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1.1 Introduction

This document describes the hardware programming model used by Altirra, an emulator for the Atari 8-bit series
of home computers, including the 400, 800, 600XL, 800XL, 1200XL, 130XE, and XEGS models. Although the
emulator provides a virtual programming environment, it is intended to mimic the actual hardware. This
document attempts to describe the hardware in detail as the target to which the emulator aspires to imitate.
Some of this information has been collected from both official and unofficial sources, and some of it has been
determined by hand through testing on a real, still functioning Atari 800XL.

While I've spent a lot of time tracking down details myself, | have to acknowledge the substantial amount of
literature already available which provided background for this document. First and foremost, I'm indebted to the
technical staff behind the Atari Home Computer System Hardware Manual, which did a very good job of
describing the behavior and programming specifications for the official functionality in the Atari hardware, and
which should be considered required reading prior to this document. Similar shout-outs go to the authors of
Atari's OS Manual, which similarly documents the software side, and to lan Chadwick and his Mapping the Atari,
Revised Edition, which contains the most detailed and complete memory map of the Atari | know of.

If you have the time and inclination, please check out my Altirra emulator, available at the following web address.
You can also find the latest version of this manual there.

http://www.virtualdub.org/altirra.html
-- Avery Lee
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1.2 What's new in this edition

This release

« Disk drives
o Added info about XF551 firmware rev. 7.4 and 7.7 differences.
o Added US Doubler firmware information.
+ POKEY
o More details on initialization mode.
o Expanded on many audio topics.
o Rotated around some of the noise generator patterns to canonically start from initialization state.

o Cycle-precise timer behavior, including STIMER and AUDF1-4 write timing.

2022-07-07 release

« Fixed some typos referring to the PIA chip number as 6522 instead of 6520.
« CPU

o Fixed typo regarding B flag, which is pushed set on the stack for a BRK and cleared for IRQ/NMI.
« ANTIC

o Fixed typo in Display list > Suspended display list DMA: the last IR byte is repeated when display list
DMA is disabled.

o Fixed incorrect /RNMI timing — it only needs to be asserted across one leading edge of VBLANK, not
two.

« Accessories

o Expanded information on light pens.

o Added ComputerEyes Video Acquisition System.
- Disk drives

o Added info on 1050 firmware revision E.
2022-01-03 release

« ANTIC
o Refresh row address counter is not cleared on reset.

+ Disk drives

o Clarified receive timing for Happy 1050 and added info about error handling when track buffering is
enabled.

o Added step timing for Speedy 1050.

1.1 - Introduction 11



Altirra Hardware Reference Manual Created by Avery Lee

« Parallel Bus Interface

o Corrected reserved ranges for PBI ($D6xx and D7xx instead of $D5xx and D6xx).
« Appendices

o Added appendix on physical tape format.

2021-10-02 release

«  System architecture
o Added brief overview of top-level system architecture.
+ CPU
o Expanded discussion of flags.
+ ANTIC
o Fixed erroneous starting cycles for playfield DMA in the text (the charts were correct).
+ POKEY
o Clarified some details about counter timing and distortion selection.
o Added section on two-tone counter timing.
« Accessories
o Note on XEP80 baud rate limits, row advance timing anomaly, and delete line behavior.
- Cartridges
o New section on SIDE 3.
«  Serial I/O bus
o New section on 820 Printer.
» Disk drives
o Removed Indus GT from list of disk drives that do not update PERCOM block on density detection.
o  Expanded information on PERCOM disk drive firmware revisions.
« Physical disk format
o Added measured capture range for bit cell periods.
- Reference
o Fixed swapped mode reference for the CHBASE register.

o Fixed missing POTGO register in register listing.
2020-10-23 release

- Disk drives
o Fixed swapped PBO and PB7 definitions for 1050 drives.

o Added behavior of various drives with no disk inserted.
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o Clarified FDC handling of the head/side address field value.
o Added firmware revision information for 1050, Indus GT, and Percom RFD.
o Added Atari 815.
o Added Percom AT88-S1 and AT88-SPD.
« Internal devices
o Added Bit-3 Full-View 80.
o Added Atari 1090 80 Column Video Card.

2019-12-30 release

«  System control

o Fixed a typo in the PAL clock rate.
+ ANTIC

o Timing and behavior for the 400/800 System Reset NMI, even on XL/XE computers.
« GTIA

o Clarified listed behavior for mode 9 combining with the fifth player (PF3) and for mode 11 regarding
unusual COLBK values.

« POKEY
o Fixed a typo in the keyboard layout for the Return key.
- Disk drives
o Fixed 810 port B entries being listed in reversed order.
o Added information on the 810 Turbo, Astra 1001 / The "One", and Amdek AMDC-I/II.
o Added info on specific behaviors of the 6532 RIOT and 177X/277X floppy drive controllers.
o Added info on Happy 1050 US Doubler emulation data corruption bug.
o Added info on XF551 format behavior.
« Internal devices
o Corrected VBXE blitter pattern width bitfield from 7 to 6 bits.
o Added section on APE Warp+ 32-in-1.

« New appendices for analog video and audio models.
2018-08-12 release

« CPU: Clarified exact rules for when a branch crosses a page.

« CPU: Fixed some erroneous illegal instructions in the 6502 opcode chart.

« ANTIC: Fixed wrong modes being listed for 512 byte / 1K character set size.
« POKEY: Additional information about high-pass filter timing.
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«  GTIA:
o New section on NTSC and PAL artifacting.

o  Clarified behavior of GR.9/GR.11 with fifth player or background having non-zero luma for GR.9 or
hue for GR.11.

- Disk: Added information about task sequencing in disk drive controllers, |.S. Plate, sector interleaving
order used by disk drive firmware, XF551 FDC error codes, long sector behavior, 810 revision B
firmware, US Doubler hardware and commands, fixed incorrect sector ranges for XF551 back side
encoding.

2017-05-17 release

- Additional light pen information.

- Rewritten and expanded section on POKEY’s serial port hardware, including precise timing diagrams.
+  MyIDE-Il CompactFlash reset behavior.

« SX212 power-on behavior.

« New chapter on disk drives, including information on the Happy 810, Happy 1050, ATR8000, Percom
RFD-40S1, and the hardware for the 810, 1050, XF551, and Indus GT.

2016-03-25 release

+ 65C816 opcode table.

- 800 floating I/0O data bus.

« POKEY: Additional details on serial port behavior and keyboard and paddle scans.
- Additional XEP-80 details.

« Controllers: CX-20 Driving Controller, CX-21/23/50 Keyboard Controller.

« New device info: Indus GT disk drive, Corvus Disk Interface, Pocket Modem.

« 810 and 1050 updates: long sector behavior, FDC status.

+  SIDE 2 corrections.

- Physical disk format: sector length behavior.
2015-07-05 release

- System: Added information about floating PIA port B bits.

- CPU: Added new sections on new 65C816 functionality, undocumented 6502 opcodes, and opcode
tables.

- ANTIC: New sections on display timing, effects of extending the height of mode lines.
+ POKEY: Added info about keyboard conflicts.
« GTIA: Added info about color generation.

« New chapter on cartridges: AtariMax, SIC!, SIDE, Corina, R-Time 8, Veronica.
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- New chapter on Parallel Bus Interface devices: Black Box, Multi I/O.
« Additional device information: R-Verter, MidiMate, UltimatelMB, VideoBoard XE.
« Additional XEP-80 commands.

« New appendices on polynomial counters and physical floppy disk formats.
2014-04-27 release

« CPU: Added section on 65C02 and 65C816 compatibility issues.
«  System Control: Added information on Parallel Bus Interface IRQs.
« POKEY: Added keyboard scan code table.

- GTIA: Updated with new table of player/missile/playfield priority conflicts and information about priority
conflicts in GTIA modes.

- Serial I/O: Now has its own chapter, including information about type 0-4 polling and device-provided
relocatable loaders.

- 850: Corrected errors in the description of the Write command, expanded description of the Stream
command, and added sections on the 850 bootstrap process.

« Disk: Added more details on 810 FDC controller status and command error conditions, and a new
section about disk anomalies used by protection mechanisms.

«  New section on XEP80 device.

- Reference: Updated to note guarantees on PAL register bits, and fixed errors in PACTL listing and
register quick reference.

2013-05-14 release

« ANTIC updates:

o Bus activity during WSYNC.

o Abnormal playfield DMA.
« GTIA updates:

o Border behavior in mode 10.

o Player/missile shift details and lockup state.
+ POKEY updates:

o Polynomial counter patterns and timing behaviors.
2012-09-15 release

«  Cycle numbers have been readjusted back so that cycle 0 is once again the missile DMA fetch.
« PIA corrections and interrupt behavior.
« CPU interrupt acknowledge timing.

« Parallel Bus Interface (PBI) information.
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« XEGS game ROM selection and keyboard sense.
« ANTIC updates:
o Virtual playfield DMA
o \Vertically scrolled jump instructions
o VSCROL vs. DLI timing
+ POKEY updates:
o Additional serial port initializing and timing information
« GTIA updates:
o Lo-res mode 10 anomaly
- Additional peripheral documentation:
o CX-85 numerical keypad
o 850 Interface Module
o 1030 Modem
o 810, 1050, and XF551 Disk Drives
o Generic SIO protocol
- Fixed backwards serial port and keyboard overrun bits in SKCTL reference.
«  Fixed swapped Control and Shift bits in KBCODE reference.

« Removed incorrect location of international character set from memory map; this is an OS convention
anyway, not inherent in hardware.

2010-11-23 release

« 5200 SuperSystem documentation.

- BRK anomalies, decimal mode, and | flag timing.

« ANTIC horizontal scrolling bug.

+  NMIST timing.

- Temperature sensitive POKEY and GTIA behaviors.
- Keyboard scan behavior.

« All scan line cycle numbers have been corrected to match the horizontal position counter (one less than
previous).
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1.3 Conventions in this manual

Number format

Unless specified, 6502 conventions are used. Numbers without a prefix are given in base 10 (decimal), numbers
prefixed by $ are given in base 16 (hexadecimal), and numbers prefixed by % are base 2 (binary).

In sections that describe Z80-based devices, Intel-style hex conventions are used instead with hex numbers
ending in H, i.e. 50H.

Checksums

Where CRC32 values are given for firmware data, the CRC32 polynomial and algorithm is the same as that used
by the Zip archive format, zlib, gzip, and the PNG image format. This is not to be confused with CRC32C, which
uses a different polynomial and produces different values for the same data.

Scan line timing

A significant number of hardware events with interesting timing occur relative to a particular offset within the
timing of a scan line, which is one horizontal sweep of the display CRT beam. Many activities within the
hardware occur at specific positions within a scan line and it is frequently useful to synchronize the CPU to scan
line timing. There are 114 machine cycles for each scan line.

There is no program visible horizontal position counter in the Atari hardware. To make it easier to refer to specific
offsets within a scan line, the cycles within a scan line are numbered from 0-113 in this manual, where cycle 0
corresponds to the missile DMA at the beginning of a scan line. This is also approximately the beginning of
horizontal sync in the output video signal. Altirra also uses this convention in its debugger.

Deadlines

Sometimes it is necessary for the CPU to write to a hardware register before or after a particular deadline to
produce a desired behavior. For purposes here, A CPU write to a register on cycle N satisfies a requirement to
write by cycle N, before cycle N+1, and after cycle N-1. The cycle number is always in terms of the actual write
cycle from the CPU and not the write instruction. For instance, an INC NMIRES instruction that begins execution
on cycle 90 writes to NMIRES at cycles 95 and cycle 96, assuming no DMA contention.

Event timing

An event observable by a register is said to occur on a particular cycle when that is the first cycle in which a read
of that register reflects the event. For instance, if an interrupt bit activates in IRQST on cycle 95 of a scan line, it
means that reading the register on or prior to cycle 94 will not show the interrupt and reading it on or after cycle
95 will.

In most cases, event timing is described in this manual in terms of when it becomes visible to program
execution. For instance, interrupts are described according to when the 6502 can either sense a change in
interrupt status or begins executing an interrupt routine, and not when the IRQ signal on 6502 is asserted. An
exception is externally visible outputs, such as video, audio, and 1/O.

Active low and active high signals

In hardware designs, the signals may be designated as either active low or active high depending on the
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interpretation of the circuit design. The IRQ line on the CPU, for instance, is an active low signal and is activated
by pulling the signal line to the low state. On the other hand, the RD5 signal from the cartridge that maps $A000-
BFFF is active high, and is pulled up to +5V to signal that cartridge ROM is present.

To avoid confusion, this manual uses the terms asserted and negated to indicate the state of a signal line. An
active low signal is asserted in the low state, and negated in the high state; an active high signal is asserted in
the high state and negated in the low state.
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1.4 Concepts

Program visible behavior

A behavior or effect in the hardware which can be detected by a running program is program visible. Most of the
hardware behavior described in this manual is program visible. For instance, the serialization behavior of the
player/missile registers in GTIA is program visible because it can be detected through the collision registers. Any
program-visible behavior is detectable by program code and can therefore be checked to detect incomplete
emulation or broken hardware.

In contrast, a non program visible behavior cannot be detected by a running program: there is no way for an Atari
program to detect the colors produced by the GTIA priority logic unless external hardware provides a loopback
path.

Byte order (endian)

The 6502 is a little endian processor and therefore writes words with the lower order byte at the lower address of
the byte pair. The hardware follows the same convention: in the few cases where word registers exist or words
are fetched, the byte with the lower address is the lower order byte.

The opposite case is a big endian convention, where the higher order byte comes before the lower order byte.
The 6809 is an example of a CPU that uses big endian byte ordering, and this endianness is also used in
Percom block data because the convention originated in Percom's 6809-based disk drives.

Bit order

Within a byte, bit 7 is the most significant bit (MSB), and bit O is the least significant bit (LSB). A left shift moves
bits toward the MSB from the LSB, and is equivalent to multiplying by a power of two.

Whenever data in a byte represents graphics patterns, the left-most (MSB) pixel is displayed on the left side on
screen. Wider two-bit and four-bit pixels are stored with the same bit ordering within a pixel, allowing arithmetic
operations to function on those pixels.

A bit reversal or reverse bits operation flips the order of the bits, exchanging bits 0 and 7, bits 1 and 6, etc. This
has a few applications, including horizontally flipping 1-bit playfield or player/missile graphics, and compensating
for different shift orders in serial protocols.

Address alignment

The timing of certain CPU operations and the behavior of DMA by ANTIC can depend on the addresses of bytes
within a block of memory. The start of a block of memory is said to be aligned to a particular boundary if it is a
multiple of that value. For instance, the address $0800 is aligned to a 1K boundary because $0800 is divisible by
a 1K block size ($0400 bytes). The address $0A00, however, is not.

A memory block crosses an alignment boundary if the addresses of the first and last bytes result in different
values when divided by the alignment block size. A 40 byte block at $090A-0931 is contained within a 1K
boundary, whereas $07FF-0826 crosses the 1K boundary at $0800. There are two specific behaviors associated
with crossing such a boundary. One is that the 6502 sometimes requires an extra cycle when boundary is
crossed; another is that the 6502 or ANTIC may fail to cross an alignment boundary and wrap addresses within
the alignment block instead.

A page is a 256 byte block of memory aligned on a 256 byte boundary. Many operations in the 6502 require
accesses to specific pages or require extra cycles when indexing causes address arithmetic to produce a final
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address in a different page. Two 16-bit addresses have the same page if their first two hex digits are the same,
i.e. $A900 and $A947.

Read-only and write-only registers

Most registers in the hardware are either read-only or write-only: you cannot read a write-only register or write to
a read-only register. The address locations are also often shared between different read-only and write-only
registers, meaning that an attempt to use an unsupported memory operation will actually access the wrong
register. For instance, although the GTIA's HPOSPO register is set by writing to $D000, it can't be read at that
address; attempting to read $D000 gives MOPF instead.

There are a few notable exceptions where registers are read/write, such as CONSOL in GTIA and the data
direction registers in the PIA. Even in those cases, it is often that the read address does not exactly read back
the same register as the write address. For instance, reading CONSOL or PORTA doesn't actually read back the
values written to the write register; it actually reads the input port connected to the same signal as the output port
controlled by the write register, which means it can be different when the signal is being driven externally (e.qg.
the Start button being held down).

Partial registers

In some cases, an address maps to registers that have less than 8 bits. In the case of a write, the extra bits are
ignored and lost. For a read, the extra unused bits are usually driven to a stable state by the chip, but this is not
always the case. For example, the R-Time 8 only drives the low four data bits and leaves the higher ones
floating. The PDVI register of the Parallel Bus Interface at $D1FF is a more extreme example, as it is actually a
composite of single status bits from each device, leaving the bits for non-present devices floating.

Shadow registers

Because not being able to read back write-only registers makes saving and restoring registers difficult, the OS
maintains a number of shadow registers in the kernel database to allow reading back the value of those
registers. By updating the shadow register whenever the hardware register is updated, the hardware register can
be "read back" by reading the shadow register instead. This is purely a software convention, however, and using
shadow registers is not required. It also requires an additional write for every update to the hardware register.

Strobe registers

Some hardware registers, such as POTGO and WSYNC, are strobe registers. These registers trigger an action
in the hardware when written by the CPU. The value written to the register is irrelevant and ignored, and the
strobe is activated even if the same value is written multiple times.

There are also registers that will trigger changes on a read cycle. The PIA data registers are examples, as
reading them clears pending interrupts. Similarly, some cartridge banking hardware only decodes addresses
without checking the read/write line and thus respond to a read by switching cartridge banks.

Latched (sticky) bits

Latched bits are activated when an event occurs and stay in that state until reset. Most of the interrupt status bits
in IRQST work that way, asserting IRQ on the CPU until the interrupt is acknowledged.

Incomplete address decoding (aliasing or mirroring)

Address decoding is the hardware process of determining if a memory address corresponds to a particular

1.1 - Introduction 20



Altirra Hardware Reference Manual Created by Avery Lee

device. A device with full address decoding responds only to the specific addresses it is designed. For efficiency
reasons, many hardware devices on the Atari only partially decode addresses by checking a subset of address
bits. An example is the PIA, which only contains four addressable locations but is assigned a 256 byte region at
$D300-D3FF. Because bits 2-7 of the address are ignored, the PIA is mirrored 64 times within this address
space. This is also called aliasing, because two or more addresses serve as aliases for the same memory
location.

Although all of the mirror addresses of a hardware register are equivalent, there is typically still a canonical
address associated with that register, the address intended to be used. Using the canonical address of a register
is less likely to run into problems in expanded configurations. For instance, while $D3CO0 is a valid address to
access the PORTA register on stock hardware, it may be overlaid and repurposed by expansion hardware.

Overlapped decoding

As multiple circuits can independently decode addresses, it is possible for more than one device to decode and
respond to the same address, when they are on the same bus. As the MMU handles most decoding in the base
computer with non-overlapping address ranges, this is more common when the devices decode addresses
independently of the MMU or off of the same MMU select signal.

In the case of a write, all devices accept and respond to the write in parallel, using the same data. This occurs in
some stacked cartridge configurations, for instance, where the bottom cartridge does not exclude its register
ranges from the forwarded signals passed to the pass-through cartridge port.

Overlapping reads result in a tug-of-war between the devices over the data bus, with conflicts causing one
device to try to pull the data line down to O while the other to 1, and the result depending on which device wins.
This is considered an undesirable electric condition due to the two devices effectively tying +V to ground, but is
typically short-lived enough to avoid any ill-effects other than garbled returned data.

Power-on state

Individual hardware states may or may not be defined on power-on. The reset logic does ensure that circuits that
take a reset signal are reset on power-up, and critical states such as NMIEN in ANTIC and the OS ROM enable
are reset to ensure that the system can boot reliably. However, some states are not reset and are undefined on
power-on.

In practice, non-reset states do have some bias as to their power-on state. The strongest bias is toward their last
state, if the computer was powered off and then back on for a short period. The logic circuits will tend to keep
their last state for up to several seconds, with increasing chance that the state is randomly lost with each
second. If too much time passes and the system is powered up "cold", however, then the power-on state will
tend to be influenced by the circuit design, which will bias the circuit strongly toward a particular polarity. This is
the reason that dynamic RAM tends to power up with a characteristic stripe pattern that matches the memory
bank configuration inside of the chip. In a "lukewarm" boot where the system has been powered off long enough
for some but not all of the memory bits to have decayed, memory or hardware state bits will show a noisy mix of
the last powered state and the natural cold power-on state of the circuits.

In some other cases where the circuit is well-balanced, the power-on state may essentially be random noise,
such as with static RAMs.

Machine cycles (clocks)

Although most of the system actually runs at a faster rate, the smallest atomic unit of time for CPU execution is a
single cycle at approximately 1.8MHz. All CPU instructions must begin and end on a cycle boundary; all reads
and writes to registers must take place on a particular cycle. Unless otherwise specified, all cycles in this
document refer to machine cycles.
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Color clock

Much of the graphics system in the Atari runs at the speed of the color clock, which for NTSC machines runs at
the color subcarrier (3.579545MHz). A color cycle is completed every time the color clock advances. The highest
resolution possible for most graphics is determined by this clock, which produces 160 low resolution pixels
across at standard playfield width. High resolution displays run at twice this frequency, for a dot clock of 7MHz,
but only luminance effects are possible at this rate. Playfield and sprite positioning also occur at color clock rate.

There are two color cycles for every machine cycle. On PAL machines, where the color subcarrier is at a much
higher frequency, most of the faster processes within GTIA still occur at twice the machine cycle rate.

Machine-specific behavior

There are unfortunately a few cases in which marginal timing causes systems to differ in behavior. Examples are
the interrupt delay between POKEY and the 6502 and the behavior of the GTIA fifth player bit. In some cases
this can even manifest as temperature sensitivity, where a system will change behavior once a certain involved
chip has warmed up and display erratic behavior during the transition. It is best that code be written to avoid
dependency on such cases and to tolerate variance between systems.
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2.1 Basic architecture

The Atari 800 series of computers uses an 8-bit architecture based on the MOS 6502 CPU, assisted by several
custom chips and expandable by cartridge, serial, and parallel buses. Figure 1 shows the general architectural
block diagram.
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Figure 1: System Block Diagram
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CPU

The CPU is a MOS 6502, with an 8-bit data bus and 16-bit address bus, capable of addressing 64K of memory.
Some versions of the computer use a customized variant called a 6502C, which contains additional HALT logic
built-in; it is not to be confused with the later and different 65C02, a revised CMOS version of the 6502.

ANTIC

The ANTIC custom chip handles DMA, memory refresh, display timing, and playfield graphics decoding for the
system. It is the only other bus master in the system, halting the 6502 whenever it needs access to the memory
bus for DMA or memory refresh.

CTIAIGTIA

The GTIA custom chip handles graphics generation, combining playfield data from ANTIC with player/missile
graphics data and convert it to color video output.

The earliest computers may have a precedessor of the GTIA called the CTIA, which is missing some graphics
functionality. The majority of computers have the GTIA.

GTIA also handles some auxiliary signals such as joystick triggers, console buttons, and the console speaker.
POKEY

The third custom chip, POKEY, handles sound generation, serial I/O bus data, and keyboard and paddle input.
PIA (6520)

A 6520 Peripheral Interface Adapter provides joystick directional 1/0O, serial I/O bus control signals, and on the
XL/XE series, MMU control.

Some computers may use the 6820 or 6821/68B21 chips instead. They are pin- and software-compatible with
the 6520.

MMU

The MMU maps memory address ranges to RAM, ROM, hardware, and expansion ports. On later models, it also
supports banking in and out the ROMs and bank-switched expansion memory.

ROM

The operating system firmware is contained in a 10K ROM. Later models expand this to a 16K ROM containing
a larger OS including a self-test, and also add an 8K internal BASIC ROM and an 8K game ROM.

RAM

8K to 128K of RAM is present, depending on the model. 16K, 64K, and 128K are the most common on stock,
unmodified machines. Models containing more than 64K have the additional memory accessible as bank-
switched expanded memory.
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Cartridge port

The 800 contains two cartridge ports, a left cartridge port and a right cartridge port. Other models, including the
400, dropped the right cartridge port and only have the left port, which can support the same functions as the
right port. The cartridge ports can support both reads and writes through up to a 16K aperture.

Joystick ports

Either two or four joystick ports are present, depending on the model, with the earlier 400/800 having four ports.
The 9-pin joystick ports can support joysticks, paddles, driving controls, keypads, and even bidirectional parallel
I/O.

