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The goal of physics is to provide an understanding of the physical world by developing theo-
ries based on experiments. A physical theory is essentially a guess, usually expressed mathe-
matically, about how a given physical system works. The theory makes certain predictions
about the physical system which can then be checked by observations and experiments. If the
predictions turn out to correspond closely to what is actually observed, then the theory
stands, although it remains provisional. No theory to date has given a complete description of
all physical phenomena, even within a given subdiscipline of physics. Every theory is a work in
progress.

The basic laws of physics involve such physical quantities as force, velocity, volume, and
acceleration, all of which can be described in terms of more fundamental quantities. In me-
chanics, the three most fundamental quantities are length (L), mass (M), and time (T); all
other physical quantities can be constructed from these three.

1.1 STANDARDS OF LENGTH, MASS, AND TIME
To communicate the result of a measurement of a certain physical quantity, a unit
for the quantity must be defined. For example, if our fundamental unit of length is
defined to be 1.0 meter, and someone familiar with our system of measurement re-
ports that a wall is 2.0 meters high, we know that the height of the wall is twice the
fundamental unit of length. Likewise, if our fundamental unit of mass is defined as
1.0 kilogram, and we are told that a person has a mass of 75 kilograms, then that
person has a mass 75 times as great as the fundamental unit of mass.

In 1960, an international committee agreed on a standard system of units for
the fundamental quantities of science, called SI (Système International). Its units
of length, mass, and time are the meter, kilogram, and second, respectively.

Thousands of years ago, people in
southern England built Stonehenge,
which was used as a calendar. The
position of the sun and stars relative
to the stones determined seasons for
planting or harvesting.

Throughout 
the text, the PhysicsNow icon indi-
cates an opportunity for you to test
yourself on key concepts and to 
explore animations and interactions
on the PhysicsNow website at
www.cp7e.com.
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2 Chapter 1 Introduction

Length
In 1799, the legal standard of length in France became the meter, defined as one ten-
millionth of the distance from the equator to the North Pole. Until 1960, the official
length of the meter was the distance between two lines on a specific bar of platinum-
iridium alloy stored under controlled conditions. This standard was abandoned for
several reasons, the principal one being that measurements of the separation be-
tween the lines are not precise enough. In 1960, the meter was defined as 1 650
763.73 wavelengths of orange-red light emitted from a krypton-86 lamp. In October
1983, this definition was abandoned also, and the meter was redefined as the distance
traveled by light in vacuum during a time interval of 1/299 792 458 second. This lat-
est definition establishes the speed of light at 299 792 458 meters per second.

Mass
The SI unit of mass, the kilogram, is defined as the mass of a specific platinum-
iridium alloy cylinder kept at the International Bureau of Weights and Measures at
Sèvres, France (similar to that shown in Figure 1.1a). As we’ll see in Chapter 4,
mass is a quantity used to measure the resistance to a change in the motion of an
object. It’s more difficult to cause a change in the motion of an object with a large
mass than an object with a small mass.

Time
Before 1960, the time standard was defined in terms of the average length of a so-
lar day in the year 1900. (A solar day is the time between successive appearances of
the Sun at the highest point it reaches in the sky each day.) The basic unit of time,
the second, was defined to be (1/60)(1/60)(1/24) � 1/86 400 of the average so-
lar day. In 1967, the second was redefined to take advantage of the high precision
attainable with an atomic clock, which uses the characteristic frequency of the
light emitted from the cesium-133 atom as its “reference clock.” The second is now
defined as 9 192 631 700 times the period of oscillation of radiation from the
cesium atom. The newest type of cesium atomic clock is shown in Figure 1.1b.

Figure 1.1 (a) The National Standard Kilogram No. 20, an accurate copy of the International Stan-
dard Kilogram kept at Sèvres, France, is housed under a double bell jar in a vault at the National Insti-
tute of Standards and Technology. (b) The nation’s primary time standard is a cesium fountain atomic
clock developed at the National Institute of Standards and Technology laboratories in Boulder,
Colorado. This clock will neither gain nor lose a second in 20 million years.
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(a) (b)

Definition of the meter �

Definition of the kilogram �

Definition of the second �
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1.1 Standards of Length, Mass, and Time 3

Approximate Values for Length, Mass, and Time Intervals
Approximate values of some lengths, masses, and time intervals are presented in
Tables 1.1, 1.2, and 1.3, respectively. Note the wide ranges of values. Study these
tables to get a feel for a kilogram of mass (this book has a mass of about 
2 kilograms), a time interval of 1010 seconds (one century is about 3 � 109 seconds),
or two meters of length (the approximate height of a forward on a basketball
team). Appendix A reviews the notation for powers of 10, such as the expression of
the number 50 000 in the form 5 � 104.

Systems of units commonly used in physics are the Système International, in
which the units of length, mass, and time are the meter (m), kilogram (kg), and sec-
ond (s); the cgs, or Gaussian, system, in which the units of length, mass, and time
are the centimeter (cm), gram (g), and second; and the U.S. customary system, in
which the units of length, mass, and time are the foot (ft), slug, and second. SI units
are almost universally accepted in science and industry, and will be used throughout
the book. Limited use will be made of Gaussian and U.S. customary units.

TABLE 1.1
Approximate Values of Some Measured Lengths

Length (m)

Distance from Earth to most remote known quasar 1 � 1026

Distance from Earth to most remote known normal galaxies 4 � 1025

Distance from Earth to nearest large galaxy (M31, the Andromeda galaxy) 2 � 1022

Distance from Earth to nearest star (Proxima Centauri) 4 � 1016

One light year 9 � 1015

Mean orbit radius of Earth about Sun 2 � 1011

Mean distance from Earth to Moon 4 � 108

Mean radius of Earth 6 � 106

Typical altitude of satellite orbiting Earth 2 � 105

Length of football field 9 � 101

Length of housefly 5 � 10�3

Size of smallest dust particles 1 � 10�4

Size of cells in most living organisms 1 � 10�5

Diameter of hydrogen atom 1 � 10�10

Diameter of atomic nucleus 1 � 10�14

Diameter of proton 1 � 10�15

TABLE 1.2
Approximate Values of Some
Masses

Mass (kg)

Observable 1 � 1052

Universe
Milky Way galaxy 7 � 1041

Sun 2 � 1030

Earth 6 � 1024

Moon 7 � 1022

Shark 1 � 102

Human 7 � 101

Frog 1 � 10�1

Mosquito 1 � 10�5

Bacterium 1 � 10�15

Hydrogen atom 2 � 10�27

Electron 9 � 10�31TABLE 1.3
Approximate Values of Some Time Intervals

Time Interval (s)

Age of Universe 5 � 1017

Age of Earth 1 � 1017

Average age of college student 6 � 108

One year 3 � 107

One day (time required for one revolution of Earth about its axis) 9 � 104 

Time between normal heartbeats 8 � 10�1

Perioda of audible sound waves 1 � 10�3

Perioda of typical radio waves 1 � 10�6

Perioda of vibration of atom in solid 1 � 10�13

Perioda of visible light waves 2 � 10�15

Duration of nuclear collision 1 � 10�22

Time required for light to travel across a proton 3 � 10�24

aA period is defined as the time required for one complete vibration.
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4 Chapter 1 Introduction

Some of the most frequently used “metric” (SI and cgs) prefixes representing
powers of 10 and their abbreviations are listed in Table 1.4. For example, 10�3 m is
equivalent to 1 millimeter (mm), and 103 m is 1 kilometer (km). Likewise, 1 kg is
equal to 103 g, and 1 megavolt (MV) is 106 volts (V).

1.2 THE BUILDING BLOCKS OF MATTER
A 1-kg (� 2-lb) cube of solid gold has a length of about 3.73 cm (� 1.5 in.) on a
side. Is this cube nothing but wall-to-wall gold, with no empty space? If the cube is
cut in half, the two resulting pieces retain their chemical identity as solid gold. But
what if the pieces of the cube are cut again and again, indefinitely? Will the
smaller and smaller pieces always be the same substance, gold? Questions such as
these can be traced back to early Greek philosophers. Two of them—Leucippus
and Democritus—couldn’t accept the idea that such cutting could go on forever.
They speculated that the process ultimately would end when it produced a particle
that could no longer be cut. In Greek, atomos means “not sliceable.” From this
term comes our English word atom, once believed to be the smallest, ultimate par-
ticle of matter, but since found to be a composite of more elementary particles.

The atom can be visualized as a miniature Solar System, with a dense, positively
charged nucleus occupying the position of the Sun, with negatively charged elec-
trons orbiting like planets. This model of the atom, first developed by the great
Danish physicist Niels Bohr nearly a century ago, led to the understanding of cer-
tain properties of the simpler atoms such as hydrogen, but failed to explain many
fine details of atomic structure.

Notice the size of a hydrogen atom, listed in Table 1.1, and the size of a proton—
the nucleus of a hydrogen atom—one hundred thousand times smaller. If the pro-
ton were the size of a Ping Pong ball, the electron would be a tiny speck about the
size of a bacterium, orbiting the proton a kilometer away! Other atoms are similarly
constructed. So there is a surprising amount of empty space in ordinary matter.

After the discovery of the nucleus in the early 1900s, questions arose concerning
its structure. Is the nucleus a single particle or a collection of particles? The exact
composition of the nucleus hasn’t been defined completely even today, but by the
early 1930s a model evolved that helped us understand how the nucleus behaves.
Scientists determined that two basic entities—protons and neutrons—occupy the
nucleus. The proton is nature’s fundamental carrier of positive charge (equal in
magnitude but opposite in sign to the charge on the electron), and the number of
protons in a nucleus determines what the element is. For instance, a nucleus con-
taining only one proton is the nucleus of an atom of hydrogen, regardless of how
many neutrons may be present. Extra neutrons correspond to different isotopes of
hydrogen—deuterium and tritium—which react chemically in exactly the same way
as hydrogen, but are more massive. An atom having two protons in its nucleus, simi-
larly, is always helium, although again, differing numbers of neutrons are possible.

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and has a mass about equal to that of a proton. One of its primary pur-
poses is to act as a “glue” to hold the nucleus together. If neutrons were not pres-
ent, the repulsive electrical force between the positively charged protons would
cause the nucleus to fly apart.

The division doesn’t stop here; it turns out that protons, neutrons, and a zoo of
other exotic particles are now thought to be composed of six particles called
quarks (rhymes with “forks,” though some rhyme it with “sharks”). These particles
have been given the names up, down, strange, charm, bottom, and top. The up, charm,
and top quarks each carry a charge equal to � that of the proton, whereas the
down, strange, and bottom quarks each carry a charge equal to � the proton
charge. The proton consists of two up quarks and one down quark (see Fig. 1.2),
giving the correct charge for the proton, � 1. The neutron is composed of two
down quarks and one up quark and has a net charge of zero.

The up and down quarks are sufficient to describe all normal matter, so the
existence of the other four quarks indirectly observed in high-energy experiments,

1
3

2
3

TABLE 1.4
Some Prefixes for Powers of
Ten Used with “Metric” 
(SI and cgs) Units
Power Prefix Abbreviation

10�18 atto- a
10�15 femto- f
10�12 pico- p
10�9 nano- n
10�6 micro- �

10�3 milli- m
10�2 centi- c
10�1 deci- d
101 deka- da
103 kilo- k
106 mega- M
109 giga- G
1012 tera- T
1015 peta- P
1018 exa- E
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1.3 Dimensional Analysis 5

is something of a mystery. It’s also possible that quarks themselves have internal
structure. Many physicists believe that the most fundamental particles may be tiny
loops of vibrating string.

1.3 DIMENSIONAL ANALYSIS
In physics, the word dimension denotes the physical nature of a quantity. The
distance between two points, for example, can be measured in feet, meters, or
furlongs, which are different ways of expressing the dimension of length.

The symbols that we use in this section to specify the dimensions of length, mass,
and time are L, M, and T, respectively. Brackets [ ] will often be used to denote the
dimensions of a physical quantity. For example, in this notation the dimensions of
velocity v are written [v] � L/T, and the dimensions of area A are [A] � L2. The
dimensions of area, volume, velocity, and acceleration are listed in Table 1.5, along
with their units in the three common systems. The dimensions of other quantities,
such as force and energy, will be described later as they are introduced.

In physics, it’s often necessary either to derive a mathematical expression or
equation or to check its correctness. A useful procedure for doing this is called di-
mensional analysis, which makes use of the fact that dimensions can be treated as
algebraic quantities. Such quantities can be added or subtracted only if they have
the same dimensions. It follows that the terms on the opposite sides of an equation
must have the same dimensions. If they don’t, the equation is wrong. If they do,
the equation is probably correct, except for a possible constant factor.

To illustrate this procedure, suppose we wish to derive a formula for the distance
x traveled by a car in a time t if the car starts from rest and moves with constant ac-
celeration a. The quantity x has the dimension length: [x] � L. Time t, of course,
has dimension [t] � T. Acceleration is the change in velocity v with time. Since v has
dimensions of length per unit time, or [v] � L/T, acceleration must have dimen-
sions [a] � L/T2. We organize this information in the form of an equation:

[a] �  
[v]
[t]

�
L/T

T
�

L
T2 �

[x]
[t]2

Gold atoms

Nucleus

Quark composition of a proton
u

d

Gold cube

Gold
nucleus

Proton

Neutron

u

Figure 1.2 Levels of organization
in matter. Ordinary matter consists of
atoms, and at the center of each atom
is a compact nucleus consisting of
protons and neutrons. Protons and
neutrons are composed of quarks.
The quark composition of a proton is
shown.

TABLE 1.5
Dimensions and Some Units of Area, Volume, Velocity, and Acceleration
System Area (L2) Volume (L3) Velocity (L/T) Acceleration (L/T2)

SI m2 m3 m/s m/s2

cgs cm2 cm3 cm/s cm/s2

U.S. customary ft2 ft3 ft/s ft/s2
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6 Chapter 1 Introduction

Looking at the left- and right-hand sides of this equation, we might now guess that

This is not quite correct, however, because there’s a constant of proportionality—
a simple numerical factor— that can’t be determined solely through dimensional
analysis. As will be seen in Chapter 2, it turns out that the correction expression is

.
When we work algebraically with physical quantities, dimensional analysis allows

us to check for errors in calculation, which often show up as discrepancies in units.
If, for example, the left-hand side of an equation is in meters and the right-hand
side is in meters per second, we know immediately that we’ve made an error.

x � 1
2at 2

a �
x
t 2   :   x � at 2

EXAMPLE 1.1 Analysis of an Equation
Goal Check an equation using dimensional analysis.

Problem Show that the expression v � v0 � at, is dimensionally correct, where v and v0 represent velocities, a is
acceleration, and t is a time interval.

Strategy Analyze each term, finding its dimensions, and then check to see if all the terms agree with each other.

Solution
Find dimensions for v and v0. [v] � [v0] �

L
T

Find the dimensions of at. [at] � �
L
T

L
T 2  (T)

Remarks All the terms agree, so the equation is dimensionally correct.

Exercise 1.1
Determine whether the equation x � vt2 is dimensionally correct. If not, provide a correct expression, up to an over-
all constant of proportionality.

Answer Incorrect. The expression x � vt is dimensionally correct.

EXAMPLE 1.2 Find an Equation
Goal Derive an equation by using dimensional analysis.

Problem Find a relationship between a constant acceleration a, speed v, and distance r from the origin for a parti-
cle traveling in a circle.

Strategy Start with the term having the most dimensionality, a. Find its dimensions, and then rewrite those dimen-
sions in terms of the dimensions of v and r. The dimensions of time will have to be eliminated with v, since that’s the
only quantity in which the dimension of time appears.

Solution
Write down the dimensions of a: [a] �

L
T2

Solve the dimensions of speed for T: [v] �
L
T

  :  T �
L

[v] 

Substitute the expression for T into the equation for
[a]:

[a] �
L
T2 �

L
(L/[v])2 �

[v]2

L
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1.4 Uncertainty In Measurement and Significant Figures 7

1.4 UNCERTAINTY IN MEASUREMENT 
AND SIGNIFICANT FIGURES

Physics is a science in which mathematical laws are tested by experiment. No physi-
cal quantity can be determined with complete accuracy, because our senses are
physically limited, even when extended with microscopes, cyclotrons, and other
gadgets.

Knowing the experimental uncertainties in any measurement is very important.
Without this information, little can be said about the final measurement. Using a
crude scale, for example, we might find that a gold nugget has a mass of 3 kilo-
grams. A prospective client interested in purchasing the nugget would naturally
want to know about the accuracy of the measurement, to ensure paying a fair
price. He wouldn’t be happy to find that the measurement was good only to within
a kilogram, because he might pay for three kilograms and get only two. Of course,
he might get four kilograms for the price of three, but most people would be hesi-
tant to gamble that an error would turn out in their favor.

Accuracy of measurement depends on the sensitivity of the apparatus, the skill
of the person carrying out the measurement, and the number of times the mea-
surement is repeated. There are many ways of handling uncertainties, and here
we’ll develop a basic and reliable method of keeping track of them in the measure-
ment itself and in subsequent calculations.

Suppose that in a laboratory experiment we measure the area of a rectangular
plate with a meter stick. Let’s assume that the accuracy to which we can measure a
particular dimension of the plate is � 0.1 cm. If the length of the plate is mea-
sured to be 16.3 cm, we can claim only that it lies somewhere between 16.2 cm
and 16.4 cm. In this case, we say that the measured value has three significant fig-
ures. Likewise, if the plate’s width is measured to be 4.5 cm, the actual value lies
between 4.4 cm and 4.6 cm. This measured value has only two significant figures.
We could write the measured values as 16.3 � 0.1 cm and 4.5 � 0.1 cm. In gen-
eral, a significant figure is a reliably known digit (other than a zero used to locate
a decimal point).

Suppose we would like to find the area of the plate by multiplying the two mea-
sured values together. The final value can range between (16.3 � 0.1 cm)(4.5 �
0.1 cm) � (16.2 cm)(4.4 cm) � 71.28 cm2 and (16.3 � 0.1 cm)(4.5 � 0.1 cm) �
(16.4 cm)(4.6 cm) � 75.44 cm2. Claiming to know anything about the hundredths
place, or even the tenths place, doesn’t make any sense, because it’s clear we
can’t even be certain of the units place, whether it’s the 1 in 71, the 5 in 75, or
somewhere in between. The tenths and the hundredths places are clearly not
significant. We have some information about the units place, so that number is 

Substitute L � [r], and guess at the equation: a �
v2

r
[a] �

[v]2

[r]
  :

Remarks This is the correct equation for centripetal acceleration—acceleration towards the center of motion— to
be discussed in Chapter 7. There isn’t any need in this case, to introduce a numerical factor. Such a factor is often
displayed explicitly as a constant k in front of the right-hand side— for example, a � kv2/r. As it turns out, k � 1
gives the correct expression.

Exercise 1.2
In physics, energy E carries dimensions of mass times length squared, divided by time squared. Use dimensional
analysis to derive a relationship for energy in terms of mass m and speed v, up to a constant of proportionality. Set
the speed equal to c, the speed of light, and the constant of proportionality equal to 1 to get the most famous equa-
tion in physics.

Answer E � kmv2 : E � mc2 when k � 1 and v � c.

44337_01_p1-22  10/13/04  2:13 PM  Page 7



8 Chapter 1 Introduction

significant. Multiplying the numbers at the middle of the uncertainty ranges gives
(16.3 cm)(4.5 cm) � 73.35 cm2, which is also in the middle of the area’s uncer-
tainty range. Since the hundredths and tenths are not significant, we drop them
and take the answer to be 73 cm2, with an uncertainty of � 2 cm2. Note that the
answer has two significant figures, the same number of figures as the least accu-
rately known quantity being multiplied, the 4.5-cm width.

There are two useful rules of thumb for determining the number of significant
figures. The first, concerning multiplication and division, is as follows: In multiply-
ing (dividing) two or more quantities, the number of significant figures in the final
product (quotient) is the same as the number of significant figures in the least
accurate of the factors being combined, where least accurate means having the lowest
number of significant figures.

To get the final number of significant figures, it’s usually necessary to do some
rounding. If the last digit dropped is less than 5, simply drop the digit. If the last
digit dropped is greater than or equal to 5, raise the last retained digit by one.

EXAMPLE 1.3 Installing a Carpet
Goal Apply the multiplication rule for significant figures.

Problem A carpet is to be installed in a room of length 12.71 m and width 3.46 m. Find the area of the room,
retaining the proper number of significant figures.

Strategy Count the significant figures in each number. The smaller result is the number of significant figures in
the answer.

Solution
Count significant figures: 12.71 m : 4 significant figures

3.46 m : 3 significant figures

Multiply the numbers, keeping only three digits: 12.71 m � 3.46 m � 43.9766 m2 : 44.0 m2

Remarks In reducing 43.976 6 to three significant figures, we used our rounding rule, adding 1 to the 9, which
made 10 and resulted in carrying 1 to the unit’s place.

Exercise 1.3
Repeat this problem, but with a room measuring 9.72 m long by 5.3 m wide.

Answer 52 m2

Zeros may or may not be significant figures. Zeros used to position the decimal
point in such numbers as 0.03 and 0.007 5 are not significant (but are useful in
avoiding errors). Hence, 0.03 has one significant figure, and 0.007 5 has two.

When zeros are placed after other digits in a whole number, there is a possibility
of misinterpretation. For example, suppose the mass of an object is given as 1 500 g.
This value is ambiguous, because we don’t know whether the last two zeros are be-
ing used to locate the decimal point or whether they represent significant figures in
the measurement.

Using scientific notation to indicate the number of significant figures removes
this ambiguity. In this case, we express the mass as 1.5 � 103 g if there are two sig-
nificant figures in the measured value, 1.50 � 103 g if there are three significant
figures, and 1.500 � 103 g if there are four. Likewise, 0.000 15 is expressed in sci-
entific notation as 1.5 � 10�4 if it has two significant figures or as 1.50 � 10�4 if it
has three significant figures. The three zeros between the decimal point and the

TIP 1.1 Using Calculators
Calculators were designed by engi-
neers to yield as many digits as the
memory of the calculator chip per-
mitted, so be sure to round the final
answer down to the correct number
of significant figures.
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1.5 Conversion of Units 9

digit 1 in the number 0.000 15 are not counted as significant figures because
they only locate the decimal point. In this book, most of the numerical ex-
amples and end-of-chapter problems will yield answers having two or three signifi-
cant figures.

For addition and subtraction, it’s best to focus on the number of decimal places
in the quantities involved rather than on the number of significant figures. When
numbers are added (subtracted), the number of decimal places in the result
should equal the smallest number of decimal places of any term in the sum
(difference). For example, if we wish to compute 123 (zero decimal places) 
� 5.35 (two decimal places), the answer is 128 (zero decimal places) and not
128.35. If we compute the sum 1.000 1 (four decimal places) � 0.000 3 (four deci-
mal places) � 1.000 4, the result has the correct number of decimal places,
namely four. Observe that the rules for multiplying significant figures don’t work
here because the answer has five significant figures even though one of the terms
in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the
subtraction 1.002 � 0.998 � 0.004, the result has three decimal places because
each term in the subtraction has three decimal places.

To show why this rule should hold, we return to the first example in which we
added 123 and 5.35, and rewrite these numbers as 123.xxx and 5.35x. Digits writ-
ten with an x are completely unknown and can be any digit from 0 to 9. Now we
line up 123.xxx and 5.35x relative to the decimal point and perform the addition,
using the rule that an unknown digit added to a known or unknown digit yields an
unknown:

123.xxx

�     5.35x

128.xxx

The answer of 128.xxx means that we are justified only in keeping the number 128
because everything after the decimal point in the sum is actually unknown. The
example shows that the controlling uncertainty is introduced into an addition or
subtraction by the term with the smallest number of decimal places.

In performing any calculation, especially one involving a number of steps, there
will always be slight discrepancies introduced by both the rounding process
and the algebraic order in which steps are carried out. For example, consider
2.35 � 5.89/1.57. This computation can be performed in three different orders.
First, we have 2.35 � 5.89 � 13.842, which rounds to 13.8, followed by 13.8/1.57 �
8.789 8, rounding to 8.79. Second, 5.89/1.57 � 3.751 6, which rounds to 3.75, re-
sulting in 2.35 � 3.75 � 8.812 5, rounding to 8.81. Finally, 2.35/1.57 � 1.496 8
rounds to 1.50, and 1.50 � 5.89 � 8.835 rounds to 8.84. So three different alge-
braic orders, following the rules of rounding, lead to answers of 8.79, 8.81, and
8.84, respectively. Such minor discrepancies are to be expected, because the last
significant digit is only one representative from a range of possible values, depend-
ing on experimental uncertainty. The discrepancies can be reduced by carrying
one or more extra digits during the calculation. In our examples, however, inter-
mediate results will be rounded off to the proper number of significant figures,
and only those digits will be carried forward. In experimental work, more sophisti-
cated techniques are used to determine the accuracy of an experimental result.

1.5 CONVERSION OF UNITS
Sometimes it’s necessary to convert units from one system to another. Conversion
factors between the SI and U.S. customary systems for units of length are as follows:

1 mile � 1 609 m � 1.609 km 1 ft � 0.304 8 m � 30.48 cm

1 m � 39.37 in. � 3.281 ft 1 in. � 0.025 4 m � 2.54 cm

A more extensive list of conversion factors can be found on the inside front cover
of this book.

TIP 1.2 No Commas in
Numbers with Many Digits
In science, numbers with more than
three digits are written in groups of
three digits separated by spaces
rather than commas; so that 10 000
is the same as the common American
notation 10,000. Similarly, 
� � 3.14159265 is written as 
3.141 592 65.
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10 Chapter 1 Introduction

Units can be treated as algebraic quantities that can “cancel” each other. We
can make a fraction with the conversion that will cancel the units we don’t want,
and multiply that fraction by the quantity in question. For example, suppose we
want to convert 15.0 in. to centimeters. Because 1 in. � 2.54 cm, we find that

The next two examples show how to deal with problems involving more than
one conversion and with powers.

15.0 in. � 15.0 in. �  � 2.54 cm
1.00 in. � � 38.1 cm

EXAMPLE 1.4 Pull Over, Buddy!
Goal Convert units using several conversion factors.

Problem If a car is traveling at a speed of 28.0 m/s, is it exceeding the speed limit of 55.0 mi/h?

Strategy Meters must be converted to miles and seconds to hours, using the conversion factors listed on the inside
front cover of the book. This requires two or three conversion ratios.

Solution
Convert meters to miles: 28.0 m/s � � 1.74 � 10�2 mi/s�28.0 

m
s �� 1.00 mi

1 609 m �

This road sign near Raleigh, North
Carolina, shows distances in miles
and kilometers. How accurate are the
conversions?

Bi
lly

 E
. B

ar
ne

s/
St

oc
k 

Bo
st

on

Convert seconds to hours:

� 62.6 mi/h

� �1.74 � 10�2 
mi
s ��60.0 

s
min ��60.0 

min
h �

1.74 � 10�2
 
 mi/s

Remarks The driver should slow down because he’s exceeding the speed limit. An alternate approach is to use the
single conversion relationship 1.00 m/s � 2.24 mi/h:

Answers to conversion problems may differ slightly, as here, due to rounding during intermediate steps.

Exercise 1.4
Convert 152 mi/h to m/s.

Answer 68.0 m/s

28.0 m/s � �28.0 
m
s �� 2.24 mi/h

1.00 m/s � � 62.7 mi/h

EXAMPLE 1.5 Press the Pedal to the Metal
Goal Convert a quantity featuring powers of a unit.

Problem The traffic light turns green, and the driver of a high-performance car slams the accelerator to the floor.
The accelerometer registers 22.0 m/s2. Convert this reading to km/min2.

Strategy Here we need one factor to convert meters to kilometers and another two factors to convert seconds
squared to minutes squared.

Solution
Insert the necessary factors: 79.2 

km
min2

22.0 m
1.00 s2  � 1.00 km

1.00 � 103 m �� 60.0 s
1.00 min �

2
�
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1.6 Estimates and Order-of-Magnitude Calculations 11

1.6 ESTIMATES AND ORDER-OF-MAGNITUDE 
CALCULATIONS

Getting an exact answer to a calculation may often be difficult or impossible,
either for mathematical reasons or because limited information is available. In
these cases, estimates can yield useful approximate answers that can determine
whether a more precise calculation is necessary. Estimates also serve as a partial
check if the exact calculations are actually carried out. If a large answer is ex-
pected but a small exact answer is obtained, there’s an error somewhere.

For many problems, knowing the approximate value of a quantity—within a
factor of 10 or so— is sufficient. This approximate value is called an order-of-
magnitude estimate, and requires finding the power of 10 that is closest to the ac-
tual value of the quantity. For example, 75 kg � 102 kg, where the symbol � means
“is on the order of” or “is approximately.” Increasing a quantity by three orders of
magnitude means that its value increases by a factor of 103 � 1 000.

Occasionally, the process of making such estimates results in fairly crude an-
swers, but answers ten times or more too large or small are still useful. For exam-
ple, suppose you’re interested in how many people have contracted a certain dis-
ease. Any estimates under ten thousand are small compared with Earth’s total
population, but a million or more would be alarming. So even relatively imprecise
information can provide valuable guidance.

In developing these estimates, you can take considerable liberties with the num-
bers. For example, � � 1, 27 � 10, and 65 � 100. To get a less crude estimate, it’s
permissible to use slightly more accurate numbers (e.g., � � 3, 27 � 30, 65 � 70).
Better accuracy can also be obtained by systematically underestimating as many
numbers as you overestimate. Some quantities may be completely unknown, but
it’s standard to make reasonable guesses, as the examples show.

Remarks Notice that in each conversion factor the numerator equals the denominator when units are taken into
account. A common error in dealing with squares is to square the units inside the parentheses while forgetting to
square the numbers!

Exercise 1.5
Convert 4.50 � 103 kg/m3 to g/cm3.

Answer 4.50 g/cm3

EXAMPLE 1.6 How Much Gasoline Do We Use?
Goal Develop a complex estimate.

Problem Estimate the number of gallons of gasoline used by all cars in the United States each year.

Strategy Estimate the number of people in the United States, and then estimate the number of cars per person.
Multiply to get the number of cars. Guess at the number of miles per gallon obtained by a typical car and the num-
ber of miles driven per year, and from that get the number of gallons each car uses every year. Multiply by the esti-
mated number of cars to get a final answer, the number of gallons of gas used.

Solution
The number of cars equals the number of people times
the number of cars per person:

number of cars � (3.00 � 108 people)
� (0.5 cars/person) � 108 cars

The number of gallons used by one car in a year is the
number of miles driven divided by the miles per gallon.

# gal/yr
car

 �
� 104 mi/yr

car �
10 

 mi
gal

� 103 
gal/yr

car

Multiply these two results together to get an estimate of
the number of gallons of gas used per year.

# gal � (108 cars) � (103 ) � 1011 gal/yr
gal/yr

car
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12 Chapter 1 Introduction

Remarks Notice the inexact, and somewhat high, figure for the number of people in the United States, the esti-
mate on the number of cars per person (figuring that every other person has a car of one kind or another), and the
truncation of 1.5 � 108 cars to 108 cars. A similar estimate was used on the number of miles driven per year by a typi-
cal vehicle, and the average fuel economy, 10 mi/gal, looks low. None of this is important, because we are interested
only in an order-of-magnitude answer. Few people owning a car would drive just 1 000 miles in a year, and very few
would drive 100 000 miles, so 10 000 miles is a good estimate. Similarly, most cars get between 10 and 30 mi/gal, so
using 10 is a reasonable estimate, while very few cars would get 100 mi/gal or 1 mi/gal.

In making estimates, it’s okay to be cavalier! Feel free to take liberties ordinarily denied.

Exercise 1.6
How many new car tires are purchased in the United States each year? (Use the fact that tires wear out after about
50 000 miles.)

Answer � 108 tires (Individual answers may vary.)

EXAMPLE 1.8 Number of Galaxies in the Universe
Goal Estimate a volume and a number density, and combine.

Problem Given that astronomers can see about 10 billion light years into space and
that there are 14 galaxies in our local group, 2 million light years from the next local
group, estimate the number of galaxies in the observable universe. (Note : One light
year is the distance traveled by light in one year, about 9.5 � 1015 m.)(See Fig. 1.3.)

Strategy From the known information, we can estimate the number of galaxies
per unit volume. The local group of 14 galaxies is contained in a sphere a million
light years in radius, with the Andromeda group in a similar sphere, so there are
about 10 galaxies within a volume of radius 1 million light years. Multiply that num-
ber density by the volume of the observable universe.

Figure 1.3 In this deep-space
photograph, there are few stars— just
galaxies without end.
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Example 1.7 Stack One-Dollar Bills to the Moon
Goal Estimate the number of stacked objects required to reach a given height.

Problem How many one-dollar bills, stacked one on top of the other, would reach the Moon?

Strategy The distance to the Moon is about 400 000 km. Guess at the number of dollar bills in a millimeter, and
multiply the distance by this number, after converting to consistent units.

Solution
We estimate that ten stacked bills form a layer of 1 mm.
Convert mm to km:

10 bills
1 mm

 � 103 mm
1 m � � 103 m

1 km � �
107 bills

1 km

Multiply this value by the approximate lunar distance:

� 4 � 1012 bills

# of dollar bills � (4 � 105 km)� 107 bills
1 km �

Remarks That’s the same order of magnitude as the U.S. national debt!

Exercise 1.7
How many pieces of cardboard, typically found at the back of a bound pad of paper, would you have to stack up to
match the height of the Washington monument, about 170 m tall?

Answer � 105 (Answers may vary.)
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1.7 COORDINATE SYSTEMS
Many aspects of physics deal with locations in space, which require the definition
of a coordinate system. A point on a line can be located with one coordinate, a
point in a plane with two coordinates, and a point in space with three.

A coordinate system used to specify locations in space consists of the following:

� A fixed reference point O, called the origin
� A set of specified axes, or directions, with an appropriate scale and labels on the

axes
� Instructions on labeling a point in space relative to the origin and axes

One convenient and commonly used coordinate system is the Cartesian coor-
dinate system, sometimes called the rectangular coordinate system. Such a sys-
tem in two dimensions is illustrated in Figure 1.4. An arbitrary point in this
system is labeled with the coordinates (x, y). For example, the point P in the
figure has coordinates (5, 3). If we start at the origin O, we can reach P by mov-
ing 5 meters horizontally to the right and then 3 meters vertically upwards. In
the same way, the point Q has coordinates (� 3, 4), which corresponds to going 3
meters horizontally to the left of the origin and 4 meters vertically upwards from
there.

Solution
Compute the approximate volume Vlg of the local group
of galaxies:

Vlg � 4
3�r3 � (106 ly)3 � 1018 ly3

Compute the number of galaxies per cubic light year:

 �
10 galaxies

1018 ly3 � 10�17 
galaxies

ly3

# of galaxies
ly3 �

# of galaxies
Vlg

Compute the approximate volume of the observable
universe:

Vu � 4
3 �r 

3 � (1010 ly)3 � 1030 ly3

Multiply the density of galaxies by Vu:

� 1013 galaxies

� �10�17
  
galaxies

ly3 �(1030 ly3)

# of galaxies � � # of galaxies
ly3 �Vu

Remarks Notice the approximate nature of the computation, which uses 4�/3 � 1 on two occasions and 14 � 10
for the number of galaxies in the local group. This is completely justified: Using the actual numbers would be point-
less, because the other assumptions in the problem— the size of the observable universe and the idea that the local
galaxy density is representative of the density everywhere—are also very rough approximations. Further, there was
nothing in the problem that required using volumes of spheres rather than volumes of cubes. Despite all these arbi-
trary choices, the answer still gives useful information, because it rules out a lot of reasonable possible answers. Be-
fore doing the calculation, a guess of a billion galaxies might have seemed plausible.

Exercise 1.8
Given that the nearest star is about 4 light years away and that the galaxy is roughly a disk 100 000 light years across
and a thousand light years thick, estimate the number of stars in the Milky Way galaxy.

Answer � 1012 stars (Estimates will vary. The actual answer is probably close to 4 � 1011 stars.)

y(m)

x(m)

Q

(–3, 4) (5, 3)

(x, y)

P

O 5 10

5

10

Figure 1.4 Designation of points
in a two-dimensional Cartesian coor-
dinate system. Every point is labeled
with coordinates (x, y).
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14 Chapter 1 Introduction

Positive x is usually selected as right of the origin and positive y upward from the
origin, but in two dimensions this choice is largely a matter of taste. (In three dimen-
sions, however, there are “right-handed” and “left-handed” coordinates, which lead
to minus sign differences in certain operations. These will be addressed as needed.)

Sometimes it’s more convenient to locate a point in space by its plane polar co-
ordinates (r, 	), as in Figure 1.5. In this coordinate system, an origin O and a refer-
ence line are selected as shown. A point is then specified by the distance r from
the origin to the point and by the angle 	 between the reference line and a line
drawn from the origin to the point. The standard reference line is usually selected
to be the positive x-axis of a Cartesian coordinate system. The angle 	 is con-
sidered positive when measured counterclockwise from the reference line and
negative when measured clockwise. For example, if a point is specified by the po-
lar coordinates 3 m and 60°, we locate this point by moving out 3 m from the ori-
gin at an angle of 60° above (counterclockwise from) the reference line. A point
specified by polar coordinates 3 m and � 60° is located 3 m out from the origin
and 60° below (clockwise from) the reference line.

1.8 TRIGONOMETRY
Consider the right triangle shown in Active Figure 1.6, where side y is opposite the
angle 	, side x is adjacent to the angle 	, and side r is the hypotenuse of the trian-
gle. The basic trigonometric functions defined by such a triangle are the ratios of
the lengths of the sides of the triangle. These relationships are called the sine
(sin), cosine (cos), and tangent (tan) functions. In terms of 	, the basic trigono-
metric functions are as follows:1

[1.1]

For example, if the angle 	 is equal to 30
, then the ratio of y to r is always 0.50;
that is, sin 30
 � 0.50. Note that the sine, cosine, and tangent functions are quanti-
ties without units because each represents the ratio of two lengths.

Another important relationship, called the Pythagorean theorem, exists be-
tween the lengths of the sides of a right triangle:

r2 � x2 � y2 [1.2]

Finally, it will often be necessary to find the values of inverse relationships. For ex-
ample, suppose you know that the sine of an angle is 0.866, but you need to know
the value of the angle itself. The inverse sine function may be expressed as
sin�1(0.866), which is a shorthand way of asking the question “What angle has a sine
of 0.866?” Punching a couple of buttons on your calculator reveals that this angle is
60.0
. Try it for yourself and show that tan�1(0.400) � 21.8
. Be sure that your calcu-
lator is set for degrees and not radians. In addition, the inverse tangent function can
return only values between � 90
 and � 90
, so when an angle is in the second or
third quadrant, it’s necessary to add 180
 to the answer in the calculator window.

The definitions of the trigonometric functions and the inverse trigonometric
functions, as well as the Pythagorean theorem, can be applied to any right triangle,
regardless of whether its sides correspond to x - and y -coordinates.

These results from trigonometry are useful in converting from rectangular co-
ordinates to polar coordinates, or vice versa, as the next example shows.

tan 	 �
side opposite 	

side adjacent to 	
�

y
x

cos 	 �
side adjacent to 	

hypotenuse
�

x
r

 sin 	 �
side opposite 	

hypotenuse
�

y
r

O

(r,   )

r

   = 0°

Reference
line

θ

θ
θ

Figure 1.5 A polar coordinate
system.

θ

x

r
y

sin  =
y
r

cos  = x
r

tan  = x
y

θ

θ

θ

y

x

ACTIVE FIGURE 1.6
Certain trigonometric functions of a
right triangle.

Log into
PhysicsNow at www.cp7e.com, and go
to Active Figure 1.6 to move the point
and see the changes to the rectangu-
lar and polar coordinates and to the
sine, cosine, and tangent of angle 	.

1Many people use the mnemonic SOHCAHTOA to remember the basic trigonometric formulas: Sine � Opposite/
Hypotenuse, Cosine � Adjacent/Hypotenuse, and Tangent � Opposite/Adjacent. (Thanks go to Professor Don
Chodrow for pointing this out.)

TIP 1.3 Degrees vs. Radians
When calculating trigonometric func-
tions, make sure your calculator
setting—degrees or radians— is
consistent with the degree measure
you’re using in a given problem.
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EXAMPLE 1.9 Cartesian and Polar Coordinates
Goal Understand how to convert from plane rectangular
coordinates to plane polar coordinates and vice versa.

Problem (a) The Cartesian coordinates of a point in the 
x y-plane are (x, y) � (� 3.50, � 2.50) m, as shown in 
Active Figure 1.7. Find the polar coordinates of this point. 
(b) Convert (r, 	) � (5.00 m, 37.0
) to rectangular coordinates.

Strategy Apply the trigonometric functions and their
inverses, together with the Pythagorean theorem.

(–3.50, –2.50)

x(m)

θ

r

y(m) ACTIVE FIGURE 1.7
(Example 1.9) Converting
from Cartesian coordinates to
polar coordinates.

Log into
PhysicsNow at www.cp7e.com,
and go to Active Figure 1.7 to
move the point in the xy -plane
and see how its Cartesian and
polar coordinates change.

Solution
(a) Cartesian to Polar

Take the square root of both sides of Equation 1.2 to
find the radial coordinate:

4.30 mr � √x2 � y2 � √(�3.50 m)2 � (�2.50 m)2 �

Use Equation 1.1 for the tangent function to find the
angle with the inverse tangent, adding 180
 because the
angle is actually in third quadrant: 216
	 � tan�1(0.714) � 35.5
 � 180
 �

tan 	 �
y
x

�
�2.50 m
�3.50 m

� 0.714

(b) Polar to Cartesian

Use the trigonometric definitions, Equation 1.1. x � r cos 	 � (5.00 m) cos 37.0
 �

y � r sin 	 � (5.00 m) sin 37.0
 � 3.01 m

3.99 m

Remarks When we take up vectors in two dimensions in Chapter 3, we will routinely use a similar process to find
the direction and magnitude of a given vector from its components, or, conversely, to find the components from the
vector’s magnitude and direction.

Exercise 1.9
(a) Find the polar coordinates corresponding to (x, y) � (� 3.25, 1.50) m. (b) Find the Cartesian coordinates corre-
sponding to (r, 	) � (4.00 m, 53.0
)

Answers (a) (r, 	) � (3.58 m, 155
) (b) (x, y) � (2.41 m, 3.19 m)

EXAMPLE 1.10 How High Is the Building?
Goal Apply basic results of trigonometry.

Problem A person measures the height of a building by walk-
ing out a distance of 46.0 m from its base and shining a flash-
light beam toward the top. When the beam is elevated at an an-
gle of 39.0
 with respect to the horizontal, as shown in Figure
1.8, the beam just strikes the top of the building. Find the
height of the building and the distance the flashlight beam has
to travel before it strikes the top of the building.

Strategy Refer to the right triangle shown in the figure. We
know the angle, 39.0
, and the length of the side adjacent to it.
Since the height of the building is the side opposite the angle,
we can use the tangent function. With the adjacent and oppo-
site sides known, we can then find the hypotenuse with the
Pythagorean theorem.

46.0 m

Height

39.0°

Figure 1.8 (Example 1.10)
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1.9 PROBLEM-SOLVING STRATEGY
Most courses in general physics require the student to learn the skills used in solv-
ing problems, and examinations usually include problems that test such skills. This
brief section presents some useful suggestions that will help increase your success
in solving problems. An organized approach to problem solving will also enhance
your understanding of physical concepts and reduce exam stress. Throughout the
book, there will be a number of sections labeled “Problem-Solving Strategy,” many
of them just a specializing of the list given below (and illustrated in Figure 1.9).

General Problem-Solving Strategy
1. Read the problem carefully at least twice. Be sure you understand the nature of

the problem before proceeding further.
2. Draw a diagram while rereading the problem.
3. Label all physical quantities in the diagram, using letters that remind you what

the quantity is (e.g., m for mass). Choose a coordinate system and label it.
4. Identify physical principles, the knowns and unknowns, and list them. Put cir-

cles around the unknowns.
5. Equations, the relationships between the labeled physical quantities, should be

written down next. Naturally, the selected equations should be consistent with
the physical principles identified in the previous step. 

6. Solve the set of equations for the unknown quantities in terms of the known.
Do this algebraically, without substituting values until the next step, except
where terms are zero.

7. Substitute the known values, together with their units. Obtain a numerical value
with units for each unknown.

8. Check your answer. Do the units match? Is the answer reasonable? Does the
plus or minus sign make sense? Is your answer consistent with an order of mag-
nitude estimate?

This same procedure, with minor variations, should be followed throughout the
course. The first three steps are extremely important, because they get you men-
tally oriented. Identifying the proper concepts and physical principles assists you
in choosing the correct equations. The equations themselves are essential, because
when you understand them, you also understand the relationships between the
physical quantities. This understanding comes through a lot of daily practice.

Equations are the tools of physics: To solve problems, you have to have them at
hand, like a plumber and his wrenches. Know the equations, and understand what

Remarks In a later chapter, right-triangle trigonometry is often used when working with vectors.

Exercise 1.10
High atop a building 50.0 m tall, you spot a friend standing on a street corner. Using a protractor and dangling a
plumb bob, you find that the angle between the horizontal and the direction of your friend is 25.0
. Your eyes are lo-
cated 1.75 m above the top of the building. How far away from the foot of the building is your friend?

Answer 111 m

Solve for the height: Height � (tan 39.0
)(46.0 m) � (0.810)(46.0 m)
� 37.3 m

Find the hypotenuse of the triangle: r � � � 59.2 m√(37.3 m)2 � (46.0 m)2√x2 � y2

Solution
Use the tangent of the given angle: tan 39.0o �

height
46.0 m

Read Problem

Draw Diagram

Label physical quantities

Identify principle(s); list data

Choose Equation(s)

Solve Equation(s)

Check Answer

Substitute known values

Figure 1.9 A guide to problem
solving.
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they mean and how to use them. Just as you can’t have a conversation without
knowing the local language, you can’t solve physics problems without knowing and
understanding the equations. This understanding grows as you study and apply
the concepts and the equations relating them.

Carrying through the algebra for as long as possible, substituting numbers only
at the end, is also important, because it helps you think in terms of the physical
quantities involved, not merely the numbers that represent them. Many beginning
physics students are eager to substitute, but once numbers are substituted, it’s
harder to understand relationships and easier to make mistakes.

The physical layout and organization of your work will make the final product
more understandable and easier to follow. Although physics is a challenging disci-
pline, your chances of success are excellent if you maintain a positive attitude and
keep trying.

EXAMPLE 1.11 A Round Trip by Air
Goal Illustrate the Problem-Solving Strategy.

Problem An airplane travels 4.50 � 102 km due east and then travels an un-
known distance due north. Finally, it returns to its starting point by traveling a dis-
tance of 525 km. How far did the airplane travel in the northerly direction?

Strategy We’ve finished reading the problem (step 1), and have drawn a dia-
gram (step 2) in Figure 1.10 and labeled it (step 3). From the diagram, we recog-
nize a right triangle and identify (step 4) the principle involved: the Pythagorean
theorem. Side y is the unknown quantity, and the other sides are known.

y

x

r

x = 450 km 
r = 525 km 
y = ?

E

N

S

W

Figure 1.10 (Example 1.11)

Solution
Write the Pythagorean theorem (step 5): r 2 � x2 � y2

Solve symbolically for y (step 6): y2 � r 2 � x2 : y � � √r 2 � x2

Substitute the numbers, with units (step 7): y � � 270 km√(525 km)2 � (4.50 � 102 km)2

Remarks Note that the negative solution has been disregarded, because it’s not physically meaningful. In checking
(step 8), note that the units are correct and that an approximate answer can be obtained by using the easier quanti-
ties, 500 km and 400 km. Doing so gives an answer of 300 km, which is approximately the same as our calculated an-
swer of 270 km.

Exercise 1.11
A plane flies 345 km due south, then turns and flies northeast 615 km, until it’s due east of its starting point. If the
plane now turns and heads for home, how far will it have to go?

Answer 509 km

SUMMARY
Take a practice test by logging into

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

1.1 Standards of Length, Mass, and Time
The physical quantities in the study of mechanics can be
expressed in terms of three fundamental quantities: length,
mass, and time, which have the SI units meters (m), kilo-
grams (kg), and seconds (s), respectively.

1.2 The Building Blocks of Matter
Matter is made of atoms, which in turn are made up of a
relatively small nucleus of protons and neutrons within a
cloud of electrons. Protons and neutrons are composed of
still smaller particles, called quarks.

1.3 Dimensional Analysis
Dimensional analysis can be used to check equations and
to assist in deriving them. When the dimensions on both
sides of the equation agree, the equation is often correct

44337_01_p1-22  10/13/04  2:13 PM  Page 17
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up to a numerical factor. When the dimensions don’t
agree, the equation must be wrong.

1.4 Uncertainty in Measurement and
Significant Figures
No physical quantity can be determined with complete 
accuracy. The concept of significant figures affords a basic
method of handling these uncertainties. A significant fig-
ure is a reliably known digit, other than a zero, used to lo-
cate the decimal point. The two rules of significant figures 
are as follows:

1. When multiplying or dividing using two or more
quantities, the result should have the same number
of significant figures as the quantity having the fewest
significant figures.

2. When quantities are added or subtracted, the number
of decimal places in the result should be the same as
in the quantity with the fewest decimal places.

Use of scientific notation can avoid ambiguity in signifi-
cant figures. In rounding, if the last digit dropped is less
than 5, simply drop the digit, otherwise raise the last re-
tained digit by one.

1.5 Conversion of Units
Units in physics equations must always be consistent. In
solving a physics problem, it’s best to start with consistent
units, using the table of conversion factors on the inside
front cover as necessary.

Converting units is a matter of multiplying the given
quantity by a fraction, with one unit in the numerator and
its equivalent in the other units in the denominator,
arranged so the unwanted units in the given quantity are
cancelled out in favor of the desired units.

1.6 Estimates and Order-of-Magnitude
Calculations
Sometimes it’s useful to find an approximate answer to a
question, either because the math is difficult or because

information is incomplete. A quick estimate can also be
used to check a more detailed calculation. In an order-
of-magnitude calculation, each value is replaced by the
closest power of ten, which sometimes must be guessed or
estimated when the value is unknown. The computation
is then carried out. For quick estimates involving known
values, each value can first be rounded to one significant
figure.

1.7 Coordinate Systems
The Cartesian coordinate system consists of two perpen-
dicular axes, usually called the x -axis and y -axis, with each
axis labeled with all numbers from negative infinity to posi-
tive infinity. Points are located by specifying the x - and 
y -values. Polar coordinates consist of a radial coordinate
r which is the distance from the origin, and an angular
coordinate 	, which is the angular displacement from the
positive x-axis.

1.8 Trigonometry
The three most basic trigonometric functions of a right
triangle are the sine, cosine, and tangent, defined as
follows:

[1.1]

The Pythagorean theorem is an important relationship
between the lengths of the sides of a right triangle:

r2 � x2 � y2 [1.2]

where r is the hypotenuse of the triangle and x and y are
the other two sides.
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CONCEPTUAL QUESTIONS
1. Estimate the order of magnitude of the length, in meters,

of each of the following: (a) a mouse, (b) a pool cue, 
(c) a basketball court, (d) an elephant, (e) a city block.

2. What types of natural phenomena could serve as time
standards?

3. (a) Estimate the number of times your heart beats in a
month. (b) Estimate the number of human heartbeats in
an average lifetime.

4. An object with a mass of 1 kg weighs approximately 2 lb.
Use this information to estimate the mass of the following
objects: (a) a baseball; (b) your physics textbook; (c) a
pickup truck.

5. Find the order of magnitude of your age in seconds.

6. Estimate the number of atoms in 1 cm3 of a solid. (Note
that the diameter of an atom is about 10�10 m.)

7. The height of a horse is sometimes given in units of
“hands.” Why is this a poor standard of length?

8. How many of the lengths or time intervals given in Tables
1.2 and 1.3 could you verify, using only equipment found
in a typical dormitory room?

9. An ancient unit of length called the cubit was equal to six
palms, where a palm was the width of the four fingers of
an open hand. Noah’s ark was 300 cubits long, 50 cubits
wide, and 30 cubits high. Estimate the volume of the ark
in cubic meters. Also, estimate the volume of a typical
home in cubic meters, and compare it with the volume of
the ark.

10. Do an order-of-magnitude calculation for an everyday sit-
uation you encounter. For example, how far do you walk
or drive each day?

11. If an equation is dimensionally correct, does this mean
that the equation must be true? If an equation is not di-
mensionally correct, does this mean that the equation
can’t be true?
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Problems 19

12. Figure Q1.12 is a photograph showing unit conversions
on the labels of some grocery-store items. Check the accu-

racy of these conversions. Are the manufacturers using
significant figures correctly?

Figure Q1.12
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PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached solution with hints available at www.cp7e.com = biomedical application

Section 1.3 Dimensional Analysis
1. A shape that covers an area A and has a uniform height h

has a volume V � Ah. (a) Show that V � Ah is dimension-
ally correct. (b) Show that the volumes of a cylinder and
of a rectangular box can be written in the form V � Ah,
identifying A in each case. (Note that A, sometimes called
the “footprint” of the object, can have any shape and that
the height can, in general, be replaced by the average
thickness of the object.)

2. (a) Suppose that the displacement of an object is related
to time according to the expression x � Bt2. What are the
dimensions of B? (b) A displacement is related to time as
x � A sin(2�ft), where A and f are constants. Find the di-
mensions of A. (Hint: A trigonometric function appearing
in an equation must be dimensionless.)

3. The period of a simple pendulum, defined as the time
necessary for one complete oscillation, is measured in
time units and is given by

where is the length of the pendulum and g is the accel-
eration due to gravity, in units of length divided by time
squared. Show that this equation is dimensionally consis-
tent. (You might want to check the formula using your
keys at the end of a string and a stopwatch.)

4. Each of the following equations was given by a student
during an examination:

Do a dimensional analysis of each equation and explain
why the equation can’t be correct.

5. Newton’s law of universal gravitation is represented by

F � G 
Mm
r 2

ma � v2v � v0 � at21
2mv2 � 1

2mv 2
0 � √mgh

�

T � 2� √ �

g

where F is the gravitational force, M and m are masses,
and r is a length. Force has the SI units kg � m/s2. What
are the SI units of the proportionality constant G?

6. (a) One of the fundamental laws of motion states that the
acceleration of an object is directly proportional to the re-
sultant force on it and inversely proportional to its mass.
If the proportionality constant is defined to have no di-
mensions, determine the dimensions of force. (b) The
newton is the SI unit of force. According to the results for
(a), how can you express a force having units of newtons
by using the fundamental units of mass, length, and time?

Section 1.4 Uncertainty in Measurement 
and Significant Figures

7. How many significant figures are there in (a) 78.9 � 0.2,
(b) 3.788 � 109, (c) 2.46 � 10�6, (d) 0.0032?

8. A rectangular plate has a length of (21.3 � 0.2) cm and a
width of (9.8 � 0.1) cm. Calculate the area of the plate,
including its uncertainty.

9. Carry out the following arithmetic oper-
ations: (a) the sum of the measured values 756, 37.2, 0.83,
and 2.5; (b) the product 0.0032 � 356.3; (c) the product
5.620 � �.

10. The speed of light is now defined to be 2.99 7924 58 �
108 m/s. Express the speed of light to (a) three significant
figures, (b) five significant figures, and (c) seven signifi-
cant figures.

11. A farmer measures the perimeter of a rectangular field.
The length of each long side of the rectangle is found to
be 38.44 m, and the length of each short side is found to
be 19.5 m. What is the perimeter of the field?

12. The radius of a circle is measured to be (10.5 � 0.2) m.
Calculate (a) the area and (b) the circumference of the
circle, and give the uncertainty in each value.

13. A fisherman catches two striped bass. The smaller of the
two has a measured length of 93.46 cm (two decimal
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20 Chapter 1 Introduction

places, four significant figures), and the larger fish has a
measured length of 135.3 cm (one decimal place, four sig-
nificant figures). What is the total length of fish caught
for the day?

14. (a) Using your calculator, find, in scientific notation 
with appropriate rounding, (a) the value of 
(2.437 � 104)(6.5211 � 109)/(5.37 � 104) and (b) the
value of (3.14159 � 102)(27.01 � 104)/(1 234 � 106).

Section 1.5 Conversion of Units
15. A fathom is a unit of length, usually reserved for measur-

ing the depth of water. A fathom is approximately 6 ft in
length. Take the distance from Earth to the Moon to be
250 000 miles, and use the given approximation to find
the distance in fathoms.

16. Find the height or length of these natural wonders in kilo-
meters, meters, and centimeters: (a) The longest cave sys-
tem in the world is the Mammoth Cave system in Central
Kentucky, with a mapped length of 348 miles. (b) In the
United States, the waterfall with the greatest single drop is
Ribbon Falls in California, which drops 1 612 ft. (c) At
20 320 feet, Mount McKinley in Alaska is America’s highest
mountain. (d) The deepest canyon in the United States is
King’s Canyon in California, with a depth of 8 200 ft.

17. A rectangular building lot measures 100 ft by 150 ft. De-
termine the area of this lot in square meters (m2).

18. Suppose your hair grows at the rate of 1/32 inch per day.
Find the rate at which it grows in nanometers per second.
Since the distance between atoms in a molecule is on the
order of 0.1 nm, your answer suggests how rapidly atoms
are assembled in this protein synthesis.

19. Using the data in Table 1.1 and the appropriate conver-
sion factors, find the distance to the nearest star, in feet.

20. Using the data in Table 1.3 and the appropriate conver-
sion factors, find the age of Earth in years.

21. The speed of light is about 3.00 � 108 m/s. Convert this
figure to miles per hour.

22. A house is 50.0 ft long and 26 ft wide and has 8.0-ft-high
ceilings. What is the volume of the interior of the house
in cubic meters and in cubic centimeters?

23. The amount of water in reservoirs is often measured in
acre-ft. One acre-ft is a volume that covers an area of one
acre to a depth of one foot. An acre is 43 560 ft2. Find the
volume in SI units of a reservoir containing 25.0 acre-ft of
water.

24. The base of a pyramid covers an area of 13.0 acres 
(1 acre � 43 560 ft2) and has a height of 481 ft (Fig. P1.24).
If the volume of a pyramid is given by the expression 
V � bh/3, where b is the area of the base and h is the height,
find the volume of this pyramid in cubic meters.

25. A quart container of ice cream is to be
made in the form of a cube. What should be the length of
a side, in centimeters? (Use the conversion 1 gallon �
3.786 liter.)

26. (a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) For a while, federal law
mandated that the maximum highway speed would be
55 mi/h. Use the conversion factor from part (a) to find
the speed in kilometers per hour. (c) The maximum high-
way speed has been raised to 65 mi/h in some places. In
kilometers per hour, how much of an increase is this over
the 55-mi/h limit?

27. One cubic centimeter (1.0 cm3) of water has a mass of
1.0 � 10�3 kg. (a) Determine the mass of 1.0 m3 of water.
(b) Assuming that biological substances are 98% water, es-
timate the masses of a cell with a diameter of 1.0 �m, a
human kidney, and a fly. Take a kidney to be roughly
a sphere with a radius of 4.0 cm and a fly to be roughly a
cylinder 4.0 mm long and 2.0 mm in diameter.

28. A billionaire offers to give you $1 billion if you can count
out that sum with only $1 bills. Should you accept her of-
fer? Assume that you can count at an average rate of one
bill every second, and be sure to allow for the fact that you
need about 8 hours a day for sleeping and eating.

Section 1.6 Estimates and Order-of-Magnitude Calculations
Note : In developing answers to the problems in this sec-
tion, you should state your important assumptions, includ-
ing the numerical values assigned to parameters used in
the solution.

29. Imagine that you are the equipment manager of a profes-
sional baseball team. One of your jobs is to keep baseballs
on hand for games. Balls are sometimes lost when players
hit them into the stands as either home runs or foul balls.
Estimate how many baseballs you have to buy per season
in order to make up for such losses. Assume that your
team plays an 81-game home schedule in a season.

30. A hamburger chain advertises that it has sold more than
50 billion hamburgers. Estimate how many pounds of ham-
burger meat must have been used by the chain and how
many head of cattle were required to furnish the meat.

31. An automobile tire is rated to last for 50 000 miles. Estimate
the number of revolutions the tire will make in its lifetime.

32. Grass grows densely everywhere on a quarter-acre plot of
land. What is the order of magnitude of the number
of blades of grass? Explain your reasoning. Note that 
1 acre � 43 560 ft2.

33. Estimate the number of Ping-Pong balls that would fit
into a typical-size room (without being crushed). In your
solution, state the quantities you measure or estimate and
the values you take for them.

34. Soft drinks are commonly sold in aluminum containers.
To an order of magnitude, how many such containers are
thrown away or recycled each year by U.S. consumers?
How many tons of aluminum does this represent? In your
solution, state the quantities you measure or estimate and
the values you take for them.

Section 1.7 Coordinate Systems
35. A point is located in a polar coordinate system by the 

coordinates r � 2.5 m and 	 � 35
. Find the x- and Figure P1.24
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Problems 21

y-coordinates of this point, assuming that the two coordi-
nate systems have the same origin.

36. A certain corner of a room is selected as the origin of a
rectangular coordinate system. If a fly is crawling on an
adjacent wall at a point having coordinates (2.0, 1.0),
where the units are meters, what is the distance of the fly
from the corner of the room?

37. Express the location of the fly in Problem 36 in polar co-
ordinates.

38. Two points in a rectangular coordinate system have the
coordinates (5.0, 3.0) and (� 3.0, 4.0), where the units are
centimeters. Determine the distance between these
points.

Section 1.8 Trigonometry
39. For the triangle shown in Figure P1.39,

what are (a) the length of the unknown side, (b) the tan-
gent of 	, and (c) the sine of �?

43. In Figure P1.43, find (a) the side opposite 	, (b) the side
adjacent to �, (c) cos 	, (d) sin �, and (e) tan �.

44. In a certain right triangle, the two sides that are perpen-
dicular to each other are 5.00 m and 7.00 m long. What is
the length of the third side of the triangle?

45. In Problem 44, what is the tangent of the angle for which
5.00 m is the opposite side?

46. A surveyor measures the distance across a straight river by
the following method: Starting directly across from a tree
on the opposite bank, he walks 100 m along the riverbank
to establish a baseline. Then he sights across to the tree.
The angle from his baseline to the tree is 35.0
. How wide
is the river?

ADDITIONAL PROBLEMS

47. A restaurant offers pizzas in two sizes: small, with a radius
of six inches; and large, with a radius of nine inches. A
customer argues that if the small one sells for six dollars,
the large should sell for nine dollars. Without doing any
calculations, is the customer correct? Defend your answer.
Calculate the area of each pizza to find out how much pie
you are getting in each case. If the small one costs six dol-
lars how much should the large cost?

48. The radius of the planet Saturn is 5.85 � 107 m, and its
mass is 5.68 � 1026 kg (Fig. P1.48). (a) Find the density of
Saturn (its mass divided by its volume) in grams per cubic
centimeter. (The volume of a sphere is given by
(4/3)�r 3.) (b) Find the area of Saturn in square feet.
(The surface area of a sphere is given by 4�r 2.)

6.00 m
9.00 m

φ

θ

Figure P1.39

5.00

θ

φ

3.00

4.00

Figure P1.43

40. A ladder 9.00 m long leans against the side of a building.
If the ladder is inclined at an angle of 75.0
 to the hori-
zontal, what is the horizontal distance from the bottom of
the ladder to the building?

41. A high fountain of water is located at the center of a circu-
lar pool as shown in Figure P1.41. Not wishing to get his
feet wet, a student walks around the pool and measures its
circumference to be 15.0 m. Next, the student stands at
the edge of the pool and uses a protractor to gauge the
angle of elevation at the bottom of the fountain to be
55.0
. How high is the fountain? 

42. A right triangle has a hypotenuse of length 3.00 m, and
one of its angles is 30.0
. What are the lengths of (a) the
side opposite the 30.0
 angle and (b) the side adjacent to
the 30.0
 angle?

55.0˚

Figure P1.41

Figure P1.48 A view of Saturn.

N
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A

49. The displacement of an object moving under uniform ac-
celeration is some function of time and the acceleration.
Suppose we write this displacement as s � kamtn, where k
is a dimensionless constant. Show by dimensional analysis
that this expression is satisfied if m � 1 and n � 2. Can
the analysis give the value of k?
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22 Chapter 1 Introduction

50. Compute the order of magnitude of the mass of (a) a
bathtub filled with water and (b) a bathtub filled with
pennies. In your solution, list the quantities you estimate
and the value you estimate for each.

51. You can obtain a rough estimate of the
size of a molecule by the following simple experiment: Let
a droplet of oil spread out on a smooth surface of water.
The resulting oil slick will be approximately one molecule
thick. Given an oil droplet of mass 9.00 � 10�7 kg and
density 918 kg/m3 that spreads out into a circle of radius
41.8 cm on the water surface, what is the order of magni-
tude of the diameter of an oil molecule?

52. In 2003, the U.S. national debt was about $7 trillion. (a) If
payments were made at the rate of $1 000 per second,
how many years would it take to pay off the debt, assum-
ing that no interest were charged? (b) A dollar bill is
about 15.5 cm long. If seven trillion dollar bills were laid
end to end around the Earth’s equator, how many times
would they encircle the planet? Take the radius of the
Earth at the equator to be 6 378 km. (Note : Before doing
any of these calculations, try to guess at the answers. You
may be very surprised.)

53. Estimate the number of piano tuners living in New York
City. This question was raised by the physicist Enrico
Fermi, who was well known for making order-of-magni-
tude calculations.

54. Sphere 1 has surface area A1 and volume V1, and sphere 2
has surface area A2 and volume V2. If the radius of sphere
2 is double the radius of sphere 1, what is the ratio of 
(a) the areas, A2/A1 and (b) the volumes, V2/V1?

55. (a) How many seconds are there in a year? (b) If one
micrometeorite (a sphere with a diameter on the order of
10�6 m) struck each square meter of the Moon each sec-
ond, estimate the number of years it would take to cover
the Moon with micrometeorites to a depth of one meter.
(Hint: Consider a cubic box, 1 m on a side, on the Moon,
and find how long it would take to fill the box.)

ACTIVITIES

A.1. Choose a variety of objects that range in length from a few
centimeters to a few meters. Try guessing the lengths in a
unit appropriate to their size, and then use a meter stick
supplied by your instructor to check your guesses. Keep
trying until you can estimate consistently to within 20% of
an object’s actual length.

A.2. Choose a variety of objects that range in mass from a few
grams to a few kilograms. Estimate the masses by hefting
the objects, then use a balance supplied by your instructor
to check your guesses. Keep trying until you can estimate
consistently to within 30% of an object’s actual mass.

A.3. You know that the measurements of a typical sheet of pa-
per are 8.50 in. by 11.0 in. Convert these measurements to
millimeters. Use your results to calculate the length of the
diagonal of the sheet of paper by using the Pythagorean
theorem. Measure the diagonal with a ruler to see how
well you have done. Finally, use a suitable trig function to
calculate the angle that the diagonal line makes with the
horizontal. Use a protractor to verify your calculation.
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CHAPTER

Motion In One Dimension O U T L I N E

2.1 Displacement
2.2 Velocity 
2.3 Acceleration
2.4 Motion Diagrams
2.5 One-Dimensional Motion

with Constant 
Acceleration

2.6 Freely Falling Objects
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Life is motion. Our muscles coordinate motion microscopically to enable us to walk and jog.
Our hearts pump tirelessly for decades, moving blood through our bodies. Cell wall mecha-
nisms move select atoms and molecules in and out of cells. From the prehistoric chase of an-
telopes across the savanna to the pursuit of satellites in space, mastery of motion has been
critical to our survival and success as a species.

The study of motion and of physical concepts such as force and mass is called dynamics.
The part of dynamics that describes motion without regard to its causes is called kinematics.
In this chapter, the focus is on kinematics in one dimension: motion along a straight line. This
kind of motion—and, indeed, any motion—involves the concepts of displacement, velocity,
and acceleration. Here, we use these concepts to study the motion of objects undergoing
constant acceleration. In Chapter 3 we will repeat this discussion for objects moving in two
dimensions.

The first recorded evidence of the study of mechanics can be traced to the people of an-
cient Sumeria and Egypt, who were interested primarily in understanding the motions of
heavenly bodies. The most systematic and detailed early studies of the heavens were con-
ducted by the Greeks from about 300 B.C. to A.D. 300. Ancient scientists and laypeople re-
garded the Earth as the center of the Universe. This geocentric model was accepted by such
notables as Aristotle (384–322 B.C.) and Claudius Ptolemy (about A.D. 140). Largely because
of the authority of Aristotle, the geocentric model became the accepted theory of the Uni-
verse until the 17th century.

About 250 B.C., the Greek philosopher Aristarchus worked out the details of a model of
the Solar System based on a spherical Earth that rotated on its axis and revolved around the
Sun. He proposed that the sky appeared to turn westward because the Earth was turning
eastward. This model wasn’t given much consideration, because it was believed that if the
Earth turned, it would set up a great wind as it moved through the air. We know now that
the Earth carries the air and everything else with it as it rotates.

Gravity propels a ski jumper down a
straight, snow-covered slope at an
acceleration that is approximately
constant. The equations of kinematics,
studied in this chapter, can give his
position and velocity along the slope
at any time.
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24 Chapter 2 Motion In One Dimension

The Polish astronomer Nicolaus Copernicus (1473–1543) is credited with initiating the rev-
olution that finally replaced the geocentric model. In his system, called the heliocentric
model, Earth and the other planets revolve in circular orbits around the Sun.

This early knowledge formed the foundation for the work of Galileo Galilei (1564–1642),
who stands out as the dominant facilitator of the entrance of physics into the modern era. In
1609, he became one of the first to make astronomical observations with a telescope. He ob-
served mountains on the Moon, the larger satellites of Jupiter, spots on the Sun, and the
phases of Venus. Galileo’s observations convinced him of the correctness of the Copernican
theory. His quantitative study of motion formed the foundation of Newton’s revolutionary
work in the next century.

2.1 DISPLACEMENT
Motion involves the displacement of an object from one place in space and time to
another. Describing the motion requires some convenient coordinate system and a
specified origin. A frame of reference is a choice of coordinate axes that defines
the starting point for measuring any quantity, an essential first step in solving virtu-
ally any problem in mechanics (Fig. 2.1). In Active Figure 2.2a, for example, a car
moves along the x -axis. The coordinates of the car at any time describe its position
in space and, more importantly, its displacement at some given time of interest.

The displacement �x of an object is defined as its change in position, and is
given by

�x � xf � xi [2.1]

where the initial position of the car is labeled xi and the final position is xf .
(The indices i and f stand for initial and final, respectively.) 

SI unit: meter (m)

Figure 2.1
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ACTIVE FIGURE 2.2
(a) A car moves back and forth along a straight line taken to be the x-axis. Because we are interested
only in the car’s translational motion, we can model it as a particle. (b) Graph of position vs. time for
the motion of the “particle.”

Log into PhysicsNow at www.cp7e.com, and go to Active Figure 2.2 to move each of the six points 
� through � and observe the motion of the car pictorially and graphically as it follows a smooth path
through the points.

Definition of displacement �
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TABLE 2.1
Position of the Car at Various
Times
Position t (s) x (m)

� 0 30
� 10 52
� 20 38
� 30 0
� 40 � 37
� 50 � 53
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2.2 Velocity 25

We will use the Greek letter delta, �, to denote a change in any physical quantity.
From the definition of displacement, we see that �x (read “delta ex”) is positive if
xf is greater than xi and negative if xf is less than xi. For example, if the car moves
from point � to point �, so that the initial position is xi � 30 m and the final
position is xf � 52 m, the displacement is �x � xf � xi � 52 m � 30 m � � 22 m.
However, if the car moves from point � to point �, then the initial position is 
xi � 38 m and the final position is xf � � 53 m, the displacement is �x � xf � xi �
� 53 m � 38 m � � 91 m. A positive answer indicates a displacement in the posi-
tive x-direction, whereas a negative answer indicates a displacement in the nega-
tive x-direction. Active Figure 2.2b displays the graph of the car’s position as a
function of time.

Because displacement has both a magnitude (size) and a direction, it’s a vector
quantity, as are velocity and acceleration. In general, a vector quantity is character-
ized by having both a magnitude and a direction. By contrast, a scalar quantity has
magnitude, but no direction. Scalar quantities such as mass and temperature are
completely specified by a numeric value with appropriate units; no direction is in-
volved.

Vector quantities will be usually denoted in boldface type with an arrow over the
top of the letter. For example, represents velocity and denotes an acceler-
ation, both vector quantities. In this chapter, however, it won’t be necessary to use
that notation, because in one-dimensional motion an object can only move in one
of two directions, and these directions are easily specified by plus and minus signs.

2.2 VELOCITY
In day-to-day usage, the terms speed and velocity are interchangeable. In physics,
however, there’s a clear distinction between them: Speed is a scalar quantity, having
only magnitude, while velocity is a vector, having both magnitude and direction.

Why must velocity be a vector? If you want to get to a town 70 km away in an hour’s
time, it’s not enough to drive at a speed of 70 km/h; you must travel in the correct
direction as well. This is obvious, but shows that velocity gives considerably more
information than speed, as will be made more precise in the formal definitions.

The average speed of an object over a given time interval is defined as the
total distance traveled divided by the total time elapsed:

SI unit: meter per second (m/s)

In symbols, this equation might be written v � d/t, with the letter v understood in
context to be the average speed, and not a velocity. Because total distance and to-
tal time are always positive, the average speed will be positive, also. The definition
of average speed completely ignores what may happen between the beginning
and the end of the motion. For example, you might drive from Atlanta, Georgia,
to St. Petersburg, Florida, a distance of about 500 miles, in 10 hours. Your average
speed is 500 mi/10 h � 50 mi/h. It doesn’t matter if you spent two hours in a traf-
fic jam traveling only 5 mi/h and another hour at a rest stop. For average speed,
only the total distance traveled and total elapsed time are important.

Average speed � 
total distance

total time

a:v:

EXAMPLE 2.1 The Tortoise and The Hare
Goal Apply the concept of average speed.

Problem A turtle and a rabbit engage in a footrace over a distance of 4.00 km. The rabbit runs 0.500 km and then
stops for a 90.0-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a
total time of 1.75 h, the rabbit wins the race. (a) Calculate the average speed of the rabbit. (b) What was his average
speed before he stopped for a nap?

TIP 2.1 A Displacement Isn’t
a Distance!
The displacement of an object is not
the same as the distance it travels.
Toss a tennis ball up and catch it. The
ball travels a distance equal to twice
the maximum height reached, but its
displacement is zero.

TIP 2.2 Vectors Have Both a
Magnitude and a Direction.
Scalars have size. Vectors, too, have
size, and they also point in a
direction.

� Definition of average speed
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26 Chapter 2 Motion In One Dimension

Unlike average speed, average velocity is a vector quantity, having both a magni-
tude and a direction. Consider again the car of Figure 2.2, moving along the
road (the x-axis). Let the car’s position be xi at some time ti and xf at a later time
tf . In the time interval �t � tf � ti, the displacement of the car is �x � xf � xi.

The average velocity during a time interval �t is the displacement �x
divided by �t :

[2.2]

SI Unit: meter per second (m/s)

Unlike the average speed, which is always positive, the average velocity of an
object in one dimension can be either positive or negative, depending on the sign
of the displacement. (The time interval �t is always positive.) For example, in
Figure 2.2a, the average velocity of the car is positive in the upper illustration, a
positive sign indicating motion to the right along the x-axis. Similarly, a negative
average velocity for the car in the lower illustration of the figure indicates that it
moves to the left along the x-axis.

v �
�x
�t

�
xf � xi

tf � ti

v

Strategy Finding the overall average speed in part (a) is just a matter of dividing the total distance by the total
time. Part (b) requires two equations and two unknowns, the latter turning out to be the two different average
speeds: v1 before the nap and v2 after the nap. One equation is given in the statement of the problem (v2 � 2v1),
while the other comes from the fact the rabbit ran for only fifteen minutes because he napped for ninety minutes.

Solution
(a) Find the rabbit’s overall average speed.

Apply the equation for average speed:

� 2.29 km/h

Average speed � 
total distance

total time
�

4.00 km
1.75 h

(b) Find the rabbit’s average speed before his nap.

Sum the running times, and set the sum equal to 0.25 h: t1 � t2 � 0.250 h

Substitute t1 � d1/v1 and t2 � d 2/v 2: (1)
d1

v1
 �

d2

v2
� 0.250 h

Equation (1) and v2 � 2v1 are the two equations
needed, and d1 and d2 are known. Solve for v1 by
substitution: v1 � 9.00 km/h

d1

v1
�

d2

v2
�

0.500 km
v1

�
3.50 km

2v1
� 0.250 h

Remark As seen in this example, average speed can be calculated regardless of any variation in speed over the
given time interval.

Exercise 2.1
Estimate the average speed of the Apollo spacecraft in m/s, given that the craft took five days to reach the Moon
from Earth. (The Moon is 3.8 � 108 m from Earth.)

Answer � 900 m/s

Definition of average velocity �
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2.2 Velocity 27

As an example, we can use the data in Table 2.1 to find the average velocity in
the time interval from point � to point � (assume two digits are significant):

Aside from meters per second, other common units for average velocity are feet
per second (ft/s) in the U.S. customary system and centimeters per second (cm/s)
in the cgs system.

To further illustrate the distinction between speed and velocity, suppose we’re
watching a drag race from the Goodyear blimp. In one run we see a car follow the
straight-line path from � to 	 shown in Figure 2.3 during the time interval �t,
and in a second run a car follows the curved path during the same interval. From
the definition in Equation 2.2, the two cars had the same average velocity, because
they had the same displacement �x � xf � xi during the same time interval �t.
The car taking the curved route, however, traveled a greater distance and had the
higher average speed.

v �
�x
�t

�
52 m � 30 m

10 s � 0 s
� 2.2 m/s

	� x
xfxi

Figure 2.3 A drag race viewed
from a blimp. One car follows the red
straight-line path from � to 	, and a
second car follows the blue curved
path.

Figure 2.4 shows the unusual path
of a confused football player. After
receiving a kickoff at his own
goal, he runs downfield to within
inches of a touchdown, then re-
verses direction and races back
until he’s tackled at the exact loca-
tion where he first caught the ball.
During this run, what is (a) the
total distance he travels, (b) his
displacement, and (c) his average
velocity in the x -direction?

Quick Quiz 2.1

Figure 2.4 (Quick Quiz 2.1) The
path followed by a confused football
player.

Graphical Interpretation of Velocity
If a car moves along the x -axis from � to � to �, and so forth, we can plot the
positions of these points as a function of the time elapsed since the start of the mo-
tion. The result is a position vs. time graph like those of Figure 2.5. In Figure 2.5a,
the graph is a straight line, because the car is moving at constant velocity. The
same displacement �x occurs in each time interval �t. In this case, the average ve-
locity is always the same and is equal to �x/�t. Figure 2.5b is a graph of the data in
Table 2.1. Here, the position vs. time graph is not a straight line, because the veloc-
ity of the car is changing. Between any two points, however, we can draw a straight
line just as in Figure 2.5a, and the slope of that line is the average velocity �x/�t in
that time interval. In general, the average velocity of an object during the time in-
terval �t is equal to the slope of the straight line joining the initial and final points
on a graph of the object’s position versus time.

From the data in Table 2.1 and the graph in Figure 2.5b, we see that the car first
moves in the positive x-direction as it travels from � to �, reaches a position of
52 m at time t � 10 s, then reverses direction and heads backwards. In the first 10 s
of its motion, as the car travels from � to �, its average velocity is 2.2 m/s, as
previously calculated. In the first 40 seconds, as the car goes from � to �, 
its displacement is �x � � 37 m � (30 m) � � 67 m. So the average velocity in
this interval, which equals the slope of the blue line in Figure 2.5b from � to �, is 

� �x/�t � (� 67 m)/(40 s) � � 1.7 m/s. In general, there will be a different
average velocity between any distinct pair of points.

Instantaneous Velocity
Average velocity doesn’t take into account the details of what happens during an
interval of time. On a car trip, for example, you may speed up or slow down a

v

100 yd
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TIP 2.4 Average Velocity 
Versus Average Speed
Average velocity is not the same as av-
erage speed. If you run from 
x � 0 m to x � 25 m and back to
your starting point in a time interval
of 5 s, the average velocity is zero,
while the average speed is 10 m/s.

TIP 2.3 Slopes of Graphs
The word slope is often used in refer-
ence to the graphs of physical data.
Regardless of the type of data, the
slope is given by

Slope carries units.

Slope �
change in vertical axis

change in horizontal axis
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28 Chapter 2 Motion In One Dimension

number of times in response to the traffic and the condition of the road, and on
rare occasions even pull over to chat with a police officer about your speed. What is
most important to the police (and to your own safety) is the speed of your car and
the direction it was going at a particular instant in time, which together determine
the car’s instantaneous velocity.

So in driving a car between two points, the average velocity must be computed
over an interval of time, but the magnitude of instantaneous velocity can be read
on the car’s speedometer.

The instantaneous velocity v is the limit of the average velocity as the time
interval �t becomes infinitesimally small:

[2.3]

SI unit: meter per second (m/s)

The notation means that the ratio �x/�t is repeatedly evaluated for smaller and

smaller time intervals �t. As �t gets extremely close to zero, the ratio �x/�t gets
closer and closer to a fixed number, which is defined as the instantaneous velocity.

To better understand the formal definition, consider data obtained on our vehi-
cle via radar (Table 2.2). At t � 1.00 s, the car is at x � 5.00 m, and at t � 3.00 s,
it’s at x � 52.5 m. The average velocity computed for this interval is �x/�t �
(52.5 m � 5.00 m)/(3.00 s � 1.00 s) � 23.8 m/s. This result could be used as an es-
timate for the velocity at t � 1.00 s, but it wouldn’t be very accurate, because the

lim
�t :0

v � lim
�t :0

 
�x
�t

(a)

50403020100

60

20

0

–20

–40

–60

�

�
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�
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t(s)

(b)

50403020100

60

20

0

–20

–40
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�

�

�

�

�

�

40

x(m)
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Figure 2.5 (a) Position vs. time graph for the motion of a car moving along the x -axis at constant
velocity. (b) Position vs. time graph for the motion of a car with changing velocity, using the data in
Table 2.1. The average velocity in the time interval �t is the slope of the blue straight line connecting
� and �.

TABLE 2.2
Positions of a Car at 
Specific Instants of Time

t (s) x (m)
1.00 5.00
1.01 5.47
1.10 9.67
1.20 14.3
1.50 26.3
2.00 34.7
3.00 52.5

TABLE 2.3
Calculated Values of the Time Intervals, Displacements,
and Average Velocities for the Car of Table 2.2

Time Interval (s)

1.00 to 3.00 2.00 47.5 23.8
1.00 to 2.00 1.00 29.7 29.7
1.00 to 1.50 0.50 21.3 42.6
1.00 to 1.20 0.20 9.30 46.5
1.00 to 1.10 0.10 4.67 46.7
1.00 to 1.01 0.01 0.470 47.0

v (m/s)�x (m)�t (s)

Definition of instantaneous velocity �
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2.2 Velocity 29

speed changes considerably in the two-second time interval. Using the rest of the
data, we can construct Table 2.3. As the time interval gets smaller, the average veloc-
ity more closely approaches the instantaneous velocity. Using the final interval of
only 0.010 0 s, we find that the average velocity is 

. Since 0.010 0 s is a very short time interval, the actual instantaneous
velocity is likely to be very close to this latter average velocity. Finally using the con-
version factor on the inside front cover of the book, we see that this is 105 mi/h, a
likely violation of the speed limit.

As can be seen in Figure 2.6, the chord formed by the line gradually approaches
a tangent line as the time interval becomes smaller. The slope of the line tangent
to the position vs. time curve at A is defined to be the instantaneous velocity at
that time.

The instantaneous speed of an object, which is a scalar quantity, is defined as
the magnitude of the instantaneous velocity. Like average speed, instantaneous
speed (which we will usually call, simply, “speed”) has no direction associated with
it and hence carries no algebraic sign. For example, if one object has an instanta-
neous velocity of � 15 m/s along a given line and another object has an instanta-
neous velocity of � 15 m/s along the same line, both have an instantaneous speed
of 15 m/s.

47.0 m/s
v � �x/�t � 0.470 m/0.010 0 s �

x(m)

t(s)
2.502.001.501.00

10.0

20.0

30.0

40.0

50.0

3.00

Figure 2.6 Graph representing the
motion of the car from the data in
Table 2.2. The slope of the blue line
represents the average velocity for
smaller and smaller time intervals
and approaches the slope of the
green tangent line.

EXAMPLE 2.2 Slowly Moving Train
Goal Obtain average and instantaneous ve-
locities from a graph.

Problem A train moves slowly along a
straight portion of track according to the
graph of position versus time in Figure 2.7a.
Find (a) the average velocity for the total trip,
(b) the average velocity during the first 4.00 s
of motion, (c) the average velocity during the
next 4.00 s of motion, (d) the instantaneous ve-
locity at t � 2.00 s, and (e) the instantaneous
velocity at t � 9.00 s.

Strategy The average velocities can be obtained by substituting the data into the definition. The instantaneous ve-
locity at t � 2.00 s is the same as the average velocity at that point, because the position vs. time graph is a straight
line, indicating constant velocity. Finding the instantaneous velocity when t � 9.00 s requires sketching a line tangent
to the curve at that point and finding its slope.

(a)

128642

10

6

4

2

10

8

x(m)

t(s)


� �

�

�

�

�

(b)

128642

10

6

4

2

10

8

x(m)

t(s)


Figure 2.7 (a) (Example 2.2) (b) (Exercise 2.2).

Solution
(a) Find the average velocity from 
 to �.

Calculate the slope of the dashed blue line: � 0.833 m/sv �
�x
�t

�
10.0 m
12.0 s

�
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30 Chapter 2 Motion In One Dimension

2.3 ACCELERATION
Going from place to place in your car, you rarely travel long distances at constant
velocity. The velocity of the car increases when you step harder on the gas pedal
and decreases when you apply the brakes. The velocity also changes when you
round a curve, altering your direction of motion. The changing of an object’s ve-
locity with time is called acceleration.

Average Acceleration
A car moves along a straight highway as in Figure 2.8. At time ti it has a velocity of
vi, and at time tf its velocity is vf , with �v � vf � vi and �t � tf � ti.

The average acceleration during the time interval �t is the change in veloc-
ity �v divided by �t :

[2.4]

SI unit: meter per second per second (m/s2)

For example, suppose the car shown in Figure 2.8 accelerates from an initial ve-
locity of vi � �10 m/s to a final velocity of vf � � 20 m/s in a time interval of 2 s.

a � 
�v
�t

�
vf � vi

tf � ti

a

(b) Find the average velocity during the first 4 seconds
of the train’s motion.

Again, find the slope: � 1.00 m/sv �
�x
�t

�
4.00 m
4.00 s

�

(c) Find the average velocity during the next four seconds.

Here, there is no change in position, so the
displacement �x is zero:

0 m/sv �
�x
�t

�
0 m

4.00 s
�

(d) Find the instantaneous velocity at t � 2.00 s.

This is the same as the average velocity found in 
(b), because the graph is a straight line:

v � 1.00 m/s

(e) Find the instantaneous velocity at t � 9.00 s.

The tangent line appears to intercept the x -axis at 
(3.0 s, 0 m) and graze the curve at (9.0 s, 4.5 m). The
instantaneous velocity at t � 9.00 s equals the slope of
the tangent line through these points.

0.75 m/sv �
�x
�t

�
4.5 m � 0 m
9.0 s � 3.0 s

�

Remarks From the origin to �, the train moves at constant speed in the positive x -direction for the first 4.00 s, be-
cause the position vs. time curve is rising steadily toward positive values. From � to �, the train stops at x � 4.00 m
for 4.00 s. From � to �, the train travels at increasing speed in the positive x -direction.

Exercise 2.2
Figure 2.7b graphs another run of the train. Find (a) the average velocity from 
 to �; (b) the average and instanta-
neous velocities from 
 to �; (c) the approximate instantaneous velocity at t � 6.0 s; and (d) the average and
instantaneous velocity at t � 9.0 s.

Answers (a) 0 m/s (b) both are � 0.5 m/s (c) 2 m/s (d) both are � 2.5 m/s

t f

v f

v i

ti

Figure 2.8 A car moving to the
right accelerates from a velocity of 
vi to a velocity of vf in the time 
interval �t � tf � ti.

Definition of average acceleration �
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2.3 Acceleration 31

(Both velocities are toward the right, selected as the positive direction.) These val-
ues can be inserted into Equation 2.4 to find the average acceleration:

Acceleration is a vector quantity having dimensions of length divided by the
time squared. Common units of acceleration are meters per second per second
((m/s)/s, which is usually written m/s2) and feet per second per second (ft/s2).
An average acceleration of � 5 m/s2 means that, on average, the car increases its
velocity by 5 m/s every second in the positive x-direction.

For the case of motion in a straight line, the direction of the velocity of an ob-
ject and the direction of its acceleration are related as follows: When the object’s
velocity and acceleration are in the same direction, the speed of the object in-
creases with time. When the object’s velocity and acceleration are in opposite di-
rections, the speed of the object decreases with time.

To clarify this point, suppose the velocity of a car changes from � 10 m/s to
� 20 m/s in a time interval of 2 s. The minus signs indicate that the velocities of
the car are in the negative x-direction; they do not mean that the car is slowing
down! The average acceleration of the car in this time interval is

The minus sign indicates that the acceleration vector is also in the negative 
x -direction. Because the velocity and acceleration vectors are in the same direc-
tion, the speed of the car must increase as the car moves to the left. Positive and
negative accelerations specify directions relative to chosen axes, not “speeding up”
or “slowing down.” The terms “speeding up” or “slowing down” refer to an in-
crease and a decrease in speed, respectively.

a �
�v
�t

�
�20 m/s � (�10 m/s)

2 s
� �5 m/s2

a �
�v
�t

�
20 m/s � 10 m/s

2 s
� � 5 m/s2

True or False? Define east as the negative direction and west as the positive direc-
tion. (a) If a car is traveling east, its acceleration must be eastward. (b) If a car is
slowing down, its acceleration may be positive. (c) An object with constant nonzero
acceleration can never stop and stay stopped.

Quick Quiz 2.2

Instantaneous Acceleration
The value of the average acceleration often differs in different time intervals, so
it’s useful to define the instantaneous acceleration, which is analogous to the in-
stantaneous velocity discussed in Section 2.2.

The instantaneous acceleration a is the limit of the average acceleration as
the time interval �t goes to zero:

[2.5]

SI unit: meter per second per second (m/s2)

Here again, the notation means that the ratio �v/�t is evaluated for smaller

and smaller values of �t. The closer �t gets to zero, the closer the ratio gets to a
fixed number, which is the instantaneous acceleration.

Figure 2.9, a velocity vs. time graph, plots the velocity of an object against time.
The graph could represent, for example, the motion of a car along a busy street.
The average acceleration of the car between times ti and tf can be found by deter-
mining the slope of the line joining points � and 	. If we imagine that point 	 is
brought closer and closer to point �, the line comes closer and closer to becom-
ing tangent at �. The instantaneous acceleration of an object at a given time

lim
�t :0

a � lim
�t : 0

�v
�t

t
t ft i

vi

vf
	

Slope = a– = ∆v
∆t

v

∆v
�

∆t

Figure 2.9 Velocity vs. time graph
for an object moving in a straight
line. The slope of the blue line con-
necting points � and 	 is defined as
the average acceleration in the time
interval �t � tf � ti.

TIP 2.5 Negative Acceleration
Negative acceleration doesn’t neces-
sarily mean an object is slowing down.
If the acceleration is negative and the
velocity is also negative, the object is
speeding up!

TIP 2.6 Deceleration
The word deceleration means a
reduction in speed, a slowing down.
Some confuse it with a negative
acceleration, which can speed
something up. (See Tip 2.5.)

� Definition of instantaneous
acceleration
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32 Chapter 2 Motion In One Dimension

equals the slope of the tangent to the velocity vs. time graph at that time. From
now on, we will use the term acceleration to mean “instantaneous acceleration.”

In the special case where the velocity vs. time graph of an object’s motion is a
straight line, the instantaneous acceleration of the object at any point is equal to
its average acceleration. This also means that the tangent line to the graph over-
laps the graph itself. In that case, the object’s acceleration is said to be uniform,
which means that it has a constant value. Constant acceleration problems are im-
portant in kinematics and will be studied extensively in this and the next chapter.

Parts (a), (b), and (c) of Figure 2.10 represent three graphs of the velocities of
different objects moving in straight-line paths as functions of time. The possible
accelerations of each object as functions of time are shown in parts (d), (e), and
(f). Match each velocity vs. time graph with the acceleration vs. time graph that
best describes the motion.

Quick Quiz 2.3

t

v

(a)

t

a

(d)

t

v

(b)

t

a

(e)

t

v

(c)

t

a

(f)

Figure 2.10 (Quick Quiz 2.3)
Match each velocity vs. time graph to
its corresponding acceleration vs.
time graph.

EXAMPLE 2.3 Catching a Fly Ball
Goal Apply the definition of instantaneous
acceleration.

Problem A baseball player moves in a straight-
line path in order to catch a fly ball hit to the
outfield. His velocity as a function of time is
shown in Figure 2.11a. Find his instantaneous
acceleration at points �, �, and �.

Strategy At each point, the velocity vs. time
graph is a straight line segment, so the instanta-
neous acceleration will be the slope of that seg-
ment. Select two points on each segment and
use them to calculate the slope.

O 1 2 3 4

1

2

3

4

v(m/s)

t(s)

�

�

�

(a)
O 1 2 3 4

1

2

3

4

v(m/s)

t(s)

� �

�

(b)

Figure 2.11 (a) (Example 2.3) (b) (Exercise 2.3)

Solution
Acceleration at �.

The acceleration equals the slope of the line connecting
the points (0 s, 0 m/s) and (2.0 s, 4.0 m/s):

�2.0 m/s2a �
�v
�t

�
4.0 m/s � 0

2.0 s � 0
�

Acceleration at �.

�v � 0, because the segment is horizontal: 0 m/s2a �
�v
�t

�
4.0 m/s � 4.0 m/s

3.0 s � 2.0 s
�  
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2.4 MOTION DIAGRAMS
Velocity and acceleration are sometimes confused with each other, but they’re very
different concepts, as can be illustrated with the help of motion diagrams. A
motion diagram is a representation of a moving object at successive time intervals,
with velocity and acceleration vectors sketched at each position, red for velocity
vectors and violet for acceleration vectors, as in Active Figure 2.12. The time inter-
vals between adjacent positions in the motion diagram are assumed equal.

A motion diagram is analogous to images resulting from a stroboscopic photo-
graph of a moving object. Each image is made as the strobe light flashes. Active
Figure 2.12 represents three sets of strobe photographs of cars moving along a
straight roadway from left to right. The time intervals between flashes of the stro-
boscope are equal in each diagram.

In Active Figure 2.12a, the images of the car are equally spaced: The car moves
the same distance in each time interval. This means that the car moves with
constant positive velocity and has zero acceleration. The red arrows are all the same
length (constant velocity) and there are no violet arrows (zero acceleration).

In Active Figure 2.12b, the images of the car become farther apart as time pro-
gresses and the velocity vector increases with time, because the car’s displacement
between adjacent positions increases as time progresses. The car is moving with a
positive velocity and a constant positive acceleration. The red arrows are successively
longer in each image, and the violet arrows point to the right.

Acceleration at �.

The acceleration equals the slope of the line connecting
the points (3.0 s, 4.0 m/s) and (4.0 s, 2.0 m/s):

�2.0 m/s2a �
�v
�t

�
2.0 m/s � 4.0 m/s

4.0 s � 3.0 s
�

Remarks For the first 2.0 s, the ballplayer moves in the positive x -direction (the velocity is positive) and steadily
accelerates (the curve is steadily rising) to a maximum speed of 4.0 m/s. He moves for 1.0 s at a steady speed of
4.0 m/s and then slows down in the last second (the v vs. t curve is falling), still moving in the positive x -direction 
(v is always positive).

Exercise 2.3
Repeat the problem, using Figure 2.11b.

Answer The accelerations at �, �, and � are � 3.0 m/s2, 1.0 m/s2, and 0 m/s2, respectively.

(a)

(b)

(c)

a

v

v

v

a

ACTIVE FIGURE 2.12
(a) Motion diagram for a car moving
at constant velocity (zero accelera-
tion). (b) Motion diagram for a car
undergoing constant acceleration in
the direction of its velocity. The
velocity vector at each instant is
indicated by a red arrow, and the
constant acceleration vector by a
violet arrow. (c) Motion diagram for a
car undergoing constant acceleration
in the direction opposite the velocity at
each instant.

Log into PhysicsNow at
www.cp7e.com, and go to 
Active Figure 2.12, where you can
select the constant acceleration and
initial velocity of the car and observe
pictorial and graphical representa-
tions of its motion.
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34 Chapter 2 Motion In One Dimension

In Active Figure 2.12c, the car slows as it moves to the right because its displace-
ment between adjacent positions decreases with time. In this case, the car moves
initially to the right with a constant negative acceleration. The velocity vector de-
creases in time (the red arrows get shorter) and eventually reaches zero, as would
happen when the brakes are applied. Note that the acceleration and velocity vec-
tors are not in the same direction. The car is moving with a positive velocity, but with
a negative acceleration.

Try constructing your own diagrams for various problems involving kinematics.

The three graphs in Active Figure 2.13 represent the position vs. time for objects
moving along the x-axis. Which, if any, of these graphs is not physically possible?

Quick Quiz 2.4

Figure 2.14a is a diagram of a multiflash image of an air puck moving to the right
on a horizontal surface. The images sketched are separated by equal time inter-
vals, and the first and last images show the puck at rest. (a) In Figure 2.14b,
which color graph best shows the puck’s position as a function of time? (b) In
Figure 2.14c, which color graph best shows the puck’s velocity as a function of
time? (c) In Figure 2.14d, which color graph best shows the puck’s acceleration as
a function of time?

Quick Quiz 2.5

x

t
(a)

x

t
(b)

x

t
(c)

ACTIVE FIGURE 2.13
(Quick Quiz 2.4) Which position vs. time curve is impossible?

Log into PhysicsNow at www.cp7e.com, and go to Active Figure 2.13, where you can practice matching
appropriate velocity vs. time graphs and acceleration vs. time graphs.

(b)

(c)

(a)

(d)
t

O

+

x

+

+

t
O

v

–

t
O

a

–

Figure 2.14 (Quick Quiz 2.5) Choose the correct graphs.
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2.5 ONE-DIMENSIONAL MOTION WITH 
CONSTANT ACCELERATION

Many applications of mechanics involve objects moving with constant acceleration.
This type of motion is important because it applies to numerous objects in nature,
such as an object in free fall near Earth’s surface (assuming that air resistance can
be neglected). A graph of acceleration versus time for motion with constant accel-
eration is shown in Active Figure 2.15a. When an object moves with constant accel-
eration, the instantaneous acceleration at any point in a time interval is equal to
the value of the average acceleration over the entire time interval. Consequently,
the velocity increases or decreases at the same rate throughout the motion, and a
plot of v versus t gives a straight line with either positive, zero, or negative slope.

Because the average acceleration equals the instantaneous acceleration when a
is constant, we can eliminate the bar used to denote average values from our defin-
ing equation for acceleration, writing � a, so that Equation 2.4 becomes

The observer timing the motion is always at liberty to choose the initial time, so for
convenience, let ti � 0 and tf be any arbitrary time t. Also, let vi � v0 (the initial
velocity at t � 0) and vf � v (the velocity at any arbitrary time t). With this
notation, we can express the acceleration as

or

(for constant a) [2.6]

Equation 2.6 states that the acceleration a steadily changes the initial velocity v0 by
an amount at. For example, if a car starts with a velocity of � 2.0 m/s to the right
and accelerates to the right with a � � 6.0 m/s2, it will have a velocity of �14 m/s
after 2.0 s have elapsed:

v � v0 � at � � 2.0 m/s � (6.0 m/s2)(2.0 s) � � 14 m/s

The graphical interpretation of v is shown in Active Figure 2.15b. The velocity
varies linearly with time according to Equation 2.6, as it should for constant
acceleration.

Because the velocity is increasing or decreasing uniformly with time, we can
express the average velocity in any time interval as the arithmetic average of the
initial velocity v0 and the final velocity v:

(for constant a) [2.7]

Remember that this expression is valid only when the acceleration is constant, in
which case the velocity increases uniformly.

We can now use this result along with the defining equation for average velocity,
Equation 2.2, to obtain an expression for the displacement of an object as a func-
tion of time. Again, we choose ti � 0 and tf � t, and for convenience, we write 
�x � xf � xi � x � x0. This results in

(for constant a) [2.8]

We can obtain another useful expression for displacement by substituting the
equation for v (Eq. 2.6) into Equation 2.8:

�x � 1
2 (v0 � v)t

�x � vt � � v0 � v
2 �t

v �
v0 � v

2

v � v0 � at

a �
v � v0

t

a �
vf � vi

tf � ti

a

(b)

v

v0

0

v

t

at

t

Slope = a 

(c)

x

0
t

x0

Slope = v0

v0

t

(a)

a

0

a

t

Slope  =  0

Slope = v

ACTIVE FIGURE 2.15
A particle moving along the x-axis
with constant acceleration a. 
(a) the acceleration vs. time graph, 
(b) the velocity vs. time graph, and 
(c) the position vs. time graph.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 2.15, where you can adjust the
constant acceleration and observe the
effect on the position and velocity
graphs.
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36 Chapter 2 Motion In One Dimension

(for constant a) [2.9]

This equation can also be written in terms of the position x, since �x � x � x0.
Active Figure 2.15c shows a plot of x versus t for Equation 2.9, which is related to
the graph of velocity vs. time: The area under the curve in Active Figure 2.15b is
equal to v0t � at2, which is equal to the displacement �x. In fact, the area under
the graph of v versus t for any object is equal to the displacement �x of the object.

Finally, we can obtain an expression that doesn’t contain time by solving Equa-
tion 2.6 for t and substituting into Equation 2.8, resulting in

(for constant a) [2.10]

Equations 2.6 and 2.9 together can solve any problem in one-dimensional motion
with constant acceleration, but Equations 2.7, 2.8, and, especially, 2.10 are some-
times convenient. The three most useful equations—Equations 2.6, 2.9, and
2.10—are listed in Table 2.4.

The best way to gain confidence in the use of these equations is to work a num-
ber of problems. There is usually more than one way to solve a given problem, de-
pending on which equations are selected and what quantities are given. The differ-
ence lies mainly in the algebra.

v2 � v0
2 � 2a�x

�x � 1
2 (v � v0)� v � v0

a � �
v2 � v0

2

2a

1
2

�x � v0t � 1
2at2

�x � 1
2(v0 � v0 � at)t

TABLE 2.4
Equations for Motion in a Straight Line Under Constant Acceleration
Equation Information Given by Equation

v � v0 � at Velocity as a function of time
�x � v0t � at2 Displacement as a function of time
v2 � v0

2 � 2a�x Velocity as a function of displacement

Note : Motion is along the x -axis. At t � 0, the velocity of the particle is v0.

1
2

Problem-Solving Strategy Accelerated Motion
The following procedure is recommended for solving problems involving accelerated
motion.
1. Read the problem.
2. Draw a diagram, choosing a coordinate system, labeling initial and final points,

and indicating directions of velocities and accelerations with arrows.
3. Label all quantities, circling the unknowns. Convert units as needed.
4. Equations from Table 2.4 should be selected next. All kinematics problems in this

chapter can be solved with the first two equations, and the third is often conven-
ient.

5. Solve for the unknowns. Doing so often involves solving two equations for two un-
knowns. It’s usually more convenient to substitute all known values before solving.

6. Check your answer, using common sense and estimates.

Most of these problems reduce to writing the kinematic equations from Table 2.4
and then substituting the correct values into the constants a, v0, and x0 from
the given information. Doing this produces two equations—one linear and one
quadratic— for two unknown quantities.

TIP 2.7 Pigs Don’t Fly
After solving a problem, you should
think about your answer and decide
whether it seems reasonable. If it
isn’t, look for your mistake!
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2.5 One-Dimensional Motion with Constant Acceleration 37

EXAMPLE 2.4 The Daytona 500
Goal Apply the basic kinematic equations.

Problem A race car starting from rest accelerates at a constant rate of 5.00 m/s2.
What is the velocity of the car after it has traveled 1.00 � 102 ft?

Strategy We’ve read the problem, drawn the diagram in Figure 2.16, and
chosen a coordinate system (steps 1 and 2). We’d like to find the velocity v after a
certain known displacement �x. The acceleration a is also known, as is the initial
velocity v0 (step 3, labeling, is complete), so the third equation in Table 2.4 looks
most useful. The rest is simple substitution.

Solution
Convert units of �x to SI, using the information in the
inside front cover.

1.00 � 102 ft � (1.00 � 102 ft)� 1 m
3.28 ft � � 30.5 m

S
T
A
R

T

v0 = 0 v = ?

+ x
x = 0 x = 30.5 m

Figure 2.16 (Example 2.4)

Write the kinematics equation for v2 (step 4): v2 � v0
2 � 2a �x

Solve for v, taking the positive square root because the
car moves to the right (step 5):

v � √v 2
0 � 2a �x

Substitute v0 � 0, a � 5.00 m/s2, and �x � 30.5 m:

� 17.5 m/s

v � √v 2
0 � 2a �x � √(0)2 � 2(5.00 m/s2)(30.5 m)

Remarks The answer is easy to check. An alternate technique is to use �x � v0t � at2 to find t and then use the
equation v � v0 � at to find v.

Exercise 2.4
Suppose the driver in this example now slams on the brakes, stopping the car in 4.00 s. Find (a) the acceleration and
(b) the distance the car travels, assuming the acceleration is constant.

Answers (a) a � � 4.38 m/s2 (b) d � 35.0 m

1
2

INTERACTIVE EXAMPLE 2.5 Car Chase
Goal Solve a problem involving two objects, one moving at constant acceleration and the other at constant velocity.

Problem A car traveling at a constant speed of 24.0 m/s
passes a trooper hidden behind a billboard, as in 
Figure 2.17. One second after the speeding car passes the
billboard, the trooper sets off in chase with a constant
acceleration of 3.00 m/s2. (a) How long does it take the
trooper to overtake the speeding car? (b) How fast is the
trooper going at that time?

Strategy Solving this problem involves two simultane-
ous kinematics equations of position, one for the police
motorcycle and the other for the car. Choose t � 0 to
correspond to the time the trooper takes up the chase,
when the car is at xcar � 24.0 m because of its head start
(24.0 m/s � 1.00 s). The trooper catches up with the car
when their positions are the same, which suggests setting
x trooper � xcar and solving for time, which can then be
used to find the trooper’s speed in part (b).

vcar = 24.0 m/s

a car = 0 

a trooper = 3.00 m/s2

��

t � = –1.00 s t � = 0 t � = ?

�

Figure 2.17 (Example 2.5) A speeding car passes a hidden
trooper. When does the trooper catch up to the car?

Solution
(a) How long does it take the trooper to overtake the car?

Write the equation for the car’s displacement: �xcar � xcar � x0 � v0t � 1
2acart2
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38 Chapter 2 Motion In One Dimension

Remarks The trooper, traveling about twice as fast as the car, must swerve or apply his brakes strongly to avoid a col-
lision! This problem can also be solved graphically, by plotting position versus time for each vehicle on the same
graph. The intersection of the two graphs corresponds to the time and position at which the trooper overtakes the car.

Exercise 2.5
A motorist with an expired license tag is traveling at 10.0 m/s down a street, and a policeman on a motorcycle, taking
another 5.00 s to finish his donut, gives chase at an acceleration of 2.00 m/s2. Find (a) the time required to catch the
car and (b) the distance the trooper travels while overtaking the motorist.

Answers (a) 13.7 s (b) 188 m

You can study the motion of the car and the trooper for various velocities of the car by logging into
PhysicsNow at www.cp7e.com and going to Interactive Example 2.5.

Take x0 � 24.0 m, v0 � 24.0 m/s and acar � 0. Solve for
xcar:

xcar � x0 � vt � 24.0 m � (24.0 m/s)t

Write the equation for the trooper’s position, taking 
x0 � 0, v0 � 0, and a trooper � 3.00 m/s2:

 xtrooper � 1
2a trooper t2 � 1

2(3.00 m/s2)t2 � (1.50 m/s2)t2

Set x trooper � xcar, and solve the quadratic equation.
(The quadratic formula appears in Appendix A,
Equation A.8.) Only the positive root is meaningful. (1.50 m/s2)t2 � (24.0 m/s)t � 24.0 m � 0

t � 16.9 s

(1.50 m/s2)t2 � 24.0 m � (24.0 m/s)t

(b) Find the trooper’s speed at this time.

Substitute the time into the trooper’s velocity equation: vtrooper � v0 � a trooper t � 0 � (3.00 m/s2)(16.9 s)

� 50.7 m/s

EXAMPLE 2.6 The Acela: The Porsche of American Trains

Problem The sleek high-speed electric train known as the Acela (pronounced ahh-sell-ah) is currently in service on
the Washington-New York-Boston run and is shown in Figure 2.18a. The Acela consists of two power cars and six
coaches and can carry 304 passengers at speeds up to 170 mi/h. In order to negotiate curves comfortably at high speeds,
the train carriages tilt as much as 6° from the vertical, to prevent passengers from being pushed to the side. A velocity 
vs. time graph for the Acela is shown in Figure 2.18b. (a) Describe the motion of the Acela. (b) Find the peak accelera-
tion of the Acela in miles per hour per second ((mi/h)/s) as the train speeds up from 45 mi/h to 170 mi/h. (c) Find
the train’s displacement in miles between t � 0 and t � 200 s. (d) Find the average acceleration of the Acela and its
displacement in miles in the interval from 200 s to 300 s. (The train has regenerative braking, which means that it feeds
energy back into the utility lines each time it stops!) (e) Find the total displacement in the interval from 0 to 400 s.

Strategy Examine the graph in part (a), remembering that the slope of the tangent line at any point of the velocity
vs. time graph gives the acceleration at that time. To find the peak acceleration in part (b), study the graph and lo-
cate the point at which the slope is steepest. In parts (c)–(e), estimating the area under the curve gives the displace-
ment during a given period, with areas below the time axis, as in part (e), subtracted from the total. The average
acceleration in part (d) can be obtained by substituting numbers taken from the graph into the definition of average
acceleration, .a � �v/�t

(b) Find the peak acceleration.

Calculate the slope of the steepest tangent line,
which connects the points (50 s, 50 mi/h) and (100 s,
150 mi/h) (the light blue line in Figure 2.18c): � 2.0 (mi/h)/s

a � slope �
�v
�t

�
(1.5 � 102 � 5.0 � 101) mi/h

(1.0 � 102 � 5.0 � 101) s

Solution
(a) Describe the motion.

From about � 50 s to 50 s, the Acela cruises at a constant velocity in the � x-direction. Then the train accelerates in
the � x-direction from 50 s to 200 s, reaching a top speed of about 170 mi/h, whereupon it brakes to rest at 350 s
and reverses, steadily gaining speed in the �x-direction.
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2.5 One-Dimensional Motion with Constant Acceleration 39

(c) Find the displacement between 0 s and 200 s.

Using triangles and rectangles, approximate the area in
Figure 2.18d:

 � 1
2(5.0 � 101 s)(1.0 � 102 mi/h)

 � (1.6 � 102 mi/h)(1.0 � 102 s)

 � (5.0 � 101 mi/h)(5.0 � 101 s)

 � (5.0 � 101 mi/h)(5.0 � 101 s)

�x0 :200 s � area1 � area2 � area3 � area4 � area5

 � 1
2(1.0 � 102 s)(1.7 � 102 mi/h � 1.6 � 102)

 � 2.4 � 104(mi/h)s

Convert units to miles by converting hours to seconds: 6.7 mi�x0:200 s � 2.4 � 104 
mi�s

h
 � 1 h

3  600 s � �

(d) Find the average acceleration from 200 s to 300 s,
and find the displacement.

The slope of the green line is the average acceleration
from 200 s to 300 s (Fig. 2.18c):

� �1.6(mi/h)/s

a � slope �
�v
�t

�
(1.0 � 101 � 1.7 � 102) mi/h

1.0 � 102 s

Figure 2.18 (Example 2.6) (a) The Acela, 1 250 000 lb of cold steel thundering along at 170 mi/h. (b) Velocity
vs. time graph for the Acela. (c) The slope of the steepest tangent blue line gives the peak acceleration, while the
slope of the green line is the average acceleration between 200 s and 300 s. (d) The area under the velocity vs. 
time graph in some time interval gives the displacement of the Acela in that time interval. (e) (Exercise 2.6).
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40 Chapter 2 Motion In One Dimension

The displacement from 200 s to 300 s is equal to area6,
which is the area of a triangle plus the area of a very nar-
row rectangle beneath the triangle:

2.5 mi� 9.0 � 103(mi/h)(s) �

� (1.0 � 101 mi/h)(1.0 � 102 s)

�x200:300 s � 1
2(1.0 � 102 s)(1.7 � 102 � 1.0 � 101) mi/h

(e) Find the total displacement from 0 s to 400 s.

The total displacement is the sum of all the individual
displacements. We still need to calculate the displace-
ments for the time intervals from 300 s to 350 s and
from 350 s to 400 s. The latter is negative, because it’s
below the time axis.  � �1.3 � 103(mi/h)(s)

�x350:400 s � 1
2(5.0 � 101 s)(� 5.0 � 101 mi/h)

 � 2.5 � 102(mi/h)(s)

�x300:350 s � 1
2(5.0 � 101 s)(1.0 � 101 mi/h)

Find the total displacement by summing the parts:

� 8.9 mi� 1.3 � 103)(mi/h)(s)

�x 0:400 s � (2.4 � 104 � 9.0 � 103 � 2.5 � 102

Remarks There are a number of ways of finding the approximate area under a graph. Choice of technique is a
personal preference.

Exercise 2.6
Suppose the velocity vs. time graph of another train is given in Figure 2.18e. Find (a) the maximum instantaneous ac-
celeration and (b) the total displacement in the interval from 0 s to 4.00 � 102 s.

Answers (a) 1.0(mi/h)/s (b) 4.7 mi

EXAMPLE 2.7 Runway Length
Goal Apply kinematics to horizontal motion with two phases.

Problem A typical jetliner lands at a speed of 160 mi/h and
decelerates at the rate of (10 mi/h)/s. If the plane travels at a
constant speed of 160 mi/h for 1.0 s after landing before ap-
plying the brakes, what is the total displacement of the air-
craft between touchdown on the runway and coming to rest?

Strategy See Figure 2.19. First, convert all quantities to 
SI units. The problem must be solved in two parts, or phases,
corresponding to the initial coast after touchdown, followed
by braking. Using the kinematic equations, find the displace-
ment during each part and add the two displacements.

a

A, coasting
distance

B, braking distance
+x

v0 = 71.5 m/s
a = 0
t = 1.0 s

v0 = 71.5 m/s
vf = 0
a = –4.47 m/s2

Origin

vv

Figure 2.19 (Example 2.7) Coasting and braking distances for a
landing jetliner.

Solution
Convert units to SI:

 a � (� 10.0 (mi/h)/s)� 0.447 m/s
1.00 mi/h � � � 4.47 m/s2

 v0 � (160 mi/h)� 0.447 m/s
1.00 mi/h � � 71.5 m/s

Taking a � 0, v0 � 71.5 m/s, and t � 1.00 s, find the
displacement while the plane is coasting:

�xcoasting � v0t � 1
2at2 � (71.5 m/s)(1.00 s) � 0 � 71.5 m

Use the time-independent kinematic equation to find
the displacement while the plane is braking.

v 2 � v0
2 � 2a �x braking

Take a � � 4.47 m/s2 and v0 � 71.5 m/s. The negative
sign on a means that the plane is slowing down.

�xbraking �
v2 � v0

2

2a
�

0 � (71.5 m/s)2

2.00(�4.47 m/s2)
� 572 m
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2.6 FREELY FALLING OBJECTS
When air resistance is negligible, all objects dropped under the influence of grav-
ity near Earth’s surface fall toward Earth with the same constant acceleration. This
idea may seem obvious today, but it wasn’t until about 1600 that it was accepted.
Prior to that time, the teachings of the great philosopher Aristotle (384–322 B.C.)
had held that heavier objects fell faster than lighter ones.

According to legend, Galileo discovered the law of falling objects by observing
that two different weights dropped simultaneously from the Leaning Tower of Pisa
hit the ground at approximately the same time. Although it’s unlikely that this par-
ticular experiment was carried out, we know that Galileo performed many system-
atic experiments with objects moving on inclined planes. In his experiments, he
rolled balls down a slight incline and measured the distances they covered in suc-
cessive time intervals. The purpose of the incline was to reduce the acceleration
and enable Galileo to make accurate measurements of the intervals. (Some people
refer to this experiment as “diluting gravity.”) By gradually increasing the slope of
the incline, he was finally able to draw mathematical conclusions about freely
falling objects, because a falling ball is equivalent to a ball going down a vertical
incline. Galileo’s achievements in the science of mechanics paved the way for New-
ton in his development of the laws of motion, which we will study in Chapter 4.

Try the following experiment: Drop a hammer and a feather simultaneously
from the same height. The hammer hits the floor first, because air drag has a
greater effect on the much lighter feather. On August 2, 1971, this same experi-
ment was conducted on the Moon by astronaut David Scott, and the hammer and
feather fell with exactly the same acceleration, as expected, hitting the lunar sur-
face at the same time. In the idealized case where air resistance is negligible, such
motion is called free fall.

The expression freely falling object doesn’t necessarily refer to an object dropped
from rest. A freely falling object is any object moving freely under the influence of
gravity alone, regardless of its initial motion. Objects thrown upward or downward
and those released from rest are all considered freely falling.

We denote the magnitude of the free-fall acceleration by the symbol g. The
value of g decreases with increasing altitude, and varies slightly with latitude, as
well. At Earth’s surface, the value of g is approximately 9.80 m/s2. Unless stated
otherwise, we will use this value for g in doing calculations. For quick estimates,
use g � 10 m/s2.

If we neglect air resistance and assume that the free-fall acceleration doesn’t
vary with altitude over short vertical distances, then the motion of a freely falling
object is the same as motion in one dimension under constant acceleration. This
means that the kinematics equations developed in Section 2.6 can be applied. It’s
conventional to define “up” as the � y -direction and to use y as the position vari-
able. In that case, the acceleration is a � � g � � 9.80 m/s2. In Chapter 7, we
study how to deal with variations in g with altitude.

GALILEO GALILEI Italian 
Physicist and Astronomer
(1564–1642)
Galileo formulated the laws that govern
the motion of objects in free fall. He also
investigated the motion of an object on an
inclined plane, established the concept of
relative motion, invented the thermometer,
and discovered that the motion of a
swinging pendulum could be used to
measure time intervals. After designing
and constructing his own telescope, he
discovered four of Jupiter’s moons, found
that our own Moon’s surface is rough, dis-
covered sunspots and the phases of Venus,
and showed that the Milky Way consists of
an enormous number of stars. Galileo
publicly defended Nicolaus Copernicus’s
assertion that the Sun is at the center of
the Universe (the heliocentric system). He
published Dialogue Concerning Two New
World Systems to support the Copernican
model, a view the Church declared to be
heretical. After being taken to Rome in
1633 on a charge of heresy, he was
sentenced to life imprisonment and later
was confined to his villa at Arcetri, near
Florence, where he died in 1642.
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Sum the two results to find the total displacement: 644 m�xcoasting � �xbraking � 72 m � 572 m �

Remarks To find the displacement while braking, we could have used the two kinematics equations involving time,
namely, and v � v0 � at, but because we weren’t interested in time, the time-independent equation
was easier to use.

Exercise 2.7
A jet lands at 80.0 m/s, applying the brakes 2.00 s after landing. Find the acceleration needed to stop the jet within
5.00 � 102 m.

Answer a � � 9.41 m/s2

�x � v0t � 1
2at2
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42 Chapter 2 Motion In One Dimension

A tennis player on serve tosses a ball straight up. While the ball is in free fall,
does its acceleration (a) increase, (b) decrease, (c) increase and then decrease,
(d) decrease and then increase, or (e) remain constant?

Quick Quiz 2.6

As the tennis ball of Quick Quiz 2.6 travels through the air, its speed (a) increases,
(b) decreases, (c) decreases and then increases, (d) increases and then decreases,
or (e) remains the same.

Quick Quiz 2.7

A skydiver jumps out of a hovering helicopter. A few seconds later, another sky-
diver jumps out, so they both fall along the same vertical line relative to the heli-
copter. Both sky divers fall with the same acceleration. Does the vertical distance
between them (a) increase, (b) decrease, or (c) stay the same? Does the difference
in their velocities (d) increase, (e) decrease, or (f) stay the same? (Assume that g is
constant.)

Quick Quiz 2.8

EXAMPLE 2.8 Look Out Below!
Goal Apply the basic kinematics equations to an object falling from rest under the influence of gravity.

Problem A golf ball is released from rest at the top of a very tall building. Neglecting air resistance, calculate the
position and velocity of the ball after 1.00 s, 2.00 s, and 3.00 s.

Strategy Make a simple sketch. Because the height of the building isn’t given, it’s convenient to choose coordi-
nates so that y � 0 at the top of the building. Use the velocity and position kinematic equations, substituting known
and given values.

Solution
Write the kinematics Equations 2.6 and 2.9: v � at � v0

�y � y � y0 � v0t � 1
2at2

Substitute y0 � 0, v0 � 0, and a � � g � � 9.80 m/s2

into the preceding two equations:
v � at � (� 9.80 m/s2)t

 y � 1
2(� 9.80 m/s2)t2 � �(4.90 m/s2)t2

Substitute in the different times, and create a table. t (s) v (m/s) y (m)

1.00 � 9.8 � 4.9
2.00 � 19.6 � 19.6
3.00 � 29.4 � 44.1

Remarks The minus signs on v mean that the velocity vectors are directed downward, while the minus signs on y in-
dicates positions below the origin. The velocity of a falling object is directly proportional to the time, and the posi-
tion is proportional to the time squared, results first proven by Galileo.

Exercise 2.8
Calculate the position and velocity of the ball after 4.00 s has elapsed.

Answer � 78.4 m, � 39.2 m/s
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INTERACTIVE EXAMPLE 2.9
Not a Bad Throw for a Rookie!
Goal Apply the kinematic equations to a
freely falling object with a nonzero initial
velocity.

Problem A stone is thrown from the top of a
building with an initial velocity of 20.0 m/s
straight upward, at an initial height of 50.0 m
above the ground. The stone just misses the
edge of the roof on its way down, as shown in
Figure 2.20. Determine (a) the time needed for
the stone to reach its maximum height, (b) the
maximum height, (c) the time needed for the
stone to return to the height from which it was
thrown and the velocity of the stone at that in-
stant; (d) the time needed for the stone to
reach the ground, and (e) the velocity and posi-
tion of the stone at t � 5.00 s.

Strategy The diagram in Figure 2.20 estab-
lishes a coordinate system with y0 � 0 at the
level at which the stone is released from the
thrower’s hand, with y positive upward. Write
the velocity and position kinematic equations
for the stone, and substitute the given informa-
tion. All the answers come from these two
equations by using simple algebra or by just
substituting the time. In part (a), for example,
the stone comes to rest for an instant at its
maximum height, so set v � 0 at this point and
solve for time. Then substitute the time into
the displacement equation, obtaining the maxi-
mum height.

t = 0, y 0 = 0

v0 = 20.0 m/s

t = 2.04 s
ymax = 20.4 m
v = 0

t = 4.08 s
y = 0
v = –20.0 m/s

t = 5.00 s
y = –22.5 m
v = –29.0 m/s

t = 5.83 s 
y = –50.0 m
v = –37.1 m/s

50.0 m

Figure 2.20 (Example 2.9) A
freely falling object is thrown upward
with an initial velocity of v0 �
� 20.0 m/s. Positions and velocities
are given for several times.

Solution
(a) Find the time when the stone reaches its maximum
height.

Write the velocity and position kinematic equations: v � at � v0

�y � y � y0 � v0t � 1
2at2

v � (� 9.80 m/s2)t � 20.0 m/s (1)

y � (20.0 m/s)t � (4.90 m/s2)t2 (2)

Substitute v � 0, the velocity at maximum height, into
Equation (1) and solve for time:

0 � (� 9.80 m/s2)t � 20.0 m/s

2.04 st �
�20.0 m/s
�9.80 m/s2 �

(b) Determine the stone’s maximum height.

Substitute the time t � 2.04 s into Equation (2): 20.4 mymax � (20.0 m/s)(2.04) � (4.90 m/s2)(2.04)2 �

(c) Find the time the stone takes to return to its initial
position, and find the velocity of the stone at that time.

Set y � 0 in Equation (2) and solve t: 

t � 4.08 s

� t(20.0 m/s � 4.90 m/s2 t)

0 � (20.0 m/s)t � (4.90 m/s2)t 2

Substitute a � � 9.80 m/s2, v0 � 20.0 m/s, and y0 � 0
into the preceding two equations:
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Substitute the time into Equation (1) to get the velocity: v � 20.0 m/s � (� 9.80 m/s2)(4.08 s) � �20.0 m/s

(d) Find the time required for the stone to reach the
ground.

In Equation 2, set y � � 50.0 m: � 50.0 m � (20.0 m/s)t � (4.90 m/s2)t2

Apply the quadratic formula and take the positive root: t � 5.83 s

(e) Find the velocity and position of the stone at t � 5.00 s.
Substitute values into Equations (1) and (2):

v � (� 9.80 m/s2)(5.00 s) � 20.0 m/s �

�22.5 my � (20.0 m/s)(5.00 s) � (4.90 m/s2)(5.00 s)2 �

� 29.0 m/s

Remarks Notice how everything follows from the two kinematic equations. Once they are written down, and con-
stants correctly identified as in Equations (1) and (2), the rest is relatively easy. If the stone were thrown downward,
the initial velocity would have been negative.

Exercise 2.9
A projectile is launched straight up at 60.0 m/s from a height of 80.0 m, at the edge of a sheer cliff. The projectile
falls, just missing the cliff and hitting the ground below. Find (a) the maximum height of the projectile above the
point of firing, (b) the time it takes to hit the ground at the base of the cliff, and (c) its velocity at impact.

Answers (a) 184 m (b) 13.5 s (c) � 72.3 m/s

You can study the motion of the thrown ball by logging into PhysicsNow at www.cp7e.com and going
to Interactive Example 2.9.

EXAMPLE 2.10 A Rocket Goes Ballistic
Goal Solve a problem involving a powered ascent
followed by free fall motion.

Problem A rocket moves straight upward, starting
from rest with an acceleration of �29.4 m/s2. It runs
out of fuel at the end of 4.00 s and continues to coast
upward, reaching a maximum height before falling
back to Earth. (a) Find the rocket’s velocity and posi-
tion at the end of 4.00 s. (b) Find the maximum
height the rocket reaches. (c) Find the velocity the
instant before the rocket crashes on the ground.

Strategy Take y � 0 at the launch point and y posi-
tive upward, as in Figure 2.21. The problem consists
of two phases. In phase 1, the rocket has a net up-
ward acceleration of 29.4 m/s2, and we can use the
kinematic equations with constant acceleration a to
find the height and velocity of the rocket at the end
of phase 1, when the fuel is burned up. In phase 2,
the rocket is in free fall and has an acceleration of
� 9.80 m/s2, with initial velocity and position given
by the results of phase 1. Apply the kinematic equa-
tions for free fall.

y = 0
Launch

Rocket crashes
after falling
from ymax

Rocket
fuel
burns
out

+y

Phase 1
a = 29.4 m/s2

Phase 2
a = –9.80 m/s2

Maximum
height ymax
v = 0

Figure 2.21 (Example 2.10) Two
linked phases of motion for a rocket
that is launched, uses up its fuel, and
crashes.
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Solution
(a) Phase 1: Find the rocket’s velocity and position after
4.00 s.

Write the velocity and position kinematic equations: v � v0 � at (1)

(2)�y � y � y0 � v0t � 1
2at2

Adapt these equations to phase 1, substituting 
a � 29.4 m/s2, v0 � 0, and y0 � 0:

v � (29.4 m/s2)t (3)

(4)y � 1
2(29.4 m/s2)t2 � (14.7 m/s2)t2

Substitute t � 4.00 s into Equations (3) and (4) to find
the rocket’s velocity v and position y at the time of
burnout. These will be called vb and yb, respectively.

and yb � 235 mvb � 118 m/s

(b) Phase 2: Find the maximum height the rocket attains.

Adapt Equations (1) and (2) to phase 2, substituting 
a � � 9.8 m/s2, v0 � vb � 118 m/s, and y0 � yb � 235 m:

v � (�9.8 m/s2)t � 118 m/s (5)

(6)y � 235 m � (118 m/s)t � (4.90 m/s2)t2

Substitute v � 0 (the rocket’s velocity at maximum
height) in Equation 5 to get the time it takes the rocket
to reach its maximum height:

0 � (� 9.8 m/s2)t � 118 m/s :  t �
118 m/s

9.80 m/s2 � 12.0 s

Substitute t � 12.0 s into Equation (6) to find the
rocket’s maximum height: � 945 m

ymax � 235 m � (118 m/s)(12.0 s) � (4.90 m/s2)(12.0 s)2

(c) Phase 2: Find the velocity of the rocket just prior to
impact.

Find the time to impact by setting y � 0 in Equation (6)
and using the quadratic formula:

t � 25.9 s

0 � 235 m � (118 m/s)t � (4.90 m/s2)t2

Substitute this value of t into Equation (5): v � (� 9.80 m/s2)(25.9 s) � 118 m/s � �136 m/s

Remarks You may think that it is more natural to break this problem into three phases, with the second phase ending
at the maximum height and the third phase a free fall from maximum height to the ground. Although this approach
gives the correct answer, it’s an unnecessary complication. Two phases are sufficient, one for each different acceleration.

Exercise 2.10
An experimental rocket designed to land upright falls freely from a height of 2.00 � 102 m, starting at rest. At a
height of 80.0 m, the rocket’s engines start and provide constant upward acceleration until the rocket lands. What ac-
celeration is required if the speed on touchdown is to be zero? (Neglect air resistance.)

Answer 14.7 m/s2

SUMMARY
Take a practice test by logging into

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

2.1 Displacement
The displacement of an object moving along the x-axis is

defined as the change in position of the object,

�x � xf � xi [2.1]

where xi is the initial position of the object and xf is its final
position.

A vector quantity is characterized by both a magnitude
and a direction. A scalar quantity has a magnitude only.
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2.2 Velocity
The average speed of an object is given by

The average velocity during a time interval �t is the dis-
placement �x divided by �t.

[2.2]

The average velocity is equal to the slope of the straight
line joining the initial and final points on a graph of the
position of the object versus time.

The slope of the line tangent to the position vs. time
curve at some point is equal to the instantaneous velocity at
that time. The instantaneous speed of an object is defined
as the magnitude of the instantaneous velocity.

2.3 Acceleration
The average acceleration of an object undergoing a
change in velocity �v during a time interval �t is

[2.4]

The instantaneous acceleration of an object at a certain time
equals the slope of a velocity vs. time graph at that instant.

a � 
�v
�t

�
vf � vi

tf � ti

a

v � 
�x
�t

�
xf � xi

tf � ti

v

Average speed � 
total distance

total time

2.5 One-Dimensional Motion with
Constant Acceleration
The most useful equations that describe the motion of an
object moving with constant acceleration along the x axis
are as follows:

v � v0 � at [2.6]

[2.9]

v2 � v0
2 � 2a�x [2.10]

All problems can be solved with the first two equations
alone, the last being convenient when time doesn’t explic-
itly enter the problem. After the constants are properly
identified, most problems reduce to one or two equations
in as many unknowns.

2.6 Freely Falling Objects
An object falling in the presence of Earth’s gravity exhibits
a free-fall acceleration directed toward Earth’s center. If air
friction is neglected and if the altitude of the falling object
is small compared with Earth’s radius, then we can assume
that the free-fall acceleration g � 9.8 m/s2 is constant over
the range of motion. Equations 2.6, 2.9, and 2.10 apply,
with a � � g.

�x � v0t � 1
2at 2

CONCEPTUAL QUESTIONS
1. If the velocity of a particle is nonzero, can the particle’s

acceleration be zero? Explain.

2. If the velocity of a particle is zero, can the particle’s accel-
eration be zero? Explain.

3. If a car is traveling eastward, can its acceleration be west-
ward? Explain.

4. The speed of sound in air is 331 m/s. During the next
thunderstorm, try to estimate your distance from a light-
ning bolt by measuring the time lag between the flash and
the thunderclap. You can ignore the time it takes for the
light flash to reach you. Why?

5. Can the equations of kinematics be used in a situation
where the acceleration varies with time? Can they be used
when the acceleration is zero?

6. If the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject during that interval?

7. A child throws a marble into the air with an initial speed
v0. Another child drops a ball at the same instant. Com-
pare the accelerations of the two objects while they are in
flight.

8. Figure Q2.8 shows strobe photographs taken of a disk
moving from left to right under different conditions. The
time interval between images is constant. Taking the di-
rection to the right to be positive, describe the motion
of the disk in each case. For which case is (a) the acceler-
ation positive? (b) the acceleration negative? (c) the
velocity constant?

9. Can the instantaneous velocity of an object at an instant
of time ever be greater in magnitude than the average ve-

locity over a time interval containing that instant? Can it
ever be less?

10. Car A, traveling from New York to Miami, has a speed of
25 m/s. Car B, traveling from New York to Chicago, also
has a speed of 25 m/s. Are their velocities equal? Explain.

11. A ball is thrown vertically upward. (a) What are its velocity
and acceleration when it reaches its maximum altitude?
(b) What is the acceleration of the ball just before it hits
the ground?

(a)

(b)

(c)

Figure Q2.8

Co
ur

te
sy

 o
f D

av
id

 R
og

er
s

44337_02_p23-52  10/13/04  2:19 PM  Page 46

Second Sight Design
Image not Available

Second Sight Design
Image not Available

Second Sight Design
Image not Available



Problems 47

12. A rule of thumb for driving is that a separation of one car
length for each 10 mi/h of speed should be maintained be-
tween moving vehicles. Assuming a constant reaction time,
discuss the relevance of this rule for (a) motion with con-
stant velocity and (b) motion with constant acceleration.

13. Two cars are moving in the same direction in parallel
lanes along a highway. At some instant, the velocity of car
A exceeds the velocity of car B. Does this mean that the
acceleration of A is greater than that of B? Explain.

14. Consider the following combinations of signs and values
for the velocity and acceleration of a particle with respect
to a one-dimensional x-axis:

Velocity Acceleration
a. Positive Positive
b. Positive Negative
c. Positive Zero
d. Negative Positive
e. Negative Negative
f. Negative Zero
g. Zero Positive
h. Zero Negative

Describe what the particle is doing in each case, and give a 
real-life example for an automobile on an east-west one-
dimensional axis, with east considered the positive direction.

15. A student at the top of a building of height h throws one
ball upward with a speed of v0 and then throws a second
ball downward with the same initial speed, v0. How do the
final velocities compare when the balls reach the ground?

16. A ball is thrown straight upward and moves in free fall.
Choose a coordinate system with its origin at the release

point of the ball and the positive direction upward.
(a) What is the sign of the velocity of the ball just before
the ball reaches its maximum height, just after it reaches
its maximum height, and at its maximum height.
(b) What is the sign of the acceleration of the ball just be-
fore the ball reaches its maximum height, just after it
reaches its maximum height, and at its maximum height.
(c) If the ball takes time t1 to reach its maximum height,
how long will it take to return to ground level? (d) If the
ball is thrown upward with a velocity of � v0, what will be
the ball’s velocity upon returning to ground level?

17. A pebble is dropped into a water well, and the splash is
heard 16 s later, as illustrated in the cartoon strip shown
in Figure Q2.17. Estimate the distance from the rim of the
well to the water’s surface.

18. A ball rolls in a straight line along the horizontal direc-
tion. Using motion diagrams (or multiflash photographs),
describe the velocity and acceleration of the ball for each
of the following situations: (a) The ball moves to the right
at a constant speed. (b) The ball moves from right to
left and continually slows down. (c) The ball moves from
right to left and continually speeds up. (d) The ball
moves to the right, first speeding up at a constant rate and
then slowing down at a constant rate.

19. You drop a ball from a window on an upper floor of a
building. The ball strikes the ground with speed v. You
now repeat the drop, but you have a friend down on the
street who throws another ball upward at speed v. Your
friend throws the ball upward at exactly the same time
that you drop yours from the window. At some location,
the balls pass each other. Is this location at the halfway
point between window and ground, above that point, or
below that point?

Figure Q2.17

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 2.1 Displacement
Section 2.2 Velocity

1. A person travels by car from one city to another with dif-
ferent constant speeds between pairs of cities. She drives
for 30.0 min at 80.0 km/h, 12.0 min at 100 km/h, and
45.0 min at 40.0 km/h and spends 15.0 min eating lunch

and buying gas. (a) Determine the average speed for the
trip. (b) Determine the distance between the initial and
final cities along the route.

2. (a) Sand dunes on a desert island move as sand is swept
up the windward side to settle in the leeward side. Such
“walking” dunes have been known to travel 20 feet in a
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year and can travel as much as 100 feet per year in partic-
ularly windy times. Calculate the average speed in each
case in m/s. (b) Fingernails grow at the rate of drifting
continents, about 10 mm/yr. Approximately how long did
it take for North America to separate from Europe, a dis-
tance of about 3 000 mi?

3. Two boats start together and race across a 60-km-wide lake
and back. Boat A goes across at 60 km/h and returns at
60 km/h. Boat B goes across at 30 km/h, and its crew,
realizing how far behind it is getting, returns at 90 km/h.
Turnaround times are negligible, and the boat that com-
pletes the round trip first wins. (a) Which boat wins and
by how much? (Or is it a tie?) (b) What is the average ve-
locity of the winning boat?

4. The Olympic record for the marathon is 2 h, 9 min, 21 s.
The marathon distance is 26 mi, 385 yd. Determine the
average speed (in miles per hour) of the record.

5. A motorist drives north for 35.0 minutes at 85.0 km/h
and then stops for 15.0 minutes. He then continues
north, traveling 130 km in 2.00 h. (a) What is his total dis-
placement? (b) What is his average velocity?

6. A graph of position versus time for a certain particle
moving along the x-axis is shown in Figure P2.6. Find the
average velocity in the time intervals from (a) 0 to 2.00 s,
(b) 0 to 4.00 s, (c) 2.00 s to 4.00 s, (d) 4.00 s to 7.00 s, and
(e) 0 to 8.00 s.

8. Two cars travel in the same direction along a straight
highway, one at a constant speed of 55 mi/h and the
other at 70 mi/h. (a) Assuming that they start at the same
point, how much sooner does the faster car arrive at a des-
tination 10 mi away? (b) How far must the faster car travel
before it has a 15-min lead on the slower car?

9. An athlete swims the length of a 50.0-m pool in 20.0 s and
makes the return trip to the starting position in 22.0 s.
Determine her average velocities in (a) the first half of
the swim, (b) the second half of the swim, and (c) the
round trip.

10. If the average speed of an orbiting space shuttle is
19 800 mi/h, determine the time required for it to circle
Earth. Make sure you consider the fact that the shuttle is
orbiting about 200 mi above Earth’s surface, and assume
that Earth’s radius is 3 963 miles.

11. A person takes a trip, driving with a con-
stant speed of 89.5 km/h, except for a 22.0-min rest stop. If
the person’s average speed is 77.8 km/h, how much time is
spent on the trip and how far does the person travel?

12. A tortoise can run with a speed of 0.10 m/s, and a hare
can run 20 times as fast. In a race, they both start at the
same time, but the hare stops to rest for 2.0 minutes.
The tortoise wins by a shell (20 cm). (a) How long does
the race take? (b) What is the length of the race?

13. In order to qualify for the finals in a racing event, a race
car must achieve an average speed of 250 km/h on a track
with a total length of 1 600 m. If a particular car covers
the first half of the track at an average speed of 230 km/h,
what minimum average speed must it have in the second
half of the event in order to qualify?

14. Runner A is initially 4.0 mi west of a flagpole and is run-
ning with a constant velocity of 6.0 mi/h due east. Runner
B is initially 3.0 mi east of the flagpole and is running with
a constant velocity of 5.0 mi/h due west. How far are the
runners from the flagpole when they meet?

15. A graph of position versus time for a certain particle
moving along the x-axis is shown in Figure P2.6. Find 
the instantaneous velocity at the instants (a) t � 1.00 s, 
(b) t � 3.00 s, (c) t � 4.50 s, and (d) t � 7.50 s.

16. A race car moves such that its position fits the relationship

x � (5.0 m/s)t � (0.75 m/s3)t3

where x is measured in meters and t in seconds. (a) Plot a
graph of the car’s position versus time. (b) Determine
the instantaneous velocity of the car at t � 4.0 s, using
time intervals of 0.40 s, 0.20 s, and 0.10 s. (c) Compare
the average velocity during the first 4.0 s with the results
of (b).

17. Find the instantaneous velocities of the tennis player of
Figure P2.7 at (a) 0.50 s, (b) 2.0 s, (c) 3.0 s, and (d) 4.5 s.

Section 2.3 Acceleration
18. Secretariat ran the Kentucky Derby with times of 25.2 s,

24.0 s, 23.8 s, and 23.0 s for the quarter mile. (a) Find
his average speed during each quarter-mile segment. 
(b) Assuming that Secretariat’s instantaneous speed at the
finish line was the same as his average speed during 
the final quarter mile, find his average acceleration for
the entire race. (Hint: Recall that horses in the Derby
start from rest.)

1 2 3 4 5 6 7 8
t(s)

–6

–4

–2

0

2

4

6

8

10

x(m)

Figure P2.6 (Problems 6 and 15)

x(m)

t(s)
1 2 3 4 5

2

4

–2

Figure P2.7 (Problems 7 and 17)

7. A tennis player moves in a straight-line path as shown in
Figure P2.7. Find her average velocity in the time in-
tervals from (a) 0 to 1.0 s, (b) 0 to 4.0 s, (c) 1.0 s to 5.0 s,
and (d) 0 to 5.0 s.
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19. A steam catapult launches a jet aircraft from the aircraft
carrier John C. Stennis, giving it a speed of 175 mi/h in
2.50 s. (a) Find the average acceleration of the plane.
(b) Assuming that the acceleration is constant, find the
distance the plane moves.

20. A car traveling in a straight line has a velocity of
� 5.0 m/s at some instant. After 4.0 s, its velocity is 
� 8.0 m/s. What is the car’s average acceleration during
the 4.0-s time interval?

21. A certain car is capable of accelerating
at a rate of � 0.60 m/s2. How long does it take for this car
to go from a speed of 55 mi/h to a speed of 60 mi/h?

22. The velocity vs. time graph for an object moving along a
straight path is shown in Figure P2.22. (a) Find the aver-
age acceleration of the object during the time intervals 0
to 5.0 s, 5.0 s to 15 s, and 0 to 20 s. (b) Find the instanta-
neous acceleration at 2.0 s, 10 s, and 18 s.

30.0 m/s. At the moment the cars are 40.0 m apart, the
lead driver applies the brakes, causing his car to have an
acceleration of � 2.00 m/s2. (a) How long does it take for
the lead car to stop? (b) Assuming that the chasing car
brakes at the same time as the lead car, what must be the
chasing car’s minimum negative acceleration so as not to
hit the lead car? (c) How long does it take for the chasing
car to stop?

29. A Cessna aircraft has a lift-off speed of 120 km/h.
(a) What minimum constant acceleration does the air-
craft require if it is to be airborne after a takeoff run of
240 m? (b) How long does it take the aircraft to become
airborne?

30. A truck on a straight road starts from rest and accelerates
at 2.0 m/s2 until it reaches a speed of 20 m/s. Then the
truck travels for 20 s at constant speed until the brakes are
applied, stopping the truck in a uniform manner in an
additional 5.0 s. (a) How long is the truck in motion? 
(b) What is the average velocity of the truck during the
motion described?

31. A drag racer starts her car from rest and accelerates at
10.0 m/s2 for a distance of 400 m ( mile). (a) How long
did it take the race car to travel this distance? (b) What is
the speed of the race car at the end of the run?

32. A jet plane lands with a speed of 100 m/s and can acceler-
ate at a maximum rate of � 5.00 m/s2 as it comes to rest.
(a) From the instant the plane touches the runway, what
is the minimum time needed before it can come to rest?
(b) Can this plane land on a small tropical island airport
where the runway is 0.800 km long?

33. A driver in a car traveling at a speed of 60 mi/h sees a
deer 100 m away on the road. Calculate the minimum
constant acceleration that is necessary for the car to stop
without hitting the deer (assuming that the deer does not
move in the meantime).

34. A record of travel along a straight path is as follows:
1. Start from rest with a constant acceleration of 2.77 m/s2

for 15.0 s.
2. Maintain a constant velocity for the next 2.05 min.
3. Apply a constant negative acceleration of � 9.47 m/s2

for 4.39 s.
(a) What was the total displacement for the trip? (b) What
were the average speeds for legs 1, 2, and 3 of the trip, as
well as for the complete trip?

35. A train is traveling down a straight track at 20 m/s when
the engineer applies the brakes, resulting in an accelera-
tion of � 1.0 m/s2 as long as the train is in motion. How
far does the train move during a 40-s time interval start-
ing at the instant the brakes are applied?

36. A car accelerates uniformly from rest to a speed of 
40.0 mi/h in 12.0 s. Find (a) the distance the car travels dur-
ing this time and (b) the constant acceleration of the car.

37. A car starts from rest and travels for 5.0 s with a uniform
acceleration of � 1.5 m/s2. The driver then applies the
brakes, causing a uniform acceleration of � 2.0 m/s2. If
the brakes are applied for 3.0 s, (a) how fast is the car go-
ing at the end of the braking period, and (b) how far has
the car gone?

38. A train 400 m long is moving on a straight track with a
speed of 82.4 km/h. The engineer applies the brakes at a
crossing, and later the last car passes the crossing with a
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Figure P2.22

23. The engine of a model rocket accelerates the rocket verti-
cally upward for 2.0 s as follows: At t � 0, the rocket’s speed
is zero; at t � 1.0 s, its speed is 5.0 m/s; and at t � 2.0 s, its
speed is 16 m/s. Plot a velocity vs. time graph for this
motion, and use the graph to determine (a) the rocket’s
average acceleration during the 2.0-s interval and (b) the
instantaneous acceleration of the rocket at t � 1.5 s.

Section 2.5 One-Dimensional Motion with 
Constant Acceleration
24. A car traveling in a straight-line path has a velocity of

�10.0 m/s at some instant. After 3.00 s, its velocity is
�6.00 m/s. What is the average acceleration of the car
during this time interval?

25. In 1865, Jules Verne proposed sending men to the Moon
by firing a space capsule from a 220-m-long cannon with
final speed of 10.97 km/s. What would have been the un-
realistically large acceleration experienced by the space
travelers during their launch? (A human can stand an ac-
celeration of 15g for a short time.) Compare your answer
with the free-fall acceleration, 9.80 m/s2.

26. A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find the truck’s
original speed. (b) Find its acceleration.

27. A speedboat increases its speed uniformly from 20 m/s to
30 m/s in a distance of 200 m. Find (a) the magnitude of
its acceleration and (b) the time it takes the boat to travel
the 200-m distance.

28. Two cars are traveling along a straight line in the same
direction, the lead car at 25.0 m/s and the other car at

44337_02_p23-52  10/13/04  2:19 PM  Page 49



50 Chapter 2 Motion In One Dimension

speed of 16.4 km/h. Assuming constant acceleration, de-
termine how long the train blocked the crossing. Disre-
gard the width of the crossing.

39. A hockey player is standing on his skates on a frozen pond
when an opposing player, moving with a uniform speed of
12 m/s, skates by with the puck. After 3.0 s, the first player
makes up his mind to chase his opponent. If he acceler-
ates uniformly at 4.0 m/s2, (a) how long does it take him
to catch his opponent, and (b) how far has he traveled in
that time? (Assume that the player with the puck remains
in motion at constant speed.)

40. A glider on an air track carries a flag of length � through
a stationary photogate that measures the time interval �td
during which the flag blocks a beam of infrared light pass-
ing across the gate. The ratio vd � �/�td is the average ve-
locity of the glider over this part of its motion. Suppose
the glider moves with constant acceleration. (a) Argue for
or against the idea that vd is equal to the instantaneous
velocity of the glider when it is halfway through the
photogate in terms of distance. (b) Argue for or against
the idea that vd is equal to the instantaneous velocity
of the glider when it is halfway through the photogate in
terms of time.

41. In the Daytona 500 auto race, a Ford Thunderbird and a
Mercedes Benz are moving side by side down a straight-
away at 71.5 m/s. The driver of the Thunderbird realizes
that she must make a pit stop, and she smoothly slows to a
stop over a distance of 250 m. She spends 5.00 s in the pit
and then accelerates out, reaching her previous speed of
71.5 m/s after a distance of 350 m. At this point, how far
has the Thunderbird fallen behind the Mercedes Benz,
which has continued at a constant speed?

42. A certain cable car in San Francisco can stop in 10 s when
traveling at maximum speed. On one occasion, the driver
sees a dog a distance d m in front of the car and slams on
the brakes instantly. The car reaches the dog 8.0 s later,
and the dog jumps off the track just in time. If the car
travels 4.0 m beyond the position of the dog before
coming to a stop, how far was the car from the dog?
(Hint : You will need three equations.)

Section 2.6 Freely Falling Objects
43. A ball is thrown vertically upward with a speed of 25.0 m/s.

(a) How high does it rise? (b) How long does it take to
reach its highest point? (c) How long does the ball take to
hit the ground after it reaches its highest point? (d) What
is its velocity when it returns to the level from which it
started?

44. It is possible to shoot an arrow at a speed as high as 
100 m/s. (a) If friction is neglected, how high would
an arrow launched at this speed rise if shot straight up?
(b) How long would the arrow be in the air?

45. A certain freely falling object requires 1.50 s to travel the
last 30.0 m before it hits the ground. From what height
above the ground did it fall?

46. Traumatic brain injury such as concussion results when
the head undergoes a very large acceleration. Generally,
an acceleration less than 800 m/s2 lasting for any length
of time will not cause injury, whereas an acceleration
greater than 1 000 m/s2 lasting for at least 1 ms will cause
injury. Suppose a small child rolls off a bed that is 0.40 m
above the floor. If the floor is hardwood, the child’s head

is brought to rest in approximately 2.0 mm. If the floor is
carpeted, this stopping distance is increased to about 
1.0 cm. Calculate the magnitude and duration of the de-
celeration in both cases, to determine the risk of injury.
Assume that the child remains horizontal during the fall
to the floor. Note that a more complicated fall could
result in a head velocity greater or less than the speed you
calculate.

47. A small mailbag is released from a heli-
copter that is descending steadily at 1.50 m/s. After 2.00 s,
(a) what is the speed of the mailbag, and (b) how far is it
below the helicopter? (c) What are your answers to parts
(a) and (b) if the helicopter is rising steadily at 1.50 m/s?

48. A ball thrown vertically upward is caught by the thrower
after 2.00 s. Find (a) the initial velocity of the ball and 
(b) the maximum height the ball reaches.

49. A model rocket is launched straight upward with an initial
speed of 50.0 m/s. It accelerates with a constant upward
acceleration of 2.00 m/s2 until its engines stop at an alti-
tude of 150 m. (a) What is the maximum height reached
by the rocket? (b) How long after lift-off does the rocket
reach its maximum height? (c) How long is the rocket in
the air?

50. A parachutist with a camera descends in free fall at a
speed of 10 m/s. The parachutist releases the camera at
an altitude of 50 m. (a) How long does it take the camera
to reach the ground? (b) What is the velocity of the cam-
era just before it hits the ground?

51. A student throws a set of keys vertically upward to his
fraternity brother, who is in a window 4.00 m above.
The brother’s outstretched hand catches the keys 1.50 s
later. (a) With what initial velocity were the keys thrown?
(b) What was the velocity of the keys just before they were
caught?

52. It has been claimed that an insect called the froghopper
(Philaenus spumarius) is the best jumper in the animal
kingdom. This insect can accelerate at 4 000 m/s2 over a
distance of 2.0 mm as it straightens its specially designed
“jumping legs.” (a) Assuming a uniform acceleration,
what is the velocity of the insect after it has accelerated
through this short distance, and how long did it take to
reach that velocity? (b) How high would the insect jump if
air resistance could be ignored? Note that the actual
height obtained is about 0.7 m, so air resistance is impor-
tant here.

ADDITIONAL PROBLEMS

53. A truck tractor pulls two trailers, one behind the other, at
a constant speed of 100 km/h. It takes 0.600 s for the big
rig to completely pass onto a bridge 400 m long. For what
duration of time is all or part of the truck-trailer combina-
tion on the bridge?

54. A speedboat moving at 30.0 m/s approaches a no-wake
buoy marker 100 m ahead. The pilot slows the boat with a
constant acceleration of � 3.50 m/s2 by reducing the
throttle. (a) How long does it take the boat to reach the
buoy? (b) What is the velocity of the boat when it reaches
the buoy?

55. A bullet is fired through a board 10.0 cm thick in such a
way that the bullet’s line of motion is perpendicular to the
face of the board. If the initial speed of the bullet is
400 m/s and it emerges from the other side of the board
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with a speed of 300 m/s, find (a) the acceleration of the
bullet as it passes through the board and (b) the total
time the bullet is in contact with the board.

56. An indestructible bullet 2.00 cm long is fired straight
through a board that is 10.0 cm thick. The bullet strikes
the board with a speed of 420 m/s and emerges with a
speed of 280 m/s. (a) What is the average acceleration of
the bullet through the board? (b) What is the total time
that the bullet is in contact with the board? (c) What
thickness of board (calculated to 0.1 cm) would it take to
stop the bullet, assuming that the acceleration through all
boards is the same?

57. A ball is thrown upward from the ground with an initial
speed of 25 m/s; at the same instant, another ball is
dropped from a building 15 m high. After how long will
the balls be at the same height?

58. A ranger in a national park is driving at 35.0 mi/h when a
deer jumps into the road 200 ft ahead of the vehicle. After
a reaction time t, the ranger applies the brakes to produce
an acceleration a � � 9.00 ft/s2. What is the maximum re-
action time allowed if she is to avoid hitting the deer?

59. Two students are on a balcony 19.6 m above the street.
One student throws a ball vertically downward at
14.7 m/s; at the same instant, the other student throws
a ball vertically upward at the same speed. The second
ball just misses the balcony on the way down. (a) What
is the difference in the two balls’ time in the air? (b)
What is the velocity of each ball as it strikes the ground?
(c) How far apart are the balls 0.800 s after they are
thrown?

60. The driver of a truck slams on the brakes when he sees a
tree blocking the road. The truck slows down uniformly
with an acceleration of � 5.60 m/s2 for 4.20 s, making
skid marks 62.4 m long that end at the tree. With what
speed does the truck then strike the tree?

61. A young woman named Kathy Kool buys a sports car that
can accelerate at the rate of 4.90 m/s2. She decides to test
the car by drag racing with another speedster, Stan
Speedy. Both start from rest, but experienced Stan leaves
the starting line 1.00 s before Kathy. If Stan moves with a
constant acceleration of 3.50 m/s2 and Kathy maintains
an acceleration of 4.90 m/s2, find (a) the time it takes
Kathy to overtake Stan, (b) the distance she travels before
she catches him, and (c) the speeds of both cars at the in-
stant she overtakes him.

62. A mountain climber stands at the top of a 50.0-m cliff that
overhangs a calm pool of water. She throws two stones ver-
tically downward 1.00 s apart and observes that they cause
a single splash. The first stone had an initial velocity of
� 2.00 m/s. (a) How long after release of the first stone
did the two stones hit the water? (b) What initial velocity
must the second stone have had, given that they hit the
water simultaneously? (c) What was the velocity of each
stone at the instant it hit the water?

63. An ice sled powered by a rocket engine starts from rest on
a large frozen lake and accelerates at � 40 ft/s2. After
some time t1, the rocket engine is shut down and the sled
moves with constant velocity v for a time t2. If the total
distance traveled by the sled is 17 500 ft and the total time
is 90 s, find (a) the times t1 and t2 and (b) the velocity v.
At the 17 500-ft mark, the sled begins to accelerate at
� 20 ft/s2. (c) What is the final position of the sled when

it comes to rest? (d) How long does it take to come to
rest?

64. In Bosnia, the ultimate test of a young man’s courage
used to be to jump off a 400-year-old bridge (now de-
stroyed) into the River Neretva, 23 m below the bridge.
(a) How long did the jump last? (b) How fast was
the jumper traveling upon impact with the river? (c) If
the speed of sound in air is 340 m/s, how long after the
jumper took off did a spectator on the bridge hear the
splash?

65. A person sees a lightning bolt pass close to an airplane
that is flying in the distance. The person hears thunder
5.0 s after seeing the bolt and sees the airplane overhead
10 s after hearing the thunder. The speed of sound in air
is 1 100 ft/s. (a) Find the distance of the airplane from
the person at the instant of the bolt. (Neglect the time it
takes the light to travel from the bolt to the eye.) (b) As-
suming that the plane travels with a constant speed
toward the person, find the velocity of the airplane. 
(c) Look up the speed of light in air, and defend the ap-
proximation used in (a).

66. Another scheme to catch the roadrunner has failed! Now
a safe falls from rest from the top of a 25.0-m-high cliff to-
ward Wile E. Coyote, who is standing at the base. Wile first
notices the safe after it has fallen 15.0 m. How long does
he have to get out of the way?

67. A stunt man sitting on a tree limb
wishes to drop vertically onto a horse galloping under the
tree. The constant speed of the horse is 10.0 m/s, and
the man is initially 3.00 m above the level of the saddle.
(a) What must be the horizontal distance between
the saddle and the limb when the man makes his move?
(b) How long is he in the air?

68. A hard rubber ball, released at chest height, falls to the
pavement and bounces back to nearly the same height.
When the ball is in contact with the pavement, its lower
side is temporarily flattened. Before the dent in the ball
pops out, suppose that its maximum depth is on the order
of 1 cm. Compute an order-of-magnitude estimate for the
maximum acceleration of the ball. State your assump-
tions, the quantities you estimate, and the values you esti-
mate for them.

69. Vroom—vroom! As soon as a traffic light turns green, a car
speeds up from rest to 50.0 mi/h with a constant accelera-
tion of 9.00 mi/h � s. In the adjoining bike lane, a cyclist
speeds up from rest to 20.0 mi/h with a constant accelera-
tion of 13.0 mi/h � s. Each vehicle maintains a constant
velocity after reaching its cruising speed. (a) For how long
is the bicycle ahead of the car? (b) By what maximum dis-
tance does the bicycle lead the car?

70. In order to pass a physical education class at a university, a
student must run 1.0 mi in 12 min. After running for
10 min, she still has 500 yd to go. If her maximum
acceleration is 0.15 m/s2, can she make it? If the answer is
no, determine what acceleration she would need to be
successful.

71. One swimmer in a relay race has a 0.50-s lead and is swim-
ming at a constant speed of 4.0 m/s. He has 50 m to swim
before reaching the end of the pool. A second swimmer
moves in the same direction as the leader. What constant
speed must the second swimmer have in order to catch up
to the leader at the end of the pool?
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52 Chapter 2 Motion In One Dimension

ACTIVITIES

A.1. Estimate a few speeds in metric units, using a stopwatch
or a wristwatch. For example, roll a ball across a table and
estimate the number of centimeters it moves each second
to find its speed. Other speeds you might try are for some-
one walking across the room, a jogger running, a car mov-
ing through some distance, and so forth. To see how well
you did, make some actual measurements for those situa-
tions in which it is feasible to do so.

A.2. Use what you know about falling objects to measure your
reaction time. Hold the index finger and thumb of your
dominant hand about 2.5 cm apart, and then have your
co-worker hold a ruler vertically in the space between
your finger and thumb, as shown in Figure A2.2. Note
the position of the ruler relative to your index finger. Your
co-worker must release the ruler, and you must catch it
(without moving your hand downward) as quickly as
you can. The ruler (a freely falling object) falls through a
distance , where t is the reaction time and d � 1

2gt2

g � 9.80 m/s2. Repeat this measurement of d five times,
average your results, and calculate an average value of t.
Now measure your co-worker’s reaction time, using the
same procedure. Compare your results. For most people,
the reaction time is at best about 0.2 s. As an extension to
this experiment, replace the ruler with a crisp dollar bill.
Hold the bill such that your thumb and index finger are
just at the level of Washington’s face. Unless you are antic-
ipating the time of release, you will not be able to catch
the bill when it is released, because the time required for
the top to pass out of your hand is less than the typical
0.2-s reaction time.

A.3. Galileo studied accelerated motion by allowing objects to
roll down inclined planes so that their motion would be
slow enough to make reasonable observations. Try a simi-
lar procedure. Make a mark at the top of an inclined
plane as the starting point for the motion, and use a metal
barrier at the end as a sound cue for stopping a stop-
watch. Measure the length of the plane. Record the aver-
age time for several trials of a ball rolling down the plane
at a measured angle. From the information you obtain,
calculate the acceleration. Repeat the experiment for a
larger angle of inclination. Do this for several trials, until
you can plot a graph of acceleration versus angle. From
your graph, can you guess what the acceleration would be
if the inclined plane were vertical? Would the results of
your experiment be different if you had used a signifi-
cantly more massive ball? If you are unsure, repeat the ex-
periment to see if there is a difference.

A.4. Perform the activities that follow to verify that all objects
fall with the same acceleration. First, try dropping a coffee
filter oriented horizontally and also dropping a pencil.
Then repeat the experiment with the filter in a loose ball,
a tight ball, and, finally, in a compacted wad. You should
note that compacting the filter tends to reduce the effects
of air resistance and makes the two objects fall more
nearly at the same rate.
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3
CHAPTER

Vectors and 
Two-Dimensional Motion

O U T L I N E

3.1 Vectors and Their 
Properties

3.2 Components of a Vector
3.3 Displacement, Velocity,

and Acceleration in Two
Dimensions

3.4 Motion in Two Dimensions
3.5 Relative Velocity

In our discussion of one-dimensional motion in Chapter 2, we used the concept of vectors
only to a limited extent. In our further study of motion, manipulating vector quantities will be-
come increasingly important, so much of this chapter is devoted to vector techniques. We’ll
then apply these mathematical tools to two-dimensional motion, especially that of projectiles,
and to the understanding of relative motion.

3.1 VECTORS AND THEIR PROPERTIES
Each of the physical quantities we will encounter in this book can be categorized as
either a vector quantity or a scalar quantity. As noted in Chapter 2, a vector has both
direction and magnitude (size). A scalar can be completely specified by its magni-
tude with appropriate units; it has no direction. An example of each kind of quan-
tity is shown in Figure 3.1 (page 54).

As described in Chapter 2, displacement, velocity, and acceleration are vector
quantities. Temperature is an example of a scalar quantity. If the temperature of
an object is �5�C, that information completely specifies the temperature of the ob-
ject; no direction is required. Masses, time intervals, and volumes are scalars as
well. Scalar quantities can be manipulated with the rules of ordinary arithmetic.
Vectors can also be added and subtracted from each other, and multiplied, but
there are a number of important differences, as will be seen in the following
sections.

When a vector quantity is handwritten, it is often represented with an arrow
over the letter ( ). As mentioned in Section 2.1, a vector quantity in this bookA

:

Legendary motorcycle stuntman Evel
Knievel blasts off in his custom
rocket-powered Harley-Davidson
Skycycle in an attempt to jump the
Snake River Canyon in 1974. A
parachute prematurely deployed and
caused the craft to fall into the
canyon, just short of the other side.
Knievel survived.
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54 Chapter 3 Vectors and Two-Dimensional Motion

will be represented by boldface type with an arrow on top (for example, ). The
magnitude of the vector will be represented by italic type, as A. Italic type will
also be used to represent scalars.

Equality of Two Vectors. Two vectors and are equal if they have the same
magnitude and the same direction. This property allows us to translate a vector
parallel to itself in a diagram without affecting the vector. In fact, for most
purposes, any vector can be moved parallel to itself without being affected. (See
Fig. 3.2.)

Adding Vectors. When two or more vectors are added, they must all have the
same units. For example, it doesn’t make sense to add a velocity vector, carrying
units of meters per second, to a displacement vector, carrying units of meters.
Scalars obey the same rule: It would be similarly meaningless to add temperatures
to volumes or masses to time intervals.

Vectors can be added geometrically or algebraically. (The latter is discussed
at the end of the next section.) To add vector to vector geometrically, first
draw on a piece of graph paper to some scale, such as 1 cm � 1 m, and so
that its direction is specified relative a coordinate system. Then draw vector to
the same scale with the tail of starting at the tip of , as in Active Figure 3.3a.
Vector must be drawn along the direction that makes the proper angle rela-
tive vector . The resultant vector � � is the vector drawn from the tail
of to the tip of . This procedure is known as the triangle method of
addition.

When two vectors are added, their sum is independent of the order of the
addition: � � � . This relationship can be seen from the geometric
construction in Active Figure 3.3b, and is called the commutative law of
addition.

This same general approach can also be used to add more than two vectors, as
is done in Figure 3.4 for four vectors. The resultant vector sum � � � �

is the vector drawn from the tail of the first vector to the tip of the last. Again,
the order in which the vectors are added is unimportant.

Negative of a Vector. The negative of the vector is defined as the vector that
gives zero when added to . This means that and � have the same magnitude
but opposite directions.
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Figure 3.1 (a) The number of
grapes in this bunch ripe for picking
is one example of a scalar quantity.
Can you think of other examples? 
(b) This helpful person pointing in
the right direction tells us to travel
five blocks north to reach the court-
house. A vector is a physical quantity
that must be specified by both magni-
tude and direction.

O

y

x

Ge
or

ge
 S

em
pl

e

Figure 3.2 These four vectors are
equal because they have equal
lengths and point in the same
direction.

(a)

R = A + B

(b)

A

A

B
B

R = A + B

ACTIVE FIGURE 3.3
(a) When vector is added to vector , the vector sum is the vector that runs from the tail of 
to the tip of . (b) Here the resultant runs from the tail of to the tip of . These constructions prove
that � � �

Log into PhysicsNow at www.cp7e.com, and go to Active Figure 3.3 to vary and and see the effect
on the resultant.
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TIP 3.1 Vector Addition
Versus Scalar Addition

� � is very different from 
A � B � C. The first is a vector sum,
which must be handled graphically or
with components, while the second is
a simple arithmetic sum of numbers.
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3.1 Vectors and Their Properties 55

Subtracting Vectors. Vector subtraction makes use of the definition of the nega-
tive of a vector. We define the operation � as the vector � added to the vec-
tor :

� � � (� ) [3.1]

Vector subtraction is really a special case of vector addition. The geometric con-
struction for subtracting two vectors is shown in Figure 3.5.

Multiplying or Dividing a Vector by a Scalar. Multiplying or dividing a vector by a
scalar gives a vector. For example, if vector is multiplied by the scalar number 3,
the result, written 3 , is a vector with a magnitude three times that of and point-
ing in the same direction. If we multiply vector by the scalar � 3, the result
is � 3 , a vector with a magnitude three times that of and pointing in the op-
posite direction (because of the negative sign).
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Figure 3.4 A geometric construc-
tion for summing four vectors.
The resultant vector is the vector
that completes the polygon.

R
:

The magnitudes of two vectors and are 12 units and 8 units, respectively. What
are the largest and smallest possible values for the magnitude of the resultant
vector � � ? (a) 14.4 and 4; (b) 12 and 8; (c) 20 and 4; (d) none of these.B

:
A
:

R
:

B
:

A
:

Quick Quiz 3.1

If vector is added to vector , the resultant vector � has magnitude A � B
when and are (a) perpendicular to each other; (b) oriented in the same direc-
tion; (c) oriented in opposite directions; (d) none of these answers.

B
:

A
:

B
:

A
:

A
:

B
:

Quick Quiz 3.2

A – B
– B

A

B

Figure 3.5 This construction
shows how to subtract vector from
vector . The vector � has the
same magnitude as the vector , but
points in the opposite direction.

B
:

B
:

A
:

B
:

EXAMPLE 3.1 Taking a Trip
Goal Find the sum of two vectors by using a graph.

Problem A car travels 20.0 km due north and then 35.0 km in a direction 60� west
of north, as in Figure 3.6. Using a graph, find the magnitude and direction of a sin-
gle vector that gives the net effect of the car’s trip. This vector is called the car’s re-
sultant displacement.

Strategy Draw a graph, and represent the displacement vectors as arrows. Graphi-
cally locate the vector resulting from the sum of the two displacement vectors. Mea-
sure its length and angle with respect to the vertical.

Solution
Let represent the first displacement vector, 20.0 km north, the second displace-
ment vector, extending west of north. Carefully graph the two vectors, drawing a
resultant vector with its base touching the base of and extending to the tip of .
Measure the length of this vector, which turns out to be about 48 km. The angle �,
measured with a protractor, is about 39� west of north.

Remarks Notice that ordinary arithmetic doesn’t work here: the correct answer of
48 km is not equal to 20.0 km � 35.0 km � 55.0 km!

Exercise 3.1
Graphically determine the magnitude and direction of the displacement if a man walks 30.0 km 45� north of east and
then walks due east 20.0 km.

Answer 46 km, 27� north of east

B
:

A
:

R
:

B
:

A
:

y(km)

40

20

60.0°

x(km)
0

β

N

S

W E

B

–20

R

A

Figure 3.6 (Example 3.1) A graph-
ical method for finding the resultant
displacement vector � � .B

:
A
:

R
:
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56 Chapter 3 Vectors and Two-Dimensional Motion

3.2 COMPONENTS OF A VECTOR
One method of adding vectors makes use of the projections of a vector along the
axes of a rectangular coordinate system. These projections are called components.
Any vector can be completely described by its components.

Consider a vector in a rectangular coordinate system, as shown in Figure 3.7.
can be expressed as the sum of two vectors: x, parallel to the x -axis; and y ,

parallel to the y -axis. Mathematically,

� x � y

where x and y are the component vectors of . The projection of along the 
x -axis, Ax , is called the x -component of , and the projection of along the 
y -axis, Ay , is called the y -component of . These components can be either posi-
tive or negative numbers with units. From the definitions of sine and cosine, we
see that cos � � Ax/A and sin � � Ay/A, so the components of are

Ax � A cos �
[3.2]

Ay � A sin �

These components form two sides of a right triangle having a hypotenuse with
magnitude A. It follows that ’s magnitude and direction are related to its compo-
nents through the Pythagorean theorem and the definition of the tangent:

[3.3]

[3.4]

To solve for the angle �, which is measured from the positive x-axis by convention,
we can write Equation 3.4 in the form

� � tan�1

This formula gives the right answer only half the time! The inverse tangent func-
tion returns values only from � 90� to � 90�, so the answer in your calculator win-
dow will only be correct if the vector happens to lie in first or fourth quadrant. If it
lies in second or third quadrant, adding 180� to the number in the calculator win-
dow will always give the right answer. The angle in Equations 3.2 and 3.4 must be
measured from the positive x-axis. Other choices of reference line are possible, but
certain adjustments must then be made. (See Tip 3.2 and Figure 3.8.)

If a coordinate system other than the one shown in Figure 3.7 is chosen, the
components of the vector must be modified accordingly. In many applications it’s
more convenient to express the components of a vector in a coordinate system
having axes that are not horizontal and vertical, but are still perpendicular to each
other. Suppose a vector makes an angle �� with the x �-axis defined in Figure 3.9.
The rectangular components of along the axes of the figure are given by
Bx� � B cos �� and By� � B sin ��, as in Equations 3.2. The magnitude and direc-
tion of are then obtained from expressions equivalent to Equations 3.3 and 3.4.B

:

B
:

B
:

� Ay

Ax
�

tan � �
Ay

Ax

A � √A 2
x �  A 2

y

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

A
:

y

x
O

tan      =
Ay

Ax

Ay

Ax

θ

θ

A

Figure 3.7 Any vector lying in
the xy-plane can be represented by its
rectangular components Ax and Ay .

A
:

y

x
0

Ay = A sin

θ

θ

Ax = A cos θ

A

(a)

y

x
0

Ay = A cos
θ

θ

Ax = A sin θ

A

(b)

Figure 3.8 The angle � need not
always be defined from the positive 
x -axis.

x ′

y ′

′

B

By ′
Bx ′

O ′

θ

Figure 3.9 The components of vector in a tilted coordi-
nate system.

B
:

TIP 3.2 x- and y-Components
Equation 3.2 for the x- and y-compo-
nents of a vector associates cosine
with the x -component and sine with
the y -component, as in Figure 3.8a.
This association is due solely to the
fact that we chose to measure the
angle � with respect to the positive 
x-axis. If the angle were measured with
respect to the y -axis, as in Figure 3.8b,
the components would be given by
Ax � A sin � and Ay � A cos �.

TIP 3.3 Inverse Tangents on
Calculators: Right Half the Time
The inverse tangent function on
calculators returns an angle between
� 90� and � 90�. If the vector lies in
the second or third quadrant, the
angle, as measured from the positive
x -axis, will be the angle returned by
your calculator plus 180�.
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3.2 Components of a Vector 57

Figure 3.10 shows two vectors lying in the xy -plane. Determine the signs of the 
x - and y -components of , , and � , and place your answers in the following
table:

Vector x-component y-component

� B
:

A
:

B
:
A
:

B
:

A
:

B
:

A
:

Quick Quiz 3.3 y

x

B

A

EXAMPLE 3.2 Help Is on the Way!
Goal Find vector components, given a magnitude and direction,
and vice versa.

Problem (a) Find the horizontal and vertical components of
the 1.00 	 102 m displacement of a superhero who flies from
the top of a tall building along the path shown in Figure 3.11a. 
(b) Suppose instead the superhero leaps in the other direction
along a displacement vector , to the top of a flagpole where
the displacement components are given by Bx � � 25.0 m and 
By � 10.0 m. Find the magnitude and direction of the displacement
vector.

Strategy (a) The triangle formed by the displacement and
its components is shown in Figure 3.11b. Simple trigonometry gives
the components relative the standard x-y coordinate system: Ax �
A cos � and Ay � A sin � (Equations 3.2). Note that � � � 30.0�,
negative because it’s measured clockwise from the positive x -axis. 
(b) Apply Equations 3.3 and 3.4 to find the magnitude and
direction of the vector.

B
:

(a)

100 m

x

y

30.0°

(b)

Ax x

y

Ay

30.0°
A

Figure 3.10 (Quick Quiz 3.3)

Figure 3.11 (Example 3.2)

Solution
(a) Find the vector components of from its magnitude
and direction.

Use Equations 3.2 to find the components of the
displacement vector :A

:

A
:

Ax � A cos � � (1.00 	 102 m) cos(� 30.0�) �

Ay � A sin � � (1.00 	 102 m) sin(� 30.0�) � � 50.0 m

� 86.6 m

(b) Find the magnitude and direction of the displace-
ment vector from its components.

Compute the magnitude of from the Pythagorean
theorem:

B
:

B
:

� 26.9 mB � √B 2
x � B 2

y � √(� 25.0 m)2 � (10.0 m)2

Calculate the direction of using the inverse tangent,
remembering to add 180� to the answer in your calculator
window, because the vector lies in the second quadrant:

B
:

� � 158�

 � � tan�1 � By

Bx
� � tan�1 � 10.0

� 25.0 � � � 21.8�

Remarks In part (a), note that cos(� �) � cos �; however, sin(� �) � � sin �. The negative sign of Ay reflects the
fact that displacement in the y -direction is downward.
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58 Chapter 3 Vectors and Two-Dimensional Motion

Adding Vectors Algebraically
The graphical method of adding vectors is valuable in understanding how vectors
can be manipulated, but most of the time vectors are added algebraically in terms
of their components. Suppose . Then the components of the resultant
vector are given by

Rx � Ax � Bx [3.5a]

Ry � Ay � By [3.5b]

So x-components are added only to x-components, and y-components only to y-
components. The magnitude and direction of can subsequently be found with
Equations 3.3 and 3.4.

Subtracting two vectors works the same way, because it’s a matter of adding the
negative of one vector to another vector. You should make a rough sketch when
adding or subtracting vectors, in order to get an approximate geometric solution
as a check.

R
:

R
:

R
:

� A
:

� B
:

Exercise 3.2
(a) Suppose the superhero had flown 150 m at a 120� angle with respect to the positive x -axis. Find the compo-
nents of the displacement vector. (b) Suppose instead, the superhero had leaped with a displacement having an 
x -component of 32.5 m and a y -component of 24.3 m. Find the magnitude and direction of the displacement vector.

Answers (a) Ax � � 75 m, Ay � 130 m (b) 40.6 m, 36.8�

INTERACTIVE EXAMPLE 3.3 Take a Hike
Goal Add vectors algebraically and find the resultant vector.

Problem A hiker begins a trip by first walking 25.0 km southeast from her base camp. On the second day she walks
40.0 km in a direction 60.0� north of east, at which point she discovers a forest ranger’s tower. (a) Determine the
components of the hiker’s displacements in the first and second days. (b) Determine the components of the hiker’s
total displacement for the trip. (c) Find the magnitude and direction of the displacement from base camp.

Strategy This is just an applica-
tion of vector addition using compo-
nents, Equations 3.5. We denote the
displacement vectors on the first and
second days by and , respectively.
Using the camp as the origin of the
coordinates, we get the vectors
shown in Figure 3.12a. After finding
x- and y-components for each vector,
we add them “componentwise.”
Finally, we determine the magnitude
and direction of the resultant vector

, using the Pythagorean theorem
and the inverse tangent function.
R
:

B
:

A
:

E

N

S

W
20

10

–10

–20

45.0° 20 30 40 50
x(km)

60.0°

Camp

y(km)

Tower

(a)

A
B

R

20 30 40
x(km)

O

y(km)

(b)

30

20

10

10
Rx = 37.7 km

Ry = 16.9 kmR

Figure 3.12 (Example 3.3) (a) Hiker’s path and the resultant vector. (b) Components of the
hiker’s total displacement from camp.

Solution
(a) Find the components of .

Use Equations 3.2 to find the components of :A
:

A
:

Ax � A cos(� 45.0�) � (25.0 km)(0.707) �

Ay � A sin(� 45.0�) � � (25.0 km)(0.707) � � 17.7 km

17.7 km

Find the components of :B
: Bx � B cos 60.0� � (40.0 km)(0.500) �

By � B sin 60.0� � (40.0 km)(0.866) � 34.6 km

20.0 km
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3.3 DISPLACEMENT, VELOCITY, AND 
ACCELERATION IN TWO DIMENSIONS

In one-dimensional motion, as discussed in Chapter 2, the direction of a vector
quantity such as a velocity or acceleration can be taken into account by specifying
whether the quantity is positive or negative. The velocity of a rocket, for example,
is positive if the rocket is going up and negative if it’s going down. This simple so-
lution is no longer available in two or three dimensions. Instead, we must make
full use of the vector concept.

Consider an object moving through space as shown in Figure 3.13. When the
object is at some point � at time ti, its position is described by the position vector

, drawn from the origin to �. When the object has moved to some other point
� at time tf , its position vector is . From the vector diagram in Figure 3.13, the
final position vector is the sum of the initial position vector and the displacement

: � � . From this relationship, we obtain the following one:

An object’s displacement is defined as the change in its position vector, or

� � [3.6]

SI unit: meter (m)

We now present several generalizations of the definitions of velocity and accel-
eration given in Chapter 2.

An object’s average velocity during a time interval 
t is its displacement
divided by 
t :

[3.7]

SI unit: meter per second (m/s)

v:av  � 
 r:


t

r:ir:f
 r:


 r:r:ir:f
 r:

r:f

r:i

(b) Find the components of the resultant vector, 
� � .

To find Rx , add the x-components of and :B
:

A
:

B
:

A
:

R
:

Rx � Ax � Bx � 17.7 km � 20.0 km � 37.7 km

To find Ry , add the y -components of and :B
:

A
:

Ry � Ay � By � � 17.7 km � 34.6 km � 16.9 km

(c) Find the magnitude and direction of .

Use the Pythagorean theorem to get the magnitude:

R
:

41.3 kmR � √R 2
x � R 2

y � √(37.7 km)2 � (16.9 km)2 �

Calculate the direction of using the inverse tangent
function:

R
:

24.1�� � tan� 1 � 16.9 km
37.7 km � �  

Remarks Figure 3.12b shows a sketch of the components of and their directions in space. The magnitude and
direction of the resultant can also be determined from such a sketch.

Exercise 3.3
A cruise ship leaving port, travels 50.0 km 45.0� north of west and then 70.0 km at a heading 30.0� north of east. Find
(a) the ship’s displacement vector and (b) the displacement vector’s magnitude and direction.

Answer (a) Rx � 25.3 km, Ry � 70.4 km (b) 74.8 km, 70.2� north of east

Investigate this problem further by logging into PhysicsNow at www.cp7e.com and going to 
Interactive Example 3.3.

R
:

Path of
an object

x

y

ti

ri

∆r
t f

rf

O

�
�

Figure 3.13 An object moving
along some curved path between
points � and �. The displacement
vector 
 is the difference in the
position vectors: 
 � � .r:ir:fr:

r:

� Displacement vector

� Average velocity
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60 Chapter 3 Vectors and Two-Dimensional Motion

Because the displacement is a vector quantity and the time interval is a scalar
quantity, we conclude that the average velocity is a vector quantity directed
along .

An object’s instantaneous velocity is the limit of its average velocity as 
t
goes to zero:

[3.8]

SI unit: meter per second (m/s)

The direction of the instantaneous velocity vector is along a line that is tangent to
the object’s path and in the direction of its motion.

An object’s average acceleration during a time interval 
t is the change in its
velocity divided by 
t , or

[3.9]

SI unit: meter per second squared (m/s2)

An object’s instantaneous acceleration vector is the limit of its average
acceleration vector as 
t goes to zero:

[3.10]

SI unit: meter per second squared (m/s2)

It’s important to recognize that an object can accelerate in several ways. First,
the magnitude of the velocity vector (the speed) may change with time. Second,
the direction of the velocity vector may change with time, even though the speed is
constant, as can happen along a curved path. Third, both the magnitude and the
direction of the velocity vector may change at the same time.

a: � lim

t : 0

 

v:


t

a:

a:av � 

v:


t


v:

v: � lim

t : 0

 

 r:


t

v:


 r:

Which of the following objects can’t be accelerating? (a) An object moving with a
constant speed; (b) an object moving with a constant velocity; (c) an object mov-
ing along a curve.

Quick Quiz 3.4

Consider the following controls in an automobile: gas pedal, brake, steering
wheel. The controls in this list that cause an acceleration of the car are (a) all
three controls, (b) the gas pedal and the brake, (c) only the brake, or (d) only the
gas pedal.

Quick Quiz 3.5

3.4 MOTION IN TWO DIMENSIONS
In Chapter 2, we studied objects moving along straight-line paths, such as the 
x -axis. In this chapter, we look at objects that move in both the x - and y -directions
simultaneously under constant acceleration. An important special case of this two-
dimensional motion is called projectile motion.

Anyone who has tossed any kind of object into the air has observed projectile
motion. If the effects of air resistance and the rotation of Earth are neglected, the

Instantaneous velocity �

Average acceleration �

Instantaneous acceleration �

Projectile motion �
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3.4 Motion in Two Dimensions 61

path of a projectile in Earth’s gravity field is curved in the shape of a parabola, as
shown in Active Figure 3.14.

The positive x -direction is horizontal and to the right, and the y-direction is ver-
tical and positive upward. The most important experimental fact about projectile
motion in two dimensions is that the horizontal and vertical motions are com-
pletely independent of each other. This means that motion in one direction has
no effect on motion in the other direction. If a baseball is tossed in a parabolic
path, as in Active Figure 3.14, the motion in the y -direction will look just like a ball
tossed straight up under the influence of gravity. Active Figure 3.15 shows the
effect of various initial angles; note that complementary angles give the same hori-
zontal range.

In general, the equations of constant acceleration developed in Chapter 2
follow separately for both the x -direction and the y -direction. An important differ-
ence is that the initial velocity now has two components, not just one as in that
chapter. We assume that at t � 0, the projectile leaves the origin with an initial
velocity . If the velocity vector makes an angle �0 with the horizontal, where �0 is
called the projection angle, then from the definitions of the cosine and sine
functions and Active Figure 3.14, we have

v0x � v0 cos �0 and v0y � v0 sin �0

where v0x is the initial velocity (at t � 0) in the x -direction and v0y is the initial
velocity in the y -direction.

Now, Equations 2.6, 2.9, and 2.10 developed in Chapter 2 for motion with con-
stant acceleration in one dimension carry over to the two-dimensional case; there
is one set of three equations for each direction, with the initial velocities modified
as just discussed. In the x -direction, with ax constant, we have

v:0

x
v0x

θ0

v0y

v0x

θ
vy

v0xvy = 0

v0x

θ
vy

0

v0y

v0x

y

θ

θ0θ

g

v

v

v

v

x(m)

50

100

150

y(m)

75°

60°

45°

30°

15°

vi = 50 m/s

50 100 150 200 250

ACTIVE FIGURE 3.14
The parabolic trajectory of a particle
that leaves the origin with a velocity
of . Note that changes with time.
However, the x-component of the ve-
locity, vx , remains constant in time.
Also, vy � 0 at the peak of the trajec-
tory, but the acceleration is always
equal to the free-fall acceleration and
acts vertically downward.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 3.14, where you can change
the particle’s launch angle and initial
speed. You can also observe the
changing components of velocity
along the trajectory of the projectile.

v:v:0

ACTIVE FIGURE 3.15
A projectile launched from the origin
with an initial speed of 50 m/s at vari-
ous angles of projection. Note that
complementary values of the initial
angle � result in the same value of R
(the range of the projectile).

Log into PhysicsNow at
www.cp7e.com, and go to 
Active Figure 3.15, where you can
vary the projection angle to observe
the effect on the trajectory and
measure the flight time.

TIP 3.4 Acceleration at the
Highest Point
The acceleration in the y -direction is
not zero at the top of a projectile’s tra-
jectory. Only the y -component of the
velocity is zero there. If the accelera-
tion were zero, too, the projectile
would never come down!
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62 Chapter 3 Vectors and Two-Dimensional Motion

vx � v0x � axt [3.11a]

�x � v0x t � axt2 [3.11b]

vx
2 � v0x

2 � 2ax �x [3.11c]

where v0x � v0 cos . In the y -direction, we have

vy � v0y � ayt [3.12a]

�y � v0yt � ayt2 [3.12b]

vy
2 � v0y

2 � 2ay�y [3.12c]

where v0y � v0 sin �0 and ay is constant. The object’s speed v can be calculated
from the components of the velocity using the Pythagorean theorem:

The angle that the velocity vector makes with the x -axis is given by

This formula for �, as previously stated, must be used with care, because the in-
verse tangent function returns values only between � 90� and � 90�. Adding 180� is
necessary for vectors lying in the second or third quadrant.

The kinematic equations are easily adapted and simplified for projectiles close
to the surface of the Earth. In that case, assuming air friction is negligible, the ac-
celeration in the x-direction is 0 (because air resistance is neglected). This means
that ax � 0, and the projectile’s velocity component along the x -direction remains
constant. If the initial value of the velocity component in the x -direction is
v0x � v0 cos �0, then this is also the value of vx at any later time, so

vx � v0x � v0 cos �0 � constant [3.13a]

while the horizontal displacement is simply

x � v0x t � (v0 cos �0)t [3.13b]

For the motion in the y -direction, we make the substitution ay � �g and 
v0y � v0 sin �0 in Equations 3.12, giving

vy � v0 sin �0 � gt [3.14a]

[3.14b]

vy
2 � (v0 sin �0)2 � 2g �y [3.14c]

The important facts of projectile motion can be summarized as follows:

1. Provided air resistance is negligible, the horizontal component of the velocity
vx remains constant because there is no horizontal component of acceleration.

2. The vertical component of the acceleration is equal to the free fall acceleration � g.
3. The vertical component of the velocity vy and the displacement in the 

y -direction are identical to those of a freely falling body.
4. Projectile motion can be described as a superposition of two independent mo-

tions in the x - and y -directions.

�y � (v0 sin �0)t �  
1
2 
gt 2

�

� � tan�1 � vy

vx
�

v � √v 2
x � v 2

y

1
2

�0

1
2

EXAMPLE 3.4 Projectile Motion with Diagrams
Goal Approximate answers in projectile motion using a motion diagram.

Problem A ball is thrown so that its initial vertical and horizontal components of velocity are 40 m/s and 20 m/s,
respectively. Use a motion diagram to estimate the ball’s total time of flight and the distance it traverses before
hitting the ground.

A water fountain. The individual
water streams follow parabolic
trajectories. The horizontal range
and maximum height of a given
stream of water depend on the
elevation angle of that stream’s initial
velocity as well as its initial speed. 

HI
RB

/In
de

x 
St

oc
k
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3.4 Motion in Two Dimensions 63

Strategy Use the diagram, estimating the acceleration of
gravity as �10 m/s2. By symmetry, the ball goes up and
comes back down to the ground at the same y -velocity as
when it left, except with opposite sign. With this fact and
the fact that the acceleration of gravity decreases the veloc-
ity in the y -direction by 10 m/s every second, we can find
the total time of flight and then the horizontal range.

Solution
In the motion diagram shown in Figure 3.16, the accelera-
tion vectors are all the same, pointing downward with mag-
nitude of nearly 10 m/s2. By symmetry, we know that the
ball will hit the ground at the same speed in the y -direction
as when it was thrown, so the velocity in the y -direction
goes from 40 m/s to � 40 m/s in steps of � 10 m/s every second; hence, approximately 8 seconds elapse during the
motion.

The velocity vector constantly changes direction, but the horizontal velocity never changes, because the accelera-
tion in the horizontal direction is zero. Therefore, the displacement of the ball in the x -direction is given by Equa-
tion 3.13b, 
x � v0xt � (20 m/s)(8 s) � 160 m.

Remarks This example emphasizes the independence of the x- and y -components in projectile motion problems.

Exercise 3.4
Estimate the maximum height in this same problem.

Answer 80 m

Figure 3.16 (Example 3.4) Motion diagram for a projectile.

Suppose you are carrying a ball and running at constant speed, and wish to throw
the ball and catch it as it comes back down. Should you (a) throw the ball at an an-
gle of about 45� above the horizontal and maintain the same speed, (b) throw the
ball straight up in the air and slow down to catch it, or (c) throw the ball straight
up in the air and maintain the same speed?

Quick Quiz 3.6

As a projectile moves in its parabolic path, the velocity and acceleration vectors are
perpendicular to each other (a) everywhere along the projectile’s path, (b) at the
peak of its path, (c) nowhere along its path, or (d) not enough information is
given.

Quick Quiz 3.7

Problem-Solving Strategy Projectile Motion
1. Select a coordinate system and sketch the path of the projectile, including initial

and final positions, velocities, and accelerations.
2. Resolve the initial velocity vector into x- and y-components.
3. Treat the horizontal motion and the vertical motion independently.
4. Follow the techniques for solving problems with constant velocity to analyze the

horizontal motion of the projectile.
5. Follow the techniques for solving problems with constant acceleration to analyze

the vertical motion of the projectile.
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64 Chapter 3 Vectors and Two-Dimensional Motion

EXAMPLE 3.5 Stranded Explorers
Goal Solve a two-dimensional projectile motion problem
in which an object has an initial horizontal velocity.

Problem An Alaskan rescue plane drops a package of
emergency rations to a stranded hiker, as shown in Figure
3.17. The plane is traveling horizontally at 40.0 m/s at a
height of 1.00 	 102 m above the ground. (a) Where does
the package strike the ground relative to the point at which
it was released? (b) What are the horizontal and vertical
components of the velocity of the package just before it hits
the ground?

Strategy Here, we’re just taking Equations 3.13 and 3.14,
filling in known quantities, and solving for the remaining
unknown quantities. Sketch the problem using a coordinate
system as in Figure 3.17. In part (a), set the y -component of
the displacement equations equal to �1.00 	 102 m— the
ground level where the package lands—and solve for the
time it takes the package to reach the ground. Substitute this
time into the displacement equation for the x-component to
find the range. In part (b), substitute the time found in
part (a) into the velocity components. Notice that the
initial velocity has only an x-component, which simplifies
the math.

100 m

x

40.0 m/s

y

Figure 3.17 (Example 3.5) From the point of view of an observer
on the ground, a package released from the rescue plane travels
along the path shown.

Solution
(a) Find the range of the package.

Use Equation 3.14b to find the y -displacement: 
y � y � y0 � v0yt � gt 21
2

Substitute y0 � 0 and v0y � 0, set y � �1.00 	 102 m—
the final vertical position of the package relative the
airplane—and solve for time:

y � � (4.90 m/s2)t 2 � �1.00 	 102 m

t � 4.52 s

Use Equation 3.13b to find the x-displacement: 
x � x � x0 � v0xt

Substitute x0 � 0, v0x � 40.0 m/s, and the time: x � (40.0 m/s)(4.52 s) � 181 m

(b) Find the components of the package’s velocity at
impact:

Find the x-component of the velocity at the time of
impact:

vx � v0 cos � � (40.0 m/s) cos 0� � 40.0 m/s

Find the y-component of the velocity at the time of
impact:

vy � v0 sin � � gt � 0 � (9.80 m/s2)(4.52 s)

� � 44.3 m/s

Remarks Notice how motion in the x-direction and motion in the y-direction are handled separately.

Exercise 3.5
A bartender slides a beer mug at 1.50 m/s towards a customer at the end of a frictionless bar that is 1.20 m tall. The
customer makes a grab for the mug and misses, and the mug sails off the end of the bar. (a) How far away from the
end of the bar does the mug hit the floor? (b) What are the speed and direction of the mug at impact?

Answers (a) 0.742 m (b) 5.08 m/s, � � �72.8�
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3.4 Motion in Two Dimensions 65

EXAMPLE 3.6 The Long Jump
Goal Solve a two-dimensional projectile motion problem involving an object
starting and ending at the same height.

Problem A long jumper (Fig. 3.18) leaves the ground at
an angle of 20.0� to the horizontal and at a speed of
11.0 m/s. (a) How long does it take for him to reach maxi-
mum height? (b) What is the maximum height? (c) How
far does he jump? (Assume that his motion is equivalent to
that of a particle, disregarding the motion of his arms and
legs.) (d) Find the maximum height he reaches using
Equation 3.14c.

Strategy Again, we take the projectile equations, fill in
the known quantities, and solve for the unknowns. At the
maximum height, the velocity in the y -direction is zero, so
setting Equation 3.14a equal to zero and solving gives the
time it takes him to reach his maximum height. By symme-
try, given that his trajectory starts and ends at the same
height, doubling this time gives the total time of the jump.

Solution
(a) Find the time tmax taken to reach maximum height.

Figure 3.18 (Example 3.6) Mike Powell, current holder of the
world long-jump record of 8.95 m.
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Long Jumping

Set vy � 0 in Equation 3.14b and solve for tmax: vy � v0 sin �0 � g tmax � 0

� 0.384 s

tmax �
v0 sin �0

g
 �  

(11.0 m/s)(sin 20.0�)
9.80 m/s2

(b) Find the maximum height he reaches.

Substitute the time t max into the equation for the 
y -displacement:

ymax � (v0 sin �0)tmax � g(tmax)2

ymax � (11.0 m/s)(sin 20.0�)(0.384 s)

� (9.80 m/s2)(0.384 s)2

ymax � 0.722 m

1
2

1
2

(c) Find the horizontal distance he jumps.

First find the time for the jump, which is twice tmax: t � 2tmax � 2(0.384 s) � 0.768 s.

Substitute this result into the equation for the 
x-displacement:

x � (v0 cos �0)t � (11.0 m/s)(cos 20.0�)(0.768 s)

� 7.94 m




(d) Use an alternate method to find the maximum
height.

Use Equation 3.14c, solving for 
y: vy
2 � v0y

2 � � 2g
y


y �
v 2

y � v 2
0y

� 2g

Substitute vy � 0 at maximum height, and the fact that
v0y � (11.0 m/s) sin 20.0�:

0.722 m
y �
0 � ((11.0 m/s) sin 20.0�)2

� 2(9.80 m/s2)
�  

44337_03_p53-80  10/13/04  2:25 PM  Page 65



66 Chapter 3 Vectors and Two-Dimensional Motion

Remarks Although modelling the long jumper’s motion as that of a projectile is an oversimplification, the values
obtained are reasonable.

Exercise 3.6
A grasshopper jumps 1.00 m from rest, with an initial velocity at a 45.0� angle with respect to the horizontal. Find 
(a) the initial speed of the grasshopper and (b) the maximum height reached.

Answers (a) 3.13 m/s (b) 0.250 m

INTERACTIVE EXAMPLE 3.7 That’s Quite an Arm
Goal Solve a two-dimensional kinematics problem with a nonhorizontal
initial velocity, starting and ending at different heights.

Problem A stone is thrown upward from the top of a building at an angle
of 30.0� to the horizontal and with an initial speed of 20.0 m/s, as in Figure
3.19. The point of release is 45.0 m above the ground. (a) How long does it
take for the stone to hit the ground? (b) Find the stone’s speed at impact.
(c) Find the horizontal range of the stone.

Strategy Choose coordinates as in the figure, with the origin at the point
of release. (a) Fill in the constants of Equation 3.14b for the y -displacement,
and set the displacement equal to � 45.0 m, the y -displacement when the
stone hits the ground. Using the quadratic formula, solve for the time. To
solve (b), substitute the time from part (a) into the components of the veloc-
ity, and substitute the same time into the equation for the x -displacement to
solve (c).

Solution
(a) Find the time of flight.

45.0 m

(0, 0)

y

x

v0 = 20.0 m/s

x
(x, – 45.0)

30.0°

Figure 3.19 (Example 3.7)

Find the initial x- and y -components of the velocity: v0x � v0 cos �0 � (20.0 m/s)(cos 30.0�) � � 17.3 m/s

v0y � v0 sin �0 � (20.0 m/s)(sin 30.0�) � � 10.0 m/s

Find the y -displacement, taking y0 � 0, y � � 45.0 m,
and v0y � 10.0 m/s:


y � y � y0 � v0yt � gt 2

� 45.0 m � (10.0 m/s)t � (4.90 m/s2)t 2

1
2

Reorganize the equation into standard form and use
the quadratic formula (see Appendix A) to find the
positive root:

t � 4.22 s

(b) Find the speed at impact.

Substitute the value of t found in part (a) into Equation
3.14a to find the y -component of the velocity at impact:

vy � v0y � gt � 10.0 m/s � (9.80 m/s2)(4.22 s)

� � 31.4 m/s

Use this value of vy , the Pythagorean theorem, and the
fact that vx � v0x � 17.3 m/s to find the speed of the
stone at impact:

� 35.9 m/s

v � √v 2
x � v 2

y  �  √(17.3 m/s)2 � (� 31.4 m/s)2  

(c) Find the horizontal range of the stone.

Substitute the time of flight into the range equation: 
x � x � x 0 � (v 0 cos �)t � (20.0 m/s) (cos 30.0�) (4.22 s)

� 73.1 m
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Exercise 3.7
Suppose the stone is thrown at an angle of 30.0� degrees below the horizontal. If it strikes the ground 57.0 m away,
find (a) the time of flight, (b) the initial speed, and (c) the speed and the angle of the velocity vector with respect to
the horizontal at impact. (Hint: For part (a), use the equation for the x -displacement to eliminate v0t from the equa-
tion for the y -displacement.)

Answers (a) 1.57 s (b) 41.9 m/s (c) 51.3 m/s, �45.0�

Investigate this problem further by logging into PhysicsNow at www.cp7e.com and going to Interac-
tive Example 3.7.

So far we have studied only problems in which an object with an initial velocity
follows a trajectory determined by the acceleration of gravity alone. In the more
general case, other agents, such as air drag, surface friction, or engines, can cause
accelerations. These accelerations, taken together, form a vector quantity
with components ax and ay. When both components are constant, we can use
Equations 3.11 and 3.12 to study the motion, as in the next example.

EXAMPLE 3.8 The Rocket
Goal Solve a problem involving accelerations in two di-
rections.

Problem A jet plane traveling horizontally at 1.00 �
102 m/s drops a rocket from a considerable height. (See
Figure 3.20.) The rocket immediately fires its engines,
accelerating at 20.0 m/s2 in the x-direction while falling
under the influence of gravity in the y-direction. When
the rocket has fallen 1.00 km, find (a) its velocity in the
y -direction, (b) its velocity in the x -direction, and (c) the
magnitude and direction of its velocity. Neglect air drag
and aerodynamic lift.

Strategy Because the rocket maintains a horizontal
orientation (say, through gyroscopes), the x- and 
y -components of acceleration are independent of each
other. Use the time-independent equation for the velocity
in the y -direction to find the y -component of the velocity af-
ter the rocket falls 1.00 km. Then calculate the time of the fall, and use that time to find the velocity in the x-direction.

Solution
(a) Find the velocity in the y -direction.

v0x = 1.00 � 102 m/s

�y � �1.00 � 103m

Figure 3.20 (Example 3.8)

Use Equation 3.14c: v 2
y � v 2

0y � 2g �y

Substitute v0y � 0, g � � 9.80 m/s2, and �y �
�1.00 � 103 m, and solve:

vy
2 � 0 � 2(�9.8 m/s2)( �1.00 � 103 m)

vy � �1.40 � 102 m/s

(b) Find the velocity in the x -direction.

Find the time it takes the rocket to drop 1.00 � 103 m,
using the y -component of the velocity:

vy � v0y � ayt

� 1.40 � 102 m/s � 0 � (9.80 m/s2)t : t � 14.3 s

Substitute t, v0x , and ax into Equation 3.11a to find the
velocity in the x-direction:

vx � v0x � axt � 1.00 � 102 m/s � (20.0 m/s2)(14.3 s)

� 386 m/s
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68 Chapter 3 Vectors and Two-Dimensional Motion

(c) Find the magnitude and direction of the velocity.

Find the magnitude using the Pythagorean theorem and
the results of parts (a) and (b): � 411 m/s

v � √v 2
x � v 2

y � √(�  1.40 	 102 m/s)2 � (386 m/s)2 

Use the inverse tangent function to find the angle: �19.9�� � tan�1 � vy

vx
� tan�1 � �1.40 	  102 m/s

386 m/s � �

Remarks Notice the symmetry: The kinematic equations for the x- and y -directions are handled in exactly the same
way. Having a nonzero acceleration in the x -direction doesn’t greatly increase the difficulty of the problem.

Exercise 3.8
Suppose a rocket-propelled motorcycle is fired from rest horizontally across a canyon 1.00 km wide. (a) What minimum
constant acceleration in the x -direction must be provided by the engines so the cycle crosses safely if the opposite side is
0.750 km lower than the starting point? (b) At what speed does the motorcycle land if it maintains this constant hori-
zontal component of acceleration? Neglect air drag, but remember that gravity is still acting in the negative y -direction.

Answers (a) 13.1 m/s2 (b) 202 m/s

In a stunt similar to that described in Exercise 3.8, motorcycle daredevil Evel
Knievel tried to vault across Hells Canyon, part of the Snake River system in Idaho,
on his rocket-powered Harley-Davidson X-2 “Skycycle.” (See the chapter-opening
photo on page 53). He lost consciousness at takeoff and released a lever, prema-
turely deploying his parachute and falling short of the other side. He landed safely
in the canyon.

3.5 RELATIVE VELOCITY
Relative velocity is all about relating the measurements of two different observers,
one moving with respect to the other. The measured velocity of an object depends
on the velocity of the observer with respect to the object. On highways, for example,
cars moving in the same direction are often moving at high speed relative to Earth,
but relative each other they hardly move at all. To an observer at rest at the side of
the road, a car might be traveling at 60 mi/h, but to an observer in a truck traveling
in the same direction at 50 mi/h, the car would appear to be traveling only 10 mi/h.

So measurements of velocity depend on the reference frame of the observer. Ref-
erence frames are just coordinate systems. Most of the time, we use a stationary frame
of reference relative to Earth, but occasionally we use a moving frame of reference
associated with a bus, car, or plane moving with constant velocity relative to Earth.

In two dimensions, relative velocity calculations can be confusing, so a system-
atic approach is important and useful. Let E be an observer, assumed stationary
with respect to Earth. Let two cars be labeled A and B, and introduce the following
notation (see Figure 3.21):

� the position of Car A as measured by E (in a coordinate system fixed with
respect to Earth).

� the position of Car B as measured by E.

� the position of Car A as measured by an observer in Car B.

According to the preceding notation, the first letter tells us what the vector is
pointing at and the second letter tells us where the position vector starts. The posi-
tion vectors of Car A and Car B relative to E, and , are given in the figure.
How do we find , the position of Car A as measured by an observer in Car B?
We simply draw an arrow pointing from Car B to Car A, which can be obtained by
subtracting from :

� � [3.15]

Now, the rate of change of these quantities with time gives us the relationship

r:BEr:AEr:AB

r:AEr:BE

r:AB

r:BEr:AE

r:AB

r:BE

r:AE
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3.5 Relative Velocity 69

between the associated velocities:

� � [3.16]

The coordinate system of observer E need not be fixed to Earth, although it often
is. Take careful note of the pattern of subscripts; rather than memorize Equation
3.15, it’s better to study the short derivation shown in Figure 3.21. Note also that
the equation doesn’t work for observers traveling a sizeable fraction of the speed
of light, when Einstein’s theory of special relativity comes into play.

v:BEv:AEv:AB

y

x
E

B

A

r AE

rAB � rAE � rBE

rBE

Figure 3.21 The position of Car A relative to Car B
can be found by vector subtraction. The rate of change
of the resultant vector with respect to time is the
relative velocity equation.

PROBLEM-SOLVING STRATEGY Relative Velocity
1. Label each object involved (usually three) with a letter that reminds you of what it

is (for example, E for Earth).
2. Look through the problem for phrases such as “The velocity of A relative to B,”

and write the velocities as ‘ ’. When a velocity is mentioned but it isn’t explicitly
stated as relative to something, it’s almost always relative to Earth.

3. Take the three velocities you’ve found and assemble them into an equation just
like Equation 3.16, with subscripts in an analogous order.

4. There will be two unknown components. Solve for them with the x - and 
y -components of the equation developed in step 3.

v:AB

EXAMPLE 3.9 Pitching Practice on the Train
Goal Solve a one-dimensional relative velocity problem.

Problem A train is traveling with a speed of 15.0 m/s relative to Earth. A passenger standing at the rear of the train
pitches a baseball with a speed of 15.0 m/s relative to the train off the back end, in the direction opposite the motion
of the train. What is the velocity of the baseball relative to Earth?

Strategy Solving these problems involves putting the proper subscripts on the velocities and arranging them
as in Equation 3.16. In the first sentence of the problem statement, we are informed that the train travels at
“15.0 m/s relative to Earth.” This quantity is , with T for train and E for Earth. The passenger throws the base-
ball at “15 m/s relative to the train,” so this quantity is , where B stands for baseball. The second sentence
asks for the velocity of the baseball relative to Earth, . The rest of the problem can be solved by identifying
the correct components of the known quantities and solving for the unknowns, using an analog of Equation 3.16.

Solution
Write the x-components of the known quantities:

v:BE

v:BT

v:TE

� � 15 m/s(v:TE)x

� � 15 m/s(v:BT)x

Follow Equation 3.16: � � (v:TE)x(v:BE)x(v:BT)x

Insert the given values, and solve: � 15 m/s � � 15 m/s

� 0(v:BE)x

(v:BE)x
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70 Chapter 3 Vectors and Two-Dimensional Motion

Exercise 3.9
A train is traveling at 27 m/s relative Earth, and a passenger standing in the train throws a ball at 15 m/s relative the
train in the same direction as the train’s motion. Find the speed of the ball relative to Earth.

Answer 42 m/s

EXAMPLE 3.10 Crossing a River
Goal Solve a simple two-dimensional relative motion problem.

Problem The boat in Figure 3.22 is heading due north as it crosses a wide river
with a velocity of 10.0 km/h relative to the water. The river has a uniform velocity of
5.00 km/h due east. Determine the velocity of the boat with respect to an observer
on the riverbank.

Strategy Again, we look for key phrases. “The boat (has) . . . a velocity of
10.0 km/h relative to the water” gives . “The river has a uniform velocity of
5.00 km/h due east” gives , because this implies velocity with respect to Earth.
The observer on the riverbank is in a reference frame at rest with respect to Earth.
Because we’re looking for the velocity of the boat with respect to that observer,
this last velocity is designated . Take east to be the � x-direction, north the 
� y -direction.

