HEAD, RLINK(Q) +--- Q. 

L2. [Advance.] Set P +--- Q$. (See below.) 

L3. [Thread.] If RLINK(Q) = A, set RLINK(Q) +--- P, RTAG(Q) +--- 1; otherwise set 

RTAG(Q) +--- 0. If LLINK(P) = A, set LLINK(P) +--- Q, LTAG(P) +--- 1; otherwise 

set LTAG(P) +--- 0. 

L4. [Done?] If P =!= HEAD, set Q +--- P and return to L2. I 
Step L2 of this algorithm implies the activation of an inorder traversal coroutine 

like Algorithm T, with the additional proviso that Algorithm T visits HEAD after it has 

fully traversed the tree. This notation is a convenient simplification in the description 

of tree algorithms, since we need not repeat the stack mechanisms of Algorithm T over 

and over again. Of course Algorithm S cannot be used during step L2, since the tree 

hasn't been threaded yet. But the algorithm of exercise 21 can be used in step L2, 

and this provides us with a very pretty method that threads a tree without using any 

auxiliary stack. 

31. Xl. Set P +--- HEAD. 

X2. Set Q +--- P$ (using, say, Algorithm S, modified for a right-threaded tree). 

X3. If P =/=HEAD, set AVAIL-¢::: P. 

X4. If Q =!= HEAD, set P +--- Q and go back to X2. 

X5. Set LLINK(HEAD) +---A. 

Other solutions that decrease the length of the inner loop are clearly possible, although 

the order of the basic steps is somewhat critical. The stated procedure works because 

we never return a node to available storage until after Algorithm S has looked at both 

its LLINK and its RLINK; as observed in the text, each of these links is used precisely 

once during a complete tree traversal. 

32. RLINK(Q) +--- RLINK(P), SUC(Q) +--- SUC(P), SUC(P) +--- RLINK(P) +--- Q, PRED(Q) +--- P, 
PRED(SUC(Q)) +--- Q. 

33. Inserting NODE(Q) just to the left and below NODE(P) is quite simple: Set LLINKT(Q) 

+--- LLINKT(P), LLINK(P) +--- Q, LTAG(P) +--- 0, RLINK(Q) +---A. Insertion to the right is 

considerably harder, since it essentially requires finding *Q, which is of comparable 

difficulty to finding QU (see exercise 19); the node-moving technique discussed in ex

ercise 23 could perhaps be used. So general insertions are more difficult with this 

type of threading. But the insertions required by Algorithm C are not as difficult as 

insertions are in general, and in fact the copying process is slightly faster for this kind 
of threading: 

Cl. Set P +--- HEAD, Q +--- U, go to C4. (The assumptions and philosophy of 

Algorithm C in the text are being used throughout.) 

C2. If RLINK(P) =/= A, set R -¢::: AVAIL, LLINK(R) +--- LLINK(Q), LTAG(R) +--- 1, 

RLINK(R) +---A, RLINK(Q) +--- LLINK(Q) +--- R. 

C3. Set INFO (Q) +--- INFO (P). 

C4. If LTAG(P) = 0, set R -¢::: AVAIL, LLINK(R) +--- LLINK(Q), LTAG(R) +--- 1, 

RLINK(R) +---A, LLINK(Q) +--- R, LTAG(Q) +--- 0. 

C5. Set P +--- LLINK(P), Q +--- LLINK(Q). 

C6. If P =/=HEAD, go to C2. I 
The algorithm now seems almost too simple to be correct! 



2.3.2 ANSWERS TO EXERCISES 571 

Algorithm C for threaded or right-threaded binary trees takes slightly longer due 

to the extra time to calculate P*, Q* in step C5. 
It would be possible to thread RLINKs in the usual way or to put UP in RLINK(P), in 

conjunction with this copying method, by appropriately setting the values of RLINK (R) 

and RLINKT(Q) in steps C2 and C4. 

34. Al. Set Q +--- P, and then repeatedly set Q +--- RLINK(Q) zero or more times until 

RTAG(Q) = 1. 

A2. Set R +--- RLINK(Q). If LLINK(R) = P, set LLINK(R) +--- A. Otherwise set 

R +--- LL INK (R), then repeatedly set R +--- RLINK (R) zero or more times until 

RLINK(R) = P; then finally set RLINKT(R) +--- RLINKT(Q). (This step has 

removed NODE(P) and its subtrees from the original tree.) 

A3. Set RLINK(Q) +---HEAD, LLINK(HEAD) +--- P. I 

(The key to inventing and/or understanding this algorithm is the construction of good 

"before and after" diagrams.) 

36. No; see the answer to exercise l.2.l-15(e). 

37. If LLINK(P) = RLINK(P) =A in the representation (2), let LINK(P) =A; otherwise 

let LINK(P) = Q where NODE(Q) corresponds to NODE(LLINK(P)) and NODE(Q+1) to 

NODE(RLINK(P)). The condition LLINK(P) or RLINK(P) = A is represented by a 

sentinel in NODE(Q) or NODE(Q+1) respectively. This representation uses between n and 

2n - 1 memory positions; under the stated assumptions, ( 2) would require 18 words 

of memory, compared to 11 in the present scheme. Insertion and deletion operations 

are approximately of equal efficiency in either representation. But this representation 

is not quite as versatile in combination with other structures. 

SECTION 2.3.2 

1. If B is empty, F(B) is an empty forest. Otherwise, F(B) consists of a tree T plus 

the forest F(right(B)), where root(T) = root(B) and subtrees(T) = F(left(B)). 

2. The number of zeros in the binary notation is the number of decimal points in the 

decimal notation; the exact formula for the correspondence is 

l a101a2-10 Olak-1 ai.a2. · · · .ak +7 . . . , 

where 1 a denotes a ones in a row. 

3. Sort the Dewey decimal notations for the nodes lexicographically (from left to 

right, as in a dictionary), placing a shorter sequence ai. ···.akin front of its extensions 

ai. · · · .ak. · · · .ar for preorder, and behind its extensions for postorder. Thus, if we 

were sorting words instead of sequences of numbers, we would place the words cat, 

cataract in the usual dictionary order, to get preorder; we would reverse the order of 

initial subwords (cataract, cat), to get postorder. These rules are readily proved by 

induction on the size of the tree. 

4. True, by induction on the number of nodes. 

5. (a) Inorder. (b) Postorder. It is interesting to formulate rigorous induction proofs 

of the equivalence of these traversal algorithms. 

6. We have preorder(T) = preorder(T'), and postorder(T) = inorder(T'), even if T 

has nodes with only one child. The remaining two orders are not in any simple relation; 

for example, the root of T comes at the end in one case and about in the middle in the 

other. 



572 ANSWERS TO EXERCISES 2.3.2 

7. (a) Yes; (b) no; (c) no; (d) yes. Note that reverse preorder of a forest equals 

postorder of the left-right reversed forest (in the sense of mirror reflection). 

8. T-j_ T' means that either info (root(T)) -<info (root(T')), or these info's are equal 

and the following condition holds: Suppose the subtrees of root(T) are T1, ... , Tn and 

the subtrees of root(T') are T{, ... , T~,, and let k > 0 be as large as possible such that 

Tj is equivalent to Tj for 1;:;. j ~ k. Then either k = n or k < n and Tk+I -< T~+i · 

9. The number of nonterminal nodes is one less than the number of right links that 

are A, in a nonempty forest, because the null right links correspond to the rightmost 

child of each nonterminal node, and also to the root of the rightmost tree in the forest. 

(This fact gives another proof of exercise 2.3.1-14, since the number of null left links 

is obviously equal to the number of terminal nodes.) 

10. The forests are similar if and only if n = n' and d( Uj) = d( uj), for 1 ~ j ~ n; they 
are equivalent if and only if in addition info( Uj) = info( uj), 1 < j ~ n. The proof is 

similar to the previous proof, by generalizing Lemma 2.3.lP; let f(u) = d(u) -1. 

11. 

x 2 

12. If INFO(Q1) =/= 0: Set R +--- COPY(P1); then if TYPE(P2) = 0 and INFO(P2) =/= 2, 

set R +--- TREE("t" ,TREE(INFO(P2) -1)); if TYPE(P2) =/= 0, set R +--- TREE("t" ,R, 
TREE("-" ,COPY(P2) ,TREE(l))); then set Q1 +--- MULT(Q1,MULT(COPY(P2) ,R)). 

If INFO(Q) =!= 0: Set Q +--TREE("x",MULT(TREE("ln",COPY(P1)),Q),TREE("t", 
COPY(P1),COPY(P2))). 

Finally go to DIFF [4]. 

13. The following program implements Algorithm 2.3.lC with rll P, rl2 Q, 

rl3 - R, and with appropriate changes to the initialization and termination conditions: 

064 ST3 6F ( 0 : 2) Save contents of r 13, r 12. 
065 ST2 7F(0:2) Cl. Initialize. 
066 ENT2 8F Start by creating NODE(U) with 
067 JMP 1F RLINK (U) = A. 
068 8H CON 
069 4H LD1 
070 1H LD3 
071 J3Z 
072 LDA 
073 STA 
074 ST3 
075 ENNA 
076 STA 

0 Zero constant for initialization 
0,1(LLINK) Set P +--- LLINK(P) = P*. 
AVAIL 
OVERFLOW 
0 ,3(LLINK) 
AVAIL 

R -¢::: AVAIL. 

0,2(LLINK) LLINK(Q) +--- R. 
0,2 
0,3(RLINKT) RLINK(R) +--- Q, RTAG(R) +--- 1. 



2.3.2 

077 INCA 8B 

078 ENT2 0,3 

079 JAZ C3 

080 C2 LDA 0,1 

081 JAN C3 

082 LD3 AVAIL 

083 J3Z OVERFLOW 

084 LDA 0,3(LLINK) 

085 STA AVAIL 

086 LDA 0, 2 (RLINKT) 

087 STA 0, 3 (RLINKT) 

088 ST3 0, 2 (RLINKT) 

089 C3 LDA 1,1 

090 STA 1,2 

091 LDA 0,1(TYPE) 

092 STA 0,2(TYPE) 

093 C4 LDA 0, 1(LLINK) 

094 JANZ 4B 

095 STZ 0,2(LLINK) 

096 C5 LD2N 0,2(RLINKT) 

097 LD1 0, 1 (RLINK) 

098 J2P C5 
099 ENN2 0,2 

100 C6 J2NZ C2 

101 LD1 8B(LLINK) 

102 6H ENT3 * 
103 7H ENT2 * 

ANSWERS TO EXERCISES 573 

rA +--- LOC(init node) - Q. 

Set Q +--- R = Q*. 
To C3, the first time. 

C2. Anything to right? 
Jump if RTAG(P) = 1. 
R -¢::: AVAIL. 

Set RLINKT(R) +--- RLINKT(Q). 

RLINK(Q) +--- R, RTAG(Q) +--- 0. 

C3. Copy INFO. 

INFO field copied. 

TYPE field copied. 
C4. Anything to left? 
Jump if LLINK(P) =/=A. 

LLINK(Q) +---A. 
C5. Advance. Q +--- -RLINKT(Q). 

P +--- RLINK(P). 

Jump if RTAG(Q) was 1. 
Q +--- -Q. 

C6. Test if complete. 
rll +---location of first node created. 

Restore index registers. 

I 
14. Let a be the number of nonterminal (operator) nodes copied. The number of 

executions of the various lines in the previous program is as follows: 064-067, 1; 069, a; 

070-079, a+ 1; 080-081, n - 1; 082-088, n - 1 - a; 089-094, n; 095, n - a; 096-098, 

n + 1; 099-100, n - a; 101-103, 1. The total time is (36n + 22)u; we use about 203 of 

the time to get available nodes, 403 to traverse, and 403 to copy the INFO and LINK 

information. 

15. Comments are left to the reader. 

218 DIV LDA 1,6 231 ENTA UPARROW 

219 JAZ 1F 232 1H ENTX * 
220 JMP COPYP2 233 JMP TREE2 

221 ENTA SLASH 234 ST1 1F(0:2) 

222 ENTX 0,6 235 JMP COPYP1 

223 JMP TREE2 236 ENTA 0,1 

224 ENT6 0,1 237 ENT! 0,5 

225 1H LDA 1,5 238 JMP MULT 

226 JAZ SUB 239 ENTX 0,1 

227 JMP COPYP2 240 1H ENT! * 
228 ST1 1F(0:2) 241 ENTA SLASH 

229 ENTA CON2 242 JMP TREE2 

230 JMP TREEO 243 ENT5 0,1 

244 JMP SUB I 



574 ANSWERS TO EXERCISES 2.3.2 

16. Comments are left to the reader. 

245 PWR LDA 1,6 263 JMP TREEO 281 ENTA LOG 
246 JAZ 4F 264 1H ENTX * 282 JMP TREE! 
241 JMP COPYP1 265 ENTA MINUS 283 ENTA 0,1 
248 ST1 R(0:2) 266 JMP TREE2 284 ENT! 0,5 
249 LDA 0,3(TYPE). 267 5H LDX R(0:2) 285 JMP MULT 
250 JANZ 2F 268 ENTA UPARROW 286 ST1 1F(0:2) 
251 LDA 1,3 269 JMP TREE2 287 JMP COPYP1 
252 DECA 2 270 ST1 R(0:2) 288 ST1 2F(0:2) 
253 JAZ 3F 271 3H JMP COPYP2 289 JMP COPYP2 
254 INCA 1 272 ENTA 0,1 290 2H ENTX * 
255 STA CON0+1 273 R ENT! * 291 ENTA UPARROW 
256 ENTA CONO 274 JMP MULT 292 JMP TREE2 
257 JMP TREEO 275 ENTA 0,6 293 1H ENTX * 
258 STZ CON0+1 276 JMP MULT 294 ENTA TIMES 
259 JMP 5F 277 ENT6 0,1 295 JMP TREE2 
260 2H JMP COPYP2 278 4H LDA 1,5 296 ENT5 0,1 
261 ST1 1F(0:2) 279 JAZ ADD 297 JMP ADD I 
262 ENTA CON! 280 JMP COPYP1 

17. References to early work on such problems can be found in a survey article by 
J. Sammet, CACM 9 (1966), 555-569. 

18. First set LL INK [j] +--- RLINK [j] +--- j for all j, so that each node is in a circular 
list of length 1. Then for j = n, n - 1, ... , 1 (in this order), if PARENT[j] = 0 set 
r +--- j, otherwise insert the circular list starting with j into the circular list starting with 
PARENT [j] as follows: k +--- PARENT [j], l +--- RLINK [k], i +--- LLINK [j], LLINK [j] +--- k, 

RLINK[k] +--- j, LLINK[l] +--- i, RLINK[i] +--- l. This works because (a) each nonroot 
node is always preceded by its parent or by a descendant of its parent; (b) nodes of 
each family appear in their parent's list, in order of location; ( c) preorder is the unique 
order satisfying (a) and (b). 

20. If u is an ancestor of v, it is immediate by induction that u precedes v in preorder 
and follows v in postorder. Conversely, suppose u precedes v in preorder and follows 
v in postorder; we must show that u is an ancestor of v. This is clear if u is the root 
of the first tree. If u is another node of the first tree, v must be also, since u follows v 
in postorder; so induction applies. Similarly if u is not in the first tree, v must not be 
either, since u precedes v in preorder. (This exercise also follows easily from the result 
of exercise 3. It gives us a quick test for ancestor hood, if we know each node's position 
in preorder and postorder.) 

21. If NODE(P) is a binary operator, pointers to its two operands are P1 = LLINK(P) 
and P2 = RLINK(P1) = $P. Algorithm D makes use of the fact that P2$ = P, so 
that RLINK(P1) may be changed to Q1, a pointer to the derivative of NODE(P1); then 
RLINK(P1) is reset later in step D3. For ternary operations, we would have, say, 
P1 = LLINK(P), P2 = RLINK(P1), P3 = RLINK(P2) = $P, so it is difficult to generalize 
the binary trick. After computing the derivative Q1, we could set RLINK(P1) +--- Q1 tem
porarily, and then after computing the next derivative Q2 we could set RLINK (Q2) +--- Q1 
and RLINK(P2) +--- Q2 and r~set RLINK(P1) +--- P2. But this is certainly inelegant, and it 
becomes progressively more so as the degree of the operator becomes higher. Therefore 
the device of temporarily changing RLINK(P1) in Algorithm D is definitely a trick, 



2.3.3 ANSWERS TO EXERCISES 575 

not a technique. A more aesthetic way to control a differentiation process, because it 
generalizes to operators of higher degree and does not rely on isolated tricks, can be 
based on Algorithm 2.3.3F; see exercise 2.3.3-3. 

22. From the definition it follows immediately that the relation is transitive; that is, 
if T ~ T' and T' ~ T" then T ~ T". (In fact the relation is easily seen to be a partial 
ordering.) If we let f be the function taking nodes into themselves, clearly l ( T) ~ T 
and r(T) ~ T. Therefore if T ~ l(T') or T ~ r(T') we must have T ~ T'. 

Suppose f1 and fr are functions that respectively show l(T) ~ l(T') and r(T) ~ 
r(T'). Let f(u) = f1(u) if u is in l(T), f(u) = root(T') if u is root(T), otherwise 
f(u) = fr(u). Now it follows easily that f shows T ~ T'; for example, if we let r'(T) 
denote r(T) \ root(T) we have preorder(T) = root(T) preorder(l(T)) preorder(r' (T) ); 
preorder(T') = f(root(T)) preorder(l(T')) preorder(r'(T')). 

The converse does not hold: Consider the subtrees with roots band b' in Fig. 25. 

SECTION 2.3.3 

1. Yes, we can reconstruct them just as (3) is deduced from (4), but interchanging 
LTAG and RTAG, LLINK and RLINK, and using a queue instead of a stack. 

2. Make the following changes in Algorithm F: Step Fl, change to "last node of the 
forest in preorder." Step F2, change "f(xd), ... , f(x1)" to "f(x1), ... , f(xd)" in two 
places. Step F4, "If P is the first node in preorder, terminate the algorithm. (Then the 
stack contains f (root (T1)), ... , f (root ( T rn)), from top to bottom, where T1, ... , T rn are 
the trees of the given forest, from left to right.) Otherwise set P to its predecessor in 
preorder (P +--- P - 1 in the given representation), and return to F2." 

3. In step Dl, also set S +--- A. (S is a link variable that links to the top of the 
stack.) Step D2 becomes, for example, "If NODE(P) denotes a unary operator, set 
Q +--- S, S +--- RLINK(Q), P1 +--- LLINK(P); if it denotes a binary operator, set Q +--- S, 
Q1 +--- RLINK(Q), S +--- RLINK(Q1), P1 +--- LLINK(P), P2 +--- RLINK(P1). Then perform 
DIFF[TYPE(P)]." Step D3 becomes "Set RLINK(Q) +--- S, S +--- Q." Step D4 becomes 
"Set P +--- P$." The operation LLINK(DY) +--- Q may be avoided in step D5 if we assume 
that S LL INK (DY). This technique clearly generalizes to ternary and higher-order 
operators. 

4. A representation like ( 10) takes n - m LLINKs and n + ( n - m) RLINKs. The 
difference in total number of links is n - 2m between the two forms of representation. 
Arrangement ( 10) is superior when the LLINK and INFO fields require about the same 
amount of space in a node and when m is rather large, namely when the nonterminal 
nodes have rather large degrees. 

5. It would certainly be silly to include threaded RLINKs, since an RLINK thread just 
points to PARENT anyway. Threaded LLINKs as in 2.3.2-(4) would be useful if it is 
necessary to move leftward in the tree, for example if we wanted to traverse a tree in 
reverse postorder, or in family order; but these operations are not significantly harder 
without threaded LLINKs unless the nodes tend to have very high degrees. 

6. Ll. Set P +---FIRST, FIRST +---A. 

L2. If P = A, terminate. Otherwise set Q +--- RLINK (P). 

L3. If PARENT(P) = A, set RLINK(P) +--- FIRST, FIRST +--- P; otherwise set R +-
PARENT(P), RLINK(P) +--- LCHILD(R), LCHILD(R) +--- P. 

L4. Set P +--- Q and return to L2. I 



576 ANSWERS TO EXERCISES 2.3.3 

7. {1,5}{2,3,4,7}{6,8,9}. 

8. Perform step E3 of Algorithm E, then test if j = k. 

9. PARENT [k]: 5 0 2 2 0 8 2 2 8 
k : 1 2 3 4 5 6 7 8 9 

~ 
10. One idea is to set PARENT of each root node to the negative of the number of 

nodes in its tree (these values being easily kept up to date); then if I PARENT [j] I > 
I PARENT [k] I in step E4, the roles of j and k are interchanged. This technique (due to 

M. D. Mcilroy) ensures that each operation takes O(logn) steps. 

For still more speed, we can use the following suggestion due to Alan Tritter: In 

step E4, set PARENT [x] +--- k for all values x -=/= k that were encountered in step E3. 

This makes an extra pass up the trees, but it collapses them so that future searches 

are faster. (See Section 7.4.1.) 

11. It suffices to define the transformation that is done for each input (P, j, Q, k): 

Tl. If PARENT(P) -=/=A, set j +--- j + DELTA(P), P +--- PARENT(P), and repeat this 

step. 

T2. If PARENT(Q) -=/= A, set k +--- k + DELTA(Q), Q +--- PARENT(Q), and repeat this 

step. 

T3. If P = Q, check that j = k (otherwise the input erroneously contains con

tradictory equivalences). If P -=/= Q, set DELTA(Q) +--- j - k, PARENT(Q) +--- P, 

LBD(P) +--- min(LBD(P), LBD(Q) + DELTA(Q)), and UBD(P) +--- max(UBD(P), 

UBD(Q) + DELTA(Q) ). I 

Note: It is possible to allow the "ARRAY X [l :u]" declarations to occur intermixed with 

equivalences, or to allow assignment of certain addresses of variables before others are 

equivalenced to them, etc., under suitable conditions that are not difficult to under

stand. For further development of this algorithm, see CACM 7 (1964), 301-303, 506. 

12. (a) Yes. (If this condition is not required, it would be possible to avoid the loops 

on S that appear in steps A2 and A9.) (b) Yes. 

13. The crucial fact is that the UP chain leading upward from P always mentions the 

same variables and the same exponents for these variables as the UP chain leading 

upward from Q, except that the latter chain may include additional steps for variables 

with exponent zero. (This condition holds throughout most of the algorithm, except 

during the execution of steps A9 and AlO.) Now we get to step A8 either from A3 or 

from AlO, and in each case it was verified that EXP (Q) -=/= 0. Therefore EXP (P) -=/= 0, 

and in particular it follows that P -=/= A, Q -=/= A, UP(P) -=/= A, UP(Q) -=/= A; the result 

stated in the exercise now follows. Thus the proof depends on showing that the UP 

chain condition stated above is preserved by the actions of the algorithm. 

16. We prove (by induction. on the number of nodes in a single tree T) that if P is 

a pointer to T, and if the stack is initially empty, steps F2 through F 4 will end with 

the single value f (root( T)) on the stack. This is true for n = 1. If n > 1, there are 



2.3.3 ANSWERS TO EXERCISES 577 

0 < d = DEGREE(root(T)) subtrees T1 , ... , Td; by induction and the nature of a stack, 

and since postorder consists of T1 , ... , Td followed by root(T), the algorithm computes 

f(T1), ... , f(Td), and then f(root(T)), as desired. The validity of Algorithm F for 

forests follows. 

17. G 1. Set the stack empty, and let P point to the root of the tree (the last node in 

postorder). Evaluate f(NODE(P) ). 

G2. Push DEGREE(P) copies of f(NODE(P)) onto the stack. 

G3. If P is the first node in postorder, terminate the algorithm. Otherwise set P 

to its predecessor in postorder (this would be simply P +--- P - 1 in (9) ). 

G4. Evaluate f(NODE(P)) using the value at the top of the stack, which is equal 

to f(NODE(PARENT(P)) ). Pop this value off the stack, and return to G2. I 

Note: An algorithm analogous to this one can be based on preorder instead of postorder 

as in exercise 2. In fact, family order or level order could be used; in the latter case we 

would use a queue instead of a stack. 

18. The INFO! and RLINK tables, together with the suggestion for computing LTAG in 

the text, give us the equivalent of a binary tree represented in the usual manner. The 

idea is to traverse this tree in postorder, counting degrees as we go: 

Pl. Let R, D, and I be stacks that are initially empty; then set R-¢::: n + 1, D -¢::: 0, 

j +--- 0, k +--- 0. 

P2. If top(R) > j + 1, go to P5. (If an LTAG field were present, we could have 

tested LTAG [j] = 0 instead of top(R) > j + 1.) 

P3. If I is empty, terminate the algorithm; otherwise set i -¢::: I, k +--- k + 1, 

INF02 [k] +--- INFO [i], DEGREE [k] -¢::: D. 

P4. If RLINK [i] = 0 go to P3; otherwise delete the top of R (which will equal 

RLINK [i] ). 

P5. Set top(D) +--- top(D) + 1, j +--- j + 1, I -¢::: j, D -¢::: 0, and if RLINK [j] =/= 0 set 

R-¢::: RLINK [j]. Go to P2. I 

19. (a) This is equivalent to saying that SCOPE links do not cross each other. (b) The 

first tree of the forest contains d1 + 1 elements, and we can proceed by induction. 

(c) The condition of (a) is preserved when we take minima. 

Notes: By exercise 2.3.2-20, it follows that did2 ... dn can also be interpreted in 

terms of inversions: If the kth node in postorder is the Pk th node in preorder, then dk 

is the number of elements > k that appear to the left of k in P1P2 ... Pn. 

A similar scheme, in which we list the number of descendants of each node in 

postorder of the forest, leads to sequences of numbers c1c2 ... Cn characterized by the 

properties (i) 0 :; Ck < k and (ii) k ~ j > k - Ck implies j - Cj ~ k - Ck. Algorithms 

based on such sequences have been investigated by J. M. Pallo, Comp. J. 29 (1986), 

171-175. Notice that Ck is the size of the left subtree of the kth node in symmetric 

order of the corresponding binary tree. We can also interpret dk as the size of the right 

subtree of the kth node in symmetric order of a suitable binary tree, namely the binary 

tree that corresponds to the given forest by the dual method of exercise 2.3.2-5. 

The relation dk :; d~ for 1 :; k :; n defines an interesting lattice ordering of forests 

and binary trees, first introduced in another way by D. Tamari [These (Paris: 1951)]; 

see exercise 6.2.3-32. 



578 ANSWERS TO EXERCISES 2.3.4.1 

SECTION 2.3.4.1 
1. (B, A, C, D, B), (B, A, C, D, E, B), (B, D, C, A, B), (B, D, E, B), (B, E, D, B), 

(B,E,D,C,A,B). 

2. Let (Vo, V1 , ... , Vn) be a path of smallest possible length from V to V'. If now 

Vj = Vk for some j < k, then (Vo, ... , Vj, Vk+1, ... , Vn) would be a shorter path. 

3. (The fundamental path 'traverses e3 and e4 once, but cycle C2 traverses them -1 

times, giving a net total of zero.) Traverse the following edges: ei, e2, e5, e1, eg, eio, 

e11, ei2, ei4. 

4. If not, let G" be the subgraph of G' obtained by deleting each edge ej for which 

Ej = 0. Then G" is a finite graph that has no cycles and at least one edge, so by 

the proof of Theorem A there is at least one vertex, V, that is adjacent to exactly one 

other vertex, V'. Let ej be the edge joining V to V'; then Kirchhoff's equation ( i) at 

vertex V is Ej = 0, contradicting the definition of G". 

5. A = 1 + Es, B = 1 + Es - E2, C = 1 + Es, D = 1 + Es - E5, E = 1 + E11 - E21, 

F = 1 + E~'3 + E11 - E21, G = 1 + E~'3 , H = E11 - E21, J = E11, K = E~'9 + E2o, 

L = Ei1 + E~'9 + E2o - E21, P = Ei1 + E2o - E21, Q = E2o, R = Ei1 - E21, S = E25· 

Note: In this case it is also possible to solve for E2, E5, ... , E25 in terms of A, B, ... , S; 

hence there are nine independent solutions, explaining why we eliminated six variables 

in Eq. 1.3.3-(8). 

6. (The following solution is based on the idea that we may print out each edge that 

does not make a cycle with the preceding edges.) Use Algorithm 2.3.3E, with each pair 

(ai, bi) representing ai bi in the notation of that algorithm. The only change is to 

print ( ai, bi) if j =!= k in step E4. 
To show that this algorithm is valid, we must prove that (a) the algorithm prints 

out no edges that form a cycle, and (b) if G contains at least one free subtree, the 

algorithm prints out n - 1 edges. Define j k if there exists a path from Vj to Vk 

or if j = k. This is clearly an equivalence relation, and moreover j _ k if and only 

if this relation can be deduced from the equivalences ai =bi, ... , arn brn. Now 

(a) holds because the algorithm prints out no edges that form a cycle with previously 

printed edges; (b) is true because PARENT [k] = 0 for precisely one k if all vertices are 

equivalent. 
A more efficient algorithm can, however, be based on depth-first search; see 

Algorithm 2.3.5A and Section 7.4.1. 

7. Fundamental cycles: Co = eo + ei + e4 + eg (fundamental path is ei + e4 + eg); 

C5 = e5 + e3 + e2; CB = e5 - e2 + e4; C1 = e1 - e4 - e3; Cs = es - eg - e4 - e3. 

Therefore we find Ei = 1, E2 = E5 - EB, E3 = E5 - E1 - Es, E4 = 1 +EB -E1 - Es, 

Eg = 1- Es. 

8. Each step in the reduction process combines two arrows ei and ej that start at 

the same box, and it suffices to prove that such steps can be reversed. Thus we are 

given the value of ei + ej after combination, and we must assign consistent values to ei 

and ej before the combination. There are three essentially different situations: 

Case 1 Case 2 Case 3 

Before 



2.3.4.1 

After 

ANSWERS TO EXERCISES 

a' 
a" 

{3' 
{3" 

579 

Here A, B, and C stand for vertices or supervertices, and the a's and /3's stand for the 
other given flows besides ei + ej; these flows may each be distributed among several 
edges, although only one is shown. In Case 1 (ei and ej lead to the same box), we may 
choose ei arbitrarily, then ej +--- ( ei + ej) - ei. In Case 2 ( ei and ej lead to different 
boxes), we must set ei +--- (3' - a', ej +--- /3" - a". In Case 3 (ei is a loop but ej is 
not), we must set e j +--- (3' - a', ei +--- ( ei + e j) - e j. In each case we have reversed the 
combination step as desired. 

The result of this exercise essentially proves that the number of fundamental cycles 
in the reduced fl.ow chart is the minimum number of vertex flows that must be measured 
to determine all the others. In the given example, the reduced fl.ow chart reveals that 
only three vertex flows (e.g., a, c, d) need to be measured, while the original chart 
of exercise 7 has four independent edge flows. We save one measurement every time 
Case 1 occurs during the reduction. 

A similar reduction procedure could be based on combining the arrows fl.owing into 
a given box, instead of those fl.owing out. It can be shown that this would yield the 
same reduced fl.ow chart, except that the supervertices would contain different names. 

The construction in this exercise is based on ideas due to Armen Nahapetian and 
F. Stevenson. For further comments, see D. E. Knuth and F. Stevenson, BIT 13 (1973), 
313-322. 

9. Each edge from a vertex to itself becomes a "fundamental cycle" all by itself. If 
there are k + 1 edges e, e', ... , e(k) between vertices V and V', make k fundamental 
cycles e' ± e, ... , e(k) ± e (choosing + or - according as the edges go in the opposite 
or the same direction), and then proceed as if only edge e were present. 

Actually this situation would be much simpler conceptually if we had defined a 
graph in such a way that multiple edges are allowed between vertices, and edges are 
allowed from a vertex to itself; paths and cycles would be defined in terms of edges 
instead of vertices. Such a definition is, in fact, made for directed graphs in Section 
2.3.4.2. 

10. If the terminals have all been connected together, the corresponding graph must 
be connected in the technical sense. A minimum number of wires will involve no cycles, 
so we must have a free tree. By Theorem A, a free tree contains n - 1 wires, and a 
graph with n vertices and n - 1 edges is a free tree if and only if it is connected. 

11. It is sufficient to prove that when n > 1 and c(n - 1, n) is the minimum of the 
c(i, n), there exists at least one minimum cost tree in which Tn-1 is wired to Tn. (For, 
any minimum cost tree with n > 1 terminals and with Tn-1 wired to Tn must also be a 
minimum cost tree with n - l terminals if we regard Tn-1 and Tn as "common", using 
the convention stated in the algorithm.) 

To prove the statement above, suppose we have a minimum cost tree in which 
Tn-l is not wired to Tn. If we add the wire Tn-l - Tn we obtain a cycle, and any 
of the other wires in that cycle may be removed; removing the other wire touching Tn 
gives us another tree, whose total cost is not greater than the original, and Tn-1 - Tn 
appears in that tree. 



580 ANSWERS TO EXERCISES 2.3.4.1 

12. Keep two auxiliary tables, a( i) and b( i), for 1 < i < n, representing the fact that 

the cheapest connection from Ti to a chosen terminal is to Tb(i)i and its cost is a(i); 

initially a( i) = c( i, n) and b( i) = n. Then do the following operation n - 1 times: Find 

i such that a(i) = min1:-:;j<n a(j); connect Ti to Tb(i)i for 1 < j < n if c(i, j) < a(j) set 

a(j) +-- c(i,j) and b(j) +--i; and set a(i) +-- oo. Here c(i,j) means c(j,i) when j < i. 
(It is somewhat more ~ffi.cient to avoid the use of oo, keeping instead a one

way linked list of those j that have not yet been chosen. With or without this 

straightforward improvement, the algorithm takes O(n2
) operations.) See also E. W. 

Dijkstra, Proc. Nederl. Akad. Wetensch. A63 (1960), 196-199; D. E. Knuth, The 

Stanford GraphBase (New York: ACM Press, 1993), 460-497. Significantly better 

algorithms to find a minimum-cost spanning tree are discussed in Section 7.5.4. 

13. If there is no path from Vi to Vj, for some i -=/= j, then no product of the 

transpositions will move i to j. So if all permutations are generated, the graph must be 

connected. Conversely if it is connected, remove edges if necessary until we have a tree. 

Then renumber the vertices so that Vn is adjacent to only one other vertex, namely 

Vn-l· (See the proof of Theorem A.) Now the transpositions other than (n-1 n) form 

a tree with n - 1 vertices; so by induction if 7r is any permutation of {1, 2, ... , n} that 

leaves n fixed, 7r can be written as a product of those transpositions. If 7r moves n to j 

then 7r(j n-l)(n-l n) = p fixes n; hence 7r = p(n-l n)(j n-l) can be written as a 

product of the given transpositions. 

SECTION 2.3.4.2 

1. Let ( ei, ... , en) be an oriented path of smallest possible length from V to V'. If 

now init( ej) = init( ek) for j < k, ( ei, ... , ej-1, ek, ... , en) would be a shorter path; a 

similar argument applies if fin( ej) = fin( ek) for j < k. Hence ( ei, ... , en) is simple. 

2. Those cycles in which all signs are the same: Co, C8 , C~'3 , C17 , C~~' C20 . 

3. For example, use three vertices A, B, C, with arcs from A to Band A to C. 

4. If there are no oriented cycles, Algorithm 2.2.3T topologically sorts G. If there 

is an oriented cycle, topological sorting is clearly impossible. (Depending on how this 

exercise is interpreted, oriented cycles of length 1 could be excluded from consideration.) 