Serial 1/0 bus

The serial /0 bus supports multiple peripherals on a daisy chain, including disk drives, cassette tape decks,
printers, modems, and more exotic devices like MIDI ports. A standard communication protocol at 19200 baud
allows the computer to address individual peripherals sharing the SIO bus.

Parallel Bus Interface (PBI) | Enhanced Cartridge Interface (ECI)

The Parallel Bus Interface on later models allows external logic to interface directly to the address and data
buses of the computer for high-speed traffic, particularly for hard drives. The Enhanced Cartridge Interface (ECI)
is a variant on some later models which combines the cartridge port with a smaller extra port beside it to provide
an equivalent to the PBI.

2.2 Clocks

Machine clock (system clock)

The primary clock for the computer is approximately 1.77-1.79MHz, depending on whether the computer is made
for the NTSC or PAL video standard. NTSC runs slightly faster at 1.79MHz. The CPU and memory bus run at
this speed.

ANTIC preempts the CPU for DMA and memory refresh, stealing some cycles from the 6502 CPU. Thus, the
CPU runs at ~60-90% of the maximum speed, depending on the DMA requirements of the current display model.

Color clock

The color clock runs at 3.58MHz, or double the machine clock, and refers to the rate at which color pixels are
generated. It runs at the frequency of the NTSC color subcarrier and is also the rate at which the majority of the
pixel processing logic in GTIA runs. This is highest rate at which player/missile graphics and color playfield
graphics are produced.

On PAL computers, color pixels are still produced at twice machine clock rate, even though the PAL color
subcarrier is substantially faster (4.43MHz).

Hi-res graphics produced in ANTIC modes 2, 3, and F -- or GRAPHICS 0 and 8 in the OS -- are generated even
faster at double the color clock rate, using both phases of the color clock and thus an effective dot clock rate of
7.16MHz. Only the luminance portion of the playfield runs at this rate.
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2.3 Memory system

Memory bus

The computer has a single memory bus, with 16 address bits addressing 64K of RAM, and an 8-bit wide data
bus. Most chips are addressible directly through memory mapping, but only the 6502 and ANTIC can drive the
bus as bus masters, with the rest of the chips only responding to memory cycles in their address ranges.

The 6502 drives the bus the majority of the time and ANTIC will steal cycles with higher priority as necessary to
generate the display or refresh dynamic RAMs. Only the 6502 can issue write cycles, as ANTIC only issues read
or refresh cycles.

Memory type

Typically the system memory is composed of 4K x 1, 16K x 1, 64K x 1, or 64K x 4 dynamic RAM chips. Third-
party expansions, especially more modern ones, could use 256K chips or even SDRAM or SRAM.

Initial memory contents

The contents of memory upon power-up are undefined and should be treated as such. However, in some
circumstances they are deterministic or almost deterministic.

The first case is when the computer is powered up after being turned off for a long time. In this case, the RAM
will contain block patterns related to the internal organization of the DRAM memory chips. One possible pattern
is alternating $00 and $FF bytes.

The second case is if the computer is only turned off for a short period of time before being turned back on.
When the power is turned off, the DRAM contents will begin to degrade as the lack of regular refresh causes the
memory cells to lose state. This can take anywhere from seconds to minutes, and if power is restored in
between, the result will be a random mix of data from the last powered state and bits that have decayed to the
base state.

Floating data bus

Some addresses are not decoded and responded to by any hardware device, leaving the data bus in an
undriven state. These include $D100-D1FF and $D600-D7FF with no PBI devices installed. $D500-D5FF with no
cartridge, $4000-BFFF on the 400 with the standard 16K RAM configuration, and $C000-CFFF on the 400/800.

Depending on the model, this may either result in a pulled up or floating bus. On an XL and some XE machines,
there are pull-up resistors on the data bus which will force the bus to $FF for an unhandled read. On the 400/800
and other XE machines, these pull-ups are missing and the result is a floating data bus. The floating data bus
will tend to return the byte that was on the data bus from the previous cycle.

RAM does not drive the data bus during a refresh cycle, so the value on the floating data bus is not changed.
However, the floating data bus will reflect the value read by ANTIC if the last cycle was a DMA cycle from a
driven location.

When the CPU is suspended by a write to WSYNC, it repeats its current read cycle until the WSYNC condition is
cleared by ANTIC. During this time, the bus will repeatedly reflect the data at the location the CPU is trying to
read. This can be in turn picked up by ANTIC if one of its DMA channels is reading from an undriven location.
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Floating 1/O data bus

On the 800, the system ROMs, PIA, POKEY, and cartridges are connected to a secondary 1/O data bus that is
split by a pair of data bus transceivers from the main data bus that the CPU, ANTIC, and CTIA/GTIA are
connected to. The data buses are connected for some addresses that are not handled by any device, which
means that floating data can be read from the 1/O data bus separately from the main bus. This is only true on the
800; the 400, XL, XE, and XEGS have all devices on a single data bus.

The following address ranges are decoded for the secondary data bus: $C000-CFFF, $D100-D3FF, $D500-
FFFF. The address ranges for CTIA/GTIA ($D000-DOFF) and ANTIC ($D400-D4FF) are excluded and occur over
the main data bus only.

Reading an unhandled address on the 1/O data bus reads the floating bus data on that bus, which is only
affected by accesses to that bus. In particular, this means that reads and writes to main memory are not
reflected. Writes to any address on the I/O bus will float data on that bus even if no device responds to the write,
and this value can persist until the next read on the 1/O bus even if other accesses occur to the main bus in
between.

As an example, if PEEK(49152) is executed from Atari BASIC running on a cartridge, the value read will most
often be 212 ($D4). This is because BASIC reads the supplied address with an LDA ($D4),Y instruction. The first
two cycles of this instruction read the instruction bytes $B1 and $D4 from the 1/O bus, the next two cycles read
the address 49152 ($C000) from RAM at $D4 and $D5 on the main bus, and the last cycle reads the $D4 value
from the floating data from the 1/O bus at address $C000. (The value will vary in practice because ANTIC may
halt the CPU temporarily and read character data from ROM at $E000-E3FF during the instruction.) On the other
hand, if BASIC is loaded into RAM, the value will tend to reflect character data because the instruction fetches
will no longer occur on the 1/O bus.

Memory refresh

Because dynamic RAM requires periodic refresh to maintain contents, ANTIC does up to nine refresh cycles per
scanline to refresh memory. The number of refresh cycles varies depending on playfield DMA requirements
since playfield DMA has priority over memory refresh, while the full nine cycles are issued during vertical blank.
On each refresh cycle, one row of memory within each memory chip is refreshed. An internal counter within
ANTIC increments the refreshed row address with each refresh cycle. Depending on the model of ANTIC chip,
this counter is either 7 or 8 bits wide, refreshing 128 or 256 rows (the latter being necessary for some later used
memory chips).

While ANTIC is responsible for meeting DRAM refresh requirements solely by itself, any non-refresh access to
memory, either by ANTIC or the CPU, will also refresh the accessed memory row. The lowest address bits
determine the row. For the 130XE, both main and extended memory banks are refreshed together on any
access, though only one may output to the data bus.

On a refresh cycle, the normal data output from the memory chips is suppressed either by disabling the /CAS
signal (XL/XE) or by turning off buffers between the memory and the data bus (400/800). The memory decoding
logic or MMU also suppresses any /O or ROM mappings that would otherwise respond to the refresh address
supplied by ANTIC. As a result, no device will drive the data bus and it will either float or be pulled up.*

2.4 System Reset button

On the original 400/800, the [SYSTEM RESET] key is connected to the RNMI line on ANTIC, which then causes
an NMI to be issued to the 6502. The system NMI routine detects this condition via bit 5 of NMIST and invokes
warm start behavior.

[1] Itis possible to observe this by overlapping playfield and refresh DMA cycles. This is done by disabling playfield DMA via DMACTL
mid-scanline and pulling the data bus contents during refresh cycles into the line buffer.
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Starting with the 1200XL, this behavior was changed to use real reset logic instead. On the XL/XE models,
pressing the Reset button causes the reset lines to be pulled on the 6502, ANTIC, FREDDIE, and PIA. This
causes NMls to be masked, memory banking to be reset to default, and the 6502 to restart execution at the reset
vector. The RNMI line is permanently wired with a pullup to +5V and thus ANTIC will never signal a system reset
NMI on these models.

2.5 Peripheral Interface Adapter (PIA)

The 6520 PIA chip controls several miscellaneous functions within the Atari.
Addressing

The PIA occupies the $D3xx block of address space and exposes four register locations from $D300-D303. Only
the low two address bits are decoded, so each register is repeated 64 times.

Caution

Ultimate1MB overlays the $D380-D3FF half of the PIA region with its own registers.

110 ports

The PIA contains two 8-bit data ports, port A and port B. Each contains eight bits which are individually
switchable between input mode or output mode by a data direction register. Port A is controlled by control
register PACTL [$D302] and data register PORTA [$D300]; port B uses control register PBCTL [$D303] and data
register PORTB [$D301].

The data direction registers DDRA/DDRB and input/output registers ORA/ORB share addresses. In order to read
or write the data direction register, bit 2 of the port's control register must be set to 0, and to read or write the 1/0
register, bit 2 must be set to 1.

Port A is connected to the direction lines of joystick ports 1 and 2. Port B is connected to ports 3 and 4 on the
400/800. The XL/XE models do not have these joystick ports, so port B is used for memory banking and LED
control instead.

/0 direction

Each bit in the data direction register controls whether a bit is in input or output mode. A zero bit sets the bit to
input mode, while a one bit enables output for that bit. A bit in the output register is ignored when that bit is set to
input, but all bits in the input register are valid even for output bits. This behavior differs between port A and port
B. For port A, a bit set to output will read back as the logical AND of the output and external state. This is
sometimes used to mask off incoming bits; a bit will read as zero if either the PIA or an external device is pulling
the line low. For port B, any bit set to output always reads back the output state regardless of external influence.

Control lines

The interrupt and proceed lines of the SIO bus are connected to control lines CB1 and CA1 of the PIA,
respectively. These are generally unused and disabled by setting bits 0 and 1 of PACTL and PBCTL to zero.
They are used by a few devices, though, most notably the 1030 Direct Connect Modem.

Control lines CB2 and CA2, however, are connected to the SIO command and motor control lines, respectively.
Bits 3-5 of PACTL/PBCTL are used to control the line state and should be set to 110 for a low state or 111 for a
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high state.? The command line is pulled low by the Atari while a command is being sent to an SIO device; the
motor line is pulled low when a cassette tape deck should begin recording or playback.

The control lines can be used to issue an IRQ to the CPU, but this is seldom useful unless an external SIO
device is specially made to take advantage of this ability.

Typically the values $34 and $3C are written to PACTL/PBCTL; this disables interrupts, raises or lowers the
CA2/CB2 line, and keeps the PORTA/PORTB register in data mode so the OS VBI routine can read the joystick
ports.

Interrupt status/enable bits

Bits 7 and 6 of PACTL and PBCTL indicate interrupt status of CA1/CB1 and CA2/CB2, respectively. They are
read-only and their values are ignored on write. A set bit indicates a pending interrupt, and if the interrupt is
enabled, an IRQ is also issued to the CPU.

Reading the input register for a port resets both interrupt bits for that port. This must be the input register;
reading the data direction register has no effect on interrupt status. This has implications for PIA interrupt
handlers, which must either require that ORA/ORB be active when PIA IRQs are active and unmasked or
temporarily switch from DDRA/DDRB to ORA/ORB to acknowledge the interrupt.

Unlike with POKEY, disabling interrupts does not clear the pending interrupt bit, and interrupts can be flagged by
edge detection even if interrupts are disabled. However, switching CA2/CB2 to output mode (1xx) does clear the
corresponding interrupt status (bit 6).

Reset behavior

The PIA is reset only on power on on the 800; it is also reset by the Reset button on XL/XE models. When the
PIAis reset, all registers are cleared to $00. This disables all interrupts, switches PORTA/PORTB to the data
direction register, and sets all peripheral port bits to input mode.

Floating inputs

On the XL/XE series, unused signal lines on PIA port B are not tied to ground or +5V and are therefore left
floating. This creates a condition where the value read on those bits via the PORTB register can drift over time.
Specifically, if unused port B bits are switched from outputting a 1 to input mode, they will read as 1 for a while
before eventually stabilizing at 0. If the last output value was a 0, the read bit in input mode will immediately be a
0 with no delay.

While this can cause port B to return random data, it is not usually a problem in practice because only unused
port B bits are affected and it only occurs for bits in input mode. On XL/XE systems, PIA port B is usually set to
output mode on all bits early in initialization and kept that way during normal operation.

The unused, floating port B bits for unmodified hardware are as follows:

« 1200XL: bits 1-6

- 600XL, 800XL, 65XE: bits 2-6

« 130XE: bit 6

+ XEGS: bits 2-5
The approximate time delay for the 1-to-0 transition, based on measurements on real hardware, is in the range
[2] [ATA82] 111.20 indicates that bits 4-5 should be set to 1. While this is the most useful setting, bits 3-5 can also be set to other values to

access six more control modes for the CA2 line. For instance, a value of 000 will reconfigure the pin for input, resulting in it being
passively pulled up to the true state.
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of 100-500 ms. Delays vary between individual bits, between systems and can even vary widely on the same
system. For instance, one system may show fairly consistent 160-190ms delays among its bits, whereas another
may show 300-500ms. In any case, it is slow enough that it can even be detected from BASIC.

The 400/800 has pull-ups on all port B lines and leaves none floating. Port A is not susceptible to this issue either
as it has internal pull-ups within the PIA.

For systems that have add-on extended memory, the additional bits used by the memory expansion are
expected to be connected to additional hardware such that they would always be pulled up, preventing those bits
from floating. This is notably not true for Ultimate1MB, though, since it implements extended memory by
shadowing writes to the PIA instead of physically connecting to the PIA's port B. Therefore, on a ULMB system, it
is possible to have bits that both float in input mode and control extended memory.

Spurious interrupts

Switching from output to input mode on the CA2/CB2 control lines can cause spurious interrupts to be flagged in
the control register. For CA2, this happens when positive edge detection is enabled (PACTL[3:5] = 010 or 011)
after the output has been pulled low recently (110). For CB2, an output low-to-high transition must be followed by
any input mode (PBCTL[3:5] = 110 to 111, then 0xx). When the input mode is selected, bit 6 will become set and
an IRQ will be requested from the CPU if the PIA interrupt is enabled (PACTL/PBCTL[3] = 1).

The CB2 case is particularly nasty as it corresponds to the SIO command line and the required transition is part
of the normal SIO protocol. Merely writing $08 into PBCTL can cause an infinite series of interrupts if an
appropriate IRQ routine is not registered to clear the unexpected PIA interrupt.

2.6 Bank switching

Bank switching allows the CPU to access more memory than would ordinarily be reachable via the 64K address
space dictated by its 16 address lines by multiplexing address regions based on bank switching registers. On the
XL series, this allows ROM to be selectively disabled, permitting access to 62K of memory.

ROM control
While the 400/800 use PIA port B to interface with joystick ports 3 and 4, the XL/XE computers only have two
joystick ports. The otherwise unused port B is instead used to enable and disable the system ROMSs.

Bit O controls the OS ROM at $C000-CFFF and $D800-FFFF. A '1' bit enables the OS ROM.

Bit 1 controls the BASIC ROM at $A000-BFFF (except on the 1200XL, which has no built-in BASIC). A'0' bit
enables the BASIC ROM. Note that this is inverted from the OS ROM bit (bit 0).

Bit 7 controls the self-test ROM at $5000-57FF. A '0' bit enables the self-test ROM, if the OS ROM is also
enabled. If the OS ROM is disabled, the self-test ROM is also disabled regardless of the state of bit 7.

Pull-ups ensure that port B bits 0 and 7, and also bit 1 on non-1200XL machines, are held high if those bits are
switched to input mode on the PIA. Since the PIA switches all port bits to inputs on reset, this guarantees that
the OS ROM is enabled and the BASIC and self-test ROMs are disabled on system reset.

Clearing bit 0 and setting bits 1 and 7 disables all system ROMSs, enabling access to 62K of RAM. The 2K block
of hardware registers at $D000-D7FF cannot be disabled.

Writes to ROM

The MMU logic maps addresses to circuitry solely based on address. This means that any writes to addresses
that are currently assigned to kernel ROM, BASIC ROM, or cartridge ROM are ignored and do not affect the
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underlying RAM. It is not possible to “write through” the ROM as on some other platforms.

BASIC ROM overlap (XL/XE only)

The priority in the $A000-BFFF address range is cartridge ROM, then BASIC ROM, and then RAM. If both the
cartridge and BASIC ROM are enabled in that area, the cartridge is visible.

Game ROM (XEGS only)

On the XEGS, setting bit 6 of PIA port B to 0 enables the Missile Command game ROM at $A000-BFFF. This
has lower priority than the BASIC ROM and will therefore be overridden by BASIC if port B bit 1 is also set to O.

2.7 Extended memory

Starting with the XL models, a common way of expanding memory above the main 64K was to add additional
expanded memory with bank switching. This involves mapping an extended memory window as an overlay over
the $4000-7FFF region, allowing access to the extended memory 16K at a time. PIA port B is used to control the
extended memory window.

Window control

In most expansions, bit 4 of PORTB enables or disables the extended memory window. Bit 4 is inverted, so a 1
disables the window while 0 enables it. When the window is enabled, all reads and writes to the $4000-7FFF
region are directed to extended memory, and the main memory hidden underneath is untouched.

For a 128K system with 64K of extended memory, bits 2 and 3 select unique 16K extended memory banks. The
bits are ignored if the extended memory window is disabled, though the value of those bits is still kept. Larger
expansions use more bits in PORTB to select additional banks.

Note that the outputs from PIA port B control the extended memory window, so bits in PORTB are only effective
if configured as outputs. The XL/XE OS configures port B as all outputs by default, so normally all bits function. If
some hits are configured as inputs, however, they will not control extended memory functions. Typically there are
pull-ups on all port B bits used for memory mapping, so any bits configured as inputs will function the same as a
1 bit in output mode.

Separate ANTIC access

Some expansions have the ability to enable the extended memory window independently for ANTIC and CPU
access. For these, bit 4 enables the window for CPU reads and writes, while bit 5 enables it for ANTIC reads.
This makes it possible to display from extended memory while reading and writing from main memory at $4000-
7FFF and vice versa. There is still only one set of bank selection bits, however, so when both are enabled for
extended memory access the same bank must be used for both.

For expansions that do not support separate ANTIC access, the window applies to both ANTIC and the CPU:
either both access main memory or both access extended memory, controlled by the single enable bit.

Expansions labeled as COMPY typically support ANTIC access, while ones labeled as RAMBO do not, both
names coming from model expansions with those behaviors. The 130XE, the only stock computer with extended
memory support, also supports separate ANTIC access.

Self-test ROM conflict

The self-test ROM can conflict with the extended memory window since it occupies $5000-57FF. When both the
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self-test ROM and extended memory are enabled, the self-test ROM has priority in this region, with reads
coming from the self-test ROM and writes being discarded without modifying memory. This situation is not
possible with some expansions that disconnect the self-test ROM or reuse its bit while the extended memory
window is enabled.

Describing extended memory schemes

Extended memory schemes are often described in terms of the typical PORTB bytes that can be used to access
unique banks. Most expansions preserve the function of bits 0 and 1 and use bits 2 and 3 for bank selection, so
the expansion can be described by the valid values for the high four bits. For instance, an expansion using bits
2-3 and 5-6 for bank selection would have unique banks for $8x, $Ax, $Cx, and $Ex, or 8ACE for short. Similarly,
an expansion using bits 2-3 and 6-7 would use $2x, $6x, $Ax, and $Ex, making its banking pattern 26AE.

Bit reuse

Some particularly large expansions reuse PORTB bits already assigned to mapping functions in the XL/XE
computers. Typically bit 0 (OS ROM) is kept, while bit 1 (BASIC) and bit 7 (self test) may be reused as banking
bits. Depending on the expansion, these bits may either be reassigned entirely, losing their original function, or
may only function as banking bits when extended memory is enabled. For instance, bit 7 may control the self test
ROM when expanded memory is disabled, but control a bank selection bit when the window is enabled, with the
self-test ROM forced off in that case.

Main memory aliasing
Some extended memory expansions may alias 64K of extended memory against main memory due to reusing
the same memory addressing. The result is that four of the extended memory banks address main memory such

that reading or writing the two address windows are equivalent. This is documented behavior for the ICD
RAMBO XL product, which aliases banks 0-3 of its 256K extended memory space against main memory.?

Expansion list

Table 1 lists some extended memory configurations. This list is not exhaustive; there are many other extended
memory configurations in use on actual hardware.

Type Configuration | Banking bits | Bank blocks Notes

130XE 64K + 64K 2,3 E Separate ANTIC access
192K (RAMBO) 64K + 128K 2,3,6 AE
256K (RAMBO) 256K 2,3,5,6 8ACE $8x banks alias main memory
320K (RAMBO) 64K + 256K 2,3,56 8ACE
320K (COMPY) 64K + 256K 2,3,6,7 26AE Separate ANTIC access
576K (RAMBO) 64K + 512K 1,2,3,5,6 8ACE
576K (COMPY) 64K + 512K 1,2,3,6,7 26AE Separate ANTIC access
1088K (RAMBO) | 64K +1024K |1,2,3,5,6,7| 02468ACE

Table 1: Some extended memory configurations

[3] [RamboXL]p. 14
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2.8 Miscellaneous connections

Cartridge sense (XL/XE only)

On the XL/XE series, the RD5 cartridge line is connected to the trigger 3 input (T3) of GTIA. The RD5 line
signals when the cartridge is supplying data in the $A000-BFFF range and therefore built-in memory should be
suppressed. Because RD5 is active high, the TRIG3 register in GTIA reads as a 1 (button not pressed) when
cartridge ROM is present and 0 (button pressed) when it is absent. This is used as a cartridge sense mechanism
by the XL/XE OS.

When a cartridge is disabled via bank switching and no longer presenting anything at $A000-BFFF, TRIG3 reads
asao.

The internal BASIC ROM does not affect TRIG3.

On a SECAM system with an FGTIA, the triggers are gated and only updated once each horizontal blank. This
causes delays in TRIG3 updating to match cartridge state changes and is a source of cartridge compatibility
problems. The TRIG3 cartridge sense can also be affected by the GTIA trigger latch function.

Keyboard sense (XEGS only)

On the XEGS, the trigger 2 input (T2) of GTIA is used to sense whether a keyboard is connected. If a keyboard
is connected, TRIG2 reads $01 (trigger not pressed), while it reads $00 otherwise. This is consistent with the
XL/XE series which has T2 disconnected and also reads $01.

1200XL option jumpers

The 1200XL has four option jumpers which are connected to unused pot lines. Option jumper J1 is connected to
POT4 and causes a self-test on startup if installed.*

2.9 Examples

Caverns of Mars

This game configures the upper four bits of port A as output in order to force them to zero, and fails to read the
joystick if this is not reflected in the values read.

MidiTrack lll

Monitors the CA1 (SIO proceed) input of the PIA for synchronization pulses without having IRQA1 enabled.
R-Verter handler software

Monitors CA1 (SIO proceed) and CB1 (SIO interrupt) inputs to the PIA without either IRQAL or IRQB1 enabled.
WarGames

This game has a unique check to verify that $C000-CFFF is not populated with either RAM or ROM on an 800
system. If the routines in this region do not match the checksum for the 1200XL or XL/XE ver. 2 OS, the game

[4] [ATAXL] p.15
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writes a byte to a single location in this range and then reads a series of addresses, checking whether the data
read from any of those addresses changes. Since the check routine is running from RAM, this relies on the write
being floated on the I/O data bus without being disturbed by the instruction fetches. The check will pass if
$C000-CFFF either contains RAM or returns floating I/O bus data, but will fail if it is ROM or main floating bus
data.

Atari Operating System Rev. A/IB

The RAM sizing test for OS-A/B tests for RAM by twice complementing the byte at the beginning of each 4K of
memory starting at $1000 and checking that the value read back matches each time. This test normally stops at
$C000 due to the floating I/O bus, relying on the instruction fetches from ROM to immediately overwrite the
written value on the I/O data bus. This test will also stop at $C000-CFFF if the range returns a constant value
due to either ROM or a pulled-up data bus. If the system is reconfigured so that the memory sizing code runs
from the main data bus or that $C000-CFFF returns floating data from a different bus, the sizing code can
incorrectly determine that range to be RAM.

