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PREFACE

The driving force to write a book is the urge in author’s mind to present his/her way
of treating the subject matter. In the process, the book may succeed in emphasizing
aspectswhichmayormaynothavereceiveddueattention.Excellentbooksonoptics
exist. For example, Principles of Optics by Max Born and Emil Wolf contains prac-
tically everything that a book on classical optics should have. Today, optics may be
as relevant to engineering students as to students of physics. This textbook, an out-
come of my experience of teaching optics courses at Indian Institute of Technology
Kanpur, strives to meet the needs of both streams of students. Not that other authors
have not paid sufficient attention to this aspect, the emphasis and visibility of topics
may, however, differ from book to book. Admittedly, a textbook on optics cannot
over-emphasize topics of engineering interest without compromising on basics of
optics. Pedagogy is the other thought process that has guided the preparation of the
manuscript. The collection and sequencing of the material have been done to ensure
continuity in the learning process. By and large, all selected topics have been treated
rigorously, in depth, and as far as possible completely. Motivated students should
benefit through self-study, but teacher’s exposition is perhaps essential. The book
is primarily aimed for senior undergraduate and beginning postgraduate students.
Students at that level with sufficiently advanced skills may not need solved exam-
ples and illustrations. However, first few problems of most chapters are relatively
easy and should essentially serve that purpose.

Consulting different books is an enriching experience for students and teachers
alike, but availability of a textbook which can delineate broad outlines of a
course or courses may be desirable. Leaving a few topics and emphasizing
some others should provide the necessary flexibility to adopt this textbook for
different courses on optics, applied optics, and photonics. The reader may find
sequencing of some topics a bit unusual. Coherence of light, for example, is
taken up much before diffraction. This is to make students realize that real light
is polychromatic and only partially coherent. Treating light through plane waves
throughout the book and bringing in polychromaticity and partial coherence
towards the end defeats this purpose. Introducing coherence early on puts students
in an advantageous position to deal with real light in basic optics, as for example
in interference studies.

As in other fields, consistency and uniqueness of notations do not exist in optics.
My choice of notations may reflect personal bias and quite possibly may not be

xv



xvi PREFACE

the choice of the majority in the field. I have, however, tried to use simple and
consistent notations, but at times deliberate departures could not be avoided. With
very few exceptions, function variations shown in the book are actual plots drawn
on MATLAB. The figures are drawn using Xfig software. The book contains eight
original photographs besides three photographs (Figs. 11.10, 13.22, and 13.24)
borrowed from literature, for which I am indebted to the original authors and pub-
lishers. Wherever I leaned substantially on a certain approach, original authors are
acknowledged. I apologize for inadvertent omissions. Most derivations in the book
are sufficiently detailed. Utmost care was exercised to eliminate errors, but this
cannot be guaranteed. Hopefully, serious mistakes should not be too many. Effort
has been made, as far as possible, to make each chapter self contained.

Chapter 1 deals with light propagation in isotropic and anisotropic media. This
is a bit of a departure from tradition. Usually, light propagation in anisotropic
media is considered much later. Anisotropic media, however, provide a more
general (and beautiful) example of light propagation and their discussion at this
stage seems quite appropriate. Likewise, coherence of light waves is introduced
in Chapter 2 to help develop a realistic appreciation of real light at an early stage.
Elementary knowledge of Fourier transforms and Fraunhofer diffraction should
suffice to follow the contents of this chapter. Chapters 3–8 cover bulk of stan-
dard linear optics except Fraunhofer diffraction which is taken up in Chapter 10.
The Jones vectors, Stokes parameters, matrix techniques for the description of
optical instruments and laser resonators, lens aberrations, two- and multi-wave
interference, thin optical coatings, diffraction theories, and Fresnel diffraction
are among the topics discussed in these chapters. Chapters 10–13 on Fraunhofer
diffraction, image formation and processing, transfer functions, and holography
may constitute the section on Fourier optics. Fourier transforms, convolution and
correlation operations, needed for the discussions in these chapters are reviewed
in Chapter 9. Nonlinear optics is introduced in the last chapter (Chapter 14)
of the book. First twenty five pages of this chapter develop fairly rigorously
the theoretical framework, followed by a discussion on some of the commonly
observed nonlinear effects such as the sum-frequency generation, upconversion,
second-harmonic generation, parametric amplification and optical phase conjuga-
tion. The chapter ends with a discussion on optical Kerr and electrooptic effects.
Each chapter has a set of problems which should help students extend their
working knowledge of optics. Major omissions of the book include fiber optics,
lasers, and quantum optics. Full justification to these topics without substantially
increasing the size of the book is not possible, hence their exclusion.

K K Sharma
Panchkula, India
2006
(Formerly at Indian Institute of Technology Kanpur)
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C H A P T E R 1

Light Waves

1.1 INTRODUCTION

Visible light constitutes a small, albeit an important, segment of the broad spec-
trum of electromagnetic waves encompassing �-rays on one extreme and radio
waves on the other. Between these two extremes, lie X-rays, ultraviolet radiation,
visible light, infrared radiation and microwaves in decreasing order of frequency
(Table 1.1). At the present stage of development of the field of optics, it is really
not necessary to justify the wave nature of light. Having said that, it must also be
mentioned that the original controversy between the two protagonists (Sir Issac
Newton and Christian Huygens) representing two schools of thought – light being
corpuscular and light having wave nature – took a new twist with the develop-
ment of quantum mechanics. Light, like matter, is now understood to have a dual
character – the wave-like behavior as well as the particle-like (photon) behavior.
Both attributes may not be revealed in a single measurement. Broadly speaking,
light propagation in free space and in other media can be described in classical
terms whereas light–matter interaction (absorption and emission of light) can be
understood only in the quantum mechanical description. In this book, we are
primarily concerned with light propagation and hence the classical description
in terms of Maxwell’s equations is quite adequate. Maxwell’s equations predict
the velocity of propagation of electromagnetic waves in vacuum which is in
close agreement with the measured velocity of light. This observation firmly
establishes light in the realm of the electromagnetic waves.

1.2 MAXWELL’S EQUATIONS

All electromagnetic phenomena, including light propagation, can be fully
described in terms of Maxwell’s equations (written here, in the SI units):

� · ⇀

E = �/�0�

� · ⇀

B = 0�

1



2 Chapter 1: LIGHT WAVES

Table 1.1. The electromagnetic spectrum.

Spectral Region Approximate Frequency Range

Gamma rays >1020 Hz
X-rays 1017−1020 Hz
Ultraviolet 1015−1017 Hz
Visible �3	5−7	5
×1014 Hz
Infrared 1012−1014 Hz
Microwaves 109−1012 Hz
Radiofrequency <109 Hz

�× ⇀

E = −�
⇀

B

�t
�

�× ⇀

B = �0

⎛
⎝⇀

J +�0

�
⇀

E

�t

⎞
⎠ � (1.1)

where �0 and �0 are, respectively, the permeability and permittivity of vacuum;

� and
⇀

J are the charge and current densities, respectively.
There is a need to distinguish between the microscopic and macroscopic forms

of Maxwell’s equations. The charge and current densities in the microscopic
form of Maxwell’s equations are those which exist at the atomic level. Conse-

quently, the electric field
⇀

E and magnetic field
⇀

B are expected to show rapid
variations over atomic and subatomic distances. Visible light with wavelength
range between 400 and 800 nm cannot probe the charge and current distributions
at the atomic level. X-rays and �-rays with much shorter wavelengths are better
suited to probe atomic distributions. Light waves can provide information on
charge and current distributions in matter averaged over distances of the order
of the wavelength of light. In that sense, light is a rather crude probe to inter-
rogate matter at the atomic level. Light waves perceive a medium more like a
continuum, and not a medium packed with discrete particles. The macroscopic
form of Maxwell’s equations uses the charge and current densities which are
averaged over microscopically large, but macroscopically small volumes. Macro-
scopically averaged fields vary smoothly in space and are mathematically well
behaved. The Gauss and Stokes vector theorems can be applied to these fields.
In this book, we shall deal with the macroscopic form of Maxwell’s equations.
Maxwell’s equations in the differential form (Eq. 1.1) can be derived from the
empirical integral formulation of the laws of electromagnetism developed over
centuries by Gauss, Ampère, Faraday and others. Maxwell brought symmetry

to these equations by introducing the displacement current density �0�
⇀

E/�t. No
wonder, these equations are known as Maxwell’s equations. In the context of the
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macroscopic form of Maxwell’s equations, it is necessary to distinguish between
the free and bound charge and current densities. The free electrons in conductors
generate the free charge density ��f
. In addition, it may also happen that the
centers of the positive and negative charges in a small macroscopic volume may
not coincide. If this happens, an electric dipole moment can be associated with

this volume and the medium is said to be polarized. The electric polarization
⇀

P
is defined as

⇀

P= net electric dipole moment in a macroscopically small volume V
volume V

	 (1.2)

The bound charge density in a polarized medium is given by

�b = −� · ⇀

P	 (1.3)

The bound charge density �b is non-zero only if polarization
⇀

P is spatially
changing. Electric polarization can be created in a medium either by aligning its
polar molecules or by displacing its negative charge with respect to the positive
charge by the application of an external electric field. The movement of the

free charges in a conductor gives rise to the free current density �
⇀

J f
, and the
changing displacements of the bound charges from their equilibrium positions
give rise to the bound current density

⇀

Jb = d
⇀

P

dt
	

We should also recognize the existence of the magnetic dipole moments in
magnetic materials. The bound current density can be generalized to include
these contributions as well;

⇀

J b = d
⇀

P

dt
+�× ⇀

M� (1.4)

where magnetization
⇀

M is the magnetic moment per unit volume defined in
the manner of Eq. (1.2). We now write Maxwell’s equations indicating these
contributions explicitly:

� · ⇀

E = ��f +�b
/�0� (1.5a)

� · ⇀

B = 0� (1.5b)
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�× ⇀

E = −�
⇀

B

�t
� (1.5c)

�× ⇀

B = �0

⎛
⎝⇀

Jf + ⇀

Jb +�0

�
⇀

E

�t

⎞
⎠ 	 (1.5d)

These equations along with the defining equations for the bound charge and
bound current densities constitute a formidable set of equations to deal with.
They can be made more compact by introducing two additional fields,

⇀

D= �0

⇀

E + ⇀

P� (1.6a)

⇀

H =
⇀

B

�0

− ⇀

M� (1.6b)

where
⇀

D is the electric displacement field and
⇀

H is the magnetic field. The field
⇀

B is usually called the magnetic induction or the magnetic flux density. The

term magnetic field is often used to refer either of the
⇀

B or
⇀

H field. Maxwell’s
equations (Eqs 1.5) can now be put in the form:

� · ⇀

D= �f� (1.7a)

� · ⇀

B = 0� (1.7b)

�× ⇀

E = −�
⇀

B

�t
� (1.7c)

�× ⇀

H =⇀

Jf + �
⇀

D

�t
	 (1.7d)

Despite the presence of the source terms, Maxwell’s equations should not be
conceptualized in terms of the cause and effect, where the fields are determined
by the sources of the charge and current present in the medium. The sources
and fields are, in fact, inter-dependent – each affecting the other. True, the free
charges do not depend on the fields, but the bound charges and currents are field
dependent. The bound charges and currents change the fields and are in turn
modified by the changing fields.

Equations (1.7) appear deceptively simple but are actually unmanageable pri-
marily because, notwithstanding Eqs (1.6), no simple relationships exist between

the electric fields
⇀

E and
⇀

D and between the magnetic fields
⇀

B and
⇀

H . Fortu-
nately, the elementary magnetic moments are not of much concern at the optical
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frequencies. Consequently, the magnetization
⇀

M can be ignored and the rela-

tionship between the
⇀

B and
⇀

H fields for materials of optical interest is rather
simple:

⇀

B= �
⇀

H	

The permeability� of optical materials is essentially field independent and differs
only slightly from vacuum permeability �0. However, the electric polarization
⇀

P must be reckoned with and cannot be ignored. In the absence of a detailed

understanding in classical terms, the electric polarization
⇀

P is usually expanded
as a power series in the electric field:

Pi = �0

[

�1

ij Ej +

�2

ijk EjEk +

�3

ijklEjEkEl +· · ·

]
� (1.8)

where Ei, Ej , Ek are the components of the electric field contributing to the

ith component of the polarization
⇀

P. The coefficients �n
 with n= 1�2�3� � � �
are the electric susceptibility tensors describing intrinsic material properties and
are best understood in quantum mechanical terms. Alternatively, they may be
treated as parameters to be determined empirically. Equation (1.8) is actually

more complicated than it appears because the polarization
⇀

P at a certain space-

time point �
⇀
r � t
 may depend, in addition to field

⇀

E at point
⇀
r and time t, on

fields in the spatial neighborhood of this point and may also depend on fields at
times prior to the chosen time t. We shall ignore such complications. Here, we

assume polarization
⇀

P �
⇀
r � t
 to depend linearly on the local and instantaneous

field only. Hence, we can write

⇀

P �
⇀
r � t
= �0

�1

⇀

E �
⇀
r � t
	 (1.9a)

This is the regime of linear optics to which most of this book is devoted. The
remaining terms in Eq. (1.8) form the basis of the exciting field of nonlinear
optics (Chapter 14). Equation (1.9a) is equivalent to

⇀

D �
⇀
r � t
= �

⇀

E �
⇀
r � t
� (1.9b)

where

�= �0�1+�1

 (1.9c)

is the medium permittivity. Except for vacuum ��1
 = 0
, the linear susceptibility

�1
 and permittivity � are in general complex suggesting the polarization
⇀

P and
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displacement field
⇀

D do not always remain in phase with the electric field
⇀

E.
For conducting media, the so-called constitutive relations (Eqs 1.6) need to be
supplemented by

⇀

J= �
⇀

E� (1.6c)

where � is the electrical conductivity of the medium. A homogeneous medium is
characterized by constant values of �, � and � , and an inhomogeneous medium
admits changes in these quantities from point to point in a smooth manner. For

linear optical materials ��f = 0�
⇀

J f= 0�� = 0
, Eqs (1.7) can be re-cast into the
form:

� · � ⇀

E = 0� (1.10a)

� · ⇀

B = 0� (1.10b)

�× ⇀

E = −�
⇀

B

�t
� (1.10c)

�× ⇀

B = ��
�
⇀

E

�t
	 (1.10d)

We note that for linear optical materials, only two fields
⇀

E and
⇀

B need to be dealt
with, but the permittivity � and to some extent the permeability � are unknown
quantities to be determined with reference to experimental observations. It must
be appreciated that the averaging process has transferred the information on the
electromagnetic behavior of the medium at the atomic level to the macroscopic
or bulk properties of the medium – the permittivity � and permeability � in the
context of optical materials.

All electromagnetic fields including the light fields must be consistent with
Maxwell’s equations, but on their own these equations do not suggest the exis-
tence of fields of any particular kind. One needs to postulate specific forms of
the fields and then obtain conditions for their existence. Another point to be
noted is that these equations describe relationships for the spatial and temporal
variations of the fields, but do not provide any clue as to how these fields are
generated in the first place.

1.3 THE WAVE EQUATION

The electric and magnetic fields appear coupled in Maxwell’s equations. It is
possible to de-couple them. The decoupling process brings out some of the most



1.3: THE WAVE EQUATION 7

exciting aspects of electromagnetism. For a homogeneous medium, except at its
boundaries, Eq. (1.10a) reduces to

� · ⇀

E= 0	 (1.10e)

This result in conjunction with Eq. (1.5a) suggests that a linear homogeneous
medium, with no free charge inside, cannot sustain any bound charge except
(may be) at its boundaries. We shall have to fall back to Eq. (1.10a) when the
boundaries of a homogeneous medium are approached. With Eq. (1.10e), the

�×�× ⇀

E simplifies to

�×�× ⇀

E= ��� · ⇀

E
−�2
⇀

E= −�2
⇀

E 	

Taking curl of Eq. (1.10c), interchanging � and �/�t operations on the right-hand
side and combining it with Eq. (1.10d) leads to the well-known wave equation

�2
⇀

E −���
2
⇀

E

�t2
= 0	 (1.11a)

In a similar manner, we can obtain

�2
⇀

B −���
2
⇀

B

�t2
= 0	 (1.11b)

Notwithstanding this apparent separation, the electric field
⇀

E and magnetic field
⇀

B of an electromagnetic wave remain dependent on each other through Maxwell’s
equations.

The wave equations (1.11) describe wave motion in a variety of situations,
as for example the waves in an elastic medium. We can interpret Eqs (1.11)
to describe the propagation of the electric and magnetic fields or more appro-
priately, the propagation of the electromagnetic waves. Extending the similarity
with the elastic waves a bit further, one may postulate the existence of some
kind of an elastic medium pervading all space which makes it possible for the
electromagnetic waves to propagate. Aether was thought to be such a medium.
It must necessarily be a thin medium since electromagnetic waves do propagate
in essentially free space. At the same time, aether must be sufficiently elastic for
wave propagation to take place. These are some of the internal inconsistencies
of the aether postulate. The results of an ingenious experiment performed by
Michelson and Morley were not consistent with the aether postulate. Aether
has no place in the special theory of relativity developed by Albert Einstein.
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Electromagnetic waves including the light waves can propagate in absolutely
empty space. They do not require matter to facilitate propagation. The chang-
ing electric and magnetic fields associated with an electromagnetic wave are
capable of sustaining each other. A comparison of the wave equation with its
counterpart for mechanical waves suggests that the product �� must represent
the inverse of the square of the speed of propagation of electromagnetic waves.
A medium is not necessary for the propagation of electromagnetic waves. How-
ever, the velocity of propagation of electromagnetic waves in a given medium
is determined by its permeability and permittivity. The vacuum with permeabil-
ity �0 = 4�× 10−7 N s2 C−2 and permittivity �0 = 8	85 × 10−12 C2 N−1 m−2 has
velocity c= 2	99×108 m s−1 for the propagation of electromagnetic waves. This
value agrees very closely with the velocity of light measured in the laboratory.
This brings light within the domain of applicability of Maxwell’s equations.

The wave equation (1.11) is a linear, homogeneous, second-order differential
equation. The linearity of the wave equation leads to the superposition principle

which states that if
⇀

Ej (j = 1�2�3� � � � � n) are solutions of the wave equation,

then
∑

j aj
⇀

Ej is also a solution of the wave equation, where aj are arbitrary
constants (real or complex). The wave equation admits a variety of solutions –
some extremely simple in form, others sufficiently intricate. The implication of
this statement needs to be appreciated. All light fields in a homogeneous medium
must be solutions of the wave equation. However, external conditions must be
accurately controlled to generate light fields to correspond to a particular solution
of the wave equation. Some solutions may be mathematically easy to handle,
but difficult to realize in practice. Fortunately, external conditions can often be
manipulated to favor a particular kind of solution – generation of coherent light
in a laser is an important step in this direction. The plane wave solution

⇀

E �
⇀
r � t
= ⇀

E0 ei�
⇀
k 	
⇀
r −�t


is perhaps the simplest solution and the lowest order Bessel wave solution [1.2]

E�
⇀
r � t
= E0J0���
e

i��z−�t
�

representing a nonspreading beam with �2 +�2 = ��/c
2, is one of the non-trivial
solutions of the wave equation.

A plane wave is actually unphysical in the sense that no experimental effort
can succeed to generate a plane wave. Notwithstanding this ‘awkwardness’, the
plane wave solution of the wave equation is an extremely useful solution. In
the backdrop of these remarks, we now discuss some monochromatic (single
frequency) solutions of the wave equation in a homogeneous medium. The
quasi-monochromatic and polychromatic wave solutions can be constructed in
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terms of the monochromatic wave solutions. This will be the subject matter of
the next chapter.

1.3.1 Plane Wave Solution

The general solution of the wave equation (1.11) can be written in the form

⇀

E �
⇀
r � t
=⇀

E0 �
⇀
r � t
ei��

⇀
r �t
� (1.12)

where
⇀

E0 �
⇀
r � t
 and ��

⇀
r � t
 are the amplitude and phase of the wave, respec-

tively. A plane wave is characterized by phase ��
⇀
r � t
 which, at any given time,

remains constant in a plane perpendicular to the direction of propagation of the
wave. The phase

��
⇀
r � t
=⇀

k · ⇀
r −�t

satisfies this condition since the dot product
⇀

k 	
⇀
r remains constant �=kr0


as the tip of the position vector
⇀
r moves over a given plane perpendicular to

the direction of propagation
⇀

k ; r0 is the component of
⇀
r in the direction of

⇀

k

(Fig. 1.1). The amplitude
⇀

E0 of a plane wave does not depend on position vector
⇀
r and time t.

A surface (in this case a plane) of constant phase is called a wavefront or
an equiphase surface. Let plane I in Fig. 1.1 represent the wavefront at the
space-time point �r0� t0
 with phase

�0 =⇀

k · ⇀
r −�t = kr0 −�t0	

+ d t00 )

O

r

k

I II

0(r0, t (r)0 + d r0 , t

Fig. 1.1: Moving wavefront of a plane wave.
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This wavefront moves along with the wave and plane II is its subsequent position
at the neighboring space-time point (r0 +dr0� t0 +dt0). Therefore,

�0 = kr0 −�t0 = k�r0 +dr0
−��t0 +dt0
	

The velocity of propagation of the wavefront is given by

vp = dr0

dt0
= �

k
	

This is the phase velocity or the wave velocity. We could have defined the

phase of a plane wave with a negative sign before
⇀

k · ⇀
r . That choice represents

another plane wave propagating in just the opposite direction. In fact, any well-
behaved mathematical function of �±k · r −�t
 can represent a plane wave.
A particularly useful form of the plane wave is the harmonic plane wave

⇀

Er =
⇀

E0r cos�
⇀

k · ⇀
r −�t+�0
 (1.13a)

in the real field notation or

⇀

E= ⇀

E0r ei�
⇀
k ·⇀r −�t+�0
 (1.13b)

in the complex field notation, where �0 is a constant called the phase constant.
To avoid trigonometric complications, we prefer to employ the complex field
notation. The real field can always be recovered from the complex field and its
complex conjugate:

⇀

Er =
1
2

⇀

E0r ei�k · r−�t+�0
 + 1
2

⇀

E0r e−i�
⇀
k ·⇀r −�t+�0
	 (1.14)

A more general harmonic plane wave is described by the fields

⇀

E = ⇀

E0 ei�

⇀∼
k ·⇀r −�t
� (1.15a)

⇀

B = ⇀

B0 ei�

⇀∼
k ·⇀r −�t
	 (1.15b)

The notation
⇀∼
k is used to distinguish the complex wave vector from the real

wave vector
⇀

k . The complex wave vector or the propagation vector
⇀∼
k allows

for the attenuation (or the gain) of the amplitude of a wave as it propagates in
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the medium. For complex
⇀

E0 and
⇀

B0, the electric and magnetic fields may not
always remain in phase. The complex propagation vector may be expressed as

⇀∼
k =⇀

k +i
⇀
a� (1.16)

where
⇀

k is the real part of the propagation vector and
⇀
a is a real vector called the

attenuation vector. For the harmonic plane wave solution to be consistent with
Maxwell’s equations in a homogeneous medium, following conditions must be
satisfied:

⇀∼
k · ⇀

E0 = 0� (1.17a)
⇀∼
k · ⇀

B0 = 0� (1.17b)

⇀

B0 =
⇀∼
k× ⇀

E0

�
� (1.17c)

⇀

E0 = −
⇀∼
k× ⇀

B0

���
	 (1.17d)

Equations (1.17a) and (1.17b) specify the transversality condition of the complex

field amplitudes
⇀

E0 and
⇀

B0. However, it must be understood that the electric and

magnetic fields are transverse to the real wave vector
⇀

k only when the medium
is non-absorbing (

⇀
a= 0). Combining Eqs (1.17c) and (1.17d) and making use

of the vector triple product, we get

2
∼
k=

⇀
∼
k ·

⇀
∼
k= ���2 =

2
∼
n
�2

c2
� (1.18a)

where

2
∼
n= ��c2	 (1.18b)

The real and imaginary parts of the complex refractive index

∼
n= n+ i� (1.19)
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are known as the refractive and extinction indices of the medium, respectively.

The real and imaginary parts of the complex wave vector
⇀∼
k and complex refrac-

tive index
∼
n satisfy the following relations:

k2 −a2 = �n2 −�2

�2

c2
� (1.20a)

⇀

k · ⇀
a = n�

�2

c2
· (1.20b)

It should be noted that in place of permittivity and permeability, the complex
refractive index now describes the bulk properties of an optical material.

1.3.2 Spherical and Cylindrical Wave Solutions

A point source embedded in an isotropic medium generates a spherical wave
which propagates radially outward. The surfaces of constant phases for a spher-
ical wave are spherical, centered at the source point. The scalar electric field of
a harmonic spherical wave in the complex notation has the form

E�r
= A

r
ei�kr−�t
� (1.21a)

where A is the amplitude of the spherical wave at unit distance from the point
source. The 1/r dependence of the field can be easily derived by integrating the
wave equation after expressing it in spherical polar coordinates. However, this
dependence follows from consideration of energy conservation. Equation (1.21a)
represents a diverging or an expanding spherical wave diverging from point
r = 0, and the spherical wave converging to point r = 0 is

E�r
= A

r
ei�−kr−�t
	 (1.21b)

The harmonic cylindrical wave solutions of the wave equation have the form

E�r
= A√
r

ei�±kr−�t
� (1.21c)

where the wavefronts are in the form of coaxial cylindrical surfaces travelling
outward from an infinite line source at r = 0 or travelling inward to converge
on a line at r = 0.
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1.3.3 Beam-Like Solutions

Laser light possesses a high degree of directionality resembling closely the
directionality of a plane wave. But unlike for a plane wave, the field amplitude
of laser light decreases rapidly in the transverse plane. Laser light diverges
as it propagates, but for short distances the divergence of laser light is much
smaller than the divergence of a spherical wave. Of course, laser light is not
monochromatic but it is the closest approximation we have for monochromatic
light. We now seek a monochromatic solution of the wave equation which is
highly directional and possesses a low degree of divergence. It is hoped that
such a solution may provide at least an approximate description of laser light.
Here, we disregard the fact that the wave equation (1.11) is a vector equation.
Instead, we treat the electric and magnetic fields as scalar fields. By doing so, we
lose all information about the state of polarization of light to which this solution
may correspond. The solution may still be useful to describe interference and
diffraction phenomena. We begin by requiring that the beam-like solution be
monochromatic, so that

E�
⇀
r � t
= E�

⇀
r 
e−i�t	

On substituting this solution, the wave equation (1.11a) reduces to Helmholtz
equation

��2 +k2
E�
⇀
r 
= 0� (1.22)

where

k2 = ���2 = �2/v2 = n2�
2

c2
	

The propagation vector and index of refraction are assumed real in the present
context. To retain the beam-like character of the solution, we write

E�
⇀
r 
= ��

⇀
r 
eikz	 (1.23)

The wave propagates in the z-direction with wave number k= n��/c
. Noting
that

�2

�z2

(
��

⇀
r 
eikz

)
=
[
�2

�z2
+2ik

�

�z
−k2

]
��

⇀
r 
eikz�

Eq. (1.22) can be recast into the form

�2
t ��

⇀
r 
+ �2��

⇀
r 


�z2
+2ik

���
⇀
r 


�z
= 0� (1.24)
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where

�2
t = �2

�x2
+ �2

�y2
	

Making use of the slowly varying envelope approximation (SVEA)

�2��
⇀
r 


�z2
� k

���
⇀
r 


�z
�

Eq. (1.24) can be approximated to

�2
t ��

⇀
r 
+2ik

���
⇀
r 


�z
= 0	 (1.25)

The SVEA ensures slow variation (on the wavelength scale) of the field ampli-
tude ��r
 and its derivatives in the direction of propagation. However, appreciable
changes in the amplitude over long distances are still permitted. Equation (1.25)
admits many beam-like solutions. We look for the one which manifests cylin-
drical symmetry about the direction of propagation. This may be the simplest,
but not the only interesting beam-like solution the wave equation possesses. For
the present, it suffices to solve the equation

1
�

�

��

(
�
���

⇀
r 


��

)
+2ik

���
⇀
r 


�z
= 0� (1.26)

where �= �x2 +y2
1/2. A possible solution to this equation may have the form

���� z
= A ei�p�z
+ 1
2 �k�

2
/�q�z

�� (1.27)

where A is a constant. For real p�z
 and q�z
, the beam intensity is independent
of � and z. This is not the kind of solution we are seeking. Hence, we expect
either one or both of these functions to be complex. Substituting Eq. (1.27) into
Eq. (1.26) gives

2k
(

i
q�z


− dp�z

dz

)
+ k2�2

q2�z


(
dq�z


dz
−1
)

= 0	 (1.28)

This equation is satisfied if

dq�z


dz
= 1� (1.29a)

dp�z

dz

= i
q�z


	 (1.29b)
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The solution of Eq. (1.29a) is

q�z
= z− iz0	 (1.30)

For convenience, the constant of integration has been taken as −iz0. Integration
of Eq. (1.29b) yields

p�z
= i ln�1+ iz/z0
� (1.31)

where the constant of integration has been chosen to make p�0
= 0. With this
choice, this beam-like solution has exactly the phase (but not the amplitude)
of the plane wave at z = 0. In other words, the wavefront at z = 0 is planar.
Equation (1.31) can be expressed as

eipz =
(

1+ i
z

z0

)−1

= 1√
1+ z2

z2
0

e−i��z
� (1.32)

where ��z
= tan−1 z/z0. Equation (1.30) can be written in an equivalent form

1
q�z


= z

z2 + z2
0

+ i
z0

z2 + z2
0

= 1
R�z


+ 2i
k

1
w2�z


� (1.33)

where

R�z
= z+ z2
0

z
� (1.34a)

w2�z
= w2
0

(
1+ z2/z2

0

)
� (1.34b)

w2
0 = 2z0

k
	 (1.34c)

Combining these results, the beam-like solution of the wave equation possessing
cylindrical symmetry about the direction of propagation can be written as

E�
⇀
r � t
= A

w0

w�z

e−�2/w2�z
 eik�2/2R�z
 ei�kz−��z
−�t
� (1.35a)

= A
w0

w�z

e−�2/w2�z
 eik�z+��2/2R�z


 e−i��z
e−i�t	 (1.35b)
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The two equivalent expressions (1.35a) and (1.35b) have been written to bring
out two complementary features of the beam-like solution. The phase factor
�kz−��z
−�t
 in Eq. (1.35a) reminds us of the plane wave solution since
��z
 is a slowly varying function of z, changing from zero to �/4 as z goes
from zero to z0. On the other hand, for visible light, kz varies by nearly 105

radians over a distance of 1 cm. However, the solution differs from a plane wave
because the amplitude of the wave does not remain constant. The expression
(1.35b), on the other hand, possesses some implicit resemblance to a spherical
wave. The phase factor k�z+�2/2R�z

 will be shown to approximate the phase
factor kr of a spherical wave in the limit of large r. Furthermore, w�z
 varies
linearly with z for large z suggesting an inverse dependence of the amplitude
on distance as for a spherical wave. But for z, not too large, this solution has
much lower divergence as compared to the divergence of a spherical wave. The
amplitude

E0�
⇀
r 
= A

w0

w�z

e−�x2+y2
/w2�z


of the beam-like solution varies with x, y, z. For a fixed value of z, it has
a Gaussian profile in the transverse plane. The amplitude falls to 1/e of its
maximum value at a distance �= �x2 +y2
1/2 =w�z
 from the axis of symmetry
(Fig. 1.2).

The transverse profile of the beam-like solution changes as the wave propa-
gates. It has minimum spread at z= 0. The width of the transverse profile of the
beam increases non-linearly with z on either side of the point z = 0. However,

(x2+y2)1/2

1.0

( 2+ 2)

e

x y

e 2(z)

− (z) (z)

1

0

Fig. 1.2: Gaussian profile of the amplitude of the beam-like solution.
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z 0

2
0

(z )

θ
z

0

0

Fig. 1.3: Variation of the transverse profile of the beam-like solution; w0 is beam
waist and z0 is Rayleigh range.

for �z� � z0, the transverse profile shows a linear dependence on z. This behavior
of the solution is shown in Fig. 1.3.

We next consider the spatial phase of the wave,

��x� y� z
= k

(
z+ x2 +y2

2R�z


)
	 (1.36a)

This phase is obviously not constant for a given value of z. The equiphase
surfaces are curved, but not necessarily spherical (Fig. 1.3). For comparison, we
write the spatial phase of a spherical wave in the limit x� y � z:

�sph�x� y� z
= kr

= k�x2 +y2 + z2�1/2

≈ k�z+ x2 +y2

2z
�	 (1.36b)

Only the first term in the binomial expansion has been retained. The expressions
(1.36a) and (1.36b) are similar since R�z
 ∼ z for large z. One may therefore
conclude that for points in the transverse plane, not too far from the axis of
symmetry, the curvature of the equiphase surface of the beam-like solution
approaches sphericity for large values of z. It is tempting to identify the factor
1/R�z
 with the curvature of the equiphase surface. The curvature changes
continuously from planar at z = 0 to near-spherical for large z, taking more
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complex forms in the intermediate region. Sections of these surfaces are shown
in Fig. 1.3. The curvature changes sign as the point z= 0 is crossed. The intensity
distribution

I�x� y� z
=
(

1

2
�0c

)
A2

(
w0

w�z


)2

e−2�x2+y2
/�w2�z

 (1.37)

of the beam-like solution has Gaussian profile in the transverse plane with 1/e2

half-width which varies from w0 at z= 0 to w = √
2w0 at z= z0 and increases

approximately linearly for large values of �z�. The beam in any transverse plane
will have the appearance of a bright round spot with spot size (1/e2 beam radius)
w�z
. At the beam waist (z = 0), the spot size has the least value (w0). The
distance z0 over which the spot size changes from w0 to

√
2w0 is known as the

Rayleigh range. The beam divergence, defined asymptotically, is

��divergence
= lim
z→	

dw�z

dz

= w0

z0

= �v
�nw0

�

where �v is wavelength of light in a vacuum and n is refractive index of the
medium. Typical divergence angle of the beam of a commercial laser is in
milliradians.

As mentioned earlier, we have considered only the lowest order beam-like
solution �TEM00mode
 of the wave equation which has been found to resemble
in some way a plane wave for z→ 0 and a spherical wave for z→ ±	. Higher
order solutions of the wave equation with beam-like character also exist. They
are described in terms of the Hermite polynomials [1.1, 1.2].

1.4 HOMOGENEOUS AND INHOMOGENEOUS WAVES

A vacuum is a perfectly transparent medium for the entire range of the elec-
tromagnetic spectrum. Other media may approach complete transparency over
limited spectral bandwidths. Perfect transparency exists in an optical medium
when the index of refraction is purely real �� = 0
. This need not necessarily
imply a purely real propagation vector (a non-absorbing medium). For perfect
transparency, Eq. (1.20b) requires

⇀

k · ⇀
a= 0	 (1.38)

This condition can be met in two ways. The attenuation vector may be a null
vector (

⇀
a= 0), in which case, the plane wave solution takes the form
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⇀

E =⇀

E0 ei�
⇀
k ·⇀r −�t
�

⇀

B =⇀

B0 ei�
⇀
k ·⇀r −�t
�

(1.39)

where
⇀

k is now a real vector of magnitude

k= n
�

c
	 (1.40)

These fields represent a homogeneous plane wave with coincident surfaces of

constant amplitude (
⇀

E0 = constant,
⇀

B0 = constant) and constant phase (
⇀

k · ⇀r=
constant). These surfaces are planes perpendicular to the real wave vector

⇀

k .
Equations (1.39) represent a wave with unchanging amplitude propagating with
speed

v= �

k
= c

n
	 (1.41)

In this case, Eqs. (1.17) have clear physical interpretation. The real and

imaginary parts of the
⇀

E and
⇀

B fields are transverse to the direction of
propagation. It should be understood that we have used the complex notation for
the fields only for the sake of convenience. The physical electric and magnetic
fields being real are not only transverse to the direction of propagation, but
are also transverse to each other in the present case. Such a wave is called
a TEM wave, where TEM stands for transverse electric and magnetic fields
(Fig. 1.4). The electric and magnetic fields remain in phase and their amplitudes
are related by

B0 = n

c
E0	 (1.42)

For a perfectly transparent medium (� = 0), the condition (1.38) can also
be met for a non-zero value of the attenuation vector

⇀
a provided the real and

imaginary parts of the complex wave vector

⇀
∼
k are orthogonal to each other. In

this case, the plane wave solution takes the form

⇀

E �
⇀
r � t
=⇀

E0 e−⇀
a ·⇀r ei�

⇀
k ·⇀r −�t
	 (1.43)

The wave now propagates in the direction of
⇀

k with somewhat diminished veloc-
ity as compared to the velocity of the homogeneous wave (

⇀
a= 0). The surfaces

of constant phase and constant amplitude are no longer coincident. The surfaces
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  k

Fig. 1.4: A homogeneous harmonic plane wave; electric and magnetic fields are
transverse to the direction of propagation and also to each other.

of constant phase remain perpendicular to the direction of propagation
⇀

k , but the

surfaces of constant amplitude (
⇀

E0 e−⇀
a ·⇀r = constant) are now planes perpen-

dicular to the direction of the attenuation vector
⇀
a since

⇀
a · ⇀

r remains constant
in a plane normal to

⇀
a. The amplitude of the wave decreases in the direction

of
⇀
a. This is the inhomogeneous wave. Figure 1.5 compares a homogeneous

wave with an inhomogeneous wave of this kind. A wave is inhomogeneous if
the surfaces of constant amplitude and constant phase are not coincident. The
field configurations are not easy to visualize for the inhomogeneous waves. For

the TE mode, the real and imaginary parts of the electric field
⇀

E are perpen-

dicular to the plane containing the propagation vector
⇀

k and attenuation vector
⇀
a. It can be shown (see Problem 1.4) that the magnetic field for the TE mode
is elliptically polarized. For the TM mode, the real and imaginary parts of the

magnetic field
⇀

B are perpendicular to the plane of
⇀

k and
⇀
a. Any field configu-

ration can be expressed as a superposition of TE and TM modes. An example
of an inhomogeneous wave is the evanescent wave to be considered later in this
chapter.

For the more general case of non-zero extinction index �, the attenuation

vector
⇀
a is not normal to the propagation vector

⇀

k and the amplitude of the
inhomogeneous wave decreases in the direction of propagation as well. The
surfaces of constant phase and constant amplitude are neither coincident nor
orthogonal. Electromagnetic waves in metals behave in this manner.
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O

(a) (b)

O

k

a

P

E

B

k

2
P

P
1

Fig. 1.5: (a) A homogeneous plane wave; planes of constant phase and planes
of constant amplitude are coincident (P). (b) An inhomogeneous plane wave;

planes of constant phase (P1) are perpendicular to propagation vector
⇀

k and

planes of constant amplitude (P2) are perpendicular to attenuation vector
⇀
a.

1.5 ENERGY DENSITY AND POYNTING VECTOR

A wave carries energy as it propagates in a medium. The instantaneous energy
density stored in the medium due to the presence of the wave is given by1

u= 1
2
��E�r

2 + 1

2�
�B�r

2 (1.44a)

and the instantaneous energy crossing per unit area per unit time is given by the
Poynting vector

⇀

S=
⇀

E�r
 ×
⇀

B�r


�
� (1.44b)

where
⇀

E�r
 and
⇀

B�r
 are real time-dependent fields. The more relevant quantities
for light fields are their time averaged values. In the complex notation,


u� = 1
4
Re

[
�
⇀

E ·
⇀

E∗ + 1
�

⇀

B ·
⇀

B∗
]

1 Introduction to Electrodynamics by David J. Griffiths.



22 Chapter 1: LIGHT WAVES

and


⇀S� = 1
2�

Re�
⇀

E ×
⇀

B∗�	

For a propagating TEM wave,

�
⇀

E ·
⇀

E∗= 1
�

⇀

B ·
⇀

B∗�

so that


u� = 1
2
�
⇀

E ·
⇀

E∗= �
�E�r

2�
and


⇀S� = 1
2�

Re
⇀E ×
⇀

B∗� = 1
2�v

EE∗ŝ�

where the symbol 
 � represents the average over a time needed to make a measure-
ment which is much longer than the period of a light wave and ŝ is a unit vector in

the direction of
⇀

S . The intensity of a wave, defined as the magnitude of the time
averaged Poynting vector, is given by

I = 
S� = 1

2�v
EE∗ = 1

2
�vEE∗� (1.45)

where v is the velocity of the wave in the medium. The expression

I = 1
2
n�0c�E�2� (1.46)

commonly used in literature makes the reasonable assumption of �≈ �0 for an
optically transparent medium of refractive index n. A useful relation between
the energy density and intensity of a plane wave is

I = v
u�	 (1.47)

1.6 BOUNDARY CONDITIONS

We have so far been considering wave propagation in a source-free infinite homo-
geneous medium. In practice, one encounters wave propagation in a medium
of finite extent. We need to address ourselves to the question of matching the
solutions of the wave equation at the interface between two media. It is con-
venient to assume a plane boundary separating the two media. This assumption
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may actually be not as restrictive as it appears at first sight. As mentioned
earlier, the macroscopically averaged electric and magnetic fields satisfy Gauss
and Stokes theorems everywhere in the two media including the region sur-
rounding the boundary between them. The restrictions imposed by these the-
orems on the fields on the two sides of the interface are called the boundary
conditions.

1.6.1 Continuity of the Normal Components

Consider a small pillbox around the interface between two media of permittivities
�1 and �2 (Fig. 1.6a). The height h of the pillbox is infinitesimally small bringing
the flat surfaces of the pillbox very close, but on the opposite sides of the
boundary. We apply Gauss’ theorem

∫∫
©

S

⇀

D ·d
⇀

A=
∫∫∫

V
� · ⇀

D dV

to the displacement field
⇀

D over this pillbox. The integral on the left-hand side
is over the closed surface S bounding the volume V . The volume integral on
the right-hand side vanishes when the volume of the pillbox approaches zero
as h → 0. In the same limit, the contribution to the surface integral from the
curved surface of the pillbox is vanishingly small. The flat surfaces of the pillbox
are taken sufficiently small so that the normal component of the displacement
field contributing to the surface integral in each medium remains constant.
Therefore,

�1

⇀

E1 · n̂′ + �2

⇀

E2 · n̂= 0�

n̂

2121

n̂n’̂

c             h

(b)(a)

h

1
E E

2

D2D1

E
1

E
2

Fig. 1.6: Plane boundary between two homogeneous media.
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where the unit vectors n̂′ and n̂ are normal to the boundary as shown in the
figure. With n̂′ = −n̂, the above condition, expressed as

�1

⇀

E1 · n̂= �2

⇀

E2 · n̂� (1.48a)

is a statement of the continuity of the normal components of the displacement
fields across the boundary between two homogeneous media. A similar condition

holds for the normal components of the
⇀

B fields, i.e.,

⇀

B1 · n̂ = ⇀

B2 · n̂	 (1.48b)

1.6.2 Continuity of the Tangential Components

Next, we apply Stokes’ theorem

∮
c

⇀

E ·d
⇀

l =
∫ ∫

∑ �× ⇀

E ·d
⇀

A

= − �

�t

∫ ∫
∑

⇀

B ·d
⇀

A

to the electric field, where the closed path c encloses the boundary between the
two media as shown in Fig. 1.6b. Here,

∑
is a surface bounded by the closed

path c. The side h of the rectangular path is taken sufficiently small so that
the tangential fields do not change appreciably in each medium over the paths
parallel to the boundary. The surface integral on the right-hand side vanishes as
the width w of the rectangular path approaches zero, leading to the continuity of
the tangential components of the electric fields across the boundary, i.e.,

⇀

E1 × n̂ = ⇀

E2 × n̂	 (1.48c)

The continuity of the tangential components of the
⇀

H fields can be shown in a
similar manner. So that,

⇀

H1 × n̂ = ⇀

H2 × n̂
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or equivalently

⇀

B1

�1

× n̂=
⇀

B2

�2

× n̂� (1.48d)

where �1 and �2 are the permeabilities of the two media. We may make the
reasonable assumption that for the optically transparent media �1 ≈ �2 = �0.
These four relations (Eqs 1.48) constitute the boundary conditions which must
be satisfied across an interface between two homogeneous media.

1.7 REFLECTION AND TRANSMISSION AT A BOUNDARY

The boundary conditions obtained in Section 1.6 can be used to obtain relation-
ships among the amplitudes of the reflected, transmitted and incident waves at
the boundary between two homogeneous media (Fig. 1.7). This exercise can be
quite tedious. Our approach here is to avoid mathematical complications as far
as possible, but at the same time not to miss the essential features of what goes
on at the interface. Following Stone [1.3], we consider light incidence from a
perfectly transparent ��1 = 0
 and non-absorbing �

⇀
a1= 0
 medium of refractive

index n1 to a medium for which the refractive index
∼
n and wave vector

⇀∼
k may

be complex.

n̂

σ̂

rB

π̂

φO

θ

(n2 , 2) κ

ki

n1

r

at
n̂

kt

kr

θ’

Fig. 1.7: Reflection and transmission of a wave at a plane boundary.
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The incident wave is therefore homogeneous. We can anticipate the reflected
wave to be homogeneous as well, but the transmitted wave in general will be
inhomogeneous. Accordingly, the fields in the two media can be expressed as
Incident wave:

⇀

Ein = ⇀

Ei ei�
⇀
ki ·⇀r −�t
�

⇀

Bin = ⇀

Bi ei�
⇀
ki ·⇀r −�t
�

(1.49a)

Reflected wave:

⇀

Ere = ⇀

Er ei�
⇀
kr ·⇀r −�′t
�

⇀

Bre = ⇀

Br ei�
⇀
kr ·⇀r −�′t
�

(1.49b)

Transmitted wave:

⇀

Etr = ⇀

Et ei��
⇀
kt+i

⇀
at
 ·⇀r −�′′t��

⇀

Btr = ⇀

Bt ei��
⇀
kt+i

⇀
at
 ·⇀r −�′′t
��

(1.49c)

where the amplitude vectors
⇀

Ei,
⇀

Bi,
⇀

Er ,
⇀

Br ,
⇀

Et , and
⇀

Bt are in general complex.
The boundary conditions (1.48c) and (1.48d) require

[ ⇀

Ei ei�
⇀
ki · ⇀rB−�t
+ ⇀

Er ei�
⇀
kr · ⇀rB−�′t
]× n̂= [ ⇀

Et ei��
⇀
kt+i

⇀
at
 · ⇀rB−�′′t�]× n̂ (1.50a)

and

[ ⇀

Bi ei�
⇀
ki · ⇀rB−�t
+ ⇀

Br ei�
⇀
kr · ⇀rB−�′t
]× n̂= [ ⇀

Bt ei��
⇀
kt+i

⇀
at
 · ⇀rB−�′′t�]× n̂	 (1.50b)

Here,
⇀
rB is the position vector of a point in the plane of the boundary with respect

to a suitably chosen origin also lying in this plane. These conditions must be
satisfied at all times and for all points lying on the infinite boundary plane. This
can be ensured if all phase factors associated with the fields are equal. Hence

�′′ = �′ = �� (1.51a)
⇀
at · ⇀

rB = 0 (1.51b)

and
⇀

ki · ⇀
rB = ⇀

kr · ⇀
rB =⇀

kt · ⇀
rB 	 (1.51c)
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The boundary conditions therefore require the incident, reflected, and transmitted
waves to have the same frequency. The magnitudes of the wave vectors of the
incident and reflected waves, being in the same medium, are equal, i.e.,

�⇀ki � = �⇀kr � = k= n1

�

c
	 (1.51d)

Equation (1.51b) requires the attenuation vector in the second medium to be
directed along the normal to the plane of the boundary, i.e.,

⇀
at = atn̂	 (1.51e)

The condition (1.51c) can be re-expressed as,

⇀

ki · n̂× ⇀
r= ⇀

kr · n̂× ⇀
r=⇀

kt · n̂× ⇀
r � (1.51f)

where n̂× ⇀
r is a convenient representation for vector

⇀
rB lying in the plane of the

boundary in terms of an arbitrary position vector
⇀
r (see Fig. 1.7). Manipulation

of the scalar triple product leads to the important result:

⇀

ki × n̂= ⇀

kr × n̂=⇀

kt × n̂	 (1.52)

This is the statement of the coplanarity of the wave vectors
⇀

ki,
⇀

kr ,
⇀

kt , and the
normal n̂ to the plane of the interface. In addition, Eq. (1.52) requires

�′ = � (1.53a)

and

kt sin�= k sin �� (1.53b)

where �, �′, and � are the angles of incidence, reflection, and refraction, respec-
tively. These equations ensure the equality of the angles of incidence and reflec-
tion, but leave the angle of refraction � and magnitude kt of the real part of
the propagation vector in the second medium undetermined – only the product
kt sin� is determined. Equations (1.52) and (1.53b) describe the laws of reflec-
tion and refraction of light across an interface. Combining Eqs (1.16), (1.18),
and (1.19), we get

�kt cos�+ iat

2 + �kt sin�
2 = �2

c2
�n2 + i�2


2	 (1.54)
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Knowing n1, n2, and �2, Eqs (1.53b) and (1.54) suffice to determine �, kt ,
and at . With the equality of the phase factors guaranteed by Eqs (1.51), the
restrictions (Eqs 1.50a and 1.50b) on the fields go over to the restrictions on the
corresponding field amplitudes. Therefore,

�
⇀

Ei +
⇀

Er
boundary × n̂= �
⇀

Et
boundary × n̂� (1.55a)

�
⇀

Bi +
⇀

Br
boundary × n̂= �
⇀

Bt
boundary × n̂	 (1.55b)

Expressing the electric fields in terms of the Cartesian components, we have

⇀

Ei = Einn̂+Ei��̂+Ei��̂� (1.56a)
⇀

Er = Ernn̂+Er��̂+Er��̂� (1.56b)
⇀

Et = Etnn̂+Et��̂+Et��̂� (1.56c)

where the unit vectors �̂, �̂ , n̂ constitute a right-handed Cartesian coordinate
system with the unit vectors �̂ and �̂ lying in the plane of the boundary and unit
vector n̂ pointing normal to it (Fig. 1.7). We can choose the unit vector �̂ to lie

in the plane of incidence (plane containing
⇀

ki,
⇀

kr ,
⇀

kt , n̂). Similarly, decomposing
the propagation vectors of the three waves in the chosen system of coordinates,
we have

⇀

ki = �k cos�
n̂− �k sin �
�̂� (1.57a)
⇀

kr = −�k cos�
n̂− �k sin �
�̂� (1.57b)
⇀

kt = �kt cos�
n̂− �kt sin�
�̂	 (1.57c)

The transversality conditions (1.17a,b) require

Ein = Ei� tan �� (1.58a)

Ern = −Er� tan �� (1.58b)

Etn = kt sin�
kt cos�+ iat

Et�	 (1.58c)
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Using Eqs (1.17), (1.56), and (1.57), the magnetic field vectors associated with
the incident, reflected, and transmitted waves can be expressed in terms of the
components of the corresponding electric field vectors. So that,

⇀

Bi =
k

�
�−�Ei� sin �
n̂− �Ei� cos�
�̂+ �Ein sin �+Ei� cos�
�̂�� (1.59a)

⇀

Br =
k

�
�−�Er� sin �
n̂+ �Er� cos�
�̂+ �Ern sin �−Er� cos�
�̂�� (1.59b)

⇀

Bt =
1
�
�−�Et�kt sin�
n̂− �Et�kt cos�+ iEt�at
�̂

+ �Et�kt cos�+Etnkt sin�+ iEt�at
�̂�	 (1.59c)

The field components of the incident wave are determined by its state of
polarization and are therefore known. The boundary conditions (1.55a,b) impose
the following restrictions on the components of the reflected and transmitted
fields:

�Ei� +Er�
boundary = �Et�
boundary� (1.60a)

�Ei� +Er�
boundary = �Et�
boundary� (1.60b)

�Bi� +Br�
boundary = �Bt�
boundary� (1.60c)

�Bi� +Br�
boundary = �Bt�
boundary	 (1.60d)

Equations (1.60c,d) involving the tangential components of the magnetic fields
can be expressed in terms of the tangential components of the electric fields:

k�Ei� −Er�
 cos� = �kt cos�+ iat
Et�� (1.61a)

k

cos�
�Ei� −Er�
= �

⇀

kt + i
⇀
at


2

kt cos�+ iat

Et�	 (1.61b)

Equations (1.58), (1.60a,b), and (1.61) can now be solved to obtain the amplitude
reflection and transmission coefficients:

r� =
(
Er�

Ei�

)

boundary

= k cos�−kt cos�− iat

k cos�+kt cos�+ iat

� (1.62a)

r� =
(
Er�

Ei�

)

boundary

= n2
1�kt cos�+ iat
− �n2 + i�2


2k cos�

n2
1�kt cos�+ iat
+ �n2 + i�2


2k cos�
� (1.62b)

rn =
(
Ern

Ein

)

boundary

= −r�� (1.62c)
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t� =
(
Et�

Ei�

)

boundary

= 2k cos�
k cos�+kt cos�+ iat

� (1.62d)

t� =
(
Et�

Ei�

)

boundary

= 2n2
1�kt cos�+ iat


n2
1�kt cos�+ iat
+ �n2 + i�2


2k cos�
� (1.62e)

tn =
(
Etn

Ein

)

boundary

= k cos�
kt cos�+ iat

t�	 (1.62f)

We note that the reflection and transmission coefficients are complex, implying
that the reflected and transmitted fields are in general not in phase with the
incident field. Some care needs to be exercised to distinguish between the n̂-
and �̂-polarizations – both lying in the plane of incidence. Their reflection
coefficients have equal magnitudes but are 180� out of phase at all angles of
incidence whereas the transmission coefficients for these polarizations differ in
phase as well as in magnitude at all angles of incidence.

In the present example, the reflection and transmission coefficients were
obtained from the continuity of the tangential components of the fields
(Eqs 1.48c,d) at the interface and some intuition concerning the incident and
reflected fields in the first medium. In other situations, it may be necessary to
use the continuity of the normal components (Eqs 1.48a,b) also.

1.7.1 External Reflections

We first consider the case when light crosses an interface from an optically rare
medium to an optically dense medium �n1 < n2
. Reflections under these con-
ditions are known as external reflections. If the second medium is also perfectly
transparent ��2 = 0
, then Eq. (1.54) when combined with Eq. (1.53b) gives

kt cos�+ iat = �

c
�n2

2 −n2
1 sin2 �
1/2	 (1.63)

For n2 > n1, the right-hand side of Eq. (1.63) remains real for all angles of
incidence. Therefore, the attenuation vector must vanish, i.e.,

at = 0

and

kt cos�= �

c
�n2

2 −n2
1 sin2 �
1/2	

In this case the transmitted wave in the second medium is also homogeneous with

kt = n2

�

c
� (1.64a)
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and Eq. (1.53b) takes the more familiar form

n2 sin�= n1 sin �	 (1.64b)

This is the well-known Snell’s law which holds at the interface between two
perfectly transparent media under conditions of external reflections �n2 > n1
. It
is not obvious at this stage whether Snell’s law in its present form will hold when
light is incident from an optically more dense medium to an optically less dense
medium. Equations (1.53b) and (1.54) may be taken together to represent the
more general form of Snell’s law. For external reflections, Eqs (1.62) simplify to

r� = n1 cos�−n2 cos�
n1 cos�+n2 cos�

� (1.65a)

r� = n1 cos�−n2 cos�
n1 cos�+n2 cos�

� (1.65b)

rn = −r�� (1.65c)

t� = 2n1 cos�
n1 cos�+n2 cos�

� (1.65d)

t� = 2n1 cos�
n1 cos�+n2 cos�

� (1.65e)

tn = n1 cos�
n2 cos�

t�	 (1.65f)

Equations (1.65) constitute the Fresnel relations. They are applicable when light
enters from a perfectly transparent medium of smaller index of refraction into
another perfectly transparent medium of higher index of refraction. Some of
these relations may differ from the standard form of Fresnel relations given in
many texts. We shall return to these differences shortly.

It will be shown in Section 6.5.1 that if the direction of incidence is reversed,
i.e., if light enters the medium of index of refraction n1 from medium of index of
refraction n2, then the new reflection coefficients r ′

� , r ′
� and the new transmission

coefficients t′� , t′� satisfy the following relationships:

r ′
� = −r�� (1.65g)

r ′
� = −r�� (1.65h)

t�t
′
� = 1− r2

�� (1.65i)

t�t
′
� = 1− r2

�	 (1.65j)
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1.7.1.1 Brewster Angle

Fresnel relations reveal an interesting consequence of the boundary conditions.
The reflection coefficient for �-polarized light does not become zero for any
angle of incidence, but the reflection coefficients for �- and n-polarizations
vanish for angle of incidence �B, satisfying the condition

n1 cos�= n2 cos�B	 (1.66a)

This result when combined with Snell’s law gives

�= �

2
−�B	 (1.66b)

Accordingly, the reflection coefficient of light polarized in the plane of incidence
becomes zero when the angle between the directions of propagation of the
reflected and transmitted light waves becomes 90�. The angle of incidence �B

satisfying this condition is known as Brewster angle. The �- and n-polarized
waves at this angle of incidence do not undergo any reflection and are therefore
fully transmitted. The �-polarized light, on the other hand, is partially transmitted
and partially reflected at all angles of incidence including the Brewster angle.
Equations (1.66) give for the Brewster angle, the condition

tan �B = n2

n1

	 (1.67)

If unpolarized light is incident at this angle, the reflected light appears in
pure �-polarization. However, for n2/n1 = 1	5, as for the air–glass interface,
�B = 56	3�, and only 15% of the incident energy appears in the reflected light.
Notwithstanding this rather low polarizing efficiency, the Brewster angle is also
known as the polarizing angle. Lasers make a very effective use of incidence
at Brewster angle for controlling the state of polarization of laser light. This is
shown in Fig. 1.8. Glass or quartz windows are fused to the plasma tube of a laser
at both ends at the Brewster angle. At each of the four interfaces, �-polarized

θB

σ-pol

W1 W2

Plasma tube θB

M1
M

2

Fig. 1.8: Brewster windows �W1�W2
 of the plasma tube of a laser.
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Fig. 1.9: Variations of reflection coefficients (a) and their squares (b) with angle
of incidence for external reflections �n2/n1 = 1	5
.

light suffers substantial (15% for glass windows) reflection losses whereas light
polarized in the plane of incidence is transmitted without any reflection loss.
The laser cavity (mirrors M1, M2 and the active medium filling the plasma tube)
is unable to sustain oscillations for the �-polarized light in the presence of
these losses. Consequently, light coming out of a laser with Brewster windows
is polarized in the plane of incidence. The �-polarized light with electric field
perpendicular to the plane of incidence is eliminated in the process.

Variations of the reflection coefficients and their squares with the angle of
incidence are shown in Fig. 1.9 for the three states of polarization. The reflec-
tion coefficient is rather small at normal incidence (0.2 for n2/n1 = 1	5), but
approaches unit value at grazing incidence �� −→ 90�
. The three polarization
states behave differently. The �-polarized light suffers 180� phase change on
reflection at all angles of incidence. The �-polarized light, however, undergoes
phase reversal only up to the Brewster angle, and no phase change for incidence
beyond this angle. The n-polarized light has the behavior just opposite to that
of the �-polarized light (Fig. 1.9a).

The reflection coefficients and their squares vanish at the Brewster angle for
�- and n-polarizations. The reflected light is richer in � polarization, except for
incidence at normal and grazing angles.

1.7.2 Reflectance and Transmittance

It was mentioned that the Fresnel relations in their present form (Eqs 1.62) may
differ somewhat from Fresnel relations given elsewhere. The difference lies in
the fact that we have decomposed the field vectors into three components along
the �̂-, �̂-, and n̂-directions. In most texts, the in-plane (�̂- and n̂-) components
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are not separated. Instead, one deals with only two field components – the
perpendicular or the �-component and the parallel component which is the vector
sum of the �- and n-components. In this context, we would like the readers to
appreciate that the reflection and transmission amplitude coefficients may not
always be useful quantities since the measurable quantities are the intensities
and not the fields. The reflectance (or the reflectivity) R and transmittance (or
the transmitivity) T , which refer to the division of the incident irradiance into
the reflected and transmitted irradiances, are of fundamental significance. In the
absence of absorption and scattering losses at the interface between two media,
the relation

R+T = 1 (1.68)

must hold for reasons of energy conservation. The incident, reflected and trans-
mitted energies crossing per unit time per unit area of the interface are

Iin = ⇀

Si 	 n̂= Si cos��

Ire = ⇀

Sr 	 n̂= Sr cos��

Itr = ⇀

St 	 n̂= St cos��

respectively. So that

R= Ire

Iin

= Sr cos�
Si cos�

=
(
Er

Ei

)2

= r2� (1.69a)

T = Itr

Iin

= St cos�
Si cos�

= n2

n1

cos�
cos�

(
Et

Ei

)2

= n2

n1

cos�
cos�

t2� (1.69b)

where Si, Sr , and St are the magnitudes of the incident, reflected and trans-
mitted Poynting vectors at the interface, respectively. For perpendicular ��-)
polarization,

R� = r2
� =

(
n1 cos�−n2 cos�
n1 cos�+n2 cos�

)2

� (1.70a)

T� = n2

n1

cos�
cos�

t2� = n2

n1

cos�
cos�

(
2n1 cos�

n1 cos�+n2 cos�

)2

	 (1.70b)

It can be seen that the condition

R� +T� = 1
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holds. For the in-plane or the so-called parallel polarization, we need to com-
bine the n- and �-components since they do not represent independent waves.
Therefore,

Rp = r2�parallel polarization


= E2
rn +E2

r�

E2
in +E2

i�

= r2
nE

2
in + r2

�E
2
i�

E2
in +E2

i�

=
(
n1 cos�−n2 cos�
n1 cos�+n2 cos�

)2

(1.71a)

and

Tp = n2

n1

(
E2

tn +E2
t�

E2
in +E2

i�

)(
cos�
cos�

)

= 4n1n2 cos� cos�
�n1 cos�+n2 cos�
2

	 (1.71b)

Once again, it can be seen that Rp +Tp = 1. Figure 1.10 shows the variations
in the reflectance and transmittance with the angle of incidence for external
reflections �n2/n1 = 1	5
.
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1.7.3 Internal Reflections

When the refractive index n2 of the second medium is lower than the refractive
index n1 of the first medium, the right-hand side of Eq. (1.63) cannot remain
real for all angles of incidence. Beyond a certain angle of incidence, called the
critical angle �c defined by

n2 = n1 sin �c� (1.72)

the right-hand side becomes purely imaginary. For incident angles smaller than
the critical angle, the attenuation vector

⇀
at vanishes as the right-hand side is

real, and the transmitted wave in the second medium is homogeneous with the
magnitude of the wave vector kt = n2�/c, just as for the external reflections.
Except for the fact that the angle of refraction exceeds the angle of incidence,
there is no qualitative difference in external and internal reflections as long as
the angle of incidence remains smaller than the critical angle. In fact, the �-
and n-polarizations go through zero reflectivity at the corresponding Brewster
angle in this case as well. Brewster angle is always smaller than the critical
angle (for n1/n2 = 1	5, �B = 33	7� and �c = 41	8�). However, the situation
changes non-trivially as the critical angle is approached. At the critical angle,
the right-hand side of Eq. (1.63) vanishes, forcing kt cos� and at to take zero
values. This happens when the angle of refraction � becomes 90� and wave
propagation in the second medium takes place along the interface only (Fig. 1.11).
Equations (1.65) give reflection coefficient of unit magnitude at this angle of
incidence, irrespective of the state of polarization. Light is therefore totally
reflected back into the first medium; hence the use of the term total internal
reflection to describe wave propagation from an optically dense to an optically
rare medium for angles of incidence at and beyond the critical angle. It may

n2< n 1n1

n̂

θ

θ

III

φ

k  i
a t

k r

k t

Fig. 1.11: Geometry for internal reflections. Wave in second medium is
inhomogeneous for angles of incidence exceeding the critical angle.
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appear confusing that the wave is totally reflected back into the first medium
despite wave propagation taking place along the interface �� = 90�
. We shall
return to this point shortly. The wave propagating along the interface is called
the evanescent (tending to vanish) wave.

As the angle of incidence exceeds the critical angle, the right-hand side of
Eq. (1.63) becomes purely imaginary and the transmitted wave continues to

propagate along the interface with propagation vector
⇀

kt of magnitude (Eq. 1.53b)

kt = n1

�

c
sin �� (1.73)

but now with an attenuation vector
⇀
at of magnitude

at = �

c
�n2

1 sin2 �−n2
2


1/2 (1.74)

directed normal (Eq. 1.51e) to the plane of the boundary (Fig. 1.11). Equa-
tion (1.49c) for the transmitted wave now takes the form

⇀

Etr =
⇀

Et ei��
⇀
kt+i

⇀
at
	

⇀
r −�t�	 (1.75)

Substituting kt and at from Eqs (1.73) and (1.74) gives

⇀

Etr =
⇀

Et e− �
c �n

2
1 sin2 �−n2

2

1/2z ei� n1�

c x sin �−�t
	 (1.76)

The transmitted wave (evanescent wave) propagates in the x direction. The
amplitude of the wave in the second medium decreases exponentially with z,
falling to 1/e of its value at the interface at a distance

�= 1

at

= �v

2��n2
1 sin2 �−n2

2

1/2

(1.77)

away from the interface. The beam attenuation increases with increasing angle of
incidence beyond the critical angle. For the glass–air interface, �= 2	3×10−5 cm
for � = 45� and �v = 500 nm. The penetration depth � in the second medium
is only a fraction of the wavelength of light. The surfaces of constant phase

(normal to
⇀

kt) are normal to the plane of the interface and the surfaces of
constant amplitude (normal to

⇀
at) are parallel to the plane of the interface.The

evanescent wave in the second medium is therefore an inhomogeneous wave
with the phase velocity ��/kt = c/�n1 sin �

 exceeding the velocity of light
�c/n1
 in the medium. Total internal reflection makes it possible for light to
propagate in optical fibers and optical wave guides.
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The reflection and transmission coefficients for internal reflections for � < �c

are still given by Eqs (1.65), just as for the external reflections. But now n2 being
smaller than n1, the signs of the reflection coefficients are opposite to those for
the external reflections. For � > �c, Eqs (1.62) give the following expressions
for the reflection coefficients:

r� = n1 cos�− i�n2
1 sin2 �−n2

2

1/2

n1 cos�+ i�n2
1 sin2 �−n2

2

1/2

= e−i2�0� (1.78a)

r� = −n2
2 cos�+ in1�n

2
1 sin2 �−n2

2

1/2

n2
2 cos�+ in1�n

2
1 sin2 �−n2

2

1/2

= e−i�2�0+�
� (1.78b)

where

tan�0 = �n2
1 sin2 �−n2

2

1/2

n1 cos�
� (1.79a)

tan�0 =
(
n1

n2

)2
�n2

1 sin2 �−n2
2


1/2

n1 cos�
	 (1.79b)

The reflection coefficients are now complex with unit magnitude for any
state of polarization for all angles exceeding the critical angle. The reflection is
therefore total. For internal reflections, the variations of the reflection coefficients
and reflectances with the angle of incidence are shown in Fig. 1.12. The phase
changes for the reflected fields are different for the �- and �-polarizations.
Accordingly, linearly polarized light, polarized along directions other than �̂-
and �̂-directions, becomes elliptically polarized after an internal reflection. The
phase for �-polarization changes from 2�0 = 0 at �= �c to 2�0 = � at �= 90�.
The �-polarization, on the other hand, undergoes a 180� phase change (change
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Fig. 1.12: Variation of reflection coefficients (a) and reflectances (b) with angle
of incidence for internal reflection �n1/n2 = 1	5
; �B = 33	7�, �c = 41	8�.
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Fig. 1.13: Phase changes during internal reflections with angle of incidence
�n1/n2 = 1	5
; �0 is for �-polarization and �0 is for �-polarization.

of sign) at the Brewster angle. Additional phase changes take place beyond the
critical angle. The net phase of �-polarized wave varies from 2�0 +� = � at
�= �c to 2�0 +� = 2� at �= 90�. These phase changes are shown in Fig. 1.13.
The same figure also shows the variations of 2�0 and 2�0 −2�0.

The phase difference 2��0 −�0
 between �- and �-polarizations can be
obtained from

tan��0 −�0
= cos�

sin2 �

(
sin2 �− n2

2

n2
1

)1/2

	 (1.80)

For n1/n2 = 1	5, the maximum value of �2�0 −2�0
 of 45	2� occurs at �= 54�.

1.7.3.1 Fresnel Rhomb

This device, first conceived by Fresnel, is used to change the state of polar-
ization of light from linear to circular by introducing a phase difference of 90�

between the �- and �-polarized light waves through two successive internal
reflections in a rhomb, cut with an apex angle which allows 45� phase change
in each internal reflection (Fig. 1.14). The incident beam, linearly polarized
at 45� with the face edge, enters the rhomb normally. The beam suffers two
internal reflections inside the rhomb and leaves through the opposite face of
the rhomb normally, but now circularly polarized. Unlike a quarter-wave plate
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Fig. 1.14: Fresnel rhomb to convert linearly polarized light into circularly
polarized light.

(see Section 3.3.2), Fresnel rhomb is much less sensitive to changes in the
wavelength of light.

1.7.4 Frustrated Total Internal Reflection

We have seen that despite the existence of the evanescent wave along the inter-
face, light is fully reflected back into the first medium. Consequently, no energy
can flow into the second medium. This, as a matter of fact, is a correct statement
and can be proved by showing that the time averaged value of the z-component
of the Poynting vector in the semi-infinite second medium is actually zero. This,
however, does not fully clarify the situation. There is a need to further explore
what actually happens in the neighborhood of the interface. It has already been
mentioned that light does penetrate into the second medium, but the depth of
penetration is rather small. This can be verified. Consider a thin slab of lower
refractive index n2 sandwiched between thicker slabs of a medium of higher
refractive index n1 as shown in Fig. 1.15.

Let the thickness d of the sandwiched slab be comparable to the penetration
depth of the wave. For incidence at the first interface at an angle greater than
the critical angle, the transmitted wave can be detected beyond the second
interface. The amplitude of the transmitted wave depends on the actual thickness
of the sandwiched slab; thinner the sandwiched slab, larger the amplitude of
the transmitted wave. However, to avoid multiple reflections in the sandwiched
medium, its thickness should be somewhat larger than the penetration depth
�. It is therefore clear that notwithstanding what has been said earlier, light is
partially transmitted in an internal reflection. However, if the thickness of the
sandwiched slab is made sufficiently large, the transmitted wave after travelling
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Fig. 1.15: Geometry to frustrate total internal reflection �n2 < n1
.

a short distance in this medium apparently bends and re-enters the first medium,
somewhat shifted from the position of entry into the second medium (Goos-
Hanchan shift [1.4]). Thus, no net energy flows into the second medium making
internal reflection total, indeed. But the time averaged component of the Poynting
vector along the interface is non-zero (the evanescent wave). It is possible to
frustrate the total internal reflection (make it less than total) by reducing the
thickness of the middle slab. Arrangements of the type shown in Fig. 1.15 can
control the amount of energy being coupled from one medium to the other. For
�-polarized light of amplitude E� entering the first interface, amplitude of the
wave leaving the second interface (see Eq. 1.65i), is

E′
� = t�t

′
� e−d/�E�

= �1− r2
�
 e−d/�E�

= �1− e−i4�0
 e−d/�E��

where �0 is as defined in Eq. (1.78a), � the penetration depth (Eq. 1.77) and d the
thickness of the sandwiched slab. It must be mentioned that bringing in the second
interface as in Fig. 1.15 changes the original problem altogether. The boundary con-
ditions at the first interface get modified due to the presence of the second interface.

We end this discussion by recalling that the external and internal reflections
have been investigated here under the assumption of perfect transparency of the
media on the two sides of the interface. Real optical materials are not perfectly
transparent. For sufficiently high transparency ��→ 0
, the results obtained in
this chapter may be used as such or with slight modification. For example,
complete absence of �-polarized light on reflection at Brewster angle may not
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happen in real optical materials. Instead, the reflection coefficient for �-polarized
light goes through a sharp minimum at this angle. Similar modifications may be
expected elsewhere.

1.7.5 Reflection from a Metallic Surface

The formalism developed in the preceding sections can describe reflection from
a metallic surface. However, the wave equation applicable to metals is quite
different from the one developed in this chapter because the free charge and free
currents appearing in Maxwell’s equations do not vanish for metals. Nevertheless,
it is possible to gain some insight of wave propagation in metals from Fresnel
relations if allowance is made for absorption to take place in the second medium
[1.4, 1.5]. Metals are generally opaque to visible light unless thin metallic films
no more than a few nanometers (10−7 cm) in thickness are employed. Special
care needs to be exercised for the preparation of thin metallic films if they
are to faithfully represent the behavior of bulk metals. Thin metallic films are
partially transparent in some regions of the visible spectrum. For example, gold
and copper with yellow luster are somewhat transparent to blue-green light if
used in the form of thin films. Table 1.2 gives real and imaginary parts of the
index of refraction of some metals in the visible region.

For good conductors, the imaginary part of the refractive index is much larger
than the real part, and an approximate expression

sin�= sin �

�
(1.81)

holds for the angle of refraction �, where � is the angle of incidence. For
incidence at 60�, the angle of refraction for aluminum is merely 7�. Thus for
good conductors, the transmitted wave propagates essentially along the normal

to the plane of the interface. The propagation vector
⇀

kt and attenuation vector
⇀
at are nearly coincident. Therefore, the wave in a good conductor is very nearly

Table 1.2. Complex refractive index
∼
n= n+ i� of some metals.

Metal � (nm) n �

Al 650 1	30 7	11
Pd 550 1	8 4	0
Cu 548 0	76 2	46
Ag 584 0	055 3	32
Na 546 0	05 2	20
Au 546 0	4 2	3
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a homogeneous wave, despite severe attenuation. This is in contrast to the
evanescent wave discussed earlier.

Reflection at the boundary between an optically transparent medium and a
metal can be described by Fresnel relations provided the real index of refraction
n2 of the second medium is replaced by the complex refractive index

∼
n2= n2 + i�2

and the angle of refraction � is allowed to become complex (see [1.5]). Defining

∼
n2 cos�= u+ iv (1.82)

and using
∼
n2 sin�= n1 sin �, the reflection coefficient for �-polarized light takes

the form

r� = n1 cos�−u− iv
n1 cos�+u+ iv

� (1.83)

where

u2 −v2 =n2
2 −�2

2 −n2
1 sin2 �� (1.84)

uv=n2�2	

The reflection coefficient for �-polarization can be expressed as

rp = n1 cos�− ∼
n2 cos�

n1 cos�+ ∼
n2 cos�

= n1
∼
n2 cos�− ∼

n
2

2 cos�

n1
∼
n2 cos�+ ∼

n
2

2 cos�

= n1�u+ iv
− �n2 + i�2

2 cos�

n1�u+ iv
+ �n2 + i�2

2 cos�

	 (1.85)

The magnitude and phase of the reflection coefficient of a metal as a function
of the angle of incidence can be obtained from Eqs (1.83) and (1.85). The
phase changes for �̂- and �̂-polarizations are in general different. Therefore, on
reflection from a metal, light linearly polarized in an arbitrary direction becomes
elliptically polarized.

The reflectance of a metal for normal incidence is

R�Metal
= �r2� =
∣∣∣∣
n1 − �n2 + i�2


n1 + �n2 + i�2


∣∣∣∣
2

= �n1 −n2

2 +�2

2

�n1 +n2

2 +�2

2

	 (1.86)
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Fig. 1.16: Changes in the reflectance of aluminum with angle of incidence.

For normal incidence, the reflectance at the air–aluminum interface is 0.91.
Figure 1.16 shows the variation of reflectance of aluminum as a function of the
angle of incidence. As expected, the reflectance is generally high and not very
sensitive to the angle of incidence. The counterpart of Brewster angle, called
the principal angle of incidence, is marked by a broad dip in the reflectivity of
�-polarized light. At this angle of incidence, the phase difference between �̂-
and �̂-polarizations is nearly 90�.

1.8 PASSAGE OF LIGHT THROUGH A PRISM

A beam of monochromatic light is laterally shifted in passing through a transpar-
ent block with parallel faces, but emerges undeviated from its original direction

α

α

(a) (b)

Red

Blue

Violet

nn

Fig. 1.17: Passage (a) of monochromatic light through a transparent block and
(b) of white light through a prism.
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of propagation (Fig. 1.17a). Similarly, a parallel beam of white light which has
wavelength spread from about 400 to 800 nm continues to move undeviated after
passing through such a slab. A prism, on the other hand, bends different wave-
lengths of white light through different angles (Fig. 1.17b). Separation of white
light into its spectral components is called dispersion. Figure 1.17b is a case of
normal dispersion which results from a slight decrease in the index of refraction
of optically transparent media with increasing wavelength. Violet light is devi-
ated most and red light undergoes least deviation. Other colors occupy positions
in between in the sequence VIBGYOR2. The Cauchy dispersion formula

n��
= A+ B

�2
+ C

�4
+· · · (1.87)

describes the dependence of the index of refraction of such media on wavelength,
where A, B, C are constants to be determined empirically for a given material.
Normal dispersion (negative dn/d�) occurs at wavelengths not too close to an
atomic transition. In the close neighborhood of an atomic transition, dn/d� may
become positive and dispersion in this region is called anomalous dispersion,
although there is nothing anomalous about it except that it is accompanied by
substantial absorption whereas much less absorption takes place in the spectral
range of normal dispersion (see Fig. 1.21). A lens also disperses white light.
Whereas the dispersion produced by a prism (in a prism spectrometer) and
by a grating (in a grating spectrometer) is useful in determining the spectral
(wavelength) composition of incident light, the dispersion in the image formed
by a lens is undesirable, and is therefore called the chromatic aberration of the
lens. As an application of light propagation through a prism, we show how
the index of refraction of the material of the prism can be determined quite
accurately from the deviation the prism produces in the path of a ray (Fig. 1.18).

θ1

θ2
δ

φ
φ

1

2

A

n1 n2 n1

Fig. 1.18: Deviation of a monochromatic wave in passing through a prism.

2 VIBGYOR stands for violet, indigo, blue, green, yellow, orange and red colours.
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The deviation of a ray passing through a prism is given by

�= �1 +�2 −�1 −�2� (1.88)

where �1 and �2 are the angles of incidence and emergence, respectively, �1 the
angle of refraction at the first interface, and �2 the angle of incidence at the
second interface. We note that

�1 +�2 +�−A= �

or

�1 +�2 = A� (1.89)

where A is the angle of the prism. Accordingly,

�= �1 +�2 −A

= �1 + sin−1

[
n2

n1

sin
{
A− sin−1

(
n1

n2

sin �1

)}]
−A� (1.90)

where n2 is the index of refraction of the material of the prism and n1 is the
index of refraction of the medium on the two sides of the prism. The dependence
of the angle of deviation on the angle of incidence for n1 = 1	0, n2 = 1	5, and
A= 60� is shown in Fig. 1.19.
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Fig. 1.19: Dependence of angle of deviation ��
 on angle of incidence for a
prism with n2 = 1	5, A= 60�.
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The deviation in the direction of a ray goes through a minimum value ��min


as the angle of incidence is increased. At minimum deviation,

d��

d�1

= 1+ d�2

d�1

= 0	 (1.91)

Applying Snell’s law at the entrance and emergence of the ray, we have

n1 cos�1 d�1 = n2 cos�1 d�1�

n1 cos�2 d�2 = n2 cos�2 d�2	

So that

d�1

d�2

= cos�1

cos�2

cos�2

cos�1

d�1

d�2

= −cos�1

cos�2

cos�2

cos�1

	 (1.92)

Therefore, the condition for minimum deviation is

cos�2

cos�1

= cos�2

cos�1

� (1.93)

requiring �1 = �2 = �, and �1 = �2 = �. These conclusions follow if Snell’s
law is applied after expressing Eq. (1.92) in terms of the sines of the angles.
Therefore,

�min = 2�−A

or

� = ��min +A
/2

and �= A/2. So that

n2

n1

= sin �1

sin�1

= sin� �min+A
2 


sin�A/2

	 (1.94)
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The angle of minimum deviation and the angle of the prism can be mea-
sured quite accurately even with an undergraduate laboratory prism spectrom-
eter, giving a precise estimate of the index of refraction of the material of the
prism.

Prism combinations in the various forms are put to a variety of uses. The
combination may consist of different prisms cemented together or it may be
a single block representing several prisms juxtaposed. Combinations of oppo-
sitely oriented prisms of crown and flint glasses (Fig. 1.20a) can have non-zero
deviation with no dispersion for two wavelengths (achromatic combination),
or non-zero dispersion with minimal deviation (direct vision combination).
The Pellin-Broca prism, commonly used in constant deviation spectrometers,
consists of three right-angled prisms �30�–60�–90��45�–45�–90��30�–60�–90�

built into a single block (Fig. 1.20b). The wavelength for which light travels
parallel to the bases of all three constituent prisms undergoes a deviation
of 90�. Accordingly, the source of light and detector in a spectrometer
using a Pellin-Broca prism can have fixed positions. Rotation of the prism
brings different wavelengths in succession in line with the detector, thus
providing dispersion at constant deviation for all wavelengths. The Porro,
Dove and Amici prisms are variants of the right-angled prism for special
applications.

45°

60°

60°

30° δ = 90°

30°

(a)

Ac

nc

Af

nf

45o

(b)

Fig. 1.20: (a) Crown glass prism of index of refraction nc cemented to flint
glass prism of index of refraction nf , (b) Pellin-Broca constant deviation prism
��= 90�
.
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The minimum deviation of a small angle prism can be approximated to

�=
(
n2

n1

−1
)
A= �n−1
A	 (1.95)

The dispersive power of a prism is defined as the ratio of the angular separa-
tion of the F and C Fraunhofer lines and the deviation of the Fraunhofer D
line3, i.e.,

Dispersive power = 1
w

= �F −�C
�D

= nF −nC
nD −1

� (1.96)

where nF , nD, nC are the indices of refraction of the prism material at wavelengths
corresponding to the Fraunhofer lines F ��= 486	1 nm
, D ��= 589	3 nm
, and
C �� = 656	3 nm
, respectively. An achromatic combination (zero dispersion)
of the crown and flint glass prisms (Fig. 1.20a) will have

�F −�C = 0� (1.97)

where

�F = �nc
F −1
Ac − �nf

F −1
Af�

�C = �nc
C −1
Ac − �nf

C −1
Af

are the deviations for the F and C lines, respectively, if

Ac

Af

= nf
F −nf

C

nc
F −nc

C

� (1.98)

where the small letters c and f refer to crown and flint glasses, respectively. The
mean deviation of an achromatic combination is

�D = �nc
F −nc

C
�wc −wf
Ac� (1.99)

where wc and wf are the dispersive powers of the crown and flint glass prisms,
respectively. Similarly for a direct vision prism combination, the mean deviation

�D = �c
D −�f

D = 0 (1.100)

3 Fraunhofer lines are the dark lines appearing in the solar spectrum. They arise due to absorption
of solar radiation by atomic species (Hydrogen atoms for the F and C lines and sodium atoms for
the D line) present in sun’s atmosphere.
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if

Ac

Af

= nf
D −1
nc
D −1

� (1.101)

giving the angular separation between the F and C lines as

�F −�C = �nc
D −1


(
1
wc

− 1
wf

)
Ac	 (1.102)

1.9 DISPERSION

We have seen in Section 1.8 how a prism separates different colors of white light.
Dispersion (separation of colors or more appropriately, variation of the index of
refraction with wavelength) and absorption of light are closely related. It was
noted in the introduction that absorption of light cannot be understood in classical
terms, where matter is described by its bulk properties such as the permittivity
and permeability. We also gave an equivalent description in terms of the complex
index of refraction of the medium which provided a phenomenological basis for
absorption of light during propagation. Though not explicitly stated, one may not
be wrong to conclude from our treatment so far that the permittivity and index
of refraction of a medium do not change with the frequency of the light field.
This, however, is not true, and it is the frequency dependence of the velocity
�v = c/n��

 of light in a medium which gives rise to the phenomenon of
dispersion. Velocity of light in vacuum is independent of its frequency. A vacuum
is therefore a non-dispersive medium. To explore the frequency dependence of
the index of refraction of other media, we need to return to the atomistic nature
of matter, where atoms and molecules are essentially dispersed in vacuum. An
atom consists of a positively charged nucleus surrounded by a charged cloud of
electrons. In the absence of external radiation, an atom has no dipole moment
since the centers of positive and negative charges coincide. This equilibrium
is disturbed by the external field and the atom acquires a dipole moment. The
nucleus, being heavy, is sluggish to respond to the rapidly changing optical
fields. Therefore, the dipole moment of an atom can be thought to arise from
the displacement of the electron from its equilibrium position (Lorentz model).
For the time being, only one electron per atom is assumed. This restriction will
be eventually relaxed. Intra-atomic restoring forces make the electron undergo
forced oscillations about its equilibrium position (at the frequency of the light
field). Since absorption cannot be accounted in the classical description, we
introduce a damping term to allow for energy dissipation in the medium and for
the radiative loss. The induced atomic dipole moment generates a time varying
polarization in the medium. A molecule, on the other hand, may or may not have
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a dipole moment in the absence of the external field. Molecular polarization
is, however, more pronounced in the infrared region. Nevertheless, the ensuing
discussion is applicable to molecules as well.

The motion of the oscillating electron, assuming only a linear restoring force,
is described by the equation

d2 ⇀
r

dt2
+�

d
⇀
r

dt
+�2

0

⇀
r = q

m

⇀

E
′
� (1.103)

where �0 is the natural frequency of oscillation of the electron (charge q,

mass m), � the damping constant, and
⇀

E
′

the net electric field or the local field
acting on the electron. In a dilute gas,

⇀

E
′
=⇀

E

and in a dense medium (Lorentz’s correction),

⇀

E
′
=⇀

E +
⇀

P

3�0

� (1.104)

where
⇀

E is the external field and
⇀

P is the medium polarization. The derivation
of Lorentz’ correction can be found in texts on electromagnetism.4 Assuming

⇀

E
′
=⇀

E
′
0 e−i�t�

⇀
r =⇀

r 0 e−i�t�

the amplitude of oscillation of the electron is found to be

r0 = qE′
0/m

�2
0 −�2 − i��

	

The induced atomic polarization is

P = Nqr0 = �Nq2/m
E′
0

�2
0 −�2 − i��

� (1.105)

4 Classical electrodynamics by John David Jackson.
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where N is the number of electrons per unit volume of the medium. Combining
Eqs (1.9a,c), (1.18), (1.105), the complex index of refraction of the medium can
be expressed as

∼
n

2= �

�0

= 1+�1


= 1+ �Nq2/m�0


�2
0 −�2 − i��

	 (1.106)

In view of the fact that an atom may have several oscillating electrons, Eq. (1.106)
may be modified as

∼
n

2= 1+ Nq2

m�0

∑
j

fj

�2
0j −�2 − i��

� (1.107)

where the oscillator strength fj �<1
, introduced for each oscillating electron,
is related to the quantum mechanical transition probability. Equation (1.107) is
called Sellemeier’s equation.

1.9.1 Dispersion in Dilute Gases

For low-pressure gases,
∼
n≈ 1. Assuming only one electron per atom, Eq. (1.106)

can be approximated (by retaining only the first term in the binomial expan-
sion) to

∼
n= 1+ �Nq2/2m�0


�2
0 −�2 − i��

(1.108a)

= 1+ 1

2

�2
p

�2
0 −�2 − i��

� (1.108b)

where the plasma frequency �p = �Nq2/m�0

1/2. The real and imaginary parts of

the complex index of refraction (Eq. 1.19) of a low-pressure gas are obtained as

n= 1+ 1
2

�2
p��

2
0 −�2


��2
0 −�2
2 +�2�2

� (1.109a)

�= 1
2

��2
p�

��2
0 −�2
2 +�2�2

	 (1.109b)

Far below resonance ��2
0 −�2 � ��
, Eq. (1.109a) is reduced to

n= 1+ 1
2

�2
p

�2
0 −�2

�
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n = 1

γ

0ω
ω

κ

n

Fig. 1.21: Spectral behavior of the real and imaginary parts of the index of
refraction of a dilute gas.

so that for a dilute gas below resonance �� < �0
, n > 1 and dn/d� is positive.
This is the spectral region of normal dispersion and low absorption. At resonance
�� = �0
, n = 1 and absorption is at its maximum value. Above resonance
�� > �0
, n < 1. For the spectral range ��0 − �

2 
 < � < ��0 + �

2 
, dn/d� is
negative. This is the region of anomalous dispersion and high absorption. Beyond
� = �0 + �

2 , dn/d� is positive and dispersion is once again normal. These
features are shown in Fig. 1.21.

1.9.2 Dispersion in Dense Media

For gases at high pressure, liquids and dielectrics, we must return to Eq. (1.06).
Expressing polarization of the medium in terms of the mean polarizability � of
its molecules,

P = N�E′
0 (1.110)

and combining it with Eqs (1.9a) and (1.104), we obtain

∼
n

2= �

�0

= 1+2N�/3�0

1−N�/3�0

� (1.111)

giving the mean molecular polarizability as

�= 3�0

N

∼
n

2 −1
∼
n

2 +2
	 (1.112)
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This is the Lorentz–Lorenz formula. Clausius and Mossotti obtained the same
result for the static electric fields. Comparing Eqs (1.105) and (1.110), we obtain

�= q2/m

�2
0 −�2 − i��

� (1.113)

yielding

∼
n

2 −1
∼
n

2 +2
= Nq2/3�0m

�2
0 −�2 − i��

	 (1.114)

For a multi-electron atom, this equation can be extended to

∼
n

2 −1
∼
n

2 +2
= Nq2

3�0m

∑
j

fj

�2
0j −�2 − i��

	 (1.115)

In conclusion, the index of refraction and hence the velocity of propagation of a
wave in dilute as well as in dense media changes with the frequency of the light
field.

Separation of the real and imaginary parts of the index of refraction for dense
media is more involved and will not be attempted here. However, their spectral
behavior (Fig. 1.22) is qualitatively similar to the one observed in dilute gases.
Optically transparent materials have absorption bands (resonant frequencies �0j)
in the ultraviolet. Therefore their index of refraction is less than 1 beyond the
ultraviolet spectral region (see Table 1.1). As can be seen from Fig. 1.22, X-rays
will undergo total external reflection (i.e. from air back to air) from optically
transparent materials such as glasses.

n = 1

n

ω ( -rays)X

Fig. 1.22: Spectral behavior of the real part of the index of refraction of dense
media; n < 1 in the X-ray region.
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1.9.3 Group and Signal Velocities

Dispersion analysis has shown that the real part of the index of refraction of a
medium can fall below 1 in certain spectral regions. Therefore the phase velocity
�c/n
 of a monochromatic wave can exceed velocity of light in vacuum in
those spectral regions. This must be reconciled against the theory of relativity,
according to which signals must propagate at velocities less than the velocity
of light in vacuum. A monochromatic wave does not really exist and even if
it exists, it cannot carry a signal and still remain monochromatic. Hence this
question needs to be addressed in the context of propagating pulses and wave
packets. The simplest wave packet is a superposition of two waves of equal
amplitudes, but different frequencies:

E�z� t
= E0�e
i�k1z−�1t
 + ei�k2z−�2t
�

= 2E0 cos
(
�k

2
z− ��

2
t

)
ei�k̄z−�̄t
�

(1.116)

where

k1 = k̄− �k

2
� k2 = k̄+ �k

2
�

�1 = �̄− ��

2
� �2 = �̄+ ��

2
�

and �̄ and k̄ are, respectively, the mean frequency and mean wave number of
the wave packet. The phase velocity of this wave packet is �̄/k̄. We may define
the group velocity of the wave packet as the velocity with which the modulation
envelope (Fig. 1.23) of the wave packet moves, viz.,

vg = ��

�k
	

In a non-dispersive medium, the velocity of a wave is independent of its fre-
quency. Therefore,

vg = ��

�k
= �2 −�1

k2 −k1

= v�k2 −k1


k2 −k1

= vp	

Hence, there is no distinction between phase velocity and group velocity in
a non-dispersive medium. Since all waves move with the same velocity in
a non-dispersive medium, the constituent waves of the wave packet maintain
their initial relative phases. The wave packet therefore propagates retaining its
original profile. The situation is quite different in a dispersive medium where
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t

E

Fig. 1.23: Superposition of two waves ��2/�1 = 1	1
 of equal amplitudes.

the constituent waves get out of phase with time due to their different velocities,
resulting in a changing profile of the wave packet during propagation.

For a more general wave packet propagating in a dispersive medium, we can
write

vg = d�
dk
� (1.117a)

��k
= kv�k
� (1.117b)

giving

vg = v+k
dv
dk

= c

n
− kc

n2

dn
dk

= c

n
− �

n
vg

dn
d�

�

so that

vg = c

n+� dn
d�

= vp

(
1+ �

n

dn
d�

)−1

	

(1.118)

For normal dispersion with n > 1 and positive dn/d�, the phase velocity and
the group velocity are both smaller than velocity of light in vacuum. The group
velocity, which is the velocity of any point on the modulation envelope, equals
the signal velocity in normal dispersion. During anomalous dispersion (n < 1
and negative dn/d�), the phase velocity as well as the group velocity exceeds
velocity of light in vacuum. Group velocities greater than the velocity of light in
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t

Fig. 1.24: Excessive absorption of the trailing edge of a light pulse during
anomalous dispersion effectively pushes the peak forward.

vacuum have been measured for laser pulses propagating in dispersive media. In
the spectral region of anomalous dispersion, absorption is very high. But since
it takes some time for the absorption to set in, the trailing edge of the pulse is
excessively absorbed, resulting in effective forward movement of the peak of
the pulse (Fig. 1.24). The group velocity may therefore exceed velocity of light
in vacuum. Group velocity under conditions of anomalous dispersion is not the
signal velocity which is always less than c.

1.10 PROPAGATION OF LIGHT IN ANISOTROPIC MEDIA

The formulation of the previous sections is restricted to light propagation in
linear and electrically and magnetically isotropic media, for which Eqs (1.9)
ensure parallelism between the displacement and electric fields. In crystalline
solids with direction-dependent inter-atomic forces, the displacement field may
be proportional to the electric field, but not always parallel to it. For optically

transparent anisotropic media, the permittivity � in
⇀

D= �
⇀

E (Eq. 1.9b) is not a
scalar but more likely a tensor (called the permittivity or the dielectric tensor)
of the second rank with nine components, i.e.,

�=
⎛
⎜⎝
�xx �xy �xz
�yx �yy �yz
�zx �zy �zz

⎞
⎟⎠ � (1.119)

so that each component of the displacement field can be expressed as

Di =
∑
j

�ijEj� (1.120)
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where �i� j
= x� y� z. We continue to assume our anisotropic media to be mag-

netically isotropic �
⇀

B= �
⇀

H≈ �0

⇀

H
. For non-absorbing anisotropic media, �ij
are real and symmetric, i.e.,

�∗
ij = �ji�

reducing the number of independent dielectric tensor components to six. A set
of x, y, z axes, called the principal axes, exists in which the dielectric tensor for
non-absorbing anisotropic media is diagonal, i.e.,

�=
⎛
⎜⎝
�x 0 0
0 �y 0
0 0 �z

⎞
⎟⎠ (1.121)

and Eq. (1.120) simplifies to

Dx = �xEx�

Dy = �yEy�

Dz = �zEz	 (1.122)

Despite this simplification, the displacement field in an anisotropic medium is
not parallel to the electric field, unless the latter is along one of the principal
axes of the dielectric tensor. The energy density in this coordinate system takes
the form

u=⇀

D · ⇀

E= D2
x

�x
+ D2

y

�y
+ D2

z

�z
	 (1.123)

For the harmonic plane wave solution (Eq. 1.15) to be consistent with Maxwell’s
equations (1.7) in a source-free, non-absorbing anisotropic medium, we must
have

⇀

k · ⇀

D= 0�
⇀

k · ⇀

B= 0�

⇀

B=
⇀

k × ⇀

E

�
�

⇀

D= − ⇀

k × ⇀

H� (1.124)
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where
⇀

k is the real propagation vector. Note that Maxwell’s equations do not

constrain the electric field
⇀

E to be perpendicular to the propagation vector in
an anisotropic medium. Combining the last two results of Eq. (1.124) gives the

relationship between the
⇀

E and
⇀

D fields:

⇀

D= k2

�0�
2

[
⇀

E −k̂�k̂ · ⇀

E


]

= �0n
2

[
⇀

E −k̂�k̂ · ⇀

E


]
� (1.125)

where k̂ is a unit vector in the direction of propagation and n is the corresponding
index of refraction of the anisotropic medium at frequency �. Similarly, the
Poynting vector for an anisotropic medium can be expressed as

⇀

S = 1
�0�

⇀

E ×�⇀k × ⇀

E


= k

�0�
E2�k̂− �Ê · k̂
Ê�� (1.126)

where Ê is a unit vector in the direction of
⇀

E. Since Eqs (1.124) do not require

the electric field
⇀

E to be perpendicular to the propagation vector
⇀

k , the Poynting
vector is generally not collinear with the propagation vector in anisotropic media.
This is one major difference of light propagation in isotropic and anisotropic
media. The phase velocity, as defined earlier, is the velocity with which the
wavefront of the wave advances, i.e.,

⇀
v p = c

n
k̂	 (1.127a)

The Poynting vector, on the other hand, defines the direction of a ray along
which energy propagates in a medium under conditions of normal dispersion.
The phase velocity is the projection of the ray velocity in the direction of the
wave normal. Therefore,

vr = vp

cos�
� (1.127b)

where � is the angle between the propagation vector
⇀

k and Poynting vector
⇀

S .
In isotropic media, there is no distinction between the ray and wave velocities

��= 0
. From the preceding discussion, it follows that the vectors
⇀

k ,
⇀

D and
⇀

B are
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α

α

D

E

k
B

S

Fig. 1.25: Directions of
⇀

D,
⇀

E,
⇀

k ,
⇀

S and
⇀

B vectors in an anisotropic medium.

mutually orthogonal and so are the vectors
⇀

S ,
⇀

E and
⇀

B. The vectors
⇀

D,
⇀

E,
⇀

k and
⇀

S are coplanar since they are all perpendicular to
⇀

B (Fig. 1.25). The harmonic
plane wave solutions of the wave equation in non-absorbing anisotropic media
must meet these requirements, imposed by the Maxwell’s equations.

1.10.1 Fresnel Equation

Combining Eqs (1.122) and (1.125), the components of the electric field along
the principal axes of the dielectric tensor can be expressed as

Ej = n2k̂j�k̂ · ⇀

E


n2 − �j
�0

� (1.128)

where j = x� y� z and k̂j is the jth component of the unit vector k̂. Multiplying
both sides of this equation by k̂j and summing over j gives the identity:

�k̂ · ⇀

E
=

⎡
⎢⎢⎣

n2k̂2
x

n2 − �x
�0

+ n2k̂2
y

n2 − �y

�0

+ n2k̂2
z

n2 − �z
�0

⎤
⎥⎥⎦ �k̂ · ⇀

E
	

For k̂ 	
⇀

E �= 0, we obtain the Fresnel equation

1
n2

= k̂2
x

n2 − �x
�0

+ k̂2
y

n2 − �y
�0

+ k̂2
z

n2 − �z
�0

	 (1.129a)
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Multiplying Eq. (1.129a) by n2 and replacing 1 on the left-hand side by k̂2
x +

k̂2
y + k̂2

z , gives an equivalent form of the Fresnel equation:

k̂2
x

v2
p −v2

x

+ k̂2
y

v2
p −v2

y

+ k̂2
z

v2
p −v2

z

= 0� (1.129b)

where vp is the phase velocity in the direction of the propagation vector k̂, and

vx = c

(
�x
�0

)−1/2

= 1√
�0�x

� vy = 1√
�0�y

� vz = 1√
�0�z

are the phase velocities along the principal axes. Eq. (1.128), when expressed in
terms of the phase velocities, takes the form

Ej = v2
j

v2
j −v2

p

k̂j�k̂ 	
⇀

E
� (1.130)

where j = x� y� z. Fresnel equation (1.129a) is quadratic in n2 (coefficient of
n6 is zero) and Eq. (1.129b) is quadratic in v2

p, giving two values for the index
of refraction �n1� n2
 and hence two values for the phase velocity �vp

′� vp
′′
 for

wave propagation in a given direction in an anisotropic medium. For each of

the phase velocities, the ratios of the components of
⇀

E (and hence of
⇀

D ) along
the principal axes, obtained from Eq. (1.130), are real and constant. Therefore,
there are two linearly polarized waves (see Section 3.1.2) propagating in any
direction in an anisotropic medium. These waves are orthogonally polarized

�
⇀

D1 · ⇀

D2 = 0
. To prove this statement, let us express

⇀

E=⇀

E� + ⇀

E⊥�

where
⇀

E� and
⇀

E⊥ are, respectively, parallel and perpendicular to the direction of

the propagation vector k̂. Since the displacement field
⇀

D is perpendicular to k̂,
Eq. (1.125) gives

D1 = �0n
2
1E1⊥� D2 = �0n

2
2E2⊥	 (1.131)
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Further since �ij = �ji,

⇀

E2 · ⇀

D1 =∑
i

E2iD1i =
∑
i

∑
j

E2i�ijE1j

=∑
i

∑
j

E1j�jiE2i =
⇀

E1 · ⇀

D2 	 (1.132)

Therefore

�0n
2
1

⇀

E2 · ⇀

E1⊥= �0n
2
2

⇀

E1 · ⇀

E2⊥

or

n2
1

⇀

E2⊥ · ⇀

E1⊥= n2
2

⇀

E1⊥ · ⇀

E2⊥ 	

For n1 �= n2,
⇀

E1⊥ · ⇀

E2⊥= 0 and hence

⇀

D1 · ⇀

D2 = 0	 (1.133)

1.10.2 Geometrical Constructions

There are a number of geometrical constructions to illustrate the various
aspects of wave propagation in an anisotropic medium. We consider two such
constructions.

1.10.2.1 Index Ellipsoid

Equation (1.123) may be written in the form

D2
x

u�x
+ D2

y

u�y
+ D2

z

u�z
= 1� (1.134)

whereDx,Dy,Dz are the components of the displacement field along the principal
axes of the dielectric tensor, u the energy density and �x, �y, �z are the principal
dielectric constants. Equation (1.134) represents an ellipsoid in the space spanned
by Dx, Dy, Dz (Fig. 1.26), whose semi-axes at a given frequency are proportional
to the square roots of the principal dielectric constants or to the principal indices
of refraction �n2

x = �x/�0� n
2
y = �y/�0� n

2
z = �z/�0
. This ellipsoid is variously

known as the ellipsoid of wave normals, optical indicatrix, etc. The semi-axes
and orientation of the index ellipsoid change with the frequency of the wave since
the principal dielectric constants are frequency dependent. The index ellipsoid
is helpful in determining the phase velocities (or equivalently the indices of
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Dz

DyDx

D
2

D
1

O

k

Fig. 1.26: Index ellipsoid; polarization directions of the waves propagating along
⇀

k are along the semi-axes of the ellipse (
⇀

D1 and
⇀

D2).

refraction) and the permissible directions of polarizations (directions of
⇀

D) of
waves propagating in anisotropic media. Figure 1.26 shows the propagation

vector
⇀

k drawn from the center O of the index ellipsoid. The intersection of
the plane, passing through O and perpendicular to the direction of propagation,
with the index ellipsoid is in general an ellipse. The displacement fields for the

two waves propagating along
⇀

k oscillate along the semi-axes of this ellipse. The
semi-axes of the ellipse being perpendicular to each other, the two waves have
orthogonal polarizations as required by Eq. (1.133). The phase velocities of the
waves can be obtained from the lengths of the semi-axes of the ellipse.

There are at most two directions of propagation in a crystal, for which the
intersecting ellipse degenerates into a circle. These are the directions of the optic
axes in a crystal. The crystals belonging to the orthorhombic, monoclinic, and
triclinic crystallographic systems have no two directions which are crystallo-
graphically equivalent. These are the biaxial crystals with two optic axes. The
uniaxial crystals belong to the trigonal, tetragonal, and hexagonal systems and
can have two or more crystallographically equivalent directions. There is only
one optic axis for a uniaxial crystal. The phase velocities of the waves propagat-
ing along an optic axis are equal, and any two mutually orthogonal directions can
be chosen to describe their polarization states. Cubic crystals have three mutu-
ally perpendicular directions which are crystallographically equivalent. They are
optically isotropic since �x = �y = �z.
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1.10.2.2 Normal Surface

We have seen that the two linearly polarized waves travelling in any given
direction in an anisotropic medium have generally unequal phase velocities.
With this in mind, we consider another construction in which from a fixed point
in the medium, taken as the origin, two vectors are drawn in each direction of
propagation with lengths proportional to the two permissible phase velocities for
that direction. The tips of such vectors drawn along all different directions of
propagation lie on a surface, called the normal surface, which as we shall see
breaks up into an inner and an outer surface, touching each other at points on
the optic axes.

1.10.3 Uniaxial Crystals

The axis of symmetry of a uniaxial crystal is also its optic axis. Let the z-
axis of the principal axis system coincide with the optic axis. The principal
dielectric constants must display the symmetry of the crystal. Therefore, �x = �y
and vx = vy. Anticipating results, we define

vx = vy = vo� vz = ve�

where the subscripts o and e refer to the ordinary and extraordinary waves,
respectively. With this choice, Eq. (1.129b) takes the form

�v2
p −v2

o
��v
2
p −v2

e
�k̂
2
x + k̂2

y
+ �v2
p −v2

o
k̂
2
z�= 0�

giving

v′
p = vo� (1.135a)

v′′
p = �v2

o cos2 �+v2
e sin2 �
1/2� (1.135b)

where � is the angle between the optic axis and the direction of propagation.
Thus, one of the waves in a uniaxial crystal propagates with a constant velocity
vo, irrespective of its direction of propagation. The normal surface for this wave
is a sphere. This wave behaves much like a wave in an isotropic medium,
hence the name ordinary wave given to this wave. The velocity of propagation
of the other wave varies with the angle the propagation direction makes with
the optic axis. This is the extraordinary wave. Its velocity equals the velocity
of the ordinary wave vo when propagating along the optic axis and ve when
propagating in a plane perpendicular to the optic axis. The normal surface of the
extraordinary wave in a uniaxial crystal is an ellipsoid of revolution (spheroid),
which touches the spherical normal surface of the ordinary wave at points on
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Fig. 1.27: Sections of normal surfaces for (a) positive uniaxial crystals �vo > ve

and (b) negative uniaxial crystals �vo < ve
.

the optic axis. Sections of these surfaces in a plane containing the optic axis
are shown in Fig. 1.27. A uniaxial crystal is called a positive uniaxial crystal if
vo > ve or no < ne and a negative uniaxial crystal if vo < ve or no > ne, where
no = c/vo and ne = c/ve. An example of a positive uniaxial crystal is quartz
with no = 1	544 and ne = 1	553 for the sodium D lines. Calcite, on the other
hand, is a negative uniaxial crystal with no = 1	6583 and ne = 1	4864 for the
sodium D lines.

To determine polarizations of the ordinary and extraordinary waves, we write
Eq. (1.130) explicitly for each component of the electric field:

�v2
x −v2

p
Ex −v2
xk̂x�k̂xEx + k̂yEy + k̂zEz
= 0�

�v2
y −v2

p
Ey −v2
yk̂y�k̂xEx + k̂yEy + k̂zEz
= 0� (1.136)

�v2
z −v2

p
Ez −v2
z k̂z�k̂xEx + k̂yEy + k̂zEz
= 0�

where in the present case vx = vy = vo, and vz = ve, giving

�v2
o�1− k̂2

x
−v2
p�Ex −v2

ok̂xk̂yEy −v2
ok̂xk̂zEz = 0�

−v2
ok̂yk̂xEx + �v2

o�1− k̂2
y
−v2

p�Ey −v2
ok̂yk̂zEz = 0�

−v2
e k̂zk̂xEx −v2

e k̂zk̂yEy + �v2
e�1− k̂2

z
−v2
p�Ez = 0	

(1.137)
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We first consider the case when the optic axis is perpendicular to the plane of
incidence, so that k̂z = 0, k̂2

x + k̂2
y = 1, and Eqs (1.137) are reduced to

�v2
ok̂

2
y −v2

p
Ex −v2
ok̂xk̂yEy = 0�

−v2
ok̂yk̂xEx + �v2

ok̂
2
x −v2

p
Ey = 0� (1.138)

�v2
e −v2

p
Ez = 0	

For vp = vo, these equations can be satisfied only if Ez = 0, Ex �= 0, Ey �= 0,
therefore the ordinary wave is polarized normal to the optic axis. The other
solution of Eqs (1.138) corresponds to vp = ve, Ez �= 0, Ex = 0, Ey = 0. Thus, for
propagation in a plane perpendicular to the optic axis, both waves are ordinary
waves but orthogonally polarized propagating with velocities vo and ve.

For waves propagating along the optic axis, k̂x = 0, k̂y = 0, k̂z = 1, and
Eqs (1.137) give

�v2
o −v2

p
Ex = 0� �v2
o −v2

p
Ey = 0� −v2
pEz = 0�

with the only solution vp = vo, Ez = 0, Ex �= 0, Ey �= 0. Thus, both waves
propagating along the optic axis are ordinary waves with vo as their common
velocity of propagation. The remaining cases covered by 0 < k̂z < 1 can be
exemplified by restricting the propagation vector to lie in the xz principal plane,
so that k̂y = 0, giving

�v2
ok̂

2
z −v2

p
Ex −v2
ok̂xk̂zEz = 0�

�v2
o −v2

p
Ey = 0�

−v2
e k̂zk̂xEx + �v2

e k̂
2
x −v2

p
Ez = 0	

(1.139)

For the ordinary wave with vp = vo, these equations can be satisfied only if

Ey �= 0, Ex = 0, Ez = 0, so that
⇀

D= �0n
2
o

⇀

E, where no is the index of refraction for
the ordinary wave. Therefore, the ordinary wave is polarized perpendicular to the
plane containing the optic axis and the direction of propagation. In the present
context, this plane is called the principal plane. The electric and displacement
fields of the ordinary wave oscillate along the tangents to the spherical normal
surface. Poynting vector in this case is in the direction of the propagation vector
(see Fig. 1.27). For the extraordinary wave (velocity given by Eq. 1.135b),
Eqs (1.139) require Ey = 0, Ex �= 0, and Ez �= 0 with the ratio

Ez
Ex

= −v2
e

v2
o

k̂x

k̂z
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Therefore, the extraordinary wave is polarized in the principal plane with polar-
ization changing direction with the direction of the propagation vector. Since the
⇀

E and
⇀

D fields are not parallel in this case, the directions of the Poynting and

propagation vectors differ as indicated in Fig. 1.27. The electric field
⇀

E oscillates

tangential to the normal surface and the displacement field
⇀

D oscillates normal
to the propagation vector.

1.10.4 Biaxial Crystals

All three principal dielectric constants are different in a biaxial crystal. For the
sake of definiteness, let �z > �y > �x, so that vz < vy < vx. We can get a feel
for the normal surface of a biaxial crystal by first considering its sections in the
three coordinate planes of the principal axis system. The results obtained from
Eqs (1.129b) and (1.136) are summarized below:

Case I: Propagation in the yz plane �k̂x = 0


v′
p = vx� Ex �= 0� Ey = 0� Ez = 0�

v′′
p = �k̂2

yv
2
z + k̂2

zv
2
y


1/2� Ex = 0� Ey �= 0� Ez �= 0�

Case II: Propagation in the xz plane �k̂y = 0


v′
p = vy� Ey �= 0� Ex = 0� Ez = 0�

v′′
p = �k̂2

zv
2
x + k̂2

xv
2
z


1/2� Ey = 0� Ex �= 0� Ez �= 0�

Case III: Propagation in the xy plane �k̂z = 0


v′
p = vz� Ez �= 0� Ex = 0� Ey = 0�

v′′
p = �k̂2

xv
2
y + k̂2

yv
2
x


1/2� Ez = 0� Ex �= 0� Ey �= 0	

Figure 1.28 shows sections of the normal surface in the principal coordinate
planes. In each case, the section consists of a circle and an ellipse. For our
choice of the relative magnitudes of the principal dielectric constants, the circle
in the yz plane lies completely outside the ellipse (Fig. 1.28a) and in the xy
plane, the circle lies completely inside the ellipse (Fig. 1.28c). The circle and
the ellipse intersect at four points in the zx plane (Fig. 1.28b). The optic axes of
a biaxial crystal, symmetrically inclined to the z-axis, pass through these points
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Fig. 1.28: Sections of the normal surface of a biaxial crystal in (a) yz, (b) zx,
(c) xy planes; (d) normal surface of a biaxial crystal in one octant.

of interactions as shown in the figure. The angle � between the z-axis and the
optic axes can be obtained from Case II above, giving

tan2 �= v2
x −v2

y

v2
y −v2

z

	 (1.140)

A positive biaxial crystal has � < 45� and a negative biaxial crystal has � > 45�.
For a uniaxial crystal, � = 0, and the two optic axes coincide with the z-axis.
A view of the three-dimensional normal surface of a biaxial crystal in one
octant is shown in Fig. 1.28d.

In summary, we can state that when wave propagation is restricted to the
principal planes of a biaxial crystal, there is generally one ordinary and one
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extraordinary wave and for propagation along the principal axes, both waves are
ordinary waves but with unequal velocities of propagation. It can be appreciated
that for propagation in a biaxial crystal along directions not covered by the
principal planes, both waves are extraordinary.

1.10.5 Double Refraction

We return to Section 1.7 on reflection and transmission of waves at a planar
boundary, but this time the boundary is between isotropic and anisotropic media
(see Fig. 1.7). We will not derive expressions for the reflection and transmission
coefficients across such a boundary, but merely investigate the nature of the
refraction process. The incident and refracted waves must satisfy Eq. (1.51c) in
this case as well, requiring

⇀

k i · ⇀
r B =⇀

k t · ⇀
r B� (1.51c)

where
⇀

k i and
⇀

k t are the propagation vectors of the incident and transmitted waves

and
⇀
r B is a vector in the boundary plane. Expressing

⇀

k i=
n

c
�k̂ and

⇀

k t=
nt

c
�k̂t ,

Eq. (1.51c) is equivalent to

�nk̂−ntk̂t
 · ⇀
r B= 0� (1.141)

where n and nt are the indices of refraction of the media on the two sides of
the boundary. But since an anisotropic medium is characterized by two phase
velocities �v′

p� v
′′
p
 and hence two indices of refraction �n1� n2
, Eq. (1.141)

actually represents two equations:

�nk̂−n1k̂1
 · ⇀
r B= 0� �nk̂−n2k̂2
 · ⇀

r B= 0	 (1.142)

Figure 1.29 shows the vectors nk̂, n1k̂1, and n2k̂2 drawn from point O on the
boundary. Equations (1.142) can be satisfied only if the tips of the vectors nk̂,
n1k̂1, and n2k̂2 lie on a line which is perpendicular to the plane of the boundary.
This gives rise to two transmitted waves in the anisotropic medium, making
angles �1 and �2 with the normal to the plane of the boundary, such that

n sin � = n1 sin �1� n sin � = n2 sin �2	 (1.143)
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Fig. 1.29: Double refraction across a boundary between isotropic and anisotropic
media.

These equations appear to be the usual expressions for the Snell’s law. How-
ever, by expressing the indices of refraction in terms of the phase velocities,
Eqs (1.143) can be expressed as

sin �

v
= sin �1

v′
p

= sin �2

v′′
p

� (1.144)

where v is the phase velocity in the isotropic medium. In uniaxial crystals and in
the principal planes of the biaxial crystals, the phase velocity v′

p has been found to
be independent of the direction of propagation. This corresponds to the ordinary
wave for which the index of refraction n1 is a constant and Snell’s law holds. For
the extraordinary wave, the phase velocity v′′

p varies with the direction of propa-
gation and Snell’s law does not hold since n2 is not a constant. For the transmitted
waves in biaxial crystals in directions other than those lying in the principal
planes, Snell’s law does not hold for either of the waves since both waves are
extraordinary in those directions. Double refraction in anisotropic media is also
known as birefringence. Peculiar phenomenon of conical refraction takes place
when transmitted wave in biaxial crystals travels along an optic axis. In that
case, the elliptical section (Fig. 1.26) of the index ellipsoid perpendicular to the

propagation direction
⇀

k degenerates into a circle, giving infinitely many (and

not just two as in Fig. 1.26) possible directions for the displacement field
⇀

D and
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hence for the Poynting vector
⇀

S . As shown in Principles of Optics by Born and

Wolf, the permitted directions of
⇀

S lie along a cone which touches the optic axis.

1.10.6 Polarizing Prisms

There are a number of ways to produce polarized light. We have seen how inci-
dence at Brewster angle (Section 1.7.1) on a singly refracting medium generates
polarized light. Light scattered by molecules and small particles in directions
orthogonal to the direction of the incident light is substantially polarized. Polar-
izing prisms exploit the phenomenon of double refraction in uniaxial crystals
to produce polarized light. William Nicol developed the first polarizing prism,
called the Nicol prism. Its sectional view is shown in Fig. 1.30a. The optic axis
lies in the plane of the figure. The cleaved edges of a calcite crystal are inclined
at 71� to each other. This angle is reduced to nearly 68� by grinding the sides. The
crystal is then cut along the diagonal as shown, and the two halves are cemented
together with a thin layer of canada balsam whose index of refraction �n= 1	55

lies between the indices no �=1	6583
 and ne �=1	4864
 of calcite. The ordinary
wave undergoes total internal reflection at the calcite–canada balsam interface,

e-wave

e-wave

o-wave

Optic axis

Optic axis

Optic axis

(a)

(b)

68
o o-wave

Fig. 1.30: Polarizing prisms; (a) Nicol prism, (b) Glan-Thompson prism.
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but the extraordinary wave which is polarized in the plane containing the direc-
tion of propagation and the optic axis is substantially transmitted. The ordinary
wave, after getting reflected, is absorbed at the blackened edge of the prism.
The incident beam should be nearly parallel to the upper and lower edges of the
prism. For large deviations (more than 10�−12�) from this direction, the ordinary
and extraordinary waves may not get separated. Absorption of light by canada
balsam restricts the use of Nicol prisms down to about 0	35 m. To extend the
use of the polarizing prisms to the ultraviolet, canada balsam should be replaced
by air or UV transmitting oils. The lateral shift of the transmitted beam is another
limitation of the Nicol prism. A Glan-Thompson prism (Fig. 1.30b) with per-
pendicular edges requires a large calcite crystal, but the transmitted wave comes
out undeviated. The acceptance angle for this polarizing prism is much higher
(≈30�). A Glan-Thompson air prism extends the spectral range of these polar-
izers down to about 0	21 m. In the Rochon prism, the two halves of the prism
are joined together with orthogonal orientations of the optic axis as shown in
Fig. 1.31. The ordinary wave, polarized perpendicular to the section of the prism
shown in the figure in the first half and in the plane of the figure in the second
half, undergoes no refractive index change across the interface (sees no in both
halves) and is therefore transmitted without any deviation. But the other wave is
refracted at the interface because it behaves as an ordinary wave (polarized in the
plane of the figure but perpendicular to the optic axis) in the first half and as an
extraordinary wave (polarized along the optic axis) in the second half. As a result,
the two waves exit the prism in different directions and are therefore separated.
The Rochon prism can be made from calcite or from quartz, but quartz being
optically active may be less useful. The optical activity (rotation of the plane of
polarization of light) arises from a different kind of birefringence called circu-
lar birefringence. The birefringence in the present context of anisotropic media

Optic axis
Optic axis

o-wave

e-wave

Fig. 1.31: The Rochon Prism.
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may be called linear birefringence since refractive index change exists between
linearly, but orthogonally polarized light waves. In optical activity, the refractive
index change occurs between left and right circularly polarized light waves (see
Section 3.1.2). Anisotropy can be induced in otherwise isotropic media such as
glass, liquids, etc., by subjecting them to external disturbances in the forms of the
electric, magnetic, and strain fields. The corresponding induced anisotropies are
referred to as the electro-optic, the magneto-optic and the photo-elastic effects.
We shall, however, not discuss these effects.
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1.12 PROBLEMS

1.1 Two co-polarized plane electromagnetic waves with same frequency, amplitude
and phase constant are propagating in opposite directions in free space. Find time
averaged energy density and Poynting vector at a given point in space. Solve the
problem using real and complex fields.