5. Let k be the smallest integer such that fin(ek) = init(ej) for some j < k. Then 

( eJi ... , ek) is an oriented cycle. 

6. False (on a technicality), just because there may be several different arcs from one 

vertex to another. 

7. True for finite directed graphs: If we start at any vertex V and follow the only 

possible oriented path, we never encounter any vertex twice, so we must eventually 

reach the vertex R (the only vertex with no successor). For infinite directed graphs the 

result is obviously false since we might have vertices R, V1, Vi, Vi, ... and arcs from Vj 

to Vj+i for j > 1. 

9. All arcs point upward. G 

c 

E D A B 

J N L 



2.3.4.2 ANSWERS TO EXERCISES 581 

10. G 1. Set k +-- P[j], P[j] +-- 0. 

G2. If k = 0, stop; otherwise set m +-- P[k], P[k] +-- j, j +-- k, k +-- m, and repeat 
step G2. I 

11. This algorithm combines Algorithm 2.3.3E with the method of the preceding 
exercise, so that all oriented trees have arcs that correspond to actual arcs in the 
directed graph; S[j] is an auxiliary table that tells whether an arc goes from j to P[j] 
(S[j] = +1) or from P[j] to j (S[j] = -1). Initially P[l] = · · · = P[n] = 0. The 
following steps may be used to process each arc (a, b): 

Cl. Set j +--a, k +-- P[j], P[j] +-- 0, s +-- S[j]. 
C2. If k = 0, go to C3; otherwise set m +-- P[k], t +-- S[k], P[k] +-- j, S[k] +-- -s, 

s +-- t, j +-- k, k +-- m, and repeat step C2. 

C3. (Now a appears as the root of its tree.) Set j +-- b, and then if P[j] =!= 0 
repeatedly set j +-- P[j] until P[j] = 0. 

C4. If j =a, go to C5; otherwise set P[a] +-- b, S[a] +-- +1, print (a, b) as an arc 
belonging to the free subtree, and terminate. 

C5. Print "CYCLE" followed by "(a, b)". 

C6. If P[b] = 0 terminate. Otherwise if S[b] = +1, print "+(b, P[b])", else print 
"-(P[b], b)"; set b +-- P[b] and repeat step C6. I 

Note: This algorithm will take at most 0 ( m log n) steps if we incorporate the suggestion 
of Mcilroy in answer 2.3.3-10. But there is a much better solution that needs only O(m) 
steps: Use depth-first search to construct a "palm tree," with one fundamental cycle 
for each "frond" [R. E. Tarjan, SICOMP 1 (1972), 146-150]. 

12. It equals the in-degree; the out-degree of each vertex can be only 0 or 1. 

13. Define a sequence of oriented subtrees of G as follows: Go is the vertex R alone. 
Gk+1 is Gk, plus any vertex V of G that is not in Gk but for which there is an arc from 
V to V' where V' is in Gk, plus one such arc e[V] for each such vertex. It is immediate 
by induction that Gk is an oriented tree for all k > 0, and that if there is an oriented 
path of length k from V to R in G then V is in Gk. Therefore Goe,, the set of all V 
and e[V] in any of the Gk, is the desired oriented subtree of G. 

14. (e12, e2o, eoo, eb1, elo, eo1, e~2, e22, e21), (e12, e2o, eoo, eb1, e~2, e22, e21, elo, eo1), 

(e12, e2o, eb1, e10, eoo, eo1, e~2, e22, e21), (e12, e2o, eb1, e~2, e22, e21, elo, eoo, eo1), 
(e12,e22,e20,eoo,eb1,e10,eo1,e~2,e21), (e12,e22,e20,eoo,eb1,e~2,e21,e10,eo1), 
(e12, e22, e2o, eb1, e10, eoo, eo1, e~2, e21), (e12, e22, e2o, eb1, e~2, e21, e10, eoo, eo1), 

in lexicographic order; the eight possibilities come from the independent choices of 
which of e00 or eb1, e10 or e~ 2 , e20 or e22 , should precede the other. 

15. True: If it is connected and balanced and has more than one vertex, it has an 
Eulerian circuit that touches all the vertices. 

16. Consider the directed graph G with vertices V1 , ... , V13 and with an arc from Vj 
to Vk for each k in pile j. Winning the game is equivalent to tracing out an Eulerian 
circuit in this directed graph (for if the game is won the final card turned up must come 
from the center; this graph is balanced). Now if the game is won, the stated digraph is 
an oriented subtree by Lemma E. Conversely if the stated digraph is an oriented tree, 
the game is won by Theorem D. 

17. 1
1
3 • This answer can be obtained, as the author first obtained it, by laborious enu

meration of oriented trees of special types and the application of generating functions, 
etc., based on the methods of Section 2.3.4.4; it also follows easily from the following 



582 ANSWERS TO EXERCISES 2.3.4.2 

simple, direct proof: Define an order for turning up all cards of the deck, as follows: 

Obey the rules of the game until getting stuck, then "cheat" by turning up the first 

available card (find the first pile that is not empty, going clockwise from pile 1) and 

continue as before, until eventually all cards have been turned up. The cards in the 

order of turning up are in completely random order (since the value of a card need 

not be specified until after it is turned up). So the problem is just to calculate the 

probability that in a randomly shuffled deck the last card is a king. More generally the 

probability that k cards are still face down when the game is over is the probability 

that the last king in a random shuffle is followed by k cards, namely 4! (51;k) !~i. Hence 

a person playing this game without cheating will turn up an average of exactly 42.4 

cards per game. Note: Similarly, it can be shown that the probability that the player 

will have to "cheat" k times in the process described above is exactly given by the 

Stirling number [k~l ]/13!. (See Section Eq. 1.2.10-(9) and exercise 1.2.10-7; the case 

of a more general card deck is considered in exercise 1.2.10-18.) 

18. (a) If there is a cycle (Vo, V1 , ... , Vk), where necessarily 3 ~ k < n, the sum of the 

k rows of A corresponding to the k edges of this cycle, with appropriate signs, is a row 

of zeros; so if G is not a free tree the determinant of Ao is zero. 

But if G is a free tree we may regard it as an ordered tree with root Vo, and we 

can rearrange the rows and columns of Ao so that columns are in preorder and so that 

the kth row corresponds to the edge from the kth vertex (column) to its parent. Then 

the matrix is triangular with ±l's on the diagonal, so the determinant is ±1. 

(b) By the Binet-Cauchy formula (exercise 1.2.3-46) we have 

det A~Ao = L (det Ai1 ... in)
2 

l'.Si1<··-<in'.Srn 

where Ai1 .. . in represents a matrix consisting of rows ii, ... , in of Ao (thus corresponding 

to a choice of n edges of G). The result now follows from (a). 

[See S. Okada and R. Onodera, Bull. Yamagata Univ. 2 (1952), 89-117.] 

19. (a) The conditions a00 = 0 and ajj = 1 are just conditions (a), (b) of the definition 

of oriented tree. If G is not an oriented tree there is an oriented cycle (by exercise 7), 

and the rows of Ao corresponding to the vertices in this oriented cycle will sum to a 

row of zeros; hence det Ao = 0. If G is an oriented tree, assign an arbitrary order to the 

children of each family and regard Gas an ordered tree. Now permute rows and columns 

of Ao until they correspond to preorder of the vertices. Since the same permutation 

has been applied to the rows as to the columns, the determinant is unchanged; and the 

resulting matrix is triangular with + 1 in every diagonal position. 

(b) We may assume that aoj = 0 for all j, since no arc emanating from Vo can 

participate in an oriented subtree. We may also assume that ajj > 0 for all j > 1 since 

otherwise the whole jth row is zero and there obviously are no oriented subtrees. Now 

use induction on the number of arcs: If ajj > 1 let e be some arc leading from Vj; let 

Bo be a matrix like Ao but with arc e deleted, and let Co be the matrix like Ao but 

with all arcs except e that lead from Vj deleted. Example: If Ao = ( -i -~ ), j = 1, 

and e is an arc from V1 to V0 , then Bo=(_~-~), Co=(_~~). In general we have 

det Ao = det Bo + det Co, since the matrices agree in all rows except row j, and Ao is 

the sum of Bo and Co in that row. Moreover, the number of oriented subtrees of G 

is the number of subtrees that do not use e (namely, det B 0 , by induction) plus the 

number that do use e (namely, det C0 ). 

Notes: The matrix A is often called the Laplacian of the graph, by analogy with a 

similar concept in the theory of partial differential equations. If we delete any set S of 



2.3.4.2 ANSWERS TO EXERCISES 583 

rows from the matrix A, and the same set of columns, the determinant of the resulting 
matrix is the number of oriented forests whose roots are the vertices {Vk \ k E S} and 
whose arcs belong to the given digraph. The matrix tree theorem for oriented trees is 
was stated without proof by J. J. Sylvester in 1857 (see exercise 28), then forgotten for 
many years until it was independently rediscovered by W. T. Tutte [Proc. Cambridge 
Phil. Soc. 44 (1948), 463-482, §3]. The first published proof in the special case of 
undirected graphs, when the matrix A is symmetric, was given by C. W. Borchardt 
[Crelle 57 (1860), 111-121]. Several authors have ascribed the theorem to Kirchhoff, 
but Kirchhoff proved a quite different (though related) result. 

20. Using exercise 18 we find B = ArA0 . Or, using exercise 19, Bis the matrix Ao for 
the directed graph G' with two arcs (one in each direction) in place of each edge of G; 
each free subtree of G corresponds uniquely to an oriented subtree of G' with root Vo, 
since the directions of the arcs are determined by the choice of root. 

21. Construct the matrices A and A* as in exercise 19. For the example graphs G 
and G* in Figs. 36 and 37, 

[00] [10] [20] [01] [01] [21] [12] [12] [22] 

[00] 2 0 0 -1 -1 0 0 0 0 
[10] -1 3 0 -1 -1 0 0 0 0 
[20] -1 0 3 -1 -1 0 0 0 0 

A=(-~-~-~) 
-1 -1 2 

[01] 0 -1 0 3 0 

A*= [01] 0 -1 0 0 3 
[21] 0 -1 0 0 0 

0 -1 -1 0 
0 -1 -1 0 
3 -1 -1 0 

[12] 0 0 -1 0 0 -1 3 0 -1 
[12] 0 0 -1 0 0 -1 0 3 -1 
[22] 0 0 -1 0 0 -1 0 0 2 

Add the indeterminate A to the upper left corner element of A and A* (in the example 
this gives 2 +A in place of 2). If t( G) and t( G*) are the numbers of oriented subtrees of 
G and G*, we have t(G) = A-1 (n+l)detA, t(G*) = A- 1m(n+l)detA*. (The number 
of oriented subtrees of a balanced graph is the same for any given root, by exercise 22.) 

If we group vertices Vjk for equal k the matrix A* can be partitioned as shown 
above. Let Bkk' be the submatrix of A* consisting of the rows for Vjk and the columns 
for Vj'k'' for all j and j' such that Vjk and Vj'k' are in G*. By adding the 2nd, ... , 
mth columns of each submatrix to the first column and then subtracting the first row 
of each submatrix from the 2nd, ... , mth rows, the matrix A* is transformed so that 

( 

ak~~(j~:kO : 

Bkk = . 

-A8ko 0 

* 

f) fork-=/= k', 
0 

0 

* 
0 

m 

It follows that det A* is mrn(n-i) times the determinant of 

A+ aoo * * * ao1 aon 
-A m 0 0 0 0 

-A 0 0 m 0 0 
a10 * * * all ain 

ano * * * anl ann 



584 ANSWERS TO EXERCISES 2.3.4.2 

In this derivation, "*" indicates values that are more or less irrelevant; the remaining 
asterisks are all zero except for precisely one -1 in each column. Add the last n rows to 
the top row, and expand the determinant by the first row, to get m n(rn-l)+rn-l det A
(m - l)mn(rn-l)+rn- 2 det A. 

This derivation can be generalized to determine the number of oriented subtrees 
of G* when G is an arbitrary directed graph; see R. Dawson and I. J. Good, Ann. 
Math. Stat. 28 (1957), 946-956; D. E. Knuth, Journal of Combinatorial Theory 3 
(1967), 309-314.) An alternative, purely combinatorial proof has been given by J. B. 
Orlin, Journal of Combinatorial Theory B25 (1978), 187-198. 

22. The total number is (a1 +···+an) times the number of Eulerian circuits starting 
with a given edge e1, where init( e1) = V1. Each such circuit determines an oriented 
subtree with root V1 by Lemma E, and for each of the T oriented subtrees there are 
flj= 1 (aj - 1)! paths satisfying the three conditions of Theorem D, corresponding to 
the different order in which the arcs { e I init( e) = Vj, e =!= e[Vj], e =!= ei} are entered 
into P. (Exercise 14 provides a simple example.) 

23. Construct the directed graph Gk with mk-l vertices as in the hint, and denote 
by [x1, ... , Xk] the arc mentioned there. For each function that has maximum period 
length, we can define a unique corresponding Eulerian circuit, by letting f(x1, ... , xk) = 
Xk+1 if arc [x1, ... , xk] is followed by [x2, ... , Xk+1]. (We regard Eulerian circuits as 
being the same if one is just a cyclic permutation of the other.) Now Gk = Gk:_1 in 

k-l k-2 
the sense of exercise 21, so Gk has mrn -rn times as many oriented subtrees as 
Gk-1; by induction Gk has mrnk-i_1 oriented subtrees, and mrnk-l_k with a given 
root. Therefore by exercise 22 the number of functions with maximum period, namely 

k k-l 
the number of Eulerian circuits of Gk starting with a given arc, ism- (m!)rn . [For 
m = 2 this result is due to C. Flye Sainte-Marie, L'Intermediaire des Mathematiciens 
1 (1894), 107-110.] 

24. Define a new directed graph having Ej copies of ej, for 0 ::::; j ::::; m. This graph 
is balanced, hence it contains an Eulerian circuit (eo, ... ) by Theorem G. The desired 
oriented path comes by deleting the edge e0 from this Eulerian circuit. 

25. Assign an arbitrary order to all arcs in the sets Ii = { e I init( e) = Vj} and 
Fi = {e I fin(e) = Vj}. For each arc e in Ij, let ATAG(e) = 0 and ALINK(e) = e' if 
e' follows e in the ordering of Ij; also let ATAG(e) = 1 and ALINK(e) = e' if e is last 
in Ij and e' is first in Fi. Let AL INK (e) = A in the latter case if Fj is empty. Define 
BLINK and BTAG by the same rules, reversing the roles of init and fin. 

Examples (using alphabetic order in each set of arcs): 
::.:: ::.:: z I:-' z I:-' 

H ::.:: ::.:: u H c::i: H c::i: 
i... ...:I E-t ...:I E-t z I:-' z I:-' ro c::i: c::i: r::Q r::Q 

u H c::i: H c::i: 
r i... ...:I E-t ...:I E-t 

b ro c::i: c::i: r::Q r::Q a c 0 1 

a d 1 b 0 b a 1 d 0 
c d 

b A 1 c 0 c e 0 a 1 

c f 1 r 1 d h 0 f 0 

d A 1 e 0 e h e g 0 f 1 

A 
f g 

f 0 d 1 e 1 a 1 J 
f A 1 c 1 g c 1 h 0 

r a 1 A 1 
j h b 1 j 0 

J e 1 A 1 



2.3.4.2 ANSWERS TO EXERCISES 585 

Note: If in the oriented tree representation we add another arc from H to itself, 
we get an interesting situation: Either we get the standard conventions 2.3.1-(8) with 
LLINK, LTAG, RLINK, RTAG interchanged in the list head, or (if the new arc is placed 
last in the ordering) we get the standard conventions except RT AG = 0 in the node 
associated with the root of the tree. 

This exercise is based on an idea communicated to the author by W. C. Lynch. 
Can tree traversal algorithms like Algorithm 2.3.lS be generalized to classes of digraphs 
that are not oriented trees, using such a representation? 

27. Let aij be the sum of p(e) over all arcs e from Vi to Vj. We are to prove that 

ti = 'L:i aijti for all j. Since 'L:i aji = 1, we must prove that 'L:i ajitj = 'L:i aijk 

But this is not difficult, because both sides of the equation represent the sum of all 
products p( ei) ... p( en) taken over subgraphs { ei, ... , en} of G such that init ( ei) = Vi 
and such that there is a unique oriented cycle contained in { ei, ... , en}, where this cycle 
includes Vj. Removing any arc of the cycle yields an oriented tree; the left-hand side of 
the equation is obtained by factoring out the arcs that leave Vj, while the right-hand 
side corresponds to those that enter Vj. 

In a sense, this exercise is combination of exercises 19 and 26. 

28. Every term in the expansion is aip1 •.• arnp"' biq1 ... bnqn, where 0 < Pi < n for 
1 < i ~ m and 0 < qi < m for 1 < j < n, times some integer coefficient. Represent 
this product as a directed graph on the vertices {O,ui, ... ,urn,vi, ... ,vn}, with arcs 
from Ui to vPi and from Vj to Uqi, where u 0 = vo = 0. 

If the digraph contains a cycle, the integer coefficient is zero. For each cycle 
corresponds to a factor of the form 

where the indices (io, ii, ... , ik-i) are distinct and so are the indices (jo,ji, ... ,jk-i). 
The sum of all terms containing ( *) as a factor is the determinant obtained by setting 

ai1j +--- [j=jz] for 0 < j < n and biti +--- [i=i(!+i)modk] for 0 ~ i ~ m, for 0 < l < k, 
leaving the variables in the other m + n - 2k rows unchanged. This determinant is 
identically zero, because the sum of rows i 0 , ii, ... , i k- i in the top section equals the 
sum of rows jo, ji, ... , ik-i in the bottom section. 

On the other hand, if the directed graph contains no cycles, the integer coefficient 
is +l. This follows because each factor aiPi and bjqi must have come from the diagonal 
of the determinant: If any off-diagonal element aioio is chosen in row i0 of the top 
section, we must choose some off-diagonal bioii from column jo of the left section, 
hence we must choose some off-diagonal aiih from row ii of the top section, etc., 
forcing a cycle. 

Thus the coefficient is +1 if and only if the corresponding digraph is an oriented 
tree with root 0. The number of such terms (hence the number of such oriented trees) 
is obtained by setting each aij and bji to 1; for example, 

4 0 1 1 1 4 0 1 1 1 4 0 3 1 1 
0 4 1 1 1 -4 4 0 0 0 0 4 0 0 0 

det 1 1 3 0 0 = det 1 1 3 0 0 = det 2 1 3 0 0 
1 1 0 3 0 0 0 -3 3 0 0 0 0 3 0 
1 1 0 0 3 0 0 -3 0 3 0 0 0 0 3 

= det ( ~ ; ) · 4 · 3 · 3. 

In general we obtain det( n~i rn:i). (n + l)rn-i . (m + 1 )n-i. 



586 ANSWERS TO EXERCISES 2.3.4.2 

Notes: J. J. Sylvester considered the special case m = n and alo = a20 = 
= amo = 0 in Quarterly J. of Pure and Applied Math. 1 (1857), 42-56, where 

he conjectured (correctly) that the total number of terms is then nn(n + 1r-1
. He 

also stated without proof that the ( n + 1 r- 1 nonzero terms present when aij = bij 

correspond to all connected cycle-free graphs on {O, 1, ... , n }. In that special case, he 

reduced the determinant to the form in the matrix tree theorem of exercise 19, e.g., . 

(

b10 + b12 + b13 

det -b21 

-b31 

-b12 
b20 + b21 + b23 

-b32 

-b13 ) 
-b23 . 

b3o + b31 + b32 

Cayley quoted this result in Crelle 52 (1856), 279, ascribing it to Sylvester; thus it is 

ironic that the theorem about the number of such graphs is often attributed to Cayley. 

By negating the first m rows of the given determinant, then negating the first m 

columns, we can reduce this exercise to the matrix tree theorem. 

[Matrices having the general form considered in this exercise are important in 

iterative methods for the solution of partial differential equations, and they are said 

to have "Property A." See, for example, Louis A. Hageman and David M. Young, 

Applied Iterative Methods (Academic Press, 1981), Chapter 9.] 

SECTION 2.3.4.3 

1. The root is the empty sequence; arcs go from (x1, ... , xn) to (x1, ... , Xn-1). 

2. Take one tetrad type and rotate it 180° to get another tetrad type; these two types 

give an obvious way to tile the plane (without further rotations) by replication of a 

2 x 2 pattern. 

3. Consider the set of tetrad types for all positive integers j. The right 

half plane can be tiled in uncountably many ways; but whatever square is placed in the 

center of the plane puts a finite limit on the distance it can be continued to the left. 

4. Systematically enumerate all possible ways to tile an n x n block, for n = 1, 2, ... , 

looking for toroidal solutions within these blocks. If there is no way to tile the plane, 

the infinity lemma tells us there is an n with no n x n solutions. If there is a way to tile 

the plane, the assumption tells us that there is an n with an n x n solution containing 

a rectangle that yields a toroidal solution. Hence in either case the algorithm will 

terminate. (But the stated assumption is false, as shown in the next exercise, and in 

fact there is no algorithm that will determine in a finite number of steps whether or 

not there exists a way to tile the plane with a given set of types.) 

5. Start by noticing that we need classes ~ ~ replicated in 2 x 2 groups in any solution. 

Then, step 1: Considering just the a squares, show that the pattern ~ ~ must be 

replicated in 2 x 2 groups of a squares. Step n > 1: Determine a pattern that must 

appear in a cross-shaped region of height and width 2n - 1. The middle of the crosses 
N Nb -

has the pattern N ~ Nd replicated throughout the plane. 

For example, after step 3 we will know the contents of 7 x 7 blocks throughout the 

plane, separated by unit length strips, every eight units. The 7 x 7 blocks that are of 



2.3.4.3 ANSWERS TO EXERCISES 587 

class Na in the center have the form 

aa /3KQ ab /3QP aa /3BK ab 

1PJ fJNa 1RB fJQK 1LJ fJNb 1PB 

ac /3DS ad /3QTY ac /3BS ad 

1PQ fJPJ 1PXB fJNa 1RQ fJRB 1RB 

aa /3UK ab /3DP aa /3BK ab 

1TJ fJNc 1SB [JDS 1ST fJNd 1TB 

ac /3QS ad /3DT ac /3BS ad 

The middle column and the middle row is the "cross" just filled in during step 3; the 
other four 3 x 3 squares were filled in after step 2; the squares just to the right and 
below this 7 x 7 square are part of a 15 x 15 cross to be filled in at step 4. 

For a similar construction that leads to a set of only 35 tetrad types having nothing 
but nontoroidal solutions, see R. M. Robinson, Inventiones Math. 12 (1971), 177-209. 
Robinson also exhibits a set of six squarish shapes that tile the plane only nontoroidally, 
even when rotations and reflections are allowed. In 197 4, Roger Penrose discovered a 
set of only two polygons, based on the golden ratio instead of a square grid, that tile the 
plane only aperiodically; this led to a set of only 16 tetrad types with only nontoroidal 
solutions [see B. Griinbaum and G. C. Shephard, Tilings and Patterns (Freeman, 1987), 
Chapters 10-11; Martin Gardner, Penrose Tiles to Trapdoor Ciphers (Freeman, 1989), 
Chapters 1-2]. 

6. Let k and m be fixed. Consider an oriented tree whose vertices each represent, 
for some n, one of the partitions of {1, ... , n} into k parts, containing no arithmetic 
progression of length m. A node that partitions { 1, ... , n + 1} is a child of one for 
{ 1, ... , n} if the two partitions agree on { 1, ... , n}. If there were an infinite path to 
the root we would have a way to divide all integers into k sets with no arithmetic 
progression of length m. Hence, by the infinity lemma and van der Waerden's theorem, 
this tree is finite. (If k = 2, m = 3, the tree can be rapidly calculated by hand, and the 
least value of N is 9. See Studies in Pure Mathematics, ed. by L. Mirsky (Academic 
Press, 1971), 251-260, for van der Waerden's interesting account of how the proof of 
his theorem was discovered.) 

7. The positive integers can be partitioned into two sets So and S1 such that neither 
set contains any infinite computable sequence (see exercise 3.5-32). So in particular 
there is no infinite arithmetic progression. Theorem K does not apply because there is 
no way to put partial solutions into a tree with finite degrees at each vertex. 

8. Let a "counterexample sequence" be an infinite sequence of trees that violates 
Kruskal's theorem, if such sequences exist. Assume that the theorem is false; then let 
Ti be a tree with the smallest possible number of nodes such that T1 can be the first 
tree in a counterexample sequence; if T1 , ... , Tj have been chosen, let TJ+1 be a tree 
with the smallest possible number of nodes such that T1 , ... , Tj, TJ+1 is the beginning 
of a counterexample sequence. This process defines a counterexample sequence (Tn)· 
None of these T's is just a root. Now, we look at this sequence very carefully: 

(a) Suppose there is a subsequence Tn 11 Tn 2 , ••• for which l(Tn 1 ), l(Tn 2 ), ••• 

is a counterexample sequence. This is impossible; otherwise Ti, ... , Tn 1 -1, l(Tn 1 ), 

l ( T n 2 ), • • • would be a counterexample sequence, contradicting the definition of T ni . 



588 ANSWERS TO EXERCISES 2.3.4.3 

(b) Because of (a), there are only finitely many j for which l(Tj) cannot be 

embedded in l(Tk) for any k > j. Therefore by taking nl larger than any such j 

we can find a subsequence for which l(Tn 1 ) ~ l(Tn2 ) ~ l(Tn 3 ) ~ •• •• 

( c) Now by the result of exercise 2.3.2-22, r(Tni) cannot be embedded in r(Tnk) 

for any k > j, else Tni ~ Tnk. Therefore T1, ... , Tn 1 -1, r(Tn1 ), r(Tn2 ), ••• is a 

counterexample sequence. But this contradicts the definition of Tn 1 • 

Notes: Kruskal, in Tr~ns. Amer. Math. Soc. 95 (1960), 210-225, actually proved 

a stronger result, using a weaker notion of embedding. His theorem does not follow 

directly from the infinity lemma, although the results are vaguely similar. Indeed, Konig 

himself proved a special case of Kruskal's theorem, showing that there is no infinite 

sequence of pairwise incomparable n-tuples of nonnegative integers, where comparabil

ity means that all components of one n-tuple are .:S the corresponding components of 

the other [Matematikai es Fizikai Lapok 39 (1932), 27-29]. For further developments, 

see J. Combinatorial Theory A13 (1972), 297-305. See also N. Dershowitz, Inf. Proc. 

Letters 9 (1979), 212-215, for applications to termination of algorithms. 

SECTION 2.3.4.4 

( 
1 ) a zkt A(zt) 

1. lnA(z) = lnz + ~ ak ln k = lnz + ~ _k_ = lnz + ~ --. 
~ l-z ~ t ~ t 
k2:1 k,t2:1 t2:1 

2. By differentiation, and equating the coefficients of zn, we obtain the identity 

nan+l =I: L:dadan+l-k· 
k2:1 d\k 

Now interchange the order of summation. 

4. (a) A(z) certainly converges at least for lzl < ~' since an is less than the number 

of ordered trees bn-l· Since A(l) is infinite and all coefficients are positive, there is a 

positive number a .:S 1 such that A(z) converges for lzl < a, and there is a singularity 

at z = a. Let 'lj;(z) = A(z)/z; since 'lj;(z) > ez'l/J(z), we see that 'lj;(z) = m implies 

z < lnm/m, so 'lj;(z) is bounded and limz----ta- 'lj;(z) exists. Thus a< 1, and by Abel's 

limit theorem a= a· exp( a+ ~A(a2 ) + ~A(a3 ) + ... ). 

(b) A(z2
), A(z3

), ••• are analytic for lzl < fo., and ~A(z2 )+~A(z3 )+· ··converges 

uniformly in a slightly smaller disk. 

( c) If a FI aw = a - 1 =/:- 0, the implicit function theorem implies that there is an 

analytic function f(z) in a neighborhood of (a, a/a) such that F(z, f(z)) = 0. But this 

implies f(z) = A(z)/z, contradicting the fact that A(z) is singular at a. 

(d) Obvious. 
(e) 8F/8w = A(z) - 1 and IA(z)I < A(a) = 1, since the coefficients of A(z) are 

all positive. Hence, as in (c), A(z) is regular at all such points. 

(f) Near (a, l/a) we have the identity 0 = f3(z - a)+ (a/2)(w - 1/a)2 +higher 

order terms, where w = A(z)/z; sow is an analytic function of -Jz - a here by the 

implicit function theorem. Consequently there is a region lzl < a 1 minus a cut [a, a 1] 

in which A(z) has the stated form. (The minus sign is chosen since a plus sign would 

make the coefficients ultimately negative.) 

(g) Any function of the stated form has coefficient asymptotically 
Note that . 

V2fJ (1/2). 
an n 



2.3.4.4 ANSWERS TO EXERCISES 589 

For further details, and asymptotic values of the number of free trees, see R. Otter, 
Ann. Math. (2) 49 (1948), 583-599. 

5. _ ~ (Cl+ ji -1) (Cn + jn - l) _ 
Cn - ~ . ••• . Cn, 

· 2 · Jl Jn 11+ n+···==n 

n > 1. 

Therefore 

1 
2C(z) + 1- z = (1- z)-ci (1- z 2 )-c2 (1- z 3 )-c3 ••• =exp( C(z) + 2c(z 2

) + · · · ). 

We find C(z) = z + z 2 + 2z3 + 5z4 + 12z5 + 33z6 + 90z7 + 26lz8 + 766z9 + · · ·. When 
n > 1, the number of series-parallel networks with n edges is 2cn [see P.A. MacMahon, 
Proc. London Math. Soc. 22 (1891), 330-339]. 

6. zG(z) 2 = 2G(z) - 2 - zG(z2
); G(z) = 1 + z + z 2 + 2z3 + 3z4 + 6z5 + llz6 + 

23z7 + 46z8 + 98z9 + · · ·. The function F(z) = 1- zG(z) satisfies the simpler relation 
F(z2

) = 2z + F(z) 2
• [J. H. M. Wedderburn, Annals of Math. 24 (1922), 121-140.] 

7. 9n = cann- 312 (1+0(1/n)), where c ~ 0.7916031835775, a~ 2.483253536173. 

8. 

''tt•·~~*tr+ 
9. If there are two centroids, by considering a path from one to the other we find that 

there can't be intermediate points, so any two centroids are adjacent. A tree cannot 
contain three mutually adjacent vertices, so there are at most two. 

10. If X and Y are adjacent, let s(X, Y) be the number of vertices in the Y-subtree 
of X. Then s(X, Y) + s(Y, X) = n. The argument in the text shows that if Y is a 
centroid, weight(X) = s(X, Y). Therefore if both X and Y are centroids, weight(X) = 
weight(Y) = n/2. 

In terms of this notation, the argument in the text goes on to show that if 
s(X, Y) 2 s(Y, X), there is a centroid in the Y subtree of X. So if two free trees 
with m vertices are joined by an edge between X and Y, we obtain a free tree in which 
s(X, Y) = m = s(Y, X), and there must be two centroids (namely X and Y). 

[It is a nice programming exercise to compute s(X, Y) for all adjacent X and Y 
in O(n) steps; from this information we can quickly find the centroid(s). An efficient 
algorithm for centroid location was first given by A. J. Goldman, Transportation Sci. 
5 (1971), 212-221.] 

11. zT(z)t = T(z) - 1; thus z + T(z)-t = T(z) 1-t. By Eq. 1.2.9-(21), T(z) = 
L:n An ( 1, -t) z n, so the number of t-ary trees is 

( 
1 + tn) 1 ( tn ) 1 

n 1 + tn - n ( t - 1) n + 1 · 

12. Consider the directed graph that has one arc from Vi to Vj for all i =j:. j. The 
matrix Ao of exercise 2.3.4.2-19 is a combinatorial (n-1) x (n -1) matrix with n-1 
on the diagonal and -1 off the diagonal. So its determinant is 

(n + (n -1)(-l))nn-2 = nn- 2
, 

the number of oriented trees with a given root. (Exercise 2.3.4.2-20 could also be used.) 



590 ANSWERS TO EXERCISES 2.3.4.4 

13. 

3 2 

7 8 9 

10 

14. True, since the root will not become a leaf until all other branches have been 

removed. 

15. In the canonical representation, V1, Vi, ... , Vn-1, f(Vn-1) is a topological sort of 

the oriented tree considered as a directed graph, but this order would not in general be 

output by Algorithm 2.2.3T. Algorithm 2.2.3T can be changed so that it determines 

the values of V1 , V2 , ... , Vn- l if the "insert into queue" operation of step T6 is replaced 

by a procedure that adjusts links so that the entries of the list appear in ascending 

order from front to rear; then the queue becomes a priority queue. 

(However, a general priority queue isn't needed to find the canonical represen

tation; we only need to sweep through the vertices from 1 to n, looking for leaves, 

while pruning off paths from new leaves less than the sweep pointer; see the following 

exercise.) 

16. Dl. Set C[l] +- · · · +- C[n] +- 0, then set C[/(Vj)J +- C[/(Vj)J +1for1 ~ j ~ n. 

(Thus vertex k is a leaf if and only if C [k] = 0.) Set k +- 0 and j +- 1. 

D2. Increase k one or more times until C [k] = 0, then set l +- k. 

D3. Set PARENT [l] +- f (Vj ), l +- f (Vj ), C [l] +- C [l] - 1, and j +- j + 1. 

D4. If j = n, set PARENT [l] +- 0 and terminate the algorithm. 

D5. If C [lJ = 0 and l < k, go to D3; otherwise go back to D2. I 

17. There must be exactly one cycle xi, x2, ... , Xk where f(xj) = XJ+l and f(xk) = x1. 

We will enumerate all f having a cycle of length k such that the iterates of each 

x ultimately come into this cycle. Define the canonical representation f(V1), f(V2 ), 

... , f(Vm-k) as in the text; now f(Vm-k) is in the cycle, so we continue to get a 

"canonical representation" by writing down the rest 

of the cycle J(f(Vm-k)), J(f(f(Vm-k))), etc. For 
example, the function with m = 13 whose graph is 

shown here leads to the representation 3, 1, 8, 8, 
1, 12, 12, 2, 3, 4, 5, 1. We obtain a sequence of 

m - 1 numbers in which the last k are distinct. Con

versely, from any such sequence we can reverse the 

construction (assuming that k is known); hence there 
are precisely m~mm-k-l su_ch functions having a k

cycle. (For related results, see exercise 3.1-14. The 
formula mm-1Q(m) was first obtained by L. Katz, 

Annals of Math. Statistics 26 (1955), 512-517.) 

5 

4 3 



2.3.4.4 ANSWERS TO EXERCISES 591 

18. To reconstruct the tree from a sequence s1, s2, ... , Sn-1, begin with s1 as the 
root and successively attach arcs to the tree that point to s1, s2, ... ; if vertex Sk has 
appeared earlier, leave the initial vertex of the arc leading to Sk-1 nameless, otherwise 
give this vertex the name s k. After all n - 1 arcs 
have been placed, give names to all vertices that re- 3 
main nameless by using the numbers that have not 
yet appeared, assigning names in increasing order 
to nameless vertices in the order of their creation. 