2.10 Further reading

The definitive resource for anything involving the Atari memory map is [CHA85]. Appendix 16 provides
information on the new PORTB assignments for the 130XE.

[ATAXL] describes numerous modifications to the hardware and kernel in the 1200XL, such as the option
jumpers.

[ATA82] contains both functional and detailed schematics of the Atari 400/800 and is useful in tracing signal flow
between the custom chips.

For detailed programming information for the 6520 PIA chip, particularly modes not covered by the Hardware
Manual, consult [MOS76].
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Chapter 3
CPU

The 6502 chip is the CPU of the Atari. Used in many computers of the time and still in use as
a microcontroller in enhanced forms, both the official and unofficial behaviors of the 6502 are
well known. While the 6502 was later superseded by chips such as the 65C02 and the
65C816, the Atari 8-bit line continued using the original 6502 until the very end.

Note that there is some confusion as to the precise chip used in the Atari 8-bit series. The
original 400/800 use the NMOS 6502, along with a handful of extra circuitry to provide the
ability to halt the CPU for ANTIC DMA; this was later replaced with the 6502C, a custom
version that contains the HALT logic built-in. This should not be confused with the CMOS
65C02, which is an enhanced 6502 with additional instructions and which was never used in
the Atari 8-bit line.

The 6502 contains many nuances and unusual undocumented behaviors which are crucial to
understand when programming to the metal on the Atari 8-bit series. For the sake of brevity,
the basic architecture of the 6502 will be omitted here to allow more space for documenting
these corner cases.
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3.1 Flags

Flags are stored in the P register of the CPU and both capture and store persistent state across multiple
instructions. Most instructions on the 6502 implcitly set at least one flag during execution of their main operation,
commonly the N and Z flags. Some of the flags also modify global CPU behavior, such as the interrupt mask (I)
flag.

Address calculations never use or modify the flags. Thus, the addition in the absolute indexed addressing mode
abs,X neither uses the carry flag as input nor modifies it based on the resulting address, nor is it subject to
modification from the decimal (D) flag.

Carry (C) flag (bit 0)

The carry flag extends many arithmetic and logical operations by one bit to allow processing of 16-bit or larger
quantities in multiple 8-bit operations. For arithmetic operations, it supplies the carry or borrow input into bit 0
and receives the carry or borrow output out of bit 7, and similarly supplies inputs and captures outputs for shifts
and rotates.

The 6502 notably differs from some other CPUs in the polarity of the C flag for subtract operations. On the 6502,
C=1 indicates no borrow in/out for a subtract operation, and C=0 indicates a borrow. Thus, SBC is commonly
preceded by SEC when a pure subtraction with no borrow in is desired. This interpretion is consistent with
implementing subtraction by adding the one's complement (all bits inverted or XOR'd with $FF).

Zero (Z) flag (bit 1)

The zero flag is set when the result of an operation is zero or all bits cleared, and clear otherwise. It is purely a
result bit.

Interrupt mask (1) flag (bit 2)

The | flag determines whether maskable interrupts are blocked or masked. If it is cleared, then IRQs are handled
normally; if it is set, IRQs are "masked" and ignored by the CPU. NMls are not affected by the | flag, as they are
non-maskable.

The | flag is automatically set on reset to prevent the CPU from receiving stray IRQs until it has completed
hardware and software initialization.

Decimal (D) flag (bit 3)
The D bit (bit 3) in the processor status register activates decimal mode in the 6502. When set to 1, the ADC and

SBC instructions perform BCD correction. CMP, CPX, CPY, INC, DEC, and indexed addressing are not affected.

NMOS 6502s do not clear the D flag automatically, so it must be cleared on reset. It should also be cleared in an
interrupt handler if the interrupt code uses ADC or SBC and mainline code may use decimal mode.

Break (B) flag (bit 4)

Bit 4 of the processor status register is the (B)reak bit and is used to indicate whether an IRQ or a BRK
instruction caused the IRQ routine to be run. It is set if the trigger was an BRK and cleared if it was a IRQ.

Contrary to both official and unofficial documentation, the B bit does not actually exist in the P register.
Attempting to clear bit 4 of P and reading the result back always gives a 1 bit. The only time the B flag is visible
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is when the 6502 pushes the P register on the stack as part of interrupt handling. In that case, the P value
pushed onto the stack will have bit 4 set for a BRK and cleared for an IRQ/NMI. In rare circumstances, it is
possible for an NMI to piggyback on a BRK and the NMI vector can also be invoked with bit 4 set on the flags on
the stack.

On the 65C816, bit 4 is reused as the index size (X) bit in native mode.
Unused flag (bit 5)
The 6502 does not use bit 5 of the P register. It can't be cleared and always reads as a 1 when pushed to the

stack with the PHP instruction or by interrupt entry.
On the 65C8186, bit 5 is reused as the (M)ode bit in native mode.

Overflow (V) flag (bit 6)

The V flag is set during arithmetic operations to indicate if a signed overflow has occurred, where the result is
outside of the -128 to +127 range of a byte and has been truncated. It is cleared otherwise. This is sometimes
implemented as the XOR of the carries out of bit 6 and bit 7. It is uncommonly used, being changed only by add,
subtract, compare, and flags-specific operations. It also captures bit 6 of the source for a BIT instruction.

There is another uncommon use of the V flag, to capture an event signaled on the Set Overflow (SO) input on
the CPU. Asserting SO results in the V flag being set asynchronously to regular code execution. This is not used
on the main computer, but some peripherals using 6502-family CPUs do use this facility.

Negative (N) flag (bit 7)

The N flag is usually set when the result of an operation is negative, i.e. the sign bit in bit 7 is set. More
generally, it is usually copy of bit 7 of the result. There are a couple of exceptions, such as BIT setting the N flag
to bit 7 of the source data rather than of the bitwise AND operation.

3.2 Decimal mode

Decimal correction

Decimal arithmetic in the 6502 works by correcting each nibble after addition or subtraction. For addition, 6 is
added if the nibble result exceeds 10; for subtraction, 6 is subtracted if the result is negative. The carry between
the low and high nibbles is computed before this correction, so the correction can never cause a double carry.
For instance, for $0F + $0F, an intermediate result of $1E is computed, and the correction then produces $14.

Flags computation

All flags are computed after carries are propagated between nibbles but before decimal correction occurs.®

For addition, the C flag is set whenever there is a carry out from the high nibble, allowing for extended precision
decimal arithmetic. For instance, $99 + $01 = $00 with carry set. For subtraction, it is cleared for a borrow.

The Z flag is set when the intermediate result is $00, before decimal correction. Example: $FF + $01 = $66, with
Z set.

The N flag is also set according to the intermediate result, to match bit 7. Example: $99 + $01 = $00, with N set.

5] [13010]
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The V flag is set when the carry between bit 6 and bit 7 is different than the result carry, or alternatively, when
there is a signed overflow in binary arithmetic.

65C02 behavior

ADC and SBC take an additional cycle in decimal mode on the 65C02.

The 65C02 computes the N, V, and Z flags differently in decimal mode. All three are computed the same way as
if the same result were achieved in binary mode. That is, N is set if bit 7 of the result is set; Z is set if the result is
$00; V is set if the carry from bit 6 to bit 7 is different than the carry flag.

ADC produces the same results for invalid BCD encodings on the 65C02 as it does on the 6502, but SBC can
produce different results.®

65C816 behavior

The 65C816 computes decimal flags and results the same way as the 65C02, regardless of the state of the E
flag. This means that the flags can be tested to distinguish a 6502 from a 65C816 in the same way. No extra
cycle is taken as with the 65C02.

Unlike the 65C02, the 65C816 produces the same accumulator results as the 6502 for an SBC instruction with
invalid opcodes.

3.3 Cycle timing

Clock speed

On an NTSC machine, the 6502 runs at exactly half the speed of the color clock, or 1.789773MHz. There are
exactly 114 cycles per scan line and 29,868 cycles per frame. On a PAL machine, the 6502 runs at 2/5ths the
color subcarrier frequency, or 1.773447MHz; there are still 114 cycles per scan line, but 35,568 cycles per frame.

DMA contention

On occasion the Atari's custom chips must fetch data from memory. This is known as Direct Memory Access
(DMA), and when it occurs, the 6502 is blocked from the memory bus while ANTIC does a read cycle. This
phenomenon slows down execution of code on the CPU and is known as DMA contention. All DMA in the Atari is
related to the display and therefore the graphics setup determines the reduction in CPU performance. For NTSC,
the highest rate at which the CPU can run is 92% (1.65Mcycles/sec); the standard Graphics O display reduces
this to 64% (1.14Mcycles/sec). PAL runs noticeably faster since all display related DMA runs only 5/6ths as
often.

Dead memory cycles

The 6502 uses the memory bus on every cycle without exception. Most of the time this is for useful work and
therefore leads to very efficient bus utilization. There are cases, however, when these memory cycles are wasted
cycles, such as:

« The second cycle of an implied mode instruction. (TXA)

« The ALU cycle of a read-modify-write instruction. (INC abs)

[6] [6502Dec]
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« The second-to-last cycle of a zero page indexed read or write. (LDA zp,X)
- The second-to-last cycle of an absolute or indirect indexed write. (STA abs, X)

« The second-to-last cycle of an absolute or indirect indexed read that crosses a page boundary (AND
abs, Y).

- Conditional branches that cross a page boundary (BNE).

A memory transaction is issued during these dummy cycles and therefore these dead cycles cannot be
overlapped by DMA — the CPU must still be halted. For the most part these cycles are harmless, as the Atari is a
fairly safe platform where reads to hardware registers seldom have side effects. There are a few cases in which
this does matter and indexing should be used with care:

« Accessing the PIA ($D300-D3FF), because reads from the data registers will clear pending interrupts.

« Accessing the cartridge control region ($D500-D5FF). Some cartridges use this region to switch banks
and will respond to both reads and writes.

« Accessing PBI devices ($D100-D1FE and $D600-D7FF), which may also have read-sensitive regions.

« Any access with a read-modify-write instruction, since the extra cycle is a write cycle (except on the
65C02 or 65C816 in native mode).

Crossing page boundaries

The 6502 attempts to optimize indexed reads by issuing a speculative read before it has adjusted for a possible
carry in the high byte. If no carry is required, a cycle is saved. Otherwise, if a carry is required, it will retry the
read with the correct address. For example, given the following sequence:

LDX  #%$80
LDA  $20F0,X

...the 6502 will read $2070 first, and then retry with the correct address $2170. The only modes that have this
behavior are: abs, X, abs,Y, and (zp),Y. The zp,X, zp,Y, and (zp,X) modes do not need to index outside of zero
page and wrap from $00FF to $0000 without an extra cycle; (zp),Y does not incur an extra cycle for using $FF as
the zero-page address. The (abs) mode, unique to JMP, also lacks the extra clock due to the well-known bug on
the NMOS 6502 of accessing $xxFF and $xx00.

Writes, on the other hand, cannot be done speculatively as a wrong guess would trash an unrelated memory
location. Therefore, stores using the abs, X, abs,Y, and (zp),Y modes always take the extra clock cycle. The first
clock cycle is a speculative read and the second clock cycle is a write with the correct address. Read-modify-
write instructions also always take an extra clock cycle, indexed or not, except that the dummy cycle is a write
cycle.

Branches that cross a page boundary also have this behavior, doing a read with an incorrect address high byte
first, and taking four clock cycles instead of three. No additional cycle is taken to cross a page boundary for a
non-taken branch, a JMP, JSR, RTI, or RTS instruction, or any other non-branch execution.
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Note

A branch crosses a page boundary when the addition of the signed branch offset changes the high byte of
the PC. This means that a page crossing occurs if the target is on a different page from the address of the
next instruction, not from the address of the branch instruction. For instance, a BCC $80C0 instruction at
$80FE crosses a page because it is branching from $8100 to $80C0, even though the branch instruction
itself is entirely within the same page as its target. Similarly, a BEQ $8110 instruction at $80FE does not
cross a page. This happens because the branch offset is added after the PC has already been
incremented for both bytes of the branch instruction.

3.4 Interrupts

Level-based vs. edge-based interrupts

IRQs on the 6502 are level triggered interrupts, which means that the interrupt request is a continuing condition
that is active as long as the IRQ line is asserted. This facilitates delayed response to the IRQ as the 6502 will
eventually respond to the IRQ as long as the device continues to assert the IRQ line. It also allows for
multiplexing as multiple devices can assert IRQ and the 6502 will execute the IRQ handler repeatedly until all
interrupts are handled. However, this also means that the interrupt condition must be cleared on the device or
else the IRQ handler will continue to execute. It also means there is no memory of an interrupt event — if an
interrupt request occurs while IRQs are masked in the 6502 and is revoked before they are unmasked, the IRQ
handler will not execute.

NMls, on the other hand, are edge triggered and are one-time event rather than a condition. Once the NMI signal
is asserted, the 6502 will execute the NMI handler at the next opportunity. If a second NMI is requested before
the first one is acknowledged, the NMI handler will only run once and the other NMI is lost.

Interrupt timing

The 6502 does not abort or resume instructions and can only respond to an interrupt on instruction boundaries.
This means that longer instructions can increase interrupt response delay. The longest standard instruction
possible on the 6502 is seven clocks, which can be due to a (zp),Y access crossing a page boundary, a read-
modify-write instruction using abs,X mode, or a BRK/interrupt. A delay of 8 cycles is possible with undocumented
read-modify-write instructions that use indirect indexed or indexed indirect mode, such as opcode $13. However,
much longer delays can occur if a store to WSYNC [D40A] is performed, which can lengthen an instruction by as
much as a hundred clock cycles. Use of WSYNC should be avoided if display list interrupts or other time-critical
interrupts are active.

Clearing | with an interrupt pending

If an interrupt is already pending but is blocked by the | flag, clearing the | flag with a CLI or PLP instruction will
result in the interrupt occurring at the end of the next instruction, and not immediately after the clearing
instruction. For instance, given the following code:

CLI
NOP

The pending interrupt will not be serviced until the end of the NOP instruction. This does not happen with the RTI
instruction; an IRQ can be serviced immediately after an RTI that clears the | flag.
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Setting the | flag with an interrupt pending

Because of pipelining within the 6502, it is possible for the last cycle of a SEI or PLP instruction to execute
immediately after the 6502 begins to acknowledge an IRQ. When this happens, the IRQ routine begins
executing before the next instruction, and the curious result is that an IRQ executes with the pushed flags on the
stack having the | bit set. The most common way to hit this behavior is using the following sequence to dispatch
pending IRQs at a well-defined time:

CLI
SEI

This does not happen with the RTI instruction, which changes the flags earlier in the instruction. This effect
occurs with CLI+SEI and CLI+PLP pairs; it does not occur with CLI+RTI, PLP+[SEI/RTI/PLP], or
RTI+[SEI/RTI/PLP], for which no IRQ is dispatched even if one is pending.

Taken branch delay

A taken relative branch delays interrupt acknowledgment by one cycle: a case in which the earliest opportunity to
respond to an interrupt is immediately after the branch instead is delayed to the next instruction. This occurs for
any Bcc instruction which does not cross a page boundary. The effect does not occur if the branch instruction
crosses a page (4 cycles), or for any other control flow instruction such as JMP, JSR, RTS, or RTI.

Overlapping interrupts

It is possible for the 6502 to first begin executing the seven-cycle interrupt sequence for an IRQ and then jump to
the NMI vector instead if an NMI occurs quickly enough.

For IRQ+NMI conflicts, this behavior simply leads to faster acknowledgment of the NMI. However, it also has
unfortunate consequences for the BRK ($00) instruction. The BRK instruction is essentially the same as an IRQ
except that the flags byte pushed on the stack has the B flag set. Because of this, it is possible for an NMI to
hijack the BRK sequence in the same way. When this occurs, the NMI vector is invoked with the B flag set on the
flags byte on the stack. Thus, robust handling of BRK instructions requires it to be checked for in both the IRQ
and NMI handlers.”

There are no issues with an overlapping IRQ and BRK instruction. However, when multiplexing the IRQ vector
for both IRQ and BRK, the BRK instruction must be serviced before the handler exits. For multiplexed IRQs, the
handler can service one IRQ at a time, relying on the hardware to keep IRQ asserted as causing the handler to
re-execute until all IRQs are serviced. This is not true for BRK, which will be lost if not serviced.

On the Atari, this effect occurs if a BRK instruction begins execution at between cycles 4-8 of a scan line where
either the DLI or VBI is activated.

[7]  This effect is covered in detail in [VIC09], under 6510 Instruction Timing. The effect of an IRQ on a BRK is arguably not a bug, as | can
find no program-visible effects: the BRK executes as expected, and the IRQ is then acknowledged afterward assuming that the IRQ
line is still asserted. This does require that the IRQ handler check BRK first, though, which usually doesn't happen.
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105] 106| 107] 108] 100| 110] 11| 12| 13| o 1| 2| 3] 4] 5| 6] 7| 8] of 10 u| 12] 13] 14] 15] 16] 17] 18] 10| 20| 21| 22| 23]
IRQ LSR abs PHA LDA#im | STAabs NMI PHA
RQ | LSR abs | PHA [LDA#m |NMmI | PHA LDA#M |
RQ |LSR abs | PHA [LDA#m [NmI [ PHA [ LDA#m |
RQ | LSR abs | PHA [N | PHA [LDA#m |
IRQ |LSR abs [ PHA ™ [ PHA [LDA#m |
IRQ |LSR abs [ PHA [N [ PHA LDA#m |
[IRQ | LSR abs [N | PHA | LDA#im
RQ |LSR abs [N [ PHA [ LDA#m |
[IRQ | LSR abs [N [ PHA DA |
IRQ |LSR abs [N [ PHA |
[IRQ | LSR abs [N | PHA |
RQ | LSR abs [N |
IRQ | LSR abs N |
IRQ |LSR abs PHA |LDA#m |
N | PHA | LDA#m |STA LD |
[N |PHA [LDA#m |STA [LDA#m |

Figure 2: Effects of overlapping IRQ/NMI timing

The table above shows how the 6502 responds to IRQ and NMI being asserted at varying offsets from each other. When the IRQ occurs sufficiently before the NMI, the
6502 completes the pending interrupt sequence or current instruction before beginning the interrupt sequence for the NMI. This always entails a minimum of at least 7

cycles for the interrupt sequence and 6 cycles for the first instruction of the IRQ handler (LSR abs, 6 cycles). Unusual behavior starts when the IRQ sequence begins on
cycle 4, which causes the NMI to be lost entirely. Afterward, the IRQ sequence that would begin at cycle 5 or later is taken over by the NMI, resulting in the NMI handler

executing earlier than usual. The exact same timing occurs with BRK instead

of IRQ.
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Consecutive interrupts

The 6502 cannot acknowledge an interrupt immediately after executing an interrupt sequence. This includes
BRK, IRQ, and NMI. The first instruction of the IRQ or NMI handler is always executed, regardless of any
pending interrupt. The one case where interrupt sequences will execute back-to-back is if the first instruction of
the interrupt handler is a BRK instruction. Because the BRK instruction is piggybacked on top of the interrupt
logic, a pending interrupt can hijack the BRK instruction to run the interrupt handler instead.

3.5 Undocumented instructions

Out of the 256 possible 8-bit opcode encodings, 151 correspond to defined instructions. Due the way that the
6502 decodes instructions, some of the other 101 opcodes activate strange internal behaviors instead of being
ignored or raising an interrupt.

Table 2 shows the complete opcode table for the 6502. Opcodes in gray are undocumented instructions that
appear to have stable behavior; opcodes in yellow are undocumented instructions that appear to be unstable.
Opcodes in red lock up the 6502 until reset.

X0 x1 X2 x3 x4 x5 X6 X7 X8 X9 XA xB xC xD XE XF

0x |BRK |ORA [KIL SLO |NOP |ORA |ASL |SLO |[PHP |ORA |ASL |ANC |NOP |ORA |ASL |SLO
(zp,X) (zp,X) |zp zZp zp zZp #imm #imm |abs abs abs abs

1x |BPL ORA [KIL SLO NOP |ORA |ASL SLO CLC ORA [NOP |SLO NOP |ORA |ASL SLO
rel (zp),Y (zp),Y zp.X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs,X |abs,X |abs,X

2x ISR AND  |KIL RLA BIT AND |ROL |RLA PLP AND |ROL |ANC BIT AND |ROL |RLA
abs (zp,X) (zp,X) |zp zp zp zp #imm #imm |abs abs abs abs

3x BMI AND  |KIL RLA  [NOP |AND |ROL |RLA |SEC |AND |NOP |RLA [NOP |AND |ROL |RLA
rel (zp),Y (zp),Y [zp.X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs, X |abs,X |abs,X

4x |RTI EOR (KIL SRE |NOP |[EOR |LSR |SRE |[|PHA |EOR |LSR |ASR (JMP |[EOR |LSR |SRE
(zp,X) (zp,X) |zp zp zp zp #imm #imm |abs abs abs abs

5x |BVC |[EOR (KIL SRE [NOP |[EOR [LSR SRE |CLI EOR |NOP |SRE |NOP |[EOR [LSR SRE
rel (zp),Y (zp),Y zp.X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs,X |abs,X |abs,X

6x |RTS |ADC (KIL RRA |NOP |ADC |ROR |RRA |[PLA ADC |ROR |ARR |JMP |ADC |ROR |RRA
(zp,X) (zp,X) |zp zp zp zZp #imm #imm |(abs) |abs abs abs

7x |BVS |ADC (KIL RRA [NOP |ADC |ROR |RRA [SEI ADC |NOP |RRA |NOP |ADC |ROR |RRA
rel (zp,Y) (zp),Y zp.X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs,X |abs,X |abs,X

8x |NOP |[STA NOP |SAX |STY STA STX SAX DEY |NOP |[TXA |ANE |[STY STA STX SAX
#imm |(zp,X) #mm |(zp,X) |zp zp zp zp #imm #imm |abs abs abs abs
9x [BCC |[STA KIL SHA |STY STA STX SAX |TYA STA TXS SHS [SHY |STA SHX |SHA
rel (zp),Y (zp),Y |zp.X |zp,X |zp,Y |zp,X abs,Y abs,Y |abs,X |abs,X |abs,Y |abs,Y
Ax |LDY LDA LDX LAX LDY LDA LDX LAX TAY LDA TAX LXA LDY LDA LDX LAX
#imm |(zp,X) [#imm |(zp,X) |zp zZp zZp zZp #imm #imm |abs abs abs abs
Bx |[BCS |LDA KIL LAX LDY LDA LDX LAX CLv LDA |TSX LAS LDY LDA LDX LAX
rel (zp),Y (zp),Y zp.X |zp,X |zp,Y |zp,Y abs,Y abs,Y |abs,X |abs,X |abs,Y [|abs,X
Cx |CPY |CMP |NOP [DCP |CPY |CMP |DEC |DCP [INY CMP |DEX |SBX CPY |CMP |DEC |DCP
#Hmm |(zp,X) #mm |(zp,X) |zp zp zp zp #imm #imm |abs abs abs abs
Dx |[BNE |CMP (KIL DCP [NOP |CMP |DEC |DCP |CLD |CMP |NOP |DCP |NOP |CMP |DEC |DCP
rel (zp),Y (zp),Y [zp.X |zp,X |zp,X |zp,X abs,Y abs,Y |abs, X |abs,X |abs,X [|abs,X
Ex |CPX |SBC |NOP [ISB CPX [SBC |INC ISB INX SBC |NOP [SBC |CPX [SBC |INC ISB
#Himm |(zp,X) #imm |(zp,X) |zp zp zp zp #imm #imm |abs abs abs abs
Fx |[BEQ |[SBC |KIL ISB NOP |SBC INC ISB SED |SBC |NOP |ISB NOP [SBC |INC ISB
rel (zp),Y (zp),Y zp.X |zp,X |zp,X |zp,Y abs,Y abs,Y |abs,X |abs, X |abs,X |abs,X

Table 2: NMOS 6502 opcode table
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Note on opcode names

Because the additional instructions were neither supported nor documented, there are no official names for the
instructions. As such, emulators, assemblers, and disassemblers vary widely in the names used. The names
used here match a popularly used assembler, but they are by no means definitive.®

KIL

Opcodes: $02, 12, 22, 32, 42,52, 62, 72, 92, B2, D2, F2.

The KIL opcodes permanently lock up the 6502 such that it stops executing instructions and no longer responds
to interrupts. Only a reset will restart execution.