Solution

v:BE

v:RE

v:BR

E

N

S

W

vRE

vBR

vBE

u

Figure 3.22 (Example 3.10)
Arrange the three quantities into the proper relative
velocity equation:

� � v:REv:BEv:BR

Write the velocity vectors in terms of their components.
For convenience, these are organized in the following
table:

Vector x-component (km/h) y-component (km/h)

0 10.0
vx vy

5.00 0v:RE

v:BE

v:BR

Find the x -component of velocity: 0 � vx � 5.00 km/h : vx � 5.00 km/h

Find the y -component of velocity: 10.0 km/h � vy � 0 : vy � 10.0 km/h

Find the magnitude of :v:BE vBE �

� � 11.2 km/h√(5.00 km/h)2 � (10.0 km/h)2

√vx
2 � vy

2

Find the direction of :v:BE 26.6�� � tan�1 � vx

vy
� � tan�1 � 5.00 m/s

10.0 m/s � �

The boat travels at a speed of 11.2 km/h in the direction 26.6� east of north with respect to Earth.

Exercise 3.10
Suppose the river is flowing east at 3.00 m/s and the boat is traveling south at 4.00 m/s with respect to the river. Find
the speed and direction of the boat relative to Earth.

Answer 5.00 m/s, 53.1� south of east
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3.5 Relative Velocity 71

EXAMPLE 3.11 Bucking the Current
Goal Solve a complex two-dimensional relative
motion problem.

Problem If the skipper of the boat of Example
3.10 moves with the same speed of 10.0 km/h rela-
tive to the water, but now wants to travel due
north, as in Figure 3.23, in what direction should
he head? What is the speed of the boat, according
to an observer on the shore? The river is flowing
east at 5.00 km/h.

Strategy Proceed as in the previous problem.
In this situation, we must find the heading of
the boat and its velocity with respect to the
water, using the fact that the boat travels due
north.

E

N

S

(a)

W

u

vRE

vBR

vBE

E

N

S

(b)

W

60° 45°

vBR

vBE

vRE

Figure 3.23 (a) (Example 3.11) (b) (Exercise 3.11)

Solution
Arrange the three quantities, as before: � � v:REv:BEv:BR

Organize a table of velocity components: Vector x-component (km/h) y-component (km/h)

� (10.0 km/h)sin � (10.0 km/h)cos �
0 v

5.00 km/h 0v:RE

v:BE

v:BR

The x -component of the relative velocity equation can
be used to find �:

� (10.0 m/s) sin � � 0 � 5.00 km/h 

sin � �
5.00 km/h
10.0 km/h

�
1.00
2.00

Apply the inverse sine function and find �, which is the
boat’s heading, east of north:

30.0�� � sin�1 � 1.00
2.00 � �

The y -component of the relative velocity equation can
be used to find v :

(10.0 km/h)cos � � v : v � 8.66 km/h

Remarks From Figure 3.23, we see that this problem can be solved with the Pythagorean theorem, because the
problem involves a right triangle: The boat’s x -component of velocity exactly cancels the river’s velocity. When this is
not the case, a more general technique is necessary, as shown in the following exercise. Notice that in the 
x -component of the relative velocity equation a minus sign had to be included in the term � (10.0 km/h) sin �
because the x -component of the boat’s velocity with respect to the river is negative.

Exercise 3.11
Suppose the river is moving east at 5.00 km/h and the boat is traveling 45.0� south of east with respect to Earth. Find
(a) the speed of the boat with respect to Earth and (b) the speed of the boat with respect to the river if the boat’s
heading in the water is 60.0� south of east. (See Figure 3.23b.) You will have to solve two equations and two
unknowns.

Answers (a) 16.7 km/h (b) 13.7 km/h
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Take a practice test by logging into
PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

3.1 Vectors and their Properties
Two vectors and can be added geometrically with the
triangle method. The two vectors are drawn to scale on
graph paper, with the tail of the second vector located at
the tip of the first. The resultant vector is the vector drawn
from the tail of the first vector to the tip of the second.

The negative of a vector is a vector with the same
magnitude as , but pointing in the opposite direction. A
vector can be multiplied by a scalar, changing its magni-
tude, and its direction if the scalar is negative.

3.2 Components of a Vector
A vector can be split into two components, one pointing
in the x -direction and the other in the y -direction. These
components form two sides of a right triangle having a hy-
potenuse with magnitude A and are given by

Ax � A cos � [3.2]
Ay � A sin �

The magnitude and direction of are related to its com-
ponents through the Pythagorean theorem and the defini-
tion of the tangent:

[3.3]

[3.4]

If , then the components of the resultant vector
are

Rx � Ax � Bx [3.5a]

Ry � Ay � By [3.5b]

3.3 Displacement, Velocity, and 
Acceleration in Two Dimensions
The displacement of an object in two dimensions is defined
as the change in the object’s position vector:

� [3.6]

The average velocity of an object during the time interval
�t is

[3.7]

Taking the limit of this expression as �t gets arbitrarily
small gives the instantaneous velocity :

[3.8]

The direction of the instantaneous velocity vector is along a
line that is tangent to the path of the object and in the di-
rection of its motion.

The average acceleration of an object with a velocity
changing by in the time interval �t is 

[3.9]a:av � �v:

�t

� v:

v: � lim
�t : 0

 � r:

�t

v:

v:av � 
� r:

�t

r:ir:f�� r:

R
:

R
:

� A
:

� B
:

tan � �
Ay

Ax
 

 A � √A 2
x �  A 2

y

A
:

A
:

A
:

A
:

B
:

A
:

Taking the limit of this expression as �t gets arbitrarily
small gives the instantaneous acceleration vector :

[3.10]

3.4 Motion in Two Dimensions
The general kinematic equations in two dimensions for ob-
jects with constant acceleration are, for the x -direction,

vx � v0x � axt [3.11a]

[3.11b]

[3.11c]

where v0x � v0 cos �0, and, for the y -direction,

vy � v0y � ayt [3.12a]

�y � v0yt � ayt2 [3.12b]

vy
2 � v0y

2 � 2ay �y [3.12c]

where v0y � v0 sin �0. The speed v of the object at any in-
stant can be calculated from the components of velocity at
that instant using the Pythagorean theorem:

The angle that the velocity vector makes with the x -axis is
given by

The kinematic equations are easily adapted and simpli-
fied for projectiles close to the surface of the Earth. The
equations for the motion in the horizontal or x -direction are

vx � v0x � v0 cos �0 � constant [3.13a]

x � v0x t � (v0 cos �0)t [3.13b]

while the equations for the motion in the vertical or 
y -direction are

vy � v0 sin �0 � gt [3.14a]

[3.14b]

vy
2 � (v0 sin �0)2 � 2g �y [3.14c]

Problems are solved by algebraically manipulating one
or more of these equations, which often reduces the system
to two equations and two unknowns.

3.5 Relative Velocity
Let E be an observer, and B a second observer traveling
with velocity as measured by E. If E measures the
velocity of an object A as , then B will measure A’s
velocity as

[3.16]

Solving relative velocity problems involves identifying
the velocities properly and labeling them correctly, substi-
tuting into Equation 3.16, and then solving for unknown
quantities.

v:AB �  v:AE � v:BE

v:AE

v:BE

�y � (v0 sin �0)t � 1
2 gt 2

�

� � tan�1 � vy

vx
�

v � √vx
2 � vy

2

1
2

vx
2 � v0x

2 � 2ax �x

�x � v0x t � 1
2 axt2

a: � lim
�t :0

 �v:

�t

a:

SUMMARY
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Problems 73

CONCEPTUAL QUESTIONS
1. Vector lies in the xy -plane. For what orientations of vec-

tor will both of its components be negative? When will
the components have opposite signs?

2. If is added to , under what conditions does the result-
ant vector have a magnitude equal to A � B? Under what
conditions is the resultant vector equal to zero?

3. A wrench is dropped from the top of a 10-m mast on a sail-
ing ship while the ship is traveling at 20 knots. Where will
the wrench hit the deck? (Galileo posed this problem.)

4. Two vectors have unequal magnitudes. Can their sum be
zero? Explain.

5. A projectile is fired on Earth with some initial velocity. An-
other projectile is fired on the Moon with the same initial
velocity. If air resistance is neglected, which projectile has
the greater range? Which reaches the greater altitude?
(Note that the free-fall acceleration on the Moon is about
1.6 m/s2.)

6. Can a vector have a component greater than its magni-
tude A?

7. Is it possible to add a vector quantity to a scalar quantity?

8. Under what circumstances would a vector have compo-
nents that are equal in magnitude?

9. As a projectile moves in its path, is there any point along
the path where the velocity and acceleration vectors are 
(a) perpendicular to each other? (b) parallel to each other?

10. A rock is dropped at the same instant that a ball is thrown
horizontally from the same initial elevation. Which will
have the greater speed when it reaches ground level?

11. Explain whether the following particles do or do not have
an acceleration: (a) a particle moving in a straight line
with constant speed and (b) a particle moving around a
curve with constant speed.

12. Correct the following statement: “The racing car rounds
the turn at a constant velocity of 90 miles per hour.”

13. A spacecraft drifts through space at a constant velocity.
Suddenly, a gas leak in the side of the spacecraft causes it
to constantly accelerate in a direction perpendicular to
the initial velocity. The orientation of the spacecraft does
not change, so the acceleration remains perpendicular to
the original direction of the velocity. What is the shape of
the path followed by the spacecraft?

A
:

A
:

B
:

A
:

A
:

14. A ball is projected horizontally from the top of a building.
One second later, another ball is projected horizontally
from the same point with the same velocity. At what point
in the motion will the balls be closest to each other? Will
the first ball always be traveling faster than the second?
What will be the time difference between them when the
balls hit the ground? Can the horizontal projection veloc-
ity of the second ball be changed so that the balls arrive at
the ground at the same time?

15. Two projectiles are thrown with the same initial speed,
one at an angle � with respect to the level ground and
the other at angle 90� � �. Both projectiles strike the
ground at the same distance from the projection point.
Are both projectiles in the air for the same length of
time?

16. A baseball is thrown such that its initial x - and y -
components of velocity are known. Neglecting air
resistance, describe how you would calculate the ball’s
(a) coordinates, (b) velocity, and (c) acceleration at the
instant the ball reaches the top of its trajectory. How
would these results change if air resistance were taken
into account?

17. A projectile is fired at some angle to the horizontal with
some initial speed v0, and air resistance is neglected. Is
the projectile a freely falling body? What is its acceleration
in the vertical direction? What is its acceleration in the
horizontal direction?

18. Determine which of the following moving objects obey
the equations of projectile motion developed in this chap-
ter: (a) A ball is thrown in an arbitrary direction. (b) A jet
airplane crosses the sky with its engines thrusting the
plane forward. (c) A rocket leaves the launch pad. (d) A
rocket moves through the sky after its engines have failed.
(e) A stone is thrown under water.

19. How can you throw a projectile so that it has zero speed at
the top of its trajectory? So that it has nonzero speed at
the top of its trajectory?

20. A ball is thrown upward in the air by a passenger on a
train that is moving with constant velocity. (a) Describe
the path of the ball as seen by the passenger.  Describe the
path as seen by a stationary observer outside the train. 
(b) How would these observations change if the train
were accelerating along the track?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 3.1 Vectors and Their Properties
1. A roller coaster moves 200 ft horizontally and then rises

135 ft at an angle of 30.0� above the horizontal. Next, it
travels 135 ft at an angle of 40.0� below the horizontal. Use
graphical techniques to find the roller coaster’s displace-
ment from its starting point to the end of this movement.

2. An airplane flies 200 km due west from city A to city B and
then 300 km in the direction of 30.0� north of west from city

B to city C. (a) In straight-line distance, how far is city C
from city A? (b) Relative to city A, in what direction is city C?

3. A man lost in a maze makes three consecutive
displacements so that at the end of his travel he is
right back where he started. The first displacement is
8.00 m westward, and the second is 13.0 m northward.
Use the graphical method to find the magnitude and
direction of the third displacement.
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74 Chapter 3 Vectors and Two-Dimensional Motion

4. A jogger runs 100 m due west, then changes direction for
the second leg of the run. At the end of the run, she is
175 m away from the starting point at an angle of 15.0�
north of west. What were the direction and length of her
second displacement? Use graphical techniques.
A plane flies from base camp to lake A, a distance of 
280 km at a direction of 20.0� north of east.  After drop-
ping off supplies, the plane flies to lake B, which is 190 km
and 30.0� west of north from lake A. Graphically determine
the distance and direction from lake B to the base camp.

6. Vector has a magnitude of 8.00 units and makes an an-
gle of 45.0� with the positive x-axis. Vector also has a
magnitude of 8.00 units and is directed along the negative
x -axis. Using graphical methods, find (a) the vector sum

� and (b) the vector difference � .
7. Vector is 3.00 units in length and points along the positive

x-axis. Vector is 4.00 units in length and points along the
negative y-axis. Use graphical methods to find the magni-
tude and direction of the vectors (a) � and (b) � .

8. Each of the displacement vectors and shown in Figure
P3.8 has a magnitude of 3.00 m. Graphically find (a) � ,
(b) � , (c) � , and (d) � 2 .B

:
A
:

A
:

B
:

B
:

A
:

B
:

A
:

B
:

A
:

B
:

A
:

B
:

A
:

B
:

A
:

B
:

A
:

B
:

A
:

B
:

A
:

5.

15. The eye of a hurricane passes over Grand Bahama Island
in a direction 60.0� north of west with a speed of
41.0 km/h. Three hours later, the course of the hurricane
suddenly shifts due north, and its speed slows to
25.0 km/h. How far from Grand Bahama is the hurricane
4.50 h after it passes over the island?

16. A small map shows Atlanta to be 730 miles in a direction
5� north of east from Dallas. The same map shows that
Chicago is 560 miles in a direction 21� west of north from
Atlanta. Assume a flat Earth, and use the given informa-
tion to find the displacement from Dallas to Chicago.

17. A commuter airplane starts from an airport and takes the
route shown in Figure P3.17. The plane first flies to city A,
located 175 km away in a direction 30.0� north of east.
Next, it flies for 150 km 20.0� west of north, to city B. Fi-
nally, the plane flies 190 km due west, to city C. Find the lo-
cation of city C relative to the location of the starting point.

y

3.00 m

3.00 m

30.0°

O
x

A

B

Figure P3.8

Section 3.2 Components of a Vector
9. A golfer takes two putts to get his ball into the hole once

he is on the green. The first putt displaces the ball 6.00 m
east, the second 5.40 m south. What displacement would
have been needed to get the ball into the hole on the first
putt?

10. A person walks 25.0� north of east for 3.10 km. How far
would the person walk due north and due east to arrive at
the same location?

11. A girl delivering newspapers covers her
route by traveling 3.00 blocks west, 4.00 blocks north, and
then 6.00 blocks east. (a) What is her resultant displace-
ment? (b) What is the total distance she travels?

12. While exploring a cave, a spelunker starts at the entrance
and moves the following distances: 75.0 m north, 250 m
east, 125 m at an angle 30.0� north of east, and 150 m south.
Find the resultant displacement from the cave entrance.

13. A vector has an x -component of �25.0 units and a 
y-component of 40.0 units. Find the magnitude and direc-
tion of the vector.

14. A quarterback takes the ball from the line of scrimmage,
runs backwards for 10.0 yards, then runs sideways parallel
to the line of scrimmage for 15.0 yards. At this point,
he throws a 50.0-yard forward pass straight downfield,
perpendicular to the line of scrimmage. What is the
magnitude of the football’s resultant displacement?

E

N

S

W

y(km)

A

x(km)
50 100 150 200

150

200

C

30.0°

110°

20.0°

B250

50

100

O

a

c

b
R

Figure P3.17

18. The helicopter view in Figure P3.18 shows two people
pulling on a stubborn mule. Find (a) the single force that
is equivalent to the two forces shown and (b) the force
that a third person would have to exert on the mule to
make the net force equal to zero. The forces are meas-
ured in units of newtons (N).

y

x
75.0˚ 60.0˚

F1 =
 120 N

F2 =
 80.0 N

Figure P3.18

19. A man pushing a mop across a floor causes the mop
to undergo two displacements. The first has a magnitude
of 150 cm and makes an angle of 120� with the positive 
x -axis. The resultant displacement has a magnitude of
140 cm and is directed at an angle of 35.0� to the positive
x-axis. Find the magnitude and direction of the second
displacement.

20. An airplane starting from airport A flies 300 km east, then
350 km at 30.0� west of north, and then 150 km north to
arrive finally at airport B. (a) The next day, another plane
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23. A peregrine falcon is the fastest bird, flying at a speed of
200 mi/h. Nature has adapted the bird to reach such a
speed by placing baffles in its nose to prevent air from
rushing in and slowing it down. Also, the bird’s eyes adjust
their focus faster than the eyes of any other creature, so
the falcon can focus quickly on its prey. Assume that a
peregrine falcon is moving horizontally at its top speed at
a height of 100 m above the ground when it brings its
wings into its sides and begins to drop in free fall.  How
far will the bird fall vertically while traveling horizontally a
distance of 100 m?

Problems 75

flies directly from A to B in a straight line. In what direc-
tion should the pilot travel in this direct flight? (b) How
far will the pilot travel in the flight? Assume there is no
wind during either flight.

21. Long John Silver, a pirate, has buried his treasure
on an island with five trees located at the following
points: A (30.0 m, � 20.0 m), B (60.0 m, 80.0 m), C
(� 10.0 m, � 10.0 m), D (40.0 m, � 30.0 m), and E
(� 70.0 m, 60.0 m). All of the points are measured relative
to some origin, as in Figure P3.21. Long John’s map in-
structs you to start at A and move toward B, but cover only
one-half the distance between A and B. Then move toward
C, covering one-third the distance between your current lo-
cation and C. Then move toward D, covering one-fourth the
distance between where you are and D. Finally, move toward
E, covering one-fifth the distance between you and E, stop,
and dig. (a) What are the coordinates of the point where
the pirate’s treasure is buried? (b) Rearrange the order of
the trees — for instance, B (30 m, � 20 m), A (60 m, 80 m),
E (� 10 m, � 10 m), C (40 m, � 30 m), and D (� 70 m, 
60 m)—and repeat the calculation to show that the answer
does not depend on the order.

E

y

x

A

B

C

D

Figure P3.21

Section 3.3 Displacement, Velocity, and Acceleration 
in Two Dimensions
Section 3.4 Motion in Two Dimensions
22. One of the fastest recorded pitches in major-league base-

ball, thrown by Billy Wagner in 2003, was clocked at 
101.0 mi/h (Fig. P3.22). If a pitch were thrown horizon-
tally with this velocity, how far would the ball fall vertically
by the time it reached home plate, 60.5 ft away?

Figure P3.22 Billy Wagner throws a baseball.
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Figure P3.23 Notice the structure within the 
peregrine falcon’s nostrils.
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24. A student stands at the edge of a cliff and throws a stone
horizontally over the edge with a speed of 18.0 m/s. The
cliff is 50.0 m above a flat, horizontal beach, as shown in
Figure P3.24. How long after being released does the
stone strike the beach below the cliff? With what speed
and angle of impact does the stone land?

y
0 = + 18.0 m/s

h = 50.0 m

x
O

g

v

v

Figure P3.24

25. The best leaper in the animal kingdom is the puma,
which can jump to a height of 12 ft when leaving the
ground at an angle of 45�. With what speed, in SI units,
must the animal leave the ground to reach that height?

26. Tom the cat is chasing Jerry the mouse across the surface
of a table 1.5 m above the floor. Jerry steps out of the way
at the last second, and Tom slides off the edge of the table
at a speed of 5.0 m/s. Where will Tom strike the floor, and
what velocity components will he have just before he hits?
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76 Chapter 3 Vectors and Two-Dimensional Motion

27. A tennis player standing 12.6 m from
the net hits the ball at 3.00� above the horizontal. To clear
the net, the ball must rise at least 0.330 m. If the ball just
clears the net at the apex of its trajectory, how fast was the
ball moving when it left the racquet?

28. An artillery shell is fired with an initial velocity of 300 m/s
at 55.0� above the horizontal. To clear an avalanche, it ex-
plodes on a mountainside 42.0 s after firing. What are the
x- and y-coordinates of the shell where it explodes, rela-
tive to its firing point?

29. A brick is thrown upward from the top of a building at an
angle of 25� to the horizontal and with an initial speed of
15 m/s. If the brick is in flight for 3.0 s, how tall is the
building?

30. A placekicker must kick a football from a point 36.0 m
(about 39 yd) from the goal, and the ball must clear the
crossbar, which is 3.05 m high. When kicked, the ball
leaves the ground with a velocity of 20.0 m/s at an angle
of 53� to the horizontal. (a) By how much does the ball
clear or fall short of clearing the crossbar? (b) Does the
ball approach the crossbar while still rising or while
falling?

31. A car is parked on a cliff overlooking the ocean on an in-
cline that makes an angle of 24.0� below the horizontal.
The negligent driver leaves the car in neutral, and the
emergency brakes are defective. The car rolls from
rest down the incline with a constant acceleration of
4.00 m/s2 for a distance of 50.0 m to the edge of the cliff,
which is 30.0 m above the ocean. Find (a) the car’s posi-
tion relative to the base of the cliff when the car lands in
the ocean and (b) the length of time the car is in the air.

32. A fireman 50.0 m away from a burning building directs a
stream of water from a ground-level fire hose at an angle
of 30.0� above the horizontal. If the speed of the stream as
it leaves the hose is 40.0 m/s, at what height will the
stream of water strike the building?

33. A projectile is launched with an initial speed of 60.0 m/s
at an angle of 30.0� above the horizontal. The projectile
lands on a hillside 4.00 s later. Neglect air friction. (a)
What is the projectile’s velocity at the highest point of its
trajectory? (b) What is the straight-line distance from
where the projectile was launched to where it hits its
target?

34. A soccer player kicks a rock horizontally off a 40.0-m-high
cliff into a pool of water. If the player hears the sound of
the splash 3.00 s later, what was the initial speed given to
the rock? Assume the speed of sound in air to be 343 m/s.

Section 3.5 Relative Velocity
35. A jet airliner moving initially at 300 mi/h due east enters

a region where the wind is blowing at 100 mi/h in a direc-
tion 30.0� north of east. What is the new velocity of the
aircraft relative to the ground?

36. A boat moves through the water of a river at 10 m/s rela-
tive to the water, regardless of the boat’s direction. If the
water in the river is flowing at 1.5 m/s, how long does it
take the boat to make a round trip consisting of a 300-m
displacement downstream followed by a 300-m displace-
ment upstream?

37. A Chinook (King) salmon (Genus Oncorynchus) can jump
out of water with a speed of 6.26 m/s. (See Problem 4.9,

page 109 for an investigation of how the fish can leave the
water at a higher speed than it can swim underwater.) If the
salmon is in a stream with water speed equal to 1.50 m/s,
how high in the air can the fish jump if it leaves the water
traveling vertically upwards relative to the Earth? 

38. A river flows due east at 1.50 m/s. A boat crosses the river
from the south shore to the north shore by maintaining a
constant velocity of 10.0 m/s due north relative to the wa-
ter. (a) What is the velocity of the boat relative to the
shore? (b) If the river is 300 m wide, how far downstream
has the boat moved by the time it reaches the north
shore?

39. A rowboat crosses a river with a velocity of 3.30 mi/h at an
angle 62.5� north of west relative to the water. The river is
0.505 mi wide and carries an eastward current of
1.25 mi/h. How far upstream is the boat when it reaches
the opposite shore?

40. Suppose a Chinook salmon needs to jump a waterfall that
is 1.50 m high. If the fish starts from a distance 1.00 m
from the base of the ledge over which the waterfall flows,
find the x - and y -components of the initial velocity the
salmon would need to just reach the ledge at the top of its
trajectory. Can the fish make this jump? (Remember that
a Chinook salmon can jump out of the water with a speed
of 6.26 m/s.)

41. How long does it take an automobile traveling in the left
lane of a highway at 60.0 km/h to overtake (become even
with) another car that is traveling in the right lane at
40.0 km/h when the cars’ front bumpers are initially
100 m apart?

42. A science student is riding on a flatcar of a train traveling
along a straight horizontal track at a constant speed of
10.0 m/s. The student throws a ball along a path that she
judges to make an initial angle of 60.0� with the horizon-
tal and to be in line with the track. The student’s profes-
sor, who is standing on the ground nearby, observes the
ball to rise vertically. How high does the ball rise?

ADDITIONAL PROBLEMS

43. A particle undergoes two displacements. The first has a
magnitude of 150 cm and makes an angle of 120.0� with
the positive x-axis. The resultant of the two displacements
is 140 cm, directed at an angle of 35.0� to the positive 
x-axis. Find the magnitude and direction of the second
displacement.

44. Find the sum of these four vector forces: 12.0 N to the
right at 35.0� above the horizontal, 31.0 N to the left at
55.0� above the horizontal, 8.40 N to the left at 35.0� below
the horizontal, and 24.0 N to the right at 55.0� below the
horizontal. (Hint: N stands for newton, the SI unit of force.
The component method allows the addition of any vec-
tors—forces as well as displacements and velocities. Make a
drawing of this situation, and select the best axes for x and
y so that you have the least number of components.)

45. A car travels due east with a speed of 50.0 km/h. Rain is
falling vertically with respect to Earth. The traces of the
rain on the side windows of the car make an angle of 60.0�
with the vertical. Find the velocity of the rain with respect
to (a) the car and (b) Earth.

46. You can use any coordinate system you like in order to
solve a projectile motion problem. To demonstrate the
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observer on shore determines the velocities of the two
canoes to be � 1.2 m/s and � 2.9 m/s, respectively. 
(a) What is the speed of the water relative to the shore?
(b) What is the speed of each canoe relative to the water?

51. If a person can jump a maximum horizontal distance (by
using a 45� projection angle) of 3.0 m on Earth, what
would be his maximum range on the Moon, where the
free-fall acceleration is g/6 and g � 9.80 m/s2? Repeat for
Mars, where the acceleration due to gravity is 0.38g.

52. A daredevil decides to jump a canyon. Its walls are equally
high and 10 m apart. He takes off by driving a motorcycle
up a short ramp sloped at an angle of 15�. What minimum
speed must he have in order to clear the canyon?

53. (a) Vector is in the first quadrant of a Cartesian coordi-
nate system. What is the sign of the x-component of ?
What is the sign of the y-component? (b) Vector is in
the second quadrant of a Cartesian coordinate system.
What is the sign of the x-component of ? What is the
sign of the y-component? (c) The vector sum �

. Choose the correct fill-in-the-blank answer from
(i) must be in either the first or the second quadrant or
(ii) could be in any quadrant. (d) Let � 30 m at an an-
gle of 30� from the positive x-axis and � 20 m at an an-
gle of 40� from the negative x-axis. Test your predictions
of parts (a) through (c).

54. A boy and a girl are tossing an apple back and forth be-
tween them. Figure P3.54 shows one path the apple fol-
lows when watched by an observer looking on from the
side. The apple is moving from left to right. Five points
are marked on the path. Ignore air resistance. (a) Make a
copy of this figure. At each of the marked points, draw an
arrow that indicates the magnitude and direction of the
apple’s velocity when it passes through that point.
(b) Make a second copy of the figure. This time, at each
marked point, place an arrow indicating the magnitude
and direction of any acceleration the apple exhibits at
that point.
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A
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A
:

A
:

Problems 77

truth of this statement, consider a ball thrown off the top
of a building with a velocity at an angle � with respect to
the horizontal. Let the building be 50.0 m tall, the initial
horizontal velocity be 9.00 m/s, and the initial vertical
velocity be 12.0 m/s. Choose your coordinates such that
the positive y -axis is upward, the x -axis is to the right, and
the origin is at the point where the ball is released.
(a) With these choices, find the ball’s maximum height
above the ground, and the time it takes to reach the maxi-
mum height. (b) Repeat your calculations choosing the
origin at the base of the building.

Towns A and B in Figure P3.47 are
80.0 km apart. A couple arranges to drive from town A
and meet a couple driving from town B at the lake, L. The
two couples leave simultaneously and drive for 2.50 h in
the directions shown. Car 1 has a speed of 90.0 km/h. If
the cars arrive simultaneously at the lake, what is the
speed of car 2?

47.

v:

80.0 km40.0°
A B

1
2

L

Figure P3.47

48. A Chinook salmon has a maximum underwater speed of
3.58 m/s, but it can jump out of water with a speed of
6.26 m/s. To move upstream past a waterfall, the salmon
does not need to jump to the top of the fall, but only to a
point in the fall where the water speed is less than 3.58
m/s; it can then swim up the fall for the remaining dis-
tance. Because the salmon must make forward progress in
the water, let’s assume that it can swim to the top if the wa-
ter speed is 3.00 m/s. If water has a speed of 1.50 m/s as it
passes over a ledge, how far below the ledge will the water
be moving with a speed of 3.00 m/s? (Note that water un-
dergoes projectile motion once it leaves the ledge.) If the
salmon is able to jump vertically upward from the base of
the fall, what is the maximum height of waterfall that the
salmon can clear?

49. A rocket is launched at an angle of 53.0� above the hori-
zontal with an initial speed of 100 m/s. The rocket moves
for 3.00 s along its initial line of motion with an accelera-
tion of 30.0 m/s2. At this time, its engines fail and the
rocket proceeds to move as a projectile. Find (a) the max-
imum altitude reached by the rocket, (b) its total time of
flight, and (c) its horizontal range.

50. Two canoeists in identical canoes exert the same effort
paddling and hence maintain the same speed relative to
the water. One paddles directly upstream (and moves
upstream), whereas the other paddles directly down-
stream. With downstream as the positive direction, an

Figure P3.54

A home run is hit in such a way that the baseball
just clears a wall 21 m high, located 130 m from
home plate. The ball is hit at an angle of 35� to the
horizontal, and air resistance is negligible. Find
(a) the initial speed of the ball, (b) the time it takes the
ball to reach the wall, and (c) the velocity components
and the speed of the ball when it reaches the wall. (As-
sume that the ball is hit at a height of 1.0 m above the
ground.)

56. A ball is thrown straight upward and returns to the
thrower’s hand after 3.00 s in the air. A second ball is
thrown at an angle of 30.0� with the horizontal. At what
speed must the second ball be thrown so that it reaches
the same height as the one thrown vertically?

57. A quarterback throws a football toward a receiver with an
initial speed of 20 m/s at an angle of 30� above the
horizontal. At that instant, the receiver is 20 m from the

55.
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78 Chapter 3 Vectors and Two-Dimensional Motion

quarterback. In what direction and with what constant
speed should the receiver run in order to catch the foot-
ball at the level at which it was thrown?

58. A 2.00-m-tall basketball player is standing on the floor
10.0 m from the basket, as in Figure P3.58. If he shoots
the ball at a 40.0� angle with the horizontal, at what initial
speed must he throw the basketball so that it goes
through the hoop without striking the backboard? The
height of the basket is 3.05 m.

200 cm, and re-form the vector sums as in part (a). Then
find the vector difference between the two sums.

3.05 m

40.0°

10.0 m

2.00 m

Figure P3.58

59. In a very popular lecture demonstration, a projectile is
fired at a falling target as in Figure P3.59. The projectile
leaves the gun at the same instant that the target is
dropped from rest. Assuming that the gun is initially
aimed at the target, show that the projectile will hit the
target. (One restriction of this experiment is that the pro-
jectile must reach the target before the target strikes the
floor.)

0

 0 Point of
collision

Target

θ

v

Figure P3.59

60. Figure P3.60 illustrates the difference in proportions be-
tween the male (m) and female (f) anatomies. The dis-
placements 1m and 1f from the bottom of the feet to
the navel have magnitudes of 104 cm and 84.0 cm, respec-
tively. The displacements 2m and 2f have magnitudes of
50.0 cm and 43.0 cm, respectively. (a) Find the vector sum
of the displacements 1 and 2 in each case. (b) The
male figure is 180 cm tall, the female 168 cm. Normalize
the displacements of each figure to a common height of

d
:

d
:

d
:

d
:

d
:

d
:

2m
23.0°

1m

2f

28.0°

1fd

d

d

d

Figure P3.60

61. By throwing a ball at an angle of 45�, a girl can throw the
ball a maximum horizontal distance R on a level field.
How far can she throw the same ball vertically upward? As-
sume that her muscles give the ball the same speed in
each case. (Is this assumption valid?)

62. A projectile is fired with an initial speed v0 at an angle �0
to the horizontal, as in Figure 3.14. When it reaches
its peak, the projectile has (x, y) coordinates given
by (R/2, h), and when it strikes the ground, its coordi-
nates are (R, 0), where R is called the horizontal range.
(a) Show that the projectile reaches a maximum height
given by

(b) Show that the horizontal range of the projectile is
given by

63. A hunter wishes to cross a river that is 1.5 km wide and
flows with a speed of 5.0 km/h parallel to its banks. The
hunter uses a small powerboat that moves at a maximum
speed of 12 km/h with respect to the water. What is the
minimum time necessary for crossing?

64. A water insect maintains an average position on the sur-
face of a stream by darting upstream (against the current)
then drifting downstream (with the current) to its original
position. The current in the stream is 0.500 m/s relative
to the shore, and the insect darts upstream 0.560 m (rela-
tive to a spot on shore) in 0.800 s during the first part
of its motion. Take upstream as the positive direction.
(a) Determine the velocity of the insect relative to the wa-
ter (i) during its dash upstream and (ii) during its drift
downstream. (b) How far upstream relative to the water
does the insect move during one cycle of its motion?
(c) What is the average velocity of the insect relative to
the water?

A daredevil is shot out of a cannon at
45.0� to the horizontal with an initial speed of 25.0 m/s. A
net is positioned a horizontal distance of 50.0 m from the
cannon. At what height above the cannon should the net
be placed in order to catch the daredevil?

65.

R �
v0

2  sin 2 �0

g

h �
v0

2 sin2 �0

2g
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as the first? (b) How many seconds later should the sec-
ond snowball be thrown after the first in order for both to
arrive at the same time?

72. A dart gun is fired while being held horizontally at a
height of 1.00 m above ground level and while it is at rest
relative to the ground. The dart from the gun travels a
horizontal distance of 5.00 m. A college student holds the
same gun in a horizontal position while sliding down a
45.0� incline at a constant speed of 2.00 m/s. How far will
the dart travel if the student fires the gun when it is
1.00 m above the ground?

73. The determined Wile E. Coyote is out once more to try to
capture the elusive roadrunner. The coyote wears a new
pair of Acme power roller skates, which provide a con-
stant horizontal acceleration of 15 m/s2, as shown in Fig-
ure P3.73. The coyote starts off at rest 70 m from the edge
of a cliff at the instant the roadrunner zips by in the direc-
tion of the cliff. (a) If the roadrunner moves with con-
stant speed, find the minimum speed the roadrunner
must have in order to reach the cliff before the coyote.
(b) If the cliff is 100 m above the base of a canyon, find
where the coyote lands in the canyon. (Assume that his
skates are still in operation when he is in “flight” and that
his horizontal component of acceleration remains con-
stant at 15 m/2.)

Problems 79

66. Chinook salmon are able to move upstream faster by
jumping out of the water periodically; this behavior is
called porpoising. Suppose a salmon swimming in still wa-
ter jumps out of the water with a speed of 6.26 m/s at an
angle of 45�, sails through the air a distance L before re-
turning to the water, and then swims a distance L under-
water at a speed of 3.58 m/s before beginning another
porpoising maneuver. Determine the average speed of the
fish.

67. A student decides to measure the muzzle velocity of a pel-
let shot from his gun. He points the gun horizontally. He
places a target on a vertical wall a distance x away from
the gun. The pellet hits the target a vertical distance y be-
low the gun. (a) Show that the position of the pellet when
traveling through the air is given by y � Ax2, where A is a
constant. (b) Express the constant A in terms of the initial
(muzzle) velocity and the free-fall acceleration. (c) If 
x � 3.00 m and y � 0.210 m, what is the initial speed of
the pellet?

68. A sailboat is heading directly north at a speed of 20 knots
(1 knot � 0.514 m/s). The wind is blowing towards the
east with a speed of 17 knots. Determine the magnitude
and direction of the wind velocity as measured on the
boat. What is the component of the wind velocity in the
direction parallel to the motion of the boat? (See Prob-
lem 4.54 for an explanation of how a sailboat can move
“into the wind.”)

69. Instructions for finding a buried treasure include the fol-
lowing: Go 75 paces at 240�, turn to 135� and walk 125
paces, and then travel 100 paces at 160�. Determine the
resultant displacement from the starting point.

70. When baseball outfielders throw the ball, they usually al-
low it to take one bounce, on the theory that the ball ar-
rives at its target sooner that way. Suppose that, after the
bounce, the ball rebounds at the same angle � that it had
when it was released (as in Fig. P3.70), but loses half its
speed. (a) Assuming that the ball is always thrown with
the same initial speed, at what angle � should the ball be
thrown in order to go the same d istance D with one
bounce as a ball thrown upward at 45.0� with no bounce?
(b) Determine the ratio of the times for the one-bounce
and no-bounce throws.

45.0°

D

u u

Figure P3.70

71. One strategy in a snowball fight is to throw a snowball at a
high angle over level ground. Then, while your opponent
is watching that snowball, you throw a second one at a low
angle timed to arrive before or at the same time as the
first one. Assume that both snowballs are thrown with a
speed of 25.0 m/s. The first is thrown at an angle of 70.0�
with respect to the horizontal. (a) At what angle should
the second snowball be thrown to arrive at the same point

Coyote
stupidus

Roadrunner
delightus

BEEP

BEEP

Figure P3.73

ACTIVITIES
A.1. Take three steps, turn 90�, and then walk four steps. Now

count the number of steps it takes to walk in a straight
line back to your starting point. Verify your result mathe-
matically.

A.2. For this investigation, you need to be outside with a small
ball such as a tennis ball and a wristwatch with a second
hand. Throw the ball vertically upward as hard as you can,
and find the initial speed of your throw and the approxi-
mate maximum height of the ball solely with the use of
your wristwatch. What happens when you throw the ball at
some angle other than 90�? Does this change the time of
flight? Can you still determine the maximum height and
initial speed? Give careful explanations for your answers.
Your co-worker can eyeball the maximum height by stand-
ing at a distance and noting the angle.

A.3. Using as projectiles the drops of water spraying from a
garden hose at ground level, test the statement that the
maximum range occurs when the angle of projection is
45�. As an additional part of this experiment, hold the
hose horizontally above the ground and have your co-
worker position a marker at the location where the water
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80 Chapter 3 Vectors and Two-Dimensional Motion

strikes the ground. Increase the angle of inclination by
about 10�, and record the strike position again. Repeat
until you have reached an angle of about 75�. Note the
pattern produced. Are there two angles at which the
range is the same? Explain the reasoning behind your ob-
servations.

A.4. Use a chessboard as a coordinate system, with the inter-
section of the lines on the board as the positions of the
coordinates. Select an origin for your coordinate system
and, on index cards, write down several vector displace-
ments that are at right angles to one another. For exam-
ple, displacement 1 might be a movement of four units to
the right, displacement 2 an upward movement of six
units, and so forth. Continue this for a total of seven or
eight movements until you end up at some particular lo-
cation on the chessboard. Let your co-worker start at the

origin and follow your vector directions to see whether he
or she arrives at the expected final location. Now shuffle
the cards and repeat the experiment. Does the order of
the displacements make any difference as to where you
eventually end up?

A.5. Roll a ball off a table. At the very instant the rolling ball
leaves the table, drop a second ball from the same height
above the floor. (Doing this will require a sharp eye and
good reflexes!) Do the two balls hit the floor at the same
time? Try varying the speed at which you roll the ball off
the table. Does this change affect the time at which the
balls strike the floor? Finally, roll one of the balls down an
incline, and drop the other ball from the base of the in-
cline at the instant the first ball leaves the slope. Which of
these balls hits the floor first in this situation? Explain the
reasoning behind your observations.

44337_03_p53-80  10/13/04  2:26 PM  Page 80



81

4
CHAPTER

The Laws of Motion
O U T L I N E

4.1 Forces
4.2 Newton’s First Law
4.3 Newton’s Second Law
4.4 Newton’s Third Law
4.5 Applications of Newton’s

Laws
4.6 Forces of Friction
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Classical mechanics describes the relationship between the motion of objects found in our
everyday world and the forces acting on them. As long as the system under study doesn’t in-
volve objects comparable in size to an atom or traveling close to the speed of light, classical
mechanics provides an excellent description of nature.

This chapter introduces Newton’s three laws of motion and his law of gravity. The three
laws are simple and sensible. The first law states that a force must be applied to an object in
order to change its velocity. Changing an object’s velocity means accelerating it, which implies
a relationship between force and acceleration. This relationship, the second law, states that
the net force on an object equals the object’s mass times its acceleration. Finally, the third law
says that whenever we push on something, it pushes back with equal force in the opposite
direction. These are the three laws in a nutshell.

Newton’s three laws, together with his invention of calculus, opened avenues of inquiry
and discovery that are used routinely today in virtually all areas of mathematics, science, engi-
neering, and technology. Newton’s theory of universal gravitation had a similar impact, start-
ing a revolution in celestial mechanics and astronomy that continues to this day. With the ad-
vent of this theory, the orbits of all the planets could be calculated to high precision and the
tides understood. The theory even led to the prediction of “dark stars,” now called black
holes, over two centuries before any evidence for their existence was observed.1 Newton’s
three laws of motion, together with his law of gravitation, are considered among the greatest
achievements of the human mind.

4.1 FORCES
A force is commonly imagined as a push or a pull on some object, perhaps rapidly,
as when we hit a tennis ball with a racket. (See Figure 4.1.) We can hit the ball at
different speeds and direct it into different parts of the opponent’s court. This

Forces exerted by Earth, wind, and
water, properly channeled by the
strength and skill of these windsurfers,
combine to create a non-zero net
force on their surfboards, driving
them forward through the waves.

1In 1783, John Michell combined Newton’s theory of light and theory of gravitation, predicting the existence of “dark
stars” from which light itself couldn’t escape.

Figure 4.1 Tennis champion Andy
Roddick strikes the ball with his
racket, applying a force and directing
the ball into the open part of the
court.
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82 Chapter 4 The Laws of Motion

means that we can control the magnitude of the applied force and also its direc-
tion, so force is a vector quantity, just like velocity and acceleration.

If you pull on a spring (Fig. 4.2a), the spring stretches. If you pull hard enough
on a wagon (Fig. 4.2b), the wagon moves. When you kick a football (Fig. 4.2c), it
deforms briefly and is set in motion. These are all examples of contact forces, so
named because they result from physical contact between two objects.

Another class of forces doesn’t involve any direct physical contact. Early scien-
tists, including Newton, were uneasy with the concept of forces that act between
two disconnected objects. Nonetheless, Newton used this ‘action-at-a-distance’ con-
cept in his law of gravity, whereby a mass at one location, such as the Sun, affects
the motion of a distant object such as Earth despite no evident physical connec-
tion between the two objects. To overcome the conceptual difficulty associated
with action at a distance, Michael Faraday (1791–1867) introduced the concept of
a field. The corresponding forces are called field forces. According to this ap-
proach, an object of mass M, such as the Sun, creates an invisible influence that
stretches throughout space. A second object of mass m, such as Earth, interacts
with the field of the Sun, not directly with the Sun itself. So the force of gravita-
tional attraction between two objects, illustrated in Figure 4.2d, is an example of a
field force. The force of gravity keeps objects bound to Earth and also gives rise to
what we call the weight of those objects.

Another common example of a field force is the electric force that one electric
charge exerts on another (Fig. 4.2e). A third example is the force exerted by a bar
magnet on a piece of iron (Fig. 4.2f).

The known fundamental forces in nature are all field forces. These are, in
order of decreasing strength, (1) the strong nuclear force between subatomic
particles; (2) the electromagnetic forces between electric charges; (3) the weak
nuclear force, which arises in certain radioactive decay processes; and (4) the grav-
itational force between objects. The strong force keeps the nucleus of an atom
from flying apart due to the repulsive electric force of the protons. The weak force

Field forcesContact forces

(d)(a)

(b)

(c)

(e)

(f)

m M

– q + Q

Iron N S
Figure 4.2 Examples of forces
applied to various objects. In each
case, a force acts on the object
surrounded by the dashed lines.
Something in the environment
external to the boxed area exerts
the force.
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4.2 Newton’s First Law 83

is involved in most radioactive processes and plays an important role in the nu-
clear reactions that generate the Sun’s energy output. The strong and weak forces
operate only on the nuclear scale, with a very short range on the order of 10�15 m.
Outside this range, they have no influence. Classical physics, however, deals only
with gravitational and electromagnetic forces, which have infinite range.

Forces exerted on an object can change the object’s shape. For example, strik-
ing a tennis ball with a racquet, as in Figure 4.1, deforms the ball to some extent.
Even objects we usually consider rigid and inflexible are deformed under the ac-
tion of external forces. Often the deformations are permanent, as in the case of a
collision between automobiles.

4.2 NEWTON’S FIRST LAW
Consider a book lying on a table. Obviously, the book remains at rest if left alone.
Now imagine pushing the book with a horizontal force great enough to overcome
the force of friction between the book and the table, setting the book in motion.
Because the magnitude of the applied force exceeds the magnitude of the friction
force, the book accelerates. When the applied force is withdrawn, friction soon
slows the book to a stop.

Now imagine pushing the book across a smooth, waxed floor. The book again
comes to rest once the force is no longer applied, but not as quickly as before. Finally,
if the book is moving on a horizontal frictionless surface, it continues to move in a
straight line with constant velocity until it hits a wall or some other obstruction.

Before about 1600, scientists felt that the natural state of matter was the state of
rest. Galileo, however, devised thought experiments— such as an object moving on
a frictionless surface, as just described—and concluded that it’s not the nature of
an object to stop, once set in motion, but rather to continue in its original state of
motion. This approach was later formalized as Newton’s first law of motion:

An object moves with a velocity that is constant in magnitude and direction,
unless acted on by a nonzero net force.
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Unless acted on by an external force,
an object at rest will remain at rest
and an object in motion will continue
in motion with constant velocity. In
this case, the wall of the building did
not exert a large enough external
force on the moving train to stop it.

The net force on an object is defined as the vector sum of all external forces
exerted on the object. External forces come from the object’s environment. If an
object’s velocity isn’t changing in either magnitude or direction, then its accelera-
tion and the net force acting on it must both be zero.

Internal forces originate within the object itself and can’t change the object’s
velocity (although they can change the object’s rate of rotation, as described in
Chapter 8). As a result, internal forces aren’t included in Newton’s second law. It’s
not really possible to “pull yourself up by your own bootstraps.”

A consequence of the first law is the feasibility of space travel. After just a few
moments of powerful thrust, the spacecraft coasts for months or years, its velocity
only slowly changing with time under the relatively faint influence of the distant
sun and planets.

Mass and Inertia
Imagine hitting a golf ball off a tee with a driver. If you’re a good golfer, the ball
will sail over two hundred yards down the fairway. Now imagine teeing up a bowl-
ing ball and striking it with the same club (an experiment we don’t recommend).
Your club would probably break, you might sprain your wrist, and the bowling ball,
at best, would fall off the tee, take half a roll and come to rest.

From this thought experiment, we conclude that while both balls resist changes
in their state of motion, the bowling ball offers much more effective resistance. The
tendency of an object to continue in its original state of motion is called inertia.

While inertia is the tendency of an object to continue its motion in the absence
of a force, mass is a measure of the object’s resistance to changes in its motion due

� Newton’s first law
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84 Chapter 4 The Laws of Motion

to a force. The greater the mass
of a body, the less it accelerates
under the action of a given ap-
plied force. The SI unit of mass
is the kilogram. Mass is a scalar
quantity that obeys the rules of
ordinary arithmetic.

Inertia can be used to explain
the operation of one type of seat
belt mechanism. In the event of
an accident, the purpose of the
seat belt is to hold the passenger
firmly in place relative to the
car, to prevent serious injury.
Figure 4.3 illustrates how one
type of shoulder harness oper-
ates. Under normal conditions,
the ratchet turns freely to allow
the harness to wind on or un-
wind from the pulley as the pas-
senger moves. In an accident,
the car undergoes a large accel-

eration and rapidly comes to rest. Because of its inertia, the large block under the
seat continues to slide forward along the tracks. The pin connection between the
block and the rod causes the rod to pivot about its center and engage the ratchet
wheel. At this point, the ratchet wheel locks in place and the harness no longer
unwinds.

4.3 NEWTON’S SECOND LAW
Newton’s first law explains what happens to an object that has no net force acting
on it: The object either remains at rest or continues moving in a straight line with
constant speed. Newton’s second law answers the question of what happens to an
object that does have a net force acting on it.

Imagine pushing a block of ice across a frictionless horizontal surface. When
you exert some horizontal force on the block, it moves with an acceleration of, say,
2 m/s2. If you apply a force twice as large, the acceleration doubles to 4 m/s2.
Pushing three times as hard triples the acceleration, and so on. From such obser-
vations, we conclude that the acceleration of an object is directly proportional to
the net force acting on it.

Mass also affects acceleration. Suppose you stack identical blocks of ice on top
of each other while pushing the stack with constant force. If the force applied to
one block produces an acceleration of 2 m/s2, then the acceleration drops to half
that value, 1 m/s2, when two blocks are pushed, to one-third the initial value when
three blocks are pushed, and so on. We conclude that the acceleration of an object
is inversely proportional to its mass. These observations are summarized in New-
ton’s second law:

TIP 4.1 Force Causes
Changes in Motion
Motion can occur even in the
absence of forces. Force causes
changes in motion.

The acceleration of an object is directly proportional to the net force act-
ing on it and inversely proportional to its mass.

a:

A P P L I C AT I O N
Seat Belts

Newton’s second law �

Pulley

Rachet

Pin connection

Large block

Seat belt

Rod

Pivot

Tracks

Figure 4.3 A mechanical
arrangement for an automobile
seat belt.

The constant of proportionality is equal to one, so in mathematical terms the pre-
ceding statement can be written

a: �
�F

:

m
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4.3 Newton’s Second Law 85

TIP 4.2 Is Not a Force
Equation 4.1 does not say that the
product is a force. All forces
exerted on an object are summed as
vectors to generate the net force on
the left side of the equation. This net
force is then equated to the product
of the mass and resulting acceleration
of the object. Do not include an 
“ force” in your analysis.m a:

m a:

m a:

where is the acceleration of the object, m is its mass, and is the vector sum of
all forces acting on it. Multiplying through by m, we have 

[4.1]

Physicists commonly refer to this equation as ‘F � ma’. The second law is a vec-
tor equation, equivalent to the following three component equations:

�Fx � max �Fy � may �Fz � maz [4.2]

When there is no net force on an object, its acceleration is zero, which means the
velocity is constant.

Units of Force and Mass
The SI unit of force is the newton. When 1 newton of force acts on an object that
has a mass of 1 kg, it produces an acceleration of 1 m/s2 in the object. From this
definition and Newton’s second law, we see that the newton can be expressed in
terms of the fundamental units of mass, length, and time as

[4.3]

In the U.S. customary system, the unit of force is the pound. The conversion
from newtons to pounds is given by

1 N � 0.225 lb [4.4]

The units of mass, acceleration, and force in the SI and U.S. customary systems
are summarized in Table 4.1.

1 N � 1 kg�m/s2

� F
:

 �  ma:

�F
:

a:

True or false? (a) It’s possible to have motion in the absence of a force. (b) If an
object isn’t moving, no external force acts on it.

Quick Quiz 4.1

� Definition of newton

TABLE 4.1
Units of Mass, Acceleration, and Force
System Mass Acceleration Force

SI kg m/s2 N � kg�m/s2

U.S. customary slug ft/s2 lb � slug�ft/s2

True or false? (a) If a single force acts on an object, the object accelerates. (b) If
an object is accelerating, a force is acting on it. (c) If an object is not accelerating,
no external force is acting on it.

Quick Quiz 4.2

True or false? If the net force acting on an object is in the positive x-direction, the
object moves only in the positive x-direction.

Quick Quiz 4.3

ISAAC NEWTON English 
Physicist and Mathematician
(1642–1727)
Newton was one of the most brilliant
scientists in history. Before he was 30, he
formulated the basic concepts and laws of
mechanics, discovered the law of universal
gravitation, and invented the mathematical
methods of the calculus. As a consequence
of his theories, Newton was able to explain
the motions of the planets, the ebb and
flow of the tides, and many special fea-
tures of the motions of the Moon and
Earth. He also interpreted many fundamen-
tal observations concerning the nature of
light. His contributions to physical theories
dominated scientific thought for two cen-
turies and remain important today.
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86 Chapter 4 The Laws of Motion

EXAMPLE 4.1 Airboat
Goal Apply Newton’s law in one dimension, together with the
equations of kinematics.

Problem An airboat with mass 3.50 � 102 kg, including passengers,
has an engine that produces a net horizontal force of 7.70 � 102 N,
after accounting for forces of resistance. (a) Find the acceleration of
the airboat. (b) Starting from rest, how long does it take the airboat
to reach a speed of 12.0 m/s? (c) After reaching this speed, the pilot
turns off the engine and drifts to a stop over a distance of 50.0 m.
Find the resistance force, assuming it’s constant.

Strategy In part (a), apply Newton’s second law to find the acceleration, and in part (b) use this acceleration in the
one-dimensional kinematics equation for the velocity. When the engine is turned off in part (c), only the resistance
forces act on the boat, so their net acceleration can be found from . Then Newton’s second law gives
the resistance force.

v2 � v0 

2 � 2a�x

Fprop
propeller

Fresist

(a) Find the acceleration of the airboat.

Apply Newton’s second law and solve for the acceleration: :

� 2.20 m/s2

a �
Fnet

m
�

7.70 �  102 N
3.50 �  102 kg

ma � Fnet 

(b) Find the time necessary to reach a speed of 12.0 m/s.

Apply the kinematics velocity equation: 5.45 sv � at � v0 � (2.20 m/s2)t �12.0 m/s  :  t �

(c) Find the resistance force after the engine is turned off.

Using kinematics, find the net acceleration due to resis-
tance forces:

0 � (12 m/s)2 � 2 a(50.0 m)  :  a � �1.44 m/s2

v2 � v0 

2 � 2a�x

Solution

Figure 4.4 (Example 4.1)

Substitute the acceleration into Newton’s second law,
finding the resistance force:

�504 NFresist � ma � (3.50 � 102 kg)(�1.44 m/s2) �

TIP 4.3 Newton’s Second Law
is a Vector Equation
In applying Newton’s second law, add
all of the forces on the object as
vectors and then find the resultant
vector acceleration by dividing by m.
Don’t find the individual magnitudes
of the forces and add them like
scalars.

Remarks The negative answer for the acceleration in part (c) means that the air-
boat is slowing down. In this problem, the components of the vectors and were
used, so they were written in italics without arrows. It’s important to bear in mind
that and are vectors, not scalars.

Exercise 4.1
Suppose the pilot, starting again from rest, opens the throttle partway. At a con-
stant acceleration, the airboat then covers a distance of 60.0 m in 10.0 s. Find the
net force acting on the boat.

Answer 4.20 � 102 N 

F
:

a:

F
:

a:

EXAMPLE 4.2 Horses Pulling a Barge
Goal Apply Newton’s second law in a two-dimensional problem.

Problem Two horses are pulling a barge with mass 2.00 � 103 kg along a canal, as shown in Figure 4.5. The
cable connected to the first horse makes an angle of 30.0	 with respect to the direction of the canal, while the cable
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4.3 Newton’s Second Law 87

connected to the second horse makes an angle of 45.0	.
Find the initial acceleration of the barge, starting at rest, if
each horse exerts a force of magnitude 6.00 � 102 N on
the barge. Ignore forces of resistance on the barge.

Strategy Using trigonometry, find the vector force
exerted by each horse on the barge. Add the x-components
together to get the x-component of the resultant force,
and then do the same with the y-components. Divide by
the mass of the barge to get the accelerations in the x- and
y-directions.

Solution
Find the x-components of the forces exerted by the
horses.

F1x � F1cos
1 � (6.00 � 102 N)cos(30.0	) � 5.20 � 102 N

F2x � F2cos
2 � (6.00 � 102 N)cos(�45.0	) � 4.24 � 102 N

Find the total force in the x-direction by adding the 
x-components: � 9.44 � 102 N

Fx � F1x � F2x � 5.20 � 102 N � 4.24 � 102 N

Find the y-components of the forces exerted by the
horses:

� �4.24 � 102 N

F2y � F 2 sin 
2 � (6.00 � 102 N)sin(�45.0	)

 F1y � F1sin 
1 � (6.00 � 102 N )sin 30.0	 � 3.00 � 102 N

Find the total force in the y-direction by adding the 
y-components: � �1.24 � 102 N

Fy � F1y � F2y � 3.00 � 102 N � 4.24 � 102 N

Find the components of the acceleration by dividing the
force components by the mass:

ay �
Fy

m
�

�1.24 � 102 N
2.00 � 103 kg

� �0.0620 m/s2

 ax �
Fx

m
�

9.44 � 102 N
2.00 � 103 kg

� 0.472 m/s2

Find the magnitude of the acceleration:

� 0.476 m/s2

a � √ax 

2 � ay 

2 � √(0.472 m/s2)2 � (�0.0620 m/s2)2

u1

u2

y

x
F1

F2

Figure 4.5 (Example 4.2)

Find the direction of the acceleration.

�7.46	
 � tan�1(�0.131) �

tan 
 �
ay

ax
�

�0.0620
0.472

� �0.131

Exercise 4.2
Repeat Example 4.2, but assume that the upper horse pulls at a 40.0	 angle, the lower horse at 20.0	.

Answer 0.520 m/s2, 10.0	

The Gravitational Force
The gravitational force is the mutual force of attraction between any two objects
in the Universe. Although the gravitational force can be very strong between very
large objects, it’s the weakest of the fundamental forces. A good demonstration of
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88 Chapter 4 The Laws of Motion

how weak it is can be carried out with a small balloon. Rubbing the balloon in
your hair gives the balloon a tiny electric charge. Through electric forces, the
balloon then adheres to a wall, resisting the gravitational pull of the entire
Earth!

In addition to contributing to the understanding of motion, Newton studied
gravity extensively. Newton’s law of universal gravitation states that every particle
in the Universe attracts every other particle with a force that is directly propor-
tional to the product of the masses of the particles and inversely proportional to
the square of the distance between them. If the particles have masses m1 and m2
and are separated by a distance r, as in Active Figure 4.6, the magnitude of the
gravitational force, Fg is

[4.5]

where G � 6.67 � 10�11 N�m2/kg2 is the universal gravitation constant. We exam-
ine the gravitational force in more detail in Chapter 7.

Weight

Fg � G 
m1m2

r 2

Fg

�Fg

m1

m 2

r

ACTIVE FIGURE 4.6
The gravitational force between two
particles is attractive.

Log into to PhysicsNow at
www.cp7e.com, and go to Active
Figure 4.6 to change the masses
of the particles and the separation
between the particles to see the
effect on the gravitational force.

The magnitude of the gravitational force acting on an object of mass m near
Earth’s surface is called the weight, w, of the object, given by

[4.6]

where g is the acceleration of gravity.
SI unit: newton (N)

w � mg

From Equation 4.5, an alternate definition of the weight of an object with mass
m can be written as

[4.7]

where ME is the mass of Earth and r is the distance from the object to Earth’s cen-
ter. If the object is at rest on Earth’s surface, then r is equal to Earth’s radius RE.
Since r is in the denominator of Equation 4.7, the weight decreases with increasing
r. So the weight of an object on a mountaintop is less than the weight of the same
object at sea level.

Comparing Equations 4.6 and 4.7, we see that

[4.8]

Unlike mass, weight is not an inherent property of an object because it can take
different values, depending on the value of g in a given location. If an object has 
a mass of 70.0 kg, for example, then its weight at a location where 
g � 9.80 m/s2 is mg � 686 N. In a high-altitude balloon, where g might be 
9.76 m/s2, the object’s weight would be 683 N. The value of g also varies slightly
due to the density of matter in a given locality.

Equation 4.8 is a general result that can be used to calculate the acceleration of
an object falling near the surface of any massive object if the more massive object’s
radius and mass are known. Using the values in Table 7.3 (p. 216), you should be
able to show that gSun � 274 m/s2 and gMoon � 1.62 m/s2. An important fact is
that for spherical bodies, distances are calculated from the centers of the objects, a
consequence of Gauss’s law (explained in Chapter 15), which holds for both gravi-
tational and electric forces.

g � G 
ME

r 2

w � G 
MEm

r 2

Astronaut Edwin E. “Buzz” Aldrin, Jr.,
walking on the Moon after the 
Apollo 11 lunar landing. Aldrin’s
weight on the Moon is less than it is
on Earth, but his mass is the same in
both places.

N
AS

A

Law of universal gravitation �
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4.3 Newton’s Second Law 89

A friend, calling from the Moon, tells you she has just won 1 newton of gold in
a contest. Excitedly, you tell her that you entered Earth’s version of the same
contest and also won 1 newton of gold! Who won the prize of greatest value?
(a) your friend (b) you (c) the values are equal.

Quick Quiz 4.4

Goal Calculate the magnitude of a gravitational force using Newton’s law of gravitation.

Problem Find the gravitational force exerted by the Sun on a 70.0-kg man located on Earth. The distance from the
Sun to the Earth is about 1.50 � 1011 m, and the Sun’s mass is 1.99 � 1030 kg.

Strategy Substitute numbers into Newton’s law of gravitation, Equation 4.5, making sure to use the correct units.

EXAMPLE 4.3 May the Force Be with You

Solution
Apply Equation 4.5, substituting values:

� 0.413 N

� (6.67 � 10�11 kg�1m3s�2) 
(70.0 kg)(1.99 � 1030 kg)

(1.50 � 1011 m)2

Fsun � G 
mMS

r 2

Remarks The gravitational attraction between the Sun and objects on Earth is easily measurable and has been ex-
ploited in experiments to determine whether gravitational attraction depends on the composition of the object. As
the exercise shows, the gravitational force on Earth due to the Moon is much weaker than the gravitational force on
Earth due to the Sun. Paradoxically, the Moon’s effect on the tides is over twice that of the Sun, because the tides de-
pend on differences in the gravitational force across the Earth, and those differences are greater for the Moon’s gravi-
tational force because it’s much closer to Earth than the Sun.

Exercise 4.3
To one significant digit, find the force exerted by the Moon on a 70-kg man on Earth. The Moon has a mass of
7.36 � 1022 kg and is 3.84 � 108 m from Earth.

Answer FMoon � 0.002 N

EXAMPLE 4.4 Weight on Planet X
Goal Understand the effect of a planet’s mass and radius on the weight of an object on the planet’s surface.

Problem An astronaut on a space mission lands on a planet with three times the mass and twice the radius of Earth.
What is her weight wx on this planet as a multiple of her Earth weight wE?

Strategy Write MX and rX , the mass and radius of the planet, in terms of ME and RE, the mass and radius of Earth,
respectively, and substitute into the law of gravitation.

Solution
From the statement of the problem, we have the follow-
ing relationships:

MX � 3ME rX � 2RE

Substitute the preceding expressions into Equation 4.5
and simplify, algebraically associating the terms giving
the weight on Earth:

3
4

wEwX � G 
MXm
rX 

2  � G 
3MEm
(2RE)2  �

3
4

 G 
MEm
RE 

2 �  
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90 Chapter 4 The Laws of Motion

4.4 NEWTON’S THIRD LAW
In Section 4.1 we found that a force is exerted on an object when it comes into con-
tact with some other object. Consider the task of driving a nail into a block of wood,
for example, as illustrated in Figure 4.7a. To accelerate the nail and drive it into the
block, the hammer must exert a net force on the nail. Newton recognized, however,
that a single isolated force (such as the force exerted by the hammer on the nail),
couldn’t exist. Instead, forces in nature always exist in pairs. According to Newton,
as the nail is driven into the block by the force exerted by the hammer, the hammer
is slowed down and stopped by the force exerted by the nail.

Newton described such paired forces with his third law:

Remarks This problem shows the interplay between a planet’s mass and radius in determining the weight of objects
on its surface. Because of Earth’s much smaller radius, the weight of an object on Jupiter is only 2.64 times its weight
on Earth, despite the fact that Jupiter has over 300 times as much mass.

Exercise 4.4
An astronaut lands on Ganymede, a giant moon of Jupiter that is larger than the planet Mercury. Ganymede has one-
fortieth the mass of Earth and two-fifths the radius. Find the weight of the astronaut standing on Ganymede in terms
of his Earth weight wE.

Answer wG � (5/32)wE

FnhFhn

(a)

2

1

F12 F21

F12  =  –F21

(b)

Figure 4.7 Newton’s third law.
(a) The force exerted by the hammer
on the nail is equal in magnitude and
opposite in direction to the force
exerted by the nail on the hammer.
(b) The force exerted by object 1
on object 2 is equal in magnitude and
opposite in direction to the force 
exerted by object 2 on object 1.

F
:

21

F
:

12

Ji
m
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ill

m
ou
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/c
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t.c
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If object 1 and object 2 interact, the force exerted by object 1 on object 2
is equal in magnitude but opposite in direction to the force exerted by
object 2 on object 1.

F
:

21

F
:

12

TIP 4.4 Action-Reaction Pairs
In applying Newton’s third law,
remember that an action and its
reaction force always act on different
objects. Two external forces acting on
the same object, even if they are
equal in magnitude and opposite in
direction, can’t be an action-reaction
pair.

This law, which is illustrated in Figure 4.7b, states that a single isolated force
can’t exist. The force exerted by object 1 on object 2 is sometimes called the
action force, and the force exerted by object 2 on object 1 is called the reaction
force. In reality, either force can be labeled the action or reaction force. The
action force is equal in magnitude to the reaction force and opposite in
direction. In all cases, the action and reaction forces act on different objects. For
example, the force acting on a freely falling projectile is the force exerted
by Earth on the projectile, , and the magnitude of this force is its weight mg.
The reaction to force is the force exerted by the projectile on Earth, 

� � . The reaction force must accelerate the Earth towards the projec-
tile, just as the action force accelerates the projectile towards the Earth.F

:
g

F
:

g �F
:

gF
:

g �
F
:

g

F
:

g

F
:

21

F
:

12

Newton’s third law �
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4.4 Newton’s Third Law 91

Because the Earth has such a large mass, however, its acceleration due to this
reaction force is negligibly small.

Newton’s third law constantly affects our activities in everyday life. Without it,
no locomotion of any kind would be possible, whether on foot, on a bicycle, or in
a motorized vehicle. When walking, for example, we exert a frictional force against
the ground. The reaction force of the ground against our foot propels us forward.
In the same way, the tires on a bicycle exert a frictional force against the ground,
and the reaction of the ground pushes the bicycle forward. As we’ll see shortly,
friction plays a large role in such reaction forces.

For another example of Newton’s third law, consider the helicopter. Most heli-
copters have a large set of blades rotating in a horizontal plane above the body of
the vehicle and another, smaller set rotating in a vertical plane at the back. Other
helicopters have two large sets of blades above the body rotating in opposite direc-
tions. Why do helicopters always have two sets of blades? In the first type of heli-
copter, the engine applies a force to the blades, causing them to change their
rotational motion. According to Newton’s third law, however, the blades must
exert a force on the engine of equal magnitude and in the opposite direction.
This force would cause the body of the helicopter to rotate in the direction
opposite the blades. A rotating helicopter would be impossible to control, so a
second set of blades is used. The small blades in the back provide a force opposite
to that tending to rotate the body of the helicopter, keeping the body oriented in
a stable position. In helicopters with two sets of large counterrotating blades,
engines apply forces in opposite directions, so there is no net force rotating the
helicopter.

As mentioned earlier, the Earth exerts a force on any object. If the object is
a TV at rest on a table, as in Figure 4.8a, the reaction force to is the force the
TV exerts on the Earth, . The TV doesn’t accelerate downward because it’s
held up by the table. The table, therefore, exerts an upward force , called
the normal force, on the TV. (Normal, a technical term from mathematics, means
“perpendicular” in this context.) The normal force is an elastic force arising
from the cohesion of matter and is electromagnetic in origin. It balances the
gravitational force acting on the TV, preventing the TV from falling through
the table, and can have any value needed, up to the point of breaking the table.
The reaction to is the force exerted by the TV on the table, . Therefore,

and � �n:�n:F
:

g � �F
:

g �

n:�n:

n:
F
:

g �
F
:

g

F
:

g

A P P L I C AT I O N
Helicopter Flight

Fg

nn

Fg

(a) (b)

n�

Fg�

Figure 4.8 When a TV set is sitting
on a table, the forces acting on the
set are the normal force exerted by
the table and the force of gravity, ,
as illustrated in (b). The reaction to

is the force exerted by the TV set
on the table, . The reaction to is
the force exerted by the TV set on
Earth, .F

:
g �

F
:

gn:�
n:

F
:

g

n:
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92 Chapter 4 The Laws of Motion

The forces and both have the same magnitude as . Note that the forces act-
ing on the TV are and , as shown in Figure 4.8b. The two reaction forces, 
and , are exerted by the TV on objects other than the TV. Remember, the two
forces in an action-reaction pair always act on two different objects.

Because the TV is not accelerating in any direction ( ), it follows from
Newton’s second law that . However, Fg � � mg, so n � mg, a
useful result.

m a: � 0 � F
:

g � n:
a: � 0

n:�
F
:

g �n:F
:

g

F
:

gn:�n:

4.5 APPLICATIONS OF NEWTON’S LAWS
This section applies Newton’s laws to objects moving under the influence of con-
stant external forces. We assume that objects behave as particles, so we need not
consider the possibility of rotational motion. We also neglect any friction effects
and the masses of any ropes or strings involved. With these approximations, the
magnitude of the force exerted along a rope, called the tension, is the same at
all points in the rope. This is illustrated by the rope in Figure 4.9, showing the
forces and acting on it. If the rope has mass m, then Newton’s second law ap-
plied to the rope gives T � T� � ma. If the mass m is taken to be negligible, how-
ever, as in the upcoming examples, then T � T�.

When we apply Newton’s law to an object, we are interested only in those forces
which act on the object. For example, in Figure 4.8b, the only external forces acting
on the TV are and . The reactions to these forces, and , act on the
table and on Earth, respectively, and don’t appear in Newton’s second law applied
to the TV.

Consider a crate being pulled to the right on a frictionless, horizontal sur-
face, as in Figure 4.10a. Suppose you wish to find the acceleration of the crate
and the force the surface exerts on it. The horizontal force exerted on the crate
acts through the rope. The force that the rope exerts on the crate is denoted by

(because it’s a tension force). The magnitude of is equal to the tension in
the rope. What we mean by the words “tension in the rope” is just the force
read by a spring scale when the rope in question has been cut and the scale in-
serted between the cut ends. A dashed circle is drawn around the crate in
Figure 4.10a to emphasize the importance of isolating the crate from its sur-
roundings.

Because we are interested only in the motion of the crate, we must be able to
identify all forces acting on it. These forces are illustrated in Figure 4.10b. In addi-
tion to displaying the force , the force diagram for the crate includes the force of
gravity exerted by Earth and the normal force exerted by the floor. Such a
force diagram is called a free-body diagram, because the environment is replaced
by a series of forces on an otherwise free body. The construction of a correct free-
body diagram is an essential step in applying Newton’s laws. An incorrect diagram
will most likely lead to incorrect answers!

The reactions to the forces we have listed—namely, the force exerted by the
rope on the hand doing the pulling, the force exerted by the crate on Earth, and
the force exerted by the crate on the floor—aren’t included in the free-body dia-
gram because they act on other objects and not on the crate. Consequently, they
don’t directly influence the crate’s motion. Only forces acting directly on the crate
are included.

n:F
:

g

T
:

T
:

T
:

F
:

g �n:�F
:

gn:

T
:

�T
:

′ TT

Figure 4.9 Newton’s second law
applied to a rope gives T � T � � ma.
However, if m � 0, then T � T �.
Thus, the tension in a massless rope
is the same at all points in the rope.

(a)

g

y

x

(b)

T

F

n

Figure 4.10 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
that represents the forces exerted on
the crate.

A small sports car collides head-on with a massive truck. The greater impact force
(in magnitude) acts on (a) the car, (b) the truck, (c) neither, the force is the same
on both. Which vehicle undergoes the greater magnitude acceleration? (d) the
car, (e) the truck, (f) the accelerations are the same.

Quick Quiz 4.5
A P P L I C AT I O N
Colliding Vehicles

44337_04_p81-117  10/13/04  2:31 PM  Page 92



4.5 Applications of Newton’s Laws 93

Now let’s apply Newton’s second law to the crate. First we choose an appro-
priate coordinate system. In this case it’s convenient to use the one shown in
Figure 4.10b, with the x-axis horizontal and the y-axis vertical. We can apply
Newton’s second law in the x-direction, y-direction, or both, depending on what
we’re asked to find in a problem. Newton’s second law applied to the crate in the
x- and y-directions yields the following two equations:

max � T may � n � mg � 0

From these equations, we find that the acceleration in the x-direction is constant,
given by ax � T/m, and that the normal force is given by n � mg. Because the ac-
celeration is constant, the equations of kinematics can be applied to obtain further
information about the velocity and displacement of the object.

TIP 4.5 Free-Body Diagrams
The most important step in solving
a problem by means of Newton’s
second law is to draw the correct 
free-body diagram. Include only
those forces that act directly on the
object of interest.

Problem-Solving Strategy Newton’s Second Law
Problems involving Newton’s second law can be very complex. The following protocol
breaks the solution process down into smaller, intermediate goals:
1. Read the problem carefully at least once.
2. Draw a picture of the system, identify the object of primary interest, and indicate

forces with arrows.
3. Label each force in the picture in a way that will bring to mind what physical

quantity the label stands for (e.g., T for tension).
4. Draw a free-body diagram of the object of interest, based on the labeled picture.

If additional objects are involved, draw separate free-body diagrams for them.
Choose convenient coordinates for each object.

5. Apply Newton’s second law. The x- and y-components of Newton’s second law
should be taken from the vector equation and written individually. This often
results in two equations and two unknowns.

6. Solve for the desired unknown quantity, and substitute the numbers.

In the special case of equilibrium, the foregoing process is simplified because the
acceleration is zero.

Objects in Equilibrium
Objects that are either at rest or moving with constant velocity are said to be in
equilibrium. Because , Newton’s second law applied to an object in equilib-
rium gives 

[4.9]

This statement signifies that the vector sum of all the forces (the net force)
acting on an object in equilibrium is zero. Equation 4.9 is equivalent to the set of
component equations given by

[4.10]

We won’t consider three-dimensional problems in this book, but the extension of
Equation 4.10 to a three-dimensional problem can be made by adding a third
equation: �Fz � 0.

� Fx � 0  and  � Fy � 0

� F
:

� 0

a: � 0

TIP 4.6 A Particle in 
Equilibrium
A zero net force on a particle does
not mean that the particle isn’t
moving. It means that the particle
isn’t accelerating. If the particle has a
nonzero initial velocity and is acted
upon by a zero net force, it continues
to move with the same velocity.

(i)

(ii)

Figure 4.11 (Quick Quiz 4.6) 
(i) A person pulls with a force of
magnitude F on a spring scale at-
tached to a wall. (ii) Two people pull
with forces of magnitude F in oppo-
site directions on a spring scale at-
tached between two ropes.

Consider the two situations shown in Figure 4.11, in which there is no accelera-
tion. In both cases, the men pull with a force of magnitude F. Is the reading on the
scale in part (i) of the figure (a) greater than, (b) less than, or (c) equal to the
reading in part (ii)?

Quick Quiz 4.6
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94 Chapter 4 The Laws of Motion

EXAMPLE 4.5 A Traffic Light at Rest
Goal Use the second law in an equilib-
rium problem requiring two free-body
diagrams.

Problem A traffic light weighing 1.00 �
102 N hangs from a vertical cable tied to
two other cables that are fastened to a sup-
port, as in Figure 4.12a. The upper cables
make angles of 37.0	 and 53.0	 with the
horizontal. Find the tension in each of the
three cables.

Strategy There are three unknowns, so
we need to generate three equations relat-
ing them, which can then be solved. One
equation can be obtained by applying
Newton’s second law to the traffic light,
which has forces in the y-direction only.
Two more equations can be obtained by applying the second law to the knot joining the cables—one equation from
the x-component and one equation from the y-component.

Solution
Find T3 from Figure 4.12b, using the condition of
equilibrium: T3 � Fg� 1.00 � 102 N

 � Fy � 0  :  T3 � Fg � 0

Using Figure 4.12c, resolve all three tension forces into
components and construct a table for convenience:

Force x-component y-component

�T1 cos 37.0	 T1 sin 37.0	

T2 cos 53.0	 T2 sin 53.0	

0 �1.00 � 102 NT
:

3

T
:

2

T
:

1

Apply the conditions for equilibrium to the knot, using
the components in the table:

Fx � �T1 cos 37.0	 � T2 cos 53.0	 � 0 (1)

Fy � T1 sin 37.0	 � T2 sin 53.0	 � 1.00 � 102 N � 0 (2)� 

� 

T2T1

T3

53.0°37.0°

(a)

3

53.0°37.0° x

2

1

y3

g

(b) (c)

F T

T

T

T

Figure 4.12 (Example 4.5) (a) A traffic light suspended by cables. (b) A free-body
diagram for the traffic light. (c) A free-body diagram for the knot joining the cables.

There are two equations and two remaining unknowns.
Solve Equation (1) for T2:

T2 � T1 � cos 37.0	

cos 53.0	 � � T1 � 0.799
0.602 � � 1.33T1

Substitute the result for T2 into Equation (2): T1 sin 37.0	 � (1.33T1)(sin 53.0	) � 1.00 � 102 N � 0

T1 �

T2 � 1.33T1 � 1.33(60.0 N) � 79.9 N

60.1 N

Remarks It’s very easy to make sign errors in this kind of problem. One way to avoid them is to always measure the
angle of a vector from the positive x-direction. The trigonometric functions of the angle will then automatically give
the correct signs for the components. For example, makes an angle of 180	 � 37	 � 143	 with respect to the posi-
tive x-axis, and its x-component, T1 cos 143	, is negative, as it should be.

Exercise 4.5
Suppose the traffic light is hung so that the tensions T1 and T2 are both equal to 80.0 N. Find the new angles they
make with respect to the x axis. (By symmetry, these angles will be the same.)

Answer Both angles are 38.7	.

T
:

1
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4.5 Applications of Newton’s Laws 95

EXAMPLE 4.6 Sled on a Frictionless Hill
Goal Use the second law and the normal force in an equilibrium problem.

Problem A child holds a sled at rest on a frictionless, snow-covered hill, as shown in Figure 4.13a. If the sled weighs
77.0 N, find the force exerted by the rope on the sled and the magnitude of the force exerted by the hill on the
sled.

Strategy When an object is on a slope, it’s convenient to use tilted coordinates, as in Figure 4.13b, so that the
normal force is in the y-direction and the tension force is in the x-direction. In the absence of friction, the hill
exerts no force on the sled in the x-direction. Because the sled is at rest, the conditions for equilibrium, �Fx � 0 and
�Fy � 0, apply, giving two equations for the two unknowns— the tension and the normal force.

T
:

n:

n:

Solution
Apply Newton’s second law to the sled, with :a: � 0 � F

:
� T

:
� n: � F

:
g � 0

Extract the x-component from this equation to find T.
The x-component of the normal force is zero, and the
sled’s weight is given by mg � 77.0 N. 38.5 NT �

� Fx � T � 0 � mg sin 
 � T � (77.0 N)sin 30.0	 � 0

(b)

y

x

g = m

mg sin

30.0°30.0°

(a)

mg cos u

u

F

n

g

T

Figure 4.13 (Example 4.6) (a) A child holding a sled on a frictionless hill. (b) A free-body diagram
for the sled.

Write the y-component of Newton’s second law. The 
y-component of the tension is zero, so this equation will
give the normal force.

Fy � 0 � n � mg cos 
 � n � (77.0 N)(cos 30.0	) � 0

n � 66.7 N

� 

Remarks Unlike its value on a horizontal surface, n is less than the weight of the sled when the sled is on the slope.
This is because only part of the force of gravity (the x-component) is acting to pull the sled down the slope. The y-
component of the force of gravity balances the normal force.

Exercise 4.6
Suppose another child of weight w climbs onto the sled. If the tension force is measured to be 60.0 N, find the weight
of the child and the magnitude of the normal force acting on the sled.

Answers w � 43.0 N, n � 104 N
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Accelerating Objects and Newton’s Second Law
When a net force acts on an object, the object accelerates, and we use Newton’s
second law to analyze the motion.

96 Chapter 4 The Laws of Motion

For the child being pulled forward on
the toboggan in Figure 4.14, is the
magnitude of the normal force ex-
erted by the ground on the toboggan
(a) equal to the total weight of the
child plus the toboggan, (b) greater
than the total weight, (c) less than the
total weight, or (d) possibly greater
than or less than the total weight,
depending on the size of the weight
relative to the tension in the rope?

Quick Quiz 4.7

Figure 4.14 (Quick Quiz 4.7)

EXAMPLE 4.7 Moving a Crate
Goal Use the second law of motion for a system not in equilibrium, together
with a kinematics equation.

Problem The combined weight of the crate and dolly in Figure 4.15 is 
3.00 � 102 N. If the man pulls on the rope with a constant force of 20.0 N, what
is the acceleration of the system (crate plus dolly), and how far will it move in
2.00 s? Assume that the system starts from rest and that there are no friction
forces opposing the motion.

Strategy We can find the acceleration of the system from Newton’s second
law. Because the force exerted on the system is constant, its acceleration is
constant. Therefore, we can apply a kinematics equation to find the distance
traveled in 2.00 s.

g 

F

F

n

Figure 4.15 (Example 4.7)

Solution
Find the mass of the system from the definition of
weight, w � mg :

m �
w
g

�
3.00 � 102 N

9.80 m/s2 � 30.6 kg

Find the acceleration of the system from the second law: 0.654 m/s2ax �
Fx

m
�

20.0 N
30.6 kg

�

Use kinematics to find the distance moved in 2.00 s,
with v0 � 0:

1.31 m  �x � 1
2 axt2 � 1

2 (0.654 m/s2)(2.00 s)2 �

Remarks Note that the constant applied force of 20.0 N is assumed to act on the system at all times during its mo-
tion. If the force were removed at some instant, the system would continue to move with constant velocity and hence
zero acceleration. The rollers have an effect that was neglected, here.

Exercise 4.7
A man pulls a 50.0-kg box horizontally from rest while exerting a constant horizontal force, displacing the box
3.00 m in 2.00 s. Find the force the man exerts on the box. (Ignore friction.)

Answer 75.0 N
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EXAMPLE 4.8 The Runaway Car
Goal Apply the second law and kinematic equations to a problem involving a moving object on a slope.

Problem (a) A car of mass m is on an icy driveway inclined at an angle 
 � 20.0	, as in Figure 4.16a. Determine the
acceleration of the car, assuming that the incline is frictionless. (b) If the length of the driveway is 25.0 m and the car
starts from rest at the top, how long does it take to travel to the bottom? (c) What is the car’s speed at the bottom?

Strategy Choose tilted coordinates as in Figure 4.16b, so that the normal force is in the positive y-direction,
perpendicular to the driveway, and the positive x-axis is down the slope. The force of gravity then has an x-component,
mg sin 
, and a y-component, � mg cos 
. The components of Newton’s second law form a system of two equations and
two unknowns for the acceleration down the slope, ax , and the normal force. Parts (b) and (c) can be solved with the
kinematics equations.

F
:

g

n:

(a) (b)

mg cos u

mg sin u

y

x

g = m

u

u F

n

g

Figure 4.16 (Example 4.8)

Solution
(a) Find the acceleration of the car.

Apply Newton’s second law. m a: � � F
:

� F
:

g � n:

Extract the x- and y-components from the second law: max � Fx � mg sin 
 (1)

0 � Fy � �mg cos 
 � n (2)� 

� 

Divide Equation (1) by m and substitute the given values: ax � g sin 
 � (9.80 m/s2 ) sin 20.0	 � 3.35 m/s2

(b) Find the time taken for the car to reach the bottom.

Use Equation 2.9 for displacement, with :v0x � 0

t � 3.86 s

�x � 1
2 
axt2  :  1

2 �(3.35 m/s2)t2 � 25.0 m

(c) Find the speed of the car at the bottom of the driveway.

Use Equation 2.6 for velocity, again with :v0x � 0 v � at � (3.35 m/s2)(3.86 s) � 12.9 m/s

Remarks Notice that the final answer for the acceleration depends only on g and the angle 
, not the mass. Equa-
tion (2), which gives the normal force, isn’t useful here, but is essential when friction plays a role.
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EXAMPLE 4.9 Weighing a Fish in an Elevator
Goal Explore the effect of acceleration on the
apparent weight of an object.

Problem A man weighs a fish with a spring
scale attached to the ceiling of an elevator, as
shown in Figure 4.17a. While the elevator is at
rest, he measures a weight of 40.0 N. (a) What
weight does the scale read if the elevator acceler-
ates upward at 2.00 m/s2? (b) What does the scale
read if the elevator accelerates downward at
2.00 m/s2? (c) If the elevator cable breaks, what
does the scale read?

Strategy Write down Newton’s second law for
the fish, including the force exerted by the
spring scale and the force of gravity, . The
scale doesn’t measure the true weight, it mea-
sures the force T that it exerts on the fish, so in
each case solve for this force, which is the appar-
ent weight as measured by the scale.

mg:
T
: mg  

(b)(a)

aa

mg

T

T

Solution
(a) Find the scale reading as the elevator accelerates
upwards.

Apply Newton’s second law to the fish, taking upwards
as the positive direction:

ma � �F � T � mg

Solve for T: T � ma � mg � m(a � g)

Find the mass of the fish from its weight of 40.0 N: m �
w
g

�
40.0 N

9.80 m/s2 � 4.08 kg

Compute the value of T, substituting a � �2.00 m/s2:

� 48.1 N

T � m(a � g) � (4.08 kg)(2.00 m/s2 � 9.80 m/s2)

(b) Find the scale reading as the elevator accelerates
downwards.

The analysis is the same, the only change being the
acceleration, which is now negative: .a � �2.00 m/s2

� 31.8 N

T � m(a � g) � (4.08 kg)(�2.00 m/s2 � 9.80 m/s2)

Exercise 4.8
(a) Suppose a hockey puck slides down a frictionless ramp with an acceleration of 5.00 m/s2. What angle does the ramp
make with respect to the horizontal? (b) If the ramp has a length of 6.00 m, how long does it take the puck to reach the
bottom? (c) Now suppose the mass of the puck is doubled. What’s the puck’s new acceleration down the ramp?

Answer (a) 30.7	 (b) 1.55 s (c) unchanged, 5.00 m/s2

(c) Find the scale reading after the elevator cable breaks.

Now a � �9.8 m/s2, the acceleration due to gravity:

� 0 N

T � m(a � g) � (4.08 kg)(�9.80 m/s2 � 9.80 m/s2)

Figure 4.17 (Example 4.9)
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4.5 Applications of Newton’s Laws 99

Remarks Notice how important it is to have correct signs in this problem! Accelerations can increase or decrease
the apparent weight of an object. Astronauts experience very large changes in apparent weight, from several times
normal weight during ascent to weightlessness in free fall.

Exercise 4.9
Find the initial acceleration of a rocket if the astronauts on board experience eight times their normal weight during
an initial vertical ascent. (Hint: In this exercise, the scale force is replaced by the normal force.)

Answer 68.6 m/s2

INTERACTIVE EXAMPLE 4.10 Atwood’s Machine
Goal Use the second law to solve a simple two-body
problem.

Problem Two objects of mass m1 and m2, with m2 � m1,
are connected by a light, inextensible cord and hung
over a frictionless pulley, as in Active Figure 4.18a. Both
cord and pulley have negligible mass. Find the magni-
tude of the acceleration of the system and the tension in
the cord.

Strategy The heavier mass, m2, accelerates downwards,
in the negative y-direction. Since the cord can’t be
stretched, the accelerations of the two masses are equal
in magnitude, but opposite in direction, so that a1 is posi-
tive and a2 is negative, and a2 � � a1. Each mass is acted
on by a force of tension in the upwards direction and a
force of gravity in the downwards direction. Active Fig-
ure 4.18b shows free-body diagrams for the two masses.
Newton’s second law for each mass, together with the
equation relating the accelerations, constitutes a set of
three equations for the three unknowns—a1, a2, and T.

T
: ACTIVE FIGURE 4.18

(Example 4.10) Atwood’s machine. (a) Two hanging objects con-
nected by a light string that passes over a frictionless pulley. 
(b) Free-body diagrams for the objects.

Log into to PhysicsNow at www.cp7e.com, and go to Active Figure 4.18
to adjust the masses of objects on Atwood’s machine and observe the
resulting motion.

Solution
Apply the second law to each of the two masses 
individually:

m1a1 � T � m1g (1) m2a2 � T � m2g (2)

Substitute a2 � �a1 into the second equation, and
multiply both sides by �1:

m2a1 � �T � m2g

Add the stacked equations, and solve for a1: (m1 � m2)a1 � m2g � m1g

a1 � � m 2 � m 1

m 1 � m 2
�g

Substitute this result into Equation (1) to find T : T � � 2m 1m 2

m 1 � m 2
�g

Remarks The acceleration of the second block is the same as that of the first, but negative. When m2 gets very large
compared with m1, the acceleration of the system approaches g, as expected, because m2 is falling nearly freely under
the influence of gravity. Indeed, m2 is only slightly restrained by the much lighter m1.

(b)

m 1

m1

m2

(a)

m1

m2

m 2

a1

a2

g

T
T

g
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4.6 FORCES OF FRICTION
An object moving on a surface or through a viscous medium such as air or water
encounters resistance as it interacts with its surroundings. This resistance is called
friction. Forces of friction are essential in our everyday lives. Friction makes it pos-
sible to grip and hold things, drive a car, walk, and run. Even standing in one spot
would be impossible without friction, as the slightest shift would instantly cause
you to slip and fall.

Imagine that you’ve filled a plastic trash can with yard clippings and want to
drag the can across the surface of your concrete patio. If you apply an external
horizontal force to the can, acting to the right as shown in Active Figure 4.19a,
the can remains stationary if is small. The force that counteracts and keeps
the can from moving acts to the left, opposite the direction of , and is called the
force of static friction, . As long as the can isn’t moving, . If is in-
creased, also increases. Likewise, if decreases, decreases. Experiments show
that the friction force arises from the nature of the two surfaces: Because of their
roughness, contact is made at only a few points, as shown in the magnified view of
the surfaces in Active Figure 4.19a.

If we increase the magnitude of , as in Active Figure 4.19b, the trash can even-
tually slips. When the can is on the verge of slipping, fs is a maximum, as shown in
Figure 4.19c. When F exceeds fs,max, the can accelerates to the right. When the can
is in motion, the friction force is less than fs,max (Fig. 4.19c). We call the friction
force for an object in motion the force of kinetic friction, . The net force F � fk
in the x-direction produces an acceleration to the right, according to Newton’s sec-
ond law. If F � fk , the acceleration is zero, and the can moves to the right with con-
stant speed. If the applied force is removed, the friction force acting to the left
provides an acceleration of the can in the �x -direction and eventually brings it to
rest, again consistent with Newton’s second law.

Experimentally, to a good approximation, both fs,max and fk for an object on a
surface are proportional to the normal force exerted by the surface on the object.
The experimental observations can be summarized as follows:

� The magnitude of the force of static friction between any two surfaces in con-
tact can have the values

fs  �sn [4.11]

where the dimensionless constant �s is called the coefficient of static friction
and n is the magnitude of the normal force exerted by one surface on the
other. Equation 4.11 also holds for fs � fs ,max � �sn when an object is on the
verge of slipping. This situation is called impending motion. The strict inequality
holds when the component of the applied force parallel to the surfaces is less
than �sn.

� The magnitude of the force of kinetic friction acting between two surfaces is

f k � �kn [4.12]

where �k is the coefficient of kinetic friction.

f
:

k

F
:

f
:

sF
:

f
:

s

F
:

f
:

s � �F
:

f
:

s

F
:

F
:

F
:

F
:
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Exercise 4.10
Suppose that in the same Atwood setup another string is attached to the bottom of m1 and a constant force f is ap-
plied, retarding the upward motion of m1. If m1 � 5.00 kg and m2 � 10.00 kg, what value of f will reduce the accelera-
tion of the system by 50%?

Answer 24.5 N

Investigate the response of Atwood’s machine by logging into PhysicsNow at www.cp7e.com and go-
ing to Interactive Example 4.10.

TIP 4.7 Use the Equals Sign
in Limited Situations
In Equation 4.11, the equals sign is
used only when the surfaces are just
about to break free and begin sliding.
Don’t fall into the common trap of
using fs � �sn in any static situation.
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4.6 Forces of Friction 101

� The values of �k and �s depend on the nature of the surfaces, but �k is gener-
ally less than �s . Table 4.2 lists some reported values.

� The direction of the friction force exerted by a surface on an object is opposite
the actual motion (kinetic friction) or the impending motion (static friction) of
the object relative to the surface.

� The coefficients of friction are nearly independent of the area of contact be-
tween the surfaces.

Although the coefficient of kinetic friction varies with the speed of the object, we
will neglect any such variations. The approximate nature of Equations 4.11 and 4.12

F

fk =    kn
f s =

 F

|f|

fs,max

Static region

(c)

(a) (b)

Kinetic region

m

Motion

ks

m

0

F
F

n n

g mg

f f

ACTIVE FIGURE 4.19 (a) The
force of friction exerted by a
concrete surface on a trash can is
directed opposite the force that
you exert on the can. As long as the
can is not moving, the magnitude of
the force of static friction equals that
of the applied force . (b) When the
magnitude of exceeds the magni-
tude of , the force of kinetic fric-
tion, the trash can accelerates to the
right. (c) A graph of the magnitude
of the friction force versus that of the
applied force. Note that fs,max � fk.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 4.19 to vary the applied force
on the can and practice sliding it on
surfaces of varying roughness. Note
the effect on the can’s motion and
the corresponding behavior of the
graph in (c).

f
:

k

F
:

F
:

F
:

f
:

s

TABLE 4.2
Coefficients of Frictiona

�s �k

Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25–0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003

aAll values are approximate.
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Figure 4.20 (Quick Quiz 4.10)
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is easily demonstrated by trying to get an object to slide down an incline at constant
acceleration. Especially at low speeds, the motion is likely to be characterized by al-
ternate stick and slip episodes.

If you press a book flat against a vertical wall with your hand, in what direction is
the friction force exerted by the wall on the book? (a) downward (b) upward
(c) out from the wall (d) into the wall.

Quick Quiz 4.8

A crate is sitting in the center of a flatbed truck. As the truck accelerates to the
east, the crate moves with it, not sliding on the bed of the truck. In what direction
is the friction force exerted by the bed of the truck on the crate? (a) To the west.
(b) To the east. (c) There is no friction force, because the crate isn’t sliding.

Quick Quiz 4.9

Suppose you’re playing with your niece in the snow. She’s sitting on a sled and asks
you to move her across a flat, horizontal field. You have a choice of (a) pushing
her from behind by applying a force downward on her shoulders at 30� below the
horizontal (Fig. 4.20a) or (b) attaching a rope to the front of the sled and pulling
with a force at 30� above the horizontal (Fig 4.20b). Which option would be easier
and why?

Quick Quiz 4.10

30°
30°

(a) (b)

F

F

EXAMPLE 4.11 A Block on a Ramp
Goal Apply the concept of static friction to an object resting on an
incline.

Problem Suppose a block with a mass of 2.50 kg is resting on a ramp. If
the coefficient of static friction between the block and ramp is 0.350, what
maximum angle can the ramp make with the horizontal before the block
starts to slip down?

Strategy This is an application of Newton’s second law involving an ob-
ject in equilibrium. Choose tilted coordinates, as in Figure 4.21. Use the
fact that the block is just about to slip when the force of static friction
takes its maximum value, fs � �sn.

Fg

n

y

x

sf

mg sin u

u

umg cos u

Figure 4.21 (Example 4.11)

Solution
Write Newton’s laws for a static system in component
form. The gravity force has two components, just as in
Examples 4.6 and 4.8.

Fx � mg sin � � �sn � 0 (1)

Fy � n � mg cos � � 0 (2)� 

� 
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4.6 Forces of Friction 103

Rearrange Equation (2) to get an expression for the
normal force n:

n � mg cos 


Substitute the expression for n into Equation (1) and
solve for tan 
:

Fx � mg sin 
 � �s mg cos 
 � 0 : tan 
 � �s� 

Apply the inverse tangent function to get the answer: tan 
 � 0.350 : 
 � tan�1 (0.350) � 19.3	

Remark It’s interesting that the final result depends only on the coefficient of static friction. Notice also how simi-
lar Equations (1) and (2) are to the equations developed in Examples 4.6 and 4.8. Recognizing such patterns is key
to solving problems successfully.

Exercise 4.11
The ramp in Example 4.11 is roughed up and the experiment repeated. (a) What is the new coefficient of static
friction if the maximum angle turns out to be 30.0	? (b) Find the maximum static friction force that acts on the
block.

Answer (a) 0.577 (b) 12.2 N

EXAMPLE 4.12 The Sliding Hockey Puck
Goal Apply the concept of kinetic friction.

Problem The hockey puck in Figure 4.22, struck by a hockey stick, is given an
initial speed of 20.0 m/s on a frozen pond. The puck remains on the ice and
slides 1.20 � 102 m, slowing down steadily until it comes to rest. Determine the
coefficient of kinetic friction between the puck and the ice.

Strategy The puck slows “steadily,” which means that the acceleration is con-
stant. Consequently, we can use the kinematic equation v2 � v0

2 � 2a�x to find
a, the acceleration in the x-direction. The x- and y-components of Newton’s sec-
ond law then give two equations and two unknowns for the coefficient of kinetic
friction, �k, and the normal force n.

Motion

fk

Fg = mg

n

y

x

Figure 4.22 (Example 4.12) After the
puck is given an initial velocity to the right,
the external forces acting on it are the
force of gravity , the normal force ,
and the force of kinetic friction, .f

:
k

n:F
:

g

Solution
Solve the time-independent kinematic equation for the
acceleration a :

v2 � v0
2 � 2a�x

a �
v2 � v0 

2

2�x

Substitute v � 0, v0 � 20.0 m/s, and �x � 1.20 � 102 m. a �
0 � (20.0 m/s)2

2(1.20 � 102 m)
� �1.67 m/s2

Note the negative sign in the answer: is opposite .

Find the normal force from the y-component of the
second law:

v:a:

Fy � n � Fg � n � mg � 0

n � mg

� 

Obtain an expression for the force of kinetic friction,
and substitute it into the x-component of the second
law:

fk � �kn � �kmg

ma � Fx � �fk � ��kmg� 

Solve for �k and substitute values: 0.170�k � �
a
g

�
1.67 m/s2

9.80 m/s2 �
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Two-body problems can often be treated as single objects and solved with a system
approach. When the objects are rigidly connected— say, by a string of negligible
mass that doesn’t stretch— this approach can greatly simplify the analysis. When
the two bodies are considered together, one or more of the forces end up becom-
ing forces that are internal to the system, rather than external forces affecting
each of the individual bodies. Both approaches will be used in Example 4.13.

104 Chapter 4 The Laws of Motion

Remarks Notice how the problem breaks down into three parts: kinematics, Newton’s second law in the y-direction,
and then Newton’s law in the x-direction.

Exercise 4.12
An experimental rocket plane lands on skids on a dry lake bed. If it’s traveling at 80.0 m/s when it touches down,
how far does it slide before coming to rest? Assume the coefficient of kinetic friction between the skids and the lake
bed is 0.600.

Answer 544 m

EXAMPLE 4.13 Connected Objects
Goal Use both the general method and the
system approach to solve a connected two-body
problem involving gravity and friction.

Problem (a) A block with mass m1 � 4.00 kg and
a ball with mass m2 � 7.00 kg are connected by a
light string that passes over a frictionless pulley, as
shown in Figure 4.23a. The coefficient of kinetic
friction between the block and the surface is 0.300.
Find the acceleration of the two objects and the
tension in the string. (b) Check the answer for the
acceleration by using the system approach.

Strategy Connected objects are handled by apply-
ing Newton’s second law separately to each object.
The free-body diagrams for the block and the ball
are shown in Figure 4.23b, with the � x-direction to
the right and the �y-direction upwards. The magni-
tude of the acceleration for both objects has the
same value, �a1� � �a2� � a. The block with mass m1
moves in the positive x-direction, and the ball with
mass m2 moves in the negative y -direction, so 
a1 � � a2. Using Newton’s second law, we can
develop two equations involving the unknowns
T and a that can be solved simultaneously. In part
(b), treat the two masses as a single object, with the gravity force on the ball increasing the combined object’s speed and
the friction force on the block retarding it. The tension forces then become internal and don’t appear in the second law.

(b)

m1

m2

(a)

m2

m2

m1

m1

k

y

x

n

g

g

f T

T

Figure 4.23 (Example 4.13) (a) Two objects connected by a light string that
passes over a frictionless pulley. (b) Free-body diagrams for the objects.

Solution

(a) Find the acceleration of the objects and the tension
in the string.

Write the components of Newton’s second law for the
cube of mass m1:

Fx � T � fk � m1a1 Fy � n � m1g � 0� � 

The equation for the y-component gives n � m1g. Sub-
stitute this value for n and fk � �kn into the equation for
the x-component:

T � �km1g � m1a1 (1)
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Apply Newton’s second law to the ball, recalling that 
a2 � �a1:

(2)� Fy � �m2g � T � m2a2 � �m2a1

Subtract Equation (2) from Equation (1), eliminating
T and leaving an equation that can be solved for a1
(substitution can also be used): a1 �

m2g � �km1g
m1 � m2

m2g � �km1g � (m1 � m2)a1

Substitute the given values to obtain the acceleration.

� 5.17 m/s2

a1 �
(7.00 kg)(9.80 m/s2) � (0.300)(4.00 kg)(9.80 m/s2)

(4.00 kg �  7.00 kg)

Substitute the value for a1 into Equation (1) to find the
tension T:

T � 32.4 N

(b) Find the acceleration using the system approach,
where the system consists of the two blocks.

Apply Newton’s second law to the system and solve for a:

a �
m 2g � �km1g

m1 � m 2

(m1 � m2)a � m2g � �kn � m2g � �km1g

Remarks Although the system approach appears quick and easy, it can be applied only in special cases and can’t
give any information about the internal forces, such as the tension. To find the tension, you must consider the free-
body diagram of one of the blocks separately.

Exercise 4.13
What if an additional mass is attached to the ball in Example 4.13? How large must this mass be to increase the down-
ward acceleration by 50%? Why isn’t it possible to add enough mass to double the acceleration?

Answer 14.0 kg. Doubling the acceleration to 10.3 m/s2 isn’t possible simply by suspending more mass, because all
objects, regardless of their mass, fall freely at 9.8 m/s2 near the Earth’s surface.

EXAMPLE 4.14 Two Blocks and a Cord
Goal Apply Newton’s second law and static fric-
tion in a two-body system.

Problem A block of mass 5.00 kg rides on top of
a second block of mass 10.0 kg. A person attaches a
string to the bottom block and pulls the system
horizontally across a frictionless surface, as in 
Figure 4.24. Friction between the two blocks keeps
the 5.00-kg block from slipping off. If the coeffi-
cient of static friction is 0.350, what maximum
force can be exerted by the string on the 10.0-kg
block without causing the 5.00-kg block to slip?

Strategy Draw a free-body diagram for each
block. The static friction force causes the top block
to move horizontally, and the maximum such force
corresponds to fs � �sn. This same static friction
retards the motion of the bottom block. As long as the top block isn’t slipping, the acceleration of both blocks is
the same. Write Newton’s second law for each block, and eliminate the acceleration a by substitution, solving for the
tension T.

(a) (b)

fs
�fs

n2

Mg

T

n1

�n1

mg

m

M
x

x

m

M

Figure 4.24 (a) (Example 4.14) (b) (Exercise 4.14)
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Solution
Write the two components of Newton’s second law for
the top block:

x -component: ma � �sn1
y -component: 0 � n1 � mg

Solve the y-component for n, substitute the result into
the x-component, and then solve for a:

n1 � mg : ma � �smg : a � �sg

Write the x-component of Newton’s second law for the
bottom block:

Ma � ��smg � T (1)

Substitute the expression for a � �sg into Equation (1)
and solve for the tension T :

M�sg � T � �smg : T � (m � M)�sg

Now evaluate to get the answer: T � (5.00 kg � 10.0 kg)(0.350)(9.80 m/s2) � 51.5 N

Remarks Notice that the y-component for the 10.0-kg block wasn’t needed, because there was no friction be-
tween that block and the underlying surface. It’s also interesting to note that the top block was accelerated by the
force of static friction.

Exercise 4.14
Suppose instead that the string is attached to the top block in Example 14.4. Find the maximum force that can be
exerted by the string on the block without causing the top block to slip.

Answer 25.7 N

Forces of friction are important in the analysis of the
motion of cars and other wheeled vehicles. How do
such forces both help and hinder the motion of a car?

Explanation There are several types of friction forces
to consider, the main ones being the force of friction
between the tires and the road surface and the retard-
ing force produced by air resistance.

Assuming that the car is a four-wheel-drive vehicle
of mass m, as each wheel turns to propel the car
forward, the tire exerts a rearward force on the road.
The reaction to this rearward force is a forward
force exerted by the road on the tire (Fig. 4.25). If
we assume that the same forward force is exerted on
each tire, the net forward force on the car is 4 , and
the car’s acceleration is therefore � 4 /m.

The friction between the moving car’s wheels and
the road is normally static friction, unless the car 
is skidding.

When the car is in motion, we must also consider
the force of air resistance, , which acts in theR

:

f
:

a:
f
:

f
:

f
:

Applying Physics 4.1 Cars and Friction

direction opposite the velocity of the car. The net
force exerted on the car is therefore 4 � , so the
car’s acceleration is � (4 � )/m. At normal driv-
ing speeds, the magnitude of is proportional to the
first power of the speed, R � bv, where b is a constant,
so the force of air resistance increases with increasing
speed. When R is equal to 4f, the acceleration is zero
and the car moves at a constant speed. To minimize
this resistive force, racing cars often have very low
profiles and streamlined contours.

R
:

R
:

f
:

a:
R
:

f
:

f f

R
Figure 4.25 (Applying
Physics 4.1) The horizontal
forces acting on the car are
the forward forces exerted
by the road on each tire
and the force of air resist-
ance , which acts opposite
the car’s velocity. (The car’s
tires exert a rearward force
on the road, not shown in
the diagram.)

R
:

f
:
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Figure 4.26 (Applying Physics 4.2)

Air resistance isn’t always undesirable. What are some
applications that depend on it?

Explanation Consider a skydiver plunging through
the air, as in Figure 4.26. Despite falling from a height
of several thousand meters, she never exceeds a speed
of around 120 miles per hour. This is because, aside
from the downward force of gravity , there is also
an upward force of air resistance, . Before she
reaches a final constant speed, the magnitude of is
less than her weight. As her downward speed in-
creases, the force of air resistance increases. The vec-
tor sum of the force of gravity and the force of air re-
sistance gives a total force that decreases with time, so
her acceleration decreases. Once the two forces bal-
ance each other, the net force is zero, so the accelera-
tion is zero, and she reaches a terminal speed. 

Terminal speed is generally still high enough to be
fatal on impact, although there have been amazing
stories of survival. In one case, a man fell flat on his
back in a freshly plowed field and survived. (He did,
however, break virtually every bone in his body). In
another case, a stewardess survived a fall from thirty
thousand feet into a snowbank. In neither case would
the person have had any chance of surviving without
the effects of air drag.

Parachutes and paragliders create a much larger
drag force due to their large area and can reduce the
terminal speed to a few meters per second. Some

R
:

R
:

mg:

sports enthusiasts have even developed special suits
with wings, allowing a long glide to the ground. In
each case, a larger cross-sectional area intercepts more
air, creating greater air drag, so the terminal speed 
is lower.

Air drag is also important in space travel. Without
it, returning to Earth would require a considerable
amount of fuel. Air drag helps slow capsules and
spaceships, and aerocapture techniques have been
proposed for trips to other planets. These techniques
significantly reduce fuel requirements by using air
drag to slow the spacecraft down.

Applying Physics 4.2 Air Drag

SUMMARY
Take a practice test by logging into 

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

4.1 Forces
There are four known fundamental forces of nature:
(1) the strong nuclear force between subatomic particles;
(2) the electromagnetic forces between electric charges;
(3) the weak nuclear forces, which arises in certain radioac-
tive decay processes; and (4) the gravitational force be-
tween objects. These are collectively called field forces.
Classical physics deals only with the gravitational and elec-
tromagnetic forces.

Forces such as friction or that characterizing a bat hit-
ting a ball are called contact forces. On a more fun-
damental level, contact forces have an electromagnetic
nature.

4.2 Newton’s First Law
Newton’s first law states that an object moves at constant
velocity unless acted on by a force.

The tendency for an object to maintain its original state
of motion is called inertia. Mass is the physical quantity

that measures the resistance of an object to changes in its
velocity.

4.3 Newton’s Second Law
Newton’s second law states that the acceleration of an
object is directly proportional to the net force acting on it
and inversely proportional to its mass. The net force
acting on an object equals the product of its mass and 
acceleration:

[4.1]

Newton’s universal law of gravitation is

[4.5]

The weight w of an object is the magnitude of the force of
gravity exerted on that object and is given by

w � mg [4.6]

where g � Fg/m is the acceleration of gravity near Earth’s
surface.

Solving problems with Newton’s second law involves find-
ing all the forces acting on a system and writing Equation

Fg � G 
m1m2

r2

� F
:

� m a:
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CONCEPTUAL QUESTIONS
1. A ball is held in a person’s hand. (a) Identify all the exter-

nal forces acting on the ball and the reaction to each. 
(b) If the ball is dropped, what force is exerted on it while
it is falling? Identify the reaction force in this case. (Ne-
glect air resistance.)

2. If a car is traveling westward with a constant speed of 20
m/s, what is the resultant force acting on it?

3. If a car moves with a constant acceleration, can you con-
clude that there are no forces acting on it?

4. A rubber ball is dropped onto the floor. What force causes
the ball to bounce?

5. If you push on a heavy box that is at rest, you must exert
some force to start its motion. However, once the box is
sliding, you can apply a smaller force to maintain its mo-
tion. Why?

6. If gold were sold by weight, would you rather buy it in
Denver or in Death Valley? If it were sold by mass, in which
of the two locations would you prefer to buy it? Why?

7. A passenger sitting in the rear of a bus claims that she was
injured as the driver slammed on the brakes, causing a
suitcase to come flying toward her from the front of the
bus. If you were the judge in this case, what disposition
would you make? Why?

8. A space explorer is moving through space far from any
planet or star. He notices a large rock, taken as a speci-
men from an alien planet, floating around the cabin of
the ship. Should he push it gently or kick it toward the
storage compartment? Why?

9. What force causes an automobile to move? A propeller-
driven airplane? A rowboat?

10. Analyze the motion of a rock dropped in water in terms
of its speed and acceleration as it falls. Assume that a re-
sistive force is acting on the rock that increases as the
velocity of the rock increases.

11. In the motion picture It Happened One Night (Columbia
Pictures, 1934), Clark Gable is standing inside a stationary
bus in front of Claudette Colbert, who is seated. The bus
suddenly starts moving forward and Clark falls into
Claudette’s lap. Why did this happen?

12. A weight lifter stands on a bathroom scale. She pumps a
barbell up and down. What happens to the reading on
the scale? Suppose she is strong enough to actually throw
the barbell upward. How does the reading on the scale
vary now?

13. In a tug-of-war between two athletes, each pulls on the
rope with a force of 200 N. What is the tension in the
rope? If the rope doesn’t move, what horizontal force
does each athlete exert against the ground?

14. As a rocket is fired from a launching pad, its speed and ac-
celeration increase with time as its engines continue to
operate. Explain why this occurs even though the thrust
of the engines remains constant.

15. Identify the action-reaction pairs in the following situa-
tions: (a) a man takes a step; (b) a snowball hits a girl in
the back; (c) a baseball player catches a ball; (d) a gust of
wind strikes a window.

16. The driver of a speeding empty truck slams on the brakes
and skids to a stop through a distance d. (a) If the truck
carried a load that doubled its mass, what would be the
truck’s “skidding distance”? (b) If the initial speed of the
truck were halved, what would be the truck’s “skidding
distance”?

17. Suppose you are driving a car at a high speed. Why should
you avoid slamming on your brakes when you want to stop
in the shortest possible distance? (Newer cars have an-
tilock brakes that avoid this problem.)

18. A truck loaded with sand accelerates along a highway.
If the driving force on the truck remains constant, what

4.1 for the x-component and y-component separately. These
two equations are then solved algebraically for the unknown
quantities.

4.4 Newton’s Third Law
Newton’s third law states that if two objects interact, the
force exerted by object 1 on object 2 is equal in mag-
nitude and opposite in direction to the force exerted by
object 2 on object 1:

An isolated force can never occur in nature.

4.5 Applications of Newton’s Laws
An object in equilibrium has no net external force acting
on it, and the second law, in component form, implies
that �Fx � 0 and �Fy � 0 for such an object. These two
equations are useful for solving problems in statics, in
which the object is at rest or moving at constant velocity.

An object under acceleration requires the same two equa-
tions, but with the acceleration terms included: �Fx � max
and �Fy � may. When the acceleration is constant, the equa-
tions of kinematics can supplement Newton’s second law.

F
:

12 � �F
:

21

F
:

21

F
:

12

4.6 Forces of Friction
The magnitude of the maximum force of static friction,
fs ,max, between an object and a surface is proportional to
the magnitude of the normal force acting on the object.
This maximum force occurs when the object is on the
verge of slipping. In general,

fs  �sn [4.11]

where �s is the coefficient of static friction. When an ob-
ject slides over a surface, the direction of the force of ki-
netic friction, , on the object is opposite the direction of
the motion of the object relative to the surface, and pro-
portional to the magnitude of the normal force. The mag-
nitude of is

fk � �kn [4.12]

where �k is the coefficient of kinetic friction. In general,
�k � �s.

Solving problems that involve friction is a matter of us-
ing these two friction forces in Newton’s second law. The
static friction force must be handled carefully, because it
refers to a maximum force, which is not always called upon
in a given problem.

f
:

k

f
:

k

44337_04_p81-117  10/13/04  2:32 PM  Page 108



Problems 109

happens to the truck’s acceleration if its trailer leaks sand
at a constant rate through a hole in its bottom?

19. A large crate is placed on the bed of a truck, but is not
tied down. (a) As the truck accelerates forward, the crate
remains at rest relative to it. What force causes the crate
to accelerate forward? (b) If the driver slams on the
brakes, what could happen to the crate?

20. Draw a free-body diagram for each of the following ob-
jects: (a) a projectile in motion in the presence of air re-
sistance, (b) a rocket leaving the launch pad with its en-
gines operating, (c) an athlete running along a horizontal
track.

Section 4.1 Forces
Section 4.2 Newton’s First Law
Section 4.3 Newton’s Second Law
Section 4.4 Newton’s Third Law

1. A 6.0-kg object undergoes an acceleration of 2.0 m/s2. 
(a) What is the magnitude of the resultant force acting on
it? (b) If this same force is applied to a 4.0-kg object, what
acceleration is produced?

2. A football punter accelerates a football from rest to a
speed of 10 m/s during the time in which his toe is in
contact with the ball (about 0.20 s). If the football has a
mass of 0.50 kg, what average force does the punter exert
on the ball?

3. The heaviest invertebrate is the giant squid, which is esti-
mated to have a weight of about 2 tons spread out over its
length of 70 feet. What is its weight in newtons?

4. The heaviest flying bird is the trumpeter swan, which
weighs in at about 38 pounds at its heaviest. What is its
weight in newtons?

5. A bag of sugar weighs 5.00 lb on Earth. What would it
weigh in newtons on the Moon, where the free-fall accel-
eration is one-sixth that on Earth? Repeat for Jupiter,
where g is 2.64 times that on Earth. Find the mass of the
bag of sugar in kilograms at each of the three locations.

6. A freight train has a mass of 1.5 � 107 kg. If the locomo-
tive can exert a constant pull of 7.5 � 105 N, how long
does it take to increase the speed of the train from rest to
80 km/h?

7. The air exerts a forward force of 10 N on the propeller of
a 0.20-kg model airplane. If the plane accelerates forward
at 2.0 m/s2, what is the magnitude of the resistive force
exerted by the air on the airplane?

8. A 5.0-g bullet leaves the muzzle of a rifle with a speed of
320 m/s. What force (assumed constant) is exerted on the
bullet while it is traveling down the 0.82-m-long barrel of
the rifle?

9. A Chinook salmon has a maximum underwater speed of
3.0 m/s, and can jump out of the water vertically with a
speed of 6.0 m/s. A record salmon has a length of 1.5 m
and a mass of 61 kg. When swimming upward at constant
speed, and neglecting buoyancy, the fish experiences three
forces: an upward force F exerted by the tail fin, the down-
ward drag force of the water, and the downward force of
gravity. As the fish leaves the surface of the water, however,
it experiences a net upward force causing it to accelerate
from 3.0 m/s to 6.0 m/s. Assuming that the drag force dis-
appears as soon as the head of the fish breaks the surface

and that F is exerted until 2/3 of the fish’s length has left
the water, determine the magnitude of F.

10. Consider a solid metal sphere (S) a few centimeters in di-
ameter and a feather (F). For each quantity in the list that
follows, indicate whether the quantity is the same, greater,
or lesser in the case of S or in that of F? Explain in each
case why you gave the answer you did. Here is the list: 
(a) the gravitational force; (b) the time it will take to fall a
given distance in air; (c) the time it will take to fall a given
distance in vacuum; (d) the total force on the object
when falling in vacuum.

11. A boat moves through the water with
two forces acting on it. One is a 2 000-N forward push by
the water on the propellor, and the other is a 1 800-N re-
sistive force due to the water around the bow. (a) What is
the acceleration of the 1000-kg boat? (b) If it starts from
rest, how far will the boat move in 10.0 s? (c) What will its
velocity be at the end of that time?

12. Two forces are applied to a car in an effort to move it, as
shown in Figure P4.12. (a) What is the resultant of these
two forces? (b) If the car has a mass of 3 000 kg, what
acceleration does it have? Ignore friction.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached solution with hints available at www.cp7e.com = biomedical application

10°
30°

400 N450 N

Figure P4.12

13. After falling from rest from a height of 30 m, a 0.50-kg
ball rebounds upward, reaching a height of 20 m. If the
contact between ball and ground lasted 2.0 ms, what aver-
age force was exerted on the ball?

14. The force exerted by the wind on the sails of a sailboat is
390 N north. The water exerts a force of 180 N east. If the
boat (including its crew) has a mass of 270 kg, what are
the magnitude and direction of its acceleration?

Section 4.5 Applications of Newton’s Laws
15. Find the tension in each cable supporting the 600-N cat

burglar in Figure P4.15.
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16. Find the tension in the two wires that support the 100-N
light fixture in Figure P4.16.

17. A 150-N bird feeder is supported by three cables as shown
in Figure P4.17. Find the tension in each cable.

37.0°

600 N

40° 40°

100 N

Figure P4.16

Figure P4.15

60° 30°

Bird
food

Figure P4.17

19. Two blocks are fastened to the ceiling of an elevator as in
Figure P4.19. The elevator accelerates upward at
2.00 m/s2. Find the tension in each rope.

20. Two people are pulling a boat through the water as in 
Figure P4.20. Each exerts a force of 600 N directed at a
30.0	 angle relative to the forward motion of the boat. If
the boat moves with constant velocity, find the resistive
force exerted by the water on the boat.F

:

w1 = 220 N

40° a110 N

w2

Figure P4.18

A

B

D

C

2.00 m/s2
10.0 kg

10.0 kg

Figure P4.19

F 30.0°

30.0°

600 N

600 N

Figure P4.20

21. The distance between two telephone poles is 50.0 m.
When a 1.00-kg bird lands on the telephone wire midway
between the poles, the wire sags 0.200 m. Draw a free-
body diagram of the bird. How much tension does the
bird produce in the wire? Ignore the weight of the wire.

22. You are a judge in a children’s kite-flying contest, and two
children will win prizes for the kites that pull most
strongly and least strongly, respectively, on their strings.
To measure string tensions, you borrow a weight hanger,
some slotted weights, and a protractor from your physics
teacher, and use the following protocol, illustrated in Fig-
ure P4.22: Wait for a child to get her kite well controlled,
hook the hanger onto the kite string about 30 cm from
her hand, pile on weight until that section of string is hor-
izontal, record the mass required, and record the angle
between the horizontal and the string running up to the
kite. (a) Explain how this method works. As you construct
your explanation, imagine that the children’s parents ask
you about the method, that they might make false as-
sumptions about your ability without concrete evidence,

18. The leg and cast in Figure P4.18 weigh 220 N (w1).
Determine the weight w2 and the angle � needed so
that no force is exerted on the hip joint by the leg plus
the cast.
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and that your explanation is an opportunity to give them
confidence in your evaluation technique. (b) Find the
tension in the string if the mass is 132 g and the angle
is 46.3	.

23. A 5.0-kg bucket of water is raised from a
well by a rope. If the upward acceleration of the bucket is
3.0 m/s2, find the force exerted by the rope on the bucket.

24. A shopper in a supermarket pushes a loaded cart with a hor-
izontal force of 10 N. The cart has a mass of 30 kg. (a) How
far will it move in 3.0 s, starting from rest? (Ignore friction.)
(b) How far will it move in 3.0 s if the shopper places his
30-N child in the cart before he begins to push it?

25. A 2 000-kg car is slowed down uniformly from 20.0 m/s to
5.00 m/s in 4.00 s. (a) What average force acted on the
car during that time, and (b) how far did the car travel
during that time?

26. Two packing crates of masses 10.0 kg and 5.00 kg are con-
nected by a light string that passes over a frictionless pul-
ley as in Figure P4.26. The 5.00-kg crate lies on a smooth
incline of angle 40.0	. Find the acceleration of the 5.00-kg
crate and the tension in the string.

28. An object of mass 2.0 kg starts from rest and slides down
an inclined plane 80 cm long in 0.50 s. What net force is
acting on the object along the incline?

29. A 40.0-kg wagon is towed up a hill inclined at 18.5	 with
respect to the horizontal. The tow rope is parallel to the
incline and has a tension of 140 N. Assume that the
wagon starts from rest at the bottom of the hill, and
neglect friction. How fast is the wagon going after moving
80.0 m up the hill?

30. An object with mass m1 � 5.00 kg rests on a frictionless
horizontal table and is connected to a cable that passes
over a pulley and is then fastened to a hanging object with
mass m2 � 10.0 kg, as shown in Figure P4.30. Find the ac-
celeration of each object and the tension in the cable.

27. Assume that the three blocks portrayed in Figure P4.27
move on a frictionless surface and that a 42-N force acts
as shown on the 3.0-kg block. Determine (a) the accel-
eration given this system, (b) the tension in the cord
connecting the 3.0-kg and the 1.0-kg blocks, and (c) the
force exerted by the 1.0-kg block on the 2.0-kg block.

31. A train has a mass of 5.22 � 106 kg and is moving at
90.0 km/h. The engineer applies the brakes, resulting in
a net backward force of 1.87 � 106 N on the train. The
brakes are held on for 30.0 s. (a) What is the final speed
of the train? (b) How far does the train travel during this
period?

32. (a) An elevator of mass m moving upward has two forces
acting on it: the upward force of tension in the cable and
the downward force due to gravity. When the elevator is
accelerating upward, which is greater, T or w? (b) When
the elevator is moving at a constant velocity upward,
which is greater, T or w? (c) When the elevator is moving
upward, but the acceleration is downward, which
is greater, T or w? (d) Let the elevator have a mass of 
1 500 kg and an upward acceleration of 2.5 m/s2. Find T.
Is your answer consistent with the answer to part (a)? (e)
The elevator of part (d) now moves with a constant up-
ward velocity of 10 m/s. Find T. Is your answer consistent
with your answer to part (b)? (f) Having initially moved
upward with a constant velocity, the elevator begins to ac-
celerate downward at 1.50 m/s2. Find T. Is your answer
consistent with your answer to part (c)?

33. A 1 000-kg car is pulling a 300-kg trailer. Together, the car
and trailer have an acceleration of 2.15 m/s2 in the for-
ward direction. Neglecting frictional forces on the trailer,
determine (a) the net force on the car, (b) the net force
on the trailer, (c) the force exerted by the trailer on the
car, and (d) the resultant force exerted by the car on the
road.

34. Two objects with masses of 3.00 kg and 5.00 kg are con-
nected by a light string that passes over a frictionless pul-
ley, as in Figure P4.34. Determine (a) the tension in the
string, (b) the acceleration of each object, and (c) the dis-
tance each object will move in the first second of motion
if both objects start from rest.

Figure P4.22

5.00 kg

10.0 kg

40.0°

Figure P4.26

1.0 kg
2.0 kg

3.0 kg
42 N

Figure P4.27

m1

m2

Figure P4.30 (Problems 30, 36, and 45)
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112 Chapter 4 The Laws of Motion

Section 4.6 Forces of Friction
35. A dockworker loading crates on a ship finds that a 20-kg

crate, initially at rest on a horizontal surface, requires a
75-N horizontal force to set it in motion. However, after
the crate is in motion, a horizontal force of 60 N is re-
quired to keep it moving with a constant speed. Find the
coefficients of static and kinetic friction between crate
and floor.

36. In Figure P4.30, m1 � 10 kg and m2 � 4.0 kg. The coeffi-
cient of static friction between m1 and the horizontal sur-
face is 0.50, and the coefficient of kinetic friction is 0.30.
(a) If the system is released from rest, what will its acceler-
ation be? (b) If the system is set in motion with m2 moving
downward, what will be the acceleration of the system?

37. A 1 000-N crate is being pushed across a level floor at a
constant speed by a force of 300 N at an angle of 20.0	
below the horizontal, as shown in Figure P4.37a. (a) What
is the coefficient of kinetic friction between the crate and
the floor? (b) If the 300-N force is instead pulling the
block at an angle of 20.0	 above the horizontal, as shown
in Figure P4.37b, what will be the acceleration of the
crate? Assume that the coefficient of friction is the same
as that found in (a).

F
:

not tied down to the truck and has a coefficient of static
friction of 0.500 with the truck bed. (a) Calculate the min-
imum stopping distance for which the load will not slide
forward relative to the truck. (b) Is any piece of data un-
necessary for the solution?

40. A woman at an airport is towing her 20.0-kg suitcase at
constant speed by pulling on a strap at an angle 
 above
the horizontal (Fig. P4.40). She pulls on the strap with a
35.0-N force, and the friction force on the suitcase is
20.0 N. Draw a free-body diagram of the suitcase. (a) What
angle does the strap make with the horizontal? (b) What
normal force does the ground exert on the suitcase?

42. A box of books weighing 300 N is shoved across the floor
of an apartment by a force of 400 N exerted downward at
an angle of 35.2	 below the horizontal. If the coefficient
of kinetic friction between box and floor is 0.570, how
long does it take to move the box 4.00 m, starting from
rest?

43. An object falling under the pull of gravity is acted upon
by a frictional force of air resistance. The magnitude of
this force is approximately proportional to the speed of
the object, which can be written as f � bv. Assume that 
b � 15 kg/s and m � 50 kg. (a) What is the terminal
speed the object reaches while falling? (b) Does your an-
swer to part (a) depend on the initial speed of the ob-
ject? Explain.

44. A student decides to move a box of books into her dormi-
tory room by pulling on a rope attached to the box. She
pulls with a force of 80.0 N at an angle of 25.0	 above
the horizontal. The box has a mass of 25.0 kg, and the

3.00 kg

5.00 kg

Figure P4.34

(b)(a)

F F

Figure P4.37

u

Figure P4.40

41. The coefficient of static friction between the 3.00-kg crate
and the 35.0	 incline of Figure P4.41 is 0.300. What mini-
mum force must be applied to the crate perpendicular
to the incline to prevent the crate from sliding down the
incline?

F
:

35.0°

3.00 kg

F

Figure P4.41

38. A hockey puck is hit on a frozen lake and starts moving
with a speed of 12.0 m/s. Five seconds later, its speed is
6.00 m/s. (a) What is its average acceleration? (b) What is
the average value of the coefficient of kinetic friction be-
tween puck and ice? (c) How far does the puck travel dur-
ing the 5.00-s interval?

39. Consider a large truck carrying a heavy load, such as steel
beams. A significant hazard for the driver is that the load
may slide forward, crushing the cab, if the truck stops
suddenly in an accident or even in braking. Assume, for
example, that a 10 000-kg load sits on the flat bed of a
20 000-kg truck moving at 12.0 m/s. Assume the load is
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coefficient of kinetic friction between box and floor is
0.300. (a) Find the acceleration of the box. (b) The stu-
dent now starts moving the box up a 10.0	 incline, keep-
ing her 80.0 N force directed at 25.0	 above the line of
the incline. If the coefficient of friction is unchanged,
what is the new acceleration of the box?

45. Objects with masses m1 � 10.0 kg and
m2 � 5.00 kg are connected by a light string that passes
over a frictionless pulley as in Figure P4.30. If, when the
system starts from rest, m2 falls 1.00 m in 1.20 s, determine
the coefficient of kinetic friction between m1 and the table.

46. A car is traveling at 50.0 km/h on a flat highway. (a) If the
coefficient of friction between road and tires on a rainy
day is 0.100, what is the minimum distance in which the
car will stop? (b) What is the stopping distance when the
surface is dry and the coefficient of friction is 0.600?

47. A 3.00-kg block starts from rest at the top of a 30.0	 in-
cline and slides 2.00 m down the incline in 1.50 s. Find
(a) the acceleration of the block, (b) the coefficient of ki-
netic friction between the block and the incline, (c) the
frictional force acting on the block, and (d) the speed of
the block after it has slid 2.00 m.

48. Objects of masses m1 � 4.00 kg and m2 � 9.00 kg are con-
nected by a light string that passes over a frictionless pul-
ley as in Figure P4.48. The object m1 is held at rest on the
floor, and m2 rests on a fixed incline of 
 � 40.0	. The ob-
jects are released from rest, and m2 slides 1.00 m down the
incline in 4.00 s. Determine (a) the acceleration of each
object, (b) the tension in the string, and (c) the coeffi-
cient of kinetic friction between m2 and the incline.

49. Find the acceleration reached by each of the two objects
shown in Figure P4.49 if the coefficient of kinetic friction
between the 7.00-kg object and the plane is 0.250.

friction between block and incline is �s � 0.300, deter-
mine (a) the minimum value of and (b) the normal
force exerted by the incline on the block.

F
:

51. The person in Figure P4.51 weighs 170 lb. Each crutch
makes an angle of 22.0	 with the vertical (as seen from the
front). Half of the person’s weight is supported by the
crutches, the other half by the vertical forces exerted by
the ground on his feet. Assuming that he is at rest and
that the force exerted by the ground on the crutches acts
along the crutches, determine (a) the smallest possible
coefficient of friction between crutches and ground and
(b) the magnitude of the compression force supported by
each crutch.

40.0°

m2

m1

Figure P4.48

12.0 kg

7.00 kg

37.0°

Figure P4.49

F

θ

Figure P4.50

50. A 2.00-kg block is held in equilibrium on an incline of
angle 
 � 60.0	 by a horizontal force applied in the di-
rection shown in Figure P4.50. If the coefficient of static

F
:

52. A block of mass m � 2.00 kg rests on the left edge of
a block of length L � 3.00 m and mass M � 8.00 kg.
The coefficient of kinetic friction between the two blocks
is �k � 0.300, and the surface on which the 8.00-kg block
rests is frictionless. A constant horizontal force of magni-
tude F � 10.0 N is applied to the 2.00-kg block, setting it

22.0°22.0°

Figure P4.51

(a)

(b)

M

M

F m

L

F m

Figure P4.52
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114 Chapter 4 The Laws of Motion

in motion as shown in Figure P4.52a. (a) How long will it
take before this block makes it to the right side of the
8.00-kg block, as shown in Figure P4.52b? (Note : Both
blocks are set in motion when the force is applied.) 
(b) How far does the 8.00-kg block move in the process?

Additional Problems
53. In Figure P4.53, the coefficient of kinetic friction between

the two blocks shown is 0.30. The surface of the table and
the pulleys are frictionless. (a) Draw a free-body diagram
for each block. (b) Determine the acceleration of each
block. (c) Find the tension in the strings.

F
:

54. The force exerted by the wind on a sailboat is approxi-
mately perpendicular to the sail and proportional to the
component of the wind velocity perpendicular to the sail.
For the 800 kg sailboat shown in Figure P4.54, the propor-
tionality constant is

Water exerts a force along the keel (bottom) of the boat
that prevents it from moving sideways, as shown in the
figure. Once the boat starts moving forward, water also
exerts a drag force backwards on the boat, opposing the
forward motion. If a 17-knot wind (1 knot � 0.514 m/s) is
blowing to the east, what is the initial acceleration of the
sailboat?

Fsail � �550 
N

m/s �vwind⊥

59. A box rests on the back of a truck. The coefficient of static
friction between the box and the bed of the truck is 0.300.
(a) When the truck accelerates forward, what force acceler-
ates the box? (b) Find the maximum acceleration the truck
can have before the box slides.

60. A 4.00-kg block is pushed along the ceiling with a con-
stant applied force of 85.0 N that acts at an angle of 55.0	

T1

T2

2.0 kg

3.0 kg

10.0 kg

Figure P4.53

30°

E

N

Fkeel

Fsail

Figure P4.54

45.0°45.0°

60.0 N 60.0 N

Figure P4.55

55. (a) What is the resultant force exerted by the two cables
supporting the traffic light in Figure P4.55? (b) What is
the weight of the light?

56. As a protest against the umpire’s calls, a baseball pitcher
throws a ball straight up into the air at a speed of 20.0
m/s. In the process, he moves his hand through a dis-
tance of 1.50 m. If the ball has a mass of 0.150 kg, find the
force he exerts on the ball to give it this upward speed.

57. A boy coasts down a hill on a sled, reaching a level surface
at the bottom with a speed of 7.0 m/s. If the coefficient of
friction between the sled’s runners and the snow is 0.050
and the boy and sled together weigh 600 N, how far does
the sled travel on the level surface before coming to rest?

58. (a) What is the minimum force of friction required to
hold the system of Figure P4.58 in equilibrium? (b) What
coefficient of static friction between the 100-N block and
the table ensures equilibrium? (c) If the coefficient of ki-
netic friction between the 100-N block and the table is
0.250, what hanging weight should replace the 50.0-N
weight to allow the system to move at a constant speed
once it is set in motion?

100 N

50.0 N

Figure P4.58

55.0°
85.0 N

Figure P4.60
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with the horizontal, as in Figure P4.60. The block acceler-
ates to the right at 6.00 m/s2. Determine the coefficient
of kinetic friction between block and ceiling.

61. A frictionless plane is 10.0 m long and inclined at 35.0	.
A sled starts at the bottom with an initial speed of 5.00
m/s up the incline. When the sled reaches the point at
which it momentarily stops, a second sled is released
from the top of the incline with an initial speed vi. Both
sleds reach the bottom of the incline at the same mo-
ment. (a) Determine the distance that the first sled trav-
eled up the incline. (b) Determine the initial speed of
the second sled.

62. Three objects are connected by light strings as shown in
Figure P4.62. The string connecting the 4.00-kg object
and the 5.00-kg object passes over a light frictionless
pulley. Determine (a) the acceleration of each object and
(b) the tension in the two strings.

64. A 5.0-kg penguin sits on a 10-kg sled, as shown in Figure
P4.64. A horizontal force of 45 N is applied to the sled,
but the penguin attempts to impede the motion by hold-
ing onto a cord attached to a wall. The coefficient of ki-
netic friction between the sled and the snow, as well as
that between the sled and the penguin, is 0.20. (a) Draw a
free-body diagram for the penguin and one for the sled,
and identify the reaction force for each force you include.
Determine (b) the tension in the cord and (c) the accel-
eration of the sled.

63. A 2.00-kg aluminum block and a 6.00-kg copper block are
connected by a light string over a frictionless pulley. The
two blocks are allowed to move on a fixed steel block
wedge (of angle 
 � 30.0	) as shown in Figure P4.63.
Making use of Table 4.2, determine (a) the acceleration
of the two blocks and (b) the tension in the string.

5.00 kg

4.00 kg

3.00 kg

Figure P4.62

θ

Copper

Aluminum

Steel

m 1

m 2

Figure P4.63

45 N

Figure P4.64

65. Two boxes of fruit on a frictionless horizontal surface are
connected by a light string as in Figure P4.65, where m1 �
10 kg and m2 � 20 kg. A force of 50 N is applied to the 
20-kg box. (a) Determine the acceleration of each box
and the tension in the string. (b) Repeat the problem for
the case where the coefficient of kinetic friction between
each box and the surface is 0.10.

66. A high diver of mass 70.0 kg jumps off a board 10.0 m
above the water. If her downward motion is stopped 2.00 s
after she enters the water, what average upward force did
the water exert on her?

67. Two people pull as hard as they can on ropes attached to
a 200-kg boat. If they pull in the same direction, the boat
has an acceleration of 1.52 m/s2 to the right. If they pull
in opposite directions, the boat has an acceleration of
0.518 m/s2 to the left. What is the force exerted by each
person on the boat? (Disregard any other forces on the
boat.)

68. A 3.0-kg object hangs at one end of a rope that is attached
to a support on a railroad car. When the car accelerates to
the right, the rope makes an angle of 4.0	 with the vertical,
as shown in Figure P4.68. Find the acceleration of the car.

69. Three blocks of masses 10.0 kg, 5.00 kg, and 3.00 kg are
connected by light strings that pass over frictionless pul-
leys as shown in Figure P4.69. The acceleration of the
5.00-kg block is 2.00 m/s2 to the left, and the surfaces are

4.0°

3.0 kg

a

Figure P4.68

T
50 N

m1 m2

Figure P4.65

44337_04_p81-117  10/13/04  2:33 PM  Page 115



116 Chapter 4 The Laws of Motion

70. An inquisitive physics student, wishing to combine pleas-
ure with scientific inquiry, rides on a rollercoaster sitting
on a bathroom scale. (Do not try this yourself on a roller
coaster that forbids loose heavy packages.) The bottom of
the seat in the rollercoaster car is in a plane parallel to
the track. The seat has a perpendicular back and a seat
belt that fits around the student’s chest in a plane parallel
to the bottom of the seat. The student lifts his feet from
the floor, so that the scale reads his weight, 200 lb, when
the car is horizontal. At one point during the ride, the car
zooms with negligible friction down a straight slope in-
clined at 30.0	 below the horizontal. What does the scale
read at that point?

71. A van accelerates down a hill (Fig. P4.71), going from rest
to 30.0 m/s in 6.00 s. During the acceleration, a toy (m �
0.100 kg) hangs by a string from the van’s ceiling. The ac-
celeration is such that the string remains perpendicular to
the ceiling. Determine (a) the angle 
 and (b) the tension
in the string.

72. An 80-kg stuntman jumps from a window of a building sit-
uated 30 m above a catching net. Assuming that air resist-
ance exerts a 100-N force on the stuntman as he falls, de-
termine his velocity just before he hits the net.

73. The parachute on a race car of weight 8 820 N opens at
the end of a quarter-mile run when the car is traveling at
35 m/s. What total retarding force must be supplied by
the parachute to stop the car in a distance of 1 000 m?

74. On an airplane’s takeoff, the combined
action of the air around the engines and wings of an air-
plane exerts an 8 000-N force on the plane, directed upward
at an angle of 65.0	 above the horizontal. The plane rises
with constant velocity in the vertical direction while continu-
ing to accelerate in the horizontal direction. (a) What is the
weight of the plane? (b) What is its horizontal acceleration?

77. The board sandwiched between two other boards in Fig-
ure P4.77 weighs 95.5 N. If the coefficient of friction be-
tween the boards is 0.663, what must be the magnitude 
of the compression forces (assumed to be horizontal) act-
ing on both sides of the center board to keep it from 
slipping?

78. A magician pulls a tablecloth from under a 200-g mug lo-
cated 30.0 cm from the edge of the cloth. The cloth ex-
erts a friction force of 0.100 N on the mug and is pulled
with a constant acceleration of 3.00 m/s2. How far does
the mug move relative to the horizontal tabletop before
the cloth is completely out from under it? Note that the
cloth must move more than 30 cm relative to the tabletop
during the process.

79. An inventive child wants to reach an apple in a tree with-
out climbing the tree. Sitting in a chair connected to a
rope that passes over a frictionless pulley (Fig. P4.79),
the child pulls on the loose end of the rope with such a
force that the spring scale reads 250 N. The child’s true
weight is 320 N, and the chair weighs 160 N. (a) Show
that the acceleration of the system is upward and find its
magnitude. (b) Find the force the child exerts on the
chair.

10.0 kg

25.0°

T2

5.00 kg

3.00 kg
T1

Figure P4.69

u

u

Figure P4.71

F

Figure P4.76

Figure P4.77

rough. Find (a) the tension in each string and (b) the co-
efficient of kinetic friction between blocks and surfaces.
(Assume the same �k for both blocks that are in contact
with surfaces.)

75. A 72-kg man stands on a spring scale in an elevator. Start-
ing from rest, the elevator ascends, attaining its maximum
speed of 1.2 m/s in 0.80 s. The elevator travels with this
constant speed for 5.0 s, undergoes a uniform negative
acceleration for 1.5 s, and then comes to rest. What does
the spring scale register (a) before the elevator starts to
move? (b) during the first 0.80 s of the elevator’s ascent?
(c) while the elevator is traveling at constant speed? 
(d) during the elevator’s negative acceleration?

76. A sled weighing 60.0 N is pulled horizontally across snow
so that the coefficient of kinetic friction between sled and
snow is 0.100. A penguin weighing 70.0 N rides on the
sled, as in Figure P4.76. If the coefficient of static friction
between penguin and sled is 0.700, find the maximum
horizontal force that can be exerted on the sled before
the penguin begins to slide off.
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80. A fire helicopter carries a 620-kg bucket of water at the
end of a 20.0-m-long cable. Flying back from a fire at a
constant speed of 40.0 m/s, the cable makes an angle of
40.0	 with respect to the vertical. Determine the force ex-
erted by air resistance on the bucket.

81. A bag of cement hangs from three wires as shown in Fig-
ure P4.81. Two of the wires make angles and , respec-
tively, with the horizontal. (a) Show that, if the system is in
equilibrium, then

(b) Given that w � 325 N, � 10.0	, and � 25.0	, find
the tensions T1, T2, and T3 in the wires.


2
1

T1 �
w cos 
2

sin(
1 � 
2)


2
1

Activities
A.1. There is a simple method for measuring the coefficients of

static and kinetic friction between an object and some sur-
face. For this investigation, you will need a few coins, your
textbook or some other flat surface that can be inclined, a

A.2. Borrow a spring scale from your instructor and use it to
study some of the properties of the force of friction. (1)
Attach the scale to a block of wood resting on the surface
of a table, and note the force required to start the block
moving. You should each take at least five trials and aver-
age your results. This measured force is the maximum
value of the force of static friction between the block and
surface. (2) Now use the spring scale to measure the force
required to keep the block moving at constant velocity.
Again, perform several trials to find the average value for
this force. The force you find is the force of kinetic fric-
tion. (3) Turn the block so that a side with a different sur-
face area is in contact with the table. Repeat the preceding
experiments to see if the area of contact between the sur-
faces produces different values for the forces of friction.

A.3. Get a bathroom scale and stand on it while riding on an
elevator. Watch carefully what happens to your apparent
weight (the reading on the scale) as the elevator moves
upward or downward as a function of time. What do the
readings on the scale tell you about the acceleration of
the elevator during the ride?

Figure P4.79

w

1 2θ θ

Figure P4.81

Coin

u

Figure A4.1

protractor, and some double-stick tape. Place a coin at one
edge of the book as it lies on a table, and lift that edge of
the book until the coin just slips down the incline, as
shown in Figure A4.1. When the coin starts to slip, mea-
sure the angle of incline with your protractor. Repeat the
measurement five times, and find the average value of this
critical angle 
c. The coefficient of static friction between
the coin and book’s surface is �s � tan 
c. (You should
prove this as an exercise.) Calculate the average value of
�s. To measure the coefficient of kinetic friction, find the
angle 
c� at which the coin moves down the incline with
constant speed. This angle should be less than 
c. Mea-
sure this new angle five times, and get its average value.
Calculate the average value of �k , using the fact that �k �
tan 
c�, where 
c� � 
c. Repeat these measurements, using
two or three stacked coins with double-stick tape between
them. You should get the same results as with one coin.
Why?
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Energy is one of the most important concepts in the world of science. In everyday use,
energy is associated with the fuel needed for transportation and heating, with electricity for
lights and appliances, and with the foods we consume. These associations, however, don’t tell
us what energy is, only what it does, and that producing it requires fuel. Our goal in this
chapter, therefore, is to develop a better understanding of energy and how to quantify it.

Energy is present in the Universe in a variety of forms, including mechanical, chemical,
electromagnetic, and nuclear energy. Even the inert mass of everyday matter contains a very
large amount of energy. Although energy can be transformed from one kind to another, all
observations and experiments to date suggest that the total amount of energy in the Universe
never changes. This is also true for an isolated system—a collection of objects that can
exchange energy with each other, but not with the rest of the Universe. If one form of energy
in an isolated system decreases, then another form of energy in the system must increase.
For example, if the system consists of a motor connected to a battery, the battery converts
chemical energy to electrical energy, and the motor converts electrical energy to mechanical
energy. Understanding how energy changes from one form to another is essential in all the
sciences.

In this chapter the focus is mainly on mechanical energy, which is the sum of kinetic
energy—the energy associated with motion—and potential energy—the energy associated
with position. Using an energy approach to solve certain problems is often much easier than
using forces and Newton’s three laws. These two very different approaches are linked through
the concept of work.

5.1 WORK
Work has a different meaning in physics than it does in everyday usage. In the
physics definition, a programmer does very little work typing away at a computer. A
mason, by contrast, may do a lot of work laying concrete blocks. In physics, work is

An asteroid plunges through Earth's
atmosphere while pterodactyls watch.
This artist's conception is of a
catastrophic event thought to have
led to the extinction of dinosaurs.
During an impact, an asteroid only a
kilometer across releases its
awesome energy of motion as heat
and light, delivering the explosive
equivalent of one hundred million
atomic bombs.
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5.1 Work 119

done only if an object is moved through some displacement while a force is ap-
plied to it. If either the force or displacement is doubled, the work is doubled.
Double them both, and the work is quadrupled. Doing work involves applying a
force to an object while moving it a given distance.

Figure 5.1 shows a block undergoing a displacement along a straight
line while acted on by a constant force in the same direction. We have the follow-
ing definition:

The work W done on an object by a constant force is given by

[5.1]

where F is the magnitude of the force, �x is the magnitude of the displace-
ment, and and point in the same direction.

SI unit: joule ( J) � newton � meter � kg � m2/s2

It’s easy to see the difference between the physics definition and the everyday
definition of work. The programmer exerts very little force on the keys of a key-
board, creating only small displacements, so relatively little physics work is done.
The mason must exert much larger forces on the concrete blocks and move them
significant distances, and so performs a much greater amount of work. Even very
tiring tasks, however, may not constitute work according to the physics definition.
A truck driver, for example, may drive for several hours, but if he doesn’t exert a
force, then F � 0 in Equation 5.1 and he doesn’t do any work. Similarly, a student
pressing against a wall for hours in an isometric exercise also does no work, be-
cause the displacement in Equation 5.1, �x, is zero.1 Atlas, of Greek mythology,
bore the world on his shoulders, but that, too, wouldn’t qualify as work in the
physics definition.

Work is a scalar quantity—a number rather than a vector—and consequently is
easier to handle. No direction is associated with it. Further, work doesn’t depend
explicitly on time, which can be an advantage in problems involving only
velocities and positions. Since the units of work are those of force and distance,
the SI unit is the newton-meter (N � m). Another name for the newton-meter is
the joule ( J) (rhymes with “pool”). The U.S. customary unit of work is the foot-
pound, because distances are measured in feet and forces in pounds in that
system.

Complications in the definition of work occur when the force exerted on an
object is not in the same direction as the displacement (Figure 5.2.) The force,
however, can always be split into two components—one parallel and the other
perpendicular to the direction of displacement. Only the component parallel to
the direction of displacement does work on the object. This fact can be expressed
in the following more general definition:

The work W done on an object by a constant force is given by

[5.2]

where F is the magnitude of the force, is the magnitude of the object’s
displacement, and is the angle between the directions of and .

SI unit: joule ( J)

In Figure 5.3, a man carries a bucket of water horizontally at constant velocity.
The upward force exerted by the man’s hand on the bucket is perpendicular to

� x:F
:

�
� x

W � (F cos �)�x

F
:

�x:F
:

W � F �x

F
:

F
:

� x:

1Actually, you do expend energy while doing isometric exercises, because your muscles are continuously contracting
and relaxing in the process. This internal muscular movement qualifies as work according to the physics definition.

∆x

F

Figure 5.1 A constant force in
the same direction as the displace-
ment, , does work F�x.�x:

F
:

� Work by a constant force along the
displacement

� Work by a constant force at an angle
to the displacement

∆x

F cos uu

F

Figure 5.2 A constant force 
exerted at an angle � with respect to
the displacement, , does work
(F cos �)�x.

� x:

F
:

TIP 5.1 Work is a Scalar 
Quantity
Work is a simple number—a scalar,
not a vector—so there is no direction
associated with it. Energy and energy
transfer are also scalars.
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the direction of motion, so it does no work on the bucket. This can also be seen
from Equation 5.2, because the angle between the force exerted by the hand and
the direction of motion is 90°, giving cos 90° � 0 and W � 0. Similarly, the force
of gravity does no work on the bucket.

Work always requires a system of more than just one object. A nail, for example,
can’t do work on itself, but a hammer can do work on the nail by driving it into a
board. In general, an object may be moving under the influence of several exter-
nal forces. In that case, the total work done on the object as it undergoes some dis-
placement is just the sum of the amount of work done by each force.

Work can be either positive or negative. In the definition of work in Equation
5.2, F and �x are magnitudes, which are never negative. Work is therefore positive
or negative depending on whether cos � is positive or negative. This, in turn, de-
pends on the direction of relative the direction of . When these vectors are
pointing in the same direction the angle between them is 0°, so cos 0° � �1 and
the work is positive. For example, when a student lifts a box as in Figure 5.4, the
work he does on the box is positive because the force he exerts on the box is
upward, in the same direction as the displacement. In lowering the box
slowly back down, however, the student still exerts an upward force on the box, but
the motion of the box is downwards. Since the vectors and are now in
opposite directions, the angle between them is 180°, and cos 180° � � 1 and
the work done by the student is negative. In general, when the part of parallel to

points in the same direction as , the work is positive; and is otherwise
negative.

Because Equations 5.1 and 5.2 assume a force constant in both direction and
size, they are only special cases of a more general definition of work—that done
by a varying force—treated briefly in Section 5.7.

� x:� x:
F
:

� x:F
:

� x:F
:

g = m

∆x

F

F

g

Figure 5.3 No work is done on a
bucket when it is moved horizontally
because the applied force is per-
pendicular to the displacement.

F
:

TIP 5.2 Work is Done 
by Something,
on Something Else
Work doesn’t happen by itself. Work
is done by something in the environ-
ment, on the object of interest.

Figure 5.4 The student does
positive work when he lifts the box,
because the applied force is in the
same direction as the displacement.
When he lowers the box to the floor,
he does negative work.

F
:

g = m

F

F g ∆x

In Active Figure 5.5 (a)–(d), a block moves to the right in the positive x -direction
through the displacement �x while under the influence of a force with the same
magnitude F. Which of the following is the correct order of the amount of work
done by the force F, from most positive to most negative? (A) d, c, a, b (B) c, a,
b, d (C) c, a, d, b

Quick Quiz 5.1

F

(c) (d)(b)

F

(a)

FF

ACTIVE FIGURE 5.5
(Quick Quiz 5.1) A force is exerted on an object that undergoes a displacement to the right. Both
the magnitude of the force and the displacement are the same in all four cases.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 5.5, where you can move a block to see
how the work done against gravity depends on position.

F
:

EXAMPLE 5.1 Sledding through the Yukon
Goal Apply the basic definitions of work done by a constant force.

Problem An Eskimo returning from a successful fishing trip pulls a sled loaded with salmon. The total mass of the
sled and salmon is 50.0 kg, and the Eskimo exerts a force of 1.20 � 102 N on the sled by pulling on the rope.
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(a) How much work does he do on the sled if the rope is
horizontal to the ground (� � 0° in Figure 5.6) and he
pulls the sled 5.00 m? (b) How much work does he do on
the sled if � � 30.0° and he pulls the sled the same
distance? (Treat the sled as a point particle, so details
such as the point of attachment of the rope make no
difference.)

Strategy Substitute the given values of F and �x into the
basic equations for work, Equations 5.1 and 5.2.

Solution
(a) Find the work done when the force is horizontal.

F

u

n

fk

mg

Figure 5.6 (Examples 5.1 and 5.2) An Eskimo pulling a sled with
a rope at an angle � to the horizontal.

Use Equation 5.1, substituting the given values: W � F �x � (1.20 � 102 N)(5.00 m) � 6.00 � 102 J

(b) Find the work done when the force is exerted at a
30° angle.

Use Equation 5.2, again substituting the given values: W � (F cos �)�x � (1.20 � 102 N)(cos 30�)(5.00 m)

� 5.20 � 102 J

Remarks The normal force , the gravitational force , and the upward component of the applied force do no
work on the sled, because they’re perpendicular to the displacement. The mass of the sled didn’t come into play
here, but is important when the effects of friction must be calculated, and in the next section, where we introduce
the work–energy theorem.

Exercise 5.1
Suppose the Eskimo is pushing the same 50.0-kg sled across level terrain with a force of 50.0 N. (a) If he does
4.00 � 102 J of work on the sled while exerting the force horizontally, through what distance must he have pushed it?
(b) If he exerts the same force at an angle of 45.0° with respect to the horizontal and moves the sled through the
same distance, how much work does he do on the sled?

Answers (a) 8.00 m (b) 283 J

m g:n:

Work and Dissipative Forces
Frictional work is extremely important in everyday life, because doing almost any
other kind of work is impossible without it. The Eskimo in the last example, for in-
stance, depends on surface friction to pull his sled. Otherwise, the rope would slip
in his hands and exert no force on the sled, while his feet slid out from under-
neath him and he fell flat on his face. Cars wouldn’t work without friction, nor
could conveyor belts, nor even our muscle tissue.

The work done by pushing or pulling an object is the application of a single force.
Friction, on the other hand, is a complex process caused by numerous microscopic
interactions over the entire area of the surfaces in contact. Consider a metal block
sliding over a metal surface. Microscopic “teeth” in the block encounter equally mi-
croscopic irregularities in the underlying surface. Pressing against each other, the
teeth deform, get hot, and weld to the opposite surface. Work must be done breaking
these temporary bonds, and this comes at the expense of the energy of motion of the
block, to be discussed in the next section. The energy lost by the block goes into heat-
ing both the block and its environment, with some energy converted to sound.

The friction force of two objects in contact and in relative motion to each other
always dissipates energy in these relatively complex ways. For our purposes, the
phrase “work done by friction” will denote the effect of these processes on
mechanical energy alone.

The edge of a razor blade looks
smooth to the eye, but under a
microscope proves to have numerous
irregularities.
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EXAMPLE 5.2 More Sledding
Goal Calculate the work done by friction when an object is acted on by an applied force.

Problem Suppose that in Example 5.1 the coefficient of kinetic friction between the loaded 50.0-kg sled and snow
is 0.200. (a) The Eskimo again pulls the sled 5.00 m, exerting a force of 1.20 � 102 N at an angle of 0°. Find the work
done on the sled by friction, and the net work. (b) Repeat the calculation if the applied force is exerted at an angle
of 30.0° with the horizontal.

Strategy See Figure 5.6. The frictional work depends on the magnitude of the kinetic friction coefficient, the nor-
mal force, and the displacement. Use the y -component of Newton’s second law to find the normal force , calculate
the work done by friction using the definitions, and sum with the result of Example 5.1(a) to obtain the net work on
the sled. Part (b) is solved similarly, but the normal force is smaller because it has the help of the applied force 
in supporting the load.

Solution
(a) Find the work done by friction on the sled and the 
net work, if the applied force is horizontal.

F
:

app

n:

First, find the normal force from the y -component of
Newton’s second law, which involves only the normal
force and the force of gravity:

Fy � n � mg � 0 : n � mg	

Use the normal force to compute the work done by
friction:

Wfric � �fk �x � �
kn �x � �
kmg �x

� �(0.200)(50.0 kg)(9.80 m/s2)(5.00 m) 

� � 4.90 � 102 J

Sum the frictional work with the work done by the
applied force from Example 5.1 to get the net work
(the normal and gravity forces are perpendicular to
the displacement, so they don’t contribute):

Wnet � Wapp � W fric � Wn � Wg

� 6.00 � 102 J � (� 4.90 � 102 J) � 0 � 0

� 1.10 � 102 J

(b) Recalculate the frictional work and net work if the
applied force is exerted at a 30.0° angle.

Find the normal force from the y-component of
Newton’s second law:

Fy � n � mg � Fapp sin � � 0

n � mg � Fapp sin �

	

Use the normal force to calculate the work done by
friction:

W fric � �fk�x � �
 kn�x � �
k(mg � Fapp sin �) �x

� �(0.200)(50.0 kg � 9.80 m/s2

� 1.20 � 102 N sin 30.0°)(5.00 m)

W fric � �  4.30 � 102 J

Sum this answer with the result of Example 5.1(b) to get
the net work (again, the normal and gravity forces don’t
contribute):

Wnet � Wapp � Wfric � Wn � Wg

� 5.20 � 102 J � 4.30 � 102 J � 0 � 0 � 90.0 J

Remark The most important thing to notice here is that exerting the applied force at different angles can dramati-
cally affect the work done on the sled. Pulling at the optimal angle (about 15° in this case) will result in the most net
work for a given amount of effort.

Exercise 5.2
(a) The Eskimo pushes the same 50.0-kg sled over level ground with a force of 1.75 � 102 N exerted horizontally,
moving it a distance of 6.00 m over new terrain. If the net work done on the sled is 1.50 � 102 J, find the coefficient
of kinetic friction. (b) Repeat the exercise if the applied force is upwards at a 45.0° angle with the horizontal.

Answer (a) 0.306 (b) 0.270
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5.2 KINETIC ENERGY AND THE 
WORK–ENERGY THEOREM

Solving problems using Newton’s second law can be difficult if the forces involved
are complicated. An alternative is to relate the speed of an object to the net work
done on it by external forces. If the net work can be calculated for a given dis-
placement, the change in the object’s speed is easy to evaluate.

Figure 5.7 shows an object of mass m moving to the right under the action of a
constant net force , also directed to the right. Because the force is constant, we
know from Newton’s second law that the object moves with constant acceleration

. If the object is displaced by �x, the work done by on the object is

[5.3]

In Chapter 2, we found that the following relationship holds when an object un-
dergoes constant acceleration:

We can substitute this expression into Equation 5.3 to get

or

[5.4]

So the net work done on an object equals a change in a quantity of the form
. Because this term carries units of energy and involves the object’s speed, it

can be interpreted as energy associated with the object’s motion, leading to the
following definition:

The kinetic energy KE of an object of mass m moving with a speed v is
defined by

[5.5]

SI unit: joule ( J) � kg � m2/s2

Like work, kinetic energy is a scalar quantity. Using this definition in Equation 5.4,
we arrive at an important result known as the work–energy theorem:

The net work done on an object is equal to the change in the object’s
kinetic energy:

[5.6]

where the change in the kinetic energy is due entirely to the object’s change
in speed.

The proviso on the speed is necessary because work that deforms or causes the
object to warm up invalidates Equation 5.6, although under most circumstances it
remains approximately correct. From that equation, a positive net work Wnet
means that the final kinetic energy KEf is greater than the initial kinetic energy
KEi. This, in turn, means that the object’s final speed is greater than its initial
speed. So positive net work increases an object’s speed, and negative net work de-
creases its speed.

We can also turn the equation around and think of kinetic energy as the work a
moving object can do in coming to rest. For example, suppose a hammer is on the
verge of striking a nail, as in Figure 5.8. The moving hammer has kinetic energy
and can therefore do work on the nail. The work done on the nail is F �x, where F
is the average net force exerted on the nail and �x is the distance the nail is driven

Wnet � KEf � KE i � �KE

KE �  12mv 2

1
2 mv2

Wnet � 1
2mv 2 � 1

2mv0
2

Wnet � m  � v 2 � v 0
2

2 �

v 2 � v0
2 � 2a � x   or    a � x �

v 2 � v0
2

2

Wnet � Fnet�x � (ma)�x

F
:

neta:

F
:

net
f = i = 0

netF

v v v v

∆x

m

Figure 5.7 An object undergoes a
displacement and a change in veloc-
ity under the action of a constant net
force F

:
net.

� Kinetic energy

� Work–energy theorem

Figure 5.8 The moving hammer
has kinetic energy and can do work
on the nail, driving it into the wall.
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into the wall. This work, plus small amounts of energy carried away as heat and
sound, is equal to the change in kinetic energy of the hammer, �KE.

For convenience, Equation 5.4 was derived under the assumption that the net
force acting on the object was constant. A more general derivation, using calculus,
would show that Equation 5.4 is valid under all circumstances, including the appli-
cation of a variable force.

Suppose a car traveling at a speed v skids a distance
d after its brakes lock. Estimate how far it would
skid if it were traveling at speed 2v when its brakes
locked.

Explanation Assume for simplicity that the force of
kinetic friction between the car and the road surface
is constant and the same at both speeds. From the

work–energy theorem, the net force exerted on the car
times the displacement of the car, Fnet�x, is equal in
magnitude to its initial kinetic energy, . When
the speed is doubled, the kinetic energy of the car is
quadrupled. So for a given applied friction force, the
distance traveled must increase fourfold when the ini-
tial speed is doubled, and the estimated distance the
car skids is 4d.

1
2 m v2

Applying Physics 5.1 Leaving Skid Marks

EXAMPLE 5.3 Collision Analysis
Goal Apply the work–energy theorem with a known force.

Problem The driver of a 1.00 � 103 kg car traveling on the interstate at 35.0 m/s
(nearly 80.0 mph) slams on his brakes to avoid hitting a second vehicle in front of
him, which had come to rest because of congestion ahead. After the brakes are ap-
plied, a constant friction force of 8.00 � 103 N acts on the car. Ignore air resistance.
(a) At what minimum distance should the brakes be applied to avoid a collision with
the other vehicle? (b) If the distance between the vehicles is initially only 30.0 m, at what speed would the collision
occur?

Strategy Compute the net work, which involves just the kinetic friction, because the normal and gravity forces are
perpendicular to the motion. Then set the net work equal to the change in kinetic energy. To get the minimum dis-
tance in part (a), we take the final speed to be zero just as the braking vehicle reaches the rear of the vehicle at rest.
Solve for the unknown, �x. For part (b) proceed similarly, except that the unknown is the final velocity vf .

Solution
(a) Find the minimum necessary stopping distance.

vf

vi

∆xfk

Figure 5.9 (Example 5.3) A brak-
ing vehicle just prior to an accident.

Apply the work–energy theorem: Wnet � 1
2 
mvf

2 � 1
2 
mvi

2

Substitute an expression for the frictional work and 
set vf � 0:

� fk �x � 0 � 1
2 
mvi

2

Substitute vi � 35.0 m/s, fk � 8.00 � 103 N, and 
m � 1.00 � 103 kg. Solve for �x :

�x � 76.6 m

�(8.00 � 103 N) �x � � 1
2 (1.00 � 103 kg)(35.0 m/s)2

(b) At the given distance of 30.0 m, the car is too close
to the other vehicle. Find the speed at impact.

Write down the work–energy theorem: Wnet � Wfric � �fk �x � 1
2 
mvf

2 � 1
2 
mvi

2

Multiply by 2/m and rearrange terms, solving for the
final velocity vf :

vf � 27.3 m/s

� (8.00 � 103 N)(30.0 m) � 745 m2/s2

v 2
f � (35.0 m/s)2 � � 2

1.00 � 103 kg �
v 2

f � v 2
i �

2
m

 fk  �x
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Remarks This calculation illustrates how important it is to remain alert on the highway, allowing for an adequate
stopping distance at all times. It takes about a second to react to the brake lights of the car in front of you. On a high-
speed highway, your car may travel over 30 meters before you can engage the brakes. Bumper-to-bumper traffic at
high speed, as often exists on the highways near big cities, is extremely unsafe.

Exercise 5.3
A police investigator measures straight skid marks 27 m long in an accident investigation. Assuming a friction force
and car mass the same as in the previous problem, what was the minimum speed of the car when the brakes locked?

Answer 20.8 m/s

Conservative and Nonconservative Forces
It turns out there are two general kinds of forces. The first is called a conservative
force. Gravity is probably the best example of a conservative force. To understand
the origin of the name, think of a diver climbing to the top of a 10-meter platform.
The diver has to do work against gravity in making the climb. Once at the top,
however, he can recover the work—as kinetic energy—by taking a dive. His speed
just before hitting the water will give him a kinetic energy equal to the work he did
against gravity in climbing to the top of the platform—minus the effect of some
nonconservative forces, such as air drag and internal muscular friction.

A nonconservative force is generally dissipative, which means it tends to ran-
domly disperse the energy of bodies on which it acts. This dispersal of energy of-
ten takes the form of heat or sound. Kinetic friction and air drag are good exam-
ples. Propulsive forces, like the force exerted by a jet engine on a plane or by a
propeller on a submarine, are also nonconservative.

Work done against a nonconservative force can’t be easily recovered. Dragging
objects over a rough surface requires work. When the Eskimo in Example 5.2
dragged the sled across terrain having a non-zero coefficient of friction, the net
work was smaller than in the frictionless case. The missing energy went into warm-
ing the sled and its environment. As will be seen in the study of thermodynamics,
such losses can’t be avoided, nor all the energy recovered, so these forces are
called nonconservative.

Another way to characterize conservative and nonconservative forces is to mea-
sure the work done by a force on an object traveling between two points along dif-
ferent paths. The work done by gravity on someone going down a frictionless slide,
as in Figure 5.10, is the same as that done on someone diving into the water from

Figure 5.10 Because the gravity
field is conservative, the diver regains
as kinetic energy the work she did
against gravity in climbing the ladder.
Taking the frictionless slide gives the
same result.
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the same height. This equality doesn’t hold for nonconservative forces. For
example, sliding a book directly from point � to point � in Figure 5.11 requires a
certain amount of work against friction, but sliding the book along the three other
legs of the square, from � to �, � to �, and finally � to �, requires three times
as much work. This observation motivates the following definition of a conserva-
tive force:

A force is conservative if the work it does moving an object between two
points is the same no matter what path is taken.

Nonconservative forces, as we’ve seen, don’t have this property. The work–energy
theorem, Equation 5.6, can be rewritten in terms of the work done by conservative
forces Wc and the work done by nonconservative forces Wnc , because the net work
is just the sum of these two:

Wnc � Wc � �KE [5.7]

It turns out that conservative forces have another useful property: The work they
do can be recast as something called potential energy, a quantity that depends
only on the beginning and end points of a curve, not the path taken.

5.3 GRAVITATIONAL POTENTIAL ENERGY
An object with kinetic energy (energy of motion) can do work on another object,
just like a moving hammer can drive a nail into a wall. A brick on a high shelf can
also do work: It can fall off the shelf, accelerate downwards, and hit a nail squarely,
driving it into the floorboards. The brick is said to have potential energy associated
with it, because from its location on the shelf it can potentially do work.

Potential energy is a property of a system, rather than of a single object, be-
cause it’s due to a physical position in space relative a center of force, like the
falling diver and the Earth of Figure 5.10. In this chapter, we define a system as a
collection of objects interacting via forces or other processes that are internal to
the system. It turns out that potential energy is another way of looking at the work
done by conservative forces.

Gravitational Work and Potential Energy
Using the work–energy theorem in problems involving gravitation requires com-
puting the work done by gravity. For most trajectories—say, for a ball traversing a
parabolic arc—finding the gravitational work done on the ball requires sophisti-
cated techniques from calculus. Fortunately, for conservative fields there’s a simple
alternative: potential energy.

Gravity is a conservative force, and for every conservative force a special expres-
sion called a potential energy function can be found. Evaluating that function at
any two points in an object’s path of motion and finding the difference will give
the negative of the work done by that force between those two points. It’s also ad-
vantageous that potential energy, like work and kinetic energy, is a scalar quantity.

Our first step is to find the work done by gravity on an object when it moves
from one position to another. The negative of that work is the change in the gravi-
tational potential energy of the system, and from that expression, we’ll be able to
identify the potential energy function.

In Figure 5.12, a book of mass m falls from a height yi to a height yf , where the
positive y -coordinate represents position above the ground. We neglect the force
of air friction, so the only force acting on the book is gravitation. How much work
is done? The magnitude of the force is mg and that of the displacement is 
�y � yi � yf (a positive number), while both and are pointing downwards, so
the angle between them is zero. We apply the definition of work in Equation 5.2:

Wg � F �y cos � � mg(yi � yf )cos 0° � �mg(yf � yi) [5.8]

� y:F
:

�

�

�

�

Figure 5.11 Because friction is a
nonconservative force, a book pushed
along the three segments � –�,
� –�, and � –� requires three
times the work as pushing the book
directly from � to �.

Conservative force �

mg

mg

yi

yf

�y

Figure 5.12 The work done by the
gravitational force as the book falls
from yi to yf equals mg yi � mg yf .
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Factoring out the minus sign was deliberate, to clarify the coming connection to
potential energy. Equation 5.8 for gravitational work holds for any object, regard-
less of its trajectory in space, because the gravitational force is conservative. Now,
Wg will appear as the work done by gravity in the work–energy theorem. For the
rest of this section, assume for simplicity that we are dealing only with systems in-
volving gravity and nonconservative forces. Then Equation 5.7 can be written as

Wnet � Wnc � Wg � �KE

where Wnc is the work done by the nonconservative forces. Substituting the expres-
sion for Wg from Equation 5.8, we obtain

Wnc � mg (yf � yi) � �KE [5.9a]

Next, we add mg(yf � yi) to both sides:

Wnc � �KE � mg (yf � yi) [5.9b]

Now, by definition, we’ll make the connection between gravitational work and
gravitational potential energy.

The gravitational potential energy of a system consisting of the Earth and an
object of mass m near the Earth’s surface is given by

[5.10]

where g is the acceleration of gravity and y is the vertical position of the mass
relative the surface of Earth (or some other reference point).

SI unit: joule ( J)

In this definition, y � 0 is usually taken to correspond to Earth’s surface, but this is
not strictly necessary, as discussed in the next subsection. It turns out that only dif-
ferences in potential energy really matter.

So the gravitational potential energy associated with an object located near the
surface of the Earth is the object’s weight mg times its vertical position y above Earth.
From this definition, we have the relationship between gravitational work and gravita-
tional potential energy:

Wg � �(PEf � PEi) � �(mg yf � mg yi) [5.11]

The work done by gravity is one and the same as the negative of the change in
gravitational potential energy.

Finally, using the relationship in Equation 5.11 in Equation 5.9b, we obtain an
extension of the work–energy theorem:

Wnc � (KEf � KEi) � (PEf � PEi) [5.12]

This equation says that the work done by nonconservative forces, Wnc, is equal to
the change in the kinetic energy plus the change in the gravitational potential
energy.

Equation 5.12 will turn out to be true in general, even when other conservative
forces besides gravity are present. The work done by these additional conservative
forces will again be recast as changes in potential energy and will appear on the
right-hand side along with the expression for gravitational potential energy.

Reference Levels for Gravitational Potential Energy
In solving problems involving gravitational potential energy, it’s important to
choose a location at which to set that energy equal to zero. Given the form of
Equation 5.10, this is the same as choosing the place where y � 0. The choice is
completely arbitrary because the important quantity is the difference in potential
energy, and this difference will be the same regardless of the choice of zero level.
However, once this position is chosen, it must remain fixed for a given problem.

PE �  mgy

� Gravitational potential energy

TIP 5.3 Potential Energy
Takes Two
Potential energy always takes a system
of at least two interacting objects—
for example, the Earth and a baseball
interacting via the gravitational force.
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While it’s always possible to choose the surface of the Earth as the reference
position for zero potential energy, the statement of a problem will usually sug-
gest a convenient position to use. As an example, consider a book at several pos-
sible locations, as in Figure 5.13. When the book is at �, a natural zero level for
potential energy is the surface of the desk. When the book is at �, the floor
might be a more convenient reference level. Finally, a location such as �, where
the book is held out a window, would suggest choosing the surface of the Earth
as the zero level of potential energy. The choice, however, makes no difference:
Any of the three reference levels could be used as the zero level, regardless
of whether the book is at �, �, or �. Example 5.4 illustrates this important
point.

� � �
Figure 5.13 Any reference level—
the desktop, the floor of the room, or
the ground outside the building—can
be used to represent zero gravitational
potential energy in the book–Earth
system.

EXAMPLE 5.4 Wax Your Skis
Goal Calculate the change in gravitational potential energy for differ-
ent choices of reference level.

Problem A 60.0-kg skier is at the top of a slope, as shown in Figure
5.14. At the initial point �, she is 10.0 m vertically above point �.
(a) Setting the zero level for gravitational potential energy at �, find the
gravitational potential energy of this system when the skier is at � and
then at �. Finally, find the change in potential energy of
the skier–Earth system as the skier goes from point � to point �.
(b) Repeat this problem with the zero level at point �. (c) Repeat again,
with the zero level 2.00 m higher than point �.

Strategy Follow the definition, and be careful with signs. � is the
initial point, with gravitational potential energy PEi, and � is the
final point, with gravitational potential energy PEf . The location
chosen for y � 0 is also the zero point for the potential energy, since
PE � mgy.

Solution
(a) Let y � 0 at �. Calculate the potential energy at �, at �, 
and the change in potential energy.

10.0 m

�

�

Figure 5.14 (Example 5.4)

Find PEi, the potential energy at �, from Equation 5.10: PEi � mgyi � (60.0 kg)(9.80 m/s2)(10.0 m) � 5.88 � 103 J

PEf � 0 at � by choice. Find the difference in potential
energy between � and �:

PEf � PEi � 0 � 5.88 � 103 J � � 5.88 � 103 J
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(b) Repeat the problem if y � 0 at �, the new reference
point, so that PE � 0 at �.

Find PEf , noting that point � is now at y � �10.0 m: PEf � mg yf � (60.0 kg)(9.80 m/s2)(�10.0 m)

� �5.88 � 103 J

PEf � PEi � �5.88 � 103 J � 0 � � 5.88 � 103 J

(c) Repeat the problem, if y � 0 two meters above �.

Find PEi , the potential energy at �: PEi � mg yi � (60.0 kg)(9.80 m/s2)(8.00 m) � 4.70 � 103 J

Find PEf , the potential energy at �: PEf � mgyf � (60.0 kg)(9.8 m/s2)(�2.00 m)

� �1.18 � 103 J

Compute the change in potential energy: PEf � PEi � �1.18 � 103 J � 4.70 � 103 J

� � 5.88 � 103 J

Remarks These calculations show that the change in the gravitational potential energy when the skier goes from
the top of the slope to the bottom is �5.88 � 103 J, regardless of the zero level selected.

Exercise 5.4
If the zero level for gravitational potential energy is selected to be midway down the slope, 5.00 m above point �,
find the initial potential energy, the final potential energy, and the change in potential energy as the skier goes from
point � to � in Figure 5.14.

Answer 2.94 kJ, �2.94 kJ, �5.88 kJ

Gravity and the Conservation of Mechanical Energy
Conservation principles play a very important role in physics. When a physical
quantity is conserved the numeric value of the quantity remains the same through-
out the physical process. Although the form of the quantity may change in some
way, its final value is the same as its initial value.

The kinetic energy KE of an object falling only under the influence of gravity is
constantly changing, as is the gravitational potential energy PE. Obviously, then,
these quantities aren’t conserved. Because all nonconservative forces are assumed
absent, however, we can set Wnc � 0 in Equation 5.12. Rearranging the equation,
we arrive at the following very interesting result:

KEi � PEi � KEf � PEf [5.13]

According to this equation, the sum of the kinetic energy and the gravitational po-
tential energy remains constant at all times and hence is a conserved quantity. We
denote the total mechanical energy by E � KE � PE, and say that the total me-
chanical energy is conserved.

To show how this concept works, think of tossing a rock off a cliff, and ignore
the drag forces. As the rock falls, its speed increases, so its kinetic energy increases.
As the rock approaches the ground, the potential energy of the rock–Earth system
decreases. Whatever potential energy is lost as the rock moves downward appears
as kinetic energy, and Equation 5.13 says that in the absence of nonconservative
forces like air drag, the trading of energy is exactly even. This is true for all conser-
vative forces, not just gravity.

In any isolated system of objects interacting only through conservative forces,
the total mechanical energy E � KE � PE, of the system, remains the same at
all times.

� Conservation of mechanical energy

TIP 5.4 Conservation 
Principles
There are many conservation laws
like the conservation of mechanical
energy in isolated systems, as in Equa-
tion 5.13. For example, momentum,
angular momentum, and electric
charge are all conserved quantities, as
will be seen later. Conserved quanti-
ties may change form during physical
interactions, but their sum total for a
system never changes.
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If the force of gravity is the only force doing work within a system, then the prin-
ciple of conservation of mechanical energy takes the form

[5.14]

This form of the equation is particularly useful for solving problems involving only
gravity. Further terms have to be added when other conservative forces are pres-
ent, as we’ll soon see.

1
2 
mvi

2 � mgyi � 1
2 
mvf

2 � mgyf

Three identical balls are thrown from the top of a building, all with the same ini-
tial speed. The first ball is thrown horizontally, the second at some angle above the
horizontal, and the third at some angle below the horizontal, as in Active Figure
5.15. Neglecting air resistance, rank the speeds of the balls as they reach the
ground, from fastest to slowest. (a) 1, 2, 3 (b) 2, 1, 3 (c) 3, 1, 2 (d) all three balls
strike the ground at the same speed.

Quick Quiz 5.2

Bob, of mass m, drops from a tree limb at the same time that Esther, also of mass
m, begins her descent down a frictionless slide. If they both start at the same
height above the ground, which of the following is true about their kinetic ener-
gies as they reach the ground?
(a) Bob’s kinetic energy is greater than Esther’s.
(b) Esther’s kinetic energy is greater than Bob’s.
(c) They have the same kinetic energy.
(d) The answer depends on the shape of the slide.

Quick Quiz 5.3

1

3

2

ACTIVE FIGURE 5.15
(Quick Quiz 5.2) Three identical
balls are thrown with the same initial
speed from the top of a building.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 5.15 to throw balls at different
angles from the top of the building
and compare trajectories and speeds
as the balls hit the ground.

Problem-Solving Strategy
Applying Conservation of Mechanical Energy
Take the following steps when applying conservation of mechanical energy to prob-
lems involving gravity:
1. Define the system, including all interacting bodies. Choose a location for y � 0,

the zero point for gravitational potential energy.
2. Select the body of interest and identify two points—one point where you have

given information, and the other point where you want to find out something
about the body of interest.

3. After verifying the absence of nonconservative forces, write down the conservation
of energy equation, Equation 5.14, for the system. Identify the unknown quantity
of interest.

4. Solve for the unknown quantity, which is usually either a speed or a position, and
substitute known values.

As previously stated, it’s usually best to do the algebra with symbols rather than
substituting known numbers first, because it’s easier to check the symbols for possi-
ble errors. The exception is when a quantity is clearly zero, in which case immedi-
ate substitution greatly simplifies the ensuing algebra.

INTERACTIVE EXAMPLE 5.5 Platform Diver
Goal Use conservation of energy to calculate the speed of a body falling straight down in the presence of 
gravity.
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Problem A diver of mass m drops from a board 10.0 m above the water’s surface,
as in Figure 5.16. Neglect air resistance. (a) Use conservation of mechanical energy
to find his speed 5.00 m above the water’s surface. (b) Find his speed as he hits the
water.

Strategy Refer to the problem-solving strategy. Step 1: The system consists of the
diver and the Earth. As the diver falls, only the force of gravity acts on him (ne-
glecting air drag), so the mechanical energy of the system is conserved and we can
use conservation of energy for both (a) and (b). Choose y � 0 for the water’s sur-
face. Step 2: In (a), y � 10.0 m and y � 5.00 m are the points of interest, while in
(b), y � 10.0 m and y � 0 m are of interest.

10.0 m

5.00 m

K Ei = 0
P Ei = mgyi

K Ef  = 1/2 mvf
2

P Ef  = 0
0

Figure 5.16 (Example 5.5) The
zero of gravitational potential energy is
taken to be at the water’s surface.

Solution
(a) Find the diver’s speed halfway down, at y � 5.00 m.

Step 3: we write the energy conservation equation and
supply the proper terms:

KEi � PEi � KEf � PEf

 0 � g yi � 1
2v 2

f � g yf

1
2mv 2

i � mgyi � 1
2 mv 2

f � mgyf

Step 4: Substitute , cancel the mass m and solve 
for :vf

vi � 0

vf � 9.90 m/s

� √2(9.80 m/s2)(10.0 m � 5.00 m)vf � √2g (yi � yf )

(b) Find the diver’s speed at the water’s surface, y � 0.

Use the same procedure as in part (a), taking yf � 0:

14.0 m/svf � √2g yi � √2(9.80 m/s2)(10.0 m) �

0 � mg yi � 1
2 mv 2

f � 0

Remark Notice that the speed halfway down is not half the final speed.

Exercise 5.5
Suppose the diver vaults off the springboard, leaving it with an initial speed of 3.50 m/s upwards. Use energy conser-
vation to find his speed when he strikes the water.

Answer 14.4 m/s

Investigate the conservation of mechanical energy for a dropped ball by logging into PhysicsNow at
www.cp7e.com and going to Interactive Example 5.5.

EXAMPLE 5.6 The Jumping Bug
Goal Use conservation of mechanical energy and con-
cepts from ballistics in two dimensions to calculate a speed.

Problem A powerful grasshopper launches itself at an
angle of 45° above the horizontal and rises to a maximum
height of 1.00 m during the leap. (See Figure 5.17.) With
what speed vi did it leave the ground? Neglect air
resistance.

Strategy This problem can be solved with conservation
of energy and the relation between the initial velocity and

y

x

vy = 0

vx

ymax = h
Zero level of
gravitational

potential energy45°

vi

Figure 5.17 (Example 5.6)
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its x -component. Aside from the origin, the other point of interest is the maximum height y � 1.00 m, where the
grasshopper has a velocity vx in the x -direction only. Energy conservation then gives one equation with two un-
knowns: the initial speed vi and speed at maximum height, vx . Because there are no forces in the x -direction, how-
ever, vx is the same as the x -component of the initial velocity.

Solution
Use energy conservation: 1

2 mvi
2 � mg yi � 1

2 mvf
2 � mg yf

Substitute :yi � 0 ,vf � vx , and yf � h 1
2 mvi

2 � 1
2 mvx

2 � mgh

Multiply each side by 2/m, obtaining one equation and
two unknowns:

(1)vi
2 � vx

2 � 2gh

Eliminate vx by substituting vx � vi sin 45° into equation
(1), solving for vi, and substituting known values:

6.26 m/svi � 2√gh � 2√(9.80 m/s2)(1.00 m ) �

vi
2 � (vi  sin 45°)2 � 2gh � 1

2v 2
i � 2gh

Remarks The final answer is a surprisingly high value and illustrates how strong insects are relative to their size.

Exercise 5.6
A catapult launches a rock at a 30.0° angle with respect to the horizontal. Find the maximum height attained if the
speed of the rock at its highest point is 30.0 m/s.

Answer 15.3 m

Gravity and Nonconservative Forces
When nonconservative forces are involved along with gravitation, the full
work–energy theorem must be used, often with techniques from Chapter 4. Solv-
ing problems requires the basic procedure of the problem-solving strategy for
conservation-of-energy problems in the previous section. The only difference lies
in substituting Equation 5.12, the work–energy equation with potential energy, for
Equation 5.14.

EXAMPLE 5.7 Der Stuka!
Goal Use the work–energy theorem with gravitational potential
energy to calculate the work done by a nonconservative force.

Problem Waterslides are nearly frictionless, hence can provide
bored students with high-speed thrills (Fig. 5.18). One such slide,
Der Stuka, named for the terrifying German dive bombers of World
War II, is 72.0 feet high (21.9 m), found at Six Flags in Dallas, Texas,
and at Wet’n Wild in Orlando, Florida. (a) Determine the speed of a
60.0-kg woman at the bottom of such a slide, assuming no friction is
present. (b) If the woman is clocked at 18.0 m/s at the bottom of
the slide, how much mechanical energy was lost through friction?

Strategy The system consists of the woman, the Earth, and the
slide. The normal force, always perpendicular to the displacement,
does no work. Let y � 0 m represent the bottom of the slide. The
two points of interest are y � 0 m and y � 21.9 m. Without friction,
Wnc � 0, and we can apply conservation of mechanical energy,
Equation 5.14. For part (b), use Equation 5.12, substitute two ve-
locities and heights, and solve for .Wnc

Figure 5.18 (Example 5.7) If the slide is frictionless,
the speed of the thrill seeker at the bottom depends only
on the height of the slide, not on the path it takes.

TIP 5.5 Don’t Use Work Done
by the Force of Gravity and
Gravitational Potential Energy!
Gravitational potential energy is just
another way of including the work
done by the force of gravity in the
work–energy theorem. Don’t use
both of them in the equation at the
same time, or you’ll count it twice!

W
et

’n
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 O

rla
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o
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Solution
(a) Find the woman’s speed at the bottom of the slide,
assuming no friction.

Write down Equation 5.14, for conservation of energy: 1
2mvi

2 � mgyi � 1
2mvf

2 � mgyf

Insert the values and :yf � 0vi � 0 0 � mgyi �  
1
2mv 2

f �   0 

Solve for and substitute values for g and yi :vf � 20.7 m/svf � √2gyi � √2(9.80 m/s2)(21.9 m)

(b) Find the mechanical energy lost due to friction if
vf � 18.0 m/s � 20.7 m/s.

Write Equation 5.12, substituting expressions for the
kinetic and potential energies: � (1

2 mvf
2 � 1

2 mvf
2) � (mg yf � mgyi)

Wnc � (KEf � KEi) � (PEf � PEi)

Substitute m � 60.0 kg, vf � 18.0 m/s, and vi � 0, and
solve for Wnc :

Wnc � � 3.16 � 103 J

� [0 � 60.0 kg �(9.80 m/s2)�21.9 m]

Wnc � [1
2 �60.0  kg �(18.0  m/s)2 � 0]

Remarks The speed found in part (a) is the same as if the thrill seeker fell vertically through a distance of 21.9 m,
consistent with our intuition in Quick Quiz 5.3. The result of part (b) is negative because the system loses mechanical
energy. Friction transforms part of the mechanical energy into thermal energy and mechanical waves, absorbed
partly by the system and partly by the environment.

Exercise 5.7
Suppose a slide similar to Der Stuka is 35.0 meters high, but is a straight slope, inclined at 45.0° with respect to the
horizontal. (a) Find the speed of a 60.0-kg thrill seeker at the bottom of the slide, assuming no friction. (b) If the
thrill seeker has a speed of 20.0 m/s at the bottom, find the mechanical energy lost due to friction and (c) the mag-
nitude of the force of friction, assumed constant.

Answers (a) 26.2 m/s (b) �8.58 � 103 J (c) 173 N

EXAMPLE 5.8 Hit the Ski Slopes
Goal Combine conservation of mechanical energy with
the work–energy theorem involving friction on a horizon-
tal surface.

Problem A skier starts from rest at the top of a friction-
less incline of height 20.0 m, as in Figure 5.19. At the bot-
tom of the incline, the skier encounters a horizontal
surface where the coefficient of kinetic friction between
skis and snow is 0.210. (a) Find the skier’s speed at the
bottom. (b) How far does the skier travel on the horizon-
tal surface before coming to rest?

Strategy Going down the frictionless incline is physi-
cally no different than going down the slide of the previ-
ous example and is handled the same way, using conserva-
tion of mechanical energy to find the speed v� at the
bottom. On the flat, rough surface, use the work–energy
theorem, Equation 5.12, with Wnc � W fric � �fkd, where f k is the magnitude of the force of friction and d is the dis-
tance traveled.

d

u � 20.0°

h � 20.0 m

x

y

�

� �

Figure 5.19 (Example 5.8) The skier slides down the slope and
onto a level surface, stopping after traveling a distance d from the
bottom of the hill.
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Solution
(a) Find the skier’s speed at the bottom.

Follow the procedure used in part (a) of the previous
example as the skier moves from the top, point �, to
the bottom, point �.

19.8 m/sv � � √2gh � √2(9.80 m/s2)(20.0 m) �

(b) Find the distance traveled on the horizontal, rough
surface.

Apply the work–energy theorem as the skier moves
from � to �:

Wnet � � fkd � �KE � 1
2 
mv� 

2 � 1
2mv�

2

Substitute v� � 0 and fk � 
kn � 
kmg : � 
kmgd � � 1
2 
mv�

2

Solve for d : 95.2 md �
v�

2

2
kg
�

(19.8 m/s)2

2(0.210)(9.80 m/s2)
�

Remarks Substituting the symbolic expression into the equation for the distance d shows that d is lin-
early proportional to h: Doubling the height doubles the distance traveled.

Exercise 5.8
Find the horizontal distance the skier travels before coming to rest if the incline also has a coefficient of kinetic fric-
tion equal to 0.210.

Answer 40.3 m

v� � √2gh

5.4 SPRING POTENTIAL ENERGY
Springs are important elements in modern technology. They are found in
machines of all kinds, in watches, toys, cars, and trains. Springs will be introduced
here, then studied in more detail in Chapter 13.

Work done by an applied force in stretching or compressing a spring can be re-
covered by removing the applied force, so like gravity, the spring force is conserva-
tive. This means a potential energy function can be found and used in the
work–energy theorem.

Active Figure 5.20a shows a spring in its equilibrium position, where the spring
is neither compressed nor stretched. Pushing a block against the spring as in Ac-
tive Figure 5.20b compresses it a distance x. While x appears to be merely a coordi-
nate, for springs it also represents a displacement from the equilibrium position,
which for our purposes will always be taken to be at x � 0. Experimentally, it turns
out that doubling a given displacement requires double the force, while tripling it
takes triple the force. This means the force exerted by the spring, Fs, must be pro-
portional to the displacement x, or

[5.15]

where k is a constant of proportionality, the spring constant, carrying units of
newtons per meter. Equation 5.15 is called Hooke’s law, after Sir Robert Hooke,
who discovered the relationship. The force Fs is often called a restoring force, be-
cause the spring always exerts a force in a direction opposite the displacement of
its end, tending to restore whatever is attached to the spring to its original posi-
tion. For positive values of x, the force is negative, pointing back towards equilib-
rium at x � 0, and for negative x, the force is positive, again pointing towards
x � 0. For a flexible spring, k is a small number (about 100 N/m), whereas for a
stiff spring k is large (about 10 000 N/m). The value of the spring constant k is

Fs � �kx
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determined by how the spring was formed, its material composition, and the thick-
ness of the wire. The minus sign ensures that the spring force is always directed
back towards the equilibrium point.

As in the case of gravitation, a potential energy, called the elastic potential
energy, can be associated with the spring force. Elastic potential energy is
another way of looking at the work done by a spring during motion, because it
is equal to the negative of the work done by the spring. It can also be consid-
ered stored energy arising from the work done to compress or stretch the
spring.

Consider a horizontal spring and mass at the equilibrium position. We deter-
mine the work done by the spring when compressed by an applied force from
equilibrium to a displacement x, as in Active Figure 5.20b. The spring force
points in the direction opposite the motion, so we expect the work to be
negative. When we studied the constant force of gravity near the Earth’s sur-
face, we found the work done on an object by multiplying the gravitational
force by the vertical displacement of the object. However, this procedure can’t
be used with a varying force such as the spring force. Instead, we use the aver-
age force, :

Therefore, the work done by the spring force is

In general, when the spring is stretched or compressed from xi to xf , the work
done by the spring is

The work done by a spring can be included in the work–energy theorem. Assume
Equation 5.12 now includes the work done by springs on the left-hand side. It then
reads

Ws � ��1
2 
k xf  

2 � 1
2k xi

2�

Ws � Fx � � 
1
2 
k x 

2

F �
F0 � F1

2
�

0 � kx
2

� � 
kx
2

F

x = 0

x

m

x = 0

x = 0

(c)

(b)

(a)

PEs =    kx21
2

KEi = 0

KEf =    mv21
2

PEs = 0

m

m

v

ACTIVE FIGURE 5.20
(a) A spring at equilibrium, neither
compressed nor stretched. (b) A
block of mass m on a frictionless sur-
face is pushed against the spring. If x
is the compression in the spring, the
potential energy stored in the spring
is . (c) When the block is
released, this energy is transferred to
the block in the form of kinetic
energy.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 5.20 to compress the spring by
varying amounts and observe the
effect on the block’s speed.

1
2 kx 2
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where PEg is the gravitational potential energy. We now define the elastic potential
energy associated with the spring force, PEs, by

[5.16]

Inserting this expression into the previous equation and rearranging gives the new
form of the work–energy theorem, including both gravitational and elastic poten-
tial energy:

[5.17]

where Wnc is the work done by nonconservative forces, KE is kinetic energy, PEg is
gravitational potential energy, and is the elastic potential energy. PE, formerly
used to denote gravitational potential energy alone, will henceforth denote the to-
tal potential energy of a system, including potential energies due to all conserva-
tive forces acting on the system.

It’s important to remember that the work done by gravity and springs in any
given physical system is already included on the right-hand side of Equation 5.17
as potential energy and should not also be included on the left as work.

Active Figure 5.20c shows how the stored elastic potential energy can be
recovered. When the block is released, the spring snaps back to its original
length and the stored elastic potential energy is converted to kinetic energy of
the block. The elastic potential energy stored in the spring is zero when the
spring is in the equilibrium position (x � 0). As given by Equation 5.16,
potential energy is also stored in the spring when it’s stretched. Further, the
elastic potential energy is a maximum when the spring has reached its
maximum compression or extension. Finally, the potential energy is always
positive when the spring is not in the equilibrium position, because PEs is pro-
portional to x 2.

In the absence of nonconservative forces, Wnc � 0, so the left-hand side of
Equation 5.17 is zero, and an extended form for conservation of mechanical en-
ergy results:

(KE � PEg � PEs)i � (KE � PEg � PEs)f [5.18]

Problems involving springs, gravity, and other forces are handled in exactly the
same way as described in problem-solving strategies 1 and 2, as will be seen in
Examples 5.9–5.11.

PEs

Wnc � (KEf � KEi) � (PEg f � PFgi) � (PEsf � PEsi)

PEs �  12 kx 2

Wnc � (1
2 
kxf

2 � 1
2 
kxi

2) � �KE � �PEg

EXAMPLE 5.9 A Horizontal Spring
Goal Use conservation of energy to calculate the speed of a block on a horizontal spring with and without friction.

Problem A block with mass of 5.00 kg is attached to a horizontal spring with
spring constant k � 4.00 � 102 N/m, as in Figure 5.21. The surface the block rests
upon is frictionless. If the block is pulled out to xi � 0.0500 m and released,
(a) find the speed of the block at the equilibrium point, (b) find the speed when
x � 0.0250 m, and (c) repeat part (a) if friction acts on the block, with coefficient

.

Strategy In parts (a) and (b) there are no nonconservative forces, so conserva-
tion of energy, Equation 5.18, can be applied. In part (c), the definition of work
and the work–energy theorem are needed to deal with the loss of mechanical en-
ergy due to friction.


k � 0.150

m

x
xi

fk

0

Fs

n

mg

Figure 5.21 (Example 5.9) A mass
attached to a spring.
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5.4 Spring Potential Energy 137

Substitute expressions for the block’s kinetic energy and
the potential energy, and set the gravity terms to zero:

(1)1
2 
mvi 

2 � 1
2 
kxi

2 � 1
2mvf

2 � 1
2 
kxf

2

Substitute and , and multiply by 2/m :xf � 0vi � 0
k
m

 xi
2 � vf

2

Solve for and substitute the given values:vf

� 0.447 m/s

vf � √ k
m

 xi � √ 4.00 � 102 N/m
5.00 kg

 (0.0500 m)

(b) Find the speed of the block at the halfway point.

Set in Equation (1), and multiply by 2/m:vi � 0
kx i

2

m
� vf

2 �
kx f

2

m

Solve for , and substitute the given values:vf

� 0.387 m/s

� √ 4.00 � 102 N/m
5.00 kg

  ((0.050 m)2 � (0.025 m)2)

vf � √  

k
m

(xi
2 � xf

2)

(c) Repeat part (a), this time with friction.

Apply the work–energy theorem. The work done by the
force of gravity and the normal force is zero, because
these forces are perpendicular to the motion.

Wfric � 1
2mvf

2 � 1
2mvi

2 � 1
2kx f

2 � 1
2 kx i

2

Substitute vi � 0, xf � 0, and Wfric � �
knx i : � 
knxi � 1
2 mvf

2 � 1
2 kxi

2

Set , and solve for :vfn � mg

vf � √ k
m

 xi
2 � 2
kgxi

1
2 
mvf

2 � 1
2 
kx i

2 � 
kmgxi

Remarks Friction or drag from immersion in a fluid damps the motion of an object attached to a spring, eventually
bringing the object to rest.

Exercise 5.9
Suppose the spring system in the last example starts at x � 0 and the attached object is given a kick to the right, so it
has an initial speed of 0.600 m/s. (a) What distance from the origin does the object travel before coming to rest, as-
suming the surface is frictionless? (b) How does the answer change if the coefficient of kinetic friction is 
k � 0.150?
(Use the quadratic formula.)

Answer (a) 0.0671 m (b) 0.0512 m

Solution
(a) Find the speed of the block at equilibrium point.

Start with Equation 5.18: (KE � PEg � PEs)i � (KE � PEg � PEs)f

� √ 4.00 � 102 N/m
5.00 kg

  (0.05. m)2 � 2(0.150)(9.80 m/s2)(0.050 m) 

vf � 0.230 m/s
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EXAMPLE 5.10 Circus Acrobat
Goal Use conservation of mechanical energy to solve a one-
dimensional problem involving gravitational potential energy
and spring potential energy.

Problem A 50.0-kg circus acrobat drops from a height of
2.00 meters straight down onto a springboard with a force
constant of 8.00 � 103 N/m, as in Figure 5.22. By what maxi-
mum distance does she compress the spring?

Strategy Nonconservative forces are absent, so conservation
of mechanical energy can be applied. At the two points of in-
terest, the acrobat’s initial position and the point of maximum
spring compression, her velocity is zero, so the kinetic energy
terms will be zero. Choose y � 0 as the point of maximum
compression, so the final gravitational potential energy is
zero. This choice also means that the initial position of the
acrobat is , where h is the acrobat’s initial
height above the platform and d is the spring’s maximum
compression.

Solution
Use conservation of mechanical energy:

yi � h � d

138 Chapter 5 Energy

h

d

(a) (b)

Figure 5.22 (Example 5.10) An acrobat drops onto a spring-
board, causing it to compress.

(KE � PEg � PEs )i � (KE � PEg � PEs)f (1)

The only nonzero terms are the initial gravitational po-
tential energy and the final spring potential energy.

 mg(h � d) � 1
2 kd 2

0 � mg (h � d) � 0 � 0 � 0 � 1
2 kd 2

Substitute the given quantities, and rearrange the equa-
tion into standard quadratic form:

 d2 � (0.123 m)d � 0.245 m2 � 0

(50.0 kg)(9.80 m/s2)(2.00 m � d) � 1
2 
(8.00 �  103

 N/m)d 2

Solve with the quadratic formula (Equation A.8): 0.560 md �

Remarks The other solution, d � � 0.437 m, can be rejected because d was chosen to be a positive number at the
outset. A change in the acrobat’s center of mass, say, by crouching as she makes contact with the springboard, also af-
fects the spring’s compression, but that effect was neglected. Shock absorbers often involve springs, and this example
illustrates how they work. The spring action of a shock absorber turns a dangerous jolt into a smooth deceleration, as
excess kinetic energy is converted to spring potential energy.

Exercise 5.10
An 8.00-kg block drops straight down from a height of 1.00 m, striking a platform spring having force constant
1.00 � 103 N/m. Find the maximum compression of the spring.

Answer d � 0.482 m

EXAMPLE 5.11 A Block Projected up a Frictionless Incline
Goal Use conservation of mechanical energy to solve a problem involving gravitational potential energy, spring
potential energy, and a ramp.

Problem A 0.500-kg block rests on a horizontal, fric-
tionless surface as in Figure 5.23. The block is pressed
back against a spring having a constant of k � 625 N/m,
compressing the spring by 10.0 cm to point �. Then the
block is released. (a) Find the maximum distance d the
block travels up the frictionless incline if � � 30.0°.
(b) How fast is the block going when halfway to its maxi-
mum height?

�

�

�

k
m

h

xi 0
x

h/2

d

u

Figure 5.23 (Example 5.11)
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5.4 Spring Potential Energy 139

Strategy In the absence of other forces, conservation of mechanical energy applies to parts (a) and (b). In part (a),
the block starts at rest and is also instantaneously at rest at the top of the ramp, so the kinetic energies at � and �
are both zero. Note that the question asks for a distance d along the ramp, not the height h. In part (b), the system
has both kinetic and gravitational potential energy at �.

Solution
(a) Find the distance the block travels up the ramp.

Apply conservation of mechanical energy: 1
2 
mvi

2 � mgyi � 1
2 
k xi

2 � 1
2 
mvf

2 � mgyf � 1
2 
k xf

2

Substitute vi � vf � 0, yi � 0, yf � h � d sin �, and xf � 0. 1
2 
k  xi

2 � mgh � mgd  sin �

Solve for the distance d and insert the known values:

� 1.28 m

d �
1
2kxi

2

mg sin �
�

1
2(625 N/m)(� 0.100 m)2

(0.500 kg)(9.80 m/s2)sin(30.0�)

(b) Find the velocity at half the height, h/2. Note that
h � d sin � � (1.28 m) sin 30.0° � 0.640 m.

Use energy conservation again: 1
2mvi

2 � mgyi � 1
2k  xi

2 � 1
2mvf

2 � mgyf � 1
2k xf

2

Take vi � 0, yi � 0, , and xf � 0, yieldingyf � 1
2h 1

2 
k xi

2 � 1
2 
mvf

2 � mg (1
2 
h)

Multiply by 2/m, and solve for vf :

2.50 m/svf �

� √� 625 N/m
0.500 kg �(� 0.100 m)2 � (9.80 m/s2)(0.640 m)

 vf � √ k
m

 xi
2 � gh

k
m

  xi
2 � vf

2 � gh

Exercise 5.11
A 1.00-kg block is shot horizontally from a spring, as in the previous example, and travels 0.500 m up along a friction-
less ramp before coming to rest and sliding back down. If the ramp makes an angle of 45.0° with respect to the hori-
zontal, and the spring was originally compressed by 0.120 m, find the spring constant.

Answer 481 N/m

Sometimes people involved in automobile accidents
make exaggerated claims of chronic pain due to sub-
tle injuries to the neck or spinal column. The likeli-
hood of injury can be determined by finding the
change in velocity of a car during the accident. The
larger the change in velocity, the more likely it is that
the person suffered spinal injury resulting in chronic
pain. How can reliable estimates for this change in
velocity be found after the fact?

Explanation The metal and plastic of an automobile
acts much like a spring, absorbing the car’s kinetic
energy by flexing during a collision. When the magni-
tude of the difference in velocity of the two cars is un-
der five miles per hour, there is usually no visible dam-
age, because bumpers are designed to absorb the

impact and return to their original shape at such low
speeds. At greater relative speeds there will be perma-
nent damage to the vehicle. Despite the fact the struc-
ture of the car may not return to its original shape, a
certain force per meter is still required to deform it,
just as it takes a certain force per meter to compress a
spring. The greater the original kinetic energy, the
more the car is compressed during a collision, and the
greater the damage. By using data obtained through
crash tests, it’s possible to obtain effective spring
constants for all the different models of cars and de-
termine reliable estimates of the change in velocity of
a given vehicle during an accident. Medical research
has established the likelihood of spinal injury for a
given change in velocity, and the estimated velocity
change can be used to help reduce insurance fraud.

Applying Physics 5.2 Accident Reconstruction
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5.5 SYSTEMS AND ENERGY CONSERVATION
Recall that the work–energy theorem can be written as

where Wnc represents the work done by nonconservative forces and Wc is the work
done by conservative forces in a given physical context. As we have seen, any work
done by conservative forces, such as gravity and springs, can be accounted for, by
changes in potential energy. The work–energy theorem can therefore be written
in the following way:

[5.19]

where now, as previously stated, PE includes all potential energies. This equation is
easily rearranged to:

[5.20]

Recall, however, that the total mechanical energy is given by E � KE � PE. Mak-
ing this substitution into Equation 5.20, we find that the work done on a system by
all nonconservative forces is equal to the change in mechanical energy of that
system:

[5.21]

If the mechanical energy is changing, it has to be going somewhere. The energy
either leaves the system and goes into the surrounding environment, or it
stays in the system and is converted into a nonmechanical form such as thermal
energy.

A simple example is a block sliding along a rough surface. Friction creates ther-
mal energy, absorbed partly by the block and partly by the surrounding environ-
ment. When the block warms up, something called internal energy increases. The
internal energy of a system is related to its temperature, which in turn is a conse-
quence of the activity of its parts, such as the moving atoms of a gas or the
vibration of atoms in a solid. (Internal energy will be studied in more detail in
Chapter 12.)

Energy can be transferred between a nonisolated system and its environment. If
positive work is done on the system, energy is transferred from the environment to
the system. If negative work is done on the system, energy is transferred from the
system to the environment.

So far, we have encountered three methods of storing energy in a system:
kinetic energy, potential energy, and internal energy. On the other hand, we’ve
seen only one way of transferring energy into or out of a system: through work.
Other methods will be studied in later chapters, but are summarized here:

■ Work, in the mechanical sense of this chapter, transfers energy to a system by
displacing it with an applied force.

■ Heat is the process of transferring energy through microscopic collisions be-
tween atoms or molecules. For example, a metal spoon resting in a cup of cof-
fee becomes hot because some of the kinetic energy of the molecules in the liq-
uid coffee is transferred to the spoon as internal energy.

■ Mechanical waves transfer energy by creating a disturbance that propagates
through air or another medium. For example, energy in the form of sound
leaves your stereo system through the loudspeakers and enters your ears to stim-
ulate the hearing process. Other examples of mechanical waves are seismic
waves and ocean waves.

■ Electrical transmission transfers energy through electric currents. This is how
energy enters your stereo system or any other electrical device.

■ Electromagnetic radiation transfers energy in the form of electromagnetic waves
such as light, microwaves, and radio waves. Examples of this method of transfer
include cooking a potato in a microwave oven and light energy traveling from
the Sun to the Earth through space.

Wnc � Ef � Ei � �E

Wnc � (KEf � PEf) � (KEi � PEi)

Wnc � �KE � �PE � (KEf � KEi) � (PEf � PEi)

Wnc � Wc � �KE
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Conservation of Energy in General
The most important feature of the energy approach is the idea that energy is
conserved; it can’t be created or destroyed, only transferred from one form into
another. This is the principle of conservation of energy.

The principle of conservation of energy is not confined to physics. In biology,
energy transformations take place in myriad ways inside all living organisms. One
example is the transformation of chemical energy to mechanical energy that
causes flagella to move and propel an organism. Some bacteria use chemical en-
ergy to produce light. (See Figure 5.24.) Although the mechanisms that produce
these light emissions are not well understood, living creatures often rely on this
light for their existence. For example, certain fish have sacs beneath their eyes
filled with light-emitting bacteria. The emitted light attracts creatures that become
food for the fish.

A book of mass m is projected with a speed v across a horizontal surface. The book
slides until it stops due to the friction force between the book and the surface. The
surface is now tilted 30°, and the book is projected up the surface with the same
initial speed v. When the book has come to rest, how does the decrease in me-
chanical energy of the book–Earth system compare with that when the book slid
over the horizontal surface? (a) It’s the same; (b) it’s larger on the tilted surface;
(c) it’s smaller on the tilted surface; (d) more information is needed.

Quick Quiz 5.4

An asteroid about a kilometer in radius has been
blamed for the extinction of the dinosaurs 65 million
years ago. How can a relatively small object, which
could fit inside a college campus, inflict such injury
on the vast biosphere of the Earth?