1 

For example, from 3, 1, 4, 1, 5, 9, 2, 6, 5 we 
would construct the tree shown on the right. There 4 
is no simple connection between this method and 
the one in the text. Several more representations 
are possible; see the article by E. H. Neville, Proc. 7 
Cambridge Phil. Soc. 49 (1953), 381-385. 

5 10 

19. The canonical representation will have precisely n - k different values, so we 
enumerate the sequences of n-l numbers with this property. The answer is nn-k{~=~}. 

20. Consider the canonical representation of such trees. We are asking how many 
terms of (x1 + · · · + xnt- 1 have ko exponents zero, k1 exponents one, etc. This is 
plainly the coefficient of such a term times the number of such terms, namely 

(n- 1)! n! 
) 

x . 
(O!)ko(l!)k1 ... (n! kn ko!k1! ... kn! 

21. There are none with 2m vertices; if there are n = 2m + 1 vertices, the answer is 
obtained from exercise 20 with ko = m + 1, k2 = m, namely (2r:+1)(2m)!/2m. 

22. Exactly nn-2
; for if X is a particular vertex, the free trees are in one-to-one 

correspondence with oriented trees having root X. 

23. It is possible to put the labels on every unlabeled, ordered tree in n! ways, and 
each of these labeled, ordered trees is distinct. So the total number is n! bn-l = 
(2n - 2)!/(n - 1)!. 

24. There are as many with one given root as with another, so the answer in general 
is l/n times the answer in exercise 23; and in this particular case the answer is 30. 

25. For 0 _:::; q < n, r(n, q) = (n - q)nq-l. (The special cases= 1 in Eq. (24).) 

26. (k = 7) 
9•Blue 

5 Blue 



592 ANSWERS TO EXERCISES 2.3.4.4 

27. Given a function g from {1, 2, ... , T} to {1, 2, ... , q} such that adding arcs from Vi 
to Ug(k) introduces no oriented cycles, construct a sequence a1, ... , ar as follows: Call 
vertex Vk "free" if there is no oriented path from Vj to Vk for any j #- k. Since there 
are no oriented cycles, there must be at least one free vertex. Let b1 be the smallest 
integer for which Vb 1 is free; and assuming that bi, ... , bt have been chosen, let bt+i 
be the smallest integer diffe~ent from bi' ... ' bt for which vbt+l is free in the graph 
obtained by deleting the arcs from Vbk to U9 (bk) for 1 .:S k .:S t. This rule defines a 
permutation bib2 ... br of the integers {1, 2, ... , T }. Let ak = g(bk) for 1 .:S k .:S T; this 
defines a sequence such that 1 .:S ak .:S q for 1 .:S k < T, and 1 .:S ar .:S p. 

Conversely if such a sequence ai, ... , ar is given, call a vertex Vk "free" if there 
is no j for which aj > p and f ( aj) = k. Since ar .:S p there are at most T - 1 non
free vertices. Let bi be the smallest integer for which Vb 1 is free; and assuming that 
bi, ... , bt have been chosen, let bt+l be the smallest integer different from bi, ... , bt 
for which Vbt+i is free with respect to the sequence at+i, ... , ar. This rule defines a 
permutation bib2 ... br of the integers {1, 2, ... , T }. Let g(bk) = ak for 1 .:S k .:S T; this 
defines a function such that adding arcs from Vk to Ug(k) introduces no oriented cycles. 

28. Let f be any of the nm-i functions from {2, ... , m} to {1, 2, ... , n }, and consider 
the directed graph with vertices Ui, ... , Um, Vi, ... , Vn and arcs from Uk to Vf(k) for 
1 < k .:Sm. Apply exercise 27 with p = 1, q = m, T = n, to show that there are mn-i 
ways to add further arcs from the V's to the U's to obtain an oriented tree with root 
Ui. Since there is a one-to-one correspondence between the desired set of free trees and 
the set of oriented trees with root Ui, the answer is nm-imn-i. [This construction can 
be extensively generalized; see D. E. Knuth, Canadian J. Math. 20 (1968), 1077-1086.] 

29. If y = x t, then ( tz) y = ln y, and we see that it is sufficient to prove the identity 
fort = 1. Now if zx = lnx we know by exercise 25 that xm = L:k Ek(m, l)zk for 
nonnegative integers m. Hence 

(zxT)k = ~ Tkzk+jEj(k,l) = ~ zk ~(k) "'E·(k-. l) k-j 
k! ~ k! ~ k! ~ j J. 1 J, T 

j,k j,k j 

T ZXT ~ 
x =e = ~ 

k 

~ zk ( k - 1) · k · ~ k 
= ~ k ! . k 1 

T -
1 = ~ z Ek ( T, 1). 

k J k 

[Exercise 4.7-22 derives considerably more general results.] 

30. Each graph described defines a set Cx ~ {1, ... , n}, where j is in Cx if and only 
if there is a path from tj to Ti for some i .:S x. For a given Cx each graph described 
is composed of two independent parts: one of the x(x + cizi + · · · + EnZn)EI+···+En-i 

graphs on the vertices Ti, Sjk, lj for i .:S x and j E Cx, where Ej = [j E Cx], plus one 
f h ( ( ) ( ) )

(i-q)+ .. ·+(i-€ )-i 
o t e y y + 1 - Ei zi + · · · + 1 - En Zn n graphs on the remaining 
vertices. 

31. G(z) = z + G(z) 2 + G(z) 3 + G(z) 4 + · · · = z + G(z) 2/(1 - G(z)). Hence G(z) = 
~(1 + z - v'l - 6z + z2 ) = z + z2 + 3z3 + llz4 + 45z5 + · · ·. [Notes: Another 
problem equivalent to this one was posed and solved by E. Schroder, Zeitschrift fiir 
Mathematik und Physik 15 (1870), 361-376, who determined the number of ways to 
insert nonoverlapping diagonals in a convex ( n + 1 )-gon. These numbers for n > 1 
are just half the values obtained in exercise 2.2.1-11, since Pratt's grammar allows 
the root node of the associated parse tree to have degree one. The asymptotic value 
is calculated in exercise 2.2.1-12. Curiously, the value [zi0

] G(z) = 103049 seems 



2.3.4.4 ANSWERS TO EXERCISES 593 

to have been calculated already by Hipparchus in the second century B.C., as the 
number of "affirmative compound propositions that can be made from only ten simple 
propositions"; see R. P. Stanley, AMM 104 (1997), 344-350.] 

32. Zero if no #- 1 + n 2 + 2n3 + 3n4 + · · · (see exercise 2.3-21), otherwise 

(no+ ni +···+nm - 1)!/no! nil ... nm!. 

To prove this result we recall that an unlabeled tree with n =no+ ni +···+nm 
nodes is characterized by the sequence di d2 ... dn of the degrees of the nodes in 
postorder (Section 2.3.3). Furthermore such a sequence of degrees corresponds to a 
tree if and only if L:;=i (1 - dj) > 0 for 0 < k ~ n. (This important property of Polish 
postfix notation is readily proved by induction; see Algorithm 2.3.3F with fa function 
that creates a tree, like the TREE function of Section 2.3.2.) In particular, di must 
be 0. The answer to our problem is therefore the number of sequences d2 ... dn with 
nj occurrences of j for j > 0, namely the multinomial coefficient 

( 
n-1 ) 

no- l, ni, ... 'nm ' 

minus the number of such sequences d2 ••• dn for which L:;=2 (1 - dj) < 0 for some 
k "2 2. 

We may enumerate the latter sequences as follows: Let t be minimal such that 
2:~=2 (1-dj) < O; then 2::~= 2 (1-dj) = -s where 1 ~ s < dt, and we may form the 

subsequence d~ ... d~ = dt-i · .. d20dt+i · .. dn, which has ni occurrences of j for j #- dt, 
nj - 1 occurrences of j for j = dt. Now L:;=2 (1 - dj) is equal to dt when k = n, and 
equal to dt - s when k = t; when k < t, it is 

2= (1- dj) - 2= (1- dj) ~ 2= (1-dj) = dt - s - l. 
2~j<t 2~j~t-k 2~j<t 

It follows that, given s and any sequence d~ ... d~, the construction can be reversed; 
hence the number of sequences d2 ••• dn that have a given value of dt and s is the 
multinomial coefficient 

( 
n-1 ) 

no, ... ,ndt-l, ... ,nm · 

The number of sequences d2 ... dn that correspond to trees is therefore obtained by 
summing over the possible values of dt and s: 

f (1- j) ( n - 1 ) = (n - 1)! f (1- j)ni 
j=O no, ... , nj-l, ... , nm no!ni! ... nm! j=O 

and the latter sum is 1. 
An even simpler proof of this result has been given by G. N. Raney (Transactions of 

the American Math. Society 94 (1960), 441-451). If di d2 ... dn is any sequence with 
nj appearances of j, there is precisely one cyclic rearrangement dk ... dndi ... dk-i 
that corresponds to a tree, namely the rearrangement where k is maximal such that 
L:;=i (1 - dj) is minimal. [This argument in the case of binary trees was apparently 
first discovered by C. S. Peirce in an unpublished manuscript; see his New Elements of 
Mathematics 4 (The Hague: Mouton, 1976), 303-304. It was discovered in the case of 
t-ary trees by Dvoretzky and Motzkin, Duke Math. J. 14 (1947), 305-313.] 

Still another proof, by G. Bergman, inductively replaces dkdk+i by (dk +dk+i -1) 
if dk > 0 [Algebra Universalis 8 (1978), 129-130). 



594 ANSWERS TO EXERCISES 2.3.4.4 

The methods above can be generalized to show that the number of (ordered, 

unlabeled) forests having f trees and nj nodes of degree j is (n - 1)! f /no! nil ... nm!, 

provided that the condition no = f + n2 + 2n3 + · · · is satisfied. 

33. Consider the number of trees with n 1 nodes labeled 1, n2 nodes labeled 2, ... , and 

such that each node labeled j has degree ej. Let this number be c(n1, n2, ... ), with the 

specified degrees ei, e2, ... rEtgarded as fixed. The generating function G(z1, z2, ... ) = 
'°' ( ) nl n2 . fi h 'd t't G ce1 + + Ger . Gei 
6 c ni,n2, ... z1 z2 ... sat1s est e i en i y = z1 · ·· Zr , smce Zj 

enumerates the trees whose root is labeled j. And by the result of the previous exercise, 

{ 

(n1 + n2 + · · · - 1)! 
c(n1, n2, ... ) = nil n2! ... 

0, otherwise. 

More generally, since Gf enumerates the number of ordered forests having such 

labels, we have for integer f > 0 

wf = :L 
J=(l-e1)n1 +(l-e2)n2+··· 

These formulas are meaningful when r = oo, and they are essentially equivalent to 

Lagrange's inversion formula. 

SECTION 2.3.4.5 

1. There are (~) in all, since the nodes numbered 8, 9, 10, 11, 12 may be attached in 

any of eight positions below 4, 5, 6, and 7. 

2. 

1 4 

3. By induction on m, the condition is necessary. Conversely if 2:7=1 2-1i = 1, we 

want to construct an extended binary tree with path lengths li, ... , lm. When m = 1, 

we have li = 0 and the construction is trivial. Otherwise we may assume that the l's 

are ordered so that li = l2 = · · · = lq > lq+l 2: lq+2 2: · · · 2: lm > 0 for some q with 

1 ~ q ~ m. Now 211
-

1 = 2:7=1 211 -!i-
1 = ~q +integer, hence q is even. By induction 

on m there is a tree with path lengths li - 1, ls, [4, ... , lm; take such a tree and 

replace one of the external nodes at level li - 1 by an internal node whose children are 

at level h = l2. 



2.3.4.5 ANSWERS TO EXERCISES 595 

4. First, find a tree by Huffman's method. If Wj < Wj+1, then lj 2: ZJ+1, since the 
tree is optimal. The construction in the answer to exercise 3 now gives us another 
tree with these same path lengths and with the weights in the proper sequence. For 
example, the tree (u) becomes 

29 31 41 

2 

5. (a) bnp 

Reference: CACM 7 (1964), 166-169. 

2= bkrbls· Hence zB(w,wz) 2 = B(w,z)- l. 
k+l=n-1 

r+s+n-l=p 
(b) Take the partial derivative with respect to w: 

2zB(w, wz)(Bw(w, wz) + zB2 (w, wz)) = Bw(w, z). 

Therefore if H(z) = Bw(l, z) = l:n hnzn, we find H(z) = 2zB(z)(H(z) + zB' (z)); and 
the known formula for B(z) implies 

H(z) - 1 - ~ ( 1 - z - 1) 
- 1- 4z z y'l - 4z ' 

so hn = 4 n _ 3n + 1 ( 2n) . 
n+l n 

The average value is hn/bn. (c) Asymptotically, this comes to ny1m- 3n + O(y'n). 
For the solution to similar problems, see John Riordan, IBM J. Res. and Devel. 4 

(1960), 473-478; A. Renyi and G. Szekeres, J. Australian Math. Soc. 7 (1967), 497-507; 
John Riordan and N. J. A. Sloane, J. Australian Math. Soc. 10 (1969), 278-282; and 
exercise 2.3.1-11. 

6. n + s - 1 = tn. 

7. E=(t-l)I+tn. 

8. Summation by parts gives l::~=l Llogt((t - l)k)J = nq - 2: k, where the sum on 
the right is over values of k such that 0 ~ k ~ n and (t - l)k + 1 = tj for some j. The 
latter sum may be rewritten l::j=1 (tj - 1)/(t - 1). 

9. Induction on the size of the tree. 

10. By adding extra zero weights, if neces
sary, we may assume that m mod ( t - 1) = 1. 
To obtain a t-ary tree with minimum weighted 
path length, combine the smallest t values at 
each step and replace them by their sum. The 
proof is essentially the same as the binary case. 
The desired ternary tree is shown. 

F. K. Hwang has observed [SIAM J. Appl. 
Math. 37 (1979), 124-127] that a similar pro
cedure is valid for minimum weighted path 
length trees having any prescribed multiset of 
degrees: Combine the smallest t weights at 
each step, where t is as small as possible. 



596 ANSWERS TO EXERCISES 2.3.4.5 

11. The "Dewey" notation is the binary representation of the node number. 

12. By exercise 9, it is the internal path length divided by n, plus 1. (This result holds 

for general trees as well as binary trees.) 

13. [See J. van Leeuwen, Proc. 3rd International Colloq. Automata, Languages and 

Programming (Edinburgh University Press, 1976), 382-410.] 

Hl. [Initialize.] Set Arm - 1 + i] +- wi for 1 :::; i :::; m. Then set A[2m] +- oo, 
x +- m, i +- m + 1, j +- m - 1, k +- m. (During this algorithm A[i] :::; · · · :::; 
A[2m - 1] is the queue of unused external weights; A[k] ~ · · · ~ A[j] is the 
queue of unused internal weights, empty if j < k; the current left and right 

pointers are x and y.) 

H2. [Find right pointer.] If j < k or A[i] :::; A[j], set y +- i and i +- i + 1; otherwise 
set y +- j and j +- j - 1. 

H3. [Create internal node.] Set k +- k-l, L[k] +- x, R[k] +- y, A[k] +- A[x]+A[y]. 

H4. [Done?] Terminate the algorithm if k = 1. 

H5. [Find left pointer.] (At this point j ~ k and the queues contain a total of k 

unused weights. If A[y] < 0 we have j = k, i = y + 1, and A[i] > A[j].) If 
A[i] :::; A[j], set x +- i and i +- i + 1; otherwise set x +- j and j +- j - 1. 

Return to step H2. I 
14. The proof for k = m - 1 applies with little change. [See SIAM J. Appl. Math. 21 

(1971), 518.] 

15. Use the combined-weight functions (a) 1 + max(w1,w2) and (b) xw1 + xw2, re
spectively, instead ofw1 +w2 in (9)· [Part (a) is due to M. C. Golumbic, IEEE Trans. 
C-25 (1976), 1164-1167; part (b) to T. C. Hu, D. Kleitman, and J. K. Tamaki, SIAM 

J. Appl. Math. 37 (1979), 246-256. Huffman's problem is the limiting case of (b) as 

x -t 1, since 2::(1 + c) 1
i Wj =I: Wj +EI: Wjlj + O(c2).] 

D. Stott Parker, Jr., has pointed out that a Huffman-like algorithm will also find 

the minimum of w1x 11 + · · · + wmx1
m. when 0 < x < 1, if the two maximum weights are 

combined at each step. In particular, the minimum of w12- 11 + · · · + wm2- 1
m., when 

W1 :::; · · · :::; Wm, is w1/2 + · · · + Wm-1/2m-l + Wm/2m-l. See D. E. Knuth, J. Comb. 
Theory A32 (1982), 216-224, for further generalizations. 

16. Let lm+l = l~+l = 0. Then 

m m m k m k m 

L Wjlj :::; 2= wjlj = 2=(Zj - lj+ 1 ) 2= Wj :::; 2=(lj - lj+ 1 ) 2= wj = 2= wjlj, 
j=l j=l k=l j=l k=l j=l j=l 

since lj ~ lj+ 1 as in exercise 4. The same proof holds for many other kinds of optimum 
trees, including those of exercise 10. 

1 7. (a) This is exercise 14. (b) We can extend f ( n) to a concave function f ( x), so the 

stated inequality holds. Now F(m) is the minimum of 2::7=--;_1 f(sj), where the Sj are 
internal node weights of an extended binary tree on the weights 1, 1, ... , 1. Huffman's 
algorithm, which constructs the complete binary tree with m - 1 internal nodes in this 
case, yields the optimum tree. The choice k = 2f1g(n/ 3 )l defines a binary tree with the 

same internal weights, so it yields the minimum in the recurrence, for each n. [SIAM J. 
Appl. Math. 31 (1976), 368-378.] We can evaluate F(n) in O(log n) steps; see exercises 
5.2.3-20 and 21. If f(n) is convex instead of concave, so that .6.2 f(n) ~ 0, the solution 
to the recurrence is obtained when k = L n/2 J. 



2.3.4.6 ANSWERS TO EXERCISES 597 

SECTION 2.3.4.6 
1. Choose one edge of the polygon and call it the base. Given a triangulation, let the 

triangle on the base correspond to the root of a binary tree, and let the other two sides 

of that triangle define bases of left and right subpolygons, which correspond to left 

and right subtrees in the same way. We proceed recursively until reaching "2-sided" 
polygons, which correspond to empty binary trees. 

Stating this correspondence another way, we can label the non-base edges of a 
triangulated polygon with the integers 0, ... , n; and when two adjacent sides of a 

triangle are labeled a and /3 in clockwise order, we can label the third side ( a/3). The 

label of the base then characterizes the binary tree and the triangulation. For example, ----/~ti, (45) -5--::::~ 
"J (?,(ti,'6)l 

( ( (01)2) ( (3( 45)) ( (67) (89)))) 

corresponds to the binary tree shown in 2.3.1-(1). 

2. (a) Take a base edge as in exercise 1, and give it d descendants if that edge is part 

of a ( d + 1 )-gon in the dissected r-gon. The other d edges are then bases for subtrees. 
This defines a correspondence between Kirkman's problem and all ordered trees with 
r - 1 leaves and k + 1 nonleaves, having no nodes of degree 1. (When k = r - 3 we 
have the situation of exercise 1.) 

(b) There are G~~) (r~ 3 ) sequences did2 ... dr+k of nonnegative integers such that 
r - 1 of the d's are 0, none of them are 1, and the sum is r + k - 1. Exactly one of 

the cyclic permutations did2 ... dr+k, d2 ... dr+kd1, ... , dr+kd1 ... dr+k-1 satisfies the 
additional property that ~J=1 (1 - dj) > 0 for 1 :S q :S r + k. 

[Kirkman gave evidence for his conjecture in Philos. Trans. 147 (1857), 217-272, 
§22. Cayley proved it in Proc. London Math. Soc. 22 (1891), 237-262, without noticing 
the connection to trees.] 

3. (a) Let the vertices be {1, 2, ... , n }. Draw an RLINK from j to k if they are 
consecutive elements of the same part and j < k; draw an LLINK from j to j + 1 if 

j + 1 is the smallest of its part. Then there are k - 1 nonnull LLINKs, n - k nonnull 
RLINKs, and we have a binary tree whose nodes are 12 ... n in preorder. Using the 
natural correspondence of Section 2.3.2, this rule defines a one-to-one correspondence 
between "partitions of an n-gon's vertices into k noncrossing parts" and "forests with 
n vertices and n - k + 1 leaves." Interchanging LLINK with RLINK also gives "forests 
with n vertices and k leaves." 

(b) A forest with n vertices and k leaves also corresponds to a sequence of nested 
parentheses, containing n left parentheses, n right parentheses, and k occurrences of 
"()". We can enumerate such sequences as follows: 



598 ANSWERS TO EXERCISES 2.3.4.6 

Say that a string of Os and ls is an ( m, n, k) string if there are m Os, n ls, and 

k occurrences of "01". Then 0010101001110 is a (7, 6, 4) string. The number of (m, n, k) 

strings is (1;;) G), because we are free to choose which Os and ls will form the 01 pairs. 

Let S(a) be the number of Os in a minus the number of ls. We say that a string a 

is good if S(a) ~ 0 whenever a is a prefix of a (in other words, if a= a/3 implies that 

S(a) ~ O); otherwise a is bad. The following alternative to the "reflection principle" of 

exercise 2.2.1-4 establishes a "one-to-one correspondence between bad (n, n, k) strings 

and arbitrary (n - 1, n + 1, k) strings: 
Any bad (n, n, k) string a can be written uniquely in the form a = a0/3, where 

aR and (3 are good. (Here aR is the string obtained from a by reversing it and 

complementing all the bits.) Then a'= al/3 is an (n - 1, n + 1, k) string. Conversely, 

every (n - 1, n + 1, 1) string can be written uniquely in the form al/3 where aR and /3 

are good, and a0/3 is then a bad ( n, n, k) string. 
Consequently the number of forests with n vertices and k leaves is G) G) -

(n~l) (nkl) = n! (n - l)!/(n - k + l)! (n - k)! kl (k - l)!. 
Notes: G. Kreweras, Discrete Math. 1 (1972), 333-350, enumerated noncrossing 

partitions in a different way. The partial ordering of partitions by refinement leads to 

an interesting partial ordering of forests, different from the discussed in exercise 2.3.3-

19; see Y. Poupard, Cahiers du Bureau Univ. de Recherche Operationnelle 16 (1970), 

Chapter 8; Discrete Math. 2 (1972), 279-288; P. Edelman, Discrete Math. 31 (1980), 

171-180, 40 (1982), 171-179. 
A third way to define a natural lattice ordering of forests was introduced by 

R. Stanley in Fibonacci Quarterly 13 (1975), 215-232: Suppose we represent a forest 

by a string a of Os and ls representing left and right parentheses as above; then a :::; a' 

if and only if S(ak) :::; S(a~) for all k, where G'k denotes the first k bits of a. Stanley's 

lattice is distributive, unlike the other two. 

4. Let m = n + 2; by exercise 1, we want a correspondence between triangulated 

m-gons and (m - 1)-rowed friezes. First let's look more closely at the previous cor

respondence, by giving a "top-down" labeling to the edges of a triangulation instead 

of the "bottom-up" one considered earlier: Assign the empty label E to the base, then 

recursively give the labels aL and aR to the opposite edges of a triangle whose base is 

labeled a. For example, the previous diagram becomes 

under these the new conventions. If the base edge in this example is called 10, while 

the other edges are 0 to 9 as before, we can write 0 = lOLLL, 1 = lOLLR, 2 = lOLR, 



2.3.4.6 ANSWERS TO EXERCISES 599 

3 = lORLL, etc. Any of the other edges can also be chosen as the base; thus, if 0 is 

chosen we have 1 = OL, 2 = ORL, 3 = ORRLLL, etc. It is not difficult to verify that 

if u = va we have v = uo:T, where o:T is obtained by reading o: from right to left and 

interchanging L with R. For example, 10 = ORRR = lLRR = 2LR = 3RRL, etc. If 

u, v, and ware edges of the polygon with w = uo:L1 and w = v/3R1, then u = vf3Lo:T 

and v = uo:R/3T. 
Given a triangulation of a polygon whose edges are numbered 0, 1, ... , m - 1, we 

define ( u, v) for any pair of distinct edges u and v as follows: Let u = va, and interpret 

o: as a 2 x 2 matrix by letting L = ( ~ i ) and R = (i ~). Then ( u, v) is defined to 

be the element in the upper left corner of o:. Notice that o:T is the transpose of the 

matrix o:, since R =LT; hence we have (v,u) = (u,v). Notice also that (u,v) = 1 if 

and only if u_ and v_ are joined by an edge of the triangulation, where u_ denotes 

the vertex between edges u and u - 1. 

Let ( u, u) = 0 for all polygon edges u. We can now prove that v = ua implies 

o: _ ( (u,v) 
- (u+l,v) 

(u,v+l) ) 
(u + 1, v + 1) 

for all u -=/:- v, 

where u + 1 and v + 1 are the clockwise successors of u and v. The proof is by induction 

on m: Eq. ( *) is trivial when m = 2, since the two parallel edges u and v are then 

related by u =VE, and o: = E is the identity matrix. If any triangulation is augmented 

by extending some edge v with a triangle v v' v", then v = ua implies v' = uo:L and 

v" = uo:R; hence ( u, v') and ( u, v") in the extended polygon are respectively equal to 

( u, v) and ( u, v) + ( u, v + 1) in the original one. It follows that 

o:L-( (u,v') 
- (u + 1, v') 

(u,v") ) 
(u + 1, v") 

and ( 
(u,v") 

o:R= (u+l,v") 
(u,v"+l) ) 

( u + 1, v" + 1) ' 

and ( *) remains true in the extended polygon. 

The frieze pattern corresponding to the given triangulation is now defined to be 

the periodic sequence 

(0, 1) (1,2) (2,3) 
(0, 2) (1,3) (2,4) 

(m-1, 2) (0, 3) (1, 4) 
(m-1, 3) (0, 4) (1, 5) 

(m-1,0) (0,1) (1,2) 
(m-1, 1) (0, 2) (1, 3) 

(m-2,1) (m-1,2) (0,3) 
(m-2, 2) (m-1, 3) (0, 4) 

and so on until m - 1 rows have been defined; the final row begins with (I m/21 + 1, 

I m/21) when m > 3. Condition ( *) proves that this pattern is a frieze, namely that 

(u, v)(u + 1, v + 1) - (u, v + l)(u + 1, v) = 1, 

because det L = det R = 1 implies det o: = 1. Our example triangulation yields 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 2 4 2 1 5 1 3 1 4 3 1 2 4 2 1 5 1 3 1 4 

2 1 7 7 1 4 4 2 2 3 11 2 1 7 7 1 4 4 2 2 3 
1 3 12 3 3 3 7 1 5 8 7 1 3 12 3 3 3 7 1 5 8 

3 2 5 5 8 2 5 3 2 13 5 3 2 5 5 8 2 5 3 2 13 
5 3 2 13 5 3 2 5 5 8 2 5 3 2 13 5 3 2 5 5 8 

3 7 1 5 8 7 1 3 12 3 3 3 7 1 5 8 7 1 3 12 3 
4 2 2 3 11 2 1 7 7 1 4 4 2 2 3 11 2 1 7 7 1 

5 1 3 1 4 3 1 2 4 2 1 5 1 3 1 4 3 1 2 4 2 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

( **) 



600 ANSWERS TO EXERCISES 2.3.4.6 

The relation ( u, v) = 1 defines the edges of the triangulation, hence different triangu
lations yield different friezes. To complete the proof of one-to-one correspondence, we 
must show that every ( m - 1 )-rowed frieze pattern of positive integers is obtained in 
this way from some triangulation. 

Given any frieze of m - 1 rows, extend it by putting a new row 0 at the top and 
a new row m at the bottom, both consisting entirely of zeros. Now let the elements of 
row 0 be called (0, 0), (1, 1), (2, 2), etc., and for all nonnegative integers u < v :Su +m 
let ( u, v) be the element in the diagonal southeast of ( u, u) and in the diagonal southwest 
of (v,v). By assumption, condition(**) holds for all u < v < u + m. We can in fact 
extend ( **) to the considerably more general relation 

(t,u)(v,w) + (t,w)(u,v) = (t,v)(u,w) for t :S u :S v :S w :S t + m. ( ***) 

For if ( ***) is false, let ( t, u, v, w) be a counterexample with the smallest value of 
(w-t)m+u-t+w-v. Case 1: t+l < u. Then(***) holds for (t,t+l,v,w), 
(t,t + l,u,v), and (t + l,u,v,w), so we find ((t,u)(v,w) + (t,w)(v,u))(t + l,v) = 
(t,v)(u,w)(t + l,v); this implies (t + l,v) = 0, a contradiction. Case 2: v + 1 < w. 
Then(***) holds for (t,u,w - l,w), (u,v,w - l,w), and (t,u,v,w - 1); we obtain a 
similar contradiction ( u, w - 1) = 0. Case 3: u = t + 1 and w = v + 1. In this case 
( ***) reduces to ( ** ). 

Now we set u = t + 1 and w = t +min (***), obtaining (t, v) = (v, t + m) for 
t :S v :St+ m, because (t + 1, t + m) = 1 and (t, t + m) = 0. We conclude that the 
entries of any ( m - 1 )-rowed frieze are periodic: ( u, v) = ( v, u + m) = ( u + m, v + m) = 

(v+m,u+2m) = ···. 
Every frieze pattern of positive integers contains a 1 in row 2. For if we set t = 0, 

v = u + 1, and w = u + 2 in(***) we get (O,u + l)(u,u + 2) = (O,u) + (0,u + 2), 
hence (0, u + 2) - (0, u + 1) ~ (0, u + 1) - (0, u) if and only if ( u, u + 2) ~ 2. This 
cannot hold for all u in the range 0 :S u :S m - 2, because (0, 1) - (0, 0) = 1 and 
(O,m) - (O,m -1) = -1. 

Finally, if m > 3 we cannot have two consecutive ls in row 2, because ( u, u + 2) = 
( u + 1, u + 3) = 1 implies ( u, u + 3) = 0. Therefore we can reduce the frieze to another 
one with m reduced by 1, as illustrated here for 7 rows reduced to 6: 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

b d+l 1 
... 

a c e+l y z ... 
b d 

d 
a c e y z ... 

p q c+r e u+y v w ... 
u q+v r 

p q r s u v w ... 
s u q+v r s ... 

d 
u v w p q r s ... 

u+y v w p q c+r e 
b d 

b d+l 1 e+l ... 
y z a c e y z a c 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

The reduced frieze corresponds to a triangulation, by induction, and the unreduced 
frieze corresponds to attaching one more triangle. [Math. Gazette 57 (1974), 87-94, 
175-183; Conway and Guy, The Book of Numbers (New York: Copernicus, 1996), 
74-76, 96-97, 101-102.] 

N ates: This proof demonstrates that the function ( u, v), which we defined on any 
triangulation via 2 x 2 matrices, satisfies(***) whenever (t,u,v,w) are edges of the 
polygon in clockwise order. We can express each ( u, v) as a polynomial in the numbers 
aj = (j - 1, j + 1); these polynomials are essentially identical to the "continuants" 
discussed in Section 4.5.3, except for the signs of individual terms. In fact, (j, k) = 
·l-k+jK (' · · ) Th ( ) . . 1 t t E 1 ' 'd . i k-j-1 Wj+l, Wj+2, ... , Wk-1 . us *** is eqmva en o u er s i entity 



2.3.5 ANSWERS TO EXERCISES 601 

for continuants in the answer to exercise 4.5.3-32. The matrices L and R have the 

interesting property that any 2 x 2 matrix of nonnegative integers with determinant 1 

can be expressed uniquely as a product of L's and R's. 

Many other interesting relationships are present; for example, the numbers in 

row 2 of an integer frieze count the number of triangles touching each vertex of the 

corresponding triangulated polygon. The total number of occurrences of (u, v) = 1 in 

the basic region 0 :::; u < v - 1 < m - 1 and ( u, v) -=/:- ( 0, m - 1) is the number of 

diagonals (chords) of the triangulation, namely m - 3 = n - 1. The total number of 2s 

is also n - l, because (u,v) = 2 if and only if u_ and v_ are opposing vertices of the 

two triangles adjacent to a chord. 
Another interpretation of ( u, v) was found by D. Broline, D. W. Crowe, and I. M. 

Isaacs [Geometrire Dedicata 3 (1974), 171-176]: It is the number of ways to match the 

v - u - 1 vertices between edges u and v - 1 with distinct triangles adjacent to those 

vertices. 

SECTION 2.3.5 

1. A List structure is a directed graph in which the arcs leaving each vertex are 

ordered, and where some of the vertices that have out-degree 0 are designated "atoms." 

Furthermore there is a vertex S such that there is an oriented path from S to V for all 

vertices V -=/:- S. (With directions of arcs reversed, S would be a "root.") 

2. Not in the same way, since thread links in the usual representation lead back to 

"PARENT," which is not unique for sub-Lists. The representation discussed in exercise 

2.3.4.2-25, or some similar method, could perhaps be used (but this idea has not yet 

been exploited at the time of writing). 

3. As mentioned in the text, we prove also that P = PO upon termination. If only 

PO is to be marked, the algorithm certainly operates correctly. If n > 1 nodes are 

to be marked, we must have ATOM(PO) = 0. Step E4 then sets ALINK(PO) +--A and 

executes the algorithm with PO replaced by ALINK (PO) and T replaced by PO. By 

induction (note that since MARK(PO) is now 1, all links to PO are equivalent to A by 

steps E4 and E5), we see that ultimately we will mark all nodes on paths that start with 

ALINK(PO) and do not pass through PO; and we will then get to step E6 with T =PO and 

P = ALINK(PO). Now since ATOM(T) = 1, step E6 restores ALINK(PO) and ATOM(PO) 

and we reach step E5. Step E5 sets BLINK(PO) +-- A, etc., and a similar argument 

shows that we will ultimately mark all nodes on paths that start with BLINK (PO) and 

do not pass through PO or nodes reachable from ALINK (PO) . Then we will get to E6 

with T =PO, P = BLINK(PO), and finally we get to E6 with T =A, P =PO. 

4. The program that follows incorporates the suggested improvements in the speed 

of processing atoms that appear in the text after the statement of Algorithm E. 

In steps E4 and E5 of the algorithm, we want to test if MARK(Q) = 0. If NODE(Q) = 

+O, this is an unusual case that can be handled properly by setting it to -0 and treating 

it as if it were originally -0, since it has ALINK and BLINK both A. This simplification 

is not reflected in the timing calculations below. 

rll = P, rI2 = T, rI3 = Q, and rX = -1 (for setting MARKs). 

01 MARK EQU 0:0 
02 ATOM EQU 1:1 
03 ALINK EQU 2:3 
04 BLINK EQU 4:5 



602 ANSWERS TO EXERCISES 2.3.5 

05 1 El. Initialize. P +-- PO. 

06 1 T +--A. 

07 1 rX+--1. 

08 1 E2. Mark. MARK (P) +-- 1. 

09 1 E3. Atom? 

10 1 Jump if ATOM(P) = 0. 

11 n E6. Up. 

12 n - 1 Q +-- T. 