NOP

Opcodes: $04, 0C, 14, 1A, 1C, 34, 3C, 44, 54, 5A, 4C, 64, 74, 7A, 7C, 80, 82, 89, D4, DA, DC, F4, FA, FC.

NOP opcodes may execute addressing modes but do not change registers, flags, or control flow. Opcode $EA is
the only official NOP instruction.

Note that these opcodes proceed similarly to ALU operations, so they will read operands similarly as to an LDA
instruction. This includes executing an additional cycle when indexing across a page boundary.

Merged read-modify-write and read-modify instructions

Many of the illegal instructions are a result of combining read-modify-write instructions such as INC/DEC with
ALU instructions like ADC and SBC. The combinations are:

« DCP=DEC + CMP
+ ISB=INC+SBC

+ SLO=ASL+ORA

+ RLA=ROL +AND

+ SRE=LSR+EOR
+ RRA=ROR +ADC

The read-modify-write portion proceeds in the same manner, but the result of the RMW instruction is then used
as the argument of the ALU instruction, changing the flags and potentially A. Cycle count is the same as the
RMW instruction.

The ISB and RRA instructions are sensitive to the decimal mode flag due to incoporation of the SBC and ADC
functions.

LAX (LDA + LDX)

Opcodes: $A3, A7, AF, B3, B7, BF

LAX instructions load the same value into both A and X, setting the N and Z flags.

[8] For more information on undocumented opcodes and alternative mnemonics: [VIC09] [IlIOpc]
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SAX (STA + STX)

Opcodes: $87, 8F, 97, 9F

Stores the bitwise AND of A and X to memory. No flags are changed.
SHA

Opcodes: $93

Stores the bitwise AND of A, X, and the high byte read from the base address. Note that this is the high byte of
the base address as read from page zero, not the high byte after Y has been added.

In addition, if a page crossing occurs during indexing with Y, the result of the bitwise AND also replaces the high
address byte.

Warning

The $93 opcode has been reported to be unstable — the interaction between the high byte and bitwise
AND operation does not reliably occur on all CPUs.

SHX

Opcodes: $9E

Stores the bitwise AND of X and the high byte + 1 of the base address. If a page crossing occurs during indexing
with Y, the bitwise AND result also replaces the high address byte.

ANC

Opcodes: $0B

Same as AND, except with the result bit 7 also being copied into the carry flag.

ASR (AND + LSR)

Opcodes: $4B

Same as an AND instruction followed by and LSR A instruction.
ARR (ADC + AND + ROR)

Opcodes: $6B

Performs a complex operation involving a rotate right and possible decimal correction, changing the A register
and the N, V, Z, and C flags.

ANE

Opcodes: $8B

Bitwise AND with accumulator, X, and immediate data, written back to accumulator.
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Warning

The $8B opcode is not stable and may produce varying results where not all bits in the above formula
participate in the bitwise AND instruction.®

SHS (TXS + STA abs,Y)

Opcodes: $9B

The stack pointer (S) is set to the bitwise AND of X and A, and the data written to abs,Y is this result bitwise
ANDed with the high byte + 1.

LXA (LDA + TAX)
Stores the bitwise AND of A and the argument to both A and X, setting the N and Z flags.

Warning

The $AB opcode is not stable. It has been reported to load the immediate argument to A and X without the
bitwise AND on an Atari 800.

LAS (LDA + TSX)
A, X, and S are set to the bitwise AND of the read data and S, with the N and Z flags set as usual.
SBX

AND A into the X register, then CMP with data.

3.6 65C02 compatibility

The 65C02 is an enhanced version of the 6502 implemented in CMOS and with additional instructions added.
While it is mostly compatible with the 6502, there are a few differences in both documented and undocumented
behavior.

Note that the 65C02 is not the same as a 6502C. Some Atari computers had a custom CPU called the 6502C
(Sally) that had integrated HALT logic. This chip uses the same NMOS 6502 core and lacks the additional
instructions or behavior of the newer 65C02.

Opcode table

None of the undocumented instructions of the 6502 work on the 65C02. All previously unassigned opcodes are
reassigned to new opcodes or defined as NOPs with specific behavior. Table 3 shows the new opcodes in green
and the defined NOPs in gray. Bit change/branch opcodes in purple are only supported by some 65C02 variants;
other 65C02 makes and the 65C816 do not support bit opcodes.

[9] See http://visual6502.0rg/wiki/index.php?title=6502_Opcode_8B_%28XAA, ANE%29 for an extended discussion of this opcode.
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X0 X1 X2 X3 x4 X5 X6 X7 X8 X9 XA xB xC xD XE XF

O0x |BRK |ORA |NOP |INOP TSB |ORA |ASL |RMBO |PHP |ORA |ASL |NOP |TSB |ORA |ASL |BBRO
(zp,X) zp zp zp zp #imm abs abs abs zp,rel

1x BPL |ORA |ORA |NOP |TRB |ORA |ASL |RMB1 |[CLC |ORA |INC NOP |TRB |ORA |ASL |[BBR1
rel (zp),Y |(zp) zp zp,X |zpX |zp abs,Y abs abs,X |abs, X |zp,rel

2x [JSR |AND |NOP |NOP BIT AND |ROL |RMB2 |[PLP |AND |ROL |NOP |BIT AND |ROL [BBR2
abs (zp,X) zp zp zp zZp #imm abs abs abs zp,rel

3x [BMI AND |AND |NOP BIT AND |ROL |RMB3 |[SEC |AND |DEC |NOP |BIT AND |ROL [BBR3
rel (zp),Y |(zp) zp,X |zp,X |zp,X |zp abs,Y abs,X |abs,X |abs,X |zp,rel

4x |RTI EOR |NOP |NOP |NOP |[EOR |LSR |RMB4 PHA |[EOR |[|LSR |NOP |JOMP |[EOR |LSR |BBR4
(zp,X) zp zZp zZp #imm abs abs abs zp,rel

5x |[BVC [EOR |[EOR |NOP |NOP |[EOR |LSR |RMB5 |CLI EOR |PHY |NOP |NOP [EOR |[LSR |BBR5
rel (zp),Y |(zp) zp,X |zp,X |zp abs,Y abs,X |abs,X |zp,rel

6x |RTS |ADC |NOP |NOP STZ |ADC |ROR |RMB6 |PLA |ADC |ROR |NOP (JMP |ADC |ROR |BBR6
(zp,X) zp zp zp zp #imm (abs) J|abs abs zp,rel

7x BVS |ADC |ADC |NOP |STZ |ADC |[ROR |RMB7 [SEI ADC |PLY NOP |JMP |ADC |ROR |[BBR7
rel (zp,Y) |(zp) zp,X zp,X |zp,X |zp abs,Y (abs,X) |abs,X |abs,X |zp,rel

8x |BRA [STA |NOP |NOP |STY |STA |STX |SMBO |[DEY |BIT TXA |NOP [STY [STA |STX |BBSO
rel (zp,X) zZp zZp zp zZp #imm abs abs abs zp,rel

9x |[BCC |[STA |STA |NOP |STY |STA |STX |SMB1 |[TYA [STA ([TXS |NOP |STZ |[STA |STZ |BBS1
rel (zp),Y |(zp) zp,X zp,X |zp,Y |zp abs,Y abs abs,X |abs,X |zp,rel
Ax |LDY |[LDA |LDX |NOP |[LDY |LDA |LDX |SMB2 |TAY LDA |TAX |NOP [LDY |[LDA |[LDX |BBS2
#Himm |(zp,X) [#imm zp zZp zp zp #imm abs abs abs zp,rel
Bx [BCS |LDA |LDA |NOP |LDY |LDA |[LDX |SMB3 |CLV |[LDA |TSX |NOP |[LDY |LDA |[LDX |BBS3
rel (zp),Y |(zp) zpX zp,X |zp,Y |zp abs,Y abs,X |abs,X |abs,Y |zp,rel
Cx |[CPY |CMP |NOP |NOP |CPY |CMP |DEC |SMB4 |INY CMP |DEX |WAI CPY |CMP |DEC |BBS4
#imm  |(zp,X) zZp zZp zp zZp #imm abs abs abs zp,rel
Dx [BNE |CMP |CMP |NOP |NOP |CMP |DEC |SMB5 |CLD |CMP |PHX |STP |NOP |CMP |DEC |BBS5
rel (zp),Y |(zp) zp,X |zp,X |zp abs,Y abs,X |abs,X |zp,rel
Ex |CPX [SBC |NOP |NOP [CPX |SBC |[INC SMB6 |INX SBC |NOP |NOP |CPX |[SBC |[INC BBS6
#Himm  |(zp,X) zp zp zp zp #imm abs abs abs zp,rel
Fx BEQ |SBC |[SBC |NOP |NOP |[SBC [INC SMB7 |[SED |SBC |PLX |NOP |NOP |[SBC |INC BBS7
rel (zp),Y |(zp) zp,X |zp,X |zp abs,Y abs,X |abs,X |zp,rel

Table 3: 65C02 opcode table

Absolute indirect addressing bug

The JMP (abs) instruction ($6C) no longer wraps within a page on the 65C02: a JMP ($02FF) instruction will
access $2FF and $300 instead of $2FF and $200, and take an additional cycle when doing so.

Decimal mode

ADC and SBC instructions take one additional cycle in decimal mode on the 65C02. This is to compute proper
flag results.

The 65C02 automatically clears the decimal flag on reset or on entry to an interrupt. On the 6502, it was
undefined on power-up and left at the previous state on interrupt.

Read-modify-write instructions

Instructions that do read-modify-write cycles — INC, DEC, ASL, LSR, ROL, and ROR - behave differently during
the modify cycle. On the original 6502, the sequence is read-write-write, where the second cycle is a write cycle
that just rewrites the data that was just read. On the 65C02, the second cycle is a read cycle to that address.
This alters the timing of RMW instructions to WSYNC and breaks fast IRQ acknowledgment hacks involving
RMW cycles on IRQEN/IRQST.
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Read-modify-write with absolute indexing

The abs,X mode versions of read-modify-write instructions only take 6 cycles on the 65C02 when indexing within
a page, instead of 7 as on the 6502.

3.7 65C816 compatibility

The 65C816 is a further enhanced version of the 65C02 with even more instructions and addressing modes as
well as new native execution mode. It is actually slightly more compatible with the original 6502 than the 65C02
due to some corrections in emulation mode. Because of its greatly increased power, the 65C816 is more
common of an addition to Atari computers than the 65C02.

Opcode table

The 65C816 doesn't support any of the 6502's undocumented instructions either, but it has even more of the
previously unused opcodes filled with valid instructions, including ones that were NOPs on the 65C02. There are
no unassigned opcodes on the 65C816. New opcodes are shown in blue in Table 4.

X0 x1 x2 x3 x4 x5 X6 X7 x8 X9 XA xB xC xD XE XF

Ox |BRK |ORA |COP [ORA ([TSB |ORA |ASL |ORA |PHP |ORA |ASL |PHD ([TSB |[ORA |ASL |ORA
(dp,X) |imm |d,S dp dp dp [dp] #imm abs abs abs al

1x |BPL |ORA |ORA |ORA |TRB |ORA |ASL |ORA |CLC |ORA |INC TCS |TRB |ORA |ASL |ORA
rel (dp),Y |(dp) (d,S),Y |dp dp,X |dp,X |[dp],Y abs,Y abs abs,X |abs,X [al,X

2x (JSR |AND JSR |AND [BIT AND |ROL |AND |[(PLP |AND |ROL |PLD BIT AND |ROL |AND
abs (dp,X) |al d,S dp dp dp [dp] #imm abs abs abs al

3x BMI AND |AND |AND BIT AND |ROL |AND |[SEC |AND |DEC |TSC BIT AND |ROL |AND
rel (dp),Y |(dp) (d,S),Y dp,X |dp,X |dp,X |[dpl,Y abs,Y abs,X |abs,X |abs, X |al,X

4x |RTI EOR (WDM |[EOR |MVP |[EOR |[LSR |EOR |PHA |[EOR |[LSR |PHK |[JMP |[EOR [LSR [EOR
(dp,X) d,S b,b dp dp [dp] #imm abs abs abs al

5x |BVC |[EOR |[EOR |[EOR [MVN |[EOR |[LSR |[EOR [CLI EOR |[|PHY |TCD |[JMP |[EOR |LSR |EOR
rel (dp),Y |(dp) (d,S),Y |b,b dp,X |dp,X |[dpl,Y abs,Y al abs,X |abs,X |al,X

6x |RTS |ADC |PER |ADC |[STZ |ADC |ROR |ADC |PLA |ADC |ROR |RTL |JMP |ADC |ROR |ADC
(dp,X) |rell6 |d,S dp dp dp [dp] #imm (abs) |abs abs al

7x |BVS |ADC |ADC |ADC |STZ |ADC |ROR |ADC |SEI ADC |PLY [TDC |(JMP |ADC |ROR |ADC
rel (dp,Y) |(dp) (d,S),Y [dp, X |dp,X |dp,X |[dpl.Y abs,Y (abs,X) jabs,X |abs,X Jal,X

8 |BRA |STA |BRL [STA [STY |STA |STX |STA |DEY |BIT TXA |PHB |STY |STA |STX |STA
rel (dp,X) |rell6 |d,S dp dp dp [dp] #imm abs abs abs al

9x |BCC |STA |STA [STA [STY |STA [STX |STA |[TYA |STA |[TXS [TXY |[STZ |STA |STZ |STA
rel (dp),Y |(dp) (d,S),Y [dp,X |dp,X |dp,Y |[dpl.Y abs,Y abs abs,X |abs,X |al,X

Ax |LDY |LDA |LDX |LDA |[LDY |LDA |LDX |LDA |TAY LDA [TAX |PLB |LDY |LDA |[LDX |LDA
#imm |(dp,X) #imm |d,S dp dp dp [dp] #imm abs abs abs al

Bx |BCS |LDA |LDA |LDA |LDY |LDA |LDX |LDA [CLV [LDA ([TSX |[TYX [LDY |[LDA |LDX |LDA
rel (dp),Y |(dp) (d,S),Y dp,X |dp,X |dp,Y [[dpl,Y abs,Y abs,X |abs,X |abs,Y |al,X

Cx |CPY |CMP |REP |CMP |CPY |CMP |DEC |CMP [INY CMP |DEX |WAlI |CPY |CMP |DEC |CMP
#imm |(dp,X) #imm |d,S dp dp dp [dp] #imm abs abs abs al

Dx |[BNE |CMP |CMP |CMP |PEI CMP |DEC |[CMP |CLD |CMP |PHX [STP [ JMP |CMP |DEC |CMP
rel (dp),Y |(dp) (d,S),Y |(dp) dp,X |dp,X |[dpl.Y abs,Y [abs] |abs,X |abs,X Jal,X

Ex |CPX |SBC |SEP [SBC [CPX |SBC |INC SBC [INX SBC |NOP ([XBA |CPX [SBC |INC SBC
#mm |(dp,X) #imm |d,S dp dp dp [dp] #imm abs abs abs al

Fx |BEQ |SBC [SBC |SBC |PEA [SBC |INC SBC |[SED |SBC |PLX |[XCE [SR [SBC |INC SBC
rel (dp),Y |(dp) (d,S),Y |abs dp,X |dp,X |[dpl,Y abs,Y (abs,X) jabs,X |abs,X |al,X

Table 4: 65C816 opcode table
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Decimal mode

The 65C816 computes “correct” flags for ADC and SBC in decimal mode like the 65C02, but doesn't take an
additional cycle to do so, fixing the timing incompatibility.

The decimal flag is cleared on entry to the reset or interrupt handlers in the same way.
Absolute indirect addressing bug

Like the 65C02, the 65C816 indexes correctly across pages when reading the address for a JMP (abs)
instruction. However, it does so without an additional cycle.

Read-modify-write instructions

Unlike the 65C02, the 65C816 preserves the 6502's read/write/write cycle pattern for RMW instructions in
emulation mode. In native mode, the sequence is read/read/write as for the 65C02. The 65C816 also executes
the abs, X versions in 7 cycles like the 6502.

Cross-bank indexing

Absolute indexed and indirect indexed address modes can cross banks on the 65C816 on an attempt to wrap
around from $FFFF to $0000, even in emulation mode. This is a rare case where the 65C816 is less compatible
in emulation mode than the 65C02 and affects the abs,X, abs,Y, and (zp),Y addressing modes. The access
instead crosses over into bank $01.

The most common way to accidentally trigger this is by attempting to index using the Y register and a negative
offset on a page zero symbol, i.e. LDA ICHIDZ-$F0,Y. The zp,Y addressing mode is only available on the STX
and LDX instructions, so assemblers will commonly promote this to the abs,Y addressing mode. The resulting
code then wraps around the 64K address space and fails on a 65C816 with 24-bit addressing.

Depending on the address wrapping pattern, affected code may still work if there is RAM in bank $01 and the
data stored there is only accessed by wrapping around the 64K address space. The affected code will access
bank $01 instead of bank $00 as originally intended, but still work, The code will also work if the 65C816 is only
connected to a 16-bit address bus, in which case banks $00 and $01 are equivalent anyway.

Program-bank and hardwired bank O reads never cross bank boundaries and wrap within the same bank, in
either emulation or native mode. This includes instruction fetches, relative branches, absolute indirect and
absolute indexed indirect addressing modes, stack operations, and direct page addressing mode reads.

3.8 65C816 new features

New to the 65C816 is the ability to switch into native mode, which unlocks the full power of the 65C816 including
16-bit memory access, arithmetic, and indexing, extended addressing, and extended interrupt handling.

M and X flags

The formerly unused bits 5 and 4 of the P register are re-purposed in native mode as the M and X flags,
respectively. The M flag selects the width of memory and accumulator operations, whereas the X flag selects the
width of operations involving the X and Y index registers. Indexed addressing and memory accesses from X/Y
based instructions like PHX and CPY use the X flag. In both cases, a flag value of 1 selects 8-bit width, and 0
selects 16-bit width. Both M and X flags are forced to 1 upon entering emulation mode and cannot be changed
until native mode is re-entered.
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Whenever the X flag is set to 1 for any reason, the high bytes of the X and Y registers are cleared to $00 and
their previous contents are lost. This happens both with an explicit change to the X flag and implicitly when
switching to emulation mode. Changing the X flag back to 0 does not restore the previous contents of the high
bytes, which will remain $00. However, setting the M flag to 1 does not clear the high byte of the accumulator
register, which can still be accessed by the XBA, TCS, TSC, TCD, TDC, TAX, and TAY instructions.

Some memory access and accumulator-based operations are always 16-bit regardless of state of the M flag,
because they involve registers or values that are inherently 16-bit wide. These include accesses to the D register
(PHD, PLD, TCD, and TDC), accesses to the S register (TCS, TSC, TXS, TSX), push effective address
instructions (PEA, PEI, PER), and indirect addressing modes ((dp), (dp,X), (dp),Y, etc).

Switching to native mode

The only way to enter native mode is with the XCE instruction, which exchanges the carry and emulation state
flags. Executing XCE with C=0 enters native mode and sets C=1 if the CPU was previously in emulation mode.
Entering native mode switches the CPU to the alternate native mode set of interrupts vectors and unlocks the
M/X bits in the P register.

Executing XCE with C=1 exits native mode and switches back to emulation mode. When this happens, the
emulation interrupt vectors become active, M/X bits are set to 1, the upper bytes of the X and Y registers are lost
and reset to $00, and the high byte of the stack pointer is set to $01. The values of the D, DBK (B), and PBK (K)
registers are unaffected, however.

Many new features of the 65C816 do not require native mode to use. New instructions, new addressing modes,
24-bit addressing, and 16-bit operations that do not depend on clearing M/X bits can be used directly from
emulation mode. However, the ability to execute code in banks other than bank 0 is of limited use as interrupts
do not save the program bank on the stack in emulation mode, making it impossible to return to the interrupted
routine.

Extended direct page addressing

In emulation mode, the dp,X and dp,Y addressing modes wrap within a page by default to emulate the behavior
of the 6502's zp,X and zp,Y addressing modes. This occurs whenever the low byte of the D register is $00,
which is the default as D is set to $0000 on reset. If the D register is modified to a value where the low byte is not
$00, then direct page indexing will cross pages, but at the cost of one additional cycle per direct page indexed
instruction. This extra cycle occurs regardless of whether a page crossing occurs.

There are a couple of exceptions to direct page wrapping in emulation mode. Instructions that read words from
direct page and are new to the 65C816 will cross pages regardless of the low byte of D. This includes PEI (dp)
and instructions using the [dp] and [dp],Y addressing modes, which will cross over from $00FF to $0100 and
$0101 with D=0. The (dp) and (dp),Y addressing modes will wrap in this case, with ($FF) and ($FF),Y reading
the base address from $FF and $00.

The (dp,X) addressing mode has mixed behavior in emulation mode. With the low byte of D set to $00, (dp,X)
has the 6502/65C02 compatible behavior of wrapping within the page. However, when the low byte of D is not
$00, the address computation for the low byte will cross pages and then the high byte will wrap. For instance,
($FF,X) with X=$FF and D=1 will read the low byte from $01FF and the high byte from $0100.

In native mode, all direct page accesses cross page boundaries with any instruction regardless of the value of D.
Indexing will cross pages freely, and 16-bit accesses starting at $xxFF will continue to $yy00 on the next page.
No additional clock cycles are taken when doing so. However, direct page accesses always wrap within bank 0,
and if the low byte of D is not $00, all direct page indexed addressing will take an additional cycle regardless of
whether a page crossing occurs.
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Extended stack addressing in native mode

The stack pointer is 16 bits wide in native mode and thus the stack can be of any length and start at any
address. Like direct page accesses, stack-relative accesses are always constrained to be within bank 0, even
when wrapping from $FFFF to $0000.

Warning

In emulation mode, the high byte of the stack pointer is constrained to $01, so setting the stack pointer via
TXS places the stack in the $01xx page as it does on the 6502. However, in native mode, executing TXS
with 8-bit indexing (X flag set) sets the stack pointer to $00xx, which is typically undesirable. This means
that setting the stack in native mode usually requires either 16-bit indexing mode or using TCS instead.

Similarly to when the X flag is set, whenever emulation mode is entered, the high byte of S is reset to $01 and
the previous contents are lost.

Extended stack addressing in emulation mode

During emulation mode, stack operations performed by all 6502 and 65C02 instructions are constrained to page
one. However, almost all new instructions introduced on the 65C816 that access the stack will temporarily index
and write outside of page 1 into page zero when pushing or read from page two when popping.*°

Instructions that have this behavior: PHD, PLD, PLB, PEA, PEI, PER, JSL, JSR (a,X), RTL, LDAd,S, STAd,S,
LDA (d,S),Y.

Instructions that don't have this behavior: PLX, COP, PHB, PHK. The latter two instructions, although new to the
65C816, can't differ in behavior because they only push a single byte, which is always within page one
regardless.

The stack pointer is readjusted to be within page 1 again after the instruction executes. For instance, executing
PHD twice with S=0 will write to $0100 and $00FF, then $01FE and $01FD. Similarly, RTL with S=$FF will read
from $0200-0202 and then finish with S=$02.

Interrupt vectors

In native mode, a different set of interrupt vectors is used: ($FFEE) for IRQ, ($FFEA) for NMI, ($FFE6) for BRK,
($FFE4) for COP, and ($FFE8) for ABORT. The dedicated BRK vector means that it is no longer necessary to
check for it in IRQ and NMI handlers.

There is no native RESET vector because the 65C816 always switches to emulation mode on reset. Thus,
($FFFC) is always used.

3.9 Examples

Pole Position

The decrementing counters seen at the end of a race rely on the undocumented behavior of the N flag in
decimal mode. If the N flag is not emulated correctly, the counters may underflow and count indefinitely.

[10] See also [ObWrap].
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3.10 Further reading

For a witty introduction to 6502 assembly language programming, read [LAN84].

Everyone knows about the official 6502 instruction set and about the JMP indirect bug, but sources giving exact
corner-case behavior in other areas are scarcer. For cycle-level operation of the 6502, [MOS76] and [MOS764]
give details that can be difficult to find elsewhere, such as precise timing for acknowledging non-maskable
interrupts. The datasheet in [EYE86] gives similar information for the 65C816 and has valuable information about
differences between the NMOS 6502, 65C02, and 65C816.