1.2 The spot size of a Gaussian TEM00 mode is 10 m at the beam waist. Plot the
variations of the spot size w�z
 and radius of curvature R�z
 of the mode as a
function of the axial distance from the beam waist �z = 0
. At what distance from
the beam waist, R�z
 has minimum value? What is the spot size at this point? Find
the divergence angle and wavelength of the mode. Take z0 =1 mm.
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1.3 A Gaussian TEM00 mode existing in a laser resonator has radii of curvatures of
−5 m and +8 m at two points, 0.4 m apart. Find the positions of these points with
respect to the beam waist �z = 0
. Obtain the minimum spot size, Rayleigh range
and divergence of the mode. Take �= 500 nm.

1.4 Consider a monochromatic inhomogeneous wave (Fig. 1.5b) with real and imaginary
parts of the propagation vector along the x- and z-directions, respectively. For the TE

mode, let the electric field
⇀

E be linearly polarized along the y-direction. Determine

the magnitude and direction of the magnetic field
⇀

B and comment on its state of

polarization. Show that field
⇀

B is not transverse to the real part of the propagation

vector
⇀

k , but is transverse to the electric field
⇀

E and complex propagation vector
⇀∼
k .

1.5 If in Problem 1.4, the real part of the propagation vector is also in the z-direction, the

wave becomes homogeneous. Show that
⇀

B is now linearly polarized if
⇀

E is linearly

polarized, but the two are not in phase. Find the phase difference between the
⇀

E and
⇀

B fields if the complex refractive index of the medium is
∼
n= 1	30+7	11i.

1.6 Work out the steps which lead to Eqs (1.59) and (1.62).
1.7 A monochromatic plane wave, travelling in air, falls on an air–glass �n = 1	5


interface at an angle of incidence of 60�. The electric field of the incident wave
makes an angle of 45� with the normal to the plane of incidence. Determine
the angle between the electric field of the reflected wave and the normal to the
plane of incidence. Has the proportion of �-polarization increased in the reflected
wave?

1.8 Refer to Fig. 1.8 and determine the reflection losses suffered by �-polarized light
at the Brewster windows �n = 1	5
 during one round trip between mirrors M1

and M2.
1.9 Disallowing total internal reflection, show that at an interface between two optically

transparent ��= 0
 media,

r� + t� �= 1� r� + t� �= 1 except when � = �B	

What is the significance of r� + t� = 1 for � = �B?
1.10 Consider �-polarized light incident at Brewster angle on a stack of N optically

transparent glass slabs held parallel to each other with air gaps between the adjacent
slabs. Find transmittance of the stack and plot its variation with the number of slabs
in the stack. Take n = 1	5 for each slab. Repeat the calculation for �-polarized
light. Comment on the difference in behavior in the two cases.

1.11 Calculate the angle of a Fresnel rhomb made from fused quartz with n = 1	46
so that the difference in phase between �- and �-polarized light waves after two
successive reflections in the rhomb is 90�.

1.12 Light is bent through 90� from two 45�–45�–90� prisms as shown in Fig. 1.32.
The material of one of the prisms is glass with n = 1	5 and that of the other is
MgF2 with n = 1	38. Assuming the prisms to be perfectly transparent, find the
amplitudes of the fields coming out of the prisms for the following two cases
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(a)
⇀

Ein= E0�̂ ei�
⇀
k ·⇀r −�t
, (b)

⇀

Ein= E0�̂ ei�
⇀
k ·⇀r −�t
,

45o

45o
σ̂

π̂ 45o

45o
σ̂

π̂

n = 1.5 n = 1.38

(a) (b)

E in E in

EoutEout

Fig. 1.32.

1.13 Consider internal reflection from glass �n= 1	5
 to air. Find the angle(s) of inci-
dence for which 2�0 − 2�0 has maximum value, where the angles �0 and �0 are
defined in Eqs (1.79).

1.14 For the evanescent wave, find the time averaged components of the Poynting vector
along and perpendicular to the interface between two optically transparent media
when angle of incidence exceeds the critical angle. Incident light may be taken to
be �-polarized.

1.15 In an optical tunnelling experiment linearly polarized light, polarized in the plane
of incidence, arrives at the first interface making an angle of 75� with the normal
to the interface (Fig. 1.33). The thickness of the sandwiched medium is 1.5 times

n = 1.5 n = 1.5n = 1.38

πE

E’
π

Fig. 1.33.
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the penetration depth in that medium (i.e. when the second medium is unbounded
on the right-hand side). You may assume all media to be perfectly transparent.
Neglect multiple reflections in the sandwiched medium. Find transmittance of the
tunnelling device and the phase velocities in the three media.

1.16 Using data of Table 1.2, compute reflection coefficients for Al, Cu, and Au for �-
and �-polarization states. Plot r� , r� , R� , and R� as a function of the angle of
incidence. Calculate and plot phase changes on reflection as a function of the angle
of incidence for each state of polarization and estimate as accurately as you can
the difference in phase change for the two polarization states close to the principal
angle of incidence.

1.17 Using Eqs (1.62), (1.73) and (1.74), calculate the transmission coefficients for
internal reflections �� > �c
 and show that


⇀S t 	 n̂� = 0� 
⇀S t 	 �̂� �= 0�

where
⇀

S t is the Poynting vector for the transmitted wave. Convince yourself that
the transmitted wave is not a TEM wave, although the incident wave is a TEM
wave.

1.18 A monochromatic plane wave of frequency v is incident from air on a medium of
complex index of refraction

∼
n= 1	5+0	5i making an angle of 45� with the normal

to the interface. Take ! = 6 × 1014 Hz.

(a) Determine the angle of refraction, attenuation constant at , and wave number
kt in the second medium. State if the wave is homogeneous or inhomogeneous
in the second medium.

(b) Calculate the magnitude and phase of the reflection coefficient if incident light

is �-polarized. What are the states of polarization of the
⇀

E and
⇀

B fields in the
second medium?

1.19 A monochromatic plane wave travelling in air is reflected normally from a metallic
film with complex index of refraction

∼
n= 0	76+2	46i. Find the resultant electric

and magnetic fields in air. Are standing waves set up in air?
1.20 Calculate the phase and group velocities for a dilute gas with index of refraction

given by Eq. (1.109a) for (a) � < �0, (b) � = �0, (c) � = �0 + �
4 and (d) � =

�0 +�.
1.21 Consider the extraordinary wave propagating in the xz principal plane of a calcite

crystal with no = 1	6583 and ne = 1	4864. Find and plot the dependence of the
angle � between its electric and displacement fields as a function of the angle
the propagation vector makes with the optic axis. Check if you get the expected
result ��= 0
 for the limiting cases of propagation along and perpendicular to the
optic axis.
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Coherence of Light Waves

2.1 POLYCHROMATIC LIGHT

A number of monochromatic wave solutions of the wave equation were consid-
ered in Chapter 1. A monochromatic wave must exist for all times. Such a wave,
if it does exist, must have seen the big-bang if it ever occurred and should see the
doom’s day if it comes! There are other unreal features of the monochromatic
wave solutions. To establish even a small amplitude directed monochromatic
wave, an infinite amount of energy must be expended. Needless to say that
no source exists which gives strictly monochromatic light. Nevertheless, the
monochromatic wave solutions of the wave equation are extremely useful to
describe real light, which is polychromatic. A monochromatic wave has perfect
coherence because its phase is completely defined at each and every point in
space for all times. If the phase of a monochromatic wave at a space-time point
�
⇀
r1� t1� is known, then its phase at any arbitrary space-time point �

⇀
r2� t2� can be

precisely determined – in other words, the phases of a monochromatic wave are
perfectly correlated. In the same spirit, the amplitude of a monochromatic wave
is perfectly correlated. The extent to which the phase and amplitude correlations
in time and space exist, determines the coherence properties of a light wave.
A monochromatic plane wave

⇀

E �
⇀
r � t� = ⇀

E0 ei�
⇀
k ·⇀r −�t+�0� (2.1)

has amplitude
⇀

E0 and phase constant �0 which are strictly independent of time
and position.

Monochromatic waves are ideal single frequency waves and hence unrealiz-
able. Practical light sources have spectral bandwidths varying from a fraction of
a kHz for a good single mode laser to the broad spectrum of a black body radia-
tor. All light fields are therefore polychromatic. This has to do with the inherent
process of light emission. Thermal light is generated as a result of spontaneous
emission from excited atoms and molecules radiating independently. Fourier

77



78 Chapter 2: COHERENCE OF LIGHT WAVES

decomposition1 of thermal light contains waves with continuously distributed
frequencies. Stimulated emission is the predominant mechanism of production of
laser light which also contains a non-negligible component of the spontaneously
emitted light restricting its bandwidth to a finite, albeit narrow spectral range.
A scalar polychromatic light field can be Fourier decomposed:

E�r��t�=
∫ +�

−�
E���e−i2	vtd�� (2.2)

where the real field E�r��t� may represent a Cartesian component of the electric
field vector of a light wave. Its space dependence has been suppressed. E���d���
is the complex weighting factor for the waves with frequencies lying between �
and �+d�. The Fourier decomposition (Eq. 2.2) necessarily involves positive as
well as negative frequencies. However, by taking the inverse Fourier transform
of Eq. (2.2) and making use of the fact that E�r��t� is real, it can be shown that

E�−��= E∗���


Therefore, all spectral information of E�r��t� is contained in the positive frequen-
cies. Accordingly, the Fourier decomposition of a polychromatic light field can
be recast into a form that does not contain negative frequencies:

E�r��t�=
∫ �

0
E���e−i2	�td�+

∫ 0

−�
E���e−i2	�td�

=
∫ �

0
E���e−i2	�td�+

∫ �

0
E�−��ei2	�td�

=
∫ �

0
E���e−i2	�td�+

∫ �

0
E∗���ei2	�td�

=
∫ �

0
E���e−i2	�td�+ cc (2.3a)

= 2Re
∫ �

0
E���e−i2	�td� (2.3b)

= 2
∫ �

0
�E���� cos�����−2	�t�d�� (2.3c)

where cc stands for complex conjugate and E��� has been expressed as

E���= �E����ei����
 (2.4)

1 Fourier transforms are discussed in Chapter 9.
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The decomposition of polychromatic field now has only positive frequencies.
We next define another real polychromatic field

E�i��t�= 2
∫ �

0
�E���� sin�����−2	�t�d�� (2.5)

whose each spectral component is shifted in phase by 90� from the corresponding
component of E�r��t�. The real functions E�r��t� and E�i��t� are related by the
Hilbert transformation2:

E�i��t�= 1
	
P
∫ +�

−�
E�r��t′�
t′ − t

dt′� (2.6a)

E�r��t�= − 1
	
P
∫ +�

−�
E�i��t′�
t′ − t

dt′� (2.6b)

where P refers to the Cauchy principal value at t′ = t. The complex polychromatic
light field is defined as

E�t�= E�r��t�+ iE�i��t� (2.7a)

= 2
∫ �

0
E���e−i2	�td�� (2.7b)

where

E���=
∫ �

−�
E�r��t�ei2	�tdt

is the inverse Fourier transform of E�r��t�. The complex light field E�t� can be
identified with the analytical signal V�t� used in communication theory. The
complex polychromatic light field E�t� can be given an alternate description in
terms of the envelope representation:

E�t�= A�t�e−i�2	�̄t−��t�� (2.8a)

= �A�t�ei��t�e−i2	�̄t� (2.8b)

where the amplitude A�t� and phase ��t� are time varying, and �̄ is the mean
frequency of polychromatic light. But, as we shall see later, such a representation
of polychromatic light is not very useful, except when light possesses a narrow
spectral bandwidth.

2 P.M. Morse and H. Feshbach, Methods of Theoretical Physics.
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2.1.1 Quasi-monochromatic Light

A source giving monochromatic light may be hard to find, but sources of light
with relatively narrow frequency bandwidths are readily available. Conventional
sodium, mercury, and cadmium lamps belong to this category of light sources.
In addition, a narrow band interference filter used in conjunction with a poly-
chromatic light source such as a tungsten–halogen lamp provides a convenient
narrow band source. For quasi-monochromatic light,

��

�̄
� 1� (2.9)

where �̄ is the mean frequency and �� the frequency bandwidth of the source.
A multi-mode laser is an excellent example of a quasi-monochromatic light
source. A single mode laser must also be categorized as a quasi-monochromatic
light source. We now show that the envelope representation (Eqs 2.8) can ade-
quately describe quasi-monochromatic light. Re-arranging Eq. (2.8b) and making
use of Eq. (2.7b), we have

A�t�ei��t� = E�t�ei2	�̄t

= 2
∫ �

0
E���e−i2	��−�̄�td� (2.10)

= 2
∫ �

−�̄
E��̄+��e−i2	�td��

where in view of Eq. (2.9), �= �− �̄ is small ≈��. The time dependence of the
product A�t�ei��t� comes via the exponential e−i2	�t which may not significantly
differ from unity for quasi-monochromatic light with sufficiently narrow spectral
bandwidth. In addition, E��̄+�� is non-zero over a narrow range of frequencies
in the neighborhood of the mean frequency �̄��= 0�. Therefore, the amplitude
A�t� and phase ��t� of the envelope representation of quasi-monochromatic light
change slowly with time. This is precisely what the term quasi-monochromatic
wave is supposed to imply. Later, we shall further sharpen the definition of a
quasi-monochromatic wave. Slow variations of A�t� and ��t� with time may
imply the existence of correlations in the amplitude and phase of the electric
field of quasi-monochromatic light at times t and t+ �, if the time difference �
is not too large. On the other hand, for polychromatic light, A�t� and ��t� vary
so rapidly with time that the amplitude and phase of the wave lose any meaning.

2.2 PARTIALLY COHERENT LIGHT

Monochromatic light is perfectly coherent, but polychromatic light is not per-
fectly incoherent in the sense that no two space-time points exist with correlated
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phases. Perfect incoherence is just as unrealizable as perfect coherence. Light
fields are partially coherent. Of course, over limited regions of space and time,
coherence of light can closely approach either perfect coherence or perfect
incoherence.

In the context of monochromatic light, we associated coherence with the pres-
ence of phase correlations at two space-time locations. However, the common
usage of the term coherence is linked with the ability of light to produce interfer-
ence effects. Within the scope of this interpretation, light is considered coherent
if it can produce interference, and incoherent if it cannot. This definition of
coherence suffers from a number of deficiencies. Undoubtedly, no interference is
possible if light is not coherent, but the absence of interference may not necessar-
ily imply incoherence of light. Furthermore, the interference effects when present
may be well pronounced or may not be so well pronounced. Therefore, the term
interference effects fails to provide a quantitative definition of coherence. The
term fringe visibility introduced by Michelson may be more appropriate for a
quantitative definition of coherence. Perfect coherence may correspond to 100%
visibility and zero visibility may imply complete incoherence – in between we
have the regime of the partially coherent light. The concept of the degree of
coherence, to be introduced shortly, is intimately related to the fringe visibility
when the fringes exist. However, the degree of coherence can be defined and
hopefully measured as well even when the fringes do not exist. We are now
referring to higher order coherence effects.

2.2.1 Spatial and Temporal Coherence

The concepts of spatial and temporal coherence are not fundamental to the
description of coherent light, but they are helpful for an intuitive understanding
of partially coherent light. As we shall see later, they represent two limiting cases
of the general state of coherence of light fields. Temporal coherence is intimately
related to the frequency bandwidth of a truncated wave train. Temporal coherence
determines how far two points along the direction of propagation of a wave
can be and still possess a definite phase relationship. For that reason, temporal
coherence is also called longitudinal coherence. Michelson interferometer, which
senses longitudinal path differences between the interfering waves, is ideally
suited for investigating temporal coherence of light fields. Spatial coherence
of light fields depends on the physical size of the light source. Light coming
from a point source, which may be taken as a source with dimensions not
exceeding the mean wavelength of the emitted light, possesses a high degree
of spatial coherence, irrespective of the frequency bandwidth of the source.
Commonly observed speckles with laser light reflect a high degree of spatial
coherence of laser light despite the laser not being a point source. Light from a
conventional extended source, on the other hand, has considerably reduced spatial
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coherence because different points on an extended source radiate independently
and therefore are mutually incoherent. Light emanating from an extended source
cannot be characterized by a definite state of spatial coherence. Spatial coherence
of light from an extended source changes as light propagates. Star light will
show little spatial coherence in the neighborhood of the star, but light from the
same star will show on earth a high degree of spatial coherence. In fact, as we
shall see later, large spatial coherence of star light on earth is a handicap in
determining the angular size of a distant star. Sunlight approaches near perfect
spatial coherence on earth over a patch of diameter 0.019 mm. We shall return to
these considerations later in this chapter. Spatial coherence of light determines
how far two points can lie in a plane transverse to the direction of propagation of
light and still be correlated in phase. Spatial coherence of light can be investigated
by interferometers of the type used by Young in his famous two-slit interference
experiment. We now develop a mathematical framework to characterize the
coherence of light fields.

2.3 COMPLEX COHERENCE FUNCTIONS

First-order coherence between scalar fields at two space-time points �
⇀
r1� t1� and

�
⇀
r2� t2� is defined through the first-order complex coherence function [2.1]

��1��
⇀
r1� t1�

⇀
r2� t2�= 	E∗�

⇀
r1� t1�E�

⇀
r2� t2�

 (2.11)

Higher order coherence among scalar fields at many space-time points can be
defined in a similar manner. The nth order complex coherence function

��n��
⇀
r1� t1�

⇀
r2� t2� � � � �

⇀
rn� tn�

⇀
rn+1� tn+1� � � � �

⇀
r2n� t2n�

= 	E∗�
⇀
r1� t1�E

∗�
⇀
r2� t2� · · ·E∗�

⇀
rn� tn�E�

⇀
rn+1� tn+1� · · ·E� ⇀r2n� t2n�
 (2.12)

correlates light fields at 2n space-time locations. The symbol 	 
, as explained
in the following subsection, indicates that some form of averaging of the field
products is involved in the definition of the coherence functions. Interference
of light is associated with the first-order coherence function ��1��

⇀
r1� t1�

⇀
r2� t2�.

The absence of interference among co-polarized light fields implies absence
of first-order coherence ���1��

⇀
r1� t1�

⇀
r2� t2� = 0�, and not absence of coherence

to all orders. The first-order coherence function establishes phase correlation
between light fields at two space-time points. If the points are spatially separated
�
⇀
r1 �=⇀

r2�, the first-order complex coherence function is called the complex mutual
coherence function, abbreviated as

�12�t1� t2�= 	E∗
1�t1�E2�t2�

 (2.13)



2.3: COMPLEX COHERENCE FUNCTIONS 83

The subscripts used with �12, E1, and E2 refer to two spatially distinct locations.
For spatially coincident points �

⇀
r1 =⇀

r2�, first-order phase correlation is sought
at two different times through the complex self coherence function

��1��
⇀
r1� t1� t2�= 	E∗�

⇀
r1� t1�E�

⇀
r1� t2�
� (2.14a)

abbreviated as

�11�t1� t2�= 	E∗
1�t1�E1�t2�

 (2.14b)

2.3.1 Stationary and Time-Averaged Fields

The coherence functions determine correlations among light fields at different
times. For the present discussion, it is not important to know whether these
correlations are sought at the same or at different spatial positions. It is convenient
to assume that the origin of the time scale in the above definitions is not important
for determining the average values of field correlations. It is only the time delay
� = t2 −t1 between events which may be relevant. The coherence function should
then have the same value for a given time delay �, irrespective of the exact
time at which a measurement is made. Light fields satisfying this requirement
are known as stationary fields. Such fields are produced by sources which have
attained steady-state operation. For stationary fields, self and mutual complex
coherence functions can be expressed as

�11���= 	E1�t+ ��E∗
1�t�
� (2.15a)

�12���= 	E1�t+ ��E∗
2�t�
� (2.15b)

respectively. We must now specify the nature of the averaging process involved in
these definitions. It should be realized that no instrument exists to measure instan-
taneous fields at optical frequencies. The averaging of the field correlations could
be a time average done over a certain time T which is comparable or longer than
the time needed to make a physical measurement. Accordingly, Eqs (2.15) may be
expressed as

�11���= 1
T

∫ +T/2

−T/2
E1�t+ ��E∗

1�t�dt� (2.16a)

�12���= 1
T

∫ +T/2

−T/2
E1�t+ ��E∗

2�t�dt
 (2.16b)

It is quite legitimate to ask whether the averaging process in Eqs (2.16) will
yield unique answers if the same measurement is repeated over the same time or
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somewhat different averaging times. The answers for the repeated measurements
are most likely to come out different for a number of reasons. The light fields may
be changing for reasons beyond our control. There may be random changes in the
refractive index of the medium in which light is propagating. Alternatively, we
can say that light fields may be undergoing inherent random fluctuations. Such
variations are commonly handled in statistical physics by the standard technique
of ensemble averaging. In this technique, one averages a physical property over a
large number of ensembles. All ensembles representing the same physical system
are identical to each other in all respects, except for the fluctuations which may
differ from ensemble to ensemble because there is no way to control them.
Here, we make the additional assumption that light fields are ergodic so that an
ensemble average yields the same result as the time average. For stationary and
ergodic light fields, the coherence functions are expected to be independent of
the origin of the time scale.

2.3.2 Intensity of Polychromatic Light

Except for a constant multiplying factor, the intensity of light at a given point is
simply the self coherence function at that point with zero time delay, i.e.,

I�
⇀
r �=

(
1
2
�0c

)
	E�⇀r � t�E∗�

⇀
r � t�
 =

(
1
2
�0c

)
�11�0�
 (2.17)

The intensity of polychromatic light such as sunlight may be measured with a
detector having a broad spectral response. We ask the question whether we can
expect a definite result if the intensity of sunlight reaching Earth is measured. Let
us evaluate the intensity of polychromatic light by averaging the self coherence
function �11�0� over a finite time interval T . Using Eq. (2.7b), we obtain

I
1
2�0c

= �11�0�= 1
T

∫ +T/2

−T/2
E�t�E∗�t�dt

= 4

T

∫ +T/2

−T/2
dt

�∫ ∫

0

ei2	��′−��tE���E∗��′�d� d�′

= 4
T

�∫ ∫

0

d� d�′E���E∗��′�
∫ +T/2

−T/2
ei2	��′−��tdt

= 4

�∫ ∫

0

d� d�′E���E∗��′�
sin�	��′ −��T�

	��′ −��T



(2.18)
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For any two frequencies � and �′ within the spectral bandwidth of polychromatic
light, the dependence of the sinc function sin�	��′−��T�

	��′−��T on the averaging time
T is sketched in Fig. 2.1. It is quite obvious that irrespective of the spectral
composition of E���, the intensity of polychromatic light is going to change with
the averaging time T . However, for very long averaging time, the sinc function
has zero value except when �′ = �, in which case the sinc function may be
replaced by the Dirac delta function,3 giving

�11�0�= 4

�∫ ∫

0

d�d�′E���E∗��′����′ −��

= 4
∫ �

0
�E����2d� (2.19a)

= 4
∫ �

0
W���d�

and

I =
(

1
2
�0c

)
4
∫ �

0
W���d�� (2.19b)

where W��� = �E����2 is the spectral density function of polychromatic light.
This result is the statement of Parseval’s theorem (Eq. 9.46), to be discussed later.
In the present context we note that for short observation times �T ∼ 1/��′ −���,
interference among different frequency components of polychromatic light gives
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Fig. 2.1: The sinc function.

3 Dirac delta function is discussed in Chapter 9.



86 Chapter 2: COHERENCE OF LIGHT WAVES

rise to beats, making intensity of polychromatic light depend on the averaging
time. However, for long averaging times �T  1/��′ − ���, beats among dif-
ferent frequencies die out and interference among spectral components of the
same frequency contribute to the intensity of polychromatic light. Accordingly,
Eqs (2.16) must be modified to

�11���= lim
T→�

1
T

∫ +T/2

−T/2
E1�t+ ��E∗

1�t�dt� (2.20)

�12���= lim
T→�

1
T

∫ +T/2

−T/2
E1�t+ ��E∗

2�t�dt
 (2.21)

The self and mutual coherence functions can be identified with the autocorrela-
tion and crosscorrelation functions described in Chapter 9.

2.4 SELF COHERENCE

The complex self coherence function of a plane monochromatic light wave can
be obtained by substituting Eq. (2.1) into Eq. (2.20), giving

�11���= lim
T→�

1
T

∫ +T/2

−T/2
E1�t+ ��E∗

1�t�dt

= lim
T→�

1
T

∫ T/2

−T/2
E0E

∗
0e−i2	��t+��ei2	�tdt (2.22)

= �E0�2e−i2	�� 


This procedure can be easily extended to the light which is a superposition of any
number of monochromatic waves of different frequencies. Following treatment
of Section 2.3.2, the self coherence function for quasi-monochromatic light can
be shown to have the form

�11���= 4
∫ �

0
�E����2e−i2	��d� (2.23a)

= 4
∫ �

0
W���e−i2	��d�
 (2.23b)

Multiplying both sides by ei2	�̄� , we obtain

�11���e
i2	�̄� = 4

∫ �

0
W���e−i2	��−�̄��d�
 (2.24)



2.4: SELF COHERENCE 87

For sufficiently narrow bandwidth of quasi-monochromatic light of mean fre-
quency �̄, the right-hand side and hence the left-hand side of Eq. (2.24) will
have slow dependence on the time delay. Expressing,

�11���e
i2	�̄� = ��11����ei����� (2.25)

the complex self coherence function for quasi-monochromatic light takes the
form

�11���= ��11����ei�����−2	�̄��� (2.26)

where ��11���� and ���� are necessarily slowly varying functions of the time
delay. The fast �-dependence of the complex self coherence function comes
through the exponent �−2	�̄��. The slowly varying factors of �11��� can be
obtained by substituting Eq. (2.26) into Eq. (2.24), giving

��11����ei���� = 4
∫ �

0
W���e−i2	��−�̄��d�
 (2.27)

In conclusion, the spectral density function of quasi-monochromatic light can be
used to obtain the self coherence function or alternatively the spectral density
function of quasi-monochromatic light can be determined from the self coherence
function by inverting Eq. (2.23b), i.e.,

W���= 1

4

∫ �

−�
�11���e

i2	��d� for � ≥ 0�

= 0 for � < 0

(2.28)

The normalized spectral density function is defined as

g���= �E����2∫ �
0 �E����2d�

for � > 0

= 0 for � < 0


(2.29)

The self coherence function of polychromatic light can be obtained by exploit-
ing the correspondence between the self coherence and autocorrelation functions,
to which a reference has already been made. In the manner of the autocorrelation
function (see Sections 9.5.1 and 9.7), the self coherence function may also be
interpreted as the overlap integral of the complex polychromatic light field E∗�t�
with the shifted field E�t+ ��. Unless the light field is well correlated in time,
the overlap integral will be quite small. The amplitude and phase of completely
incoherent light change so rapidly with time that even for short time delays,
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the positive and negative contributions to the overlap integral add upto zero.
However, for zero time delay �� = 0�, any field configuration exactly overlaps
with itself. Therefore for completely incoherent light,

�11���= 0 for � �= 0 (2.30a)

= 1 for � = 0
 (2.30b)

2.4.1 Complex Degree of Self Coherence

The complex degree of self coherence ���� is defined as the ratio of the complex
self coherence function �11��� for an arbitrary time delay � to its value for zero
time delay, i.e.,

����= �11���

�11�0�

 (2.31)

For monochromatic light, Eq. (2.22) gives

����= e−i2	�� (2.32a)

with

������ = 1� (2.32b)

irrespective of the time delay. On the other hand, for completely incoherent light,

������ = 0 for � �= 0
 (2.33)

The complex degree of self coherence for quasi-monochromatic light has the
form

����= ��11����
�11�0�

ei�����−2	�̄��

= ������ei�����−2	�̄��� (2.34)

where �11�0�, already identified with light intensity, has only a magnitude and
no phase. The magnitude ������ of the complex degree of self coherence will
henceforth be referred as the degree of self coherence. For quasi-monochromatic
light, it is a slowly varying function of the time delay and takes values between
0 and 1, i.e.,

0 < ������< 1
 (2.35)
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A reference was made for a possible connection between the degree of self
coherence and visibility of interference fringes. We now show how the degree
of self coherence ������ and phase ���� can be determined from an interfer-
ence experiment using a Michelson interferometer. Figure 2.2 shows the basic
configuration of a Michelson interferometer. Mirror M1 is moveable and mir-
ror M2 is fixed. The 50–50 beam splitter BS, assumed thin for the present
discussion, splits the incident beam of intensity I0 into the reflected (1) and
transmitted (2) beams of intensity I0/2 each. After reflections from the mirrors
M1 and M2, these beams are recombined by the beam splitter. The photodetec-
tor PD with a narrow aperture is kept in the region of overlap of the beams.
Point P0 is taken as a convenient reference point. The resultant scalar field at
point P is

E�P� t�= 1

2
E�P0� t1�+

1
2
E�P0� t2�� (2.36a)

where E�P0� t1� and E�P0� t2� are the retarded fields at P0 which reach point
P at time t following the arms (1) and (2) of the interferometer, respectively;
t1 = t− �l0 + l+ 2l1�/c and t2 = t− �l0 + l+ 2l2�/c are the times taken by the
two waves to travel between the points P0 and P. The factors of 1/2 appear in
Eq. (2.36a), since the intensity of each beam reaching point P is quarter of the
intensity of the incident beam. For a dielectric slab beam splitter, an additional
phase change of 	 for beam (2) should be included because this beam undergoes

M2

M1

P

l

(2)

(1)

  BS
P0

l0

PD

I0 /2l1

l2

I0

I0 /2

Fig. 2.2: The Michelson interferometer.
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an external reflection at the beam splitter. For stationary fields, Eq. (2.36a) can
be written as

E�P� t�= 1
2
E�P0� t�+

1
2
E�P0� t+ ��� (2.36b)

where � = t2 − t1 = 2�l2 − l1�/c. The time-averaged intensity at point P is

I�P� ��=
(

1

2
c�0

)
	E�P� t�E∗�P� t�
 (2.37a)

=
(

1
2
c�0

)
	1

4
�E�P0� t��2 + 1

4
�E�P0� t+ ���2

+ 1
4
E∗�P0� t�E�P0� t+ ��+ 1

4
E�P0� t�E

∗�P0� t+ ��

(2.37b)

= 1
4
�2I�P0�+ c�0Re	E�P0� t+ ��E∗�P0� t�
� (2.37c)

= 1
2
I�P0�

[
1+Re

(
����

��0�

)]
(2.37d)

= 1
2
I�P0��1+Re�������
 (2.37e)

The real parts of the complex coherence function and complex degree of coher-
ence can be obtained from intensity measurements of Michelson fringes as a
function of the time delay �. For the balanced arms �� = 0� of the interferometer,
a bright fringe occupies the field of view, irrespective of the state of coher-
ence of the incident light. For completely incoherent light, ���� = 0 for � �= 0,
and I�P� = 1

2 I�P0� for unbalanced arms of the interferometer. The remaining

50% of the beam intensity is sent back into the source by the beam splitter.
For monochromatic and quasi-monochromatic light waves, Eq. (2.37e) takes
particularly simple forms

I�P� ��= 1
2
I�P0��1+ cos 2	�̄�� (2.38a)

and

I�P� ��= 1

2
I�P0��1+������ cos�����−2	�̄���� (2.38b)

respectively, where ������ and ���� are slowly varying functions of the time
delay.
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For completely or partially coherent light, interference fringes can be observed
as the time delay, or equivalently, the path difference between the two arms of
the interferometer is varied. The visibility of interference fringes is defined as

V���= Imax − Imin

Imax + Imin

� (2.39)

where Imin and Imax are the minimum and maximum intensities observed in the
interference pattern. For monochromatic light, the fringe visibility like the degree
of self coherence maintains unit value for any arbitrary time delay. Combining
Eqs (2.34), (2.37e), and (2.39) gives

V���= ������� (2.40)

i.e., the visibility of Michelson fringes equals the degree of self coherence for
monochromatic and quasi-monochromatic light waves. Furthermore, the fringe
pattern for the quasi-monochromatic light is shifted with respect to the fringe
pattern produced by monochromatic light (Eqs 2.38). The observed shift gives
the phase difference ���� of the quasi-monochromatic light.

We first consider quasi-monochromatic light having a single narrow spectral
band with full width at half maximum (FWHM) of �� (Fig. 2.3a). The visibility

0.5

1

Δ

γ

Reγ (τ)

γ (τ)Im
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(c)
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1
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Fig. 2.3: Quasi-monochromatic light; (a) normalized spectral density function
with one narrow bands, (b) variation of degree of self coherence with time delay,
(c) complex degree of self coherence in the complex plane.
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of Michelson fringes (and hence the degree of self coherence) starts with unit
value for the balanced arms of the interferometer and then falls off slowly for
small �� as the path difference between the arms is increased (Fig. 2.3b).

The reduction in the visibility of the fringes is caused by the shifts in the
fringe patterns produced by different frequency components (within the spectral
bandwidth) with increasing path difference. The coherence time �c may be taken
as the time during which the degree of self coherence falls to 1/e of its maximum
value. The coherence length lc of quasi-monochromatic light is

lc = c�c� (2.41a)

where c is the velocity of light in a vacuum. The coherence time4 �c has inverse
dependence on the spectral bandwidth, i.e.,

�c ∼ 1
��

= �̄2

c��

 (2.41b)

This is a fairly general result (see Eq. 9.33). We shall not attempt its derivation
here. The interested reader may refer to Born and Wolf [2.2] and Goodman
[2.3]. For a source with a single narrow spectral band (Fig. 2.3a), the variation
of the complex degree of self coherence with time delay is shown in the complex
plane in Fig. 2.3c. It starts with unit value on the real axis and goes through
circles of slowly diminishing radii with increasing time delay. Eventually for
sufficiently large time delay, ���� approaches zero value as the circle converges
to a point at the origin. For monochromatic light, the spiral in the complex plane
gets replaced by a circle of unit radius.

Coherence properties of light containing more than one narrow spectral band
are of special interest since lasers, the modern sources of quasi-monochromatic
light, usually oscillate in several longitudinal modes. We now consider quasi-
monochromatic light with two narrow spectral bands peaked at wavelengths
�̄1�=c/�̄1� and �̄2�=c/�̄2�. This is shown in Fig. 2.4a. These bands may corre-
spond to the sodium D1 and D2 lines at 589.6 and 589.0 nm, respectively. The
widths ��1 and ��2 of the spectral bands determine the overall coherence time
of the source. However, within the overall coherence time, the fringes disappear
with increase in time delay when the nth maximum for the mean wavelength �̄1

overlaps with the �n+1�th minimum for the mean wavelength �̄2. With further

4 A more rigorous definition of coherence time is:

�2
c =

∫ +�
−� �2������2d�∫ +�

−� ������2d�
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Fig. 2.4: Quasi-monochromatic light; (a) normalized spectral density function
with two narrow bands, (b) variation of degree of self coherence with time delay,
(c) complex degree of self coherence in the complex plane.

increase in the time delay, the maxima due to the two bands begin to come
closer, leading to the re-emergence of the fringes. The next maximum of the vis-
ibility occurs when the mth maximum corresponding to the first band coincides
with the �m+1�th maximum of the second band. The fringes appear and disap-
pear repeatedly, but in successive cycles the fringe visibility gets reduced. The
degree of coherence, like the visibility of fringes, goes through several cycles
(Fig. 2.4b). The complex degree of self coherence initially spirals to the origin
in the complex plane but in this case after acquiring zero value, it re-emerges
and begins to spiral out reaching a maximum value smaller than the starting
value. It may go through several such cycles (Fig. 2.4c). This discussion can
be extended to a multi-mode laser with several longitudinal modes, oscillating
simultaneously [2.4].

Before concluding this section, we demonstrate that ������ has been appro-
priately termed as the degree of coherence, at least in the context of quasi-
monochromatic light. Equation (2.38b) can be recast into the form

I�P� ��= �1−�������
(

1
2
I�P0�

)
+������

(
1
2
I�P0�

)
�1+ cos�����−2	�̄���


On comparing with Eq. (2.38a), we conclude that the second term in this equation
represents interference produced by monochromatic and hence perfectly coherent
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light of intensity ������I�P0�. The first term represents incoherent light of inten-
sity �1−�������I�P0�. Thus, light reaching point P is a mixture of coherent and
incoherent light waves with the intensity ratio

Icoh

Iincoh

= ������
1−������ � (2.42a)

or equivalently,

Icoh

Itotal

= ������
 (2.42b)

Hence, the magnitude of the complex degree of coherence indeed represents the
degree of coherence of quasi-monochromatic light.

2.4.2 Fourier Transform Spectroscopy

Generalizing Eq. (2.38a) for the output intensity distribution of a Michelson inter-
ferometer when light entering the interferometer is polychromatic (Eq. 2.19b)
and not monochromatic, we have

I���= 4
(

1
2
�0c

)∫ �

0
W����1+ cos 2	���d�
 (2.43)

The plots of Eq. (2.43), depicting the variation of intensity with the difference
in path lengths between the arms of a Michelson interferometer, are called
the interferograms. The maximum path difference is usually restricted due to
practical considerations. For monochromatic light, the interferogram shows no
loss of contrast (Imax/Imin) with increasing time delay (Fig. 2.5a). The contrast
diminishes somewhat for quasi-monochromatic light (Fig. 2.5b). For incident
light with broad spectral composition, significant intensity variations are seen
for small time delays only (Fig. 2.5c). Rewriting Eq. (2.43),

I���= 4
(

1
2
�0c

)∫ �

0
W���d�+4

(
1
2
�0c

)∫ �

0
W��� cos�2	���d�

= I0 +�I����

where I0 gives the total brightness of the source (Eq. 2.19b) and

�I���= 4
(

1

2
�0c

)∫ �

0
W��� cos�2	���d�� (2.44a)

= ��0c�
∫ +�

−�
W���e−i2	��d�
 (2.44b)
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Fig. 2.5: W��� is the spectral density function of the source. Interferograms for
monochromatic light (a), quasi-monochromatic light (b), broad band light (c).

The inverse Fourier transform of Eq. (2.44b) gives the spectral density function

W���=
(

1
�0c

)∫ +�

−�
�I���ei2	��d�
 (2.45a)

Thus, the inverse Fourier transform of the oscillating part of the output intensity
distribution of a Michelson interferometer gives the spectral distribution of the
source. This is the underlying principle of the Fourier transform spectrometer
which is particularly useful in the infrared region. The signal-to-noise ratio in
Fourier transform spectroscopy is much higher because the intensity observed at
the exit of the interferometer contains all frequency components of the source,
and not just the one under investigation as in a dispersive instrument. Since
�I��� is a measured distribution and not an analytical function, its inverse
Fourier transform can be calculated only numerically. In addition, intensity
measurements beyond a certain maximum path difference (dmax) are not possible.
The spectral density function of the source obtained from a Fourier transform
spectrometer may be expressed as

W���=
(

1
�0c

)∫ dmax/c

−dmax/c
�I���ei2	��d� for � ≥ 0

= 0 for � < 0


(2.45b)

The resolution of measurement can be increased by increasing the maximum
path difference.
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2.5 MUTUAL COHERENCE

We now consider complex mutual coherence function

�12���= 	E1�t+ ��E∗
2�t�


to investigate phase correlations in light fields at two spatially separated points.
The complex degree of mutual coherence is defined as

�12���= �12���√
�11�0�

√
�22�0�

� (2.46)

where �11�0� and �22�0� are related to the intensities at the two points (Eq. 2.17).
Mutual coherence of light fields can be investigated in Young’s double slit
type interference experiment shown schematically in Fig. 2.6. For the present
discussion, the finite sizes of the source and slits are ignored. The resultant scalar
field E�P� t� at the observation point P is the superposition of the fields arriving
from the two slits, i.e.,

E�P� t�= E�1��P� t�+E�2��P� t�

= K1E

(
⇀
r1� t−

r ′
1

c

)
+K2E

(
⇀
r2� t−

r ′
2

c

)
�

(2.47)

where the fields at the observation point have been expressed in terms of the
retarded fields at the locations of the slits. The proportionality constants K1 and

P0

P

d/2
S

D D

r1

r2

r1

r2

d/2

S2

1S

’

’

’

Fig. 2.6: Young’s double slit arrangement. S is a point source.
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K2 can be obtained from the results of the diffraction theory (Eq. 7.21 with
cos� = 1 as applied to a point source):

E�1��P� t�= −ia0

�

eikr1

r1r
′
1

ei�kr ′1−�t� (2.48a)

= −ia0

�r ′
1

ei�kr1−��t−r ′1/c��

r1

(2.48b)

= −ia0

�r ′
1

E

(
S1� t−

r ′
1

c

)
� (2.48c)

giving
K1 = − ia0

�r ′
1




Similarly, we can get

K2 = − ia0

�r ′
2

�

where a0 is the amplitude of the spherical wave at unit distance from the point
source. The proportionality constants K1 and K2 are purely imaginary, so that
the resultant intensity at the point of observation is

I�P� ��=
(

1
2
�0c

)〈{
E�1��P� t�+E�2��P� t�

}{
E�1��P� t�+E�2��P� t�

}∗ 〉

= I�1��P�+ I�2��P�+ 1
2
�0c
〈
E�1��P� t�E�2�∗�P� t�+ cc

〉

= I�1��P�+ I�2��P�+ �0c×Re
〈
K1K

∗
2E�

⇀
r1� t+ ��E∗�

⇀
r2� t�

〉

= I�1��P�+ I�2��P�+2
(

1
2
�0c

)
�K1��K2�Re�12����

(2.49a)

where � = �r ′
2 − r ′

1�/c and �12��� is the complex mutual coherence function
between the light fields at the positions of the slits. The intensity I�1��P� is the
intensity at point P when slit S1 is open and slit S2 is closed. The intensity
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I�2��P� corresponds to slit S1 closed and slit S2 open, and I�P� is the intensity at
P when both slits are open. Noting that

�K1� =
(
I�1��P�

I�
⇀
r1�

)1/2

�

�K2� =
(
I�2��P�

I�
⇀
r2�

)1/2

�

I�P� ��= I�1��P�+ I�2��P�+2
√
I�1��P�I�2��P�Re

�12���√
�11�0��22�0�

= I�1��P�+ I�2��P�+2
√
I�1��P�I�2��P�Re��12����


(2.49b)

For the observation point lying on the symmetry axis �� = 0�,

I�P0�= I�1��P0�+ I�2��P0�+2
√
I�1��P0�I

�2��P0�Re��12�0��� (2.49c)

where

�12�0�= �12�0�√
�11�0��22�0�

(2.50)

gives the complex degree of mutual coherence between spatially shifted but
temporally coincident points and

�12�0�= 	E1�t�E
∗
2�t�
 (2.51a)

defines the mutual intensity

I12 =
(

1
2
�0c

)
�12�0� (2.51b)

for the two slits. The mutual intensity function �12�0� is also called the com-
plex spatial coherence function. The real part of the complex degree of mutual
coherence can be expressed in terms of the measurable quantities:

Re��12����=
I�P� ��− I�1��P�− I�2��P�

2
√
I�1��P�I�2��P�


 (2.52)
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Schwarz’s inequality5 can be used to show that

��12���� ≤ 1
 (2.53)

The equality sign holds for completely coherent light and inequality applies to
partially coherent light.

2.5.1 Complex Degree of Mutual Coherence

The complex mutual coherence function for quasi-monochromatic light with
mean frequency v̄ can be defined with reference to Eq. (2.26) as

�12���= ��12����ei�����−2	�̄��� (2.54)

where ��12���� and phase ���� are expected to be slowly varying functions of
the time delay �. The complex degree of mutual coherence is given by

�12���= ��12����√
�11�0��22�0�

ei�����−2	�̄�� (2.55a)

= ��12����ei�����−2	�̄��� (2.55b)

where the degree of mutual coherence

��12���� = ��12����√
�11�0��22�0�

(2.56)

is also a slowly varying function of �. Equation (2.49b) for the intensity in
Young’s experiment, performed with quasi-monochromatic light, takes the form

I�P� ��= I�1��P�+ I�2��P�+2��12����
√
I�1��P�I�2��P� cos�����−2	�̄��
 (2.57)

For sufficiently narrow slits, large diffraction effects render I�1��P� and I�2��P�
nearly independent of the time delay. The extremum values of the intensity
distribution are

Imax�P� ��= I�1��P�+ I�2��P�+2��12����
√
I�1��P�I�2��P�� (2.58a)

5 Schwarz’s inequality theorem states

∫ +�

−�
f�x�f ∗�x�dx

∫ +�

−�
g�x�g∗�x�dx ≥

∣∣∣∣
∫ +�

−�
f ∗�x�g�x�dx

∣∣∣∣
2
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Imin�P� ��= I�1��P�+ I�2��P�−2��12����
√
I�1��P�I�2��P�� (2.58b)

giving, for the visibility of Young’s fringes, the expression

V���= 2
√
I�1��P�I�2��P�

I�1��P�+ I�2��P�
��12����
 (2.59)

The visibility of Young’s fringes equals the degree of mutual coherence ������
provided I�1��P�= I�2��P�.

The phase ���� of the complex degree of mutual coherence can also be
obtained from a careful analysis of Young’s fringes. The phase ���� appearing
in Eq. (2.57) may be interpreted as some constant (as long as large changes
in time delay are not involved) phase difference between the fields at the slits
that one must take into account for quasi-monochromatic light as compared
to monochromatic light. This merely shifts the center of the fringe pattern for
quasi-monochromatic light as compared to the one for monochromatic light by
an amount

�x= D

d
�̄
����

2	
�

since a phase change of 2	 radians shifts the fringe pattern by exactly one fringe.
This shift of the center of the fringe pattern can be recognized and measured.
It is therefore possible to obtain complete information on the complex degree
of mutual coherence of quasi-monochromatic light from Young’s interference
experiment. As for self coherence, it can be shown by following the same
argument that magnitude ��12���� of the complex degree of mutual coherence
indeed represents the degree of mutual coherence of quasi-monochromatic light.

We have characterized quasi-monochromatic light by the spectral bandwidth
�� being much smaller than its mean frequency �̄ (Eq. 2.9). We now impose
an additional restriction on quasi-monochromatic light. Re-writing Eq. (2.23b)
in the context of the mutual coherence function, we have

�12���= 4
∫ �

0
W12���e

−i2	��d�� (2.60)

where the mutual spectral density functionW12��� is the inverse Fourier transform
of the mutual coherence function �12���, i.e.,

W12���= 1
4

∫ +�

−�
�12���e

i2	��d� for � ≥ 0

= 0 for � < 0
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Combining Eqs (2.54) and (2.60) gives

��12����ei���� = 4
∫ �

0
W12���e

−i2	��−�̄��d�
 (2.61)

For time delays restricted to values much smaller than the coherence time, i.e., for

� � 1
�− �̄

� (2.62)

Eq. (2.61) can be approximated to

��12����ei���� = 4
∫ �

−�̄
W12��̄+��d�� (2.63)

where as before � = �− �̄. In this limit, the exponential in integral (2.61)
takes nearly unit value in the frequency range over which W12��� is non-zero.
Consequently, in addition to Eq. (2.9), if quasi-monochromatic light satisfies
Eq. (2.62), then the product ��12����ei���� is not just slowly varying, but essentially
independent of the time delay. We can therefore write

��12����ei���� = ��12�0��ei��0�

= �12�0�

(2.64)

With this assumption, Eqs (2.54) and (2.55b) can be approximated to

�12���= �12�0�e
−i2	�̄� (2.65a)

and

�12���= �12�0�e
−i2	�̄� (2.65b)

respectively, where

�12�0�= �12�0�√
�11�0��22�0�

= ��12�0��ei��0�


(2.66)

Quasi-monochromatic light satisfying these conditions is called coherent quasi-
monochromatic light for the obvious similarity between Eqs (2.65a,b) and the
corresponding equations for monochromatic light (Eqs 2.22 and 2.32a). How-
ever, the degree of mutual coherence ��12�0�� remains less than one for quasi-
monochromatic light. To satisfy Eq. (2.62), the observation point must be
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restricted to close proximity of the axial point P0 (Fig. 2.6). For later use, we
rewrite the above equations in the standard notation.

�12���= J12e−i2	�̄�� (2.67a)

�12���= �12e−i2	�̄�� (2.67b)

where

J12 = �12�0�= 	E1�t�E
∗
2�t�
 = ��12�0��ei��0�� (2.68a)

�12 = �12�0�= J12√
�11�0��22�0�

= ��12�0��ei��0�
 (2.68b)

2.5.2 Coherence of Light from an Extended Source

We have so far not paid any attention to the finite size of the source used in
Young’s experiment. Point sources are not only a practical impossibility, but
often extended sources are preferred because of the enhancement of the overall
irradiance level. An extended source can be treated as a collection of mutually
incoherent point sources. To keep the discussion at an elementary level, but
without losing the essential physical content of the argument, we consider here a
linear source (line AC in Fig. 2.7). We further assume all points on the extended
source to have identical emission characteristics such as the mean frequency of
emission �̄, the frequency bandwidth ��, and the radiated power. Each point
on the extended source produces an interference pattern on the screen which is
identical to the interference pattern produced by any other point on the source,
except for a spatial shift. The resultant intensity distribution on the screen is the
superposition of the intensity distributions produced by different points lying on
the source. The fringe pattern for the source point O lying on the optical axis is
centered (zero path difference point) at O′, also lying on the optical axis. The
fringe pattern associated with the source point B is centered at B′, where

x′ = D′

D
x


This result comes from the path difference

BS2 −BS1 =
√
D2 +

(
d

2
+x

)2

−
√
D2 +

(
d

2
−x

)2

≈ d

D
x
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Fig. 2.7: Young’s double slit interference experiment with an extended source.

and the fact that a path difference of one wavelength leads to a shift of exactly
one fringe. The fringe separation on the screen for the mean wavelength �̄ is
D′�̄/d. The shifts in the fringe patterns due to different point sources reduce the
visibility of the fringes because the points of minimum intensity may no longer
be points of zero intensity. For the interference pattern to be discernible, the shift
between the interference patterns produced by points at either of the extreme
ends and the middle of a symmetrically placed source of length L should be
much less than half the fringe width, i.e.,

D′

D

L

2
<

1
2
D′

d
�̄�

or

d

D
L < �̄
 (2.69)

This condition may appear too stringent for a laboratory experiment, but is easily
met for the astronomical sources with large D. We leave it as an exercise to
show that the fringe visibility for a linear source has the form

V�L�=
∣∣∣∣sinc

(
	Ld

D�̄

)∣∣∣∣
 (2.70)

Figure 2.8 shows the variation of the fringe visibility with the extent L of the
linear source.

The visibility of fringes indeed falls to zero for L = D�̄/d, as expected.
The fringes reappear with further increase in the length of the source, and the
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Fig. 2.8: Visibility of Young fringes as a function of the linear dimension of the
source.

visibility of fringes shows periodic variations but with considerably reduced
overall magnitude. Eventually, uniform illumination is established on the screen.
Since the degree of mutual coherence ��12���� is proportional to the visibility
of Young’s fringes, Fig. 2.8 may be taken to represent the behavior of the
degree of mutual coherence as well. The sinc function is an important function
which shows up in the analysis of many physical situations. We have already
encountered it in this chapter. We shall see later that Fraunhofer diffraction
from a slit of finite width is also described by a sinc function (Eq. 10.32a).
At this point, we can naively ask if there is any link between the degree of
coherence and Fraunhofer diffraction. This is actually the subject matter of Van
Cittert–Zernike theorem. But before taking up this theorem, we describe how the
visibility changes of Young’s fringes can obtain the angular sizes and angular
separations of stars.

2.5.3 Michelson Stellar Interferometer

The stars may be treated as point sources if their angular separations are much
larger than their individual angular sizes. The shift between the interference
patterns produced by two stars can be expressed as

d

D
L= �m�̄� (2.71)

where �m is the shift in the fringe order (not necessarily integral), L the distance
between the stars treated as point sources, D the distance of the stars from earth,
and d the distance between the slits in Young’s two-slit arrangement. The stars
are assumed identical, emitting quasi-monochromatic light with the same mean
wavelength �̄. The visibility of the interference fringes remains unaffected if
�m is an integer, and fringes completely disappear if �m is half integral. The
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first disappearance of fringes occurs for �m = 1
2 , in which case, the angular

separation of the stars is given by

� = L

D
= �̄

2d

 (2.72)

Thus, the first disappearance of the fringes in an interferometric measurement
determines the angle � between the stars. The same method, in principle, can
be used to measure the angular size of a star. However, the latter measure-
ment is made difficult because the angles subtended by the stars on earth
are extremely small, making it necessary to employ unmanageably large slit-
separations. Michelson invented his famous stellar interferometer (Fig. 2.9) to
circumvent this problem.

The slits S1 and S2 in this arrangement are fixed. For fixed D′, the fringe sep-
aration D′�̄/d on screen S remains unaffected by any other adjustment in the
interferometer. On the other hand, the path difference between the waves arriving
from the extremities of a star depends on the separation d′ between the moveable
mirrors M1 and M2, and not on slit separation d. For small separations between
mirrors M1 and M2, the path difference between light waves arriving from the
extremities of a star (or from two stars) is small ��m� 1/2�, giving good qual-
ity fringes on screen S. The mirror separation is then increased till the fringes
disappear. This happens when the path difference �d′ = �̄/2. In the original
experiment at Mount Wilson observatory, slit separation d was kept at 114 cm
and mirror separation could be increased upto to d′ = 6
1 m to obtain the dis-
appearance of fringes. The interferometer was mounted on the 100 in. reflecting
telescope of the observatory. The first star studied by this interferometer was
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Fig. 2.9: Michelson stellar interferometer.
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the orange looking star called Betelgeuse (� Orionis) subtending 0.047 arcsec
on earth. It required d′ ≈ 307 cm at �̄ = 570 nm. The interferometric measure-
ments not only give the angular sizes of the stars but can also provide useful
information on the intensity distribution on the surface of a star, as we shall see
in Section 2.6.

2.6 VAN CITTERT–ZERNIKE THEOREM

This theorem, originally proved by Van Cittert and later by Zernike, allows one
to obtain the mutual coherence function and degree of mutual coherence on a
surface, illuminated by an extended incoherent quasi-monochromatic source. We
shall closely follow the treatment of Born and Wolf to prove the Van Cittert–
Zernike theorem.

Figure 2.10 shows a two-dimensional incoherent quasi-monochromatic source
� and the observation plane xy, parallel to the source plane. These planes are
separated by the distance R which is much larger than any dimension of the
source and the distance between any two points in the plane of observation.

For sufficiently large R, light fields emanating from any point on the source
can be expected to reach any two points such as the points P1 and P2 in the plane
of observation with a time delay much smaller than the coherence time of the
source. This assumption allows us to use the results obtained in Section 2.5.1.
We may divide the two-dimensional source into infinitesimal area elements
d�m, each smaller in dimension than the mean wavelength �̄ of the source.
The complex mutual coherence function (Eq. 2.68a), also called the spatial
coherence function (since � = 0), may be obtained by summing up contributions
from each area element:

J12�P1�P2�= �12�P1�P2� � = 0� (2.73a)

= 	E�P1� t�E
∗�P2� t�
 (2.73b)
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Fig. 2.10: Geometry for Van Cittert–Zernike theorem.
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=∑
m

∑
m′

	Em�1�t�E∗
m′�2�t�
 (2.73c)

=∑
m

	Em�1�t�E∗
m�2�t�
+∑

m

∑
m′ �=m

	Em�1�t�E∗
m′�2�t�
 (2.73d)

=∑
m

	Em�1�t�E∗
m�2�t�

 (2.73e)

The double sum in Eq. (2.73d), representing contributions from different area
elements, vanishes for an incoherent quasi-monochromatic source. Em�1 and Em�2
are the scalar fields at points P1 and P2, respectively, due to the mth element of
the source. Relating these fields to the fields in the source plane (Eq. 2.48c), we
have

J12�P1�P2�=∑
m

〈
Am�t−Rm1/c�A

∗
m�t−Rm2/c�

Rm1Rm2

e−i2	�̄�Rm2−Rm1�/c

〉
(2.74a)

=∑
m

1
Rm1Rm2

	Am�t�A
∗
m�t�
e−i2	�̄�Rm2−Rm1�/c� (2.74b)

where the complex scalars Am�t� carry information on the amplitude and phase of
the field in the source plane. Only the phase retardation effects have been retained
in writing Eq. (2.74b). The amplitude retardation effects being insignificant under
the present set of approximations are ignored. In the limit of the area element
d�m → 0, the sum in Eqs (2.74) can be replaced by the integral. Therefore,

(
1
2
�0c

)
J12�P1�P2�=

∫ ∫
�

I�x′� y′�
R1R2

e−i2	�̄�R2−R1�/cdx′dy′� (2.75)

where I�x′� y′� is the intensity distribution over the source plane. The complex
degree of coherence (Eq. 2.68b) between point P1 and P2 is

�12�0�= �12�P1�P2�=
∫ ∫

�

I�x′�y′�
R1�R2

e−i2	�̄�R2−R1�/cdx′ dy′
√
I�P1�I�P2�

(2.76a)

= eik�
∫ ∫

�
I�x′� y′�e

−i2	
� �px′+qy′�dx′ dy′

∫ ∫
�
I�x′� y′�dx′ dy′ � (2.76b)

where

I�P1�= 1
2
�0cJ11 =

∫ ∫
�

I�x′� y′�
R2

1

dx′ dy′�

I�P2�= 1
2
�0cJ22 =

∫ ∫
�

I�x′� y′�
R2

2

dx′ dy′�
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R2
1 = R2 + �x1 −x′�2 + �y1 −y′�2�

R2
2 = R2 + �x2 −x′�2 + �y2 −y′�2�

so that

R1 −R2 � �− �px′ +qy′��

where

p= �x1 −x2�/R� q = �y1 −y2�/R�

and

� = �x2
1 +y2

1�− �x2
2 +y2

2�

2R

represents the difference in the optical paths O′P2 and O′P1. For astronomical
sources, this path difference is small and the exponential eik� can be replaced
by unity. In addition, since the source intensity distribution I�x′� y′� is non-zero
over a finite area only, the integration limits in Eq. (2.76b) can be extended from
−� to +�. Under these conditions, the degree of mutual coherence ��12�0�� for
a pair of points in the plane of observation, held parallel to a two-dimensional
incoherent quasi-monochromatic source, is the normalized Fourier transform of
the intensity distribution in the source plane calculated at the spatial frequencies

u= p

�
= �x1 −x2�

R�
and v= q

�
= �y1 −y2�

R�
�

provided the dimensions of the source and the distances between the observa-
tion points are restricted to values much smaller than the separation between the
source and observation planes. This is the statement of the Van Cittert–Zernike
theorem. The theorem as such does not relate the complex degree of mutual coher-
ence with Fraunhofer diffraction because the latter as we shall see in Chapter 10 is
described by the Fourier transform of the electric field distribution, and not by the
Fourier transform of the intensity distribution. At this point, we exploit the math-
ematical similarity of Eq. (2.76b) with the normalized Fourier transform of the
electric field distribution across a diffracting aperture. Equations (10.6a) and (10.9)
for Fraunhofer diffraction from an aperture may be combined to give

F�u� v�

F�0�0�
=
∫ �∫
−�
E�x′� y′�e−i2	�ux′+vy′�dx′ dy′

∫ �∫
−�
E�x′� y′�dx′ dy′

� (2.77)

where E�x′� y′� is the field distribution over the aperture.
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To establish an exact correspondence between the complex degree of mutual
coherence ��12� of light emanating from a two-dimensional incoherent quasi-
monochromatic source with Fraunhofer diffraction, (a) the source intensity dis-
tribution should be replaced by the field distribution over a hypothetical aperture
having the exact shape and size of the two-dimensional quasi-monochromatic
source, and (b) the aperture is illuminated by a spherical wave such that the
diffraction pattern is centered at point P2. Under these conditions, the normal-
ized complex diffracted field at point P1 gives the complex degree of mutual
coherence between points P1 and P2.

2.6.1 Incoherent Quasi-monochromatic Source of Circular Cross-Section

We now apply Van Cittert–Zernike theorem to an incoherent quasi-mono-
chromatic source of circular cross-section having uniform intensity distribution
(Fig. 2.11). The source intensity distribution may be taken as

I�x′� y′�= I0 for
√
x′2 +y′2 ≤ a

= 0 for
√
x′2 +y′2 > a�

where a is the radius of the circle. The integrals appearing in Eq. (2.76b) can
be solved for this intensity distribution to obtain the complex degree of mutual
coherence between a moveable point P1�x1� y1� and a fixed point P2�x2� y2�,
lying in the plane of observation. Instead of solving the integrals, we make use
of the Van Cittert–Zernike theorem. Equation (10.43) describes the Fraunhofer
diffraction field distribution from a uniformly illuminated circular aperture of
radius a.

To ensure exact correspondence with the Fraunhofer diffraction problem, the
fixed point P2 must coincide with the center of the diffraction pattern of the

Source

α

x

R

Plane of observation

yy’

x’

P1

P2

a

O’O

Fig. 2.11: Application of Van Cittert–Zernike theorem to a source of circular
cross-section.
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circular aperture. Accordingly, the complex degree of mutual coherence between
points P1 and P2 can be expressed as

�12�P1�P2�= eik� 2J1�2	�a�
2	�a

� (2.78)

where J1, the Bessel function of the first rank, has real values (positive and
negative, see Table B1 in Appendix B). The variable

�= P1P2

�̄R
= ��x2 −x1�

2 + �y2 −y1�
2�1/2

�̄R

defines the geometrical conditions of the diffraction experiment. Comparing
Eqs (2.68) and (2.78), we conclude that ��0� admits only zero and 	 values.
Figure 2.12 shows the variation of the degree of mutual coherence. It starts
with unit value when points P1 and P2 are coincident and then falls steadily
as P1 moves away from P2, reaching zero value for 2	�a= 3
83. With further
increase in the distance between points P1 and P2, the degree of mutual coherence
recovers but with reduced magnitude and negative sign, again falling to zero
for 2	�a = 7
02. It goes through cycles of positive ���0� = 0� and negative
���0�= 	� values of diminishing magnitude. For negative values of the degree
of mutual coherence, the fringe contrast is reversed, i.e., a bright fringe appears
where otherwise one would expect a dark fringe and vice versa. Every time,
the degree of mutual coherence goes through zero value, the fringes re-appear
with reversed contrast. The first zero of the degree of coherence occurs when
the observation point P1 has moved a distance
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Fig. 2.12: Degree of mutual coherence produced by a quasi-monochromatic
source of circular cross-section.
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P1P2 = 3
83
2	

�̄

�
(2.79a)

= 0
61
�̄

�
(2.79b)

away from the fixed point P2, where �= a/R is the angular size of the source
as viewed from the plane of observation.

2.6.2 Area of Coherence

We have seen that the degree of mutual coherence of light from an extended,
distant incoherent quasi-monochromatic source decreases with increase in the
distance between the points of observation. An area of high degree of coherence
called the ‘area of coherence’ can be defined in the following manner. For a
light source of circular cross-section and uniform irradiance over its surface, the
region in the plane of observation covered by 2	�a values ranging from 0 to
1 may be considered as the area of coherence. The degree of mutual coherence
over this region varies from 0.88 to 1. The separation between the farthest points
for which the degree of mutual coherence is 88% or more can be calculated from
the condition

2	

�̄

a

R
P1P2 = 1� (2.80a)

giving

P1P2 = 1
2	

�̄

�

= 0
16�̄/�


(2.80b)

The distance P1P2 (Fig. 2.11) is therefore the diameter of the area of coherence,
also called the coherent patch. For a spherical light source such as a distant
star, the coherent patch exists around any observation point on the surface of
earth. Within that region, light from the distant star will show a high degree
of mutual coherence and interference experiments can be performed with fringes
of high contrast. A mask can be used to select the coherent patch as the source of
illumination for an interference experiment. The diameter of the coherent patch
on the surface of earth for light of mean wavelength �̄ = 550 nm coming from
the sun with �= 16′ of an arc, assuming uniform illumination over its surface,
is 0.019 mm. This is enough to successfully perform an interference experiment
on earth with sunlight. Young’s experiment was first performed with sunlight
entering the room through a tiny hole in the wall. In the above example, the object
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intensity distribution has been assumed uniform. However, mutual coherence
studies can provide some insight into the actual intensity distribution of a star.

2.7 INTENSITY CORRELATIONS

We have so far concentrated on first-order coherence which deals with phase cor-
relations between light fields at two space-time points. The visibility of fringes
produced in an interference experiment can provide complete information on
first-order coherence. However, an interference experiment puts great demands
on our experimental skills. The fluctuations in path lengths must be contained
within the wavelength of light. We now describe a method based on ampli-
tude correlations, as opposed to phase correlations, for the determination of the
degree of coherence of light. This technique originally developed for radio fre-
quency measurements was first applied in the optical regime in the mid-1950s
by Hanbury Brown and Twiss. Intuitively, one can expect the changes in the
amplitude of quasi-monochromatic light fields to be also correlated. The ampli-
tude of a light wave, unlike its phase, is not too sensitive to external conditions.
Appreciable changes in the amplitude of a light wave are not expected over
distances which do not exceed its coherence length. Since amplitudes of light
waves are not amenable to direct observation, we look for intensity correlations
of the type

	I�⇀r1� t�I�
⇀
r2� t+ ��


=
(

1
2
�0c

)2

	E�⇀r1� t�E
∗�
⇀
r1� t�E�

⇀
r2� t+ ��E∗�

⇀
r2� t+ ��



(2.81)

The phase information is completely lost in the intensity correlations. The inten-
sities I�

⇀
r1� t� and I�

⇀
r2� t+�� are short-time average intensities (Eq. 1.45) around

the times t and t+ � at points
⇀
r1 and

⇀
r2, respectively. Short time in the present

context means a few tens or a few hundreds of light periods. The long time
average indicated by the symbol 	 
 in Eq. (2.81) involves much longer times.
Suppressing the space dependence, we define

I1�t�= 	I1�t�
+�I1�t�� (2.82a)

I2�t+ ��= 	I2�t+ ��
+�I2�t+ ��
 (2.82b)

It follows that the long time average fluctuations vanish, i.e.,

	�I1�t�
 = 0� (2.83a)

	�I2�t+ ��
 = 0� (2.83b)
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but the long time average of the product of fluctuations

	�I1�t��I2�t+ ��
 = 	I1�t�I2�t+ ��
−	I1�t�
	I2�t+ ��
 (2.84)

may not vanish. At this point, we would like to distinguish between the thermal
or the incandescent light sources and the single mode laser sources. Thermal
source is a generic name for sources involving a large number of independent
optical oscillators which emit light through the process of spontaneous emission.
Most light sources except lasers fall in this category. The dominant mode of light
emission in a laser is the stimulated emission. For thermal sources, the intensity
correlations can be expressed in terms of the degree of mutual coherence [2.5]:

	I1�t�I2�t+ ��

	I1�t�
	I2�t+ ��
 = 1+��12����2
 (2.85a)

Expressing this result in terms of the correlation between the intensity fluctua-
tions, we have

	�I1�t��I2�t+ ��

	I1�t�
	I2�t+ ��
 = ��12����2
 (2.85b)

It is therefore possible to determine the degree of mutual coherence of quasi-
monochromatic thermal light from a measurement of its intensity correlations.
Interferometers based on intensity correlations, also called intensity correlators,
have the advantage that much larger path differences can be introduced without
any detrimental effect on the quality of measurement. Angular sizes of stars
down to 5×10−4 arcsec have been measured by this technique. Being inherently
insensitive to phase modulations, the performance of intensity correlators is
not adversely affected by atmospheric turbulence. In comparison, conventional
interferometers are highly sensitive to atmospheric conditions.

2.7.1 Hanbury Brown and Twiss Experiment

Figure 2.13 shows the arrangement used by Hanbury Brown and Twiss to mea-
sure intensity–intensity correlations. A collimated beam from a mercury arc lamp
was split and made to fall on two photomultiplier tubes. The current produced
in each photomultiplier tube has a d.c. component representing the long time
average beam intensity 	I�t�
 incident on it and a time varying part which cor-
responds to the fluctuations �I�t� over the average intensity. The amplifiers
remove the d.c. components and amplify only the time-varying components. Any
desired time delay can be introduced electronically in any of the arms. The fluc-
tuating signals with appropriate time delays are multiplied in the correlator and
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Fig. 2.13: Schematic of Hanbury Brown and Twiss experiment to measure
intensity–intensity correlations.
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Fig. 2.14: Correlations in intensity fluctuations in Hg arc light in Hanbury Brown
and Twiss experiment.

time averaged by the integrator circuit. The output of the integrator is propor-
tional to the correlations between the intensity fluctuations 	�I1�t��I2�t+ ��
.
Brown and Twiss found a positive correlation between the intensity fluctuations
for small values of the time delay (Fig. 2.14).

The arrangement of Fig. 2.13 measures the temporal coherence of light reach-
ing the beam splitter (BS). However, a slight modification in which the photo-
multiplier tubes PM1 and PM2 receive light directly from the source (and not
through the beam splitter) can measure the spatial coherence of incident light
at the locations of the photomultiplier tubes. For astronomical measurements,
the photomultipliers are kept at the foci of large concave mirrors which are
appropriately oriented to receive light from a particular star.

2.7.2 Photon Statistics

The positive correlation observed in the Brown–Twiss experiment shows that
for small time delays, the intensity fluctuations of thermal light are indeed
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correlated. To understand how the intensity correlations may arise, we dwell
briefly on how the optical signals are detected. Fast photomultiplier tubes used
as light detectors can have response times of a nanosecond or less. Other fast
photodetectors are the P–I–N and avalanche photodiodes. These detectors, of
course, cannot follow instantaneous intensity variations of optical fields, but
changes in intensity on the scale of the coherence time can be detected. The
basic mechanism of light detection is the emission of electrons when light
falls on the cathode of a photomultiplier tube. The dynode chain between the
cathode and anode can multiply the electron number by a factor, as high as 109,
enabling the photomultiplier tube to detect a single incident photon. However,
an incident photon may not always succeed in releasing a photoelectron from the
cathode of the tube. The quantum efficiency for the release of a photoelectron
varies from cathode to cathode. It is, however, expected that the statistics of
the photoelectrons emitted in a certain time T reflects the statistics of photons
incident on the photocathode. For a light beam of constant intensity (Fig. 2.15a),
the probability of n photoelectrons being emitted by the cathode in time T is
given by the Poisson distribution [2.5]

Pn�T �= �n̄�nēn̄

n! (2.86a)

with variance (mean square deviation)

�2 = 	��n�2
 = 	�n− n̄�2
 = n̄
 (2.86b)
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Fig. 2.15: (a) Constant intensity source. (b) Random time sequence of pho-
toelectrons emitted by a constant intensity source. (c) A thermal source with
random intensity fluctuations. (d) Bunching tendency in the time sequence of
photoelectron emission from a thermal source.
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Here, n̄ is the average number of photoelectrons produced and counted in time
T . A thermal source with intensity averaged over a time much longer than
the coherence time �t  �c� and a single mode laser are examples of sources
with minimal intensity fluctuations. Figure 2.15b shows a random time sequence
of emission of the photoelectrons for a source of constant intensity. A thermal
source exhibits random intensity fluctuations (Fig. 2.15c). The probability of
counting n photoelectrons in time T under these conditions has the distribution

P�n�T �= �n̄�n

�1+ n̄�n+1
(2.87a)

with variance

�2 = n̄2 + n̄
 (2.87b)

This is the Bose–Einstein distribution with a variance which always exceeds the
variance of the Poisson distribution. Thus a thermal source and a laser source
having exactly the same degree of first-order coherence and same average photon
number can be distinguished by the variance in the distribution of photoelectrons
produced by them.

For a constant intensity source, the photoelectron emission is a completely
random process, and an experiment of the Brown and Twiss type carried out
with such a source will reveal no intensity correlations. But the photoelectrons
produced by a thermal source with random intensity fluctuations show the bunch-
ing tendency (Fig. 2.15d). The bunching of photoelectrons can be interpreted to
imply that after the emission of a photoelectron, some prediction can be made
for the release of the subsequent photoelectrons. This can explain the appearance
of positive correlation in the intensity fluctuations observed by Hanbury Brown
and Twiss.
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2.9 PROBLEMS

2.1 Find the frequency spectra �E���� of the triangular and rectangular pulse waves:

Triangle function: ��t�= 1−
∣∣∣∣
t

t0

∣∣∣∣ for − t0 ≤ t ≤ t0

= 0 otherwise


Rectangle function: rect�t�= 1 for − t0 ≤ t ≤ t0

= 0 otherwise


2.2 Find the envelope representations of the pulse waves of Problem 2.1.
2.3 The self coherence function of a Gaussian wave with complex field

E�t�= E0√
2	�

e−t2/2�2
e−i2	�̄t

is defined as

�11���=
∫ +�

−�
E∗�t�E�t+ ��dt�

where � characterizes the frequency width and �̄ the mean frequency of the wave.
Show that the complex degree of coherence of a Gaussian wave is described by a
Gaussian function. Find its coherence time and normalized spectral density function.

2.4 Consider an ideal laser oscillating in five longitudinal modes of frequencies � = �0,
�0 ±��, �0 ± 2��, where �0 is the mean frequency of oscillation and ���=c/2L,
L is mirror separation and c is velocity of light) is the mode separation. Each
longitudinal mode may be represented by a delta function. Find complex degree of
coherence, degree of coherence, phase ���� of the complex degree of coherence,
and coherence time of the laser radiation.

2.5 Emission lines in a low pressure gas discharge are primarily Doppler broadened
with the normalized spectral density function

g���= 2

��D

√
ln 2
	

exp

[
−4

(
�− �̄

��D

)2

ln 2

]
�

where ��D = 2�̄
c

(
2kT
m

ln 2
)1/2

, m is mass of the atom or the molecule as the case may
be. For the 632.8 nm line of Ne, ��D = 1500 MHz and for the 10
6 m line of CO2,
��D = 61 MHz at 400 K. Find degrees of self coherence, phase ���� of the complex
degrees of coherence, and the coherence times for the above transitions.
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2.6 Spectral lines in a high pressure discharge are primarily collision broadened with
normalized spectral density function

g���= 1

	

��/2

��− �̄�2 + (��2
)2 �

where �̄ is the mean frequency of emission and �� is the FWHM. Find an expression
for the coherence time of the light emitted in a high pressure gas discharge.

2.7 One of the most monochromatic atomic transitions is the red line �� = 6348 A��
of cadmium with ���FWHM� = 0
013 A�. The red light �� = 6348 A�� coming
from a cadmium lamp through an opening of negligible dimensions illuminates the
double slit in a Young’s interference experiment with slit separation of 2 mm. The
interference fringes are observed on a screen held 2 m behind the slits. The slits are
at a distance of 20 cm from the lamp opening.

(a) Find the number of fringes observed on the screen.
(b) Keeping the slit separation fixed, lamp opening is gradually increased. Find

the lamp openings for the first two disappearances of the fringes.
(c) For a fixed lamp opening (radius = 0
1 mm), the slit separation is gradually

increased. Find the slit separations for the first two disappearances of fringes.

2.8 Derive Eq. (2.70) for the visibility of Young’s fringes for a linear source of length L.
2.9 For Young’s interference experiment, find an expression for the normalized spectral

density function of light at a point on the observation screen, assuming identical
normalized spectral density functions at the slits.

2.10 It is desired to illuminate a circular aperture of radius 0.5 mm coherently in a
diffraction experiment performed with sodium light of mean wavelength 589.3 nm.
The sodium lamp is kept in an enclosure with a small opening. Find the diameter
of the lamp opening if the aperture is kept 1 m away from the opening.
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2.11 Find the smallest angular diameter of a star that can be measured with an optical
intensity correlator having mirror separation of 200 m. The mean wavelength of light
emitted by the star may be taken as 500 nm.

2.12 For the rectangular pulse wave of Problem 2.1, find the degree of coherence and the
phase ����.

2.13 Interference with a quasi-monochromatic linear source of length l held a distance
h above the mirror M is obtained on the screen S at distance D from the source
(Fig. 2.16). Describe the changes in the visibility of fringes as a function of h.
Find h1 for the first disappearance of fringes. Obtain a numerical estimate of h1 for
reasonable values of h, l, D, and the mean wavelength.

A

h

B

D
x = 0

l x

S

M

Fig. 2.16.
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C H A P T E R 3

Polarization of Light Waves

3.1 STATES OF POLARIZATION

Consider a monochromatic plane wave

⇀

E �
⇀
r � t� = ⇀

E0 ei�kz−�t�� (3.1a)
⇀

B �
⇀
r � t� = ⇀

B0 ei�kz−�t�� (3.1b)

propagating in the positive z-direction in an isotropic medium. The amplitude

vectors
⇀

E0 and
⇀

B0 are in general complex. The direction of the electric field

amplitude
⇀

E0, quite arbitrarily but in accordance with the common usage, is
taken to represent the state of polarization of light. For light propagating in free
space and in other non-absorbing isotropic media, the polarization state is com-
pletely described by the transverse components of its electric field. Accordingly,
Eq. (3.1a) can be expressed as

⇀

E �x� y� z� t� =Exî+Eyĵ (3.2a)

= �E0xî+E0yĵ� ei�kz−�t�� (3.2b)

For definiteness, the x and y axes in the transverse plane are taken along the
horizontal and vertical directions, respectively. It may not be out of place to
mention at this point that the phase of a monochromatic plane wave is arbitrarily
chosen to be �kz−�t� and not ��t −kz�. This minor detail needs to be stated
because the terms like ‘phase advance’ and ‘phase lag’ to be used later are
dependent on this choice.

3.1.1 Linear Polarization

Light is linearly polarized if the field components Ex and Ey oscillate in phase or
180� out of phase. This is ensured if E0x and E0y are real. The field components

121
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Ey

Ex

θ

y

x

E

Fig. 3.1: Linearly polarized light.

attain extremum values at the same time. A wave is horizontally polarized �EH�
if Ey is identically zero and vertically polarized �EV� when Ex vanishes. The
general state of linear polarization �E�� occurs when Ex and Ey are both non-
zero. The direction of polarization of the wave then makes an angle � with the
x-direction, where � = tan−1

(
E0y/E0x

)
. This is shown in Fig. 3.1.

As time changes, the tip of the electric vector at a given point oscillates along
a fixed line (hence the name, linear polarization) in the transverse plane with a
period T = 2	/�. At other points along the direction of propagation, the electric
vectors oscillate in exactly the same manner along parallel lines which lie in
a plane containing the direction of propagation (Fig. 3.2a). Alternatively, one

E E E E

z

(a)

E

z

(b)

Fig. 3.2: Linearly polarized light; (a) tips of electric field vectors oscillate along
parallel lines in a fixed plane, (b) instantaneous distribution of electric field vectors.
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can imagine taking a snap shot of the electric vectors. The snap shot will reveal
electric vectors distributed sinusoidally along the direction of propagation in a
plane which contains the direction of propagation (Fig. 3.2b). For that reason, a
linearly polarized wave is also called a plane-polarized wave. It should, however,
be understood that the above visualization is only through thought experiments
since no detector exists to follow the rapidly changing light fields.

3.1.2 Elliptical and Circular Polarizations

For complex E0x and E0y, the oscillations of the field components along the
horizontal and vertical directions are generally not in phase, and we can write

Ex = 
x ei�kz−�t+�x�� (3.3a)

Ey = 
y ei�kz−�t+�y�� (3.3b)

where the amplitudes 
x and 
y are now real. For plane-polarized light,

�y −�x = 0�±	 (3.4)

so that

Ey

Ex

= 
y


x

for �y = �x� (3.5a)

Ey

Ex

= −
y


x

for �y = �x ±	� (3.5b)

The proportionality of the field components �Ey = ±�
y/
x�Ex is an essential
requirement for the wave to be linearly polarized. When the field components
along the horizontal and vertical directions do not oscillate in phase or exactly
out of phase, the tip of the electric vector in general traces an ellipse in the
transverse plane, called the polarization ellipse. The ellipticity and orientation
of this ellipse depend on the amplitude ratio 
y/
x and the phase difference
��y −�x�. Eliminating �kz−�t� from the real fields

Ex = 
x cos�kz−�t +�x�� (3.6a)

Ey = 
y cos�kz−�t +�y�� (3.6b)

we obtain
(

Ey


y

)2

+
(

Ex


x

)2

−2
(

Ey


y

)(
Ex


x

)
cos �0 = sin2 �0� (3.7)
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where �0 = �y −�x. This is the general equation of an ellipse with its principal
axes rotated with respect to the horizontal and vertical directions. For �0 =
±�m+ 1

2 �	, where m is an integer, Eq. (3.7) reduces to

(
Ey


y

)2

+
(

Ex


x

)2

= 1� (3.8)

The polarization ellipse, in this case, is symmetrically oriented with respect to the
coordinates axes (Fig. 3.3a). For 
x = 
y and �0 = ±�m+ 1

2 �	, the polarization
ellipse degenerates into a circle (Fig. 3.3b). Linear polarization is obtained for
�0 = 0, ±	 (Fig. 3.3c,d). For phase differences other than the multiples of 	/2
and 	, light is elliptically polarized with the polarization ellipse asymmetrically
oriented with respect to the horizontal and vertical directions. The major axis
of the ellipse makes an angle � with the horizontal direction (Fig. 3.3e). The
polarization ellipse is contained in a rectangle of sides 2
x and 2
y parallel to

Ex

yE

E

xε Ex

Ey

Eyε

Ex

εy

εx

Ey

E

Ex

Ey

E
εy’

C ’

εx2

B’

yε2

yE’
Ey

xE’

Ex

A’

(a) (b) (c)

BA

D

ψ
χ εx’

D’

C

(e)(d)

Fig. 3.3: States of polarization of a plane wave; (a) elliptical polarization with
major and minor axes along horizontal and vertical directions, (b) circular polar-
ization, (c) linear polarization along a line with positive slope, (d) linear polariza-
tion along a line with negative slope, (e) general state of elliptical polarization.
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the horizontal and vertical axes, respectively. This ellipse is also contained in
another rectangle of sides 2
′

x and 2
′
y, where 2
′

x and 2
′
y are the lengths of

the major and minor axes of the polarization ellipse, respectively. The angles �
and � in Fig. 3.3e give the ellipticity and orientation of the polarization ellipse,
respectively.

3.1.3 Helicity of Light Waves

The electric vector of the elliptically polarized light rotates with its tip tracing
an ellipse in the transverse plane. The same ellipse can be traced by clockwise
or counter-clockwise rotation of the electric vector. This gives rise to two states
of helicity for the elliptically polarized light. We need to define unambiguously
the terms ‘clockwise’ and ‘counter-clockwise’ rotations in the present context.
To fix this nomenclature, we take �0 = �y −�x = ±	/2, although the argument
holds for any �0. Equations (3.6) now become

Ex = 
x cos�kz0 −�t��

Ey = ∓
y sin�kz0 −�t��

where the �−� and �+� signs correspond to �0 = +	/2 and �0 = −	/2, respec-
tively, and z0 is any given point on the z-axis. Table 3.1 lists values of Ex and
Ey at some specified times within a period of oscillation. The initial time t0 is
chosen to make the initial phase kz0 −�t0 = 0.

Figure 3.4 shows the corresponding polarization ellipses. It is seen that for
�0 = +	/2, the ellipse is traced in the counter-clockwise direction as seen from
above against the direction �+z� of propagation of light. This represents left ellip-
tically polarized light or light with negative helicity (Fig. 3.4a). For �0 = −	/2,

Table 3.1. Values of Ex and Ey for �0 =
	/2 and −	/2.

t
�0 = +	/2 �0 = −	/2
Ex Ey Ex Ey

t0 +
x 0 +
x 0

t0 + 	

2�
0 +
y 0 −
y

t0 + 	

�
−
x 0 −
x 0

t0 + 3	

2�
0 −
y 0 +
y
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Ex

E y

xε
yε

yε
xε

E y

xE

E

(a)

E

(b)

Fig. 3.4: Polarization ellipse; (a) left elliptical polarization (�0 = +	/2), (b) right
elliptical polarization ��0 = −	/2�.

the electric vector appears to rotate clockwise as seen against the direction of
propagation. This corresponds to right elliptically polarized light or light with
positive helicity (Fig. 3.4b). The helicity of the circularly polarized light is
defined in a similar manner. There is no special reason to call light with elec-
tric vector rotating in the clockwise (counter-clockwise) direction as right (left)
elliptically polarized light. This nomenclature is, however, generally preferred.

For �0 = +	/2, the field component Ex leads Ey since Ex reaches its max-
imum value one quarter of a period before Ey reaches its maximum value
(Fig. 3.5a). A similar argument shows that Ex lags behind Ey for �0 = −	/2
(Fig. 3.5b).

It must be stated once again that the terms leading and lagging of the fields
in the present context is linked to our choice �kz−�t� to represent the phase
of a plane wave. Some authors use ��t −kz� for the phase of a plane wave, in
which case the terminologies will be just the opposite.

π
2

π
2

+φ0

(a) (b)
= 0 = − φ

0 T T0

Ex Ey Ey Ex

T
4

T
4 t t

Fig. 3.5: Horizontal component of electric field Ex (a) leads the vertical com-
ponent Ey for �0 = +	/2 and (b) lags behind the vertical component Ey for
�0 = −	/2.
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3.2 THE POLARIZATION ELLIPSE

The most general form of the polarization ellipse is shown in Fig. 3.3e. The
angle of inclination of this ellipse will be shown to be given by

tan 2� = 2
x
y cos �0


2
x −
2

y

� (3.9)

For arbitrary �0, the ellipse is not symmetrical about the horizontal and ver-
tical axes, but is obviously symmetrical about its principal axes 
′

x and 
′
y.

Equation (3.7) when referred to the principal axes of the ellipse is transformed to

(
E′

x


′
x

)2

+
(

E′
y


′
y

)2

= 1�

where

E′
x = 
′

x cos�kz−�t +�′
x��

E′
y = 
′

y cos�kz−�t +�′
y��

Here, 
′
x and 
′

y are, respectively, the semi-major and semi-minor axes of the
polarization ellipse and �′

y −�′
x = ±	/2. Therefore, we can write

E′
x = 
′

x cos�kz−�t +�′
0�� E′

y = ∓
′
y sin�kz−�t +�′

0�� (3.10)

The �∓� signs correspond to �′
y −�′

x = ±	/2. The components of the electric
field in the two coordinate systems are related:

E′
x = Ex cos � +Ey sin �� (3.11a)

E′
y = −Ex sin � +Ey cos �� (3.11b)

Substituting Eqs (3.6) with �x = 0, �y = �0 and Eqs (3.10) into Eqs (3.11), we
obtain


′
x cos �′

0 cos�kz−�t�−
′
x sin �′

0 sin�kz−�t�

=�
x cos � +
y sin � cos �0 cos�kz−�t�

−
y sin � sin �0 sin�kz−�t��
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∓
′
y sin �′

0 cos�kz−�t�∓
′
y cos �′

0 sin�kz−�t�

=�−
x sin � +
y cos � cos �0 cos�kz−�t�

−
y cos � sin �0 sin�kz−�t��

For these equalities to hold for all t and z, following conditions must be satisfied:


′
x cos �′

0 = 
x cos � +
y sin � cos �0� (3.12a)


′
x sin �′

0 = 
y sin � sin �0� (3.12b)

∓
′
y sin �′

0 = −
x sin � +
y cos � cos �0� (3.12c)

∓
′
y cos �′

0 = −
y cos � sin �0� (3.12d)

Multiplying Eq. (3.12a) with Eq. (3.12c) and Eq. (3.12b) with Eq. (3.12d), we
get

∓
′
x


′
y sin �′

0 cos �′
0 = (


x cos � +
y sin � cos �0

)× (−
x sin � +
y cos � cos �0

)

= 
x
y cos �0 cos 2� + (
2
y cos2 �0 −
2

x

)
sin � cos � (3.13a)

∓
′
x


′
y sin �′

0 cos �′
0 = −
2

y sin2 �0 sin � cos �� (3.13b)

The desired result (Eq. 3.9) can be obtained by subtracting Eq. (3.13b) from
Eq. (3.13a), giving

tan 2� = 2
x
y cos �0


2
x −
2

y

�

Squaring and adding Eqs (3.12a) and (3.12d) gives


′2
x +
′2

y = 
2
x +
2

y� (3.14a)

Further, by adding the product of Eq. (3.12a) with Eq. (3.12d) to the product of
Eq. (3.12b) with Eq. (3.12c), we obtain

∓
′
x


′
y = 
x
y sin �0� (3.14b)

Combining Eqs (3.14a) and (3.14b), one gets

∓ 
′
x


′
y


′2
x +
′2

y

= 
x
y sin �0


2
x +
2

y

� (3.15a)
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which is equivalent to

sin�2�� = sin�2�� sin �0� (3.15b)

where

tan � = 
y


x

� tan � = ∓
′
y


′
x

� (3.16)

The negative sign in Eqs (3.14b) and (3.15a) corresponds to clockwise �−	
2 ≤

�0 ≤ 0� and positive sign to counter-clockwise �0 ≤ �0 ≤ 	
2 � rotations of the

electric vector. The ellipticity angle � carries information on the ellipticity and
sense of rotation of the polarization ellipse. We shall return to these relations
when we introduce Stokes parameters later in the chapter. For completely polar-
ized light, orientation, ellipticity, and sense of rotation of the polarization ellipse
show no variation with time.

3.3 MATRIX REPRESENTATION OF POLARIZATION STATES

As described in Section 3.2, the polarization state of a monochromatic plane
wave propagating in a transparent isotropic medium is completely determined
if the magnitudes and phases of the horizontal and vertical components of its
electric field are known. Several matrix representations of the polarization state
of a plane wave are in vogue. Matrix approach to describe the polarization state of
light is quite natural since the components of a light field after a polarizing device
are linearly related to its components before it entered the device. Therefore, the
polarization changing characteristics of a device can be represented by a matrix.
The matrix approach is particularly useful in optics in general. This should not
be construed to imply that nonlinear effects in optics are rare. On the contrary,
with the advent of lasers, nonlinear optical effects can be observed rather easily.

3.3.1 The Jones Vectors

Jones column vectors are useful to describe the polarization behavior of coherent
light. The matrix form of Eqs (3.3) is

[
Ex

Ey

]
=
[


xei�x


yei�y

]
ei�kz−�t�� (3.17)

where the two component column (complex) vector on the right-hand side, which
completely specifies the amplitude and phase of the light field and hence its state
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of polarization, is called the Jones vector. Two mutually coherent waves of the
same frequency having Jones vectors

[
E

�1�
0x

E
�1�
0y

]
=
[


�1�
x ei�x�1�


�1�
y ei�y�1�

]

and [
E

�2�
0x

E
�2�
0y

]
=
[


�2�
x ei�x�2�


�2�
y ei�y�2�

]

can be superimposed to generate a wave with the state of polarization described
by the Jones vector

[
E0x

E0y

]
=
[


�1�
x ei�x�1� +
�2�

x ei�x�2�


�1�
y ei�y�1� +
�2�

y ei�y�2�

]
� (3.18)

The above definition of Jones vector is precise, but perhaps a bit too elaborate.
It can be simplified, but at some cost to the information it carries. This may not
matter if the Jones vector is being used merely to label the polarization state of
light.

First, we note that only the phase difference �0 = �y −�x, and not the actual
phases �x and �y, are needed to determine the polarization state of a wave.
Accordingly, the Jones vector can be written as

[
E0x

E0y

]
= ei�x

[

x


yei�0

]
� (3.19a)

The common phase factor ei�x may be suppressed without losing any information
on the state of polarization of the wave, but this cannot be done if interference of
this wave with another wave is contemplated. The Jones vector can be normalized
by requiring

E0xE
∗
0x +E0yE

∗
0y = 1�

Ignoring the phase factor ei�x in Eq. (3.19a), the normalized Jones vector can be
put in the form

[
E0x

E0y

]
=
[

cos �
sin �ei�0

]
� (3.19b)

where

cos � = 
x√

2

x +
2
y

� sin � = 
y√

2

x +
2
y

�
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We are now ready to write Jones vectors for different states of polarization
of light.

3.3.1.1 Linearly Polarized Light

Linearly polarized light is characterized by the horizontal and vertical compo-
nents of the electric field oscillating in phase ��0 = 0� or out of phase ��0 = ±	�.
The Jones vector for plane polarized light therefore has the general form

E��� =
[

E0x

E0y

]
=
[

cos �
sin �

]
� θ

xE 

y
� (3.20)

where the electric vector makes an angle � with the horizontal direction. As
special cases of plane polarized light, the Jones vectors for the horizontally and
vertically polarized waves are

E�H� =
[

1
0

]
�

E

y

x
� (3.21a)

E�V� =
[

0
1

]
�

y
xE

� (3.21b)

respectively. For light polarized at (+45�) to the horizontal direction, the nor-
malized Jones vector has the form:

E�+45�� = 1√
2

[
1
1

]
� 45o

xE

y

� (3.21c)

3.3.1.2 Circularly Polarized Light

Normalized Jones vectors for right ��x = �y, �0 = −	/2� and left ��x = �y,
�0 = +	/2� circular polarizations are

E�RCP� = 1√
2

[
1
−i

]
�

y

E
x

, (3.22a)

E�LCP� = 1√
2

[
1
+i

]
�

y

x

E
, (3.22b)

respectively.
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3.3.1.3 Elliptically Polarized Light

Elliptically polarized light is described by an arbitrary value of �0 and no
constraint on the relative magnitudes of 
x and 
y. The Jones vectors for the
right and left elliptical polarizations have the general form

E�REP� = 1√
a2 +b2 + c2

[
a

b− ic

]
�

y

x
E

, (3.23a)

E�LEP� = 1√
a2 +b2 + c2

[
a

b+ ic

]
� xE

y

, (3.23b)

respectively, where


x = a� 
y =
√

b2 + c2� �0 = ∓ tan−1 c

b
�

Jones vectors for elliptically polarized light with principal axes coinciding with
the horizontal and vertical directions �
x �= 
y, �0 = ±	/2� are

E�REP� = 1√
a2 +b2

[
a

−ib

]
�

y

x

E
, (3.23c)

E�LEP� = 1√
a2 +b2

[
a
ib

]
�

y

x

E
, (3.23d)

where


x = a� 
y = b� �0 = ∓	

2
�

3.3.1.4 Orthogonality of Jones Vectors

The Jones vectors
[

E0x

E0y

]
and

[
E′

0x

E′
0y

]
are orthogonal if the matrix product

[
E∗

0x E∗
0y

][E′
0x

E′
0y

]
= E∗

0x E′
0x +E∗

0yE
′
0y = 0� (3.24)
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where the elements of the row vector �E∗
0x E∗

0y are complex conjugate of the

elements of the Jones vector
[

E0x

E0y

]
. Jones vectors representing the horizontal and

vertical polarization states satisfy this condition and therefore constitute a pair of
orthogonal polarization states. Similarly, the right and left circular polarization
states are also orthogonal to each other. Orthogonal elliptical polarization states
also exist. For example, the Jones vectors

�1/5�

[
3
4i

]
�1/5�

[
4

−3i

]

represent an orthogonal pair of elliptically polarized states. In fact, there are infi-
nite pairs of orthogonal polarization states – all elliptically polarized, except the
horizontal–vertical and ±45� linear polarization pairs and the pair representing
the right and left circular polarizations. Any pair of orthonormal polarization
states forms a complete set in the same sense as the orthonormal eigenfunctions
of the Schrodinger equation form a complete set. Any arbitrary state of polariza-
tion can be expressed as a linear combination of the polarization states belonging
to any pair of orthogonal polarization states. For example, the right circular
polarization state can be expressed as a linear combination of the horizontal and
vertical polarization states with appropriate coefficients:

1√
2

[
1
−i

]
= 1√

2

[
1
0

]
− i√

2

[
0
1

]
�

Furthermore, we note that the sum of any number of Jones vectors is a Jones
vector. In other words, superposition of different states of polarization in the
Jones scheme must always lead to a state of definite polarization. For example,
the addition of right and left circular polarization states leads to the horizontal
polarization state of twice the amplitude of either of the circular polarization
states, i.e.,

1√
2

[
1
−i

]
+ 1√

2

[
1
i

]
= 1√

2

[
2
0

]
= √

2
[

1
0

]
�

It therefore follows that the Jones scheme of labeling polarization states cannot
describe unpolarized light. This is a serious limitation of the Jones scheme since
natural light is substantially unpolarized.

At this stage, we wish to refer to another aspect of Jones vectors. The use
of the plane waves in the present discussion restricts the classification of the
polarization states in terms of the Jones vectors to only monochromatic or
completely coherent light with 
x, 
y, and �0 possessing no time dependence.
Real light sources, at best, are quasi-monochromatic. The amplitude and phase
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of quasi-monochromatic light fluctuate with time. One may then ask if Jones
scheme of classification of the polarization states can ever describe real light.
But as mentioned in Chapter 2, a quasi-monochromatic wave behaves like a
coherent wave for times much shorter than the coherence time of the wave. In
that limit, the description of the polarization states of quasi-monochromatic light
in terms of the Jones vectors becomes valid.

3.3.2 Jones Matrices for Linear Optical Devices

Polarizing devices include linear polarizers, phase retarders, and polarization
rotators. A linear polarizer has a preferred direction, called the transmission axis
of the polarizer. It transmits plane polarized light with minimum (maximum)
loss when its transmission axis is oriented along (orthogonal to) the direction
of oscillation of the incident light field. An ideal linear polarizer transmits light
polarized parallel to its transmission axis with no loss at all, and completely
blocks light if polarized perpendicular to this direction. For an angle � between
the transmission axis of the polarizer and the polarization direction of the incident
light, the transmitted field and intensity are

E = E0 cos �� I = I0 cos2 ��

respectively. This is the statement of Malus Law. Practical polarizers fail to meet
these stringent requirements. The extinction ratio of a polarizer is the ratio of
the maximum �� = 0� and minimum �� = 90�� intensities transmitted by the
polarizer. With this definition, the extinction ratio is greater than one. Some
authors prefer the reciprocal of this ratio for the extinction ratio. Two types
of polarizers exist. The dichroic polarizers, such as the polaroid sheets, have
low extinction ratio of the order of 103. A polaroid sheet has electrons free to
move in response to the incident light field along only one direction. This is
the direction of low transmission of the polaroid sheet. The electrons cannot
absorb light polarized perpendicular to this direction. This is the transmission
direction of the sheet. The other type of polarizers exploit double refraction in
anisotropic crystals as described in Section 1.10.5. An anisotropic crystal gives
rise to two refracted waves with orthogonal states of polarization. These are
the ordinary and extraordinary waves. These waves can be physically separated,
yielding a much higher extinction ratio (107 or so). Nicol and Glan-Thompson
prisms, described in Section 1.10.6, are examples of such devices.

A phase retarder is a device which introduces a desired amount of phase dif-
ference between orthogonally polarized, co-propagating light waves. The phase
retarders make use of the difference in the index of refraction (birefringence) for
orthogonal states of polarization in an anisotropic medium.
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3.3.2.1 Linear Polarizers

The action of a linear polarizer in transforming the state of polarization of a
plane wave can be described by the matrix equation

[
cos �′

sin �′

]
=
[

a11 a12

a21 a22

][
cos �
sin �

]
� (3.25)

where the 2 × 2 matrix
[

a11 a12

a21 a22

]
represents the nature of the linear transfor-

mation performed by the polarizer. The transformation matrix

[
a11 a12

a21 a22

]
is

real since a linear polarizer changes only the amplitude and not the phase of
the light field passing through it. The elements of this matrix can be obtained in
a straightforward manner. We illustrate this procedure by taking a few specific
examples. Let us first consider the action of a polarizer with transmission axis
oriented in the horizontal direction. Such a polarizer will transmit horizontally
polarized light unchanged and in the ideal case will completely block light with
vertical state of polarization. Accordingly,

[
a11 a12

a21 a22

][
1
0

]
=
[

1
0

]
�

and [
a11 a12

a21 a22

][
0
1

]
=
[

0
0

]
�

These equations yield

a11 = 1� a12 = a21 = a22 = 0�

Therefore, the matrix representing the action of a linear polarizer with horizontal
transmission axis is

M�H� =
[

1 0
0 0

]
� (3.26a)

Similarly, it can be shown that the matrix

M�V� =
[

0 0
0 1

]
(3.26b)

represents the action of a linear polarizer with transmission axis along the vertical
direction. A little more effort shows that the matrix representing the action
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of a linear polarizer with transmission axis oriented at +45� to the horizontal
direction has the form

M�+45�� = 1
2

[
1 1
1 1

]
� (3.26c)

This result can be derived by solving the following matrix equations:

[
a11 a12

a21 a22

][ 1√
2

1√
2

]
= 1√

2

[
1
1

]
�

[
a11 a12

a21 a22

][ 1√
2− 1√

2

]
=
[

0
0

]
�

We leave it to the reader to prove that the matrix

M��� =
[

cos2 � cos � sin �

cos � sin � sin2 �

]
(3.27)

represents the action of a linear polarizer with transmission axis oriented at an
angle � to the horizontal direction.

3.3.2.2 Phase Retarders

The phase retarders, as mentioned earlier, make use of the birefringence property
of anisotropic media. The index of refraction of an appropriately cut uniaxial
crystal has maximum and minimum values along orthogonal directions called
the slow axis (SA) and the fast axis (FA), respectively. Figure 3.6 shows incident
wave polarized at an angle � with respect to the slow axis taken along the
horizontal direction. Inside the crystal, the wave can be imagined to consist of
two component waves – one polarized along the slow axis and the other along the
fast axis. The wave polarized along the fast axis moves faster (inside the retarder)
than the one polarized along the slow axis. The two waves, however, propagate
along the same direction albeit with different wave numbers �k = �/v�. This
introduces a phase difference of magnitude

�0 = �y −�x = �k2 −k1�d

= 2	

�v

�n2 −n1�d
(3.28)

after traversing a thickness d inside the crystal. Here, n1 and n2 are the indices of
refraction for light polarized along the fast and slow axes, respectively, and �v is
the wavelength of light in a vacuum. The thickness of the phase retarder must not
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SA

FA E

k

Eθ

x

Fig. 3.6: Action of a phase retarder, SA and FA are slow and fast axes of the
phase retarder.

exceed the coherence length of the light wave. The phase difference introduced
by the phase retarder transforms a plane polarized wave into an elliptically
polarized wave with circular and linear polarizations as special cases, depending
on the thickness d of the phase retarder and angle � between the polarization
direction of the incident light and the slow axis of the phase retarder. The phase
retarder changes only the phase, and not the amplitude of the wave. When the
slow and fast axes of the phase retarder are oriented along the horizontal and
vertical directions, respectively, the matrix representing the action of the phase
retarder has non-zero elements along the diagonal only. Accordingly,

M�0� =
[

ei�x 0
0 ei�y

]
� (3.29a)

When the slow axis of the phase retarder makes an angle � with the horizontal
direction, the transformation matrix of the phase retarder is given by the similarity
transformation

M��� = R�−��M�0�R���� (3.29b)

where

R��� =
[

cos � sin �
− sin � cos �

]

represents the rotation matrix for the transformation of axes.
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3.3.2.3 Quarter-Wave Plate

A phase retarder is called a quarter-wave plate (usually abbreviated as QWP) if
the path difference introduced by the retarder satisfies the condition

�n2 −n1�d =
(

m+ 1
4

)
�v� (3.30)

where m = 0� 1� 2� � � � . The action of a QWP to transform light polarized at +45�

to the horizontal direction into right circularly polarized light can be described
by the matrix equation

1√
2

[
1
−i

]
= 1√

2

[
ei�x 0
0 ei�y

][
1
1

]

= 1√
2

ei�0

[
ei��x−�0� 0
0 ei��y−�0�

][
1
1

]
�

(3.31)

This matrix equation can be satisfied by choosing �x −�0 = 0 and �y −�0 =
−	/2, so that

�y −�x = 2	

�v

�n2 −n1�d = −	

2
�

This action of the QWP is described by the matrix

M�QWP�SAH = ei�0

[
1 0
0 −i

]
� (3.31a)

where the subscript SAH indicates the slow axis of the QWP being horizontal
�n1 > n2�. Similarly, it can be shown that a QWP with its slow axis vertical
��y − �x = +	/2� converts +45�-polarized light into left circularly polarized
light, and this action of the QWP is represented by the matrix

M�QWP�SAV = ei�0

[
1 0
0 +i

]
� (3.31b)

where the subscript SAV stands for the slow axis being vertical. Notice, there is
an arbitrariness to the extent of a constant phase �0 in defining these matrices.
This constant phase is usually ignored.
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3.3.2.4 Half-Wave Plate

A phase retarder acts as a half-wave plate (HWP) if it introduces a path differ-
ence of

�n2 −n1�d =
(

m+ 1
2

)
�v

between the co-propagating waves with orthogonal states of polarization, where
m = 0� 1� 2� � � � . The action of a HWP with the slow axis horizontal or vertical
is described by the matrix

M = ei�0

[
1 0
0 −1

]
� (3.31c)

It can be seen that a HWP simply rotates the plane of polarization of linearly
polarized light. This is particularly useful in changing the state of polarization of
laser light. Strictly speaking, a phase retarder of fixed thickness acts as a QWP
or a HWP for the selected wavelength only. Variable thickness phase retarders
in the form of compensators can be used at different wavelengths. In Babinet’s
compensator, a quartz wedge is slid against another wedge of the same material
to change the thickness of the phase retarder.

The state of polarization of a light wave can be modified by introducing in
its path any number of polarization-changing elements in succession. The final

state of polarization
[

E′
x

E′
y

]
of the wave is related to its initial state

[
Ex

Ey

]
by the

matrix equation
[

E′
x

E′
y

]
= �MN MN−1 · · ·M2M1�

[
Ex

Ey

]
� (3.32)

where M1 and MN are, respectively, the matrices representing the actions of
the first and last optical elements that the wave encounters in its path. The
transformation matrices (Eqs 3.27 and 3.29) are unitary, so that

MM† =
[

M11 M12

M21 M22

][
M∗

11 M∗
21

M∗
12 M∗

22

]
=
[

1 0
0 1

]
�

where matrix M† is the Hermitian conjugate of matrix M , representing the action
of a linear polarizer or that of a phase retarder.

3.4 THE STOKES PARAMETERS

Jones vectors discussed in Section 3.3 provide an adequate description of the
states of polarization of completely polarized light. Unpolarized light, however,
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cannot be characterized in terms of the Jones vectors. Completely polarized
light with no component of unpolarized light is an idealization similar to the
perfectly monochromatic light possessing absolutely no frequency spread. In fact,
a monochromatic wave is completely polarized. Light from practical sources,
being either unpolarized or partially polarized, cannot be described by the Jones
vectors. Furthermore, light fields (electric fields in the present case) in terms of
which the Jones vectors are defined are not directly observable. It may be argued
that a description of the state of polarization of light in terms of measurable
quantities such as the light irradiance should be preferred. However, such a
description cannot account for interference effects associated with coherent light.
Therefore, the descriptions of the states of polarization in terms of the field and
intensity of light may complement each other to treat real light.

At a given point in space, the instantaneous Stokes parameters of a plane wave
propagating in the z-direction are defined as

S0�t� =
(

1
2

�0nc

)[	Ex�t�	2 +	Ey�t�	2
]
� (3.33a)

S1�t� =
(

1
2

�0nc

)[	Ex�t�	2 −	Ey�t�	2
]
� (3.33b)

S2�t� =
(

1
2

�0nc

)[
1
2

{	Ex�t�+Ey�t�	2 −	Ex�t�−Ey�t�	2
}]

=
(

1
2

�0nc

)[
Ex�t�E

∗
y �t�+E∗

x�t�Ey�t�
]
�

(3.33c)

S3�t� =
(

1
2

�0nc

)[
1
2

{	Ex�t�+ iEy�t�	2 −	Ex�t�− iEy�t�	2
}]

=
(

1
2

�0nc

)[−iEx�t�E
∗
y �t�+ iE∗

x�t�Ey�t�
]
�

(3.33d)

where Ex�t� and Ey�t� are the complex instantaneous Cartesian components of
the electric field. The Stokes parameters S0, S1, S2, S3 have the dimensions of
irradiance. However, the prefactors � 1

2 �0nc� are usually not explicitly written
in these definitions. We shall also not carry these factors any further. With
Eqs (3.3), the Stokes parameters can be recast as below:

S0�t� = 
2
x�t�+
2

y�t�� (3.34a)

S1�t� = 
2
x�t�−
2

y�t�� (3.34b)

S2�t� = 2
x�t�
y�t� cos �0�t�� (3.34c)
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S3�t� = −2
x�t�
y�t� sin �0�t�

= 2
x�t�
y�t� sin�−�0�t���
(3.34d)

where �0�t� = �y�t�−�x�t�. As discussed earlier, negative values of �0�t� in the
interval −	/2 ≤ �0 ≤ 0 correspond to right elliptical polarization and positive
values of �0 �0 ≤ �0 ≤ 	/2� refer to left elliptical polarization. Therefore S3�t�
is positive for right elliptically polarized light and negative for left elliptically

polarized light. The Stokes column matrix

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦, also called the Stokes vector,

carries complete information on the intensity and state of polarization of a plane
wave. The Stokes parameters may be normalized by dividing each parameter by
S0, which amounts to considering a light beam of unit irradiance.

3.4.1 Monochromatic Light

For monochromatic light, the amplitude and phase factors in Eqs (3.34) are time
independent and the Stokes parameters satisfy the condition

S2
0 = S2

1 +S2
2 +S2

3 � (3.35)

Consequently for monochromatic light, only three of the four Stokes parameters
are independent. Normalized Stokes parameters and Jones vectors for different
states of polarization are given in Table 3.2.

The Stokes parameters can be expressed in terms of the observables of a light
beam. The parameter S0 measures intensity of the beam in units of � 1

2 �0nc�. The
parameter S1 gives the extent by which the intensity of horizontal polarization
exceeds the intensity of vertical polarization in the beam. The parameter S2

determines the excess of the intensity of +45�-polarization over the intensity
of −45�-polarization, and finally the parameter S3 estimates the excess of the
intensity of right circularly polarized light over the intensity of left circularly
polarized light. All these parameters can be easily measured. The first three
parameters �S0� S1� S2� can be obtained by intensity measurement with a detector
such as a photodiode in conjunction with a linear polarizer, used in different
orientations. Accordingly, we can write

S0 = I�0�� 0��+ I�90�� 0��� (3.36a)

S1 = I�0�� 0��− I�90�� 0��� (3.36b)

S2 = I�45�� 0��− I�−45�� 0��� (3.36c)
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Table 3.2. The Jones and Stokes vectors for different states of polarization.

State of polarization Jones vector Stokes vector

Horizontal polarization
[

1
0

]
⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦

Vertical polarization
[

0
1

]
⎡
⎢⎢⎣

1
−1
0
0

⎤
⎥⎥⎦

±45� polarization 1√
2

[
1
±1

]
⎡
⎢⎢⎣

1
0
±1
0

⎤
⎥⎥⎦

General state of linear polarization
[

cos �

sin �

]
⎡
⎢⎢⎣

1
cos 2�

sin 2�

0

⎤
⎥⎥⎦

Right circular polarization 1√
2

[
1
−i

]
⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦

Left circular polarization 1√
2

[
1
+i

]
⎡
⎢⎢⎣

1
0
0
−1

⎤
⎥⎥⎦

where I����� is the measured intensity of the beam when the transmission axis
of the polarizer makes an angle � with the horizontal direction, and � = �y −�x

is the phase retardation introduced by the phase retarder. Of course, in the above
measurements, the phase retarder is absent. The measurement of the fourth
Stokes parameter requires a linear polarizer and a quarter wave plate:

S3 = I�45��−90��− I�45�� 90��� (3.36d)

3.4.2 Quasi-monochromatic Light

Monochromatic light is characterized by constant values of 
x, 
y, and �0.
For polychromatic and quasi-monochromatic light, these quantities, however,
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change with time. For changing amplitude and phase factors, the concept of
the polarization ellipse characterizing the state of polarization of light may no
longer be valid because the ellipticity and orientation of the polarization ellipse
may fluctuate randomly. However, the fluctuations in the amplitude and phase
of quasi-monochromatic light with sufficiently narrow spectral bandwidth are
relatively slow, but not entirely insignificant on the time scale needed to make a
measurement. It is then necessary to take an ensemble average which under cer-
tain conditions (Section 2.3.1) can be replaced by the time average. The Stokes
parameters for quasi-monochromatic light can be obtained by replacing instan-
taneous intensities in Eqs (3.33) by their time averaged values. Accordingly, for
quasi-monochromatic light,

S0 = 
Ex�t�E
∗
x�t��+
Ey�t�E

∗
y �t��

= 

2
x�t��+

2

y�t��� (3.37a)

S1 = 
Ex�t�E
∗
x�t��−
Ey�t�E

∗
y �t��

= 

2
x�t��−

2

y�t��� (3.37b)

S2 = 
Ex�t�E
∗
y �t��+
E∗

x�t�Ey�t��
= 2

x�t�
y�t� cos �0�t��� (3.37c)

S3 = 
−iEx�t�E
∗
y �t�+ iE∗

x�t�Ey�t��
= 2

x�t�
y�t� sin�−�0�t��� (3.37d)

For quasi-monochromatic light, the time averaged Stokes parameters are not
expected to change appreciably, and one may still be able to define the state
of polarization of quasi- monochromatic light. Obviously quasi-monochromatic
light is not completely polarized because that would require its polarization
ellipse to be absolutely stationary. At the same time quasi-monochromatic light
is not completely unpolarized either because slow changes in the orientation and
ellipticity may not wash away the polarization ellipse altogether. Such light is
called partially polarized light. The concept of partially polarized light is similar
to the concept of partially coherent light discussed in Chapter 2. Schwarz’s
inequality (see footnote 5 in Chapter 2) requires the Stokes parameters for
partially polarized light to satisfy the condition

S2
0 ≥ S2

1 +S2
2 +S2

3� (3.38)

where the equality sign holds for completely polarized light and the greater than
sign is applicable to partially polarized light.
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3.4.3 Completely Unpolarized Light

The concept of polarization ellipse is not applicable to completely unpolarized
light because its amplitude and phase undergo rapid changes with time. Fur-
thermore, the intensity of completely unpolarized light is not sensitive to the
orientation of a linear polarizer or a phase retarder kept in its path. This allows
us to draw the following conclusions:



2
x�t�� =

2

y�t���

cos �0�t�� =0�


sin �0�t�� =0�

Therefore, for completely unpolarized light,


Ex�t�E
∗
x�t��+
Ey�t�E

∗
y �t�� = S0�


Ex�t�E
∗
x�t��−
Ey�t�E

∗
y �t�� = 0�


Ex�t�E
∗
y �t�� = −
E∗

x�t�Ey�t���

giving


Ex�t�E
∗
x�t�� = 
Ey�t�E

∗
y �t�� = S0

2
� (3.39a)


Ex�t�E
∗
y �t�� = 
E∗

x�t�Ey�t�� = 0� (3.39b)

The completely unpolarized light is characterized by its intensity alone with
the Stokes vector

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦

unpol

=

⎡
⎢⎢⎣

S0

0
0
0

⎤
⎥⎥⎦ � (3.40)

The inequality Eq. (3.38) takes the form

S2
0 = 2

2

x�t�� = 2

2
y�t�� ≥ 0

for completely unpolarized light. Equation (3.39b) implies that the orthogo-
nal components of unpolarized light are completely uncorrelated. Accordingly,
orthogonal components of completely unpolarized if brought to the same state
of polarization, fail to interfere. This is one of the laws enunciated by Fresnel
and Arago on interference of light waves.
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We observe that unlike the Jones vectors, the Stokes vectors representing
the horizontal and vertical polarization states add up to the Stokes vector of
unpolarized light of twice the intensity of either state of polarization, i.e.,

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
−1
0
0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

2
0
0
0

⎤
⎥⎥⎦= 2

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ � (3.41)

This, of course, requires that the fields representing the horizontal and vertical
polarizations are mutually incoherent since we have added their intensities and
not the amplitudes. The above statement applies to mutually incoherent right and
left circularly polarized light fields as well. So that

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
0
0
−1

⎤
⎥⎥⎦= 2

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ �

These results can be generalized. An equal mixture of orthogonal but mutually
incoherent polarization states produces unpolarized light in the Stokes represen-
tation. The converse of this statement also holds. The Stokes parameters permit
the representation of unpolarized light in terms of an infinite set of orthogonal
polarization states of mutually incoherent light fields. This is in contrast to the
Jones scheme, where no combination of Jones vectors can describe unpolarized
light.

3.4.4 Mixture of Mutually Incoherent Light Fields

We have seen how the addition of Stokes vectors representing orthogonal but
mutually incoherent light fields gives rise to unpolarized light. The addition
of Stokes vectors is a general feature not restricted to orthogonal states of
polarization only. The Stokes parameters of a mixture of two or more mutually
incoherent light fields can be shown to be given by the sum of the corresponding
Stokes parameters of the individual light fields, i.e.,

S0 = S
�1�
0 +S

�2�
0 +· · · �

S1 = S
�1�
1 +S

�2�
1 +· · · �

S2 = S
�1�
2 +S

�2�
2 +· · · �

S3 = S
�1�
3 +S

�2�
3 +· · · �

(3.42)
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These results can be obtained in a straightforward manner by extending
Eqs (3.33) to include a mixture of mutually incoherent light fields satisfying the
condition

〈
E�i��t�E�j��t�

〉= 0�

Partially polarized light can be treated as an incoherent mixture of completely
polarized and completely unpolarized light fields described by the Stokes vector⎡
⎢⎢⎢⎢⎣

�p�
S0

S1

S2

S3

⎤
⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎣

�u�
S′

0

0
0
0

⎤
⎥⎥⎥⎥⎦

, respectively, i.e.,

⎡
⎢⎢⎣

S0 +S′
0

S1

S2

S3

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

�p�
S0

S1

S2

S3

⎤
⎥⎥⎥⎥⎦

+
+
+
+

⎡
⎢⎢⎢⎢⎣

�u�
S′

0

0
0
0

⎤
⎥⎥⎥⎥⎦

� (3.43)

where the superscripts (p) and (u) refer to completely polarized and completely
unpolarized components, respectively. Equation (3.43) can be expressed in an
equivalent form

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦= �1−P�

⎡
⎢⎢⎣

S0

0
0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

PS0

S1

S2

S3

⎤
⎥⎥⎦ � (3.44)

where P represents the degree of polarization satisfying the condition

0 ≤ P ≤ 1� (3.45)

Light is completely polarized for P = 1, completely unpolarized for P = 0, and
partially polarized for intermediate values of P. The degree of polarization of
light is the ratio of the intensity of the completely polarized light to its total
intensity, i.e.,

P = S
�p�
0

S
�p�
0 +S

�u�
0

= �S2
1 +S2

2 +S2
3�1/2

S0

� (3.46)

Expression (3.44) is not the only possible decomposition of partially polarized
light. As for the completely unpolarized light, infinite equivalent decompositions
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of partially polarized light in terms of orthogonal but mutually incoherent polar-
ization states exist,

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦= 1+P

2P

⎡
⎢⎢⎣

PS0

S1

S2

S3

⎤
⎥⎥⎦+ 1−P

2P

⎡
⎢⎢⎣

PS0

−S1

−S2

−S3

⎤
⎥⎥⎦ � (3.47)

We note in passing that Stokes parameters cannot describe superposition of
mutually coherent light fields.