13 
14 
15 
16 
17 
18 
19 1H 

20 
21 
22 
23 E5 

24 
25 
26 
27 
28 
29 
30 
31 E4A 

32 
33 E4 

34 
35 
36 
37 
38 

JANZ 1F 

L02 0,3(BLINK) 

ST1 0,3(BLINK) 

ENT! 0,3 

JMP E6 

STZ 0,2(ATOM) 

L02 0,3(ALINK) 

ST! 0,3(ALINK) 

ENT! 0,3 

L03 0,1(BLINK) 

J3Z E6 

LOA 0,3 

STX 0,3(MARK) 

JANP E6 

LOA 0,3(ATOM) 

JANZ E6 

ST2 0,1(BLINK) 

ENT2 0,1 

ENT! 0,3 

L03 0,1(ALINK) 

J3Z E5 

LOA 0,3 
STX 0,3(MARK) 

JANP E5 
LOA 0,3(ATOM) 

n-l 
n - 1 Jump if ATOM(T) = 1. 

t2 T +-- BLINK(Q). 

t2 BLINK(Q) +-- P. 

t2 
t2 
ti 
ti 
ti 
ti 
n 
n 

n- b2 
n- b2 
n- b2 
t2 + a2 
t2 + a2 

t2 
n-l 
n-l 

n 
n 

n- bi 
n- bi 
n- bi 

ti+ ai 

pf- Q. 

ATOM(T) +-- 0. 
T +-- ALINK(Q). 

ALINK(Q) +-- P. 

pf- Q. 

E5. Down BLINK. Q +-- BLINK (P). 

Jump if Q =A. 

MARK (Q) +-- 1. 
Jump if NOOE(Q) was already marked. 

Jump if ATOM(Q) = 1. 
BLINK(P) +-- T. 

T +-- P. 
pf- Q. 

E4. Down ALINK. Q +-- ALINK (P). 

Jump if Q =A. 

MARK (Q) +-- 1. 
Jump if NOOE(Q) was already marked. 

39 JANZ E5 ti+ ai Jump if ATOM(Q) = 1. 

40 STX 0, !(ATOM) ti ATOM(P) +-- 1. 

41 ST2 0,1(ALINK) ti ALINK(P) +-T. 

42 JMP E4A ti T +-- P, P +-- Q, to E4. I 

By Kirchhoff's law, t 1 +t2+1 = n. The total time is (34n + 4ti + 3a - Sb- 8)u, where 

n is the number of nonatomic nodes marked, a is the number of atoms marked, b is 

the number of A links encountered in marked nonatomic nodes, and ti is the number 

of times we went down an ALINK (0 :::; ti < n). 

5. (The following is the fastest known marking algorithm for a one-level memory.) 

SL Set MARK(PO) +-- 1. If ATOM(PO) = 1, the algorithm terminates; otherwise set 

S +-- 0, R +-- PO, T +-- A. 

82. Set P +-- BLINK(R). If P = A or MARK(P) = 1, go to S3. Otherwise set 

MARK(P) +-- 1. Now if ATOM(P) = 1, go to S3; otherwise if S < N set S +-- S + 1, 

STACK [SJ f- P, and go to S3; otherwise go to SS. 



2.3.5 ANSWERS TO EXERCISES 603 

83. Set P +-- ALINK(R). If P = A or MARK(P) = 1, go to S4. Otherwise set 

MARK(P) +-- 1. Now if ATOM(P) = 1, go to S4; otherwise set R +-- P and return 

to S2. 

84. If S = 0, terminate the algorithm; otherwise set R +-- STACK [SJ, S +-- S - 1, 

and go to S2. 

85. Set Q +-- ALINK(P). If Q = A or MARK(Q) = 1, go to S6. Otherwise set 

MARK(Q) +-- 1. Now if ATOM(Q) = 1, go to S6; otherwise set ATOM(P) +-- 1, 

ALINK(P) +-- T, T +-- P, P +-- Q, go to S5. 

86. Set Q +-- BLINK(P). If Q = A or MARK(Q) = 1, go to S7; otherwise set 

MARK(Q) +-- 1. Now if ATOM(Q) = 1, go to S7; otherwise set BLINK(P) +-- T, 

T +-- P, P +-- Q, go to S5. 

87. If T = A, go to S3. Otherwise set Q +-- T. If ATOM(Q) = 1, set ATOM(Q) +-- 0, 

T +-- ALINK(Q), ALINK(Q) +-- P, P +-- Q, and return to S6. If ATOM(Q) = 0, set 

T +-- BLINK(Q), BLINK(Q) +-- P, P +-- Q, and return to S7. I 

Reference: CACM 10 (1967), 501-506. 

6. From the second phase of garbage collection (or perhaps also the initial phase, 

if all mark bits are set to zero at that time). 

7. Delete steps E2 and E3, and delete "ATOM(P) +-- l" in E4. Set MARK(P) +-- 1 in 

step E5 and use "MARK(Q) = O", "MARK(Q) = 1" in step E6 in place of the present 

"ATOM(Q) = 1", "ATOM(Q) = O" respectively. The idea is to set the MARK bit only after 

the left subtree has· been marked. This algorithm works even if the tree has overlapping 

(shared) subtrees, but it does not work for all recursive List structures such as those 

with NODE (ALINK (Q)) an ancestor of NODE (Q). (Note that ALINK of a marked node is 

never changed.) 

8. Solution 1: Analogous to Algorithm E, but simpler. 

FL Set T +-- A, P +-- PO. 

F2. Set MARK(P) +-- 1, and set P +-- P + SIZE(P). 

F3. If MARK(P) = 1, go to F5. 

F4. Set Q +-- LINK(P). If Q-=/:- A and MARK(Q) = 0, set LINK(P) +-- T, T +-- P, P +-- Q 

and go to F2. Otherwise set P +-- P - 1 and return to F3. 

F5. If T =A, stop. Otherwise set Q +-- T, T +-- LINK(Q), LINK(Q) +-- P, P +-- Q - 1, 

and return to F3. I 
A similar algorithm, which sometimes decreases the storage overhead and which 

avoids all pointers into the middle of nodes, has been suggested by Lars-Erik Thorelli, 

BIT 12 (1972), 555-568. 

Solution 2: Analogous to Algorithm D. For this solution, we assume that the SIZE 

field is large enough to contain a link address. Such an assumption is probably not 

justified by the statement of the problem, but it lets us use a slightly faster method 

than the first solution when it is applicable. 

Gl. Set T +--A, MARK(PO) +-- 1, P +--PO+ SIZE(PO). 

G2. If MARK(P) = 1, go to G5. 

G3. Set Q +-- LINK(P), P +-- P - 1. 

G4. If Q -=/:- A and MARK(Q) = 0, set MARK(Q) +-- 1, S +-- SIZE(Q), SIZE(Q) +-- T, 

T +-- Q + S. Go back to G2. 



604 ANSWERS TO EXERCISES 2.3.5 

G5. If T = A, stop. Otherwise set P +-- T and find the first value of Q = P, P - 1, 

P - 2, ... for which MARK(Q) = 1; set T +-- SIZE(Q) and SIZE(Q) +-- P - Q. Go 

back to G2. I 
9. Hl. Set L +-- 0, K +-- M + 1, MARK(O) +-- 1, MARK(M + 1) +-- 0. 

H2. Increase L by one, and if MARK (L) = 1 repeat this step. 

H3. Decrease K by one, -and if MARK (K) = 0 repeat this step. 

H4. If L > K, go to step H5; otherwise set NODE(L) +-- NODE(K), ALINK(K) +-- L, 

MARK (K) +-- 0, and return to H2. 

H5. For L = 1, 2, ... , K do the following: Set MARK(L) +-- 0. If ATOM(L) = 0 

and ALINK(L) > K, set ALINK(L) +-- ALINK(ALINK(L)). If ATOM(L) = 0 and 

BLINK (L) > K, set BLINK (L) +-- ALINK (BLINK (L)). I 

See also exercise 2.5-33. 

10. Zl. [Initialize.] Set F +--PO, R ¢::AVAIL, NODE(R) +-- NODE(F), REF(F) +-- R. (Here 

F and R are pointers for a queue set up in the REF fields of all header nodes 

encountered.) 

Z2. [Begin new List.] Set P +-- F, Q +-- REF(P). 

Z3. [Advance to right.] Set P +-- RLINK(P). If P =A, go to Z6. 

Z4. [Copy one node.] Set Q1 ¢:: AVAIL, RLINK(Q) +-- Q1, Q +-- Q1, NODE(Q) f

NODE(P). 

Z5. [Translate sub-List link.] lfT(P) = 1, set P1 +-- REF(P), and ifREF(P1) =A set 

REF(R) +-- P1, R ¢::AVAIL, REF(P1) +-- R, NODE(R) +-- NODE(P1), REF(Q) +-- R. 

If T(P) = 1 and REF(P1) -=/:-A, set REF(Q) +-- REF(P1). Go to Z3. 

Z6. [Move to next List.] Set RLINK(Q) +--A. If REF(F) -=/:- R, set F +-- REF(REF(F)) 

and return to Z2. Otherwise set REF(R) +--A, Pf- PO. 

Z 7. [Final cleanup.] Set Q +-- REF (P) . If Q -=/:- A, set REF (P) f- A and P f- Q and 

repeat step Z7. I 
Of course, this use of the REF fields makes it impossible to do garbage collection with 

Algorithm D; moreover, Algorithm D is ruled out by the fact that the Lists aren't. 

well-formed during the copying. 
Several elegant List-moving and List-copying algorithms that make substantially 

weaker assumptions about List representation have been devised. See D. W. Clark, 

CACM 19 (1976), 352-354; J. M. Robson, CACM 20 (1977), 431-433. 

11. Here is a pencil-and-paper method that can be written out more formally to answer 

the problem: First attach a unique name (e.g., a capital letter) to each List in the given 

set; in the example we might have A= (a: C, b, a: F), F = (b: D), B = (a: F, b, a: E), 
C = (b: G), G = (a: C), D = (a: F), E = (b: G). Now make a list of pairs of List 

names that must be proved equal. Successively add pairs to this list until either a 

contradiction is found because we have a pair that disagree on the first level (then the 

originally given Lists are unequal), or until the list of pairs does not imply any further 

pairs (then the originally given Lists are equal). In the example, this list of pairs would 

originally contain only the given pair, AB; then it gets the further pairs CF, EF (by 

matching A and B), DG (from CF); and then we have a self-consistent set. 

To prove the validity of this method, observe that (i) if it returns the answer 

"unequal" , the given Lists are unequal; (ii) if the given Lists are unequal, it returns 

the answer "unequal"; (iii) it always terminates. 



2.4 ANSWERS TO EXERCISES 605 

12. When the AVAIL list contains N nodes, where N is a specified constant to be 
chosen as discussed below, initiate another coroutine that shares computer time with 
the main routine and does the following: (a) Marks all N nodes on the AVAIL list; (b) 
marks all other nodes that are accessible to the program; ( c) links all unmarked nodes 
together to prepare a new AVAIL list for use when the current AVAIL list is empty, and 
( d) resets the mark bits in all nodes. One must choose N and the ratio of time sharing 
so that operations (a), (b), (c), and (d) are guaranteed to be complete before N nodes 
are taken from the AVAIL list, yet the main routine is running sufficiently fast. It is 
necessary to use some care in step (b) to make sure that all nodes "accessible to the 
program" are included, as the program continues to run; details are omitted here. If 
the list formed in ( c) has fewer than N nodes, it may be necessary to stop eventually 
because memory space might become exhausted. [For further information, see Guy L. 
Steele Jr., CACM 18 (1975), 495-508; P. Wadler, CACM 19 (1976), 491-500; E. W. 
Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens, CACM 21 
(1978), 966-975; H. G. Baker, Jr., CACM 21 (1978), 280-294.] 

SECTION 2.4 
1. Preorder. 

2. It is essentially proportional to the number of Data Table entries created. 

3. Change step A5 to: 

A5'. [Remove top level.] Remove the top stack entry; and if the new level number 
at the top of the stack is 2'.: L, let (L1, P1) be the new entry at the top of the 
stack and repeat this step. Otherwise set SIB(P1) f- Q and then let (L1,P1) 
be the new entry at the top of the stack. 

4. (Solution by David S. Wise.) Rule ( c) is violated if and only if there is a data item 
whose complete qualification Ao OF . . . OF An is also a COBOL reference to some other 
data item. Since the parent A1 OF ... OF An must also satisfy rule (c), we may assume 
that this other data item is a descendant of the same parent. Therefore Algorithm A 
would be extended to check, as each new data item is added to the Data Table, whether 
its parent is an ancestor of any other item of the same name, or if the parent of any 
other item of the same name is in the stack. (When the parent is A, it is everybody's 
ancestor and always on the stack.) 

On the other hand, if we leave Algorithm A as it stands, the COBOL programmer 
will get an error message from Algorithm B when trying to use an illegal item. Only 
MOVE CORRESPONDING can make use of such items without error. 

5. Make these changes: Step replace by 

Bl. P +-- LINK(Po) P +-- LINK (INFO (T) ) 
B2. k f- 0 K +-T 
B3. k<n RLINK(K) #A 
B4. k+-k+l K +-- RLINK(K) 
B6. NAME(S) =Pk NAME(S) = INFO(K) 

6. A simple modification of Algorithm B makes it search only for complete references 
(if k = n and PARENT(S) #A in step B3, or if NAME(S) #Pk in step B6, set P +-- PREV(P) 
and go to B2). The idea is to run through this modified Algorithm B first; then, if Q is 
still A, to perform the unmodified algorithm. 

7. MOVE MONTH OF DATE OF SALES TO MONTH OF DATE OF PURCHASES. MOVE DAY OF DATE 
OF SALES TO DAY OF DATE OF PURCHASES. MOVE YEAR OF DATE OF SALES TO YEAR OF 



606 ANSWERS TO EXERCISES 2.4 

DATE OF PURCHASES. MOVE ITEM OF TRANSACTION OF SALES TO ITEM OF TRANSACTION OF 

PURCHASES. MOVE QUANTITY OF TRANSACTION OF SALES TO QUANTITY OF TRANSACTION 

OF PURCHASES. MOVE PRICE OF TRANSACTION OF SALES TO PRICE OF TRANSACTION OF 

PURCHASES. MOVE TAX OF TRANSACTION OF SALES TO TAX OF TRANSACTION OF PURCHASES. 

8. If and only if a or f3 is an elementary item. (It may be of interest to note that 

the author failed to handle this case properly in his first draft of Algorithm C, and it 

actually made the algorithm ~ore complicated.) 

9. "MOVE CORRESPONDING a TO /3", if neither a nor f3 is elementary, is equivalent to 

the set of statements "MOVE CORRESPONDING A OF a TO A OF /3" taken over all names 

A common to groups a and /3. (This is a more elegant way to state the definition 

than the more traditional and more cumbersome definition of "MOVE CORRESPONDING" 

given in the text.) We may verify that Algorithm C satisfies this definition, using an 

inductive proof that steps C2 through C5 will ultimately terminate with P = PO and 

Q = QO. Further details of the proof are filled in as we have done many times before in 

a "tree induction" (see, for example, the proof of Algorithm 2.3.lT). 

10. (a) Set S1 +--- LINK(Pk). Then repeatedly set S1 +--- PREV(S1) zero or more times 

until either S1 = A (NAME(S) f. Pk) or S1 = S (NAME(S) = Pk)· (b) Set P1 +--- P and 

then set P1 +--- PREV(P1) zero or more times until PREV(P1) =A; do a similar operation 

with variables Q1 and Q; then test if P1 = Q1. Alternatively, if the Data Table entries 

are ordered so that PREV(P) < P for all P, a faster test can be made in an obvious way 

depending on whether P > Q or not, following the PREV links of the larger to see if the 

smaller is encountered. 

11. A minuscule improvement in the speed of step C4 would be achieved by adding a 

new link field SIB! (P) = CHILD(PARENT(P)). More significantly, we could modify the 

CHILD and SIB links so that NAME(SIB(P)) > NAME(P); this would speed up the search 

in step C3 considerably because it would require only one pass over each family to find 

the matching members. This change would therefore remove the only "search" present 

in Algorithm C. Algorithms A and C are readily modified for this interpretation, and 

the reader may find it an interesting exercise. (However, if we consider the relative 

frequency of MOVE CORRESPONDING statements and the usual size of family groups, the 

resulting speedup will not be terribly significant in the translation of actual COBOL 

programs.) 

12. Leave steps Bl, B2, B3 unchanged; change the other steps thus: 

B4. Set k +--- k + 1, R +--- LINK(Pk). 

B5. If R = A, there is no match; set P +--- PREV(P) and go to B2. If R < S ::; 

SCOPE (R), set S +--- R and go to B3. Otherwise set R +--- PREV (R) and repeat 

step B5. I 

This algorithm does not adapt to the PL/I convention of exercise 6. 

13. Use the same algorithm, minus the operations that set NAME, PARENT, CHILD, 

and SIB. Whenever removing the top stack entry in step A5, set SCOPE(P1) +--- Q - 1. 

When the input is exhausted in step A2, simply set L +--- 0 and continue, then terminate 

the algorithm if L = 0 in step A 7. 

14. The following algorithm, using an auxiliary stack, has steps numbered to show a 

direct correspondence with the text's algorithm. 

Cl. Set P +---PO, Q +--- QO, and set the stack contents empty. 



2.5 ANSWERS TO EXERCISES 607 

C2. If SCOPE(P) = P or SCOPE(Q) = Q, output (P, Q) as one of the desired pairs 

and go to C5. Otherwise put (P, Q) on the stack and set P +--- P + 1, Q +--- Q + 1. 

C3. Determine if P and Q point to entries with the same name (see exercise lO(b)). 

If so, go to C2. If not, let (P1, Q1) be the entry at the top of the stack; if 
SCOPE(Q) < SCOPE(Q1), set Q +--- SCOPE(Q) + 1 and repeat step C3. 

C4. Let (P1, Q1) be the entry at the top of the stack. If SCOPE(P) < SCOPE(P1), set 
P +--- SCOPE(P) + 1, Q +--- Q1+1, and go back to C3. If SCOPE(P) = SCOPE(P1), 

set P +--- P1, Q +--- Q1 and remove the top entry of the stack. 

C5. If the stack is empty, the algorithm terminates. Otherwise go to C4. I 

SECTION 2.5 
1. In such fortuitous circumstances, a stack-like operation may be used as follows: 

Let the memory pool area be locations 0 through M - 1, and let AVAIL point to the 

lowest free location. To reserve N words, report failure if A VAIL + N .2: M, otherwise set 

AVAIL+--- AVAIL+ N. To free these N words, just set AVAIL+--- AVAIL - N. 
Similarly, cyclic queue-like operation is appropriate for a first-in-first-out discipline. 

2. The amount of storage space for an item of length l is k fl/(k- b)l, which has the 

average value kL/(k - b) + (1 - a)k, where a is assumed to be 1/2, independent of k. 
This expression is a minimum (for real values of k) when k = b + V2b£. So choose k to 

be the integer just above or just below this value, whichever gives the lowest value of 

kL/(k - b) + ~k. For example, if b = 1 and L = 10, we would choose k::::::: 1 + v'20 = 5 
or 6; both are equally good. For much greater detail about this problem, see JACM 
12 (1965), 53-70. 

4. rll =: Q, rl2 =: P. 

A1 LDA N 
ENT2 AVAIL 

A2A ENT! 0,2 
A2 LD2 0,1(LINK) 

J2N OVERFLOW 
A3 CMPA 0,2(SIZE) 

JG A2A 
A4 SUB 0,2(SIZE) 

JANZ *+3 
LDX 0,2(LINK) 
STX 0,1(LINK) 
STA 0,2(SIZE) 
LD1 0,2(SIZE) 

rA +--- N. 
P +--- LOC(AVAIL). 
Q +--- P. 
P +--- LINK(Q). 
If P = A, no room. 

Jump if N > SIZE(P). 
rA +--- N - SIZE(P) = K. 
Jump if K f. 0. 

LINK(Q) +--- LINK(P). 
SIZE(P) +--- K. 
Optional ending, 

INC! 0,2 sets rll +--- P + K. I 
5. Probably not. The unavailable storage area just before location P will subsequently 

become available, and its length will be increased by the amount K; an increase of 99 
would not be negligible. 

6. The idea is to try to search in different parts of the AVAIL list each time. We can 

use a "roving pointer," called ROVER for example, which is treated as follows: In step 

Al, set Q +--- ROVER. After step A4, set ROVER +--- LINK(Q). In step A2, when P = A 

the first time during a particular execution of Algorithm A, set Q +--- LDC(AVAIL) and 

repeat step A2. When P = A the second time, the algorithm terminates unsuccessfully. 

In this way ROVER will tend to point to a random spot in the AVAIL list, and the sizes 



608 ANSWERS TO EXERCISES 2.5 

will be more balanced. At the beginning of the program, set ROVER +--- LDC (A VAIL) ; it 
is also necessary to set ROVER to LOC(AVAIL) everywhere else in the program where the 
block whose address equals the current setting of ROVER is taken out of the AVAIL list. 
(Sometimes, however, it is useful to have small blocks at the beginning, as in the strict 
first-fit method; for example, we might want to keep a sequential stack at the high end 
of memory. In such cases we can reduce the search time by using trees as suggested in 
exercise 6.2.3-30.) 

7. 2000, 1000 with requests of sizes 800, 1300. 
[An example where worst-fit succeeds, while best-fit fails, has been constructed by 

R. J. Weiland.] 

8. In step Al, also set M +--- oo, R +---A. In step A2, if P =A go to A6. In step A3, go 
to A5 instead of A4. Add new steps as follows: 

A5. [Better fit?] If M > SIZE(P), set R +--- Q and M +--- SIZE(P). Then set Q +--- P 

and return to A2. 

A6. [Any found?] If R = A, the algorithm terminates unsuccessfully. Otherwise 
set Q +--- R, P +--- LINK(Q), and go to A4. I 

9. Obviously if we are so lucky as to find SIZE(P) = N, we have a best fit and it is not 
necessary to search farther. (When there are only very few different block sizes, this 
occurs rather often.) If a "boundary tag" method like Algorithm C is being used, it is 
possible to maintain the AV AIL list in sorted order by size; so the length of search could 
be cut down to half the length of the list or less, on the average. But the best solution 
is to make the AVAIL list into a balanced tree structure as described in Section 6.2.3, if 
it is expected to be long. 

10. Make the following changes: 
Step B2, for "P > PO" read "P 2:: PO". 

Step B3, insert "If PO+ N > P and Pf. A, set P +--- LINK(P) and repeat step B3." 
Step B4, for "Q + SIZE(Q) = PO", read "Q + SIZE(Q) 2". PO; and for "SIZE(Q) +--

SIZE(Q) + N" read "SIZE(Q) +---PO+ N - Q". 

11. If PO is greater than ROVER, we can set Q +---ROVER instead of Q +--- LOC(AVAIL) in 
step Bl. If there are n entries in the AVAIL list, the average number of iterations of 
step B2 is (2n + 3)(n + 2)/6(n + 1) = ~n + ~ + 0 (~). For example if n = 2 we get 9 
equally probable situations, where P1 and P2 point to the two existing available blocks: 

ROVER= P1 
ROVER= P2 
ROVER=LDC(AVAIL) 

PO< P1 

1 
1 
1 

P1 <PO< P2 

1 
2 
2 

P2 <PO 

2 

1 
3 

This chart shows the number of iterations needed in each case. The average is 

t ( (~) + (~) + (~) + (~) + (~)) = t ( (~) + (:)) 

12. Al. Set P +--- ROVER, F +--- 0. 

14 
9 

A2. If P = LOC(AVAIL) and F = 0, set P +--- AVAIL, F +--- 1, and repeat step A2. If 
P = LOC(AVAIL) and Fi- 0, the algorithm terminates unsuccessfully. 

A3. If SIZE(P) ;:::=: N, go to A4; otherwise set P +--- LINK(P) and return to A2. 



2.5 ANSWERS TO EXERCISES 609 

A4. Set ROVER+--- LINK(P), K +--- SIZE(P) - N. If K < c (where c is a constant 2: 2), 

set LINK(LINK(P + 1)) +---ROVER, LINK(ROVER + 1) +--- LINK(P + 1), L +--- P; 

otherwise set L +--- P + K, SIZE(P) +--- SIZE(L - 1) +--- K, TAG(L - 1) +--- "-", 

SIZE(L) +--- N. Finally set TAG(L) +--- TAG(L + SIZE(L) - 1) +--- "+". I 

13. rll := P, rX =: F, rl2 := L. 

LINK EQU 4:5 
SIZE EQU 1:2 
TSIZE EQU 0:2 
TAG EQU 0:0 
A1 LDA N 

SLA 3 
ENTX 0 
LD1 ROVER 
JMP A2 

A3 CMPA 0,1(SIZE) 

A2 

JLE A4 
LD1 0,1(LINK) 
ENT2 -AVAIL,1 
J2NZ A3 
JXNZ OVERFLOW 
ENTX 1 
LD1 AVAIL(LINK) 
JMP A2 

A4 LD2 0,1(LINK) 

1H 

2H 

ST2 ROVER 
LDA 0, !(SIZE) 
SUB N 
CMPA =c= 
JGE 1F 
LD3 1 , 1 (LINK) 
ST2 0,3(LINK) 
ST3 1,2(LINK) 
ENT2 0,1 
LD3 0, !(SIZE) 
JMP 2F 
STA 0, !(SIZE) 
LD2 0, 1 (SIZE) 
INC2 0,1 
LDAN 0,1(SIZE) 
STA -1,2(TSIZE) 
LD3 N 
ST3 0,2(TSIZE) 
INC3 0,2 
STZ -1,3(TAG) 

rA +--- N. 
Shift into SIZE field. 
F +--- 0. 
P +---ROVER. 

Jump if N ~ SIZE(P). 
P +--- LINK(P). 
rl2 +--- P - LDC (AVAIL). 

Is Ff. O? 
Set F +--- 1. 
P +---AVAIL. 

ROVER +--- LINK (P) . 
rA = K +--- SIZE(P) - N. 

Jump if K 2: c. 
rl3 +--- LINK (P + 1) . 

LINK(rl3) +---ROVER. 
LINK(ROVER + 1) +--- r13. 
L +--- P. 
rl3 +--- SIZE(P). 

SIZE(P) +--- K. 

L +--- P + K. 
rA +--- -K. 
SIZE(L - 1) +--- K, TAG(L - 1) +--- "-". 

rl3 +--- N. 
TAG(L) +--- "+", also set SIZE(L) +--- r13. 

TAG(L + SIZE(L) - 1) +--- "+". I 
14. (a) This field is needed to locate the beginning of the block, in step C2. It could 

be replaced (perhaps to advantage) by a link to the first word of the block. See also 

exercise 19. (b) This field is needed because we sometimes need to reserve more than N 

words (for example if K = 1), and the amount reserved must be known when the block 
is subsequently freed. 



610 ANSWERS TO EXERCISES 2.5 

15, 16. rll:::::::: PO, rl2 := P1, rl3:::::::: F, rl4:::::::: B, rl6:::::::: -N. 

D1 LD1 PO 
LD2 0,1(SIZE) 

ENN6 0,2 
INC2 0,1 
LD5 0,2(TSIZE) 

J5N D4 
D2 LD5 -1,1(TSIZE) 

J5N D7 
D3 LD3 AVAIL(LINK) 

ENT4 AVAIL 
JMP D5 

D4 INC6 0,5 
LD3 0,2(LINK) 
LD4 1,2(LINK) 

CMP2 ROVER 
JNE *+3 
ENTX AVAIL 
STX ROVER 
DEC2 0,5 
LD5 -1,1(TSIZE) 

J5N D6 
D5 ST3 0,1(LINK) 

ST4 1, 1 (LINK) 
ST1 1,3(LINK) 
ST1 0,4(LINK) 

N +--- SIZE(PO). 

P1 +---PO+ N. 

To D4 if TAG(P1) = "-" 

D2. 
To D7 if TAG(PO - 1) = "-" 

D3. Set F +--- A VAIL. 
B +--- LOC(AVAIL). 

To D5. 
D4. N +--- N + SIZE(P1). 

F +--- LINK(P1). 

B +--- LINK(P1+1). 
(New code, because of the ROVER 

feature of exercise 12: 

If P1 =ROVER, 
set ROVER+--- LOC(AVAIL) .) 

P1 +--- P1 + SIZE(P1). 

To D6 if TAG(PO - 1) = "-" 

D5. LINK(PO) +--- F. 
LINK(PO + 1) +--- B. 
LINK (F + 1) +--- PO. 
LINK(B) +---PO. 

JMP D8 To D8. 

D6 ST3 0, 4 (LINK) D6. LINK (B) +--- F. 

ST4 1, 3 (LINK) LINK (F + 1) +--- B. 

D7 INC6 0, 5 D7. N +--- N + SIZE(PO - 1). 

INC! 0, 5 PO +--- PO - SIZE(PO - 1). 

D8 ST6 0,1(TSIZE) D8. SIZE(PO) +--- N, TAG(PO) +--- "-". 

ST6 -1,2(TSIZE) SIZE(P1 -1) +--- N, TAG(P1 -1) +--- "-". I 

17. Both LINK fields equal to LOC(AVAIL). 

18. Algorithm A reserves the upper end of a large block. When storage is completely 

available, the first-fit method actually begins by reserving the high-order locations, but 

once these become available again they are not re-reserved since a fit is usually found 

already in the lower locations; thus the initial large block at the lower end of memory 

quickly disappears with first-fit. A large block rarely is the best fit, however, so the 

best-fit method leaves a large block at the beginning of memory. 

19. Use the algorithm of exercise 12, except delete the references to SIZE(L - 1), 

TAG(L-1), and TAG(L + SIZE(L) -1) from step A4; also insert the following new step 

between steps A2 and A3: 

A2~. Set P1 +--- P+SIZE(P). If TAG(P1) = "+",proceed to step A3. Otherwise set 

P2 +--- LINK(P1), LINK(P2+1) +--- LINK(P1+1), LINK(LINK(P1+1)) +--- P2, 

SIZE(P) +--- SIZE(P) + SIZE(P1). If ROVER = P1, set ROVER +--- P2. Repeat 

step A2~. 



2.5 ANSWERS TO EXERCISES 611 

Clearly the situation of (2), (3), (4) can't occur here; the only real effect on 
storage allocation is that the search here will tend to be longer than in exercise 12, 
and sometimes K will be less than c although there is really another available block 
preceding this one that we do not know about. 

(An alternative is to take the collapsing out of the inner loop A3, and to do the 
collapsing only in step A4 before the final allocation or in the inner loop when the 
algorithm would otherwise have terminated unsuccessfully. This alternative requires a 
simulation study to see if it is an improvement or not.) 

[This method, with a few refinements, has proved to be quite satisfactory in the 
implementations of '!EX and METAFONT. See TpjX: The Program (Addison-Wesley, 
1986), §125.] 

20. When a buddy is found to be available, during the collapsing loop, we want to 
remove that block from its AVAIL[k] list, but we do not know which links to update 
unless (i) we do a possibly long search, or (ii) the list is doubly linked. 

21. If n = 2ka, where 1::::; a::::; 2, an is 22k+ 1 (a - ~)+~'and bn is 22k- 1 a 2 + 2k- 1a. 
The ratio an/bn for large n is essentially 4(a - ~)/a2 , which takes its minimum value 
~ when a = 1 and 2, and its maximum value ~ when a = 1 ~· So an/bn approaches no 
limit; it oscillates between these two extremes. The averaging methods of Section 4.2.4 
do, however, yield an average ratio of 4(ln2)-1 f

1
2 (a - ~) da/a 3 = (ln2)-1

::::::: 1.44. 

22. This idea requires a TAG field in several words of the 11-word block, not only in 
the first word. It is a workable idea, if those extra TAG bits can be spared, and it would 
appear to be especially suitable for use in computer hardware. 

23. 011011110100; 011011100000. 

24. This would introduce a bug in the program; we may get to step Sl when TAG(O) = 1, 
since S2 may return to Sl. To make it work, add "TAG(L) +--- O" after "L +--- P" in step S2. 
(It is easier to assume instead that TAG(2m) = 0.) 

25. The idea is absolutely correct. (Criticism need not be negative.) The list heads 
AVAIL [k] may be eliminated for n < k ::::; m; the algorithms of the text may be used if 
"m" is changed to "n" in steps Rl, SL The initial conditions (i3) and (i4) should be 
changed to indicate 2m-n blocks of size 2n instead of one block of size 2m. 

26. Using the binary representation of M, we can easily modify the initial conditions 
(i3), (i4) so that all memory locations are divided into blocks whose size is a power of 
two, with blocks in decreasing order of size. In Algorithm S, TAG (P) should be regarded 
as 0 whenever P ;:::=: M - 2k. 

27. rll = k, rl2 =: j, rl3 = j - k, rl4 = L, LOC(AVAIL[j]) = AVAIL+ j; as
sume that there is an auxiliary table TWO [j] = 2j, stored in location TWO + j, for 
0 :S j ::::; m. Assume further that "+" and "-" represent tags of 0 and 1, and that 
TAG(LOC(AVAIL[j])) ="-";but TAG(LOC(AVAIL[m + 1])) ="+"is a sentinel. 

00 KVAL EQU 5:5 
01 TAG EQU 0:0 
02 LINKF EQU 1:2 
03 LINKB EQU 3:4 
04 TLNKF EQU 0:2 
05 R1 LD1 K 
06 
01 
08 

ENT2 0,1 
ENT3 0 
LD4 AVAIL,2(LINKF) 

1 
1 
1 
1 

Rl. Find block. 
j +--- k. 



612 ANSWERS TO EXERCISES 2.5 

09 1H ENT5 AVAIL,2 l+R 
10 DEC5 0,4 1 +R 
11 J5NZ R2 l+R Jump if AVAILF [j] f. LOC(AVAIL [j]). 
12 INC2 1 R Increase j. 
13 INC3 1 R 
14 LD4N AVAIL,2(TLNKF) R 
15 J4NN 1B 

. R Is j:::; m? 
16 JMP OVERFLOW 
11 R2 LD5 0,4(LINKF) 1 R2. Remove from list. 
18 ST5 AVAIL,2(LINKF) 1 AVAILF [j] +-- LINKF(L). 
19 ENTA AVAIL,2 1 
20 STA 0,5(LINKB) 1 LINKB (L) +-- LDC (A VAIL [j] ) . 
21 STZ 0,4(TAG) 1 TAG(L) +-- 0. 
22 R3 J3Z DONE 1 R3. Split required? 
23 R4 DEC3 1 R R4. Split. 
24 DEC2 1 R Decrease j. 
25 LD5 TW0,2 R rl5 = P. 
26 INC5 0,4 R P +-- L + 2i. 
21 ENNA AVAIL,2 R 
28 STA 0,5(TLNKF) R TAG(P) +-- 1, LINKF(P) +-- LOC(AVAIL[j]). 
29 STA 0,5(LINKB) R LINKB (P) +-- LDC (A VAIL [j] ) . 
30 ST5 AVAIL,2(LINKF) R AVAILF [j] +-- P. 
31 ST5 AVAIL,2(LINKB) R AVAILB [j] +-- P. 
32 ST2 0,5(KVAL) R KVAL(P) +-- j. 
33 J3P R4 R Go to R3. 
34 DONE I 
28. rll = k, rl5 = P, rl4 = L; assume TAG(2m) = "+". 
01 S1 LD4 L 1 Sl. Is buddy_ available? 
02 LD1 K 1 
03 1H ENTA 0,4 l+S 
04 XOR TW0,1 l+S rA +-- buddykL). 
05 STA TEMP l+S 
06 LD5 TEMP l+S P +-- rA. 
01 LDA 0,5 l+S 
08 JANN S3 l+S Jump if TAG (P) = 0. 
09 CMP1 0,5(KVAL) B+S 
10 JNE S3 B+S Jump if KVAL(P) f. k. 
11 S2 LD2 0,5(LINKF) s S2. Combine with buddy_. 
12 LD3 0,5(LINKB) s 
13 ST3 0,2(LINKF) s LINKF(LINKB(P)) +-- LINKF(P). 
14 ST2 0,3(LINKB) s LINKB (LINKF (P)) +-- LINKB (P). 
15 INC! 1 s Increase k. 
16 CMP4 TEMP s 
11 JL 1B s 
18 ENT4 0,5 A If L > P, set L +-- P. 
19 JMP 1B A 
20 S3 LD2 AVAIL,1(LINKF) 1 S3. Put on list. 
21 ENNA AVAIL,1 1 
22 STA 0,4(0:4) 1 TAG(L) +-- 1, LINKB(L) +-- LOC(AVAIL[k]). 