For undocumented instruction details, consult [VICQ09] for a thorough overview and for functionality and timing
details. Note, however, that there are some errors in compared to the actual 6502 and the VICE emulator in the
BCD correction algorithm.
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Chapter 4
ANTIC

ANTIC is the master chip of the Atari 8-bit chipset, controlling frame timing and doing all direct memory
access (DMA).
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4.1 Basic operation

Addressing
ANTIC occupies the $D4xx block of address space. Only the low four bits are decoded, so any address of the
form $D4XY will address mirror X of register Y. The canonical registers are at $D400-D40F.

Unassigned addresses within the ANTIC address range read as $FF. This is true even on hardware models that
have a floating data bus for unassigned addresses, as ANTIC actually drives $FF onto the bus for addresses in
its range that don't have registers assigned.

Reset behavior

On power-on or reset, ANTIC automatically clears the following items:
+  NMIEN
- DMACTL
« Playfield DMA clock
The following items are not reset:
« Refresh row address counter

« Horizontal and vertical counters

+  WSYNC

+  HSCROL/VSCROL
+  PMBASE

« CHBASE

«  PENH/PENV

« CHACTL

« DLISTLH

+  NMIST

«  Memory scan counter
« Pending RNMI
Typically a warm reset routine will clear all registers in order to reset ANTIC to a known state.
Note that on 400/800 hardware, ANTIC is only reset on power-on. On XL/XE hardware, the Reset button also
resets ANTIC.
Typical power-up values

Any registers that are not internally cleared by ANTIC on reset have undefined contents on power-up. However,
the internal architecture biases some registers toward specific values:

[11] There is evidence in the chip circuitry of a power-on detector that is supposed to reset the horizontal and vertical counters only on
power-up, but this does not seem to work in practice as the machine powers up with varying values of VCOUNT.
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Register | Typical power-up value
PENH $00
PENV $FF
NMIST $7F

Table 5: Typical power-up values for ANTIC registers
These values are most likely to appear when the system is powered up cold. If it has been powered down

recently — within a few seconds — these registers may instead show some partial bits from when the system was
last turned off.

4.2 Display timing

As the main display processor in the system, ANTIC is responsible for overall display timing. The ideal display
timings produced by ANTIC are as follows (ignoring component variation):

Parameter NTSC PAL
Master clock 14.31818MHz 14.18757MHz
Machine clock 1.789773MHz 1.773447MHz
(14.31818MHz + 8) (14.18757MHz =+ 8)
Horizontal scan rate (scan line rate) | 15.69975KHz 15.55655KHz
(1.789772MHz + 114) (1.773447MHz + 114)
Vertical scan rate (frame rate) 59.92271Hz 49.86074Hz
(15.69975KHz + 262) (15.55655KHz + 312)

Table 6: ANTIC display timing

Importantly, the horizontal and vertical scan rates deviate from ideal NTSC and PAL broadcast timing. For NTSC,
the machine clock runs at exactly half the color subcarrier rate (3.58MHz), but the scan line is 114 machine
cycles instead of 113.75 cycles and the frame has 262 scan lines instead of 262.5. This prevents the color
subcarrier from inverting phase on each scan line and produces a non-interlaced display with 15.700KHz /
59.92Hz timing instead of an interlaced one with 15.735KHz / 59.94Hz timing. Similarly, the PAL ANTIC
produces 312 scan lines instead of 312.5 and also produces a non-interlaced display.

Mixed PAL/NTSC systems

While standard systems have matched ANTIC and GTIA chips, it is possible to combine an NTSC ANTIC with a
PAL GTIA or vice versa. This results in either a 50Hz NTSC display or a 60Hz PAL display. The NTSC-50 case is
the more interesting of the two as the 50Hz frame rate avoids many compatibility issues with software written for
PAL. In such a mixed system, the ANTIC type determines the frame timing and the GTIA type determines the
value read from the PAL register.

Although ANTIC does not directly indicate its type via a readable register like GTIA does, an NTSC ANTIC can
readily be distinguished from a PAL ANTIC by polling the VCOUNT register.

Pixel aspect ratios

The display timings used by ANTIC also determine the aspect ratio of pixels on screen. These pixels are not
square, and furthermore, differ between NTSC and PAL.

Chapter 4 - ANTIC 57



Altirra Hardware Reference Manual Created by Avery Lee

For NTSC, a dot clock of 12.2727Hz corresponds to square pixels.'> However, this is for interlaced video (~480
visible scan lines), so the equivalent rate for non-interlaced video is half the rate, 6.1364MHz. The dot clock
produced by NTSC ANTIC+GTIA at hires mode is faster at 7.159MHz, giving a noticeably narrow pixel at
0.857:1. Player/missile graphics and higher-resolution but non-hires playfields typically use 160 clock resolution,
however, so their pixels will be doubly wide at 1.714:1.

For PAL, a dot clock of 14.75MHz is used for square pixels in interlaced video, giving 7.375MHz for non-
interlaced video. The PAL ANTIC+GTIA in hires mode outputs pixels at 7.094MHz, giving a slightly wide hires
pixel at 1.04:1. Although not square, this is close enough for many purposes.

Many other computers of the era used a similar technique of generating pixels with a dot clock derived from the
color subcarrier frequency and have comparable pixel aspect ratios, particularly the Apple Il and the Amiga.

4.3 Playfield

The main display produced by ANTIC is known as the playfield.
Playfield width

Three playfield widths are supported: narrow, normal, and wide. The normal playfield width is 160 color clocks
wide (320 hires pixels), and is used by all OS graphics modes. Narrow playfields are 128 color clocks wide;
these are useful when the extra width is not needed, as narrow playfields have less data to set and also allow
the CPU to run slightly faster. Wide playfields are 192 color clocks wide and even cover the overscan regions on
the sides.

All three playfield widths share the same center, so a normal playfield adds 16 color clocks on each side of the
narrow playfield, and a wide playfield adds another 16 color clocks on each side. However, the wide playfield is
so wide that it is truncated: 12 color clocks are hidden on the left side and two are cut off by horizontal blank on
the right. As a result, only 178 color clocks out of 192 are visible.*®

DMACTL bits 0-1 control the width of the playfield, and can also disable the playfield entirely, causing the
background color to be displayed.

Playfield colors

The playfield is composed of up to four colors, PFO-PF3, overlaid on top of the background (BAK). ANTIC tells
the GTIA when each playfield color is used, and five independent color registers in GTIA are used to produce the
final playfield. Depending on the display mode, there are four different color configurations:

« Two colors. These bitmap modes display either BAK or PFO.
« Four colors. These bitmap modes display BAK or PFO-PF2.
« Five colors. These character modes display BAK or PFO-PF3.

« One color in two luminances. These are special high-resolution modes where pixels are so narrow
that they are only a half color clock wide. In these modes, the entire playfield is a single hue as specified
by PF2, but the graphics data is used to conditionally substitute in the luminance from PFL1.

The fourth playfield color, PF3, is seldom used by the playfield. Therefore, the GTIA contains a bit to reuse this
color as a fifth color for player/missile graphics instead.

[12] [TIVideoDec] p.2-7.

[13] The displayable width for a wide playfield is given as 176 color clocks in some references. The discrepancy is because in a wide
unscrolled IR mode 2-5/D-F playfield, the last two color clocks are garbage due to suppressed DMA cycles. They are part of the
playfield, however, as they can cause player-playfield collisions.
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Playfield modes

ANTIC supports fourteen playfield display modes, selected by the display list. Each playfield covers the entire
width of the screen for some vertical distance, controlled by the display list; it is possible to vertically stack
different playfield modes on the same screen. Six of the display modes are character modes, while the other
eight are mapped (bitmap) modes.

Playfield data ordering

All playfield data, including bitmap data and character font data, is stored such that bit 7 represents the left-mode
pixel on screen and bit 0 is the right-most pixel. In multicolor modes where a pair or group of four bits is used to
represent a pixel, the bits are ordered as for CPU integers. For instance, the color PF1 in the second pixel of a
four-color bitmap or character map mode would be represented by the pattern xx10xxxx.

4.4 Character modes

The playfield can be configured to display text through character modes, which use a layer of indirection to
produce output. In these modes, two separate memory regions are used:

« Character names. These are fetched first, and indicate which characters to display within the mode line.

« Character set data. The character names are then used to index into the current row of the character
set to fetch the actual data to display.

Character modes allow text displays to be produced with minimal data manipulation, since the CPU need only
modify one byte per character rather than copy the data for each character.

Some character modes display characters as monochrome, whereas others display characters as multicolor.
The multicolor modes are often used to quickly display graphical tiles rather than text.

Mode list

These are the character modes supported by ANTIC:

Mode | Scan lines | Colors | Bytes (normal width) | Resolution | Color mode | Pixel size
2 8 15 40 40 Hi-res 8x8
3 10 15 40 40 Hi-res 8x8
4 8 5 40 40 Lo-res 8x8
5 16 5 40 40 Lo-res 8x16
6 8 5 20 20 Lo-res 16x8
7 16 5 20 20 Lo-res 16x16

Modes 2 and 3: High-resolution monochrome text

Mode 2 is the standard 40-column screen seen on startup. Each playfield byte selects an 8x8 character from an
array of 128 pointed to by CHBASE; bit 7 controls inversion or blinking, based on modes in CHACTL.

The character set requires 1K of memory and must be aligned to a 1K boundary. Each of the 128 characters is
described by 8 contiguous bytes, where the first byte corresponds to the data for the first scan line. With each
byte, each bit corresponds to a pixel on screen, where bit 7 is the left-most pixel. Because mode 2 is a hi-res
mode, the entire playfield uses the PF2 color, and each bit indicates whether luminance comes from PF2 (0 bit),
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or PF1 (1 bit).

Although it is not exposed as a standard OS mode, it is possible to enable the GTIA modes with a mode 2 or 3
playfield, thus giving a 9 or 16 color tiled playfield.

Mode 3 is similar to mode 2, except that each mode line is 10 scan lines tall instead of 8. The extra two scan
lines reuse the same data from the first two, but only one of the pairs displays valid data. Characters 00-5F
display data for scan lines 0-7 and display $00 data for rows 8-9, while characters 60-7F display on rows 2-9
instead and display $00 data for scan lines 0-1. This permits one-quarter of the character set to have
descenders. For descenders to display properly, the character data must be stored out of order since rows 2-7
are displayed above rows 0-1.

Modes 4 and 5: Multicolor text

Mode 4 is another character mode that produces 40 characters across in normal width, but unlike modes 2 and
3, mode 4 is a lo-res mode that produces up to five colors. Instead of each character producing monochrome
characters in an 8x8 block, each character is instead 4x8 with pixels twice as wide. Normally each pair of bits
produces either the background color (00) or PFO-PF2 (01-11). If bit 7 is set, however, the 11 pair produces PF3
instead of PF2.

Mode 5 is the same as mode 4, except that scan lines are repeated once and each character is 16 scan lines tall
instead of 8.

Modes 6 and 7: Single color text in five colors

Mode 6 is the familiar single-color, double-wide signature character mode of the Atari. At normal width, it
produces 20 8x8 characters per row, where each pixel is one color clock wide. The character set is half the size
in mode 6, requiring only 512 bytes and 512 byte alignment. Only 64 characters are available in the mode
because the upper two bits are used to select the foreground color used by 1 bits, with 00-11 producing PFO-
PF3. 0 bits in the character data always produce the background color.

Mode 7 is the same as mode 6, except that scan lines are doubled and each character is 16 scan lines tall.
Character set storage

All character modes require image data for each character. For modes 2-5, the character set is stored as 128
characters within a 1K block, aligned to a 1K boundary; for modes 6 and 7, it contains 64 characters within a 512
byte block, aligned on a 512 byte boundary. The low three bits of the address specify the row so that each
contiguous block of 8 bytes represents a character.

The top 6 or 7 bits of the CHBASE register specify the base address of the character set. It can be dynamically
changed on the fly, but the change will not take effect until two cycles past when the register is changed. While
bit 1 is not used in modes that use 1K of character data, it is still stored on write and that latent bit will become

active should a 0.5K character data mode activate.

Blinking and inversion

In the high-resolution modes (modes 2 and 3), bit 7 of the character name is used as an extra attribute bit to
indicate reverse video or blinking. For this to happen, bits 0 and 1 of CHACTL must be used. When bit 1 is set,
character cells with name bit 7 set are displayed inverted. When bit 0 is set, those cells are blanked as if the
character font data were all zero bits. This means that in order for text to blink, software must periodically toggle
the state of bit 0. Setting both bits 0 and 1 results in inverted space characters.

If display DMA is temporarily disabled when character name fetch would occur, ANTIC reuses the character

Chapter 4 - ANTIC 60



Altirra Hardware Reference Manual Created by Avery Lee

names stored in the line buffer, but the invert/blink state that normally comes from bit 7 is reused from the last
character rather than the bit 7 value from the line buffer.

Bits 0 and 1 of CHACTL have no effect in modes 4-7.
Vertical reflection

Setting bit 2 of CHACTL flips all characters upside-down, displaying row 7 of the character set first. Unlike the
blink and inversion features, this affects all character modes.

Vertical reflection works exactly as if the row bytes in the character set were reversed in order. This means that it
produces nonsensical results for characters with descenders in mode 3 (60-7F), as the reflection causes rows 6-
7 to appear in the descender area.

4.5 Mapped (bitmap) modes

The playfield can also display data from memory directly in bitmap modes, which simply map single bits or pairs
of bits to color. This allows every pixel to be completely independent at the cost of often requiring much more
memory, as much as 8K per frame buffer. ANTIC always displays bitmap data with the first byte of each row and
the most significant bit of each byte corresponding to the leftmost pixel.

The supported modes are as follows:

Mode | Scan lines | Colors | Bytes (normal width) | Resolution | Color mode | Pixel size
8 8 4 10 40 Lo-res 8x8
9 4 2 10 80 Lo-res 4x4
A 4 4 20 80 Lo-res 4x4
B 2 2 20 160 Lo-res 2x2
C 1 2 20 160 Lo-res 2x1
D 2 4 40 160 Lo-res 2x2
E 1 4 40 160 Lo-res 2x1
F 1 15 40 320 Hi-res 1x1

Mode 8: Four color bitmap at lowest resolution (4x8 pixels)

Mode 8 is the lowest resolution graphics mode, producing 40 pixels across with one of four colors. Bits 7 and 6
of a byte correspond to the left-most pixel; 00 selects the background color while 01-11 produces PFO-PF2. Each
pixel is 4 color clocks wide and 8 scan lines tall.

Modes 9 and A: Bitmap modes with 2x4 pixels

Mode 9 is double the horizontal and vertical resolution of mode 8, with each pixel being 2 color clocks wide and
4 scan lines tall. However, it is only a two-color mode, with each bit selecting the background (0) or PFO (1). Bit 7
is the left-most pixel in each byte.

Mode A is the four-color version of mode 9. Each pixel selects the background (00) or PFO-PF2 (01-11).
Modes B and D: Bitmap modes with 1x2 pixels

Mode B increases resolution further to 1 color clock and 2 scan lines per pixel, with two colors per pixel
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(background and PFO).

Mode D is the same as mode B, except that each pixel is two bits and selects from one of four colors.
Modes C and E: Bitmap modes with 1x1 pixels

Mode C is the same as mode B, except that mode lines are only one scan line high. It is the highest resolution
two color bitmap mode available.

Mode E is the same as mode C, except that each pixel is two bits and selects from one of four colors. It is the
highest resolution four color bitmap mode available.

Mode F: High resolution bitmap mode

Mode F produces 320 pixels across at normal width, with each bit corresponding to a pixel one-half color clock
wide and one scan line tall. It is a high-resolution mode, meaning that the whole playfield uses the PF2 color and
the luminance from either PF2 (0) or PF1 (1).

This mode is also the mode that serves as the basis for the three new modes added with the GTIA, the only
difference in setup is that bits 6 and 7 of PRIOR on the GTIA are set to a value other than 00.

4.6 Display list

The display list determines how and when ANTIC fetches playfield data for display through GTIA. It is composed
of a series of one-byte or three-byte instructions, each of which controls the display of at least one scan line on
screen, and is normally repeated for every frame.

Instruction pointer

The DLISTL and DLISTH registers contain the instruction pointer used to fetch the display list. At the end of each
mode line, ANTIC fetches a new instruction at the location pointed to by DLISTL/DLISTH into the instruction
register (IR), and then increments the pointer. This continues until a jump instruction is reached, which then
loads a new address into DLISTL/DLISTH. ANTIC does not store the start of the display list and has no registers
to do so; the display list must either loop or be restarted by the CPU.

The display list can reside anywhere in the 64K address space, but it cannot cross a 1K boundary. This is
because the DLISTL/DLISTH register is actually split into 6 bit and 10 bit portions, where the lower 10 bits
increment and the upper 6 bits do not.** As a result, during normal execution the display list will wrap from the
top of a 1K block to the bottom during fetching, e.g. $07FF to $0400. This will happen even in the middle of a
three-byte LMS or jump instruction. Jump instructions are not limited and can cross 1K boundaries to any
address.

DLISTL/DLISTH are live during display list execution and any write to either will immediately change the address
used for the next display list fetch. Because of the possibility of display list interrupts, it is dangerous to do this in
the middle of a display list, as changing only one of the address bytes may cause ANTIC to execute random
memory as a display list and therefore issue spurious DLIs. A $C1 instruction is particularly dangerous as it will
cause a DLI to activate every scan line until vertical blank and can easily cause a crash. Therefore, the display
list pointer should normally only be updated when either display list DMA is disabled or during vertical blank.

Instruction format

A display list instruction is described in a single byte as follows:

[14] Hardware 11.10
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DL [LMS| Vs | HS | Mode

D7 Display list interrupt

0 No interrupt

1 Interrupt CPU at beginning of last scan line
D6 Load memory scan counter (LMS operation)

0 Normal

1 Load memory scan counter with new 16-bit address
D5 Vertical scroll

0 Disable vertical scrolling

1 Enable vertical scrolling

D4 Horizontal scroll

0 Disable horizontal scrolling

1 Enable horizontal scrolling
D0:D3 Mode

0000  Blank

0001 Jump

other  Non-blank mode line
Instruction bytes are read into the Instruction Register (IR) within ANTIC.
Playfield mode lines
Modes 2-F select a playfield mode line for display.
Load Memory Scan (LMS) commands

Setting bit 6 on a non-blank mode line causes the playfield memory scan pointer to be reloaded with a new
address from the two following bytes, LSB first. This can be done on any such mode line and as frequently or
infrequently as required; no blank line is incurred and the display appears uninterrupted. Normally one LMS is
required at the beginning of the display list to reset the playfield address to the beginning of the screen memaory.

Screen modes that require more than 4K of memory require at least one other LMS command in the middle of
the screen to hop the 4K boundary. LMS commands may also be used in order to store rows of the display in
discontiguous memory or with address spacing other than the default for the current playfield width, which is
useful for large scrolling playfields.

Warning

An LMS alone is not enough to correctly display a playfield that requires more than 4K of data. If a scan
line crosses a 4K boundary, it will wrap around to the beginning of the 4K block in the middle of the scan
line. This cannot be fixed with LMS as that can only affect the beginning of the scan line. The OS avoids
this problem while still maintaining contiguous addressing by adjusting the offset of the playfield buffer so
that the 4K boundary occurs exactly between scan lines.

Blank mode lines (IR mode 0)

A blank mode line is specified by an instruction byte whose lowest four bits are 0000. In this case, bits 4-6
specify a scan line count instead, where 000-111 specify 1-8 scan lines. As a result, a blank mode line is always
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considered to have the horizontal/vertical scroll and LMS bits cleared. However, it can trigger a DLI, and is also
subject to height modification if at the end of a vertical scrolling region.

Jump command (IR mode 1)

Instruction bytes with a mode of 0001 are jump commands and are always followed by two bytes indicating the
new instruction pointer for the display list. This produces a three-byte instruction similar to a 6502 JMP
instruction, where the new 16-bit address is specified as low-byte first. Because the jump instruction occupies a
display list slot, a blank line is displayed during its execution.

Like blank line instructions, jump instructions are never interpreted as having scrolling enabled, regardless of the
values of bits 4 and 5, which are ignored for jump instructions. However, if the jump instruction follows a
vertically scrolled mode line, it can be extended due to ending a vertical scrolling region the same way that blank
lines can. When this occurs, ANTIC repeatedly fetches a new display list address at the beginning of each
subsequent scan line. This has the effect of following a chain of indirect 16-bit addresses and is typically
undesirable.

DLIs can be triggered on jump commands.
Jump and wait for Vertical Blank (IR mode 1 + bit 6)

A jump instruction with bit 6 set ($41) also suspends the display list until vertical blank. This is usually used to
terminate the display list and restart it for the next frame. When using a display list that loops using such an
instruction, it is not necessary to write DLISTL/DLISTH per frame as ANTIC will autonomously repeat the display
list every frame.

The internal execution of a JVB instruction is the same as if display DMA were disabled immediately after a jump
instruction. No instruction or address bytes are fetched again, and the jump instruction is replayed over and over.
If the previous instruction had vertical scrolling enabled, then the JVB instruction will initially have its height
modified appropriately, and then replay subsequently with one scan line high as usual. Similarly, if the DLI bit is
set on the JVB instruction ($C1), ANTIC will fire a DLI each and every time it is replayed, up to once per scan
line.

Like any other instruction, JVB requires a scan line to execute. This means that attempting to create a display list
with 240 visible scan lines and ending with a JVB will fail, since the JVB makes the display list 241 scan lines
tall. Unless DLISTL/DLISTH is rewritten in the VBI to manually restart the display list each frame, this will result
in a flickering display where even frames display the intended 240 line display and odd frames are blank frames
consisting solely of the JVB instruction.

The display list pointer is reset when the address bytes are fetched on the first scan line of the JVB instruction.
Writes to DLISTL/DLISTH afterward will replace the address that was loaded with JVB, even if they occur before
vertical blank.

Once display list DMA has been suspended with a JVB instruction, there is no way to restart it other than to wait
for vertical blank.

Valid display list range

The display list starts at scan line 8 and ends no later than scan line 248. The maximum height of a display list is
thus always 240 scan lines. This is true even in PAL, which has 50 more scan lines than NTSC.

If a display list is too long, ANTIC automatically suspends the display list at the beginning of vertical blank at
scan line 248 and resumes it at the end of vertical blank on scan line 8 of the next frame. This means that if a
display list were exactly 480 scan lines tall and looped with a jump ($01) instruction, it would alternate perfectly
between two images. Typically this doesn't happen, though, because the vertical blank routine reloads
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DLISTL/DLISTH. Otherwise, however, ANTIC will happily keep fetching instructions, wrapping around within 1K
of memory over and over.

The vertical scroll bit (bit 5) is still tracked across vertical blank. This means that if the vertical scroll bit is always
on for all displayed mode lines, no vertical scrolling actually occurs, because none of the mode lines is either the
start or end of a vertical scrolling region.

Any mode line which extends partially over the vertical blank is truncated. If this occurs when a DLI is enabled on
that mode line, the DLI is skipped since the last scan line never occurs.

Suspended display list DMA

DMACTL bit 5 controls display list DMA, but the display list itself is actually always enabled. When DMA is
disabled, the display list instead repeats its previous instruction byte. Any Jump or Load Memory Scan (LMS)
commands are disabled as the address fetch is also skipped, and the display list pointer does not increment. If
the display list was stopped after a JVB instruction ($41), this produces blank lines and the display list is
effectively stopped. However, any other instruction byte activates a mode line as usual, including multi-row blank
lines, character and bitmap mode lines, and even activating DLIs as usual.

Turning off display list DMA has no effect after a jump and wait for vertical blank ($41) instruction executes, as
no fetches occur anyway once JVB completes.

While bits 0-5 and bit 7 of the instruction register are preserved across vertical blank, bit 6 of the IR is cleared
across vertical blank. This makes no difference except in the extremely rare case where display list DMA is
enabled on cycles 0 or 1, late enough for the instruction byte fetch to be suppressed but early enough for the
address fetches to occur.

Display list DMA enablel/disable timing

Display list instructions are fetched on cycle 1 of a scan line, between missiles and players. However, display list
DMA must be enabled by cycle 113 of the previous line in order for it to take effect at the beginning of the next
line. If DMA is enabled on cycle 0, it still doesn't occur on the immediately following cycle.