3.4.5 Geometrical Interpretation of Stokes Parameters

The Stokes parameters of completely polarized light can be expressed in a form
that makes S1, S2, S3 appear as the Cartesian components of S0, treated as a
polar vector (Fig. 3.7).

The parameter S2 can be expressed as

S2 = 2
x
y cos �0 = �
2
x −
2

y�
2
x
y


2
x −
2

y

cos �0 = S1 tan 2�� (3.48a)

S1

S3

S2

ψ2

χ2

P’

90−2χ
S0

P

O

x

y

z

Fig. 3.7: Stokes parameters S1, S2, S3 as Cartesian components of Stokes param-
eter S0 for perfectly polarized light.
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where tan 2� has already been defined (Eq. 3.9). Similarly, the parameter S3

may be written as

S3 =2
x
y sin�−�0� = 2S0


x√

2

x +
2
y


y√

2

x +
2
y

sin�−�0�

=S0 sin 2� sin�−�0� = S0 sin 2�� (3.48b)

The angles � and � have been defined in Eq. (3.16). Substituting Eqs (3.48) into
Eq. (3.35) and solving for S1 and S2 gives

S1 =S0 cos 2� cos 2� = S0 sin�90−2�� cos 2�� (3.49a)

S2 =S0 cos 2� sin 2� = S0 sin�90−2�� sin 2�� (3.49b)

S3 =S0 sin 2� = S0 cos�90−2��� (3.49c)

The above equations bear close resemblance to the relationships among the
Cartesian and spherical polar components of the position vector:

x = r sin � cos ��

y = r sin � sin ��

z = r cos ��

This comparison is complete if the azimuthal angle � is identified with twice the
inclination angle � of the polarization ellipse and the polar angle � is replaced
by the complement of twice the angle of ellipticity �. This is shown in Fig. 3.7.

3.5 THE POINCARÉ SPHERE

We have seen in Section 3.4 how the Stokes parameters S1, S2, and S3 of com-
pletely polarized light can be formally treated as Cartesian components of the
Stokes parameter S0, treated as a three-dimensional polar vector. Stokes param-
eters of partially polarized light are related through the inequality of Eq. (3.38).
We now develop a geometrical representation for the states of polarization of
light. This will be done with the help of the Poincaré sphere which was intro-
duced in 1892 by H. Poincaré in a related but somewhat different context. The
Poincaré sphere is a sphere of unit radius in a space spanned by the normalized
Stokes parameters �1 = S1/S0, �2 = S2/S0, and �3 = S3/S0 (Fig. 3.8).

It follows from the construction that each point on the surface of the Poincaré
sphere represents a unique state of polarization (S1, S2, S3) and vice versa. A point
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σ1
= 1     S
     S0

σ2
= 2     S
     S0

σ3
= 3     S
     S0

P 4 χ2
ψ2

P
 3

P2

S0

1

S

O
−1 1P 1

−1

N

1

−1

P

Fig. 3.8: Representation of states of polarization of perfectly polarized light on
the Poincaré sphere of unit radius, N is north pole, S is south pole.

such as P on the Poincaré sphere can be located in terms of the angles of longitude
�2�� and latitude �2��, where angle � gives the orientation of the polarization
ellipse with respect to the reference axes and � determines the ellipticity of the
polarization ellipse (Fig. 3.3e) and the sense of rotation of the electric vector. A
point on the Poincaré sphere with coordinates (�1��2��3) represents the most
general (elliptical) state of polarization of completely polarized light. Points on
the equator (zero latitude) with � = 0 and hence �3 = 0 represent all possible
states of linearly polarized light.
The horizontal state of polarization is represented by point P1 with coordinates⎡
⎣

1
0
0

⎤
⎦ on the Poincaré sphere. This is the point of intersection of the increas-

ing direction of the S1/S0 axis with the Poincaré sphere. Vertical polarization

corresponds to point P2 on the Poincaré sphere with coordinates

⎡
⎣

−1
0
0

⎤
⎦. Points

P3 and P4 represent ±45�-polarization states, respectively. The remaining states
of linear polarization are represented by points on the equator of the Poincaré
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sphere with coordinates

⎡
⎣

cos 2�
sin 2�
0

⎤
⎦, where −	 ≤ 2� ≤ +	. We recall that the

horizontal and vertical states are orthogonal states of polarization. The points
P1 and P2 on the Poincaré sphere therefore represent a pair of orthogonal states
of polarization. It is no coincidence that the signs of the coordinates of point
P2 on the Poincaré sphere are opposite to the signs of the coordinates of point
P1. In fact, all pairs of orthogonal states of polarization share this property and
are represented on the Poincaré sphere by diametrically opposite points. All
points on the Northern Poincaré hemisphere (with positive S3 and hence neg-
ative �0) represent right elliptical states of polarization with the exception of
the points on the equator where the ellipse degenerates into lines and the North
pole ��0 = −	/2�� = 	/4� 
x = 
y� which represents the state of right circular
polarization. Similarly, it can be argued that points on the Southern Poincaré
hemisphere represent left elliptical polarization states with the South pole rep-
resenting the left circular polarization. Points lying on a given latitude (constant
2�) represent all elliptical polarization states for which the polarization ellipse
maintains its shape but the orientation of its major axis with respect to the hori-
zontal direction takes all possible values. Putting it differently, a given latitude
represents all polarization states generated by the rotation of the polarization
ellipse of a definite ellipticity about the direction of propagation of the wave.
A similar statement can be made for points lying on a given longitude (merid-
ian). In this case the orientation of the polarization ellipse with respect to the
horizontal direction does not change, but the aspect ratio �
y/
x� goes through
all values between zero and infinity. Partially polarized light can be represented
by a point inside the Poincaré sphere such that the distance �

S2
1+S2

2+S2
3

S2
0

�1/2 of the
point from the center of the Poincaré sphere gives the degree of polarization P.
The center of the Poincaré sphere represents completely unpolarized light. In
conclusion, it can be said that all possible states of polarization of light can be
envisioned on or within the surface of the Poincaré sphere.

3.6 MUELLER MATRICES

We have described polarization states of completely or partially polarized light
in terms of the Stokes vectors. The state of polarization of light can be changed
by interposing polarizing elements in its path. The action of a polarizing element
can be described by the matrix equation

⎡
⎢⎢⎣

S′
0

S′
1

S′
2

S′
3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦ � (3.50)
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where

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

S′
0

S′
1

S′
2

S′
3

⎤
⎥⎥⎦ are the initial and final Stokes vectors, respectively,

of completely or partially polarized light. The 4×4 transformation matrix M is
called the Mueller matrix. We now develop Mueller matrices for linear polarizers
and phase retarders.

3.6.1 Linear Polarizer

Figure 3.9 shows an ideal linear polarizer LP with transmission axis making an
angle � with the horizontal direction.

Matrix (3.27) can be used to express the components of the field emerging
from the polarizer in terms of the field components of the incident field:

E′
x = �cos2 ��Ex + �cos � sin ��Ey�

E′
y = �cos � sin ��Ex + �sin2 ��Ey�

On substituting these expressions in Eqs (3.33), following relationships among
the Stokes parameters of the emergent and incident light fields can be obtained:

S′
0 = E′

xE
′
x
∗ +E′

yE
′
y
∗ = 1

2
�S0 +S1 cos 2� +S2 sin 2� �

S′
1 = E′

xE
′
x
∗ −E′

yE
′
y
∗ = 1

2

[
S0 cos 2� +S1 cos2 2� +S2 cos 2� sin 2�

]
�

S′
2 = E′

xE
′
y
∗ +E′

x
∗
E′

y = 1
2

[
S0 sin 2� +S1 cos 2� sin 2� +S2 sin2�2��

]
�

S′
3 = i

[−E′
xE

′
y
∗ +E′

x
∗
E′

y

]= 0�

Ex
’
yE

Ex
’Ey

LP

zO

x

y

θ

(a) (c)(b)

x

Fig. 3.9: Action of a linear polarizer (LP); (a) field components of incident light,
(b) linear polarizer with transmission axis making an angle � with the horizontal
direction, (c) field components of emergent light.
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Expressing these results in the matrix form, we have
⎡
⎢⎢⎣

S′
0

S′
1

S′
2

S′
3

⎤
⎥⎥⎦= M���

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦ � (3.51)

where the matrix

M��� = 1

2

⎡
⎢⎢⎣

1 cos 2� sin 2� 0
cos 2� cos2 2� cos 2� sin 2� 0
sin 2� cos 2� sin 2� sin2 2� 0
0 0 0 0

⎤
⎥⎥⎦ (3.52a)

is the Mueller matrix representing the action of an ideal linear polarizer oriented
at an angle � with respect to the horizontal direction. Mueller matrices for some
specific values of angle � are given below.

M�0�� = 1
2

⎡
⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ � (3.52b)

M�90�� = 1
2

⎡
⎢⎢⎣

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ � (3.52c)

3.6.2 Phase Retarder

The transformation

E′
x = Exei�x�

E′
y = Eyei�y

describes the action of a phase retarder with its slow and fast axes coinciding
with the x, y axes (Eq. 3.29a). The corresponding transformation

S′
0 = S0�

S′
1 = S1�

S′
2 = S2 cos �0 −S3 sin �0�

S′
3 = S2 sin �0 +S3 cos �0�

(3.53)
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of the Stokes parameters yields

M�PR� =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cos �0 − sin �0

0 0 sin �0 cos �0

⎤
⎥⎥⎦ (3.54a)

as the Mueller matrix for the phase retarder. The Mueller matrices for the quarter
(�0 = ±90�) and half (�0 = ±180�) wave plates are

M�QWP� =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 ∓1
0 0 ±1 0

⎤
⎥⎥⎦ � (3.54b)

M�HWP� =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ � (3.54c)

respectively.

3.7 THE COHERENCY MATRIX

There is yet another scheme to describe the states of polarization of light,
completely or partially polarized. This scheme is based on Wolf’s 2×2 coherency
matrix

J =
[

Jxx Jxy

Jyx Jyy

]
� (3.55)

Following Born and Wolf, the elements of the coherency matrix defined in terms
of the time averaged field products are

Jxx = 
Ex�t�E
∗
x�t��� (3.56a)

Jxy = 
Ex�t�E
∗
y �t��� (3.56b)

Jyx = 
Ey�t�E
∗
x�t��� (3.56c)

Jyy = 
Ey�t�E
∗
y �t��� (3.56d)
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A comparison of Eqs (3.37) and (3.56) gives

Jxx = 1
2

�S0 +S1�� (3.57a)

Jxy = 1
2

�S2 − iS3�� (3.57b)

Jyx = 1
2

�S2 + iS3�� (3.57c)

Jyy = 1
2

�S0 −S1�� (3.57d)

For horizontally polarized light, Jxx = S0, Jxy = 0, Jyx = 0, Jyy = 0, so that the
coherency matrix for the horizontally polarized light of unit irradiance takes the
form

J�H� =
[

1 0
0 0

]
� (3.58a)

The coherency matrices for some other states of polarization are given below:

J�±45�� = 1
2

[
1 ±1
±1 1

]
� (3.58b)

J�V� =
[

0 0
0 1

]
� (3.58c)

J�RCP� = 1
2

[
1 i
−i 1

]
� (3.58d)

J�LCP� = 1
2

[
1 −i
i 1

]
� (3.58e)

For completely unpolarized light with

	Ex	2 = 	Ey	2 = S0/2� S1 = S2 = S3 = 0�

the coherency matrix for unit light irradiance is

J�un� = 1
2

[
1 0
0 1

]
� (3.58f)

The coherency matrix approach is capable of describing the states of polarization
of partially polarized light and of light which may be a mixture of incoherent
light fields.



3.8: PANCHARATNAM THEOREM 155

3.8 PANCHARATNAM THEOREM

During his investigations on how interfering beams with non-orthogonal states
of polarization can have the same phase, Pancharatnam at the age of 22 proved
a remarkable theorem called the Pancharatnam theorem [3.8]. If the state of
polarization of a light beam is changed in a cyclic manner so that at the end
of the cycle the light beam is once again in its initial state of polarization, then
according to this theorem, the light wave may pick up an additional phase during
the cycle which is not accounted for by the path differences, if any, involved in
the process. This phase called Pancharatnam–Berry phase is purely geometrical
in nature. The actual change in the phase depends on the intermediate states of
polarization that the light beam is made to go through. Pancharatnam theorem
can be best illustrated with reference to the Poincaré sphere (Fig. 3.10). We
recall that each point on the surface of the Poincaré sphere represents a unique
state of polarization of completely polarized light. Consider a closed path C
such as the path ABDA traced on the surface of the Poincaré sphere. The
light beam returns to its original state of polarization represented by point A
after undergoing changes in its polarization indicated by the path. On return
to the initial state of polarization, the phase of the light wave changes by an
amount equal to half the solid angle subtended by the closed path (the spherical
triangle ABD in the present example) at the center of the Poincaré sphere. If
the cyclic changes are made along a path that subtends zero solid angle at the
center, the light beam undergoes no phase change. The phase change predicted
by Pancharatnam has been verified by Pancharatnam himself and by others.
For more details, the reader is referred to Fundamentals of Polarized light by
Brosseau [3.3].

σ1

σ2

3σ

O

A

D
B

C

Fig. 3.10: Poincaré Sphere and Pancharatnam Theorem.
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3.10 PROBLEMS

3.1 Describe the states of polarization of the following waves:

(a)
⇀

E = îE0 cos�kz−�t�∓ ĵE0 sin�kz−�t ∓	/4�

(b)
⇀

E = îE0 cos�kz−�t +	/4�∓ ĵE0 sin�kz−�t ∓	/4�

(c)
⇀

E = îE0 cos�kz−�t +	/8�± ĵE0 sin�kz−�t ∓	/8�

(d)
⇀

E = îE0 cos�kz−�t�+ ĵ2E0 cos�kz−�t −	/6�.

3.2 Use Eqs (3.19b) and (3.34) to write the Jones and Stokes vectors for the waves
given in Problem 3.1.

3.3 Find the orientation and ellipticity of the polarization ellipse for each of the following
Jones vectors:

[
2
5i

]
�

[
3
4+5i

]
�

[
2i
−3i

]
�

[
2+3i
4

]
�

[
3i
2

]
�

3.4 Obtain Stokes vectors and coherency matrices for each of the Jones vectors given
in Problem 3.3.

3.5 Find the Jones vector and state of polarization (ellipticity and orientation, wherever
relevant) corresponding to each of the following Stokes vectors:

⎡
⎢⎢⎣

1
0�8
0�6
0

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1
0�8
0
0�6

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1
0
0�8
0�6

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1
0�7
0�6√

0�15

⎤
⎥⎥⎦ �

3.6 (a) Interpret the results of the following experiments in which the intensities of
two light beams are measured after introducing linear polarizers and phase
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retarders in different orientations in the paths of the beams. Find the degree
and state of polarization of each beam.

Beam I Beam II
I�0�� 0��+ I�90�� 0�� 1 1
I�0�� 0��− I�90�� 0�� 0.8 0.8
I�45�� 0��− I�−45�� 0�� 0.59 0.6
I�45��−90��− I�45�� 90�� 0.1 0.0

(b) Express the Stokes vector of each beam in terms of the Stokes vectors of
completely polarized but mutually incoherent light fields.

3.7 Horizontally polarized light passes through two ideal linear polarizers with trans-
mission directions making angles of � and −� with the horizontal direction. Find
polarization state of the emergent light and its intensity as a function of �. For what
values of �, no light comes from the second polarizer?

3.8 Right circularly polarized light of unit intensity passes through a quarter wave plate
with slow axis making an angle of 30� with the horizontal direction and a one-eighth
wave plate with slow axis horizontal. Find the intensity of light transmitted by the
device. Determine the state of polarization of light just after the quarter wave plate
and after it exits the one-eighth wave plate.

3.9 Find the intensity and polarization state of linearly polarized light polarized at 45�

to the horizontal direction after passing through a quarter-wave plate with slow axis
horizontal, followed by a half-wave plate with slow axis at 45� to the horizontal
direction. Take the initial intensity of the light beam to be one unit.

3.10 Suggest and demonstrate by calculations an arrangement to convert left circularly
polarized light into right circularly polarized light.
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C H A P T E R 4

Geometrical Optics

4.1 INTRODUCTION

Image formation by optical instruments is critically dependent on the wave nature
of light. In fact, image formation and processing based on the wave theory of
light is the subject matter of a chapter, later in this book. However, a great
deal about the working and performance (resolving power is one exception) of
optical instruments can be learnt without a direct reference to the wave theory.
This is a consequence of the wavelength of light being much smaller than the
dimensions of components used in optical imaging. Careful observations are
needed to discern effects associated with the wave nature of light. The diffraction
of light, a direct manifestation of its wave nature, is characterized by diffraction
angles of the order of �/a, where a represents the nominal size of the diffracting
object and � the wavelength of light. For light fields, �/a amounts to just a
few arc seconds for objects of macroscopic dimensions. These are small angles,
but not so small to remain undetected even by an unaided eye. Geometrical
optics holds in the limit �/a → 0. In this limit (a → �), light propagation in
a homogeneous medium is rectilinear. The laws of geometrical optics can be
deduced from Fermat’s principle. We may state this principle by requiring that
the optical path length

∫ 2
1 n�s�ds of the path taken by light between two points

be an extremum, i.e.,

�
∫ 2

1
n�s�ds = 0� (4.1)

where ds is an element of the path in a medium of refractive index n�s�.
Equivalently, it may be stated that between two points light propagates along a
stationary path, implying that all paths in its neighborhood have very nearly equal
optical path lengths. Light does not always take the shortest path. Figure 4.1
is helpful in appreciating this point. The figure shows sections of a flat mirror
(a), an elliptical mirror with foci at F1 and F2 (b), and a curved mirror (c), all
having a common normal at A. Consider light starting from F1 and reaching
F2 after undergoing reflections from the three mirrors. For the elliptical mirror,

159
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F1 F2

’B

(b)

B A

Cθ
C’

(c)
θ

(a)

Fig. 4.1: (a) Length of the path F1AF2 between points F1 and F2 is least for flat
mirror, (b) same as for any other path for elliptical mirror, and (c) maximum for
curved mirror.

light can take any of the infinitely many paths of exactly the same path length.
For the flat mirror, path F1AF2 has the least path length because any other
path such as F1BF2 is longer than the corresponding path F1B

′F2 involving the
elliptical mirror. On the other hand, for the curved mirror (c), path F1AF2 has
the maximum path length because any other path like F1CF2 is clearly shorter
than the corresponding path F1C

′F2 for the elliptical mirror. Snell’s law

n1 sin �1 = n2 sin �2

and laws of reflection already derived from Maxwell’s equations in Chapter 1
can be deduced from Fermat’s principle as well.

4.1.1 Paraxial Approximation

The concept of light rays is extremely useful in geometrical optics. Rays are
hypothetical lines somehow describing the rectilinear motion of light. For
a plane wave propagating in an isotropic medium, rays are parallel to the

propagation vector
⇀

k . A ray can be made more specific if it is associated with the
direction of energy propagation at a given point in the medium or if it represents
the normal to the wavefront at a given point. These two directions, as explained
in Section 1.10, differ in an anisotropic medium but we shall ignore such details
in the present context. The rays proceed undeviated in a homogeneous medium.
Deviation in the direction of a ray occurs as a result of refraction and reflection
at an interface between two media. It is possible to trace the path of a ray in an
optical system by employing Snell’s law at each interface encountered within
the optical system. But this is a cumbersome procedure when a large number
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Table 4.1. Deviations from the paraxial approximation.

�� �rad sin� tan� cos�

1 0	017 45 0	017 45 0	017 45 0	999 8
5 0	087 30 0	087 16 0	087 49 0	996 2

10 0	174 5 0	173 7 0	176 3 0	985
20 0	349 0 0	342 0 0	364 0 0	94

of interfaces are involved. These complications can be considerably reduced
if the small angle approximation is made. However, in a real optical system,
large angles are always involved and often desirable as well. Deviations from
the small angle approximation lead to geometrical aberrations to be taken up
in Chapter 5. Gaussian optics or the first-order optics deals with light rays with
angles of incidence, reflection, and refraction at an interface, which satisfy the
conditions

tan � ≈ sin � ≈ �� cos � ≈ 1� (4.2)

where angle � is in radians. This is the paraxial approximation of geometrical
optics. This approximation is not as restrictive as it may appear at first sight.
Table 4.1 shows that the paraxial approximation holds to within 1% for angles
upto 5�, and even at angles as high as 20�, the error introduced by the paraxial
approximation may not exceed 5–6%. In this approximation, Snell’s law
simplifies to

n1�1 = n2�2	 (4.3)

4.2 RAY MATRIX APPROACH TO GAUSSIAN OPTICS

Having linearized Snell’s law (Eq. 4.3), a matrix representation for the trans-
formation of a ray within a centered optical system seems most appropriate.1

A centered optical system possesses rotational symmetry about the optical axis,
usually taken as the z-axis of the Cartesian coordinate system. A meridional ray
is a ray which intersects the optical axis and remains confined to a single plane
as it makes its way through the optical system. This is the plane containing the
ray and the optical axis. The non-meridional rays, more often called the skew
rays do not meet the optical axis. We shall exclude such rays from the present

1 Matrix representation for ray transformation in an optical system with the exact form of Snell’s
law is also possible [4.1, 4.2].
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discussion. Within the paraxial approximation, the skew rays do not provide
any additional information in analyzing the performance of an optical system.
This may not hold when the paraxial approximation is relaxed as we shall find
in Chapter 5. With meridional rays, image formation by an optical system is
confined to two dimensions. With the z-axis taken along the optical axis, we
choose the xz-plane to describe the transformation of a ray in an optical system
(Fig. 4.2). A ray at a given point in a homogeneous medium confined to this
plane can be identified by the height x of the point above the optical axis, the
angle 
 the ray makes with the optical axis, and the refractive index n of the
medium around this point. This analysis can be extended to a stratified medium
with position-dependent index of refraction. The height x and the product n
 are
usually chosen to describe the transformation of a ray. Before we proceed any
further, it is desirable to fix our sign convention because some of the quantities
describing the transformation of a ray may change sign as the ray traverses the
optical system. Several sign conventions exist. Our sign convention is based on
the Cartesian sign convention.

Sign Convention

1. A ray in an optical system is assumed to travel from left to right. We
shall later describe how a ray travelling from right to left can be handled.

2. The height x of a point on a ray is taken positive if the point lies above
the z-axis and negative if it is below the z-axis.

3. The ray angle 
 is positive if the ray can be obtained by a counter-
clockwise rotation of the z-axis. Thus, angle 
 is positive if the ray has
up-slope and negative if it has down-slope. The angles of incidence and

x

α

x

o z

n

Fig. 4.2: The coordinates of a meridional ray.
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refraction follow the same sign convention, except that the normal to
the surface replaces the z-axis to decide the sense of rotation.

4. Horizontal distances are positive if measured from left to right and
negative if measured from right to left.

At this point we can also mention, as a matter of general notation, that a ray will
be identified with unprimed quantities before and with primed quantities after
each interface.

4.2.1 The Lens Matrix

The passage of a meridional ray through a thick biconvex lens is shown in
Fig. 4.3. The lens with center C has thickness t1 between its vertices V1 and
V2. The thickness of the lens and curvatures of its surfaces are exaggerated for
clarity of drawing. In the paraxial approximation (ray incidence close to vertex
V1), the sagitta (distance V1O1) is small and lens thickness same for all rays.
The horizontal distances in the object space (left of vertex V1) and image space
(right of vertex V2) are measured from V1 and V2, respectively. The figure shows
a ray arriving at point P1 on the left interface with coordinates �n1
1� x1� just
before incidence. The ray coordinates just after crossing the first interface are
�n′

1

′
1� x′

1�. The lens surfaces are assumed spherical with radii R1 and R2 and
centers C1 and C2. The angles of incidence and refraction (�1 and �′

1) at the
first interface are both positive as per our sign convention. The refracted ray is
incident on the right interface at point P2. The ray coordinates just before and just
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ψ
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Fig. 4.3: Passage of a meridional ray through a thick lens.
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after the right interface are �n2
2� x2� and �n′
2


′
2� x′

2�, respectively. Assuming
sharp boundaries between the media, refraction at each interface changes the
direction of the ray, leaving the ray height unmodified. Accordingly,

x′
1 = x1� (4.4a)

x′
2 = x2	 (4.4b)

For the angles at the first interface, we have

��1� = �
1�+ ���� (4.5)

where angle � being negative by our sign convention is written as � = −x′
1/R1

since x′
1 and R1 are both positive. The radius R1 of the first surface of the lens

is to be measured from vertex V1. Angle 
1 is positive since the incident ray
has been chosen with up-slope. We can therefore drop the magnitude signs in
Eq. (4.5) and write

�1 = 
1 −�	 (4.6a)

Similarly

�′
1 = 
′

1 −�	 (4.6b)

Substituting Eqs (4.6) into Eq. (4.3), we obtain

n′
1�


′
1 −�� = n1�
1 −���

which simplifies to

n′
1


′
1 = n1
1 − �n′

1 −n1�

R1

x1	 (4.7a)

Re-writing Eq. (4.4a), we have

x′
1 = 0�n1
1�+x1	 (4.7b)

Equations (4.7) can be expressed in the matrix notation as
(

n′
1


′
1

x′
1

)
=
(

1 −k1

0 1

)(
n1
1

x1

)
� (4.8)

where

k1 = n′
1 −n1

R1

	 (4.9)
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The column matrices
(

n1
1

x1

)
and

(
n′

1

′
1

x′
1

)
identify the incident and refracted

rays, respectively, at the front surface of the lens. The 2×2 unimodular refraction
matrix

�1 =
(

1 −k1

0 1

)
(4.10)

describes refraction at the front surface of the lens. The transformation of the
ray between the front and back surfaces of the lens is a translation operation
described by the equations

n2
2 = n′
1


′
1 +0�x′

1��

x2 = 
′
1t1 +x′

1

=
(

t1

n′
1

)
n′

1

′
1 +x′

1	

The matrix form of these equations is

(
n2
2

x2

)
=
(

1 0
t1
n′

1
1

)(
n′

1

′
1

x′
1

)
	 (4.11)

The column matrix
(

n2
2

x2

)
identifies the refracted ray just before the second

interface. For consistency of notation, we have introduced n2 for the index of
refraction of the lens material just in front of the back surface of the lens. Of
course, n2 = n′

1 in the present case.
The unimodular translation matrix

�21 =
(

1 0
t1
n′

1
1

)
(4.12)

describes translation of the ray between the front and back surfaces of the thick
lens. Reduced thickness t1/n′

1 and not the actual lens thickness t1 appears in the
translation matrix because of our choice n
 (and not 
) as the angular coordinate
of the ray. This choice has the advantage that the refraction and translation
matrices are unimodular. For a thin lens (t1 = 0), the translation matrix is the
unit matrix

�21�t1 = 0� =
(

1 0
0 1

)
	 (4.13)
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The angles at the back surface of the lens satisfy the following relationships:

−�2 = −
2 +� = −
2 − x2

R2

� (4.14a)

−�′
2 = −
′

2 +� = −
′
2 − x2

R2

� (4.14b)

where 
2 and x2 are positive by our sign convention but �2� �′
2�
′

2, and R2

(measured from V2) are negative. It should be realized that Eqs (4.14) actually
represent relationships among the magnitudes of the angles in the spirit of
Eq. (4.5). The need for the sign conventions in geometrical optics arises precisely
for these reasons. The geometrical relationships among angles (and also among
distances) are relationships among their magnitudes. If the magnitude symbols
are not to be carried over everywhere, the use of sign conventions becomes
imperative. Applying Snell’s law

n′
2�

′
2 = n2�2

at the back surface of the lens gives

n′
2


′
2 = n2
2 − n′

2 −n2

R2

x2	 (4.15a)

Also

x′
2 = 0�n2
2�+x2	 (4.15b)

The matrix form of Eqs (4.15) is

(
n′

2

′
2

x′
2

)
=
(

1 −k2

0 1

)(
n2
2

x2

)
� (4.16)

where the column matrix
(

n′
2


′
2

x′
2

)
identifies the ray emerging from the back

surface of the lens, and

k2 = n′
2 −n2

R2

= n′
2 −n′

1

R2

	 (4.17)

The 2×2 unimodular matrix

�2 =
(

1 −k2

0 1

)
(4.18)
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describes refraction at the back surface of the lens. The complete ray transfor-
mation caused by a lens of thickness t1 is given by the matrix equation

(
n′

2

′
2

x′
2

)
= �2�21�1

(
n1
1

x1

)
� (4.19)

where the unimodular 2×2 product matrix

�V2V1
= �2�21�1 (4.20)

representing the ray transformation produced by a thick lens is called the lens
matrix or the system matrix. The order of the matrix product in Eq. (4.20) is
from right to left because the incident ray is first transformed by the front surface
(on the left) of the lens. The ray transformation by a combination of lenses can
be expressed in terms of the product of matrices describing the refraction and
translation operations within the optical system in the manner of Eq. (4.20). The
matrix representing the action of the first lens encountered by the ray appears
on the extreme right position. Attention must be paid to the signs of the radii
of curvatures of the surfaces encountered in the optical system. The lens matrix
(Eq. 4.20) can be worked out to yield

�V2V1
=
(

1−k2
t1
n′

1
−k1 −k2 +k1k2

t1
n′

1
t1
n′

1
1−k1

t1
n′

1

)
	 (4.21)

For light passing at small angles through a flat dielectric slab with parallel faces
�k1 = k2 = 0�, the ray transformation

(
n′

2

′
2

x′
2

)
=
(

1 0
t1
n′

1
1

)(
n1
1

x1

)

gives

n′
2


′
2 =n1
1�

x′
2 =

(
t1

n′
1

)
n1
1 +x1	

The emergent ray is parallel �
′
2 = 
1� to the incident ray if the media on the

two sides of the slab have equal indices of refraction, but it suffers a lateral
displacement �x′

2 −x1 = t1
n′

1
n1
1�, which is independent of the index of refraction

of the medium of emergence. For a thin lens, the lens matrix simplifies to

�V2V1
�t1 = 0� =

(
1 −k1 −k2

0 1

)
� (4.22)
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where

k1 +k2 = n′
1 −n1

R1

+ n′
2 −n′

1

R2

	 (4.23)

For a thin lens of a material of refractive index n �=n′
1� kept in air �n1 = n′

2 = 1�,

k1 +k2 = �n−1�

(
1
R1

− 1
R2

)
(4.24)

is to be recognized as the power (P) of the thin lens in air. Accordingly, the thin
lens matrix can be expressed as

�V2V1
�t1 = 0� =

(
1 −P
0 1

)
	 (4.25)

In practice, a lens is considered thin if the radii of curvatures of its surfaces and
the object and image distances from the lens are much greater than the thickness
of the lens. A high power (short focal length) lens has to be necessarily thick.
Expressing Eq. (4.24) in terms of the focal length of a thin lens in air, we have
the lens maker’s formula:

P = 1

f
= �n−1�

(
1
R1

− 1
R2

)
	 (4.26)

The unit of refractive power of a lens is a Diopter when its focal length
is expressed in meters. A lens with f = +5 cm is rated to have a power of
+20 Diopters (usually abbreviated as +20 D). Equation (4.23) gives the power of
a thin lens in the general case when the indices of refraction of the media on the
two sides of the lens are different. At this stage, it may be tempting to identify
the top right element −k1 −k2 + t1

n′
1
k1k2 of the thick lens matrix (Eq. 4.21) with

the negative of the power of the thick lens. This in fact is true, but it needs to be
proved. We note that the thin lens matrix has unit elements along the diagonal
and its lower left element is zero. We now explore the possibility of transforming
the thick lens matrix to the form of the thin lens matrix. The lens matrix
(Eq. 4.21) was obtained by considering the transformation of a ray between the
vertical planes passing through the vertices of the thick lens. We now show that
the thick lens matrix referred to its principal planes formally resembles the thin
lens matrix. This brings us to the discussion of the cardinal points of a lens.

4.2.2 Cardinal Points of a Lens

An ideally thin �t1 = 0� lens is characterized by its center and its front and back
focal points, also called the primary and secondary focal points. The vertices V1
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V2

F’

V1

C HF
Optical axis

Fig. 4.4: Principal point H of a thin lens coincides with its center.

and V2 of a thin lens coincide with the center of the lens (Fig. 4.4). One may
also think of a plane perpendicular to the optical axis of the lens and passing
through its center. In the limit of the lens being ideally thin, the two refracting
surfaces overlap with this plane. One can then imagine the entire refraction
process taking place in this plane. This plane may be called the principal plane
� . The intersection of this plane with the optical axis gives the principal point
H , which also coincides with the center of the thin lens. The rays diverging from
the primary (front) focal point F become parallel as they emerge from the lens
(Fig. 4.5a) and a bundle of rays incident parallel to the optical axis converges to
the secondary (back) focal point F ′ (Fig. 4.5b). For a thick lens, the primary and
secondary focal points F and F ′ are defined in exactly the same manner as for
a thin lens. The planes perpendicular to the optical axis and passing through the
primary and secondary focal points are called the primary (� ) and secondary
(� ′) focal planes, respectively (Fig. 4.6). The primary principal surface S of a
thick lens is the surface of intersection of the rays starting from the primary focal

F’CCF

(a) (b)

Fig. 4.5: (a) Primary and (b) secondary focal points of a thin lens.
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F’

(a) (b)

F
CH ’HC

Fig. 4.6: (a) Primary focal point F, primary principal point H, and primary
principal plane � and (b) secondary focal point F ′, secondary principal point
H ′, and secondary principal plane � ′ of a thick convex lens.

point F of the lens and the emergent parallel rays when extended to intersect
each other (Fig. 4.6a). This surface is in general curved but the portion of this
surface near the optical axis (paraxial approximation) constitutes the primary
principal plane � of a thick lens. The primary principal point H is the point of
intersection of the primary principal plane with the optical axis. The secondary
focal point F ′, the secondary principal surface S′, the secondary principal plane
� ′, and the secondary principal point H ′ are likewise defined in Fig. 4.6b with
reference to a bundle of incident rays parallel to the optical axis. The principal
planes may lie inside or outside a thick lens, depending on the curvatures of its
surfaces and its thickness. The two principal planes of a thick lens merge into
one plane for a thin lens. For a convex or a positive lens, the primary focal point
F lies on the left of the lens (Figs 4.5a and 4.6a) and the secondary focal point
F ′ lies on the right of the lens (Figs 4.5b and 4.6b). The situation is just the
opposite for a concave (also called negative) lens (Fig. 4.7).

For mathematical convenience, we may consider the refraction not to take
place at the front and back surfaces of a lens but at its primary and secondary
principal planes. Seen from the image side in Fig. 4.6, the emergent rays do
appear to start from the principal planes. The principal planes � and � ′ are
conjugate planes of unit magnification in the sense that if an object is placed
(hypothetically in case the principal planes lie within the lens) in either of the
principal planes, an image exactly equivalent to the object is formed in the
other principal plane. In fact, the principal planes are the only planes where
unit magnification (without inversion) can be achieved. The development of the
theory of a thick lens must ensure that the principal planes indeed satisfy this
condition. The distances of the primary and secondary focal points from the
left and right vertices of the lens are denoted as the primary and secondary
focal lengths f1 and f2, respectively, and when referred to the primary and
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(a) (b)

F F’

Fig. 4.7: (a) Primary and (b) secondary focal points of a concave lens.

secondary principal planes, they will be denoted as f and f ′, respectively. By
our sign convention, the primary focal length of a convex lens is negative
and its secondary focal length is positive whereas just the opposite holds for
a concave lens. In normal use, focal length of a lens implies its secondary
focal length which is positive for a convex lens and negative for a concave
lens.

The four cardinal points consisting of two focal points (F , F ′) and two prin-
cipal points (H , H ′) suffice for the purpose of ray tracing through a thick lens
surrounded by the same medium on both sides. However, as we shall see later,
additional cardinal points (called nodal points) are useful for ray tracing when
media on the two sides of the lens have different indices of refraction. This, for
example, is the case for the cornea of an eye with air on one side and aqueous
humor on the other (see Fig. 4.31). The nodal points are points on the optical
axis having unit angular magnification. They coincide with the principal points
when the index of refraction is same on both sides of the lens.

The cardinal points of a positive lens or of a complete optical system can be
easily determined. The focal points can be located by keeping a mirror behind
the lens so that the object and its image coincide at the focal point. Similarly, the
focal lengths f and f ′ �=−f� can be obtained by applying Newton’s equation
(Eq. 4.58)

�u−f ��v−f ′� = ff ′

to any pair of conjugate planes, where �u − f � and �v − f ′� are the object
and image distances from the primary and secondary focal planes, respectively.
Knowing the focal lengths and positions of the focal planes, the positions of the
principal planes can be determined.
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4.2.3 Ray Transformation between Principal Planes

Let the distances of the primary and secondary principal planes from their
respective vertices be T1 and T2 (Fig. 4.8). We now consider the transformation
of a ray from the primary principal plane to the secondary principal plane of a
thick lens. This transformation can be expressed as

(
n3
3

x3

)
= (

�� ′�
)(n1
1

x1

)
� (4.27)

where

�� ′� = �� ′V ′�V ′V�V� 	 (4.28)

The translation matrices between the principal planes and the corresponding
planes through the vertices of the lens are

�V� =
(

1 0
−T1
n1

1

)
� (4.29a)

�� ′V ′ =
(

1 0
T2
n3

1

)
� (4.29b)

where �−T1� and T2 are assumed positive. If, on the other hand, T1 turns out
to be positive for a given situation, the primary principal plane lies on the right

α3

n2n1 n3

T1

t1

T

3x

x

z
V ’

o

2

α1

V

x1

Fig. 4.8: Ray transformation between principal planes of a thick lens.
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of vertex V . Similar considerations apply to T2 as well. With Eqs (4.29), the
product matrix (Eq. 4.28) takes the form

�� ′� =
(

1 0
T2
n3

1

)(
a11 a12

a21 a22

)(
1 0

−T1
n1

1

)

=
⎛
⎝ a11 − T1

n1
a12 a12

T2
n3

(
a11 − T1

n1
a12

)
+a21 − T1

n1
a22 a22 + T2

n3
a12

⎞
⎠ 	 (4.30)

Here, the lens matrix (Eq. 4.21) has been abbreviated as

(
1− t1

n′
1
k2 −k1 − k2 + t1

n′
1
k1k2

t1
n′

1
1− t1

n′
1
k1

)
=
(

a11 a12

a21 a22

)
	 (4.31)

Combining Eqs (4.27) and (4.30), we have

x3 =
[

T2

n3

(
a11 − T1

n1

a12

)
+a21 − T1

n1

a22

]
n1
1 +

(
a22 + T2

n3

a12

)
x1� (4.32a)

n3
3 =
(

a11 − T1

n1

a12

)
n1
1 +a12x1	 (4.32b)

The principal planes are planes of unit linear magnification �x3/x1 = 1�, irre-
spective of angle 
1 the ray makes with the optical axis. Hence, we must have

T2

n3

(
a11 − T1

n1

a12

)
+a21 − T1

n1

a22 = 0� (4.33a)

and

a22 + T2

n3

a12 = 1	 (4.33b)

Equation (4.33b) locates the secondary principal plane at

T2 = n3

a12

�1−a22�	 (4.34a)

Furthermore, since the determinant of the matrix �� ′� must be unity, its upper
left element must also have unit value. This locates the primary principal plane at

T1 = n1

a12

�a11 −1�	 (4.34b)
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The lens transformation matrix (Eq. 4.30) between the principal planes then
simplifies to

�� ′� =
(

1 a12

0 1

)
	 (4.35)

This has exactly the form of the thin lens matrix (Eq. 4.25), so that the power
of a thick lens is

PL = −a12

= k1 +k2 − t1

n′
1

k1k2 (4.36)

= n2 −n1

R1

+ n3 −n2

R2

−
(

n2 −n1

R1

)(
n3 −n2

R2

)
t1

n2

	

The power of a lens of thickness t1 and refractive index n �= n′
1 = n2� with air

on both sides �n1 = n3 = 1� is

PL = �n−1�

[
1
R1

− 1
R2

+ n−1
n

t1

R1R2

]
	 (4.37)

This is the lens maker’s formula for a thick lens. The thick lens matrix can be
put in the standard thin lens form

�� ′� =
(

1 −PL

0 1

)
� (4.38)

where PL is the power of the thick lens. The fact that all rays starting from
a given point on the primary principal plane end up at one point on the sec-
ondary principal plane implies that these planes are indeed conjugate planes, and
Eq. (4.33a) is actually a statement of the relationship between the object distance
T1 and the image distance T2 (from their respective vertices). A rearrangement
of Eq. (4.33a) gives

n3a22

T2

− n1a11

T1

− n1n3a21

T1T2

= −a12 = PL	 (4.39)

The not-so-simple form of this relationship between the object and image dis-
tances reinforces the fact that the planes passing through the vertices of a thick
lens are not the most convenient reference planes to describe image formation by
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V1 V2

T1
1t

T2

n3n2n1

O I

1α

d

Fig. 4.9: Image formation by a transparent slab. Negative T2 implies virtual
image on left of V2.

a thick lens. However, Eq. (4.39) becomes particularly simple for a transparent
block with flat and parallel surfaces (Fig. 4.9), giving

T2

n3

= T1

n1

− t1

n′
1

	

This equation locates the image of an object formed by a transparent block.
For T1 = 0, T2 = −n3

t1
n′

1
gives the usual result

Apparent depth
Real depth

= n3

n′
1

	

For T1 �= 0 and n1 = n3, the image displacement is given by

d = �T1�+ t1 −�T2�

= t1

(
1− n1

n′
1

)
	

Now that the element a12 of the thick lens matrix has been recognized as the
negative of the power of the lens, the distances T1 and T2 of the principal
planes from their respective vertices can be expressed in terms of the refractive
parameters of the lens:

T1 = n1

n2

k2

PL

t1� (4.40a)

T2 = −n3

n2

k1

PL

t1� (4.40b)
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where k1 and k2 are the powers of the front and back surfaces of the lens (of
thickness t1 and index of refraction n2). Equations (4.40) do not hold if PL = 0.
The angular magnification obtained from Eq. (4.32b) is

M
 =
(


3


1

)

x1=0

= n1

n3

(
a11 − T1

n1

a12

)
	 (4.41)

Substituting Eq. (4.34b) into Eq. (4.41) gives the angular magnification for the
rays passing through the principal points H and H ′ as n1/n3, and not one. The
primary nodal point with unit angular magnification can be located by requiring

(

3


1

)

x1=0

= 1� (4.42)

giving

TN
1 = n1

a12

(
a11 − n3

n1

)
	 (4.43a)

The position of the secondary nodal point can be obtained from Eq. (4.33a) by
replacing T1 and T2 by TN

1 and TN
2 , respectively, giving

TN
2 = n3

a12

(
n1

n3

−a22

)
	 (4.43b)

As a consequence of unit angular magnification, the incident and emergent rays
directed towards or away from the nodal points are parallel. Intersection of these
rays (upon extension) with the optical axis gives the positions of the nodal points
(Fig. 4.10). Like the principal points, the nodal points can lie within the lens or

Cα

α

zN2

N1

Fig. 4.10: Incident and emergent rays passing through the nodal points (after
extension) are parallel to each other.
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L

Fig. 4.11: Cardinal points of a thick lens L; focal points �F�F ′�, principal points
�H�H ′�, nodal points �N1�N2�.

outside it. Figure 4.11 shows the six cardinal points of a thick lens (symbolically
represented by 	).

4.2.4 Ray Matrix for Image Formation

With the simple form of the thick lens matrix between its principal planes at our
disposal, image formation by a thick lens or by an optical system (Fig. 4.12)
can be handled rather easily. As for a single lens, the principal planes of a
complete optical system are conjugate planes with unit linear magnification. The
ray matrix between the principal planes of an optical system has exactly the
form of the ray matrix of a thick lens between its principal planes. We merely
need to replace the power PL of the lens in Eq. (4.38) by the power Psys of the
optical system. The lens matrix �V ′V in Eq. (4.28) is replaced by the product
of the matrices representing the ray transformation between the left vertex of
the first element and the right vertex of the last element of the optical system.
For separations, if any, between successive elements, translation matrices of the
type described by Eq. (4.12) need to be incorporated. The ray matrix for image
formation by an optical system can be obtained by simply replacing T1 and T2

by T1 + u and T2 + v, in Eq. (4.30), where u and v are the object and image
distances from the primary and secondary principal planes of the optical system,
respectively. However, it is much easier to develop the object–image matrix in
terms of the system matrix between its principal planes:

�IO =�I� ′�� ′���O (4.44a)

=
(

1 0
v
n3

1

)(
1 −Psys

0 1

)(
1 0
−u
n1

1

)
(4.44b)
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Fig. 4.12: Transformation of a meridional ray between the object �O� and image
�I� planes of an optical system.

=

⎛
⎜⎜⎜⎝

1+ u

n1

Psys −Psys

v

n3

(
1+ u

n1

Psys

)
− u

n1

1− v

n3

Psys

⎞
⎟⎟⎟⎠ 	 (4.44c)

We remind the reader once again that by our sign convention, u is negative and v
is positive in Eqs (4.44) if the image is formed on the right of the principal plane
� ′. Here, Psys is the power of the optical system as a whole and is obtained from
the negative of the top right element of the system matrix calculated between its
principal planes. The transformation of a ray from the object point to the image
point, described by the matrix equation

⎛
⎝

n3
3

x3

⎞
⎠=

⎛
⎜⎜⎜⎝

1+ u

n1

Psys −Psys

v

n3

(
1+ u

n1

Psys

)
− u

n1

1− v

n3

Psys

⎞
⎟⎟⎟⎠

⎛
⎝

n1
1

x1

⎞
⎠ � (4.45)

gives

n3
3 =
(

1+ u

n1

Psys

)
n1
1 −Psysx1� (4.46a)
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x3 =
[

v

n3

(
1+ u

n1

Psys

)
− u

n1

]
n1
1 +

(
1− v

n3

Psys

)
x1	 (4.46b)

The angular magnification of the image is

M
 =
(


3


1

)

x1=0

= n1

n3

(
1+ u

n1

Psys

)
	 (4.47a)

For a sharp image of the object in the image plane, the coefficient of �n1
1� in
Eq. (4.46b) must be identically zero, giving the lateral (linear) image magnifi-
cation as

Mx = x3

x1

= 1− v

n3

Psys	 (4.47b)

With Eqs (4.47), the object–image matrix for an optical system takes the form

�IO =
( n3

n1
M
 −Psys

0 Mx

)
	 (4.48)

Since this must also be a unimodular matrix, we obtain the well-known result

M
Mx = n1

n3

(4.49)

for the product of the angular and lateral magnifications, known as the Smith–
Helmholtz formula. The object–image matrix can be equivalently expressed as

�IO =
(

1/Mx −Psys

0 Mx

)
	 (4.50)

4.2.4.1 Object–Image Distance Relation

As stated above, a sharp image of an object is possible only if the coefficient of
n1
1 in Eq. (4.46b) vanishes, i.e., if

v

n3

− u

n1

+ vuPsys

n1n3

= 0	 (4.51a)

Dividing by �uv�/�n1n3� and rearranging terms, we obtain

n3

v
− n1

u
= Psys	 (4.51b)

This is the standard object–image distance relationship for a thin lens. It is
usually expressed not in terms of the power but in terms of the focal length of



180 Chapter 4: GEOMETRICAL OPTICS

the lens. In the present formulation of image formation, Eq. (4.51b) is applicable
to a thick lens as well as to any multi-element optical system. The object and
image planes constitute a pair of conjugate planes.

The object distance u and image distance v in the context of a thick lens
are measured from its principal planes and not from its vertices. For an optical
system, they are to be measured from the primary and secondary principal planes
of the optical system as a whole. Combining Eqs (4.47b) and (4.51b) gives the
lateral magnification

Mx = n1

n3

v

u
	 (4.52a)

For an object lying in the primary focal plane of an optical system, the image
moves to infinity �v = ��, so that

lim
v→� u = f = − n1

Psys

� (4.52b)

where the primary focal length f is the distance between the primary focal plane
� and the primary principal plane � of the optical system. If, on the other hand,
the incident rays are parallel �u = ��, the image is formed in the secondary
focal plane � ′ with the image distance from the secondary principal plane � ′

given by

lim
u→� v = f ′ = n3

Psys

� (4.52c)

where f ′ is the secondary focal length of the lens or of the optical system as the
case may be. Accordingly, Eq. (4.51b) can be put in the more familiar form

n3

v
− n1

u
= −n1

f
= n3

f ′ 	 (4.53)

For an optical system with an overall positive power, the primary and secondary
focal lengths f and f ′ take negative and positive values, respectively. The
situation is reversed for an optical system with negative power. We can put the
object–image matrix (Eq. 4.44c) in yet another form involving the secondary
focal length f ′ of the optical system

�IO =
(

1/Mx −n3/f ′

0 Mx

)
	 (4.54)
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The primary and secondary focal lengths (defined with respect to the principal
planes) f and f ′ for a thick lens have same magnitude. However, the primary
and secondary focal lengths

f1 = fV = f +T1� (4.55a)

f2 = f ′
V ′ = f ′ +T2� (4.55b)

measured with respect to the vertices may not have the same magnitude if
the principal planes of a thick lens are asymmetrically located. Re-arranging
Eq. (4.53) gives

1

v/n3

= 1
u/n1

+ 1
f ′/n3

� (4.56)

where 1/�v/n3� and 1/�u/n1� represent the image and object vergences, respec-
tively. The vergence is related to the curvature of the wavefront. In air, 1/u is
the curvature of the spherical wavefront emanating from the point object and
reaching the primary principal plane and 1/v is the curvature of the wavefront
in the secondary principal plane which converges to form the point image of
a point object. The lens (or the optical system) changes the curvature of the
incident wavefront by an amount equal to its power. It follows that all rays
forming a sharp image have exactly equal path lengths between the object and
image points. This is consistent with Fermat’s principle. Another useful form of
Eq. (4.53) can be obtained by noting that under image forming conditions, the
product of the diagonal elements of the object–image matrix (Eq. 4.44c) must
have unit value, i.e.,

(
1+ u

n1

Psys

)(
1− v

n3

Psys

)
= 1	 (4.57)

Substituting Eqs (4.52) into Eq. (4.57) gives

�u−f ��v−f ′� = ff ′	 (4.58a)

This is exactly like the Newton’s equation for image formation by a thin lens.
A more familiar form of this equation is

XX′ = ff ′� (4.58b)

where X = u− f and X′ = v − f ′. This form of the object–image relationship
is useful to visualize the changes in the position of the image as the object
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Fig. 4.13: Variation of normalized image distance with normalized object
distance.

position is changed. Figure 4.13 shows the dependence of the normalized image
distance �X′/f ′� on the normalized object distance �X/f �. For a convex lens
with negative f , X/f remains positive as long as X�=u−f � remains negative,
i.e., the object remains to the left of the primary focal plane. For unit normalized
object distance �u = 2f �, the normalized image distance is also one �v = 2f ′�.
When the object approaches the primary focal point �X = 0�, the image moves to
the extreme right position �X′ = +��. This behavior is shown by the hyperbola
in the first quadrant. In this quadrant, the image is real, inverted and diminished
in size for X/f > 1 and enlarged for X/f < 1. When the object moves to the
right of the primary focal point, X/f and hence X′/f ′ becomes negative (third
quadrant). Since f ′ is positive for a convex lens, X′ becomes negative. This is
the regime in which an erect, magnified but a virtual image is formed on the
left-hand side of the lens. This situation continues till the object approaches the
primary principal plane. For u = 0, X/f = X′/f ′ = −1 and v = 0. Beyond this
point, X/f < −1 and the object lies on the right of the primary principal plane
of the lens, or in other words, the object has become virtual. A virtual object
corresponds to the incidence of converging (rather than diverging or parallel)
rays on the lens (Fig. 4.14). We leave it to the reader to interpret Fig. 4.13 for
a concave lens. The longitudinal magnification of an optical system defined as



4.2: RAY MATRIX APPROACH TO GAUSSIAN OPTICS 183

I
O

N
2

N
1

Fig. 4.14: Converging rays incident on a lens are equivalent to a virtual object
�O� on the right of the lens.

the ratio of the longitudinal shift in the image position to the longitudinal shift
in the object position, obtained from Eq. (4.53), is

Ml = lim
u→0

v

u
= n1

n3

v2

u2
	 (4.59)

4.2.5 Ray Tracing

The introduction of the principal planes greatly simplifies the task of ray tracing
through an optical system. It is of course necessary to first construct the system
matrix between the vertices of the first and last interfaces of the optical system.

This would be the equivalent of the system matrix
(

a11 a12

a21 a22

)
of a thick lens

(Eq. 4.31). The top right element of the system matrix gives the negative of
the power of the optical system. The positions of the principal, nodal, and focal
points of the optical system can be obtained from Eqs (4.34), (4.43), and (4.52),
respectively. Figure 4.15 depicts an optical system and a linear object placed
in front of its primary focal plane. A ray �Oa� from point O on the object

1N

Optical
system

O a

α
F H

b

’H

FN2

a’

α
’

’b I

z

Fig. 4.15: Ray tracing through an optical system in the paraxial approximation.
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is drawn parallel to the optical axis upto the primary principal plane � . We
need not trace its path between the principal planes since a ray touches both
planes at the same height. After emerging from the secondary principal plane
� ′, this ray crosses the optical axis at the secondary focal point F ′. We choose
the second ray Ob which intersects the optical axis at the primary focal point F .
Ignoring what happens to it between the principal planes, it emerges from the
secondary principal plane � ′ parallel to the optical axis. The intersection of the
rays Oaa′F ′ and Obb′ on extension gives the image point I . To make sure that
the ray tracing has been done correctly, a third ray from point O directed towards
the primary nodal point N1 is drawn making an angle 
 with the optical axis.
This ray comes out from the secondary nodal point N2, making the same angle

 with the optical axis. If this ray also passes through the image point I , the ray
tracing has been done correctly. Figure 4.15 has been drawn for an optical system
with positive power. Alternatively, the ray tracing can be handled numerically.
The object–image matrix (Eq. 4.44c) and the ray parameters �n3
3� x3� in the
image space can be calculated with a computer. With this technique, the rays
can be traced in the object and image spaces and also within the optical system.

4.2.6 Ray Matrix for Reflection

We have developed the ray matrix formalism for refraction and translation of
a ray on the assumption that a ray always travels from left to right. A mirror
reverses the direction of propagation of a ray. We now bring reflection at an
interface within the framework of the ray matrix approach. Figure 4.16 shows

1θ
−θ1

θ2

n1 n2

n = −n1
’

Fig. 4.16: Reflection at an interface is equivalent to refraction from a medium
of refractive index n to a medium of refractive index −n.
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reflection and refraction at an interface between media of refractive indices n1

and n2.
According to Snell’s law

n1 sin �1 = n2 sin �2	

Replacing n2 by �−n1�, we get

n1 sin �1 = −n1 sin �2�

which for acute angles can be satisfied only if

�2 = −�1	

But this is exactly the condition for reflection ��′ = −�1�. Hence, reflection
at a plane or a spherical interface may be mathematically treated as refraction
from a medium of refractive index n to a medium of refractive index −n.
Furthermore, whenever a ray travels from right to left, the index of refraction n
of the medium is replaced by −n. With this rather unphysical but mathematically
sound manipulation, the ray matrix approach can be applied to catadioptric
systems involving refracting and reflecting elements. It should be understood
that a ray having undergone a reflection at an interface continues to travel
in media with negative refractive indices even after undergoing refractions at
subsequent interfaces unless, of course, it suffers another reflection which once
again reverses its direction of propagation and hence the sign of the refractive
index.

With this interpretation, the refraction matrix

� =
(

1 − n′
1−n1

R

0 1

)

can represent reflection provided n′
1 is replaced by −n1, giving

�′ =
(

1 2n1
R

0 1

)
(4.60)

as the reflection matrix, where R is positive for a convex mirror (Fig. 4.17a)
and negative for a concave mirror (Fig. 4.17b). The power of a mirror remains
unchanged if the mirror is turned around. For example in Fig. 4.17b, the power
of the concave mirror is

P = n′ −n1

R
= −n1 −n1

R
= −2n1

R
�
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Fig. 4.17: Image formation by mirrors; (a) a convex mirror forms an erect, virtual
and diminished image, (b) a concave mirror forms a real, inverted (if object to
the left of F ) or a virtual, erect and magnified image (if object to the right of F ).

where R is negative, so that its power is positive. If this mirror is turned around,
then light is incident from right to left so that n1 must be replaced by −n1 and
n′ = n1, giving P = 2n1/R, where R is now positive and the power of the mirror
remains positive. The ray transformation from the object to the image plane for
a mirror is given by the matrix equation

(
n3
3

x3

)
=
(

1 0
v
n3

1

)(
1 2n1

R

0 1

)(
1 0
−u
n1

1

)(
n1
1

x1

)

=
⎛
⎜⎝

1− 2u

R

2n1

R
v

n3

− 2uv

n3R
− u

n1

v

n3

2n1

R
+1

⎞
⎟⎠
(

n1
1

x1

)
	

For a sharp image,

v

n3

− 2uv

n3R
− u

n1

= 0	

Rearranging this equation and using n3 = −n1 gives

1
v

+ 1
u

= 1
f ′ � (4.61a)
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where f ′ = limu→� v = R/2	 A difference of sign in Eqs (4.51b) and (4.61a)
with the 1/u term be noted. With n3 = −n1, Eq. (4.52a) gives

Mx = − v

u
(4.61b)

as the lateral magnification produced by a mirror.

4.3 OPTICAL SYSTEMS

Optical systems use real optical elements with machining and material deficien-
cies. It may not be possible to mathematically model these and other imper-
fections present in an optical system. Furthermore, the paraxial approximation
which lies at the core of the matrix formulation of the preceding section may
not be fully satisfied during the actual use of an optical system. Deviations from
the paraxial approximation lead to geometrical aberrations (spherical aberration,
coma, astigmatism, etc.), which degrade the quality of the image formed by an
optical system. These deviations, at least in principle, can be handled mathemat-
ically, but the computations can be quite long and tedious. In addition, we must
take note of the fact that the index of refraction of the lens material changes
with the wavelength, thus separating colors of white light in the image plane.
This is the chromatic aberration. The effects of these and other aberrations are
usually minimized by replacing a single lens by a suitable combination of lenses
or by optimizing the radii of curvatures of the lenses (lens bending). Further-
more, diffraction of light puts a fundamental limit to the sharpness of optical
images. Notwithstanding the fundamental role of diffraction in image formation,
particularly in determining the resolving capability of optical systems, it is still
useful to describe image formation by optical instruments within the paraxial
approximation. In what follows, we shall analyze a few simple optical systems
within this approximation, beginning with the simplest optical systems using just
a single lens.

Before taking up specific examples, we briefly digress on the role of aper-
tures and stops in determining image brightness and field of view of optical
instruments.

4.3.1 Apertures and Stops

The rims of the lenses present in an optical system restrict the light cone and
hence the brightness of the image, formed by the optical system. In addition,
stops are deliberately introduced either outside or within the optical system to
minimize aberrations. To identify the aperture which ultimately limits the cone
of the light rays emanating from an on-axis object and making its way through
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L1
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’S1 S1 L2 L3
"L2

P0

Fig. 4.18a: Optical system consisting of lenses L1, L2, L3, and aperture S1. Lens
L2 acts as the aperture stop. Its images L′

2 and L′′
2 formed by L1 and L3 are the

entrance and exit pupils, respectively.

the optical system, each aperture or stop present in the optical system is imaged
in the object space by the lenses which lie on the object side of it (Fig. 4.18a).
The aperture image which subtends the smallest angle at the axial object is the
entrance pupil and the physical aperture which gives rise to this image (real or
virtual) is the Aperture Stop or the limiting iris. The image of the aperture stop
in the image space formed by the lenses which lie on the image side of it is
called the exit pupil. In Fig. 4.18a, L2 is the aperture stop since its image L′

2
(entrance pupil) formed by L1 subtends the smallest angle at the axial point P0.
The exit pupil L′′

2 is the image of L2 formed by L3. It follows that the entrance
and exit pupils are images of each other.

The field of view of an optical system determines its ability to form an
unobstructed image of an extended object. The aperture responsible for restricting
the field of view of an optical system is called the Field Stop. The concept of the
chief rays, also called the principal rays, is useful in determining which aperture
in the optical system acts as the field stop. A chief ray (CR) is a ray from
an off-axis object point which after passing through the center of the entrance
pupil emerges from the optical system through the center of the exit pupil. The
field stop determines the chief rays starting from the farthest off-axis points in
the object plane (Fig. 4.18b). The image of the field stop, called the entrance
window, formed in the object space by the lenses preceding it subtends the
smallest angle at the center of the entrance pupil as compared to images of other
apertures in the object space. This angle defines the angular field of view of the
optical system in the object space. The object points lying within the entrance
window are imaged with equal brightness (if the object illumination is uniform)
but points outside the entrance window are partially or wholly obstructed by the
field stop. This is known as vignetting.
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Fig. 4.18b: Optical system consisting of lenses L1, L2, and aperture F . The
cone of the farthest chief rays passing through the center of the entrance pupil
determines the field of view in the object space. Aperture F is the field stop.

4.3.2 Single Lens Magnifier

Image formation by a lens, kept in air, is described by the lens equation

1
v

− 1
u

= PL = 1
f ′ �

where f ′ is the secondary focal length of the lens. A single lens magnifier is a
short focal length converging lens which makes an erect and magnified image
of a near object. The object is held within, but close to the focal distance from
the lens (Fig. 4.19a). Accordingly, the image distance

v = f ′

u+f ′ u (4.62)

is negative and greater in magnitude than u. The image lies on the left of the
primary focal plane. The eye usually held just behind the lens converts this
virtual image into a real, inverted image on its retina. The relevant magnification
in the present context is the ratio of the retinal image sizes with and without the
lens. The retinal image size increases as the object is brought closer to the eye.
However, the eye has to use its accommodating power to get sharp images of
closer objects. The eye is most comfortable (zero accommodation) to see distant
objects. The least distance of distinct vision (L) is the object distance from the
eye, below which the eye fails to make a sharp image of the object. The point
at the least distance of distinct vision is called the near point of the eye. The
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Fig. 4.19: (a) Single lens magnifier-object within the focal distance, image at
the near point of the eye, (b) object at the near point of the eye.

magnifying lens allows the object to be kept well within the near point of the eye
while maintaining the sharpness of the enlarged retinal image. The magnifying
power of a single lens magnifier is therefore defined as the ratio of the retinal
image sizes with and without the lens, the object being held at the least distance
of distinct vision in the latter case (Fig. 4.19b).

The magnifying power or equivalently the angular magnification of a single
lens magnifier is given by

M = Im

I0

= 



0

� (4.63)

where 
 is the angle subtended at the eye by the virtual image I (Im is the retinal
image size under these conditions) and 
0 is the angle the same object (of size
O) subtends at the eye when kept at the least distance of distinct vision (I0 is the
corresponding retinal image size). Figure 4.19 gives for an eye held just behind
the lens,


 = O

u
= I

v
� 
0 = O

L
	 (4.64)
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As per our sign convention, u� v, and L are negative. Accordingly,

M = I

O

L

v
= Mx

L

v
=
(

1− v

f ′

)
L

v

=
(

1+ �L�
f ′

)
= 1+�L�PL� (4.65a)

which is the usual expression for the lateral magnification of a lens with the
restriction that the virtual image formed by the lens is located at the least distance
of distinct vision of the eye �v = L� and the eye is kept just behind the lens. The
eye is not relaxed when it receives diverging rays (Fig. 4.19a). For the eye to
receive parallel rays, the object must be kept in the front focal plane of the lens
(Fig. 4.20). Now, the relaxed eye can be kept anywhere behind the lens. With

 = O/f in this arrangement, the magnifying power

M = L

f
= �L�

f ′ = �L�PL (4.65b)

is reduced by one unit. It can be seen that Eq. (4.65b) also holds when the
eye in Fig. 4.19a is located in the secondary focal plane of the magnifier. The
magnification is then independent of the exact location of the object as long as
the object lies within the primary focal distance of the magnifier. This is known
as the Badal principle.

Im

α 0
I0

O α

F

(a)

L

O

(b)

f Retina

Retina

α 0

α

Fig. 4.20: (a) A single lens magnifier with object at the focal distance, (b) object
at the near point of the eye.
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There is some arbitrariness in the definition of the magnifying power of a
lens magnifier. The least distance of distinct vision varies from person to person.
For children, the near point can be as close as 10 cm, and for people above 50,
the near point can be quite far (50 cm or more). To remove this arbitrariness,
the magnifying power of a lens is usually defined for �L� = 25 cm which is the
least distance of distinct vision for most young people. With this choice, a lens
of power P has magnifying power �M = �L�P� of P/4 so that a +20 D lens
has 5× magnification. The magnifying power of a single lens can be increased
by reducing its focal length, but a short focal length lens must necessarily
have surfaces with small radii of curvatures. Excessive bending of rays at these
surfaces runs the risk of not adhering to the paraxial approximation.

4.3.3 Single Lens Camera

A single lens magnifier makes a virtual image which is erect and enlarged. In a
camera, on the other hand, one is interested in obtaining a real image of the object,
usually a few meters away from the camera. This makes the object vergence
�1/u� negligibly small compared to the power of the lens (focal length ≈ a few
cms). The photographic film therefore must be kept close to the secondary focal
plane of the camera lens (Fig. 4.21). The distant objects are sharply focused
on the film, but the near objects get focused somewhat behind the film. Slight
movement of the lens away from the film allows for sharp focusing of near
objects. The lateral magnification (in air)

Mx = 1− �

f ′ = �

u

 f ′

u
(4.66)

is rather small. To increase magnification, a lens with longer focal length must
be used, but this increases the physical size of the single lens camera.

F’

u

I

O

f ’

v

Fig. 4.21: Single lens camera; image is formed close to the back focal plane.
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Image irradiance in a camera increases with the aperture area of the lens and
decreases with the image area, the latter being proportional to the square of the
focal length of the lens (Eq. 4.66). The ratio D/f is called the relative aperture,
where D is the diameter of the lens aperture. The f -number of a camera is the
inverse of its relative aperture, i.e.,

f -number = f/number = f

D
	

The lens aperture is controlled by the iris kept in front of the lens. A camera
lens with 50 mm focal length and maximum aperture diameter of 12.5 mm has
f -number of 4, usually written as f/4.

4.3.4 Two-Lens Optical Systems

We first consider a general two-lens system kept in air (Fig. 4.22). Lenses L1 and
L2 have powers P1 and P2, respectively. The primary and secondary principal
planes of lens L1 are �1 and � ′

1. The planes �2 and � ′
2 are the principal planes

of lens L2. The distances T and T ′ locate the primary and secondary principal
planes (� and � ′) of the composite two-lens system with respect to the planes
�1 and � ′

2, respectively. The separation between the lenses is represented by
the distance d between the secondary principal plane of the first lens and the
primary principal plane of the second lens.

The complete two-lens system matrix between its principal planes � and
� ′ is

�� ′� =
(

1 0
T ′ 1

)(
1 −P2

0 1

)(
1 0
d 1

)(
1 −P1

0 1

)(
1 0

−T 1

)
	 (4.67)

1 1 2 2

T ’

L1

P1 P2

L2

T d

Fig. 4.22: Two-lens optical system. � and � ′ are the primary and secondary
principal planes of the two-lens system.
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It is really not necessary to work out this matrix product since the location of
the principal planes � and � ′ can be obtained from Eqs (4.40). However, this
multiplication is rather easy and we go through it as an illustration.

�� ′� =

⎛
⎜⎜⎝

1+P1T +P2T −P1P2Td−P2d −P1 −P2 +P1P2d

�T ′ +P1TT ′ −P2T
′d−P1P2TT ′d �1−P1T

′ −P2T
′

+P2TT ′ +d+P1Td−T� +P1P2T
′d−P1d�

⎞
⎟⎟⎠ 	 (4.68)

The upper right element of this matrix gives the power of the two-lens
combination, i.e.,

P = P1 +P2 −P1P2d	 (4.69)

Furthermore, this matrix must have unit elements along the diagonal since the
principal planes are conjugate planes with unit magnification. Accordingly, we
obtain

T = P2d

P
� (4.70a)

T ′ = −P1d

P
	 (4.70b)

The object–image relationship between the principal planes requires the lower
left element of the matrix to vanish identically. Hence,

TT ′�P1 +P2 −P1P2d�+T ′�1−P2d�−T�1−P1d�+d = 0	 (4.71)

The two-lens system matrix (Eq. 4.68) then takes the simple form

�� ′� =
(

1 −P
0 1

)
� (4.72)

where the power P of the two-lens system is given by Eq. (4.69). Having
determined the power (and hence the effective focal length) of the optical system
and the positions of its principal planes, the image forming behavior of the two-
lens system can be completely analyzed with reference to Eqs (4.47) and (4.53).
It must, however, be understood that a two-lens system can be replaced by an
equivalent one-lens system of power given by Eq. (4.69), but now the object
and image distances must be taken from the principal planes of the two-lens
system, and not from the vertices of the lenses (see Section 4.3.7). Depending
on the actual powers P1, P2 of the lenses and the separation d between them,
the two-lens system can be put to a variety of uses such as a two-lens eye-piece,
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a microscope, a telescope, a two-lens camera, etc. We briefly discuss some of
these applications.

4.3.5 The Microscope

A compound microscope uses two converging lenses (Fig. 4.23). The short focal
length lens L1 facing the object is called the objective and lens L2 in front of the
eye is called the eye-piece. The objective makes a real, inverted, and enlarged
image of the object behind the primary focal plane of the eye-piece. This image
acts as the object for the eye-piece which makes an enlarged, erect, and virtual
image of this object just as in a single lens magnifier.

The distance d between the secondary principal plane of the first lens and the
primary principal plane of the second lens is given by

d = f ′
1 + l−f2 = f ′

1 + l+f ′
2� (4.73)

where l (usually 16 cm) is the distance between the secondary focal plane of the
first lens and the primary focal plane of the second lens. The power and hence
the secondary focal length of the microscope can be obtained from Eq. (4.69),
giving

P = 1
f ′ = 1

f ′
1

+ 1
f ′

2

− f ′
1 +f ′

2 + l

f ′
1f

′
2

= − l

f ′
1f

′
2

	 (4.74)
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21
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d

Fig. 4.23: Ray diagram for a compound microscope with final image at the near
point of the eye.
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The overall power of the microscope is negative �f ′ = − 5
16 cm for f ′

1 = 1 cm,
f ′

2 = 5 cm, l = 16 cm). Equation (4.65a) gives the magnifying power of the
microscope as

M = 1−
(

l

f ′
1

)( �L�
f ′

2

)
	 (4.75)

For the above example, the magnifying power of the microscope is −79. The
negative sign indicates that a microscope produces an inverted image. To see
this image, the eye must be kept not just behind the eye-piece but near the exit
pupil which coincides with the image of the objective formed by the eye-piece,
assuming the objective acts as the aperture stop as well as the entrance pupil.

The eye-piece can cause vignetting because it acts as the field stop. To avoid
vignetting, an additional lens called the field lens is introduced a little behind
the plane of the intermediate image I ′, where it has practically no effect on
the magnifying power of the microscope. The field lens if kept in the plane of
the intermediate image may distort the final image due to dust particles settling
on it. The field lens is chosen to produce the image of the objective (entrance
pupil) just behind the eye-piece. The pencil of emerging rays now passes through
the central portion of the eye-piece, thus preventing any vignetting there. The
introduction of the field lens reduces vignetting at the eye-piece, but it also
reduces the eye relief since eye must now be kept close to the eye-piece. In
addition, the field lens itself can cause some vignetting.

The case when the real image formed by the objective lies in the primary
focal plane of the eye-piece needs special attention because in this case all rays
starting from a given point on the object come out parallel from the eye-piece
(Fig. 4.24). To obtain the magnifying power of a microscope under relaxed
viewing, we construct the matrix representing the ray transformation between
the object plane and the secondary principal plane � ′

2 of the eye-piece. The
matrix representing this transformation is

� =
(

1 −P2

0 1

)(
1 0
d 1

)(
1 −P1

0 1

)(
1 0

−u 1

)

=
(

1−P2d+uP −P
d−u+uP1d 1−P1d

)
� (4.76)

where P is the power of the microscope. The matrix � is not the object–image
matrix. It describes the relationship among the ray parameters in the object plane
and in the secondary principal plane of the eye-piece, i.e.,

(
n3
3

x3

)
=
(

1−P2d+uP −P
d−u+uP1d 1−P1d

)(
n1
1

x1

)
� (4.77)
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Fig. 4.24: Ray diagram for a compound microscope set for relaxed viewing.

giving

n3
3 = �1−P2d+uP�n1
1 −Px1	

However, the rays emerge from the eye-piece as a parallel beam. Therefore angle

3 cannot depend on the ray angle 
1 in the object space. This can be ensured if

1−P2d+uP = 0�

so that


3 = − P

n3

x1	 (4.78a)

Direct viewing of the object at the least distance of distinct vision (Fig. 4.19b)
gives


0 = x1

−�L� 	 (4.78b)

The magnifying power of the microscope under these conditions �n3 = 1� is

M = 
3


0

= �L�P	 (4.79)

The effective power of the microscope can be obtained by substituting

d = �1 −f2 = �1 +f ′
2 (4.80)
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in Eq. (4.69), giving

P = 1
f ′

1

+ 1
f ′

2

− �1 +f ′
2

f ′
1f

′
2

= 1
f ′

2

(
1− �1

f ′
1

)
(4.81)

=P2 ×MO�

where MO is the lateral magnification produced by the objective lens alone and
P2 is the power of the eye-piece. The magnifying power of the microscope then
takes the form

M = �L�P2MO� (4.82)

where �L�P2 is the magnifying power of the eye-piece (Eq. 4.65b). Thus, the
magnifying power of a microscope adjusted for relaxed viewing (image at infin-
ity) is the product of the lateral magnification of the objective and the angular
magnification of the eye-piece.

To reduce the chromatic and geometrical aberrations (primarily coma and
spherical aberrations) of a microscope, suitable combinations of lenses replace
its objective and eye-piece. A high magnification microscope objective makes
use of the aplanatic points of a spherical surface (see Section 5.2) and the eye-
piece usually consists of two lenses – the field lens and the eye-lens, a certain
distance apart (see Section 5.6).

Figure 4.25 shows a part of the microscope objective consisting of a plano-
convex lens and a meniscus lens. The latter is an asymmetrical lens whose both
centers of curvatures lie on the same side of the lens. A small biological sample
P kept under a thin cover glass is illuminated from below. It is desirable that the
largest cone of light originating from the sample enters the microscope. With air
between the cover glass and the plano-convex lens (Fig. 4.25a), angle � of the
light cone entering the microscope is determined by

ng sin � = 1 sin �1�

where ng is the index of refraction of the cover glass. Refraction at the upper
surface of the cover glass increases the angular divergence of the rays reaching
the microscope objective ��1 > ��. In Fig. 4.25b, a transparent liquid of index
of refraction nl, very close to the index of refraction of the cover glass, fills the
gap. The cone of light now given by

ng sin �′ = nl sin �2
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Fig. 4.25: Oil immersion microscope objective; object P lies below the cover
glass. (a) Air gap between the cover glass and hemispherical lens, (b) oil drop
between the cover glass and hemispherical lens. Points P and P ′ are aplanatic
points of the spherical surface of the plano-convex lens.

reaching the microscope objective is considerably increased ��′ > ��. This is
the oil-immersion technique of increasing the numerical aperture �NA = n sin ��
of a microscope. The object P and its virtual image P ′ are located at the
aplanatic points of the spherical surface of the convex lens (see Section 5.2).
The divergence of the rays can be further reduced by pushing the virtual image
formed by the meniscus lens farther away along the line PP ′, while the imaging
still takes place between the aplanatic points of the surfaces.

4.3.6 The Telescope

Like a microscope, a telescope also consists of an objective and an eye-piece.
A microscope is used to get a magnified view of a near object. A telescope, on the
other hand, is used to see distant objects – astronomical or terrestrial. Rays from a
distant object arrive at the objective of the telescope as a parallel beam making a
small angle with its optical axis. If the eye-piece is adjusted for relaxed viewing,
the rays leave the eye-piece also as a parallel beam, making a relatively larger
angle with the optical axis. A telescope used under these conditions is called an
afocal telescope since it possesses zero net power. It behaves like a dielectric slab
in the sense that a parallel beam comes out as a parallel beam, but unlike for a
slab with parallel faces, the incident and emergent beams are not parallel. A two-
lens Keplerian telescope, also called an astronomical telescope, employs positive
lenses in a manner that the secondary focal plane of the objective coincides
with the primary focal plane of the eye-piece (Fig. 4.26a). The Galilean or the
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Fig. 4.26: Ray diagram for (a) a two-lens Keplerian telescope, (b) a two-lens
Galilean telescope.

terrestrial telescope uses a positive objective lens and a negative eye-piece lens
(Fig. 4.26b). Once again, the secondary focal plane of the objective and primary
focal plane of the eye-piece coincide. In both cases, the outgoing rays leave as
parallel beams.

The separation between the lenses taken as the distance between the secondary
principal plane of the objective and the primary principal plane of the eye-piece
is given by

d = f ′
1 −f2 = f ′

1 +f ′
2�

where f2 is negative and f ′
2 is positive for the Keplerian telescope and just

the opposite holds for the Galelian telescope. Accordingly, the power of the



4.3: OPTICAL SYSTEMS 201

telescope is zero in both cases, i.e.,

P = P1 +P2 −P1P2d

= 1
f ′

1

+ 1
f ′

2

− f ′
1 +f ′

2

f ′
1f

′
2

(4.83)

= 0	

The principal planes of an afocal telescope move out to infinity (Eqs 4.70). It
is therefore not very useful to construct the ray matrix for an afocal telescope
between its principal planes. Instead, we construct the ray matrix for the transfor-
mation between the primary principal plane of the objective and the secondary
principal plane of the eye-piece:

�� ′
2�1

=
(

1 −P2

0 1

)(
1 0

f ′
1 +f ′

2 1

)(
1 −P1

0 1

)

=
⎛
⎜⎝

−f ′
1

f ′
2

0

f ′
1 +f ′

2 − f ′
2

f ′
1

⎞
⎟⎠ 	 (4.84)

The angular magnification produced by the telescope between the above planes
can be obtained from the matrix equation

(
n3
3

x3

)
=
( −f ′

1
f ′

2
0

f ′
1 +f ′

2 − f ′
2

f ′
1

)(
n1
0

x1

)
�

giving

M
 = 
3


0

= −n1

n3

f ′
1

f ′
2

	 (4.85)

So that

�� ′
2�1

=
(− n3M


n1
0

f ′
1 +f ′

2 − n1
n3M


)
	 (4.86)

A Keplerian telescope has negative angular magnification (f ′
1 and f ′

2 are both
positive) and a Galelian telescope has positive angular magnification (f ′

2 is
negative).

The object–image relationship for an afocal telescope for viewing relatively
near objects can be obtained from the two-lens system matrix (Eq. 4.68) by



202 Chapter 4: GEOMETRICAL OPTICS

eye-piece

Fig. 4.27: Cassegrain telescope with hyperboloidal mirrors.

treating T and T ′ not as the distances of the principal planes but as the object
and image distances �u��� from the first and last vertices of the telescope,
respectively. Equation (4.71) gives the image distance as

� = u�1−P1d�

1−P2d
− d

1−P2d

=u

(
f ′

2

f ′
1

)2

+f ′
2

(
1+ f ′

2

f ′
1

)

with lateral magnification Mx = −f ′
2/f ′

1. An afocal telescope used in reverse
(light entering from the side of the eye-piece) acts as a beam expander, often
used to expand laser beams (see Section 11.3.1.1).

Astronomical telescopes generally use mirrors and not lenses since good
quality lenses with large apertures are difficult to make. In addition, mirrors
are free from chromatic aberration. A typical reflecting telescope (Cassegrain)
employing hyperboloidal mirrors is shown in Fig. 4.27.

4.3.7 Telephoto Lens

A long focal length lens increases image magnification in a single lens camera.
However, to keep the physical dimensions of the camera small, low power lens
must not increase the distance of the image plane from the lens. A multi-element
telephoto lens can meet these apparently conflicting requirements for imaging
distant objects. We illustrate this by considering a two-element telephoto lens.
The first lens is usually a weakly converging lens of focal length f ′

1, followed by
a diverging lens of focal length f ′

2, a distance d apart such that f ′
1 > d > f ′

1 +f ′
2,

where f ′
2 is negative. To keep the analysis simple, lenses are assumed thin.
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Fig. 4.28: Two-element telephoto lens.

Figure 4.28 shows a �+20/3� D converging lens kept 12 cm in front of a −10 D
diverging lens. The power of the combination is

P = P1 +P2 −P1P2d = +14
3

D	

The positive power of the combination ensures that a real image of a distant object
is formed. The primary and secondary focal lengths of the lens combination,
measured from their respective principal planes, are −150/7 and +150/7 cm,
respectively. Equations (4.70) determine the positions of the principal planes
at T = −180/7 cm and T ′ = −120/7 cm. Thus, both principal planes of the
telephoto lens have been pushed out of the camera to its left. The positions of
the pertinent planes of the telephoto lens are shown in the figure. All distances
are measured with respect to the back lens.

The principal planes � and � ′ of the telephoto lens lie at 37.71 and 17.14 cm
to the left of the back lens. The secondary focal plane � ′ of the combination
lies only 4.3 cm to the right of the back lens. The object has been taken 3.25 m
to the left of the back lens. The image plane lies 23.1 cm to the right of the
principal plane � ′ and just 6 cm behind the back lens. With the photographic
film kept in the image plane, the long dimension of the camera for this lens
combination goes to 18 cm. The lateral magnification produced by this telephoto
lens is

Mx = 1− �

f ′ = −0	08	

This should be compared with −0	02 magnification of the single lens camera of
6 cm focal length and object distance of 3 m. The telephoto effect is the ratio of
the focal length of the telephoto lens to its overall length which is the distance
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between the first lens and the secondary focal plane �F ′� of the telephoto lens.
For the above example, this ratio is about 1.3. Usually this ratio lies between
2 and 3 for the telephoto lenses. The focal length of a telephoto lens can be as
high as 40 cm or so.

Modern cameras have additional features not covered by a telephoto lens.
A telephoto lens gives a fixed magnification for a given object–image dis-
tance. At times, it may be necessary to increase the magnification to see more
details of the object without changing the object–image distance. This can be
achieved by a zoom lens which is a multi-lens system containing at least three
lenses. One of the lenses can be moved, changing the overall power and pro-
ducing the zoom effect without causing significant defocusing. Simple zoom
configurations will be taken up as problems at the end of the chapter (Prob-
lem 4.8). The paraxial approximation is usually invalidated in the normal use
of a camera. Modern cameras have additional features to minimize image aber-
rations, associated with large angles. Tessar is one such lens configuration
(see Problem 4.6).

4.4 OPTICS OF A LASER CAVITY

We now consider an optical system in which the direction of propagation of a
ray changes by reflection, and not by refraction as in earlier examples. In a laser,
the active medium, for example an appropriate mixture of helium and neon gases
in a He–Ne laser is kept in a cylindrical cavity with highly reflecting mirrors at
the two ends. Light emitted by the excited atoms or molecules goes back and
forth between the mirrors repeatedly and gets amplified in the process. Here,
our intention is not to introduce laser concepts to the reader, but to show how
the ray matrix approach can be applied to light propagation in a laser cavity.
Diffraction effects are ignored. Figure 4.29 shows a cylindrical laser cavity of
length L enclosed between spherical mirrors M1 and M2, where n is the index
of refraction of the medium filling the cavity. Consider a ray starting from point
A on mirror M1 and returning back to point C after undergoing a reflection at
point B of mirror M2. This ray completes one round trip after getting reflected
at point C. The ray angles are exaggerated for clarity but are expected to be
small enough to satisfy the paraxial approximation. The translation of the ray
from mirror M1 to M2 along the path AB is described by the ray matrix

�21 =
(

1 0
L
n

1

)
� (4.87)
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and the reflection at B by the matrix

�′
2 =

(
1 − n′−n

R′
1

0 1

)
=
(

1 − �−n−n�

−R2

0 1

)

=
(

1 − 2n
R2

0 1

)
� (4.88)

where R′
1 being negative by our sign convention has been replaced by −R2. R2 is

positive and has the same magnitude as R′
1. Here, reflection has been treated as

refraction from a medium of refractive index n to a medium of refractive index
n′ = −n (see Section 4.2.6). The ray matrix describing the translation from B to
C has the form

�12 =
(

1 0
−L
−n

1

)
=
(

1 0
L
n

1

)
	 (4.89)

This translation is subsequent to the reflection from mirror M2 and therefore the
reflected ray has been assumed to travel in a medium of refractive index −n.
Furthermore, for the return trip, the translation is to be measured from vertex V2

and hence the negative sign with L. The subsequent reflection at mirror M1 is

R1
C2

M2M 1

A
n

B

L

−n
C

n
R1

’

C1V1

V2

Fig. 4.29: Ray transformation in a cylindrical laser cavity of length L; mirrors
M1 and M2 have radii of curvatures of R1 and R′

1.
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to be treated as refraction from a medium of refractive index �−n� to one with
refractive index �+n� and is described by the matrix

�′
1 =

(
1 − n−�−n�

R1

0 1

)
=
(

1 − 2n
R1

0 1

)
� (4.90)

where R1 is positive. In Fig. 4.29, M1 and M2 are both concave mirrors with
positive powers. If M1 and M2 happen to be convex mirrors, then R1 and
R2 will be negative in the present notation. The matrix representing the ray
transformation for one complete round trip in the cavity is the product matrix

� = �′
1�12�

′
2�21

=
(

1 − 2n
R1

0 1

)(
1 0
L
n

1

)(
1 − 2n

R2

0 1

)(
1 0
L
n

1

)
(4.91a)

=
⎛
⎜⎝

1− 2L
R2

− 4L
R1

+ 4L2

R1R2
− 2

R1
− 2

R2
+ 4L

R1R2

2L− 2L2

R2
1− 2L

R2

⎞
⎟⎠ (4.91b)

=
(

A B
C D

)
� (4.91c)

where

A = 1− 2L

R2

− 4L

R1

+ 4L2

R1R2

�

B = − 2
R1

− 2
R2

+ 4L

R1R2

�

C = 2L− 2L2

R2

�

D = 1− 2L

R2

	

(4.92)

In going from step (4.91a) to (4.91b), the refractive index n has been put equal
to one. To achieve a high degree of light amplification in a laser, a ray must
make a large number of passes in the cavity. The ray matrix for N round trips
in the cavity can be written as

MN =
(

A B
C D

)N

	 (4.93)
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For large enough N , evaluation of this matrix is a tedious task. We can obtain an
analytical expression for the N -trip matrix by assuming the trace of the ABCD
matrix to satisfy the condition

−2 ≤ A+D ≤ +2� (4.94)

in which case, we can write

A+D = 2 cos � (4.95)

We can now make use of the Sylvester’s theorem, according to which
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A B

C D

⎞
⎠
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= 1
sin �

⎡
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A sin N� B sin N�
− sin�N −1��

C sin N� D sin N�
− sin�N −1��

⎤
⎥⎥⎥⎥⎦

	 (4.96)

The theorem can be proved by the method of induction. It obviously holds for
N = 1. The ray transformation for N round trips inside the cavity satisfies the
matrix equation
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1
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1
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⎤
⎥⎥⎥⎥⎦

⎛
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1

x1

⎞
⎠ 	 (4.97)

The ray co-ordinate

x′
1 = 1

sin �
��C sin N��n1
1 + �D sin N� − sin�N −1���x1� (4.98)

after making N round trips in the cavity oscillates and therefore remains finite
as long as Eq. (4.94) is satisfied. This leads to the confinement of the ray within
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the cavity after N round trips. A laser cavity satisfying this condition constitutes
a stable resonator. Accordingly, a stable resonator must satisfy
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− 4L
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+ 4L2
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→−1 ≤ 1− 2L
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− L
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(

1− L

R1

)(
1− L
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)
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(4.99)

where

g1 = 1− L

R1

� g2 = 1− L

R2

	 (4.100)

M2

R2

M1

C

L

Fig. 4.30: Laser cavity with R1 = �, R2 > L.
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Therefore for a stable resonator, the product g1 g2 must lie between 0 and 1.
The resonator becomes unstable, i.e., the rays do not remain confined to the
resonator after N round trips if Eq. (4.99) is not satisfied. A He–Ne laser cavity
(Fig. 4.30) with R1 = � (flat mirror), R2 > L has g1 = 1� g2 = 1 − L

R2
< 1 (but

>0), making the cavity a stable resonator. Note that in our notation, R1 and R2

are both positive for a cavity using concave mirrors. If any of the cavity mirrors
is convex, the corresponding radius of curvature must be taken with a negative
sign.

4.5 OPTICS OF THE HUMAN EYE

The human eye closely resembles a spherical ball of diameter in the range of
22–24 mm. Light enters the eye through the cornea consisting of a transparent
tissue of refractive index 1.376. The cornea is about 12 mm in diameter and
nearly 0.6 mm thick at the center with hardly any trace of blood. The air–cornea
interface provides nearly three-fourths of eye’s refractive power as maximum
refractive index change (n = 1 to n = 1	376) occurs at this interface. Immediately
behind the cornea is the anterior chamber filled with the fluid called the aqueous
humor with an index of refraction of 1.336. The cornea–aqueous interface with
a rather small (n = 0	040) refractive index change across it does not contribute
much towards the power of the eye. Submerged in the aqueous humor is the iris
which controls the opening of the aperture (called the pupil) through which light
enters the rest of the eye. The color of the pigment around the iris determines
the color of the eye. The pupil can open up to 8 mm in dim light and for bright
light the pupil opening can be as small as 2 mm. After passing through the pupil,
light enters the crystalline lens which not only provides additional power, but is
also responsible for the entire accommodating power of the eye. Its shape and
size changes during accommodation under the control of the ciliary muscles (see
Fig. 4.31). Under relaxed viewing of distant objects, the front surface of the eye
lens is flatter than its back surface. For seeing nearer objects, the front surface
bulges out, reducing its radius of curvature and the focal length. Accommodation
is the ability of the eye to reduce the focal length of the crystalline lens while
seeing near objects. The crystalline lens, made of several layers of tissue is nearly
4 mm thick and 9 mm in diameter. The index of refraction near the center of the
lens is 1.406, and 1.386 near its periphery as if nature knew how to correct for
the spherical aberration (see Section 5.5.1). The crystalline lens is followed by
the posterior chamber filled with vitreous humor of very nearly the same index of
refraction as the aqueous humor. The aqueous–lens and lens–vitreous interfaces
provide the remaining refractive power of the eye. After passing through the
lens and vitreous humor, light makes its way to the retina at the back of the eye.
Retina is the seat of millions of photo receptors in the form of rods and cones.
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Fig. 4.31: Horizontal section of a human eye – a model representation.

The rods and cones are unevenly distributed – rods being more numerous near
the periphery of the retina and cones dominate the central portion of the retina.
The rods, nearly 2 �m in diameter, function like a black and white film, unable
to distinguish between colors. The rods possess high photo-sensitivity and are
active in dim light. The rods are capable of detecting a single light photon. The
rods get easily saturated and become inactive during bright light such as the day
light. In comparison, the cones (nearly 6�m in diameter) can distinguish colors
but require bright light illumination. The information collected by the rods and
cones is transmitted to the brain by the optic nerve. At the root of the optic
nerve, the retina is devoid of the rods and cones. This spot is called the blind
spot. The Fovea, consisting of only the cones, lies near the center of the retina.
Foveal vision is used for distinguishing very fine details as, for example, during
reading and viewing distant objects.

Eyes vary from person to person. Several models of the eye exist and they
differ somewhat from each other. Figure 4.31 is one model representation of the
horizontal section of the eye. The distances given in the figure may not exactly
match with actual distances in the eye, but they adequately describe the image
forming properties of the eye. The figure shows that the primary and secondary
focal lengths of the eye are quite different. The primary focal length is shown
to be 15 mm and the secondary focal length is 20 mm. This has to do with the
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substantial difference in the refractive indices of the media (air and aqueous) on
the two sides of the cornea. The representative primary focal length of the eye
may be taken approximately as 17 mm for a relaxed eye and 14 mm for a fully
accommodated eye. The power of the cornea is +43 D and the crystalline lens
if kept in air would have power of +19 D. A standard eye has +58	6 D power
when viewing distant objects. Visual acuity concerns the resolving capability of
the eye. A 6/6 eye can resolve details up to 1 arcmin.

4.5.1 Defects of the Human Eye

An eye with its secondary focal plane coincident with the retina is called the
normal or the emmetropic eye. An eye for which this does not happen is called
the ametropic eye. An ametropic eye is myopic if the secondary focal plane of
the eye lies in front of the retina. A myopic eye would obviously have difficulty
in seeing distant objects because they get focused in front of the retina. However,
myopic eye has no difficulty in seeing near objects because they are imaged on
the retina or close to it with no or little eye accommodation. In fact, a myopic eye
has an advantage in seeing near objects because its near point (located at the least
distance of distinct vision) can be considerably closer than for an emmetropic
eye. This abnormality of the eye can be corrected by the use of spectacles fitted
with negative lenses which reduce the overall power of the eyes. The increased
focal length of the eye–spectacle combination brings the secondary focal plane in
coincidence with the retina. The myopic defect arises because the eye happens to
be a bit too long along its axis. Normal eyesight of a myopic eye can be restored
in a surgical intervention called radial keratotomy. The cornea of the eye is given
appropriate cuts either with a surgical knife or with a laser. Upon healing, the
cornea tends to flatten, thus reducing the power of the eye. Similarly, in some
cases, the eye ball is somewhat smaller so that the secondary focal plane of the
eye lies behind the retina. This is the hyperopic condition or far-sightedness of
the eye. To bring the images of distant objects on the retina, the eye makes use of
its accommodating power. A far-sighted person can see distant objects but only
with eye accommodation and the accompanied strain. The eye accommodation
is insufficient for a far-sighted person to see near objects clearly. The near-point
has moved farther away. The hyperopia (also called hypermetropia) of the eye
can be corrected by using spectacles with converging lenses. The secondary focal
point moves back to overlap with the retina. Presbyopia is the gradual loss of
eye accommodation which sets in adults beyond the age of 40. Spectacles fitted
with bifocal lenses (one for seeing near objects and the other for seeing distant
objects) provide the necessary compensation for presbyopia.

In addition, an eye can suffer from an abnormality condition called Astigma-
tism. This is a fairly common defect caused by an uneven cornea. Ideally, the
cornea possesses rotational symmetry. However, it may happen that different
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portions of the cornea have different radii of curvatures and hence different
powers. This asymmetry leads to blurring of the images on the retina. Regular
astigmatism occurs when the directions along which the power of the cornea has
maximum and minimum values are orthogonal to each other. This abnormality
can be corrected by the use of cylindrical lenses which have zero power in the
direction of the axis of the cylinder. The cylindrical lens is usually ground on
the back of the spherical lens used to correct other defects of the eye. For more
details on the functioning of the human eye, the reader is referred to Geometric,
Physical, and Visual Optics by Michael P. Keating [4.3].

4.6 CYLINDRICAL LENS

A cylindrical rod of a transparent material acts as an equiconvex cylindrical
lens if light enters the rod through its curved surface. A cylindrical lens has
two perpendicular meridians. The meridian, parallel to the axis of the cylinder
having flat cross-section is the axis meridian (Fig. 4.32a). This meridian has zero
refractive power. The meridian with circular cross-section, perpendicular to the
axis meridian, is the power meridian. Lensing action takes place only in the power
meridian. In the paraxial approximation, a plane incident wavefront becomes
cylindrical on exiting the lens, converging to a line on its axis. Figure 4.32b
shows the point object O in front of a plano–convex cylindrical lens with vertical

Axis meridian

(a)

Power meridian

Axis of the cylinder Point object

(b)

Line image

O

Fig. 4.32: (a) Equiconvex cylindrical lens, (b) plano–convex cylindrical lens
with vertical axis meridian. Each horizontal segment of the lens forms a point
image of the point object in its horizontal plane. The image is a vertical line.
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axis meridian. The paraxial image of the point is a vertical line. To understand
the formation of the line image, the lens may be divided into thin horizontal
segments. The power meridian being horizontal in this case, each horizontal
segment of the lens converges the rays (incident on it) horizontally to form a
point image in its horizontal plane. The net result is a vertical line image, parallel
to the axis meridian, but produced by the power meridian. Equation (4.101)

P = �n−1�

(
1

R1

− 1
R2

)
(4.101)

for the power of a spherical lens in air is applicable to the cylindrical lens as
well provided it is understood that the lensing action takes place only in the
power meridian.
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4.8 PROBLEMS

4.1 A transparent rod of length 20 cm and index of refraction 1.5 has polished end
surfaces of radii of curvatures of 10 and −10 cm. Find the position and nature of
the image of a small axial object kept at a distance of 20 cm from the left vertex of
the rod.

4.2 Two identical thin convex lenses, each of focal length 10 cm, are 25 cm apart. Find
the position of the image of a distant axial object by considering the image formed
by the first lens as the object for the second, and also by considering a single lens
which is equivalent to the above two-lens combination.
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4.3 A concave lens of focal length −20 cm lies 6 cm behind a convex lens of
focal length +10 cm. Locate the cardinal planes of this combination of lenses. An
object lies 28.75 cm in front of the convex lens. Find the position and lateral magnifi-
cation of the final image. Comment on the use of this lens combination as a telephoto
lens.

4.4 Two small objects lie on the axis of a transparent cylindrical rod of length 10 cm
and index of refraction 1.56. The rod has flat, polished end surfaces. One object
is stuck to the front surface of the rod and the other is kept 2 cm in front of it as
shown in Fig. 4.33. Use the paraxial ray matrix approach to locate the images of
the objects. Interpret your results in terms of the real and apparent depths.

n = 1.56B

2 cm

10 cm

A

Fig. 4.33.

4.5 A small object lies in front of a transparent ball of radius R and index of refraction
n as shown in Fig. 4.34. Consider light entering the ball at small angles only. On
reaching the back surface of the ball, light is partly reflected and partly transmitted.
Find the restriction on the index of refraction n if the image formed by the reflected
light is to be at the position of the object. What should be the object distance for
this to happen? Trace the path of rays. Find image magnification and check if the
Smith–Helmholtz formula (Eq. 4.49) holds. Consider the special case of n = 2. Such
round particles are used as retro-reflectors in highway signs.

R

n

O

Fig. 4.34.

4.6 Find the positions of the principal and focal planes of a lens combination with
parameters given in the following table (taken from Ref. 4.1). This lens combination,
called Tessar, is used in cameras. The first column gives the radii of curvatures of
the surfaces from left to right. The second and third columns give the indices of
refraction before and after an interface. The last column gives the separations among
the interfaces. All distances are in cm.



4.8: PROBLEMS 215

R n n′ t

1	628 1	0000 1	6116 0	357
−27	57 1	6116 1	000 0	189
−3	457 1	0000 1	6053 0	081

1	582 1	6053 1	0000 0	325
� 1	0000 1	5123 0	217
1	920 1	5123 1	6116 0	396

−2	400 1	6116 1	000

n = 1 n = 1 n = 1 n = 1O

50 cm2 m 

f 

’= 15 cm f 

’= 20 cm f 

’= 10 cm

Fig. 4.35.

4.7 Consider three positive, thin lenses of focal lengths 15, 20, and 10 cm, arranged
as shown in Fig. 4.35. The first and third lenses are 50 cm apart and occupy fixed
positions. An object lies 2 m in front of the first lens. Find changes in lateral
magnification and object–image distance as the middle lens is moved between the
fixed lenses (zooming effect). You may use analytical or numerical approach.

4.8 Locate the principal and focal planes of the following lens combination (Fig. 4.36,
Ramsden eye-piece). The index of refraction of the material of the lenses is 1.52.
R1 = �, R2 = −2	1 cm, R3 = 1	9 cm, R4 = �.

3 mm

2.5 cm

2.5 mm

Fig. 4.36.
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4.9 Consider the combination of three lenses as shown in Fig. 4.37. The radii of curva-
tures of the surfaces from left to right are 10, −10, 15, −15, 10, −10 cm. The index
of refraction of the material of the lenses is 1.5.

III

5 cm 2 cm

Fig. 4.37.

(a) Find power of the system with air in compartments I and II.
(b) Find positions of the principal and focal planes of the combination.
(c) Find the position and size of the image of an object 1 cm tall, kept 30 cm in

front of the first lens.
(d) Repeat (a), (b), (c) above, with air in compartment I and water �n = 4/3� in

compartment II.

4.10 The objective and eye-piece of a telescope have focal lengths of +20 and +2 cm,
respectively. Find the distance between the objective and eye-piece if the image
of an object 10 m away from the objective is to be observed at the distance of
distinct vision (25 cm). Find the power, the lateral and angular magnifications of
the telescope under the above conditions.

4.11 A He–Ne laser cavity consists of two identical concave mirrors, separated by 34 cm.
The radius of curvature of each mirror is 10 m. Show that the field configuration
inside the cavity reproduces itself after 12 round trips.

4.12 Consider a laser cavity consisting of a concave mirror and a convex mirror, sep-
arated by 2 m as shown in Fig. 4.38. Given �R1� = �R2� = 2 m, where R1 and R2

are the radii of curvatures of the concave and convex mirrors, respectively. Obtain
the matrix representing the ray transformation for one complete round trip in the
cavity. Is this cavity stable or unstable?

2 m

M1 M2

Fig. 4.38.
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Lens Aberrations

5.1 STIGMATIC IMAGE

The image of a point object formed by an imaging system consisting of a single
lens or a combination of lenses is never a point image for a variety of reasons.
No imaging system can transfer the entire spherical wavefront (emanating from
the point object) from the object space to the image space. As a consequence,
the image of a point object, necessarily consists of the Fraunhofer diffraction
pattern of the wavefront-obstructing aperture of the optical system.1 For an
optical system with an axis of symmetry, this pattern consists of the Airy disk
surrounded by concentric rings. The need to consider diffraction effects in image
formation arises only when the size of the geometrical image of a point object
can be reduced to the size of the Airy disk.

Geometrical optics leads to a point image of a point object only in the paraxial
approximation (Fig. 5.1). It is assumed here that all rays emanating from the
point object O and reaching the lens (or a more general optical system) arrive
at a unique image point I after passing through the lens. In the language of
wave optics, the incident diverging spherical wavefront A centered at O must
be transformed by the lens into another spherical wavefront B converging at the
image point I . Such an image is called a stigmatic or a sharp image. In addition,
a perfect imaging system images a line perpendicular to the optical axis in
the object plane as a line perpendicular to the optical axis in the image plane.
The term perfect imaging system here refers only to the geometrical similarity
between the object and its image, and need not imply a perfect image in an
absolute sense. Stigmatic imaging by a lens is possible only if the lens possesses a
unique focal length and a unique transverse magnification when monochromatic
light illuminates the object. This happens only for the paraxial rays, putting
severe restrictions on the angles the rays make with the optical axis. Non-
paraxial rays which are always present in any imaging system produce distorted
images. Furthermore, chromatic aberration occurs when object is illuminated

1 See the paragraph just before Section 10.2.
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A

I

B

O

Fig. 5.1: Point image of a point object in paraxial approximation. A is a diverging
spherical wavefront in object space and B is a converging spherical wavefront
in image space.

with polychromatic light. The lens no longer has a unique focal length even
for the paraxial rays because the index of refraction of the material of the lens
changes with wavelength.

5.2 APLANATIC POINTS

Most imaging systems fail to produce stigmatic images. A lens of finite aper-
ture can be divided into infinitesimally narrow concentric zones about its axis
(Fig. 5.2). The focal length and transverse magnification of the lens varies from
zone to zone. This is an inherent limitation of the spherical surface. One imme-
diate consequence of this variation is the absence of a unique position of the
image of a point object formed by a spherical surface. The image is no longer
stigmatic, and the notion of the image plane becomes somewhat vague. Rays

h

o

Fig. 5.2: Concentric zones of a lens. The axis of the lens points normal to the
plane of the paper.
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Fig. 5.3: Aplanatic points (O and I) of the spherical surface S.

from a parallel incident beam passing through different zones are focused at
different distances from the lens or putting it differently, the wavefront emerging
from the lens is no longer spherical. Special aspherical surfaces and lenses can be
prepared so that the optical path lengths for all rays from a fixed object position
to a fixed image position are exactly equal. Aspherical refracting surfaces were
first studied by Descartes and are known as the Cartesian ovals. They are also
known as aplanatic surfaces and the corresponding object and image points are
called the aplanatic points. Aspherical surfaces are most useful when the object
distances do not change appreciably.

It was Huygens who first showed the existence of aplanatic points for spherical
surfaces. This is shown in Fig. 5.3. All rays starting from point O after leaving
the spherical surface S appear to originate from I . The aplanatic points lie
�n1/n2�R and �n2/n1�R distances away from the center of curvature of the
spherical surface, where R is its radius of curvature. As described in Section 4.3.5,
this property of spherical surfaces is utilized in the oil-immersion objectives of
microscopes. Excellent quality aspheric lenses are available, but they are difficult
to grind and therefore are more expensive. No wonder spherical lenses continue
to be used extensively.

5.3 IMAGE FORMATION WITH NON-PARAXIAL RAYS

In Chapter 4, optical systems were analyzed within the paraxial approximation.
Aperture stops must be used, especially for imaging near objects, so that only
low angle rays reach the optical system. This may not be always possible or even
desirable. The use of large aperture optical elements may be unavoidable. Lack
of a unique focal length of a large aperture spherical lens, commonly known as
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spherical aberration, is not the only limitation of spherical surfaces. There are a
number of other shortcomings (aberrations) of spherical surfaces which we now
take up. These shortcomings adversely affect the quality of the image formed
by an optical system. The ray matrix technique developed in Chapter 4 can be
extended to get insight into the origin of these aberrations. We, however, prefer
to develop the aberration concept in terms of the distortion of the wavefront
passing through the optical system. This does not mean that we are no longer
in the regime of geometrical optics. The ensuing discussion on aberrations is in
fact entirely based on geometrical optics; the rays being the directions of the
normals to the wavefront. We shall bring wave optics into image formation but
at a later stage in a different chapter.

It should be realized that these shortcomings of spherical surfaces called
aberrations are not because of any defect in grinding, centering, or assembling
of spherical lenses or because of any material inhomogeneities, but because a
spherical surface inherently transforms an incident spherical wavefront into an
aspherical or an aberrated wavefront which cannot form a stigmatic image. More
precisely, the term ‘geometrical aberrations’ refers to the deviations in the actual
image formed by a lens or a combination of lenses with mathematically precise
spherical surfaces from the image formed by the paraxial rays. Powerful ray
tracing programs exist which can simulate image formation by optical systems
in two and three dimensions. One then optimizes the quality of the image by
parameterizing the radii of the optical surfaces, their separations, positions of
stops, indices of refraction of the lens materials, etc. The final image is then
compared with the paraxial image to identify the residual aberrations. This will
take us deeper into the design methodology of optical systems which is not
what concerns us at the moment. Here, we wish to focus our attention on the
origin of geometrical aberrations by following the conventional approach which
provides a reasonable insight into the performance of optical systems. In the
process, we shall hopefully learn how to minimize the aberrations. For the present
discussion, the paraxial approximation is relaxed to the next higher order by
replacing the sines and cosines of the ray angles by ��−�3/3!� and �1−�2/2!�,
respectively. These aberrations were classified as primary aberrations by Seidel
who first made a systematic study of geometrical aberrations. In literature, they
are variously referred as Seidel aberrations, or first-order aberrations (because
they correspond to first-order correction to the paraxial image), or third-order
aberrations (because of the presence of the �3 term), or fourth-order aberrations
because of the appearance of the fourth-order terms involving the lens aperture
(or its equivalent) and the off-axis object or image distances in the aberration
function. To avoid repeated use of the term spherical surfaces, we shall discuss
geometrical aberrations in the context of a lens, but these aberrations exist for
spherical mirrors as well.
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5.3.1 Tangential and Sagittal Planes

We begin by defining the terms which describe monochromatic aberrations
of a lens. For an on-axis point object, the cone of rays incident on the lens
has complete rotational symmetry about the optical axis. All these rays lie in
meridional planes. A meridional plane is any plane containing the optical axis.
The image of an on-axis point object produced by a lens of finite aperture is
a light patch which retains the rotational symmetry. For off-axis objects, the
rotational symmetry about the optical axis is lost, in particular, the cone of rays
incident on the lens lacks this symmetry. However, there is still a plane of
symmetry called the tangential plane. This is the meridional plane containing the
point object and its paraxial image. It is generally defined as the plane containing
the optical axis and the chief ray (CR). The latter, as defined earlier, is a ray
which starts from an off-axis point object and passes through the center of the
exit pupil (see Section 4.3). The exit pupil has been defined in Section 4.3.1,
but in the context of a thin lens, it may be taken as a plane perpendicular to
the optical axis and passing through the center of the lens. Without loss of
generality, the point object may be taken on the y-axis of the Cartesian coordinate
system with the optical axis being designated as the z-axis. With this choice of
axes, the tangential plane is the vertical plane yz. The rays emanating from an
off-axis point object and lying in the tangential plane are called the tangential
rays (Fig. 5.4).

CO

P

CR

y

z

Exit pupil

Fig. 5.4: Tangential rays lie in the plane containing the chief ray (CR) and the
axis of the lens.



222 Chapter 5: LENS ABERRATIONS

CR
CP

Fig. 5.5: Sagittal rays. Except for the chief ray (CR), sagittal rays are non-
meridional.

The plane containing the chief ray and perpendicular to the tangential plane is
called the sagittal plane. The only meridional ray in the sagittal plane is the chief
ray. Except for this, the rays in the sagittal plane are non-meridional or skew rays
(Fig. 5.5). The rays lying in the tangential and sagittal planes constitute only a
small subset of the incident cone originating from an off-axis object point. These
two planes cannot provide complete image description, but they do play special
role in image formation. We shall see later a deeper mathematical basis to single
out these two planes. There is a single tangential plane for any multi-element
optical system, but the sagittal plane shifts at every interface due to refraction.

5.4 WAVEFRONT ABERRATION FUNCTION

The image forming quality of an optical system can be assessed from the nature
of the wavefront in its exit pupil. If this wavefront is spherical, the image is
stigmatic located at its center of curvature. Most often, this wavefront deviates
from sphericity. The deviation of the wavefront from the paraxial spherical
wavefront leads to aberrations in the image. The paraxial spherical wavefront
with which the actual wavefront is compared is called the Reference Spherical
Wavefront or simply as the Reference Sphere (RS). The actual wavefront and
the reference sphere are assumed to coincide at the center of the exit pupil.
As we shall see, it is sometime advantageous to choose the reference sphere,
somewhat shifted from the paraxial wavefront. For the description of geometrical
aberrations, an optical system is replaced by the entrance and exit pupils (the
apertures A and B) with centers at E and E′, respectively (Fig. 5.6). SS is the
spherical wavefront incident at the entrance pupil, RS and S′S′ are, respectively,
the intersections of the reference sphere and actual wavefront with the tangential
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Fig. 5.6: PI is paraxial image of Ps. SS is the incident spherical wavefront in
the entrance pupil, RS and S′S′ are sections of the reference sphere and actual
wavefront in the tangential plane at the exit pupil.

plane at the exit pupil, b′Pb is the ray starting from point b′ on the actual
wavefront and meeting the paraxial image plane at Pb, bb′ is the directed distance
along the ray bPI (passing through point b′) between the actual wavefront and
reference sphere, where PI is the paraxial image of Ps. The corresponding phase
change is �2�/��bb′. The wavefront aberration function W is defined as the
optical path length corresponding to the directed distance bb′�= l�, i.e.,

W�l� = n′′l� (5.1)

where n′′ is the index of refraction of the medium in the region of the exit pupil.
For a precision optical system such as a telescope, the directed distance l must not
exceed a fraction of the wavelength of light. Here, we make a subtle distinction
between the plane of the exit pupil and the actual wavefront. As can be seen from
Fig. 5.6, the two do not coincide. Their separations is, however, exaggerated
for clarity of drawing. We should consider points on the wavefront which in
the spirit of Huygen’s wavelets actually generate the subsequent wavefronts and
hence the image. This requires point-to-point shifting of the origin along the
optical axis. To avoid these complications, we scan the exit pupil to generate the
aberration function.

In principle, the aberrated wavefront and hence the aberration function can
be generated via the ray tracing, but we take here a phenomenological approach
and express the aberration function as a power series expansion in terms of the
coordinates of a point in the exit pupil. Figure 5.7 shows the Cartesian and polar
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Fig. 5.7: Cartesian and polar coordinates in the plane of the exit pupil.

coordinates in the exit pupil. The Cartesian coordinate axes xs and yt are chosen
along the intersections of the sagittal and tangential planes, respectively, with the
plane of the exit pupil. It is more convenient to choose the azimuthal angle � as
the angle between the polar variable 	 and the yt-axis. The Cartesian and polar
coordinates are normalized so that at the edge of the exit pupil xt = 1, yt = 1,
and 	 = 1. The wavefront aberration function W�l� varies with the position of a
point in the exit pupil and must also vary with the position of the point object
in the object plane. The off-axis object distance is denoted by the normalized
variable r so that r = 1 at the edge of the field of view in the object plane
(see Section 4.3.1). The variable r can represent the position of the paraxial
image as well since there is one to one correspondence between the object point
and its paraxial image. For small wavefront aberration, a power series expansion
of the aberration function in terms of 	, cos �, and r may be valid. The choice
of the variable cos � ensures

W�−�� = W����

consistent with the requirement that the tangential plane be a plane of symmetry.
In addition, for r = 0 (on-axis object), full rotational symmetry about the optical
axis should be restored. Therefore, terms such as cosn � and 	n cosm � which
do not involve the variable r and lack rotational symmetry cannot appear in
the power series expansion. We also note that if the object is shifted below the
optical axis �r → −r�, the tangential plane remains unchanged. Figure 5.8 shows
two positions �+r� and �−r� of the object and the intersections S′S′ and S′′S′′ of
the corresponding aberrated wavefronts in the tangential plane at the exit pupil.
It then follows that the wavefront aberration function at the corresponding points
such as the points A and B must be equal. This suggests that if r is changed
to −r, and 	 to −	, leaving � unchanged, the aberration function W remains
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Fig. 5.8: Section of the aberrated wavefront in the tangential plane at the exit
pupil changes from S′S′ to S′′S′′ as object position is changed from +r to −r.

unchanged. This can be ensured if the terms involving powers of the product of
all three variables satisfy

	mrn cosk � = �−	�m�−r�n cosk �


All these requirements are met if the aberration function W is expanded as
products of the powers of r2, 	2, r	 cos �. Guenther [5.1] has given a simple
argument for choosing this set of variables. The optical system has rotational
symmetry about the optical axis. Treating r and 	 as vectors, their simultaneous
rotation about the optical axis cannot change the aberration function. Accordingly
the aberration function must be defined in terms of the scalars

⇀
r · ⇀

r ,
⇀
	 · ⇀

	, and
⇀
r · ⇀

	= r	 cos �. The aberration function may therefore be expressed as

W�r�	� cos �� = 0C00 + 2C00r
2 + 4C00r

4 + 6C00r
6 +· · ·

+ 0C20	
2 + 0C40	

4 + 0C60	
6 +· · ·

+ 1C11r	 cos �+ 2C22r
2	2 cos2 �+· · ·

+ 2C20r
2	2 + 4C40r

4	4 +· · ·
+ 3C11r

3	 cos �+· · ·
+ 1C31r	

3 cos �+ � � � (5.2)
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The aberrated wavefront and reference sphere are assumed to exactly match at
the center �	 = 0� of the exit pupil. Therefore,

0C00 + 2C00r
2 + 4C00r

4 +· · · = 0


Retaining terms upto fourth-order in r and 	, the aberration function becomes

W�r�	� cos �� = 0C20	
2 + 0C40	

4 + 2C20r
2	2

+ 1C11r	 cos �+ 1C31r	
3 cos �+ 3C11r

3	 cos �

+ 2C22r
2	2 cos2 �
 (5.3)

Here, the coefficients iCjk have appropriate dimensions and have been so labeled
that i, j, k yield the powers of r, 	, cos � in that order. The aberration function
can be further simplified if the center of the reference sphere is suitably shifted
axially and/or transversely with respect to the paraxial image point.

5.4.1 Ray Deviations

Departure of the wavefront (at the exit pupil) from sphericity gives rise to a
spread-out image in place of a point image for a spherical wavefront. The ray
aberration is the distance in the paraxial image plane by which a ray misses the
paraxial image (Fig. 5.9). This has two consequences. Firstly, the image is a
patch of light in any image plane. Secondly, the rays meeting within the light
patch have non-zero optical path differences among them. As a result, the image
irradiance is considerably reduced as compared to the paraxial image, where all
rays meet in phase.

The shape and size of the light patch in any image plane can be obtained from
the aberration function (Eq. 5.3). Figure 5.9 shows the rays from points A and
B lying on the reference sphere (RS) and meeting at the paraxial image point IP.
A′ and B′ are the corresponding points on the aberrated wavefront with directed
path lengths AA′ = l and BB′ = l+l, respectively. It is seen from the figure
that the ray starting from point A′ along the normal to the aberrated wavefront
�S′S′� crosses the image plane at point A′′. The ray deviation along y′′ in the
paraxial image plane is approximately given by

y′′ = R� = R
�l

�yt

= R

n′′
�W

�yt

� (5.4a)

where R is the distance between the exit pupil and image plane. Similarly, the
deviation in the x′′ direction is

x′′ = R

n′′
�W

�xs


 (5.4b)
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Fig. 5.9: Ray deviations in the paraxial image plane. RS and S′S′ are sec-
tions of the reference sphere and aberrated wavefront in the tangential
plane.

The spreads in x′′ and y′′ values determine the size and shape of the image
of a point object in the paraxial image plane. Expressing these deviations in the
polar coordinates, we have

y′′ = R

n′′

[
cos �

�W

�	
− sin �

	

�W

��

]
� (5.4c)

x′′ = R

n′′

[
sin �

�W

�	
+ cos �

	

�W

��

]

 (5.4d)

The radius of the light patch (assuming �W
��

= 0) in the paraxial image plane is

r ′′ = [
�x′′�2 + �y′′�2

]1/2 = R

n′′
�W

�	

 (5.4e)
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This is the transverse aberration in the paraxial image plane. The longitudinal
spread of the image also follows from Fig. 5.9:

z′′ = r ′′

�

= R2

n′′
1
	

�W

�	
�

(5.5)

where � is taken approximately equal to 	/R. It can be shown [5.2] that the
ray deviations in an image plane, longitudinally shifted from the paraxial image
plane by Z′′, are given by

x′′ = −xs

Z′′

R
+ R

n′′
�W

�xs

� (5.6a)

y′′ = −yt

Z′′

R
+ R

n′′
�W

�yt


 (5.6b)

5.4.2 Focusing Errors

The longitudinal spread (here only a longitudinal shift)

z′′ = 2R2

n′′ 0C20 (5.7)

obtained from the first term �0C20	
2� of the aberration function is independent of

the position of a point in the exit pupil. Therefore, the wavefront in the exit pupil
with aberration given by only the first term of Eq. (5.3) is actually spherical
giving a stigmatic image in front of the paraxial image for positive 0C20, in
conformity with Eqs (5.6) which yield

x′′ = y′′ = 0

for Z′′ = z′′ = 2R2

n′′ 0C20. This term therefore represents image defocusing, and
not an aberration of the image (Fig. 5.10).