2.5 ANSWERS TO EXERCISES 613 

23 ST2 0,4(LINKF) 1 LINKF (L) +--- AVAILF [k]. 

24 ST1 0,4(KVAL) 1 KVAL(L) +--- k. 

25 ST4 0,2(LINKB) 1 LINKB (AVAILF [k]) +--- L. 
26 ST4 AVAIL,1(LINKF) 1 AVAIL [k] +--- L. I 
29. Yes, but only at the expense of some searching, or (better) an additional table 
of TAG bits packed somehow. (It is tempting to suggest that buddies not be joined 
together during Algorithm S, but only in Algorithm R if there is no block large enough 
to meet the request; but that would probably lead to a badly fragmented memory.) 

31. See David L. Russell, SICOMP 6 (1977), 607-621. 

33. Gl. [Clear LINKs.] Set P +--- 1, and repeat the operation LINK(P) +--- A, P +-
p + SIZE(P) until P = AVAIL. (This merely sets the LINK field in the first 
word of each node to A; we may assume in most cases that this step is 
unnecessary, since LINK(P) is set to A in step G9 below and it can be set to 
A by the storage allocator.) 

G2. [Initialize marking phase.] Set TOP+--- USE, LINK(TOP) +---AVAIL, LINK(AVAIL) 
+---A. (TOP points to the top of a stack as in Algorithm 2.3.5D.) 

G3. [Pop up stack.] Set P +---TOP, TOP+--- LINK(TOP). If TOP= A, go to G5. 

G4. [Put new links on stack.] For 1 :::; k :::; T(P), do the following operations: 
Set Q +--- LINK(P + k); then if Q f. A and LINK(Q) = A, set LINK(Q) +---TOP, 
TOP+--- Q. Then go back to G3. 

G5. [Initialize next phase.] (Now P = AVAIL, and the marking phase has been 
completed so that the first word of each accessible node has a nonnull LINK. 
Our next goal is to combine adjacent inaccessible nodes, for speed in later 
steps, and to assign new addresses to the accessible nodes.) Set Q +--- 1, 
LINK(AVAIL) +--- Q, SIZE(AVAIL) +--- 0, P +--- 1. (Location AVAIL is being used 
as a sentinel to signify the end of a loop in subsequent phases.) 

G6. [Assign new addresses.] If LINK(P) =A, go to G7. Otherwise if SIZE(P) = 0, 
go to G8. Otherwise set LINK(P) +--- Q, Q +--- Q + SIZE(P), P +--- P + SIZE(P), 
and repeat this step. 

G7. [Collapse available areas.] If LINK(P + SIZE(P)) = A, increase SIZE(P) by 
SIZE(P + SIZE(P)) and repeat this step. Otherwise set P +--- P + SIZE(P) and 
return to G6. 

GS. [Translate all links.] (Now the LINK field in the first word of each accessible 
node contains the address to which the node will be moved.) Set USE +
LINK (USE), and AVAIL +--- Q. Then set P +--- 1, and repeat the following 
operation until SIZE(P) = 0: If LINK(P) f. A, set LINK(Q) +--- LINK(LINK(Q)) 
for all Q such that P < Q:::; P + T(P) and LINK(Q) f. A; then regardless of the 
value of LINK(P), set P +--- P + SIZE(P). 

G9. [Move.] Set P +--- 1, and repeat the following operation until SIZE(P) = 0: 
Set Q +--- LINK(P), and if Q f. A set LINK(P) +--- A and NODE(Q) +--- NODE(P); 
then whether Q =A or not, set P +--- P + SIZE(P). (The operation NODE(Q) +-
NODE(P) implies the movement of SIZE(P) words; we always have Q :::; P, so it 
is safe to move the words in order from smallest location to largest.) I 

[This method is called the "LISP 2 garbage collector." An interesting alternative, which 
does not require the LINK field at the beginning of a node, can be based on the idea 
of linking together all pointers that point to each node - see Lars-Erik Thorelli, BIT 



614 ANSWERS TO EXERCISES 2.5 

16 (1976), 426-441; R. B. K. Dewar and A. P. McCann, Software Practice & Exp. 
7 (1977), 95-113; F. Lockwood Morris, CACM 21 (1978), 662-665, 22 (1979), 571; 
H. B. M. Jonkers, Inf Proc. Letters 9 (1979), 26-30; J. J. Martin, CACM 25 (1982), 

571-581; F. Lockwood Morris, Inf Proc. Letters 15 (1982), 139-142, 16 (1983), 215. 

Other methods have been published by B. K. Haddon and W. M. Waite, Comp. J. 10 
(1967), 162-165; B. Wegbreit, Comp. J. 15 (1972), 204-208; D. A. Zave, Inf Proc. 

Letters 3 (1975), 167-169. Cohen and Nicolau have analyzed four of these approaches 

in ACM Trans. Prog. Languages and Systems 5 (1983), 532-553.] 

34. Let TOP = rll, Q = rl2, P = rl3, k = r14, SIZE(P) = rl5. Assume further that 
A= 0, and LINK(O) f. 0 to simplify step G4. Step Gl is omitted. 

01 LINK EQU 4:5 
02 INFO EQU 0:3 
03 SIZE EQU 1:2 

04 T EQU 3:3 
05 G2 LD1 USE 1 G2. Initialize marking p_hase. TOP+--- USE. 
06 LD2 AVAIL 1 
07 ST2 0,1(LINK) 1 LINK(TOP) +---AVAIL. 
08 STZ 0,2(LINK) 1 LINK(AVAIL) +---A. 
09 G3 ENT3 0,1 a+l G3. Pop_ up_ stack. P +--- TOP. 
10 LD1 0,1(LINK) a+l TOP +--- LINK (TOP). 
11 J1Z G5 a+l To G5 if TOP = A. 
12 G4 LD4 0,3(T) a G4. Put new links on stack. k t--T(P). 

13 1H J4Z G3 a+b k = O? 

14 INC3 1 b Pt--P+l. 
15 DEC4 1 b kt--k-l. 
16 LD2 0,3(LINK) b Q +--- LINK(P). 
11 LDA 0,2(LINK) b 
18 JANZ 1B b Jump if LINK(Q) f. A. 
19 ST1 0,2(LINK) a-1 Otherwise set LINK(Q) +---TOP, 
20 ENT! 0,2 a-1 TOP+--- Q. 
21 JMP 1B a-1 
22 G5 ENT2 1 1 GS. Initialize next p_hase. Q +--- 1. 
23 ST2 0,3 1 LINK(AVAIL) +--- 1, SIZE(AVAIL) +--- 0. 

24 ENT3 1 1 p +--- 1. 
25 JMP G6 1 
26 1H ST2 0,3(LINK) a LINK (P) +--- Q. 
27 INC2 0,5 a Q +--- Q + SIZE(P). 
28 INC3 0,5 a P +--- P + SIZE(P). 
29 G6 LDA 0,3(LINK) a+l G6. Assign new addresses. 
30 G6A LD5 0,3(SIZE) a+c+l 
31 JAZ G7 a+c+l Jump if LINK(P) =A. 
32 J5NZ 1B a+l Jump if SIZE(P) f. 0. 
33 G8 LD1 USE _1 G8. Translate all links. 
34 LDA 0,1(LINK) 1 
35 STA USE 1 USE +--- LINK (USE). 
36 ST2 AVAIL 1 AVAIL +--- Q. 
31 ENT3 1 1 p +--- 1. 
38 JMP G8P 1 



2.5 

39 1H LD6 0,6(SIZE) 
40 INC5 0,6 
41 G7 ENT6 0,3 
42 INC6 0,5 
43 LDA 0,6(LINK) 

44 JAZ 1B 
45 ST5 0,3(SIZE) 
46 INC3 0,5 
41 JMP G6A 
48 2H DEC4 1 
49 INC2 1 
50 LD6 0,2(LINK) 
51 LDA 0,6(LINK) 
52 STA 0,2(LINK) 
53 1H J4NZ 2B 
54 3H INC3 0,5 
55 G8P LDA 0,3(LINK) 
56 LD5 0,3(SIZE) 
51 JAZ 3B 
58 LD4 0,3(T) 
59 ENT2 0,3 
60 J5NZ 1B 
61 G9 ENT3 1 
62 ENT! 1 
63 JMP G9P 
64 1H STZ 0,3(LINK) 
65 ST5 *+1(4 :4) 

66 MOVE 0,3(*) 
61 3H INC3 0,5 
68 G9P LDA 0,3(LINK) 
69 LD5 0,3(SIZE) 
70 JAZ 3B 
11 J5NZ 1B 

d 
d 

c+d 
c+d 
c+d 
c+d 

c 
c 
c 
b 
b 
b 
b 
b 

a+b 
a+c 

l+a+c 
l+a+c 
l+a+c 

l+a 
l+a 
l+a 

1 
1 
1 
a 
a 
a 

a+c 
l+a+c 
l+a+c 
l+a+c 

l+a 

ANSWERS TO EXERCISES 615 

rl5 +--- rl5 + SIZE(P + SIZE(P)). 
G7. Collapse available areas. 
rl6 +--- P + SIZE(P). 

Jump if LINK(rl6) =A. 
SIZE(P) +--- rl5. 
P +--- P + SIZE(P). 

kt--k-l. 
Q+--Q+l. 

LINK(Q) +---LINK (LINK(Q)). 
Jump if k f. 0. 
P +--- P + SIZE(P). 

Is LINK(P) =A? 
k +--- T(P). 
Q +--- P. 
Jump unless SIZE(P) = 0. 
G9. Move. P +--- 1. 
Set rll for MOVE instructions. 

LINK(P) +---A. 

NODE(rll) +--- NODE(P), rll +--- rll + SIZE(P). 
P +--- P + SIZE(P). 

Jump if LINK(P) =A. 
Jump unless SIZE(P) = 0. I 

In line 66 we are assuming that the size of each node is sufficiently small that it can 
be moved with a single MOVE instruction; this seems a fair assumption for most cases 
when this kind of garbage collection is applicable. 

The total running time for this program is ( 44a + 1 7b + 2w + 25c + 8d + 4 7) u, 
where a is the number of accessible nodes, b is the number of link fields therein, c is 
the number of inaccessible nodes that are not preceded by an inaccessible node, d is 
the number of inaccessible nodes that are preceded by an inaccessible node, and w is 
the total number of words in the accessible nodes. If the memory contains n nodes, 
with pn of them inaccessible, then we may estimate a = (1 - p)n, c = (1 - p)pn, 
d = p2n. Example: five-word nodes (on the average), with two link fields per node 
(on the average), and a memory of 1000 nodes. Then when p = k, it takes 374u per 
available node recovered; when p = ~, it takes 104u; and when p = t, it takes only 33u. 

36. A single customer will be able to sit in one of the sixteen seats 1, 3, 4, 6, ... , 23. 
If a pair enters, there must be room for them; otherwise there are at least two people 
in seats (1, 2, 3), at least two in (4, 5, 6), ... , at least two in (19, 20, 21), and at least 
one in 22 or 23, so at least fifteen people are already seated. 



616 ANSWERS TO EXERCISES 2.5 

3 7. First sixteen single males enter, and she seats them. There are 1 7 gaps of empty 
seats between the occupied seats, counting one gap at each end, with a gap of length 
zero assumed between adjacent occupied seats. The total number of empty seats, 
namely the sum of all seventeen gaps, is 6. Suppose x of the gaps are of odd length; 
then 6 - x spaces are available to seat pairs. (Note that 6 - x is even and 2: 0.) Now 
each of the customers 1, 3, 5, 7, 9, 11, 13, 15, from left to right, who has an even gap 
on both sides, finishes his luncn and walks out. Each odd gap prevents at most one of 
these eight diners from leaving, hence at least 8 - x people leave. There still are only 
6 - x spaces available to seat pairs. But now (8 - x)/2 pairs enter. 

38. The arguments generalize readily; N(n, 2) = L(3n - 1)/2J for n 2: 1. [When the 
hostess uses a first-fit strategy instead of an optimal one, Robson has proved that the 
necessary and sufficient number of seats is L(5n - 2)/3J .] 

39. Divide memory into three independent regions of sizes N(n1, m), N(n2, m), and 
N(2m - 2, m). To process a request for space, put each block into the first region for 
which the stated capacity is not exceeded, using the relevant optimum strategy for that 
region. This cannot fail, for if we were unable to fill a request for x locations we must 
have at least (n1 - x + 1) + (n2 - x + 1) + (2m - x - l) > nl + n2 - x locations already 
occupied. 

Now if f(n) = N(n, m) + N(2m-2, m), we have the subadditive law f(n1 +n2) ::; 
J(n1) + f(n2). Hence limf(n)/n exists. (Proof: J(a +be) ::; J(a) + bf(c); hence 
limsupn-t= J(n)/n = maxos;a<climsupb-t= f(a+bc)/(a+bc)::; J(c)/c for all c; hence 
limsupn-t= J(n)/n::; liminfn-t= J(n)/n.) Therefore limN(n,m)/n exists. 

[From exercise 38 we know that N(2) = ~· The value N(m) is not known for any 
m > 2. It is not difficult to show that the multiplicative factor for just two block sizes, 
1 and b, is 2 - l/b; hence N(3) 2: 1~. Robson's methods imply that N(3)::; 1 i~, and 
2::; N(4)::; 2~.] 

40. Robson has proved that N(2r) ::; 1 + r, by using the following strategy: Allocate 
to each block of size k, where 2m ::; k < 2m+1, the first available block of k locations 
starting at a multiple of 2m. 

Let N ( {b1, b2, ... , bn}) denote the multiplicative factor when all block sizes are 
constrained to lie in the set {b1,b2, ... ,bn}, so that N(n) = N({l,2, ... ,n}). Robson 
and S. Krogdahl have discovered that N( {b1, b2, ... , bn}) = n - (b1/b2 + · · · + bn-1/bn) 
whenever bi is a multiple of bi-l for 1 < i ::; n; indeed, Robson has established the 
exact formula N(2rm, {1,2,4, ... ,2r}) = 2rm(l + ~r) - 2r + 1. Thus in particular, 
N(n) 2: 1 + ~ Llg nJ. He also has derived the upper bound N(n) ::; 1.1825 ln n + 
0(1), and he conjectures tentatively that N(n) = Hn. This conjecture would follow 
if N( {b1, b2, ... , bn}) were equal to n - (b1/b2 + · · · + bn-1/bn) in general, but this is 
unfortunately not the case since Robson has proved that N( {3, 4}) 2: 1 1~. (See Inf. 
Proc. Letters 2 (1973), 96-97; JACM 21 (1974), 491-499.) 

41. Consider maintaining the blocks of size 2k: The requests for sizes 1, 2, 4, ... , 2k-l 
will periodically call for a new block of size 2k to be split, or a block of that size will 
be returned. We can prove by induction on k that the total storage consumed by such 
split blocks never exceeds kn; for after every request to split a block of size 2k+1, we are 
using at most kn locations in split 2k-blocks and at most n locations in unsplit ones. 

This argument can be strengthened to show that arn cells suffice, where a0 = 1 
and ak = 1 + ak-1(1 - 2-k); we have 

k= 0 1 2 3 4 5 
1 255 

64 
3 697 

1024 
418535 

32768 



2.5 ANSWERS TO EXERCISES 617 

Conversely for r :::;_ 5 it can be shown that a buddy system sometimes requires as many 

as arn cells, if the mechanism of steps Rl and R2 is modified to choose the worst 

possible available 2i-block to split instead of the first such block. 

Robson's proof that N(2r) :::;_ 1 + r (see exercise 40) is easily modified to show 

that such a "leftmost" strategy will never need more than (1 + ~r )n cells to allocate 

space for blocks of sizes 1, 2, 4, ... , 2r, since blocks of size 2k will never be placed in 

locations 2: ( 1 + ~ k )n. Although his algorithm seems very much like the buddy system, 

it turns out that no buddy system will be this good, even if we modify steps Rl and 

R2 to choose the best possible available 2i-block to split. For example, consider the 

following sequence of "snapshots" of the memory, for n = 16 and r = 3: 

11111111 11111111 00000000 00000000 

10101010 10101010 2-2-2-2- 00000000 

11110000 11110000 2-110000 00000000 

11111111 11110000 11110000 00000000 

10101010 10102-2- 10102-2- 00000000 

10001000 10002-00 10002-00 4---4---

10000000 10000000 10000000 4---0000 

Here 0 denotes an available location and k denotes the beginning of a k-block. In a 

similar way there is a sequence of operations, whenever n is a multiple of 16, that forces 

1
3
6 n blocks of size 8 to be ~ full, and another 1

1
6 n to be ~ full. If n is a multiple of 

128, a subsequent request for 1; 8 n blocks of size 8 will require more than 2.5n memory 

cells. (The buddy system allows unwanted ls to creep into 1
3
6 n of the 8-blocks, since 

there are no other available 2s to be split at a crucial time; the "leftmost" algorithm 

keeps all ls confined.) 

42. We can assume that m 2: 6. The main idea is to establish the occupancy pattern 

Rm-2(Fm-3R1)k at the beginning of the memory, for k = 0, 1, ... , where Rj and Fj 

denote reserved and free blocks of size j. The transition from k to k + 1 begins with 

Rm-2(Fm-3R1)k --+ Rm-2(Fm-3R1)k Rm-2Rm-2 

--+ Rm-2(Fm-3R1)k-l F2m-4Rm-2 

--+ Rm-2(Fm-3R1)k-l RmRm-5R1Rm-2 

--+ Rm-2(Fm-3R1)k-l FmRm-5Rl; 

then the commutation sequence Fm-3R1FmRm-5R1 --+ Fm-3R1Rm-2R2Rm-5R1 --+ 

F2m-4R2Rm-5R1 --+ RmRm-5R1R2Rm-5R1 --+ FmRm-5R1Fm-3R1 is used k times 

until we get FmRm-5R1 (Fm-3R1)k --+ F2m-5R1 (Fm-3R1)k --+ Rm-2(Fm-3R1)k+1. 

Finally, when k gets large enough, there is an endgame that forces overflow unless the 

memory size is at least (n - 4m + ll)(m - 2); details appear in Comp. J. 20 (1977), 

242-244. [Notice that the worst conceivable worst case, which begins with the pattern 

Fm-1R1Fm-1R1Fm-1R1 ... , is only slightly worse than this; the next-fit strategy of 

exercise 6 can produce this pessimal pattern.] 

43. We will show that if D1, D2, ... is any sequence of numbers such that D1/m + 
D2/(m + 1) + · · · + Dm/(2m -1) 2: 1 for all m 2: 1, and if Cm= D1/l + D2/2 + · · · + 
Dm/m, then NFF(n, m) ~ nCm. In particular, since 

1 1 1 1 1 1 1 
- + + · · · + = 1 - -

2 
+ · · · + - + > ln 2, 

m m + 1 2m + 1 2m - 3 2m - 2 2m - 1 



618 ANSWERS TO EXERCISES 2.5 

the constant sequence Dm = 1/ln 2 satisfies the necessary conditions. The proof is by 
induction on m. Let Nj = nCj for j 2:: 1, and suppose that some request for a block 
of size m cannot be allocated in the leftmost Nm cells of memory. Then m > 1. For 
0 :::; j < m, we let Nj denote the rightmost position allocated to blocks of sizes :::; j, 
or 0 if all reserved blocks are larger than j; by induction we have Nj :::; Nj. Furthermore 
we let N:,. be the rightmost occupied position :::; Nm, so that N:,. 2:: Nm - m + 1. 
Then the interval (Nj_1 .. Nj°] contains at least fj(Nj - Nj_1)/(m + j - l)l occupied 
cells, since its free blocks are of size < m and its reserved blocks are of size 2:: j. It 
follows that n - m 2:: number of occupied cells 2:: L,j=1 j(Nj - Nj_1)/(m + j - 1) = 
mN:,./(2m - 1) - (m - 1) L,j=~1 Nj/(m + j)(m + j - 1) > mNm/(2m - 1) - m -

(m - 1) L,j=~1 Nj(l/(m + j -1) -1/(m + j)) = L.7=1 nDj/(m + j -1) - m 2:: n - m, 
a contradiction. 

[This proof establishes slightly more than was asked. If we define the D's by 
D1/m + · · · + Dm/(2m -1) = 1, then the sequence C1, C2, ... is 1, i, 1;2

1 , ;:~~, ... ; 
and the result can be improved further, even in the case m = 2, as in exercise 38.] 

44. fF-1(1/N)l, fF-1(2/N)l, .. ., fF-1(N/N)l. 



APPENDIX A 

TABLES OF NUMERICAL QUANTITIES 

Table 1 
QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES 

AND IN ANALYSIS OF COMPUTER PROGRAMS (40 DECIMAL PLACES) 

v'2 = 1.41421 35623 73095 04880 16887 24209 69807 85697-
v'3 = 1.73205 08075 68877 29352 74463 41505 87236 69428+ 
vs= 2.23606 79774 99789 69640 91736 68731 27623 54406+ 

v'iO = 3.16227 76601 68379 33199 88935 44432 71853 37196-
V2 = 1.25992 10498 94873 16476 72106 07278 22835 05703-
w = 1.44224 95703 07408 38232 16383 10780 10958 83919-
V'2 = 1.18920 71150 02721 06671 74999 70560 47591 52930-
ln 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755+ 
ln3 = 1.09861 22886 68109 69139 52452 36922 52570 46475-

ln 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011 + 
1/ln2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+ 

1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944-
71" = 3.14159 26535 89793 23846 26433 83279 50288 41972-

1° = 71" /180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+ 
l/7r = 0.31830 98861 83790 67153 77675 26745 02872 40689+ 

71"
2 = 9.86960 44010 89358 61883 44909 99876 15113 53137-

yl7i = r(1/2) = 1.77245 38509 05516 02129 81674 83341 14518 27975+ 
r(l/3) = 2.67893 85347 01141 63365 56929 40974 67764 41287-
r(2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+ 

e = 2.71828 18284 59045 23536 02874 71352 66249 77572+ 
1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+ 

e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+ 
/ = 0.57721 56649 01532 86060 65120 90082 40243 10422-

ln 7r = 1.14472 98858 49400 17414 34273 51353 05871 16473-
¢ = 1.61803 39887 49894 84820 45868 34365 63811 77203+ 

e"I = 1. 78107 24179 90197 98523 65041 03107 17954 91696+ 
e7r/4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+ 
sin 1 = 0.8414 7 09848 07896 50665 25023 21630 29899 96226-
cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+ 

-('(2) = 0.93754 82543 15843 75370 25740 94567 86497 78979-
((3) = 1.20205 69031 59594 28539 97381 61511 44999 07650-
ln</J = 0.48121 18250 59603 44749 77589 13424 36842 31352-

1/ln ¢ = 2.07808 69212 35027 53760 13226 06117 79576 77422-
-lnln2 = 0.36651 29205 81664 32701 24391 58232 66946 94543-

619 



620 APPENDIX A 

Table 2 
QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINE~ 

AND IN ANALYSIS OF COMPUTER PROGRAMS (45 OCTAL PLACES) 

The names at the left of the "=" signs are given in decimal notation. 

0.1 = 0.06314 63146 31463 14631 46314 63146 31463 14631 46315-
0.0l = 0..005015341211270 24365 60501 53412 11210 24365 60510-

0.001 = 0.00040 61115 64570 65116 16355 44264 16254 02030 44612+ 
0.0001 = 0.00003 21556 13530 10414 54512 15110 33021 15002 35223-

0.00001 = 0.00000 24161 32610 10664 36041 06011 11401 56063 34411-
0.000001 = 0.00000 02061 51364 05536 66151 55323 01146 44410 26033+ 

0.0000001 = 0.00000 00153 21145 15214 53644 12141 12312 20354 02151+ 
0.00000001 = 0.00000 00012 51143 56106 04303 41314 11341 01512 63321+ 

0.000000001 = 0.00000 00001 04560 21640 46655 12262 11426 40124 21142+ 
0.0000000001 = 0.00000 00000 06616 33166 35361 55653 31265 34642 01621-

v'2 = 1.32404 14631 11161 46220 42621 66115 46125 12515 11435+ 
v'3 = 1.56663 65641 30231 25163 54453 50265 60361 34013 42223-
v's = 2.17061 36334 51122 41602 51411 63003 00563 55620 32021-

v'W = 3.12305 40126 64555 22444 02242 51101 41466 33115 22532+ 
~ = 1.20505 05146 15345 05342 10156 65334 25514 22415 03024+ 
w = 1.34233 50444 22115 13134 61363 16133 05334 31141 60121-
V'2 = 1.1406114050 61556 12455 12152 64430 60211 02155 13136+ 
ln2 = 0.54211 02115 15011 13632 51111 01316 3000111366 53640+ 
ln3 = 1.06231 24152 55006 05221 32440 63065 25012 35514 55331+ 

ln 10 = 2.23213 06135 52524 25405 56512 66542 56026 46050 50105+ 
1/ln2 = 1.34252 16624 53405 11021 35150 31166 40644 35115 04353+ 

1/ln 10 = 0.33626 15425 11562 41614 52325 33525 21655 14156 06220-
71' = 3.110315524210264 30215 14230 63050 56006 70163 21122+ 

1° = 71'/180 = 0.01013 12152 11224 12344 25603 54216 633512205611544+ 
1/71' = 0.24216 30155 62344 20251 23160 412515016515156 10061-

71'2 = 11.61511144616213511322 25561 15466 30021 40654 34103-
yl7r = r(1/2) = 1.61337 61106 64736 65241 41035 40510 15213 34410 11162-

r(l/3) = 2.53347 35234 51013 61316 13106 41644 54653 00106 66046-
r(2/3) = 1.26523 51112 14154 14312 54512 37655 60126 23231 02452+ 

e = 2.55160 52130 50535 51246 52113 42542 00411 12363 61661+ 
1/e = 0.21426 53066 13161 46161 52126 15436 02440 52311 03355+ 

e2 = 1.30114 45615 23355 33460 63501 35040 32664 25356 50211+ 
/ = 0.44142 14110 61666 06112 23215 14316 01002 51313 25521-

ln7l' = 1.11206 40443 41503 36413 65314 526615241031511 46051+ 
¢ = 1.41433 51156 21151 23101 21634 11401 40211 66110 15010+ 

e'Y = 1.61112 13452 61152 65161 22411 36553 5332111554 21260+ 
e7r/4 = 2.14215 31512 16162 52310 35530 11342 53525 4430102111-
sin 1 = 0.65665 24436 04414 13402 03061 23644 11612 01414 14505-
cos 1 = 0.42450 50031 32406 42111 01022 14666 21320 10615 12321+ 

-(' (2) = 0. 14001 45144 53253 42362 42101 23350 50014 46100 21706+ 
((3) = 1.14135 00023 60014 20410 15613 42561 31115 10111 06614+ 
ln¢ = 0.36630 26256 61213 01145 13700 41004 52264 30100 40646+ 

1/ln¢ = 2.04116 60111 11144 41512 11436 16515 00355 43630 40651+ 
-lnln2 = 0.21351 11233 61265 63650 11401 56631 26334 31455 51005-



TABLES OF NUMERICAL QUANTITIES 621 

Several of the 40-digit values in Table 1 were computed on a desk calculator 
1y John W. Wrench, Jr., for the first edition of this book. When computer 
oftware for such calculations became available during the 1970s, all of his 
ontributions proved to be correct. See the answer to exercise 1.3.3-23 for the 
,0-digit value of another fundamental constant. 

Table 3 
VALUES OF HARMONIC NUMBERS, BERNOULLI NUMBERS, 

AND FIBONACCI NUMBERS, FOR SMALL VALUES OF n 

n Hn Bn Fn n 

0 0 1 0 0 
1 1 -1/2 1 1 
2 3/2 1/6 1 2 
3 11/6 0 2 3 
4 25/12 -1/30 3 4 
5 137 /60 0 5 5 
6 49/20 1/42 8 6 
7 363/140 0 13 7 
8 761/280 -1/30 21 8 
9 7129/2520 0 34 9 

10 7381/2520 5/66 55 10 
11 83711/27720 0 89 11 
12 86021/27720 -691/2730 144 12 
13 1145993/360360 0 233 13 
14 1171733/360360 7/6 377 14 
15 1195757 /360360 0 610 15 
16 2436559/720720 -3617 /510 987 16 
17 42142223/12252240 0 1597 17 
18 14274301/4084080 43867/798 2584 18 
19 275295799/77597520 0 4181 19 
20 55835135/15519504 -174611/330 6765 20 
21 18858053/5173168 0 10946 21 
22 19093197/5173168 854513/138 17711 22 
23 444316699/118982864 0 28657 23 
24 1347822955/356948592 -236364091/2130 46368 24 
25 34052522467/8923714800 0 75025 25 
26 34395742267/8923714800 8553103/6 121393 26 
27 312536252003/80313433200 0 196418 27 
28 315404588903/80313433200 -23749461029/870 317811 28 
29 9227046511387/2329089562800 0 514229 29 
30 9304682830147/2329089562800 8615841276005/14322 832040 30 



622 APPENDIX A 

For any x, let Hx = '"°" (~ - 1 
) . Then 

~ n n+x 
n::'.:1 

H1;2 = 2 - 2ln2, 

H1;3 = 3- ~7r/VS- ~ln3, 
3• 1 /;) 3 

H2;3 = 2 + 27r/v3- 2 ln3, 

H1;4 = 4- ~7r - 3ln2, 

H3;4 = ~ + ~7r - 3ln2, 

H1;5 = 5- ~7r</>312 5- 1 /4 - ~ln5- ~v'5ln</>, 

H2; 5 = ~ - ~7!"</>- 3 /2 5- 1 /4 - ~ ln5 + ~v'5ln</>, 

H3;5 = ~ + ~7r</>-3/25-1/4 - ~ ln 5 + ~v'5ln </>, 

H4;5 = ~ + ~7r</>3/25-1/4 - ~ ln 5 - ~v'5ln </>, 

H1/6 = 6 - ~7rVS - 2ln2 - ~ ln3, 

H5/6 = ~ + ~7rVS - 2ln2 - ~ ln3, 

and, in general, when 0 < p < q (see exercise 1.2.9-19), 

q 7r p 
H ; = - - - cot -7!" - ln 2q + 2 

p q p 2 q I: 
l:Sn<q/2 

2pn . n 
cos -7!" · lnsm -7!". 

q q 



APPENDIX B 

INDEX TO NOTATIONS 

In the following formulas, letters that are not further qualified have the following 
significance: 

j,k 
m,n 
x,y 

integer-valued arithmetic expression 
nonnegative integer-valued arithmetic expression 
real-valued arithmetic expression 
real-valued or complex-valued function f 

p 

S,T 
pointer-valued expression (either A or a computer address) 
set or multiset 

Q string of symbols 

Formal symbolism 

V +-E 

U++V 

An or A[n] 

Amn or A[m, n] 

NODE(P) 

F(P) 

CONTENTS(P) 

LOC(V) 

P-¢= AVAIL 

AVAIL-¢= P 

top(S) 
x-¢= s 

Meaning 

give variable V the value of expression E 

interchange the values of variables U and V 

the nth element of linear array A 
the element in row m and column n of rect
angular array A 
the node (group of variables that are indi
vidually distinguished by their field names) 
whose address is P, assuming that P =f. A 
the variable in NODE(P) whose field name is F 

contents of computer word whose address is P 

address of variable V within a computer 

set the value of pointer variable P to the 
address of a new node 

return NODE (P) to free storage; all its fields 
lose their identity 

node at the top of a nonempty stack S 

pop up S to X: set X +- top(S); then delete 
top(S) from nonempty stack S 

push down X onto S: insert the value X as 
a new entry on top of stack S 

623 

Where 
defined 

1.1 
1.1 
1.1 

1.1 

2.1 
2.1 
2.1 
2.1 

2.2.3 

2.2.3 
2.2.1 

2.2.1 

2.2.1 



624 APPENDIX B 

Where 
Formal symbolism Meaning defined 

(B ::=} E; E') conditional expression: denotes E if B is 
true, E' if B is false 

[B] characteristic function of condition B: 
(B ::=} l; 0) 1.2.3 

oki Kronecker delta: [j = k] 1.2.6 

[zn] g(z) coefficient of zn in power series g( z) 1.2.9 

:L J(k) sum of all f ( k) such that the variable k is an 
R(k) integer and relation R( k) is true 1.2.3 

IT J(k) product of all f ( k) such that the variable k 
R(k) is an integer and relation R( k) is true 1.2.3 

min f (k) minimum value of all f ( k) such that the var-
R(k) iable k is an integer and relation R( k) is true 1.2.3 

maxf (k) maximum value of all f ( k) such that the var-
R(k) iable k is an integer and relation R( k) is true 1.2.3 

j\k j divides k: kmodj = 0 and j > 0 1.2.4 

S\T set difference: {a I a in S and a not in T} 

gcd(j,k) greatest common divisor of j and k: 

(j=k=0==}0; max d) 1.1 
d\j,d\k 

j J_ k j is relatively prime to k: gcd(j, k) = 1 1.2.4 
AT transpose of rectangular array A: 

AT[j, k] = A[k,j] 1.2.3 

QR left-right reversal of a 

xY x to they power (when xis positive) 1.2.2 
xk x to the kth power: 

(k? o = II x; 1/x-k) 1.2.2 
05,j<k 

xk x to the k rising: f(x + k)/f(x) = 

( k ? a= II (x + j); 1/(x + k)-k) 1.2.5 
05,j<k 

xl! x to the k falling: x!/(x - k)! = 

( k? o = II (x - j); 1/(x-Wk) 1.2.5 
05,j<k 



INDEX TO NOTATIONS 625 

Formal symbolism 

n! 