Hi-res last scan line bug

Under normal circumstances, a display list should not be constructed such that scan line 247 is a hi-res scan
line. This is not ordinarily possible with a normal display list, only with one that is too long or by repeating mode
lines by disabling display list DMA. If scan line 247 is a hi-res line, then ANTIC will fail to properly activate vertical
blank or vertical sync in the active playfield display region whenever bits 0-1 of DMACTL][3:2] are other than 00.
This can result in severe display distortion if vertical sync on scan lines 251-253 (NTSC) or 275-278 (PAL) is
disturbed. Another side effect is that GTIA will continue to process player/missile graphics and P/M collisions in
the non-blanked regions.

4.7 Scrolling

Normally, a playfield can only be scrolled by changing the memory scan pointer used to begin fetching data. This
restricts scrolling to byte granularity, which is fairly large on-screen for most display modes. ANTIC has support
for both fine horizontal and vertical scrolling, which allows playfields to be scrolled more finely than by LMS
instructions.

Enabling horizontal scrolling

Bit 4 of a display list instruction enables horizontal scrolling for that mode line. This enables the fetch of extra
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playfield data and then shifts the playfield by the value specified in the HSCROL register, specified as the
number of color clocks to shift the playfield right from 0-15. For a scroll value of 0, the visible playfield image is
aligned as if the wider playfield were simply windowed to the requested width.

The same number of color clocks is displayed as without scrolling, so there are no visible scroll artifacts on the
sides with horizontally scrolled narrow or normal width playfields. A wide playfield will shift in background color
on the left with increasing scroll values, and also show a few color clocks of garbage on the rightmost border.

Effects on playfield DMA

Enabling horizontal scrolling increases the fetch width by one level, so a narrow playfield fetches the same data
as a normal playfield, and a normal playfield fetches a wide playfield's worth of data. This increases the number
of bytes per scan line accordingly, which must be taken into account when laying out playfield data. It also
results in more playfield DMA cycles, impacting CPU speed and DLI timing. There is no change in fetch width for
wide playfields.

Playfield DMA is delayed by one cycle for each increase by two in the HSCROL value. Even and odd scroll
values have the same DMA timing and are differentiated by an optional single color cycle delay within ANTIC.
With normal or wide playfields, the shift in DMA timing results in some DMA cycles being dropped near the end
of the scan line. While ANTIC doesn't halt the CPU during these cycles, it does still fetch data from the bus into
internal memory and increment the memory scan counter.

Scrolling high-resolution modes

High resolution modes cannot be scrolled with single pixel accuracy. It is only possible to scroll by pairs of pixels
at a time because HSCROL only has color clock precision.

Scrolling GTIA modes

In GTIA modes, data from adjacent color clocks are paired together by GTIA to form 4-bit pixels. The pairing is
determined relative to horizontal blank and is not affected by horizontal scrolling. This means that for proper
scrolling of these modes HSCROL should be set to even values only. If odd values are used, ANTIC will delay
the playfield data by a color clock unbeknownst to GTIA, resulting in the wrong pairs of bits being merged
together into pixels.

Changes to HSCROL between rows of a mode line

For mode lines that are more than one scan line tall, it is possible to change HSCROL between scan lines within
that mode line. This makes it possible to shear the mode line. The internally buffered data is replayed relative to
the start of each scan line, so it moves as expected.

Changes to HSCROL in the middle of a scan line

The horizontal scroll value can also be changed in the middle of a scan line, but the effects are less intuitive. The
LSB of HSCROL which controls the internal color clock delay can be changed at any time for immediate effect,
shifting following displayed data by a color clock. Changes to bits 1-3, however, will not result in a visible change
at the point of change since they change the starting and stopping cycles for playfield DMA. For instance,
changing HSCROL from 0 to 4 would have no visible effect, but changing it from 0 to 5 would.

There are two artifacts that can occur at the end of the scan line, however, when changing bits 1-3. The first is
the change in the playfield DMA end position can change the number of bytes that the memory scan counter is
advanced, resulting in playfield data for the next scan line being displaced. For instance, changing HSCROL
from O to 8 in the middle of a horizontally scrolled, narrow width mode 7 line will result in the memory scan
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Figure 3: Effect of vertical scrolling on mode lines

counter being advanced by 21 bytes instead of 20. A more serious artifact occurs if the playfield DMA pattern for
the new scroll value no longer aligns with the pattern that was established when DMA started; this happens if bit
1is changed in modes 2-5/D-F, bits 1-2 in modes 6-7/A-C, or bits 1-3 in modes 8-9. Doing so changes the cycle
at which ANTIC attempts to stop playfield DMA, and if it fails, playfield DMA continues through horizontal blank
and into the next scan line.

Artifacts with wide playfields

With some combinations of IR mode and horizontal scroll values, it is possible for garbage to appear on the right
side of a wide playfield. This garbage appears very far right and off the visible areas of most televisions,
although some can display it. The garbage data is not random: it corresponds to activity on the data bus during
playfield fetches blocked due to occurring too late in the scan line (see DMA timing charts). This is usually limited
to 1-2 color clocks and is more likely to happen in character modes due to character data being fetched one
cycle later relative to display than bitmap data. The effect can extend farther left if HSCROL is changed in the
middle of a mode line to shift display of data in ANTIC's internal buffer.

Most of the time, the garbage is simply an unwanted artifact. However, because this data is sent to GTIA, it can
be detected by player/missile collisions against the playfield and can be a source of unwanted collisions.

Vertical scrolling

Vertical scrolling in ANTIC is controlled by bit 5 of a display list instruction. When bit 5 is set, the VSCROL [D405]
register modifies the height of selected mode lines in the display list to allow portions of the display to be scrolled
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on a scan line basis. When the vertical scrolling bit changes from a 0 to a 1 on adjacent mode lines, the first line
for which it is set is shortened by starting it at the scan line specified by VSCROL. Similarly, when it changes
from a 1 to a 0, the first line for which that bit is reset is also shortened by ending it at that scan line. This means
that a vertically scrolled region consisting of three mode 2 lines will have bit 5 set on the first two lines and
occupy (8-VSCROL) + 8 + (VSCROL+1) = 17 scan lines instead of the usual 24.

VSCROL and the row counter are both 4-bit counters regardless of mode, and odd effects can be created by
setting them to out of range values. For instance, a mode F scan line is only one scan line high and ordinarily
vertical scrolling doesn't make sense. However, if VSCROL is set to 13 upon entering such a scan line, the row
counter will count from 13 to 0, creating a mode F region where each pixel is four scan lines tall, but the DMA
overhead is still only for one scan line. This is similarly possible when exiting the vertically scrolled region by
setting VSCROL to 3 so that the row counter runs from 0 to 3. This creates the so-called “GTIA 9++" mode
where GTIA modes can be run with lower vertical resolution with much lower DMA overhead than if LMS lines
were used to produce the same effect.

There are different deadlines for VSCROL changes depending on what specifically is affected. For determining
the initial row counter when entering a vertical scrolling region, VSCROL must be written by cycle 0, and for
determining the final row for the end of a scrolled region, it must be written by cycle 108. The six clock window
between these deadlines can be abused in order to halve the number of DLIs required to implement a turbo
mode. This is done by writing VSCROL twice in quick succession, with the first value terminating the current
mode line and the second value setting the height of the next. Finally, VSCROL must be written by cycle 5 to
affect DLIs.

Vertical scrolling regions do not have to exclusively use the same mode, as the vertical scrolling functionality
only affects the starting and ending mode lines via row count.
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Figure 4: Abusing vertical scrolling in the “GTIA 9++"” mode

Blank mode lines ($x0) are always considered to have the vertical scroll bit cleared since the scroll bits are used
for a blank line count instead. The blank line is still subject to height changes if it ends a vertically scrolled
region, however. Jump instructions ($x1) can also have their height modified in the same way.

Mode lines with unusual height

All mode lines can be extended beyond their normal height up to 16 scan lines through vertical scrolling.
IR mode 0 lines are always blank, no matter how high.

IR mode 1 lines are always blank, but when extended beyond one scan line, re-fetch DLISTL and DLISTH on
each scan line.

For IR mode 2, rows 8-9 are blanked for characters $00-5F and $80-BF the same way that they are for IR mode
3. Rows 10-15 are the same as rows 2-7.

For IR mode 3, rows 10-15 are the same as rows 2-7.
For IR modes 4 and 6, rows 8-15 are the same as 0-7.

For all bitmap modes (IR modes 8-15), all rows are the same. Regardless of how high the bitmap mode line is or
the starting row, the data fetch still always only occurs on the first scan line.

It is possible to extend mode lines beyond even 16 scan lines by changing VSCROL in the middle of the mode
line. Since the delta counter (row counter) is only 4 bits wide, rows 0-15 are repeated until the mode line ends.
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Mode 8/9 horizontal scrolling bug

IR 8 and 9 mode lines can be corrupted if they follow a horizontally scrolled mode line at normal or wide width.
This occurs when the prior line uses IR modes 2-5 or D-F with HSCROL >= 10, or modes 6-7 or A-C with
HSCROL >= 14. When this happens, the memory scan counter is incorrect unless reset with an LMS instruction,
pixels are shifted out at incorrect rates, and scan lines within the mode 8-9 line are not aligned properly. This bug
can occur regardless of whether the mode 8/9 line is horizontally scrolled, although the artifacts are different.

The effects can also carry over into subsequent mode 8/9 lines:
« Non-scrolled IR mode 8/9 line:
o Following mode 2-5/D-F, HSCROL=A-B or E-F: Corruption carries over to subsequent scan lines.
o Following mode 2-5/D-F, HSCROL=C-D: Resolves itself within two scan lines.
o Following mode 6-7/A-C, HSCROL=E-F: Corruption carries over to subsequent scan lines.
« Scrolled mode 8/9 line:
o Following mode 2-5/D-F: Resolves itself within three scan lines.
o Following mode 6-7/A-C: Resolves itself within two scan lines.
The effect does not occur with narrow playfield width. The cause of this bug is the playfield DMA clock failing to

stop properly; see Abnormal playfield DMA for details.

4.8 Non-maskable interrupts

ANTIC can assert two types of non-maskable interrupts to synchronize the CPU to the display. Vertical blank
interrupts (VBIs) occur at the end of the displayable region and are used to synchronize to frames. Display list
interrupts (DLIs) occur in the middle of the displayable region and are used to effect mid-screen changes that are
not possible through the display list alone.

Enabling interrupts

Setting bits 6 and 7 of NMIEN enable DLIs and VBIs, respectively. Once an interrupt is enabled, ANTIC will then
assert an NMI on the CPU at the beginning of scan line 248 for VBIs, or the last scan line of a DLI-enabled mode
line. The NMI handler will then begin execution on the next instruction boundary at cycle 10 or later.

NMIEN must be written by cycle 7 to enable an interrupt and by cycle 8 in order to disable it.
Triggering a DLI

To trigger a DLI, bit 7 should be set on a display list instruction. This causes ANTIC to fire an NMI at the start of
the last scan line for that mode line. Typically the DLI interrupt handler will then issue an STA WSYNC in order to
synchronize to the end of the scan line, enabling it to write to hardware registers just prior to the next mode line
at a time where the user will not see artifacts from the changes.

You can set the DLI bit on any mode line, including a blank mode line. The strangest use is when the DLI bit is
set on a wait for vertical blank instruction ($C1); this causes a DLI to be issued on every scan line until vertical
blank begins at scan line 248. Obviously, the DLI must be very short to run reliably in this situation, but it is
possible.

If vertical scrolling causes a mode line with a DLI to be shortened, the DLI will still fire at the end of the shortened
mode line, and just prior to the next mode line. This can cause surprises if a DLI is attempted at the start or end
of a vertically scrolled region, because this can cause the DLI to occur on the more strongly contended first scan
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line.
Reading interrupt status

Since all NMis from ANTIC route through a single vector on the CPU, the NMIST register is used to determine
the interrupt source. Bit 7 indicates a DLI, bit 6 indicates a VBI, and bit 5 indicates that the system reset button
was pressed (400/800 only). The status bits in NMIST are independent of the enable bits in NMIEN: interrupt
status is reported even for disabled interrupts.

The reset (RNMI) bit stays latched until cleared by NMIRES, but the VBI and DLI bits are mutually exclusive: the
DLI bit is cleared at scan line 248, and the VBI bit is cleared whenever a DLI occurs. This happens regardless of
whether either interrupt is masked in NMIEN. This means that it is generally unnecessary to test the VBI bit or
write to NMIRES past boot — the NMI routine can test bit 7 for a DLI, bit 5 for reset, and then assume a VBI
otherwise. It also means that it is possible to use DLIs passively by polling for them instead of using an interrupt
handler.

NMIST bits 6 and 7 are set starting on cycle 7 of a scan line where a VBI or DLI is active. Clearing those bits by
writing NMIRES does not prevent the interrupt from firing, but can confuse an NMI dispatch routine.

Interrupt dispatch timing

The earliest that the CPU can normally begin execution of the seven-cycle sequence to enter the NMI handler is
cycle 10, with additional delays as needed to finish the current instruction. However, if an IRQ triggers starting at
cycles 5-9, its interrupt sequence can be co-opted by the NMI, allowing the NMI to execute correspondingly
earlier.

If an interrupt is enabled on exactly cycle 7 of a scan line, NMI timing is delayed by one cycle to cycle 11.
DLI timing

Display list interrupts have extremely critical timing for two reasons: they have to change hardware registers
within a very narrow window of time (usually horizontal blank), and they need to execute quickly to avoid
conflicting with each other or stealing too much CPU from mainline and IRQ routines. As such, it is very useful to
count exact cycles for DLI execution.

DLI execution proceeds as follows™:
e ANTIC pulls NMI at cycle 8 at the beginning of a scan line, right after display list and P/M DMA.
e The 6502 requires two cycles to acknowledge the NMI*.
e 0-6 cycles pass as the 6502 finishes the currently executing instruction.
e Interrupt entry takes 7 cycles.

Thus, if you are writing a custom NMI handler, the earliest that the handler will run is cycle 17. Note that DMA
contention will slow down this sequence, and it's virtually guaranteed that at least refresh DMA will interfere
starting with cycle 25.

If the OS handler is used, then the OS will execute a BIT NMIST / BPL not taken / IMP (VDSLST) sequence
before executing your handler, resulting in an additional 11 cycles of delay. Including refresh DMA, your handler
will execute starting on cycle 28-36.

At this point, the normal procedure is to save registers as needed, load up registers with needed values, STA
WSYNC, and then write values to hardware registers as quickly as possible during horizontal blank. Afterward,

[15] De Re Atari also has a good description of DLI timing and explains how to break a DLI routine into phases by timing requirements.
[16] [MOS76] 38
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the exit path will frequently spill into the middle of the next scan line, but that is not nearly as critical.

Note that these timings assume that the DLI is occurring on a blank mode line. Any non-blank line will require
playfield DMA cycles that will significantly delay interrupt routine execution: a nhormal-width mode 0 line will shift
the entry window for the OS case to cycles 36-44, and horizontal scrolling or wide playfields makes this worse.
Extra care is required when using DLIs around vertical scrolling, because it can shorten a mode line to only the
first scan line, causing a DLI to fire on a scan line where the active region is blocked by solid playfield DMA. The
extreme case occurs if the next mode line is also a character mode line, which can result in so much DMA
contention that two entire scan lines pass before the 6502 can even enter the DLI handler.

Missed NMis

If the 6502 responds to an IRQ starting at exactly cycle 4, any NMI that ANTIC would have triggered on cycle 8
will be lost.*” This happens whenever the IRQ acknowledgment sequence occurs over cycles 4-10 and includes
DLls, VBIs, and on the 400/800, the SYSTEM RESET interrupt. NMIST is still updated as usual, however. The
most visible artifact caused by this problem is glitching on screen if you attempt to use DLIs while an SIO
transfer is in progress. However, it can happen with any IRQ source, including POKEY timers and the keyboard.
It can also occur with an exactly timed BRK instruction. It cannot, however, occur with a regular instruction, not
even one that takes seven cycles (INC abs,X).

DLIs and writes to VSCROL

A vertically scrolled region ends when the row counter matches the value in VSCROL. Normally, this happens
shortly before the display list fetch at the end of the scan line. However, when a DLI is requested on the ending
mode line, ANTIC must determine the end of the mode line much earlier in a scan line. Specifically, this happens
shortly before the DLI would occur. A write to VSCROL that affects whether a DLI occurs on a scan line must
occur by cycle 5. Writes after that point will be too late to block or trigger the DLI, but will still affect the height of
the mode line.

System Reset NMI

ANTIC supports a third type of NMI, triggered by the System Reset button on 400/800 models. On these models,
the System Reset button asserts the /RNMI input on ANTIC, and once this is held across the leading edge of
VBLANK, the Reset NMlI is triggered.

The Reset NMI is synchronized to the VBI, so it will always happen at the start of VBLANK and both the VBI and
RNMI will trigger together. Both bits 5 and 6 of NMIST will also turn on, so the NMI handler must give the RNMI
priority over VBI processing and trigger a warm start when bit 5 is set. All systems that use the RNMI also have a
fixed OS and NMI vector, so ordinarily this is always handled by the OS before user code can see it.

As the Reset NMI cannot be masked, the OS cannot defend against it occurring before cold start initialization
has completed. User manuals therefore politely ask the user to not hold System Reset on power-up to avoid
premature warm start.

On the XL/XE series, the Reset NMI is unused and not connected; the System Reset button asserts the reset
line across the system instead. However, it is still possible for the RNMI status bit to be set in NMIST as it is not
cleared on power-up or reset. Once it has been cleared, it will no longer become set again, even if the Reset
button is pressed.

[17] Speculation on the AtariAge forums is that this is caused by a bug in ANTIC, which does not assert the NMI line long enough for the
CPU to reliably acknowledge the interrupt.
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4.9 WSYNC

A write to WSYNC [D40A] halts CPU execution until the end of a scan line, allowing the CPU to synchronize to
the display. One more cycle elapses before the CPU is halted until cycle 105, when execution resumes around
the start of horizontal blank. Because the CPU usually gets to execute the first cycle of the next instruction, this
appears as if the instruction started on cycle 104. There are, however, three circumstances that can change this
behavior:

o If the cycle immediately after writing WSYNC is blocked.

In this case, the CPU doesn't get to execute the first cycle of the next instruction, and that instruction
starts from the beginning as usual on cycle 105.

o If playfield DMA extends to cycle 105.

Wide playfields, normal playfields with horizontal scrolling, and narrow playfields with high horizontal
scroll values can encroach on cycle 105. This causes a one-cycle delay in the CPU restart.

o If refresh DMA extends to cycle 105 or 106.

The first scan line of a character mode line can incur solid playfield DMA during the active region such
that refresh DMA is pushed all the way to the end of the scan line. This can cause refresh DMA to
occupy cycle 105, resulting in a one-cycle delay for the CPU. If playfield DMA is already occupying cycle
105, however, then it will push refresh DMA to cycle 106, resulting in a two-cycle delay.

These factors mean that there can be up to a three cycle variance in when an instruction following a write to
WSYNC finishes execution, not counting interrupts. Therefore, if you are attempting to use a write to WSYNC to
establish an event at an exact time on a scan line, your best bet is to write to WSYNC twice during vertical blank
or during blank mode lines, ensuring that no DMA interference occurs. You should also ensure that a DLI or VBI
does not take place on the scan line as otherwise the interrupt is guaranteed to fire immediately after the
instruction that writes to WSYNC.

Because the 6502 can only respond to interrupts at the end of an instruction, a write to WSYNC can cause long
delays in interrupt response time. This is particularly problematic for DLIs, which can be pushed down by an
entire scan line. Therefore, STA WSYNC should be avoided in main code when time-critical DLIs are in use. A
loop on VCOUNT is a popular alternative:

LDA VCOUNT
LOOP CMP VCOUNT
BEQ LOOP

Execution resumes anywhere between cycles 0-6 of the next scan line.
Deadline for writes to WSYNC

Writes to WSYNC up to cycle 103 wait until the start of horizontal blank on the current scan line. A write to cycle
104 or later is too late and causes a wait until the start of horizontal blank on the next scan line.

Read-modify-write instructions

Using a read-modify-write instruction such as INC or DEC to write to WSYNC causes special behavior because
this is the only case where the cycle immediately following the write to WSYNC is another write cycle.” The
6502 does not respond to RDY during a write cycle and therefore always performs this write on the next

[18] The 6502 can actually run up to three write cycles back to back if you include the interrupt acknowledgment sequence, where
PCH/PCL/P are pushed onto the stack. However, since this is always to stack locations in page 1, WSYNC cannot be involved.
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available cycle regardless. As a result, an INC WSYNC instruction has the useful behavior of ignoring whether
the next cycle is occupied by DMA, with the next instruction starting on cycle 105.

The deadline for the last cycle of a RMW instruction to write to WSYNC is still cycle 103. If the instruction
executes one cycle later such that two write cycles occur on cycle 103 and 104, the behavior is slightly different:
the next instruction will still start on cycle 105, but the second cycle of that instruction will be delayed until cycle
105 on the next scan line.

The 65C02 and 65C816 have different behavior when RDY is asserted during writes which affects this behavior.
The 65C02 will stop on a write cycle, , so it is best to avoid relying on this behavior if compatibility with CPU
accelerators is desired.

Bus activity during WSYNC

Because WSYNC works by asserting the RDY signal to the CPU, it effectively causes the CPU to retry its current
read cycle repeatedly until RDY is negated. This will ordinarily be either the first or the second instruction byte of
the next instruction after the write to WSYNC. Ordinarily this is of no consequence unless the address
corresponds to a read-sensitive hardware device or the WSYNC wait occurs during a period when phantom
DMA is occurring (see Scan line timing and Player/missile graphics).

4.10 VCOUNT

The VCOUNT [D40B] register reflects bits 1-8 of the vertical scan counter. Bit O is not connected, so this only
permits two-line resolution. VCOUNT maintains its value up through cycle 109 and increments on cycle 110 of a
scan line. For an NTSC machine, VCOUNT counts from $00 to $82; for PAL, it counts to $9B.

If you are using VCOUNT to check for a scan line near the top of the screen, consider using a greater-equal
check rather than an equality check, as otherwise the test can lock up if the VBI handler takes too long to
execute. This is a common cause of lockup when programs meant for PAL are run under NTSC, where there is
much less vertical blank time.

End-of-frame anomaly

ANTIC requires one additional cycle to detect that the vertical counter has hit the end of frame value and to reset
it to $00. This means that reading VCOUNT on exactly cycle 110 of the very last scan line will give $83 (NTSC)
or $9C (PAL), which correspond to scan lines 262 and 312, respectively; starting with cycle 111, it reads $00.
This is the only cycle in the frame where this highest value can be seen and is thus extremely rare, but it could
be a surprise to a DLI handler using VCOUNT to index tables.

4.11 Playfield DMA

Fetch rates

ANTIC supports three different fetch rates for playfield DMA. The slowest rate is one fetch per eight cycles and is
used for modes 8 and 9. The medium rate of one fetch per four cycles is used for modes 6-7 and A-C. The
fastest rate of one fetch per two cycles is used for modes 2-5 and D-F.

During the first scan line of a character mode, ANTIC fetches both character names and character data. The
data fetch occurs three cycles after the corresponding name fetch. For modes 2-5, this causes ANTIC to occupy
the bus with playfield DMA continuously with name and data fetches for a large portion of the scan line.

Chapter 4 - ANTIC 74



Altirra Hardware Reference Manual Created by Avery Lee

Line buffering

A 48 byte buffer within ANTIC is used to store graphic data for a single scan line. Its purpose is to buffer data for
use on repeated scan lines, reducing DMA overhead. For bitmap modes, it allows ANTIC to only read graphics
data for a mode line once, during the first scan line. For character modes, it holds the character name data which
is then repeatedly used to fetch each scan line of character data from the character set.

Because only character names are buffered in character modes and not character data, the two text modes that
have double-height characters — modes 5 and 7 — must still fetch character data on every scan line even though
half of the fetches are redundant.

Loading the line buffer

The line buffer is loaded during playfield DMA on the first scan line of a mode line during character name or
bitmap graphics fetches. Character data fetches are not loaded into the line buffer. During normal operation, this
loads 8, 16, or 32 bytes for a narrow playfield, 10, 20, or 40 bytes for a normal-width playfield, or 12, 24, or 48
bytes for a wide playfield.

If playfield DMA is disabled during portions of the first scan line, the DMA cycles are disabled but the loads still
occur at the standard times, loading the current values of the bus as bitmap or character data. The internal
address counter also continues to advance as usual, so if playfield DMA is re-enabled later in the scan line loads
into the buffer will resume with the correct internal address for each horizontal location. However, if playfield
DMA is disabled early enough so that the playfield never starts on the first scan line, no loads will occur and the
line buffer will not be modified at all.