Explanation While such an asteroid is comparatively
small, it travels at a very high speed relative to the Earth,
typically on the order of 40 000 m/s. A roughly spherical
asteroid one kilometer in radius and made mainly of
rock has a mass of approximately 10 trillion kilograms—
a small mountain of matter. The kinetic energy of such
an asteroid would be about 1022 J, or 10 billion trillion
joules. By contrast, the atomic bomb that devastated
Hiroshima was equivalent to 15 kilotons of TNT, approx-
imately 6 � 1013 J of energy. On striking the Earth, the
asteroid’s enormous kinetic energy changes into other
forms, such as thermal energy, sound, and light, with a
total energy release greater than 100 million Hiroshima
explosions! Aside from the devastation in the immediate
blast area and fires across a continent, gargantuan tidal
waves would scour low-lying regions around the world
and dust would block the sun for decades.

For this reason, asteroid impacts represent a threat to
life on Earth. Asteroids large enough to cause wide-
spread extinction hit Earth only every 60 million years

or so. Smaller asteroids, of sufficient size to cause serious
damage to civilization on a global scale, are thought to
strike every five to ten thousand years. There have been
several near misses by such asteroids in the last century
and even in the last decade. In 1907, a small asteroid or
comet fragment struck Tunguska, Siberia, annihilating a
region 60 kilometers across. Had it hit northern Europe,
millions of people might have perished.

Figure 5.25 is an asteroid map of the inner solar sys-
tem. More asteroids are being discovered every year.

Applying Physics 5.3 Asteroid Impact!

Figure 5.24 This small plant, found
in warm southern waters, exhibits bio-
luminescence, a process in which
chemical energy is converted to light.
The red areas are chlorophyll, which
glows when excited by blue light.
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Figure 5.25 Asteroid map of the inner solar system. 
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142 Chapter 5 Energy

5.6 POWER
The rate at which energy is transferred is important in the design and use of prac-
tical devices, such as electrical appliances and engines of all kinds. The issue is par-
ticularly interesting for living creatures, since the maximum work per second, or
power output, of an animal varies greatly with output duration. Power is defined as
the rate of energy transfer with time:

If an external force is applied to an object and if the work done by this
force is W in the time interval �t, then the average power delivered
to the object during this interval is the work done divided by the time
interval, or

[5.22]

SI unit: watt (W � J/s)

It’s sometimes useful to rewrite Equation 5.22 by substituting W � F �x and notic-
ing that �x/�t is the average speed of the object during the time �t :

[5.23]

According to Equation 5.23, average power is a constant force times the average
speed. The force F is the component of force in the direction of the average veloc-
ity. A more general definition can be written down with a little calculus and has
the same form as Equation 5.23:

� � Fv

The SI unit of power is the joule/sec, also called the watt, named after James
Watt:

1 W � 1 J/s � 1 kg � m2/s3 [5.24]

The unit of power in the U. S. customary system is the horsepower (hp), where

[5.25]

The horsepower was first defined by Watt, who needed a large power unit to rate
the power output of his new invention, the steam engine.

The watt is commonly used in electrical applications, but it can be used in other
scientific areas as well. For example, European sports car engines are rated in
kilowatts.

In electric power generation, it’s customary to use the kilowatt-hour as a mea-
sure of energy. One kilowatt-hour (kWh) is the energy transferred in 1 h at the
constant rate of 1 kW � 1 000 J/s. Therefore,

1 kWh � (103 W)(3 600 s) � (103 J/s)(3 600 s) � 3.60 � 106 J

It’s important to realize that a kilowatt-hour is a unit of energy, not power.
When you pay your electric bill, you’re buying energy, and that’s why your
bill lists a charge for electricity of about 10 cents/kWh. The amount of
electricity used by an appliance can be calculated by multiplying its power
rating (usually expressed in watts and valid only for normal household electrical
circuits) by the length of time the appliance is operated. For example, an
electric bulb rated at 100 W (� 0.100 kW) “consumes” 3.6 � 10 5 J of energy
in 1 h.

1 hp � 550 
ft �  lb

s
� 746 W

� �
W
�t

�
F �x

�t
� F v

� �
W
�t

Average power �

TIP 5.6 Watts the Difference?
Don’t confuse the nonitalic symbol
for watts, W, with the italic symbol W
for work. A watt is a unit, the same as
joules per second. Work is a concept,
carrying units of joules.

44337_05_p118-159  10/28/04  11:58 AM  Page 142



5.6 Power 143

EXAMPLE 5.12 Power Delivered by an Elevator Motor
Goal Apply the force-times-velocity definition of power.

Problem A 1.00 � 103-kg elevator carries a maximum load of
8.00 � 102 kg. A constant frictional force of 4.00 � 103 N retards its
motion upward, as in Figure 5.26. What minimum power, in kilowatts
and in horsepower, must the motor deliver to lift the fully loaded ele-
vator at a constant speed of 3.00 m/s?

Strategy To solve this problem, we need to determine the force the
elevator’s motor must deliver through the force of tension in the
cable, . Substituting this force together with the given speed v into
� � Fv gives the desired power. The tension in the cable, T, can be
found with Newton’s second law.

T
:

Motor

M

+

g

f

T

Figure 5.26 (Example 5.12) The motor exerts an
upward force on the elevator. A frictional force and
the force of gravity act downwards.)M g:

f
:

T
:

Solution
Apply Newton’s second law to the elevator: 	 F

:
� ma:

The velocity is constant, so the acceleration is zero. The
forces acting on the elevator are the force of tension in 
the cable, , the friction , and gravity  , where M is
the mass of the elevator.

M g:f
:

T
:

T
:

� f
:

� M  g: � 0

Write the equation in terms of its components: T � f � Mg � 0

Solve this equation for the tension T and evaluate it:

T � 2.16 � 104 N

 � 4.00 � 103 N � (1.80 � 103 kg)(9.80 m/s2)

 T � f � Mg

Substitute this value of T for F in the power equation:

86.9 hp � � 64.8 kW �

� � Fv � (2.16 � 104 N)(3.00 m/s) � 6.48 � 104 W 

Remarks The friction force acts to retard the motion, requiring more power. For a descending elevator, the friction
force can actually reduce the power requirement.

Exercise 5.12
Suppose the same elevator with the same load descends at 3.00 m/s. What minimum power is required? (Here, the
motor removes energy from the elevator by not allowing it to fall freely.)

Answer 4.09 � 104 W � 54.9 hp

EXAMPLE 5.13 Shamu Sprint
Goal Calculate the power needed to increase an object’s kinetic energy.

Problem Killer whales are known to reach 32 ft in length and have a mass of over 8 000 kg. They are also very
quick, able to accelerate up to 30 mi/h in a matter of seconds. Disregarding the considerable drag force of water, cal-
culate the average power a killer whale named Shamu with mass 8.00 � 103 kg would need to generate to reach a
speed of 12.0 m/s in 6.00 s.
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Strategy Find the change in kinetic energy of Shamu and use the work–energy theorem to obtain the minimum
work Shamu has to do to effect this change. (Internal and external friction forces increase the necessary amount of
energy.) Divide by the elapsed time to get the power.

Solution
Calculate the change in Shamu’s kinetic energy. By the
work–energy theorem, this equals the minimum work
Shamu must do:

 � 5.76 � 105 J

 � 1
2 �8.00 � 103 kg �(12.0  m/s)2 � 0 

 � KE � 1
2 mvf

2 � 1
2 mvi

2

Divide by the elapsed time (Eq. 5.22), noting that
W � �KE. 9.60 � 104 W� �

W
�t

�
5.76 � 105  J

6.00 s
�

Remarks This is enough power to run a moderate-sized office building! The actual requirements are larger
because of friction in the water and muscular tissues. Something similar can be done with gravitational potential
energy, as the exercise illustrates.

Exercise 5.13
What minimum average power must a 35-kg human boy generate climbing up the stairs to the top of the Washington
monument? The trip up the nearly 170-m-tall building takes him 10 minutes. Include only work done against gravity,
ignoring biological efficiency.

Answer 97 W

EXAMPLE 5.14 Speedboat Power
Goal Combine power, the work–energy theorem and nonconservative forces with one-dimensional kinematics.

Problem How much power would a 1.00 � 103-kg speedboat need to go from rest to 20.0 m/s in 5.00 s, assuming
the water exerts a constant drag force of magnitude fd � 5.00 � 102 N and the acceleration is constant.

Strategy The power is provided by the engine, which creates a nonconservative force. Use the work–energy theo-
rem together with the work done by the engine, Wengine, and the work done by the drag force, Wdrag, on the left-hand
side. Use one-dimensional kinematics to find the acceleration and then the displacement �x. Solve the work–energy
theorem for Wengine, and divide by the elapsed time to get the power.

Solution
Write the work–energy theorem: Wnet � �KE � 1

2 
mvf

2 � 1
2 
mvi

2

Fill in the two work terms and take vi � 0: (1)Wengine � Wdrag � Wengine � fd �x � 1
2mvf

2

To get the displacement �x, first find the acceleration
using the velocity equation of kinematics:

vf � at � vi : vf � at

(20.0 m/s) � a(5.00 s) : a � 4.00 m/s2

Substitute a into the time-independent kinematics equa-
tion, and solve for �x: (20.0 m/s)2 � 02 � 2(4.00 m/s2)�x

�x � 50.0 m

vf
2 � vi

2 � 2a �x

Now that we know �x, we can find the mechanical 
energy lost due to friction.

Wfric � �fd �x � �(5.00 � 102 N)(50.0 m) � �2.50 � 104 J

Solve equation (1) for Wengine:

Wengine � 2.25 � 105 J

� 1
2(1.00 � 103  kg)(20.0 m/s)2 � (�2.50 � 104  J)

Wengine � 1
2 mvf

2 � fd �x

Compute the power: 60.3 hp� �
Wengine

�t
�

2.25 � 105 J
5.00 s

� 4.50 � 104 W �
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Remarks In fact, drag forces generally get larger with increasing speed.

Exercise 5.14
What power must be supplied to push a 5.00-kg block from rest to 10.0 m/s in 5.00 s when the coefficient of kinetic
friction between the block and surface is 0.250? Assume the acceleration is uniform.

Answer 111 W

Energy and Power in a Vertical Jump
The stationary jump consists of two parts: extension and free flight.2 In the exten-
sion phase the person jumps up from a crouch, straightening the legs and throw-
ing up the arms; the free-flight phase occurs when the jumper leaves the ground.
Because the body is an extended object and different parts move with different
speeds, we describe the motion of the jumper in terms of the position and velocity
of the center of mass (CM), which is the point in the body at which all the mass
may be considered to be concentrated. Figure 5.27 shows the position and velocity
of the CM at different stages of the jump.

Using the principle of the conservation of mechanical energy, we can find H,
the maximum increase in height of the CM, in terms of the velocity vCM of the CM
at liftoff. Taking PEi, the gravitational potential energy of the jumper–Earth sys-
tem just as the jumper lifts off from the ground to be zero, and noting that the
kinetic energy KEf of the jumper at the peak is zero, we have

We can estimate vCM by assuming that the acceleration of the CM is constant dur-
ing the extension phase. If the depth of the crouch is h and the time for extension
is �t, we find that . Measurements on a group of male college
students show typical values of h � 0.40 m and �t � 0.25 s, the latter value being
set by the fixed speed with which muscle can contract. Substituting, we obtain

vCM � 2(0.40 m)/(0.25 s) � 3.2 m/s

and

H �
vCM

2

2g
�

(3.2 m/s)2

2(9.80 m/s2)
� 0.52 m

vCM � 2v � 2h/�t

 12 mvCM
2 � mgH  or  H �

vCM
2

2g

 PEi � KEi � PEf � KEf

vCM = 0
CM

h

extension free flight

CM

CM
vCM

vCM

 = 0

H

lift off Figure 5.27 Extension and
free flight in the vertical
jump.

2For more information on this topic, see E. J. Offenbacher, American Journal of Physics, 38, 829 (1969).
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Measurements on this same group of students found that H was between 0.45 m
and 0.61 m in all cases, confirming the basic validity of our simple calculation.

In order to relate the abstract concepts of energy, power, and efficiency to
humans, it’s interesting to calculate these values for the vertical jump. The kinetic
energy given to the body in a jump is , and for a person of mass
68 kg, the kinetic energy is

Although this may seem like a large expenditure of energy, we can make a simple
calculation to show that jumping and exercise in general are not good ways to lose
weight, in spite of their many health benefits. Since the muscles are at most 25%
efficient at producing kinetic energy from chemical energy (muscles always pro-
duce a lot of internal energy and kinetic energy as well as work—that’s why you
sweat when you work out), they use up four times the 350 J (about 1 400 J) of
chemical energy in one jump. This chemical energy ultimately comes from the
food we eat, with energy content given in units of food calories and one food calo-
rie equal to 4 200 J. So the total energy supplied by the body as internal energy
and kinetic energy in a vertical jump is only about one-third of a food calorie! You
are a lot better off not eating that piece of cheesecake than trying to work it off by
jumping.

Finally, it’s interesting to calculate the mechanical power that can be generated
by the body in strenuous activity for brief periods. Here we find that

or (1 400 W)(1 hp/746 W) � 1.9 hp. So humans can produce about 2 hp of
mechanical power for periods on the order of seconds. Table 5.1 shows the
maximum power outputs from humans for various periods while bicycling and
rowing, activities in which it is possible to measure power output accurately.

5.7 WORK DONE BY A VARYING FORCE
Suppose an object is displaced along the x-axis under the action of a force Fx that
acts in the x-direction and varies with position, as shown in Figure 5.28. The object
is displaced in the direction of increasing x from x � xi to x � xf . In such a situa-
tion, we can’t use Equation 5.1 to calculate the work done by the force because this
relationship applies only when is constant in magnitude and direction. However,
if we imagine that the object undergoes the small displacement �x shown in Figure
5.28a, then the x-component Fx of the force is nearly constant over this interval
and we can approximate the work done by the force for this small displacement as

W1 � Fx �x [5.26]

This quantity is just the area of the shaded rectangle in Figure 5.28a. If we imagine
that the curve of Fx versus x is divided into a large number of such intervals, then
the total work done for the displacement from xi to xf is approximately equal to
the sum of the areas of a large number of small rectangles:

W � F1�x1 � F2�x 2 � F3 �x3 � � � � [5.27]

Now imagine going through the same process with twice as many intervals, each
half the size of the original �x. The rectangles then have smaller widths and will
better approximate the area under the curve. Continuing the process of increas-
ing the number of intervals while allowing their size to approach zero, the
number of terms in the sum increases without limit, but the value of the sum

F
:

� �
KE
�t

�
3.5 � 102 J

0.25 s
� 1.4 � 103 W 

KE � 1
2(68 kg)(3.2 m/s)2 � 3.5 � 102 J

KE � 1
2 mvCM

2

A P P L I C AT I O N
Diet Versus Exercise in 
Weight-loss Programs

TABLE 5.1
Maximum Power Output 
from Humans over 
Various Periods
Power Time
2 hp, or 1 500 W 6 s
1 hp, or 750 W 60 s
0.35 hp, or 260 W 35 min
0.2 hp, or 150 W 5 h
0.1 hp, or 75 W 8 h
(safe daily level )

(a)

Fx

Area  =  ∆A = Fx ∆x

Fx

xxfxi

∆x

(b)

Fx

xxfxi

Work

Figure 5.28 (a) The work done by
the force component Fx for the small
displacement �x is Fx �x, which
equals the area of the shaded rectan-
gle. The total work done for the dis-
placement from xi to xf is approxi-
mately equal to the sum of the areas
of all the rectangles. (b) The work
done by the component Fx of the
varying force as the particle moves
from xi to xf is exactly equal to the
area under the curve shown.
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5.7 Work Done by a Varying Force 147

approaches a definite value equal to the area under the curve bounded by Fx and
the x-axis in Figure 5.28b. In other words, the work done by a variable force
acting on an object that undergoes a displacement is equal to the area under the
graph of Fx versus x.

A common physical system in which force varies with position consists of a block
on a horizontal, frictionless surface connected to a spring, as discussed in Section
5.4. When the spring is stretched or compressed a small distance x from its equilib-
rium position x � 0, it exerts a force on the block given by , where k is
the force constant of the spring.

Now let’s determine the work done by an external agent on the block as the
spring is stretched very slowly from xi � 0 to xf � xmax, as in Active Figure 5.29a.
This work can be easily calculated by noting that at any value of the displacement,
Newton’s third law tells us that the applied force is equal in magnitude to the
spring force and acts in the opposite direction, so that Fapp � �(�kx) � kx. A
plot of Fapp versus x is a straight line, as shown in Active Figure 5.29b. Therefore,
the work done by this applied force in stretching the spring from x � 0 to
x � x max is the area under the straight line in that figure, which in this case is the
area of the shaded triangle:

During this same time the spring has done exactly the same amount of work, but
that work is negative, because the spring force points in the direction opposite the
motion. The potential energy of the system is exactly equal to the work done by
the applied force and is the same sign, which is why potential energy is thought of
as stored work.

WFapp
� 1

2 
kx 2

max

F
:

s

F
:

app

Fs � �kx

xi = 0 xf = xmax

s app

(a)

O

Fapp

x
xmax

(b)

F F

ACTIVE FIGURE 5.29
(a) A block being pulled from xi � 0 
to xf � xmax on a frictionless
surface by a force . If the process
is carried out very slowly, the applied
force is equal in magnitude and oppo-
site in direction to the spring force at
all times. (b) A graph of Fapp versus x.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 5.29 to observe the block’s
motion for various maximum
displacements and spring constants.

F:app

EXAMPLE 5.15 Work Required to Stretch a Spring
Goal Apply the graphical method of finding work.

Problem One end of a horizontal spring (k � 80.0 N/m) is held fixed while an exter-
nal force is applied to the free end, stretching it slowly from x � � 0 to x � � 4.00 cm.
(a) Find the work done by the applied force on the spring. (b) Find the additional work
done in stretching the spring from x � � 4.00 cm to x � � 7.00 cm.

Strategy For part (a), simply find the area of the smaller triangle, using ,
one-half the base times the height. For part (b), the easiest way to find the additional
work done from x� � 4.00 cm to x � � 7.00 cm is to find the area of the new, larger
triangle and subtract the area of the smaller triangle. 

Solution
(a) Find the work from x � � 0 cm to x� � 4.00 cm.

A � 1
2 bh

Compute the area of the smaller triangle:   0.064 0  JW  �   
1
2kx 2

B   �   
1
2(80.0 N/m)(0.040 m)2

  �

(b) Find the work from x� � 4.00 cm to x� � 7.00 cm.

Compute the area of the large triangle, and subtract the
area of the smaller triangle:

�  0.132  J

 � 0.196 J � 0.064 0 J

 W �  
1
2 (80.0 N/m)(0.070 0 m)2 �0.064 0 J 

 W � 1
2  

kx 2
C � 1

2  
kx 2

B

Fapp

Fapp = (80.0 N/m)(x)

x (cm)
O 2.00 4.00 6.00

�

�

�

Figure 5.30 (Example 5.15) A
graph of the external force
required to stretch a spring that
obeys Hooke’s law versus the
elongation of the spring.
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Remarks Only simple geometries—rectangles and triangles—can be solved exactly with this method. More com-
plex shapes require calculus or the square-counting technique in the next worked example.

Exercise 5.15
How much work is required to stretch this same spring from xi � 5.00 cm to xf � 9.00 cm?

Answer 0.224 J

EXAMPLE 5.16 Estimating Work by Counting Boxes
Goal Use the graphical method and counting boxes to estimate the work done by
a force.

Problem Suppose the force applied to stretch a thick piece of elastic changes
with position as indicated in Figure 5.31a. Estimate the work done by the applied
force.

Strategy To find the work, simply count the number of boxes underneath the
curve, and multiply that number by the area of each box. The curve will pass
through the middle of some boxes, in which case only an estimated fractional part
should be counted.

Solution
There are 62 complete or nearly complete boxes under the curve, 6 boxes 
that are about half under the curve, and a triangular area from x � 0 m to 
x � 0.10 m that is equivalent to 1 box, for a total of about 66 boxes. Since 
the area of each box is 0.10 J, the total work done is approximately 
66 � 0.10 J � 6.6 J.

Remarks Mathematically, there are a number of other methods for creating such
estimates, all involving adding up regions approximating the area. To get a better
estimate, make smaller boxes.

Exercise 5.16
Suppose the applied force necessary to pull the drawstring on a bow is given by
Figure 5.31b. Find the approximate work done by counting boxes.

Answer About 50 J. (Individual answers may vary.)

10.0

6.0

8.0

2.0

4.0

0.0

(a)

0.2 0.4 0.6 0.8 1.0
x(m)

Fapp(N)

100

60

80

20

40

0

(b)

0.1 0.3 0.5 0.7
x(m)

Fapp(N)

Figure 5.31 (a) (Example 5.16)
(b) (Exercise 5.16)

Take a practice test by logging into
PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

5.1 Work
The work done on an object by a constant force is

W � (F cos �)�x [5.2]

where F is the magnitude of the force, �x is the object’s dis-
placement, and � is the angle between the direction of the
force and the displacement . Solving simple problems
requires substituting values into this equation. More
complex problems, such as those involving friction, often

�x:F
:

require using Newton’s second law, , to deter-
mine forces.

5.2 Kinetic Energy and the 
WorK–Energy Theorem
The kinetic energy of a body with mass m and speed v is
given by 

[5.5]

The work–energy theorem states that the net work done
on an object of mass m is equal to the change in its kinetic
energy, or

[5.6] Wnet � KEf � KEi � � KE 

KE � 12 mv 2

ma: � 	F
:

SUMMARY
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Work and energy of any kind carry units of joules. Solving
problems involves finding the work done by each force act-
ing on the object and summing them up, which is Wnet, fol-
lowed by substituting known quantities into Equation 5.6,
solving for the unknown quantity.

Conservative forces are special: Work done against them
can be recovered—it’s conserved. An example is gravity: The
work done in lifting an object through a height is effectively
stored in the gravity field and can be recovered in the kinetic
energy of the object simply by letting it fall. Nonconservative
forces, such as surface friction and drag, dissipate energy in a
form that can’t be readily recovered. To account for such
forces, the work–energy theorem can be rewritten as

[5.7]

where Wnc is the work done by nonconservative forces and
Wc is the work done by conservative forces.

5.3 Gravitational Potential Energy
The gravitational force is a conservative field. Gravitational
potential energy is another way of accounting for gravita-
tional work Wg :

[5.11]

To find the change in gravitational potential energy as an ob-
ject of mass m moves between two points in a gravitational
field, substitute the values of the object’s y -coordinates.

The work–energy theorem can be generalized to in-
clude gravitational potential energy:

[5.12]

Gravitational work and gravitational potential energy
should not both appear in the work–energy theorem at
the same time, only one or the other, because they’re
equivalent. Setting the work due to nonconservative forces
to zero and substituting the expressions for KE and PE,
a form of the conservation of mechanical energy with
gravitation can be obtained:

[5.14]

To solve problems with this equation, identify two points in
the system—one where information is known and the
other where information is desired. Substitute and solve for
the unknown quantity.

1
2 

mvi
2 � mg yi � 1

2 
mvf

2 � mg yf

Wnc � (KEf � KEi) � (PEf � PEi)

Wg � �(PEf � PEi ) � �(mg yf � mg yi)

Wnc � Wc � �KE

The work done by other forces, as when frictional forces
are present, isn’t always zero. In that case, identify two
points as before, calculate the work due to all other forces,
and solve for the unknown in Equation 5.12.

5.4 Spring Potential Energy
The spring force is conservative, and its potential energy is
given by

[5.16]

Spring potential energy can be put into the work–energy
theorem, which then reads

[5.17]

When nonconservative forces are absent, Wnc � 0 and me-
chanical energy is conserved.

5.5 Systems and Energy Conservation
The principle of the conservation of energy states that en-
ergy can’t be created or destroyed. It can be transformed,
but the total energy content of any isolated system is always
constant. The same is true for the universe at large. The
work done by all nonconservative forces acting on a system
equals the change in the total mechanical energy of the 
system:

[5.20–21]

where PE represents all potential energies present.

5.6 Power
Average power is the amount of energy transferred divided
by the time taken for the transfer:

[5.22]

This expression can also be written

[5.23]

where is the object’s average speed. The unit of power is the
watt (W � J/s). To solve simple problems, substitute given
quantities into one of these equations. More difficult prob-
lems usually require finding the work done on the object
using the work–energy theorem or the definition of work.

v

� � F  v

� �
W
�t

Wnc � (KEf � PEf) � (KEi � PEi) � Ef � Ei

Wnc � (KEf � KEi) � (PEg f � PEgi) � (PEsf � PEsi)

PEs � 12 kx 2

CONCEPTUAL QUESTIONS
1. Consider a tug-of-war as in Figure Q5.1, in which two

teams pulling on a rope are evenly matched, so that no
motion takes place. Is work done on the rope? On the
pullers? On the ground? Is work done on anything?

2. Discuss whether any work is being done by each of the
following agents and, if so, whether the work is positive or
negative: (a) a chicken scratching the ground, (b) a per-
son studying, (c) a crane lifting a bucket of concrete,
(d) the force of gravity on the bucket in part (c), (e) the
leg muscles of a person in the act of sitting down.

3. If the height of a playground slide is kept constant, will
the length of the slide or whether it has bumps make any
difference in the final speed of children playing on it?
Assume that the slide is slick enough to be considered Figure Q5.1

Ar
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frictionless. Repeat this question, assuming that the slide
is not frictionless.

4. (a) Can the kinetic energy of a system be negative?
(b) Can the gravitational potential energy of a system be
negative? Explain.

5. Roads going up mountains are formed into switchbacks,
with the road weaving back and forth along the face of
the slope such that there is only a gentle rise on any por-
tion of the roadway. Does this configuration require any
less work to be done by an automobile climbing the
mountain, compared with one traveling on a roadway that
is straight up the slope? Why are switchbacks used?

6. (a) If the speed of a particle is doubled, what happens to
its kinetic energy? (b) If the net work done on a particle is
zero, what can be said about its speed?

7. As a simple pendulum swings back and forth, the forces
acting on the suspended object are the force of gravity,
the tension in the supporting cord, and air resistance. (a)
Which of these forces, if any, does no work on the pendu-
lum? (b) Which of these forces does negative work at all
times during the pendulum’s motion? (c) Describe the
work done by the force of gravity while the pendulum is
swinging.

8. A bowling ball is suspended from the ceiling of a lecture
hall by a strong cord. The ball is drawn away from its equi-
librium position and released from rest at the tip of the
demonstrator’s nose, as shown in Figure Q5.8. If the
demonstrator remains stationary, explain why the ball
does not strike her on its return swing. Would this demon-
strator be safe if the ball were given a push from its start-
ing position at her nose?

running on the ground? Explain. (b) What effect, if any,
does tilting the treadmill upward have? Discuss.

11. When a punter kicks a football, is he doing any work on
the ball while the toe of his foot is in contact with it? Is he
doing any work on the ball after it loses contact with his
toe? Are any forces doing work on the ball while it is in
flight?

12. As a sled moves across a flat, snow-covered field at con-
stant velocity, is any work done? How does air resistance
enter into the picture?

13. A weight is connected to a spring that is suspended verti-
cally from the ceiling. If the weight is displaced downward
from its equilibrium position and released, it will oscillate
up and down. If air resistance is neglected, will the total
mechanical energy of the system (weight plus Earth plus
spring) be conserved? How many forms of potential en-
ergy are there for this situation?

14. The driver of a car slams on her brakes to avoid colliding
with a deer crossing the highway. What happens to the
car’s kinetic energy as it comes to rest?

15. Suppose you are reshelving books in a library. You lift a
book from the floor to the top shelf. The kinetic energy
of the book on the floor was zero, and the kinetic energy
of the book on the top shelf is zero, so there is no change
in kinetic energy. Yet you did some work in lifting the
book. Is the work–energy theorem violated?

16. The feet of a standing person of mass m exert a force
equal to mg on the floor, and the floor exerts an equal
and opposite force upwards on the feet, which we call the
normal force. During the extension phase of a vertical
jump (see page 145), the feet exert a force on the floor
that is greater than mg , so the normal force is greater
than mg. As you learned in Chapter 4, we can use this re-
sult and Newton’s second law to calculate the acceleration
of the jumper: a � Fnet/m � (n � mg)/m.

Using energy ideas, we know that work is performed on
the jumper to give him or her kinetic energy. But the nor-
mal force can’t perform any work here, because the feet
don’t undergo any displacement. How is energy trans-
ferred to the jumper?

17. An Earth satellite is in a circular orbit at an altitude of
500 km. Explain why the work done by the gravitational
force acting on the satellite is zero. Using the work–energy
theorem, what can you say about the speed of the satellite?

18. In most circumstances, the normal force acting on an
object and the force of static friction do no work on the
object. However, the reason that the work is zero is differ-
ent for the two cases. In each case, explain why the work
done by the force is zero.

19. In most situations we have encountered in this chapter,
frictional forces tend to reduce the kinetic energy of an
object. However, frictional forces can sometimes increase
an object’s kinetic energy. Describe a few situations in
which friction causes an increase in kinetic energy.

20. Discuss the energy transformations that occur as a pole
vaulter runs at high speeds and attempts to clear a bar
that is about 5 m from the ground. In your analysis, you
must consider changes in the kinetic energy of the
runner, the elastic potential energy of the pole as it bends,
and the gravitational potential energy of the vaulter.
Ignore rotational motion.

Figure Q5.8

9. An older model car accelerates from 0 to speed v in
10 seconds. A newer, more powerful sports car accelerates
from 0 to 2v in the same time. What is the ratio of the
powers expended by the two cars? Assume the energy
coming from the engine appears only as kinetic energy of
the cars.

10. During a stress test of the cardiovascular system, a patient
walks and runs on a treadmill. (a) Is the energy expended
by the patient equivalent to the energy of walking and
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PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 5.1 Work
1. A weight lifter lifts a 350-N set of weights from ground

level to a position over his head, a vertical distance of
2.00 m. How much work does the weight lifter do, assum-
ing he moves the weights at constant speed?

2. If a man lifts a 20.0-kg bucket from a well and does 6.00 kJ
of work, how deep is the well? Assume that the speed of
the bucket remains constant as it is lifted.

3. A tugboat exerts a constant force of 5.00 � 103 N on a
ship moving at constant speed through a harbor. How
much work does the tugboat do on the ship if each moves
a distance of 3.00 km?

4. A shopper in a supermarket pushes a cart with a force of
35 N directed at an angle of 25° downward from the hori-
zontal. Find the work done by the shopper as she moves
down a 50-m length of aisle.

5. Starting from rest, a 5.00-kg block slides 2.50 m down a
rough 30.0° incline. The coefficient of kinetic friction be-
tween the block and the incline is 
k � 0.436. Determine
(a) the work done by the force of gravity, (b) the work
done by the friction force between block and incline, and
(c) the work done by the normal force.

6. A horizontal force of 150 N is used to push a 40.0-kg pack-
ing crate a distance of 6.00 m on a rough horizontal sur-
face. If the crate moves at constant speed, find (a) the
work done by the 150-N force and (b) the coefficient of
kinetic friction between the crate and surface.

7. A sledge loaded with bricks has a total mass of 18.0 kg and
is pulled at constant speed by a rope inclined at 20.0°
above the horizontal. The sledge moves a distance of
20.0 m on a horizontal surface. The coefficient of kinetic
friction between the sledge and surface is 0.500. (a) What
is the tension in the rope? (b) How much work is done by
the rope on the sledge? (c) What is the mechanical en-
ergy lost due to friction?

8. A block of mass 2.50 kg is pushed 2.20 m along a frictionless
horizontal table by a constant 16.0-N force directed 25.0°
below the horizontal. Determine the work done by
(a) the applied force, (b) the normal force exerted by the
table, (c) the force of gravity, and (d) the net force on the
block.

Section 5.2 Kinetic Energy and the WorK–Energy Theorem
9. A mechanic pushes a 2.50 � 103-kg car from rest to a

speed of v, doing 5 000 J of work in the process. During
this time, the car moves 25.0 m. Neglecting friction be-
tween car and road, find (a) v and (b) the horizontal
force exerted on the car.

10. A 7.00-kg bowling ball moves at 3.00 m/s. How fast must a
2.45-g Ping-Pong ball move so that the two balls have the
same kinetic energy?

11. A person doing a chin-up weighs 700 N, exclusive of the
arms. During the first 25.0 cm of the lift, each arm exerts
an upward force of 355 N on the torso. If the upward
movement starts from rest, what is the person’s velocity at
that point?

12. A crate of mass 10.0 kg is pulled up a rough incline with
an initial speed of 1.50 m/s. The pulling force is 100 N
parallel to the incline, which makes an angle of 20.0° with
the horizontal. The coefficient of kinetic friction is 0.400,
and the crate is pulled 5.00 m. (a) How much work is
done by gravity? (b) How much mechanical energy is lost
due to friction? (c) How much work is done by the 100-N
force? (d) What is the change in kinetic energy of the
crate? (e) What is the speed of the crate after being
pulled 5.00 m?

13. A 70-kg base runner begins his slide into second base
when he is moving at a speed of 4.0 m/s. The coefficient
of friction between his clothes and Earth is 0.70. He slides
so that his speed is zero just as he reaches the base.
(a) How much mechanical energy is lost due to friction
acting on the runner? (b) How far does he slide?

14. An outfielder throws a 0.150-kg baseball at a speed of
40.0 m/s and an initial angle of 30.0°. What is the kinetic
energy of the ball at the highest point of its motion?

15. A 2.0-g bullet leaves the barrel of a gun at a speed of
300 m/s. (a) Find its kinetic energy. (b) Find the average
force exerted by the expanding gases on the bullet as it
moves the length of the 50-cm-long barrel.

16. A 0.60-kg particle has a speed of 2.0 m/s at point A and a
kinetic energy of 7.5 J at point B. What is (a) its kinetic
energy at A? (b) its speed at point B? (c) the total work
done on the particle as it moves from A to B?

17. A 2 000-kg car moves down a level high-
way under the actions of two forces: a 1 000-N forward
force exerted on the drive wheels by the road and a 950-N
resistive force. Use the work–energy theorem to find the
speed of the car after it has moved a distance of 20 m,
assuming that it starts from rest.

18. On a frozen pond, a 10-kg sled is given a kick that imparts
to it an initial speed of v0 � 2.0 m/s. The coefficient of
kinetic friction between sled and ice is 
k � 0.10. Use the
work–energy theorem to find the distance the sled moves
before coming to rest.

Section 5.3 Gravitational Potential Energy

Section 5.4 Spring Potential Energy  
19. Find the height from which you would have to drop a ball

so that it would have a speed of 9.0 m/s just before it hits
the ground.

20. A flea is able to jump about 0.5 m. It has been said that if
a flea were as big as a human, it would be able to jump
over a 100-story building! When an animal jumps, it con-
verts work done in contracting muscles into gravitational
potential energy (with some steps in between). The maxi-
mum force exerted by a muscle is proportional to its
cross-sectional area, and the work done by the muscle is
this force times the length of contraction. If we magnified
a flea by a factor of 1 000, the cross section of its muscle
would increase by 1 0002 and the length of contraction
would increase by 1 000. How high would this “superflea”
be able to jump? (Don’t forget that the mass of the
“superflea” increases as well.)
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21. An athlete on a trampoline leaps straight up into the air
with an initial speed of 9.0 m/s. Find (a) the maximum
height reached by the athlete relative to the trampoline
and (b) the speed of the athlete when she is halfway up to
her maximum height.

22. Truck suspensions often have “helper springs” that en-
gage at high loads. One such arrangement is a leaf spring
with a helper coil spring mounted on the axle, as shown
in Figure P5.22. When the main leaf spring is compressed
by distance y0, the helper spring engages and then helps
to support any additional load. Suppose the leaf spring
constant is 5.25 � 10 5 N/m, the helper spring constant is
3.60 � 105 N/m, and y0 � 0.500 m. (a) What is the com-
pression of the leaf spring for a load of 5.00 � 105 N?
(b) How much work is done in compressing the springs?

air resistance, as well as any energy absorbed by the pole,
and determine her altitude as she crosses the bar.

27. A child and a sled with a combined mass of 50.0 kg slide
down a frictionless slope. If the sled starts from rest and
has a speed of 3.00 m/s at the bottom, what is the height
of the hill?

28. A 0.400-kg bead slides on a curved wire, starting from rest
at point � in Figure P5.28. If the wire is frictionless, find
the speed of the bead (a) at � and (b) at �.

y0

Axle

Truck body

Figure P5.22

Figure P5.23

23. A daredevil on a motorcycle leaves the end of a ramp with a
speed of 35.0 m/s as in Figure P5.23. If his speed is 33.0 m/s
when he reaches the peak of the path, what is the maximum
height that he reaches? Ignore friction and air resistance.

h

33.0 m/s

35.0 m/s

24. A softball pitcher rotates a 0.250-kg ball around a vertical cir-
cular path of radius 0.600 m before releasing it. The pitcher
exerts a 30.0-N force directed parallel to the motion of the
ball around the complete circular path. The speed of the
ball at the top of the circle is 15.0 m/s. If the ball is released
at the bottom of the circle, what is its speed upon release?

25. The chin-up is one exercise that can be used to strengthen
the biceps muscle. This muscle can exert a force of approxi-
mately 800 N as it contracts a distance of 7.5 cm in a 75-kg
male3. How much work can the biceps muscles (one in each
arm) perform in a single contraction? Compare this
amount of work with the energy required to lift a 75-kg per-
son 40 cm in performing a chin-up. Do you think the biceps
muscle is the only muscle involved in performing a chin-up?

Section 5.5 Systems and Energy Conservation
26. A 50-kg pole vaulter running at 10 m/s vaults over the bar.

Her speed when she is above the bar is 1.0 m/s. Neglect

2.00 m

5.00 m

�

�

�

Figure P5.28 (Problems 28 and 36)

29. A 5.00-kg steel ball is dropped onto a copper plate from a
height of 10.0 m. If the ball leaves a dent 3.20 mm deep
in the plate, what is the average force exerted by the plate
on the ball during the impact?

30. A bead of mass m � 5.00 kg is released from point � and
slides on the frictionless track shown in Figure P5.30.
Determine (a) the bead’s speed at points � and � and
(b) the net work done by the force of gravity in moving
the bead from � to �.

3.20 m

�

�

�

m

2.00 m

5.00 m

Figure P5.30

31. Tarzan swings on a 30.0-m-long vine initially inclined at an
angle of 37.0° with the vertical. What is his speed at the
bottom of the swing (a) if he starts from rest? (b) if he
pushes off with a speed of 4.00 m/s?

32. Three objects with masses m1 � 5.0 kg, m2 � 10 kg, and
m3 � 15 kg, respectively, are attached by strings over fric-
tionless pulleys, as indicated in Figure P5.32. The horizon-
tal surface is frictionless and the system is released from
rest. Using energy concepts, find the speed of m3 after it
moves down a distance of 4.0 m.

m 2

m 1
m 3

Figure P5.32 (Problems 32 and 89)
3G. P. Pappas et.al., “Nonuniform shortening in the biceps brachii during elbow
flexion,” Journal of Applied Physiology 92, 2381, 2002.
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33. The launching mechanism of a toy gun
consists of a spring of unknown spring constant, as shown
in Figure P5.33a. If the spring is compressed a distance of
0.120 m and the gun fired vertically as shown, the gun can
launch a 20.0-g projectile from rest to a maximum height
of 20.0 m above the starting point of the projectile.
Neglecting all resistive forces, determine (a) the spring
constant and (b) the speed of the projectile as it moves
through the equilibrium position of the spring (where
x � 0), as shown in Figure P5.33b.

(c) Identify all the forces that do no work on the block.
(d) Let m � 2.00 kg, x � 4.00 m, � � 37.0°, F � 15.0 N,
and 
k � 0.400, and find the answers to parts (a) and (b).

39. A 70-kg diver steps off a 10-m tower and drops from rest
straight down into the water. If he comes to rest 5.0 m be-
neath the surface, determine the average resistive force
exerted on him by the water.

40. An airplane of mass 1.5 � 104 kg is moving at 60 m/s. The
pilot then revs up the engine so that the forward thrust by
the air around the propeller becomes 7.5 � 104 N. If the
force exerted by air resistance on the body of the airplane
has a magnitude of 4.0 � 104 N, find the speed of the air-
plane after it has traveled 500 m. Assume that the airplane
is in level flight throughout this motion.

41. A 2.1 � 103-kg car starts from rest at the top of a 5.0-m-
long driveway that is inclined at 20° with the horizontal. If
an average friction force of 4.0 � 103 N impedes the
motion, find the speed of the car at the bottom of the
driveway.

42. A 25.0-kg child on a 2.00-m-long swing is released from
rest when the ropes of the swing make an angle of 30.0°
with the vertical. (a) Neglecting friction, find the child’s
speed at the lowest position. (b) If the actual speed of the
child at the lowest position is 2.00 m/s, what is the me-
chanical energy lost due to friction?

43. Starting from rest, a 10.0-kg block slides 3.00 m down to
the bottom of a frictionless ramp inclined 30.0° from the
floor. The block then slides an additional 5.00 m along
the floor before coming to a stop. Determine (a) the
speed of the block at the bottom of the ramp, (b) the co-
efficient of kinetic friction between block and floor, and
(c) the mechanical energy lost due to friction.

44. A child slides without friction from a height h along a
curved water slide (Fig. P5.44). She is launched from a
height h/5 into the pool. Determine her maximum air-
borne height y in terms of h and the launch angle .�

x = 0
x x

v

(a) (b)

Figure P5.33

34. A projectile is launched with a speed of 40 m/s at an
angle of 60° above the horizontal. Use conservation of en-
ergy to find the maximum height reached by the projec-
tile during its flight.

35. A 0.250-kg block is placed on a light vertical spring
(k � 5.00 � 103 N/m) and pushed downwards, compress-
ing the spring 0.100 m. After the block is released, it
leaves the spring and continues to travel upwards. What
height above the point of release will the block reach if air
resistance is negligible?

36. The wire in Problem 28 (Fig. P5.28) is frictionless be-
tween points � and � and rough between � and �. The
0.400-kg bead starts from rest at �. (a) Find its speed at
�. (b) If the bead comes to rest at �, find the loss in me-
chanical energy as it goes from � to �.

37. (a) A child slides down a water slide at an amusement
park from an initial height h. The slide can be considered
frictionless because of the water flowing down it. Can the
equation for conservation of mechanical energy be used
on the child? (b) Is the mass of the child a factor in deter-
mining his speed at the bottom of the slide? (c) The child
drops straight down rather than following the curved
ramp of the slide. In which case will he be traveling faster
at ground level? (d) If friction is present, how would the
conservation-of-energy equation be modified? (e) Find
the maximum speed of the child when the slide is friction-
less if the initial height of the slide is 12.0 m.

38. (a) A block with a mass m is pulled along a horizontal sur-
face for a distance x by a constant force at an angle �
with respect to the horizontal. The coefficient of kinetic
friction between block and table is 
k. Is the force
exerted by friction equal to 
kmg ? If not, what is the force
exerted by friction? (b) How much work is done by
the friction force and by ? (Don’t forget the signs.)F

:

F
:

h

θ

h/5
y

Figure P5.44

45. A skier starts from rest at the top of a
hill that is inclined 10.5° with respect to the horizontal.
The hillside is 200 m long, and the coefficient of friction
between snow and skis is 0.075 0. At the bottom of the
hill, the snow is level and the coefficient of friction is un-
changed. How far does the skier glide along the horizon-
tal portion of the snow before coming to rest?

46. In a circus performance, a monkey is strapped to a sled and
both are given an initial speed of 4.0 m/s up a 20° inclined
track. The combined mass of monkey and sled is 20 kg, and
the coefficient of kinetic friction between sled and incline is
0.20. How far up the incline do the monkey and sled move?

47. An 80.0-kg skydiver jumps out of a balloon at an altitude
of 1 000 m and opens the parachute at an altitude of
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200.0 m. (a) Assuming that the total retarding force on
the diver is constant at 50.0 N with the parachute closed
and constant at 3 600 N with the parachute open, what
is the speed of the diver when he lands on the ground?
(b) Do you think the skydiver will get hurt? Explain.
(c) At what height should the parachute be opened so
that the final speed of the skydiver when he hits the
ground is 5.00 m/s? (d) How realistic is the assumption
that the total retarding force is constant? Explain.

Section 5.6 Power
48. A skier of mass 70 kg is pulled up a slope by a motor-

driven cable. (a) How much work is required to pull him
60 m up a 30° slope (assumed frictionless) at a constant
speed of 2.0 m/s? (b) What power must a motor have to
perform this task?

49. Columnist Dave Barry poked fun at the name “The Grand
Cities,” adopted by Grand Forks, North Dakota, and East
Grand Forks, Minnesota. Residents of the prairie towns
then named a sewage pumping station for him. At the
Dave Barry Lift Station No. 16, untreated sewage is raised
vertically by 5.49 m in the amount of 1 890 000 liters each
day. With a density of 1 050 kg/m3, the waste enters and
leaves the pump at atmospheric pressure through pipes of
equal diameter. (a) Find the output power of the lift station.
(b) Assume that a continuously operating electric motor
with average power 5.90 kW runs the pump. Find its effi-
ciency. In January 2002, Barry attended the outdoor dedica-
tion of the lift station and a festive potluck supper to which
the residents of the different Grand Forks sewer districts
brought casseroles, Jell-O® salads, and “bars” (desserts).

50. While running, a person dissipates about 0.60 J of mechani-
cal energy per step per kilogram of body mass. If a 60-kg
person develops a power of 70 W during a race, how fast is
the person running? (Assume a running step is 1.5 m long.)

51. The electric motor of a model train accelerates the train
from rest to 0.620 m/s in 21.0 ms. The total mass of the
train is 875 g. Find the average power delivered to the
train during its acceleration.

52. An electric scooter has a battery capable of supplying
120 Wh of energy. [Note that an energy of 1 Wh �
(1 J/s)(3600 s) � 3600 J] If frictional forces and other
losses account for 60.0% of the energy usage, what change
in altitude can a rider achieve when driving in hilly terrain
if the rider and scooter have a combined weight of 890 N?

53. A 1.50 � 103-kg car starts from rest and accelerates uni-
formly to 18.0 m/s in 12.0 s. Assume that air resistance re-
mains constant at 400 N during this time. Find (a) the av-
erage power developed by the engine and (b) the
instantaneous power output of the engine at t � 12.0 s,
just before the car stops accelerating.

54. A 650-kg elevator starts from rest and moves upwards for
3.00 s with constant acceleration until it reaches its cruis-
ing speed, 1.75 m/s. (a) What is the average power of the
elevator motor during this period? (b) How does this
amount of power compare with its power during an
upward trip with constant speed?

Section 5.7 Work Done by a Varying Force
55. The force acting on a particle varies

as in Figure P5.55. Find the work done by the force
as the particle moves (a) from x � 0 to x � 8.00 m,

(b) from x � 8.00 m to x � 10.0 m, and (c) from x � 0 to
x � 10.0 m.

2 4 6 8 10
x(m)

–2

–4

2

4

6

Fx(N)

Figure P5.55

56. An object is subject to a force Fx that varies with position
as in Figure P5.56. Find the work done by the force on the
object as it moves (a) from x � 0 to x � 5.00 m, (b) from
x � 5.00 m to x � 10.0 m, and (c) from x � 10.0 m to 
x � 15.0 m. (d) What is the total work done by the force
over the distance x � 0 to x � 15.0 m?

0 2 4 6 8 10 12 14 16

1

2

3

Fx(N)

x(m)

Figure P5.56

57. The force acting on an object is given by Fx � (8x � 16) N,
where x is in meters. (a) Make a plot of this force versus x
from x � 0 to x � 3.00 m. (b) From your graph, find the
net work done by the force as the object moves from 
x � 0 to x � 3.00 m.

ADDITIONAL PROBLEMS

58. A 2.0-m-long pendulum is released from rest when the
support string is at an angle of 25° with the vertical. What
is the speed of the bob at the bottom of the swing?

59. An archer pulls her bowstring back 0.400 m by exerting a
force that increases uniformly from zero to 230 N. (a) What
is the equivalent spring constant of the bow? (b) How much
work does the archer do in pulling the bow?

60. A block of mass 12.0 kg slides from rest down a friction-
less 35.0° incline and is stopped by a strong spring with
k � 3.00 � 104 N/m. The block slides 3.00 m from the
point of release to the point where it comes to rest against
the spring. When the block comes to rest, how far has the
spring been compressed?

61. (a) A 75-kg man steps out a window and falls (from rest)
1.0 m to a sidewalk. What is his speed just before his feet
strike the pavement? (b) If the man falls with his knees
and ankles locked, the only cushion for his fall is an ap-
proximately 0.50-cm give in the pads of his feet. Calculate
the average force exerted on him by the ground in this sit-
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uation. This average force is sufficient to cause damage to
cartilage in the joints or to break bones.

62. A toy gun uses a spring to project a 5.3-g soft rubber
sphere horizontally. The spring constant is 8.0 N/m, the
barrel of the gun is 15 cm long, and a constant frictional
force of 0.032 N exists between barrel and projectile. With
what speed does the projectile leave the barrel if the
spring was compressed 5.0 cm for this launch?

63. Two objects are connected by a light string passing over a
light, frictionless pulley as in Figure P5.63. The 5.00-kg
object is released from rest at a point 4.00 m above the
floor. (a) Determine the speed of each object when the
two pass each other. (b) Determine the speed of each ob-
ject at the moment the 5.00-kg object hits the floor.
(c) How much higher does the 3.00-kg object travel after
the 5.00-kg object hits the floor?

(Fig. P5.65). Calculate (a) its gravitational potential en-
ergy at A relative to B, (b) its kinetic energy at B, (c) its
speed at B, (d) its potential energy at C relative to B, and
(e) its kinetic energy at C.

66. Energy is conventionally measured in Calories as well as in
joules. One Calorie in nutrition is 1 kilocalorie, which we
define in Chapter 11 as 1 kcal � 4 186 J. Metabolizing
1 gram of fat can release 9.00 kcal. A student decides to try
to lose weight by exercising. She plans to run up and down
the stairs in a football stadium as fast as she can and as
many times as necessary. Is this in itself a practical way to
lose weight? To evaluate the program, suppose she runs up
a flight of 80 steps, each 0.150 m high, in 65.0 s. For sim-
plicity, ignore the energy she uses in coming down (which
is small). Assume that a typical efficiency for human mus-
cles is 20.0%. This means that when your body converts
100 J from metabolizing fat, 20 J goes into doing mechani-
cal work (here, climbing stairs). The remainder goes into
internal energy. Assume the student’s mass is 50.0 kg.
(a) How many times must she run the flight of stairs to
lose 1 pound of fat? (b) What is her average power output,
in watts and in horsepower, as she is running up the stairs?

67. In terms of saving energy, bicycling and walking are far
more efficient means of transportation than is travel by
automobile. For example, when riding at 10.0 mi/h, a
cyclist uses food energy at a rate of about 400 kcal/h
above what he would use if he were merely sitting still.
(In exercise physiology, power is often measured in
kcal/h rather than in watts. Here, 1 kcal � 1 nutritionist’s
Calorie � 4 186 J.) Walking at 3.00 mi/h requires about
220 kcal/h. It is interesting to compare these values with
the energy consumption required for travel by car. Gaso-
line yields about 1.30 � 108 J/gal. Find the fuel economy
in equivalent miles per gallon for a person (a) walking
and (b) bicycling.

68. An 80.0-N box is pulled 20.0 m up a 30° incline by an ap-
plied force of 100 N that points upwards, parallel to the
incline. If the coefficient of kinetic friction between box
and incline is 0.220, calculate the change in the kinetic
energy of the box.

69. A ski jumper starts from rest 50.0 m above the ground on
a frictionless track and flies off the track at an angle of
45.0° above the horizontal and at a height of 10.0 m
above the level ground. Neglect air resistance. (a) What is
her speed when she leaves the track? (b) What is the max-
imum altitude she attains after leaving the track?
(c) Where does she land relative to the end of the track?

70. A 5.0-kg block is pushed 3.0 m up a vertical wall with
constant speed by a constant force of magnitude F applied
at an angle of � � 30° with the horizontal, as shown in
Figure P5.70. If the coefficient of kinetic friction between

h � 4.00 mm 2 � 3.00 kg

m1 � 5.00 kg

Figure P5.63

64. Two blocks, A and B (with mass 50 kg and 100 kg, respec-
tively), are connected by a string, as shown in Figure
P5.64. The pulley is frictionless and of negligible mass.
The coefficient of kinetic friction between block A and
the incline is 
k � 0.25. Determine the change in the ki-
netic energy of block A as it moves from � to �, a dis-
tance of 20 m up the incline if the system starts from rest.

50 kg
100 kg

37°

�

�

A

B

Figure P5.64

65. A 200-g particle is released from rest at point A on the in-
side of a smooth hemispherical bowl of radius R � 30.0 cm

2R/3

C

B

R
A

Figure P5.65

u

F

Figure P5.70
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block and wall is 0.30, determine the work done by (a) ,
(b) the force of gravity, and (c) the normal force between
block and wall. (d) By how much does the gravitational po-
tential energy increase during the block’s motion?

71. The ball launcher in a pinball machine has a spring with a
force constant of 1.20 N/cm (Fig. P5.71). The surface on
which the ball moves is inclined 10.0° with respect to the
horizontal. If the spring is initially compressed 5.00 cm,
find the launching speed of a 0.100-kg ball when the
plunger is released. Friction and the mass of the plunger
are negligible.

F
:

74. A hummingbird is able to hover because, as the wings
move downwards, they exert a downward force on the
air. Newton’s third law tells us that the air exerts an
equal and opposite force (upwards) on the wings. The
average of this force must be equal to the weight of the
bird when it hovers. If the wings move through a dis-
tance of 3.5 cm with each stroke, and the wings beat 80
times per second, determine the work performed by the
wings on the air in 1 minute if the mass of the humming-
bird is 3.0 grams.

75. A child’s pogo stick (Fig. P5.75) stores energy in a
spring (k � 2.50 � 104 N/m). At position � (x1 �
� 0.100 m), the spring compression is a maximum and
the child is momentarily at rest. At position � (x � 0),
the spring is relaxed and the child is moving upwards.
At position �, the child is again momentarily at rest
at the top of the jump. Assuming that the combined
mass of child and pogo stick is 25.0 kg, (a) calculate
the total energy of the system if both potential energies
are zero at x � 0, (b) determine x 2, (c) calculate the
speed of the child at x � 0, (d) determine the value of x
for which the kinetic energy of the system is a maxi-
mum, and (e) obtain the child’s maximum upward
speed.

10.0°

Figure P5.71

72. The masses of the javelin, discus, and shot are 0.80 kg,
2.0 kg, and 7.2 kg, respectively, and record throws
in the corresponding track events are about 98 m, 74 m,
and 23 m, respectively. Neglecting air resistance, 
(a) calculate the minimum initial kinetic energies that
would produce these throws, and (b) estimate the
average force exerted on each object during the throw,
assuming the force acts over a distance of 2.0 m. (c) Do
your results suggest that air resistance is an important
factor?

73. Jane, whose mass is 50.0 kg, needs to swing across a river
filled with crocodiles in order to rescue Tarzan, whose
mass is 80.0 kg. However, she must swing into a constant
horizontal wind force on a vine that is initially at an an-
gle of � with the vertical. (See Fig. P5.73.) In the figure,
D � 50.0 m, F � 110 N, L � 40.0 m, and � � 50.0°.
(a) With what minimum speed must Jane begin her swing
in order to just make it to the other side? (Hint: First de-
termine the potential energy that can be associated with
the wind force. Because the wind force is constant, use an
analogy with the constant gravitational force.) (b) Once
the rescue is complete, Tarzan and Jane must swing back
across the river. With what minimum speed must they be-
gin their swing?

F
:

L
Jane

D

θ

φ

Wind

Tarzan
F

Figure P5.73

x 1

x 2

�
�

�

Figure P5.75

76. A 2.00-kg block situated on a rough incline is connected
to a spring of negligible mass having a spring constant of
100 N/m (Fig. P5.76). The block is released from rest
when the spring is unstretched, and the pulley is friction-
less. The block moves 20.0 cm down the incline before
coming to rest. Find the coefficient of kinetic friction be-
tween block and incline.

37.0°

2.00 kg

k = 100 N/m

Figure P5.76

44337_05_p118-159  10/28/04  11:58 AM  Page 156



Problems 157

77. In the dangerous “sport” of bungee jumping, a daring stu-
dent jumps from a hot-air balloon with a specially de-
signed elastic cord attached to his waist, as shown in
Figure P5.77. The unstretched length of the cord is
25.0 m, the student weighs 700 N, and the balloon is
36.0 m above the surface of a river below. Calculate the re-
quired force constant of the cord if the student is to stop
safely 4.00 m above the river.

based on a suggestion by the children themselves.)
(a) Find the energy released in the experiment. Model
the children as having average mass 36.0 kg and as step-
ping from chair seats 38.0 cm above the floor. (b) Most of
the energy is converted very rapidly into internal energy
within the bodies of the children and the floors of the
school buildings. Assume that 1% of the energy is carried
away by a seismic wave. The magnitude of an earthquake
on the Richter scale is given by 

where E is the seismic wave energy in joules. According to
this model, what is the magnitude of the demonstration
quake?

81. A loaded ore car has a mass of 950 kg and rolls on rails
with negligible friction. It starts from rest and is pulled up
a mine shaft by a cable connected to a winch. The shaft is
inclined at 30.0° above the horizontal. The car accelerates
uniformly to a speed of 2.20 m/s in 12.0 s and then con-
tinues at constant speed. (a) What power must the winch
motor provide when the car is moving at constant speed?
(b) What maximum power must the motor provide?
(c) What total energy transfers out of the motor by work
by the time the car moves off the end of the track, which
is of length 1 250 m?

82. A daredevil wishes to bungee-jump from a hot-air balloon
65.0 m above a carnival midway (Fig. P5.77). He will use a
piece of uniform elastic cord tied to a harness around his
body to stop his fall at a point 10.0 m above the ground.
Model his body as a particle and the cord as having negli-
gible mass and a tension force described by Hooke’s force
law. In a preliminary test, hanging at rest from a 5.00-m
length of the cord, the jumper finds that his body weight
stretches it by 1.50 m. He will drop from rest at the point
where the top end of a longer section of the cord is at-
tached to the stationary balloon. (a) What length of cord
should he use? (b) What maximum acceleration will he
experience?

83. The system shown in Figure P5.83 consists of a light, inex-
tensible cord, light frictionless pulleys, and blocks of
equal mass. Initially, the blocks are at rest the same height
above the ground. The blocks are then released. Find the
speed of block A at the moment when the vertical separa-
tion of the blocks is h.

M �
log E � 4.8

1.5

Figure P5.77 Bungee jumping. 
(Problems 77 and 82)
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78. An object of mass m is suspended from the top of a cart by
a string of length L as in Figure P5.78a. The cart and ob-
ject are initially moving to the right at a constant speed v0.
The cart comes to rest after colliding and sticking to a
bumper, as in Figure P5.78b, and the suspended object
swings through an angle �. (a) Show that the initial speed
is . (b) If L � 1.20 m and � � 35.0°,
find the initial speed of the cart. (Hint: The force exerted
by the string on the object does no work on the object.)

v0 � √2gL(1 � cos �)

(a)

v0

L

m

(b)

θ

Figure P5.78

79. A truck travels uphill with constant velocity on a highway
with a 7.0° slope. A 50-kg package sits on the floor of the
back of the truck and does not slide, due to a static fric-
tional force. During an interval in which the truck travels
340 m, what is the net work done on the package? What is
the work done on the package by the force of gravity, the
normal force, and the friction force?

80. As part of a curriculum unit on earthquakes, suppose that
375 000 British schoolchildren stand on their chairs and
simultaneously jump down to the floor. Seismographers
around the country see whether they can detect the re-
sulting ground tremor. (This experiment was actually

A B

Figure P5.83

84. A cafeteria tray dispenser supports a stack of trays on a
shelf that hangs from four identical spiral springs under
tension, one near each corner of the shelf. Each tray has a
mass of 580 g and is rectangular, 45.3 cm by 35.6 cm, and
0.450 cm thick. (a) Show that the top tray in the stack can
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158 Chapter 5 Energy

always be at the same height above the floor, however
many trays are in the dispenser. (b) Find the spring con-
stant each spring should have in order for the dispenser
to function in this convenient way. Is any piece of data
unnecessary for this determination?

85. In bicycling for aerobic exercise, a woman wants her heart
rate to be between 136 and 166 beats per minute. Assume
that her heart rate is directly proportional to her mechan-
ical power output. Ignore all forces on the woman-plus-
bicycle system, except for static friction forward on the
drive wheel of the bicycle and an air resistance force pro-
portional to the square of the bicycler’s speed. When her
speed is 22.0 km/h, her heart rate is 90.0 beats per
minute. In what range should her speed be so that her
heart rate will be in the range she wants?

86. In a needle biopsy, a narrow strip of tissue is extracted
from a patient with a hollow needle. Rather than being
pushed by hand, to ensure a clean cut the needle can be
fired into the patient’s body by a spring. Assume the nee-
dle has mass 5.60 g, the light spring has force constant
375 N/m, and the spring is originally compressed 8.10 cm
to project the needle horizontally without friction. The tip
of the needle then moves through 2.40 cm of skin and
soft tissue, which exerts a resistive force of 7.60 N on it.
Next, the needle cuts 3.50 cm into an organ, which exerts
a backward force of 9.20 N on it. Find (a) the maximum
speed of the needle and (b) the speed at which a flange
on the back end of the needle runs into a stop, set to limit
the penetration to 5.90 cm.

87. The power of sunlight reaching each square meter of the
Earth’s surface on a clear day in the tropics is close to 
1 000 W. On a winter day in Manitoba, the power concen-
tration of sunlight can be 100 W/m2. Many human activi-
ties are described by a power-per-footprint-area on the or-
der of 102 W/m2 or less. (a) Consider, for example, a
family of four paying $80 to the electric company every 30
days for 600 kWh of energy carried by electric transmis-
sion to their house, with floor area 13.0 m by 9.50 m.
Compute the power-per-area measure of this energy use.
(b) Consider a car 2.10 m wide and 4.90 m long traveling
at 55.0 mi/h using gasoline having a “heat of combustion”
of 44.0 MJ/kg with fuel economy 25.0 mi/gallon. One gal-
lon of gasoline has a mass of 2.54 kg. Find the power-per-
area measure of the car’s energy use. It can be similar to
that of a steel mill where rocks are melted in blast fur-
naces. (c) Explain why the direct use of solar energy is not
practical for a conventional automobile.

88. In 1887 in Bridgeport, Connecticut, C. J. Belknap built
the water slide shown in Figure P5.88. A rider on a small
sled, of total mass 80.0 kg, pushed off to start at the top of
the slide (point �) with a speed of 2.50 m/s. The chute
was 9.76 m high at the top, 54.3 m long, and 0.51 m wide.
Along its length, 725 wheels made friction negligible.
Upon leaving the chute horizontally at its bottom end
(point �), the rider skimmed across the water of Long
Island Sound for as much as 50 m, “skipping along like a
flat pebble,” before at last coming to rest and swimming
ashore, pulling his sled after him. (a) Find the speed of
the sled and rider at point �. (b) Model the force of wa-
ter friction as a constant retarding force acting on a parti-
cle. Find the work done by water friction in stopping the
sled and rider. (c) Find the magnitude of the force the

water exerts on the sled. (d) Find the magnitude of the
force the chute exerts on the sled at point �.

�
�

�

9.76 m

50.0 m

54.3 m

Figure P5.88

89. Three objects with masses m1 � 5.0 kg, m2 � 10 kg, and
m3 � 15 kg, respectively, are attached by strings over fric-
tionless pulleys as indicated in Figure P5.32. The horizon-
tal surface exerts a force of friction of 30 N on m2. If the
system is released from rest, use energy concepts to find
the speed of m3 after it moves down 4.0 m.

ACTIVITIES

A.1. Suspend a rubber band from a support and borrow some
weights from your instructor to measure the rubber
band’s spring constant for small extensions. Calculate how
much elastic potential energy is stored in the rubber band
for a given extension. Use conservation of energy to pre-
dict how high a paper wad will go into the air when re-
leased from a given extension of the band. Try it to test
your prediction.

A.2. Wrap a rubber band tightly around a tennis ball. Now fas-
ten one end of a string through the rubber band and the
other end to the top of a doorframe to construct a pendu-
lum. Pull the pendulum to the side at a variety of angles to
observe that the energy of the pendulum–Earth system is
always conserved as the pendulum swings (almost) to the
same height of its arc as the height from which it was
released. (The word “almost” in the last sentence applies
because some energy is lost to friction at the point of sup-
port and to air resistance. You can observe this slight loss
of energy by pulling the ball to the side and letting it go
from a point about half an inch from your chin. Let it
go—but don’t push it!—and test your belief in conserva-
tion of energy by seeing if you can avoid flinching when
the ball swings back toward your chin.)

A.3. While you have your pendulum from the last activity set
up, predict what will happen in the following situation
and then test your guess: When a pendulum is released
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Problems 159

from a given height, it swings to the same height at the
other end of its arc as you noted above. However, suppose
you place a meterstick across the door opening such that
the pendulum string strikes the stick about halfway up the
string when it moves through the opening. How high will
the ball swing in this case? Will it return to the same
height as that at which it started, swing to a lower height,
or swing to a greater height? Explain your answer.

A.4. Measure your pulse rate while at rest. Now slowly walk up
a flight of stairs and measure your pulse rate at the top of
the stairs. Repeat this activity, starting with about the same
rest pulse rate at the bottom of the stairs. This time, run
up the stairs. Based on your pulse rate readings, what can
you conclude about the amount of work and power ex-
pended in each case? Repeat this experiment with a series
of 10 push-ups.

A.5. Many fitness centers have stepper machines that enable a
person to climb continuously without actually moving, be-
cause the steps move downwards as the person climbs.

The work that the climber performs on the step is deter-
mined by the force exerted on the step times the distance
the step moves. Since the net force on the climber is zero,
the force exerted on the step must equal the climber’s
weight. A reasonably strenuous workout on this machine
is 90 steps per minute, with each step being 8 inches
(15.2 cm) high. What is the rate (in watts) at which a
130-lb (60 kg) climber does work on the stair steps? The
energy actually expended by the climber is approximately
five times the work done. (You may notice that a lot of
heat is generated!) The machines usually report this rate
in Calories/hour (1 Calorie � 1 kcal � 4186 J). Deter-
mine the rate, in Cal/h, at which energy is expended by
the 130-lb climber.

Activity: If you have access to a stepper, find the ratio
used by the manufacturer to determine the energy ex-
pended from the work performed. In some cases, this ra-
tio may vary as the step speed changes. If so, generate a
graph of the ratio as a function of step speed.
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A small buck from the massive 
bull transfers a large amount of 
momentum to the cowboy, resulting
in an involuntary dismount.

Momentum and Collisions
What happens when two automobiles collide? How does the impact affect the motion of
each vehicle, and what basic physical principles determine the likelihood of serious injury?
How do rockets work, and what mechanisms can be used to overcome the limitations im-
posed by exhaust speed? Why do we have to brace ourselves when firing small projectiles at
high velocity? Finally, how can we use physics to improve our golf game?

To begin answering such questions, we introduce momentum. Intuitively, anyone or any-
thing that has a lot of momentum is going to be hard to stop. In politics, the term is
metaphorical. Physically, the more momentum an object has, the more force has to be applied
to stop it in a given time. This concept leads to one of the most powerful principles in physics:
conservation of momentum. Using this law, complex collision problems can be solved without
knowing much about the forces involved during contact. We’ll also be able to derive informa-
tion about the average force delivered in an impact. With conservation of momentum, we’ll
have a better understanding of what choices to make when designing an automobile or a
moon rocket, or when addressing a golf ball on a tee.

6.1 MOMENTUM AND IMPULSE
In physics, momentum has a precise definition. A slowly moving brontosaurus has
a lot of momentum, but so does a little hot lead shot from the muzzle of a gun. We
therefore expect that momentum will depend on an object’s mass and velocity.

The linear momentum of an object of mass m moving with velocity is the
product of its mass and velocity :

[6.1]

SI unit: kilogram-meter per second (kg � m/s)

p: � v:

v:p:

Doubling either the mass or the velocity of an object doubles its momentum; dou-
bling both quantities quadruples its momentum. Momentum is a vector quantity

Linear momentum �
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6.1 Momentum and Impulse 161

with the same direction as the object’s velocity. Its components are given in two di-
mensions by

px � mvx py � mvy

where px is the momentum of the object in the x -direction and py its momentum
in the y -direction.

Changing the momentum of an object requires the application of a force. This
is, in fact, how Newton originally stated his second law of motion. Starting from
the more common version of the second law, we have

[6.2]

where the mass m and the forces are assumed constant. The quantity in parenthe-
ses is just the momentum, so we have the following result:

The change in an object’s momentum divided by the elapsed time �t
equals the constant net force acting on the object:

[6.3]

This equation is also valid when the forces are not constant, provided the limit is
taken as �t becomes infinitesimally small. Equation 6.3 says that if the net force on
an object is zero, the object’s momentum doesn’t change. In other words, the linear
momentum of an object is conserved when . Equation 6.3 also tells us that
changing an object’s momentum requires the continuous application of a force over
a period of time �t, leading to the definition of impulse:

If a constant force acts on an object, the impulse delivered to the object
over a time interval �t is given by

[6.4]

SI unit: kilogram meter per second (kg � m/s)

Impulse is a vector quantity with the same direction as the constant force acting on
the object. When a single constant force acts on an object, Equation 6.3 can be
written as

[6.5]

This is a special case of the impulse–momentum theorem. Equation 6.5 shows that
the impulse of the force acting on an object equals the change in momentum of
that object. This equality is true even if the force is not constant, as long as the
time interval �t is taken to be arbitrarily small. (The proof of the general case re-
quires concepts from calculus.)

In real-life situations, the force on an object is only rarely constant. For exam-
ple, when a bat hits a baseball, the force increases sharply, reaches some maximum
value, and then decreases just as rapidly. Figure 6.1(a) shows a typical graph of

F
:

�t � �p: � mv:f � mv:i

F
:

I
:

 � F
:

�t

I
:

F
:

F
:

net � 0

�p:

�t
�

change in momentum
time interval

� F
:

net

F
:

net

�p:

F
:

net � ma: � m 
�v:

�t
�

�(mv:)
�t

Two objects with masses m1 and m2 have equal kinetic energy. How do the magni-
tudes of their momenta compare? (a) p1 � p2 (b) p1 � p2 (c) p1 � p2 (d) not
enough information is given

Quick Quiz 6.1

� Newton’s second law

� Impulse–momentum theorem
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force versus time for such incidents. The force starts out small as the bat comes
in contact with the ball, rises to a maximum value when they are firmly in con-
tact, and then drops off as the ball leaves the bat. In order to analyze this rather
complex interaction, it’s useful to define an average force , shown as the
dashed line in Figure 6.1b. This average force is the constant force delivering the
same impulse to the object in the time interval �t as the actual time-varying force.
We can then write the impulse–momentum theorem as

[6.6]

The magnitude of the impulse delivered by a force during the time interval �t is
equal to the area under the force vs. time graph as in Figure 6.1a or, equivalently,
to as shown in Figure 6.1b. The brief collision between a bullet and an ap-
ple is illustrated in Figure 6.2.

Fav �t

F
:

av�t � �p:

F
:

av

162 Chapter 6 Momentum and Collisions

Figure 6.1 (a) A force acting on
an object may vary in time. The im-
pulse is the area under the force vs.
time curve. (b) The average force
(horizontal dashed line) gives the
same impulse to the object in the
time interval �t as the real time-
varying force described in (a).

(a)

t i

F

(b)

t f
t

Fav

Fav∆tArea = F

t i

F

t f
t

In boxing matches of the 19th century, bare fists
were used. In modern boxing, fighters wear padded
gloves. How do gloves protect the brain of the boxer
from injury? Also, why do boxers often “roll with the
punch”?

Explanation The brain is immersed in a cushioning
fluid inside the skull. If the head is struck suddenly by
a bare fist, the skull accelerates rapidly. The brain
matches this acceleration only because of the large
impulsive force exerted by the skull on the brain.
This large and sudden force (large Fav and small �t)
can cause severe brain injury. Padded gloves extend

the time �t over which the force is applied to the
head. For a given impulse Fav�t, a glove results in a
longer time interval than a bare fist, decreasing the 
average force. Because the average force is decreased,
the acceleration of the skull is decreased, reducing
(but not eliminating) the chance of brain injury. The
same argument can be made for “rolling with the
punch”: If the head is held steady while being struck,
the time interval over which the force is applied is rel-
atively short and the average force is large. If the head
is allowed to move in the same direction as the punch,
the time interval is lengthened and the average force
reduced.

Applying Physics 6.1 Boxing and Brain Injury

Figure 6.2 An apple being pierced by a 
30-caliber bullet traveling at a supersonic
speed of 900 m/s. This collision was pho-
tographed with a microflash stroboscope
using an exposure time of 0.33 �s. Shortly 
after the photograph was taken, the apple dis-
integrated completely. Note that the points of
entry and exit of the bullet are visually
explosive.©
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6.1 Momentum and Impulse 163

EXAMPLE 6.1 Teeing Off
Goal Use the impulse–momentum theorem to estimate the average force exerted during an impact.

Problem A golf ball with mass 5.0 � 10�2 kg is struck with a club as in Figure
6.3. The force on the ball varies from zero when contact is made up to some
maximum value (when the ball is maximally deformed) and then back to zero
when the ball leaves the club, as in the graph of force vs. time in Figure 6.1. As-
sume that the ball leaves the club face with a velocity of � 44 m/s. (a) Find the
magnitude of the impulse due to the collision. (b) Estimate the duration of the
collision and the average force acting on the ball.

Strategy In part (a), use the fact that the impulse is equal to the change in
momentum. The mass and the initial and final speeds are known, so this change
can be computed. In part (b), the average force is just the change in momentum
computed in part (a) divided by an estimate of the duration of the collision.
Guess at the distance the ball travels on the face of the club (about 2 cm,
roughly the same as the radius of the ball). Divide this distance by the average 
velocity (half the final velocity) to get an estimate of the time of contact.

Figure 6.3 (Example 6.1) A golf
ball being struck by a club.
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Solution
(a) Find the impulse delivered to the ball.

The problem is essentially one dimensional. Note that 
vi � 0, and calculate the change in momentum, which
equals the impulse: � � 2.2 kg�m/s

I � �p � pf � pi � (5.0 � 10�2 kg)(44 m/s) � 0

(b) Estimate the duration of the collision and the aver-
age force acting on the ball.

Estimate the time interval of the collision, �t, using the
approximate displacement (radius of the ball) and its
average speed (half the maximum speed):

9.1 � 10�4 s�t �
�x
vav

�
2.0 � 10�2 m

22 m/s
�

Estimate the average force from Equation 6.6: � 2.4 � 103 NFav �
�p
�t

�
2.2 kg �m/s
9.1 � 10�4 s

�

Remarks This estimate shows just how large such contact forces can be. A good golfer achieves maximum momen-
tum transfer by shifting weight from the back foot to the front foot, transmitting the body’s momentum through the
shaft and head of the club. This timing, involving a short movement of the hips, is more effective than a shot pow-
ered exclusively by the arms and shoulders. Following through with the swing ensures that the motion isn’t slowed at
the critical instant of impact.

Exercise 6.1
A 0.150-kg baseball, thrown with a speed of 40.0 m/s, is hit straight back at the pitcher with a speed of 50.0 m/s.
(a) What is the impulse delivered by the bat to the baseball? (b) Find the magnitude of the average force exerted by
the bat on the ball if the two are in contact for 2.00 � 10�3 s.

Answer (a) 13.5 kg � m/s (b) 6.75 kN

EXAMPLE 6.2 How Good Are the Bumpers?
Goal Find an impulse and estimate a force in a collision of a moving object with a stationary object.

Problem In a crash test, a car of mass 1.50 � 103 kg collides with a wall and rebounds as in Figure 6.4a. The initial
and final velocities of the car are vi � �15.0 m/s and vf � 2.60 m/s, respectively. If the collision lasts for 0.150 s, find

44337_06_p160-188  10/21/04  3:21 PM  Page 163



164 Chapter 6 Momentum and Collisions

(a) the impulse delivered to the car due to the collision and (b) the size and direction of the average force exerted
on the car.

Strategy This problem is similar to the previous example, except that the initial and final momenta are
both nonzero. Find the momenta and substitute into the impulse–momentum theorem, Equation 6.6, solving
for Fav.

Solution
(a) Find the impulse delivered to the car.

Calculate the initial and final momenta of the car: pi � mvi � (1.50 � 103 kg)(� 15.0 m/s)

� � 2.25 � 104 kg � m/s

pf � mvf � (1.50 � 103 kg)(	 2.60 m/s)

� 	 0.390 � 104 kg � m/s

The impulse is just the difference between the final and
initial momenta:

I � pf � pi

� 	 0.390 � 104 kg � m/s � (� 2.25 � 104 kg � m/s)

I � 2.64 � 104 kg�m/s

(b) Find the average force exerted on the car.

Apply Equation 6.6, the impulse–momentum theorem: 	 1.76 � 105 NFav �
�p
�t

�
2.64 � 104 kg�m/s

0.150 s
�

Remarks When the car doesn’t rebound off the wall, the average force exerted on the car is smaller than the value
just calculated. With a final momentum of zero, the car undergoes a smaller change in momentum.

Exercise 6.2
Suppose the car doesn’t rebound off the wall, but the time interval of the collision remains at 0.150 s. In this case,
the final velocity of the car is zero. Find the average force exerted on the car.

Answer 	 1.50 � 105 N

Before

After

+2.60 m/s

–15.0 m/s

(a)

Figure 6.4 (Example 6.2) (a) This car’s momentum changes as a result of its collision with the wall. (b) In a crash test (an inelastic collision),
much of the car’s initial kinetic energy is transformed into the energy it took to damage the vehicle.
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6.1 Momentum and Impulse 165

Injury in Automobile Collisions
The main injuries that occur to a person hitting the interior of a car in a crash are
brain damage, bone fracture, and trauma to the skin, blood vessels, and internal
organs. Here, we compare the rather imprecisely known thresholds for human in-
jury with typical forces and accelerations experienced in a car crash.

A force of about 90 kN (20 000 lb) compressing the tibia can cause fracture. Al-
though the breaking force varies with the bone considered, we may take this value
as the threshold force for fracture. It’s well known that rapid acceleration of
the head, even without skull fracture, can be fatal. Estimates show that head accel-
erations of 150g experienced for about 4 ms or 50g for 60 ms are fatal 50% of
the time. Such injuries from rapid acceleration often result in nerve damage to the
spinal cord where the nerves enter the base of the brain. The threshold for dam-
age to skin, blood vessels, and internal organs may be estimated from whole-body
impact data, where the force is uniformly distributed over the entire front surface
area of 0.7 m2 to 0.9 m2. These data show that if the collision lasts for less than
about 70 ms, a person will survive if the whole-body impact pressure (force per
unit area) is less than 1.9 � 105 N/m2 (28 lb/in.2). Death results in 50% of cases
in which the whole-body impact pressure reaches 3.4 � 105 N/m2 (50 lb/in.2).

Armed with the data above, we can estimate the forces and accelerations in a
typical car crash and see how seat belts, air bags, and padded interiors can reduce
the chance of death or serious injury in a collision. Consider a typical collision in-
volving a 75-kg passenger not wearing a seat belt, traveling at 27 m/s (60 mi/h)
who comes to rest in about 0.010 s after striking an unpadded dashboard. Using
Fav�t � mvf � mvi , we find that

and

If we assume the passenger crashes into the dashboard and windshield so that the
head and chest, with a combined surface area of 0.5 m2, experience the force, we
find a whole-body pressure of

We see that the force, the acceleration, and the whole-body pressure all exceed the
threshold for fatality or broken bones and that an unprotected collision at
60 mi/h is almost certainly fatal.

What can be done to reduce or eliminate the chance of dying in a car crash?
The most important factor is the collision time, or the time it takes the person to
come to rest. If this time can be increased by 10 to 100 times the value of 0.01 s for
a hard collision, the chances of survival in a car crash are much higher, because
the increase in �t makes the contact force 10 to 100 times smaller. Seat belts re-
strain people so that they come to rest in about the same amount of time it takes
to stop the car, typically about 0.15 s. This increases the effective collision time by
an order of magnitude. Figure 6.5 shows the measured force on a car versus time
for a car crash.

Air bags also increase the collision time, absorb energy from the body as they
rapidly deflate, and spread the contact force over an area of the body of about
0.5 m2, preventing penetration wounds and fractures. Air bags must deploy very
rapidly (in less than 10 ms) in order to stop a human traveling at 27 m/s before he
or she comes to rest against the steering column about 0.3 m away. In order to
achieve this rapid deployment, accelerometers send a signal to discharge a bank of
capacitors (devices that store electric charge), which then ignites an explosive,
thereby filling the air bag with gas very quickly. The electrical charge for ignition is

Fav

A
�

2.0 � 105 N
0.5 m2 � 4 � 105 N/m2

a � � �v
�t � �

27 m/s
0.010 s

� 2  700 m/s2 �
2  700 m/s2

9.8 m/s2  g � 280g

Fav �
mvf � mvi

�t
�

0 � (75 kg)(27 m/s)

0.010 s
� � 2.0 � 105 N

A P P L I C AT I O N  
Injury to Passengers 
in Car Collisions
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stored in capacitors to ensure that the air bag continues to operate in the event of
damage to the battery or the car’s electrical system in a severe collision.

The important reduction in potentially fatal forces, accelerations, and pressures
to tolerable levels by the simultaneous use of seat belts and air bags is summarized
as follows: If a 75-kg person traveling at 27 m/s is stopped by a seat belt in 0.15 s,
the person experiences an average force of 9.8 kN, an average acceleration of 18g,
and a whole-body pressure of 2.8 � 104 N/m2 for a contact area of 0.5 m2. These
values are about one order of magnitude less than the values estimated earlier for
an unprotected person and well below the thresholds for life-threatening injuries.

6.2 CONSERVATION OF MOMENTUM
When a collision occurs in an isolated system, the total momentum of the system
doesn’t change with the passage of time. Instead, it remains constant both in mag-
nitude and in direction. The momenta of the individual objects in the system may
change, but the vector sum of all the momenta will not change. The total momen-
tum, therefore, is said to be conserved. In this section, we will see how the laws of
motion lead us to this important conservation law.

A collision may be the result of physical contact between two objects, as illus-
trated in Figure 6.6a. This is a common macroscopic event, as when a pair of bil-
liard balls or a baseball and a bat strike each other. By contrast, because contact on
a submicroscopic scale is hard to define accurately, the notion of collision must be
generalized to that scale. Forces between two objects arise from the electrostatic
interaction of the electrons in the surface atoms of the objects. As will be discussed
in Chapter 15, electric charges are either positive or negative. Charges with the
same sign repel each other, while charges with opposite sign attract each other. To
understand the distinction between macroscopic and microscopic collisions, con-
sider the collision between two positive charges, as shown in Figure 6.6b. Because
the two particles in the figure are both positively charged, they repel each other.
During such a microscopic collision, particles need not touch in the normal sense
in order to interact and transfer momentum.

Active Figure 6.7 shows an isolated system of two particles before and after they
collide. By “isolated,” we mean that no external forces, such as the gravitational
force or friction, act on the system. Before the collision, the velocities of the two
particles are and ; after the collision, the velocities are and . The
impulse–momentum theorem applied to m1 becomes

Likewise, for m2, we have

F
:

12�t � m2v:2f � m2 v:2i

F
:

21�t � m1v:1f � m1v:1i

v:2fv:1fv:2iv:1i
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F (in units of 105 N)Figure 6.5 Force on a car versus
time for a typical collision.
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Figure 6.6 (a) A collision between
two objects resulting from direct
contact. (b) A collision between two
charged objects (in this case, a
proton and a helium nucleus).
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vv
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ACTIVE FIGURE 6.7
Before and after a head-on collision
between two objects. The momentum
of each object changes as a result of
the collision, but the total momen-
tum of the system remains constant.

Log into PhysicsNow at
www.cp7e.com, and go to Active Fig-
ure 6.7 to adjust the masses and ve-
locities of the colliding objects and
see the effect on the final velocities.
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6.2 Conservation of Momentum 167

where is the average force exerted by m2 on m1 during the collision and is
the average force exerted by m1 on m2 during the collision, as in Figure 6.6a.

We use average values for and even though the actual forces may vary in
time in a complicated way, as is the case in Figure 6.8. Newton’s third law states
that at all times these two forces are equal in magnitude and opposite in direction:

. In addition, the two forces act over the same time interval. As a result,
we have

or

after substituting the expressions obtained for and . This equation can be
rearranged to give the following important result:

[6.7]

This result is a special case of the law of conservation of momentum and is true of
isolated systems containing any number of interacting objects.

When no net external force acts on a system, the total momentum of the sys-
tem remains constant in time.

Defining the isolated system is an important feature of applying this conservation
law. A cheerleader jumping upwards from rest might appear to violate conservation
of momentum, because initially her momentum is zero and suddenly she’s leaving
the ground with velocity . The flaw in this reasoning lies in the fact that the cheer-
leader isn’t an isolated system. In jumping, she exerts a downward force on the Earth,
changing its momentum. This change in the Earth’s momentum isn’t noticeable,
however, because of the Earth’s gargantuan mass compared to the cheerleader’s.
When we define the system to be the cheerleader and the Earth, momentum is conserved.

Action and reaction, together with the accompanying exchange of momentum
between two objects, is responsible for the phenomenon known as recoil. Everyone
knows that throwing a baseball while standing straight up, without bracing your
feet against the Earth, is a good way to fall over backwards. This reaction, an exam-
ple of recoil, also happens when you fire a gun or shoot an arrow. Conservation of
momentum provides a straightforward way to calculate such effects, as the next ex-
ample shows.

v:

m1v:1i 	 m2v:2i � m1v:1f 	 m2v:2f

F
:

12F
:

21

m1v:1f � m1v:1i � � (m2v:2f � m2v:2i)

F
:

21�t � � F
:

12�t

F
:

21 � � F
:

12

F
:

12F
:

21

F
:

12F
:

21

t

12

21

F

F

F

Figure 6.8 Force as a function of
time for the two colliding particles in
Figures 6.6(a) and 6.7. Note that

.F
:

21 � � F
:

12

Conservation of momentum is the
principle behind these two propul-
sion systems. (a) The force from a 
nitrogen-propelled, hand-controlled
device allows an astronaut to move
about freely in space without restric-
tive tethers. (b) A squid propels itself
by expelling water at a high velocity.
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TIP 6.1 Momentum
Conservation Applies 
to a System!
The momentum of an isolated system
is conserved, but not necessarily the
momentum of one particle within
that system, because other particles in
the system may be interacting with it.
Apply conservation of momentum to
an isolated system only.

� Conservation of momentum

(a) (b)

44337_06_p160-188  10/21/04  8:58 AM  Page 167



168 Chapter 6 Momentum and Collisions

6.3 COLLISIONS
We have seen that for any type of collision, the total momentum of the system just
before the collision equals the total momentum just after the collision as long
as the system may be considered isolated. The total kinetic energy, on the other
hand, is generally not conserved in a collision because some of the kinetic
energy is converted to internal energy, sound energy, and the work needed to

INTERACTIVE EXAMPLE 6.3 The Archer
Goal Calculate recoil velocity using conservation of
momentum

Problem An archer stands at rest on frictionless ice
and fires a 0.500-kg arrow horizontally at 50.0 m/s.
(See Fig. 6.9.) The combined mass of the archer and
bow is 60.0 kg. With what velocity does the archer
move across the ice after firing the arrow?

Strategy Set up the conservation of momentum
equation in the horizontal direction and solve for the
final velocity of the archer. The system of the archer
(including the bow) and the arrow is not isolated, be-
cause the gravitational and normal forces act on it.
These forces, however, are perpendicular to the mo-
tion of the system and hence do no work on it.

Figure 6.9 (Interactive Exam-
ple 6.3) An archer fires an arrow
horizontally to the right. Because
he is standing on frictionless ice,
he will begin to slide to the left
across the ice.

Solution
Write the conservation of momentum equation. Let
v1f be the archer’s velocity and v2f the arrow’s velocity.

pi � pf

0 � m1v1f 	 m2v2f

Substitute m1 � 60.0 kg, m2 � 0.500 kg, and 
v2f � 50.0 m/s, and solve for v1f :

� � 0.417 m/s

v1f � � 
m2

m1
 v2f � � � 0.500 kg

60.0 kg �(50.0 m/s)

Remarks The negative sign on indicates that the archer is moving opposite the direction of motion of the
arrow, in accordance with Newton’s third law. Because the archer is much more massive than the arrow, his accelera-
tion and consequent velocity are much smaller than the acceleration and velocity of the arrow.

Newton’s second law, 
F � ma, can’t be used in this problem because we have no information about the force on
the arrow or its acceleration. An energy approach can’t be used either, because we don’t know how much work is
done in pulling the string back or how much potential energy is stored in the bow. Conservation of momentum, how-
ever, readily solves the problem.

Exercise 6.3
A 70.0-kg man and a 55.0-kg woman on ice skates stand facing each other. If the woman pushes the man backwards
so that his final speed is 1.50 m/s, at what speed does she recoil?

Answer 1.91 m/s

You can change the mass of the archer and the mass and speed of the arrow by logging into Physics-
Now at www.cp7e.com and going to Interactive Example 6.3.

v1f

A boy standing at one end of a floating raft that is stationary relative to the shore
walks to the opposite end of the raft, away from the shore. As a consequence, the
raft (a) remains stationary, (b) moves away from the shore, or (c) moves toward
the shore. (Hint : Use conservation of momentum.)

Quick Quiz 6.2
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6.3 Collisions 169

permanently deform the objects involved, such as cars in a car crash. We define an
inelastic collision as a collision in which momentum is conserved, but kinetic en-
ergy is not. The collision of a rubber ball with a hard surface is inelastic, because
some of the kinetic energy is lost when the ball is deformed during contact with
the surface. When two objects collide and stick together, the collision is called
perfectly inelastic. For example, if two pieces of putty collide, they stick together and
move with some common velocity after the collision. If a meteorite collides head
on with the Earth, it becomes buried in the Earth and the collision is considered
perfectly inelastic. Only in very special circumstances is all the initial kinetic en-
ergy lost in a perfectly inelastic collision.

An elastic collision is defined as one in which both momentum and kinetic en-
ergy are conserved. Billiard ball collisions and the collisions of air molecules with
the walls of a container at ordinary temperatures are highly elastic. Macroscopic
collisions such as those between billiard balls are only approximately elastic, be-
cause some loss of kinetic energy takes place—for example, in the clicking sound
when two balls strike each other. Perfectly elastic collisions do occur, however, be-
tween atomic and subatomic particles. Elastic and perfectly inelastic collisions are
limiting cases; most actual collisions fall into a range in between them.

As a practical application, an inelastic collision is used to detect glaucoma, a dis-
ease in which the pressure inside the eye builds up and leads to blindness by dam-
aging the cells of the retina. In this application, medical professionals use a device
called a tonometer to measure the pressure inside the eye. This device releases a
puff of air against the outer surface of the eye and measures the speed of the air
after reflection from the eye. At normal pressure, the eye is slightly spongy, and
the pulse is reflected at low speed. As the pressure inside the eye increases, the
outer surface becomes more rigid, and the speed of the reflected pulse increases.
In this way, the speed of the reflected puff of air can measure the internal pressure
of the eye.

We can summarize the types of collisions as follows:

■ In an elastic collision, both momentum and kinetic energy are conserved.
■ In an inelastic collision, momentum is conserved but kinetic energy is not.
■ In a perfectly inelastic collision, momentum is conserved, kinetic energy is

not, and the two objects stick together after the collision, so their final ve-
locities are the same.

In the remainder of this section, we will treat perfectly inelastic collisions and
elastic collisions in one dimension.

A car and a large truck traveling at the same speed collide head-on and stick to-
gether. Which vehicle experiences the larger change in the magnitude of its mo-
mentum? (a) the car (b) the truck (c) the change in the magnitude of momen-
tum is the same for both (d) impossible to determine

Quick Quiz 6.3

Perfectly Inelastic Collisions
Consider two objects having masses m1 and m2 moving with known initial velocity
components v1i and v2i along a straight line, as in Active Figure 6.10. If the two
objects collide head-on, stick together, and move with a common velocity compo-
nent vf after the collision, then the collision is perfectly inelastic. Because the total
momentum of the two-object isolated system before the collision equals the total
momentum of the combined-object system after the collision, we can solve for the
final velocity using conservation of momentum alone:

[6.8]m1v1i 	 m2v2i � (m1 	 m2)vf

Before collision

After collision

(b)

(a)

f
m1 + m2

+x

m1 m2
1i 2i

+x

v v

v

ACTIVE FIGURE 6.10
(a) Before and (b) after a perfectly
inelastic head-on collision between
two objects.

Log into PhysicsNow at
www.cp7e.com, and go to Active 
Figure 6.10 to adjust the masses and
velocities of the colliding objects and
see the effect on the final velocity.

TIP 6.2 Momentum and 
Kinetic Energy in Collisions
The momentum of an isolated system
is conserved in all collisions. How-
ever, the kinetic energy of an isolated
system is conserved only when the
collision is elastic.

TIP 6.3 Inelastic vs. Perfectly
Inelastic Collisions
If the colliding particles stick
together, the collision is perfectly
inelastic. If they bounce off each
other (and kinetic energy is not
conserved), the collision is inelastic.

� Elastic collision

A P P L I C AT I O N
Glaucoma Testing

� Inelastic collision
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170 Chapter 6 Momentum and Collisions

[6.9]

It’s important to notice that v1i, v2i , and vf represent the x -components of the ve-
locity vectors, so care is needed in entering their known values, particularly with
regard to signs. For example, in Active Figure 6.10, v1i would have a positive value
(m1 moving to the right), whereas v2i would have a negative value (m2 moving to
the left). Once these values are entered, Equation 6.9 can be used to find the cor-
rect final velocity, as shown in Examples 6.4 and 6.5.

vf �
m1v1i � m2v2i

m1 � m2

EXAMPLE 6.4 An SUV Versus a Compact
Goal Apply conservation of momentum to a one-dimensional inelastic collision.

Problem An SUV with mass 1.80 � 103 kg is traveling eastbound at � 15.0 m/s,
while a compact car with mass 9.00 � 102 kg is traveling westbound at � 15.0 m/s.
(See Fig. 6.11.) The cars collide head-on, becoming entangled. (a) Find the speed
of the entangled cars after the collision. (b) Find the change in the velocity of each
car. (c) Find the change in the kinetic energy of the system consisting of both cars.

Strategy The total momentum of the cars before the collision, pi , equals the total
momentum of the cars after the collision, pf , if we ignore friction and assume the
two cars form an isolated system. (This is called the “impulse approximation.”)
Solve the momentum conservation equation for the final velocity of the entangled
cars. Once the velocities are in hand, the other parts can be solved by substitution.

v1i v2i

vf

(a)

(b)

Figure 6.11 (Example 6.4)

Solution
(a) Find the final speed after collision.

Let m1 and v1i represent the mass and initial velocity of
the SUV, while m2 and v2i pertain to the compact. Apply
conservation of momentum:

pi � pf

m1v1i � m2v2i � (m1 � m2)vf

Substitute the values and solve for the final velocity, vf : (1.80 � 103 kg)(15.0 m/s) � (9.00 � 102 kg)(� 15.0 m/s)

� (1.80 � 103 kg � 9.00 � 102 kg)vf

vf � � 5.00 m/s

(b) Find the change in velocity for each car.

Change in velocity of the SUV: �v1 � vf � v1i � 5.00 m/s � 15.0 m/s � � 10.0 m/s

Change in velocity of the compact car: �v2 � vf � v2i � 5.00 m/s � (� 15.0 m/s) � 20.0 m/s

(c) Find the change in kinetic energy of the system.

Calculate the initial kinetic energy of the system:

� 3.04 � 105 J

� 
1
2(9.00 � 102 kg)(�15.0 m/s)2

KEi � 1
2 m1v1i

2 � 1
2m2v2i

2 � 1
2(1.80 � 103 kg)(15.0 m/s)2

Calculate the final kinetic energy of the system and the
change in kinetic energy, �KE.

�KE � KEf � KEi � � 2.70 � 105 J

 � 3.38 � 104 J
 � 1

2(1.80 � 103 kg � 9.00 � 102 kg)(5.00 m/s)2

 KEf � 1
2(m1 � m2)vf

2

Final velocity of two objects in a 
one-dimensional perfectly inelastic

collision �
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6.3 Collisions 171

Remarks During the collision, the system lost almost 90% of its kinetic energy. The change in velocity of the SUV
was only 10.0 m/s, compared to twice that for the compact car. This example underscores perhaps the most impor-
tant safety feature of any car: its mass. Injury is caused by a change in velocity, and the more massive vehicle under-
goes a smaller velocity change in a typical accident.

Exercise 6.4
Suppose the same two vehicles are both traveling eastward, the compact car leading the SUV. The driver of the com-
pact car slams on the brakes suddenly, slowing the vehicle to 6.00 m/s. If the SUV traveling at 18.0 m/s crashes into
the compact car, find (a) the speed of the system right after the collision, assuming the two vehicles become entan-
gled, (b) the change in velocity for both vehicles, and (c) the change in kinetic energy of the system, from the instant
before impact (when the compact car is traveling at 6.00 m/s) to the instant right after the collision.

Answers (a) 14.0 m/s (b) SUV: �v1 � � 4.0 m/s Compact car: �v2 � 8.0 m/s (c) � 4.32 � 104 J

EXAMPLE 6.5 The Ballistic Pendulum
Goal Combine the concepts of conservation of energy and conservation of momentum in inelastic collisions.

Problem The ballistic pendulum (Fig. 6.12a) is a device used to measure the speed of a fast-moving projectile such
as a bullet. The bullet is fired into a large block of wood suspended from some light wires. The bullet is stopped by
the block, and the entire system swings up to a height h. It is possible to obtain the initial speed of the bullet by mea-
suring h and the two masses. As an example of the technique, assume that the mass of the bullet, m1, is 5.00 g, the
mass of the pendulum, m2, is 1.000 kg, and h is 5.00 cm. Find the initial speed of the bullet, v1i .

Strategy First, use conservation of momentum and the properties of perfectly inelastic collisions to find the initial
speed of the bullet, v1i , in terms of the final velocity of the block–bullet system, vf . Second, use conservation of en-
ergy and the height reached by the pendulum to find vf . Finally, substitute this value of vf into the previous result to
obtain the initial speed of the bullet.

m1
1i f

m1 + m2

m2 h

(a)

v v

Figure 6.12 (Example 6.5) (a) Diagram of a ballistic pendulum. Note that is the velocity of the system just after the
perfectly inelastic collision. (b) Multiflash photograph of a laboratory ballistic pendulum.

v:f

(b)

Co
ur

te
sy

 o
f C

en
tra

l S
ci

en
tifi

c 
Co

m
pa

ny

Solution
Use conservation of momentum, and substitute the
known masses. Note that v2i � 0 and vf is the velocity of
the system (block � bullet) just after the collision.

pi � pf

m1v1i � m2v2i � (m1 � m2)vf

(5.00 � 10� 3 kg)v1i � 0 � (1.005 kg)vf (1)

Apply conservation of energy to the block–bullet system
after the collision:

(KE � PE)after collision � (KE � PE)top
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172 Chapter 6 Momentum and Collisions

Elastic Collisions
Now consider two objects that undergo an elastic head-on collision (Active
Fig. 6.13). In this situation, both the momentum and the kinetic energy of the sys-
tem of two objects are conserved. We can write these conditions as

[6.10]

and

[6.11]

where v is positive if an object moves to the right and negative if it moves to the left.

1
2m1v 2

1i 	 1
2m2v 2

2i � 1
2m1v 2

1f 	 1
2m2v 2

2f

m1v1i 	 m2v2i � m1v1f 	 m2v2f

Both the potential energy at the bottom and the kinetic
energy at the top are zero. Solve for the final velocity of
the block–bullet system, vf : vf

2 � 2gh

vf � 0.990 m/s

vf � √2gh � √2(9.80 m/s2)(5.00 � 10�2 m)

1
2(m1 	 m2)v 2

f 	 0 � 0 	 (m1 	 m2)gh

Finally, substitute vf into Equation 1 to find v1i, the
initial speed of the bullet:

199 m/sv1i �
(1.005 kg)(0.990 m/s)

5.00 � 10�3 kg
�

Remarks Because the impact is inelastic, it would be incorrect to equate the initial kinetic energy of the incoming bul-
let to the final gravitational potential energy associated with the bullet–block combination. The energy isn’t conserved!

Exercise 6.5
A bullet with mass 5.00 g is fired horizontally into a 2.000-kg block attached to a horizontal spring. The spring has a
constant 6.00 � 102 N/m and reaches a maximum compression of 6.00 cm. (a) Find the initial speed of the
bullet–block system. (b) Find the speed of the bullet.

Answer (a) 1.04 m/s (b) 417 m/s

An object of mass m moves to the right with a speed v. It collides head-on with an
object of mass 3m moving with speed v/3 in the opposite direction. If the two ob-
jects stick together, what is the speed of the combined object, of mass 4m, after the
collision?
(a) 0 (b) v/2 (c) v (d) 2v

Quick Quiz 6.4

A skater is using very low friction rollerblades. A friend throws a Frisbee® at her,
on the straight line along which she is coasting. Describe each of the following
events as an elastic, an inelastic, or a perfectly inelastic collision between the skater
and the Frisbee: (a) She catches the Frisbee and holds it. (b) She tries to catch the
Frisbee, but it bounces off her hands and falls to the ground in front of her.
(c) She catches the Frisbee and immediately throws it back with the same speed
(relative to the ground) to her friend.

Quick Quiz 6.5

In a perfectly inelastic one-dimensional collision between two objects, what condi-
tion alone is necessary so that all of the original kinetic energy of the system is
gone after the collision? (a) The objects must have momenta with the same magni-
tude but opposite directions. (b) The objects must have the same mass. (c) The
objects must have the same velocity. (d) The objects must have the same speed,
with velocity vectors in opposite directions.

Quick Quiz 6.6
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6.3 Collisions 173

In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 6.10 and 6.11 can be solved simultaneously to find them. These
two equations are linear and quadratic, respectively. An alternate approach simpli-
fies the quadratic equation to another linear equation, facilitating solution. Can-
celing the factor in Equation 6.11, we rewrite the equation as

Here we have moved the terms containing m1 to one side of the equation and
those containing m2 to the other. Next, we factor both sides of the equation:

[6.12]

Now we separate the terms containing m1 and m2 in the equation for the con-
servation of momentum (Equation 6.10) to get

[6.13]

To obtain our final result, we divide Equation 6.12 by Equation 6.13, producing

Gathering initial and final values on opposite sides of the equation gives

[6.14]

This equation, in combination with Equation 6.10, will be used to solve problems
dealing with perfectly elastic head-on collisions. According to Equation 6.14, the
relative velocity of the two objects before the collision, v1i � v 2i , equals the nega-
tive of the relative velocity of the two objects after the collision, �(v1f � v 2f). To
better understand the equation, imagine that you are riding along on one of the
objects. As you measure the velocity of the other object from your vantage point,
you will be measuring the relative velocity of the two objects. In your view of
the collision, the other object comes toward you and bounces off, leaving the
collision with the same speed, but in the opposite direction. This is just what
Equation 6.14 states.

v1i � v2i � �(v1f � v2f)

v1i 	 v1f � v2f 	 v 2i

m1(v1i � v1f) � m2(v2f � v 2i)

m1(v1i � v1f)(v1i 	 v1f) � m2(v2f � v2i)(v2f 	 v2i)

m1(v1i
2 � v1f

2) � m2(v2f
2 � v2i

2)

1
2

Before collision

(a)

1i 2 i

After collision

(b)

1f 2f

m1 m2+x

+x

v v

v v

ACTIVE FIGURE 6.13
(a) Before and (b) after an elastic
head-on collision between two hard
spheres.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 6.13 to adjust the masses and
velocities of the colliding objects and
see the effect on the final velocities.

Problem-Solving Strategy
One-Dimensional Collisions
The following procedure is recommended for solving one-dimensional problems
involving collisions between two objects:
1. Coordinates. Choose a coordinate axis that lies along the direction of motion.
2. Diagram. Sketch the problem, representing the two objects as blocks and labeling

velocity vectors and masses.
3. Conservation of Momentum. Write a general expression for the total momentum

of the system of two objects before and after the collision, and equate the two, as in
Equation 6.10. On the next line, fill in the known values.

4. Conservation of Energy. If the collision is elastic, write a general expression for
the total energy before and after the collision, and equate the two quantities, as in
Equation 6.11 or (preferably) Equation 6.14. Fill in the known values. (Skip this
step if the collision is not perfectly elastic.)

5. Solve the equations simultaneously. Equations 6.10 and 6.14 form a system of two
linear equations and two unknowns. If you have forgotten Equation 6.14, use
Equation 6.11 instead.

Steps 1 and 2 of the problem-solving strategy are generally carried out in the
process of sketching and labeling a diagram of the problem. This is clearly the
case in our next example, which makes use of Figure 6.13. Other steps are pointed
out as they are applied.
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174 Chapter 6 Momentum and Collisions

EXAMPLE 6.6 Let’s Play Pool
Goal Solve an elastic collision in one dimension.

Problem Two billiard balls of identical mass move toward each other as in Active Figure 6.13. Assume that the colli-
sion between them is perfectly elastic. If the initial velocities of the balls are 	 30.0 cm/s and � 20.0 cm/s, what is the
velocity of each ball after the collision? Assume friction and rotation are unimportant.

Strategy Solution of this problem is a matter of solving two equations, the conservation of momentum and conser-
vation of energy equations, for two unknowns, the final velocities of the two balls. Instead of using Equation 6.11 for
conservation of energy, use Equation 6.14, which is linear, hence easier to handle.

Solution
Write the conservation of momentum equation. Because
m1 � m 2, we can cancel the masses, then substitute 
v1i � 	 30.0 m/s and v 2i � � 20.0 cm/s (Step 3).

m1v1i 	 m2v2i � m1v1f 	 m2v2f

30.0 cm/s 	 (� 20.0 cm/s) � v1f 	 v2f

10.0 cm/s � v1f 	 v2f (1)

Next, apply conservation of energy in the form of Equa-
tion 6.14 (Step 4):

30.0 cm/s � (� 20.0 cm/s) � v2f � v1f

50.0 cm/s � v2f � v1f (2)

v1i � v2i � � (v1f � v2f)

Now solve (1) and (2) simultaneously (Step 5): v1f � v 2f � 	 30.0 cm/s� 20.0 cm/s

Remarks Notice the balls exchanged velocities—almost as if they’d passed through each other. This is always the
case when two objects of equal mass undergo an elastic head-on collision.

Exercise 6.6
Find the final velocity of the two balls if the ball with initial velocity v2i � �20.0 cm/s has a mass equal to half that of
the ball with initial velocity v1i � 	30.0 cm/s.

Answer v 1f � � 3.33 cm/s; v 2f � 	 46.7 cm/s

INTERACTIVE EXAMPLE 6.7 Two Blocks and a Spring
Goal Solve an elastic collision involving spring potential energy.

Problem A block of mass m1 � 1.60 kg, initially moving to the right with a 
velocity of 	 4.00 m/s on a frictionless horizontal track, collides with a massless
spring attached to a second block of mass m2 � 2.10 kg moving to the left with 
a velocity of � 2.50 m/s, as in Figure 6.14a. The spring has a spring constant of
6.00 � 102 N/m. (a) Determine the velocity of block 2 at the instant when block 1
is moving to the right with a velocity of 	 3.00 m/s, as in Figure 6.14b. (b) Find the
compression of the spring.

Strategy We identify the system as the two blocks and the spring. Write down the
conservation of momentum equations, and solve for the final velocity of block 2,
v2f . Then use conservation of energy to find the compression of the spring.

x

k

1f  2f

m1
m2

m1
m2

k

1i = +4.00 m/s = –2.50 m/s

= +3.00 m/s

2i 

(a)

(b)

v v

v v

Figure 6.14 (Example 6.7)Solution
(a) Find the velocity v 2f when block 1 
has velocity 	 3.00 m/s.

Write the conservation of momentum 
equation for the system and solve for v 2f :

m1v1i 	 m2v2i � m1v1f 	 m2v2f

v2f � � 1.74 m/s

� 
(1.60 kg)(4.00 m/s) 	 (2.10 kg)(� 2.50 m/s) � (1.60 kg)(3.00 m/s)

2.10 kg

v2f �
m 1v1i 	 m 2v2i � m 1v1f

m 2

44337_06_p160-188  10/21/04  8:58 AM  Page 174



6.4 Glancing Collisions 175

6.4 GLANCING COLLISIONS
In Section 6.2 we showed that the total linear momentum of a system is conserved
when the system is isolated (that is, when no external forces act on the system).
For a general collision of two objects in three-dimensional space, the conservation
of momentum principle implies that the total momentum of the system in each di-
rection is conserved. However, an important subset of collisions takes place in a
plane. The game of billiards is a familiar example involving multiple collisions of
objects moving on a two-dimensional surface. We restrict our attention to a single
two-dimensional collision between two objects that takes place in a plane, and ig-
nore any possible rotation. For such collisions, we obtain two component equa-
tions for the conservation of momentum:

m1v1ix 	 m2v2ix � m1v1f x 	 m 2v 2f x

m1v1iy 	 m2v2iy � m1v1f y 	 m 2v 2f y

We must use three subscripts in this general equation, to represent, respectively, (1) the
object in question, and (2) the initial and final values of the components of velocity.

Now, consider a two-dimensional problem in which an object of mass m1 col-
lides with an object of mass m2 that is initially at rest, as in Active Figure 6.15. After
the collision, object 1 moves at an angle � with respect to the horizontal, and
object 2 moves at an angle � with respect to the horizontal. This is called a glanc-
ing collision. Applying the law of conservation of momentum in component form,
and noting that the initial y-component of momentum is zero, we have

x-component: m1v1i 	 0 � m1v1f cos � 	 m2v2f cos � [6.15]

y -component: 0 	 0 � m1v1f sin � � m2v2f sin � [6.16]

(b) Find the compression of the spring.

Use energy conservation for the system, noticing that
potential energy is stored in the spring when it is
compressed a distance x :

Ei � Ef

1
2 m1v 2

1i 	 1
2m2v 2

2i 	 0 � 1
2m1v 2

1f 	 1
2m2v 2

2f 	 1
2kx2

Substitute the given values and the result of part (a) into
the preceding expression, solving for x.

x � 0.173 m

Remarks The initial velocity component of block 2 is �2.50 m/s because the block is moving to the left. The nega-
tive value for v2f means that block 2 is still moving to the left at the instant under consideration.

Exercise 6.7
Find (a) the velocity of block 1 and (b) the compression of the spring at the instant that block 2 is at rest.

Answer (a) 0.719 m/s to the right (b) 0.251 m

You can change the masses and speeds of the blocks and freeze the motion at the maximum com-
pression of the spring by logging into PhysicsNow at www.cp7e.com and going to Interactive Example 6.7.

(a) Before the collision

1i

(b) After the collision

v2f cos

v1f cos

v1f sin
1f

2f
–v2f sin

m1

m2

+y

+x

u

u

u

f
f

f

v

v

v

ACTIVE FIGURE 6.15
(a) Before and (b) after a glancing
collision between two balls.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 6.15 to adjust the speed and
position of the blue particle, adjust
the masses of both particles, and see
the effects.
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176 Chapter 6 Momentum and Collisions

If the collision is elastic, we can write a third equation, for conservation of energy,
in the form

[6.17]

If we know the initial velocity v1i and the masses, we are left with four unknowns
(v1f , v2f , �, and �). Because we have only three equations, one of the four remain-
ing quantities must be given in order to determine the motion after the collision
from conservation principles alone.

If the collision is inelastic, the kinetic energy of the system is not conserved, and
Equation 6.17 does not apply.

1
2m1v 2

1i � 1
2m1v 2

1f 	 1
2m2v 2

2f

Problem-Solving Strategy
Two-Dimensional Collisions
To solve two-dimensional collisions, follow this procedure:
1. Coordinate Axes. Use both x- and y-coordinates. It’s convenient to have either the

x-axis or the y -axis coincide with the direction of one of the initial velocities.
2. Diagram. Sketch the problem, labeling velocity vectors and masses.
3. Conservation of Momentum. Write a separate conservation of momentum equa-

tion for each of the x - and y -directions. In each case, the total initial momentum
in a given direction equals the total final momentum in that direction.

4. Conservation of Energy. If the collision is elastic, write a general expression for
the total energy before and after the collision, and equate the two expressions, as
in Equation 6.11. Fill in the known values. (Skip this step if the collision is not per-
fectly elastic.) The energy equation can’t be simplified as in the one-dimensional
case, so a quadratic expression such as Equation 6.11 or 6.17 must be used when
the collision is elastic.

5. Solve the equations simultaneously. There are two equations for inelastic collisions
and three for elastic collisions.

EXAMPLE 6.8 Collision at an Intersection
Goal Analyze a two-dimensional inelastic collision.

Problem A car with mass 1.50 � 103 kg traveling east at a speed of 25.0 m/s col-
lides at an intersection with a 2.50 � 103-kg van traveling north at a speed of
20.0 m/s, as shown in Figure 6.16. Find the magnitude and direction of the veloc-
ity of the wreckage after the collision, assuming that the vehicles undergo a
perfectly inelastic collision (that is, they stick together) and assuming that friction
between the vehicles and the road can be neglected.

Strategy Use conservation of momentum in two dimensions. (Kinetic energy is
not conserved.) Choose coordinates as in Figure 6.16. Before the collision, the only
object having momentum in the x-direction is the car, while the van carries all the
momentum in the y-direction. After the totally inelastic collision, both vehicles
move together at some common speed vf and angle �. Solve for these two un-
knowns, using the two components of the conservation of momentum equation.

y

x

f

+20.0 m/s

+25.0 m/s
u

v

Figure 6.16 (Example 6.8) A top
view of a perfectly inelastic collision
between a car and a van.

Solution
Find the x -components of the initial and final total 
momenta:


pxi � mcarv car � (1.50 � 103 kg)(25.0 m/s)

� 3.75 � 104 kg � m/s


pxf � (mcar 	 m van)vf cos � � (4.00 � 103 kg)vf cos �

Set the initial x-momentum equal to the final 
x-momentum:

3.75 � 104 kg � m/s � (4.00 � 103 kg) vf cos � (1)

44337_06_p160-188  10/21/04  8:58 AM  Page 176



6.5 Rocket Propulsion 177

6.5 ROCKET PROPULSION
When ordinary vehicles such as cars and locomotives move, the driving force of
the motion is friction. In the case of the car, this driving force is exerted by the
road on the car, a reaction to the force exerted by the wheels against the road.
Similarly, a locomotive “pushes” against the tracks; hence, the driving force is the
reaction force exerted by the tracks on the locomotive. However, a rocket moving
in space has no road or tracks to push against. How can it move forward?

In fact, reaction forces also propel a rocket. (You should review Newton’s third
law, discussed in Chapter 4.) To illustrate this point, we model our rocket with a
spherical chamber containing a combustible gas, as in Figure 6.17a. When an ex-
plosion occurs in the chamber, the hot gas expands and presses against all sides of
the chamber, as indicated by the arrows. Because the sum of the forces exerted
on the rocket is zero, it doesn’t move. Now suppose a hole is drilled in the bottom
of the chamber, as in Figure 6.17b. When the explosion occurs, the gas presses
against the chamber in all directions, but can’t press against anything at the hole,
where it simply escapes into space. Adding the forces on the spherical chamber
now results in a net force upwards. Just as in the case of cars and locomotives, this
is a reaction force. A car’s wheels press against the ground, and the reaction force
of the ground on the car pushes it forward. The wall of the rocket’s combustion
chamber exerts a force on the gas expanding against it. The reaction force of the
gas on the wall then pushes the rocket upward.

In a now infamous article in The New York Times, rocket pioneer Robert Goddard
was ridiculed for thinking that rockets would work in space, where, according to
the Times, there was nothing to push against. The Times retracted, rather belatedly,
during the first Apollo moon landing mission in 1969. The hot gases are not push-
ing against anything external, but against the rocket itself—and ironically, rockets
actually work better in a vacuum. In an atmosphere, the gases have to do work
against the outside air pressure to escape the combustion chamber, slowing the ex-
haust velocity and reducing the reaction force.

Find the y -components of the initial and final total
momenta:

�piy � m vanv van � (2.50 � 103 kg)(20.0 m/s)

� 5.00 � 104 kg � m/s

�pf y � (mcar � m van)vf sin � � (4.00 � 103 kg)vf sin �

Set the initial y -momentum equal to the final 
y -momentum:

5.00 � 104 kg � m/s � (4.00 � 103 kg)vf sin � (2)

Divide Equation (2) by Equation (1) and solve for u:

� � 53.1�

tan � �
5.00 � 104 kg�m/s
3.75 � 104 kg�m

� 1.33

Substitute this angle back into Equation (2) to find vf : 15.6 m/svf �
5.00 � 104 kg�m/s

(4.00 � 103 kg) sin 53.1�
�

Remark It’s also possible to first find the x- and y-componentsvf x andvfy of the resultant velocity. The magnitude and 
direction of the resultant velocity can then be found with the Pythagorean theorem, , and the inverse
tangent function � � tan	1(vf y/vf x). Setting up this alternate approach is a simple matter of substituting 
vfx � vf cos � and vf y � vf sin � in Equations (1) and (2).

Exercise 6.8
A 3.00-kg object initially moving in the positive x -direction with a velocity of � 5.00 m/s collides with and sticks to a
2.00-kg object initially moving in the negative y -direction with a velocity of 	 3.00 m/s. Find the final components of
velocity of the composite object.

Answer vf x � 3.00 m/s; vf y � 	 1.20 m/s

vf � √v 2
fx � v 2

f y

(a)

(b)

Figure 6.17 (a) A rocket reaction
chamber without a nozzle has
reaction forces pushing equally in all
directions, so no motion results. 
(b) An opening at the bottom of the
chamber removes the downward
reaction force, resulting in a net up-
ward reaction force.
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178 Chapter 6 Momentum and Collisions

At the microscopic level, this process is complicated, but it can be simplified by
applying conservation of momentum to the rocket and its ejected fuel. In princi-
ple, the solution is similar to that in Example 6.3, with the archer representing the
rocket and the arrows the exhaust gases.

Suppose that at some time t, the momentum of the rocket plus the fuel is 
(M 	 �m)v, where �m is an amount of fuel about to be burned (Fig. 6.18a). This
fuel is traveling at a speed v relative to, say, the Earth, just like the rest of the
rocket. During a short time interval �t, the rocket ejects fuel of mass �m , and the
rocket’s speed increases to v 	 �v (Fig. 6.18b). If the fuel is ejected with exhaust
speed ve relative to the rocket, the speed of the fuel relative to the Earth is v � ve.
Equating the total initial momentum of the system with the total final momentum,
we have

(M 	 �m)v � M(v 	 �v) 	 �m(v � ve)

Simplifying this expression gives

M�v � ve �m

The increase �m in the mass of the exhaust corresponds to an equal decrease in
the mass of the rocket, so that �m � � �M. Using this fact, we have

M�v � � ve �M [6.18]

This result, together with the methods of calculus, can be used to obtain the fol-
lowing equation:

[6.19]

where Mi is the initial mass of the rocket plus fuel and Mf is the final mass of the
rocket plus its remaining fuel. This is the basic expression for rocket propulsion; it
tells us that the increase in velocity is proportional to the exhaust speed ve and to
the natural logarithm of Mi/Mf . Because the maximum ratio of Mi to Mf for a
single-stage rocket is about 10:1, the increase in speed can reach ve ln 10 � 2.3ve
or about twice the exhaust speed! For best results, therefore, the exhaust speed
should be as high as possible. Currently, typical rocket exhaust speeds are several
kilometers per second.

The thrust on the rocket is defined as the force exerted on the rocket by the
ejected exhaust gases. We can obtain an expression for the instantaneous thrust by
dividing Equation 6.18 by �t :

[6.20]

The absolute value signs are used for clarity: In Equation 6.18, � �M is a positive
quantity (as is ve , a speed). Here we see that the thrust increases as the exhaust ve-
locity increases and as the rate of change of mass �M/�t (the burn rate) increases.

Instantaneous thrust � Ma � M 
�v
�t

� �ve 
�M
�t �

vf � vi � ve ln � Mi

Mf
�

(a)

(b)

M + ∆m

i = (M + ∆m)v

M
∆m

v + ∆v

v

p

Figure 6.18 Rocket propulsion.
(a) The initial mass of the rocket and
fuel is M 	 �m at a time t, and the
rocket’s speed is v. (b) At a time 
t 	 �t, the rocket’s mass has been 
reduced to M , and an amount of fuel
�m has been ejected. The rocket’s
speed increases by an amount �v.

The current maximum exhaust speed of ve �
4 500 m/s can be realized with rocket engines fueled
with liquid hydrogen and liquid oxygen. But this
means that the maximum speed attainable for a given
rocket with a mass ratio of 10 is ve ln 10 � 10 000 m/s.
To reach the moon, however, requires a change in ve-
locity of over 11 000 m/s. Further, this change must
occur while working against gravity and atmospheric
friction. How can that be managed without develop-
ing better engines?

Explanation The answer is the multistage rocket. By
dropping stages, the spacecraft becomes lighter, so
that fuel burned later in the mission doesn’t have to
accelerate mass that no longer serves any purpose.
Strap-on boosters, as used by the Space Shuttle and a
number of other rockets, such as the Titan 4 or Russ-
ian Proton, is a similar concept. The boosters are jetti-
soned after their fuel is exhausted, so the rocket is no
longer burdened by their weight.

Applying Physics 6.2 Multistage Rockets

Rocket thrust �

44337_06_p160-188  10/21/04  8:58 AM  Page 178
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EXAMPLE 6.9 Single Stage to Orbit (SSTO)
Goal Apply the velocity and thrust equations of a rocket.

Problem A rocket has a total mass of 1.00 � 105 kg and a burnout mass of 1.00 � 104 kg, including engines,
shell, and payload. The rocket blasts off from Earth and exhausts all its fuel in 4.00 min, burning the fuel at a
steady rate with an exhaust velocity of ve � 4.50 � 103 m/s. (a) If air friction and gravity are neglected, what is
the speed of the rocket at burnout? (b) What thrust does the engine develop at liftoff? (c) What is the initial
acceleration of the rocket if gravity is not neglected? (d) Estimate the speed at burnout if gravity isn’t neglected.

Strategy Although it sounds sophisticated, this problem is mainly a matter of substituting values into the appropri-
ate equations. Part (a) requires substituting values into Equation 6.19 for the velocity. For part (b), divide the change
in the rocket’s mass by the total time, getting �M/�t, then substitute into Equation 6.20 to find the thrust. (c) Using
Newton’s second law, the force of gravity, and the result of (b), we can find the initial acceleration. For part (d), the
acceleration of gravity is approximately constant over the few kilometers involved, so the velocity found in (b) will be
reduced by roughly �vg � � gt . Add this loss to the result of part (a).

Solution
(a) Calculate the velocity at burnout.

Substitute vi � 0, ve � 4.50 � 103 m/s, 
Mi � 1.00 � 105 kg, and Mf � 1.00 � 104 kg into 
Equation 6.19:

vf � 1.04 � 104 m/s

 � 0 	 (4.5 � 103 m/s) ln � 1.00 � 105 kg
1.00 � 104 kg �

 vf � vi 	 ve ln � Mi

Mf
�

(b) Find the thrust at liftoff.

Compute the change in the rocket’s mass: �M � Mf � Mi � 1.00 � 104 kg � 1.00 � 105 kg

� � 9.00 � 104 kg

Calculate the rate at which rocket mass changes by
dividing the change in mass by the time (4.00 min,
converted to seconds):

�M
�t

�
�9.00 � 104 kg

2.40 � 102 s
� �3.75 � 102 kg/s

Substitute this rate into Equation 6.20, obtaining the
thrust:

Thrust �

� 1.69 � 106 N

�ve 
�M
�t � � (4.50 � 103 m/s)(3.75 � 102 kg/s)

(c) Find the initial acceleration.

Write Newton’s second law, where T stands for thrust,
and solve for the acceleration a :

Ma � 
F � T � Mg

� 7.10 m/s2

a �
T
M

� g �
1.69 � 106 N
1.00 � 105 kg

 �  9.80 m/s2

(d) Estimate the speed at burnout when gravity is not
neglected.

Find the approximate loss of speed due to gravity: �vg � � g�t � � (9.80 m/s2)(2.40 � 102 s)

� � 2.35 � 103 m/s

Add this loss to the result of part (b): vf � 1.04 � 104 m/s � 2.35 � 103 m/s

� 8.05 � 103 m/s
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180 Chapter 6 Momentum and Collisions

Remarks Even taking gravity into account, the speed is sufficient to attain orbit. Some additional boost may be re-
quired to overcome air drag.

Exercise 6.9
A spaceship with a mass of 5.00 � 104 kg is traveling at 6.00 � 103 m/s relative a space station. What mass will
the ship have after it fires its engines in order to reach a speed of 8.00 � 103 m/s? Assume an exhaust velocity of
4.50 � 103 m/s.

Answer 3.21 � 104 kg

SUMMARY
Take a practice test by logging into 

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

6.1 Momentum and Impulse
The linear momentum of an object of mass m moving
with velocity is defined as

[6.1]

Momentum carries units of kg � m/s. The impulse of a
constant force delivered to an object is equal to the prod-
uct of the force and the time interval during which the
force acts:

[6.4]

These two concepts are unifed in the impulse–momentum
theorem, which states that the impulse of a constant force
delivered to an object is equal to the change in momentum
of the object:

[6.5]

Solving problems with this theorem often involves estimating
speeds or contact times (or both), leading to an average force.

6.2 Conservation of Momentum
When no net external force acts on an isolated system, the
total momentum of the system is constant. This principle is
called conservation of momentum. In particular, if the iso-
lated system consists of two objects undergoing a collision,
the total momentum of the system is the same before and
after the collision. Conservation of momentum can be writ-
ten mathematically for this case as

[6.7]

Collision and recoil problems typically require finding
unknown velocities in one or two dimensions. Each vector

m1v:1i 	 m 2v:2i � m1v:1f 	 m2v:2f

F
:

�t � �p: � mv:f � m v:i

I
: 

� F
:

�t

F
:

I
:

p: � mv:
v:

p:

component gives an equation, and the resulting equa-
tions are solved simultaneously.

6.3 Collisions
In an inelastic collision, the momentum of the system is
conserved, but kinetic energy is not. In a perfectly inelastic
collision, the colliding objects stick together. In an elastic
collision, both the momentum and the kinetic energy of
the system are conserved.

A one-dimensional elastic collision between two objects
can be solved by using the conservation of momentum and
conservation of energy equations:

m1v1i 	 m2v2i � m1v1f 	 m2v2f [6.10]

[6.11]

The following equation, derived from Equations 6.10 and
6.11, is usually more convenient to use than the original
conservation of energy equation:

[6.14]

These equations can be solved simultaneously for the un-
known velocities. Energy is not conserved in inelastic colli-
sions, so such problems must be solved with Equation 6.10
alone.

6.4 Glancing Collisions
In glancing collisions, conservation of momentum can be
applied along two perpendicular directions: an x -axis and
a y-axis. Problems can be solved by using the x- and y -
components of Equation 6.7. Elastic two-dimensional colli-
sions will usually require Equation 6.11 as well. (Equation 6.14
doesn’t apply to two dimensions.) Generally, one of the two
objects is taken to be traveling along the x -axis, undergoing a
deflection at some angle � after the collision. The final veloci-
ties and angles can be found with elementary trigonometry.

v1i � v 2i � �(v 1f � v 2f )

1
2 m1v 2

1i 	 1
2m2v 2

2i � 1
2m1v 2

1f 	 1
2m2v 2

2f

CONCEPTUAL QUESTIONS
1. A batter bunts a pitched baseball, blocking the ball with-

out swinging. (a) Can the baseball deliver more kinetic
energy to the bat and batter than the ball carries initially?
(b) Can the baseball deliver more momentum to the bat
and batter than the ball carries initially? Explain each of
your answers.

2. America will never forget the terrorist attack on Septem-
ber 11, 2001. One commentator remarked that the force
of the explosion at the Twin Towers of the World Trade
Center was strong enough to blow glass and parts of the

steel structure to small fragments. Yet the television cover-
age showed thousands of sheets of paper floating down,
many still intact. Explain how that could be.

3. In perfectly inelastic collisions between two objects, there
are events in which all of the original kinetic energy is
transformed to forms other than kinetic. Give an example
of such an event.

4. If two objects collide and one is initially at rest, is it possi-
ble for both to be at rest after the collision? Is it possible
for only one to be at rest after the collision? Explain.
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5. A ball of clay of mass m is thrown with a speed v against a
brick wall. The clay sticks to the wall and stops. Is the princi-
ple of conservation of momentum violated in this example?

6. A skater is standing still on a frictionless ice rink. Her
friend throws a Frisbee straight at her. In which of the fol-
lowing cases is the largest momentum transferred to the
skater? (a) The skater catches the Frisbee and holds onto
it. (b) The skater catches the Frisbee momentarily, but
then drops it vertically downward. (c) The skater catches
the Frisbee, holds it momentarily, and throws it back to
her friend.

7. You are standing perfectly still and then you take a step
forward. Before the step your momentum was zero, but af-
terwards you have some momentum. Is the conservation
of momentum violated in this case?

8. If two particles have equal kinetic energies, are their mo-
menta necessarily equal? Explain.

9. A more ordinary example of conservation of momentum
than a rocket ship occurs in a kitchen dishwashing ma-
chine. In this device, water at high pressure is forced out
of small holes on the spray arms. Use conservation of mo-
mentum to explain why the arms rotate, directing water
to all the dishes.

10. If two automobiles collide, they usually do not stick to-
gether. Does this mean the collision is elastic? Explain why
a head-on collision is likely to be more dangerous than
other types of collisions.

11. An open box slides across a frictionless, icy surface of a
frozen lake. What happens to the speed of the box as wa-
ter from a rain shower collect in it, assuming that the rain
falls vertically downward into the box? Explain.

12. Consider a perfectly inelastic collision between a car and
a large truck. Which vehicle loses more kinetic energy as a
result of the collision?

13. Your physical education teacher throws you a tennis ball at
a certain velocity, and you catch it. You are now given the
following choice: The teacher can throw you a medicine
ball (which is much more massive than the tennis ball)
with the same velocity, the same momentum, or the same
kinetic energy as the tennis ball. Which option would you
choose in order to make the easiest catch, and why?

14. While watching a movie about a superhero, you notice
that the superhero hovers in the air and throws a piano at
some bad guys while remaining stationary in the air.
What’s wrong with this scenario?

15. In golf, novice players are often advised to be sure to “fol-
low through” with their swing. Why does this make the
ball travel a longer distance? If a shot is taken near the
green, very little follow-through is required. Why?

16. An air bag inflates when a collision occurs, protecting a
passenger (the dummy in Figure Q6.16) from serious in-
jury. Why does the air bag soften the blow? Discuss the
physics involved in this dramatic photograph.

Figure Q6.16
Co

ur
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17. A sharpshooter fires a rifle while standing with the butt of
the gun against his shoulder. If the forward momentum of
a bullet is the same as the backward momentum of the
gun, why isn’t it as dangerous to be hit by the gun as by
the bullet?

18. A large bedsheet is held vertically by two students. A third
student, who happens to be the star pitcher on the base-
ball team, throws a raw egg at the sheet. Explain why the
egg doesn’t break when it hits the sheet, regardless of its
initial speed. (If you try this, make sure the pitcher hits
the sheet near its center, and don’t allow the egg to fall on
the floor after being caught.)

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 6.1 Momentum and Impulse
1. A ball of mass 0.150 kg is dropped from rest from a height

of 1.25 m. It rebounds from the floor to reach a height of
0.960 m. What impulse was given to the ball by the floor?

2. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot
with the ball traveling horizontally at 40.0 m/s in the op-
posite direction. (a) What is the impulse delivered to the
ball by the racquet? (b) What work does the racquet do
on the ball?

3. Calculate the magnitude of the linear momentum for the
following cases: (a) a proton with mass 1.67 � 10�27 kg,

moving with a speed of 5.00 � 106 m/s; (b) a 15.0-g
bullet moving with a speed of 300 m/s; (c) a 75.0-kg
sprinter running with a speed of 10.0 m/s; (d) the Earth
(mass � 5.98 � 1024 kg) moving with an orbital speed
equal to 2.98 � 104 m/s.

4. A 0.10-kg ball is thrown straight up into the air with an
initial speed of 15 m/s. Find the momentum of the
ball (a) at its maximum height and (b) halfway to its
maximum height.

5. A pitcher claims he can throw a 0.145-kg baseball with as
much momentum as a 3.00-g bullet moving with a speed
of 1.50 � 103 m/s. (a) What must the baseball’s speed be
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if the pitcher’s claim is valid? (b) Which has greater ki-
netic energy, the ball or the bullet?

6. A stroboscopic photo of a club hitting a golf ball, such as
the photo shown in Figure 6.3, was made by Harold Edger-
ton in 1933. The ball was initially at rest, and the club was
shown to be in contact with the club for about 0.002 0 s.
Also, the ball was found to end up with a speed of 
2.0 � 102 ft/s. Assuming that the golf ball had a mass of 
55 g, find the average force exerted by the club on the ball.

A professional diver performs a dive
from a platform 10 m above the water surface. Estimate
the order of magnitude of the average impact force she
experiences in her collision with the water. State the
quantities you take as data and their values.

8. A 75.0-kg stuntman jumps from a balcony and falls 25.0 m
before colliding with a pile of mattresses. If the mattresses
are compressed 1.00 m before he is brought to rest, what
is the average force exerted by the mattresses on the
stuntman?

9. A car is stopped for a traffic signal. When the light turns
green, the car accelerates, increasing its speed from 0 to
5.20 m/s in 0.832 s. What are the magnitudes of the linear
impulse and the average total force experienced by a 
70.0-kg passenger in the car during the time the car accel-
erates?

10. A 0.500-kg football is thrown toward the east with a speed
of 15.0 m/s. A stationary receiver catches the ball and
brings it to rest in 0.020 0 s. (a) What is the impulse deliv-
ered to the ball as it’s caught? (b) What is the average
force exerted on the receiver?

11. The force shown in the force vs. time diagram in Figure
P6.11 acts on a 1.5-kg object. Find (a) the impulse of the
force, (b) the final velocity of the object if it is initially at
rest, and (c) the final velocity of the object if it is initially
moving along the x-axis with a velocity of � 2.0 m/s.

7.

the particle if it is initially at rest, and (c) the final velocity
of the particle if it is initially moving along the x -axis with
a velocity of � 2.00 m/s.
The forces shown in the force vs. time diagram in Figure
P6.13 act on a 1.5-kg particle. Find (a) the impulse for the
interval from t � 0 to t � 3.0 s and (b) the impulse for
the interval from t � 0 to t � 5.0 s. (c) If the forces act on
a 1.5-kg particle that is initially at rest, find the particle’s
speed at t � 3.0 s and at t � 5.0 s.

13.

14. A 3.00-kg steel ball strikes a massive wall at 10.0 m/s at an
angle of 60.0° with the plane of the wall. It bounces off
the wall with the same speed and angle (Fig. P6.14). If the
ball is in contact with the wall for 0.200 s, what is the aver-
age force exerted by the wall on the ball?

Fx(N)

2

1

1 2 3 4 5
t(s)0

0

Figure P6.11

12. A force of magnitude Fx acting in the x -direction on a
2.00-kg particle varies in time as shown in Figure P6.12.
Find (a) the impulse of the force, (b) the final velocity of

4

F(N)

3

2

1

0 1 2 3 4 5
t(s)

Figure P6.12

Fx(N)

4

2

0
1 2 3 4 5

t(s)

–2

Figure P6.13

60.0˚

x

y

60.0˚

Figure P6.14

The front 1.20 m of a 1 400-kg car is designed as a “crum-
ple zone” that collapses to absorb the shock of a collision.
If a car traveling 25.0 m/s stops uniformly in 1.20 m, 
(a) how long does the collision last, (b) what is the magni-
tude of the average force on the car, and (c) what is the
acceleration of the car? Express the acceleration as a mul-
tiple of the acceleration of gravity.

16. A pitcher throws a 0.15-kg baseball so that it crosses home
plate horizontally with a speed of 20 m/s. The ball is hit
straight back at the pitcher with a final speed of 22 m/s.
(a) What is the impulse delivered to the ball? (b) Find the
average force exerted by the bat on the ball if the two are
in contact for 2.0 � 10�3 s.

17. A car of mass 1.6 � 103 kg is traveling east at a speed of 
25 m/s along a horizontal roadway. When its brakes are
applied, the car stops in 6.0 s. What is the average hori-
zontal force exerted on the car while it is braking?

Section 6.2 Conservation of Momentum
18. A 730-N man stands in the middle of a frozen pond of ra-

dius 5.0 m. He is unable to get to the other side because of
a lack of friction between his shoes and the ice. To over-
come this difficulty, he throws his 1.2-kg physics textbook
horizontally toward the north shore at a speed of 5.0 m/s.
How long does it take him to reach the south shore?

15.
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19. High-speed stroboscopic photographs show that the head
of a 200-g golf club is traveling at 55 m/s just before it
strikes a 46-g golf ball at rest on a tee. After the collision,
the club head travels (in the same direction) at 40 m/s.
Find the speed of the golf ball just after impact.

20. A rifle with a weight of 30 N fires a 5.0-g bullet with a
speed of 300 m/s. (a) Find the recoil speed of the rifle.
(b) If a 700-N man holds the rifle firmly against his shoul-
der, find the recoil speed of the man and rifle.

A 45.0-kg girl is standing on a 150-kg
plank. The plank, originally at rest, is free to slide on a
frozen lake, which is a flat, frictionless surface. The girl
begins to walk along the plank at a constant velocity of
1.50 m/s to the right relative to the plank. (a) What is her
velocity relative to the surface of the ice? (b) What is the
velocity of the plank relative to the surface of the ice?

22. A 65.0-kg person throws a 0.045 0-kg snowball forward with
a ground speed of 30.0 m/s. A second person, with a mass
of 60.0 kg, catches the snowball. Both people are on skates.
The first person is initially moving forward with a speed of
2.50 m/s, and the second person is initially at rest. What
are the velocities of the two people after the snowball is ex-
changed? Disregard friction between the skates and the ice.

23. In Section 6.2, we implied that the kinetic energy of the
Earth can be ignored when considering the energy of a
system consisting of the Earth and a dropped ball of mass
mb. Verify this statement by first setting up a ratio of the
kinetic energy of the Earth to that of the ball as they col-
lide. Then use conservation of momentum to show that

Find the order of magnitude of the ratio of the kinetic en-
ergies, based on data that you specify.

24. Two ice skaters are holding hands at the center of a
frozen pond when an argument ensues. Skater A shoves
skater B along a horizontal direction. Identify (a) the
horizontal forces acting on A and (b) those acting on B.
(c) Which force is greater, the force on A or the force on
B? (d) Can conservation of momentum be used for the
system of A and B? Defend your answer. (e) If A has a
mass of 0.900 times that of B, and B begins to move away
with a speed of 2.00 m/s, find the speed of A.

Section 6.3 Collisions
Section 6.4 Glancing Collisions
25. An archer shoots an arrow toward a 300-g target that is

sliding in her direction at a speed of 2.50 m/s on a
smooth, slippery surface. The 22.5-g arrow is shot with a
speed of 35.0 m/s and passes through the target, which is
stopped by the impact. What is the speed of the arrow af-
ter passing through the target?

vE

vb
� � 

mb

mE
  and  KEE

KEb
�

mb

mE

21.

26. A 75.0-kg ice skater moving at 10.0 m/s crashes into a sta-
tionary skater of equal mass. After the collision, the two
skaters move as a unit at 5.00 m/s. Suppose the average
force a skater can experience without breaking a bone is
4 500 N. If the impact time is 0.100 s, does a bone break?

27. A railroad car of mass 2.00 � 104 kg moving at 3.00 m/s
collides and couples with two coupled railroad cars, each
of the same mass as the single car and moving in the same
direction at 1.20 m/s. (a) What is the speed of the three
coupled cars after the collision? (b) How much kinetic en-
ergy is lost in the collision?

28. A 7.0-g bullet is fired into a 1.5-kg ballistic pendulum. The
bullet emerges from the block with a speed of 200 m/s,
and the block rises to a maximum height of 12 cm. Find
the initial speed of the bullet.

29. A 0.030-kg bullet is fired vertically at 200 m/s into a
0.15-kg baseball that is initially at rest. How high does the
combined bullet and baseball rise after the collision, as-
suming the bullet embeds itself in the ball?
An 8.00-g bullet is fired into a 250-g block that is initially
at rest at the edge of a table of height 1.00 m (Fig. P6.30).
The bullet remains in the block, and after the impact the
block lands 2.00 m from the bottom of the table. Deter-
mine the initial speed of the bullet.

30.

31. Gayle runs at a speed of 4.00 m/s and dives on a sled, ini-
tially at rest on the top of a frictionless, snow-covered hill.
After she has descended a vertical distance of 5.00 m, her
brother, who is initially at rest, hops on her back, and they
continue down the hill together. What is their speed at
the bottom of the hill if the total vertical drop is 15.0 m?
Gayle’s mass is 50.0 kg, the sled has a mass of 5.00 kg, and
her brother has a mass of 30.0 kg.

32. A 1 200-kg car traveling initially with a speed of 25.0 m/s
in an easterly direction crashes into the rear end of a 
9 000-kg truck moving in the same direction at 20.0 m/s
(Fig. P6.32). The velocity of the car right after the collision
is 18.0 m/s to the east. (a) What is the velocity of the truck
right after the collision? (b) How much mechanical energy
is lost in the collision? Account for this loss in energy.

1.00 m

8.00 g

2.00 m

250 g

Figure P6.30

+20.0 m/s+25.0 m/s +18.0 m/s

AfterBefore

BIG

Joes
IRISH
BEER

BIG

Joes
IRISH
BEER

v

Figure P6.32
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33. A 12.0-g bullet is fired horizontally into a 100-g wooden
block that is initially at rest on a frictionless horizontal
surface and connected to a spring having spring constant
150 N/m. The bullet becomes embedded in the block. If
the bullet–block system compresses the spring by a maxi-
mum of 80.0 cm, what was the speed of the bullet at im-
pact with the block?

34. (a) Three carts of masses 4.0 kg, 10 kg, and 3.0 kg move
on a frictionless horizontal track with speeds of 5.0 m/s,
3.0 m/s, and 4.0 m/s, as shown in Figure P6.34. The carts
stick together after colliding. Find the final velocity of the
three carts. (b) Does your answer require that all carts col-
lide and stick together at the same time?

35. A 5.00-g object moving to the right at 20.0 cm/s makes an
elastic head-on collision with a 10.0-g object that is ini-
tially at rest. Find (a) the velocity of each object after the
collision and (b) the fraction of the initial kinetic energy
transferred to the 10.0-g object.

36. A 10.0-g object moving to the right at 20.0 cm/s makes an
elastic head-on collision with a 15.0-g object moving in the
opposite direction at 30.0 cm/s. Find the velocity of each
object after the collision.
A 25.0-g object moving to the right at 20.0 cm/s overtakes
and collides elastically with a 10.0-g object moving in the
same direction at 15.0 cm/s. Find the velocity of each ob-
ject after the collision.

38. Four railroad cars, each of mass 2.50 � 104 kg, are cou-
pled together and coasting along horizontal tracks at
speed vi toward the south. A very strong but foolish movie
actor riding on the second car uncouples the front car
and gives it a big push, increasing its speed to 4.00 m/s
south. The remaining three cars continue moving south,
now at 2.00 m/s. (a) Find the initial speed of the cars. 
(b) How much work did the actor do?

39. When fired from a gun into a 1.00-kg block of wood held
in a vise, a 7.00-g bullet penetrates the block to a depth of
8.00 cm. The block is then placed on a frictionless, hori-
zontal surface, and a second 7.00-g bullet is fired from the
gun into the block. To what depth does the bullet pene-
trate the block in this case?

40. A billiard ball rolling across a table at 1.50 m/s makes a
head-on elastic collision with an identical ball. Find the
speed of each ball after the collision (a) when the second
ball is initially at rest, (b) when the second ball is moving
toward the first at a speed of 1.00 m/s, and (c) when the
second ball is moving away from the first at a speed of
1.00 m/s.
A 90-kg fullback moving east with a speed of 5.0 m/s is
tackled by a 95-kg opponent running north at 3.0 m/s. If
the collision is perfectly inelastic, calculate (a) the velocity
of the players just after the tackle and (b) the kinetic en-
ergy lost as a result of the collision. Can you account for
the missing energy?

41.

37.

42. An 8.00-kg object moving east at 15.0 m/s on a friction-
less horizontal surface collides with a 10.0-kg object that is
initially at rest. After the collision, the 8.00-kg object
moves south at 4.00 m/s. (a) What is the velocity of the
10.0-kg object after the collision? (b) What percentage of
the initial kinetic energy is lost in the collision?

43. A 2 000-kg car moving east at 10.0 m/s collides with a
3 000-kg car moving north. The cars stick together and
move as a unit after the collision, at an angle of 40.0°
north of east and a speed of 5.22 m/s. Find the speed of
the 3 000-kg car before the collision.

44. Two automobiles of equal mass approach an intersec-
tion. One vehicle is traveling with velocity 13.0 m/s to-
ward the east, and the other is traveling north with
speed v2i. Neither driver sees the other. The vehicles col-
lide in the intersection and stick together, leaving paral-
lel skid marks at an angle of 55.0° north of east. The
speed limit for both roads is 35 mi/h, and the driver
of the northward-moving vehicle claims he was within
the limit when the collision occurred. Is he telling
the truth?

A billiard ball moving at 5.00 m/s
strikes a stationary ball of the same mass. After the colli-
sion, the first ball moves at 4.33 m/s at an angle of 30°
with respect to the original line of motion. (a) Find the
velocity (magnitude and direction) of the second ball
after collision. (b) Was the collision inelastic or elastic?

ADDITIONAL PROBLEMS

46. In research in cardiology and exercise physiology, it is of-
ten important to know the mass of blood pumped by a
person’s heart in one stroke. This information can be ob-
tained by means of a ballistocardiograph. The instrument
works as follows: The subject lies on a horizontal pallet
floating on a film of air. Friction on the pallet is negligi-
ble. Initially, the momentum of the system is zero. When
the heart beats, it expels a mass m of blood into the aorta
with speed v, and the body and platform move in the op-
posite direction with speed V. The speed of the blood can
be determined independently (for example, by observing
an ultrasound Doppler shift). Assume that the blood’s
speed is 50.0 cm/s in one typical trial. The mass of
the subject plus the pallet is 54.0 kg. The pallet moves
6.00 � 10�5 m in 0.160 s after one heartbeat. Calculate
the mass of blood that leaves the heart. Assume that the
mass of blood is negligible compared with the total mass
of the person. This simplified example illustrates the prin-
ciple of ballistocardiography, but in practice a more so-
phisticated model of heart function is used.

47. A 0.50-kg object is at rest at the origin of a coordinate sys-
tem. A 3.0-N force in the 	x-direction acts on the object
for 1.50 s. (a) What is the velocity at the end of this inter-
val? (b) At the end of the interval, a constant force of
4.0 N is applied in the �x -direction for 3.0 s. What is the
velocity at the end of the 3.0 s?

48. Consider a frictionless track as shown in Figure P6.48. A
block of mass m1 � 5.00 kg is released from �. It makes a
head-on elastic collision at � with a block of mass 
m2 � 10.0 kg that is initially at rest. Calculate the maxi-
mum height to which m1 rises after the collision.

45.

+5.0 m/s +3.0 m/s –4.0 m/s

10 kg4.0 kg 3.0 kg

Figure P6.34
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49. Most of us know intuitively that in a head-on collision be-
tween a large dump truck and a subcompact car, you are
better off being in the truck than in the car. Why is this?
Many people imagine that the collision force exerted on
the car is much greater than that exerted on the truck. 
To substantiate this view, they point out that the car is
crushed, whereas the truck is only dented. This idea of
unequal forces, of course, is false; Newton’s third law tells
us that both objects are acted upon by forces of the same
magnitude. The truck suffers less damage because it is
made of stronger metal. But what about the two drivers?
Do they experience the same forces? To answer this ques-
tion, suppose that each vehicle is initially moving at
8.00 m/s and that they undergo a perfectly inelastic head-
on collision. Each driver has mass 80.0 kg. Including the
masses of the drivers, the total masses of the vehicles are
800 kg for the car and 4 000 kg for the truck. If the colli-
sion time is 0.120 s, what force does the seat belt exert on
each driver?

50. A bullet of mass m and speed v passes completely through
a pendulum bob of mass M as shown in Figure P6.50. The
bullet emerges with a speed of v/2. The pendulum bob is
suspended by a stiff rod of length � and negligible mass.
What is the minimum value of v such that the bob will
barely swing through a complete vertical circle?

53. An 80-kg man standing erect steps off a 3.0-m-high diving
platform and begins to fall from rest. The man again
comes to rest 2.0 s after reaching the water. What average
force did the water exert on him?

54. A 12.0-g bullet is fired horizontally into a 100-g wooden
block initially at rest on a horizontal surface. After impact,
the block slides 7.5 m before coming to rest. If the coeffi-
cient of kinetic friction between block and surface is
0.650, what was the speed of the bullet immediately be-
fore impact?

55. A 60.0-kg person running at an initial speed of 4.00 m/s
jumps onto a 120-kg cart that is initially at rest (Figure
P6.55). The person slides on the cart’s top surface and fi-
nally comes to rest relative to the cart. The coefficient of
kinetic friction between the person and the cart is 0.400.
Friction between the cart and ground can be neglected.
(a) Find the final speed of the person and cart relative to
the ground. (b) Find the frictional force acting on the
person while he is sliding across the top surface of the
cart. (c) How long does the frictional force act on the per-
son? (d) Find the change in momentum of the person
and the change in momentum of the cart. (e) Determine
the displacement of the person relative to the ground
while he is sliding on the cart. (f) Determine the displace-
ment of the cart relative to the ground while the person is
sliding. (g) Find the change in kinetic energy of the
person. (h) Find the change in kinetic energy of the cart.
(i) Explain why the answers to (g) and (h) differ. (What
kind of collision is this, and what accounts for the loss of
mechanical energy?)

� m1

m2

� �

5.00 m

Figure P6.48

M

�

m

/2v v
Figure P6.50

A 2.0-g particle moving at 8.0 m/s makes a perfectly elas-
tic head-on collision with a resting 1.0-g object. (a) Find
the speed of each particle after the collision. (b) Find the
speed of each particle after the collision if the stationary
particle has a mass of 10 g. (c) Find the final kinetic en-
ergy of the incident 2.0-g particle in the situations de-
scribed in (a) and (b). In which case does the incident
particle lose more kinetic energy?

52. A 0.400-kg green bead slides on a curved frictionless wire,
starting from rest at point � in Figure P6.52. At point �,
the bead collides elastically with a 0.600-kg blue ball at
rest. Find the maximum height the blue ball rises as it
moves up the wire.

51.

1.50 m

�

�

Figure P6.52

60.0 kg +4.00 m/s

120 kg

Figure P6.55

56. Two blocks of masses m1 � 2.00 kg and m2 � 4.00 kg are
each released from rest at a height of 5.00 m on a friction-
less track, as shown in Figure P6.56, and undergo an elas-
tic head-on collision. (a) Determine the velocity of each
block just before the collision. (b) Determine the velocity
of each block immediately after the collision. (c) Deter-
mine the maximum heights to which m1 and m2 rise after
the collision.
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57. A 0.500-kg block is released from rest at the top of a fric-
tionless track 2.50 m above the top of a table. It then col-
lides elastically with a 1.00-kg object that is initially at rest
on the table, as shown in Figure P6.57. (a) Determine the
velocities of the two objects just after the collision. (b) How
high up the track does the 0.500-kg object travel back after
the collision? (c) How far away from the bottom of the
table does the 1.00-kg object land, given that the table is
2.00 m high? (d) How far away from the bottom of the
table does the 0.500-kg object eventually land?

Tarzan, whose mass is 80.0 kg, swings from a 3.00-m vine
that is horizontal when he starts. At the bottom of his arc,
he picks up 60.0-kg Jane in a perfectly inelastic collision.
What is the height of the highest tree limb they can reach
on their upward swing?

59. A small block of mass m1 � 0.500 kg is released from rest
at the top of a curved wedge of mass m2 � 3.00 kg, which
sits on a frictionless horizontal surface as in Figure P6.59a.
When the block leaves the wedge, its velocity is measured
to be 4.00 m/s to the right, as in Figure P6.59b. (a) What
is the velocity of the wedge after the block reaches the
horizontal surface? (b) What is the height h of the wedge?

58.

60. Two carts of equal mass m � 0.250 kg are placed on a
frictionless track that has a light spring of force constant
k � 50.0 N/m attached to one end of it, as in Figure
P6.60. The red cart is given an initial velocity of

to the right, and the blue cart is initially at
rest. If the carts collide elastically, find (a) the velocity of
the carts just after the first collision and (b) the maxi-
mum compression of the spring.

v:0 � 3.00 m/s

61. A cannon is rigidly attached to a carriage, which can move
along horizontal rails, but is connected to a post by a
large spring, initially unstretched and with force constant
k � 2.00 � 104 N/m, as in Figure P6.61. The cannon fires
a 200-kg projectile at a velocity of 125 m/s directed 45.0°
above the horizontal. (a) If the mass of the cannon and its
carriage is 5 000 kg, find the recoil speed of the cannon.
(b) Determine the maximum extension of the spring. 
(c) Find the maximum force the spring exerts on the car-
riage. (d) Consider the system consisting of the cannon,
the carriage, and the shell. Is the momentum of this sys-
tem conserved during the firing? Why or why not?

62. Two objects of masses m and 3m are moving toward each
other along the x -axis with the same initial speed v0. The
object with mass m is traveling to the left, and the object
with mass 3m is traveling to the right. They undergo an
elastic glancing collision such that m is moving downward
after the collision at right angles from its initial direction.
(a) Find the final speeds of the two objects. (b) What is
the angle � at which the object with mass 3m is scattered?

A neutron in a reactor makes an elastic
head-on collision with a carbon atom that is initially at
rest. (The mass of the carbon nucleus is about 12 times
that of the neutron.) (a) What fraction of the neutron’s
kinetic energy is transferred to the carbon nucleus? (b) If
the neutron’s initial kinetic energy is 1.6 � 10�13 J, find
its final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision.

64. A cue ball traveling at 4.00 m/s makes a glancing, elastic
collision with a target ball of equal mass that is initially at
rest. The cue ball is deflected so that it makes an angle of
30.0° with its original direction of travel. Find (a) the an-
gle between the velocity vectors of the two balls after the
collision and (b) the speed of each ball after the collision.

63.

m1 = 2.00 kg m2 = 4.00 kg

5.00 m5.00 m

Figure P6.56

x

m1 = 0.500 kg

h1 = 2.50 m
m2 = 1.00 kg

h2 = 2.00 m

h1

h2

m1

m2

Figure P6.57

m1

(a)

h
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2
4.00 m/s

m2m2
v

Figure P6.59

v0

k

m m

Figure P6.60

45.0°

Figure P6.61
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65. A block of mass m lying on a rough horizontal surface is
given an initial velocity of . After traveling a distance d,
it makes a head-on elastic collision with a block of mass
2m. How far does the second block move before coming
to rest? (Assume that the coefficient of friction, �k, is the
same for both blocks.)

66. The “force platform” is a tool that is used to analyze the
performance of athletes by measuring the vertical force as
a function of time that the athlete exerts on the ground
in performing various activities. A simplified force vs. time
graph for an athlete performing a standing high jump
is shown in Figure P6.66. The athlete started the jump at
t � 0.0 s. How high did this athlete jump?

v:0

67. (a) A car traveling due east strikes a car traveling due north
at an intersection, and the two move together as a unit. A
property owner on the southeast corner of the intersection
claims that his fence was torn down in the collision. Should
he be awarded damages by the insurance company?
Defend your answer. (b) Let the eastward-moving car have
a mass of 1 300 kg and a speed of 30.0 km/h and the
northward-moving car a mass of 1 100 kg and a speed of
20.0 km/h. Find the velocity after the collision. Are the re-
sults consistent with your answer to part (a)?

68. Two blocks collide on a frictionless surface. After the colli-
sion, the blocks stick together. Block A has a mass M and
is initially moving to the right at speed v. Block B has a
mass 2M and is initially at rest. System C is composed of
both blocks. (a) Draw a free-body diagram for each block
at an instant during the collision. (b) Rank the magni-
tudes of the horizontal forces in your diagram. Explain
your reasoning. (c) Calculate the change in momentum
of block A, block B, and system C. (d) Is kinetic energy
conserved in this collision? Explain your answer. (This
problem is courtesy of Edward F. Redish. For more such
problems, visit http://www.physics.umd.edu/perg.)
A tennis ball of mass 57.0 g is held just above a basketball
of mass 590 g. With their centers vertically aligned, both
balls are released from rest at the same time, to fall
through a distance of 1.20 m, as shown in Figure P6.69.
(a) Find the magnitude of the downward velocity with
which the basketball reaches the ground. (b) Assume that

69.

an elastic collision with the ground instantaneously re-
verses the velocity of the basketball while the tennis ball is
still moving down. Next, the two balls meet in an elastic
collision. (b) To what height does the tennis ball rebound?

70. A 60-kg soccer player jumps vertically upwards and heads
the 0.45-kg ball as it is descending vertically with a speed of
25 m/s. If the player was moving upward with a speed of
4.0 m/s just before impact, what will be the speed of the
ball immediately after the collision if the ball rebounds
vertically upwards and the collision is elastic? If the ball is
in contact with the player’s head for 20 ms, what is the av-
erage acceleration of the ball? (Note that the force of grav-
ity may be ignored during the brief collision time.)

71. Small ice cubes, each of mass 5.00 g, slide down a friction-
less ski-jump track in a steady stream, as shown in Figure
P6.71. Starting from rest, each cube moves down through
a net vertical distance of 1.50 m and leaves the bottom
end of the track at an angle of 40.0° above the horizontal.
At the highest point of its subsequent trajectory, the cube
strikes a vertical wall and rebounds with half the speed it
had upon impact. If 10.0 cubes strike the wall per second,
what average force is exerted on the wall?

F(kN)

1.0

0.8

0.6

–0.5 0.0 0.5 1.0
t(s)

Figure P6.66

Figure P6.69

40.0°

1.50 m

Figure P6.71

72. A 0.30-kg puck, initially at rest on a frictionless horizontal
surface, is struck by a 0.20-kg puck that is initially moving
along the x -axis with a velocity of 2.0 m/s. After the colli-
sion, the 0.20-kg puck has a speed of 1.0 m/s at an angle
of � � 53° to the positive x -axis. (a) Determine the veloc-
ity of the 0.30-kg puck after the collision. (b) Find the
fraction of kinetic energy lost in the collision.

73. A cannon initially resting on a frictionless surface of
mass m1 � 800 kg (when unloaded) is loaded with a “shot”
of mass m2 � 10.0 kg. The cannon is aimed at mass 
m3 � 7 990 kg, which is connected to a massless spring of
force constant k � 4 500 N/m, as in Figure P6.73a. The
cannon is then fired, and the shot inelastically collides with
mass m3 and sticks in it, as shown in Figure P6.73b. The
combined system compresses the spring a maximum dis-
tance of d � 0.500 m, as in Figure P6.73c. (a) Determine
the speed of m2 just before it collides with m3. (You may
assume that m2 travels in a straight line.) (b) Determine
the recoil speed of the cannon. (c) The cannon recoils to-
wards the right, and when it passes point A there is friction
(with �k � 0.600) between the cannon and the ground.
How far to the right of A does the cannon slide before
coming to rest?
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188 Chapter 6 Momentum and Collisions

74. A flying squid (family Ommastrephidae) is able to “jump”
off the surface of the sea by taking water into its body cav-
ity and then ejecting the water vertically downward. A
0.85-kg squid is able to eject 0.30 kg of water with a speed
of 20 m/s. (a) What will be the speed of the squid imme-
diately after ejecting the water. (b) How high in the air
will the squid rise?

length and just touching. Now model an inelastic collision
by attaching a piece of putty or double-stick tape to one of
the balls so that when the balls collide they will stick to-
gether and move as a unit. Move one pendulum upward
to some starting amplitude, and observe the amplitude to
which the combination rises after the collision. Discuss
and explain the result. (Don’t forget that after the colli-
sion, the energy of the system (the two tennis balls and
the Earth) is conserved, and you use this fact to deter-
mine the height to which the combination rises.)

A.2. A fun device that illustrates conservation of momentum
and conservation of kinetic energy is the so-called execu-
tive stress reliever shown in Figure A6.2. It consists of five
identical hard balls supported by strings of equal lengths.
When one ball is pulled out and released, an almost-
elastic collision causes one ball to move out on the oppo-
site side with the same speed as the incoming ball. If two
balls are pulled out and released, two balls swing out on
the opposite side, and so forth—but how do the balls
“know”? For example, is it possible that, on occasion,
when one ball is released, two will swing out on the oppo-
site side traveling with half the speed of the incoming
ball? If you have access to this toy, try the experiment to
see if you can get the latter collision to occur. When you
have convinced yourself that it is not going to happen,
find the kinetic energy of the system with one incoming
ball of mass m and speed v and the kinetic energy of two
outgoing balls with mass m and speed v/2 to show that ki-
netic energy is not conserved in such a collision.

m1

A

A

A

m3

d

m2 + m3

(a)

(b)

(c)

k

k m1

m2

µ

Figure P6.73

This can happen

This cannot happen

v

v

v

v/2

Figure A6.2 An executive stress-reliever

ACTIVITIES

A.1. Tie a string to two tennis balls to make identical pendu-
lums. Support the two such that they are of the same
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Rotational motion is an important part of everyday life. The rotation of the Earth creates the
cycle of day and night, the rotation of wheels enables easy vehicular motion, and modern
technology depends on circular motion in a variety of contexts, from the tiny gears in a Swiss
watch to the operation of lathes and other machinery. The concepts of angular speed, angu-
lar acceleration, and centripetal acceleration are central to understanding the motions of a di-
verse range of phenomena, from a car moving around a circular race track to clusters of
galaxies orbiting a common center.

Rotational motion, when combined with Newton’s law of universal gravitation and
his laws of motion, can also explain certain facts about space travel and satellite motion,
such as where to place a satellite so it will remain fixed in position over the same spot on
the Earth. The generalization of gravitational potential energy and energy conservation
offers an easy route to such results as planetary escape speed. Finally, we present Kepler’s
three laws of planetary motion, which formed the foundation of Newton’s approach to
gravity.

7.1 ANGULAR SPEED AND ANGULAR
ACCELERATION

In the study of linear motion, the important concepts are displacement �x, velocity v,
and acceleration a. Each of these concepts has its analog in rotational motion: angu-
lar displacement ��, angular velocity �, and angular acceleration �.

The radian, a unit of angular measure, is essential to the understanding of these
concepts. Recall that the distance s around a circle is given by s � 2�r, where r is

Astronauts F. Story Musgrave and
Jeffrey A. Hoffman, along with the
Hubble Space Telescope and the
Space Shuttle Endeavor, are all
“falling” around Earth.
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190 Chapter 7 Rotational Motion and the Law of Gravity

the radius of the circle. Dividing both sides by r results in s/r � 2�. This quantity is
dimensionless, because both s and r have dimensions of length, but the value 2�
corresponds to a displacement around a circle. A half circle would give an
answer of �, a quarter circle an answer of �/2. The numbers 2�, �, and �/2 corre-
spond to angles of 360�, 180�, and 90�, respectively, so a new unit of angular
measure, the radian, can be defined as the arc length s along a circle divided by the
radius r :

[7.1]

Figure 7.1 illustrates the size of 1 radian, which is approximately 53�. For conver-
sions, we use the fact that 360� � 2� radians (or 180� � � radians). For example,
45� (2� rad/360�) � (�/4) rad.

Generally, angular quantities in physics must be expressed in radians. Be 
sure to set your calculator to radian mode; neglecting to do this is a common
error.

Armed with the concept of the radian, we can now discuss angular concepts in
physics. Consider Figure 7.2a, a top view of a rotating compact disc. Such a disk is
an example of a “rigid body,” with each part of the body fixed in position relative
all other parts of the body. When a rigid body rotates through a given angle, all
parts of the body rotate through the same angle at the same time. For the compact
disk, the axis of rotation is at the center of the disc, O. A point P on the disc is at a
distance r from the origin and moves about O in a circle of radius r. We set up a
fixed reference line, as shown in Figure 7.2a, and assume that at time t � 0 the
point P is on that reference line. After a time interval �t has elapsed, P has ad-
vanced to a new position (Fig. 7.2b). In this interval, the line OP has moved
through the angle � with respect to the reference line. The angle �, measured in
radians, is called the angular position and is analogous to the linear position vari-
able x. Likewise, P has moved an arc length s measured along the circumference of
the circle.

In Figure 7.3, as a point on the rotating disc moves from � to � in a time �t, it
starts at an angle �i and ends at an angle �f . The difference �f � �i is called the
angular displacement.

An object’s angular displacement, ��, is the difference in its final and initial
angles:

[7.2]

SI unit: radian (rad)

For example, if a point on a disk is at �i � 4 rad and rotates to angular position 
�f � 7 rad, the angular displacement is �� � �f � �i � 7 rad � 4 rad � 3 rad.
Note that we use angular variables to describe the rotating disc because each point
on the disc undergoes the same angular displacement in any given time interval. 

Having defined angular displacements, it’s natural to define an angular speed:

The average angular speed �av of a rotating rigid object during the time
interval �t is defined as the angular displacement �� divided by �t:

[7.3]

SI unit: radian per second (rad/s)

�av � 
�f � �i

tf � ti
�

��

�t

�� � �f � �i

� �
s
r

Figure 7.1 For a circle of radius r,
one radian is the angle subtended by
an arc length equal to r.

x

y

r s = r

u

u = 1 rad � 53.1°

Figure 7.2 (a) The point P on a
rotating compact disc at t � 0. (b) As
the disc rotates, P moves through an
arc length s.

Reference
line

(a)

O P
r

(b)

O

P

Reference
line

r s
u

TIP 7.1 Remember the Radian
Equation 7.1 defines an angle ex-
pressed in radians. Angles expressed
in terms of degrees must first be
converted to radians. Also, be sure to
check whether your calculator is in
degree or radian mode when solving
problems involving rotation.

Average angular speed �
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For very short time intervals, the average angular speed approaches the instanta-
neous angular speed, just as in the linear case.

The instantaneous angular speed � of a rotating rigid object is defined as the
limit of the average speed ��/�t as the time interval �t approaches zero:

[7.4]

SI unit: radian per second (rad/s)

We take � to be positive when � is increasing (counterclockwise motion) and nega-
tive when � is decreasing (clockwise motion). When the angular speed is constant,
the instantaneous angular speed is equal to the average angular speed.

� � lim
�t :0

 
��

�t

7.1 Angular Speed and Angular Acceleration 191

Figure 7.3 As a point on the
compact disc moves from � to �,
the disc rotates through the angle 
�� � �f � �i .

x

y

� tf

� ti

r

i

O

fu

u

EXAMPLE 7.1 Whirlybirds
Goal Convert an angular speed in revolutions per minute to radians per second.

Problem The rotor on a helicopter turns at an angular speed of 3.20 	 102 revolutions per minute. (In this book,
we sometimes use the abbreviation rpm, but in most cases we use rev/min.) Express this angular speed in radians per
second.

Strategy During one revolution, the rotor turns through an angle of 2� radians. Use this relationship as a conver-
sion factor.

Solution
Apply the conversion factors 1 rev � 2� rad and 
60 s � 1 min:

� 3.20 	 102

� 33.5 rad/s

rev
min � 2� rad

rev �� 1.00 min
60.0 s �

� � 3.20 	 102 
rev
min

Exercise 7.1
A waterwheel turns at 1 500 revolutions per hour. Express this figure in radians per second.

Answer 2.6 rad/s

A rigid body is rotating counterclockwise about a fixed axis. Each of the following
pairs of quantities represents an initial angular position and a final angular posi-
tion of the rigid body. Which of the sets can occur only if the rigid body rotates
through more than 180�? (a) 3 rad, 6 rad; (b) � 1 rad, 1 rad; (c) 1 rad, 5 rad.

Quick Quiz 7.1

Suppose that the change in angular position for each of the pairs of values in
Quick Quiz 7.1 occurred in 1 s. Which choice represents the lowest average angu-
lar speed?

Quick Quiz 7.2

Figure 7.4 shows a bicycle turned upside down so that a repair technician can
work on the rear wheel. The bicycle pedals are turned so that at time ti the
wheel has angular speed �i (Fig. 7.4a) and at a later time tf it has angular speed �f
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192 Chapter 7 Rotational Motion and the Law of Gravity

(Fig. 7.4b). Just as a changing speed leads to the concept of an acceleration, a
changing angular speed leads to the concept of an angular acceleration.

An object’s average angular acceleration �av during the time interval �t is de-
fined as the change in its angular speed �� divided by �t :

[7.5]

SI unit: radian per second squared (rad/s2)

As with angular velocity, positive angular accelerations are in the counterclockwise
direction, negative angular accelerations in the clockwise direction. If the angular
speed goes from 15 rad/s to 9.0 rad/s in 3.0 s, then the average angular accelera-
tion during that time interval is

The negative sign indicates that the angular acceleration is clockwise (though the
angular speed, still positive but slowing down, is in the counterclockwise direc-
tion). There is also an instantaneous version of angular acceleration:

The instantaneous angular acceleration � is defined as the limit of the aver-
age angular acceleration ��/�t as the time interval �t approaches zero:

[7.6]

SI unit: radian per second squared (rad/s2)

When a rigid object rotates about a fixed axis, as does the bicycle wheel, every
portion of the object has the same angular speed and the same angular accelera-
tion. This fact is what makes these variables so useful for describing rotational
motion. In contrast, the tangential (linear) speed and acceleration of the object
take different values that depend on the distance from a given point to the axis
of rotation.

� � lim
�t :0

 
��

�t

�av �
��

�t
�

9.0 rad/s � 15 rad/s
3.0 s

� � 2.0 rad/s

�av � 
�f � �i

tf � ti
�

��

�t

tf

f

(b)(a)

i

ti

v v

Figure 7.4 An accelerating bicycle
wheel rotates with (a) angular speed
�i at time ti and (b) angular speed �f
at time tf .

Instantaneous angular acceleration �

Average angular acceleration �
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7.2 Rotational Motion Under Constant Angular Acceleration 193

7.2 ROTATIONAL MOTION UNDER CONSTANT
ANGULAR ACCELERATION

A number of parallels exist between the equations for rotational motion and those
for linear motion. For example, compare the defining equation for the average an-
gular speed,

with that of the average linear speed,

In these equations, � takes the place of v and � takes the place of x, so the equa-
tions differ only in the names of the variables. In the same way, every linear quan-
tity we have encountered so far has a corresponding “twin” in rotational motion.

The procedure used in Section 2.5 to develop the kinematic equations for lin-
ear motion under constant acceleration can be used to derive a similar set of equa-
tions for rotational motion under constant angular acceleration. The resulting
equations of rotational kinematics, along with the corresponding equations for lin-
ear motion, are as follows:

Linear Motion with a Constant Rotational Motion about a Fixed
(Variables: x and v) Axis with � Constant (Variables: � and �)

v � vi 
 at � � �i 
 �t [7.7]
�x � vit 
 at2 �� � �it 
 �t2 [7.8]
v2 � vi

2 
 2a�x �2 � �i
2 
 2��� [7.9]

Notice that every term in a given linear equation has a corresponding term in the
analogous rotational equation.

1
2

1
2

vav � 
xf � xi

tf � ti
�

�x

�t

�av � 
�f � �i

tf � ti
�

��

�t

Consider again the pairs of angular positions for the rigid object in Quick
Quiz 7.1. If the object starts from rest at the initial angular position, moves coun-
terclockwise with constant angular acceleration, and arrives at the final angular
position with the same angular speed in all three cases, for which choice is the an-
gular acceleration the highest?

Quick Quiz 7.3

EXAMPLE 7.2 A Rotating Wheel
Goal Apply the rotational kinematic equations.

Problem A wheel rotates with a constant angular acceleration of 3.50 rad/s2. If the angular speed of the wheel is
2.00 rad/s at ti � 0, (a) through what angle does the wheel rotate between t � 0 and t � 2.00 s? Give your answer in
radians and in revolutions. (b) What is the angular speed of the wheel at t � 2.00 s?

Strategy The angular acceleration is constant, so this problem just requires substituting given values into Equa-
tions 7.7 and 7.8.

Solution
(a) Find the angular displacement after 2.00 s, in both
radians and revolutions.

Use Equation 7.8, setting �i � 2.00 rad/s, 
� � 3.5 rad/s2, and t � 2.00 s:

� 11.0 rad

 � (2.00 rad/s)(2.00 s) 
 1
2 (3.50 rad/s2)(2.00 s)2

 �� � �it 
 1
2�t2
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194 Chapter 7 Rotational Motion and the Law of Gravity

7.3 RELATIONS BETWEEN ANGULAR 
AND LINEAR QUANTITIES

Angular variables are closely related to linear variables. Consider the arbitrarily
shaped object in Active Figure 7.5 rotating about the z-axis through the point O.
Assume that the object rotates through the angle ��, and hence point P moves
through the arc length �s, in the interval �t. We know from the defining equation

Convert radians to revolutions. �� � (11.0 rad)(1.00 rev/2� rad) � 1.75 rev

(b) What is the angular speed of the wheel at t � 2.00 s?

Substitute the same values into Equation 7.7:

� 9.00 rad/s

� � �i 
 �t � 2.00 rad/s 
 (3.50 rad/s2)(2.00 s)

Remarks The result of part (b) could also be obtained from Equation 7.9 and the results of part (a).

Exercise 7.2
(a) Find the angle through which the wheel rotates between t � 2.00 s and t � 3.00 s. (b) Find the angular speed
when t � 3.00 s.

Answer (a) 10.8 rad (b) 12.5 rad/s

EXAMPLE 7.3 Slowing Propellers
Goal Apply the time-independent rotational kinematic equation.

Problem An airplane propeller slows from an initial angular speed of 12.5 rev/s to a final angular speed of
5.00 rev/s. During this process, the propeller rotates through 21.0 revolutions. Find the angular acceleration of the
propeller in radians per second squared, assuming it’s constant.

Strategy The given quantities are the angular speeds and the displacement, which suggests applying Equation 7.9,
the time-independent rotational kinematic equation, to find �.

Solution
First, convert the angular displacement to radians and
the angular speeds to rad/s: 

�� � (21.0 rev)(2� rad/rev) � 42.0� rad

�i � (12.5 rev/s)(2� rad/rev) � 25.0� rad/s

� � (5.00 rev/s)(2� rad/rev) � 10.0� rad/s

Substitute these values into Equation 7.9 to find the an-
gular acceleration �:

�2 � �i
2 
 2���

(10.0� rad/s)2 � (25.0� rad/s)2 
 2� (42� rad)

Solve for �: � � � 6.25� rad/s2

Remark Waiting until the end to convert revolutions to radians is also possible and requires only one conversion in-
stead of three.

Exercise 7.3
Suppose, instead, the engine speeds up so that the propeller goes through 28.0 revolutions while the angular speed
increases uniformly from 5.00 rev/s to 15.0 rev/s. Find the angular acceleration.

Answer 7.14� rad/s2
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for radian measure that

Dividing both sides of this equation by �t, the time interval during which the rota-
tion occurs, yields

When �t is very small, the angle �� through which the object rotates is also small
and the ratio ��/�t is close to the instantaneous angular speed �. On the other
side of the equation, similarly, the ratio �s/�t approaches the instantaneous linear
speed v for small values of �t. Hence, when �t gets arbitrarily small, the preceding
equation is equivalent to

In Active Figure 7.5, the point P traverses a distance �s along a circular arc dur-
ing the time interval �t at a linear speed of v. The direction of P ’s velocity vector 
is tangent to the circular path. The magnitude of is the linear speed v � vt, called
the tangential speed of a particle moving in a circular path, written

[7.10]

The tangential speed of a point on a rotating object equals the distance of that
point from the axis of rotation multiplied by the angular speed. Equation 7.10
shows that the linear speed of a point on a rotating object increases as that point is
moved outward from the center of rotation toward the rim, as expected; however,
every point on the rotating object has the same angular speed.

Equation 7.10, derived using the defining equation for radian measure, is valid
only when � is measured in radians per unit time. Other measures of angular
speed, such as degrees per second and revolutions per second, shouldn’t be used.

To find a second equation relating linear and angular quantities, refer again to
Figure 7.5, and suppose the rotating object changes its angular speed by �� in the
time interval �t. At the end of this interval, the speed of a point on the object,
such as P, has changed by the amount �vt . From Equation 7.10 we have

�vt � r ��

Dividing by �t gives

As the time interval �t is taken to be arbitrarily small, ��/�t approaches the in-
stantaneous angular acceleration. On the left-hand side of the equation, the ratio
�vt/�t tends to the instantaneous linear acceleration, called the tangential accel-
eration of that point, given by

[7.11]

The tangential acceleration of a point on a rotating object equals the distance of
that point from the axis of rotation multiplied by the angular acceleration.
Again, radian measure must be used for the angular acceleration term in this
equation.

One last equation that relates linear quantities to angular quantities will be de-
rived in the next section.

at � r�

�vt

�t
� r 

��

�t

vt � r�

v:
v:

� �
v
r

��

�t
�

1
r

 
�s
�t

�� �
�s
r

y

P

x
O

r
�u

�s

v

ACTIVE FIGURE 7.5
Rotation of an object about an axis
through O (the z-axis) that is perpen-
dicular to the plane of the figure.
Note that a point P on the object
rotates in a circle of radius r centered
at O.

Log into PhysicsNow at
www.cp7e.com, and go to Active 
Figure 7.5 to move point P and ob-
serve the tangential velocity as the
object rotates.

� Tangential speed

� Tangential acceleration
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Andrea and Chuck are riding on a merry-go-round. Andrea rides on a horse at the
outer rim of the circular platform, twice as far from the center of the circular plat-
form as Chuck, who rides on an inner horse. When the merry-go-round is rotating
at a constant angular speed, Andrea’s angular speed is (a) twice Chuck’s (b) the
same as Chuck’s (c) half of Chuck’s (d) impossible to determine.

Quick Quiz 7.4

When the merry-go-round of Quick Quiz 7.4 is rotating at a constant angu-
lar speed, Andrea’s tangential speed is (a) twice Chuck’s (b) the same as Chuck’s
(c) half of Chuck’s (d) impossible to determine.

Quick Quiz 7.5

Why is the launch area for the European Space
Agency in South America and not in Europe?

Explanation Satellites are boosted into orbit on top
of rockets, which provide the large tangential speed
necessary to achieve orbit. Due to its rotation, the sur-
face of Earth is already traveling toward the east at a
tangential speed of nearly 1 700 m/s at the equator.

This tangential speed is steadily reduced further
north, because the distance to the axis of rotation is
decreasing. It finally goes to zero at the North Pole.
Launching eastward from the equator gives the satel-
lite a starting initial tangential speed of 1 700 m/s,
whereas a European launch provides roughly half that
speed (depending on the exact latitude).

Applying Physics 7.1 ESA Launch Site

EXAMPLE 7.4 Compact Discs
Goal Apply the rotational kinematics equations in tandem with tangential acceleration and speed.

Problem A compact disc rotates from rest up to an angular speed of 31.4 rad/s in a time of 0.892 s. (a) What is the
angular acceleration of the disc, assuming the angular acceleration is uniform? (b) Through what angle does the disc
turn while coming up to speed? (c) If the radius of the disc is 4.45 cm, find the final tangential speed of a microbe rid-
ing on the rim of the disc. (d) What is the magnitude of the tangential acceleration of the microbe at the given time?

Strategy We can solve parts (a) and (b) by applying the kinematic equations for angular speed and angular dis-
placement (Equations 7.7 and 7.8). Multiplying the radius by the angular acceleration yields the tangential accelera-
tion at the rim, while multiplying the radius by the angular speed gives the tangential speed at that point.

Solution
(a) Find the angular acceleration.

Apply the angular velocity equation � � �i 
 �t, taking
�i � 0 at t � 0:

35.2 rad/s2� �
�

t
�

31.4 rad/s
0.892 s

�

(b) Through what angle does the disc turn?

Use Equation 7.8 for angular displacement, with 
t � 0.892 s and �i � 0:

�� � �it 
 �t2 � 2 � 14.0 rad1
2(35.2 rad/s2)(0.892 s)1

2

(c) Find the final tangential speed of a microbe at 
r � 4.45 cm.

Substitute into Equation 7.10: vt � r� � (0.0445 m)(31.4 rad/s) � 1.40 m/s

(d) Find the tangential acceleration of the microbe at 
r � 4.45 cm.

Substitute into Equation 7.11: at � r� � (0.0445 m)(35.2 rad/s2) � 1.57 m/s2
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Before compact discs became the medium of choice for recorded music,
phonographs were popular. There are similarities and differences between the ro-
tational motion of phonograph records and that of compact discs. A phonograph
record rotates at a constant angular speed. Popular angular speeds were

for long-playing albums (hence the nickname “LP”), 45 rev/min for
“singles,” and 78 rev/min used in very early recordings. At the outer edge of the
record, the pickup needle (stylus) moves over the vinyl material at a faster tangen-
tial speed than when the needle is close to the center of the record. As a result, the
sound information is compressed into a smaller length of track near the center of
the record than near the outer edge.

CDs, on the other hand, are designed so that the disc moves under the laser
pickup at a constant tangential speed. Because the pickup moves radially as it fol-
lows the tracks of information, the angular speed of the compact disc must vary ac-
cording to the radial position of the laser. Since the tangential speed is fixed, the
information density (per length of track) anywhere on the disc is the same. Exam-
ple 7.5 demonstrates numerical calculations for both compact discs and phono-
graph records.

33 
1
3 rev/min

Remarks Because 2� rad � 1 rev, the angular displacement in part (b) corresponds to 2.23 rev. In general, divid-
ing the number of radians by six gives a good approximation to the number of revolutions, because 2� � 6.

Exercise 7.4
(a) What are the angular speed and angular displacement of the disc 0.300 s after it begins to rotate? (b) Find the
tangential speed at the rim at this time.

Answers (a) 10.6 rad/s; 1.58 rad (b) 0.472 m/s

EXAMPLE 7.5 Track Length of a Compact Disc 
Goal Relate angular to linear variables.

Problem In a compact disc player, as the read head moves out from the center of the disc, the angular speed of the
disc changes so that the linear speed at the position of the head remains at a constant value of about 1.3 m/s. 
(a) Find the angular speed of the compact disc when the read head is at r � 2.0 cm and again at r � 5.6 cm. (b) An
old-fashioned record player rotates at a constant angular speed, so the linear speed of the record groove moving un-
der the detector (the stylus) changes. Find the linear speed of a 45.0-rpm record at points 2.0 and 5.6 cm from the
center. (c) In both the CD and phonograph record, information is recorded in a continuous spiral track. Calculate
the total length of the track for a CD designed to play for 1.0 h.

Strategy This problem is just a matter of substituting numbers into the appropriate equations. Part (a) requires
relating angular and linear speed with Equation 7.10, vt � r�, solving for � and substituting given values. In part (b),
convert from rev/min to rad/s and substitute straight into Equation 7.10 to obtain the linear speeds. In part (c), lin-
ear speed multiplied by time gives the total distance.

Solution
(a) Find the angular speed when the read head is at 
r � 2.0 cm and r � 5.6 cm.

Solve vt � r� for � and substitute the numbers. At 
r � 2.0 cm:

65 rad/s� �
vt

r
�

1.3 m/s
2.0 	 10�2 m

�

Likewise, find the angular speed at r � 5.6 cm: 23 rad/s� �
vt

r
�

1.3 m/s
5.6 	 10�2 m

�

A P P L I C AT I O N
Phonograph Records and
Compact Discs
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7.4 CENTRIPETAL ACCELERATION
Figure 7.6a shows a car moving in a circular path with constant linear speed v. Even
though the car moves at a constant speed, it still has an acceleration. To under-
stand this, consider the defining equation for average acceleration:

[7.12]

The numerator represents the difference between the velocity vectors and .
These vectors may have the same magnitude, corresponding to the same speed, but
if they have different directions, their difference can’t equal zero. The direction of
the car’s velocity as it moves in the circular path is continually changing, as shown
in Figure 7.6b. For circular motion at constant speed, the acceleration vector
always points toward the center of the circle. Such an acceleration is called a
centripetal (center-seeking) acceleration. Its magnitude is given by

[7.13]

To derive Equation 7.13, consider Figure 7.7a. An object is first at point � with
velocity at time ti and then at point � with velocity at a later time tf . We
assume that and differ only in direction; their magnitudes are the same 
(vi � vf � v). To calculate the acceleration, we begin with Equation 7.12,

[7.14]

where is the change in velocity. When �t is very small, �s and �� are
also very small. In Figure 7.7b, is almost parallel to , and the vector is ap-
proximately perpendicular to them, pointing toward the center of the circle. In
the limiting case when �t becomes vanishingly small, points exactly toward the
center of the circle, and the average acceleration becomes the instantaneous
acceleration . From Equation 7.14, and point in the same direction (in this
limit), so the instantaneous acceleration points to the center of the circle.

�v:a:a:
a:av

�v:

�v:v:iv:f

�v: � v:f � v:i

a:av �
v:f � v:i

tf � ti
�

�v:

�t

v:fv:i

v:fv:i

ac �
v2

r

v:iv:f

a:av �
v:f � v:i

tf � ti

(b) Find the linear speed in m/s of a 45.0-rpm record at
points 2.0 cm and 5.6 cm from the center.

Convert rev/min to rad/s: 45.0 
rev
min

� 45.0 
rev
min

 � 2� rad
rev �� 1.00 min

60.0 s � � 4.71 
rad

s

Calculate the linear speed at r � 2.0 cm: vt � r� � (2.0 	 10�2 m)(4.71 rad/s) � 0.094 m/s

Calculate the linear speed at r � 5.6 cm: vt � r� � (5.6 	 10�2 m)(4.71 rad/s) � 0.26 m/s

(c) Calculate the total length of the track for a CD
designed to play for 1.0 h.

Multiply the linear speed of the read head by the time
in seconds.

�x � vtt � (1.3 m/s)(3 600 s) � 4  700 m

Remark Notice that for the record player in part (b), even though the angular speed is constant at all points along
a radial line, the tangential speed steadily increases with increasing r. The calculation for a CD in part (c) is easy only
because the linear (tangential) speed is constant. It would be considerably more difficult for a record player, where
the tangential speed depends on the distance from the center.

Exercise 7.5
Compute the linear speed of a record playing at revolutions per minute (a) at r � 2.00 cm and (b) at r � 5.60 cm.

Answers (a) 0.069 8 m/s (b) 0.195 m/s

331
3

(a)

O

r

r r

O

i

f

(b)

� �

v

v

v

Figure 7.6 (a) Circular motion of
a car moving with constant speed. 
(b) As the car moves along the circu-
lar path from � to �, the direction
of its velocity vector changes, so the
car undergoes a centripetal 
acceleration.
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7.4 Centripetal Acceleration 199

The triangle in Figure 7.7a, which has sides �s and r, is similar to the one
formed by the vectors in Figure 7.7b, so the ratios of their sides are equal:

or

[7.15]

Substituting the result of Equation 7.15 into aav � �v/�t gives

[7.16]

But �s is the distance traveled along the arc of the circle in time �t, and in the lim-
iting case when �t becomes very small, �s/�t approaches the instantaneous value
of the tangential speed, v. At the same time, the average acceleration aav ap-
proaches ac, the instantaneous centripetal acceleration, so Equation 7.16 reduces
to Equation 7.13:

Because the tangential speed is related to the angular speed through the relation
vt � r� (Eq. 7.10), an alternate form of Equation 7.13 is

[7.17]

Dimensionally, [r] � L and [�] � 1/T, so the units of centripetal acceleration are
L/T2, as they should be. This is a geometric result relating the centripetal accelera-
tion to the angular speed, but physically an acceleration can occur only if some force
is present. For example, if a car travels in a circle on flat ground, the force of static
friction between the tires and the ground provides the necessary centripetal force.

Note that ac in Equations 7.13 and 7.17 represents only the magnitude of the
centripetal acceleration. The acceleration itself is always directed towards the cen-
ter of rotation.

The foregoing derivations concern circular motion at constant speed. When an
object moves in a circle but is speeding up or slowing down, a tangential compo-
nent of acceleration, at � r�, is also present. Because the tangential and cen-
tripetal components of acceleration are perpendicular to each other, we can find
the magnitude of the total acceleration with the Pythagorean theorem:

[7.18]a � √at
2 
 ac

2

ac �
r 2�2

r
� r�2

ac �
v2

r

aav �
v
r

 
�s
�t

�v �
v
r

 �s

�v
v

�
�s
r

O

i

r r

f

(a)

f

– i

(b)

� �
�s

�u

�u�

v

v

v

v

v

Figure 7.7 (a) As the particle
moves from � to �, the direction of
its velocity vector changes from to

. (b) The construction for deter-
mining the direction of the change in
velocity , which is toward the
center of the circle.

�v:

v:f

v:i

A race track is constructed such that two arcs of radius 80 m at � and 40 m at �
are joined by two stretches of straight track as in Figure 7.8. In a particular trial
run, a driver travels at a constant speed of 50 m/s for one complete lap.

Quick Quiz 7.6

�
80 m40 m

�

Figure 7.8 (Quick Quiz 7.6)

� Total acceleration
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200 Chapter 7 Rotational Motion and the Law of Gravity

1. The ratio of the tangential acceleration at � to that at � is
(a) (b) (c) 2 (d) 4 (e) The tangential acceleration is zero at both points.

2. The ratio of the centripetal acceleration at � to that at � is 
(a) (b) (c) 2 (d) 4 (e) The centripetal acceleration is zero at both points.

3. The angular speed is greatest at
(a) � (b) � (c) It is equal at both � and �.

1
4

1
2

1
4

1
2

An object moves in a circular path with constant speed v. Which of the following
statements is true concerning the object? (a) Its velocity is constant, but its accel-
eration is changing. (b) Its acceleration is constant, but its velocity is changing. 
(c) Both its velocity and acceleration are changing. (d) Its velocity and accelera-
tion remain constant.

Quick Quiz 7.7

EXAMPLE 7.6 At the Race Track
Goal Apply the concepts of centripetal acceleration and tangential speed.

Problem A race car accelerates uniformly from a speed of 40.0 m/s to a speed of 60.0 m/s in 5.00 s while traveling
counterclockwise around a circular track of radius 4.00 	 102 m. When the car reaches a speed of 50.0 m/s, find
(a) the magnitude of the car’s centripetal acceleration (b) the angular speed (c) the tangential acceleration, and 
(d) the magnitude of the total acceleration.

Strategy Substitute values into the definitions of centripetal acceleration (Equation 7.13), tangential speed (Equa-
tion 7.10), and total acceleration (Equation 7.18). Dividing the change in linear speed by the time yields the tangen-
tial acceleration.

Solution
(a) Find the magnitude of the centripetal acceleration
when v � 50.0 m/s.

Substitute into Equation 7.13: 6.25 m/s2ac �
v2

r
�

(50.0 m/s)2

(4.00 	 102 m)
�

(b) Find the angular speed.

Solve Equation 7.10 for � and substitute: 0.125 rad/s� �
v
r

�
50.0 m/s

4.00 	 102 m
�

(c) Find the tangential acceleration.

Divide the change in linear speed by the time: 4.00 m/s2at �
vf � vi

�t
�

60.0 m/s � 40.0 m/s

5.00 s
�

(d) Find the magnitude of the total acceleration.

Substitute into Equation 7.18:

a � 7.42 m/s2

a � √a 2
t 
 a 2

c � √(4.00 m/s2)2 
 (6.25 m/s2)2

Remarks We can also find the centripetal acceleration by substituting the derived value of � into Equation 7.17.

Exercise 7.6
Suppose the race car now slows down uniformly from 60.0 m/s to 30.0 m/s in 4.50 s to avoid an accident, while still
traversing a circular path 4.00 	 102 m in radius. Find the car’s (a) centripetal acceleration, (b) angular speed,
(c) tangential acceleration, and (d) total acceleration when the speed is 40.0 m/s.

Answers (a) 4.00 m/s2 (b) 0.100 rad/s (c) �6.67 m/s2 (d) 7.77 m/s2
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7.4 Centripetal Acceleration 201

Angular Quantities Are Vectors
When we discussed linear motion in Chapter 2, we emphasized the fact that dis-
placement, velocity, and acceleration are all vector quantities. In describing rota-
tional motion, angular displacement, angular velocity, and angular acceleration
are also vector quantities.

The direction of the angular velocity vector can be found with the right-hand
rule, as illustrated in Figure 7.9a. Grasp the axis of rotation with your right hand so
that your fingers wrap in the direction of rotation. Your extended thumb then
points in the direction of . Figure 7.9b shows that is also in the direction of ad-
vance of a rotating right-handed screw.

We can apply this rule to a rotating disk viewed along the axis of rotation, as in
Figure 7.10. When the disk rotates clockwise (Fig. 7.10a), the right-hand rule
shows that the direction of is into the page. When the disk rotates counterclock-
wise (Fig. 7.10b), the direction of is out of the page.

Finally, the directions of the angular acceleration and the angular velocity 
are the same if the angular speed � (the magnitude of ) is increasing with time,
and opposite each other if the angular speed is decreasing with time.

Forces Causing Centripetal Acceleration
An object can have a centripetal acceleration only if some external force acts on
it. For a ball whirling in a circle at the end of a string, that force is the tension in
the string. In the case of a car moving on a flat circular track, the force is friction
between the car and track. A satellite in circular orbit around Earth has a
centripetal acceleration due to the gravitational force between the satellite and
Earth.

Some books use the term “centripetal force,” which can give the mistaken
impression that it is a new force of nature. This is not the case: The adjective
“centripetal” in “centripetal force” simply means that the force in question acts
toward a center. The gravitational force and the force of tension in the string of a
yo-yo whirling in a circle are examples of centripetal forces, as is the force of grav-
ity on a satellite circling the Earth.

Consider a ball of mass m that is tied to a string of length r and is being
whirled at constant speed in a horizontal circular path, as illustrated in Figure
7.11. Its weight is supported by a frictionless table. Why does the ball move in a
circle? Because of its inertia, the tendency of the ball is to move in a straight
line; however, the string prevents motion along a straight line by exerting a ra-
dial force on the ball — a tension force — that makes it follow the circular path.
The tension is directed along the string toward the center of the circle, as shown in
the figure.

In general, applying Newton’s second law along the radial direction yields the
equation relating the net centripetal force Fc —the sum of the radial components
of all forces acting on a given object—with the centripetal acceleration:

[7.19]Fc � mac � m 
v2

r

�:
�:�:

�:
�:

�:�:

�:

(b)(a)

�

�

Figure 7.9 (a) The right-hand rule
for determining the direction of the
angular velocity vector . (b) The
direction of is in the direction of
advance of a right-handed screw.

�:
�:

(a)

(b)

Figure 7.10 A top view of a disk
rotating about an axis through its
center perpendicular to the page. 
(a) When the disk rotates clockwise,

points into the page. (b) When the
disk rotates counterclockwise, 
points out of the page.

�:
�:

T

v

r

m

Figure 7.11 A ball attached to a
string of length r, rotating in a
circular path at constant speed.

44337_07_p189-225  10/21/04  9:06 AM  Page 201



202 Chapter 7 Rotational Motion and the Law of Gravity

Astronauts spending lengthy periods of time in space
experience a number of negative effects due to
weightlessness, such as weakening of muscle tissue
and loss of calcium in bones. These effects may make
it very difficult for them to return to their usual envi-
ronment on Earth. How could artificial gravity be
generated in space to overcome such complications?

Solution A rotating cylindrical space station creates
an environment of artificial gravity. The normal force
of the rigid walls provides the centripetal force, which
keeps the astronauts moving in a circle (Fig. 7.12). To
an astronaut, the normal force can’t be easily distin-

guished from a gravitational force as long as the
radius of the station is large compared with the
astronaut’s height. (Otherwise there are unpleasant
inner ear effects.) This same principle is used in
certain amusement park rides in which passengers are
pressed against the inside of a rotating cylinder as it
tilts in various directions. The visionary physicist
Gerard O’Neill proposed creating a giant space
colony a kilometer in radius that rotates slowly,
creating Earth-normal artificial gravity for the
inhabitants in its interior. These inside-out artificial
worlds could enable safe transport on a several-
thousand-year journey to another star system.

Applying Physics 7.2 Artificial Gravity

n

�

n

n

Figure 7.12 Artificial gravity inside a spinning cylinder is provided by the normal force.

A net force causing a centripetal acceleration acts toward the center of the circular
path and effects a change in the direction of the velocity vector. If that force
should vanish, the object would immediately leave its circular path and move along
a straight line tangent to the circle at the point where the force vanished.

TIP 7.2 Centripetal Force is a
Type of Force, not a Force in
Itself!
“Centripetal force” is a classification
that includes forces acting toward a
central point, like string tension on a
tetherball or gravity on a satellite. A
centripetal force must be supplied by
some actual, physical force.
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7.4 Centripetal Acceleration 203

Problem Solving Strategy Forces that Cause
Centripetal Acceleration
Use the following steps in dealing with centripetal accelerations and the forces that
produce them:
1. Draw a free-body diagram of the object under consideration, labeling all forces

that act on it.
2. Choose a coordinate system that has one axis perpendicular to the circular path

followed by the object (the radial direction) and one axis tangent to the circular
path (the tangential, or angular, direction). The normal direction, perpendicular
to the plane of motion, is also often needed.

3. Find the net force Fc toward the center of the circular path, , where is
the sum of the radial components of the forces. This net radial force causes the
centripetal acceleration.

4. Use Newton’s second law for the radial, tangential, and normal directions, as
required, writing and . Remember that the mag-
nitude of the centripetal acceleration for uniform circular motion can always be
written ac � vt

2/r.
5. Solve for the unknown quantities.

�Fn � man�Fr � mac, �Ft � mat ,

�FcFc � �Fr 

INTERACTIVE EXAMPLE 7.7 Buckle Up for Safety
Goal Calculate the frictional force that causes
an object to have a centripetal acceleration.

Problem A car travels at a constant speed of
30.0 mi/h (13.4 m/s) on a level circular turn of
radius 50.0 m, as shown in the bird’s-eye view in
Figure 7.13a. What minimum coefficient of static
friction, �s, between the tires and roadway will al-
low the car to make the circular turn without
sliding?

Strategy In the car’s free-body diagram 
(Fig. 7.13b) the normal direction is vertical and
the tangential direction is into the page (step 2).
Use Newton’s second law. The net force acting on
the car in the radial direction is the force of static
friction toward the center of the circular path,
which causes the car to have a centripetal acceler-
ation. Calculating the maximum static friction
force requires the normal force, obtained from
the normal component of the second law.

m

(a)

(b)

n

g

fs

fs

Figure 7.13 (Example 7.7) 
(a) Top view of a car on a curved
path. (b) A free-body diagram of the
car, showing an end view.

Solution
(Step 3, 4) Write the components of Newton’s second
law. The radial component involves only the maximum
static friction force, fs ,max:

m 
v 2

r
� fs,max � �sn

In the vertical component of the second law, the gravity
force and the normal force are in equilibrium:

n � mg � 0 : n � mg

(Step 5) Substitute the expression for n into the first
equation and solve for �s :

0.366�s �
v2

rg
�

(13.4 m/s)2

(50.0 m)(9.80 m/s2)
�

m 
v2

r
� �smg
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Remarks The value of �s for rubber on dry concrete is very close to 1, so the car can negotiate the curve with ease.
If the road were wet or icy, however, the value for �s could be 0.2 or lower. Under such conditions, the radial force
provided by static friction wouldn’t be great enough to keep the car on the circular path, and it would slide off on a
tangent, leaving the roadway.

Exercise 7.7
At what maximum speed can a car negotiate a turn on a wet road with coefficient of static friction 0.230 without slid-
ing out of control? The radius of the turn is 25.0 m.

Answer 7.51 m/s

Investigate the motion of a car around a level curve by logging into PhysicsNow at www.cp7e.com
and going to Interactive Example 7.7.

EXAMPLE 7.8 Daytona International Speedway
Goal Solve a centripetal force problem involving two dimensions.

Problem The Daytona International Speedway in Daytona Beach,
Florida, is famous for its races, especially the Daytona 500, held every
spring. Both of its courses feature four-story, 31.0� banked curves, with
maximum radius of 316 m. If a car negotiates the curve too slowly, it
tends to slip down the incline of the turn, whereas if it’s going too fast, it
may begin to slide up the incline. (a) Find the necessary centripetal accel-
eration on this banked curve so the car won’t slip down or slide up the in-
cline. (Neglect friction.) (b) Calculate the speed of the race car.

Strategy Two forces act on the race car: the force of gravity and the
normal force . (See Fig. 7.14.) Use Newton’s second law in the upward
and radial directions to find the centripetal acceleration ac. Solving 
ac � v2/r for v then gives the race car’s speed.

n:

�mg

n sin

n cos

m 

u

u

u

u
n

g

Figure 7.14 (Example 7.8) Front view of a car
rounding a banked roadway. Vector components
are shown to the right.

Solution
(a) Find the centripetal acceleration.

Write Newton’s second law for the car: m a: � � F
:

� n: 
 m g:

Use the y -component of Newton’s second law to solve
for the normal force n:

n cos � � mg � 0

n �
mg

cos �

Obtain an expression for the horizontal component of
, which is the centripetal force Fc in this example:n:

Fc � n sin � �
mg sin �

cos �
� mg tan �

Substitute this expression for Fc into the radial compo-
nent of Newton’s second law and divide by m to get the
centripetal acceleration:

mac � Fc

5.89 m/s2ac � (9.80 m/s2)(tan 31.0�) �

 ac �
Fc

m
�

mg tan �
m

� g tan �

(b) Find the speed of the race car.

Apply Equation 7.13:

43.1 m/sv � √rac � √(316 m)(5.89 m/s2) �

 
v2

r
� ac
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Remarks Both banking and friction assist in keeping the race car on the track.

Exercise 7.8
A race track is to have a banked curve with radius of 245 m. What should be the angle of the bank if the normal force
alone is to allow safe travel around the curve at 58.0 m/s? 

Answer 54.5�

EXAMPLE 7.9 Riding the Tracks
Goal Combine centripetal force with conser-
vation of energy.

Problem Figure 7.15a shows a roller-coaster
car moving around a circular loop of radius R.
(a) What speed must the car have so that it will
just make it over the top without any assistance
from the track? (b) What speed will the car
subsequently have at the bottom of the loop?
(c) What will be the normal force on a passen-
ger at the bottom of the loop if the loop has a
radius of 10.0 m?

Strategy This problem requires Newton’s sec-
ond law and centripetal acceleration to find an
expression for the car’s speed at the top of the
loop, followed by conservation of energy to find
its speed at the bottom. If the car just makes it over the top, the force must become zero there, so the only force
exerted on the car at that point is the force of gravity, . At the bottom of the loop, the normal force acts up toward
the center and the gravity force acts down, away from the center. The difference of these two is the centripetal force.
The normal force can then be calculated from Newton’s second law.

mg:
n:

top

bot

R

(a)

v

v

(b)

R

v

v

Figure 7.15 (a) (Example 7.9) A roller coaster traveling around a nearly
circular track. (b) (Exercise 7.9) A jet executing a vertical loop.

Solution
(a) Find the speed at the top of the loop.

Write Newton’s second law for the car: (1)m a:c � n: 
 m g:

At the top of the loop, set n � 0. The force of gravity
acts toward the center and provides the centripetal
acceleration ac � v2/R .

m  
v2

top

R
� mg

Solve the foregoing equation for vtop: √gRvtop �

(b) Find the speed at the bottom of the loop.

Apply conservation of mechanical energy to find the
total mechanical energy at the top of the loop:

E top � 1
2mv2

top 
 mgh � 1
2mgR 
 mg(2R) � 2.5mgR

Find the total mechanical energy at the bottom of the
loop:

Ebot � 1
2mv2

bot

Energy is conserved, so these two energies may be
equated and solved for vbot: √5gR vbot �

1
2mv2

bot � 2.5mgR

A P P L I C AT I O N
Banked Roadways
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206 Chapter 7 Rotational Motion and the Law of Gravity

Fictitious Forces
Anyone who has ridden a merry-go-round as a child (or as a fun-loving grown-up)
has experienced what feels like a “center-fleeing” force. Holding onto the railing
and moving toward the center feels like a walk up a steep hill.

Actually, this so-called centrifugal force is fictitious. In reality, the rider is exert-
ing a centripetal force on his body with his hand and arm muscles. In addition, a
smaller centripetal force is exerted by the static friction between his feet and the
platform. If the rider’s grip slipped, he wouldn’t be flung radially away; rather, he
would go off on a straight line, tangent to the point in space where he let go of the
railing. The rider lands at a point that is further away from the center, but not by
“fleeing the center” along a radial line. Instead, he travels perpendicular to a ra-
dial line, traversing an angular displacement while increasing his radial displace-
ment. (See Fig. 7.16.)

7.5 NEWTONIAN GRAVITATION
Prior to 1686, a great deal of data had been collected on the motions of the Moon
and planets, but no one had a clear understanding of the forces affecting them. In
that year, Isaac Newton provided the key that unlocked the secrets of the heavens.
He knew from the first law that a net force had to be acting on the Moon. If it
were not, the Moon would move in a straight-line path rather than in its almost cir-
cular orbit around Earth. Newton reasoned that this force arose as a result of an
attractive force between Moon and Earth, called the force of gravity, and that it
was the same kind of force that attracted objects—such as apples—close to the
surface of the Earth.

(c) Find the normal force on a passenger at the bottom.
(This is the passenger’s perceived weight.)

Use Equation(1). The net centripetal force is n � mg : m 
v 2

bot

R
� n � mg

Solve for n: 6mgn � mg 
 m 
v2

bot

R
� mg 
 m 

5gR
R

�

Remarks The final answer for n shows that the rider experiences a force six times normal weight at the bottom of
the loop! Astronauts experience a similar force during space launches.

Exercise 7.9
A jet traveling at a speed of 1.20 	 102 m/s executes a vertical loop with a radius of 5.00 	 102 m. (See Fig. 7.15b.)
Find the magnitude of the force of the seat on a 70.0-kg pilot at (a) the top and (b) the bottom of the loop.

Answers (a) 1.33 	 103 N (b) 2.70 	 103 N

Figure 7.16 A fun-loving student
loses his grip and falls along a line
tangent to the rim of the 
merry-go-round.

TIP 7.3 Centrifugal Force
A so-called centrifugal force is most
often just the absence of an adequate
centripetal force, arising from measur-
ing phenomena from a noninertial
(accelerating) frame of reference
such as a merry-go-round.
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7.5 Newtonian Gravitation 207

In 1687, Newton published his work on the law of universal gravitation:

If two particles with masses m1 and m2 are separated by a distance r, then a
gravitational force acts along a line joining them, with magnitude given by

[7.20]

where G � 6.673 	 10�11 kg�1 m3 s�2 is a constant of proportionality
called the constant of universal gravitation. The gravitational force is always
attractive.

This force law is an example of an inverse-square law, in that it varies as one over
the square of the separation of the particles. From Newton’s third law, we know
that the force exerted by m1 on m2, designated in Active Figure 7.17, is equal
in magnitude but opposite in direction to the force exerted by m2 on m1, form-
ing an action–reaction pair.

Another important fact is that the gravitational force exerted by a uniform
sphere on a particle outside the sphere is the same as the force exerted if the en-
tire mass of the sphere were concentrated at its center. This is called Gauss’s law,
after the German mathematician and astronomer Karl Friedrich Gauss, and is also
true of electric fields, which we will encounter in Chapter 15. Gauss’s law is a math-
ematical result, true because the force falls off as an inverse square of the separa-
tion between the particles.

Near the surface of the Earth, the expression F � mg is valid. As shown in
Table 7.1, however, the free-fall acceleration g varies considerably with altitude
above the Earth.

F
:

21

F
:

12

F � G 
m1m 2

r 2

A ball falls to the ground. Which of the following statements are false? (a) The
force that the ball exerts on Earth is equal in magnitude to the force that Earth ex-
erts on the ball. (b) The ball undergoes the same acceleration as Earth. (c) Earth
pulls much harder on the ball than the ball pulls on Earth, so the ball falls while
Earth remains stationary.