Similarly, the fourth term

1C11r	 cos � = 1C11ryt

in Eq. (5.3) gives

x′′ = 0�

y′′ = R

n′′ 1C11r
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Fig. 5.10: RS is the section of the paraxial reference sphere centered at IP.
R′S′ is the section of the new reference sphere centered at I ′

P.

in the paraxial image plane. Once again, this term also does not represent
an image aberration since it is independent of the coordinates of a point
in the exit pupil. The image is stigmatic and lies in the paraxial image
plane. It is merely shifted in the transverse direction (Fig. 5.10). For a
suitably shifted reference sphere (R′S′ in Fig. 5.10), the relevant aberration
function is obtained by dropping the first and fourth terms in Eq. (5.3),
giving

W�r�	� cos �� = 0C40	
4 + 1C31r	

3 cos �+ 2C22r
2	2 cos2 �

+ 2C20r
2	2 + 3C11r

3	 cos �
 (5.8)

The terms in the aberration function (Eq. 5.8) have been arranged in increasing
powers of r – the off-axis object distance. Each term in this expression represents
a particular kind of primary aberration. The coefficients iCjk can in principle
be calculated. Born and Wolf [5.3] have given a general derivation of these
coefficients. For a thin lens of paraxial focal length f and refractive index n,
Klein and Furtak [5.4] give

0C40 = − 1
32f 3

1
n�n−1�

[
n+2
n−1

q2 +4�n+1�pq + �3n+2��n−1�p2 + n3

n−1

]



(5.9)
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The Coddington shape and position factors q and p are defined as

q = R2 +R1

R2 −R1

� (5.10)

p = v+u

v−u
= 1− 2f

v
= M +1

M −1
� (5.11)

where R1 and R2 are the radii of the surfaces of the lens, u and v are the object
and paraxial image distances from the lens, respectively, and M is the lateral
magnification produced by the lens. Because of the presence of the f 3 factor,
the coefficient 0C40 changes sign if a converging lens is replaced by a diverging
lens and vice versa.

5.5 PRIMARY ABERRATIONS

The five terms appearing in Eq. (5.8) represent five primary aberrations – spheri-
cal aberration, coma, astigmatism, Petzval curvature, and distortion in that order.
These aberrations should be applicable to aspherical surfaces also as long as the
axis of symmetry is retained. To get insight into the nature of primary aberra-
tions, we consider each term in Eq. (5.8) separately. This amounts to assuming
that all other aberrations, except the one under consideration, have somehow
been eliminated.

5.5.1 Spherical Aberration

Historically, the first term

Ws = 0C40	
4 (5.12)

in the aberration function has been associated with the primary spherical aber-
ration. Higher even powers of 	 lead to higher order spherical aberration. Since
Eq. (5.12) does not involve the off-axis object distance r, this is the only aberra-
tion which is common to on- and off-axis object positions. All other aberrations
are absent when the object lies on the optical axis. Figure 5.11 shows the variation
of the spherical aberration function in the plane of the exit pupil.

Equation (5.12) can be re-written as

Ws = �0C40	
2�	2
 (5.13)

Ignoring for the moment the 	 dependence of the multiplying factor within the
brackets, the 	2 dependence of Ws reminds us of the longitudinal shift of the
paraxial image (Section 5.4.2), but since the bracketed factor also involves 	,
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Fig. 5.11: Spherical aberration function in the plane of exit pupil.

the longitudinal shift increases with increasing 	. Accordingly for positive 0C40,
the marginal rays (originating from the extremities of the exit pupil) are focused
closest to the exit pupil and the paraxial rays farthest from it. This is shown in
Fig. 5.12, where AA, RS, and AW are, respectively, the intersections of the exit
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Fig. 5.12: Spherical aberration for an on-axis point object; TSA is transverse
spherical aberration, LSA is longitudinal spherical aberration, CLC is the circle
of least confusion.
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pupil, the reference sphere, and the wavefront having spherical aberration with
the tangential plane. Note that the wavefront retains the rotational symmetry
in the presence of spherical aberration, but a unique image point is missing.
Rays from different portions of the wavefront meet the paraxial image plane at
different distances from the paraxial image IP. The ray deviations in this plane
are

x′′ = 4R

n′′ 0C40	
3 sin �� (5.14a)

y′′ = 4R

n′′ 0C40	
3 cos �� (5.14b)

so that

�x′′�2 + �y′′�2 =
(

4R

n′′ 0C40	
3

)2


 (5.15)

The patch in the paraxial image plane is a circle of radius 4R
n′′ 0C40	

3. The spread
of the light patch in this plane is called the transverse spherical aberration (TSA).
Its size decreases as the image plane is moved towards the exit pupil. It goes
through a minimum size, called the circle of least confusion (CLC), and then
increases again. The image is not localized at a unique distance from the exit
pupil, giving rise to the longitudinal spherical aberration (LSA). The separation
between the paraxial image IP and marginal ray image IM may be taken as a
measure of the longitudinal spherical aberration. A rough estimate, obtained with
reference to Fig. 5.12, gives

LSA = R

	
�TSA�

= 4R2

n′′ 0C40	
2


(5.16)

The longitudinal spherical aberration increases as the square of the distance of a
point in the exit pupil whereas the transverse spherical aberration varies as 	3.

5.5.1.1 Spherical Aberration of a Thin Lens

Figure 5.13 shows parallel light incident on thin spherical lenses. In the paraxial
approximation, the refracted rays lie within a well-defined cone whose vertex
coincides with the paraxial image. The cones formed by rays refracted from
different zones of a large aperture lens do not have a common vertex. The
surface generated by the envelopes of these cones is called the Caustic Surface.
We note that the marginal rays from a convex (concave) lens converge to
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Fig. 5.13: Spherical aberration for (a) thin convex lens and (b) thin concave
lens. FM and FP are the marginal and paraxial focal points. CS, sections of the
caustic surface.

(appear to diverge from) a point which is closer to the lens. A convex lens
converges the marginal rays more strongly than the paraxial rays. The spherical
aberration in this case is positive, the paraxial focal length fp being larger than the
marginal focal length fm. Positive spherical aberration is also known as under-
corrected spherical aberration. The concave lens, on the other hand, diverges
marginal rays more strongly in comparison to paraxial rays. The concave lens
has negative �fp < fm� or over-corrected spherical aberration. A proper choice
of the radii of curvatures of the lens surfaces (the shape factor), but without
a change in the focal length (i.e. different 1

R1
and 1

R2
but same � 1

R1
− 1

R2
�) can

minimize the spherical aberration of a thin lens. This is known as lens bending
(Fig. 5.14).

The change in the image distance with the zone radius �h� of a thin lens in
air can be expressed as

LSA =v−vh = 4v2h2�0C40�

= h2

8f 3

v2

n�n−1�

[
n+2
n−1

q2 +4�n+1�pq + �3n+2��n−1�p2 + n3

n−1

]



(5.17)

Here, v is the paraxial image distance from the lens and vh the corresponding
distance of the image formed by the zone of radius h (Fig. 5.2), f the paraxial
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Fig. 5.14: Lenses with same paraxial power but different shape factors.

focal length of the thin lens, and n the refractive index of the material of the lens.
The shape factor q and position factor p are as defined in Eqs (5.10) and (5.11).
For a given object–image distance, i.e., for a given value of the position factor
p, one can reduce the spherical aberration by a proper choice of the shape factor.
For example, for parallel incident light, a plano-convex lens with convex side
facing the incident beam is the best choice for reduced spherical aberration, and
just the opposite orientation of the lens achieves minimum spherical aberration
if the emergent beam has to come out as a parallel beam. Turning the lenses
around can considerably increase the spherical aberration. An equi-convex lens
works best when the object and image distances are nearly equal. A thumb rule
to reduce the spherical aberration of a lens is to equalize the ray deviations
across its two surfaces.

Because of the f 3 dependence of spherical aberration on the paraxial focal
length, a suitable combination of positive and negative lenses can eliminate the
primary spherical aberration. However, higher order spherical aberration may
still persist.

5.5.2 Coma

The aberration function in the presence of primary coma alone is

Wc = 1C31r	
3 cos �

= 1C31ryt�x
2
s +y2

t �
 (5.18)

Higher order coma involves terms with higher odd powers of cos �. Due to
the presence of the first power of the off-axis object distance r in Eq. (5.18),
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coma is the first aberration that one encounters as the object is taken to off-axis
positions. We can rewrite the coma aberration function as

Wc = 1C31	
2�r	 cos ��
 (5.19)

The factor r	 cos � suggests that the primary coma produces a transverse shift
R
n′′ r1c31	

2 (see Section 5.4.2) of the paraxial image. However, because of the
additional 	2 factor in the coma aberration function, this transverse shift increases
with the radius of a ring in the exit pupil. Accordingly, primary coma may be
associated with the change in the transverse magnification of the lens from zone
to zone.

The variation of the aberration function Wc in the plane of the exit pupil
is sketched in Fig. 5.15. The wavefront experiences largest deviation from the
reference sphere in the tangential plane �� = 0��� and coincides with the ref-
erence sphere in the sagittal plane (Wc = 0 for � = �/2, 3�/2). Sections of the
reference sphere and wavefront with primary coma in the plane of the exit pupil
are shown in Fig. 5.16.

Unlike for the spherical aberration, the coma aberrated wavefront is asymmet-
rically oriented about the reference sphere. The ray deviations from the paraxial
image are

x′′ = R

n′′ 1C31r	
2 sin 2�� (5.20a)

y′′ = R

n′′ 1C31r	
2�2+ cos 2��
 (5.20b)
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Fig. 5.15: Aberration function representing primary coma.
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Fig. 5.16: Sections of the reference sphere (RS) and wavefront (AW ) with pri-
mary coma in the plane of the exit pupil.

The deviations (from the paraxial image) of the rays starting from points lying
on a ring of radius 	 in the exit pupil (Fig. 5.17a) are listed in Table 5.1 in units
of �R/n′′�1C31r	

2. These deviations are plotted in Fig. (5.17b).
The figure shows that the image of an off-axis point generated by each ring

in the exit pupil is a circle in the paraxial image plane. Rays leaving a ring
from diametrically opposite points generate a single image point. For example,
points (1, 5) lying in the tangential plane give rise to the image at the top of the
circle and points (3, 7) lying in the sagittal plane generate the lowest point of
the circle, and so on. It is seen that the circle in the image plane is traced twice
over as the azimuthal angle in the exit pupil is changed from 0 to 2�. Thus
for a fixed value of 	, the rays from an off-axis point trace a circle of radius

Table 5.1. Ray deviations in the paraxial image
plane in units of R

n′′ 1C31r	
2 in the presence of

primary coma.

Point on the ring � �x′′ �y′′

1 0 0 3
2 �/4 1 2
3 �/2 0 1
4 3�/4 −1 2
5 � 0 3
6 5�/4 1 2
7 3�/2 0 1
8 7�/4 −1 2
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Fig. 5.17: (a) A concentric ring of radius 	 in the plane of the exit pupil with
marked points from 1 to 8. (b) The image of an off-axis point object formed by
each ring in the exit pupil is a circle in the paraxial image plane; CS is sagittal
coma and CT is tangential coma.

�R/n′′�1C31r	
2. The center of the circle is displaced a distance 21C31�R/n′′�r	2

from the paraxial image along the y′′-axis. To see this more clearly, Eqs (5.20a)
and (5.20b) can be combined to yield

�x′′�2 +
(

y′′ − 2R

n′′ 1C31r	
2

)2

=
(

R

n′′ 1C31r	
2

)2

� (5.20c)

which represents a circle of radius �R/n′′�1C31r	
2 centered at the point

2�R/n′′�1C31r	
2 on the y′′ axis in the paraxial image plane. We note that the

wavefront coincides with the reference sphere in the sagittal plane (Wc = 0 for
� = �/2, 3�/2), but the sagittal image does not coincide with the paraxial
image. The rays or the normals to the wavefront in the sagittal plane do not
coincide with the radial lines of the reference sphere because of the tilt of the
wavefront in the perpendicular direction (along the yt-axis). The tangential coma
CT and sagittal coma Cs shown in Fig. (5.17b) have values of 31C31�R/n′′�r	2

and 1C31�R/n′′�r	2, respectively.
Furthermore, we note that the radius of the circular image (comatic circle)

and the distance of the center of this circle from the paraxial image have 	2
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dependence on the location of the ring in the exit pupil. Thus, the image plane
contains a series of circles (one for each ring in the exit pupil) with increasing
radii and displacements, but the centers of these circles always lie on the y′′-axis
which is parallel to the yt-axis in the exit pupil (Fig. 5.18).

It can be shown that these circles are bounded between common tangents
making an angle of 60� with each other. These tangents meet at the paraxial image
point. This aberration is called coma because the overall image of a point has the
shape of a comet. We mentioned in the beginning that the changing transverse
magnification of the zones is responsible for the coma aberration. This can be
appreciated if we consider the image of a distant object formed by a thin lens
of relatively large aperture (Fig. 5.19). Here we have drawn only the tangential
rays. The marginal rays (1, 1) give the farthest image IM and image IP formed
by the paraxial rays is closest to the optical axis. In this case, the marginal rays
experience the largest transverse magnification. This is an example of positive
coma. The coma is negative if magnification is least for the marginal rays. The
tangential rays such as rays (1, 1) in Fig. 5.19 passing through a given zone
of the lens give point image of a point object. In fact, this point image lies on
the top of the comatic circle. The remaining rays (other than tangential) passing
through this zone of the lens fill the remaining image points on the comatic
circle. The primary coma can be eliminated if same transverse magnification can
be ensured for all zones.
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Fig. 5.18: Optical system with primary coma; image of an off-axis point formed
by each zone of the exit pupil is a circle. Solid dots in the paraxial image plane
represent tangential images and hollow dots are sagittal images.
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Fig. 5.19: A thin lens showing positive coma.

5.5.2.1 The Sine Condition

Consider a single lens image forming system of Fig. 5.20. Let O and I lying on
the optical axis be a pair of conjugate points of the lens, for which the spherical
aberration has been removed. A stigmatic image I ′ of an off-axis point object
O′ which is not too far from the optical axis can also be obtained provided the
lens satisfies the Abbe sine condition

n0y0 sin �0 = ny sin � (5.21)

for arbitrary angle �0, not necessarily restricted to the paraxial approximation,
where �0 and � are the angles a ray makes with the optical axis in the object
and image spaces with indices of refraction n0 and n, respectively, and y0 and
y are the off-axis object and image distances. It can be shown that if the sine
condition is satisfied, all optical paths between the points O′ and I ′ are equal to

O’

I’

O

α

n

C

I
0y

n

α

0

0

y

Fig. 5.20: Geometry for sine condition.
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within first order in the off-axis object distance y0. However, path differences
involving higher powers of y0 will persist. Expressing the sine condition in terms
of the transverse magnification, we have

Mx = y

y0

= n0 sin �0

n sin �



The lens will have constant transverse magnification if

sin �0

sin �
= constant

for all �0. Since this condition must be satisfied by paraxial rays as well, the
sine condition can also be expressed as

sin �0

�0

= sin �

�



We give here a simple derivation of the sine condition for a spherical interface.
Figure 5.21 shows the formation of a stigmatic image y of a linear object y0.
Applying the sine law to the triangles BAC and ACB′, we have

BC

sin �
= AC

sin �0

� (5.22a)

AC

sin �
= CB′

sin �

 (5.22b)
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B’α0

n0
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B O
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φ θ
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n

α

s

C y

y
0

Fig. 5.21: Stigmatic image formed by a spherical surface.
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These results can be re-expressed as

s + r

sin �
= r

sin �0

� (5.22c)

r

sin �
= s′ − r

sin �

 (5.22d)

Substituting values of sin � and sin � into Snell’s law

n0 sin � = n sin �

gives

y

y0

= s′ − r

s + r
= n0 sin �0

n sin �
� (5.23)

which is the statement of the sine condition. It is interesting to note that the sine
condition which applies to image formation of off-axis points involves the angles
which the rays make with the optical axis. It is usually not possible to design
lenses completely satisfying the sine condition. Proper bending of lenses (and
hence a suitable choice of the principal planes) can minimize the disagreement.

A lens is said to be aplanatic for a pair of conjugate points if spherical aberra-
tion and primary coma are absent. Such a lens is usually aspherical. In practical
systems, spherical aberration and primary coma can be considerably reduced by
suitably bending spherical lenses. The lens shape which gives minimum spheri-
cal aberration also gives small coma. Meniscus lenses, with radii of curvatures
having the same sign, are particularly useful in this respect.

5.5.3 Astigmatism

The third term

Wa = 2C22r
2	2 cos2 � (5.24)

in the aberration function gives rise to primary astigmatism. This aberration has
square dependence on the off-axis object distance r. The next term in Eq. (5.8)
also has r2 dependence. Some authors prefer to discuss these two terms together.
We shall, however, discuss them separately. We mention in passing that the
astigmatism of the eye discussed in Chapter 4 arises because its cornea deviates
from sphericity, resulting in different focusing behavior of the eye in different
directions. Here, we are discussing astigmatism produced by spherical surfaces.
As already mentioned, the wavefront in the exit pupil is not spherical in the
presence of aberrations. Non-spherical surfaces possess an interesting property.
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rmin rmax P’

c1
c2

c3

PS

Fig. 5.22: Distribution of the radii of curvatures of an aspherical surface.

Figure 5.22 shows an aspherical wavefront S. PP ′ is the ray which emerges from
point P of this wavefront. By definition, the ray PP ′ coincides with the normal
to the wavefront at point P.

A plane containing the line PP ′ when rotated about PP ′ generates arcs c1, c2,
c3, etc., as its successive intersections on the wavefront. The radii of curvatures
of these arcs lying on the aspherical wavefront and intersecting each other at P
are different. However, the centers of curvatures of these arcs lie on the line PP ′.
The arcs of intersection and hence the planes containing the arcs with minimum
and maximum radii of curvature are orthogonal to each other. These planes may
be associated with the tangential and sagittal planes defined in Section 5.3.1.

The variation of the aberration function Wa in the exit pupil is shown in
Fig. 5.23. As for coma, this aberration function also vanishes in the sagittal
plane. But unlike for coma, Wa does not change sign with the azimuthal angle.
The sections of the reference sphere (RS), and wavefront (AW ) with primary
astigmatism in the tangential plane are shown in Fig. (5.24). The wavefront
possesses 180� rotational symmetry about the chief ray which should be reflected

Wa

sx

C r2
222

tyφoρ
ρ = 1

Fig. 5.23: Aberration function for primary astigmatism in the plane of the exit
pupil.
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Fig. 5.24: Sections of the reference sphere (RS) and wavefront with astigmatic
aberration (AW ) in the tangential plane. CR is the chief ray.

in the image formed by an optical system with primary astigmatism. The coma-
aberrated image lacks this symmetry. The function

Wa�� = 0��� = 2C22	
2r2

represents astigmatism in the tangential plane. It follows from the argument of
Section 5.4.2 that the image formed by the tangential section of the wavefront
lies a distance 2 R2

n′′ 2C22r
2 in front of the paraxial image plane. The ray deviations

x′′ =− 2R

n′′ 2C22r
2xs

=− 2R

n′′ 2C22r
2	 sin ��

(5.25a)

y′′ = 0� (5.25b)

in this shifted plane, obtained from Eqs (5.6) and (5.24), occur only along the
sagittal direction (horizontal) and vary linearly with the radius of a concentric
ring in the exit pupil. For a given ring, it varies from − 2R

n′′ 2C22r
2	 for � = �/2

to + 2R
n′′ 2C22r

2	 for � = −�/2. Thus the image of an off-axis point object in
this longitudinally shifted image plane is a line of length 4R

n′′ 2C22r
2 lying in

the sagittal plane. We have taken 	 = 1 at the extremities of the exit pupil.
This line image is called the tangential focal line because it is formed by the
tangential rays. The tangential focal line, of course, lies in the sagittal plane. The
aberration function (Eq. 5.24) representing astigmatism vanishes in the sagittal
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plane (� = �/2, 3
2 �). Consequently, the aberrated wavefront coincides with the

reference sphere in the sagittal plane. Accordingly, the image formed by the
sagittal section of the exit wavefront lies in the paraxial image plane. This does
not mean that the image in the paraxial image plane is unaberrated. In fact, the
ray deviations in this plane are

x′′ = 0� (5.26a)

y′′ = 2R

n′′ 2C22r
2	 cos �
 (5.26b)

The image of an off-axis point object in the paraxial image plane is also a line
of length 4R

n′′ 2C22r
2 but lying along the tangential direction. The line image in

the paraxial image plane is called the sagittal focal line because it is formed by
the sagittal rays. For image planes between these two extreme positions, the ray
deviations along x′′ and y′′ directions are non- zero, and the image of an off-axis
point object is in general an ellipse.

The concept of fans of rays is useful to visualize astigmatic aberration. The
cone of rays emanating from an off-axis point object can be divided into the
tangential and sagittal fans of rays. The tangential fans include those rays which
intersect the entrance and exit pupils along lines parallel to the tangential plane
(vertical line aa and those parallel to it in Fig. 5.25). The sagittal fans of rays
intersect the entrance and exit pupils along lines parallel to the sagittal plane
(lines bb and those parallel to it in Fig. 5.25). The reader is advised to pay full

b’

b’

Ft

E’

Fs

xs

yt a’

a

a
Exit pupil

optical axis

CR

b

b

a’

Fig. 5.25: Astigmatic aberration; E′ is the center of the exit pupil, tangential
fan containing CR is shaded and sagittal fan containing CR is crossed with
horizontal lines, Ft and Fs are foci of these two fans, b′b′ is tangential focal line
(horizontal) and a′a′ is sagittal focal line (vertical).
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attention to the following discussion to avoid getting lost in the terminology
which might otherwise appear confusing.

The tangential fan which contains the chief ray is shaded in Fig. 5.25. Only the
marginal rays (aa′) of this fan are drawn. The rays in this particular tangential
fan converge at the tangential focus Ft and continue to diverge beyond this point.
The remaining tangential fans converge along the horizontal focal line b′b′ with
the tangential focus Ft at its center. This focal line has already been defined
as the tangential focal line, though it lies in the sagittal plane in the horizontal
direction. The sagittal fan containing the CR and bounded by the marginal rays
bb′ is shaded with horizontal lines. This sagittal fan converges at the sagittal
focus Fs, but before focusing at Fs this fan gives the horizontal line image which
exactly coincides with the tangential focal line b′b′. Similarly the tangential fan
aa proceeds beyond its focus Ft to give a vertical line image a′a′. The vertical
line a′a′ also happens to be the locus of the foci of all sagittal fans and for this
reason it is called the sagittal focal line, but lying in the tangential (vertical)
plane. The focal points Ft and Fs lying on the chief ray are the centers of
curvatures of orthogonal arcs on the wavefront (possessing primary astigmatism)
with the minimum and maximum radii of curvature, to which a reference was
made in the beginning of this section. Thus, the aberration function Wa gives rise
to two orthogonal line images of an off-axis point which lie along the tangential
and sagittal focal lines. The tangential fans which lie in vertical planes give rise
to a horizontal (lying in the sagittal plane) line image b′b′, and the sagittal fans
give rise to a vertical line image a′a′ which lies in the tangential plane. The
tangential focal line is also called the primary image and the sagittal focal line
as the secondary image. Between these focal lines, the cross-section of the light
patch is elliptical, except at the half-way point where it is circular. This is the
circle of least confusion. Figure 5.25 should not mislead the reader to wrongly
conclude that the tangential and sagittal focal lines pass through the optical axis.
These line images are the horizontal and vertical lines around the chief ray
(and not about the optical axis) which starts from the off-axis point object and
passes through the center of the exit pupil.

The appearance of two separated line images of an off-axis point object
in orthogonal directions leads to some interesting image distortions. From the
preceding discussion, it follows that the image of a vertical line will appear
sharply focused along the sagittal focal line – this line being in the tangential
plane is parallel to the line object. On the other hand, the image in the vertical
plane containing the tangential focal line will be blurred horizontally because
each point of the vertical line is imaged as a horizontal line in this plane. By the
same argument, concentric circles in the object plane will be sharply focused
in the vertical plane containing the tangential focal line, but will carry radial
distortions in the vertical plane containing the sagittal focal line. These distortions
are dramatically manifested in the image of a spoked wheel (Fig. 5.26).
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(a) (b) (c)

Fig. 5.26: Image distortion by astigmatism; (a) spoked wheel with a small hub is
the object, (b) rim of the wheel is sharply focused but the spokes are horizontally
defocused in the tangential image plane, (c) spokes are sharply focused but the
rim has radial distortion in the sagittal image plane.

The rim of the wheel appears sharp in the tangential (primary) image and
the spokes are imaged sharply in the sagittal (secondary) image. The hub of the
wheel remains sharp in both images because being small, it satisfies the paraxial
image conditions. The horizontal distortions of the spokes increasing radially
outward in the tangential image and the radial distortion of the rim in the sagittal
image should be noted.

5.5.4 Field Curvature

The next term

Wfc = 2C20r
2	2 (5.27)

in the aberration function representing the field curvature is sketched in Fig. 5.27.
The 	2 dependence implies a longitudinal shift of the paraxial image which
increases quadratically with the off-axis object distance r. Thus, the image in
the presence of this aberration is stigmatic, but lies on a spherical surface. The
name ‘field curvature’ is derived from the fact that the image of a flat surface
becomes curved.

The field curvature and astigmatism represent qualitatively different aberra-
tions despite some similarity in their aberration functions. A point image of a
point object exists for the former, but not for the latter. The field curvature aber-
ration function does not depend on the azimuthal angle � whereas astigmatism
has its characteristic � dependence. In the absence of astigmatism �2C22 = 0�,
the image curvature is called Petzval field curvature (the curve PP in Fig. 5.28
is a section of the Petzval surface). The Petzval surface of an optical system
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Fig. 5.27: Aberration function representing field curvature.
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Fig. 5.28: Image surfaces as modified by astigmatism and field curvature; Petzval
(PP), sagittal (SS), tangential (TT).

is not affected by lens bending or by changing distance between the lenses. In
the presence of astigmatism, the Petzval surface is replaced by the sagittal and
tangential surfaces (sections SS and TT in Fig. 5.28). A point on the tangential
image surface at a given height always lies three times farther from the Petzval
image surface as compared to the corresponding point on the sagittal image
surface. A positive lens bends the Petzval image surface towards the exit pupil
and a negative lens has just the opposite effect. Thus, a negative lens called field
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flattener used in conjunction with a positive lens can restore the flat image of a
flat object. A combination of thin lenses satisfying the Petzval condition

∑
i

1
nifi

= 0 (5.28)

can eliminate the field curvature. Here, fi is the focal length of the ith lens of
refractive index ni. Field curvature can be a serious handicap in image-projecting
systems.

5.5.5 Distortion

The variation of the distortion aberration function

Wd = 3C11r
3	 cos �

= 3C11r
2�r	 cos ��

(5.29)

in the exit pupil is shown in Fig. 5.29. Maximum positive and negative aberra-
tions occur in the tangential plane for � = 0 and � (points A and B in Fig. 5.29),
respectively. Distortion aberration vanishes in the sagittal plane (points C and
D with � = −�/2 and �/2). The distortion aberration can also be interpreted
as the transverse shift of the paraxial image due to the presence of the r	 cos �
factor in Eq. (5.29). However, the off-axis distance multiplying factor r2 makes
the transverse shift and hence the scale of transverse magnification of the image
vary with the off-axis object distance. The changing transverse magnification
distorts the image of a two-dimensional object, and hence the name distortion

φ
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3C11r 3

D

o

ρ = 1
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yt

x s
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B A

Fig. 5.29: Distortion aberration function in the plane of the exit pupil.
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Fig. 5.30: (a) A square mesh placed in the object plane, (b) pin-cushion distortion
due to positive 3C11, (c) barrel-shaped distortion due to negative 3C11.

given to this aberration. The image is, however, stigmatic since the transverse
shift depends on the off-axis object distance and not on the location of a point
in the exit pupil (see Section 5.4.2).

The ray deviations in the paraxial image plane due to the distortion aberra-
tion are

x′′ = 0� (5.30a)

y′′ = R

n′′ 3C11r
3
 (5.30b)

We consider an object in the form of a square mesh kept in the object plane
(Fig. 5.30a). Because of the r3 dependence on the off-axis object distance, the
image of a square mesh develops a pin-cushion distortion for positive 3C11

(Fig. 5.30b) and a barrel-like distortion for negative 3C11 (Fig. 5.30c). The mesh
lines which pass through the optical axis appear as lines (elongated or shortened
depending on the sign of 3C11) in the image, but all other lines pick up curvature
in the image. A thin lens shows negligible distortion for any object distance but
thick lenses show pin-cushion and barrel-like distortions, depending on the sign
of 3C11.

5.6 CHROMATIC ABERRATION

The index of refraction of optically transparent media decreases with increas-
ing wavelength of light (see Figure 1.21). This gives rise to longitudinal and
transverse chromatic aberrations (separation of colors) in the image formed by a
lens with white light (Fig. 5.31). The decrease in the index of refraction is quite
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Fig. 5.31: Longitudinal (LCA) and transverse (TCA) chromatic aberrations of a
lens; IV and IR are the images of object O, produced by violet and red colors of
white light. Images produced by remaining colors lie in between.

small, but enough to make the chromatic aberration of a lens comparable to its
geometrical aberrations. For a thin lens with

1

f
= �n−1�

(
1
R1

− 1
R2

)
�

the dispersive power w is defined as

1

w
= �f

f
= �n

n−1
� (5.31a)

where �f is the change in the focal length of the lens corresponding to a change
�n in the index of refraction for the extreme wavelengths (red and blue) in
the visible spectrum and n is the index of refraction at the mean wavelength
(yellow). So that

1

w
= nB −nR

nY −1
� (5.31b)

where nB, nY, nR are the indices of refraction at blue, yellow, and red lines (see
Section 1.8). A single lens will always have different focal lengths for different
colors ��f = f

w
�= 0� but two thin lenses, held together or held apart, can have

the same focal length for blue and red lines (no dispersion). This happens for
two thin lenses made from flint and crown glasses, cemented together, when

w1

f1

+ w2

f2

= 0� (5.32)
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where

w1 = nf
Y −1

nf
B −nf

R

� (5.33a)

w2 = nc
Y −1

nc
B −nc

R

(5.33b)

are the dispersive powers of the flint and crown glass lenses, respectively, and f1

and f2 are their focal lengths for the yellow line. Since the dispersive powers of
the flint and crown glasses are positive but different, the achromatic combination
should consist of a positive lens and a negative lens, cemented together. The radii
of curvatures of the individual lenses are still available for reducing geometrical
aberrations. The reciprocal of the dispersive power is called Abbe number which
is usually supplied by the glass manufacturers. The dispersive power in the
context of white light is defined in terms of the Fraunhofer F , D, and C lines
with wavelengths �F = 486
1 nm, �D = 589
3 nm, and �C = 656
3 nm in the
blue, yellow, and red regions, respectively.

For two lenses of the same material, a distance d apart,

1
f

= 1
f1

+ 1
f2

− d

f1f2

�

so that

�f

f 2
= �f1

f 2
1

+ �f2

f 2
2

− d

f2f
2
1

�f1 − d

f1f
2
2

�f2�

where

�f1

f1

= �f2

f2

= 1
w




For this lens combination to be achromatic ��f = 0�,

1

f1

+ 1
f2

− 2d

f1f2

= 0�

giving

d = 1

2
�f1 +f2�
 (5.34)

Huygens eye-piece used in microscopes has two lenses made from the same
material separated by a distance equal to their mean focal length. With chromatic
aberration eliminated, the radii of curvatures of individual lenses can be chosen
to minimize geometrical aberrations of the eye-piece.
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5.8 PROBLEMS

5.1 A thin equiconvex lens of diameter 1 cm has focal length 20 cm in air. The index
of refraction of the material of the lens is 1.5.

(a) Find the maximum value of the aberration function for the primary spherical
aberration, expressed in terms of the mean wavelength of white light (�̄ =
550 nm) if the object lies 1 m in front of the lens.

(b) Find the transverse spherical aberrations in the paraxial image planes for the
object distances of 25 and 40 cm. What are the corresponding longitudinal
spherical aberrations? Comment on your results.

5.2 Light from a He–Ne laser, lasing at 632.8 nm, falls normally on a plano-convex lens
(n = 1
5) of diameter 1 cm and focal length 30 cm in air. The radius of the laser
beam is 1 mm. Compare the transverse spherical aberrations in the back focal plane
of the lens when light falls on (a) the plane surface, (b) the curved surface of the
lens.

5.3 Find the optimum radii of curvatures of a thin lens (n = 1
5) of focal length 20 cm
in air for use with object distance of about 50 cm to have minimum spherical
aberration. What is the residual transverse spherical aberration if the diameter of
the lens is 1 cm? Now turn the lens around and find the new transverse spherical
aberration.

5.4 Find the radius of the largest comatic circle for the thin lens of Problem 5.3 which
has been optimized for minimum spherical aberration. Take the object distance from
the optical axis as 1.0 cm. You may use

1C31 = 1
4f 2v

[
2n+1

n
p+ n+1

n�n−1�
q

]
�
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where v and f are the paraxial image distance and paraxial focal length, respectively,
n is the index of refraction, p and q are the Coddington position and shape factors,
respectively.

5.5 Convince yourself by taking a few representative values of the index of refraction
n that for a thin lens, the condition for minimum spherical aberration is not much
different from the condition for zero comatic aberration (1C31 = 0).
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C H A P T E R 6

Interference of Light Waves

6.1 INTERFERENCE

When two or more light waves cross each other, the resultant field, given by
the superposition principle, is the vector sum of the fields associated with the
individual waves, i.e.,

⇀

E �
⇀
r � t� =∑

i

⇀

Ei �
⇀
r � t�� (6.1)

where
⇀

Ei �
⇀
r � t� is the electric field associated with the ith wave. Here, we

have considered superposition of the electric fields since, as was first shown by
Wiener, most optical detectors including the human eye are influenced primarily
by the electric field of the light waves. Needless to state that the superposition
principle applies to magnetic fields as well:

⇀

B �
⇀
r � t� =∑

i

⇀

Bi �
⇀
r � t��

The superposition principle permits the resultant irradiance I�
⇀
r � t� at a given

point to differ from the sum of the irradiances of the individual waves when
present alone, i.e., superposition principle for the intensities may not always
hold. When

I�
⇀
r � t� �=∑

i

Ii�
⇀
r � t�� (6.2)

the light waves are said to have interfered with each other. The waves, after
interfering, continue to move forward unaltered, except for a phase retardation
in a lossless medium which bears no relationship, whatsoever, to the fact that
interference among the waves has taken place in the region of their overlap.
As has already been mentioned in Chapter 2, only mutually coherent waves
can interfere but the lack of interference does not necessarily imply incoherence
of the interfering waves. Arago and Fresnel had concluded that orthogonally
polarized coherent light waves do not interfere.

255
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6.2 TWO-WAVE INTERFERENCE

Interference between two monochromatic waves of the same frequency gives
rise to a spatially stationary distribution of time averaged intensities. Interference
among monochromatic waves with widely different frequencies can hardly be
observed. However, two monochromatic waves with a small frequency difference
give rise to a moving interference pattern, which under suitable conditions can be
observed (see Fig. 1.23). For two-wave interference in vacuum, average resultant
intensity at a given point can be obtained from Eq. (1.46):

I =
(

1

2
�0c

)
��⇀

E1 + ⇀

E2� · �⇀

E
∗
1 + ⇀

E
∗
2��

= I1 + I2 + �0cRe �⇀

E1 · ⇀

E
∗
2�� (6.3)

where
⇀

E1 and
⇀

E2 are the complex fields associated with the two waves. The
symbol �� represents time averaging for ergodic fields. The averaging time must
be sufficiently large. For light waves with orthogonal states of polarization,

�⇀

E1 · ⇀

E
∗
2� = 0 (6.4)

and the resultant intensity is the sum of the intensities of the two waves, in
agreement with our earlier statement that cross-polarized waves do not interfere.
For co-polarized light waves of the same frequency,

Re�⇀

E1 · ⇀

E
∗
2� = Re�E1E

∗
2�

= �E1��E2� cos �� (6.5)

where � is the phase difference with which the waves arrive at the point of
interference. The phase difference �, arising due to a difference in the path
lengths travelled by the interfering waves, is

� = 2	


v

× (optical path difference)

= 2	��� (6.6)

where 
v is wavelength of light in a vacuum and � is the difference in the
path lengths divided by the velocity of light in the medium. Equations (6.4)
and (6.5) together can handle interference among waves with arbitrary states of
polarization. The resultant intensity
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Fig. 6.1: Intensity variation in two-wave interference produced by (a) monochro-
matic source, (b) quasi-monochromatic source with one narrow spectral band.

I��� = I1 + I2 +2
√

I1I2 cos �

= I1 + I2 +2
√

I1I2 cos 2	�� (6.7)

for two-wave interference goes through maximum and minimum values
(Fig. 6.1a) for

� = 2m	 (6.8a)

and

� = �2m+1�	� (6.8b)

respectively, where m = 0� 1� 2�    . The extremum values of the resultant inten-
sity distribution remain unchanged, however, large a difference in the paths
is introduced between monochromatic interfering waves. For monochromatic
waves of equal amplitudes, the interference minima have zero intensity and the
visibility of interference fringes defined as

V��� = Imax − Imin

Imax + Imin

(6.9)

attains the maximum value of one.
The mathematical framework needed to extend these results to quasi-

monochromatic and polychromatic light fields has already been described in
Chapter 2. The complex degree of coherence ����, introduced in Chapter 2,
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has unit magnitude for perfectly coherent (monochromatic) light and zero for
perfectly incoherent (polychromatic) light. For partially coherent light,

0 < ������ < 1� (6.10)

For quasi-monochromatic light with spectral width �v much smaller than the
mean frequency �̄��� � �̄�, Eq. (6.7) is modified (Section 2.4.1) to

I = I1 + I2 +2
√

I1I2������ cos�����−2	�̄��� (6.11)

where the magnitude ������ and phase ���� of the complex degree of coherence
do not change appreciably over a limited range of values of the time delay.
Accordingly, interference between two quasi-monochromatic light waves can be
described in exactly the same manner as interference between two monochro-
matic light waves provided the time delays are restricted to values much smaller
than the characteristic coherence time �c which is of the order of 1

��
.

Notwithstanding what has just been said, there are qualitative differences
between the interference effects produced by monochromatic and quasi-
monochromatic light fields. No doubt, Eqs (6.8) locate the maxima and minima
of the resultant intensity distribution in both cases. However, since the mag-
nitude ������ of the complex degree of coherence is less than unity for quasi-
monochromatic light, the intensity changes between the minimum and maximum
values are less marked, leading to a reduction in the visibility of the interference
fringes. Beyond a certain time delay for quasi-monochromatic light, the maxima
and minima of the intensity distribution can hardly be distinguished and the
visibility of fringes becomes zero (Fig. 6.1b). This happens because the fringe
patterns due to different wavelengths within the spectral bandwidth of quasi-
monochromatic light are somewhat displaced from each other. For zero path
difference, the intensity maxima for all wavelengths overlap exactly and for small
path differences, the fringes due to different wavelengths are nearly coincident
but for large path differences, the fringe patterns due to different wavelengths
are sufficiently displaced from each other to produce uniform intensity distribu-
tion. This statement can be made a little more rigorous. Equation (6.8a) can be
equivalently expressed in terms of the path difference

� = m
̄ (6.12)

for the mth order maximum corresponding to the mean wavelength 
̄. With
wavelength spread �
 about the mean wavelength, the condition

� = �m− ���
̄+�
� (6.13)
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may also be simultaneously satisfied, where � is the change (integral or fractional)
in the order of the maximum for the wavelength 
̄+�
 with respect to the order
of the maximum for the mean wavelength 
̄. For the overall fringe pattern to
remain discernible, � � 1. Combining Eqs (6.12) and (6.13) and neglecting the
product ��
 gives

� = m/�
̄/�
� (6.14a)

or equivalently,

� = �/��
̄�2/�
�� (6.14b)

To have good quality fringes �� � 1� with quasi-monochromatic light of mean
wavelength 
̄ and wavelength spread �
, the order m of the fringe for the mean
wavelength should be much smaller than the ratio 
̄/�
. This condition can be
better stated by requiring that for good quality interference fringes with quasi-
monochromatic light, the difference in path lengths ��� between the interfering
beams should be much smaller than the ratio 
̄2/�
, which represents the
coherence length of quasi-monochromatic light (Eqs 2.41).

The visibility of the fringes produced by quasi-monochromatic light possessing
two narrow spectral bands goes through cycles of maximum and minimum
values. Eventually, for sufficiently large path difference, the intensity distribution
becomes uniform (Fig. 6.2). The interference fringes due to the two spectral

2
I1 I2(       +        ) 

2
I1 I2(       −        ) 

τ

I1 2I+

Fig. 6.2: Intensity variation in two-wave interference produced by a quasi-
monochromatic source with two narrow spectral bands.
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bands with mean wavelengths 
̄1 and 
̄2 coincide, leading to a high visibility of
the fringes, whenever the path difference � satisfies the condition

� = m1
̄1 = m2
̄2�

where m1 and m2 are integers. The visibility of the fringes becomes zero,
whenever the mth maximum due to 
̄1 overlaps with the �m+1�th minimum due
to 
̄2. For further study on the interference produced by quasi-monochromatic
light, the reader is advised to consult references cited at the end of Chapter 2. We
may mention in passing that a laser is a good source of quasi-monochromatic
light. A small laboratory He–Ne laser with visible radiation at 632.8 nm has an
extremely small spread in wavelength, of the order of 10−5 nm, giving 
̄/�
 of
the order of 107 and coherence length �
̄�2/�
 of few tens of meters. However,
a He–Ne laser usually oscillates simultaneously in several longitudinal modes
separated typically by 10−4 nm in wavelength. This gives rise to pulsation of
visibility of fringes with path difference as mentioned earlier.

We now describe experimental schemes to observe two-wave interference.
Throughout this discussion, it will be assumed that the maximum path difference
between the interfering waves is well within the coherence length of the quasi-
monochromatic light field. With this assumption, an explicit reference to the
degree of coherence may not be necessary. The magnitude of the degree of
coherence is assumed not to change appreciably over the path differences to
be encountered. Two quasi-monochromatic light waves with a certain degree
of mutual coherence can produce discernible interference effects. A sodium
lamp used in an undergraduate laboratory is quite adequate for this purpose.
Any conventional extended light source is an incoherent source of light because
different portions of the source are mutually incoherent. All points on the source
may emit light with the same average wavelength 
̄ and wavelength spread �
,
but there is no outside agency to force them to emit light in unison. Atoms and
molecules in a conventional source emit light randomly through the process of
spontaneous emission. The situation in a laser is qualitatively different. A laser
is also an extended source but the dominant process of light emission is the
stimulated emission which forces the atoms and molecules to emit light in unison.
Laser light therefore possesses a high degree of monochromaticity and coherence.
Interference effects are best illustrated with laser sources. With incoherent light
sources, one must devise ways to produce mutually coherent waves. Extended
sources can be used to observe two-wave interference as we shall see later but
for now, we consider a sufficiently small source which can be treated as a
point source. Such a source can be constructed by placing an extended quasi-
monochromatic light source inside a dark enclosure with a small hole. This tiny
hole, through which light escapes from the enclosure, acts as a point source if
its dimensions are sufficiently small. Mutually coherent quasi-monochromatic
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waves can be obtained from a ‘point source’ in two ways. In the wavefront
division approach, the spherical wavefront emanating from the point source
is split and then recombined after introducing an appropriate path difference.
This is what happens in Young’s two slit arrangement described in Section 2.5.
Alternatively, the amplitude of the incident wave is split at an interface between
two media (division of amplitude), as in Michelson interferometer (Section 2.4.1),
to generate two waves which interfere upon recombination.

6.2.1 Interference by Division of Wavefront

Some of the standard arrangements used to observe two-wave interference by
division of the wavefront are shown in Fig. 6.3. The narrow slits S1 and S2 in
Young’s double slit arrangement (Fig. 6.3a) intercept portions of the spherical
wavefront and act as real mutually coherent point sources, diffracting light in
the forward direction. Interference among the diffracted waves can be observed
anywhere in the region of overlap (shaded portion) behind the plane of the
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Fig. 6.3: Two-wave interference; (a) Young’s two-slit arrangement, (b) Fresnel’s
biprism, (c) Fresnel’s two mirrors, (d) Loyd’s mirror, (e) Billet’s split lens.
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slits. Historically, the interference produced in Young’s double slit experiment
was not accepted as a conclusive proof of the wave nature of light because it
was thought that the fringes in Young’s experiment could arise due to some
unexplained interaction of light with the edges of the slits. Fresnel’s biprism
arrangement (Fig. 6.3b), however, established the wave nature of light beyond
any doubt. Fresnel’s biprism consists of two small angle (a few degrees) prisms
juxtaposed in a manner that the incident spherical wavefront is split by the two
prisms. The split wavefronts travel in different directions, eventually overlap and
produce interference. S1 and S2 act as virtual but mutually coherent point sources.
Figure 6.3c shows the two-mirror arrangement, also devised by Fresnel. Here,
the portions of the spherical wavefront reflected by the two mirrors overlap to
produce interference. The source images S1 and S2, formed by the two mirrors, are
virtual but mutually coherent. In Lloyd’s single mirror arrangement (Fig. 6.3d),
interference is produced by the portion of the wavefront reflected by the mirror
and the portion which propagates directly to the region of superposition. In this
case, the point source S and its virtual image S′ act as mutually coherent point
sources. Figure 6.3e shows Billet’s split- lens arrangement to produce two real,
mutually coherent images S1 and S2 of the source. The two half-lenses contribute
one image each.

Figure 6.4 shows superposition of spherical waves produced by two mutually
coherent point sources of the kind discussed above. Intensity at a given point
P depends on the path difference d = S1P −S2P between the waves emanating
from the point sources and reaching P. The locus of points with

S1P −S2P = constant (6.15)

S1

P

S2

Fig. 6.4: Hyperbolic fringes due to two mutually coherent point sources.
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is a hyperbola with S1 and S2 as its foci. The contours of the interference fringes
in a plane are hyperbolic and the fringes in space are along the hyperboloids of
revolution. However, sufficiently far away from the point sources, the fringes
appear nearly straight in any given plane of observation (see Photo 10.4). Fringes
produced by these methods lie everywhere in the region where the two waves
overlap. These fringes are therefore called non-localized fringes.

6.2.2 Interference by Division of Amplitude

In the preceding section, we considered two-wave interference when differ-
ent portions of the wavefront are made to propagate in different directions
and then recombined. Now, we discuss two-wave interference when a quasi-
monochromatic wave is incident on a thin transparent film (Fig. 6.5). The wave
is partly reflected and partly transmitted at each interface. Amplitudes of suc-
cessively reflected and transmitted waves diminish rapidly for films of low
reflectivity. The amplitude transmission coefficient for passage of the wave
from the medium of refractive index n1 to the medium of refractive index n2

is t and t′ is the corresponding amplitude transmission coefficient for passage
in the reverse direction. The amplitude reflection coefficients for the external
and internal reflections are r and r ′�= −r�, respectively. For sufficiently small
r �r2 � 1�, only two waves need to be considered in reflection as well as in
transmission, leading to two-wave interference. The amplitudes of the first two
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Fig. 6.5: Reflection and transmission across a thin film.
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Fig. 6.6: Two-wave interference in reflected light from a thin film; (a) non-
localized fringes, (b) fringes localized at infinity.

waves in reflection are comparable, but those in transmission differ considerably.
As a result, interference fringes in reflected light have higher visibility than those
in transmitted light. Figure 6.6 shows two possible ways to obtain two-wave
interference in reflected light with the division of amplitude.

S is a point source. One of the interfering waves is reflected from the front
surface and the other from the back surface of the transparent film. In Fig. 6.6a,
two waves incident at slightly different angles interfere at a finite distance from
the film. The point of interference changes with the angle of incidence. The
fringes are therefore non-localized. On the other hand, the interfering waves in
Fig. 6.6b are obtained from the same incident wave and the interference fringes
are localized at infinity or in the focal plane of the lens, if used to focus the
parallel rays. Symmetry considerations require the fringes in a plane parallel to
the plane of the film to be circular with the perpendicular from the source S to
the plane of the film acting as the axis of symmetry.

The difference in the path lengths between the interfering waves, calculated
with reference to Fig. 6.7, is

Path Diff = n2�AD+DB�−n1AC

= 2n2d

cos �
−2n1d tan � sin i

= 2n2d

cos �
−2n2d tan � sin �

= 2n2d cos �

= 2d�n2
2 −n2

1 sin2 i�1/2�

(6.16)
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Fig. 6.7: Localized fringes produced by a thin film.

where d is the film thickness and i and � are the angles of incidence and
refraction, respectively, at the first interface.

The phase difference between reflected waves (1) and (2) is

� = 4	


̄
n2d cos � +�0� (6.17)

where 
̄ is mean wavelength of the quasi-monochromatic light in vacuum. The
phase constant �0 = 0 or ±	 takes care of the phase change on reflection,
depending on the relative values of the indices of refraction n1, n2, and n3. The
phase difference for the transmitted waves (3) and (4) can likewise be shown to
be given by

�′ = 4	


̄
n2d cos � +�0

= 4	


̄
d�n2

2 −n2
3 sin2 ��1/2 +�0�

(6.18)

where �0 is zero if �0 = ±	 and vice versa and � is the angle of emergence
in the third medium. Here, we take �0 = −	�n2 > n1� n3�. Accordingly, we can
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write,

� = 4	n2


̄
d cos � −	 (6.19)

and

�′ = 4	n2


̄
d cos �� (6.20)

For monochromatic light incident on the film, the resultant intensity distribution
in reflected light has the form

I��� = I1 + I2 +2
√

I1I2 cos �

= 2I0�1+ cos �� (6.21)

= 4I0 cos2 �/2�

since I1 ≈ I2 = I0 for the low reflectivity films. For quasi-monochromatic light,
the maximum intensity is less than 4I0 and the minimum intensity is not quite
zero. The visibility

V��� = Imax − Imin

Imax + Imin

(6.22)

of the interference fringes in reflected light is good, but always less than one. The
visibility of the fringes in transmitted light is low because of unequal amplitudes
of the interfering waves. The conditions for the maxima and minima of intensity
distribution in reflected light, for the above choice of the indices of refraction,
are

n2d cos � = �2m+1�
̄/4 (6.23)

and

n2d cos � = 2m
̄/4� (6.24)

respectively, where m = 0� 1� 2�    . These fringes are called fringes of constant
inclination because for a fringe of a given order, the angle of incidence has a
definite value. The fringe separation decreases with increase in film thickness,
making it difficult to observe interference from thick films.

6.2.3 Testing Flatness of Surfaces

Non-localized fringes of the kind described in Fig. 6.6a can be used to determine
the deviation from exact parallelism between the faces of a transparent plate [6.8].
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Fig. 6.8: Non-localized fringes from a wedge shaped plate.

Figure 6.8 shows a quasi-monochromatic point source S kept in front of a
transparent plate of nominal thickness d0 and wedge angle �. The plate thickness
must be well within the coherence length of the light source. A low power
He–Ne laser with its beam made slightly divergent with a convex lens is an
excellent substitute for the point source. Non-localized fringes in reflected light
can be observed anywhere in front of the plate. Here, we choose the plane of
observation which contains the point source S and is parallel to the front surface
of the test plate. The figure shows two rays incident at angles �1 and �2 and
meeting at point P in the plane of observation after one of them gets reflected
from the front surface and the other from the back surface of the test plate.
Angles �1 and �2, in the small angle approximation, satisfy the relation

�1 = �2

1+ d0
nD0

−n�� (6.25)

where n is the index of refraction of the plate kept at a distance D0 from the
point source. The point P acts as the center of the fringe pattern if the path
difference

� = SA+n�AD+DC�+CP −SB−BP

has an extremum value. After considerable trigonometric manipulation, the
extremum condition in the small angle approximation gives

2n�

(
1− d2

0

n2D2
0

)
−2

�1d0

nD0

(
1+ d0

nD0

)
= 0� (6.26)
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The wedge angle of the plate then has the value

� = d0�0

n2D0�1+ d0
nD0

�
� (6.27)

where �0 = SP/2D0 is the angle �2 for the center of the interference pattern and
SP is the linear shift of the center of the fringe pattern from the point source.
The interference pattern consists of circular fringes centered about the source
point for a plate with perfectly parallel faces �� = 0�. For small values of the
wedge angle, nearly circular fringes somewhat displaced from the source can be
seen (see Problem 6.8).

6.3 INTERFERENCE WITH EXTENDED SOURCES

If the point source in Fig. 6.7 is replaced by an extended source, good quality
interference fringes localized at infinity or in the focal plane of the converging
lens can still be observed. This happens because the path difference between the
interfering waves is dependent only on the film thickness and angle of incidence,
and not on the exact location of the point source (Eq. 6.16). Waves emanating
from different points of the extended source, arriving at the film of constant
thickness at the same angle of incidence, emerge from the film as a parallel
beam and are brought to a common focus by the lens (Fig. 6.9). Interference,
however, takes place between the waves originating from the same point on the
extended source. The resultant intensity is additive for waves originating from
different points of the extended source and reaching a given point in the plane
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1 2

θ

n

S

i i
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Fig. 6.9: Fringes localized at infinity for an extended source; S1 and S2 are two
points on the extended source S.
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of observation. In this case, the fringe visibility for the extended source is as
good as for a point source, but the fringes are much brighter. We state without
proof that for an extended source, non-localized fringes are generally difficult
to observe. This can be appreciated with reference to Fig. 6.6a. Waves starting
from different points of the extended source reach any observation point (like
P) at a finite distance from the film with different angles of incidence and hence
with different phases. This should lead to uniform illumination.

6.3.1 Haidinger Fringes

It was mentioned in Section 6.2.2 that good quality fringes are difficult to obtain
from thick films. The best chance of observing interference from a thick film is
when light falls on the film at or near normal incidence. Fringes observed from
thick films with light from extended sources falling at near normal incidence
are called Haidinger fringes after the name of the Austrian physicist Wilhelm
Karl Haidinger. Figure 6.10 shows a possible arrangement to observe Haidinger
fringes. S is an extended source. The beam splitter BS is oriented to ensure
near-normal incidence on the film F of thickness d. Haidinger fringes produced
by this arrangement are circular if the lens L is kept parallel to the film. It should

45

L

S

F

BS

d

Fig. 6.10: Arrangement to produce Haidinger fringes from a dielectric film; S is
an extended source, BS is a beam splitter.
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be noted that the highest order Haidinger fringe occurs for normal incidence
(Eq. 6.16) and lies at the center of the interference pattern. However, the central
fringe need not always be bright. The order of a Haidinger fringe decreases with
increasing angle of incidence. Let the order of the fringe at the center �i = 0� of
the interference pattern be m0 (not necessarily an integer), so that

n2d = �2m0 +1�
̄/4� (6.28)

If m0 is not an integer, then the first bright fringe corresponds to an integral
order �m0 − ��, where � is a fraction less than one. Referring to Fig. 6.9, the
first bright fringe closest to the center of the interference pattern satisfies the
condition

n2d cos �1 = �2�m0 − ��+1� 
̄/4�

For the mth bright fringe from the center of the interference pattern,

n2d cos �m = �2�m0 −m+1− ��+1� 
̄/4

= �2m0 +1�
̄/4−2�m−1+ ��
̄/4� (6.29)

The angular size of this fringe can be obtained by combining Eqs (6.28) and
(6.29), giving

cos �m = 1− �m−1+ ��
̄

2n2d
� (6.30)

For small angles of incidence,

cos �m = 1− 1
2

�2
m

= 1− 1
2

(
n1

n2

im

)2

�

where im is the angle of incidence for the mth bright fringe from the center.
The angular radius of the mth bright fringe (from the center) for small angles of
incidence is given by

im =
√

n2

n2
1

�m−1+ ��
̄

d
� (6.31)

The angular radius of a Haidinger fringe decreases inversely as the square root
of the film thickness. We shall encounter these fringes, when we discuss the
Fabry–Perot interferometer.
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6.3.2 Fizeau Fringes

We now closely examine our earlier statement that non-localized fringes can be
observed with a point source, but not with an extended source. Consider two
waves (1 and 2 in Fig. 6.11) starting from point S1 on the extended source
S and crossing each other at point P at a finite distance from film F after
one wave undergoes reflection at the front surface and the other at the back
surface of the film. The exact intensity at P due to point S1 alone depends
on the phase difference with which these waves arrive at this point. There can
be many points (S2 is one such point) on the extended source from which
similar pairs of waves after getting reflected from different portions of the film
may cross each other at point P. The resultant intensity at P will include all
such contributions. The calculation of the path difference between the waves
(such as the waves 1 and 2 in Fig. 6.11) starting from a given point on the
extended source and crossing each other at an arbitrary distance from the film
after reflection from the front and back surfaces of the film is somewhat tedious
as observed in Section 6.2.3. However, if the source and point of observation
are far from a sufficiently thin film, the situation cannot be much different from
the one discussed when the waves emerge from the film in parallel directions
(Fig. 6.7). As a first approximation, we may use Eq. (6.16) to describe this
path difference. To generalize the problem, we may also allow changes in the
thickness of the film from point to point. Thus, the crucial factor determining the
phase difference and hence the intensity at point P is still going to be the product
n2d cos �. But now the film thickness d and angle � may be different for waves
starting from different points on the source and reaching point P. This situation
is markedly different from the one for the Haidinger fringes. In that case, the
phase difference between the interfering waves at a given point of observation
was exactly the same, irrespective of the location of the point on the extended
source. But in the present case, this phase difference varies with the position of
a point on the extended source. This should lead to uniform illumination, and
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Fig. 6.11: Non-localized fringes with an extended source.
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not a distinct interference pattern unless we can ensure that maximum change
in phase among the interfering waves emanating from different points on the
extended source can be made quite small (much less than 	). One way to meet
this requirement is to bring the point of observation P closer to the film. This
in turn brings points F1 and F2 on the film closer to each other and the likely
variation in the film thickness is minimized. It also restricts the number of points
on the source which can contribute to the intensity at this point. For a point
of observation located on the film itself, the film thickness is essentially fixed.
The point of observation can be moved close to or right on the film if the eye
or the microscope used to observe the fringes is focused near the film. The
changes in the angular factor �cos �� can be further restricted by reducing the
entrance aperture of the microscope and by restricting angle � to values close
to zero. Interference fringes localized on or close to the film observed under
these conditions with an extended source are called Fizeau fringes. These are
fringes of equal thickness. These fringes are useful for testing the flatness of a
surface by keeping the test plate on top of a standard flat surface. Because of the
unevenness of the test surface, an air film is trapped between the two surfaces.
The contours of fringes in reflection or in transmission mark points of equal air
gaps between the surfaces. Between two consecutive contour lines, the air gap
changes by 
/2. For perfectly flat surfaces, light reflected or transmitted by the
air gap will have uniform intensity distribution.

6.3.3 Newton’s Rings

Newton’s rings provide an example of fringes of equal thickness. These are two-
wave interference fringes formed when monochromatic or nearly monochromatic
light falls on an air film bounded between a plano-convex lens and a flat surface
as shown in Fig. 6.12. The collimated light beam after reflection from the beam
splitter BS is incident on the plano-convex lens L. Fringes localized near the
lower surface of the lens are formed by interference between waves reflected
from the top and bottom of the air film. These are Fizeau fringes and can be
seen by the unaided eye or with the help of a microscope. The orientation of the
beam splitter ensures near normal incidence. The thickness of the film follows
the contour of the spherical surface of the lens. Any irregularity over the lens
surface distorts the fringes. In the ideal case, the interference fringes are circular
because the locus of points of equal thickness of the air film is a circle.

The phase difference between the interfering waves in reflection is

� = 4	


̄
d�x�−	� (6.32)

where d�x� is the thickness of the film at a distance x from the point of contact
of the lens with the flat surface. The phase difference 	 appears in Eq. (6.32)
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Fig. 6.12: Arrangement to observe Newton’s rings. F is a block with flat top
surface.

since one of the interfering waves suffers an internal reflection whereas the other
undergoes an external reflection. The bright fringes appear at

d�x� = �2m+1�
̄/4 (6.33)

and the dark fringes are located at

d�x� = 2m
̄/4� (6.34)

The center of the fringe pattern in reflected light is dark since the film thickness
is zero at the point of contact. Interference fringes seen in transmitted light are
complementary to those seen in reflected light. The radii of Newton’s rings can
be obtained with reference to Fig. 6.13:

R2 = x2 + �R−d�x��2�

For small d�x�, we can neglect �d�x��2, giving

x =√
2Rd�x��
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Fig. 6.13: Geometry for Newton’s rings.

The radii of the bright and dark fringes are

xb =
√

�2m+1�R
̄/2 (6.35)

and

xd =
√

mR
̄� (6.36)

respectively, where m takes values of 0� 1� 2�    Like the Haidinger fringes,
Newton’s rings are also circular, but the two differ at the fundamental level. The
center of the Haidinger fringe pattern is occupied by the fringe of the highest
order which may be bright, dark, or may have any intermediate intensity. The
center of the Newton’s ring pattern in reflected light always has a dark fringe
of the lowest order. It is somewhat puzzling why these fringes are named after
Newton since Newton was not a believer of the wave theory of light.

6.3.4 Straight Fringes

Fringes of equal thickness can also be observed from a wedge-shaped air film
bounded between two flat surfaces (Fig. 6.14). We can also have a wedge-
shaped film of a transparent medium. The fringes are straight and localized on
the film itself. For a small angle wedge, the film thickness is given by

d�x� = �x� (6.37)

where � is the wedge angle and x is the horizontal distance of a point on the
wedge from the point of contact of the surfaces. As in Newton’s rings, the lowest
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Fig. 6.14: A wedge angled film produces localized straight fringes.

order fringe is dark. The appearance of the bright and dark (straight) fringes is
still described by Eqs (6.33) and (6.34), respectively. The mth bright fringe is
located at

xb = �2m+1�

�

̄/4� (6.38)

and the mth dark fringe appears at

xd = �2m�

�

̄/4� (6.39)

6.4 TWO-WAVE INTERFEROMETERS

A number of two-wave interferometers exist with myriad applications in optics,
metrology, plasma diagnostics, and other related fields. Most of these interfer-
ometers are variants of the historic Michelson interferometer. The rudiments of
this interferometer were discussed in Section 2.4.1. Here, we dwell on the for-
mation and nature of the interference fringes in a Michelson interferometer. This
will be followed by a brief discussion on other commonly used interferometers.

6.4.1 Michelson Interferometer

Figure 6.15 shows the basic configuration of a Michelson interferometer. A light
beam from the extended source S is split equally by the 50–50 beam-splitter BS
kept with the reflecting coating away from the source. A small source kept in
front of a ground glass plate or a collimating lens acts as a convenient extended
source. The orientations of mirrors M1 and M2 can be controlled precisely. Mirror
M2 usually has a fixed position. The distance of mirror M1 from the beam splitter
can be adjusted with a fine pitch screw. The beam splitter is oriented at 45
 to
the mirrors. The source, as mentioned, is an extended one, sending light beams
in different directions but for illustration we concentrate on one such beam. The



276 Chapter 6: INTERFERENCE OF LIGHT WAVES

P

M
2

M
1

  BS

(1)

(2)

l2

l1

P0

45 45

S

G

Fig. 6.15: Michelson interferometer; S is an extended source, BS is a 50–50
beam splitter, G is the compensating plate, mirror M1 is moveable and mirror
M2 is fixed.

split beam (1) traverses the beam splitter BS thrice before combining with beam
(2) which traverses the beam splitter only once. For sources with low temporal
coherence such as the mercury and sodium discharge lamps, it is necessary to
use the compensating plate G which is identical to the beam splitter plate, but
without the reflecting coating on it. It is kept in the path of the second beam
parallel to the beam splitter. The compensating plate is unnecessary when the
interferometer is used with a laser source, but is absolutely unavoidable with a
white light source. The fringes produced by interference between the two beams
can be visually observed with an unaided eye or with a telescope. The intensity
distribution of the interference pattern can be recorded with a photodiode.

The nature of the fringes formed in a Michelson interferometer can be better
analyzed with the help of Fig. 6.16, where M ′

2 is the virtual image of mirror
M2 formed by the beam splitter. Similarly, the extended source S has also been
brought in line with the direction of observation. The observed fringes can be
interpreted as two-wave interference fringes formed by an air film bounded
between mirror M1 and the virtual image M ′

2 of mirror M2. In replacing mirror
M2 by its virtual image M ′

2, due attention should be paid to phase changes, if
any, produced by reflections from the beam splitter. The bounding surfaces M1

and M ′
2 of the air film will be exactly parallel if the optically flat mirrors M1 and
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Fig. 6.16: Air film equivalence of Michelson interferometer.

M2 are oriented exactly perpendicular to each other. The film thickness d equals
the distance mismatch �l1 − l2� between the two arms of the interferometer. This
arrangement is exactly equivalent to the one used to observe Haidinger fringes
from a thick film (see Figs 6.7 and 6.10). Fringes localized at infinity can be seen
with a telescope. Alternatively, the fringes can be observed in the focal plane of a
converging lens as shown in Fig. 6.16. The symmetry of the optical arrangement
gives rise to circular fringes with the center of the fringe pattern lying on the
optical axis. Equations (6.23) and (6.24) locate the bright and dark fringes of
the Michelson interferometer provided it is assumed that the differential phase
change introduced by the beam splitter in the two beams is 	 radians. This is
strictly not true since the 50–50 beam-splitter is not just a transparent plate.

For a perfectly collimated beam incident normally on the mirrors, the entire
field of view will have uniform illumination-maximum, minimum, or any value in
between, depending on the exact thickness of the air film. This is the underlying
principle of the Twyman–Green interferometer used for testing optical elements.
Circular fringes of equal inclination can be observed with a somewhat divergent
light beam incident on the interferometer. With n1 = 1� n2 = n, Eq. (6.30) gives
the angular radius of the mth bright fringe from the center as

�m =
√

�m−1+ ��
̄

nd
� (6.40)
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where d = �l1 − l2�. The fringe at the center has the highest order. As the path
difference between the two arms of the interferometer is decreased, the fringes
appear to move in and become broader. For a decrease in d by 
/2, the highest
order fringe disappears at the center. On the other hand, the fringes become
sharp and move out as the mirror separation is increased. A new fringe appears
at the center for every increase of 
/2 in the mirror separation. When the two
arms of the Michelson interferometer are perfectly balanced �d = 0� and the
mirrors are exactly perpendicular to each other, the central fringe expands to
fill the entire field of view. For small differences in the path lengths of the
two arms, straight fringes of equal thickness can be seen when mirrors M1 and
M2 deviate slightly from the perpendicular orientation. The air film between the
mirrors is now wedge shaped. The path difference between the interfering beams
now varies primarily due to changes in the thickness of the wedge, giving rise
to straight fringes. The fringes begin to show curvature with increasing wedge
angle because the changes in the path lengths due to the inclination factor �cos ��
can no longer be ignored. The convex side of the curved fringes is always on
the apex side of the wedge. The visibility of Michelson fringes, obtained with
a 50–50 beam splitter and quasi-monochromatic light of degree of coherence
������, is (see Eq. 2.40)

V��� = ������� (6.41)

where � = 2	�̄� = 4	



�l2 − l1�. The fringe visibility starts with unit value for
the balanced arms of the interferometer and then decreases slowly with increas-
ing path difference. For monochromatic light, the visibility of the fringes is
independent of the path difference.

6.4.1.1 Alignment of the Michelson Interferometer

To align the interferometer, its two arms are made equal to within a few mm
using an ordinary scale. The lens or the ground glass plate between the point
source and the interferometer is then removed (alternatively a sharp pin is kept
between the ground glass plate and the beam splitter). Two images of the point
source (or of the pin), one formed by the mirror in each arm, can be seen
through the beam splitter even without a telescope. These images are brought to
coincidence by adjusting the coarse tilting screws on the fixed mirror �M2�. The
mirrors M1 and M2 are now nearly perpendicular to each other. A fringe pattern
can be seen if the lens (or the ground glass plate) is restored. Since the mirrors
are not exactly perpendicular to each other, the fringes are localized. Hence, at
this stage the eyes should be focused in the neighborhood of mirror M1. The
fine tilting screws on the fixed mirror are now adjusted to obtain circular fringes
with the center of the fringe pattern in the middle of the field of view. When
this happens, the mirrors M1 and M2 are in exact perpendicular orientation.



6.4: TWO-WAVE INTERFEROMETERS 279

The fringes at this stage will usually be quite thin and sharp. The position of
the moveable mirror is now adjusted with the fine pitched screw to equalize the
lengths of the two arms of the interferometer. During this adjustment, the fringes
in the field of view should become broad and fewer in number. The arms are
nearly balanced when no more than a few fringes cover the entire field of view.
The arm lengths are exactly equal if the central fringe fills the entire field of
view. The central fringe is not necessarily dark since the 50–50 beam splitter
usually does not introduce a phase difference of exactly 	 radians between the
two arms of the interferometer. If a lens is used, ensure that a slightly divergent
beam falls on the beam splitter.

6.4.1.2 White Light Fringes

To produce interference with white light, the path difference between the inter-
fering waves must not exceed a few wavelengths of light, making it necessary
to use the compensating plate. This condition can be achieved first with the
quasi-monochromatic source in place as mentioned above (only one or two cir-
cular fringes filling the entire field of view). It will be convenient to work with
straight fringes at this stage. They can be obtained by a slight misalignment
of the mirrors. The white light source may now be introduced. It will help to
retain the quasi-monochromatic source as well so that fringes due to both the
sources can be seen simultaneously. With white light, the central fringe corre-
sponding to exactly zero path difference for all wavelengths will show no color,
but the remaining few fringes visible with white light will be colored. In fact,
the observation of the achromatic white light fringe is taken as an indication of
the two arms of the Michelson interferometer being exactly balanced. This fact
has been exploited with great success in the calibration of the standard meter
with a Michelson interferometer.

The index of refraction of a thin transparent plate of known thickness t can be
measured by introducing it in the fixed arm of the interferometer and counting the
number of fringes crossing the field of view. The counting can be accomplished
with the help of white light fringes. The interferometer must be set to see straight
fringes with monochromatic light and white light simultaneously before the plate
is inserted, which results in the displacement of fringes in the field of view. The
path length of the moveable arm is varied till the white light fringes re-appear
in the field of view. The index of refraction of the plate can be obtained from

n = �m


t −1
�

where �m is the number of monochromatic fringes counted between the two
appearances of the white light fringes.
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6.4.1.3 Calibration of the Standard Meter

The split-beams in the Michelson interferometer can be widely separated from
each other so that any desired path difference can be introduced between them.
This makes the Michelson interferometer an extremely versatile tool in optical
research and testing. The coherence length of the source and the ability to count
a large number of fringes crossing the field of view are the only limitations.
These limitations pose no real problem with the present day technology. A laser
can have coherence length of several hundred meters and electronic devices can
count any number of fringes. However, Michelson used the discharge lamps
for calibrating the standard meter in terms of the optical wavelengths. The
coherence lengths of these sources are much smaller than a meter. To get over
these problems, Michelson used an ingenious device. He used nine intermediate
standards of increasing lengths called etalons. Each intermediate standard was
nearly twice in length of the one immediately preceding it. The longest etalon
used by him was nearly 10 cm long. It was necessary to count the fringes,
crossing the field of view, when the mirror was being displaced over the length
of the smallest etalon. White light fringes were used to ascertain the equality of
the lengths of the two arms of the interferometer. Care had to be exercised to
standardize the ambient conditions since the wavelength in air could change with
change in the ambient conditions. The standard meter consists of 1,553,163.5
wavelengths of the red line of Cd (
 = 6438�4722). It was concluded that the
wavelength of the red line of Cd is 
 = 6438�4696 A
 in dry atmosphere at 15
 C
and a pressure of 760 mm Hg. Subsequently (1960), the meter was expressed in
terms of the orange-red line of krypton (86Kr36) of wavelength 6057�8021 A
.
The standard meter being equivalent to 1,650,763.73 wavelengths of this spectral
line of Krypton. The precision of measurement permitted the detection of a
displacement of less than 1/100 of a fringe. This is less than the widths of the
lines engraved on the bar of platinum–iridium alloy kept at 0
 C in Paris as an
International Prototype Meter.

At this stage, it is pertinent to recall that the Michelson interferometer has
played an important role in the development of the electromagnetic theory of
light. In the last quarter of the nineteenth century, it was being conjectured that
light waves require a material medium to propagate. This medium was given
the name aether and was assigned some peculiar properties. It was supposed
to fill the entire space. The celebrated Michelson–Morley experiment proved
conclusively that such a medium does not exist and that light can propagate just
as well in empty space.

6.4.2 Twyman–Green Interferometer

The Twyman–Green interferometer is one of the many variants of the Michelson
interferometer. It is particularly useful for testing optical elements such as lenses,
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prisms, flats, etc. The field of view of a Michelson interferometer carries uniform
illumination if perfectly collimated light falls on the beam-splitter at 45
 when
the mirrors are oriented exactly perpendicular to each other.

Twyman–Green interferometer makes use of this property of the Michelson
interferometer (Fig. 6.17). A well-corrected lens L1 collimates light from the
point source S on to the beam splitter BS. The optical element to be tested
is kept in one of the arms of the interferometer. This arm terminates with a
distortion-free spherical convex mirror M for testing lenses or with a flat mirror
while testing flat surfaces of prisms, cubes, optical flats, etc. For lens testing, the
center of curvature of the convex mirror coincides with the back focal point of
the test lens. If the lens is perfect with no aberrations at all, the plane wavefront
returning from it is exactly orthogonal to the plane wavefront returning from
mirror M1, and the field of view is uniformly illuminated. If, on the other hand,
the lens suffers from some aberration, the wavefront is distorted in the double
passage through the lens and a fringe pattern characteristic of the nature of

L1

M1

L2

W1

W2

S

45

TL M

D

(1)

(2)
C,F

BS

Fig. 6.17: Twyman–Green interferometer; L1 is collimating lens, L2 is focusing
lens, TL is the test lens, M is spherical convex mirror, BS is beam splitter, W1

is a plane wavefront in arm (1) and W2 is the distorted wavefront in arm (2), D
is the detector.
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the aberration appears. The fringe contours can be marked on the test element.
Alternatively, point-to-point aberrations of the test element can be determined
by photographic or electronic recording of the fringe contours, and subsequently
corrected. A laser source can be used for its enhanced coherence and brightness.

6.4.3 Mach–Zehnder Interferometer

In the Michelson and Twyman–Green interferometers, the same beam splitter
is used to first split the incident beam and then to combine the split beams
after introducing the desired path difference between them. The Mach–Zehnder
interferometer, on the other hand, uses two beam splitters – one for splitting
the incident beam and the other for combining the split-beams (Fig. 6.18).
Mirrors M1 and M2 steer the beams appropriately. The centers of the beam
splitters and mirrors lie on the corners of a parallelogram. The split-beams
travel widely separated paths before they are combined by the second beam
splitter. This interferometer is particularly useful for plasma diagnostics and gas
flow studies (in a wind tunnel, for example). One arm of the interferometer
contains the test chamber and compensating elements (not shown in the figure)
are kept in the other arm to equalize the optical path lengths. The refractive
index changes associated with the density changes in the test chamber can be
accurately determined in terms of the fringe displacements. The contours of the
fringes determine local density changes within the test chamber under different
experimental conditions. The fringes can be localized at any convenient region
in the test chamber by appropriately tilting one of the mirrors.

M1

M2

BS2

BS1

L2

L1
TC

D

S

Fig. 6.18: Mach–Zehnder interferometer; BS1 and BS2 are beam splitters, M1

and M2 are mirrors, TC is test chamber, D is detector.
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M1 M2

M3BS

Fig. 6.19: Sagnac interferometer.

6.4.4 Sagnac Interferometer

The Sagnac interferometer differs from the interferometers discussed, so far, in
that the interfering beams travel along a common closed path, albeit in opposite
directions. The closed path can involve three, four, or more optical elements.
Figure 6.19 shows the optical configuration of a four-element Sagnac interferom-
eter. It consists of one beam splitter and three steering mirrors. When the beam
splitter BS and mirrors M1 and M3 are exactly parallel and the mirror M2 in the
exact perpendicular orientation, the trajectories of the counter-propagating beams
coincide and no difference in the path lengths can be introduced between the two
beams by putting an object in the path of the beams. However, a path difference in
the beams can be introduced by tilting one of the mirrors, resulting in the appear-
ance of the interference fringes. The Sagnac interferometer is primarily used
to measure rotational speeds. The rotation of the interferometer support about
its axis introduces phase difference, between the counter-propagating beams,
which is proportional to the speed of rotation. The speed of rotation can be
obtained from the resulting fringe displacement. However, the phase shift intro-
duced is quite small unless the overall length through which light passes can be
significantly increased by using optical fiber to construct the interferometer. A
laser-gyro using a ring laser is one such modern device to measure rotational
speeds of systems.

6.5 MULTI-WAVE INTERFERENCE

We have so far considered two-wave interference which is characterized by a
sinusoidal variation of light intensity with phase difference between the inter-
fering waves. We now consider multi-wave interference. A diffraction grating
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Fig. 6.20: Multiple internal reflections in a high reflectivity film.

produces multi-wave interference (see Section 10.5). Multi-wave interference
can also be produced by multiple internal reflections within a thin transparent
film of high reflection coefficient (Fig. 6.20).

Tables 6.1 and 6.2 list amplitudes of the first few waves in reflection and
transmission for a glass film with r = 0�20, a film of antimony sulphide (a high
reflectance material of index of refraction 3.0) with r = 0�50, and a multi-layer
dielectric film used as end mirrors in laser cavities with r = 0�99.

These tables show that with successively diminishing amplitudes, interfer-
ence effects for low reflectivity films are adequately described by two-wave
interference. For films of sufficiently high reflectivity, the amplitudes of suc-
cessive waves fall off rather slowly, leading to multi-wave interference. It will
be shown that despite the large difference in the amplitudes of the first and
successive waves, the intensity minima in light reflected from high reflectivity
films have nearly zero intensities. We shall also find interference effects among

Table 6.1. Amplitudes of successive waves in reflected light �E0 = 1�.

Successive reflected
wave

Amplitude

(r = 0�20) (r = 0�50) (r = 0�99)

1 0.20 0�50 0�99
2 0.192 0�375 0�0197
3 7�7×10−3 0�093 0�0193
4 3�1×10−4 0�023 0�0189
5 1�2×10−5 0�0058 0�0185
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Table 6.2. Amplitudes of successive waves in transmitted light
�E0 = 1�.

Successive
transmitted wave

Amplitude

(r =0�2) (r =0�50) (r =0�99)

1 0.96 0�75 0�0199
2 0.038 0�1875 0�0195
3 1�5×10−3 0�0469 0�0191
4 6�1×10−5 0�0117 0�0187

multiply reflected waves markedly different from those associated with two-
wave interference discussed so far. For the intermediate case of r = 0�50, the
successive amplitudes do not decrease as rapidly, but the amplitude becomes
vanishingly small after a few reflections.

The phase difference between any two successive waves is

� = k̄�� (6.42)

where k̄ �=2	/
̄� is the mean vacuum wavenumber of light incident on the film
and

� = 2nd cos � (6.43)

is the optical path difference between the successive waves (Eq. 6.16). For a film
with flat and parallel surfaces, interference fringes can be observed at infinity or
in the focal plane of a converging lens. The path difference between the first and
last among the interfering waves in multi-wave interference must not exceed the
coherence length of light used to illuminate the film.

6.5.1 Intensity Distribution in Multi-wave Interference

For the present discussion, incident light may be assumed to be polarized per-
pendicular to the plane of incidence. The resultant amplitude of the transmitted
wave can be written as

Et = E0tt
′ eik̄�′ [

1+ r ′2 eik̄� + r ′4 ei2k̄� +· · ·+ r ′2n eink̄� +· · ·
]

= E0tt
′ eik̄�′

1− r ′2 eik̄�
� (6.44)

where �′ determines the phase of the first transmitted wave (see Fig. 6.20).
Here, we have assumed infinitely many interfering waves in the transmitted light.
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This poses no serious problem since the amplitudes of the multiply reflected
waves must eventually become vanishingly small. The intensity distribution of
the transmitted light is

It =
(

1
2

�0c

)
EtE

∗
t

= I0

�tt′�2
�1− r ′2 eik̄���1− r ′2 e−ik̄��

= I0

�tt′�2
1+ r ′4 −2r ′2 cos�k̄��

(6.45)

= I0

�tt′�2
�1− r ′2�2 +4r ′2 sin2�k̄�/2�

�

In this derivation, real reflection coefficients are assumed. Accordingly, angle �
for the internal reflections must be less than the critical angle. For non-absorbing
media, the principle of reversibility (Fig. 6.21) requires

r2 + tt′ = 1� r ′ = −r� (6.46)

These results can be obtained from Fresnel’s relations as well. The transmitted
intensity distribution then becomes

It = I0

�1− r2�2

�1− r2�2 +4r2 sin2�k̄�/2�
= I0

1

1+F�r� sin2�k̄�/2�
� (6.47)
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Fig. 6.21: Principle of reversibility across an interface between non-absorbing
media; (a) incident field Ei gives rise to reflected field rEi and transmitted field
tEi, (b) Incident fields tEi and rEi generate the fields �r2 + tt′� Ei and �r +r ′�tEi.
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where

F�r� = 4r2

�1− r2�2
= 4R

�1−R�2
(6.48)

and R = r ′2 = r2. The film transmittance function

T = It

I0

= 1

1+F�r� sin2�k̄�/2�
� (6.49)

known as the Airy function or the Airy Formula is plotted in Fig. 6.22 for a few
representative values of the reflection coefficient. The transmission peaks with

(
It

I0

)

max

= 1 for k̄� = 2m	 (6.50)

are characterized by unit transmittance, irrespective of the value of the reflec-
tion coefficient. Here m takes integral values 0� 1� 2�    . The minimum film
transmittance (

It

I0

)

min

= 1
1+F�r�

for k̄� = �2m+1�	 (6.51)

is, however, dependent on the reflection coefficient of the film. For films of
low reflection coefficient, it is not much below one and the visibility of the
interference fringes is low. For films of sufficiently high reflection coefficient, the
denominator of the Airy function becomes quite large even for slight deviation
from the maximal condition �k̄� = 2m	�. Accordingly, the film transmittance
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r = 0.93

1

0

)sin2    
−1

r Δ k
2

(

kΔ

T
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m2(m − 1)π

Fig. 6.22: Changes in film transmittance with phase difference between succes-
sive interfering waves for r = 0�2� 0�5� 0�93.
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falls abruptly as soon as one moves away from the transmission peaks. This gives
rise to extremely sharp and bright fringes separated by broad regions of almost
complete darkness in the transmitted light. The slow decrease of the amplitudes
of multiply reflected waves from high reflectivity films gives rise to an intensity
distribution which differs non-trivially from the sinusoidal distribution found in
two-wave interference. The intensity distribution for multi-wave interference in
reflected light is complementary to the intensity distribution in transmitted light.
Therefore for non-absorbing films,

� = Ir

I0

= 1− It

I0

= F�r� sin2�k̄�/2�

1+F�r� sin2�k̄�/2�
� (6.52)

Maximum reflectance

�max = F�r�

1+F�r�
for k̄� = �2m+1�	 (6.53)

remains less than one, except when F�r� approaches infinity (r → 1). This is in
contrast to the transmission maxima with unit transmittance, irrespective of the
value of the reflection coefficient. The reflectance of a film with large F�r� is
not very sensitive to changes in the phase difference, except when

k̄� = 2m	� (6.54)

This condition locates the minima of the intensity distribution in reflected light.
Narrow dark fringes among broad regions of brightness appear in reflected light
for films with high interface reflection coefficient (Fig. 6.23).

For an absorbing film, the first of Eqs (6.46) must be changed to

r2 + tt′ +A = 1�

where A is the film absorptance, and Eq. (6.45) becomes

T = It

I0

= �1−R−A�2

�1−R�2 +4R sin2�k̄�/2�

=
(

1− A

1−R

)2 1

1+F�r� sin2�k̄�/2�

= Tmax

1+F�r� sin2�k̄�/2�
�

(6.55)
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Fig. 6.23: Changes in film reflectance with phase difference between successive
interfering waves for r = 0�2� 0�5� 0�93.

where the peak transmittance

Tmax =
(

1− A

1−R

)2

(6.56)

is less than one for an absorbing film. The reduction in the maximum transmit-
tance can be quite substantial even for the weakly absorbing films because the
factor �1−R� can be quite small for the highly reflecting films. The absorption
losses in the dielectric films include scattering from material inhomogeneities
whereas metallic films possess intrinsic absorption losses.

6.6 FABRY–PEROT INTERFEROMETER

High contrast (Imax/Imin) of interference fringes in light transmitted by high reflec-
tivity films is exploited in Fabry–Perot interferometer – a device of unmatched
spectral resolution among conventional spectroscopic instruments. A Fabry–
Perot interferometer in its simplest form consists of two identical glass or quartz
plates with highly reflecting coatings on sides facing each other (Fig. 6.24). In
the interferometric version of the device, the plate separation is adjustable. A
Fabry–Perot etalon has fixed plate separation. An optically finished hollow invar
cylinder, called the spacer, maintains the plate separation. Adjustable fine pitch
screws ensure parallelism of the inner surfaces of the plates. The outer surfaces
of the plates are slightly wedged to prevent undesirable multiple reflections. An
extended source is used for illumination with or without the converging lens
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Fig. 6.24: Fabry–Perot interferometer; S is an extended quasi-monochromatic
source, BB is a spacer. Inner faces of the slightly wedged plates are parallel and
highly reflecting.

L1. A large number of plane waves enter the interferometer making different
angles with the optical axis of the interferometer. The figure shows one such
plane wave. Multiple reflections within the interferometer give rise to a large
number of waves in the transmitted light which are brought to a common focus
by the second lens L2. The condition for the appearance of intensity maxima in
transmitted light is same as for two-wave interference, namely,

4	n



L cos � = 2	m� (6.57)

Here, we have ignored any phase change on reflection. We need not take explicit
cognizance of this phase change as long as it remains independent of the wave-
length and angle of incidence. Further, we note that the condition for maximum
intensity (6.57) depends only on the angle of incidence (or equivalently on angle
�), and not on the exact location of the point on the extended source. Therefore,
in the absence of the converging lens L1, all waves emanating from different
points of the extended source but travelling in the same direction reinforce each
other. However, different points on the extended source are mutually incoherent,
and hence the emergent waves after multiple reflections within the interferome-
ter but originating from a single point on the source are the only waves which
can interfere. For light waves starting from different points of the source but in
parallel directions and converging to the same point in the focal plane of lens
L2, it is the intensities and not the amplitudes which add up.

The normalized transmittance of the Fabry–Perot interferometer obtained from
Eq. (6.55) is

(
It

I0

)

n

= It/I0(
1− A

1−R

)2 = 1

1+F�r� sin2�k̄�/2�
� (6.58)
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Bright fringes in the light transmitted by the Fabry–Perot interferometer are
extremely sharp. These are fringes of equal inclination, with the highest order
fringe at the center of the pattern (Haidinger fringes). The fringes are circular
for an interferometer possessing an axis of symmetry. Equation (6.40) gives the
angular radius of the mth bright fringe from the center. The arrangement of
Fig. 6.24 with fixed separation between the plates is a Fabry–Perot etalon1 and
not exactly a Fabry–Perot interferometer, as mentioned earlier. However, the
same arrangement can be used as an interferometer if the path difference

� = 2nL cos �

between the successively reflected waves can be changed. This can be done by
changing the plate separation L. However, parallelism between the plates during
displacement may be difficult to ensure. Alternatively, the incidence angle could
be changed. The better option is to change the refractive index n by changing
the pressure of the gas filling the space between the plates.

6.6.1 Widths of Transmission Peaks

Consider a Fabry–Perot interferometer with plate separation L. For convenience,
we take � = 0 so that k̄� = 2nk̄L. We now calculate the wave number and
frequency spreads of the light exiting the interferometer when wave number of
the light entering the interferometer is changed. Figure 6.25 shows a typical

0.5

I t

I0

 k − δk k + δk
k

1.0

FWHM

k

n

Fig. 6.25: Transmission profile of a Fabry–Perot interferometer.

1 A well-polished transparent plate with parallel faces is also an etalon.
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transmission profile of a Fabry–Perot interferometer with peak transmission at
nk̄L = m	. Let �k̄ − �k� and �k̄ + �k� be the wave numbers of the points on
the transmission peak with 50% of the maximum transmission. For these points,
Eq. (6.58) gives

1

2
= 1

1+F�r� sin2�m	 ±nL�k�
�

requiring

F�r� sin2�±nL�k� = 1� (6.59)

For large F�r�, �k is given by

�k = 1
nL

1√
F�r�

�

The full width at half the maximum (FWHM) of the transmission peak of the
interferometer is defined as

FWHM = 2�k = 2

nL

1√
F�r�

� (6.60a)

The FWHM in frequency units is

�� = 2
c

2	
�k

= c

	nL

1√
F�r�

= c

2	nL

1− r2

r

= c

2	nL

1−R√
R

(6.60b)

and in wavelength units, it is given by the expression

�
 = 
̄2

2	nL

1−R√
R

� (6.60c)
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Some representative values of the FWHM of the Fabry–Perot transmission peaks
are given below:

�� = 10 MHz for r = 0�99 and L = 10 cm�

= 10 MHz for r = 0�9999 and L = 1 mm�

= 1 MHz for r = 0�9999 and L = 1 cm�

The spectral widths of the transmission peaks can be reduced by increasing the
film reflectivity and plate separation. However, as we shall see shortly, increasing
the plate separation reduces the useful spectral range of the interferometer.

6.6.2 Fabry–Perot Interferometer as a Spectrometer

A spectrometer is an instrument which can determine the wavelength distribution
of a light source. A Fabry–Perot interferometer can be used as a spectrometer,
albeit within a narrow spectral range. However, within its limited spectral range,
it provides an extremely high degree of precision. If the transmission of a Fabry–
Perot interferometer with highly reflecting plates is recorded as a function of
the source frequency, high transmission will be found at certain frequencies and
practically no transmission for intermediate frequencies. Figure 6.26 shows this
behavior. For the sake of convenience, we have taken � = 0. The frequencies
and wavelengths of the transmission peaks are (Eq. 6.57)

�m = m
c

2nL
� (6.61a)


m = 2nL

m
� (6.61b)
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(m + 1)c
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2nL
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Fig. 6.26: Normalized transmittance of a Fabry–Perot interferometer as a func-
tion of the source frequency.
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respectively. The frequency and wavelength separations between successive
transmission peaks are

�� = c

2nL
� (6.61c)

�
 = 
2

2nL
� (6.61d)

respectively, where n is the index of refraction of the medium between the plates
of the interferometer. Re-writing Eq. (6.61b) as

L = m

(
1

2

m

n

)
= �m+1�

(
1
2


m+1

n

)
= �m+2�

(
1
2


m+2

n

)
= · · ·� (6.62)

reveals that a Fabry–Perot interferometer transmits all those wavelengths, with
minimum or no attenuation, for which the plate separation is an integral multiple
of half wavelengths in the medium filling the Fabry–Perot interferometer. It is
therefore possible to obtain the spectral distribution of the source by changing
the plate separation in a continuous manner. A piezo-drive can be used to move
one of the plates while keeping the other plate in a fixed position. However, for
an unambiguous determination of the wavelength distribution of the source, the
permitted range of displacements of the plate is extremely small. To see this,
imagine the Fabry–Perot interferometer being illuminated by a source with a
single, narrow emission line centered at wavelength 
1. Depending on the range
covered by the piezo drive, the interferometer will show transmission maxima
whenever the plate separation equals an integral multiple of 
1/2n (Fig. 6.27).

Now, suppose that the source emission is peaked at two very close-lying
wavelengths 
1 and 
2, and the spectral width of each line is much smaller than
their wavelength separation. The interferometer will now show two very close
transmission peaks or resonances for each order m at plate separations of

L1 = m

1

2n
� L2 = m


2

2n
�

If the piezo-drive moves the plate back and forth at a sufficiently high rate, these
resonances can be observed on the screen of an oscilloscope simultaneously
(Fig. 6.28). Exactly how many orders will be seen depends on the extent of the
plate movement. The difference in the wavelengths of the two spectral lines can
be obtained from


2 −
1 = x

X

(

2

2nL

)
�

where x is the separation on the screen between the transmission peaks for 
1 and

2 in a given order, and X is the separation between consecutive transmission
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Fig. 6.27: Change in normalized transmittance of a Fabry–Perot interferometer
with plate separation. Source contains a single, narrow spectral line centered
at 
1.
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Fig. 6.28: Change in transmittance of a Fabry–Perot interferometer with plate
separation when source emission has two close spectral lines 
1 and 
2.

peaks for wavelength 
1 or 
2. As mentioned earlier, 
2/2nL is the wavelength
interval between successive transmission peaks for either wavelength, where 

is the average of 
1 and 
2 and L is the nominal separation between the plates of
the interferometer during this scan. The change in the plate separation, needed
to observe the transmission peaks associated with the two wavelengths in the
same order, is a very small fraction of the wavelength since a change of 
/2n
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in plate separation is all that is needed to move from one transmission peak to
the next one for a given wavelength (Fig. 6.27).

6.6.3 Free Spectral Range

It can be seen from Fig. 6.28 that the wavelength difference 
2 −
1 between two
spectral lines can be obtained unambiguously only if the mth order transmission
peak for wavelength 
2 lies between the mth and �m+ 1�th order transmission
peaks for the wavelength 
1. However, for large wavelength separation, the
mth order transmission peak associated with 
2 may be sufficiently displaced to
either coincide with or to lie beyond the �m+1�th transmission peak for 
1. If
that happens, the determination of wavelength difference between the spectral
lines becomes uncertain. This puts a limit to the useful spectral range of the
interferometer. Clearly, the useful spectral range cannot exceed the frequency or
wavelength interval between successive transmission peaks. Equations (6.61c)
and (6.61d) therefore define the free spectral range (FSR) of the Fabry–Perot
interferometer in frequency and wavelength units, respectively, i.e.,

���FSR� = c

2nL
� (6.63a)

�
�FSR� = 
2

2nL
� (6.63b)

The free spectral range of a Fabry–Perot interferometer in frequency units is
dependent only on the plate separation, but in wavelength units, it depends on the
wavelength as well. Note that the FWHM of the transmission peaks (Eqs 6.60)
and the free spectral range of the interferometer decrease with increase in plate
separation. Therefore, the widths of the transmission peaks can be reduced by
increasing the plate separation, but only at the cost of the free spectral range. A
Fabry–Perot interferometer with 1 cm plate separation in air and amplitude reflec-
tion coefficient of 0.9999 will have FWHM of 1 MHz and free spectral range of
15 GHz which at 500 nm corresponds to a free spectral range of only 0�125 Å.
This, indeed, is a very small spectral range for spectroscopic measurements.
Therefore, the Fabry–Perot interferometer finds use only in high-resolution spec-
troscopy where one is interested in finding frequency or wavelength differ-
ences between very close spectral lines. A useful parameter to characterize the
high-resolution capability of a Fabry–Perot interferometer is its finesse (� ),
defined as the ratio of the free spectral range to the FWHM of the transmission
peaks, i.e.,

� = ��

��
= �


�

= 	r

1− r2
� (6.64)
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A finesse of 1000 requires r ∼ 0�9998. Optical surfaces with finesse as high as
10 000 are commercially available.

6.6.4 Spectral Resolution

Spectral resolution of an instrument is the closest wavelength (or frequency)
separation between two spectral lines that it can resolve. However, there is a
certain degree of arbitrariness as to when the two spectral lines are considered
to be resolved. This has led to several resolution criteria. Rayleigh’s criterion of
resolution is one such criterion (see Section 10.5.3), commonly used in diffraction
studies. A slightly different criterion for resolution is used in the present context
because the minimum transmittance (Eq. 6.51) in a Fabry–Perot interferometer
can be quite small, but difficult to pinpoint. The Rayleigh criterion makes use
of the minimum or the zero intensity point. But as we shall find, the two criteria
yield almost identical results. Two close spectral lines of equal intensity are
considered just resolved by a Fabry–Perot interferometer if the 50% normalized
transmittance points on the transmission peaks due to the two spectral lines
in a given order coincide as shown in Fig. 6.29. The dip (saddle point), with
transmittance of nearly 0.81 of the maximum transmittance of the combined
profile, appearing in the middle is taken as a guide for the resolution of spectral

2n2n

1.0

0.5

1.21

0.98

n

t
I0

I

mλ1 mλ2

L

Fig. 6.29: Resolution criterion for a Fabry–Perot interferometer (F�r� = 20); The
peaks are separated by FWHM of each. Dip height is nearly 0.81 times the
maximum height of the combined profile.
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lines.2 This criterion can be slightly rephrased. Two spectral lines with identical
spectral profiles are considered just resolved by a Fabry–Perot interferometer
if their transmission peaks are separated by the FWHM of each spectral line.
Therefore, the smallest frequency interval (resolution limit) that can be resolved
by a Fabry–Perot interferometer by this criterion is

�� = FWHM = c

2	nL

1− r2

r
= c/2nL

�
� (6.65a)

where � is the finesse of the interferometer. The smallest wavelength interval
that a Fabry–Perot interferometer can resolve is

�
 = 
2

2	nL

1− r2

r
= 
2/2nL

�
� (6.65b)

In either case, the resolution limit is the ratio of the FSR and finesse of the
interferometer. The Resolving Power (RP) of an instrument is defined as the
ratio of the mean wavelength of the spectral lines to the smallest resolvable
wavelength interval between them, i.e.,

RP = 
̄

�

= �̄

��
= 2	nL




r

1− r2
(6.66a)

= 2nL



� � (6.66b)

The resolving power of a Fabry–Perot interferometer increases with the finesse of
the coatings used. It also increases with the plate separation. For the same finesse
and plate separation, a Fabry–Perot interferometer possesses higher resolving
power in the ultra-violet than in the visible region. It may be relevant to mention
that beyond a certain point, increased finesse may not lead to an improvement
in the resolution because the ultimate limit is not put by the reflectivity of the
film, but by the flatness of its surfaces. The resolving power of a Fabry–Perot
interferometer can exceed 109.

6.6.4.1 Fabry–Perot Interferometer as an Optical Filter

Characteristic transmission frequencies of a Fabry–Perot interferometer with
minimal or no attenuation are

�m = m
c

2nL
�

2 In Rayleigh’s criterion of resolution, the intensity at the saddle point is 8/	2 times the maximum
intensity in the combined distribution.
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where m is an integer. For a high finesse interferometer, the spectral widths of the
transmission peaks can be extremely narrow. Light at intermediate frequencies is
not able to make its way through the interferometer. Thus, a Fabry–Perot inter-
ferometer may be called a multi-pass optical filter. However, for macroscopic
plate separations of the interferometer, there is hardly any filtering because the
transmission peaks at these plate separations are spectrally very close. To act
as a narrow band optical filter, a Fabry–Perot interferometer must have plate
separation of no more than a few wavelengths of light. The typical order m =
�2/
�nL of a transmission maximum of a Fabry–Perot interferometer at optical
wavelengths is quite high (∼105 for n = 1, L = 1 cm) and the wavelength and
frequency differences between successive orders are quite small. However, for
L of the order of the wavelength of light, the transmission maximum order m
is a small integer and the inter-order separation becomes large. For L = 
0/2,
where 
0 is some specific wavelength of interest, the order of a transmission
peak in air can be expressed as

m = 
0



�

A Fabry–Perot interferometer with plate separation 
0/2 has zero transmission
for 
 > 
0 because then m becomes non-integral. The transmission peaks occur
at 
 = 
0, 
0/2, 
0/3�    . The wavelength intervals between the successive
transmission peaks are now so large that for most experimental situations, the
Fabry–Perot interferometer has only one transmission peak of interest. This
is exactly what is needed for optical filtering. Figure 6.30 is drawn for 
0 =
500 nm. The m = 1 transmission peak occurs at 500 nm and the second �m = 2�

n
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Fig. 6.30: Fabry–Perot interferometer with L = 250 nm as a narrow band optical
filter.
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transmission peak lies in the ultra-violet �
 = 250 nm� and is four times narrower
than the first-order transmission peak. The transmission bandwidth

�
 = 
2

2	nL

1−R√
R

of the filter around the mean wavelength 
 can be made as small as desired by
a proper choice of the film reflectivity. However, increasing the film reflectivity
reduces the peak transmission (Eq. 6.56) of the filter. These filters are called
interference filters since interference among the multiply reflected waves is
responsible for the filtering action. Interference filters with bandwidths of few
tens of angstroms are readily available.

6.7 LUMMER–GEHRCKE PLATE

High-Resolution Fabry–Perot interferometers require highly reflecting coatings.
The absorption and scattering losses in the optical coatings reduce the trans-
mittance of the interferometer. Another approach to get high reflectivity at an
interface is to exploit the internal reflections at incident angles very close to,
but below the critical angle. At critical and above critical angles, total inter-
nal reflection makes the reflection coefficient complex and of unit magnitude.
However, just below the critical angle, the reflection coefficient is real and suf-
ficiently high (Section 1.7.3). The Lummer–Gehrcke (LG) interferometer makes
use of this property of internal reflections. It consists of a glass or a quartz
plate, a few mm thick, several mm in width, and a few tens of cm in length
(Fig. 6.31). A prism of appropriate apex angle is optically bonded to one end
of the plate to obtain the desired angle of incidence for the internal reflections.
Multiple internal reflections within the LG plate give rise to waves propagating
in parallel directions at near grazing angles on either side of the plate. These

n

Fig. 6.31: Lummer–Gehrcke plate.
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waves can be focused with a lens just as in a Fabry–Perot interferometer. The
Lummer–Gehrcke plates have been quite useful in the study of fine structure of
spectral lines in the ultraviolet region.

6.8 THIN OPTICAL COATINGS

Path differences among the multiply reflected interfering waves in a film must
not exceed the coherence length of the source. This puts some restriction on the
thickness of the film. However, for the present discussion, a film is considered
thin if its thickness is comparable to the wavelength of light. The top portion of a
soap film in a vertical frame may be thin enough to be categorized as a thin film
in the present context. In this section we shall deal with films which appear as
coatings on a substrate. These films are generally prepared by evaporation in a
vacuum chamber (pressure = 10−6–10−11 torr). The material to be evaporated can
be heated by passing current through it (for metal films) or by an electron gun, or
by laser ablation. A number of techniques exist to monitor and control the thick-
ness of the film as it grows. A quartz thickness monitor senses changes in the
frequency of vibration of a quartz strip due to changes in the mass during deposi-
tion. The reflectance and transmittance of the film can also be used for monitoring
its thickness during growth. Among the numerous applications of thin optical
films, mention may be made to anti-reflection (AR) coatings, high reflectance
(HR) mirrors, beam splitters, interference filters, phase retarders, and dichroic
mirrors (reflecting and transmitting wavelengths selectively). The films used for
most of these applications are multi-layer coatings. Here, we shall consider only
the dielectric coatings. They are superior to metal films in many respects.

6.8.1 Single Layer Optical Coatings

We consider a non-absorbing thin film of index of refraction n1 and thickness t1

coated on a non-absorbing substrate (assumed semi-infinite) of refractive index
ns (Fig. 6.32). Let a quasi-monochromatic plane wave of amplitude E0 and mean
wavelength 
̄ in vacuum be incident on the film from a semi-infinite medium
of index of refraction n0. The wave undergoes multiple reflections in the film.
The incident angle is assumed small so that the reflection and transmission
coefficients remain real. The resultant amplitude of the reflected wave is given
by the geometric series:

Er = E0�r1 + tt′r2ei� + tt′r ′
1r

2
2 ei2� + tt′r ′

1
2
r3

2 ei3� +· · · �
= E0�r1 + tt′r2ei��1+ r ′

1r2ei� + �r ′
1r2�

2ei2� +· · · ��

= E0

[
r1 + r2�1− r2

1 �ei�

1− r ′
1r2ei�

]
�

(6.67)
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Fig. 6.32: Multiple reflections in a single layer optical coating.

where

� = 4	


̄
n1t1 cos �� (6.68)

tt′ = 1− r2
1 � (6.46a)

Replacing r ′
1 by −r1,

Er

E0

= r1 + r2�1− r2
1 �ei�

1+ r1r2ei�

= r1 + r2ei�

1+ r1r2ei�
�

(6.69)

The film reflectance is

� = Ir

I0

= �r1 + r2ei���r1 + r2e−i��

�1+ r1r2ei���1+ r1r2e−i��

= r2
1 + r2

2 +2r1r2 cos �

1+ r2
1 r2

2 +2r1r2 cos �
�

(6.70)

The transmittance of a non-absorbing film is obtained as

T = It

I0

= 1−� = �1− r2
1 ��1− r2

2 �

1+ r2
1 r2

2 +2r1r2 cos �
� (6.71)
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At normal incidence and � = 	 radians, the film reflectance takes the form

� = �r1 − r2�
2

�1− r1r2�
2

= �n2
1 −n0ns�

2

�n2
1 +n0ns�

2
�

(6.72)

where

r1 = n0 −n1

n0 +n1

�

r2 = n1 −ns

n1 +ns

�

The choice of the phase angle

� = 4	


̄
n1t1 cos � = 	 (6.73)

is a particularly useful one, as we shall see later. For � = 0, it makes the film
thickness

t1 = 1
4


̄

n1

(6.74)

equal to quarter of the mean wavelength in the film.
The reflectivity of a single layer quarter wave optical coating can vary between

wide limits, depending on the indices of refraction of the film and the media
surrounding it. Table 6.3 gives indices of refraction of materials, commonly used
for optical coatings. A glass substrate �ns = 1�5� coated with a quarter-wave
film of antimony sulphide �n = 3�0� with reflectance � = 0�5 can be used as
a 50–50 beam splitter in the near infrared region. This is about the maximum
reflectivity in this spectral region that can be obtained from a single layer coated
glass substrate. The SiO �n = 2�0� quarter-wave coated glass jewelry can reflect
upto 20% of the incident light (slightly higher than 17% reflectivity of natural
diamond). These are examples of high-reflectance single layer coatings. Single
layer coatings can also be used as anti-reflection (AR) coatings to reduce the
reflection losses. The reflectance (Eq. 6.72) of a single layer quarter-wave coating
becomes zero if

n2
1 = n0ns� (6.75)

This requires a quarter wave coating of a material of index of refraction of about
1.22 to eliminate reflection from a glass �ns = 1�50� substrate. Unfortunately,
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Table 6.3. Dielectric materials for thin film coatings.

Material Refractive index Spectral region

Cryolite �AlF3 ·3NaF� 1�33 visible
Lithium Fluoride (LiF) 1�36 visible
Magnesium Fluoride �MgF2� 1�38 visible
Cerium Fluoride 1�63 visible
Aluminum Oxide �Al2O3� 1�76 visible
Silicon Oxide (SiO) 2�0 visible
Zinc Sulphide (ZnS) 2�3 visible
Rutile �TiO2� 2�6 visible
Antimony Sulphide �Sb2S3� 3�0 1 �m
Germanium (Ge) 4�0 2 �m
Tellurium (Te) 5�0 4 �m

there is no good material with refractive index close to this value. The usual
choice for AR coating of glass substrates is either cryolite �AlF3 · 3NaF� with
n = 1�33 or magnesium fluoride �MgF2� with n = 1�38. The latter, being more
durable, is preferred. A quarter-wave film of MgF2 on glass substrate cuts down
its reflectivity from 4 to nearly 1.2%. This reduction is not insignificant. It brings
substantial improvement in the performance of optical instruments. For example,
reflection loss for a camera with four lenses is reduced from nearly 32% down to
about 4% if each of the lenses is given a quarter-wave MgF2 coating. This leads
to not only brighter images but removes the haziness caused by light reflected
from the surfaces of the lens.

Equation (6.73) can be satisfied for only one particular wavelength for a film
of a given refractive index. Therefore, an optical coating can act as a quarter-
wave coating for that particular wavelength only. To see the spectral behavior
of single layer coatings, we re-write Eq. (6.73) as

� = 	

0


̄
� (6.76)

where 
0 = 4n1t1 cos �. With this change of notation, Eq. (6.70) becomes

��
̄� = r2
1 + r2

2 +2r1r2 cos�	
0/
̄�

1+ r2
1 r2

2 +2r1r2 cos�	
0/
̄�
� (6.77)

The film reflectance shows periodic dependence on 1/
 (Fig. 6.33). We distin-
guish two cases:

HR coatings: n2
1 > n0ns,

AR coatings: n2
1 = n0ns.
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Fig. 6.33: Reflectivity of single layer HR and AR coatings on glass substrate
�ns = 1�5�; HR �n1 = 2�, ARI �n1 = 1�38�, AR II �n1 = √

1�5�.

The upper curve in Fig. 6.33 shows the wavelength dependence of the
reflectance of an HR coating (n0 = 1�0� n1 = 2� ns = 1�5) and the lower curve
ARI refers to the performance of an AR coating with n0 = 1�0, ns = 1�5 (glass)
and n1 = 1�38 �MgF2�. The lower curve ARII corresponds to a hypothetical
AR coating with n0 = 1�0, ns = 1�5, n1 = √

1�5. Maximum reflectance of single
layer HR coatings and minimum reflectance of single layer AR coatings occur
at 
̄ = 
0, 
0/3, 
0/5, 
0/6,    . Minimum reflectance of single layer HR
coatings and maximum reflectance of single layer AR coatings occur at 
 = �,

0/2, 
0/4�    . The reflectivity in the latter case is simply the reflectivity of
the substrate in the absence of the coating. Needless to state that the single layer
coatings lack broad spectral features.

6.8.2 Multi-layer Optical Coatings

To further reduce the reflectance of AR coatings and to enhance the reflectance
of HR coatings, multi-layer thin film coatings are employed. As we shall find,
multi-layer coatings can be designed to possess broad spectral features as well.
The earlier approach of adding amplitudes of the multiply reflected waves in
each film will be too cumbersome when applied to multi-layer coatings. We
now outline an alternate procedure to calculate the reflectance and transmit-
tance of a single non-absorbing film and then generalize it to a stack of N
films.

The multiply reflected waves travel in two directions inside the film. All waves
propagating in either direction can be combined to yield two homogeneous waves
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Fig. 6.34: Homogeneous waves for a single layer optical coating.

at every point of the film. In the new approach we deal with these resultant waves
only. Similarly, two homogeneous waves exist in the semi-infinite medium in
front of the film, but only one wave propagating away from the second interface
exists in the substrate. Figure 6.34 shows the propagation vectors of these waves.
The unprimed amplitudes and propagation vectors refer to the resultant waves
propagating from left to right and the primed quantities refer to those travelling
from right to left. The boundary conditions at the two interfaces determine the
amplitudes of the resultant waves in each medium. The electric fields of the
resultant waves in the three media are:

Medium I �n = n0�:

⇀

Ei = ⇀

E0 ei�
⇀
k 0·⇀r −�̄t��

⇀

Er =
⇀

E′
0 ei�

⇀

k′
0·⇀r −�̄t��

(6.78a)

Medium II �n = n1�:

⇀

Et = ⇀

E1 ei�
⇀
k 1·⇀r −�̄t��

⇀

Er =
⇀

E′
1 ei�

⇀

k′
1·⇀r −�̄t��

(6.78b)

Medium III �n = ns�,

⇀

Et=
⇀

Es ei�
⇀
k s·⇀r −�̄t�� (6.78c)
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Applying the boundary conditions (Eqs 1.60a and 1.61b with at = 0) at the first
interface �z = 0� for 	-polarized fields, we have

E0	 +E′
0	 = E1	 +E′

1	� (6.79a)

k0

cos �
�E0	 −E′

0	� = k1

cos �1

�E1	 −E′
1	�� (6.79b)

For �-polarized fields, the corresponding restrictions are

E0� +E′
0� = E1� +E′

1�� (6.80a)

�k0 cos ���E0� −E′
0�� = �k1 cos �1��E1� −E′

1��� (6.80b)

where � and �1 are the angles of incidence and refraction, respectively, at the
first interface. For non-absorbing media,

k′
0 = k0 = n0

2	


̄
� k′

1 = k1 = n1

2	


̄
� ks = ns

2	


̄
�

where 
̄ is the mean wavelength of quasi-monochromatic light in vacuum.
Equations (6.79) and (6.80) can be combined into two equations:

E0 +E′
0 = E1 +E′

1� (6.81a)

y0�E0 −E′
0� = y1�E1 −E′

1�� (6.81b)

where y0 = n0/ cos �, y1 = n1/ cos �1 for 	-polarized fields and y0 = n0 cos �,
y1 = n1 cos �1 for �-polarized fields.

Similarly, applying boundary conditions at the second interface �z = t1�, we
have

E1ei�1t1 +E′
1e−i�1t1 = Ese

i�st1 = Et� (6.82a)

y1�E1ei�1t1 −E′
1e−i�1t1� = ysEse

i�st1 = ysEt� (6.82b)

where

ys = ns/ cos � for 	-polarized field�

= ns cos � for �-polarized field�

�1 = k1 cos �1�

�s = ks cos ��
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Here, � is the angle of refraction in the third medium. Equations (6.82) give

E1 =
(

1+ ys

y1

)
e−i�1t1

2
Et� (6.83a)

E′
1 =

(
1− ys

y1

)
ei�1t1

2
Et� (6.83b)

Substituting these expressions in Eqs (6.81), we obtain

E0 +E′
0 =

[(
1+ ys

y1

)
e−i�1t1

2
+
(

1− ys

y1

)
ei�1t1

2

]
Et

=
[

cos �1t1 −
(

ys

y1

)
i sin �1t1

]
Et (6.84a)

and

y0�E0 −E′
0� = y1��1+ ys

y1

�
e−i�1t1

2
− �1− ys

y1

�
ei�1t1

2
�Et

= �−iy1 sin �1t1 +ys cos �1t1�Et� (6.84b)

Expressing Eqs (6.84) in the matrix form, we have

(
E0 +E′

0

y0�E0 −E′
0�

)
=
(

cos �1t1
−i
y1

sin �1t1

−iy1 sin �1t1 cos �1t1

)(
Et

ysEt

)
� (6.85)

The 2 × 2 matrix in Eq. (6.85) with unit determinant, characterizing the action
of the single-layer coating, connects the fields in the substrate with those in the
medium of incidence. Equation (6.85) can be expressed in terms of the reflection
�r = E′

0/E0� and transmission (t = Et/E0) coefficients:

(
1+ r

y0�1− r�

)
=
(

cos �1t1
−i
y1

sin �1t1

−iy1 sin �1t1 cos �1t1

)(
t

yst

)
� (6.86)

Solution of this matrix equation yields,

r = y1�y0 −ys� cos �1t1 − i�y0ys −y2
1� sin �1t1

y1�y0 +ys� cos �1t1 − i�y0ys +y2
1� sin �1t1

� (6.87)

t = 2y0y1

y1�y0 +ys� cos �1t1 − i�y0ys +y2
1� sin �1t1

� (6.88)
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For normal incidence, y0 = n0, y1 = n1, ys = ns for either state of polarization,
and Eqs (6.87) and (6.88) simplify to

r = n1�n0 −ns� cos� 2	


̄
n1t1�− i�n0ns −n2

1� sin� 2	


̄
n1t1�

n1�n0 +ns� cos� 2	


̄
n1t1�− i�n0ns +n2

1� sin� 2	


̄
n1t1�

� (6.89a)

t = 2n0n1

n1�n0 +ns� cos� 2	


̄
n1t1�− i�n0ns +n2

1� sin� 2	


̄
n1t1�

� (6.89b)

respectively. The reflectance of the quarter-wave film with �2	/
̄�n1t1 = 	/2
takes the form

� = r2 =
(

n0ns −n2
1

n0ns +n2
1

)2

�

which is exactly the result (Eq. 6.72), obtained earlier by considering multiple
reflections in the film.

6.8.2.1 Extension to Multi-layer Coatings

We first consider a stack of two optical coatings (Fig. 6.35). Application of the
boundary conditions at the three interfaces (z = 0� t1� t1 + t2) yields the following
results:

E0 +E′
0 = E1 +E′

1� (6.90a)

y0�E0 −E′
0� = y1�E1 −E′

1�� (6.90b)

E1ei�1t1 +E′
1e−i�1t1 = E2ei�2t1 +E′

2e−i�2t1� (6.90c)

y1�E1ei�1t1 −E′
1e−i�1t1� = y2�E2ei�2t1 −E′

2e−i�2t1�� (6.90d)

E2ei�2�t1+t2� +E′
2e−i�2�t1+t2� = Et� (6.90e)

y2�E2ei�2�t1+t2� −E′
2e−i�2�t1+t2�� = ysEt� (6.90f)

where �2 = k2 cos �2, and y2 is defined in the manner of y1 for the second layer.
Starting with Eqs (6.90c)–(6.90f) and following the treatment of the single layer
coating, the field amplitudes in the first layer can be expressed in terms of the
field amplitudes in the substrate:

(
E1ei�1t1 +E′

1e−i�1t1

y1�E1ei�1t1 −E′
1e−i�1t1�

)
=
(

cos �2t2
−i
y2

sin �2t2

−iy2 sin �2t2 cos �2t2

)(
Et

ysEt

)
(6.91)

where the 2 × 2 matrix on the right-hand side represents the action of the
second layer. The field amplitudes E1 and E′

1 obtained from this equation can
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Fig. 6.35: Homogeneous waves for a two layer stack.

be substituted in Eqs (6.90a) and (6.90b) to obtain the field amplitudes in the
first medium. Alternatively, we can extend Eq. (6.85) to yield

(
E0 +E′

0

y0�E0 −E′
0�

)
=
(

cos �1t1
−i
y1

sin �1t1

−iy1 sin �1t1 cos �1t1

)

×
(

E1ei�1t1 +E′
1e−i�1t1

y1�E1ei�1t1 −E′
1e−i�1t1�

)
�

(6.92)

Combining Eqs (6.91) and (6.92), we obtain the desired result

(
E0 +E′

0

y0�E0 −E′
0�

)
=
(

cos �1t1
−i
y1

sin �1t1

−iy1 sin �1t1 cos �1t1

)

×
(

cos �2t2
−i
y2

sin �2t2

−iy2 sin �2t2 cos �2t2

)(
Et

ysEt

)
�

(6.93)

This matrix equation has the obvious generalization for N layers (Fig. 6.36):

(
E0 +E′

0

y0�E0 −E′
0�

)
= M1M2 · · ·Mj · · ·MN

(
Et

ysEt

)
� (6.94)
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Fig. 6.36: N layer stack; �j and nj are the angle of refraction and index of
refraction of the jth layer.

where

Mj =
(

cos �jtj
−i
yj

sin �jtj

−iyj sin �jtj cos �jtj

)

is the matrix representing the action of the jth layer of thickness tj and �j =
nj�2	/
̄� cos �j in the process of wave propagation through an N layer stack.
The order of multiplication of the matrices must be taken note of. The matrix for
the last (N th) layer operates on the fields in the substrate. The product matrix
M , being a 2×2 matrix, can be expressed as

M = M1 ·M2 ·M3 · · ·Mj · · ·MN

=
(

M11 M12

M21 M22

)
� (6.95)

so that Eq. (6.94) has the equivalent form

(
1+ r

y0�1− r�

)
=
(

M11 M12

M21 M22

)(
t

yst

)
� (6.96)

The amplitude reflection and transmission coefficients of the N -layer stack are

r = y0M11 +y0ysM12 −M21 −ysM22

y0M11 +y0ysM12 +M21 +ysM22

� (6.97a)

t = 2y0

y0M11 +y0ysM12 +M21 +ysM22

� (6.97b)
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respectively. The coefficients y0, y1,    , yN , ys can be calculated for either state
of polarization from the knowledge of the indices of refraction of the films and
angles of refraction in each film. The latter can be obtained from

n0 sin � = n1 sin �1 = n2 sin �2 = · · · = nN sin �N = ns sin �� (6.98)

6.8.3 Anti-Reflection Coatings

A single MgF2�n = 1�38� quarter-wave coating on glass (n = 1�5) substrate
reduces its reflectance at normal incidence from 4 to nearly 1.2%. This reduc-
tion in reflectance takes place at one particular wavelength. The reflectance
increases on either side of this wavelength (Fig. 6.33). To improve the per-
formance of multi-layer AR coatings, we have more variables at our disposal
in the forms of the thickness and index of refraction of each of the layers.
Computer simulations can be carried out to select optimum combinations of
thin film coatings to achieve low reflectance over the desired spectral range.
Two quarter-wave coatings with materials of high and low indices of refrac-
tion can give zero reflectance at two-wavelengths, but reduction in reflectance
in the spectral range between the two-wavelengths is rather small. A three-
layer coating is more effective in reducing reflectance over a broad spectral
range.