(~) 
(n.,nz,n .,nJ 

[:J 

{mn} 

Meaning 

n factorial: r ( n + 1) = n!!. 

binomial coefficient: (k < 0 ::=} O; x!s../k!) 

multinomial coefficient (defined only when 

n = n1 + n2 +···+nm) 

Stirling number of the first kind: 

Stirling number of the second kind: 

{a I R( a)} set of all a such that the relation R( a) is true 

{a1, ... ,an} the set or multiset {ak I 1 .:S k .:Sn} 

{ x} fractional part (used in contexts where a 

Where 
defined 

1.2.5 

1.2.6 

1.2.6 

1.2.6 

1.2.6 

real value, not a set, is implied): x - Lx J 1.2.11.2 

[a .. b] closed interval: {x I a .:S x .:Sb} 1.2.2 

(a .. b) open interval: {x I a< x < b} 1.2.2 

[a . . b) half-open interval: { x I a :::; x < b} 1.2.2 

(a .. b] half-closed interval: { x I a < x .:S b} 1.2.2 

ISi cardinality: the number of elements in set S 
lxl absolute value of x: (x 2: 0 ::=} x; -x) 

lnl length of a 

LxJ 
f xl 

xmody 

x = x' (modulo y) 

O(f(n)) 
O(f(z)) 

n(f(n)) 
e(f(n)) 

floor of x, greatest integer function: maxk~x k 

ceiling of x, least integer function: mink:'.:'..x k 

mod function: (y = 0 ::=} x; x - ylx/yJ) 

relation of congruence: x mod y = x' mod y 

big-oh off (n), as the variable n-+ oo 

big-oh of f ( z), as the variable z -+ 0 

big-omega off (n), as the variable n-+ oo 

big-theta off (n), as the variable n-+ oo 

1.2.4 

1.2.4 

1.2.4 

1.2.4 

1.2.11.1 

1.2.11.1 

1.2.11.1 

1.2.11.1 



626 APPENDIX B 

Formal symbolism 

lnx 

lgx 

expx 

J'(x) 

!" ( x) 
f(n)(x) 

s<x) 
n 

Meaning 

logarithm, base b, of x (when x > 0, 
b > 0, and bf. 1): they such that x = bY 

natural logarithm: loge x 

binary logarithm: log2 x 

exponential of x: ex 

the infinite sequence Xo, X1, X2, ... 
(here the letter n is part of the symbolism) 

derivative of f at x 

second derivative of f at x 

nth derivative: (n = 0 ==} f(x); g'(x)), 
where g(x) = f(n-l)(x) 

harmonic number of order x: L 1/kx 

Hn harmonic number: H~1 ) 
Fn Fibonacci number: 

(n :S 1 ==} n; Fn-1 + Fn-2) 

Bn Bernoulli number: n! [zn] z/(ez - 1) 

det(A) determinant of square matrix A 

sign(x) sign of x: [x > 0) - [x < 0) 

((x) zeta function: limn-+oo H~x) (when x > 1) 

r(x) gamma function: (x - 1)! = 1(x, oo) 

1(x, y) incomplete gamma function: J~ e-ttx-l dt 

I' Euler's constant: limn-+oo(Hn - lnn) 

e base of natural logarithms: 'l:n~o 1/n! 

7r circle ratio: 4 'l:n>o(-l)n/(2n + 1) 

oo infinity: larger than any number 

A null link (pointer to no address) 

E empty string (string of length zero) 

0 empty set (set with no elements) 

¢ golden ratio: ~ ( 1 + J5) 

Where 
defined 

1.2.2 

1.2.2 

1.2.2 

1.2.2 

1.2.9 

1.2.9 

1.2.10 

1.2.11.2 

1.2.7 

1.2.7 

1.2.8 

1.2.11.2 

1.2.3 

1.2.7 

1.2.5 

1.2.11.3 

1.2.7 

1.2.2 

2.1 

1.2.8 

<p(n) Euler's totient function: L [ k 1- n] 1.2.4 
O:'.S'.k<n 

x ~ y x is approximately equal to y 1.2.5, 4.2.2 



Formal symbolism 

Pr(S(X)) 

EX 

mean(g) 

var(g) 

(min X1, ave x2, 

max x3, dev x4) 

P$ 

p~ 

$P 

~p 

I 

u 

rA 

rX 

rll, ... , rl6 

rJ 

(L:R) 

OP ADDRESS,I(F) 

u 

* 
OF, 1F, 2F, ... , 9F 

OB, 1B, 2B, ... , 9B 

OH, 1H, 2H, ... , 9H 

INDEX TO NOTATIONS 627 

Meaning 

probability that statement S(X) is true, for 
random values of X 

expected value of X: 'l:x x Pr(X = x) 

mean value of the probability distribution 
represented by generating function g: g' (1) 

variance of the probability distribution 
represented by generating function g: 

g" ( 1) + g' ( 1) - g' ( 1) 2 

a random variable having minimum 
value x1 , average (expected) value x 2 , 

maximum value x3 , standard deviation X4 

address of preorder successor of NODE(P) in 
a binary tree or tree 

address of inorder successor of NODE (P) in a 
binary tree, postorder successor in a tree 

address of postorder successor of NODE (P) in 
a binary tree 

address of preorder predecessor of NODE (P) 
in a binary tree or tree 

address of inorder predecessor of NODE(P) in 
a binary tree, postorder predecessor in a tree 

address of postorder predecessor of NODE(P) 
in a binary tree 

end of algorithm, program, or proof 

one blank space 

register A (accumulator) of MIX 

register X (extension) of MIX 

(index) registers 11, ... , I6 of MIX 

(jump) register J of MIX 

partial field of MIX word, 0 :::; L :::; R :::; 5 

notation for MIX instruction 

unit of time in MIX 

"self" in MIXAL 

"forward" local symbol in MIXAL 

"backward" local symbol in MIXAL 

"here" local symbol in MIXAL 

Where 
defined 

1.2.10 

1.2.10 

1.2.10 

1.2.10 

1.2.10 

2.3.1, 2.3.2 

2.3.1, 2.3.2 

2.3.1 

2.3.1, 2.3.2 

2.3.1,2.3.2 

2.3.1 

1.1 

1.3.1 

1.3.1 

1.3.1 

1.3.1 

1.3.1 

1.3.1 

1.3.1, 1.3.2 

1.3.1 

1.3.2 

1.3.2 

1.3.2 

1.3.2 



INDEX AND GLOSSARY 

Some Men pretend to understand a Book 
by scouting thro' the Index: 

as if a Traveller should go about to describe a Palace 
when he had seen nothing but the Privy. . 

- JONATHAN SWIFT, Mechanical Operation of the Spirit (1704) 

When an index entry refers to a page containing a relevant exercise, see also the answer to 
that exercise for further information. An answer page is not indexed here unless it refers to a 
topic not included in the statement of the exercise. 

(), 164, see Identity permutation. 
0-2-trees, 317. 

oriented, 398. 
0-origin indexing, 254, 282, 299-301, 

305-306. 
2-D trees, 564. 
7r (circle ratio), 21, 619-620. 

Wallis's product for, 52, 116. 
¢ (golden ratio), 13, 18, 21, 80, 83-86, 

619-620. 

A-register of MIX, 125. 
Aardenne-Ehrenfest, Tatyana van, 375, 379. 
Aarons, Roger M., 528. 
Abel, Niels Henrik, 58, 498. 

binomial theorem, 71-73, 398. 
limit theorem, 95. 

Absolute error, 116. 
Absolute value, 21. 
Absolutely convergent series, 29. 
ACE computer, 193, 229. 

Pilot, 230. · 
Adams, Charles William, 230. 
ADD, 131-132, 208. 
Add to list: see Insertion. 
Addition of polynomials, 275-280, 357-359. 
Address: A number used to identify a 

position in memory. 
field of MIXAL line, 145, 151-153. 
of node, 233. 
portion of MIX instruction, 127. 

Address transfer operators of MIX, 
133-134, 210. 

Adjacent vertices of a graph, 363. 
Adobe Systems, 202. 
Agenda, 288, 291, 296, see Priority queue. 
Aho, Alfred Vaino, 560. 
Ahrens, Wilhelm Ernst Martin Georg, 162. 
al-Khwarizmi, Abu 'Abd Allah 

Mul).ammad ibn Musa 
C.rj)y..JI l..S"""Y' 0-! ~ 4.111 ..w. ""'1), 1: 79. 

ALF (alphabetic data), 151, 152, 155. 

628 

Algebraic formulas, 313. 
differentiation, 90, 338-347, 459. 
manipulation of, 459-462. 
representation as trees, 337, 459. 
simplification of, 339, 347. 

ALGOL language, 202, 229. 
Algorithm, origin of word, 1-2. 
Algorithms, 1-9. 

analysis of, vi, 7, 96-107, 170-172, 179, 
250, 253, 268, 278-280, 324-326, 331, 
380-382, 444-445, 451. 

communication of, 16. 
effective, 6, 8, 9. 
equivalence between, 467. 
form of in this book, 2-4. 
hardware-oriented, 26, 252, 611. 
how to read, 4, 16. 
proof of, 5-6, 13-17, 321, 361, 422, 434. 
properties of, 4-6, 9. 
random paths in, 380-381. 
set-theoretic definition, 7-9. 
theory of, 7, 9. 

Allocation of tables, see Dynamic storage 
allocation, Linked allocation, 
Representation, Sequential allocation. 

Alpern, Steven Robert, 526. 
Alphameric character: A letter, digit, or 

special character symbol. 
codes for MIX, 136, 138, 140-141. 

AMM: American Mathematical Monthly, 
published by the Mathematical 
Association of America since 1894. 

Amortized running time, 254. 
Analysis of algorithms, vi, 7, 96-107, 

170-172, 179, 250, 253, 268, 278-280, 
324-326, 331, 380-382, 444-445, 451. 

Analytical Engine, 1, 229. 
Ancestor, in a tree structure, 311, 348. 
Andre, Antoine Desire, 536. 
Anticipated input, 216, see Buffering. 
Antisymmetric relation, 261. 
Apostol, Tom Mike, 28. 
Araujo, Saulo, 565. 
Arbogast, Louis Fran<$ois Antoine, 52, 105. 
Arborescences, 363, see Oriented trees. 



Arc digraph, 379. 
Arc in a directed graph, 372. 
Area of memory, 435. 
Arguments of subroutines, 187, 189. 
Arithmetic: Addition, subtraction, 

multiplication, and division, vi, ix. 
fixed point, 158. 
floating point, 131, 306. 
operators of MIX, 131-133, 208. 
polynomial, 275-280, 357-359, 361. 
scaled decimal, 160-161. 

Arithmetic expressions, see Algebraic 
formulas. 

Arithmetic progression, sum of, 11, 
31-32, 56. 

Array: A table that usually has a 
k-dimensional rectangular structure, 
4, 232, 298-307. 

linked, 301-307. 
one-dimensional, see Linear list. 
represented as a tree, 315. 
sequential allocation, 159, 299-301, 

305-307. 
tetrahedral, 300-301, 306. 
two-dimensional, see Matrix. 
uninitialized, 307. 

Arrows, used to represent links in 
diagrams, 234. 

Assembly language: A language that is 
intended to facilitate the construction 
of programs in machine language by 
making use of symbolic and mnemonic 
conventions to denote machine 
language instructions. 

contrasted with high-level language, 
236, 535. 

for MIX, 144-157. 
Assembly program, 145, 153. 
Assigning a buffer, 219-223, 226-227. 
Assignment operation ( +-), 3. 
Asterisk ( "*") in assembly language, 

146, 149, 153. 
Asymmetric relations, 261. 
Asymptotic values: Functions that express 

the limiting behavior approached by 
numerical quantities. 

derivation of, 107-123, 243, 396-397, 
525, 565. 

Atom (in a List), 315, 408-412, 418. 
purpose of, 410. 

Automata theory, 230, 240, 463-464. 
Automaton: An abstract machine that is 

defined formally, often intended to 
be a model of some aspects of actual 
computers (plural: Automata), 463-464. 

AVAIL stack: Available space list, 256. 
Available space list, 256-261, 266, 269, 

278, 291, 413-414, 435-444. 
history, 458. 

INDEX AND GLOSSARY 629 

variable-size blocks, 435-456. 
Average value of a random variable, 

97-98, 103. 
from a generating function, 100-103. 

Babbage, Charles, 1, 229. 
Bachmann, Paul Gustav Heinrich, 107. 
Backus, John Warner, 230. 
Bailey, Michael John, 462. 
Baker, Henry Givens, Jr., 605. 
Balanced directed graph, 37 4-375. 
Ball, Thomas Jaudon, 369. 
Ball, Walter William Rouse, 162. 
Ballot problem, 536-537. 
Barnes, Ernest William, 507. 
Barnett, Michael Peter, 462. 
Barrington, David Arno, 526. 
Barry, David McAlister, subtle reference 

to, xi, 274. 
Barton, David Elliott, 66, 536. 
Base address, 244. 
Bead, 233, see Node. 
Before and after diagrams, 260-261, 

278, 281, 571. 
Beigel, Richard, 467. 
Bell, Eric Temple, 87. 
Bell Interpretive System, 230. 
Bellman, Richard Ernest, xv. 
Bendix G20, 124. 
Bennett, John Makepeace, 230. 
Berger, Robert, 385. 
Bergeron, Fran<$ois, 395. 
Bergman, George Mark, 495, 593. 
Berlekamp, Elwyn Ralph, 273. 
Berman, Martin Fredric, 523. 
Bernoulli, Jacques (=Jakob= James), 

112, 115. 
numbers Bn, 76, 91, 112-115. 
numbers, table, 621. 
polynomials, 44, 113-115, 503. 

Bernoulli, Jean (=Johann= John), III, 495. 
Bertrand, Joseph Louis Fran<$ois, 

postulate, 512. 
Berztiss, Alfs Teodors, 462. 
Best-fit method of storage allocation, 

436-437, 447, 453-456. 
Beta function B ( x, y), 72. 
Bhaskara Acharya (l"lif<fi<i"'ll4), 53-54. 
Bienayme, lrenee Jules, 98. 
Bienstock, Daniel, 514. 
Big-Oh notation, 107-111, 118. 
Big-Omega notation, 110-111. 
Big-Theta notation, 110. 
Bigelow, Richard Henry, 562. 
Binary computer: A computer that 

manipulates numbers primarily in the 
binary (radix 2) number system. 

Binary logarithms, 23, 26. 
Binary number system, 24-26. 



630 INDEX AND GLOSSARY 

Binary trees, 311-312, 317, 318-337, 
363, 459. 

complete, 401, 405, 563. 
copying of, 329-330, 333, 347. 
correspondence to trees and forests, 

334-335, 346. 
definition of, 312. 
"Dewey" notation for, 317, 331, 346, 405. 
enumeration of, 388-389, 405. 
equivalent, 328-329. 
erasing of, 333. 
extended, 399-406. 
linked, 318. 
oriented, 396-397. 
path length of, 399-406. 
representation of, 318, 322, 327, 333-334. 
right-threaded, 327, 332-334. 
sequential, 401. 
similar, 327-329. 
threaded, 322, 331-332, 460. 
traversal of, 319-320, 323, 331-332, 

459-460. 
with shared subtrees, 326, 603. 

Binet, Jacques Philippe Marie, 36, 
407, 475, 582. 

Binomial coefficients, 52-74, 89. 
asymptotic values, 72. 
bounds on, 7 4. 
combinatorial interpretation, 52-53, 73. 
defined, 53. 
generalized, 65, 72, 85. 
generating functions, 90, 94. 
history, 53-54. 
sums involving, 56-74, 76-78, 85, 96. 
table, 54. 

Binomial distribution, 101-102. 
tail, 106. 

Binomial theorem, 57-58, 90. 
Abel's generalization, 71-73, 398. 
generalizations of, 64, 70-73, 90, 

398-399, 488. 
Hurwitz's generalization, 399, 488. 

Binomial tree, xx. 
Bipartite trees, 398. 
Bit: "Binary digit': either zero or unity. 
BIT: Nordisk Tidskrift for Informations-

Behandling, an international journal 
published in Scandinavia since 1961. 

Bitwise operations, 442, 455, 510, 553. 
Blaauw, Gerrit Anne, 458. 
Blikle, Andrzej Jacek, 329. 
Block of external data, 136-137. 
Block of memory, 435. 
Blocking of records, 218, 225. 
Bobrow, Daniel Gureasko, 421, 460, 461. 
Boles, David Alan, 452. 
Balzano, Bernhard, 382. 
Boncompagni, Prince Baldassarre, 79. 
Boothroyd, John, 177. 

Bootstrapping, 143. 
Borchardt, Carl Wilhelm, 406, 583. 
Bottom of stack, 241. 
Bottom-up process, 309, 351. 
Boundary tag method of storage allocation, 

440-442, 453-454, 461. 
Bourne, Charles Percy, 516. 
Bracket notation for coefficients, 92. 
Bracket notation for logical statements, 

32-33, see lverson's convention. 
Branch instruction: A conditional 

"jump" instruction. 
Branch node of tree, 308. 
Breadth-first search, 351. 
Brenner, Norman Mitchell, 523. 
Brent, Richard Peirce, 563. 
Briggs, Henry, 26. 
Broline, Duane Marvin, 601. 
Brother, in a tree structure, 311. 
Brouwer, Luitzen Egbertus Jan, 406. 
Bruijn, Nicolaas Govert de, 121, 122, 375, 

379, 380, 478, 504, 543, 565. 
Buddy system for storage allocation, 

442-444, 447-448, 454-456, 461. 
Buffering of input-output, 158, 216-228. 

history, 231. 
swapping, 147, 159, 217-218, 225. 

Bugs: Errors or defects; see Debugging. 
Burke, John, 310. 
Burks, Arthur Walter, 359. 
Burleson, Peter Barrus, 462. 
Burroughs B220, 124. 
Burroughs B5000, 461. 
Busche, Conrad Heinrich Edmund 

Friedrich, 43. 
,Busy waiting, 216. 
Byte: Basic unit of data, usually associated 

with alphameric characters, 125. 
in MIX, 124-125, 139. 

Byte size in MIX: The number of distinct 
values that might be stored in a byte. 

C language, 556. 
Cache, 528. 
CACM: Communications of the ACM, 

a publication of the Association for 
Computing Machinery since 1958. 

Cajori, Florian, 24. 
Calendar, 160. 
California Institute of Technology, x, 282. 
Call: To activate another routine in 

a program. 
Calling sequence, 187-190, 193, 196-197. 
Campbell, John Arthur, 450. 
Canonical cycle notation for permutations, 

178-:J-79. 
Canonical representation of oriented trees, 

390-394, 397-398, 590-591. 
Capelli, Alfredo, 50, 71. 



Car: LISP terminology for the first 
component of a List; analogous to 
INFO and DLINK on page 411, or to 
ALINK on page 415. 

Cards, playing, 51, 69, 233-237, 238, 
377-378. 

Cards, punched, 136-137, 152, 229. 
Carlitz, Leonard, 499, 506, 96. 
Carlyle, Thomas, xiv. 
Carpenter, Brian Edward, 229. 
Carr, John Weber, III, 458. 
Cassini, Jean Dominique, 81. 
Catalan, Eugene Charles, 407. 

numbers, 407. 
Cate, Eska George, 523. 
Cauchy, Augustin Louis, 92, 475, 490, 

506, 520, 582. 
inequality: (Eakbk) 2 :S (Ea~)CEb~), 

36. 
matrix, 37-38, 475. 

Cayley, Arthur, 396, 406-407, 586, 597. 
CDC 1604 computer, 124, 529. 
Cdr: LISP terminology for the remainder of 

a List with its first component deleted; 
analogous to RLINK on page 411, or 
to BLINK on page 415. 

Ceiling function f x l, 39, 41. 
Cell: A word of the computer memory, 127. 
Cellar, 240. 
Central moment of a probability 

distribution, 105. 
Centroid of a free tree, 387-388, 397, 589. 
Ceulen, Ludolph van, 596. 
Chain: A word used by some authors to 

denote a linked linear list, by others 
to denote a linearly ordered set. 

Chain rule for differentiation, 52. 
Chaining: A word used by some authors 

in place of "linking''. 
Chakravarti, Gurugovinda ( ~~~ 

~),53. 
Change of summation variable, 28, 32-33. 
Channel: A data-transmission device 

connected to a computer, 224. 
CHAR (convert to characters), 138. 
Character codes of MIX, 136, 138, 140-141. 
Characteristic function of a probability 

distribution, 103. 
Characteristic polynomial of a matrix, 499. 
Charles Philip Arthur George, Prince 

of Wales, 310. 
Cheam, Tat Ong, 450. 
Cheating, 582. 
Chebyshev, Pafnutii Lvovich (qe6b1IIIeB, 

llaq>HyTlrii: JlhBOBH'-1), inequality, 
98, 104. 

Checkerboard, 435-436. 
Checker boarding, see Fragmentation. 
Chen, Tien Chi (mJ[jC:jl), 471. 

INDEX AND GLOSSARY 631 

Cheney, Christopher John, 421. 
Cheney, Ednah Dow Littlehale, 377. 
Chernoff, Herman, 502. 
Chess, 6, 194, 272. 
Child link, 427-433. 
Children in tree structures, 311, 317, 

334-335, 352. 
Chawla, Paromita (~ Sf13<1T), 307. 
Christian IX, King of Denmark, 310, 

311, 562. 
Christie Mallowan, Agatha Mary Clarissa 

(Miller), xvii. 
Chu Shih-Chieh ( = Zhu Shljie Hanq1ng, 

Zhu Songtfng; *iii:~ ~l 9l!P, * ~ ~), 
53, 59, 70. 

Chung, Fan Rong King (~ ~ ~ ~), 514. 
Chung, Kai Lai(~ mJ *), 105. 
Cl: The comparison indicator of MIX, 126, 

134, 142, 211, 213, 228. 
Circle of buffers, 218-227, 231. 
Circuit, Eulerian, in a directed graph, 

374-376, 379-380, 584. 
Circuit, Hamiltonian, in a directed 

graph, 374, 379. 
Circular defj.nition, 263, 308, see 

Definition, circular. 
Circular linking, 273-280, 302, 355, 411, 459. 
Circular store, 240. 
Circulating shift, 135. 
CITRUS, 457. 
Clark, Douglas Wells, 604. 
Clavius, Christopher, 159. 
Clock, for real time, 228. 
Clock, simulated, 283, 288. 
Clock, solitaire game, 377-378. 
Closed subroutine, see Subroutine. 
CMath: Concrete Mathematics, a book 

by R. L. Graham, D. E. Knuth, and 
0. Patashnik, 11. 

CMP1 (compare rll), 134, 210-211. 
CMPA (compare rA), 134, 210-211. 
CMPX (compare rX), 134, 210-211. 
COBOL: "Common Business-Oriented 

Language", 424-43, 457, 458. 
Codes for difficulty of exercises, xvii. 
Coding: Synonym for "programming", but 

with even less prestige. 
Coefficient extraction, 92. 
Cofactor of element in square matrix: 

Determinant of the matrix obtained 
by replacing this element by unity and 
replacing all other elements in the same 
row or column by zero, 37, 381. 

Coffman, Edward Grady, Jr., 450-451. 
Cohen, Jacques, 421, 461, 614. 
Coin tossing, 101-102. 

tail of distribution, 106. 
Collins, George Edwin, 461. 



632 INDEX AND GLOSSARY 

Combinations of n objects taken k at 
a time, 52-53, 69. 

with repetitions permitted, 73, 95, 
386, 388. 

with restricted repetitions, 95. 
Combinatorial matrix, 37-38, 589. 
Combinatorial number system, 73, 560. 
Comfort, Webb T., 461. • 
COMIT, 461. 
Command: Synonym for "instruction''. 
Comments, 2-3. 

in assembly language, 145, 149. 
Commutative law, 165. 
Comp. J.: The Computer Journal, a 

publication of the British Computer 
Society since 1958. 

Compacting memory, 423, 439, 449, 
452, 455. 

Comparability, 270. 
Comparison indicator of MIX, 126, 134, 

142, 211, 213, 228. 
Comparison operators of MIX, 134, 210-211. 
Compiler: A program that translates 

computer languages. 
algorithms especially for use in, 360, 

424-434, 556. 
Complete binary tree, 401, 405, 563. 
Complete t-ary tree, 401-402. 
Complex conjugate, 21. 
Complex number, 21. 
Compound interest, 23-24. 
Compression of messages, 407. 
Computational error, 24-26. 
Computational method, 5, 7-8. 
Compute: To process data. 
Computer: A data processor. 
Computer language, see Assembly language, 

Machine language, Programming 
language. 

CON (constant), 149-150, 155. 
Concatenation of strings, 274. 
Concave function, 406. 
Conditional expression, 460, 624. 
Congruence, 40-42. 
Connected directed graph, 363. 

strongly, 372, 377. 
Connected graph, 363. 
Conservative law, 170, see Kirchhoff's law. 
Constants in assembly language, 

149-150, 155. 
Construction of trees, 340-341, 343, 

428-429. 
CONTENTS, 127, 235-236. 
Context-free grammar, 539. 
Continuants, 600-601. 
Continued fractions, 498. 
Continuous simulation, 282, 298. 
Convergence: An infinite sequence (Xn) 

converges if it approaches a limit as 

n approaches infinity; an infinite sum 
or product is said to "converge" or 
to "exist" if it has a value according 
to the conventions of mathematical 
calculus; see Eq. 1.2.3-(3). 

absolute, 29. 
of power series, 87, 396. 

Conversion operations of MIX, 138. 
Convolution of probability distributions: 

The distribution obtained by adding 
two independent variables, 103. 

Conway, Melvin Edward, 19, 80, 151, 
229, 273, 408, 600. 

Copy a data structure: To duplicate a 
structured object by producing another 
distinct object that has the same data 
values and structural relationships. 

binary tree, 329-330, 333, 347. 
linear list, 279. 
List, 423. 
two-dimensional linked list, 306. 

Copying and compacting, 421. 
Corless, Robert Malcolm, 395. 
Coroutines, 193-200, 222-223, 283-296, 320. 

history, 229. 
linkage, 194, 200, 223, 291. 

Correspondence between binary trees and 
forests, 334-335, 346. 

Cousins, 317. 
Coxeter, Harold Scott Macdonald, 80, 

162, 407, 408. 
Crelle: Journal fiir die reine und angewandte 

Mathematik, an international journal 
founded by A. L. Crelle in 1826. 

Crelle, August Leopold, 58, 632. 
Critical path time, 217. 
Crossword puzzle, 163. 
Crowe, Donald Warren, 601. 
Cumulants of a probability distribution, 

103-106. 
Cycle: Path from a vertex to itself. 

detection of, 271. 
fundamental, 366-370, 377. 
in directed graph, 363. 
in graph, 363. 
in permutation, 164-167, 176-178, 

182-184. 
in random permutation, 179-184. 
notation for permutations, 164-167, 

172-175, 182. 
oriented, in directed graph, 372. 
singleton, in permutation, 164, 171, 

180-181. 

Dahl, Ole-Johan, 230, 461, 462. 
Dahm, David Michael, 433, 434. 
Data (originally the plural of "datum", 

but now used collectively as singular 
or plural, like "information"): 
Representation in a precise, formalized 



language of some facts or concepts, 
often numeric or alphabetic values, 
to facilitate manipulation by a 
computational method, 215. 

packed, 128, 158. 
Data organization: A way to represent 

information in a data structure, 
together with algorithms that access 
and/ or modify the structure. 

Data structure: A table of data including 
structural relationships, 232-465. 

linear list structures, 238-298. 
List structures, 408-423. 
multilinked structures, 424-434. 
orthogonal lists, 298-307, 424-434. 
tree structures, 308-408. 

Daughter, in a tree structure, 311. 
David, Florence Nightingale, 66. 
Davies, David Julian Meredith, 445. 
Davis, Philip Jacob, 50. 
Dawson, Reed, 584. 
de Bruijn, Nicolaas Govert, 121, 122, 375, 

379, 380, 478, 504, 543, 565. 
De Moivre, Abraham, 74, 83, 87, 106, 

182, 536. 
De Morgan, Augustus, 17. 
Deallocation, see Liberation. 
Debugging: Detecting and removing 

bugs (errors), 192-193, 201, 257, 
297, 413, 556. 

DEC1 (decrease rll), 134, 210. 
DECA (decrease rA), 134, 210. 
Decimal computer: A computer that 

manipulates numbers primarily in the 
decimal (radix ten) number system. 

Decimal number system, 21, 619. 
DECX (decrease rX), 134, 210. 
Defined symbol, an assembly language, 153. 
Definition, circular, see Circular definition. 
Degree, of node in tree, 308, 317, 377. 

of vertex in directed graph, 372. 
Deletion of a node: Removing it from a 

data structure and possibly returning 
it to available storage. 

from available space list, see Reservation. 
from deque, 251, 297. 
from doubly linked list, 281, 290-291, 297. 
from doubly linked ring structure, 358. 
from linear list, 239. 
from linked list, 236, 255, 276, 305. 
from queue, 242, 244-245, 254, 261, 

265, 273-274. 
from stack, 241, 242, 244-245, 247, 254, 

259, 269, 273-274, 278, 458. 
from tree, 358. 
from two-dimensional list, 305. 

Demuth, Howard B., 120. 
Depth-first search, 578, 581. 

INDEX AND GLOSSARY 633 

Deque: Double-ended queue, 239-243, 269. 
deletion from, 251, 297. 
input-restricted, 239-243, 416. 
insertion into, 251, 297. 
linked allocation, 280, 297. 
output-restricted, 239-243, 269, 274. 
sequential allocation, 251. 

Derangements, 180, 183. 
Derivative, 90, 338. 
Dershowitz, Nachum, 518, 588. 
Descendant, in a tree structure, 311. 
Determinant of a square matrix, 37-39, 

81, 378-379, 382. 
Deuel, Phillip DeVere, Jr., 556. 
Deutsch, Laurence Peter, 418, 421, 422. 
Dewar, Robert Berriedale Keith, 614. 
Dewey, Melvil, notation for binary trees (due 

to Galton), 317, 331, 346, 405. 
notation for trees, 313, 317, 382-383, 460. 

Diaconis, Persi Warren, 491. 
Diagonals of polygons, 408. 
Diagrams of structural information, 

234, 279. 
before-and-after, 260-261, 278, 281, 571. 
binary trees, 312, 318, 563. 
List structures, 315-317, 408-409. 
tree structures, 309-315, 337, 346, 

349, 460. 
Dickman, Karl Daniel, 525. 
Dickson, Leonard Eugene, 81. 
Dictionaries of English, 1-2, 215-216. 
Differences of polynomials, 64. 
Differentiation, 90, 338-347, 459. 

chain rule for, 52. 
Digamma function 1/;(z), 44, 75, 493. 
Digit: One of the symbols used in radix 

notation; usually a decimal digit, one 
of the symbols 0, 1, ... , or 9. 

Digraph, 372, see Directed graph. 
Dijkstra, Edsger Wijbe, 17, 230, 231, 240, 

459, 462, 545, 580, 605. 
d'lmperio, Mary E., 462. 
Directed graphs, 372-374, 422. 

as flow charts, 364-365, 377. 
balanced, 374-375. 
connected, 363. 
regular, 379. 
strongly connected, 372, 377. 

Discrete system simulation, 203, 282-298. 
synchronous, 282, 298. 

Disjoint sets: Sets with no common 
elements. 

Disk files, 136-137, 435, 463. 
Disk input, buffered, 228. 
Disposal, see Garbage collection, Liberation. 
Dissection of a polygon, 408. 
Distributed-fit method of storage allocation, 

450-451, 456. 



634 INDEX AND GLOSSARY 

Distribution: A specification of probabilities 
that govern the value of a random 
variable. 

binomial, 101-102. 
negative binomial, 107. 
normal, 104-106, 122. 
Poisson, 106, 502, 524. 
tails of, 104, 106-107. 
uniform, 102, 253, 446. 

Distributive law, 28, 37, 42, 598. 
DIV (divide), 131-133, 139, 208. 
Divergent series, 28, 75. 
Division converted to multiplication, 

516-518. 
Divisor: x is a divisor of y if y mod x 0 

and x > O; it is a proper divisor if 
in addition 1 < x < y. 

Dixon, Alfred Cardew, 490. 
Dixon, Robert Dan, 509. 
DLINK: Link downward, 409, 411. 
Doran, Robert William, 229. 
Double generating function: A generating. 

function of two variables, 94, 396, 
405, 537-539. 

Double order for traversing trees, 332, 
333, 564. 

Doubly linked lists, 280-281, 288-291, 
297-298, 357, 411, 441, 443, 452, 459. 

compared to singly linked, 281, 298. 
Dougall, John, 490. 
Doyle, Arthur Conan, 465. 
Drum memory, 136-137, 457. 
Dull, Brutus Cyclops, 111. 
Dummy variable, 27. 
Dunlap, James Robert, 457. 
Dutka, Jacques, 50, 65. 
Dvoretzky, Aryeh, 593. 
Dwyer, Barry, 567. 
Dynamic storage allocation, 246-254, 

256-259, 413-414, 435-456. 
history, 457-458, 461-462. 
running time estimates, 449. 

Dynastic order, 336, see Preorder. 
DYSEAC computer, 231. 

Earley, Jackson Clark, 462. 
Easter date, 159-160. 
Edelman, Paul Henry, 598. 
Edge in graph, 363. 
Edwards, Daniel James, 423. 
Effective algorithm, 6, 8, 9. 
Egorychev, Georgii Petrovich (EropbPieB, 

reoprHH lleTpOBHq), 499. 
Eisele, Peter, 480. 
Eisenstein, Ferdinand Gotthold Max, 479. 
Elementary symmetric functions, 38, 

94, 497. 
Elevator (lift) system, 282-298. 
Embedding of partial order into linear order, 

262, see Topological sorting. 

Embedding of tree in another tree, 348, 386. 
Emulation, 202. 
END, 151, 156, 296. 
End of file, 216, 227. 
Endorder, see Postorder. 
Engles, Robert William, 462. 
English letter frequencies, 159. 
ENN1 (enter negative into rll), 133, 210. 
ENNA (enter negative into rA), 133, 210. 
ENNX (enter negative into rX), 133, 210. 
ENT1 (enter into rll), 133, 210. 
ENTA (enter into rA), 133, 210. 
Entity, 233, see Node. 
Entrances to subroutines, 186-191. 

multiple, 189. 
ENTX (enter into rX), 133, 210. 
Enumeration of subtrees, 378-379. 
Enumeration of tree structures, 386-399. 

history, 406-407. 
Epictetus of Hierapolis ( 'E7tbc:tT)'tOI; 

o 'lc.pcx7toAc.wi;), 1. 
EQU (equivalent to), 146, 149, 155. 
Equivalence algorithm, 360-361, 578, 581. 
Equivalence classes, 354. 
Equivalence declarations, 360. 
Equivalence relations, 353-355, 487. 
Equivalent algorithms, 467. 
Equivalent binary trees, 328-329. 
Equivalent forests, 346. 
Equivalent Lists, 423. 
Equivalent of a MIXAL symbol, 156. 
Equivalent trees, 346. 
Erase a data structure: To return all of its 

nodes to available storage. 
linear list, 273, 274, 279. 
List, 413-414. 
right-threaded binary tree, 333. 

Erdelyi, Arthur, 399. 
Erdwinn, Joel Dyne, 229. 
Errors, avoiding, 260-261, 556. 

computational, 305. 
detection of, 192-193, 201, 257, 297, 413. 

Etherington, Ivor Malcolm Haddon, 399. 
Ettingshausen, Andreas von, 54. 
Etymology, 1-2. 
Euclid (Eux.A.c.l5TJi:), 2, 5. 

algorithm for gcd, 2-9, 80. 
algorithm for gcd, extended, 13-14, 42. 