Quick Quiz 7.8

A planet has two moons with identical mass. Moon 1 is in a circular orbit of radius
r. Moon 2 is in a circular orbit of radius 2r. The magnitude of the gravitational
force exerted by the planet on Moon 2 is (a) four times as large (b) twice as large
(c) the same (d) half as large (e) one-fourth as large as the gravitational force ex-
erted by the planet on Moon 1.

Quick Quiz 7.9

TABLE 7.1
Free-Fall Acceleration g at 
Various Altitudes
Altitude (km)a g (m/s2)

1 000 7.33
2 000 5.68
3 000 4.53
4 000 3.70
5 000 3.08
6 000 2.60
7 000 2.23
8 000 1.93
9 000 1.69

10 000 1.49
50 000 0.13

aAll figures are distances above Earth’s
surface.

Measurement of the Gravitational Constant
The gravitational constant G in Equation 7.20 was first measured in an important
experiment by Henry Cavendish in 1798. His apparatus consisted of two small
spheres, each of mass m, fixed to the ends of a light horizontal rod suspended by a
thin metal wire, as in Figure 7.18a (see page 208). Two large spheres, each of mass
M, were placed near the smaller spheres. The attractive force between the smaller
and larger spheres caused the rod to rotate in a horizontal plane and the wire to
twist. The angle through which the suspended rod rotated was measured with a
light beam reflected from a mirror attached to the vertical suspension. (Such a
moving spot of light is an effective technique for amplifying the motion.) The ex-
periment was carefully repeated with different masses at various separations. In ad-
dition to providing a value for G, the results showed that the force is attractive,
proportional to the product mM, and inversely proportional to the square of the
distance r. Modern forms of such experiments are carried out regularly today, in
an effort to determine G with greater precision.

12

m1

m2

r12

21F

F

ACTIVE FIGURE 7.17
The gravitational force between two
particles is attractive and acts along
the line joining the particles. Note
that according to Newton’s third law,

.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 7.17 to change the masses of
the particles and the separation
between them to see the effect on the
gravitational force.

F
:

12 � � F
:

21

� Law of universal gravitation
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208 Chapter 7 Rotational Motion and the Law of Gravity

Mirror

r
m

M

Light
source

(a) (b)

Figure 7.18 (a) A schematic
diagram of the Cavendish apparatus
for measuring G. The smaller spheres
of mass m are attracted to the large
spheres of mass M, and the rod
rotates through a small angle. A light
beam reflected from a mirror on the
rotating apparatus measures the
angle of rotation. (b) A student
Cavendish apparatus.
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EXAMPLE 7.10 Billiards, Anyone?
Goal Use vectors to find the net gravitational force on an object.

Problem (a) Three 0.300-kg billiard balls are placed on a table at the corners of
a right triangle, as shown from overhead in Figure 7.19. Find the net gravitational
force on the cue ball (designated as m1) resulting from the forces exerted by the
other two balls. (b) Find the components of the gravitational force of m2 on m3.

Strategy (a) To find the net gravitational force on the cue ball of mass m1, we
first calculate the force exerted by m2 on m1. This force is the y -component of
the net force acting on m1. Then we find the force exerted by m3 on m1, which
is the x-component of the net force acting on m1. With these two components, we
can find the magnitude and direction of the net force on the cue ball. (b) In this
case, we must use trigonometry to find the components of the force .F

:
23

F
:

31

F
:

21

0.400 m

m2

0.500 m

m1 0.300 m m3

21

31

x

y

F 23FF
F fu

Figure 7.19 (Example 7.10)

Solution
(a) Find the net gravitational force on the cue ball. Find
the magnitude of the force exerted by m2 on m1
using the law of gravitation, Equation 7.20:

F
:

21

 F21 � 3.75 � 10�11 N

 � (6.67 � 10�11 N�m2/kg2) 
(0.300 kg)(0.300 kg)

(0.400 m)2

F21 �
m2m1

r21
2

Find the magnitude of the force exerted by m3 on
m1, again using Newton’s law of gravity:

F
:

31

F31 � 6.67 � 10�11 N

 � (6.67 � 10�11 N�m2/kg2) 
(0.300 kg)(0.300 kg)

(0.300 m)2

 F31 � G 
m3m1

r31
2

The net force has components Fx � F31 and Fy � F21.
Compute the magnitude of this net force:

� 7.65 � 10�11 N

� √(6.67)2 � (3.75)2 � 10�11 NF � √F 2
x � F 2

y

Use the inverse tangent to obtain the direction of :F
:

� � 29.3�tan�1 � Fy

Fx
� � tan�1 � 3.75 � 10�11 N

6.67 � 10�11 N � �

(b) Find the components of the force of m2 on m3.
First, compute the magnitude of :F

:
23

 � 2.40 � 10�11 N

 � (6.67 � 10�11 kg�1m3s�2) 
(0.300 kg)(0.300 kg)

(0.500 m)2

 F23 � G  
m2m1

r23
2
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7.5 Newtonian Gravitation 209

To obtain the x- and y-components of F23, we need cos �
and sin �. Use the sides of the large triangle in Figure 7.19:

 sin � �
opp
hyp

�
0.400 m
0.500 m

� 0.800

cos � �
adj
hyp

�
0.300 m
0.500 m

� 0.600

Compute the components of . A minus sign must be
supplied for the x -component, because it’s in the
negative x -direction.

F
:

23 F23x � � F23 cos � � � (2.40 � 10�11 N)(0.600)

�

F23y � F23 sin � � (2.40 � 10�11 N)(0.800)

� 1.92 � 10�11 N

� 1.44 � 10�11 N

Remarks Notice how small the gravity forces are between everyday objects. Nonetheless, such forces can be meas-
ured directly with torsion balances.

Exercise 7.10
Find magnitude and direction of the force exerted by m1 and m3 on m2.

Answers 5.85 � 10�11 N, � 75.8�

EXAMPLE 7.11 Ceres
Goal Relate Newton’s universal law of gravity to mg, and show how g changes with position.

Problem An astronaut standing on the surface of Ceres, the largest asteroid, drops a rock from a height of 10.0 m.
It takes 8.06 s to hit the ground. (a) Calculate the acceleration of gravity on Ceres. (b) Find the mass of Ceres, given
that the radius of Ceres is RC � 5.10 � 102 km. (c) Calculate the gravitational acceleration 50.0 km from the surface
of Ceres.

Strategy Part (a) is a review of one-dimensional kinematics. In part (b), the weight of an object, w � mg, is the
same as the magnitude of the force given by the universal law of gravity. Solve for the unknown mass of Ceres, after
which the answer for (c) can be found by substitution into the universal law of gravity, Equation 7.20.

Solution
(a) Calculate the acceleration of gravity, gC , on Ceres.

Apply the kinematics displacement equation to the
falling rock:

�x � 1
2at2 � v0t

Substitute �x � � 10.0 m, v0 � 0, a � � gC , and 
t � 8.06 s, and solve for the gravitational acceleration on
Ceres, gC :

0.308 m/s2� 10.0 m � � 
1
2 gC(8.06 s)2 : gC �

(b) Find the mass of Ceres.

Equate the weight of the rock on Ceres to the gravita-
tional force acting on the rock:

mgC � G 
MCm
RC 

2

Solve for the mass of Ceres, MC : 1.20 � 1021 kgMC �
gCR 2

C

G
�

(c) Calculate the acceleration of gravity at a height of
50.0 km above the surface of Ceres.

Equate the weight at 50.0 km to the gravitational force: mg	C � G  
mMC

r 2
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210 Chapter 7 Rotational Motion and the Law of Gravity

Gravitational Potential Energy Revisited
In Chapter 5 we introduced the concept of gravitational potential energy and
found that the potential energy associated with an object could be calculated from
the equation PE � mgh, where h is the height of the object above or below some
reference level. This equation, however, is valid only when the object is near
Earth’s surface. For objects high above Earth’s surface, such as a satellite, an alter-
native must be used, because g varies with distance from the surface, as shown in
Table 7.1.

The gravitational potential energy associated with an object of mass m at a
distance r from the center of Earth is

[7.21]

where ME and RE are the mass and radius of Earth, respectively, with r � RE .

SI units: Joules ( J)

As before, gravitational potential energy is a property of a system, in this case
the object of mass m and Earth. Equation 7.21 is valid for the special case where
the zero level for potential energy is at an infinite distance from the center of
Earth. Recall that the gravitational potential energy associated with an object is
nothing more than the negative of the work done by the force of gravity in moving
the object. If an object falls under the force of gravity from a great distance (effec-
tively infinity), the change in gravitational potential energy is negative, which
corresponds to a positive amount of gravitational work done on the system. This
positive work is equal to the (also positive) change in kinetic energy, as the next
example shows.

PE � �G  
MEm

r

Cancel m, and substitute the mass of Ceres and 
r � 5.60 � 105 m:

� 0.255 m/s2

 � (6.67 � 10�11 kg�1m3s�2) 
1.20 � 1021 kg

(5.60 � 105 m)2

 g�C � G 
MC

r 2

Remarks This is the standard method of finding the mass of a planetary body: study the motion of a falling (or or-
biting) object.

Exercise 7.11
An object takes 2.40 s to fall 5.00 m on a certain planet. (a) Find the acceleration due to gravity on the planet. 
(b) Find the planet’s mass if its radius is 5 250 km.

Solution (a) 1.74 m/s2 (b) 7.19 � 1023 kg

EXAMPLE 7.12 A Near-Earth Asteroid
Goal Use gravitational potential energy to calculate the work done by gravity on a falling object.

Problem An asteroid with mass m � 1.00 � 109 kg comes from deep space, effectively from infinity, and falls to-
ward Earth. (a) Find the change in potential energy when it reaches a point 4.00 � 108 m from Earth ( just beyond
the Moon), assuming it falls from rest at infinity. In addition, find the work done by the force of gravity. (b) Calculate
the speed of the asteroid at that point. (c) How much work would have to be done on the asteroid by some other
agent so the asteroid would be traveling at only half the speed found in (b) at the same point?

General form of gravitational 
potential energy �
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7.5 Newtonian Gravitation 211

Strategy Part (a) requires simple substitution into the definition of gravitational potential energy. To find the work
done by the force of gravity, recall that the work done on an object by a conservative force is just the negative of the
change in potential energy. Part (b) can be solved with conservation of energy, and part (c) is an application of the
work–energy theorem.

Solution
(a) Find the change in potential energy and the work
done by the force of gravity.

Apply Equation 7.21:

� GMEm�� 
1
rf



1
ri
�

�PE � PEf � PEi � � 
GMEm

rf
� �� 

GMEm
ri

�

Substitute known quantities. The asteroid’s initial
position is effectively infinity, so 1/ri is zero.

�PE � � 9.97 	 1014 J

	 (1.00 	 109 kg)�� 
1

4.00 	 108 m

 0�

�PE � (6.67 	 10�11 kg�1m3/s2)(5.98 	 1024 kg)

Compute the work done by the force of gravity: Wgrav � � �PE � 9.97 	 1014 J

(b) Find the speed of the asteroid when it reaches 
rf � 4.00 	 108 m.

Use conservation of energy:

v � 1.41 	 103 m/s

(1
2mv 2 � 0) � 9.97 	 1014 J � 0

�KE 
 �PE � 0

(c) Find the work needed to reduce the speed to 
7.05 	 102 m/s (half the value just found) at this point.

Apply the work–energy theorem: W � �KE 
 �PE

The change in potential energy remains the same as in
part (a), but substitute only half the speed in the
kinetic-energy term:

� � 7.48 	 1014  J

W � 1
2(1.00 	 109 kg)(7.05 	 102 m/s)2 � 9.97 	 1014 J

W � (1
2mv 2 � 0) � 9.97 	 1014 J

Remark The amount of work calculated in part (c) is negative because an external agent must exert a force against
the direction of motion of the asteroid. It would take a thruster with a megawatt of output about 24 years to slow
down the asteroid to half its original speed. An asteroid endangering Earth need not be slowed that much: A small
change in its speed, if applied early enough, will cause it to miss Earth. Timeliness of the applied thrust, however, is
important. By the time you can look over your shoulder and see the Earth, it’s already far too late, despite how these
scenarios play out in Hollywood. Last minute rescues won’t work!

Exercise 7.12
Suppose the asteroid starts from rest at a great distance (effectively infinity), falling toward Earth. How much work
would have to be done on the asteroid to slow it to 425 m/s by the time it reached a distance of 2.00 	 108 m from
Earth?

Answer � 1.90 	 1015 J
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212 Chapter 7 Rotational Motion and the Law of Gravity

Explanation The Sun formed when particles in a
cloud of gas in coalesced, due to gravitational attrac-
tion, into a massive astronomical object. Before this
occurred, the particles in the cloud were widely
scattered, representing a large amount of gravitational
potential energy. As the particles fell closer together,
their kinetic energy increased, but the gravitational
potential energy of the system decreased, as required
by the conservation of energy. With further slow col-

lapse, the cloud became more dense, and the average
kinetic energy of the particles increased. This kinetic
energy is the internal energy of the cloud, which is
proportional to the temperature. If enough particles
come together, the temperature can rise to a point at
which nuclear fusion occurs, and the ball of gas be-
comes a star. Otherwise, the temperature may rise, but
not enough to ignite fusion reactions, and the object
becomes a brown dwarf (a failed star) or a planet.

Applying Physics 7.3 Why is the Sun Hot?

On inspecting Equation 7.21, some may wonder what happened to mgh, the gravi-
tational potential energy expression introduced in Chapter 5. That expression is
still valid when h is small compared with the Earth’s radius. To see this, we write
the change in potential energy as an object is raised from the ground to height h,
using the general form for gravitational potential energy (see Fig. 7.20):

After finding a common denominator and applying some algebra, we obtain

When the height h is very small compared with RE, h can be dropped from the sec-
ond factor in the denominator, yielding

Substituting this into the previous expression, we have

Now recall from Chapter 4 that the free-fall acceleration at the surface of Earth is
given by g � GME/RE

2, giving

Escape Speed
If an object is projected upward from Earth’s surface with a large enough speed, it
can soar off into space and never return. This speed is called Earth’s escape speed.
(It is also commonly called the escape velocity, but in fact is more properly a speed.)

Earth’s escape speed can be found by applying conservation of energy. Suppose
an object of mass m is projected vertically upward from Earth’s surface with an ini-
tial speed vi. The initial mechanical energy (kinetic plus potential energy) of the
object–Earth system is given by

We neglect air resistance and assume that the initial speed is just large enough
to allow the object to reach infinity with a speed of zero. This value of vi is the es-
cape speed vesc. When the object is at an infinite distance from Earth, its kinetic

KEi 
 PEi � 1
2mv 2

i �
GMEm

RE

PE2 � PE1 � mgh

PE2 � PE1 �
GME

R 2
E

 mh

1
RE(RE 
 h)

�
1

R 2
E

PE2 � PE1 �
GMEmh

RE(RE 
 h)

 � �GMEm � 1
(RE 
 h)

�
1

RE
	

PE2 � PE1 � �G 
MEm

(RE 
 h)
� ��G 

MEm
RE

�

RE

PE2

PE1

h

r = RE + h

Figure 7.20 Relating the general
form of gravitational potential energy
to mgh.
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7.5 Newtonian Gravitation 213

energy is zero, because vf � 0, and the gravitational potential energy is also zero,
because 1/r goes to zero as r goes to infinity. Hence the total mechanical energy is
zero, and the law of conservation of energy gives

so that

[7.22]

The escape speed for Earth is about 11.2 km/s, which corresponds to about 
25 000 mi/h. (See Example 7.13.) Note that the expression for vesc doesn’t de-
pend on the mass of the object projected from Earth, so a spacecraft has the same
escape speed as a molecule. Escape speeds for the planets, the Moon, and the Sun
are listed in Table 7.2. Escape speed and temperature determine to a large extent
whether a world has an atmosphere and, if so, what the constituents of the atmos-
phere are. Planets with low escape speeds, such as Mercury, generally don’t have
atmospheres because the average speed of gas molecules is close to the escape
speed. Venus has a very thick atmosphere, but it’s almost entirely carbon dioxide, a
heavy gas. The atmosphere of Earth has very little hydrogen or helium, but has re-
tained the much heavier nitrogen and oxygen molecules.

vesc � √ 2GME

RE

1
2mv2

esc �
GMEm

RE
� 0

TABLE 7.2
Escape Speeds for the Planets
and the Moon
Planet ve (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Moon 2.3
Mars 5.0
Jupiter 60.0
Saturn 36.0
Uranus 22.0
Neptune 24.0
Pluto 1.1

EXAMPLE 7.13 From the Earth to the Moon
Goal Apply conservation of energy with the general form of Newton’s universal law of gravity.

Problem In Jules Verne’s classic novel, From the Earth to the Moon, a giant cannon dug into the Earth in Florida fired
a spacecraft all the way to the Moon. (a) If the spacecraft leaves the cannon at escape speed, at what speed is it mov-
ing when 1.50 	 105 km from the center of Earth? Neglect any friction effects. (b) Approximately what constant ac-
celeration is needed to propel the spacecraft to this speed through a cannon bore a kilometer long?

Strategy For part (a), use conservation of energy and solve for the final speed vf . Part (b) is an application of the
time-independent kinematic equation: solve for the acceleration a.

Solution
(a) Find the speed at r � 1.50 	 105 km.

Apply conservation of energy: 1
2mv 2

i �
GMEm

RE
� 1

2mv 2
f �

GMEm
rf

Multiply by 2/m and rearrange, solving for . Then
substitute known values and take the square root.

v 2
f

vf � 2.35 	 103 m/s

	 (5.98 	 1024 kg)� 1
1.50 	 108 m

�
1

6.37 	 106 m �
v 2

f � (1.12 	 104 m/s)2 
 2(6.67 	 10�11 kg�1 m3s�2)

v 2
f � v 2

i 

2GME

rf
�

2GME

RE
� v 2

i 
 2GME  � 1
rf

�
1

RE
�

(b) Find the acceleration through the cannon bore,
assuming that it’s constant.

Use the time-independent kinematics equation:

a � 6.27 	 104 m/s2

(1.12 	 104 m/s)2 � 0 � 2a(1.00 	 103 m)

v2 � v 2
0 � 2a�x
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7.6 KEPLER’S LAWS
The movements of the planets, stars, and other celestial bodies have been ob-
served for thousands of years. In early history, scientists regarded Earth as the
center of the Universe. This geocentric model was developed extensively by the
Greek astronomer Claudius Ptolemy in the second century A.D. and was accepted
for the next 1 400 years. In 1543, the Polish astronomer Nicolaus Copernicus
(1473–1543) showed that Earth and the other planets revolve in circular orbits
around the Sun (the heliocentric model).

The Danish astronomer Tycho Brahe (pronounced Brah or BRAH–huh;
1546–1601) made accurate astronomical measurements over a period of 20 years,
providing the data for the currently accepted model of the Solar System. Brahe’s
precise observations of the planets and 777 stars were carried out with nothing
more elaborate than a large sextant and compass; the telescope had not yet been
invented.

The German astronomer Johannes Kepler, who was Brahe’s assistant, acquired
Brahe’s astronomical data and spent about 16 years trying to deduce a mathemati-
cal model for the motions of the planets. After many laborious calculations, he
found that Brahe’s precise data on the motion of Mars about the Sun provided the
answer. Kepler’s analysis first showed that the concept of circular orbits about the
Sun had to be abandoned. He eventually discovered that the orbit of Mars could
be accurately described by an ellipse with the Sun at one focus. He then general-
ized this analysis to include the motions of all planets. The complete analysis is
summarized in three statements known as Kepler’s laws:

1. All planets move in elliptical orbits with the Sun at one of the focal points.
2. A line drawn from the Sun to any planet sweeps out equal areas in equal

time intervals.
3. The square of the orbital period of any planet is proportional to the cube

of the average distance from the planet to the Sun.

Newton later demonstrated that these laws are consequences of the gravita-
tional force that exists between any two objects. Newton’s law of universal gravita-
tion, together with his laws of motion, provides the basis for a full mathematical
description of the motions of planets and satellites. 

Kepler’s First Law
The first law arises as a natural consequence of the inverse-square nature of
Newton’s law of gravitation. Any object bound to another by a force that varies as
1/r 2 will move in an elliptical orbit. As shown in Active Figure 7.21a, an ellipse is a
curve drawn so that the sum of the distances from any point on the curve to two
internal points called focal points or foci (singular, focus) is always the same. The
semimajor axis a is half the length of the line that goes across the ellipse and con-
tains both foci. For the Sun–planet configuration (Active Fig. 7.21b), the Sun is at
one focus and the other focus is empty. Because the orbit is an ellipse, the distance
from the Sun to the planet continuously changes.

Remark This result corresponds to an acceleration of over 6 000 times the free-fall acceleration on Earth. Such a
huge acceleration is far beyond what the human body can tolerate.

Exercise 7.13
Using the data in Table 7.3 (see page 216), find (a) the escape speed from the surface of Mars and (b) the speed of a
space vehicle when it is 1.25 	 107 m from the center of Mars if it leaves the surface at the escape speed.

Answer (a) 5.04 	 103 m/s (b) 2.62 	 103 m/s

(a)

(b)

FocusFocus

Planet

Sun

p q

ACTIVE FIGURE 7.21
(a) The sum p 
 q is the same for
every point on the ellipse. (b) In the
Solar System, the Sun is at one focus
of the elliptical orbit of each planet
and the other focus is empty.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 7.21a to move the focal points,
or enter values for a, b, c, and e and
see the resulting elliptical shape. 
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Kepler’s Second Law
Kepler’s second law states that a line drawn from the Sun to any planet sweeps out
equal areas in equal time intervals. Consider a planet in an elliptical orbit about
the Sun, as in Figure 7.22. In a given period �t, the planet moves from point � to
point �. The planet moves more slowly on that side of the orbit because it’s
farther away from the sun. On the opposite side of its orbit, the planet moves
from point � to point � in the same amount of time, �t, moving faster because
it’s closer to the sun. Kepler’s second law says that any two wedges formed as in
Figure 7.22 will always have the same area. As we will see in Chapter 8, Kepler’s
second law is related to a physical principle known as conservation of angular
momentum.

Kepler’s Third Law
The derivation of Kepler’s third law is simple enough to carry out for the special
case of a circular orbit. Consider a planet of mass Mp moving around the Sun,
which has a mass of MS , in a circular orbit. Because the orbit is circular, the planet
moves at a constant speed v. Newton’s second law, his law of gravitation, and cen-
tripetal acceleration then give the following equation:

The speed v of the planet in its orbit is equal to the circumference of the orbit di-
vided by the time required for one revolution, T, called the period of the planet,
so v � 2�r/T. Substituting, the preceding expression becomes

[7.23]

where KS is a constant given by

� 2.97 	 10�19 s2/m3

Equation 7.23 is Kepler’s third law for a circular orbit. The orbits of most of the
planets are very nearly circular. Comets and asteroids, however, usually have ellipti-
cal orbits. For these orbits, the radius r must be replaced with a, the semimajor
axis—half the longest distance across the elliptical orbit. (This is also the average
distance of the comet or asteroid from the sun.) A more detailed calculation shows
that KS actually depends on the sum of both the mass of a given planet and the
Sun’s mass. The masses of the planets, however, are negligible compared with the
Sun’s mass; hence can be neglected, meaning Equation 7.23 is valid for any planet
in the Sun’s family. If we consider the orbit of a satellite such as the Moon around
Earth, then the constant has a different value, with the mass of the Sun replaced
by the mass of Earth. In that case, KE equals 4�2/GME .

The mass of the Sun can be determined from Kepler’s third law, because the
constant KS in Equation 7.23 includes the mass of the Sun and the other variables
and constants can be easily measured. The value of this constant can be found by
substituting the values of a planet’s period and orbital radius and solving for KS.
The mass of the Sun is then

This same process can be used to calculate the mass of Earth (by considering the
period and orbital radius of the Moon) and the mass of other planets in the Solar
System that have satellites.

MS �
4�2

GKS

KS �
4�2

GMS

T 2 � � 4�2

GMS
� r 3 � KSr 3

�
(2�r/T)2

r
GMS

r 2

Mpac �
Mpv2

r
�

GMSMp

r 2

Sun

S

�

�

�

�

Figure 7.22 The two areas swept
out by the planet in its elliptical orbit
about the Sun are equal if the time
interval between points � and � is
equal to the time interval between
points � and �.

� Kepler’s third law
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The last column in Table 7.3 confirms the fact that T 2/r 3 is very nearly con-
stant. When time is measured in Earth years and the semimajor axis in astronomi-
cal units (1 AU � the distance from the Earth to the Sun), Kepler’s law takes the
following simple form:

This equation can be easily checked: The Earth has a semimajor axis of one astro-
nomical unit (by definition), and it takes one year to circle the sun. This equation,
of course, is valid only for the sun and its planets, asteroids, and comets.

T 2 � a3

TABLE 7.3
Useful Planetary Data

Mean 
Mean Distance 

Body Mass (kg) Radius (m) Period (s) from Sun (m)
10�19

Mercury 3.18 	 1023 2.43 	 106 7.60 	 106 5.79 	 1010 2.97
Venus 4.88 	 1024 6.06 	 106 1.94 	 107 1.08 	 1011 2.99
Earth 5.98 	 1024 6.38 	 106 3.156 	 107 1.496 	 1011 2.97
Mars 6.42 	 1023 3.37 	 106 5.94 	 107 2.28 	 1011 2.98
Jupiter 1.90 	 1027 6.99 	 107 3.74 	 108 7.78 	 1011 2.97
Saturn 5.68 	 1026 5.85 	 107 9.35 	 108 1.43 	 1012 2.99
Uranus 8.68 	 1025 2.33 	 107 2.64 	 109 2.87 	 1012 2.95
Neptune 1.03 	 1026 2.21 	 107 5.22 	 109 4.50 	 1012 2.99
Pluto 1.27 	 1023 1.14 	 106 7.82 	 109 5.91 	 1012 2.96
Moon 7.36 	 1022 1.74 	 106 — — —
Sun 1.991 	 1030 6.96 	 108 — — —

� s2

m3 �T 2

r 3

Suppose an asteroid has a semimajor axis of 4 AU How long does it take the aster-
oid to go around the sun? (a) 2 years (b) 4 years (c) 6 years (d) 8 years

Quick Quiz 7.10

EXAMPLE 7.14 Geosynchronous Orbit and Telecommunications Satellites
Goal Apply Kepler’s third law to an Earth satellite

Problem From a telecommunications point of view, it’s advantageous for satellites to remain at the same location
relative to a location on the Earth. This can occur only if the satellite’s orbital period is the same as the Earth’s pe-
riod of rotation, 24.0 h. (a) At what distance from the center of the Earth can this geosynchronous orbit be found?
(b) What’s the orbital speed of the satellite?

Strategy This problem can be solved with the same method that was used to derive a special case of Kepler’s third
law, with Earth’s mass replacing the Sun’s mass. There’s no need to repeat the analysis, just replace the Sun’s mass
with Earth’s mass in Kepler’s third law, substitute the period T (converted to seconds), and solve for r. For part (b),
find the circumference of the circular orbit and divide by the elapsed time.

Solution
(a) Find the distance r to geosynchronous orbit.

Apply Kepler’s third law: T 2 � � 4�2

GME
�r 3
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SUMMARY

Substitute the period in seconds, T � 86 400 s, the
gravity constant G � 6.67 	 10�11 kg�1 m3/s2, and the
mass of the Earth, ME � 5.98 	 1024 kg. Solve for r :

r � 4.23 	 107 m

(b) Find the orbital speed: 3.08 	 103 m/sv �
d
T

�
2�r
T

�
2�(4.23 	 107 m)

8.64 	 104 s
�

Remarks Both these results are independent of the mass of the satellite. Notice that Earth’s mass could be found by
substituting the Moon’s distance and period into this form of Kepler’s third law.

Exercise 7.14
Mars rotates on its axis once every 1.02 days (almost the same as Earth does). (a) Find the distance from Mars at
which a satellite would remain in one spot over the Martian surface. (b) Find the speed of the satellite.

Answer (a) 2.03 	 107 m (b) 1.45 	 103 m/s

Take a practice test by logging into
PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

7.1 Angular Speed and Angular 
Acceleration
The average angular speed �av of a rigid object is defined
as the ratio of the angular displacement �� to the time in-
terval �t, or

[7.3]

where �av is in radians per second (rad/s).
The average angular acceleration �av of a rotating object

is defined as the ratio of the change in angular speed �� to
the time interval �t, or

[7.5]

where �av is in radians per second per second (rad/s2).

7.2 Rotational Motion under Constant
Angular Acceleration
If an object undergoes rotational motion about a fixed axis
under a constant angular acceleration �, its motion can be
described with the following set of equations:

� � �i 
 �t [7.7]

�� � �it 
 �t2 [7.8]

�2 � �i
2 
 2��� [7.9]

Problems are solved as in one-dimensional kinematics.

7.3 Relations between Angular 
and Linear Quantities
When an object rotates about a fixed axis, the angular speed
and angular acceleration are related to the tangential speed

1
2

�av � 
�f � �i

tf � ti
�

��

�t

�av �
�f � �i

tf � ti
�

��

�t

and tangential acceleration through the relationships

vt � r� [7.10]

and

at � r� [7.11]

7.4 Centripetal Acceleration
Any object moving in a circular path has an acceleration di-
rected toward the center of the circular path, called a cen-
tripetal acceleration. Its magnitude is given by

� r�2 [7.13, 7.17]

Any object moving in a circular path must have a net force
exerted on it that is directed toward the center of the path.
Some examples of forces that cause centripetal accelera-
tion are the force of gravity (as in the motion of a satellite)
and the force of tension in a string.

7.5 Newtonian Gravitation
Newton’s law of universal gravitation states that every parti-
cle in the Universe attracts every other particle with a force
that is directly proportional to the product of their masses
and inversely proportional to the square of the distance r
between them:

[7.20]

where G � 6.673 	 10�11 N  m2/kg2 is the constant of
universal gravitation. A general expression for gravita-
tional potential energy is

[7.21]

This expression reduces to PE � mgh close to the surface of
Earth and holds for other worlds through replacement of
the mass ME . Problems such as finding the escape velocity

PE � �G 
ME m

r

F � G 
m1m2

r 2

ac �
v2

r
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218 Chapter 7 Rotational Motion and the Law of Gravity

from Earth can be solved by using Equation 7.21 in the
conservation of energy equation.

7.6 Kepler’s Laws
Kepler derived the following three laws of planetary motion:

1. All planets move in elliptical orbits with the Sun at one
of the focal points.

2. A line drawn from the Sun to any planet sweeps out
equal areas in equal time intervals.

3. The square of the orbital period of a planet is propor-

tional to the cube of the average distance from the planet
to the Sun:

[7.23]

The third law can be applied to any large body and its sys-
tem of satellites by replacing the Sun’s mass with the body’s
mass. In particular, it can be used to determine the mass of
the central body once the average distance to a satellite
and its period are known.

T 2 � � 4� 2

GMS
�r 3

1. In a race like the Indianapolis 500, a driver circles the
track counterclockwise and feels his head pulled toward
one shoulder. To relieve his neck muscles from having to
hold his head erect, the driver fastens a strap to one wall
of the car and the other to his helmet. The length of the
strap is adjusted to keep his head vertical. (a) Which
shoulder does his head tend to lean toward? (b) What
force or forces produce the centripetal acceleration when
there is no strap? (c) What force or forces do so when
there is a strap?

2. Two schoolmates, Romeo and Juliet, catch each other’s
eye across a crowded dance floor at a school dance. Find
the order of magnitude of the gravitational attraction that
Juliet exerts on Romeo and that Romeo exerts on Juliet.
State the quantities you take as data and the values you
measure or estimate for them.

3. An object executes circular motion with a constant speed
whenever a net force of constant magnitude acts perpen-
dicular to its velocity. What happens to the speed if the
force is not perpendicular to the velocity?

4. Explain why Earth is not spherical in shape, but bulges at
the equator.

5. If a car’s wheels are replaced with wheels of greater diam-
eter, will the reading of the speedometer change? Explain.

6. At night, you are farther away from the Sun than during
the day. What’s more, the force exerted by the Sun on you
is downward into Earth at night, and upward into the sky
during the day. If you had a sensitive enough bathroom
scale, would you appear to weigh more at night than dur-
ing the day?

7. Correct the following statement: “The race car rounds the
turn at a constant velocity of 90 miles per hour.”

8. Why does an astronaut in a spacecraft orbiting Earth ex-
perience a feeling of weightlessness?

9. Explain why it’s easier to determine the mass of a planet
when it has a moon.

10. Because of Earth’s rotation about its axis, you weigh
slightly less at the equator than at the poles. Why?

11. It has been suggested that rotating cylinders about
10 miles long and 5 miles in diameter be placed in space
for colonies. The purpose of their rotation is to simulate
gravity for the inhabitants. Explain the concept behind
this proposal.

12. Describe the path of a moving object in the event that the
object’s acceleration is constant in magnitude at all times
and (a) perpendicular to its velocity; (b) parallel to its ve-
locity.

13. A pail of water can be whirled in a vertical circular path
such that no water is spilled. Why does the water remain
in the pail, even when the pail is upside down above your
head?

14. The orbital planes of all the planets must pass through
the center of the Sun. Why?

15. Is it possible for a car to move in a circular path in such a
way that it has a tangential acceleration but no centripetal
acceleration?

16. Use Kepler’s second law to convince yourself that Earth
must move faster in its orbit during the northern-hemi-
sphere winter, when it is closest to the Sun, than during
the summer, when it is farthest from the Sun.

17. If the mass of Earth were doubled at the same time its ra-
dius were doubled, the free-fall acceleration would (a) in-
crease, (b) decrease, or (c) stay the same?

18. A satellite in orbit is not truly traveling through a vac-
uum—it’s moving through very thin air. Does the result-
ing air friction cause the satellite to slow down?

CONCEPTUAL QUESTIONS

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 7.1 Angular Speed and Angular Acceleration
1. The tires on a new compact car have a diameter of 2.0 ft

and are warranted for 60 000 miles. (a) Determine the
angle (in radians) through which one of these tires will
rotate during the warranty period. (b) How many revolu-
tions of the tire are equivalent to your answer in (a)?

2. A wheel has a radius of 4.1 m. How far (path length)
does a point on the circumference travel if the wheel
is rotated through angles of 30�, 30 rad, and 30 rev, re-
spectively?

Find the angular speed of Earth about the Sun in radians
per second and degrees per day.

3.
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4. A potter’s wheel moves from rest to an angular speed of
0.20 rev/s in 30 s. Find its angular acceleration in radians
per second per second.

Section 7.2 Rotational Motion under Constant 
Angular Acceleration

Section 7.3 Relations between Angular 
and Linear Quantities

5. A dentist’s drill starts from rest. After 3.20 s of constant an-
gular acceleration, it turns at a rate of 2.51 	 104 rev/min.
(a) Find the drill’s angular acceleration. (b) Determine
the angle (in radians) through which the drill rotates dur-
ing this period.

6. A centrifuge in a medical laboratory rotates at an angular
speed of 3 600 rev/min. When switched off, it rotates
through 50.0 revolutions before coming to rest. Find the
constant angular acceleration of the centrifuge.

7. A machine part rotates at an angular speed of 0.60 rad/s;
its speed is then increased to 2.2 rad/s at an angular ac-
celeration of 0.70 rad/s2. Find the angle through which
the part rotates before reaching this final speed.

8. A tire placed on a balancing machine in a service station
starts from rest and turns through 4.7 revolutions in 1.2 s
before reaching its final angular speed. Calculate its angu-
lar acceleration.

The diameters of the main rotor and
tail rotor of a single-engine helicopter are 7.60 m and
1.02 m, respectively. The respective rotational speeds are
450 rev/min and 4 138 rev/min. Calculate the speeds of
the tips of both rotors. Compare these speeds with the
speed of sound, 343 m/s.

10. The tub of a washer goes into its spin-dry cycle, starting
from rest and reaching an angular speed of 5.0 rev/s in
8.0 s. At this point, the person doing the laundry opens
the lid, and a safety switch turns off the washer. The tub
slows to rest in 12.0 s. Through how many revolutions does
the tub turn during the entire 20-s interval? Assume con-
stant angular acceleration while it is starting and stopping.

11. A standard cassette tape is placed in a standard cassette
player. Each side lasts for 30 minutes. The two tape wheels
of the cassette fit onto two spindles in the player. Suppose
that a motor drives one spindle at constant angular veloc-
ity of approximately 1 rad/s and the other spindle is free
to rotate at any angular speed. Find the order of magni-
tude of the tape’s thickness. Specify any other quantities
you estimate and the values you take for them.

12. A coin with a diameter of 2.40 cm is dropped on edge
onto a horizontal surface. The coin starts out with an ini-
tial angular speed of 18.0 rad/s and rolls in a straight line
without slipping. If the rotation slows with an angular ac-
celeration of magnitude 1.90 rad/s2, how far does the
coin roll before coming to rest?
A rotating wheel requires 3.00 s to rotate 37.0 revolutions.
Its angular velocity at the end of the 3.00-s interval is
98.0 rad/s. What is the constant angular acceleration of
the wheel?

Section 7.4 Centripetal Acceleration
14. It has been suggested that rotating cylinders about 10 mi

long and 5.0 mi in diameter be placed in space and used
as colonies. What angular speed must such a cylinder have

13.

9.

so that the centripetal acceleration at its surface equals
the free-fall acceleration on Earth?

15. Find the centripetal accelerations of (a) a point on the
equator of Earth and (b) the North Pole, due to the rota-
tion of Earth about its axis.

16. A tire 2.00 ft in diameter is placed on a balancing ma-
chine, where it is spun so that its tread is moving at a con-
stant speed of 60.0 mi/h. A small stone is stuck in the
tread of the tire. What is the acceleration of the stone as
the tire is being balanced?

(a) What is the tangential acceleration of a bug on the rim
of a 10-in.-diameter disk if the disk moves from rest to an
angular speed of 78 rev/min in 3.0 s? (b) When the disk is
at its final speed, what is the tangential velocity of the
bug? (c) One second after the bug starts from rest, what
are its tangential acceleration, centripetal acceleration,
and total acceleration?

18. A race car starts from rest on a circular track of radius
400 m. The car’s speed increases at the constant rate of
0.500 m/s2. At the point where the magnitudes of the
centripetal and tangential accelerations are equal, deter-
mine (a) the speed of the race car, (b) the distance trav-
eled, and (c) the elapsed time.

19. A 55.0-kg ice-skater is moving at 4.00 m/s when she grabs
the loose end of a rope, the opposite end of which is tied
to a pole. She then moves in a circle of radius 0.800 m
around the pole. (a) Determine the force exerted by the
horizontal rope on her arms. (b) Compare this force with
her weight.

20. A sample of blood is placed in a centrifuge of radius
15.0 cm. The mass of a red blood cell is 3.0 	 10�16 kg,
and the magnitude of the force acting on it as it settles
out of the plasma is 4.0 	 10�11 N. At how many revolu-
tions per second should the centrifuge be operated?

21. A certain light truck can go around a flat curve having a
radius of 150 m with a maximum speed of 32.0 m/s. With
what maximum speed can it go around a curve having a
radius of 75.0 m?

22. The cornering performance of an automobile is evaluated on
a skid pad, where the maximum speed that a car can
maintain around a circular path on a dry, flat surface is
measured. Then the centripetal acceleration, also called
the lateral acceleration, is calculated as a multiple of the
free-fall acceleration g . The main factors affecting the per-
formance of the car are its tire characteristics and suspen-
sion system. A Dodge Viper GTS can negotiate a skid pad
of radius 61.0 m at 86.5 km/h. Calculate its maximum lat-
eral acceleration.

A 50.0-kg child stands at the rim of a
merry-go-round of radius 2.00 m, rotating with an angular
speed of 3.00 rad/s. (a) What is the child’s centripetal
acceleration? (b) What is the minimum force between
her feet and the floor of the carousel that is required to
keep her in the circular path? (c) What minimum coeffi-
cient of static friction is required? Is the answer you found
reasonable? In other words, is she likely to stay on the
merry-go-round?

24. An engineer wishes to design a curved exit ramp for a toll
road in such a way that a car will not have to rely on fric-
tion to round the curve without skidding. He does so by
banking the road in such a way that the force causing the

23.

17.
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centripetal acceleration will be supplied by the compo-
nent of the normal force toward the center of the circular
path. (a) Show that, for a given speed v and a radius r, the
curve must be banked at the angle � such that tan � �
v2/rg. (b) Find the angle at which the curve should be
banked if a typical car rounds it at a 50.0-m radius and a
speed of 13.4 m/s.

25. An air puck of mass 0.25 kg is tied to a string and allowed
to revolve in a circle of radius 1.0 m on a frictionless hori-
zontal table. The other end of the string passes through a
hole in the center of the table, and a mass of 1.0 kg is tied
to it (Fig. P7.25). The suspended mass remains in equilib-
rium while the puck on the tabletop revolves. (a) What is
the tension in the string? (b) What is the horizontal force
acting on the puck? (c) What is the speed of the puck?

Section 7.5 Newtonian Gravitation
29. The average distance separating Earth and the Moon is

384 000 km. Use the data in Table 7.3 to find the net
gravitational force exerted by Earth and the Moon on a 
3.00 	 104-kg spaceship located halfway between them.

30. During a solar eclipse, the Moon, Earth, and Sun all lie on
the same line, with the Moon between Earth and the Sun.
(a) What force is exerted by the Sun on the Moon?
(b) What force is exerted by Earth on the Moon?
(c) What force is exerted by the Sun on Earth? (See Table
7.3 and Problem 29.)
A coordinate system (in meters) is constructed on the sur-
face of a pool table, and three objects are placed on the
table as follows: a 2.0-kg object at the origin of the coordi-
nate system, a 3.0-kg object at (0, 2.0), and a 4.0-kg object
at (4.0, 0). Find the resultant gravitational force exerted
by the other two objects on the object at the origin.

32. Use the data of Table 7.3 to find the point between Earth
and the Sun at which an object can be placed so that the
net gravitational force exerted by Earth and the Sun on
that object is zero.

33. Objects with masses of 200 kg and 500 kg are separated by
0.400 m. (a) Find the net gravitational force exerted by
these objects on a 50.0-kg object placed midway between
them. (b) At what position (other than infinitely remote
ones) can the 50.0-kg object be placed so as to experience
a net force of zero?

34. Two objects attract each other with a gravitational force of
magnitude 1.00 	 10�8 N when separated by 20.0 cm. If
the total mass of the objects is 5.00 kg, what is the mass of
each?

Section 7.6 Kepler’s Laws
A satellite moves in a circular orbit

around Earth at a speed of 5 000 m/s. Determine (a) the
satellite’s altitude above the surface of Earth and (b) the
period of the satellite’s orbit.

36. A 600-kg satellite is in a circular orbit about Earth at a
height above Earth equal to Earth’s mean radius. Find
(a) the satellite’s orbital speed, (b) the period of its revo-
lution, and (c) the gravitational force acting on it.

37. Io, a satellite of Jupiter, has an orbital period of 1.77 days
and an orbital radius of 4.22 	 105 km. From these data,
determine the mass of Jupiter.

38. A satellite has a mass of 100 kg and is located at 
2.00 	 106 m above the surface of Earth. (a) What is the
potential energy associated with the satellite at this loca-
tion? (b) What is the magnitude of the gravitational force
on the satellite?
A satellite of mass 200 kg is launched from a site on
Earth’s equator into an orbit 200 km above the surface of
Earth. (a) Assuming a circular orbit, what is the orbital
period of this satellite? (b) What is the satellite’s speed in
it’s orbit? (c) What is the minimum energy necessary to
place the satellite in orbit, assuming no air friction?

ADDITIONAL PROBLEMS

40. Neutron stars are extremely dense objects that are formed
from the remnants of supernova explosions. Many rotate
very rapidly. Suppose that the mass of a certain spherical

39.

35.

31.

Figure P7.25

10 m
15 m

�

�

Figure P7.28

26. Tarzan (m � 85 kg) tries to cross a river by swinging from
a 10-m-long vine. His speed at the bottom of the swing (as
he just clears the water) is 8.0 m/s. Tarzan doesn’t know
that the vine has a breaking strength of 1 000 N. Does he
make it safely across the river? Justify your answer.
A 40.0-kg child takes a ride on a Ferris wheel that rotates
four times each minute and has a diameter of 18.0 m. 
(a) What is the centripetal acceleration of the child? 
(b) What force (magnitude and direction) does the seat
exert on the child at the lowest point of the ride? 
(c) What force does the seat exert on the child at the
highest point of the ride? (d) What force does the seat ex-
ert on the child when the child is halfway between the top
and bottom?

28. A roller-coaster vehicle has a mass of 500 kg when fully
loaded with passengers (Fig. P7.28). (a) If the vehicle has
a speed of 20.0 m/s at point �, what is the force of the
track on the vehicle at this point? (b) What is the maxi-
mum speed the vehicle can have at point � in order for
gravity to hold it on the track?

27.
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neutron star is twice the mass of the sun and its radius is
10.0 km. Determine the greatest possible angular speed
the neutron star can have so that the matter at its surface
on the equator is just held in orbit by the gravitational
force.

41. One method of pitching a softball is called the “windmill”
delivery method, in which the pitcher’s arm rotates
through approximately 360� in a vertical plane before the
198-gram ball is released at the lowest point of the circu-
lar motion. An experienced pitcher can throw a ball with
a speed of 98.0 mi/h. Assume that the angular accelera-
tion is uniform throughout the pitching motion, and take
the distance between the softball and the shoulder joint
to be 74.2 cm. (a) Determine the angular speed of the
arm in rev/s at the instant of release. (b) Find the value of
the angular acceleration in rev/s2 and the radial and
tangential acceleration of the ball just before it is re-
leased. (c) Determine the force exerted on the ball by the
pitcher’s hand (both radial and tangential components)
just before it is released.

42. The Mars probe Pathfinder is designed to drop the vehi-
cle’s instrument package from a height of 20 meters
above the Martian surface, after the speed of the
probe has been brought to zero by a combination
parachute–rocket system at that height. To cushion the
landing, giant air bags surround the package. The mass of
Mars is 0.107 4 times that of Earth, and the radius of Mars
is 0.528 2 that of Earth. Find (a) the acceleration due to
gravity at the surface of Mars and (b) how long it takes for
the instrument package to fall the last 20 meters.

43. An athlete swings a 5.00-kg ball horizontally on the end of
a rope. The ball moves in a circle of radius 0.800 m at an
angular speed of 0.500 rev/s. What are (a) the tangential
speed of the ball and (b) its centripetal acceleration?
(c) If the maximum tension the rope can withstand be-
fore breaking is 100 N, what is the maximum tangential
speed the ball can have?

44. A digital audio compact disc carries data along a continu-
ous spiral track from the inner circumference of the disc
to the outside edge. Each bit occupies 0.6 �m of the
track. A CD player turns the disc to carry the track coun-
terclockwise above a lens at a constant speed of 1.30 m/s.
Find the required angular speed (a) at the beginning of
the recording, where the spiral has a radius of 2.30 cm,
and (b) at the end of the recording, where the spiral has a
radius of 5.80 cm. (c) A full-length recording lasts for
74 min, 33 s. Find the average angular acceleration of
the disc. (d) Assuming that the acceleration is constant,
find the total angular displacement of the disc as it plays.
(e) Find the total length of the track.

45. The Solar Maximum Mission Satellite was placed in a cir-
cular orbit about 150 mi above Earth. Determine (a) the
orbital speed of the satellite and (b) the time required for
one complete revolution.

46. A car rounds a banked curve where the radius of curvature
of the road is R , the banking angle is �, and the coefficient
of static friction is �. (a) Determine the range of speeds
the car can have without slipping up or down the road.
(b) What is the range of speeds possible if R � 100 m, 
� � 10�, and � � 0.10 (slippery conditions)?

A car moves at speed v across a bridge
made in the shape of a circular arc of radius r. (a) Find an

47.

expression for the normal force acting on the car when it
is at the top of the arc. (b) At what minimum speed will
the normal force become zero (causing the occupants of
the car to seem weightless) if r � 30.0 m?

48. A 0.400-kg pendulum bob passes through the lowest part
of its path at a speed of 3.00 m/s. (a) What is the tension
in the pendulum cable at this point if the pendulum is
80.0 cm long? (b) When the pendulum reaches its highest
point, what angle does the cable make with the vertical?
(c) What is the tension in the pendulum cable when the
pendulum reaches its highest point?

49. Because of Earth’s rotation about its axis, a point on the
equator has a centripetal acceleration of 0.034 0 m/s2,
while a point at the poles has no centripetal acceleration.
(a) Show that, at the equator, the gravitational force
on an object (the object’s true weight) must exceed the
object’s apparent weight. (b) What are the apparent
weights of a 75.0-kg person at the equator and at
the poles? (Assume Earth is a uniform sphere, and take
g � 9.800 m/s2.)

50. A stuntman whose mass is 70 kg swings from the end of a
4.0-m-long rope along the arc of a vertical circle. Assum-
ing that he starts from rest when the rope is horizontal,
find the tensions in the rope that are required to make
him follow his circular path (a) at the beginning of his
motion, (b) at a height of 1.5 m above the bottom of the
circular arc, and (c) at the bottom of the arc.
In a popular amusement park ride, a rotating cylinder of
radius 3.00 m is set in rotation at an angular speed of
5.00 rad/s, as in Figure P7.51. The floor then drops away,
leaving the riders suspended against the wall in a vertical
position. What minimum coefficient of friction between a
rider’s clothing and the wall is needed to keep the rider
from slipping? (Hint: Recall that the magnitude of the
maximum force of static friction is equal to �n, where n is
the normal force—in this case, the force causing the cen-
tripetal acceleration.)

51.

Figure P7.51

52. A 0.50-kg ball that is tied to the end of a 1.5-m light cord
is revolved in a horizontal plane, with the cord making a
30� angle with the vertical. (See Fig. P7.52.) (a) Deter-
mine the ball’s speed. (b) If, instead, the ball is revolved
so that its speed is 4.0 m/s, what angle does the cord
make with the vertical? (c) If the cord can withstand a
maximum tension of 9.8 N, what is the highest speed at
which the ball can move?
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53. A skier starts at rest at the top of a large hemispherical hill
(Fig. P7.53). Neglecting friction, show that the skier will
leave the hill and become airborne at a distance h � R/3
below the top of the hill. (Hint: At this point, the normal
force goes to zero.)

54. After consuming all of its nuclear fuel, a massive star can
collapse to form a black hole, which is an immensely dense
object whose escape speed is greater than the speed of
light. Newton’s law of universal gravitation still describes
the force that a black hole exerts on objects outside it. A
spacecraft in the shape of a long cylinder has a length of
100 m, and its mass with occupants is 1 000 kg. It has
strayed too close to a black hole having a mass 100 times
that of the Sun (Figure P7.54). If the nose of the space-
craft points toward the center of the black hole, and if the
distance between the nose of the spacecraft and the black
hole’s center is 10 km, (a) determine the total force on the
spacecraft. (b) What is the difference in the force per kilo-
gram of mass felt by the occupants in the nose of the ship
versus those in the rear of the ship farthest from the black
hole?

56. Show that the escape speed from the surface of a planet
of uniform density is directly proportional to the radius of
the planet.

57. A massless spring of constant k � 78.4 N/m is fixed on the
left side of a level track. A block of mass m � 0.50 kg is
pressed against the spring and compresses it a distance d,
as in Figure P7.57. The block (initially at rest) is then re-
leased and travels toward a circular loop-the-loop of radius
R � 1.5 m. The entire track and the loop-the-loop are fric-
tionless, except for the section of track between points A
and B. Given that the coefficient of kinetic friction be-
tween the block and the track along AB is �k � 0.30, and
that the length of AB is 2.5 m, determine the minimum
compression d of the spring that enables the block to just
make it through the loop-the-loop at point C . (Hint: The
force exerted by the track on the block will be zero if the
block barely makes it through the loop-the-loop.)

u

Figure P7.52

R

Figure P7.53

10 km100 m

Black hole

Figure P7.54

55. In Robert Heinlein’s The Moon Is a Harsh Mistress, the colo-
nial inhabitants of the Moon threaten to launch rocks
down onto Earth if they are not given independence (or at
least representation). Assuming that a gun could launch a
rock of mass m at twice the lunar escape speed, calculate
the speed of the rock as it enters Earth’s atmosphere.
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km

Figure P7.57
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Figure P7.58

58. A small block of mass m � 0.50 kg is fired with an initial
speed of v0 � 4.0 m/s along a horizontal section of fric-
tionless track, as shown in the top portion of Figure P7.58.
The block then moves along the frictionless, semicircular,
vertical tracks of radius R � 1.5 m. (a) Determine the
force exerted by the track on the block at points � and
�. (b) The bottom of the track consists of a section 
(L � 0.40 m) with friction. Determine the coefficient of
kinetic friction between the block and that portion of the
bottom track if the block just makes it to point � on the
first trip. (Hint: If the block just makes it to point �, the
force of contact exerted by the track on the block at that
point is zero.)

59. A frictionless roller coaster is given an initial speed v0 at
height h, as in Figure P7.59. The radius of curvature of
the track at point � is R . (a) Find the maximum value of
v0 so that the roller coaster stays on the track at � solely
because of gravity. (b) Using the value of v0 calculated in
(a), determine the value of h� that is necessary if the
roller coaster just makes it to point �.
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Figure P7.62

68.0°

Figure P7.63
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Figure P7.64
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Figure P7.59

60. A roller coaster travels in a circular path. (a) Identify the
forces on a passenger at the top of the circular loop that
cause centripetal acceleration. Show the direction of all
forces in a sketch. (b) Identify the forces on the passenger
at the bottom of the loop that produce centripetal accel-
eration. Show these in a sketch. (c) Based on your answers
to (a) and (b), at what point, top or bottom, should the
seat exert the greatest force on the passenger? (d) As-
sume the speed of the roller coaster is 4.00 m/s at the top
of the loop of radius 8.00 m. Find the force exerted by the
seat on a 70.0-kg passenger at the top of the loop. Then,
assume the speed remains the same at the bottom of the
loop, and find the force exerted by the seat on the passen-
ger at this point. Are your answers consistent with your
choice of answers for (a) and (b)? 
Assume that you are agile enough to run across a horizon-
tal surface at 8.50 m/s, independently of the value of
the gravitational field. What would be (a) the radius and
(b) the mass of an airless spherical asteroid of uniform
density 1.10 	 103 kg/m3 on which you could launch
yourself into orbit by running? (c) What would be your
period?

62. Figure P7.62 shows the elliptical orbit of a spacecraft
around Earth. Take the origin of your coordinate system
to be at the center of Earth.

61.

(b) Have you drawn the velocity vector at � longer than,
shorter than, or the same length as the one at �? Ex-
plain. Have you drawn the acceleration vector at � longer
than, shorter than, or the same length as the one at �?
Explain. (Problem 62 is courtesy of E. F. Redish. For more
problems of this type, visit www.physics.umd.edu/perg/)

63. In a home laundry drier, a cylindrical tub containing
wet clothes rotates steadily about a horizontal axis, as in
Figure P7.63. The clothes are made to tumble so that they
will dry uniformly. The rate of rotation of the smooth-
walled tub is chosen so that a small piece of cloth loses
contact with the tub when the cloth is at an angle of 68.0�
above the horizontal. If the radius of the tub is 0.330 m,
what rate of revolution is needed?

(a) On a copy of the figure (enlarged if necessary), draw
vectors representing
(i) the position of the spacecraft when it is at � and �;
(ii) the velocity of the spacecraft when it is at � and �;
(iii) the acceleration of the spacecraft when it is at �
and �.
Make sure that each type of vector can be distinguished.
Provide a legend that shows how each type is represented.

64. Casting of molten metal is important in many industrial
processes. Centrifugal casting is used for manufacturing
pipes, bearings, and many other structures. A cylindrical
enclosure is rotated rapidly and steadily about a horizon-
tal axis, as in Figure P7.64. Molten metal is poured into
the rotating cylinder and then cooled, forming the fin-
ished product. Turning the cylinder at a high rotation
rate forces the solidifying metal strongly to the outside.
Any bubbles are displaced toward the axis so that un-
wanted voids will not be present in the casting. 

Suppose that a copper sleeve of inner radius 2.10 cm
and outer radius 2.20 cm is to be cast. To eliminate bub-
bles and give high structural integrity, the centripetal
acceleration of each bit of metal should be 100g. What
rate of rotation is required? State the answer in revolu-
tions per minute. 

65. Suppose that a 1 800-kg car passes over a bump in a road-
way that follows the arc of a circle of radius 20.4 m, as in
Figure P7.65. (a) What force does the road exert on the
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224 Chapter 7 Rotational Motion and the Law of Gravity

car as the car passes the highest point of the bump if the
car travels at 8.94 m/s? (b) What is the maximum speed
the car can have without losing contact with the road as it
passes this highest point?

66. One popular design of a household juice machine is a
conical, perforated stainless-steel basket 3.30 cm high,
with a closed bottom of diameter 8.00 cm and an open
top of diameter 13.70 cm, that spins at 20 000 revolutions
per minute about a vertical axis (Fig. P7.66). Solid pieces
of fruit or vegetables are chopped into granules by cutters
on the bottom of the spinning cone. The dry pulp is
ejected from the top of the cone. After passing through
the perforations on the surface of the cone, the juice is
collected in an enclosure immediately surrounding the
cone. (a) What centripetal acceleration does a bit of fruit
experience as it spins with the basket at a point midway
between the top and bottom of the basket? Express the
answer as a multiple of g. (b) Observe that the weight of
the fruit is a negligible force. What is the normal force on
2.00 g of fruit at the midway point? (c) If the coefficient
of kinetic friction between the fruit and the cone is 0.600,
with what acceleration relative to the cone will the bit of
fruit start to slide up the wall of the cone at that point, af-
ter being temporarily stuck?

of slipping as it goes around once every 34.0 s. Calculate
the coefficient of static friction between the bag and the
carousel.

68. A merry-go-round is stationary. A dog is running on the
ground just outside its circumference, moving with a con-
stant angular speed of 0.750 rad/s. The dog does not
change his pace when he sees a bone resting on the edge
of the merry-go-round one-third of a revolution in front
of him. At the instant the dog sees the bone, the merry-
go-round begins to move in the direction the dog is
running, with a constant angular acceleration of 
0.015 0 rad/s2. (a) After what time will the dog reach the
bone? (b) The confused dog keeps running and passes
the bone. How long after the merry-go-round starts to
turn do the dog and the bone draw even with each other
for the second time?

69. Figure P7.69 shows the drive train of a bicycle that has
wheels 67.3 cm in diameter and pedal cranks 17.5 cm
long. The cyclist pedals at a steady angular rate of
76.0 rev/min. The chain engages with a front sprocket
15.2 cm in diameter and a rear sprocket 7.00 cm in
diameter. (a) Calculate the speed of a link of the chain
relative to the bicycle frame. (b) Calculate the angular
speed of the bicycle wheels. (c) Calculate the speed of the
bicycle relative to the road. (d) What pieces of data, if any,
are not necessary for the calculations?

v

Figure P7.65
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basket

Juice spout
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Motor

Figure P7.66

Chain
Sprocket Crank

Figure P7.69

67. (a) A luggage carousel at an airport has the form of a sec-
tion of a large cone, steadily rotating about its vertical
axis. Its metallic surface slopes downward toward the out-
side, making an angle of 20.0� with the horizontal. A 
30.0-kg piece of luggage is placed on the carousel, 7.46 m
from the axis of rotation. The travel bag goes around
once in 38.0 s. Calculate the force of static friction be-
tween the bag and the carousel. (b) The drive motor is
shifted to turn the carousel at a higher constant rate of ro-
tation, and the piece of luggage is bumped to a position
7.94 m from the axis of rotation. The bag is on the verge

70. The maximum lift force on a bat is proportional to the
square of its flying speed v. For the hoary bat (Lasiurus
cinereus), the magnitude of the lift force is given by

The bat can fly in a horizontal circle by “banking” its
wings at an angle �, as shown in Figure P7.70. In this situa-
tion, the magnitude of the vertical component of the lift
force must equal the bat’s weight. The horizontal compo-
nent of the force provides the centripetal acceleration.
(a) What is the minimum speed that the bat can have if its
mass is 0.031 kg? (b) If the maximum speed of the bat is
10 m/s, what is the maximum banking angle that allows
the bat to stay in a horizontal plane? (c) What is the ra-
dius of the circle of its flight when the bat flies at its maxi-
mum speed? (d) Can the bat turn with a smaller radius by
flying more slowly?

FL � (0.018 Ns2/m2)v2 
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Figure P7.70

71. (a) Find the acceleration due to gravity at the surface of a
neutron star of mass 1.5 solar masses and having a radius
of 10.0 km. (b) Find the weight of a 0.120-kg baseball on
this star. (c) Assume the equation PE � mgh applies, and
calculate the energy that a 70.0-kg person would expend
climbing a 1.00-cm-tall mountain on the neutron star.

ACTIVITIES

A.1. Experiment with a bicycle wheel like the one in Figure
7.4. Wrap tape around the middle of one of the spokes so
that you can easily see it, and draw a chalk mark on a
point on the rim at the end of the spoke. Make the tire ro-
tate by gently and steadily turning the crank by hand.
Compare the linear speed of the tape with that of the
chalk mark. Why do these two points move at different
speeds? What happens to the speed of the tape as you
slide it closer to the center of the wheel?

With the tape at a given distance from the center, meas-
ure the time it takes for the tape to make five rotations.
From this time, find the angular speed and the linear
speed of the wheel. Repeat at least five times and average
your results. Move the tape to a different point and repeat
the observations.

A.2. Tie a tennis ball to a string having a length of about 
1.0 m. At a safe distance from other students, whirl the
ball in a horizontal circle. Note the increasing tension in
the string as you whirl it faster. Now whirl the ball in a ver-
tical circle, and observe the difference in tension at the
top and at the bottom of the path. Why is there such a dif-
ference? While whirling the ball, release it and observe
that it flies off in a direction tangent to its circular path.

A.3. On a clear night, spend a few hours outside observing the
stars. Choose a pattern of stars toward the north and oth-
ers toward the east, the south, and the west. As time
passes, notice how these patterns move. Obtain a star
chart of the constellations from your instructor and also a
list of the planets that are visible on your date of observa-
tion. Locate as many of these constellations and stars as
possible.
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In the study of linear motion, objects were treated as point particles without structure. It
didn’t matter where a force was applied, only whether it was applied or not.

The reality is that the point of application of a force does matter. In football, for example,
if the ball carrier is tackled near his midriff, he might carry the tackler several yards before
falling. If tackled well below the waistline, however, his center of mass rotates toward the
ground, and he can be brought down immediately. Tennis provides another good example. If
a tennis ball is struck with a strong horizontal force acting through its center of mass, it may
travel a long distance before hitting the ground, far out of bounds. Instead, the same force
applied in an upward, glancing stroke will impart topspin to the ball, which can cause it to
land in the opponent’s court.

The concepts of rotational equilibrium and rotational dynamics are also important in other
disciplines. For example, students of architecture benefit from understanding the forces that
act on buildings and biology students should understand the forces at work in muscles and
on bones and joints. These forces create torques, which tell us how the forces affect an
object’s equilibrium and rate of rotation.

Rotational motion is key in the har-
nessing of energy for power and
propulsion, as illustrated by a steam-
boat. The rotating paddlewheel,
driven by a steam engine, pushes
water backwards, and the reaction
force of the water thrusts the boat
forward.
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We will find that an object remains in a state of uniform rotational motion unless acted on
by a net torque. This principle is the equivalent of Newton’s first law. Further, the angular ac-
celeration of an object is proportional to the net torque acting on it, which is the analog of
Newton’s second law. A net torque acting on an object causes a change in its rotational 
energy.

Finally, torques applied to an object through a given time interval can change the object’s
angular momentum. In the absence of external torques, angular momentum is conserved, a
property that explains some of the mysterious and formidable properties of pulsars—
remnants of supernova explosions that rotate at equatorial speeds approaching that of light.

8.1 TORQUE
Forces cause accelerations; torques cause angular accelerations. There is a definite
relationship, however, between the two concepts.

Figure 8.1 depicts an overhead view of a door hinged at point O. From this view-
point, the door is free to rotate around an axis perpendicular to the page and
passing through O. If a force is applied to the door, there are three factors that
determine the effectiveness of the force in opening the door: the magnitude of the
force, the position of application of the force, and the angle at which it is applied.

For simplicity, we restrict our discussion to position and force vectors lying in a
plane. When the applied force is perpendicular to the outer edge of the door, as
in Figure 8.1, the door rotates counterclockwise with constant angular accelera-
tion. The same perpendicular force applied at a point nearer the hinge results in a
smaller angular acceleration. In general, a larger radial distance r between the ap-
plied force and the axis of rotation results in a larger angular acceleration. Simi-
larly, a larger applied force will also result in a larger angular acceleration. These
considerations motivate the basic definition of torque for the special case of forces
perpendicular to the position vector:

Let be a force acting on an object, and let be a position vector from a
chosen point O to the point of application of the force, with perpendicular
to . The magnitude of the torque exerted by the force is given by

[8.1]

where r is the length of the position vector and F is the magnitude of the
force.

SI unit: Newton-meter (N�m)

The vectors and lie in a plane. As discussed in detail shortly in conjunction
with Figure 8.4, the torque is then perpendicular to this plane. The point O is
usually chosen to coincide with the axis the object is rotating around, such as the
hinge of a door or hub of a merry-go-round. (Other choices are possible as well.)
In addition, we consider only forces acting in the plane perpendicular to the axis
of rotation. This criterion excludes, for example, a force with upward component
on a merry-go-round railing, which cannot affect the merry-go-round’s rotation.

Under these conditions, an object can rotate around the chosen axis in one of
two directions. By convention, counterclockwise is taken to be the positive direc-
tion, clockwise the negative direction. When an applied force causes an object to
rotate counterclockwise, the torque on the object is positive. When the force
causes the object to rotate clockwise, the torque on the object is negative. When
two or more torques act on an object at rest, the torques are added. If the net
torque isn’t zero, the object starts rotating at an ever-increasing rate. If the net
torque is zero, the object’s rate of rotation doesn’t change. These considerations
lead to the rotational analog of the first law: the rate of rotation of an object
doesn’t change, unless the object is acted on by a net torque.
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Figure 8.1 A bird’s-eye view of a
door hinged at O, with a force
applied perpendicular to the door.

O

Hinge
F

r

� Basic definition of torque
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228 Chapter 8 Rotational Equilibrium and Rotational Dynamics

The applied force isn’t always perpendicular to the position vector . Suppose
the force exerted on a door is directed away from the axis, as in Figure 8.3a,
say, by someone’s grasping the doorknob and pushing to the right. Exerting the
force in this direction couldn’t possibly open the door. However, if the applied
force acts at an angle to the door as in Figure 8.3b, the component of the force
perpendicular to the door will cause it to rotate. This figure shows that the compo-
nent of the force perpendicular to the door is F sin �, where � is the angle be-
tween the position vector and the force . When the force is directed away
from the axis, � � 0�, sin (0�) � 0, and F sin (0�) � 0. When the force is directed
toward the axis, � � 180� and F sin (180�) � 0. The maximum absolute value of
F sin � is attained only when is perpendicular to —that is, when � � 90� or 
� � 270�. These considerations motivate a more general definition of torque:

Let be a force acting on an object, and let be a position vector from 
a chosen point O to the point of application of the force. The magnitude 
of the torque exerted by the force is 

[8.2]

where r is the length of the position vector, F the magnitude of the force,
and � the angle between and .

SI unit: Newton-meter (N � m)
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EXAMPLE 8.1 Battle of the Revolving Door
Goal Apply the basic definition of torque.

Problem Two disgruntled businessmen are trying to use a revolving door, as in
Figure 8.2. The door has a diameter of 2.60 m. The businessman on the left exerts a
force of 625 N perpendicular to the door and 1.20 m from the hub’s center, while
the one on the right exerts a force of 8.50 � 102 N perpendicular to the door and
0.800 m from the hub’s center. Find the net torque on the revolving door.

Strategy Calculate the individual torques on the door using the definition of
torque, Equation 8.1, and then sum to find the net torque on the door. The first
businessman exerts a negative torque, the second a positive torque. Their positions
of application also differ.

F1 F2

r1 r2

Figure 8.2 (Example 8.1)

Solution
Calculate the torque exerted by the first businessman.
A negative sign must be supplied, because , if
unopposed, would cause a clockwise rotation.

F
:

1

�1 � � r1F1 � �(1.20 m)(625 N) � � 7.50 � 102 N � m

Calculate the torque exerted by the second business-
man. The torque is positive because , if unopposed,
would cause a counterclockwise rotation.

F
:

2

�2 � r2F2 � (0.800 m)(8.50 � 102 N)

� 6.80 � 102 N � m

Sum the torques to find the net torque on the door: �net � �1 � �2 � �7.0 � 101 N�m

Remark The negative result here means the net torque will produce a  clockwise rotation.

Exercise 8.1
A businessman enters the same revolving door on the right, pushing with 576 N of force directed perpendicular to
the door and 0.700 m from the hub, while a boy exerts a force of 365 N perpendicular to the door, 1.25 m to the left
of the hub. Find (a) the torques exerted by each person and (b) the net torque on the door.

Answers (a) �boy � � 456 N � m, �man � 403 N � m (b) �net � � 53 N � m

(a)
F

d � r sin u

r

(b)

F
F sin u

u

r

(c)

F

u
u

O

O

O

Figure 8.3 (a) A force acting at
an angle � � 180� exerts zero torque
about the pivot O. (b) The part of the
force perpendicular to the door, 
F sin �, exerts torque rF sin � about O.
(c) An alternate interpretation of
torque in terms of a lever arm
d � r sin �.

F
:
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8.1 Torque 229

Again the vectors and lie in a plane and for our purposes the chosen point O
will usually correspond to an axis of rotation perpendicular to the plane.

A second way of understanding the sin � factor is to associate it with the magni-
tude r of the position vector . The quantity d � r sin � is called the lever arm,
which is the perpendicular distance from the axis of rotation to a line drawn along
the direction of the force. This alternate interpretation is illustrated in Figure 8.3c.

It’s important to remember that the value of � depends on the chosen axis of
rotation. Torques can be computed around any axis, regardless of whether there is
some actual, physical rotation axis present. Once the point is chosen, however, it
must be used consistently throughout a given problem.

Torque is a vector perpendicular to the plane determined by the position and
force vectors, as illustrated in Figure 8.4. The direction can be determined by the
right-hand rule :

1. Point the fingers of your right hand in the direction of .
2. Curl your fingers toward the direction of vector .
3. Your thumb then points approximately in the direction of the torque, in this

case out of the page.

Problems used in this book will be confined to objects rotating around an axis
perpendicular to the plane containing and , so if these vectors are in the plane
of the page, the torque will always point either into or out of the page, parallel to
the axis of rotation. If your right thumb is pointed in the direction of a torque,
your fingers curl naturally in the direction of rotation that the torque would pro-
duce on an object at rest.

F
:

r:

F
:

r:

r:

F
:

r:

EXAMPLE 8.2 The Swinging Door
Goal Apply the more general definition of torque.

Problem (a) A man applies a force of F � 3.00 � 102 N at an angle of 60.0� to
the door of Figure 8.5a, 2.00 m from the hinges. Find the torque on the door,
choosing the position of the hinges as the axis of rotation. (b) Suppose a wedge is
placed 1.50 m from the hinges on the other side of the door. What minimum
force must the wedge exert so that the force applied in part (a) won’t open the
door?

Strategy Part (a) can be solved by substitution into the general torque equation.
In part (b), the hinges, the wedge, and the applied force all exert torques on the
door. The door doesn’t open, so the sum of these torques must be zero, a condi-
tion that can be used to find the wedge force. 

F

u

r

Figure 8.4 The right-hand rule:
Point the fingers of your right hand
along and curl them in the direc-
tion of . Your thumb then points in
the direction of the torque (out of
the page, in this case).

F
:

r:

2.00 m

260 N

150 N

2.00 m

(a)

(b)

60.0°

300 NHinge

Hinge

O

O

Figure 8.5 (Example 8.2a) (a) Top
view of a door being pushed by a 300-N
force. (b) The components of the 
300-N force.

Solution
(a) Compute the torque due to the applied force
exerted at 60.0�.

Substitute into the general torque equation: �F � rF sin � � (2.00 m)(3.00 � 102 N) sin 60.0�

� (2.00 m)(2.60 � 102 N)� 5.20 � 102 N�m

(b) Calculate the force exerted by the wedge on the
other side of the door.

Set the sum of the torques equal to zero: �hinge 	 �wedge 	 �F � 0

The hinge force provides no torque because it acts at
the axis (r � 0). The wedge force acts at an angle of
� 90.0�, opposite Fy.

0 	 Fwedge(1.50 m) sin(� 90.0�) 	 5.20 � 102 N � m � 0

Fwedge � 347 N
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230 Chapter 8 Rotational Equilibrium and Rotational Dynamics

8.2 TORQUE AND THE TWO CONDITIONS 
FOR EQUILIBRIUM

An object in mechanical equilibrium must satisfy the following two conditions:

1. The net external force must be zero:

2. The net external torque must be zero:

The first condition is a statement of translational equilibrium: The sum of all
forces acting on the object must be zero, so the object has no translational acceler-
ation, . The second condition is a statement of rotational equilibrium: The
sum of all torques on the object must be zero, so the object has no angular acceler-
ation, . For an object to be in equilibrium, it must both translate and rotate
at a constant rate.

Because we can choose any location for calculating torques, it’s usually best to
select an axis that will make at least one torque equal to zero, just to simplify the
net torque equation.

�: � 0

a: � 0

� �: � 0

�F
:

� 0

Remark Notice that the angle from the position vector to the wedge force is � 90�. This is because, starting at the
position vector, it’s necessary to go 90� clockwise (the negative angular direction) to get to the force vector. Measur-
ing the angle in this way automatically supplies the correct sign for the torque term and is consistent with the 
right-hand rule. Alternately, the magnitude of the torque can be found and the correct sign chosen based on physical
intuition.

Exercise 8.2
A man ties one end of a strong rope 8.00 m long to the bumper of his truck, 0.500 m from the ground, and the other
end to a vertical tree trunk at a height of 3.00 m. He uses the truck to create a tension of 8.00 � 102 N in the rope.
Compute the magnitude of the torque on the tree due to the tension in the rope, with the base of the tree acting as
the reference point.

Answer 2.28 � 103 N � m

EXAMPLE 8.3 Balancing Act
Goal Apply the conditions of equilibrium and illustrate
the use of different axes for calculating the net torque on an
object.

Problem A woman of mass m � 55.0 kg sits on the left end
of a seesaw—a plank of length L � 4.00 m, pivoted in the
middle as in Figure 8.6. (a) First compute the torques on the
seesaw about an axis that passes through the pivot point.
Where should a man of mass M � 75.0 kg sit if the system
(seesaw plus man and woman) is to be balanced? (b) Find
the normal force exerted by the pivot if the plank has a mass
of mpl � 12.0 kg. (c) Repeat part (b), but this time compute
the torques about an axis through the left end of the plank.

Strategy In part (a), apply the second condition of equi-
librium, , computing torques around the pivot point.
The mass of the plank forming the seesaw is distributed
evenly on either side of the pivot point, so the torque ex-
erted by gravity on the plank, �gravity, can be computed as if
all the plank’s mass is concentrated at the pivot point. Then

�� � 0

This large balanced rock at the
Garden of the Gods in Colorado,
Springs, Colorado, is in mechanical
equilibrium. 

Da
vi

d 
Se

rw
ay

(a)

mg m plg M g

L

2.00 m x

n

(b)

Figure 8.6 (a) (Example 8.3) Two people on a see-saw. (b) Free
body diagram for the plank.
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Solution
(a) Where should the man sit to balance the seesaw?

Apply the second condition of equilibrium to the 
plank by setting the sum of the torques equal to 
zero:

�pivot 	 �gravity 	 �man 	 �woman � 0

The first two torques are zero. Let x represent the man’s
distance from the pivot. The woman is at a distance L/2
from the pivot.

0 	 0 � Mgx 	 mg(L/2) � 0

�gravity is zero, as is the torque exerted by the pivot, because their moment arms are zero. In part (b), the first condi-
tion of equilibrium, , must be applied. Part (c) is a repeat of part (a) showing that choice of a different axis
yields the same answer. 


F
:

� 0

Solve this equation for x and evaluate it: 1.47 mx �
m(L/2)

M
�

(55.0 kg)(2.00 m)
75.0 kg

�

(b) Find the normal force n exerted by the pivot on the
seesaw.

Apply for first condition of equilibrium to the plank,
solving the resulting equation for the unknown normal
force, n:

�Mg � mg � mplg 	 n � 0

n � (M 	 m 	 mpl)g

� (75.0 kg 	 55.0 kg 	 12.0 kg)(9.80 m/s2)

n � 1.39 � 103 N

(c) Repeat part (a), choosing a new axis through the left
end of the plank.

Compute the torques using this axis, and set their sum
equal to zero. Now the pivot and gravity forces on the
plank result in nonzero torques.

�man 	 �woman 	 �plank 	 �pivot � 0

�Mg(L/2 	 x) 	 mg(0) � mplg(L/2) 	 n(L/2) � 0

Substitute all known quantities: �(75.0 kg)(9.80 m/s2)(2.00 m 	 x) 	 0

� (12.0 kg)(9.80 m/s2)(2.00 m) 	 n(2.00 m) � 0

�(1.47 � 103 N � m) � (735 N)x � (235 N � m)

	 (2.00 m)n � 0

Solve for x, substituting the normal force found in 
part (b):

x � 1.46 m

Remarks The answers for x in parts (a) and (c) agree except for a small round-off discrepancy. This illustrates how
choosing a different axis leads to the same solution.

Exercise 8.3
Suppose a 30.0-kg child sits 1.50 m to the left of center on the same seesaw. A second child sits at the end on the op-
posite side, and the system is balanced. (a) Find the mass of the second child. (b) Find the normal force acting at the
pivot point.

Answers (a) 22.5 kg (b) 632 N
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232 Chapter 8 Rotational Equilibrium and Rotational Dynamics

8.3 THE CENTER OF GRAVITY
In the example of the seesaw in the previous section, we guessed that the torque due
to the force of gravity on the plank was the same as if all the plank’s weight were con-
centrated at its center. This is a general procedure: To compute the torque on a
rigid body due to the force of gravity, the body’s entire weight can be thought of as
concentrated at a single point. The problem then reduces to finding the location of
that point. If the body is homogeneous (its mass is distributed evenly) and symmet-
ric, it’s usually possible to guess the location of that point, as in Example 8.3. Other-
wise, it’s necessary to calculate the point’s location, as explained in this section.

Consider an object of arbitrary shape lying in the xy-plane, as in Figure 8.7. The
object is divided into a large number of very small particles of weight m1g, m2g,
m3g , . . . having coordinates (x1, y1), (x2, y2), (x3, y3), . . . . If the object is free to
rotate around the origin, each particle contributes a torque about the origin that
is equal to its weight multiplied by its lever arm. For example, the torque due to
the weight m1g is m1gx1, and so forth.

We wish to locate the point of application of the single force of magnitude 
w � Fg � Mg (the total weight of the object), where the effect on the rotation of
the object is the same as that of the individual particles. This point is called the ob-
ject’s center of gravity. Equating the torque exerted by w at the center of gravity to
the sum of the torques acting on the individual particles gives

(m1g � m2g � m3g � � � �)xcg � m1gx1 � m2gx2 � m3gx3 � � � �

We assume that g is the same everywhere in the object (which is true for all objects
we will encounter). Then the g factors in the preceding equation cancel, resulting in

[8.3a]

where xcg is the x -coordinate of the center of gravity. Similarly, the y-coordinate
and z -coordinate of the center of gravity of the system can be found from

[8.3b]

and

[8.3c]

These three equations are identical to the equations for a similar concept called
center of mass. The center of mass and center of gravity of an object are exactly
the same when g doesn’t vary significantly over the object.

It’s often possible to guess the location of the center of gravity. The center of
gravity of a homogeneous, symmetric body must lie on the axis of symmetry. For
example, the center of gravity of a homogeneous rod lies midway between the
ends of the rod, and the center of gravity of a homogeneous sphere or a homoge-
neous cube lies at the geometric center of the object. The center of gravity of an
irregularly shaped object, such as a wrench, can be determined experimentally by
suspending the wrench from two different arbitrary points (Fig. 8.8). The wrench
is first hung from point A, and a vertical line AB (which can be established with a
plumb bob) is drawn when the wrench is in equilibrium. The wrench is then hung
from point C, and a second vertical line CD is drawn. The center of gravity coin-
cides with the intersection of these two lines. In fact, if the wrench is hung freely
from any point, the center of gravity always lies straight below the point of support,
so the vertical line through that point must pass through the center of gravity.

Several examples in Section 8.4 involve homogeneous, symmetric objects where
the centers of gravity coincide with their geometric centers. A rigid object in a
uniform gravitational field can be balanced by a single force equal in magnitude
to the weight of the object, as long as the force is directed upward through the
object’s center of gravity.

zcg �
�mizi

�mi

ycg �
�miyi

�mi

xcg �
m1x1 � m 2x2 � m3x3 � � � �

m1 � m2 � m3 � � � �
�

�mixi

�mi

y

x1, y1

x

x2, y2
m1g m2g

m3g

x3, y3

c.g.
xcg, ycg

O

m g

Figure 8.7 The net gravitational
torque on an object is zero if com-
puted around the center of gravity.
The object will balance if supported
at that point (or at any point along a
vertical line above or below that
point).

A

B

C

A
B

C

D

Center of
gravity

Figure 8.8 An experimental tech-
nique for determining the center of
gravity of a wrench. The wrench is
hung freely from two different pivots,
A and C. The intersection of the two
vertical lines, AB and CD, locates the
center of gravity.

TIP 8.1 Specify Your Axis
Choose the axis of rotation, and use
that axis exclusively throughout a
given problem. The axis need not
correspond to a physical axle or pivot
point. Any convenient point will do.
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8.3 The Center of Gravity 233

EXAMPLE 8.4 Where Is the Center of Gravity?
Goal Find the center of gravity of a system of particles.

Problem Three particles are located in a coordinate system as shown in Figure
8.9. Find the center of gravity.

Strategy The y-coordinate and z -coordinate of the center of gravity are both zero
because all the particles are on the x-axis. We can find the x-coordinate of the cen-
ter of gravity using Equation 8.3a.

0.500 m 1.00 m

4.00 kg2.00 kg5.00 kg
x

y

Figure 8.9 (Example 8.4) Locating
the center of gravity of a system of
three particles.

Solution
Apply Equation 8.3a to the system of three particles: (1)xcg �


m ixi


m i
�

m 1x1 	 m 2x 2 	 m 3x 3

m 1 	 m 2 	 m 3

Compute the numerator of Equation (1): mixi � m1x1 	 m2x2 	 m3x3

� (5.00 kg)(� 0.500 m) 	 (2.00 kg)(0 m)

	 (4.00 kg)(1.00 m)

� 1.50 kg � m




Substitute the denominator, mi � 11.0 kg, and the 
numerator into Equation (1).


 0.136 mxcg �  
1.50 kg�m

11.0 kg
�

Exercise 8.4
If a fourth particle of mass 2.00 kg is placed at x � 0, y � 0.250 m, find the x -and y -coordinates of the center of grav-
ity for this system of four particles.

Answer xcg � 0.115 m; ycg � 0.0385 m

EXAMPLE 8.5 Locating Your Lab Partner’s Center of Gravity
Goal Use torque to find a center of gravity.

Problem In this example, we show how to find the loca-
tion of a person’s center of gravity. Suppose your lab part-
ner has a height L of 173 cm (5 ft, 8 in) and a weight w of
715 N (160 lb). You can determine the position of his
center of gravity by having him stretch out on a uniform
board supported at one end by a scale, as shown in 
Figure 8.10. If the board’s weight wb is 49 N and the scale
reading F is 3.50 � 102 N, find the distance of your lab part-
ner’s center of gravity from the left end of the board.

Strategy To find the position xcg of the center of gravity, compute the torques using an axis through O. Set the
sum of the torques equal to zero and solve for xcg.

L
L/2

b

xcg

O

Fn

w w

Figure 8.10 (Example 8.5) Determining your lab partner’s
center of gravity.

Solution
Apply the second condition of equilibrium. There is no
torque due to the normal force because its moment
arm is zero.

n: �wxcg � wb(L/2) 	 FL � 0

 
�� � 0

Solve for xcg and substitute known values:

79 cm �
(350 N)(173 cm) � (49 N)(86.5 cm)

715 N
�

 xcg �
FL � wb(L/2)

w
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234 Chapter 8 Rotational Equilibrium and Rotational Dynamics

8.4 EXAMPLES OF OBJECTS IN EQUILIBRIUM
Recall from Chapter 4 that when an object is treated as a geometric point, equilib-
rium requires only that the net force on the object is zero. In this chapter, we have
shown that for extended objects a second condition for equilibrium must also be
satisfied: The net torque on the object must be zero. The following general proce-
dure is recommended for solving problems that involve objects in equilibrium.

Remarks The given information is sufficient only to determine the x-coordinate of the center of gravity. The other
two coordinates can be estimated, based on the body’s symmetry.

Exercise 8.5
Suppose a 416-kg alligator of length 3.5 m is stretched out on a board of the same length weighing 65 N. If the board
is supported on the ends as in Figure 8.10, and the scale reads 1 880 N, find the x-component of the alligator’s center
of gravity.

Answer 1.59 m

Problem-Solving Strategy Objects in Equilibrium
1. Diagram the system. Include coordinates and choose a convenient rotation axis

for computing the net torque on the object.
2. Draw a free-body diagram of the object of interest, showing all external forces act-

ing on it. For systems with more than one object, draw a separate diagram for each
object. (Most problems will have a single object of interest.)

3. Apply ��i � 0, the second condition of equilibrium. This condition yields a single
equation for each object of interest. If the axis of rotation has been carefully cho-
sen, the equation often has only one unknown and can be solved immediately.

4. Apply �Fx � 0 and �Fy � 0, the first condition of equilibrium. This yields two
more equations per object of interest.

5. Solve the system of equations. For each object, the two conditions of equilibrium
yield three equations, usually with three unknowns. Solve by substitution.

EXAMPLE 8.6 A Weighted Forearm
Goal Apply the equilibrium conditions to the human body.

Problem A 50.0-N (11-lb) weight is held in a
person’s hand with the forearm horizontal, as
in Figure 8.11. The biceps muscle is attached
0.030 0 m from the joint, and the weight is
0.350 m from the joint. Find the upward force 
exerted by the biceps on the forearm (the ulna)
and the downward force exerted by the
humerus on the forearm, acting at the joint.
Neglect the weight of the forearm.

Strategy The forces acting on the forearm are
equivalent to those acting on a bar of length
0.350 m, as shown in Figure 8.11b. Choose the
usual x - and y -coordinates as shown and the axis
at O on the left end. (This completes Steps 1 and
2.) Use the conditions of equilibrium to generate
equations for the unknowns, and solve.

R
:

F
:

0.350 m
0.0300 m

Ulna

Biceps

Humerus

50.0 N

O

0.350 m

0.0300 m
50.0 N

(b)(a)

O

F

R

Figure 8.11 (Example 8.6) (a) A weight held with the forearm horizontal.
(b) The mechanical model for the system.

TIP 8.2 Rotary Motion Under
Zero Torque
If a net torque of zero is exerted on
an object, it will continue to rotate at
a constant angular speed—which
need not be zero. However, zero
torque does imply that the angular
acceleration is zero.

44337_08_p226-265  10/26/04  2:36 PM  Page 234



8.4 Examples of Objects in Equilibrium 235

Solution
Apply the second condition for equilibrium (step 3): 
�i � �R 	 �F 	 �BB � 0

R(0) 	 F(0.0300 m) � (50.0 N)(0.350 m) � 0

F � 583 N (131 lb)

Apply the first condition for equilibrium (step 4): 
Fy � F � R � 50.0 N � 0

R � F � 50.0 N � 583 N � 50 N � 533 N (120 lb)

Exercise 8.6
Suppose you wanted to limit the force acting on your joint to a maximum value of 8.00 � 102 N. (a) Under these cir-
cumstances, what maximum weight would you attempt to lift? (b) What force would your biceps apply while lifting
this weight?

Answers (a) 75.0 N (b) 875 N

EXAMPLE 8.7 Walking a Horizontal Beam
Goal Solve an equilibrium problem with nonperpendicular torques.

Problem A uniform horizontal beam 5.00 m long and weighing 3.00 � 102 N is attached to a wall by a pin connec-
tion that allows the beam to rotate. Its far end is supported by a cable that makes an angle of 53.0� with the horizon-
tal (Fig. 8.12a). If a person weighing 6.00 � 102 N stands 1.50 m from the wall, find the magnitude of the tension 
in the cable and the force exerted by the wall on the beam.

Strategy
The second condition of equilibrium, 
�i � 0, with torques computed around the pin, can be solved for the tension
T in the cable. The first condition of equilibrium, , gives two equations and two unknowns for the two compo-
nents of the force exerted by the wall, Rx and Ry .


F
:

i � 0

R
:

T
:

53.0°

T cos 53.0°

T sin 53.0°

(c)

300 N

600 N

(b)

300 N

2.50 m
1.50 m

Rx

Ry

O

O

600 N

R T

Figure 8.12 (Example 8.7) (a) A uniform beam attached to a wall and supported by a cable. (b) A free-body diagram for the beam. (c) The
component form of the free-body diagram. (d) (Exercise 8.7)

53.0°

5.00 m

(a)

30°

6.00 m
2.00 m

(d)

Solution
From Figure 8.12, the forces causing torques are
the wall force , the gravity forces on the beam and the
man, wB and wM, and the tension force . Apply the
condition of rotational equilibrium:

T
:

R
:


�i � �R 	 �B 	 �M 	 �T � 0
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236 Chapter 8 Rotational Equilibrium and Rotational Dynamics

Compute torques around the pin at O, so �R � 0 (zero
moment arm). The torque due to the beam’s weight
acts at the beam’s center of gravity. 


�i � 0 � wB(L/2) � wM(1.50 m) 	 TL sin(53�) � 0

Substitute L � 5.00 m and the weights, solving for T : � (3.00 � 102 N)(2.50 m)

�(6.00 � 102 N)(1.50 m)

	 (T sin 53.0�)(5.00 m) � 0

T � 413 N

Now apply the first condition of equilibrium to the beam: 
Fx � Rx � T cos 53.0� � 0 (1)


Fy � Ry � wB � wM 	 T sin 53.0� � 0 (2)

Substituting the value of T found in the previous step
and the weights, obtain the components of :R

:
Rx � Ry � 5.70 � 102 N249 N

Remarks Even if we selected some other axis for the torque equation, the solution would be the same. For exam-
ple, if the axis were to pass through the center of gravity of the beam, the torque equation would involve both T and
Ry. Together with equations (1) and (2), however, the unknowns could still be found—a good exercise.

Exercise 8.7
A person with mass 55.0 kg stands 2.00 m away from the wall on a 6.00-m beam, as shown in Figure 8.12d. The mass
of the beam is 40.0 kg. Find the hinge force components and the tension in the wire.

Answers T � 751 N, Rx � � 6.50 � 102 N, Ry � 556 N

INTERACTIVE EXAMPLE 8.8 Don’t Climb the Ladder
Goal Apply the two conditions of equilibrium.

Problem A uniform ladder 10.0 m long and weighing
50.0 N rests against a smooth vertical wall as in Figure
8.13a. If the ladder is just on the verge of slipping when it
makes a 50.0� angle with the ground, find the coefficient
of static friction between the ladder and ground.

Strategy Figure 8.13b is the free-body diagram for
the ladder. The first condition of equilibrium, ,
gives two equations for three unknowns: the magnitudes
of the static friction force f and the normal force n, both
acting on the base of the ladder, and the magnitude of
the force of the wall, P, acting on the top of the ladder.
The second condition of equilibrium, 
�i � 0, gives a third equation (for P), so all three quantities can be found.
The definition of static friction then allows computation of the coefficient of static friction.


F
:

i � 0
O

d1

d2

50 N

(c)

O

50 N

(b)

50° 50°

(a)

10 m

P P

n

f

Figure 8.13 (Interactive Example 8.8) (a) A ladder leaning
against a frictionless wall. (b) A free-body diagram of the ladder. 
(c) Lever arms for the force of gravity and .P

:

Solution
Apply the first condition of equilibrium to the ladder: 
Fx � f � P � 0 : f � P (1)


Fy � n � 50.0 N � 0 : n � 50.0 N (2)

Apply the second condition of equilibrium, computing
torques around the base of the ladder, with �grav stand-
ing for the torque due to the ladder’s 50.0-N weight:


�i � �f 	 �n 	 �grav 	 �P � 0

The torques due to friction and the normal force are
zero about O because their moment arms are zero. (Mo-
ment arms can be found from Figure 8.13c.)

0 	 0 �(50.0 N)(5.00 m) sin 40.0�

	 P(10.0 m) sin 50.0� � 0

P � 21.0 N
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8.5 RELATIONSHIP BETWEEN TORQUE 
AND ANGULAR ACCELERATION

When a rigid object is subject to a net torque, it undergoes an angular accelera-
tion that is directly proportional to the net torque. This result, which is analogous
to Newton’s second law, is derived as follows.

The system shown in Figure 8.14 consists of an object of mass m connected to a
very light rod of length r. The rod is pivoted at the point O, and its movement is
confined to rotation on a frictionless horizontal table. Assume that a force Ft acts
perpendicular to the rod and hence is tangent to the circular path of the object.
Because there is no force to oppose this tangential force, the object undergoes a
tangential acceleration at in accordance with Newton’s second law:

Ft � mat

Multiply both sides of this equation by r :

Ftr � mrat

Substituting the equation at � r� relating tangential and angular acceleration into
the above expression gives

Ftr � mr 2� [8.4]

The left side of Equation 8.4 is the torque acting on the object about its axis of ro-
tation, so we can rewrite it as

[8.5]

Equation 8.5 shows that the torque on the object is proportional to the angular ac-
celeration of the object, where the constant of proportionality mr 2 is called the
moment of inertia of the object of mass m. (Because the rod is very light, its mo-
ment of inertia can be neglected.)

� � mr 2�

From Equation (1), we now have f � P � 21.0 N. The
ladder is on the verge of slipping, so write an expression
for the maximum force of static friction and solve for s:

21.0 N � f � fs,max � sn � s(50.0 N)

0.420s �
21.0 N
50.0 N

�

Remarks Note that torques were computed around an axis through the bottom of the ladder so that only and
the force of gravity contributed nonzero torques. This choice of axis reduces the complexity of the torque equation, of-
ten resulting in an equation with only one unknown.

Exercise 8.8
If the coefficient of static friction is 0.360, and the same ladder makes a 60.0� angle with respect to the horizontal,
how far along the length of the ladder can a 70.0-kg painter climb before the ladder begins to slip?

Answer 6.33 m

You can adjust the angle of the ladder and watch what happens when it is released by logging into
PhysicsNow at www.cp7e.com and going to Interactive Example 8.8.

P
:

O

m
r

tF

Figure 8.14 An object of mass m
attached to a light rod of length r
moves in a circular path on a friction-
less horizontal surface while a
tangential force acts on it.F

:
t

Using a screwdriver, you try to remove a screw from a piece of furniture, but can’t
get it to turn. To increase the chances of success, you should use a screwdriver that
(a) is longer, (b) is shorter, (c) has a narrower handle, or (d) has a wider handle.

Quick Quiz 8.1

Torque on a Rotating Object
Consider a solid disk rotating about its axis as in Figure 8.15a. The disk consists of
many particles at various distances from the axis of rotation. (See Fig. 8.15b.) The
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238 Chapter 8 Rotational Equilibrium and Rotational Dynamics

torque on each one of these particles is given by Equation 8.5. The net torque on
the disk is given by the sum of the individual torques on all the particles:


� � (
mr 2)� [8.6]

Because the disk is rigid, all of its particles have the same angular acceleration, so �
is not involved in the sum. If the masses and distances of the particles are labeled
with subscripts as in Figure 8.15b, then


mr 2 � m1r1
2 	 m2r2

2 	 m3r3
2 	 � � �

This quantity is the moment of inertia, I, of the whole body:

[8.7]

The moment of inertia has the SI units kg � m2. Using this result in Equation 8.6,
we see that the net torque on a rigid body rotating about a fixed axis is given by

[8.8]

Equation 8.8 says that the angular acceleration of an extended rigid object is pro-
portional to the net torque acting on it. This equation is the rotational analog of
Newton’s second law of motion, with torque replacing force, moment of inertia re-
placing mass, and angular acceleration replacing linear acceleration. Although the
moment of inertia of an object is related to its mass, there is an important differ-
ence between them. The mass m depends only on the quantity of matter in an ob-
ject while the moment of inertia, I, depends on both the quantity of matter and its
distribution (through the r 2 term in I � 
mr 2) in the rigid object.

�� � I�

 I � �mr 2

m3

m2

m1

r2

r3

r1

(b)(a)

Figure 8.15 (a) A solid disk rotat-
ing about its axis. (b) The disk con-
sists of many particles, all with the
same angular acceleration.

A constant net torque is applied to an object. Which one of the following will not
be constant? (a) angular acceleration, (b) angular velocity, (c) moment of inertia,
or (d) center of gravity.

Quick Quiz 8.2

The two rigid objects shown in Figure 8.16 have the same mass, radius, and angu-
lar speed. If the same braking torque is applied to each, which takes longer to
stop? (a) A (b) B (c) more information is needed

Quick Quiz 8.3

BA

Figure 8.16 (Quick Quiz 8.3)

Moment of inertia �

Rotational analog of Newton’s 
second law �
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The gear system on a bicycle provides an easily visible example of the relation-
ship between torque and angular acceleration. Consider first a five-speed gear sys-
tem in which the drive chain can be adjusted to wrap around any of five gears at-
tached to the back wheel (Fig. 8.17). The gears, with different radii, are concentric
with the wheel hub. When the cyclist begins pedaling from rest, the chain is at-
tached to the largest gear. Because it has the largest radius, this gear provides the
largest torque to the drive wheel. A large torque is required initially, because the
bicycle starts from rest. As the bicycle rolls faster, the tangential speed of the chain
increases, eventually becoming too fast for the cyclist to maintain by pushing the
pedals. The chain is then moved to a gear with a smaller radius, so the chain has a
smaller tangential speed that the cyclist can more easily maintain. This gear doesn’t
provide as much torque as the first, but the cyclist needs to accelerate only to a
somewhat higher speed. This process continues as the bicycle moves faster and
faster and the cyclist shifts through all five gears. The fifth gear supplies the lowest
torque, but now the main function of that torque is to counter the frictional
torque from the rolling tires, which tends to reduce the speed of the bicycle. The
small radius of the fifth gear allows the cyclist to keep up with the chain’s move-
ment by pushing the pedals.

A 15-speed bicycle has the same gear structure on the drive wheel, but has three
gears on the sprocket connected to the pedals. By combining different positions of
the chain on the rear gears and the sprocket gears, 15 different torques are avail-
able.

More on the Moment of Inertia
As we have seen, a small object (or a particle) has a moment of inertia equal to
mr 2 about some axis. The moment of inertia of a composite object about some axis
is just the sum of the moments of inertia of the object’s components. For example,
suppose a majorette twirls a baton as in Figure 8.18. Assume that the baton can be
modeled as a very light rod of length 2 with a heavy object at each end. (The rod
of a real baton has a significant mass relative to its ends.) Because we are neglect-
ing the mass of the rod, the moment of inertia of the baton about an axis through
its center and perpendicular to its length is given by Equation 8.7:

Because this system consists of two objects with equal masses equidistant from the
axis of rotation, r � for each object, and the sum is

I � 
mr 2 � m 2 	 m 2 � 2m 2

If the mass of the rod were not neglected, we would have to include its moment of
inertia to find the total moment of inertia of the baton.

We pointed out earlier that I is the rotational counterpart of m. However, there
are some important distinctions between the two. For example, mass is an intrinsic
property of an object that doesn’t change, whereas the moment of inertia of a sys-
tem depends on how the mass is distributed and on the location of the axis of rota-
tion. Example 8.9 illustrates this point.

���

�

I � 
mr 2

�

Figure 8.17 The drive wheel and
gears of a bicycle.

Ge
or

ge
 S

em
pl

e

m

�

m

Figure 8.18 A baton of length 2
and mass 2m. (The mass of the
connecting rod is neglected.) The
moment of inertia about the axis
through the baton’s center and
perpendicular to its length is 2m 2.�

�

EXAMPLE 8.9 The Baton Twirler
Goal Calculate a moment of inertia.

Problem In an effort to be the star of the half-time show, a majorette twirls an unusual baton made up of four
spheres fastened to the ends of very light rods (Fig. 8.19). Each rod is 1.0 m long. (a) Find the moment of inertia of
the baton about an axis perpendicular to the page and passing through the point where the rods cross. (b) The ma-
jorette tries spinning her strange baton about the axis OO �, as shown in Figure 8.20. Calculate the moment of inertia
of the baton about this axis.

A P P L I C AT I O N
Bicycle Gears
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Strategy In Figure 8.19, all four balls contribute
to the moment of inertia, whereas in Figure 8.20,
with the new axis, only the two balls on the left and
right contribute. Technically, the balls on the top
and bottom still make a small contribution because
they’re not really point particles. However, their
moment of inertia can be neglected, because the
radius of the sphere is much smaller than the ra-
dius formed by the rods.
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Calculation of Moments of Inertia for Extended Objects
The method used for calculating moments of inertia in Example 8.9 is simple
when only a few small objects rotate about an axis. When the object is an extended
one, such as a sphere, a cylinder, or a cone, techniques of calculus are often re-
quired, unless some simplifying symmetry is present. One such extended object
amenable to a simple solution is a hoop rotating about an axis perpendicular to its
plane and passing through its center, as shown in Figure 8.21. (A bicycle tire, for
example, would approximately fit into this category.)

To evaluate the moment of inertia of the hoop, we can still use the equation 
I � 
mr 2 and imagine that the mass of the hoop M is divided into n small

0.20 kg 0.30 kg

0.30 kg 0.20 kg

1 2

4

0.50 m

3

Figure 8.19 (Example 8.9a) Four
objects connected to light rods rotating
in the plane of the page.

Solution
(a) Calculate the moment of inertia of the baton when
oriented as in Figure 8.19.

Apply Equation 8.7, neglecting the mass of the connect-
ing rods:

I � 
mr 2 � m1r1
2 	 m2r2

2 	 m3r3
2 	 m4r4

2

� (0.20 kg)(0.50 m)2 	 (0.30 kg)(0.50 m)2

	(0.20 kg)(0.50 m)2 	 (0.30 kg)(0.50 m)2

I � 0.25 kg�m2

(b) Calculate the moment of inertia of the baton when
oriented as in Figure 8.20.

Apply Equation 8.7 again, neglecting the radii of the
0.20-kg spheres.

I � 
mr 2 � m1r1
2 	 m2r2

2 	 m3r3
2 	 m4r4

2

� (0.20 kg)(0)2 	 (0.30 kg)(0.50 m)2

	(0.20 kg)(0)2 	 (0.30 kg)(0.50 m)2

I � 0.15 kg�m2

O

0.30 kg0.30 kg

0.20 kg

0.20 kg

O �

Figure 8.20 (Example 8.9b) A double
baton rotating about the axis OO�.

Remarks The moment of inertia is smaller in part (b) because in this configu-
ration the 0.20-kg spheres are essentially located on the axis of rotation.

Exercise 8.9
Yet another bizarre baton is created by taking four identical balls, each with mass
0.300 kg, and fixing them as before, except that one of the rods has a length of
1.00 m and the other has a length of 1.50 m. Calculate the moment of inertia
of this baton (a) when oriented as in Figure 8.19; (b) when oriented as in
Figure 8.20, with the shorter rod vertical; and (c) when oriented as in Figure
8.20, but with longer rod vertical.

Answers (a) 0.488 kg � m2 (b) 0.338 kg � m2 (c) 0.150 kg � m2
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segments having masses m1, m2, m3, . . . , mn, as in Figure 8.21, with M � m1 	
m2 	 m3 	 . . . 	 mn. This approach is just an extension of the baton problem
described in the preceding examples, except that now we have a large number of
small masses in rotation instead of only four.

We can express the sum for I as

I � 
mr 2 � m1r1
2 	 m2r2

2 	 m3r3
2 	 � � � 	 mnrn

2

All of the segments around the hoop are at the same distance R from the axis of rota-
tion, so we can drop the subscripts on the distances and factor out R2 to obtain

I � (m1 	 m2 	 m3 	 � � � 	 mn)R2 � MR2 [8.9]

This expression can be used for the moment of inertia of any ring-shaped object
rotating about an axis through its center and perpendicular to its plane. Note that
the result is strictly valid only if the thickness of the ring is small relative to its in-
ner radius.

The hoop we selected as an example is unique in that we were able to find an
expression for its moment of inertia by using only simple algebra. Unfortunately,
for most extended objects the calculation is much more difficult because the
mass elements are not all located at the same distance from the axis, so the meth-
ods of integral calculus are required. The moments of inertia for some other
common shapes are given without proof in Table 8.1. You can use this table as
needed to determine the moment of inertia of a body having any one of the listed
shapes.

If mass elements in an object are redistributed parallel to the axis of rotation,
the moment of inertia of the object doesn’t change. Consequently, the expression
I � MR2 can be used equally well to find the axial moment of inertia of an embroi-
dery hoop or of a long sewer pipe. Likewise, a door turning on its hinges is
described by the same moment-of-inertia expression as that tabulated for a long
thin rod rotating about an axis through its end.

m1

m2

m3

R

Figure 8.21 A uniform hoop can
be divided into a large number of
small segments that are equidistant
from the center of the hoop.

TABLE 8.1
Moments of Inertia for Various Rigid Objects 
of Uniform Composition

Thin spherical
shell

I = 2
3

MR2

R

R

Solid sphere

I = 2
5

MR 2

L

Long thin rod
with rotation axis
through center

I = 1
12

ML2 L

Solid cylinder
or disk

R
I = 1

2
MR2

Hoop or thin
cylindrical shell
I = MR2 R

I = 1
3

ML2

Long thin
rod with
rotation axis
through end

TIP 8.3 No Single Moment 
of Inertia
Moment of inertia is analogous to
mass, but there are major differences.
Mass is an inherent property of an 
object. The moment of inertia of 
an object depends on the shape of
the object, its mass, and the choice 
of rotation axis.
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EXAMPLE 8.10 Warming Up
Goal Find a moment of inertia and apply the rotational analog of Newton’s
second law.

Problem A baseball player loosening up his arm before a game tosses a 0.150-kg
baseball, using only the rotation of his forearm to accelerate the ball (Fig. 8.22).
The forearm has a mass of 1.50 kg and a length of 0.350 m. The ball starts at rest
and is released with a speed of 30.0 m/s in 0.300 s. (a) Find the constant angular ac-
celeration of the arm and ball. (b) Calculate the moment of inertia of the system
consisting of the forearm and ball. (c) Find the torque exerted on the ball to give it
the angular acceleration found in part (a).

Strategy The angular acceleration can be found with rotational kinematic equations, while the moment of inertia
of the system can be obtained by summing the separate moments of inertia of the ball and forearm. Multiplying
these two results together gives the torque.

0.350 m

Figure 8.22 (Example 8.10) A ball
being tossed by a pitcher. The fore-
arm is used to accelerate the ball.

Solution
(a) Find the angular acceleration of the ball.

The angular acceleration is constant, so use the angular
velocity kinematic equation with �i � 0.

� � �i 	 �t : � �
�

t

The ball accelerates along a circular arc with radius
given by the length of the forearm. Solve v � r� for �
and substitute:

� 286 rad/s2� �
�

t
�

v
rt

�  
30.0 m/s

(0.350 m)(0.300 s)

(b) Find the moment of inertia of the system (forearm
plus ball).

Find the moment of inertia of the ball about an axis that
passes through the elbow, perpendicular to the arm:

Iball � mr 2 � (0.150 kg)(0.350 m)2

� 1.84 � 10�2 kg � m2

Obtain the moment of inertia of the forearm, modeled
as a rod, by consulting Table 8.1: � 6.13 � 10�2 kg�m2

I forearm � 1
3 ML2 � 1

3 (1.50 kg)(0.350 m)2

Sum the individual moments of inertia to obtain the
moment of inertia of the system (ball plus forearm):

7.97 � 10�2 kg�m2Isystem � Iball 	 I forearm �

(c) Find the torque exerted on the ball.

Apply Equation 8.8, using the results of parts (a) and (b): � � I system� � (7.97 � 10�2 kg � m2)(286 rad/s2)

� 22.8 N�m

Remarks Notice that having a long forearm can greatly increase the torque and hence the acceleration of the ball.
This is one reason it’s advantageous for a pitcher to be tall— the pitching arm is proportionately longer. A similar
advantage holds in tennis, where taller players can usually deliver faster serves.

Exercise 8.10
A catapult with a radial arm 4.00 m long accelerates a ball of mass 20.0 kg through a quarter circle.  The ball leaves
the apparatus at 45.0 m/s. If the mass of the arm is 25.0 kg and the acceleration is uniform, find (a) the angular
acceleration, (b) the moment of inertia of the arm and ball, and (c) the net torque exerted on the ball and arm.
Hint: Use the time-independent rotational kinematics equation to find the angular acceleration, rather than the
angular velocity equation.

Answers (a) 40.3 rad/s2 (b) 453 kg � m2 (c) 1.83 � 104 N � m
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INTERACTIVE EXAMPLE 8.11 The Falling Bucket
Goal Combine Newton’s second law with its rotational analog.

Problem A solid, frictionless cylindrical reel of mass
M � 3.00 kg and radius R � 0.400 m is used to draw
water from a well (Fig. 8.23a). A bucket of mass 
m � 2.00 kg is attached to a cord that is wrapped around
the cylinder. (a) Find the tension T in the cord and
acceleration a of the bucket. (b) If the bucket starts from
rest at the top of the well and falls for 3.00 s before
hitting the water, how far does it fall?

Strategy This problem involves three equations and
three unknowns. The three equations are Newton’s sec-
ond law applied to the bucket, ; the rotational
version of the second law applied to the cylinder,

; and the relationship between linear and angu-
lar acceleration, a � r�, which connects the dynamics of
the bucket and cylinder. The three unknowns are the ac-
celeration a of the bucket, the angular acceleration a of
the cylinder, and the tension T in the rope. Assemble the
terms of the three equations and solve for the three un-
knowns by substitution. Part (b) is a review of kinematics.

I� � ��i

ma � �Fi

(a)

M

(c)(b)

m

R

n

g g

T

T

T

(d)

mg

R

Figure 8.23 (Interactive Example 8.11) (a) A water bucket attached
to a rope passing over a frictionless reel. (b) A free-body diagram for
the bucket. (c) The tension produces a torque on the cylinder about its
axis of rotation. (d) A falling cylinder (Exercise 8.11).

Solution
(a) Find the tension in the cord and the acceleration of
the bucket.

Apply Newton’s second law to the bucket in Figure
8.23b. There are two forces: the tension acting
upwards and gravity acting downwards.mg:

T
:

ma � � mg � T (1)

Apply � � I� to the cylinder in Figure 8.23c: �� � I� � MR 2� (solid cylinder)1
2

Notice the angular acceleration is clockwise, so the
torque is negative. The normal and gravity forces have
zero moment arm, and don’t contribute any torque.

� TR � MR2� (2)1
2

Solve for T and substitute � � a/R (notice that both �
and a are negative):

(3)T � �1
2MR� � � 

1
2Ma

Substitute the expression for T in Equation (3) into
Equation (1), and solve for the acceleration:

ma � �mg � 1
2Ma :  a � �

mg

m � 1
2M

Substitute the values for m, M, and g, getting a, then
substitute a into Equation (3) to get T.

a � T � 8.40 N�5.60 m/s2

(b) Find the distance the bucket falls in 3.00 s.
Apply the displacement kinematic equation for constant
acceleration, with t � 3.00 s and v0 � 0:

�25.2 m�y � v0t � 1
2at2 � �1

2(5.60 m/s2)(3.00 s)2 �

Remarks Proper handling of signs is very important in these problems. All such signs should be chosen initially
and checked mathematically and physically. In this problem, for example, both the angular acceleration � and the
acceleration a are negative, so � � a/R applies. If the rope had been wound the other way on the cylinder, causing
counterclockwise rotation, the torque would have been positive, and the relationship would have been � � �a/R ,
with the double negative making the right-hand side positive, just like the left-hand side.
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8.6 ROTATIONAL KINETIC ENERGY
In Chapter 5 we defined the kinetic energy of a particle moving through space
with a speed v as the quantity . Analogously, an object rotating about some
axis with an angular speed � has rotational kinetic energy given by . To prove
this, consider an object in the shape of a thin rigid plate rotating around some axis
perpendicular to its plane, as in Figure 8.24. The plate consists of many small par-
ticles, each of mass m. All these particles rotate in circular paths around the axis. If
r is the distance of one of the particles from the axis of rotation, the speed of that
particle is v � r�. Because the total kinetic energy of the plate’s rotation is the sum
of all the kinetic energies associated with its particles, we have

In the last step, the �2 term is factored out because it’s the same for every particle.
Now, the quantity in parentheses on the right is the moment of inertia of the plate
in the limit as the particles become vanishingly small, so

[8.10]

where I � 
mr 2 is the moment of inertia of the plate.
A system such as a bowling ball rolling down a ramp is described by three types

of energy: gravitational potential energy PEg , translational kinetic energy KEt , and
rotational kinetic energy KEr . All these forms of energy, plus the potential energies
of any other conservative forces, must be included in our equation for the conser-
vation of mechanical energy of an isolated system:

(KEt 	 KEr 	 PE )i � (KEt 	 KEr 	 PE )f [8.11]

where i and f refer to initial and final values, respectively, and PE includes the po-
tential energies of all conservative forces in a given problem. This relation is true
only if we ignore dissipative forces such as friction. In that case, it’s necessary to re-
sort to a generalization of the work–energy theorem:

Wnc � �KEt 	 �KEr 	 �PE [8.12]

KEr � 1
2 I�2

KEr � 
(1
2mv 2) � 
(1

2mr 2�2) � 1
2(
mr 2)�2

1
2I�2

1
2mv2

Exercise 8.11
A hollow cylinder of mass 0.100 kg and radius 4.00 cm has a string wrapped several times around it, as in Figure
8.23d. If the string is attached to a rigid support and the cylinder allowed to drop from rest, find (a) the acceleration
of the cylinder and (b) the speed of the cylinder when a meter of string has unwound off of it.

Answers (a) � 4.90 m/s2 (b) 3.13 m/s

You can change the mass of the object and the mass and radius of the wheel to see the effect on how
the system moves by logging into PhysicsNow at www.cp7e.com and going to Interactive Example 8.11.

m

r

z - axis

O

v

�

Figure 8.24 A rigid plate rotating
about the z-axis with angular speed �.
The kinetic energy of a particle of
mass m is . The total kinetic
energy of the plate is .1

2I� 2

1
2mv 2

Problem-Solving Strategy Energy Methods 
and Rotation
1. Choose two points of interest, one where all necessary information is known, and

the other where information is desired.
2. Identify the conservative and nonconservative forces acting on the system being

analyzed.
3. Write the general work–energy theorem, Equation 8.12, or Equation 8.11 if all

forces are conservative.
4. Substitute general expressions for the terms in the equation.
5. Use v � r� to eliminate either � or v from the equation.
6. Solve for the unknown.

Conservation of mechanical energy �

Work–energy theorem including
rotational energy �
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EXAMPLE 8.12 A Ball Rolling Down an Incline
Goal Combine gravitational, translational,
and rotational energy.

Problem A ball of mass M and radius R
starts from rest at a height of 2.00 m and
rolls down a 30.0� slope, as in Active Figure
8.25. What is the linear speed of the ball
when it leaves the incline? Assume that the
ball rolls without slipping.

Strategy The two points of interest are the top and bottom of the incline, with the bottom acting as the zero point
of gravitational potential energy. The force of static friction converts translational kinetic energy to rotational kinetic
energy without dissipating any energy, so mechanical energy is conserved and Equation 8.11 can be applied.

2.00 m

30.0°

ACTIVE FIGURE 8.25
(Example 8.12) A ball starts from rest at
the top of an incline and rolls to the
bottom without slipping.

Log into PhysicsNow at www.cp7e.com,
and go to Active Figure 8.25 to roll several
objects down a hill and see how the final
speed depends on the shape of the object.

Solution
Apply conservation of energy with PE � PEg , the poten-
tial energy associated with gravity.

(KEt 	 KEr 	 PEg)i � (KEt 	 KEr 	 PEg)f

Substitute the appropriate general expressions, noting
that (KEt)i � (KEr)i � 0 and (PEg)f � 0 (obtain the
moment of inertia of a ball from Table 8.1):

0 	 0 	 Mgh � 1
2Mv2 	 1

2(2
5MR2)�2 	 0

The ball rolls without slipping, so R� � v, the “no-slip
condition,” can be applied:

Mgh � 1
2 Mv2 	 1

5 Mv2 � 7
10 Mv2

Solve for v, noting that M cancels. 5.29 m/sv � √ 10gh
7

� √ 10(9.80 m/s2)(2.00 m)
7

�

Exercise 8.12
Repeat this example for a solid cylinder of the same mass and radius as the ball and released from the same height.
In a race between the two objects on the incline, which one would win?

Answer v � � 5.11 m/s; the ball would win.√4gh/3

Two spheres, one hollow and one solid, are rotating with the same angular
speed around an axis through their centers. Both spheres have the same mass
and radius. Which sphere, if either, has the higher rotational kinetic energy?
(a) The hollow sphere. (b) The solid sphere. (c) They have the same kinetic
energy.

Quick Quiz 8.4

Which arrives at the bottom first, (a) a ball rolling without sliding down a certain
incline A, (b) a solid cylinder rolling without sliding down incline A, or (c) a box
of the same mass as the ball sliding down a frictionless incline B having the same
dimensions as A? Assume that each object is released from rest at the top of its
incline.

Quick Quiz 8.5
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246 Chapter 8 Rotational Equilibrium and Rotational Dynamics

EXAMPLE 8.13 Blocks and Pulley
Goal Solve a system requiring rotation concepts and
the work–energy theorem.

Problem Two blocks with masses m1 � 5.00 kg and
m2 � 7.00 kg are attached by a string as in Figure
8.26a, over a pulley with mass M � 2.00 kg. The pulley,
which turns on a frictionless axle, is a hollow cylinder
with radius 0.050 0 m over which the string moves
without slipping. The horizontal surface has coeffi-
cient of kinetic friction 0.350. Find the speed of the
system when the block of mass m2 has dropped 2.00 m.

Strategy This problem can be solved with the exten-
sion of the work–energy theorem, Equation 8.12. If
the block of mass m2 falls from height h to 0, then the
block of mass m1 moves the same distance, �x � h.
Apply the work–energy theorem, solve for v, and
substitute. Kinetic friction the sole nonconservative
force. (a) (b)

m2

r
I

m1

n

fk
T1

T2

m1

m2

m1g

m2g

I
r

Figure 8.26 (a) (Example 8.13) (b) (Exercise 8.13) In both
cases, and exert torques on the pulley.T

:
2T

:
1

Solution
Apply the work–energy theorem, with PE � PEg , the po-
tential energy associated with gravity.

Wnc � �KEt 	 �KEr 	 �PEg

Substitute the frictional work for Wnc, kinetic energy
changes for the two blocks, the rotational kinetic energy
change for the pulley, and the potential energy change
for the second block.

	 (0 � m2gh)	 (1
2I�2 � 0)

�kn�x � �k(m1g)�x � (1
2m1v2 � 0) 	 (1

2m2v2 � 0)

Substitute �x � h, and write I as (I/r 2)r 2: �k(m1g)h � 1
2m1v2 	 1

2m2v2 	 1
2 � I

r 2 �r 2�2 � m2gh

For a hoop, I � Mr 2 so (I/r 2) � M. Substitute this 
quantity and v � r�:

�k(m1g)h � 1
2m1v2 	 1

2m2v2 	 1
2Mv2 � m2gh

Solve for v:

 v � √ 2gh(m2 � km1)
m1 	 m2 	 M

 � 1
2(m1 	 m2 	 M)v2

m 2gh � k(m1g)h � 1
2m1v2 	 1

2m 2v2 	 1
2 Mv2

Substitute m1 � 5.00 kg, m2 � 7.00 kg, M � 2.00 kg, 
g � 9.80 m/s2, h � 2.00 m, and k � 0.350:

v � 3.83 m/s

Remarks In the expression for the speed v, the mass m1 of the first block and the mass M of the pulley all appear in
the denominator, reducing the speed, as they should. In the numerator, m2 is positive while the friction term is nega-
tive. Both assertions are reasonable, because the force of gravity on m2 increases the speed of the system while the
force of friction on m1 slows it down. This problem can also be solved with Newton’s second law together with ,
a difficult exercise (though it can be facilitated with a system approach).

Exercise 8.13
Two blocks with masses m1 � 2.00 kg and m2 � 9.00 kg are attached over a pulley with mass M � 3.00 kg, hanging
straight down as in Atwood’s machine (Fig. 8.26b). The pulley is a solid cylinder with radius 0.050 0 m, and there is

� � I�
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8.7 Angular Momentum 247

8.7 ANGULAR MOMENTUM
In Figure 8.27, an object of mass m rotates in a circular path of radius r, acted on
by a net force, . The resulting net torque on the object increases its angular
speed from the value �0 to the value � in a time interval �t. Therefore, we can
write

If we define the product

[8.13]

as the angular momentum of the object, then we can write

[8.14]

Equation 8.14 is the rotational analog of Newton’s second law in the form 
F � �p/�t and states that the net torque acting on an object is equal to the time
rate of change of the object’s angular momentum. Recall that this equation also
parallels the impulse–momentum theorem.

When the net external torque (
�) acting on a system is zero, Equation 8.14
gives that �L/�t � 0, which says that the time rate of change of the system’s angu-
lar momentum is zero. We then have the following important result:

Let Li and Lf be the angular momenta of a system at two different times, and
suppose there is no net external torque, so 
� � 0. Then

Li � Lf [8.15]

and angular momentum is said to be conserved.

Equation 8.15 gives us a third conservation law to add to our list: conservation
of angular momentum. We can now state that the mechanical energy, linear mo-
mentum, and angular momentum of an isolated system all remain constant.

If the moment of inertia of an isolated rotating system changes, the system’s
angular speed will change. Conservation of angular momentum then requires that

Ii�i � If �f if 
� � 0 [8.16]

Note that conservation of angular momentum applies to macroscopic objects such
as planets and people, as well as to atoms and molecules. There are many examples of
conservation of angular momentum; one of the most dramatic is that of a figure
skater spinning in the finale of her act. In Figure 8.28a, the skater has pulled her arms
and legs close to her body, reducing their distance from her axis of rotation and hence
also reducing her moment of inertia. By conservation of angular momentum, a reduc-
tion in her moment of inertia must increase her angular velocity. Coming out of the
spin in Figure 8.28b, she needs to reduce her angular velocity, so she extends her arms
and legs again, increasing her moment of inertia and thereby slowing her rotation.


� �
change in angular momentum

time interval
�

�L
�t

L � I�


� � I� � I  
��

�t
� I  � � � �0

�t � �
I� � I�0

�t

F
:

net

some friction in the axle. The system is released from rest, and the string moves without slipping over the pulley. If
the larger mass is traveling at a speed of 2.50 m/s when it has dropped 1.00 m, how much mechanical energy was lost
due to friction in the pulley’s axle?
[Hint: This exercise is slightly easier than the associated example because the friction force need not be deter-
mined.] 

Answer 29.5 J

Fnet

m

r

Figure 8.27 An object of mass m
rotating in a circular path under the
action of a constant torque.

� Definition of angular momentum

� Conservation of angular 
momentum
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248 Chapter 8 Rotational Equilibrium and Rotational Dynamics

Similarly, when a diver or an acrobat wishes to make several somersaults, she
pulls her hands and feet close to the trunk of her body in order to rotate at a
greater angular speed. In this case, the external force due to gravity acts through
her center of gravity and hence exerts no torque about her axis of rotation, so the
angular momentum about her center of gravity is conserved. For example, when a
diver wishes to double her angular speed, she must reduce her moment of inertia
to half its initial value.

An interesting astrophysical example of conservation of angular momentum
occurs when a massive star, at the end of its lifetime, uses up all its fuel and col-
lapses under the influence of gravitational forces, causing a gigantic outburst
of energy called a supernova. The best-studied example of a remnant of a su-
pernova explosion is the Crab Nebula, a chaotic, expanding mass of gas (Fig.
8.29). In a supernova, part of the star’s mass is ejected into space, where it
eventually condenses into new stars and planets. Most of what is left behind
typically collapses into a neutron star — an extremely dense sphere of matter
with a diameter of about 10 km, greatly reduced from the 106-km diameter of
the original star and containing a large fraction of the star’s original mass. In a
neutron star, pressures become so great that atomic electrons combine with
protons, becoming neutrons. As the moment of inertia of the system decreases

(a) (b)

Figure 8.28 Michelle Kwan con-
trols her moment of inertia. (a) By
pulling in her arms and legs, she
reduces her moment of inertia and
increases her angular velocity (rate of
spin). (b) Upon landing, extending
her arms and legs increases her
moment of inertia and helps slow 
her spin.
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Tightly curling her body, a diver
decreases her moment of inertia,
increasing her angular velocity.
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(a) (c)(b)

Figure 8.29 (a) The Crab Nebula in the constellation Taurus. This nebula is the remnant of a
supernova seen on Earth in A.D. 1054. It is located some 6 300 lightyears away and is approximately 6
lightyears in diameter, still expanding outward. A pulsar deep inside the nebula flashes 30 times every
second. (b) Pulsar off. (c) Pulsar on.
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A P P L I C AT I O N
Aerial Somersaults

A P P L I C AT I O N
Figure Skating
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during the collapse, the star’s rotational speed increases. More than 700 rap-
idly rotating neutron stars have been identified since their first discovery in
1967, with periods of rotation ranging from a millisecond to several seconds.
The neutron star is an amazing system — an object with a mass greater than the
Sun, fitting comfortably within the space of a small county and rotating so fast
that the tangential speed of the surface approaches a sizeable fraction of the
speed of light!

A horizontal disk with moment of inertia I1 rotates with angular speed �1 about a
vertical frictionless axle. A second horizontal disk, with moment of inertia I2 and
initially not rotating, drops onto the first. Because their surfaces are rough,
the two eventually reach the same angular speed �. The ratio �/�1 is equal to
(a) I1/I2 (b) I2/I1 (c) I1/(I1 	 I2) (d) I2/(I1 + I2)

Quick Quiz 8.6

If global warming continues, it’s likely that some ice from the polar ice caps of the
Earth will melt and the water will be distributed closer to the Equator. If this oc-
curs, would the length of the day (one revolution) (a) increase, (b) decrease, or
(c) remain the same?

Quick Quiz 8.7

EXAMPLE 8.14 The Spinning Stool
Goal Apply conservation of angular momentum to a
simple system.

Problem A student sits on a pivoted stool while holding a
pair of weights. (See Fig. 8.30.) The stool is free to rotate
about a vertical axis with negligible friction. The moment of
inertia of student, weights, and stool is 2.25 kg � m2. The stu-
dent is set in rotation with arms outstretched, making one
complete turn every 1.26 s, arms outstretched. (a) What is
the initial angular speed of the system? (b) As he rotates,
he pulls the weights inward so that the new moment of
inertia of the system (student, objects, and stool) becomes
1.80 kg � m2. What is the new angular speed of the system?
(c) Find the work done by the student on the system while
pulling in the weights. (Ignore energy lost through dissipa-
tion in his muscles.)

Strategy (a) The angular frequency can be obtained
from the frequency, which is the inverse of the period. 
(b) There are no external torques acting on the system, so the new angular speed can be found with the principle of
conservation of angular momentum. (c) The work done on the system during this process is the same as the system’s
change in rotational kinetic energy.

(a)

i f

(b)

v v

Figure 8.30 (Example 8.14) (a) The student is given an initial
angular speed while holding two weights out. (b) The angular
speed increases as the student draws the weights inwards.

Solution
(a) Find the initial angular speed of the system.

Invert the period to get the frequency, and multiply by 2� : �i � 2�f � 2�/T � 4.99 rad/s

(b) After he pulls the weights in, what’s the system’s new
angular speed?

Equate the initial and final angular momenta of the
system:

Li � Lf : Ii�i � If �f (1)

A P P L I C AT I O N
Rotating Neutron Stars
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Substitute and solve for the final angular speed �f : (2.25 kg � m2)(4.99 rad/s) � (1.80 kg � m2)�f (2)

�f � 6.24 rad/s

(c) Find the work the student does on the system.

Apply the work–energy theorem:

Wstudent � 7.03 J

 � 1
2(2.25 kg�m2)(4.99 rad/s)2

 � 1
2(1.80 kg�m2)(6.24 rad/s)2

Wstudent � �Kr � 1
2If �f 

2 � 1
2�i �i 

2

Remarks Although the angular momentum of the system is conserved, mechanical energy is not conserved because
the student does work on the system.

Exercise 8.14
A star with an initial radius of 1.0 � 108 m and period of 30.0 days collapses suddenly to a radius of 1.0 � 104 m.
(a) Find the period of rotation after collapse. (b) Find the work done by gravity during the collapse if the mass of the
star is 2.0 � 1030 kg. (c) What is the speed of an indestructible person standing on the equator of the collapsed star?
(Neglect any relativistic or thermal effects, and assume the star is spherical before and after it collapses.)

Answers (a) 2.6 � 10�2 s (b) 2.3 � 1042 J (c) 2.4 � 106 m/s

EXAMPLE 8.15 The Merry-Go-Round
Goal Apply conservation of angular momentum while combining two moments
of inertia.

Problem A merry-go-round modeled as a disk of mass M � 1.00 � 102 kg and
radius R � 2.00 m is rotating in a horizontal plane about a frictionless vertical
axle (Fig. 8.31). (a) After a student with mass m � 60.0 kg jumps onto the merry-
go-round, the system’s angular speed decreases to 2.00 rad/s. If the student walks
slowly from the edge toward the center, find the angular speed of the system
when she reaches a point 0.500 m from the center. (b) Find the change in the sys-
tem’s rotational kinetic energy caused by her movement to the center. (c) Find
the work done on the student as she walks to r � 0.500 m.

Strategy This problem can be solved with conservation of angular momentum
by equating the system’s initial angular momentum when the student stands at
the rim to the angular momentum when the student has reached r � 0.500 m.
The key is to find the different moments of inertia.

m

M

R

Figure 8.31 (Example 8.15) As the
student walks toward the center of the
rotating platform, the moment of inertia
of the system (student plus platform)
decreases. Because angular momentum
is conserved, the angular speed of the
system must increase.Solution

(a) Find the angular speed when the student reaches a
point 0.500 m from the center.

Calculate the moment of inertia of the disk, ID: ID � MR2 � (1.00 � 102 kg)(2.00 m)2

� 2.00 � 102 kg � m2

1
2

1
2

Sum the two moments of inertia and multiply by the ini-
tial angular speed to find Li , the initial angular momen-
tum of the system:

Li � (ID � IS)�i

� (2.00 � 102 kg � m2 � 2.40 � 102 kg � m2)(2.00 rad/s)

� 8.80 � 102 kg � m2/s

Calculate the initial moment of inertia of the student.
This is the same as the moment of inertia of a mass a dis-
tance R from the axis: 

IS � mR2 � (60.0 kg)(2.00 m)2 � 2.40 � 102 kg � m2
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Calculate the student’s final moment of inertia, ISf ,
when she is 0.500 m from the center:

ISf � mr 2
f � (60.0 kg)(0.50 m)2 � 15.0 kg�m2

The moment of inertia of the platform is unchanged.
Add it to the student’s final moment of inertia, and mul-
tiply by the unknown final angular speed to find Lf : 

Lf � (ID 	 ISf)�f � (2.00 � 102 kg � m2 	 15.0 kg � m2)�f

Equate the initial and final angular momenta and solve
for the final angular speed of the system:

Li � Lf

(8.80 � 102 kg � m2/s) � (2.15 � 102 kg � m2)�f

�f � 4.09 rad/s

(b) Find the change in the rotational kinetic energy of
the system.

Calculate the initial kinetic energy of the system:

 � 8.80 � 102 J

KEi � 1
2Ii�

2
i � 1

2(4.40 � 102 kg�m2)(2.00 rad/s)2

Calculate the final kinetic energy of the system:

Calculate the change in kinetic energy of the system. KEf � KEi � 920 J

KEf � 1
2If � 2

f � 1
2(215 kg�m2)(4.09 rad/s)2 � 1.80 � 103 J

(c) Find the work done on the student. 

The student undergoes a change in kinetic energy that
equals the work done on her. Apply the work–energy
theorem:

W � �355 J

� 1
2(2.40 � 102 kg�m2)(2.00 rad/s)2

 � 1
2(15.0 kg �m2)(4.09 rad/s)2

W � �KEstudent � 1
2ISf �

2
f � 1

2IS� 2
i

Remarks The angular momentum is unchanged by internal forces; however, the kinetic energy increases, because
the student must perform positive work in order to walk toward the center of the platform. 

Exercise 8.15
(a) Find the angular speed of the merry-go-round before the student jumped on, assuming the student didn’t trans-
fer any momentum or energy as she jumped on the merry-go-round. (b) By how much did the kinetic energy of the
system change when the student jumped on? Notice that energy is lost in this process, as should be expected, since it
is essentially a perfectly inelastic collision.

Answers (a) 4.4 rad/s (b) KEf � KEi � �1.06 � 103 J.

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

8.1 Torque
Let be a force acting on an object, and let be a posi-
tion vector from a chosen point O to the point of applica-
tion of the force. Then the magnitude of the torque of
the force is given by

[8.2]

where r is the length of the position vector, F the magni-
tude of the force, and � the angle between and .r:F

:

� � rF sin �

F
:

�:

r:F
:

The quantity d � r sin � is called the lever arm of the
force.

8.2 Torque and the Two Conditions
for Equilibrium
An object in mechanical equilibrium must satisfy the
following two conditions:

1. The net external force must be zero: .
2. The net external torque must be zero: .

These two conditions, used in solving problems involving
rotation in a plane— result in three equations and three


 �: � 0

F

:
� 0
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unknowns — two from the first condition (corresponding
to the x - and y -components of the force) and one from the
second condition, on torques. These equations must be
solved simultaneously.

8.5 Relationship Between Torque and
Angular Acceleration
The moment of inertia of a group of particles is

[8.7]

If a rigid object free to rotate about a fixed axis has a net
external torque 
� acting on it, then the object undergoes
an angular acceleration �, where


� � I� [8.8] 

This equation is the rotational equivalent of the second law
of motion.

Problems are solved by using Equation 8.8 together with
Newton’s second law and solving the resulting equations si-
multaneously. The relation a � r� is often key in relating
the translational equations to the rotational equations.

8.6 Rotational Kinetic Energy
If a rigid object rotates about a fixed axis with angular
speed �, its rotational kinetic energy is

[8.10]

where I is the moment of inertia of the object around the
axis of rotation.

K Er � 12I�2

I � �mr 2

A system involving rotation is described by three types of
energy: potential energy PE, translational kinetic energy
KEt, and rotational kinetic energy KEr. All these forms of
energy must be included in the equation for conservation
of mechanical energy for an isolated system:

(KEt 	 KEr 	 PE )i � (KEt 	 KEr 	 PE)f [8.11]

where i and f refer to initial and final values, respectively.
When non-conservative forces are present, it’s necessary to
use a generalization of the work–energy theorem:

Wnc � �KEt 	 �KEr 	 �PE [8.12]

8.7 Angular Momentum
The angular momentum of a rotating object is given by

L � I� [8.13]

Angular momentum is related to torque in the following
equation:

[8.14]

If the net external torque acting on a system is zero, then
the total angular momentum of the system is constant,

Li � Lf [8.15]

and is said to be conserved. Solving problems usually involves
substituting into the expression

Ii�i � If �f [8.16]

and solving for the unknown.


� �
change in angular momentum

time interval
�

�L
�t

CONCEPTUAL QUESTIONS
1. Why can’t you put your heels firmly against a wall and

then bend over without falling?

2. Why does a tall athlete have an advantage over a smaller
one when the two are competing in the high jump?

3. Both torque and work are products of force and distance.
How are they different? Do they have the same units?

4. Is it possible to calculate the torque acting on a rigid ob-
ject without specifying an origin? Is the torque independ-
ent of the location of the origin?

5. Can an object be in equilibrium when only one force acts
on it? If you believe the answer is yes, give an example to
support your conclusion.

6. The polar ice caps contain about 2.3 � 1019 kg of ice.
This mass contributes almost nothing to the moment of
inertia of the Earth because it is located at the poles, close
to the Earth’s axis of rotation. Estimate the change in the
length of the day that would be expected if the polar ice
caps were to melt and the water were distributed uni-
formly over the surface of the Earth. (Note that the
moment of inertia of a thin spherical shell of radius r
and mass m is 2mr 2/3.) (Question 6 is courtesy of
Edward F. Redish. For more questions of this type, see
www.physics.umd.edu/perg/.)

7. In some motorcycle races, the riders drive over small hills,
and the motorcycle becomes airborne for a short time. If
the motorcycle racer keeps the throttle open while leav-

ing the hill and going into the air, the motorcycle’s nose
tends to rise upwards. Why does this happen?

8. In the movie Jurassic Park, there is a scene in which some
members of the visiting group are trapped in the kitchen
with dinosaurs outside. The paleontologist is pressing
against the center of the door, trying to keep out the di-
nosaurs on the other side. The botanist throws herself
against the door at the edge near the hinge. A pivotal
point in the film is that she cannot reach a gun on the
floor because she is trying to hold the door closed. If the
paleontologist is pressing at the center of the door, and
the botanist is pressing at the edge about 8 cm from the
hinge, estimate how far the paleontologist would have to
relocate in order to have a greater effect on keeping 
the door closed than both of them pushing together have
in their original positions. (Question 8 is courtesy of
Edward F. Redish. For more questions of this type, see
www.physics.umd.edu/perg/.)

9. Suppose you are designing a car for a coasting race—a
race in which the cars have no engines, but simply coast
downhill. Do you want large wheels or small wheels? Do
you want solid, disklike wheels or hooplike wheels?
Should the wheels be heavy or light?

10. If you toss a textbook into the air, rotating it each time
about one of the three axes perpendicular to it, you will
find that it will not rotate smoothly about one of those
axes. (Try placing a strong rubber band around the book
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before the toss so that it will stay closed.) The book’s rota-
tion is stable about those axes having the largest and
smallest moments of inertia, but unstable about the axis
of intermediate moment. Try this on your own to find the
axis that has this intermediate moment of inertia.

11. Stars originate as large bodies of slowly rotating gas. Be-
cause of gravity, these clumps of gas slowly decrease in
size. What happens to the angular speed of a star as it
shrinks? Explain.

12. If a high jumper positions his body correctly when going
over the bar, the center of gravity of the athlete may actu-
ally pass under the bar. (See Fig. Q8.12.) Explain how this
is possible.

gins to walk clockwise around the perimeter of the table,
what happens to the turntable? Explain.

16. A cat usually lands on its feet regardless of the position
from which it is dropped. A slow-motion film of a cat falling
shows that the upper half of its body twists in one direction
while the lower half twists in the opposite direction. (See
Fig. Q8.16.) Why does this type of rotation occur?

Figure Q8.12 
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Figure Q8.16 A falling, twisting cat. 
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13. In a tape recorder, the tape is pulled past the read–write
heads at a constant speed by the drive mechanism. Con-
sider the reel from which the tape is pulled: As the tape is
pulled off, the radius of the roll of remaining tape de-
creases. How does the torque on the reel change with
time? How does the angular speed of the reel change with
time? If the tape mechanism is suddenly turned on so that
the tape is quickly pulled with a large force, is the tape
more likely to break when pulled from a nearly full reel or
from a nearly empty reel?

14. (a) Give an example in which the net force acting on an
object is zero, yet the net torque is nonzero. (b) Give an
example in which the net torque acting on an object is
zero, yet the net force is nonzero.

15. A mouse is initially at rest on a horizontal turntable
mounted on a frictionless vertical axle. If the mouse be-

17. A ladder rests inclined against a wall. Would you feel safer
climbing up the ladder if you were told that the floor was
frictionless, but the wall was rough, or that the wall was
frictionless, but the floor was rough? Justify your answer.

18. Two solid spheres—a large, massive sphere and a small
sphere with low mass—are rolled down a hill. Which one
reaches the bottom of the hill first? Next, we roll a large,
low-density sphere and a small, high-density sphere, both
with the same mass. Which one wins the race?

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide

= coached problem with hints available at www.cp7e.com = biomedical application

Section 8.1 Torque
1. If the torque required to loosen a nut that is holding a

flat tire in place on a car has a magnitude of 40.0 N � m,
what minimum force must be exerted by the mechanic
at the end of a 30.0-cm lug wrench to accomplish the
task?

2. A steel band exerts a horizontal force of 80.0 N on a tooth
at point B in Figure P8.2. What is the torque on the root
of the tooth about point A?

B

48.0°

1.20 cm

A

Gum

F

Figure P8.2
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Calculate the net torque (magnitude and direction) on
the beam in Figure P8.3 about (a) an axis through O per-
pendicular to the page and (b) an axis through C perpen-
dicular to the page.

3.

4. Write the necessary equations of equilibrium of the object
shown in Figure P8.4. Take the origin of the torque equa-
tion about an axis perpendicular to the page through the
point O.

5. A simple pendulum consists of a small object of mass 
3.0 kg hanging at the end of a 2.0-m-long light string 
that is connected to a pivot point. Calculate the magni-
tude of the torque (due to the force of gravity) about this
pivot point when the string makes a 5.0� angle with the
vertical.

6. A fishing pole is 2.00 m long and inclined to the horizon-
tal at an angle of 20.0� (Fig. P8.6). What is the torque ex-
erted by the fish about an axis perpendicular to the page
and passing through the hand of the person holding the
pole?

Section 8.2 Torque and the Two Conditions for Equilibrium
Section 8.3 The Center of Gravity
Section 8.4 Examples of Objects in Equilibrium

7. The arm in Figure P8.7 weighs 41.5 N. The force of
gravity acting on the arm acts through point A. Determine
the magnitudes of the tension force in the deltoid
muscle and the force exerted by the shoulder on the
humerus (upper-arm bone) to hold the arm in the posi-
tion shown.

F
:

s

F
:

t

8. A water molecule consists of an oxygen atom with two hy-
drogen atoms bound to it as shown in Figure P8.8. The
bonds are 0.100 nm in length, and the angle between the
two bonds is 106�. Use the coordinate axes shown, and
determine the location of the center of gravity of the mol-
ecule. Take the mass of an oxygen atom to be 16 times the
mass of a hydrogen atom.

A cook holds a 2.00-kg carton of milk at
arm’s length (Fig. P8.9). What force must be exerted
by the biceps muscle? (Ignore the weight of the forearm.)

F
:

B

9.

C

4.0 m

2.0 m45°

30 N

10 N

20°

30°

25 N

O

Figure P8.3

s

12°
t

O
A

0.080 m
0.290 m

g

u

F

F
F

Figure P8.7

g

Fx

Fy

Rx O

θ

Ry

�

F

Figure P8.4

H

53°

H

x

y

53°
O

0.100 nm

0.100 nm

Figure P8.8

25.0 cm 8.00 cm

75.0°
FB

gF

Figure P8.9

100 N

20.0°

20.0°
37.0°

2.00 m

Figure P8.6
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bar
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torso

thigh

leg

(b) (c)

Figure P8.13

10. A meterstick is found to balance at the 49.7-cm mark when
placed on a fulcrum. When a 50.0-gram mass is attached at
the 10.0-cm mark, the fulcrum must be moved to the 39.2-
cm mark for balance. What is the mass of the meter stick?

11. Find the x - and y-coordinates of the center of gravity of a
4.00-ft by 8.00-ft uniform sheet of plywood with the upper
right quadrant removed as shown in Figure P8.11.

15. A person bending forward to lift a load “with his back”
(Fig. P8.15a) rather than “with his knees” can be injured
by large forces exerted on the muscles and vertebrae. The
spine pivots mainly at the fifth lumbar vertebra, with the
principal supporting force provided by the erector
spinalis muscle in the back. To see the magnitude of the
forces involved, and to understand why back problems are
common among humans, consider the model shown in
Fig. P8.15b of a person bending forward to lift a 200-N
object. The spine and upper body are represented as a
uniform horizontal rod of weight 350 N, pivoted at the
base of the spine. The erector spinalis muscle, attached at
a point two-thirds of the way up the spine, maintains the
position of the back. The angle between the spine and
this muscle is 12.0�. Find the tension in the back muscle
and the compressional force in the spine.

16. When a person stands on tiptoe (a strenuous position),
the position of the foot is as shown in Figure P8.16a. The
total gravitational force on the body, , is supported by
the force exerted by the floor on the toes of one foot.
A mechanical model of the situation is shown in Figure
P8.16b, where is the force exerted by the Achilles ten-
don on the foot and is the force exerted by the tibia on
the foot. Find the values of T, R , and � when Fg � 700 N.

R
:

T
:

n:
F
:

g

12. Consider the following mass distribution, where x- and y-
coordinates are given in meters: 5.0 kg at (0.0, 0.0) m, 3.0 kg
at (0.0, 4.0) m, and 4.0 kg at (3.0, 0.0) m. Where should a
fourth object of 8.0 kg be placed so that the center of gravity
of the four-object arrangement will be at (0.0, 0.0) m?

13. Many of the elements in horizontal-bar exercises can be
modeled by representing the gymnast by four segments
consisting of arms, torso (including the head), thighs,
and lower legs, as shown in Figure P8.13a. Inertial param-
eters for a particular gymnast are as follows:

Segment Mass (kg) Length (m) rcg (m) I (kg-m2)

Arms 6.87 0.548 0.239 0.205
Torso 33.57 0.601 0.337 1.610
Thighs 14.07 0.374 0.151 0.173
Legs 7.54 — 0.227 0.164

Note that in Figure P8.13a rcg is the distance to the center
of gravity measured from the joint closest to the bar and
the masses for the arms, thighs, and legs include both ap-
pendages. I is the moment of inertia of each segment
about its center of gravity. Determine the distance from
the bar to the center of gravity of the gymnast for the two
positions shown in Figures P8.13b and P8.13c.

14. Using the data given in Problem 13 and the coordinate sys-
tem shown in Figure P8.14b, calculate the position of the
center of gravity of the gymnast shown in Figure P8.14a.
Pay close attention to the definition of rcg in the table.
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A 500-N uniform rectangular sign 4.00 m wide and 3.00 m
high is suspended from a horizontal, 6.00-m-long, uni-
form, 100-N rod as indicated in Figure P8.17. The left end
of the rod is supported by a hinge, and the right end is
supported by a thin cable making a 30.0� angle with the
vertical. (a) Find the tension T in the cable. (b) Find the
horizontal and vertical components of force exerted on
the left end of the rod by the hinge.

17.

18. A window washer is standing on a scaffold supported by a
vertical rope at each end. The scaffold weighs 200 N and
is 3.00 m long. What is the tension in each rope when the
700-N worker stands 1.00 m from one end?

19. The chewing muscle, the masseter, is one of the strongest
in the human body. It is attached to the mandible (lower
jawbone) as shown in Figure P8.19a. The jawbone is piv-
oted about a socket just in front of the auditory canal.
The forces acting on the jawbone are equivalent to those
acting on the curved bar in Figure P8.19b: is the force
exerted by the food being chewed against the jawbone, 
is the force of tension in the masseter, and is the force
exerted by the socket on the mandible. Find and for
a person who bites down on a piece of steak with a force
of 50.0 N.

R
:

T
:

R
:

T
:

F
:

c

20. A hungry 700-N bear walks out on a beam in an attempt
to retrieve some “goodies” hanging at the end (Fig.
P8.20). The beam is uniform, weighs 200 N, and is 6.00 m
long; the goodies weigh 80.0 N. (a) Draw a free-body dia-
gram of the beam. (b) When the bear is at x � 1.00 m,
find the tension in the wire and the components of the re-
action force at the hinge. (c) If the wire can withstand a
maximum tension of 900 N, what is the maximum dis-
tance the bear can walk before the wire breaks?

21. A uniform semicircular sign 1.00 m in diameter and of
weight w is supported by two wires as shown in Figure
P8.21. What is the tension in each of the wires supporting
the sign?

22. A 20.0-kg floodlight in a park is supported at the end of a
horizontal beam of negligible mass that is hinged to a
pole, as shown in Figure P8.22. A cable at an angle
of 30.0� with the beam helps to support the light. Find
(a) the tension in the cable and (b) the horizontal and
vertical forces exerted on the beam by the pole.

23. A uniform plank of length 2.00 m and mass 30.0 kg is sup-
ported by three ropes, as indicated by the blue vectors in
Figure P8.23. Find the tension in each rope when a 700-N
person is 0.500 m from the left end.

24. A 15.0-m, 500-N uniform ladder rests against a fric-
tionless wall, making an angle of 60.0� with the horizontal.
(a) Find the horizontal and vertical forces exerted on the
base of the ladder by the Earth when an 800-N firefighter
is 4.00 m from the bottom. (b) If the ladder is just on the

ICE CREAM
SHOP

30.0° T

Figure P8.17

60.0°

Goodiesx

Figure P8.20

0.75 m
0.25 m

Figure P8.21

30.0°

Figure P8.22

Masseter

Mandible

3.50 cm

7.50 cm

C

(a) (b)

F

T
R

Figure P8.19
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3

T

T

T

Figure P8.23

verge of slipping when the firefighter is 9.00 m up, what 
is the coefficient of static friction between ladder and
ground?

25. An 8.00-m, 200-N uniform ladder rests against a smooth
wall. The coefficient of static friction between the ladder
and the ground is 0.600, and the ladder makes a 50.0� an-
gle with the ground. How far up the ladder can an 800-N
person climb before the ladder begins to slip?

26. A 1 200-N uniform boom is supported by a cable perpendi-
cular to the boom as in Figure P8.26. The boom is hinged at
the bottom, and a 2 000-N weight hangs from its top. Find
the tension in the supporting cable and the components 
of the reaction force exerted on the boom by the hinge.

The large quadriceps muscle in the upper leg terminates
at its lower end in a tendon attached to the upper end of
the tibia (Fig. P8.27a). The forces on the lower leg when
the leg is extended are modeled as in Figure P8.27b,
where is the force of tension in the tendon, is the
force of gravity acting on the lower leg, and is the force
of gravity acting on the foot. Find when the tendon is at
an angle of 25.0� with the tibia, assuming that w � 30.0 N,
F � 12.5 N, and the leg is extended at an angle � of 40.0�
with the vertical. Assume that the center of gravity of the
lower leg is at its center and that the tendon attaches to
the lower leg at a point one-fifth of the way down the leg.

28. One end of a uniform 4.0-m-long rod of weight w is sup-
ported by a cable. The other end rests against a wall,
where it is held by friction. (See Fig. P8.28.) The coeffi-
cient of static friction between the wall and the rod is 

T
:

F
:

w:T
:

27.

s � 0.50. Determine the minimum distance x from point
A at which an additional weight w (the same as the weight
of the rod) can be hung without causing the rod to slip at
point A.

Section 8.5 Relationship Between Torque and Angular 
Acceleration
29. Four objects are held in position at the corners of a rec-

tangle by light rods as shown in Figure P8.29. Find
the moment of inertia of the system about (a) the x -axis,
(b) the y-axis, and (c) an axis through O and perpendicu-
lar to the page.
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30. If the system shown in Figure P8.29 is set in rotation
about each of the axes mentioned in Problem 29, find
the torque that will produce an angular acceleration of
1.50 rad/s2 in each case.

31. A model airplane with mass 0.750 kg is tethered by a wire
so that it flies in a circle 30.0 m in radius. The airplane 
engine provides a net thrust of 0.800 N perpendicular to
the tethering wire. (a) Find the torque the net thrust 
produces about the center of the circle. (b) Find the an-
gular acceleration of the airplane when it is in level flight.
(c) Find the linear acceleration of the airplane tangent to
its flight path.

32. A potter’s wheel having a radius of 0.50 m and a moment
of inertia of 12 kg � m2 is rotating freely at 50 rev/min.
The potter can stop the wheel in 6.0 s by pressing a wet
rag against the rim and exerting a radially inward force of
70 N. Find the effective coefficient of kinetic friction be-
tween the wheel and the wet rag.

33. A cylindrical fishing reel has a moment of inertia 
I � 6.8 � 10�4 kg � m2 and a radius of 4.0 cm. A friction
clutch in the reel exerts a restraining torque of 1.3 N � m if
a fish pulls on the line. The fisherman gets a bite, and the
reel begins to spin with an angular acceleration of
66 rad/s2. (a) What is the force exerted by the fish on the
line? (b) How much line unwinds in 0.50 s?

34. A bicycle wheel has a diameter of 64.0 cm and a mass of
1.80 kg. Assume that the wheel is a hoop with all the mass
concentrated on the outside radius. The bicycle is placed
on a stationary stand, and a resistive force of 120 N is ap-
plied tangent to the rim of the tire. (a) What force must
be applied by a chain passing over a 9.00-cm-diameter
sprocket in order to give the wheel an acceleration of
4.50 rad/s2? (b) What force is required if you shift to a
5.60-cm-diameter sprocket?
A 150-kg merry-go-round in the shape of a uniform, solid,
horizontal disk of radius 1.50 m is set in motion by wrap-
ping a rope about the rim of the disk and pulling on the
rope. What constant force must be exerted on the rope to
bring the merry-go-round from rest to an angular speed
of 0.500 rev/s in 2.00 s?

36. A 5.00-kg cylindrical reel with a radius of 0.600 m and a
frictionless axle starts from rest and speeds up uniformly
as a 3.00-kg bucket falls into a well, making a light rope
unwind from the reel (Fig. P8.36). The bucket starts from
rest and falls for 4.00 s. (a) What is the linear acceleration
of the falling bucket? (b) How far does it drop? (c) What
is the angular acceleration of the reel?

37. An airliner lands with a speed of 50.0 m/s. Each wheel of
the plane has a radius of 1.25 m and a moment of inertia
of 110 kg � m2. At touchdown, the wheels begin to spin un-
der the action of friction. Each wheel supports a weight of
1.40 � 104 N, and the wheels attain their angular speed in
0.480 s while rolling without slipping. What is the coeffi-
cient of kinetic friction between the wheels and the run-
way? Assume that the speed of the plane is constant.

Section 8.6 Rotational Kinetic Energy
38. A constant torque of 25.0 N � m is applied to a grindstone

whose moment of inertia is 0.130 kg � m2. Using energy
principles and neglecting friction, find the angular speed
after the grindstone has made 15.0 revolutions. [Hint:
The angular equivalent of W net � F�x � is1

2 mv 2
i

1
2 mv 2

f    �

35.

Wnet � ��� � . You should convince yourself
that this relationship is correct.)

A 10.0-kg cylinder rolls without slipping
on a rough surface. At an instant when its center of grav-
ity has a speed of 10.0 m/s, determine (a) the transla-
tional kinetic energy of its center of gravity, (b) the rota-
tional kinetic energy about its center of gravity, and (c) its
total kinetic energy.

40. Use conservation of energy to determine the angular
speed of the spool shown in Figure P8.36 after the 3.00-kg
bucket has fallen 4.00 m, starting from rest. The light
string attached to the bucket is wrapped around the spool
and does not slip as it unwinds.

39.

1
2 
I� 2

f � 1
2 
I� 2

i

0.600 m

5.00 kg

3.00 kg

Figure P8.36 (Problems 36 and 40)

A

A�

F

Figure P8.43

41. A horizontal 800-N merry-go-round of radius 1.50 m is
started from rest by a constant horizontal force of 50.0 N
applied tangentially to the merry-go-round. Find the ki-
netic energy of the merry-go-round after 3.00 s. (Assume
it is a solid cylinder.)

42. A car is designed to get its energy from a rotating flywheel
with a radius of 2.00 m and a mass of 500 kg. Before a trip,
the flywheel is attached to an electric motor, which brings
the flywheel’s rotational speed up to 5 000 rev/min.
(a) Find the kinetic energy stored in the flywheel. (b) If the
flywheel is to supply energy to the car as a 10.0-hp motor
would, find the length of time the car could run before the
flywheel would have to be brought back up to speed.
The top in Figure P8.43 has a moment of inertia of 
4.00 � 10�4 kg � m2 and is initially at rest. It is free to ro-
tate about a stationary axis AA�. A string wrapped around
a peg along the axis of the top is pulled in such a manner
as to maintain a constant tension of 5.57 N in the string. If
the string does not slip while wound around the peg, what

43.
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is the angular speed of the top after 80.0 cm of string has
been pulled off the peg? [Hint: Consider the work that is
done.]

44. A 240-N sphere 0.20 m in radius rolls without slipping
6.0 m down a ramp that is inclined at 37� with the hori-
zontal.  What is the angular speed of the sphere at the
bottom of the slope if it starts from rest?

Section 8.7 Angular Momentum
45. A light rigid rod 1.00 m in length rotates about an axis

perpendicular to its length and through its center, as
shown in Figure P8.45. Two particles of masses 4.00 kg
and 3.00 kg are connected to the ends of the rod. What is
the angular momentum of the system if the speed of each
particle is 5.00 m/s? (Neglect the rod’s mass.)

46. Halley’s comet moves about the Sun in an elliptical orbit,
with its closest approach to the Sun being 0.59 A.U.
and its greatest distance being 35 A.U. (1 A.U. is the
Earth–Sun distance). If the comet’s speed at closest ap-
proach is 54 km/s, what is its speed when it is farthest
from the Sun? You may neglect any change in the comet’s
mass and assume that its angular momentum about the
Sun is conserved.

47. The system of small objects shown in Figure P8.47 is rotat-
ing at an angular speed of 2.0 rev/s. The objects are con-
nected by light, flexible spokes that can be lengthened or
shortened. What is the new angular speed if the spokes are
shortened to 0.50 m? (An effect similar to that illustrated
in this problem occurred in the early stages of the forma-
tion of our galaxy. As the massive cloud of dust and gas
that was the source of the stars and planets contracted, an
initially small angular speed increased with time.)

48. A playground merry-go-round of radius 2.00 m has a
moment of inertia I � 275 kg � m2 and is rotating about a
frictionless vertical axle. As a child of mass 25.0 kg stands
at a distance of 1.00 m from the axle, the system (merry-
go-round and child) rotates at the rate of 14.0 rev/min.
The child then proceeds to walk toward the edge of the
merry-go-round. What is the angular speed of the system
when the child reaches the edge?

49. A solid, horizontal cylinder of mass 10.0 kg and radius
1.00 m rotates with an angular speed of 7.00 rad/s about a
fixed vertical axis through its center. A 0.250-kg piece of
putty is dropped vertically onto the cylinder at a point
0.900 m from the center of rotation and sticks to the cylin-
der. Determine the final angular speed of the system.

50. A student sits on a rotating stool holding two 3.0-kg ob-
jects. When his arms are extended horizontally, the ob-
jects are 1.0 m from the axis of rotation and he rotates
with an angular speed of 0.75 rad/s. The moment of iner-
tia of the student plus stool is 3.0 kg � m2 and is assumed
to be constant. The student then pulls in the objects hori-
zontally to 0.30 m from the rotation axis. (a) Find the new
angular speed of the student. (b) Find the kinetic energy
of the student before and after the objects are pulled in.

51. The puck in Figure P8.51 has a mass of 0.120 kg. Its origi-
nal distance from the center of rotation is 40.0 cm, and it
moves with a speed of 80.0 cm/s. The string is pulled
downward 15.0 cm through the hole in the frictionless
table. Determine the work done on the puck. [Hint: Con-
sider the change in kinetic energy of the puck.]

52. A merry-go-round rotates at the rate of 0.20 rev/s with an
80-kg man standing at a point 2.0 m from the axis of rota-
tion. (a) What is the new angular speed when the man
walks to a point 1.0 m from the center? Assume that the
merry-go-round is a solid 25-kg cylinder of radius 2.0 m.
(b) Calculate the change in kinetic energy due to the
man’s movement. How do you account for this change in
kinetic energy?
A 60.0-kg woman stands at the rim of a horizontal
turntable having a moment of inertia of 500 kg � m2 and a
radius of 2.00 m. The turntable is initially at rest and is
free to rotate about a frictionless, vertical axle through its
center. The woman then starts walking around the rim
clockwise (as viewed from above the system) at a constant
speed of 1.50 m/s relative to the Earth. (a) In what
direction and with what angular speed does the turntable
rotate? (b) How much work does the woman do to set
herself and the turntable into motion?

53.
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54. A space station shaped like a giant wheel has a radius of
100 m and a moment of inertia of 5.00 � 108 kg � m2. A
crew of 150 lives on the rim, and the station is rotating so
that the crew experiences an apparent acceleration of 1g
(Fig. P8.54). When 100 people move to the center of the
station for a union meeting, the angular speed changes.
What apparent acceleration is experienced by the man-
agers remaining at the rim? Assume the average mass of a
crew member is 65.0 kg.

ADDITIONAL PROBLEMS
55. A cylinder with moment of inertia I1 rotates with angular

velocity �0 about a frictionless vertical axle. A second
cylinder, with moment of inertia I2, initially not rotating,
drops onto the first cylinder (Fig. P8.55). Since the sur-
faces are rough, the two cylinders eventually reach the
same angular speed �. (a) Calculate �. (b) Show that ki-
netic energy is lost in this situation, and calculate the ratio
of the final to the initial kinetic energy.

56. A new General Electric stove has a mass of 68.0 kg and the
dimensions shown in Figure P8.56. The stove comes with
a warning that it can tip forward if a person stands or sits
on the oven door when it is open. What can you conclude
about the weight of such a person? Could it be a child?
List the assumptions you make in solving this problem.
(The stove is supplied with a wall bracket to prevent the
accident.)

57. A 40.0-kg child stands at one end of a 70.0-kg boat that is
4.00 m long (Fig. P8.57). The boat is initially 3.00 m from
the pier. The child notices a turtle on a rock beyond the
far end of the boat and proceeds to walk to that end to
catch the turtle. (a) Neglecting friction between the boat

and water, describe the motion of the system (child plus
boat). (b) Where will the child be relative to the pier
when he reaches the far end of the boat? (c) Will he catch
the turtle? (Assume that he can reach out 1.00 m from the
end of the boat.)

58. Figure P8.58 shows a clawhammer as it is being used to
pull a nail out of a horizontal board. If a force of magni-
tude 150 N is exerted horizontally as shown, find (a) the

Figure P8.54

I2

I1

Before After

v
v0

Figure P8.55

36   " �     " 

Depth with door closed
   28 "              
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1––4

1––4

3––8
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Figure P8.58
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force exerted by the hammer claws on the nail and 
(b) the force exerted by the surface at the point of con-
tact with the hammer head. Assume that the force the
hammer exerts on the nail is parallel to the nail.

59. The pulley in Figure P8.59 has a moment of inertia of 
5.0 kg � m2 and a radius of 0.50 m. The cord supporting
the masses m1 and m2 does not slip, and the axle is fric-
tionless. (a) Find the acceleration of each mass when 
m1 � 2.0 kg and m2 � 5.0 kg. (b) Find the tension in
the cable supporting m1 and the tension in the cable sup-
porting m2. [Note: The two tensions are different].

60. A 12.0-kg object is attached to a cord that is wrapped
around a wheel of radius r � 10.0 cm (Fig. P8.60). The ac-
celeration of the object down the frictionless incline is
measured to be 2.00 m/s2. Assuming the axle of the wheel
to be frictionless, determine (a) the tension in the rope,
(b) the moment of inertia of the wheel, and (c) the angu-
lar speed of the wheel 2.00 s after it begins rotating, start-
ing from rest.

61. A uniform ladder of length L and weight w is leaning
against a vertical wall. The coefficient of static friction be-
tween the ladder and the floor is the same as that between
the ladder and the wall. If this coefficient of static friction
is s � 0.500, determine the smallest angle the ladder can
make with the floor without slipping.

62. A uniform 10.0-N picture frame is supported as shown in
Figure P8.62. Find the tension in the cords and the mag-
nitude of the horizontal force at P that are required to
hold the frame in the position shown.

A solid 2.0-kg ball of radius 0.50 m starts
at a height of 3.0 m above the surface of the Earth and rolls
down a 20� slope. A solid disk and a ring start at the same
time and the same height. The ring and disk each have the
same mass and radius as the ball. Which of the three wins
the race to the bottom if all roll without slipping?

63.

64. A common physics demonstration (Fig. P8.64) consists of
a ball resting at the end of a board of length � that is ele-
vated at an angle � with the horizontal. A light cup is at-
tached to the board at rc so that it will catch the ball when
the support stick is suddenly removed. Show that (a) the
ball will lag behind the falling board when � � 35.3� and
(b) the ball will fall into the cup when the board is sup-
ported at this limiting angle and the cup is placed at 

rc �
2�

3 cos �

m1

m2

a

a

Figure P8.59

30.0 cm

15.0 cm

10.0 N

P

12

50.0°

F

T T

Figure P8.62

rc

Cup

�

Hinged end

Support
stick

u

Figure P8.64

Figure P8.65

r

2.00 m/s2

12.0 kg

37.0°

Figure P8.60

In Figure P8.65, the sliding block has a mass of 
0.850 kg, the counterweight has a mass of 0.420 kg,
and the pulley is a uniform solid cylinder with a mass
of 0.350 kg and an outer radius of 0.0300 m. The coef-
ficient of kinetic friction between the block and the
horizontal surface is 0.250. The pulley turns without
friction on its axle. The light cord does not stretch
and does not slip on the pulley. The block has a

65.
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262 Chapter 8 Rotational Equilibrium and Rotational Dynamics

velocity of 0.820 m/s toward the pulley when it passes
through a photogate. (a) Use energy methods to predict
the speed of the block after it has moved to a second pho-
togate 0.700 m away. (b) Find the angular speed of the
pulley at the same moment.
(a) Without the wheels, a bicycle frame has a mass of 
8.44 kg. Each of the wheels can be roughly modeled as a
uniform solid disk with a mass of 0.820 kg and a radius of
0.343 m. Find the kinetic energy of the whole bicycle when
it is moving forward at 3.35 m/s. (b) Before the invention
of a wheel turning on an axle, ancient people moved
heavy loads by placing rollers under them. (Modern
people use rollers, too: Any hardware store will sell you a
roller bearing for a lazy Susan.) A stone block of mass
844 kg moves forward at 0.335 m/s, supported by two
uniform cylindrical tree trunks, each of mass 82.0 kg and
radius 0.343 m. There is no slipping between the block
and the rollers or between the rollers and the ground.
Find the total kinetic energy of the moving objects.

67. In exercise physiology studies, it is sometimes important
to determine the location of a person’s center of gravity.
This can be done with the arrangement shown in Figure
P8.67. A light plank rests on two scales that read 
Fg 1 � 380 N and Fg 2 � 320 N. The scales are separated by
a distance of 2.00 m. How far from the woman’s feet is her
center of gravity?

66.

(d) What are their new speeds? (e) What is the new rota-
tional energy of the system? (f) How much work is done
by the astronauts in shortening the rope?

69. Two astronauts (Fig. P8.68), each having a mass M, are
connected by a rope of length d having negligible mass.
They are isolated in space, moving in circles around the
point halfway between them at a speed v. (a) Calculate
the magnitude of the angular momentum of the system
by treating the astronauts as particles. (b) Calculate the
rotational energy of the system. By pulling on the rope,
the astronauts shorten the distance between them to d/2.
(c) What is the new angular momentum of the system?
(d) What are their new speeds? (e) What is the new rota-
tional energy of the system? (f) How much work is done
by the astronauts in shortening the rope?

70. Two window washers, Bob and Joe, are on a 3.00-m-long,
345-N scaffold supported by two cables attached to its
ends. Bob weighs 750 N and stands 1.00 m from the left
end, as shown in Figure P8.70. Two meters from the left
end is the 500-N washing equipment. Joe is 0.500 m from
the right end and weighs 1 000 N. Given that the scaffold
is in rotational and translational equilibrium, what are the
forces on each cable?

71. We have all complained that there aren’t enough hours in
a day. In an attempt to change that, suppose that all the
people in the world lined up at the equator and started
running east at 2.5 m/s relative to the surface of the
Earth. By how much would the length of a day increase?
(Assume that there are 5.5 � 109 people in the world with
an average mass of 70 kg each and that the Earth is a
solid, homogeneous sphere. In addition, you may use the
result 1/(1 � x) � 1 	 x for small x.)

72. In a circus performance, a large 5.0-kg hoop of radius 3.0 m
rolls without slipping. If the hoop is given an angular speed
of 3.0 rad/s while rolling on the horizontal ground and is
then allowed to roll up a ramp inclined at 20� with the hori-
zontal, how far along the incline does the hoop roll?

A uniform solid cylinder of mass M
and radius R rotates on a frictionless horizontal axle 
(Fig. P8.73). Two objects with equal masses m hang from
light cords wrapped around the cylinder. If the system is
released from rest, find (a) the tension in each cord and
(b) the acceleration of each object after the objects have
descended a distance h.

73.

Fg1 Fg 2

2.00 m

Figure P8.67

d

Center of gravity

Figure P8.68 (Problems 68 and 69)

1.00 m

3.00 m
0.500 m2.00 m

Figure P8.70

68. Two astronauts (Fig. P8.68), each having a mass of
75.0 kg, are connected by a 10.0-m rope of negligible
mass. They are isolated in space, moving in circles around
the point halfway between them at a speed of 5.00 m/s.
Treating the astronauts as particles, calculate (a) the mag-
nitude of the angular momentum and (b) the rotational
energy of the system. By pulling on the rope, the astro-
nauts shorten the distance between them to 5.00 m.
(c) What is the new angular momentum of the system?
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M

R

m

m

Figure P8.73

Figure P8.77

3.00 kg
T2

T1

4.00 kg

Figure P8.79

F

Figure P8.74

Figure P8.75

74. Figure P8.74 shows a vertical force applied tangentially to
a uniform cylinder of weight w. The coefficient of static
friction between the cylinder and all surfaces is 0.500.
Find, in terms of w, the maximum force that can be ap-
plied without causing the cylinder to rotate. [Hint: When
the cylinder is on the verge of slipping, both friction
forces are at their maximum values. Why?]

F
:

75. Due to a gravitational torque exerted by the Moon on the
Earth, our planet’s period of rotation slows at a rate on the
order of 1 ms/century. (a) Determine the order of magni-
tude of Earth’s angular acceleration. (b) Find the order of
magnitude of the torque. (c) Find the order of magnitude
of the size of the wrench an ordinary person would need
to exert such a torque, as in Figure P8.75. Assume the per-
son can brace his feet against a solid firmament.

76. A uniform pole is propped between the floor and the ceil-
ing of a room. The height of the room is 7.80 ft, and the

coefficient of static friction between the pole and the ceil-
ing is 0.576. The coefficient of static friction between the
pole and the floor is greater than that. What is the length
of the longest pole that can be propped between the floor
and the ceiling?

77. A war-wolf, or trebuchet, is a device used during the Middle
Ages to throw rocks at castles and now sometimes used to
fling pumpkins and pianos. A simple trebuchet is shown
in Figure P8.77. Model it as a stiff rod of negligible mass
3.00 m long and joining particles of mass 60.0 kg and
0.120 kg at its ends. It can turn on a frictionless horizontal
axle perpendicular to the rod and 14.0 cm from the parti-
cle of larger mass. The rod is released from rest in a hori-
zontal orientation. Find the maximum speed that the ob-
ject of smaller mass attains.

78. A painter climbs a ladder leaning against a smooth wall.
At a certain height, the ladder is on the verge of slipping.
(a) Explain why the force exerted by the vertical wall on
the ladder is horizontal. (b) If the ladder of length L
leans at an angle � with the horizontal, what is the lever
arm for this horizontal force with the axis of rotation
taken at the base of the ladder? (c) If the ladder is uni-
form, what is the lever arm for the force of gravity acting
on the ladder? (d) Let the mass of the painter be 80 kg,
L � 4.0 m, the ladder’s mass be 30 kg, � � 53�, and the
coefficient of friction between ground and ladder be 0.45.
Find the maximum distance the painter can climb up the
ladder.

79. A 4.00-kg mass is connected by a light cord to a 3.00-kg
mass on a smooth surface (Fig. P8.79). The pulley rotates
about a frictionless axle and has a moment of inertia of
0.500 kg � m2 and a radius of 0.300 m. Assuming that the
cord does not slip on the pulley, find (a) the acceleration
of the two masses and (b) the tensions T1 and T2.
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264 Chapter 8 Rotational Equilibrium and Rotational Dynamics

A string is wrapped around a uniform cylinder of mass M
and radius R. The cylinder is released from rest with
the string vertical and its top end tied to a fixed bar 
(Fig. P8.80). Show that (a) the tension in the string is
one-third the weight of the cylinder, (b) the magnitude of
the acceleration of the center of gravity is 2g/3, and
(c) the speed of the center of gravity is (4gh/3)1/2 after
the cylinder has descended through distance h. Verify
your answer to (c) with the energy approach.

80.

81. A person in a wheelchair wishes to roll up over a sidewalk
curb by exerting a horizontal force to the top of each of
the wheelchair’s main wheels (Fig. P8.81a). The main
wheels have radius r and come in contact with a curb of
height h (Fig. P8.81b). (a) Assume that each main wheel
supports half of the total load, and show that the magni-
tude of the minimum force necessary to raise the wheel-
chair from the street is given by

where mg is the combined weight of the wheelchair and
person. (b) Estimate the value of F, taking mg � 1 400 N,
r � 30 cm, and h � 10 cm.

F �
mg √2rh � h2

2(2r � h)

F
:

82. The truss structure in Figure P8.82 represents part of a
bridge. Assume that the structural components are con-
nected by pin joints and that the entire structure is free to
slide horizontally at each end. Assume furthermore that
the mass of the structure is negligible compared with the
load it must support. In this situation, the force exerted
by each of the bars (struts) on the pin joints is either a
force of tension or one of compression and must be along
the length of the bar. Calculate the force in each strut
when the bridge supports a 7 200-N load at its center.

83. The Iron Cross When a gymnast weighing 750 N executes
the iron cross as in Figure P8.83a, the primary muscles in-
volved in supporting this position are the latissimus dorsi
(“lats”) and the pectoralis major (“pecs”). The rings exert
an upward force on the arms and support the weight of
the gymnast. The force exerted by the shoulder joint on
the arm is labeled while the two muscles exert a total
force on the arm. Estimate the magnitude of the force

. Note that one ring supports half the weight of the
gymnast, which is 375 N as indicated in Figure P8.83b. As-
sume that the force acts at an angle of 45� below the
horizontal at a distance of 4.0 cm from the shoulder joint.
In your estimate, take the distance from the shoulder
joint to the hand to be 70 cm and ignore the weight of
the arm.

F
:

m

F
:

m

F
:

m

F
:

s

h

M
R

Figure P8.80

50 m

30° 30° 30° 30°A E

B D

C

Load: 7 200 N

Figure P8.82

(a)

r – h

d

r
A

B

h

(b)

O

C

F

Figure P8.81

(b)

shoulder
joint

4.0 cm

45°

Fm

Fs

375 N

Figure P8.83

84. Swinging on a high bar The gymnast shown in Figure
P8.84 is performing a backwards giant swing on the high
bar. Starting from rest in a near-vertical orientation, he ro-
tates around the bar in a counterclockwise direction,

(a)

©
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d 
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s
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keeping his body and arms straight. Friction between the
bar and the gymnast’s hands exerts a constant torque op-
posing the rotational motion. If the angular velocity of
the gymnast at position 2 is measured to be 4.0 rad/s, de-
termine his angular velocity at position 3. (Note that this
maneuver is called a backwards giant swing, even though
the motion of the gymnast would seem to be forwards.)

observations with different kinds of soup (tomato,
chicken noodle, etc.) and a can of beans. Compare their
motions, and try to explain your observations. Finally,
compare the motion of a filled soup can with a tennis
ball, and explain your results to a friend.

A.2. Before attempting this exercise, review Example 8.14,
dealing with the spinning stool. The techniques used here
are similar to those used there. (a) First, make an estimate
of the moment of inertia of your body. One way to do this
would be to model your body as a solid cylinder and find
I from . You would have to determine your mass
and estimate your average “radius” for this approach. Can
you think of an alternative way to estimate I ? (b) Now use
the approach of Example 8.13 to measure I : Sit on a rotat-
ing stool, hold two weights (say, two books), and deter-
mine the angular speed of rotation with the books ex-
tended and after they are pulled in. The angular speed
can be found by estimating the time taken for a given
number of rotations. Use conservation of angular mo-
mentum to determine I. Do this five times to determine
an average value for I. How well do your results for
(a) and (b) compare, and if they differ greatly, what
might cause the discrepancy?

A.3. This experiment demonstrates a simple way to find the
center of gravity of an irregularly shaped object. Cut out
an irregular shape from a piece of cardboard, and punch
three to five holes around the edge of the shape. Put a
pushpin through one of the holes, and tack the shape to a
corkboard so that the shape can rotate freely. Now tie a
weight to one end of a string, and hang the other end of
the string from the pushpin. When the string stops mov-
ing, trace a line on the cardboard that follows the string.
Repeat this for each of the holes in the cardboard. You
will find that there is a point where all the lines intersect.
This point is the center of gravity of the object.

I � 1
2MR2

3

1

2

Figure P8.84

ACTIVITIES

A.1. Compare the motion of an empty soup can and a filled
soup can down the same incline, such as a tilted table. If
they are released from rest at the same height on the
incline, which one reaches the bottom first? Repeat your
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There are four known states of matter: solids, liquids, gases, and plasmas. In the universe at
large, plasmas—systems of charged particles interacting electromagnetically—are the most
common. In our environment on Earth, solids, liquids, and gases predominate.

An understanding of the fundamental properties of these different states of matter is im-
portant in all the sciences, in engineering, and in medicine. Forces put stresses on solids, and
stresses can strain, deform, and break those solids, whether they are steel beams or bones.
Fluids under pressure can perform work, or they can carry nutrients and essential solutes, like
the blood flowing through our arteries and veins. Flowing gases cause pressure differences
that can lift a massive cargo plane or the roof off a house in a hurricane. High-temperature
plasmas created in fusion reactors may someday allow humankind to harness the energy
source of the sun.

The study of any one of these states of matter is itself a vast discipline. Here, we’ll intro-
duce basic properties of solids and liquids, the latter including some properties of gases. In
addition, we’ll take a brief look at surface tension, viscosity, osmosis, and diffusion.

9.1 STATES OF MATTER
Matter is normally classified as being in one of three states: solid, liquid, or gas.
Often this classification system is extended to include a fourth state of matter,
called a plasma.

Everyday experience tells us that a solid has a definite volume and shape. A
brick, for example, maintains its familiar shape and size day in and day out. A

In the Dead Sea, a lake between
Jordan and Israel, the high percent-
age of salt dissolved in the water
raises the fluid’s density, dramatically
increasing the buoyant force. Bathers
can kick back and enjoy a good read,
dispensing with the floating lounge
chairs.
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9.1 States of Matter 267

liquid has a definite volume but no definite shape. When you fill the tank on a
lawn mower, the gasoline changes its shape from that of the original container to
that of the tank on the mower, but the original volume is unchanged. A gas differs
from solids and liquids in that it has neither definite volume nor definite shape.
Because gas can flow, however, it shares many properties with liquids.

All matter consists of some distribution of atoms or molecules. The atoms in a
solid, held together by forces that are mainly electrical, are located at specific posi-
tions with respect to one another and vibrate about those positions. At low temper-
atures, the vibrating motion is slight and the atoms can be considered essentially
fixed. As energy is added to the material, the amplitude of the vibrations increases.
A vibrating atom can be viewed as being bound in its equilibrium position by
springs attached to neighboring atoms. A collection of such atoms and imaginary
springs is shown in Figure 9.1. We can picture applied external forces as compress-
ing these tiny internal springs. When the external forces are removed, the solid
tends to return to its original shape and size. Consequently, a solid is said to have
elasticity.

Solids can be classified as either crystalline or amorphous. In a crystalline solid
the atoms have an ordered structure. For example, in the sodium chloride crystal
(common table salt), sodium and chlorine atoms occupy alternate corners of a
cube, as in Figure 9.2a. In an amorphous solid, such as glass, the atoms are
arranged almost randomly, as in Figure 9.2b.

For any given substance, the liquid state exists at a higher temperature than the
solid state. The intermolecular forces in a liquid aren’t strong enough to keep the
molecules in fixed positions, and they wander through the liquid in random fash-
ion (Fig. 9.2c). Solids and liquids both have the property that when an attempt is
made to compress them, strong repulsive atomic forces act internally to resist the
compression.

In the gaseous state, molecules are in constant random motion and exert only
weak forces on each other. The average distance between the molecules of a gas is
quite large compared with the size of the molecules. Occasionally the molecules
collide with each other, but most of the time they move as nearly free, noninteract-
ing particles. As a result, unlike solids and liquids, gases can be easily compressed.
We’ll say more about gases in subsequent chapters.

When a gas is heated to high temperature, many of the electrons surrounding
each atom are freed from the nucleus. The resulting system is a collection of free,
electrically charged particles—negatively charged electrons and positively charged
ions. Such a highly ionized state of matter containing equal amounts of positive
and negative charges is called a plasma. Unlike a neutral gas, the long-range elec-
tric and magnetic forces allow the constituents of a plasma to interact with each
other. Plasmas are found inside stars and in accretion disks around black holes, for
example, and are far more common than the solid, liquid, and gaseous states
because there are far more stars around than any other form of celestial matter,

Crystals of natural quartz (SiO2), one
of the most common minerals on
Earth. Quartz crystals are used to
make special lenses and prisms and
are employed in certain electronic
applications.
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(a) (b) (c)

Figure 9.1 A model of a portion of
a solid. The atoms (spheres) are
imagined as being attached to each
other by springs, which represent the
elastic nature of the interatomic
forces. A solid consists of trillions of
segments like this, with springs
connecting all of them.

Figure 9.2 (a) The NaCl structure, with the Na� (gray) and Cl� (green) ions at alternate corners of
a cube. (b) In an amorphous solid, the atoms are arranged randomly. (c) Erratic motion of a molecule
in a liquid.
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268 Chapter 9 Solids and Fluids

except possibly dark matter. Dark matter, inferred by observations of the motion
of stars around the galaxy, makes up about 90% of the matter in the universe and
is of unknown composition. In this chapter, however, we ignore plasmas and dark
matter and concentrate on the more familiar solid, liquid, and gaseous forms that
make up the environment of our planet.

9.2 THE DEFORMATION OF SOLIDS
While a solid may be thought of as having a definite shape and volume, it’s possi-
ble to change its shape and volume by applying external forces. A sufficiently large
force will permanently deform or break an object, but otherwise, when the exter-
nal forces are removed, the object tends to return to its original shape and size.
This is called elastic behavior.

The elastic properties of solids are discussed in terms of stress and strain. Stress
is the force per unit area causing a deformation; strain is a measure of the amount
of the deformation. For sufficiently small stresses, stress is proportional to strain,
with the constant of proportionality depending on the material being deformed
and on the nature of the deformation. We call this proportionality constant the
elastic modulus:

[9.1]

The elastic modulus is analogous to a spring constant. It can be taken as the stiff-
ness of a material: A material having a large elastic modulus is very stiff and diffi-
cult to deform. There are three relationships having the form of Equation 9.1, cor-
responding to tensile, shear, and bulk deformation, and all of them satisfy an
equation similar to Hooke’s law for springs:

[9.2]

where F is the applied force, k is the spring constant, and �x is the amount by
which the spring is compressed.

Young’s Modulus: Elasticity in Length
Consider a long bar of cross-sectional area A and length L0, clamped at one end
(Active Fig. 9.3). When an external force is applied along the bar, perpendicular
to the cross section, internal forces in the bar resist the distortion (“stretching”)
that tends to produce. Nevertheless, the bar attains an equilibrium in which 
(1) its length is greater than L0 and (2) the external force is balanced by internal
forces. Under these circumstances, the bar is said to be stressed. We define the
tensile stress as the ratio of the magnitude of the external force F to the cross-
sectional area A. The word “tensile” has the same root as the word “tension” and is
used because the bar is under tension. The SI unit of stress is the newton per
square meter (N/m2), called the pascal (Pa):

The tensile strain in this case is defined as the ratio of the change in length �L to
the original length L0 and is therefore a dimensionless quantity. Using Equation
9.1, we can write an equation relating tensile stress to tensile strain:

[9.3]

In this equation, Y is the constant of proportionality, called Young’s modulus. No-
tice that Equation 9.3 could be solved for F and put in the form F � k�L, where
k � YA/L0, making it look just like Hooke’s law, Equation 9.2.

A material having a large Young’s modulus is difficult to stretch or compress.
This quantity is typically used to characterize a rod or wire stressed under either
tension or compression. Because strain is a dimensionless quantity, Y is in pascals.

F
A

� Y  
�L
L0

1 Pa � 1 N/m2

F
:

F
:

F � k�x

stress � elastic modulus � strain

A

L0
∆L

F

ACTIVE FIGURE 9.3
A long bar clamped at one end is
stretched by the amount �L under
the action of a force .

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 9.3 to adjust the values of the
applied force and Young’s modulus
and observe the change in length of
the bar.

F
:

The pascal �
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9.2 The Deformation of Solids 269

Typical values are given in Table 9.1. Experiments show that (1) the change in
length for a fixed external force is proportional to the original length and (2) the
force necessary to produce a given strain is proportional to the cross-sectional
area. The value of Young’s modulus for a given material depends on whether the
material is stretched or compressed. A human femur, for example, is stronger un-
der tension than compression.

It’s possible to exceed the elastic limit of a substance by applying a sufficiently
great stress (Fig. 9.4). At the elastic limit, the stress– strain curve departs from a
straight line. A material subjected to a stress beyond this limit ordinarily doesn’t
return to its original length when the external force is removed. As the stress is in-
creased further, it surpasses the ultimate strength: the greatest stress the substance
can withstand without breaking. The breaking point for brittle materials is just be-
yond the ultimate strength. For ductile metals like copper and gold, after passing
the point of ultimate strength, the metal thins and stretches at a lower stress level
before breaking.

Shear Modulus: Elasticity of Shape
Another type of deformation occurs when an object is subjected to a force 
parallel to one of its faces while the opposite face is held fixed by a second force (Ac-
tive Fig. 9.5a). If the object is originally a rectangular block, such a parallel force re-
sults in a shape with the cross section of a parallelogram. This kind of stress is called
a shear stress. A book pushed sideways, as in Active Figure 9.5b, is being subjected
to a shear stress. There is no change in volume with this kind of deformation.
It’s important to remember that in shear stress, the applied force is parallel to the
cross-sectional area, whereas in tensile stress the force is perpendicular to the cross-
sectional area. We define the shear stress as F/A, the ratio of the magnitude of the

F
:

TABLE 9.1
Typical Values for the Elastic Modulus
Substance Young’s Modulus (Pa) Shear Modulus (Pa) Bulk Modulus (Pa)

Aluminum 7.0 � 1010 2.5 � 1010 7.0 � 1010

Bone 1.8 � 1010 8.0 � 1010 —
Brass 9.1 � 1010 3.5 � 1010 6.1 � 1010

Copper 11 � 1010 4.2 � 1010 14 � 1010

Steel 20 � 1010 8.4 � 1010 16 � 1010

Tungsten 35 � 1010 14 � 1010 20 � 1010

Glass 6.5–7.8 � 1010 2.6–3.2 � 1010 5.0–5.5 � 1010

Quartz 5.6 � 1010 2.6 � 1010 2.7 � 1010

Rib Cartilage 1.2 � 107 — —
Rubber 0.1 � 107 — —
Tendon 2 � 107 — —
Water — — 0.21 � 1010

Mercury — — 2.8 � 1010

Elastic
limit

Breaking
point

Elastic
behavior

0.002 0.004 0.006 0.008 0.010

100

200

300

400

Stress
(MPa)

Strain

Figure 9.4 Stress-versus-strain
curve for an elastic solid.
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ACTIVE FIGURE 9.5
(a) A shear deformation in which a
rectangular block is distorted by
forces applied tangent to two of its
faces. (b) A book under shear stress.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 9.5 to adjust the values of the
applied force and the shear modulus
and observe the change in shape of
the block in part (a).
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270 Chapter 9 Solids and Fluids

parallel force to the area A of the face being sheared. The shear strain is the ratio
�x/h, where �x is the horizontal distance the sheared face moves and h is the
height of the object. The shear stress is related to the shear strain according to

[9.4]

where S is the shear modulus of the material, with units of pascals (force per unit
area). Once again, notice the similarity to Hooke’s law.

A material having a large shear modulus is difficult to bend. Shear moduli for
some representative materials are listed in Table 9.1.

Bulk Modulus: Volume Elasticity
The bulk modulus characterizes the response of a substance to uniform squeezing.
Suppose that the external forces acting on an object are all perpendicular to the
surface on which the force acts and are distributed uniformly over the surface of
the object (Active Fig. 9.6). This occurs when an object is immersed in a fluid. An
object subject to this type of deformation undergoes a change in volume but no
change in shape. The volume stress �P is defined as the ratio of the magnitude of
the change in the applied force �F to the surface area A. (In dealing with fluids,
we’ll refer to the quantity F/A as the pressure, to be defined and discussed more
formally in the next section.) The volume strain is equal to the change in volume
�V divided by the original volume V. Again using Equation 9.1, we can relate a vol-
ume stress to a volume strain by the formula

[9.5]

A material having a large bulk modulus doesn’t compress easily. Note that a negative
sign is included in this defining equation so that B is always positive. An increase in
pressure (positive �P) causes a decrease in volume (negative �V ) and vice versa.

Table 9.1 lists bulk modulus values for some materials. If you look up such val-
ues in a different source, you may find that the reciprocal of the bulk modulus,
called the compressibility of the material, is listed. Note from the table that both
solids and liquids have bulk moduli. There is neither a Young’s modulus nor shear
modulus for liquids, however, because liquids simply flow when subjected to a ten-
sile or shearing stress.

�P � �B  
�V
V

F
A

� S  
�x
h

V

F

V + ∆V

ACTIVE FIGURE 9.6
When a solid is under uniform pres-
sure, it undergoes a change in vol-
ume, but no change in shape. This
cube is compressed on all sides by
forces normal to its six faces.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 9.6 to adjust the values of the
applied force and the bulk modulus
and observe the change in volume of
the cube.

Bulk modulus �

EXAMPLE 9.1 Built to Last
Goal Calculate a compression due to tensile stress, and maximum load.

Problem A vertical steel beam in a building supports a load of . (a) If the length of the beam is 4.0 m
and its cross-sectional area is , find the distance the beam is compressed along its length. (b) What
maximum load in newtons could the steel beam support before failing?

Strategy Equation 9.3 pertains to compressive stress and strain and can be solved for �L, followed by substitution
of known values. For part (b), set the compressive stress equal to the ultimate strength of steel from Table 9.2. Solve
for the magnitude of the force, which is the total weight the structure can support.

8.0 � 10�3 m2
6.0 � 104 N

Solution
(a) Find the amount of compression in the beam.

Solve Equation 9.3 for �L and substitute, using the
value of Young’s modulus from Table 9.1:

� 1.5 � 10�4 m

�L �  
FL 0

YA
�

(6.0 � 104 N)(4.0 m)
(2.0 � 1011 Pa)(8.0 � 10�3 m2)

 
F
A

� Y  
�L
L0
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9.2 The Deformation of Solids 271

(b) Find the maximum load that the beam can support.

Set the compressive stress equal to the ultimate
compressive strength from Table 9.2, and solve for F :

 F � 4.0 � 106 N

 
F
A

�
F

8.0 � 10�3 m2 � 5.0 � 108 Pa

Remarks In designing load-bearing structures of any kind, it’s always necessary to build in a safety factor. No one would
drive a car over a bridge that had been designed to supply the minimum necessary strength to keep it from collapsing.

Exercise 9.1
A cable used to lift heavy materials like steel I-beams must be strong enough to resist breaking even under a load of
1.0 � 106 N. For safety, the cable must support twice that load. (a) What cross-sectional area should the cable have if
it’s to be made of steel? (b) By how much will an 8.0-m length of this cable stretch when subject to the 1.0 � 106-N
load?

Answers (a) (b) 1.0 � 10�2 m4.0 � 10�3 m2

EXAMPLE 9.2 Explosive Bolts
Goal Calculate the maximum shear stress supported by a set of bolts.

Problem Until launch, rockets are generally held to the launch pad by explosive
bolts. Such bolts are also used in escape hatches and to secure different stages of
the rocket, external tanks, and strap-on boosters, allowing rapid release when a
part needs to be separated from the rest of the vehicle. Suppose a rocket has a
strap-on booster supported by eight horizontal steel bolts, each 9.00 cm in diame-
ter and oriented horizontally. (Bolts similar to these would be used in rockets like
the Titan IV, shown at right.) (a) What maximum load can be placed on these
bolts before they are sheared off? Assume the load is shared equally by the eight
bolts. The ultimate shear strength of steel is 2.50 � 108 Pa. (b) If the booster has a
mass of 3.00 � 105 kg, calculate the shear deformation of one of the bolts if the
length of the bolt between rocket and booster is 8.00 cm.

Strategy (a) The total force required to shear off the bolts increases with the
number of bolts, but the necessary shear stress does not. Set the ultimate shear
strength equal to the shear stress and solve for the force, multiplying the answer
by eight to find the total shear force that can be applied. Part (b) can be solved by
substituting values into Equation 9.4, which relates shear stress to shear strain.

The Titan IV launch vehicle, with its
two solid rocket boosters, is capable
of placing large satellites in geosyn-
chronous orbit. 

N
AS

A

Solution
(a) Find the maximum load the bolts can support.

Set the shear stress for one bolt equal to its ultimate
shear strength:

F1

A
�

F1

�r 2 � 2.50 � 108 N/m2

TABLE 9.2
Ultimate Strength of Materials

Tensile Strength Compressive Strength 
Material (N/m2) (N/m2)

Iron 1.7 � 108 5.5 � 108

Steel 5.0 � 108 5.0 � 108

Aluminum 2.0 � 108 2.0 � 108

Bone 1.2 � 108 1.5 � 108

Marble — 8.0 � 107

Brick 1 � 106 3.5 � 107

Concrete 2 � 106 2 � 107
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This force is shared among eight bolts. Use Equation
9.4, taking F � F tot/8 and solving for �x:

� 5.51 � 10�5 m

 �x �
(F tot/8)h

AS
�

(3.68 � 105 N)(0.080 m)
�(4.50 � 10�2  m)2(8.40 � 1010 Pa)

 
F
A

� S  
�x
h

Remarks The Titan IV launch vehicle, which is capable of putting large satellites into geosynchronous orbit, has a
pair of strap-on boosters similar to this one. Notice that the bolts in this example are capable of supporting about
four times as much weight as needed. Because all materials either have or develop microscopic defects, a safety factor
has to be built in, so structures are designed to tolerate several times the maximum stresses they are expected to 
undergo.

Exercise 9.2
Calculate the diameter of a single steel horizontal bolt if it is expected to support a maximum load having a mass of
2.00 � 103 kg, but for safety reasons must be designed to support three times that load.

Answer 1.73 cm

EXAMPLE 9.3 Stressing a Lead Ball
Goal Apply the concepts of bulk stress and strain.

Problem A solid lead sphere of volume 0.50 m3, dropped in the ocean, sinks to a depth of 2.0 � 103 m (about 
1 mile), where the pressure increases by 2.0 � 107 Pa. Lead has a bulk modulus of 4.2 � 1010 Pa. What is the change
in volume of the sphere?

Strategy Solve Equation 9.5 for �V and substitute the given quantities.

Solution
Start with the definition of bulk modulus: B � � 

�P
�V/V

Solve for �V : �V � � 
V�P

B

Substitute the known values: �2.4 � 10�4 m3�V � � 
(0.50 m3)(2.0 � 107 Pa)

4.2 � 1010 Pa
�

Remarks The negative sign indicates a decrease in volume. The following exercise shows that even water can be com-
pressed, though not by much, despite the depth.

Multiply this result by eight to get the total shear force
that the eight bolts can support:

F tot � 1.27 � 107 N

(b) Calculate the shear deformation of one bolt at half
the maximum load.

The bolts must support the booster against the force of
gravity. The reaction to this force is the force exerted by
the booster on the bolts, equal in magnitude to the
weight of the booster.

F tot � mg � (3.00 � 105 kg)(9.80 m/s2) � 2.94 � 106 N

Solve for the force needed to shear off one bolt: F1 � �r 2(2.50 � 108 Pa)

� �(4.50 � 10�2 m)2(2.50 � 108 Pa)

� 1.59 � 106 N
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9.2 The Deformation of Solids 273

Arches and the Ultimate Strength of Materials
As we have seen, the ultimate strength of a material is the maximum force per unit
area the material can withstand before it breaks or fractures. Such values are of
great importance, particularly in the construction of buildings, bridges, and roads.
Table 9.2 gives the ultimate strength of a variety of materials under both tension
and compression. Note that bone and a variety of building materials (concrete,
brick, and marble) are stronger under compression than under tension. The
greater ability of brick and stone to resist compression is the basis of the semicircu-
lar arch, developed and used extensively by the Romans in everything from memo-
rial arches to expansive temples and aqueduct supports.

Before the development of the arch, the principal method of spanning a space
was the simple post-and-beam construction (Fig. 9.7a), in which a horizontal beam
is supported by two columns. This type of construction was used to build the great
Greek temples. The columns of these temples were closely spaced because of the
limited length of available stones and the low ultimate tensile strength of a sagging
stone beam.

The semicircular arch (Fig. 9.7b) developed by the Romans was a great techno-
logical achievement in architectural design. It effectively allowed the heavy load of
a wide roof span to be channeled into horizontal and vertical forces on narrow
supporting columns. The stability of this arch depends on the compression be-
tween its wedge-shaped stones. The stones are forced to squeeze against each
other by the uniform loading, as shown in the figure. This compression results in
horizontal outward forces at the base of the arch where it starts curving away from
the vertical. These forces must then be balanced by the stone walls shown on the
sides of the arch. It’s common to use very heavy walls (buttresses) on either side of
the arch to provide horizontal stability. If the foundation of the arch should move,
the compressive forces between the wedge-shaped stones may decrease to the ex-
tent that the arch collapses. The stone surfaces used in the arches constructed by
the Romans were cut to make very tight joints; mortar was usually not used. The
resistance to slipping between stones was provided by the compression force and
the friction between the stone faces.

A P P L I C AT I O N
Arch Structures in Buildings

Figure 9.7 (a) A simple post-and-beam structure. (b) The semicircular arch developed by the
Romans. (c) Gothic arch with flying buttresses to provide lateral support.

Post and beam
(a)

Semicircular arch (Roman)
(b)

Pointed arch (Gothic)
(c)

Gothic
arch

Flying
buttress

Flying
buttress

Exercise 9.3
(a) By what percentage does a similar globe of water shrink at that same depth? (b) What is the ratio of the new ra-
dius to the initial radius?

Answer (a) 0.95% (b) 0.997
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274 Chapter 9 Solids and Fluids

Another important architectural innovation was the pointed Gothic arch, shown
in Figure 9.7c. This type of structure was first used in Europe beginning in the
12th century, followed by the construction of several magnificent Gothic cathedrals
in France in the 13th century. One of the most striking features of these cathedrals
is their extreme height. For example, the cathedral at Chartres rises to 118 ft, and
the one at Reims has a height of 137 ft. Such magnificent buildings evolved over a
very short time, without the benefit of any mathematical theory of structures. How-
ever, Gothic arches required flying buttresses to prevent the spreading of the arch
supported by the tall, narrow columns.

9.3 DENSITY AND PRESSURE
Equal masses of aluminum and gold have an important physical difference: The
aluminum takes up over seven times as much space as the gold. While the reasons
for the difference lie at the atomic and nuclear levels, a simple measure of this dif-
ference is the concept of density.

The density � of an object having uniform composition is defined as its mass
M divided by its volume V :

[9.6]

SI unit: kilogram per meter cubed (kg/m3)

The most common units used for density are kilograms per cubic meter in the
SI system and grams per cubic centimeter in the cgs system. Table 9.3 lists the
densities of some substances. The densities of most liquids and solids vary slightly
with changes in temperature and pressure; the densities of gases vary greatly with
such changes. Under normal conditions, the densities of solids and liquids are
about 1 000 times greater than the densities of gases. This difference implies that
the average spacing between molecules in a gas under such conditions is about ten
times greater than in a solid or liquid.

The specific gravity of a substance is the ratio of its density to the density of
water at 4°C, which is 1.0 � 103 kg/m3. (The size of the kilogram was originally de-
fined to make the density of water 1.0 � 103 kg/m3 at 4°C.) By definition, specific
gravity is a dimensionless quantity. For example, if the specific gravity of a sub-
stance is 3.0, its density is 3.0(1.0 � 103 kg/m3) � 3.0 � 103 kg/m3.

� � 
M
V

TABLE 9.3
Densities of Some Common Substances
Substance �(kg/m3)a Substance �(kg/m3)a

Ice 0.917 � 103 Water 1.00 � 103

Aluminum 2.70 � 103 Glycerin 1.26 � 103

Iron 7.86 � 103 Ethyl alcohol 0.806 � 103

Copper 8.92 � 103 Benzene 0.879 � 103

Silver 10.5 � 103 Mercury 13.6 � 103

Lead 11.3 � 103 Air 1.29
Gold 19.3 � 103 Oxygen 1.43
Platinum 21.4 � 103 Hydrogen 8.99 � 10�2

Uranium 18.7 � 103 Helium 1.79 � 10�1

aAll values are at standard atmospheric temperature and pressure (STP), 
defined as 0°C (273 K) and 1 atm (1.013 � 105 Pa). To convert to grams per 
cubic centimeter, multiply by 10�3.

Density �
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9.3 Density and Pressure 275

Fluids don’t sustain shearing stresses, so the only stress that a fluid can exert on
a submerged object is one that tends to compress it, which is bulk stress. The force
exerted by the fluid on the object is always perpendicular to the surfaces of the ob-
ject, as shown in Figure 9.8a.

The pressure at a specific point in a fluid can be measured with the device pic-
tured in Figure 9.8b: an evacuated cylinder enclosing a light piston connected to a
spring that has been previously calibrated with known weights. As the device is sub-
merged in a fluid, the fluid presses down on the top of the piston and compresses
the spring until the inward force exerted by the fluid is balanced by the outward
force exerted by the spring. Let F be the magnitude of the force on the piston and
A the area of the top surface of the piston. Notice that the force that compresses
the spring is spread out over the entire area, motivating our formal definition of
pressure:

If F is the magnitude of a force exerted perpendicular to a given surface of
area A, then the pressure P is the force divided by the area:

[9.7]

SI unit: pascal (Pa)

Because pressure is defined as force per unit area, it has units of pascals (newtons
per square meter). The English customary unit for pressure is the pound per inch
squared. Atmospheric pressure at sea level is 14.7 lb/in2, which in SI units is
1.01 � 105 Pa.

As we see from Equation 9.7, the effect of a given force depends critically on
the area to which it’s applied. A 700-N man can stand on a vinyl-covered floor in
regular street shoes without damaging the surface, but if he wears golf shoes, the
metal cleats protruding from the soles can do considerable damage to the floor.
With the cleats, the same force is concentrated into a smaller area, greatly elevat-
ing the pressure in those areas, resulting in a greater likelihood of exceeding the
ultimate strength of the floor material.

Snowshoes use the same principle (Fig. 9.9). The snow exerts an upward nor-
mal force on the shoes to support the person’s weight. According to Newton’s
third law, this upward force is accompanied by a downward force exerted by the
shoes on the snow. If the person is wearing snowshoes, that force is distributed
over the very large area of each snowshoe, so that the pressure at any given point is
relatively low and the person doesn’t penetrate very deeply into the snow.

P � 
F
A

Suppose you have one cubic meter of gold, two cubic meters of silver, and six cu-
bic meters of aluminum. Rank them by mass, from smallest to largest. (a) gold,
aluminum, silver (b) gold, silver, aluminum (c) aluminum, gold, silver (d) silver,
aluminum, gold

Quick Quiz 9.1

(a)

F

Vacuum

A

(b)

FIGURE 9.8 (a) The force exerted
by a fluid on a submerged object at
any point is perpendicular to the sur-
face of the object. The force exerted
by the fluid on the walls of the con-
tainer is perpendicular to the walls at
all points and increases with depth.
(b) A simple device for measuring
pressure in a fluid.

TIP 9.1 Force and Pressure
Equation 9.7 makes a clear distinc-
tion between force and pressure.
Another important distinction is that
force is a vector and pressure is a scalar.
There is no direction associated with
pressure, but the direction of the
force associated with the pressure is
perpendicular to the surface of
interest.

� Average pressure

Figure 9.9 Snowshoes prevent the
person from sinking into the soft
snow because the force on the snow is
spread over a larger area, reducing
the pressure on the snow’s surface. 
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After an exciting but exhausting lecture, a physics pro-
fessor stretches out for a nap on a bed of nails, as in
Figure 9.10, suffering no injury and only moderate
discomfort. How is this possible?

Explanation If you try to support your entire weight
on a single nail, the pressure on your body is your
weight divided by the very small area of the end of the
nail. The resulting pressure is large enough to pene-
trate the skin. If you distribute your weight over
several hundred nails, however, as demonstrated by
the professor, the pressure is considerably reduced
because the area that supports your weight is the total
area of all nails in contact with your body. (Why is
lying on a bed of nails more comfortable than sitting
on the same bed? Extend the logic to show that it

would be more uncomfortable yet to stand on a bed
of nails without shoes.)

Applying Physics 9.1 Bed of Nails Trick

Figure 9.10 (Applying Physics 9.1) Does anyone have a pillow?

EXAMPLE 9.4 The Water Bed
Goal Calculate a density and a pressure from a weight.

Problem A water bed is 2.00 m on a side and 30.0 cm deep. (a) Find its weight. (b) Find the pressure that the water
bed exerts on the floor. Assume that the entire lower surface of the bed makes contact with the floor.

Strategy Density is mass per unit volume: first, find the volume of the bed and multiply it by the density of water to
get the bed’s mass. Multiplying by the acceleration of gravity then gives the weight of the bed. The weight divided by
the area of floor the bed rests upon gives the pressure exerted on the floor.

Solution
(a) Find the weight of the water bed.

First, find the volume of the bed: V � lwh � (2.00 m)(2.00 m)(0.300 m) � 1.20 m3

Solve the density equation for the mass and substitute,
then multiply the result by g to get the weight:

M � �V � (1.00 � 103 kg/m3)(1.20 m3) � 1.20 � 103 kg

w � Mg � (1.20 � 103 kg)(9.80 m/s2) � 1.18 � 104 N

� �
M
V

(b) Find the pressure that the bed exerts on the floor.

Use the cross-sectional area A � 4.00 m2 and the value
of w from part (a) to get the pressure:

2.95 � 103 PaP �
F
A

�
w
A

�
1.18 � 104 N

4.00 m2 �

Remarks Notice that the answer to part (b) is far less than atmospheric pressure. Water is heavier than air for a
given volume, but the air is stacked up considerably higher (100 km!). The total pressure exerted on the floor would
include the pressure of the atmosphere.

Exercise 9.4
Calculate the pressure exerted by the water bed on the floor if the bed rests on its side.

Answer 1.97 � 104 Pa
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9.4 Variation of Pressure with Depth 277

9.4 VARIATION OF PRESSURE WITH DEPTH
When a fluid is at rest in a container, all portions of the fluid must be in static equi-
librium—at rest with respect to the observer. Furthermore, all points at the same
depth must be at the same pressure. If this were not the case, fluid would flow from
the higher pressure region to the lower pressure region. For example, consider the
small block of fluid shown in Figure 9.11a. If the pressure were greater on the
left side of the block than on the right, would be greater than , and the block
would accelerate to the right and thus would not be in equilibrium.

Next, let’s examine the fluid contained within the volume indicated by the
darker region in Figure 9.11b. This region has cross-sectional area A and extends
from position y1 to position y2 below the surface of the liquid. Three external
forces act on this volume of fluid: the force of gravity, Mg ; the upward force P2A
exerted by the liquid below it; and a downward force P1A exerted by the fluid
above it. Because the given volume of fluid is in equilibrium, these forces must add
to zero, so we get

[9.8]

From the definition of density, we have

M � �V � �A(y1 � y2) [9.9]

Substituting Equation 9.9 into Equation 9.8, canceling the area A, and rearranging
terms, we get

[9.10]

Notice that (y1 � y2) is positive, because y2 � y1. The force P2A is greater than
the force P1A by exactly the weight of water between the two points. This is the
same principle experienced by the person at the bottom of a pileup in football
or rugby.