Figure 6.37 shows a sequence of three layers on light flint glass substrate [6.4].
The reflectance of this combination over most of the visible spectrum is less
than 0.03% (Fig. 6.38) as compared to 4% reflectance of an air–glass interface
and 1.2% reflectance of a MgF2 coated glass substrate. The AR coatings usually
have no more than three or four layers and show only marginal degradation in
performance for deviations from normal incidence.

t2

t1

t3

Air

Flint glass substrate (  =1.62)

MgF (n = 1.38), n1t1 = λv /4

(n = 2.30), n2t2 = λv /2

(n = 1.76), n3t3 =  3 λv

ZnS

Al O32

2

n

4

Fig. 6.37: A three layer AR coating.
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Fig. 6.38: Reflectivity of the three layer AR coating of Fig. 6.37.

6.8.4 High Reflectance Coatings

Laser and Fabry–Perot resonators require high reflectivities that are unattain-
able from metallic films which also suffer from high absorption losses. The
all-dielectric-multilayer coatings can achieve high reflectivities with minimal
scattering and absorption losses. However, a large number of dielectric layers
must be used to obtain reflectivities of 0.99 or higher. High reflectance coatings
usually consist of alternate quarter-wave layers of materials with high and low
indices of refraction �nHtH = nLtL = 
v

4 �, as shown in Fig. 6.39.
Films of ZnS �n = 2�30� and MgF2�n = 1�38� are often used in HR coatings

but other choices also exist (see Table 6.3). The transformation matrix for a stack
of N pairs of quarter-wave layers of high and low refractive index materials can
be expressed in the form

M = �MHML�N �

nLHnnLHnnLHnnLHn sn0n

Fig. 6.39: Stack of alternate high and low refractive index quarter-wave layers
for high reflectance applications.
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where

MH =
(

cos �HtH
−i
yH

sin �HtH

−iyH sin �HtH cos �HtH

)
�

ML =
(

cos �LtL
−i
yL

sin �LtL

−iyL sin �LtL cos �LtL

)
�

Therefore,

M =
[(

0 −i
yH−iyH 0

)(
0 −i

yL−iyL 0

)]N

=
⎛
⎝
(

−yL
yH

)N

0

0
(

−yH
yL

)N

⎞
⎠ �

(6.99)

where we have assumed normal incidence, and

�HtH = 2	


̄v

nHtH = 	/2 for 
̄v = 
0�

�LtL = 2	


̄v

nLtL = 	/2 for 
̄v = 
0�

giving the reflectance of the stack as

� = r2 =
⎡
⎢⎣

ns

(
−nH
nL

)2N −n0

ns

(
−nH
nL

)2N +n0

⎤
⎥⎦

2

� (6.100)

The reflectance approaches unity as the number of pairs in the stack becomes
large (N → �). For eight alternate layers (N = 4) of ZnS and MgF2 on a glass
substrate (ns = 1�5), Eq. (6.100) predicts reflectance of about 0.96, and 0.999
for a stack of 16 such layers. The above analysis has ignored scattering losses
which are always present in dielectric optical coatings. The reflectivity of the
stack increases with the number of layers in the stack and the spectral bandwidth
of high reflectance increases with the nH/nL ratio. Multi-layer broad band high
reflectance dielectric mirrors are now readily available.

6.8.5 Narrow Band Interference Filters

A Fabry–Perot interferometer with plate separation L = 
0/2 was shown to
possess transmission peaks at 
0, 1

2 
0, 1
3 
0�    .With such large separations in
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Hn nL Hn nL nL nLHn Hn Hn HnnL nL

Fig. 6.40: An all-dielectric multi-layer interference filter. Alternate layers are
high and low index quarter-wave layers. Middle two layers have same index of
refraction.

the transmission wavelengths, optical filtering can be achieved quite easily as
mentioned earlier. The spectral band-widths of the transmission peaks can be
reduced by increasing the finesse of the Fabry–Perot interferometer. The peak
transmission

Tmax =
(

1− A

1−R

)2

of a Fabry–Perot interferometer with silver coating �R = 0�95�A = 0�04� is only
4% as compared to 100% transmission of non-absorbing films. A mere 4%
absorption loss in the silver film is enough to reduce the peak transmittance of
the Fabry–Perot interferometer from 100 to 4%. On the other hand, transmission
losses in all-dielectric-multilayer coatings are much less. For a nominal size
dielectric multi-layer stack with R = 0�983, absorption loss (A = 0�005) can be an
order of magnitude less than for the silver films. Peak transmittance of a Fabry–
Perot interferometer with dielectric HR coatings can be higher than 50%. A typi-
cal configuration of a narrow band, high transmission interference filter employ-
ing quarter-wave optical coatings of high and low index materials is shown in
Fig. 6.40. The two quarter-wave films in the middle of the stack with same index
of refraction constitute the half-wavelength spacer of the Fabry–Perot etalon.
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6.10 PROBLEMS

6.1 Two-wave interference is produced by light from a source emitting frequencies �1

and �2 with equal amplitudes. Plot the resultant intensity distribution and visibility
of interference fringes as a function of the time delay �. How will your results
change if amplitude of one wave is half the amplitude of the other?

6.2 Two-wave interference is studied with a source of degree of coherence described
by the Gaussian function ���� = e�−�2/2�2�, where � is real, and � is the time delay
between the interfering waves. Plot the resultant intensity distribution and visibility
of interference fringes as a function of the time delay. Be sure to consider time
delays beyond the coherence time �c which may be defined as the time in which the
visibility of fringes falls to 1/e of its maximum value.

6.3 Consider two narrow slits 1.5 mm apart, symmetrically placed behind a small source
giving light of wavelength 632.8 nm. The interference pattern is observed on a screen
2 m behind the plane of the slits.

(a) A thin glass plate �n = 1�50� of thickness 1�5×10−2 cm is placed behind one
of the slits. Find the number of fringes crossing the center of the observation
screen and the displacement of the central fringe due to the introduction of the
glass plate.

(b) Find the visibility of interference fringes if one slit was twice as wide as the
other.

(c) Now suppose the monochromatic source is replaced by a white light source.
Identify the wavelengths in the spectrum of white light which will produce
dark fringes 2 mm away from the center of the interference pattern.

6.4 White light falls normally on a thin oil film �n = 1�25� of thickness 1 × 10−3 cm.
Determine the wavelengths which will be seen in the reflected light.

6.5 Haidinger fringes with an extended source giving light of wavelength 546.1 nm are
observed in air from a film of thickness 0.500 mm and index of refraction 1.500.
What is the order of the fringe at the center? Find the angular radius of the 5th
bright fringe from the center.

6.6 The beam splitter of the Michelson interferometer (Fig. 6.15) is illuminated with
the D1 and D2 lines of sodium having mean wavelengths of 589.6 and 589.0 nm,
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respectively. The visibility of the interference fringes goes through several cycles of
decreasing and increasing values as the path difference between the two arms of the
interferometer is increased. Find the path length mismatches of the arms when the
visibility of fringes has minimum value for the first time and maximum value for
the first time (excluding the one for the balanced arms of the interferometer). What
are the orders of the overlapping fringes for the two wavelengths in each case?

6.7 Fringes of equal thickness are observed from a wedge of a material of index of
refraction 2.0. The wedge of dimensions shown in Fig. 6.41 is illuminated normally
with filtered mercury light containing the wavelengths 577 and 579 nm. Find the
maximum number of bright fringes that can be observed for each wavelength. Locate
the position(s) on the wedge where the visibility of the fringes is maximum.

n = 2.0 0.1 mm

20 cm

Fig. 6.41

6.8 Non-localized interference fringes from a polished but slightly wedged plate �n =
1�5� of nominal thickness 1 mm are observed in a plane which is parallel to the front
surface of the plate and lies 10 cm in front of it. A point source emitting light of
632.8 nm is suitably positioned in this plane. The center of nearly circular fringes in
this plane is found displaced from the source by 5 cm. Determine the wedge angle
of the plate.

6.9 The two arms of the Michelson interferometer are initially balanced with white light
fringes. The white light source is then replaced by a He–Ne laser emitting light at
632.8 nm. When a thin plate of crown glass of index of refraction 1.525 is introduced
in one arm of the interferometer, 100 bright fringes cross the field of view. Find the
thickness of the plate. With the crown glass plate in position, find the angular radii
of the 20th bright and dark fringes.

6.10 Plot the Airy function T = 1/�1 +F�r� sin2�k̄�/2�� as a function of k̄� for a non-
absorbing film of thickness 1mm with amplitude reflection coefficient r = 0�95 and
obtain the FWHM (full width at half maximum) of the transmission peaks and
finesse of the film. Find the maximum transmittances of the films with r = 0�95 and
absorptance A = 0�04, 0.004.

6.11 A Fabry–Perot interferometer is required to resolve the longitudinal modes of a
He–Ne laser emitting 632.8 nm radiation. The inter-mode separation of the He–Ne
laser is 300 MHz. What minimum plate separation is required if the reflectivity of its
plates R = 0�99? What is the free spectral range of the interferometer in frequency
and wavelength units in this spectral range? What is the highest order of the fringes
produced by the interferometer?
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6.12 A quarter-wave film of ZnS �n = 2�3� for the wavelength 
0 = 500 nm in vacuum is
deposited on a fused quartz substrate �n = 1�46�. What is the thickness of the film?
Plot the reflectance of the coated substrate for the wavelength interval between 400
and 600 nm for light incidence from vacuum at 0
 and 45
.

6.13 Taking 
v = 500 nm, calculate and plot the reflectance of the three layer AR coating
of Fig. 6.37 between the spectral interval 400–600 nm by taking a few representative
wavelengths.

6.14 Equation (6.100) for the reflectance of a stack of alternate quarter-wave layers of high
and low refractive index materials neglects absorption and scattering losses. Within
this approximation, find the number of pairs of ZnS �n = 2�3� and MgF2 �n = 1�38�
quarter-wave layers needed to achieve reflectance � = 0�999.

6.15 An interference filter consisting of multi-layer coatings of dielectric materials
(Fig. 6.40) has reflectance �= 0�983 and absorptance A = 0�005. Find its maximum
transmittance and the FWHM of its transmission peaks at 488.0 nm.



C H A P T E R 7

Diffraction of Light

7.1 INTRODUCTION

The presence of dark and bright bands near the edges of geometric shadows
of objects was reported by Francesco Maria Grimaldi (1618–1663) in his book,
published 2 years after his death. This observation was not consistent with
the corpuscular theory of light being propounded by Sir Issac Newton (1642–
1727). Grimaldi called the phenomenon of bending of light across edges as
diffraction. He and Robert Hooke (1635–1703), independently, proposed the
wave hypothesis of light. Diffraction of light takes place when an obstacle
comes in its path, but it can be easily missed since the extent of light bending
(� ∼ �

a
∼ 10−5) is rather small. In fact, the apparent absence of bending of light

across corners and edges was taken as an evidence against the wave theory
and in favor of the corpuscular theory of light. Diffraction is a universal wave
phenomenon, vanishing only in the limit of zero wavelength. Diffraction makes
sound audible behind edges of buildings and structures.

Light fields can induce currents in the obstacle material and these currents in
turn can produce additional electromagnetic fields. Diffraction of light should
therefore be described in terms of Maxwell’s equations. In fact, Thomas Young
(1773–1829) who demonstrated diffraction of light in his celebrated two-slit
interference experiment (1802) had initially proposed this approach to describe
diffraction. However, handling diffraction with Maxwell’s equations is too hor-
rendous a task. Sommerfeld was the first to exactly solve the problem of diffrac-
tion of a plane wave by a semi-infinite thin infinitely conducting plate (1896).
This approach has been further extended by Smythe, Rubinowicz, Maggi, Wolf,
and others. Rigorous solutions of this kind for the commonly employed diffract-
ing geometries are difficult to obtain. To describe diffraction of light, Fresnel
(1788–1827) extended Huygens’ hypothesis of wave propagation to include
the possibility of interference among Huygens’ secondary wavelets. Kirchhoff
(1824–1887) developed a rigorous theory of diffraction, but his theory also
ignores the vector nature of light fields. Nevertheless, the results of his theory
have withstood substantial experimental scrutiny.

319
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7.2 HUYGENS’ PRINCIPLE

Christian Huygens (1629–1695), a contemporary of Newton but a strong pro-
ponent of the wave theory of light, treated every point on an unobstructed
wavefront as a secondary source of spherical wavelets which propagate with
medium-dependent velocities in the forward directions. The envelope of these
wavelets at a later time gives the new position of the wavefront (Fig. 7.1a).

Huygens’ approach was merely graphical and made no reference to the phases
and amplitudes of the secondary wavelets. However, quantitative laws of reflec-
tion and refraction at an infinite interface can be obtained on the basis of this
principle. Since Huygens confined himself to the task of constructing the wave-
front from its position at an earlier time, interference among the secondary
wavelets played no role in this construction. Actually, Huygens was not con-
cerned with diffraction at all. He was trying to explain the observed phenomenon
of double refraction on the basis of the wave theory of light. It was much later that
Fresnel, taking a clue from Young’s interference experiment, explicitly stated
the possibility of interference among Huygens’ secondary wavelets. Figure 7.1a
shows Huygens’ construction. The radius of each wavelet drawn in Fig. 7.1a is
v�t, where �t is the time taken by the wavefront to travel from its previous

(a) (b)

A’

A’
B’

B’

A

A

B

B

Δ tv

Fig. 7.1: (a) Huygens’ construction; AA is an unobstructed plane wavefront.
A′A′ is wavefront at a later time. (b) Fresnel’s extension; BB is an obstructed
wavefront. Subsequent wavefront B′B′ shows bending of light near the edges.
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position to the present position with velocity v. Figure 7.1b is Fresnel’s extension
to an obstructed wavefront, leading to wave propagation in the shadow region.

7.3 HUYGENS–FRESNEL THEORY

Fresnel developed a mathematical theory of light diffraction based on Huygens’
concept of secondary wavelets, but allowing the possibility of interference among
these wavelets. Figure 7.2 shows the diffraction geometry. Ps may be taken as
a monochromatic point source and Po is the point of observation. The figure
shows a section of the spherical wavefront reaching aperture

∑
. Each point on

the unobstructed portion of the wavefront in the plane of the aperture becomes
Huygens’ source of secondary wavelets. The net scalar field at the point of
observation is the superposition of the fields produced by all such sources:

E�Po� =
∫ ∫
∑

a0

eikr ′

r ′ K���
eikr ′′

r ′′ dS� (7.1)

The factor �a0
eikr′

r ′ � represents the field incident on the aperture, where a0 is
the amplitude of the spherical wave at unit distance from the source. The fac-
tor eikr ′′

/r ′′ represents Huygens’ spherical wavelet, with unit amplitude at unit
distance, emanating from any given point of the aperture. Integration over the
clear portion of the aperture automatically takes into account interference among
the secondary wavelets. To ensure the absence of backward propagation of the
secondary wavelets, Fresnel introduced a direction-dependent factor K���, with
dimension of inverse length, which takes maximum value in the forward direc-
tion and null value for propagation back to the source. Fresnel developed the

PoPs

r’ r"

Σ

Fig. 7.2: Diffraction by an aperture.



322 Chapter 7: DIFFRACTION OF LIGHT

concept of Fresnel zones to establish the consistency of Huygens–Fresnel the-
ory with known facts about the propagation of spherical waves in free space.
For details, the interested reader is referred to Principles of Optics by Born
and Wolf.

7.4 KIRCHHOFF’S DIFFRACTION THEORY

The basic diffraction problem is to obtain the light field when an obstacle or
an aperture of arbitrary shape is introduced between the source and point of
observation. Here, the term aperture is used in the general sense. It includes the
possibility when only the phase of the wavefront is modified, as for example
with a transparent block of variable thickness or with a lens placed in the path
of the light. Apart from its well-known focusing action, a lens diffracts the light
waves. Even if all geometrical aberrations of a lens are eliminated, diffraction
by the lens, as we shall see in a later chapter, does not permit a point image
of a point object. The term diffraction-limited optics is used when diffraction,
and not the geometrical aberrations of a lens, determines the ultimate quality
of an optical image. Figure 7.3 shows the diffracting aperture

∑
between the

point source Ps and point of observation Po. The diffracted light field satisfies
the homogeneous wave equation

�2
⇀

E �
⇀
r 
 t�− 1

v2

�2

�t2

⇀

E �
⇀
r 
 t� = 0 (7.2)

Incident 
wavefront

Po

Ps

n̂

Σ

S

V

r"

Fig. 7.3: Point source Ps in front of diffracting aperture
∑

. Point of observation
Po is surrounded by an arbitrary surface S enclosing volume V . Unit vector n̂ is
along the outward normal to surface S.
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in the source-free volume V bounded by the closed surface S. Instead of solving
the vector wave equation, Kirchhoff chose to solve the corresponding scalar
wave equation

�2E�
⇀
r 
 t�− 1

v2

�2

�t2
E�

⇀
r 
 t� = 0� (7.3)

In doing so, polarization effects in diffraction are ignored. Ordinarily, this may
not be a serious limitation of the scalar theory of light diffraction except when
the size of the diffracting aperture is not much larger than the wavelength of
light. This is because the boundary conditions at an edge of the aperture are
different for light waves polarized parallel and perpendicular to the plane of the
edge. Nevertheless, it is hoped that the solutions of the scalar wave equation
can describe light diffraction in most practical situations, irrespective of the state

of polarization of light. Clearly, vector
⇀

E cannot be replaced by n̂E (where
n̂ is some convenient unit vector) without running the risk of violating the

divergence requirement �� · ⇀

E= 0� in the source-free space. However, E could

represent any one component of the vector field
⇀

E. For the quasi-monochromatic
light field

E�
⇀
r 
 t� = E�

⇀
r �e−i�t (7.4)

of mean frequency �, the complex spatial field E�
⇀
r � is the solution of the

Helmholtz equation

��2 +k2�E�
⇀
r � = 0
 (7.5)

where k2 = �2/c2. Let �
⇀
r � be some other scalar field, also satisfying the

Helmholtz equation. The fields E�
⇀
r � and �

⇀
r � and their first and second partial

derivatives are assumed finite and continuous within the volume V and also on
all points on the surface S bounding this volume. Application of Gauss’ theorem
to the vectors �E and E� leads to the Green’s theorem:

∫∫
©

S
�E� −�E� ·d

⇀

S=
∫∫∫

V
�E�2 −�2E�dV
 (7.6)

where the integration on the left-hand side is over the closed surface S. The
right-hand side of Eq. (7.6) is identically zero since the scalar fields E and 
satisfy Eq. (7.5). Hence,

∫∫
©

S
�E��� · n̂−��E� · n̂� dS = 0
 (7.7)
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where the area element d
⇀

S= n̂dS. The unit vector n̂ is along the outward (or
inward, if chosen consistently) normal at a given point on the closed surface S.
Since  is an arbitrary field satisfying Eq. (7.5), let it represent the spherical
wave (suppressing the temporal factor e−i�t)

�r ′′� = eikr ′′

r ′′ (7.8)

propagating outward from the point of observation Po with unit amplitude at unit
distance. The validity of Green’s theorem is then assured everywhere, except
at point Po. To get over this difficulty ( → �), we exclude point Po from
the domain of applicability of Greens’ theorem by surrounding it with a small
spherical surface S′ of radius �, centered at Po (Fig. 7.4).

The integration in Eq. (7.6) is now confined to the volume bounded between
the surfaces S and S′. Accordingly, Eq. (7.7) can be written as

∫∫
©

S
�E��� · n̂−��E� · n̂� dS

+
∫∫
©

S′
�E��� · n̂−��E� · n̂� dS′ = 0
 (7.9)

where

� · n̂ = �

�r ′′ cos�r̂ ′′
 n̂�

=
(

ik
r ′′ − 1

r ′′2

)
eikr ′′

cos�r̂ ′′
 n̂�� (7.10)

S’

r"

n̂

n̂S

∋

V
P

o

Fig. 7.4: Point of observation Po is surrounded by a spherical surface S′ of
infinitesimally small radius �. Green’s theorem is applied in the space between
surfaces S and S′.
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This result holds for all points lying on S and S′. For points on S′, cos�r̂ ′′
 n̂� = −1
and r ′′ = �. Substituting Eq. (7.10) into Eq. (7.9), we have

∫∫
©

S
�E��� · n̂−��E� · n̂� dS =−

∫∫
©

S′
�−E

(
ik
�

− 1
�2

)
eik�

− eik�

�
��E� · n̂��2 sin � d� d�
 (7.11)

where �2 sin �d�d� is an area element on the spherical surface S′. In the limit
� → 0, the field at the observation point Po approaches the field on the surface S′.
Therefore, the right-hand side of Eq. (7.11) takes the value −4�E�Po�, giving,

E�Po� = − 1
4�

∫∫
©

S
�E��� · n̂−��E� · n̂� dS
 (7.12)

where  and � are known and E is the field at any point on the closed surface S.
This result is known as Kirchhoff’s integral theorem. It reduces the problem
of obtaining the field at a point due to an obstructed wavefront to solving the
integral (7.12) over an arbitrarily chosen closed surface S, enclosing the point in
question but excluding the sources. This, of course, requires the knowledge of
the scalar field E and its normal derivative at every point on the chosen surface.
Any convenient surface which facilitates the evaluation of the integral is good
enough. This is quite different from the usual superposition approach where
fields from all source points are added. Furthermore, the choice of the scalar
field  is quite arbitrary. In fact, major criticism of Kirchhoff’s theory arises
from the over-specification of the boundary conditions. It should be enough to
specify either E or ��E��n̂ on the bounding surface. However, with Kirchhoff’s
choice of , both E and its normal derivative must be known on the surface S.

7.4.1 Kirchhoff’s Boundary Conditions

Kirchhoff’s diffraction integral in its present form does not appear to have
any connection with the Huygens–Fresnel description of diffraction. The latter
description would have required integration over the aperture to systematically
incorporate contributions from the secondary wavelets emanating from the unob-
structed portion of the wavefront. Instead, Eq. (7.12) involves integration over
an arbitrary surface which may not even include the aperture plane. We shall
now provide the missing link in the two descriptions. Consider a monochromatic
point source Ps in front of a plane aperture as shown in Fig. 7.5. The dimensions
of the aperture are assumed much smaller in comparison to the distances of the
source and point of observation from the aperture. The infinite aperture screen
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R

S2

S1

Ps Po

"r

S1

r’

n̂

Σ
L

Fig. 7.5: Geometry for Kirchhoff’s boundary conditions; L is a point within the
aperture

∑

 n̂ is unit vector normal to the plane of the aperture.

is opaque, except for the portion
∑

. The diffraction zone lies on the right of the
aperture screen.

The integral in Eq. (7.12) may be solved over the closed surface consisting
of the clear aperture

∑
, the plane surface S1 immediately behind the opaque

portion of the aperture screen and the hemispherical surface S2 of sufficiently
large radius R. To proceed further, we need to know E and �E · n̂ on this closed
surface. Kirchhoff assumed the following boundary conditions:

E = Ein on aperture
∑




= 0 on S1 and S2
 (7.13a)

��E��n̂ = ��Ein� · n̂ on aperture
∑




= 0 on S1 and S2� (7.13b)

Here, Ein stands for the field incident on the aperture. Kirchhoff’s boundary
conditions require the field E and its normal derivative on aperture

∑
to have

the values which would be there if the aperture screen was removed but the
source remained in its position. The field and its normal derivative are assumed
to vanish on the remaining portions of the closed surface. This calls for some
justification. The induced currents in the aperture material will certainly modify
the field and its normal derivative at least for points close to the edges of the
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aperture. Kirchhoff neglected these modifications, perhaps under the implicit
assumption that these modifications may be confined to distances no more than
a few wavelengths from the edges, whereas aperture

∑
is assumed much larger

on that scale. The screen S1 is assumed to be completely opaque, so no field
reaches the back side of the screen. Several arguments can be offered for the
null field and its normal derivative on the hemispherical surface S2. Here is one
such argument. Radiation emitted by a polychromatic or a quasi-monochromatic
light source never reaches the surface S2, infinite distance away or alternatively
one can rely on the Sommerfeld radiation condition

lim
R→�

R���E� · n̂− ikE� = 0

for the field and its normal derivative to vanish on the hemispherical surface
S2 if there exists only an outgoing spherical wave in that region. We may
also mention that Sommerfeld dealt with the problem concerning Kirchhoff’s
boundary conditions as well. He expressed the scalar field  in terms of two
spherical waves

± = eikr ′′

r ′′ ± eikr ′′
0

r ′′
0


 (7.14)

where r ′′
0 is measured from the mirror image of the observation point with respect

to the aperture plane. Nevertheless, Eq. (7.12) is extensively used in diffraction
studies. Perhaps, one could interpret Kirchhoff’s integral not as a boundary value
problem but merely as an integral with known values of the field and its normal
derivative at each point of the surface.

7.4.2 Fresnel–Kirchhoff Diffraction Formula

The field E and its normal derivative on the aperture, obtained from Kirchhoff’s
boundary conditions, are

Ein = a0

eikr ′

r ′ (7.15a)

and

��Ein� · n̂ = a0

(
ik− 1

r ′

)
eikr ′

r ′ cos�r̂ ′
 n̂�
 (7.15b)

respectively, where r ′ specifies the position of a point in the aperture with respect
to the point source, a0 is the amplitude of the spherical wave at unit distance
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from the source and n̂ is the outward unit normal to the aperture (see Fig. 7.5).
Substituting Eqs (7.10) and (7.15) into Eq. (7.12), we obtain

E�Po� =− 1
4�

∫ ∫
∑

[
a0

eikr ′

r ′

(
ik− 1

r ′′

)
eikr ′′

r ′′ cos�r̂ ′′
 n̂�

]
dS

+ 1
4�

∫ ∫
∑

[
a0

eikr ′′

r ′′

(
ik− 1

r ′

)
eikr ′

r ′ cos�r̂ ′
 n̂�

]
dS� (7.16)

We now state the crucial assumption of Kirchhoff’s theory of light diffraction.
The distances of the source and observation points from any point in the aperture
are much larger than the wavelength �� = 2�/k� of light, i.e.,

r ′ � �
 r ′′ � �� (7.17)

This condition can be satisfied for light waves, but not necessarily for all scalar
fields. Hence, the following results of Kirchhoff’s theory may not hold for
scalar fields, not satisfying this condition. With the above assumption, Eq. (7.16)
can be written in several equivalent forms of the Fresnel–Kirchhoff diffraction
formula:

E�Po� = − a0

2�
�ik�

∫ ∫
∑

[
cos�r̂ ′′
 n̂�− cos�r̂ ′
 n̂�

2

]
eik�r ′+r ′′�

r ′r ′′ dS (7.18a)

= − ia0

�

∫ ∫
∑

Q�r̂ ′
 r̂ ′′
 n̂�
eik�r ′+r ′′�

r ′r ′′ dS (7.18b)

=
∫ ∫
∑

(
a0

eikr ′

r ′

)
Q�r̂ ′
 r̂ ′′
 n̂�

(
e−i �

2

�

eikr ′′

r ′′

)
dS
 (7.18c)

where the obliquity factor Q�r̂ ′
 r̂ ′′
 n̂� denoted simply as Q for subsequent use
is defined as

Q = 1
2

[
cos�r̂ ′′
 n̂�− cos�r̂ ′
 n̂�

]
� (7.19)

We first note that the Fresnel–Kirchhoff diffraction formula represents a super-
position integral, adding elemental contributions from different portions of the
aperture just as in the Huygens–Fresnel approach. Spherical waves of the type
eikr ′′

/r ′′, emanating from every point of the aperture with well-defined amplitudes
and phases, propagate into the diffraction zone. These waves can be identified
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with the Huygens’ secondary wavelets and represent diffraction in the sense
that the aperture does not merely control the incident wavefront going through
it (that is what the geometrical optics would have required), it somehow has
become a source radiating in all directions. The obliquity factor Q controls the
extent of diffraction in different directions. In particular, it forbids wave propa-
gation in the backward direction (Q = 0 when r̂ ′′ = r̂ ′). The clear portion of the
aperture becoming a source of radiation is intriguing but this is exactly what the
Huygens–Fresnel theory postulates. Kirchhoff’s formulation goes beyond and
exactly specifies the amplitudes and phases of the secondary wavelets. From the
form (7.18c) of the Fresnel–Kirchhoff diffraction formula, the amplitude of a
secondary wavelet may be taken as 1/�, where � is the wavelength of light,
and its phase may be taken to lead the phase of the incident wave by 90�.
Interference effects among the secondary wavelets are automatically included
because as the aperture is scanned in the process of integration, the phase factor
eik�r ′+r ′′� changes. In fact, k is so large �∼ 105 cm−1� for the light fields and phase
k�r ′ + r ′′� changes so rapidly that the secondary sources lying in a small region
of the aperture in the neighborhood of the point of intersection of the line joining
the source and point of observation with the plane of the aperture are the primary
contributors to the diffraction integral. The path lengths �r ′ + r ′′� between the
source and point of observation through these points on the aperture are nearly
equal. This is the stationarity argument which will be extensively exploited in
later chapters. Rapid changes in the phases tend to nullify contributions from the
remaining portions of the aperture. One may surmise that diffraction is indeed
a small perturbation over geometrical optics. This also provides a partial justi-
fication for neglecting the edge effects in Kirchhoff’s diffraction theory. It may
also imply that the exact shape of the aperture may not be that important to
interpret diffraction results. This point, however, cannot be over-emphasized.
These considerations suggest that if angle �r̂ ′
 n̂� = �, then angle �r̂ ′′
 n̂� ≈ � −�,
so that the obliquity factor can be approximated to

Q = cos �
 (7.20)

where � is the angle the line joining the source and point of observation makes
with the normal to the aperture (Fig. 7.6). Furthermore, since � remains constant
for a given point of observation, Eq. (7.18b) simplifies to

E�Po� = − ia0

�
cos �

∫ ∫
∑

eik�r ′+r ′′�

r ′r ′′ dS� (7.21)

Equations (7.18) and (7.21) demonstrate the interchangeability of the source and
point of observation in a diffraction experiment. This is the statement of the
reciprocity theorem.
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n̂

Σ

θ
π−θ

O

Fig. 7.6: Primary contribution to Kirchhoff’s diffraction integral comes from
portion of the aperture close to the point of intersection �O� of the line joining
the point source and point of observation with the plane of the aperture.

With the obliquity factor Q replaced by a constant (cos �), the information
on the spatial extent of the aperture is contained in the sum �r ′ + r ′′� in the
phase factor and in the product r ′r ′′ in the amplitude factor. Under the usual
conditions of diffraction, the changes in r ′ and r ′′, as the aperture is scanned
during integration, do not significantly change the amplitude factor 1/r ′r ′′ and
we may replace it by the constant factor 1/R′

0R
′′
0 (see Fig. 7.7). The sum �r ′ +r ′′�

also does not change much but as mentioned earlier, the phase k�r ′ + r ′′� may
change quite substantially. It is therefore essential to pay due attention to the
changes in �r ′ + r ′′�. Figure 7.7 shows the geometry of the diffraction process.

P (x’,y’,z’)s
r’

R0
’

r"

R"
0

Po (x",y",z")

O z

x

A (x
,y)

Σ

y

Fig. 7.7: Diffraction configuration; Ps is a monochromatic point source, Po is
the point of observation, A is a point in aperture

∑
.
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The position coordinates of the point source Ps and point of observation Po are
�x′
 y′
 z′� and �x′′
 y′′
 z′′�, respectively. The origin of the coordinates lies in the
plane of the aperture taken as the xy plane. A is a point in the aperture with
position coordinates �x
 y
 0�. From Fig. 7.7, we obtain

r ′ = [
�x−x′�2 + �y −y′�2 + �z′�2

]1/2

= [
R′2

0 −2�xx′ +yy′�+x2 +y2
]1/2

= R′
0

[
1−2

xx′ +yy′

R′
0

2 + x2 +y2

R′
0

2

]1/2

= R′
0

[
1− xx′ +yy′

R′
0

2 + x2 +y2

2R′
0

2 − �xx′ +yy′�2

2R′
0

4

]



(7.22)

where

R′2
0 = x′2 +y′2 + z′2� (7.23)

Binomial expansion has been used in the penultimate step. Terms of order
�x2/R′2

0 �2, �y2/R′2
0 �2, and higher have been neglected in the expansion. Similarly,

we can write

r ′′ = R′′
0

[
1− xx′′ +yy′′

R′′
0

2 + x2 +y2

2R′′
0

2 − �xx′′ +yy′′�2

2R′′
0

4

]

 (7.24)

where

R′′
0

2 = x′′2 +y′′2 + z′′2�

Combining Eqs (7.22) and (7.24),

r ′ + r ′′ = �R′
0 +R′′

0�−x

(
x′

R′
0

+ x′′

R′′
0

)
−y

(
y′

R′
0

+ y′′

R′′
0

)

+ 1

2
�x2 +y2�

(
1
R′

0

+ 1
R′′

0

)
− 1

2R′
0

(
xx′

R′
0

+ yy′

R′
0

)2

(7.25a)

− 1
2R′′

0

(
xx′′

R′′
0

+ yy′′

R′′
0

)2

= �R′
0 +R′′

0�+x�l′ − l′′�+y�m′ −m′′�+ 1
2

�x2 +y2�

×
(

1
R′

0

+ 1
R′′

0

)
− 1

2R′
0

�xl′ +ym′�2 − 1
2R′′

0

�xl′′ +ym′′�2


(7.25b)
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Fig. 7.8: Angles defining orientations of source and point of observation with
respect to an origin lying in the plane of aperture.

where the direction cosines �l′
m′
 n′� and �l′′
m′′
 n′′� of the directions of
propagation of the incident and diffracted waves are defined below with reference
to Fig. 7.8:

l′ = cos �′ = −x′/R′
0
 (7.26a)

m′ = cos �′ = −y′/R′
0
 (7.26b)

n′ = cos �′
 (7.26c)

l′′ = cos �′′ = x′′/R′′
0
 (7.26d)

m′′ = cos �′′ = y′′/R′′
0
 (7.26e)

n′′ = cos �′′� (7.26f)

The negative signs in the definitions of l′ and m′ make �′ and �′ greater than
90� for positive values of x′ and y′.

The diffraction integral (Eq. 7.21) now takes the form

E�Po� = − ia0

�
cos �

eik�R′
0+R′′

0 �

R′
0R

′′
0

∫ ∫
∑

t�x
 y�eik��x
y� dx dy
 (7.27)
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where

��x
 y� =x�l′ − l′′�+y�m′ −m′′�+ 1
2

�x2 +y2�

(
1
R′

0

+ 1
R′′

0

)

− 1
2R′

0

�xl′ +ym′�2 − 1
2R′′

0

�xl′′ +ym′′�2 (7.28)

and t�x
 y� is the transmission function of the aperture to be defined later.

7.5 REGIMES OF DIFFRACTION

Approximation (7.17) used to obtain the Fresnel–Kirchhoff diffraction formula
restricts distances of the source and point of observation from the diffracting
aperture to values much larger than the wavelength of light. Therefore, diffraction
in the immediate neighborhood of the aperture cannot be investigated through this
formalism. The diffraction zone which can be investigated with the diffraction
integral (7.27) is further constrained by the binomial expansion used to obtain
Eq. (7.22), which is justified only if

p4

R3
0


 �
 (7.29)

where p stands for the x and y coordinates of a point in the aperture and R0

stands for R′
0 and R′′

0 (see Fig. 7.7). Taking for illustration, p4/R3
0 = �/100,

p = 1 mm, � = 5×10−5 cm, gives R0 = 6 cm. Therefore, under these conditions,
the source and observation points can be as close as a few centimeters from
the aperture. The condition p4/R3

0 = �/100 corresponds to a phase change of
the order of a degree due to the first neglected term in the binomial expansion.
Within this approximation, only the linear and quadratic phase factors need to be
retained in the diffraction integral. This is the regime of Fresnel or the near-field
diffraction characterized by a relatively large size aperture and large but not
necessarily too large distances of the source and point of observation from the
aperture. In Fresnel diffraction, the stationarity condition is satisfied over only a
portion of the aperture as shown in Fig. 7.9.

Far-field or Fraunhofer diffraction occurs if the phase introduced by the
quadratic factor is much less than 2� radians. This requires

p2

R0


 �� (7.30)

To get a feel for the numbers in a Fraunhofer diffraction experiment, we may
quantify Eq. (7.30) as p2/R0 = �/100. For the earlier example of p = 1 mm,
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Fig. 7.9: In Fresnel diffraction, only a part of the aperture is covered by optical
paths of nearly equal lengths.

� = 5×10−5 cm, R0 is 200 m – an unmanageable distance for a laboratory
experiment. For Fraunhofer diffraction, the path length �r ′ + r ′′� between the
source and point of observation has linear dependence on the position coordinates
of a point in the aperture. This condition is met for plane wavefronts reaching
and leaving the aperture as shown in Fig. 7.10 for the incident wavefront. In
this case, the path lengths between the source and point of observation passing
through two points in the aperture separated by a distance x differ by x sin �,
where � is the inclination of the incident wavefront with the plane of the aperture.
To observe Fraunhofer diffraction, the aperture is kept small and the source and
observation points are located far away from the aperture so that the stationarity
condition is satisfied over most of the aperture (Fig. 7.11).

2

1

xα

Fig. 7.10: Fraunhofer diffraction is realized with plane wavefronts reaching and
leaving the aperture.
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Fig. 7.11: In Fraunhofer diffraction, most of aperture is covered by optical paths
of nearly equal lengths.

The path difference � for the extreme portions of the aperture is

� = �r ′
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0
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(
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R′
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+ 1
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0
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+· · ·


(7.31)

where a characterizes the dimensions of the aperture. To keep path difference �
to within a fraction of a wavelength of light to satisfy the stationarity condition
over the entire aperture, the source and observation points need to be moved
very far (optical infinity). Fraunhofer regime is more easily realized with the use
of lenses.

7.6 BABINET’S PRINCIPLE

Fresnel–Kirchhoff diffraction formula demonstrates an interesting feature recog-
nized as Babinet’s principle. We note that the integration in Eq. (7.27) is to be
carried over the clear portion of the aperture screen. The field at the observation
point does not change if this integral is expressed as a sum of any number of
integrals as long as the areas covered by the individual integrals add upto the
original aperture area.

Consider the apertures shown in Fig. 7.12. The clear portions of apertures
A1 and A2 together cover the entire xy plane. The apertures A1 and A2 are
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Fig. 7.12: Apertures A1 and A2 are complementary if clear portion of A1 equals
opaque portion of A2 and vice versa.

considered complementary to each other if the clear portions of aperture A1

exactly correspond to the opaque portions of aperture A2 and vice versa. We can
therefore write

E0�Po� = E1�Po�+E2�Po�
 (7.32)

where E1 is the field at the observation point Po when only aperture A1 is present
and E2 is the field at the same point Po when only aperture A2 is present, and E0 is
the field at Po in the absence of both apertures. The quasi-monochromatic source
remains in position during these measurements. We can re-write Eq. (7.32) as

E1�Po� = E0�Po�−E2�Po�
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or as

E2�Po� = E0�Po�−E1�Po��

Equation (7.32) or its equivalent forms constitute the statement of the Babinet’s
principle. It allows us to express diffraction effects of an aperture in terms of the
diffraction effects of its complementary aperture. To appreciate the complemen-
tary nature of the apertures, we consider a few special cases. We first consider
an observation point of zero intensity in the absence of apertures A1 and A2.
With E0�Po� = 0,

E1�Po� = −E2�Po�


and

I1�Po� = I2�Po��

Thus at points of zero field in the absence of any aperture, the complementary
apertures give rise to identical irradiance, but phase-reversed fields. This situation
occurs, for example, in the image plane of an optical system beyond the sharp
image. If, on the other hand, the observation point is chosen at the dark fringe
of aperture A1 [E1�Po� = 0], then

E2�Po� = E0�Po�� (7.33)

Thus, the field due to an aperture exactly equals the field in the absence of any
aperture at points of zero field of its complementary aperture. These aspects of
Kirchhoff’s theory can be readily verified. Babinet’s principle, being a charac-
teristic of the diffraction integral, is applicable to Fresnel as well as Fraunhofer
diffractions. However, its manifestations are mostly found in Fraunhofer diffrac-
tion. This is because in Fresnel diffraction, there are no points of zero field in
the absence of apertures. On the other hand, in the image plane of an optical
system (Fraunhofer diffraction regime), zero field exists beyond the image area.
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7.8 PROBLEMS

7.1 Use Huygens’ principle to obtain the laws of reflection and refraction of light across
an infinite interface between two media.

7.2 Using the scalar function  of Eq. (7.14), obtain a modified form of the Fresnel–
Kirchhoff diffraction formula.

7.3 Show that the obliquity factor defined in Eq. (7.19) is consistent with the reciprocity
statement.

7.4 Find a value for the nominal size of the diffracting aperture if Fresnel approximation
is to be valid for distances of the order of 100 wavelengths of light from the aperture.

7.5 What typical size of an aperture is needed to perform a good quality Fraunhofer
diffraction experiment in the laboratory without a lens? Specify the corresponding
distances of the source and point of observation from the aperture.
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Fresnel Diffraction

8.1 NEAR-FIELD DIFFRACTION

Near-field diffraction can be divided into two broad categories – diffraction very
close to the aperture and diffraction relatively farther away from the aperture.
Diffraction within a distance of a few wavelengths of light from the aperture
will not be discussed here. But this is an important distance regime in which
the resolution of a microscope can be extended beyond the usual limit of one
wavelength or so (see Section 11.7.1). Certain object details are simply not
available at far off points. They are lost on the way. Diffraction in the immediate
proximity of an object is difficult to investigate because the basic assumption
(Eq. 7.17) of Kirchhoff’s formalism may not hold and, in addition, it may not be
easy to delink the source and detector in this distance regime. Fresnel diffraction
refers to the case of diffraction relatively farther away and can be described by
the diffraction integral in its present form (Eq. 7.27). However, evaluation of the
diffraction integral is made difficult by the presence of the linear and quadratic
phase factors. It is possible to eliminate the linear phase factor by a proper choice
of the origin of coordinates. Figure 8.1 shows the diffracting aperture

∑
lying

in the xy plane behind the point source Ps. Po is the point of observation. The
origin O is chosen to be the point of intersection of the line joining the point
source and point of observation with the plane of the aperture. The x-axis is
taken along the projection of the line PsOPo in the plane of the aperture.

In this coordinate system, the position coordinates of the point source and
point of observation are �x′� y′� z′� and �x′′� y′′� z′′�, respectively. Accordingly,
Eqs (7.26), with reference to Fig. 7.8, give

l′ = − x′

R′
0

= sin � = x′′

R′′
0

= l′′� (8.1a)

m′ = − y′

R′
0

= 0 = y′′

R′′
0

= m′′� (8.1b)

n′′ = n′ = cos �� (8.1c)

339
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Fig. 8.1: Geometry for Fresnel diffraction; Ps is a point source, Po is point of
observation, A is a point in the aperture lying in the xy plane. Origin O is the
point of intersection of the line joining the point source and point of observation
with the plane of aperture.

where � is the angle the line PsOPo, lying in the xz plane, makes with the z-axis.
With this choice of the coordinate system, the linear phase term vanishes and
the diffraction integral (Eq. 7.27) takes the simpler form

E�Po� = − ia0

�
cos �

eik�R′
0+R′′

0 �

R′
0R

′′
0

∫ ∫
∑

t�x� y� e
i �

�

(
1

R′
0
+ 1

R′′
0

)
�x2 cos2 �+y2�

dx dy� (8.2)

where t�x� y� represents the amplitude transmission function of the aperture and
a0 is the amplitude of the incident spherical wave at unit distance from the
source. In writing Eq. (8.2), the terms x2/R′

0�x
′/R′

0�
2 and x2/R′′

0�x′′/R′′
0�2 in

Eq. (7.28) have been neglected in comparison to x2/R′
0 and x2/R′′

0 because for
typical diffraction geometries x′2/R′

0
2 � 1, x′′2/R′′

0
2 � 1. Accordingly, angle �

in Fig. 8.1 is rather small.
The diffraction integral can be transformed to the form of Eq. (8.2) even when

the aperture is illuminated by a plane wave provided the origin is chosen at the
foot of the perpendicular drawn from the point of observation to the plane of the
aperture. Under conditions of Fresnel diffraction (Eq. 7.29), the quadratic phase
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term in the diffraction integral introduces a phase change which is usually in
excess of 2� radians. Therefore, for Fresnel diffraction,

p2

R0

> �� (8.3)

where p stands for the x, y coordinates of a point in the aperture and R0 represents
R′

0, R′′
0 in Eq. (8.2). Defining

u =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
x cos �� (8.4a)

v =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
y� (8.4b)

the diffraction integral can be re-written as

E�Po� = a0eik�R′
0+R′′

0 �

R′
0 +R′′

0

∫ ∫
∑

(
− i

2

)
t�x� y� ei �

2 �u2+v2� du dv� (8.5)

The pre-factor in Eq. (8.5) is exactly the field of the unobstructed spherical
wave originating from the point source and reaching the point of observation.
The integral in Eq. (8.5) therefore represents the modification in amplitude
and phase, of the unobstructed spherical wave, caused by the presence of the
aperture.

It may appear inconvenient to link the origin of the coordinate system with
the point of observation. Nevertheless, this choice simplifies the diffraction
integral considerably. Additional justification for this choice of the origin comes
from the stationarity argument of Section 7.4.2, according to which, major
contribution to the diffraction integral comes from points of the aperture which lie
close to the chosen origin. We now consider some specific examples of Fresnel
diffraction.

8.2 RECTANGULAR APERTURE

Figure 8.2 shows a rectangular aperture of height a and width b. The line
joining the point source Ps and observation point Po intersects the aperture at
O which is taken as the origin of the coordinates. The center C of the aperture
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Fig. 8.2: Geometry for Fresnel diffraction from a rectangular aperture; C is the
center of the aperture.

has position coordinates �x0� y0� with respect to the origin O. The aperture
function is

t�x� y� =1 for x0 − a

2
≤ x ≤ x0 + a

2
�

y0 − b

2
≤ y ≤ y0 + b

2
�

=0 otherwise�

(8.6)

The field at Po is

E�Po� = a0eik�R′
0+R′′

0 �

R′
0 +R′′

0

(
− i

2

)[∫ u2

u1

ei �
2 u2

du
∫ v2

v1

ei �
2 v2

dv

]
� (8.7)

where the integration limits are given by

u1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�x0 −a/2�� (8.8a)

u2 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�x0 +a/2�� (8.8b)
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v1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�y0 −b/2�� (8.8c)

v2 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�y0 +b/2�� (8.8d)

Without introducing much error, the obliquity factor �cos �� has been taken as
one. The complex integrals in Eq. (8.7) can be expressed in terms of the Fresnel
integrals, defined as

C�w� =
∫ w

0
cos

(�

2
q2
)

dq� (8.9a)

S�w� =
∫ w

0
sin
(�

2
q2
)

dq� (8.9b)

Table A1 (Appendix A) gives values of the Fresnel integrals for w lying between
0 and 7.7. Some of the properties of the Fresnel integrals are given below:

C�0� = S�0� = 0� (8.10a)

C�−�� = S�−�� = −1/2� (8.10b)

C�+�� = S�+�� = +1/2� (8.10c)

C�−w� = −C�w�� (8.10d)

S�−w� = −S�w�� (8.10e)

Equation (8.7), when expressed in terms of the Fresnel integrals, takes the form

E�Po� =a0eik�R′
0+R′′

0 �

R′
0 +R′′

0

(
− i

2

)
	C�u2�−C�u1�+ i
S�u2�−S�u1���

× 	C�v2�−C�v1�+ i
S�v2�−S�v1��� � (8.11)

giving the intensity at the point of observation as

I�Po� =
(

1
2

0c

)
E�Po�E

∗�Po�

= I0

4

[

C�u2�−C�u1��

2 + 
S�u2�−S�u1��
2
]

×
[

C�v2�−C�v1��

2 + 
S�v2�−S�v1��
2
]

� (8.12)
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where

I0 = 1
2

0c
a2

0

�R′
0 +R′′

0�2

is the unobstructed (in the absence of aperture) intensity at Po.
For the center of the Fresnel diffraction pattern, the origin O coincides with

the center of the aperture �x0 = 0� y0 = 0�, so that

u2 = −u1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
a

2
(8.13a)

and

v2 = −v1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
b

2
� (8.13b)

Accordingly, the intensity at the center of the diffraction pattern is

I�Pc� = 4I0	
C�u2��
2 + 
S�u2��

2�	
C�v2��
2 + 
S�v2��

2�� (8.14)

For known values of R′
0, R′′

0 , a, b, and �, values of the Fresnel integrals can
be obtained from the tables. To find intensity at any other point in the plane
of observation, the origin will have to be relocated as mentioned earlier. The
limits of integration (Eqs 8.8) will change because of the change in the coordi-
nates �x0� y0� of the center of the aperture with respect to the new origin. This
process can be repeated to generate the field at any point in the plane of obser-
vation. There is, however, an elegant graphical procedure devised by the French
scientist Marie Alfred Cornu to obtain Fresnel diffraction intensities for the
rectangular apertures. It makes use of a geometrical construction, known as the
Cornu spiral.

8.2.1 The Cornu Spiral

Table A1 (Appendix A) reveals that the Fresnel integrals take a rather small
range of values. A graphical representation of C�w� as a function of S�w� or vice
versa for a large range of values of w is possible. Such a plot in the complex
plane with C�w� along the real axis and S�w� along the imaginary axis generates
a spiral in the first and third quadrants, called the Cornu spiral (Fig. 8.3).
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Fig. 8.3: The Cornu spiral.

The spiral passes through the origin O and asymptotically approaches the
points L�− 1

2 �− 1
2 � and M�+ 1

2 �+ 1
2 � for w approaching −� and +�, respec-

tively. The points L and M are sometimes called the eyes of the Cornu spiral.
A differential element of the length of the arc of the spiral is

dl = [
�dS�w��2 + �dC�w��2

]1/2

=
[
sin2

(�

2
w2
)

+ cos2
(�

2
w2
)]1/2

dw

= dw� (8.15)

Therefore w, in either direction from the origin, is a measure of the length of an
arc of the spiral. Points on the spiral can be labeled by the values of w. We take
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w as positive in the first quadrant and negative in the third quadrant. The slope
at any point of the spiral is

tan � = dS�w�

dC�w�
= sin��w2/2�

cos��w2/2�
= tan��w2/2�� (8.16)

The slope angle � varies as w2. The horizontal and vertical tangents to the spiral
appear at w = ±√

2n and w = ±√
2n+1, respectively, where n is an integer.

The line joining any two points on the spiral represents a complex number called
the Phasor, i.e.,

Ph�AB� = 	
C�wB�+ iS�wB��− 
C�wA�+ iS�wA��� � (8.17)

The magnitude of Ph�AB� represents the length of the chord AB given by

l�AB� =
[

C�wB�−C�wA��2 + 
S�wB�−S�wA��2

]1/2
(8.18a)

and its phase gives the angle

� = tan−1 S�wB�−S�wA�

C�wB�−C�wA�
� (8.18b)

which the phasor makes with the real axis (see Fig. 8.3). The expression (8.12)
for the intensity at the point of observation can be expressed in terms of the
lengths of the chords of the spiral, i.e.,

I�Po� = I0

4
l2
1�u1� u2�l

2
2�v1� v2�� (8.19)

To find the intensity at any point in the plane of observation, one first locates
the appropriate origin in the plane of the aperture, as described in Section
8.1. The coordinates (x0, y0) of the center of the aperture with respect to this
origin determine the limits of integration u1, u2, v1, and v2. The points w =
u1� u2� v1� and v2 are then marked on the same Cornu spiral and the chord lengths
l1�u1� u2� and l2�v1� v2� may be measured with a scale to obtain the intensity at
the point of observation. The use of the Cornu spiral is particularly convenient
since w is a dimensionless quantity.

8.2.2 Narrow Slit

A rectangular aperture becomes a narrow slit if one of its sides is allowed to
extend indefinitely and the other made small (Fig. 8.4).
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Fig. 8.4: Geometry for Fresnel diffraction from a long, narrow slit.

With ±a/2 = ±�, Eq. (8.12) reduces to

I�Po� = I0

2

[

C�w2�−C�w1��

2 + 
S�w2�−S�w1��
2
]

� (8.20)

where

w1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�y0 −b/2�� (8.21a)

w2 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�y0 +b/2�� (8.21b)

Here, y0 locates the center of the slit with respect to the chosen origin O. The
intensity at the center of the diffraction pattern (y0 = 0) is

I�Pc� = 2I0

[

C�w2��

2 + 
S�w2��
2
]

� (8.22)

The origin in this case coincides with the center of the slit. For an infinitely
long slit, no intensity changes should occur if the observation point is shifted
parallel to the length of the slit, but the intensity changes as the observation
point is shifted in the perpendicular direction. The origin moves from C to E
as the observation point is moved anti-parallel to the y-axis from the center of
the diffraction pattern Pc to Pe along the line GH (Fig. 8.5). The origin lies at
the edge of the slit for the observation point Pb and in the opaque portion of the
aperture screen for observations in the geometric shadow of the aperture.
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Fig. 8.5: Fresnel Diffraction from a narrow slit; as point of observation is shifted
from Pc to Pe, the origin shifts from C to E.

The intensity at the edge of the geometric shadow can be obtained from
Eq. (8.20) with

w1 = 0 and w2 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
b�

For points within the geometric shadow, the integration limits are

w1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
d

and

w2 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�d+b��

where d is the displacement of the origin along the y-axis with respect to the
edge of the slit. Similar statements can be made when observations are made in
the geometric shadow on the other side of the slit. The midpoint w0 and the arc
length �w between the limiting points w1 and w2 on the spiral are defined as

w0 = w1 +w2

2
=
√

2
�

(
1
R′

0

+ 1
R′′

0

)
y0 (8.23)
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and

�w = w2 −w1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
b� (8.24)

respectively. The arc length �w, determined by the parameters of the Fresnel
diffraction �R′

0�R′′
0� b���, does not change with the point of observation. The

midpoint w0 of the arc, however, changes with the point of observation. Equa-
tion (8.20) can be rewritten as

I�Po� = I0

2
l2�w0��w�� (8.25)

where l�w0��w� represents the length of the chord of the arc of length �w
centered at point w0 on the Cornu spiral. Different observation points are explored
by simply sliding this arc of fixed length along the spiral and measuring the
corresponding chord lengths. To illustrate this procedure, we take �w = 1�0. This
may correspond to, for example, R′

0 = R′′
0 = 8 m� b = 1�0 mm, and � = 500 nm.

This choice of the distances and the aperture size may be more typical of
Fraunhofer than Fresnel diffraction. We have chosen these numbers to emphasize
the fact that no clear demarcation exists between the two diffraction regimes.
The center of the diffraction pattern corresponds to positioning of this arc (arc
AB in Fig. 8.6) symmetrically on the Cornu spiral with its midpoint coinciding
with the origin O. As the point of observation moves away from the center of the
diffraction pattern towards point Pd and beyond (see Fig. 8.5), the y-coordinate of
the center of the aperture and hence w0 changes from zero to positive values. This
represents the movement of the arc AB of length �w up the spiral toward point
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Δw B

M

Fig. 8.6: Use of Cornu spiral to obtain intensity distribution in Fresnel diffraction
from a narrow slit.
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Fig. 8.7: Normalized intensity distribution of Fresnel diffraction from a narrow
slit. Dark line on abscissa marks geometrically bright region. A change in w0

represents a shift of point of observation.

M . The chord length l�w0��w� first decreases, resulting in fall in the intensity as
one moves away from the center of the diffraction pattern. However, continued
climb up the spiral is accompanied by the chord length going through successive
maximum and minimum values as the arc slides over the sharply bending portions
of the spiral. The resulting intensity changes are shown in Fig. 8.7.

8.2.2.1 Intensity Variations in the Geometrically Bright Region

Figure 8.7 shows that for �w = 1�0, the intensity at the center of the diffraction
pattern, which is also the center of the geometrically bright region, is maximum.
The center of the diffraction pattern may not always have the maximum intensity.
In fact, in Fresnel diffraction, fringes can be observed within the geometrically
bright region with the possibility of the center of the diffraction pattern being
a local minimum, and not a maximum of intensity. Let us begin with a very
small slit width so that �w = 0�1. When such an arc is slid in the neighborhood
of the origin of the Cornu spiral (Fig. 8.6), only marginal changes in the chord
length take place. Therefore, in this case, a broad maximum occurs at the center
of the geometrically bright region. With the midpoint of the arc coinciding with
the origin of the Cornu spiral, let the length of the arc be gradually increased
(by further opening the slit) so that the arc begins to occupy larger and larger
portions of the spiral. The chord length and hence the intensity at the center
of the diffraction pattern increases steadily. This continues till the arc touches
points A and B of the spiral, as shown in Fig. 8.8. Further increase in the arc
length decreases the length of the chord and hence the intensity at the center
of the diffraction pattern. The chord length reaches its minimum value when
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Fig. 8.8: Changes in chord length with increasing arc length �w; arc length AB
gives maximum intensity and arc length CD gives minimum intensity at the
center of geometrically bright portion.

the arc �w has increased in length to occupy the spiral between the points
C and D. The intensity in the middle of the geometrically bright portion is
minimum for this particular value of the slit width. A fringe pattern appears
within the geometrically bright portion in the plane of observation. Figure 8.9
shows calculated intensity variations for three values of the slit width.

A change in w0 in these figures indicates a shift of the point of observation
parallel to the shorter edge of the slit. As we shall see in Chapter 10, Fig. 8.9a
resembles the intensity profile of Fraunhofer diffraction from a narrow slit,
whereas Fig. 8.9b,c shows typical intensity variations in Fresnel diffraction from
a slit. We see here a transition between the Fraunhofer and Fresnel diffraction
regimes. The thick portions of the abscissas in these figures indicate the arc
lengths �w, demarcating the geometrical limits of the bright portions in the plane
of observation. For large slit widths (Fig. 8.9c), Fresnel diffraction is primarily
confined to the geometrically bright region with little irradiance in the geometric
shadow. Distinct fringes for a wide slit can be seen around the edges of the
slit only. It should be noted that as wavelength � decreases, the arc length �w
increases for fixed values of R′

0, R′′
0 and b. Therefore for a given geometry of

Fresnel diffraction, a larger portion of the Cornu spiral is covered at shorter
wavelengths. In the limit of � → 0, the arc length �w covers the entire spiral
from L to M . The chord length now takes a fixed value of

√
2, irrespective of the

position of the observation point. We are now in the regime of geometrical optics
and fringes disappear altogether. Note that an infinitely wide slit also gives rise
to an arc which completely covers the Cornu spiral and once again the chord
length becomes

√
2. This is as it should be since the removal of the slit screen
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Fig. 8.9: Normalized intensity distributions of Fresnel diffraction from a slit.
Thick lines on abscissas indicate geometrically bright regions. Changes in �w
indicate changes in slit width.

should restore the unobstructed intensity distribution. This may appear somewhat
intriguing since the derivation of the diffraction integral assumes small aperture
dimensions. Fresnel diffraction from 0.23 mm wide slit recorded with 514.5 nm
line of an Argon ion laser is shown in Photo 8.1.

Photo 8.1: Fresnel diffraction from a slit of width 0.23 mm recorded with
514.5 nm line of an Argon ion laser.
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8.2.3 Straight Edge

Figure 8.10 shows a semi-infinite opaque screen lying in the xy plane, with the
diffracting edge held parallel to the y-axis. The aperture function for the straight
edge is

t�x� y� =1 for −� ≤ y ≤ +��

x1 ≤ x ≤ +��

= 0 otherwise� (8.26)

where x1 changes with the point of observation (see Fig. 8.10). For the straight
edge, Eq. (8.12) reduces to

I�Po� = I0

2

[{
1
2

−C�w1�

}2

+
{

1
2

−S�w1�

}2
]

� (8.27)

where

w1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
x1�

In terms of the Cornu spiral, the upper end of the arc extends upto point M
whereas the lower end of the arc takes position on the Cornu spiral, depending
on the value of x1 (Fig. 8.11).
The intensity at point Pc just opposite to the diffracting edge �x1 = 0� is

I�Pc� = I0

4
� (8.28)
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Fig. 8.10: Fresnel diffraction from a straight edge.
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Fig. 8.11: Fresnel diffraction from a straight edge can be described by up or
down movement of lower end of arc whose upper end is fixed at M . This figure
corresponds to the observation point Po lying in the shadow region.

This is the expected result. With exactly half of the incident spherical wavefront
obstructed by the diffracting screen, the field is reduced to half its un-obstructed
value. As we move up into the geometrically bright portion in the plane of
observation, the lower end of the arc moves down the spiral, whereas the upper
end remains glued to the upper eye of the spiral. For example, for the observation
point Pa (Fig. 8.10), the origin lies at A so that a little more than half the wavefront
contributes toward diffraction. As the observation point keeps moving up, the
lower end of the arc begins to curl around the lower half of the spiral and the
intensity goes through extremum values. We therefore encounter straight fringes
in the geometrically bright portion. On the other hand, as the shadow region is
explored (point Po, for example, in Fig. 8.10), the free end of the arc moves
up the spiral from the origin and the chord length decreases monotonically. The
intensity in the geometric shadow therefore falls steadily, as shown in Fig. 8.12.
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Fig. 8.12: Normalized intensity variation of Fresnel diffraction from a
straight edge. Intensity decreases monotonically in the shadow region (positive x1).
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Photo 8.2: Fresnel diffraction from a straight edge recorded with 514.5 nm line
of an Argon ion laser.

We should ponder over these results since our general theory of diffraction
assumes aperture dimensions much smaller than the distances of the source and
point of observation from the aperture. The aperture of the present example is
semi-infinite in extent.

Photograph 8.2 shows Fresnel diffraction from a straight edge recorded with
514.5 nm line of an Argon ion laser.

8.2.4 Rectangular Obstacle

We next consider a long, narrow, opaque strip of width b lying in the xy plane,
with the long edge running parallel to the x-axis (Fig. 8.13).

y1

y2

Ps
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y

O
C

z

x

b

cP

Fig. 8.13: Fresnel diffraction from a long, opaque rectangular strip.
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The diffracting aperture in this case is the entire xy plane, except for the
portion occupied by the opaque strip. The aperture function for the rectangular
strip is

t�x� y� =1 for −� ≤ x ≤ +��

−� ≤ y ≤ y1�

y2 ≤ y ≤ +��

= 0 otherwise�

(8.29)

where y1 and y2 vary with the point of observation. Equation (8.12), now takes
the form

I�Po� = I0

2
	
C�w′

1�−C�w1�+C�w2�−C�w′
2��

2

+ 
S�w′
1�−S�w1�+S�w2�−S�w′

2��
2��

(8.30)

where

w1 =−��

w2 =+��

w′
1 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�y0 −b/2��

w′
2 =
√

2
�

(
1
R′

0

+ 1
R′′

0

)
�y0 +b/2��

(8.31)

Here, y0 is the y-coordinate of the center of the strip (point C in Fig. 8.13).
Equation (8.30) then reduces to

I�Po� = I0

2
	
1+C�w′

1�−C�w′
2��

2 + 
1+S�w′
1�−S�w′

2��
2�� (8.32)

On removal of the strip �w′
1 = w′

2 = 0�, this equation gives I�Po� = I0, as expected.
Equation (8.32) can be used to obtain intensity at any point in the plane of
observation. It is, however, not very convenient to find the coordinate y0 of the
center of the strip with respect to the moving origin. Figure 8.14 shows how
y0 can be expressed in terms of the displacement Y0 of the point of observation
from the center �Pc� of the diffraction pattern:

y0 = − R′
0

R′
0 +R′′

0

Y0� (8.33)
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Fig. 8.14: AA′ represents width of the rectangular opaque strip, y0 locates the
center of the strip with respect to the moving origin O. Pc is center of the
diffraction pattern in the plane of observation.

Now all measurements can be made in the plane of observation with respect to
a fixed origin �Pc�.

It is quite instructive to see how the Cornu spiral can be used to obtain
quantitative information on Fresnel diffraction from a rectangular obstacle. For
a given point of observation, Fig. 8.15 shows the portion AB of the Cornu spiral
which is to be excluded due to the presence of the obstacle. The contribution

of the lower part of the spiral �−� ≤ w ≤ w1� is given by the phasor
⇀

l LA and

that of the upper part �w2 ≤ w ≤ +�� by the phasor
⇀

l BM , giving the resultant
intensity at the point of observation as

I�Po� = I0

2

∣∣∣∣
⇀

l LA + ⇀

l BM

∣∣∣∣
2

� (8.34)
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Fig. 8.15: Use of Cornu spiral to describe Fresnel diffraction from an opaque strip.
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Photo 8.3: Fresnel diffraction from a wire of diameter 0.12 mm recorded with
514.5 nm line of an Argon ion laser. Bright fringe in the geometric shadow of
the wire can be seen.

We have put the vector sign over the phasors since they can be added as
vectors.

The magnitudes and phase angles of the phasors can be obtained from the
Cornu spiral as explained in Section 8.2.1. The intensity at the symmetric point
behind the opaque strip will not be zero, unless it is so wide that points A and B
approach the eyes of the spiral. Photograph 8.3 shows straight fringes appearing

Plane of
observation

Aperture
or
obstacle

He−Ne Laser

L

PD

Iris

Fig. 8.16: Experimental arrangement to study Fresnel diffraction. A 10×
microscope objective can be used for L. PD is a photodiode, mounted on an
x – y translator.
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in the Fresnel diffraction of a wire of diameter 0.12 mm, taken with 514.5 nm
line of an Argon ion laser. The bright fringe in the middle of the geometric
shadow of the wire can be clearly seen.

Before we move on to the next topic, we note that the intensity distributions of
Fresnel diffraction (Eqs 8.25 and 8.34) for a slit and an opaque strip, having same
widths, are different. This should not be interpreted as a violation of Babinet’s
principle. In fact these results are entirely consistent with it (see Problem 8.4).
The complementary apertures give same intensity distributions only in regions
which are dark in the absence of any aperture.

Figure 8.16 shows a simple experimental arrangement to study Fresnel diffrac-
tion from apertures and obstacles. The intensity measurements can be done with
a photo-detector (PD) or a CCD camera.

8.3 CIRCULAR APERTURE

For the rectangular diffracting apertures discussed in Section 8.2, it was possible
to drop the linear phase factor from the diffraction integral by introducing a
moveable origin in the aperture plane. This procedure is not very helpful in
the context of circular apertures. We therefore restrict our discussion of Fresnel
diffraction from a circular aperture when the source and observation points lie
on the symmetry axis of the aperture (Fig. 8.17).

We begin by writing the diffraction integral in the form (Eq.7.18b)

E�Po� = − ia0

�

∫ ∫
∑

t�x� y�Q
eik�r ′+r ′′�

r ′r ′′ dS� (8.35)
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Fig. 8.17: Geometry for Fresnel diffraction from a circular aperture. The source
and observation points lie on the symmetry axis.
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where Q is the obliquity factor. The aperture function t�x� y� has unit value
over the aperture and zero outside it. For an on-axis observation point, the
direction cosines l′, l′′, m′, m′′ (Eq. 7.26) are identically zero and (Eq. 7.25b)
reduces to

r ′ + r ′′ = R′
0 +R′′

0 + 1
2

(
1
R′

0

+ 1
R′′

0

)
�x2 +y2�� (8.36)

The diffraction integral can then be expressed as

E�Po� = − ia0

�

eik�R′
0+R′′
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0R

′′
0

∫ r0
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∫ 2�

�=0
Q�r� e

i �
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(
1
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0
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)
r2

r dr d�� (8.37)

where r0 is the radius of the circular aperture. Introducing

w = 2
�

(
1
R′

0

+ 1
R′′

0

)
r2� (8.38)

Eq. (8.37) becomes

E�Po� = −i
�

2
E0

∫ w′

0
Q�w�ei �

2 wdw� (8.39)

where

w′ = 2
�

(
1
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0

+ 1
R′′

0

)
r2

0 (8.40)

and

E0 = a0

eik�R′
0+R′′

0 �

R′
0 +R′′

0

(8.41)

is the uninterrupted field at the point of observation. In the absence of a simple
analytical expression for the obliquity factor Q�w� but with the knowledge that
Q�w� varies slowly with w, we make use of a geometrical construction to
evaluate the diffraction integral.

For fixed positions of the source and point of observation, both lying on the
symmetry axis, the circular aperture is divided into zones called the Fresnel zones
or the half-period zones. The zones are constructed in a manner that the phase
of the wave starting from the point source and reaching the point of observation
after getting diffracted from the edge of the first zone differs in phase by �
radians from the phase of the wave travelling straight from the source to the
point of observation. Furthermore, the phases of the waves getting diffracted
from the outer edges of any two successive zones and reaching the point of
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Fig. 8.18: Fresnel’s half period zones.

observation also differ by � radians. The Fresnel zones are shown schematically
in Fig. 8.18. The nth zone of radius rn satisfies the condition

r ′ + r ′′ −R′
0 −R′′

0 = n�

2
� (8.42)

Neglecting terms of order
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)4

� and
(
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and higher, we have

r ′ −R′
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0

� (8.43a)

r ′′ −R′′
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n

2R′′
0

� (8.43b)

so that

r2
n = n�(

1
R′

0
+ 1

R′′
0

) � (8.44)

To be precise, rn is the radius of the outer edge of the nth zone. Within the above
approximation, the zones so constructed are equal area zones. Furthermore, we
note that

wn = 2
�

(
1
R′

0

+ 1
R′′

0

)
r2
n (8.45a)

= 2n� (8.45b)
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Assuming the aperture to be exactly filled by N zones, Eq. (8.39) may be
written as

E�Po� =− i
�

2
E0

N∑
n=1

Qn

∫ wn

wn−1

ei �
2 w dw (8.46a)

= 2E0

N∑
n=1

�−1�n+1Qn� (8.46b)

where Qn is the average value of the obliquity factor for the nth zone. Since changes
in the obliquity factor from zone to zone are small, the contributions to the resultant
field E�Po� from successive zones have very nearly equal magnitudes, but opposite
signs. This is the whole purpose of constructing the Fresnel zones. For even N ,
Eq. (8.46b) can be written as

E�Po� = 2E0	Q1 −Q2 +Q3 −Q4 +· · ·+QN−1 −QN � (8.47a)

= 2E0
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− QN

2

]
� (8.47b)

For small changes in the obliquity factor from zone to zone, as mentioned earlier,
the bracketed quantities in Eq. (8.47b) are vanishingly small. Therefore, for
even N ,

E�Po� ≈ 2E0

[
Q1

2
− QN

2

]
� (8.48)

Similarly for odd N ,
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For a sufficiently large aperture, the obliquity factor QN for the last zone is

vanishingly small as the angles the vectors
⇀

r ′ and
⇀

r ′′ make with the normal to
the aperture plane approach 90
. So that, E�Po� = E0, as expected.

However, for a small aperture at a suitable distance from the source, it is
quite possible that for a particular point of observation, the first zone itself may
exactly fill the aperture, in which case the field becomes twice as large as the
uninterrupted field and the intensity four times the uninterrupted intensity. This
is the point of maximum intensity for Fresnel diffraction from a circular aperture.
This happens, for example for r0 = 0�9 mm, R′

0 = R′′
0 = 3�2 m, and � = 500 nm.

On the other hand, for some other point of observation on the optical axis,
somewhat closer to the aperture, the same aperture may accommodate exactly
two zones. The intensity at that point is nearly zero because the contributions
from the two zones are nearly equal in magnitude but opposite in sign. This
is shown in Photo 8.4 for a circular aperture of 0.33 mm diameter recorded
with 514.5 nm line of an Argon ion laser. As the observation point moves still
closer to the aperture, the zone radii decrease and the number of zones covering
the aperture increases. The intensity distribution goes through maximum and
minimum values as the number of zones completely filling the aperture takes
odd and even values, respectively. A similar behavior can be expected if the size
of the circular aperture is increased and intensity changes are observed at a fixed
point on the optical axis. Increasing the aperture size for fixed positions of the
source and observation points amounts to adding more zones in the aperture.

Photo 8.4: Fresnel diffraction from a circular aperture of diameter 0.33 mm
recorded with 514.5 nm line of an Argon ion laser. The aperture contains two
Fresnel zones, making the center of the diffraction pattern dark.
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For a given point of observation, the aperture may not contain an exact number
of Fresnel zones. The contribution of the incomplete zone, near the edge of the
aperture, can be evaluated from the integral

�E�Po� = −i
�

2
E0Qn

∫ wn−1+�w

wn−1

ei �
2 wdw� (8.50)

8.3.1 Irradiance at Off-Axial Points

The calculation of the intensity distribution of Fresnel diffraction from a circular
aperture at off-axial points is considerably more difficult [8.4] and will not be
attempted here. The new origin O′, for an off-axial point of observation Po,
is the point of intersection of the line PsPo with the plane of the aperture
(Fig. 8.19). The rotational symmetry is now lost. To get some feel of what
to expect, we construct Fresnel zones but now with respect to point O′ which
no longer coincides with the center of the aperture. As seen from the off-axial
points, only the innermost few zones appear unobstructed. In Fig. 8.20, only
the first two zones as seen from Po are fully inside the aperture. The third and
higher zones are partially obstructed. The obstruction is caused by the opaque
portion of the aperture screen. A partially obstructed zone makes only a partial
contribution to the field at an off-axial observation point. As the observation
point is moved perpendicular to the symmetry axis, the irradiance goes through
extremum values. The half-period zones which lie wholly within the aperture for
the on-axis observation points are successively obstructed and the zones which
do not contribute toward on-axis irradiance begin to contribute for off-axis points
of observations.
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Fig. 8.19: Partially obstructed zones for off-axial observation point.
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Fig. 8.20: Geometry for off-axis Fresnel diffraction from a circular aperture.

8.3.2 The Arago Bright Spot

If a circular obstacle is used in place of a circular aperture to observe Fresnel
diffraction, then a bright spot appears within the geometric shadow, unless one
is too close to the obstacle. This was actually a conclusion drawn by Poisson
based on Fresnel’s wave theory and verified experimentally by Arago.1 The
intensity of the bright spot is nearly equal to the unobstructed intensity at that
point. This can be understood in terms of the half-period zones which can be
constructed in exactly the same manner as for the circular aperture. For a given
point of observation on the optical axis, let the circular obstacle contain exactly
m Fresnel zones. It does not matter if m is odd or even because these zones do
not contribute anything to the field. The diffracted field at this axial point due
to the zones, lying outside the circular obstacle, is

E�Po� = 2E0

[
Qm+1

2
∓ QN

2

]
� (8.51)

where we have included contributions from all zones beyond the edge of the
obstacle in the manner of Eqs (8.48) and (8.49). The minus sign in Eq. (8.51)
applies if the space beyond the edge of the obstacle contains exactly an even

1 Augustin Jean Fresnel submitted, at the age of 30, an essay on the wave theory of light to the
French Academy. The expert Committee included Simeon D. Poisson and D.F.J. Arago, among
others. Poisson used Fresnel’s theory and predicted the appearance of a bright spot in the geometric
shadow of a round object. This, Poisson thought was absurd enough to reject Fresnel’s essay, but
Arago went ahead and performed the experiment and observed the bright spot exactly as predicted
by Poisson. Fresnel was awarded the first prize.
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number of half-period zones and the positive sign applies if this number is odd.
Actually, it does not matter whether N is odd or even or non-integral, because
for the outermost zone at infinity, QN = 0, giving

E�Po� = E0Qm+1� (8.52)

The field E�Po� will be exactly equal to the unobstructed field E0 only if Qm+1 =
1. Unless the obstacle is very large, Qm+1 does not differ appreciably from unity.
This is exactly in line with Poisson’s prediction and Arago’s observation. To
observe the Arago spot, the irregularities on the edge of the round obstacle must
be reduced to a small fraction of the radial extent of the last zone filling the
obstacle. The bright fringe in the middle of the geometric shadow of the wire in
Photo 8.3 appears precisely for the same reason as the Arago bright spot for a
circular obstacle.

8.4 THE ZONE PLATE

Fresnel half-period zones are defined for fixed positions of the source and point
of observation, both lying on the symmetry axis of the circular aperture. A zone
plate is an image-forming device, much like a lens, but based on the concept of
Fresnel half-period zones. We begin by re-writing Eq. (8.44) in the form

1

R′′
0

+ 1
R′

0

= n�

r2
n

� (8.53)

where rn is the radius of the outer edge of the nth Fresnel zone and R′
0 and R′′

0 are
the distances of the source and point of observation from the circular aperture,
respectively. For fixed positions of the source and point of observation, the
radii of successive zones increase as the square root of successive integers. The
irradiance at any point of observation is rather low since the fields contributed
by the neighboring zones are out of phase with each other. Maximum irradiance
is achieved when the circular aperture contains exactly one Fresnel zone. Even
under these conditions, the irradiance level is quite low because the solid angle
subtended by the aperture at the source is rather small. The irradiance level can be
enhanced substantially if the circular aperture is made large and alternate zones
are somehow blocked so that the remaining zones contribute in phase. Consider
a situation where for a given point of observation, a circular aperture contains
exactly 40 Fresnel zones. The resultant field with alternate zones blocked, is

E�Po� = 2E0 	Q1 +Q3 +Q5 +· · ·+Q39� � (8.54)



8.4: THE ZONE PLATE 367

Fig. 8.21: A zone plate. Alternate zones are blocked.

Assuming all obliquity factors to have nearly unit magnitude, the resultant
amplitude is now nearly 40 times the unobstructed amplitude and the resultant
intensity 1600 times the unobstructed intensity. Such a device with alternate
Fresnel zones blocked is called a zone plate (Fig. 8.21). Irradiance level can be
increased even further if the alternate zones are not blocked, but are enhanced
or retarded in phase by � radians with respect to the neighboring zones. For
the previous example of an aperture containing exactly 40 Fresnel zones, the
intensity at the point of observation can now reach 6400 times the unobstructed
intensity. We might as well call this point of observation, so much brighter than
the surrounding points, as the image of the point source.

The image-forming action of a zone plate can be appreciated, at least in a
formal sense, by comparing Eq. (8.53) with the lens formula

1

v
− 1

u
= 1

f
� (4.51b)

This comparison can be made exact if it is realized that to be consistent with the
sign convention of geometrical optics, R′

0 in Fig. 8.18 must be measured from
O and not from Ps. The primary focal length of the zone plate is

f0 = r2
n

n�
= r2

1

�
= r2

2

2�
= · · · � (8.55)
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where r1, r2, and rn are the radii of the outer edges of the first, second, and nth
Fresnel zones, respectively. At optical frequencies, the primary focal length f0 of
a zone plate is rather long. To use a zone plate as a lens, let the object be placed
at a distance R′

0 in front of the zone plate. The image formed at the distance
R′′

0 (obtained from Eq. (8.53) with primary focal length f0) behind the aperture
is the primary image. A zone plate is capable of generating several real and
virtual images, simultaneously. For the primary image, each zone marked on the
zone plate contains exactly one Fersnel zone. As the observation point is moved
from the primary image towards the zone plate, the radii of the Fresnel zones
decrease and there are positions between the primary image and the zone plate,
where each zone marked on the zone plate contains exactly 3, 5, 7, � � � , �2n+1�
Fresnel zones. These are the secondary real images of the object, corresponding
to the secondary focal lengths f0/3, f0/5, f0/7, etc. of the zone plate. The
virtual images lie between the zone plate and the source. These are points on
the optical axis for which the effective Fresnel zone distributions in the zone
plate are exactly the same as for the corresponding real secondary images, but
now the zone plate has focal lengths of −f0/3, −f0/5, −f0/7, etc. The virtual
images arise from the waves diffracted by the zone plate which diverge, rather
than converge as shown in Fig. 8.22.

Whereas the primary image formed by a zone plate can be quite intense,
the secondary images have considerably reduced brightness. To see this, we
consider the first secondary image for which the zone plate has an effective focal
length of f0/3. For this image point as the observation point, each zone marked
on the zone plate accommodates three Fresnel zones. However, the effective

Ps I1
’ I2

’ I0I1I2 z12345

Fig. 8.22: Imaging action of a zone plate; I0, I1, I2 are real images and I ′
1, I ′

2 are
virtual images of Ps. I0 is the primary image.
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contribution toward image brightness is due to only one of these zones, the other
two zones nearly cancel each other’s contributions. Thus, the field for the first
secondary image is reduced by a factor of three and the intensity by a factor of
nine as compared, respectively, to the field and intensity of the primary image.
Similar statements can be made for the remaining secondary images. Between
successive images, there are points of minimum intensity corresponding to even
number of Fresnel zones filling each marked zone of the zone plate.

A zone plate acts as a highly chromatic lens because its focal length is
wavelength dependent (Eq. 8.55). On the other hand, the lensing action of the
zone plate is not dependent on the refractive properties of the medium of the
zone plate. Fresnel zone plates can be extremely useful as focusing devices
for X-rays and in other regions of the electromagnetic spectrum where suitable
refractive materials are difficult to find.

8.5 PIN-HOLE CAMERA

A pin-hole camera is a lensless device for taking clear images of distant and
stationary objects. In Section 8.4, we have seen how a circular aperture can act as
an image-forming device. The image intensity depends critically on the number
of Fresnel zones filling the aperture. The intensity becomes maximum when the
aperture contains exactly one Fresnel zone. Under these conditions, the radius
of the circular aperture is

r =
(

�
1

R′
0
+ 1

R′′
0

)1/2

� (8.56)

where R′
0 and R′′

0 are the object and image distances from the aperture,
respectively.

A pin-hole camera, essentially, consists of a box with a small hole on one
side and a photographic film on the opposite side. Inverted images of the objects
in front of the camera are formed on the photographic film. The pertinent
dimensions of the camera are the size of the hole and the distance between the
hole and the film. For distant objects, Eq. (8.56) can be approximated to

r =√
R′′

0�� (8.57)

where R′′
0 is the distance between the pin-hole and the film. For viewing distant

objects with R′′
0 = 30 cm, the radius of the pin-hole is nearly 0.4 mm at 500 nm.

It is indeed a very small camera aperture, requiring extra long exposure times.
A more detailed analysis of the pin-hole camera suggests a slightly higher value
for the hole radius [8.5]. A camera with hole radius significantly larger than the
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one given by Eq. (8.57) leads to unacceptably blurred images. In fact, for larger
holes, the image tends to get the shape of the hole, and not that of the object.

Before we move on to Fraunhofer diffraction, it is desirable to have some
working knowledge of the Fourier transforms because of their repeated use in
Fraunhofer diffraction. Chapter 9 is therefore devoted to the Fourier transforms.
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8.7 PROBLEMS

8.1 A point source of monochromatic radiation �� = 500 nm� lies on the axis of a
1 mm ×2 mm rectangular aperture. The source is 25 cm in front of the aperture and
the plane of observation, parallel to the plane of the aperture, is 50 cm behind it.

(a) Calculate p2/R0�, and see if inequality (8.3) holds.
(b) Find the irradiance, normalized to the unobstructed irradiance, at the center of

the plane of observation.
(c) Using the Cornu spiral of Fig. 8.3 and the symmetry of the diffracting aperture,

determine as accurately as you can the position and normalized irradiance of
the first dark fringe of the diffraction pattern in the plane of observation. You
may prefer a computational approach.

8.2 The beam of a He–Ne laser, emitting 632.8 nm radiation, is focused by a short focal
length lens. The focal point of the lens lies on the line passing through the midpoint
of a long slit and perpendicular to its plane. The slit is 0.5 mm wide and lies 20 cm
behind the focal point of the lens and 20 cm in front of the plane of observation
which is parallel to the plane of the slit.

(a) Find the normalized irradiance at the center of the plane of observation and
state if it is more or less than the irradiances at the neighboring points in the
plane of observation.

(b) Find the normalized irradiance at a point in the plane of observation, 2 mm
displaced from the optical axis in the direction of the width of the slit. Does
this point lie within or outside the geometric shadow of the slit?
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8.3 Answer parts (a) and (b) of Problem 8.2 after removing the focusing lens and
assuming that the He–Ne laser produces a plane wave which falls normally on the
slit.

8.4 Consider Fresnel diffractions from a long slit and a long, opaque strip, each of
width 1 mm. The point source �� = 500 nm� is 15 cm in front of the slit/strip and the
plane of observation is 25 cm behind the slit/strip. Find, in each case, the normalized
irradiance at the center of the diffraction pattern. Explain how your results are
consistent with Babinet’s principle.

8.5 Consider Fresnel diffraction from a semi-infinite opaque screen with a straight edge
(Fig. 8.10) for R′

0 = 30 cm and � = 550 nm. The observation plane, parallel to the
plane of the screen lies 50 cm behind it. Using the Cornu spiral of Fig. 8.3, find in
the plane of observation, the positions of the first two maxima and the minimum
between them. In each case, obtain the irradiance, normalized to the unobstructed
irradiance.

8.6 Fresnel diffraction is observed from two long, parallel slits, 0.5 mm apart as shown
in Fig. 8.23. Each slit is 0.1 mm wide. Point source S of monochromatic light of
wavelength 500 nm lies on the optical axis 10 cm in front of the plane of the slits.
Find the irradiance, normalized to the unobstructed irradiance at a point lying on
the optical axis, 40 cm behind the plane of the slits.

10 cm 40 cm

0.1 mm

0.25 mm
0.1 mm

0.25 mm
S

Fig. 8.23.

8.7 An annular circular aperture of inner radius 2.00 mm is illuminated by an axial point
source of monochromatic light of wavelength 500 nm. The source lies 4 m in front
of the aperture. It is found that the point of maximum irradiance lies on the optical
axis, 4 m behind the aperture. Find the outer radius of the annular aperture and the
number of zones filling the inner opaque portion of the annular aperture.

8.8 Consider Fresnel diffraction from a circular aperture of radius 0.4 mm kept 50 cm
behind an axial point source of monochromatic radiation of wavelength 600 nm.

(a) Find the normalized irradiance at an axial point, 50 cm behind the circular
aperture.

(b) Find maximum distance of the plane of observation (parallel to the plane of
the aperture) from the aperture so that a diffraction pattern with a minimum
at the center can be seen.
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(c) Find positions of the five strongest maxima of intensity and the minima
between them on the axis of the aperture. Obtain their relative intensities.

(d) Compare your results of part (c) with those obtained from Eq. (8.39) by
assuming the obliquity factor of a constant value of one.

8.9 A zone plate with alternate zones blocked is used to obtain a real image of a small
axial object kept 20 cm in front of the zone plate. The desired image magnification
is 5. It is further desired that the image irradiance be 900 times the unobstructed
irradiance at the image point. Find the smallest diameter of the zone plate. Is this a
practical device? Take � = 632�8 nm.

8.10 Find the smallest diameter of the zone plate if the image in Problem 8.9 is not the
primary image, but the first secondary real image. Comment on the primary image
under this condition.

8.11 A zone plate with alternate zones blocked has primary focal length of 50 cm when a
He–Ne laser is used as the source of radiation �� = 632�8 nm�. Find the diameter of
the zone plate if it has exactly 24 dark and 25 clear half-period zones. Find positions
of the primary and first secondary real images of a small axial object kept 75 cm in
front of the zone plate.
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The Fourier Transform

9.1 INTRODUCTION

Fourier transforms are extensively used in optics. Two-dimensional Fourier trans-
forms in spatial coordinates are particularly useful in Fraunhofer diffraction,
optical image formation, and processing. In this chapter, we introduce Fourier
series and Fourier transforms with some typical examples. Important properties
of the Fourier transforms will be derived. This will be followed by a discussion
on the convolution and correlation of functions. The concepts developed in this
chapter will be applied in the succeeding chapters. The technique of express-
ing a complicated function in terms of simpler functions provides a means to
tackle many of the complex problems of science and engineering. A number
of mathematicians, Euler, Dirichlet, Fourier to name a few have made seminal
contributions in this development. It was J. B. J. Fourier who first applied the
series expansion, now called the Fourier series, to solve the problem of heat
flow in one dimension. Stated simply, this technique allows one to express any
periodic function satisfying certain conditions of continuity, etc., in terms of an
infinite series called the Fourier series, and a function which is not periodic in
terms of an integral called the Fourier transform. We shall concentrate primarily
on Fourier transforms in spatial coordinates because of their relevance to Fourier
optics. In Chapter 2, Fourier transforms in time domain were used to describe
polychromatic light.

9.2 THE FOURIER SERIES

We begin by considering a single valued one-dimensional periodic function

f�x+�� = f�x� for −� ≤ x ≤ +� (9.1)

373
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with period � and possessing a finite number of points of ordinary discontinuity
and a finite number of maxima and minima within its period. Furthermore, f�x�

must be absolutely integrable in any finite interval x1 ≤ x ≤ x2, i.e.,

∫ x2

x1

�f�x��dx < ��

Any function representing a physical quantity satisfies these conditions, but many
mathematical functions do not. Several equivalent forms of the Fourier series
expansion of a periodic function exist:

f�x� = a0

2
+

�∑
n=1

an cos
(

2�n
x

�
+�n

)
(9.2a)

= a0

2
+

�∑
n=1

[
an cos

(
2�n

x

�

)
+bn sin

(
2�n

x

�

)]
(9.2b)

=
+�∑

n=−�
anei2�n x

� � (9.2c)

where the constant coefficients an and bn are the weighting factors (real or
complex) of the terms in the expansion and �n are the phase constants. The
expansions (9.2a) and (9.2b) make use of the sinusoidal and co-sinusoidal func-
tions whereas form (9.2c) uses complex exponentials of the type ei2�ux. The
n = 1 elementary functions (sinusoidal or exponential) in the expansions have
the period of the original function and higher order elementary functions have
periods which are integral fractions of this period. The first terms in the expan-
sions (9.2a,b) and n = 0 term in Eq. (9.2c) represent the d.c. part of the function.
The weighting factors applicable to Eq. (9.2b), obtained from the orthogonality
properties of the sinusoidal and co-sinusoidal functions, are given by

a0 = 2
�

∫ +�/2

−�/2
f�x� dx� (9.3a)

an = 2
�

∫ +�/2

−�/2
f�x� cos

(
2�n

x

�

)
dx (9.3b)

and

bn = 2
�

∫ +�/2

−�/2
f�x� sin

(
2�n

x

�

)
dx� (9.3c)
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For even f�x�,

bn = 0 for all n > 0

and

an = 0 for all n > 0

when f�x� is odd. The coefficients an and bn are in general non-zero for functions
which are neither even nor odd. In analogy with the temporal frequency and its
harmonics (	n = n

T
, n being a positive integer), we define

un = n

�
(9.4)

with dimension of inverse length as the nth spatial frequency. Spatial frequency
is the number of times a function varying sinusoidally with a position coordinate
repeats itself per unit length. Expressing Eq. (9.2b) in terms of the spatial
frequencies,

f�x� = a0

2
+

�∑
n=1

[
an cos�2�unx�+bn sin�2�unx�

]
� (9.5)

The weighting factors an and bn are now associated with the spatial frequency
un. This series expansion admits only positive spatial frequencies, but Eq. (9.2c)
allows negative spatial frequencies �− n

�
� as well. Negative frequencies may

not always be physically meaningful. For example, for a diffraction grating
as we shall see later, the principal maxima on the two sides of the central
maximum correspond to positive and negative spatial frequencies. On the other
hand, negative frequencies in the time domain may have no physical reality,
but must be retained in the mathematical description. In summary, the Fourier
series representation of a periodic function, satisfying certain conditions, can
be made as close to the original function as desired by adding more and more
terms in the expansion, but an exact equivalence between the two is not always
guaranteed.

9.2.1 The Rectangle Wave

As an illustration, we develop Fourier series expansion of a periodic function
of period �, representing an unlimited sequence of one-dimensional rectangle
functions (Fig. 9.1). Each rectangle has width 2�/l, where l is any real number
greater than 2. The amplitude transmission function of a diffraction grating
closely resembles this function, except that it involves only a finite number
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Fig. 9.1: One-dimensional rectangle periodic function.

of repetitions. With O as the origin, the rectangle wave is described by the
function

f�x� =1 for m�− �

l
≤ x ≤ m�+ �

l
�

=0 for m�+ �

l
≤ x ≤ �m+1��− �

l
� (9.6)

where m = 0�±1�±2� 
 
 
 . The function f�x� being even,

bn = 0 for all n (9.7a)

and

a0 =4
l
� (9.7b)

an�=0 =4
l

sin�2�n/l�

�2�n/l�
= 4

l
sinc

(
2�n

l

)
� (9.7c)

The weighting factors an�=0 are zero for integral values of the ratio 2n
l

. For l = 2,
all an�=0 = 0 and function f�x� becomes a constant function. For l = 4, all an�=0

coefficients with even n vanish and for l = 16, the coefficients a8� a16� 
 
 
 are
identically zero. For non-integral values of 2n/l, an coefficients are sampled
values of the sinc function, where sampling is done at integral values of n. The
first few terms in the Fourier decompositions of the periodic rectangle functions
for l = 4 and 16 are

f�x� = 1
2

+ 2
�

[
cos�2�u1x�− 1

3
cos�2�u3x� + 1

5
cos�2�u5x�

− 1
7

cos�2�u7x�+· · ·
]

(9.8a)
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= 1
2

+ 1
�

[
cos�2�u1x�+ cos �2��−u1�x�− 1

3
cos�2�u3x�

−1
3

cos �2��−u3�x�+· · ·
]

(9.8b)

= 0�500+0�637 cos�2�u1x�−0�212 cos�2�u3x�+0�127

× cos�2�u5x�−0�091 cos�2�u7x�+0�071 cos�2�u9x�+· · · (9.8c)

and

f�x� =0�125+0�244 cos�2�u1x�+0�225 cos�2�u2x�

+0�196 cos�2�u3x�+0�159 cos�2�u4x�+0�118 cos�2�u5x�

+0�075 cos�2�u6x�+0�035 cos�2�u7x�−0�027 cos�2�u9x�

+· · · � (9.8d)

respectively. A relatively slower decrease in the relative magnitudes of successive
weighting factors for the wave with narrower rectangle function should be noted.
The ratio a9/a0 is 0.108 (11%) for l = 16 and 0�071�7%� for l = 4.

Figure 9.2a,b shows the repeat periods of the periodic rectangle functions
for l = 4 and 16, and Fig. 9.2c,d shows the corresponding distributions of the
weighting factors (the sampled sinc functions). In these plots, only positive spatial
frequencies are shown (Eq. 9.5). However, for this particular example, negative
spatial frequencies can be admitted (Eq. 9.8b), allowing a more symmetrical
display of the weighting factors (Fig. 9.2e,f).

The weighting factors give the amplitudes and phases (only the signs in the
present case) of the spatial frequencies needed to build a periodic function.
The negative sign with some of the coefficients in Eqs (9.8) indicates a phase
difference of 180� for those spatial frequencies. The distribution of the weighting
factors of a function represents its spatial frequency spectrum (Fig. 9.2e,f).
The spatial frequencies with zero amplitudes are excluded in the synthesis of
a function. For example, for l = 4, the spatial frequencies u = 2

�
, 4

�
, 6

�
, 
 
 


are missing from the spatial frequency spectrum of the rectangle wave. For
a fixed period, as the rectangle gets narrower (increasing l), the magnitude
of a0 (representing the d.c. part) decreases and a larger number of higher an

coefficients begin to have values comparable to that of a0. Therefore, a narrow
function requires a large number of spatial frequencies for its synthesis. Putting
it differently, a narrow function possesses a large spatial frequency bandwidth.
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Fig. 9.2: (a, b) Rectangle waves with l = 4� 16; distributions of their Fourier
coefficients, (c, d) admitting only positive spatial frequencies, (e, f) admitting
negative spatial frequencies as well.

The number of terms with non-negligible weighting factors in the Fourier
decomposition of a periodic function depends on its detailed structure. Broadly
speaking, a smoothly varying function requires a smaller number of terms for its
synthesis as compared to a function possessing sharp discontinuities. Figure 9.3
shows an attempt to synthesize a rectangle wave of period 2 and l = 16. Retaining
terms up to n = 40 in the expansion, the synthesized wave (Fig. 9.3a) is a rather
poor representation of the rectangle wave. Figure 9.3b, obtained with 10,000
terms in the expansion, seems to reproduce the rectangle wave quite well, except
for some discrepancy close to the edges of the rectangle. Figure 9.3c is a zoomed
version of Fig. 9.3b showing portions of the synthesized wave very close to
a discontinuity. Substantial disagreement (overshooting to the extent of 8.9%)
near the edges of the rectangle remains even with 10,000 terms in the expansion.
However, the average of the values of the synthesized function just before and
just after the discontinuity is in close agreement with the value of the function
at the discontinuity.

Note that the Fourier decomposition of a periodic function is not unique. A dif-
ferent choice of the origin in Fig. 9.1 gives another perfectly valid representation
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Fig. 9.3: Synthesis of a rectangle wave of period 2 and width 0.250 (a) with 40
terms in the Fourier expansion, (b) with 10,000 terms in the Fourier expansion;
(c) zoomed version of (b) showing discrepancy near a discontinuity.

of the rectangle wave. We mention in passing that if the rectangle wave (Eq. 9.6)
were to represent the grating transmission, the spatial frequencies un and the
weighting factors an, respectively, give the locations and relative strengths of
the principal maxima of the grating diffraction. It may also be noted that making
the rectangle function narrower (increasing l in Eq. 9.6) effectively increases the
period of the rectangle wave. This has the effect of bringing the spatial frequen-
cies of the rectangle wave closer to each other (compare Fig. 9.2c,d). Extending
this argument to the limit, we can say that the spatial frequency spectrum of a
wave of period approaching infinity becomes continuous. This brings us to the
discussion of the Fourier representation of a non-periodic function.

9.3 FOURIER TRANSFORMS IN ONE DIMENSION

The Fourier series expansion is applicable to periodic functions. A non-periodic
function such as the one shown in Fig. 9.4 can be considered to be periodic with
infinite period, i.e.,

f�x� = f�x+���
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+b/ 2−b/ 2

f (x)

1

0
x

Fig. 9.4: Rectangle function of width b.

where � → �. This extension makes the Fourier series expansion applicable
to non-periodic functions as well. To consider Fourier decomposition of non-
periodic functions, we use the Fourier series expansion of Eq. (9.2c):

f�x� =
+�∑

n=−�
an ei2�unx� (9.2c)

where

an = 1
�

∫ +�/2

−�/2
f�x�e−i2�unx dx� (9.9)

Substituting Eq. (9.9) into Eq. (9.2c), we have

f�x� =
+�∑

n=−�

[
1
�

∫ +�/2

−�/2
f�x′�e−i2�unx′

dx′
]

ei2�unx� (9.10)

where un = �n/��. As � approaches infinity,

un → u u = un+1 −un = 1
�

→ du� (9.11)

In this limit, the sum in Eq. (9.10) can be replaced by an integral so that

f�x� =
∫ +�

−�

[∫ +�

−�
f�x′�e−i2�ux′

dx′
]

ei2�ux du

=
∫ +�

−�
F�u�ei2�ux du�

(9.12a)
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where

F�u� =
∫ +�

−�
f�x�e−i2�ux dx (9.12b)

is the Fourier transform of function f�x�, written symbolically as

F�u� = � �f�x��� (9.13a)

Equation (9.12a) defines the inverse Fourier transform operation, i.e.,

f�x� = � −1�F�u�� =
∫ +�

−�
F�u�ei2�ux du� (9.13b)

The non-periodic function f�x� has been expressed in terms of the complex
exponential functions of continuously distributed spatial frequencies. The product
F�u�du represents the weighting factor for the spatial frequencies lying in the
interval between u and u+du. The function f�x� and its Fourier transform F�u�
constitute a Fourier transform pair.

It should be noted that the exponents in Eqs (9.12b) and (9.13b) appear
with opposite signs. In literature, considerable variation in notation exists. We
have used spatial frequency u = 1

�
, expressed in cycles/cm (or lines/mm) in

the definition of the Fourier transform. Instead, if angular spatial frequency
k = 2�u = 2�

�
is used, then

F�k� =
∫ +�

−�
f�x�e−ikx dx� (9.14a)

f�x� = 1
2�

∫ +�

−�
F�k�eikx dk� (9.14b)

Yet another notation exists, where

F�k� = 1√
2�

∫ +�

−�
f�x�e−ikx dx� (9.15a)

f�x� = 1√
2�

∫ +�

−�
F�k�eikx dk� (9.15b)

To summarize, the Fourier transform projects the spatial frequency structure
of a non-periodic function defined in the spatial coordinate domain. A similar
statement can be made for the functions in the time and temporal frequency
domains. The Fourier transform is expressed in terms of the complex exponentials
with continuously distributed frequencies (positive and negative). This is in
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contrast to the Fourier series decomposition of a periodic function involving
only discrete (harmonic) positive frequencies.

9.3.1 Fourier Transforms of Simple Functions

9.3.1.1 Rectangle Function

The Fourier transform of the rectangle function of unit height (Fig. 9.4) is

F�u� =
∫ +�

−�
f�x�e−i2�ux dx

=
∫ +b/2

−b/2
e−i2�ux dx

=b sinc ��ub��

(9.16)

where b is the width of the rectangle. This transform is real but not always
positive. The sinc function (Fig. 9.5) gives the amplitude distribution of the
spatial frequencies needed to synthesize the rectangle function. Negative values
of the sinc function imply phase reversal for those spatial frequencies. Significant
contributions to the Fourier transform of the rectangle function come from the
spatial frequencies lying in the interval between − n

b
and + n

b
, where n is a small

1
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u
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F( ) 
  b

Fig. 9.5: Spatial frequency spectrum of rectangle function of width b.
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integer. The sinc function has maximum value of unity for the spatial frequency
u = 0. The zeroes of the sinc function appear at

u = ±1
b

�±2
b

�±3
b

� 
 
 
 (9.17)

A reciprocal relationship exists between the spatial frequency spread �2/b� of
the central lobe of the sinc function and the width of the rectangle function.

A comparison of Eqs (9.7c) and (9.16) suggests an alternate approach to obtain
the Fourier transform of a non-repeating function. The spatial frequency spectrum
(Fig. 9.2c,d) of the rectangle wave is a sampled version of the continuous
spatial frequency spectrum (Fig. 9.5) of the rectangle function. It is therefore
possible to generate the Fourier transform of the rectangle function from the
knowledge of the spatial frequency spectrum of the corresponding periodic
rectangle function. The periodic function can be generated from the non-periodic
function by replication, i.e., by treating the non-repeating function as the repeat
unit of the periodic function. The question as to what is the minimum sampling
needed to get a precise estimate of the Fourier transform of the non-periodic
function from the spectrum of the replicated function is answered by Shanon’s
sampling theorem. This theorem states that if the Fourier transform of a non-
periodic function vanishes beyond a certain frequency, then the sampling rate
must be at least twice per period of the highest frequency present in the Fourier
transform. The frequency which is twice the highest frequency is called the
Nyquist frequency. Sampling done at a rate lower than the Nyquist sampling
rate can generate spatial frequencies which may not be present in the spatial
frequency spectrum of the non-periodic function.

9.3.1.2 The Dirac delta Function

One-dimensional Dirac delta function

��x−a� = 0 for x �= a (9.18a)

has zero value everywhere except at x = a. At x = a, it approaches infinity in a
manner that

∫ +�

−�
��x−a� dx = 1� (9.18b)

Its Fourier transform is

F�u� =
∫ +�

−�
��x−a�e−i2�ux dx

= e−i2�ua�

(9.19)



384 Chapter 9: THE FOURIER TRANSFORM

δ(x − a)

0 a x

(a)

 F(  )u

 F(  )u  = −+u −+ a
n

1

(b)

a

Im

n + 1/2 Reu  = 

Fig. 9.6: (a) Dirac delta function ��x − a�, (b) its Fourier transform in the
complex plane.

The spatial frequency spectrum of the Dirac delta function located at x = a

covers all spatial frequencies from −� to +� with equal amplitudes and with
phases which vary linearly with the spatial frequency. This is shown in the
complex plane in Fig. 9.6.

The transform of the delta function located at the origin is, however, real. The
transform of two delta functions located at x = ±a is

F�u� =
∫ +�

−�
���x−a�+��x+a��e−i2�ux dx

=2 cos�2�ua��

(9.20)

Its inverse also holds, i.e.,

� �cos�2�u0x�� =
∫ +�

−�
cos�2�u0x�e−i2�ux dx

= 1
2

∫ +�

−�
�e−i2��u−u0�x + e−i2��u+u0�x�dx

= 1
2

���u−u0�+��u+u0���

(9.21)

These features are shown in Fig. 9.7. The transform of the comb function

comb �x� =
+N∑

n=−N

��x−na� (9.22a)
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Fig. 9.7: (a) Fourier transform of two delta functions is a cosine function. (b)
Fourier transform of a cosine function consists of two delta functions.

consisting of �2N +1� equidistant delta functions is

F�u� =
∫ +�

−�

+N∑
n=−N

��x−na�e−i2�ux dx

=
+N∑

n=−N

e−i2�una (9.22b)

= �2N +1�
sinc��2N +1��ua�

sinc��ua�
�

The principal maxima of this function with peak heights of �2N +1� are located at

u = m

a
� (9.23)
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Fig. 9.8: Fourier transform of a comb function is a comb function.

where m = 0, ±1, ±2, 
 
 
 , and the zeroes of the function between the mth and
�m+1�th principal maxima occur at

u =
(

m+ n

2N +1

)
1
a

� (9.24)

where n = ±1, ±2, 
 
 
 , ±2N . Weak secondary maxima occur between con-
secutive zeroes of F�u�. For sufficiently large N , the principal maxima become
strong and sharp and the secondary maxima become relatively weak. Accord-
ingly, the Fourier transform of a one-dimensional comb function consisting of
an infinite array of equally spaced delta functions is a comb function in the
spatial frequency domain (Fig. 9.8). Strictly speaking, Fourier transform of a
comb function containing a set of infinite delta functions does not exist because
the sum in Eq. (9.22a) does not remain finite as N → �.

9.3.1.3 Damped Oscillator

We next consider the function

f�t� =A0 e−�t/�� cos�2�	0t� for t ≥ 0

=0 for t < 0
(9.25)

in the time domain. This function may represent the electric field radiated by an
atom, in which case, � refers to the life-time of the excited state of the atom.
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The transform of this function is

F�	� =A0

∫ +�

0
e−�t/�� cos�2�	0t�e−i2�	t dt

= A0

2

∫ +�

0
e−�t/��

[
ei2��	0−	�t + e−i2��	0+	�t

]
dt

= A0

2

[
1

1
�
− i2��	0 −	�

+ 1
1
�
+ i2��	0 +	�

]
�

(9.26)

Second term being small at the optical frequencies can be ignored. Therefore,

F�	� =
(

A0

2

)
1

1
�
− i2��	0 −	�

� (9.27)

�F�	��2 =
(

A2
0

4

)
1

1
�2 +4�2�	0 −	�2

=
(

A2
0�

2

4

)
��	0�

2

�	 −	0�
2 + ��	0�

2
�

(9.28)

where

�	0 = 1
2��

� (9.29)
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Fig. 9.9: Frequency spectrum of a damped oscillator has Lorentzian profile.
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The square modulus of the Fourier transform of the damped oscillator function
has Lorentzian profile (Fig. 9.9) with full width at half maximum (FWHM) of

	 = 	2 −	1 = 2�	0 = 1
��

� (9.30)

9.3.1.4 Truncated Oscillator

The function

f�t� =A0 cos 2�	0t for − T

2
≤ t ≤ +T

2
�

=0 otherwise (9.31)

describes an oscillator which oscillates without damping for a finite interval of
time. Its Fourier transform is

F�	� = A0

2

∫ +T/2

−T/2
�ei2�	0t + e−i2�	0t�e−i2�	t dt

= A0

2
�T��sinc���	 −	0�T�+ sinc���	 +	0�T���

(9.32)

The second sinc function may be ignored since its dominant contributions
are for negative frequencies. Figure 9.10 shows the truncated oscillator func-
tion and its Fourier transform for positive frequencies. The zeroes in the
Fourier transform, nearest to the oscillator frequency 	0, occur at 	 −	0 = ± 1

T
.

f (t )

A 0

A 0(ΔT)

F(v)

0

1.0

0

0 −
2

0 0 +
2

2
ΔT

2
+ ΔT

t
ΔT ΔT

2

Fig. 9.10: Normalized Fourier transform of the truncated oscillator function is a
sinc function.
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An oscillator oscillating for a short time emits radiation with a broad fre-
quency spectrum. To emit monochromatic radiation, the oscillator must oscillate
for all times. The bandwidth 	 of a truncated oscillator is defined by the
relation

	T = 1� (9.33)

9.4 FOURIER TRANSFORMS IN TWO DIMENSIONS

The Fourier transform of a two-dimensional function f�x� y� is

F�u� v� =
�∫ ∫

−�
f�x� y�e−i2��ux+vy�dx dy� (9.34)

where u and v defined in the manner of Eq. (9.11) are the spatial frequencies in
two dimensions. The transform of a two-dimensional product function

f�x� y� = g�x�h�y� (9.35a)

is

F�u� v� =
∫ +�

−�
g�x�e−i2�ux dx

∫ +�

−�
h�y�e−i2�vy dy

=G�u�H�v��

(9.35b)

where G�u� and H�v� are the Fourier transforms of the one-dimensional functions
g�x� and h�y�, respectively. The two-dimensional inverse Fourier transform is
likewise defined as

f�x� y� =� −1�F�u� v��

=
�∫ ∫

−�
F�u� v�ei2��ux+vy�du dv�

(9.36)

9.4.1 Properties of the Fourier Transforms

The Fourier transform was introduced as an extension of the Fourier series
representation of a periodic function in the limit of the period of the function
approaching infinity. Therefore, to have a Fourier transform, the function must
satisfy all restrictions imposed on a function while defining its Fourier series
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representation. In particular, for the Fourier transform to exist, the function
f�x� y� must be absolutely integrable, i.e.,

�∫ ∫

−�
�f�x� y��dx dy < �� (9.37)

Some of the important properties of the Fourier transform are given below:

9.4.1.1 Symmetry Properties

For real f�x� y�,

F ∗�u� v� = �� �f�x� y���∗

=
�∫ ∫

−�
f ∗�x� y�ei2��ux+vy�dx dy

=
�∫ ∫

−�
f�x� y�e−i2��−ux−vy�dx dy

=F�−u�−v��

(9.38)

Furthermore,

F ∗�u� v� = ±F�u� v� (9.39)

if the function is in addition even (+sign) or odd (−sign).

9.4.1.2 Scaling Property

�

[
f

(
x

a
�

y

b

)]
=

�∫ ∫

−�
f

(
x

a
�

y

b

)
e−i2��ux+vy�dx dy

=�ab�
�∫ ∫

−�
f

(
x

a
�

y

b

)
e−i2��au� x

a �+bv� y
b ��d

(
x

a

)
d
(

y

b

)

=�ab�F�au�bv��

(9.40)

A compression in the spatial coordinate domain results in expansion in the spatial
frequency domain and vice versa. This feature shows up in the broadening of
the Fraunhofer diffraction pattern of an aperture on reducing its size.
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9.4.1.3 Shifting Property

� �f�x−x0� y −y0�� =
�∫ ∫

−�
f�x−x0� y −y0�e−i2��ux+vy� dx dy

= e−i2��ux0+vy0�

�∫ ∫

−�
f�x−x0� y −y0�

× e−i2��u�x−x0�+v�y−y0�� d�x−x0�d�y −y0�

= e−i2��ux0+vy0�F�u� v��

(9.41)

A spatial translation of a function produces a phase shift in its Fourier transform,
leaving the square modulus of the Fourier transform unchanged. This is borne
out of the fact that a translation of the diffracting aperture in the transverse plane
does not modify the intensity distribution in Fraunhofer diffraction. Similarly, it
can be shown that a change in the phase of a function shifts the spatial frequency
spectrum of its Fourier transform, i.e.,

� �f�x� y�e−i2��u0x+v0y�� = F�u+u0� v+v0�� (9.42)

9.4.1.4 Linearity Property

� �ag�x� y�+bh�x� y�� = aG�u� v�+bH�u� v�� (9.43)

where G�u�v� and H�u�v� are the transforms of g�x� y� and h�x� y�, respectively,
and a�b are arbitrary constants, real or complex. For complementary functions,
i.e., for

h�x� y� = 1−g�x� y�� (9.44a)

the linearity property requires

H�u�v� = ��u� v�−G�u�v� (9.44b)

since

� �1� =
�∫ ∫

−�
1e−i2��ux+vy� dx dy

=��u� v��

(9.45)

Except for the zero spatial frequency, Fourier transforms of complementary
functions are identical to within a sign change. Linearity property of the Fourier
transform is extensively utilized in Fourier optics.
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9.4.1.5 Parseval’s Theorem

�∫ ∫

−�
�F�u� v��2du dv =

�∫ ∫

−�
F ∗�u� v�F�u� v�du dv

=
�∫ ∫

−�

⎡
⎣

�∫ ∫

−�
f ∗�x� y�ei2��ux+vy�dx dy

⎤
⎦

×
⎡
⎣

�∫ ∫

−�
f�x′y′�e−i2��ux′+vy′� dx′dy′

⎤
⎦du dv

=
�∫ ∫

−�

�∫ ∫

−�
f ∗�x� y�f�x′� y′���x′ −x�

×��y′ −y�dx dx′dy dy′

=
�∫ ∫

−�
f ∗�x� y�f�x� y�dx dy

=
�∫ ∫

−�
�f�x� y��2dx dy�

(9.46)

Parseval’s theorem is a statement of energy conservation. As an ilustration, we
note that the intensity distribution in Fraunhofer diffraction is proportional to the
square modulus of the Fourier transform of the field distribution in the object
plane (see Eqs 10.6 and 10.9). Therefore in Fraunhofer diffraction, Parseval’s
theorem ensures the equality of the energy contents of the field distributions
over the object and diffraction planes.

9.5 CONVOLUTION OPERATION

It often happens that a physical quantity actually measured differs non-trivially
from what was intended to be measured. This may be due to some inherent
but systematic limitation of the instrument used to make the measurement. For
example, the finite width of the entrance slit limits the ability of a spectrometer
to reproduce the spectral composition of narrow band radiation. The spectral
profile recorded by a spectrometer depends on the spectral distribution of the
source and also on the spectral response of the spectrometer. In fact, the recorded
profile is the convolution of the functions representing the spectral distribution
of the source and the spectral response of the instrument. The convolution of
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functions is an extremely useful concept in optics and elsewhere. We provide
here a brief introduction to the convolution operation and its use.

Two functions, continuous or discrete, can be convolved (provided certain
conditions are satisfied) to generate a third function which shares the charac-
teristics of the original functions. The convolution of two real and continuous
one-dimensional functions f1�x� and f2�x� is defined through the integral

f�x� =
∫ +�

−�
f1�x

′�f2�x−x′�dx′ (9.47a)

and is symbolically written as

f�x� = f1�x�∗f2�x�� (9.47b)

The functions f1�x� and f2�x� must be bounded everywhere and be absolutely
integrable. The particular form of the argument �x−x′� in the second function is
often encountered when a shift in the position of the input to a system produces
only a shift in the position of the output from the system. Such systems are
called shift-invariant systems. Isoplanatism in optics implies shift-invariance
of an optical system. The convolution of three one-dimensional functions is
defined as

f�x� = �f1�x�∗f2�x��∗f3�x�

=
[∫ +�

−�
f1�x

′�f2�x−x′�dx′
]

∗f3�x�

=
∫ +�

−�

[∫ +�

−�
f1�x

′�f2�x
′′ −x′�dx′

]
f3�x−x′′�dx′′�

(9.48)

The convolution operation is commutative:

f�x� =f1�x�∗f2�x�

=
∫ +�

−�
f1�x

′�f2�x−x′�dx′

=
∫ +�

−�
f2�x

′′�f1�x−x′′�dx′′

=f2�x�∗f1�x��

Similarly, it can be shown that the convolution operation satisfies distributive and
associative properties. The convolution operation in two dimensions is defined
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by the integral

f�x� y� =
�∫ ∫

−�
f1�x

′� y′�f2�x−x′� y −y′�dx′dy′ (9.49a)

=f1�x� y�∗f2�x� y�� (9.49b)

To demonstrate the power of the convolution operation, we show how a train of
rectangle functions can be generated from the convolution of a rectangle function
with a sequence of Dirac delta functions (Fig. 9.11). Let

f1�x� = ��x�+��x−a� (9.50)

represent two delta functions located at x = 0 and x = a, and

f2�x� = h�x� (9.51)

be a rectangle function of height h and width b. The convolution of f1�x� and
f2�x� is

∫ +�

−�
f1�x

′�f2�x−x′�dx′ =
∫ +�

−�
���x′�+��x′ −a��h�x−x′�dx′

=h�x�+h�x−a��

(9.52)

Thus, the convolution of two delta functions and a rectangle function gener-
ates a train of two rectangle functions. Similarly, for sufficiently large N , the

h

b

0 a

b b

0
x

hh* =

a

δ(x) δ(x−  )a

Fig. 9.11: Convolution of a rectangle function with two Dirac delta functions is
a train of two rectangle functions.
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convolution integral

∫ +�

−�

[ +N∑
n=−N

��x′ −na�

]
h�x−x′�dx′ (9.53)

replicates the rectangle function h�x� into a periodic rectangle function (Fig. 9.1).

9.5.1 Convolution as the Area of Products

The convolution operation is a bit difficult concept to comprehend. To help the
reader appreciate what is involved, we digress on the physical interpretation of
the convolution operation.