The line buffer is never cleared. Narrow or normal width playfield loads preserve the unused contents at the end
of the line buffer. It is not changed by a blank mode line or a jump and the contents also persist across vertical
blank. By carefully toggling playfield DMA and stretching mode lines through abuse of vertical scrolling, it is
possible to fill the screen with playfield with reduced or even total absence of playfield DMA cycles.

Line buffer addressing

The line buffer is addressed such that the first location is always accessed at the playfield start position. This
means that if the same data is replayed with different start positions — either through varying HSCROL with
horizontal scrolling or by varying playfield fetch in DMACTL — the displayed graphics will shift to follow the
change in the left playfield border.

If the mode line is changed, causing a change in interpretation or in data rate, the buffered data is replayed just
as if it were fetched from memory. For instance, if the line buffer is loaded with a normal mode E line and then
replayed in mode 8, the first 10 bytes of the mode E line will be reinterpreted as mode 8 data.

Dynamic changes to playfield width

The playfield width bits in DMACTL[1:0], and the horizontal scroll position bits in HSCROL[3:1], determine the
start and stop positions of the playfield on each scan line. Normally, ANTIC starts the playfield at the start
position and stops the playfield at the stop position. Moving the timing of the start and stop positions dynamically
can cause unusual playfield widths.

For the playfield start position, the deadlines for setting the playfield start position are cycles 24, 16, and 8 for
narrow, normal, and wide fetch widths. Bits 1 and 0 of DMACTL must be set to the desired value by these cycle
numbers to take effect. When horizontal scrolling is active, the deadline is delayed by one additional cycle for
every increase by two in the HSCROL value. Various writes then have the following effects:

e Moving the start later (narrower fetch width or greater scroll value) takes effect as expected if done by
the deadline, and is ignored for the current scan line if done too late.
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e Moving the start earlier will still take effect if written by the deadline for the new width (earlier deadline). If
the start is moved earlier by the deadline of the old position and after the deadline of the new position,
the playfield will not start at all since the start has been moved back behind the current position.

The playfield stop position acts similarly, with corresponding deadlines of cycles 88, 96, and 104. Moving the
stop later by the earlier deadline extends the playfield to the farther stop position. Moving the stop earlier behind
the current position extends the playfield to the wide stop position, which is always active.

By changing the width and horizontal scroll values on the fly, it is possible to start and stop the playfield at
mismatched positions. For instance, changing the playfield width from narrow to normal in the middle of the scan
line with mode E will extend the playfield on the right side and cause additional bytes to be fetched. The resulting
playfield is 144 color clocks wide and advances the memory scan counter by 36 bytes.

Warning

It is easy to accidentally hit one of these corner cases when changing DMACTL from a DLI handler, since
the window for cleanly changing the playfield width is very narrow. If you are using WSYNC to
synchronize, you only have a few instructions afterward to write DMACTL before you are in the danger
zone. Timing for changing DMA parameters is much tighter than those for display parameters, so change
DMACTL before modifying color registers. Symptoms that you are hitting DMACTL too late include losing
a line when trying to enable DMA, gaining an extra line when trying to disable it, or having subsequent
playfield addressing screwed up unless LMS instructions are added to the display list.

Disabling playfield DMA

Setting DMACTL bits 1-0 to %00 disables the playfield, shutting off both DMA cycles and the display. The
playfield is always absent (background color) whenever playfield DMA is disabled. If it is disabled in the middle of
an active playfield, it vanishes until re-enabled. This is true even in high-resolution modes: background is
displayed, not PF2.

If playfield DMA is disabled before the playfield starts, the memory scan counter and line buffer are not updated.
However, if disabled after playfield DMA starts, the memory scan counter continues to count and the line buffer is
still loaded according to the current DMA pattern.

Mid scan line changes to playfield DMA

Changing the playfield DMA mode via the low two bits of DMACTL in the middle of a scan line has a number of
interesting effects. Much of this is related to the scan line buffer within ANTIC, which buffers some but not all of
the data between scan lines. Specific cases:

e InIR modes 2 and 3, the invert state is also not updated while DMA is disabled, resulting in the blanked
scan line from the previous case displaying either PF2 or PF2L1 depending on the last seen invert state.
This only occurs on the affected scan line; subsequent scan lines will once again show the correct invert
state according to the buffered character names in the line buffer as long as DMA is re-enabled.

e For mode lines that span multiple scan lines, suspending playfield DMA for a portion of the first scan line
results in portions of the line buffer not being updated. Previously written data in those portions are
reused in display for subsequent scan lines. In character mode, this results in old character names being
used.

4.12 Abnormal playfield DMA

Under certain circumstances, ANTIC can lose track of playfield DMA such that it begins fetching playfield data
with an abnormal pattern, producing a garbled playfield. This can also scramble the display list, which can in turn
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crash the CPU by issuing bogus DLIs. As these effects are very difficult to control, typically this condition is
simply an unwanted artifact to avoid.

DMA clock

There are two clocks within ANTIC that control playfield display, the DMA clock and the shift clock. Both are
constructed as shift rings with taps to read cycling bits and extra gates to inject or clear bits in the cycling
pattern. The first of these, the DMA clock, controls the timing of DMA cycles and the incrementing of the memory
scan counter. It runs at machine cycle rate and is either two, four, or eight cycles long depending on the fetch
rate required for the current playfield mode. Three taps off this clock produce the requests for character name,
bitmap data, and character data at 0, +2, and +3 cycle offsets, respectively.

A single bit is injected into the DMA clock at playfield start, and that single bit position is cleared at playfield stop.
The DMA clock is also unconditionally cleared whenever the current IR mode corresponds to a blank line or
jump, or during vertical blank.

Shift clock

The shift clock, on the other hand, controls the shifting of graphics data out of the graphic shift register. It is a
four-bit ring and runs at color clock rate, twice as fast as the DMA clock. There are taps at all four bits and either
one, two, or all four of them are enabled depending on the required shift rate for the graphic shift register, which
shifts either one or two bits per interval.

ANTIC clears both the shift clock and the shift register during special DMA time (cycles 0-7). The shift clock
starts running when bits are injected into it from the DMA clock by means of the bitmap or character data fetch,
synchronizing it to the arrival of the first graphics byte from either the bus or line buffer RAM. It is not stopped at
playfield stop, simply continuing to run to clear out the shift register.

Table 7 gives the rates for both clocks for each mode.

IR Mode DMA rate Shift rate Shift

mode
2,3,4,5 |Fast (every two cycles) Fast (1/cc) 2-bit
6,7 Medium (every four cycles) |Fast (1/cc) 1-bit
8 Slow (every eight cycles) Slow (1/4cc) 2-bit
9 Slow (every eight cycles) Medium (1/2cc) 1-bit
A Medium (every four cycles) | Medium (1/2cc) 2-bit
B, C Medium (every four cycles) |Fast (1/cc) 1-bit
D,E,F Fast (every two cycles) Fast (1/cc) 2-bit

Table 7: DMA and shift clock rates by mode

Disrupting the DMA and shift clocks

As noted earlier, ANTIC stops the DMA clock by resetting a single bit in it at playfield stop time. Changing
registers mid-scanline in a way that shifts the playfield stop position can cause ANTIC to clear the wrong bit and
prevent it from stopping the DMA clock properly. When this happens, the DMA clock continues to run through
horizontal blank and into the next scan line. This causes several undesirable results:

- Playfield DMA continues across horizontal blank and into the next scan line. This also advances the
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memory scan counter by additional steps, resulting in skipped playfield bytes. Note that playfield DMA
cycles are still suppressed during cycles 105-111 and 0, so any extra cycles during that window are still
virtual DMA cycles.

- DMA fetches can overlap. This can occur between playfield DMA itself — character name and character
data fetch — or with special DMA such as display list and player graphics fetches. When this happens,
the address used is the bitwise AND of all fetch addresses involved and the fetched data is used for all
of the DMA requests. A refresh DMA cycle cannot overlap, however, as it is only triggered by the
absence of other DMA requests.

- The clocks can run at faster than normal rate or with erratic timing. ANTIC can fetch continuously at one
fetch/cycle even in graphics modes if the DMA clock is disrupted. When the shift clock is disrupted
separately, pixels are shifted out to GTIA faster than normal for the mode line and 00 pixels are shifted
out whenever the 8-bit shift register runs out of data bits.

Disrupting the DMA clock with HSCROL

Once the DMA clock is running, ANTIC attempts to reset a single bit in the DMA clock at exactly two points: the
playfield stop position for the current width setting, and the playfield stop position for a wide playfield. The stop
positions for all playfield widths are multiples of eight cycles apart and thus the wide playfield stop aligns with the
DMA pattern started at any playfield width. Therefore, it is not possible to disrupt the DMA clock with width
changes alone as ANTIC will always be able to stop the clock on its second attempt and the playfield will only be
extended to the wide playfield stop position.

Horizontal scrolling is another story, as for every two color clocks in horizontal scroll the playfield start and stop
positions are shifted by one cycle. The cycle pattern for the ending HSCROL value must match the cycle pattern
of the starting HSCROL pattern for the DMA clock to stop properly. For instance, in mode 2 the DMA clock runs
at a rate of one fetch per two cycles, so the HSCROL bit 1 must match up for the start and stop patterns to line
up with even or odd cycle timing. Similarly, in mode 8, the clock is running at a rate of one fetch per eight cycles,
so HSCROL bits 1-3 must match exactly. When this occurs, playfield DMA will stop cleanly, although the scan
line may be an unusual number of pixels long.

When the start and stop patterns do not line up, the DMA clock will continue running. ANTIC will continue to set
and unset bits in the DMA clock on subsequent mode lines. Therefore, it is possible to build up or drop additional
fetch cycles, leading to progressively more or less screwy DMA patterns.

What makes this bug especially problematic is that the DMA clock runs rather late into horizontal blank when
horizontally scrolling at wide fetch width. This means that it is easy to accidentally trigger it by changing
HSCROL on the fly in a DLI handler right after writing to WSYNC. The deadlines for affecting this behavior with
HSCROL are the same as for moving the playfield stop with DMACTL: the write must occur three cycles before
where the next character name fetch would occur in the pattern, or in a bitmap mode, five cycles prior to the next
graphics fetch. For a normal character mode playfield, this is on or before cycle 95 + HSCROL/2. ANTIC always
tries again at the equivalent wide stop, for which the write must happen on or before cycle 103 + HSCROL/2.
This means that in order for a horizontally scrolled normal or wide width line to display correctly, HSCROL should
not be rewritten before cycle 111, three cycles before missile DMA fetch.

Disrupting the DMA clock with mode switching

Abnormal DMA patterns can also occur simply with specific orders of mode lines where the DMA clock slows
down between the two mode lines. This happens because the DMA clock is always eight bits long even though
the ring part is restricted to four or two bits for medium and fast shift rates, and thus it takes four or six clocks for
any bits left in the clock to completely shift out. The DMA clock runs so late into horizontal blank when horizontal
scrolling is active at normal or wide playfield width that these latent bits can be recaptured when the ring part of
the clock is suddenly extended at the switch to the slowest speed. These extra bits then cause an abnormal
DMA condition.
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For this problem to occur, a playfield character name fetch must have been scheduled within cycles 109-111 for
a character mode, or a graphics fetch within cycles 111-113 for a bitmap mode. The only conditions that can
cause this are:

e Horizontally scrolled normal or wide width mode line at fast DMA fetch rate (modes 2-5 or D-F), with
HSCROL >=10.

e Horizontally scrolled normal or wide width mode line at medium DMA fetch rate (modes 6-7 or A-C), with
HSCROL >= 14.

e Existing abnormal DMA condition including those fetch cycles.

These fetches do not have to be actual DMA cycles as the DMA clock still runs during subsequent mode lines to
fetch from the internal line buffer. The bits captured during these 1-3 cycles then become extraneous fetches in
the 4-bit or 8-bit playfield DMA pattern for the next scan line.

Abnormal DMA patterns across scan lines

An abnormal DMA condition will persist across multiple scan lines as long as errant bits continue to cycle around
the DMA clock and it is not stopped by a blank line or other clearing condition. However, because the scan line is
114 cycles long and not evenly divisible by the length of the DMA clock, the abnormal DMA pattern will change
on each scan line when the DMA clock is operating in slow or medium speed modes where it is eight or four
cycles long. This can result in the abnormal pattern resolving itself after a few scan lines as ANTIC “sweeps”
over the abnormal pattern at different offsets, removing one or more errant bits each time.

As an example, changing HSCROL from $00 to $04 in the middle of a horizontally scrolled mode 8 line will shift
the offset of playfield DMA cycles from %10000000 to %00100000 after the start bit has been injected into the
clock, preventing the stop from occurring and causing the former pattern to stay in the DMA clock. However,
because 114 mod 8 = 2, the errant pattern will have shifted by two clocks on the next scan line, resulting in
subsequent extra DMA patterns of %00000010, %00001000, and %00100000. The last pattern lines up with the
normal pattern of HSCROL=$04, so the errant bit will be cleared by the playfield stop, ending the abnormal
DMA.

Similarly, if HSCROL is instead changed from $00 to $02, a four-line cycle of patterns %01000010, %01001000,
%01100000, and %11000000 will result.

Abnormal shift patterns

The shift clock is reset at the beginning of each scan line and initialized based on the pattern of DMA cycles
produced by the DMA clock, which means that the shift clock can only run abnormally if the DMA clock is
abnormal. However, the shift clock runs double speed at color clock rate and is only four bits long, which means
only two bits can be affected by the even and odd fetches from the DMA clock. Furthermore, mode 8 is the only
mode in which the shift clock can be disrupted because every other mode already requires the playfield shift
register to shift at least once per machine cycle anyway.

In mode 8, the shift pattern is abnormal if the DMA pattern includes both even and odd cycles. When this
happens, the shift clock then runs at double normal speed, producing pixels at two color clock resolution (80
across) instead of four color clock (40 across) resolution. If this causes the shift register to empty before it is
reloaded again, the background is produced (pixel code %00).*°

In all modes, the additional DMA cycles will also result in extra loads into the shift register. The extra data is
ORed into the contents of the shift register. In character modes, this happens prior to the effects triggered by
character name bits 6 and 7, such as inversion/blinking in IR modes 2 and 3 and the color changes in IR modes
4-7. This means that the next time a character name is read, the new values of bits 6 or 7 will immediately take

[19] The reason this can happen, despite the DMA clock also running at double rate, is that the extra bits in the DMA clock may not be
evenly spaced. A second fetch can partially overlap the first in the shift register, leaving a gap.
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effect, even for bits that have yet to shift out of the playfield shift register.
Abnormal line buffer addressing

Ordinarily, ANTIC never advances beyond the 48™ location in the line buffer. An abnormal DMA clock, however,
can advance the line buffer address faster at up to double normal speed, causing the line buffer address to
exceed that limit or even wrap. The internal address counter is a 6-bit maximal length polynomial counter and
has a sequence of 63 addresses. The first 48 addresses correspond the internal RAM and there is no response
to the last 15 addresses. This means that when the line buffer is loaded, the entire 48 byte RAM is loaded before
15 fetches are discarded, and then the RAM is reloaded again. Similarly, during display, the 48 byte buffer is
displayed and then the last 15 locations result in $FF data.

The second anomaly that can occur is that ANTIC can skip addresses in the line buffer when reading from it on
back-to-back cycles in a bitmap mode. Specifically, whenever there are back-to-back cycles, all but the last fetch
of the sequence will use the data from one later position. As a result, the value that should have been fetched
first will be dropped and the last value will be used twice. This happens even on the first line where DMA fetches
occur, because the data is first written to and then read from the line buffer. Only the reads from the line buffer
are affected; the writes occur to the expected addresses and the buffered data will be normal if replayed on a
subsequent mode line with a normal DMA clock.

Overlapping DMA

Abnormal DMA patterns can cause DMA cycles to overlap. In a character mode, character name and data
fetches can occur at the same time when the DMA clock causes both even and odd fetches. When this occurs,
the bitwise AND of the two addresses is used as the fetch address and the returned data is used for both
fetches.

A DMA conflict can also occur between special DMA at cycles 0-7 and playfield DMA. As with playfield-playfield
DMA conflicts, the bitwise AND of all addresses is used and the fetched data goes to all requests. However, this
can occur even if playfield DMA is disabled in DMACTL. Display list DMA, missile DMA, and player DMA can be
affected by this conflict.

Warning

The potential for overlap with display list DMA is what makes the abnormal playfield DMA bug a serious
one. If it just affected the playfield, then the only problem would be visual glitching. When abnormal
playfield DMA overlaps display list DMA, however, it can send the display list execution off into the weeds.
This can then cause wild display list interrupts to fire and the program to crash.

Resetting the playfield clocks

Whenever an appropriate playfield stop position is reached, ANTIC clears bits from the DMA clock. If there are
no other bits left flying around in the clock, the abnormal condition is ended. Entering vertical blank or executing
blank mode display list instructions ($x0 or $x1) will also unconditionally clear the DMA clock and end any
abnormal DMA pattern.

Switching to a mode line with a faster shift rate will shorten the recirculating portion of the DMA clock. Once this
happens, any extraneous bits in the non-circulating portion will shift out and no longer contribute to abnormal
DMA.

Since the shift clock is reset by ANTIC at the beginning of each scan line, clearing an abnormal condition in the
DMA clock will automatically fix the shift clock.
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4.13 Player/missile DMA

ANTIC can fetch graphics data for players and missiles on behalf of GTIA. Bit 3 of DMACTL enables player
DMA, and bit 2 of DMACTL enables missile DMA. Missile DMA is forced on if player DMA is enabled in order to
preserve proper timing against GTIA.

Vertical resolution

Bit 4 of DMACTL switches between two-line and one-line resolution. This simply changes the addressing that
ANTIC uses to fetch player data. If one-line resolution is selected (bit 4 = 1), each player/missile occupies 256
bytes of memory and unique data is fetched per scan line. If two-line resolution is selected, each player/missile
occupies 128 bytes of memory and each byte is fetched twice on adjacent scan lines.

P/IM graphics memory layout

The address of player/missile data is specified by PMBASE [$D407]. In two-line resolution mode, player/missile
data must be aligned on a 1K boundary and the upper six bits of the address are specified by bits 2-7 of
PMBASE. In one-line resolution mode, P/M data must be aligned on a 2K boundary and the upper five bits of the
address are specified by bits 3-7 of PMBASE, with bit 2 being ignored. However, bit 2 of PMBASE is still stored
and becomes active if resolution is switched back to two-line without writing to PMBASE again.

The P/M graphics memory is in turn split into 8 sections of 128 or 256 bytes each. The first three sections are
unused. The fourth section, starting at offset $0180 or $0300 from PMBASE, contains the four missiles; bits 7-6
correspond to missile 3 and bits 0-1 correspond to missile 0. The last four sections starting at $0200 or $0400
contain the graphics for players 0-3. Within each section, bits 0-7 or bits 1-7 of the vertical scan counter are used
as the offset for fetching graphics data.

P/M DMA timing

When enabled in DMACTL, player and missile data is fetched on each scan line within the visible region (8-247).
This means that in one-line resolution mode, the first and last 8 bytes of each section are always unused. Missile
data is fetched during cycle 0 while player data is fetched during cycles 2-5.

In two-line resolution mode, bit O of the vertical resolution counter is ignored and each byte is fetched twice and
sent to GTIA on consecutive scan lines. This means that the P/M graphics can still change on each scan line if
the data is modified in between. The only difference between one-line and two-line resolution is in addressing.?

P/M DMA enable timing

Player/missile DMA must be enabled or disabled in DMACTL at least two cycles in advance to take effect. In
particular, disabling missile DMA only one cycle earlier at cycle 113 will not prevent missile DMA from
immediately occurring on the following cycle 0.

4.14 Scan line timing

Memory refresh DMA

Nine cycles of refresh DMA occur on every scan line in order to refresh DRAM, starting at cycle 25 and occurring
every four cycles after that. These refresh cycles occur even in vertical blank. Refresh DMA can be blocked by

[20] [AHSO00] p.45 contains a couple of errors. Each fetched missile or player consumes 240 bytes per frame, not 226, and two-line
resolution mode takes the same number of cycles as one-line mode, not half.
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playfield DMA, in which case the refresh cycle occurs on the next free cycle. Only one such cycle can be
deferred at a time and any additional blocked refresh cycles in a row are simply dropped. This only occurs in the
first scan line of modes 2-5, where memory is so contended that only 1-2 refreshes can fit.

In wide character modes, the final refresh cycle can be pushed all the way to the end of playfield DMA at cycle
105 or 106, resulting in an additional cycle of delay for a WSYNC on that scan line.

Data output from the RAMs is not enabled during refresh cycles and the data bus is undriven during refresh
cycles. This leads to either a pulled up or floating data bus condition, depending on the memory configuration.

Display list DMA

The display list requires one DMA cycle for each instruction byte, which occurs at cycle 1, between players and
missiles. Mode lines that perform an LMS or a jump also fetch an additional address word at cycles 6 and 7. This
fetch occurs at the beginning of the scan line where the mode line takes effect visually.

For modes that span multiple scan lines, the display list fetch only occurs on the first scan line. The jump and
wait for vertical blank (JVB) instruction is also only fetched once regardless of the number of scan lines until
vertical blank.

Playfield DMA

Three playfield widths are available: narrow, normal, and wide. Normal playfields are 80 cycles wide, while
narrow playfields are 64 cycles and wide playfields are 96 cycles long. All fetch windows have the same center,
with each wider setting adding 8 clocks on each side. There is a hardware stop that prevents playfield DMA from
going beyond cycle 105. Any fetch cycles that would occur on cycle 106 or later are suppressed, although the
playfield memory address is still incremented.

Enabling horizontal scrolling automatically causes narrow playfields to use the normal fetch window and normal
width playfields to use the wide fetch window. No additional data is fetched for wide scrolled playfields.
Horizontal scrolling causes the playfield fetch window to be delayed by one cycle for every two color clocks of
scroll. The additional color clock delay required by odd scroll values is given by internal buffering.

Mapped mode playfield DMA

The mapped graphics modes have three horizontal densities, resulting in fetches every eight clock cycles
(modes 8-9), four cycles (modes A-C), or two cycles (D-F). These occur on the first scan line of the mode. ANTIC
internally buffers the data so that modes that span more than one scan line do not need to fetch any data on
subsequent scan lines. This is used to powerful effect in the so called “GTIA 9++” modes, where mode F lines
are extended to four scan lines by vertical scroll trickery, resulting in one-fourth vertical resolution with one-fourth
the bandwidth requirements.

Mapped playfield DMA begins at clock 28, 20, or 12 depending on width.
Character mode playfield DMA

Character modes have two horizontal densities, resulting in name fetches every two clock cycles (modes 2-5) or
every four clocks (modes 6-7). The character names are fetched starting at clocks 26, 18, and 10 for the various
widths.

Additionally, in these modes the character data itself must be fetched. The data fetch occurs three clocks later
than the name fetch. Although the names are buffered internally by ANTIC, the character data isn't, and is
always fetched for each scan line regardless of whether double-height modes are used (modes 5 and 7).
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Virtual DMA cycles

Playfield DMA cycles that would occur on cycle 106 or later are blocked by the hardware and do not occupy the
bus or stop the 6502. However, ANTIC still reads the data bus and stores or interprets the data on those cycles.
This usually results in 6502 bus activity being loaded as playfield data. In rare cases, it is possible for a refresh
cycle to overlap with a virtual DMA cycle, resulting in floating bus data being used.