Atmospheric pressure is also caused by a piling up of fluid—in this case, the
fluid is the gas of the atmosphere. The weight of all the air from sea level to the
edge of space results in an atmospheric pressure of P0 � 1.013 � 105 Pa (equiva-
lent to 14.7 lb/in.2) at sea level. This result can be adapted to find the pressure P
at any depth h � (y1 � y2) � (0 � y2) below the surface of the water:

[9.11]

According to Equation 9.11, the pressure P at a depth h below the surface of a liq-
uid open to the atmosphere is greater than atmospheric pressure by the amount
�gh. Moreover, the pressure isn’t affected by the shape of the vessel, as shown in
Figure 9.12.

P � P0 � �gh

P2 � P1 � �g(y1 � y2)

P2A � P1A � Mg � 0

F
:

2F
:

1

(b)

Mg

h

P

y

0

1

y1

y2

A

P2A

1

(a)

F 2F
Figure 9.11 (a) If the block of
fluid is to be in equilibrium, the
force must balance the force .
(b) The net force on the volume 
of liquid within the darker region
must be zero.

F
:

2F
:

1

Figure 9.12 This photograph illus-
trates the fact that the pressure in a
liquid is the same at all points lying at
the same elevation. For example, the
pressure is the same at points A, B, C,
and D. Note that the shape of the ves-
sel does not affect the pressure.
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The pressure at the bottom of a glass filled with water (� � 1 000 kg/m3) is P. The
water is poured out and the glass is filled with ethyl alcohol (� � 806 kg/m3). The
pressure at the bottom of the glass is now (a) smaller than P (b) equal to P
(c) larger than P (d) indeterminate.

Quick Quiz 9.2

EXAMPLE 9.5 Oil and Water
Goal Calculate pressures created by layers of different fluids.

Problem In a huge oil tanker, salt water has flooded an oil tank to a depth of
5.00 m. On top of the water is a layer of oil 8.00 m deep, as in the cross-sectional
view of the tank in Figure 9.13. The oil has a density of 0.700 g/cm3. Find the
pressure at the bottom of the tank. (Take 1 025 kg/m3 as the density of salt water.)

Strategy Equation 9.11 must be used twice. First, use it to calculate the pressure
P1 at the bottom of the oil layer. Then use this pressure in place of P0 in Equation
9.11 and calculate the pressure P bot at the bottom of the water layer.

P1

P0

Pbot

air

oil

waterh2

h1

Figure 9.13 (Example 9.5)

Solution
Use Equation 9.11 to calculate the pressure at the bot-
tom of the oil layer:

P1 � P0 � �gh1 (1)

� 1.01 � 105 Pa

� (7.00 � 102 kg/m3)(9.80 m/s2)(8.00 m)

P1 � 1.56 � 105 Pa

Now adapt Equation 9.11 to the new starting pressure,
and use it to calculate the pressure at the bottom of the
water layer:

P bot � P1 � �gh2 (2)

� 1.56 � 105 Pa

� (1.025 � 103 kg/m3)(9.80 m/s2)(5.00 m)

P bot � 2.06 � 105 Pa

Remark The weight of the atmosphere results in P0 at the surface of the oil layer. Then the weight of the oil and
the weight of the water combine to create the pressure at the bottom.

Exercise 9.5
Calculate the pressure on the top lid of a chest buried under 4.00 meters of mud with density 1.75 � 103 kg/m3 at
the bottom of a 10.0-m-deep lake.

Answer 2.68 � 105 Pa

EXAMPLE 9.6 A Pain in the Ear
Goal Calculate a pressure difference at a given depth, and estimate a force.

Problem Estimate the net force exerted on your eardrum due to the water above when you are swimming at the
bottom of a pool that is 5.0 m deep.

Strategy Use Equation 9.11 to find the pressure difference across the eardrum at the given depth. The air inside
the ear is generally at atmospheric pressure. Estimate the eardrum’s surface area, then use the definition of pressure
to get the net force exerted on the eardrum.

Solution
Use Equation 9.11 to calculate the difference between
the water pressure at the depth h and the pressure in-
side the ear:

�P � P � P0 � �gh

� (1.00 � 103 kg/m3)(9.80 m/s2)(5.0 m)

� 4.9 � 104 Pa

Mutliply by area A to get the net force on the eardrum
associated with this pressure difference, estimating the
area of the eardrum as 1 cm2.

F net � A�P � ( 1 � 10�4 m2) (4.9 � 104 Pa) � 5 N
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In view of the fact that the pressure in a fluid depends on depth and on the
value of P0, any increase in pressure at the surface must be transmitted to every
point in the fluid. This was first recognized by the French scientist Blaise Pascal
(1623–1662) and is called Pascal’s principle:

A change in pressure applied to an enclosed fluid is transmitted undimin-
ished to every point of the fluid and to the walls of the container.

An important application of Pascal’s principle is the hydraulic press (Fig.
9.14a). A downward force is applied to a small piston of area A1. The pressure is
transmitted through a fluid to a larger piston of area A2. As the pistons move and
the fluids in the left and right cylinders change their relative heights, there are
slight differences in the pressures at the input and output pistons. Neglecting
these small differences, the fluid pressure on each of the pistons may be taken to
be the same; P1 � P2. From the definition of pressure, it then follows that F1/A1 �
F 2/A2. Therefore, the magnitude of the force is larger than the magnitude of

by the factor A2/A1. That’s why a large load, such as a car, can be moved on the
large piston by a much smaller force on the smaller piston. Hydraulic brakes, car
lifts, hydraulic jacks, forklifts, and other machines make use of this principle.

F
:

1

F
:

2

F
:

1

Remarks Because a force on the eardrum of this magnitude is uncomfortable, swimmers often “pop their ears” by
swallowing or expanding their jaws while underwater, an action that pushes air from the lungs into the middle ear.
Using this technique equalizes the pressure on the two sides of the eardrum and relieves the discomfort.

Exercise 9.6
An airplane takes off at sea level and climbs to a height of 425 m. Estimate the net outward force on a passenger’s
eardrum assuming the density of air is approximately constant at 1.3 kg/m3 and that the inner ear pressure hasn’t
been equalized.

Answer 0.54 N

1

F2

A2A1
x1�

x2�

F

(a) (b)

Figure 9.14 (a) Diagram of a hydraulic press (Example 9.7). Because the pressure is the same at
the left and right sides, a small force at the left produces a much larger force at the right. 
(b) A vehicle under repair is supported by a hydraulic lift in a garage.
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A P P L I C AT I O N
Hydraulic Lifts
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INTERACTIVE EXAMPLE 9.7 The Car Lift
Goal Apply Pascal’s principle to a car lift, and show that the input work is the same as the output work.

Problem In a car lift used in a service station, compressed air exerts a force on a small piston of circular cross sec-
tion having a radius of r1 � 5.00 cm. This pressure is transmitted by an incompressible liquid to a second piston of
radius r 2 � 15.0 cm. (a) What force must the compressed air exert on the small piston in order to lift a car weighing
13 300 N? Neglect the weights of the pistons. (b) What air pressure will produce a force of that magnitude? (c) Show
that the work done by the input and output pistons is the same.

Strategy Substitute into Pascal’s principle in part (a), while recognizing that the magnitude of the output force,
F 2, must be equal to the car’s weight in order to support it. Use the definition of pressure in part (b). In part (c), use
W � F�x to find the ratio W1/W 2, showing that it must equal 1. This requires combining Pascal’s principle with the
fact that the input and output pistons move through the same volume.

Solution
(a) Find the necessary force on the small piston.

Substitute known values into Pascal’s principle, using 
A � �r 2 for the area.

� 1.48 � 103 N

 �
�(5.00 � 10�2 m)2

�(15.0 � 10�2 m)2  (1.33 � 104 N)

 F1 � � A1

A2
�F2 �

�r1
2

�r2
2  F2

(b) Find the air pressure producing F1.

Substitute into the definition of pressure: 1.88 � 105 PaP �
F1

A1
�

1.48 � 103 N
�(5.00 � 10�2 m)2 �

(c) Show that the work done by the input and output
pistons is the same.

First equate the volumes, and solve for the ratio of A2
to A1:

V1 � V2 : A1�x1 � A2�x2

A2

A1
�

�x1

�x2

Now use Pascal’s principle to get a relationship for
F1/F2:

F1

A1
�

F 2

A2
 : F1

F2
�

A1

A2

Evaluate the work ratio, substituting the preceding two
results:

 W1 � W2

W1

W2
�

F 1�x1

F 2�x2
� � F 1

F 2
�� �x1

�x2
� � � A1

A2
�� A2

A1
� � 1

Remark In this problem, we didn’t address the effect of possible differences in the heights of the pistons. If the
column of fluid is higher in the small piston, the fluid weight assists in supporting the car, reducing the necessary
applied force. If the column of fluid is higher in the large piston, both the car and the extra fluid must be supported,
so additional applied force is required.

Exercise 9.7
A hydraulic lift has pistons with diameters 8.00 cm and 36.0 cm, respectively. If a force of 825 N is exerted at the
input piston, what maximum mass can be lifted by the output piston?

Answer 1.70 � 103 kg

You can adjust the weight of the truck in Figure 9.14a by logging into PhysicsNow at www.cp7e.com
and going to Interactive Example 9.7.
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9.5 PRESSURE MEASUREMENTS
A simple device for measuring pressure is the open-tube manometer (Fig. 9.16a).
One end of a U-shaped tube containing a liquid is open to the atmosphere, and
the other end is connected to a system of unknown pressure P. The pressure at
point B equals P0 � �gh, where � is the density of the fluid. The pressure at B,
however, equals the pressure at A, which is also the unknown pressure P. We con-
clude that P � P0 � �gh.

The pressure P is called the absolute pressure, and P � P0 is called the gauge
pressure. If P in the system is greater than atmospheric pressure, h is positive. If P
is less than atmospheric pressure (a partial vacuum), h is negative, meaning that
the right-hand column in Figure 9.16a is lower than the left-hand column.

Another instrument used to measure pressure is the barometer (Fig. 9.16b), in-
vented by Evangelista Torricelli (1608–1647). A long tube closed at one end is
filled with mercury and then inverted into a dish of mercury. The closed end of
the tube is nearly a vacuum, so its pressure can be taken to be zero. It follows that
P0 � �gh, where � is the density of the mercury and h is the height of the mercury
column. Note that the barometer measures the pressure of the atmosphere,
whereas the manometer measures pressure in an enclosed fluid.

One atmosphere of pressure is defined to be the pressure equivalent of a col-
umn of mercury that is exactly 0.76 m in height at 0°C with g � 9.806 65 m/s2. At
this temperature, mercury has a density of 13.595 � 103 kg/m3; therefore,

P0 � �gh � (13.595 � 103 kg/m3)(9.806 65 m/s2)(0.760 0 m)

� 1.013 � 105 Pa � 1 atm

It is interesting to note that the force of the atmosphere on our bodies (assum-
ing a body area of 2 000 in2) is extremely large, on the order of 30 000 lb! If it
were not for the fluids permeating our tissues and body cavities, our bodies would
collapse. The fluids provide equal and opposite forces. In the upper atmosphere
or in space, sudden decompression can lead to serious injury and death. Air re-
tained in the lungs can damage the tiny alveolar sacs, and intestinal gas can even
rupture internal organs.

A corollary to the statement that pressure in a fluid in-
creases with depth is that water always seeks its own
level. This means that if a vessel is filled with water,
then regardless of the vessel’s shape the surface of the
water is perfectly flat and at the same height at all
points. The ancient Egyptians used this fact to make
the pyramids level. Devise a scheme showing how this
could be done.

Explanation There are many ways it could be done,
but Figure 9.15 shows the scheme used by the
Egyptians. The builders cut grooves in the base of the
pyramid as in (a) and partially filled the grooves with

water. The height of the water was marked as in (b),
and the rock was chiseled down to the mark, as in 
(c). Finally, the groove was filled with crushed rock
and gravel, as in (d).

Applying Physics 9.2 Building the Pyramids

(a) (b) (c) (d)

Figure 9.15 (Applying Physics 9.2)

P = 0

P0h

(b)

(a)

P

A B

P0

h

Figure 9.16 Two devices for mea-
suring pressure: (a) an open-tube
manometer and (b) a mercury
barometer.

Several common barometers are built using a variety of fluids. For which fluid will
the column of fluid in the barometer be the highest? (Refer to Table 9.3.) (a) mer-
cury (b) water (c) ethyl alcohol (d) benzene.

Quick Quiz 9.3
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Blood Pressure Measurements
A specialized manometer (called a sphygmomanometer) is often used to measure
blood pressure. In this application, a rubber bulb forces air into a cuff wrapped
tightly around the upper arm and simultaneously into a manometer, as in Fig-
ure 9.17. The pressure in the cuff is increased until the flow of blood through the
brachial artery in the arm is stopped. A valve on the bulb is then opened, and the
measurer listens with a stethoscope to the artery at a point just below the cuff.
When the pressure in the cuff and brachial artery is just below the maximum value
produced by the heart (the systolic pressure), the artery opens momentarily on
each beat of the heart. At this point, the velocity of the blood is high and turbu-
lent, and the flow is noisy and can be heard with the stethoscope. The manometer
is calibrated to read the pressure in millimeters of mercury, and the value ob-
tained is about 120 mm for a normal heart. Values of 130 mm or above are consid-
ered high, and medication to lower the blood pressure is often prescribed for such
patients. As the pressure in the cuff is lowered further, intermittent sounds are still
heard until the pressure falls just below the minimum heart pressure (the diastolic
pressure). At this point, continuous sounds are heard. In the normal heart, this
transition occurs at about 80 mm of mercury, and values above 90 require medical
intervention. Blood pressure readings are usually expressed as the ratio of the
systolic pressure to the diastolic pressure, which is 120/80 for a healthy heart.

A P P L I C AT I O N
Measuring Blood Pressure

Stethoscope

Manometer

Cuff

Rubber
bulb

Figure 9.17 A sphygmomanome-
ter can be used to measure blood
pressure.

Blood pressure is normally measured with the cuff of the sphygmomanometer
around the arm. Suppose that the blood pressure is measured with the cuff
around the calf of the leg of a standing person. Would the reading of the blood
pressure be (a) the same here as it is for the arm? (b) greater than it is for the
arm? or (c) less than it is for the arm?

Quick Quiz 9.4

In a ballpoint pen, ink moves down a tube to the tip,
where it is spread on a sheet of paper by a rolling
stainless steel ball. Near the top of the ink cartridge,
there is a small hole open to the atmosphere. If you
seal this hole, you will find that the pen no longer
functions. Use your knowledge of how a barometer
works to explain this behavior.

Explanation If the hole is sealed, or if it were not
present, the pressure of the air above the ink would

decrease as the ink gets used. Consequently, atmos-
pheric pressure exerted against the ink at the bottom
of the cartridge would prevent some of the ink from
flowing out. The hole allows the pressure above the
ink to remain at atmospheric pressure. Why does a
ballpoint pen seem to run out of ink when you write
on a vertical surface?

Applying Physics 9.3 Ballpoint Pens

9.6 BUOYANT FORCES AND ARCHIMEDES’S 
PRINCIPLE

A fundamental principle affecting objects submerged in fluids was discovered by
the Greek mathematician and natural philosopher Archimedes. Archimedes’s
principle can be stated as follows:

Any object completely or partially submerged in a fluid is buoyed up by a
force with magnitude equal to the weight of the fluid displaced by the object.

Many historians attribute the concept of buoyancy to Archimedes’s “bathtub
epiphany,” when he noticed an apparent change in his weight upon lowering him-
self into a tub of water. As will be seen in Example 9.8, buoyancy yields a method
of determining density.

Archimedes’s principle �
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Everyone has experienced Archimedes’s principle. It’s relatively easy, for exam-
ple, to lift someone if you’re both standing in a swimming pool, whereas lifting
that same individual on dry land may be a difficult task. Water provides partial sup-
port to any object placed in it. We often say that an object placed in a fluid is
buoyed up by the fluid, so we call this upward force the buoyant force.

The buoyant force is not a mysterious new force that arises in fluids. In fact, the
physical cause of the buoyant force is the pressure difference between the upper
and lower sides of the object, which can be shown to be equal to the weight of the
displaced fluid. In Figure 9.18a, the fluid inside the indicated sphere, colored
darker blue, is pressed on all sides by the surrounding fluid. Arrows indicate the
forces arising from the pressure. Because pressure increases with depth, the arrows
on the underside are larger than those on top. Adding them all up, the horizontal
components cancel, but there is a net force upwards. This force, due to differ-
ences in pressure, is the buoyant force . The sphere of water neither rises nor
falls, so the vector sum of the buoyant force and the force of gravity on the sphere
of fluid must be zero, and it follows that B � Mg, where M is the mass of the fluid.

Replacing the shaded fluid with a bowling ball of the same volume, as in Figure
9.18b, changes only the mass on which the pressure acts, so the buoyant force is
the same: B � Mg, where M is the mass of the displaced fluid, not the mass of the
bowling ball. The force of gravity on the heavier ball is greater than it was on the
fluid, so the bowling ball sinks.

Archimedes’s principle can also be obtained from Equation 9.8, relating pres-
sure and depth, using Figure 9.11b. Horizontal forces from the pressure cancel,
but in the vertical direction P2A acts upwards on the bottom of the block of fluid
and P1A and the gravity force on the fluid, Mg, act downwards, giving

[9.12a]

where the buoyancy force has been identified as a difference in pressure equal in
magnitude to the weight of the displaced fluid. This buoyancy force remains the
same regardless of the material occupying the volume in question because it’s due
to the surrounding fluid. Using the definition of density, Equation 9.12a becomes

B � �fluidVfluidg [9.12b]

where �fluid is the density of the fluid and Vfluid is the volume of the displaced
fluid. This result applies equally to all shapes, because any irregular shape can be
approximated by a large number of infinitesimal cubes.

It’s instructive to compare the forces on a totally submerged object with those
on a floating object.

Case I: A Totally Submerged Object. When an object is totally submerged in a
fluid of density �fluid, the upward buoyant force acting on the object has a magni-
tude of B � �fluidVobjg, where Vobj is the volume of the object. If the object has
density �obj, the downward gravitational force acting on the object has a magni-

B � P2A � P1A � Mg

B
:

ARCHIMEDES: Greek
Mathematician, Physicist,
and Engineer (287–212 B.C.)
Archimedes was perhaps the greatest
scientist of antiquity. He is well known for
discovering the nature of the buoyant
force and was a gifted inventor. According
to legend, Archimedes was asked by King
Hieron to determine whether the king’s
crown was made of pure gold or merely a
gold alloy. The task was to be performed
without damaging the crown. Archimedes
allegedly arrived at a solution while taking
a bath, noting a partial loss of weight
after submerging his arms and legs in the
water. As the story goes, he was so excited
about his great discovery that he ran
naked through the streets of Syracuse,
shouting, “Eureka!” which is Greek for 
“I have found it.”
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Figure 9.18 (a) The arrows indi-
cate forces on the sphere of fluid due
to pressure, larger on the underside
because pressure increases with
depth. The net upward force is the
buoyant force. (b) The buoyant force,
which is caused by the surrounding
fluid, is the same on any object of the
same volume, including this bowling
ball. The magnitude of the buoyant
force is equal to the weight of the
displaced fluid.

TIP 9.2 Buoyant Force 
is Exerted by the Fluid
The buoyant force on an object is
exerted by the fluid and is the same,
regardless of the density of the
object. Objects more dense than the
fluid sink; objects less dense rise.

44337_09_p266-320  10/28/04  11:16 AM  Page 283



284 Chapter 9 Solids and Fluids

tude equal to w � mg � �objVobjg, and the net force on it is B � w � (�fluid �
�obj)Vobjg. Therefore, if the density of the object is less than the density of the
fluid, as in Active Figure 9.19a, the net force exerted on the object is positive (up-
ward) and the object accelerates upward. If the density of the object is greater than
the density of the fluid, as in Active Figure 9.19b, the net force is negative and the
object accelerates downwards.

Case II: A Floating Object. Now consider a partially submerged object in static
equilibrium floating in a fluid, as in Active Figure 9.20. In this case, the upward
buoyant force is balanced by the downward force of gravity acting on the object. If
Vfluid is the volume of the fluid displaced by the object (which corresponds to the
volume of the part of the object beneath the fluid level), then the magnitude of
the buoyant force is given by B � �fluidVfluidg. Because the weight of the object is
w � mg � �objVobjg, and because w � B, it follows that �fluidVfluidg � �objVobjg, or

[9.13]

Equation 9.13 neglects the buoyant force of the air, which is slight, because the
density of air is only 1.29 kg/m3 at sea level. 

Under normal circumstances, the average density of a fish is slightly greater
than the density of water, so it would sink if it didn’t have a mechanism for adjust-
ing its density. By changing the size of an internal swim bladder, fish maintain neu-
tral buoyancy as they swim to various depths.

The human brain is immersed in a fluid (the cerebrospinal fluid) of density
1 007 kg/m3, which is slightly less than the average density of the brain,
1 040 kg/m3. Consequently, most of the weight of the brain is supported by the
buoyant force of the surrounding fluid. In some clinical procedures, a portion of
this fluid must be removed for diagnostic purposes. During such procedures, the
nerves and blood vessels in the brain are placed under great strain, which in turn
can cause extreme discomfort and pain. Great care must be exercised with such
patients until the initial volume of brain fluid has been restored by the body.

When service station attendants check the antifreeze in your car or the condition
of your battery, they often use devices that apply Archimedes’s principle. Figure 9.21
shows a common device that is used to check the antifreeze in a car radiator. The
small balls in the enclosed tube vary in density, so that all of them float when the
tube is filled with pure water, none float in pure antifreeze, one floats in a 5% mix-
ture, two in a 10% mixture, and so forth. The number of balls that float is a meas-
ure of the percentage of antifreeze in the mixture, which in turn is used to deter-
mine the lowest temperature the mixture can withstand without freezing.

Similarly, the degree of charge in some car batteries can be determined with a
so-called magic-dot process that is built into the battery (Fig. 9.22). Inside a view-
ing port in the top of the battery, the appearance of an orange dot indicates that
the battery is sufficiently charged; a black dot indicates that the battery has lost its
charge. If the battery has sufficient charge, the density of the battery fluid is high
enough to cause the orange ball to float. As the battery loses its charge, the density

�obj

�fluid
�

V fluid

Vobj

B

mg

(a)

B

(b)

a
a

mg

ACTIVE FIGURE 9.19
(a) A totally submerged object that is less
dense than the fluid in which it is sub-
merged is acted upon by a net upward
force. (b) A totally submerged object that
is denser than the fluid sinks.

Log into PhysicsNow at www.cp7e.com,
and go to Active Figure 9.19 to move the
object to new positions, as well as change
the density of the object, and see the re-
sults.

B

Fg

ACTIVE FIGURE 9.20
An object floating on the surface of a
fluid is acted upon by two forces: the
gravitational force and the buoyant
force . These two forces are equal in
magnitude and opposite in direction.

Log into PhysicsNow at www.cp7e.com,
and go to Active Figure 9.20 to change
the densities of the object and the
fluid and see the results.

B
:

F
:

g

Balls of different
densities

Tubing to draw
antifreeze from
the radiator

Figure 9.21 The number of balls
that float in this device is a measure
of the density of the antifreeze
solution in a vehicle’s radiator and,
consequently, a measure of the tem-
perature at which freezing will occur.

Hot-air balloons. Because hot air is
less dense than cold air, there is a net
upward force on the balloons. 
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A P P L I C AT I O N
Cerebrospinal Fluid
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of the battery fluid decreases and the ball sinks beneath the surface of the fluid,
leaving the dot to appear black.

Battery
fluid

Charged battery Discharged battery

Figure 9.22 The orange ball in the
plastic tube inside the battery serves
as an indicator of whether the battery
is (a) charged or (b) discharged. As
the battery loses its charge, the den-
sity of the battery fluid decreases, and
the ball sinks out of sight.

A P P L I C AT I O N
Checking the Battery Charge

Atmospheric pressure varies from day to day. The level of a floating ship on a high-
pressure day is (a) higher (b) lower, or (c) no different than on a low-pressure day.

Quick Quiz 9.5

The density of lead is greater than iron, and both metals are denser than water. Is
the buoyant force on a solid lead object (a) greater than, (b) equal to, or (c) less
than the buoyant force acting on a solid iron object of the same dimensions?

Quick Quiz 9.6

Most of the volume of this iceberg
is beneath the water. Can you
determine what fraction of the total
volume is under water?
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EXAMPLE 9.8 A Red-Tag Special on Crowns
Goal Apply Archimedes’s principle to a submerged object.

Problem A bargain hunter purchases a “gold” crown at a flea
market. After she gets home, she hangs it from a scale and
finds its weight to be 7.84 N (Fig. 9.23a). She then weighs the
crown while it is immersed in water, as in Figure 9.23b, and
now the scale reads 6.86 N. Is the crown made of pure gold?

Strategy The goal is to find the density of the crown and com-
pare it to the density of gold. We already have the weight of the
crown in air, so we can get the mass by dividing by the accelera-
tion of gravity. If we can find the volume of the crown, we can
obtain the desired density by dividing the mass by this volume.

When the crown is fully immersed, the displaced water is
equal to the volume of the crown. This same volume is used in
calculating the buoyant force. So our strategy is as follows:
(1) Apply Newton’s second law to the crown, both in the water
and in the air to find the buoyant force. (2) Use the buoyant
force to find the crown’s volume. (3) Divide the crown’s scale
weight in air by the acceleration of gravity to get the mass, then
by the volume to get the density.

(b)(a)

B

Tair

Twater

mg

mg

Figure 9.23 (Example 9.8) (a) When the crown is
suspended in air, the scale reads Tair � mg, the crown’s true
weight. (b) When the crown is immersed in water, the buoyant
force reduces the scale reading by the magnitude of the
buoyant force, T water � mg � B.

B
:

Solution
Apply Newton’s second law to the crown when it’s
weighed in air. There are two forces on the crown—
gravity and , the force exerted by the scale on the
crown, with magnitude equal to the reading on the scale.

T
:

airmg:

(1)T air � mg � 0
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When the crown is immersed in water, the scale force is
, with magnitude equal to the scale reading, and

there is an upward buoyant force and the force of gravity.B
:

T
:

water

(2)T water � mg �  B � 0

Solve Equation (1) for mg, substitute into Equation (2),
and solve for the buoyant force, which equals the differ-
ence in scale readings:

B � T air � T water � 7.84 N � 6.86 N � 0.980 N

T water � T air � B � 0

Find the volume of the displaced water, using the fact
that the magnitude of the buoyant force equals the
weight of the displaced water:

B � �watergVwater � 0.980 N

 � 1.00 � 10�4 m3

 V water �
0.980 N
g� water

�
0.980 N

(9.80 m/s2)(1.00 � 103 kg/m3)

The crown is totally submerged, so Vcrown � Vwater.
From Equation (1), the mass is the crown’s weight in air,
Tair, divided by g :

m �
T air

g
�

7.84 N
9.80 m/s2 � 0.800 kg

Find the density of the crown: 8.00 � 103 kg/m3�crown �
m

Vcrown
�

0.800 kg
1.00 � 10�4 m3 �

Remarks Because the density of gold is 19.3 � 103 kg/m3, the crown is either hollow, made of an alloy, or both. De-
spite the mathematical complexity, it is certainly conceivable that this was the method that occurred to Archimedes.
Conceptually, it’s a matter of realizing (or guessing) that equal weights of gold and a silver–gold alloy would have dif-
ferent scale readings when immersed in water, because their densities and hence their volumes are different, leading
to differing buoyant forces.

Exercise 9.8
The weight of a metal bracelet is measured to be 0.100 N in air and 0.092 N when immersed in water. Find its density.

Answer 1.25 � 104 kg/m3

EXAMPLE 9.9 Floating down the River
Goal Apply Archimedes’s principle to a partially submerged object.

Problem A raft is constructed of wood having a density of 6.00 � 102 kg/m3. Its surface area is 5.70 m2, and its
volume is 0.60 m3. When the raft is placed in fresh water as in Figure 9.24, to what depth h is the bottom of the raft
submerged?

Strategy There are two forces acting on the raft: the buoy-
ant force of magnitude B, acting upwards, and the force of
gravity, acting downwards. Because the raft is in equilibrium,
the sum of these forces is zero. The buoyant force depends
on the submerged volume V water � Ah. Set up Newton’s sec-
ond law and solve for h, the depth reached by the bottom of
the raft.

A

h

Figure 9.24 (Example 9.9) A raft partially submerged in water.

Solution
Apply Newton’s second law to the raft, which is in
equilibrium:

B � m raftg � 0 : B � m raftg

The volume of the raft submerged in water is given by
Vwater � Ah. The magnitude of the buoyant force is
equal to the weight of this displaced volume of water:

B � mwaterg � (�waterVwater)g � (�waterAh)g

Now rewrite the gravity force on the raft using the raft’s
density and volume:

m raftg � (� raftV raft)g
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9.6 Buoyant Forces and Archimedes’s Principle 287

Substitute these two expressions into Newton’s second
law, B � m raftg, and solve for h (note that g cancels):

(�waterAh) � (� raftV raft)

� 0.063 2 m

 �
(6.00 � 102 kg/m3)(0.600 m3)
(1.00 � 103 kg/m3)(5.70 m2)

 h �
�raftVraft

�waterA

gg

Remarks How low the raft rides in the water depends on the density of the raft. The same is true of the human
body: Fat is less dense than muscle and bone, so those with a higher percentage of body fat float better.

Exercise 9.9
Calculate how much of an iceberg is beneath the surface of the ocean, given that the density of ice is 917 kg/m3, and
salt water has density 1 025 kg/m3.

Answer 89.5%

EXAMPLE 9.10 Floating in Two Fluids
Goal Apply Archimedes’s principle to an object
floating in a fluid having two layers with different
densities.

Problem A 1.00 � 103-kg cube of aluminum is
placed in a tank. Water is then added to the tank
until half the cube is immersed. (a) What is the
normal force on the cube? (See Fig. 9.25a.)
(b) Mercury is now slowly poured into the tank
until the normal force on the cube goes to zero.
(See Fig. 9.25b.) How deep is the layer of mercury?

Strategy Both parts of this problem involve ap-
plications of Newton’s second law for a body in
equilibrium, together with the concept of a buoy-
ant force. In part (a), the normal, gravitational,
and buoyant force of water act on the cube. In part
(b), there is an additional buoyant force of mer-
cury, while the normal force goes to zero. Using 
VHg � Ah, solve for the height of mercury, h.

wat

(a)

B

MAl g

MAl g

n

wat

(b)

BHgB

Figure 9.25 (Example 9.10)

Solution
(a) Find the normal force on the cube when half-
immersed in water.

Calculate the volume V of the cube and the length d of
one side, for future reference (both quantities will be
needed for what follows):  d � V Al

1/3 � 0.718 m

 VAl �
MAl

�Al 
�

1.00 � 103 kg
2.70 � 103 kg/m3 � 0.370 m3

Write Newton’s second law for the cube, and solve for
the normal force. The buoyant force is equal to the
weight of the displaced water (half the volume of the
cube).

n � MAlg � Bwat � MAlg � �wat (V/2)g

� (1.00 � 103 kg)(9.80 m/s2)

� (1.00 � 103 kg/m3)(0.370 m3/2.00)(9.80 m/s2)

n � 9.80 � 103 N � 1.81 � 103 N � 7.99 � 103 N

n � MAlg � Bwat � 0
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9.7 FLUIDS IN MOTION
When a fluid is in motion, its flow can be characterized in one of two ways. The
flow is said to be streamline, or laminar, if every particle that passes a particular
point moves along exactly the same smooth path followed by previous particles
passing that point. This path is called a streamline (Fig. 9.26). Different streamlines
can’t cross each other under this steady-flow condition, and the streamline at any
point coincides with the direction of the velocity of the fluid at that point.

In contrast, the flow of a fluid becomes irregular, or turbulent, above a certain
velocity or under any conditions that can cause abrupt changes in velocity. Irregu-
lar motions of the fluid, called eddy currents, are characteristic in turbulent flow, as
shown in Figure 9.27.

In discussions of fluid flow, the term viscosity is used for the degree of internal
friction in the fluid. This internal friction is associated with the resistance between

(b) Calculate the level h of added mercury.

Apply Newton’s second law to the cube: n � MAlg � Bwat � BHg � 0

BHg � (�Hg Ah)g � MAlg � Bwat � 7.99 � 103 NSet n � 0 and solve for the buoyant force of mercury:

Solve for h , noting that A � d 2:

h � 0.116 m

h �
MAlg �Bwat

�HgAg
�

7.99 � 103 N
(13.6 �103 kg/m3)(0.718 m)2(9.80 m/s2)

Remarks Notice that the buoyant force of mercury calculated in part (b) is the same as the normal force in part
(a). This is naturally the case, because enough mercury was added to exactly cancel out the normal force. We could
have used this fact to take a shortcut, simply writing BHg � 7.99 � 103 N immediately, solving for h, and avoiding a
second use of Newton’s law. Most of the time, however, we won’t be so lucky! Try calculating the normal force when
the level of mercury is 4.00 cm.

Exercise 9.10
A cube of aluminum 1.00 m on a side is immersed one-third in water and two-thirds in glycerin. What is the normal
force on the cube?

Answer 1.50 � 104 N

Figure 9.26 An illustration of
streamline flow around an automo-
bile in a test wind tunnel. The stream-
lines in the airflow are made visible
by smoke particles. An
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two adjacent layers of the fluid moving relative to each other. A fluid such as
kerosene has a lower viscosity than does crude oil or molasses.

Many features of fluid motion can be understood by considering the behavior
of an ideal fluid, which satisfies the following conditions:

1. The fluid is nonviscous, which means there is no internal friction force between
adjacent layers.

2. The fluid is incompressible, which means its density is constant.
3. The fluid motion is steady, meaning that the velocity, density, and pressure at

each point in the fluid don’t change with time.
4. The fluid moves without turbulence. This implies that each element of the fluid

has zero angular velocity about its center, so there can’t be any eddy currents
present in the moving fluid. A small wheel placed in the fluid would translate
but not rotate.

Equation of Continuity
Figure 9.28a represents a fluid flowing through a pipe of nonuniform size. The
particles in the fluid move along the streamlines in steady-state flow. In a small
time interval �t, the fluid entering the bottom end of the pipe moves a distance
�x1 � v1 �t, where v1 is the speed of the fluid at that location. If A1 is the cross-
sectional area in this region, then the mass contained in the bottom blue region is
�M1 � �1A1 �x1 � �1A1v1 �t, where �1 is the density of the fluid at A1. Similarly,
the fluid that moves out of the upper end of the pipe in the same time interval �t
has a mass of �M2 � �2A2v2 �t. However, because mass is conserved and because
the flow is steady, the mass that flows into the bottom of the pipe through A1 in
the time �t must equal the mass that flows out through A2 in the same interval.
Therefore, �M1 � �M2, or

�1A1v1 � �2A2v2 [9.14]

For the case of an incompressible fluid, �1 � �2 and Equation 9.14 reduces to

[9.15]

This expression is called the equation of continuity. From this result, we see that
the product of the cross-sectional area of the pipe and the fluid speed at that cross
section is a constant. Therefore, the speed is high where the tube is constricted
and low where the tube has a larger diameter. The product Av, which has dimen-
sions of volume per unit time, is called the flow rate. The condition Av � constant
is equivalent to the fact that the volume of fluid that enters one end of the tube in
a given time interval equals the volume of fluid leaving the tube in the same inter-
val, assuming that the fluid is incompressible and there are no leaks. Figure 9.28b

A1v1 � A2v2

Figure 9.27 Turbulent flow: The
tip of a rotating blade (the dark
region at the top) forms a vortex in
air that is being heated by an alcohol
lamp. (The wick is at the bottom.)
Note the air turbulence on both sides
of the blade.
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∆x1

∆x2

Point 2

Point 1

A1

A2

2

� Equation of continuity

Figure 9.28 (a) A fluid moving
with streamline flow through a pipe
of varying cross-sectional area. The
volume of fluid flowing through 
A1 in a time interval �t must equal
the volume flowing through A2 in the
same time interval. Therefore, 
A1v1 � A2v2. (b) Water flowing
slowly out of a faucet. The width of
the stream narrows as the water falls
and speeds up in accord with the 
continuity equation.
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290 Chapter 9 Solids and Fluids

is an example of an application of the equation of continuity: As the stream of wa-
ter flows continuously from a faucet, the width of the stream narrows as it falls and
speeds up.

There are many instances in everyday experience that involve the equation of
continuity. Reducing the cross-sectional area of a garden hose by putting a thumb
over the open end makes the water spray out with greater speed; hence the
stream goes farther. Similar reasoning explains why smoke from a smoldering
piece of wood first rises in a streamline pattern, getting thinner with height, even-
tually breaking up into a swirling, turbulent pattern. The smoke rises because it’s
less dense than air and the buoyant force of the air accelerates it upward. As the
speed of the smoke stream increases, the cross-sectional area of the stream de-
creases, in accordance with the equation of continuity. The stream soon reaches a
speed so great that streamline flow is not possible. We will study the relationship
between speed of fluid flow and turbulence in a later discussion on the Reynolds
number.

TIP 9.3 Continuity Equations
The rate of flow of fluid into a system
equals the rate of flow out of the
system. The incoming fluid occupies
a certain volume and can enter the
system only if the fluid already inside
goes out, thereby making room.

EXAMPLE 9.11 Niagara Falls
Goal Apply the equation of continuity.

Problem Each second, 5 525 m3 of water flows over the 670-m-wide cliff of the Horseshoe Falls portion of Niagara
Falls. The water is approximately 2 m deep as it reaches the cliff. Estimate its speed at that instant?

Strategy This is an estimate, so only one significant figure will be retained in the answer. The volume flow rate is
given, and according to the equation of continuity, is a constant equal to Av. Find the cross-sectional area, substitute,
and solve for the speed.

Solution
Calculate the cross-sectional area of the water as it
reaches the edge of the cliff:

A � (670 m)(2 m) � 1 340 m2

Multiply this result by the speed and set it equal to the
flow rate. Then solve for v.

4 m/s(1340 m2)v � 5 525 m3/s : v �

 Av � volume flow rate

Exercise 9.11
The Garfield Thomas water tunnel at Pennsylvania State University has a circular cross section that constricts from a
diameter of 3.6 m to the test section, which is 1.2 m in diameter. If the speed of flow is 3.0 m/s in the larger-diameter
pipe, determine the speed of flow in the test section.

Answer 27 m/s

EXAMPLE 9.12 Watering a Garden
Goal Combine the equation of continuity with concepts of flow rate and kinematics.

Problem A water hose 2.50 cm in diameter is used by a gardener to fill a 30.0-liter bucket. (One liter � 1 000 cm3.)
The gardener notices that it takes 1.00 min to fill the bucket. A nozzle with an opening of cross-sectional area
0.500 cm2 is then attached to the hose. The nozzle is held so that water is projected horizontally from a point 1.00 m
above the ground. Over what horizontal distance can the water be projected?

Strategy We can find the volume flow rate through the hose by dividing the volume of the bucket by the time it
takes to fill it. After finding the flow rate, apply the equation of continuity to find the speed at which the water shoots
horizontally out the nozzle. The rest of the problem is an application of two-dimensional kinematics. The answer ob-
tained is the same as would be found for a ball having the same initial velocity and height.
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Bernoulli’s Equation
As a fluid moves through a pipe of varying cross section and elevation, the pressure
changes along the pipe. In 1738 the Swiss physicist Daniel Bernoulli (1700–1782)
derived an expression that relates the pressure of a fluid to its speed and elevation.
Bernoulli’s equation is not a freestanding law of physics; rather, it’s a consequence
of energy conservation as applied to an ideal fluid.

In deriving Bernoulli’s equation, we again assume that the fluid is incompress-
ible, nonviscous, and flows in a nonturbulent, steady-state manner. Consider the
flow through a nonuniform pipe in the time �t, as in Figure 9.29. The force on the
lower end of the fluid is P1A1, where P1 is the pressure at the lower end. The work
done on the lower end of the fluid by the fluid behind it is

where V is the volume of the lower blue region in the figure. In a similar manner,
the work done on the fluid on the upper portion in the time �t is

The volume is the same because by the equation of continuity, the volume of fluid
that passes through A1 in the time �t equals the volume that passes through A2 in
the same interval. The work W2 is negative because the force on the fluid at the top
is opposite its displacement. The net work done by these forces in the time �t is

Part of this work goes into changing the fluid’s kinetic energy, and part goes into
changing the gravitational potential energy of the fluid–Earth system. If m is the

W fluid � P1V � P2V

W2 � �P2A2�x 2 � �P2V

W1 � F1 �x1 � P1A1 �x1 � P1V

Solution
Calculate the volume flow rate into the bucket, and
convert to m3/s:

volume flow rate �

� 5.00 � 10�4 m3/s

� 
30.0 L

1.00 min
 � 1.00 � 103 cm3

1.00 L �� 1.00 m
100.0 cm �

3

� 1.00 min
60.0 s �

Solve the equation of continuity for v0x , the 
x-component of the initial velocity of the stream exiting
the hose: v0x �

A1v1

A2
�

5.00 � 10�4 m3/s
0.500 � 10�4 m2 � 10.0 m/s

A1v1 � A2v2 � A2v0x

Calculate the time for the stream to fall 1.00 m, using
kinematics. Initially, the stream is horizontal, so v 0y is zero

�y � v0yt � 1
2 gt 2

Set v0y � 0 in the preceding equation and solve for t
noting that �y � � 1.00 m:

t � √ �2�y
g

� √ �2(�1.00 m)
9.80 m/s2 � 0.452 s

Find the horizontal distance the stream travels: 4.52 mx � v0xt � (10.0 m/s)(0.452 s) �

Remark It’s interesting that the motion of fluids can be treated with the same kinematics equations as individual
objects.

Exercise 9.12
The nozzle is replaced with a Y-shaped fitting that splits the flow in half. Garden hoses are connected to each end of the
Y, with each hose having a 0.400 cm2 nozzle. (a) How fast does the water come out of one of the nozzles? (b) How far
would one of the nozzles squirt water if both were operated simultaneously and held horizontally 1.00 m off the
ground? [Hint: Find the volume flow rate through each 0.400-cm2 nozzle, then follow the same steps as before.]

Answer (a) 6.25 m/s (b) 2.82 m

�x1

�x2

2
y2

y1

P1A1

1

P2A2

Point �

Point �

v

v

Figure 9.29 A fluid flowing
through a constricted pipe with
streamline flow. The fluid in the
section with a length of �x1 moves to
the section with a length of �x2. The
volumes of fluid in the two sections
are equal.
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mass of the fluid passing through the pipe in the time interval �t, then the change
in kinetic energy of the volume of fluid is

The change in the gravitational potential energy is

Because the net work done by the fluid on the segment of fluid shown in Figure
9.29 changes the kinetic energy and the potential energy of the nonisolated sys-
tem, we have

The three terms in this equation are those we have just evaluated. Substituting ex-
pressions for each of the terms gives

If we divide each term by V and recall that � � m/V, this expression becomes

Rearrange the terms as follows:

[9.16]

This is Bernoulli’s equation, often expressed as

[9.17]

Bernoulli’s equation states that the sum of the pressure P, the kinetic energy
per unit volume, , and the potential energy per unit volume, �gy, has the
same value at all points along a streamline.

An important consequence of Bernoulli’s equation can be demonstrated by con-
sidering Figure 9.30, which shows water flowing through a horizontal constricted
pipe from a region of large cross-sectional area into a region of smaller cross-
sectional area. This device, called a Venturi tube, can be used to measure the
speed of fluid flow. Because the pipe is horizontal, y1 � y2, and Equation 9.16 ap-
plied to points 1 and 2 gives

[9.18]

Because the water is not backing up in the pipe, its speed v2 in the constricted re-
gion must be greater than its speed v1 in the region of greater diameter. From
Equation 9.18, we see that P2 must be less than P 1 because v2 	 v1. This result is
often expressed by the statement that swiftly moving fluids exert less pressure than
do slowly moving fluids. This important fact enables us to understand a wide range
of everyday phenomena.

P1 � 1
2�v1

2 � P2 � 1
2�v2

2

1
2�v2

P � 1
2�v2 � �gy � constant

P1 � 1
2�v 2

1 � �gy1 � P2 � 1
2�v 2

2 � �gy2

P1 � P2 � 1
2 �v2

2 � 1
2 �v1

2 � �gy2 � �gy1

P1V � P2V � 1
2 
mv 2

2 � 1
2 
mv 2

1 � mg y2 � mg y1

W fluid � �KE �  �PE

�PE � mgy2 � mgy1

�K E � 1
2 
mv2 2 � 1

2mv 2
1

DANIEL BERNOULLI, Swiss
Physicist and Mathematician
(1700–1782)
In his most famous work, Hydrodynamica,
Bernoulli showed that, as the velocity of
fluid flow increases, its pressure decreases.
In this same publication, Bernoulli also
attempted the first explanation of the
behavior of gases with changing pressure
and temperature; this was the beginning
of the kinetic theory of gases.
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TIP 9.4 Bernoulli’s Principle
for Gases
Equation 9.16 isn’t strictly true for
gases because they aren’t incompress-
ible. The qualitative behavior is the
same, however: As the speed of the
gas increases, its pressure decreases.

P1 P2

A2

A1

�

(a)

v1 v2
�

Figure 9.30 (a) The pressure P1 is
greater than the pressure P2, because
v1 � v2. This device can be used to
measure the speed of fluid flow. (b) A
Venturi tube, located at the top of the
photograph. The higher level of fluid
in the middle column shows that the
pressure at the top of the column,
which is in the constricted region of
the Venturi tube, is lower than the
pressure elsewhere in the column.
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You observe two helium balloons floating next to each other at the ends of strings
secured to a table. The facing surfaces of the balloons are separated by 1–2 cm.
You blow through the opening between the balloons. What happens to the
balloons? (a) They move toward each other; (b) they move away from each other;
(c) they are unaffected.

Quick Quiz 9.7

INTERACTIVE EXAMPLE 9.13 Shoot-Out at the Old Water Tank
Goal Apply Bernoulli’s equation to find the speed of a fluid.

Problem A nearsighted sheriff fires at a cattle rustler with his trusty six-
shooter. Fortunately for the rustler, the bullet misses him and penetrates
the town water tank, causing a leak (Fig. 9.31). (a) If the top of the tank is
open to the atmosphere, determine the speed at which the water leaves
the hole when the water level is 0.500 m above the hole. (b) Where does
the stream hit the ground if the hole is 3.00 m above the ground?

Strategy (a) Assume the tank’s cross-sectional area is large compared to
the hole’s (A2 		 A1), so the water level drops very slowly and v2 � 0.
Apply Bernoulli’s equation to points � and � in Figure 9.31, noting that
P1 equals atmospheric pressure P0 at the hole and is approximately the same at the top of the water tank. Part (b)
can be solved with kinematics, just as if the water were a ball thrown horizontally.

A2

�

A1

v1
P0

h

y2 y1

P2 = P0�

Zero level for
gravitational

potential energy

Figure 9.31 (Example 9.13) The water speed
v1 from the hole in the side of the container is
given by .v 1 � √2gh

Solution
(a) Find the speed of the water leaving the hole.

Substitute P 1 � P 2 � P0 and v2 � 0 into Bernoulli’s
equation, and solve for v1:

3.13 m/sv1 � √2(9.80 m/s2)(0.500 m) �

v1 � √2g(y2 � y1) � √2gh

P0 � 1
2�v1

2 � �gy1 � P0 � �gy2

(b) Find where the stream hits the ground.

Use the displacement equation to find the time of the fall,
noting that the stream is initially horizontal, so v0y � 0.

 t � 0.782 s

 � 3.00 m � �(4.90 m/s2)t 2

 �y � �1
2 
gt 2 � v0yt

Compute the horizontal distance the stream travels in
this time:

2.45 mx � v0xt � (3.13 m/s)(0.782 s) �

Remarks As the analysis of part (a) shows, the speed of the water emerging from the hole is equal to the speed ac-
quired by an object falling freely through the vertical distance h. This is known as Torricelli’s law.

Exercise 9.13
Suppose, in a similar situation, the water hits the ground 4.20 m from the hole in the tank. If the hole is 2.00 m
above the ground, how far above the hole is the water level?

Answer 2.20 m above the hole

You can move the hole vertically and see where the water lands by logging into PhysicsNow at
www.cp7e.com and going to Interactive Example 9.13.
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9.8 OTHER APPLICATIONS OF FLUID DYNAMICS
In this section we describe some common phenomena that can be explained, at
least in part, by Bernoulli’s equation.

In general, an object moving through a fluid is acted upon by a net upward
force as the result of any effect that causes the fluid to change its direction as it
flows past the object. For example, a golf ball struck with a club is given a rapid
backspin, as shown in Figure 9.33. The dimples on the ball help entrain the air
along the curve of the ball’s surface. The figure shows a thin layer of air wrapping
partway around the ball and being deflected downward as a result. Because the

Example 9.14 Fluid Flow in a Pipe
Goal Solve a problem combining Bernoulli’s equation and the equation of
continuity.

Problem A large pipe with a cross-sectional area of 1.00 m2 descends 5.00 m
and narrows to 0.500 m2, where it terminates in a valve (Fig. 9.32). If the pres-
sure at point � is atmospheric pressure, and the valve is opened wide and water
allowed to flow freely, find the speed of the water leaving the pipe.

Strategy The equation of continuity, together with Bernoulli’s equation, con-
stitute two equations in two unknowns: the speeds v1 and v2. Eliminate v2 from
Bernoulli’s equation with the equation of continuity, and solve for v1.

v2

v1

P

h

0

P0

�

�

Figure 9.32 (Example 9.14)

Solution
Bernoulli’s equation is (1)P1 � 1

2�v 2
1 � �gy1 � P2 � 1

2�v 2
2 � �gy2

Solve the equation of continuity for v2: 

(2) v2 �
A1

A2
 v1

A2v2 � A1v1

In Equation 1, set P1 � P2 � P0, and substitute the ex-
pression for v 2. Then solve for v1.

 v1 �
√2gh

√1 � (A1/A2)2

v 2
1  �1 � � A1

A2
�

2

� � 2g (y2 � y1) � 2gh

P0 � 1
2 �v 2

1 � �gy1 � P0 � 1
2 � � A1

A2
 v1�

2
� �gy2

Substitute the given values: v1 � 11.4 m/s

Remarks This speed is slightly higher than the speed predicted by Torricelli’s law, because the narrowing pipe
squeezes the fluid.

Exercise 9.14
Water flowing in a horizontal pipe is at a pressure of 1.4 � 105 Pa at a point where its cross-sectional area is 1.00 m2.
When the pipe narrows to 0.400 m2, the pressure drops to 1.16 � 105 Pa. Find the water’s speed (a) in the wider pipe
and (b) in the narrower pipe.

Answer (a) 3.02 m/s (b) 7.56 m/s
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ball pushes the air down, by Newton’s third law the air must push up on the ball
and cause it to rise. Without the dimples, the air isn’t as well entrained, so the golf
ball doesn’t travel as far. A tennis ball’s fuzz performs a similar function, though
the desired result is ball placement rather than greater distance.

Many devices operate in the manner illustrated in Figure 9.34. A stream of air
passing over an open tube reduces the pressure above the tube, causing the liquid
to rise into the airstream. The liquid is then dispersed into a fine spray of droplets.
You might recognize that this so-called atomizer is used in perfume bottles and
paint sprayers. The same principle is used in the carburetor of a gasoline engine.
In that case, the low-pressure region in the carburetor is produced by air drawn in
by the piston through the air filter. The gasoline vaporizes, mixes with the air, and
enters the cylinder of the engine for combustion.

In a person with advanced arteriosclerosis, the Bernoulli effect produces a
symptom called vascular flutter. In this condition, the artery is constricted as a re-
sult of accumulated plaque on its inner walls, as shown in Figure 9.35. To maintain
a constant flow rate, the blood must travel faster than normal through the con-
striction. If the speed of the blood is sufficiently high in the constricted region, the
blood pressure is low, and the artery may collapse under external pressure, caus-
ing a momentary interruption in blood flow. During the collapse there is no
Bernoulli effect, so the vessel reopens under arterial pressure. As the blood rushes
through the constricted artery, the internal pressure drops and the artery closes
again. Such variations in blood flow can be heard with a stethoscope. If the plaque
becomes dislodged and ends up in a smaller vessel that delivers blood to the heart,
it can cause a heart attack.

An aneurysm is a weakened spot on an artery where the artery walls have bal-
looned outward. Blood flows more slowly though this region, as can be seen
from the equation of continuity, resulting in an increase in pressure in
the vicinity of the aneurysm relative to the pressure in other parts of the artery.
This condition is dangerous because the excess pressure can cause the artery to
rupture.

The lift on an aircraft wing can also be explained in part by the Bernoulli effect.
Airplane wings are designed so that the air speed above the wing is greater than
the speed below. As a result, the air pressure above the wing is less than the pres-
sure below, and there is a net upward force on the wing, called the lift. (There is
also a horizontal component called the drag.) Another factor influencing the lift
on a wing, shown in Figure 9.36, is the slight upward tilt of the wing. This causes
air molecules striking the bottom to be deflected downward, producing a reaction
force upward by Newton’s third law. Finally, turbulence also has an effect. If the
wing is tilted too much, the flow of air across the upper surface becomes turbu-
lent, and the pressure difference across the wing is not as great as that predicted
by the Bernoulli effect. In an extreme case, this turbulence may cause the aircraft
to stall.

FIGURE 9.33 A spinning golf ball is acted upon by a lifting force that allows it to travel much further
than it would if it were not spinning.

Figure 9.34 A stream of air pass-
ing over a tube dipped in a liquid
causes the liquid to rise in the tube.
This effect is used in perfume bottles
and paint sprayers.

Plaque

Artery

Figure 9.35 Blood must travel
faster than normal through a
constricted region of an artery.

F

Drag

Lift

Figure 9.36 Streamline flow
around an airplane wing. The pres-
sure above is less than the pressure
below, and there is a dynamic upward
lift force.

A P P L I C AT I O N
“Atomizers” in Perfume Bottles
and Paint Sprayers

A P P L I C AT I O N
Vascular Flutter and
Aneurysms

A P P L I C AT I O N
Lift on Aircraft Wings
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EXAMPLE 9.15 Lift on an Airfoil
Goal Use Bernoulli’s equation to calculate the lift on an airplane wing.

Problem An airplane has wings, each with area 4.00 m2, designed so that air flows over the top of the wing at 
245 m/s and underneath the wing at 222 m/s. Find the mass of the airplane such that the lift on the plane will sup-
port its weight, assuming the force from the pressure difference across the wings is directed straight upwards.

Strategy This problem can be solved by substituting values into Bernoulli’s equation to find the pressure differ-
ence between the air under the wing and the air over the wing, followed by applying Newton’s second law to find the
mass the airplane can lift.

Solution
Apply Bernoulli’s equation to the air flowing under the
wing (point 1) and over the wing (point 2). Gravita-
tional potential energy terms are small compared with
the other terms, and can be neglected.

P1 � 1
2�v1

2 � P2 � 1
2�v2

2

Solve this equation for the pressure difference: �P � P1 � P2 � 1
2 �v 2

2 � 1
2 �v 2

1 � 1
2 �(v 2

2 � v 2
1 )

Substitute the given speeds and � � 1.29 kg/m3, the
density of air:

 �P � 6.93 � 103 Pa

 �P � 1
2(1.29 kg/m3)(2452 m2/s2 � 2222 m2/s2)

Apply Newton’s second law. To support the plane’s
weight, the sum of the lift and gravity forces must equal
zero. Solve for the mass m of the plane.

5.66 � 103 kg2A�P � mg � 0  : m �

Remarks Note the factor of two in the last equation, needed because the airplane has two wings. The density of the
atmosphere drops steadily with increasing height, reducing the lift. As a result, all aircraft have a maximum operat-
ing altitude.

Exercise 9.15
Approximately what size wings would an aircraft need on Mars if its engine generates the same differences in speed
as in the example and the total mass of the craft is 400 kg? The density of air on the surface of Mars is approximately
one percent Earth’s density at sea level, and the acceleration of gravity on the surface of Mars is about 3.8 m/s2.

Answer Rounding to one significant digit, each wing would have to have an area of about 10 m2. There have been
proposals for solar-powered robotic Mars aircraft, which would have to be gossamer-light with large wings.

How can a sailboat accomplish the seemingly impossi-
ble task of sailing into the wind?

Explanation As shown in Figure 9.37, the wind blow-
ing in the direction of the arrow causes the sail to
billow out and take on a shape similar to that of an
airplane wing. By Bernoulli’s equation, just as for an
airplane wing, there is a force on the sail in the direc-
tion shown. The component of force perpendicular to
the boat tends to make the boat move sideways in the
water, but the keel prevents this sideways motion. The
component of the force in the forward direction
drives the boat almost against the wind. The word al-
most is used because a sailboat can move forward only

Applying Physics 9.4 Sailing Upwind

Wind

Sail

Keel axis

Fwind

Fwater

FR

Figure 9.37 (Applying Physics 9.4)

44337_09_p266-320  10/28/04  11:16 AM  Page 296



9.8 Other Applications of Fluid Dynamics 297

The exhaust speed of a rocket engine can also be understood qualitatively with
Bernoulli’s equation, though, in actual practice a large number of additional
variables need to be taken into account. Rockets actually work better in vacuum
than in the atmosphere, contrary to an early New York Times article criticizing
rocket pioneer Robert Goddard, which held that they wouldn’t work at all,
having no air to push against. The pressure inside the combustion chamber is 
P, and the pressure just outside the nozzle is the ambient atmospheric pressure,
P atm. Differences in height between the combustion chamber and the end of
the nozzle result in negligible contributions of gravitational potential energy. In
addition, the gases inside the chamber flow at negligible speed compared to
gases going through the nozzle. The exhaust speed can be found from
Bernoulli’s equation,

This equation shows that the exhaust speed is reduced in the atmosphere, so rock-
ets are actually more effective in the vacuum of space. Also of interest is the ap-
pearance of the density � in the denominator. A lower density working fluid or gas
will give a higher exhaust speed, which partly explains why liquid hydrogen, which
has a very low density, is a fuel of choice.

vex � √ 2(P � Patm)
� 

when the wind direction is about 10 to 15° with re-
spect to the forward direction. This means that in
order to sail directly against the wind, a boat must

follow a zigzag path, a procedure called tacking, so
that the wind is always at some angle with respect to
the direction of travel.

Consider the portion of a home plumbing system
shown in Figure 9.38. The water trap in the pipe
below the sink captures a plug of water that prevents
sewer gas from finding its way from the sewer pipe, up
the sink drain, and into the home. Suppose the dish-
washer is draining, so that water is moving to the left

in the sewer pipe. What is the purpose of the vent,
which is open to the air above the roof of the house?
In which direction is air moving at the opening of the
vent, upwards or downwards?

Explanation Imagine that the vent isn’t present, so
that the drainpipe for the sink is simply connected
through the trap to the sewer pipe. As water from the
dishwasher moves to the left in the sewer pipe, the
pressure in the sewer pipe is reduced below atmos-
pheric pressure, in accordance with Bernoulli’s princi-
ple. The pressure at the drain in the sink is still at
atmospheric pressure. This pressure difference can
push the plug of water in the water trap of the sink
down the drainpipe and into the sewer pipe, remov-
ing it as a barrier to sewer gas. With the addition of
the vent to the roof, the reduced pressure of the dish-
washer water will result in air entering the vent pipe at
the roof. This inflow of air will keep the pressure in
the vent pipe and the right-hand side of the sink
drainpipe close to atmospheric pressure, so that the
plug of water in the water trap will remain in place.

Applying Physics 9.5 Home Plumbing

Dishwasher

Sink

Vent

Trap

Sewer pipe

Figure 9.38 (Applying Physics 9.5)

A P P L I C AT I O N
Rocket Engines
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9.9 SURFACE TENSION, CAPILLARY ACTION, 
AND VISCOUS FLUID FLOW

If you look closely at a dewdrop sparkling in the morning sunlight, you will find
that the drop is spherical. The drop takes this shape because of a property of liq-
uid surfaces called surface tension. In order to understand the origin of surface
tension, consider a molecule at point A in a container of water, as in Figure 9.39.
Although nearby molecules exert forces on this molecule, the net force on it is
zero because it’s completely surrounded by other molecules and hence is attracted
equally in all directions. The molecule at B, however, is not attracted equally in all
directions. Because there are no molecules above it to exert upward forces, the
molecule at B is pulled toward the interior of the liquid. The contraction at the
surface of the liquid ceases when the inward pull exerted on the surface molecules
is balanced by the outward repulsive forces that arise from collisions with mole-
cules in the interior of the liquid. The net effect of this pull on all the surface mol-
ecules is to make the surface of the liquid contract and, consequently, to make the
surface area of the liquid as small as possible. Drops of water take on a spherical
shape because a sphere has the smallest surface area for a given volume.

If you place a sewing needle very carefully on the surface of a bowl of water, you
will find that the needle floats even though the density of steel is about eight times
that of water. This phenomenon can also be explained by surface tension. A close
examination of the needle shows that it actually rests in a depression in the liquid
surface as shown in Figure 9.40. The water surface acts like an elastic membrane
under tension. The weight of the needle produces a depression, increasing the
surface area of the film. Molecular forces now act at all points along the depres-
sion, tending to restore the surface to its original horizontal position. The vertical
components of these forces act to balance the force of gravity on the needle. The
floating needle can be sunk by adding a little detergent to the water, which re-
duces the surface tension.

The surface tension 
 in a film of liquid is defined as the magnitude of the sur-
face tension force F divided by the length L along which the force acts:

[9.19]

The SI unit of surface tension is the newton per meter, and values for a few repre-
sentative materials are given in Table 9.4.

Surface tension can be thought of as the energy content of the fluid at its sur-
face per unit surface area. To see that this is reasonable, we can manipulate the
units of surface tension 
 as follows:

In general, in any equilibrium configuration of an object, the energy is a
minimum. Consequently, a fluid will take on a shape such that its surface area is as
small as possible. For a given volume, a spherical shape has the smallest surface
area; therefore, a drop of water takes on a spherical shape.

N
m

�
N�m
m2 �

J
m2


 � 
F
L

A

B

Figure 9.39 The net force on a
molecule at A is zero because such a
molecule is completely surrounded
by other molecules. The net force on
a surface molecule at B is downward
because it isn’t completely sur-
rounded by other molecules.

M g

F F

Figure 9.40 End view of a needle
resting on the surface of water. The
components of surface tension bal-
ance the force of gravity.

TABLE 9.4
Surface Tensions for Various Liquids

Surface Tension
Liquid T (°C) (N/m)

Ethyl alcohol 20 0.022
Mercury 20 0.465
Soapy water 20 0.025
Water 20 0.073
Water 100 0.059
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An apparatus used to measure the surface tension of liquids is shown in 
Figure 9.41. A circular wire with a circumference L is lifted from a body of liquid.
The surface film clings to the inside and outside edges of the wire, holding back
the wire and causing the spring to stretch. If the spring is calibrated, the force re-
quired to overcome the surface tension of the liquid can be measured. In this
case, the surface tension is given by

We use 2L for the length because the surface film exerts forces on both the inside
and outside of the ring.

The surface tension of liquids decreases with increasing temperature, because
the faster moving molecules of a hot liquid aren’t bound together as strongly as
are those in a cooler liquid. In addition, certain ingredients called surfactants de-
crease surface tension when added to liquids. For example, soap or detergent de-
creases the surface tension of water, making it easier for soapy water to penetrate
the cracks and crevices of your clothes to clean them better than plain water does.
A similar effect occurs in the lungs. The surface tissue of the air sacs in the lungs
contains a fluid that has a surface tension of about 0.050 N/m. A liquid with a sur-
face tension this high would make it very difficult for the lungs to expand during
inhalation. However, as the area of the lungs increases with inhalation, the body
secretes into the tissue a substance that gradually reduces the surface tension of
the liquid. At full expansion, the surface tension of the lung fluid can drop to as
low as 0.005 N/m.


 �
F

2L

F

Calibrated
spring

Wire ring

Film

Figure 9.41 An apparatus for
measuring the surface tension of
liquids. The force on the wire ring is
measured just before the ring breaks
free of the liquid.

A P P L I C AT I O N
Air Sac Surface Tension

EXAMPLE 9.16 Walking on Water
Goal Apply the surface tension equation.

Problem Many insects can literally walk on water, using
surface tension for their support. To show this is feasible,
assume that the insect’s “foot” is spherical. When the in-
sect steps onto the water with all six legs, a depression is
formed in the water around each foot, as shown in Figure
9.42a. The surface tension of the water produces upward
forces on the water that tend to restore the water 
surface to its normally flat shape. If the insect has a mass
of 2.0 � 10�5 kg and if the radius of each foot is 
1.5 � 10�4 m, find the angle �.

Strategy Find an expression for the magnitude of the
net force F directed tangentially to the depressed part of
the water surface, and obtain the part that is acting verti-
cally, in opposition to the downward force of gravity. As-
sume that the radius of depression is the same as the radius
of the insect’s foot. Because the insect has six legs, one-sixth
of the insect’s weight must be supported by one of the legs, assuming the weight is distributed evenly. The length L is just
the distance around a circle. Using Newton’s second law for a body in equilibrium (zero acceleration), solve for �.

F F

(a)

u

(b)

Figure 9.42 (Example 9.16) (a) One foot of an insect resting
on the surface of water. (b) This water strider resting on the
surface of a lake remains on the surface, rather than sinking,
because an upward surface tension force acts on each leg,
balancing the force of gravity on the insect.
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Solution
Start with the surface tension equation: F � 
L

Focus on one circular foot, substituting L � 2�r .
Multiply by cos � to get the vertical component Fv :

Fv � 
(2�r) cos �

Write Newton’s second law for the insect’s one foot,
which supports one-sixth of the insect’s weight:


2�r cos � � 1
6mg � 0

 F � Fv � F grav � 0
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The Surface of Liquid
If you have ever closely examined the surface of water in a glass container, you may
have noticed that the surface of the liquid near the walls of the glass curves up-
wards as you move from the center to the edge, as shown in Figure 9.43a. However,
if mercury is placed in a glass container, the mercury surface curves downwards, as
in Figure 9.43b. These surface effects can be explained by considering the forces
between molecules. In particular, we must consider the forces that the molecules
of the liquid exert on one another and the forces that the molecules of the glass
surface exert on those of the liquid. In general terms, forces between like mole-
cules, such as the forces between water molecules, are called cohesive forces, and
forces between unlike molecules, such as those exerted by glass on water, are
called adhesive forces.

Water tends to cling to the walls of the glass because the adhesive forces between
the molecules of water and the glass molecules are greater than the cohesive forces
between the water molecules. In effect, the water molecules cling to the surface of
the glass rather than fall back into the bulk of the liquid. When this condition pre-
vails, the liquid is said to “wet” the glass surface. The surface of the mercury curves
downward near the walls of the container because the cohesive forces between the
mercury atoms are greater than the adhesive forces between mercury and glass. A
mercury atom near the surface is pulled more strongly toward other mercury atoms
than toward the glass surface, so mercury doesn’t wet the glass surface.

Solve for cos � and substitute:

(1) �
(2.0 � 10�5 kg)(9.80 m/s2)

12�(1.5 � 10�4 m)(0.073 N/m)
� 0.47

 cos � �
mg

12�r


Take the inverse cosine of both sides to find the angle � : 62�� � cos�1(0.47) �

Remarks If the weight of the insect were great enough to make the right side of Equation (1) greater than one, a
solution for � would be impossible because the cosine of an angle can never be greater than one. In this circum-
stance, the insect would sink.

Exercise 9.16
A typical sewing needle floats on water. Create an estimate for the needle’s maximum possible mass. Assume the
sewing needle is two inches long. [Hint: The cosine of an angle is never larger than 1.]

Answer 0.8 g

Water Glass Mercury Glass

(a) (b)

f

f

Figure 9.43 A liquid in contact with a solid surface. (a) For water, the adhesive force is greater than
the cohesive force. (b) For mercury, the adhesive force is less than the cohesive force. (c) The surface
of mercury (left) curves downwards in a glass container, whereas the surface of water (right) curves
upwards, as you move from the center to the edge.

(c)
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The angle � between the solid surface and a line drawn tangent to the liquid at
the surface is called the contact angle (Fig. 9.44). The angle � is less than 90° for
any substance in which adhesive forces are stronger than cohesive forces and
greater than 90° if cohesive forces predominate. For example, if a drop of water is
placed on paraffin, the contact angle is approximately 107° (Fig. 9.44a). If certain
chemicals, called wetting agents or detergents, are added to the water, the contact
angle becomes less than 90°, as shown in Figure 9.44b. The addition of such sub-
stances to water ensures that the water makes intimate contact with a surface and
penetrates it. For this reason, detergents are added to water to wash clothes or
dishes. 

On the other hand, it is sometimes necessary to keep water from making inti-
mate contact with a surface, as in waterproof clothing, where a situation somewhat
the reverse of that shown in Figure 9.44 is called for. The clothing is sprayed with a
waterproofing agent, which changes � from less than 90° to greater than 90°. The
water beads up on the surface and doesn’t easily penetrate the clothing.

Capillary Action
In capillary tubes the diameter of the opening is very small, on the order of a hun-
dredth of a centimeter. In fact, the word capillary means “hairlike.” If such a tube is in-
serted into a fluid for which adhesive forces dominate over cohesive forces, the liquid
rises into the tube, as shown in Figure 9.45. The rising of the liquid in the tube can be
explained in terms of the shape of the liquid’s surface and surface tension effects. At
the point of contact between liquid and solid, the upward force of surface tension is
directed as shown in the figure. From Equation 9.19, the magnitude of this force is

(We use L � 2�r here because the liquid is in contact with the surface of the tube
at all points around its circumference.) The vertical component of this force due
to surface tension is

Fv � 
(2�r)(cos �) [9.20]

In order for the liquid in the capillary tube to be in equilibrium, this upward force
must be equal to the weight of the cylinder of water of height h inside the capillary
tube. The weight of this water is

w � Mg � �Vg � �g�r 2h [9.21]

Equating Fv in Equation 9.20 to w in Equation 9.21 (applying Newton’s second law
for equilibrium), we have


(2�r)(cos �) � �g�r 2h

Solving for h gives the height to which water is drawn into the tube:

[9.22]

If a capillary tube is inserted into a liquid in which cohesive forces dominate over
adhesive forces, the level of the liquid in the capillary tube will be below the surface
of the surrounding fluid, as shown in Figure 9.46. An analysis similar to the above
would show that the distance h to the depressed surface is given by Equation 9.22.

h �
2


�gr
 cos �

F � 
L � 
( 2�r )

Water
drop

Paraffin

(a) (b)

Wetted solid
surfaceWater

drop
f

f

Figure 9.44 (a) The contact angle
between water and paraffin is about
107°. In this case, the cohesive force
is greater than the adhesive force. 
(b) When a chemical called a wetting
agent is added to the water, it wets
the paraffin surface, and f � 90°.
In this case, the adhesive force is
greater than the cohesive force.

FF

r

h

f f

Figure 9.45 A liquid rises in a
narrow tube because of capillary
action, a result of surface tension and
adhesive forces.

F F

h

A P P L I C AT I O N
Detergents and Waterproofing
Agents

Figure 9.46 When cohesive forces
between molecules of a liquid exceed
adhesive forces, the level of the liquid
in the capillary tube is below the sur-
face of the surrounding fluid.
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Capillary tubes are often used to draw small samples of blood from a needle
prick in the skin. Capillary action must also be considered in the construction of
concrete-block buildings, because water seepage through capillary pores in the
blocks or the mortar may cause damage to the inside of the building. To prevent
such damage, the blocks are usually coated with a waterproofing agent either out-
side or inside the building. Water seepage through a wall is an undesirable effect
of capillary action, but there are many useful effects. Plants depend on capillary
action to transport water and nutrients, and sponges and paper towels use capil-
lary action to absorb spilled fluids.

EXAMPLE 9.17 Rising Water
Goal Apply surface tension to capillary action.

Problem Find the height to which water would rise in a capillary tube with a radius equal to 5.0 � 10�5 m. Assume
that the contact angle between the water and the material of the tube is small enough to be considered zero.

Strategy This problem requires substituting values into Equation 9.22.

Solution
Substitute the known values into Equation 9.22:

� 0.30 m

 �
2(0.073 N/m)

(1.00 � 103 kg/m3)(9.80 m/s2)(5.0 � 10�5 m)

 h �
2
 cos 0�

�gr

Exercise 9.17
Suppose ethyl alcohol rises 0.250 m in a thin tube. Estimate the radius of the tube, assuming the contact angle is
approximately zero.

Answer 2.23 � 10�5 m

Viscous Fluid Flow
It is considerably easier to pour water out of a container than to pour honey. This
is because honey has a higher viscosity than water. In a general sense, viscosity
refers to the internal friction of a fluid. It’s very difficult for layers of a viscous
fluid to slide past one another. Likewise, it’s difficult for one solid surface to slide
past another if there is a highly viscous fluid, such as soft tar, between them.

When an ideal (nonviscous) fluid flows through a pipe, the fluid layers slide
past one another with no resistance. If the pipe has a uniform cross section,
each layer has the same velocity, as shown in Figure 9.47a. In contrast, the layers
of a viscous fluid have different velocities, as Figure 9.47b indicates. The fluid
has the greatest velocity at the center of the pipe, whereas the layer next to the
wall doesn’t move because of adhesive forces between molecules and the wall
surface.

To better understand the concept of viscosity, consider a layer of liquid between
two solid surfaces, as in Figure 9.48. The lower surface is fixed in position, and the
top surface moves to the right with a velocity under the action of an external
force . Because of this motion, a portion of the liquid is distorted from its origi-
nal shape, ABCD, at one instant to the shape AEFD a moment later. The force re-
quired to move the upper plate and distort the liquid is proportional to both the
area A in contact with the fluid and the speed v of the fluid. Furthermore, the

F
:

v:

(a)

(b)

Figure 9.47 (a) The particles in an
ideal (nonviscous) fluid all move
through the pipe with the same
velocity. (b) In a viscous fluid, the
velocity of the fluid particles is zero at
the surface of the pipe and increases
to a maximum value at the center of
the pipe.
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force is inversely proportional to the distance d between the two plates. We can ex-
press these proportionalities as F � Av/d. The force required to move the upper
plate at a fixed speed v is therefore

[9.23]

where � (the lowercase Greek letter eta) is the coefficient of viscosity of the
fluid.

The SI units of viscosity are N � s/m2. The units of viscosity in many reference
sources are often expressed in dyne � s/cm2, called 1 poise, in honor of the French
scientist J. L. Poiseuille (1799–1869). The relationship between the SI unit of vis-
cosity and the poise is

1 poise � 10�1 N � s/m2 [9.24]

Small viscosities are often expressed in centipoise (cp), where 1 cp � 10�2 poise.
The coefficients of viscosity for some common substances are listed in Table 9.5.

Poiseuille’s Law
Figure 9.49 shows a section of a tube of length L and radius R containing a fluid
under a pressure P1 at the left end and a pressure P 2 at the right. Because of this
pressure difference, the fluid flows through the tube. The rate of flow (volume per
unit time) depends on the pressure difference (P1 � P 2), the dimensions of the
tube, and the viscosity of the fluid. The result, known as Poiseuille’s law, is

[9.25]

where � is the coefficient of viscosity of the fluid. We won’t attempt to derive this
equation here, because the methods of integral calculus are required. However, it
is reasonable that the rate of flow should increase if the pressure difference across
the tube or the tube radius increases. Likewise, the flow rate should decrease if the
viscosity of the fluid or the length of the tube increases. So the presence of R and
the pressure difference in the numerator of Equation 9.25 and of L and � in the
denominator makes sense.

From Poiseuille’s law, we see that in order to maintain a constant flow rate, the
pressure difference across the tube has to increase if the viscosity of the fluid in-
creases. This fact is important in understanding the flow of blood through the cir-
culatory system. The viscosity of blood increases as the number of red blood cells
rises. Blood with a high concentration of red blood cells requires greater pumping
pressure from the heart to keep it circulating than does blood of lower red blood
cell concentration.

Note that the flow rate varies as the radius of the tube raised to the fourth
power. Consequently, if a constriction occurs in a vein or artery, the heart will have
to work considerably harder in order to produce a higher pressure drop and
hence maintain the required flow rate.

Rate of flow �
�V
�t

�
�R4(P1 � P2)

8�L

F � �  
Av
d

F

B vE C F

A D

d

�x = v�t

Figure 9.48 A layer of liquid
between two solid surfaces in which
the lower surface is fixed and the up-
per surface moves to the right with a
velocity .v:

� Coefficient of viscosity

TABLE 9.5
Viscosities of Various Fluids
Fluid T (°C) Viscosity � (N�s/m2)

Water 20 1.0 � 10�3

Water 100 0.3 � 10�3

Whole blood 37 2.7 � 10�3

Glycerin 20 1500 � 10�3

10-wt motor oil 30 250 � 10�3

P1
P2

R
v

L

Figure 9.49 Velocity profile of a
fluid flowing through a uniform pipe
of circular cross section. The rate of
flow is given by Poiseuille’s law. Note
that the fluid velocity is greatest at
the middle of the pipe.

� Poiseuille’s law
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Reynolds Number
At sufficiently high velocities, fluid flow changes from simple streamline flow to
turbulent flow, characterized by a highly irregular motion of the fluid. Experimen-
tally, the onset of turbulence in a tube is determined by a dimensionless factor
called the Reynolds number, RN, given by

[9.26]

where � is the density of the fluid, v is the average speed of the fluid along the di-
rection of flow, d is the diameter of the tube, and � is the viscosity of the fluid. If
RN is below about 2 000, the flow of fluid through a tube is streamline; turbulence
occurs if RN is above 3 000. In the region between 2 000 and 3 000, the flow is un-
stable, meaning that the fluid can move in streamline flow, but any small distur-
bance will cause its motion to change to turbulent flow.

RN �
�vd
�

EXAMPLE 9.18 A Blood Transfusion

Goal Apply Poiseuille’s law.

Problem A patient receives a blood transfusion through a needle of radius 0.20 mm and length 2.0 cm. The density
of blood is 1 050 kg/m3. The bottle supplying the blood is 0.50 m above the patient’s arm. What is the rate of flow
through the needle?

Strategy Find the pressure difference between the level of the blood and the patient’s arm. Substitute into
Poiseuille’s law, using the value for the viscosity of whole blood in Table 9.5.

Solution
Calculate the pressure difference: P1 � P2 � �gh � (1 050 kg/m3)(9.80 m/s2)(0.50 m)

� 5.15 � 103 Pa

Substitute into Poiseuille’s law:

� 6.0 � 10�8 m3/s

 �
�(2.0 � 10�4 m)4(5.15 � 103 Pa)

8(2.7 � 10�3 N�s/m2)(2.0 � 10�2 m)

 
�V
�t

�
�R4(P1 � P2)

8�L

Remarks Compare this to the volume flow rate in the absence of any viscosity. Using Bernoulli’s equation, the cal-
culated volume flow rate is approximately five times as great. As expected, viscosity greatly reduces flow rate.

Exercise 9.18
A pipe carrying water from a tank 20.0 m tall must cross 3.00 � 102 km of wilderness to reach a remote town. Find
the radius of pipe so that the volume flow rate is at least 0.0500 m3/s. (Use the viscosity of water at 20°C.)

Answer 0.118 m

Reynolds number �

EXAMPLE 9.19 Turbulent Flow of Blood
Goal Use the Reynolds number to determine a speed associated with the onset of turbulence.

Problem Determine the speed at which blood flowing through an artery of diameter 0.20 cm will become turbulent.

Strategy The solution requires only the substitution of values into Equation 9.26 giving the Reynolds number and
then solving it for the speed v.
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9.10 TRANSPORT PHENOMENA
When a fluid flows through a tube, the basic mechanism that produces the flow is
a difference in pressure across the ends of the tube. This pressure difference is re-
sponsible for the transport of a mass of fluid from one location to another. The
fluid may also move from place to place because of a second mechanism—one
that depends on a difference in concentration between two points in the fluid, as op-
posed to a pressure difference. When the concentration (the number of molecules
per unit volume) is higher at one location than at another, molecules will flow
from the point where the concentration is high to the point where it is lower. The
two fundamental processes involved in fluid transport resulting from concentra-
tion differences are called diffusion and osmosis.

Diffusion
In a diffusion process, molecules move from a region where their concentration is
high to a region where their concentration is lower. To understand why diffusion
occurs, consider Figure 9.50, which depicts a container in which a high concentra-
tion of molecules has been introduced into the left side. The dashed line in the
figure represents an imaginary barrier separating the two regions. Because the
molecules are moving with high speeds in random directions, many of them will
cross the imaginary barrier moving from left to right. Very few molecules will pass
through moving from right to left, simply because there are very few of them on
the right side of the container at any instant. As a result, there will always be a net
movement from the region with many molecules to the region with fewer mole-
cules. For this reason, the concentration on the left side of the container will de-
crease, and that on the right side will increase with time. Once a concentration
equilibrium has been reached, there will be no net movement across the cross-
sectional area: The rate of movement of molecules from left to right will equal the
rate from right to left.

The basic equation for diffusion is Fick’s law,

[9.27]

where D is a constant of proportionality. The left side of this equation is called the
diffusion rate and is a measure of the mass being transported per unit time. The
equation says that the rate of diffusion is proportional to the cross-sectional area A
and to the change in concentration per unit distance, (C2 � C1)/L , which is
called the concentration gradient. The concentrations C1 and C2 are measured in
kilograms per cubic meter. The proportionality constant D is called the diffusion
coefficient and has units of square meters per second. Table 9.6 (page 306) lists
diffusion coefficients for a few substances.

Diffusion rate �
mass
time

�
�M
�t

� DA� C2 � C1

L �

Remark The exercise shows that rapid ingestion of soda through a straw may create a turbulent state.

Exercise 9.19
Determine the speed v at which water at 20° sucked up a straw would become turbulent. The straw has a diameter of
0.0060 m.

Answer v � 0.50 m/s

Solution
Solve Equation 9.26 for v, and substitute the viscosity
and density of blood from Example 9.18, the diameter d
of the artery, and a Reynolds number of 3.00 � 103: v � 3.9 m/s

v �
�(RN )

�d
�

(2.7 � 10�3 N�s/m2)(3.00 � 103)
(1.05 � 103 kg/m3)(0.20 � 10�2 m)

Figure 9.50 When the concentra-
tion of gas molecules on the left side
of the container exceeds the concen-
tration on the right side, there will be
a net motion (diffusion) of molecules
from left to right.

� Fick’s law
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The Size of Cells and Osmosis
Diffusion through cell membranes is vital in carrying oxygen to the cells of the body
and in removing carbon dioxide and other waste products from them. Cells require
oxygen for those metabolic processes in which substances are either synthesized or
broken down. In such processes, the cell uses up oxygen and produces carbon diox-
ide as a by-product. A fresh supply of oxygen diffuses from the blood, where its con-
centration is high, into the cell, where its concentration is low. Likewise, carbon
dioxide diffuses from the cell into the blood, where it is in lower concentration.
Water, ions, and other nutrients also pass into and out of cells by diffusion.

A cell can function properly only if it can transport nutrients and waste prod-
ucts rapidly across the cell membrane. The surface area of the cell should be large
enough so that the exposed membrane area can exchange materials effectively
while the volume should be small enough so that materials can reach or leave par-
ticular locations rapidly. This requires a large surface-area-to-volume ratio.

Model a cell as a cube, each side with length L. The total surface area is 6L2 and
the volume is L3. The surface area to volume is then

Because L is in the denominator, a smaller L means a larger ratio. This shows that the
smaller the size of a body, the more efficiently it can transport nutrients and waste
products across the cell membrane. Cells range in size from a millionth of a meter to
several millionths, so a good estimate of a typical cell’s surface-to-volume ratio is 106.

The diffusion of material through a membrane is partially determined by the
size of the pores (holes) in the membrane wall. Small molecules, such as water,
may pass through the pores easily, while larger molecules, such as sugar, may pass
through only with difficulty or not at all. A membrane that allows passage of some
molecules but not others is called a selectively permeable membrane.

Osmosis is the diffusion of water across a selectively permeable membrane
from a high water concentration to a low water concentration. As in the case of
diffusion, osmosis continues until the concentrations on the two sides of the mem-
brane are equal.

To understand the effect of osmosis on living cells, consider a particular cell in
the body that contains a sugar concentration of 1%. (A 1% solution is 1 g of sugar
dissolved in enough water to make 100 ml of solution; “ml” is the abbreviation for
milliliters, so 10�3 L � 1 cm3.) Assume this cell is immersed in a 5% sugar solution
(5 g of sugar dissolved in enough water to make 100 ml). Compared to the 1% so-
lution, there are five times as many sugar molecules per unit volume in the 5%
sugar solution, so there must be fewer water molecules. Accordingly, water will dif-
fuse from inside the cell, where its concentration is higher, across the cell mem-
brane to the outside solution, where the concentration of water is lower. This loss
of water from the cell would cause it to shrink and perhaps become damaged
through dehydration. If the concentrations were reversed, water would diffuse into
the cell, causing it to swell and perhaps burst. If solutions are introduced into the
body intravenously, care must be taken to ensure that they don’t disturb the os-
motic balance of the body, else cell damage can occur. For example, if a 9% saline
solution surrounds a red blood cell, the cell will shrink. By contrast, if the solution
is about 1%, the cell will eventually burst.

In the body, blood is cleansed of impurities by osmosis as it flows through the
kidneys. (See Fig. 9.51a.) Arterial blood first passes through a bundle of capillaries
known as a glomerulus, where most of the waste products and some essential salts
and minerals are removed. From the glomerulus, a narrow tube emerges that is in
intimate contact with other capillaries throughout its length. As blood passes
through the tubules, most of the essential elements are returned to it; waste prod-
ucts are not allowed to reenter and are eventually removed in urine.

If the kidneys fail, an artificial kidney or a dialysis machine can filter the blood.
Figure 9.51b shows how this is done. Blood from an artery in the arm is mixed

surface area
volume

�
6L2

L3 �
6
L

TABLE 9.6
Diffusion Coefficients of
Various Substances at 20°C
Substance D (m2/s)

Oxygen 6.4 � 10�5

through air
Oxygen through 1 � 10�11

tissue
Oxygen through 1 � 10�9

water
Sucrose through 5 � 10�10

water
Hemoglobin 76 � 10�11

through water

A P P L I C AT I O N
Effect of Osmosis on Living
Cells

A P P L I C AT I O N
Kidney Function and
Dialysis
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with heparin, a blood thinner, and allowed to pass through a tube covered with a
semipermeable membrane. The tubing is immersed in a bath of a dialysate fluid
with the same chemical composition as purified blood. Waste products from the
blood enter the dialysate by diffusion through the membrane. The filtered blood
is then returned to a vein.

Motion through a Viscous Medium
When an object falls through air, its motion is impeded by the force of air resist-
ance. In general, this force is dependent on the shape of the falling object and on
its velocity. The force of air resistance acts on all falling objects, but the exact de-
tails of the motion can be calculated only for a few cases in which the object has a
simple shape, such as a sphere. In this section, we will examine the motion of a
tiny spherical object falling slowly through a viscous medium.

In 1845 a scientist named George Stokes found that the magnitude of the resis-
tive force on a very small spherical object of radius r falling slowly through a fluid
of viscosity � with speed v is given by

[9.28]

This equation, called Stokes’s law, has many important applications. For example,
it describes the sedimentation of particulate matter in blood samples. It was used
by Robert Millikan (1886–1953) to calculate the radius of charged oil droplets
falling through air. From this, Millikan was ultimately able to determine the charge
on the electron, and was awarded the Nobel prize in 1923 for his pioneering work
on elemental charges.

As a sphere falls through a viscous medium, three forces act on it, as shown in
Figure 9.52: , the force of friction; , the buoyant force of the fluid; and , the
force of gravity acting on the sphere. The magnitude of is given by

where � is the density of the sphere and is its volume. According to
Archimedes’s principle, the magnitude of the buoyant force is equal to the weight

4
3 

�r 3

w � �gV � �g  � 4
3

 �r3�
w:

w:B
:

F
:

r

Fr � 6��r v

(b)
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Artery
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(a)

Figure 9.51 (a) Diagram of a single nephron in the human excretory system. (b) An artificial kidney.
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B

w

Figure 9.52 A sphere falling
through a viscous medium. The
forces acting on the sphere are the
resistive frictional force , the buoy-
ant force , and the force of gravity 
acting on the sphere.
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of the fluid displaced by the sphere,

where �f is the density of the fluid.
At the instant the sphere begins to fall, the force of friction is zero because the

speed of the sphere is zero. As the sphere accelerates, its speed increases and so
does . Finally, at a speed called the terminal speed vt , the net force goes to zero.
This occurs when the net upward force balances the downward force of gravity.
Therefore, the sphere reaches terminal speed when

or

When this equation is solved for vt, we get

[9.29]

Sedimentation and Centrifugation
If an object isn’t spherical, we can still use the basic approach just described to de-
termine its terminal speed. The only difference is that we can’t use Stokes’s law for
the resistive force. Instead, we assume that the resistive force has a magnitude
given by Fr � kv, where k is a coefficient that must be determined experimentally.
As discussed previously, the object reaches its terminal speed when the downward
force of gravity is balanced by the net upward force, or

[9.30]

where B � �f gV is the buoyant force. The volume V of the displaced fluid is related
to the density � of the falling object by V � m/�. Hence, we can express the buoy-
ant force as

We substitute this expression for B and Fr � kvt into Equation 9.30 (terminal speed
condition):

or

[9.31]

The terminal speed for particles in biological samples is usually quite small. For
example, the terminal speed for blood cells falling through plasma is about
5 cm/h in the gravitational field of the Earth. The terminal speeds for the mole-
cules that make up a cell are many orders of magnitude smaller than this because
of their much smaller mass. The speed at which materials fall through a fluid is
called the sedimentation rate and is important in clinical analysis.

The sedimentation rate in a fluid can be increased by increasing the effective
acceleration g that appears in Equation 9.31. A fluid containing various biological
molecules is placed in a centrifuge and whirled at very high angular speeds 
(Fig. 9.53). Under these conditions, the particles gain a large radial acceleration

vt �
mg
k

 �1 �
�f

� �

mg �
�f

�
  mg � kvt

B �
�f

�
 mg

w � B � Fr

vt �
2r2g
9�

 (� � �f)

6��rvt � �f g  � 4
3

�r3� � �g  � 4
3

�r3�

Fr � B � w

F
:

r

B � �f gV � �f g  � 4
3

 �r3�

Terminal speed �

v

Figure 9.53 Simplified diagram of
a centrifuge (top view).
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ac � v2/r � �2r that is much greater than the free-fall acceleration, so we can re-
place g in Equation 9.31 by �2r and obtain

[9.32]

This equation indicates that the sedimentation rate is enormously speeded up in a
centrifuge and that those particles with the greatest mass will have the
largest terminal speed. Consequently the most massive particles will settle out on
the bottom of a test tube first.

(�2r 		 g)

vt �
m�2r

k
 �1 �

�f

� �

SUMMARY
Take a practice test by logging into 

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

9.1 States of Matter
Matter is normally classified as being in one of three states:
solid, liquid, or gaseous. The fourth state of matter is called
a plasma, which consists of a neutral system of charged par-
ticles interacting electromagnetically.

9.2 The Deformation of Solids
The elastic properties of a solid can be described using the
concepts of stress and strain. Stress is related to the force per
unit area producing a deformation; strain is a measure of
the amount of deformation. Stress is proportional to strain,
and the constant of proportionality is the elastic modulus:

[9.1]

Three common types of deformation are (1) the resist-
ance of a solid to elongation or compression, characterized
by Young’s modulus Y ; (2) the resistance to displacement
of the faces of a solid sliding past each other, characterized
by the shear modulus S ; and (3) the resistance of a solid or
liquid to a change in volume, characterized by the bulk
modulus B.

All three types of deformation obey laws similar to
Hooke’s law for springs. Solving problems is usually a mat-
ter of identifying the given physical variables and solving
for the unknown variable.

9.3 Density and Pressure
The density � of a substance of uniform composition is its
mass per unit volume—kilograms per cubic meter (kg/m3)
in the SI system:

[9.6]

The pressure P in a fluid, measured in pascals (Pa), is
the force per unit area that the fluid exerts on an object
immersed in it:

[9.7]

9.4 Variation of Pressure with Depth
The pressure in an incompressible fluid varies with depth h
according to the expression

[9.11]P � P 0 � �gh

P � 
F
A

� � 
M
V

Stress � Elastic modulus � strain

where P0 is atmospheric pressure (1.013 � 105 Pa) and � is
the density of the fluid.

Pascal’s principle states that when pressure is applied to
an enclosed fluid, the pressure is transmitted undimin-
ished to every point of the fluid and to the walls of the con-
taining vessel.

9.6 Buoyant Forces and 
Archimedes’s Principle
When an object is partially or fully submerged in a fluid,
the fluid exerts an upward force, called the buoyant force,
on the object. This force is, in fact, just the net difference
in pressure between the top and bottom of the object. It
can be shown that the magnitude of the buoyant force B is
equal to the weight of the fluid displaced by the object, or

[9.12b]

Equation 9.12b is known as Archimedes’s principle.
Solving a buoyancy problem usually involves putting the

buoyant force into Newton’s second law and then proceed-
ing as in Chapter 4.

9.7 Fluids in Motion
Certain aspects of a fluid in motion can be understood
by assuming that the fluid is nonviscous and incom-
pressible and that its motion is in a steady state with no
turbulence:

1. The flow rate through the pipe is a constant, which is
equivalent to stating that the product of the cross-
sectional area A and the speed v at any point is con-
stant. At any two points, therefore, we have

[9.15]

This relation is referred to as the equation of
continuity.

2. The sum of the pressure, the kinetic energy per unit
volume, and the potential energy per unit volume is the
same at any two points along a streamline:

[9.16]

Equation 9.16 is known as Bernoulli’s equation. Solving
problems with Bernoulli’s equation is similar to solving
problems with the work–energy theorem, whereby two
points are chosen, one point where a quantity is unknown
and another where all quantities are known. Equation 9.16
is then solved for the unknown quantity.

P1 � 1
2 �v 2

1 � �g y1 � P 2 � 1
2 �v 2

2 � �g y2

A1v1 � A2v 2

B � � fluidV fluidg

44337_09_p266-320  10/28/04  11:16 AM  Page 309



310 Chapter 9 Solids and Fluids

CONCEPTUAL QUESTIONS

1. Baseball home-run hitters like to play in Denver, but
curveball pitchers do not. Why?

2. The density of air is 1.3 kg/m3 at sea level. From your
knowledge of air pressure at ground level, estimate the
height of the atmosphere. As a simplifying assumption, take
the atmosphere to be of uniform density up to some height,
after which the density rapidly falls to zero. (In reality, the
density of the atmosphere decreases as we go up.) (Ques-
tion 2 is courtesy of Edward F. Redish. For more questions
of this type, see http://www.physics.umd.edu/perg/.)

3. A woman wearing high-heeled shoes is invited into a
home in which the kitchen has vinyl floor covering. Why
should the homeowner be concerned?

4. Figure Q9.4 shows aerial views from directly above two
dams. Both dams are equally long (the vertical dimension
in the diagram) and equally deep (into the page in the
diagram). The dam on the left holds back a very large
lake, while the dam on the right holds back a narrow
river. Which dam has to be built more strongly?

6. During inhalation, the pressure in the lungs is slightly less
than external pressure and the muscles controlling exha-
lation are relaxed. Under water, the body equalizes inter-
nal and external pressures. Discuss the condition of the
muscles if a person under water is breathing through a
snorkel. Would a snorkel work in deep water?

7. Colloquially, we say a nurse uses a syringe to “draw” blood.
Why is it more accurate to say that a syringe is used to “ac-
cept” blood?

8. Many people believe that a vacuum created inside a vac-
uum cleaner causes particles of dirt to be drawn in. Actu-
ally, the dirt is pushed in. Explain.

9. Suppose a damaged ship just barely floats in the ocean af-
ter a hole in its hull has been sealed. It is pulled by a tug-
boat toward shore and into a river, heading toward a dry
dock for repair. As the boat is pulled up the river, it sinks.
Why?

10. Will an ice cube float higher in water or in an alcoholic
beverage?

11. A pound of Styrofoam and a pound of lead have the same
weight. If they are placed on a sensitive equal-arm bal-
ance, will the scales balance?

12. An ice cube is placed in a glass of water. What happens to
the level of the water as the ice melts?

13. Place two cans of soft drinks, one regular and one diet,
in a container of water. You will find that the diet drink
floats while the regular one sinks. Use Archimedes’ 
principle to devise an explanation. [Broad Hint : The arti-
ficial sweetener used in diet drinks is less dense than
sugar.]

14. Prairie dogs live in underground burrows with at least two
entrances. They ventilate their burrows by building a
mound over one entrance, as shown in Figure Q9.14. This
entrance is open to a stream of air when a breeze blows
from any direction. A second entrance at ground level is
open to almost stagnant air. How does this construction
create an airflow through the burrow?

DamDam

Figure Q9.4

Figure Q9.5

5. A typical silo on a farm has many bands wrapped around
its perimeter, as shown in Figure Q9.5. Why is the spacing
between successive bands smaller at the lower portions of
the silo?
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15. When you are driving a small car on the freeway and a
truck passes you at high speed, why do you feel pulled to-
ward the truck?

16. A barge is carrying a load of gravel along a river. It ap-
proaches a low bridge, and the captain realizes that the
top of the pile of gravel is not going to make it under the
bridge. The captain orders the crew to quickly shovel
gravel from the pile into the water. Is this a good decision?

17. Tornadoes and hurricanes often lift the roofs of houses.
Use the Bernoulli effect to explain why. Why should you
keep your windows open under these conditions?

18. Water is poured to the same level in each of the three ves-
sels shown in Figure Q9.18. Each vessel has the same base
area. Because the water fills each to the same depth, each
vessel will have the same pressure at the bottom. Because
the area and pressure at each base is the same, each liquid Figure Q9.18

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 9.1 States of Matter

Section 9.2 The Deformation of Solids

1. If the elastic limit of steel is 5.0 � 108 Pa, determine the
minimum diameter a steel wire can have if it is to support
a 70-kg circus performer without its elastic limit being
exceeded.

2. If the shear stress in steel exceeds about 4.00 �

108 N/m2, the steel ruptures. Determine the shearing
force necessary to (a) shear a steel bolt 1.00 cm in diame-
ter and (b) punch a 1.00-cm-diameter hole in a steel plate
0.500 cm thick.

3. The heels on a pair of women’s shoes have radii of
0.50 cm at the bottom. If 30% of the weight of a woman
weighing 480 N is supported by each heel, find the stress
on each heel.

When water freezes, it expands about 9.00%. What would
be the pressure increase inside your automobile engine
block if the water in it froze? The bulk modulus of ice is
2.00 � 109 N/m2.

5. For safety in climbing, a mountaineer uses a nylon rope
that is 50 m long and 1.0 cm in diameter. When support-
ing a 90-kg climber, the rope elongates 1.6 m. Find its
Young’s modulus.

6. A stainless-steel orthodontic wire is applied to a tooth, as
in Figure P9.6. The wire has an unstretched length of
3.1 cm and a diameter of 0.22 mm. If the wire is
stretched 0.10 mm, find the magnitude and direction of
the force on the tooth. Disregard the width of the tooth,
and assume that Young’s modulus for stainless steel is 
18 � 1010 Pa.

4.

7. Bone has a Young’s modulus of about 18 � 109 Pa. 
Under compression, it can withstand a stress of about 
160 � 106 Pa before breaking. Assume that a femur
(thighbone) is 0.50 m long, and calculate the amount of
compression this bone can withstand before breaking.

8. The distortion of the Earth’s crustal plates is an example
of shear on a large scale. A particular crustal rock has a
shear modulus of 1.5 � 1010 Pa. What shear stress is in-
volved when a 10-km layer of this rock is sheared through
a distance of 5.0 m?

9. A child slides across a floor in a pair of rubber-soled
shoes. The friction force acting on each foot is 20 N, the
footprint area of each foot is 14 cm2, and the thickness of
the soles is 5.0 mm. Find the horizontal distance traveled
by the sheared face of the sole. The shear modulus of the
rubber is 3.0 � 106 Pa.

10. A high-speed lifting mechanism supports an 800-kg object
with a steel cable that is 25.0 m long and 4.00 cm2 in
cross-sectional area. (a) Determine the elongation of the
cable. (b) By what additional amount does the cable in-
crease in length if the object is accelerated upwards at a
rate of 3.0 m/s2? (c) What is the greatest mass that can 
be accelerated upwards at 3.0 m/s2 if the stress in the 
cable is not to exceed the elastic limit of the cable, which
is 2.2 � 108 Pa?

30°30°

Figure P9.6

should exert the same force on the base of the vessel. Yet,
if the vessels are weighed, three different values are ob-
tained. (The one in the center clearly holds less liquid
than the one at the left, so it will weigh less.) How can you
resolve this apparent contradiction? (Question 18 is cour-
tesy of Edward F. Redish. For more questions of this type,
see http://www.physics.umd.edu/perg/.)
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312 Chapter 9 Solids and Fluids

11. Determine the elongation of the rod in Figure P9.11 if it
is under a tension of 5.8 � 103 N.

of concrete (the maximum pressure that can be exerted
on the base of the structure) is 1.7 � 107 Pa.

Section 9.3 Density and Pressure

Section 9.4 Variation of Pressure with Depth

Section 9.5 Pressure Measurements

18. The deepest point in the ocean is in the Mariana Trench,
about 11 km deep. The pressure at the ocean floor is
huge, about 1.13 � 108 N/m2. (a) Calculate the change
in volume of 1.00 m3 of water carried from the surface to
the bottom of the Pacific. (b) The density of water at the
surface is 1.03 � 103 kg/m3. Find its density at the bot-
tom. (c) Is it a good approximation to think of water as
incompressible?

19. A collapsible plastic bag (Figure P9.19) contains a glucose
solution. If the average gauge pressure in the vein is
1.33 � 103 Pa, what must be the minimum height h of the
bag in order to infuse glucose into the vein? Assume that
the specific gravity of the solution is 1.02.

20. (a) A very powerful vacuum cleaner has a hose 2.86 cm in
diameter. With no nozzle on the hose, what is the weight
of the heaviest brick it can lift? (b) A very powerful octo-
pus uses one sucker, of diameter 2.86 cm, on each of the
two shells of a clam, in an attempt to pull the shells apart.
Find the greatest force the octopus can exert in salt water
32.3 m deep.

21. For the cellar of a new house, a hole is dug in the ground,
with vertical sides going down 2.40 m. A concrete founda-
tion wall is built all the way across the 9.60-m width of
the excavation. The foundation wall is 0.183 m away from
the front of the cellar hole. During a rainstorm, drainage
from the street fills up the space in front of the con-
crete wall, but not the cellar behind the wall. The water
does not soak into the clay soil. Find the force the water

Air

4.0 m

Air

Figure P9.15

Glucose
solution

h

Figure P9.19

16. A 70-kg man in a 5.0-kg chair tilts back so that all the
weight is balanced on two legs of the chair. Assume that
each leg makes contact with the floor over a circular area
with a radius of 1.0 cm, and find the pressure exerted by
each leg on the floor.

If 1.0 m3 of concrete weighs 5.0 � 104 N, what is the
height of the tallest cylindrical concrete pillar that will not
collapse under its own weight? The compression strength

17.

1.3 m

CopperAluminum0.20 cm

2.6 m

Figure P9.11

12. The total cross-sectional area of the load-bearing calci-
fied portion of the two forearm bones (radius and 
ulna) is approximately 2.4 cm2. During a car crash, the
forearm is slammed against the dashboard. The arm
comes to rest from an initial speed of 80 km/h in 
5.0 ms. If the arm has an effective mass of 3.0 kg and
bone material can withstand a maximum compressional
stress of 16 � 107 Pa, is the arm likely to withstand the
crash?

Section 9.3 Density and Pressure

13. A 50.0-kg ballet dancer stands on her toes during a per-
formance with four square inches (26.0 cm2) in contact
with the floor. What is the pressure exerted by the floor
over the area of contact (a) if the dancer is stationary and
(b) if the dancer is leaping upwards with an acceleration
of 4.00 m/s2?

14. The four tires of an automobile are inflated to a gauge
pressure of 2.0 � 105 Pa. Each tire has an area of 0.024 m2

in contact with the ground. Determine the weight of the
automobile.

15. Air is trapped above liquid ethyl alcohol in a rigid con-
tainer, as shown in Figure P9.15. If the air pressure above
the liquid is 1.10 atm, determine the pressure inside a
bubble 4.0 m below the surface of the liquid.
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h

P0

Figure P9.22

500 lb

2.0 in.
10 in.

�

�

F

Figure P9.24

Wheel
drum

Shoe

Brake
cylinder

Master
cylinder

Pedal

Figure P9.25

Figure P9.26

A container is filled to a depth of
20.0 cm with water. On top of the water floats a 
30.0-cm-thick layer of oil with specific gravity 0.700. 
What is the absolute pressure at the bottom of the 
container?

24. Piston � in Figure P9.24 has a diameter of 0.25 in.; piston
� has a diameter of 1.5 in. In the absence of friction, 
determine the force necessary to support the 500-lb
weight.

F
:

23.

25. Figure P9.25 shows the essential parts of a hydraulic brake
system. The area of the piston in the master cylinder is 
6.4 cm2, and that of the piston in the brake cylinder is 
1.8 cm2. The coefficient of friction between shoe and

wheel drum is 0.50. If the wheel has a radius of 34 cm, de-
termine the frictional torque about the axle when a force
of 44 N is exerted on the brake pedal.

Section 9.6 Buoyant Forces and Archimedes’ Principle

26. A frog in a hemispherical pod finds that he just floats
without sinking in a fluid of density 1.35 g/cm3. If the
pod has a radius of 6.00 cm and negligible mass, what is
the mass of the frog? (See Fig. P9.26.)

exerts on the foundation wall. For comparison, the
weight of the water is 2.40 m � 9.60 m � 0.183 m �

1 000 kg/m3 � 9.80 m/s2 � 41.3 kN.

22. Blaise Pascal duplicated Torricelli’s barometer using a
red Bordeaux wine of density 984 kg/m3 as the working
liquid (Fig. P9.22). What was the height h of the wine 
column for normal atmospheric pressure? Would you ex-
pect the vacuum above the column to be as good as for
mercury?

27. A small ferryboat is 4.00 m wide and 6.00 m long. When
a loaded truck pulls onto it, the boat sinks an addi-
tional 4.00 cm into the river. What is the weight of the
truck?

28. The density of ice is 920 kg/m3, and that of sea water is
1 030 kg/m3. What fraction of the total volume of an ice-
berg is exposed?

29. As a first approximation, the Earth’s continents may be
thought of as granite blocks floating in a denser rock
(called peridotite) in the same way that ice floats in water.
(a) Show that a formula describing this phenomenon is

where �g is the density of granite (2.8 � 103 kg/m3), �p is
the density of peridotite (3.3 � 103 kg/m3), t is the thick-
ness of a continent, and d is the depth to which a conti-
nent floats in the peridotite. (b) If a continent sinks
5.0 km into the peridotite layer (this surface may be
thought of as the ocean floor), what is the thickness of
the continent?

�gt � �pd
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35. A sample of an unknown material appears to weigh 300 N
in air and 200 N when immersed in alcohol of specific
gravity 0.700. What are (a) the volume and (b) the density
of the material?

36. An object weighing 300 N in air is immersed in water after
being tied to a string connected to a balance. The scale
now reads 265 N. Immersed in oil, the object appears
to weigh 275 N. Find (a) the density of the object and
(b) the density of the oil.

37. A thin spherical shell of mass 0.400 kg and diameter
0.200 m is filled with alcohol (� � 806 kg/m3). It is then
released from rest at the bottom of a pool of water. Find
the acceleration of the alcohol-filled shell as it starts to
rise toward the surface of the water.

38. A rectangular air mattress is 2.0 m long, 0.50 m wide, and
0.08 m thick. If it has a mass of 2.0 kg, what additional
mass can it support in water?

A 1.00-kg beaker containing 2.00 kg of
oil (density � 916 kg/m3) rests on a scale. A 2.00-kg block
of iron is suspended from a spring scale and is completely
submerged in the oil (Fig. P9.39). Find the equilibrium
readings of both scales.

39.

Figure P9.39

Section 9.7 Fluids in Motion

Section 9.8 Other Applications of Fluid Dynamics

40. Water is pumped into a storage tank from a well delivering
20.0 gallons of water in 30.0 seconds through a pipe of
1.00-in.2 cross-sectional area. What is the average velocity of
the water in the pipe as the water is pumped from the well?

k k

(a) (b)

∆L

m

Figure P9.34

30. A 10.0-kg block of metal is suspended from a scale and im-
mersed in water, as in Figure P9.30. The dimensions of
the block are 12.0 cm � 10.0 cm � 10.0 cm. The 12.0-cm
dimension is vertical, and the top of the block is 5.00 cm
below the surface of the water. (a) What are the forces ex-
erted by the water on the top and bottom of the block?
(Take P0 � 1.013 0 � 105 N/m2.) (b) What is the reading
of the spring scale? (c) Show that the buoyant force
equals the difference between the forces at the top and
bottom of the block.

B

Mg

T2

Figure P9.30

A bathysphere used for deep sea exploration has a radius
of 1.50 m and a mass of 1.20 � 104 kg. In order to dive,
the sphere takes on mass in the form of sea water. Deter-
mine the mass the bathysphere must take on so that it can
descend at a constant speed of 1.20 m/s when the resis-
tive force on it is 1 100 N upward. The density of sea water
is 1.03 � 103 kg/m3.

32. The United States possesses the eight largest warships in
the world—aircraft carriers of the Nimitz class—and is
building one more. Suppose that, at a location where
g � 9.78 m/s2, one of the ships bobs up to float 11.0 cm
higher in the water when 50 fighters take off from it in
25 minutes. Bristling with bombs and missiles, each
plane has an average mass of 29 000 kg. Find the hori-
zontal area enclosed by the waterline of the $4-billion
ship. By comparison, its flight deck has area of 18 000
m2. Below decks are passageways hundreds of meters
long, so narrow that two large men cannot pass each
other.

33. An empty rubber balloon has a mass of 0.012 0 kg. The
balloon is filled with helium at a density of 0.181 kg/m3.
At this density, the balloon has a radius of 0.500 m. If the
filled balloon is fastened to a vertical line, what is the ten-
sion in the line?

34. A light spring of force constant k � 160 N/m rests verti-
cally on the bottom of a large beaker of water (Fig. P9.34a).
A 5.00-kg block of wood (density � 650 kg/m3) is con-
nected to the spring, and the block–spring system is al-
lowed to come to static equilibrium (Fig. P9.34b). What is
the elongation �L of the spring?

31.
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41. (a) Calculate the mass flow rate (in grams per second) of
blood (� � 1.0 g/cm3) in an aorta with a cross-sectional
area of 2.0 cm2 if the flow speed is 40 cm/s. (b) Assume
that the aorta branches to form a large number of capillar-
ies with a combined cross-sectional area of 3.0 � 103 cm2.
What is the flow speed in the capillaries?

42. A liquid (� � 1.65 g/cm3) flows through two horizontal
sections of tubing joined end to end. In the first sec-
tion, the cross-sectional area is 10.0 cm2, the flow speed
is 275 cm/s, and the pressure is 1.20 � 105 Pa. In the 
second section, the cross-sectional area is 2.50 cm2. 
Calculate the smaller section’s (a) flow speed and 
(b) pressure.

43. A hypodermic syringe contains a medicine with the den-
sity of water (Fig. P9.43). The barrel of the syringe has a
cross-sectional area of 2.50 � 10�5 m2. In the absence of a
force on the plunger, the pressure everywhere is 1.00 atm.
A force of magnitude 2.00 N is exerted on the plunger,
making medicine squirt from the needle. Determine the
medicine’s flow speed through the needle. Assume that
the pressure in the needle remains equal to 1.00 atm and
that the syringe is horizontal.

F
:

44. When a person inhales, air moves down the bronchus
(windpipe) at 15 cm/s. The average flow speed of the air
doubles through a constriction in the bronchus. Assum-
ing incompressible flow, determine the pressure drop in
the constriction.

A jet of water squirts out horizontally
from a hole near the bottom of the tank shown in Figure
P9.45. If the hole has a diameter of 3.50 mm, what is the
height h of the water level in the tank?

45.

the leak is 2.50 � 10�3 m3/min, determine (a) the speed
at which the water leaves the hole and (b) the diameter of
the hole.

47. The inside diameters of the larger portions of the hori-
zontal pipe depicted in Figure P9.47 are 2.50 cm. Water
flows to the right at a rate of 1.80 � 10�4 m3/s. Deter-
mine the inside diameter of the constriction.

A1

P2

A2

P1

v2F

Figure P9.43

h

0.600 m

1.00 m

Figure P9.45

5.00 cm10.0 cm

Figure P9.47

46. A large storage tank, open to the atmosphere at the top
and filled with water, develops a small hole in its side at a
point 16.0 m below the water level. If the rate of flow from

48. Water is pumped through a pipe of diameter 15.0 cm
from the Colorado River up to Grand Canyon Village, on
the rim of the canyon. The river is at 564 m elevation and
the village is at 2 096 m. (a) At what minimum pressure
must the water be pumped to arrive at the village? (b) If
4 500 m3 are pumped per day, what is the speed of the wa-
ter in the pipe? (c) What additional pressure is necessary
to deliver this flow? [Note : You may assume that the free-
fall acceleration and the density of air are constant over
the given range of elevations.]

Old Faithful geyser in Yellowstone Park erupts at approxi-
mately 1-hour intervals, and the height of the fountain
reaches 40.0 m. (a) Consider the rising stream as a series
of separate drops. Analyze the free-fall motion of one of
the drops to determine the speed at which the water
leaves the ground. (b) Treat the rising stream as an ideal
fluid in streamline flow. Use Bernoulli’s equation to deter-
mine the speed of the water as it leaves ground level.
(c) What is the pressure (above atmospheric pressure) in
the heated underground chamber 175 m below the vent?
You may assume that the chamber is large compared with
the geyser vent.

50. An airplane is cruising at an altitude of 10 km. The pres-
sure outside the craft is 0.287 atm; within the passenger
compartment, the pressure is 1.00 atm and the tempera-
ture is 20°C. The density of air is 1.20 kg/m3 at 20°C and
1 atm of pressure. A small leak forms in one of the win-
dow seals in the passenger compartment. Model the air as
an ideal fluid to find the speed of the stream of air flow-
ing through the leak.

51. A siphon is a device that allows a fluid to seemingly defy
gravity (Fig. P9.51). The flow must be initiated by a partial
vacuum in the tube, as in a drinking straw. (a) Show that
the speed at which the water emerges from the siphon is
given by . (b) For what values of y will the siphon
work?

v � √2gh

49.
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Section 9.9 Surface Tension, Capillary Action, 
and Viscous Fluid Flow

52. In order to lift a wire ring of radius 1.75 cm from the sur-
face of a container of blood plasma, a vertical force of
1.61 � 10�2 N greater than the weight of the ring is re-
quired. Calculate the surface tension of blood plasma
from this information.

53. A square metal sheet 3.0 cm on a side and of negligible
thickness is attached to a balance and inserted into a con-
tainer of fluid. The contact angle is found to be zero, as
shown in Figure P9.53a, and the balance to which the
metal sheet is attached reads 0.40 N. A thin veneer of oil
is then spread over the sheet, and the contact angle be-
comes 180°, as shown in Figure P9.53b. The balance now
reads 0.39 N. What is the surface tension of the fluid?

water 0.10 mm thick. Determine the magnitude of the
force needed to pull the block with a constant speed
of 0.50 m/s. At 0°C, the viscosity of water has the value
� � 1.79 � 10�3 N � s/m2.

F
:

v

0.500 m

Figure P9.64

0.800 m

1.20 m

F

Figure P9.57

Whole blood has a surface tension of 0.058 N/m and a
density of 1 050 kg/m3. To what height can whole blood
rise in a capillary blood vessel that has a radius of 
2.0 � 10�6 m if the contact angle is zero?

55. A certain fluid has a density of 1 080 kg/m3 and is ob-
served to rise to a height of 2.1 cm in a 1.0-mm-diameter
tube. The contact angle between the wall and the fluid is
zero. Calculate the surface tension of the fluid.

56. A staining solution used in a microbiology laboratory has
a surface tension of 0.088 N/m and a density 1.035 times
the density of water. What must be the diameter of a capil-
lary tube so that this solution will rise to a height of 5 cm?
(Assume a contact angle of zero.)

57. The block of ice (temperature 0°C) shown in Figure
P9.57 is drawn over a level surface lubricated by a layer of

54.

(a) (b)

T T

Figure P9.53

vh

y

r

Figure P9.51

58. A thin 1.5-mm coating of glycerine has been placed be-
tween two microscope slides of width 1.0 cm and length
4.0 cm. Find the force required to pull one of the micro-
scope slides at a constant speed of 0.30 m/s relative to the
other slide.

59. A straight horizontal pipe with a diameter of 1.0 cm and a
length of 50 m carries oil with a coefficient of viscosity of
0.12 N � s/m2. At the output of the pipe, the flow rate is
8.6 � 10�5 m3/s and the pressure is 1.0 atm. Find the
gauge pressure at the pipe input.

60. The pulmonary artery, which connects the heart to the
lungs, has an inner radius of 2.6 mm and is 8.4 cm long. If
the pressure drop between the heart and lungs is 400 Pa,
what is the average speed of blood in the pulmonary 
artery?

Spherical particles of a protein of density 1.8 g/cm3 are
shaken up in a solution of 20°C water. The solution is al-
lowed to stand for 1.0 h. If the depth of water in the tube
is 5.0 cm, find the radius of the largest particles that re-
main in solution at the end of the hour.

62. A hypodermic needle is 3.0 cm in length and 0.30 mm in
diameter. What excess pressure is required along the nee-
dle so that the flow rate of water through it will be 1 g/s?
(Use 1.0 � 10�3 Pa � s as the viscosity of water.)

63. What diameter needle should be used to inject a volume
of 500 cm3 of a solution into a patient in 30 min? Assume
that the length of the needle is 2.5 cm and that the solu-
tion is elevated 1.0 m above the point of injection. Fur-
thermore, assume the viscosity and density of the solution
are those of pure water, and assume that the pressure in-
side the vein is atmospheric.

64. Water is forced out of a fire extinguisher by air pressure,
as shown in Figure P9.64. What gauge air pressure in the
tank (above atmospheric pressure) is required for the wa-
ter to have a jet speed of 30.0 m/s when the water level in
the tank is 0.500 m below the nozzle?

61.
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65. The aorta in humans has a diameter of about 2.0 cm, and
at certain times the blood speed through it is about
55 cm/s. Is the blood flow turbulent? The density of
whole blood is 1 050 kg/m3, and its coefficient of viscosity
is 2.7 � 10�3 N � s/m2.

66. A pipe carrying 20°C water has a diameter of 2.5 cm.
Estimate the maximum flow speed if the flow must be
streamline.

Section 9.10 Transport Phenomena

67. Sucrose is allowed to diffuse along a 10-cm length of
tubing filled with water. The tube is 6.0 cm2 in cross-
sectional area. The diffusion coefficient is equal to 
5.0 � 10�10 m2/s, and 8.0 � 10�14 kg is transported
along the tube in 15 s. What is the difference in the 
concentration levels of sucrose at the two ends of the
tube?

68. Glycerin in water diffuses along a horizontal column that
has a cross-sectional area of 2.0 cm2. The concentration
gradient is 3.0 � 10�2 kg/m4, and the diffusion rate is
found to be 5.7 � 10�15 kg/s. Determine the diffusion co-
efficient.

69. The viscous force on an oil drop is measured to be 
3.0 � 10�13 N when the drop is falling through air with 
a speed of 4.5 � 10�4 m/s. If the radius of the drop is 
2.5 � 10�6 m, what is the viscosity of air?

70. Small spheres of diameter 1.00 mm fall through 20°C wa-
ter with a terminal speed of 1.10 cm/s. Calculate the den-
sity of the spheres.

ADDITIONAL PROBLEMS

71. An iron block of volume 0.20 m3 is suspended from a
spring scale and immersed in a flask of water. Then the
iron block is removed, and an aluminum block of the
same volume replaces it. (a) In which case is the buoyant
force the greatest, for the iron block or the aluminum
block? (b) In which case does the spring scale read the
largest value? (c) Use the known densities of these materi-
als to calculate the quantities requested in parts (a) and
(b). Are your calculations consistent with your previous
answers to part (a) and (b)?

72. Take the density of blood to be � and the distance be-
tween the feet and the heart to be hH. Ignore the flow of
blood. (a) Show that the difference in blood pressure be-
tween the feet and the heart is given by PF � PH � �ghH.
(b) Take the density of blood to be 1.05 � 103 kg/m3 and
the distance between the heart and the feet to be 1.20 m.
Find the difference in blood pressure between these two
points. This problem indicates that pumping blood from
the extremities is very difficult for the heart. The veins in
the legs have valves in them that open when blood is
pumped toward the heart and close when blood flows
away from the heart. Also, pumping action produced by
physical activities such as walking and breathing assists the
heart.

The approximate inside diameter of the
aorta is 0.50 cm; that of a capillary is 10 �m. The approxi-
mate average blood flow speed is 1.0 m/s in the aorta and
1.0 cm/s in the capillaries. If all the blood in the aorta
eventually flows through the capillaries, estimate the num-
ber of capillaries in the circulatory system.

74. Superman attempts to drink water through a very long
vertical straw. With his great strength, he achieves maxi-
mum possible suction. The walls of the straw don’t col-
lapse. (a) Find the maximum height through which he
can lift the water? (b) Still thirsty, the Man of Steel repeats
his attempt on the Moon, which has no atmosphere. Find
the difference between the water levels inside and outside
the straw.

75. The human brain and spinal cord are immersed in the
cerebrospinal fluid. The fluid is normally continuous be-
tween the cranial and spinal cavities and exerts a pres-
sure of 100 to 200 mm of H2O above the prevailing at-
mospheric pressure. In medical work, pressures are often
measured in units of mm of H2O because body fluids, in-
cluding the cerebrospinal fluid, typically have nearly the
same density as water. The pressure of the cerebrospinal
fluid can be measured by means of a spinal tap. A hollow
tube is inserted into the spinal column, and the height to
which the fluid rises is observed, as shown in Figure
P9.75. If the fluid rises to a height of 160 mm, we write its
gauge pressure as 160 mm H2O. (a) Express this pressure
in pascals, in atmospheres, and in millimeters of mercury.
(b) Sometimes it is necessary to determine whether an
accident victim has suffered a crushed vertebra that is
blocking the flow of cerebrospinal fluid in the spinal col-
umn. In other cases, a physician may suspect that a tumor
or other growth is blocking the spinal column and in-
hibiting the flow of cerebrospinal fluid. Such conditions
can be investigated by means of the Queckensted test. In
this procedure, the veins in the patient’s neck are com-
pressed, to make the blood pressure rise in the brain.
The increase in pressure in the blood vessels is transmit-
ted to the cerebrospinal fluid. What should be the 
normal effect on the height of the fluid in the spinal tap?
(c) Suppose that compressing the veins had no effect 
on the level of the fluid. What might account for this
phenomenon?

73.

Figure P9.75

76. Determining the density of a fluid has many important ap-
plications. A car battery contains sulfuric acid, and the
battery will not function properly if the acid density is too
low. Similarly, the effectiveness of antifreeze in your car’s
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engine coolant depends on the density of the mixture
(usually ethylene glycol and water). When you donate
blood to a blood bank, its screening includes a determina-
tion of the density of the blood, since higher density cor-
relates with higher hemoglobin content. A hydrometer is an
instrument used to determine the density of a liquid. A
simple one is sketched in Figure P9.76. The bulb of a 
syringe is squeezed and released to lift a sample of the 
liquid of interest into a tube containing a calibrated rod
of known density. (Assume the rod is cylindrical.) The
rod, of length L and average density �0, floats partially im-
mersed in the liquid of density �. A length h of the rod
protrudes above the surface of the liquid. Show that the
density of the liquid is given by 

� �
�0L

L � h

A block of wood weighs 50.0 N in air. A sinker is attached
to the block, and the weight of the wood–sinker combina-
tion is 200 N when the sinker alone is immersed in water.
Finally, the wood–sinker combination is completely im-
mersed, and the weight is measured to be 140 N. Find the
density of the block.

80. A U-tube open at both ends is partially filled with water
(Fig. P9.80a). Oil (� � 750 kg/m3) is then poured into
the right arm and forms a column L � 5.00 cm high (Fig.
P9.80b). (a) Determine the difference h in the heights of
the two liquid surfaces. (b) The right arm is then shielded
from any air motion while air is blown across the top of
the left arm until the surfaces of the two liquids are at the
same height (Fig. 9.80c). Determine the speed of the air
being blown across the left arm. Assume that the density
of air is 1.29 kg/m3.

79.

77. A 600-kg weather balloon is designed to lift a 4 000-kg
package. What volume should the balloon have after be-
ing inflated with helium at standard temperature and
pressure (see Table 9.3) in order that the total load can
be lifted?

78. A helium-filled balloon is tied to a 2.0-m-long, 0.050-kg
string. The balloon is spherical with a radius of 0.40 m.
When released, it lifts a length h of the string and then
remains in equilibrium, as in Figure P9.78. Determine
the value of h. When deflated, the balloon has a mass of
0.25 kg. [Hint : Only that part of the string above the
floor contributes to the load being held up by the 
balloon.]

Pa

Water

(a) (b) (c)

h
L

Oil

L

v Shield

Figure P9.80

A

h

Valve L B

u

Figure P9.81

81. Figure P9.81 shows a water tank with a valve. If the valve is
opened, what is the maximum height attained by the
stream of water coming out of the right side of the tank?
Assume that h � 10.0 m, L � 2.00 m, and � � 30.0°. As-
sume also that the cross-sectional area at A is very large
compared with that at B.

L

96

98

102

104

100

96

98

100

102
104

h

Figure P9.76

82. A solid copper ball with a diameter of 3.00 m at sea level
is placed on the bottom of the ocean, at a depth of 
10.0 km. If the density of sea water is 1 030 kg/m3, how
much does the diameter of the ball decrease when it
reaches bottom?

83. A 1.0-kg hollow ball with a radius of 0.10 m and filled with
air is released from rest at the bottom of a 2.0-m-deep

He

h

Figure P9.78
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Problems 319

pool of water. How high above the water does the ball
shoot upward? Neglect all frictional effects, and neglect
changes in the ball’s motion when it is only partially sub-
merged.

84. In about 1657, Otto von Guericke, inventor of the air
pump, evacuated a sphere made of two brass hemispheres
(Fig. P9.84). Two teams of eight horses each could pull
the hemispheres apart only on some trials and even
then with the greatest difficulty. (a) Show that the force
required to pull the evacuated hemispheres apart is
�R2(P0 � P), where R is the radius of the hemispheres
and P is the pressure inside the sphere, which is much less
than atmospheric pressure P0. (b) Determine the re-
quired force if P � 0.10 P0 and R � 0.30 m.

block? (c) Additional cold ethyl alcohol is poured onto
the water surface until the top surface of the alcohol co-
incides with the top surface of the ice cube (in hydro-
static equilibrium). How thick is the required layer of
ethyl alcohol?

87. A water tank open to the atmosphere at the top has two
small holes punched in its side, one above the other. The
holes are 5.00 cm and 12.0 cm above the floor. How high
does water stand in the tank if the two streams of water hit
the floor at the same place?

88. Oil having a density of 930 kg/m3 floats on water. A rec-
tangular block of wood 4.00 cm high and with a density of
960 kg/m3 floats partly in the oil and partly in the water.
The oil completely covers the block. How far below the in-
terface between the two liquids is the bottom of the
block?

89. A hollow object with an average density of 900 kg/m3

floats in a pan containing 500 cm3 of water. Ethanol is
added to the water and mixed into it until the object is
just on the verge of sinking. What volume of ethanol
has been added? (Disregard the loss of volume caused by
mixing.)

90. A walkway suspended across a hotel lobby is supported at
numerous points along its edges by a vertical cable above
each point and a vertical column underneath. The steel
cable is 1.27 cm in diameter and is 5.75 m long before
loading. The aluminum column is a hollow cylinder with
an inside diameter of 16.14 cm, an outside diameter of
16.24 cm, and an unloaded length of 3.25 m. When the
walkway exerts a load force of 8 500 N on one of the sup-
port points, through what distance does the point move
down?

ACTIVITIES

A.1. You will need a large spring scale, a clear container par-
tially filled with water, and a few cylinders of the same size,
but made of different materials. Your instructor may be
able to supply these items. Measure the volume of each
cylinder. Hang a cylinder on the scale, record the reading,
and start lowering the cylinder into the water. What hap-
pens to the reading on the scale as more of the cylinder is
submerged? Why does the reading behave as it does? Is
the effect independent of the type of material used for
the cylinder? Record the reading for a cylinder when it is
not submerged and when it is completely immersed. How
can you use these two readings to verify Archimedes’s
principle?

A.2. Place an egg at the bottom of a container of fresh water.
Now use a funnel to slowly add a salt solution to the 
water. You will observe that the egg begins to rise to 
the surface. Use Archimedes’s principle to explain your
observation.

A.3. Suppose you have the following collection of objects: a
pencil, a coin, an empty plastic box for a tape cassette
with its edges taped shut, a needle, an unopened can of

RF

P

F

P0

Figure P9.84 The colored engraving, dated 1672, illustrates Otto
von Guericke’s demonstration of the force due to air pressure, as 
performed before Emporer Ferdinand III in 1657.
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A 2.0-cm-thick bar of soap is floating on a water surface
so that 1.5 cm of the bar is under water. Bath oil of 
specific gravity 0.60 is poured into the water and floats
on top of it. What is the depth of the oil layer when the
top of the soap is just level with the upper surface of 
the oil?

86. A cube of ice whose edge is 20.0 mm is floating in a glass
of ice-cold water with one of its faces parallel to the 
water’s surface. (a) How far below the water surface is the
bottom face of the block? (b) Ice-cold ethyl alcohol is
gently poured onto the water surface to form a layer
5.00 mm thick above the water. When the ice cube attains
hydrostatic equilibrium again, what will be the distance
from the top of the water to the bottom face of the

85.
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320 Chapter 9 Solids and Fluids

soft drink, and an empty can of soft drink. Which of these
objects do you expect will float and which will sink in wa-
ter? Will it make a difference if you carefully place the ob-
ject with its largest surface on the surface of the water? In
which cases? Explain your reasoning. After you have writ-

ten your answer, perform the experiments and compare
the results with your predictions. (Activity 3 is courtesy of
Edward F. Redish. For more problems of this type, see
http://www.physics.umd.edu/perg/.)
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How can trapped water blow off the top of a volcano in a giant explosion? What causes a
sidewalk or road to fracture and buckle spontaneously when the temperature changes? How
can thermal energy be harnessed to do work, running the engines that make everything in
modern living possible?

Answering these and related questions is the domain of thermal physics, the study of
temperature, heat, and how they affect matter. Quantitative descriptions of thermal phenom-
ena require careful definitions of the concepts of temperature, heat, and internal energy. Heat
leads to changes in internal energy and thus to changes in temperature, which cause the
expansion or contraction of matter. Such changes can damage roadways and buildings,
create stress fractures in metal, and render flexible materials stiff and brittle, the latter result-
ing in compromised O-rings and the Challenger disaster. Changes in internal energy can also
be harnessed for transportation, construction, and food preservation.

Gases are critical in the harnessing of thermal energy to do work. Within normal tempera-
ture ranges, a gas acts like a large collection of non-interacting point particles, called an ideal
gas. Such gases can be studied on either a macroscopic or microscopic scale. On the macro-
scopic scale, the pressure, volume, temperature, and number of particles associated with a
gas can be related in a single equation known as the ideal gas law. On the microscopic scale,
a model called the kinetic theory of gases pictures the components of a gas as small particles.
This model will enable us to understand how processes on the atomic scale affect macro-
scopic properties like pressure, temperature, and internal energy.

High temperatures inside a volcano
turn water into a high pressure
steam. Unless the steam and other
gases vent into the atmosphere, pres-
sure can build until a catastrophic ex-
plosion results.
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322 Chapter 10 Thermal Physics

10.1 TEMPERATURE AND THE ZEROTH LAW 
OF THERMODYNAMICS

Temperature is commonly associated with how hot or cold an object feels when we
touch it. While our senses provide us with qualitative indications of temperature, they
are unreliable and often misleading. A metal ice tray feels colder to the hand, for ex-
ample, than a package of frozen vegetables at the same temperature, due to the fact
metals conduct thermal energy more rapidly than a cardboard package. What we
need is a reliable and reproducible method of making quantitative measurements
that establish the relative “hotness” or “coldness” of objects—a method related solely
to temperature. Scientists have developed a variety of thermometers for making such
measurements.

When placed in contact with each other, two objects at different initial tempera-
tures will eventually reach a common intermediate temperature. If a cup of hot
coffee is cooled with an ice cube, for example, the ice rises in temperature and
eventually melts while the temperature of the coffee decreases.

Understanding the concept of temperature requires understanding thermal
contact and thermal equilibrium. Two objects are in thermal contact if energy can be
exchanged between them. Two objects are in thermal equilibrium if they are in
thermal contact and there is no net exchange of energy.

The exchange of energy between two objects because of differences in their
temperatures is called heat, a concept examined in more detail in Chapter 11.

Using these ideas, we can develop a formal definition of temperature. Consider
two objects A and B that are not in thermal contact with each other, and a third ob-
ject C that acts as a thermometer—a device calibrated to measure the temperature
of an object. We wish to determine whether A and B would be in thermal equilib-
rium if they were placed in thermal contact. The thermometer (object C) is first
placed in thermal contact with A until thermal equilibrium is reached, as in Figure
10.1a, whereupon the reading of the thermometer is recorded. The thermometer is
then placed in thermal contact with B, and its reading is again recorded at equilib-
rium (Fig. 10.1b). If the two readings are the same, then A and B are in thermal
equilibrium with each other. If A and B are placed in thermal contact with each
other, as in Figure 10.1c, there is no net transfer of energy between them.

We can summarize these results in a statement known as the zeroth law of
thermodynamics (the law of equilibrium):

A

(a)

B

(b)

B
A

(c)

C C

Figure 10.1 The zeroth law of
thermodynamics. (a) and (b): If the
temperatures of A and B are found to
be the same as measured by object C
(a thermometer), no energy will be
exchanged between them when they
are placed in thermal contact with
each other, as in (c).

If objects A and B are separately in thermal equilibrium with a third object C,
then A and B are in thermal equilibrium with each other.

This statement is important because it makes it possible to define temperature. We
can think of temperature as the property that determines whether or not an object
is in thermal equilibrium with other objects. Two objects in thermal equilibrium
with each other are at the same temperature.

Zeroth law of thermodynamics �
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10.2 Thermometers and Temperature Scales 323

Two objects with different sizes, masses, and temperatures are placed in thermal
contact. Choose the best answer: Energy travels (a) from the larger object to the
smaller object (b) from the object with more mass to the one with less mass 
(c) from the object at higher temperature to the object at lower temperature.

Quick Quiz 10.1

10.2 THERMOMETERS AND TEMPERATURE
SCALES

Thermometers are devices used to measure the temperature of an object or a
system. When a thermometer is in thermal contact with a system, energy is ex-
changed until the thermometer and the system are in thermal equilibrium with
each other. For accurate readings, the thermometer must be much smaller than
the system, so that the energy the thermometer gains or loses doesn’t significantly
alter the energy content of the system. All thermometers make use of some physi-
cal property that changes with temperature and can be calibrated to make the
temperature measurable. Some of the physical properties used are (1) the volume
of a liquid, (2) the length of a solid, (3) the pressure of a gas held at constant
volume, (4) the volume of a gas held at constant pressure, (5) the electric resist-
ance of a conductor, and (6) the color of a very hot object.

One common thermometer in everyday use consists of a mass of liquid—usually
mercury or alcohol—that expands into a glass capillary tube when its temperature
rises (Fig. 10.2). In this case the physical property that changes is the volume of a liq-
uid. To serve as an effective thermometer, the change in volume of the liquid with
change in temperature must be very nearly constant over the temperature ranges of
interest. When the cross-sectional area of the capillary tube is constant as well, the
change in volume of the liquid varies linearly with its length along the tube. We can
then define a temperature in terms of the length of the liquid column. The ther-
mometer can be calibrated by placing it in thermal contact with environments that
remain at constant temperature. One such environment is a mixture of water and
ice in thermal equilibrium at atmospheric pressure. Another commonly used system
is a mixture of water and steam in thermal equilibrium at atmospheric pressure.

Once we have marked the ends of the liquid column for our chosen environ-
ment on our thermometer, we need to define a scale of numbers associated with
various temperatures. An example of such a scale is the Celsius temperature scale,
formerly called the centigrade scale. On the Celsius scale, the temperature of the
ice–water mixture is defined to be zero degrees Celsius, written 0�C and called the
ice point or freezing point of water. The temperature of the water–steam mixture
is defined as 100�C, called the steam point or boiling point of water. Once the ends
of the liquid column in the thermometer have been marked at these two points,
the distance between marks is divided into 100 equal segments, each correspon-
ding to a change in temperature of one degree Celsius.

Thermometers calibrated in this way present problems when extremely accurate
readings are needed. For example, an alcohol thermometer calibrated at the ice and
steam points of water might agree with a mercury thermometer only at the calibration
points. Because mercury and alcohol have different thermal expansion properties,
when one indicates a temperature of 50�C, say, the other may indicate a slightly differ-
ent temperature. The discrepancies between different types of thermometers are espe-
cially large when the temperatures to be measured are far from the calibration points.

The Constant-Volume Gas Thermometer and the Kelvin Scale
We can construct practical thermometers such as the mercury thermometer, but these
types of thermometers don’t define temperature in a fundamental way. One ther-
mometer, however, is more fundamental, and offers a way to define temperature and
relate it directly to internal energy: the gas thermometer. In a gas thermometer, the
temperature readings are nearly independent of the substance used in the thermome-
ter. One type of gas thermometer is the constant-volume unit shown in Figure 10.3.

100°C0°C

Figure 10.2 Schematic diagram of
a mercury thermometer. Because of
thermal expansion, the level of the
mercury rises as the temperature of
the mercury changes from 0�C (the
ice point) to 100�C (the steam point).

Scale

Bath or 
environment
to be measured Flexible 

hose

Mercury
reservoir

P0

0

A
B

P
Gas

h

Figure 10.3 A constant-volume gas
thermometer measures the pressure
of the gas contained in the flask
immersed in the bath. The volume 
of gas in the flask is kept constant by
raising or lowering reservoir B to
keep the mercury level constant.
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The behavior observed in this device is the variation of pressure with temperature
of a fixed volume of gas. When the constant-volume gas thermometer was devel-
oped, it was calibrated using the ice and steam points of water as follows (a differ-
ent calibration procedure, to be discussed shortly, is now used): The gas flask is in-
serted into an ice–water bath, and mercury reservoir B is raised or lowered until
the volume of the confined gas is at some value, indicated by the zero point on the
scale. The height h, the difference between the levels in the reservoir and column
A, indicates the pressure in the flask at 0�C. The flask is inserted into water at the
steam point, and reservoir B is readjusted until the height in column A is again
brought to zero on the scale, ensuring that the gas volume is the same as it had
been in the ice bath (hence the designation “constant-volume”). A measure of the
new value for h gives a value for the pressure at 100�C. These pressure and tempera-
ture values are then plotted on a graph, as in Figure 10.4. The line connecting the
two points serves as a calibration curve for measuring unknown temperatures. If we
want to measure the temperature of a substance, we place the gas flask in thermal
contact with the substance and adjust the column of mercury until the level in col-
umn A returns to zero. The height of the mercury column tells us the pressure of
the gas, and we could then find the temperature of the substance from the calibra-
tion curve.

Now suppose that temperatures are measured with various gas thermometers
containing different gases. Experiments show that the thermometer readings are
nearly independent of the type of gas used, as long as the gas pressure is low and
the temperature is well above the point at which the gas liquifies.

We can also perform the temperature measurements with the gas in the flask at
different starting pressures at 0�C. As long as the pressure is low, we will generate
straight-line calibration curves for each starting pressure, as shown for three exper-
imental trials (solid lines) in Figure 10.5.

If the curves in Figure 10.5 are extended back toward negative temperatures, we
find a startling result: In every case, regardless of the type of gas or the value of the
low starting pressure, the pressure extrapolates to zero when the temperature is
� 273.15�C. This fact suggests that this particular temperature is universal in its
importance, because it doesn’t depend on the substance used in the thermometer.
In addition, because the lowest possible pressure is P � 0, a perfect vacuum, the
temperature � 273.15�C must represent a lower bound for physical processes. We
define this temperature as absolute zero.

Absolute zero is used as the basis for the Kelvin temperature scale, which sets
� 273.15�C as its zero point (0 K). The size of a “degree” on the Kelvin scale is
chosen to be identical to the size of a degree on the Celsius scale. The relationship
between these two temperature scales is

[10.1]

where TC is the Celsius temperature and T is the Kelvin temperature (sometimes
called the absolute temperature).

TC � T � 273.15

324 Chapter 10 Thermal Physics

1000
T(°C)

P

Figure 10.4 A typical graph of
pressure versus temperature 
taken with a constant-volume gas
thermometer. The dots represent
known reference temperatures (the
ice and the steam points of water).

Trial 2

Trial 3

Trial 1P

200 T(°C)1000–100–200–273.15

Figure 10.5 Pressure versus temperature 
for experimental trials in which gases have dif-
ferent pressures in a constant-volume gas ther-
mometer. Note that for all three trials the 
pressure extrapolates to zero at the 
temperature � 273.15�C.
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Technically, Equation 10.1 should have units on the right-hand side so that it
reads . The units are rather cumbersome in this context,
so we will usually suppress them in such calculations except in the final answer.
(This will also be the case when discussing the Celsius and Fahrenheit scales).

Early gas thermometers made use of ice and steam points according to the
procedure just described. These points are experimentally difficult to duplicate,
however, because they are pressure-sensitive. Consequently, a procedure based
on two new points was adopted in 1954 by the International Committee on
Weights and Measures. The first point is absolute zero. The second point is the
triple point of water, which is the single temperature and pressure at which wa-
ter, water vapor, and ice can coexist in equilibrium. This point is a convenient
and reproducible reference temperature for the Kelvin scale; it occurs at a tem-
perature of 0.01�C and a pressure of 4.58 mm of mercury. The temperature at
the triple point of water on the Kelvin scale occurs at 273.16 K. Therefore, the SI
unit of temperature, the kelvin, is defined as 1/273.16 of the temperature of the
triple point of water. Figure 10.6 shows the Kelvin temperatures for various physi-
cal processes and structures. Absolute zero has been closely approached but never
achieved.

What would happen to a substance if its temperature could reach 0 K? As
Figure 10.5 indicates, the substance would exert zero pressure on the walls of its
container (assuming that the gas doesn’t liquefy or solidify on the way to absolute
zero). In Section 10.5 we show that the pressure of a gas is proportional to the
kinetic energy of the molecules of that gas. According to classical physics, there-
fore, the kinetic energy of the gas would go to zero, and there would be no motion
at all of the individual components of the gas. According to quantum theory,
however (to be discussed in Chapter 27), the gas would always retain some resid-
ual energy, called the zero-point energy, at that low temperature.

The Celsius, Kelvin, and Fahrenheit Temperature Scales
Equation 10.1 shows that the Celsius temperature TC is shifted from the absolute
(Kelvin) temperature T by 273.15. Because the size of a Celsius degree is the same
as a kelvin, a temperature difference of 5�C is equal to a temperature difference of
5 K. The two scales differ only in the choice of zero point. The ice point
(273.15 K) corresponds to 0.00�C, and the steam point (373.15 K) is equivalent to
100.00�C.

The most common temperature scale in use in the United States is the Fahren-
heit scale. It sets the temperature of the ice point at 32�F and the temperature of
the steam point at 212�F. The relationship between the Celsius and Fahrenheit
temperature scales is

[10.2a]

For example, a temperature of 50.0�F corresponds to a Celsius temperature of
10.0�C and an absolute temperature of 283 K.

Equation 10.2 can be inverted to give Celsius temperatures in terms of Fahren-
heit temperatures:

[10.2b]

Equation 10.2 can also be used to find a relationship between changes in tempera-
ture on the Celsius and Fahrenheit scales. In a problem at the end of the chapter
you will be asked to show that if the Celsius temperature changes by �TC , the
Fahrenheit temperature changes by the amount

[10.3]

Figure 10.7 (page 326) compares the three temperature scales we have discussed.

�TF � 9
5 �TC

TC � 5
9 (TF � 32)

TF � 9
5 TC � 32

TC � T  �C/K � 273.15 �C

Hydrogen bomb

109

108

107

106

105

104

103

102

10

1

Interior of the Sun

Solar corona

Surface of the Sun
Copper melts

Water freezes
Liquid nitrogen
Liquid hydrogen

Liquid helium

Lowest temperature
achieved ˜10–7 K

Temperature (K)

Figure 10.6 Absolute temperatures
at which various selected physical
processes take place. Note that the
scale is logarithmic.

� The kelvin 
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Celsius

Steam point 100°

0°Ice point

Fahrenheit

212°

32°

Kelvin

373.15

273.15

Figure 10.7 A comparison of the
Celsius, Fahrenheit, and Kelvin 
temperature scales.

EXAMPLE 10.1 Skin Temperature
Goal Apply the temperature conversion formulas.

Problem The temperature gradient between the skin and the air is regulated by cutaneous (skin) blood flow. If the
cutaneous blood vessels are constricted, the skin temperature and the temperature of the environment will be about
the same. When the vessels are dilated, more blood is brought to the surface. Suppose that during dilation the skin
warms from 72.0�F to 84.0�F. (a) Convert these temperatures to Celsius and find the difference. (b) Convert the tem-
peratures to Kelvin, again finding the difference.

Strategy This is a matter of applying the conversion formulas, Equations 10.1 and 10.2. For part (b) it’s easiest to
use the answers for Celsius, rather than develop another set of conversion equations.

Solution
(a) Convert the temperatures from Fahrenheit to
Celsius and find the difference.

Convert the lower temperature, using Equation 10.2b. 22�CTC � 5
9(TF � 32) � 5

9(72 � 32) �

Convert the upper temperature: 29�CTC � 5
9(TF � 32) � 5

9(84 � 32) �

Find the difference of the two temperatures: 7�C�TC � 29�C � 22�C �

(b) Convert the temperatures from Fahrenheit to Kelvin
and find their difference.

Convert the lower temperature, using the answers for
Celsius found in part (a): 285 KT � 22 � 273.15 �

TC � T � 273.15 : T � TC � 273.15

Convert the upper temperature: 292 KT � 29 � 273.15 �

Find the difference of the two temperatures: 7 K�T � 292 K � 285 K �

Remark The change in temperature in Kelvin and Celsius is the same, as it should be.
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10.3 THERMAL EXPANSION OF SOLIDS 
AND LIQUIDS

Our discussion of the liquid thermometer made use of one of the best-known
changes that occur in most substances: As temperature of the substance increases,
its volume increases. This phenomenon, known as thermal expansion, plays an
important role in numerous applications. Thermal expansion joints, for example,

Exercise 10.1
Core body temperature can rise from 98.6�F to 107�F during extreme exercise, such as a marathon run. Such
elevated temperatures can also be caused by viral or bacterial infections or tumors and are dangerous if sustained.
(a) Convert the given temperatures to Celsius and find the difference. (b) Convert the temperatures to Kelvin, again
finding the difference.

Answer (a) 37.0�C, 41.7�C, 4.7�C (b) 310.2 K, 314.9 K, 4.7 K

EXAMPLE 10.2 Extraterrestrial Temperature Scale
Goal Understand how to relate different temperature scales.

Problem An extraterrestrial scientist invents a temperature scale such that water freezes at � 75�E and boils at 325�E,
where E stands for an extraterrestrial scale. Find an equation that relates temperature in �E to temperature in �C.

Strategy Using the given data, find the ratio of the number of �E between the two temperatures to the number of
�C. This ratio will be the same as a similar ratio for any other such process—say, from the freezing point to an un-
known temperature—corresponding to TE and TC . Setting the two ratios equal and solving for TE in terms of TC
yields the desired relationship.

Solution
Find the change in temperature in �E between the
freezing and boiling points of water:

�TE � 325�E � (�75�E) � 400�E

Find the change in temperature in �C between the
freezing and boiling points of water:

�TC � 100�C � 0�C � 100�C

Form the ratio of these two quantities.
�TE

�TC
�

400�E
100�C

� 4 
�E
�C

This ratio is the same between any other two temperatures
—say, from the freezing point to an unknown final tem-
perature. Set the two ratios equal to each other:

�TE

�TC
�

TE � (�75�E)
TC � 0�C

� 4 
�E
�C

Solve for TE :

4TC � 75TE �

TE � (�75�E) � 4(�E/�C)(TC � 0�C)

Remark The relationship between any other two temperatures scales can be derived in the same way.

Exercise 10.2
Find the equation converting �F to �E.

Answer TE � 20
9 TF � 146
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must be included in buildings, concrete highways, and bridges to compensate for
changes in dimensions with variations in temperature (Fig. 10.8).

The overall thermal expansion of an object is a consequence of the change in
the average separation between its constituent atoms or molecules. To understand
this idea, consider how the atoms in a solid substance behave. These atoms are
located at fixed equilibrium positions; if an atom is pulled away from its position, a
restoring force pulls it back. We can imagine that the atoms are particles con-
nected by springs to their neighboring atoms. (See Fig. 9.1 in the previous
chapter.) If an atom is pulled away from its equilibrium position, the distortion of
the springs provides a restoring force.

At ordinary temperatures, the atoms vibrate around their equilibrium positions with
an amplitude (maximum distance from the center of vibration) of about 10�11 m, 
with an average spacing between the atoms of about 10�10 m. As the temperature of
the solid increases, the atoms vibrate with greater amplitudes and the average sepa-
ration between them increases. Consequently, the solid as a whole expands.

If the thermal expansion of an object is sufficiently small compared with the
object’s initial dimensions, then the change in any dimension is, to a good approxima-
tion, proportional to the first power of the temperature change. Suppose an object has
an initial length L0 along some direction at some temperature T0. Then the length in-
creases by �L for a change in temperature �T. So for small changes in temperature,

[10.4]

or

where L is the object’s final length T is its final temperature, and the proportional-
ity constant � is called the coefficient of linear expansion for a given material and
has units of (�C)�1.

Table 10.1 lists the coefficients of linear expansion for various materials. Note
that for these materials � is positive, indicating an increase in length with increas-
ing temperature.

Thermal expansion affects the choice of glassware used in kitchens and labora-
tories. If hot liquid is poured into a cold container made of ordinary glass, the
container may well break due to thermal stress. The inside surface of the glass
becomes hot and expands, while the outside surface is at room temperature, and
ordinary glass may not withstand the difference in expansion without breaking.
Pyrex® glass has a coefficient of linear expansion of about one-third that of ordi-
nary glass, so the thermal stresses are smaller. Kitchen measuring cups and labora-
tory beakers are often made of Pyrex so they can be used with hot liquids.

L � L0 � � L0(T � T0)

�L � �L0 �T
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(a)

(b)

Figure 10.8 (a) Thermal expansion
joints are used to separate sections of
roadways on bridges. Without these
joints, the surfaces would buckle due
to thermal expansion on very hot days
or crack due to contraction on very
cold days. (b) The long, vertical joint is
filled with a soft material that allows
the wall to expand and contract as the
temperature of the bricks changes.
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TABLE 10.1
Average Coefficients of Expansion for Some Materials Near Room Temperature

Average Coefficient Average Coefficient
of Linear Expansion of Volume Expansion

Material [(�C)�1] Material [(�C)�1]

Aluminum 24 � 10�6 Ethyl alcohol 1.12 � 10�4

Brass and bronze 19 � 10�6 Benzene 1.24 � 10�4

Copper 17 � 10�6 Acetone 1.5 � 10�4

Glass (ordinary) 9 � 10�6 Glycerin 4.85 � 10�4

Glass (Pyrex®) 3.2 � 10�6 Mercury 1.82 � 10�4

Lead 29 � 10�6 Turpentine 9.0 � 10�4

Steel 11 � 10�6 Gasoline 9.6 � 10�4

Invar (Ni-Fe alloy) 0.9 � 10�6 Air 3.67 � 10�3

Concrete 12 � 10�6 Helium 3.665 � 10�3

TIP 10.1 Coefficients of 
Expansion are not Constants
The coefficients of expansion can
vary somewhat with temperature, so
the given coefficients are actually 
averages.
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EXAMPLE 10.3 Expansion of a Railroad Track
Goal Apply the concept of linear expansion and relate it to stress.

Problem (a) A steel railroad track has a length of
30.000 m when the temperature is 0�C. What is its
length on a hot day when the temperature is 40.0�C?
(b) Suppose the track is nailed down so that it can’t
expand. What stress results in the track due to the
temperature change?

Strategy (a) Apply the linear expansion equation,
using Table 10.1 and Equation 10.4. (b) A track that
cannot expand by �L due to external constraints is
equivalent to compressing the track by �L, creating
a stress in the track. Using the equation relating ten-
sile stress to tensile strain together with the linear
expansion equation, the amount of (compressional)
stress can be calculated using Equation 9.3.

(Example 10.3) Thermal expan-
sion: The extreme heat of a July
day in Asbury Park, New Jersey,
caused these railroad tracks to
buckle.AP
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Solution
(a) Find the length of the track at 40.0�C.

Substitute given quantities into Equation 10.4, finding
the change in length:  � 0.013 m

 �L � �L0 �T � [11 � 10�6(�C)�1](30.000 m)(40.0�C)

Remarks Repeated heating and cooling is an important part of the weathering process that gradually wears things
out, weakening structures over time.

Exercise 10.3
What is the length of the same railroad track on a cold winter day when the temperature is 0�F?

Answer 29.994 m

(b) Find the stress if the track cannot expand.

Substitute into Equation 9.3 to find the stress:

� 8.67 � 107 Pa

F
A

� Y 
�L
L

� (2.00 � 1011 Pa)� 0.013 m
30.0 m �

Add the change to the original length to find the final
length:

30.013 mL � L0 � �L �

How can different coefficients of expansion for metals
be used as a temperature gauge and control elec-
tronic devices such as air conditioners?

Explanation When the temperatures of a brass rod
and a steel rod of equal length are raised by the
same amount from some common initial value, the
brass rod expands more than the steel rod because
brass has a larger coefficient of expansion than 

steel. A simple device that uses this principle is a
bimetallic strip. Such strips can be found in the
thermostats of certain home heating systems. The
strip is made by securely bonding two different
metals together. As the temperature of the strip
increases, the two metals expand by different
amounts and the strip bends, as in Figure 10.9 
(page 330). The change in shape can make or break
an electrical connection.

Applying Physics 10.1 Bimetallic Strips and Thermostats
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(b)

(a)

Steel

Brass

Room temperature Higher temperature

Bimetallic strip

Off 30°COn 25°C

(c)

a

b

T0

T0 + ∆T

b + ∆b

a + ∆a

ACTIVE FIGURE 10.10
Thermal expansion of a homogeneous
metal washer. As the washer is heated,
all dimensions increase. (Note that 
the expansion is exaggerated in this
figure.)

Log into PhysicsNow at
www.cp7e.com, and go to Active 
Figure 10.10 to compare expansions
for various temperatures of the
burner and various materials from
which the washer is made.

Figure 10.9 (Applying Physics 10.1) (a) A bimetallic strip bends as the temperature changes because
the two metals have different coefficients of expansion. (b) A bimetallic strip used in a thermostat to
break or make electrical contact. (c) The interior of a thermostat, showing the coiled bimetallic strip.
Why do you suppose the strip is coiled?
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It may be helpful to picture a thermal expansion as a magnification or a photo-
graphic enlargement. For example, as the temperature of a metal washer increases
(Active Fig. 10.10), all dimensions, including the radius of the hole, increase
according to Equation 10.4.

One practical application of thermal expansion is the common technique of
using hot water to loosen a metal lid stuck on a glass jar. This works because the
circumference of the lid expands more than the rim of the jar.

Because the linear dimensions of an object change due to variations in temper-
ature, it follows that surface area and volume of the object also change. Consider 
a square of material having an initial length L0 on a side and therefore an 
initial area A0 � L0

2. As the temperature is increased, the length of each side
increases to

The new area A is

The last term in this expression contains the quantity ��T raised to the second
power. Because ��T is much less than one, squaring it makes it even smaller.
Consequently, we can neglect this term to get a simpler expression:

so that

[10.5]

where � � 2�. The quantity � (Greek letter gamma) is called the coefficient of
area expansion.

�A � A � A0 � �A0 �T

 A � A0 � 2�A0 �T

A � L0
2 � 2�L0

2 �T

A � L2 � (L 0 � �L 0 �T)(L 0 � �L 0 �T ) � L 0
2 � 2�L 0

2 �T � �2L 0
2(�T )2

L � L0 � �L0  �T
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EXAMPLE 10.4 Rings and Rods
Goal Apply the equation of area expansion.

Problem (a) A circular copper ring at 20.0�C has a hole with an area of 9.98 cm2. What minimum temperature must
it have so that it can be slipped onto a steel metal rod having a cross-sectional area of 10.0 cm2? (b) Suppose the ring
and the rod are heated simultaneously. What change in temperature of both will allow the ring to be slipped onto the
end of the rod? (Assume no significant change in the coefficients of linear expansion over this temperature range.)

Strategy In part (a), finding the necessary temperature change is just a matter of substituting given values into Equa-
tion 10.5, the equation of area expansion. Remember that � � 2�. Part (b) is a little harder, because now the rod is also
expanding. If the ring is to slip onto the rod, however, the final cross-sectional areas of both ring and rod must be equal.
Write this condition in mathematical terms, using Equation 10.5 on both sides of the equation, and solve for �T.

Solution
(a) Find the temperature of the ring that will allow it to
slip onto the rod.

Substitute the desired change in area into Equation
10.5, finding the necessary change in temperature:  � 0.02 cm2

 �A � �A0 �T � [34 � 10�6 (�C)�1](9.98 cm2)(�T )

Solve for �T, then add this change to the initial temper-
ature to get the final temperature:

78.9�CT � T0 � �T � 20.0�C � 58.9�C �

�T � 58.9�C

(b) Increase the temperature of both ring and rod to
remove the ring.

Set the final areas of the copper ring and steel rod equal
to each other:

AC � �AC � AS � �AS

Substitute for each change in area, �A: AC � �C AC �T � AS � �S AS �T

Rearrange terms to get �T on one side only, factor it out
and solve:

168�C�T �

�
10.0 cm2 � 9.98 cm2

(34 � 10�6 �C�1)(9.98 cm2) �(22 � 10�6 �C�1)(10.0 cm2)

�T �
AS � AC

�C AC � �S AS

(�C AC � �S AS) �T � AS � AC

�C AC �T � �S AS �T � AS � AC

Exercise 10.4
A steel ring with a hole having area of 3.99 cm2 is to be placed on an aluminum rod with cross-sectional area of
4.00 cm2. Both rod and ring are initially at a temperature of 35.0�C. At what common temperature can the steel ring
be slipped onto one end of the aluminum rod? 

Answer � 61�C

We can also show that the increase in volume of an object accompanying a change in
temperature is

[10.6]

where 	, the coefficient of volume expansion, is equal to 3�. (Note that � � 2�
and 	 � 3� only if the coefficient of linear expansion of the object is the same in
all directions.) The proof of Equation 10.6 is similar to the proof of Equation 10.5.

�V � 	V0 �T
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If you quickly plunge a room-temperature mercury thermometer into very hot
water, the mercury level will (a) go up briefly before reaching a final reading,
(b) go down briefly before reaching a final reading, or (c) not change.

Quick Quiz 10.2

If you are asked to make a very sensitive glass thermometer, which of the following
working fluids would you choose? (a) mercury (b) alcohol (c) gasoline (d) glycerin

Quick Quiz 10.3

Two spheres are made of the same metal and have the same radius, but one is hol-
low and the other is solid. The spheres are taken through the same temperature
increase. Which sphere expands more? (a) solid sphere, (b) hollow sphere,
(c) they expand by the same amount, or (d) not enough information to say.

Quick Quiz 10.4

EXAMPLE 10.5 Global Warming and Coastal Flooding
Goal Apply the volume expansion equation together with linear expansion.

Problem (a) Estimate the fractional change in the volume of Earth’s oceans due to an average temperature change
of 1�C. (b) Use the fact that the average depth of the ocean is 4.00 � 103 m to estimate the change in depth. Note
that �water � 2.07 � 10�4(�C)�1

Strategy In part (a), solve the volume expansion expression, Equation 10.6, for �V/V. For part (b), use linear ex-
pansion to estimate the increase in depth. Neglect the expansion of landmasses, which would reduce the rise in sea
level only slightly.

Solution
(a) Find the fractional change in volume.

Divide the volume expansion equation by V0 and
substitute:

2 � 10�4� �V
V0

� � ��T � (2.07 � 10�4 (�C)�1�(1�C) �

 �V � �V0 �T

(b) Find the approximate increase in depth.

Use the linear expansion equation. Divide the volume
expansion coefficient of water by three to get the equiv-
alent linear expansion coefficient: 0.3 m�L � (6.90 � 10�5 (�C)�1(4 000 m)(1�C) �

 �L � 	L0 �T � � �

3 � L0 �T

Remarks Three-tenths of a meter may not seem significant, but combined with increased melting of the polar ice
caps, some coastal areas could experience flooding. An increase of several degrees increases the value of �L several
times and could significantly reduce the value of waterfront property.

A P P L I C AT I O N
Rising Sea Levels

As Table 10.1 indicates, each substance has its own characteristic coefficients of
expansion.

The thermal expansion of water has a profound influence on rising ocean
levels. At current rates of global warming, scientists predict that about one-half of
the expected rise in sea level will be caused by thermal expansion; the remainder
will be due to the melting of polar ice.
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The Unusual Behavior of Water
Liquids generally increase in volume with increasing temperature and have
volume expansion coefficients about ten times greater than those of solids. Over a
small temperature range, water is an exception to this rule, as we can see from its
density-versus-temperature curve in Figure 10.11. As the temperature increases
from 0�C to 4�C, water contracts, so its density increases. Above 4�C, water exhibits
the expected expansion with increasing temperature. The density of water reaches
its maximum value of 1 000 kg/m3 at 4�C.

We can use this unusual thermal expansion behavior of water to explain why a
pond freezes slowly from the top down. When the atmospheric temperature drops
from 7�C to 6�C, say, the water at the surface of the pond also cools and conse-
quently decreases in volume. This means the surface water is more dense than the
water below it, which has not yet cooled nor decreased in volume. As a result, the
surface water sinks and warmer water from below is forced to the surface to be
cooled, a process called upwelling. When the atmospheric temperature is between
4�C and 0�C, however, the surface water expands as it cools, becoming less dense
than the water below it. The sinking process stops, and eventually the surface
water freezes. As the water freezes, the ice remains on the surface because ice is
less dense than water. The ice continues to build up on the surface, and water near
the bottom of the pool remains at 4�C. Further, the ice forms an insulating layer
that slows heat loss from the underlying water, offering thermal protection for ma-
rine life.

Without buoyancy and the expansion of water upon freezing, life on Earth may
not have been possible. If ice had been more dense than water, it would have sunk
to the bottom of the ocean and built up over time. This could have led to a freez-
ing of the oceans, turning the Earth into an icebound world similar to Hoth in the
Star Wars epic The Empire Strikes Back.

The same peculiar thermal expansion properties of water sometimes cause
pipes to burst in winter. As energy leaves the water through the pipe by heat and is
transferred to the outside cold air, the outer layers of water in the pipe freeze first.

Exercise 10.5
A 1.00-liter aluminum cylinder at 5.00�C is filled to the brim with gasoline at the same temperature. If the aluminum
and gasoline are warmed to 65.0�C, how much of the gasoline spills out? [Hint: Be sure to account for the expansion
of the container. Also, ignore the possibility of evaporation, and assume the volume coefficients are good to three
digits.]

Answer The volume spilled is 53.3 cm3. Forgetting to take into account the expansion of the cylinder results in a
(wrong) answer of 57.6 cm3.
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Figure 10.11 The density of water
as a function of temperature. The inset
at the right shows that the maximum
density of water occurs at 4�C.

A P P L I C AT I O N
Bursting Pipes in Winter
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The continuing energy transfer causes ice to form ever closer to the center of the
pipe. As long as there is still an opening through the ice, the water can expand as
its temperature approaches 0�C or as it freezes into more ice, pushing itself into
another part of the pipe. Eventually, however, the ice will freeze to the center
somewhere along the pipe’s length, forming a plug of ice at that point. If there is
still liquid water between this plug and some other obstruction, such as another
ice plug or a spigot, then no additional volume is available for further expansion
and freezing. The pressure in the pipe builds and can rupture the pipe.

10.4 MACROSCOPIC DESCRIPTION 
OF AN IDEAL GAS

The properties of gases are important in a number of thermodynamic processes.
Our weather is a good example of the types of processes that depend on the be-
havior of gases.

If we introduce a gas into a container, it expands to fill the container uniformly,
with its pressure depending on the size of the container, the temperature, and the
amount of gas. A larger container results in a lower pressure, while higher temper-
atures or larger amounts of gas result in a higher pressure. The pressure P, volume
V, temperature T, and amount n of gas in a container are related to each other by
an equation of state.

The equation of state can be very complicated, but is found experimentally to
be relatively simple if the gas is maintained at a low pressure (or a low density).
Such a low-density gas approximates what is called an ideal gas. Most gases at room
temperature and atmospheric pressure behave approximately as ideal gases. An
ideal gas is a collection of atoms or molecules that move randomly and exert no
long-range forces on each other. Each particle of the ideal gas is individually point-
like, occupying a negligible volume.

A gas usually consists of a very large number of particles, so it’s convenient to
express the amount of gas in a given volume in terms of the number of moles, n. A
mole is a number. The same number of particles is found in a mole of helium as in
a mole of iron or aluminum. This number is known as Avogadro’s number and is
given by

Avogadro’s number and the definition of a mole are fundamental to chemistry
and related branches of physics. The number of moles of a substance is related to
its mass m by the expression

[10.7]

where the molar mass of the substance is defined as the mass of one mole of that
substance, usually expressed in grams per mole.

There are lots of atoms in the world, so it’s natural and convenient to choose a
very large number like Avogadro’s number when describing collections of atoms.
At the same time, Avogadro’s number must be special in some way, because other-
wise why not just count things in terms of some large power of ten, like 1024?

It turns out that Avogadro’s number was chosen so that the mass in grams of
one Avogadro’s number of an element is numerically the same as the mass of one
atom of the element, expressed in atomic mass units (u).

This relationship is very convenient. Looking at the periodic table of the ele-
ments in the back of the book, we find that carbon has an atomic mass of 12 u, so
12 g of carbon consists of exactly 6.02 � 1023 atoms of carbon. The atomic mass of
oxygen is 16 u, so in 16 g of oxygen there are again 6.02 � 1023 atoms of oxygen.
The same holds true for molecules: The molecular mass of molecular hydrogen,
H2, is 2 u, and there is an Avogadro’s number of molecules in 2 g of molecular
hydrogen.

n �
m

molar mass

NA � 6.02 � 1023 particles/mole

334 Chapter 10 Thermal Physics

Avogadro’s number �
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The technical definition of a mole is as follows: One mole (mol) of any
substance is that amount of the substance that contains as many particles (atoms,
molecules, or other particles) as there are atoms in 12 g of the isotope carbon-12.

Taking carbon-12 as a test case, let’s find the mass of an Avogadro’s number of
carbon-12 atoms. A carbon-12 atom has an atomic mass of 12 u, or 12 atomic mass
units. One atomic mass unit is equal to 1.66 � 10�24 g, about the same as the mass
of a neutron or proton—particles that make up atomic nuclei. The mass m of an
Avogadro’s number of carbon-12 atoms is then given by

So we see that Avogadro’s number is deliberately chosen to be the inverse of the
number of grams in an atomic mass unit. In this way, the atomic mass of an
atom expressed in atomic mass units is numerically the same as the mass of an
Avogadro’s number of that kind of atom expressed in grams. Because there are
6.02 � 1023 particles in one mole of any element, the mass per atom for a given
element is 

For example, the mass of a helium atom is

Now suppose an ideal gas is confined to a cylindrical container with a volume
that can be changed by moving a piston, as in Active Figure 10.12. Assume that the
cylinder doesn’t leak, so the number of moles remains constant. Experiments yield
the following observations: First, when the gas is kept at a constant temperature, its
pressure is inversely proportional to its volume (Boyle’s law). Second, when the
pressure of the gas is kept constant, the volume of the gas is directly proportional
to the temperature (Charles’s law.) Third, when the volume of the gas is held con-
stant, the pressure is directly proportional to the temperature (Gay-Lussac’s law).
These observations can be summarized by the following equation of state, known
as the ideal gas law:

[10.8]

In this equation, R is a constant for a specific gas that must be determined from
experiments, while T is the temperature in kelvins. Each point on a P versus V dia-
gram would represent a different state of the system. Experiments on several gases
show that, as the pressure approaches zero, the quantity PV/nT approaches the
same value of R for all gases. For this reason, R is called the universal gas constant.
In SI units, where pressure is expressed in pascals and volume in cubic meters,

[10.9]

If the pressure is expressed in atmospheres and the volume is given in liters (recall
that 1 L � 103 cm3 � 10�3 m3), then

Using this value of R and Equation 10.8, the volume occupied by 1 mol of any
ideal gas at atmospheric pressure and at 0�C (273 K) is 22.4 L.

R � 0.0821 L
atm/mol
K

R � 8.31 J/mol
K

PV � nRT

mHe �
4.00 g/mol

6.02 � 1023 atoms/mol
� 6.64 � 10�24 g/atom

matom �
molar mass

NA

m � NA(12 u) � 6.02 � 1023(12 u)� 1.66 � 10�24 g
u � � 12.0 g

Gas

ACTIVE FIGURE 10.12
A gas confined to a cylinder whose
volume can be varied with a movable
piston.

Log into PhysicsNow at www.cp7e.com,
and go to Active Figure 10.12, where
you can choose to keep either the tem-
perature or the pressure constant and
verify the ideal gas law.

� The universal gas constant

� Equation of state for an ideal gas

TIP 10.2 Only Kelvin Works!
Temperatures used in the ideal gas
law must always be in kelvins.

TIP 10.3 Standard 
Temperature and Pressure
Chemists often define standard tem-
perature and pressure (STP) to be
20�C and 1.0 atm. We choose STP to
be 0�C and 1.0 atm. (See Table 9.3.)A helium-filled balloon is released into the atmosphere. Assuming constant

temperature, as the balloon rises, it (a) expands, (b) contracts, or (c) remains
unchanged in size.

Quick Quiz 10.5
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EXAMPLE 10.6 An Expanding Gas
Goal Use the ideal gas law to analyze a system of gas.

Problem An ideal gas at 20.0�C and a pressure of 1.50 � 105 Pa is in a container having a volume of 1.00 L. (a) De-
termine the number of moles of gas in the container. (b) The gas pushes against a piston, expanding to twice its orig-
inal volume, while the pressure falls to atmospheric pressure. Find the final temperature.

Strategy (a) Solve the ideal gas equation of state for the number of moles, n, and substitute the known quantities.
Be sure to convert the temperature from Celsius to Kelvin! (b) When comparing two states of a gas, it’s often most
convenient to divide the ideal gas equation of the final state by the equation of the initial state. Then quantities that
don’t change can immediately be cancelled, simplifying the algebra.

Solution
(a) Find the number of moles of gas.

Convert the temperature to kelvins: T � TC � 273 � 20.0 � 273 � 293 K

Solve the ideal gas law for n and substitute:

� 6.16 � 10�2 mol

n �
PV
RT

�
(1.50 � 105 Pa)(1.00 � 10�3 m3)

(8.31 J/mol 
K)(293 K)

 PV � nRT

(b) Find the temperature after the gas expands to 2.00 L.

Divide the ideal gas law for the final state by the ideal
gas law for the initial state:

PfVf

PiVi
�

nRTf

nRTi

Cancel the number of moles n and the gas constant R,
and solve for Tf :

� 395 K

Tf �
Pf Vf

PiVi
 Ti �

(1.01 � 105 Pa)(2.00 L)
(1.50 � 105 Pa)(1.00 L)

 (293 K)

 
PfVf

PiVi
�

Tf

Ti

Remark Remember the trick used in part (b), it’s often useful in ideal gas problems. Notice that it wasn’t necessary
to convert units from liters to cubic meters, since the units were going to cancel anyway.

Exercise 10.6
Suppose the temperature of 4.50 L of ideal gas drops from 375 K to 275 K. (a) If the volume remains constant and
the initial pressure is atmospheric pressure, find the final pressure. (b) Find the number of moles of gas.

Answer (a) 7.41 � 104 Pa (b) 0.146 mol

EXAMPLE 10.7 Message in a Bottle
Goal Apply the ideal gas law in tandem with Newton’s second law.

Problem A beachcomber finds a corked bottle containing a message. The air in the bottle is at atmospheric pres-
sure and a temperature of 30.0�C. The cork has a cross-sectional area of 2.30 cm2. The beachcomber places the bot-
tle over a fire, figuring the increased pressure will push out the cork. At a temperature of 99 �C the cork is ejected
from the bottle. (a) What was the pressure in the bottle just before the cork left it? (b) What force of friction held the
cork in place? Neglect any change in volume of the bottle.
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Strategy (a) The number of moles of air in the bottle remains the same as it warms over the fire. Take the ideal gas
equation for the final state and divide by the ideal gas equation for the initial state. Solve for the final pressure.
(b) There are three forces acting on the cork: a friction force, the exterior force of the atmosphere pushing in, and
the force of the air inside the bottle pushing out. Apply Newton’s second law. Just before the cork begins to move,
the three forces are in equilibrium and the static friction force has its maximum value.

Solution
(a) Find the final pressure.

Divide the ideal gas law at the final point by the ideal
gas law at the initial point:

(1)
Pf Vf

PiVi
�

nRTf

nRTi

Cancel n, R, and V, which don’t change, and solve 
for Pf :

Pf

Pi
�

Tf

Ti
 : Pf � Pi  

Tf

Ti

Substitute known values, obtaining the final pressure: 1.24 � 105 PaPf � (1.01 � 105 Pa) 
372 K
303 K

�

(b) Find the magnitude of the friction force acting on
the cork.

Apply Newton’s second law to the cork just before it
leaves the bottle. Pin is the pressure inside the bottle,
Pout the pressure outside.

5.29 NF friction �

� (2.30 � 10�4 m2)

 � (1.24 � 105 Pa � 1.01 � 105 Pa)

 F friction � PinA � PoutA � (Pin � Pout)A

�F � 0 : PinA � PoutA � F friction � 0

Remark Notice the use, once again, of the ideal gas law in Equation (1). Whenever comparing the state of a gas at
two different points, this is the best way to do the math. One other point: heating the gas blasted the cork out of the
bottle, which meant the gas did work on the cork. The work done by an expanding gas—driving pistons and genera-
tors—is one of the foundations of modern technology and will be studied extensively in Chapter 12.

Exercise 10.7
A tire contains air at a gauge pressure of 5.00 � 104 Pa at a temperature of 30.0�C. After nightfall, the temperature
drops to �10.0�C. Find the new gauge pressure in the tire. (Recall that gauge pressure is absolute pressure minus at-
mospheric pressure. Assume constant volume.)

Answer 3.01 � 104 Pa

EXAMPLE 10.8 Submerging a Balloon
Goal Combine the ideal gas law with the equation of hydrostatic equilibrium and buoyancy.

Problem A sturdy balloon with volume 0.500 m3 is attached to a 2.50 � 102-kg iron weight and tossed over-
board into a freshwater lake. The balloon is made of a light material of negligible mass and elasticity (though it
can be compressed). The air in the balloon is initially at atmospheric pressure. The system fails to sink and there
are no more weights, so a skin diver decides to drag it deep enough so that the balloon will remain submerged.
(a) Find the volume of the balloon at the point where the system will remain submerged, in equilibrium. (b)
What’s the balloon’s pressure at that point? (c) Assuming constant temperature, to what minimum depth must
the balloon be dragged?

Strategy As the balloon and weight are dragged deeper into the lake, the air in the balloon is compressed and the
volume is reduced along with the buoyancy. At some depth h the total buoyant force acting on the balloon and
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Solution
(a) Find the volume of the balloon at the equilibrium
point.

Find the volume of the iron, VFe: VFe �
m Fe

� Fe
�

2.50 � 102 kg
7.86 � 103 kg/m3 � 0.0318 m3

Find the mass of the balloon, which is equal to the mass
of the air if we neglect the mass of the balloon’s
material:

m bal � �airV bal � (1.29 kg/m3)(0.500 m3) � 0.65 kg

Apply Newton’s second law to the system when it’s in
equilibrium:

BFe � wFe � Bbal � wbal � 0

Substitute the appropriate expression for each term: �watVFe g � mFe g �  �watVbal g � mbal g � 0

Cancel the g’s and solve for the volume of the balloon,
Vbal:

0.219 m3Vbal �

�
0.65 kg �  2.50 � 102 kg � (1.00 � 103 kg/m3)(0.0318 m3)

1.00 � 103 kg/m3

Vbal �
m bal � m Fe � � watVFe

� wat

(b) What’s the balloon’s pressure at the equilibrium
point?

Now use the ideal gas law to find the pressure, assuming
constant temperature, so that Ti � Tf .

� 2.31 � 105 Pa

Pf �
Vi

Vf
Pi �

0.500 m3

0.219 m3  (1.01 � 105 Pa)

PfVf

PiVi
�

nRTf

nRTi
� 1

(c) To what minimum depth must the balloon be
dragged?

Use the equation of hydrostatic equilibrium to find the
depth:

� 13.3 m

h �
Pf � Patm

�g
�

2.31 � 105 Pa � 1.01 � 105 Pa
(1.00 � 103 kg/m3)(9.80 m/s2)

Pf � Patm � �gh

Remark Once again, the ideal gas law was used to good effect. This problem shows how even answering a fairly sim-
ple question can require the application of several different physical concepts: density, buoyancy, the ideal gas law,
and hydrostatic equilibrium.

Exercise 10.8
A boy takes a 30.0-cm3 balloon holding air at 1.00 atm at the surface of a freshwater lake down to a depth of 4.00 m.
Find the volume of the balloon at this depth. Assume the balloon is made of light material of little elasticity (though
it can be compressed), and that the temperature of the trapped air remains constant.

Answer 21.6 cm3

weight, Bbal � BFe, will equal the total weight, wbal � wFe, and the balloon will remain at that depth. Substitute these
forces into Newton’s second law and solve for the unknown volume of the balloon, answering part (a). Then use the
ideal gas law to find the pressure, and the equation of hydrostatic equilibrium to find the depth.
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As previously stated, the number of molecules contained in one mole of any gas is
Avogadro’s number, NA � 6.02 � 1023 particles/mol, so 

[10.10]

where n is the number of moles and N is the number of molecules in the gas. With
Equation 10.10, we can rewrite the ideal gas law in terms of the total number of
molecules as

or

[10.11]

where

[10.12]

is Boltzmann’s constant. This reformulation of the ideal gas law will be used in the
next section to relate the temperature of a gas to the average kinetic energy of par-
ticles in the gas.

10.5 THE KINETIC THEORY OF GASES
In Section 10.4, we discussed the macroscopic properties of an ideal gas, including
pressure, volume, number of moles, and temperature. In this section we consider
the ideal gas model from the microscopic point of view. We will show that the
macroscopic properties can be understood on the basis of what is happening on
the atomic scale. In addition, we reexamine the ideal gas law in terms of the
behavior of the individual molecules that make up the gas.

Using the model of an ideal gas, we will describe the kinetic theory of gases.
With this theory we can interpret the pressure and temperature of an ideal gas in
terms of microscopic variables. The kinetic theory of gases model makes the fol-
lowing assumptions:

1. The number of molecules in the gas is large, and the average separation be-
tween them is large compared with their dimensions. The fact that the number
of molecules is large allows us to analyze their behavior statistically. The large
separation between molecules means that the molecules occupy a negligible
volume in the container. This assumption is consistent with the ideal gas model,
in which we imagine the molecules to be pointlike.

2. The molecules obey Newton’s laws of motion, but as a whole they move ran-
domly. By “randomly” we mean that any molecule can move in any direction
with equal probability, with a wide distribution of speeds.

3. The molecules interact only through short-range forces during elastic collisions.
This assumption is consistent with the ideal gas model, in which the molecules
exert no long-range forces on each other.

4. The molecules make elastic collisions with the walls.
5. All molecules in the gas are identical.

Although we often picture an ideal gas as consisting of single atoms, molecular
gases exhibit ideal behavior at low pressures. On average, effects associated with
molecular structure have no effect on the motions considered, so we can apply the
results of the following development to molecular gases as well as to monatomic
gases.

kB �
R

NA
� 1.38 � 10�23 J/K

PV � N kBT

PV � nRT �
N

NA
RT

n �
N

NA

� Ideal gas law 

� Boltzmann’s constant

� Assumptions of kinetic theory for
an ideal gas
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Molecular Model for the Pressure of an Ideal Gas
As a first application of kinetic theory, we derive an expression for the pressure of
an ideal gas in a container in terms of microscopic quantities. The pressure of the
gas is the result of collisions between the gas molecules and the walls of the con-
tainer. During these collisions, the gas molecules undergo a change of momentum
as a result of the force exerted on them by the walls.

We now derive an expression for the pressure of an ideal gas consisting of N
molecules in a container of volume V. In this section, we use m to represent the
mass of one molecule. The container is a cube with edges of length d (Fig. 10.13).
Consider the collision of one molecule moving with a velocity �vx toward the left-
hand face of the box (Fig. 10.14). After colliding elastically with the wall, the mole-
cule moves in the positive x -direction with a velocity �vx . Because the momentum
of the molecule is �mvx before the collision and �mvx afterward, the change in its
momentum is

If F1 is the magnitude of the average force exerted by a molecule on the wall in
the time �t, then applying Newton’s second law to the wall gives

In order for the molecule to make two collisions with the same wall, it must travel
a distance 2d along the x -direction in a time �t. Therefore, the time interval
between two collisions with the same wall is �t � 2d/vx, and the force imparted to
the wall by a single molecule is

The total force F exerted by all the molecules on the wall is found by adding the
forces exerted by the individual molecules:

In this equation, v1x is the x -component of velocity of molecule 1, v2x is the x -
component of velocity of molecule 2, and so on. The summation terminates when
we reach N molecules because there are N molecules in the container.

Note that the average value of the square of the velocity in the x -direction for N
molecules is

where is the average value of . The total force on the wall can then be written

Now we focus on one molecule in the container traveling in some arbitrary di-
rection with velocity and having components vx, vy, and vz. In this case, we must
express the total force on the wall in terms of the speed of the molecules rather
than just a single component. The Pythagorean theorem relates the square of the
speed to the square of these components according to the expression

. Hence, the average value of v2 for all the molecules in the
container is related to the average values , , and according to the
expression . Because the motion is completely random, the
average values , , and are equal to each other. Using this fact and the ear-
lier equation for , we find that

vx
2 � 1

3 v2

vx
2

vz
2vy

2vx
2

v2 � vx
2 � vy

2 � vz
2

vz
2vy

2vx
2

v 2 � vx
2 � vy

2 � vz
2

v:

F �
Nm
d

  vx
2

vx
2vx

2

vx
2 �

v1x
2 � v2x

2 � 
 
 
 � vNx
2

N

F �
m
d

 (v1x
2 � v2x

2 � 
 
 
)

F 1 �
2mvx

�t
�

2mvx

2d/vx
�

mvx
2

d

F 1 �
�px

�t
�

2mvx

�t

�px � mvx � (�mvx) � 2mvx
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z x
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v

Figure 10.13 A cubical box with
sides of length d containing an ideal
gas. The molecule shown moves with
velocity .v:

+vx

After collision

–vx

Before collision

Figure 10.14 A molecule moving
along the x -axis makes elastic colli-
sions with the walls of the container.
In colliding with a wall, the mole-
cule’s momentum is reversed, and the
molecule exerts a force on the wall.

The glass vessel contains dry ice
(solid carbon dioxide). The white
cloud is carbon dioxide vapor, which
is denser than air and hence falls
from the vessel as shown.
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The total force on the wall, then, is

This expression allows us to find the total pressure exerted on the wall by dividing
by the force by the area:

[10.13]

Equation 10.13 says that the pressure is proportional to the number of molecules
per unit volume and to the average translational kinetic energy of a molecule, .
With this simplified model of an ideal gas, we have arrived at an important result
that relates the large-scale quantity of pressure to an atomic quantity—the average
value of the square of the molecular speed. This relationship provides a key link
between the atomic world and the large-scale world.

Equation 10.13 captures some familiar features of pressure. One way to increase
the pressure inside a container is to increase the number of molecules per unit
volume in the container. You do this when you add air to a tire. The pressure in
the tire can also be increased by increasing the average translational kinetic energy
of the molecules in the tire. As we will see shortly, this can be accomplished by in-
creasing the temperature of the gas inside the tire. That’s why the pressure inside
a tire increases as the tire warms up during long trips. The continuous flexing of
the tires as they move along the road transfers energy to the air inside them, in-
creasing the air’s temperature, which in turn raises the pressure.

Molecular Interpretation of Temperature
Having related the pressure of a gas to the average kinetic energy of the gas
molecules, we now relate temperature to a microscopic description of the gas.
We can obtain some insight into the meaning of temperature by multiplying Equa-
tion 10.13 by the volume:

Comparing this equation with the equation of state for an ideal gas in the form of
Equation 10.11, PV � NkBT, we note that the left-hand sides of the two equations
are identical. Equating the right-hand sides, we obtain

[10.14]

This means that the temperature of a gas is a direct measure of the average molec-
ular kinetic energy of the gas. As the temperature of a gas increases, the molecules
move with higher average kinetic energy.

Rearranging Equation 10.14, we can relate the translational molecular kinetic
energy to the temperature:

[10.15]

So the average translational kinetic energy per molecule is . The total transla-
tional kinetic energy of N molecules of gas is simply N times the average energy
per molecule,

[10.16]KE total � N  �1
2 mv 2� � 3

2 NkBT � 3
2 nRT

3
2kBT

1
2 mv 2 � 3

2 k BT

T �
2

3kB
  �1

2 mv 2�

PV � 2
3 N �1

2 mv 2�

1
2mv2

P � 2
3 � N

V ��1
2mv 2�

P �
F
A

�
F

d 2 � 1
3 � N

d 3 mv 2� � 1
3 � N

V �mv 2

F �
N
3

 � mv2

d �

� Pressure of an ideal gas 

� Temperature is proportional to
average kinetic energy

� Average kinetic energy per molecule

� Total kinetic energy of N molecules

44337_10_p321-351  10/28/04  2:36 PM  Page 341



where we have used kB � R/NA for Boltzmann’s constant and n � N/NA for the
number of moles of gas. From this result, we see that the total translational kinetic
energy of a system of molecules is proportional to the absolute temperature of the
system.

For a monatomic gas, translational kinetic energy is the only type of energy the
molecules can have, so Equation 10.16 gives the internal energy U for a
monatomic gas:

(monatomic gas) [10.17]

For diatomic and polyatomic molecules, additional possibilities for energy storage
are available in the vibration and rotation of the molecule.

The square root of is called the root-mean-square (rms) speed of the mole-
cules. From Equation 10.15, we get, for the rms speed,

[10.18]

where M is the molar mass in kilograms per mole, if R is given in SI units. Equation
10.18 shows that, at a given temperature, lighter molecules tend to move faster
than heavier molecules. For example, if gas in a vessel consists of a mixture of
hydrogen and oxygen, the hydrogen (H2) molecules, with a molar mass of 2.0 �
10�3 kg/mol, move four times faster than the oxygen (O2) molecules, with molar
mass 32 � 10�3 kg/mol. If we calculate the rms speed for hydrogen at room tem-
perature (� 300 K), we find

This speed is about 17% of the escape speed for Earth, as calculated in Chapter 7.
Because it is an average speed, a large number of molecules have much higher
speeds and can therefore escape from Earth’s atmosphere. This is why Earth’s
atmosphere doesn’t currently contain hydrogen—it has all bled off into space.

Table 10.2 lists the rms speeds for various molecules at 20�C. A system of gas at
a given temperature will exhibit a variety of speeds. This distribution of speeds is
known as the Maxwell velocity distribution. An example of such a distribution for
nitrogen gas at two different temperatures is given in Active Figure 10.15. The
horizontal axis is speed, and the vertical axis is the number of molecules per
unit speed. Notice that three speeds are of special interest: the most probable
speed, corresponding to the peak in the graph; the average speed, which is
found by averaging over all the possible speeds; and the rms speed. For every
gas, vmp  vav  vrms. As the temperature rises, these three speeds shift to the
right.

vrms � √ 3RT
M

� √ 3(8.31 J/mol 
K)(300 K)
2.0 � 10�3 kg/mol

� 1.9 � 103 m/s

vrms � √v2 � √ 3kBT
m

� √ 3RT
M

v2

U � 3
2 nRT
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TABLE 10.2
Some rms Speeds
Gas Molar Mass (kg/mol) vrms at 20�C (m/s)

H2 2.02 � 10�3 1 902
He 4.0 � 10�3 1 352
H2O 18 � 10�3 637
Ne 20.2 � 10�3 602
N2 and CO 28.0 � 10�3 511
NO 30.0 � 10�3 494
O2 32.0 � 10�3 478
CO2 44.0 � 10�3 408
SO2 64.1 � 10�3 338

Root-mean-square speed �

TIP 10.4 Kilograms, not
Grams Per Mole
In the equation for the rms speed,
the units of molar mass M must be
consistent with the units of the gas
constant R. In particular, if R is in SI
units, M must be expressed in
kilograms per mole, not grams 
per mole.
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ACTIVE FIGURE 10.15
The Maxwell speed distribution for
105 nitrogen molecules at 300 K and
900 K. The total area under either
curve equals the total number of mol-
ecules. The most probable speed vmp,
the average speed vav, and the root-
mean-square speed vrms are indicated
for the 900-K curve.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 10.15 to set the desired
temperature and see the effect 
on the distribution curve.

One container is filled with argon gas and another with helium gas. Both containers
are at the same temperature. Which atoms have the higher rms speed? (a) argon,
(b) helium, (c) they have the same speed, or (d) not enough information to say.

Quick Quiz 10.6

Imagine a gas in an insulated cylinder with a movable
piston. The piston has been pushed inward, compress-
ing the gas, and is now released. As the molecules of
the gas strike the piston, they move it outward. Explain,
from the point of view of the kinetic theory, how the
expansion of this gas causes its temperature to drop.

Explanation From the point of view of kinetic the-
ory, a molecule colliding with the piston causes the

piston to move with some velocity. According to the
conservation of momentum, the molecule must 
rebound with less speed than it had before the 
collision. As these collisions occur, therefore, the 
average speed of the collection of molecules is
reduced. Because temperature is related to the
average speed of the molecules, the temperature 
of the gas drops.

Applying Physics 10.2 Expansion and Temperature

EXAMPLE 10.9 A Cylinder of Helium
Goal Calculate the internal energy of a system and the average kinetic energy per molecule.

Problem A cylinder contains 2.00 mol of helium gas at 20.0�C. Assume that the helium behaves like an ideal gas. 
(a) Find the total internal energy of the system. (b) What is the average kinetic energy per molecule? (c) How much en-
ergy would have to be added to the system to double the rms speed? The molar mass of helium is 4.00 � 10�3 kg/mol.

Strategy This problem requires substitution of given information into the appropriate equations: Equation 10.17
for part (a) and Equation 10.15 for part (b). In part (c), use the equations for the rms speed and internal energy to-
gether. A change in the internal energy must be computed.

Solution
(a) Find the total internal energy of the system.

Substitute values into Equation 10.17 with n � 2.00 and
T � 293 K:

� 7.30 � 103 JU � 3
2 (2.00 mol)(8.31 J/mol 
K)(293 K)

(b) What is the average kinetic energy per molecule?

Substitute given values into Equation 10.15:
� 6.07 � 10�21 J

1
2 mv2 � 3

2 kBT � 3
2 (1.38 � 10�23 J/K)(293 K)
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Remark Computing changes in internal energy will be important in understanding engine cycles in Chapter 12.

Exercise 10.9
The temperature of 5.00 moles of argon gas is lowered from 3.00 � 102 K to 2.40 � 102 K. (a) Find the change in the
internal energy, �U, of the gas. (b) Find the change in the average kinetic energy per atom.

Answer (a) �U � � 3.74 � 103 J (b) � 1.24 � 10�21 J

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

10.1 Temperature and the Zeroth Law 
of Thermodynamics
Two systems are in thermal contact if energy can be ex-
changed between them, and in thermal equilibrium if
they’re in contact and there is no net exchange of energy.
The exchange of energy between two objects because of
differences in their temperatures is called heat.

The zeroth law of thermodynamics states that if two ob-
jects A and B are separately in thermal equilibrium with a
third object, then A and B are in thermal equilibrium with
each other. Equivalently, if the third object is a thermome-
ter, then the temperature it measures for A and B will be
the same. Two objects in thermal equilibrium are at the
same temperature.

10.2 Thermometers and Temperature
Scales
Thermometers measure temperature and are based on
physical properties, such as the temperature-dependent ex-
pansion or contraction of a solid, liquid, or gas. These
changes in volume are related to a linear scale, the most
common being the Fahrenheit, Celsius, and Kelvin scales.
The Kelvin temperature scale takes its zero point as ab-
solute zero (0 K � � 273.15�C), the point at which, by ex-
trapolation, the pressure of all gases falls to zero.

The relationship between the Celsius temperature TC
and the Kelvin (absolute) temperature T is

[10.1]

The relationship between the Fahrenheit and Celsius
temperatures is

[10.2a]TF � 9
5TC � 32

TC � T � 273.15

10.3 Thermal Expansion of Solids 
and Liquids
Ordinarily a substance expands when heated. If an object
has an initial length L0 at some temperature and under-
goes a change in temperature �T, its linear dimension
changes by the amount �L, which is proportional to the
object’s initial length and the temperature change:

[10.4]

The parameter � is called the coefficient of linear expan-
sion. The change in area of a substance with change in
temperature is given by

[10.5]

where � � 2� is the coefficient of area expansion. Simi-
larly, the change in volume with temperature of most sub-
stances is proportional to the initial volume V0 and the
temperature change �T ;

[10.6]

where 	 � 3� is the coefficient of volume expansion.
The expansion and contraction of material due to

changes in temperature creates stresses and strains, some-
times sufficient to cause fracturing.

10.4 Macroscopic Description 
of an Ideal Gas
Avogadro’s number is NA � 6.02 � 1023 particles/mol. A
mole of anything, by definition, consists of an Avogadro’s
number of particles. The number is defined so that one
mole of carbon-12 atoms has a mass of exactly 12 g. The
mass of one mole of a pure substance in grams is the same,
numerically, as that substance’s atomic (or molecular)
mass.

An ideal gas obeys the equation

[10.8]

where P is the pressure of the gas, V is its volume, n is the
number of moles of gas, R is the universal gas constant

PV � nRT

�V � 	V0 �T

�A � �A0 �T

�L � �L0 �T

(c) How much energy must be added to double the rms
speed?

From Equation 10.18, doubling the rms speed requires
quadrupling T. Calculate the required change of inter-
nal energy, which is the energy that must be put into the
system: � 2.19 � 104 J� 293 K)

�U � 3
2 (2.00 mol)(8.31 J/mol 
K)((4.00 � 293 K)

�U � Uf � Ui � 3
2 nRTf � 3

2 nRTi � 3
2 nR(Tf � Ti)
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(8.31 J/mol 
 K), and T is the absolute temperature in
kelvins. A real gas at very low pressures behaves approxi-
mately as an ideal gas.

Solving problems usually entails comparing two differ-
ent states of the same system of gas, dividing the ideal gas
equation for the final state by the ideal gas equation for the
initial state, canceling factors that don’t change and solving
for the unknown quantity.

10.5 The Kinetic Theory of Gases
The pressure of N molecules of an ideal gas contained in a
volume V is given by

[10.13]

where is the average kinetic energy per molecule.1
2mv 2

P � 2
3 � N

V ��1
2 mv2�

The average kinetic energy of the molecules of a gas 
is directly proportional to the absolute temperature of 
the gas:

[10.15]

The quantity kB is Boltzmann’s constant (1.38 � 10�23 J/K).
The internal energy of n moles of a monatomic ideal 

gas is

[10.17]

The root-mean-square (rms) speed of the molecules of a
gas is

[10.18]vrms � √ 3kBT
m � √ 3RT

M

U � 3
2nRT

1
2mv 2 � 3

2 k BT

CONCEPTUAL QUESTIONS
1. Why does an ordinary glass dish usually break when placed

on a hot stove? Dishes made of Pyrex glass don’t break so
easily. What characteristic of Pyrex prevents breakage?

2. The balance wheel of a mechanical watch governs the fre-
quency with which the watch ticks. A wheel cut from a sin-
gle piece of metal will expand upon heating, thus increas-
ing its moment of inertia. Will this expansion cause the
watch to speed up or slow down?

3. In an astronomy class, the temperature at the core of a
star is given by the teacher as 1.5 � 107 degrees. A student
asks if this is Kelvins or degrees Celsius. How would you 
respond?

4. When a car engine overheats, you are warned not to re-
move the radiator cap to add cold water until there is
time for the engine to cool down. Is this good advice?
Why or why not?

5. Common thermometers are made of a mercury column
in a glass tube. Based on the operation of these common
thermometers, which has the larger coefficient of linear
expansion—glass or mercury? (Don’t answer this ques-
tion by looking in a table.)

6. A steel wheel bearing is 1 mm smaller in diameter than an
axle. How can the bearing be fit onto the axle without re-
moving any material from the axle?

7. Objects deep beneath the surface of the ocean are sub-
jected to extremely high pressures, as we saw in Chapter 9.

Some bacteria in these environments have adapted to
pressures as much as a thousand times atmospheric pres-
sure. How might such bacteria be affected if they were rap-
idly moved to the surface of the ocean?

8. Why is a power line more likely to break in winter than in
summer, even if it is loaded with the same weight?

9. Although the average speed of gas molecules in thermal
equilibrium at some temperature is greater than zero, the
average velocity is zero. Explain.

10. After food is cooked in a pressure cooker, why is it very
important to cool the container with cold water before at-
tempting to remove the lid?

11. Some picnickers stop at a convenience store to buy food,
including bags of potato chips. They then drive up into
the mountains to their picnic site. When they unload the
food, they notice that the bags of chips are puffed up like
balloons. Why did this happen?

12. Markings to indicate length are placed on a steel tape in a
room that is at a temperature of 22�C. Measurements are
then made with the same tape on a day when the temper-
ature is 27�C. Are the measurements too long, too short,
or accurate?

13. Why do vapor bubbles in a pot of boiling water get larger
as they approach the surface?

14. Why do small planets tend to have little or no atmos-
phere?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � � full solution available in Student Solutions Manual/Study Guide 

� coached problem with hints available at www.cp7e.com = biomedical application
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Section 10.1 Temperature and the Zeroth Law 
of Thermodynamics

Section 10.2 Thermometers and Temperature 
Scales

For each of the following temperatures, find the equiva-
lent temperature on the indicated scale: (a) � 273.15�C
on the Fahrenheit scale, (b) 98.6�F on the Celsius scale,
and (c) 100 K on the Fahrenheit scale.

2. The pressure in a constant-volume gas thermometer is
0.700 atm at 100�C and 0.512 atm at 0�C. (a) What is the
temperature when the pressure is 0.0400 atm? (b) What is
the pressure at 450�C?

3. Convert the following temperatures to their values on the
Fahrenheit and Kelvin scales: (a) the boiling point of liq-
uid hydrogen, � 252.87�C; (b) the temperature of a room
at 20�C.

4. Death Valley holds the record for the highest recorded
temperature in the United States. On July 10, 1913, at a
place called Furnace Creek Ranch, the temperature
rose to 134�F. The lowest U.S. temperature ever
recorded occurred at Prospect Creek Camp in Alaska
on January 23, 1971, when the temperature plummeted
to � 79.8� F. Convert these temperatures to the Celsius
scale.

Show that the temperature � 40� is unique in that it has
the same numerical value on the Celsius and Fahrenheit
scales.

6. A constant-volume gas thermometer is calibrated in
dry ice (� 80.0�C) and in boiling ethyl alcohol (78.0�C).
The respective pressures are 0.900 atm and 1.635 atm.
(a) What value of absolute zero does the calibration
yield? (b) What pressures would be found at the freezing
and boiling points of water? (Note that we have the 
linear relationship P � A � BT, where A and B are 
constants.)

7. Show that if the temperature on the Celsius scale changes
by �TC , the Fahrenheit temperature changes by �TF �
(9/5)�TC .

8. The temperature difference between the inside and the
outside of an automobile engine is 450�C. Express this dif-
ference on (a) the Fahrenheit scale and (b) the Kelvin
scale.

9. The melting point of gold is 1 064�C, and the boiling
point is 2 660�C. (a) Express these temperatures in
Kelvins. (b) Compute the difference of the two tempera-
tures in Celsius degrees and in Kelvins.

Section 10.3 Thermal Expansion of Solids and Liquids

10. A cylindrical brass sleeve is to be shrink-fitted over a brass
shaft whose diameter is 3.212 cm at 0�C. The diameter of

5.

1.

the sleeve is 3.196 cm at 0�C. (a) To what temperature
must the sleeve be heated before it will slip over the shaft?
(b) Alternatively, to what temperature must the shaft be
cooled before it will slip into the sleeve?

11. The New River Gorge bridge in West Virginia is a 518-m-
long steel arch. How much will its length change between
temperature extremes of � 20�C and 35�C?

12. A grandfather clock is controlled by a swinging brass
pendulum that is 1.3 m long at a temperature of 20�C.
(a) What is the length of the pendulum rod when the
temperature drops to 0.0�C? (b) If a pendulum’s period is
given by , where L is its length, does the
change in length of the rod cause the clock to run fast or
slow?

13. A pair of eyeglass frames are made of epoxy plastic (coef-
ficient of linear expansion � 1.30 � 10�4 �C�1). At room
temperature (20.0�C), the frames have circular lens holes
2.20 cm in radius. To what temperature must the frames
be heated if lenses 2.21 cm in radius are to be inserted
into them?

14. A cube of solid aluminum has a volume of 1.00 m3 at
20�C. What temperature change is required to produce a
100-cm3 increase in the volume of the cube?

A brass ring of diameter 10.00 cm at
20.0�C is heated and slipped over an aluminum rod of
diameter 10.01 cm at 20.0�C. Assuming the average coeffi-
cients of linear expansion are constant, (a) to what tem-
perature must the combination be cooled to separate the
two metals? Is that temperature attainable? (b) What if
the aluminum rod were 10.02 cm in diameter?

16. Show that the coefficient of volume expansion, 	, is re-
lated to the coefficient of linear expansion, �, through
the expression 	 � 3�.

17. A gold ring has an inner diameter of 2.168 cm at a tem-
perature of 15.0�C. Determine its inner diameter at 100�C
(�gold � 1.42 � 10�5 �C�1).

18. A construction worker uses a steel tape to measure the
length of an aluminum support column. If the meas-
ured length is 18.700 m when the temperature is 21.2�C,
what is the measured length when the temperature rises
to 29.4�C? (Note: Don’t neglect the expansion of the
tape.)

19. The band in Figure P10.19 is stainless steel (coefficient
of linear expansion � 17.3 � 10�6 �C�1; Young’s modu-
lus � 18 � 1010 N/m2). It is essentially circular with an
initial mean radius of 5.0 mm, a height of 4.0 mm, and
a thickness of 0.50 mm. If the band just fits snugly over
the tooth when heated to a temperature of 80�C, what is
the tension in the band when it cools to a temperature
of 37�C?

15.

T � 2�√L/g
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Figure P10.19

20. The Trans-Alaskan pipeline is 1 300 km long, reaching
from Prudhoe Bay to the port of Valdez, and is subject to
temperatures ranging from � 73�C to � 35�C. How much
does the steel pipeline expand due to the difference in
temperature? How can this expansion be compensated
for?

An automobile fuel tank is filled to the brim with 45 L
(12 gal) of gasoline at 10�C. Immediately afterward, the
vehicle is parked in the sunlight, where the temperature is
35�C. How much gasoline overflows from the tank as a re-
sult of the expansion? (Neglect the expansion of the
tank.)

22. When the hot water in a certain upstairs bathroom is
turned on, a series of 18 “ticks” is heard as the copper
hot-water pipe slowly heats up and increases in length.
The pipe runs vertically from the hot-water heater in the
basement, through a hole in the floor 5.0 m above the
water heater. The “ticks” are caused by the pipe sticking
in the hole in the floor until the tension in the expand-
ing pipe is great enough to unstick the pipe, enabling it
to jump a short distance through the hole. If the hot-
water temperature is 46�C and room temperature is
20�C, determine (a) the distance the pipe moves with
each “tick” and (b) the force required to unstick the
pipe if the cross-sectional area of the copper in the pipe
is 3.55 � 10�5 m2.

23. The average coefficient of volume expansion for carbon
tetrachloride is 5.81 � 10�4 (�C)�1. If a 50.0-gal steel con-
tainer is filled completely with carbon tetrachloride when
the temperature is 10.0�C, how much will spill over when
the temperature rises to 30.0�C?

24. On a day when the temperature is 20.0�C, a concrete walk
is poured in such a way that its ends are unable to move.
(a) What is the stress in the cement when its tempe-
rature is 50.0�C on a hot, sunny day? (b) Does the concrete
fracture? Take Young’s modulus for concrete to be 
7.00 � 109 N/m2 and the compressive strength to be 
2.00 � 107 N/m2.

25. Figure P10.25 shows a circular steel casting with a gap. If
the casting is heated, (a) does the width of the gap in-
crease or decrease? (b) The gap width is 1.600 cm when
the temperature is 30.0�C. Determine the gap width when
the temperature is 190�C.

21.

26. A hollow aluminum cylinder 20.0 cm deep has an internal
capacity of 2.000 L at 20.0�C. It is completely filled with
turpentine and then warmed to 80.0�C. (a) How much
turpentine overflows? (b) If it is then cooled back to
20.0�C, how far below the surface of the cylinder’s rim is
the turpentine surface?

Section 10.4 Macroscopic Description of an Ideal Gas

One mole of oxygen gas is at a pressure
of 6.00 atm and a temperature of 27.0�C. (a) If the gas is
heated at constant volume until the pressure triples, what
is the final temperature? (b) If the gas is heated so that
both the pressure and volume are doubled, what is the fi-
nal temperature?

28. Gas is contained in an 8.0-L vessel at a temperature of
20�C and a pressure of 9.0 atm. (a) Determine the num-
ber of moles of gas in the vessel. (b) How many molecules
are in the vessel?

29. (a) An ideal gas occupies a volume of 1.0 cm3 at 20�C
and atmospheric pressure. Determine the number of
molecules of gas in the container. (b) If the pressure of
the 1.0-cm3 volume is reduced to 1.0 � 10�11 Pa (an ex-
tremely good vacuum) while the temperature remains
constant, how many moles of gas remain in the con-
tainer?

30. A tank having a volume of 0.100 m3 contains helium gas
at 150 atm. How many balloons can the tank blow up if
each filled balloon is a sphere 0.300 m in diameter at an
absolute pressure of 1.20 atm?

31. A cylinder with a movable piston contains gas at a temper-
ature of 27.0�C, a volume of 1.50 m3, and an absolute
pressure of 0.200 � 105 Pa. What will be its final tempera-
ture if the gas is compressed to 0.700 m3 and the absolute
pressure increases to 0.800 � 105 Pa?

32. The density of helium gas at T � 0�C is �0 � 0.179 kg/m3.
The temperature is then raised to T � 100�C, but the pres-
sure is kept constant. Assuming that the helium is an ideal
gas, calculate the new density �f of the gas.

27.

Figure P10.25
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46. The active element of a certain laser is an ordinary glass
rod 20 cm long and 1.0 cm in diameter. If the tempera-
ture of the rod increases by 75�C, find its increases in 
(a) length, (b) diameter, and (c) volume.

A popular brand of cola contains 6.50 g of carbon dioxide
dissolved in 1.00 L of soft drink. If the evaporating carbon
dioxide is trapped in a cylinder at 1.00 atm and 20.0�C,
what volume does the gas occupy?