Euclidean domains, 468. 
Euler, Leonhard (9ii:Jiep, JieoHap,ri;), 49, 

50, 52, 57, 75, 76, 87, 111, 374, 407, 
472, 496, 536, 600. 

constant /, 75, 114, 619-620. 
summation formula, 111-116, 120, 123. 
theorem, 42. 
totient function cp(n), 42, 184. 

Eulerian circuit in directed graph, 
374-376, 379, 584. 

enumeration of, 380. 



Eulerian numbers, second-order, 506. 
Evaluation of powers, 509. 
Evaluation of tree functions, 351, 361. 
Evans, Arthur, Jr., 202. 
Exchange operation ( ++ ), 3, 182, 274. 
Exclusive or, 442, 455, 553. 
Execution time, methods for studying, 

96, 170-172. 
for MIX instructions, 138-141. 

Exercises, notes on, xv-xvii, 284. 
Exit: The place where control leaves 

a routine. 
Exits from subroutines, 186-191. 
Expected value of a random variable: The 

average or "mean" value, 98, 103. 
from a generating function, 100-103. 

Exponential generating function for (an): 
L anzn/n!, 89. 

Exponential integral E1 ( x), 498. 
Exponents, laws of, 22, 25, 52. 
Extended binary trees, 399-406. 
Extended Euclidean algorithm, 13-14, 42. 
Extendible matrix, 307. 
External nodes, 400-405. 
External path length, 400, 405. 
Extreme and mean ratio, 80. 

Faa di Bruno, Francesco, 483. 
Factorials, 46-52, 55. 

related to gamma function, 49. 
Factorial powers, 50, 52, 67, 71, 109-110. 
FADD (floating add), 306. 
Fail-safe program, 270. 
Fallacious reasoning, 18, 111, 465. 
Falling powers, 50, 67, 69, 624. 
Family order, 350, 577. 

sequential representation of trees, 350. 
Family trees, 310-311, 317, 406. 
Farber, David Jack, 461. 
Farey, John, 520. 

series, 161. 
Father, in a tree structure, 311. 
FCMP (floating compare), 507, 559. 
FDIV (floating divide), 306. 
Ferguson, David Elton, 231, 334. 
Fermat, Pierre de, 17, 466. 

theorem, 41. 
Ferranti Mark I computer, 18. 
Feynman, Richard Phillips, 26. 
Fibonacci, Leonardo, of Pisa, 79-80, 84. 

buddy system, 455. 
generating function, 82-83. 
number system, 86, 495. 
numbers Fn: Elements of the Fibonacci 

sequence, 13, 18, 79-86. 
numbers, table of, 621. 
sequence, 13, 18, 79-86, 621. 
strings, 86. 
trees, 496. 

INDEX AND GLOSSARY 635 

Fibonomial coefficients, 85, 499. 
Fich, Faith Ellen, 523. 
Field: A designated portion of a set of 

data, usually consisting of contiguous 
(adjacent) symbols. 

partial, of MIX word, 126-128, 139, 
143, 207. 

within a node, 233-237. 
within a node, notations for, 235-237, 458. 

FIFO, 240, 459, see Queue. 
Fifty-percent rule, 444-445, 447, 448. 
Filters, 198. 
Final vertex of an arc, 372. 
Fine, Nathan Jacob, 484. 
First-fit method of storage allocation, 

436-438, 453-456, 616. 
First in, first out, 240, 351, 459, 607, 

see Queue. 
Fischer, Michael John, 353. 
Fixed element of permutation, 164, 180-181. 
Fixed point arithmetic, 158. 
Flag, see Sentinel. 
Flajolet, Philippe Patrick, 501, 506, 

543, 565. 
Floating point arithmetic, 131, 306. 

operators of MIX, 131, 557-559. 
Floor function L x J, 39-41. 
Flow charts, viii, 2-3, 15-18, 364-365, 377. 
Floyd, Robert W, x, 17, 19, 20, 422, 

467, 509. 
FLPL, 460-461. 
Flye Sainte-Marie, Camille, 584. 
FMUL (floating multiply), 306. 
FOGS: Proceedings of the IEEE Symposia 

on Foundations of Computer Science 
(1975-), formerly called the Symposia 
on Switching Circuit Theory and 
Logic Design (1960-1965), Symposia 
on Switching and Automata Theory 
(1966-1974). 

Ford, Donald Floyd, 516. 
Forecasting, 224. 
Forest: Zero or more trees, 309, 408, 

see Trees. 
correspondence to binary trees, 

334-335, 346. 
enumeration, 389, 594. 
index notation for, 313, 315, 317. 

Formulas, algebraic, see Algebraic formulas. 
Forstemann, Wilhelm, 490. 
FORTRAN language, 231, 233, 296, 

360, 458, 460. 
Foster, Frederic Gordon, 100. 
Fourier, Jean Baptiste Joseph, 27. 
Fractional part, 40. 
Fraenkel, A viezri S, 251. 
Fragmentation, 439, 449, 450, 456. 
Fredman, Michael Lawrence, 514. 
Free lattice, 347. 



636 INDEX AND GLOSSARY 

Free storage, see Available space. 
Free subtrees, 365-370. 

enumeration of, 378-379. 
minimum cost, 371. 

Free trees, 363-371. 
definition of, 363. 
enumeration of, 387-388, 398, 407. 

Friedman, Daniel Paul, 421. 
Frieze patterns, 407-408. 
Front of queue, 241. 
FSUB (floating subtract), 306. 
Fuchs, David Raymond, 202. 
Fukuoka, Hirobumi cm liOJ ti X), 508. 
Full-word logical (bitwise) operations, 

442, 455, 510, 553. 
Fundamental cycles in a graph, 

366-370, 377. 
Fundamental path, 368. 
Fundamental theorem of arithmetic, 42. 
Furch, Robert, 121. 
Future reference in MIXAL, 153, 156. 

restrictions on, 156. 

Galler, Bernard Aaron, 353. 
Galton, Francis, 562, 633. 
Games, solution of, 86, 272-273. 
Gamma function r(z), 49-52, ·72, 79, 

116-119. 
incomplete, 117-122. 

Gao, Zhicheng ("f.6 ;'it; J.!X;), 565. 
Garbage collection, 257, 413-423, 438-439, 

449, 455, 461, 546, 551. 
efficiency of, 420-421. 

Gardner, Martin, 19, 80, 587. 
Garwick, Jan Vaumund, 248, 457. 
Gaskell, Robert Eugene, 86. 
Gasper, George, Jr., 490. 
Gates, William Henry, III, xi. 
GauB ( = Gauss), Johann Friedrich Carl 

(= Carl Friedrich), 49, 58, 95. 
gcd: Greatest common divisor. 
Gelernter, Herbert Leo, 460. 
Generating functions, 82-84, 87-96, 243, 

386-389, 391-392, 394-399, 539. 
double, 94, 396, 405, 537-539. 
for discrete probability distributions, 

99-107, 181. 
Genuys, Fran<$ois, 231. 
Geometric progression, sum of, 31, 88. 
Gerberich, Carl Luther, 460. 
Gill, Stanley, 229, 230, 457. 
Girard, Albert, 497. 
Glaisher, James Whitbread Lee, 504. 
Glassey, Charles Roger, 406. 
Gnedenko, Boris Vladimirovich (rHe,D;eHKo, 

BopHc BJia,D;HMHPOBH'-1), 105. 
GO button of MIX, 126, 139, 143, 211. 
Goldbach, Christian, 49, 472. 
Goldberg, .Joel, 528. 

Golden ratio, 13, 18, 21, 80, 83-86, 619-620. 
Goldman, Alan Joseph, 589. 
Goldstine, Herman Heine, 18, 229. 
Golomb, Solomon Wolf, 184. 
Golumbic, Martin Charles 

(P'J.m'.:m omJ.N p 'J.:S omtJ), 596. 
Goncharov, Vasilii Leonidovich (roH'-IapoB, 

BacHJIHH JieoHH,D;OBH'-1), 501. 
Gannet Haas, Gaston Henry, 395. 
Good, Irving John, 374, 395, 483, 584. 
Gopala (l'fri:m;r), 80. 
Gorn, Saul, 460. 
Gosper, Ralph William, Jr., 65. 
Gould, Henry Wadsworth, 58, 63, 

121, 485, 492. 
Gourdon, Xavier Richard, 525. 
Gower, John Clifford, 459. 
Grabner, Peter Johannes, 506. 
Graham, Ronald Lewis, 11, 631. 
Graphs, 363-372, 464. 

directed, see Directed graphs. 
Greatest common divisor, 2-9, 13-14, 

40, 81-82. 
Greatest integer function, see Floor function. 
Griswold, Ralph Edward, 461. 
Grounded wire symbol, 234. 
Griinbaum, Branko, 384, 587. 
Guy, Richard Kenneth, 19, 80, 273, 600. 

H-trees, 563. 
Haddon, Bruce Kenneth, 614. 
Hadeler, Karl-Peter Fritz, 480. 
Hageman, Louis Alfred, 586. 
Halayudha (~), 53. 
Hamel, Georg, 480. 
Hamilton, William Rowan, circuit, 374, 379. 
Hamlet, Prince of Denmark, 232. 
Hamming, Richard Wesley, 26. 
Hankel, Hermann, 49. 
Hansen, James Rone, 460. 
Hansen, Wilfred James, 421. 
Haralambous, Yannis (XcxpcxA.&µitouc;, 

'Iw&wTJc;), 650. 
Harary, Frank, 407. 
Hardware-oriented algorithms, 26, 252, 611. 
Hardy, Godfrey Harold, 12, 406, 492, 520. 
Hare, David Edwin George, 395. 
Hare and hounds, see Military game. 
Harmonic numbers Hn, 75-79, 114. 

generating function, 90. 
table, 621-623. 

Harmonic series, 75, 160-161. 
Haros, C., 520. 
Hartmanis, Juris, 464. 
Hautus, Matheus Lodewijk Johannes, 489. 
hcf, see gcd. 
Head of list, see List head. 
Heap, 435, see Pool. 
Height of tree or forest, 565. 
Heine, Heinrich Eduard, 490. 



Hellerman, Herbert, 459. 
Hemachandra, Acharya (~ ~Ji"=tr;:), 80. 
Henkin, Leon Albert, 17. 
Henrici, Peter Karl Eugen, 88. 
Herbert, George, xiv. 
Hermite, Charles, 49, 478. 
Hesse-Kassel, Louise Wilhelmine Friederike 

Karoline Auguste Julia von, 310, 311. 
Heyting, Arend, 406. 
Hilbert, David, matrix, 38. 
Hiles, John Owen, 421. 
Hill, Robert, 518. 
Hipparchus of Nicrea ("Imtcxpx.oc; 

Nbc.mcxc;), 593. 
HLT (halt), 136, 143. 
Hoare, Charles Antony Richard, 17, 

230, 461, 462. 
Hobbes, Thomas, 650. 
Hobby, John Douglas, 650. 
Holmes, Thomas Sherlock Scott, 465. 
Holt Hopfenberg, Anatol Wolf, 460. 
Honeywell H800, 124. 
Hopcroft, John Edward, 560. 
Hopper, Grace Brewster Murray, 229. 
Hu, Te Chiang C~ ~~~), 405, 596. 
Huang Bing-Chao (Ji{~~), 176. 
Huffman, David Albert, 402, 407. 

algorithm, 402-406. 
Hurwitz, Adolf, 44. 

binomial theorem, 399, 488. 
Hwang, Frank Kwangming (Ji{ :J't !!§), 

66, 405, 595. 
Hypergeometric functions, 65. 

basic, 490. 

1/0: Input or output, 215. 
11-register of MIX, 125, 142. 
IBM 650 computer, i, 124, 230, 529. 
IBM 701 computer, 230. 
IBM 705 computer, 230. 
IBM 709 computer, 124, 529. 
IBM 7070 computer, 124. 
Identity permutation, 164, 175. 
Iliffe, John Kenneth, 462. 
Illiac I computer, 230. 
Imaginary part of complex number, 21. 
d'lmperio, Mary E., 462. 
IN (input), 137, 215-216. 
In-degree of vertex, 372. 
INC! (increase rll), 133, 210. 
INCA (increase rA), 133, 210. 
Incidence matrix, 270. 
Inclusion and exclusion principle, 181, 184. 
Incomplete gamma function '"Y(a, x), 

117-122. 
INCX (increase rX), 133, 210. 
Indentation, 312. 
Index: A number that indicates a particular 

element of an array (often called a 
"subscript"), 4, 299, 313, 315. 

INDEX AND GLOSSARY 637 

Index register, 125, 127, 158, 266. 
modification of MIX instructions, 

127, 251-252. 
Index variable, 27. 
Indirect addressing, 246, 251-252, 306. 
Induction, mathematical, 11-21, 32, 

316, 475. 
generalized, 20. 

Inductive closure, 4 75. 
Infinite series: A sum over infinitely many 

values, 27-29, 58, 87-96. 
Infinite trees, 317, 382. 
Infinity lemma, 382-386. 
Information: The meaning associated with 

data-the facts or concepts represented 
by data; often used also in a narrower 
sense as a synonym for "data", or in a 
broader sense to include any concepts 
that can be deduced from data. 

Information structure, see Data structure. 
Ingalls, Daniel Henry Holmes, 522. 
Initial vertex of an arc, 372. 
inorder for a binary tree, 319-323, 

330-332, 346. 
Input, 5, 215-228. 

anticipated, 159, 216, 224. 
buffering, 159, 216-228, 231. 
operators of MIX, 136-138, 215-216. 

Input-restricted deque, 239-243, 416. 
Insertion of a node: Entering it into 

a data structure. 
into available space list, see Liberation. 
into deque, 251, 297. 
into doubly linked list, 281, 290, 297. 
into doubly linked ring structure, 358. 
into linear list, 239. 
into linked list, 235, 255, 276, 305. 
into quadruply linked binary tree, 333. 
into queue, 242, 244-245, 254, 260, 

265, 273-274. 
into threaded binary tree, 327, 332. 
into two-dimensional list, 305. 
onto a stack, 241, 242, 244-245, 247, 254, 

258, 269, 273-274, 278, 458. 
Instruction, machine language: A code 

that, when interpreted by the circuitry 
of a computer, causes the computer 
to perform some action. 

in MIX, 127-144. 
symbolic form, 128, 144. 

INT (interrupt), 228. 
Integers, 21. 
Integration, 90. 

by parts, 77, 112-113. 
related to summation, 111-116. 

Interchange operation ( ++ ), 3, 182, 274. 
Interchanging the order of summation, 

29, 33, 35, 43. 
Interest, compound, 23-24. 



638 INDEX AND GLOSSARY 

Interlock time: Delay of one part of a 
system while another part is busy 
completing some action. 

Internal nodes, 400-406. 
Internal path length, 400, 402, 405. 
Internet, iv, xvi. 
Interpreter (interpretive routine), 

200-202, 230, 340. 
Interrupt, 228. 
Intervals, notation for, 21. 
Invariants, 17. 
Inverse modulo m, 42. 
Inverse of a matrix, 37-38, 73, 307. 
Inverse of a permutation, 106, 175-178, 182. 
Inversion problem, 63-64. 
Inversions of a permutation, 542, 557, 577. 
Inverting a linked list, 269, 279. 
1/0: Input or output, 215. 
me (input-output control), 137. 
IPL, 230, 458-459, 460-461, 552. 
Irreflexive relation, 261. 
Isaacs, Irving Martin, 601. 
Isolated vertex, 37 4. 
Itai, Alon ('n'N 11'.JN), 534. 
Iverson, Kenneth Eugene, 33, 39, 459-460. 

convention, 32-33, 61, 103. 

J-register of MIX, 125, 143, 186, 189, 
212-214. 

J1N (jump if rll negative), 135, 210. 
J1NN (jump if rll nonnegative), 135, 210. 
J1NP (jump if rll nonpositive), 135, 210. 
J1NZ (jump if rll nonzero), 135, 210. 
J1P (jump if rll positive), 135, 210. 
J1Z (jump if rll zero), 135, 210. 
JACM: Journal of the ACM, a publication 

of the Association for Computing 
Machinery since 1954. 

Jacob, Simon, 81. 
Jacquard, Joseph Marie, 229. 
JAN (jump if rA negative), 135, 210. 
JANN (jump if rA nonnegative), 135, 210. 
JANP (jump if rA nonpositive), 135, 210. 
JANZ (jump if rA nonzero), 135, 210. 
JAP (jump if rA positive), 135, 210. 
Jarden, Dov (1'11' :rr), 85, 494. 
JAZ (jump if rA zero), 135, 210. 
JBUS (jump if busy), 137, 157, 212, 216. 
JE (jump if equal), 135, 209. 
Jeffrey, David John, 395. 
Jenkins, D. P., 460. 
JG (jump if greater), 135, 209. 
JGE (jump if greater or equal), 135, 209. 
JL (jump if less), 135, 209. 
JLE (jump if less or equal), 135, 209. 
JMP (jump), 134, 187, 209, 288. 
JNE (jump if not equal), 135, 209. 
JNOV (jump if no overflow), 134, 142, 209. 
Jodeit, Jane Griffin, 462. 

Johnson, Lyle Robert, 459-460. 
Johnstone, Mark Stuart, 452. 
Jokes, 54, 200. 
Jones, Clifford Bryn, 18. 
Jones, Mary Whitmore, 378. 
Jonkers, Henricus ( = Hans) Bernard us 

Maria, 614. 
Jordan, Marie Ennemond Camille, 388, 406. 
Josephus, Flavius, problem, 162, 184. 
JOV (jump if overflow), 134, 142, 209. 
Joyal, Andre, 395. 
JRED (jump if ready), 137, 222-223. 
JSJ (jump saving rJ), 134, 189, 210, 531. 
Jump operators of MIX, 134-135, 209. 
Jump trace, 214, 296, 528. 
JXN (jump if rX negative), 135, 210. 
JXNN (jump if rX nonnegative), 135, 210. 
JXNP (jump if rX nonpositive), 135, 210. 
JXNZ (jump if rX nonzero), 135, 210. 
JXP (jump if rX positive), 135, 210. 
JXZ (jump if rX zero), 135, 210. 

Kahn, Arthur B., 268. 
Kahrimanian, Harry George, 459. 
Kallick, Bruce, 404. 
Kaplansky, Irving, 184. 
Karamata, Jovan, 66. 
Karp, Richard Manning, 406. 
Katz, Leo, 590. 
Kaucky, Josef, 63. 
Keller, Helen Adams, 123. 
Kepler, Johann, 80, 81. 
Kilmer, Alfred Joyce, 232. 
King, James Cornelius, 20. 
Kirchhoff, Gustav Robert, 406, 583. 

law of conservation of flow, 97, 170-171, 
268, 278, 364-370, 380. 

Kirkman, Thomas Penyngton, 408. 
Kirschenhofer, Peter, 506. 
Klarner, David Anthony, 86. 
Kleitman, Daniel J (Isaiah Solomon), 

547, 596. 
Knopp, Konrad Hermann Theodor, 48, 498. 
Knotted lists, 459. 
Knowlton, Kenneth Charles, 462. 
Knuth, Donald Ervin ('jf61l{~), ii, iv, xi, 11, 

33, 66, 120, 193, 201, 202, 296, 297, 395, 
457, 461, 471, 484, 499, 504, 523, 525, 
565, 579, 580, 584, 592, 596, 631, 650. 

Knuth, Nancy Jill Carter (jf6 *" fjf), x, xx. 
Kolmogorov, Andrei Nikolaevich 

(KonMoropoB, AH.n;peii: HHKOJiaeBw-1), 
104, 105, 464. 

Konig, Denes, 382, 406, 588. 
Koster, Cornelis ( = Kees) Herman us 

Antonius, 461. 
Kozelka, Robert Marvin, 544. 
Kramp, Christian, 49. 
Krattenthaler, Christian, 39. 
Kreweras, Germain, 598. 



Krogdahl, Stein, 616. 
Kronecker, Leopold, delta notation, 

33, 61, 624. 
Kruskal Joseph Bernard, 386, 588. 
Kummer, Ernst Eduard, 70. 
Kung, Hsiang Tsung (fL f-t M), 563. 

Labeled trees, enumeration of, 389, 407. 
Labelle, Gilbert, 395. 
Lagrange (=de la Grange), Joseph 

Louis, Comte, 
inversion formula, 392, 594. 

Lame, Gabriel, 407. 
Lamport, Leslie B., 605. 
Language: A set of strings of symbols, 

usually accompanied by conventions 
that assign a "meaning" to each string 
in the set, 5, 241, 460-461. 

machine, viii-x, 124. 
Laplace ( = de la Place), Pierre Simon, 

Marquis de, 87. 
transform, 94. 

Laplacian of graph, 582. 
Lapko, Olga Georgievna (JiarrKo, Onbra 

reopnreBHa), 650. 
Large programs, writing, 191-193. 
Larus, James Richard, 369. 
Last in, first out, 240, 452, 459, see Stack. 

almost, 446, 449, 455. 
Latency, 228, 457. 
Lattice: An algebraic system that 

generalizes operations like u and n. 
defined on forests, 577, 598. 
free, 347. 

Lawson, Harold Wilbur, Jr., 433, 461. 
LCHILO, 352-353, 359-360. 
L01 (load rll), 129, 208. 
L01N (load rll negative), 129, 208. 
LOA (load rA), 129, 208. 
LDAN (load rA negative), 129, 208. 
LOX (load rX), 129, 208. 
LOXN (load rX negative), 129, 208. 
Leaf of tree, 308, see Terminal node. 
Least-recently-used replacement, 452. 
Leeuwen, Jan van, 596. 
Left subtree in binary tree, 312, 318. 
Left-to-right maximum or minimum, 

97-101, 104-106, 179. 
Legendre ( = Le Gendre), Adrien 

Marie, 49, 51. 
symbol, 45. 

Leger, Emile, 80. 
Lehmer, Derrick Henry, 465. 
Leibniz, Gottfried Wilhelm, Freiherr 

von, 2, 51. 
Leighton, Frank Thomson, 450-451. 
Leiner, Alan Lewine, 231. 
Leonardo of Pisa, 79-80, 84. 
Leroux, Pierre, 395. 
Letter frequencies in English, 159. 

INDEX AND GLOSSARY 639 

Level of node in a tree, 308, 316, 317. 
Level order, 351, 564, 577. 

sequential representation, 351, 359. 
LeVeque, William Judson, 466. 
Levy, Paul, 105. 
Levy, Silvio Vieira Ferreira, xi. 
Lexicographic order, 20, 299-300, 306. 
Liberation of reserved storage, 256, 259, 

291, 413-414, 420-421, 438-442, 
443-444, 452-456. 

LIFO, 240, 459, see Stack. 
Lilius, Aloysius, 159. 
Lindstrom, Gary Edward, 567-568. 
Line printer, 136-137. 
Lineal chart, 310-311. 
Linear extensions, see Topological sorting. 
Linear lists, 232, 238-307. 
Linear ordering, 20, 262, 270. 

embedding a partial ordering into, 262, 
see Topological sorting. 

of binary trees, 333. 
of trees, 346. 

Linear probing, 451. 
Linear recurrences, 83, 88. 
Link, 233-237. 

diagram, 234. 
field, purpose, 432-433, 462. 
manipulation, avoiding errors in, 260-261. 
null, 234-235. 

Link variable, 234. 
Linked allocation of tables, 234, 254-256. 

arrays, 301-307. 
contrasted to sequential, 254-256, 

296, 433. 
history, 457-461. 
linear lists, 234-237, 264-266, 269. 
tree structures, 334, 352-357. 

Linked memory philosophy, 255, 435. 
Linking automaton, 463-464. 
Linsky, Vladislav Sergeevich (JIHHCKHH, 

Bna,n;HCJiaB CepreeBH'-1), 471. 
LISP, 233, 460-461. 
LISP 2 garbage collector, 613. 
List: Ordered sequence of zero or 

more elements. 
circular, 273-280, 302, 355, 411, 459. 
doubly linked, 280-281, 288-291, 297-298, 
35~ 411, 441, 443, 452, 459. 

linear, 232, 238-307. 
of available space, see Available space list. 

List (capital-List) structures, 315-316, 
408-423, 460-462. 

copying, 423. 
diagrams of, 315-317, 408-409. 
distinguished from lists, 233, 411. 
equivalence between, 423. 
notations for, 315-317, 408-409. 
representation of, 409-412, 421. 
sequential allocation, 421. 



640 INDEX AND GLOSSARY 

List head, in circular lists, 275, 302-303. 
in doubly linked lists, 280-281, 

288-289, 441, 443. 
in Lists, 410, 414, 417. 
in threaded binary tree, 324, 334. 
in threaded trees, 337. 

List processing systems, 233, 412, 460-462. 
Listing, Johann Benedict, 406. 
Literal constants in MIXAL, 150, 156. 
Literate programming, 193. 
Littlewood, John Edensor, 406. 
LLINK: Link to the left, 280-281, 288-291. 

in binary trees, 318, 322, 327, 333, 459. 
in Lists, 411. 
in trees, 338, 348, 359, 380. 

LLINKT, 324. 
Lloyd, Stuart Phinney, 183, 184. 
Loading operators of MIX, 129, 139, 208. 
Loading routine, 144, 271-272. 
LDC, 235-236. 
Local symbols of MIXAL, 150-151, 157. 
Locally defined function in tree, 351, 361. 
Location counter in MIXAL, 155. 
Location field of MIXAL line, 145, 152. 
Logan, Benjamin Franklin(= Tex), Jr., 74. 
Logarithms, 22-26. 

binary, 23, 26. 
common, 23, 26. 
natural, 23, 26. 
power series, 91. 

Loop in a directed graph: Arc from a 
vertex to itself, 372. 

Loopstra, Bram Jan, 231. 
Louise Wilhelmine Friederike Karoline 

Auguste Julia von Hesse-Kassel, 
310, 311. 

Lovasz, Laszlo, 491. 
Lovelace, Augusta Ada Byron King, 

Countess of, 1. 
LTAG, 322, 333, 349-350, 352, 359, 380. 
Lucas, Frarn$ois Edouard Anatole, 69, 

80, 81, 85, 273, 494. 
numbers Ln, 495. 

Luhn, Hans Peter, 457. 
Lukasiewicz, Jan, 338. 
Lunch counter problem, 456. 
Luo, Jianjin (~ J{!. ~), 407. 
Lynch, William Charles, 585. 

Machine language: A language that directly 
governs a computer's actions, as 
it is interpreted by the computer's 
circuitry, viii-x, 124. 

symbolic, 144, see Assembly language. 
MacMahon, Percy Alexander, 490, 589. 
Macro instruction: Specification of a pattern 

of instructions and/ or pseudo-operators 
that may be repeated frequently 
within a program. 

Madnick, Stuart Elliot, 461. 
Magic square, 162. 
Magnetic tape, 136-137, 463. 
Mailloux, Barry James, 461. 
malloc, see Dynamic storage allocation. 
Mallows, Colin Lingwood, 536. 
Margolin, Barry Herbert, 450. 
Mark I calculator (Harvard), 229. 
Mark I computer (Ferranti), 18. 
Mark bits, 413-414. 
Marking algorithms: Algorithms that 

"mark" all of the nodes accessible from 
some given node, 271-272, 415-423. 

Markov, Andrei Andreevich (MapKoB, 
AH,llpeii: AH.n;peemP-1), the elder, 495. 

chain: Path taken by a Markov process. 
process, 253, 380-382. 

Markov, Andrei Andreevich (MapKoB, 
AH.n;peii: AH.n;peemP-1), the younger, 8. 

Markowitz, Harry Max, 461. 
Markowsky, George, 80, 404. 
Martin, Alain Jean, 605. 
Martin, Johannes Jakob, 614. 
Math. Comp.: Mathematics of Computation 

(1960- ), a publication of the American 
Mathematical Society since 1965; 
founded by the National Research 
Council of the National Academy 
of Sciences under the original title 
Mathematical Tables and Other Aids 
to Computation (1943-1959). 

Mathematical induction, 11-21, 32, 316, 475. 
generalized, 20. 

Matiyasevich, Yuri Vladimirovich 
(MaTlrn:cemP-1, lOpHii: Bna.n;HMHpOBH'-1), 
86. 

Matrix: Two-dimensional array, 
298-299, 315. 

Cauchy, 37-38, 475. 
characteristic polynomial of, 499. 
combinatorial, 37-38, 589. 
determinant of, 37-39, 81, 378-379, 382. 
extendible, 307. 
Hilbert, 38. 
incidence, 270. 
inverse of, 37-38, 73, 307. 
multiplication, 306. 
permanent of, 51. 
representation of, 158-159, 298-307. 
singular, 307. 
sparse, 302-306. 
transpose of, 182. 
triangular, 300, 305. 
tridiagonal, 307. 
unimodular, 601. 
Vandermonde, 37-38, 475. 

Matrix (Bush), Irving Joshua, 35, 36. 
Matrix tree theorem, 378-379, 586. 
Mauchly, John William, 230. 



I 
l. 

Maurolico, Francesco, 17. 
Maximum, algorithm to find, 96-101, 

145, 186. 
Maximum norm, 106. 
McCall's, v. 
McCann, Anthony Paul, 614. 
McCarthy, John, 460-461. 
McEliece, Robert James, 477. 
Mcilroy, Malcolm Douglas, 576, 581. 
Mealy, George, 462. 
Mean value, see Expected value. 
Meek, H. V., 230. 
Meggitt, John Edward, 471. 
Melville, Robert Christian, 540. 
Memory: Part of a computer system 

used to store data, 126. 
cell of, 127. 
hierarchy, 199, 421, 435, 463. 
map, 435-436. 
types of, 238. 

Merner, Jack Newton Forsythe, 229. 
Merrett, Timothy Howard, 560. 
Merrington, Maxine, 66. 
METAFONT, xi, 611, 650. 
METAPOST, xi, 650. 
Military game, 273, 550. 
Miller, Kenneth William, 123. 
Ming, An-T'u ('!§~Ill), 407. 
Minimum path length, 399-406. 
Minimum spanning tree, 371. 
Minimum wire length, 371. 
Minsky, Marvin Lee, 423. 
Mirsky, Leon, 587. 
Mitchell, William Charles, 525. 
MIX computer, viii-x, 124-144. 

assembly language for, 144-157. 
extensions to, 143, 228, 251-252, 455. 
instructions, summary, 140-141. 
simulator of, 203-212. 

MIXAL: MIX Assembly Language, 144-157, 
235-236. 

Mixed-radix number system, 300. 
Mixture of probability distributions, 106. 
MMIX computer, 124, 187, 215, 325. 
Mock, Owen Russell, 231. 
mod, 39-40. 
modulo, 40. 
Mohammed, John Llewelyn, 527. 
Moments of probability distributions, 105. 
Monitor routine, 212, see Trace routine. 
Monte Carlo method: Experiments with 

random data, 445-447. 
Moon, John Wesley, 407. 
Mardell, Louis Joel, 479. 
Morris, Francis Lockwood, 18, 614. 
Morris, Joseph Martin, 567. 
Morrison, Emily Kramer, 229. 
Morrison, Philip, 229. 

INDEX AND GLOSSARY 641 

Moschopoulos, Manuel (Mocrx_67touA.oc;, 
Mcxvou1)A.), 162. 

Moser, Leo, 66. 
Mother, in a tree structure, 311. 
Motzkin, Theodor Samuel 

(pp:sm '.JN1tJ\!J 1n1N'n), 85, 593. 
MOVE, 135, 142, 193, 211. 
MOVE CORRESPONDING, 426, 430-431, 434. 
MUG: MIX User's Group, 641. 
MUL (multiply), 131-132, 208. 
Multilinked structures, 232, 288-289, 

357, 424-434, 458. 
Multinomial coefficients, 65, 394. 
Multinomial theorem, 65. 
Multipass algorithms, 198-200, 201-202. 
Multiple: x is a multiple of y if x = ky 

for some integer k. 
Multiple entrances to subroutines, 189. 
Multiple exits from subroutines, 190, 269. 
Multiple precision arithmetic, 202. 
Multiple precision constants, 619-621. 
Multiple summation, 33-36. 
Multiplication of permutations, 165-167, 

172-173, 371. 
Multiplication of polynomials, 277, 280, 361. 
Multiplication of sparse matrices, 306. 
Multiplicative function, 42-43. 
Multiset: Analogous to a set, but elements 

may appear more than once. 
Multiway decisions, 158. 
Munro, James Ian, 523. 

N agorny, Nikolai Makarovich (HaropHbiii:, 
HHKOJiaii: MaKapoBH"I), 9. 

Nahapetian, Armen, 579. 
Napier, John, Laird of Merchiston, 23. 
Nash, Paul, 556. 
National Science Foundation, x. 
Natural correspondence between binary 

trees and forests, 334-335, 346. 
Natural logarithms, 23, 26. 
Naur, Peter, 17. 
Needham, Joseph, 59. 
Neely, Michael, 452. 
Negative: Less than zero (not zero). 
Negative binomial distribution, 107. 
Nested parentheses, 312-313, 349, 597. 
Nested sets, 312, 317. 
Nesting store, 240. 
Network: A graph together with additional 

data, such as weights on the edges 
or vertices. 

Neumann, John von (= Margittai Neumann 
Janos), 18, 229, 457. 

Neville, Eric Harold, 591. 
Newell, Allen, 230, 457-458, 460. 
Newton, Isaac, 22, 57, 497. 

identities, 497. 
Next-fit method of storage allocation, 

448, 453, 617. 



642 INDEX AND GLOSSARY 

Nicolau, Alexandru, 614. 
Nicomachus of Gerasa (N Lx.6µcxx.oc; 

0 EX. repcXawv), 19. 
Nielsen, Norman Russell, 450. 
Nil link, see Null link. 
Niven, Ivan Morton, 87. 
Noah ben Lamech (ltJ'.J pm), 310. 
Node: Basic component of data s

0

tructures, 
233, 462-464. 

address of, 233. 
diagram of, 234. 
link to, 233. 
notations for fields, 235-237, 458. 
size of, 257, 299, 435, 453. 

NODE, 236. 
Node variable, 236. 
Noncrossing partitions of a polygon, 408. 
Nonnegative: Zero or positive. 
NOP (no operation), 136. 
Normal distribution, 104, 122. 

approximately, 105-106. 
Notations, index to, 623-627. 
Null link (A), 234-235. 

in binary trees, 322, 331. 
in diagrams, 234. 
in trees, 318. 

NUM (convert to numeric), 138. 
Number definitions, 21. 
Number system: A language for representing 

numbers. 
binary, 24-26. 
combinatorial, 73, 560. 
decimal, 21, 691. 
Fibonacci, 86, 495. 
mixed-radix, 300. 
octal, 620. 
phi, 86. 

Number theory, elementary, 40-45. 
Nygaard, Kirsten, 229, 461. 

0-notation, 107-111, 118. 
O'Beirne, Thomas Hay, 518. 
Octal values of constants, 620. 
Odlyzko, Andrew Michael, 121, 565. 
Oettinger, Anthony Gervin, 460. 
Office of Naval Research, x, 230. 
Okada, Satio (fifi] EB"$ m, later 

fiOl EB "$-=f ~), 582. 
Oldenburg, Henry, 57. 
Oldham, Jeffrey David, xi. 
Omphaloskepsis, 214. 
One-address computer, 127, 350. 
One-way equalities, 108. 
One-way linkage, see Circular linkage, 

Straight linkage. 
Onodera, Rikio (Jj\ lff ~ fJ :1i;:), 582. 
Open subroutine, 229, see Macro instruction. 
Operation code field, of MIX instruction, 127. 

of MIXAL line, 145, 155. 