The convolution of functions f1�x� and f2�x� can be interpreted in terms
of the area of products of the functions f1�x

′� and f2�x − x′�, where f1�x
′�

is the function f1�x� with x replaced by the dummy variable x′ (Fig. 9.12a)
and function f2�x − x′� is generated by first inverting the function f2�x

′� to
get f2�−x′� and then translating it by an amount x to the right (Fig. 9.12b).
The function f2�x − x′� can also be generated by folding the function f2�x

′�
about the point x/2 (Fig. 9.12c). The functions f1�x

′� and f2�x − x′� are then
superimposed (Fig. 9.12d). Within the region of overlap of the functions, the
product f1�x

′�f2�x−x′� is calculated as a function of x′. Figure 9.12e is a plot
of this product as a function of x′. The area under this curve is the value of the
convolution integral for displacement x of the function f2�−x′�. The full range
of the convolution function f�x� can be obtained by appropriately displacing the
function f2�−x′� to the right and to the left and repeating the above steps. The
extent of the overlap between f1�x

′� and f2�x−x′� depends on the displacement
x and the spreads of the convolving functions. Beyond a certain value of x, the
functions may not overlap and the convolution integral vanishes.

To illustrate this procedure, we calculate the convolution of two rectangle
functions of unequal heights and widths (Fig. 9.13a). The convolution integral

f�x� =f1�x�∗f2�x�

=
∫ +�

−�
f1�x

′�f2�x−x′�dx′

for any displacement x can be obtained by sliding the inverted function f2�−x′�
by an amount x across f1�x

′�. As long as f2�x−x′� lies fully within f1�x
′� as in

Fig. 9.13b, the area under the product f1�x
′�f2�x−x′� and hence the convolution

integral maintains the constant value

f�x� = 2bh1h2� (9.54a)



396 Chapter 9: THE FOURIER TRANSFORM
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x0
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f2 (x ’)
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f2 (x − x )’

x’

(e)

x0 x/ 2 x

(c)

Fig. 9.12: Convolution integral as area of products of f1�x
′� and f2�x − x′�;

area of the shaded figure (e) represents the convolution for a displacement of
f2�−x′� by x.

If the function f2�x−x′� is partially outside the function f1�x
′� as in Fig. 9.13c,

then the convolution integral has the value

f�x� = �2b−x′′�h1h2� (9.54b)

where width x′′ of the rectangle f2�x − x′� lies outside f1�x
′�. Therefore, the

convolution of two rectangle functions of unequal widths a and b, obtained by
considering all possible displacements of one of the rectangles, is a trapezoid
with its base extending from −�a+b� to +�a+b� as shown in Fig. 9.13d. As
a rule, the width of the convolved function is the sum of the widths of the con-
volving functions which are non-zero over finite regions. With few exceptions,
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h1

f1(x)

h2

x"

f1 (x’)

−a −b +a +b

(c)

f2 (x − x )’

f(x)

f2 (x)

−b−a +b +a

(b)

+a−a

(a)

+b−b

* f 1 ) (x’

f2 (x − x )’

(d)

−a−b −a+b 0 a−b a+b x

Fig. 9.13: (a) Convolution of two rectangle functions of unequal widths and
heights, (b) f2�x − x′� lies wholly within f1�x

′�, (c) f2�x − x′� lies partially
outside f1�x

′�, (d) convolution of two rectangle functions of unequal widths is a
trapezoid.

the convolved function is always broader than either of the convolving func-
tions. As a result, the finite width of the entrance slit in a spectrometer broadens
the recorded profiles of the spectral lines. In addition, if neither of the con-
volving functions is a delta function, the convolution operation smoothens the
discontinuities of the convolving functions.

9.5.2 Convolution and Impulse Response

The area of the products of the functions f1�x
′� and f2�x − x′� discussed in

Section 9.4 is not the only interpretation that can be given to the convolution
integral. Here is an alternate interpretation which is more in line with our
comment in the introduction. The function f1�x� in the convolution integral may
be treated as the input to a physical system. We can imagine f1�x� to consist
of an infinite sequence of continuously distributed weighted delta functions.
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Accordingly, we can write

f1�x� =
∫ +�

−�
f1�x

′���x−x′�dx′� (9.55)

where the weight of the delta function located at x = x′ is the value of the
function f1�x� at x = x′. The function f2�x−x′� in the convolution integral may
be interpreted to represent the response of the physical system at the position
x to a delta function input of unit weight located at x′, i.e., it represents the
impulse response function of the system. It generally happens that the response
of a system to a delta function input is not a delta function, but a function which
has a finite spread. Therefore, the convolution integral for a given value of x

(say x = x1) gets contributions not only from the input function at x = x1, but
also from other points lying on the input function f1�x� in the neighborhood
of the point x = x1. This explains the broadening of the recorded profiles of
spectral lines in a spectrometer. If the response function f2�x� is relatively sharp,
non-zero contributions to the convolution integral come from a smaller domain
of f1�x�. On the other hand, for a broad response function f2�x�, contributions
from distant points of f1�x� may be quite significant.

Figure 9.14a shows the input function f1�x� broken up into narrow strips which
in the limit go over to the appropriately weighted delta functions. Figure 9.14b
shows the impulse response function of the system. The contributions to the
convolution integral f�x = x1� from the strips of the input function located
at x = x3, x1, x2 are shown in Fig. 9.14c. The strips of f1�x� beyond a cer-
tain distance from x1 do not contribute to the convolution integral f�x = x1�.
The contributions from all neighboring strips are added to obtain the value of
the convolution integral (Eq. 9.47a) for x = x1. Complete convolution func-
tion f�x� can be generated by translating the function f2�x� across the input
function f1�x�.

The convolution of complex functions is defined as

f�x� =
∫ +�

−�
h1�x

′�ei�1�x′�h2�x−x′�ei�2�x−x′� dx′� (9.56)

where

f1�x� =h1�x�ei�1�x��

f2�x� =h2�x�ei�2�x��

The functions h1�x�, h2�x�, �1�x� and �2�x� are real functions.



9.5: CONVOLUTION OPERATION 399

x3 x1 x2

x(c)
x3 x1 x2

f1(x)

x

f2 (x)

(b)(a)
x0 0

Fig. 9.14: (a) Input function f1�x� divided into narrow strips, (b) impulse
response function f2�x�, (c) contributions to the convolution f�x = x1� comes
from the neighboring strips also.

9.5.3 Convolution Theorems

The Fourier transform of the convolution of two functions is the product of the
Fourier transforms of the convolving functions, i.e., if

� �f1�x� y�� =F1�u� v��

� �f2�x� y�� =F2�u� v��

then

� �f1�x� y�∗f2�x� y�� = F1�u� v�F2�u� v�� (9.57)

Proof.

� �f1�x� y�∗f2�x� y��

=
�∫ ∫

−�

⎡
⎣

�∫ ∫

−�
dx′dy′f1�x

′� y′�f2�x−x′� y −y′�

⎤
⎦

× e−i2��ux+vy�dx dy
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=
�∫ ∫

−�
f1�x

′� y′�

⎡
⎣

�∫ ∫

−�
f2�x−x′� y −y′�

×e−i2��ux+vy�dx dy

⎤
⎦dx′dy′

=
�∫ ∫

−�
f1�x

′� y′�e−i2��ux′+vy′�

⎡
⎣

�∫ ∫

−�
f2�x−x′� y −y′�

×e−i2��u�x−x′�+v�y−y′��d�x−x′�d�y −y′�

⎤
⎦dx′dy′

=
�∫ ∫

−�
f1�x

′� y′�e−i2��ux′+vy′�F2�u� v�dx′dy′

=F1�u� v�F2�u� v��

The converse of the above theorem also holds. The Fourier transform of the
product of two functions is the convolution of the Fourier transforms of the
functions, i.e.,

� �f1�x� y�f2�x� y�� =
�∫ ∫

−�
F1�u

′� v′�F2�u−u′� v−v′�du′dv′

=F1�u� v�∗F2�u� v�� (9.58)

Proof.
� �f1�x� y�f2�x� y��

=
�∫ ∫

−�
f1�x� y�f2�x� y�e−i2��ux+vy�dx dy

=
�∫ ∫

−�

⎡
⎣

�∫ ∫

−�
F1�u

′� v′�ei2��u′x+v′y�du′dv′

⎤
⎦

×
⎡
⎣

�∫ ∫

−�
F2�u

′′� v′′�ei2��u′′x+v′′y�du′′dv′′

⎤
⎦

× e−i2��ux+vy� dx dy
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=
�∫ ∫

−�

�∫ ∫

−�
du′dv′du′′dv′′F1�u

′� v′�F2�u
′′� v′′�

×
�∫ ∫

−�
ei2���u′′+u′−u�x+�v′′+v′−v�y� dx dy

=
�∫ ∫

−�
du′dv′F1�u

′� v′�
�∫ ∫

−�
F2�u

′′� v′′�

×��u′′ +u′ −u���v′′ +v′ −v�du′′dv′′

=
�∫ ∫

−�
F1�u

′� v′�F2�u−u′� v−v′�du′dv′

=F1�u� v�∗F2�u� v��

We shall have the opportunity to appreciate the power of the convolution
theorems in later chapters. Here, we use it to find the Fourier transform of the
triangle function. It follows from Fig. 9.13 that the convolution of a rectangle
function with its clone is a triangle function. Accordingly, the Fourier transform
of the triangle function can be written as

� �tri�x�� =� �rect�x�∗ rect�x��

=� �rect�x��� �rect�x��

= sinc2��u��

(9.59)

where

rect�x� =1 for �x� ≤ 1

2

=0 otherwise

and

tri�x� =1−�x� for �x� ≤ 1

=0 otherwise�
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9.6 CONVOLUTION OF DISCRETE FUNCTIONS

Convolution of one-dimensional discrete functions hk and gk is the sum

fl =∑
k

hkgl−k� (9.60)

where the discrete function gk has been first inverted �g−k� about the origin and
then translated (gl−k). The sum over k replaces the integration over x′ in Eqs
(9.47). Convolution of two-dimensional discrete functions is likewise defined as

fij =∑
k�l

�hklgi−k�j−l�� (9.61)

Consider two one-dimensional strings, each having identical and equidistant dots
along its length. One string lies along the x-axis and the other along the y-axis
(Fig. 9.15a). The horizontal string hk is left undisturbed. The vertical string gk

is first inverted �k → −k� and then displaced. We now look for the overlap
between the inverted and displaced string gl−k with the stationary string hk.
The inverted string g−k can be displaced along any direction in the xy plane.
Figure 9.15b shows the function hk, the inverted function g−k, the displaced
function gl−k, and the product hkgl−k. Here, the function g−k has been displaced
by one unit along the x-axis. For this configuration of strings, the overlap of
hk and gl−k is possible along the x-axis only. The displacements of g−k which

g −k g l − k

hk

hk gl−k

fl

gk

hk

y

(b)

x

(c)

x

y

(a)

x

y

Fig. 9.15: (a) Strings hk and gk with equidistant dots, (b) string gk is first inver-
ted, then displaced by one unit along the x-axis, (c) fl is the convolution of hk

and gk.
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yield non-zero convolution correspond to i = 0, ±1, ±2, j = 0, ±1, ±2, ±3 and
any combinations of these displacements, where i and j represent displacements
along the x- and y-axes, respectively. The convolution function

fl =∑
k

hkgl−k

in this case is a two-dimensional pattern of dots (Fig. 9.15c). All dots in the
pattern have the same size.

The above example clearly demonstrates that the convolution is not the simple
product of the convolving functions. Simple product in this case generates only
one overlap located at the origin. It is the displacement operation which has
generated the pattern of dots. In this example, the role of the folding process is
not evident since the convolving functions are even. To see what folding does to
the convolution process, let the string gk have all dots below the origin, so that
gk is no longer symmetric about the origin. Going over the steps as for Fig. 9.15,
generates a two-dimensional pattern with all dots located below the x-axis.

9.7 CORRELATION OF FUNCTIONS

The crosscorrelation between two continuous functions f1�x� and f2�x� is
defined as

f�x� y� =
�∫ ∫

−�
f1�x

′� y′�f ∗
2 �x′ −x� y′ −y�dx′dy′ (9.62a)

=
�∫ ∫

−�
f1�x

′′ +x� y′′ +y′�f ∗
2 �x′′� y′′�dx′′dy′′� (9.62b)

where �x′ − x� and �y′ − y� in Eq. (9.62b) have been replaced by x′′ and y′′,
respectively. The correlation operation involves only the translation and no
folding of one of the functions. Attention must be paid to the order in which
the two functions appear and to the function which is to be conjugated in the
correlation operation. The crosscorrelation between two functions is symbolically
denoted as

f�x� y� = f1�x� y� � f2�x� y�� (9.63)
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The crosscorrelation operation does not commute:

f12�x� y� =
�∫ ∫

−�
f1�x

′′ +x� y′′ +y�f ∗
2 �x′′� y′′�dx′′dy′′

=
⎡
⎣

�∫ ∫

−�
f2�x

′′� y′′�f ∗
1 �x′′ +x� y′′ +y�dx′′dy′′

⎤
⎦

∗

=f ∗
21�−x�−y��

(9.64)

The correlation and convolution operations are related in some manner:

f1�x� y� � f2�x� y� =
�∫ ∫

−�
f1�x

′� y′�f ∗
2 �x′ −x� y′ −y�dx′ dy′

=
�∫ ∫

−�
f1�x

′� y′�f ∗
2

[
�x−x′�

−1
�

�y −y′�
−1

]
dx′dy′

=f1�x� y�∗f ∗
2 �−x�−y��

(9.65)

For real and even f2�x� y�, the convolution and crosscorrelation operations are
indistinguishable. Therefore, the earlier example (Section 9.5.1) of the convo-
lution of two rectangle functions may as well be taken as an example of the
crosscorrelation between two rectangle functions. The crosscorrelation integral
may also be interpreted in terms of the area of the products of the function
f1�x

′� y′� with the shifted function f ∗
2 �x′ −x� y′ −y�.

As the name suggests, the crosscorrelation function defines quantitatively the
correlation or the similarity between two functions. The normalized crosscorre-
lation between the functions f1�x� y� and f2�x� y� is defined as

c12�x� y� =

�∫ ∫
−�

f1�x
′� y′�f ∗

2 �x′ −x� y′ −y�dx′ dy′

�∫ ∫
−�

f1�x
′� y′�f ∗

2 �x′� y′�dx′ dy′
� (9.66)

where the integral in the denominator represents the crosscorrelation for zero
shift. For f2�x� y� = f1�x� y�, the crosscorrelation function becomes the autocor-
relation function:

f�x� y� =
�∫ ∫

−�
f1�x

′� y′�f ∗
1 �x′ −x� y′ −x�dx′dy′ (9.67)
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and the normalized autocorrelation function takes the form

c11�x� y� =

�∫ ∫
−�

f1�x
′� y′�f ∗

1 �x′ −x� y′ −y�dx′dy′

�∫ ∫
−�

�f1�x
′� y′��2dx′dy′

� (9.68)

The autocorrelation of a real function is even, irrespective of the function itself
being even or not. This is because it does not matter whether a function is
shifted to the right or to the left, the overlap of the shifted function with its clone
remains the same, i.e.,

f�−x�−y� =
�∫ ∫

−�
f1�x

′� y′�f1�x
′ +x� y′ +y�dx′dy′

=
�∫ ∫

−�
f1�x

′′ −x� y′′ −y�f1�x
′′� y′′�dx′′dy′′

=f�+x�+y��

(9.69)

9.7.1 Correlation Theorems

The Fourier transform of the crosscorrelation of two functions is the product of
the Fourier transform of the first function with the complex conjugate of the
Fourier transform of the second function:

� �f1�x� y� � f2�x� y�� =
�∫ ∫

−�

⎡
⎣

�∫ ∫

−�
f1�x+x′′� y +y′′�

×f ∗
2 �x′′� y′′�dx′′ dy′′

⎤
⎦ e−i2��ux+vy�dx dy

=
�∫ ∫

−�

⎡
⎣

�∫ ∫

−�
f1�x+x′′� y +y′′�e−i2�u�x+x′′� (9.70)

×e−i2�v�y+y′′�dx dy

⎤
⎦

×f ∗
2 �x′′� y′′�ei2��ux′′+vy′′�dx′′dy′′
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=F1�u� v�

�∫ ∫

−�

[
f2�x

′′� y′′�e−i2��ux′′+vy′′�dx′′dy′′]∗

=F1�u� v�F ∗
2 �u� v��

This is the crosscorrelation theorem. The converse of this theorem also holds, i.e.,

� �f1�x� y�f ∗
2 �x� y�� =

�∫ ∫

−�
F1�u

′� v′�F ∗
2 �u′ −u� v′ −v�du′dv′

=F1�u� v� � F ∗
2 �u� v��

(9.71)

A special case of the crosscorrelation theorem is the autocorrelation theorem.
For f2�x� y� = f1�x� y� = f�x� y�, Eqs (9.70) and (9.71) are reduced to

� �f�x� y� � f�x� y�� = �F�u� v��2 (9.72)

and

� ��f�x� y��2� =
�∫ ∫

−�
F�u′� v′�F ∗�u′ −u� v′ −v�du′dv′

=F�u� v� � F ∗�u� v��

(9.73)

The autocorrelation theorem (Eq. 9.72) states that the Fourier transform of the
autocorrelation function is the square modulus of the Fourier transform of the
function.

9.7.2 The Wiener–Khinchin Theorem

The counterpart of the square modulus of the Fourier transform ��F�u� v��2� in
the time domain is the spectral density function �E�	��2 (see Eqs 2.23 and 2.28).
Equation (9.72) is the statement of the more general theorem called the Wiener–
Khinchin theorem. It states that the autocorrelation function and the spectral
density function constitute a Fourier transform pair. It is easier to measure and
analytically manipulate the autocorrelation function than the spectral density
function. The Wiener–Khinchin theorem then allows one to estimate the spectral
density function from the Fourier transform of the autocorrelation function.
The relevance of the autocorrelation and crosscorrelation functions to coherence
properties of quasi-monochromatic light has already been witnessed in Chapter 2.
Application of the convolution and correlation techniques to image processing
will be taken up in later chapters.
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Before concluding, we state that the convolution and correlation integrals
defined with integration limits extending from −� to +� may not be suitable
for certain class of functions such as the periodic and the constant functions.
In such cases, the following definitions of the convolution and crosscorrelation
operations may be useful.
Convolution Operation

f1�x� y�∗f2�x� y� = lim
�→�

1
2�

�∫ ∫

−�

f1�x
′� y′�f2�x−x′� y −y′�dx′dy′� (9.74)

Crosscorrelation Operation

f1�x� y� � f2�x� y� = lim
�→�

1
2�

�∫ ∫

−�

f1�x
′� y′�f ∗

2 �x′ −x� y′ −y�dx′dy′� (9.75)
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9.9 PROBLEMS

9.1 Find a Fourier series expansion of the triangle wave of Fig. 9.16.

Λ
8

Λ
8

1

0−Λ Λ

Fig. 9.16.
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9.2 Show that the Fourier series expansion of � cos 2�	0x� is

+�∑
−�

2
�

�−1�n

1− �2n�2
ei2�n�2	0x��

9.3 If you have access to a computer, reproduce Fig. 9.3 (a,b,c) for the rectangle wave.
9.4 Find the Fourier transforms of the following functions.

(a) f�t� = e−�t for t ≥ 0, and = 0 for t < 0�
(b) f�t� = A0 cos2 2�	0t for − T

2 ≤ t ≤ + T
2 , and = 0 otherwise

(c) f�x� = e−��x�

(d) f�x� = e−�x2

(e) f�x� = a sinc ��ax�
(f) f�x� y� = ei��x2+y2�

9.5 Find and sketch the following convolution functions

(a) f�x� = rect �x−2�∗ rect � x+3
2 �

(b) f�x� = �rect �x�∗ rect �x��∗ rect �x��

where rect � x+a
b

� represents the rectangle function of unit height and width b,
centered at x = −a.

9.6 Find sinc �x�∗ sinc �x�.
9.7 Find the self convolution of the function

f�x� y� =A for x2 +y2 ≤ a2�

=0 for x2 +y2 > a2�

where a and A are positive constants.
9.8 Find and sketch the following crosscorrelations.

(a) f�x� = rect �x−1� � rect �x+1�
(b) f�x� = �rect �x−1� � rect �x+1�� � rect �x−4�

9.9 Find the convolutions of the following discrete functions

(a) Two one-dimensional strings, each having nine identical and equidistant dots
along its length. Both strings are horizontal (Fig. 9.17).

(b)(a)

Fig. 9.17.
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(b) Two one-dimensional strings, each having seven identical and equidistant dots
along its length. One string is horizontal and the other makes an angle of 45�

with the horizontal direction (Fig. 9.18).

45

(b)(a)

Fig. 9.18.

9.10 Derive Eq. (9.71).
9.11 The truncated oscillator function (Eq. 9.31) can be expressed as the product of a

sinusoidal function and a rectangular pulse of width T . Use the convolution theorem
to obtain its Fourier transform (Eq. 9.32).
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C H A P T E R 10

Fraunhofer Diffraction

10.1 FAR-FIELD DIFFRACTION

When the source and observation points are sufficiently far away from a small
diffracting aperture, the phase introduced by the quadratic terms in the diffraction
integral (Eq. 7.27) may be a small fraction of 2� radians. This happens, when

p2

R0

� �� (10.1)

where p determines the extent of the aperture, i.e., the maximum values of the
x- and y-coordinates of a point in the aperture and R0 is the smaller of the R′

0 and
R′′

0 distances (Fig. 10.1). This is the regime of far-field or Fraunhofer diffraction.
Under these conditions, the diffraction integral (Eq. 7.27) reduces to

E�Po� =− ia0

�
Q

eik�R′
0+R′′

0 �

R′
0R

′′
0

�∫ ∫

−�
t�x� y�e−i 2�

� �x�l′′−l′�+y�m′′−m′��dx dy

(10.2a)

=− iA0

�

�∫ ∫

−�
t�x� y�e−i2��ux+vy�dx dy� (10.2b)

where

Q =1
2

[
cos�r̂ ′′� n̂�− cos�r̂ ′� n̂�

]
� (10.3)

A0 =a0Q
eik�R′

0+R′′
0 �

R′
0R

′′
0

� (10.4)

411
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Fig. 10.1: Geometry for Fraunhofer diffraction.

and

u = l′′ − l′

�
= 1

�

(
x′

R′
0

+ x′′

R′′
0

)
� (10.5a)

v =m′′ −m′

�
= 1

�

(
y′

R′
0

+ y′′

R′′
0

)
(10.5b)

are the spatial frequencies which determine the positions of the source �x′� y′�
and point of observation �x′′� y′′� with respect to the aperture. The obliquity
factor Q is assumed not to show any significant variation with the position of
a point in the aperture. The diffraction integral (Eq. 10.2b) is exactly in the
form of the two-dimensional Fourier transform integral (Eq. 9.34). It is therefore
possible to express the field and intensity distributions in Fraunhofer diffraction
in terms of the Fourier transform of the aperture function:

E�u� v� =− iA0

�
F�u� v�� (10.6a)

I�u� v� =
(

1
2

	0c

) �A0�2
�2

�F�u� v��2� (10.6b)

where

F�u� v� =
�∫ ∫

−�
t�x� y�e−i2��ux+vy�dx dy (10.7)
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is the Fourier transform of the aperture function. The normalized intensity dis-
tribution in Fraunhofer diffraction can be written as

I�u� v�

I�0� 0�
=
(

R′′
00

R′′
0

)2 �F�u� v��2
�F�0� 0��2 � (10.8)

where I�0� 0� is the intensity at the center of the diffraction pattern and R′′
00 is the

distance of the center of the diffraction pattern from the origin. The diffraction
integral in the form

E�u� v� = − i
�

Q
eikR′′

0

R′′
0

�∫ ∫

−�
a0

eikR′
0

R′
0

t�x� y�e−i2��ux+vy�dx dy (10.9)

demonstrates the proportionality between the field distribution in Fraunhofer
diffraction and the Fourier transform of the field distribution in the aperture
plane. The phase factor contained in the proportionality constant is unimportant,
unless the diffracted wave is allowed to interfere with some other coherent field
as in holography. For a plane wave incident normally �
′ = 0� on the aperture
plane,

A0 =E0

2
�cos 
′′ −1�

eikR′′
0

R′′
0

� (10.10a)

u = l′′

�
= 1

�

x′′

R′′
0

� (10.10b)

v =m′′

�
= 1

�

y′′

R′′
0

� (10.10c)

Equation (10.10a) can be obtained by either going back to the Kirchhoff’s
boundary conditions (Section 7.4.1) and replacing the incident spherical wave
by a plane wave, or by taking the limit R′

0 → � and a0 → � in Eq. (10.4) in a
manner that a0/R′

0 approaches the amplitude E0 of the plane wave.

10.1.1 Fourier Decomposition of Aperture Function

In the Huygens–Fresnel theory of diffraction, the action of a diffracting aperture
may be understood in terms of the modification of the incident wavefront. The
modified wavefront propagating in the forward direction carries information
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Fig. 10.2: Fourier decomposition of aperture function in terms of plane waves
in the far zone.

about the presence of the aperture. A different interpretation to the far-field
diffraction is possible in terms of the inverse Fourier transform

t�x� y� =
�∫ ∫

−�
F�u� v�ei2��ux+vy�du dv� (10.11)

With the temporal factor e−i2��t implied in Eq. (10.11), the aperture transmis-
sion function t�x� y� can be thought to represent an infinite set of plane waves
describing far-field diffraction (Fig. 10.2). The Fourier transform F�u� v� acts
as the amplitude or the weighting factor of a wave in this decomposition. In
the absence of the aperture, the incident wave continues unhindered along its
original direction of propagation �u = 0� v = 0�. The presence of the aperture
gives rise to additional waves in the far zone along directions specified by the
new spatial frequencies u �= 0, v �= 0. These waves collectively describe far-field
or Fraunhofer diffraction from the aperture. This interpretation is obviously not
available to Fresnel diffraction.

10.1.2 Diffraction with a Lens

Equation (10.1) imposes severe experimental restrictions to observe Fraunhofer
diffraction from an aperture. The source and observation points must lie at
unmanageably large distances from the diffracting aperture, except when the
aperture size is extremely small. A lens kept in the aperture plane can reduce
these distances to convenient laboratory distances. A lens possesses remarkable
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refractive and diffractive properties. It was mentioned in Chapter 4 that a lens
converts a paraxial diverging wavefront into a converging image-forming wave-
front. However, we did not quite explain there, why a lens does what it actually
does. We now describe the action of a lens. To simplify the discussion, the lens
is assumed thin and non-absorbing. Figure 10.3 shows an exaggerated view of
a section of a thin lens with vertices V1, V2 and radii of curvatures r1 and r2.
We have considered here a biconvex lens but the results can be easily general-
ized. Consider the ray entering the lens at �x1� y1� and leaving at �x2� y2�. The
transverse displacement of a ray in a thin lens is extremely small so that

x1 ≈ x2 = x� y1 ≈ y2 = y� (10.12)

Furthermore, the lens modifies only the phase of the incident wave, leaving its
amplitude unchanged. Accordingly, the action of a lens can be described by the
equation

Et�x� y� = T�x� y�Ein�x� y�� (10.13a)

where

T�x� y� = ei��x�y�� (10.13b)

C2 C1

d0

(x2 ,y2 )

d1 0 0d2

y

z

x

OO’

n(x ,y1 )1

d1 d2

1r

1V

2r

V2

Fig. 10.3: Action of a thin lens.
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Ein�x� y� and Et�x� y� are the incident and transmitted field distributions in the
transverse planes passing through the left and right vertices of the lens and
��x� y� is the phase retardation introduced by the lens for a wave entering and
exiting it at �x� y�. Within the paraxial approximation,

d1�x� y� =O′O = d10 − �r1 −O′C1�

≈ d10 − x2 +y2

2r1

(10.14a)

and

d2�x� y� = d20 − x2 +y2

2�−r2�
� (10.14b)

So that

d�x� y� =d1�x� y�+d2�x� y�

=d0 − 1
2

(
1
r1

− 1
r2

)
�x2 +y2��

(10.15)

where r2 is negative in the present case. The phase retardation suffered by a ray
between transverse planes passing through the vertices of the lens is

��x� y� =k �1 �d0 −d�x� y��+nd�x� y��

=k �d0 + �n−1�d�x� y��

=k

[
nd0 − x2 +y2

2f

]
�

(10.16)

where n is the index of refraction of the material of the lens and f is the focal
length of the lens in air, given by

1
f

= �n−1�

(
1
r1

− 1
r2

)
� (4.26)

The lens transformation function then takes the form

T�x� y� = e
ik
(

nd0− x2+y2

2f

)

= eiknd0 e−ik�x2+y2�/2f � (10.17)

The constant phase knd0, can be ignored. The quadratic phase factor represents
the lens transformation.
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Fig. 10.4: Wavefront modification by a lens; (a) collimating action of a lens,
(b) focusing action of a lens.

We first consider a point source at the front focal point of the lens (Fig. 10.4a).
The field distributions just in front and just behind the lens are

Ein�x� y� 0� = A

r
eikr ≈ A

f
e

ik
(

f+ x2+y2

2f

)

� (10.18a)

Et�x� y� 0� =T�x� y�Ein�x� y� 0� = A

f
eikf � (10.18b)

respectively. The field distribution beyond the lens becomes uniform. Therefore,
a thin lens converts a spherical wavefront diverging from its front focal point into
a plane wavefront. This is the collimating action of a lens. On the other hand, a
plane wave incident normally on the lens gives rise to the field distribution

Et�x� y� = E0e−ik x2+y2

2f = E0eikf e
−ik

(
f+ x2+y2

2f

)

(10.19)

just behind the lens. This field distribution represents, within the paraxial approx-
imation, a spherical wavefront converging to a point a distance f behind the lens.
This is the paraxial focusing action of the lens (Fig. 10.4b). The image-forming
action of a lens can also be understood in a similar manner. We shall, however,
postpone this discussion to Chapter 11.

We now return to the diffraction configuration of Fig. 10.1, but this time with
a lens of sufficiently large diameter kept just behind the diffracting aperture. The
diffraction takes place at the aperture and the lens subsequently and appropriately
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retards the phases of the diffracted waves. The amplitude transmission function
of the aperture–lens combination is

t′�x� y� = e−ik�x2+y2�/2f t�x� y�� (10.20)

where the first factor on the right-hand side represents the phase retardation due
to the lens and t�x� y� is the bare aperture transmission function. Relaxing the
Fraunhofer diffraction condition (Eq. 10.1), we return to the Fresnel diffraction
integral with the linear phase terms retained, i.e.,

E�Po� =− ia0

�
Q

eik�R′
0+R′′

0 �

R′
0R

′′
0

�∫ ∫

−�
t′�x� y�

× e
−ik

[
x�l′′−l′�+y�m′′−m′�− 1

2

(
1

R′
0
+ 1

R′′
0

)
�x2+y2�

]

dx dy� (10.21)

The remaining quadratic and higher order terms in Eq.(7.28) are assumed small
and ignored. Combining Eqs (10.20) and (10.21) gives

E�Po� =− ia0

�
Q

eik�R′
0+R′′

0 �

R′
0R

′′
0

�∫ ∫

−�
t�x� y�

× e
−ik

[
x�l′′−l′�+y�m′′−m′�− 1

2

(
1

R′
0
+ 1

R′′
0

− 1
f

)
�x2+y2�

]

dx dy� (10.22)

The quadratic exponent vanishes if the source and point of observation lie in
conjugate planes of the lens � 1

R′
0
+ 1

R′′
0
− 1

f
= 0�,1 and the diffraction integral

reduces to

E�Po� = − ia0

�
Q

eik�R′
0+R′′

0 �

R′
0R

′′
0

�∫ ∫

−�
t�x� y�e−i2��ux+vy�dx dy� (10.23)

where the spatial frequencies u and v are as defined in Eqs (10.5) or in
Eqs (10.10), depending on the diffraction geometry. This is exactly the integral
for the Fraunhofer diffraction (Eq. 10.2), but now the distances R′

0 and R′′
0 are

convenient laboratory distances, not constrained by Eq. (10.1). It must, however,
be kept in mind that the conditions of Fraunhofer diffraction are satisfied only in
conjugate planes of a lens, and nowhere else. Rephrasing this, it can be said that
the Fraunhofer diffraction pattern of the aperture of the lens replaces the point

1 To be consistent with the sign convention of geometrical optics, R′
0 should carry negative sign.
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Fig. 10.5: Typical geometry to observe Fraunhofer diffraction.

image (of a point object) of geometrical optics, or alternatively, the Fraunhofer
diffraction pattern of the lens aperture represents the diffraction-limited image of
a point object. For normal incidence, Fraunhofer diffraction appears in the back
focal plane of the lens. For this reason and for the fact that the field distribution
in Fraunhofer diffraction is proportional to the Fourier transform of the aperture
function, the back focal plane of a lens is called the Fourier transform plane.
Figure 10.5 shows a typical configuration to observe Fraunhofer diffraction from
an aperture with a lens of sufficiently large diameter.

10.2 DIFFRACTING APERTURES

The Fraunhofer diffraction formalism developed in Section 10.1 will now be
applied to some of the commonly encountered diffracting apertures.

10.2.1 Rectangular Aperture

Figure 10.6 shows a rectangular aperture of sides a and b, lying in the plane
z = 0. The origin O lies at the center of the aperture. The transmission function
of the aperture is

t�x� y� = 1 for − a

2
≤ x ≤ +a

2
�

− b

2
≤ y ≤ +b

2
�

= 0 elsewhere�

(10.24)
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Fig. 10.6: Fraunhofer diffraction from a rectangular aperture.

Its Fourier transform is

F�u� v� =
�∫ ∫

−�
t�x� y� e−i2��ux+vy� dx dy

=
∫ +a/2

−a/2
e−i2�ux dx

∫ +b/2

−b/2
e−i2�vy dy

= ab sinc ��ua� sinc ��vb�� (10.25)

The field and intensity distributions of Fraunhofer diffraction from a rectangular
aperture are

E�u� v� = − iA0

�
ab sinc ��ua� sinc ��vb�� (10.26a)

I�u� v� = I�0� 0�

(
R′′

00

R′′
0

)2

sinc2 ��ua�sinc2 ��vb�� (10.26b)

respectively, where I�0� 0� is the peak intensity of the central diffraction maxi-
mum �u = 0� v = 0�. The zeroes of the sinc functions, given by the conditions

�ua = ±n�� �vb = ±m�� (10.27)

locate the minima of the diffraction pattern at

x′′ = ±n�
R′′

0

a
− R′′

0

R′
0

x′� y′′ = ±m�
R′′

0

b
− R′′

0

R′
0

y′ (10.28)
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Photo 10.1: Fraunhofer diffraction from a rectangular aperture of sides
0�12 mm ×0�13 mm recorded with 514.5 nm line of an Argon ion laser.

in the plane of observation, where �x′� y′� are the coordinates of the point source,
and n�m take integral values. For a parallel beam incident normally on the
aperture, Eq. (10.28) reduces to

x′′ = ±n�
R′′

0

a
� y′′ = ±m�

R′′
0

b
�

These equations represent dark lines in the plane of observation, parallel to the
edges of the rectangular aperture. This is strictly not true since minor variation of
R′′

0 with the point of observation gives slight curvature to these lines. The central
maximum is a rectangular patch of dimensions 2�R′′

0/a and 2�R′′
0/b centered

on the optical axis. The brightness of this patch is maximum at the center and
falls to zero near the edges. The central rectangular patch is surrounded by weak
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secondary patches. The positions of the peaks of the secondary maxima are
obtained from the roots of the transcendental equations:

d
du

�sinc2��ua�� = 0�
d
dv

�sinc2��vb�� = 0� (10.29)

The separations between successive minima of intensity are given by

x′′ = �
R′′

0

a
� y′′ = �

R′′
0

b
� (10.30)

We see, once again, an inverse relationship between the aperture dimensions
and the spreads of the diffraction maxima. For an aperture, 1 mm on each side,
the central diffraction patch is a square of sides 1 mm for R′′

0 = 100 cm and � =
500 nm. Photograph 10.1 shows Fraunhofer diffraction pattern of a rectangular
aperture of sides 0�12 mm × 0�13 mm recorded with 514.5 nm line of an Argon
ion laser.

10.2.2 Infinitely Long Slit

The Fourier transform of the amplitude transmission function of an infinitely
long slit of width b with long edges parallel to the x-axis (Fig. 10.7a) is

F�u� v� =
∫ +�

−�
e−i2�ux dx

∫ +b/2

−b/2
e−i2�vy dy

= b sinc��vb���u��

(10.31)

The field and intensity distributions in the plane of observation are given by

E�u� v� = −i
A0

�
F�u� v� = −i

A0

�
b sinc ��vb�� (10.32a)

I�v� =
(

1
2

	0c

) �A0�2
�2

b2 sinc2��vb�

= I0 sinc2��vb�� (10.32b)

respectively, where the spatial frequency v = y′′/�R′′
0 and I0 is the peak inten-

sity of the central diffraction maximum �v = 0�. The remaining intensity max-
ima are relatively weak (Fig. 10.7b). Their positions can be obtained from
d
dv

� sinc2��vb�� = 0. They do not lie exactly halfway between consecutive
minima of intensity. Numerical estimates give I/I0 = 0�047 and 0.017 for the
normalized peak intensities of the first two secondary maxima on either side of
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Fig. 10.7: Fraunhofer diffraction from a narrow slit; (a) geometry of diffraction,
(b) normalized intensity distribution.

Photo 10.2: Fraunhofer diffraction from a slit of width 0.24 mm recorded with
514.5 nm line of an Argon ion laser.

the central maximum. The positions of the minima of the diffraction pattern can
be obtained from the expression

y′′

�R′′
0

= n

b
(10.33a)

which can be put in the more familiar form

b sin 
 = n�� (10.33b)
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where sin 
 = y′′/R′′
0 and n takes integral values. The presence of the delta

function in Eq. (10.31) confines Fraunhofer diffraction from an infinitely long
slit along a line perpendicular to the long edge of the slit. Fraunhofer diffraction
from 0.24 mm wide slit recorded with 514.5 nm line of an Argon ion laser is
shown in Photo 10.2. The finite spread of the diffraction spots in the vertical
direction is due to finite height of the slit.

10.2.3 Circular Aperture

We next consider Fraunhofer diffraction from the most commonly encoun-
tered aperture in optical instruments, namely, the circular aperture (Fig. 10.8).
The point source Ps is located on the axis of the aperture. Expressing the spatial
frequencies in polar coordinates, we have

u = x′′

�R′′
0

= r ′′ cos 
′′

�R′′
0

= � cos 
′′� (10.34a)

v = y′′

�R′′
0

= r ′′ sin 
′′

�R′′
0

= � sin 
′′� (10.34b)

where

� = r ′′

�R′′
0

� (10.35)

The amplitude transmission function of the circular aperture is

t�r� 
� = 1 for r ≤ a�

= 0 otherwise�
(10.36)
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Fig. 10.8: Fraunhofer diffraction from a circular aperture. Source Ps lies on the
axis of the aperture.
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Its Fourier transform can be expressed as

F�u� v� = F���
′′� =
∫ �

0

∫ 2�

0
t�r� 
� e−i2��ur cos 
+vr sin 
�r dr d


=
∫ a

0
r

[∫ 2�

0
e−i2��r cos�
−
′′� d


]
dr� (10.37)

However, F���
′′� cannot depend on angle 
′′ because of the rotational symmetry
of the configuration. For convenience, we choose 
′′ = 0, giving

F��� =
∫ a

0
r

[∫ 2�

0
e−i2��r cos 
 d


]
dr� (10.38)

The 
 integral falls in the category of Bessel functions. The Bessel function of
order n is defined as

Jn�x� = i−n

2�

∫ 2�

0
ei�n�+x cos �� d�� (10.39)

It is therefore possible to write

F��� = 2�
∫ a

0
rJ0�2��r� dr

= 1

2��2

∫ 2��a

0
�2��r�J0�2��r� d�2��r�� (10.40)

The Bessel functions obey the recursion relation

d

dx
�xnJn�x�� = xnJn−1�x�� (10.41)

Integrating the recursion relation for n = 1, we have

x′J1�x
′� =

∫ x′

0
xJ0�x� dx� (10.42)

Therefore

F��� = 1

2��2
�2��a�J1�2��a�

= 2�a2 J1�2��a�

2��a

= F�0�
2J1�2��a�

2��a
�

(10.43)
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In the last step, we have used the property

lim
2��a→0

J1�2��a�

2��a
= 1/2� (10.44)

The intensity distribution (Eq. 10.8) in the plane of observation takes the form

I��� = I�0�

(
R′′

00

R′′
0

)2 ∣∣∣∣
2J1�2��a�

2��a

∣∣∣∣
2

� (10.45)

where I�0� is the intensity at the center of the diffraction pattern �� = 0�. Tables
of Bessel functions are available. Limited values of J1�x� are given in Table B1

(Appendix B). The function
∣∣∣ 2J1�2��a�

2��a

∣∣∣
2

is plotted in Fig. 10.9. The Fraunhofer
diffraction pattern of a circular aperture is called the Airy pattern after Sir George
Briddel Airy, who first obtained Eq. (10.45). The Airy pattern consists of a broad
central maximum, called the Airy disk, surrounded by weaker secondary maxima
in the form of concentric rings. The minima of the Airy pattern correspond to
the roots of J1�2��a� = 0. The roots of J2�2��a� = 0 locate the surrounding
bright rings. The first three minima of the Airy pattern occur at 2��a = 1�220�,
2�233�, and 3�238�, respectively. The Airy disk with r ′′ = 0�61�R′′

0/a, where a
is the radius of the circular aperture, carries nearly 84% of the incident energy.
The first bright ring accounts for an additional 7% of the incident energy. We
may rewrite Eq. (10.45) as

I�
′� = I�0�

(
R′′

00

R′′
0

)2 ∣∣∣∣
2J1�2� a

�
sin 
′�

2 �
�
a sin 
′

∣∣∣∣
2

� (10.46)
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Fig. 10.9: Normalized intensity distribution of Fraunhofer diffraction from a
circular aperture.
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Photo 10.3: Fraunhofer diffraction from a circular aperture of diameter 0.33 mm
recorded with 514.5 nm line of an Argon ion laser.

where 
′ is the angle the diffracted ray makes with the z-axis. The first zero of
J1

(
2� a

�
sin 
′) determines the size of the Airy disk. Therefore

2�

�
a sin 
0 = 1�22� (10.47a)

or

sin 
0 = 1�22
�

2a
� (10.47b)

where 
0 is the angular radius of the Airy disk. For small values of �/a, the
half-angular width of the Airy disk is


0 = 1�22
�

2a
= 0�61

�

a
(10.48)

and the linear diameter of the Airy disk has the value

DA =
(

1�22
�

a

)
R′′

0 � (10.49)
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When Fraunhofer diffraction is observed in the back focal plane of a lens of
focal length f , Eq. (10.49) becomes

DA =
(

1�22
�

a

)
f� (10.50)

Thus, the image of a point object formed by an aberration-free lens cannot be
smaller than the size of the Airy disk with the lens acting as the diffracting
aperture as well. Photograph 10.3 shows the Fraunhofer diffraction pattern of
0.33 mm diameter circular aperture recorded with 514.5 nm line of an Argon ion
laser.

10.3 APODIZATION

The preceding discussion has shown that the image of a point object is spread out
in the form of a diffraction pattern – an Airy pattern for an imaging optic with
circular cross-section (Photo 10.3) and a sequence of nearly rectangular patches
if the imaging optics has rectangular cross-section (Photo 10.1). As a result, it
may be difficult to isolate images of nearby objects. The effect is compounded if
one of the objects under observation has much less brightness than its neighbors.
This happens, for example, when a telescope is pointed toward a faint star in
close proximity of a bright star. For a circular aperture, 16% of the energy resides
in the outer rings of the Airy pattern. The presence of the outer rings can impair
the resolving capability of the optical system. It is therefore desirable to weaken
or eliminate altogether the secondary diffraction maxima to improve system
resolution. Apodization (‘removal of feet’ in Greek) is one of the techniques
to weaken the secondary diffraction maxima. One can suppress the secondary
diffraction maxima by diluting the edge discontinuity of the diffracting aperture
by a suitable modification of the aperture transmission function. We illustrate
this procedure with reference to a single slit. Let the slit of width b (Fig. 10.7a)
be covered with a filter having the amplitude transmission function

t�y� = cos��y/b� for − b

2
≤ y ≤ +b

2
�

= 0 elsewhere�

(10.51)

The Fourier transform of the modified aperture function is

F�v� =
∫ +b/2

−b/2
cos��y/b�e−i2�vydy

=
(

2b

�

)
cos��vb�

1−4b2v2
�

(10.52)
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Fig. 10.10: Normalized intensity distribution of Fraunhofer diffraction from
(a) unapodized and (b) apodized slits.

This should be compared with the corresponding expression (Eq. 10.31) for the
unapodized slit. Figure 10.10 shows this comparison.

The first pair of diffraction minima from the apodized slit occurs at the spatial
frequencies v = ±3/2b against v = ± 1

b
for the unapodized slit. Thus, the central

diffraction maximum has broadened on apodization. But the peak irradiance of
the first secondary maximum of the apodized slit is only 0.4% of the irradiance
of the central peak as compared to an order of magnitude higher value (4.7%)
for the unapodized slit. Thus, considerable suppression of the secondary maxima
can be achieved by apodization. Note that the Fourier transform of a Gaussian
function is a Gaussian function. Therefore, higher diffraction orders are absent
if the plane wave in diffraction experiments is replaced by a Gaussian wave,
assuming the edges of the aperture do not truncate the transverse profile of the
Gaussian wave.

10.4 THE ARRAY THEOREM

We have considered Fraunhofer diffraction from simple and commonly used
apertures. Born and Wolf have extended this discussion to elliptical apertures.
The apertures of interest in optics and spectroscopy are the multiple apertures.
Two-slit or N -slit gratings are some of the examples of multiple apertures. Small
particles, like water droplets in the field of a distant light source, act as randomly
oriented multiple apertures in space. The description of Fraunhofer diffraction
from a single aperture can be extended to multiple apertures with the help of
the array theorem. We consider N identical and similarly oriented apertures,
distributed randomly or otherwise in the xy plane (Fig. 10.11).



430 Chapter 10: FRAUNHOFER DIFFRACTION

x

y

O

o1 o4 o7 o10 o13

o2 o5 o8

o3 o6 o9

o11 o14

o12 o15

Fig. 10.11: Two-dimensional array of identical apertures.

The actual shape of the apertures is unimportant for the present discussion.
Let the similarly located origins (o1 to oN ) in the apertures have the position
coordinates �xj� yj� with respect to a fixed coordinate system, where the index j
runs from 1 to N . The amplitude transmission function of an array of apertures
can be written as

��x� y� =
N∑

j=1

tj�x−xj� y −yj�� (10.53)

For identical and similarly oriented apertures,

��x� y� = t�x−x1� y −y1�+ t�x−x2� y −y2�+· · · � (10.54)

The amplitude transmission function of any one of the apertures with respect to its
local coordinates is t�x′� y′�, where x′ = x−xj and y′ = y−yj . Equation (10.54)
can be expressed as the convolution of the sum of N delta functions with the
transmission function of a single aperture (Eq. 9.53), i.e.,

��x� y� =
{

N∑
j=1

��x−xj� y −yj�

}
∗ t�x� y�

=
�∫ ∫

−�

N∑
j=1

��x′ −xj� y′ −yj�t�x−x′� y −y′�dx′dy′�

(10.55)
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By the convolution theorem (Eq. 9.57), the Fourier transform of this aperture
function is

F�u� v� = g�u� v�h�u� v��

where

g�u� v� =
�∫ ∫

−�
t�x′� y′�e−i2��x′u+y′v�dx′dy′ (10.56)

is the Fourier transform of the transmission function of any single aperture and

h�u� v� =
N∑

j=1

e−i2��xju+yjv� (10.57)

is the Fourier transform of N delta functions located at the origins within the
apertures. When such an array of apertures is illuminated by monochromatic
light, the field distribution of Fraunhofer diffraction (Eq. 10.6a) takes the form

E�u� v� =
{
−i

A0

�
g�u� v�

}
h�u� v�� (10.58)

where the factor in the curly brackets gives the field distribution of Fraunhofer
diffraction from any one of the apertures in the array. We now state the Array
theorem:

The field distribution of Fraunhofer diffraction from an array of similarly
oriented, identical apertures is the product of the field distribution of Fraunhofer
diffraction from any one of the apertures with the Fourier transform of the set
of delta functions distributed in the same manner (random or otherwise) as the
apertures in the array.

10.4.1 Two-Slit Aperture

First, we consider an array of two identical infinitely long, parallel slits, each of
width b (Fig. 10.12). The coordinates of the centers of the slits are �0�−a/2�
and �0� a/2�. The Fourier transform of the delta functions, located at the centers
of these slits, is

h�u� v� = ei�va + e−i�va = 2 cos��va� (10.59a)

and the Fourier transform of the transmission function of a single slit is

g�v� = b sinc ��vb�� (10.59b)
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Fig. 10.12: Array of two identical slits.

Substituting Eqs (10.59) into Eq. (10.58) gives the two-slit Fraunhofer diffraction
intensity distribution as

I�v� =
(

1
2

	0c

)
4b2 �A0�2

�2
sinc2��vb� cos2��va� (10.60a)

= I0 sinc2��vb� cos2��va�� (10.60b)

where I0 is the diffracted intensity at the center �Pc� of the diffraction pattern in
the plane of observation (Fig. 10.13).

The cosine square factor with

v = 1

�

(
y′′

R′′
0

+ y′

R′
0

)
= 1

�
�sin �′′ − sin �′� (10.61)

is the familiar factor appearing in Young’s two-slit intensity distribution
(Eq. 6.21) and the sinc2��vb� factor describes Fraunhofer diffraction from a
single slit (Eq. 10.32b). For infinitesimally narrow slits �b → 0�, the sinc func-
tion takes nearly unit value everywhere, and Eq. (10.60) reproduces the intensity
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Fig. 10.13: Geometry for two-slit Fraunhofer diffraction.
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Fig. 10.14: (a) Normalized intensity distribution in two-slit interference with
extremely narrow slits. (b) Single slit Fraunhofer intensity distribution for a
slit of width b. (c) Normalized two-slit Fraunhofer intensity distribution with
inter-slit separation a = 5b.

distribution in Young’s two-slit interference experiment. Figure 10.14a shows
the variation of the interference factor cos2��va� with spatial frequency v. The
intensity maxima are located at

v = 1
�

�sin �′′
m − sin �′� = m

a
� for m = 0�±1�±2� � � � (10.62a)

For b �= 0, the single slit diffraction factor sinc2��vb� with its zeroes at

v = n

b
� for n = ±1�±2� � � � (10.62b)

controls the overall intensity distribution in the plane of observation (Fig. 10.14b).
Figure 10.14c shows the normalized intensity distribution of two-slit Fraunhofer
diffraction (Eq. 10.60). It represents the intensity distribution of Young’s inter-
ference fringes modulated by the single slit diffraction pattern. An interference
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fringe is not observed if it happens to fall at the position of a diffraction mini-
mum. The missing interference orders are determined by the ratio of the inter-slit
separation to slit width �a/b�. For a = 3b, interference orders with m = ±3,
±6� � � � are missing because they overlap with the minima of the single slit
diffraction.

10.4.2 Three-Slit Aperture

Figure 10.15 shows an aperture with three identical, equidistant slits. Equa-
tion (10.57) gives

h�v� = e−i2�va +1+ e+i2�va = 3
sinc�3�va�

sinc��va�
� (10.63)

The Fourier transform g�v� is still given by Eq. (10.59b). The intensity distribu-
tion of Fraunhofer diffraction from a three-slit aperture takes the form

I�v� =
(

1

2
	0c

)
9
�A0�2
�2

b2sinc2��vb�
sinc2�3�va�

sinc2��va�
(10.64a)

= I0 sinc2��vb�
sinc2�3�va�

sinc2��va�
� (10.64b)

Once again, the overall profile of the intensity distribution is governed
by the single slit Fraunhofer diffraction factor sinc2��vb� and the factor
sinc2�3�va�/sinc2��va�, depending on the inter-slit separation a, determines

b

x

−a O +a

b b

y

Fig. 10.15: Array of three identical slits.
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the extremes in the intensity distribution. The positions of the maxima of the
intensity distribution are given by

�va = ±m� (10.65)

for integral values of m. For reasons which will be apparent shortly, these maxima
are called the principal maxima. Note that the condition for the appearance
of intensity maxima in three-slit Fraunhofer diffraction is exactly the same as
in two-slit Fraunhofer diffraction (Eq. 10.62a). Therefore, the positions of the
principal maxima do not change by increasing the number of slits in the aperture
as long as the inter-slit separation remains unchanged. This is an important result
which has deep significance as we shall see in a moment. The appearance of the
factors of 4 and 9 in Eqs (10.60a) and (10.64a) suggests that the intensities of
the principal maxima scale as the square of the number of slits in the aperture.
We also note that between the mth and �m+1�th order principal maxima for the
three-slit aperture, the sinc2�3�va�/sinc2��va� factor goes through zero twice at
v = (

m+ 1
3

)
1
a

and v = (
m+ 2

3

)
1
a
. There must be an intensity maximum between

these two values of the spatial frequency. However, being relatively weak, this
maximum is known as the secondary maximum. The secondary maxima do not
appear in two-slit diffraction. Figure 10.16 shows the intensity distribution in
three-slit Fraunhofer diffraction.

The presence of a secondary maximum between two neighboring principal
maxima implies that the three-slit principal maxima are narrower than the two-slit
principal maxima for the same inter-slit separation since, as mentioned earlier, the
position of the principal maximum of a given order remains unchanged in the two
cases. Intuitively, one can anticipate that Fraunhofer diffraction from four slits
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Fig. 10.16: Intensity distribution in three-slit Fraunhofer diffraction
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will have two secondary maxima between two consecutive principal maxima,
with the implication that the principal maxima become sharper and sharper as
the number of slits is increased without changing the inter-slit separation. At the
same time, the principal maxima grow in intensity because of the N 2 scaling
mentioned earlier.

10.5 THE DIFFRACTION GRATING

For the present discussion, a grating may be regarded as an extended array of
essentially one-dimensional elements with unchanging inter-element separations.
We have now used the term ‘elements’ and not the slits because practical
gratings do not have open apertures. Figure 10.17 shows an exaggerated view
of a section of a normally illuminated transmission grating of grating element
a. A transmission grating is called an amplitude grating if its aperture function
modifies only the amplitude of the light wave passing through it. A phase
grating changes only the phase of the light wave. The transmission function of
a grating with N = 2M +1 identical and equidistant elements can be written as
the convolution of N delta functions with the transmission function of any one
of its elements (Eq. 10.55), i.e.,

f�y� =
{ +M∑

j=−M

��y −yj�

}
∗ t�y�� (10.66)

The Fourier transform of f�y� is

F�v� = h�v�g�v�� (10.67)

a

n

b

Fig. 10.17: An exaggerated view of a section of a transmission grating.
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where

h�v� = e−i2�Mav + e−i2��M−1�av +· · ·+1+· · ·+ ei2��M−1�av + ei2�Mav

= N
sinc �N�va�

sinc ��va�
� (10.68)

g�v� = b sinc ��vb�� (10.69)

Equation (10.69) may not strictly hold if groove profile of the grating differs
substantially from the rectangle function. Neglecting such details, the intensity
distribution of Fraunhofer diffraction from a grating can be expressed as

I�v� =
(

1
2

	0c

)
N 2 b2

�2
�A0�2sinc2��vb�

sinc2�N�va�

sinc2��va�
(10.70a)

= I0 sinc2��vb�
sinc2 �N�va�

sinc2 ��va�
� (10.70b)

As for the two- and three-slit apertures, the positions of the principal maxima
of Fraunhofer diffraction from a grating are also determined by the spatial
frequencies

v = m

a
� (10.71a)

where m = 0�±1�±2� � � � . The �N −1� minima between the mth and �m+1�th
principal maxima correspond to

v =
(
m+ n

N

) 1
a

� (10.71b)

with n = 1� 2� � � � � �N − 1�, giving �N − 2� secondary maxima between two
consecutive principal maxima. The exact locations of the secondary maxima
may be difficult to obtain, but it may not be too wrong if they are taken to lie
halfway between consecutive minima of the intensity distribution, i.e., at

v =
(

m+ 2n+1
2N

)
1
a

� (10.71c)

The positions of the principal maxima do not change as the number of diffracting
elements is increased from 2 to N , but now between two consecutive principal
maxima, �N − 1� minima and �N − 2� secondary maxima of intensity appear.
Therefore, for sufficiently large N , the principal maxima of grating diffraction
become strong and extremely sharp. A typical grating may have N in excess
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of 105. Therefore, Fraunhofer diffraction from a grating consists of extremely
sharp principal maxima of intensity

IP

(
v = m

a

)
=
(

1
2

	0c

)
N 2 b2

�2
�A0�2 sinc2

(
�m

b

a

)
� (10.72a)

Equation (10.71c) yields the peak intensities of the secondary maxima, normal-
ized to the peak intensity of the m = 0 principal maximum as

Isec

I�v = 0�
=
{

2
�2n+1��

}2

� (10.72b)

The first secondary maximum �n = 1� carries about 4.5% of the intensity of
the m = 0 principal maximum, irrespective of the number of elements in the
grating. However, the secondary maxima near the midway point between the
principal maxima with n ≈ N/2 experience an intensity reduction by a factor of
1/N 2. It is this aspect of grating diffraction which makes grating instruments
indispensable for identifying spectral lines with extremely small wavelength
separations. Equation (10.62a), re-written as

a�sin �′′
m − sin �′� = m� (10.73a)

gives the angular positions of the principal maxima, where the angles �′ and
�′′ are as shown in Fig. 10.13. The order of an observable principal maximum
cannot exceed 2a/�. For normal incidence ��′ = 0�, Eq. (10.73a) reduces to the
more familiar form of the grating equation

a sin �′′
m = m�� (10.73b)

The spatial frequency width �vm of the mth order principal maximum can be
taken as the difference in the spatial frequencies of the nearest minima on its
two sides, i.e.,

�vm =
(

m+ 1
N

)
1
a

−
(

m− 1
N

)
1
a

= 2
Na

� (10.74a)

The corresponding angular width of the principal maximum of mth order,
obtained from Eq. (10.61), is

��′′
m = �

cos �′′
m

�vm = 2�

Na cos �′′
m

� (10.74b)
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Note that the angular width of the mth order principal maximum varies inversely
with the linear width Na of the grating (��′′

m → 0 as Na → �). It is not
dependent on the grating element a as long as the product Na remains constant.
For a 10 cm wide grating, used in the visible spectral range, the angular width
of a principal maximum can approach 10−5 radians. This should be compared
with the angular separation

�′′
m = �

a cos �′′
m

(10.75)

between successive principal maxima. This result can be obtained by combining
Eq. (10.73a) with the equation

a�sin��′′
m +�′′

m�− sin �′� = �m+1��� (10.76)

The angular separation of successive principal maxima depends on the grating
element, and not on the width of the grating. For the 10 cm wide grating mentioned
earlier with N = 105, �′′

m ≈ 1 radian. The principal maxima of a diffraction grating
are therefore quite sharp and far apart. Figure 10.18 shows the calculated intensity
distribution of Fraunhofer diffraction from a grating with N = 20 and a/b = 5.

The sinc2��vb� factor appearing in Eqs (10.70) is often called the diffrac-
tion factor because it shows up in single slit Fraunhofer diffraction. The
sinc2�N�va�/sinc2��va� factor is called the interference factor because it takes
into account interference among waves diffracted from different slits. This clas-
sification should not be taken too seriously because the diffraction factor also
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Fig. 10.18: Calculated intensity distribution of Fraunhofer diffraction from a
grating with N = 20 and a/b = 5.
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involves interference among waves diffracted from a single slit. The diffraction
and interference phenomena may be quite distinct at the fundamental level, but
they are hopelessly mixed up in any physical situation. An obstructed wave-
front leads to diffraction (bending with respect to the rectilinear propagation)
but subsequently, the diffracted waves invariably interfere among themselves.

10.5.1 Grating Dispersion

Diffraction gratings are used to determine the spectral composition of light by
recording the variation of the intensity of diffracted light with wavelength. The
principal maxima of a given order (except m = 0) for different wavelengths
appear at different angles (Eqs 10.73). The ability of a grating to separate princi-
pal maxima of a given order for two close-lying wavelengths is called dispersion.
Larger the separation, higher the dispersion. For m = 0, all wavelengths appear at
the same angle ��′′ = �′�, and the grating is unable to disperse the spectrum. As
such, the m = 0 order principal maximum is not of any interest for spectroscopic
measurements, where one is primarily interested in dispersing the spectrum. It
would be nice if the zero-order diffraction can be eliminated altogether because
it carries a substantial fraction of the incident energy without providing any
spectral information. An expression for the angular dispersion of a grating can
be obtained by differentiating Eq. (10.73), giving

d�′′
m

d�
= m

a cos �′′
m

� (10.77)

For high angular dispersion, i.e., large angular separation of spectral lines with
small wavelength difference, the grating element should be as small as possible
and the order of the principal maximum as high as possible. The linear dispersion
that one measures in the plane of observation is given by

dy′′

d�
= R

d�′′
m

d�
� (10.78)

where R is the distance between the grating and plane of observation.

10.5.2 Blazed Grating

We have seen that the zero-order principal maximum of a diffraction grating
offers no dispersion (Eq. 10.77). Energy appearing in this order is simply wasted.
Furthermore, a grating with a small grating element and hence a small elemental
width distributes incident energy in several principal maxima on both sides of the
non-dispersing zeroth order maximum. As a result, the energy available in any
one principal maximum is rather small. It is desirable to somehow concentrate
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most of the diffracted energy in a single principal maximum, preferably of suffi-
ciently high order. This, in fact, can be achieved by suitably modifying the profile
of the grating element. The maxima of intensity of two-slit diffraction occur at

v = m

a
� m = 0�±1�±2� � � � � (10.62a)

and the minima of single slit diffraction are determined by

v = n

b
� n = ±1�±2� � � � � (10.62b)

where a is the separation between the slits and b is the width of each slit.
Successive principal maxima of all orders except m = 0 will overlap with
successive minima of single slit diffraction if slit width b approaches slit
separation a. This conclusion holds for the grating as well. But the grating
principal maxima are extremely sharp. Accordingly, all principal maxima with
the exception of the m = 0 principal maximum will vanish if the elemental
width is made equal to the grating element. Figure 10.19 shows this behavior.

The above choice, however, does not make a useful device since the m = 0
order principal maximum of the grating is non-dispersing. In a blazed grating,
the non-vanishing principal maximum is a maximum of order other than zero.
Figure 10.20 shows an exaggerated view of the profile of a blazed transmission
grating with grooves possessing right prismatic cross-section. The material of the
grating, assumed non-absorbing in the spectral range of interest, has index of refrac-
tion n. The grating therefore acts as a phase grating. For a sufficiently small angle
of the prism ��B�, called the blaze angle, the grating element a is nearly equal to the
elemental width b. The blaze angle is also the angle between the normal to each
facet of the grating and the direction of the overall normal to the grating. For
simplicity, we have assumed incident light falling normally on the grating. The
transmission function of an element of the blazed grating can be written as

t�x� y� = ei 2�
� �b sin �B+�n−1�y sin �B�� (10.79)

where y varies along the inclined surface, as shown in the figure. The first
term in the exponent representing a constant phase change may be ignored. The
Fourier transform of the transmission function without this factor is

g�u� v� =
∫ +�

x=−�

∫ b

y=0
ei 2�

� �n−1�y sin �B e−i2��ux+vy�dx dy

= ��u�
∫ b

y=0
e−i2��v− �n−1�

� sin �B�ydy

= b��u�e−i��v−vB�b sinc ���v−vB�b�� (10.80)
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where

vB = n−1
�

sin �B� (10.81)

Accordingly, the intensity distribution of Fraunhofer diffraction from a blazed
grating takes the form

I�v� =
(

1

2
	0c

)
N 2b2

�2
�A0�2 sinc2��b�v−vB��

sinc2�N�va�

sinc2��va�
� (10.82)

We see that a blazed grating has exactly the same interference factor as an
unblazed grating but the diffraction factor has changed. The single element
central diffraction maximum now occurs at the spatial frequency v = vB and not
at v = 0. In terms of the angles, the central maximum has shifted from �′′ = 0
to �′′ = sin−1��n−1� sin �B�. The minima of the diffraction factor given by the
condition

�b�v−vB� = l�

now occur at

v = vB + l

b
� (10.83a)

where l = ±1�±2� � � � . Since b ≈ a, the principal maxima for the blazed grating
correspond to

v = m

a
≈ m

b
� (10.83b)

where m = 0�±1�±2� � � � . Therefore, except for the principal maximum with
v = vB, all principal maxima of a blazed grating coincide with the zeroes of the
diffraction factor. This is exactly what we set out to achieve.
The wavelength ��= �B� and the blaze angle �B can be chosen to make the central
maximum of the diffraction factor overlap with a certain principal maximum
(say mB) of the interference factor, i.e.,

vB = �n−1�

�B

sin �B = mB

b
� (10.84)
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Equation (10.72a) for the peak intensities of the principal maxima now takes
the form

I
(
v = m

b

)
=
(

1
2

	0c

)
N 2b2

�2
�A0�2 sinc2 ���m−mB��� (10.85)

The principal maximum with m = mB is the only principal maximum which
survives in a blazed grating. Figure 10.21 shows the variations of the diffraction
factor, the interference factor, and their product for a blazed grating.

A blazed grating possesses much higher diffraction efficiency because it
gives the peak intensity of a single element diffraction and the sharpness of a

mB

mB

(a)

(b)

(c)

v

v
vB

mB−2 mB−1 mB+1 mB+2

mB+2
b

mB+1
b

mB
b

mB−1
b

mB−2
b

mB
b

v

Fig. 10.21: (a) Diffraction factor for a grating with elemental width b.
(b) Interference factor for a blazed grating with N = 10 and a = b. (c) Diffraction
occurs in m = mB order of the blazed grating.
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multi-element grating. The grating is said to be blazed for wavelength �B in
order mB. However, re-writing Eq. (10.84) as

mB�B = �n−1�b sin �B (10.86)

reveals that a grating blazed for wavelength �B in order mB is automatically
blazed for the wavelengths 1

2 �B, 1
3 �B, � � � in 2mB, 3mB, � � � orders, respectively.

Thus, a single blazed grating can be used in different spectral regions in different
orders. Designing a blazed grating with prismatic grooves is not as difficult as
it might appear at first sight. The single element central diffraction peak exactly
coincides with the direction of the refracted ray.

It must be realized that the width of an element of a blazed grating cannot
exactly equal the inter-elemental separation, although the difference between the
two can be made small. As a result, the principal maxima in the immediate
neighborhood of the principal maximum satisfying Eq. (10.86) carry non-zero
irradiance, thereby, reducing the efficiency of a blazed grating. Furthermore, a
blazed grating will not be very useful if its use is limited to only the blazing
wavelength �B. For wavelengths close to �B, the mBth order principal maximum
does not exactly coincide with the peak of the diffraction factor (Fig. 10.21a).
Therefore, its irradiance and hence the efficiency of the blazed grating is some-
what reduced. The reduced efficiency for � �= �B can be calculated from the
modified form of Eq. (10.85):

I
(
v = m

b

)
=
(

1
2

	0c

)
N 2b2

�2
�A0�2 sinc2 ���m−m′

B��� (10.87)

where Eq. (10.86) allows us to write

m′
B = �B

�
mB�

Fig. 10.22: An echelon grating.
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The blazed gratings are usually used in low principal orders (m = 1–5). However,
the echelon gratings, first invented by Michelson, operate in very high orders
�m ∼ 1000� since the path difference between waves diffracted, even at small
angles, from successive steps of the echelon is quite large (Fig. 10.22).

10.5.3 Resolving Power of a Grating

Dispersion was defined in terms of the ability of a grating to separate principal
maxima of a given order for different wavelengths present in the incident light.
Dispersion is an important characteristic of a grating, but it is not a sufficient
indicator of the capability or the limitation of the grating or of any optical
instrument. The complete profiles, and not just the peaks of the principal maxima,
for different wavelengths must be separated. This leads to the concept of the
resolving power of a grating as distinct from the dispersion of a grating. If
the principal maxima are not sharp, they may remain unresolved even under
conditions of high dispersion (Fig. 10.23).

The limit of resolution of a grating is the minimum wavelength separation ��
between two spectral lines such that their mth order principal maxima are just
resolved. There is, however, no unique definition of the term ‘just resolved’. The
Rayleigh criterion of resolution states that two spectral lines of equal intensity,
from an incoherent source, with wavelengths � and ��−��� are just resolved
in the mth order if the peak of the mth order principal maximum for wavelength
� coincides with the minimum nearest to the mth order principal maximum
for the wavelength �� − ���. The resolving power (RP) of the grating is then

’)γ )γ’
mλ mλ2 mλ1 mλ

" −sin γm
" −sin γm   (sin aa  (sin 

1 2

(a) (b)

Fig. 10.23: Principal maxima of a diffraction grating with inter-slit separation
a; (a) high dispersion, low resolving power, (b) high dispersion, high resolving
power.
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Fig. 10.24: Rayleigh criterion of resolution.

defined by the ratio �/��. Figure 10.24 shows the intensity distributions of the
principal maxima of order m for the wavelengths � and ��−��� as a function
of �sin �′′ − sin �′�.

The angular separation of the peak of the mth order principal maximum from
its nearest minimum, obtained from Eq. (10.74b), is

��′′
m

2
= �

Na cos �′′
m

(10.88a)

and the angular separation between the mth order principal maxima for wave-
lengths � and ��−���, calculated from the dispersion relation (Eq. 10.77), is

���′′
m��� = d�′′

m

d�
�� = m

a cos �′′
m

��� (10.88b)

Equating Eqs (10.88a) and (10.88b) to satisfy the Rayleigh criterion of resolution,
we obtain

RP = �

��
= mN (10.89a)

= Na

�
�sin �′′

m − sin �′�� (10.89b)

The right-hand side of Eq. (10.89b) allows one to interpret the resolving power
of a grating as the number of wavelengths of light present in the path difference
between waves diffracted from the extreme ends of a grating of width Na. To
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achieve high resolving power, a grating with large number of elements used in
as high an order as possible should be preferred. However, since

�sin �′′
m − sin �′� ≤ 2� (10.90)

the resolving power cannot exceed 2W/�, where W = Na is the width of the
grating. A grating 12.5 cm wide can have a theoretical resolving power as high
as 500 000 at 500 nm. Such a grating can resolve spectral lines with wave-
lengths 500.000 and 500.001 nm (i.e. with wavelength separation of 0�01 Å)
within the scope of the Rayleigh criterion. It must, however, be ensured that
the incident wavefront overlaps with the entire width of the grating so that
all N grating elements contribute to the diffraction process. This is possible
if light is incident at near-grazing (angle of incidence ≈ 90�) angle. Alterna-
tively, the light beam can be expanded to cover the entire grating. Figure 10.25
shows Littrow mounting of a blazed reflection grating, commonly used in high-
resolution spectrometers. The entrance slit and detector, somewhat displaced
from each other, lie in the front focal plane of lens L. The collimated beam falls
normally on each facet of the blazed reflection grating G. Diffraction primar-
ily (non-vanishing principal maximum) occurs along the direction of specular
reflection. The diffracted light retraces the path of the incident beam (autocol-
limation). Reflection gratings, being phase gratings, possess higher diffraction
efficiencies.

Notwithstanding what has been said above, Eq. (10.89b) shows that a grat-
ing having fewer elements with large inter-elemental separations has the same
resolving power as a grating with large number of elements and small inter-
elemental separations as long as the two have the same overall widths �Na�.

G

S

D

L

Fig. 10.25: Littrow mounting of a blazed reflection grating; S is entrance slit
and D is detector.
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Fig. 10.26: (a) Rayleigh criterion of resolution. (b) Sparrow’s criterion of res-
olution – peaks are allowed to come close to have flat top in the combined
profile.

The two gratings will have unequal efficiencies, though. It may be mentioned in
passing that Rayleigh criterion is not the only criterion in vogue to specify the
limit of resolution of a grating instrument.

Figure 10.26 compares the Rayleigh criterion with another criterion due to C.
Sparrow. In the Rayleigh limit of resolution, a dip in the intensity distribution
appears between the two peaks (Fig. 10.26a). The dip height is nearly 81%
of the height of either of the peaks. In the Sparrow criterion, the two peaks
are allowed to come still closer to get a flat top in the intensity distribution
(Fig. 10.26b).

10.5.4 Free Spectral Range

A grating instrument like any other wavelength-measuring instrument should
be able to unambiguously identify the wavelengths of the spectral lines present
in the incident light. In particular, for a diffraction grating, a given principal
maximum in the observation plane must correspond to a unique wavelength.
This condition can be violated if higher order principal maxima for shorter
wavelengths begin to overlap with lower order principal maxima for longer
wavelengths (see Eq. 10.86). This puts an upper limit to the useful spectral range
of a grating instrument. This limit is reached when the �m+1�th order principal
maximum for wavelength � coincides with the mth order principal maximum
for wavelength ��+��, i.e., when

�m+1�� = m��+�� = a�sin �′′
m − sin �′�� (10.91)
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giving

� = �

m
� (10.92)

To prevent overlap of the principal maxima, belonging to different wavelengths,
the scanning range of the instrument must not exceed �. The permissible
scanning range of a grating is called its free spectral range. To prevent any
possibility of overlapping of orders,

� <
�

m
� (10.93)

where � is the lower wavelength limit of the scan and m is the order of the
principal maximum being scanned. Equation (10.92) defines the free spectral
range (FSR) of a grating. To keep the free spectral range around a certain
wavelength as wide as possible, a low-order principal maximum must be used.
This reduces the resolving power of the instrument. Hence, the FSR of a grating
can be increased only at the cost of its resolving power and vice versa. A
good compromise is to choose large N and a low-order principal maximum for
blazing.

10.6 IRREGULARLY POSITIONED APERTURES

We now consider an array of N identical and similarly oriented, but irregularly
arranged apertures in two dimensions. The separations among the apertures
change randomly (Fig. 10.11). The Fourier transform of the transmission function
of such an array of apertures is still given by the product

F�u� v� = g�u� v�h�u� v��

where

g�u� v� =
�∫ ∫

−�
t�x� y�e−i2��ux+vy�dx dy� (10.94)

h�u� v� =
N∑

j=1

e−i2��xju+yjv�� (10.95)

Since xj and yj are now randomly distributed, we have no way of finding this
sum. However, the square modulus of h�u� v� is

�h�u� v��2 =
(

N∑
j=1

e−i2��xju+yjv�

)(
N∑

k=1

ei2��xku+ykv�

)
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=
N∑

j=k=1

e−i2���xj−xk�u+�yj−yk�v� +
N∑

j �=k=1

e−i2���xj−xk�u+�yj−yk�v�

= N +
N∑

j �=k=1

e−i2���xj−xk�u+�yj−yk�v�� (10.96)

The second term arises due to interference among waves diffracted from different
apertures. The signs and magnitudes of the terms in this sum change randomly
because of the random distribution of the apertures. For sufficiently large N ,
positive and negative contributions to the sum may add up to zero. For N not
so large, this term is small, but not exactly zero. The intensity distribution of
Fraunhofer diffraction from such an array, when illuminated coherently, has the
form

I�u� v� =
(

1

2
	0c

) �A0�2
�2

�g�u� v��2
[

N +
N∑

j �=k=1

e−i2���xj−xk�u+�yj−yk�v�

]
� (10.97)

Ignoring for the moment the interference effects represented by the second
term in the square brackets, the diffracted intensity in a given direction from
N randomly placed apertures is N times the diffracted intensity due to a single
aperture. This should be compared with the N 2 factor for an array of N equally
spaced apertures (Eq. 10.70a). Thus, the Fraunhofer diffraction pattern of a
finite number of randomly placed apertures has the appearance of the Fraunhofer
diffraction pattern of a single aperture, but N times brighter along with some
discernible effects due to interference among waves diffracted from different
apertures. Commonly observed halos produced by randomly distributed water
droplets and aerosol particles, illuminated by a distant light source, are manifes-
tations of this effect. Such halos may be accompanied by speckles, representing
interference among waves diffracted from different particles (see Fig. 10.9 in
Ref. [10.2]).

10.7 SINUSOIDAL GRATING

Sinusoidal gratings are not relevant for spectroscopic investigations but, as we
shall see in a later chapter, they find use in characterizing the performance of
lenses and optical systems. A sinusoidal grating has the amplitude transmission
function

t�x� y� = a+b cos 2��u0x+v0y�� (10.98)
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Fig. 10.27: Fraunhofer diffraction from a sinusoidal grating.

where a, b, u0, v0 are positive constants. Its Fourier transform is

F�u� v� =
�∫ ∫

−�
�a+b cos 2��u0x+v0y��e−i2��ux+vy�dxdy

= a��u� v�+ b

2
���u−u0� v−v0�+��u+u0� v+v0���

(10.99)

The field distribution of Fraunhofer diffraction, obtained by substituting
Eq. (10.99) into Eq. (10.6a), is

E�u� v� = − iA0

�
�a��u� v�+ b

2
���u−u0� v−v0�+��u+u0� v+v0����

(10.100)

Thus, Fraunhofer diffraction from a sinusoidal grating appears along only three
directions. For illumination with a plane wave, the first term in Eq. (10.100)
represents diffraction in the forward direction. This is the zero-order diffraction.
The remaining two terms produce diffracted waves along �u0� v0� and �−u0�−v0�
directions (Fig. 10.27).

10.8 TWO PIN-HOLES

As the last example of the array theorem, we consider two identical circular
holes illuminated normally by coherent light of wavelength � (Fig. 10.28).

The intensity distribution of Fraunhofer diffraction for this aperture can be
obtained from Eq. (10.58), where g�u� v� is the Fourier transform of the amplitude
transmission function of a circular aperture of radius a (Eq. 10.43) and h�u� v� is
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Fig. 10.28: Fraunhofer diffraction from two pin-holes.

the Fourier transform of the Dirac delta functions located at y = −b and y = +b
(Eq. 10.59a). Accordingly,

I��� v� = I0

∣∣∣∣
2J1�2��a�

2��a

∣∣∣∣
2

cos2�2�vb�� (10.101)

Photo 10.4: Fraunhofer diffraction from two pin holes, each of diameter 0.32 mm,
recorded with 514.5 nm line of argon ion laser. The holes were kept 2 mm apart.
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where

� = r ′′

�R′′
0

(10.102a)

and

v = y′′

�R′′
0

� (10.102b)

The first factor in Eq. (10.101) represents the intensity distribution of Fraunhofer
diffraction from a circular aperture and the second factor, arising due to the
presence of two circular holes, is exactly the factor which describes the intensity
distribution in Young’s interference experiments �a → 0�. Fraunhofer diffraction
from two pin holes, each of diameter 0.32 mm, recorded with 514.5 nm line of
an argon ion laser is shown in Photo 10.4. The holes were kept 2 mm apart.
Straight (Young’s) interference fringes within the bright portions of the single
hole Fraunhofer diffraction pattern can be seen.
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10.10 PROBLEMS

10.1 (a) Convince yourself that the transverse displacement of a ray in passing through a
thinlensis indeedsmall.Taken = 1�5,d0 = 3 mm,andangleofincidenceof10�.

(b) Find the range of phase variations introduced by a thin lens of diameter 2 cm
and focal length 10 cm. Take � = 500 nm.

10.2 Fraunhofer diffraction from a rectangular aperture of sides 0�4 mm × 0�6 mm is
investigated with light of wavelength 632.8 nm falling normally on the aperture
screen.

(a) Find the least distance of an observation plane from the aperture screen so that
the largest quadratic term in the diffraction integral introduces a phase of no
more than 5�.
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(b) Take the plane of observation 5 m behind the aperture with x′′, y′′ axes parallel
and perpendicular to the long edge of the aperture.

(i) Find the positions and widths of the first secondary maxima on the x′′

and y′′ axes and determine their peak irradiances as fractions of the peak
irradiance of the central diffraction maximum.

(ii) Find the integrated irradiances of the first secondary maxima along the
x′′ and y′′ axes as fractions of the integrated irradiance of the central
diffraction maximum.

(iii) Find the ratio of the integrated irradiances of the first and second sec-
ondary maxima along the x′′ axis.

10.3 Use Eq. (10.23) to obtain the intensity distribution of Fraunhofer diffraction from
two long, parallel slits, each of width b and separation parameter d as shown
in Fig. 10.29 and verify the result obtained from the Array theorem (Eq. 10.60).
Will there be any missing interference fringes if d/b is an integer? Under these
conditions, how many fringes appear in the central and first secondary diffraction
maxima? Identify the missing orders when the ratio d/b is half integral.

b b

x

y
d

O

Fig. 10.29.

10.4 Find the intensity distribution of Fraunhofer diffraction from an annular aperture of
inner radius a and outer radius a+b illuminated by a monochromatic axial point
source. For a = 0�2 mm and b = 0�4 mm, plot the normalized intensity distribution
as a function of the radial distance in the plane of observation located 10 m behind
the aperture screen. The point source, emitting 632.8 nm radiation, is 10 m in front
of the aperture screen.

10.5 Find the intensity distribution of Fraunhofer diffraction from the crossed aperture,
shown in Fig. 10.30, where a and b are small. The slits extend to infinity in all
directions.
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a

Fig. 10.30.

10.6 Let a → 0 in Problem 10.4 so that the annular aperture goes over to a circular
aperture of radius 0.4 mm. The positions of the source and plane of observation
remain as in Problem 10.4.

(a) What is the radius of the Airy disk?
(b) Find the peak irradiance of the first bright ring as a fraction of the peak

irradiance of the Airy disk.
(c) Determine the integrated irradiance of the first bright ring as a fraction of the

integrated irradiance of the Airy disk.

10.7 Fraunhofer diffraction from a circular aperture of radius 1 mm is studied in the
back focal plane of a lens of 50 cm focal length. What is the radius of the Airy
disk? Express the radial width of the first bright fringe as a fraction of the radius of
the Airy disk. Take � = 500 nm. The aperture is now illuminated with a collimated
beam of white light extending from 400 to 700 nm. Do you expect to see any fringe
pattern in the back focal plane of the lens? Justify your answer.

10.8 For the three-slit aperture of Fig. 10.15, plot the intensity distribution of Fraunhofer
diffraction in a plane 3 m behind the aperture screen. Take b = 0�1 mm and
a = 1 mm. The aperture is illuminated by a distant axial source emitting light of
wavelength 632.8 nm. Find the position of the peak of the secondary maximum
between the zeroth and first-order principal maxima. Compare its peak height with
that of the zeroth order principal maximum.

10.9 Consider a normally illuminated aperture containing three long slits with widths
and separations as shown in Fig. 10.31.

(a) Write the amplitude transmission function of the aperture and obtain the field
distribution of Fraunhofer diffraction from it.
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b
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Fig. 10.31.

(b) Sketch the intensity distribution in the plane of observation and locate the
three most prominent maxima of intensity.

(c) Show that the field distribution obtained in part (a) goes over to Eq. (10.64)
if the middle aperture also had width b.

10.10 Sketch, indicating the salient features, the intensity distributions of Fraunhofer
diffraction from the apertures given in Fig. 10.32.

a

a a

b

a x

(a) (b)

a

(c)

(f)

135

b

(e)

(d)

/ a/a 2 2

Fig. 10.32.
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10.11 A small source emitting light at 550 nm located 50 m away from the observer
is seen through a piece of fine cloth which acts as a two-dimensional grating.
A number of bright spots appear around the source. If the separation between
consecutive bright spots is 10 cm, find the separation of the strands in the cloth.

10.12 A blazed grating is blazed for 589.3 nm wavelength in the second order. Find the
normalized irradiance of the m = 2 order for 546.1 nm wavelength.

10.13 For a grating �n = 1�5� blazed for 546.1 nm wavelength in the second order, find
the blazing angle and the normalized irradiance of the m = 3 principal order at
589.3 nm. Take b = 2×10−3 cm.

10.14 What minimum width a grating with grating element 3 × 10−4 cm must have to
resolve two spectral lines with mean wavelength 600 nm, separated by 0.001 nm?
What is the free spectral range and the actual wavelength interval(s) in which this
grating can be used?

10.15 Sketch the fringe pattern appearing in the intensity distribution of Fraunhofer
diffraction produced by two identical holes separated by the diameter of either of
the holes (Fig. 10.33).

RR

Fig. 10.33.

10.16 Find the intensity distribution of Fraunhofer diffraction from an array of three iden-
tical holes located at the vertices of an equilateral triangle as shown in Fig. 10.34.
Try sketching the fringe pattern.

a

a

a

Fig. 10.34.



C H A P T E R 11

Image Formation and Optical
Processing

11.1 INTRODUCTION

In the paraxial approximation of geometrical optics, a lens forms a point image
of a point object and a line image of a line object (Fig. 11.1). Spherical wave-
fronts emanating from different points of the object carry with them complete
information on the amplitude and phase distributions of the object field. A lens
bends and converges these wavefronts to form the image (Fig. 5.1). Optical path
lengths of all paths between an object point and its image are exactly equal.
Constructive interference among the arriving waves reinforces the field at the
image point. The field distribution in the object plane and geometry of the
imaging configuration determine the brightness of the image. The location and
magnification of the image can be obtained from

1

v
− 1

u
= 1

f
(4.51b)

and

m = h′

h
= v

u
� (4.52a)

where u and v are the object and image distances from the lens, respectively.
Under ideal conditions, the image field distribution E�x′′� y′′� of a two-

dimensional object (Fig. 11.2) is described, except for the image magnification,
by the object field distribution function EO�x′� y′�, i.e.,

E�x′′� y′′� = 1
m

EO

(
x′ = x′′

m
�y′ = y′′

m

)
� (11.1)

459



460 Chapter 11: IMAGE FORMATION AND OPTICAL PROCESSING

O’

h’

h

O

L

vu

Fig. 11.1: Paraxial image formed by a lens.
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Fig. 11.2: Imaging two-dimensional object by a lens.

This equation relates the field at point �x′′� y′′� in the image plane to the field
at the conjugate point �x′� y′� in the object plane. Equation (11.1) neglects losses
in the process of image formation. A lens with large aperture minimizes the
losses and diffraction effects in image formation. But a lens with large aperture
causes image degradation as described in Chapter 5. In fact, to reduce image
aberrations, aperture stops are often used. Ernst Abbe in the 1870s investigated
in depth the effect of the aperture size on the resolution and overall quality
of the image formed by a compound microscope. He expected the breakdown
of the paraxial approximation with increasing aperture size to adversely affect
the quality of the image. He, however, observed larger apertures to generally
improve the image resolution. In fact, on reducing the aperture size below a
certain limit, he found the image to disappear altogether. His interpretation of
these observations laid the foundation of the modern theory of image formation
and processing. Diffraction, and not geometrical optics, plays the central role in
Abbe’s theory of image formation.
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11.2 DIFFRACTION THEORY OF IMAGE FORMATION

We have seen in Chapter 10 how the Fourier decomposition

t�x� y� =
�∫ ∫

−�
F�u� v�ei2��ux+vy�du dv (11.2)

of the amplitude transmission function t�x� y� of a coherently illuminated two-
dimensional aperture can be interpreted in terms of an infinite set of plane
diffracted waves, travelling along directions specified by the spatial frequencies
u and v. The product F�u� v�du dv is the amplitude or the weighting factor for
the waves with spatial frequencies lying in the intervals u, u+du and v, v+dv.
These waves collectively carry complete object (aperture) information. Image
is the result of interference among these waves when brought together. Image
plane may be defined as any plane in which the diffracted waves interfere.
All diffracted waves must reach the image plane for a faithful reproduction
of the object field distribution. Abbe’s observations can be understood within
the framework of this description of image formation. Low spatial frequencies,
carrying information on the gross features (periodicity, overall light distribution,
etc.) of the object field distribution and travelling at small angles with the optical
axis, are easily collected by the objective of the microscope. On the other hand,
higher spatial frequencies carrying fine details (sharpness of edges, etc.) of the
object field distribution and travelling at relatively large angles are more likely to
be missed by a lens of finite aperture. If an aperture, kept between the object and
objective of the microscope, rejects all but the zero-order spatial frequency, only
a patch of light, and not the image of the object appears in the image plane. The
object phase information remains completely unutilized since the zero spatial
frequency wave has no other wave in the image plane to interfere with.

Before forming the image in the image plane, a lens converges these waves in
its back focal plane, called the Fourier transform or simply the transform plane
(Fig. 11.3).

Each convergence point in this plane is a display of a particular object spatial
frequency. The transform plane, as we shall see later, plays an important role
in the processing of optical images. Since the object spatial frequencies are
separated in this plane, any modification of the image is best carried out in this
plane. The diffraction process of image formation described in Fig. 11.3 can
be interpreted in terms of two Fourier transform operations in succession. The
incident wave is diffracted by the object transparency and the Fourier transform

F�u� v� =
�∫ ∫

−�
EO�x′� y′�e−i2��ux′+vy′�dx′dy′ (11.3)
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Fig. 11.3: Image formation by a lens as double Fourier transformation.

of the object field distribution EO�x′� y′� appears in the back focal plane of the
lens. The second stage of image formation begins with the Huygens’ wavelets
spreading from the back focal plane of the lens and eventually overlapping in
the image plane. This process is also a Fourier transform operation provided the
image plane is located far away or if a second lens is used to obtain the image
(see Fig. 11.5). Therefore, image formation by a lens can be described in terms
of the Fourier transform of the Fourier transforms of the object field distribution.
Accordingly, the image field distribution can be written as

E�x′′� y′′� = � �F�u� v��

=
�∫ ∫

−�
F�u� v�e−i2��ux′′+vy′′�du dv�

=
�∫ ∫

−�
dx′dy′EO�x′� y′�

⎡
⎣

�∫ ∫

−�
e−i2��u�x′+x′′�+v�y′+y′′��du dv

⎤
⎦

=
�∫ ∫

−�
EO�x′� y′�	�x′ +x′′�	�y′ +y′′�dx′dy′

= EO�x′ = −x′′� y′ = −y′′�� (11.4)

Apart from an overall sign change, this result is in agreement with Eq. (11.1)
for m = −1. The lens aperture has been tacitly taken to be infinite in the above
derivation. In what follows, we systematically develop the diffraction theory of
image formation by a lens. The derivation is a bit long, but we want to go through
the steps carefully since these results form the basis of many discussions to follow.



11.2: DIFFRACTION THEORY OF IMAGE FORMATION 463

11.2.1 Image Formation with one Lens

Figure 11.4 shows an imaging system consisting of just one thin lens. The field
distribution immediately behind the object plane �z = 0� is

EO�x′� y′� 0� = EintO�x′� y′�� (11.5)

where Ein is the field incident on the object transparency with amplitude trans-
mission function tO�x′� y′�. The field distribution just in front of the lens �z = z1�,
obtained from the generalization of Eq. (7.18c), assuming unit obliquity factor, is

E�x� y� z1� = − i



∫ ∫
∑ EO�x′� y′� 0�

eikr ′

r ′ dx′dy′� (11.6)

where the integration is over the extent of the object transparency
∑

. Within the
Fresnel approximation,

r ′ = z1 + 1
2z1

[
�x−x′�2 + �y −y′�2

]
(11.7)

and Eq. (11.6) takes the form

E�x� y� z1� = − i



eikz1

z1

∫ ∫
∑ EO�x′� y′� 0�e

ik
2z1

��x−x′�2+�y−y′�2�
dx′dy′ (11.8a)

= − i



eikz1

z1

∫ ∫
∑ EO�x′� y′� 0�hz1

�x−x′� y −y′�dx′dy′� (11.8b)
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Fig. 11.4: One lens image forming system.
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where

hz1
�x−x′� y −y′� = e

ik
2z1

��x−x′�2+�y−y′�2�
(11.9)

is the impulse response function of the free space between the object plane and
lens. It relates the field at point �x� y�, distance z1 behind the object plane, to the
field at the object point �x′� y′�. Expression (11.8b) may be taken as an input–
output relation for a linear optical system. Here, the object field distribution
EO�x′� y′� 0� is the input to the system and field distribution E�x� y� z1� is the
output from the system. In the present case, the system is the free space between
the planes z = 0 and z = z1, and its response is characterized by the impulse
response function hz1

�x − x′� y − y′�. Later, this concept will be generalized to
define the impulse response function of an optical system.

The impulse response function (Eq. 11.9) has been written in a form to
emphasize its space invariance. It depends on the differences of the position
coordinates �x−x′� and �y−y′�, and not on the position coordinates themselves.
The impulse response function of an optical system may, however, be spatially
invariant over a limited range of �x − x′� and �y − y′� values. The integration
limits in Eqs (11.8) can be taken from −� to +�, since EO�x′� y′� 0� is zero
beyond the extent of the object transparency. Accordingly, Eq. (11.8b) can be
expressed as the convolution integral

E�x� y� z1� = − i



eikz1

z1

�∫ ∫

−�
EO�x′� y′� 0�hz1

�x−x′� y −y′�dx′ dy′� (11.10)

written symbolically as

E�x� y� z1� = − i



eikz1

z1

EO�x� y� 0�∗hz1
�x� y�� (11.11)

where

hz1
�x� y� = e

ik
2z1

�x2+y2�
� (11.12)

Following the above argument, the field distribution in any plane beyond the
lens can be formally expressed as

E�x� y� z1 + z2� = C
{
�EO�x� y� z1�∗hz1

�x� y��T�x� y�
}∗hz2

�x� y�� (11.13)

where C is a complex constant and

hz2
�x� y� = e

ik
2z2

�x2+y2�
(11.14)
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is the impulse response function of the free space between the lens and plane of
observation, and

T�x� y� = tL�x� y�e
− ik

2f
�x2+y2�

(11.15)

is the amplitude transmission function of the lens. For an aberration-free lens,
tL�x� y� = 1 within the extent of the lens and zero beyond. However, lens aberra-
tions can modify tL�x� y� in amplitude as well as in phase. The field distribution
in a plane z2 distance behind the lens, obtained from Eq. (11.13), is

E�x′′� y′′� z1 + z2� =
(

− i



)2 eik�z1+z2�

z1z2

�∫ ∫

−�

�∫ ∫

−�
EO�x′� y′� 0�e

ik
2z1

�x−x′�2

× e
ik

2z1
�y−y′�2

tL�x� y�e− ik
2f �x2+y2�e

ik
2z2

�x′′−x�2

× e
ik

2z2
�y′′−y�2

dx′ dy′ dx dy (11.16a)

=− 1

2

eik�z1+z2�

z1z2

e
ik

2z2
�x′′2+y′′2�

�∫ ∫

−�
dx′ dy′EO�x′� y′� 0�

× e
ik

2z1
�x′2+y′2�

�∫ ∫

−�
tL�x� y�e

ik
2

(
1
z1

+ 1
z2

− 1
f

)
�x2+y2�

× e−ik
[(

x′
z1

+ x′′
z2

)
x+
(

y′
z1

+ y′′
z2

)
y
]
dx dy� (11.16b)

where we have used

r ′′ = z2 + 1
2z2

[
�x′′ −x�2 + �y′′ −y�2

]
� (11.17)

11.2.1.1 Lens of Large Aperture

It may be useful to first consider an aberration-free lens of infinitely large
aperture so that tL�x� y� = 1 for all x, y. The integrals in Eq. (11.16b) can then
be evaluated exactly, giving

∫ +�

−�
e

−ik
2

(
1
f − 1

z1
− 1

z2

)
x2 − ik

(
x′
z1

+ x′′
z2

)
x dx =

√
�

a
e

b2

4a2 � (11.18a)

∫ +�

−�
e

−ik
2

(
1
f − 1

z1
− 1

z2

)
y2 − ik

(
y′
z1

+ y′′
z2

)
y dy =

√
�

a
e

b′2
4a2 � (11.18b)
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where

a2 = ik
2

(
1
f

− 1
z1

− 1
z2

)
� (11.19a)

b = ik
(

x′

z1

+ x′′

z2

)
� (11.19b)

b′ = ik
(

y′

z1

+ y′′

z2

)
� (11.19c)

Equation (11.16b) for a �= 0 then takes the form

E��x′′� y′′� z1 + z2� =− �


2a2

eik�z1+z2�

z1z2

e
ik

2z2
�x′′2+y′′2�

�∫ ∫

−�
EO�x′� y′� 0�

× e
ik

2z1
�x′2+y′2�e

− k2

4a2

[(
x′
z1

+ x′′
z2

)2+
(

y′
z1

+ y′′
z2

)2
]

dx′ dy′� (11.20)

where E��x′′� y′′� z1 + z2� is the field distribution in any plane, behind a lens of
infinite aperture, satisfying Eq. (11.17). The field distribution in the back focal
plane of the lens with z2 = f and a2 = −ik/2z1 is

E��xf � yf � z1 +f� =− i



eik�z1+f�

f
e

ik
2f �x2

f +y2
f �

�∫ ∫

−�
EO�x′� y′� 0�

× e
ik

2z1
�x′2+y′2�e

− ikz1
2

[(
x′
z1

+ xf
f

)2+
(

y′
z1

+ yf
f

)2
]

dx′ dy′ (11.21a)

=− i



eik�z1+f�

f
e

ik
2f �1− z1

f ��x2
f +y2

f �

�∫ ∫

−�
EO�x′� y′� 0�

× e−i2��
xf

f x′+ yf


f y′� dx′ dy′ (11.21b)

=− i



eik�z1+f�

f
e

ik
2f �1− z1

f ��x2
f +y2

f �F

(
xf


f
�

yf


f

)
� (11.21c)

where

F

(
xf


f
�

yf


f

)
=

�∫ ∫

−�
EO�x′� y′� 0�e−i2��

xf

f x′+ yf


f y′� dx′ dy′ (11.22)

is the Fourier transform of the object field distribution. The quadratic phase
factor accompanying the Fourier transform in Eqs (11.21) disappears when the
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object transparency lies in the front focal plane of the lens. Thus, we have
the remarkable result that except for a complex constant, a positive lens of
sufficiently large aperture generates in its back focal plane the Fourier transform
of the object field distribution in its front focal plane.

We now consider the field distribution in the image plane of geometrical
optics satisfying the condition

1

z1

+ 1
z2

= 1
f

� (11.23)

Here, z1 is measured from the object plane, and not from the lens, hence the
sign difference in Eqs (11.23) and (4.51b). With Eq. (11.23), the integrals in
Eqs (11.18) reduce to the delta functions, i.e.,

∫ +�

−�
e−i2�

(
x′


z1
+ x′′


z2

)
x dx =	

(
x′


z1

+ x′′


z2

)
� (11.24a)

∫ +�

−�
e−i2�� y′


z1
+ y′′


z2
�y dy =	

(
y′


z1

+ y′′


z2

)
(11.24b)

and Eq. (11.16b) takes the form

E��x′′� y′′� z1 + z2� =− 1

2

eik�z1+z2�

z1z2

e
ik

2z2
�x′′2+y′′2�

�∫ ∫

−�
EO�x′� y′� 0�

× e
ik

2z1
�x′2+y′2�

	

(
x′


z1

+ x′′


z2

)
	

(
y′


z1

+ y′′


z2

)
dx′ dy′

= 1
m

eik�z1+ z2�e
ik

2z2
�1− 1

m ��x′′2+y′′2�

×EO

(
x′ = x′′

m
�y′ = y′′

m
� 0
)

� (11.25)

where

m = v

u
= −z2

z1

(11.26)

is transverse magnification produced by the lens. Except for quadratic phase
modification and magnification factor m, the field at the image point �x′′� y′′�
equals the field at the conjugate point (x′ = x′′/m, y′ = y′′/m) in the object
plane.
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11.2.1.2 Lens of Finite Aperture

The aperture function of an aberration-free lens of radius r0 is

tL�x� y� =1 for �x2 +y2�1/2 ≤ r0�

=0 otherwise� (11.27)

Accordingly, the field distribution in the image plane, obtained from Eqs (11.16b)
and (11.23), can be expressed as

E�x′′� y′′� z1 + z2� =− 1

2

eik�z1+z2�

z1z2

e
ik

2z2
�x′′2+y′′2�

×
�∫ ∫

−�

�∫ ∫

−�
EO�x′� y′� 0�e

ik
2z1

�x′2+y′2�
tL�x� y�

× e−i2�
[(

x′

z1

+ x′′

z2

)
x+
(

y′

z1

+ y′′

z2

)
y
]
dx dy dx′ dy′� (11.28a)

=− 1

2

eik�z1+z2�

z1z2

e
ik

2z2
�x′′2+y′′2�

�∫ ∫

−�
EO�x′� y′� 0�

× e
ik

2z1
�x′2+y′2�

�∫ ∫

−�
tL�x� y�e−i2��x′′−mx′� x


z2

× e−i2��y′′−my′� y

z2 dx dy dx′ dy′ (11.28b)

=− 1

2

eik�z1+z2�

z1z2

e
ik

2z2
�x′′2+y′′2�

�∫ ∫

−�
EO�x′� y′� 0�

× e
ik

2z1
�x′2+y′2�

F�x′′ −mx′� y′′ −my′� dx′ dy′� (11.28c)

where the Fourier transform

F�x′′ −mx′� y′′ −my′� =
�∫ ∫

−�
tL�x� y�e−i2��x′′−mx′� x


z2

× e−i2��y′′−my′� y

z2 dx dy (11.29)

at the spatial frequencies u = �x′′ −mx′�/
z2 and v = �y′′ −my′�/
z2 describes
Fraunhofer diffraction from the lens aperture. This diffraction pattern is centered
at the point x′′ = mx′, y′′ = my′ in the image plane, where �x′� y′� is the conjugate
point in the object plane and m is the transverse magnification of the image.
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11.2.1.3 Coherent Impulse Response Function

The quadratic phase factors e
ik

2z1
�x′2+y′2� and e

ik
2z2

�x′′2+y′′2� in Eqs (11.28) give rise
to phase curvatures in the object and image planes, respectively. The latter phase
factor is of no significance if intensity distribution in the image plane is all
that interests us. However, this factor must be retained if further processing of
the image is contemplated. The other phase factor is more troublesome since it
appears inside the integral. Invoking the stationarity argument of Section 7.4.2,
only a small portion of the object field distribution around the point �x′� y′�
should contribute to the field at the conjugate image point x′′ = mx′, y′′ = my′.
Accordingly, we may express

e
ik

2z1
�x′2+y′2� ≈ e

ik
2z1

�� x′′
m �2+� y′′

m �2�

≈ e− ik
2mz2

�x′′2+y′′2�
�

(11.30)

Equation (11.28b) then takes the form

E�x′′� y′′� z1 + z2� = meik�z1+z2�e
ik

2z2
�1− 1

m ��x′′2+y′′2�

×
�∫ ∫

−�
EO�x′� y′� 0�

�∫ ∫

−�
tL�
z2

∼
xL�
z2

∼
yL�

×e−i2���x′′−mx′�∼xL+�y′′−my′�∼yL�� d
∼
xL d

∼
yL dx′ dy′� (11.31)

where

∼
xL= x


z2

�
∼
yL= y


z2

� (11.32)

For a point source of unit strength in the object plane, Eq. (11.31) describes the
impulse response function of an optical system consisting of a single aberration-
free lens, i.e.,

h�x′′ −mx′� y′′ −my′� =meik�z1+z2�e
ik

2z2
�1− 1

m ��x′′2+y′′2�

×
�∫ ∫

−�
tL�
z2

∼
xL�
z2

∼
yL�e−i2��x′′−mx′�∼xL

× e−i2��y′′−my′�∼yL d
∼
xL d

∼
yL �

(11.33)

Apart from some phase modification and a scale factor, the impulse response
function of a lens is the field distribution of Fraunhofer diffraction from the
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aperture of the lens. For a lens of circular aperture, the corresponding intensity
distribution consists of bright and dark rings surrounding the Airy disk centered
at the image point of geometrical optics. Therefore, the image of a point produced
by a lens of finite aperture is the Fraunhofer diffraction pattern of the aperture
of the lens, and not a point image of geometrical optics. Diffraction negates
one-to-one correspondence between the object and its image. Equation (11.33)
describes the coherent impulse response function of a lens since object illu-
mination by monochromatic light has been assumed in the above derivation.
The field distribution in the image plane of geometrical optics for an extended
two-dimensional object now takes the form

E�x′′� y′′� z1 + z2� =
�∫ ∫

−�
EO�x′� y′� 0�h�x′′ −mx′� y′′ −my′� dx′ dy′� (11.34)

With the change of variables

∼
x= mx′�

∼
y = my′� (11.35)

Eq. (11.31) is transformed to the convolution form:

E�x′′� y′′� z1 + z2� = 1
m

eik�z1+z2�e
ik

2z2
�1− 1

m ��x′′2+y′′2�

×
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−�
EO

( ∼
x

m
�

∼
y

m
� 0
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−�
tL�
z2
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xL�
z2

∼
yL�

× e−i2���x′′−∼
x�

∼
xL+�y′′−∼

y�
∼
yL� d

∼
xL d

∼
yL d

∼
x d

∼
y

(11.36a)

=
�∫ ∫

−�
E′

O

( ∼
x

m
�

∼
y

m
� 0

)
h′�x′′− ∼

x� y′′− ∼
y� d

∼
x d

∼
y (11.36b)

=E′
O�x′′� y′′�∗h′�x′′� y′′�� (11.36c)

where

h′�x′′− ∼
x� y′′− ∼

y� =
�∫ ∫

−�
tL�
z2

∼
xL�
z2

∼
yL�

× e−i2���x′′−∼
x�

∼
xL+�y′′−∼

y�
∼
yL� d

∼
xL d

∼
yL

(11.37)
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is the redefined impulse response function of the lens, and the modified object
field distribution

E′
O

( ∼
x

m
�

∼
y

m
� 0

)
= 1

m
eik�z1+ z2�e

ik
2z2

�1− 1
m ��x′′2+y′′2�

EO�x′� y′� 0� (11.38)

differs from the actual object field distribution EO�x′� y′� 0� by a phase factor,
a magnification factor, and a scale factor. To summarize, the image field distri-
bution has been transformed from a convolution of three functions (Eq. 11.13)
to a convolution between two functions. Equation (11.36c) is particularly useful
since it is often easier to obtain the image field distribution by taking its Fourier
transform and making use of the convolution theorem (see Problems 11.9 to 11.11).

For a lens of infinite aperture, the impulse response function reduces to a delta
function and image field distribution of geometrical optics is restored. However,
for a lens of finite aperture, the impulse response function is never a sharp
point and, as a result, the image field distribution differs from that predicted by
geometrical optics. In addition, the convolution operation smoothens the image
field distribution, leading to image distortion. The sharp edges of an object
may not appear so sharp in its image. The convolution operation also limits the
resolution of an optical system. Any image detail, smaller than the width of the
impulse response function, will not be resolved. The impulse response function
of a square lens of sides a is a sinc function with 2z2
/a as the width of its
central lobe. Therefore, an optical system using a square lens of sides a cannot
resolve objects with separation less than 2z2



a
, where z2 is the distance of the

lens from the image plane. We shall return to these considerations when we
discuss the resolution of image-forming systems, later in the chapter.

The image intensity distribution for coherent illumination of the object can be
expressed as

I�x′′� y′′� z1 + z2� =
(

1
2

�0c

) �∫ ∫

−�

�∫ ∫

−�
E′

O

(∼
x1

m
�

∼
y1

m

)
h′�x′′− ∼

x1� y′′− ∼
y1�

×E′
O

∗
(∼

x2

m
�

∼
y2

m

)
h′∗�x′′− ∼

x2� y′′− ∼
y2�d

∼
x1 d

∼
y1 d

∼
x2 d

∼
y2 �

(11.39)

11.2.2 Image Formation with Two Lenses

A two-lens imaging system (Fig. 11.5) is more amenable to image modification
and processing as compared to a one-lens system. The lenses in Fig. 11.5 are
separated by a distance equal to the sum of their focal lengths. The object trans-
parency is kept in the front focal plane of the first lens and the back focal plane of
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Fig. 11.5: Two-lens image forming system.

the second lens is the image plane. For the present discussion, lens apertures are
assumed sufficiently large to intercept most if not all object spatial frequencies.
The first lens produces in its back focal plane the Fourier transform of the field
distribution in the object plane (Eq. 11.21b), i.e.,

E�xf � yf � 2f1� = − i



ei2kf1

f1

�∫ ∫

−�
EO�x′� y′�e−i2��

xf

f1

x′+ yf

f1

y′�dx′dy′� (11.40)

where the subscript � in E��xf � yf � has been dropped. The Fourier transform
of this distribution appears in the back focal plane of the second lens. Therefore,

E�x′′� y′′� 2f1 +2f2�

=− i
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(
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m
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where m = − f2
f1

. Except for the constant phase factor e2ik�f1+f2� and magnification
factor m, Eq. (11.41) reproduces the object field distribution. The disturbing
quadratic phase factors appearing in one-lens imaging (Eq. 11.28) are absent in
the two-lens imaging configuration of Fig. 11.5. Any loss of the object spatial
frequencies due to finite apertures of the lenses can be accounted by an effective
modification of the spatial frequency spectrum in the Fourier transform plane.
This is the subject matter of the next section.

11.3 COHERENT IMAGE PROCESSING

Finite aperture of a lens prevents higher object spatial frequencies from reaching
the image plane. In that sense, a lens or any optical system of finite aperture
is a low (spatial frequency) pass filter. It rejects higher spatial frequencies,
resulting in degradation of the image quality. At the same time, it is possible
to design filters which can selectively reject or modify certain object spatial
frequencies with desirable effect on the image. Filters also find application in
pattern recognition and in making phase objects visible. Image modification
can be carried out in the spatial domain by introducing a filter just behind
the object transparency to appropriately modify the object field distribution. In
spatial frequency filtering, a filter modifies the spatial frequency spectrum of the
object in the Fourier transform plane. The two forms of filtering can be shown
to be exactly equivalent. Only spatial frequency filtering will be discussed here
since in practice it is easier to implement.

11.3.1 Spatial Frequency Filtering

A filter in either domain is a specially prepared transparency to modify the
phase and amplitude of the light field passing through it. Figure 11.6 shows
an arrangement for coherent image processing in the spatial frequency domain.
Lenses L1 and L2, each of focal length f , are kept 2f distance apart. The
coherently illuminated object transparency with amplitude transmission function
f�x′� y′� is kept in the front focal plane of lens L1 and the spatial frequency filter
F is introduced in the transform plane.

Assuming lens L1 intercepts all object spatial frequencies, the field distribution
in the transform plane just behind the spatial frequency filter is

E�xf � yf � = − i
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Fig. 11.6: Filtering in the spatial frequency domain; filter F is kept in the
transform plane.

is the complex amplitude transmission coefficient of the filter and
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is the Fourier transform of the object transmission function. The second lens
performs the Fourier transform of E�xf � yf �, yielding the field distribution
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in the image plane.
As first example of filtering, we consider an infinite one-dimensional square

grating (Fig. 11.7a) of grating element a kept in the object plane (plane x′y′

in Fig. 11.6). The infinitely sharp diffraction maxima of an infinite grating are
located in the transform plane at

xf = 
fu = m
f/a� m = 0�±1�±2�    � (11.46)
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Fig. 11.7: (a) One-dimensional square grating of grating element a kept in object
plane. (b) Intensity distribution in image plane when spatial frequency filter
transmits only m = ±1 diffraction orders. (c) Intensity distribution in image
plane when filter transmits m = 0�±1 diffraction orders.

If the spatial frequency filter blocks all except the zero-order diffraction maxi-
mum, i.e., if

F

(
xf


f
�

yf


f

)
H

(
xf


f
�

yf


f

)
= 	

(
xf


f

)
� (11.47)

then Eq. (11.45) yields uniform illumination in the image plane. If on the other
hand, the filter stops all except the m = ±1 diffraction orders, the intensity
distribution

I�x′′� y′′� = C1 cos2

(
2�

a
x′′
)

(11.48)

in the image plane displays twice the periodicity of the grating (Fig. 11.7b),
where C1 is a constant. A filter with
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transmits only the m = 0, ±1 diffraction orders producing the intensity
distribution

I�x′′� y′′� = C2

(
1+2 cos

2�

a
x′′
)2

(11.50)

in the image plane (Fig. 11.7c), where C2 is a constant. This distribution possesses
the period of the grating, but is otherwise a poor representation of the grating
profile. In particular, the sharp edges of the grating are missing. The sharpness of
the edges can be restored if the filter lets higher spatial frequencies to also pass
through. In short, we have demonstrated how an appropriately synthesized spatial
frequency filter can manipulate the intensity distribution in the image plane. Note
that in the configuration of Fig. 11.6, at least the m = 0 and m = ±1 diffraction
orders of the grating must pass through the optical system if the image has to
have any resemblance to the grating. We shall return to these considerations
when we discuss the resolution of a microscope, later in the chapter.

We next consider a transparency representing a two-dimensional mesh
(Fig. 11.8a) in the input plane and a horizontal slit (Fig. 11.8b) of appropriate
width in the transform plane. The horizontal slit blocks all spatial frequencies
lying outside its clear portion. The image plane shows only the vertical lines of
the mesh (Fig. 11.8c), because the spatial frequencies representing the vertical
lines in the mesh overlap with the clear portion of the slit. A rotation of the slit
by 90
 about the optical axis will display only the horizontal lines in the image
plane. These are the kind of image-processing experiments, first conducted by
AB Porter and Ernst Abbe.

Another interesting application of spatial frequency filtering is the conver-
sion of half-tone images to continuous images. The newspapers carry half-tone
pictures. A black and white photograph has different levels of gray – varying
from pitch dark (hair) to fair (skin). These levels of gray cannot as such be

(a) (b) (c)

Fig. 11.8: (a) Transparency representing a two-dimensional mesh kept in the
object plane. (b) A horizontal slit kept in the transform plane. (c) Only vertical
lines of the mesh appear in the image plane.
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reproduced on a white paper with black ink. A half-tone picture, prepared from
the negative by a special half-tone screen printing process, consists of an array
of dots of varying sizes on a white paper. It is the size variation of the dots, and
not the dots themselves which carry image information. The dots are larger and
more overlapping over the dark portions as compared to the less dark portions
of the picture. This effectively creates the illusion of levels of gray. A look
at a newspaper picture will reveal the presence of these dots. A filter can be
designed to remove the higher spatial frequencies representing diffraction from
the network of dots of a half-tone picture, leaving behind low spatial frequencies
which display varying opaqueness of the black and white negative.

11.3.1.1 Low Pass Filter to remove Laser Beam Distortion

A laser oscillating in the TEM00 mode produces light with a Gaussian beam
profile. However, dust particles on the optical elements diffract the laser beam,
distorting its profile as it propagates. The distorted beam profile may not be
acceptable in certain applications, holography to name one. Diffraction from
the dust particles generates high spatial frequencies which travel with relatively
large inclinations to the optical axis. Since the transform of a Gaussian function
is a Gaussian function, the TEM00 mode itself occupies a position around and
very close to the optical axis in the transform plane, and the off-axis spatial
frequencies representing the beam distortion can be removed by a low pass filter.
Figure 11.9 shows schematically the arrangement for cleaning the laser beam. A
short focal length (40×) microscope objective (MO) may be employed for this
purpose. The spatial frequency filter, essentially an opaque plate with a central
hole of suitable size, can be positioned in the transform plane with accurate
position translators to allow only the low spatial frequencies to pass through
the hole. A second lens (L) collects and collimates the clean laser beam. This

f f21

Pinhole LMO

Fig. 11.9: Cleaning laser beam with a pinhole.
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arrangement constitutes a beam expander since it gives a clean and expanded
laser beam with f2/f1 as the beam expansion ratio.

11.3.1.2 High Pass Filter for Dark Ground Imaging

As mentioned earlier, the zero spatial frequency if present alone produces uniform
illumination in the image plane. Its removal by a spatial frequency filter provides
a dark background in which higher spatial frequencies interfere and produce the
image of the object. The dark background techniques are particularly useful for
imaging phase objects, as we shall see in the next section. Figure 11.10 shows
photographs of a resolution test target before and after filtering the zero spatial
frequency. The dark background is clearly visible in Fig. 11.10b.

A dark point or a dark region near the edge of an aperture or an obstacle
in an image is dark because all diffracted waves including the zero spatial
frequency wave interfere to produce net zero field at that point or in that region.
A small object diffracts strongly and a large object diffracts poorly. We may
interpret that a dark point in the neighborhood of a small object (a thin line,
for example, in Fig. 11.10a) is dark because the zero spatial frequency wave
interferes destructively with the resultant of the higher spatial frequencies waves
to produce a null field at that point. On removal of the zero spatial frequency,
the point is rendered bright. This explains the contrast reversal in Fig. 11.10b
for the narrow lines. Diffraction by large objects is confined to regions very
close to the edges and hence the contrast reversal is discernible only near the
edges of the block and wider lines of the target. The zero spatial frequency can
be removed by inserting a transparent plate with an opaque spot of appropriate
size at the position of the zero spatial frequency in the transform plane. This is
an example of an extreme case of high pass spatial frequency filtering in which
all object spatial frequencies, except the lowest one are transmitted by the filter.
High pass filters are useful for edge enhancement in images.

11.3.2 Filters for Imaging Phase Objects

Biological samples, being transparent to visible light, are often difficult to exam-
ine under a microscope. They introduce little amplitude modulation, resulting
in nearly uniform intensity distribution in the image plane. Small differential
phase changes occur in the transmitted light due to a small difference in the
indices of refraction of the sample tissue and the accompanying fluid, or due to
small changes in the thickness of the sample. The phase object remains invisible
to the eye since eye is insensitive to phase changes of the light field. Several
techniques exist to see the phase objects. Chemical staining makes them differ-
entially absorbing and hence visible but in the process, the active cells of the
tissue may get damaged. In the dark background illumination technique discussed
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(a)

(b)

Fig. 11.10: Resolution test target (a) before, (b) after zero spatial frequency
filtering – taken from Optical Transforms, Ed., H. Lipson, p. 282, Courtesy
B. J. Thompson and Academic Press.

in the preceding section, the zero spatial frequency being the strongest wave
coming out of the sample is removed. This results in considerably improved
image contrast. Similarly, in the Schlieren method, half of the transform plane
(excluding the zero spatial frequency) is blocked by a knife edge. This produces
intensity variation in the image plane which depends on the rate of change of
phase with the thickness of the sample. In phase contrast microscopy, first pro-
posed by Frits Zernike in 1935, the zero spatial frequency is not removed, but
its phase is retarded by �/2 or 3�/2 with respect to the phases of the higher
spatial frequencies. As we shall see shortly, it then becomes possible for the
zero spatial frequency to interfere with the higher spatial frequencies, giving
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rise to amplitude variation of the light field in the image plane. The amplitude
transmission function of a phase object can be written as

f�x′� y′� = ei��0−���x′�y′��� (11.51)

where the average phase change �0 over the sample may be ignored. The
differential phase change �� depending on thickness variation of the phase
object is usually much smaller than a radian, in which case, Eq. (11.51) can be
approximated to

f�x′� y′� = 1− i���x′� y′�� (11.52)

where

���x′� y′� = �n−1��d�x′� y′� (11.53)

and �d�x′� y′� is the point-to-point deviation of sample thickness from the aver-
age thickness, and n is the index of refraction of the sample. The unit term in
Eq. (11.52) gives rise to the zero spatial frequency and all higher spatial frequen-
cies are generated by the second term. The higher spatial frequencies differ in
phase by 90
 from the zero spatial frequency. The Fourier transform operation
being linear maintains this phase relationship. As a result, no interference takes
place between the zero and higher spatial frequencies when brought together in
the image plane. The transform of Eq. (11.52) gives

F�u� v� =
�∫ ∫

−�
�1− i���x′� y′��e−i2��ux′+vy′�dx′ dy′

= 	�u� v�− i� ����x′� y′���

(11.54)

where � ����x′� y′�� is the Fourier transform of ���x′� y′�. The field distribution
in the image plane after removing the zero spatial frequency is

E�x′′� y′′� = �−i�� �� ����x′� y′���

= C��

(
x′′ = x′

m
�y′′ = y′

m

)
�

(11.55)

where C is a complex constant. For m = −1, the intensity variation

I�x′′� y′′� = I0����x′′ = −x′� y′′ = −y��2 (11.56)

proportional to the square of the phase change produced by the phase object
can be observed in the dark background of the image plane. The image contrast
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can be improved if the zero spatial frequency is not removed, but its phase
and amplitude are suitably modified. A 90
 phase retardation of the zero spatial
frequency can be introduced by making the spatial frequency filter thicker by

/4 at the center. The otherwise transparent filter can also be made somewhat
absorbing for the zero spatial frequency. With these modifications, the field
distribution in the transform plane can be written as

F�u� v�H�u� v� = i�	�u� v�− i

�∫ ∫

−�
���x′� y′�e−i2��ux′+vy′�dx′dy′� (11.57)

The field and intensity distributions in the image plane then become

E�x′′� y′′� = C��−���x′′ = −x′� y′′ = −y�� (11.58)

and

I�x′′� y′′� = I0��−���x′′ = −x′� y′′ = −y��2� (11.59)

respectively, where � is the amplitude transmission coefficient of the filter for
the zero spatial frequency. By choosing � ≈ �� in magnitude, the normalized
intensity distribution in the image plane can be made to vary from zero to a
maximum of 4�2, improving image contrast considerably.