DMA timing charts

The following charts show the timing of per scan line DMA, based on various modes and settings. IR mode,
playfield width, P/M graphics, LMS instructions, and horizontal scrolling all affect DMA timing. Note that the
charts are arranged by fetch width, so a narrow playfield with horizontal scrolling is actually described by the
normal playfield chart. There are no charts for subsequent scan lines for mapped modes, as no playfield DMA
occurs in that case. HSCR refers to the HSCROL value, if horizontal scrolling is enabled; odd values have the
same DMA pattern as the next lower even value.
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ANTIC modes 2-5, mode line, wide playfield
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ANTIC modes 2-5, subsequent lines, wide playfield
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ANTIC modes 6 and 7, mode line, wide playfield

HSCR [0 8 16 |24 32 40 48 |56 104 112
0

: bbb

4 RCACAERERERELENIT

0 LCRCRPREIRRLrAl]

. NEEREEY

12 ICRCAERERERELII]

Player/missile graphics [JMemory refresh  [JPlayfield DMA  [|Character map DMA | Display list DMA  Virtual DMA

ANTIC modes 6 and 7, mode line, normal playfield

HSCR [0 8 16 24 32 40 48 56

4 LI LTIRT DLl
6 LIRFRARERIRELINE]

; [ad

12 LI LTIRT DLl

14

64 104 112

N O

oo

IPIayer/missiIe graphics IMemory refresh IPIayﬁeId DMA ICharacter map DMA | Display list DMA  Virtual DMA

ANTIC modes 6 and 7, mode line, narrow playfield

HSCR [0 8 16 24 32 40 48 56 64 72 80 88 96 104 [112
off

fPlayer/missile graphics [JMemory refresh  [JPlayfield DMA  [|Character map DMA | Display list DMA  Virtual DMA

Chapter 4 - ANTIC 86



Altirra Hardware Reference Manual

Created by Avery Lee

ANTIC modes 6 and 7, subsequent lines, wide playfield
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ANTIC modes 8 and 9, mode line, wide playfield
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ANTIC modes A-C, mode line, wide playfield
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ANTIC modes D-F, mode line, wide playfield
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Event timing chart

0‘1‘2‘3‘4‘5 6‘7 8|9 10‘11‘12‘13‘14‘15‘16 17‘18‘19‘20‘21‘22‘23‘24 25[___}88 89‘90‘91‘92‘93‘94‘95‘96 97‘98‘99‘100‘101‘102‘103 104 105‘106‘107‘108 109‘110 111 112‘113‘
VSCROL set start Normal PF start (1) Normal PF stop (1) VSCROL end check
DL DMA enable VBI/DLI triggered (2) Narrow PF start (1) Narrow PF stop (1)
VCOUNT increments

VSCROL/DLI check Wide PF start (1)

DLI/VBI bit setin NMIST WSYNC end VCOUNT rollover
Wide PF stop (1)

WSYNC deadline (3)
Figure 5: ANTIC event timing

The above figure shows the timing of various events within ANTIC and the available cycle times at which the CPU can read or write values in response.
These are marked on machine cycle boundaries, so only writes before the boundary will affect the event and only reads after the boundary will reflect it.
For instance, the narrow width playfield start boundary is between cycles 24 and 25, so a write to DMACTL to turn on the narrow playfield must occur on
cycle 24 or earlier. Similarly, the VCOUNT increment on a scan line will only be reflected in reads on cycle 100 or later.

(1) PF start/stop events are delayed by one cycle for every two increase in HSCROL when horizontal scrolling.
(2) 7-cycle NMI sequence normally starts at first instruction boundary on cycle 10 or later, unless overlapping an earlier IRQ.
(3) If read/modify/write instruction on 6502 or 65C816 (emulation mode), both write cycles must occur before this deadline.
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4.15 Cycle counting example

Let's assume that we want to schedule a series of palette color changes between lines of 40-column text (ANTIC

mode 2). To do this, we use the following DLI routine:

PHA
TXA
PHA
LDX
LDA
STA
STX
STA
PLA
TAX
PLA
RTI

NEWCL1
NEWCL2
WSYNC

COLPF1
COLPF2
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0 8 16 24 32 40 48 56 64 72 80 88 % 104 112 |

PREV NMI BIT BPL  |JMP PHA |[TXAIPHA LDX |LDA |[STA [STX [STAPLA |
IERRRnnnnnnnnnnnnnnnnnnnnnnnnnnnnnInmm

IPLA [APLA RTI |

Memory refresh  [|Playfield DMA  [ICharacter map DMA | Display list DMA
Figure 6: DMA and CPU timing for DLI handler.

Cycle counting breakdown before the CPU is halted until cycle 105, after which X and A are pushed into
the PFO and PFL1 color registers at cycles 107 and 111, respectively. Finally,

Figure 6 shows the DMA and instruction timing for the DLI handler. First, e epilogue begins at cycle 112, where it takes 10 CPU cycles (11 machine

after receiving the NMI request at cycle 8 and acknowledging it at cycle 10, cycles) to restore A and X and another six cycles to exit the DLI handler.

the 6502 has to finish the previous instruction. The worst case of six clocks ' There are a few aspects to note about this DLI handler. First, it doesn't write

is shown here. Afterward, it takes seven clocks for_ the _6502 to_push PC and NMIRES; that is generally unnecessary for DLIs. Second, the horizontal

P onto the stack and to fetch the NMI vector. At this point playfield DMA blank region before the line to be modified is critical timing-wise. In this case

starts, which slows do_vvn the CPU; the first instruction doesn't execute until  there would have been enough CPU time to STA WSYNC first and then both
cycle 28. From there, it takes 11 CPU cycles to execute the OS NMI handler, |55 and store the color values in HBLANK, but that's not always the case,

which actually takes 36 machine cycles with DMA contention, meaning that - gspecially with P/M DMA enabled or when the background color is involved.
the user DLI handler isn't entered until cycle 66. Second, the DLI handler consumes an entire scan line worth of CPU time
Once in the DLI handler, it takes 8 CPU cycles (16 machine cycles) to save d€spite only changing two registers and not setting up a subsequent DLI

X and A and 6 CPU cycles (12 machine cycles) to preload two colors. That's handle_r. In pr_actice, this means that any Iarge region that requires many per-
as much that can be done while still in the visible region, so on cycle 94, an Scan-line register changes is better done with a kernel started by one DLI

STAWSYNC is executed. The first cycle of the next instruction is executed ather than with multiple smaller DLIs.

Chapter 4 - ANTIC 93



Altirra Hardware Reference Manual Created by Avery Lee

4.16 Examples

Zaxxon Il

This game uses a display list interrupt (DLI) on a scan line that is highly contended, with a scrolled normal width
playfield and P/M graphics active. As a result, the 6502 is unable to read NMIST until past the standard interrupt
cycle on the next scan line, and the DLI bit must remain active for more than a full scan line for Zaxxon to work
correctly.

Race in Space

Unusually, the interrupt flag is set on the wait for VBL instruction at the end of the display list for the title screen.
The game relies on the high number of interrupts that this generates; failing to generate an interrupt per scan
line results in the title screen scrolling very slowly or never completing.

Race in Space also uses player collisions against a hi-res (mode F) playfield.
Numen

A lot of tricks are used in this demo, but it almost immediately goes into the “GTIA 9++” mode where VSCROL is
alternated to generate mode F with four scan lines per row and one-quarter the DMA overhead.

Bounty Bob Strikes Back!

This game loops on an alias of the VCOUNT register, $D47B, and jams on startup if address mirroring is not
supported.

Chicken

The display list for Chicken contains a vertical scrolling region that ends on a blank mode line. The vertical scroll
interaction causes this mode line to be variably extended beyond its usual one-scan-line height.

Tarzan of the Apes

The mid-screen DLI routine for the title screen of this game expects VCOUNT to roll over prior to P/M DMA at
the start of the next scan line.

Atomix Plus!

There is a buggy loop in this game for copying memory below the kernel ROM ($D800-FFFF) that enables
ANTIC interrupts before re-enabling the kernel ROM. It relies on a DLI or VBI never interrupting the following
sequence:

LDA #$40
STA NMIEN
LDA #$01
STA PORTB
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Pacem in Terris

One of the DLI handlers for the title screen attempts to change playfield width from narrow to normal by writing to
DMACTL, but misses the deadline doing so. The result is that the scan line is blank and the “Quasimodo” bitmap
is shifted one scan line lower than the display list would indicate.

Atari OS C: handler

The cassette (C:) handler in the Atari OS has a bug where it can rarely compute bogus baud rates due to
improper reading of VCOUNT. The OS tries to read both VCOUNT and a frame counter maintained by the VBI
and assumes that scan line 248 or higher (VCOUNT = 124) always occurs after the VBI, but this is not the case.
ANTIC triggers the VBI about a dozen cycles after VCOUNT increments to 124, so it is possible for
VCOUNT=124 to occur both before and after the VBI. The former causes an erroneous baud rate to be
computed by the OS.

4.17 Further reading

Consult [ATA82] for a overviews and register descriptions for ANTIC. Surprisingly, there is little, if any, additional
information in the formerly confidential chip document [AHS99]. A bit more information can be found in [AHSO00],
but the accuracy of the additional information appears questionable.

[CRAB82] notes a number of nuances about programming ANTIC, most notably the tricky timing in display list
interrupts. Note that there appear to be some slight timing discrepancies compared to the real Atari.
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5.1 Addressing

POKEY occupies the $D2xx block of memory. Only the lowest four bits are significant, so any access of the form
$D2xy accesses mirror x of register y. The canonical registers are at $D200-D20F.

Unassigned addresses

Reading locations assigned to POKEY but that don't correspond to a readable internal register return $FF, even
on machines with a floating data bus.

Stereo modification

A popular unofficial modification involves piggybacking a second POKEY onto the system and using address line
A4 to select between them. In that case, the even mirrors select the main POKEY, and the odd mirrors select the
secondary one. The secondary POKEY has less functionality available due to missing interrupt and 1/0O
connections.

5.2 Initialization

Power-up state

POKEY does not have a RESET line and therefore powers up in indeterminate state. Although various circuits
within the chip are biased toward particular states from a cold start, the initial state is not guaranteed and may
include interrupts being enabled in IRQEN and asserted in IRQST. Thus, IRQEN must be reset prior to clearing
the | bit on the CPU to avoid stray IRQs.

Initialization mode

Bits 0 and 1 of SKCTL normally control the keyboard scan and debounce features. However, clearing both of
those bits also activates another initialization function, which resets various clocks and state machines
throughout the chip. The following logic circuits are reset:

« 15KHz clock

+  64KHz clock

« 4-bit and 5-bit polynomial noise generators

«  9/17-bit polynomial noise generator (which includes RANDOM)
- Serial port input state machine and shift register

- Serial port output state machine

« The SEROUT valid flip-flop

- Keyboard scan (due to clearing bit 1)

These circuits are held in reset state until initialization mode is exited. For instance, while SKCTL bits 0 and 1 are
both cleared, any sound/timer channels using the 15KHz or 64KHz clocks will not count, as those clocks will be
frozen, and RANDOM wiill lock at $FF.

Initialization mode does not reset:

Chapter 5 - POKEY 97



Altirra Hardware Reference Manual Created by Avery Lee

« Interrupt enable (IRQEN) or status (IRQST)
- KBCODE

« SERIN

+ AUDF1-4, AUDC1-4, or AUDCTL

«  Timer counters

« Audio channel outputs

« Pot scan (although the pot scan will be suspended until init mode is ended, due to the frozen 15KHz
clock)

- The output of the serial output shifter, including the bit sent out the SIO DATA OUT line and driving two-
tone mode

Serial port reset

Setting the serial clock selection bits SKCTL (bits 3-5) to 0 resets the serial port circuitry. Therefore, SKCTL
should be set to $00 to initialize all POKEY functions.

Clock reset timing

The initialization function can be used to reset the 15KHz and 64KHz clocks to known offsets in the scan line. As
long as init mode has been enabled long enough for both clocks to reset fully, the clock offsets will be
determined by when init mode is exited. However, the design of the clocks causes the clocks to be reset to
partway through their cycles instead of the beginning.

Both clocks are polynomial counters with truncated cycles. The 15KHz clock is a 7-bit XNOR counter with a
polynomial of x"+x%+1. On a pattern of %1001001 (shifting left), a '1' bit is forced and a pulse emitted. This
occurs 78 cycles after the reset state of %0000000. The 64KHz clock is a 5-bit XOR counter with polynomial
x5+x3+1 and a forced '1' bit on %00010, occurring 19 cycles after the reset state of %11111. If IRQs are enabled
for unlinked timers using these clocks with period 0, the IRQ is asserted in IRQST 83 and 24 cycles after the
write to SKCTL that clears init mode.

5.3 Sound generation

POKEY has four audio channels with individual timers and audio output circuitry. Each channel has an
associated frequency register (AUDF1-4) and control register (AUDC1-4). In addition, there is a shared control
register (AUDCTL) for common functions.

Countdown timers

Each channel has an 8-bit countdown timer associated with it to produce clocking pulses. The period for each
timer is set by the AUDFx register, specifying a divisor from 1 ($00) to 256 ($FF). The countdown timer produces
a pulse each time it underflows and resets, which can then be used to drive an interrupt, the serial port, or sound
generation.

By default, timers use the default audio clock, which is selected by AUDCTL bit 0. Setting this bit to 0 selects the
64KHz clock, while setting it to 1 selects the 15KHz clock. It is not possible to use both the 15KHz and 64KHz
clocks at the same time, even on different timers. In addition, timers 1 and 3 can be switched to the fast
1.79MHz clock through AUDCTL bits 6 and 5.

Chapter 5 - POKEY 98



Altirra Hardware Reference Manual Created by Avery Lee

Timer period

For timers running at 1.8MHz with AUDFx = N, the period of the timer is N+4 cycles. +1 of this is because the
counter is reloaded on underflow and thus must count below $00. The other +3 is because of three cycles of
delay from the counter being split into multiple stages and for the underflow logic.

For timers using the 15KHz or 64KHz clock, the period is (N+1)*114 cycles for the 15KHz clock and (N+1)*28
cycles for the 64KHz clock. The three cycles of delay do not matter in this case because they are absorbed by
the delay until the next audio clock pulse, which occurs 114 or 28 cycles from the last pulse regardless of how
long the audio timer takes to reset. This also results in different timers using the same clock synchronizing to the
nearest 15KHz or 64KHz tick.

Some references show an additional factor of two in the relation between timer AUDF1-4 value and the
frequency. This is because in the common divide-by-two mode (distortion 10), each timer period causes the
output to toggle. The frequency of the resulting square wave is thus half the rate at which the timer underflows.
For instance, the closest NTSC AUDF value to play a 440Hz tone with the 64KHz clock is 72. This results in the
timer generating pulses at a rate of 1.79MHz =+ (73 x 28) = 875.6Hz. Two pulses are required to generate a
cycle, so the resulting square wave is half that at 437.8Hz. A similar divide-by-two is seen with the serial port,
which also requires two clock pulses per bit. However, the undivided rate is relevant for other uses of the timer,
such as IRQ generation and the noise sampling distortion modes.

Linked timers

Setting bit 4 of AUDCTL links timers 1 and 2 so that timer 2 is clocked using the output of timer 1, and similarly,
bit 3 links timers 3 and 4 together. This merges the pair of counters into a 16-bit counter, by making the following
changes:

« The automatic reload on underflow is suppressed on the low timer.

« The normal clock input to the high timer is replaced by the low timer output, so the high timer only counts
when the low timer underflows.

«  When the high timer underflows, both the low and high timer counters are reloaded together.

Typically, linking is used with the 1.8MHz clock on the low timer to achieve a high-precision timer. However, it
can also be used with the 15KHz and 64KHz clocks. The high timer — timer 2 or 4 — is the one that has the
combined period and is the one that should be enabled for audio, IRQs, or serial port clocking.

For the 15KHz and 64KHz clocks, the period of the linked timer is (N+1)*114 or (N+1)*28, where N = AUDF1 +
AUDF2*256 or AUDF3 + AUDF4*256. When the 1.79MHz clock is used, the period is N+7 cycles. This is three
cycles greater than for an unlinked timer due to increased delay for the timers to reset, since low timer must
underflow before the high timer can underflow, and only then can both reset. As with unlinked timers, this delay
is effectively hidden when the 15/64KHz clocks are used.

Linking occurs prior to the audio circuitry and thus the waveform settings for the low channel have no effect on
the clocking of the high channel. Normally, the low audio channel is muted and only the high channel is used.
However, it can also be reused for volume-only effects or even enabled for special effects without affecting the
high channel.

Linked timer fire timing

While linked timers are intended to be used as a single high-precision timer, both channels are still active and in
particular the low channel still sends clocking pulses to the output circuitry. Because linking disables the normal
reload for the low channel, it first counts down and underflows from its initial period and then continues to count
down and underflow every 256 ticks after that until the high timer also underflows and resets both timers. For
instance, with a 16-bit period of $0140, the low timer will fire after counting down from $40, then again after
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another 256 ticks. The high timer in turn counts down from $01 to $00 after the first underflow and then to $FF
after the second underflow, after which both timers are quickly reset. The reset of both counters does not cause
the low timer to fire again. As a result, the low timer in a linked pair will fire AUDF2+1 or AUDF4+1 times for each
time the high timer fires.

The high timer underflows and fires three cycles after the low timer does at the end of each high timer cycle, with
a corresponding three cycle delay for changes to the audio output or interrupt status.

Distortion (waveform) selection

Bits 4-7 of AUDCx control the waveform used by the audio circuitry for a channel. This allows each channel to
produce a flat level (no output), a square wave, or a more complex wave driven by the polynomial noise
generators.

Bit 4 enables volume-only mode. When set, the waveform output is overridden and hardwired on at the output.
None of the other distortion bits affect the audio output in this mode, though they still do affect hidden state in the
audio circuitry, as the clocking and noise circuits still run but just don't have an effect on the audio output.

Bit 5 selects either noise (0) or a square wave (1). When the square wave is enabled, each time the timer
expires and the output circuitry is clocked, the output toggles, resulting in a square wave with a frequency half
that of the timer. When noise is enabled, bit 6 selects either the 9/17-bit generator (0) or the 4-bit generator (1).

Bit 7 controls the sampling mode. If it is set, the timer output directly clocks the output waveform. If it is cleared,
however, the 5-bit generator masks out some of the clock pulses, omitting pulses that would cause the output to
toggle or sample the 4/9/17-bit noise generators. This gives a rougher, uneven sound that is different than the
other generators.

AUDCXx[7:4] Output
0000 (0) Poly-5 clocked poly-9/17
0010 (2) Poly-5 clocked square
0110 (6) wave
0100 (4) Poly-5 clocked poly-4
1000 (8) Poly-9/17
1010 (10) Square wave
1110 (14)
1100 (12) Poly-4
Xxx1 Volume-only

Table 8: Distortion modes

The distortion mode setting has no effect on timer IRQs or serial port clocking, and the results of the distortion
setting are not observable by the 6502.

Noise sampling artifacts

In POKEY, all channels share a common set of psuedo-random noise generators that all run at machine clock
rate. Noise is generated for each channel by sampling the output of the generator at the channel’s rate, with a
long period (lower pitch) causing channels to skip more bits in the noise output between each sample. This
differs from the 2600’s TIA where each channel has a dedicated noise circuit generating bits at the channel rate.
POKEY'’s sampling behavior can result in undesirable patterns due to interactions between the periods of the
noise generators and the channel timers. This happens when the two periods have a common factor.

For instance, the 4-bit generator has a period of N bits. An audio channel with a period of P cycles will sample
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the output of this generator every P cycles, or equivalently advance within the pattern every (P mod N) bits. If the
period is divisible by N, the same bit in the pattern will be sampled each time and no sound will occur. With the 4-
bit generator, N=15, and thus this occurs whenever the period is a multiple of 15 cycles.

For timer periods that aren't divisible by the noise period, artifacts will still occur if the two periods share a
common factor. This occurs because advancing by (P mod N) bits will only visit a subset of the bits. Given an
audio channel using the 64KHz clock and AUDFx=$CC, P=5740 and (P mod 15)=10, so it advances 10 bits at a
time. As a result, only three bits of the pattern will ever be used.

The three bits that are used, however, will depend upon the timing offset of the channel relative to the noise
pattern. This will tend to change whenever a sound is played, and the different sets of bits used will change the
timbre of the output. The 4-bit generator's 15 bit pattern is 000111011001010, so sampling it every 10 bits gives
the following possibilities: 001, 010, 001, 111, and 100. Four of these are similar, but one of them is a constant 1
bit -- giving a 1-in-5 chance that this configuration gives no sound.

Note that these interactions are based on the period in cycles, not ticks of the audio clock. When using the
15KHz or 64KHz audio clock, an AUDFx value of (F+1) divisible by N will produce silence, but other values can
as well. As an sample, using AUDFx=%$48 gives a period of 73 audio ticks, which is not divisible by the 9-bit
generator's period of 511 bits. However, when combined with the 64KHz clock, the period in cycles is 73*28 =
2044 cycles. Since 2044 = 511*4, the result is silent.

This problem can be avoided by using a period in cycles that is relatively prime to the period of the noise
generator, ensuring that all bits in the noise pattern are used and guaranteeing that the output is not constant.
Always using period values that result in the same (P mod N) value will also guarantee that the sampled pattern
is the same and avoid changing the timbre of the resulting sound. With the 1.8MHz clock, the period can also be
detuned slightly to always advance the noise pattern by one bit each period, mimicking the TIA's behavior.

Volume control

Bits 0-3 of AUDCXx control the volume level for a channel, from 0 (silent) to 15 (maximum volume). The volume
level only matters if the channel output is currently a 1; if it is a 0, then there will be no output from the channel
regardless of the volume level.

The output from each channel is biased, producing either zero or a negative voltage depending on the channel’s
volume level. Thus, increasing the volume also increases the average DC bias in the output, and changing the
volume can result in audible stepping noise. However, if the channel’s digital output is 0, there will be no
difference in the analog output regardless of volume level.

The 4-bit DAC for each channel also has somewhat mismatched outputs for each bit. In particular, the ratios
between the drivers for the lower two volume bits don’t quite match the ratios for the higher two bits, resulting the
gaps between volume levels 3 and 4, 7 and 8, and 11 and 12 being a bit wider than expected.

In addition, the mixed output from all four channels starts to show non-linear saturation effects at higher total
volume levels. The output is nearly linear within the range of a single channel, where the volume sum of
channels with an active output is 15 or less. However, the remainder of the range 16-60 is only about double the
amplitude, and two channels actively outputting at volume 15 only achieve about 50% higher amplitude than a
single channel. This has the effect of compressing the output, amplifying quieter sounds and attenuating louder
ones. Also, because of the previously mentioned biased output from each channel, a channel that is producing a
constant 1 bit at non-zero volume can distort the output by shifting the audio output into the saturation range. A
channel with constant output 0, however, contributes no distortion regardless of its volume level.

Volume-only mode

Bit 4 of AUDC1-4 activates volume-only mode for a channel. This causes the channel output to be forced to a 1,
ignoring the output of the timer, noise generators, and high-pass logic, and only producing sound based on the
volume set by bits 0-3 of AUDCXx. This is often used for playback of digital sound effects at 4-bit/sample
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precision.

Note that because the volume-only mode is enforced after the high-pass logic, the normal inversion of channels
1 and 2 relative to 3 and 4 doesn't apply to this mode; volume-only channels will add in any combination.

Volume-only mode overrides the output of but does not disable the high-pass or noise flip-flops, which will
continue to sample the noise patterns and high-pass sources.

High-pass filter

Channels 1 and 2 have a high-pass filter which is enabled by bits 2 and 1 of AUDCTL, respectively. This uses
channel 3 or 4 to clock a high-pass flip-flop that captures the output of the lower channel and XORs against it,
canceling the output back to a 0 whenever the higher channel ticks. This zeroes part of the lower channel's
output, acting as a crude high-pass filter.

The high-pass signal path routes from the clock output of the high channel’'s countdown timer to an XOR
immediately before the volume-only override and DAC on the low channel. Thus, the high-pass effect will stack
with any noise and volume settings on the low-channel, but is overridden by volume-only mode. None of the
AUDC3/4 bits on the high channel affect high-pass operation. They will still affect the high channel’s audio
output, which is usually set to volume 0 to mute it when using ch3/4 to drive the high-pass filter.

When the high-pass filter is disabled, the high-pass flip-flop is forced to a 1, but the XOR still takes place. This
causes the digital output from channels 1 and 2 to be inverted. Normally this isn't noticeable, but it can show up
when two channels play synchronized sound. If channels 1 and 2 are set to the same frequency and to pure tone
mode, they will add, but if the same is done with channels 1 and 3, they will cancel. This doesn't happen in
volume-only mode, however, as the gates that force volume-only mode are after the high-pass circuitry and
therefore volume-only channels always add in any combination.

The high-pass update path has about 1.5 cycles of delay from the high channel’s clock to the low channel’'s XOR
output. If channels 1 and 3 have their timers synchronized to a period of P cycles and channel 3 is running two
cycles ahead of channel 1, a half cycle pulse will be produced per period. The half-cycle offset makes it
impossible for the high-pass filter to completely cancel the lower channel's o