48. A 1.5-m-long glass tube that is closed at one end is
weighted and lowered to the bottom of a freshwater
lake. When the tube is recovered, an indicator mark
shows that water rose to within 0.40 m of the closed end.
Determine the depth of the lake. Assume constant 
temperature.

47.

Figure P10.45

A weather balloon is designed to expand to a maximum
radius of 20 m at its working altitude, where the air pres-
sure is 0.030 atm and the temperature is 200 K. If the bal-
loon is filled at atmospheric pressure and 300 K, what is
its radius at liftoff?

34. A cylindrical diving bell 3.00 m in diameter and 4.00 m
tall with an open bottom is submerged to a depth of
220 m in the ocean. The surface temperature is 25.0�C,
and the temperature 220 m down is 5.00�C. The density
of seawater is 1 025 kg/m3. How high does the seawater
rise in the bell when it is submerged?

35. An air bubble has a volume of 1.50 cm3 when it is released
by a submarine 100 m below the surface of a lake. What is
the volume of the bubble when it reaches the surface? As-
sume that the temperature and the number of air mole-
cules in the bubble remain constant during its ascent.

Section 10.5 The Kinetic Theory of Gases

36. A sealed cubical container 20.0 cm on a side contains
three times Avogadro’s number of molecules at a temper-
ature of 20.0�C. Find the force exerted by the gas on one
of the walls of the container.

37. What is the average kinetic energy of a molecule of oxy-
gen at a temperature of 300 K?

38. (a) What is the total random kinetic energy of all the
molecules in 1 mole of hydrogen at a temperature of 
300 K? (b) With what speed would a mole of hydrogen
have to move so that the kinetic energy of the mass as a
whole would be equal to the total random kinetic energy
of its molecules?

39. Use Avogadro’s number to find the mass of a helium atom.

40. The temperature near the top of the atmosphere on
Venus is 240 K. (a) Find the rms speed of hydrogen (H2)
at that point in Venus’s atmosphere. (b) Repeat for car-
bon dioxide (CO2). (c) It has been found that if the rms
speed exceeds one-sixth of the planet’s escape velocity,
the gas eventually leaks out of the atmosphere and into
outer space. If the escape velocity on Venus is 10.3 km/s,
does hydrogen escape? Does carbon dioxide?

A cylinder contains a mixture of helium and argon gas in
equilibrium at a temperature of 150�C. (a) What is the av-
erage kinetic energy of each type of molecule? (b) What is
the rms speed of each type of molecule?

42. Three moles of nitrogen gas, N2, at 27.0�C are contained
in a 22.4-L cylinder. Find the pressure the gas exerts on
the cylinder walls.

Superman leaps in front of Lois Lane
to save her from a volley of bullets. In a 1-minute interval,

43.

41.

33. an automatic weapon fires 150 bullets, each of mass 8.0 g,
at 400 m/s. The bullets strike his mighty chest, which has
an area of 0.75 m2. Find the average force exerted on Su-
perman’s chest if the bullets bounce back after an elastic,
head-on collision.

44. In a period of 1.0 s, 5.0 � 1023 nitrogen molecules strike a
wall of area 8.0 cm2. If the molecules move at 300 m/s
and strike the wall head on in a perfectly elastic collision,
find the pressure exerted on the wall. (The mass of one
N2 molecule is 4.68 � 10�26 kg.)

ADDITIONAL PROBLEMS

45. Inside the wall of a house, an L-shaped section of hot-wa-
ter pipe consists of a straight horizontal piece 28.0 cm
long, an elbow, and a straight vertical piece 134 cm long
(Fig. P10.45). A stud and a second-story floorboard hold
the ends of this section of copper pipe stationary. Find the
magnitude and direction of the displacement of the pipe
elbow when the water flow is turned on, raising the tem-
perature of the pipe from 18.0�C to 46.5�C.
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49. Long-term space missions require reclamation of the
oxygen in the carbon dioxide exhaled by the crew. In
one method of reclamation, 1.00 mol of carbon dioxide
produces 1.00 mol of oxygen, with 1.00 mol of methane
as a by-product. The methane is stored in a tank under
pressure and is available to control the attitude of the
spacecraft by controlled venting. A single astronaut ex-
hales 1.09 kg of carbon dioxide each day. If the methane
generated in the recycling of three astronauts’ respira-
tion during one week of flight is stored in an originally
empty 150-L tank at � 45.0�C, what is the final pressure
in the tank?

50. A vertical cylinder of cross-sectional area 0.050 m2 is fitted
with a tight-fitting, frictionless piston of mass 5.0 kg (Fig.
P10.50). If there are 3.0 mol of an ideal gas in the cylin-
der at 500 K, determine the height h at which the piston
will be in equilibrium under its own weight.

h

m

Gas

Figure P10.50

A liquid with a coefficient of volume expansion of 	 just
fills a spherical flask of volume V0 at temperature T (Fig.
P10.51). The flask is made of a material that has a coeffi-
cient of linear expansion of �. The liquid is free to
expand into a capillary of cross-sectional area A at the
top. (a) Show that if the temperature increases by �T,
the liquid rises in the capillary by the amount 
�h � (V0/A)(	 � 3�)�T. (b) For a typical system, such as
a mercury thermometer, why is it a good approximation
to neglect the expansion of the flask?

52. A hollow aluminum cylinder is to be fitted over a steel pis-
ton. At 20�C, the inside diameter of the cylinder is 99% of
the outside diameter of the piston. To what common tem-
perature should the two pieces be heated in order that
the cylinder just fit over the piston?

53. A steel measuring tape was designed to read correctly at
20�C. A parent uses the tape to measure the height of a

51.

∆hA

T T + ∆T

Figure P10.51

1.1-m-tall child. If the measurement is made on a day
when the temperature is 25�C, is the tape reading
longer or shorter than the actual height, and by how
much?

Before beginning a long trip on a hot day, a driver inflates
an automobile tire to a gauge pressure of 1.80 atm at 300 K.
At the end of the trip, the gauge pressure has increased to
2.20 atm. (a) Assuming that the volume has remained
constant, what is the temperature of the air inside the
tire? (b) What percentage of the original mass of air in
the tire should be released so the pressure returns to its
original value? Assume that the temperature remains at
the value found in (a) and the volume of the tire remains
constant as air is released.

55. Two concrete spans of a 250-m-long bridge are placed end
to end so that no room is allowed for expansion (Fig.
P10.55a). If the temperature increases by 20.0�C, what is
the height y to which the spans rise when they buckle
(Fig. P10.55b)?

54.

(a)

T

250 m

T + 20°C

(b)

y

Figure P10.55

56. A copper rod and a steel rod are heated. At 0�C, the cop-
per rod has a length LC and the steel one has a length LS .
When the rods are being heated or cooled, a difference of
5.00 cm is maintained between their lengths. Determine
the values of LC and LS .
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62. A 250-m-long bridge is improperly designed so that it can-
not expand with temperature. It is made of concrete with 
� � 12 � 10�6 �C�1. (a) Assuming that the maximum
change in temperature at the site is expected to be 20�C,
find the change in length the span would undergo if it were
free to expand. (b) Show that the stress on an object with
Young’s modulus Y when raised by �T with its ends firmly
fixed is given by �Y�T. (c) If the maximum stress the bridge
can withstand without crumbling is 2.0 � 107 Pa, will it
crumble because of this temperature increase? Young’s
modulus for concrete is about 2.0 � 1010 Pa.

63. The density of gasoline is 730 kg/m3 at 0�C. Its volume ex-
pansion coefficient is 9.6 � 10�4 �C�1. If 1.00 gal of gaso-
line occupies 0.003 8 m3, how many extra kilograms of
gasoline are obtained when 10 gallons of gasoline are
bought at 0�C rather than at 20�C?

ACTIVITIES

A.1. Fill one basin with hot tap water (not to exceed about
100�F). Fill another basin with cold tap water, and add ice
until about one-third of the mixture is ice. Fill the third
basin with an equal mixture of hot and cold tap water.
Place your left hand in the hot water and your right hand
in the cold water for about 15 s. Then place both hands in
the basin of lukewarm water for 15 s. Describe whether
the water feels hot or cold to either of your hands and
why this effect occurs.

A.2. Tape two plastic straws tightly together along their entire
length, but with a 2-cm offset. Hold them in a stream of
very hot water from a faucet so that the water pours
through one straw but not the other. Quickly hold the
straws up and sight along their length. You should be able
to see a very slight curvature in the tape. The effect is
small, so look closely. Running cold water through the
same straw and again sighting along the length will help

r 2
r 1

u

Figure P10.61

57. If 9.00 g of water is placed in a 2.00-L pressure cooker
and heated to 500�C, what is the pressure inside the con-
tainer?

58. An expandable cylinder has its top connected to a spring
with force constant 2.00 � 103 N/m. (See Fig. P10.58.)
The cylinder is filled with 5.00 L of gas with the spring re-
laxed at a pressure of 1.00 atm and a temperature of
20.0�C. (a) If the lid has a cross-sectional area of 0.010 0 m2

and negligible mass, how high will the lid rise when the
temperature is raised to 250�C? (b) What is the pressure
of the gas at 250�C?

h
20°C

k

250°C

Figure P10.58

59. A swimmer has 0.820 L of dry air in his lungs when he
dives into a lake. Assuming the pressure of the dry air 
is 95% of the external pressure at all times, what is 
the volume of the dry air at a depth of 10.0 m? 
Assume that atmospheric pressure at the surface is
1.013 � 105 Pa.

60. Two small containers, each with a volume of 100 cm3, con-
tain helium gas at 0�C and 1.00 atm pressure. The two
containers are joined by a small open tube of negligible
volume, allowing gas to flow from one container to the
other. What common pressure will exist in the two con-
tainers if the temperature of one container is raised to
100�C while the other container is kept at 0�C?

A bimetallic bar is made of two thin
strips of dissimilar metals bonded together. As they are
heated, the one with the larger average coefficient of ex-
pansion expands more than the other, forcing the bar
into an arc, with the outer strip having both a larger ra-
dius and a larger circumference. (See Fig. P10.61.)
(a) Derive an expression for the angle of bending, �, as a
function of the initial length of the strips, their average
coefficients of linear expansion, the change in tempera-
ture, and the separation of the centers of the strips 
(�r � r2 � r1). (b) Show that the angle of bending goes
to zero when �T goes to zero or when the two coefficients

61.

of expansion become equal. (c) What happens if the bar
is cooled?
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from the heat source and place the mouth of the bal-
loon over the mouth of the flask. Observe what happens
to the balloon when you place the flask in a basin of
cold water. Explain your observation. Reheat the water
in the flask with the balloon still in place, and explain
your observations.

you see the small change in shape more clearly. Explain
these observations.

A.3. You can study the thermal expansion of air with a Flo-
rence flask and a balloon. To do so, boil a small amount
of water in the flask. Then quickly remove the flask
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CHAPTER

Energy in Thermal Processes

O U T L I N E

11.1 Heat and Internal Energy
11.2 Specific Heat
11.3 Calorimetry
11.4 Latent Heat and Phase

Change
11.5 Energy Transfer
11.6 Global Warming and

Greenhouse Gases
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When two objects with different temperatures are placed in thermal contact, the temperature
of the warmer object decreases while the temperature of the cooler object increases. With
time, they reach a common equilibrium temperature somewhere in between their initial tem-
peratures. During this process, we say that energy is transferred from the warmer object to
the cooler one.

Until about 1850, the subjects of thermodynamics and mechanics were considered
two distinct branches of science, and the principle of conservation of energy seemed to
describe only certain kinds of mechanical systems. Experiments performed by the English
physicist James Joule (1818–1889) and others showed that the decrease in mechanical
energy (kinetic plus potential) of an isolated system was equal to the increase in internal
energy of the system. Today, internal energy is treated as a form of energy that can be trans-
formed into mechanical energy and vice versa. Once the concept of energy was broadened
to include internal energy, the law of conservation of energy emerged as a universal law of
nature.

This chapter focuses on some of the processes of energy transfer between a system and its
surroundings.

11.1 HEAT AND INTERNAL ENERGY
A major distinction must be made between internal energy and heat. These terms
are not interchangeable—heat involves a transfer of internal energy from one loca-
tion to another. The following formal definitions will make the distinction precise.

Glacier fragments fall into the sea.
Global warming could melt enough
ice to swell the oceans and threaten
coastal cities around the world.
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Internal energy U is the energy associated with the microscopic components
of a system—the atoms and molecules of the system. The internal energy in-
cludes kinetic and potential energy associated with the random translational,
rotational, and vibrational motion of the particles that make up the system,
and any potential energy bonding the particles together.

In Chapter 10 we showed that the internal energy of a monatomic ideal gas is
associated with the translational motion of its atoms. In this special case, the
internal energy is the total translational kinetic energy of the atoms; the higher
the temperature of the gas, the greater the kinetic energy of the atoms and the
greater the internal energy of the gas. For more complicated diatomic and
polyatomic gases, internal energy includes other forms of molecular energy,
such as rotational kinetic energy and the kinetic and potential energy asso-
ciated with molecular vibrations. Internal energy is also associated with the
intermolecular potential energy (“bond energy”) between molecules in a liquid or
solid.

Heat was introduced in Chapter 5 as one possible method of transferring en-
ergy between a system and its environment, and we provide a formal definition
here:

Heat is the transfer of energy between a system and its environment due to a
temperature difference between them.

The symbol Q is used to represent the amount of energy transferred by heat be-
tween a system and its environment. For brevity, we will often use the phrase “the
energy Q transferred to a system . . .” rather than “the energy Q transferred by
heat to a system . . .”

If a pan of water is heated on the burner of a stove, it’s incorrect to say more
heat is in the water. Heat is the transfer of thermal energy, just as work is the trans-
fer of mechanical energy. When an object is pushed, it doesn’t have more work;
rather, it has more mechanical energy transferred by work. Similarly, the pan of wa-
ter has more thermal energy transferred by heat.

Units of Heat
Early in the development of thermodynamics, before scientists realized the con-
nection between thermodynamics and mechanics, heat was defined in terms of the
temperature changes it produced in an object, and a separate unit of energy, the
calorie, was used for heat. The calorie (cal) is defined as the energy necessary to
raise the temperature of 1 g of water from 14.5° to 15.5°C. (The “Calorie,” with a
capital “C,” used in describing the energy content of foods, is actually a kilocalo-
rie.) Likewise, the unit of heat in the U.S. customary system, the British thermal
unit (Btu), was defined as the energy required to raise the temperature of 1 lb of
water from 63°F to 64°F.

In 1948, scientists agreed that because heat (like work) is a measure of the
transfer of energy, its SI unit should be the joule. The calorie is now defined to be
exactly 4.186 J:

[11.1]

This definition makes no reference to raising the temperature of water. The
calorie is a general energy unit, introduced here for historical reasons,
though we will make little use of it. The definition in Equation 11.1 is known,
from the historical background we have discussed, as the mechanical equivalent of
heat.

1 cal  � 4.186 J

JAMES PRESCOTT JOULE,
British physicist (1818–1889)
Joule received some formal education in
mathematics, philosophy, and chemistry
from John Dalton, but was in large part
self-educated. Joule’s most active research
period, from 1837 through 1847, led to the
establishment of the principle of conserva-
tion of energy and the relationship between
heat and other forms of energy transfer. His
study of the quantitative relationship
among electrical, mechanical, and chemical
effects of heat culminated in his announce-
ment in 1843 of the amount of work
required to produce a unit of internal energy.
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� Internal energy
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354 Chapter 11 Energy in Thermal Processes

Getting proper exercise is an important part of staying healthy and keeping weight
under control. As seen in the preceding example, the body expends energy when
doing mechanical work, and these losses are augmented by the inefficiency of con-
verting the body’s internal stores of energy into useful work, with three-quarters or
more leaving the body through heat. In addition, exercise tends to elevate the
body’s general metabolic rate, which persists even after the exercise is over. The

EXAMPLE 11.1 Working Off Breakfast
Goal Relate caloric energy to mechanical energy.

Problem A student eats a breakfast consisting of two bowls of cereal and milk,
containing a total of 3.20 � 102 Calories of energy. He wishes to do an equivalent
amount of work in the gymnasium by doing curls with a 25.0-kg barbell (Fig. 11.1).
How many times must he raise the weight to expend that much energy? Assume
that he raises it through a vertical displacement of 0.400 m each time, the distance
from his lap to his upper chest.

Strategy Convert the energy in Calories to joules, then equate that energy to
the work necessary to do n repetitions of the barbell exercise. The work he does
lifting the barbell can be found from the work–energy theorem and the change
in potential energy of the barbell. He does negative work on the barbell going
down, to keep it from speeding up. The net work on the barbell during one
repetition is zero, but his muscles expend the same energy both in raising and
lowering.

Solution

h

Figure 11.1 (Example 11.1)

Convert his breakfast Calories, E, to joules:

 � 1.34 � 106 J

E � (3.20 � 102 Cal) � 1.00 � 103 cal
1.00 Cal �� 4.186 J

cal �

Use the work–energy theorem to find the work neces-
sary to lift the barbell up to its maximum height.

W � �K E � �PE � (0 � 0) � (mgh � 0) � mgh

The student must expend the same amount of energy
lowering the barbell, making 2mgh per repetition. Multi-
ply this amount by n repetitions and set it equal to the
food energy E :

Solve for n, substituting the food energy for E:

n(2mgh) � E

� 6.84 � 103 times

n �
E

2mgh
�

1.34 � 106 J
2(25.0 kg)(9.80 m/s2)(0.400 m)

Remarks If the student does one repetition every five seconds, it will take him 9.5 hours to work off his breakfast!
In exercising, a large fraction of energy is lost through heat, however, due to the inefficiency of the body in doing
work. This transfer of energy dramatically reduces the exercise requirement by at least three-quarters, a little over
two hours. All the same, it might be best to forego that second bowl of cereal!

Exercise 11.1
How many sprints from rest to a speed of 5.0 m/s would a 65-kg woman have to complete in order to burn off
5.0 � 102 Calories? (Assume 100% efficiency in converting food energy to mechanical energy).

Answer 2.6 � 103 sprints

A P P L I C AT I O N
Physiology of Exercise
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11.2 Specific Heat 355

increase in metabolic rate due to exercise, more so than the exercise itself, is help-
ful in weight reduction.

11.2 SPECIFIC HEAT
The historical definition of the calorie is the amount of energy necessary to raise
the temperature of one gram of a specific substance—water—by one degree.
That amount is 4.186 J. Raising the temperature of one kilogram of water by 1° re-
quires 4 186 J of energy. The amount of energy required to raise the temperature
of one kilogram of an arbitrary substance by 1° varies with the substance. For ex-
ample, the energy required to raise the temperature of one kilogram of copper by
1.0°C is 387 J. Every substance requires a unique amount of energy per unit mass
to change the temperature of that substance by 1.0°C.

If a quantity of energy Q is transferred to a substance of mass m, changing its
temperature by �T � Tf � Ti , the specific heat c of the substance is defined
by

[11.2]

SI unit: Joule per kilogram-degree Celsius ( J/kg �°C)

Table 11.1 lists specific heats for several substances. From the definition of the
calorie, the specific heat of water is 4 186 J/kg � °C.

From the definition of specific heat, we can express the energy Q needed to
raise the temperature of a system of mass m by �T as

[11.3]

The energy required to raise the temperature of 0.500 kg of water by 3.00°C,
for example, is Q � (0.500 kg)(4 186 J/kg � °C)(3.00°C) � 6.28 � 103 J. Note that
when the temperature increases, �T and Q are positive, corresponding to energy
flowing into the system. When the temperature decreases, �T and Q are negative,
and energy flows out of the system.

Table 11.1 shows that water has the highest specific heat relative to
most other common substances. This high specific heat is responsible for the
moderate temperatures found in regions near large bodies of water. As the
temperature of a body of water decreases during winter, the water transfers
energy to the air, which carries the energy landward when prevailing winds are
toward the land. Off the western coast of the United States, the energy liberated
by the Pacific Ocean is carried to the east, keeping coastal areas much warmer
than they would otherwise be. Winters are generally colder in the eastern
coastal states, because the prevailing winds tend to carry the energy away from
land.

The fact that the specific heat of water is higher than the specific heat of sand is
responsible for the pattern of airflow at a beach. During the day, the Sun adds
roughly equal amounts of energy to the beach and the water, but the lower specific
heat of sand causes the beach to reach a higher temperature than the water. As a
result, the air above the land reaches a higher temperature than the air above the
water. The denser cold air pushes the less dense hot air upward (due to
Archimedes’s principle), resulting in a breeze from ocean to land during the day.
Because the hot air gradually cools as it rises, it subsequently sinks, setting up the
circulation pattern shown in Figure 11.2.

A similar effect produces rising layers of air called thermals that can help eagles
soar higher and hang gliders stay in flight longer. A thermal is created when a por-
tion of the Earth reaches a higher temperature than neighboring regions. This often
happens to plowed fields, which are warmed by the Sun to higher temperatures

Q � mc �T

c � 
Q

m �T

TABLE 11.1
Specific Heats of Some 
Materials at Atmospheric 
Pressure
Substance J/kg �°C cal/g �°C
Aluminum 900 0.215
Beryllium 1 820 0.436
Cadmium 230 0.055
Copper 387 0.0924
Germanium 322 0.077
Glass 837 0.200
Gold 129 0.0308
Ice 2 090 0.500
Iron 448 0.107
Lead 128 0.0305
Mercury 138 0.033
Silicon 703 0.168
Silver 234 0.056
Steam 2 010 0.480
Water 4 186 1.00

TIP 11.1 Finding �T
In Equation 11.3, be sure to 
remember that �T is always the final
temperature minus the initial 
temperature: .�T � Tf � Ti

A P P L I C AT I O N
Sea Breezes and Thermals

Beach
Water

Figure 11.2 Circulation of air at
the beach. On a hot day, the air above
the sand warms faster than the air
above the cooler water. The warmer
air floats upward due to Archimedes’s
principle, resulting in the movement
of cooler air toward the beach.

44337_11_p352-385  10/28/04  3:10 PM  Page 355



356 Chapter 11 Energy in Thermal Processes

than nearby fields shaded by vegetation. The cooler, denser air over the
vegetation-covered fields pushes the expanding air over the plowed field upwards,
and a thermal is formed.

Suppose you have 1 kg each of iron, glass, and water, and all three samples are at
10°C. (a) Rank the samples from lowest to highest temperature after 100 J of
energy is added to each by heat. (b) Rank them from least to greatest amount of
energy transferred by heat if enough energy is transferred so that each increases in
temperature by 20°C.

Quick Quiz 11.1

EXAMPLE 11.2 Stressing a Strut
Goal Use the energy transfer equation in the context of linear expansion and compressional stress.

Problem A steel strut near a ship’s furnace is 2.00 m long, with a mass of 1.57 kg and cross-sectional area of
1.00 � 10�4 m2. During operation of the furnace, the strut absorbs thermal energy in a net amount of 2.50 � 105 J.
(a) Find the change in temperature of the strut. (b) Find the increase in length of the strut. (c) If the strut is not
allowed to expand because it’s bolted at each end, find the compressional stress developed in the strut.

Strategy This problem can be solved by substituting given quantities into three different equations. In part (a), the
change in temperature can be computed by substituting into Equation 11.3, which relates temperature change to the
energy transferred by heat. In part (b), substituting the result of part (a) into the linear expansion equation yields
the change in length. If that change of length is thwarted by poor design, as in part (c), the result is compressional
stress, found with the compressional stress– strain equation.

Solution
(a) Find the change in temperature.

Solve Equation 11.3 for the change in temperature and
substitute:

Q � mscs �T :

355�C�T �
(2.50 � 105 J)

(1.57 kg)(448 J/kg ��C)
�

�T �
Q

mscs

(b) Find the change in length of the strut if it’s allowed
to expand.

Substitute into the linear expansion equation: �L � �L0 �T � (11 � 10�6 °C�1)(2.00 m)(355°C)

� 7.8 � 10�3 m

(c) Find the compressional stress in the strut if it is not
allowed to expand.

Substitute into the compressional stress–strain equation:

� 7.8 � 108 Pa

F
A

� Y 
�L
L0

� (2.00 � 1011 Pa) 
7.8 � 10�3 m

2.01 m

Remarks Notice the use of 2.01 m in the denominator of the last calculation, rather than 2.00 m. This is because, in
effect, the strut was compressed back to the original length from the length to which it would have expanded. (The dif-
ference is negligible, however.) The answer exceeds the ultimate compressive strength of steel and underscores the im-
portance of allowing for thermal expansion. Of course, it’s likely the strut would bend, relieving some of the stress 
(creating some shear stress in the process). Finally, if the strut is attached at both ends by bolts, thermal expansion 
and contraction would exert sheer stresses on the bolts, possibly weakening or loosening them over time.
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11.3 CALORIMETRY
One technique for measuring the specific heat of a solid or liquid is to raise the 
temperature of the substance to some value, place it into a vessel containing cold 
water of known mass and temperature, and measure the temperature of the
combination after equilibrium is reached. Define the system as the substance and the
water. If the vessel is assumed to be a good insulator, so that energy doesn’t leave the
system, then we can assume the system is isolated. Vessels having this property are
called calorimeters, and analysis performed using such vessels is called calorimetry.

The principle of conservation of energy for this isolated system requires that
the net result of all energy transfers is zero. If one part of the system loses energy,
another part has to gain the energy, because the system is isolated and the energy
has nowhere else to go. When a warm object is placed in the cooler water of a
calorimeter, the warm object becomes cooler while the water becomes warmer.
This principle can be written

Q cold � �Q hot [11.4]

Q cold is positive because energy is flowing into cooler objects, and Q hot is negative
because energy is leaving the hot object. The negative sign on the right-hand side
of Equation 11.4 ensures that the right-hand side is a positive number, consistent
with the left-hand side. The equation is valid only when the system it describes is
isolated.

Calorimetry problems involve solving Equation 11.4 for an unknown quantity,
usually either a specific heat or a temperature.

Exercise 11.2
Suppose a steel strut with cross-sectional area 5.00 � 10�4 m2 and length 2.50 m is bolted between two rigid bulk-
heads in the engine room of a submarine. (a) Calculate the change in temperature of the strut if it absorbs an energy
of 3.00 � 105 J. (b) Calculate the compressional stress in the strut.

Answers (a) 68.2°C (b) 1.50 � 108 Pa

EXAMPLE 11.3 Finding a Specific Heat
Goal Solve a calorimetry problem involving only two substances.

Problem A 125-g block of an unknown substance with a temperature of 90.0°C is placed in a Styrofoam cup con-
taining 0.326 kg of water at 20.0°C. The system reaches an equilibrium temperature of 22.4°C. What is the specific
heat, cx , of the unknown substance if the heat capacity of the cup is neglected?

Strategy The water gains thermal energy Q cold, while the block loses thermal energy Q hot. Using Equation 11.3,
substitute expressions into Equation 11.4 and solve for the unknown specific heat, cx .

Solution
Let T be the final temperature, and let Tw and Tx be the
initial temperatures of the water and block, respectively.
Apply Equations 11.3 and 11.4:

Q cold � �Q hot

mwcw(T � Tw) � � mxcx(T � Tx)

Solve for cx and substitute numerical values:

cx � 388 J/kg��C

 �
(0.326 kg)(4 190 J/kg��C)(22.4�C � 20.0�C)

(0.125 kg)(90.0�C � 22.4�C)

 cx �
mwcw(T � Tw)

mx(Tx � T )

44337_11_p352-385  10/28/04  3:10 PM  Page 357



358 Chapter 11 Energy in Thermal Processes

As long as there are no more than two substances involved, Equation 11.4 can be
used to solve elementary calorimetry problems. Sometimes, however, there may be
three (or more) substances exchanging thermal energy, each at a different tem-
perature. If the problem requires finding the final temperature, it may not be
clear whether the substance with the middle temperature gains or loses thermal
energy. In such cases, Equation 11.4 can’t be used reliably.

For example, suppose we want to calculate the final temperature of a system 
consisting initially of a glass beaker at 25°C, hot water at 40°C, and a block of
aluminum at 37°C. We know that after the three are combined, the glass
beaker warms up and the hot water cools, but we don’t know for sure whether
the aluminum block gains or loses energy because the final temperature is 
unknown.

Fortunately, we can still solve such a problem as long as it’s set up correctly.
With an unknown final temperature Tf , the expression Q � mc(Tf � Ti) will be
positive if Tf 	 Ti and negative if Tf 
 Ti . Equation 11.4 can be written as

[11. 5]

where Q k is the energy change in the k th object. Equation 11.5 says that the sum
of all the gains and losses of thermal energy must add up to zero, as required by
the conservation of energy for an isolated system. Each term in Equation 11.5 will
have the correct sign automatically. Applying Equation 11.5 to the water, alu-
minum, and glass problem, we get

Qw � Q al � Q g � 0

There’s no need to decide in advance whether a substance in the system is
gaining or losing energy. This equation is similar in style to the conservation of
mechanical energy equation, where the gains and losses of kinetic and potential
energies sum to zero for an isolated system: �K � �PE � 0. As will be
seen, changes in thermal energy can be included on the left-hand side of this
equation.

When more than two substances exchange thermal energy, it’s easy to make
errors substituting numbers, so it’s a good idea to construct a table to organize and
assemble all the data. This strategy is illustrated in the next example.

�Q k � 0

Remarks Comparing our results to values given in Table 11.1, the unknown substance is probably copper.

Exercise 11.3
A 255-g block of gold at 85.0°C is immersed in 155 g of water at 25.0°C. Find the equilibrium temperature, assuming
the system is isolated and the heat capacity of the cup can be neglected.

Answer 27.9°C

TIP 11.2 Celsius versus Kelvin
In equations in which T appears, such
as the ideal gas law, the Kelvin tem-
perature must be used. In equations
involving �T, such as calorimetry
equations, it’s possible to use either
Celsius or Kelvin temperatures, be-
cause a change in temperature is the
same on both scales. When in doubt,
use Kelvin.

EXAMPLE 11.4 Calculate an Equilibrium Temperature
Goal Solve a calorimetry problem involving three substances at three different temperatures.

Problem Suppose 0.400 kg of water initially at 40.0°C is poured into a 0.300-kg glass beaker having a temperature
of 25.0°C. A 0.500-kg block of aluminum at 37.0°C is placed in the water, and the system insulated. Calculate the final
equilibrium temperature of the system.

Strategy The energy transfer for the water, aluminum, and glass will be designated Qw, Q al, and Q g , respectively.
The sum of these transfers must equal zero, by conservation of energy. Construct a table, assemble the three terms
from the given data, and solve for the final equilibrium temperature, T.
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11.4 LATENT HEAT AND PHASE CHANGE
A substance usually undergoes a change in temperature when energy is transferred 
between the substance and its environment. In some cases, however, the transfer of
energy doesn’t result in a change in temperature. This can occur when the physical
characteristics of the substance change from one form to another, commonly referred
to as a phase change. Some common phase changes are solid to liquid (melting), liq-
uid to gas (boiling), and a change in the crystalline structure of a solid. Any such
phase change involves a change in the internal energy, but no change in the temperature.

The energy Q needed to change the phase of a given pure substance is

Q � �mL [11.6]

where L, called the latent heat of the substance, depends on the nature of
the phase change as well as on the substance.

The unit of latent heat is the joule per kilogram ( J/kg). The word latent means “lying
hidden within a person or thing.” The positive sign in Equation 11.6 is chosen when
energy is absorbed by a substance, as when ice is melting. The negative sign is chosen
when energy is removed from a substance, as when steam condenses to water.

The latent heat of fusion Lf is used when a phase change occurs during melting
or freezing, while the latent heat of vaporization Lv is used when a phase change
occurs during boiling or condensing.1 For example, at atmospheric pressure the

Solution
Apply Equation 11.5 to the system: Qw � Q al � Q g � 0

mwcw(T � Tw )� malcal(T � Tal) � mg cg(T � Tg) � 0 (1)

Construct a data table: Q ( J) m (kg) c ( J/kg °C) Tf Ti

Q w 0.400 4 190 T 40.0°C
Q al 0.500 9.00 � 102 T 37.0°C
Q g 0.300 837 T 25.0°C

Using the table, substitute into Equation 1: (1.68 � 103 J/°C)(T � 40.0°C)

� (4.50 � 102 J/°C)(T � 37.0°C)

� (2.51 � 102 J/°C)(T � 25.0°C) � 0

(1.68 � 103 J/°C � 4.50 � 102 J/°C � 2.51 � 102 J/°C)T

� 9.01 � 104 J

T � 37.9°C

Remarks The answer turned out to be very close to the aluminum’s initial temperature, so it would have been
impossible to guess in advance whether the aluminum would lose or gain energy. Notice the way the table was organ-
ized, mirroring the order of factors in the different terms. This kind of organization helps prevent substitution
errors, which are common in these problems.

Exercise 11.4
A 20.0-kg gold bar at 35.0°C is placed in a large, insulated 0.800-kg glass container at 15.0°C and 2.00 kg of water at
25.0°C. Calculate the final equilibrium temperature.

Answer 26.6°C

� Latent heat

TIP 11.3 Signs are Critical
For phase changes, use the correct
explicit sign in Equation 11.6, posi-
tive if you are adding energy to the
substance, negative if you’re taking it
away.

1 When a gas cools, it eventually returns to the liquid phase, or condenses. The energy per unit mass given up during
the process is called the heat of condensation, and it equals the heat of vaporization. When a liquid cools, it eventually
solidifies, and the heat of solidification equals the heat of fusion.
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latent heat of fusion for water is 3.33 � 105 J/kg, and the latent heat of vaporiza-
tion for water is 2.26 � 106 J/kg. The latent heats of different substances vary con-
siderably, as can be seen in Table 11.2.

Another process, sublimation, is the passage from the solid to the gaseous phase
without going through a liquid phase. The fuming of dry ice (frozen carbon diox-
ide) illustrates this process, which has its own latent heat associated with it—the
heat of sublimation.

TABLE 11.2
Latent Heats of Fusion and Vaporization

Latent Heat Latent Heat of
Melting of Fusion Boiling Vaporization

Substance Point (�C) (J/kg) (cal/g) Point (�C) (J/kg) (cal/g)

Helium �269.65 5.23 � 103 (1.25) �268.93 2.09 � 104 (4.99)
Nitrogen �209.97 2.55 � 104 (6.09) �195.81 2.01 � 105 (48.0)
Oxygen �218.79 1.38 � 104 (3.30) �182.97 2.13 � 105 (50.9)
Ethyl alcohol �114 1.04 � 105 (24.9) 78 8.54 � 105 (204)
Water 0.00 3.33 � 105 (79.7) 100.00 2.26 � 106 (540)
Sulfur 119 3.81 � 104 (9.10) 444.60 3.26 � 105 (77.9)
Lead 327.3 2.45 � 104 (5.85) 1 750 8.70 � 105 (208)
Aluminum 660 3.97 � 105 (94.8) 2 450 1.14 � 107 (2 720)
Silver 960.80 8.82 � 104 (21.1) 2 193 2.33 � 106 (558)
Gold 1 063.00 6.44 � 104 (15.4) 2 660 1.58 � 106 (377)
Copper 1 083 1.34 � 105 (32.0) 1 187 5.06 � 106 (1 210)

EXAMPLE 11.5 Boiling Liquid Helium
Goal Apply the concept of latent heat of vaporization to liquid helium.

Problem Liquid helium has a very low boiling point, 4.2 K, as well as a low latent heat of vaporization, 2.09 � 104

J/kg. If energy is transferred to a container of liquid helium at the boiling point from an immersed electric heater at
a rate of 10.0 W, how long does it take to boil away 2.00 kg of the liquid?

Strategy Because Lv � 2.09 � 104 J/kg, boiling away each kilogram of liquid helium requires 2.09 � 104 J of
energy. Joules divided by watts is time, so find the total energy needed and divide by the power to find the time.

Solution
Find the energy needed to vaporize 2.00 kg of liquid
helium at its boiling point:

Q � mLv � (2.00 kg)(2.09 � 104 J/kg) � 4.18 � 104 J

Divide this result by the power to find the time:

�t � 4.18 � 103 s � 69.7 min

�t �
Q
�

�
mLv

�
�

4.18 � 104 J
10.0 W

Remark Notice that no change of temperature was involved. During such processes, the transferred energy goes
into changing the state of the substance involved.

Exercise 11.5
If 10.0 W of power is supplied to 2.00 kg of water at 1.00 � 102°C, how long will it take for the water to completely
boil away?

Answer 126 h
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To better understand the physics of phase changes, consider the addition of
energy to a 1.00-g cube of ice at � 30.0°C in a container held at constant pressure.
Suppose this input of energy turns the ice to steam (water vapor) at 120.0°C.
Figure 11.3 is a plot of the experimental measurement of temperature as energy is
added to the system. We examine each portion of the curve separately.

Part A During this portion of the curve, the temperature of the ice changes from
� 30.0°C to 0.0°C. Because the specific heat of ice is 2 090 J/kg � °C, we can calcu-
late the amount of energy added from Equation 11.3:

Q � mc ice �T � (1.00 � 10�3 kg)(2 090 J/kg � °C)(30.0°C) � 62.7 J

Part B When the ice reaches 0°C, the ice–water mixture remains at that temper-
ature—even though energy is being added—until all the ice melts to become
water at 0°C. According to Equation 11.6, the energy required to melt 1.00 g of ice
at 0°C is

Q � mLf � (1.00 � 10�3 kg)(3.33 � 105 J/kg) � 333 J

Part C Between 0°C and 100°C, no phase change occurs. The energy added to
the water is used to increase its temperature, as in part A. The amount of energy
necessary to increase the temperature from 0°C to 100°C is

Q � mcwater �T � (1.00 � 10�3 kg)(4.19 � 103 J/kg � °C)(1.00 � 102 °C)

Q � 4.19 � 102 J

Part D At 100°C, another phase change occurs as the water changes to steam at
100°C. As in Part B, the water–steam mixture remains at constant temperature,
this time at 100°C — even though energy is being added—until all the liquid has
been converted to steam. The energy required to convert 1.00 g of water at 100°C
to steam at 100°C is

Q � mLv � (1.00 � 10�3 kg)(2.26 � 106 J/kg) � 2.26 � 103 J

Part E During this portion of the curve, as in parts A and C, no phase change oc-
curs, so all the added energy goes into increasing the temperature of the steam.
The energy that must be added to raise the temperature of the steam to 120.0°C is

Q � mc steam �T � (1.00 � 10�3 kg)(2.01 � 103 J/kg � °C)(20.0°C) � 40.2 J

The total amount of energy that must be added to change 1.00 g of ice at
� 30.0°C to steam at 120.0°C is the sum of the results from all five parts of the
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water
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Figure 11.3 A plot of temperature versus energy added when 1.00 g of ice, initially at �30.0°C, is
converted to steam at 120°C.
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curve—3.11 � 103 J. Conversely, to cool 1.00 g of steam at 120.0°C down to the
point at which it becomes ice at � 30.0°C, 3.11 � 103 J of energy must be removed.

Phase changes can be described in terms of rearrangements of molecules when
energy is added to or removed from a substance. Consider first the liquid-to-gas
phase change. The molecules in a liquid are close together, and the forces be-
tween them are stronger than the forces between the more widely separated mole-
cules of a gas. Work must therefore be done on the liquid against these attractive
molecular forces in order to separate the molecules. The latent heat of vaporiza-
tion is the amount of energy that must be added to the one kilogram of liquid to
accomplish this separation.

Similarly, at the melting point of a solid, the amplitude of vibration of the atoms
about their equilibrium positions becomes great enough to allow the atoms to pass
the barriers of adjacent atoms and move to their new positions. On average, these
new positions are less symmetrical than the old ones and therefore have higher en-
ergy. The latent heat of fusion is equal to the work required at the molecular level
to transform the mass from the ordered solid phase to the disordered liquid phase.

The average distance between atoms is much greater in the gas phase than in
either the liquid or the solid phase. Each atom or molecule is removed from its
neighbors, overcoming the attractive forces of nearby neighbors. Therefore, more
work is required at the molecular level to vaporize a given mass of a substance
than to melt it, so in general the latent heat of vaporization is much greater than
the latent heat of fusion (Table 11.2).

Calculate the slopes for the A, C, and E portions of Figure 11.3. Rank the slopes
from least to greatest and explain what your ranking means. (a) A, C, E (b) C, A, E
(c) E, A, C (d) E, C, A

Quick Quiz 11.2

Problem-Solving Strategy
Calorimetry with Phase Changes
1. Make a table for all data. Include separate rows for different phases and for any

transition between phases. Include columns for each quantity used and a final col-
umn for the combination of the quantities. Transfers of thermal energy in this last
column are given by Q � mc �T, while phase changes are given by Q � � mLf for
changes between liquid and solid, and by Q � � mLv for changes between liquid
and gas.

2. Apply conservation of energy. If the system is isolated, use Q k � 0 (Eq. 11.5). For
a nonisolated system, the net energy change should replace the zero on the right-
hand side of that equation.  Q k is just the sum of all the terms in the last column
of the table.

3. Solve for the unknown quantity.

�

�

EXAMPLE 11.6 Ice Water
Goal Solve a problem involving heat transfer and a phase change from solid to liquid.

Problem At a party, 6.00 kg of ice at � 5.00°C is added to a cooler holding 30 liters of water at 20.0°C. What is the
temperature of the water when it comes to equilibrium?

Strategy In this problem, it’s best to make a table. With the addition of thermal energy Q ice, the ice will warm to
0°C; then melt at 0°C with the addition of energy Q melt. Next, the melted ice will warm to some final temperature T
by absorbing energy Q ice – water, obtained from the energy change of the original liquid water, Q water. By conservation
of energy, these quantities must sum to zero.
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Solution
Calculate the mass of liquid water:

� 30.0 kg

�(1.00 � 103 kg/m3)(30.0 L)
1.00 m3

1.00 � 103 L

m water � rwaterV

Write the equation of thermal equilibrium: Q ice � Q melt � Q ice – water � Q water � 0 (1)

Construct a comprehensive table:

Q m (kg) c ( J/kg �°C) L ( J/kg) Tf (°C) Ti (°C) Expression

Q ice 6.00 2 090 0 �5.00 m icecice(Tf � Ti )
Q melt 6.00 3.33 � 105 0 0 m iceLf

Q ice – water 6.00 4 190 T 0 m icecwat(Tf � Ti)
Q water 30.0 4 190 T 20.0 mwatcwat(Tf � Ti)

Substitute all quantities in the second through sixth
columns into the last column and sum (which is the
evaluation of Equation 1), and solve for T :

6.27 � 104 J � 2.00 � 106 J

� (2.51 � 104 J/°C)(T � 0°C)

� (1.26 � 105 J/°C)(T � 20.0°C) � 0

T � 3.03°C

Remarks Making a table is optional. However, simple substitution errors are extremely common, and the table
makes such errors less likely.

Exercise 11.6
What mass of ice at �10.0°C is needed to cool a whale’s water tank, holding 1.20 � 103 m3 of water, from 20.0°C
down to a more comfortable 10.0°C?

Answer 1.27 � 105 kg

EXAMPLE 11.7 Partial Melting
Goal Understand how to handle an incomplete phase change.

Problem A 5.00-kg block of ice at 0°C is added to an insulated container partially filled with 10.0 kg of water at
15.0°C. (a) Find the final temperature, neglecting the heat capacity of the container. (b) Find the mass of the ice that
was melted.

Strategy Part (a) is tricky, because the ice does not entirely melt in this example. When there is any doubt concerning
whether there will be a complete phase change, some preliminary calculations are necessary. First, find the total energy
required to melt the ice, Q melt, and then find Qwater, the maximum energy that can be delivered by the water above 0°C.
If the energy delivered by the water is high enough, all the ice melts. If not, there will usually be a final mixture of ice and
water at 0°C, unless the ice starts at a temperature far below 0°C, in which case all the liquid water freezes.

Solution
(a) Find the equilibrium temperature.

First, compute the amount of energy necessary to com-
pletely melt the ice:

Q melt � m iceLf � (5.00 kg)(3.33 � 105 J/kg)

� 1.67 � 106 J

Next, calculate the maximum energy that can be lost by
the initial mass of liquid water without freezing it:

Q water � m waterc� T

� (10.0 kg)(4 190 J/kg �°C)(0°C � 15.0°C)
� � 6.29 � 105 J
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Sometimes problems involve changes in mechanical energy. During a collision, for
example, some kinetic energy can be transformed to the internal energy of the col-
liding objects. This kind of transformation is illustrated in Example 11.8, involving
a possible impact of a comet on Earth. In this example, a number of liberties will be
taken in order to estimate the magnitude of the destructive power of such a cata-
strophic event. The specific heats depend on temperature and pressure, for exam-
ple, but that will be ignored. Also, the ideal gas law doesn’t apply at the tempera-
tures and pressures attained, and the result of the collision wouldn’t be
superheated steam, but a plasma of charged particles. Despite all these simplifica-
tions, the example yields good order-of-magnitude results.

This is less than half the energy necessary to melt all the
ice, so the final state of the system is a mixture of water
and ice at the freezing point:

(b) Compute the mass of ice melted.

Set the total available energy equal to the heat of fusion
of m grams of ice, mLf :

6.29 � 105 J � mLf � m(3.33 � 105 J/kg)

m � 1.89 kg

T � 0°C

Remarks If this problem is solved assuming (wrongly) that all the ice melts, a final temperature of T � �16.5°C is
obtained. The only way that could happen is if the system were not isolated, contrary to the statement of the prob-
lem. In the following exercise, you must also compute the thermal energy needed to warm the ice to its melting
point.

Exercise 11.7
If 8.00 kg of ice at �5.00° is added to 12.0 kg of water at 20.0°, compute the final temperature. How much ice
remains, if any?

Answer T � 0°C, 5.22 kg

EXAMPLE 11.8 Armageddon!
Goal Link mechanical energy to thermal energy, phase changes, and the ideal gas law to create an estimate.

Problem A comet half a kilometer in radius consisting of ice at 273 K hits Earth at a speed of 4.00 � 104 m/s. For
simplicity, assume that all the kinetic energy converts to thermal energy on impact and that all the thermal energy goes
into warming the comet. (a) Calculate the volume and mass of the ice. (b) Use conservation of energy to find the final
temperature of the comet material. Assume, contrary to fact, that the result is superheated steam and that the usual spe-
cific heats are valid, though in fact they depend on both temperature and pressure. (c) Assuming the steam retains a
spherical shape and has the same initial volume as the comet, calculate the pressure of the steam using the ideal gas
law. This law actually doesn’t apply to a system at such high pressure and temperature, but can be used to get an estimate.

Strategy Part (a) requires the volume formula for a sphere and the definition of density. In part (b), conservation
of energy can be applied. There are four processes involved: (1) melting the ice, (2) warming the ice water to the
boiling point, (3) converting the boiling water to steam, and (4) warming the steam. The energy needed for these
processes will be designated Q melt, Q water, Q vapor, and Q steam, respectively. These quantities plus the change in kinetic
energy �K sum to zero because they are assumed to be internal to the system. In this case, the first three Q ’s can be
neglected compared to the (extremely large) kinetic energy term. Solve for the unknown temperature, and substi-
tute it into the ideal gas law in part (c).

Solution
(a) Find the volume and mass of the ice.

Apply the volume formula for a sphere:

� 5.23 � 108m3

V �
4
3

 pr 3 �
4
3

(3.14)(5.00 � 102 m)3
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Apply the density formula to find the mass of the ice: m � V � (917 kg/m3)(5.23 � 108 m3)

� 4.80 � 1011 kg

(b) Find the final temperature of the cometary material.

Use conservation of energy: Q melt � Q water � Q vapor � Q steam � �K � 0 (1)

mLf � mcwater �Twater � mLv � mcsteam �Tsteam

� (0 � � 0 (2)1
2 mv2)

The first three terms are negligible compared to the
kinetic energy. The steam term involves the unknown
final temperature, so retain only it and the kinetic
energy, canceling the mass and solving for T :

mc steam (T � 373 K) � � 0

T � 3.98 � 105 K

T �

1
2v 2

c steam
� 373 K �

1
2(4.00 � 104m/s)2

2 010 J/kg�K
� 373 K

1
2 mv2

(c) Estimate the pressure of the gas, using the ideal gas law.

First, compute the number of moles of steam: n � (4.80 � 1011 kg)� 1 mol
0.018 kg � � 2.67 � 1013 mol

Solve for the pressure, using PV � nRT :

P � 1.69 � 1011 Pa

�
(2.67 � 1013 mol)(8.31 J/mol �K)(3.98 � 105 K)

5.23 � 108 m3

P �
nRT

V

Remarks The estimated pressure is several hundred times greater than the ultimate shear stress of steel! This high-
pressure region would expand rapidly, destroying everything within a very large radius. Fires would ignite across
a continent-sized region, and tidal waves would wrap around the world, wiping out coastal regions
everywhere. The sun would be obscured for at least a decade, and numerous species, possibly including Homo sapiens,
would become extinct. Such extinction events are rare, but in the long run represent a significant threat to life on
Earth.

Exercise 11.8
Suppose a lead bullet with mass 5.00 g and an initial temperature of 65.0°C hits a wall and completely liquifies. What
minimum speed did it have before impact? (Hint: The minimum speed corresponds to the case where all the kinetic
energy becomes internal energy of the lead and the final temperature of the lead is at its melting point. Don’t
neglect any terms here!)

Answer 341 m/s

11.5 ENERGY TRANSFER
For some applications it’s necessary to know the rate at which energy is trans-
ferred between a system and its surroundings and the mechanisms responsible
for the transfer. This is particularly important in weatherproofing buildings or
in medical applications, such as human survival time when exposed to the
elements.

Earlier in this chapter we defined heat as a transfer of energy between a system
and its surroundings due to a temperature difference between them. In this sec-
tion, we take a closer look at heat as a means of energy transfer and consider the
processes of thermal conduction, convection, and radiation.
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Figure 11.4 Conduction makes the
metal handle of a cooking pan hot.
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Thermal Conduction
The energy transfer process most closely associated with a temperature
difference is called thermal conduction or simply conduction. In this process, the
transfer can be viewed on an atomic scale as an exchange of kinetic energy
between microscopic particles—molecules, atoms, and electrons—with less ener-
getic particles gaining energy as they collide with more energetic particles. An in-
expensive pot, as in Figure 11.4, may have a metal handle with no surrounding
insulation. As the pot is warmed, the temperature of the metal handle increases,
and the cook must hold it with a cloth potholder to avoid being burned.

The way the handle warms up can be understood by looking at what happens
to the microscopic particles in the metal. Before the pot is placed on the stove,
the particles are vibrating about their equilibrium positions. As the stove coil
warms up, those particles in contact with it begin to vibrate with larger ampli-
tudes. These particles collide with their neighbors and transfer some of
their energy in the collisions. Metal atoms and electrons farther and farther
from the flame gradually increase the amplitude of their vibrations, until even-
tually those in the metal near your hand are affected. This increased vibration
represents an increase in temperature of the metal (and possibly a burned
hand!).

Although the transfer of energy through a substance can be partly explained by
atomic vibrations, the rate of conduction depends on the properties of the sub-
stance. For example, it’s possible to hold a piece of asbestos in a flame indefinitely.
This fact implies that very little energy is conducted through the asbestos. In gen-
eral, metals are good thermal conductors because they contain large numbers of
electrons that are relatively free to move through the metal and can transport en-
ergy from one region to another. In a good conductor such as copper, conduction
takes place via the vibration of atoms and the motion of free electrons. Materials
such as asbestos, cork, paper, and fiberglass are poor thermal conductors. Gases
are also poor thermal conductors because of the large distance between their
molecules.

Conduction occurs only if there is a difference in temperature between two
parts of the conducting medium. The temperature difference drives the flow of
energy. Consider a slab of material of thickness �x and cross-sectional area A
with its opposite faces at different temperatures Tc and Th , where Th 	 Tc
(Fig. 11.5). The slab allows energy to transfer from the region of higher tempera-
ture to the region of lower temperature by thermal conduction. The rate of
energy transfer, � � Q /�t, is proportional to the cross-sectional area of the slab
and the temperature difference and is inversely proportional to the thickness of
the slab:

Note that � has units of watts when Q is in joules and �t is in seconds.
Suppose a substance is in the shape of a long, uniform rod of length L, as in

Figure 11.6. We assume the rod is insulated, so thermal energy can’t escape by con-
duction from its surface except at the ends. One end is in thermal contact with an
energy reservoir at temperature Tc and the other end is in thermal contact with a
reservoir at temperature Th 	 Tc . When a steady state is reached, the temperature
at each point along the rod is constant in time. In this case, �T � Th � Tc and
�x � L, so

The rate of energy transfer by conduction through the rod is given by

[11.7]� � kA
(Th � Tc)

L

�T
�x

�
Th � Tc

L

� �
Q
�t

 � A
�T
�x

Th

Insulation
Th > Tc

Tc

L

Energy
transfer

Figure 11.6 Conduction of energy
through a uniform, insulated rod of
length L. The opposite ends are in
thermal contact with energy reser-
voirs at different temperatures.

TIP 11.4 Blankets and Coats
in Cold Weather
When you sleep under a blanket in
the winter or wear a warm coat out-
side, the blanket or coat serves as a
layer of material with low thermal
conductivity in order to reduce the
transfer of energy away from your
body by heat. The primary insulating
medium is the air trapped in small
pockets within the material.

Tc

Energy transfer
for Th >Tc

Th
A

x�

Figure 11.5 Energy transfer
through a conducting slab of cross-
sectional area A and thickness L. The
opposite faces are at different tem-
peratures Tc and Th .
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Will an ice cube wrapped in a wool blanket remain frozen for (a) less time, (b) the
same length of time, or (c) a longer time than an identical ice cube exposed to air
at room temperature?

Quick Quiz 11.3

Two rods of the same length and diameter are made from different materials. The
rods are to connect two regions of different temperature so that energy will trans-
fer through the rods by heat. They can be connected in series, as in Figure 11.7a,
or in parallel, as in Figure 11.7b. In which case is the rate of energy transfer by
heat larger? (a) When the rods are in series (b) When the rods are in parallel
(c) The rate is the same in both cases.

Quick Quiz 11.4

TABLE 11.3
Thermal Conductivities

Thermal
Conductivity

Substance ( J/s � m� �C)

Metals (at 25�C)
Aluminum 238
Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427

Gases (at 20�C)
Air 0.023 4
Helium 0.138
Hydrogen 0.172
Nitrogen 0.023 4
Oxygen 0.023 8

Nonmetals
Asbestos 0.25
Concrete 1.3
Glass 0.84
Ice 1.6
Rubber 0.2
Water 0.60
Wood 0.10

Th Tc
Rod 1 Rod 2

(a)

Th Tc

Rod 1

Rod 2

(b)

Figure 11.7 (Quick Quiz 11.4) In
which case is the rate of energy transfer
larger?

where k, a proportionality constant that depends on the material, is called the
thermal conductivity. Substances that are good conductors have large thermal
conductivities, whereas good insulators have low thermal conductivities. Table 11.3
lists the thermal conductivities for various substances.

EXAMPLE 11.9 Energy Transfer through a Concrete Wall
Goal Apply the equation of heat conduction.

Problem Find the energy transferred in 1.00 h by conduction through a concrete wall 2.0 m high, 3.65 m long, and
0.20 m thick if one side of the wall is held at 20°C and the other side is at 5°C.

Strategy Equation 11.7 gives the rate of energy transfer by conduction in joules per second. Multiply by the time
and substitute given values to find the total thermal energy transferred.

Solution
Multiply Equation 11.7 by �t to find an expression for
the total energy Q transferred through the wall:

Q � � �t � kA � Th � Tc

L � �t

Substitute the numerical values to obtain Q , consulting
Table 11.3 for k :

Q � (1.3 J/s � m � °C)(7.3 m2) (3 600 s)

� 2.6 � 106 J

� 15�C
0.20 m �

Remarks Early houses were insulated with thick masonry walls, which restrict energy loss by conduction because k is
relatively low. The large thickness L also decreases energy loss by conduction, as shown by Equation 11.7. There are
much better insulating materials, however, and layering is also helpful. Despite the low thermal conductivity of ma-
sonry, the amount of energy lost is still rather large—enough to raise the temperature of 600 kg of water by more
than 1°C. There are better insulating materials than masonry.
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Home Insulation
To determine whether to add insulation to a ceiling or some other part of a build-
ing, the preceding discussion of conduction must be extended, for two reasons:

1. The insulating properties of materials used in buildings are usually expressed in
engineering (U.S. customary) rather than SI units. Measurements stamped on
a package of fiberglass insulating board will be in units such as British thermal
units, feet, and degrees Fahrenheit.

2. In dealing with the insulation of a building, conduction through a compound
slab must be considered, with each portion of the slab having a certain thick-
ness and a specific thermal conductivity. A typical wall in a house consists of an
array of materials, such as wood paneling, drywall, insulation, sheathing, and
wood siding.

The rate of energy transfer by conduction through a compound slab is

[11.8]

where Th and Tc are the temperatures of the outer extremities of the slab and the
summation is over all portions of the slab. This formula can be derived alge-
braically, using the facts that the temperature at the interface between two insulat-
ing materials must be the same and that the rate of energy transfer through one
insulator must be the same as through all the other insulators. If the slab consists
of three different materials, the denominator is the sum of three terms. In engi-
neering practice, the term L/k for a particular substance is referred to as the 

Q
�t

�
A(Th � Tc)

�
i

Li/ki

TABLE 11.4
R Values for Some Common Building Materials

R value
Material (ft2 � °F � h/Btu)

Hardwood siding (1.0 in. thick) 0.91
Wood shingles (lapped) 0.87
Brick (4.0 in. thick) 4.00
Concrete block (filled cores) 1.93
Styrofoam (1.0 in. thick) 5.0
Fiber glass batting (3.5 in. thick) 10.90
Fiber glass batting (6.0 in. thick) 18.80
Fiber glass board (1.0 in. thick) 4.35
Cellulose fiber (1.0 in. thick) 3.70
Flat glass (0.125 in. thick) 0.89
Insulating glass (0.25-in. space) 1.54
Vertical air space (3.5 in. thick) 1.01
Stagnant layer of air 0.17
Dry wall (0.50 in. thick) 0.45
Sheathing (0.50 in. thick) 1.32

Exercise 11.9
A wooden shelter has walls constructed of wooden planks 1.00 cm thick. If the exterior temperature is � 20.0°C and
the interior is 5.00°C, find the rate of energy loss through a wall that has dimensions 2.00 m by 2.00 m.

Answer 1.00 � 103 W
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INTERACTIVE EXAMPLE 11.10 The R Value of a Typical Wall
Goal Calculate the R value of a wall consisting of several layers of insulating
material.

Problem Calculate the total R value for a wall constructed as shown in Figure
11.8a. Starting outside the house (to the left in the figure) and moving inward, the
wall consists of 4.0 in. brick, 0.50 in. sheathing, an air space 3.5 in. thick, and
0.50 in. drywall.

Strategy Add all the R values together, remembering the stagnant air layers in-
side and outside the house.

R value of the material, so Equation 11.8 reduces to

[11.9]

The R values for a few common building materials are listed in Table 11.4. Note
the unit of R and the fact that the R values are defined for specific thicknesses.

Next to any vertical outside surface is a very thin, stagnant layer of air that must
be considered when the total R value for a wall is computed. The thickness of this
stagnant layer depends on the speed of the wind. As a result, energy loss by con-
duction from a house on a day when the wind is blowing is greater than energy
loss on a day when the wind speed is zero. A representative R value for a stagnant
air layer is given in Table 11.4.

Q
�t

�
A(Th � Tc)

�
i

Ri

Sheathing

Insulation

Brick

Air
space

(a) (b)

Dry wall

Figure 11.8 (Example 11.10) A
cross-sectional view of an exterior 
wall containing (a) an air space and
(b) insulation.

Exercise 11.10
If a layer of fiber glass insulation 3.5 in. thick is placed inside the wall to replace the air space, as in Figure 11.8b,
what is the new total R value? By what factor is the energy loss reduced?

Answer R � 17 ft2 � °F � h/Btu; 2.4

Study the R values of various types of common building materials by logging into PhysicsNow at
www.cp7e.com and going to Interactive Example 11.10.

EXAMPLE 11.11 Staying Warm in the Arctic
Goal Combine two layers of insulation.

Problem An arctic explorer builds a wooden shelter out of wooden planks that are 1.0 cm thick. To improve the in-
sulation, he covers the shelter with a layer of ice 3.2 cm thick. (a) Compute the R factors for the wooden planks and
the ice. (b) If the temperature outside the shelter is � 20.0°C and the temperature inside is 5.00°C, find the rate of
energy loss through one of the walls, if the wall has dimensions 2.00 m by 2.00 m. (c) Find the temperature at the in-
terface between the wood and the ice.

Strategy After finding the R values, substitute into Equation 11.9 to get the rate of energy transfer. To answer part
(c), use Equation 11.7 for one of the layers, setting it equal to the rate found in part (b), solving for the temperature.

Solution
Refer to Table 11.4, and sum. All quantities are in units
of ft2 � °F � h/Btu.

R total � R outside air layer � R brick � R sheath � Rair space

� R drywall � R inside air layer � (0.17 � 4.00 � 1.32 � 1.01

� 0.45 � 0.17)ft2 � °F � h/Btu

R total � 7.12 ft2 ��F�h/Btu
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Convection
When you warm your hands over an open flame, as illustrated in Figure 11.9, the
air directly above the flame, being warmed, expands. As a result, the density of this
air decreases and the air rises, warming your hands as it flows by. The transfer of
energy by the movement of a substance is called convection. When the movement
results from differences in density, as with air around a fire, it’s referred to as
natural convection. Airflow at a beach is an example of natural convection, as is the
mixing that occurs as surface water in a lake cools and sinks. When the substance
is forced to move by a fan or pump, as in some hot air and hot water heating sys-
tems, the process is called forced convection.

Convection currents assist in the boiling of water. In a teakettle on a hot stove-
top, the lower layers of water are warmed first. The warmed water has a lower
density and rises to the top, while the denser, cool water at the surface sinks to the
bottom of the kettle and is warmed.

The same process occurs when a radiator raises the temperature of a room.
The hot radiator warms the air in the lower regions of the room. The warm air

Solution
(a) Compute the R values using the data in Table 11.3.

Find the R value for the wooden wall: 0.10 m2�s��C/JR wood �
Lwood

kwood
�

0.01 m
0.10 J/s�m��C

�

Find the R - value for the ice layer: 0.020 m2�s��C/JR ice �
L ice

k ice
�

0.032 m
1.6 J/s�m��C

�

(b) Find the rate of heat loss.

Apply Equation 11.9:

� � 830 W

�
(4.00 m2)(5.00�C �(� 20.0�C))

0.12 m2�s��C/J

� �
Q
�t

�
A(Th � Tc)

�
i

Ri

(c) Find the temperature in between the ice and wood.

Apply the equation of heat conduction to the wood:
� �

(0.10 J/s�m��C)(4.00 m2)(5.00�C �T)
0.010 m

� 830 W

k woodA(Th � Tc)
L

Solve for the unknown temperature: T � � 16°C

Remarks The outer side of the wooden wall and the inner surface of the ice must have the same temperature, and
the rate of energy transfer through the ice must be the same as through the wooden wall. Using Equation 11.7 for ice
instead of wood gives the same answer. This rate of energy transfer is only a modest improvement over the thousand-
watt rate in Exercise 11.9. The choice of insulating material is important!

Exercise 11.11
Rather than use ice to cover the wooden shelter, the explorer glues pressed cork with thickness 0.500 cm to the
outside of his wooden shelter. Find the new rate of energy loss through the same wall. (Note that kcork �
0.046 J/s � m � °C.)

Answer 480 W

Figure 11.9 Warming a hand by
convection.

44337_11_p352-385  10/28/04  3:10 PM  Page 370



11.5 Energy Transfer 371

Photograph of a teakettle, showing
steam and turbulent convection air
currents.
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A P P L I C AT I O N
Cooling Automobile Engines

A P P L I C AT I O N
Algal Blooms in Ponds 
and Lakes

expands and, because of its lower density, rises to the ceiling. The denser cooler
air from above sinks, setting up the continuous air current pattern shown in
Figure 11.10.

An automobile engine is maintained at a safe operating temperature by a
combination of conduction and forced convection. Water (actually, a mixture of
water and antifreeze) circulates in the interior of the engine. As the metal of
the engine block increases in temperature, energy passes from the hot metal to
the cooler water by thermal conduction. The water pump forces water out of the
engine and into the radiator, carrying energy along with it (by forced convection).
In the radiator, the hot water passes through metal pipes that are in contact with
the cooler outside air, and energy passes into the air by conduction. The cooled
water is then returned to the engine by the water pump to absorb more energy.
The process of air being pulled past the radiator by the fan is also forced
convection.

The algal blooms often seen in temperate lakes and ponds during the spring or
fall are caused by convection currents in the water. To understand this process,
consider Figure 11.11. During the summer, bodies of water develop temperature
gradients, with an upper, warm layer of water separated from a lower, cold layer by
a buffer zone called a thermocline. In the spring or fall, temperature changes in
the water break down this thermocline, setting up convection currents that
mix the water. The mixing process transports nutrients from the bottom to the
surface. The nutrient-rich water forming at the surface can cause a rapid, tempo-
rary increase in the algae population.

(b) Fall and spring upwelling

Warm Layer 25°–22°C

Thermocline 20°–10°C

Cool layer 5°–4°C

(a) Summer layering of water

Figure 11.11 (a) During the summer, a warm upper layer of water is separated from a cooler lower
layer by a thermocline. (b) Convection currents during the spring or fall mix the water and can cause
algal blooms.

Figure 11.10 Convection currents
are set up in a room warmed by a 
radiator.
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Figure 11.12 Warming hands by
radiation.

Stefan’s law �

Radiation
Another process of transferring energy is through radiation. Figure 11.12 shows
how your hands can be warmed at an open flame through radiation. Because your
hands aren’t in physical contact with the flame and the conductivity of air is very
low, conduction can’t account for the energy transfer. Nor can convection be re-
sponsible for any transfer of energy, because your hands aren’t above the flame in
the path of convection currents. The warmth felt in your hands, therefore, must
come from the transfer of energy by radiation.

All objects radiate energy continuously in the form of electromagnetic waves
due to thermal vibrations of their molecules. These vibrations create the orange
glow of an electric stove burner, an electric space heater, and the coils of a toaster.

The rate at which an object radiates energy is proportional to the fourth power
of its absolute temperature. This is known as Stefan’s law, expressed in equation
form as

[11.10]

where � is the power in watts (or joules per second) radiated by the object, � is
the Stefan–Boltzmann constant, equal to 5.669 6 � 10�8 W/m2 � K4, A is the sur-
face area of the object in square meters, e is a constant called the emissivity of the
object, and T is the object’s Kelvin temperature. The value of e can vary between
zero and one, depending on the properties of the object’s surface.

Approximately 1 340 J of electromagnetic radiation from the Sun passes
through each square meter at the top of the Earth’s atmosphere every second.
This radiation is primarily visible light, accompanied by significant amounts of
infrared and ultraviolet. We will study these types of radiation in detail in
Chapter 21. Some of this energy is reflected back into space, and some is absorbed
by the atmosphere, but enough arrives at the surface of the Earth each day to sup-
ply all our energy needs hundreds of times over—if it could be captured and used
efficiently. The growth in the number of solar houses in the United States is one
example of an attempt to make use of this abundant energy. Radiant energy from
the Sun affects our day-to-day existence in a number of ways, influencing Earth’s
average temperature, ocean currents, agriculture, and rain patterns. It can also af-
fect behavior.

As another example of the effects of energy transfer by radiation, consider what
happens to the atmospheric temperature at night. If there is a cloud cover above
Earth, the water vapor in the clouds absorbs part of the infrared radiation emitted
by Earth and re-emits it back to the surface. Consequently, the temperature at the
surface remains at moderate levels. In the absence of cloud cover, there is nothing
to prevent the radiation from escaping into space, so the temperature drops more
on a clear night than when it’s cloudy.

As an object radiates energy at a rate given by Equation 11.10, it also absorbs
radiation. If it didn’t, the object would eventually radiate all its energy and its

� � sAeT 4

The body temperature of mammals ranges from about
35°C to 38°C, while that of birds ranges from about
40°C to 43°C. How can these narrow ranges of body
temperature be maintained in cold weather?

Explanation A natural method of maintaining body
temperature is via layers of fat beneath the skin. Fat
protects against both conduction and convection
because of its low thermal conductivity and because
there are few blood vessels in fat to carry blood to 

the surface, where energy losses by convection can 
occur. Birds ruffle their feathers in cold weather in 
order to trap a layer of air with a low thermal conduc-
tivity between the feathers and the skin. Bristling 
the fur produces the same effect in fur-bearing
animals.

Humans keep warm with wool sweaters and down
jackets that trap the warmer air in regions close to their
bodies, reducing energy loss by convection and conduc-
tion.

Applying Physics 11.1 Body Temperature
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temperature would reach absolute zero. The energy an object absorbs comes from
its environment, which consists of other bodies that radiate energy. If an object is
at a temperature T, and its surroundings are at a temperature T0, the net energy
gained or lost each second by the object as a result of radiation is

[11.11]

When an object is in equilibrium with its surroundings, it radiates and absorbs en-
ergy at the same rate, so its temperature remains constant. When an object is hot-
ter than its surroundings, it radiates more energy than it absorbs and so cools.

An ideal absorber is an object that absorbs all the light radiation incident on it,
including invisible infrared and ultraviolet light. Such an object is called a black
body because a room-temperature black body would look black. Since a black
body doesn’t reflect radiation at any wavelength, any light coming from it is due to
atomic and molecular vibrations alone. A perfect black body has emissivity e � 1.
An ideal absorber is also an ideal radiator of energy. The Sun, for example, is
nearly a perfect black body. This statement may seem contradictory, because the
Sun is bright, not dark; however, the light that comes from the Sun is emitted, not
reflected. Black bodies are perfect absorbers that look black at room temperature
because they don’t reflect any light. All black bodies, except those at absolute zero,
emit light that has a characteristic spectrum, to be discussed in Chapter 27. In con-
trast to black bodies, an object for which e � 0 absorbs none of the energy inci-
dent on it, reflecting it all. Such a body is an ideal reflector.

White clothing is more comfortable to wear in the summer than black clothing.
Black fabric acts as a good absorber of incoming sunlight and as a good emitter of
this absorbed energy. About half of the emitted energy, however, travels toward the
body, causing the person wearing the garment to feel uncomfortably warm. White
or light-colored clothing reflects away much of the incoming energy.

The amount of energy radiated by an object can be measured with tempera-
ture-sensitive recording equipment via a technique called thermography. An
image of the pattern formed by varying radiation levels, called a thermogram, is
brightest in the warmest areas. Figure 11.13 reproduces a thermogram of a house.
More energy escapes in the lighter regions, such as the door and windows. The
owners of this house could conserve energy and reduce their heating costs by
adding insulation to the attic area and by installing thermal draperies over the win-
dows. Thermograms have also been used to image injured or diseased tissue in
medicine, since such areas are often at a different temperature than surrounding
healthy tissue, though many radiologists consider thermograms inadequate as a
diagnostic tool.

Figure 11.14 shows a recently developed radiation thermometer that has re-
moved most of the risk of taking the temperature of young children or the aged
with a rectal thermometer—risks such as bowel perforation or bacterial contami-
nation. The instrument measures the intensity of the infrared radiation leaving

�net � sAe(T 4 � T0
4)

A P P L I C AT I O N
Light-Colored SSummer Clothing

Figure 11.13 This thermogram of a house, made during cold weather, shows colors
ranging from white and yellow (areas of greatest energy loss) to blue and purple (areas
of least energy loss).
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Figure 11.14 A radiation ther-
mometer measures a patient’s tem-
perature by monitoring the intensity
of infrared radiation leaving the ear.
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A P P L I C AT I O N
Thermography

A P P L I C AT I O N
Radiation Thermometers 
for Measuring Body 
Temperature
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374 Chapter 11 Energy in Thermal Processes

the eardrum and surrounding tissues and converts this information to a standard
numerical reading. The eardrum is a particularly good location to measure body
temperature because it’s near the hypothalamus—the body’s temperature control
center.

Stars A and B have the same temperature, but star A has twice the radius of star B.
(a) What is the ratio of star A’s power output to star B’s output due to electromag-
netic radiation? The emissivity of both stars can assumed to be 1. (b) Repeat the
question if the stars have the same radius, but star A has twice the absolute temper-
ature of star B. (c) What’s the ratio if star A has both twice the radius and twice the
absolute temperature of star B?

Quick Quiz 11.5

How can thermal radiation be used to see objects in
near total darkness?

Explanation There are two methods of night vision,
one enhancing a combination of very faint visible
light and infrared light, and another using infrared
light only. The latter is valuable for creating images in
absolute darkness. Because all objects above absolute
zero emit thermal radiation due to the vibrations of

their atoms, the infrared (invisible) light can be
focused by a special lens and scanned by an array of
infrared detector elements. These elements create a
thermogram. The information from thousands of
separate points in the field of view is converted to
electrical impulses and translated by a microchip 
into a form suitable for display. Different temperature
areas are assigned different colors, which can then be
easily discerned on the display.

Applying Physics 11.2 Thermal Radiation and Night Vision

EXAMPLE 11.12 Polar Bear Club
Goal Apply Stefan’s law.

Problem A member of the Polar Bear Club, dressed only in bathing trunks of negligible size, prepares
to plunge into the Baltic Sea from the beach in St. Petersburg, Russia. The air is calm, with a temperature of
5°C. If the swimmer’s surface body temperature is 25°C, compute the net rate of energy loss from his skin
due to radiation. How much energy is lost in 10.0 min? Assume his emissivity is 0.900, and his surface area is 
1.50 m 2.

Strategy Use Equation 11.11, the thermal radiation equation, substituting the given information. Remember to
convert temperatures to Kelvin by adding 273 to each value in degrees Celsius!

Solution
Convert temperatures from Celsius to Kelvin:

Compute the net rate of energy loss, using Equation 11.11:

� (5.67 � 10�8 W/m2 � K4)(1.50 m2) 

� (0.90)[(298 K)4 � (278 K)4]

�net � 146 W

�net � sAe (T 4 � T0
4)

T5°C � TC � 273 � 5 � 273 � 278 K

T25°C � TC � 273 � 25 � 273 � 298 K

Multiply the preceding result by the time, 10 minutes, to
get the energy lost in that time due to radiation:

Q � �net � �t � (146)(6.00 � 102 s) � 8.76 � 104 J

Thermogram of a woman’s breasts.
Her left breast is diseased (red and
orange) and her right breast (blue) is
healthy.
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Remarks Energy is also lost from the body through convection and conduction. Clothing traps layers of air next to
the skin, which are warmed by radiation and conduction. In still air these warm layers are more readily retained.
Even a Polar Bear Club member enjoys some benefit from the still air, better retaining a stagnant air layer next to the
surface of his skin.

Exercise 11.12
Repeat the calculation when the man is standing in his bedroom, with an ambient temperature of 20.0°C. Assume his
body surface temperature is 27.0°C, with emissivity of 0.900.

Answer 55.9 W, 3.35 � 104 J

The Dewar Flask
The Thermos bottle, also called a Dewar flask (after its inventor), is designed
to minimize energy transfer by conduction, convection, and radiation. The
thermos can store either cold or hot liquids for long periods. The standard ves-
sel (Fig. 11.15) is a double-walled Pyrex glass with silvered walls. The space
between the walls is evacuated to minimize energy transfer by conduction and con-
vection. The silvered surface minimizes energy transfer by radiation because silver
is a very good reflector and has very low emissivity. A further reduction in energy
loss is achieved by reducing the size of the neck. Dewar flasks are commonly
used to store liquid nitrogen (boiling point 77 K) and liquid oxygen (boiling
point 90 K).

To confine liquid helium (boiling point 4.2 K), which has a very low heat of
vaporization, it’s often necessary to use a double Dewar system in which the Dewar
flask containing the liquid is surrounded by a second Dewar flask. The space
between the two flasks is filled with liquid nitrogen.

Some of the principles of the Thermos bottle are used in the protection of sen-
sitive electronic instruments in orbiting space satellites. In half of its orbit around
the Earth a satellite is exposed to intense radiation from the Sun, and in the other
half it lies in the Earth’s cold shadow. Without protection, its interior would be
subjected to tremendous extremes of temperature. The interior of the satellite is
wrapped with blankets of highly reflective aluminum foil. The foil’s shiny surface
reflects away much of the Sun’s radiation while the satellite is in the unshaded part
of the orbit and helps retain interior energy while the satellite is in the Earth’s
shadow.

11.6 GLOBAL WARMING AND 
GREENHOUSE GASES

Many of the principles of energy transfer, and opposition to it, can be understood
by studying the operation of a glass greenhouse. During the day, sunlight passes
into the greenhouse and is absorbed by the walls, soil, plants, and so on. This ab-
sorbed visible light is subsequently reradiated as infrared radiation, causing the
temperature of the interior to rise.

In addition, convection currents are inhibited in a greenhouse. As a result,
warmed air can’t rapidly pass over the surfaces of the greenhouse that are exposed
to the outside air and thereby cause an energy loss by conduction through those
surfaces. Most experts now consider this restriction to be a more important warm-
ing effect than the trapping of infrared radiation. In fact, experiments have shown
that when the glass over a greenhouse is replaced by a special glass known to trans-
mit infrared light, the temperature inside is lowered only slightly. On the basis of
this evidence, the primary mechanism that raises the temperature of a greenhouse
is not the trapping of infrared radiation, but the inhibition of airflow that occurs
under any roof (in an attic, for example).

A P P L I C AT I O N
Thermos Bottles

Vacuum

Silvered
surfaces

Hot or
cold

liquid

Figure 11.15 A cross-sectional view
of a Thermos bottle designed to store
hot or cold liquids.
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A phenomenon commonly known as the greenhouse effect can also play a ma-
jor role in determining the Earth’s temperature. First, note that the Earth’s atmos-
phere is a good transmitter (and hence a poor absorber) of visible radiation and a
good absorber of infrared radiation. The visible light that reaches the Earth’s sur-
face is absorbed and reradiated as infrared light, which in turn is absorbed
(trapped) by the Earth’s atmosphere. An extreme case is the warmest planet,
Venus, which has a carbon dioxide (CO2) atmosphere and temperatures ap-
proaching 850°F.

As fossil fuels (coal, oil, and natural gas) are burned, large amounts of carbon
dioxide are released into the atmosphere, causing it to retain more energy. This is
of great concern to scientists and governments throughout the world. Many
scientists are convinced that the 10% increase in the amount of atmospheric car-
bon dioxide in the past 30 years could lead to drastic changes in world climate.
The increase in concentration of atmospheric carbon dioxide in the latter part of
the 20th century is shown in Figure 11.16. According to one estimate, doubling
the carbon dioxide content in the atmosphere will cause temperatures to increase
by 2°C. In temperate regions, such as Europe and the United States, a 2°C temper-
ature rise would save billions of dollars per year in fuel costs. Unfortunately, it
would also melt a large amount of ice from the polar ice caps, which could cause
flooding and destroy many coastal areas. A 2°C rise would also increase the fre-
quency of droughts, and consequently decrease already low crop yields in tropical
and subtropical countries. Even slightly higher average temperatures might make
it impossible for certain plants and animals to survive in their customary ranges.

At present, about 3.5 � 1011 tons of CO2 are released into the atmosphere each
year. Most of this gas results from human activities such as the burning of fossil
fuels, the cutting of forests, and manufacturing processes. Another greenhouse
gas is methane (CH4), which is released in the digestive process of cows and
other ruminants. This gas originates from that part of the animal’s stomach
called the rumen, where cellulose is digested. Termites are also major producers
of this gas. Finally, greenhouse gases such as nitrous oxide (N2O) and sulfur
dioxide (SO2) are increasing due to automobile and industrial pollution.

Whether the increasing greenhouse gases are responsible or not, there is con-
vincing evidence that global warming is underway. The evidence comes from the
melting of ice in Antarctica and the retreat of glaciers at widely scattered sites
throughout the world (see Fig. 11.17). For example, satellite images of Antarctica
show James Ross Island completely surrounded by water for the first time since
maps were made, about 100 years ago. Previously, the island was connected to the
mainland by an ice bridge. In addition, at various places across the continent, ice
shelves are retreating, some at a rapid rate.

Perhaps at no place in the world are glaciers monitored with greater interest
than in Switzerland. There, it is found that the Alps have lost about 50% of their
glacial ice compared to 130 years ago. The retreat of glaciers on high-altitude
peaks in the tropics is even more severe than in Switzerland. The Lewis glacier on
Mount Kenya and the snows of Kilimanjaro are two examples. However, in certain
regions of the planet where glaciers are near large bodies of water and are fed by
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Figure 11.16 The concentration of
atmospheric carbon dioxide in parts per
million (ppm) of dry air as a function of
time during the latter part of the 20th cen-
tury. These data were recorded at Mauna
Loa Observatory in Hawaii. The yearly varia-
tions (red curve) coincide with growing
seasons, because vegetation absorbs carbon
dioxide from the air. The steady increase
(black curve) is of concern to scientists.
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(a) (b)

Figure 11.17 Glacier melting in
Alaska. (a) Hiker on a ridge above the
Muir Glacier in Glacier Bay National
Park, August 26, 1978. (b) Hiker on
the same ridge, June 27, 1993.
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large and frequent snows, glaciers continue to advance, so the overall picture of a
catastrophic global-warming scenario may be premature. In about 50 years, how-
ever, the amount of carbon dioxide in the atmosphere is expected to be about
twice what it was in the preindustrial era. Because of the possible catastrophic con-
sequences, most scientists voice the concern that reductions in greenhouse gas
emissions need to be made now.

Take a practice test by logging into Physics-
Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

11.1 Heat and Internal Energy
Internal energy is associated with a system’s microscopic
components. Internal energy includes the kinetic energy of
translation, rotation, and vibration of molecules, as well as
potential energy.

Heat is the transfer of energy across the boundary of a
system resulting from a temperature difference between
the system and its surroundings. The symbol Q represents
the amount of energy transferred.

The calorie is the amount of energy necessary to raise
the temperature of 1 g of water from 14.5°C to 15.5°C. The
mechanical equivalent of heat is 4.186 J/cal.

11.2 Specific Heat

11.3 Calorimetry
The energy required to change the temperature of a sub-
stance of mass m by an amount �T is

[11.3]

where c is the specific heat of the substance. In calorimetry
problems, the specific heat of a substance can be deter-
mined by placing it in water of known temperature, isolat-
ing the system, and measuring the temperature at equilib-
rium. The sum of all energy gains and losses for all the
objects in an isolated system is given by

Q k � 0 [11.5]

where Q k is the energy change in the k th object in the sys-
tem. This equation can be solved for the unknown specific
heat, or used to determine an equilibrium temperature.

�

Q � mc �T

11.4 Latent Heat and Phase Change
The energy required to change the phase of a pure sub-
stance of mass m is

Q � � mL [11.6]

where L is the latent heat of the substance. The latent heat
of fusion, Lf , describes an energy transfer during a change
from a solid phase to a liquid phase (or vice-versa), while
the latent heat of vaporizaion, Lv, describes an energy
transfer during a change from a liquid phase to a gaseous
phase (or vice-versa). Calorimetry problems involving
phase changes are handled with Equation 11.5, with latent
heat terms added to the specific heat terms.

11.5 Energy Transfer
Energy can be transferred by several different processes, in-
cluding work, discussed in Chapter 5, and by conduction,
convection, and radiation. Conduction can be viewed as an
exchange of kinetic energy between colliding molecules or
electrons. The rate at which energy transfers by conduction
through a slab of area A and thickness L is

[11.7]

where k is the thermal conductivity of the material making
up the slab.

Energy is transferred by convection as a substance moves
from one place to another.

All objects emit radiation from their surfaces in the
form of electromagnetic waves at a net rate of

[11.11]

where T is the temperature of the object and T0 is the tem-
perature of the surroundings. An object that is hotter than
its surroundings radiates more energy than it absorbs,
whereas a body that is cooler than its surroundings absorbs
more energy than it radiates.

�net � sAe(T 4 � T 0
4)

� � kA
(Th � Tc)

L

SUMMARY
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CONCEPTUAL QUESTIONS
1. Rub the palm of your hand on a metal surface for 30–45

seconds. Place the palm of your other hand on an un-
rubbed portion of the surface and then the rubbed por-
tion. The rubbed portion will feel warmer. Now repeat this
process on a wooden surface. Why does the temperature
difference between the rubbed and unrubbed portions of
the wood surface seem larger than for the metal surface?

2. Pioneers stored fruits and vegetables in underground cel-
lars. Discuss fully this choice for a storage site.

3. In usually warm climates that experience an occasional
hard freeze, fruit growers will spray the fruit trees with
water, hoping that a layer of ice will form on the fruit.
Why would such a layer be advantageous?

4. In winter, why did the pioneers (mentioned in Ques-
tion 2) store an open barrel of water alongside their
produce?

5. Cups of water for coffee or tea can be warmed with a coil
that is immersed in the water and raised to a high temper-
ature by means of electricity. Why do the instructions
warn users not to operate the coils in the absence of
water? Can the immersion coil be used to warm up a cup
of stew?

6. The U.S. penny is now made of copper-coated zinc. Can a
calorimetric experiment be devised to test for the metal con-
tent in a collection of pennies? If so, describe the procedure.

7. On a clear, cold night, why does frost tend to form on the
tops, rather than the sides, of mailboxes and cars?

8. A warning sign often seen on highways just before a
bridge is “Caution—Bridge Surface Freezes before Road
Surface.” Of the three energy transfer processes discussed
in Sections 11.5 to 11.7, which is most important in caus-
ing a bridge surface to freeze before the road surface on
very cold days?

9. A tile floor may feel uncomfortably cold to your bare feet,
but a carpeted floor in an adjoining room at the same
temperature feels warm. Why?

10. On a very hot day, it’s possible to cook an egg on the
hood of a car. Would you select a black car or a white car
on which to cook your egg? Why?

11. Concrete has a higher specific heat than does soil. Use this
fact to explain (partially) why a city has a higher average
temperature than the surrounding countryside. Would
you expect evening breezes to blow from city to country or
from country to city? Explain.

12. You need to pick up a very hot cooking pot in your
kitchen. You have a pair of hot pads. Should you soak
them in cold water or keep them dry in order to pick up
the pot most comfortably?

13. In a daring demonstration, a professor dips her wetted fin-
gers into molten lead (327°C) and withdraws them quickly
without getting burned. How is this possible?

14. The air temperature above coastal areas is profoundly in-
fluenced by the large specific heat of water. One reason is
that the energy released when 1 cubic meter of water
cools by 1.0°C will raise the temperature of an
enormously larger volume of air by 1.0°C. Estimate that
volume of air. The specific heat of air is approximately
1.0 kJ/kg � °C. Take the density of air to be 1.3 kg/m3.

15. Ethyl alcohol has about one-half the specific heat of wa-
ter. Compare the temperature increases of equal masses
of alcohol and water in separate beakers that are supplied
with the same amount of energy.

16. Energy is added to ice, raising its temperature from
�10°C to �5°C. A larger amount of energy is added to
the same mass of liquid water, raising its temperature
from 15°C to 20°C. From these results, we can conclude
that (a) overcoming the latent heat of fusion of ice re-
quires an input of energy (b) the latent heat of fusion of
ice delivers some energy to the system (c) the specific
heat of ice is less than that of water (d) the specific heat
of ice is greater than that of water.

17. The specific heat of substance A is greater than the spe-
cific heat of substance B. Both A and B are at the same
initial temperature when equal amounts of energy are
added to them. Assuming no melting, freezing, or evapo-
ration occurs, which of the following can be concluded
about the final temperature TA of substance A and 
the final temperature TB of substance B? (a) TA 	 TB
(b) TA 
 TB (c) TA � TB (d) more information is needed.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

� coached problem with hints available at www.cp7e.com � biomedical application

Section 11.1 Heat and Internal Energy

Section 11.2 Specific Heat

1. Water at the top of Niagara Falls has a temperature of
10.0°C. If it falls a distance of 50.0 m and all of its poten-
tial energy goes into heating the water, calculate the tem-
perature of the water at the bottom of the falls.

2. A 50.0-g piece of cadmium is at 20°C. If 400 cal of energy is
transferred to the cadmium, what is its final temperature?

Lake Erie contains roughly 4.00 � 1011 m3 of water. (a) How
much energy is required to raise the temperature of that
volume of water from 11.0°C to 12.0°C? (b) How many
years would it take to supply this amount of energy by 

3.
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using the 1 000-MW exhaust energy of an electric power
plant?

4. An aluminum rod is 20.0 cm long at 20°C and has a mass
of 350 g. If 10 000 J of energy is added to the rod by heat,
what is the change in length of the rod?

5. How many joules of energy are required to raise the tem-
perature of 100 g of gold from 20.0°C to 100°C?

6. As part of an exercise routine, a 50.0-kg person climbs
10.0 meters up a vertical rope. How many (food) Calories
are expended in a single climb up the rope? (1 food
Calorie � 103 calories)

A 75.0-kg weight watcher wishes to
climb a mountain to work off the equivalent of a large
piece of chocolate cake rated at 500 (food) Calories. How
high must the person climb? (1 food Calorie � 103

calories)

8. The apparatus shown in Figure P11.8 was used by Joule
to measure the mechanical equivalent of heat. Work is
done on the water by a rotating paddle wheel, which is
driven by two blocks falling at a constant speed. The tem-

7.

ture of the water after the blocks fall through a distance
of 3.00 m?

9. A 5.00-g lead bullet traveling at 300 m/s is stopped by a
large tree. If half the kinetic energy of the bullet is trans-
formed into internal energy and remains with the bullet
while the other half is transmitted to the tree, what is the
increase in temperature of the bullet?

10. A 1.5-kg copper block is given an initial speed of 3.0 m/s
on a rough horizontal surface. Because of friction, the
block finally comes to rest. (a) If the block absorbs 85% of
its initial kinetic energy as internal energy, calculate its in-
crease in temperature. (b) What happens to the remain-
ing energy?

11. A 200-g aluminum cup contains 800 g of water in thermal
equilibrium with the cup at 80°C. The combination of
cup and water is cooled uniformly so that the temperature
decreases by 1.5°C per minute. At what rate is energy be-
ing removed? Express your answer in watts.

Section 11.3 Calorimetry

12. Lead pellets, each of mass 1.00 g, are heated to 200°C. How
many pellets must be added to 500 g of water that is initially
at 20.0°C to make the equilibrium temperature 25.0°C?
Neglect any energy transfer to or from the container.

13. What mass of water at 25.0°C must be allowed to come to
thermal equilibrium with a 3.00-kg gold bar at 100°C in
order to lower the temperature of the bar to 50.0°C?

14. In a showdown on the streets of Laredo, the good guy
drops a 5.0-g silver bullet at a temperature of 20°C into a
100-cm3 cup of water at 90°C. Simultaneously, the bad
guy drops a 5.0-g copper bullet at the same initial tem-
perature into an identical cup of water. Which one ends
the showdown with the coolest cup of water in the 
west? Neglect any energy transfer into or away from the
container.

An aluminum cup contains 225 g of wa-
ter and a 40-g copper stirrer, all at 27°C. A 400-g sample
of silver at an initial temperature of 87°C is placed in the
water. The stirrer is used to stir the mixture until it
reaches its final equilibrium temperature of 32°C. Calcu-
late the mass of the aluminum cup.

16. It is desired to cool iron parts from 500°F to 100°F by
dropping them into water that is initially at 75°F. Assum-
ing that all the heat from the iron is transferred to the
water and that none of the water evaporates, how many
kilograms of water are needed per kilogram of iron?

17. A 100-g aluminum calorimeter contains 250 g of water.
The two substances are in thermal equilibrium at 10°C.
Two metallic blocks are placed in the water. One is a 
50-g piece of copper at 80°C. The other sample has a
mass of 70 g and is originally at a temperature of 100°C.

15.

mm

Thermal
insulator

Figure P11.8 The falling weights
rotate the paddles, causing the tem-
perature of the water to increase.

perature of the stirred water increases due to the friction
between the water and the paddles. If the energy lost in
the bearings and through the walls is neglected, then the
loss in potential energy associated with the blocks equals
the work done by the paddle wheel on the water. If each
block has a mass of 1.50 kg and the insulated tank is
filled with 200 g of water, what is the increase in tempera-
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The entire system stabilizes at a final temperature of
20°C. Determine the specific heat of the unknown sec-
ond sample.

18. When a driver brakes an automobile, the friction be-
tween the brake drums and the brake shoes converts the
car’s kinetic energy to thermal energy. If a 1 500-kg au-
tomobile traveling at 30 m/s comes to a halt, how much
does the temperature rise in each of the four 8.0-kg
iron brake drums? (The specific heat of iron is
448 J/kg � °C.)

A student drops two metallic objects into a 120-g steel
container holding 150 g of water at 25°C. One object is a
200-g cube of copper that is initially at 85°C, and the
other is a chunk of aluminum that is initially at 5.0°C. To
the surprise of the student, the water reaches a final tem-
perature of 25°C, precisely where it started. What is the
mass of the aluminum chunk?

Section 11.4 Latent Heat and Phase Change

20. A 50-g ice cube at 0°C is heated until 45 g has become
water at 100°C and 5.0 g has become steam at 100°C.
How much energy was added to accomplish the transfor-
mation?

21. A 100-g cube of ice at 0°C is dropped into 1.0 kg of water
that was originally at 80°C. What is the final temperature
of the water after the ice has melted?

22. How much energy is required to change a 40-g ice cube
from ice at �10°C to steam at 110°C?

23. What mass of steam that is initially at 120°C is needed to
warm 350 g of water and its 300-g aluminum container
from 20°C to 50°C?

24. A resting adult of average size converts chemical energy
in food into internal energy at the rate of 120 W, called
her basal metabolic rate. To stay at a constant temperature,
energy must be transferred out of the body at the same
rate. Several processes exhaust energy from your body.
Usually the most important is thermal conduction into
the air in contact with your exposed skin. If you are not
wearing a hat, a convection current of warm air rises ver-
tically from your head like a plume from a smokestack.
Your body also loses energy by electromagnetic radia-
tion, by your exhaling warm air, and by the evaporation
of perspiration. Now consider still another pathway for
energy loss: moisture in exhaled breath. Suppose you
breathe out 22.0 breaths per minute, each with a volume
of 0.600 L. Suppose also that you inhale dry air and ex-
hale air at 37°C containing water vapor with a vapor
pressure of 3.20 kPa. The vapor comes from the evapora-
tion of liquid water in your body. Model the water vapor
as an ideal gas. Assume its latent heat of evaporation at
37°C is the same as its heat of vaporization at 100°C. Cal-

19.

26. When you jog, most of the food energy you burn above
your basal metabolic rate (BMR) ends up as internal
energy that would raise your body temperature if it were
not eliminated. The evaporation of perspiration is the
primary mechanism for eliminating this energy. Deter-
mine the amount of water you lose to evaporation when
running for 30 minutes at a rate that uses 400 kcal/h
above your BMR. (That amount is often considered to be
the “maximum fat-burning” energy output.) The metabo-
lism of 1 gram of fat generates approximately 9.0 kcal of
energy and produces approximately 1 gram of water. (The
hydrogen atoms in the fat molecule are transferred to
oxygen to form water.) What fraction of your need 
for water will be provided by fat metabolism? (The latent
heat of vaporization of water at room temperature is 
2.5 � 106 J/kg).

27. A 40-g block of ice is cooled to �78°C and is then added
to 560 g of water in an 80-g copper calorimeter at a tem-
perature of 25°C. Determine the final temperature of the
system consisting of the ice, water, and calorimeter. (If not
all the ice melts, determine how much ice is left.) Remem-
ber that the ice must first warm to 0°C, melt, and then
continue warming as water. The specific heat of ice is
0.500 cal/g � °C � 2090 J/kg � °C.

28. A 60.0-kg runner expends 300 W of power while running
a marathon. Assuming that 10.0% of the energy is deliv-
ered to the muscle tissue and that the excess energy is

380 Chapter 11 Energy in Thermal Processes

Figure P11.25 A cross-country skier.
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culate the rate at which you lose energy by exhaling hu-
mid air.

A 75-kg cross-country skier glides over snow as in Figure
P11.25. The coefficient of friction between skis and snow
is 0.20. Assume all the snow beneath his skis is at 0°C and
that all the internal energy generated by friction is added
to snow, which sticks to his skis until it melts. How far
would he have to ski to melt 1.0 kg of snow?

25.
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Figure P11.28 Timothy Cherigat of Kenya, winner of the
Boston Marathon in 2004.
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removed from the body primarily by sweating, determine
the volume of bodily fluid (assume it is water) lost per
hour. (At 37.0°C, the latent heat of vaporization of water
is 2.41 � 106 J/kg.)

29. A high-end gas stove usually has at least one burner rated
at 14 000 Btu/h. If you place a 0.25-kg aluminum pot con-
taining 2.0 liters of water at 20°C on this burner, how long
will it take to bring the water to a boil, assuming all of the
heat from the burner goes into the pot? How long will it
take to boil all of the water out of the pot?

30. A beaker of water sits in the sun until it reaches an equi-
librium temperature of 30°C. The beaker is made of 100 g
of aluminum and contains 180 g of water. In an attempt
to cool this system, 100 g of ice at 0°C is added to the wa-
ter. (a) Determine the final temperature of the system. If
Tf � 0°C, determine how much ice remains. (b) Repeat
your calculations for 50 g of ice.

Steam at 100°C is added to ice at 0°C. (a) Find the
amount of ice melted and the final temperature when the
mass of steam is 10 g and the mass of ice is 50 g. (b) Repeat
with steam of mass 1.0 g and ice of mass 50 g.

Section 11.5 Energy Transfer

32. The average thermal conductivity of the walls (including
windows) and roof of a house in Figure P11.32 is
4.8 � 10�4 kW/m � °C, and their average thickness is
21.0 cm. The house is heated with natural gas, with a heat
of combustion (energy released per cubic meter of gas
burned) of 9300 kcal/m3. How many cubic meters of gas
must be burned each day to maintain an inside tempera-

31.

5.00 m

10.0 m8.00 m

37°

Figure P11.32

ture of 25.0°C if the outside temperature is 0.0°C?
Disregard radiation and energy loss by heat through the
ground.

33. (a) Find the rate of energy flow through a copper
block of cross-sectional area 15 cm2 and length 8.0 cm
when a temperature difference of 30°C is established
across the block. Repeat the calculation, assuming
that the material is (b) a block of stagnant air with the
given dimensions; (c) a block of wood with the given
dimensions.

34. A window has a glass surface area of 1.6 � 103 cm2 and a
thickness of 3.0 mm. (a) Find the rate of energy transfer
by conduction through the window when the temperature
of the inside surface of the glass is 70°F and the outside
temperature is 90°F. (b) Repeat for the same inside tem-
perature and an outside temperature of 0°F.

A steam pipe is covered with 1.50-cm-
thick insulating material of thermal conductivity 0.200 cal/
cm � °C � s. How much energy is lost every second when the
steam is at 200°C and the surrounding air is at 20.0°C? The
pipe has a circumference of 800 cm and a length of 50.0 m.
Neglect losses through the ends of the pipe.

36. A box with a total surface area of 1.20 m2 and a wall
thickness of 4.00 cm is made of an insulating material. A
10.0-W electric heater inside the box maintains the in-
side temperature at 15.0°C above the outside tempera-
ture. Find the thermal conductivity k of the insulating
material.

37. Determine the R value for a wall constructed as follows:
The outside of the house consists of lapped wood shingles
placed over 0.50-in.-thick sheathing, over 3.0 in. of cellu-
lose fiber, over 0.50 in. of drywall.

38. A thermopane window consists of two glass panes, each
0.50 cm thick, with a 1.0-cm-thick sealed layer of air in be-
tween. If the inside surface temperature is 23°C and the
outside surface temperature is 0.0°C, determine the rate

35.
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of energy transfer through 1.0 m2 of the window. Com-
pare your answer with the rate of energy transfer through
1.0 m2 of a single 1.0-cm-thick pane of glass.

A copper rod and an aluminum rod of equal diameter are
joined end to end in good thermal contact. The tempera-
ture of the free end of the copper rod is held constant at
100°C, and that of the far end of the aluminum rod is
held at 0°C. If the copper rod is 0.15 m long, what must
be the length of the aluminum rod so that the tempera-
ture at the junction is 50°C?

40. A Styrofoam box has a surface area of 0.80 m2 and a wall
thickness of 2.0 cm. The temperature of the inner surface
is 5.0°C, and the outside temperature is 25°C. If it takes
8.0 h for 5.0 kg of ice to melt in the container, determine
the thermal conductivity of the Styrofoam.

41. A sphere that is a perfect blackbody radiator has a radius
of 0.060 m and is at 200°C in a room where the tempera-
ture is 22°C. Calculate the net rate at which the sphere ra-
diates energy.

42. The surface temperature of the Sun is about 5 800 K. Tak-
ing the radius of the Sun to be 6.96 � 108 m, calculate
the total energy radiated by the Sun each second.
(Assume e � 0.965.)

43. A large, hot pizza 70 cm in diameter and 2.0 cm thick, at
a temperature of 100°C, floats in outer space. Assume its
emissivity is 0.8. What is the order of magnitude of its rate
of energy loss?

44. Calculate the temperature at which a tungsten filament
that has an emissivity of 0.90 and a surface area of
2.5 � 10�5 m2 will radiate energy at the rate of 25 W in a
room where the temperature is 22°C.

45. Measurements on two stars indicate that Star X has a sur-
face temperature of 5 727°C and Star Y has a surface tem-
perature of 11 727°C. If both stars have the same radius,
what is the ratio of the luminosity (total power output) of
Star Y to the luminosity of Star X? Both stars can be con-
sidered to have an emissivity of 1.0.

At high noon, the Sun delivers 1.00 kW to each square
meter of a blacktop road. If the hot asphalt loses energy
only by radiation, what is its equilibrium temperature?

ADDITIONAL PROBLEMS

47. The bottom of a copper kettle has a 10-cm radius and is
2.0 mm thick. The temperature of the outside surface is
102°C, and the water inside the kettle is boiling at 1 atm
of pressure. Find the rate at which energy is being trans-
ferred through the bottom of the kettle.

46.

39.

48. A family comes home from a long vacation with laundry
to do and showers to take. The water heater has been
turned off during the vacation. If the heater has a capacity
of 50.0 gallons and a 4 800-W heating element, how much
time is required to raise the temperature of the water
from 20.0°C to 60.0°C? Assume that the heater is well in-
sulated and no water is withdrawn from the tank during
that time.

49. Solar energy can be the primary source of winter space
heating for a typical house (with floor area 130 m2 �
1 400 ft2) in the north central United States. If the house
has very good insulation, you may model it as losing
energy by heat steadily at the rate of 1 000 W during the
winter, when the average exterior temperature is �5°C.
The passive solar-energy collector can consist simply of
large windows facing south. Sunlight shining in during
the daytime is absorbed by the floor, interior walls, and
objects in the house, raising their temperature to 30°C. As
the sun goes down, insulating draperies or shutters are
closed over the windows. During the period between
4 PM and 8 AM, the temperature of the house will drop,
and a sufficiently large “thermal mass” is required to keep
it from dropping too far. The thermal mass can be a large
quantity of stone (with specific heat 800 J/kg � °C) in the
floor and the interior walls exposed to sunlight. What
mass of stone is required if the temperature is not to drop
below 18°C overnight?

50. A water heater is operated by solar power. If the solar
collector has an area of 6.00 m2, and the intensity deliv-
ered by sunlight is 550 W/m2, how long does it take to
increase the temperature of 1.00 m3 of water from 20.0°C
to 60.0°C?

51. A 40-g ice cube floats in 200 g of water in a 100-g copper
cup; all are at a temperature of 0°C. A piece of lead at
98°C is dropped into the cup, and the final equilibrium
temperature is 12°C. What is the mass of the lead?

52. The evaporation of perspiration is the primary mecha-
nism for cooling the human body. Estimate the amount of
water you will lose when you bake in the sun on the beach
for an hour. Use a value of 1 000 W/m2 for the intensity
of sunlight, and note that the energy required to evapo-
rate a liquid at a particular temperature is approximately
equal to the sum of the energy required to raise its tem-
perature to the boiling point and the latent heat of vapor-
ization (determined at the boiling point).

A 200-g block of copper at a temperature of 90°C is
dropped into 400 g of water at 27°C. The water is con-
tained in a 300-g glass container. What is the final temper-
ature of the mixture?

54. A class of 10 students taking an exam has a power output
per student of about 200 W. Assume that the initial tem-
perature of the room is 20°C and that its dimensions are

53.
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Insulation

Au Ag 30.0°C80.0°C

Figure P11.59

6.0 m by 15.0 m by 3.0 m. What is the temperature of the
room at the end of 1.0 h if all the energy remains in the
air in the room and none is added by an outside source?
The specific heat of air is 837 J/kg � °C, and its density is
about 1.3 � 10�3 g/cm3.

55. The human body must maintain its core temperature in-
side a rather narrow range around 37°C. Metabolic
processes (notably, muscular exertion) convert chemical
energy into internal energy deep in the interior. From the
interior, energy must flow out to the skin or lungs, to be
lost by heat to the environment. During moderate exer-
cise, an 80-kg man can metabolize food energy at the rate
of 300 kcal/h, do 60 kcal/h of mechanical work, and put
out the remaining 240 kcal/h of energy by heat. Most of
the energy is carried from the interior of the body out to
the skin by “forced convection” (as a plumber would say):
Blood is warmed in the interior and then cooled at the
skin, which is a few degrees cooler than the body core.
Without blood flow, living tissue is a good thermal insula-
tor, with a thermal conductivity about 0.210 W/m � °C.
Show that blood flow is essential to keeping the body cool
by calculating the rate of energy conduction, in kcal/h,
through the tissue layer under the skin. Assume that its
area is 1.40 m2, its thickness is 2.50 cm, and it is main-
tained at 37.0°C on one side and at 34.0°C on the other
side.

56. An aluminum rod and an iron rod are joined end to end
in good thermal contact. The two rods have equal lengths
and radii. The free end of the aluminum rod is main-
tained at a temperature of 100°C, and the free end of the
iron rod is maintained at 0°C. (a) Determine the temper-
ature of the interface between the two rods. (b) If each
rod is 15 cm long and each has a cross-sectional area of
5.0 cm2, what quantity of energy is conducted across the
combination in 30 min?

Water is being boiled in an open kettle that has a
0.500-cm-thick circular aluminum bottom with a radius of
12.0 cm. If the water boils away at a rate of 0.500 kg/min,
what is the temperature of the lower surface of the bot-
tom of the kettle? Assume that the top surface of the bot-
tom of the kettle is at 100°C.

58. A 3.00-g copper penny at 25.0°C drops 50.0 m to the
ground. (a) If 60.0% of the initial potential energy
associated with the penny goes into increasing its
internal energy, determine the final temperature of the
penny. (b) Does the result depend on the mass of the
coin? Explain.

59. A bar of gold (Au) is in thermal contact with a bar of sil-
ver (Ag) of the same length and area (Fig. P11.59). One
end of the compound bar is maintained at 80.0°C, while
the opposite end is at 30.0°C. Find the temperature at
the junction when the energy flow reaches a steady
state.

57.

60. An iron plate is held against an iron wheel so that a slid-
ing frictional force of 50 N acts between the two pieces of
metal. The relative speed at which the two surfaces slide
over each other is 40 m/s. (a) Calculate the rate at
which mechanical energy is converted to internal energy.
(b) The plate and the wheel have masses of 5.0 kg each,
and each receives 50% of the internal energy. If the
system is run as described for 10 s, and each object is then
allowed to reach a uniform internal temperature, what is
the resultant temperature increase?

61. An automobile has a mass of 1 500 kg, and its aluminum
brakes have an overall mass of 6.0 kg. (a) Assuming that
all of the internal energy transformed by friction when
the car stops is deposited in the brakes, and neglecting
energy transfer, how many times could the car be
braked to rest starting from 25 m/s (56 mi/h) before
the brakes would begin to melt? (Assume an initial tem-
perature of 20°C.) (b) Identify some effects that are
neglected in part (a), but are likely to be important in a
more realistic assessment of the temperature increase of
the brakes.

62. A 1.0-m-long aluminum rod of cross-sectional area
2.0 cm2 is inserted vertically into a thermally insulated ves-
sel containing liquid helium at 4.2 K. The rod is initially
at 300 K. If half of the rod is inserted into the helium,
how many liters of helium boil off in the very short time
while the inserted half cools to 4.2 K? The density of
liquid helium at 4.2 K is 122 kg/m3.

A flow calorimeter is an apparatus used to
measure the specific heat of a liquid. The technique is to
measure the temperature difference between the input
and output points of a flowing stream of the liquid while
adding energy at a known rate. (a) Start with the equations

and , and show that the rate at which
energy is added to the liquid is given by the expression
�Q /�t � rc (�T )(�V/�t). (b) In a particular experi-
ment, a liquid of density 0.72 g/cm3 flows through the
calorimeter at the rate of 3.5 cm3/s. At steady state, a
temperature difference of 5.8°C is established between
the input and output points when energy is supplied
at the rate of 40 J/s. What is the specific heat of the
liquid?

m � rVQ � mc(�T )

63.
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68. For bacteriological testing of water supplies and in med-
ical clinics, samples must routinely be incubated for 24 h
at 37°C. A standard constant temperature bath with elec-
tric heating and thermostatic control is not suitable in
developing nations without continuously operating elec-
tric power lines. Peace Corps volunteer and MIT engi-
neer Amy Smith invented a low cost, low maintenance in-
cubator to fill the need. The device consists of a
foam-insulated box containing several packets of a waxy
material that melts at 37.0°C, interspersed among tubes,
dishes, or bottles containing the test samples and growth
medium (food for bacteria). Outside the box, the waxy
material is first melted by a stove or solar energy collec-
tor. Then it is put into the box to keep the test samples
warm as it solidifies. The heat of fusion of the phase-
change material is 205 kJ/kg. Model the insulation as a
panel with surface area 0.490 m2, thickness 9.50 cm, and
conductivity 0.012 0 W/m°C. Assume the exterior tem-
perature is 23.0°C for 12.0 h and 16.0°C for 12.0 h. 
(a) What mass of the waxy material is required to con-
duct the bacteriological test? (b) Explain why your calcu-
lation can be done without knowing the mass of the test
samples or of the insulation.

69. What mass of steam initially at 130°C is needed to warm
200 g of water in a 100-g glass container from 20.0°C to
50.0°C?

ACTIVITIES

1. A plot of the decreasing temperature of a substance over
time is called a cooling curve and has the same shape
and basic explanation as the curve shown in Figure 11.3.
You can plot such a curve by observing some water in a
container in the freezer compartment of a refrigerator.
Place a thermometer in the liquid, and record the read-
ing of the thermometer every minute until about five
minutes after the liquid has frozen completely. Explain
your observations. A material that is a little easier to work
with is naphthalene (mothballs). You can plot the cool-
ing curve in this case without a freezer. Melt a small
amount of naphthalene in a container, and plot a graph
of temperature versus time as before. Again, explain your
observations.

2. You have probably heard someone say that hot water
freezes faster than cold water. Is this an urban legend or is
it true? To test this hypothesis, fill one container with hot
water, at about 200°F, and another with cooler water, at
about 70°F. Place the two containers in the freezer com-
partment of a refrigerator, and find out for yourself.
There are a number of variables that you need to attempt
to control in such an experiment: (1) The two containers
need to be placed at similar locations in the freezer com-
partment. That is, one should not be near the door while
the other is in the back of the compartment. (2) The two
containers should not be placed close together, or an un-
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64. Three liquids are at temperatures of 10°C, 20°C, and
30°C, respectively. Equal masses of the first two liquids are
mixed, and the equilibrium temperature is 17°C. Equal
masses of the second and third are then mixed, and the
equilibrium temperature is 28°C. Find the equilibrium
temperature when equal masses of the first and third are
mixed.

65. At time t � 0, a vessel contains a mixture of 10 kg of water
and an unknown mass of ice in equilibrium at 0°C. The
temperature of the mixture is measured over a period of
an hour, with the following results: During the first
50 min, the mixture remains at 0°C; from 50 min to
60 min, the temperature increases steadily from 0°C to
2°C. Neglecting the heat capacity of the vessel, determine
the mass of ice that was initially placed in it. Assume a
constant power input to the container.

66. A wood stove is used to heat a single room. The stove is
cylindrical in shape, with a diameter of 40.0 cm and a
length of 50.0 cm and operates at a temperature of 400°F.
(a) If the temperature of the room is 70.0°F determine
the amount of radiant energy delivered to the room by
the stove each second if the emissivity is 0.920. (b) If the
room is a square with walls that are 8.00 ft high and
25.0 ft wide, determine the R value needed in the walls
and ceiling to maintain the inside temperature at 70.0°F if
the outside temperature is 32.0°F. Note that we are ignor-
ing any heat conveyed by the stove via convection and any
energy lost through the walls (and windows!) via convec-
tion or radiation.

67. A “solar cooker” consists of a curved reflecting mirror that
focuses sunlight onto the object to be heated (Fig.
P11.67). The solar power per unit area reaching the Earth
at the location of a 0.50-m-diameter solar cooker is 
600 W/m2. Assuming that 50% of the incident energy is
converted to thermal energy, how long would it take to
boil away 1.0 L of water initially at 20°C? (Neglect the spe-
cific heat of the container.)

Figure P11.67
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wanted exchange of energy will take place between them.
(3) If the freezer is one of the old types that forms frost
on its walls, the hot container should not be allowed to
melt through the frost and make intimate contact with
the cold walls of the freezer. Can you list any more vari-
ables that you need to control?

3. You may have heard that you can greatly reduce the bak-
ing time for potatoes in a conventional oven by inserting a
nail through each potato. Are there any scientific reasons
for believing that this hypothesis is true? Test it with a cou-
ple of similar-sized potatoes—but don’t bake them in a
microwave oven!
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According to the first law of thermodynamics, the internal energy of a system can be in-
creased either by adding energy to the system or by doing work on it. This means the internal
energy of a system, which is just the sum of the molecular kinetic and potential energies, can
change as a result of two separate types of energy transfer across the boundary of the sys-
tem. Although the first law imposes conservation of energy for both energy added by heat
and work done on a system, it doesn’t predict which of several possible energy-conserving
processes actually occur in nature.

The second law of thermodynamics constrains the first law by establishing which processes
allowed by the first law actually occur. For example, the second law tells us that energy never
flows by heat spontaneously from a cold object to a hot object. One important application of
this law is in the study of heat engines (such as the internal combustion engine) and the prin-
ciples that limit their efficiency.

12.1 WORK IN THERMODYNAMIC PROCESSES
Energy can be transferred to a system by heat and by work done on the system. In
most cases of interest treated here, the system is a volume of gas, which is important
in understanding engines. All such systems of gas will be assumed to be in thermo-
dynamic equilibrium, so that every part of the gas is at the same temperature and

Lance Armstrong is an engine: he 
requires fuel and oxygen to burn it,
and the result is work that drives him
up the mountainside as his excess,
waste energy is expelled in his 
evaporating sweat.
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12.1 Work in Thermodynamic Processes 387

pressure. If that were not the case, the ideal gas law wouldn’t apply and most of the
results presented here wouldn’t be valid. Consider a gas contained by a cylinder fit-
ted with a movable piston (Active Fig. 12.1a) and in equilibrium. The gas occupies
a volume V and exerts a uniform pressure P on the cylinder walls and the piston.
The gas is compressed slowly enough so the system remains essentially in thermo-
dynamic equilibrium at all times. As the piston is pushed downward by an external
force F through a distance �y, the work done on the gas is

where we have set the magnitude F of the external force equal to PA, possible because
the pressure is the same everywhere in the system (by the assumption of equilib-
rium). Note that if the piston is pushed downward, �y � yf � yi is negative, so we
need an explicit negative sign in the expression for W to make the work positive. The
change in volume of the gas is �V � A �y, which leads to the following definition:

The work W done on a gas at constant pressure is given by

[12.1]

where P is the pressure throughout the gas and �V is the change in volume
of the gas during the process.

If the gas is compressed as in Active Figure 12.1b, �V is negative and the work
done on the gas is positive. If the gas expands, �V is positive and the work done on
the gas is negative. The work done by the gas on its environment, Wenv, is simply
the negative of the work done on the gas. In the absence of a change in volume,
the work is zero.

W � �P �V

W � �F �y � �PA �y
�y

P

(a)

A

V

(b)

ACTIVE FIGURE 12.1
(a) A gas in a cylinder occupying a
volume V at a pressure P. (b) Pushing
the piston down compresses the gas.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 12.1 to move the piston and
see the resulting work done on
the gas.

EXAMPLE 12.1 Work Done by an Expanding Gas
Goal Apply the definition of work at constant pressure.

Problem In a system similar to that shown in Active Figure 12.1, the gas in the cylinder is at a pressure of 
1.01 � 105 Pa and the piston has an area of 0.100 m2. As energy is slowly added to the gas by heat, the piston is
pushed up a distance of 4.00 cm. Calculate the work done by the expanding gas on the surroundings, Wenv, assuming
the pressure remains constant.

Strategy The work done on the environment is the negative of the work done on the gas given in Equation 12.1.
Compute the change in volume and multiply by the pressure.

Solution
Find the change in volume of the gas, �V, which is the
cross-sectional area times the displacement:  � 4.00 � 10�3 m3

�V � A �y � (0.100 m2)(4.00 � 10�2 m)

Multiply this result by the pressure, getting the work the
gas does on the environment, Wenv:

Wenv � P �V � (1.01 � 105 Pa)(4.00 � 10�3 m3)

� 404 J

Remark The volume of the gas increases, so the work done on the environment is positive. The work done on the
system during this process is W � � 404 J. The energy required to perform positive work on the environment must
come from the energy of the gas. (See the next section for more details.)

Exercise 12.1
Gas in a cylinder similar to Figure 12.1 moves a piston with area 0.20 m2 as energy is slowly added to the system. If
2.00 � 103 J of work is done on the environment and the pressure of the gas in the cylinder remains constant at 
1.01 � 105 Pa, find the displacement of the piston.

Answer 9.90 � 10�2 m
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Equation 12.1 can be used to calculate the work done on the system only when
the pressure of the gas remains constant during the expansion or compression.
A process in which the pressure remains constant is called an isobaric process.
The pressure vs. volume graph, or PV diagram, of an isobaric process is shown in
Figure 12.2. The curve on such a graph is called the path taken between the initial
and final states, with the arrow indicating the direction the process is going, in this
case from smaller to larger volume. The area under the graph is

The area under the graph in a PV diagram is equal in magnitude to the work done
on the gas.

This is true in general, whether or not the process proceeds at constant pres-
sure. Just draw the PV diagram of the process, find the area underneath the graph
(and above the horizontal axis), and that area will be the equal to the magnitude
of the work done on the gas. If the arrow on the graph points toward larger vol-
umes, the work done on the gas is negative. If the arrow on the graph points to-
ward smaller volumes, the work done on the gas is positive.

Whenever negative work is done on a system, positive work is done by the sys-
tem on its environment. The negative work done on the system represents a loss of
energy from the system— the cost of doing positive work on the environment.

Area � P(Vf � Vi) � P �V

388 Chapter 12 The Laws of Thermodynamics

By visual inspection, order the PV diagrams shown in Figure 12.3 from the most
negative work done on the system to the most positive work done on the system.
(a) a,b,c,d (b) a,c,b,d (c) d,b,c,a (d) d,a,c,b

Quick Quiz 12.1

P

P

V
Vf Vi

if

Figure 12.2 The PV diagram for a
gas being compressed at constant
pressure. The shaded area represents
the work done on the gas.

1.00

2.00

3.00

P(105Pa)

1.00 2.00 3.00
V(m3)

A1

A2

(a)

1.00

2.00

3.00

P(105Pa)

1.00 2.00 3.00
V(m3)

A1

A2

(b)

1.00

2.00

3.00

P(105Pa)

1.00 2.00 3.00
V(m3)

(c)

1.00

2.00

3.00

P(105Pa)

1.00 2.00 3.00
V(m3)

(d)

Notice that the graphs in Figure 12.3 all have the same endpoints, but the areas
beneath the curves are different. The work done on a system depends on the path
taken in the PV diagram.

Figure 12.3 (Quick Quiz 12.1 and Example 12.2)

EXAMPLE 12.2 Work and PV Diagrams
Goal Calculate work from a PV diagram.

Problem Find the numeric value of the work done on the gas in (a) Figure 12.3a and (b) Figure 12.3b.

Strategy The regions in question are composed of rectangles and triangles. Use basic geometric formulas to find
the area underneath each curve. Check the direction of the arrow to determine signs.

Solution
(a) Find the work done on the gas in Figure 12.3a.

Compute the areas A1 and A2 in Figure 12.3a. A1 is a
rectangle and A2 is a triangle.

 � 1
2(2.00 m3)(2.00 � 105 Pa) � 2.00 � 105 J

A2 � one-half base � height

 � 2.00 � 105 J

A1 � height � width � (1.00 � 105 Pa)(2.00 m3)
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12.2 The First Law of Thermodynamics 389

12.2 THE FIRST LAW OF THERMODYNAMICS
The first law of thermodynamics is another energy conservation law that relates
changes in internal energy— the energy associated with the position and jiggling
of all the molecules of a system— to energy transfers due to heat and work. The
first law is universally valid, applicable to all kinds of processes, providing a connec-
tion between the microscopic and macroscopic worlds.

There are two ways energy can be transferred between a system and its sur-
roundings: by doing work, which requires a macroscopic displacement of an object
through the application of a force; and by heat, which occurs through random mo-
lecular collisions. Both mechanisms result in a change in internal energy, �U, of the
system and therefore in measurable changes in the macroscopic variables of the
system, such as the pressure, temperature, and volume. This change in the internal
energy can be summarized in the first law of thermodynamics:

If a system undergoes a change from an initial state to a final state, where Q is
the energy transferred to the system by heat and W is the work done on the
system, the change in the internal energy of the system, �U, is given by

�U � Uf � Ui � Q � W [12.2]

The quantity Q is positive when energy is transferred into the system by heat and
negative when energy is transferred out of the system by heat. The quantity W is
positive when work is done on the system and negative when the system does work
on its environment. All quantities in the first law, Equation 12.2, must have the
same energy units. Any change in the internal energy of a system— the positions
and vibrations of the molecules— is due to the transfer of energy by heat or work
(or both).

From Equation 12.2, we also see that the internal energy of any isolated system
must remain constant, so that �U � 0. Even when a system isn’t isolated, the
change in internal energy will be zero if the system goes through a cyclic process in
which all the thermodynamic variables—pressure, volume, temperature, and
moles of gas—return to their original values.

It’s important to remember that the quantities in Equation 12.2 concern a sys-
tem, not the effect on the system’s environment through work. If the system is hot

Sum the areas (the arrows point to increasing volume,
so the work done on the gas is negative): W � �4.00 � 105 J

Area � A1 � A2 � 4.00 � 105 J : 

(b) Find the work done on the gas in Figure 12.3b.

Compute the areas of the two rectangular regions:

A2 � height � width � (2.00 � 105 Pa)(1.00 m3)

� 2.00 � 105 J

 � 1.00 � 105 J

A1 � height � width � (1.00 � 105 Pa)(1.00 m3)

Sum the areas (the arrows point to decreasing volume,
so the work done on the gas is positive):

Area � A1 � A2 � 3.00 � 105 J :

W � � 3.00 � 105 J

Remarks Notice that in both cases the paths in the PV diagrams start and end at the same points, but the answers
are different.

Exercise 12.2
Compute the work done on the system in Figures 12.3c and 12.3d.

Answers � 3.00 � 105 J, � 4.00 � 105 J

� First law of thermodynamics
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steam expanding against a piston, for example, the system work W is negative,
because the piston can only expand at the expense of the internal energy of the
gas. The work Wenv done by the hot steam on the environment— in this case,
moving a piston which moves the train— is positive, but that’s not the work W in
Equation 12.2. This way of defining work in the first law makes it consistent with
the concept of work defined in Chapter 5. There, positive work done on a system
(for example, a block) increased its mechanical energy, while negative work de-
creased its energy. In this chapter, positive work done on a system (typically, a vol-
ume of gas) increases its internal energy, and negative work decreases that internal
energy. In both the mechanical and thermal cases, the effect on the system is the
same: positive work increases the system’s energy, and negative work decreases the
system’s energy.

Some textbooks identify W as the work done by the gas on its environment. This
is an equivalent formulation, but it means that W must carry a minus sign in the
first law. That convention isn’t consistent with previous discussions of the energy of
a system, because when W is positive the system loses energy, whereas in Chapter 5
positive W means the system gains energy. For that reason, the old convention is
not used in this book.

390 Chapter 12 The Laws of Thermodynamics

TIP 12.1 Dual Sign
Conventions
Many physics and engineering
textbooks present the first law as 
�U � Q � W, with a minus sign
between the heat and the work. The
reason is that work is defined in these
treatments as the work done by the
gas rather than on the gas, as in our
treatment. This form of the first law
represents the original interest in
applying it to steam engines, where
the primary concern is the work
extracted from the engine.

EXAMPLE 12.3 Heating a Gas
Goal Combine the first law of thermodynamics with work done during a constant pressure process.

Problem An ideal gas absorbs 5.00 � 103 J of energy while doing 2.00 � 103 J of work on the environment during a
constant pressure process. (a) Compute the change in the internal energy of the gas. (b) If the internal energy now
drops by 4.50 � 103 J and 2.00 � 103 J is expelled from the system, find the change in volume, assuming a constant
pressure process at 1.01 � 105 Pa.

Strategy Part (a) requires substitution of the given information into the first law, Equation 12.2. Notice, however,
that the given work is done on the environment. The negative of this amount is the work done on the system, represent-
ing a loss of internal energy. Part (b) is a matter of substituting the equation for work at constant pressure into the
first law and solving for the change in volume.

Solution
(a) Compute the change in internal energy.

Substitute values into the first law, noting that the work
done on the gas is negative:

�U � Q � W � 5.00 � 103 J � 2.00 � 103 J

� 3.00 � 103 J

(b) Find the change in volume, noting that �U and Q
are both negative in this case.

Substitute the equation for work done at constant
pressure into the first law:

�U � Q � W � Q � P�V

� 4.50 � 103 J � � 2.00 � 103 J � (1.01 � 105 J)�V

Solve for the change in volume, �V : �V � 2.48 � 10�2 m3

Remarks The change in volume is positive, so the system expands, doing positive work on the environment, while
the work W on the system is negative.

Exercise 12.3
Suppose the internal energy of an ideal gas drops by 3.00 � 103 J at a constant pressure of 1.00 � 105 Pa, while the
system gains 5.00 � 102 J of energy by heat. Find the change in volume of the system.

Answer 3.50 � 10�2 m3
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Recall that an expression for the internal energy of an ideal gas is

[12.3a]

This expression is valid only for a monatomic ideal gas, which means the particles of
the gas consist of single atoms. The change in the internal energy, �U, for such a
gas is given by

[12.3b]

The molar specific heat at constant volume of a monatomic ideal gas, Cv, is de-
fined by

[12.4]

The change in internal energy of an ideal gas can then be written

[12.5]

For ideal gases, this expression is always valid, even when the volume isn’t con-
stant. The value of the molar specific heat, however, depends on the gas and can
vary under different conditions of temperature and pressure.

A gas with a larger molar specific heat requires more energy to realize a given
temperature change. The size of the molar specific heat depends on the structure
of the gas molecule and how many different ways it can store energy. A monatomic
gas such as helium can store energy as motion in three different directions. A gas
such as hydrogen, on the other hand, is diatomic in normal temperature ranges,
and aside from moving in three directions, it can also tumble, rotating in two
different directions. So hydrogen molecules can store energy in the form of trans-
lational motion, and in addition can store energy through tumbling. Further,
molecules can also store energy in the vibrations of their constituent atoms. A gas
composed of molecules with more ways to store energy will have a larger molar
specific heat.

Each different way a gas molecule can store energy is called a degree of freedom.
Each degree of freedom contributes to the molar specific heat. Because an
atomic ideal gas can move in three directions, it has a molar specific heat capacity

. A diatomic gas like molecular oxygen, O2, can also tumble in
two different directions. This adds 2 � � R to the molar heat specific heat, so

for diatomic gases. The spinning about the long axis connecting the two
atoms is generally negligible. Vibration of the atoms in a molecule can also con-
tribute to the heat capacity. A full analysis of a given system is often complex, so in
general, molar specific heats must be determined by experiment. Some represen-
tative values of Cv can be found in Table 12.1 (page 392).

There are four basic types of thermal processes, which will be studied and illus-
trated by their effect on an ideal gas.

Isobaric Processes
Recall from Section 12.1 that in an isobaric process the pressure remains constant
as the gas expands or is compressed. An expanding gas does work on its environ-
ment, given by Wenv � P�V. The PV diagram of an isobaric expansion is given in
Figure 12.2. As previously discussed, the magnitude of the work done on the gas is
just the area under the path in its PV diagram: height times length, or P�V. The
negative of this quantity, W � � P�V, is the energy lost by the gas because the gas
does work as it expands. This is the quantity that should be substituted into the
first law.

The work done by the gas on its environment must come at the expense of the
change in its internal energy, �U. Because the change in the internal energy of an
ideal gas is given by �U � nCv�T, the temperature of an expanding gas must de-
crease as the internal energy decreases. Expanding volume and decreasing tem-
perature means the pressure must also decrease, in conformity with the ideal gas
law, PV � nRT. Consequently, the only way such a process can remain at constant

Cv � 5
2 R

1
2 R

Cv � 3(1
2 R) � 3

2 R

1
2 R

�U � nCv �T

Cv � 32 R

�U � 3
2nR�T

U � 3
2nRT
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pressure is if thermal energy Q is transferred into the gas by heat. Rearranging the
first law, we obtain

Q � �U � W � �U � P�V

Now we can substitute the expression in Equation 12.3b for �U and use the
ideal gas law to substitute P�V � nR�T :

Another way to express this transfer by heat is

Q � nCp�T [12.6]

where . For ideal gases, the molar heat capacity at constant pressure, Cp, is
the sum of the molar heat capacity at constant volume, Cv, and the gas constant R :

Cp � Cv � R [12.7]

This can be seen in the fourth column of Table 12.1, where Cp � Cv is calculated
for a number of different gases. The difference works out to be approximately R in
virtually every case.

Cp � 5
2 R

Q � 3
2nR �T � nR �T � 5

2nR�T
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TABLE 12.1
Molar Specific Heats of Various Gases
Gas Molar Specific Heat ( J/mol � K)a

CP CV CP � CV � � CP/CV

Monatomic Gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69
Diatomic Gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35
Polyatomic Gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

aAll values except that for water were obtained at 300 K.

EXAMPLE 12.4 Expanding Gas
Goal Use molar specific heats and the first law in a constant pressure process.

Problem Suppose a system of monatomic ideal gas at 2.00 � 105 Pa and an initial temperature of 293 K slowly ex-
pands at constant pressure from a volume of 1.00 L to 2.50 L. (a) Find the work done on the environment. (b) Find
the change in internal energy of the gas. (c) Use the first law of thermodynamics to obtain the thermal energy ab-
sorbed by the gas during the process. (d) Use the molar heat capacity at constant pressure to find the thermal energy
absorbed. (e) How would the answers change for a diatomic ideal gas?

Strategy This problem mainly involves substituting into the appropriate equations. Substitute into the equation for
work at constant pressure to obtain the answer to part (a). In part (b), use the ideal gas law twice, to find the temper-
ature when V � 2.00 L and to find the number of moles of the gas. These quantities can then be used to obtain the
change in internal energy, �U. Part (c) can then be solved by substituting into the first law, yielding Q , the answer
checked in part (d) with Equation 12.6. Repeat these steps for part (e) after increasing the molar specific heats by R
because of the extra two degrees of freedom associated with a diatomic gas.
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Solution
(a) Find the work done on the environment.

Apply the definition of work at constant pressure: Wenv � P�V � (2.00 � 105 Pa)(2.50 � 10�3 m3

� 1.00 � 10�3 m3)

Wenv � 3.00 � 102 J

(b) Find the change in the internal energy of the gas.

First, obtain the final temperature, using the ideal gas
law, noting that Pi � Pf :

Tf � 733 K

PfVf

PiVi
�

Tf

Ti
 : Tf � Ti 

Vf

Vi
� (293 K) 

(2.50 � 10�3 m3)

(1.00 � 10�3 m3)

Again using the ideal gas law, obtain the number of
moles of gas:

 � 8.21 � 10�2 mol

n �  
PiVi

RTi
�

(2.00 � 105 Pa)(1.00 � 10�3 m3)
(8.31 J/K � mol)(293 K)

Use these results and given quantities to calculate the
change in internal energy, �U :

�U � nCv�T � nR�T

� (8.21 � 10�2 mol)(8.31 J/K � mol)(733 K � 293 K)

�U � 4.50 � 102 J

3
2

3
2

(c) Use the first law to obtain the energy transferred by
heat.

Solve the first law for Q , and substitute �U and 
W � � Wenv � � 3.00 � 102 J:

�U � Q � W : Q � �U � W

Q � 4.50 � 102 J � (� 3.00 � 102 J) � 7.50 � 102 J

(d) Use the molar heat capacity at constant pressure to
obtain Q :

Substitute values into Equation 12.6: Q � nCp�T � nR�T

� (8.21 � 10�2 mol)(8.31 J/K � mol)(733 K � 293 K)

� 7.50 � 102 J

5
2

5
2

(e) How would the answers change for a diatomic gas?

Obtain the new change in internal energy, �U , noting
that for a diatomic gas:Cv � 5

2R
�U � nCv �T � ( � 1)nR�T

� (8.21 � 10�2 mol)(8.31 J/K � mol)(733 K � 293 K)

�U � 7.50 � 102 J

5
2

3
2

Obtain the new energy transferred by heat, Q : Q � nCp�T � ( � 1)nR�T

� (8.21 � 10�2 mol)(8.31 J/K � mol)(733 K � 293 K)

Q � 1.05 � 103 J

7
2

5
2

Remarks Notice that problems involving diatomic gases are no harder than those with monatomic gases. It’s just a
matter of adjusting the molar specific heats.

Exercise 12.4
Suppose an ideal monatomic gas at an initial temperature of 475 K is compressed from 3.00 L to 2.00 L while its pres-
sure remains constant at 1.00 � 105 Pa. Find (a) the work done on the gas, (b) the change in internal energy, and
(c) the energy lost by heat, Q.

Answers (a) 1.00 � 102 J (b) � 150 J (c) � 250 J
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Adiabatic Processes
In an adiabatic process, no energy enters or leaves the system by heat. Such a sys-
tem is insulated— thermally isolated from its environment. In general, however,
the system isn’t mechanically isolated, so it can still do work. A sufficiently rapid
process may be considered approximately adiabatic because there isn’t time for
any significant transfer of energy by heat.

For adiabatic processes Q � 0, so the first law becomes

�U � W

The work done during an adiabatic process can be calculated by finding the
change in the internal energy. Alternately, the work can be computed from a PV
diagram. For an ideal gas undergoing an adiabatic process, it can be shown that

PV � � constant [12.8a]

where

[12.8b]

is called the adiabatic index of the gas. Values of the adiabatic index for several dif-
ferent gases are given in Table 12.1. After computing the constant on the right-
hand side of Equation 12.8a and solving for the pressure P, the area under the
curve in the PV diagram can be found by counting boxes, yielding the work.

If a hot gas is allowed to expand so quickly that there is no time for energy to
enter or leave the system by heat, the work done on the gas is negative and the in-
ternal energy decreases. This decrease occurs because kinetic energy is transferred
from the gas molecules to the moving piston. Such an adiabatic expansion is of
practical importance and is nearly realized in an internal combustion engine when
a gasoline–air mixture is ignited and expands rapidly against a piston. The follow-
ing example illustrates this process.

� �
Cp

Cv
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EXAMPLE 12.5 Work and an Engine Cylinder
Goal Use the first law to find the work done in an adiabatic expansion.

Problem In a car engine operating at 1.80 � 103 rev/min, the expansion of hot, high-pressure gas against a piston
occurs in about 10 ms. Because energy transfer by heat typically takes a time on the order of minutes or hours, it’s
safe to assume that little energy leaves the hot gas during the expansion. Estimate the work done by the gas on the
piston during this adiabatic expansion by assuming the engine cylinder contains 0.100 moles of an ideal monatomic
gas which goes from 1.200 � 103 K to 4.00 � 102 K, typical engine temperatures, during the expansion.

Strategy Find the change in internal energy using the given temperatures. For an adiabatic process, this equals the
work done on the gas, which is the negative of the work done on the environment— in this case, the piston.

Solution
Start with the first law, taking Q � 0. W � �U � Q � �U � 0 � �U

Find �U from the expression for the internal energy of
an ideal monatomic gas.

�U � � 9.97 � 102 J

� 1.20 � 103 K)

� 3
2 (0.100 mol)(8.31 J/mol �K)(4.00 � 102 K

�U � Uf � Ui � 3
2 nR(Tf � Ti)

The change in internal energy equals the work done on
the system, which is the negative of the work done on
the piston.

Wpiston � �W � � �U � 9.97 � 102 J

Remarks The work done on the piston comes at the expense of the internal energy of the gas. In an ideal adiabatic
expansion, the loss of internal energy is completely converted into useful work. In a real engine, there are always losses.
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Exercise 12.5
A monatomic ideal gas with volume 0.200 L is rapidly compressed, so the process can be considered adiabatic. If the
gas is initially at 1.01 � 105 Pa and 3.00 � 102 K and the final temperature is 477 K, find the work done by the gas on
the environment, Wenv.

Answer 17.9 J

EXAMPLE 12.6 An Adiabatic Expansion
Goal Use the adiabatic pressure vs. volume relation to
find a change in pressure and the work done on a gas.

Problem A monatomic ideal gas at a pressure 
1.01 � 105 Pa expands adiabatically from an initial vol-
ume of 1.50 m3, doubling its volume. (a) Find the new
pressure. (b) Sketch the PV diagram and estimate the
work done on the gas.

Strategy There isn’t enough information to solve this
problem with the ideal gas law. Instead, use Equation
12.8 and the given information to find the adiabatic in-
dex and the constant C for the process. For part (b),
sketch the PV diagram and count boxes to estimate the
area under the graph, which gives the work.

Solution
(a) Find the new pressure.

First, calculate the adiabatic index: � �
Cp

Cv
�

5
2 R
3
2 R

�
5

3

Use Equation 12.8a to find the constant C :

 � 1.99 � 105 Pa�m5

 C � P1V �
1 � (1.01 � 105 Pa)(1.50  m3)5/3

The constant C is fixed for the entire process and can be
used to find P2:

P2 � 3.19 � 104 Pa

1.99 � 105 Pa �m5 � P2 (6.24 m5)

C � P2V �
2 � P2(3.00 m3)5/3

(b) Estimate the work done on the gas from a PV
diagram.

Count the boxes between V1 � 1.50 m3

and V2 � 3.00 m3 in the graph of 
P � (1.99 � 105 Pa � m5)V �5/3 in the PV diagram shown
in Figure 12.4:

number of boxes � 17

Each box has ‘area’ 5.00 � 103 J. W � �17 � 5.00 � 103 J � �8.5 � 104 J

Remarks The exact answer, obtained with calculus, is � 8.43 � 104 J, so our result is a very good estimate. The an-
swer is negative because the gas is expanding, doing positive work on the environment, thereby reducing its own in-
ternal energy.

Exercise 12.6
Repeat the preceding calculations for an ideal diatomic gas expanding adiabatically from an initial volume of 0.500 m3

to a final volume of 1.25 m3, starting at a pressure of P1 � 1.01 � 105 Pa. (You must sketch the curve to find the work.)

Answers P2 � 2.80 � 104 Pa, W � � 4 � 104 J

0.40

0.60

0.20

0.80

1.00

1.00 2.00 3.00
V(m3)

P(105Pa) Figure 12.4 (Example 12.6)
The PV diagram of an adiabatic
expansion: the graph of 
P � CV ��, where C is a constant
and � � Cp/Cv.
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Isovolumetric Processes
An isovolumetric process, sometimes called an isochoric process (which is harder to
remember), proceeds at constant volume, corresponding to vertical lines in a PV
diagram. If the volume doesn’t change, no work is done on or by the system, so 
W � 0, and the first law of thermodynamics reads

�U � Q (isovolumetric process)

This result tells us that in an isovolumetric process, the change in internal energy
of a system equals the energy transferred to the system by heat. From Equation
12.5, the energy transferred by heat in constant volume processes is given by

Q � nCv�T [12.9]
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EXAMPLE 12.7 An Isovolumetric Process
Goal Apply the first law to a constant-volume process.

Problem How much thermal energy must be added to 5.00 moles of monatomic ideal gas at 3.00 � 102 K and with
a constant volume of 1.50 L in order to raise the temperature of the gas by 3.80 � 102 K?

Strategy The energy transferred by heat is equal to the change in the internal energy of the gas, which can be cal-
culated by substitution into Equation 12.9.

Solution
Apply Equation 12.9, using the fact that Cv � 3R/2 for
an ideal monatomic gas:

Q � 4.99 � 103 J

 � 3
2(5.00 mol)(8.31 J/K � mol)(80.0	 K)

 Q � �U � nCv�T � 3
2nR�T

Remark Constant volume processes are the simplest to handle, and include such processes as heating a solid or liq-
uid, in which the work of expansion is negligible.

Exercise 12.7
Find the change in temperature of 22.0 mol of a monatomic ideal gas if it absorbs 9 750 J at constant volume.

Answer 35.6 K

Isothermal Processes
During an isothermal process, the temperature of a system doesn’t change. In an
ideal gas the internal energy U depends only on the temperature, so it follows that
�U � 0 because �T � 0. In this case, the first law of thermodynamics gives

W � �Q (isothermal process)

We see that if the system is an ideal gas undergoing an isothermal process, the
work done on the system is equal to the negative of the thermal energy transferred
to the system. Such a process can be visualized in Figure 12.5. A cylinder filled with
gas is in contact with a large energy reservoir that can exchange energy with the
gas without changing its temperature. For a constant temperature ideal gas,

where the numerator on the right-hand side is constant. The PV diagram of a typi-
cal isothermal process is graphed in Figure 12.6, contrasted with an adiabatic
process. When the process is adiabatic, the pressure falls off more rapidly.

P �
nRT

V
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12.2 The First Law of Thermodynamics 397

Using methods of calculus, it can be shown that the work done on the environ-
ment during an isothermal process is given by

[12.10]

The symbol “ln” in Equation 12.10 is an abbreviation for the natural logarithm,
discussed in Appendix A. The work W done on the gas is just the negative of Wenv .

Wenv � nRT ln � Vf

Vi
�

EXAMPLE 12.8 An Isothermally Expanding Balloon
Goal Find the work done during an isothermal expansion.

Problem A balloon contains 5.00 moles of a monatomic ideal gas. As energy is added to the system by heat (say, by
absorption from the Sun), the volume increases by 25% at a constant temperature of 27.0	C. Find the work Wenv done
by the gas in expanding the balloon, the thermal energy Q transferred to the gas, and the work W done on the gas.

Strategy Be sure to convert temperatures to kelvins. Use the equation for isothermal work to find the work done
on the balloon, which is the work done on the environment. The latter is equal to the thermal energy Q transferred
to the gas, and the negative of this quantity is the work done on the gas.

0.25

0.50

0.75

1.00

P(105Pa)

isothermal

adiabatic

1.0 2.0 3.0 4.0
V(m3)

Figure 12.6 The PV diagram of
an isothermal expansion, graph of
P � CV�1, where C is a constant.
Contrasted with an adiabatic
expansion, P � CAV ��. CA is a
constant equal in magnitude to C in
this case, but carrying different units.

Energy reservoir at temperature Th

Isothermal
expansion

Q h

Figure 12.5 The gas in the cylinder expands iso-
thermally while in contact with a reservoir at temper-
ature Th.

Solution
Substitute into Equation 12.10, finding the work done
during the isothermal expansion. Note that T � 27.0°C �
3.00 � 102 K.

Wenv �

Q � Wenv � 2.78 � 103 J

2.78 � 103 J

� ln � 1.25V0

V0
�

� (5.00 mol)(8.31 J/K �mol)(3.00 � 102 K)

Wenv � nRT ln � Vf

Vi
�

The negative of this amount is the work done on the
gas:

W � �Wenv � �2.78 � 103 J

Remarks Notice the relationship between the work done on the gas, the work done on the environment, and the
energy transferred. These relationships are true of all isothermal processes.

Exercise 12.8
Suppose that subsequent to this heating, 1.50 � 104 J of thermal energy is removed from the gas isothermally. Find
the final volume in terms of the initial volume of the example, V0. (Hint: Follow the same steps as in the example, but
in reverse. Also note that the initial volume in this exercise is 1.25V0.)

Answer 0.375V0
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General Case
When a process follows none of the four given models, it’s still possible to use the
first law to get information about it. The work can be computed from the area un-
der the curve of the PV diagram, and if the temperatures at the endpoints can be
found, �U follows from Equation 12.5, as illustrated in the following example.

398 Chapter 12 The Laws of Thermodynamics

EXAMPLE 12.9 A General Process
Goal Find thermodynamic quantities for a process
that doesn’t fall into any of the four previously dis-
cussed categories.

Problem A quantity of 4.00 moles of a monatomic
ideal gas expands from an initial volume of 0.100 m3

to a final volume of 0.300 m3 and pressure of 2.5 �
105 Pa (Fig. 12.7a). Compute (a) the work done on
the gas, (b) the change in internal energy of the gas,
and (c) the thermal energy transferred to the gas.

Strategy The work done on the gas is just equal
to the negative of the area under the curve in the PV diagram. Use the ideal gas law to get the temperature change
and, subsequently, the change in internal energy. Finally, the first law gives the thermal energy transferred by heat.

1.00

2.00

3.00

P(105Pa)

B

b
A

0.100 0.200 0.300
V(m3)

h1

h2A2

(a)

1.00

2.00

3.00

P(105Pa)

B

A

0.100 0.200 0.300
V(m3)

A2

A1A1

(b)

Figure 12.7 (a) (Example 12.9) (b) (Exercise 12.9)

Solution
(a) Find the work done on the gas by computing the
area under the curve in Figure 12.7a.

Find A1, the area of the triangle: A1 � 1
2 bh1 � 1

2(0.200 m3)(1.50 � 105 Pa) � 1.50 � 104 J

Find A2, the area of the rectangle: A2 � bh2 � (0.200 m3)(1.00 � 105 Pa) � 2.00 � 104 J

Sum the two areas (the gas is expanding, so the work done
on the gas is negative and a minus sign must be supplied):

W � �(A1 � A2) � � 3.50 � 104 J

(b) Find the change in the internal energy during the
process.

Compute the temperature at points A and B with the
ideal gas law:

TB �
PBVB

nR
�

(2.50 � 105 Pa)(0.300 m3)
(4.00 mol)(8.31 J/K�mol)

� 2.26 � 103 K

TA �
PAVA

nR
�

(1.00 � 105 Pa)(0.100 m3)
(4.00 mol)(8.31 J/K�mol)

� 301 K

Compute the change in internal energy:

�U � 9.77 � 104 J

 � 3
2(4.00 mol)(8.31 J/K�mol)(2.26 � 103 K � 301 K)

 �U � 3
2nR�T

(c) Compute Q with the first law: Q � �U � W � 9.77 � 104 J � (� 3.50 � 104 J)

� 1.33 � 105 J

Remarks As long as it’s possible to compute the work, cycles involving these more exotic processes can be com-
pletely analyzed. Usually, however, it’s necessary to use calculus.

Exercise 12.9
Figure 12.7b represents a process involving 3.00 moles of a monatomic ideal gas expanding from 0.100 m3 to
0.200 m3. Find the work done on the system, the change in the internal energy of the system, and the thermal energy
transferred in the process.

Answers W � � 2.00 � 104 J, �U � � 1.50 � 104 J, Q � 5.00 � 103 J
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Given all the different processes and formulae, it’s easy to become confused when
approaching one of these ideal gas problems, though most of the time only substi-
tution into the correct formula is required. The essential facts and formulas are
compiled in Table 12.2, both for easy reference and also to display the similarities
and differences between the processes.

TABLE 12.2
The First Law and Thermodynamic Processes
(Ideal Gases)
Process �U Q W

Isobaric nCv�T nCp�T �P�V
Adiabatic nCv�T 0 �U
Isovolumetric nCv�T �U 0

Isothermal 0 � W

General nCv�T �U � W (PV Area)

�nRT ln � Vf

Vi
�

Identify the paths A, B, C, and D in Figure 12.8 as isobaric, isothermal, isovolumet-
ric, or adiabatic. For path B, Q � 0.

Quick Quiz 12.2

A

B

C

D

V

P

T1

T3

T2

T4

Figure 12.8 (Quick Quiz 12.2) Identify the
nature of paths A, B, C, and D.

12.3 HEAT ENGINES AND THE SECOND LAW
OF THERMODYNAMICS

A heat engine takes in energy by heat and partially converts it to other forms, such
as electrical and mechanical energy. In a typical process for producing electricity
in a power plant, for instance, coal or some other fuel is burned, and the resulting
internal energy is used to convert water to steam. The steam is then directed at the
blades of a turbine, setting it rotating. Finally, the mechanical energy associated
with this rotation is used to drive an electric generator. In another heat engine—
the internal combustion engine in an automobile—energy enters the engine as
fuel is injected into the cylinder and combusted, and a fraction of this energy is
converted to mechanical energy.

In general, a heat engine carries some working substance through a cyclic
process1 during which (1) energy is transferred by heat from a source at a high

1Strictly speaking, the internal combustion engine is not a heat engine according to the description of the cyclic
process, because the air– fuel mixture undergoes only one cycle and is then expelled through the exhaust system.

� Cyclic process

44337_12_p386-423  11/3/04  9:14 AM  Page 399



temperature, (2) work is done by the engine, and (3) energy is expelled by the
engine by heat to a source at lower temperature. As an example, consider the
operation of a steam engine in which the working substance is water. The water in
the engine is carried through a cycle in which it first evaporates into steam in a
boiler and then expands against a piston. After the steam is condensed with cool-
ing water, it returns to the boiler, and the process is repeated.

It’s useful to draw a heat engine schematically, as in Active Figure 12.9. The en-
gine absorbs energy Q h from the hot reservoir, does work Weng, then gives up en-
ergy Q c to the cold reservoir. (Note that negative work is done on the engine, so
that W � � Weng.) Because the working substance goes through a cycle, always re-
turning to its initial thermodynamic state, its initial and final internal energies are
equal, so �U � 0. From the first law of thermodynamics, therefore,

The last equation shows that the work Weng done by a heat engine equals the
net energy absorbed by the engine. As we can see from Active Figure 12.9, 

� . Therefore,

[12.11]

Ordinarily, a transfer of thermal energy Q can be either positive or negative, so the
use of absolute value signs makes the signs of Q h and Q c explicit.

If the working substance is a gas, then the work done by the engine for a cyclic
process is the area enclosed by the curve representing the process on a PV
diagram. This area is shown for an arbitrary cyclic process in Figure 12.10.

The thermal efficiency e of a heat engine is defined as the work done by the en-
gine, Weng, divided by the energy absorbed during one cycle:

[12.12]

We can think of thermal efficiency as the ratio of the benefit received (work) to
the cost incurred (energy transfer at the higher temperature). Equation 12.12
shows that a heat engine has 100% efficiency (e � 1) only if Q c � 0—meaning no
energy is expelled to the cold reservoir. In other words, a heat engine with perfect
efficiency would have to expel all the input energy by doing mechanical work. This
isn’t possible, as will be seen in Section 12.4.

e � 
Weng

� Q h �
�

� Q h � � � Q c �
� Q h �

� 1 �
� Q c �
� Q h �

Weng � �Q h � � �Q c �

�Q h � � �Q c �Q net

�U � 0 � Q � W : Q net � �W � Weng
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Hot reservoir at Th

Q h

Q c

Weng

Cold reservoir at Tc

Engine

ACTIVE FIGURE 12.9
A schematic representation of a heat
engine. The engine receives energy
Q h from the hot reservoir, expels
energy Q c to the cold reservoir, and
does work W.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 12.9 to select
the efficiency of the engine and
observe the transfer of energy.

EXAMPLE 12.10 The Efficiency of an Engine
Goal Apply the efficiency formula to a heat engine.

Problem During one cycle, an engine extracts 2.00 � 103 J of energy from a hot reservoir and transfers 1.50 � 103 J
to a cold reservoir. (a) Find the thermal efficiency of the engine. (b) How much work does this engine do in one cycle?
(c) How much power does the engine generate if it goes through four cycles in 2.50 s?

Strategy Apply Equation 12.12 to obtain the thermal efficiency, then use the first law, adapted to engines (Equa-
tion 12.11), to find the work done in one cycle. To obtain the power generated, just divide the work done in four
cycles by the time it takes to run those cycles.

P

V

Area = Weng

Figure 12.10 The PV diagram for
an arbitrary cyclic process. The area
enclosed by the curve equals the net
work done.

Solution
(a) Find the engine’s thermal efficiency.

Substitute Q c and Q h into Equation 12.12: 0.250, or 25.0%e � 1 �
� Q c �
� Q h �

� 1 �
1.50 � 103 J
2.00 � 103 J

�
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(b) How much work does this engine do in one cycle?

Apply the first law in the form of Equation 12.11 to find
the work done by the engine:

Weng � �Q h� � �Q c � � 2.00 � 103 J � 1.50 � 103 J

� 5.00 � 102 J

(c) Find the power output of the engine.

Multiply the answer of part (b) by four and divide by
time:

8.00 � 102 W� �
W
�t

 �
4.00 � (5.00 � 102 J)

2.50 s
 �

Remark Problems like this usually reduce to solving two equations and two unknowns, as here, where the two equa-
tions are the efficiency equation and the first law and the unknowns are the efficiency and the work done by the engine.

Exercise 12.10
The energy absorbed by an engine is three times as great as the work it performs. (a) What is its thermal efficiency?
(b) What fraction of the energy absorbed is expelled to the cold reservoir? (c) What is the power output of the en-
gine if the energy input is 1 650 J each cycle and it goes through two cycles every 3 seconds?

Answer (a) 1/3 (b) 2/3 (c) 367 W

EXAMPLE 12.11 Analyzing an Engine Cycle
Goal Combine several concepts to analyze an engine cycle.

Problem A heat engine contains an ideal monatomic gas confined to a cylinder by a movable piston. The gas starts
at A, where T � 3.00 � 102 K. (See Fig. 12.11a.) B : C is an isothermal expansion. (a) Find the number n of moles
of gas and the temperature at B. (b) Find �U, Q , and W for the isovolumetric process A : B. (c) Repeat for the
isothermal process B : C . (d) Repeat for the
isobaric process C : A. (e) Find the net
change in the internal energy for the com-
plete cycle. (f) Find the thermal energy Q h
transferred into the system, the thermal en-
ergy rejected, Q c , the thermal efficiency, and
net work on the environment performed by
the engine.

Strategy In part (a) n, T, and V can be
found from the ideal gas law, which connects
the equilibrium values of P, V, and T. Once
the temperature T is known at the points A, B,
and C, the change in internal energy, �U, can
be computed from the formula in Table 12.2 for each process. Q and W can be similarly computed, or deduced from
the first law, using the techniques applied in the single process examples.

V(L)

P(atm)

3

5 10

B

A C

2

1

150
0

(a)

V(L)

P(atm)

2.00

1.00 2.00

B

A C1.00

0
0

(b)

Figure 12.11 (a) (Example 12.11) (b) (Exercise 12.11)

Solution
(a) Find n and TB with the ideal gas law:

�

� 9.00 � 102 K

TB �
PBVB

nR
�

(3.00 atm)(5.00 L)
(0.203 mol)(0.0821 L �atm/mol�K)

0.203 mol

n �
PAVA

RTA
�

(1.00 atm)(5.00 L)
(0.0821 L�atm/mol�  K)(3.00 � 102 K)
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(b) Find �UAB, Q AB, and WAB for the constant volume
process A : B.

Compute �UAB, noting that Cv � R � 12.5 J/mol � K:3
2 �UAB � nCv�T � (0.203 mol)(12.5 J/mol � K)

� (9.00 � 102 K � 3.00 � 102 K)

�UAB � 1.52 � 103 J

�V � 0 for isovolumetric processes, so no work is done: WAB � 0

We can find Q AB from the first law: Q AB � �UAB � 1.52 � 103 J

(c) Find �UBC , Q BC , and WBC for the isothermal process
B : C .

This process is isothermal, so the temperature doesn’t
change, and the change in internal energy is zero:

�UBC � nCv�T � 0

Compute the work done on the system, using the nega-
tive of Equation 12.10:

WBC � �1.67 � 103 Pa

�  ln � 1.50 � 10�2 m3

5.00 � 10�3 m3 �
 � �(0.203 mol)(8.31 J/mol�K)(9.00 � 102 K) 

 WBC � �nRT  ln � VC

VB
�

Compute Q BC from the first law: 0 � Q BC � WBC : Q BC � �WBC � 1.67 � 103 J

(d) Find �UCA, QCA, and WCA for the isobaric process
C : A.

Compute the work on the system, with pressure
constant:

WCA � � P�V � � (1.01 � 105 Pa)(5.00 � 10�3 m3

� 1.50 � 10�2 m3)

WCA � 1.01 � 103 J

Find the change in internal energy, �UC A:

�UCA � �1.52 � 103 J

 � (3.00 � 102 K � 9.00 � 102 K)

 �UCA � 3
2nRT � 3

2(0.203 mol)(8.31 J/K �mol)

Compute the thermal energy, QCA, from the first law: Q CA � �UCA � WCA � � 1.52 � 103 J � 1.01 � 103 J

� �2.53 � 103 J

(e) Find the net change in internal energy, �Unet, for
the cycle:

�Unet � �UAB � �UBC � �UCA

� 1.52 � 103 J � 0 � 1.52 � 103 J � 0

(f) Find the energy input, Q h; the energy rejected, Q c;
the thermal efficiency; and the net work performed by
the engine:

Sum all the positive contributions to find Q h: Q h � Q AB � Q BC � 1.52 � 103 J � 1.67 � 103 J

� 3.19 � 103 J

Sum any negative contributions (in this case, there is
only one):

Q c � �2.53 � 103 J
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Refrigerators and Heat Pumps
Heat engines can operate in reverse. In this case, energy is injected into the
engine, modeled as work W in Active Figure 12.12, resulting in energy being
extracted from the cold reservoir and transferred to the hot reservoir. The
system now operates as a heat pump, a common example being a refrigerator 
(Fig. 12.13). Energy Q c is extracted from the interior of the refrigerator and deliv-
ered as energy Q h to the warmer air in the kitchen. The work is done in the com-
pressor unit of the refrigerator, compressing a refrigerant such as freon, causing
its temperature to increase.

A household air conditioner is another example of a heat pump. Some homes
are both heated and cooled by heat pumps. In the winter, the heat pump extracts
energy Q c from the cool outside air and delivers energy Q h to the warmer air in-
side. In summer, energy Q c is removed from the cool inside air, while energy Q h is
ejected to the warm air outside.

For a refrigerator or an air conditioner—a heat pump operating in cooling
mode—work W is what you pay for, in terms of electrical energy running the com-
pressor, while Q c is the desired benefit. The most efficient refrigerator or air con-
ditioner is one that removes the greatest amount of energy from the cold reservoir
in exchange for the least amount of work.

The coefficient of performance for a refrigerator or an air conditioner is the
magnitude of the energy extracted from the cold reservoir, �Q c�, divided by
the work W performed by the device:

[12.13]

SI unit: dimensionless

The larger this ratio, the better the performance, since more energy is being re-
moved for a given amount of work. A good refrigerator or air conditioner will have
a COP of 5 or 6.

COP(cooling mode) �
� Q c �
W

Find the engine efficiency and the net work done by the
engine:

Weng � �(WAB � WBC � WCA)

� �(0 � 1.67 � 103 J � 1.01 � 103 J)

� 6.60 � 102 J

0.207e � 1 �
� Q c �
� Q h �

� 1 �
2.53 � 103 J
3.19 � 103 J

�

Remarks Cyclic problems are rather lengthy; however, the individual steps are often short substitutions. Notice that
the change in internal energy for the cycle is zero and that the net work done on the environment is identical to the
net thermal energy transferred, both as they should be.

Exercise 12.11
4.05 � 10�2 mol of monatomic ideal gas goes through the process shown in Figure 12.11b. The temperature at point
A is 3.00 � 102 K and is 6.00 � 102 K during the isothermal process B : C. (a) Find Q , �U, and W for the constant
volume process A : B. (b) Do the same for the isothermal process B : C . (c) Repeat, for the constant pressure
process C : A. (d) Find Qh, Q c, and the efficiency. (e) Find Weng.

Answers (a) Q AB � �UAB � 151 J, WAB � 0 (b) �UBC � 0, Q BC � �WBC � 1.40 � 102 J (c) Q CA � � 252 J, �UCA �
� 151 J, WCA � 101 J (d) Q h � 291 J, Q c � � 252 J, e � 0.134 (e) Weng � 39.0 J

Q h

Q c

Cold reservoir at Tc

Heat pump

W

Hot reservoir at Th

ACTIVE FIGURE 12.12
Schematic diagram of a heat pump,
which takes in energy Qc 
 0 from a
cold reservoir and expels energy
Qh � 0 to a hot reservoir. Work W is
done on the heat pump. A refrigera-
tor works the same way.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 12.12 to select the coefficient
of performance (COP) of the heat
pump and observe the transfer of
energy.
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A heat pump operating in heating mode warms the inside of a house in winter
by extracting energy from the colder outdoor air. This may seem paradoxical, but
recall that this is equivalent to a refrigerator removing energy from its interior and
ejecting it into the kitchen.

The coefficient of performance of a heat pump operating in the heating
mode is the magnitude of the energy rejected to the hot reservoir, �Q h �, di-
vided by the work W done by the pump:

[12.14]

SI unit: dimensionless

In effect, the COP of a heat pump in the heating mode is the ratio of what you
gain (energy delivered to the interior of your home) to what you give (work in-
put). Typical values for this COP are greater than one, because �Q h� is usually
greater than W.

In a groundwater heat pump, energy is extracted in the winter from water deep
in the ground rather than from the outside air, while energy is delivered to that
water in the summer. This strategy increases the year-round efficiency of the heat-
ing and cooling unit, because the groundwater is at a higher temperature than the
air in winter and at a cooler temperature than the air in summer.

COP(heating mode) �
�Q h �
W
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Figure 12.13 The coils on the
back of a refrigerator transfer energy
by heat to the air.
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EXAMPLE 12.12 Cooling the Leftovers
Goal Apply the coefficient of performance of a refrigerator.

Problem 2.00 L of leftover soup at a temperature of 323 K is placed in a refrigerator. Assume the specific heat of
the soup is the same as that of water and the density is 1.25 � 103 kg/m3. The refrigerator cools the soup to 283 K.
(a) If the COP of the refrigerator is 5.00, find the energy needed, in the form of work, to cool the soup. (b) If the
compressor has a power rating of 0.250 hp, for what minimum length of time must it operate to cool the soup to
283 K? (The minimum time assumes the soup cools at the same rate that the heat pump ejects thermal energy from
the refrigerator.)

Strategy The solution to this problem requires three steps. First, find the total mass m of the soup. Second, using
Q � mc�T, where Q � Q c, find the energy transfer required to cool the soup. Third, substitute Q c and the COP into
Equation 12.13, solving for W. Divide the work by the power to get an estimate of the time required to cool the soup.

Solution
(a) Find the work needed to cool the soup.

Calculate the mass of the soup: m � �V � (1.25 � 103 kg/m3)(2.00 � 10�3 m3) � 2.50 kg

Find the energy transfer required to cool the soup: Q c � Q � mc�T

� (2.50 kg)(4 190 J/kg � K)(283 K � 323 K)

� � 4.19 � 105 J

Substitute Q c and the COP into Equation 12.13:

W � 8.38 � 104 J

COP �
�Q c �
W

�
4.19 � 105 J

W
� 5.00

(b) Find the time needed to cool the food.

Convert horsepower to watts: � � (0.250 hp)(746 W/1 hp) � 187 W
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The Second Law of Thermodynamics
There are limits to the efficiency of heat engines. The ideal engine would convert
all input energy into useful work, but it turns out that such an engine is impossible
to construct. The Kelvin–Planck formulation of the second law of thermodynam-
ics can be stated as follows:

No heat engine operating in a cycle can absorb energy from a reservoir and
use it entirely for the performance of an equal amount of work.

This form of the second law means that the efficiency e � Weng/�Q h� of engines
must always be less than one. Some energy Q c must always be lost to the environ-
ment. In other words, it’s theoretically impossible to construct a heat engine with
an efficiency of 100%.

To summarize, the first law says we can’t get a greater amount of energy out of a
cyclic process than we put in, and the second law says we can’t break even.

Reversible and Irreversible Processes
No engine can operate with 100% efficiency, but different designs yield different
efficiencies, and it turns out one design in particular delivers the maximum possi-
ble efficiency. This design is the Carnot cycle, discussed in the next subsection.
Understanding it requires the concepts of reversible and irreversible processes. In
a reversible process, every state along the path is an equilibrium state, so the sys-
tem can return to its initial conditions by going along the same path in the reverse
direction. A process that doesn’t satisfy this requirement is irreversible.

Most natural processes are known to be irreversible— the reversible process is
an idealization. Although real processes are always irreversible, some are almost re-
versible. If a real process occurs so slowly that the system is virtually always in equi-
librium, the process can be considered reversible. Imagine compressing a gas very
slowly by dropping grains of sand onto a frictionless piston, as in Figure 12.14. The
temperature can be kept constant by placing the gas in thermal contact with an
energy reservoir. The pressure, volume, and temperature of the gas are well de-
fined during this isothermal compression. Each added grain of sand represents a
change to a new equilibrium state. The process can be reversed by slowly removing
grains of sand from the piston.

The Carnot Engine
In 1824, in an effort to understand the efficiency of real engines, a French engi-
neer named Sadi Carnot (1796–1832) described a theoretical engine now called a
Carnot engine that is of great importance from both a practical and a theoretical

Divide the work by the power to find the elapsed time: 448 s�t �
W
�

�
8.38 � 104 J

187 W
�

Remarks This example illustrates how cooling different substances requires differing amounts of work, due to dif-
ferences in specific heats. The problem doesn’t take into account the insulating properties of the soup container and
of the soup itself, which retard the cooling process.

Exercise 12.12
(a) How much work must a heat pump with a COP of 2.50 do in order to extract 1.00 MJ of thermal energy from the
outdoors (the cold reservoir)? (b) If the unit operates at 0.500 hp, how long will the process take? (Be sure to use the
correct COP!)

Answers (a) 6.67 � 105 J (b) 1.79 � 103 s

LORD KELVIN, British Physicist
and Mathematician (1824–1907)
Born William Thomson in Belfast, Kelvin was
the first to propose the use of an absolute
scale of temperature. His study of Carnot’s
theory led to the idea that energy cannot
pass spontaneously from a colder object to
a hotter object; this principle is known as
the second law of thermodynamics.
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Energy reservoir

Sand

Figure 12.14 A gas in thermal
contact with an energy reservoir is
compressed slowly by grains of sand
dropped onto a piston. The compres-
sion is isothermal and reversible.
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viewpoint. He showed that a heat engine operating in an ideal, reversible cycle—
now called a Carnot cycle—between two energy reservoirs is the most efficient en-
gine possible. Such an engine establishes an upper limit on the efficiencies of all
real engines. Carnot’s theorem can be stated as follows:

No real engine operating between two energy reservoirs can be more effi-
cient than a Carnot engine operating between the same two reservoirs.

In a Carnot cycle, an ideal gas is contained in a cylinder with a movable piston at
one end. The temperature of the gas varies between Tc and Th. The cylinder walls
and the piston are thermally nonconducting. Active Figure 12.15 shows the four
stages of the Carnot cycle, and Active Figure 12.16 is the PV diagram for the cycle.
The cycle consists of two adiabatic and two isothermal processes, all reversible:

1. The process A : B is an isothermal expansion at temperature Th in which the
gas is placed in thermal contact with a hot reservoir (a large oven, for exam-
ple) at temperature Th (Active Fig. 12.15a). During the process, the gas absorbs
energy Q h from the reservoir and does work WAB in raising the piston.

2. In the process B : C, the base of the cylinder is replaced by a thermally non-
conducting wall and the gas expands adiabatically, so no energy enters or

406 Chapter 12 The Laws of Thermodynamics

SADI CARNOT, French Engineer
(1796–1832)
Carnot is considered to be the founder of
the science of thermodynamics. Some of
his notes found after his death indicate
that he was the first to recognize the rela-
tionship between work and heat.
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(c)

Energy reservoir at Tc

C D
Isothermal

compression

Q c

B C

Adiabatic
expansion

Q = 0

(b)

Q = 0

(d)

Energy reservoir at Th

(a)

A B

Isothermal
expansion

Q h

D A

Adiabatic
compression

ACTIVE FIGURE 12.15
The Carnot cycle. In process A : B,
the gas expands isothermally while in
contact with a reservoir at Th. In
process B : C, the gas expands adia-
batically (Q � 0). In process C : D,
the gas is compressed isothermally
while in contact with a reservoir at
Tc � Th. In process D : A, the gas is
compressed adiabatically. The upward
arrows on the piston indicate the
removal of sand during the expan-
sions, and the downward arrows
indicate the addition of sand during
the compressions.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 12.15 to observe the motion of
the piston in the Carnot cycle while
you also observe the cycle on the PV
diagram of Active Figure 12.16.
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leaves the system by heat (Active Fig. 12.15b). During the process, the tempera-
ture falls from Th to Tc and the gas does work WBC in raising the piston.

3. In the process C : D, the gas is placed in thermal contact with a cold reservoir
at temperature Tc (Active Fig. 12.15c) and is compressed isothermally at tem-
perature Tc . During this time, the gas expels energy Q c to the reservoir and the
work done on the gas is WCD.

4. In the final process, D : A, the base of the cylinder is again replaced by a ther-
mally nonconducting wall (Active Fig. 12.15d) and the gas is compressed adia-
batically. The temperature of the gas increases to Th, and the work done on the
gas is WDA.

For a Carnot engine, the following relationship between the thermal energy trans-
fers and the absolute temperatures can be derived:

[12.15]

Substituting this expression into Equation 12.12, we find that the thermal effi-
ciency of a Carnot engine is

[12.16]

where T must be in kelvins. From this result, we see that all Carnot engines operat-
ing reversibly between the same two temperatures have the same efficiency.

Equation 12.16 can be applied to any working substance operating in a Carnot
cycle between two energy reservoirs. According to that equation, the efficiency is
zero if Tc � Th. The efficiency increases as Tc is lowered and as Th is increased.
The efficiency can be one (100%), however, only if Tc � 0 K. According to the
third law of thermodynamics, it’s impossible to lower the temperature of a system
to absolute zero in a finite number of steps, so such reservoirs are not available,
and the maximum efficiency is always less than one. In most practical cases, the
cold reservoir is near room temperature, about 300 K, so increasing the efficiency
requires raising the temperature of the hot reservoir. All real engines operate irre-
versibly, due to friction and the brevity of their cycles, and are therefore less effi-
cient than the Carnot engine.

eC � 1 �
Tc

Th

� Q c �
� Q h �

�
Tc

Th

V

P

Weng

D

B

Qh

Th

TcQ c

C

A

ACTIVE FIGURE 12.16
The PV diagram for the Carnot cycle.
The net work done, Weng, equals the
net energy received by heat in one
cycle, �Q h� � �Q c �.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 12.15 to observe the Carnot
cycle on the PV diagram while you
also observe the motion of the piston
in Active Figure 12.15.

TIP 12.2 Don’t Shop for a
Carnot Engine
The Carnot engine is only an
idealization. If a Carnot engine were
developed in an effort to maximize
efficiency, it would have zero power
output, because, in order for all of
the processes to be reversible, the
engine would have to run infinitely
slowly.

Three engines operate between reservoirs separated in temperature by 300 K. The
reservoir temperatures are as follows:

Engine A: Th � 1 000 K, Tc � 700 K

Engine B: Th � 800 K, Tc � 500 K

Engine C: Th � 600 K, Tc � 300 K

Rank the engines in order of their theoretically possible efficiency, from highest to
lowest. (a) A, B, C (b) B, C, A (c) C, B, A (d) C, A, B

Quick Quiz 12.3

EXAMPLE 12.13 The Steam Engine
Goal Apply the equations of an ideal (Carnot) engine.

Problem A steam engine has a boiler that operates at 5.00 � 102 K. The energy from the boiler changes water to
steam, which drives the piston. The temperature of the exhaust is that of the outside air, 3.00 � 102 K. (a) What is the
engine’s efficiency if it’s an ideal engine? (b) If the 3.50 � 103 J of energy is supplied from the boiler, find the work
done by the engine on its environment.
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12.4 ENTROPY
Temperature and internal energy, associated with the zeroth and first laws of ther-
modynamics, respectively, are both state variables, meaning they can be used to
describe the thermodynamic state of a system. A state variable called the entropy S
is related to the second law of thermodynamics. We define entropy on a macro-
scopic scale as the German physicist Rudolf Clausius (1822–1888) first expressed
it in 1865:

Let Q r be the energy absorbed or expelled during a reversible, constant
temperature process between two equilibrium states. Then the change in en-
tropy during any constant temperature process connecting the two equilib-
rium states is defined as

[12.17]

SI unit: joules/kelvin ( J/K)

A similar formula holds when the temperature isn’t constant, but its derivation en-
tails calculus and won’t be considered here. Calculating the change in entropy, �S,
during a transition between two equilibrium states requires finding a reversible
path that connects the states. The entropy change calculated on that reversible
path is taken to be �S for the actual path. This approach is necessary because

�S � 
Q r

T

408 Chapter 12 The Laws of Thermodynamics

Strategy This problem requires substitution into Equations 12.15 and 12.16, both applicable to a Carnot engine.
The first equation relates the ratio Q c/Q h to the ratio Tc/Th, and the second gives the Carnot engine efficiency.

Solution
(a) Find the engine’s efficiency, assuming it’s ideal.

Substitute into Equation 12.16, the equation for the effi-
ciency of a Carnot engine:

0.400, or 40%eC � 1 �
Tc

Th
� 1 �

3.00 � 102 K
5.00 � 102 K

�

(b) Find the work done on the environment if 
3.50 � 103 J is delivered to the engine during one cycle.

The ratio of energies equals the ratio of temperatures:

�Q c � � (3.50 � 103 J)� 3.00 � 102 K
5.00 � 102 K � � 2.10 � 103 J

�Q c �
�Q h �

�
Tc

Th
 : � Q c � � � Q h � 

Tc

Th

Use Equation 12.11 to find W :

� 1.40 � 103 J

Weng � �Q h � � �Q c � � 3.50 � 103 J � 2.10 � 103 J

Remarks This problem differs from the earlier examples on work and efficiency because we used the special
Carnot relationships, Equations 12.15 and 12.16. Remember that these equations can only be used when the cycle is
identified as ideal or a Carnot.

Exercise 12.13
The highest theoretical efficiency of a gasoline engine based on the Carnot cycle, is 0.300, or 30.0%. (a) If this en-
gine expels its gases into the atmosphere, which has a temperature of 3.00 � 102 K, what is the temperature in the
cylinder immediately after combustion? (b) If the heat engine absorbs 837 J of energy from the hot reservoir during
each cycle, how much work can it perform in each cycle?

Answers (a) 429 K (b) 251 J

Entropy �

TIP 12.3 Entropy � Energy
Don’t confuse energy and entropy—
though the names sound similar, they
are different concepts.
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12.4 Entropy 409

quantities such as the temperature of a system can be defined only for systems in
equilibrium, and a reversible path consists of a sequence of equilibrium states. The
subscript r on the term Q r emphasizes that the path chosen for the calculation
must be reversible. The change in entropy �S, like changes in internal energy �U
and changes in potential energy, depends only on the endpoints, and not on the
path connecting them.

The concept of entropy gained wide acceptance in part because it provided an-
other variable to describe the state of a system, along with pressure, volume, and
temperature. Its significance was enhanced when it was found that the entropy of
the Universe increases in all natural processes. This is yet another way of stating
the second law of thermodynamics.

Although the entropy of the Universe increases in all natural processes, the en-
tropy of a system can decrease. For example, if system A transfers energy Q to sys-
tem B by heat, the entropy of system A decreases. This transfer, however, can only
occur if the temperature of system B is less than the temperature of system A. Be-
cause temperature appears in the denominator in the definition of entropy, system
B’s increase in entropy will be greater than system A’s decrease, so taken together,
the entropy of the Universe increases.

For centuries, individuals have attempted to build perpetual motion machines
that operate continuously without any input of energy or increase in entropy. The
laws of thermodynamics preclude the invention of any such machines.

The concept of entropy is satisfying because it enables us to present the second
law of thermodynamics in the form of a mathematical statement. In the next sec-
tion, we find that entropy can also be interpreted in terms of probabilities, a rela-
tionship that has profound implications.

RUDOLF CLAUSIUS, German
Physicist (1822–1888)
Born with the name Rudolf Gottlieb, he
adopted the classical name of Clausius,
which was a popular thing to do in his
time. “I propose . . . to call S the entropy
of a body, after the Greek word ‘transfor-
mation.’ I have designedly coined the
word ‘entropy’ to be similar to energy, for
these two quantities are so analogous in
their physical significance, that an analogy
of denominations seems to be helpful.”
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Which of the following is true for the entropy change of a system that undergoes a
reversible, adiabatic process? (a) �S � 0 (b) �S � 0 (c) �S 
 0

Quick Quiz 12.4

EXAMPLE 12.14 Melting a Piece of Lead
Goal Calculate the change in entropy due to a phase change.

Problem (a) Find the change in entropy of 3.00 � 102 g of lead when it melts at 327	C. Lead has a latent heat of fu-
sion of 2.45 � 104 J/kg. (b) Suppose the same amount of energy is used to melt part of a piece of silver, which is al-
ready at its melting point of 961	C. Find the change in the entropy of the silver.

Strategy This problem can be solved by substitution into Equation 12.17. Be sure to use the Kelvin temperature scale.

Solution
(a) Find the entropy change of the lead.

Find the energy necessary to melt the lead: Q � mLf � (0.300 kg)(2.45 � 104 J/kg) � 7.35 � 103 J

Convert the temperature in degrees Celsius to kelvins: T � TC � 273 � 327 � 273 � 6.00 � 102 K

Substitute the quantities found into the entropy equation: 12.3 J/K�S �
Q
T

�
7.35 � 103 J
6.00 � 102 K

�

(b) Find the entropy change of the silver.

The added energy is the same as in part (a), by supposi-
tion. Substitute into the entropy equation, after first
converting the melting point of silver to kelvins:

T � TC � 273 � 961 � 273 � 1.234 � 102 K

5.96 J/K�S �
Q
T

�
7.35 � 103 J

1.234 � 103 K
�
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Remarks This example shows that adding a given amount of energy to a system increases its disorder, but adding
the same amount of energy to another system at higher temperature results in a smaller increase in disorder. This is
because the change in entropy is inversely proportional to the temperature.

Exercise 12.14
Find the change in entropy of a 2.00-kg block of gold at 1 063	C when it melts to become liquid gold at 1 063	C.

Answer 96.4 J/K

EXAMPLE 12.15 Ice, Steam, and the Entropy of the Universe
Goal Calculate the change in entropy for a system and its environment.

Problem A block of ice at 273 K is put in thermal contact with a container of steam at 373 K, converting 25.0 g of
ice to water at 273 K while condensing some of the steam to water at 373 K. (a) Find the change in entropy of the ice.
(b) Find the change in entropy of the steam. (c) Find the change in entropy of the Universe.

Strategy First, calculate the energy transfer necessary to melt the ice. The amount of energy gained by the ice is
lost by the steam. Compute the entropy change for each process, and sum to get the entropy change of the universe.

Solution
(a) Find the change in entropy of the ice.

Use the latent heat of fusion, Lf , to compute the
thermal energy needed to melt 25.0 g of ice:

Q ice � mLf � (0.025 kg)(3.33 � 105 J) � 8.33 � 103 J

Calculate the change in entropy of the ice: 30.5 J/K�S ice �
Q ice

Tice
�

8.33 � 103 J
273 K

�

(b) Find the change in entropy of the steam.

By supposition, the thermal energy lost by the steam is
equal to the thermal energy gained by the ice:

� 22.3 J/K�Ssteam �
Q steam

Tsteam
�

�8.33 � 103 J
373 K

�

(c) Find the change in entropy of the Universe.

Sum the two changes in entropy:

� � 8.2 J/K

�Suniverse � �S ice � �Ssteam � 30.5 J/k � 22.3 J/K

Remark Notice that the entropy of the Universe increases, as it must in all natural processes.

Exercise 12.15
A 4.00-kg block of ice at 273 K encased in a thin plastic shell of negligible mass melts in a large lake at 293 K. At the
instant the ice has completely melted in the shell and is still at 273 K, calculate the change in entropy of (a) the ice
(b) the lake (which essentially remains at 293 K), and (c) the universe.

Answers (a) 4.88 � 103 J/K (b) � 4.55 � 103 J/K (c) � 3.30 � 102 J/K

EXAMPLE 12.16 A Falling Boulder
Goal Combine mechanical energy and entropy.

Problem A chunk of rock of mass 1.00 � 103 kg at 293 K falls from a cliff of height 125 m into a large lake, also at
293 K. Find the change in entropy of the lake, assuming that all of the rock’s kinetic energy upon entering the lake
converts to thermal energy absorbed by the lake.
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Entropy and Disorder
A large element of chance is inherent in natural processes. The spacing between
trees in a natural forest, for example, is random; if you discovered a forest where all
the trees were equally spaced, you would conclude that it had been planted. Like-
wise, leaves fall to the ground with random arrangements. It would be highly un-
likely to find the leaves laid out in perfectly straight rows. We can express the results
of such observations by saying that a disorderly arrangement is much more proba-
ble than an orderly one if the laws of nature are allowed to act without interference.

Entropy originally found its place in thermodynamics, but its importance grew
tremendously as the field of statistical mechanics developed. This analytical ap-
proach employs an alternate interpretation of entropy. In statistical mechanics, the
behavior of a substance is described by the statistical behavior of the atoms and
molecules contained in it. One of the main conclusions of the statistical mechani-
cal approach is that isolated systems tend toward greater disorder, and entropy is a
measure of that disorder.

In light of this new view of entropy, Boltzmann found another method for cal-
culating entropy through use of the relation

[12.18]

where kB � 1.38 � 10�23 J/K is Boltzmann’s constant and W is a number propor-
tional to the probability that the system has a particular configuration. The symbol
“ln” again stands for natural logarithm, discussed in Appendix A.

Equation 12.18 could be applied to a bag of marbles. Imagine that you have
100 marbles—50 red and 50 green— stored in a bag. You are allowed to draw four
marbles from the bag according to the following rules: Draw one marble, record
its color, return it to the bag, and draw again. Continue this process until four mar-
bles have been drawn. Note that because each marble is returned to the bag be-
fore the next one is drawn, the probability of drawing a red marble is always the
same as the probability of drawing a green one.

The results of all possible drawing sequences are shown in Table 12.3. For ex-
ample, the result RRGR means that a red marble was drawn first, a red one sec-
ond, a green one third, and a red one fourth. The table indicates that there is only
one possible way to draw four red marbles. There are four possible sequences that
produce one green and three red marbles, six sequences that produce two green

S � kB ln W

Strategy Gravitational potential energy when the rock is at the top of the cliff converts to kinetic energy of the
rock before it enters the lake, and then is transferred to the lake as thermal energy. The change in the lake’s temper-
ature is negligible (due to its mass). Divide the mechanical energy of the rock by the temperature of the lake to esti-
mate the lake’s change in entropy.

Solution
Calculate the gravitational potential energy associated
with the rock at the top of the cliff:

PE � mgh � (1.00 � 103 kg)(9.80 m/s2)(125 m)

� 1.23 � 106 J

This energy is transferred to the lake as thermal energy,
resulting in an entropy increase of the lake:

4.20 � 103 J/K�S �
Q
T

�
1.23 � 106 J

293 K
�

Remarks This example shows how even simple mechanical processes can bring about increases in the Universe’s
entropy.

Exercise 12.16
Estimate the change in entropy of a tree trunk at 15.0	C when a bullet of mass 5.00 g traveling at 1.00 � 103 m/s embeds
itself in it. (Assume the kinetic energy of the bullet transforms to thermal energy, all of which is absorbed by the tree.)

Answer 8.68 J/K

TIP 12.4 Don’t Confuse
the W ’s
The symbol W used here is a probabil-
ity, not to be confused with the same
symbol used for work.
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and two red, four sequences that produce three green and one red, and one se-
quence that produces all green. From Equation 12.18, we see that the state with
the greatest disorder (two red and two green marbles) has the highest entropy, be-
cause it is most probable. In contrast, the most ordered states (all red marbles and
all green marbles) are least likely to occur and are states of lowest entropy.

The outcome of the draw can range between these highly ordered (lowest-
entropy) and highly disordered (highest-entropy) states. Entropy can be regarded as
an index of how far a system has progressed from an ordered to a disordered state.

The second law of thermodynamics is really a statement of what is most proba-
ble rather than of what must be. Imagine placing an ice cube in contact with a hot
piece of pizza. There is nothing in nature that absolutely forbids the transfer of en-
ergy by heat from the ice to the much warmer pizza. Statistically, it’s possible for a
slow-moving molecule in the ice to collide with a faster-moving molecule in the
pizza so that the slow one transfers some of its energy to the faster one. However,
when the great number of molecules present in the ice and pizza are considered,
the odds are overwhelmingly in favor of the transfer of energy from the faster-
moving molecules to the slower-moving molecules. Furthermore, this example
demonstrates that a system naturally tends to move from a state of order to a state
of disorder. The initial state, in which all the pizza molecules have high kinetic en-
ergy and all the ice molecules have lower kinetic energy, is much more ordered
than the final state after energy transfer has taken place and the ice has melted.

Even more generally, the second law of thermodynamics defines the direction
of time for all events as the direction in which the entropy of the universe in-
creases. Although conservation of energy isn’t violated if energy flows sponta-
neously from a cold object (the ice cube) to a hot object (the pizza slice), that
event violates the second law because it represents a spontaneous increase in order
of course, such an event also violates everyday experience. If the melting ice cube
is filmed and the film speeded up, the difference between running the film in for-
ward and reverse directions would be obvious to an audience. The same would be
true of filming any event involving a large number of particles, such as a dish drop-
ping to the floor and shattering.

As another example, suppose you were able to measure the velocities of all the
air molecules in a room at some instant. It’s very unlikely that you would find all
molecules moving in the same direction with the same speed— that would be a
highly ordered state, indeed. The most probable situation is a system of molecules
moving haphazardly in all directions with a wide distribution of speeds—a highly
disordered state. This physical situation can be compared to the drawing of mar-
bles from a bag: If a container held 1023 molecules of a gas, the probability of find-
ing all of the molecules moving in the same direction with the same speed at some
instant would be similar to that of drawing a marble from the bag 1023 times and
getting a red marble on every draw—clearly an unlikely set of events.

The tendency of nature to move toward a state of disorder affects the ability of a
system to do work. Consider a ball thrown toward a wall. The ball has kinetic
energy, and its state is an ordered one, which means all of the atoms and mole-
cules of the ball move in unison at the same speed and in the same direction
(apart from their random internal motions). When the ball hits the wall, however,
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TABLE 12.3
Possible Results of Drawing Four Marbles from a Bag

Total Number
End Result Possible Draws of Same Results

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR 4
2G, 2R RRGG, RGRG, GRRG, RGGR, GRGR, GGRR 6
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

A P P L I C AT I O N
The Direction of Time
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part of the ball’s kinetic energy is transformed into the random, disordered, inter-
nal motion of the molecules in the ball and the wall, and the temperatures of the
ball and the wall both increase slightly. Before the collision, the ball was capable of
doing work. It could drive a nail into the wall, for example. With the transforma-
tion of part of the ordered energy into disordered internal energy, this capability
of doing work is reduced. The ball rebounds with less kinetic energy than it origi-
nally had, because the collision is inelastic.

Various forms of energy can be converted to internal energy, as in the collision
between the ball and the wall, but the reverse transformation is never complete. In
general, given two kinds of energy, A and B, if A can be completely converted to B
and vice versa, we say that A and B are of the same grade. However, if A can be com-
pletely converted to B and the reverse is never complete, then A is of a higher grade
of energy than B. In the case of a ball hitting a wall, the kinetic energy of the ball is
of a higher grade than the internal energy contained in the ball and the wall after
the collision. When high-grade energy is converted to internal energy, it can never
be fully recovered as high-grade energy.

This conversion of high-grade energy to internal energy is referred to as the
degradation of energy. The energy is said to be degraded because it takes on a
form that is less useful for doing work. In other words, in all real processes, the en-
ergy available for doing work decreases.

Finally, note once again that the statement that entropy must increase in all
natural processes is true only for isolated systems. There are instances in which the
entropy of some system decreases, but with a corresponding net increase in
entropy for some other system. When all systems are taken together to form the
Universe, the entropy of the Universe always increases.

Ultimately, the entropy of the Universe should reach a maximum. When it does,
the Universe will be in a state of uniform temperature and density. All physical,
chemical, and biological processes will cease, because a state of perfect disorder
implies no available energy for doing work. This gloomy state of affairs is some-
times referred to as the ultimate “heat death” of the Universe.

Suppose you are throwing two dice in a friendly game of craps. For any given
throw, the two numbers that are face up can have a sum of 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, or 12. Which outcome is most probable? Which is least probable?

Quick Quiz 12.5

12.5 HUMAN METABOLISM
Animals do work and give off energy by heat, and this lead us to believe the first
law of thermodynamics can be applied to living organisms to describe them in a
general way. The internal energy stored in humans goes into other forms needed
for maintaining and repairing the major body organs and is transferred out of the
body by work as a person walks or lifts a heavy object, and by heat when the body is
warmer than its surroundings. Because the rates of change of internal energy, en-
ergy loss by heat, and energy loss by work vary widely with the intensity and dura-
tion of human activity, it’s best to measure the time rates of change of �U, Q , and
W. Rewriting the first law, these time rates of change are related by

[12.19]

On average, energy Q flows out of the body, and work is done by the body on its sur-
roundings, so both Q /�t and W/�t are negative. This means that �U/�t would be
negative and the internal energy and body temperature would decrease with time
if a human were a closed system with no way of ingesting matter or replenishing
internal energy stores. Because all animals are actually open systems, they acquire
internal energy (chemical potential energy) by eating and breathing, so their
internal energy and temperature are kept constant. Overall, the energy from the

�U
�t

�
Q
�t

�
W
�t

(a)

(b)

A full house is a very good hand in
the game of poker. Can you calculate
the probability of being dealt a full
house (a pair and three of a kind)
from a standard deck of 52 cards? 
(a) A royal flush is a highly ordered
poker hand with a low probability of
occurrence. (b) A disordered and
worthless poker hand. The probabil-
ity of this particular hand occurring is
the same as that of the royal flush.
There are so many worthless hands,
however, that the probability of being
dealt a worthless hand is much
higher than that of being dealt a
royal flush.
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oxidation of food ultimately supplies the work done by the body and energy lost
from the body by heat, and this is the interpretation we give Equation 12.19. That
is, �U/�t is the rate at which internal energy is added to our bodies by food, and
this term just balances the rate of energy loss by heat, Q /�t, and by work, W/�t. Fi-
nally, if we have a way of measuring �U/�t and W/�t for a human, we can calcu-
late Q /�t from Equation 12.19 and gain useful information on the efficiency of
the body as a machine.

Measuring the Metabolic Rate �U/�t
The value of W/�t, the work done by a person per unit time, can easily be deter-
mined by measuring the power output supplied by the person (in pedaling a bike,
for example). The metabolic rate �U/�t is the rate at which chemical potential en-
ergy in food and oxygen are transformed into internal energy to just balance the
body losses of internal energy by work and heat. Although the mechanisms of food
oxidation and energy release in the body are complicated, involving many inter-
mediate reactions and enzymes (organic compounds that speed up the chemical
reactions taking place at “low” body temperatures), an amazingly simple rule sum-
marizes these processes: The metabolic rate is directly proportional to the rate of
oxygen consumption by volume. It is found that for an average diet, the consump-
tion of one liter of oxygen releases 4.8 kcal, or 20 kJ, of energy. We may write this
important summary rule as

[12.20]

where the metabolic rate �U/�t is measured in kcal/s and , the volume rate
of oxygen consumption, is in L/s. Measuring the rate of oxygen consumption
during various activities ranging from sleep to intense bicycle racing effectively
measures the variation of metabolic rate or the variation in the total power the body
generates. A simultaneous measurement of the work per unit time done by a person
along with the metabolic rate allows the efficiency of the body as a machine to be de-
termined. Figure 12.17 shows a person monitored for oxygen consumption while
riding a bike attached to a dynamometer, a device for measuring power output.

Metabolic Rate, Activity, and Weight Gain
Table 12.4 shows the measured rate of oxygen consumption in milliliters per
minute per kilogram of body mass and the calculated metabolic rate for a 65-kg
male engaged in various activities. A sleeping person uses about 80 W of power,
the basal metabolic rate, just to maintain and run different body organs—heart,
lungs, liver, kidneys, brain, and skeletal muscles. More intense activity increases
the metabolic rate to a maximum of about 1 600 W for a superb racing cyclist,
although such a high rate can only be maintained for periods of a few seconds.

�VO2
/�t

�U

�t
� 4.8 

�VO2

�t
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Figure 12.17 This bike rider is
being monitored for oxygen
consumption.
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TABLE 12.4
Oxygen Consumption and Metabolic Rates for Various Activities for a 65-kg Malea

O2 Use Rate Metabolic Rate Metabolic Rate
Activity (mL/min � kg) (kcal/h) (W)

Sleeping 3.5 70 80
Light activity (dressing, 10 200 230

walking slowly, desk work)
Moderate activity (walking briskly) 20 400 465
Heavy activity basketball,

swimming a fast breaststroke) 30 600 700
Extreme activity (bicycle racing) 70 1400 1600

aSource: A Companion to Medical Studies, 2/e, R. Passmore, Philadelphia, F. A. Davis, 1968.
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When we sit watching a riveting film, we give off about as much energy by heat as a
bright (250-W) lightbulb.

Regardless of level of activity, the daily food intake should just balance the loss
in internal energy if a person is not to gain weight. Further, exercise is a poor sub-
stitute for dieting as a method of losing weight. For example, the loss of one
pound of body fat requires the muscles to expend 4 100 kcal of energy. If the goal
is to lose a pound of fat in 35 days, a jogger could run an extra mile a day, because
a 65-kg jogger uses about 120 kcal to jog one mile (35 days � 120 kcal/day �
4 200 kcal). An easier way to lose the pound of fat would be to diet and eat two
fewer slices of bread per day for 35 days, because bread has a calorie content of
60 kcal/slice (35 days � 2 slices/day � 60 kcal/slice � 4 200 kcal).

EXAMPLE 12.17 Fighting Fat
Goal Estimate human energy usage during a typical day.

Problem In the course of 24 hours, a 65-kg person spends 8 h at a desk, 2 h puttering around the house, 1 h jog-
ging 5 miles, 5 h in moderate activity, and 8 h sleeping. What is the change in her internal energy during this period?

Strategy The time rate of energy usage—or power—multiplied by time gives the amount of energy used during a
given activity. Use Table 12.4 to find the power �i needed for each activity, multiply each by the time, and sum them
all up.

Solution

�U � � �i �ti � �(�1�t1 � �2�t2 � . . . . � �n�tn)

� �(200 kcal/h)(10 h) � (5 mi/h)(120 kcal/mi)(1 h) � (400 kcal/h)(5 h) � (70 kcal/h)(8 h)

�U �

Remarks If this is a typical day in the woman’s life, she will have to consume less than 5 000 kilocalories on a daily
basis in order to lose weight. A complication lies in the fact that human metabolism tends to drop when food intake
is reduced.

Exercise 12.17
If a 60.0-kg woman ingests 3 000 kcal a day and spends 6 h sleeping, 4 h walking briskly, 8 h sitting at a desk job, 1 h
swimming a fast breaststroke, and 5 h watching action movies on TV, about how much weight will the woman gain or
lose every day? (Note: Recall that using about 4 100 kcal of energy will burn off a pound of fat.)

Answer She’ll lose a little over half a pound of fat a day.

�5  000 kcal

Physical Fitness and Efficiency of the Human Body as a Machine
One measure of a person’s physical fitness is his or her maximum capacity to use
or consume oxygen. This “aerobic” fitness can be increased and maintained with
regular exercise, but falls when training stops. Typical maximum rates of oxygen
consumption and corresponding fitness levels are shown in Table 12.5; we see that
the maximum oxygen consumption rate varies from 28 mL/min � kg of body mass
for poorly conditioned subjects to 70 mL/min � kg for superb athletes.

We have already pointed out that the first law of thermodynamics can be rewrit-
ten to relate the metabolic rate �U/�t to the rate at which energy leaves the body
by work and by heat:

Now consider the body as a machine capable of supplying mechanical power to
the outside world, and ask for its efficiency. The body’s efficiency e is defined as

�U
�t

�
Q
�t

�
W
�t

TABLE 12.5
Physical Fitness and
Maximum Oxygen
Consumption Ratea

Maximum 
Oxygen 

Consumption 
Fitness Rate
Level (mL/min � kg)

Very poor 28
Poor 34
Fair 42
Good 52
Excellent 70

aSource: Aerobics, K. H. Cooper, Bantam
Books, New York, 1968.
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the ratio of the mechanical power supplied by a human to the metabolic rate or
the total power input to the body:

e � body’s efficiency � [12.21]

In this definition, absolute-value signs are used to show that e is a positive number
and to avoid explicitly using minus signs required by our definitions of W and Q in
the first law. Table 12.6 shows the efficiency of workers engaged in different activi-
ties for several hours. These values were obtained by measuring the power output
and simultaneous oxygen consumption of mine workers and calculating the meta-
bolic rate from their oxygen consumption. The table shows that a person can
steadily supply mechanical power for several hours at about 100 W with an effi-
ciency of about 17%. It also shows the dependence of efficiency on activity, and
that e can drop to values as low as 3% for highly inefficient activities like shoveling,
which involves many starts and stops. Finally, it is interesting in comparison to the
average results of Table 12.6 that a superbly-conditioned athlete efficiently cou-
pled to a mechanical device for extracting power (a bike!) can supply a power of
around 300 W for about 30 minutes at a peak efficiency of 22%.

� W
�t �

� �U
�t �
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TABLE 12.6
Metabolic Rate, Power Output, and Efficiency for Different Activitiesa

Metabolic Rate Power Output 

Efficiency
Activity (watts) (watts) e

Cycling 505 96 0.19
Pushing loaded coal 

cars in a mine 525 90 0.17
Shoveling 570 17.5 0.03

aSource: “Inter- and Intra-Individual Differences in Energy Expenditure and Mechanical Efficiency,”
C. H. Wyndham et al., Ergonomics 9, 17 (1966).

W
�t

�U
�t

Take a practice test by logging into Physics-
Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

12.1 Work in Thermodynamic Processes
The work done on a gas at a constant pressure is

[12.1]

The work done on the gas is positive if the gas is com-
pressed (�V is negative) and negative if the gas expands
(�V is positive). In general, the work done on a gas that
takes it from some initial state to some final state is the neg-
ative of the area under the curve on a PV diagram.

12.2 The First Law of Thermodynamics
According to the first law of thermodynamics, when a sys-
tem undergoes a change from one state to another, the
change in its internal energy �U is

[12.2]

where Q is the energy transferred into the system by heat
and W is the work done on the system. Q is positive when

�U � Uf � Ui � Q � W

W � � P �V

energy enters the system by heat and negative when the sys-
tem loses energy. W is positive when work is done on the
system (for example, by compression) and negative when
the system does positive work on its environment.

The change of the internal energy, �U, of an ideal gas is
given by

[12.5]

where Cv is the molar specific heat at constant volume.
An isobaric process is one that occurs at constant pres-

sure. The work done on the system in such a process is 
�P �V, while the thermal energy transferred by heat is
given by

[12.6]

with the molar heat capacity at constant pressure given by
Cp � Cv � R.

In an adiabatic process no energy is transferred by heat
between the system and its surroundings (Q � 0). In this
case, the first law gives �U � W, which means the internal
energy changes solely as a consequence of work being done
on the system. The pressure and volume in adiabatic

Q � nC p �T

�U � nCv�T

SUMMARY
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Conceptual Questions 417

processes are related by

[12.8a]

where � � Cp/Cv is the adiabatic index.
In an isovolumetric process the volume doesn’t change

and no work is done. For such processes, the first law gives
�U � Q.

An isothermal process occurs at constant temperature.
The work done by an ideal gas on the environment is

[12.10]

12.3 Heat Engines and the Second Law
of Thermodynamics
In a cyclic process (in which the system returns to its initial
state), �U � 0 and therefore Q � Weng, meaning the en-
ergy transferred into the system by heat equals the work
done on the system during the cycle.

A heat engine takes in energy by heat and partially con-
verts it to other forms of energy, such as mechanical and
electrical energy. The work Weng done by a heat engine
in carrying a working substance through a cyclic process
(�U � 0) is

[12.11]

where Q h is the energy absorbed from a hot reservoir and
Qc is the energy expelled to a cold reservoir.

The thermal efficiency of a heat engine is defined as the
ratio of the work done by the engine to the energy trans-
ferred into the engine per cycle:

[12.12]

Heat pumps are heat engines in reverse. In a refrigerator,
the heat pump removes thermal energy from inside the
refrigerator. Heat pumps operating in cooling mode have
coefficient of performance given by

[12.13]COP(cooling mode) �
�Qc �
W

e �
Weng

�Q h �
� 1 �

�Q c �
�Q h �

Weng � �Q h � � �Q c �

Wenv � nRT ln � Vf

Vi
�

PV � � constant

A heat pump in heating mode has coefficient of perform-
ance

[12.14]

Real processes proceed in an order governed by the second
law of thermodynamics, which can be stated in two ways:

1. Energy will not flow spontaneously by heat from a cold
object to a hot object.

2. No heat engine operating in a cycle can absorb energy
from a reservoir and perform an equal amount of work.

No real heat engine operating between the Kelvin tem-
peratures Th and Tc can exceed the efficiency of an engine
operating between the same two temperatures in a Carnot
cycle, given by

[12.16]

Perfect efficiency of a Carnot engine requires a cold reser-
voir of 0 K, absolute zero. According to the third law of
thermodynamics, however, it is impossible to lower the tem-
perature of a system to absolute zero in a finite number of
steps.

12.4 Entropy
The second law can also be stated in terms of a quantity
called entropy (S). The change in entropy of a system is
equal to the energy flowing by heat into (or out of) the sys-
tem as the system changes from one state (A) to another
(B) by a reversible process, divided by the absolute temper-
ature:

[12.17]

One of the primary findings of statistical mechanics is
that systems tend toward disorder and that entropy is a
measure of that disorder. An alternate statement of the
second law is that the entropy of the Universe increases
in all natural processes.

�S � 
Q r

T

eC � 1 �
Tc

Th

COP(heating mode) �
�Q h �
W

CONCEPTUAL QUESTIONS
1. What are some factors that affect the efficiency of auto-

mobile engines?

2. “Energy is the mistress of the Universe and entropy is her
shadow.” Writing for an audience of general readers, ar-
gue for the truth of this statement with examples. Alter-
nately, argue for the view that entropy is like a decisive
hands-on executive instantly determining what will hap-
pen, while energy is like a wretched back-office book-
keeper telling us how little we can afford.

3. For an ideal gas in an isothermal process, there is no
change in internal energy. Suppose the gas does work W
during such a process. How much energy was transferred
by heat?

4. If you shake a jar full of jelly beans of different sizes, the
larger beans tend to appear near the top and the smaller

ones tend to fall to the bottom. Why does this occur? Does
this process violate the second law of thermodynamics?

5. Consider the human body performing a strenuous exer-
cise, such as lifting weights or riding a bicycle. Work is be-
ing done by the body, and energy is leaving by conduction
from the skin into the surrounding air. According to the
first law of thermodynamics, the temperature of the body
should be steadily decreasing during the exercise. This
isn’t what happens, however. Is the first law invalid for this
situation? Explain.

6. Clearly distinguish among temperature, heat, and inter-
nal energy.

7. What is wrong with the following statement? “Given any
two objects, the one with the higher temperature contains
more heat.”
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8. A steam-driven turbine is one major component of an
electric power plant. Why is it advantageous to increase
the temperature of the steam as much as possible?

9. When a sealed Thermos bottle full of hot coffee is shaken,
what changes, if any, take place in (a) the temperature of
the coffee and (b) its internal energy?

10. In solar ponds constructed in Israel, the Sun’s energy is
concentrated near the bottom of a salty pond. With the
proper layering of salt in the water, convection is pre-
vented, and temperatures of 100	C may be reached. Can
you guess the maximum efficiency with which useful me-
chanical work can be extracted from the pond?

11. Is it possible to construct a heat engine that creates no
thermal pollution?

12. Suppose your roommate is “Mr. Clean” and tidies up your
messy room after a big party. Because more order is being
created by your roommate, does this tidying up represent
a violation of the second law of thermodynamics?

13. A thermodynamic process occurs in which the entropy of
a system changes by � 8.0 J/K. According to the second

law of thermodynamics, what can you conclude about the
entropy change of the environment?

14. If a supersaturated sugar solution is allowed to evaporate
slowly, sugar crystals form in the container. Hence, sugar
molecules go from a disordered form (in solution) to a
highly ordered, crystalline form. Does this process violate
the second law of thermodynamics? Explain.

15. The first law of thermodynamics says we can’t get more
out of a process than we put in, but the second law says
that we can’t break even. Explain this statement.

16. Give some examples of irreversible processes that occur in
nature. Give an example of a process in nature that is
nearly reversible.

17. Imagine a gas in an insulated cylinder with a movable pis-
ton. The piston has been pushed inward, compressing the
gas, and is now released. As the molecules of the gas strike
the piston, they move it outward. From the point of view
of energy principles, explain how this expansion causes
the temperature of the gas to drop.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 12.1 Work in Thermodynamic Processes
The only form of energy possessed by

molecules of a monatomic ideal gas is translational kinetic
energy. Using the results from the discussion of kinetic
theory in Section 10.5, show that the internal energy of a
monatomic ideal gas at pressure P and occupying volume
V may be written as .

2. Sketch a PV diagram and find the work done by the gas
during the following stages: (a) A gas is expanded from a
volume of 1.0 L to 3.0 L at a constant pressure of 3.0 atm.
(b) The gas is then cooled at constant volume until the
pressure falls to 2.0 atm. (c) The gas is then compressed
at a constant pressure of 2.0 atm from a volume of 3.0 L
to 1.0 L. (Note: Be careful of signs.) (d) The gas is heated
until its pressure increases from 2.0 atm to 3.0 atm at a
constant volume. (e) Find the net work done during the
complete cycle.

3. A container of volume 0.40 m3 contains 3.0 mol of argon
gas at 30	C. Assuming argon behaves as an ideal gas, find
the total internal energy of the gas. (Hint: See Problem 1.)

4. A 40.0-g projectile is launched by the expansion of hot gas
in an arrangement shown in Figure P12.4a. The cross-
sectional area of the launch tube is 1.0 cm2, and the
length that the projectile travels down the tube after
starting from rest is 32 cm. As the gas expands, the pres-
sure varies as shown in Figure P12.4b. The values for
the initial pressure and volume are Pi � 11 � 105 Pa and
Vi � 8.0 cm3 while the final values are Pf � 1.0 � 105 Pa
and Vf � 40.0 cm3. Friction between the projectile and the
launch tube is negligible. (a) If the projectile is launched
into a vacuum, what is the speed of the projectile as
it leaves the launch tube? (b) If instead the projectile
is launched into air at a pressure of 1.0 � 105 Pa, what

U � 3
2 PV

1.
fraction of the work done by the expanding gas in the
tube is spent by the projectile pushing air out of the way as
it proceeds down the tube?

5. A gas expands from I to F along the three paths indicated
in Figure P12.5. Calculate the work done on the gas along
paths (a) IAF, (b) IF, and (c) IBF.

MGas

32 cm

(b)

V
V

fVi

P

P

i

Pf

(a)

8 cm

Figure P12.4

I A

F
B

P (atm)

4

3

2

1

0 1 42 3
V (liters)

Figure P12.5 (Problems 5 and 15)
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6. Sketch a PV diagram of the following processes: (a) A gas
expands at constant pressure P1 from volume V1 to vol-
ume V2. It is then kept at constant volume while the pres-
sure is reduced to P2. (b) A gas is reduced in pressure
from P1 to P2 while its volume is held constant at V1. It is
then expanded at constant pressure P2 to a final volume
V2. (c) In which of the processes is more work done by the
gas? Why?
Gas in a container is at a pressure of 1.5 atm and a volume
of 4.0 m3. What is the work done on the gas (a) if it
expands at constant pressure to twice its initial volume?
(b) if it is compressed at constant pressure to one-quarter
its initial volume?