11.3.3 Complex Filter

The filter considered in the preceding section to image phase objects by modify-
ing the amplitude and phase of the zero spatial frequency is in fact an example
of a complex filter with amplitude transmittance
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f

)
= � ei�/2 for zero spatial frequency

= 1 for higher spatial frequencies.
(11.60)

This filter action was realized by controlling the thickness and absorption coeffi-
cient of the filter for the zero spatial frequency. This procedure is obviously too
cumbersome if modification of the amplitudes and phases of many or all spatial
frequencies is contemplated. We now describe interferometric techniques to syn-
thesize complex filters. Vander Lugt was the first to propose and fabricate such
filters. Figure 11.11 shows how Mach-Zehnder and Rayleigh interferometers can
be used for this purpose.

In the Mach-Zehnder arrangement (Fig. 11.11a), a collimated beam from the
point source S is split by the beam splitter BS1. One beam passes through mask P
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Fig. 11.11: (a) Mach-Zehnder interferometer. (b) Rayleigh interferometer to
synthesize complex spatial frequency filters. F is the photographic plate.

which has the desired impulse response for the synthesis of the spatial frequency
filter. Lens L2 generates in its back focal plane the Fourier transform of the field
distribution over mask P. Mirror M2 in the second arm of the interferometer is
adjusted so that light from this arm arrives at the back focal plane of L2 in the
form of a plane wave making an angle (90 + �) with the xf -axis. This is the
reference wave or the carrier wave which interferes with the light arriving from
mask P. The photographic plate F kept in the back focal plane of L2 records this
interference pattern.

The field and intensity distributions in the plane of the photographic plate F are
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)
(11.61)
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respectively, where A1 and A2 are the complex amplitudes of the light waves in
the two arms of the interferometer and
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is the Fourier transform of the amplitude transmittance of mask P. The photo-
graphic plate, after development, when kept in the transform plane of Fig. 11.6
acts as the complex spatial frequency filter with the amplitude transmittance
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(11.64)

where t0 is the constant of proportionality. The exposure of the photographic
film has been assumed to lie on the linear portion of the amplitude transmittance
versus exposure curve (Fig. 11.12). Equation (11.64) contains one term which
is proportional to the Fourier transform of the mask transmittance s�x′� y′� and
another term which is proportional to its complex conjugate. Any desired change
in the amplitude and phase of the field distribution behind the filter can be
achieved by a judicious choice of the parameters A1, A2, and �. In the above
procedure, the complex spatial frequency filter is fabricated by keeping a suitable
mask in the spatial domain, and not in the spatial frequency domain.

The field distribution just behind the filter when kept in the transform plane
(Fig. 11.6), obtained from Eq. (11.42), is

E�xf � yf � = CF

(
xf


f
�

yf


f

)
H

(
xf


f
�

yf


f

)
� (11.65)
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1E E2 E

T

Fig. 11.12: T–E curve of a developed photographic plate; T is its amplitude
transmittance and E is product of exposure intensity and exposure time. Between
E1 and E2, transmittance varies nearly linearly with E.

where F�
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f
� is the Fourier transform of the object transparency (Eq. 11.44),

C is a complex constant, and H�
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f
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� is the amplitude transmittance of the

spatial frequency filter. The filtered field distribution in the image plane obtained
by Fourier transforming Eq. (11.65) is
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where C0 is a suitable complex constant. The first term in Eq. (11.66), being
proportional to the Fourier transform of the Fourier transform of the object



11.3: COHERENT IMAGE PROCESSING 485

transmission function, reproduces the object transmission function in the image
plane:

�

[
F

(
xf


f
�

yf


f

)]
= �� �f�x′� y′�� = f�x′′ = −x′� y′′ = −y′�� (11.67a)

This term will be centered on the optical axis in the image plane if f�x′� y′� is
centered on the optical axis in the object plane. The second term is also centered
on the optical axis since �S�
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��2 has no phase variation over the transform

plane. It can be shown to be proportional to the convolution function
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These terms are not of much interest for optical processing applications. They
represent zero-order diffractions. The third term can be evaluated with the help
of the convolution theorem (Eq. 9.57), giving
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This term is proportional to the convolution of f�x� y� and s�x� y� and is centered
at the off-axis point �x′′ = f sin �, y′′ = 0� in the image plane. Similarly, it can
be shown that the fourth term

�

[
F

(
xf


f
�

yf


f

)
S∗
(

xf


f
�

yf


f

)
e−i2�

xf

f f sin �

]

=
�∫ ∫

−�
f�x′� y′�s∗�x′ +x′′ +f sin �� y′ +y′′�dx′dy′ (11.67d)

is proportional to the crosscorrelation of f�x� y� with s�x� y� and is centered at
the off-axis point �x′′ = −f sin �, y′′ = 0� in the image plane. Thus, the field
distribution in the image plane is confined to three non-overlapping regions if
the carrier spatial frequency sin �/
 is sufficiently high. The first two terms
(Eqs. 11.67a, b) occupy the central portion of the image plane. The second
term is more spread out than the first since it involves the convolution of three
functions. The third term representing the convolution function (Eq. 11.67c) lies
above the optical axis for the geometry of Fig. 11.11a. The crosscorrelation
term (Eq. 11.67d) lies below the optical axis. This is shown in Fig. 11.13. The
Rayleigh interferometric scheme (Fig. 11.11b) for the synthesis of a complex
spatial frequency filter can be analyzed in a similar manner.

f sinθ
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x"

1

3

2

4

O"

Fig. 11.13: Field distribution in the image plane after filtering by a complex
spatial frequency filter.
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11.3.4 Matched Filter

A spatial frequency filter is said to be matched to an input signal s�x� y� if its
transmittance is proportional to the complex conjugate of the Fourier transform
of the signal, i.e., if
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where C ′ is a constant and S�
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f
�

yf


f
� is the Fourier transform of s�x� y�. A

matched filter can help identify a given signal when it appears along with
other spatially non-overlapping signals in the input plane. The matched filter
is particularly useful to optimize the signal-to-noise ratio when the signal is
accompanied with random noise. Let

f�x′� y′� = s�x′� y′�+n�x′� y′� (11.69)

be the amplitude transmission function of the input transparency in Fig. (11.6),
where s�x′� y′� is the desired signal and n�x′� y′� is some other signal or simply
the noise. On placing a filter matched to the signal s�x′� y′� in the transform
plane, the field generated just behind the filter is
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The first term in Eq. (11.70) may show amplitude variation but no phase vari-
ation in the Fourier transform plane. It represents a plane wave with weighted
amplitude. The second lens (Fig. 11.6) sharply focuses this term as a bright spot
in the image plane. Of course, the bright spot is not the image of s�x′� y′� since
the field distribution in the transform plane is no longer described by S�

xf


f
�

yf


f
�.

The phase of N�
xf


f
�

yf


f
� in the second term of Eq. (11.70) is not annulled by

the filter. As a result, this term appears distributed in the image plane. Thus, a
particular signal can be distinguished from other signals by the appearance of a
bright spot in the image plane when a filter matched to it is kept in the transform
plane.
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The field distribution in the image plane, obtained by taking the Fourier
transform of Eq. (11.70), is
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Using the correlation theorems, this distribution can be expressed as

E�x′′� y′′� =C ′
�∫ ∫

−�
s�x′� y′�s∗�x′ −x′′� y′ −y′′�dx′dy′

+C ′
�∫ ∫

−�
n�x′� y′�s∗�x′ −x′′� y′ −y′′�dx′dy′�

(11.72)

The first term represents the autocorrelation of the signal and second term is the
crosscorrelation of the signal with the unwanted signal. The latter term will be
particularly small if n�x′� y′� represents random noise.

11.4 COHERENT OPTICAL PROCESSING

We have seen that a matched filter kept in the transform plane of a coherent
image processing setup can pick up a particular signal from other spatially non-
overlapping signals. This signal can be in the form of a character, a signature,
a photograph, or a pattern in a transparency kept in the input plane. As specific
examples, we may want to know how many times a particular alphabet or a
particular word appears in a certain composition, or we may be interested in
matching a photograph or a signature in a police department or in a bank where
a huge database exists. In character recognition, one has to make matched filters
for all characters, and in a bank or in a police department for all signatures
and photographs which may exist in the database. The identification of the
desired signal is accomplished by inserting the signal to be matched in the
input plane and the matched filters, sequentially, in the transform plane. For the
unmatched filters, crosscorrelation signals are observed in the image plane but
for the matched filter, the autocorrelation of the actual signal appears as a bright
spot in the image plane. Schwarz’ inequality requires the autocorrelation of a
function to always exceed its crosscorrelation with a different function. There
may be difficulties in matching a filter if the input transparency has different
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magnification or different orientation with respect to the input for which the
matched filter was prepared.

11.5 INCOHERENT IMAGE FORMATION

The discussion so far has been restricted to coherent image formation and pro-
cessing since a monochromatic plane wave has been used for object illumination.
Light sources being partially coherent, monochromatic object illumination must
be replaced by quasi-monochromatic illumination (refer to Chapter 2). We now
extend this discussion to image formation and processing with spatially inco-
herent light. We shall not digress on the merits and demerits of the coherent
and incoherent imaging schemes, except to mention that an image formed by
incoherent light is devoid of any speckle noise, often accompanied in coherent
imaging. A linear relationship between the input and output field distributions
exists for coherent imaging, but for incoherent imaging, it is the output inten-
sity distribution which is linearly dependent on the input intensity distribution.
Completely (spatially) incoherent light fields satisfy the condition

�E�x1� y1� t�E∗�x2� y2� t� = �E�x1� y1��2	�x2 −x1� y2 −y1�� (11.73)

where the symbol �  indicates time averaging. Therefore, for incoherent object
illumination, Eq. (11.39) for the time averaged intensity distribution in the image
plane gets modified to
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where the object transparency is assumed to be normally illuminated with inco-
herent light of uniform intensity I0, and fO�x� y� is the amplitude transmission
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function of the object transparency. Thus for incoherent object illumination, the
intensity distribution in the image plane is the convolution of the intensity dis-
tribution in the object plane with the square modulus of the coherent impulse
response function of the optical system.

11.6 INCOHERENT OPTICAL PROCESSING

We illustrate incoherent optical processing by evaluating the integral of the
product of two functions:

I1 =
�∫ ∫

−�
f1�x� y�f2�x� y�dx dy� (11.75)

For the procedure to succeed, the functions f1�x� y� and f2�x� y� be transferable
to object transparencies. Figure 11.14 shows schematically an incoherent optical
processing setup, where S is an extended quasi-monochromatic light source.
Relevance of the transform plane is lost in incoherent optical processing.

Let the intensity transmittances T1�x� y� and T2�x� y� of transparencies T1 and
T2 represent the functions f1�x� y� and f2�x� y�, respectively. The transparency
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Fig. 11.14: Incoherent optical processing configuration to obtain integral of the
product of two functions. S is an extended source.
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T1 is kept in the input plane P1 with inverted orientation. It is illuminated
incoherently but uniformly so that the intensity distribution in plane P1 is

T1�x
′� y′�I0 = I0f1�−x′�−y′�� (11.76)

The second transparency with intensity transmittance

T2�x� y� = f2�x� y� (11.77)

is kept in plane P2. The intensity distribution just behind the second transparency
is

I�x� y� = I0�f1�−x�−y�∗ �h�x� y��2�f2�x� y�� (11.78)

where h�x� y� is the coherent impulse response function of the optical system
between the planes P1 and P2. The impulse response function h�x� y� approaches
Dirac’s delta function if lens L2 has sufficiently large aperture to intercept
and faithfully transfer all spatial frequencies of the first transparency. For the
configuration of Fig. 11.14, an unmagnified and inverted image of transparency
T1 appears in plane P2. Accordingly, Eq. (11.78) simplifies to

I�x� y� = I0f1�x� y�f2�x� y�� (11.79)

We now see the reason for keeping transparency T1 inverted in plane P1, other-
wise the intensity distribution in plane P2 will be the product f1�−x�−y�f2�x� y�,
and not f1�x� y�f2�x� y�. The intensity distribution, normalized to the input inten-
sity I0, measured with a photodiode just behind the second transparency gives
the product of the functions f1�x� y� and f2�x� y�. Finally, lens L3 produces the
Fourier transform

I�x′′� y′′� = C

�∫ ∫

−�
f1�x� y�f2�x� y�e−i 2�


f �xx′′+yy′′�dx dy (11.80)

of the product f1�x� y�f2�x� y� in plane P3, where C is a suitable constant. The
normalized intensity

In�x
′′ = 0� y′′ = 0� =

�∫ ∫

−�
f1�x� y�f2�x� y�dx dy (11.81)
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at the center of this plane, measured with a photodiode, gives the value of the
integral (Eq. 11.75).

A slight modification of this arrangement, appearing in Fig. 11.15, can obtain
the convolution and correlation between mathematical functions. In this case,
the transparencies T1 and T2 representing the functions f1�x� y� and f2�x� y�,
respectively, are juxtaposed in the front focal plane of lens L2. The intensity
distribution just behind the second transparency is

I�x′� y′� = I0f1�x
′� y′�f2�x

′� y′�� (11.82)

One of the transparencies is mounted on an x–y translator so that its position
with respect to the other can be shifted. The Fourier transform

I�xf � yf � = C

�∫ ∫

−�
f1�x

′� y′�f2�x
′� y′�e−i2��x′xf +y′yf �dx′dy′ (11.83)

of I�x′� y′� is produced by lens L2 in its back focal plane. The intensity at the
point xf = 0, yf = 0 in this plane is

I�0� 0� = C

�∫ ∫

−�
f1�x

′� y′�f2�x
′� y′�dx′dy′� (11.84)
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Fig. 11.15: Incoherent optical processing configuration to determine convolution
and correlation of two functions. S is an extended source.
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As transparency T1 is displaced with respect to T2, the changing intensity at
the origin of the back focal plane of L2 generates the crosscorrelation between
f1�x� y� and f2�x� y�:

I�0� 0� x� y� = C

�∫ ∫

−�
f1�x

′ −x� y′ −y�f2�x
′� y′�dx′dy′� (11.85)

If transparency T1 is inserted in the inverted orientation and moved across the
transparency T2, the convolution

I�0� 0� x� y� = C

�∫ ∫

−�
f1�x−x′� y −y′�f2�x

′� y′�dx′dy′ (11.86)

between f1�x� y� and f2�x� y� is generated at the origin of the back focal plane
of L2.

11.7 RESOLVING POWER OF IMAGE FORMING SYSTEMS

The resolving power of a spectral instrument is defined in terms of its ability
to produce output intensity distribution in which two close-lying spectral lines,
present in the spectrum of the source, appear well separated or resolved. It
is implied that light fields belonging to different spectral lines are mutually
incoherent. Rayleigh criterion was employed to define the resolving power of a
grating instrument (Section 10.5.3) and a somewhat different criterion was used
in the context of a Fabry–Perot interferometer (Section 6.6.4). The resolving
power of an image-forming system is its ability to resolve images of close lying
objects. As mentioned earlier, it is the finite spread of the impulse response
function of an imaging system which limits its resolution (refer to the discussion
following Eq. 11.38).

11.7.1 Incoherent Object Illumination

We first consider the resolving power of an image-forming system such as a
telescope or a microscope when the object under examination is either self-
luminous or incoherently illuminated. This discussion applies to telescopes in
general, but to microscopes only under restricted conditions of object illumina-
tion, as for example when an object is observed with a microscope in fluorescent
light. Rayleigh criterion can define the resolving power of an image-forming
system provided the object illumination is quasi-monochromatic and spatially
incoherent. The circular aperture of the exit pupil of an optical system produces,
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for each point of the object, an Airy pattern in the image plane (Section 11.2).
For two point objects to be resolved, their Airy disks must not overlap. From
Eq. (10.47b), the angular radius of the Airy disk, for small angles, is

�0 ≈ sin �0 = 1�22



d
� (11.87)

where d is the diameter of the aperture.
A telescope can resolve two point objects if their angular separation ���� is
larger than the angular radius of the Airy disk of either of the objects (Fig. 11.16),
i.e., if

�� ≥ �0� (11.88)

The minimum angular separation (angular limit of resolution) of the objects
which can be resolved by a telescope is

����min = �0 = 1�22



d
� (11.89)

where d may be taken as the diameter of the objective of the telescope.
Equation (11.89) can be combined with Abbe sine condition (Eq. 5.21) to

obtain the linear resolution limit of a microscope with incoherent object illu-
mination. Figure 11.17 shows the marginal rays between the object and image
planes of lens L, satisfying the sine condition

n0y0 sin �0 = ny sin �� (11.90)

where y is the image separation of the point objects, a distance y0 apart in the
object plane; n0 and n are the indices of refraction in the object and image
spaces, respectively.

θΔ θ0

L

1

2

Fig. 11.16: Resolution of a telescope; L is its objective. At the limit of resolution,
angular separation between point objects equals angular radius of Airy disk of
either of the objects.
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Fig. 11.17: Resolution limit of a microscope under incoherent illumination of
the object. L is the objective of the microscope.

Assuming lens L to represent the objective of the microscope, the minimum
image separation is given by

ymin = v�0 = 1�22



d
v�

where d is the diameter of the objective of the microscope and v is the distance
of the image plane from the objective of the microscope. With n = 1 and
sin � = d/2v, the sine condition gives

�y0�min = 0�61


n0 sin �0

= 0�61


NA
� (11.91)

where �y0�min is the minimum separation of the point objects which the micro-
scope can resolve. The numerical aperture (NA) of a microscope usually does not
exceed 1.6. For incoherent object illumination, this gives the minimum resolv-
able object separation for a microscope as 190 nm at 
 = 500 nm and 114 nm at

 = 300 nm.

11.7.2 Coherent Object Illumination

In a microscope, a condenser is often used to illuminate the object. A condenser
may be a single lens or a combination of lenses which produces a slightly
defocused image of the light source in the object plane of the microscope.
Points of the object which lie within the Airy disk, produced by diffraction at
the condenser aperture due to a single point of the source, can have a high
degree of spatial coherence. The discussion of the previous section, based on
incoherent illumination of the object, is therefore inadequate in the context of
a microscope. We now consider the resolving power of a microscope under
coherent illumination of the object. Rayleigh criterion of resolution applied to
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the coherent fields (and not to their intensities) produced by the points to be
resolved (Fig. 11.18a) cannot provide an unambiguous definition of the image
resolution since the resultant intensity distribution in the image plane depends
on the phase difference between the fields originating from the two points, in
addition to the separation between the points. If the two fields are in phase,
Rayleigh criterion yields maximum intensity (and not a dip as for incoherent
illumination) at the midpoint since the resultant field is maximum at that point.
As a result, the objects are not resolved (Fig. 11.18b). On the other hand, if
the fields are 180
 out of phase, the resultant field and hence intensity at the
midpoint is minimum and the objects should be resolved (Fig. 11.18c). Needless
to state that under coherent illumination, Rayleigh criterion may not be the
most appropriate criterion for the resolution of a microscope. Sparrow criterion
(Fig. 10.26b) may do a little better, but cannot be entirely satisfactory.

Abbe’s theory of image formation (Section 11.2) can provide a precise cri-
terion for the resolution of a microscope when object illumination is coherent.
We return to our discussion of an infinite square grating of grating element a
kept in the input plane of a coherent image processing system (Section 11.3.1
and Fig. 11.7). We recall that in the configuration of Fig. 11.6, the grating is
illuminated normally by a plane wave. It was mentioned there that at least the
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Fig. 11.18: Rayleigh criterion applied to a microscope when object illumination
is coherent; field distribution in the image plane (a), intensity distribution in the
image plane when point sources are in phase (b) and 180
 out of phase (c).
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m = 0 and m = ±1 diffraction orders of the grating must reach the image plane
for the image to have the periodicity of the grating. Therefore, for a microscope
to resolve two neighboring elements of an infinite square grating, the angle (�0)
subtended by each half of the objective of the microscope in Fig. 11.17 must
satisfy the condition

sin �0 ≥ sin �1 = 


a
� (11.92)

where �1 is the angle at which the first diffraction order of the grating appears.
Therefore, the least distance between two points that a microscope can resolve
(limit of resolution) is

�a�min = 


sin �0

� (11.93)

Equation (11.93) defines the limit of resolution of a microscope when object
illumination is coherent. The resolution limit can be extended somewhat by
realizing that the image of the grating formed by only m = 0 and m = +1 (or
m = −1) orders of diffraction also has the periodicity of the grating. This can
be achieved if the grating is illuminated obliquely so that m = 0 and m = −1
(or m = +1) orders are the only diffraction orders of the grating intercepted by
the objective of the microscope (Fig. 11.19). Equation (10.73a) gives for the
first-order Fraunhofer diffraction,

sin �′′ − sin �′ = 


a
�

’γ

m=0

"

’

G

m = + 1

L

γ
γ

Fig. 11.19: Oblique illumination of the grating G. Only m = 0 and m = +1
diffraction orders of the grating are intercepted by the objective L of the micro-
scope.
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where in the present case, �′′ = −�′ = �0, and Eq. (11.93) is modified to

�a�min = 


2 sin �0

�

Taking into account the index of refraction of the object space, as for example in
the case of an oil-immersion objective (Section 4.3.5), the least distance between
the objects that a microscope can resolve under coherent object illumination is

�a�min = 


2n0 sin �0

= 


2NA
� (11.94)

The improved resolution in comparison to Eq. (11.93) is accompanied by a
reduction in the contrast since the zero- and first-order diffractions have sig-
nificantly different amplitudes. In summary, it can be said that the limits of
resolution of a microscope under coherent and incoherent illuminations of the
object are nearly same.
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11.9 PROBLEMS

11.1 According to Eq. (11.21c), the field distribution in the back focal plane of a lens
is the exact Fourier transform of the object field distribution only if the object lies
in the front focal plane of the lens. Two arrangements shown in Fig. 11.20 can
eliminate the extra phase factor when the object does not lie in the front focal plane
of the lens. Find in each case the focal length of the additional lens. The lenses are
assumed thin and of sufficiently large apertures.
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f1 f2

f1 f2

z = 0 z = z1

z

z

Object plane Back focal plane

Fig. 11.20.

11.2 Consider Fig. 11.20 without the second lens but the object now lies in the front focal
plane of the lens. The intensity distribution in the back focal plane of the lens gives
the Fraunhofer diffraction pattern of the aperture. Suppose we measure the intensity
distributions in planes somewhat displaced from the back focal plane of the lens. For
what maximum range of longitudinal displacements, the intensity distribution is still
an accurate measure of the Fraunhofer diffraction pattern of the aperture?

11.3 Find the impulse response function of a diffraction-limited optical system with
circular exit pupil of radius a.

11.4 An object in the form of a thin square aperture of sides a is kept just in front of
a lens of focal length f (Fig. 11.21). The aperture and lens have a common axis.
The diameter of the lens is larger than the sides of the aperture. The aperture is
illuminated normally by a plane monochromatic wave of wavelength 
. Find the

z = 0 z = f z = 2 f

a
z

a
a

Fig. 11.21.
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field distributions in the back focal plane of the lens and in a plane a distance 2f
behind the lens. How will the results change if the lens aperture is smaller in size
than the square aperture?

11.5 The diameter and focal length of the lens in Fig. 11.4 are 5 and 20 cm, respectively.
Upon illumination of the object with monochromatic light of wavelength 550 nm,
the highest spatial frequency present in the image is 3 lines/mm. Find the highest
object spatial frequency u0 which is able to pass through the optical system.
Assuming that object spatial frequencies higher than u0 exist, what is the effect on
the quality of the image upon

(a) reducing the wavelength of light illuminating the object?
(b) shifting the image plane (accompanied by corresponding shift of the object

plane) closer or farther away from the lens?

11.6 The square aperture of Problem 11.4 is now positioned behind the lens at a
distance z1�z1 < f� as shown in Fig. 11.22. This arrangement may be pre-
ferred for spatial filtering applications. Find and sketch the amplitude of the
field distribution in the back focal plane of the lens of sufficiently large aper-
ture. Focal length of the lens is 50 cm and z1 = 20 cm. Each side of the square
aperture is 1 cm. What is the effect of changing z1 on the size of the Fourier
transform? What value of z1 gives the largest size of the Fourier transform?

y’

x’ x"

z = 0 z = z1

y"y

x

z

z = f

Fig. 11.22.

11.7 A plane wave of amplitude E0 and wave number k propagating along the z-axis is
incident normally on a transparent screen with amplitude transmittance t0, where
t0 is a constant less than one. Use the impulse response function (Eq. 11.9) to
obtain the field distribution in a plane a distance z1 behind the screen. Show that
for a sufficiently large screen, the field distribution in any plane behind the screen,
satisfying the Fresnel approximation (Eq. 11.7), approaches a plane wave.
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11.8 A transparency with amplitude transmittance

t�x� y� = 1
2

�1+ cos 2�l�x2 +y2��

kept in the z = 0 plane is illuminated normally by a plane wave of amplitude E0

and wavelength 
, where l is a positive constant of appropriate dimensions. Find
the field distribution in a plane a distance 1/2
l behind the transparency. Show
that such a transparency acts as a transparent plate, a convex lens, and a concave
lens simultaneously. Find the focal lengths of the corresponding lenses.

11.9 Consider the diffraction-limited single lens imaging system of Fig. 11.23a. The
lens has square cross-section of sides 5 cm and focal length 15 cm. The object is in
the form of a square network of fine dots with inter-dot separations of 1 mm along
the x′ and y′ axes (Fig. 11.23b). The object is illuminated normally with a plane
wave of wavelength 632.8 nm. Obtain the image field distribution and sketch it as
accurately as you can. Be sure to indicate the scales used in the sketches. Will your
sketches change qualitatively if the inter-dot separation is reduced to 0.01 mm?

z = 0

Object
plane

Image
plane

1 mm

1 
m

m

(b)(a)

lens
Square

z = 20 cm

Fig. 11.23.

11.10 Replace the object transparency in Fig. 11.23a by one with the amplitude trans-
mittance

t�x� y� = 1
4

�1+ sin 2�u0x��

where u0 is a positive constant. Find and sketch the amplitude of the image field
distribution.

11.11 The object transparency in the imaging configuration of Fig. 11.23a is replaced
by a square hole of sides 1 cm, symmetrically placed in the object plane. Find
analytically or numerically the field distribution in the image plane.
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11.12 The field distribution in the object plane is described by the sinc function

E�x� = u0 sinc��u0x��

Design a spatial frequency filter of the smallest size which prevents light from
reaching the image plane (Fig. 11.6).

11.13 In the spatial frequency filtering setup of Fig. 11.6, f = 10 cm. A one-dimensional
square grating of grating element a = 5 × 10−4 cm kept in the input plane is
illuminated by a plane wave of wavelength 
 = 500 nm propagating at 30
 to the
optical axis. Design a spatial frequency filter which will block all, except the m = 0
and m = −1 diffraction orders of the grating. Find the intensity distribution in the
image plane. What is the period of this distribution? Assume the aperture of the
lens to be sufficiently large.

11.14 In the coherent image processing setup of Fig. 11.6, the object is a one-dimensional
square grating of grating element a. The zero diffraction order of the grating is
blocked in the transform plane. Find and sketch the intensity distribution in the
image plane. Assume that if the zero order was not blocked, the grating is exactly
reproduced in the image plane.

11.15 The amplitude transmittance of the input transparency in the coherent image-
processing setup of Fig. 11.6 has two localized and non-overlapping functions
f1�x� y� and f2�x� y�. The functions f1�x� y� and f2�x� y� are centered at �x0� y0�
and �−x0�−y0�, respectively, as shown in Fig. 11.24. A spatial frequency filter
with amplitude transmittance

H�u�v� = 1
2

�1+ cos 2��x0u+y0v��

is inserted in the transform plane. Find the field distribution in the image plane.
Has some useful operation been performed in the process?

f1

f2

y’

x’

Fig. 11.24.
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11.16 The impulse response function of an imaging system has the form

h�x� y� = rect
[

x+�x

�x

]
− rect

[
x−�x

�x

]
�

Find image intensity distributions for coherent and incoherent illuminations of an
object transparency with the amplitude transmittance

t�x� y� = rect
[

x+�x

�x

]
+ rect

[
x−�x

�x

]
�

11.17 The Fourier transform of the input function f�x� y� is recorded on a photographic
plate (Fig. 11.25). The photographic plate is developed and its positive transparency
is inserted in the input plane after removing the original transparency. Assuming
the plate has been recorded in the linear portion of the T–E curve of the film
(Fig. 11.12), find and interpret the new field distribution in the transform plane.

Input
plane Transform

    plane

f f

z

Lens

Fig. 11.25.
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C H A P T E R 12

Transfer Functions

12.1 INTRODUCTION

Image formation within the frameworks of geometrical optics and diffraction of
light has been described in earlier chapters. We have also considered the resolving
capability of an image-forming system, but nothing has been said so far about the
quality of the image formed by an optical system. In this chapter, we introduce
the transfer functions which characterize the image-forming quality of an optical
system. In the paraxial approximation, geometrical optics gives a point image of
a point object. Deviations from the paraxial approximation result in degradation
of the quality of an image as discussed in Chapter 5. Diffraction theory, on the
other hand, generates for a point object, the Fraunhofer diffraction pattern of the
aperture of the lens in the image plane of geometrical optics. For an optical system
possessing cylindrical symmetry, the image of a point object is the Airy pattern
consisting of the bright central disk carrying nearly 84% of image irradiance,
surrounded by dark and bright rings. The intensity at the center of the Airy disk
is nearly 57 times the maximum intensity in the surrounding rings. For coherent
illumination of an extended object, the field distribution in the image plane is
the superposition of the field distributions produced by each point of the object.
On the other hand, for spatially incoherent object illumination, the intensity
distribution in the image plane is the superposition of the intensity distributions
produced by each point of the object. The transfer functions should be able to
deal with both modes of object illumination. The ability of an optical system
to resolve two nearby equally intense but mutually incoherent point objects
was described in terms of the Rayleigh criterion of resolution (Section 11.7).
For coherent illumination, this criterion lacks definiteness. Even for incoherent
illumination, Rayleigh criterion is insufficient to evaluate the image-forming
quality of an optical system since it deals with only the radius of the Airy
disk and makes no reference to the image contrast. A slightly defocused image
can transfer a significant fraction of the energy from the central disk to the
surrounding rings accompanied by a substantial change in the image contrast,
but little change in the positions of the rings. The introduction of the Strehl ratio
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was the first step in quantifying the image contrast. Strehl ratio is the ratio of
the intensity at the center of the Airy disk formed by an optical system to the
intensity expected at that point for a diffraction-limited optical system. Strehl
ratio of 0.8 and higher is considered satisfactory. Like the Rayleigh criterion, the
Strehl ratio is also a one-point indicator of the performance of an optical system.
Transfer functions, on the other hand, provide more comprehensive information
on the image-forming quality of an optical system in terms of the system’s
response to the spatial frequency content of the object.

12.2 ISOPLANATISM

For coherent object illumination, the field distribution in the image plane of an
aberration-free lens is given by the convolution integral (Eq. 11.36)

Ei�x
′′� y′′� =

�∫ ∫

−�
E′

o

( ∼
x

m
�

∼
y

m

)
h′�x′′− ∼

x� y′′− ∼
y�d

∼
x d

∼
y� (12.1a)

=E′
o�x

′′� y′′�∗h′�x′′� y′′�� (12.1b)

where

h′�x′′� y′′� =
�∫ ∫

−�
tL��z2

∼
xL��z2

∼
yL�

× e−i2��x′′∼xL+y′′∼yL�d
∼
xL d

∼
yL (12.2)

is the coherent impulse response function of the lens and

E′
o

( ∼
x

m
�

∼
y

m

)
= 1

m
eik�z1+z2�e

ik
2z2

�1− 1
m ��x′′2+y′′2�

Eo�x
′� y′�� (12.3)

where Eo�x
′� y′� is the object field distribution; z1� z2 are the object and image dis-

tances from the lens, and m = −z2/z1 is the image magnification. The variables
∼
xL,

∼
yL,

∼
x, and

∼
y are as defined in Eqs (11.32) and (11.35) and tL��z2

∼
xL��z2

∼
yL�

is the aperture function of the lens or of the exit pupil of the optical system. The
intensity distribution in the image plane for coherent illumination of the object is

Icoh
i �x′′� y′′� =

(
1
2

�0c

)
�

�∫ ∫

−�
E′

o

( ∼
x

m
�

∼
y

m

)
h′�x′′− ∼

x� y′′− ∼
y�d

∼
x d

∼
y �2� (12.4)
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The impulse response function h′�x′′− ∼
x� y′′− ∼

y� is assumed to be spatially
invariant, implying thereby, that the field at an arbitrary point �x′′� y′′� in the
image plane does not depend on its absolute position in this plane, but on
its displacement �x′′ − mx′� y′′ − my′� from the paraxial image of the source
point �x′� y′�. Consequently, the field distributions in the image plane produced
by two identical point sources in the object plane with position coordinates
�x′

1� y′
1� and �x′

2� y′
2� are identical, except for the spatial shift 	
x′′ = m�x′

2 −x′
1�,


y′′ = m�y′
2 −y′

1��. This is the condition of isoplanatism. In practice, the spatial
invariance of the impulse response function h′�x′′− ∼

x� y′′− ∼
y� of an optical

system is satisfied over small regions of the object plane called the isoplanatism
patches. The aberrations over an isoplanatism patch are stationary with respect
to displacements within the patch.

12.3 COHERENT TRANSFER FUNCTION

For coherent object illumination, Eqs (12.1) establish a linear input–output rela-
tionship for the optical system. This relationship becomes more transparent when
expressed in terms of the spatial frequencies of the input and output field distri-
butions. The spatial frequency spectra of the object and image field distributions
are

�o�u� v� =
�∫ ∫

−�
E′

o

( ∼
x

m
�

∼
y

m

)
e−i2��u

∼
x+v

∼
y�d

∼
x d

∼
y (12.5)

and

�i�u� v� =
�∫ ∫

−�
Ei�x

′′� y′′�e−i2��ux′′+vy′′�dx′′ dy′′� (12.6)

respectively, where u = x/�z1, v = y/�z1 for the object field and u = x/�z2,
v = y/�z2 for the image field distributions (Fig. 11.4); �x� y� being the coordinate
of a point in the plane of the lens aperture. Application of the convolution
theorem (Eq. 9.57) to the Fourier transform of Eq. (12.1) yields

�i�u� v� = g�u� v��o�u� v�� (12.7)

where

g�u� v� =
�∫ ∫

−�
h′�x′′� y′′�e−i2��ux′′+vy′′�dx′′ dy′′ (12.8)
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is the Fourier transform of the space invariant impulse response function of
the optical system. The function g�u� v�, called the coherent transfer function,
relates the complex amplitudes of the spatial frequencies in the object and
image field distributions. If g�u� v� = 1 for all u and v, the optical system
transfers all object spatial frequencies to the image plane with no change in
their amplitudes and phases. The spatial frequency spectrum of the image field
distribution differs from that of the object field distribution if g�u� v� deviates
from unity in magnitude or in phase or in both. Substitution of Eq. (12.2) into
Eq. (12.8) gives

g�u� v� =
�∫ ∫

−�
d

∼
xL d

∼
yL tL��z2

∼
xL��z2

∼
yL�	

�∫ ∫

−�
e−i2�x′′�u+∼

xL�

× e−i2�y′′�v+∼
yL� dx′′dy′′� (12.9a)

=
�∫ ∫

−�
d

∼
xL d

∼
yL tL��z2

∼
xL��z2

∼
yL���u+ ∼

xL���v+ ∼
yL�

= tL�−�z2u�−�z2v�� (12.9b)

Therefore, the coherent transfer function (CTF) of an optical system is simply
its exit pupil function with position variables x, y replaced by �−�z2u� and
�−�z2v�, respectively. The negative sign in the argument is not always important
since the pupil function usually has a value of 1 or 0.

The pupil functions for circular and rectangular apertures are

tL�x� y� = circ

(√
x2 +y2

D/2

)
(12.10a)

and

tL�x� y� = rect
(x

a

)
rect

(y

b

)
� (12.10b)

respectively, where D is the diameter of the circular aperture and a and b are
the sides of the rectangular aperture. The coherent transfer functions of optical
systems with circular and rectangular apertures are

g�u� v� = circ

[√
u2 +v2

D/�2�z2�

]

= circ

[√
u2 +v2

u0

] (12.11a)
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and

g�u� v� = rect
(

u

a/��z2�

)
rect

(
v

b/��z2�

)

= rect
(

u

2u0

)
rect

(
v

2v0

)
�

(12.11b)

respectively, where for the circular aperture, u0 = D/2�z2 and for the rectan-
gular aperture, u0 = a/2�z2 and v0 = b/2�z2. The coherent transfer functions
for aberration-free lenses with circular and rectangular apertures are shown in
Fig. 12.1. The cutoff spatial frequencies for the circular aperture in any direction
in the spatial frequency plane (Fig. 12.1a), expressed in terms of the image and
object spatial frequencies, are

ui
0 = D

2�z2

� uo
0 = D

2�z1

� (12.12)

respectively. The corresponding cutoff spatial frequencies for the rectangular
aperture along u and v directions (Fig. 12.1b) are

ui
0 = a

2�z2

� vi
0 = b

2�z2

(12.13a)

0−u

g( ,   )vu

(b)

1

u

v

(a)

v

u

g( )

0−v
0u0u0u

0v

v

1

u,  

Fig. 12.1: Coherent transfer functions of aberration-free lenses (a) circular cross-
section, (b) rectangular cross-section.
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and

uo
0 = a

2�z1

� vo
0 = b

2�z1

� (12.13b)

respectively, where

uo
0

ui
0

= vo
0

vi
0

= z2

z1

= −m�

12.4 OPTICAL TRANSFER FUNCTION

For incoherent object illumination, the interference terms in Eq. (12.4) van-
ish, resulting in a linear relationship between the image and object intensity
distributions (Eq. 11.74), i.e.,

I incoh
i �x′′� y′′� =

�∫ ∫

−�
I ′

o

( ∼
x

m
�

∼
y

m

)
�h′�x′′− ∼

x� y′′− ∼
y��2d

∼
x d

∼
y (12.14a)

= I ′
o

(
x′′

m
�

y′′

m

)
∗ �h′�x′′� y′′��2� (12.14b)

The square modulus of the impulse response function ��h′�x′′− ∼
x� y′′− ∼

y��2� is
called the point spread function (PSF) of the optical system. Taking the Fourier
transform of Eq. (12.14) and making use of the convolution theorem, the analog
of Eq. (12.7) for incoherent object illumination is obtained as

Fi�u� v� = G�u�v�Fo�u� v�� (12.15)

where

Fo�u� v� =

�∫ ∫
−�

I ′
o

( ∼
x

m
�

∼
y

m

)
e−i2��u

∼
x+v

∼
y�d

∼
x d

∼
y

�∫ ∫
−�

I ′
o

( ∼
x

m
�

∼
y

m

)
d

∼
x d

∼
y

� (12.16a)

Fi�u� v� =

�∫ ∫
−�

I incoh
i �x′′� y′′�e−i2��ux′′+vy′′�dx′′dy′′

�∫ ∫
−�

I incoh
i �x′′� y′′� dx′′ dy′′

(12.16b)
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and

G�u�v� =

�∫ ∫
−�

�h′�x′′� y′′��2 e−i2��ux′′+vy′′�dx′′dy′′

�∫ ∫
−�

�h′�x′′� y′′��2 dx′′dy′′
(12.16c)

are the normalized Fourier transforms of the object intensity distribution, the
image intensity distribution, and the square modulus of the coherent impulse
response function of the optical system, respectively. The function G�u�v� is
the incoherent transfer function known as the optical transfer function (OTF). In
general, the OTF is complex, modifying the amplitudes and phases of the object
spatial frequencies passing through the optical system. We can express

G�u�v� = �G�u�v��ei�u�v�

= M�u�v�ei�u�v��
(12.17)

where M�u�v�, representing the magnitude of the optical transfer function, is
called the modulation transfer function (MTF) and the phase factor ei�u�v� is
called the phase transfer function (PTF).

Autocorrelation theorem can be used to relate the coherent and incoherent
transfer functions. With Eq. (9.73), the optical transfer function (Eq. 12.16c) can
be expressed as

G�u�v� =

�∫ ∫
−�

g�����g∗�� −u��−v� d� d�

�∫ ∫
−�

�g������2 d� d�

� (12.18)

The change of variables

� → � + u

2
� � → �+ v

2
� (12.19)

puts the autocorrelation integral in the symmetric form

G�u�v� =

�∫ ∫
−�

g�� + u
2 ��+ v

2 �g∗�� − u
2 ��− v

2 � d� d �

�∫ ∫
−�

�g������2 d� d�

� (12.20)
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This is the desired result connecting the coherent and incoherent transfer func-
tions. Identifying the coherent transfer function with the lens aperture function
(Eq. 12.9), Eq. (12.20) takes the form

G�u�v� =

�∫ ∫
−�

tL�� − �
2 z2u��− �

2 z2v�t∗
L�� + �

2 z2u��+ �
2 z2v� d� d�

�∫ ∫
−�

�tL������2 d� d�

� (12.21)

The autocorrelation integral in the numerator represents the area of overlap of
two identical but displaced apertures with centers at �− 1

2 �z2u, − 1
2 �z2v� and

� 1
2 �z2u, 1

2 �z2v�. The denominator of Eq. (12.21) gives the overlap area when the
centers of the apertures coincide. The optical transfer function G�u�v� possesses
the following properties:

G�0� 0� = 1� (12.22a)

G�−u�−v� = G∗�u� v�� (12.22b)

�G�u�v�� ≤ �G�0� 0��� (12.22c)

The last property follows from the Schwarz’ inequality (page 99).

12.5 OTF OF A DIFFRACTION-LIMITED OPTICAL SYSTEM

Consider an aberration-free, centered optical system with exit pupil of unit radius
and aperture function

tL����� = 1 for
√

�2 +�2 ≤ 1

= 0 otherwise�
(12.23)

Direct evaluation of the correlation integral in Eq. (12.21) for this aperture
function is not difficult, but here we find its value from the area of overlap of
the displaced apertures. From Fig. 12.2a, this displacement is

OO′ = 	�OP�2 + �PO′�2�1/2

= �z2�u
2 +v2�1/2�

(12.24)

The displacement OO′ can be in any direction in the plane of the aperture.
However, without loss of generality, we take the centers of the apertures to be



12.5: OTF OF A DIFFRACTION-LIMITED OPTICAL SYSTEM 513

O’

O’

 
2
  )vz2

η

ξ

(b)

O
θ

P

η

ξ

(a)

O

 − λ z  2 )2
u
2

v
2

O ( ,

O (  z2 u , λ λ
2

’

O ( − λ z2 u ,0
2

)
O’(  z2 u ,0 λ

2
)

−λ z

Fig. 12.2: Autocorrelation of a circular aperture. (a) Displacement in arbitrary
direction. (b) Displacement along one of the axes.

displaced along the �-axis. The area of overlap of the displaced apertures is four
times the shaded area in Fig. (12.2b), giving

�∫ ∫

−�
tL

(
� − �

2
z2u��− �

2
z2v

)
t∗
L

(
� + �

2
z2u��+ �

2
z2v

)
d� d�

= 4

[
�

2
− �

4
z2u

(
1− �2

4
z2

2u
2

)1/2
]

�

(12.25)

The normalization integral in the denominator of Eq. (12.21) equals �. Therefore,

G�u� 0� = 2
�

⎡
⎣cos−1

(
u

2u0

)
− u

2u0

√
1−

(
u

2u0

)2
⎤
⎦

for −2u0 ≤ u ≤ 2u0

=0 otherwise�

(12.26)

where, as defined earlier,

u0 = 1
�z2

for
D

2
= 1

= D/2
�z2

for
D

2

= 1�

(12.27)



514 Chapter 12: TRANSFER FUNCTIONS

The general form of the OTF can be recovered by replacing u by �u2 +v2�1/2 in
Eq. (12.26), so that

G�u�v� = 2

�

[
cos−1

(√
u2 +v2

2u0

)
−

√
u2 +v2

2u0

(
1− u2 +v2

4u2
0

)1/2
]

for −2u0 ≤
√

u2 +v2 ≤ 2u0

=0 otherwise� (12.28)

The coherent transfer function of an aberration-free lens of circular aperture
(Eq. 12.11a) is

g�u� v� =1 for −u0 ≤
√

u2 +v2 ≤ u0

=0 otherwise� (12.29)

Variations of the transfer functions with spatial frequency are shown in Fig. 12.3
for an aberration-free lens of circular cross-section. The coherent transfer func-
tion maintains unit value and then abruptly falls to zero at the cutoff spa-
tial frequencies �±u0�. The OTF, on the other hand, falls gradually from unit
value at zero spatial frequency to zero at the cutoff spatial frequencies �±2u0�.
Object spatial frequencies beyond the cutoff frequencies are not transmitted
by the lens. Thus, the coherent and incoherent transfer functions not only
characterize an optical system in terms of its cutoff spatial frequencies, but
they also quantify the performance of the optical system at any given spatial
frequency.

0

(a)
1

G(u,v ) (b)g(u,v  )

0

u2 u2 + v2 + v2

1

u0−2 0 u0 2−u u0

Fig. 12.3: Spatial frequency dependence of (a) coherent and (b) incoherent trans-
fer functions for an aberration-free lens of circular cross-section.
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Fig. 12.4: Autocorrelation of a square aperture of sides a.

The OTF of a square aperture of sides a, obtained with reference to Fig. 12.4, is

G�u�v� = �a−�z2u��a−�z2v�

a2

=
(

1− �

a
z2u

)(
1− �

a
z2v

)

= �

(
u

2u0

)
�

(
v

2u0

)
for �u� ≤ 2u0� �v� ≤ 2u0

= 0 otherwise�

(12.30)

where u0 is the cutoff frequency for the coherent transfer function (Eq. 12.13a)
and the triangle function ��x� is defined as

��x� =1−�x� for �x� ≤ 1

=0 otherwise� (12.31)

The variation of the OTF of a square lens is shown in Fig. 12.5. Note that in the
above examples, the cutoff spatial frequencies of the incoherent transfer functions
are twice as large as the corresponding cutoff frequencies of the coherent transfer
functions. This should not be construed to imply that a diffraction-limited optical
system always performs better under incoherent object illumination. This need not
be the case. In fact, juxtapositioning the plots in Fig. (12.3a,b) for coherent and
incoherent transfer functions can mislead the reader. It should be kept in mind that
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Fig. 12.5: Incoherent transfer function of a lens of rectangular cross-section.

the coherent transfer function g�u� v� represents the transfer characteristics of the
amplitude distribution, whereas the incoherent transfer function G�u�v� refers to
the transfer characteristics of the intensity distribution, and hence a direct compar-
ison between the two transfer functions makes no sense at all. Instead, we should
compare the frequency spectra of the image intensity distributions in the two cases.

The frequency spectrum of the intensity distribution in the image plane under
incoherent object illumination can be obtained by taking the Fourier transform
of Eq. (12.14), giving

� 	I incoh
i �x′′� y′′�� = � 	I ′

o ∗ �h′�2�
= � 	I ′

o�� 	�h′�2�

=
(

1
2

�0c

)
� 	E′

oE
′
o
∗
�� 	h′h′∗��

(12.32)

where � symbolizes the Fourier transform operation. With the autocorrelation
theorem (Eq. 9.73), this result can be expressed as

� 	I incoh
i �x′′� y′′�� =

(
1
2

�0c

)
�� 	E′

o� � � ∗	E′
o�� �� 	h′� � � ∗	h′��

=
(

1
2

�0c

)
��o�u� v� � �∗

o�u� v�� �g�u� v� � g∗�u� v��� �

(12.33)
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where �o�u� v� and g�u� v� are the Fourier transforms of the object field distri-
bution E′

o�
∼
x�

∼
y� and the impulse response function h′�x′′� y′′�, respectively. The

spatial frequency spectrum of the image intensity distribution for coherent object
illumination can be obtained by re-writing Eq. (12.1b) as

Ecoh�x′′� y′′� =E′
o�x

′′� y′′�∗h′�x′′� y′′�

=E′
o ∗h′�

(12.34)

Therefore,

� 	Icoh�x′′� y′′�� =
(

1
2

�0c

)
� 	�E′

o ∗h′��E′
o ∗h′�∗�

=
(

1
2

�0c

)
� 	E′

o ∗h′� � � ∗	E′
o ∗h′�

=
(

1
2

�0c

)
�� 	E′

o�� 	h′�� � �� 	E′
o�� 	h′��∗

=
(

1
2

�0c

)
	�o�u� v�g�u� v�� � 	�o�u� v�g�u� v��∗ �

(12.35)

The spatial frequency spectra of the image intensity distributions under incoher-
ent and coherent object illuminations are indeed quite different. One needs to
take specific examples to appreciate this difference. This task is left to problems
(Problem 12.5). We merely state here that the quality of optical imaging under
coherent and incoherent object illuminations depends critically on how the inten-
sity and phase change over the object. Depending upon the system constraints,
one of the imaging schemes may be preferred over the other.

12.6 TRANSFER FUNCTIONS OF ABERRATED OPTICAL
SYSTEMS

We have so far considered transfer functions of aberration-free optical systems.
The aberrations may produce additional changes in the amplitudes and phases
of the spatial frequencies passing through the optical system. However, if the
aberrations are not too severe, the changes in the amplitude may be of lesser
concern. We consider here aberrations which primarily introduce phase modifi-
cations. The effect of the aberrations can be incorporated through the modified
exit pupil function:

P�xs� yt� = tP�xs� yt�ei 2�
� W�xs�yt�� (12.36)
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where tP�xs� yt� is the pupil function in the absence of aberrations and W�xs� yt� is
the aberration function (Eq. 5.3), expressed in the sagittal (xs) and tangential �yt�
coordinates (Fig. 5.7). We have replaced the ����� coordinates by �xs� yt� coor-
dinates since the geometrical aberrations are best described in these variables.
We may continue to assume

tP�xs� yt� =1 within the extent of the exit pupil

=0 otherwise� (12.37)

The coherent transfer function of an aberrated optical system is obtained by
substituting Eq. (12.36) into Eq. (12.9b), giving

g�u� v� =tP�−�z2u�−�z2v�ei 2�
� W�−�z2u�−�z2v� (12.38a)

=tP

(
− u

u0

�− v

v0

)
ei 2�

� W�− u
u0

�− v
v0

�
� (12.38b)

where the cutoff spatial frequencies u0, v0 are defined in the manner of
Eq. (12.27). The corresponding incoherent transfer function can be obtained by
combining Eqs (12.20) and (12.38). For real aberration function W�xs� yt�, the
incoherent transfer function for an aberrated optical system takes the form

Gab�u� v� = 1
t0

[ �∫ ∫

−�
tP

(
xs +

u

2u0

� yt +
v

2v0

)
tP

(
xs −

u

2u0

� yt −
v

2v0

)

× ei 2�
�

{
W
(
xs+ u

2u0
�yt+ v

2v0

)
−W

(
xs− u

2u0
�yt− v

2v0

)}
dxs dyt

]
�

(12.39)

where

t0 =
�∫ ∫

−�
�tP�xs� yt��2 dxs dyt� (12.40)

Schwarz’ inequality requires the MTF (magnitude of Gab�u� v�) of an aberrated
optical system to be always less than the MTF of a diffraction-limited optical
system, i.e.,

�Gab�u� v�� < �G�u�v��diff.limited� (12.41)

except at the zero spatial frequency where MTF has unit value by definition and
at the cutoff spatial frequency where MTF has zero value in both cases. It may
also happen that the MTF of an aberrated optical system goes through zero value
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more than once before vanishing completely at and beyond the cutoff spatial
frequency.

12.6.1 OTF of a Defocused Optical System

Defocusing is really not an aberration (see Section 5.4.2), but for the present
demonstration we treat it so. As this example will show, finding the OTF in the
presence of aberrations is not an easy task. Let the image plane of a centered,
aberration-free optical system be somewhat defocused. Assuming

tP�xs� yt� = 1

for the exit pupil of unit radius, Eq. (12.39) reduces to

G�u�v� =
∫ ∫

OR e
i2�
� 	W�xs+ u

2u0
�yt+ v

2v0
�−W�xs− u

2u0
�yt− v

2v0
�� dxs dyt∫ ∫

OR 1dxs dyt

� (12.42)

where OR in the limits stands for the overlap region. The defocusing aberration
function, obtained from Eqs (5.3) and (11.16b), is

W�xs� yt� = 0C20�x
2
s +y2

t �

=1
2

(
1
z1

+ 1
z2

− 1
f

)
�x2

s +y2
t �� (12.43)

To simplify calculation, let the aperture be displaced along the xs-direction
(Fig. 12.2b). Accordingly,

G�u� 0� = 1
�

∫ ∫

OR

ei 4�
� 0C20

u
u0

xs dxs dyt

= 1
�

⎡
⎣
∫ ∫

OR

cos�bxs�dxs dyt + i
∫ ∫

OR

sin�bxs�dxs dyt

⎤
⎦ � (12.44)

where b = 4�
� 0C20

u
u0

. By symmetry, the second integral vanishes and

G�u� 0� = 4
�

∫ ∫




cos�bxs�dxs dyt� (12.45)
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where 
 represents the area of the shaded region in Fig. 12.2b. On the curved
boundary of the shaded region (Fig. 12.2b), the condition

(
xs +

u

2u0

)2

+y2
t = 1 (12.46)

holds. Integrating Eq. (12.45) over xs from xs = 0 to xs = √
1−y2

t − u
2u0

, we
obtain

G�u� 0� = 4
�b

∫ √
1−� u

2u0
�2

0
sin
[
b

(√
1−y2

t − u

2u0

)]
dyt� (12.47)

The optical transfer function G�u� 0� is real, but not necessarily positive.
Analytical evaluation of integral (12.47) in terms of the Bessel functions can
be tried, but such integrals are best handled numerically. Figure 12.6 shows
the results of numerical integration of Eq. (12.47). In this figure, the OTF is
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Fig. 12.6: OTF of a defocused diffraction-limited optical system for 0C20 = 0
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plotted as a function of the normalized spatial frequency �u/2u0� for various
values of the defocusing parameter 0C20, expressed as multiples of �/�. We have
specifically included a plot for 0C20 = �/4, which corresponds to the Rayleigh
criterion for satisfactory performance of an optical imaging system. As the figure
shows, the OTF of a defocused optical system indeed falls below the OTF of a
focused optical system �0C20 = 0� without any change in the maximum spatial
frequency transmitted by the system. For defocusing aberration with 0C20 = 2�

�
,

the OTF falls to zero at nearly half the cutoff spatial frequency. For higher values
of the defocusing parameter, the OTF changes sign for certain ranges of spatial
frequencies. The negative OTF corresponds to a phase modification of exactly
� radians, leading to reversal of the image contrast. Under these conditions, the
bright portions of the object appear dark and vice versa. This is an example of
spurious resolution.

In conclusion, the determination of the OTF begins with the knowledge of the
exit pupil function of the optical system. Equation (12.36) gives the exit pupil
function of an optical system when aberrations introduce only phase modifica-
tions. The exact exit pupil function may be obtained by interferometric techniques
or by ray tracing. Once the exit pupil function is known, the OTF is obtained
as the autocorrelation of the exit pupil function (Eq. 12.21) or as the Fourier
transform of the square modulus of the impulse response function (Eq. 12.16c).

12.7 IMAGING SINUSOIDAL OBJECT MODULATION

We now show that the intensity distribution in the image plane of an optical
system is sinusoidal for a sinusoidal intensity distribution in the object plane,
albeit with modified amplitude and shifted phase. Let the intensity distribution
of an incoherently illuminated object be described by a single spatial frequency
along some general direction in the object plane (Fig. 12.7). This distribution
can be equivalently described by the spatial frequencies u0 and v0 along the x′

and y′ axes, respectively, i.e.,

Io�x
′� y′� = I0	1+a cos 2��u0x

′ +v0y
′��� (12.48)

where I0 and a are real constants. It is assumed that the spatial frequencies u0

and v0 do not exceed the corresponding cutoff spatial frequencies of the optical
system. With �a� < 1� Io�x

′� y′� takes only non-negative values. For unit magni-
fication, the intensity distribution in the image plane, given by Eq. (12.14a), is

Ii�x
′′� y′′� =

�∫ ∫

−�
I0	1+a cos 2��u0x

′ +v0y
′���h′�x′′ −x′� y′′ −y′��2dx′ dy′�

(12.49)
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Fig. 12.7: Two-dimensional sinusoidal intensity distribution.

For the paraxial image with unit magnification, x′ = x′′
0 , y′ = y′′

0 . We can therefore
replace the object intensity distribution in Eq. (12.49) by the paraxial image
intensity distribution

Ip�x
′′
0 � y′′

0 � = I0	1+a cos 2��u0x
′′
0 +v0y

′′
0 ��� (12.50)

This equation does not describe the intensity distribution in the image plane
(it will do so only in the limit of geometrical optics). Here, it is no more
than a convenient representation for the object intensity distribution. With this
conceptual manipulation, the integration over the object plane in Eq. (12.49) can
be replaced by integration over the image plane, so that

Ii�x
′′� y′′� =

�∫ ∫

−�
I0	1+a cos 2��u0x

′′
0 +v0y

′′
0 ��

×�h′�x′′ −x′′
0 � y′′ −y′′

0 ��2dx′′
0 dy′′

0 � (12.51)

Application of the convolution theorem to Eq. (12.51) gives

F 0
i �u� v� =I0� 	1+a cos 2��u0x

′′
0 +v0y

′′
0 ��G0�u� v� (12.52a)

=I0

[
��u���v�+ a

2
���u−u0���v−v0�+��u+u0���v+v0��

]
G0�u� v��

(12.52b)
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Standard results of the Fourier transform theory have been used to go from
Eq. (12.52a) to (12.52b). F 0

i �u� v� is the Fourier transform of the image intensity
distribution (Eq. 12.16b without the denominator) and G0�u� v� is the Fourier
transform of the square modulus of the impulse response function (Eq. 12.16c
without the denominator). The intensity distribution in the image plane is the
inverse Fourier transform of Eq. (12.52b). Therefore,

Ii�x
′′� y′′� = I0

�∫ ∫

−�
	��u���v�+ a

2
���u−u0���v−v0�

+��u+u0���v+v0���G
0�u� v�ei2��ux′′+vy′′� du dv

= I0	G
0�0� 0�+ a

2
�G0�u0� v0�ei2��u0x′′+v0y′′�

+G0�−u0�−v0�e−i2��u0x′′+v0y′′���

= I0	G
0�0� 0�+a�G0�u0� v0�� cos 2��u0x

′′ +v0y
′′

+�u0� v0���

= I0	1+a�G�u0� v0�� cos 2��u0x
′′ +v0y

′′ +�u0� v0���� (12.53)

where we have used

G0�−u0�−v0� = 	G0�u0� v0��
∗ (12.54a)

and

G0�u0� v0� = �G0�u0� v0��ei2��u0�v0�� (12.54b)

The constant factor G0�0� 0� has been absorbed in I0 in Eq. (12.53). We note that
the image intensity distribution is indeed described by the spatial frequencies
of the object intensity distribution, but with modified amplitude and phase. For
unit magnification, as in the present example, there is one-to-one correspondence
between the object and image spatial frequencies. We also note that defining the
contrast of an intensity distribution as

m = Imax − Imin

Imax + Imin

�

the ratio of the contrasts of the image and object intensity distributions is the
magnitude of the optical transfer function; hence the name modulation transfer
function given to �G�u�v��.
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12.8 MEASUREMENT OF OTF

The measurement of the OTF of an optical system is a tedious task, beset with
several practical problems: precise centering of the optical elements is one,
the necessity of employing a large number of sinusoidal gratings to cover a
reasonable span of spatial frequencies is another, and so on. Here, we give only
the rudiments of the experimental techniques used to determine the OTF of
optical systems. Figure 12.8 shows the basic setup, consisting of a sinusoidal
grating (SG) illuminated uniformly but incoherently, the optical system to be
tested, a long and narrow slit (S) oriented parallel to the grating edge and placed
in the image plane, and a photodiode (PD) kept just behind the slit.

The image intensity distribution can be recorded by uniformly translating the
slit, along with the photo-diode, parallel to itself. For improved resolution, the
slit should be narrow. To reduce the problem to one dimension, the long edges
of the grating and slit are assumed sufficiently long. The intensity distribution
(Eq. 12.49) in the image plane is then given by

I�x′′� = I0

∫ +�

−�
�1+a cos 2�u0x

′��h′�x′′ −x′��2 dx′� (12.55)

where a and u0 are, respectively, the amplitude and spatial frequency of the
sinusoidal grating and �h′�x′′ −x′��2 is the line spread, and not the point spread
function of the optical system. As shown in Section 12.7, the image intensity
distribution (Eq. 12.53) can be written as

I�x′′� = I0	1+�G�u0��a cos 2��u0x
′′ +�u0���� (12.56)

Extended
  source

x"
"x’

’

Optical
System

y’ y"

S

OO

PD

SG

Fig. 12.8: Experimental setup to obtain OTF of an optical system; SG is a
sinusoidal grating, S is narrow slit, PD is photodetector.
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where �G�u0�� is the MTF of the optical system and 2��u0� is the phase change
at the spatial frequency u0. The intensity distribution recorded by the photodiode
is the convolution of the image intensity distribution (Eq. 12.56) with the line
spread function S�x′′

D −x′′� of the slit, i.e.,

I�x′′
D� = I0

∫ +�

−�
	1+�G�u0��a cos 2��u0x

′′ +�u0���S�x′′
D −x′′� dx′′� (12.57)

where x′′
D is the displacement of the slit from the origin of the coordinate

system in the image plane. Following the treatment of Section 12.7, the intensity
distribution recorded by the photodiode can be shown to have the form

I�x′′� = I0	1+�Gs�u0���G�u0��a cos 2��u0x
′′ +�u0�+′�u0���� (12.58)

where �Gs�u0�� is the MTF of the slit and 2�′�u0� is the phase change, if
any, introduced by the slit alone at the spatial frequency u0. The product of
the MTF of the optical system and that of the slit can be obtained by dividing
the amplitude of the recorded intensity distribution in the image plane by the
amplitude of the intensity distribution in the object plane. The slit MTF can
be obtained in a separate measurement without the optical system in position.
The same measurement yields ′�u0� also. It will be necessary to use sinusoidal
gratings with varying spatial frequencies to fully characterize the image-forming
quality of an optical system.
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12.10 PROBLEMS

12.1 Consider a diffraction-limited image-forming setup consisting of a lens of aperture
diameter 5 cm and focal length 10 cm. The object placed 15 cm in front of the lens
is illuminated by 632.8 nm light from a He–Ne laser. Find the highest resolvable
spatial frequencies in the object and image field distributions.

12.2 Find the optical transfer function G�u� 0� of a diffraction-limited
optical system with exit pupil in the form of a square of sides a with its central portion
blocked by a symmetrically placed opaque square screen of sides a

4 (Fig. 12.9).
Sketch G�u� 0� as a function of u.
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Fig. 12.9.

12.3 Using Eqs (12.33) and (12.35), obtain the spatial frequency spectra of the image
intensity distributions under coherent and incoherent illuminations of the following
object field distributions. The optical system is diffraction-limited with coherent
cutoff spatial frequency of 1500 cycles/cm.

(a) Eo�x
′� y′� = cos 2�v0x

′� v0 = 1000 cycles/cm�
(b) Eo�x

′� y′� = � cos 2�v0x
′�� v0 = 1000 cycles/cm�

(c) Eo�x
′� y′� = 1

2 �1+ cos 2�v0x
′�� v0 = 1000 cycles/cm�

Show that the coherent illumination performs better in case (a) and poorer in case
(b). Comment on the quality of the images produced by the coherent and incoherent
illuminations in case (c).

12.4 In Problem 12.3 (a,b,c), what maximum values of the coherent cutoff spatial fre-
quencies will lead to uniform illumination in the image plane. Your answer must
cover coherent and incoherent object illuminations.

12.5 An optical system produces the intensity distribution

I�x′′� y′′� = I0

(
1+0�4 cos 2�

(
v0x

′′ + 1
6

))

in the image plane when the object intensity distribution is

I�x′� y′� = I0

(
1+0�7 cos 2�

(
v0x

′ − 1
6

))
�

Find the modulation transfer function (MTF), the phase transfer function (PTF),
and the optical transfer function (OTF) at the spatial frequency v0.

12.6 Obtain and sketch numerical solutions of Eq. (12.47) when the defocusing parameter
has values: 0C20 = �

4 � 2
�

�.
12.7 Find the OTF of a defocused optical system with exit pupil of square cross-section.
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12.8 Find the optical transfer functions G�u� 0� and G�0� v� of a diffraction-limited
optical system with exit pupil having two clear square apertures as shown in
Fig. 12.10. Each square is of sides a and the distance between the centers of the
squares is 3a. Sketch G�u� 0� and G�0� v�.

a

y

a

a

3a

a

x

Fig. 12.10.

12.9 DoProblem12.8 if eachof thesquares is replacedbyacircleofdiametera.Thedistance
between the centers of the circles remains 3a.

12.10 Let the object transparency of Problem 12.3a be coherently illuminated by a plane
wave of wavelength 500 nm propagating in the x′z plane at an angle � to the z-axis
as shown in Fig. 12.11. Find the maximum value angle � can have and still intensity
variations can be observed in the image plane.

x’

θ

z

Object transparency

Fig. 12.11.
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C H A P T E R 13

Holography

13.1 INTRODUCTION

Image formation of two-dimensional (2D) objects was discussed in Chapter 11.
A sharp and bright image of a 2D object can be recorded on a photographic film
kept in the conjugate plane of an aberration-free lens. Imaging 3D objects poses
problems. Ideally, the plane of the film can be conjugate to only one transverse
plane of a 3D object. Rays from a given point on this plane reach the conjugate
point in the plane of the film in phase (recall Fermat’s principle). This holds
for all points on this object plane, irrespective of the object illumination being
coherent or incoherent. The image of this plane is therefore sharp and bright.
Rays emanating from a point lying on any plane other than object plane form a
defocused image of that point in the plane of the film. The optical path lengths
of these rays are unequal. The phase information of a 3D object contained in
the optical path lengths of the rays arriving from different planes of the object is
therefore lost, and only the intensity distribution of the 3D object gets recorded in
the film. This results in the loss of the depth perception in an ordinary photograph
of a 3D object. Unlike the film, the eyes see a 3D object as a 3D object through
parallax.

Nevertheless, it is possible to record the phase and amplitude distributions of
a coherently illuminated 3D object in a single plane if light diffracted by the
3D object is made to interfere with a coherent reference wave in that plane.
This is exactly what is done in the lens-less imaging process called holography,
invented by Gabor in 1948. Holography, meaning ‘whole writing’ in Greek,
reproduces the amplitude and phase distributions of a coherently illuminated 3D
object in its image. In the absence of a lens, there is no unique pair of conjugate
planes in this imaging scheme. The depth perception is therefore not lost in
holographic imaging. Holography is a two-step process. In the first step, called
hologram recording, the amplitude and phase distributions of the object field are
recorded on a high-contrast photographic film in the form of a stable interference
pattern produced by the object wave and a coherent reference wave. The object
wave is the light diffracted by the object when illuminated coherently and the

529
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LASER
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M

Fig. 13.1: Typical setup for recording an off-axis hologram; S shutter, BS beam
splitter, BE beam expander, O object, OW object wave, M mirror, RW reference
wave, PP photographic plate.

reference wave is usually a quasi-monochromatic plane or spherical wave. The
entire holographic apparatus is mounted on a vibration-free table to secure a
stable interference pattern (Fig. 13.1).

No optical component in a holographic setup should move with respect to
any other component by more than a fraction of the wavelength of light. The
developed film (negative or positive) is called the hologoram. It does not carry
the image of the object, but carries a permanent signature of the object in the
form of an intricate interference pattern. A hologram can be envisioned as a
diffraction grating with a highly complex transmission profile. In the second step
of holographic imaging, called wavefront reconstruction, the hologram when
illuminated with the reconstruction wave, preferably the same as the reference
wave (or its spatial phase conjugate wave) used in the first step, reconstructs
the original wavefront diffracted by the object during the recording of the holo-
gram. Actually, the hologram generates not only the original diverging object
wavefront, but also its spatial complex conjugate. From the term original, it is
implied that this reconstructed wavefront resembles in all respects the diverging
wavefront originating from the object during the recording of the hologram. This
wavefront therefore gives rise to a virtual image at the original position of the
object if the geometries of the recording and reconstruction processes are identi-
cal, except that the object is absent during the reconstruction. The reconstructed
conjugate wavefront is converging and forms a real image of the object.



13.2: ON-AXIS HOLOGRAPHY 531

A theoretical framework which can describe hologram recording and wave-
front reconstruction has already been introduced in the context of complex filters
in Section 11.3.3. But even at the risk of some repetition, we take the traditional
route to develop the subject matter ab initio, primarily to expose the reader to the
problems and solutions of practical holography. Our treatment of holography will
closely follow Yu’s presentation [13.1]. Actually, Gabor was not initially inter-
ested in 3D imaging, but once he succeeded in recording a hologram, he realized
the significance of his invention. His original aim, at the time of undertaking
this investigation, to improve the electron microscope images through wavefront
reconstruction, however, remained unrealized. Gabor was handicapped due to the
non-availability of good coherent light sources at that time. He faced difficulty
in isolating the real and virtual reconstructed images. Development of coherent
light sources in the form of lasers and their introduction to holography by Leith
and Upatnicks has made holography relevant today in diverse fields of human
activity.

13.2 ON-AXIS HOLOGRAPHY

To understand the simultaneous appearance of real and virtual images in hologra-
phy, we take an approach which is closer to our usual notion of image formation
with lenses.

13.2.1 Hologram Recording

For simplicity, we first consider the recording of a hologram of a point object.
An extended object can be regarded as a collection of point objects. Let the point
object O be situated on the axis of the photographic plate at a distance z1 from
it (Fig. 13.2a). The reference wave is a monochromatic plane wave R�A2� k1�,
incident normally on the photographic plate.

The spherical wave emitted by the point object interferes with the reference
wave everywhere, in particular, in the plane of the photographic plate. It is
obvious but may still be pointed out that unlike in the image plane of a lens,
light from the point object (and also from an extended object) in holography
reaches every point of the photographic plate. Consequently, every portion of the
hologram acquires complete information on the amplitude and phase distributions
of the object field in the form of an interference pattern. This seems to introduce
a great deal of redundancy in holographic imaging, but the images reconstructed
from a hologram of large size are brighter and possess higher resolution. The
arrangement of Fig. 13.2a is somewhat similar to the one originally employed by
Gabor to record a hologram (Fig. 13.2b). He used an optical filter and a pin-hole
to improve coherence of his light source. Gabor used a small semi-transparent
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Fig. 13.2: (a) On-axis hologram recording of a point object with a plane reference
wave. (b) Gabor’s arrangement, O is a semi-transparent object.

object. Light transmitted by the object acts as the reference wave and light
diffracted by the object constitutes the object wave.

Suppressing the time dependence, the complex scalar field distribution in the
plane of the photographic plate in Fig. 13.2a is

E�x� y� z1� = A1

r
eik1r +A2eik1z1� (13.1)

where A1 is the amplitude of the object wave at unit distance from the point
object and A2 is the amplitude of the reference wave. For a stable interference
pattern, no temporal changes in any of the variables in Eq. (13.1) can be permitted
during the recording of the hologram, and hence the use of vibration-free tables
in holography. Random changes, of the order of the wavelength of light, in
the path lengths of the interfering waves may destroy the interference pattern
altogether. Within the quadratic approximation

r = z1 + x2 +y2

2z1

� (13.2)

the field and intensity distributions over the photographic plate can be
expressed as

E�x� y� z1� = A1

z1

e
ik1

(
z1+ x2+y2

2z1

)

+A2 eik1z1 (13.3)
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and

I�x� y� z1� =
(

1
2

�0c

)[ �A1�2
z2

1

+�A2�2 + A1A
∗
2

z1

e
ik1
2z1

�x2+y2�

+A∗
1A2

z1

e
−ik1
2z1

�x2+y2�

]
(13.4a)

=
(

1
2

�0c

)[ �A1�2
z2

1

+�A2�2 +2
�A1��A2�

z1

× cos
{

k1

2z1

�x2 +y2�+�0

}]
� (13.4b)

respectively, where �0 is the constant phase difference between the two waves.
Without introducing any significant discrepancy, the amplitude factor 1

r
of the

spherical wave has been replaced by 1
z1

. This intensity distribution is, indeed,
dependent on the phases with which the light waves from the object arrive at
different points of the photographic plate. The interference pattern created in the
plane of the photographic plate consists of circular fringes which are not equally
spaced. The fringes tend to crowd together as one moves away from the center
of the photographic plate.

The film exposure is given by the product �I�t�, where �t is the time for
which the film is exposed and I is the intensity distribution over the film
during recording. The holographic film must have high resolving capability to
record rapid (spatial) intensity variations of the interference pattern, especially
towards the edges of the hologram. The grain size of these films is small,
requiring relatively long exposure times, unless the source is a powerful one,
as for example a pulsed laser. The film exposure can be optimized to obtain
the amplitude transmittance of the hologram varying linearly with the inten-
sity during exposure. The bias irradiance level (see Fig. 11.12) is provided
by the relatively stronger reference wave in comparison to the object wave.
After development, the photographic plate becomes the hologram with amplitude
transmittance

T�x� y� z1� =T0 −�I�t

=A0 +B0 e
ik1
2z1

�x2+y2� +B∗
0 e− ik1

2z1
�x2+y2� (13.5a)

=A0 +2�B0� cos
{

k1

2z1

�x2 +y2�+�0

}
� (13.5b)
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where

A0 = A+B

( �A1�2
z2

1

+�A2�2
)

� (13.6a)

B0 = B
A1A

∗
2

z1

	 (13.6b)

The constants A and B are dependent on the actual conditions of hologram
recording and characteristics of the photographic film; B is positive if positive
transparency is used as the hologram. The first term of Eq. (13.5a) suggests the
hologram acting as a semi-transparent plate, attenuating the wave passing through
it. The remaining two terms make the hologram mimic the actions of concave
and convex lenses (Eq. 10.17), each of focal length z1. No wonder, the hologram
generates simultaneously the real and virtual images of the point object. Note
that for another point object, a distance z2 in front of the photographic plate
during recording, the same hologram will also act as concave and convex lenses,
each of focal length z2. Thus a hologram can be envisioned as a collection of
many lenses, built into one with as many focal lengths, capable of producing
sharp and bright images of 3D objects. Within this interpretation, a hologram
can be regarded as a Fresnel zone plate (Section 8.4) with positive and negative
lensing actions and also acting as an attenuator. Equation (13.5b), on the other
hand, allows the hologram to be interpreted as a sinusoidal grating, which upon
coherent illumination generates two diffraction orders in addition to the zero
order (see Section 10.7).

A hologram acts as a 2D hologram when the thickness of the emulsion layer
in the photographic plate is smaller than the separation between consecutive
fringes of the interference pattern established in the photographic plate. For the
present, this condition is assumed to hold.

13.2.2 Wavefront Reconstruction

To reconstruct the object wavefront, the hologram recorded in Fig. 13.2a is
trans-illuminated with a plane coherent wave of amplitude E0 and wave number(
k2 = 2


�2

)
which may be different from the wave number of the wave used

in making the hologram (Fig. 13.3). The location of the point object during
the recording of the hologram is also shown (point O in the plane z = 0) for
reference.

From Eq. (11.11), the field distribution in a plane, a distance z2 behind the
hologram, can be expressed as the convolution of the field distribution just
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Fig. 13.3: Wavefront reconstruction with a plane reference wave. The object O
at z = 0 is shown only for reference.

behind the hologram with the impulse response function of the space between
the planes z = z1 and z = z1 + z2, i.e.,

E�x′� y′� z1 + z2� =− i
�2

E0

eik2�z1+z2�

z2

T�x′� y′� z1�∗hz2
�x′� y′� (13.7a)
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where

C = − i
�2

E0

z2

eik2�z1+z2�	 (13.8)

The plane z = z1 + z2 has been assumed to be sufficiently far away from the
hologram for the quadratic approximation (Eq. 13.2) to hold for distance r ′.
Furthermore, the hologram has been assumed to have infinite extent. The first
term in Eq. (13.7b) represents zero-order diffraction in the grating picture or the
attenuated reconstruction wave in the zone plate interpretation of the hologram.
For z2 = + �1

�2
z1, Eq. (13.7b) reduces (see problem 9.4f) to

E

(
x′� y′� z1 + �1

�2

z1

)
= C1 +CB0 e

ik1
2z1

�x′2+y′2�

×
�∫ ∫

−�
e

ik1
z1

�x2+y2−xx′−yy′� dx dy (13.9)

+CB∗
0 e

ik1
2z1

�x′2+y′2�

�∫ ∫

−�
e− ik1

z1
�xx′+yy′� dx dy

= C1 +C2 e
ik1
4z1

�x′2+y′2� +C3��x′� y′��

where C1, C2, and C3 are complex constants. The delta function (third term)
in Eq. (13.9) gives rise to a real on-axis image of an on-axis point object, a
distance �1

�2
z1 behind the hologram, where z1 is the distance of the object from the

photographic plate during recording. The real image will be exactly a distance z1

behind the hologram if the recording and reconstruction wavelengths are same.
The second term in Eq. (13.9) represents, within the paraxial approximation, a
diverging spherical wave originating from the on-axis virtual image lying in front
of the hologram. This is borne out by the fact that the middle term of Eq. (13.7b)
reduces to a constant times the delta function ��x′� y′� for z2 = − �1

�2
z1. Figure 13.4

shows the real image, the virtual image, and the transmitted reconstruction wave
generated by an on-axis recorded hologram.

Since the line joining the real and virtual images is collinear with the axis of
the hologram, seeing either image without the background of the other image
and that of the transmitted reconstruction wave is not possible. In the grating
interpretation, the three diffraction orders overlap in on-axis holography. On-
axis holographic imaging is therefore not very useful. Nevertheless, it finds
application in viewing point scatterers such as the aerosol particles (see Problem
13.1). The reconstructed images can be separated from each other and from the
coherent background of the reconstruction wave if the hologram is recorded with
an off-axis reference wave. But, before we discuss the off-axis holography, we
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Fig. 13.4: Reconstructed virtual and real images from an on-axis recorded holo-
gram.

comment on the nature of the holographic images. Figure 13.5 shows four points
A, B, C, D, lying on an extended object. The reconstructed virtual images of
these points are coincident with their respective object points if same reference
wave is used in hologram recording and wavefront reconstruction. The virtual
image is therefore normal or orthoscopic. The relative positions of different parts
of an orthoscopic image are similar to those found in the actual 3D object. The
reconstructed real images A′, B′, C ′, D′ lie behind the hologram. Viewed from
behind the real image, object point A is behind and object point C is in front of
the object points B and D. The virtual image obviously maintains these relative
orientations. On the other hand, in the real image, point A′ is seen in front and
point C ′ is seen behind the points B′ and D′. Therefore, the back of a 3D object
seen in the real holographic image appears in front and vice versa, i.e., the
object appears inside out. Similarly, the right–left directions of the object are also
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Fig. 13.5: Holographic real image of an extended object is pseudoscopic.
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interchanged in the real image reconstructed from a hologram. Such an image
is called a pseudoscopic image. Getting different perspectives of a 3D object
from its real image by moving the eye can be quite confusing. In passing, we
mention that no lateral image magnification is possible in holographic imaging
when plane waves with same or different wavelengths are used as the reference
and reconstruction waves. However, longitudinal expansion or contraction of
the images takes place when the reference and reconstruction wavelengths are
different.

13.3 OFF-AXIS HOLOGRAPHY

We now demonstrate that the real and virtual images reconstructed from a holo-
gram recorded with an oblique reference wave can be separated. For the present
discussion, same reference wave is employed for hologram recording and wave-
front reconstruction. In Fig. 13.6, the reference wave makes an angle �−�� with the
axis of the photographic plate.

The field and intensity distributions in the plane of the photographic plate are

E�x� y� z1� = A1

z1

e
ik
(

z1+ x2+y2

2z1

)

+A2eik�z1 cos � −x sin ��� (13.10)
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e−ikz1�1− cos ��e
−ik

(
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� (13.11)
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Fig. 13.6: Hologram recording with an off-axis reference wave.
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respectively, where A1 is the amplitude at unit distance of the spherical wave
originating from the point object O and A2 is the amplitude of the plane reference
wave. Equation (13.5a) for the amplitude transmittance of the hologram now
takes the form

T�x� y� z1� = A0 +B1e
ik
(

x2+y2

2z1
+x sin �

)

+B∗
1e

−ik
(

x2+y2

2z1
+x sin �

)

� (13.12)

where

B1 = A1A
∗
2

z1

Beikz1�1− cos ��	 (13.13)

On reconstructing the wavefront with the same reference wave (Fig. 13.7), the
field distributions in the plane of the hologram and in a plane a distance z2

behind the hologram are

E�x� y� z1� = E0eik�z1 cos �−x sin ��T�x� y� (13.14)

and
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��x′−x�2+ �y′−y�2dx dy� (13.15)
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respectively. Substituting Eqs (13.12) and (13.14) into Eq. (13.15), we obtain
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where

C = − i
�

E0

eik�z1 cos � + z2�

z2

	 (13.17)

After a few algebraic manipulations, the integrals in Eq. (13.16) can be
solved, giving the field distribution in the plane a distance z1 behind the holo-
gram as

E�x′� y′� 2z1� = C1e−ikx′ sin � +C2e
ik

4z1
�x′2+y′2� +C3��x′ +2z1 sin �� y′�� (13.18)

where C1, C2, and C3 are complex constants, not necessarily the same as in
Eq. (13.9). The first term in Eq. (13.18) is the attenuated reconstruction wave
in its original direction of propagation. The real image, represented by the
third term, occupies a position �x′ = −2z1 sin �� y′ = 0� below the axis of the
hologram. The diverging field of the second term locates the virtual image on
the hologram axis, a distance z1 in front of the hologram. With a proper choice
of the inclination angle of the reference wave, the on-axis virtual image can be
observed from behind the hologram without the background of the real image
and that of the transmitted reconstruction wave (Fig. 13.8). For a 2D hologram, it
is not necessary but usually preferable to have same inclinations of the reference
and reconstruction waves. Figure 13.9 shows wavefront reconstruction from the
same hologram with a reconstruction wave making an angle �+�� with the axis
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of the hologram. In this case, the field distribution in the plane z = 2z1 has the
form

E�x′� y′� 2z1� = C1eikx′ sin � +C2e
ik

4z1
��x′+2z sin ��2 +y′2 +C3��x′� y′�� (13.19)

where C1, C2, and C3 are complex constants. The real image now lies on
the axis of the hologram and the virtual image occupies an off-axial position
�x′ = −2z1 sin �� y′ = 0� z = 0� in front of the hologram. The real image can now
be seen without the out-of-focus virtual image and the transmitted reconstruction
wave in the background.

13.4 HOLOGRAPHY OF 3D OBJECTS

We now extend our discussion on holographic imaging to 3D objects (Fig. 13.10).
Q is a point with position coordinates �x′� y′� z′� on the surface of the 3D object
O. The photographic plate lies in the plane z = z1. An oblique plane wave of
amplitude A making an angle � with the axis of the photographic plate is the
reference wave. A part of the reference wave (not shown in the figure) illuminates
the object O.

The field distribution in the plane of the photographic plate is

E�x� y� z1� = EO�x� y� z1�+Aeik�z1 cos �+x sin ��� (13.20)

Photographic
      plate

z = z1

r’
’ ’)Q(x ,z’,y

z = 0

)1(x, y, z
x’

y’

z

P

θ

R(A,k)
O

x

y

Fig. 13.10: Hologram recording of a 3D object with a plane reference wave
R�A�k�.
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where the object wave EO�x� y� z1� arriving at the photographic plate can be
expressed as the convolution of the field distribution EO�x′� y′� z′� on the surface
of the object with the impulse response function of the space between the object
and the photographic plate (Eq. 11.11), i.e.,

EO�x� y� z1� = − i
�

eikz1

z1

∫ ∫

SO

EO�x′� y′� z′�e
ik

2�z1−z′� ��x−x′�2+�y−y′�2dS′	 (13.21)

The integration is over the surface of the object as seen from the photographic
plate. Ignoring the factor � 1

2 �0c�, the intensity distribution in the plane of the
photographic plate is

I�x� y� z1� =�A�2 +�EO�x� y� z1��2 +A∗e−ik�z1 cos � +x sin ��

×EO�x� y� z1�+Aeik�z1 cos � +x sin ��E∗
O�x� y� z1�	 (13.22)

After developing the photographic film, the amplitude transmittance of the holo-
gram, assuming linearity of the T–E plot, is

T�x� y� z1� =A0 +B0�EO�x� y� z1��2 +B1e−ikx sin �

×EO�x� y� z1�+B∗
1eikx sin �E∗

O�x� y� z1�� (13.23)

where A0, B0, and B1 are suitable constants. Upon illumination of the hologram
with the same reference wave as used in the recording (Fig. 13.11), the field dis-
tributions appearing in planes just behind and a distance z2 behind the hologram
are

E�x� y� z1� = Aeik�z1 cos � +x sin ��T�x� y� z1� (13.24)

and

E�x′′� y′′� z1 + z2� =− i
�

eikz2

z2

A eik�z1 cos � +x sin ��

×T�x′′� y′′� z1�∗hz2
�x′′� y′′� (13.25a)
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(13.25b)

respectively, where A′
0, B′

0, and B′
1 are suitably chosen complex constants. The

first term in Eq. (13.25b) is the transmitted reconstruction wave in its original
direction of propagation. The second term also represents zero-order diffraction
since �EO�x� y� z1��2 is real, though somewhat spread out. We now show that the
third term generates the virtual image. Substitution of Eq. (13.21) into the third
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term of Eq. (13.25b) gives
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(13.26)

We have replaced integration over the surface of the object by integration over
the transverse planes of the object in succession. We have also let the limits of
integration in the object plane to extend from −� to +�. For z2 = −�z1 − z′�,
i.e., in the plane z = z′, Eq. (13.26) reduces to

Ev�x
′′� y′′� z′� = C2EO�x′′ = x′� y′′ = y′� z = z′�� (13.27)

where C2 is a complex constant. Thus, apart from a complex constant multiplier,
the virtual image reproduces the field distribution of each plane of the object.
Similarly, the fourth term in Eq. (13.25b) can be shown to generate the real
image of the object plane z = z′ at a distance z1 − z′ behind the hologram with
the field distribution

Er�x
′′� y′′� 2z1 − z′� = C3E

∗
O�x′′ = x′ +2�z1 − z′� sin �� y′′ = y′� z = 2z1 − z′�

(13.28)
where C3 is a complex constant. The real image of the object is centered about
the off-axial point �x′′ = 2�z1 − z′� sin �� y′′ = 0� z = 2z1�. Thus, looking from
behind the hologram, a virtual 3D image of the object can be seen in the exact
location of the original object without any background. Had we used a different
wavelength for reconstruction, the virtual image would be somewhat shifted
from the position of the object. For the reconstruction wave making an angle
�−�� with the axis of the hologram (as in Fig. 13.8), the real image with field
distribution

Er�x
′′� y′′� 2z1 − z′� = C ′

3E
∗
O�x′′ = x′� y′′ = y′� z = 2z1 − z′� (13.29)

occupies an axial position behind the hologram and the virtual image moves to
an off-axial position. The real image appears at the original position of the object
if the reconstruction wave is the phase conjugate of the reference wave used
in the recording of the hologram (Fig. 13.12). The phase conjugate of a plane
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Fig. 13.12: Reconstruction of the real image with the conjugate of the reference
wave used in recording.

reference wave is identical to the reference wave, except that its direction of

propagation is reversed �
⇀

k→ − ⇀

k�. We note that the reconstructed real images
(Eqs 13.28 and 13.29) do not exactly reproduce the object field distribution, but
a distribution which is the complex conjugate of the spatial part of the object
field distribution. For this reason, the reconstructed real image is also called
the conjugate image. We mention in passing that in the reconstruction process,
a hologram can produce the wave E∗�x� y� z� which is the phase conjugate of
the original wave E�x� y� z�. The phase conjugate waves have some interesting
properties (see Section 14.6).

13.5 MAGNIFICATION IN HOLOGRAPHIC IMAGING

Holographic images generated with plane reference and reconstruction waves
have unit lateral magnifications (see Eqs 13.27 and 13.29). Spherical reference
and reconstruction waves, on the other hand, can produce image magnifications
in holography. This may be of interest in the microscopy of small biological
samples. A magnified 3D image of a microorganism can be frozen for later
examination. We now consider hologram recording and reconstruction with
spherical waves. Let the reference point PR�x2� y2� z2� in Fig. 13.13 act as the
source of the spherical reference wave for recording the hologram of the point
object PO�x1� y1� z1�. Points PO and PR are coherently illuminated with a wave
of wave number k1 = 2


�
. The field distribution in the plane of the photographic

plate, within the quadratic approximation, is given by

E�x� y� z0� = A1

l1

e
ik1

[
l1+ �x−x1�2+�y−y1�2

2l1

]

+ A2

l2

e
ik1

[
l2+ �x−x2�2+�y−y2�2

2l2

]

(13.30)
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Fig. 13.13: Recording hologram of a point object with spherical reference wave.

and the corresponding intensity distribution in units of
(

1
2 �0c

)
is

I�x� y� z0� = �A1�2
l2
1

+ �A2�2
l2
2

+ A1A
∗
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2l2

]

�

(13.31)

where l1 = z0 −z1, l2 = z0 −z2, and A1 and A2 are the complex amplitudes of
the object and reference waves at unit distances from PO and PR, respectively.
After development of the photographic plate, the linear amplitude transmittance
of the hologram can be expressed as

T�x� y� z0� =A0 +B0 e
ik1

[
�x−x1�2+�y−y1�2

2l1
− �x−x2�2+�y−y2�2

2l2

]

+B∗
0 e

−ik1

[
�x−x1�2+�y−y1�2

2l1
− �x−x2�2+�y−y2�2

2l2

]

�

(13.32)

where A0 and B0 are suitable constants. On illuminating the hologram with the
spherical wave of wave number k2 and amplitude A3 at unit distance from the
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reconstruction point P ′
R (Fig. 13.14), the field distribution in a plane a distance

z′
0 behind the hologram is given by

E�x′′� y′′� z0 + z′
0�

=CA0

�∫ ∫

−�
e
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(13.33a)
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where

C = − i
�2

A3

l3

eik2�l3+z′
0�

z′
0

	 (13.34)

The first term in Eq. (13.33b) represents zero-order diffraction and will not be
discussed any further. The second term can lead to the virtual image if the
coefficient of �x2 +y2� becomes zero, i.e., if

k2

lv

= k1

l2

− k1

l1

− k2

l3

� (13.35)

where z′
0 = lv is expected to be negative for the virtual image. Under these

conditions, the second term in Eq. (13.33b) reduces to

Ev�x
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(
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where C2 is a suitable complex constant. The distance of the virtual image from
the hologram, obtained from Eq. (13.35), can be expressed as

1
lv

= �2

�1

(
1
l2

− 1
l1

)
− 1

l3

(13.37a)

or as

lv = �1l1l2l3

�2l1l3 −�2l2l3 −�1l1l2

	 (13.37b)
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The position of the virtual image can be changed by changing the positions and
wavelengths of the reference and reconstruction sources. In particular, if the
reference wave acts as the reconstruction wave as well ��1 = �2� l2 = l3�, then
the virtual image is formed at the exact location of the object. It is interesting
to note that depending on the values of the parameters (Eq. 13.35), lv may
not always remain negative, and the virtual image may actually lie behind the
hologram.

The lateral magnifications Mv
x and Mv

y of the virtual image follow from
Eq. (13.36), giving

k2

x′′

lv

=−k1

x1

l1

+k1

x2

l2

−k2

x3

l3

� (13.38a)
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l3

	 (13.38b)

Let the lateral displacements of the virtual image for small lateral displacements
�x1 and �y1 of the point object be �x′′ and �y′′, respectively, then
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(
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y
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	 (13.39)

For
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� (13.40)

the third term in Eq. (13.33b) generates the real image with the field distribution
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(13.41)

where C3 is a suitable complex constant. Eq. (13.40), re-written as

1
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= �2

�1

�
1
l1

− 1
l2

�− 1
l3

(13.42a)

locates the real image at

lr = �1l1l2l3

�2l2l3 −�2l1l3 −�1l1l2

(13.42b)
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with lateral magnifications

M r
x = M r

y = 1

1− l1
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− �1
�2

l1
l3

	 (13.43)

Note that the lateral magnifications for the real and virtual images are different.
The longitudinal magnifications of the virtual and real images, obtained from
Eqs (13.37b) and (13.42b), are

Mv
z =− �lv

�l1

= �1�2l
2
2l

2
3
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� (13.44)
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z = �lr
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= �1�2l
2
2l

2
3

��2l2l3 −�2l1l3 −�1l1l2�
2
� (13.45)

respectively. Combining Eqs (13.39) and (13.44) and Eqs (13.43) and (13.45),
we obtain relationships between the corresponding longitudinal and lateral
magnifications:
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(
M r

y

)2
	 (13.46b)

In conclusion, we note that the lateral and longitudinal magnifications depend
on the object distance �l1�. This leads to distortion in the reconstructed images
of a 3D object. Furthermore, the longitudinal and lateral magnifications are in
general different, causing additional image distortions. These distortions can be
minimized by a proper choice of the positions of the reference and reconstruction
sources. The image magnifications can also be changed by using different wave-
lengths during recording and reconstruction. In the limit of the plane reference
and reconstruction waves (l2 → �, l3 → �) and �1 = �2, Mx = My = Mz = 1.

13.5.1 Lensless Fourier Transform Hologram

A hologram obtained when the photographic plate records Fresnel diffraction
from the object is called a Fresnel hologram. Thus far, we have considered only
Fresnel holograms. A Fraunhofer hologram is obtained when the photographic
plate is sufficiently far away from the object to record the far-field or Fraunhofer
diffraction from the object. A Fourier transform hologram, on the other hand,
records the Fourier transform of the object field distribution. Recording and
reconstruction from a Fourier transform hologram are shown in Fig. 13.15,
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Fig. 13.15: (a) Recording, and (b) reconstruction from a Fourier transform holo-
gram.

where lens L1 generates the Fourier transform of the object field distribution in
the plane of the photographic plate. The image reconstruction from a Fourier
transform hologram also requires a lens. The reconstructed images are real and
lie in the back focal plane of the lens, symmetrically placed about the axis of
the Fourier transform hologram.

It is possible to record a Fourier transform hologram of an object without the
use of a lens. For the configuration of hologram recording (Fig. 13.13), where
the object and reference points lie in the same transverse plane �l1 = l2 = l�,
Eq. (13.32) for the amplitude transmittance of the hologram gives

T�x� y� l� =A0 +B0 e
i

�l �x2

1+y2
1−x2

2−y2
2+2�x2−x1�x+2�y2−y1�y�

+B∗
0 e− i


�l �x2
1+y2

1−x2
2−y2

2+2�x2−x1�x+2�y2−y1�y� (13.47a)

=A0 +2�B0� cos
[
2

{(x2 −x1

�l

)
x+

(y2 −y1

�l

)
y
}

+ ��x1� x2� y1� y2�+�0

]
	 (13.47b)

The characteristic quadratic phase variation of Fresnel holograms (Eqs 13.5
and 13.32) is absent in Eqs (13.47). Instead, in the plane of the hologram, the
phase varies linearly with the position coordinates. On reconstruction, Fig. 13.14
and Eqs (13.37a) and (13.42a) for the present configuration �l1 = l2 = l� give
lv = lr = −l3, i.e., the real and virtual reconstructed images lie in the plane of the
reconstruction source. If the reconstruction is done with a plane wave �l3 = ��
and a lens is kept behind the hologram, the reconstructed images will lie in the
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Fig. 13.16: (a) Recording, and (b) reconstruction from a lensless Fourier trans-
form hologram.

back focal plane of the reconstruction lens. Furthermore, under these conditions,
Eqs (13.36) and (13.41) predict the reconstructed images to be symmetrically
located about the axis of the hologram. This is exactly what happens for a
Fourier transform hologram (Fig. 13.15b). But, here, the hologram is recorded
without a lens, and hence the name lensless Fourier transform hologram. The
standard configurations for recording and reconstruction from a lensless Fourier
transform hologram of a thin extended object are shown in Fig. 13.16.

For the Fourier transform hologram (Eq. 13.47), the fringe separation in any
direction remains same throughout the hologram and the photographic film is
not required to resolve more fringes per unit distance in the outer regions of
the hologram as it happens for a Fresnel hologram. This results in increased
resolution of images, reconstructed from Fourier transform holograms.

13.5.2 Resolution of a Hologram

In the previous section, a reference was made to hologram resolution. This needs
to be elaborated. The resolution of a hologram, as of any optical system, depends
on its aperture size. For a circular hologram of diameter d, the angular resolution
limit (Eqs 11.89 and 11.93) is of the order of �/d. Larger the diameter of the
hologram, smaller the details that the hologram can resolve. However, it does not
always help to increase the size of a hologram. It was mentioned in Section 13.2
that the separations of the interference fringes in the plane of the hologram
decrease as one moves away from the center of the hologram. Reduced fringe
separations imply higher spatial frequencies. The photographic film may have
poor response at these high spatial frequencies, making the outer regions of the
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hologram redundant, except in the case of a Fourier transform hologram, for
which the fringe separation remains constant throughout the hologram.

13.6 REFLECTION HOLOGRAM

So far, we have considered only coherent light for hologram recording and
wavefront reconstruction. A reflection hologram is also recorded with coherent
light, but wavefront reconstruction can be done with white light. For that reason,
a reflection hologram is also called a white light hologram. As in Lippmann color
photography, a reflection hologram is recorded with the object and reference
waves entering the photographic plate from opposite sides (Fig. 13.17). The
photographic plate used for recording a reflection hologram contains a relatively
thick emulsion layer supported on a glass substrate. For the present discussion,
only a point object is considered but the analysis can be extended to a 3D object.
With origin O located at the position of the point object, the front and back
surfaces of the photographic film lie at z = z1 and z = z1 +�z, where �z is the
thickness of the emulsion layer. The field distribution in the plane z = z1 +z′ of
the photographic plate can be expressed as

E�x� y� z1 + z′� = A1eik1�−�z1+z′� cos �+x sin � + A2

z1

e
ik1

[
z1+z′+ x2+y2

2�z1+z′�

]

� (13.48)
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Fig. 13.17: Recording reflection hologram of a point object.



13.6: REFLECTION HOLOGRAM 555

where 0 ≤ z′ ≤ �z, A1 is the amplitude of the reference wave, A2 is the amplitude
of the spherical wave at unit distance from the point object, and the distance r

in Fig. 13.17 has been approximated to

r = z1 + z′ + x2 +y2

2�z1 + z′�
	 (13.49)

The corresponding intensity distribution in this plane of the photographic plate,
ignoring the factor 1

2 �0c, is
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× �1+ cos ��−x sin � + x2 +y2

2�z1 + z′�
+�0�

(13.50)

where �0 is the constant phase difference between the two waves. For z = z1 +z′,
where 0 ≤ z′ ≤ �z, Eq. (13.50) generates intensity distributions in different planes
of the emulsion. Because of the standing wave character of the interference
pattern, the intensity and hence the emulsion exposure shows periodic variation
with z′. The planes in the photographic plate with similar exposure conditions lie
approximately �/2 distance apart for small angle of inclination of the reference
wave. Therefore, the planes of maximum concentration of Ag atoms in the
hologram, corresponding to the planes of maximum exposure in the photographic
plate, are nearly perpendicular to the hologram axis and �/2 distance apart for
small �. The reflection hologram acts as a volume hologram to the reconstructing
reference wave, much like a crystal appears to the incoming X-rays. The waves
scattered from different crystallographic planes interfere destructively, unless the
X-rays are incident at Bragg angle (Fig. 13.18), satisfying the condition

2d sin � = n�� (13.51)

where d is the separation between the crystallographic planes, � the Bragg angle,
� the wavelength of X-rays, and n is an integer. Assuming linearity in the T–E



556 Chapter 13: HOLOGRAPHY

α

α

d

d

α α

Fig. 13.18: Bragg scattering of X-rays from crystallographic planes.

plot of the photographic emulsion (see Fig. 11.12), the amplitude reflectance of
the layer within the hologram at z = z1 + z′ can be expressed as

R�x� y� z1 + z′� =A0 +B0e
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2�z1+z′�

]

�

(13.52)

where A0 and B0 are suitable constants. Figure 13.19 shows wavefront recon-
struction from a reflection hologram with a collimated beam of white light of
amplitude A incident in the direction of the reference wave during recording.

From the spectrum of white light, only the wavelength at which the hologram
was recorded satisfies the Bragg condition. The field distribution of reflected
light in the layer at z = z1 + z′ of the hologram can be expressed as

E�x� y� z1 + z′� = A eik1�−�z1+z′� cos �+x sin �R�x� y� z1 + z′�� (13.53)

giving the field distribution of reflected light in the plane z = z1 + z′ + z2 as
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(13.54)
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For z2 = z1 + z′, the above distribution reduces to

E�x′′� y′′� 2�z1 + z′�� =C1�z
′�eik1x′′ sin � +C2�z

′�e
ik1

4�z1+z′� �x′′2+y′′2�

+C3�z
′���x′′ −2�z1 + z′� sin �� y′′��

(13.55)

where C1�z
′�, C2�z

′�, and C3�z
′� are suitable complex constants. The first term

in Eq. (13.55) is the component of white light reflected by the hologram layer
at z = z1 + z′ with k = k1. The second term originates from the virtual image
located on the axis of the hologram at the exact location of the original point
object. All layers within the hologram produce virtual images exactly at the
position of the original object. The third term generates the real image at the
off-axial position x′′ = 2�z1 + z′� sin �� y′′ = 0. The reflected field distributions
are shown in Fig. 13.19. The net field of the virtual image is the superposition
of fields produced by different layers of the hologram, i.e.,

E��z = 0� =
∫ �z

0
C2�z

′� dz′	 (13.56)

A reflection hologram can also be recorded by illuminating the object with two
or more coherent waves of different wavelengths, simultaneously. It will also
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be necessary to have one coherent reference wave for each of the wavelengths.
The resultant field in any layer of the photographic emulsion will have the form
(Eq. 13.48),

E�x� y� z1 + z′� =∑
j

[
Aje

ikj �−�z1+z′� cos �+x sin �

+Cj

z1

e
ikj

[
z1+z′+ x2+y2

2�z1+z′�

]]
�

(13.57)

where Aj and Cj are amplitudes of the reference and object waves corresponding
to wave number kj . Since coherent waves of different wavelengths are derived
from independent sources, no steady interference among fields corresponding to
different wavelengths can exist. The amplitude reflectance of such a hologram
can be expressed as

R�x� y� z1 + z′� =A0 +∑
j

[
Bje

ikj
2�z1+z′� �x2+y2−2�z1+z′�x sin �

+ B∗
j e− ikj

2�z1+z′� �x2+y2−2�z1+z′�x sin �

]
�

(13.58)

where A0 and Bj are complex constants. Upon illumination with white light,
such a hologram generates multi-color images in reflected light – one for each
wavelength used in the recording of the hologram.

Since a reflection hologram is a volume hologram, the direction of the recon-
struction wave must exactly coincide with the direction of the reference wave
during hologram recording, otherwise the Bragg condition remains unsatisfied.
Several scenes can be stored in the same hologram by changing the direction
of the reference wave for different scenes. All these scenes can be retrieved
from the hologram by reconstructing with white light of changing direction. A
reflection hologram can therefore be used as a holographic memory.

13.7 RAINBOW HOLOGRAPHY

A transmission hologram recorded at one wavelength can be viewed at another
wavelength. However, the position of a reconstructed image, usually quite far
from the hologram, varies with the wavelength of the reconstruction wave (see
Sections 13.2.2 and 13.5). White light cannot be used for image reconstruction
from a normal transmission hologram because the wavelength-dependent shifts
of the image completely obscure the image details. A rainbow hologram is a
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through a narrow horizontal slit. The real image shown in the figure is the object
image formed by H1. The reference wave R is convergent coherent light.

specially prepared transmission hologram recorded with monochromatic light
which can be viewed with white light. In rainbow holography, first a transmission
hologram of the object, called the master hologram (or the primary hologram),
is recorded in the usual manner. The hologram H1 in Fig. 13.20 is the master
hologram. A second hologram H2, called the rainbow hologram, is recorded
in the following manner. The master hologram is illuminated, just as in the
normal reconstruction process, by the conjugate of the reference wave used in its
recording, except that the reconstruction wave is restricted by an opaque screen
with a narrow horizontal slit kept in front of the master hologram, as shown in the
figure. Thus, only a part of the master hologram gets illuminated, reducing the
image resolution and brightness to some extent. The master hologram produces
the real image of the object as shown in the figure. The photographic plate
H2 is kept very close, but just behind this image. The hologram of this real
image is now recorded on the photographic plate H2 with a convergent reference
wave R derived from the same coherent wave which illuminates the primary
hologram H1. The photographic plate H2 after development is the rainbow
hologram.

For reconstruction, the rainbow hologram is illuminated by divergent white
light counter-propagating to the convergent coherent wave R used during the
recording of the hologram. This is shown in Fig. 13.21. The rainbow hologram
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Fig. 13.21: Reconstruction from rainbow hologram H2; divergent white light
reconstruction wave R∗ counter-propagates the convergent reference wave R
used in the recording of hologram.

generates multiple real images of the object, one for each wavelength of white
light. These images lie very close to the rainbow hologram since the object
for the rainbow hologram, i.e., the image formed by the master hologram was
very close to hologram H2 during recording. The wavelength-dependent shifts of
these images for different wavelengths of white light are minimized since these
images lie very close to the rainbow hologram. Furthermore, these images are
real orthoscopic images of the original object because these are real images of
the pseudoscopic image formed by the master hologram. At the same time, the
rainbow hologram generates the same number of real images of the slit somewhat
away from it. The slit images for different wavelengths are transversely shifted
from each others (see Eq. 13.43). Figure 13.21 shows a spread of the slit images
for different colors. Through the image of the slit, formed by a particular color
of white light, an orthoscopic real image of the object in only that color will be
visible. By moving the eye up and down to see through different slit images,
real orthoscopic images of the object in different colors can be seen. This is
the rainbow effect. In rainbow holography, the vertical parallax is lost, but the
horizontal parallax is still available.

13.8 HOLOGRAPHIC INTERFEROMETRY

Among the myriad applications (some realized, others waiting to be exploited) of
holography, holographic interferometry is perhaps the most significant. Classical
interferometry is confined to optically flat and specularly reflecting surfaces.
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Holographic interferometry, on the other hand, can be applied to diffusely reflect-
ing rough surfaces. Another advantage of holographic interferometry lies in the
fact that not all interfering wavefronts need be real time wavefronts. Holographic
interferometry deals with some or all holographically generated interfering light
fields.

13.8.1 Double Exposure Holographic Interferometry

A hologram of an unstrained object is first recorded. The object is then subjected
to some form of stress and a second hologram is recorded on the same pho-
tographic plate, ensuring in the process that the object and photographic plate
remain in their original positions. The intensity distributions in the plane of the
photographic plate during the two exposures are

I1�x� y� z� =
(

1
2

�0c

)[�E01�x� y� z�+Er�x� y� z��2]

=
(

1
2

�0c

)[�E01�x� y� z��2 +�Er�x� y� z��2

+E01�x� y� z�E∗
r �x� y� z�+E∗

01�x� y� z�Er�x� y� z�

(13.59)

and

I2�x� y� z� =
(

1
2

�0c

)
��E02�x� y� z��2 +�Er�x� y� z��2 +E02�x� y� z�

×E∗
r �x� y� z�+E∗

02�x� y� z�Er�x� y� z�� (13.60)

respectively, where E01�x� y� z� and E02�x� y� z� are the object fields incident on
the photographic plate during the two exposures, and Er�x� y� z� is the field of
the reference wave. The linear amplitude transmittance of the photographic plate
after development is

T�x� y� z� =A0 +B0��E01�x� y� z�+E02�x� y� z��E∗
r �x� y� z�

+ �E∗
01�x� y� z�+E∗

02�x� y� z��Er�x� y� z��
(13.61)

where A0 and B0 are real constants. The doubly exposed hologram is illuminated
with the reference (or its spatial conjugate) wave used in recording the hologram.
These two reconstruction waves produce least aberrations in the reconstructed
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images. With the reference wave also used as the reconstruction wave, the field
distribution just behind the hologram is given by

E�x� y� z� =A0Er�x� y� z�+B0�E01�x� y� z�+E02�x� y� z��

×�Er�x� y� z��2 +B0�E
∗
01�x� y� z�+E∗

02�x� y� z��

×E2
r �x� y� z�	

(13.62)

The field distribution in any plane behind the hologram can be obtained as
described in Section 13.4. The second term in Eq. (13.62) gives rise to the virtual
image in the original position of the object if the reconstruction is done in the
recording geometry. From Eq. (13.27), the field distribution of the virtual image
can be written as

Ev�x
′� y′� z′� = C�E01�x

′� y′� z′�+E02�x
′� y′� z′��� (13.63)

where C is a complex constant. Since the object movement during the stress
is quite small, the two object field distributions differ in phase, and not in
amplitude. Accordingly, we can write

E01�x
′� y′� z′� =�EO�x′� y′� z′�� e−i�1�x′�y′�� (13.64a)

E02�x
′� y′� z′� =�EO�x′� y′� z′�� e−i�2�x′�y′�	 (13.64b)

The intensity distribution of the virtual image then takes the form

Iv�x
′� y′� z′� = 2�C�2IO�x′� y′� z′��1+ cos��2�x

′� y′�−�1�x
′� y′��� (13.65)

where IO�x′� y′� z′� is the intensity distribution of the unstrained object. If
the object remains unstrained during the second exposure also ��2�x

′� y′� =
�1�x

′� y′��, then the virtual image possesses the intensity distribution of the
original object.

The strain ��2�x
′� y′� �= �1�x

′� y′�� during the second exposure gives rise to
interference fringes superimposed on the virtual image. The contours of the
fringes reflect the nature of the strain produced in the object. In particular, the
portions of the object which remain undisplaced during the strain show bright
fringes. A similar fringe pattern, superimposed on the real image, can also be
seen if the reconstruction is done with the conjugate of the reference wave
used in the recording. Double exposure holographic interferometry finds use in
non-destructive testing of materials.
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Fig. 13.22: Double exposure holographic interferogram of incandescent lamp
before and after switching it on – taken from Handbook of Optical Holog-
raphy, Ed., H. J. Caulfield, p. 472, Courtesy Gerald Brandt and Academic
Press.

Another interesting example of double exposure holographic interferometry
is shown in Fig. 13.22 (Courtesy, Gerald Brandt and Academic Press). Here the
object is the incandescent lamp and the exposures are taken before and after
switching it on. The heat produced by the filament changes the index of refraction
of the ambient gas, creating additional phase changes for the second exposure.
The interference between the reconstructed wavefronts shows the contours of
refractive index (and hence thermal) changes around the filament.

13.8.2 Real-Time Holographic Interferometry

In real-time holographic interferometry, a hologram of the unstrained object
is first recorded. This hologram must be placed in the exact position of the
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photographic plate during the recording of the hologram which is quite difficult.
The photographic plate is therefore usually processed in position. The object
must also remain in its fixed position and be illuminated continuously. The
hologram is then illuminated by the reference wave to reconstruct the virtual
image exactly overlapping with the object. The observer behind the hologram
receives light diffracted by the object in position and also the light diffracted
by the hologram. Both these field distributions will be identical if the object
remains unstrained. If now the object is subjected to a constant or a time-varying
stress, fringes reflecting real-time strain appear on the object.

13.8.3 Time-Average Holographic Interferometry

The time-average holographic interferometry, applicable to vibrating objects, is
similar to the multiple-exposure holographic interferometry discussed earlier.
The hologram of a vibrating object is recorded for a time �T , much larger than
the period of vibration of the object. This is equivalent to recording a large
number of sub-holograms of the object, one for each state of its vibration. Since
all these sub-holograms are recorded under coherent conditions, the reconstructed
wavefronts interfere producing fringes superimposed on the reconstructed images
of the object. The distribution of the field over a planar object, undergoing
sinusoidal vibrations, can be expressed as

EO�x� y� t� = �EO�x� y�� e−i���x�y�+kd�x�y� cos �t�� (13.66)

where ��x� y� describes the phase distribution of the scattered field for the sta-
tionary object and d�x� y� gives the amplitude distribution of sinusoidal vibration
of angular frequency �. For sufficiently large �T as compared to the period of
vibration �T� of the object, the intensity distribution in the plane of the holo-
gram is essentially determined by the intensity averaged over one period of
vibration, i.e.,

I�x� y� =	I�x� y� t�
T

=�EO�x� y��2 +�Er�x� y��2 +�EO�x� y�� e−i��x�y�E∗
r �x� y�

× 1
T

∫ T

0
e−ikd�x�y� cos �t dt +�EO�x� y��ei��x�y�Er�x� y�

× 1
T

∫ T

0
eikd�x�y� cos �t dt	

(13.67)



13.8: HOLOGRAPHIC INTERFEROMETRY 565

The integral

�0 = 1
T

∫ T

0
eikd�x�y� cos �t dt

= 1

2


∫ 2


0
eikd�x�y� cos �t d��t�

can be replaced by the Bessel function (Eq. 10.39)

J0�x� = 1
2


∫ 2


0
eix cos � d�

of zero order.
On illuminating the hologram with the reference wave or its phase conjugate,

the intensity distribution of a reconstructed image will have the form

I�x′� y′� = IO�x′� y′�J 2
0 �kd�x′� y′��� (13.68)

where IO�x′� y′� is the image intensity distribution of the object in equilibrium.
The fringes superimposed on the image will have the characteristic variation of
J 2

0 �kd�x′� y′��, shown in Fig. 13.23. The zeroes and maxima of J0 determine the
contours of the dark and bright fringes, respectively. The central bright fringe
corresponds to the zero of the argument of J0, i.e., to the nodes of the vibrating
object. Successive bright fringes are considerably weaker.

Figure 13.24 (Courtesy – J Shamir and Academic Press) shows the vibrational
modes of a guitar observed by time-averaged holographic interferometry.
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Fig. 13.23: Variation of square of Bessel function of zero order.
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Fig. 13.24: Vibrational modes of a guitar by time-averaged holographic inter-
ferometry – taken from Optical Transforms, Ed., H. Lipson, p. 333, Courtesy J.
Shamir and Academic Press.

13.9 HOLOGRAPHIC OPTICAL ELEMENTS

It has already been stated that a Fresnel hologram of a point object acts as a lens
(Section 13.2.1). One needs to record the holographic interference pattern on a
suitable and stable recording material such as hardened dichromated gelatin on
a transparent substrate. Holographic lenses are used for only special applications
such as the over-head display devices. The imaging characteristics of a holo-
graphic lens depend on the wavelength of light. In comparison to holographic
lenses, holographic diffraction gratings, another class of holographic optical ele-
ments, are routinely employed in spectroscopic work. The interference pattern, in
this case, is recorded on a high-contrast photo-sensitive material such as a pho-
toresist on a transparent substrate. A Fresnel hologram of a point object, recorded
with a plane reference wave, acts as a sinusoidal diffraction grating (Eq. 13.5b).
A square holographic diffraction grating is produced when the photo-sensitive
layer is thinner than the period of the interference pattern. Since it is quite easy
to generate an interference pattern with narrow spacing, holographic gratings
can have fine grooves over large areas. Furthermore, the holographic gratings
avoid the systematic errors produced by the ruling engines, which give rise to
ghost lines in the spectrum recorded with ruled gratings. However, the groove
profile is more difficult to control in holographic gratings.



13.11: PROBLEMS 567

13.10 REFERENCES

13.1 Francis T. S. Yu, Optical Information Processing, John Wiley & Sons, New York,
1983.

13.2 P. Hariharan, Optical holography, Cambridge University Press, Cambridge, 1984.
13.3 Robert J. Collier, Christoph B. Burckhardt, Lawrence H. Lin, Optical Holography,

Academic Press Inc., New York, 1971.
13.4 H. J. Caulfield (Ed.), Handbook of Optical Holography, Academic Press,

New York, 1979.
13.5 Yu I. Ostrovsky, M. M. Butusore, G. V. Ostrovskaya, Interferometry by Hologra-

phy, Springer-Verlag, Heidelberg, 1980.
13.6 Robert Jones and Catherine Wykes, Holographic and Speckle Interferometry,

Cambridge University Press, Cambridge, 1983.
13.7 J. Shamir, Optical Transforms (Ed. H. Lipson), Academic Press London, 1972.

13.11 PROBLEMS

13.1 Find the amplitude transmittance of an on-axis hologram of a point object when
the distance between the object and photographic plate is large enough for the
Fraunhofer approximation to hold. Show that for a Fraunhofer hologram, the
background of the reconstructed real image is not much of a hindrance to view the
point scatterers such as the aerosol particles in the virtual image.

13.2 Show that in a hologram with amplitude transmittance described by Eq. (13.5b),
the fringe separation for large distances from the center of the hologram varies
approximately inversely with the distance from the center of the hologram.

13.3 The off-axis hologram of a point object recorded in Fig. 13.6 is illuminated
as in Fig. 13.7, except that the reconstruction wave has wavelength different
from the wavelength of the reference wave used in the recording of the holo-
gram. The direction of propagation of the reconstruction wave is the same as
in Fig. 13.7. Obtain the field distributions behind the hologram and locate the
positions of the reconstructed images. Take the recording wavelength as 550 nm.
Find the longitudinal and transverse spreads of the image positions if the recon-
struction wave has wavelength spread from 400 to 750 nm. Take z1 = 30 cm and
� = 30�.