Optimal search procedure, 402. 
Order of succession to the throne, 336. 
Ordered trees, 308-309, 374, see Trees. 

enumeration of, 388-389, 398, 407. 
Ordering: A transitive relation between 

objects of a set. 
lexicographic, 20, 299-300, 306. 
linear, 20, 262, 270. 
linear, of tree structures, 333, 346. 
partial, 261-262, 269-270, 346, 562, 575. 
well-, 20, 334. 

Oresme, Nicole, 22. 
Oriented binary trees, 396-397. 
Oriented cycle in a directed graph, 372. 
Oriented forests, 353-355. 
Oriented path in a directed graph, 372. 
Oriented subtrees, enumerated, 378. 
Oriented trees, 308-309, 312, 372-382. 

canonically represented, 390-394, 
397-398, 590-591. 

converted to ordered trees, 347. 
defined, 373. 
enumerated, 386-387, 389-395, 406. 
represented in computer, 347, 353, 377. 
with root changed, 377. 

ORIG (origin), 146, 151, 155. 
Orlin, James Berger, 584. 
Orthogonal lists, 298-307. 
Orthogonal vectors of permutations, 184. 
Otoo, Ekow Joseph, 560. 
Otter, Richard Robert, 395, 589. 
OUT (output), 137, 225. 
Out-degree of a vertex, 372. 
Output, 5, 215-228. 

buffering, 147, 216-228, 231. 
operators of MIX, 136-138. 

Output-restricted deque, 239-243, 269, 274. 
OVERFLOW, 245-251, 256-258, 268-269. 
Overflow toggle of MIX, 126, 134, 142, 

208, 214, 228. 

Packed data: Data that has been 
compressed into a small space, as when 
two or more elements are placed into 
the same cell of memory, 128, 158. 

Paging, 452. 
Palla, Jean Marcel, 577. 
Palm tree, 581. 
Paper tape, 136-137, 231, 229. 
Parallelism, 296. 
Parameters of subroutines, 187, 189, 229. 
Parent, in a tree structure, 311, 317, 

334-335. 
in a threaded tree, 566. 

Parent links, 347, 353-355, 359-361, 
373, 377, 427-433. 

Parentheses, 312-313, 349, 597. 
Parker, Douglass Stott, Jr., 596. 
Parmelee, Richard Paine, 450. 



Partial field designations in MIX, 126-128, 
139, 143, 207. 

Partial fractions, 62-63, 72, 83. 
Partial ordering, 261-262, 269-270, 

346, 562, 575. 
Partitions of a set, 74, 482. 
Partitions of an integer, 12, 34, 93. 

generating function, 87, 94. 
Pascal, Blaise, 17, 53. 

triangle, 53-54, 69, 71, 73, 85, 499, see 
Binomial coefficients. 

Pass, in a program, 198-200. 
Patashnik, Oren, 11, 631. 
Path, in a graph or directed graph, 363. 

oriented, 372. 
random, 380-381. 
simple, 363, 369, 372, 376. 

Path compression, 576. 
Path length of a tree structure, 399-406. 

average, 405. 
Patience (solitaire), 377-378. 
Patt, Yale Nance, 509. 
Pawlak, Zdzislaw, 460. 
PDP-4 computer, 124. 
Peck, John Edward L., 461. 
Pedigree, 310-311. 
Peirce, Charles Santiago Sanders, 593. 
Penrose, Roger, 587. 
Peripheral device: An 1/0 component of 

a computer system, 136. 
Perlis, Alan Jay, 322, 459-460. 
Permanent of a square matrix, 51. 
Permutations, 45-46, 51, 97-98, 164-185, 

242-243. 
in place, 9, 165, 184-185, 523. 
inverse of, 106, 175-178, 182. 
multiplication of, 165-167, 172-173, 371. 
notations for, 164. 
orthogonal vectors of, 184. 

PERT network, 261-262. 
Petkovsek, Marko, 65. 
Petolino, Joseph Anthony, Jr., 516. 
Pfaff, Johann Friedrich, 486. 
Pflug, Georg Christian, 445. 
Phi (</J), 81, see Golden ratio. 

number system, 86. 
Phidias, son of Charmides ( <PEL5tcxc; 

Xcxpµt5ou), 81. 
Philco S2000 computer, 124. 
Phyllotaxis, 80. 
Pi (rr), 21, 619-620. 

Wallis's product for, 52, 116. 
Pingala, Acharya (~~), 53. 
Pile, 240. 
Pilot ACE computer, 230. 
Pipe, 198. 
Pipeline, 528. 
Pisano, Leonardo, 79-80, 84. 
Pivot step, 302-305, 307. 

INDEX AND GLOSSARY 643 

PL/I language, 433-434. 
PL/MIX language, 156. 
Plane trees, 308, see Ordered trees. 
Plex, 458. 
Poblete Olivares, Patricio Vicente, 523. 
Poincare, Jules Henri, 491. 
Pointer, see Link. 
Pointer machines, 464. 
Poirot, Hercule, xvii. 
Poisson, Simeon Denis, distribution, 

106, 524. 
tail of, 502. 

Polish notation, see Prefix notation, 
Postfix notation. 

Polansky, Ivan Paul, 461. 
P6lya, George ( = Gyorgy), 17, 93, 395, 

396, 406, 407, 496. 
Polynomials, 55, 57, 64, 67, 68, 70, 108. 

addition of, 275-280, 357-359. 
Bernoulli, 44, 113-115, 503. 
differences of, 64. 
multiplication of, 277, 280, 361. 
representation of, 275-276, 280, 356-357. 

Pool of available nodes, 257, see Available 
space list. 

Pooled buffers, 224, 227. 
Pop up a stack: Delete its top element, 

241, 242, 244-245, 247, 254, 259, 
269, 273-274, 278, 458. 

Positive: Greater than zero (not zero). 
Postfix notation, 338, 352, 593. 
Posting a new item, see Insertion. 
Postorder for a binary tree, 319, 321, 

330-332, 346. 
Postorder for a tree, 336-340, 346, 348, 460. 
Postorder with degrees, representation 

of trees, 351, 361-362. 
PostScript, 202. 
Poupard, Yves, 598. 
Power of a number, 22. 

evaluation, 509. 
Power series: A sum of the form L:k>O akzk, 

see Generating function. -
convergence of, 87, 396. 
manipulation of, 118. 

Pratt, Vaughan Ronald, 45, 539, 592. 
Prefix notation, 338. 
Preorder for a binary tree, 319, 321, 

330-332, 346. 
Preorder for a tree, 336-338, 346, 348, 460. 
Preorder sequential representation of 

trees, 349, 362. 
with degrees, 359, 460. 

Prepostorder, 568. 
Prim, Robert Clay, 371. 
Prime numbers, 19, 41, 45, 47-48, 51, 

69-70, 84-85. 
algorithm to compute, 147-149. 
factorization into, 42. 



644 INDEX AND GLOSSARY 

Prinz, Dietrich G., 230. 
Priority queue, 435, 556, 590. 
Probability distribution: A specification of 

probabilities that govern the value of 
a random variable, 98-107. 

average ("expected") value of, 98-103. 
variance of, 98-103. 

Probability generating functio:rl, 103. 
Procedure, see Subroutine. 
Procedure for reading this set of books, 

xii-xiv, 9. 
Prodinger, Helmut, 506. 
Profile of a program: The number of 

times each instruction is perfomed, 
145, 170, 214, 296, 528. 

Program: Representation of a computational 
method in some precise, formalized 
language, 5. 

Programming language: A precise, 
formalized language in which programs 
are written. 

Programs, hints for construction of, 
191-193, 296. 

Progression, arithmetic, sum of, 11, 
31-32, 56. 

Progression, geometric, sum of, 31, 88. 
Proof of algorithms, 5-6, 13-17, 321, 

361, 422, 434. . 
Proof of termination, 16-17, 19-21, 386. 
Proper divisor, see Divisor. 
Property A, 586. 
Prosody, 53, 80. 
Priifer, Ernst Paul Heinz, 407. 
Pseudo-operator: A construction in a 

programming language that is used to 
control the translation of that language 
into machine language, 146. 

Psi function 'lj;(z), 44, 75, 493. 
Purdom, Paul Walton, Jr., 448, 450. 
Push down list, 240, see Stack. 
Push down a stack: Insert a new top 

element, 241, 242, 244-245, 247, 254, 
258, 269, 273-274, 278, 458. 

q-nomial coefficients, 65, 73, 491. 
q-nomial theorem, 73, 494. 
Quadratic Euclidean domains, 468. 
Quadratic reciprocity law, 45. 
Quadruply linked binary tree, 333. 
Quadruply linked trees, 357. 
Quadtrees, 564. 
Qualification of names, 424-434. 
Quasi-parallel processing, 296. 
Queue, 239-243, 264-266, 459, 577, 607. 

deletion from the front, 242, 244-245, 
254, 261, 265, 273-274. 

insertion at the rear, 242, 244-245, 
254, 260, 265, 273-274. 

linked allocation, 259-261, 269, 
273-274, 288. 

sequential allocation, 244-245, 251, 
252, 254. 

Quick, Jonathan Horatio, 502. 
Quotient, 40. 

Rahman, Mizanur (P:i;;a1:;g ~), 490. 
Railway network, 240. 
Ramanan, Prakash Viriyur ( Ul)a;rr~ 

@SJrflYsJ,fr l)LDrOmW), 538. 
Ramanujan Iyengar, Srinivasa (l§~liillrr6YV 

l)rTLDrTW~W gf]UJriua;rrrt), 12, 121, 122. 
Ramshaw, Lyle Harold, 487. 
Ramus, Christian, 71. 
Randell, Brian, 202, 450. 
Random path, 380-381. 
Raney, George Neal, 392, 394, 593. 
Raphael, Bertram, 460. 
Rational number, 21, 25, 161. 
Raz, Yoav (n :lNP), 534. 
RCA 601 computer, 124. 
Reactive process, 5. 
Read, Ronald Cedric, 565. 
Reading: Doing input, 215. 
Real number, 21. 
Real part of complex number, 21. 
Real-time garbage collection, 423. 
Reallocation of memory, 247-251, 452, 457, 

see also Compacting memory. 
Rear of queue, 241. 
Recently used bit, 452. 
Recipe, 6. 
Reciprocity formulas, 44-45. 
Recomp II computer, 124. 
Record: A set of contiguous data; see 

also Node, 233. 
Records, blocking of, 218, 225. 
Rectangular arrays, 298-307. 
Recurrence relation: A rule that defines each 

element of a sequence in terms of the 
preceding elements, 87-89. 

Recursive definition, 308, 312, 315, 318, 
319, 335, 346, 357. 

Recursive Lists, 316. 
Recursive use of subroutines, 191. 
Reeves, Colin Morrison, 445. 
Reference, 233, see Link. 
Reference counters, 413-414, 421, 461. 
Reflection principle, 536, 593, 598. 
Reflective laws, 55, 489. 
Reflexive relation, 261, 353. 
Registers: Portions of a computer's 

internal circuitry in which data is 
most accessible. 

of MIX, 125. 
saving and restoring contents of, 188, 

198, 213, 228. 
Regular directed graph, 379. 
Reingold, Edward Martin, 23, 518. 



Relation: A property that holds for certain 
sets (usually ordered pairs) of elements; 
for example, "<" is a relation defined 
on ordered pairs (x, y) of integers, 
and the property "x < y" holds if and 
only if x is less than y. 

antisymmetric, 261. 
asymmetric, 261. 
equivalence, 353-355, 487. 
irreflexive, 261. 
reflexive, 261, 353. 
symmetric, 353. 
transitive, 108, 261, 353, see Ordering. 

Relative error, 116. 
Relatively prime integers, 40. 
Releasing a buffer, 219-223, 226-227. 
Remainder, 40. 
Remove from a structure, see Deletion. 
Renyi, Alfred, 595. 
Replacement operation ( +-), 3. 
Replicative function, 43-44. 
Representation (inside a computer), 

methods for choosing, 238, 424-433. 
of algebraic formulas, 337, 459. 
of binary trees, 318, 322, 327, 333-334. 
of deques, 251, 280, 297. 
of forests, 334. 
of Lists, 409-412, 421. 
of oriented trees, 347, 353, 377. 
of polynomials, 275-276, 280, 356-357. 
of queues, 244-245, 251-254, 259-261, 

269, 273-274, 288. 
of stacks, 244-254, 258, 269-270, 

273-274, 332, 417. 
of trees, 348-357, 359-362, 459-460. 

Reprogramming, 203. 
Reservation of free storage, 256-258, 291, 

436-438, 443, 452-456. 
Reversing a list, 269, 279. 
Reversion storage, 240. 
Ribenboim, Paolo, 466. 
Rice, Stephan Oswald, 565. 
Richmond, Lawrence Bruce, 565. 
Riemann, Georg Friedrich Bernhard, 

zeta function (( s), 76. 
Right subtree of a binary tree, 312, 318. 
Right-threaded binary trees, 327, 332-334. 
Right-threaded trees, 338, 380. 
Right-to-left maximum or minimum, 

97-101, 104-106, 179. 
Ring structure, 355-357. 
Riordan, John, 397, 494, 595. 
RISC: Reduced Instruction Set 

Computer, 124. 
Rising factorial powers, 50, 71, 624. 
Ritchie, Dennis MacAlistair, 461. 
RLINK: Link to the right, 280-281, 288-291. 

in binary trees, 318, 322, 327, 333, 459. 
in Lists, 409, 411. 

INDEX AND GLOSSARY 645 

in trees, 338, 348-353, 359, 380. 
RLINKT, 324. 
Robinson, Raphael Mitchel, 587. 
Robson, John Michael, 448, 452, 456, 

567, 604, 616. 
Rodrigues, Benjamin Olinde, 407. 
Roes, Piet Bernard Marie, 100. 
Rogers, Leonard James, 490. 
Rokicki, Tomas Gerhard, 202. 
Roll, 240. 
Root of a directed graph, 372. 
Root of a number, 22, 25. 
Root of a tree, 110, 308, 309, 317. 

change of, 377. 
Rooting a free tree, 373. 
Roots of unity, 89. 
Rosenberg, Arnold Leonard, 560. 
Rosenstiehl, Pierre, 243. 
Ross, Douglas Taylor, 450, 458, 462. 
Rotating memory devices, 228, 457. 
Rothe, Heinrich August, 63. 
Rounding, 41, 83, 160, 183. 
Rousseau, Cecil Clyde, 507. 
Roving pointer, 607. 
Row major order, 159, 182, 299. 
RTAG, 322, 332-334, 338, 349-351, 359, 380. 
Running time, see Execution time. 
Russell, David Lewis, 613. 
Russell, Lawford John, 202. 

Saddle point, 159. 
Salton, Gerard Anton, 351, 459. 
Sammet, Jean Elaine, 462, 574. 
Satterthwaite, Edwin Hallowell, Jr., 230. 
Saving and restoring registers, 188, 

198, 213, 228. 
Schaffer, Alejandro Alberto, 514. 
Schatzoff, Martin, 450. 
Scherk, Heinrich Ferdinand, 490. 
Schlatter, Charles Fordemwalt, 459. 
Schlatter, William Joseph, 459. 
Schleswig-Holstein-Sonderburg-Gliicksberg, 

Christian von, see Christian IX. 
Scholten, Carel Steven, 231, 605. 
Schoor, Amir (11\!J 1'1'JN), 559. 
Schorr, Herbert, 418, 422. 
Schreiber, Peter, 81. 
Schreier, Otto, 385. 
Schroder, Friedrich Wilhelm Karl Ernst, 592. 
Schwartz, Eugene Sidney, 404. 
Schwarz, Karl Hermann Amandus, 

inequality, 36. 
Schwenk, Allen John, 495. 
Schweppe, Earl Justin, 459. 
SCOPE link, 350, 362, 434. 
Scroll, 240. 
Segner, Johann Andreas von, 407, 536. 
Seki, Takakazu (~~*D), 112, 115. 
Self-modifying code, 187, 193. 
Selfridge, John Lewis, 78. 



646 INDEX AND GLOSSARY 

Semaphores, 231. 
Semi-invariants of a probability distribution, 

103-106. 
Sentinel: A special value placed in a table, 

designed to be easily recognizable 
by the accompanying program, 
217-218, 276, 567. 

Sequential (consecutive) allocation of 
tables, 244. 

arrays, 158-159, 299-301, 305-307. 
contrasted to linked, 254-256, 296, 433. 
history, 457. 
linear lists, 244-254, 264-266, 325. 
tree structures, 348-352, 359-362, 433. 

Series, infinite: An infinite sum. 
Series-parallel networks, 589. 
Sets, partition of, 7 4, 482. 
Sha, Jichang (~ ~ lf1t ), 547. 
Shakespeare ( = Shakspere), William, 

232, 466. 
Shaw, John Clifford, 230, 457-458. 
Shelf, 240. 
Shephard, Geoffrey Colin, 384, 587. 
Shepp, Lawrence Alan, 183, 184. 
Shift operators of MIX, 135, 211. 
Shor, Peter Williston, 514. 
Shore, John Edward, 445, 450. 
Shylock, 466. 
Sibling, in a tree structure, 311. 
Sibling link, 427-433. 
SICOMP: SIAM Journal on Computing, 

published by the Society for Industrial 
and Applied Mathematics since 1972. 

Sideways addition, 131. 
Sign function (signx), 475. 
Similar binary trees, 327-329. 
Similar forests, 346. 
Simon, Herbert Alexander, 230, 457-458. 
Simonovits, Miklos, 505. 
Simple oriented path, 372, 376. 
Simple path, 363, 369. 
SIMSCRIPT language, 461. 
SIMULA I language, 229. 
Simulated time, 283, 288. 
Simulation: Imitiation of some process, 445. 

continuous, 282, 298. 
discrete, 203, 282-298. 
of one computer on another, 9, 202-203. 
of one computer on itself, 212-214. 

Singh, Parmanand (q '(J:j I 4':: ~), 80. 
Singleton cycle of a permutation, 164, 

171, 180-181. 
Singular matrix, 307. 
Singularity of a function, 396. 
Sister, in a tree structure, 311. 
SLA (shift left rA), 135, 530. 
SLAX (shift left rAX), 135, 530. 
SLC (shift left rAX circularly), 135, 530. 
SLIP, 460-461. 

Sloane, Neil James Alexander, 595. 
Smallest in, first out, 556. 
SNOBOL, 461. 
SODA: Proceedings of the ACM-SIAM 

Symposia on Discrete Algorithms, 
inaugurated in 1990. 

Son, in a tree structure, 311. 
Software: General-purpose programs 

that extend the capabilities of 
computer hardware. 

Soria, Michele, 501. 
Spanning subtrees, 365-370. 

minimum cost, 371. 
Sparse array trick, 307. 
Sparse matrices, 302-306. 
Sparse-update memory, 298. 
Speedcoding, 230. 
Spie:B, Jurgen, 91. 
Spine of a binary tree, 568. 
SRA (shift right rA), 135, 530. 
SRAX (shift right rAX), 135, 530. 
SRC (shift right rAX circularly), 135, 530. 
ST! (store rll), 130, 209. 
STA (store rA), 130, 209. 
Stack, 239-243, 320-321, 323, 325-326, 351, 

361, 415-416, 422, 428-429, 458-459. 
deletion ("popping"), 241, 242, 244-245, 

247, 254, 259, 269, 273-274, 278, 458. 
insertion ("pushing"), 241, 242, 244-245, 

247, 254, 258, 269, 273-274, 278, 458. 
linked allocation, 258, 269, 270, 

273-274, 332, 417. 
pointer to, 244, 258. 
sequential allocation, 244-254, 325. 

Stack permutations, 242-243, 331. 
Standard deviation of a probability 

distribution: The square root of the 
variance, an indication of how much 
a random quantity tends to deviate 
from its expected value, 98. 

Stanford University, ii, x, 296, 554. 
Stanley, Richard Peter, 407, 593, 598. 
Staudt, Karl Georg Christian von, 406. 
Steady state, 381-382. 
Stearns, Richard Edwin, 464. 
Steele, Guy Lewis, Jr., 605. 
Steffens, Elisabeth Francisca Maria, 605. 
Steffensen, Johan Frederik, 503. 
Stevenson, Francis Robert, 579. 
Stickelberger, Ludwig, 51. 
Stigler, Stephen Mack, 448, 450. 
Stirling, James, 47-49, 67, 69, 73, 

87, 115, 181. 
approximation, 51, 115-116. 

Stirling numbers, 66-69, 71-74, 78, 
99-100, 506, 582. 

asymptotic behavior, 66. 
combinatorial interpretations, 66, 74, 179. 
duality law, 68. 



generating functions, 91. 
modulo p, 492. 
table, 66. 

STJ (store rJ), 130, 187, 209. 
STOC: Proceedings of the ACM 

Symposia on Theory of Computing, 
inaugurated in 1969. 

Stolarsky, Kenneth Barry, 495. 
Storage allocation: Choosing memory cells 

in which to store data, see Available 
space list, Dynamic storage allocation, 
Linked allocation, Sequential allocation. 

Storage mapping function: The function 
whose value is the location of an 
array node, given the indices of that 
node, 299-301, 305-307. 

Store: British word for "memory''. 
Storing operators of MIX, 130, 209. 
Straight linkage, 254, 258-259, 411. 
String: A finite sequence of zero or more 

symbols from a given alphabet, 8, 86, 
185, 274, 495, see Linear lists. 

binary, 598-599. 
concatenation of, 27 4. 
manipulation of, 461, 462. 

Strong, Hovey Raymond, Jr., 560. 
Strongly connected directed graph, 372, 377. 
Structure, how to represent, 238, 

424-433, 462. 
Struik, Dirk Jan, 57, 481, 497. 
Stuart, Alan, 100. 
STX (store rX), 130, 209. 
STZ (store zero), 130, 209. 
SUB (subtract), 131-132, 208. 
Subadditive law, 616. 
Subi, Carlos Samuel, 527. 
Subroutines, 158, 186-197, 202, 206-207, 

211, 269, 279-280, 290-291, 343. 
allocation of, 271-272. 
history, 229-230. 
linkage of, 186, 229. 

Subscript, 3--4, see Index. 
Substitution operation ( +-), 3. 
Subtrees, 308. 

average size of, 405. 
free, enumeration of, 378-379. 

Summation, 27-39. 
by parts, 44, 76-78. 
Euler's formula, 111-116, 120, 123. 
interchange of order, 29, 33, 35, 43. 
multiple, 33-36. 
of arithmetic progression, 11, 31-32, 56. 
of binomial coefficients 56-74, 

76-78, 85, 96. 
of geometric progression, 31, 88. 
of powers, 115. 
related to integration, 111-116. 

Sun SPARCstation, 650. 
Supremum: Least upper bound, 37. 

INDEX AND GLOSSARY 64 7 

Suri, Subhash (~ @"), 514. 
Sutherland, Ivan Edward, 459. 
Swainson, William, 330. 
Swapping buffers, 147, 159, 217-218, 225. 
Swift, Charles James, 231. 
Swift, Jonathan, 628. 
Switching table, 158, 205-206, 209, 210, 530. 
Sylvester, James Joseph, 407, 473, 583, 586. 
Symbol manipulation: A general term 

for data processing, usually applied 
to nonnumeric processes such as 
the manipulation of strings or 
algebraic formulas. 

Symbol table algorithms, 175, 426. 
Symbolic machine language, see Assembly 

language. 
Symmetric functions, 92-94, 497. 

elementary, 38, 94, 497. 
Symmetric order for a binary tree, 

319-323, 330-332, 346. 
Symmetric relation, 353. 
Synchronous discrete simulation, 282, 298. 
System: A set of objects or processes 

that are connected to or interacting 
with each other. 

System/360 computers, 124, 189. 
Szekeres, George, 595. 
Szpilrajn, Edward, 268. 

t-ary trees, 334, 405. 
enumeration of, 397, 593. 
sequential allocation, 401. 

Table-driven program, see Interpreter, 
Switching table. 

Tables, arrangement of, inside a computer, 
see Representation. 

Tables of numerical quantities, 54, 
66, 619-621. 

Tag field in tree node, 322, see LTAG, RTAG. 
Tail inequalities, 104, 106-107. 
Tamaki, Jeanne Keiko (.:i Li~ r), 596. 
Tamari, Dov, 577. 

lattice, 577, 598. 
Tape, magnetic, 136-137, 463. 

paper, 136-137, 231, 229. 
Tarjan, Robert Endre, 243, 581. 
Taylor, Brook, formula with remainder, 117. 
Temme, Nicolaas Maria, 66, 121. 
Temporary storage: Part of memory used 

to hold a value for a comparatively 
short time while other values occupy 
the registers, 191. 

Termial function, 48, 51. 
Terminal node of a tree, 308, 318, 

352, 397, 597. 
Terminology, viii, 45, 240, 311, 362, 435. 
Ternary trees, 334, 401. 
Tetrad tiling, 383-385. 
Tetrahedral arrays, 300-301, 306. 
'TEX, xi, 202, 611, 650. 



648 INDEX AND GLOSSARY 

Theory of algorithms, 7, 9. 
Theory of automata, 230, 240, 463-464. 
Thiele, Thorvald Nicolai, 103. 
Thorelli, Lars-Erik, 603, 613. 
Thornton, Charles, 322, 459-460. 
Thread an unthreaded tree, 333. 
Thread links, 422. • 
Threaded binary trees, 322, 331-332, 460. 

compared to unthreaded, 326. 
insertion into, 327, 332. 
list head in, 324, 334. 

Threaded trees, 335-336, 459. 
Three-address code, 337, 459. 
Tiling the plane, 383. 
Time taken by a program, see Execution 

time. 
Todd, John, 475. 
Tonge, Frederic McLanahan, Jr., 460. 
Top-down process, 309, 361. 
Top of stack, 241-242. 
Topological sorting, 261-271, 346, 376, 397. 
Torelli, Gabriele, 71, 488. 
Toroidal tiling, 384. 
Total ordering, 270, see Linear ordering. 
Totient function cp( n), 42, 184. 
Trace routine, 192, 212-214, 230, 296. 
Traffic signals, 161-162. 
Transfer instruction: A "jump" instruction. 
Transitive relation, 108, 261, 353, see 

Ordering. 
Transposing a rectangular matrix, 182. 
Transposing blocks of data, 184-185. 
Transpositions: Permutations that 

interchange two elements, 3, 182, 
274, 371. 

Traversal of binary trees, 319, 459-460. 
inorder, 320, 323. 
postorder, 331-332. 
preorder, 331-332. 

Traversal of trees, 336, 459-460. 
prepostorder, 568. 

Tree function T(z), 395. 
Tree mappings, 390. 
Trees, 232, 308-423. 

binary, see Binary trees. 
comparison of different types, 

308-309, 374. 
complete, 401-402, 405, 563. 
construction of, 340-341, 343, 428-429. 
copying of, 329-330, 333, 347. 
definition of, 308, 317, 363, 373. 
deletion from, 358. 
Dewey notation for, 313, 317, 

382-383, 460. 
diagrams of, 309-315, 337, 346, 349, 460. 
disjoint, see Forest. 
embedding of, 348, 386. 
enumeration of, 386-399, 408. 
equivalent, 346. 

erasing of, 333. 
free, see Free trees. 
history, 406-407, 459-460. 
infinite, 317, 382. 
insertion into, 327, 332. 
labeled, enumeration of, 389, 407. 
linear ordering of, 346. 
linked allocation for, 334, 352-357. 
mathematical theory of, 362-408. 
ordered, 308, 374, 388~389, see Trees. 
oriented, see Oriented trees. 
quadruply linked, 357. 
representation of, 348-357, 359-362, 

459-460. 
right-threaded, 338, 380. 
sequential allocation for, 348-352, 

359-362, 433. 
similar, 346. 
t-ary, 334, 397, 401-402, 405, 593. 
ternary, 334, 401. 
threaded, 335-336, 459. 
traversal of, 336, 459-460. 
triply linked, 353, 359-360, 427-433. 
unordered, see Oriented trees. 
unrooted, 363, see Free trees. 

Triangular matrix, 300, 305. 
Triangulations of polygons, 407, 598-601. 
Tricomi, Francesco Giacomo Filippo, 

121, 122. 
Tridiagonal matrix, 307. 
Trigonometric functions, 44, 229, 471. 
Trilling, Laurent, 461. 
Triple order for a binary tree, 567-568. 
Triply linked tree, 353, 359-360, 427-433. 
Trit, 139. 
Tritter, Alan Levi, 576. 
Tucker, Alan Curtiss, 405. 
Turing, Alan Mathison, 18, 193, 229, 

230, 459. 
machines, 8, 230, 464. 

Tutte, William Thomas, 583. 
Twain, Mark ( = Clemens, Samuel 

Langhorne), 54. 
Twigg, David William, 523. 
Two-line notation for permutations, 

164, 182. 
Two stacks, 246, 251, 253-254. 
Two-way linkage, 280--281, 411. 
Typewriter, 136-137, 231. 

Uhler, Horace Scudder, 480. 
Ullman, Jeffrey David, 560. 
UNDERFLOW, 245, 247, 259, 268-269, 274. 
Uniform distribution: A probability 

distribution in which every value is 
equally likely, 102, 253, 446. 

Unimodular matrices, 601. 
Uninitialized arrays, 307. 
Union-find algorithm, 354, 360. 
UNIVAC I computer, 151, 229, 231, 480. 



UNIVAC III computer, 124. 
UNIVAC SS80 computer, 124. 
UNIVAC 1107 computer, 124. 
UNIX operating system, 198. 
U nrooted trees, 363, see Free trees. 
Unusual correspondence between 

permutations, 178-179. 
Updates to memory, synchronous, 298. 
U spensky, Vladimir Andreevich (Y crreHCKHH, 

BJia,r:i;HMHp AH,r:i;peeBH'I), 464. 

van Aardenne-Ehrenfest, Tatyana, 375, 379. 
van Ceulen, Ludolph, 596. 
van der Waerden, Bartel Leendert, 

385-386, 587. 
van Leeuwen, Jan, 596. 
van Wijngaarden, Adriaan, 461. 
Vandermonde, Alexandre Theophile, 59, 70. 

matrix, 37-38, 475. 
Vardi, Ilan, 504. 
Variable: A quantity that may possess 

different values as a program is being 
executed, 3-4, 235. 

link or pointer, 235. 
node, 236. 

Variable-size nodes, 435-456. 
Variance of a probability distribution, 98. 

deduced from the generating function, 
100-103. 

Vauvenargues, Luc de Clapiers, Marquis 
de, xiv. 

Vectors, see Linear lists. 
Velthuis, Frans Jozef, 650. 
Vertex in a graph, 363, 372. 

isolated, 374. 
Victorius of Aquitania, 518. 
Virtual machine, 201. 
Visiting a node, 320. 
VLSI chips, 563. 
von Ettingshausen, Andreas, 54. 
von Neumann, John(= Margittai Neumann 

Janos), 18, 229, 457. 
von Segner, Johann Andreas, 407, 536. 
von Staudt, Karl Georg Christian, 406. 

W-value in MIXAL, 154-155. 
Wadler, Philip Lee, 605. 
Waerden, Bartel Leendert van der, 

385-386, 587. 
Wait list, see Agenda. 
Waite, William McCastline, 418, 422, 614. 
Wall, Hubert Stanley, 481. 
Wallis, John, 22, 52. 

product for 71', 52, 116. 
Wang, Hao(~ m), 383-384. 
Waring, Edward, 78, 472. 
Warren, Don W., 359. 
Watanabe, Masatoshi (~JI ft {:t), 650. 
Watson, Dan Caldwell, 251. 

INDEX AND GLOSSARY 649 

Watson, George Neville, 507. 
lemma, 123. 

Watson, Henry William, 383. 
Weakest precondition, 17. 
Weber, Helmut, 461. 
Webster, Noah, dictionary, 1, 216. 
Wedderburn, Joseph Henry Madagan, 589. 
Wegbreit, Eliot Ben, 614. 
Wegner, Peter, 306. 
Weierstrass, Karl Theodor Wilhelm, 382. 
Weighted path length, 402-405. 
Weiland, Richard Joel, 608. 
Weizenbaum, Joseph, 414, 459-461. 
Well-ordering, 20, 334. 
Wheeler, David John, 229, 230, 457. 
Whinihan, Michael James, 86. 
Whirlwind I computer, 230. 
Whitworth, William Allen, 182. 
Wijngaarden, Adriaan van, 461. 
Wilde, Oscar Fingal O'Flahertie Wills, 422. 
Wiles, Andrew John, 466. 
Wilf, Herbert Saul, 65, 66, 93, 484. 
Wilkes, Maurice Vincent, 229, 230, 457. 
Wilson, John, theorem, 51. 
Wilson, Paul Robinson, 452. 
Windley, Peter F., 523. 
Windsor, House of, 310. 
Winkler, Phyllis Astrid Benson, xi. 
Wirth, Niklaus Emil, 461. 
Wise, David Stephen, 251, 421, 434, 605. 
Wiseman, Neil Ernest, 421. 
Wolman, Eric, 453. 
Wolontis, Vidar Michael, 230. 
Woods, M. L., 230. 
Woodward, Philip Mayne, 460. 
Word: An addressable unit of computer 

memory, 125-127. 
Word size, for MIX: The. number of 

different values that might be stored 
in five bytes. 

Wordsworth, William, 139. 
Worst-fit method of storage allocation, 

453, 608. 
Wrench, John William, Jr., 480, 621. 
Wright, Edward Maitland, 492, 520. 
Wright, Jesse Bowdle, 359. 
Writing: Doing output, 215. 
Writing large programs, 191-193. 
Wyman, Max, 66. 
Wythoff (= Wijthoff), Willem Abraham, 80. 

X-1 computer, 231. 
X-register of MIX, 125. 
XDS 920 computer, 124. 
XOR (exclusive or), 455. 



650 INDEX AND GLOSSARY 

Yao, Andrew Chi-Chih (:tJUW 151), 543. 
Y ngve, Victor Huse, 461. 
Yo-yo list, 240. 
Yoder, Michael Franz, 479. 
Young, David Monaghan, Jr., 586. 

z, for complex numbers, 21, 108 .• 
Zabell, Sandy Lew, 491. 

Zave, Derek Alan, 91, 614. 
Zeilberger, Doron (1n:::i.::m~ )nn), 65. 
Zemanek (= Zemanek), Heinz, 1. 
Zeta function ((s, x), 44, 76. 
Zhang, Linbo (~ *f.: 71$t), 650. 
Zimmerman, Seth, 407. 
Zorn, Max, lemma, 547. 
Zuse, Konrad, 457. 

We must not . . . think that computation, 
that is ratiocination, 

has place only in numbers. 

- THOMAS HOBBES, Elementary Philosophy (1656) 

THIS BOOK was composed on a Sun SPARCstation with Computer Modern typefaces, using 
the 'TEX and META FONT software as described in the author's books Computers & Typesetting 
(Reading, Mass.: Addison-Wesley, 1986), Volumes A-E. The illustrations were produced with 
John Hobby's METAPOST system. Some names in the index were typeset with additional 
fonts developed by Yannis Haralambous (Greek, Hebrew, Arabic), Olga G. Lapko (Cyrillic), 
Frans J. Velthuis (Devanagari), Masatoshi Watanabe (Japanese), and Linbo Zhang (Chinese). 