8. A movable piston having a mass of 8.00 kg and a cross-
sectional area of 5.00 cm2 traps 0.200 moles of an ideal
gas in a vertical cylinder. If the piston slides without fric-
tion in the cylinder, how much work is done on the gas
when its temperature is increased from 20	C to 300	C?

9. One mole of an ideal gas initially at a temperature of 
Ti � 0	C undergoes an expansion at a constant pressure
of 1.00 atm to four times its original volume. (a) Calculate
the new temperature Tf of the gas. (b) Calculate the work
done on the gas during the expansion.

10. (a) Determine the work done on a fluid that expands
from i to f as indicated in Figure P12.10. (b) How much
work is done on the fluid if it is compressed from f to i
along the same path?

7.

Section 12.2 The First Law of Thermodynamics
11. A container is placed in a water bath and held at constant

volume as a mixture of fuel and oxygen is burned inside
it. The temperature of the water is observed to rise during
the burning. (The water is also held at constant volume.
(a) Consider the burning mixture to be the system. What
are the signs of Q , �U, and W ? (b) What are the signs of
these quantities if the water bath is considered to be the
system?
A quantity of a monatomic ideal gas undergoes a process in
which both its pressure and volume are doubled as shown
in Figure P12.12. What is the energy absorbed by heat into
the gas during this process? (Hint: See Problem 1.)

13. A gas is compressed at a constant pressure of 0.800 atm
from 9.00 L to 2.00 L. In the process, 400 J of energy
leaves the gas by heat. (a) What is the work done on the
gas? (b) What is the change in its internal energy?

14. A monatomic ideal gas undergoes the thermodynamic
process shown in the PV diagram of Figure P12.14. Deter-
mine whether each of the values �U, Q , and W for the gas
is positive, negative, or zero. (Hint: See Problem 1.)

12.

A gas expands from I to F in Figure
P12.5. The energy added to the gas by heat is 418 J when
the gas goes from I to F along the diagonal path. (a) What
is the change in internal energy of the gas? (b) How
much energy must be added to the gas by heat for the
indirect path IAF to give the same change in internal
energy?

16. A gas is taken through the cyclic process described by
Figure P12.16. (a) Find the net energy transferred to the
system by heat during one complete cycle. (b) If the cycle
is reversed— that is, the process follows the path ACBA—
what is the net energy transferred by heat per cycle?

15.
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Figure P12.16 (Problems 16 and 18)

17. A gas is enclosed in a container fitted with a piston of
cross-sectional area 0.150 m2. The pressure of the gas is
maintained at 6 000 Pa as the piston moves inward
20.0 cm. (a) Calculate the work done by the gas. (b) If the
internal energy of the gas decreases by 8.00 J, find the
amount of heat removed from the system by heat during
the compression.

18. Consider the cyclic process described by Figure P12.16. If
Q is negative for the process BC and �U is negative for the
process CA, determine the signs of Q , W, and �U associ-
ated with each process.
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19. One gram of water changes to ice at a constant pressure
of 1.00 atm and a constant temperature of 0	C. In the
process, the volume changes from 1.00 cm3 to 1.09 cm3.
(a) Find the work done on the water and (b) the change
in the internal energy of the water.

20. A thermodynamic system undergoes a process in which its
internal energy decreases by 500 J. If at the same time
220 J of work is done on the system, find the energy trans-
ferred to or from it by heat.
A 5.0-kg block of aluminum is heated from 20	C to 90	C
at atmospheric pressure. Find (a) the work done by the
aluminum, (b) the amount of energy transferred to it by
heat, and (c) the increase in its internal energy.

22. One mole of gas initially at a pressure of 2.00 atm and a
volume of 0.300 L has an internal energy equal to 91.0 J.
In its final state, the gas is at a pressure of 1.50 atm and a
volume of 0.800 L, and its internal energy equals 180 J.
For the paths IAF, IBF, and IF in Figure P12.22, calculate
(a) the work done on the gas and (b) the net energy trans-
ferred to the gas by heat in the process.

21.

bullet at 320 m/s with an energy efficiency of 1.10%. As-
sume that the body of the gun absorbs all of the energy
exhaust and increases uniformly in temperature for a
short time before it loses any energy by heat into the envi-
ronment. Find its temperature increase.

29. An engine absorbs 1 700 J from a hot reservoir and expels
1 200 J to a cold reservoir in each cycle. (a) What is the
engine’s efficiency? (b) How much work is done in each
cycle? (c) What is the power output of the engine if each
cycle lasts for 0.300 s?

30. A power plant has been proposed that would make use of
the temperature gradient in the ocean. The system is to
operate between 20.0	C (surface water temperature)
and 5.00	C (water temperature at a depth of about 1 km).
(a) What is the maximum efficiency of such a system?
(b) If the useful power output of the plant is 75.0 MW,
how much energy is absorbed per hour? (c) In view of
your answer to (a), do you think such a system is worth-
while (considering that there is no charge for fuel)?

31. In one cycle, a heat engine absorbs 500 J from a high-
temperature reservoir and expels 300 J to a low-temperature
reservoir. If the efficiency of this engine is 60% of the
efficiency of a Carnot engine, what is the ratio of the low
temperature to the high temperature in the Carnot engine?
A heat engine operates in a Carnot cycle between 80.0	C
and 350	C. It absorbs 21 000 J of energy per cycle from the
hot reservoir. The duration of each cycle is 1.00 s. (a) What
is the mechanical power output of this engine? (b) How
much energy does it expel in each cycle by heat?

33. A nuclear power plant has an electrical power output of
1 000 MW and operates with an efficiency of 33%. If ex-
cess energy is carried away from the plant by a river with a
flow rate of 1.0 � 106 kg/s, what is the rise in tempera-
ture of the flowing water?

34. A 20.0%-efficient real engine is used to speed up a train
from rest to 5.00 m/s. It is known that an ideal (Carnot)
engine using the same cold and hot reservoirs would ac-
celerate the same train from rest to a speed of 6.50 m/s
using the same amount of fuel. If the engines use air at
300 K as a cold reservoir, find the temperature of the
steam serving as the hot reservoir.

Section 12.4 Entropy
A freezer is used to freeze 1.0 L of water

completely into ice. The water and the freezer remain at a
constant temperature of T � 0	C. Determine (a) the
change in the entropy of the water and (b) the change in
the entropy of the freezer.

36. What is the change in entropy of 1.00 kg of liquid water at
100	C as it changes to steam at 100	C?

37. A 70-kg log falls from a height of 25 m into a lake. If the
log, the lake, and the air are all at 300 K, find the change
in entropy of the Universe during this process.

38. Two 2 000-kg cars, both traveling at 20 m/s, undergo a
head-on collision and stick together. Find the change in
entropy of the Universe resulting from the collision if the
temperature is 23	C.
The surface of the Sun is approximately at 5 700 K, and
the temperature of the Earth’s surface is approximately
290 K. What entropy change occurs when 1 000 J of en-
ergy is transferred by heat from the Sun to the Earth?

39.

35.

32.
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Figure P12.22

Section 12.3 Heat Engines and the Second Law 
of Thermodynamics
23. A heat engine operates between two reservoirs at temper-

atures of 20	C and 300	C. What is the maximum effi-
ciency possible for this engine?

24. A steam engine has a boiler that operates at 300	F, and
the temperature of the exhaust is 150	F. Find the maxi-
mum efficiency of this engine.

25. The energy absorbed by an engine is three times greater
than the work it performs. (a) What is its thermal
efficiency? (b) What fraction of the energy absorbed is
expelled to the cold reservoir?

26. A particular engine has a power output of 5.00 kW and an
efficiency of 25.0%. If the engine expels 8 000 J of energy
in each cycle, find (a) the energy absorbed in each cycle
and (b) the time required to complete each cycle.
One of the most efficient engines ever built is a coal-fired
steam turbine engine in the Ohio River valley, driving an
electric generator as it operates between 1 870	C and
430	C. (a) What is its maximum theoretical efficiency?
(b) Its actual efficiency is 42.0%. How much mechanical
power does the engine deliver if it absorbs 1.40 � 105 J of
energy each second from the hot reservoir?

28. A gun is a heat engine. In particular, it is an internal com-
bustion piston engine that does not operate in a cycle, but
comes apart during its adiabatic expansion process. A
certain gun consists of 1.80 kg of iron. It fires one 2.40-g

27.
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40. Repeat the procedure used to construct Table 12.3 (a) for
the case in which you draw three marbles rather than four
from your bag and (b) for the case in which you draw five
rather than four.

41. Prepare a table like Table 12.3 for the following occur-
rence: You toss four coins into the air simultaneously and
record all the possible results of the toss in terms of the
numbers of heads and tails that can result. (For example,
HHTH and HTHH are two possible ways in which three
heads and one tail can be achieved.) (a) On the basis of
your table, what is the most probable result of a toss? In
terms of entropy, (b) what is the most ordered state, and
(c) what is the most disordered?

42. Consider a standard deck of 52 playing cards that has
been thoroughly shuffled. (a) What is the probability of
drawing the ace of spades in one draw? (b) What is the
probability of drawing any ace? (c) What is the probability
of drawing any spade?

ADDITIONAL PROBLEMS

43. A student claims that she has constructed a heat engine
that operates between the temperatures of 200 K and
100 K with 60% efficiency. The professor does not give
her credit for the project. Why not?

44. A Carnot engine operates between the temperatures 
Th � 100	C and Tc � 20	C. By what factor does the theo-
retical efficiency increase if the temperature of the hot
reservoir is increased to 550	C?

45. A Carnot heat engine extracts energy Q h from a hot reser-
voir at constant temperature Th and rejects energy Qc to a
cold reservoir at constant temperature Tc. Find the en-
tropy changes of (a) the hot reservoir, (b) the cold reser-
voir, (c) the engine, and (d) the complete system.

46. One end of a copper rod is in thermal contact with a hot
reservoir at T � 500 K, and the other end is in thermal
contact with a cooler reservoir at T � 300 K. If 8 000 J of
energy is transferred from one end of the rod to the
other, with no change in the temperature distribution,
find the entropy change of each reservoir and the total
entropy change of the Universe.
Find the change in temperature of a river due to the ex-
hausted energy from a nuclear power plant. Assume that
the input power to the boiler in the plant is 25 � 108 W,
the efficiency of use of this power is 30%, and the river
flow rate is 9.0 � 106 kg/min.

48. A Carnot engine operates between 100	C and 20	C. How
much ice can the engine melt from its exhaust after it has
done 5.0 � 104 J of work?

49. A 1500-kW heat engine operates at 25% efficiency. The
heat energy expelled at the low temperature is absorbed
by a stream of water that enters the cooling coils at 20	C.
If 60 L flows across the coils per second, determine the in-
crease in temperature of the water.

50. When a gas follows path 123 on the PV diagram in Figure
P12.50, 418 J of energy flows into the system by heat and
�167 J of work is done on the gas. (a) What is the change
in the internal energy of the system? (b) How much en-
ergy Q flows into the system if the gas follows path 143?
The work done on the gas along this path is � 63.0 J.
What net work would be done on or by the system if the
system followed (c) path 12341? (d) path 14321? (e) What

47.

is the change in internal energy of the system in the
processes described in parts (c) and (d)?

A substance undergoes the cyclic process shown in Figure
P12.51. Work output occurs along path AB while work in-
put is required along path BC, and no work is involved in
the constant volume process CA. Energy transfers by heat
occur during each process involved in the cycle. (a) What
is the work output during process AB? (b) How much
work input is required during process BC ? (c) What is the
net energy input Q during this cycle?

51.

52. A power plant having a Carnot efficiency produces
1 000 MW of electrical power from turbines that take in
steam at 500 K and eject water at 300 K into a flowing
river. The water downstream is 6.00 K warmer due to the
output of the plant. Determine the flow rate of the river.

53. A 100-kg steel support rod in a building has a length of
2.0 m at a temperature of 20	C. The rod supports a hang-
ing load of 6 000 kg. Find (a) the work done on the rod as
the temperature increases to 40	C, (b) the energy Q
added to the rod (assume the specific heat of steel is the
same as that for iron), and (c) the change in internal en-
ergy of the rod.

54. An ideal gas initially at pressure P0, volume V0, and tem-
perature T0 is taken through the cycle described in Figure
P12.54. (a) Find the net work done by the gas per cycle in
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terms of P0 and V0. (b) What is the net energy Q added to
the system per cycle? (c) Obtain a numerical value for the
net work done per cycle for 1.00 mol of gas initially at
0	C. (Hint: Recall that the work done by the system equals
the area under a PV curve.)

55. One mole of neon gas is heated from 300 K to 420 K at
constant pressure. Calculate (a) the energy Q transferred
to the gas, (b) the change in the internal energy of the
gas, and (c) the work done on the gas. Note that neon has
a molar specific heat of c � 20.79 J/mol � K for a constant-
pressure process.

56. A 1.0-kg block of aluminum is heated at atmospheric pres-
sure so that its temperature increases from 22	C to 40	C.
Find (a) the work done on the aluminum, (b) the energy
Q added to the aluminum, and (c) the change in internal
energy of the aluminum.

Suppose a heat engine is connected to
two energy reservoirs, one a pool of molten aluminum at
660	C and the other a block of solid mercury at � 38.9	C.
The engine runs by freezing 1.00 g of aluminum and
melting 15.0 g of mercury during each cycle. The latent
heat of fusion of aluminum is 3.97 � 105 J/kg, and that of
mercury is 1.18 � 104 J/kg. (a) What is the efficiency of
this engine? (b) How does the efficiency compare with
that of a Carnot engine?

58. One mole of an ideal gas is taken through the cycle
shown in Figure P12.58. At point A, the pressure, volume,
and temperature are P0, V0, and T0. In terms of R and T0,
find (a) the total energy entering the system by heat per
cycle, (b) the total energy leaving the system by heat per
cycle, (c) the efficiency of an engine operating in this cy-
cle, and (d) the efficiency of an engine operating in a
Carnot cycle between the temperature extremes for this
process. (Hint: Recall that work done on the gas is the
negative of the area under a PV curve.)

57.

that its temperature not exceed 25	C? (Note: The heat of
combustion of coal is 7.8 � 103 cal/g.)

60. At atmospheric pressure (1.013 � 105 Pa) and 20.0	C,
1.00 g of water occupies a volume of 1.00 cm3. (a) Find
the change in internal energy when the water is heated to
the boiling point. (b)When the water is boiled, it becomes
1 671 cm3 of steam. Calculate the change in internal en-
ergy for this process. Assume the steam vapor doesn’t mix
with the surrounding air and that it expands at atmos-
pheric pressure.

61. A gas is enclosed in a container fitted with a piston of
cross-sectional area 0.10 m2. The pressure of the gas is
maintained at 8 000 Pa while energy is slowly added by
heat; as a result, the piston is pushed up a distance of
4.0 cm. (Recall that any process in which the pressure re-
mains constant is an isobaric process.) (a) If 42 J of en-
ergy is added to the system by heat during the expansion,
what is the change in internal energy of the system? (b) If
42 J of energy is added by heat to the system with the pis-
ton clamped in a fixed position, what is the work done by
the gas? What is the change in its internal energy?

62. Hydrothermal vents deep on the ocean floor spout water
at temperatures as high as 570	C. This temperature is be-
low the boiling point of water because of the immense
pressure at that depth. Since the surrounding ocean tem-
perature is at 4.0	C, an organism could use the tempera-
ture gradient as a source of energy. (a) Assuming the spe-
cific heat of water under these conditions is 1.0 cal/g � 	C,
how much energy is released when 1.0 liter of water is
cooled from 570	C to 4.0	C? (b) What is the maximum
useable energy an organism can extract from this energy
source? (Assume that the organism has some internal type
of heat engine acting between the two temperature ex-
tremes.) (c) Water from these vents contains hydrogen
sulfide (H2S) at a concentration of 0.90 mmole/liter. Oxi-
dation of one mole of H2S produces 310 kJ of energy.
How much energy is available through H2S oxidation of
1.0 L of water?

63. Suppose you spend 30.0 minutes on a stair-climbing ma-
chine, climbing at a rate of 90.0 steps per minute, with
each step 8.00 inches high. If you weigh 150 lb and the
machine reports that 600 kcal have been burned at the
end of the workout, what efficiency is the machine using
in obtaining this result? If your actual efficiency is 0.18,
how many kcal did you really burn?

ACTIVITIES

1. Bend a paper clip back and forth several times and touch
it to your lip. Why does it warm up? Repeat the process
with a rubber band after it is stretched several times. No-
tice that it also warms up after stretching. Now take the
stretched rubber band from your lip and wait for it to
come to equilibrium with the surrounding air. Touch the
stretched band to your lip, let it relax to its unstretched
length, and note that it becomes cooler. Explain how the
second law of thermodynamics helps you understand
these results.

2. You should be able to locate a helium tank, a nitrogen
tank, or a CO2 tank in the chemistry or physics depart-
ment of your university. Ask to use one of these for a short
period for the following observation: Learn to open and
close the valve or valves correctly. Touch the tanks and

59. An electrical power plant has an overall efficiency of 15%.
The plant is to deliver 150 MW of electrical power to a
city, and its turbines use coal as fuel. The burning coal
produces steam at 190	C, which drives the turbines. The
steam is condensed into water at 25	C by passing through
coils that are in contact with river water. (a) How many
metric tons of coal does the plant consume each day
(1 metric ton � 1 � 103 kg)? (b) What is the total cost of
the fuel per year if the delivery price is $8 per metric ton?
(c) If the river water is delivered at 20	C, at what
minimum rate must it flow over the cooling coils in order
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nozzle to verify that they are at room temperature. Open
a tank for 2–3 seconds and then close it. Touch the noz-
zle again, and you will find that it is very cold. Why?
(Hint: The expansion of the gas is nearly adiabatic.)

3. You can study order and disorder and verify the answer to
Quick Quiz 12.5 by rolling a pair of dice 100 times and
recording the number of spots appearing on the dice for
each throw. Which total comes up most frequently?

4. Another way to study order and disorder is to toss pen-
nies. Predict in advance which is the more likely occur-

rence when tossing three pennies: having the pennies or-
dered with all the same orientation (all heads or all tails)
or having them disordered (not all the same). Show that
the ordered result includes two out of eight possibilities,
while the disordered result includes six out of eight. Toss
the three pennies 100 times to see how close you come to
this prediction. Repeat the process for four pennies (The
all-the-same result should be expected two times in six-
teen throws.)

44337_12_p386-423  11/3/04  9:15 AM  Page 423



424

13
CHAPTER

Vibrations and Waves

O U T L I N E

13.1 Hooke’s Law
13.2 Elastic Potential Energy
13.3 Comparing Simple

Harmonic Motion with
Uniform Circular Motion

13.4 Position, Velocity, and
Acceleration as a Function
of Time

13.5 Motion of a Pendulum
13.6 Damped Oscillations
13.7 Waves
13.8 Frequency, Amplitude,

and Wavelength
13.9 The Speed of Waves

on Strings
13.10 Interference of Waves
13.11 Reflection of Waves

©
 R

ic
k 

Do
yl

e/
Co

rb
is

Periodic motion, from masses on springs to vibrations of atoms, is one of the most important
kinds of physical behavior. In this chapter we take a more detailed look at Hooke’s law, where
the force is proportional to the displacement, tending to restore objects to some equilibrium
position. A large number of physical systems can be successfully modeled with this simple
idea, including the vibrations of strings, the swinging of a pendulum, and the propagation of
waves of all kinds. All these physical phenomena involve periodic motion.

Periodic vibrations can cause disturbances that move through a medium in the form of
waves. Many kinds of waves occur in nature, such as sound waves, water waves, seismic
waves, and electromagnetic waves. These very different physical phenomena are described by
common terms and concepts introduced here.

13.1 HOOKE’S LAW
One of the simplest types of vibrational motion is that of an object attached to a
spring, previously discussed in the context of energy in Chapter 5. We assume that
the object moves on a frictionless horizontal surface. If the spring is stretched or
compressed a small distance x from its unstretched or equilibrium position and
then released, it exerts a force on the object as shown in Active Figure 13.1. From
experiment this spring force is found to obey the equation

[13.1]Fs � �kx

Ocean waves combine properties of
both transverse and longitudinal
waves. With proper balance and
timing, a surfer can capture some
of the wave’s energy and take it for
a ride.

Hooke’s law �
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13.1 Hooke’s Law 425

where x is the displacement of the object from its equilibrium position (x � 0)
and k is a positive constant called the spring constant. This force law for springs
was discovered by Robert Hooke in 1678 and is known as Hooke’s law. The value
of k is a measure of the stiffness of the spring. Stiff springs have large k values, and
soft springs have small k values.

The negative sign in Equation 13.1 means that the force exerted by the spring is
always directed opposite the displacement of the object. When the object is to the
right of the equilibrium position, as in Active Figure 13.1a, x is positive and Fs is
negative. This means that the force is in the negative direction, to the left. When
the object is to the left of the equilibrium position, as in Active Figure 13.1c, x is
negative and Fs is positive, indicating that the direction of the force is to the right.
Of course, when x � 0, as in Active Figure 13.1b, the spring is unstretched and
Fs � 0. Because the spring force always acts toward the equilibrium position, it is
sometimes called a restoring force. A restoring force always pushes or pulls the
object toward the equilibrium position.

Suppose the object is initially pulled a distance A to the right and released from
rest. The force exerted by the spring on the object pulls it back toward the equilib-
rium position. As the object moves toward x � 0, the magnitude of the force de-
creases (because x decreases) and reaches zero at x � 0. However, the object gains
speed as it moves toward the equilibrium position, reaching its maximum speed
when x � 0. The momentum gained by the object causes it to overshoot the equi-
librium position and compress the spring. As the object moves to the left of the
equilibrium position (negative x-values), the spring force acts on it to the right,
steadily increasing in strength, and the speed of the object decreases. The object
finally comes briefly to rest at x � � A before accelerating back towards x � 0 and
ultimately returning to the original position at x � A. The process is then re-
peated, and the object continues to oscillate back and forth over the same path.
This type of motion is called simple harmonic motion. Simple harmonic motion
occurs when the net force along the direction of motion obeys Hooke’s law—
when the net force is proportional to the displacement from the equilibrium point
and is always directed toward the equilibrium point.

Not all periodic motions over the same path can be classified as simple har-
monic motion. A ball being tossed back and forth between a parent and a child
moves repetitively, but the motion isn’t simple harmonic motion, because the
force acting on the ball doesn’t take the form of Hooke’s law, Equation 13.1.

The motion of an object suspended from a vertical spring is also simple har-
monic. In this case, the force of gravity acting on the attached object stretches the
spring until equilibrium is reached and the object is suspended at rest. By definition
the equilibrium position of the object is x � 0. When the object is moved away from
equilibrium by a distance x and released, a net force acts toward the equilibrium po-
sition. Because the net force is proportional to x , the motion is simple harmonic.

The following three concepts are important in discussing any kind of periodic
motion:

� The amplitude A is the maximum distance of the object from its equilibrium
position. In the absence of friction, an object in simple harmonic motion oscil-
lates between the positions x � � A and x � � A.

� The period T is the time it takes the object to move through one complete cycle
of motion, from x � A to x � � A and back to x � A.

� The frequency f is the number of complete cycles or vibrations per unit of time,
and is the reciprocal of the period ( f � 1/T).

Fs

Fs

m

(a)

x

x = 0
x

(b)

x

x = 0

Fs = 0

(c)

x

x = 0
x

m

m

ACTIVE FIGURE 13.1
The force exerted by a spring on an
object varies with the displacement of
the object from the equilibrium
position, x � 0. (a) When x is positive
(the spring is stretched), the spring
force is to the left. (b) When x is zero
(the spring is unstretched), the
spring force is zero. (c) When x is
negative (the spring is compressed),
the spring force is to the right.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.1 to choose the spring
constant and the initial position and
velocity of the block and see the
resulting simple harmonic motion.

EXAMPLE 13.1 Measuring the Spring Constant
Goal Use Newton’s second law together with Hooke’s law to calculate a spring constant.

Problem A common technique used to evaluate a spring constant is illustrated in Figure 13.2. A spring is hung
vertically (Fig. 13.2a), and an object of mass m is attached to the lower end of the spring and slowly lowered a
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426 Chapter 13 Vibrations and Waves

The acceleration of an object moving with simple harmonic motion can be found
by using Hooke’s law in the equation for Newton’s second law, F � ma. This gives

ma � F � � kx

[13.2]

Equation 13.2, an example of a harmonic oscillator equation, gives the acceleration
as a function of position. Because the maximum value of x is defined to be the am-
plitude A, the acceleration ranges over the values �kA/m to �kA/m. In the next
section we will find equations for velocity as a function of position and for position
as a function of time.

a � �
k
m

 x

distance d to the equilibrium point
(Fig. 13.2b). Find the value of the spring
constant if the spring is displaced by
2.00 cm and the mass is 0.550 kg.

Strategy This is an application of New-
ton’s second law. The spring is stretched
by a distance d from its initial position
under the action of the load mg. The
spring force is upward, balancing the
downward force of gravity mg when the
system is in equilibrium. (See Fig. 13.2c.)
The suspended mass is in equilibrium, so
set the sum of the forces equal to zero.

Fs

mg

d

(c)(b)(a)

Figure 13.2 (Example 13.1)
Determining the spring constant.
The elongation d of the spring is
due to the suspended weight mg.
Because the upward spring force
balances the weight when the
system is in equilibrium, it follows
that k � mg/d.

Solution
Apply the second law (with a � 0) and solve for the
spring constant k:

F � Fg � Fs � � mg � kd � 0

2.70 � 102 N/mk �
mg
d

�
(0.550 kg)(9.80 m/s2)

2.00 � 10�2 m
�

�

Remarks In this case the spring force is positive, because it’s directed upward. Once the mass is pulled down from
the equilibrium position and released, it oscillates around the equilibrium position, just like the horizontal spring.

Exercise 13.1
A spring with constant k � 475 N/m stretches 4.50 cm when an object of mass 25.0 kg is attached to the end of the
spring. Find the acceleration of gravity in this location.

Answer 0.855 m/s2 (The location is evidently an asteroid or small moon.)

Acceleration in simple harmonic
motion �

A block on the end of a spring is pulled to position x � A and released. Through
what total distance does it travel in one full cycle of its motion? (a) A/2 (b) A
(c) 2A (d) 4A

Quick Quiz 13.1

For a simple harmonic oscillator, which of the following pairs of vector quantities
can’t both point in the same direction? (The position vector is the displacement
from equilibrium.) (a) position and velocity (b) velocity and acceleration (c) posi-
tion and acceleration

Quick Quiz 13.2

TIP 13.1 Constant-
Acceleration Equations
Don’t Apply
The acceleration a of a particle in
simple harmonic motion is not con-
stant; it changes, varying with x, so we
can’t apply the constant acceleration
kinematic equations of Chapter 2.
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13.2 ELASTIC POTENTIAL ENERGY
In this section we review the material covered in Section 4 of Chapter 5.

A system of interacting objects has potential energy associated with the configu-
ration of the system. A compressed spring has potential energy that, when allowed
to expand, can do work on an object, transforming spring potential energy into the
object’s kinetic energy. As an example, Figure 13.3 (page 428) shows a ball being
projected from a spring-loaded toy gun, where the spring is compressed a distance
x. As the gun is fired, the compressed spring does work on the ball and imparts
kinetic energy to it.

Recall that the energy stored in a stretched or compressed spring or some other
elastic material is called elastic potential energy, PEs, given by

[13.3]PEs � 12kx2

EXAMPLE 13.2 Simple Harmonic Motion on a Frictionless Surface
Goal Calculate forces and accelerations for a horizontal spring system.

Problem A 0.350-kg object attached to a spring of force constant 1.30 � 102 N/m is free to move on a frictionless
horizontal surface, as in Active Figure 13.1. If the object is released from rest at x � 0.100 m, find the force on it and
its acceleration at x � 0.100 m, x � 0.050 0 m, x � 0 m, x � � 0.050 0 m, and x � � 0.100 m.

Strategy Substitute given quantities into Hooke’s law to find the forces, then calculate the accelerations with
Newton’s second law. The amplitude A is the same as the point of release from rest, x � 0.100 m.

Solution
Write Hooke’s force law: Fs � � kx

Substitute the value for k, and take x � A � 0.100 m,
finding the force at that point:

Fmax � � kA � � (1.30 � 102 N/m)(0.100 m)

� �13.0 N

Solve Newton’s second law for a and substitute to find
the acceleration at x � A:

ma � F max

� 37.1 m/s2a �
F max

m
�

� 13.0 N
0.350 kg

�

Repeat the same process for the other four points,
assembling a table:

Position (m) Force (N) Acceleration (m/s2)

0.100 � 13.0 � 37.1
0.050 � 6.50 � 18.6
0 0 0

� 0.050 � 6.50 � 18.6
� 0.100 � 13.0 � 37.1

Remarks Notice that when the initial position is halved, the force and acceleration are also halved. Further, positive
values of x give negative values of the force and acceleration, while negative values of x give positive values of the
force and acceleration. As the object moves to the left and passes the equilibrium point, the spring force becomes
positive (for negative values of x), slowing the object down.

Exercise 13.2
For the same spring and mass system, find the force exerted by the spring and the position x when the object’s 
acceleration is � 9.00 m/s2.

Answers 3.15 N, � 2.42 cm

� Elastic potential energy
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428 Chapter 13 Vibrations and Waves

Recall also that the law of conservation of energy, including both gravitational and
spring potential energy, is given by

(KE � PEg � PEs)i � (KE � PEg � PEs)f [13.4]

If nonconservative forces such as friction are present, then the change in me-
chanical energy must equal the work done by the nonconservative forces:

Wnc � (KE � PEg � PEs)f � (KE � PEg � PEs)i [13.5]

Rotational kinetic energy must be included in both Equation 13.4 and Equation
13.5 for systems involving torques.

As an example of the energy conversions that take place when a spring is in-
cluded in a system, consider Figure 13.4. A block of mass m slides on a frictionless
horizontal surface with constant velocity and collides with a coiled spring. The
description that follows is greatly simplified by assuming that the spring is very
light and therefore has negligible kinetic energy. As the spring is compressed, it
exerts a force to the left on the block. At maximum compression, the block comes
to rest for just an instant (Fig. 13.4c). The initial total energy in the system (block
plus spring) before the collision is the kinetic energy of the block. After the block

v:i

x

Energy = KE

Energy = elastic PEs

Figure 13.3 A ball projected from
a spring-loaded gun. The elastic
potential energy stored in the spring
is transformed into the kinetic energy
of the ball.

E = – mvi
21

2

x = 0

(a)

(b)

(c)

(d)

v = 0

E = – mv2 + – kx21
2

1
2

E = – kxm
21

2

v i

v

x

–v i
xm

E = – mvi
21

2

Figure 13.4 A block sliding on a
frictionless horizontal surface collides
with a light spring. (a) Initially, the
mechanical energy is entirely the
kinetic energy of the block. (b) The
mechanical energy at some arbitrary
position is the sum of the kinetic
energy of the block and the elastic
potential energy stored in the spring.
(c) When the block comes to rest, the
mechanical energy is entirely elastic
potential energy stored in the
compressed spring. (d) When the
block leaves the spring, the mechani-
cal energy is equal to the block’s
kinetic energy. The total energy
remains constant.
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13.2 Elastic Potential Energy 429

collides with the spring and the spring is partially compressed, as in Figure 13.4b,
the block has kinetic energy (where v � vi) and the spring has potential
energy . When the block stops for an instant at the point of maximum com-
pression, the kinetic energy is zero. Because the spring force is conservative and
because there are no external forces that can do work on the system, the total me-
chanical energy of the system consisting of the block and spring remains constant.
Energy is transformed from the kinetic energy of the block to the potential energy
stored in the spring. As the spring expands, the block moves in the opposite direc-
tion and regains all of its initial kinetic energy, as in Figure 13.4d.

When an archer pulls back on a bowstring, elastic potential energy is stored
in both the bent bow and stretched bowstring (Fig. 13.5). When the arrow is re-
leased, the potential energy stored in the system is transformed into the kinetic
energy of the arrow. Devices such as crossbows and slingshots work the same
way.

1
2kx2

1
2mv2

Figure 13.5 Elastic potential
energy is stored in this drawn bow.
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When an object moving in simple harmonic motion is at its maximum displace-
ment from equilibrium, which of the following is at a maximum? (a) velocity,
(b) acceleration, or (c) kinetic energy.

Quick Quiz 13.3

A P P L I C AT I O N
Archery

EXAMPLE 13.3 Stop That Car!
Goal Apply conservation of energy and the work–energy
theorem with spring and gravitational potential energy.

Problem A 13 000-N car starts at rest and rolls down a
hill from a height of 10.0 m (Fig. 13.6). It then moves
across a level surface and collides with a light spring-
loaded guardrail. (a) Neglecting any losses due to friction,
find the maximum distance the spring is compressed. As-
sume a spring constant of 1.0 � 106 N/m. (b) Calculate
the maximum acceleration of the car after contact with
the spring, assuming no frictional losses. (c) If the spring
is compressed by only 0.30 m, find the energy lost through
friction.

Strategy Because friction losses are neglected, use conservation of energy in the form of Equation 13.4 to solve for
the spring displacement in part (a). The initial and final values of the car’s kinetic energy are zero, so the initial po-
tential energy of the car– spring–Earth system is completely converted to elastic potential energy in the spring at the
end of the ride. In part (b), apply Newton’s second law, substituting the answer to part (a) for x because the maxi-
mum compression will give the maximum acceleration. In part (c) friction is no longer neglected, so use the
work–energy theorem, Equation 13.5. The change in mechanical energy must equal the mechanical energy lost due
to friction.

Solution
(a) Find the maximum spring compression, assuming
no energy losses due to friction.

Apply conservation of mechanical energy. Initially, there
is only gravitational potential energy, and at maximum
compression of the guardrail, there is only spring
potential energy.

(KE � PEg � PEs)i � (KE � PEg � PEs)f

0 � mgh � 0 � 0 � 0 � 1
2kx 2

10 m

k

Figure 13.6 (Example 13.3) A car starts from rest on a hill at the
position shown. When the car reaches the bottom of the hill, it
collides with a spring-loaded guardrail.

Solve for x : 0.51 mx � √ 2mgh
k

� √ 2(13  000 N)(10.0 m)
1.0 � 106 N/m

�
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430 Chapter 13 Vibrations and Waves

In addition to studying the preceding example, it’s a good idea to review those
given in Section 5.4.

Velocity as a Function of Position
Conservation of energy provides a simple method of deriving an expression for the
velocity of an object undergoing periodic motion as a function of position. The ob-
ject in question is initially at its maximum extension A (Fig. 13.7a) and is then re-
leased from rest. The initial energy of the system is entirely elastic potential energy
stored in the spring, . As the object moves toward the origin to some new posi-
tion x (Fig. 13.7b), part of this energy is transformed into kinetic energy, and the
potential energy stored in the spring is reduced to . Because the total energy of
the system is equal to (the initial energy stored in the spring), we can equate
this quantity to the sum of the kinetic and potential energies at the position x :

Solving for v, we get

[13.6]

This expression shows that the object’s speed is a maximum at x � 0 and is zero at
the extreme positions x � � A.

The right side of Equation 13.6 is preceded by the � sign because the square
root of a number can be either positive or negative. If the object in Figure 13.7 is
moving to the right, v is positive; if the object is moving to the left, v is negative.

v � � √ k
m

(A2 � x2)

1
2kA2 � 1

2mv2 � 1
2kx2

1
2kA2

1
2kx2

1
2kA2

Substitute values:

� � 380 m/s2

a � � 
(1.0 � 106 N/m)(0.51 m)(9.8 m/s2)

13  000 N

(c) If the compression of the guardrail is only 0.30 m,
find the mechanical energy lost due to friction.

Use the work–energy theorem: Wnc � (KE � PEg � PEs)f � (KE � PEg � PEs)i

Wnc � � 8.5 � 104 J

 � 1
2(1.0 � 106 N/m)(0.30)2 � (13  000 N)(10.0 m)

 � (0 � 0 � 1
2kx2) � (0 � mgh � 0)

Remarks The answer to part (b) is about 40 times greater than the acceleration of gravity, so we’d better be wear-
ing our seat belts. Note that the solution didn’t require calculation of the velocity of the car.

Exercise 13.3
A spring-loaded gun fires a 0.100-kg puck along a tabletop. The puck slides up a curved ramp and flies straight up
into the air. If the spring is displaced 12.0 cm from equilibrium and the spring constant is 875 N/m, how high does
the puck rise, neglecting friction? (b) If instead it only rises to a height of 5.00 m because of friction, what is the
change in mechanical energy?

Answer (a) 6.43 m (b) �1.40 J

(a)

(b)

x = 0 v = 0

x

m

A

E =     kx2 +     mv2

E =     kA21
2

1
2

1
2

m

v

Figure 13.7 (a) An object
attached to a spring on a frictionless
surface is released from rest with the
spring extended a distance A. Just
before the object is released, the total
energy is the elastic potential energy
kA2/2. (b) When the object reaches
position x, it has kinetic energy
mv 2/2 and the elastic potential
energy has decreased to kx2/2.

(b) Calculate the maximum acceleration of the car by
the spring, neglecting friction.

Apply Newton’s second law: ma � � kx : a � � 
kx
m

� � 
kxg
mg

� � 
kxg
w
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13.2 Elastic Potential Energy 431

EXAMPLE 13.4 The Object–Spring System Revisited
Goal Apply the time-independent velocity expression, Equation 13.6.

Problem A 0.500-kg object connected to a light spring with a spring constant of 20.0 N/m oscillates on a frictionless
horizontal surface. (a) Calculate the total energy of the system and the maximum speed of the object if the amplitude
of the motion is 3.00 cm. (b) What is the velocity of the object when the displacement is 2.00 cm? (c) Compute the ki-
netic and potential energies of the system when the displacement is 2.00 cm.

Strategy The total energy of the system can be found most easily at the amplitude x � A, where the kinetic energy
is zero. There, the potential energy alone is equal to the total energy. Conservation of energy then yields the speed at
x � 0. For part (b), obtain the velocity by substituting the given value of x into the time-independent velocity equa-
tion. Using this result, the kinetic energy asked for in part (c) can be found by substitution, and the potential energy
from substitution into Equation 13.3.

Solution
(a) Calculate the total energy and maximum speed if the
amplitude is 3.00 cm.

Substitute x � A � 3.00 cm and k � 20.0 N/m into the
equation for the total mechanical energy E :

E � KE � PEg � PEs

� 9.00 � 10�3 J

� 0 � 0 � 1
2kA2 � 1

2(20.0 N/m)(3.00 � 10�2 m)2

Use conservation of energy with xi � A and xf � 0 to
compute the speed of the object at the origin:

(KE � PEg � PEs)i � (KE � PEg � PEs)f

0.190 m/svmax � √ 18.0 � 10�3 J
0.500 kg

�

1
2mv2

max � 9.00 � 10�3 J

� 1
2mv max

2 � 0 � 00 � 0 � 1
2kA2

(b) Compute the velocity of the object when the
displacement is 2.00 cm.

Substitute known values directly into Equation 13.6:

� � 0.141 m/s

 � � √ 20.0 N/m
0.500 kg

 ((0.030  0 m)2 � (0.020  0 m)2)

 v � � √ k
m

 (A2 � x2)

(c) Compute the kinetic and potential energies when
the displacement is 2.00 cm.

Substitute into the equation for kinetic energy: 4.97 � 10�3 JKE � 1
2mv2 � 1

2(0.500 kg)(0.141 m/s)2 �

Substitute into the equation for spring potential energy:

� 4.00 � 10�3 J

PEs � 1
2kx 2 � 1

2(20.0 N/m)(2.00 � 10�2 m)2

Remark With the given information, it is impossible to choose between the positive and negative solutions in part
(b). Notice that the sum KE � PEs in part (c) equals the total energy E found in part (a), as it should (except for a
small discrepancy due to rounding).

Exercise 13.4
For what values of x is the speed of the object 0.10 m/s?

Answer � 2.55 cm
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432 Chapter 13 Vibrations and Waves

13.3 COMPARING SIMPLE HARMONIC MOTION
WITH UNIFORM CIRCULAR MOTION

We can better understand and visualize many aspects of simple harmonic motion
along a straight line by looking at its relationship to uniform circular motion.
Active Figure 13.8 is a top view of an experimental arrangement that is useful for
this purpose. A ball is attached to the rim of a turntable of radius A, illuminated
from the side by a lamp. We find that as the turntable rotates with constant angu-
lar speed, the shadow of the ball moves back and forth with simple harmonic
motion.

This fact can be understood from Equation 13.6, which says that the velocity of
an object moving with simple harmonic motion is related to the displacement by

where C is a constant. To see that the shadow also obeys this relation, consider
Figure 13.9, which shows the ball moving with a constant speed v0 in a direction
tangent to the circular path. At this instant, the velocity of the ball in the x-
direction is given by v � v0 sin �, or

From the larger triangle in the figure we can obtain a second expression for sin � :

Equating the right-hand sides of the two expressions for sin �, we find the follow-
ing relationship between the velocity v and the displacement x:

or

The velocity of the ball in the x-direction is related to the displacement x in exactly
the same way as the velocity of an object undergoing simple harmonic motion.
The shadow therefore moves with simple harmonic motion.

A valuable example of the relationship between simple harmonic motion and
circular motion can be seen in vehicles and machines that use the back-and-forth
motion of a piston to create rotational motion in a wheel. Consider the drive
wheel of a locomotive. In Figure 13.10, the curved housing at the left contains a
piston that moves back and forth in simple harmonic motion. The piston is con-
nected to an arrangement of rods that transforms its back-and-forth motion into
rotational motion of the wheels. A similar mechanism in an automobile engine
transforms the back-and-forth motion of the pistons to rotational motion of the
crankshaft.

Period and Frequency
The period T of the shadow in Active Figure 13.8, which represents the time re-
quired for one complete trip back and forth, is also the time it takes the ball to
make one complete circular trip on the turntable. Because the ball moves through
the distance 2	A (the circumference of the circle) in the time T, the speed v0 of
the ball around the circular path is

v0 �
2	A

T

v �
v0

A
 √A2 � x2 � C √A2 � x2

v
v0

�
√A2 � x2

A

sin � �
√A2 � x2

A

sin � �
v
v0

v � C√A2 � x2

Lamp

Ball

Q

PA

A

Screen

Turntable

Shadow
of ball

ACTIVE FIGURE 13.8
An experimental setup for demon-
strating the connection between
simple harmonic motion and
uniform circular motion. As the ball
rotates on the turntable with constant
angular speed, its shadow on the
screen moves back and forth with
simple harmonic motion.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.8 to adjust the frequency
and radial position of the ball and see
the resulting simple harmonic
motion of the shadow.

v0

A

x
x-axis

A2 – x2

u

u

v

Figure 13.9 The ball rotates with
constant speed v0. The x-component
of the ball’s velocity equals the projec-
tion of on the x-axis.v:0

A P P L I C AT I O N
Pistons and Drive Wheels
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13.3 Comparing Simple Harmonic Motion with Uniform Circular Motion 433

and the period is

[13.7]

Imagine that the ball moves from P to Q , a quarter of a revolution, in Active Fig-
ure 13.8. The motion of the shadow is equivalent to the horizontal motion of an
object on the end of a spring. For this reason, the radius A of the circular motion
is the same as the amplitude A of the simple harmonic motion of the shadow. Dur-
ing the quarter of a cycle shown, the shadow moves from a point where the energy
of the system (ball and spring) is solely elastic potential energy to a point where
the energy is solely kinetic energy. By conservation of energy, we have

which can be solved for A/v0:

Substituting this expression for A/v0 in Equation 13.7, we find that the period is

[13.8]

Equation 13.8 represents the time required for an object of mass m attached to a
spring with spring constant k to complete one cycle of its motion. The square root
of the mass is in the numerator, so a large mass will mean a large period, in agree-
ment with intuition. The square root of the spring constant k is in the denomina-
tor, so a large spring constant will yield a small period, again agreeing with intu-
ition. It’s also interesting that the period doesn’t depend on the amplitude A.

The inverse of the period is the frequency of the motion:

[13.9]

Therefore, the frequency of the periodic motion of a mass on a spring is

[13.10]

The units of frequency are cycles per second (s�1), or hertz (Hz). The angular fre-
quency 
 is

[13.11]

The frequency and angular frequency are actually closely related concepts. The
unit of frequency is cycles per second, where a cycle may be thought of as a unit of
angular measure corresponding to 2	 radians, or 360�. Viewed in this way, angular
frequency is just a unit conversion of frequency. Radian measure is used for angles
mainly because it provides a convenient and natural link between linear and angu-
lar quantities.

Although an ideal mass– spring system has a period proportional to the square
root of the object’s mass m, experiments show that a graph of T 2 versus m doesn’t
pass through the origin. This is because the spring itself has a mass. The coils of
the spring oscillate just like the object, except the amplitudes are smaller for all
coils but the last. For a cylindrical spring, energy arguments can be used to show
that the effective additional mass of a light spring is one-third the mass of the
spring. The square of the period is proportional to the total oscillating mass, so a
graph of T 2 versus total mass (the mass hung on the spring plus the effective oscil-
lating mass of the spring) would pass through the origin.


 � 2	f � √ k
m

f �
1

2	
  √ k

m

f �
1
T

T � 2	  √ m
k

A
v0

� √ m
k

1
2kA2 � 1

2mv0
2

T �
2	A
v0

Figure 13.10 The drive wheel
mechanism of an old locomotive.
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� The period of an object– spring
system moving with simple
harmonic motion

� Frequency of an object– spring
system

� Angular frequency of an
object– spring system

TIP 13.2 Twin Frequencies
The frequency gives the number of
cycles per second, while the angular
frequency gives the number of radians
per second. These two physical con-
cepts are nearly identical— linked by
the conversion factor 2	 rad/cycle.
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434 Chapter 13 Vibrations and Waves

An object of mass m is attached to a horizontal spring, stretched to a displacement
A from equilibrium and released, undergoing harmonic oscillations on a friction-
less surface with period T0. The experiment is then repeated with a mass of 4m.
What’s the new period of oscillation? (a) 2T0 (b) T0 (c) T0/2 (d) T0/4.

Quick Quiz 13.4

Consider the situation in Quick Quiz 13.4. The subsequent total mechanical en-
ergy of the object with mass 4m is (a) greater than, (b) less than, or (c) equal to
the original total mechanical energy.

Quick Quiz 13.5

A bungee cord can be modeled as a spring. If you go
bungee jumping, you will bounce up and down at the
end of the elastic cord after your dive off a bridge
(Fig. 13.11). Suppose you perform a dive and measure
the frequency of your bouncing. You then move to an-
other bridge, but find that the bungee cord is too
long for dives off this bridge. What possible solutions
might be applied? In terms of the original frequency,
what is the frequency of vibration associated with the
solution?

Explanation There are two possible solutions: Make
the bungee cord smaller or fold it in half. The latter
would be the safer of the two choices, as we’ll see. The
force exerted by the bungee cord, modeled as a
spring, is proportional to the separation of the coils as
the spring is extended. First, we extend the spring by a
given distance and measure the distance between
coils. We then cut the spring in half. If one of the half-
springs is now extended by the same distance, the
coils will be twice as far apart as they were for the com-
plete spring. Therefore, it takes twice as much force to
stretch the half-spring through the same displace-
ment, so the half-spring has a spring constant twice
that of the complete spring. The folded bungee cord
can then be modeled as two half-springs in parallel.
Each half has a spring constant that is twice the origi-
nal spring constant of the bungee cord. In addition,
an object hanging on the folded bungee cord will ex-
perience two forces—one from each half-spring. As a
result, the required force for a given extension will be

four times as much as for the original bungee cord.
The effective spring constant of the folded bungee
cord is therefore four times as large as the original
spring constant. Because the frequency of oscillation
is proportional to the square root of the spring con-
stant, your bouncing frequency on the folded cord
will be twice what it was on the original cord.

This discussion neglects the fact that the coils of a
spring have an initial separation. It’s also important to
remember that a shorter coil may lose elasticity more
readily, possibly even going beyond the elastic limit
for the material, with disastrous results. Bungee jump-
ing is dangerous—discretion is advised!

Applying Physics 13.1 Bungee Jumping

Figure 13.11 (Applying Physics 13.1) 
Bungee jumping from a bridge.
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EXAMPLE 13.5 That Car Needs Shock Absorbers!
Goal Understand the relationships between period, frequency, and angular frequency.

Problem A 1.30 � 103-kg car is constructed on a frame supported by four springs. Each spring has a spring con-
stant of 2.00 � 104 N/m. If two people riding in the car have a combined mass of 1.60 � 102 kg, find the frequency
of vibration of the car when it is driven over a pothole in the road. Find also the period and the angular frequency.
Assume the weight is evenly distributed.
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13.4 Position, Velocity, and Acceleration as a Function of Time 435

13.4 POSITION, VELOCITY, AND ACCELERATION
AS A FUNCTION OF TIME

We can obtain an expression for the position of an object moving with simple har-
monic motion as a function of time by returning to the relationship between
simple harmonic motion and uniform circular motion. Again, consider a ball on
the rim of a rotating turntable of radius A, as in Active Figure 13.12. We refer to
the circle made by the ball as the reference circle for the motion. We assume that the
turntable revolves at a constant angular speed 
. As the ball rotates on the refer-
ence circle, the angle � made by the line OP with the x-axis changes with time.
Meanwhile, the projection of P on the x -axis, labeled point Q , moves back and
forth along the axis with simple harmonic motion.

From the right triangle OPQ , we see that cos � � x/A. Therefore, the x-coordinate
of the ball is

x � A cos �

Because the ball rotates with constant angular speed, it follows that � � 
t (see
Chapter 7), so we have

x � A cos(
t) [13.12]

In one complete revolution, the ball rotates through an angle of 2	 rad in a time
equal to the period T. In other words, the motion repeats itself every T seconds.
Therefore,

[13.13]

where f is the frequency of the motion. The angular speed of the ball as it moves
around the reference circle is the same as the angular frequency of the projected
simple harmonic motion. Consequently, Equation 13.12 can be written


 �
��

�t
�

2	

T
� 2	f 

Strategy Because the weight is evenly distributed, each spring supports one-fourth of the mass. Substitute this
value and the spring constant into Equation 13.10 to get the frequency. The reciprocal is the period, and multiplying
the frequency by 2	 gives the angular frequency.

Solution
Compute one-quarter of the total mass:

 � 365 kg

 m � 1
4(m car � m pass) � 1

4(1.30 � 103 kg � 1.60 � 102 kg)

Substitute into Equation 13.10 to find the frequency: 1.18 Hzf �
1

2	
 √ k

m
�

1
2	

 √ 2.00 � 104 N/m
365 kg

�

Invert the frequency to get the period: 0.847 sT �
1
f

�
1

1.18 Hz
�

Multiply the frequency by 2	 to get the angular
frequency:


 � 2	f � 2	(1.18 Hz) � 7.41 rad/s

Remark Solving this problem didn’t require any knowledge of the size of the pothole, because the frequency
doesn’t depend on the amplitude of the motion.

Exercise 13.5
A 45.0-kg boy jumps on a 5.00-kg pogo stick with spring constant 3 650 N/m. Find (a) the angular frequency, (b) the
frequency, and (c) the period of the boy’s motion.

Answers (a) 8.54 rad/s (b) 1.36 Hz (c) 0.735 s

y

xx

A
P

QO

u

v

ACTIVE FIGURE 13.12
A reference circle. As the ball at P
rotates in a circle with uniform angu-
lar speed, its projection Q along the 
x -axis moves with simple harmonic
motion.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.12 to compare the
oscillations of two blocks starting
from different initial positions and to
verify that the frequency is
independent of the amplitude.
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[13.14a]

This cosine function represents the
position of an object moving with sim-
ple harmonic motion as a function of
time, and is graphed in Active Figure
13.13a. Because the cosine function
varies between 1 and � 1, x varies be-
tween A and � A. The shape of the
graph is called sinusoidal.

Active Figures 13.13b and 13.13c
represent curves for velocity and ac-
celeration as a function of time. To
find the equation for the velocity, use
Equations 13.6 and 13.14a together
with the identity cos2� � sin2� � 1,
obtaining

v � � A
 sin(2	ft) [13.14b]

where we have used the fact that . The � sign is no longer needed,
because sine can take both positive and negative values. Deriving an expression for
the acceleration involves substituting Equation 13.14a into Equation 13.2, New-
ton’s second law for springs:

a � � A
2 cos(2	ft) [13.14c]

The detailed steps of these derivations are left as an exercise for the student.
Notice that when the displacement x is at a maximum, at x � A or x � � A, the
velocity is zero, and when x is zero, the magnitude of the velocity is a maximum.
Further, when x � � A, its most positive value, the acceleration is a maximum but
in the negative x -direction, and when x is at its most negative position, x � � A,
the acceleration has its maximum value in the positive x -direction. These facts are
consistent with our earlier discussion of the points at which v and a reach their
maximum, minimum, and zero values.

The maximum values of the position, velocity, and acceleration are always equal
to the magnitude of the expression in front of the trigonometric function in each
equation, because the largest value of either cosine or sine is 1.

Figure 13.14 illustrates one experimental arrangement that demonstrates the
sinusoidal nature of simple harmonic motion. An object connected to a spring has
a marking pen attached to it. While the object vibrates vertically, a sheet of paper is
moved horizontally with constant speed. The pen traces out a sinusoidal pattern.


 � √k/m

x � A cos(2	ft)
T
2

T

x

O
t

3T
2

x = A cos vt

T
2

T

v

t
3T
2

v = –vA sin vt

T
2

T

a

t
3T
2

a = –v2A cos vt

A

–A

(a)

(b)

(c)

O

O

O

ACTIVE FIGURE 13.13
(a) Displacement, (b) velocity, and
(c) acceleration versus time for an ob-
ject moving with simple harmonic
motion under the initial conditions
x0 � A and v0 � 0 at t � 0.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.13 to adjust the graphical
representation and see the resulting
simple harmonic motion of the block.

If the amplitude of a system moving in simple harmonic motion is doubled, which
of the following quantities doesn’t change? (a) total energy, (b) maximum speed,
(c) maximum acceleration, (d) period.

Quick Quiz 13.6

Motion
of paper

m

Figure 13.14
An experimental apparatus for
demonstrating simple harmonic mo-
tion. A pen attached to the oscillating
object traces out a sinusoidal wave on
the moving chart paper.

EXAMPLE 13.6 The Vibrating Object–Spring System
Goal Identify the physical parameters of a harmonic oscillator from its mathematical description.

Problem (a) Find the amplitude, frequency, and period of motion for an object vibrating at the end of a horizontal
spring if the equation for its position as a function of time is

(b) Find the maximum magnitude of the velocity and acceleration. (c) What is the position, velocity, and acceleration
of the object after 1.00 s has elapsed?

x � (0.250 m)cos � 	

8.00
 t�
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Strategy In part (a), the amplitude and frequency can be found by comparing the given equation with the stan-
dard form in Equation 13.14a, matching up the numerical values with the corresponding terms in the standard form.
(b) The maximum speed will occur when the sine function in Equation 13.14b equals 1 or � 1, the extreme values of
the sine function (and similarly for the acceleration and the cosine function). In each case, find the magnitude of
the expression in front of the trigonometric function. Part (c) is just a matter of substituting values into Equations
13.14a, b, and c.

Solution
(a) Find the amplitude, frequency, and period.

Write the standard form given by Equation 13.14a, and
underneath it write the given equation:

x � A cos(2	ft) (1)

(2)x � (0.250 m) cos � 	

8.00
 t�

Equate the factors in front of the cosine functions to
find the amplitude:

A � 0.250 m

The angular frequency 
 is the factor in front of t in
equations (1) and (2). Equate these factors: 
 � 2	f �

	

8.00
 rad/s � 0.393 rad/s

Divide 
 by 2	 to get the frequency f : 0.062 5 Hzf �



2	
�

The period T is the reciprocal of the frequency: T � � 16.0 s
1
f

(b) Find the maximum magnitudes of the velocity and
the acceleration.

Calculate the maximum speed from the factor in front
of the sine function in Equation 13.14b:

vmax � A
 � (0.250 m)(0.393 rad/s) � 0.098 3 m/s

Calculate the maximum acceleration from the factor in
front of the cosine function in Equation 13.14c:

amax � A
2 � (0.250 m)(0.393 rad/s)2 � 0.038 6 m/s2

(c) Find the position, velocity, and acceleration of the
object after 1.00 s.

Substitute t � 1.00 s in the given equation: 0.231 mx � (0.250 m) cos (0.393 rad) �

Substitute values into the velocity equation:

v � � 0.037 6 m/s

 � � (0.250 m)(0.393 rad/s) sin (0.393 rad/s �1.00 s)

 v � � A
  sin(
t)

Substitute values into the acceleration equation:

a � � 0.035 7 m/s2

 � � (0.250 m)(0.393 rad/s2)2
 cos (0.393 rad/s �1.00 s)

 a � � A
2 cos(
t)

Remarks In evaluating the cosine function, the angle is in radians, so you should either set your calculator to evalu-
ate trigonometric functions based on radian measure or convert from radians to degrees.

Exercise 13.6
If the object– spring system is described by , find (a) the amplitude, the angular frequency,
the frequency, and the period, (b) the maximum magnitudes of the velocity and acceleration, and (c) the position,
velocity, and acceleration when t � 0.250 s.

Answers (a) A � 0.330 m, 
 � 1.50 rad/s, f � 0.239 Hz , T � 4.19 s; (b) vmax � 0.495 m/s, amax � 0.743 m/s2;
(c) x � 0.307 m, v � � 0.181 m/s, a � � 0.691 m/s2

x � (0.330 m) cos (1.50t)
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438 Chapter 13 Vibrations and Waves

13.5 MOTION OF A PENDULUM
A simple pendulum is another mechanical system that exhibits periodic motion. It
consists of a small bob of mass m suspended by a light string of length L fixed at its
upper end, as in Active Figure 13.15. (By a light string, we mean that the string’s
mass is assumed to be very small compared with the mass of the bob and hence
can be ignored.) When released, the bob swings to and fro over the same path; but
is its motion simple harmonic?

Answering this question requires examining the restoring force— the force of
gravity— that acts on the pendulum. The pendulum bob moves along a circular arc,
rather than back and forth in a straight line. When the oscillations are small, however,
the motion of the bob is nearly straight, so Hooke’s law may apply approximately.

In Active Figure 13.15, s is the displacement of the bob from equilibrium along
the arc. Hooke’s law is F � � kx, so we are looking for a similar expression involv-
ing s, Ft � � ks, where Ft is the force acting in a direction tangent to the circular
arc. From the figure, the restoring force is

Ft � � mg sin �

Since s � L�, the equation for Ft can be written as

This expression isn’t of the form Ft � � ks, so in general, the motion of a pendu-
lum is not simple harmonic. For small angles less than about 15 degrees, however,
the angle � measured in radians and the sine of the angle are approximately
equal. For example, � � 10.0� � 0.175 rad, and sin(10.0�) � 0.174. Therefore, if
we restrict the motion to small angles, the approximation sin � � � is valid, and the
restoring force can be written

Ft � � mg sin � � � mg �

Substituting � � s/L, we obtain

This equation follows the general form of Hooke’s force law Ft � � ks, with 
k � mg/L. We are justified in saying that a pendulum undergoes simple harmonic
motion only when it swings back and forth at small amplitudes (or, in this case,
small values of �, so that sin � � �).

Recall that for the object– spring system, the angular frequency is given by
Equation 13.11:

Substituting the expression of k for a pendulum, we obtain

This angular frequency can be substituted into Equation 13.12, which then mathe-
matically describes the motion of a pendulum. The frequency is just the angular
frequency divided by 2	, while the period is the reciprocal of the frequency, or

[13.15]

This equation reveals the somewhat surprising result that the period of a simple
pendulum doesn’t depend on the mass, but only on the pendulum’s length and
on the free-fall acceleration. Furthermore, the amplitude of the motion isn’t a

T � 2	 √ L
g


 � √ mg/L
m

� √ g
L


 � 2	f � √ k
m

Ft � � � mg
L � s

Ft � �mg sin � s
L �

TL

s m

mg

u

u
mg sin u

mg cos u

ACTIVE FIGURE 13.15
A simple pendulum consists of a bob
of mass m suspended by a light string
of length L. (L is the distance from
the pivot to the center of mass of the
bob.) The restoring force that causes
the pendulum to undergo simple
harmonic motion is the component
of gravitational force tangent to the
path of motion, mg sin �.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.15 to adjust the mass of the
bob, the length of the string, and the
initial angle and see the resulting
oscillation of the pendulum. The
period is slightly larger for larger
initial angles.

TIP 13.3 Pendulum Motion
is not Harmonic
Remember that the pendulum does
not exhibit true simple harmonic mo-
tion for any angle. If the angle is less
than about 15�, the motion can be
modeled as approximately simple
harmonic.

The period of a simple pendulum
depends only on L and g �
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13.5 Motion of a Pendulum 439

factor as long as it’s relatively small. The analogy between the motion of a simple
pendulum and the object– spring system is illustrated in Active Figure 13.16.

Galileo first noted that the period of a pendulum was independent of its ampli-
tude. He supposedly observed this while attending church services at the cathedral
in Pisa. The pendulum he studied was a swinging chandelier that was set in motion
when someone bumped it while lighting candles. Galileo was able to measure its
period by timing the swings with his pulse.

The dependence of the period of a pendulum on its length and on the free-fall
acceleration allows us to use a pendulum as a timekeeper for a clock. A number of
clock designs employ a pendulum, with the length adjusted so that its period
serves as the basis for the rate at which the clock’s hands turn. Of course, these
clocks are used at different locations on the Earth, so there will be some variation
of the free-fall acceleration. To compensate for this variation, the pendulum of a
clock should have some movable mass so that the effective length can be adjusted.

Geologists often make use of the simple pendulum and Equation 13.15 when
prospecting for oil or minerals. Deposits beneath the Earth’s surface can produce
irregularities in the free-fall acceleration over the region being studied. A specially
designed pendulum of known length is used to measure the period, which in turn
is used to calculate g. Although such a measurement in itself is inconclusive, it’s an
important tool for geological surveys.

–A 0 A
x

amax

vmax

amax

vmax

amax

umax

umax

umax

ACTIVE FIGURE 13.16
Simple harmonic motion for an
object– spring system, and its analogy,
the motion of a simple pendulum.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.16 to set the initial position
of the block and see the
block– spring motion and the
analogous pendulum motion.

A P P L I C AT I O N
Pendulum Clocks

A P P L I C AT I O N
Use of Pendulum 
in Prospecting

A simple pendulum is suspended from the ceiling of a stationary elevator, and the
period is measured. If the elevator moves with constant velocity, does the period
(a) increase, (b) decrease, or (c) remain the same? If the elevator accelerates up-
ward, does the period (a) increase, (b) decrease, or (c) remain the same?

Quick Quiz 13.7
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440 Chapter 13 Vibrations and Waves

The Physical Pendulum
The simple pendulum discussed thus far consists of a mass attached to a string. A
pendulum, however, can be made from an object of any shape. The general case is
called the physical pendulum.

In Figure 13.17, a rigid object is pivoted at point O, which is a distance L from
the object’s center of mass. The center of mass oscillates along a circular arc, just
like the simple pendulum. The period of a physical pendulum is given by

[13.16]

where I is the object’s moment of inertia and m is the object’s mass. As a check, notice
that in the special case of a simple pendulum with an arm of length L and negligible
mass, the moment of inertia is I � mL2. Substituting into Equation 13.16 results in

which is the correct period for a simple pendulum.

T � 2	 √ mL2

mgL
� 2	 √ L

g

T � 2	 √ I
mgL

A pendulum clock depends on the period of a pendulum to keep correct time.
Suppose a pendulum clock is keeping correct time and then Dennis the Menace
slides the bob of the pendulum downward on the oscillating rod. Does the clock
run (a) slow, (b) fast, or (c) correctly?

Quick Quiz 13.8

The period of a simple pendulum is measured to be T on Earth. If the same
pendulum were set in motion on the Moon, would its period be (a) less than T,
(b) greater than T, or (c) equal to T ?

Quick Quiz 13.9

EXAMPLE 13.7 Measuring the Value of g
Goal Determine g from pendulum motion.

Problem Using a small pendulum of length 0.171 m, a geologist counts 72.0 complete swings in a time of 60.0 s.
What is the value of g in this location?

Strategy First calculate the period of the pendulum by dividing the total time by the number of complete swings.
Solve Equation 13.15 for g and substitute values.

Solution
Calculate the period by dividing the total elapsed time
by the number of complete oscillations:

T �
time

# of oscillations
�

60.0 s
72.0

� 0.833 s

Solve Equation 13.15 for g and substitute values:

9.73 m/s2g �
4	 2L

T 2 �
(39.5)(0.171 m)

(0.833 s)2 �

T � 2	 √ L
g
 : T 2 � 4	 2 

L
g

Exercise 13.7
What would be the period of the same pendulum on the Moon, where the acceleration of gravity is 1.62 m/s2?

Answer 2.04 s

Pivot O

θ

θ

L

L sin
CM

m g

Figure 13.17 A physical
pendulum pivoted at O.
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13.6 DAMPED OSCILLATIONS
The vibrating motions we have discussed so far have taken place in ideal systems
that oscillate indefinitely under the action of a linear restoring force. In all real me-
chanical systems, forces of friction retard the motion, so the systems don’t oscillate
indefinitely. The friction reduces the mechanical energy of the system as time
passes, and the motion is said to be damped.

Shock absorbers in automobiles (Fig. 13.18) are one practical application of
damped motion. A shock absorber consists of a piston moving through a liquid
such as oil. The upper part of the shock absorber is firmly attached to the body of
the car. When the car travels over a bump in the road, holes in the piston allow it
to move up and down in the fluid in a damped fashion.

Damped motion varies with the fluid used. For example, if the fluid has a rela-
tively low viscosity, the vibrating motion is preserved but the amplitude of vibration
decreases in time and the motion ultimately ceases. This is known as underdamped
oscillation. The position vs. time curve for an object undergoing such oscillation
appears in Active Figure 13.19. Figure 13.20 compares three types of damped mo-
tion, with curve (a) representing underdamped oscillation. If the fluid viscosity is
increased, the object returns rapidly to equilibrium after it’s released and doesn’t
oscillate. In this case, the system is said to be critically damped, and is shown as curve
(b) in Figure 13.20. The piston returns to the equilibrium position in the shortest
time possible without once overshooting the equilibrium position. If the viscosity is
made greater still, the system is said to be overdamped. In this case, the piston re-
turns to equilibrium without ever passing through the equilibrium point, but the
time required to reach equilibrium is greater than in critical damping, as illus-
trated by curve (c) in Figure 13.20.

To make automobiles more comfortable to ride in, shock absorbers are designed
to be slightly underdamped. This can be demonstrated by a sharp downward push on
the hood of a car: After the applied force is removed, the body of the car oscillates a
few times about the equilibrium position before returning to its fixed position.

13.7 WAVES
The world is full of waves: sound waves, waves on a string, seismic waves, and elec-
tromagnetic waves, such as visible light, radio waves, television signals, and x -rays.
All of these waves have as their source a vibrating object, so we can apply the con-
cepts of simple harmonic motion in describing them.

In the case of sound waves, the vibrations that produce waves arise from sources
such as a person’s vocal chords or a plucked guitar string. The vibrations of electrons
in an antenna produce radio or television waves, and the simple up-and-down motion

Oil or
other viscous
fluid

Piston
with holes

(a)

Shock absorber
Coil spring

(b)

Figure 13.18 (a) A shock absorber
consists of a piston oscillating in a
chamber filled with oil. As the piston
oscillates, the oil is squeezed through
holes between the piston and the
chamber, causing a damping of the
piston’s oscillations. (b) One type of
automotive suspension system, in
which a shock absorber is placed
inside a coil spring at each wheel.

A P P L I C AT I O N
Shock Absorbers

A

x

0 t

ACTIVE FIGURE 13.19
A graph of displacement versus time
for an underdamped oscillator. Note
the decrease in amplitude with time.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.19 to adjust the spring
constant, the mass of the object, and
the damping constant and see the
resulting damped oscillation of the
object.

x

a
b

c

t

Figure 13.20 Plots of displace-
ment versus time for (a) an
underdamped oscillator, (b) a
critically damped oscillator, and
(c) an overdamped oscillator.
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442 Chapter 13 Vibrations and Waves

of a hand can produce a wave on a string. Certain concepts are common to all waves,
regardless of their nature. In the remainder of this chapter, we focus our attention on
the general properties of waves. In later chapters we will study specific types of waves,
such as sound waves and electromagnetic waves.

What Is a Wave?
When you drop a pebble into a pool of water, the disturbance produces water
waves, which move away from the point where the pebble entered the water. A leaf
floating near the disturbance moves up and down and back and forth about its
original position, but doesn’t undergo any net displacement attributable to the dis-
turbance. This means that the water wave (or disturbance) moves from one place
to another, but the water isn’t carried with it.

When we observe a water wave, we see a rearrangement of the water’s surface.
Without the water, there wouldn’t be a wave. Similarly, a wave traveling on a string
wouldn’t exist without the string. Sound waves travel through air as a result of pres-
sure variations from point to point. Therefore, we can consider a wave to be the
motion of a disturbance. In a later chapter we will discuss electromagnetic waves,
which don’t require a medium.

The mechanical waves discussed in this chapter require (1) some source of dis-
turbance, (2) a medium that can be disturbed, and (3) some physical connection
or mechanism through which adjacent portions of the medium can influence each
other. All waves carry energy and momentum. The amount of energy transmitted
through a medium and the mechanism responsible for the transport of energy dif-
fer from case to case. The energy carried by ocean waves during a storm, for exam-
ple, is much greater than the energy carried by a sound wave generated by a single
human voice.

At one point in On Her Majesty’s Secret Service, a James
Bond film from the 1960s, Bond was escaping on skis.
He had a good lead and was a hard-to-hit moving tar-
get. There was no point in wasting bullets shooting at
him, so why did the bad guys open fire?

Explanation These misguided gentlemen had a
good understanding of the physics of waves. An
impulsive sound, like a gunshot, can cause an

acoustical disturbance that propagates through the
air. If it impacts a ledge of snow that is ready to break
free, an avalanche can result. Such a disaster occurred
in 1916 during World War I when Austrian soldiers in
the Alps were smothered by an avalanche caused by
cannon fire. So the bad guys, who have never been
able to hit Bond with a bullet, decided to use the
sound of gunfire to start an avalanche.

Applying Physics 13.2 Burying Bond

Types of Waves
One of the simplest ways to demonstrate wave motion is to flip one end of a long
rope that is under tension and has its opposite end fixed, as in Figure 13.21. The
bump (called a pulse) travels to the right with a definite speed. A disturbance of
this type is called a traveling wave. The figure shows the shape of the rope at three
closely spaced times.

As such a wave pulse travels along the rope, each segment of the rope that is
disturbed moves in a direction perpendicular to the wave motion. Figure 13.22
illustrates this point for a particular tiny segment P. The rope never moves in
the direction of the wave. A traveling wave in which the particles of the dis-
turbed medium move in a direction perpendicular to the wave velocity is called a
transverse wave. Figure 13.23a illustrates the formation of transverse waves on a
long spring.

In another class of waves, called longitudinal waves, the elements of the
medium undergo displacements parallel to the direction of wave motion. Sound

Figure 13.21 A wave pulse
traveling along a stretched rope. The
shape of the pulse is approximately
unchanged as it travels.
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waves in air are longitudinal. Their disturbance corresponds to a series of high-
and low-pressure regions that may travel through air or through any material
medium with a certain speed. A longitudinal pulse can easily be produced in a
stretched spring, as in Figure 13.23b. The free end is pumped back and forth
along the length of the spring. This action produces compressed and stretched re-
gions of the coil that travel along the spring, parallel to the wave motion.

Waves need not be purely transverse or purely longitudinal: ocean waves exhibit
a superposition of both types. When an ocean wave encounters a cork, the cork ex-
ecutes a circular motion, going up and down while going forward and back.

Another type of wave, called a soliton, consists of a solitary wave front that prop-
agates in isolation. Ordinary water waves generally spread out and dissipate, but
solitons tend to maintain their form. The study of solitons began in 1849, when
the Scottish engineer John Scott Russell noticed a solitary wave leaving the turbu-
lence in front of a barge and propagating forward all on its own. The wave main-
tained its shape and traveled down a canal at about 10 mi/h. Russell chased the
wave two miles on horseback before losing it. Only in the 1960s did scientists take
solitons seriously; they are now widely used to model physical phenomena, from el-
ementary particles to the Giant Red Spot of Jupiter.

P

P

P

P

Figure 13.22 A pulse traveling
on a stretched rope is a transverse
wave. Any element P on the rope
moves (blue arrows) in a direction
perpendicular to the direction of
propagation of the wave motion
(red arrows).

Compressed Compressed

StretchedStretched

(b) Longitudinal wave

(a) Transverse wave

Figure 13.23 (a) A transverse wave is set up in a spring by moving one end of the spring perpendicu-
lar to its length. (b) A longitudinal pulse along a stretched spring. The displacement of the coils is in the
direction of the wave motion. For the starting motion described in the text, the compressed region is fol-
lowed by a stretched region.

t = 0 t

y

x

v
vt

ACTIVE FIGURE 13.24
A one-dimensional sinusoidal wave
traveling to the right with a speed v.
The brown curve is a snapshot of the
wave at t � 0, and the blue curve is
another snapshot at some later time t.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.24 to watch the wave move
and to take snapshots of it at various
times.

Picture of a Wave
Active Figure 13.24 shows the curved shape of a vibrating string. This pattern is a si-
nusoidal curve, the same as in simple harmonic motion. The brown curve can be
thought of as a snapshot of a traveling wave taken at some instant of time, say, t � 0;
the blue curve is a snapshot of the same traveling wave at a later time. This picture
can also be used to represent a wave on water. In such a case, a high point would
correspond to the crest of the wave and a low point to the trough of the wave.

The same waveform can be used to describe a longitudinal wave, even though no
up-and-down motion is taking place. Consider a longitudinal wave traveling on a
spring. Figure 13.25a is a snapshot of this wave at some instant, and Figure 13.25b
shows the sinusoidal curve that represents the wave. Points where the coils of the
spring are compressed correspond to the crests of the waveform, and stretched re-
gions correspond to troughs.

The type of wave represented by the curve in Figure 13.25b is often called a den-
sity wave or pressure wave, because the crests, where the spring coils are compressed,
are regions of high density, and the troughs, where the coils are stretched, are re-
gions of low density. Sound waves are longitudinal waves, propagating as a series of
high- and low-density regions.

(b)D
en

si
ty

(a)

Figure 13.25 (a) A longitudinal
wave on a spring. (b) The crests of
the waveform correspond to
compressed regions of the spring,
and the troughs correspond to
stretched regions of the spring.
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13.8 FREQUENCY, AMPLITUDE, 
AND WAVELENGTH

Active Figure 13.26 illustrates a method of producing a continuous wave or a
steady stream of pulses on a very long string. One end of the string is connected to
a blade that is set vibrating. As the blade oscillates vertically with simple harmonic
motion, a traveling wave moving to the right is set up in the string. Active Figure
13.26 consists of views of the wave at intervals of one-quarter of a period. Note that
each small segment of the string, such as P, oscillates vertically in the y-direction
with simple harmonic motion. This must be the case, because each segment fol-
lows the simple harmonic motion of the blade. Every segment of the string can
therefore be treated as a simple harmonic oscillator vibrating with the same fre-
quency as the blade that drives the string.

The frequencies of the waves studied in this course will range from rather low
values for waves on strings and waves on water, to values for sound waves between
20 Hz and 20 000 Hz (recall that 1 Hz � 1 s�1), to much higher frequencies for
electromagnetic waves. These waves have different physical sources, but can be de-
scribed with the same concepts.

The horizontal dashed line in Active Figure 13.26 represents the position of the
string when no wave is present. The maximum distance the string moves above or
below this equilibrium value is called the amplitude A of the wave. For the waves
we work with, the amplitudes at the crest and the trough will be identical.

Active Figure 13.26b illustrates another characteristic of a wave. The horizontal
arrows show the distance between two successive points that behave identically.
This distance is called the wavelength � (the Greek letter lambda).

We can use these definitions to derive an expression for the speed of a wave. We
start with the defining equation for the wave speed v :

The wave speed is the speed at which a particular part of the wave— say, a crest—
moves through the medium.

A wave advances a distance of one wavelength in a time interval equal to one
period of the vibration. Taking �x � � and �t � T, we see that

Because the frequency is the reciprocal of the period, we have

[13.17]

This important general equation applies to many different types of waves, such as
sound waves and electromagnetic waves.

v � f�

v �
�

T

v �
�x
�t

P

(a)

A

y

Vibrating
blade

(c)

P

P

P

(b)

(d)

l
ACTIVE FIGURE 13.26
One method for producing traveling
waves on a continuous string. The left
end of the string is connected to a
blade that is set vibrating. Every part
of the string, such as point P, oscil-
lates vertically with simple harmonic
motion.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.26 to adjust the frequency
of the blade.

Wave speed �
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EXAMPLE 13.8 A Traveling Wave
Goal Obtain information about a wave directly from
its graph.

Problem A wave traveling in the positive x-direction is
pictured in Figure 13.27a. Find the amplitude, wave-
length, speed, and period of the wave if it has a
frequency of 8.00 Hz. In Figure 13.27a, �x � 40.0 cm
and �y � 15.0 cm.

Strategy The amplitude and wavelength can be read
directly from the figure: The maximum vertical dis-
placement is the amplitude, and the distance from one crest to the next is the wavelength. Multiplying the wave-
length by the frequency gives the speed, while the period is just the reciprocal of the frequency.

(a)

y(cm)

�x

�y
x(cm)

(b)

y(cm)

�x

�y
x(cm)

Figure 13.27 (a) (Example 13.8) (b) (Exercise 13.8)

Solution
The maximum wave displacement is the amplitude A: A � �y � 15.0 cm � 0.150 m

The distance from crest to crest is the wavelength: � � �x � 40.0 cm � 0.400 m

Multiply the wavelength by the frequency to get the
speed of the wave.

v � f� � (8.00 Hz)(0.400 m) � 3.20 m/s

Take the reciprocal of the frequency to get the period: 0.125 sT �
1
f

�
1

8.00
 s �

Exercise 13.8
A wave traveling in the positive x -direction is pictured in Figure 13.27b. Find the amplitude, wavelength, speed, and
period of the wave if it has a frequency of 15.0 Hz. In the figure, �x � 72.0 cm and �y � 25.0 cm.

Answers A � 0.25 m, � � 0.720 m, v � 10.8 m/s, T � 0.066 7 s

EXAMPLE 13.9 Sound and Light
Goal Perform elementary calculations using speed, wavelength, and frequency.

Problem A wave has a wavelength of 3.00 m. Calculate the frequency of the wave if it is (a) a sound wave and (b) a
light wave. Take the speed of sound as 343 m/s and the speed of light as 3.00 � 108 m/s.

Solution
(a) Find the frequency of a sound wave with � � 3.00 m.

Solve Equation 3.17 for the frequency and substitute: (1)114 Hzf �
v
�

�
343 m/s
3.00 m

�

(b) Find the frequency of a light wave with � � 3.00 m.

Substitute into Equation (1), using the speed of light
for c :

1.00 � 108 Hzf �
c
�

�
3.00 � 108 m/s

3.00 m
�

Remark The same equation can be used to find the frequency in each case, despite the great difference between
the physical phenomena. Notice how much larger frequencies of light waves are than frequencies of sound waves.
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446 Chapter 13 Vibrations and Waves

13.9 THE SPEED OF WAVES ON STRINGS
In this section we focus our attention on the speed of a transverse wave on a
stretched string.

For a vibrating string, there are two speeds to consider. One is the speed of
the physical string that vibrates up and down, transverse to the string, in the 
y -direction. The other is the wave speed, which is the rate at which the disturbance
propagates along the length of the string in the x -direction. We wish to find an
expression for the wave speed.

If a horizontal string under tension is pulled vertically and released, it starts
at its maximum displacement, y � A, and takes a certain amount of time to go to
y � � A and back to A again. This amount of time is the period of the wave, and is
the same as the time needed for the wave to advance horizontally by one wave-
length. Dividing the wavelength by the period of one transverse oscillation gives
the wave speed.

For a fixed wavelength, a string under greater tension F has a greater wave
speed because the period of vibration is shorter, and the wave advances one wave-
length during one period. It also makes sense that a string with greater mass per
unit length, �, vibrates more slowly, leading to a longer period and a slower wave
speed. The wave speed is given by

[13.18]

where F is the tension in the string and � is the mass of the string per unit length,
called the linear density. From Equation 13.18, it’s clear that a larger tension F re-
sults in a larger wave speed, while a larger linear density � gives a slower wave
speed, as expected.

According to Equation 13.18, the propagation speed of a mechanical wave,
such as a wave on a string, depends only on the properties of the string through
which the disturbance travels. It doesn’t depend on the amplitude of the vibration.
This turns out to be generally true of waves in various media.

A proof of Equation 13.18 requires calculus, but dimensional analysis can easily
verify that the expression is dimensionally correct. The dimensions of F are
ML/T2, and the dimensions of � are M/L. The dimensions of F/� are therefore
L2/T2, so those of are L/T, giving the dimensions of speed. No other combi-
nation of F and � is dimensionally correct, so in the case where the tension and
mass density are the only relevant physical factors, we have verified Equation 13.18
up to an overall constant.

According to Equation 13.18, we can increase the speed of a wave on a
stretched string by increasing the tension in the string. Increasing the mass per
unit length, on the other hand, decreases the wave speed. These physical facts lie
behind the metallic windings on the bass strings of pianos and guitars. The wind-
ings increase the mass per unit length, �, decreasing the wave speed and hence
the frequency, resulting in a lower tone. Tuning a string to a desired frequency is a
simple matter of changing the tension in the string.

√F/�

v � √ F
�

Exercise 13.9
(a) Find the wavelength of an electromagnetic wave with frequency 9.00 GHz � 9.00 � 109 Hz (G � giga � 109),
which is in the microwave range. (b) Find the speed of a sound wave in an unknown fluid medium if a frequency of
567 Hz has a wavelength of 2.50 m.

Answers (a) 0.0333 m (b) 1.42 � 103 m/s

A P P L I C AT I O N
Bass Guitar Strings
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13.10 INTERFERENCE OF WAVES
Many interesting wave phenomena in nature require two or more waves passing
through the same region of space at the same time. Two traveling waves can meet
and pass through each other without being destroyed or even altered. For instance,
when two pebbles are thrown into a pond, the expanding circular waves don’t de-
stroy each other. In fact, the ripples pass through each other. Likewise, when
sound waves from two sources move through air, they pass through each other. In
the region of overlap, the resultant wave is found by adding the displacements of
the individual waves. For such analyses, the superposition principle applies:

When two or more traveling waves encounter each other while moving
through a medium, the resultant wave is found by adding together the dis-
placements of the individual waves point by point.

INTERACTIVE EXAMPLE 13.10 A Pulse Traveling on a String
Goal Calculate the speed of a wave on a string.

Problem A uniform string has a mass M of 0.030 0 kg and a length L of 6.00 m.
Tension is maintained in the string by suspending a block of mass m � 2.00 kg
from one end (Fig. 13.28). (a) Find the speed of a transverse wave pulse on this
string. (b) Find the time it takes the pulse to travel from the wall to the pulley.

Strategy The tension F can be obtained from Newton’s second law for
equilibrium applied to the block, and the mass per unit length of the string is 
� � M/L. With these quantities, the speed of the transverse pulse can be found
by substitution into Equation 13.18. Part (b) requires the formula d � vt.

5.00 m

2.00 kg

1.00 m

Figure 13.28 (Interactive Example
13.10) The tension F in the string is main-
tained by the suspended block. The wave
speed is given by the expression v � √F/�.

Solution
(a) Find the speed of the wave pulse.

Apply the second law to the block: the tension F is equal
and opposite to the force of gravity.

� F � F � mg � 0 : F � mg

Substitute expressions for F and � into Equation 13.18:

� 62.6 m/s

 � √ (2.00 kg)(9.80 m/s2)
(0.030 0 kg)/(6.00 m)

� √ 19.6 N
0.005 00 kg/m

 v � √ F
�

� √ mg
M/L

(b) Find the time it takes the pulse to travel from the
wall to the pulley.

Solve the distance formula for time: t �
d
v

�
5.00 m

62.6 m/s
� 0.0799 s

Exercise 13.10
To what tension must a string with mass 0.010 0 kg and length 2.50 m be tightened so that waves will travel on it at a
speed of 125 m/s?

Answer 62.5 N

Investigate the transmission of such pulses by logging into PhysicsNow at www.cp7e.com and going
to Interactive Example 13.10.

� Superposition principle
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448 Chapter 13 Vibrations and Waves

Experiments show that the superposition principle is valid only when the individ-
ual waves have small amplitudes of displacement—an assumption we make in all
our examples.

Figures 13.29a and 13.29b show two waves of the same amplitude and fre-
quency. If at some instant of time these two waves were traveling through the same
region of space, the resultant wave at that instant would have a shape like that
shown in Figure 13.29c. For example, suppose the waves are water waves of ampli-
tude 1 m. At the instant they overlap so that crest meets crest and trough meets
trough, the resultant wave has an amplitude of 2 m. Waves coming together like
this are said to be in phase and to exhibit constructive interference.

Figures 13.30a and 13.30b show two similar waves. In this case, however, the
crest of one coincides with the trough of the other, so one wave is inverted relative
to the other. The resultant wave, shown in Figure 13.30c, is seen to be a state of
complete cancellation. If these were water waves coming together, one of the
waves would exert an upward force on an individual drop of water at the same in-
stant the other wave was exerting a downward force. The result would be no mo-
tion of the water at all. In such a situation, the two waves are said to be 180� out of
phase and to exhibit destructive interference. Figure 13.31 illustrates the interfer-
ence of water waves produced by drops of water falling into a pond.

Active Figure 13.32 shows constructive interference in two pulses moving to-
ward each other along a stretched string; Active Figure 13.33 shows destructive in-
terference in two pulses. Notice in both figures that when the two pulses separate,
their shapes are unchanged, as if they had never met!

13.11 REFLECTION OF WAVES
In our discussion so far, we have assumed that waves could travel indefinitely
without striking anything. Often, such conditions are not realized in practice.
Whenever a traveling wave reaches a boundary, part or all of the wave is reflected.
For example, consider a pulse traveling on a string that is fixed at one end (Active
Fig. 13.34). When the pulse reaches the wall, it is reflected.

Note that the reflected pulse is inverted. This can be explained as follows: When
the pulse meets the wall, the string exerts an upward force on the wall. According to
Newton’s third law, the wall must exert an equal and opposite (downward) reaction
force on the string. This downward force causes the pulse to invert on reflection.

Now suppose the pulse arrives at the string’s end, and the end is attached to a
ring of negligible mass that is free to slide along the post without friction (Active
Fig. 13.35). Again the pulse is reflected, but this time it is not inverted. On reaching

(a)

(b)

(c)

Figure 13.29 Constructive inter-
ference. If two waves having the same
frequency and amplitude are in
phase, as in (a) and (b), the resultant
wave when they combine (c) has the
same frequency as the individual
waves, but twice their amplitude.

(a)

(b)

(c)

Figure 13.30 Destructive interfer-
ence. When two waves with the same
frequency and amplitude are 180� out
of phase, as in (a) and (b), the result
when they combine (c) is complete
cancellation.

Figure 13.31 Interference pat-
terns produced by outward-spreading
waves from many drops of liquid
falling into a body of water.
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(c)

(e)
(b)

(a)
(d)

ACTIVE FIGURE 13.32
Two wave pulses traveling on a stretched string in opposite directions pass through each other. When
the pulses overlap, as in (b), (c), and (d), the net displacement of the string equals the sum of the
displacements produced by each pulse.

Log into PhysicsNow at www.cp7e.com, and go to Active Figure 13.32 to choose the amplitude and
orientation of each of the pulses and study the interference between them as they pass each other.
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the post, the pulse exerts a force on the ring, causing it to accelerate upward. The
ring is then returned to its original position by the downward component of the ten-
sion in the string.

An alternate method of showing that a pulse is reflected without inversion when
it strikes a free end of a string is to send the pulse down a string hanging vertically.
When the pulse hits the free end, it’s reflected without inversion, just as is the
pulse in Active Figure 13.35.

Finally, when a pulse reaches a boundary, it’s partly reflected and partly trans-
mitted past the boundary into the new medium. This effect is easy to observe in
the case of two ropes of different density joined at some boundary.

(c)

(a)

(b)

(d)

(e)

ACTIVE FIGURE 13.33
Two wave pulses traveling in opposite directions with displacements that are inverted relative to each
other. When the two overlap, as in (c), their displacements subtract from each other.

Log into PhysicsNow at www.cp7e.com, and go to Active Figure 13.33 to choose the amplitude and ori-
entation of each of the pulses and study the interference between them as they pass each other.

(a)

(b)

(c)

(d)

(e) Reflected
pulse

Incident
pulse

ACTIVE FIGURE 13.34
The reflection of a traveling wave at
the fixed end of a stretched string.
Note that the reflected pulse is
inverted, but its shape remains the
same.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.34 to adjust the linear mass
density of the string and the trans-
verse direction of the initial pulse.

Incident
pulse

(a)

(b)

(c)

Reflected
pulse

(d)

ACTIVE FIGURE 13.35
The reflection of a traveling wave at
the free end of a stretched string. In
this case, the reflected pulse is not in-
verted.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 13.35 to adjust the linear mass
density of the string and the trans-
verse direction of the initial pulse.

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

13.1 Hooke’s Law
Simple harmonic motion occurs when the net force on an
object along the direction of motion is proportional to the
object’s displacement and in the opposite direction:

Fs � � kx [13.1]

This is called Hooke’s law. The time required for one com-
plete vibration is called the period of the motion. The re-
ciprocal of the period is the frequency of the motion,
which is the number of oscillations per second.

When an object moves with simple harmonic motion, its
acceleration as a function of position is

[13.2]

13.2 Elastic Potential Energy
The energy stored in a stretched or compressed spring or in
some other elastic material is called elastic potential energy:

[13.3]

The velocity of an object as a function of position, when
the object is moving with simple harmonic motion, is

[13.6]v � � √ k
m

 (A2 � x2)

PEs � 12kx2

a � �
k
m

 x
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450 Chapter 13 Vibrations and Waves

13.4 Position, Velocity, and Acceleration
as a Function of Time
The period of an object of mass m moving with simple har-
monic motion while attached to a spring of spring constant
k is

[13.8]

where T is independent of the amplitude A.
The frequency of an object– spring system is f � 1/T.

The angular frequency 
 of the system in rad/s is

[13.11]

When an object is moving with simple harmonic motion,
the position, velocity, and acceleration of the object as a
function of time are given by

x � A cos(2	ft) [13.14a]

v � � A
 sin(2	ft) [13.14b]

a � � A
2 cos(2	ft) [13.14c]

13.5 Motion of a Pendulum
A simple pendulum of length L moves with simple har-
monic motion for small angular displacements from the
vertical, with a period of

[13.15]

13.7 Waves
In a transverse wave the elements of the medium move in a
direction perpendicular to the direction of the wave. An
example is a wave on a stretched string.

T � 2	 √ L
g


 � 2	f � √ k
m

T � 2	 √ m
k

In a longitudinal wave the elements of the medium
move parallel to the direction of the wave velocity. An ex-
ample is a sound wave.

13.8 Frequency, Amplitude, 
and Wavelength
The relationship of the speed, wavelength, and frequency
of a wave is

v � f� [13.17]

This relationship holds for a wide variety of different
waves.

13.9 The Speed of Waves on Strings
The speed of a wave traveling on a stretched string of mass
per unit length � and under tension F is

[13.18]

13.10 Interference of Waves
The superposition principle states that if two or more
traveling waves are moving through a medium, the result-
ant wave is found by adding the individual waves to-
gether point by point. When waves meet crest to crest and
trough to trough, they undergo constructive interference.
When crest meets trough, the waves undergo destructive
interference.

13.11 Reflection of Waves
When a wave pulse reflects from a rigid boundary, the
pulse is inverted. When the boundary is free, the reflected
pulse is not inverted.

v � √ F
�

1. If one end of a heavy rope is attached to one end of a
light rope, the speed of a wave will change as the wave
goes from the heavy rope to the light one. Will the speed
increase or decrease? What happens to the frequency? To
the wavelength?

2. If a spring is cut in half, what happens to its spring con-
stant?

3. An object– spring system undergoes simple harmonic mo-
tion with an amplitude A. Does the total energy change if
the mass is doubled but the amplitude isn’t changed? Are
the kinetic and potential energies at a given point in its
motion affected by the change in mass? Explain.

4. The speed of sound in air as given in this chapter (343 m/s)
is an enormous speed compared to the speed of common
objects. Yet the speed of sound is of the same order of mag-
nitude as the rms speed of air molecules at 1 atmosphere
and 20�C as given by the kinetic theory of gases. Is this just a
remarkable coincidence? Explain.

5. An object is hung on a spring, and the frequency of oscil-
lation of the system, f, is measured. The object, a second
identical object, and the spring are carried to space in the
Space Shuttle. The two objects are attached to the ends of

the spring, and the system is taken out into space on a
space walk. The spring is extended, and the system is re-
leased to oscillate while floating in space. The coils of the
spring don’t bump into one another. What is the fre-
quency of oscillation for this system, in terms of f ?

6. If an object– spring system is hung vertically and set into
oscillation, why does the motion eventually stop?

7. Is a bouncing ball an example of simple harmonic mo-
tion? Is the daily movement of a student from home to
school and back simple harmonic motion?

8. If a pendulum clock keeps perfect time at the base of a
mountain, will it also keep perfect time when it is moved
to the top of the mountain? Explain.

9. A pendulum bob is made from a sphere filled with water.
What would happen to the frequency of vibration of this
pendulum if the sphere had a hole in it that allowed the
water to leak out slowly?

10. If a grandfather clock were running slow, how could we
adjust the length of the pendulum to correct the time?

11. A grandfather clock depends on the period of a pendulum
to keep correct time. Suppose such a clock is calibrated

CONCEPTUAL QUESTIONS
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correctly and then the temperature of the room in which it
resides increases. Does the clock run slow, fast, or correctly?
[Hint: A material expands when its temperature increases.]

12. If you stretch a rubber hose and pluck it, you can observe
a pulse traveling up and down the hose. What happens to
the speed of the pulse if you stretch the hose more
tightly? What happens to the speed if you fill the hose
with water?

13. In a long line of people waiting to buy tickets at a movie
theater, when the first person leaves, a pulse of motion oc-
curs as people step forward to fill in the gap. The gap
moves through the line of people. What determines the
speed of this pulse? Is it transverse or longitudinal? How
about the “wave” at a baseball game, where people in the
stands stand up and shout as the wave arrives at their loca-
tion (Fig. Q13.13) and the pulse moves around the
stadium—what determines the speed of this pulse? Is it
transverse or longitudinal?

14. As part of a physics open house, a department sets up a
bungee jump from the top of the physics building. As-
sume that one end of the elastic band will be firmly at-
tached to the top of the building and the other to the
waist of a courageous participant. The participant will step
off the edge of the building, to be slowed down and
brought back up by the elastic band before hitting the
ground. Estimate the length and spring constant of the
elastic you would recommend. (Question 14 is courtesy of
Edward F. Redish. For more questions of this type, see
http://www.physics.umd.edu/perg/.)

15. In mechanics, massless strings are often assumed. Why is
this not a good assumption when discussing waves on
strings?

16. What happens to the wavelength of a wave on a string
when the frequency is doubled? Assume that the tension
in the string remains the same.

17. Explain why the kinetic and potential energies of an
object– spring system can never be negative.

18. What happens to the speed of a wave on a string when the
frequency is doubled? Assume that the tension in the
string remains the same.

19. By what factor would you have to multiply the tension in a
stretched spring in order to double the wave speed?

20. The left end of a spring is attached to a wall, and its right
end is attached to a cart lying on a frictionless horizontal
surface. An experimenter pulls the cart away from the
wall and holds it there.
(a) What forces are acting on the spring? What is the total
force on the spring?
(b) What forces are acting on the cart? What is the total
force on the cart?
(c) If the cart is released, describe its motion. 

Figure Q13.13
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PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 13.1 Hooke’s Law
1. A 0.40-kg object is attached to a spring with force constant

160 N/m so that the object is allowed to move on a hori-
zontal frictionless surface. The object is released from rest
when the spring is compressed 0.15 m. Find (a) the force
on the object and (b) its acceleration at that instant.

2. A load of 50 N attached to a spring hanging vertically
stretches the spring 5.0 cm. The spring is now placed hor-
izontally on a table and stretched 11 cm. (a) What force is
required to stretch the spring by that amount? (b) Plot a
graph of force (on the y -axis) versus spring displacement
from the equilibrium position along the x -axis.

A ball dropped from a height of 4.00 m
makes a perfectly elastic collision with the ground. Assum-
ing that no mechanical energy is lost due to air resistance,
(a) show that the motion is periodic and (b) determine
the period of the motion. (c) Is the motion simple har-
monic? Explain.

3.

4. A small ball is set in horizontal motion by rolling it with a
speed of 3.00 m/s across a room 12.0 m long between two
walls. Assume that the collisions made with each wall are
perfectly elastic and that the motion is perpendicular to
the two walls. (a) Show that the motion is periodic and
determine its period. (b) Is the motion simple harmonic?
Explain.

5. A spring is hung from a ceiling, and an object attached to
its lower end stretches the spring by a distance of 5.00 cm
from its unstretched position when the system is in equi-
librium. If the spring constant is 47.5 N/m, determine the
mass of the object.

6. An archer must exert a force of 375 N on the bowstring
shown in Figure P13.6a (page 452) such that the string
makes an angle of � � 35.0� with the vertical. (a) Deter-
mine the tension in the bowstring. (b) If the applied force
is replaced by a stretched spring as in Figure P13.6b, and
the spring is stretched 30.0 cm from its unstretched
length, what is the spring constant?
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452 Chapter 13 Vibrations and Waves

Section 13.2 Elastic Potential Energy
A slingshot consists of a light leather cup containing a
stone. The cup is pulled back against two parallel rubber
bands. It takes a force of 15 N to stretch either one of
these bands 1.0 cm. (a) What is the potential energy
stored in the two bands together when a 50-g stone is
placed in the cup and pulled back 0.20 m from the equi-
librium position? (b) With what speed does the stone
leave the slingshot?

8. An archer pulls her bowstring back 0.400 m by exerting
a force that increases uniformly from zero to 230 N.
(a) What is the equivalent spring constant of the bow?
(b) How much work is done in pulling the bow?

9. A child’s toy consists of a piece of plastic attached to a
spring (Fig. P13.9). The spring is compressed against the
floor a distance of 2.00 cm, and the toy is released. If the
toy has a mass of 100 g and rises to a maximum height of
60.0 cm, estimate the force constant of the spring.

7.

13. A 10.0-g bullet is fired into, and embeds itself in, a 2.00-kg
block attached to a spring with a force constant of
19.6 N/m and whose mass is negligible. How far is the
spring compressed if the bullet has a speed of 300 m/s
just before it strikes the block and the block slides on a
frictionless surface? [Note: You must use conservation of
momentum in this problem. Why?]

14. A 1.5-kg block is attached to a spring with a spring
constant of 2 000 N/m. The spring is then stretched a
distance of 0.30 cm and the block is released from rest.
(a) Calculate the speed of the block as it passes through
the equilibrium position if no friction is present. (b) Cal-
culate the speed of the block as it passes through the equi-
librium position if a constant frictional force of 2.0 N
retards its motion. (c) What would be the strength of the
frictional force if the block reached the equilibrium posi-
tion the first time with zero velocity?

Section 13.3 Comparing Simple Harmonic Motion
with Uniform Circular Motion
Section 13.4 Position, Velocity, and Acceleration 
as a Function of Time
15. A 0.40-kg object connected to a light spring with a force

constant of 19.6 N/m oscillates on a frictionless horizon-
tal surface. If the spring is compressed 4.0 cm and re-
leased from rest, determine (a) the maximum speed of
the object, (b) the speed of the object when the spring is
compressed 1.5 cm, and (c) the speed of the object when
the spring is stretched 1.5 cm. (d) For what value of x
does the speed equal one-half the maximum speed?

16. An object– spring system oscillates with an amplitude of
3.5 cm. If the spring constant is 250 N/m and the object
has a mass of 0.50 kg, determine (a) the mechanical en-
ergy of the system, (b) the maximum speed of the object,
and (c) the maximum acceleration of the object.
At an outdoor market, a bunch of bananas is set into oscil-
latory motion with an amplitude of 20.0 cm on a spring
with a force constant of 16.0 N/m. It is observed that the
maximum speed of the bunch of bananas is 40.0 cm/s.
What is the weight of the bananas in newtons?

18. A 50.0-g object is attached to a horizontal spring with a
force constant of 10.0 N/m and released from rest with an
amplitude of 25.0 cm. What is the velocity of the object
when it is halfway to the equilibrium position if the sur-
face is frictionless?

19. While riding behind a car traveling at 3.00 m/s, you no-
tice that one of the car’s tires has a small hemispherical
bump on its rim, as in Figure P13.19. (a) Explain why the
bump, from your viewpoint behind the car, executes sim-
ple harmonic motion. (b) If the radius of the car’s tires is
0.30 m, what is the bump’s period of oscillation?

17.

(a)

θ

(b)

θ

k

Figure P13.6

Figure P13.9

10. An automobile having a mass of 1 000 kg is driven into a
brick wall in a safety test. The bumper behaves like a
spring with constant 5.00 � 106 N/m and is compressed
3.16 cm as the car is brought to rest. What was the speed
of the car before impact, assuming that no energy is lost
in the collision with the wall?

11. A simple harmonic oscillator has a total energy E. (a) De-
termine the kinetic and potential energies when the dis-
placement is one-half the amplitude. (b) For what value
of the displacement does the kinetic energy equal the po-
tential energy?

12. A 1.50-kg block at rest on a tabletop is attached to a
horizontal spring having constant 19.6 N/m, as in Figure
P13.12. The spring is initially unstretched. A constant
20.0-N horizontal force is applied to the object, causing
the spring to stretch. (a) Determine the speed of the
block after it has moved 0.300 m from equilibrium if the
surface between the block and tabletop is frictionless.

20.0 N

Figure P13.12

(b) Answer part (a) if the coefficient of kinetic friction be-
tween block and tabletop is 0.200.
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20. An object moves uniformly around a circular path of
radius 20.0 cm, making one complete revolution every
2.00 s. What are (a) the translational speed of the object,
(b) the frequency of motion in hertz, and (c) the angular
speed of the object?

21. Consider the simplified single-piston engine in Figure
P13.21. If the wheel rotates at a constant angular speed 
,
explain why the piston rod oscillates in simple harmonic
motion.

5.00 N/m. The object is displaced 3.00 m to the right from
its equilibrium position and then released, initiating simple
harmonic motion. (a) What is the force (magnitude and
direction) acting on the object 3.50 s after it is released?
(b) How many times does the object oscillate in 3.50 s?

28. A spring of negligible mass stretches 3.00 cm from its re-
laxed length when a force of 7.50 N is applied. A 0.500-kg
particle rests on a frictionless horizontal surface and is at-
tached to the free end of the spring. The particle is pulled
horizontally so that it stretches the spring 5.00 cm and is
then released from rest at t � 0. (a) What is the force con-
stant of the spring? (b) What are the angular frequency 
,
the frequency, and the period of the motion? (c) What is
the total energy of the system? (d) What is the amplitude
of the motion? (e) What are the maximum velocity and
the maximum acceleration of the particle? (f) Determine
the displacement x of the particle from the equilibrium
position at t � 0.500 s.

Given that x � A cos (
t) is a sinusoidal
function of time, show that v (velocity) and a (accelera-
tion) are also sinusoidal functions of time. [Hint: Use
Equations 13.6 and 13.2.]

Section 13.5 Motion of a Pendulum
30. A man enters a tall tower, needing to know its height. He

notes that a long pendulum extends from the ceiling al-
most to the floor and that its period is 15.5 s. (a) How tall
is the tower? (b) If this pendulum is taken to the Moon,
where the free-fall acceleration is 1.67 m/s2, what is the
period there?

31. A simple 2.00-m-long pendulum oscillates at a location
where g � 9.80 m/s2. How many complete oscillations
does it make in 5.00 min?

32. An aluminum clock pendulum having a period of 1.00 s
keeps perfect time at 20.0�C. (a) When placed in a room
at a temperature of � 5.0�C, will it gain time or lose time?
(b) How much time will it gain or lose every hour? [Hint:
See Chapter 10.]

33. A pendulum clock that works perfectly on Earth is taken
to the Moon. (a) Does it run fast or slow there? (b) If the
clock is started at 12:00 midnight, what will it read after
one Earth day (24.0 h)? Assume that the free-fall accelera-
tion on the Moon is 1.63 m/s2.

34. A simple pendulum is 5.00 m long. (a) What is the period
of simple harmonic motion for this pendulum if it is
located in an elevator accelerating upward at 5.00 m/s2?
(b) What is its period if the elevator is accelerating down-
ward at 5.00 m/s2? (c) What is the period of simple har-
monic motion for the pendulum if it is placed in a truck
that is accelerating horizontally at 5.00 m/s2?
The free-fall acceleration on Mars is 3.7 m/s2. (a) What
length of pendulum has a period of 1 s on Earth? What
length of pendulum would have a 1-s period on Mars?
(b) An object is suspended from a spring with force con-
stant 10 N/m. Find the mass suspended from this spring
that would result in a period of 1 s on Earth and on Mars.

Section 13.6 Damped Oscillations
Section 13.7 Waves
Section 13.8 Frequency, Amplitude, and Wavelength
36. A cork on the surface of a pond bobs up and down two

times per second on ripples having a wavelength of

35.

29.

Bump

Figure P13.19

Piston

A

x = �A x(t )

v

Figure P13.21

22. The frequency of vibration of an object– spring system is
5.00 Hz when a 4.00-g mass is attached to the spring.
What is the force constant of the spring?
A spring stretches 3.9 cm when a 10-g object is hung from
it. The object is replaced with a block of mass 25 g that os-
cillates in simple harmonic motion. Calculate the period
of motion.

24. When four people with a combined mass of 320 kg sit
down in a car, they find that the car drops 0.80 cm lower
on its springs. Then they get out of the car and bounce it
up and down. What is the frequency of the car’s vibration
if its mass (when it is empty) is 2.0 � 103 kg?

25. A cart of mass 250 g is placed on a frictionless horizontal
air track. A spring having a spring constant of 9.5 N/m is
attached between the cart and the left end of the track.
When in equilibrium, the cart is located 12 cm from the
left end of the track. If the cart is displaced 4.5 cm from
its equilibrium position, find (a) the period at which it os-
cillates, (b) its maximum speed, and (c) its speed when it
is 14 cm from the left end of the track.

26. The motion of an object is described by the equation

Find (a) the position of the object at t � 0 and t � 0.60 s,
(b) the amplitude of the motion, (c) the frequency of the
motion, and (d) the period of the motion.

27. A 2.00-kg object on a frictionless horizontal track is attached
to the end of a horizontal spring whose force constant is

x � (0.30 m) cos � 	t
3 �

23.
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8.50 cm. If the cork is 10.0 m from shore, how long does it
take a ripple passing the cork to reach the shore?

37. A wave traveling in the positive x -direction has a fre-
quency of 25.0 Hz, as in Figure P13.37. Find the (a) am-
plitude, (b) wavelength, (c) period, and (d) speed of the
wave.

38. A bat can detect small objects, such as an insect, whose
size is approximately equal to one wavelength of the
sound the bat makes. If bats emit a chirp at a frequency of
60.0 kHz, and if the speed of sound in air is 340 m/s, what
is the smallest insect a bat can detect?

39. If the frequency of oscillation of the wave emitted by an
FM radio station is 88.0 MHz, determine (a) the wave’s
period of vibration and (b) its wavelength. (Radio waves
travel at the speed of light, 3.00 � 108 m/s.)

40. The distance between two successive maxima of a trans-
verse wave is 1.20 m. Eight crests, or maxima, pass a given
point along the direction of travel every 12.0 s. Calculate
the wave speed.

41. A harmonic wave is traveling along a rope. It is observed
that the oscillator that generates the wave completes
40.0 vibrations in 30.0 s. Also, a given maximum travels
425 cm along the rope in 10.0 s. What is the wavelength?
Ocean waves are traveling to the east at 4.0 m/s with a dis-
tance of 20 m between crests. With what frequency do the
waves hit the front of a boat (a) when the boat is at anchor
and (b) when the boat is moving westward at 1.0 m/s?

Section 13.9 The Speed of Waves on Strings
43. A phone cord is 4.00 m long and has a mass of 0.200 kg. A

transverse wave pulse is produced by plucking one end of
the taut cord. The pulse makes four trips down and back
along the cord in 0.800 s. What is the tension in the cord?

44. A circus performer stretches a tightrope between two tow-
ers. He strikes one end of the rope and sends a wave
along it toward the other tower. He notes that it takes the
wave 0.800 s to reach the opposite tower, 20.0 m away. If a
1-m length of the rope has a mass of 0.350 kg, find the
tension in the tightrope.

45. Transverse waves with a speed of 50.0 m/s are to be pro-
duced on a stretched string. A 5.00-m length of string
with a total mass of 0.060 0 kg is used. (a) What is the re-
quired tension in the string? (b) Calculate the wave speed
in the string if the tension is 8.00 N.

46. An astronaut on the Moon wishes to measure the local value
of g by timing pulses traveling down a wire that has a large
object suspended from it. Assume a wire of mass 4.00 g is
1.60 m long and has a 3.00-kg object suspended from it. A
pulse requires 36.1 ms to traverse the length of the wire.
Calculate gMoon from these data. (You may neglect the mass
of the wire when calculating the tension in it.)

42.

A simple pendulum consists of a ball of
mass 5.00 kg hanging from a uniform string of mass
0.0600 kg and length L. If the period of oscillation of the
pendulum is 2.00 s, determine the speed of a transverse
wave in the string when the pendulum hangs vertically.

48. A string is 50.0 cm long and has a mass of 3.00 g. A wave
travels at 5.00 m/s along this string. A second string has
the same length, but half the mass of the first. If the two
strings are under the same tension, what is the speed of a
wave along the second string?

49. Tension is maintained in a string as in Figure P13.49. The
observed wave speed is 24 m/s when the suspended mass
is 3.0 kg. (a) What is the mass per unit length of the
string? (b) What is the wave speed when the suspended
mass is 2.0 kg?

47.

18.0 cm

10.0 cm

Figure P13.37

3.0 kg

Figure P13.49

The elastic limit of a piece of steel wire is 2.70 � 109 Pa.
What is the maximum speed at which transverse wave
pulses can propagate along the wire without exceeding its
elastic limit? (The density of steel is 7.86 � 103 kg/m3.)

51. Transverse waves travel at 20.0 m/s on a string that is un-
der a tension of 6.00 N. What tension is required for a
wave speed of 30.0 m/s in the string?

Section 13.10 Interference of Waves
Section 13.11 Reflection of Waves
52. A series of pulses of amplitude 0.15 m is sent down a

string that is attached to a post at one end. The pulses are
reflected at the post and travel back along the string with-
out loss of amplitude. What is the amplitude at a point on
the string where two pulses are crossing (a) if the string is
rigidly attached to the post? (b) if the end at which reflec-
tion occurs is free to slide up and down?

53. A wave of amplitude 0.30 m interferes with a second wave
of amplitude 0.20 m traveling in the same direction. What
are (a) the largest and (b) the smallest resultant ampli-
tudes that can occur, and under what conditions will these
maxima and minima arise?

ADDITIONAL PROBLEMS

54. The position of a 0.30-kg object attached to a spring is
described by 

x � (0.25 m) cos(0.4	t)

Find (a) the amplitude of the motion, (b) the spring
constant, (c) the position of the object at t � 0.30 s, and
(d) the object’s speed at t � 0.30 s.
A large block P executes horizontal simple harmonic
motion as it slides across a frictionless surface with a

55.

50.
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56. A 500-g block is released from rest and slides down a fric-
tionless track that begins 2.00 m above the horizontal, as
shown in Figure P13.56. At the bottom of the track, where
the surface is horizontal, the block strikes and sticks to a
light spring with a spring constant of 20.0 N/m. Find the
maximum distance the spring is compressed.

57. A 3.00-kg object is fastened to a light spring, with the in-
tervening cord passing over a pulley (Fig. P13.57). The
pulley is frictionless, and its inertia may be neglected. The
object is released from rest when the spring is un-
stretched. If the object drops 10.0 cm before stopping,
find (a) the spring constant of the spring and (b) the
speed of the object when it is 5.00 cm below its starting
point.

58. A 5.00-g bullet moving with an initial speed of 400 m/s is
fired into and passes through a 1.00-kg block, as in Figure
P13.58. The block, initially at rest on a frictionless hori-
zontal surface, is connected to a spring with a spring con-
stant of 900 N/m. If the block moves 5.00 cm to the right
after impact, find (a) the speed at which the bullet
emerges from the block and (b) the mechanical energy
lost in the collision.

59. A 25-kg block is connected to a 30-kg block by a light
string that passes over a frictionless pulley. The 30-kg
block is connected to a light spring of force constant
200 N/m, as in Figure P13.59. The spring is unstretched
when the system is as shown in the figure, and the incline
is smooth. The 25-kg block is pulled 20 cm down the in-
cline (so that the 30-kg block is 40 cm above the floor)
and is released from rest. Find the speed of each block
when the 30-kg block is 20 cm above the floor (that is,
when the spring is unstretched).

60. A spring in a toy gun has a spring constant of 9.80 N/m
and can be compressed 20.0 cm beyond the equilibrium
position. A 1.00-g pellet resting against the spring is pro-
pelled forward when the spring is released. (a) Find the
muzzle speed of the pellet. (b) If the pellet is fired hori-
zontally from a height of 1.00 m above the floor, what is
its range?

61. A 2.00-kg block hangs without vibrating at the end of a
spring (k � 500 N/m) that is attached to the ceiling of an
elevator car. The car is rising with an upward acceleration
of g/3 when the acceleration suddenly ceases (at t � 0).
(a) What is the angular frequency of oscillation of the
block after the acceleration ceases? (b) By what amount is
the spring stretched during the time that the elevator car
is accelerating? This distance will be the amplitude of the
ensuing oscillation of the block.

62. An object of mass m is connected to two rubber bands of
length L, each under tension F, as in Figure P13.62. The
object is displaced vertically by a small distance y. Assum-
ing the tension does not change, show that (a) the restor-
ing force is �(2F/L)y and (b) the system exhibits simple
harmonic motion with an angular frequency .
 � √2F/mL

frequency f � 1.50 Hz. Block B rests on it, as shown in
Figure P13.55, and the coefficient of static friction be-
tween the two is �s � 0.600. What maximum amplitude of
oscillation can the system have if block B is not to slip?

B

P

ms

Figure P13.55

k2.00 m

500 g

Figure P13.56

3.00 kg

k

Figure P13.57

400 m/s

5.00 cm v

Figure P13.58

25 kg

40°

30 kg

20 cm

Figure P13.59
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A light balloon filled with helium of density 0.180 kg/m3

is tied to a light string of length L � 3.00 m. The string is
tied to the ground, forming an “inverted” simple pendu-
lum (Fig. P13.63a). If the balloon is displaced slightly
from equilibrium, as in Figure P13.63b, show that the mo-
tion is simple harmonic, and determine the period of the
motion. Take the density of air to be 1.29 kg/m3. [Hint:
Use an analogy with the simple pendulum discussed in
the text, and see Chapter 9.]

63.

64. A light string of mass 10.0 g and length L � 3.00 m has its
ends tied to two walls that are separated by the distance
D � 2.00 m. Two objects, each of mass M � 2.00 kg, are
suspended from the string as in Figure P13.64. If a wave
pulse is sent from point A, how long does it take to travel
to point B?

65. Assume that a hole is drilled through the center of the
Earth. It can be shown that an object of mass m at a distance
r from the center of the Earth is pulled toward the center
only by the material in the shaded portion of Figure P13.65.

Assume Earth has a uniform density �. Write down Newton’s
law of gravitation for an object at a distance r from the cen-
ter of the Earth, and show that the force on it is of the form
of Hooke’s law, F � � kr, with an effective force constant of

, where G is the gravitational constant.
66. A 60.0-kg firefighter slides down a pole while a constant fric-

tional force of 300 N retards his motion. A horizontal 
20.0-kg platform is supported by a spring at the bottom of
the pole to cushion the fall. The firefighter starts from rest
5.00 m above the platform, and the spring constant is
2500 N/m. Find (a) the firefighter’s speed just before he
collides with the platform and (b) the maximum distance
the spring is compressed. Assume that the frictional force
acts during the entire motion. [Hint: The collision between
the firefighter and the platform is perfectly inelastic.]

An object of mass m1 � 9.0 kg is in
equilibrium while connected to a light spring of constant
k � 100 N/m that is fastened to a wall, as in Figure
P13.67a. A second object, of mass m2 � 7.0 kg, is slowly
pushed up against m1, compressing the spring by the
amount A � 0.20 m, as shown in Figure P13.67b. The sys-
tem is then released, causing both objects to start moving
to the right on the frictionless surface. (a) When m1
reaches the equilibrium point, m2 loses contact with m1
(Fig. P13.67c) and moves to the right with velocity . De-
termine the magnitude of . (b) How far apart are the
objects when the spring is fully stretched for the first time
(Fig. P13.67d)? [Hint: First determine the period of oscil-
lation and the amplitude of the m1–spring system after m2
loses contact with m1.]

v:
v:

67.
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Figure P13.67

68. An 8.00-kg block travels on a rough horizontal surface
and collides with a spring. The speed of the block just
before the collision is 4.00 m/s. As it rebounds to the
left with the spring uncompressed, the block travels at
3.00 m/s. If the coefficient of kinetic friction between the
block and the surface is 0.400, determine (a) the loss in
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mechanical energy due to friction while the block is in
contact with the spring and (b) the maximum distance
the spring is compressed.

69. Two points, A and B, on Earth are at the same longitude
and 60.0� apart in latitude. An earthquake at point A
sends two waves toward B. A transverse wave travels along
the surface of Earth at 4.50 km/s, and a longitudinal wave
travels through Earth at 7.80 km/s. (a) Which wave ar-
rives at B first? (b) What is the time difference between
the arrivals of the two waves at B? Take the radius of Earth
to be 6.37 � 106 m.

70. Figure P13.70 shows a crude model of an insect wing. The
mass m represents the entire mass of the wing, which
pivots about the fulcrum F. The spring represents the
surrounding connective tissue. Motion of the wing corre-
sponds to vibration of the spring. Suppose the mass of the
wing is 0.30 g and the effective spring constant of the tis-
sue is 4.7 � 10�4 N/m. If the mass m moves up and down
a distance of 2.0 mm from its position of equilibrium,
what is the maximum speed of the outer tip of the wing?

ACTIVITIES

A.1. Construct a simple pendulum by tying a metal bolt to one
end of a string and taping the other end to the top of a
doorframe. Adjust the length of the pendulum to be
about 1.0 m, and measure it precisely. Obtain the period
by timing 25 complete oscillations, making sure the string
always makes small angles with the vertical. Repeat the
measurements for precisely measured pendulum lengths
ranging from 0.4 m to 1.6 m in increments of 0.2 m. Plot
the square of the period versus the length of the pendu-
lum and measure the slope of the line best fitting your
data points. Does your slope agree with that predicted by
T 2 � (4	2/g)L? What value of g do you obtain from your
data?

While you have your pendulum in position, use a proce-
dure similar to the preceding to verify that the period is
also independent of the amplitude for small angles and
that the period is also independent of the mass.

A.2. Attach one end of a rope (or a spring such as a Slinky™)
to a wall, stretch it taut, and use the system to study the
following aspects of wave motion:
(a) Send a pulse down the rope by striking it sharply from
the side. An observer watching from the side can measure
the time elapsed during 3–5 trips of the pulse from one
end to the other. Dividing the total distance traveled by
the elapsed time yields the wave speed. To get reliable re-
sults, take a number of readings and average them.
(b) Use the same setup as in part (a) to test whether the
initial amplitude of the pulse changes the wave speed.
(c) Have two people hold opposite ends of the rope (or
spring). Then, at the same instant, have both people hit
the rope sharply from the side. Observe what happens
when the two pulses meet. The superposition lasts only
for the short time that the pulses overlap, and you must
look carefully to see the effect.
(d) Using the same setup, devise a way to check whether
pulses traveling toward one another pass through when
they collide or reflect off each other.
(e) Tie one end of a rope to a doorknob and send a pulse
down it. Observe what happens when the pulse reflects
from the door. Does it return on the same side of the
rope, or does it invert?

1.50 cm3.00 mm

m

F

Figure P13.70

71. A 1.6-kg block on a horizontal surface is attached to a
spring with a force constant of 1.0 � 103 N/m, as in
Active Figure 13.1. The spring is compressed a distance of
2.0 cm, and the block is released from rest. (a) Calculate
the speed of the block as it passes through the equilib-
rium position, x � 0, if the surface is frictionless. (b) Cal-
culate the speed of the block as it passes through the equi-
librium position if a constant frictional force of 4.0 N
retards its motion. (c) How far does the block travel be-
fore coming to rest in part (b)?
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Sound waves are the most important example of longitudinal waves. In this chapter we dis-
cuss the characteristics of sound waves: how they are produced, what they are, and how they
travel through matter. We then investigate what happens when sound waves interfere with
each other. The insights gained in this chapter will help you understand how we hear.

14.1 PRODUCING A SOUND WAVE
Whether it conveys the shrill whine of a jet engine or the soft melodies of a
crooner, any sound wave has its source in a vibrating object. Musical instruments
produce sounds in a variety of ways. The sound of a clarinet is produced by a
vibrating reed, the sound of a drum by the vibration of the taut drumhead, the
sound of a piano by vibrating strings, and the sound from a singer by vibrating vo-
cal cords.

Sound waves are longitudinal waves traveling through a medium, such as air. In
order to investigate how sound waves are produced, we focus our attention on the
tuning fork, a common device for producing pure musical notes. A tuning fork
consists of two metal prongs, or tines, that vibrate when struck. Their vibration dis-
turbs the air near them, as shown in Figure 14.1. (The amplitude of vibration of
the tine shown in the figure has been greatly exaggerated for clarity.) When a tine
swings to the right, as in Figure 14.1a, the molecules in an element of air in front
of its movement are forced closer together than normal. Such a region of high mo-
lecular density and high air pressure is called a compression. This compression

The characteristic sound of any
instrument is referred to as the
quality of that sound. What is it about
the sound from the tuba that allows
us to distinguish between it and the
sound from a flute?
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moves away from the fork like a ripple on a pond. When the tine swings to the left,
as in Figure 14.1b, the molecules in an element of air to the right of the
tine spread apart, and the density and air pressure in this region are then lower
than normal. Such a region of reduced density is called a rarefaction (pronounced
“rare a fak’ shun”). Molecules to the right of the rarefaction in the figure move to
the left. The rarefaction itself therefore moves to the right, following the previ-
ously produced compression.

As the tuning fork continues to vibrate, a succession of compressions and rar-
efactions forms and spreads out from it. The resultant pattern in the air is some-
what like that pictured in Figure 14.2a. We can use a sinusoidal curve to represent
a sound wave, as in Figure 14.2b. Notice that there are crests in the sinusoidal wave
at the points where the sound wave has compressions and troughs where the
sound wave has rarefactions. The compressions and rarefactions of the sound
waves are superposed on the random thermal motion of the atoms and molecules
of the air (discussed in Chapter 10), so sound waves in gases travel at about the
molecular rms speed.

14.2 CHARACTERISTICS OF SOUND WAVES
As already noted, the general motion of elements of air near a vibrating object is
back and forth between regions of compression and rarefaction. This back-and-
forth motion of elements of the medium in the direction of the disturbance is
characteristic of a longitudinal wave. The motion of the elements of the medium
in a longitudinal sound wave is back and forth along the direction in which the
wave travels. By contrast, in a transverse wave, the vibrations of the elements of
the medium are at right angles to the direction of travel of the wave.

Categories of Sound Waves
Sound waves fall into three categories covering different ranges of frequencies.
Audible waves are longitudinal waves that lie within the range of sensitivity of the
human ear, approximately 20 to 20 000 Hz. Infrasonic waves are longitudinal
waves with frequencies below the audible range. Earthquake waves are an exam-
ple. Ultrasonic waves are longitudinal waves with frequencies above the audible
range for humans and are produced by certain types of whistles. Animals such as
dogs can hear the waves emitted by these whistles.

Applications of Ultrasound
Ultrasonic waves are sound waves with frequencies greater than 20 kHz. Because of
their high frequency and corresponding short wavelengths, ultrasonic waves can
be used to produce images of small objects and are currently in wide use in med-
ical applications, both as a diagnostic tool and in certain treatments. Internal or-
gans can be examined via the images produced by the reflection and absorption of
ultrasonic waves. Although ultrasonic waves are far safer than x-rays, their images
don’t always have as much detail. Certain organs, however, such as the liver and
the spleen, are invisible to x-rays but can be imaged with ultrasonic waves.

(c)

Low-density
region

(b)

High-density
region

(a)

Figure 14.1 A vibrating tuning
fork. (a) As the right tine of the fork
moves to the right, a high-density
region (compression) of air is formed
in front of its movement. (b) As the
right tine moves to the left, a 
low-density region (rarefaction) of air
is formed behind it. (c) A tuning
fork. 
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Figure 14.2 (a) As the tuning fork
vibrates, a series of compressions and
rarefactions moves outward, away
from the fork. (b) The crests of the
wave correspond to compressions,
the troughs to rarefactions.

A P P L I C AT I O N
Medical Uses of Ultrasound
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Medical workers can measure the speed of the blood flow in the body with a de-
vice called an ultrasonic flow meter, which makes use of the Doppler effect (dis-
cussed in Section 14.6). The flow speed is found by comparing the frequency of
the waves scattered by the flowing blood with the incident frequency.

Figure 14.3 illustrates the technique that produces ultrasonic waves for clinical
use. Electrical contacts are made to the opposite faces of a crystal, such as quartz
or strontium titanate. If an alternating voltage of high frequency is applied to
these contacts, the crystal vibrates at the same frequency as the applied voltage,
emitting a beam of ultrasonic waves. At one time, a technique like this was used to
produce sound in nearly all headphones. This method of transforming electrical
energy into mechanical energy, called the piezoelectric effect, is reversible: If
some external source causes the crystal to vibrate, an alternating voltage is pro-
duced across it. A single crystal can therefore be used to both generate and receive
ultrasonic waves.

The primary physical principle that makes ultrasound imaging possible is the
fact that a sound wave is partially reflected whenever it is incident on a boundary
between two materials having different densities. If a sound wave is traveling in a
material of density �i and strikes a material of density �t, the percentage of the in-
cident sound wave intensity reflected, PR , is given by

This equation assumes that the direction of the incident sound wave is perpen-
dicular to the boundary and that the speed of sound is approximately the same in
the two materials. The latter assumption holds very well for the human body be-
cause the speed of sound doesn’t vary much in the organs of the body.

Physicians commonly use ultrasonic waves to observe fetuses. This technique
presents far less risk than do x-rays, which deposit more energy in cells and can
produce birth defects. First the abdomen of the mother is coated with a liquid,
such as mineral oil. If this were not done, most of the incident ultrasonic waves
from the piezoelectric source would be reflected at the boundary between the air
and the mother’s skin. Mineral oil has a density similar to that of skin, and a very
small fraction of the incident ultrasonic wave is reflected when �i � �t. The ultra-
sound energy is emitted in pulses rather than as a continuous wave, so the same
crystal can be used as a detector as well as a transmitter. An image of the fetus is
obtained by using an array of transducers placed on the abdomen. The reflected
sound waves picked up by the transducers are converted to an electric signal,
which is used to form an image on a fluorescent screen. Difficulties such as the
likelihood of spontaneous abortion or of breech birth are easily detected with this
technique. Fetal abnormalities such as spina bifida and water on the brain are also
readily observed.

A relatively new medical application of ultrasonics is the cavitron ultrasonic surgi-
cal aspirator (CUSA). This device has made it possible to surgically remove brain tu-
mors that were previously inoperable. The probe of the CUSA emits ultrasonic
waves (at about 23 kHz) at its tip. When the tip touches a tumor, the part of the tu-
mor near the probe is shattered and the residue can be sucked up (aspirated)
through the hollow probe. Using this technique, neurosurgeons are able to re-
move brain tumors without causing serious damage to healthy surrounding tissue.

Ultrasound is also used to break up kidney stones that are otherwise too large to
pass. Previously, invasive surgery was more often required.

Another interesting application of ultrasound is the ultrasonic ranging unit
used in some cameras to provide an almost instantaneous measurement of the dis-
tance between the camera and the object to be photographed. The principal com-
ponent of this device is a crystal that acts as both a loudspeaker and a microphone.
A pulse of ultrasonic waves is transmitted from the transducer to the object, which
then reflects part of the signal, producing an echo that is detected by the device.
The time interval between the outgoing pulse and the detected echo is electroni-
cally converted to a distance, because the speed of sound is a known quantity.

PR � � �i � �t

�i � �t
�

2
� 100

Electrical
connections

Crystal

Direction of 
vibration

Figure 14.3 An alternating voltage
applied to the faces of a piezoelectric
crystal causes the crystal to vibrate.

An ultrasound image of a human
fetus in the womb. 
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for Cameras
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14.3 THE SPEED OF SOUND
The speed of a sound wave in a fluid depends on the fluid’s compressibility and in-
ertia. If the fluid has a bulk modulus B and an equilibrium density �, the speed of
sound in it is

[14.1]

Equation 14.1 also holds true for a gas. Recall from Chapter 9 that the bulk modu-
lus is defined as the ratio of the change in pressure, �P, to the resulting fractional
change in volume, �V/V :

[14.2]

B is always positive because an increase in pressure (positive �P) results in a de-
crease in volume. Hence, the ratio �P/�V is always negative.

It’s interesting to compare Equation 14.1 with Equation 13.18 for the speed of
transverse waves on a string, , discussed in Chapter 13. In both cases, the
wave speed depends on an elastic property of the medium (B or F ) and on an in-
ertial property of the medium (� or �). In fact, the speed of all mechanical waves
follows an expression of the general form

Another example of this general form is the speed of a longitudinal wave in a
solid rod, which is

[14.3]

where Y is the Young’s modulus of the solid (see Eqn. 9.3), and � is its density. This
expression is valid only for a thin, solid rod.

Table 14.1 lists the speeds of sound in various media. The speed of sound is
much higher in solids than in gases, because the molecules in a solid interact
more strongly with each other than do molecules in a gas. Striking a long steel rail
with a hammer, for example, produces two sound waves, one moving through the
rail and a slower wave moving through the air. A student with an ear pressed
against the rail first hears the faster sound moving through the rail, then the
sound moving through air. In general, sound travels faster through solids than liq-
uids and faster through liquids than gases, although there are exceptions.

The speed of sound also depends on the temperature of the medium. For
sound traveling through air, the relationship between the speed of sound and tem-
perature is

[14.4]

where 331 m/s is the speed of sound in air at 0�C and T is the absolute (Kelvin)
temperature. Using this equation the speed of sound in air at 293 K (a typical
room temperature) is approximately 343 m/s.

v � (331 m/s) √ T
273 K

v � √ Y
�

v � √ elastic property
inertial property

v � √F/�

B � � 
�P

�V/V

v � √ B
�

� Speed of sound in a fluid

TABLE 14.1
Speeds of Sound in Various
Media
Medium v (m/s)

Gases
Air (0�C) 331
Air (100�C) 386
Hydrogen (0�C) 1 290
Oxygen (0�C) 317
Helium (0�C) 972

Liquids at 25�C
Water 1 490
Methyl alcohol 1 140
Sea water 1 530

Solids
Aluminum 5 100
Copper 3 560
Iron 5 130
Lead 1 320
Vulcanized rubber 54

Which of the following actions will increase the speed of sound in air? (a) decreas-
ing the air temperature (b) increasing the frequency of the sound (c) increasing
the air temperature (d) increasing the amplitude of the sound wave (e) reducing
the pressure of the air.

Quick Quiz 14.1
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How does lightning produce thunder, and what causes
the extended rumble?

Explanation Assume that you’re at ground level, and
neglect ground reflections. When lightning strikes, a
channel of ionized air carries a large electric current
from a cloud to the ground. This results in a rapid
temperature increase of the air in the channel as the
current moves through it, causing a similarly rapid ex-
pansion of the air. The expansion is so sudden and so
intense that a tremendous disturbance is produced in

the air—thunder. The entire length of the channel
produces the sound at essentially the same instant of
time. Sound produced at the bottom of the channel
reaches you first, because that’s the point closest to
you. Sounds from progressively higher portions of the
channel reach you at later times, resulting in an ex-
tended roar. If the lightning channel were a perfectly
straight line, the roar might be steady, but the zigzag
shape of the path results in the rumbling variation in
loudness, with different quantities of sound energy
from different segments arriving at any given instant.

Applying Physics 14.1 The Sounds Heard During a Storm

INTERACTIVE EXAMPLE 14.1 Sound Waves in Various Media
Goal Calculate and compare the speeds of sound in different media.

Problem (a) If a solid bar of aluminum 1.00 m long is struck at one end with a hammer, a longitudinal pulse propa-
gates down the bar. Find the speed of sound in the bar, which has a Young’s modulus of 7.0 � 1010 Pa and a density
of 2.7 � 103 kg/m3. (b) Calculate the speed of sound in ethyl alcohol, which has a density of 806 kg/m3 and bulk
modulus of 1.0 � 109 Pa. (c) Compute the speed of sound in air at 35.0�C.

Strategy Substitute the given values into the appropriate equations.

Solution
(a) Compute the speed of sound in an aluminum bar.

Substitute values into Equation 14.3:

� 5  100 m/s, or about 11  000 mi/h !

vAl � √ Y
�

� √ 7.0 � 1010 Pa
2.7 � 103 kg/m3

(b) Compute the speed of sound in ethyl alcohol.

Substitute values into Equation 14.1: 1.1 � 103 m/sv � √ B
�

� √ 1.0 � 109 Pa
806 kg/m3 �

(c) Compute the speed of sound in air at 35.0�C.

Substitute values into Equation 14.4: 352 m/sv � (331 m/s) √ (273 K � 35.0 K)
273 K

�

Remark The speed of sound in aluminum is dramatically higher than in either liquid alcohol or air.

Exercise 14.1
Compute the speed of sound in the following substances at 273 K: (a) lead (Y � 1.6 � 1010 Pa), (b) mercury 
(B � 2.8 � 1010 Pa), and (c) air at �15.0�C.

Answers (a) 1.2 � 103 m/s (b) 1.4 � 103 m/s (c) 322 m/s

You can compare the speeds of sound through various media by logging into PhysicsNow at www.cp7e.com and going
to Interactive Example 14.1.

44337_14_p458-496  11/4/04  8:30 AM  Page 462



14.4 Energy and Intensity of Sound Waves 463

14.4 ENERGY AND INTENSITY OF SOUND WAVES
As the tines of a tuning fork move back and forth through the air, they exert a
force on a layer of air and cause it to move. In other words, the tines do work on
the layer of air. The fact that the fork pours sound energy into the air is one of
the reasons the vibration of the fork slowly dies out. (Other factors, such as the
energy lost to friction as the tines bend, are also responsible for the lessening of
movement.)

The average intensity I of a wave on a given surface is defined as the rate
at which energy flows through the surface, �E/�t, divided by the surface
area A:

[14.5]

where the direction of energy flow is perpendicular to the surface at every
point.

SI unit: watt per meter squared (W/m2)

A rate of energy transfer is power, so Equation 14.5 can be written in the alter-
nate form

[14.6]

where � is the sound power passing through the surface, measured in watts, and
the intensity again has units of watts per square meter.

The faintest sounds the human ear can detect at a frequency of 1 000 Hz have
an intensity of about 1 � 10�12 W/m2. This intensity is called the threshold
of hearing. The loudest sounds the ear can tolerate have an intensity of about
1 W/m2 (the threshold of pain). At the threshold of hearing, the increase in pres-
sure in the ear is approximately 3 � 10�5 Pa over normal atmospheric pressure.
Because atmospheric pressure is about 1 � 105 Pa, this means the ear can detect
pressure fluctuations as small as about 3 parts in 1010! The maximum displace-
ment of an air molecule at the threshold of hearing is about 1 � 10�11 m—a re-
markably small number! If we compare this displacement with the diameter of a
molecule (about 10�10 m), we see that the ear is an extremely sensitive detector of
sound waves.

The loudest sounds the human ear can tolerate at 1 kHz correspond to a pres-
sure variation of about 29 Pa away from normal atmospheric pressure, with a maxi-
mum displacement of air molecules of 1 � 10�5 m.

Intensity Level in Decibels
The loudest tolerable sounds have intensities about 1.0 � 1012 times greater than
the faintest detectable sounds. The most intense sound, however, isn’t perceived as
being 1.0 � 1012 times louder than the faintest sound, because the sensation of
loudness is approximately logarithmic in the human ear. (For a review of loga-
rithms, see Section A.3, heading G, in Appendix A.) The relative intensity of a
sound is called the intensity level or decibel level, defined by

[14.7]

The constant I0 � 1.0 � 10�12 W/m2 is the reference intensity, the sound intensity
at the threshold of hearing— I is the intensity, and 	 is the corresponding intensity

	 � 10 log  � I
I0
�

I � 
power
area

�
�

A

I � 
1
A

 
�E
�t

� Intensity of a wave

� Intensity level
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level measured in decibels (dB). (The word decibel, which is one-tenth of a bel,
comes from the name of the inventor of the telephone, Alexander Graham Bell
(1847–1922).

To get a feel for various decibel levels, we can substitute a few representative
numbers into Equation 14.7, starting with I � 1.0 � 10�12 W/m2:

From this result, we see that the lower threshold of human hearing has been 
chosen to be zero on the decibel scale. Progressing upward by powers of ten yields

Notice the pattern: Multiplying a given intensity by ten adds 10 db to the intensity
level. This pattern holds throughout the decibel scale. For example, a 50-dB sound
is 10 times as intense as a 40-dB sound, while a 60-dB sound is 100 times as intense
as a 40-dB sound.

On this scale, the threshold of pain (I � 1.0 W/m2) corresponds to an intensity
level of 	 � 10 log(1/1 � 10�12) � 10 log(1012) � 120 dB. Nearby jet airplanes
can create intensity levels of 150 dB, and subways and riveting machines have lev-
els of 90 to 100 dB. The electronically amplified sound heard at rock concerts can
attain levels of up to 120 dB, the threshold of pain. Exposure to such high inten-
sity levels can seriously damage the ear. Earplugs are recommended whenever
prolonged intensity levels exceed 90 dB. Recent evidence suggests that noise pollu-
tion, which is common in most large cities and in some industrial environments,
may be a contributing factor to high blood pressure, anxiety, and nervousness.
Table 14.2 gives the approximate intensity levels of various sounds.

 	 � 10 log  � 1.0 � 10�10 W/m2

1.0 � 10�12 W/m2 � � 10 log(100) � 20 dB

 	 � 10 log  � 1.0 � 10�11 W/m2

1.0 � 10�12 W/m2 � � 10 log(10) � 10 dB

	 � 10 log  � 1.0 � 10�12 W/m2

1.0 � 10�12 W/m2 � � 10 log(1) � 0 dB

EXAMPLE 14.2 A Noisy Grinding Machine
Goal Work with watts and decibels.

Problem A noisy grinding machine in a factory produces a sound intensity of 1.00 � 10�5 W/m2. Calculate (a) the
decibel level of this machine, and (b) the new intensity level when a second, identical machine is added to the fac-
tory. (c) A certain number of additional such machines are put into operation alongside these two. When all the ma-
chines are running at the same time the decibel level is 77.0 dB. Find the sound intensity.

Strategy Parts (a) and (b) require substituting into the decibel formula, Equation 14.7, with the intensity in part
(b) twice the intensity in part (a). In part (c), the intensity level in decibels is given, and it’s necessary to work back-
wards, using the inverse of the logarithm function, to get the intensity in watts per meter squared.

TIP 14.1 Intensity Versus
Intensity Level
Don’t confuse intensity with intensity
level. Intensity is a physical quantity
with units of watts per meter squared;
intensity level, or decibel level, is a
convenient mathematical transforma-
tion of intensity to a logarithmic
scale.

TABLE 14.2
Intensity Levels in Decibels
for Different Sources
Source of Sound �(dB)

Nearby jet airplane 150
Jackhammer, machine 130

gun
Siren, rock concert 120
Subway, power mower 100
Busy traffic 80
Vacuum cleaner 70
Normal conversation 50
Mosquito buzzing 40
Whisper 30
Rustling leaves 10
Threshold of hearing 0

Solution
(a) Calculate the intensity level of the single grinder.

Substitute the intensity into the decibel formula:

� 70.0 dB

	 � 10 log  � 1.00 � 10�5 W/m2

1.00 � 10�12 W/m2 � � 10 log(107)

(b) Calculate the new intensity level when an additional
machine is added.

Substitute twice the intensity of part (a) into the decibel
formula:

73.0 dB	 � 10 log  � 2.00 � 10�5 W/m2

1.00 � 10�12 W/m2 � �
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Federal regulations now demand that no office or factory worker be exposed to
noise levels that average more than 90 dB over an 8-h day. From a management
point of view, here’s the good news: one machine in the factory may produce a
noise level of 70 dB, but a second machine, while doubling the total intensity, in-
creases the noise level by only 3 dB. Because of the logarithmic nature of intensity
levels, doubling the intensity doesn’t double the intensity level; in fact, it alters it
by a surprisingly small amount. This means that equipment can be added to the
factory without appreciably altering the intensity level of the environment.

Now here’s the bad news: as you remove noisy machinery, the intensity level
isn’t lowered appreciably. In Exercise 14.2, reducing the intensity level by 7 dB
would require the removal of 20 of the 25 machines! To lower the level another
7 dB would require removing 80% of the remaining machines, in which case only
one machine would remain.

14.5 SPHERICAL AND PLANE WAVES
If a small spherical object oscillates so that its radius changes periodically with
time, a spherical sound wave is produced (Fig. 14.4, page 466). The wave moves
outward from the source at a constant speed.

Because all points on the vibrating sphere behave in the same way, we conclude
that the energy in a spherical wave propagates equally in all directions. This means
that no one direction is preferred over any other. If �av is the average power emit-
ted by the source, then at any distance r from the source, this power must be dis-
tributed over a spherical surface of area 4
r 2, assuming no absorption in the
medium. (Recall that 4
r 2 is the surface area of a sphere.) Hence, the intensity of
the sound at a distance r from the source is

[14.8]

This equation shows that the intensity of a wave decreases with increasing distance
from its source, as you might expect. The fact that I varies as 1/r 2 is a result of the

I �
average power

area
�

�av

A
�

�av

4
r 2

(c) Find the intensity corresponding to an intensity level
of 77.0 dB.

Substitute 77.0 dB into the decibel formula and divide
both sides by 10:

  7.70 � log  � I
10�12 W/m2 �

 	 � 77.0 dB � 10 log  � I
I0
�

Make each side the exponent of 10. On the right-hand
side, , by definition of base ten logarithms.10log u � u

I � 5.01 � 10�5 W/m2

107.70 � 5.01 � 107 �
I

1.00 � 10�12 W/m2

Remark The answer is five times the intensity of the single grinder, so in part (c) there are five such machines oper-
ating simultaneously. Because of the logarithmic definition of intensity level, large changes in intensity correspond to
small changes in intensity level.

Exercise 14.2
Suppose a manufacturing plant has an average sound intensity level of 97.0 dB created by 25 identical machines.
(a) Find the total intensity created by all the machines. (b) Find the sound intensity created by one such machine.
(c) What’s the sound intensity level if five such machines are running?

Answers (a) 5.01 � 10�3 W/m2 (b) 2.00 � 10�4 W/m2 (c) 90.0 dB

A P P L I C AT I O N
OSHA Noise-Level
Regulations
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assumption that the small source (sometimes called a point source) emits a spheri-
cal wave. (In fact, light waves also obey this so-called inverse-square relationship.)
Because the average power is the same through any spherical surface centered at
the source, we see that the intensities at distances r1 and r2 (Fig. 14.4) from the
center of the source are

The ratio of the intensities at these two spherical surfaces is

[14.9]

It’s useful to represent spherical waves graphically with a series of circular
arcs (lines of maximum intensity) concentric with the source representing 
part of a spherical surface, as in Figure 14.5. We call such an arc a wave front.
The distance between adjacent wave fronts equals the wavelength �. The radial
lines pointing outward from the source and perpendicular to the arcs are called
rays.

Now consider a small portion of a wave front that is at a great distance (relative to
�) from the source, as in Figure 14.6. In this case, the rays are nearly parallel to
each other and the wave fronts are very close to being planes. At distances from the
source that are great relative to the wavelength, therefore, we can approximate the
wave front with parallel planes, called plane waves. Any small portion of a spherical
wave that is far from the source can be considered a plane wave. Figure 14.7 illus-
trates a plane wave propagating along the x-axis. If the positive x-direction is taken
to be the direction of the wave motion (or ray) in this figure, then the wave fronts
are parallel to the plane containing the y- and z-axes.

I1

I2
�

r2 

2
 

r1 

2

I2 �
�av

4
r2 

2I1 �
�av

4
r1 

2

Ray

Source

Wave front

l

Figure 14.5 Spherical waves
emitted by a point source. The
circular arcs represent the spherical
wave fronts concentric with the
source. The rays are radial lines
pointing outward from the source,
perpendicular to the wavefronts.

Rays

Wave fronts

Figure 14.6 Far away from a point
source, the wave fronts are nearly
parallel planes and the rays are nearly
parallel lines perpendicular to the
planes. Hence, a small segment of a
spherical wavefront is approximately
a plane wave.

Figure 14.7 A representation of a
plane wave moving in the positive 
x -direction with a speed v. The
wavefronts are planes parallel to the
yz-plane.

y

x

z λ

v

Plane 
wave front

r2

r1

Spherical wave front

Figure 14.4 A spherical wave propagating
radially outward from an oscillating sphere.
The intensity of the wave varies as 1/r 2.
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14.6 THE DOPPLER EFFECT
If a car or truck is moving while its horn is blowing, the frequency of the sound
you hear is higher as the vehicle approaches you and lower as it moves away from
you. This is one example of the Doppler effect, named for the Austrian physicist
Christian Doppler (1803–1853), who discovered it. The same effect is heard if
you’re on a motorcycle and the horn is stationary: the frequency is higher as you
approach the source and lower as you move away.

EXAMPLE 14.3 Intensity Variations of a Point Source
Goal Relate sound intensities and their distances from a point source.

Problem A small source emits sound waves with a power output of 80.0 W. (a) Find the intensity 3.00 m from the
source. (b) At what distance would the intensity be one-fourth as much as it is at r � 3.00 m? (c) Find the distance at
which the sound level is 40.0 dB.

Strategy The source is small, so the emitted waves are spherical and the intensity in part (a) can be found by sub-
stituting values into Equation 14.8. Part (b) involves solving for r in Equation 14.8 followed by substitution (though
Equation 14.9 can be used instead). In part (c), convert from the sound intensity level to the intensity in W/m2, us-
ing Equation 14.7. Then substitute into Equation 14.9 (though 14.8 could be used, instead) and solve for r2.

Solution
(a) Find the intensity 3.00 m from the source.

Substitute �av � 80.0 W and r � 3.00 m into Equation
14.8:

0.707 W/m2I �
�av

4
r 2 �
80.0 W

4
(3.00 m)2 �

(b) At what distance would the intensity be one-fourth
as much as it is at r � 3.00 m?

Take I � (0.707 W/m2)/4, and solve for r in Equation
14.8:

6.00 mr � � �av

4
I �
1/2

� � 80.0 W
4
(0.707 W/m2)/4.0 �

1/2
�

(c) Find the distance at which the sound level is 40.0 dB.

Convert the intensity level of 40.0 dB to an intensity in
W/m2 by solving Equation 14.7 for I :

 104.00 �
I
I0

 : I � 104.00I0 � 1.00 � 10�8 W/m2

 40.0 � 10 log  � I
I0
� : 4.00 � log  � I

I0
�

Solve Equation 14.9 for , substitute the intensity and
the result of part (a), and take the square root:

r 2
2

r2 � 2.52 � 104 m

 r 2
2 � (3.00 m)2 � 0.707 W/m2

1.00 � 10�8 W/m2 �
 
I1

I2
�

r 2
2

r 1
2  : r 2

2 � r 1
2 

I1

I2

Remarks Once the intensity is known at one position a certain distance away from the source, it’s easier to use
Equation 14.9 rather than Equation 14.8 to find the intensity at any other location. This is particularly true for part
(b), where, using Equation 14.9, we can see right away that doubling the distance reduces the intensity to one-
quarter its previous value.

Exercise 14.3
Suppose a certain jet plane creates an intensity level of 125 dB at a distance of 5.00 m. What intensity level does it cre-
ate on the ground directly underneath it when flying at an altitude of 2.00 km?

Answer 73.0 dB
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468 Chapter 14 Sound

Although the Doppler effect is most often associated with sound, it’s common
to all waves, including light.

In deriving the Doppler effect, we assume that the air is stationary and that all
speed measurements are made relative to this stationary medium. The speed vO is
the speed of the observer, vS is the speed of the source, and v is the speed of sound.

Case 1: The Observer Is Moving Relative to a Stationary Source
In Active Figure 14.8 an observer is moving with a speed of vO toward the source
(considered a point source), which is at rest (vS � 0).

We take the frequency of the source to be fS, the wavelength of the source to be
�S , and the speed of sound in air to be v. If both observer and source are stationary,
the observer detects fS wave fronts per second. (That is, when vO � 0 and 
vS � 0, the observed frequency fO equals the source frequency fS .) When moving to-
ward the source, the observer moves a distance of vOt in t seconds. During this in-
terval, the observer detects an additional number of wave fronts. The number of 
extra wave fronts is equal to the distance traveled, vOt, divided by the wavelength �S:

Divide this equation by the time t to get the number of additional wave fronts
detected per second, vO/�S. Hence, the frequency heard by the observer is increased to

Substituting �S � v/fS into this expression for fO we obtain

[14.10]

When the observer is moving away from a stationary source (Fig. 14.9), the ob-
served frequency decreases. A derivation yields the same result as Equation 14.10,
but with v � vO in the numerator. Therefore, when the observer is moving away
from the source, substitute �vO for vO in Equation 14.10.

Case 2: The Source Is Moving Relative to a Stationary Observer
Now consider a source moving toward an observer at rest, as in Active Figure 14.10.
Here, the wave fronts passing observer A are closer together because the source is
moving in the direction of the outgoing wave. As a result, the wavelength �O meas-
ured by observer A is shorter than the wavelength �S of the source at rest. During
each vibration, which lasts for an interval T (the period), the source moves a dis-
tance vST � vS /fS and the wavelength is shortened by that amount. The observed
wavelength is therefore given by

Because , the frequency observed by A is

or

[14.11]

As expected, the observed frequency increases when the source is moving toward
the observer. When the source is moving away from an observer at rest, the minus
sign in the denominator must be replaced with a plus sign, so the factor becomes
(v � vS).

fO � fS  � v
v � vS

�

fO �
v

�O
�

v

�S �
vS

fS

�
v

v
fS

�
vS

fS

�S � v/fS

�O � �S �
vS

fS

fO � fS  � v � vO

v �

fO � fS �
vO

�S

Additional wave fronts detected �
vOt
�S

Figure 14.9 An observer moving
with a speed of vO away from a sta-
tionary source hears a frequency fO
that is lower than the source fre-
quency fS.

Observer
O

vO

v

S
vS = 0

Source

lS

vO

Observer
O

v

S
vS = 0

Source

lS

ACTIVE FIGURE 14.8
An observer moving with a speed vO
toward a stationary point source (S )
hears a frequency fO that is greater
than the source frequency fS .

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 14.8 to adjust the speed of the
observer.

TIP 14.2 Doppler Effect
Doesn’t Depend on Distance
The sound from a source approach-
ing at constant speed will increase in
intensity, but the observed (elevated)
frequency will remain unchanged.
The Doppler effect doesn’t depend
on distance.
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General Case
When both the source and the observer are in motion relative to Earth, Equations
14.10 and 14.11 can be combined to give

[14.12]

In this expression, the signs for the values substituted for vO and vS depend on the di-
rection of the velocity. When the observer moves toward the source, a positive speed is
substituted for vO ; when the observer moves away from the source, a negative speed is
substituted for vO. Similarly, a positive speed is substituted for vS when the source moves
toward the observer, a negative speed when the source moves away from the observer.

Choosing incorrect signs is the most common mistake made in working a
Doppler effect problem. The following rules may be helpful: The word toward is as-
sociated with an increase in the observed frequency; the words away from are associ-
ated with a decrease in the observed frequency.

These two rules derive from the physical insight that when the observer is
moving toward the source (or the source toward the observer), there is a smaller
observed period between wave crests, hence a larger frequency, with the reverse
holding—a smaller observed frequency—when the observer is moving away from
the source (or the source away from the observer). Keep the physical insight in
mind whenever you’re in doubt about the signs in Equation 14.12: Adjust them as
necessary to get the correct physical result.

The second most common mistake made in applying Equation 14.12 is to acci-
dentally reverse numerator and denominator. Some find it helpful to remember
the equation in the following form:

The advantage of this form is its symmetry: both sides are very nearly the same,
with O’s on the left and S ’s on the right. Forgetting which side has the plus sign
and which has the minus sign is not a serious problem, as long as physical insight
is used to check the answer and make adjustments as necessary.

fO
v � vO

�
fS

v � vS

fO � fS  � v � vO

v � vS
�

ACTIVE FIGURE 14.10
(a) A source S moving with speed vS toward stationary observer A and away from stationary observer B.
Observer A hears an increased frequency, and observer B hears a decreased frequency. (b) The Doppler
effect in water, observed in a ripple tank. The source producing the water waves is moving to the right.

Log into PhysicsNow at www.cp7e.com, and go to Active Figure 14.10 to adjust the speed of the source.
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and source in motion
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470 Chapter 14 Sound

The observer is stationary, so vO � 0. The train is mov-
ing toward the observer, so vS � � 40.0 m/s (positive).
Substitute these values and the speed of sound into the
Doppler shift equation:

� 566 Hz

 � (5.00 � 102 Hz) � 345 m/s
345 m/s � 40.0 m/s �

 fO � fS  � v � vO

v � vS
�

Remark If the train were going away from the observer, vS � � 40.0 m/s would have been chosen instead.

Exercise 14.4
Determine the frequency heard by the stationary observer as the train recedes from the observer.

Answer 448 Hz

EXAMPLE 14.4 Listen, but Don’t Stand on the Track
Goal Solve a Doppler shift problem when only the source is moving.

Problem A train moving at a speed of 40.0 m/s sounds its whistle, which has a frequency of 5.00 � 102 Hz. Determine
the frequency heard by a stationary observer as the train approaches the observer. The ambient temperature is 24.0�C.

Strategy Use Equation 14.4 to get the speed of sound at the ambient temperature, then substitute values into
Equation 14.12 for the Doppler shift. Because the train approaches the observer, the observed frequency will be
larger. Choose the sign of vS to reflect this fact.

Solution
Use Equation 14.4 to calculate the speed of sound in air
at T � 24.0�C:

� 345 m/s � (331 m/s) √ (273 � 24.0)K
273 K

 v � (331 m/s) √ T
273 K

Suppose you’re on a hot air balloon ride, carrying a buzzer that emits a sound of
frequency f. If you accidentally drop the buzzer over the side while the balloon is
rising at constant speed, what can you conclude about the sound you hear as the
buzzer falls toward the ground? (a) the frequency and intensity increase, (b) the
frequency decreases and the intensity increases, (c) the frequency decreases and
the intensity decreases, or (d) the frequency remains the same, but the intensity
decreases.

Quick Quiz 14.2

Suppose you place your stereo speakers far apart and
run past them from right to left or left to right. If you
run rapidly enough and have excellent pitch discrimi-
nation, you may notice that the music playing seems to
be out of tune when you’re between the speakers. Why?

Explanation When you are between the speakers,
you are running away from one of them and toward

the other, so there is a Doppler shift downward for the
sound from the speaker behind you and a Doppler
shift upward for the sound from the speaker ahead of
you. As a result, the sound from the two speakers will
not be in tune. A calculation shows that a world-class
sprinter could run fast enough to generate about a
semitone difference in the sound from the two 
speakers.

Applying Physics 14.2 Out-of-Tune Speakers
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INTERACTIVE EXAMPLE 14.5 The Noisy Siren
Goal Solve a Doppler shift problem when both the source and observer are moving.

Problem An ambulance travels down a highway at a speed of 75.0 mi/h, its siren emitting sound at a frequency of
4.00 � 102 Hz. What frequency is heard by a passenger in a car traveling at 55.0 mi/h in the opposite direction as the
car and ambulance (a) approach each other and (b) pass and move away from each other? Take the speed of sound in
air to be v � 345 m/s.

Strategy Aside from converting from mi/h to m/s, this problem only requires substitution into the Doppler for-
mula, but two signs must be chosen correctly in each part. In part (a), the observer moves toward the source and the
source moves toward the observer, so both vO and vS should be chosen to be positive. Switch signs after they pass each
other.

Solution
Convert the speeds from mi/h to m/s:

 vO � (55.0 mi/h) � 0.447 m/s
1.00 mi/h � � 24.6 m/s

 vS � (75.0 mi/h) � 0.447 m/s
1.00 mi/h � � 33.5 m/s

(a) Compute the observed frequency as the ambulance
and car approach each other.

Each vehicle goes toward the other, so substitute 
vO � � 24.6 m/s and vS � � 33.5 m/s into the Doppler
shift formula:

� 475 Hz� (4.00 � 102 Hz) � 345 m/s � 24.6 m/s
345 m/s � 33.5 m/s �

 fO � fS  � v � vO

v � vS
�

(b) Compute the observed frequency as the ambulance
and car recede from each other.

Each vehicle goes away from the other, so substitute 
vO � � 24.6 m/s and vS � � 33.5 m/s into the Doppler
shift formula:

� 339 Hz

 � (4.00 � 102 Hz) � 345 m/s � (� 24.6 m/s)
345 m/s � (� 33.5 m/s) �

 fO � fS  � v � vO

v � vS
�

Remarks Notice how the signs were handled: In part (b), the negative signs were required on the speeds because
both observer and source were moving away from each other. Sometimes, of course, one of the speeds is negative
and the other is positive.

Exercise 14.5
Repeat this problem, but assume the ambulance and car are going the same direction, with the ambulance initially
behind the car. The speeds and the frequency of the siren are the same as in the example. Find the frequency heard
by the observer in the car (a) before and (b) after the ambulance passes the car. [Note: The highway patrol subse-
quently gives the driver of the car a ticket for not pulling over for an emergency vehicle!]

Answers (a) 411 Hz (b) 391 Hz

You can alter the relative speeds of two submarines and observe the Doppler-shifted frequency by logging into
PhysicsNow at www.cp7e.com and going to Interactive Example 14.5.
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472 Chapter 14 Sound

Shock Waves
What happens when the source speed vS exceeds the wave velocity v? Figure 14.11a
describes this situation graphically. The circles represent spherical wave fronts emit-
ted by the source at various times during its motion. At t � 0, the source is at point
S0, and at some later time t, the source is at point Sn. In the interval t, the wave
front centered at S0 reaches a radius of vt. In this same interval, the source travels
to Sn, a distance of vst. At the instant the source is at Sn, the waves just beginning to
be generated at this point have wave fronts of zero radius. The line drawn from Sn
to the wave front centered on S0 is tangent to all other wave fronts generated at in-
termediate times. All such tangent lines lie on the surface of a cone. The angle �
between one of these tangent lines and the direction of travel is given by

The ratio vs/v is called the Mach number. The conical wave front produced when
vs  v (supersonic speeds) is known as a shock wave. Figure 14.11b is a photo-
graph of a bullet traveling at supersonic speed through the hot air rising above a
candle. Notice the shock waves in the vicinity of the bullet. Another interesting ex-
ample of a shock wave is the V-shaped wave front produced by a boat (the bow
wave) when the boat’s speed exceeds the speed of the water waves (Fig. 14.12).

Jet aircraft and space shuttles traveling at supersonic speeds produce shock
waves that are responsible for the loud explosion, or sonic boom, heard on the
ground. A shock wave carries a great deal of energy concentrated on the surface of
the cone, with correspondingly great pressure variations. Shock waves are unpleas-
ant to hear and can damage buildings when aircraft fly supersonically at low
altitudes. In fact, an airplane flying at supersonic speeds produces a double boom,
because two shock waves are formed—one from the nose of the plane and one
from the tail (Fig. 14.13).

sin � �
v
vs

Figure 14.12 The V-shaped bow
wave of a boat is formed because the
boat travels at a speed greater than
the speed of the water waves. A bow
wave is analogous to a shock wave
formed by an airplane traveling faster
than sound.
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Figure 14.11 (a) A representation of a shock wave, produced when a source moves from S0 to Sn
with a speed vs that is greater than the wave speed v in that medium. The envelope of the wave fronts
forms a cone with half-angle of sin � � v/vs. (b) A stroboscopic photograph of a bullet moving at
supersonic speed through the hot air above a candle.
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As an airplane flying with constant velocity moves from a cold air mass into a warm
air mass, does the Mach number (a) increase, (b) decrease, or (c) remain the same?

Quick Quiz 14.3

14.7 INTERFERENCE OF SOUND WAVES
Sound waves can be made to interfere with each other, a phenomenon that can be
demonstrated with the device shown in Figure 14.14. Sound from a loudspeaker at
S is sent into a tube at P, where there is a T-shaped junction. The sound splits and
follows two separate pathways, indicated by the red arrows. Half of the sound trav-
els upward, half downward. Finally, the two sounds merge at an opening where a
listener places her ear. If the two paths r1 and r2 have the same length, waves that
enter the junction will separate into two halves, travel the two paths, and then
combine again at the ear. This reuniting of the two waves produces constructive in-
terference, so the listener hears a loud sound. If the upper path is adjusted to be one
full wavelength longer than the lower path, constructive interference of the
two waves occurs again, and a loud sound is detected at the receiver. We have the
following result: If the path difference r2 � r1 is zero or some integer multiple of
wavelengths, then constructive interference occurs and

r2 � r1 � n� (n � 0, 1, 2, . . .) [14.13]

Suppose, however, that one of the path lengths, r2, is adjusted so that the upper
path is half a wavelength longer than the lower path r1. In this case, an entering
sound wave splits and travels the two paths as before, but now the wave along the
upper path must travel a distance equivalent to half a wavelength farther than
the wave traveling along the lower path. As a result, the crest of one wave meets
the trough of the other when they merge at the receiver, causing the two waves to

(a)

Atmospheric
pressure

Pressure

Figure 14.13 (a) The two shock waves produced by the nose and tail of a jet airplane traveling at su-
personic speed. (b) A shock wave due to a jet traveling at the speed of sound is made visible as a fog of
water vapor. The large pressure variation in the shock wave causes the water in the air to condense into
water droplets. 
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r 1

r 2

R

Speaker
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P
Receiver

Figure 14.14 An acoustical system
for demonstrating interference of
sound waves. Sound from the speaker
enters the tube and splits into two
parts at P. The two waves combine at
the opposite side and are detected at
R . The upper path length is varied by
the sliding section.

� Condition for constructive 
interference
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474 Chapter 14 Sound

cancel each other. This phenomenon is called totally destructive interference, and no
sound is detected at the receiver. In general, if the path difference r2 � r1 is

. . . wavelengths, destructive interference occurs and

(n � 0, 1, 2, . . .) [14.14]

Nature provides many other examples of interference phenomena, most no-
tably in connection with light waves, described in Chapter 24.

In connecting the wires between your stereo system and loudspeakers, you may no-
tice that the wires are usually color coded and that the speakers have positive and
negative signs on the connections. The reason for this is that the speakers need to be
connected with the same “polarity.” If they aren’t, then the same electrical signal fed
to both speakers will result in one speaker cone moving outward at the same time
that the other speaker cone is moving inward. In this case, the sound leaving the two
speakers will be 180� out of phase with each other. If you are sitting midway between
the speakers, the sounds from both speakers travel the same distance and preserve
the phase difference they had when they left. In an ideal situation, for a 180� phase
difference, you would get complete destructive interference and no sound! In reality,
the cancellation is not complete and is much more significant for bass notes (which
have a long wavelength) than for the shorter wavelength treble notes. Nevertheless,
to avoid a significant reduction in the intensity of bass notes, the color-coded wires
and the signs on the speaker connections should be carefully noted.

r2 � r1 � (n � 1
2)�

1
2, 11

2, 21
2

Remark For problems involving constructive interference, the only difference is that Equation 14.13, r2 � r1 � n�,
would be used instead of Equation 14.14.

Exercise 14.6
If the oscillator frequency is adjusted so that the location of the first minimum is at a distance of 0.750 m from O,
what is the new frequency?

Answer 0.642 kHz

Solve v � �f for the frequency f and substitute the
speed of sound and the wavelength:

1.3 kHzf �
v
�

�
343 m/s
0.26 m

�

EXAMPLE 14.6 Two Speakers Driven by the Same Source
Goal Use the concept of interference to compute a frequency.

Problem Two speakers placed 3.00 m apart are driven by the same oscillator (Fig. 14.15). A listener is originally at
point O, which is located 8.00 m from the center of the line connecting the two speakers. The listener then walks to
point P, which is a perpendicular distance 0.350 m from O, before reaching the first minimum in sound intensity.
What is the frequency of the oscillator? Take the speed of
sound in air to be vs � 343 m/s.

Strategy The position of the first minimum in sound
intensity is given, which is a point of destructive interfer-
ence. We can find the path lengths r1 and r 2 with the
Pythagorean theorem and then use Equation 14.14 for
destructive interference to find the wavelength �. Using
v � f� then yields the frequency.

Solution
Use the Pythagorean theorem to find the path lengths 
r1 and r 2: r2 � √(8.00 m)2 � (1.85 m)2 � 8.21 m

r1 � √(8.00 m)2 � (1.15 m)2 � 8.08 m

3.00 m

8.00 m

r 2

r 1

O

0.350 m

1.85 m

P
1.15 m

Figure 14.15 (Example 14.6) Two loudspeakers driven by the same
source can produce interference.

Substitute these values and n � 0 into Equation 14.14,
solving for the wavelength:

8.21 m � 8.08 m � 0.13 m � �/2 : � � 0.26 m

r2 � r1 � (n � 1
2)�

Condition for destructive 
interference �

TIP 14.3 Do Waves Really
Interfere?
In popular usage, to interfere means
“to come into conflict with” or “to in-
tervene to affect an outcome.” This
differs from its use in physics, where
waves pass through each other and
interfere, but don’t affect each other
in any way.

A P P L I C AT I O N
Connecting Your Stereo
Speakers

44337_14_p458-496  11/4/04  8:30 AM  Page 474
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14.8 STANDING WAVES
Standing waves can be set up in a stretched string by connecting one end of the
string to a stationary clamp and connecting the other end to a vibrating object,
such as the end of a tuning fork, or by shaking the hand holding the string up and
down at a steady rate (Fig. 14.16). Traveling waves then reflect from the ends and
move in both directions on the string. The incident and reflected waves combine
according to the superposition principle. (See Section 13.10.) If the string vibrates
at exactly the right frequency, the wave appears to stand still—hence its name,
standing wave. A node occurs where the two traveling waves always have the same
magnitude of displacement but the opposite sign, so the net displacement is zero
at that point. There is no motion in the string at the nodes, but midway between
two adjacent nodes, at an antinode, the string vibrates with the largest amplitude.

Figure 14.17 shows snapshots of the oscillation of a standing wave during half of
a cycle. The pink arrows indicate the direction of motion of different parts of the
string. Notice that all points on the string oscillate together vertically with the same
frequency, but different points have different amplitudes of motion. The points of
attachment to the wall and all other stationary points on the string are called
nodes, labeled N in Figure 14.17a. From the figure, observe that the distance be-
tween adjacent nodes is one-half the wavelength of the wave:

Consider a string of length L that is fixed at both ends, as in Active Figure 14.18. For
a string, we can set up standing-wave patterns at many frequencies—the more loops,
the higher the frequency. Three such patterns are shown in Active Figures 14.18b,
14.18c, and 14.18d. Each has a characteristic frequency, which we will now calculate.

First, the ends of the string must be nodes, because these points are fixed. If the
string is displaced at its midpoint and released, the vibration shown in Active
Figure 14.18b can be produced, in which case the center of the string is an anti-
node, labeled A. Note that from end to end, the pattern is N–A–N. The distance
from a node to its adjacent antinode, N–A, is always equal to a quarter wave-
length, �1/4. There are two such segments, N–A and A–N, so L � 2(�1/4) �
�1/2, and �1 � 2L . The frequency of this vibration is therefore

[14.15]

Recall that the speed of a wave on a string is , where F is the tension in
the string and � is its mass per unit length (Chapter 13). Substituting into Equa-
tion 14.15, we obtain

[14.16]f1 �
1

2L
 √ F

�

v � √F/�

f1 �
v
�1

�
v

2L

dNN � 1
2�

Vibrating 
blade

Figure 14.16 Standing waves can
be set up in a stretched string by con-
necting one end of the string to a
vibrating blade. When the blade
vibrates at one of the natural frequen-
cies of the string, large-amplitude
standing waves are created.

NN N
t = 0

(a)

(b) t = T/ 8

t = T/4(c)

t = 3T/ 8(d)

(e) t = T/ 2

Figure 14.17 A standing-wave
pattern in a stretched string, shown
by snapshots of the string during 
one-half of a cycle. In part (a), N
denotes a node.

L

(a) (c)

(b) (d)

n = 2

n = 3

L =    2

L = –    3
3 
2

n = 1 L = –    1
1 
2

f1 f3

f2

N
A

N

λ

λ λ

N
A

N
A

N
A

N N
A

N
A

N

ACTIVE FIGURE 14.18
(a) Standing waves in a stretched
string of length L fixed at both ends.
The characteristic frequencies of
vibration form a harmonic series:
(b) the fundamental frequency, or
first harmonic; (c) the second har-
monic; and (d) the third harmonic.
Note that N denotes a node, A an
antinode.

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 14.18 to choose the mode
number and see the corresponding
standing wave.
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This lowest frequency of vibration is called the fundamental frequency of the vi-
brating string, or the first harmonic.

The first harmonic has nodes only at the ends—the points of attachment,
with node–antinode pattern of N–A–N. The next harmonic, called the second
harmonic (also called the first overtone) can be constructed by inserting an addi-
tional node–antinode segment between the endpoints. This makes the pattern
N–A–N–A–N, as in Active Figure 14.18c. We count the node–antinode pairs: N–A,
A–N, N–A, and A–N, four segments in all, each representing a quarter wavelength.
We then have L � 4(�2/4) � �2, and the second harmonic (first overtone) is

This frequency is equal to twice the fundamental frequency. The third harmonic
(second overtone) is constructed similarly. Inserting one more N–A segment, we
obtain Active Figure 14.18c, the pattern of nodes reading N–A–N–A–N–A–N.
There are six node–antinode segments, so L � 6(�3/4) � 3(�3/2), which means
that �3 � 2L/3, giving

All the higher harmonics, it turns out, are positive integer multiples of the 
fundamental:

[14.17]

The frequencies f1, 2f1, 3f1, and so on form a harmonic series.

fn � nf1 �
n

2L
 √ F

�
  n � 1, 2, 3 . . .

f3 �
v
�3

�
3v
2L

� 3f1

f2 �
v
�2

�
v
L

� 2 � v
2L � � 2f1

Which of the following frequencies are higher harmonics of a string with fundamen-
tal frequency of 150 Hz? (a) 200 Hz (b) 300 Hz (c) 400 Hz (d) 500 Hz (e) 600 Hz.

Quick Quiz 14.4

(a) (b)

(c)

Multiflash photographs of standing-wave patterns
in a cord driven by a vibrator at the left end. The
single-loop pattern in (a) represents the funda-
mental frequency (n � 1), the two-loop pattern
in (b) the second harmonic (n � 2), and the
three-loop pattern in (c) the third harmonic 
(n � 3).
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When a stretched string is distorted to a shape that corresponds to any one of its
harmonics, after being released it vibrates only at the frequency of that harmonic.
If the string is struck or bowed, however, the resulting vibration includes different
amounts of various harmonics, including the fundamental frequency. Waves not in
the harmonic series are quickly damped out on a string fixed at both ends. In ef-
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A P P L I C AT I O N
Tuning a Musical Instrument

INTERACTIVE EXAMPLE 14.7 Guitar Fundamentals
Goal Apply standing-wave concepts to a stringed instrument.

Problem The high E string on a certain guitar measures 64.0 cm in length and has a fundamental frequency of 329 Hz.
When a guitarist presses down so that the string is in contact with the first fret (Fig. 14.19a), the string is shortened so
that it plays an F note that has a frequency of 349 Hz. (a) How far is the fret from the nut? (b) Overtones can be
produced on a guitar string by gently placing the index finger in the location of a node of a higher harmonic. The string
should be touched, but not depressed against a fret. (Given the width of a finger, pressing too hard will damp out higher
harmonics as well.) The fundamental frequency is thereby suppressed, making it possible to hear overtones. Where
on the guitar string relative to the nut should the finger be lightly placed so as to hear the second harmonic? The fourth
harmonic? (This is equivalent to finding the location of the nodes in each case.)

Strategy For part (a) use Equation 14.15,
corresponding to the fundamental frequency,
to find the speed of waves on the string. Short-
ening the string by playing a higher note 
doesn’t affect the wave speed, which depends
only on the tension and linear density of the
string (which are unchanged). Solve Equation
14.15 for the new length L, using the new fun-
damental frequency, and subtract this length
from the original length to find the distance
from the nut to the first fret. In part (b), re-
member that the distance from node to node
is half a wavelength. Calculate the wavelength, divide it in two, and locate the nodes, which are integral numbers of
half-wavelengths from the nut. [Note: The nut is a small piece of wood or ebony at the top of the fret board. The dis-
tance from the nut to the bridge (below the sound hole) is the length of the string. (See Fig. 14.19b.)]

nut

bridge

1st fret

2nd fret

Figure 14.19 (Example 14.7) (a) Playing an F note on a guitar. (b) Some parts of
a guitar.

(b)(a)
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Solution
(a) Find the distance from the nut to the first fret.

Substitute L0 � 0.640 m and f1 � 329 Hz into Equation
14.15, finding the wave speed on the string:

 v � 2L 0 f1 � 2(0.640 m)(329 Hz) � 421 m/s

 f1 �
v

2L0

Solve Equation 14.15 for the length L, and substitute the
wave speed and the frequency of F.

L �
v
2f

�
421 m/s

2(349 Hz)
� 0.603 m � 60.3 cm

Subtract this length from the original length L0 to find
the distance from the nut to the first fret:

�x � L0 � L � 64.0 cm � 60.3 cm � 3.7 cm

fect, when disturbed, the string “selects” the standing-wave frequencies. As we’ll
see later, the presence of several harmonics on a string gives stringed instruments
their characteristic sound, which enables us to distinguish one from another even
when they are producing identical fundamental frequencies.

The frequency of a string on a musical instrument can be changed by varying
either the tension or the length. The tension in guitar and violin strings is varied
by turning pegs on the neck of the instrument. As the tension is increased, the fre-
quency of the harmonic series increases according to Equation 14.17. Once the in-
strument is tuned, the musician varies the frequency by pressing the strings against
the neck at a variety of positions, thereby changing the effective lengths of the vi-
brating portions of the strings. As the length is reduced, the frequency again in-
creases, as follows from Equation 14.17.

Finally, Equation 14.17 shows that a string of fixed length can be made to vibrate at
a lower fundamental frequency by increasing its mass per unit length. This is achieved
in the bass strings of guitars and pianos by wrapping them with metal windings.
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Solution
(a) Find the first three harmonics at the given tension.

Use Equation 13.17 to calculate the speed of the wave
on the wire:

v � √ F
�

� √ 80.0 N
2.00 � 10�3 kg/m

� 2.00 � 102 m/s

Find the wire’s fundamental frequency from Equation
14.15: 1.00 � 102 Hzf1 �

v
2L

�
2.00 � 102 m/s

2(1.00 m)
�

Find the next two harmonics by multiplication: f2 � 2f1 � , f3 � 3f1 � 3.00 � 102 Hz2.00 � 102 Hz

EXAMPLE 14.8 Harmonics of a Stretched Wire
Goal Calculate string harmonics, relate them to sound and combine them with tensile stress.

Problem (a) Find the frequencies of the fundamental, second, and third harmonics of a steel wire 1.00 m long with
a mass per unit length of 2.00 � 10�3 kg/m and under a tension of 80.0 N. (b) Find the wavelengths of the sound
waves created by the vibrating wire for all three modes. Assume the speed of sound in air is 345 m/s. (c) Suppose the
wire is carbon steel with a density of 7.80 � 103 kg/m3, a cross-sectional area A � 2.56 � 10�7 m2, and an elastic
limit of 2.80 � 108 Pa. Find the fundamental frequency if the wire is tightened to the elastic limit. Neglect any
stretching of the wire (which would slightly reduce the mass per unit length).

Strategy (a) It’s easiest to find the speed of waves on the wire then substitute into Equation 14.15 to find the first
harmonic. The next two are multiples of the first, given by Equation 14.17. (b) The frequencies of the sound waves
are the same as the frequencies of the vibrating wire, but the wavelengths are different. Use vs � f�, where vs is the
speed of sound in air, to find the wavelengths in air. (c) Find the force corresponding to the elastic limit, and substi-
tute it into Equation 14.16.

(b) Find the locations of nodes for the second and
fourth harmonics.

The second harmonic has a wavelength 
�2 � L0 � 64.0 cm. The distance from nut to node 
corresponds to half a wavelength.

L0 � 32.0 cm�2 � 1
2�x � 1

2

The fourth harmonic, of wavelength L0 �
32.0 cm, has three nodes between the endpoints:

�4 � 1
2 �4 � , �x � 2(�4/2) � , 

�x � 3(�4/2) � 48.0 cm

32.0 cm16.0 cm�x � 1
2

Remarks Placing a finger at the position �x � 32.0 cm damps out the fundamental and odd harmonics, but not all
the higher even harmonics. The second harmonic dominates, however, because the rest of the string is free to vi-
brate. Placing the finger at �x � 16.0 cm or 48.0 cm damps out the first through third harmonics, allowing the
fourth harmonic to be heard.

Exercise 14.7
Pressing the E-string down on the fret board just above the second fret pinches the string firmly against the fret, giv-
ing an F sharp, which has frequency 3.70 � 102 Hz. (a) Where should the second fret be located? (b) Find two loca-
tions where you could touch the open E-string and hear the third harmonic.

Answer (a) 7.1 cm from the nut and 3.4 cm from the first fret. Note that the distance from the first to the second
fret isn’t the same as from the nut to the first fret. (b) 21.3 cm and 42.7 cm from the nut.

Explore this situation by logging into PhysicsNow at www.cp7e.com and going to Interactive Example 14.7.
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14.9 FORCED VIBRATIONS AND RESONANCE
In Chapter 13 we learned that the energy of a damped oscillator decreases over
time because of friction. It’s possible to compensate for this energy loss by apply-
ing an external force that does positive work on the system.

For example, suppose an object–spring system having some natural frequency
of vibration f0 is pushed back and forth by a periodic force with frequency f. The
system vibrates at the frequency f of the driving force. This type of motion is re-
ferred to as a forced vibration. Its amplitude reaches a maximum when the fre-
quency of the driving force equals the natural frequency of the system f0, called
the resonant frequency of the system. Under this condition, the system is said to
be in resonance.

In Section 14.8 we learned that a stretched string can vibrate in one or more of
its natural modes. Here again, if a periodic force is applied to the string, the am-
plitude of vibration increases as the frequency of the applied force approaches
one of the string’s natural frequencies of vibration.

Resonance vibrations occur in a wide variety of circumstances. Figure 14.20 il-
lustrates one experiment that demonstrates a resonance condition. Several pendu-
lums of different lengths are suspended from a flexible beam. If one of them, such
as A, is set in motion, the others begin to oscillate because of vibrations in the flex-
ible beam. Pendulum C, the same length as A, oscillates with the greatest ampli-
tude because its natural frequency matches that of pendulum A (the driving
force).

Another simple example of resonance is a child being pushed on a swing, which
is essentially a pendulum with a natural frequency that depends on its length. The

(b) Find the wavelength of the sound waves produced.

Solve vs � f� for the wavelength and substitute the 
frequencies.

�1 � vs/f1 � (345 m/s)/(1.00 � 102 Hz) �

�2 � vs/f2 � (345 m/s)/(2.00 � 102 Hz) �

�3 � vs/f3 � (345 m/s)/(3.00 � 102 Hz) � 1.15 m

1.73 m

3.45 m

(c) Find the fundamental frequency corresponding to
the elastic limit.

Calculate the tension in the wire from the elastic limit:

F � (2.80 � 108 Pa)(2.56 � 10�7 m2) � 71.7 N

F
A

� elastic limit : F � (elastic limit)A

Substitute the values of F, �, and L into Equation 14.16:

94.7 Hzf1 �
1

2(1.00 m)
 √ 71.7 N

2.00 � 10�3 kg/m
�

f1 �
1

2L
  √ F

�

Remarks From the answer to part (c), it appears we need to choose a thicker wire or use a better grade of steel with
a higher elastic limit. The frequency corresponding to the elastic limit is smaller than the fundamental!

Exercise 14.8
(a) Find the fundamental frequency and second harmonic if the tension in the wire is increased to 115 N. (Assume
the wire doesn’t stretch or break.) (b) Using a sound speed of 345 m/s, find the wavelengths of the sound waves pro-
duced.

Answer (a) 1.20 � 102 Hz, 2.40 � 102 Hz (b) 2.88 m, 1.44 m

A

B C

D

Figure 14.20 Resonance. If
pendulum A is set in oscillation, only
pendulum C, with a length matching
that of A, will eventually oscillate with
a large amplitude, or resonate. The
arrows indicate motion perpendicu-
lar to the page.
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swing is kept in motion by a series of appropriately timed pushes. For its amplitude
to increase, the swing must be pushed each time it returns to the person’s hands.
This corresponds to a frequency equal to the natural frequency of the swing. If the
energy put into the system per cycle of motion equals the energy lost due to fric-
tion, the amplitude remains constant.

Opera singers have been known to set crystal goblets in audible vibration with
their powerful voices, as shown in Figure 14.21. This is yet another example of res-
onance: The sound waves emitted by the singer can set up large-amplitude vibra-
tions in the glass. If a highly amplified sound wave has the right frequency, the am-
plitude of forced vibrations in the glass increases to the point where the glass
becomes heavily strained and shatters.

The classic example of structural resonance occurred in 1940, when the Tacoma
Narrows bridge in the state of Washington was set in oscillation by the wind (Fig.
14.22). The amplitude of the oscillations increased rapidly and reached a high
value until the bridge ultimately collapsed (probably because of metal fatigue). In
recent years, however, a number of researchers have called this explanation into
question. Gusts of wind, in general, don’t provide the periodic force necessary for a
sustained resonance condition, and the bridge exhibited large twisting oscillations,
rather than the simple up-and-down oscillations expected of resonance.

A more recent example of destruction by structural resonance occurred during
the Loma Prieta earthquake near Oakland, California, in 1989. In a mile-long sec-
tion of the double-decker Nimitz Freeway, the upper deck collapsed onto the
lower deck, killing several people. The collapse occurred because that particular
section was built on mud fill while other parts were built on bedrock. As seismic
waves pass through mud fill or other loose soil, their speed decreases and their
amplitude increases. The section of the freeway that collapsed oscillated at the
same frequency as other sections, but at a much larger amplitude.

14.10 STANDING WAVES IN AIR COLUMNS
Standing longitudinal waves can be set up in a tube of air, such as an organ pipe, as
the result of interference between sound waves traveling in opposite directions. The
relationship between the incident wave and the reflected wave depends on whether
the reflecting end of the tube is open or closed. A portion of the sound wave is re-
flected back into the tube even at an open end. If one end is closed, a node must ex-
ist at that end because the movement of air is restricted. If the end is open, the ele-
ments of air have complete freedom of motion, and an antinode exists.

Figure 14.23a shows the first three modes of vibration of a pipe open at both
ends. When air is directed against an edge at the left, longitudinal standing waves
are formed and the pipe vibrates at its natural frequencies. Note that, from end to
end, the pattern is A–N–A, the same pattern as in the vibrating string, except
node and antinode have exchanged positions. As before, an antinode and its adja-
cent node, A–N, represent a quarter-wavelength, and there are two, A–N and
N–A, so L � 2(�1/4) � �1/2 and �1 � 2L. The fundamental frequency of the 
pipe open at both ends is then f1 � v/�1 � v/2L. The next harmonic has an addi-

Figure 14.22 The collapse of the
Tacoma Narrows suspension bridge
in 1940 has been cited as a demon-
stration of mechanical resonance.
High winds set up standing waves in
the bridge, causing it to oscillate at
one of its natural frequencies. Once
established, the resonance may have
led to the bridge’s collapse (although
this interpretation is currently being
challenged by mathematicians and
physical scientists).
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Figure 14.21 (Top) Standing-wave
pattern in a vibrating wineglass. The
glass will shatter if the amplitude of
vibration becomes too large. (Bottom)
A wineglass shattered by the
amplified sound of a human voice.
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A P P L I C AT I O N
Shattering Goblets with the
Voice
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L

f1 = — = —v v
2L

f2 = — = 2f1
v
L

f3 = — = 3f1
3v
2L

2 
3

(a) Open at both ends

f1 = — = —v v
4L

f3 = — = 3f1
3v
4L

f5 = — = 5f1
5v
4L

4 
5

4 
3

First harmonic

Second harmonic

Third harmonic

First harmonic

Third harmonic

Fifth harmonic

(b) Closed at one end, open at the other

A AN

A A

A

AN N

AA A ANN N

N

A NAN

AA NNAN

l1 = 2L

l1

l2 = L

l3 = — L

l1 = 4L

l1

l3 = — L

l5 = — L

l

l

l

l

l

l

l

l

Figure 14.23 (a) Standing longitu-
dinal waves in an organ pipe open at
both ends. The natural frequencies
f1, 2f1, 3f1 . . . form a harmonic series.
(b) Standing longitudinal waves in an
organ pipe closed at one end. Only
odd harmonics are present, and the
natural frequencies are f1, 3f1, 5f1,
and so on.

� Pipe open at both ends; all harmon-
ics are present

TIP 14.4 Sound Waves Are
Not Transverse
The standing longitudinal waves in
Figure 14.23 are drawn as transverse
waves only because it’s difficult to
draw longitudinal displacements—
they’re in the same direction as the
wave propagation. In the figure, the
vertical axis represents either pres-
sure or horizontal displacement of
the elements of the medium.

tional node and antinode between the ends, creating the pattern A–N–A–N–A.
We count the pairs: A–N, N–A, A–N, and N–A, making four segments, each with
length �2/4. We have L � 4(�2/4) � �2, and the second harmonic (first overtone)
is f2 � v/�2 � v/L � 2(v/2L) � 2f1. All higher harmonics, it turns out, are posi-
tive integer multiples of the fundamental:

[14.18]

where v is the speed of sound in air. Notice the similarity to Equation 14.17, which
also involves multiples of the fundamental.

If a pipe is open at one end and closed at the other, the open end is an anti-
node while the closed end is a node (Fig. 14.23b). In such a pipe, the fundamental
frequency consists of a single antinode–node pair, A–N, so L � �1/4 and �1 �
4L. The fundamental harmonic for a pipe closed at one end is then f1 � v/�1 �
v/4L. The first overtone has another node and antinode between the open end
and closed end, making the pattern A–N–A–N. There are three antinode–node
segments in this pattern (A–N, N–A, and A–N), so L � 3(�3/4) and �3 � 4L/3.
The first overtone, therefore, has frequency f3 � v/�3 � 3v/4L � 3f1. Similarly,
f5 � 5f1. In contrast to the pipe open at both ends, there are no even multiples of
the fundamental harmonic. The odd harmonics for a pipe open at one end only
are given by

[14.19]fn � n  
v

4L
� nf1 n � 1, 3, 5, . . .

fn � n 
v

2L
� nf1 n � 1, 2, 3, . . .

A pipe open at both ends resonates at a fundamental frequency fopen. When one
end is covered and the pipe is again made to resonate, the fundamental frequency
is fclosed. Which of the following expressions describes how these two resonant
frequencies compare? (a) fclosed � fopen, (b) , (c) fclosed � 2 fopen,
(d) , (e) none of these.fclosed � 1

2 fopen

fclosed � 3
2 fopen

Quick Quiz 14.5

� Pipe closed at one end; only odd
harmonics are present
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EXAMPLE 14.9 Harmonics of a Pipe
Goal Find frequencies of open and closed pipes.

Problem A pipe is 2.46 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at
both ends. Take 343 m/s as the speed of sound in air. (b) How many harmonic frequencies of this pipe lie in the au-
dible range, from 20 Hz to 20 000 Hz? (c) What are the three lowest possible frequencies if the pipe is closed at one
end and open at the other?

Strategy Substitute into Equation 14.18 for part (a) and Equation 14.19 for part (c). All harmonics, n � 1, 2, 
3 . . . are available for the pipe open at both ends, but only the harmonics with n � 1, 3, 5, . . . for the pipe closed
at one end. For part (b), set the frequency in Equation 14.18 equal to 2.00 � 104 Hz.

Balboa Park in San Diego has an outdoor organ. When the air temperature in-
creases, the fundamental frequency of one of the organ pipes (a) increases (b) de-
creases (c) stays the same (d) impossible to determine. (The thermal expansion of
the pipe is negligible.)

Quick Quiz 14.6

Why do passing ocean waves sometimes cause the wa-
ter in a harbor to undergo very large oscillations,
called a seiche (pronounced saysh)?

Explanation Water in a harbor is enclosed and
possesses a natural frequency based on the size of the
harbor. This is similar to the natural frequency of the
enclosed air in a bottle, which can be excited by
blowing across the edge of the opening. Ocean waves

pass by the opening of the harbor at a certain fre-
quency. If this frequency matches that of the enclosed
harbor, then a large standing wave can be set up in
the water by resonance. This situation can be simu-
lated by carrying a fish tank filled with water. If your
walking frequency matches the natural frequency of
the water as it sloshes back and forth, a large standing
wave develops in the fish tank.

Applying Physics 14.3 Oscillations in a Harbor

Why do the strings go flat and the wind instruments
go sharp during a performance if an orchestra doesn’t
warm up beforehand?

Explanation Without warming up, all the instru-
ments will be at room temperature at the beginning of
the concert. As the wind instruments are played, they
fill with warm air from the player’s exhalation. The in-
crease in temperature of the air in the instruments
causes an increase in the speed of sound, which raises

the resonance frequencies of the air columns. As a
result, the instruments go sharp. The strings on the
stringed instruments also increase in temperature due
to the friction of rubbing with the bow. This results in
thermal expansion, which causes a decrease in tension
in the strings. With the decrease in tension, the wave
speed on the strings drops, and the fundamental
frequencies decrease, so the stringed instruments
go flat.

Applying Physics 14.4 Why Are Instruments Warmed Up?

A bugle has no valves, keys, slides, or finger holes.
How can it be used to play a song?

Explanation Songs for the bugle are limited to har-
monics of the fundamental frequency, because there
is no control over frequencies without valves, keys,
slides, or finger holes. The player obtains different
notes by changing the tension in the lips as the bugle

is played, in order to excite different harmonics.
The normal playing range of a bugle is among the
third, fourth, fifth, and sixth harmonics of the
fundamental. “Reveille,” for example, is played with
just the three notes G, C, and F. And “Taps” is played
with these three notes and the G one octave above the
lower G.

Applying Physics 14.5 How Do Bugles Work?
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Solution
(a) Find the frequencies if the pipe is open at both ends.

Substitute into Equation 14.18, with n � 1: 69.7 Hzf1 �
v

2L
�

343 m/s
2(2.46 m)

�

Multiply to find the second and third harmonics: f2 � 2f1 � f3 � 3f1 � 209 Hz139 Hz

(b) How many harmonics lie between 20 Hz and 20 000
Hz for this pipe?

Set the frequency in Equation 14.18 equal to 2.00 � 104

and solve for n:
fn � n  

v
2L

� n  
343 m/s
2�2.46 m

� 2.00 � 104 Hz

This works out to n � 286.88, which must be truncated
down (n � 287 gives a frequency over 2.00 � 104 Hz).

n � 286

(c) Find the frequencies for the pipe closed at one end.

Apply Equation 14.19 with n � 1: 34.9 Hzf1 �
v

4L
�

343 m/s
4(2.46 m)

�

The next two harmonics are odd multiples of the first: f3 � 3f1 � f5 � 5f1 � 175 Hz105 Hz

Exercise 14.9
(a) What length pipe open at both ends has a fundamental frequency of 3.70 � 102 Hz? Find the first overtone. (b) If
the one end of this pipe is now closed, what is the new fundamental frequency? Find the first overtone. (c) If the pipe
is open at one end only, how many harmonics are possible in the normal hearing range from 20 to 20 000 Hz?

Answer (a) 0.464 m, 7.40 � 102 Hz (b) 185 Hz, 555 Hz (c) 54

EXAMPLE 14.10 Resonance in a Tube of Variable Length
Goal Understand resonance in tubes and perform elementary calculations.

Problem Figure 14.24a shows a simple apparatus for demonstrating resonance in a tube. A long tube open at both
ends is partially submerged in a beaker of water, and a vibrating tuning fork of unknown frequency is placed near
the top of the tube. The length of the air column, L, is adjusted by moving the tube vertically. The sound waves gen-
erated by the fork are reinforced when the length of the air column corresponds to one of the resonant frequencies
of the tube. Suppose the smallest value of L for which a peak occurs in the sound intensity is 9.00 cm. (a) With this
measurement, determine the frequency of the tuning fork. (b) Find the wavelength and the next two air-column
lengths giving resonance. Take the speed of sound to be 345 m/s.

Strategy Once the tube is in the water, the setup is the same as a pipe closed at one end. For part (a), substitute
values for v and L into Equation
14.19 with n � 1 and find the fre-
quency of the tuning fork. (b) The
next resonance maximum occurs
when the water level is low enough
to allow a second node, which is an-
other half-wavelength in distance.
The third resonance occurs when
the third node is reached, requir-
ing yet another half-wavelength of
distance. The frequency in each
case is the same, because it’s gener-
ated by the tuning fork.

L

Water

f = ?

First 
resonance

Second
resonance

(third
harmonic)

Third
resonance

(fifth
harmonic)

(b)

(a)

/4 3      /4

5      /4

λ λ

λ

Figure 14.24 (Example 14.10)
(a) Apparatus for demonstrating
the resonance of sound waves in
a tube closed at one end. The
length L of the air column is var-
ied by moving the tube vertically
while it is partially submerged in
water. (b) The first three reso-
nances of the system.
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A P P L I C AT I O N
Using Beats to Tune a Musical
Instrument

Solution
(a) Find the frequency of the tuning fork.

Substitute n � 1, v � 345 m/s, and L1 � 9.00 � 10�2 m
into Equation 14.19:

958 Hzf1 �
v

4L1
�

345 m/s
4(9.00 � 10�2 m)

�

(b) Find the wavelength and the next two water levels
giving resonance.

Calculate the wavelength, using the fact that, for a tube
open at one end, � � 4L for the fundamental.

� � 4L1 � 4(9.00 � 10�2 m ) � 0.360 m

Add a half-wavelength of distance to L1 to get the next
resonance position:

L2 � L1 � �/2 � 0.0900 m � 0.180 m � 0.270 m

Add another half-wavelength to L2 to obtain the third
resonance position:

L3 � L2 � �/2 � 0.270 m � 0.180 m � 0.450 m

Remark This experimental arrangement is often used to measure the speed of sound, in which case the frequency
of the tuning fork must be known in advance.

Exercise 14.10
An unknown gas is introduced into the aforementioned apparatus using the same tuning fork, and the first reso-
nance occurs when the air column is 5.84 cm long. Find the speed of sound in the gas.

Answer 224 m/s

14.11 BEATS
The interference phenomena we have been discussing so far have involved the su-
perposition of two or more waves with the same frequency, traveling in opposite di-
rections. Another type of interference effect results from the superposition of two
waves with slightly different frequencies. In such a situation, the waves at some
fixed point are periodically in and out of phase, corresponding to an alternation
in time between constructive and destructive interference. In order to understand
this phenomenon, consider Active Figure 14.25. The two waves shown in Active
Figure 14.25a were emitted by two tuning forks having slightly different frequen-
cies; Active Figure 14.25b shows the superposition of these waves. At some time ta
the waves are in phase and constructive interference occurs, as demonstrated by
the resultant curve in Active Figure 14.25b. At some later time, however, the vibra-
tions of the two forks move out of step with each other. At time tb , one fork emits a
compression while the other emits a rarefaction, and destructive interference oc-
curs, as demonstrated by the curve shown. As time passes, the vibrations of the two
forks move out of phase, then into phase again, and so on. As a consequence, a lis-
tener at some fixed point hears an alternation in loudness, known as beats. The
number of beats per second, or the beat frequency, equals the difference in fre-
quency between the two sources:

fb � � f2 � f1� [14.20]

where fb is the beat frequency and f1 and f2 are the two frequencies. The absolute
value is used because the beat frequency is a positive quantity and will occur re-
gardless of the order of subtraction.

A stringed instrument such as a piano can be tuned by beating a note on the
instrument against a note of known frequency. The string can then be tuned to
the desired frequency by adjusting the tension until no beats are heard.

44337_14_p458-496  11/4/04  8:31 AM  Page 484



14.11 Beats 485

y

(a)

(b)

y

t

t

ta tb
ACTIVE FIGURE 14.25
Beats are formed by the combination
of two waves of slightly different
frequencies traveling in the same
direction. (a) The individual waves
heard by an observer at a fixed point
in space. (b) The combined wave has
an amplitude (dashed line) that
oscillates in time.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 14.25 to choose two
frequencies and see the
corresponding beats.

You are tuning a guitar by comparing the sound of the string with that of a stan-
dard tuning fork. You notice a beat frequency of 5 Hz when both sounds are pres-
ent. As you tighten the guitar string, the beat frequency rises steadily to 8 Hz. In
order to tune the string exactly to the tuning fork, you should (a) continue to
tighten the string (b) loosen the string (c) impossible to determine from the given
information.

Quick Quiz 14.7

EXAMPLE 14.11 Sour Notes
Goal Apply the beat frequency concept.

Problem A certain piano string is supposed to vibrate at a frequency of 4.40 � 102 Hz. In order to check its fre-
quency, a tuning fork known to vibrate at a frequency of 4.40 � 102 Hz is sounded at the same time the piano key is
struck, and a beat frequency of 4 beats per second is heard. (a) Find the two possible frequencies at which the string
could be vibrating. (b) Suppose the piano tuner runs toward the piano, holding the vibrating tuning fork while his
assistant plays the note, which is at 436 Hz. At his maximum speed, the piano tuner notices the beat frequency drops
from 4 Hz to 2 Hz (without going through a beat frequency of zero). How fast is he moving? Use a sound speed of
343 m/s. (c) While the piano tuner is running, what beat frequency is observed by the assistant? [Note: Assume all
numbers are accurate to two decimal places, necessary for this last calculation.]

Strategy (a) The beat frequency is equal to the absolute value of the difference in frequency between the two
sources of sound and occurs if the piano string is tuned either too high or too low. Solve Equation 14.20 for these two
possible frequencies. (b) Moving toward the piano raises the observed piano string frequency. Solve the Doppler shift
formula, Equation 14.12, for the speed of the observer. (c) The assistant observes a Doppler shift for the tuning fork.
Apply Equation 14.12.

Solution
(a) Find the two possible frequencies.

Case 1: f2 � f1 is already positive, so just drop the
absolute-value signs:

fb � f2 � f1 : 4 Hz � f2 � 4.40 � 102 Hz

f2 � 444 Hz

Case 2: f2 � f1 is negative, so drop the absolute-value
signs, but apply an overall negative sign:

fb � � ( f2 � f1) : 4 Hz � � ( f2 � 4.40 � 102 Hz)

f2 � 436 Hz

(b) Find the speed of the observer if running toward the
piano results in a beat frequency of 2 Hz.

Apply the Doppler shift to the case where frequency of
the piano string heard by the running observer is 
fO � 438 Hz:

1.57 m/svO � � 438 Hz � 436 Hz
436 Hz � (343 m/s) �

438 Hz � (436 Hz) � 343 m/s � vO

343 m/s �
fO � fS  � v � vO

v � vS
�
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14.12 QUALITY OF SOUND
The sound-wave patterns produced by most musical instruments are complex.
Figure 14.26 shows characteristic waveforms (pressure is plotted on the vertical
axis, time on the horizontal axis) produced by a tuning fork, a flute, and a clar-
inet, each playing the same steady note. Although each instrument has its own
characteristic pattern, the figure reveals that each of the waveforms is periodic.
Note that the tuning fork produces only one harmonic (the fundamental fre-
quency), but the two instruments emit mixtures of harmonics. Figure 14.27 graphs
the harmonics of the waveforms of Figure 14.26. When the note is played on the
flute (Fig. 14.26b), part of the sound consists of a vibration at the fundamental fre-
quency, an even higher intensity is contributed by the second harmonic, the
fourth harmonic produces about the same intensity as the fundamental, and so
on. These sounds add together according to the principle of superposition to give
the complex waveform shown. The clarinet emits a certain intensity at a frequency
of the first harmonic, about half as much intensity at the frequency of the second
harmonic, and so forth. The resultant superposition of these frequencies produces
the pattern shown in Figure 14.26c. The tuning fork (Figs. 14.26a and 14.27a)
emits sound only at the frequency of the first harmonic.

(c) What beat frequency does the assistant observe?

Apply Equation 14.12. Now the source is the tuning
fork, so fS � 4.40 � 102 Hz.

� 442 Hz� (4.40 � 102 Hz) � 343 m/s
343 m/s � 1.57 m/s �

fO � fS � v � vO

v � vS
�

Compute the beat frequency. fb � f2 � f1 � 442 Hz � 436 Hz � 6 Hz

Tuning fork

Flute

Clarinet

(a)

(b)

(c)

Figure 14.26 Waveforms
produced by (a) a tuning fork, (b) a
flute, and (c) a clarinet, all at approx-
imately the same frequency. Pressure
is plotted vertically, time horizontally.
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Harmonics

(c)

Harmonics

(b)

Harmonics

(a)

Figure 14.27 Harmonics of the waveforms in Figure 14.26. Note their variation in intensity.

Remarks The assistant on the piano bench and the tuner running with the fork observe different beat frequencies.
Many physical observations depend on the state of motion of the observer, a subject discussed more fully in Chapter
26, on relativity.

Exercise 14.11
The assistant adjusts the tension in the same piano string, and a beat frequency of 2.00 Hz is heard when the note
and the tuning fork are struck at the same time. (a) Find the two possible frequencies of the string. (b) Assume the
actual string frequency is the higher frequency. If the piano tuner runs away from the piano at 4.00 m/s while hold-
ing the vibrating tuning fork, what beat frequency does he hear? (c) What beat frequency does the assistant on the
bench hear? Use 343 m/s for the speed of sound.

Answers (a) 438 Hz, 442 Hz (b) 3 Hz (c) 7 Hz
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In music, the characteristic sound of any instrument is referred to as the quality,
or timbre, of the sound. The quality depends on the mixture of harmonics in the
sound. We say that the note C on a flute differs in quality from the same C on a
clarinet. Instruments such as the bugle, trumpet, violin, and tuba are rich in har-
monics. A musician playing a wind instrument can emphasize one or another of
these harmonics by changing the configuration of the lips, thereby playing differ-
ent musical notes with the same valve openings.

TIP 14.5 Pitch is Not The
Same as Frequency
Although pitch is related mostly (but
not completely) to frequency, they
are not the same. A phrase such as
“the pitch of the sound” is incorrect,
because pitch is not a physical prop-
erty of the sound. Frequency is the
physical measurement of the number
of oscillations per second of the
sound. Pitch is a psychological reac-
tion to sound that enables a human
being to place the sound on a scale
from high to low or from treble to
bass. Frequency is the stimulus and
pitch is the response.

(c)(a) (b)

Each musical instrument has its own
characteristic sound and mixture of
harmonics. (See Figures 14.26 and
14.27.) Instruments shown are (a) the
tuning fork, (b) the flute, and (c) the
clarinet.a–
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A professor performs a demonstration in which he
breathes helium and then speaks with a comical voice.
One student explains, “The velocity of sound in
helium is higher than in air, so the fundamental
frequency of the standing waves in the mouth is in-
creased.” Another student says, “No, the fundamental
frequency is determined by the vocal folds and cannot
be changed. Only the quality of the voice has
changed.” Which student is correct?

Explanation The second student is correct. The
fundamental frequency of the complex tone from the

voice is determined by the vibration of the vocal folds
and is not changed by substituting a different gas in the
mouth. The introduction of the helium into the mouth
results in harmonics of higher frequencies being ex-
cited more than in the normal voice, but the fundamen-
tal frequency of the voice is the same—only the quality
has changed. The unusual inclusion of the higher fre-
quency harmonics results in a common description of
this effect as a “high-pitched” voice, but that description
is incorrect. (It is really a “quacky” timbre.)

Applying Physics 14.6 Why Does the Professor Sound Like Donald Duck?

14.13 THE EAR
The human ear is divided into three regions: the outer ear, the middle ear, and
the inner ear (Fig. 14.28, page 488). The outer ear consists of the ear canal (which
is open to the atmosphere), terminating at the eardrum (tympanum). Sound
waves travel down the ear canal to the eardrum, which vibrates in and out in phase
with the pushes and pulls caused by the alternating high and low pressures of the
waves. Behind the eardrum are three small bones of the middle ear, called the ham-
mer, the anvil, and the stirrup because of their shapes. These bones transmit the
vibration to the inner ear, which contains the cochlea, a snail-shaped tube about 
2 cm long. The cochlea makes contact with the stirrup at the oval window and is
divided along its length by the basilar membrane, which consists of small hairs
(cilia) and nerve fibers. This membrane varies in mass per unit length and in ten-
sion along its length, and different portions of it resonate at different frequencies.
(Recall that the natural frequency of a string depends on its mass per unit length
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and on the tension in it.) Along the basilar membrane are numerous nerve end-
ings, which sense the vibration of the membrane and in turn transmit impulses to
the brain. The brain interprets the impulses as sounds of varying frequency, de-
pending on the locations along the basilar membrane of the impulse-transmitting
nerves and on the rates at which the impulses are transmitted.

Figure 14.29 shows the frequency response curves of an average human ear for
sounds of equal loudness, ranging from 0 to 120 dB. To interpret this series of
graphs, take the bottom curve as the threshold of hearing. Compare the intensity
level on the vertical axis for the two frequencies 100 Hz and 1 000 Hz. The vertical
axis shows that the 100-Hz sound must be about 38 dB greater than the 1 000-Hz
sound to be at the threshold of hearing, which means that the threshold of hear-
ing is very strongly dependent on frequency. The easiest frequencies to hear are
around 3 300 Hz; those above 12 000 Hz or below about 50 Hz must be relatively
intense to be heard.

Now consider the curve labeled 80. This curve uses a 1 000-Hz tone at an intensity
level of 80 dB as its reference. The curve shows that a tone of frequency 100 Hz
would have to be about 4 dB louder than the 80-dB, 1 000-Hz tone in order to sound
as loud. Notice that the curves flatten out as the intensities levels of the sounds in-
crease, so when sounds are loud, all frequencies can be heard equally well.

488 Chapter 14 Sound

Hammer Anvil Stirrup Semicircular canals
(for balance)
Oval window

Vestibular nerve

Cochlear nerve

Cochlea

Eardrum
(tympanum)

Eustachian tube

Ear canal

Figure 14.28 The structure of the
human ear. The three tiny bones
(ossicles) that connect the eardrum
to the window of the cochlea act as a
double-lever system to decrease the
amplitude of vibration and hence
increase the pressure on the fluid in
the cochlea.
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Figure 14.29 Curves of intensity
level versus frequency for sounds that
are perceived to be of equal loudness.
Note that the ear is most sensitive at a
frequency of about 3 300 Hz. The
lowest curve corresponds to the
threshold of hearing for only about
1% of the population.
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The small bones in the middle ear represent an intricate lever system that
increases the force on the oval window. The pressure is greatly magnified because
the surface area of the eardrum is about 20 times that of the oval window (in
analogy with a hydraulic press). The middle ear, together with the eardrum and
oval window, in effect acts as a matching network between the air in the outer ear
and the liquid in the inner ear. The overall energy transfer between the outer ear
and the inner ear is highly efficient, with pressure amplification factors of several
thousand. In other words, pressure variations in the inner ear are much greater
than those in the outer ear.