13.4 An off-axis hologram of a point object is recorded as in Fig. 13.6 with a monochro-
matic plane reference wave of wavelength 488.0 nm making an angle of 30�

with the axis of the photographic plate. The hologram is illuminated by a point
monochromatic source of wavelength 632.8 nm kept 50 cm in front of the hologram
and 5 cm above the axis of the hologram. Obtain the field distributions behind the
hologram. Find the positions and magnifications (lateral and longitudinal) of the
reconstructed images.

13.5 Consider the hologram recording and reconstruction configurations of Figs 13.10
and 13.12, respectively. Show that the real image reconstructed by the spatial
conjugate of the reference wave is formed in the original position of the object. Is
this image pseudoscopic or orthoscopic?
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13.6 Consider the hologram recording configuration of Fig. 13.25. The small object
O lies 30 cm in front of the photographic plate and 5 cm above the axis of the
photographic plate. The reference wave of 457.9 nm diverging from the reference
point PR illuminates the object as well.

Photographic
       plate

PR

z

x

y
Object

5 cm

20 cm 30 cm

O

10 cm

Fig. 13.25.

(a) Choose a suitable origin of coordinates and find the linear amplitude transmit-
tance of the hologram. You may assume the object and reference point to lie
in the xz plane.

(b) The hologram is illuminated with 632.8 nm line of a He–Ne laser diverging
from the reconstruction point also lying in the xz plane, 75 cm in front of the
hologram and 10 cm above its axis. Compute the positions and magnifications
(lateral and longitudinal) of the reconstructed images.

(c) Compute the new positions and magnifications of the reconstructed images if
the following changes are made.

(i) The reference and reconstruction points are moved back by 1 m each
from their respective positions without changing their distances from the
axis of the hologram.

(ii) Only the object is moved back by 20 cm without changing its distance
from the axis of the photographic plate.

(d) Find the positions and magnifications in all the above cases if the reference
and reconstruction wavelengths are made same.

13.7 The reflection hologram of Fig. 13.17 is illuminated with the reconstruction
wave which is the phase conjugate of the reference wave used in its recording
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(i.e. with propagation vector −⇀

k). Find the field distributions behind the hologram
and determine the positions of the reconstructed images.

13.8 Find the amplitude transmittance of the hologram recorded in the configuration of
Fig. 13.16a. Comment if this hologram records the Fourier transform of the object
field distribution.
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Nonlinear Optics

14.1 INTRODUCTION

Our description of optics (read linear optics) thus far has been constrained by
Eq. (1.9a)

⇀

P�
⇀
r� t� = �0�

�1�
⇀

E�
⇀
r� t�� (1.9a)

which restricts the polarization
⇀

P�
⇀
r� t� to have linear dependence on the electric

field
⇀

E�
⇀
r� t�. This holds for weak light fields, but for light fields not so weak

yet sufficiently weak, the more general Eq. (1.8)

Pi =
[
�0�

�1�
ij Ej

]
+ �0

[
�

�2�
ijk EjEk +�

�3�
ijklEjEkEl +· · ·

]

=
[(

⇀

PL

)
i

]
+
[(

⇀

PNL

)
i

]
(1.8)

with implied summation over repeated indices prevails, where
⇀

PL and
⇀

PNL are the
linear and nonlinear polarizations, respectively. This is the regime of nonlinear
optics [14.1–6]. Each component of the nonlinear polarization

⇀

PNL may depend
on quadratic and higher order products of the components of the amplitude of
the electric field, making nonlinear optics, except perhaps for the vacuum, a
universal phenomenon. Of course, some media may show discernible nonlinear
effects at relatively low optical field strengths while others may need intense
light fields produced by pulsed lasers to exhibit the nonlinear behavior. Quantum
mechanics must be used for a proper description of nonlinear optics but that is
beyond the scope of this book. Here, we shall describe nonlinear optics through
Maxwell’s equations (Eqs 1.10). In linear optics the index of refraction and
the absorption coefficient of a medium are constant at a given temperature and
frequency, but in nonlinear optics the index of refraction and to some extent the

571
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absorption coefficient of a medium begin to depend on the strength of the light
field. For media with absorption frequencies much above the light frequencies,
light fields comparable in strength to the atomic fields �Eat ∼ e/4��0a

2
0, where

a0 = �2/me2 is the Bohr radius of the hydrogen atom) are needed to generate the
lowest order nonlinear polarization equal in strength to the linear polarization.
Whereas Eat ∼ 107 V/cm, the electric field strength of a laser beam of intensity
2	5 W/cm2 is only about 1 V/cm. Thus even with laser sources, nonlinear optical
effects may remain small perturbations over linear optical effects. Under resonant
excitation, optical nonlinearity of a medium is associated with the ability of the
light field to transfer a significant fraction of the atomic population from the
ground to the excited states. This may be accomplished with relatively weaker
light fields [14.7]. We shall extend the wave equation (Eq. 1.11a)


2 ⇀

E −��
�2

⇀

E

�t2
= 0 (1.11a)

of linear optics to incorporate the nonlinear polarization
⇀

PNL as a source term to
describe some of the commonly observed nonlinear optical phenomena, such as
second-harmonic generation, sum- and difference-frequency generations, para-
metric amplification, optical phase conjugation, etc. In these processes, the role of
the medium is important but only passive. It simply facilitates interaction among
the coherent waves to generate new coherent waves without influencing the fre-
quencies of the new waves. The classical explanation for the generation of the
new waves stipulates acceleration of the atomic electrons not only at the frequen-
cies of the input fields but also at their sum and difference frequencies. However,
the quantum mechanical explanation is much neater. Two or more light photons
coalesce, conserving energy to generate a photon of the sum frequency. In the
difference-frequency generation, a high-energy photon is destroyed (absorbed)
and simultaneously two low-energy photons are created (emitted). The pres-
ence of the photons in the medium at one of the low frequencies stimulates the
difference-frequency generation, although their presence is not absolutely essen-
tial. Needless to state that the superposition principle is invalidated in nonlinear
optics.

There are other nonlinear optical processes such as the stimulated Raman
and Brillouin scattering processes in which the medium plays a more active
role in determining the actual frequencies of the new waves. In these processes,
the medium also participates in the conservation of the overall energy. These
processes are best understood in the quantum mechanical description of nonlinear
optics, hence their exclusion from our consideration. The observation of second-
harmonic light at 347.1 nm by Franken et al. [14.8] when light from a ruby laser
at 694.2 nm was passed through a quartz crystal is taken to herald the emergence
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of the field of nonlinear optics, although optical pumping of atoms by resonant
light, a nonlinear optical process indeed, was achieved before the lasers came
into existence [14.9].

14.2 NONLINEAR POLARIZATION

In Section 1.9, our treatment of dispersion based on the Lorentz model of an atom
yielded polarization which varies linearly with the electric field (Eq. 1.105). The
harmonic restoring force �−m2

0
⇀
r� used in that derivation (Eq. 1.103) restricts

the strength of the light field to low values, otherwise the restoring force may
not remain harmonic. The scalar form of Eq. (1.103), modified to the lowest
order of anharmonicity, is

d2x

dt2
+�

dx

dt
+2

0x+ax2 = q

m
E′�t�� (14.1)

where E′�t� is the local field (Eq. 1.104) experienced by the oscillating electron
of charge q, mass m, and a is a constant which goes to zero in the harmonic
limit. This equation is applicable to noncentrosymmetric media only because it
uses a restoring force �−m2

0x −max2� which lacks the inversion symmetry.1

In particular, this equation cannot be applied to isotropic and cubic media.
For centrosymmetric media, the corresponding restoring force �−m2

0x−mbx3�
involves a cubic term in place of the square term. We should note that Eq. (14.1) is
nonlinear and the strength of the nonlinearity is determined by the anharmonicity
constant a. The nonlinear term enables the light fields present in the medium
to interact with each other and generate in the process fields which may not
be present in the incident light. In linear optics, waves can interfere but cannot
produce new waves. Let the input field consist of two monochromatic plane
waves, so that

E′�t� = 1
2

[
E′ �1� e−i1t +E′ �2� e−i2t + cc

]
� (14.2)

where E′�1� and E′�2� are amplitudes of the local fields of frequen-
cies 1 and 2, respectively. E′∗�1� = E′�−1��E′∗�2� = E′�−2�, and cc
stands for complex conjugate. The spatial dependence of the fields has been
suppressed.

1 A force possessing inversion symmetry changes sign but not the magnitude when position vector
⇀
r changes to �−⇀

r �	
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For off-resonance excitation �1�2 � 0� of the medium, the nonlinear term
is generally small �ax2 � 2

0x� and it is possible to express the solution of
Eq. (14.1) in the form

x�t� = x�1��t�+x�2��t�+x�3��t�+· · · � (14.3)

where the dominant term x�1��t� is the solution of Eq. (14.1) with a = 0. The
remaining terms written in decreasing order of magnitude are expected to be
much smaller. Substituting

x = x�1��t� = 1
2

[
x�1� �1� e−i1t +x�1� �2� e−i2t + cc

]

into Eq. (14.1) with a = 0 gives

�−2
1 − i�1 +2

0�x
�1��1�e−i1t + �−2

2 − i�2 +2
0�x

�1��2�e−i2t + cc

= q

m

[
E′�1�e−i1t +E′�2�e−i2t + cc

]
	 (14.4)

Equating coefficients of e−i1t and e−i2t on both sides, we obtain

x�1� �1� = qE′ �1� /m

2
0 −2

1 − i�1

� x�1� �2� = qE′ �2� /m

2
0 −2

2 − i�2

	 (14.5)

Therefore

x�1� �t� = 1
2

[
qE′ �1� /m

2
0 −2

1 − i�1

e−i1t + qE′ �2� /m

2
0 −2

2 − i�2

e−i2t + cc
]

	 (14.6)

Suppressing the spatial dependence, the linear polarization generated in the
medium can be expressed as

PL�t� = 1
2

[
PL�1�e−i1t +PL�2�e−i2t + cc

]
� (14.7)

where P∗
L�1� = PL�−1�, P∗

L�2� = PL�−2�. The amplitudes of the linear
polarizations generated at the frequencies 1 and 2 are

PL �1� =Nqx�1� �1� =
(
Nq2/m

)
E′ �1�

2
0 −2

1 − i�1

= N��1� �1�E′ �1� �

PL �2� =Nqx�1� �2� =
(
Nq2/m

)
E′ �2�

2
0 −2

2 − i�2

= N��1� �2�E′ �2� �

(14.8)
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where N is the number of electrons per unit volume of the medium and the
linear or the first-order molecular polarizabilities at the frequencies 1 and 2

are given by

��1� �1� =
(
q2/m

)

2
0 −2

1 − i�1

� ��1� �2� =
(
q2/m

)

2
0 −2

2 − i�2

	 (14.9)

14.2.1 Second-Order Nonlinear Polarization

We express the nonlinear interaction term ax2 as

ax2 = a
[
x�1� +x�2� +x�3� +· · ·]2 = a�x�1��2 +2ax�1�x�2� +· · · 	 (14.10)

Equation (14.6) gives

�x�1��2 =1
4

[
a1 e−i1t +a∗

1 ei1t +a2 e−i2t +a∗
2 ei2t

]2 = 1
2

�a1a
∗
1 +a2a

∗
2�

+ 1

4

[
a2

1 e−i21t +a2
2 e−i22t +2a1a2 e−i�1+2�t +2a1a

∗
2 e−i�1−2�t + cc

]
�

(14.11)

where

a1 = qE′ �1� /m

2
0 −2

1 − i�1

� a2 = qE′ �2� /m

2
0 −2

2 − i�2

	 (14.12)

The second- and higher order terms in Eq. (14.10) are considerably smaller
than the first term. The second-order term x�2��t� is obtained by solving the
equation

d2x�2�

dt2
+�

dx�2�

dt
+2

0x
�2� = −a�x�1��2	 (14.13)

It follows from Eqs (14.11) and (14.13) that x�2��t� must have terms which
oscillate at the frequencies 21� 22� �1 +2�� �1 −2� and 0. Accordingly,
we can write

x�2��t� =x�2��0�+ 1
2

[
x�2��21�e−i21t +x�2��22�e−i22t

+x�2��1 +2�e−i�1+2�t +x�2��1 −2�e−i�1−2�t + cc
]
� (14.14)

where x�2��0� is the nonoscillating part of x�2��t�� x�2��21� is the amplitude of
the term which oscillates at frequency 21, and so on. Substituting Eq. (14.14)
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into Eq. (14.13) and equating coefficients of the various exponential terms on
both sides, we get

x�2� �0� = 1
2

�−a� �q/m0�
2 E′ �1�E′∗ �1�(

2
0 −2

1 − i�1

) (
2

0 −2
1 + i�1

)

+ 1

2
�−a� �q/m0�

2 E′ �2�E′∗ �2�(
2

0 −2
2 − i�2

) (
2

0 −2
2 + i�2

) � (14.15a)

x�2� �2i� = 1
2

�−a� �q/m�2 E′ �i�E′ �i�(
2

0 −42
i − i2�i

) (
2

0 −2
i − i�i

)2 � (14.15b)

x�2� �1 +2� = �−a� �q/m�2 E′ �1�E′ �2�

�2
0 − �1 +2�

2 − i� �1 +2��

× 1(
2

0 −2
1 − i�1

) (
2

0 −2
2 − i�2

) � (14.15c)

x�2� �1 −2� = �−a� �q/m�2 E′ �1�E′∗ �2�[
2

0 − �1 −2�
2 − i� �1 −2�

]

× 1(
2

0 −2
1 − i�1

) (
2

0 −2
2 + i�2

) (14.15d)

The second-order nonlinear polarization can be expressed as

P
�2�
NL�t� =P

�2�
NL�0�+ 1

2

[
P

�2�
NL�21�e−i21t +P

�2�
NL�22�e−i22t

+P
�2�
NL�1 +2�e−i�1+2�t +P

�2�
NL�1 −2�e−i�1−2�t + cc

]
	

The amplitudes of the various polarizations are as given below:

P
�2�
NL �0� =Nqx�2� �0� = N

[
��2� �0�1�−1�E′ �1�E′∗ �1�

+��2� �0�2�−2�E′ �2�E′∗ �2�
]
� (14.16a)

P
�2�
NL �2i� =Nqx�2� �2i� = N��2� �2i�i�i�E′ �i�E′ �i� �

P
�2�
NL �1 +2� = Nqx�2� �1 +2� (14.16b)

=N��2� �1 +2�1�2�E′ �1�E′ �2� �

P
�2�
NL �1 −2� = Nqx�2� �1 −2� (14.16c)

=N��2� �1 −2�1�2�E′ �1�E′∗ �2� � (14.16d)
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where the second-order molecular polarizabilities are given below:

��2� �0�1�−1� = �−a�
(
q3/2m22

0

)
(
2

0 −2
1 − i�1

) (
2

0 −2
1 + i�1

) � (14.17a)

��2� �0�2�−2� = �−a�
(
q3/2m22

0

)
(
2

0 −2
2 − i�2

) (
2

0 −2
2 + i�2

) � (14.17b)

��2� �2i�i�i� = �−a�q3/2m2

(
2

0 −42
i − i2�i

) (
2

0 −2
i − i�i

)2 � (14.17c)

��2� �1 ∓2�1�2� =
[

�−a�q3/m2

�2
0 − �1 ∓2�

2 − i��1 ∓2��

× 1

�2
0 −2

1 − i�1��
2
0 −2

2 ± i�2�

]
(14.17d)

Thus as a result of the nonlinear interaction, applied fields at the frequencies 1

and 2 generate polarizations in the medium at the frequencies 21, 22� �1 ∓
2�, and 0. These polarizations (oscillating dipoles) in turn radiate new fields
at the second harmonics, and sum and difference frequencies. It is interesting to
note that the oscillating fields generate dc fields via the nonlinear interaction.
The creation of zero-frequency polarization is called optical rectification.

At this point we make an observation, the relevance of which will become
apparent as we proceed. We note that in Eqs (14.16) for the nonlinear polariza-
tions, positive signs with the frequencies in the arguments of ��2� are accompa-
nied with the product of the amplitudes of the electric fields at those frequencies,
but the complex conjugate of the electric field amplitude appears whenever a
frequency in the argument of ��2� carries negative sign. For example in the
difference-frequency generation term (Eq. 14.16d), the product of the field ampli-
tudes contains E′∗ �2� as 2 in the argument of ��2��1 −2� has negative sign.
This feature is shared by the higher order polarizations as well.

Equations (14.8) and (14.16) express the polarizations generated in a medium
in terms of the microscopic polarizabilities and the local electric fields. Equa-
tion (1.8), on the other hand, links polarization to the macroscopic susceptibili-
ties of the medium and the applied electric fields. The local and applied electric
fields differ in dense media (Eq. 1.104). We now reconcile the two definitions of
polarization. The results of Eqs (14.8) and (14.16) can be generalized in the form

P �� =N
[
��1� ��E′ ��+��2� ��1�2�E′ �1�E′ �2�

+��3� ��1�2�3�E′ �1�E′ �2�E′ �3�+· · ·] �
(14.18a)
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where the first term on the right-hand side gives the linear polarization at
frequency  generated by a local field of amplitude E′ �� oscillating at the
same frequency. The strength of the linear polarization is determined by the
linear polarizability ��1���. The second term gives the second-order nonlinear
polarization generated in the medium at frequency  in the presence of local
electric fields of frequencies 1 and 2; ��2���1�2� is the corresponding
second-order polarizability. Similar explanations can be offered for the higher
order terms as well. It should be understood that once an optical field at frequency
 has been generated through any of the nonlinear processes, linear polarization
at frequency  (the first term in Eq. 14.18a) is generated in the medium even
though there is no input field at this frequency. By substituting in the first term
on the right-hand side of Eq. (14.18a) the expression (Eq. 1.104) for the local
field in terms of the applied field, we obtain

P �� = N��1� ��

[
E ��+ P ��

3�0

]
+N��2� ��1�2�E′ �1�E′ �2�

+N��3� ��1�2�3�E′ �1�E′ �2�E′ �2�+· · · (14.18b)

Collecting the polarization terms on the left-hand side gives

P�� =N��1���
E��

1− N��1���

3�0

+ 1

1− N��1���

3�0

[
N��2���1�2�

×E′�1�E
′�2�+N��3���1�2�3�E

′�1�E
′�2�E

′�3��+· · · ] 	
(14.18c)

In going from Eq. (14.18b) to Eq. (14.18c), we seem to have replaced the local
field E′�� in the first term by �E��/�1− N��1���

3�0
��. The local fields appearing

in all terms and not just in the first term of Eq. (14.18a) should have been
expressed in terms of the applied fields, but doing so would enormously increase
the computational difficulties. Therefore, we ignore contributions to the local
fields from the higher order terms, in which case, we can make the replacement

E′ �i� = E �i�

1− N��1��i�

3�0

(14.19)
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in all terms of Eq. (14.18c), giving

P �� =
[

1− N��1� ��

3�0

]−1
⎡
⎣N��1� ��E ��

+ N��2� ��1�2�E �1�E �2�[
1− N��1��1�

3�0

][
1− N��1��2�

3�0

] +· · ·
⎤
⎦ 	

(14.20)

Now since the applied fields and not the local fields appear in Eq. (14.20), we
can compare it with Eq. (1.8), reproduced here as

P �� = �0

[
��1� ��E ��+��2� ��1�2�E �1�E �2�+· · ·] � (14.21)

giving the desired relationships among the macroscopic susceptibilities and the
microscopic polarizabilities:

��1� �� = N��1� �� /�0

1− N��1���

3�0

� (14.22a)

��2� ��1�2� = N��2� ��1�2� /�0(
1− N��1���

3�0

)(
1− N��1��1�

3�0

)(
1− N��1��2�

3�0

) � (14.22b)

��n� ��1�2� � � � 	�n�

= N��n� ��1�2� � � � �n� /�0(
1− N��1���

3�0

)(
1− N��1��1�

3�0

)(
1− N��1��2�

3�0

)
· · ·
(

1− N��1��n�

3�0

) � (14.22n)

where the polarizabilites ��2� for the second-order nonlinear processes are given
in Eqs (14.17). The higher order polarizabilities ��n� can be defined in a similar
manner. The first frequency in the arguments of ��n� and ��n� for n > 1 is the
frequency at which the nonlinear polarization is created in the medium and
the remaining frequencies in the arguments are the frequencies of the fields
which generate this polarization. We shall further sharpen this notation as we
proceed.
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To get a feel for the strengths of the nonlinear polarizations produced in an
optically transparent medium, we consider the nonlinear polarization at twice
the frequency of the applied field. From Eqs (14.8) and (14.16), we find

P�2�

P�1�
= P �2�

P ��
= Nqx�2� �2�

Nqx�1� ��

= �−a� �q/2m�E′ ��(
2

0 −42 − i2�
) (

2
0 −2 − i�

) 	
(14.23)

For the optically transparent media the absorption frequencies lie in the ultra-
violet, so that 0 � 2, in which case the denominator in Eq. (14.23) can be
replaced by 4

0, and Eq. (14.23) reduces to

P �2�

P ��
=
∣∣∣∣

aq

2m4
0

∣∣∣∣E′ �� � (14.24)

where 0 is the lowest frequency of absorption of the medium. Based on our
comment in the introduction, an estimate of the anharmonicity constant a can be
made by equating the first-and second-order polarizations produced in a medium
when the applied fields approach the atomic fields. Under these conditions,
Eq. (14.24) gives

∣∣∣∣
aq

2m4
0

∣∣∣∣Eat ≈ 1� (14.25)

so that

P �2�

P ��
∼ E′ ��

Eat

�

where Eat may be taken as the electric field experienced by the electron in the
hydrogen atom and E′ �� is the local electric field in the medium in the presence
of the light beam. Infact, it can be shown that

P�n+1�

P�n�
∼ E′ ��

Eat

� (14.26)

where P�n� is the nth-order polarization. For typical light fields, E′��

Eat
∼ 10−7.

Thus, the nonlinear polarizations are indeed very small and hence the relevance
of powerful laser sources for nonlinear optical studies. However, for resonant
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and nearly resonant light fields, the denominator in Eq. (14.23) can become quite
small, making it possible to observe nonlinear effects with modest light fields.

We conclude this discussion by demonstrating that the susceptibility of a
second-order nonlinear process can be expressed in terms of the first-order
susceptibilities and in the process obtain their orders-of-magnitude values. For
second-harmonic generation, Eqs (14.22) give

��2� �2��� = N��2� �2���/�0(
1− N��1��2�

3�0

)(
1− N��1���

3�0

)2

= N��2� �2���/�0

�N��1� �2�/�0�
�1� �2�� �N��1� �� /�0�

�1� ���
2

=
(�0

N

)2 ��2� �2���

���1� �2�� ���1� ���
2 ��1� �2�

(
��1� ��

)2
	 (14.27)

Substituting values of ��1������1��2����2��2��� from Eqs (14.9) and
(14.17) into Eq. (14.27) yields

��2� �2���

��1� �2� ���1� ���
2 = �−a�

m

2q3
� (14.28)

giving

��2� �2��� =
∣∣∣∣

am�2
0

2N 2q3

∣∣∣∣��1� �2�
(
��1� ��

)2
� (14.29)

where ��1��2� is the linear susceptibility at twice the frequency of the input
field. Similar expressions can be obtained for the sum- and difference-frequency
generations. Equation (14.25) gives an approximate value of the anharmonicity
constant as

a ∼ m4
0

qEat

	 (14.30)

For off-resonance excitation of the medium and neglecting the difference between
the local and applied fields, Eqs (14.9) and (14.22a) give

��1� �� ∼ ��1� �2� ≈ Nq2

�0m2
0

	 (14.31)
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Substituting Eqs (14.30) and (14.31) into Eq. (14.29) gives

��2� �2��� = q

m2
0d

� (14.32)

where we have replaced Eat by q/4��0d
2 and N by 1/d3, d may be taken as the

inter-atomic distance in the medium. Using m = 9	1×10−31 kg, 0 = 1016 rad/s,
d = 2×10−10 m, �0 = 8	85×10−12 C2 N−1 m−2, q = 1	6×10−19 C gives

��1� �� ∼ 1� (14.33)

��2� �2��� ∼ 10−12 m/v	 (14.34)

Equation (14.29) shows that the ratio ��2��2���

��1��2����1����
2 is nearly constant for most

media. This result is known as Miller’s rule.

14.2.2 Third-Order Nonlinear Polarization

Calculation of the third-order nonlinear polarization is too lengthy to be
attempted here, but it is quite easy to get a feel for what to expect from
the next higher order solution of Eq. (14.1). The next term �x�3��t�� in
Eq. (14.3) is obtained by solving the homogeneous part of Eq. (14.1) with
ax2 term replaced by 2a�x�1��t���x�2��t�� (see Eq. 14.10). We shall not per-
form this calculation, but it immediately follows from Eqs (14.6) and (14.14)
that the product �x�1��t���x�2��t�� has terms which oscillate at the frequencies
1�2� 31� 32� �1 +22�, �21 +2�, �21 −2�, and �22 −1�. Accord-
ingly, nonlinear polarizations at all of these frequencies are generated in the
medium through the third-order nonlinear interaction between the applied opti-
cal fields of frequencies 1 and 2. These polarizations radiate new fields at
all of these frequencies; in particular, third harmonics are generated at the fre-
quencies 31 and 32. We mention in passing that although the third-order
nonlinear polarization is generated when the medium is excited with intense
fields at one or two frequencies, the most general case of third-order nonlinear
polarization arises when three or more optical fields at different frequencies
are applied. For details, the interested reader may consult Nonlinear Optics by
Robert W. Boyd [14.1].

14.2.3 Higher Order Nonlinear Polarizations

Our treatment of nonlinear optics thus far concerns only the hypothetical scalar
fields. We must now consider nonlinear optical interactions among vector elec-
tric fields. Fortunately, the results of the previous sections though obtained for
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scalar fields hold for vector fields as well, but we need to put them in the proper
perspective. Furthermore, we must take note of the crystalline environment of
the atoms since nonlinear optical interactions are more often investigated in
crystalline solids. Anisotropy of the solid media has already been discussed
in Chapter 1 (Section 1.10). First expression of Eq. (1.106) and Eq. (1.119)
suggest that the first-order susceptibility ��1� is a tensor of the second rank
with nine elements. The second-order susceptibility ��2� is a tensor of the
third rank with 27 elements and the third-order susceptibility ��3� has 81 ele-
ments. It is quite obvious that our notation while dealing with vector fields
is going to get very elaborate and complicated. That is precisely the reason
why we started with the scalar fields. Extending Eq. (14.7) to higher order
polarizations

⇀

P�t� = ⇀

P
�1�

�t�+ ⇀

P
�2�

�t�+ ⇀

P
�3�

�t�+· · ·+ ⇀

P
�n�

�t�� (14.35)

we may write

⇀

P
�1�

�t� = 1
2

[
⇀

P
�1�

�� e−it + ⇀

P
�1�

�−� eit

]
� (14.36a)

⇀

P
�2�

�t� = 1
2

[
⇀

P
�2�

�� e−it + ⇀

P
�2�

�−� eit

]
� (14.36b)

⇀

P
�n�

�t� = 1
2

[
⇀

P
�n�

�� e−it + ⇀

P
�n�

�−� eit

]
� (14.36n)

where
⇀

P
�1�

�t� is the linear polarization and the remaining Eqs (14.36b–n) rep-
resent nonlinear polarizations. In writing the above equations, the amplitudes

of the oscillating polarizations are assumed to satisfy the condition
⇀

P
�n�∗

�� =
⇀

P
�n�

�−�, making the polarizations
⇀

P
�n�

�t� as real quantities. A formal repre-
sentation of the nth-order nonlinear polarization at frequency  may take the
form

⇀

P
�n�

�� t� = �0�
�n� ��1�2� � � � �n� �

⇀

E �1� t�
⇀

E �2� t� · · · ⇀

E �n� t� �

(14.37)

where  = 1 +2 +· · ·+n, and
⇀

E�i� t� for i = 1� 2� � � � � n are the electric
fields present in the medium at the frequencies 1�2� � � � �n; ��n� is the electric
susceptibility tensor of the �n+1�th rank. However, more relevant quantities in
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the present context are the components of the amplitudes of the polarizations
which can be expressed as

P
�1�
i �� = �0

∑
j

�
�1�
ij ��Ej �� � (14.38a)

P
�2�
i �� = �0

2

∑
jk

�
�2�
ijk ��1�2�Ej �1�Ek �2� � (14.38b)

P
�n�
i �� = �0

2n−1

∑
jk···p

�
�n�
ijk···p ��1�2� � � � �n�Ej �1�Ek �2� · · ·Ep �n� �

(14.38n)

where i = x� y� z and Ej�1��Ek�2�� � � � �Ep �n� can be any of the Carte-
sian components Ex�Ey�Ez of the applied electric fields at different fre-
quencies. The frequencies 1�2� � � � �n can be rearranged but  must
equal the sum of 1�2� � � � �n. As a matter of notation, the order of
the frequencies 1�2� � � � �n associated with the electric field components
Ej�1��Ek�2�� � � � �Ep�n� is kept the same as the order of the frequencies
in the argument of �

�n�
ijk···p �1�2� � � � �n�. The summation over j� k� � � � � p

ensures that contributions to the ith component of the nth-order polarization at
frequency  from all Cartesian components of the electric fields belonging to
all different frequencies have been systematically included. The electric field
components appearing in Eq. (14.38n) can be arranged in any order provided
the order of their subindices �j� k� � � � � p� follows the order of the subindices
of �

�n�
ijk···p �1�2� � � � �n�. A term like �

�2�
ijk ��1�2�Ek �1�Ej �2� can-

not appear in Eq. (14.38b) for n = 2 because the orders of j� k indices in
�

�2�
ijk ��1�2� and in the product Ek�1� Ej�2� of the field components are

different.
Any permutation of the field components in Eqs (14.38) within the above con-

straint does not constitute an additional contribution to P
�n�
i �� and hence must be

excluded from the sum. For example, if the term �
�2�
ijk ��1�2�Ej �1�Ek�2�

has been included in the ith component of the second-order polarization, then
the term �

�2�
ikj ��2�1�Ek�2�Ej�1�, being only a rearrangement of the above

term, cannot appear in the sum. More specifically for the sum-frequency gener-
ation,

P
�2�
i � = 1 +2� = �0

2

∑
jk

[
�

�2�
ijk ��1�2�Ej �1�Ek �2�

+�
�2�
ijk ��2�1�Ej �2�Ek �1�

]
�

(14.39a)
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but for the second-harmonic generation,

P
�2�
i �2� = �0

2

∑
jk

�
�2�
ijk �2���Ej ��Ek ��	 (14.39b)

Each term in Eqs (14.38) can be calculated in exactly the same manner as the
scalar terms derived in the previous sections, though the number of terms for the
higher order polarizations can indeed be very large as the following examples
demonstrate. For the first-order polarization,

P
�1�
i �� = �0

∑
j

�
�1�
ij ��Ej ��

= �0

[
�

�1�
ix ��Ex ��+�

�1�
iy ��Ey ��+�

�1�
iz ��Ez ��

]
	

(14.40)

Because of the anisotropy of the crystalline environment, all nine elements
�

�1�
ix � �

�1�
iy � �

�1�
iz for i = x� y� z may be different and nonzero. In the second-order

polarization

P
�2�
i �� = �0

2

∑
jk

�
�2�
ijk ��1�2�Ej �1�Ek �2�� (14.41)

we shall have to deal with 27 elements of ��2���1, 2� if the order of the
frequencies in its argument is not changed. Allowing that change increases the
number of elements to 162, since , 1, 2 can be arranged in six different
ways. But while rearranging the frequencies, we must make sure that the first
frequency in the argument of �

�n�
ijk···p��1�2� � � � �n� must equal the sum of

the remaining frequencies. This may necessitate some changes in the signs of
the frequencies as we shall see later. There are some symmetry considerations
which reduce the number of independent elements of the susceptibility tensors.
We make a brief mention of these symmetries.

14.3 SYMMETRY PROPERTIES OF THE SUSCEPTIBILITY
TENSORS

14.3.1 Susceptibility Tensors for Negative Frequencies

The complex conjugate of Eq. (14.38n) gives

P
�n�∗
i �� = �0

2n−1

∑
jk···p

�
�n�∗
ijk···p ��1�2� � � � �n�E∗

j �1�E∗
k �2� · · ·E∗

p �n� 	

(14.42)
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Since P�n��t� and E�t� are real, P�n�∗�� = P�n��−�, E∗�i� = E�−i� and
Eq. (14.42) becomes

P
�n�
i �−� = �0

2n−1

∑
jk···p

�
�n�∗
ijk···p��1�2� � � � �n�

×Ej�−1�Ek�−2� · · ·Ep�−n�	

(14.43)

On replacing  by �−� and i by �−i� in Eq. (14.38n), we obtain

P
�n�
i �−� = �0

2n−1

∑
jk···p

�
�n�
ijk···p �−�−1�−2� � � � �−n�

×Ej �−1�Ek �−2� · · ·Ep �−n� 	

(14.44)

A comparison of Eqs (14.43) and (14.44) yields

�
�n�
ijk···p �−�−1�−2� � � � �−n� = �

�n�∗
ijk···p ��1�2� � � � �n� 	 (14.45a)

Therefore, susceptibilities for the negative frequencies can be expressed in terms
of the susceptibilities for the positive frequencies. Furthermore, extrapolation
of Eqs (14.9) and (14.22) suggests that as long as the excitation frequencies
are sufficiently small in comparison to the lowest absorption frequency of the
medium, that is for nearly nonabsorbing media, susceptibility of any order
becomes real, in which case, Eq. (14.45a) reduces to

�
�n�
ijk···p �−�−1�−2� · · · �−n� = �

�n�
ijk···p ��1�2� � � � �n� 	 (14.45b)

14.3.2 Full Permutation Symmetry

The full permutation symmetry allows all frequencies in the argument of the
susceptibility tensor �

�n�
ijk···p��1�2� � � � �n� including the one at which the

polarization is generated to be rearranged as long as the Cartesian subindices
�i� j� k� � � � � p� are also rearranged in the same order. In a rearrangement in
which the first frequency is exchanged with some other frequency, the signs of
both these frequencies in the new arrangement must be reversed to ensure that
the first frequency in the new arrangement is equal to the sum of the remaining
frequencies. For example if the first frequency  is exchanged with 2, then
according to the full permutation symmetry,

�
�n�
ijkl···p ��1�2�3� � � � �n� = �

�n�
kjil···p �−2�1�−�3� � � � �n� 	

(14.46a)
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With the reality condition (Eq. 14.45b), the above equality changes to

�
�n�
ijkl···p ��1�2�3� � � � �n� = �

�n�
kjil···p �2�−1��−3� � � � �−n� 	

(14.46b)
In particular for second-order susceptibility tensor, we can write

�
�2�
ijk ��1�2� = �

�2�
jki �1�−2�� = �

�2�
kji �2�−1�� (14.46c)

for the sum-frequency generation with  = 1 +2, but for the second-harmonic
generation,

�
�2�
ijj �2��� = 1

2
�

�2�
jji ��−� 2�	 (14.46d)

Let us see what kinds of nonlinear interactions the two susceptibilities appear-
ing in Eq. (14.46b) represent. Following our observation in the new paragraph
starting after Eqs (14.17), these susceptibilities will give rise to the following
polarizations:

Pi �� = �0

2n−1
�

�n�
ijkl···p ��1�2�3� � � � �n�Ej �1�Ek �2�

×El �3� · · ·Ep �n� �
(14.47)

Pk �2� = �0

2n−1
�

�n�
kjil···p �2�−1��−3� � � � �−n�E∗

j �1�Ei ��

×E∗
l �−3� · · ·E∗

p �−n� 	
(14.48)

Equation (14.47) represents a nonlinear process in which one photon at each
of 1�2�3� � � � �n frequencies is destroyed and simultaneously a photon
of frequency  is created (Fig. 14.1a). Equation (14.48), on the other hand,
represents a nonlinear process in which one photon of frequency  is destroyed
and simultaneously one photon at each of 1�2�3� � � � �n frequencies is
created (Fig. 14.1b). The first frequency in the argument of ��n� for n > 1 is
always the frequency at which the nonlinear polarization is generated and hence
is the frequency of a created photon. Among the remaining frequencies in the
argument, those carrying positive signs belong to the photons which are destroyed
and those carrying negative signs belong to the photons which are created in the
nonlinear process. Equivalently, the complex conjugated field components in the
product accompanying ��n� represent photons which are created and the field
components which are not conjugated represent photons which are destroyed in
a nonlinear process.



588 Chapter 14: NONLINEAR OPTICS

ω1

ω2

ω3

ω n

(a) (b)

ω ω

ω3

ω2

ω1

ω n

Fig. 14.1: Quantum mechanical description of a nonlinear process (a) in which
one photon at each of 1�2�3� � � � �n frequencies is destroyed and one
photon of frequency  is created, (b) in which one photon of frequency  is
destroyed and one photon at each of 1�2�3� � � � �n frequencies is created.
The up- (down-) directed arrows represent destroyed (created) photons.

14.3.3 Kleinman’s Symmetry

As long as the excitation frequencies remain much below the lowest absorption
frequency of the medium, the susceptibility tensors exhibit only weak dependence
on the frequencies appearing in their arguments. In Kleinman’s symmetry, this
dependence is neglected altogether. As a result, in the context of the third-
rank susceptibility tensor, the full permutation symmetry in the presence of
Kleinman’s symmetry yields

�
�2�
ijk ��1�2� =�

�2�
ikj ��1�2� = �

�2�
jki ��1�2�

= �
�2�
jik ��1�2� =�

�2�
kij ��1�2� = �

�2�
kji ��1�2� 	

(14.49)

We have not rearranged the frequencies in the arguments of ��2� in Eq. (14.49)
as required by the full permutation symmetry because Kleinman’s symmetry makes
��2� independent of the frequencies. It should be understood that the Kleinman’s
symmetry is an approximation but whenever it holds, the number of independent
elements of the susceptibility tensors are considerably reduced. For example, as
we shall see, it reduces the number of independent elements of ��2� from 27 to 10.

The crystal symmetry further reduces the number of independent elements of
the susceptibility tensors. We shall, however, not go into these details, but just
show that the susceptibility tensors ��n� for even n vanish for the centrosymmetric
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crystals. These crystals possess centers of inversion, i.e., it is possible to choose
an origin such that any site within the unit cell with position vector ⇀

r is exactly
equivalent to the site with position vector �−⇀

r�	 It follows that in such crystals,
the generated polarization simply reverses its direction on reversing the directions
of all applied electric fields. Rewriting Eq. (14.38n) before and after reversing
the directions of the applied electric fields, we obtain

P
�n�
i �� = �0

2n−1

∑
jk···p

�
�n�
ijk···p ��1�2� � � � �n�Ej �1�Ek �2� · · ·Ep �n� �

(14.50a)

−P
�n�
i �� = �0

2n−1

∑
jk···p

�
�n�
ijk···p ��1�2� � � � �n�

(−Ej �1�
)

× �−Ek �2�� · · · (−Ep �n�
)
�

= �0

2n−1

∑
jk···p

�
�n�
ijk···p ��1�2� � � � �n�Ej �1�Ek �2� · · ·Ep �n� � (14.50b)

when n is even. Therefore for even n, Eqs (14.50a) and (14.50b) can be reconciled
only if

��n� ��1�2� � � � �n� = 0	 (14.51)

In particular, ��2���1, 2� = 0 for the centrosymmetric crystals, disallowing
second-harmonic generation in such crystals.

Before concluding this section we introduce the contracted notation of express-
ing the elements of a susceptibility tensor. We define2

d
�2�
ijk = 1

2
�

�2�
ijk � (14.52)

where Kleinman’s symmetry has been used to suppress the argument of ��2�. In
addition, since the last two subindices of �

�2�
ijk and hence of d

�2�
ijk can be freely

exchanged, they can be replaced by a single subindex. Therefore, we can write

d
�2�
ijk = dil� (14.53)

where the index l is defined in the following manner:

�jk� � 11 22 33 �23�� �32� �13�� �31� �12�� �21�
�l� � 1 2 3 4 5 6

2 For the general case, the d-tensor is defined as d�n� = �2�−n+1+s��n�, where s is the number of dc
fields present in the input.
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Table 14.1. dil (in 10−12 m/V ) values of some nonlinear crystals.

LiNbO3 d22 = 2	6±1 d31 = −5	4±0	5 d33 = −49±9
BaTiO3 d15 = 17	7±1	5 d31 = −18	8±1	5 d33 = −7	1±0	5
KH2PO4 (KDP) d36 = 0	51±0	02

It is then possible to replace the d
�2�
ijk tensor by the dil matrix having many

common elements as the following example shows. Since all the subindices of
d

�2�
ijk can be freely exchanged (see Eq. 14.49), we must have

d13 = d133 = d313 = d35	

The complete dil matrix having only 10 independent elements can be shown to
have the form

dil =
⎡
⎣

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

⎤
⎦ 	 (14.54)

The matrix notation of nonlinear polarization for second-harmonic generation is

⎛
⎝

P�2�
x �2�

P�2�
y �2�

P�2�
z �2�

⎞
⎠= �0

⎛
⎝

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E2
x ��

E2
y ��

E2
z ��

2Ey ��Ez ��

2Ez ��Ex ��

2Ex ��Ey ��

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

	 (14.55)

Table 14.1 gives dil elements for some commonly used nonlinear crystals (taken
from [14.6]).

14.4 WAVE EQUATION FOR NONLINEAR MEDIA

To describe propagation of light waves in a nonlinear medium, we express the
displacement field (Eq. 1.6a) as

⇀

D = �0

⇀

E + ⇀

P

= �0

⇀

E + ⇀

PL + ⇀

PNL

= �0�1+��1��
⇀

E + ⇀

PNL
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= �
⇀

E + ⇀

PNL� (14.56)

where

� = �0�1+��1�� (1.9c)

is the linear permittivity of the medium and
⇀

PNL is the nonlinear polarization

generated in the medium in the presence of the electric field
⇀

E. Following steps
which led to Eq. (1.11a), Maxwell’s equations


 × ⇀

E = −�
⇀

B

�t
� 
 × ⇀

B = �
�

⇀

D

�t
� (1.10c,d)

and Eq. (14.56) yield the inhomogeneous wave equation


2 ⇀

E�
⇀
r� t�−��

�2
⇀

E�
⇀
r� t�

�t2
= �

�2
⇀

PNL�
⇀
r� t�

�t2
� (14.57)

which describes wave propagation in a source-free, nonlinear medium of linear
permittivity � and permeability �. For optically transparent media, � ∼ �0,
where �0 is permeability of the vacuum. The nonlinear polarization term on
the right-hand side of Eq. (14.57) can be treated as a source term with sources
distributed throughout the nonlinear medium. These sources radiate new waves
which reach a given point in the medium with different phases. Because of this
phase variation, the interference among the waves can lead to energy flowing
back and forth among the nonlinearly generated and applied optical fields. For
n optical fields of frequencies 1�2� � � � �n entering the nonlinear medium
and generating nonlinear polarization at frequency n+1, we must solve (n+1)
wave equations of the type


2 ⇀

E�
⇀
r� t�i�−���i�

�2
⇀

E�
⇀
r� t�i�

�t2
= �

�2
⇀

PNL�
⇀
r� t�i�

�t2
(14.58)

for i = 1� 2� � � � � �n+ 1�, where ��i� is the linear permittivity of the medium
at frequency i.

14.5 SECOND-ORDER NONLINEAR PROCESSES

Consider two monochromatic plane waves

Ei �z� t�1� =1
2

[
Ei �1� ei�k1z−1t� + cc

]
�
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Ej �z� t�2� =1
2

[
Ej �2� ei�k2z−2t� + cc

]
� (14.59)

incident normally on a nonlinear, nonabsorbing medium confined between the
planes z =0 and z = L. For definiteness, one of the incident waves is polarized
along the x direction and the other along the y direction. For the second-order
nonlinearly generated polarization at frequency , the three waves propagat-
ing in the z direction inside the nonlinear medium can be described by the
fields

Ei �z� t�1� = 1
2

[
Ei �z�1� ei�k1z−1t� + cc

]
�

Ej �z� t�2� = 1
2

[
Ej �z�2� ei�k2z−2t� + cc

]
�

Ek �z� t�� = 1
2

[
Ek �z�� ei�kz−t� + cc

]
�

(14.60)

where Ei�z�1� and Ej�z�2� are the amplitudes of the waves of frequencies 1

and 2, respectively, and Ek�z�� is the amplitude of the nonlinearly generated
wave which, for sufficiently large L, also propagates in the z direction. The
polarization of the nonlinearly generated wave can be along x or y directions.
Because of the nonlinear interaction, the amplitudes of the three waves vary
spatially as they propagate in the nonlinear medium but the sum of the intensities
of the three waves should remain constant for the nonabsorbing medium under
consideration. The frequencies 1�2� have been included in the arguments of
the field amplitudes merely to specify the frequencies of the respective waves.
They are not to be taken as the variables. Since no x and y dependences of
the amplitudes are being considered, we need to solve the following three wave
equations:

�2Ei �z� t�1�

�z2
−��1

�2Ei �z� t�1�

�t2
=�

�2P
�2�
i �z� t�1�

�t2
�

�2Ej �z� t�2�

�z2
−��2

�2Ej �z� t�2�

�t2
=�

�2P
�2�
j �z� t�2�

�t2
�

�2Ek �z� t��

�z2
−��

�2Ek �z� t��

�t2
=�

�2P
�2�
k �z� t��

�t2
�

(14.61)
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where �1� �2� � are the linear permittivities of the medium at the frequencies
1�2�, respectively. The second-order nonlinear polarizations P

�2�
i �z� t�1�,

P
�2�
j �z� t�2�, P

�2�
k �z� t�� can be expressed as

P
�2�
i �z� t�1� =1

2

[
P

�2�
i �z�1� e−i1t + cc

]
�

P
�2�
j �z� t�2� =1

2

[
P

�2�
j �z�2� e−i2t + cc

]
�

P
�2�
k �z� t�� =1

2

[
P

�2�
k �z�� e−it + cc

]
	

(14.62)

Substituting Eqs (14.60) and (14.62) into Eqs (14.61) gives

d2
[
Ei �z�1� eik1z

]

dz2
+��1

2
1Ei �z�1� eik1z =−� 2

1P
�2�
i �z�1� �

d2
[
Ej �z�2� eik2z

]

dz2
+��2

2
2Ej �z�2� eik2z =−� 2

2P
�2�
j �z�2� �

d2
[
Ek �z�� eikz

]

dz2
+��2Ek �z�� eikz =−� 2P

�2�
k �z�� 	

(14.63)

14.5.1 Sum-Frequency Generation

The nonlinear polarizations appearing on the right-hand sides of Eqs (14.63) can
be obtained from Eq. (14.38b) in conjunction with our comment in the discussion
following Eq. (14.48) or by a comparison with Eqs (14.16). For sum-frequency
generation, we obtain

P
�2�
i �z�1� = �0

2

∑
jk

�
�2�
ijk �1�−2��E∗

j �z�2�Ek �z�� ei�k−k2�z�

P
�2�
j �z�2� = �0

2

∑
ki

�
�2�
jki �2��−1�Ek �z��E∗

i �z�1� ei�k−k1�z�

P
�2�
k �z�� = �0

2

∑
ij

�
�2�
kij ��1�2�Ei �z�1�Ej �z�2� ei�k1+k2�z�

(14.64)

where  = 1 + 2. A few comments on these equations may be in order.
The equation for the nonlinear polarization P

�2�
k �z�� at the sum frequency

 = 1 +2 is essentially the Eq. (14.38b) except for some rearrangement of
the i, j, k indices. The tensor �

�2�
kij ��1�2� implies sum-frequency generation

since  = 1 + 2. The polarizations P
�2�
i �z�1� and P

�2�
j �z�2� at the fre-

quencies 1 and 2, respectively, are however created by difference-frequency
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generation since 1 =  − 2 and 2 =  − 1, and hence the appearance of
tensors �

�2�
ijk �1�−2�� and �

�2�
jki �2��−1� in the first two of Eqs (14.64).

A comparison with Eq. (14.16d) shows why the field amplitudes Ej�z�2� and
Ei�z�1� are complex conjugated in these equations. We note that

d2

dz2

[
Ei�z�1�eik1z

]+��1
2
1Ei�z�1�eik1z

=
[

d2Ei�z�1�

dz2
+2ik1

dEi�z�1�

dz
+ (��1

2
1 −k2

1

)
Ei�z�1�

]
eik1z

≈ 2ik1eik1z dEi�z�1�

dz
	

Similarly

d2

dz2

[
Ej�z�2�eik2z

]+��2
2
2Ej�z�2�eik2z =2ik2eik2z

dEj�z�2�

dz
�

d2

dz2

[
Ek�z��eikz

]+��2Ek�z��eikz =2ikeikz dEk�z��

dz
	

(14.65)

In obtaining Eqs (14.65), we have used the slowly varying amplitude approxi-
mation

d2E�z��

dz2
� k

dE�z��

dz
(14.66)

and the results (see Eq. 1.18a)

k2
1 = ��1

2
1� k2

2 = ��2
2
2� k2 = ��2	 (14.67)

According to the slowly varying amplitude approximation, the variation of the
amplitude of a wave over a distance of the order of the wavelength of light in
the direction of propagation is small. However, significant changes in the ampli-
tude can take place over macroscopic distances. Substituting Eqs (14.64) into
Eqs (14.63) and making use of Eqs (14.65), we obtain the equations which describe
the variations of the amplitudes of the three waves in the nonlinear medium as

dEi�z�1�

dz
= i1

4cn1

∑
jk

�
�2�
ijk �1�−2��E∗

j �z�2�Ek�z��ei�kz�

dEj�z�2�

dz
= i2

4cn2

∑
ki

�
�2�
jki �2��−1�Ek�z��E∗

i �z�1�ei�kz�

dEk�z��

dz
= i

4cn

∑
ij

�
�2�
kij ��1�2�Ei�z�1�Ej�z�2�e−i�kz�

(14.68)
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where n1, n2, and n are the linear indices of refraction of the medium at the
frequencies 1, 2, and , respectively (see Eq. 1.18b), and

�k = k−k1 −k2 (14.69)

is the wave vector mismatch and ��kz� is the phase mismatch between the
nonlinearly generated wave Ek�z�� and the nonlinear polarization P

�2�
k �z��

which sustains it. We note that the sum-frequency wave Ek�z� t�� is generated
even in the absence of perfect phase matching ��k = 0�, albeit with reduced
efficiency. Klienman’s symmetry makes the ��2� tensors appearing in Eqs (14.68)
real and independent of the frequencies in their arguments. In addition, an
effective ��2� can take care of the summations over the field components, so that
Eqs (14.68) become

dEi�1�

dz
= i�

1

n1

E∗
j �2�Ek��ei�kz� (14.70a)

dEj�2�

dz
= i�

2

n2

Ek��E∗
i �1�ei�kz� (14.70b)

dEk��

dz
= i�



n
Ei�1�Ej�2�e−i�kz� (14.70c)

where

� = 1

4c
�

�2�
eff = 1

2c
d

�2�
eff � (14.71)

and c is the speed of light in the vacuum. To simplify the notation, we have dropped
z from the arguments of the field amplitudes. Exact solutions of Eqs (14.70) are
difficult to obtain because of the coupling among the amplitudes of the three
waves. Before considering special solutions of Eqs (14.70), we derive some general
results concerning second-order nonlinear processes in a nonabsorbing, nonlinear
medium. The intensity of the wave of frequency 1 is (see Eq. 1.46)

I�1� = 1
2

�0n1cEi�1�E
∗
i �1�	

Therefore

dI�1�

dz
= 1

2
�0n1c

[
Ei�1�

dE∗
i �1�

dz
+E∗

i �1�
dEi�1�

dz

]
	 (14.72)
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Substituting Eq. (14.70a) into Eq. (14.72) gives

dI�1�

dz
= 1

2
�0c�1

[−iEi�1�Ej�2�E
∗
k�� e−i�kz

+iE∗
i �1�E

∗
j �2�Ek�� ei�kz

]

= �0c�1Iim

[
iE∗

i �1�E
∗
j �2�Ek�� ei�kz

]
	 (14.73a)

Similarly,

dI�2�

dz
= �0c�2Iim

[
iE∗

i �1�E
∗
j �2�Ek�� ei�kz

]
� (14.73b)

dI� = 1 +2�

dz
=− �0c�Iim

[
iE∗

i �1�E
∗
j �2�Ek�� ei�kz

]
� (14.73c)

where Iim refers to the imaginary part of the quantity within the brackets. Adding
Eqs (14.73a,b,c) gives

d

dz
�I�1�+ I�2�+ I� = 1 +2�� = 0	 (14.74)

Therefore in sum-frequency generation, the three waves merely exchange energy
as they propagate in the nonabsorbing, nonlinear medium without any loss in
the overall intensity of the waves. This is the statement of energy conservation.
Furthermore, we can recast Eqs (14.73) in the form

1



dI��

dz
= − 1

1

dI�1�

dz
= − 1

2

dI�2�

dz
	 (14.75)

Since I�� = n�, where n is the number of photons of frequency  and energy
� crossing unit area in unit time, Eq. (14.75) has the obvious interpretation
that the rate of creation of the photons of the sum frequency  = 1 +2 equals
the rates of destructions of the photons of frequencies 1 and 2. This is the
statement of Manley–Rowe relations. We now solve Eqs (14.70) first when both
incident waves are strong and then when one incident wave is strong and the
other is weak. The latter case corresponds to the nonlinear process known as
upconversion.

When the incident waves are strong and efficiency of sum-frequency gener-
ation sufficiently low, the incident waves propagate in the nonlinear medium
without significant depletion in the their intensities. Therefore with Ei�1�
and Ej�2� treated as constants, Eq. (14.70c) can be integrated to give the
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amplitude of the sum-frequency wave upon emergence from the nonlinear
medium as

Ek�1 +2� z = L� = i�1 +2�
�

n
Ei�1�Ej�2�

L∫

0

e−i�kz dz

= i�1 +2�
�

n
L e−i �k

2 LEi�1�Ej�2�sinc
(

�kL

2

)
� (14.76)

giving the intensity of the emerging sum-frequency wave as

I�1 +2� z = L� = I0 sinc2

(
�kL

2

)
� (14.77)

where

I0 = �1 +2�
2L2I�1�I�2�

2n1n2n�0c
3

�d
�2�
eff �

2�

sinc
(

�kL

2

)
= sin��kL/2�

�kL/2
�

and

I�1� = 1
2

�0n1c 	Ei�1�	2 � I�2� = 1
2

�0n2c
∣∣Ej�2�

∣∣2

are the intensities of the incident waves. Normalized intensity �I/I0� variation
of the sum-frequency wave is plotted in Fig. 14.2. We note that the efficiency
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Fig. 14.2: Normalized intensity variation of the sum-frequency signal.
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of sum-frequency generation decreases with increasing (�kL) due to increased
phase mismatch between the sum-frequency wave and the driving nonlinear
polarization, resulting in the flow of energy from the sum-frequency wave back
to the incident waves.

14.5.1.1 Phase Matching

Maximum efficiency of sum-frequency generation occurs when �k = k− k1 −
k2 = 0. This is the condition for perfect phase matching. When this condition is
achieved, sum-frequency generation for collinear incident waves is confined to
the forward direction only (Fig. 14.3a). For �k 
= 0, sum-frequency generation
is spread over an angle

� ≈ �k

k
= 2�/L

2�/�
= �

L
� (14.78)

where L is the thickness of the nonlinear medium (Fig. 14.3b). The fact that the
sum-frequency wave is generated even when �k 
= 0 implies that although energy
conservation holds, momentum conservation is not strictly obeyed in nonlinear
optical processes. This is so because in quantum mechanics, the momentum of a

photon with propagation vector
⇀

k is �
⇀

k, where � = h/2�, h is Planck’s constant.

For momentum conservation in sum-frequency generation, ��k = ��
⇀

k−⇀

k1 −⇀

k2�
must be zero. The seemingly small angular spread ��/L� for a macroscopic
thickness of the nonlinear medium can considerably reduce the efficiency of
sum-frequency generation. Perfect phase matching requires a nonlinear medium
of infinite extent. It is therefore necessary to achieve phase matching by other
means. For collinear incident waves, perfect phase matching for sum-frequency
generation occurs when k = k1 +k2 or when

�1 +2�n�1 +2� = 1n�1�+2n�2�� (14.79)

k 1 k 2

Δ k Δ k =0

Δ k
θ

k

k 2k 1 k

(a)

Nonlinear
medium

Nonlinear
medium

=0

(b)

L L

Fig. 14.3: Sum-frequency generation for collinear waves (a) in the forward
direction only under perfect phase-matching condition, (b) has finite angular
spread in the absence of phase matching.
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where n�1�, n�2�, and n�1 +2� are the linear indices of refraction of the
medium at the frequencies 1, 2, and 1 + 2, respectively. It is impossible
to satisfy the above condition in singly refracting media (see Problem 14.3)
because of the monotonic increase in the index of refraction with frequency due
to normal dispersion (see Fig. 1.21). However, index matching may be possible
in birefringent media (see Sections 1.10.3 and 1.10.4). In uniaxial crystals,
the index of refraction experienced by the extraordinary wave polarized in the
plane containing its direction of propagation and the optic axis of the crystal
varies from the ordinary index no to the extraordinary index ne as the direction
of propagation changes from along to perpendicular to the optic axis. On the
other hand, the ordinary wave polarized perpendicular to the plane of the optic
axis and the direction of propagation experiences no refractive index variation.
Therefore, a proper choice of the polarization directions of the incident and
sum-frequency waves in a birefringent medium may achieve index matching.
In positive uniaxial crystals with ne > no, perfect phase matching for collinear
waves may be achieved in the following two ways.

Type I Phase Matching
Both incident waves are extraordinary waves and the sum-frequency wave is an
ordinary wave satisfying the condition

no�1 +2� = 1

1 +2

ne�1�+ 2

1 +2

ne�2�� (14.80)

where no and ne refer to the ordinary and extraordinary indices of refraction of
the birefringent medium, respectively.

Type II Phase Matching
In this scheme, one of the incident waves is an extraordinary wave and the
other is an ordinary wave and the sum-frequency wave is also an ordinary wave
satisfying the condition

no�1 +2� = 1

1 +2

no�1�+ 2

1 +2

ne�2�	 (14.81)

Type I and II phase matching can also be achieved in negative uniaxial crystals
with ne < no.

14.5.2 Upconversion

We now consider sum-frequency generation when one of the incident waves is
strong and the other is weak. This may correspond to a situation in which a weak
infrared signal and strong visible laser light interact in a nonlinear medium to
generate visible light at the sum frequency. This process is called upconversion
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because one might think that the nonlinear interaction has effectively shifted the
infrared radiation to visible light, where it can be detected with higher sensitivity
of the visible detectors. We assume that phase matching has somehow been
achieved. For low efficiency upconversion, the laser light of frequency 1 and
amplitude Ei�1� emerges from the nonlinear medium with essentially undimin-
ished amplitude. We need to solve the remaining two equations (Eqs 14.70 with
�k = 0) for the infrared wave of frequency 2 and amplitude Ej�2� and the
upconverted wave of frequency  and amplitude Ek��:

dEj�2�

dz
= i

2

n2

�E∗
i �1�Ek��� (14.82a)

dEk��

dz
= i



n
�Ei�1�Ej�2�	 (14.82b)

By differentiating Eq. (14.82a) and substituting into Eq. (14.82b) and vice versa,
we obtain

d2Ej�2�

dz2
= − 2

nn2

�2 	Ei�1�	2 Ej�2�� (14.83a)

d2Ek��

dz2
= − 2

nn2

�2 	Ei�1�	2 Ek��	 (14.83b)

For the upconverted wave with Ek�� = 0 at z = 0, the solutions of these
equations are

Ej�2� =E0 cos��z�� (14.84a)

Ek�� =E′
0 sin��z�� (14.84b)

where

� =
√

2

nn2

� 	Ei�1�	 = 1
2c

√
2

nn2

	Ei�1�	d�2�
eff �

E′
0 = i

√
n2

n2

Ei�1�

	Ei�1�	
E0�

so that the ratio of the amplitudes of the upconverted and infrared signal waves is

E′
0

E0

= i
√

n2

n2

Ei�1�

	Ei�1�	
	 (14.85)

Since the frequency  of the upconverted signal is in the visible and 2 is in
the infrared, the upconverted wave under phase-matched conditions has larger
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Fig. 14.4: Normalized intensity variation of the (a) upconverted wave, (b)
infrared signal under phase-matched conditions (vertical scale arbitrary).

amplitude as compared to the amplitude of the infrared signal. Normalized
intensity variations of the two waves in a nonlinear medium when phase match-
ing has been achieved are shown in Fig. 14.4. The infrared and upconverted
waves continuously exchange energy as they advance in the nonlinear medium.
In the absence of phase matching, the intensity variations are qualitatively
similar to those shown in Fig. 14.4, but with considerably reduced efficiency of
upconversion.

14.5.3 Second-Harmonic Generation

Second-harmonic generation is a nonlinear process of great practical impor-
tance. It is routinely employed to obtain visible and ultraviolet radiations from
infrared and visible light emitting lasers. For example, the fundamental wave-
length (1	06 �m, where 1 �m = 10−6 m) of emission of the Nd:YAG laser lies in
the infrared spectral region. Visible light at 0	53 �m from this laser is obtained
by second-harmonic generation. We continue to assume that the absorption fre-
quencies of the nonlinear medium are far above the frequencies of the incident
(usually called the pump wave or simply the pump) and nonlinearly generated
second-harmonic waves, so that the susceptibility tensor ��2� is real and obeys
full permutation symmetry. Assuming perfect phase matching and ignoring for
the moment the polarization states of the waves, Eqs (14.70) in the present
context �1 = 2 = �1 +2 = 2� reduce to

dE��

dz
= i



4n��c
�

�2�
eff ��−� 2�E∗��E�2�� (14.86a)
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dE�2�

dz
= i

2

4n�2�c
�

�2�
eff �2���E2��� (14.86b)

where n�� and n�2� are the linear indices of refraction of the medium at the
frequencies  and 2, respectively. We have used the tensor ��2���−� 2�
in Eq. (14.86a) because this equation applies to the nonlinearly generated field
E�� from the field E�2� by a process in which a photon of the nonlinearly
generated second-harmonic wave of frequency 2 is destroyed and two photons
of frequency  are created, whereas in Eq. (14.86b), two photons of frequency 
are destroyed and one photon at the second-harmonic frequency 2 is generated
and hence the use of ��2��2��� tensor in this equation. With

��2��2��� = 1
2

��2���−� 2�� (14.46d)

Eqs (14.86) can be rewritten as

dE��

dz
= i�

n��
E∗��E�2��

dE�2�

dz
= i�

n�2�
E2���

(14.87)

where

� = 

4c
��2���−� 2�	 (14.88)

From energy conservation,

1
2

I��+ 1
2

I��+ I�2� = I0� (14.89)

where the pump wave of intensity I�� is treated as two waves, each of intensity
1
2 I�� and I0 is a constant. Following Boyd [14.1], we rewrite Eq. (14.89) as

I��+ I�2� = I0

(
�2��+�2�2�

)
� (14.90)

or equivalently as

1

2
n��c�0 	E��	2 + 1

2
n�2�c�0 	E�2�	2 = I0

(
�2��+�2�2�

)
� (14.91)

where ��� and ��2� are real and satisfy the condition

�2��+�2�2� = 1	 (14.92)
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We now define the complex field amplitudes E�� and E�2� as

E�� =
√

2I0

n��c�0

��� ei��

E�2� =
√

2I0

n�2�c�0

��2� ei�2 	

(14.93)

Substituting Eqs (14.93) into Eqs (14.87) gives

d���

dz
= i�

√
2I0

n2��n�2�c�0

ei��2−2�������2��

d��2�

dz
= i�

√
2I0

n2��n�2�c�0

e−i��2−2���2��	

(14.94)

Since ��� and ��2� are real and ��2� is likely to grow during propagation
in the nonlinear medium, we choose �2 −2� = �/2, so that

d���

dz
= −�

√
2I0

n2��n�2�c�0

�����2��

d��2�

dz
= �

√
2I0

n2��n�2�c�0

�2��	

(14.95)

Substituting Eq. (14.92) into second of Eqs (14.95) yields

d��2�

dz
= �

√
2I0

n2��n�2�c�0

�1−�2�2��	 (14.96)

Integrating Eq. (14.96) over the thickness of the nonlinear medium (from z = 0
to z = L), we obtain

��2�∫

0

d��2�

1−�2�2�
= �

L∫

0

dz�

giving

��2�z = L� = tanh��L�� (14.97)
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where we have assumed zero amplitude of the second-harmonic wave in the
plane z = 0, and

� =�

√
2I0

n2��n�2�c�0

= 

4n��c

√
2I0

n�2�c�0

��2���−� 2�	 (14.98)

The intensity of the second-harmonic wave as it emerges from the nonlinear
medium, obtained from Eqs (14.93) and (14.97), is

I�2�z = L� = I0 tanh2��L�� (14.99a)

and intensity of the pump wave as it emerges from the nonlinear medium is

I�� z = L� = I0 − I�2�z = L� = I0 sech2��L�� (14.99b)

where I0 is the intensity with which the pump wave enters the nonlinear medium.
Figure 14.5 shows the normalized intensity variations of the pump and second-
harmonic waves with the thickness of the nonlinear medium. The figure shows
the entire energy of the pump wave eventually appearing in the second-harmonic
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Fig. 14.5: Normalized intensity variations of the (a) second-harmonic wave,
(b) pump wave under phase-matched conditions.
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wave, but in practice the efficiency of second-harmonic generation is much
lower. Lack of perfect phase matching further lowers the conversion efficiency.

The phase-matching condition (Eq. 14.79) when applied to second-harmonic
generation requires

n�2� = n��� (14.100)

a condition impossible to satisfy in singly refracting media since the index of
refraction increases monotonically with frequency due to normal dispersion.
However, in a uniaxial crystal, as mentioned earlier, the index of refraction for
the extraordinary wave depends on the angle that its direction of propagation
makes with the optic axis of the crystal (Fig. 14.6). This dependence can be
obtained from Eq. (1.135b)

v′′
p = v2

o cos2 � +v2
e sin2 �� (1.135b)

after expressing the phase velocities in terms of the indices of refraction, i.e.,
after making the changes

v′′
p = c

ne���
� vo = c

no

� ve = c

ne

�

giving

1
n2

e���
= cos2 �

n2
o

+ sin2 �

n2
e

� (14.101)

where ne�� = 0�� = no and ne�� = 90�� = ne. To achieve the type I phase-
matching condition (Eq. 14.100) in positive uniaxial crystals (ne > no�, the pump
wave is taken as an extraordinary wave polarized in the plane of its direction of

θ

k

optic axis

D

Fig. 14.6: Extraordinary wave propagating at an angle � to the optic axis.
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propagation and the optic axis of the crystal. The second-harmonic wave is the
ordinary wave polarized perpendicular to the plane containing the optic axis and
the common direction of propagation of the pump and second-harmonic waves.
For the phase-matching (no�2� = ne��) angle �ph, Eq. (14.101) becomes

1
n2

o�2�
= cos2 �ph

n2
o��

+ sin2 �ph

n2
e��

� (14.102)

giving

sin2 �ph = �no ���−2 − �no �2��−2

�no ���−2 − �ne ���−2 	 (14.103)

Usually the phase angle �ph is neither zero nor 90�. Therefore the obliquely incident
pump wave, being an extraordinary wave, walks away from the second-harmonic
wave (ordinary wave) despite the two waves having collinear propagation vectors.
This happens because the direction of the Poynting vector of the pump wave inside
the nonlinear medium deviates from the direction of the Poynting vector of the
second-harmonic wave. The latter coincides with their common direction of prop-
agation, but the former does not since the pump wave inside the nonlinear medium
is an extraordinary wave (see Section 1.10.5 on double refraction). The path taken
by a wave coincides with its Poynting vector, hence the ‘walk-off effect’. It may
be possible to choose a nonlinear medium with phase-matching angle close to 90�.
The remaining change in the index of refraction to achieve phase matching at 90�

may be obtained by controlling the temperature of the nonlinear medium since the
index of refraction varies with temperature.

14.5.4 Parametric Amplification

Parametric amplification is a second-order nonlinear process in which a weak
signal (signal wave) propagating in a nonlinear medium is amplified in the
presence of a strong signal (pump wave) of higher frequency and generating
in the process the difference-frequency wave, often called the idler wave. This
nonlinear process is particularly useful to generate coherent waves in the far-
infrared spectral region, where coherent radiation is otherwise difficult to gen-
erate. The nonlinear process involved in parametric amplification is actually the
difference-frequency generation. Notwithstanding that, the growth of the pump
wave in parametric amplification must involve sum-frequency generation since
the pump wave has the highest frequency among the three waves. The signal and
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idler waves, however, grow through difference-frequency generation. Therefore
equations describing parametric amplification, obtained from Eqs (14.68), are

dEP�z�1�

dz
= i1

4cn1

�
�2�
eff �1�2��ES�z�2�EI�z��e−i�kz�

dES�z�2�

dz
= i2

4cn2

�
�2�
eff �2�1�−�EP�z�1�E

∗
I �z��ei�kz�

dEI�z��

dz
= i

4cn
�

�2�
eff ��1�−2�EP�z�1�E

∗
S�z�2�ei�kz�

(14.104)

where EP�z�1�, ES�z�2�, EI�z�� are the amplitudes of the pump wave of
frequency 1, the signal wave of frequency 2, the idler wave of the difference
frequency  = 1 −2, respectively, and

�k = kP −kS −kI	 (14.105)

Effective tensors have replaced summations in Eqs (14.68). Full permutation
symmetry allows us to write

�
�2�
eff �1�2�� = �

�2�
eff �2�1�−� = �

�2�
eff ��1�−2� = �

�2�
eff 	 (14.106)

Further, we may assume low efficiency of parametric amplification so that the
pump wave is not depleted during propagation in the nonlinear medium. For
perfect phase matching, Eqs (14.104) are reduced to

dES�z�2�

dz
= i2

4cn2

�
�2�
eff EP�1�E

∗
I �z��� (14.107a)

dEI�z��

dz
= i

4cn
�

�2�
eff EP�1�E

∗
S�z�2�� (14.107b)

where EP�1� is the undepleted amplitude of the pump wave. Differentiating
Eq. (14.107a) and substituting into Eq. (14.107b) and vice versa yields

d2ES�z�2�

dz2
=�2ES�z�2��

d2EI�z��

dz2
=�2EI�z���

(14.108)

where

� = 1

4c

√
2

nn2

�
�2�
eff 	EP�1�	 	 (14.109)
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Since the idler wave is not present among the incident waves, it must have
the form

EI�z�� = EI�� sinh��z�	 (14.110a)

Differentiating Eq. (14.110a) and substituting into Eq. (14.107b) gives

ES�z�2� = ES�2� cosh��z�� (14.110b)

and

EI�� = i
√

n2

n2

EP�1�

	EP�1�	
ES�2�� (14.111)

where ES�2� is the amplitude with which the signal wave enters the nonlinear
medium and n is the linear index of refraction of the medium at the difference
frequency  = 1 − 2. The growths of the signal and idler waves during
propagation in the nonlinear medium are shown in Fig. 14.7. If the parametric
amplification is carried out with the nonlinear medium kept within a resonator
(see Fig. 4.29) possessing highly reflecting mirrors at the signal wave frequency
or at the idler wave frequency or at both, then the device becomes a parametric
oscillator.
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Fig. 14.7: Growth of the (a) signal wave, (b) idler wave in phase-matched
parametric amplification with undepleted pump wave(vertical scale arbitrary).
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14.6 OPTICAL PHASE CONJUGATION

Optical phase conjugation is a nonlinear process in which the medium generates
a wave whose spatial phase is the complex conjugate of the spatial phase of
one of the incident waves. The phase-conjugate wave of special interest is the
one which in addition counter-propagates the incident wave, i.e., if the incident
wave is

⇀

Ein�
⇀
r� t� = ⇀

E0�
⇀
r� ei�

⇀
k ·⇀r −t�� (14.112)

then its phase-conjugate wave is

⇀

Epc�
⇀
r� t� = a

⇀

E
∗
0�

⇀
r�ei�−⇀

k ·⇀r −t�� (14.113)

where a is a constant which may exceed one. In a way, the nonlinear medium
in optical phase conjugation acts as a mirror because a mirror can also reverse
the direction of propagation of the incident wave, but there is a subtle difference
between the counter-propagating wavefronts produced by an ordinary mirror and
by what may be called a phase-conjugate mirror. Figure 14.8a,b shows diverging
wavefronts incident on the ordinary (M) and phase-conjugate (PCM) mirrors.
Upon reflection from the ordinary mirror, the wavefront continues to diverge
but with a reversed curvature (see dotted curves in Fig. 14.8a). The wavefront
reflected by the phase-conjugate mirror is reversed with respect to the wavefront
reflected by the ordinary mirror (compare dotted curves in Fig. 14.8a,b). For
that reason, optical phase conjugation is also called wavefront reversal. But the
phase-conjugate wavefront, though travelling backward, actually replicates the
incident wavefront, converging precisely at the source point O (Fig. 14.8b).
Therefore, optical phase conjugation can be used to precisely locate an object
in space, provided scattered light from the object reaches a phase-conjugate
mirror. Optical phase conjugation also has the capability to remove any phase
distortion that the medium, such as a turbulent atmosphere, might have inflicted
on the wavefront during propagation. Figure 14.8c shows that the portions of the
wavefront which are advanced during passage through a distorting medium are
equally retarded (and vice versa) on reflection from the phase-conjugate mirror
(compare the solid and dotted curves in front of the phase-conjugate mirror in
Fig. 14.8c). Consequently, the wavefront becomes distortion free as it emerges
from the phase distorter on the return trip (the dotted lines in front of the phase
distorter in Fig. 14.8c).

We now briefly outline the theory of optical phase conjugation. Our intention
here is to demonstrate the generation of the phase-conjugate wave in a nonlinear
process, avoiding mathematical complications to the extent possible. Optical
phase conjugation is a special case of degenerate four-wave mixing (Fig. 14.9).
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Fig. 14.8: Reflection from (a) an ordinary mirror (M), (b) a phase conjugate
mirror (PCM), (c) distortion removal in optical phase conjugation. Solid (dotted)
lines and curves are sections of incident (reflected) wavefronts.
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Fig. 14.9: Degenerate four-wave mixing configuration for optical phase conju-
gation.
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Three waves of the same frequency are incident on the medium confined between
the planes z = 0 and z = L, and the medium generates the fourth wave at the
frequency of the incident waves. The term degenerate here refers to the fact
that all four waves have the same frequency. The counter-propagating waves
⇀

E1�
⇀

k1�� and
⇀

E2�
⇀

k2�� are called the pump waves. Usually only one pump wave
is incident, the other pump wave is obtained by retro-reflection of this wave. The

third incident wave
⇀

E3�
⇀

k3��, called the probe wave, is weaker than the pump

waves. The phase-conjugate wave
⇀

E4�
⇀

k4�� generated by the medium counter-

propagates the probe wave
⇀

E3�
⇀

k3��. The equations describing the propagation
of these waves in the nonlinear medium are very similar to those apearing in
sum-frequency generation or in parametric amplification (Sections 14.5.1 and
14.5.4), except that the nonlinear process involved in optical phase conjugation
is of third order due to the presence of four waves in the medium. For low-
efficiency optical phase conjugation, the pump waves may be assumed to remain
undepleted. The phase-matched equation for the growth of the probe wave,
obtained by an extension of Eqs (14.104), is

dE3��

dz
= i

4cn
��3��E1��E2��E∗

4�� ei�
⇀
k 1+

⇀
k 2−⇀

k 4−
⇀
k 3�	

⇀
r

+ �E1��E∗
1��+E2��E∗

2��+E3��E∗
3��+E4��E∗

4���E3���
(14.114a)

= i
4cn

��3�
[
E1��E2��E∗

4��+
{
	E1��	2 +	E2��	2

}
E3��

]

(14.114b)

= i�E∗
4��+ i�E3��� (14.114c)

where

� = 

4cn
��3�E1��E2��� (14.115)

� = 

4cn
��3�

(
	E1��	2 +	E2��	2

)
� (14.116)

and ��3� = ��3� ����−� is the third-order susceptibility (real for a nonab-
sorbing medium) and

�
⇀

k = ⇀

k1 + ⇀

k2 − ⇀

k4 − ⇀

k3 = 0 (14.117)

since
⇀

k1 +⇀

k2 = 0 for the counter-propagating pump waves and
⇀

k3 +⇀

k4 = 0 for the
counter-propagating probe and phase-conjugate waves. In writing Eq. (14.114b),
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we have ignored contributions from the relatively weak probe and phase-
conjugate waves. The first term in Eq. (14.114a) can be interpreted to describe the
nonlinear process in which one photon from each of the pump waves is destroyed
and simultaneously one photon each is added to the probe and phase-conjugate
waves. The remaining terms in this equation involve nonlinear processes in
which one photon is created and one destroyed from each of the four waves
along with simultaneous creation and destruction of one photon each from the
probe wave. There are no other terms which are frequency and phase matched
with the probe wave. Substituting

E3�� =E′
3��ei�z�

E4�� =E′
4��e−i�z� (14.118)

into Eq. (14.114c) yields

dE′
3��

dz
= i�E′∗

4��	 (14.119a)

In a similar manner, we obtain

dE′
4��

dz
= −i�E′∗

3��	 (14.119b)

The phase-conjugate wave propagates in the negative z direction, hence the
minus sign in Eq. (14.119b). Differentiating Eqs (14.119) gives

d2E′
3��

dz2
=−	�	2E′

3���

d2E′
4��

dz2
=−	�	2E′

4��	

(14.120)

The solutions of these equations are

E′
3�� =E3�0� cos �	�	z�+B sin �	�	z� �

E′
4�� =C cos �	�	z�+D sin �	�	z� �

(14.121)

where the probe wave enters the nonlinear medium with amplitude E3(0). The
phase-conjugate wave has zero amplitude in the plane z = L. Therefore,

C = −D tan �	�	L� 	
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For Eqs (14.121) to be consistent with Eq. (14.119b), we must have

D = −iE∗
3�0�� B = E3�0� tan �	�	L� �

giving

E′
3�� =E3�0� �cos �	�	z�+ �tan �	�	L�� sin �	�	z�� �

E′
4�� =− iE∗

3�0� �sin �	�	z�− �tan �	�	L�� cos �	�	z�� 	
(14.122)

The amplitude of the phase-conjugate wave, apart from a phase factor, on emerg-
ing from the plane z = 0 is

E4 �� z = 0� = iE∗
3�0� tan �	�	L� � (14.123)

and the amplitude of the probe wave, apart from a phase factor, on leaving the
nonlinear medium at z = L is

E3�� = E3�0�

cos �	�	L�
	 (14.124)

The amplitude of the emerging phase-conjugate wave can exceed the amplitude
of the incident probe wave because the phase-conjugate wave draws energy from
the pump waves.

14.7 OPTICAL KERR EFFECT AND SELF-FOCUSING

The index of refraction of a material is modified in the presence of a strong
beam of light. Distortion of the electronic charge distribution, creation of density
changes in the manner of electrostriction observed with dc fields, orientation of
the polar molecules of the medium are some of the mechanisms responsible for
the light-induced refractive index changes. Most of these mechanisms can be
described in terms of the third-order nonlinear polarization induced by the light
field. The third-order nonlinear polarization produced by a linearly polarized
light wave of frequency  propagating in a nonabsorbing, isotropic medium is
given by

P�3��� = �0�
�3�����−�E��E��E∗��	 (14.125)

The nonlinear process involved in this refractive index modification is quite
similar to the degenerate four-wave mixing described in Section 14.6, except that
here we are dealing with a single wave propagating in the nonlinear medium.
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The process involves destruction of two photons and simultaneous creation of
two photons, all of the same frequency . The net polarization produced in the
medium at frequency  is

P�� = P�1���+P�3��� = �0

[
��1� +��3� 	E��	2

]
E��� (14.126)

where P�1��� is the linear polarization at frequency . The frequency depen-
dence of the ��3� has been suppressed. The effective refractive index of the
medium can be expressed as (see Eq. 1.9c)

n =
[
1+��1� +��3� 	E��	2

] 1
2

=
[
n2

0 +��3� 	E��	2
] 1

2

=n0 + ��3�

2n0

	E��	2 = n0 +n2I���

(14.127)

where

n2 = ��3� 	E��	2
n2

0c�0

� (14.128)

and n0 is the linear index of refraction of the medium at frequency . In view
of the smallness of ��3�, binomial expansion in which only the first term is
retained has been used in the above derivation. Since the light-induced refractive
index change is quadratic in the electric field, this effect is called the optical
Kerr effect in analogy with the Kerr electrooptic effect associated with the
dc fields. This nonlinearly generated change in the refractive index does not
cause any change in the polarization state of a linearly or circularly polarized
light wave propagating in an isotropic medium, but the state of polarization
of elliptically polarized light is modified during propagation in an isotropic
medium.

A light beam with a Gaussian profile (see Fig. 1.2), such as the one coming
from a laser operating in the TEM00 mode, has maximum intensity along its axis.
Therefore for positive n2, such a light beam experiences a decreasing index of
refraction of the medium for points away from the axis of the light beam. This
behavior is somewhat similar to what a light beam experiences while traversing
a positive lens. The optical path length through a positive lens is maximum at
the center and least near the periphery. Thus for a light beam with transversally
decreasing intensity profile, the medium acts like a positive lens and the beam
gets focused during propagation. This is known as self-focusing (Fig. 14.10a).
However, due to its finite cross-section, the light beam also has the tendency to
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(a) (b)

Nonlinear medium Nonlinear medium

Fig. 14.10: (a) Self-focusing, (b) beam-trapping of a light beam with a Gaussian
profile in a nonlinear medium.

spread because of diffraction which increases as the beam gets narrower due to
self-focusing. It is in fact possible that the two competing processes may balance
each other, resulting in the beam maintaining its reduced cross-section over a
finite thickness of the medium. This is called beam-trapping (Fig. 14.10b). Self-
focusing can lead to optical breakdown of the medium due to high intensities
created around the focal point.

14.8 THE ELECTROOPTIC EFFECT

Refractive index change produced by an optical field was discussed in
Section 14.7. Low-frequency and dc electric fields can also modify the refrac-
tive index of a material by displacing the ions from their equilibrium positions.
The refractive index change produced by dc and low-frequency electric fields
is called the electrooptic effect. The linear electrooptic effect, also called the
Pockel effect, is described in terms of the second-order nonlinear polarization

P
�2�
i �� = �0

∑
jk

�
�2�
ijk ��� 0�Ej ��Ek �0� � (14.129)

where Ek �0� may represent the dc or the low-frequency electric field and Ej ��
is the optical field at which the change in the index of refraction of the material
is being investigated. The linear electrooptic effect is absent in isotropic and
centrosymmetric media since ��2� = 0 in these media (see Eq. 14.51). However,
the quadratic electrooptic or the Kerr effect can be observed in all media. The
third-order nonlinear polarization which describes this effect is given by

P
�3�
i �� = �0

∑
jkl

�
�3�
ijkl ��� 0� 0�Ej ��Ek �0�El �0� 	 (14.130)
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The electrooptic effect is infact a nonlinear optical phenomenon and the refractive
index change can be expressed in terms of the nonlinear susceptibilities as was
done in Section 14.7, but this is usually not done. Instead, the electrooptic effect
is described in terms of the electric field-induced changes in the index ellipsoid
(see Section 1.10.2)

D2
x

u�x

+ D2
y

u�y

+ D2
z

u�z

= 1� (14.131)

where Dx�Dy�Dz are the components of the displacement field along the prin-
cipal axes of the real and symmetric permittivity (dielectric) tensor �ij , u is the
energy density and �x = �xx, �y = �yy, �z = �zz are the principal dielectric con-
stants. The index ellipsoid when expressed in terms of the principal refractive
indices takes the form

x2

n2
xx

+ y2

n2
yy

+ z2

n2
zz

= 1� (14.132)

where x = Dx/
√

��0, y = Dy/
√

��0, z = Dz/
√

��0 and n2
xx = �x/�0, n2

yy = �y/�0,
n2

zz = �z/�0. The index ellipsoid referred to axes other than the principal axes
has the general form

x2

n2
xx

+ y2

n2
yy

+ z2

n2
zz

+ 2yz

n2
yz

+ 2zx

n2
zx

+ 2xy

n2
xy

= 1� (14.133)

where for a nonabsorbing medium, nxx� nyy� nzz� nyz� nzx� nxy are the six real and
independent elements of the refractive index tensor. Application of the electric
field modifies the refractive index tensor and hence the shape and orientation of
the index ellipsoid. The electric field-induced change in the refractive index is
given by the tensor equation

(
1

n2
ij

)

E0

=
(

1

n2
ij

)

0

+∑
k

rijkEk �0�+∑
kl

pijklEk �0�El �0�� (14.134)

where
(

1
n2

ij

)
0

is the inverse of the square of the refractive index tensor element

nij in the absence of the electric field and
(

1
n2

ij

)
E0

is the corresponding quantity in

the presence of the electric field. The rijk and pijkl tensors describe the linear and
quadratic electrooptic effects, respectively. The contracted notation of indices
(Eq. 14.53) can be used here as well since the refractive index tensor nij is
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symmetric. The linear electrooptic effect in the contracted notation is described
by the matrix equation

�

(
1

n2

)

i

=
(

1

n2
ij

)

E0

−
(

1

n2
ij

)

0

=∑
k

rikEk �0�� (14.135)

where i = 1� 2� � � � � 6. Accordingly the equations of the index ellipsoids, not
restricted to the principal-axis systems, before and after the application of the
electric field take the forms

(
1

n2

)

1

x2+
(

1
n2

)

2

y2 +
(

1
n2

)

3

z2 +2
(

1
n2

)

4

yz

+2
(

1
n2

)

5

zx+2
(

1
n2

)

6

xy = 1�

(14.136a)

and

[(
1
n2

)

1

+�

(
1
n2

)

1

]
x2 +

[(
1
n2

)

2

+�

(
1
n2

)

2

]
y2

+
[(

1
n2

)

3

+�

(
1
n2

)

3

]
z2 +2

[(
1
n2

)

4

+�

(
1
n2

)

4

]
yz (14.136b)

+2
[(

1
n2

)

5

+�

(
1
n2

)

5

]
zx+2

[(
1
n2

)

6

+�

(
1
n2

)

6

]
xy = 1�

respectively, where the �
(

1
n2

)
i

corrections due to the presence of the electric
field are given by the matrix equation

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
(

1
n2

)
1

�
(

1
n2

)
2

�
(

1
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�
(

1
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)
4

�
(

1
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)
5

�
(

1
n2

)
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝

Ex

Ey

Ez

⎞
⎠ 	 (14.137)
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The rij coefficients are called the linear electrooptic coefficients. For crystals

with the point group symmetry
−
4 2m [14.10], such as the KDP crystal, the rij matrix

rij =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r63

⎞
⎟⎟⎟⎟⎟⎟⎠

(14.138)

has only three nonzero electrooptic coefficients. Therefore for such crystals

�

(
1
n2

)

1

=0� �

(
1
n2

)

2

= 0� �

(
1
n2

)

3

= 0�

�

(
1
n2

)

4

= r41Ex� �

(
1
n2

)

5

= r41Ey� �

(
1
n2

)

6

= r63Ez	

(14.139)

Furthermore for the uniaxial crystals,
(

1
n2

)

1

=
(

1
n2

)

2

= 1
n2

o

�

(
1
n2

)

3

= 1
n2

e

� (14.140)

where no and ne are the ordinary and extraordinary indices of refraction of the
medium (see Section 1.10.3). Therefore, the index ellipsoid

x2

n2
o

+ y2

n2
o

+ z2

n2
e

= 1 (14.141a)

for a uniaxial crystal in its principal-axis system with z axis coinciding with the
optic axis of the crystal (see Section 1.10.3) is transformed to

x2

n2
o

+ y2

n2
o

+ z2

n2
e

+2r41Exyz+2r41Eyzx+2r63Ezxy = 1� (14.141b)

by the application of the electric field.

14.9 ELECTROOPTIC MODULATORS

Electrooptic modulators can be designed to modulate the amplitude and phase
of a light wave. Figure 14.11 shows a typical configuration of an electrooptic
intensity modulator using the uniaxial crystal KDP, cut perpendicular to its optic
axis (see Section 1.10.3). For longitudinal electrooptic modulation, a potential
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Fig. 14.11: A typical configuration for longitudinal electrooptic modulation; P1
and P2 are crossed polarizers, QWP is a quarter-wave plate.

difference of V volts is applied across the end faces of the crystal by making them
conducting with thin layers of conducting coatings. The KDP crystal is preceded
by the polarizer P1 with its transmission direction coinciding with the x principal
axis (in the absence of electric field) of the KDP crystal. Light transmitted by
the KDP crystal passes through a quarter-wave plate (see Section 3.3.2 after
Eq. 3.29b), followed by the polarizer P2 with transmission direction crossed with
that of the polarizer P1. For the following discussion, we ignore the presence of
the polarizers and the quarter-wave plate in Fig. 14.11.

With the electric field applied along the optic axis (also the z axis),
Eq. (14.141b) of the index ellipsoid reduces to

x2

n2
o

+ y2

n2
o

+ z2

n2
e

+2r63Ezxy = 1	 (14.142)

Obviously, the principal axes x, y, z of the index ellipsoid in the absence of
the electric field (Eq. 14.141a) are no longer the principal axes of the index
ellipsoid in the presence of the longitudinal electric field (Eq. 14.142). However,
the substitution

x = y′ +x′
√

2
� y = y′ −x′

√
2

� z = z′ (14.143)

transforms the index ellipsoid (Eq. 14.142) to its principal-axis form

x′2

n2
x′

+ y′2

n2
y′

+ z′2

n2
e

= 1� (14.144)



620 Chapter 14: NONLINEAR OPTICS

where

1

n2
x′

= 1
n2

o

− r63Ez� (14.145a)

1

n2
y′

= 1
n2

o

+ r63Ez	 (14.145b)

For r63Ez � 1, Eqs (14.145) reduce to

nx′ = no + 1
2

n3
or63Ez� ny′ = no − 1

2
n3

or63Ez	 (14.146)

The uniaxial crystal has become slightly biaxial since nx′ 
= ny′ (see
Section 1.10.4). Sections of the normal surfaces (see Section 1.10.2 and Figs 1.27
and 1.28) in a plane perpendicular to the optic axis of the crystal with and without
the electric field are shown in Fig. 14.12. In the absence of the electric field, the
section is a circle so that the index of refraction for any direction of polarization
of a wave propagating along the optic axis is the ordinary refractive index no, but
in the presence of the electric field, the section is an ellipse with semi-major and
minor axes proportional to the indices of refraction nx′ and ny′ (for nx′ > ny′ ),
respectively. However, in the presence of a longitudinal electric field in KDP
�r63 = −10	5×10−12 m/v� or any other uniaxial crystal with negative r63, a wave
polarized along x′ principal axis of the index ellipsoid travels faster than a wave

y´

x´

y

x´

no

nx´

ny´

Fig. 14.12: Sections of the normal surfaces of a uniaxial crystal with (ellipse)
and without (circle) the longitudinal electric field.
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polarized along the y′ principal axis of the ellipsoid. Such a crystal behaves like
a phase retarder or a phase plate, introducing a phase retardation (see Eq. 3.28)

�� = 2�

�v

(
nx′ −ny′

)
L = 2�

�v

n3
or63V = �

V

V�
(14.147)

after the wave has traveled a distance L in the crystal, where V = EzL is
the applied potential difference between the end faces of the crystal, �v is the
wavelength of light in vacuum and the half-wave voltage

V� = �v

2n3
or63

(14.148)

is the voltage required to produce a phase retardation of � radians. With the
applied voltage equal to V� volts, the KDP crystal rotates the plane of polarization
of the linearly polarized wave by 90�. However, the linear state of polarization of
the incident wave can be converted into any state of polarization by appropriately
adjusting the voltage across the crystal.

14.9.1 Electrooptic Intensity Modulator

We now return to Fig. 14.11 with the polarizers and the quarter-wave plate in
their respective positions. The quarter-wave plate, with its slow axis along y′

axis (see Eq. 14.143), introduces an additional phase retardation (called the bias
phase retardation) of �/2 radians. Therefore the net phase retardation of the
wave in passing through the KDP crystal and the quarter-wave plate is

�� = �

2
+�

V

V�

	 (14.149)

The wave transmitted by the polarizer P1 may have the form

⇀

Ein =
⇀

E0√
2

ei�kz−t� + cc� (14.150)

where cc stands for complex conjugate. With the transmission direction of
polarizer P1 along the x principal axis of the crystal, the amplitude of the wave
entering the KDP crystal is E0√

2

(
x̂′+ŷ′√

2

)
since x̂ = x̂′+ŷ′√

2
. Let the phase retardations

suffered by the components of the wave polarized along the x′ and y′ axes in
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traversing the KDP crystal and the quarter wave plate be �x′ and �y′ , respectively,
then the amplitude of the wave reaching the polarizer P2 is

⇀

E = E0

2

[
ei�x′ x̂′ + ei�y′ ŷ′]= E0

2
ei�x′ [x̂′ + ei��y′ −�x′ �ŷ′]

= E0

2
ei�x′ [x̂′ + ei��ŷ′] �

(14.151)

where

�y′ −�x′ = �� = �

2
+�

V

V�

	 (14.152)

Neglecting the unimportant (in the present context) overall phase factor ei�x′ , the
amplitude of the wave leaving the polarizer P2, having its transmission direction
along ŷ�= ŷ′−x̂′√

2
�, is

⇀

Eout = E0

2

(
x̂′ + ei��ŷ′)

(
ŷ′ − x̂′
√

2

)
= E0

2
√

2

(−1+ ei��
)
�

giving

	Eout	2 = 	E0	2
2

sin2 ��

2
	 (14.153)

Therefore the intensity transmittance T of the modulator is

T = 	Eout	2
	Ein	2

= sin2 ��

2
= sin2

(
�

4
+�

V

2V�

)
	 (14.154)

The variation of the transmittance of the modulator with the applied voltage is
plotted in Fig. 14.13. With zero voltage across the modulator, half the intensity
of the incident wave is blocked by the modulator. Figure 14.13 shows that the
introduction of the quarter-wave plate generates nearly linear dependence of the
transmittance over a certain range of the applied voltages. If the low-frequency
ac voltage

V�t� = V0 sin 0t (14.155)

instead of the dc voltage is applied across the KDP crystal, then the intensity
transmittance of the modulator for �V0

V�
� 1 takes the form

T = sin2

(
�

4
+ �V0

2V�

sin 0t

)

≈1
2

(
1+ �V0

V�

sin 0t

)
	

(14.156)
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Fig. 14.13: Variation of the transmittance of an electrooptic intensity modulator
with voltage.

14.9.2 Electrooptic Phase Modulator

Consider the configuration of Fig. 14.11 without the quarter-wave plate and the
polarizer P2. The polarizer P1 is rotated until its transmission direction coincides
with one of the principal axes (x′ or y′) of the KDP crystal in the presence
of the longitudinal electric field. Since the wave entering the KDP crystal is
polarized along one of its principal axes, the wave emerges from the KDP crystal
in its initial state of polarization. However, the refractive index experienced by
the wave changes from the ordinary index no to an index of refraction nx′ (if
the transmission direction of the polarizer P1 is along x′axis) on applying the
potential difference across the KDP crystal. Therefore the phase shift produced
by the applied voltage is

�� = 2�

�0

�nx′ −no�L = �

�0

n3
or63V	 (14.157)

Thus, the combination of the polarizer P1 and the KDP crystal in the presence of
a longitudinal electric field acts as an electrooptic phase modulator, producing a
voltage-dependent shift in the phase of a light wave passing through it. For the
applied voltage

V�t� = V0 sin 0t� (14.158)
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the wave emerging from the KDP crystal has the form

⇀

Eout =
⇀

E0√
2

ei�kz−t+ �
�0

n3
or63V0 sin 0t� + cc� (14.159)

where �
�0

n3
or63V0 represents the depth of phase modulation. It can be shown that

the frequency spectrum of phase modulation contains the frequencies ±n0,
where n is an integer. The amplitudes of the side bands can be expressed in
terms of the Bessel functions.
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14.11 PROBLEMS

14.1 Determine the ratio ��2��1+2�1�2�

��1��1+2���1��1���1��2�
for sum-frequency generation.

14.2 Using the data from Table 14.1, make an order of magnitude estimate of the
nonlinear polarization for second-harmonic generation when 1 W of 488.0 nm line
of an Argon ion laser is incident on a KDP crystal. Compare it with the linear
polarization produced by the laser beam. The radius of the laser beam may be
taken as 1 mm.

14.3 Prove that the phase-matching condition for sum-frequency generation (Eq. 14.79)
cannot be satisfied in singly refracting media.

14.4 Make an order of magnitude estimate of the anharmonicity constant a.
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14.5 Find

d
dz

�I�1�+ I�2�+ I� = 1 −2��

for difference-frequency generation when two plane waves of frequencies 1, 2

and intensities I�1�� I�2� are incident normally on a nonlinear medium.
14.6 Find the phase-matching angle for second-harmonic generation when CO2 laser

radiation of wavelength 10	6 �m is incident on a uniaxial tellurium crystal. Given
no�� = 4	796� ne�� = 6	243� no�2� = 4	856.
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A P P E N D I X -A

Table A.1. Partial list of Fresnel integrals.

w C�w� S�w� w C�w� S�w� w C�w� S�w�

0 0 0 2�6 0�3889 0�55 5�2 0�4389 0�4969
0�1 0�1 0�0005 2�7 0�3925 0�4529 5�3 0�5078 0�4405
0�2 0�1999 0�0042 2�8 0�4675 0�3915 5�4 0�5572 0�514
0�3 0�2994 0�0141 2�9 0�5624 0�4101 5�5 0�4784 0�5537
0�4 0�3975 0�0334 3�0 0�6057 0�4963 5�6 0�4517 0�47
0�5 0�4923 0�0647 3�1 0�5616 0�5818 5�7 0�5385 0�4595
0�6 0�5811 0�1105 3�2 0�4663 0�5933 5�8 0�5298 0�546
0�7 0�6597 0�1721 3�3 0�4057 0�5193 5�9 0�4486 0�5163
0�8 0�7228 0�2493 3�4 0�4385 0�4296 6�0 0�4995 0�447
0�9 0�7648 0�3398 3�5 0�5326 0�4152 6�1 0�5495 0�5165
1�0 0�7799 0�4383 3�6 0�588 0�4923 6�2 0�4676 0�5398
1�1 0�7638 0�5365 3�7 0�5419 0�575 6�3 0�476 0�4555
1�2 0�7154 0�6234 3�8 0�4481 0�5656 6�4 0�5496 0�4965
1�3 0�6386 0�6863 3�9 0�4223 0�4752 6�5 0�4816 0�5454
1�4 0�5431 0�7135 4�0 0�4984 0�4205 6�6 0�469 0�4631
1�5 0�4453 0�6975 4�1 0�5737 0�4758 6�7 0�5467 0�4915
1�6 0�3655 0�6389 4�2 0�5417 0�5632 6�8 0�4831 0�5436
1�7 0�3238 0�5492 4�3 0�4494 0�554 6�9 0�4732 0�4624
1�8 0�3336 0�4509 4�4 0�4383 0�4623 7�0 0�5455 0�4997
1�9 0�3945 0�3733 4�5 0�526 0�4343 7�1 0�4733 0�536
2�0 0�4883 0�3434 4�6 0�5672 0�5162 7�2 0�4887 0�4573
2�1 0�5816 0�3743 4�7 0�4914 0�5671 7�3 0�5393 0�5189
2�2 0�6363 0�4557 4�8 0�4338 0�4968 7�4 0�4601 0�5161
2�3 0�6266 0�5532 4�9 0�5002 0�4351 7�5 0�516 0�4607
2�4 0�555 0�6197 5�0 0�5636 0�4992 7�6 0�5156 0�5389
2�5 0�4574 0�6192 5�1 0�4998 0�5624 7�7 0�4628 0�482
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A P P E N D I X -B

Table B.1. Partial list of Bessel Function J1�x�.

x J1�x� x J1�x� x J1�x�

0 0 2�6 0�4708 5�2 −0�3432
0�1 0�0499 2�7 0�4146 5�3 −0�3460
0�2 0�0995 2�8 0�4097 5�4 −0�3453
0�3 0�1483 2�9 0�3754 5�5 −0�3414
0�4 0�196 3�0 0�3391 5�6 −0�3343
0�5 0�2423 3�1 0�3009 5�7 −0�3241
0�6 0�2867 3�2 0�2613 5�8 −0�3110
0�7 0�329 3�3 0�2207 5�9 −0�2951
0�8 0�3688 3�4 0�1792 6�0 −0�2767
0�9 0�4059 3�5 0�1374 6�1 −0�2559
1�0 0�4401 3�6 0�0955 6�2 −0�2329
1�1 0�4709 3�7 0�0538 6�3 −0�2081
1�2 0�4983 3�8 0�0128 6�4 −0�1816
1�3 0�522 3�9 −0�0272 6�5 −0�1538
1�4 0�5419 4�0 −0�066 6�6 −0�1250
1�5 0�5579 4�1 −0�1033 6�7 −0�0953
1�6 0�5699 4�2 −0�1386 6�8 −0�0652
1�7 0�5778 4�3 −0�1719 6�9 −0�0349
1�8 0�5815 4�4 −0�2028 7�0 −0�0047
1�9 0�5812 4�5 −0�2311 7�1 0�0252
2�0 0�5767 4�6 −0�2566 7�2 0�0543
2�1 0�5683 4�7 −0�2791 7�3 0�0826
2�2 0�556 4�8 −0�2985 7�4 0�1096
2�3 0�5399 4�9 −0�3147 7�5 0�1352
2�4 0�5202 5�0 −0�3276 7�6 0�1592
2�5 0�4971 5�1 −0�3371 7�7 0�1813
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Abbe number, 251
Abbe sine condition, 239, 494
Abbe’s theory of image formation,

460, 496
Aberration function, 222–30, 231, 235,

242, 247
Absorptance, 288
Absorption, 1, 57
Achromatic combination, 49
Achromatic fringe, 279
Active medium, 33, 204
Aether, 7
Afocal telescope, 201
Airy disk, 217, 426–7
Airy formula, 287
Airy function, 287
Airy pattern, 426, 428
Ametropic eye, 211
Amplitude, 9
Amplitude grating, 436
Analytical signal, 79
Angular dispersion of a grating, 440
Angular field of view, 188
Angular magnification, 176, 179
Angular magnification of a telescope, 201
Anisotropic media, 57–73
Anomalous dispersion, 53, 56, 57
Anti-reflection coatings, 312–13
Aperture stop, 188
Aplanatic points, 199, 218–19
Aplanatic surfaces, 219
Apodization, 428, 429
AR coatings, 305, 312, 313
Arago bright spot, 365–6
Area of coherence, 111
Array theorem, 429–36
Aspherical surfaces, 219

Astigmatism, 211, 241–6
Astronomical telescope, 199, 202
Attenuation vector, 18, 30
Autocollimation, 448
Axis meridian, 212

Babinet’s compensator, 139
Babinet’s principle, 335–7
Badal principle, 191
Barrel-like distortion, 249
Beam divergence, 18
Beam expander, 202, 478, 530
Beam-like solutions, 13–18
Beam-trapping, 615
Bessel functions, 425, 565
Bessel wave solution, 8
Biaxial crystals, 67–9
Billet’s split-lens, 262
Birefringence, 70
Blaze angle, 441
Blazed grating, 440–5
Bose–Einstein distribution, 116
Boundary conditions, 22–5
Brewster angle, 32–3

Calibration of the standard meter, 280
Camera:

pin-hole, 369–70
single lens, 192–3

Cardinal points, 168–71
Carrier wave, 482
Cartesian ovals, 219
Cassegrain telescope, 202
Catadioptric systems, 185
Cauchy dispersion formula, 45
Caustic surface, 232, 233

631



632 INDEX

Character recognition, 488
Chief ray, 221, 222, 243
Chromatic aberration, 45, 187, 202,

249–51
Circle of least confusion, 231
Circular aperture, 359–66, 424–7
Circular polarization, 123–5
Coddington shape and position

factors, 230
Coherence length, 92, 280, 285
Coherence time, 92, 101, 258
Coherency matrix, 153–4
Coherent image processing, 473–88
Coherent impulse response function,

469–73
Coherent optical processing, 488–9
Coherent transfer function, 507–10
Collision broadening, 118
Coma, 234–41
Comatic circle, 237
Comb function, 386
Complementary aperture, 336
Complex coherence functions, 82–6
Complex degree of mutual coherence,

99–102
Complex degree of self coherence, 88–94
Complex field, 10
Complex filter, 481–6
Complex mutual coherence function, 82
Complex refractive index, 11
Complex self coherence function, 86
Condenser, 495
Conical refraction, 70
Conjugate image, 469, 546
Conjugate planes, 170, 180
Contrast, 289
Convolution of discrete functions,

402–403
Convolution operation, 392–401, 407
Convolution theorems, 399–401
Cornu spiral, 344–6
Corpuscular theory, 319
Correlation of functions, 403–407
Correlation theorems, 405–406
Critical angle, 36

Cylindrical lens, 212–13
Cylindrical wave, 12

Damped oscillator, 386–8
Dark ground imaging, 478
Degree of mutual coherence, 99–102
Degree of polarization, 146
Degree of self coherence, 88–94
Diamond, 303
Dichroic mirrors, 301
Dichroic polarizer, 134
Dielectric tensor, 57, 62
Diffracting apertures, 419–27
Diffraction factor, 439, 444
Diffraction grating, 436–50
Diffraction integral, 330
Diffraction with a lens, 414–19
Diffraction-limited optics, 322
Diopter, 168
Dirac delta function, 383–6
Direct vision combination, 48
Dispersion, 45, 50–7
Dispersion in dense media, 53–4
Dispersion in dilute gases, 52–3
Dispersive power, 49, 250
Distortion, 248
Doppler broadening, 117
Double exposure holographic

interferometry, 561
Double refraction, 69–71
Dual character, 1

Echelon gratings, 446
Electric polarization, 3
Electric susceptibility, 5, 579
Electrical conductivity, 6
Electromagnetic spectrum, 2
Electromagnetic waves, 7
Electrooptic coefficient, 618
Electrooptic effect, 615–18
Electrooptic modulators, 618–24
Elliptical polarization, 124
Emission, 1
Emmetropic eye, 211
Energy density, 21–2, 58
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Ensemble average, 84, 143
Entrance pupil, 188, 189, 223
Envelope representation, 80
Ergodic fields, 84, 256
Etalons, 280, 291
Evanescent wave, 20, 37, 40
Exit pupil, 188
External reflections, 30
Extinction index, 20
Extinction ratio, 134
Extraordinary wave, 64, 605
Eye, 209–12
Eye-piece, 195,196, 251

Fabry–Perot etalon, 289
Fabry–Perot interferometer, 289–300
Far field diffraction, 411–19
Fast axis, 136
Fermat’s principle, 159
Field curvature, 246–8
Field flattener, 247–8
Field lens, 196
Field stop, 188
Finesse, 296
First-order coherence, 82
Fizeau fringes, 271
f-number, 193
Focal points, 169
Focusing errors, 228–30
Fourier series, 373–9
Fourier transform pair, 381
Fourier transform plane, 419, 461
Fourier transform spectroscopy, 94–5
Fourier transforms, 379–89
Fourier transforms in two dimensions,

389–92
Fraunhofer diffraction, 333, 411
Fraunhofer lines, 49
Free spectral range, 296, 449–50
Fresnel diffraction, 331, 339–69
Fresnel equation, 60–2
Fresnel integrals, 343, 627
Fresnel relations, 31
Fresnel rhomb, 39–40
Fresnel zones, 361

Fresnel–Kirchhoff diffraction
formula, 327

Fresnel’s biprism, 261
Fresnel’s two mirror arrangement, 261
Fringe visibility, 91
Fringes of constant inclination, 266
Fringes of equal thickness, 272
Frustrated total internal reflection, 40
Full permutation symmetry, 586
FWHM, 91, 292, 388

Galilean telescope, 200
Gauss’ theorem, 23
Gaussian optics, 161–87
Gaussian profile, 16
Geometrical aberrations, 220
Geometrical optics, 159–213
Glan-Thompson prism, 71, 134
Goos-Hanchan shift, 41
Grating dispersion, 440
Grazing incidence, 33
Green’s theorem, 323
Group velocity, 55

Haidinger fringes, 269–70, 291
Half-period zones, 361
Half-tone picture, 476
Half-wave plate, 139
Halos, 451
Hanbury Brown and Twiss experiment,

113–14
Harmonic plane wave, 20
Helicity, 125
Helmholtz equation, 13, 323
High pass filter, 478
High reflectance coatings, 313
High-resolution spectroscopy, 296
Hilbert transformation, 79
Hologram recording, 531–2, 538, 542
Holographic diffraction gratings, 566
Holographic interferometry, 560–6
Holographic lenses, 566
Holographic memory, 558
Holographic optical elements, 566
Holography, 529–66
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Homogeneous wave, 18–21
HR coatings, 304, 313
Human eye, 209
Huygens eye-piece, 251
Huygens’ principle, 320–1
Huygens–Fresnel theory, 321–2
Hypermetropia, 211
Hyperopic condition, 211

Image plane, 496, 461
Impulse response function, 469
Incoherent image formation, 489
Incoherent light, 145–7
Incoherent optical processing, 490
Index ellipsoid, 62
Infinitely long slit, 422–3
Inhomogeneous wave, 18–21
Intensity, 84
Intensity correlations, 112–16
Intensity modulator, 621
Interference, 255
Interference factor, 439
Interference filters, 300, 314
Interference with extended sources,

268–75
Interferograms, 95
Interferometers, 275–83

Fabry–Perot, 270, 289–300, 314
Mach–Zehnder, 282
Michelson, 89, 275
Sagnac, 283
Twyman–Green, 280

Internal reflections, 36, 300
Inverse Fourier transform, 381, 414
Inversion symmetry, 573
Irregularly positioned apertures, 450–1
Isoplanatism, 506, 507
Isoplanatism patches, 507

Jones vectors, 129–31, 132–4

KDP crystal, 618, 619, 621
Keplerian telescope, 200
Kerr effect, 613–15
Kirchhoff’s boundary conditions, 325–7

Kirchhoff’s diffraction theory, 322–33
Kirchhoff’s integral theorem, 325
Kleinman’s symmetry, 588–90

Laser beam distortion, 477–8
Laser cavity, 204–209
Laser-gyro, 283
Lateral magnification:

of a lens, 180
of a mirror, 187

Lens aberrations, 217–51
Lens bending, 187, 233
Lens maker’s formula, 168, 174
Lens matrix, 163–8
Lens transformation function, 416
Lensless Fourier transform hologram,

551–3
Limit of resolution:

of microscope, 497
of telescope, 494

Limiting iris, 188
Linear polarization, 124
Linear polarizers, 135
Linearity property, 391–2
Littrow mounting, 448
Lloyd’s single mirror arrangement, 262
Longitudinal magnification, 183
Longitudinal spherical aberration, 231
Lorentz model, 50, 573
Lorentzian profile, 387
Lorentz–Lorenz formula, 54
Lorentz’s correction, 51
Low pass filter, 477–8
Lummer–Gehrcke plate, 300–301

Mach–Zehnder interferometer,
282–3, 482

Magnetization, 3, 5
Magnification in holographic imaging,

546–54
Magnifying power, 191
Magnifying power of a microscope, 196
Malus Law, 134
Manley–Rowe relations, 596
Master hologram, 559
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Matched filter, 487
Maxwell’s equations, 1–6
Meniscus lens, 198, 241
Meridional plane, 221
Meridional rays, 161, 162
Michelson interferometer, 89, 275–8
Michelson stellar interferometer,

104–106
Michelson–Morley experiment, 280
Microscope, 195–9
Miller’s rule, 582
Minimum deviation, 47
Modulation transfer function, 511
Molecular polarizability, 53
Monochromatic wave, 8, 44, 77
Mueller matrices, 150–3
Multi-layer optical coatings, 305–309
Multi-wave interference, 283–9
Mutual coherence, 96–106
Mutual intensity, 98
Myopic eye, 211

Narrow slit, 346
Near field diffraction, 339–41
Negative coma, 238
Newton’s equation, 171, 181
Newton’s rings, 272–4
Nicol prism, 71, 72
Nodal points, 171, 176
Nonlinear crystals, 590
Nonlinear optics, 571–624
Nonlinear polarization, 573–85
Normal dispersion, 45, 59
Normal surface, 64
Numerical aperture, 199, 495
Nyquist frequency, 383

Object wave, 530
Obliquity factor, 328
Off-axis holography, 538–46
Oil-immersion objective, 219, 498
On-axis holography, 531–8
Optic axis, 64–5
Optic nerve, 210
Optical activity, 72, 73

Optical fibers, 37
Optical filter, 298–300
Optical Kerr effect, 613–15
Optical phase conjugation, 609–13
Optical rectification, 577
Optical systems, 187–204
Optical transfer function, 510–12
Optical tunnelling, 75
Optical wave guides, 37
Ordinary wave, 64, 66
Orthoscopic image, 537
Oscillator strength, 52

Pancharatnam theorem, 155
Parametric amplification, 606–608
Paraxial approximation, 160–1
Parseval’s theorem, 392
Partially coherent light, 80–2
Partially polarized light, 143
Penetration depth, 37
Permittivity, 6
Petzval surface, 246
Phase, 10
Phase advance, 121
Phase changes, 39
Phase-conjugate mirror, 609
Phase-conjugate wave, 546, 613
Phase contrast microscopy, 479
Phase grating, 435
Phase lag, 121
Phase-matching, 598
Phase modulation, 624
Phase objects, 478–81
Phase retarders, 136–7
Phase transfer function, 511
Phase velocity, 10, 59
Photon statistics, 114–16
Piezo-drive, 294
Pin-cushion distortion, 249
Pin-hole camera, 369–70
Plane wave solution, 9
Plasma frequency, 52
Plasma tube, 32
Pockel effect, 615
Poincaré sphere, 148–50
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Point source, 81, 97, 104, 262
Point spread function, 510
Poisson distribution, 115, 116
Polarization ellipse, 127–9
Polarizing angle, 32
Polarizing prisms, 71–3

Glan-Thompson prism, 71, 72
Nicol prism, 71, 72
Rochon prism, 72

Polychromatic light, 77–80, 84–6
Positive coma, 238
Power meridian, 212
Poynting vector, 21, 59, 606
Presbyopia, 211
Primary aberrations, 230–49
Primary focal plane, 180
Primary image, 368
Principal angle, 44
Principal axes, 60
Principal maxima, 446
Principal plane, 66, 170
Principal points, 169
Principle of reversibility, 286
Prisms, 48

Amici prism, 48
Dove prism, 48
Pellin-Broca prism, 48
Porro prism, 48

Pseudoscopic image, 538

Quarter-wave plate, 138, 623
Quasi-monochromatic light, 80,

142–4

Radial keratotomy, 211
Rainbow holography, 558–60
Ramsden eye-piece, 215
Ray deviations, 226–8
Ray tracing, 183–4
Ray velocity, 59
Rayleigh criterion of resolution, 447, 495
Rayleigh interferometer, 482
Rayleigh range, 17
Real-time holographic interferometry,

563–4

Reciprocity theorem, 329
Reconstruction wave, 530
Rectangle function, 382–3
Rectangle wave, 375
Rectangular aperture, 419–21, 420
Rectangular obstacle, 355–9
Recursion relation, 425
Reference sphere, 222, 236
Reflectance, 33–5, 313
Reflecting telescope, 105, 202
Reflection coefficient, 29
Reflection hologram, 554–8
Reflection matrix, 185
Refraction matrix, 165
Regimes of diffraction, 333–5
Relative aperture, 193
Resolution limit, 298
Resolution of a hologram, 553
Resolution test target, 479
Resolving power of:

Fabry–Perot interferometer, 298
grating, 446–9
image-forming systems, 493–8

Retina, 209
Rochon prism, 72

Sagitta, 163
Sagittal fans, 244
Sagittal focal line, 244
Sagittal plane, 221–2
Sagnac interferometer, 283
Scaling property, 390
Schlieren method, 479
Schwarz’s inequality, 99
Second-harmonic generation,

601–606
Secondary focal plane, 171
Secondary image, 368–9
Secondary maxima, 386, 437
Secondary wavelets, 321
Seidel aberrations, 220
Self coherence, 86–95
Self-focusing, 613
Sellemeier’s equation, 52
Shanon’s sampling theorem, 383
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Shifting property, 391
Shift-invariant systems, 393
Sign convention, 162–3
Signal velocity, 56
Sine condition, 239
Single layer optical coatings, 301–305
Single lens camera, 192–3
Single lens magnifier, 189–92
Sinusoidal grating, 451–2
Skew rays, 161, 222
Slow axis, 136
Smith–Helmholtz formula, 179
Snell’s law, 31
Sommerfeld radiation condition, 327
Space invariance, 464
Sparrow criterion, 449
Spatial coherence, 81–2
Spatial domain, 473
Spatial frequency, 375
Spatial frequency filtering, 473–7
Speckles, 81, 451
Spectral bandwidth, 92
Spectral density function, 85, 406
Spectral resolution, 297–300
Spherical aberration, 230–4
Spherical aberration of a thin lens,

232–4
Spherical wave, 12
Spontaneous emission, 77
Spot size, 18
Stable resonator, 208
States of polarization, 121–6
Stationarity, 334
Stationary fields, 83, 90
Stigmatic image, 217–18
Stimulated emission, 260
Stokes parameters, 139–48
Stokes’ theorem, 24
Stokes vector, 146
Straight edge, 353–5
Straight fringes, 274–5
Strehl ratio, 505–506
Sum-frequency generation, 593–7
Superposition principle, 8, 255
SVEA approximation, 14

Sylvester’s theorem, 207
System matrix, 183

Tangential fans, 244, 245
Tangential focal line, 243, 244
Tangential plane, 221–2
Tangential rays, 221
TE mode, 20
Telephoto lens, 202–204
Telescope, 199–202
TEM00 mode, 477
TEM wave, 19
Temporal coherence, 81–2
Terrestrial telescope, 200
Tessar lens, 204, 214
Thermal source, 77, 116
Thin lens, 232–4
Thin optical coatings, 301–15
Three-slit aperture, 434–6
Time-average holographic

interferometry, 564
Time-averaged fields, 83
TM mode, 20
Total external reflection, 54
Total internal reflection, 36, 40–2
Translation matrix, 165
Transmittance, 33–5
Transverse spherical aberration, 232
Triangle function, 401
Truncated oscillator, 388–9
Two-lens optical systems, 193–5
Two-slit aperture, 431–4
Two-wave interference, 256–68
Two-wave interferometers, 275–83
Twyman–Green interferometer, 280–2

Uniaxial crystals, 64–7
Upconversion, 600–601

Van Cittert–Zernike Theorem, 106–12
Vergence, 181
Vignetting, 188
Virtual object, 182
Visibility of interference fringes, 91, 257
Visual acuity, 211
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Walk-off effect, 606
Wave equation, 6–18, 590–1
Wave packet, 55–6
Wavefront, 10
Wavefront aberration function, 222–30
Wavefront reconstruction, 534–8, 549
Weighting factors, 377

White light fringes, 279
Wiener–Khinchin theorem, 406–407

Young’s double slit arrangement, 96, 261

Zone plate, 366–9
Zoom lens, 204
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