The ear has its own built-in protection against loud sounds. The muscles con-
necting the three middle-ear bones to the walls control the volume of the sound by
changing the tension on the bones as sound builds up, thus hindering their ability
to transmit vibrations. In addition, the eardrum becomes stiffer as the sound inten-
sity increases. These two events make the ear less sensitive to loud incoming sounds.
There is a time delay between the onset of a loud sound and the ear’s protective re-
action, however, so a very sudden loud sound can still damage the ear.

The complex structure of the human ear is believed to be related to the fact
that mammals evolved from seagoing creatures. In comparison, insect ears are
considerably simpler in design, because insects have always been land residents. A
typical insect ear consists of an eardrum exposed directly to the air on one side
and to an air-filled cavity on the other side. Nerve cells communicate directly with
the cavity and the brain, without the need for the complex intermediary of an
inner and middle ear. This simple design allows the ear to be placed virtually any-
where on the body. For example, a grasshopper has its ears on its legs. One advan-
tage of the simple insect ear is that the distance and orientation of the ears can be
varied so that it is easier to locate sources of sound, such as other insects.

One of the most amazing medical advances in recent decades is the cochlear
implant, allowing the deaf to hear. Deafness can occur when the hairlike sensors
(cilia) in the cochlea break off over a lifetime or sometimes because of prolonged
exposure to loud sounds. Because the cilia don’t grow back, the ear loses sensitivity
to certain frequencies of sound. The cochlear implant stimulates the nerves in the
ear electronically to restore hearing loss that is due to damaged or absent cilia.

SUMMARY
Take a practice test by logging into 

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

14.2 Characteristics of Sound Waves
Sound waves are longitudinal waves. Audible waves are sound
waves with frequencies between 20 and 20 000 Hz. Infrasonic
waves have frequencies below the audible range, and ultra-
sonic waves have frequencies above the audible range.

14.3 The Speed of Sound
The speed of sound in a medium of bulk modulus B and
density � is

[14.1]

The speed of sound also depends on the temperature of
the medium. The relationship between temperature and
the speed of sound in air is

[14.4]

where T is the absolute (Kelvin) temperature and 331 m/s
is the speed of sound in air at 0�C. 

v � (331 m/s) √ T
273 K

v � √ B
�

14.4 Energy and Intensity 
of Sound Waves
The average intensity of sound incident on a surface is de-
fined by

[14.6]

where the power � is the energy per unit time flowing
through the surface, which has area A. The intensity level
of a sound wave is given by

[14.7]

The constant I0 � 1.0 � 10�12 W/m2 is a reference inten-
sity, usually taken to be at the threshold of hearing, and I is
the intensity at level 	, measured in decibels (dB).

14.5 Spherical and Plane Waves
The intensity of a spherical wave produced by a point source
is proportional to the average power emitted and inversely
proportional to the square of the distance from the source:

[14.8]I �
�av

4
r2

	 � 10 log  � I
I0
�

I � 
power
area

�
�

A
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14.6 The Doppler Effect
The change in frequency heard by an observer whenever
there is relative motion between a source of sound and the
observer is called the Doppler effect. If the observer is
moving with speed vO and the source is moving with speed
vS , the observed frequency is

[14.12]

where v is the speed of sound. A positive speed is substi-
tuted for vO when the observer moves toward the source, a
negative speed when the observer moves away from the
source. Similarly, a positive speed is substituted for vS when
the sources moves toward the observer, a negative speed
when the source moves away.

14.7 Interference of Sound Waves
When waves interfere, the resultant wave is found by adding
the individual waves together point by point. When crest
meets crest and trough meets trough, the waves undergo
constructive interference, with path length difference

r2 � r1 � n� (n � 0, 1, 2, . . .) [14.13]

When crest meets trough, destructive interference occurs,
with path length difference

(n � 0, 1, 2, . . .) [14.14]

14.8 Standing Waves
Standing waves are formed when two waves having the
same frequency, amplitude, and wavelength travel in oppo-
site directions through a medium. The natural frequencies
of vibration of a stretched string of length L, fixed at both
ends, are

n � 1, 2, 3, . . . [14.17]fn � nf1 �
n

2L
  √ F

�

r2 � r1 � (n � 1
2)�

fO � fS � v � vO

v � vS
�

where F is the tension in the string and � is its mass per
unit length.

14.9 Forced Vibrations and Resonance
A system capable of oscillating is said to be in resonance
with some driving force whenever the frequency of the
driving force matches one of the natural frequencies of the
system. When the system is resonating, it oscillates with
maximum amplitude.

14.10 Standing Waves in Air Columns
Standing waves can be produced in a tube of air. If the re-
flecting end of the tube is open, all harmonics are present
and the natural frequencies of vibration are

n � 1, 2, 3, . . . [14.18]

If the tube is closed at the reflecting end, only the odd harmon-
ics are present and the natural frequencies of vibration are

n � 1, 3, 5, . . . [14.19]

14.11 Beats
The phenomenon of beats is an interference effect that oc-
curs when two waves with slightly different frequencies
combine at a fixed point in space. For sound waves, the in-
tensity of the resultant sound changes periodically with
time. The beat frequency is

fb � � f2 � f1� [14.20]

where f2 and f1 are the two source frequencies.

fn � n  
v

4L
� nf1

fn � n  
v

2L
� nf1

CONCEPTUAL QUESTIONS
1. (a) You are driving down the highway in your car when a

police car sounding its siren overtakes you and passes you. If
its frequency at rest is f0, is the frequency you hear while the
car is catching up to you higher or lower than f0? (b) What
about the frequency you hear after the car has passed you?

2. A crude model of the human throat is that of a pipe open
at both ends with a vibrating source to introduce the
sound into the pipe at one end. Assuming the vibrating
source produces a range of frequencies, discuss the effect
of changing the pipe’s length.

3. An autofocus camera sends out a pulse of sound and
measures the time taken for the pulse to reach an object,
reflect off of it, and return to be detected. Can the tem-
perature affect the camera’s focus?

4. To keep animals away from their cars, some people mount
short, thin pipes on the fenders. The pipes give out a
high-pitched wail when the cars are moving. How do they
create the sound?

5. Secret agents in the movies always want to get to a secure
phone with a voice scrambler. How do these devices work?

6. When a bell is rung, standing waves are set up around its cir-
cumference. What boundary conditions must be satisfied by
the resonant wavelengths? How does a crack in the bell,
such as in the Liberty Bell, affect the satisfying of the bound-
ary conditions and the sound emanating from the bell?

7. How does air temperature affect the tuning of a wind in-
strument?

8. Explain how the distance to a lightning bolt can be deter-
mined by counting the seconds between the flash and the
sound of thunder.

9. You are driving toward a cliff and you honk your horn. Is
there a Doppler shift of the sound when you hear the
echo? Is it like a moving source or moving observer? What
if the reflection occurs not from a cliff, but from the for-
ward edge of a huge alien spacecraft moving toward you
as you drive?
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10. Of the following sounds, state which is most likely to have
an intensity level of 60 dB: a rock concert, the turning of a
page in this text, a normal conversation, a cheering crowd
at a football game, and background noise at a church?

11. Guitarists sometimes play a “harmonic” by lightly touch-
ing a string at its exact center and plucking the string.
The result is a clear note one octave higher than the fun-
damental frequency of the string, even though the string
is not pressed to the fingerboard. Why does this happen?

12. Will two separate 50-dB sounds together constitute a 
100-dB sound? Explain.

13. An archer shoots an arrow from a bow. Does the string of
the bow exhibit standing waves after the arrow leaves? If
so, and if the bow is perfectly symmetric so that the arrow
leaves from the center of the string, what harmonics are
excited?

14. The radar systems used by police to detect speeders are
sensitive to the Doppler shift of a pulse of radio waves.
Discuss how this sensitivity can be used to measure the
speed of a car.

15. As oppositely moving pulses of the same shape (one up-
ward, one downward) on a string pass through each

other, there is one instant at which the string shows no
displacement from the equilibrium position at any point.
Has the energy carried by the pulses disappeared at this
instant of time? If not, where is it?

16. A soft drink bottle resonates as air is blown across its top.
What happens to the resonant frequency as the level of
fluid in the bottle decreases?

17. A blowing whistle is attached to the roof of a car that
moves around a circular race track. Assuming you’re
standing near the outside of the track, explain the nature
of the sound you hear as the whistle comes by each time.

18. Despite a reasonably steady hand, a person often spills his
coffee when carrying it to his seat. Discuss resonance as a
possible cause of this difficulty, and devise a means for
solving the problem.

19. An airplane mechanic notices that the sound from a twin-
engine aircraft varies rapidly in loudness when both en-
gines are running. What could be causing this variation
from loud to soft?

20. Why does a vibrating guitar string sound louder when
placed on the instrument than it would if allowed to vi-
brate in the air while off the instrument?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 14.2 Characteristics of Sound Waves
Section 14.3 The Speed of Sound
Unless otherwise stated, use 345 m/s as the speed of sound in air.

1. Suppose that you hear a clap of thunder 16.2 s after see-
ing the associated lightning stroke. The speed of sound
waves in air is 343 m/s and the speed of light in air is
3.00 � 108 m/s. How far are you from the lightning
stroke?

2. A dolphin located in sea water at a temperature of 25�C
emits a sound directed toward the bottom of the ocean
150 m below. How much time passes before it hears an
echo?

3. A sound wave has a frequency of 700 Hz in air and a wave-
length of 0.50 m. What is the temperature of the air?

4. The range of human hearing extends from approximately
20 Hz to 20 000 Hz. Find the wavelengths of these ex-
tremes at a temperature of 27�C.

5. A group of hikers hears an echo 3.00 s after shouting. If
the temperature is 22.0�C, how far away is the mountain
that reflected the sound wave?

6. A stone is dropped from rest into a well. The sound of the
splash is heard exactly 2.00 s later. Find the depth of the
well if the air temperature is 10.0�C.

You are watching a pier being constructed on the far
shore of a saltwater inlet when some blasting occurs. You
hear the sound in the water 4.50 s before it reaches you
through the air. How wide is the inlet? [Hint: See Table
14.1. Assume the air temperature is 20�C.]

8. The speed of sound in a column of air is measured to be
356 m/s. What is the temperature of the air?

7.

Section 14.4 Energy and Intensity of Sound Waves
9. The toadfish makes use of resonance in a closed tube to

produce very loud sounds. The tube is its swim bladder,
used as an amplifier. The sound level of this creature has
been measured as high as 100 dB. (a) Calculate the inten-
sity of the sound wave emitted. (b) What is the intensity
level if three of these fish try to imitate three frogs by say-
ing “Budweiser” at the same time.

10. The area of a typical eardrum is about 5.0 � 10�5 m2.
Calculate the sound power (the energy per second) inci-
dent on an eardrum at (a) the threshold of hearing and
(b) the threshold of pain.

11. There is evidence that elephants communicate via infra-
sound, generating rumbling vocalizations as low as 14 hz
that can travel up to 10 km. The intensity level of these
sounds can reach 103 dB, measured a distance of 5.0 m
from the source. Determine the intensity level of the in-
frasound 10 km from the source, assuming the sound en-
ergy radiates uniformly in all directions.

12. Two sounds have measured intensities of I1 � 100 W/m2

and I2 � 200 W/m2. By how many decibels is the level of
sound 1 lower than that of sound 2?

A noisy machine in a factory produces sound with a level
of 80 dB. How many identical machines could you add to
the factory without exceeding the 90-dB limit? 

14. A family ice show is held at an enclosed arena. The skaters
perform to music playing at a level of 80.0 dB. This inten-
sity level is too loud for your baby, who yells at 75.0 dB.
(a) What total sound intensity engulfs you? (b) What is
the combined sound level?

13.
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15. Calculate the sound level in decibels of a sound wave that
has an intensity of 4.00 �W/m2.

Section 14.5 Spherical and Plane Waves
16. An outside loudspeaker (considered a small source) emits

sound waves with a power output of 100 W. (a) Find the
intensity 10.0 m from the source. (b) Find the intensity
level in decibels at that distance. (c) At what distance
would you experience the sound at the threshold of pain,
120 dB?

A train sounds its horn as it approaches
an intersection. The horn can just be heard at a level of
50 dB by an observer 10 km away. (a) What is the average
power generated by the horn? (b) What intensity level
of the horn’s sound is observed by someone waiting at
an intersection 50 m from the train? Treat the horn as
a point source and neglect any absorption of sound by
the air.

18. A skyrocket explodes 100 m above the ground (Fig.
P14.18). Three observers are spaced 100 m apart, with the
first (A) directly under the explosion. (a) What is the
ratio of the sound intensity heard by observer A to that
heard by observer B? (b) What is the ratio of the intensity
heard by observer A to that heard by observer C?

17.
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Two trains on separate tracks move towards one another.
Train 1 has a speed of 130 km/h, train 2 a speed of
90.0 km/h. Train 2 blows its horn, emitting a frequency of
500 Hz. What is the frequency heard by the engineer on
train 1?

24. A bat flying at 5.0 m/s emits a chirp at 40 kHz. If this
sound pulse is reflected by a wall, what is the frequency of
the echo received by the bat?

25. An alert physics student stands beside the tracks as a train
rolls slowly past. He notes that the frequency of the train
whistle is 442 Hz when the train is approaching him and
441 Hz when the train is receding from him. Using these
frequencies, he calculates the speed of the train. What
value does he find?

26. Expectant parents are thrilled to hear their unborn baby’s
heartbeat, revealed by an ultrasonic motion detector.
Suppose the fetus’s ventricular wall moves in simple har-
monic motion with amplitude 1.80 mm and frequency
115 per minute. (a) Find the maximum linear speed of
the heart wall. Suppose the motion detector in contact
with the mother’s abdomen produces sound at precisely 
2 MHz, which travels through tissue at 1.50 km/s. (b) Find
the maximum frequency at which sound arrives at the wall
of the baby’s heart. (c) Find the maximum frequency at
which reflected sound is received by the motion detector.
(By electronically “listening” for echoes at a frequency dif-
ferent from the broadcast frequency, the motion detector
can produce beeps of audible sound in synchrony with
the fetal heartbeat.)

27. A tuning fork vibrating at 512 Hz falls from rest and accel-
erates at 9.80 m/s2. How far below the point of release is
the tuning fork when waves of frequency 485 Hz reach
the release point? Take the speed of sound in air to be
340 m/s.

28. A supersonic jet traveling at Mach 3 at an altitude of
20 000 m is directly overhead at time t � 0, as in Figure
P14.28. (a) How long will it be before the ground ob-
server encounters the shock wave? (b) Where will the
plane be when it is finally heard? (Assume an average
value of 330 m/s for the speed of sound in air.)

23.

100 m

P

100 m100 mA B C

Figure P14.18

θ

h
t = 0

Observer

(a) (b)

Observer hears
the “boom”

h

θ
x

Figure P14.28

19. Show that the difference in decibel levels 	1 and 	2 of a
sound source is related to the ratio of its distances r1 and
r2 from the receivers by the formula

Section 14.6 The Doppler Effect
20. An airplane traveling at half the speed of sound 

(v � 172 m/s) emits a sound of frequency 5.00 kHz. At
what frequency does a stationary listener hear the sound
(a) as the plane approaches? (b) after it passes?

21. A commuter train passes a passenger platform at a con-
stant speed of 40.0 m/s. The train horn is sounded at its
characteristic frequency of 320 Hz. (a) What overall
change in frequency is detected by a person on the plat-
form as the train moves from approaching to receding?
(b) What wavelength is detected by a person on the plat-
form as the train approaches?

22. At rest, a car’s horn sounds the note A (440 Hz). The horn
is sounded while the car is moving down the street. A bicy-
clist moving in the same direction with one-third the car’s
speed hears a frequency of 415 Hz. What is the speed of
the car? Is the cyclist ahead of or behind the car?

	2 � 	1 � 20 log  � r1

r2
�

29. The now-discontinued Concorde flew at Mach 1.5, which
meant the speed of the plane was 1.5 times the speed of
sound in air. What was the angle between the direction of
propagation of the shock wave and the direction of the
plane’s velocity?
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Problems 493

Section 14.7 Interference of Sound Waves
30. The acoustical system shown in Figure 14.14 is driven by a

speaker emitting a 400-Hz note. If destructive interference
occurs at a particular instant, how much must the path
length in the U-shaped tube be increased in order to hear
(a) constructive interference and (b) destructive interfer-
ence once again?
The ship in Figure P14.31 travels along a straight line par-
allel to the shore and 600 m from it. The ship’s radio re-
ceives simultaneous signals of the same frequency from
antennas A and B. The signals interfere constructively at
point C, which is equidistant from A and B. The signal
goes through the first minimum at point D. Determine
the wavelength of the radio waves.

31.

antinodes; no other nodes or antinodes are present. What
is the frequency of the resonance if the rod is 1.00 m long?

Two speakers are driven by a common
oscillator at 800 Hz and face each other at a distance of
1.25 m. Locate the points along a line joining the speak-
ers where relative minima of the amplitude of the pres-
sure would be expected. (Use v � 343 m/s.)

38. Two pieces of steel wire with identical cross sections have
lengths of L and 2L. The wires are each fixed at both ends
and stretched so that the tension in the longer wire is four
times greater than in the shorter wire. If the fundamental
frequency in the shorter wire is 60 Hz, what is the fre-
quency of the second harmonic in the longer wire?

39. A 12-kg object hangs in equilibrium from a string of
total length L � 5.0 m and linear mass density � �
0.001 0 kg/m. The string is wrapped around two light,
frictionless pulleys that are separated by the distance 
d � 2.0 m (Fig. P14.39a). (a) Determine the tension in
the string. (b) At what frequency must the string between
the pulleys vibrate in order to form the standing-wave pat-
tern shown in Figure P14.39b?

37.

32. Two loudspeakers are placed above and below one an-
other, as in Figure 14.15, and are driven by the same
source at a frequency of 500 Hz. (a) What minimum dis-
tance should the top speaker be moved back in order to
create destructive interference between the speakers?
(b) If the top speaker is moved back twice the distance
calculated in part (a), will there be constructive or de-
structive interference?

33. A pair of speakers separated by 0.700 m are driven by the
same oscillator at a frequency of 690 Hz. An observer orig-
inally positioned at one of the speakers begins to walk
along a line perpendicular to the line joining the speak-
ers. (a) How far must the observer walk before reaching a
relative maximum in intensity? (b) How far will the ob-
server be from the speaker when the first relative mini-
mum is detected in the intensity?

Section 14.8 Standing Waves
34. A steel wire in a piano has a length of 0.700 0 m and a

mass of 4.300 � 10�3 kg. To what tension must this wire
be stretched in order that the fundamental vibration cor-
respond to middle C ( fC � 261.6 Hz on the chromatic
musical scale)?

35. A stretched string fixed at each end has a mass of 40.0 g
and a length of 8.00 m. The tension in the string is
49.0 N. (a) Determine the positions of the nodes and an-
tinodes for the third harmonic. (b) What is the vibration
frequency for this harmonic?

36. Resonance of sound waves can be produced within an alu-
minum rod by holding the rod at its midpoint and stroking
it with an alcohol-saturated paper towel. In this resonance
mode, the middle of the rod is a node while the ends are

800 m

600 m

A B

C

D

Figure P14.31

g

m

d

(b)

m

d

(a)

Figure P14.39

40. In the arrangement shown in Figure P14.40, an object of
mass m � 5.0 kg hangs from a cord around a light pulley.
The length of the cord between point P and the pulley is
L � 2.0 m. (a) When the vibrator is set to a frequency of
150 Hz, a standing wave with six loops is formed. What
must be the linear mass density of the cord? (b) How
many loops (if any) will result if m is changed to 45 kg?
(c) How many loops (if any) will result if m is changed to
10 kg?

L

P

Vibrator

m

Pulley

m

Figure P14.40
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A 60.00-cm guitar string under a tension of 50.000 N has a
mass per unit length of 0.100 00 g/cm. What is the high-
est resonant frequency that can be heard by a person ca-
pable of hearing frequencies up to 20 000 Hz?

Section 14.9 Forced Vibrations and Resonance
42. Standing-wave vibrations are set up in a crystal goblet with

four nodes and four antinodes equally spaced around the
20.0-cm circumference of its rim. If transverse waves move
around the glass at 900 m/s, an opera singer would have
to produce a high harmonic with what frequency in order
to shatter the glass with a resonant vibration?

Section 14.10 Standing Waves in Air Columns
43. The windpipe of a typical whooping crane is about

5.0 feet long. What is the lowest resonant frequency of
this pipe, assuming that it is closed at one end? Assume a
temperature of 37�C.

44. The overall length of a piccolo is 32.0 cm. The resonating
air column vibrates as in a pipe that is open at both ends.
(a) Find the frequency of the lowest note a piccolo can
play, assuming the speed of sound in air is 340 m/s.
(b) Opening holes in the side effectively shortens the
length of the resonant column. If the highest note a pic-
colo can sound is 4 000 Hz, find the distance between ad-
jacent antinodes for this mode of vibration.

45. The human ear canal is about 2.8 cm long. If it is re-
garded as a tube that is open at one end and closed at the
eardrum, what is the fundamental frequency around
which we would expect hearing to be most sensitive? Take
the speed of sound to be 340 m/s.

46. A shower stall measures 86.0 cm � 86.0 cm � 210 cm.
When you sing in the shower, which frequencies will
sound the richest (because of resonance)? Assume the
stall acts as a pipe closed at both ends, with nodes at op-
posite sides. Assume also that the voices of various singers
range from 130 Hz to 2 000 Hz. Let the speed of sound in
the hot shower stall be 355 m/s.

A pipe open at both ends has a funda-
mental frequency of 300 Hz when the temperature is 0�C.
(a) What is the length of the pipe? (b) What is the funda-
mental frequency at a temperature of 30�C?

48. A 2.00-m-long air column is open at both ends. The
frequency of a certain harmonic is 410 Hz, and the fre-
quency of the next-higher harmonic is 492 Hz. Determine
the speed of sound in the air column.

Section 14.11 Beats
49. Two identical mandolin strings under 200 N of tension

are sounding tones with frequencies of 523 Hz. The peg
of one string slips slightly, and the tension in it drops to
196 N. How many beats per second are heard?

50. The G string on a violin has a fundamental frequency of
196 Hz. It is 30.0 cm long and has a mass of 0.500 g. While
this string is sounding, a nearby violinist effectively short-
ens the G string on her identical violin (by sliding her
finger down the string) until a beat frequency of 2.00 Hz
is heard between the two strings. When this occurs, what
is the effective length of her string?

51. Two train whistles have identical frequencies of 180 Hz.
When one train is at rest in the station, sounding its whis-
tle, a beat frequency of 2 Hz is heard from a moving train.

47.

41. What two possible speeds and directions can the moving
train have?

52. Two pipes of equal length are each open at one end.
Each has a fundamental frequency of 480 Hz at 300 K. In
one pipe, the air temperature is increased to 305 K. If
the two pipes are sounded together, what beat frequency
results?
A student holds a tuning fork oscillating at 256 Hz.
He walks toward a wall at a constant speed of 1.33 m/s.
(a) What beat frequency does he observe between the
tuning fork and its echo? (b) How fast must he walk away
from the wall to observe a beat frequency of 5.00 Hz?

Section 14.13 The Ear
54. If a human ear canal can be thought of as resembling an

organ pipe, closed at one end, that resonates at a funda-
mental frequency of 3 000 Hz, what is the length of the
canal? Use a normal body temperature of 37�C for your
determination of the speed of sound in the canal.

55. Some studies suggest that the upper frequency limit of
hearing is determined by the diameter of the eardrum.
The wavelength of the sound wave and the diameter of
the eardrum are approximately equal at this upper limit.
If the relationship holds exactly, what is the diameter of
the eardrum of a person capable of hearing 20 000 Hz?
(Assume a body temperature of 37�C.)

ADDITIONAL PROBLEMS
56. A commuter train blows its horn as it passes a passenger

platform at a constant speed of 40.0 m/s. The horn
sounds at a frequency of 320 Hz when the train is at rest.
What is the frequency observed by a person on the plat-
form (a) as the train approaches and (b) as the train
recedes from him? (c) What wavelength does the observer
find in each case?

57. A quartz watch contains a crystal oscillator in the form of
a block of quartz that vibrates by contracting and expand-
ing. Two opposite faces of the block, 7.05 mm apart, are
antinodes, moving alternately towards and away from
each other. The plane halfway between these two faces is a
node of the vibration. The speed of sound in quartz is
3.70 km/s. Find the frequency of the vibration. An oscil-
lating electric voltage accompanies the mechanical oscilla-
tion, so the quartz is described as piezoelectric. An electric
circuit feeds in energy to maintain the oscillation and also
counts the voltage pulses to keep time.

58. A flowerpot is knocked off a balcony 20.0 m above the
sidewalk and falls toward an unsuspecting 1.75-m-tall
man who is standing below. How close to the sidewalk
can the flowerpot fall before it is too late for a warning
shouted from the balcony to reach the man in time? As-
sume that the man below requires 0.300 s to respond to
the warning.

On a workday, the average decibel level
of a busy street is 70 dB, with 100 cars passing a given
point every minute. If the number of cars is reduced to 25
every minute on a weekend, what is the decibel level of
the street?

60. A variable-length air column is placed just below a vibrat-
ing wire that is fixed at both ends. The length of the
column, open at one end, is gradually increased from
zero until the first position of resonance is observed at 

59.

53.
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Problems 495

L � 34.0 cm. The wire is 120 cm long and is vibrating in
its third harmonic. If the speed of sound in air is 340 m/s,
what is the speed of transverse waves in the wire?

61. A block with a speaker bolted to it is connected to a
spring having spring constant k � 20.0 N/m, as shown in
Figure P14.61. The total mass of the block and speaker is
5.00 kg, and the amplitude of the unit’s motion is
0.500 m. If the speaker emits sound waves of frequency
440 Hz, determine the lowest and highest frequencies
heard by the person to the right of the speaker.

62. A flute is designed so that it plays a frequency of 261.6 Hz,
middle C, when all the holes are covered and the tempera-
ture is 20.0�C. (a) Consider the flute to be a pipe open at
both ends, and find its length, assuming that the middle-C
frequency is the fundamental frequency. (b) A second
player, nearby in a colder room, also attempts to play
middle C on an identical flute. A beat frequency of
3.00 beats/s is heard. What is the temperature of the room?

63. When at rest, two trains have sirens that emit a frequency
of 300 Hz. The trains travel toward one another and
toward an observer stationed between them. One of the
trains moves at 30.0 m/s, and the observer hears a beat
frequency of 3.0 beats per second. What is the speed of
the second train, which travels faster than 30.0 m/s?

64. Many artists sing very high notes in ad lib ornaments and
cadenzas. The highest note written for a singer in a pub-
lished score was F-sharp above high C, 1.480 kHz, sung by
Zerbinetta in the original version of Richard Strauss’s
opera Ariadne auf Naxos. (a) Find the wavelength of this
sound in air. (b) In response to complaints, Strauss later
transposed the note down to F above high C, 1.397 kHz.
By what increment did the wavelength change?

65. A speaker at the front of a room and an identical speaker
at the rear of the room are being driven at 456 Hz by the
same sound source. A student walks at a uniform rate of
1.50 m/s away from one speaker and towards the other.
How many beats does the student hear per second?
Two identical speakers separated by 10.0 m are driven
by the same oscillator with a frequency of f � 21.5 Hz
(Fig. P14.66). Explain why a receiver at A records a
minimum in sound intensity from the two speakers. (b) If
the receiver is moved in the plane of the speakers, what
path should it take so that the intensity remains at a mini-
mum? That is, determine the relationship between x and
y (the coordinates of the receiver) such that the receiver
will record a minimum in sound intensity. Take the speed
of sound to be 344 m/s.

66.

x

mk

Figure P14.61

9.00 m

10.0 m

y

(x,y)

A
x

Figure P14.66

67. By proper excitation, it is possible to produce both longi-
tudinal and transverse waves in a long metal rod. In a par-
ticular case, the rod is 150 cm long and 0.200 cm in radius
and has a mass of 50.9 g. Young’s modulus for the mate-
rial is 6.80 � 1010 Pa. Determine the required tension in
the rod so that the ratio of the speed of longitudinal
waves to the speed of transverse waves is 8.

68. A student stands several meters in front of a smooth reflect-
ing wall, holding a board on which a wire is fixed at each
end. The wire, vibrating in its third harmonic, is 75.0 cm
long, has a mass of 2.25 g, and is under a tension of 400 N.
A second student, moving towards the wall, hears 8.30 beats
per second. What is the speed of the student approaching
the wall? Use 340 m/s as the speed of sound in air.
Two ships are moving along a line due east. The trailing
vessel has a speed of 64.0 km/h relative to a land-based
observation point, and the leading ship has a speed of
45.0 km/h relative to the same station. The trailing
ship transmits a sonar signal at a frequency of 1 200 Hz.
What frequency is monitored by the leading ship? (Use
1 520 m/s as the speed of sound in ocean water.)

70. The Doppler equation presented in the text is valid when
the motion between the observer and the source occurs
on a straight line, so that the source and observer are
moving either directly toward or directly away from each
other. If this restriction is relaxed, one must use the more
general Doppler equation

where �O and �S are defined in Figure P14.70a. (a) If both
observer and source are moving away from each other
along a straight line, show that the preceding equation
yields the same result as Equation 14.12 in the text. 

fO � � v � vO  cos(�O)
v � vS  cos(�S) �  fS

69.

vS

vO

(b)

25.0 m/s

(a)

uS

uO

Source

Observer

Figure P14.70
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(b) Use the preceding equation to solve the following
problem: A train moves at a constant speed of 25.0 m/s
toward the intersection shown in Figure P14.70b. A car is
stopped near the intersection, 30.0 m from the tracks. If
the train’s horn emits a frequency of 500 Hz, what is the
frequency heard by the passengers in the car when the
train is 40.0 m to the left of the intersection? Take the
speed of sound to be 343 m/s.

71. A rescue plane flies horizontally at a constant speed,
searching for a disabled boat. When the plane is directly
above the boat, the boat’s crew blows a loud horn. By the
time the plane’s sound detector perceives the horn’s
sound, the plane has traveled a distance equal to one-half
its altitude above the ocean. If the sound takes 2.00 s to
reach the plane, determine (a) the plane’s altitude and
(b) its speed.

72. In order to determine her speed, a skydiver carries a tone
generator. A friend on the ground at the landing site has
equipment for receiving and analyzing sound waves.
While the skydiver is falling at terminal speed, her tone
generator emits a steady tone of 1.80 kHz. (Assume that
the air is calm, that the speed of sound is 343 m/s, inde-
pendent of altitude.) (a) If her friend on the ground (di-
rectly beneath the skydiver) receives waves of frequency
2.15 kHz, what is the skydiver’s speed of descent? (b) If
the skydiver were also carrying sound-receiving equip-
ment sensitive enough to detect waves reflected from the
ground, what frequency of waves would she receive?

ACTIVITIES
A.1. Use an empty 1-liter soft-drink container, blow over the

open end, and listen to the sound that is produced. Add
some water to the container to change the height of the
air column, and repeat the procedure. How does the
frequency that you hear change with the height of the air
column?

If you want to investigate this phenomenon in more de-
tail, construct a musical instrument made up of several
soft-drink bottles with different amounts of water in each.
You can play your instrument as a wind instrument by
blowing over the mouths of the bottles.

A.2. Beats can easily be heard on a guitar. When a finger is
placed at the fifth fret of the second string, the note pro-
duced when the string is plucked should be identical to
the note from the first string when it is played without fin-
gering. With your finger in position on the second string,
pluck the two strings simultaneously. If one of the strings
is slightly out of tune, a very pronounced beat frequency
will be heard. What happens to the beat frequency as the
string tension is changed in small increments from too
low for the intended tuning to too high?

A.3. Attach a rope to a door and shake the other end to see
how many of the standing-wave patterns in Figure 14.18
you can produce. When a pattern is formed, note that the
amplitude of the rope’s vibration is much larger than the
movement of your hand.

A.4. Snip off the corners of one end of a paper straw so that
the end tapers to a point, as shown in Figure A14.4. Chew
on this end to flatten it, and you have created a double-
reed instrument. Put your lips around the tapered end of
the straw, press them together slightly, and blow through
the straw. When you hear a steady tone, slowly snip off a
piece of the straw at the other end. Be careful to keep
about the same amount of pressure with your lips. How
does the frequency of the sound change as the straw be-
comes shorter? Why does this change occur? You may be
able to produce more than one tone for any given length
of the straw. Why?

496 Chapter 14 Sound

Figure A14.4

“I love hearing that lonesome wail of the train whistle as the
magnitude of the frequency of the wave changes due to the Doppler
effect.”

A.5. Inflate a balloon just enough to form a small sphere. Mea-
sure its diameter. Use a marker to color in a 1-cm square
on its surface. Now continue inflating the balloon until it
reaches twice the original diameter. Measure the size of
the square now. Note how the color of the marked area
has changed. Use the information in Section 14.5 to ex-
plain these results.
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Electricity is the lifeblood of technological civilization and modern society. Without it, we
revert to the mid-nineteenth century: no telephones, no television, none of the household
appliances that we take for granted. Modern medicine would be a fantasy, and due to the
lack of sophisticated experimental equipment and fast computers—and especially the slow
dissemination of information—science and technology would grow at a glacial pace.

Instead, with the discovery and harnessing of electric forces and fields, we can view
arrangements of atoms, probe the inner workings of the cell, and send spacecraft beyond the
limits of the solar system. All this has become possible in just the last few generations of
human life, a blink of the eye compared to the million years our kind spent foraging the
savannahs of Africa.

Around 700 B.C. the ancient Greeks conducted the earliest known study of electricity. It all
began when someone noticed that a fossil material called amber would attract small objects
after being rubbed with wool. Since then we have learned that this phenomenon is not re-
stricted to amber and wool, but occurs (to some degree) when almost any two nonconduct-
ing substances are rubbed together.

In the current chapter we use the effect of charging by friction to begin an investigation of
electric forces. We then discuss Coulomb’s law, which is the fundamental law of force be-
tween any two stationary charged particles. The concept of an electric field associated with
charges is introduced and its effects on other charged particles described. We end with dis-
cussions of the Van de Graaff generator and Gauss’s law.

15.1 PROPERTIES OF ELECTRIC CHARGES
After running a plastic comb through your hair, you will find that the comb
attracts bits of paper. The attractive force is often strong enough to suspend the

This nighttime view of multiple bolts
of lightning was photographed in
Tucson, Arizona. During a thunder-
storm, a high concentration of
electrical charge in a thundercloud
creates a higher-than-normal electric
field between the thundercloud and
the negatively charged Earth’s
surface. This strong electric field
creates an electric discharge between
the charged cloud and the ground—
an enormous spark. Other discharges
that are observed in the sky include
cloud-to-cloud discharges and
the more frequent intracloud
discharges.
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498 Chapter 15 Electric Forces and Electric Fields

paper from the comb, defying the gravitational pull of the entire Earth. The same
effect occurs with other rubbed materials, such as glass and hard rubber.

Another simple experiment is to rub an inflated balloon against wool (or across
your hair). On a dry day, the rubbed balloon will then stick to the wall of a room,
often for hours. These materials have become electrically charged. You can give
your body an electric charge by vigorously rubbing your shoes on a wool rug or by
sliding across a car seat. You can then surprise and annoy a friend or co-worker
with a light touch on the arm, delivering a slight shock to both yourself and your
victim. (If the co-worker is your boss, don’t expect a promotion!) These experi-
ments work best on a dry day because excessive moisture can facilitate a leaking
away of the charge.

Experiments also demonstrate that there are two kinds of electric charge, which
Benjamin Franklin (1706–1790) named positive and negative. Figure 15.1 illus-
trates the interaction of the two charges. A hard rubber (or plastic) rod that has
been rubbed with fur is suspended by a piece of string. When a glass rod that has
been rubbed with silk is brought near the rubber rod, the rubber rod is attracted
toward the glass rod (Fig. 15.1a). If two charged rubber rods (or two charged glass
rods) are brought near each other, as in Figure 15.1b, the force between them is
repulsive. These observations may be explained by assuming that the rubber and
glass rods have acquired different kinds of excess charge. We use the convention
suggested by Franklin, where the excess electric charge on the glass rod is called
positive and that on the rubber rod is called negative. On the basis of observations
such as these, we conclude that like charges repel one another and unlike charges
attract one another. Objects usually contain equal amounts of positive and nega-
tive charge—electrical forces between objects arise when those objects have net
negative or positive charges.

Nature’s basic carriers of positive charge are protons, which, along with neu-
trons, are located in the nuclei of atoms. The nucleus, about 10�15 m in radius, is
surrounded by a cloud of negatively charged electrons about ten thousand times
larger in extent. An electron has the same magnitude charge as a proton, but the
opposite sign. In a gram of matter there are approximately 1023 positively charged
protons and just as many negatively charged electrons, so the net charge is zero.
Because the nucleus of an atom is held firmly in place inside a solid, protons never
move from one material to another. Electrons are far lighter than protons and
hence more easily accelerated by forces. Furthermore, they occupy the outer re-
gions of the atom. Consequently, objects become charged by gaining or losing
electrons.

Charge transfers readily from one type of material to another. Rubbing the two
materials together serves to increase the area of contact, facilitating the transfer
process.

Rubber
Rubber

(a)

F F

(b)

F

F

Rubber

– – – – –

– – – – –
–

–

– – – –

+ + + +
+ +

Glass

–

+

Figure 15.1 (a) A negatively
charged rubber rod, suspended by a
thread, is attracted to a positively
charged glass rod. (b) A negatively
charged rubber rod is repelled by
another negatively charged rubber
rod.

BENJAMIN FRANKLIN
(1706–1790)
Franklin was a printer, author, physical
scientist, inventor, diplomat, and a found-
ing father of the United States. His work
on electricity in the late 1740s changed a
jumbled, unrelated set of observations into
a coherent science.
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15.2 Insulators and Conductors 499

An important characteristic of charge is that electric charge is always conserved.
Charge isn’t created when two neutral objects are rubbed together; rather, the ob-
jects become charged because negative charge is transferred from one object to
the other. One object gains a negative charge while the other loses an equal
amount of negative charge and hence is left with a net positive charge. When a
glass rod is rubbed with silk, as in Figure 15.2, electrons are transferred from the
rod to the silk. As a result, the glass rod carries a net positive charge, the silk a net
negative charge. Likewise, when rubber is rubbed with fur, electrons are trans-
ferred from the fur to the rubber.

In 1909 Robert Millikan (1886–1953) discovered that if an object is charged, its
charge is always a multiple of a fundamental unit of charge, designated by the sym-
bol e. In modern terms, the charge is said to be quantized, meaning that charge
occurs in discrete chunks that can’t be further subdivided. An object may have a
charge of � e, � 2e, � 3e, and so on, but never1 a fractional charge of � 0.5e or
� 0.22e. Other experiments in Millikan’s time showed that the electron has a
charge of � e and the proton has an equal and opposite charge of �e. Some parti-
cles, such as a neutron, have no net charge. A neutral atom (an atom with no net
charge) contains as many protons as electrons. The value of e is now known to be
1.602 19 � 10�19 C. (The SI unit of electric charge is the coulomb [C].)

15.2 INSULATORS AND CONDUCTORS
Substances can be classified in terms of their ability to conduct electric charge.

In conductors, electric charges move freely in response to an electric force.
All other materials are called insulators. 

Glass and rubber are insulators. When such materials are charged by rubbing, only
the rubbed area becomes charged, and there is no tendency for the charge to
move into other regions of the material. In contrast, materials such as copper, alu-
minum, and silver are good conductors. When such materials are charged in some
small region, the charge readily distributes itself over the entire surface of the ma-
terial. If you hold a copper rod in your hand and rub the rod with wool or fur, it
will not attract a piece of paper. This might suggest that a metal can’t be charged.
However, if you hold the copper rod with an insulator and then rub it with wool or
fur, the rod remains charged and attracts the paper. In the first case, the electric
charges produced by rubbing readily move from the copper through your body
and finally to ground. In the second case, the insulating handle prevents the flow
of charge to ground.

Semiconductors are a third class of materials, and their electrical properties are
somewhere between those of insulators and those of conductors. Silicon and ger-
manium are well-known semiconductors that are widely used in the fabrication of
a variety of electronic devices.

Charging by Conduction
Consider a negatively charged rubber rod brought into contact with an insulated
neutral conducting sphere. The excess electrons on the rod repel electrons on the
sphere, creating local positive charges on the neutral sphere. On contact, some
electrons on the rod are now able to move onto the sphere, as in Figure 15.3, neu-
tralizing the positive charges. When the rod is removed, the sphere is left with a net
negative charge. This process is referred to as charging by conduction. The object
being charged in such a process (the sphere) is always left with a charge having
the same sign as the object doing the charging (the rubber rod).

1There is strong evidence for the existence of fundamental particles called quarks that have charges of � e/3 or
� 2e/3. The charge is still quantized, but in units of � e/3 rather than � e . A more complete discussion of quarks and
their properties is presented in Chapter 30.
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Figure 15.2 When a glass rod is
rubbed with silk, electrons are
transferred from the glass to the silk.
Because of conservation of charge,
each electron adds negative charge to
the silk, and an equal positive charge
is left behind on the rod. Also,
because the charges are transferred
in discrete bundles, the charges on
the two objects are � e, � 2e, � 3e,
and so on.
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–
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(c) After breaking contact
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Figure 15.3 Charging a metallic
object by conduction. (a) Just before
contact, the negative rod repels the
sphere’s electrons, inducing a local-
ized positive charge. (b) After con-
tact, electrons from the rod flow onto
the sphere, neutralizing the local pos-
itive charges. (c) When the rod is
removed, the sphere is left with a
negative charge.

� Charge is conserved;
charge is quantized
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Charging by Induction
An object connected to a conducting wire or copper pipe buried in the Earth is
said to be grounded. The Earth can be considered an infinite reservoir for elec-
trons; in effect, it can accept or supply an unlimited number of electrons. With
this idea in mind, we can understand the charging of a conductor by a process
known as induction.

Consider a negatively charged rubber rod brought near a neutral (uncharged)
conducting sphere that is insulated, so there is no conducting path to ground (Fig.
15.4). Initially the sphere is electrically neutral (Fig. 15.4a). When the negatively
charged rod is brought close to the sphere, the repulsive force between the elec-
trons in the rod and those in the sphere causes some electrons to move to the side
of the sphere farthest away from the rod (Fig. 15.4b). The region of the sphere
nearest the negatively charged rod has an excess of positive charge because of the
migration of electrons away from that location. If a grounded conducting wire is
then connected to the sphere, as in Figure 15.4c, some of the electrons leave the
sphere and travel to ground. If the wire to ground is then removed (Fig. 15.4d), the
conducting sphere is left with an excess of induced positive charge. Finally, when
the rubber rod is removed from the vicinity of the sphere (Fig. 15.4e), the induced
positive charge remains on the ungrounded sphere. Even though the positively
charged atomic nuclei remain fixed, this excess positive charge becomes uniformly
distributed over the surface of the ungrounded sphere because of the repulsive
forces among the like charges and the high mobility of electrons in a metal.

In the process of inducing a charge on the sphere, the charged rubber rod
doesn’t lose any of its negative charge because it never comes in contact with the
sphere. Furthermore, the sphere is left with a charge opposite that of the rubber
rod. Charging an object by induction requires no contact with the object inducing
the charge. 

A process similar to charging by induction in conductors also takes place in in-
sulators. In most neutral atoms or molecules, the center of positive charge coin-
cides with the center of negative charge. However, in the presence of a charged
object, these centers may separate slightly, resulting in more positive charge on
one side of the molecule than on the other. This effect is known as polarization.
The realignment of charge within individual molecules produces an induced
charge on the surface of the insulator, as shown in Figure 15.5a. This explains why
a balloon charged through rubbing will stick to an electrically neutral wall, or the
comb you just used on your hair attracts tiny bits of neutral paper.
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Figure 15.4 Charging a metallic
object by induction. (a) A neutral
metallic sphere with equal numbers
of positive and negative charges.
(b) The charge on a neutral metal
sphere is redistributed when a
charged rubber rod is placed near
the sphere. (c) When the sphere is
grounded, some of the electrons
leave it through the ground wire. 
(d) When the ground connection is
removed, the nonuniformly charged
sphere is left with excess positive
charge. (e) When the rubber rod is
moved away, the charges on the
sphere redistribute themselves until
the sphere’s surface becomes uni-
formly charged.

A suspended object A is attracted to a neutral wall. It’s also attracted to a positively
charged object B. Which of the following is true about object A? (a) It is un-
charged. (b) It has a negative charge. (c) It has a positive charge. (d) It may be ei-
ther charged or uncharged.

Quick Quiz 15.1

15.3 COULOMB’S LAW
In 1785 Charles Coulomb (1736–1806) experimentally established the fundamen-
tal law of electric force between two stationary charged particles.

An electric force has the following properties:

1. It is directed along a line joining the two particles and is inversely propor-
tional to the square of the separation distance r, between them.

2. It is proportional to the product of the magnitudes of the charges, �q1� and
�q2 �, of the two particles.

3. It is attractive if the charges are of opposite sign and repulsive if the
charges have the same sign.
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15.3 Coulomb’s Law 501

From these observations, Coulomb proposed the following mathematical form for
the electric force between two charges:

The magnitude of the electric force F between charges q1 and q2 separated
by a distance r is given by

[15.1]

where ke is a constant called the Coulomb constant.

Equation 15.1, known as Coulomb’s law, applies exactly only to point charges and
to spherical distributions of charges, in which case r is the distance between the
two centers of charge. Electric forces between unmoving charges are called electro-
static forces. Moving charges, in addition, create magnetic forces, studied in
Chapter 19.

The value of the Coulomb constant in Equation 15.1 depends on the choice of
units. The SI unit of charge is the coulomb (C). From experiment, we know that
the Coulomb constant in SI units has the value

ke � 8.9875 � 109 N � m2/C2 [15.2]

This number can be rounded, depending on the accuracy of other quantities in a
given problem. We’ll use either two or three significant digits, as usual.

The charge on the proton has a magnitude of e � 1.6 � 10�19 C. Therefore, it
would take 1/e � 6.3 � 1018 protons to create a total charge of �1.0 C. Likewise,
6.3 � 1018 electrons would have a total charge of �1.0 C. Compare this with the
number of free electrons in 1 cm3 of copper, which is on the order of 1023. Even
so, 1.0 C is a very large amount of charge. In typical electrostatic experiments in
which a rubber or glass rod is charged by friction, there is a net charge on the or-
der of 10�6 C ( � 1 �C). Only a very small fraction of the total available charge is
transferred between the rod and the rubbing material. Table 15.1 lists the charges
and masses of the electron, proton, and neutron.

F � ke  
�q1��q2�

r2

+

+

+

+

+

+

+–

+–

+–

+–

+–

+–

Insulator

Induced
charges

Charged
object

(a) (b)

� Coulomb’s law

CHARLES COULOMB
(1736 –1806)
Coulomb’s major contribution to science
was in the field of electrostatics and
magnetism. During his lifetime, he also
investigated the strengths of materials and
identified the forces that affect objects on
beams, thereby contributing to the field of
structural mechanics.
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TABLE 15.1
Charge and Mass of the Electron, Proton, and Neutron
Particle Charge (C) Mass (kg)

Electron �1.60 � 10�19 9.11 � 10�31

Proton �1.60 � 10�19 1.67 � 10�27

Neutron 0 1.67 � 10�27

Figure 15.5 (a) The charged
object on the left induces charges on
the surface of an insulator. (b) A
charged comb attracts bits of paper
because charges are displaced in the
paper.
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502 Chapter 15 Electric Forces and Electric Fields

When using Coulomb’s force law, remember that force is a vector quantity and
must be treated accordingly. Active Figure 15.6a shows the electric force of repul-
sion between two positively charged particles. Like other forces, electric forces
obey Newton’s third law; hence, the forces and are equal in magnitude but
opposite in direction. (The notation denotes the force exerted by particle 1 on
particle 2; likewise, is the force exerted by particle 2 on particle 1.) From New-
ton’s third law, F12 and F21 are always equal regardless of whether q1 and q2 have
the same magnitude.

F
:

21

F
:

12

F
:

21F
:

12

(b)

F21 (a)

F12

F21

F12

q2

q1

r

q1

q2

+

–

+

+

Object A has a charge of �2 �C, and object B has a charge of �6 �C. Which state-
ment is true?

(a) (b) (c) 3F
:

AB � � F
:

BAF
:

AB � � F
:

BAF
:

AB � � 3F
:

BA

Quick Quiz 15.2

The Coulomb force is similar to the gravitational force. Both act at a distance
without direct contact. Both are inversely proportional to the distance squared,
with the force directed along a line connecting the two bodies. The mathematical
form is the same, with the masses m1 and m 2 in Newton’s law replaced by q1 and q2
in Coulomb’s law and with Newton’s constant G replaced by Coulomb’s constant
ke . There are two important differences: (1) electric forces can be either attractive
or repulsive, but gravitational forces are always attractive, and (2) the electric force
between charged elementary particles is far stronger than the gravitational force
between the same particles, as the next example shows.

EXAMPLE 15.1 Forces in a Hydrogen Atom
Goal Contrast the magnitudes of an electric force and a gravitational force.

Problem The electron and proton of a hydrogen atom are separated (on the average) by a distance of about 
5.3 � 10�11 m. Find the magnitudes of the electric force and the gravitational force that each particle exerts on the
other, and the ratio of the electric force Fe to the gravitational force Fg .

Strategy Solving this problem is just a matter of substituting known quantities into the two force laws and then
finding the ratio.

Solution
Substitute �q1� � �q2� � e and the distance into Coulomb’s
law to find the electric force: 

� 8.2 � 10�8 N

Fe � ke   

�e �2

r 2 � �8.99 � 109
  
N�m2

C2 �  
(1.6 � 10�19 C)2

(5.3 � 10�11 m)2

Substitute the masses and distance into Newton’s law of
gravity to find the gravitational force:

� 3.6 � 10�47 N

� �6.67 � 10�11
  
N�m2

kg2 �  
(9.11 � 10�31 kg)(1.67 � 10�27 kg)

(5.3 � 10�11 m)2

Fg � G   

memp

r 2

Find the ratio of the two forces: 2.27 �  1039Fe

Fg
�

Remarks The gravitational force between the charged constituents of the atom is negligible compared with the
electric force between them. The electric force is so strong, however, that any net charge on an object quickly attracts
nearby opposite charges, neutralizing the object. As a result, gravity plays a greater role in the mechanics of moving
objects in everyday life.

ACTIVE FIGURE 15.6
Two point charges separated by a
distance r exert a force on each other
given by Coulomb’s law. The force
on q1 is equal in magnitude and
opposite in direction to the force
on q2. (a) When the charges are of
the same sign, the force is repulsive.
(b) When the charges are of opposite
sign, the force is attractive.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 15.6, where you
can move the charges to any position in
two-dimensional space and observe the
electric forces acting on them.
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15.3 Coulomb’s Law 503

The Superposition Principle
When a number of separate charges act on the charge of interest, each exerts an
electric force. These electric forces can all be computed separately, one at a time,
then added as vectors. This is another example of the superposition principle. The
following example illustrates this procedure in one dimension.

Exercise 15.1
Find the magnitude of the electric force between two protons separated by one femtometer (10�15 m), approxi-
mately the distance between two protons in the nucleus of a helium atom. The answer may not appear large, but if
not for the strong nuclear force, the two protons would fly apart at an initial acceleration of nearly 7 � 1028 m/s2!

Answers 2.30 � 102 N

INTERACTIVE EXAMPLE 15.2 May the Force Be Zero
Goal Apply Coulomb’s law in one dimension.

Problem Three charges lie along the x -axis as in Figure 15.7. The positive charge
q1 � 15 �C is at x � 2.0 m, and the positive charge q2 � 6.0 �C is at the origin.
Where must a negative charge q3 be placed on the x-axis so that the resultant elec-
tric force on it is zero?

Strategy If q3 is to the right or left of the other two charges, then the net force on
q3 can’t be zero, because then and act in the same direction. Consequently,
q3 must lie between the two other charges. Write and in terms of the un-
known coordinate position x, sum them and set them equal to zero, solving for the
unknown. The solution can be obtained with the quadratic formula.

F
:

23F
:

13

F
:

23F
:

13

2.0 m

2.0 m – xx

q1

x
q3q2 F13F23

+ +–

Figure 15.7 (Example 15.2) Three
point charges are placed along the 
x -axis. The charge q3 is negative,
whereas q1 and q2 are positive. If the
resultant force on q3 is zero, then the
force exerted by q1 on q3 must be
equal in magnitude and opposite the
force exerted by q2 on q3.F

:
23

F
:

13

Solution
Write the x-component of :F

:
13 F13x � � k e  

(15 � 10�6 C)�q3�
(2.0 m � x)2

Write the x-component of :F
:

23 F23x � �ke  
(6.0 � 10�6 C)�q3�

x2

Set the sum equal to zero: ke  
(15 � 10�6 C)�q3�

(2.0 m � x)2   �ke  
(6.0 � 10�6 C)�q3�

x 2 � 0

Cancel ke , 10�6 and q3 from the equation, and
rearrange terms (explicit significant figures and units
are temporarily suspended for clarity):

6(2 � x)2 � 15x 2

Put this equation into standard quadratic form, 
ax 2 � bx � c � 0:

6(4 � 4x � x 2) � 15x 2 : 2(4 � 4x � x 2) � 5x 2

3x2 � 8x � 8 � 0

Apply the quadratic formula: x �
� 8 � √64 � (4)(3)(� 8)

2�3
�

� 4 � 2√10
3

Only the positive root makes sense: x � 0.77 m

Remarks Notice that it was necessary to use physical reasoning to choose between the two possible answers for x.
This is nearly always the case when quadratic equations are involved.
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Exercise 15.2
Three charges lie along the x -axis. The positive charge q1 � 10.0 �C is at x � 1.00 m, and the negative charge 
q2 � �2.00 �C is at the origin. Where must a positive charge q3 be placed on the x-axis so that the resultant force on
it is zero?

Answer x � � 0.809 m

You can predict where on the x -axis the electric force is zero for random values of of q1 and q2 by
logging into PhysicsNow at www.cp7e.com and going to Interactive Example 15.2.

EXAMPLE 15.3 A Charge Triangle
Goal Apply Coulomb’s law in two dimensions.

Problem Consider three point charges at the corners of a
triangle, as shown in Figure 15.8, where q1 � 6.00 � 10�9 C,
q2 � � 2.00 � 10�9 C, and q3 � 5.00 � 10�9 C. (a) Find the
components of the force exerted by q2 on q3. 
(b) Find the components of the force exerted by q1 on
q3. (c) Find the resultant force on q3, in terms of compo-
nents and also in terms of magnitude and direction.

Strategy Coulomb’s law gives the magnitude of each
force, which can be split with right-triangle trigonometry
into x - and y -components. Sum the vectors component-
wise, and then find the magnitude and direction of the
resultant vector.

F
:

13

F
:

23

F13
F  sin 37°13

F  cos 37°13

F23

5.00 m

q3

q1

q2

3.00 m

y

x

37.0°4.00 m– +

+

Figure 15.8 (Example 15.3) The force exerted by q1 on q3 is 
. The force exerted by q2 on q3 is . The resultant force
exerted on q3 is the vector sum � .F

:
23F

:
13F

:
3

F
:

23F
:

13

Solution
(a) Find the components of the force exerted by q2 on q3.

Find the magnitude of with Coulomb’s law:F
:

23

F23 � 5.62 � 10�9 N

�(8.99 � 109 N�m2/C2)  
(2.00 � 10�9 C)(5.00 � 10�9 C)

(4.00 m)2

F23 � ke  

�q2��q3�
r 2

Because is horizontal and points in the negative 
x -direction, the negative of the magnitude gives the 
x -component, and the y -component is zero:

F
:

23

0F23y �

� 5.62 � 10�9 NF23x �

(b) Find the components of the force exerted by q1 on q3.

Find the magnitude of :F
:

13

F13 � 1.08 � 10�8  N

�(8.99 � 109 N�m2/C2)
(6.00 � 10�9 C)(5.00 � 10�9 C)

(5.00 m)2

F13 � ke  
�q1��q3�

r 3

Use the given triangle to find the components:

�

� 6.50 � 10�9 N

F13y � F13 sin � � (1.08 � 10�8 N)sin(37o)

8.63 � 10�9 N

F13x � F13 cos � � (1.08 � 10�8 N )cos(37	)
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15.4 THE ELECTRIC FIELD
The gravitational force and the electrostatic force are both capable of acting
through space, producing an effect even when there isn’t any physical contact be-
tween the objects involved. Field forces can be discussed in a variety of ways, but an
approach developed by Michael Faraday (1791–1867) is the most practical. In this
approach, an electric field is said to exist in the region of space around a charged
object. The electric field exerts an electric force on any other charged object
within the field. This differs from the Coulomb’s law concept of a force exerted at
a distance, in that the force is now exerted by something—the field—that is in
the same location as the charged object.

Figure 15.9 shows an object with a small positive charge q0 placed near a second
object with a much larger positive charge Q.

The electric field produced by a charge Q at the location of a small “test”
charge q0 is defined as the electric force exerted by Q on q0, divided by 
the test charge q0:

[15.4]

SI Unit: newton per coulomb (N/C)

Conceptually and experimentally, the test charge q0 is required to be very small
(arbitrarily small, in fact), so it doesn’t cause any significant rearrangement of the
charge creating the electric field . Mathematically, however, the size of the test
charge makes no difference: the calculation comes out the same, regardless. In
view of this, using q0 � 1 C in Equation 15.4 can be convenient if not rigorous.

When a positive test charge is used, the electric field always has the same direc-
tion as the electric force on the test charge. This follows from Equation 15.4.
Hence in Figure 15.9, the direction of the electric field is horizontal and to the

E
:

E
:    

�   
F
:

q0

F
:

E
:

(c) Find the components of the resultant vector.

Sum the x -components to find the resultant Fx : Fx � � 5.62 � 10�9 N � 8.63 � 10�9 N

� 3.01 � 10�9 N

Sum the y -components to find the resultant Fy : Fy � 0 � 6.50 � 10�9 N � 6.50 � 10�9 N

Find the magnitude of the resultant force on the charge
q3, using the Pythagorean theorem:

� 7.16 � 10�9 N

 � √(3.01 � 10�9 N)2 � (6.50 � 10�9 N)2

 � F
:

� � √F 2
x � F 2

y

Find the angle the force vector makes with respect to
the positive x -axis:

� 65.2	� � tan�1� Fy

Fx
� � tan�1 � 6.50 � 10�9 N

3.01 � 10�9 N �
Remarks The methods used here are just like those used with Newton’s law of gravity in two dimensions.

Exercise 15.3
Using the same triangle, find the vector components of the electric force on q1 and the vector’s magnitude and direc-
tion.

Answers Fx � � 8.63 � 10�9 N, Fy � 5.50 � 10�9 N, F � 1.02 � 10�8 N, � � 147°

+

+

+

+

Q

q0+
+

+

+

+

+

+

+ +

+
+

Test charge

+

Figure 15.9 A small object with
a positive charge q0 placed near 
an object with a larger positive charge
Q is subject to an electric field 
directed as shown. The magnitude of
the electric field at the location of
q0 is defined as the electric force on
q0 divided by the charge q0.

E
:
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506 Chapter 15 Electric Forces and Electric Fields

right. The electric field at point A in Figure 15.10a is vertical and downward be-
cause at that point a positive test charge would be attracted toward the negatively
charged sphere.

Once the electric field due to a given arrangement of charges is known at some
point, the force on any particle with charge q placed at that point can be calcu-
lated from a rearrangement of Equation 15.4:

[15.5]

Here q0 has been replaced by q, which need not be a mere test charge.
As shown in Active Figure 15.11, the direction of is the direction of the force

that acts on a positive test charge q0 placed in the field. We say that an electric field
exists at a point if a test charge at that point is subject to an electric force there.

Consider a point charge q located a distance r from a test charge q0. According to
Coulomb’s law, the magnitude of the electric force of the charge q on the test charge is

Because the magnitude of the electric field at the position of the test charge is de-
fined as E � F/q0, we see that the magnitude of the electric field due to the charge
q at the position of q0 is

[15.6]

Equation 15.6 points out an important property of electric fields that makes them
useful quantities for describing electrical phenomena. As the equation indicates,
an electric field at a given point depends only on the charge q on the object set-
ting up the field and the distance r from that object to a specific point in space. As
a result, we can say that an electric field exists at point P in Active Figure 15.11
whether or not there is a test charge at P.

The principle of superposition holds when the electric field due to a group of
point charges is calculated. We first use Equation 15.6 to calculate the electric field
produced by each charge individually at a point and then add the electric fields to-
gether as vectors.

It’s also important to exploit any symmetry of the charge distribution. For ex-
ample, if equal charges are placed at x � a and at x � � a, the electric field is zero
at the origin, by symmetry. Similarly, if the x -axis has a uniform distribution of pos-
itive charge, it can be guessed by symmetry that the electric field points away from
the x -axis and is zero parallel to that axis.

E � ke  
�q �
r 2

F � ke    

�q ��q0�
r 2

E
:

F
:

� qE
:

+ +
+ + +
+ + +

+ +

A

E
P

E

q0

(b)(a) (c)

– –
– – –
– – –

– –
+

+

+

+

+

+
+

+

P
+

Figure 15.10 (a) The electric field
at A due to the negatively charged
sphere is downward, toward the nega-
tive charge. (b) The electric field at P
due to the positively charged con-
ducting sphere is upward, away from
the positive charge. (c) A test charge
q0 placed at P will cause a rearrange-
ment of charge on the sphere, unless
q0 is very small compared with the
charge on the sphere.

(a)

E

q

q0

r
P

(b)

q

q0

P

–

+

E

E

ACTIVE FIGURE 15.11
A test charge q0 at P is a distance r
from a point charge q. (a) If q is
positive, the electric field at P points
radially outwards from q. (b) If q is
negative, the electric field at P points
radially inwards toward q.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 15.11, where
you can move point P to any position
in two-dimensional space and observe
the electric field due to q .

A test charge of �3 �C is at a point P where the electric field due to other charges
is directed to the right and has a magnitude of 4 � 106 N/C. If the test charge is re-
placed with a charge of �3 �C, the electric field at P (a) has the same magnitude
as before, but changes direction, (b) increases in magnitude and changes direction,
(c) remains the same, or (d) decreases in magnitude and changes direction.

Quick Quiz 15.3
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15.4 The Electric Field 507

A circular ring of charge of radius b has a total charge q uniformly distributed
around it. The magnitude of the electric field at the center of the ring is

(a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of these.

Quick Quiz 15.4

A “free” electron and a “free” proton are placed in an identical electric field.
Which of the following statements are true? (a) Each particle is acted upon by the
same electric force and has the same acceleration. (b) The electric force on the
proton is greater in magnitude than the force on the electron, but in the opposite
direction. (c) The electric force on the proton is equal in magnitude to the force
on the electron, but in the opposite direction. (d) The magnitude of the accelera-
tion of the electron is greater than that of the proton. (e) Both particles have the
same acceleration.

Quick Quiz 15.5

EXAMPLE 15.4 Electrified Oil
Goal Use electric forces and fields together with Newton’s second law in a one-dimensional problem.

Problem Tiny droplets of oil acquire a small negative charge while dropping through a vacuum (pressure � 0) in
an experiment. An electric field of magnitude 5.92 � 104 N/C points straight down. (a) One particular droplet is
observed to remain suspended against gravity. If the mass of the droplet is 2.93 � 10�15 kg, find the charge carried
by the droplet. (b) Another droplet of the same mass falls 10.3 cm from rest in 0.250 s, again moving through a vac-
uum. Find the charge carried by the droplet.

Strategy We use Newton’s second law with both gravitational and electric forces. In both parts, the electric field 
is pointing down, taken as the negative direction, as usual. In part (a), the acceleration is equal to zero. In part (b),
the acceleration is uniform, so the kinematic equations yield the acceleration. Newton’s law can then be solved for q.

E
:

Solution
(a) Find the charge on the suspended droplet.

Apply Newton’s second law to the droplet in the vertical
direction:

(1) ma � F � �mg � Eq


E points downward, hence is negative. 
Set a � 0 and solve for q :

� � 4.85 � 10�19 C

q �
mg
E

�
(2.93 � 10�15 kg)(9.80 m/s2)

� 5.92 � 104 N/C

(b) Find the charge on the falling droplet.

Use the kinematic displacement equation to find the
acceleration:

�y � 1
2 at 2 � v0t

Substitute �y � � 0.103 m, t � 0.250 s, and v0 � 0: � 0.103 m � 1
2 a(0.250 s)2

 
  :    a � � 3.30 m/s2

Solve Equation 1 for q and substitute:

� �3.22 � 10�19 C

 �
(2.93 � 10�15 kg)(� 3.30 m/s2 � 9.80 m/s2)

� 5.92 � 104 N/C

 q �
m(a � g)

E
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508 Chapter 15 Electric Forces and Electric Fields

Remark This example exhibits features similar to the Millikan Oil-Drop experiment discussed in Section 15.7,
which determined the value of the fundamental electric charge e . Notice that in both parts of the example, the
charge is very nearly a multiple of e.

Exercise 15.4
Suppose a droplet of unknown mass remains suspended against gravity when E � � 2.70 � 105 N/C. What is the
minimum mass of the droplet?

Answer 4.41 � 10�15 kg

Problem-Solving Strategy
Calculating Electric Forces and Fields
The following procedure is used to calculate electric forces (the same procedure can
be used to calculate an electric field, a simple matter of replacing the charge of inter-
est, q, with a convenient test charge and dividing by the test charge at the end):
1. Draw a diagram of the charges in the problem.
2. Identify the charge of interest, q, and circle it.
3. Convert all units to SI, with charges in coulombs and distances in meters, so as to

be consistent with the SI value of the Coulomb constant ke .
4. Apply Coulomb’s law. For each charge Q , find the electric force on the charge of

interest, q. The magnitude of the force can be found using Coulomb’s law. The
vector direction of the electric force is along the line of the two charges, directed
away from Q if the charges have the same sign, toward Q if the charges have the
opposite sign. Find the angle � this vector makes with the positive x -axis. The 
x -component of the electric force exerted by Q on q will be F cos �, and the 
y -component will be F sin �.

5. Sum all the x-components, getting the x -component of the resultant electric force.
6. Sum all the y-components, getting the y -component of the resultant electric force.
7. Use the Pythagorean theorem and trigonometry to find the magnitude and direc-

tion of the resultant force if desired.

EXAMPLE 15.5 Electric Field Due to Two Point Charges
Goal Use the superposition principle to calculate the electric field due to two point charges.

Problem Charge q1 � 7.00 �C is at the origin,
and charge q2 � � 5.00 �C is on the x -axis,
0.300 m from the origin (Fig. 15.12). (a) Find the
magnitude and direction of the electric field at
point P, which has coordinates (0, 0.400) m. 
(b) Find the force on a charge of 2.00 � 10�8 C
placed at P.

Strategy Follow the problem-solving strategy,
finding the electric field at point P due to each
individual charge in terms of x - and y -compo-
nents, then adding the components of each type
to get the x - and y -components of the resultant
electric field at P. The magnitude of the force in
part (b) can be found by simply multiplying the
magnitude of the electric field by the charge.

0.400 m

P

E

E2

0.500 m

E1

y

x

q2q1
0.300 m

u

u

f

+ –

Figure 15.12 (Example 15.5)
The resultant electric field at P
equals the vector sum � ,
where is the field due to the
positive charge q1 and is the field
due to the negative charge q 2.

E
:

2

E
:

1

E
:

2E
:

1

E
:
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15.4 The Electric Field 509

Solution
(a) Calculate the electric field at P.

Find the magnitude of with Equation 15.6:E
:

1

 � 3.93 � 105 N/C

E1 � ke  
�q1�
r1

2 � (8.99 � 109 N�m2/C2) 
(7.00 � 10�6 C)

(0.400 m)2

The vector is vertical, making an angle of 90° with
respect to the positive x -axis. Use this fact to find its
components:

E
:

1 E1x � E1 cos (90°) � 0

E1y � E1 sin (90°) � 3.93 � 105 N/C

Next, find the magnitude of , again with Equation 15.6:E
:

2

 � 1.80 � 105 N/C

E2 � ke  
�q2�
r2

2 � (8.99 � 109 N�m2/C2)  
(5.00 �10�6 C)

(0.500 m)2

Obtain the x-component of , using the triangle in Fig-
ure 15.12 to find cos �:

E
:

2

E2x � E2 cos � � (1.80 � 105 N/C)(0.600)

� 1.08 � 105 N/C

cos � �
adj
hyp

�
0.300
0.500

� 0.600

Obtain the y -component in the same way, but a
minus sign has to be provided for sin � because this
component is directed downwards: E2y � E2 sin � � (1.80 � 105 N/C)(� 0.800)

� � 1.44 � 105 N/C

sin � �
opp
hyp

�
0.400
0.500

� 0.800

Sum the x -components to get the x -component of the
resultant vector:

Ex � E1x � E2x � 0 � 1.08 � 105 N/C � 1.08 � 105 N/C

Sum the y -components to get the y -component of the
resultant vector:

Ey � E1y � E2y � 0 � 3.93 � 105 N/C � 1.44 � 105 N/C

Ey � 2.49 � 105 N/C

Use the Pythagorean theorem to find the magnitude of
the resultant vector:

2.71 � 105 N/CE � √E 2
x � E 2

y �

The inverse tangent function yields the direction of the
resultant vector:

� 66.6	� � tan�1 � Ey

Ex
� � tan�1 � 2.49 � 105 N/C

1.08 � 105 N/C �

(b) Find the force on a charge of 2.00 � 10�8 C placed
at P.

Calculate the magnitude of the force (the direction is
the same as that of because the charge is positive):E

:
F � Eq � (2.71 � 105 N/C)(2.00 � 10�8 C)

� 5.42 � 10�3 N

Remarks There were numerous steps to this problem, but each was very short. When attacking such problems, it’s
important to focus on one small step at a time. The solution comes not from a leap of genius, but from the assembly
of a number of relatively easy parts.

Exercise 15.5
(a) Place a charge of � 7.00 �C at point P and find the magnitude and direction of the electric field at the location
of q 2 . (b) Find the magnitude and direction of the force on q2.

Answer (a) 5.84 � 105 N/C, � � 20.2	 (b) F � 2.92 N, � � 200.	
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510 Chapter 15 Electric Forces and Electric Fields

15.5 ELECTRIC FIELD LINES
A convenient aid for visualizing electric field patterns is to draw lines pointing in
the direction of the electric field vector at any point. These lines, introduced by
Michael Faraday and called electric field lines, are related to the electric field in
any region of space in the following way:

1. The electric field vector is tangent to the electric field lines at each point.
2. The number of lines per unit area through a surface perpendicular to the lines

is proportional to the strength of the electric field in a given region.

Note that is large when the field lines are close together and small when the
lines are far apart.

Figure 15.13a shows some representative electric field lines for a single posi-
tive point charge. This two-dimensional drawing contains only the field lines that
lie in the plane containing the point charge. The lines are actually directed radi-
ally outward from the charge in all directions, somewhat like the quills of an
angry porcupine. Because a positive test charge placed in this field would be re-
pelled by the charge q, the lines are directed radially away from the positive
charge. The electric field lines for a single negative point charge are directed to-
ward the charge (Fig. 15.13b), because a positive test charge is attracted by a neg-
ative charge. In either case, the lines are radial and extend all the way to infinity.
Note that the lines are closer together as they get near the charge, indicating that
the strength of the field is increasing. Equation 15.6 verifies that this is indeed
the case.

The rules for drawing electric field lines for any charge distribution follow
directly from the relationship between electric field lines and electric field vectors:

1. The lines for a group of point charges must begin on positive charges and end
on negative charges. In the case of an excess of charge, some lines will begin or
end infinitely far away.

2. The number of lines drawn leaving a positive charge or ending on a negative
charge is proportional to the magnitude of the charge.

3. No two field lines can cross each other.

Figure 15.14 shows the beautifully symmetric electric field lines for two point
charges of equal magnitude but opposite sign. This charge configuration is called
an electric dipole. Note that the number of lines that begin at the positive charge
must equal the number that terminate at the negative charge. At points very near
either charge, the lines are nearly radial. The high density of lines between the
charges indicates a strong electric field in this region.

E
:

E
:

(a)

q

(b)

–q
+ –

(c)

Figure 15.13 The electric field lines for a point charge. (a) For a positive point charge, the lines
radiate outward. (b) For a negative point charge, the lines converge inward. Note that the figures show
only those field lines which lie in the plane containing the charge. (c) The dark lines are small pieces
of thread suspended in oil, which align with the electric field produced by a small charged conductor
at the center.
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TIP 15.1 Electric Field Lines
Aren’t Paths of Particles
Electric field lines are not material
objects. They are used only as a
pictorial representation of the
electric field at various locations.
Except in special cases, they do not
represent the path of a charged
particle released in an electric field.
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15.5 Electric Field Lines 511

Figure 15.15 shows the electric field lines in the vicinity of two equal positive
point charges. Again, close to either charge the lines are nearly radial. The same
number of lines emerges from each charge because the charges are equal in mag-
nitude. At great distances from the charges, the field is approximately equal to
that of a single point charge of magnitude 2q. The bulging out of the electric field
lines between the charges reflects the repulsive nature of the electric force
between like charges. Also, the low density of field lines between the charges indi-
cates a weak field in this region, unlike the dipole.

Finally, Active Figure 15.16 is a sketch of the electric field lines associated
with the positive charge �2q and the negative charge �q. In this case, the num-
ber of lines leaving charge �2q is twice the number terminating on charge �q.
Hence, only half of the lines that leave the positive charge end at the negative
charge. The remaining half terminate on negative charges that we assume to be
located at infinity. At great distances from the charges (great compared with the
charge separation), the electric field lines are equivalent to those of a single
charge �q.

Figure 15.14 (a) The electric field lines for two equal and opposite point charges (an electric
dipole). Note that the number of lines leaving the positive charge equals the number terminating at
the negative charge. (b) The dark lines are small pieces of thread suspended in oil, which align with
the electric field produced by two charged conductors.
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+ –

(b)
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Figure 15.15 (a) The electric field lines for two positive point charges. The points A, B, and C will
be discussed in Quick Quiz 15.6. (b) The dark lines are small pieces of thread suspended in oil, which
align with the electric field produced by two charged conductors.

+2q – –q+

(a)

C

A

B

+ +

(b)

ACTIVE FIGURE 15.16
The electric field lines for a point
charge of �2q and a second point
charge of �q. Note that two lines
leave the charge �2q for every line
that terminates on �q.

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 15.16, where you can choose
the values and signs for the two
charges and observe the resulting
electric field lines.

Rank the magnitudes of the electric field at points A, B, and C in Figure 15.15,
with the largest magnitude first.
(a) A, B, C (b) A, C, B (c) C, A, B (d) Can’t be determined by visual inspection

Quick Quiz 15.6
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512 Chapter 15 Electric Forces and Electric Fields

15.6 CONDUCTORS IN ELECTROSTATIC 
EQUILIBRIUM

A good electric conductor like copper, though electrically neutral, contains
charges (electrons) that aren’t bound to any atom and are free to move about
within the material. When no net motion of charge occurs within a conductor, the
conductor is said to be in electrostatic equilibrium. An isolated conductor (one
that is insulated from ground) has the following properties:

1. The electric field is zero everywhere inside the conducting material.
2. Any excess charge on an isolated conductor resides entirely on its surface.
3. The electric field just outside a charged conductor is perpendicular to the

conductor’s surface.
4. On an irregularly shaped conductor, the charge accumulates at sharp

points, where the radius of curvature of the surface is smallest.

The first property can be understood by examining what would happen if it
were not true. If there were an electric field inside a conductor, the free charge

The electric field near the surface of the Earth in fair
weather is about 100 N/C downward. Under a thun-
dercloud, the electric field can be very large, on the
order of 20 000 N/C. How are these electric fields
measured?

Explanation A device for measuring these fields is
called the field mill. Figure 15.17 shows the fundamen-
tal components of a field mill: two metal plates paral-
lel to the ground. Each plate is connected to ground
with a wire, with an ammeter (a low-resistance device
for measuring the flow of charge, to be discussed in
Section 19.6) in one path. Consider first just the lower
plate. Because it’s connected to ground and the
ground carries a negative charge, the plate is nega-
tively charged. The electric field lines, therefore,
are directed downward, ending on the plate as in

Figure 15.17a. Now imagine that the upper plate is
suddenly moved over the lower plate, as in Figure
15.17b. This plate is also connected to ground and is
also negatively charged, so the field lines now end on
the upper plate. The negative charges in the lower
plate are repelled by those on the upper plate and
must pass through the ammeter, registering a flow of
charge. The amount of charge that was on the lower
plate is related to the strength of the electric field. In
this way, the flow of charge through the ammeter can
be calibrated to measure the electric field. The plates
are normally designed like the blades of a fan, with
the upper plate rotating so that the lower plate is al-
ternately covered and uncovered. As a result, charges
flow back and forth continually through the ammeter,
and the reading can be related to the electric field
strength.

Applying Physics 15.1 Measuring Atmospheric Electric Fields

(a)

A A

(b)
Figure 15.17 (Applying Physics 15.1) In (a), electric field lines end on negative
charges on the lower plate. In (b), the second plate is moved above the lower
plate. Electric field lines now end on the upper plate, and the negative charges in
the lower plate are repelled through the ammeter.

Properties of an isolated conductor �
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15.6 Conductors in Electrostatic Equilibrium 513

there would move and a flow of charge, or current, would be created. However,
if there were a net movement of charge, the conductor would no longer be in
electrostatic equilibrium.

Property 2 is a direct result of the 1/r 2 repulsion between like charges de-
scribed by Coulomb’s law. If by some means an excess of charge is placed inside a
conductor, the repulsive forces between the like charges push them as far apart as
possible, causing them to quickly migrate to the surface. (We won’t prove it here,
but the excess charge resides on the surface due to the fact that Coulomb’s law is
an inverse-square law. With any other power law, an excess of charge would exist
on the surface, but there would be a distribution of charge, of either the same or
opposite sign, inside the conductor.)

Property 3 can be understood by again considering what would happen if it
were not true. If the electric field in Figure 15.18a were not perpendicular to
the surface, it would have a component along the surface, which would cause
the free charges of the conductor to move (to the left in the figure). If the
charges moved, however, a current would be created and the conductor would
no longer be in electrostatic equilibrium. Therefore, must be perpendicular
to the surface.

To see why property 4 must be true, consider Figure 15.19a, which shows a con-
ductor that is fairly flat at one end and relatively pointed at the other. Any excess
charge placed on the object moves to its surface. Figure 15.19b shows the forces
between two such charges at the flatter end of the object. These forces are pre-
dominantly directed parallel to the surface, so the charges move apart until repul-
sive forces from other nearby charges establish an equilibrium. At the sharp end,
however, the forces of repulsion between two charges are directed predominantly
away from the surface, as in Figure 15.19c. As a result, there is less tendency for
the charges to move apart along the surface here, and the amount of charge per
unit area is greater than at the flat end. The cumulative effect of many such out-
ward forces from nearby charges at the sharp end produces a large resultant force
directed away from the surface that can be great enough to cause charges to leap
from the surface into the surrounding air.

E
:

(a)

F

– –

E

(b)

Figure 15.18 (a) Negative charges
at the surface of a conductor. If the
electric field were at an angle to the
surface, as shown, an electric force
would be exerted on the charges
along the surface and they would
move to the left. Because the conduc-
tor is assumed to be in electrostatic
equilibrium, cannot have a compo-
nent along the surface and hence
must be perpendicular to it. (b) The
electric field pattern of a charged
conducting plate near an oppositely
charged conducting cylinder. Small
pieces of thread suspended in oil
align with the electric field lines.
Note that (1) the electric field lines
are perpendicular to the conductors
and (2) there are no lines inside the
cylinder ( � 0).E
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Electric field pattern of a charged
conducting plate near an oppositely
charged pointed conductor. Small
pieces of thread suspended in oil
align with the electric field lines.
Note that the electric field is most
intense near the pointed part of the
conductor, where the radius of curva-
ture is the smallest. Also, the lines are
perpendicular to the conductors.
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A

–

–

–
–

A B
(a) (b) (c)

B

Figure 15.19 (a) A conductor with
a flatter end A and a relatively sharp
end B. Excess charge placed on this
conductor resides entirely at its
surface and is distributed so that
(b) there is less charge per unit area
on the flatter end and (c) there is a
large charge per unit area on the
sharper end.
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514 Chapter 15 Electric Forces and Electric Fields

Many experiments have shown that the net charge on a conductor resides on
its surface. One such experiment was first performed by Michael Faraday, and is
referred to as Faraday’s ice-pail experiment. Faraday lowered a metal ball having a
negative charge at the end of a silk thread (an insulator) into an uncharged
hollow conductor insulated from ground, a metal ice-pail as in Figure 15.20a. As
the ball entered the pail, the needle on an electrometer attached to the outer sur-
face of the pail was observed to deflect. (An electrometer is a device used to meas-
ure charge.) The needle deflected because the charged ball induced a positive
charge on the inner wall of the pail, which left an equal negative charge on the
outer wall (Fig. 15.20b).

Faraday next touched the inner surface of the pail with the ball and noted that
the deflection of the needle did not change, either when the ball touched the in-
ner surface of the pail (Fig. 15.20c) or when it was removed (Fig. 15.20d). Further,
he found that the ball was now uncharged, because when it touched the inside of
the pail, the excess negative charge on the ball had been drawn off, neutralizing
the induced positive charge on the inner surface of the pail. In this way, Faraday
discovered the useful result that all the excess charge on an object can be
transferred to an already charged metal shell if the object is touched to the inside
of the shell. As we will see, this is the principle of operation of the Van de Graaff
generator.

Faraday concluded that because the deflection of the needle in the electrometer
didn’t change when the charged ball touched the inside of the pail, the positive
charge induced on the inside surface of the pail was just enough to neutralize the
negative charge on the ball. As a result of his investigations, he concluded that a
charged object suspended inside a metal container rearranged the charge on the
container so that the sign of the charge on its inside surface was opposite the sign of
the charge on the suspended object. This produced a charge on the outside surface
of the container of the same sign as that on the suspended object.

Faraday also found that if the electrometer was connected to the inside surface
of the pail after the experiment had been run, the needle showed no deflection.
Thus, the excess charge acquired by the pail when contact was made between ball
and pail appeared on the outer surface of the pail.

If a metal rod having sharp points is attached to a house, most of any charge on
the house passes through these points, eliminating the induced charge on the
house produced by storm clouds. In addition, a lightning discharge striking the
house passes through the metal rod and is safely carried to the ground through
wires leading from the rod to the Earth. Lightning rods using this principle were
first developed by Benjamin Franklin. Some European countries couldn’t accept
the fact that such a worthwhile idea could have originated in the New World, so
they “improved” the design by eliminating the sharp points!
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Figure 15.20 An experiment
showing that any charge transferred
to a conductor resides on its surface
in electrostatic equilibrium. The hol-
low conductor is insulated from
ground, and the small metal ball is
supported by an insulating thread.

A P P L I C AT I O N
Lightning Rods

Suppose a point charge �Q is in empty space. Wearing
rubber gloves, you proceed to surround the charge with
a concentric spherical conducting shell. What effect
does this have on the field lines from the charge?

Explanation When the spherical shell is placed
around the charge, the charges in the shell rearrange
to satisfy the rules for a conductor in equilibrium. A
net charge of �Q moves to the interior surface of the

conductor, so that the electric field inside the conduc-
tor becomes zero. This means the field lines originat-
ing on the �Q charge now terminate on the negative
charges. The movement of the negative charges to the
inner surface of the sphere leaves a net charge of �Q
on the outer surface of the sphere. Then the field
lines outside the sphere look just as before: the only
change, overall, is the absence of field lines within the
conductor.

Applying Physics 15.2 Conductors and Field Lines
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15.7 THE MILLIKAN OIL-DROP EXPERIMENT
From 1909 to 1913, Robert Andrews Millikan (1868–1953) performed a brilliant
set of experiments at the University of Chicago in which he measured the elemen-
tary charge e of the electron and demonstrated the quantized nature of the elec-
tronic charge. The apparatus he used, diagrammed in Active Figure 15.21, contains
two parallel metal plates. Oil droplets that have been charged by friction in an at-
omizer are allowed to pass through a small hole in the upper plate. A horizontal
light beam is used to illuminate the droplets, which are viewed by a telescope with
axis at right angles to the beam. The droplets then appear as shining stars against a
dark background, and the rate of fall of individual drops can be determined.

We assume that a single drop having a mass of m and carrying a charge of q is
being viewed and that its charge is negative. If no electric field is present between
the plates, the two forces acting on the charge are the force of gravity, , acting
downward, and an upward viscous drag force (Fig. 15.22a). The drag force is
proportional to the speed of the drop. When the drop reaches its terminal speed,
v, the two forces balance each other (mg � D).

Now suppose that an electric field is set up between the plates by a battery
connected so that the upper plate is positively charged. In this case, a third force,

, acts on the charged drop. Because q is negative and is downward, the electricE
:

qE
:

D
:

m g:

Why is it safe to stay inside an automobile during a
lightning storm?

Explanation Many people believe that staying inside
the car is safe because of the insulating characteris-
tics of the rubber tires, but in fact this isn’t true.
Lightning can travel through several kilometers of

air, so it can certainly penetrate a centimeter of
rubber. The safety of remaining in the car is due to
the fact that charges on the metal shell of the car
will reside on the outer surface of the car, as noted
in property 2 discussed earlier. As a result, an occu-
pant in the automobile touching the inner surfaces
is not in danger.

Applying Physics 15.3 Driver Safety During Electrical Storms

Telescope with
scale in eyepiece

Oil droplets

Illumination

Pinhole

d
q

v

+ –

ACTIVE FIGURE 15.21
A schematic view of Millikan’s oil-drop apparatus.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 15.21, where you can do a simulation of the
experiment, taking data on a number of oil drops and determining the elementary charge from your data.

44920_15_p497-530  12/29/04  9:19 AM  Page 515



516 Chapter 15 Electric Forces and Electric Fields

force is upward as in Figure 15.22b. If this force is great enough, the drop moves
upward and the drag force acts downward. When the upward electric force, ,
balances the sum of the force of gravity and the drag force, both acting downward,
the drop reaches a new terminal speed v.

With the field turned on, a drop moves slowly upward, typically at a rate of
hundredths of a centimeter per second. The rate of fall in the absence of a field is
comparable. Hence, a single droplet with constant mass and radius can be fol-
lowed for hours as it alternately rises and falls, simply by turning the electric field
on and off.

After making measurements on thousands of droplets, Millikan and his co-
workers found that, to within about 1% precision, every drop had a charge equal
to some positive or negative integer multiple of the elementary charge e,

q � ne n � 0, � 1, � 2, � 3, . . . [15.7]

where e � 1.60 � 10�19 C. It was later established that positive integer multiples of
e would arise when an oil droplet had lost one or more electrons. Likewise, negative
integer multiples of e would arise when a drop had gained one or more electrons.
Gains or losses in integral numbers provide conclusive evidence that charge is
quantized. In 1923, Millikan was awarded the Nobel prize in physics for this work.

15.8 THE VAN DE GRAAFF GENERATOR
In 1929 Robert J. Van de Graaff (1901–1967) designed and built an electrostatic
generator that has been used extensively in nuclear physics research. The princi-
ples of its operation can be understood with knowledge of the properties of elec-
tric fields and charges already presented in this chapter. Figure 15.23 shows the ba-
sic construction of this device. A motor-driven pulley P moves a belt past positively
charged comb-like metallic needles positioned at A. Negative charges are attracted
to these needles from the belt, leaving the left side of the belt with a net positive
charge. The positive charges attract electrons onto the belt as it moves past a sec-
ond comb of needles at B, increasing the excess positive charge on the dome. Be-
cause the electric field inside the metal dome is negligible, the positive charge on
it can easily be increased regardless of how much charge is already present. The
result is that the dome is left with a large amount of positive charge.

This accumulation of charge on the dome can’t continue indefinitely. As more
and more charge appears on the surface of the dome, the magnitude of the elec-
tric field at that surface is also increasing. Finally, the strength of the field becomes
great enough to partially ionize the air near the surface, increasing the conductiv-
ity of the air. Charges on the dome now have a pathway to leak off into the air,
producing some spectacular “lightning bolts” as the discharge occurs. As noted
earlier, charges find it easier to leap off a surface at points where the curvature is
great. As a result, one way to inhibit the electric discharge, and to increase
the amount of charge that can be stored on the dome, is to increase its radius.

q E
:

D
:



qE

mg

v
E

mg

q

D

(a) Field off (b) Field on

–

v �

D �

Figure 15.22 The forces on a charged
oil droplet in Millikan’s experiment.
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Figure 15.23 A diagram of a Van
de Graaff generator. Charge is trans-
ferred to the dome by means of a ro-
tating belt. The charge is deposited
on the belt at point A and transferred
to the dome at point B.
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Another method for inhibiting discharge is to place the entire system in a con-
tainer filled with a high-pressure gas, which is significantly more difficult to ionize
than air at atmospheric pressure.

If protons (or other charged particles) are introduced into a tube attached to
the dome, the large electric field of the dome exerts a repulsive force on the
protons, causing them to accelerate to energies high enough to initiate nuclear re-
actions between the protons and various target nuclei.

15.9 ELECTRIC FLUX AND GAUSS’S LAW
Gauss’s law is essentially a technique for calculating the average electric field on a
closed surface, developed by Karl Friedrich Gauss (1777–1855). When the electric
field, because of its symmetry, is constant everywhere on that surface and perpen-
dicular to it, the exact electric field can be found. In such special cases, Gauss’s law
is far easier to apply than Coulomb’s law.

Gauss’s law relates the electric flux through a closed surface and the total
charge inside that surface. A closed surface has an inside and an outside: an exam-
ple is a sphere. Electric flux is a measure of how much the electric field vectors pen-
etrate through a given surface. If the electric field vectors are tangent to the sur-
face at all points, for example, then they don’t penetrate the surface and the
electric flux through the surface is zero. These concepts will be discussed more
fully in the next two subsections. As we’ll see, Gauss’s law states that the electric
flux through a closed surface is proportional to the charge contained inside the
surface.

Electric Flux
Consider an electric field that is uniform in both magnitude and direction, as in
Figure 15.24. The electric field lines penetrate a surface of area A, which is per-
pendicular to the field. The technique used for drawing a figure such as Figure
15.24 is that the number of lines per unit area, N/A, is proportional to the magni-
tude of the electric field, or E � N/A. We can rewrite this as N � EA, which means
that the number of field lines is proportional to the product of E and A, called the
electric flux and represented by the symbol �E:

�E � EA [15.8]

Note that �E has SI units of N � m2/C and is proportional to the number of field
lines that pass through some area A oriented perpendicular to the field. (It’s
called flux by analogy with the term flux in fluid flow, which is just the volume of
liquid flowing through a perpendicular area per second.). If the surface under
consideration is not perpendicular to the field, as in Figure 15.25, the expression
for the electric flux is

[15.9]

where a vector perpendicular to the area A is at an angle � with respect to the
field. This vector is often said to be normal to the surface, and we will refer to it as

�E � EA cos �

Area = A

E

Figure 15.24 Field lines of a
uniform electric field penetrating a
plane of area A perpendicular to the
field. The electric flux �E through
this area is equal to EA.

A

E

Normal

u

u

A= A cos u

Figure 15.25 Field lines for a uniform
electric field through an area A that is at an
angle of (90° � �) to the field. Because the
number of lines that go through the
shaded area A is the same as the number
that go through A, we conclude that the
flux through A is equal to the flux through
A and is given by �E � EA cos �.

� Electric flux
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Calculate the magnitude of the flux of a constant electric field of 5.00 N/C
in the z-direction through a rectangle with area 4.00 m2 in the xy -plane. (a) 0 
(b) 10.0 N � m2/C (c) 20.0 N � m2/C (d) more information is needed

Quick Quiz 15.7

Suppose the electric field of Quick Quiz 15.7 is tilted 60° away from the positive 
z-direction. Calculate the magnitude of the flux through the same area. (a) 0
(b) 10.0 N � m2/C (c) 20.0 N � m2/C (d) more information is needed

Quick Quiz 15.8

EXAMPLE 15.6 Flux Through a Cube
Goal Calculate the electric flux through a closed surface.

Problem Consider a uniform electric field oriented in the x -direction. Find the
electric flux through each surface of a cube with edges L oriented as shown in
Figure 15.26, and the net flux.

Strategy This problem involves substituting into the definition of electric flux
given by Equation 15.9. E and A � L2 are the same in each case; the only difference
is the angle � that the electric field makes with respect to a vector perpendicular to a
given surface and pointing outward (the normal vector to the surface). The angles
can be determined by inspection. The flux through a surface parallel to the xy-plane
will be labeled �x y and further designated by position (front, back); others will be la-
beled similarly: �x z top or bottom, and �y z left or right.

E

y

1

L

L

x
z

2

Figure 15.26 (Example 15.6) A
hypothetical surface in the shape of
a cube in a uniform electric field
parallel to the x -axis. The net flux
through the surface is zero when the
net charge inside the cube is zero.

“the normal vector to the surface.” The number of lines that cross this area is
equal to the number that cross the projected area A, which is perpendicular to
the field. We see that the two areas are related by A � A cos �. From Equation
15.9, we see that the flux through a surface of fixed area has the maximum value
EA when the surface is perpendicular to the field (when � � 0°) and that the flux
is zero when the surface is parallel to the field (when � � 90°). By convention, for
a closed surface, the flux lines passing into the interior of the volume are negative
and those passing out of the interior of the volume are positive. This convention is
equivalent to requiring the normal vector of the surface to point outward when
computing the flux through a closed surface.

Solution
The normal vector to the xy -plane points in the 
negative z-direction. This, in turn, is perpendicular to ,
so � � 90°. (The opposite side works similarly.)

E
:

�xy � EA cos(90°) � (back and front)0

The normal vector to the xz-plane points in the negative
y -direction. This, in turn, is perpendicular to , so again
� � 90°. (The opposite side works similarly.)

E
:

�xz � EA cos(90°) � (top and bottom)0

The normal vector to surface � (the yz-plane) points 
in the negative x -direction. This is antiparallel to , so 
� � 180°.

E
:

� yz � EA cos(180°) � (surface �)� EL2

Surface � has normal vector pointing in the positive 
x-direction, so � � 0°.

�yz � EA cos(0°) � (surface �)EL2

We calculate the net flux by summing: �net � 0 � 0 � 0 � 0 � EL2 � EL2 � 0
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Gauss’s Law
Consider a point charge q surrounded by a spherical surface of radius r centered
on the charge, as in Figure 15.27a. The magnitude of the electric field everywhere
on the surface of the sphere is

Note that the electric field is perpendicular to the spherical surface at all points
on the surface. The electric flux through the surface is therefore EA, where 
A � 4�r 2 is the surface area of the sphere:

It’s sometimes convenient to express ke in terms of another constant, �0, as ke �
1/(4��0). The constant �0 is called the permittivity of free space and has the value

[15.10]

The use of ke or �0 is strictly a matter of taste. The electric flux through the closed
spherical surface that surrounds the charge q can now be expressed as

This result says that the electric flux through a sphere that surrounds a charge q is
equal to the charge divided by the constant �0. Using calculus, this result can be
proven for any closed surface that surrounds the charge q. For example, if the sur-
face surrounding q is irregular, as in Figure 15.27b, the flux through that surface is
also q/�0. This leads to the following general result, known as Gauss’s Law:

The electric flux �E through any closed surface is equal to the net charge
inside the surface, Q inside, divided by �0:

[15.11]

Though it’s not obvious, Gauss’s law describes how charges create electric fields. In
principle, it can always be used to calculate the electric field of a system of charges
or a continuous distribution of charge. In practice, the technique is useful only in
a limited number of cases in which there is a high degree of symmetry, such as
spheres, cylinders, or planes. With the symmetry of these special shapes, the
charges can be surrounded by an imaginary surface, called a Gaussian surface.
This imaginary surface is used strictly for mathematical calculation, and need not
be an actual, physical surface. If the imaginary surface is chosen so that the

�E �
Q inside

�0

�E � 4�keq �
q
�0

�0 �
1

4�ke
� 8.85 � 10�12 C2/N�m2

�E � EA � ke  
q
r 2   (4�r 2) � 4�keq

E � ke  
q
r 2

Remarks In doing this calculation, it is necessary to remember that the angle in the definition of flux is measured
from the normal vector to the surface and that this vector must point outwards for a closed surface. As a result, the
normal vector for the yz-plane on the left points in the negative x -direction, and the normal vector to the plane par-
allel to the yz -plane on the right points in the positive x -direction. Notice that there aren’t any charges in the box.
The net electric flux is always zero for closed surfaces that don’t contain net charge.

Exercise 15.6
Suppose the constant electric field in Example 15.6 points in the positive y-direction instead. Calculate the flux
through the xz-plane and the surface parallel to it. What’s the net electric flux through the surface of the cube?

Answers �x z � �EL2 (bottom), �x z � �EL2 (top). The net flux is still zero.

Figure 15.27 (a) The flux
through a spherical surface of radius
r surrounding a point charge q is 
�E � q/�0. (b) The flux through any
arbitrary surface surrounding the
charge is also equal to q/�0.

Gaussian
surface

q

r

+

q
+

(a)

(b)

� Gauss’s Law

TIP 15.2 Gaussian Surfaces
Aren’t Real
A Gaussian surface is an imaginary
surface, created solely to facilitate a
mathematical calculation. It doesn’t
necessarily coincide with the surface
of a physical object.
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electric field is constant everywhere on it, then the electric field can be computed
with

[15.12]

as will be seen in the examples. Though Gauss’s law in this form can be used to ob-
tain the electric field only for problems with a lot of symmetry, it can always be
used to obtain the average electric field on any surface.

EA � �E �
Q inside

�0

4 C

�3 C �2 C

1 C

�

�2 C

�

�5 C
�

+

+
+

ACTIVE FIGURE 15.28
(Quick Quiz 15.9)

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 15.28, where you can change
the size and shape of a closed surface
and see the effect of surrounding
combinations of charge on the elec-
tric flux going through that surface.

Find the electric flux through the surface in Active Figure 15.28. (a) �(3 C)/�0
(b) (3 C)/�0 (c) 0 (d) �(6 C)/�0

Quick Quiz 15.9

For a closed surface through which the net flux is zero, each of the following four
statements could be true. Which of the statements must be true? (There may be
more than one.) (a) There are no charges inside the surface. (b) The net charge
inside the surface is zero. (c) The electric field is zero everywhere on the surface.
(d) The number of electric field lines entering the surface equals the number
leaving the surface.

Quick Quiz 15.10

EXAMPLE 15.7 The Electric Field of a Charged Spherical Shell
Goal Use Gauss’s law to determine electric fields when the symmetry is spherical.

Problem A spherical conducting shell of inner radius a and outer radius b carries a total charge �Q distributed on
the surface of a conducting shell (Fig. 15.29a). The quantity Q is taken to be positive. (a) Find the electric field in the
interior of the conducting shell, for r � a, and (b) the electric field outside the shell, for r � b. (c) If an additional
charge of �Q is placed at the center, find the electric field for r � b.

Strategy For each part, draw a spherical Gaussian surface in the region of interest. Add up the charge inside the
Gaussian surface, substitute it and the area into Gauss’s law, and solve for the electric field.

Solution
(a) Find the electric field for r � a .

Apply Gauss’s law, Equation 15.12, to the Gaussian sur-
face illustrated in Figure 15.29b (note that there isn’t
any charge inside this surface):

E � 0EA � E(4� r 2) �
Q inside

�0
� 0   :    

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

E

Gaussian

r

Gaussian
surface

surface

(a) (b) (c)

Ein = 0

r
a aa

b
bb

Figure 15.29 (Example 15.7) 
(a) The electric field inside a uni-
formly charged spherical shell is zero.
It is also zero for the conducting ma-
terial in the region a � r � b. The
field outside is the same as that of a
point charge having a total charge Q
located at the center of the shell. 
(b) The construction of a Gaussian
surface for calculating the electric
field inside a spherical shell. (c) The
construction of a Gaussian surface
for calculating the electric field
outside a spherical shell.
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In Example 15.7, not much was said about the distribution of charge on the
conductor. Whenever there is a net nonzero charge, the individual charges will try
to get as far away from each other as possible. Hence, charge will reside either on
the inside surface or on the outside surface. Because the electric field in the
conductor is zero, there will always be enough charge on the inner surface to can-
cel whatever charge is at the center. In part (b), there is no charge on the inner
surface and a charge of �Q on the outer surface. In part (c), with a �Q charge at
the center, �Q is on the inner surface, 0 C on the outer surface. Finally, in the
exercise, with �2Q in the center, there must be �2Q on the inner surface and
�Q on the outer surface. In each case, the total charge on the conductor remains
the same, �Q ; it’s just arranged differently.

Problems like Example 15.7 are often said to have “thin nonconducting shells”
carrying a uniformly distributed charge. In these cases, no distinction need be
made between the outer surface and inner surface of the shell. The next example
makes that implicit assumption.

(b) Find the electric field for r � b.

Apply Gauss’s law, Equation 15.12, to the Gaussian
surface illustrated in Figure 15.29c:

EA � E(4�r 2) �
Q inside

�0
�

Q
�0

Divide by the area: E �
Q

4��0r 2

(c) Now an additional charge of �Q is placed at the
center of the sphere. Compute the new electric field
outside the sphere, for r � b.

Apply Gauss’s law as in part (b), including the new
charge in Q inside:

E � 0

EA � E(4�r 2) �
Q inside

�0
�

� Q � Q
�0

� 0

Remarks The important thing to notice is that in each case, the charge is spread out over a region with spherical
symmetry or is located at the exact center. This is what allows the computation of a value for the electric field.

Exercise 15.7
Suppose the charge at the center is now increased to �2Q , while the surface of the conductor still retains a charge of
�Q . (a) Find the electric field exterior to the sphere, for r � b. (b) What’s the electric field inside the conductor, for
a � r � b?

Answers (a) E � � Q/4��0r 2 (b) E � 0, which is always the case when charges are not moving in a conductor.

EXAMPLE 15.8 A Nonconducting Plane Sheet of Charge
Goal Apply Gauss’s law to a problem with plane symmetry.

Problem Find the electric field above and below a nonconducting infinite plane sheet of charge with uniform
positive charge per unit area � (Figure 15.30a).

Strategy By symmetry, the electric field must be perpendicular to the plane and directed away from it on either
side, as shown in Figure 15.30b. For the Gaussian surface, choose a small cylinder with axis perpendicular to the
plane, each end having area A0. No electric field lines pass through the curved surface of the cylinder, only through
the two ends, which have total area 2A0. Apply Gauss’s law, using Figure 15.30b.
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(a)

A0

Gaussian
surface

�E � EA0

�E � EA0

Q � sA0

E

E

(b)

+ + + + + + + + + + + + + +

E for z < 0

E for z > 0

(c)

– – – – – –

Figure 15.30 (Example 15.8) (a) A cylindrical Gaussian surface penetrating an infinite sheet of charge. (b) A cross section of the
same Gaussian cylinder. The flux through each end of the Gaussian surface is EA0. There is no flux through the cylindrical surface.
(c) (Exercise 15.8).

Solution
(a) Find the electric field above and below a plane of
uniform charge.

Apply Gauss’s law, Equation 15.12: EA �
Q inside

�0

The total charge inside the Gaussian cylinder is the
charge density times the cross-sectional area:

Q inside � �A0

The electric flux comes entirely from the two ends, each
having area A0. Substitute A � 2A0 and Q inside and 
solve for E .

�

2�0
E �

�A0

(2A0)�0
�

This is the magnitude of the electric field. Find the 
z -component of the field above and below the plane.
The electric field points away from the plane, so it’s
positive above the plane and negative below the plane.

Ez � � 
�

2�0
       z � 0 

Ez �
�

2�0
       z � 0 

Remarks Notice here that the plate was taken to be a thin nonconducting shell. If it’s made of metal, of course, the
electric field inside it is zero, with half the charge on the upper surface and half on the lower surface.

Exercise 15.8
Suppose an infinite non-conducting plane of charge as in Example 15.8 has a uniform negative charge density of
� �. Find the electric field above and below the plate. Sketch the field.

Answers

See Figure 15.30c for the sketch.

Ez �
� �

2�0
      z � 0; Ez �

�

2�0
      z � 0
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An important circuit element that will be studied extensively in the next chapter is
the parallel plate capacitor. The device consists of a plate of positive charge, as in
Example 15.8, with the negative plate of Exercise 15.8 placed above it. The sum of
these two fields is illustrated in Figure 15.31. The result is an electric field with
double the magnitude in between the two plates:

[15.13]

Outside the plates, the electric fields cancel.

E �
�

�0

E � 0

E � 0

E � s–
0�

– – – – – –

+ + + + + +

Figure 15.31 Cross section of an
idealized parallel-plate capacitor.
Electric field vector contributions
sum together in between the plates,
but cancel outside.

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

15.1 Properties of Electric Charges
Electric charges have the following properties:

1. Unlike charges attract one another and like charges
repel one another.

2. Electric charge is always conserved.
3. Charge comes in discrete packets that are integral multi-

ples of the basic electric charge e � 1.6 � 10�19 C.
4. The force between two charged particles is proportional

to the inverse square of the distance between them.

15.2 Insulators and Conductors
Conductors are materials in which charges move freely in
response to an electric field. All other materials are called
insulators.

15.3 Coulomb’s Law
Coulomb’s law states that the electric force between two
stationary charged particles separated by a distance r has
the magnitude

[15.1]

where �q1� and �q2� are the magnitudes of the charges on
the particles in coulombs and

ke � 8.99 � 109 N � m2/C2 [15.2]

is the Coulomb constant.

15.4 The Electric Field
An electric field exists at some point in space if a small
test charge q0 placed at that point is acted upon by an elec-
tric force . The electric field is defined as

[15.4]E
:

   �    
F
:

q0

F
:

E
:

F � ke  
�q1��q2�

r 2

The direction of the electric field at a point in space is
defined to be the direction of the electric force that would
be exerted on a small positive charge placed at that point.

The magnitude of the electric field due to a point charge
q at a distance r from the point charge is

[15.6]

15.5 Electric Field Lines
Electric field lines are useful for visualizing the electric
field in any region of space. The electric field vector is
tangent to the electric field lines at every point. Further-
more, the number of electric field lines per unit area
through a surface perpendicular to the lines is propor-
tional to the strength of the electric field at that surface.

15.6 Conductors in Electrostatic 
Equilibrium
A conductor in electrostatic equilibrium has the following
properties:

1. The electric field is zero everywhere inside the conduct-
ing material.

2. Any excess charge on an isolated conductor must reside
entirely on its surface.

3. The electric field just outside a charged conductor is
perpendicular to the conductor’s surface.

4. On an irregularly shaped conductor, charge accumu-
lates where the radius of curvature of the surface is
smallest, at sharp points.

15.9 Electric Flux and Gauss’s Law
Gauss’s law states that the electric flux through any closed
surface is equal to the net charge Q inside the surface
divided by the permittivity of free space, �0:

[15.12]

For highly symmetric distributions of charge, Gauss’s law
can be used to calculate electric fields.

EA � �E �
Q inside

�0

E
:

E � k e  
�q �
r 2
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CONCEPTUAL QUESTIONS
1. A glass object is charged to � 3 nC by rubbing it with a silk

cloth. In the rubbing process, have protons been added to
the object or have electrons been removed from it?

2. Why must hospital personnel wear special conducting
shoes while working around oxygen in an operating
room. What might happen if the personnel wore shoes
with rubber soles?

3. Two insulated rods are oppositely charged on their ends.
They are mounted at the centers so that they are free to
rotate, and then held in the position shown in Figure
Q15.3 in a view from above. The rods rotate in the plane
of the paper. Will the rods stay in those positions when
released? If not, into what position(s) will they move? Will
the final configuration(s) be stable?

4. Explain from an atomic viewpoint why charge is usually
transferred by electrons.

5. Explain how a positively charged object can be used to
leave another metallic object with a net negative charge.
Discuss the motion of charges during the process.

6. If a suspended object A is attracted to a charged object B,
can we conclude that A is charged? Explain.

7. If a metal object receives a positive charge, does its mass
increase, decrease, or stay the same? What happens to its
mass if the object receives a negative charge?

8. When defining the electric field, why is it necessary to
specify that the magnitude of the test charge be very small?

9. In fair weather, there is an electric field at the surface of
the Earth, pointing down into the ground. What is the
electric charge on the ground in this situation?

10. A student stands on a thick piece of insulating material,
places her hand on top of a Van de Graaff generator, and
then turns on the generator. Does she receive a shock?

11. An uncharged, metallic-coated Styrofoam ball is sus-
pended in the region between two vertical metal plates. If
the two plates are charged, one positively and one nega-
tively, describe the motion of the ball after it is brought
into contact with one of the plates.

12. Is it possible for an electric field to exist in empty space?
Explain.

13. There are great similarities between electric and gravita-
tional fields. A room can be electrically shielded so that
there are no electric fields in the room by surrounding it
with a conductor. Can a room be gravitationally shielded?

Why or why not? [Hint: There are two kinds of charge in
nature, but only one kind of mass.]

14. Would life be different if the electron were positively
charged and the proton were negatively charged? Does
the choice of signs have any bearing on physical and
chemical interactions? Explain.

15. Explain why Gauss’s law cannot be used to calculate
the electric field of (a) a polar molecule consisting of a
positive and a negative charge separated by a very small
distance, (b) a charged disk, and (c) three point charges
at the corner of a triangle.

16. Why should a ground wire be connected to the metal sup-
port rod for a television antenna?

17. A balloon negatively charged by rubbing clings to a wall.
Does this mean that the wall is positively charged? Why
does the balloon eventually fall?

18. A spherical surface surrounds a point charge q. Describe
what happens to the total flux through the surface if
(a) the charge is tripled, (b) the volume of the sphere is
doubled, (c) the surface is changed to a cube, (d) the
charge is moved to another location inside the surface,
and (e) the charge is moved outside the surface.

19. A charged comb often attracts small bits of dry paper that
then fly away when they touch the comb. Explain.

20. Answer the given questions with one of the statements
that follow and defend your answer. The answer to each
part is either �Q , 0, or �Q. A spherical conducting
object A with a charge of �Q is lowered through a hole
into a metal container B that is initially uncharged.
(a) When A is at the center of B, but not touching it, the

charge on the inner surface of B is _____.
(b) The charge on the outer surface of B is _____.
(c) Object A is now allowed to touch the inner surface of

B. The charge on A is now _____.
(d) The charge on the inner surface of B is now _____.
(e) The charge on the outer surface of B is now _____.

21. A positively charged ball hanging from a nonconducting
string is brought near a nonconducting object. Based on
the behavior of the ball–string combination, the ball is seen
to be attracted to the object. From this experiment, it is not
possible to determine whether the object is negatively
charged or neutral. Why not? What additional experiment
would help you decide between these two possibilities?

22. An electron moving horizontally passes between two hori-
zontal plates, the upper charged negatively, the lower
positively. A uniform, upward-directed electric field exists
in the region between the plates, and this field exerts
an electric force downward on the electron. Describe the
movement of the electron in this region.

+ – – +

Figure Q15.3

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached solution with hints available at www.cp7e.com = biomedical application

Section 15.3 Coulomb’s Law
1. A charge of 4.5 � 10�9 C is located 3.2 m from a charge

of �2.8 � 10�9 C. Find the electrostatic force exerted by
one charge on the other.

2. The Moon and Earth are bound together by gravity. If,
instead, the force of attraction were the result of each
having a charge of the same magnitude but opposite in
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sign, find the quantity of charge that would have to be
placed on each to produce the required force.

3. An alpha particle (charge � � 2.0e) is sent at high speed
toward a gold nucleus (charge � � 79e). What is the
electrical force acting on the alpha particle when it is 
2.0 � 10�14 m from the gold nucleus?

4. Four point charges are situated at the corners of a square
with sides of length a, as in Figure P15.4. Find the expres-
sion for the resultant force on the positive charge q.

The nucleus of 8Be, which consists of 
4 protons and 4 neutrons, is very unstable and sponta-
neously breaks into two alpha particles (helium nuclei,
each consisting of 2 protons and 2 neutrons). (a) What is
the force between the two alpha particles when they are
5.00 � 10�15 m apart, and (b) what will be the magnitude
of the acceleration of the alpha particles due to this
force? Note that the mass of an alpha particle is 4.0026 u.

6. A molecule of DNA (deoxyribonucleic acid) is 2.17 �m
long. The ends of the molecule become singly ionized—
negative on one end, positive on the other. The helical
molecule acts like a spring and compresses 1.00% upon
becoming charged. Determine the effective spring con-
stant of the molecule.

7. Suppose that 1.00 g of hydrogen is separated into electrons
and protons. Suppose also that the protons are placed at the
Earth’s North Pole and the electrons are placed at the South
Pole. What is the resulting compressional force on the Earth?

8. An electron is released a short distance above the surface
of the Earth. A second electron directly below it exerts an
electrostatic force on the first electron just great enough
to cancel the gravitational force on it. How far below the
first electron is the second?

Two identical conducting spheres are placed with their cen-
ters 0.30 m apart. One is given a charge of 12 � 10�9 C, the
other a charge of �18 � 10�9 C. (a) Find the electrostatic
force exerted on one sphere by the other. (b) The spheres
are connected by a conducting wire. Find the electrostatic
force between the two after equilibrium is reached.

10. Calculate the magnitude and direction of the Coulomb
force on each of the three charges shown in Figure P15.10.

9.

5.

11. Three charges are arranged as shown in Figure P15.11.
Find the magnitude and direction of the electrostatic
force on the charge at the origin.

12. Three charges are arranged as shown in Figure P15.12.
Find the magnitude and direction of the electrostatic
force on the 6.00-nC charge.

13. Three point charges are located at the corners of an
equilateral triangle as in Figure P15.13. Calculate the net
electric force on the 7.00-�C charge.

14. Two small beads having positive charges 3q and q are
fixed at the opposite ends of a horizontal insulating rod,
extending from the origin to the point x � d. As shown in
Figure P15.14, a third small charged bead is free to slide
on the rod. At what position is the third bead in equilib-
rium? Can it be in stable equilibrium?

–q

–q+q

a

a

–q

x

y

Figure P15.4

3.00 cm 2.00 cm

6.00   C 1.50   C –2.00   Cm m m

Figure P15.10 (Problems 10 and 18)

0.100 m

x

–3.00 nC

5.00 nC
0.300 m

6.00 nC

y

Figure P15.11

0.500 m

0.500 m

0.500 m

2.00 nC

3.00 nC

6.00 nC

Figure P15.12

0.500 m

7.00   C

2.00   C –4.00   C

60.0°
x

y m

mm

+

+

Figure P15.13

44920_15_p497-530  12/29/04  9:19 AM  Page 525



526 Chapter 15 Electric Forces and Electric Fields

Two small metallic spheres, each of mass 0.20 g, are sus-
pended as pendulums by light strings from a common
point as shown in Figure P15.15. The spheres are given
the same electric charge, and it is found that they come to
equilibrium when each string is at an angle of 5.0° with
the vertical. If each string is 30.0 cm long, what is the mag-
nitude of the charge on each sphere?

15.

16. A charge of 6.00 � 10�9 C and a charge of �3.00 � 10�9 C
are separated by a distance of 60.0 cm. Find the position at
which a third charge, of 12.0 � 10�9 C, can be placed so
that the net electrostatic force on it is zero.

Section 15.4 The Electric Field
17. An object with a net charge of 24 �C is placed in a uni-

form electric field of 610 N/C, directed vertically. What is
the mass of the object if it “floats” in the electric field?

18. (a) Determine the electric field strength at a point 1.00 cm
to the left of the middle charge shown in Figure P15.10.
(b) If a charge of �2.00 �C is placed at this point, what
are the magnitude and direction of the force on it?

An airplane is flying through a thunder-
cloud at a height of 2 000 m. (This is a very dangerous
thing to do because of updrafts, turbulence, and the
possibility of electric discharge.) If there are charge
concentrations of �40.0 C at a height of 3 000 m within
the cloud and �40.0 C at a height of 1 000 m, what is the
electric field at the aircraft?

20. An electron is accelerated by a constant electric field of
magnitude 300 N/C. (a) Find the acceleration of the elec-
tron. (b) Use the equations of motion with constant accel-
eration to find the electron’s speed after 1.00 � 10�8 s,
assuming it starts from rest.

21. A Styrofoam® ball covered with a conducting paint has a
mass of 5.0 � 10�3 kg and has a charge of 4.0 �C. What
electric field directed upward will produce an electric
force on the ball that will balance its weight?

E
:

19.

22. Each of the protons in a particle beam has a kinetic
energy of 3.25 � 10�15 J. What are the magnitude and
direction of the electric field that will stop these protons
in a distance of 1.25 m?
A proton accelerates from rest in a uniform electric field of
640 N/C. At some later time, its speed is 1.20 � 106 m/s.
(a) Find the magnitude of the acceleration of the proton.
(b) How long does it take the proton to reach this speed?
(c) How far has it moved in that interval? (d) What is its
kinetic energy at the later time?

24. Three charges are at the corners of an equilateral trian-
gle, as shown in Figure P15.24. Calculate the electric field
at a point midway between the two charges on the x-axis.

23.

25. Three identical charges (q � � 5.0 �C) lie along a circle
of radius 2.0 m at angles of 30°, 150°, and 270°, as shown
in Figure P15.25. What is the resultant electric field at the
center of the circle?

26. Two point charges lie along the y -axis. A charge of q1 �
� 9.0 �C is at y � 6.0 m, and a charge of q 2 � � 8.0 �C is
at y � � 4.0 m. Locate the point (other than infinity) at
which the total electric field is zero.

27. In Figure P15.27, determine the point (other than infin-
ity) at which the total electric field is zero.

d

+3q

+q

y

x

Figure P15.14

0.20 g 0.20 g

30.0 cm
u

Figure P15.15

y

– 5.00 nC

60.0°

8.00 nC

3.00 nC

0.500 m

x

Figure P15.24

1.0 m

–2.5 mC 6.0 mC

Figure P15.27

30°

150°

q

qq

x

y

270°

Figure P15.25

44920_15_p497-530  12/29/04  9:20 AM  Page 526



Problems 527

q2

q1

Figure P15.28

Section 15.5 Electric Field Lines

Section 15.6 Conductors in Electrostatic Equilibrium
28. Figure P15.28 shows the electric field lines for two point

charges separated by a small distance. (a) Determine the
ratio q1/q 2. (b) What are the signs of q1 and q 2?

29. (a) Sketch the electric field lines around an isolated point
charge q � 0. (b) Sketch the electric field pattern around
an isolated negative point charge of magnitude �2q.

30. (a) Sketch the electric field pattern around two positive
point charges of magnitude 1 �C placed close together.
(b) Sketch the electric field pattern around two negative
point charges of �2 �C, placed close together. (c) Sketch
the pattern around two point charges of �1 �C and 
� 2 �C, placed close together.
Two point charges are a small distance apart. (a) Sketch
the electric field lines for the two if one has a charge four
times that of the other and both charges are positive.
(b) Repeat for the case in which both charges are negative.

32. (a) Sketch the electric field pattern set up by a positively
charged hollow sphere. Include regions inside and
regions outside the sphere. (b) A conducting cube is
given a positive charge. Sketch the electric field pattern
both inside and outside the cube.

33. Refer to Figure 15.20. The charge lowered into the center
of the hollow conductor has a magnitude of 5 �C. Find
the magnitude and sign of the charge on the inside and
outside of the hollow conductor when the charge is
as shown in (a) Figure 15.20a; and (b) Figure 15.20b;
(c) Figure 15.20c; and (d) Figure 15.20d.

Section 15.8 The Van de Graaff Generator
34. The dome of a Van de Graaff generator receives a charge

of 2.0 � 10�4 C. Find the strength of the electric field
(a) inside the dome; (b) at the surface of the dome, as-
suming it has a radius of 1.0 m; and (c) 4.0 m from the
center of the dome. [Hint: See Section 15.6 to review
properties of conductors in electrostatic equilibrium.
Also, use the fact that the points on the surface are out-
side a spherically symmetric charge distribution; the total
charge may be considered to be located at the center of
the sphere.]

If the electric field strength in air ex-
ceeds 3.0 � 106 N/C, the air becomes a conductor. Using
this fact, determine the maximum amount of charge that
can be carried by a metal sphere 2.0 m in radius. (See the
hint in Problem 34.)

36. In the Millikan oil drop experiment, an atomizer
(a sprayer with a fine nozzle) is used to introduce many

35.

31.

tiny droplets of oil between two oppositely charged paral-
lel metal plates. Some of the droplets pick up one or
more excess electrons. The charge on the plates is
adjusted so that the electric force on the excess electrons
exactly balances the weight of the droplet. The idea is to
look for a droplet that has the smallest electric force and
assume that it has only one excess electron. This strategy
lets the observer measure the charge on the electron.
Suppose we are using an electric field of 3 � 104 N/C.
The charge on one electron is about 1.6 � 10�19 C.
Estimate the radius of an oil drop of density 858 kg/m3

for which its weight could be balanced by the electric
force of this field on one electron. (Problem 36 is cour-
tesy of E.F. Redish. For more problems of this type, visit
http://www.physics.umd.edu/perg/.)

37. A Van de Graaff generator is charged so that the electric
field at its surface is 3.0 � 104 N/C. Find (a) the electric
force exerted on a proton released at its surface and
(b) the acceleration of the proton at that instant of time.

Section 15.9 Electric Flux and Gauss’s Law
38. A flat surface having an area of 3.2 m2 is rotated in a uni-

form electric field of magnitude E � 6.2 � 105 N/C. De-
termine the electric flux through this area (a) when the
electric field is perpendicular to the surface and (b) when
the electric field is parallel to the surface.
An electric field of intensity 3.50 kN/C is applied along
the x -axis. Calculate the electric flux through a rectangu-
lar plane 0.350 m wide and 0.700 m long if (a) the plane
is parallel to the yz -plane; (b) the plane is parallel to the
xy -plane; and (c) the plane contains the y -axis, and its
normal makes an angle of 40.0° with the x -axis.

40. The electric field everywhere on the surface of a thin
spherical shell of radius 0.750 m is measured to be equal
to 890 N/C and points radially toward the center of the
sphere. (a) What is the net charge within the sphere’s
surface? (b) What can you conclude about the nature and
distribution of the charge inside the spherical shell?

41. A 40-cm-diameter loop is rotated in a uniform electric
field until the position of maximum electric flux is 
found. The flux in that position is measured to be 
5.2 � 105 N � m2/C. Calculate the electric field strength
in this region.

42. A point charge of �5.00 �C is located at the center of a
sphere with a radius of 12.0 cm. Determine the electric
flux through the surface of the sphere.
A point charge q is located at the center of a spherical
shell of radius a that has a charge �q uniformly distrib-
uted on its surface. Find the electric field (a) for all points
outside the spherical shell and (b) for a point inside the
shell a distance r from the center.

44. Use Gauss’s law and the fact that the electric field inside
any closed conductor in electrostatic equilibrium is zero
to show that any excess charge placed on the conductor
must reside on its surface.

45. An infinite plane conductor has charge spread out on its
surface as shown in Figure P15.45. Use Gauss’s law to
show that the electric field at any point outside the con-
ductor is given by E � �/�0, where � is the charge per
unit area on the conductor. [Hint: Choose a Gaussian sur-
face in the shape of a cylinder with one end inside the
conductor and one end outside the conductor.]

43.

39.
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46. Show that the electric field just outside the surface of a
good conductor of any shape is given by E � �/�0, where
� is the charge per unit area on the conductor. [Hint: The
electric field just outside the surface of a charged conduc-
tor is perpendicular to its surface.]

ADDITIONAL PROBLEMS
47. Two protons in an atomic nucleus are typically separated

by a distance of 2 � 10�15 m. The electric repulsion force
between the protons is huge, but the attractive nuclear
force is even stronger and keeps the nucleus from burst-
ing apart. What is the magnitude of the electrical force
between two protons separated by 2.00 � 10�15 m?
In the Bohr theory of the hydrogen atom, an electron
moves in a circular orbit about a proton. The radius of
the orbit is 0.53 � 10�10 m. (a) Find the electrostatic
force acting on each particle. (b) If this force causes the
centripetal acceleration of the electron, what is the speed
of the electron?

49. Three point charges are aligned along the x -axis as shown
in Figure P15.49. Find the electric field at the position
x � �2.0 m, y � 0.

48.

(a) Two identical point charges �q are located on the
y -axis at y � �a and y � � a. What is the electric field
along the x -axis at x � b? (b) A circular ring of charge of
radius a has a total positive charge Q distributed uni-
formly around it. The ring is in the x � 0 plane with its
center at the origin. What is the electric field along the x -
axis at x � b due to the ring of charge? [Hint: Consider
the charge Q to consist of many pairs of identical point
charges positioned at the ends of diameters of the ring.]

52. A positively charged bead having a mass of 1.00 g falls
from rest in a vacuum from a height of 5.00 m in a
uniform vertical electric field with a magnitude of 1.00 �
104 N/C. The bead hits the ground at a speed of
21.0 m/s. Determine (a) the direction of the electric field
(upward or downward), and (b) the charge on the bead.

53. A solid conducting sphere of radius 2.00 cm has a charge
of 8.00 �C. A conducting spherical shell of inner radius
4.00 cm and outer radius 5.00 cm is concentric with
the solid sphere and has a charge of � 4.00 �C. Find the
electric field at (a) r � 1.00 cm, (b) r � 3.00 cm, (c) r �
4.50 cm, and (d) r � 7.00 cm from the center of this
charge configuration.

54. Two small silver spheres, each with a mass of 100 g, are
separated by 1.00 m. Calculate the fraction of the elec-
trons in one sphere that must be transferred to the other
in order to produce an attractive force of 1.00 � 104 N
(about a ton) between the spheres. (The number of elec-
trons per atom of silver is 47, and the number of atoms
per gram is Avogadro’s number divided by the molar mass
of silver, 107.87 g/mol.)

55. A vertical electric field of magnitude 2.00 � 104 N/C ex-
ists above the Earth’s surface on a day when a thunder-
storm is brewing. A car with a rectangular size of 6.00 m
by 3.00 m is traveling along a roadway sloping downward
at 10.0°. Determine the electric flux through the bottom
of the car.

56. A 2.00-�C charged 1.00-g cork ball is suspended vertically
on a 0.500-m-long light string in the presence of a
uniform downward-directed electric field of magnitude
E � 1.00 � 105 N/C. If the ball is displaced slightly from
the vertical, it oscillates like a simple pendulum. (a) Deter-
mine the period of the ball’s oscillation. (b) Should gravity
be included in the calculation for part (a)? Explain.

Two 2.0-g spheres are suspended by
10.0-cm-long light strings (Fig. P15.57). A uniform elec-
tric field is applied in the x-direction. If the spheres have
charges of �5.0 � 10�8 C and �5.0 � 10�8 C, determine
the electric field intensity that enables the spheres to be
in equilibrium at � � 10°.

57.

51.
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Figure P15.49
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x

15.0°
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E = 1.00 × 103  N/C

Figure P15.50

+

E

–

u u

Figure P15.57

50. A small 2.00-g plastic ball is suspended by a 20.0-cm-long
string in a uniform electric field, as shown in Figure
P15.50. If the ball is in equilibrium when the string makes
a 15.0° angle with the vertical as indicated, what is the net
charge on the ball?
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58. Two point charges like those in Figure P15.58 are called
an electric dipole. Show that the electric field at a distant
point along the x -axis is given by Ex � 4keqa/x3.

59. A charged cork ball of mass 1.00 g is suspended on a light
string in the presence of a uniform electric field as in
Figure P15.59. When the electric field has an x-component
of 3.00 � 105 N/C and a y -component of 5.00 � 105 N/C,
the ball is in equilibrium at � � 37.0°. Find (a) the charge
on the ball and (b) the tension in the string.

60. A point charge of magnitude 5.00 �C is at the origin of a
coordinate system, and a charge of � 4.00 �C is at the
point x � 1.00 m. There is a point on the x -axis, at x less
than infinity, where the electric field goes to zero.
(a) Show by conceptual arguments that this point cannot
be located between the charges. (b) Show by conceptual
arguments that the point cannot be at any location be-
tween x � 0 and negative infinity. (c) Show by conceptual
arguments that the point must be between x � 1.00 m
and x � positive infinity. (d) Use the values given to find
the point and show that it is consistent with your concep-
tual argument.

61. Two hard rubber spheres of mass 15 g are rubbed vigor-
ously with fur on a dry day and are then suspended from
a rod with two insulating strings of length 5.0 cm. They
are observed to hang at equilibrium as shown in Figure
P15.61, each at an angle of 10° with the vertical. Estimate
the amount of charge that is found on each sphere.
(Problem 61 is courtesy of E.F. Redish. For more problems
of this type, visit http://www.physics.umd.edu/perg/.)

62. Three identical point charges, each of mass m � 0.100 kg,
hang from three strings, as shown in Figure P15.62. If the
lengths of the left and right strings are each L � 30.0 cm,
and if the angle � is 45.0°, determine the value of q .

63. Each of the electrons in a particle beam has a kinetic
energy of 1.60 � 10�17 J . (a) What is the magnitude of
the uniform electric field (pointing in the direction of the
electrons’ movement) that will stop these electrons in a
distance of 10.0 cm? (b) How long will it take to stop the
electrons? (c) After the electrons stop, what will they do?
Explain.

64. Protons are projected with an initial speed v0 � 9 550 m/s
into a region where a uniform electric field E � 720 N/C
is present (Fig. P15.64). The protons are to hit a target
that lies a horizontal distance of 1.27 mm from the point
where the protons are launched. Find (a) the two projec-
tion angles � that will result in a hit and (b) the total dura-
tion of flight for each of the two trajectories.

ACTIVITIES
1. The following are a number of experiments that you can

perform to investigate static electricity.
(a) Attach two inflated balloons to the ends of a light
string having a length of about 2 m. Tape the center of
the string to the top of an open doorway as in Figure
A15.1. Note that the balloons touch each other as they
hang freely. Now rub each balloon several times with a
wool cloth, and let them hang freely once again. Why are
the balloons no longer touching each other, but are now
separated?
(b) Rub an inflated balloon with a piece of wool and press
it against a wall. Note that the balloon adheres to the wall.
Why?
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530 Chapter 15 Electric Forces and Electric Fields

(c) Rub nylon hose with a plastic dry-cleaner bag and
observe how the hose expands like a balloon. Why does it
do so?
(d) Tear some paper into very small pieces. Comb your
hair and then bring the comb close to the pieces of paper.
Notice that they accelerate toward the comb. How does
the magnitude of the electric force compare with the
magnitude of the gravitational force exerted on the pa-
per? Keep watching, and you might see a few pieces jump
away from the comb. They do not fall away; they are
clearly repelled. What causes this repulsion?

2. For this experiment, you will need two 20-cm strips of
transparent tape. (The mass of each is about 65 mg.) Fold

about 1 cm of tape over at one end of each strip to create
a handle. Press both pieces of tape side by side onto a
tabletop, rubbing your finger back and forth across the
strips. Quickly pull the strips off the surface so that they
become charged. Hold the tape handles together, and the
strips will repel each other, forming an inverted “V”
shape. Measure the angle between the pieces and
estimate the excess charge on each strip. Assume that the
charges act as if they were located at the center of mass of
each strip.

3. Rub an inflated balloon with a piece of wool cloth and
place the balloon near a fine stream of water falling from
a faucet. The stream of water will deflect toward the bal-
loon. Why? Vary the distance between the balloon and the
stream, and observe the displacement of the water stream
for different distances. What is the relationship between
the displacement of the stream and the distance of
separation?

4. If you have access to a Van de Graaff generator, here are a
few interesting things to try: (a) Stack several aluminum
pie plates on top of the generator and then turn the gen-
erator on. What do you think is going to happen? Why?
Try it. (b) Tape one pie plate on top of the generator and
pour in some puffed rice or pieces of paper. What do you
think will happen when you turn the generator on? Why?
Try it and see. (c) Tape a glass beaker to the top of the
generator and pour in some puffed rice. What do you
think will happen when you turn the generator on? Try it.
(d) Bring a fluorescent bulb close to a charged generator
and observe what happens. Why does it happen?

Figure A15.1
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The concept of potential energy was first introduced in Chapter 5 in connection with the con-
servative forces of gravity and springs. By using the principle of conservation of energy, we
were often able to avoid working directly with forces when solving problems. Here we learn
that the potential energy concept is also useful in the study of electricity. Because the
Coulomb force is conservative, we can define an electric potential energy corresponding to
that force. In addition, we define an electric potential—the potential energy per unit
charge—corresponding to the electric field.

With the concept of electric potential in hand, we can begin to understand electric circuits,
starting with an investigation of a common circuit element called a capacitor. These simple
devices store electrical energy and have found uses virtually everywhere, from etched circuits
on a microchip to the creation of enormous bursts of power in fusion experiments.

16.1 POTENTIAL DIFFERENCE AND 
ELECTRIC POTENTIAL

Electric potential energy and electric potential are closely related concepts. The
electric potential turns out to be just the electric potential energy per unit charge.
This is similar to the relationship between electric force and the electric field,
which is the electric force per unit charge.

Work and Electric Potential Energy
Recall from Chapter 5 that the work done by a conservative force on an object
depends only on the initial and final positions of the object and not on the path
taken between those two points. This, in turn, means that a potential energy

F
:

Everything in the foreground of this
picture is at the same electrical
potential of many kilovolts. With no
differences in potential, no charge is
moving and no one gets a shock.
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532 Chapter 16 Electrical Energy and Capacitance

function PE exists. As we have seen, potential energy is a scalar quantity with
change equal to the negative of the work done by the conservative force:
�PE � PEf � PEi � � WF .

Both the Coulomb force law and the universal law of gravity are propor-
tional to 1/r 2. Because they have the same mathematical form, and because
the gravity force is conservative, it follows that the Coulomb force is also
conservative. As with gravity, an electrical potential energy function can be
associated with this force.

To make these ideas more quantitative, imagine a small positive charge
placed at point A in a uniform electric field , as in Figure 16.1. For simplic-
ity, we first consider only constant electric fields and charges which move
parallel to that field in one dimension (taken to be the x-axis). The electric

field between equally and oppositely charged parallel plates is an example of a
field that is approximately constant. (See Chapter 15.) As the charge moves from
point A to point B under the influence of the electric field , the work done on
the charge by the electric field is equal to the part of the electric force acting
parallel to the displacement, times the displacement �x � xf � xi :

WAB � Fx�x � qEx(xf � xi)

In this expression, q is the charge and Ex is the vector component of in the 
x -direction (not the magnitude of ). Unlike the magnitude of , the component
Ex can be positive or negative depending on the direction of , though in Figure
16.1 Ex is positive. Finally, note that the displacement, like q and Ex, can also be
either positive or negative, depending on the direction of the displacement.

The preceding expression for the work done by an electric field on a charge
moving in one dimension is valid for both positive and negative charges and for
constant electric fields pointing in any direction. When numbers are substituted
with correct signs, the overall correct sign automatically results. In some books the
expression W � qEd is used, instead, where E is the magnitude of the electric field
and d the distance the particle travels. The weakness of this formulation is that it
doesn’t allow, mathematically, for negative electric work on positive charges, nor
for positive electric work on negative charges! Nonetheless, the expression is easy
to remember and useful for finding magnitudes: the magnitude of the work done
by a constant electric field on a charge moving parallel to the field is always given
by �W � � �q �Ed.

We can substitute our definition of electric work into the work-energy theorem
(assume other forces are absent):

W � qEx�x � �KE

The electric force is conservative, so the electric work depends only on the end-points
of the path, A and B, not on the path taken. Therefore, as the charge accelerates to
the right in Figure 16.1, it gains kinetic energy, and loses an equal amount of poten-
tial energy. Recall from Chapter 5 that the work done by a conservative force can be
reinterpreted as the negative of the change in a potential energy associated with that
force. This motivates the definition of the change in electric potential energy:

The change in the electric potential energy, �PE, of a system consisting of an
object of charge q moving through a displacement �x in a constant electric
field is given by

�PE � � WAB � � qEx�x [16.1]

where Ex is the x -component of the electric field and �x � xf � xi is the dis-
placement of the charge along the x -axis.

SI Unit: joule ( J)

Although potential energy can be defined for any electric field, Equation 16.1 is
valid only for the case of a uniform (i.e., constant) electric field, for a particle that
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Figure 16.1 When a charge q
moves in a uniform electric field 
from point A to point B, the work
done on the charge by the electric
force is qEx�x.
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16.1 Potential Difference and Electric Potential 533

undergoes a displacement along a given axis (here called the x-axis). Because the
electric field is conservative, the change in potential energy doesn’t depend on
the path. Consequently, it’s unimportant whether or not the charge remains on
the axis at all times during the displacement: the change in potential energy will
be the same. In subsequent sections we will examine situations in which the elec-
tric field is not uniform.

Electric and gravitational potential energy can be compared in Figure 16.2. In
this figure, the electric and gravitational fields are both directed downwards. We
see that positive charge in an electric field acts very much like mass in a gravity
field: a positive charge at point A falls in the direction of the electric field, just as a
positive mass falls in the direction of the gravity field. Let point B be the zero point
for potential energy in both Figure 16.2a and Figure 16.2b. From conservation of
energy, in falling from point A to point B the positive charge gains kinetic energy
equal in magnitude to the loss of electric potential energy:

�KE � �PEel � �KE � (0 � �q �Ed) : �KE � �q �Ed

The absolute value signs on q are there only to make explicit that the charge is
positive in this case. Similarly, the object in Figure 16.2b gains kinetic energy equal
in magnitude to the loss of gravitational potential energy:

�KE � �PEg � �KE � (0 � mgd) : �KE � mgd

So for positive charges, electric potential energy works very much like gravitational
potential energy. In both cases, moving an object opposite the direction of the
field results in a gain of potential energy, and upon release, the potential energy is
converted to the object’s kinetic energy.

Electric potential energy differs significantly from gravitational potential
energy, however, in that there are two kinds of electrical charge—positive and
negative—whereas gravity has only positive “gravitational charge” (i.e. mass). A
negatively charged particle at rest at point A in Figure 16.2a would have to be
pushed down to point B. To see this, apply the work–energy theorem to a negative
charge at rest at point A and assumed to have some speed v on arriving at point B:

Notice that the negative charge, � �q �, unlike the positive charge, had a positive
change in electric potential energy in moving from point A to point B. If the
negative charge has any speed at point B, the kinetic energy corresponding to
that speed is also positive. Because both terms on the right-hand side of the
work–energy equation are positive, there is no way of getting the negative charge
from point A to point B without doing positive work W on it. In fact, if the neg-
ative charge is simply released at point A, it will “fall” upwards against the direction
of the field!

 W � 1
2mv2 � � q �Ed

 W � �KE � �PEel � (1
2mv2 � 0) � (0 � (�� q �Ed))

(b)

g

d

B

A

m
mg

d

B

A

q

E

(a)

qE

Figure 16.2 (a) When the electric
field is directed downward, point B
is at a lower electric potential than
point A. As a positive test charge
moves from A to B, the electric poten-
tial energy decreases.(b) An object of
mass m moves in the direction of the
gravitational field , the gravitational
potential energy decreases.

g:

E
:
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534 Chapter 16 Electrical Energy and Capacitance

If an electron is released from rest in a uniform electric field, the electric potential en-
ergy of the charge–field system (a) increases, (b) decreases, or (c) remains the same.

Quick Quiz 16.1

EXAMPLE 16.1 Potential Energy Differences in an Electric Field
Goal Illustrate the concept of electric potential energy.

Problem A proton is released from rest at x � � 2.00 cm in a constant electric field with magnitude 1.50 � 103 N/C,
pointing in the positive x-direction. (a) Calculate the change in the electric potential energy associated with the proton
when it reaches x � 5.00 cm. (b) An electron is now fired in the same direction from the same position. What is its
change in electric potential energy associated with the electron if it reaches x � 12.0 cm? (c) If the direction of the elec-
tric field is reversed and an electron is released from rest at x � 3.00 cm, by how much has the electric potential energy
changed when the electron reaches x � 7.00 cm?

Strategy This problem requires a straightforward substitution of given values into the definition of electric poten-
tial energy, Equation 16.1.

Solution
(a) Calculate the change in the electric potential energy
associated with the proton.

Apply Equation 16.1: �PE � � qEx�x � � qEx (xf � xi)

� � (1.60 � 10�19 C)(1.50 � 103 N/C)

x[0.050 0 m � (� 0.020 0 m)]

� �1.68 � 10�17 J

(b) Find the change in electric potential energy associ-
ated with an electron fired from x � � 0.0200 m and
reaching x � 0.120 m.

Apply Equation 16.1, but in this case note that the elec-
tric charge q is negative:

�PE � � qEx�x � � qEx (xf � xi)

� � (� 1.60 � 10�19 C)(1.50 � 103 N/C)

x[(0.120 m � (� 0.020 0 m)]

� � 3.36 � 10�17 J

(c) Find the change in potential energy associated with
an electron traveling from x � 3.00 cm to x � 7.00 cm if
the direction of the electric field is reversed.

Substitute, but now the electric field points in the
negative x-direction, hence carries a minus sign:

�PE � � qEx�x � � qEx (xf � xi)

� � (� 1.60 � 10�19 C)(� 1.50 � 103 N/C)

� (0.070 m � 0.030 m)

� � 9.60 � 10�18 J

Remarks Notice that the proton (actually the proton–field system) lost potential energy when it moved in the posi-
tive x-direction, while the electron gained potential energy when it moved in the same direction. Finding changes in
potential energy with the field reversed was just a matter of supplying a minus sign, bringing the total number in this
case to three! It’s important not to drop any of the signs.

Exercise 16.1
Find the change in electric potential energy associated with the electron in part (b) as it goes on from x � 0.120 m to 
x � � 0.180 m. (Note that the electron must turn around and go back at some point. The location of the turning point is
unimportant, because changes in potential energy depend only on the end points of the path.)

Answer � 7.20 � 10�17 J
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16.1 Potential Difference and Electric Potential 535

INTERACTIVE EXAMPLE 16.2 Dynamics of Charged Particles
Goal Use electric potential energy in conservation of energy problems.

Problem (a) Find the speed of the proton at x � 0.050 0 m in part (a) of Example 16.1. (b) Find the initial speed of
the electron (at x � � 2.00 cm) in part (b) of Example 16.1, given that its speed has fallen by half when it reaches 
x � 0.120 m.

Strategy Apply conservation of energy, solving for the unknown speeds. Part (b) involves two equations: the
conservation equation, and the condition for the unknown initial and final speeds. The changes in electric
potential energy have already been calculated in Example 16.1.

vf � 1
2vi

Solution
(a) Calculate the proton’s speed at x � 0.050 m.

Use conservation of energy, with an initial speed of zero: �KE � �PE � 0 : (1
2mv2 � 0) � �PE � 0

Solve for v, and substitute the change in potential
energy found in Example 16.1a:

v � 1.42 � 105 m/s

� √� 
2

(1.67 � 10� 27 kg)
(� 1.68 � 10�17 J)

v � √� 
2
m

 �PE

v2 � � 
2
m

 �PE

(b) Find the electron’s initial speed, given that its speed
has fallen by half at x � 0.120 m.

Apply conservation of energy once again, substituting
expressions for the initial and final kinetic energies:

�KE � �PE � 0

(1
2mv 2

f � 1
2mv 2

i ) � �PE � 0

Substitute the condition , and subtract the
change in potential energy from both sides:

vf � 1
2vi

1
2m(1

2vi)2 � 1
2mv 2

i � � �PE

Combine terms and solve for vi, the initial speed, and
substitute the change in potential energy found in
Example 16.1b:

� 9.92 � 106 m/s

vi � √ 8�PE
3m

� √ 8(3.36 � 10� 17 J)
3(9.11 � 10� 31 kg)

� 
3
8mv 2

i � � �PE

Remarks While the changes in potential energy associated with the proton and electron were similar in magnitude,
the effect on their speeds differed dramatically. The change in potential energy had a proportionately much greater
effect on the much lighter electron than on the proton.

Exercise 16.2
Refer to Exercise 16.1. Find the electron’s speed at x � � 0.180 m. The answer is 4.5% of the speed of light.

Answer 1.35 � 107 m/s

You can predict and observe the speed of the proton as it arrives at the negative plate, for random
values of the electric field, by logging into PhysicsNow at www.cp7e.com and going to Interactive Example 16.2.
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536 Chapter 16 Electrical Energy and Capacitance

Electric Potential
In Chapter 15, it was convenient to define an electric field related to the elec-
tric force . In this way, the properties of fixed collections of charges could be
easily studied, and the force on any particle in the electric field could be obtained
simply by multiplying by the particle’s charge q. For the same reasons, it’s useful to
define an electric potential difference �V related to the potential energy by �PE � q�V :

The electric potential difference �V between points A and B is the change in
electric potential energy as a charge q moves from A to B, divided by the
charge q :

[16.2]

SI Unit: joule per coulomb, or volt ( J/C, or V)

This definition is completely general, although in many cases calculus would be re-
quired to compute the change in potential energy of the system. Because electric
potential energy is a scalar quantity, electric potential is also a scalar quantity.
From Equation 16.2, we see that electric potential difference is a measure of the
change in electric potential energy per unit charge. Alternately, the electric poten-
tial difference is the work per unit charge that would have to be done by some
force to move a charge from point A to point B in the electric field. The SI unit of
electric potential is the joule per coulomb, called the volt (V). From the definition
of that unit, 1 J of work must be done to move a 1-C charge between two points
that are at a potential difference of 1 V. In the process of moving through a poten-
tial difference of 1 V, the 1-C charge gains 1 J of energy.

For the special case of a uniform electric field such as that between charged
parallel plates, dividing Equation 16.1 by q gives

Comparing this equation with Equation 16.2, we find that

[16.3]

Equation 16.3 shows that potential difference also has units of electric field times
distance. From this it follows that the SI unit of the electric field, the newton per
coulomb, can also be expressed as volts per meter:

1 N/C � 1 V/m

Because Equation 16.3 is directly related to Equation 16.1, remember that it’s valid
only for the system consisting of a uniform electric field and a charge moving in
one dimension.

Released from rest, positive charges accelerate spontaneously from regions of
high potential to low potential. If a positive charge is given some initial velocity in
the direction of high potential, it can move in that direction, but will slow and
finally turn around, just like a ball tossed upwards in a gravity field. Negative
charges do exactly the opposite: Released from rest, they accelerate from regions
of low potential toward regions of high potential. Work must be done on negative
charges to make them go in the direction of lower electric potential.

�V � � Ex�x

�PE
q

� � Ex�x

�V �  VB � VA �
�PE

q

F
:

� q E
:

E
:

Potential difference between 
two points �

Figure 16.3 is a graph of an electric potential as a function of position. If a posi-
tively charged particle is placed at point A, what will its subsequent motion be? It
will (a) go to the right (b) go to the left (c) remain at point A (d) oscillate around
point B.

Now, if a negatively charged particle is placed at point B and given a very small
kick to the right, what will its subsequent motion be? It will (a) go to the right, and
not return (b) go to the left (c) remain at point B (d) oscillate around point B.

Quick Quiz 16.2

TIP 16.1 Potential and
Potential Energy
Electric potential is characteristic of
the field only, independent of a test
charge that may be placed in that
field. On the other hand, potential
energy is a characteristic of the
charge–field system due to an inter-
action between the field and a charge
placed in the field.
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16.1 Potential Difference and Electric Potential 537

An application of potential difference is the 12-V battery found in an automo-
bile. Such a battery maintains a potential difference across its terminals, with the
positive terminal 12 V higher in potential than the negative terminal. In practice,
the negative terminal is usually connected to the metal body of the car, which can
be considered to be at a potential of zero volts. The battery provides the electrical
current necessary to operate headlights, a radio, power windows, motors, and so
forth. Now consider a charge of � 1 C, to be moved around a circuit that contains
the battery connected to some of these external devices. As the charge is moved
inside the battery from the negative terminal (at 0 V) to the positive terminal (at
12 V), the work done on the charge by the battery is 12 J. Every coulomb of posi-
tive charge that leaves the positive terminal of the battery carries an energy of 12 J.
As the charge moves through the external circuit toward the negative terminal, it
gives up its 12 J of electrical energy to the external devices. When the charge
reaches the negative terminal, its electrical energy is zero again. At this point, the
battery takes over and restores 12 J of energy to the charge as it is moved from the
negative to the positive terminal, enabling it to make another transit of the circuit.
The actual amount of charge that leaves the battery each second and traverses
the circuit depends on the properties of the external devices, as seen in the next
chapter.

A P P L I C AT I O N
Automobile Batteries

x
A B

V Figure 16.3 (Quick Quiz 16.2)

EXAMPLE 16.3 TV Tubes and Atom Smashers
Goal Relate electric potential to an electric field and conservation of
energy.

Problem In atom smashers (also known as cyclotrons and linear acceler-
ators), charged particles are accelerated in much the same way they are
accelerated in TV tubes: through potential differences. Suppose a proton
is injected at a speed of 1.00 � 106 m/s between two plates 5.00 cm apart,
as shown in Figure 16.4. The proton subsequently accelerates across the
gap and exits through the opening. (a) What must the electric potential
difference be if the exit speed is to be 3.00 � 106 m/s? (b) What is the
magnitude of the electric field between the plates?

Strategy Use conservation of energy, writing the change in potential
energy in terms of the change in electric potential, �V, and solve for �V.
For part (b), solve Equation 16.3 for the electric field.

Solution
(a) Find the electric potential yielding the desired exit
speed of the proton.

Apply conservation of energy, writing the potential
energy in terms of the electric potential:

�KE � �PE � �KE � q�V � 0

E

+

High potential

Low potential
5.00 cm

E

v
+

+

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

v

Figure 16.4 (Example 16.3) A proton enters a
cavity and accelerates from one charged plate to-
ward the other in an electric field .E

:
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538 Chapter 16 Electrical Energy and Capacitance

16.2 ELECTRIC POTENTIAL AND POTENTIAL 
ENERGY DUE TO POINT CHARGES

In electric circuits, a point of zero electric potential is often defined by ground-
ing (connecting to Earth) some point in the circuit. For example, if the negative
terminal of a 12-V battery were connected to ground, it would be considered to
have a potential of zero, while the positive terminal would have a potential of
� 12 V. The potential difference created by the battery, however, is only locally
defined. In this section we describe the electric potential of a point charge,
which is defined throughout space.

The electric field of a point charge extends throughout space, so its electric
potential does, also. The zero point of electric potential could be taken anywhere,
but is usually taken to be an infinite distance from the charge, far from its influ-
ence and the influence of any other charges. With this choice, the methods of
calculus can be used to show that the electric potential created by a point charge q
at any distance r from the charge is given by

[16.4]

Equation 16.4 shows that the electric potential, or work per unit charge, required
to move a test charge in from infinity to a distance r from a positive point charge q
increases as the positive test charge moves closer to q. A plot of Equation 16.4 in
Figure 16.5 shows that the potential associated with a point charge decreases as
1/r with increasing r, in contrast to the magnitude of the charge’s electric field,
which decreases as 1/r 2.

V � ke  
q
r

Remarks Systems of such cavities, consisting of alternating positive and negative plates, are used to accelerate
charged particles to high speed before smashing them into targets. To prevent a slowing of, say, a positively-charged
particle after it passes through the negative plate of one cavity and enters the next, the charges on the plates are re-
versed. Otherwise, the particle would be traveling from the negative plate to a positive plate in the second cavity,
and the kinetic energy gained in the previous cavity would be lost in the second.

Exercise 16.3
Suppose electrons in a TV tube are accelerated through a potential difference of 2.00 � 104 V from the heated
cathode(negative electrode), where they are produced, towards the screen, which also serves as the anode (positive
electrode), 25.0 cm away. (a) At what speed would the electrons impact the phosphors on the screen? Assume they
accelerate from rest, and ignore relativistic effects (Chapter 26). (b) What’s the magnitude of the electric field, if it is
assumed constant?

Answers (a) 8.38 � 107 m/s (b) 8.00 � 104 V/m

Solve the energy equation for the change in potential: �V � � 
�KE

q
� � 

1
2mv 2

f � 1
2mv 2

i

q
� � 

m

2q
(v 2

f � v 2
i )

Substitute the given values, obtaining the necessary
potential difference:

�V � � 4.18 � 104 V

� (1.00 � 106 m/s)2]

�V � �
(1.67 � 10�27 kg)
2(1.60 � 10�19 C)

 [(3.00 � 106 m/s)2

(b) What electric field must exist between the plates?

Solve Equation 16.3 for the electric field, and substitute: 8.36 � 105 N/CE � � 
�V
�x

�
4.18 � 104 V

0.0500 m
�

Electric potential created 
by a point charge �
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16.2 Electric Potential and Potential Energy Due to Point Charges 539

The electric potential of two or more charges is obtained by applying the super-
position principle: the total electric potential at some point P due to several point
charges is the algebraic sum of the electric potentials due to the individual charges.
This is similar to the method used in Chapter 15 to find the resultant electric field
at a point in space. Unlike electric field superposition, which involves a sum of vec-
tors, the superposition of electric potentials requires evaluating a sum of scalars. As
a result, it’s much easier to evaluate the electric potential at some point due to sev-
eral charges than to evaluate the electric field, which is a vector quantity.

Figure 16.6 is a computer-generated plot of the electric potential associated with
an electric dipole, which consists of two charges of equal magnitude but opposite in
sign. The charges lie in a horizontal plane at the center of the potential spikes. The
value of the potential is plotted in the vertical dimension. The computer program
has added the potential of each charge to arrive at total values of the potential.

Just as in the case of constant electric fields, there is a relationship between
electric potential and electric potential energy. If V1 is the electric potential due to
charge q1 at a point P (Active Figure 16.7a, page 540), then the work required to
bring charge q2 from infinity to P without acceleration is q2V1. By definition, this
work equals the potential energy PE of the two-particle system when the particles
are separated by a distance r (Active Fig. 16.7b).

We can therefore express the electrical potential energy of the pair of charges as

[16.5]

If the charges are of the same sign, PE is positive. This is consistent with the fact
that like charges repel, so positive work must be done on the system by an external
agent to force the two charges near one another. Conversely, if the charges are of

PE � q2V1 � ke  
q1q2

r

r(m)
5.004.003.002.001.00

1.00

0.800

0.600

0.400

0.200

V =
keq
r

keq
r2E =

V in volts
E in volts/m

0.0 6.00

Figure 16.5 Electric field and electric
potential versus distance from a point
charge of 1.11 � 10�10 C. Note that V is
proportional to 1/r, while E proportional
to 1/r 2.
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Figure 16.6 The electric potential
(in arbitrary units) in the plane con-
taining an electric dipole. Potential is
plotted in the vertical dimension.

� Potential energy of a pair of
charges

� Superposition principle
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540 Chapter 16 Electrical Energy and Capacitance

opposite sign, the force is attractive and PE is negative. This means that negative
work must be done to prevent unlike charges from accelerating toward each other
as they are brought close together.

(a)

q1

P keq1
r

r

V1 = 

(b)

q1

q

keq1q2
r

2r

PE = 

ACTIVE FIGURE 16.7
(a) The electric potential V1 at P due
to the point charge q1 is V1 � keq1/r.
(b) If a second charge, q2, is brought
from infinity to P, the potential
energy of the pair is PE � keq1q2/r.

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 16.7, where you can move one
of the charges and see the effect on
the electric potential energy, or move
a point P to see the effect on the
electric potential at P.

Consider a collection of charges in a given region, and suppose all other charges
are distant and have a negligible effect. Further, the electric potential is taken to be
zero at infinity. If the electric potential at a given point in the region is zero, which
of the following statements must be true? (a) The electric field is zero at that point.
(b) The electric potential energy is a minimum at that point. (c) There is no net
charge in the region. (d) Some charges in the region are positive and some are
negative. (e) The charges have the same sign and are symmetrically arranged
around the given point.

Quick Quiz 16.3

A spherical balloon contains a positively charged particle at its center. As the
balloon is inflated to a larger volume while the charged particle remains at the
center, which of the following are true? (a) The electric potential at the surface of
the balloon increases. (b) The magnitude of the electric field at the surface of the
balloon increases. (c) The electric flux through the balloon remains the same.
(d) none of these.

Quick Quiz 16.4

Problem-Solving Strategy Electric Potential
1. Draw a diagram of all charges, and circle the point of interest.
2. Calculate the distance from each charge to the point of interest, labeling it on the

diagram.
3. For each charge q, calculate the scalar quantity . The sign of each charge

must be included in your calculations!
4. Sum all the numbers found in the previous step, obtaining the electric potential at

the point of interest.

V �
keq
r

EXAMPLE 16.4 Finding the Electric Potential
Goal Calculate the electric potential due to a collection of point charges.

Problem A 5.00-�C point charge is at the origin, and a point charge q2 � � 2.00 �C is on the x-axis at (3.00, 0) m,
as in Figure 16.8. (a) If the electric potential is taken to be zero at infinity, find the total electric potential due
to these charges at point P with coordinates
(0, 4.00) m. (b) How much work is required to
bring a third point charge of 4.00 �C from infin-
ity to P ?

Strategy (a) The electric potential at P due to
each charge can be calculated from V � keq/r.
The total electric potential at P is the sum of these
two numbers. (b) Use the work–energy theorem,
together with Equation 16.5, recalling that the po-
tential at infinity is taken to be zero.

q1 q2

r2r1

x(m)

y(m)

0
(3.00, 0)

P(0, 4.00)

� �

Figure 16.8 (Example 16.4) The
electric potential at point P due to
the point charges q1 and q2 is the
algebraic sum of the potentials due to
the individual charges.

Solution
(a) Find the electric potential at point P.

Calculate the electric potential at P due to the 5.00-�C
charge:

 � 1.12 � 104 V

 V1 � ke  
q1

r1
� �8.99 � 109 

N�m2

C2 �� 5.00 � 10�6 C 
4.00 m �
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16.3 POTENTIALS AND CHARGED CONDUCTORS
The electric potential at all points on a charged conductor can be determined by
combining Equations 16.1 and 16.2. From Equation 16.1, we see that the work
done on a charge by electric forces is related to the change in electrical potential
energy of the charge by

W � � �PE

From Equation 16.2, we see that the change in electric potential energy between
two points A and B is related to the potential difference between those points by

�PE � q(VB � VA)

Combining these two equations, we find that

[16.6]

Using this equation, we obtain the following general result: No net work is re-
quired to move a charge between two points that are at the same electric potential.
In mathematical terms, this says that W � 0 whenever VB � VA.

In Chapter 15 we found that when a conductor is in electrostatic equilibrium, a
net charge placed on it resides entirely on its surface. Further, we showed that the
electric field just outside the surface of a charged conductor in electrostatic equi-
librium is perpendicular to the surface and that the field inside the conductor is
zero. We now show that all points on the surface of a charged conductor in electro-
static equilibrium are at the same potential.

Consider a surface path connecting any points A and B on a charged conduc-
tor, as in Figure 16.9. The charges on the conductor are assumed to be in equilib-
rium with each other, so none are moving. In this case, the electric field is always
perpendicular to the displacement along this path. This must be so, for otherwise
the part of the electric field tangent to the surface would move the charges. Be-
cause is perpendicular to the path, no work is done by the electric field if a
charge is moved between the given two points. From Equation 16.6 we see that if
the work done is zero, the difference in electric potential, VB � VA, is also zero. It

E
:

E
:

W � � q(VB � VA)

Exercise 16.4
Suppose a charge of � 2.00 �C is at the origin and a charge of 3.00 �C is at the point (0, 3.00) m. (a) Find the
electric potential at (4.00, 0) m, assuming the electric potential is zero at infinity, and (b) find the work necessary
to bring a 4.00 �C charge from infinity to the point (4.00, 0) m.

Answers (a) 8.99 � 102 V (b) 3.60 � 10�3 J

Find the electric potential at P due to the � 2.00-�C
charge:

 � � 0.360 � 104 V

 V2 � ke  
q2

r2
� �8.99 � 109 

N�m2

C2 �� � 2.00 � 10�6 C 
5.00 m �

Sum the two numbers to find the total electric potential
at P :

VP � V1 � V2 � 1.12 � 104 V � (� 0.360 � 104 V)

� 7.60 � 103 V

(b) Find the work needed to bring the 4.00-�C charge
from infinity to P.

Apply the work–energy theorem, with Equation 16.5: W � �PE � q3�V � q3(VP � V�)

� (4.00 � 10�6 C)(7.60 � 103 V � 0)

W � 3.04 � 10�2 J

Figure 16.9 An arbitrarily shaped
conductor with an excess positive
charge. When the conductor is in
electrostatic equilibrium, all of the
charge resides at the surface, 
inside the conductor, and the electric
field just outside the conductor is
perpendicular to the surface. The
potential is constant inside the
conductor and is equal to the poten-
tial at the surface.

E
:

� 0

+
B

A
E

+
+

+

+++

+
+
+
+

+
+

+
+

+
+
+++ + +++

+
+

+
+
+

44920_16_p531-567  12/27/04  7:46 AM  Page 541



542 Chapter 16 Electrical Energy and Capacitance

follows that the electric potential is a constant everywhere on the surface of a
charged conductor in equilibrium. Further, because the electric field inside a con-
ductor is zero, no work is required to move a charge between two points inside the
conductor. Again, Equation 16.6 shows that if the work done is zero, the difference
in electric potential between any two points inside a conductor must also be zero.
We conclude that the electric potential is constant everywhere inside a conductor.

Finally, because one of the points inside the conductor could be arbitrarily close
to the surface of the conductor, we conclude that the electric potential is constant
everywhere inside a conductor and equal to that same value at the surface. As a
consequence, no work is required to move a charge from the interior of a charged
conductor to its surface. (It’s important to realize that the potential inside a con-
ductor is not necessarily zero, even though the interior electric field is zero.)

The Electron Volt
An appropriately-sized unit of energy commonly used in atomic and nuclear
physics is the electron volt (eV). For example, electrons in normal atoms typically
have energies of tens of eV’s, excited electrons in atoms emitting x-rays have ener-
gies of thousands of eV’s, and high energy gamma rays (electromagnetic waves)
emitted by the nucleus have energies of millions of eV’s.

The electron volt is defined as the kinetic energy that an electron gains when
accelerated through a potential difference of 1 V.

Because 1 V � 1 J/C and because the magnitude of the charge on the electron is
1.60 � 10�19 C, we see that the electron volt is related to the joule by

1 eV � 1.60 � 10�19 C � V � 1.60 � 10�19 J [16.7]

Definition of the electron volt �

An electron initially at rest accelerates through a potential difference of 1 V, gain-
ing kinetic energy KEe, while a proton, also initially at rest, accelerates through a
potential difference of �1 V, gaining kinetic energy KEp . Which of the following
relationships holds? (a) KEe � KEp (b) KEe 	 KEp. (c) KEe 
 KEp (d) cannot be
determined from the given information.

Quick Quiz 16.5

16.4 EQUIPOTENTIAL SURFACES
A surface on which all points are at the same potential is called an equipotential
surface. The potential difference between any two points on an equipotential sur-
face is zero. Hence, no work is required to move a charge at constant speed on an
equipotential surface.

Equipotential surfaces have a simple relationship to the electric field: The elec-
tric field at every point of an equipotential surface is perpendicular to the surface.
If the electric field had a component parallel to the surface, that component
would produce an electric force on a charge placed on the surface. This force
would do work on the charge as it moved from one point to another, in contradic-
tion to the definition of an equipotential surface.

Equipotential surfaces can be represented on a diagram by drawing equipoten-
tial contours, which are two-dimensional views of the intersections of the equipo-
tential surfaces with the plane of the drawing. These equipotential contours are
generally referred to simply as equipotentials. Figure 16.10a shows the equipoten-
tials (in blue) associated with a positive point charge. Note that the equipotentials
are perpendicular to the electric field lines (in red) at all points. Recall that the
electric potential created by a point charge q is given by V � keq/r. This relation
shows that, for a single point charge, the potential is constant on any surface on
which r is constant. It follows that the equipotentials of a point charge are a family

E
:
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16.5 Applications 543

of spheres centered on the point charge. Figure 16.10b shows the equipotentials
associated with two charges of equal magnitude but opposite sign.

16.5 APPLICATIONS
The Electrostatic Precipitator
One important application of electric discharge in gases is a device called an elec-
trostatic precipitator. This device removes particulate matter from combustion gases,
thereby reducing air pollution. It’s especially useful in coal-burning power plants
and in industrial operations that generate large quantities of smoke. Systems cur-
rently in use can eliminate approximately 90% by mass of the ash and dust from
the smoke. Unfortunately, a very high percentage of the lighter particles still es-
cape, and these contribute significantly to smog and haze.

Figure 16.11 illustrates the basic idea of the electrostatic precipitator. A high
voltage (typically 40 kV to 100 kV) is maintained between a wire running down the
center of a duct and the outer wall, which is grounded. The wire is maintained at a
negative electric potential with respect to the wall, so the electric field is directed
toward the wire. The electric field near the wire reaches a high enough value to
cause a discharge around the wire and the formation of positive ions, electrons,
and negative ions, such as O2

�. As the electrons and negative ions are accelerated

(a)

q

(b)

Electric field line

Equipotential

+

Figure 16.10 Equipotentials
(dashed blue lines) and electric field
lines (red lines) for (a) a positive
point charge and (b) two point
charges of equal magnitude and
opposite sign. In all cases, the
equipotentials are perpendicular to the
electric field lines at every point.

A P P L I C AT I O N
The Electrostatic Precipitator

(a)

Insulator

Clean air
out

Weight
Dirty
air in

Dirt out

(b) (c)

Figure 16.11 (a) A schematic diagram of an electrostatic precipitator. The high voltage maintained
on the central wires creates an electric discharge in the vicinity of the wire. Compare the air pollution
when the precipitator is (b) operating, and (c) turned off.
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544 Chapter 16 Electrical Energy and Capacitance

toward the outer wall by the nonuniform electric field, the dirt particles in the
streaming gas become charged by collisions and ion capture. Because most of
the charged dirt particles are negative, they are also drawn to the outer wall by the
electric field. When the duct is shaken, the particles fall loose and are collected at
the bottom.

In addition to reducing the amounts of harmful gases and particulate matter in
the atmosphere, the electrostatic precipitator recovers valuable metal oxides from
the stack.

A similar device called an electrostatic air cleaner is used in homes to relieve the
discomfort of allergy sufferers. Air laden with dust and pollen is drawn into the
device across a positively charged mesh screen. The airborne particles become
positively charged when they make contact with the screen, and then pass through
a second, negatively charged mesh screen. The electrostatic force of attraction be-
tween the positively charged particles in the air and the negatively charged screen
causes the particles to precipitate out on the surface of the screen, removing a very
high percentage of contaminants from the air stream.

Xerography and Laser Printers
Xerography is widely used to make photocopies of printed materials. The basic
idea behind the process was developed by Chester Carlson, who was granted a
patent for his invention in 1940. In 1947 the Xerox Corporation launched a full-
scale program to develop automated duplicating machines using Carlson’s
process. The huge success of that development is evident: today, practically all of-
fices and libraries have one or more duplicating machines, and the capabilities of
these machines continue to evolve.

Some features of the xerographic process involve simple concepts from electro-
statics and optics. However, the one idea that makes the process unique is the use
of photoconductive material to form an image. A photoconductor is a material
that is a poor conductor of electricity in the dark, but a reasonably good conduc-
tor when exposed to light.

Figure 16.12 illustrates the steps in the xerographic process. First, the surface of
a plate or drum is coated with a thin film of the photoconductive material (usually
selenium or some compound of selenium), and the photoconductive surface is
given a positive electrostatic charge in the dark (Fig. 16.12a). The page to be
copied is then projected onto the charged surface (Fig. 16.12b). The photocon-
ducting surface becomes conducting only in areas where light strikes; there the
light produces charge carriers in the photoconductor which neutralize the posi-
tively charged surface. The charges remain on those areas of the photoconductor
not exposed to light, however, leaving a hidden image of the object in the form of
a positive distribution of surface charge.

Next, a negatively charged powder called a toner is dusted onto the photocon-
ducting surface (Fig. 16.12c). The charged powder adheres only to the areas that
contain the positively charged image. At this point, the image becomes visible. It is
then transferred to the surface of a sheet of positively charged paper. Finally, the
toner is “fixed” to the surface of the paper by heat (Fig. 16.12d), resulting in a per-
manent copy of the original.

The steps for producing a document on a laser printer are similar to those used
in a photocopy machine, in that parts (a), (c), and (d) of Figure 16.12 remain es-
sentially the same. The difference between the two techniques lies in the way the
image is formed on the selenium-coated drum. In a laser printer, the command to
print the letter O, for instance, is sent to a laser from the memory of a computer. A
rotating mirror inside the printer causes the beam of the laser to sweep across the
selenium-coated drum in an interlaced pattern (Fig. 16.12e). Electrical signals
generated by the printer turn the laser beam on and off in a pattern that traces
out the letter “O” in the form of positive charges on the selenium. Toner is then
applied to the drum, and the transfer to paper is accomplished as in a photocopy
machine.

A P P L I C AT I O N
The Electrostatic Air Cleaner

A P P L I C AT I O N
Xerographic Copiers

A P P L I C AT I O N
Laser Printers
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16.6 Capacitance 545

16.6 CAPACITANCE
A capacitor is a device used in a variety of electric circuits—for example, to tune
the frequency of radio receivers, eliminate sparking in automobile ignition
systems, or store short-term energy for rapid release in electronic flash units.
Figure 16.13 shows a typical design for a capacitor. It consists of two parallel metal
plates separated by a distance d. Used in an electric circuit, the plates are con-
nected to the positive and negative terminals of a battery or some other voltage
source. When this connection is made, electrons are pulled off one of the plates,
leaving it with a charge of � Q , and are transferred through the battery to the
other plate, leaving it with a charge of � Q , as shown in the figure. The transfer of
charge stops when the potential difference across the plates equals the potential
difference of the battery. A charged capacitor is a device that stores energy that
can be reclaimed when needed for a specific application.

The capacitance C of a capacitor is the ratio of the magnitude of the charge
on either conductor (plate) to the magnitude of the potential difference
between the conductors (plates):

[16.8]

SI Unit: farad (F) � coulomb per volt (C/V )

The quantities Q and �V are always taken to be positive when used in Equation
16.8. For example, if a 3.0-�F capacitor is connected to a 12-V battery, the magni-
tude of the charge on each plate of the capacitor is

Q � C�V � (3.0 � 10�6 F)(12 V) � 36 �C

From Equation 16.8, we see that a large capacitance is needed to store a large
amount of charge for a given applied voltage. The farad is a very large unit of ca-
pacitance. In practice, most typical capacitors have capacitances ranging from mi-
crofarads (1 �F � 1 � 10�6 F) to picofarads (1 pF � 1 � 10�12 F).

C � 
Q

�V

Figure 16.12 The xerographic
process. (a) The photoconductive sur-
face is positively charged. (b) Through
the use of a light source and a lens, a
hidden image is formed on the
charged surface in the form of positive
charges. (c) The surface containing
the image is covered with a negatively
charged powder, which adheres only
to the image area. (d) A piece of pa-
per is placed over the surface and
given a charge. This transfers the
image to the paper, which is then
heated to “fix” the powder to the
paper. (e) The image on the drum of
a laser printer is produced by turning
a laser beam on and off as it sweeps
across the selenium-coated drum.

Selenium-coated
drum

Lens

(a) Charging the drum (b) Imaging the document

(d) Transferring the
       toner to the paper

Laser
beam

Interlaced pattern
of laser lines

(e) Laser printer drum

Negatively
charged

toner
(c) Applying the toner

d

–Q
+Q

Area = A

+ –

Figure 16.13 A parallel-plate
capacitor consists of two parallel
plates, each of area A, separated by a
distance d. The plates carry equal and
opposite charges.

� Capacitance of a pair of conductors

TIP 16.2 Potential Difference
Is �V, Not V
Use the symbol �V for the potential
difference across a circuit element or
a device (many other books use sim-
ply V for potential difference.) The
dual use of V to represent potential in
one place and a potential difference
in another can lead to unnecessary
confusion.
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546 Chapter 16 Electrical Energy and Capacitance

16.7 THE PARALLEL-PLATE CAPACITOR
The capacitance of a device depends on the geometric arrangement of the
conductors. The capacitance of a parallel-plate capacitor with plates separated by
air (see Fig. 16.13) can be easily calculated from three facts. First, recall from
Chapter 15 that the magnitude of the electric field between two plates is given by
E � �/�0, where � is the magnitude of the charge per unit area on each plate. Sec-
ond, we found earlier in this chapter that the potential difference between two
plates is �V � Ed, where d is the distance between the plates. Third, the charge on
one plate is given by q � �A, where A is the area of the plate. Substituting these
three facts into the definition of capacitance gives the desired result:

Canceling the charge per unit area, �, yields

[16.9]

where A is the area of one of the plates, d is the distance between the plates, and 
�0 is the permittivity of free space.

From Equation 16.9, we see that plates with larger area can store more charge.
The same is true for a small plate separation d, because then the positive charges
on one plate exert a stronger force on the negative charges on the other plate, al-
lowing more charge to be held on the plates.

Figure 16.14 shows the electric field lines of a more realistic parallel-plate
capacitor. The electric field is very nearly constant in the center between the
plates, but becomes less so when approaching the edges. For most purposes, how-
ever, the field may be taken as constant throughout the region between the plates.

One practical device that uses a capacitor is the flash attachment on a camera.
A battery is used to charge the capacitor, and the stored charge is then released
when the shutter-release button is pressed to take a picture. The stored charge is
delivered to a flash tube very quickly, illuminating the subject at the instant more
light is needed.

Computers make use of capacitors in many ways. For example, one type of com-
puter keyboard has capacitors at the bases of its keys, as in Figure 16.15. Each key
is connected to a movable plate, which represents one side of the capacitor; the
fixed plate on the bottom of the keyboard represents the other side of the capaci-
tor. When a key is pressed, the capacitor spacing decreases, causing an increase in
capacitance. External electronic circuits recognize each key by the change in its
capacitance when it is pressed.

C � �0 
A
d

C �
q

�V
�

�A
Ed

�
�A

(�/�0)d

Capacitance of a parallel-plate
capacitor �

A P P L I C AT I O N
Camera Flash Attachments

+Q

–Q

(a) (b)

Figure 16.14 (a) The electric field between the plates of a parallel-plate capacitor is uniform near
the center, but nonuniform near the edges. (b) Electric field pattern of two oppositely charged
conducting parallel plates. Small pieces of thread on an oil surface align with the electric field.
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A P P L I C AT I O N
Computer Keyboards
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16.7 The Parallel-Plate Capacitor 547

Capacitors are useful for storing a large amount of charge that needs to be de-
livered quickly. A good example on the forefront of fusion research is electrostatic
confinement. In this role, capacitors discharge their electrons through a grid. The
negatively charged electrons in the grid draw positively charged particles to them
and therefore to each other, causing some particles to fuse and release energy in
the process.

EXAMPLE 16.5 A Parallel-Plate Capacitor
Goal Calculate fundamental physical properties of a parallel-plate capacitor.

Problem A parallel-plate capacitor has an area A � 2.00 � 10�4 m2 and a plate separation d � 1.00 � 10�3 m.
(a) Find its capacitance. (b) How much charge is on the positive plate if the capacitor is connected to a 3.00-V bat-
tery? (c) Calculate the charge density on the positive plate, assuming the density is uniform, and (d) the magnitude
of the electric field between the plates.

Strategy Parts (a) and (b) can be solved by substituting into the basic equations for capacitance. In part (c), use
the fact that the voltage difference equals the electric field times the distance.

Key

Movable plate

Dielectric

Fixed plate

B Figure 16.15 When the key of one type of keyboard is
pressed, the capacitance of a parallel-plate capacitor in-
creases as the plate spacing decreases. The substance
labeled “dielectric” is an insulating material, as described
in Section 16.10.

A P P L I C AT I O N
Electrostatic Confinement

Solution
(a) Find the capacitance.

Substitute into Equation 16.9:

C � 1.77 � 10�12 F � 1.77 pF

� 2.00 � 10�4 m2

1.00 � 10�3 m �C � �0 
A
d

� (8.85 � 10�12 C2/N�m2)

(b) Find the charge on the positive plate after the capac-
itor is connected to a 3.00-V battery.

Substitute into Equation 16.8:

� 5.31 � 10�12 C

 C �
Q
�V

 : Q � C�V � (1.77 � 10�12 F)(3.00 V)

(c) Calculate the charge density on the positive plate.

Charge density is charge divided by area: 2.66 � 10�8 C/m2� �
Q
A

�
5.31 � 10�12 C
2.00 � 10�4 m2 �

(d) Calculate the magnitude of the electric field
between the plates.

Apply Equation 15.13: 3.01 � 103 N/CE �
�

�0
�

2.66 � 10�8 C/m2

8.85 � 10�12 C2/N�m2 �

Remarks The answer to part (d) could also have been obtained from the electric potential, which is �V � Ed for a
parallel-plate capacitor.

44920_16_p531-567  12/27/04  7:46 AM  Page 547



548 Chapter 16 Electrical Energy and Capacitance

Symbols for Circuit Elements and Circuits
The symbol that is commonly used to represent a capacitor in a circuit is,

or sometimes . Don’t confuse either of these symbols with

the circuit symbol, which is used to designate a battery (or any other

source of direct current). The positive terminal of the battery is at the higher po-
tential and is represented by the longer vertical line in the battery symbol. In the
next chapter we discuss another circuit element, called a resistor, represented by
the symbol . When wires in a circuit don’t have appreciable resistance
compared with the resistance of other elements in the circuit, the wires are repre-
sented by straight lines.

It’s important to realize that a circuit is a collection of real objects, usually con-
taining a source of electrical energy (such as a battery) connected to elements that
convert electrical energy to other forms (light, heat, sound) or store the energy in
electric or magnetic fields for later retrieval. A real circuit and its schematic dia-
gram are sketched side by side in Figure 16.16. The circuit symbol for a lightbulb 
shown in Figure 16.16b is .

If you are not familiar with circuit diagrams, trace the path of the real circuit
with your finger to see that it is equivalent to the geometrically regular schematic
diagram.

16.8 COMBINATIONS OF CAPACITORS
Two or more capacitors can be combined in circuits in several ways, but most
reduce to two simple configurations, called parallel and series. The idea, then, is
to find the single equivalent capacitance due to a combination of several differ-
ent capacitors that are in parallel or in series with each other. Capacitors are
manufactured with a number of different standard capacitances, and by com-
bining them in different ways, any desired value of the capacitance can be ob-
tained.

Capacitors in Parallel
Two capacitors connected as shown in Active Figure 16.17a are said to be in paral-
lel. The left plate of each capacitor is connected to the positive terminal of the
battery by a conducting wire, so the left plates are at the same potential. In the
same way, the right plates, both connected to the negative terminal of the battery,
are also at the same potential. This means that capacitors in parallel both have the
same potential difference �V across them. Capacitors in parallel are illustrated in
Active Figure 16.17b.

When the capacitors are first connected in the circuit, electrons are trans-
ferred from the left plates through the battery to the right plates, leaving the left
plates positively charged and the right plates negatively charged. The energy
source for this transfer of charge is the internal chemical energy stored in the

–+

Exercise 16.5
Two plates, each of area 3.00 � 10�4 m2, are used to construct a parallel-plate capacitor with capacitance 1.00 pF.
(a) Find the necessary separation distance. (b) If the positive plate is to hold a charge of 5.00 � 10�12 C, find the
charge density. (c) Find the electric field between the plates. (d) What voltage battery should be attached to the plate
to obtain the preceding results?

Answers (a) 2.66 � 10�3 m (b) 1.67 � 10�8 C/m2 (c) 1.89 � 103 N/C (d) 5.00 V

(a)

+ –12 V

Resistor

Figure 16.16 (a) A real circuit and
(b) its equivalent circuit diagram.

(b)

–+
12 V
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16.8 Combinations of Capacitors 549

battery, which is converted to electrical energy. The flow of charge stops when
the voltage across the capacitors equals the voltage of the battery, at which time
the capacitors have their maximum charges. If the maximum charges on the two
capacitors are Q 1 and Q 2, respectively, then the total charge, Q , stored by the two
capacitors is

Q � Q 1 � Q 2 [16.10]

We can replace these two capacitors with one equivalent capacitor having a
capacitance of C eq. This equivalent capacitor must have exactly the same external
effect on the circuit as the original two, so it must store Q units of charge and have
the same potential difference across it. The respective charges on each capacitor
are

Q 1 � C1�V and Q 2 � C 2�V

The charge on the equivalent capacitor is

Q � C eq�V

Substituting these relationships into Equation 16.10 gives

C eq�V � C1�V � C 2�V

or

[16.11]

If we extend this treatment to three or more capacitors connected in parallel,
the equivalent capacitance is found to be

[16.12]

We see that the equivalent capacitance of a parallel combination of capacitors is
greater than any of the individual capacitances.

�parallel
combination�C eq � C 1 � C 2 � C 3 � � � �

�parallel
combination�C eq � C 1 � C 2

(a)

+ –

C2

+ –

C1

+ –

(b)

�V

+ –

Q2

C2

Q1

C1

�V1 = �V2 = �V

�V

+ –

Ceq = C1 + C2

(c)

�V

ACTIVE FIGURE 16.17
(a) A parallel connection of two
capacitors. (b) The circuit diagram
for the parallel combination. (c) The
potential differences across the capac-
itors are the same, and the equivalent
capacitance is Ceq � C1 � C2.

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 16.17, where you can adjust
the battery voltage and the individual
capacitances to see the resulting
charges and voltages on the
capacitors. You can combine up to
four capacitors in parallel.

TIP 16.3 Voltage is the Same
as Potential Difference
A voltage across a device, such as a
capacitor, has the same meaning as
the potential difference across the
device. For example, if we say that the
voltage across a capacitor is 12 V, we
mean that the potential difference
between its plates is 12 V.
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550 Chapter 16 Electrical Energy and Capacitance

Capacitors in Series
Now consider two capacitors connected in series, as illustrated in Active Figure
16.19a. For a series combination of capacitors, the magnitude of the charge must
be the same on all the plates. To understand this principle, consider the charge
transfer process in some detail. When a battery is connected to the circuit, electrons
with total charge �Q are transferred from the left plate of C1 to the right plate of C2
through the battery, leaving the left plate of C1 with a charge of �Q. As a conse-
quence, the magnitudes of the charges on the left plate of C1 and the right plate of
C2 must be the same. Now consider the right plate of C1 and the left plate of C2, in
the middle. These plates are not connected to the battery (because of the gap across
the plates) and, taken together, are electrically neutral. The charge of �Q on the
left plate of C1, however, attracts negative charges to the right plate of C1. These
charges will continue to accumulate until the left and right plates of C1, taken
together, become electrically neutral, which means the charge on the right plate of
C1 is �Q. This negative charge could only have come from the left plate of C2, so C2
has a charge of �Q.

EXAMPLE 16.6 Four Capacitors Connected in Parallel
Goal Analyze a circuit with several capaci-
tors in parallel.

Problem (a) Determine the capacitance
of the single capacitor that is equivalent to
the parallel combination of capacitors
shown in Figure 16.18, and (b) find the
charge on the 12.0-�F capacitor.

Strategy (a) Add the individual capaci-
tances. (b) Apply the formula C � Q /�V to
the 12.0-�F capacitor. The voltage differ-
ence is the same as the difference across the
battery.

Solution
(a) Find the equivalent capacitance.

Apply Equation 16.12: C eq � C1 � C 2 � C 3 � C4

� 3.00 �F � 6.00 �F � 12.0 �F � 24.0 �F

� 45.0 �F

+ –

18.0 V

3.00 mF

6.00 mF

12.0 mF

24.0 mF

Figure 16.18 (Example 16.6) Four
capacitors connected in parallel.

(b) Find the charge on the 12-�F capacitor.

Solve the capacitance equation for Q and substitute: Q � C�V � (12.0 � 10�6 F)(18.0 V) � 216 � 10�6 C

� 216 �C

Remarks The charge on any one of the parallel capacitors can be found as in part (b), since the potential differ-
ence is the same.

Exercise 16.6
Find the charge on the 24.0-�F capacitor.

Answer 432 �C

Q is the same for all capacitors
connected in series �
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16.8 Combinations of Capacitors 551

Therefore, regardless of how many capacitors are in series or what their capaci-
tances are, all of the right plates gain charges of �Q and all the left plates have
charges of �Q. (This is a consequence of the conservation of charge.)

After an equivalent capacitor for a series of capacitors is fully charged, the
equivalent capacitor must end up with a charge of �Q on its right plate and a
charge of �Q on its left plate. Applying the definition of capacitance to the circuit
in Active Figure 16.19b, we have

where �V is the potential difference between the terminals of the battery and Ceq
is the equivalent capacitance. Because Q � C�V can be applied to each capacitor,
the potential differences across them are given by

From Active Figure 16.19a, we see that

�V � �V 1 � �V2 [16.13]

where �V 1 and �V 2 are the potential differences across capacitors C 1 and C 2.
(This is a consequence of the conservation of energy.)

The potential difference across any number of capacitors (or other circuit ele-
ments) in series equals the sum of the potential differences across the individual
capacitors. Substituting these expressions into Equation 16.13, and noting that
�V � Q /Ceq, we have

Canceling Q , we arrive at the following relationship:

[16.14]

If this analysis is applied to three or more capacitors connected in series, the
equivalent capacitance is found to be

[16.15]

As we will show in Example 16.7, Equation 16.15 implies that the equivalent capac-
itance of a series combination is always less than any individual capacitance in the
combination.

�series
combination�1

Ceq
�

1
C 1

�
1

C2
�

1
C3

� � � �

�series
combination�1

Ceq
�

1
C 1

�
1

C 2

Q
Ceq

�
Q
C1

�
Q
C2

�V2 �
Q
C2

�V 1 �
Q
C1

�V �
Q

Ceq

(a)

+ –

C2

�V

C1
�V1 �V2

+Q –Q +Q –Q

(b)

+ –

�V

Ceq ACTIVE FIGURE 16.19
A series combination of two
capacitors. The charges on the
capacitors are the same, and the
equivalent capacitance can be calcu-
lated from the reciprocal relationship
1/Ceq � (1/C1) � (1/C2).

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 16.19, where you can adjust
the battery voltage and the individual
capacitances to see the resulting
charges and voltages on the
capacitors. You can combine up to
four capacitors in series.
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552 Chapter 16 Electrical Energy and Capacitance

A capacitor is designed so that one plate is large and the other is small. If
the plates are connected to a battery, (a) the large plate has a greater charge than
the small plate, (b) the large plate has less charge than the small plate, or (c) the
plates have equal, but opposite, charge.

Quick Quiz 16.6

EXAMPLE 16.7 Four Capacitors Connected in Series
Goal Find an equivalent capacitance of capacitors in series, and the charge and
voltage on each capacitor.

Problem Four capacitors are connected in series with a battery, as in Figure 16.20.
(a) Calculate the capacitance of the equivalent capacitor. (b) Compute the charge
on the 12-�F capacitor. (c) Find the voltage drop across the 12-�F capacitor.

Strategy Combine all the capacitors into a single, equivalent capacitor using Equa-
tion 16.15. Find the charge on this equivalent capacitor using C � Q /�V. This
charge is the same as on the individual capacitors. Use this same equation again to
find the voltage drop across the 12-�F capacitor.

+ –

18 V

3.0mF 6.0mF 12mF 24mF

Figure 16.20 (Example 16.7)
Four capacitors connected in series.Solution

(a) Calculate the equivalent capacitance of the series.

Apply Equation 16.15:

Ceq � 1.6 �F

1
Ceq

�
1

3.0 �F
�

1
6.0 �F

�
1

12 �F
�

1
24 �F

(b) Compute the charge on the 12-�F capacitor.

The desired charge equals the charge on the equivalent
capacitor:

Q � Ceq�V � (1.6 � 10�6 F)(18 V) � 29 �C

(c) Find the voltage drop across the 12-�F capacitor.

Apply the basic capacitance equation: 2.4 VC �
Q
�V

 : �V �
Q
C

�
29 �C
12 �F

�

Remarks Notice that the equivalent capacitance is less than that of any of the individual capacitors. The relation-
ship C � Q /�V can be used to find the voltage drops on the other capacitors, just as in part (c).

Exercise 16.7
The 24-�F capacitor is removed from the circuit, leaving only three capacitors in series. Find (a) the equivalent
capacitance, (b) the charge on the 6-�F capacitor, and (c) the voltage drop across the 6-�F capacitor.

Answers (a) 1.7 �F (b) 31 �C (c) 5.2 V

Problem-Solving Strategy
Complex Capacitor Combinations
1. Combine capacitors that are in series or in parallel, following the derived formulas.
2. Redraw the circuit after every combination.
3. Repeat the first two steps until there is only a single equivalent capacitor.
4. Find the charge on the single equivalent capacitor, using C � Q /�V.
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16.8 Combinations of Capacitors 553

5. Work backwards through the diagrams to the original one, finding the charge and
voltage drop across each capacitor along the way. To do this, use the following col-
lection of facts:
A. The capacitor equation: C � Q /�V
B. Capacitors in parallel: Ceq � C1 � C2

C. Capacitors in parallel all have the same voltage difference, �V, as does their
equivalent capacitor.

D. Capacitors in series: 

E. Capacitors in series all have the same charge, Q , as does their equivalent capacitor.

1
Ceq

�
1

C1
�

1
C2

INTERACTIVE EXAMPLE 16.8 Equivalent Capacitance
Goal Solve a complex combination of series and parallel capacitors.

Problem (a) Calculate the equivalent ca-
pacitance between a and b for the combina-
tion of capacitors shown in Figure 16.21a.
All capacitances are in microfarads. (b) If a
12-V battery is connected across the system
between points a and b, find the charge on
the 4.0-�F capacitor in the first diagram and
the voltage drop across it.

Strategy (a) Using Equations 16.12 and
16.15, we reduce the combination step by
step, as indicated in the figure. (b) To find
the charge on the 4.0-�F capacitor, start with
Figure 16.21c, finding the charge on the 
2.0-�F capacitor. This same charge is on
each of the 4.0-�F capacitors in the second diagram, by fact 5E of the Problem-Solving Strategy. One of these 4.0-�F
capacitors in the second diagram is just the original 4.0-�F capacitor in the first diagram.

4.0
4.0

8.0
8.0

ba

(b)

4.0

ba

(c)

2.0

6.0 ba

(d)

4.0

8.0

ba

(a)

2.0

6.0

3.0

1.0

Figure 16.21 (Example 16.8) To find the equivalent capacitance of the circuit in
(a), use the series and parallel rules described in the text to successively reduce the
circuit as indicated in (b), (c), and (d).

Solution
(a) Calculate the equivalent capacitance.

Find the equivalent capacitance of the parallel 1.0-�F
and 3.0-�F capacitors in Figure 16.21a:

Ceq � C1 � C2 � 1.0 �F � 3.0 �F � 4.0 �F

Find the equivalent capacitance of the parallel 2.0-�F
and 6.0-�F capacitors in Figure 16.21a:

Ceq � C1 � C2 � 2.0 �F � 6.0 �F � 8.0 �F

Combine the two series 4.0-�F capacitors in Figure
16.21b:

 �
1

2.0 �F
 : Ceq �  2.0 �F

 
1

Ceq
�

1
C1

�
1

C 2
�

1
4.0 �F

�
1

4.0 �F

Combine the two series 8.0-�F capacitors in Figure
16.21b:

 �
1

4.0 �F
 :  Ceq � 4.0 �F

 
1

Ceq
�

1
C 1

�
1

C2
�

1
8.0 �F

�
1

8.0 �F

Finally, combine the two parallel capacitors in Figure
16.21c to find the equivalent capacitance between a and b :

Ceq � C1 � C2 � 2.0 �F � 4.0 �F � 6.0 �F
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554 Chapter 16 Electrical Energy and Capacitance

16.9 ENERGY STORED IN A CHARGED CAPACITOR
Almost everyone who works with electronic equipment has at some time verified
that a capacitor can store energy. If the plates of a charged capacitor are con-
nected by a conductor such as a wire, charge transfers from one plate to the other
until the two are uncharged. The discharge can often be observed as a visible
spark. If you accidentally touched the opposite plates of a charged capacitor, your
fingers would act as a pathway by which the capacitor could discharge, inflicting
an electric shock. The degree of shock would depend on the capacitance and volt-
age applied to the capacitor. Where high voltages and large quantities of charge are pres-
ent, as in the power supply of a television set, such a shock can be fatal.

Capacitors store electrical energy, and that energy is the same as the work re-
quired to move charge onto the plates. If a capacitor is initially uncharged (both
plates are neutral), so that the plates are at the same potential, very little work is
required to transfer a small amount of charge �Q from one plate to the other.
However, once this charge has been transferred, a small potential difference 
�V � �Q/C appears between the plates, so work must be done to transfer additional
charge against this potential difference. From Equation 16.6, if the potential dif-
ference at any instant during the charging process is �V, then the work �W re-
quired to move more charge �Q through this potential difference is given by

�W � �V �Q

We know that �V � Q /C for a capacitor that has a total charge of Q. Therefore,
a plot of voltage versus total charge gives a straight line with a slope of 1/C, as
shown in Figure 16.22. The work �W, for a particular �V, is the area of the shaded
rectangle. Adding up all the rectangles gives an approximation of the total work
needed to fill the capacitor. In the limit as �Q is taken to be infinitesimally small,
the total work needed to charge the capacitor to a final charge Q and voltage �V
is the area under the line. This is just the area of a triangle, one-half the base times
the height, so it follows that

[16.16]W � 1
2 Q �V

(b) Find the charge on the 4.0-�F capacitor and the volt-
age drop across it.

Compute the charge on the 2.0-�F capacitor in Figure
16.21c, which is the same as the charge on the 4.0-�F
capacitor in Figure 16.21a:

24 �CC �
Q
�V

 : Q � C�V � (2.0 �F)(12 V) �

Use the basic capacitance equation to find the voltage
drop across the 4.0-�F capacitor in Figure 16.21a:

6.0 VC �
Q
�V

 : �V �
Q
C

�
24 �C
4.0 �F

�

Remarks To find the rest of the charges and voltage drops, it’s just a matter of using C � Q /�V repeatedly, to-
gether with facts 5C and 5E in the Problem-Solving Strategy. The voltage drop across the 4.0-�F capacitor could also
have been found by noticing, in Figure 16.21b, that both capacitors had the same value and so by symmetry would
split the total drop of 12 volts between them.

Exercise 16.8
(a) In Example 16.8, find the charge on the 8.0-�F capacitor in Figure 16.21a and the voltage drop across it. (b) Do
the same for the 6.0-�F capacitor in Figure 16.21a.

Answers (a) 48 �C, 6.0 V (b) 36 �C, 6.0 V

You can practice reducing a combination of capacitors to a single equivalent capacitor by logging
into PhysicsNow at www.cp7e.com and going to Interactive Example 16.8.

V

�Q

Q

�

Figure 16.22 A plot of voltage
versus charge for a capacitor is a
straight line with slope 1/C. The work
required to move a charge of �Q
through a potential difference of 
�V across the capacitor plates is 
�W � �V �Q , which equals the area
of the blue rectangle. The total work
required to charge the capacitor to a
final charge of Q is the area under
the straight line, which equals Q�V/2.
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16.9 Energy Stored in a Charged Capacitor 555

As previously stated, W is also the energy stored in the capacitor. From the defini-
tion of capacitance, we have Q � C�V ; hence, we can express the energy stored
three different ways:

[16.17]

For example, the amount of energy stored in a 5.0-�F capacitor when it is con-
nected across a 120-V battery is

In practice, there is a limit to the maximum energy (or charge) that can be stored
in a capacitor. At some point, the Coulomb forces between the charges on the
plates become so strong that electrons jump across the gap, discharging the capac-
itor. For this reason, capacitors are usually labeled with a maximum operating volt-
age. (This physical fact can actually be exploited to yield a circuit with a regularly
blinking light).

Large capacitors can store enough electrical energy to cause severe burns or
even death if they are discharged so that the flow of charge can pass through the
heart. Under the proper conditions, however, they can be used to sustain life by
stopping cardiac fibrillation in heart attack victims. When fibrillation occurs, the
heart produces a rapid, irregular pattern of beats. A fast discharge of electrical en-
ergy through the heart can return the organ to its normal beat pattern. Emergency
medical teams use portable defibrillators that contain batteries capable of charging
a capacitor to a high voltage. (The circuitry actually permits the capacitor to be
charged to a much higher voltage than the battery.) In this case and others (cam-
era flash units and lasers used for fusion experiments), capacitors serve as energy
reservoirs that can be slowly charged and then quickly discharged to provide large
amounts of energy in a short pulse. The stored electrical energy is released through
the heart by conducting electrodes, called paddles, placed on both sides of the vic-
tim’s chest. The paramedics must wait between applications of electrical energy due
to the time it takes for the capacitors to become fully charged. The high voltage on
the capacitor can be obtained from a low-voltage battery in a portable machine
through the phenomenon of electromagnetic induction, to be studied in Chapter 20.

Energy stored � 1
2C(�V )2 � 1

2(5.0 � 10�6 F)(120 V)2 � 3.6 � 10�2 J

Energy stored � 1
2Q �V � 1

2C(�V )2 �
Q 2

2C

A P P L I C AT I O N
Defibrillators

EXAMPLE 16.9 Typical Voltage, Energy, and Discharge Time for a Defibrillator
Goal Apply energy and power concepts to a capacitor.

Problem A fully charged defibrillator contains 1.20 kJ of energy stored in a 1.10 � 10�4-F capacitor. In a discharge
through a patient, 6.00 � 102 J of electrical energy are delivered in 2.50 ms. (a) Find the voltage needed to store
1.20 kJ in the unit. (b) What average power is delivered to the patient?

Strategy (a) Because we know the energy stored and the capacitance, we can use Equation 16.17 to find the re-
quired voltage. (b) Dividing the energy delivered by the time gives the average power.

Solution
(a) Find the voltage needed to store 1.20 kJ in the unit.

Solve Equation 16.17 for �V :

� 4.67 � 103 V

 � √ 2(1.20 � 103 J)
1.10 � 10�4 F

 �V � √ 2 � (Energy stored)
C

 Energy stored � 1
2 
C �V 2
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556 Chapter 16 Electrical Energy and Capacitance

16.10 CAPACITORS WITH DIELECTRICS
A dielectric is an insulating material, such as rubber, plastic, or waxed paper. When
a dielectric is inserted between the plates of a capacitor, the capacitance increases.
If the dielectric completely fills the space between the plates, the capacitance is
multiplied by the factor , called the dielectric constant.

The following experiment illustrates the effect of a dielectric in a capacitor.
Consider a parallel-plate capacitor of charge Q0 and capacitance C0 in the absence
of a dielectric. The potential difference across the capacitor plates can be mea-
sured, and is given by �V0 � Q 0/C0 (Fig. 16.23a). Because the capacitor is not
connected to an external circuit, there is no pathway for charge to leave or be
added to the plates. If a dielectric is now inserted between the plates as in Figure
16.23b, the voltage across the plates is reduced by the factor  to the value

Because  
 1, �V is less than �V0. Because the charge Q 0 on the capacitor doesn’t
change, we conclude that the capacitance in the presence of the dielectric must
change to the value

C �
Q 0

�V
�

Q0

�V0/
�

Q 0

�V0

�V �
�V0



Remarks The power delivered by a draining capacitor isn’t constant, as we’ll find in the study of RC circuits in
Chapter 18. For that reason, we were able to find only an average power. Capacitors are necessary in defibrillators be-
cause they can deliver energy far more quickly than batteries. Batteries provide current through relatively slow chem-
ical reactions, whereas capacitors release charge that has already been produced and stored.

Exercise 16.9
(a) Find the energy contained in a 2.50 � 10�5-F parallel-plate capacitor if it holds 1.75 � 10�3 C of charge.
(b) What’s the voltage between the plates? (c) What new voltage will result in a doubling of the stored energy?

Answers (a) 6.13 � 10�2 J (b) 70.0 V (c) 99.0 V

(b) What average power is delivered to the patient?

Divide the energy delivered by the time:

� 2.40 � 105 W

 �av �
Energy delivered

�t
�

6.00 � 102 J
2.50 � 10�3 s

How should three capacitors and two batteries be con-
nected so that the capacitors will store the maximum
possible energy?

Explanation The energy stored in the capacitor is
proportional to the capacitance and the square of the

potential difference, so we would like to maximize
each of these quantities. If the three capacitors are
put in parallel, their capacitances add, and if the bat-
teries are in series, their potential differences, simi-
larly, also add together.

Applying Physics 16.1 Maximum Energy Design

A parallel-plate capacitor is disconnected from a battery, and the plates are pulled
a small distance further apart. Do the following quantities increase, decrease, or
stay the same?
(a) C (b) Q (c) E between the plates (d) �V (e) energy stored in the capacitor

Quick Quiz 16.7
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16.10 Capacitors with Dielectrics 557

or

C � C 0 [16.18]

According to this result, the capacitance is multiplied by the factor  when the
dielectric fills the region between the plates. For a parallel-plate capacitor, where
the capacitance in the absence of a dielectric is C0 � �0A/d, we can express the ca-
pacitance in the presence of a dielectric as

[16.19]

From this result, it appears that the capacitance could be made very large by de-
creasing d, the separation between the plates. In practice, the lowest value of d is
limited by the electric discharge that can occur through the dielectric material
separating the plates. For any given plate separation, there is a maximum electric
field that can be produced in the dielectric before it breaks down and begins to
conduct. This maximum electric field is called the dielectric strength, and for air
its value is about 3 � 106 V/m. Most insulating materials have dielectric strengths
greater than that of air, as indicated by the values listed in Table 16.1. Figure 16.24
shows an instance of dielectric breakdown in air.

C � �0 
A
d

C0 Q 0

+
–

V0

(a)

C Q 0

Dielectric

V

+
–

(b)

� �

Figure 16.23 (a) With air between
the plates, the voltage across the
capacitor is �V0, the capacitance is
C0, and the charge is Q0. (b) With a
dielectric between the plates, the
charge remains at Q0, but the voltage
and capacitance change.

Figure 16.24 Dielectric break-
down in air. Sparks are produced
when a large alternating voltage is
applied across the wires by a high-
voltage induction coil power supply.
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TABLE 16.1
Dielectric Constants and Dielectric Strengths of Various Materials
at Room Temperature

Dielectric Dielectric
Material Constant  Strength (V/m)

Vacuum 1.000 00 —
Air 1.000 59 3 � 106

Bakelite® 4.9 24 � 106

Fused quartz 3.78 8 � 106

Pyrex® glass 5.6 14 � 106

Polystyrene 2.56 24 � 106

Teflon® 2.1 60 � 106

Neoprene rubber 6.7 12 � 106

Nylon 3.4 14 � 106

Paper 3.7 16 � 106

Strontium titanate 233 8 � 106

Water 80 —
Silicone oil 2.5 15 � 106
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558 Chapter 16 Electrical Energy and Capacitance

Commercial capacitors are often made by using metal foil interlaced with thin
sheets of paraffin-impregnated paper or Mylar�, which serves as the dielectric ma-
terial. These alternate layers of metal foil and dielectric are rolled into a small
cylinder (Fig. 16.25a). One type of a high-voltage capacitor consists of a number of
interwoven metal plates immersed in silicone oil (Fig. 16.25b). Small capacitors
are often constructed from ceramic materials. Variable capacitors (typically 10 pF
to 500 pF) usually consist of two interwoven sets of metal plates, one fixed and the
other movable, with air as the dielectric.

An electrolytic capacitor (Fig. 16.25c) is often used to store large amounts of
charge at relatively low voltages. It consists of a metal foil in contact with an elec-
trolyte—a solution that conducts charge by virtue of the motion of the ions contained
in it. When a voltage is applied between the foil and the electrolyte, a thin layer of
metal oxide (an insulator) is formed on the foil, and this layer serves as the dielectric.
Enormous capacitances can be attained because the dielectric layer is very thin.

Figure 16.26 shows a variety of commercially available capacitors. Variable ca-
pacitors are used in radios to adjust the frequency.

When electrolytic capacitors are used in circuits, the polarity (the plus and minus
signs on the device) must be observed. If the polarity of the applied voltage is oppo-
site that intended, the oxide layer will be removed and the capacitor will conduct
rather than store charge. Further, reversing the polarity can result in such a large
current that the capacitor may either burn or produce steam and explode.

Figure 16.25 Three commercial
capacitor designs. (a) A tubular ca-
pacitor whose plates are separated by
paper and then rolled into a cylinder.
(b) A high-voltage capacitor consist-
ing of many parallel plates separated
by oil. (c) An electrolytic capacitor.

Metal foil

Paper

Plates

Oil

Electrolyte

Case

Metallic foil + oxide layer

Contacts

(a) (b) (c)

(a)

(b)

Figure 16.26 (a) A collection of
capacitors used in a variety of applica-
tions. (b) A variable capacitor. When
one set of metal plates is rotated so as
to lie between a fixed set of plates,
the capacitance of the device
changes.

Capacitor
plates

Stud finder

Wall board

Stud

(b)(a)

Figure 16.27 (Applying Physics 16.2) A stud finder.
(a) The materials between the plates of the capacitor are the
drywall and the air behind it. (b) The materials become
drywall and wood when the detector moves across a stud in
the wall. The change in the dielectric constant causes a signal
light to illuminate.

If you have ever tried to hang a picture on a wall se-
curely, you know that it can be difficult to locate a
wooden stud in which to anchor your nail or screw.
The principles discussed in this section can be used to
detect a stud electronically. The primary element of
an electronic stud finder is a capacitor with its plates
arranged side by side instead of facing one another, as
in Figure 16.27. How does this device work?

Explanation As the detector is moved along a wall, its
capacitance changes when it passes across a stud be-
cause the dielectric constant of the material “between”
the plates changes. The change in capacitance can
be used to cause a light to come on, signaling the pres-
ence of the stud.

Applying Physics 16.2 Stud Finders
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16.10 Capacitors with Dielectrics 559

An Atomic Description of Dielectrics
The explanation of why a dielectric increases the capacitance of a capacitor is
based on an atomic description of the material, which in turn involves a property
of some molecules called polarization. A molecule is said to be polarized when
there is a separation between the average positions of its negative charge and its
positive charge. In some molecules, such as water, this condition is always present.
To see why, consider the geometry of a water molecule (Fig. 16.28, page 560).

A fully charged parallel-plate capacitor remains connected to a battery while you
slide a dielectric between the plates. Do the following quantities increase, decrease,
or stay the same? (a) C (b) Q (c) E between the plates (d) �V (e) energy stored in
the capacitor.

Quick Quiz 16.8

EXAMPLE 16.10 A Paper-Filled Capacitor
Goal Calculate fundamental physical properties of a parallel-plate capacitor with a dielectric.

Problem A parallel-plate capacitor has plates 2.0 cm by 3.0 cm. The plates are separated by a 1.0-mm thickness of
paper. Find (a) the capacitance of this device, and (b) the maximum charge that can be placed on the capacitor.

Strategy (a) Obtain the dielectric constant for paper from Table 16.1, and substitute, with other given quantities,
into Equation 16.19. (b) Table 16.1 also gives the dielectric strength of paper, which is the maximum electric field
that can be applied before electrical breakdown occurs. Use Equation 16.3, �V � Ed, to obtain the maximum volt-
age, and substitute into the basic capacitance equation.

Solution
(a) Find the capacitance of this device.

Substitute into Equation 16.19:

� 2.0 � 10�11 F

 � 3.7 �8.85 � 10�12 
C2

N�m2 �� 6.0 � 10�4 m2

1.0 � 10�3 m �
 C � �0 

A
d

(b) Find the maximum charge that can be placed on the
capacitor.

Calculate the maximum applied voltage, using the
dielectric strength of paper, Emax.

�Vmax � Emaxd � (16 � 106 V/m)(1.0 � 10�3 m)

� 1.6 � 104 V

Remarks Dielectrics allow  times as much charge to be stored on a capacitor for a given voltage. They also allow
an increase in the applied voltage by increasing the threshold of electrical breakdown.

Exercise 16.10
A parallel-plate capacitor has plate area of 2.50 � 10�3 m2 and distance between the plates of 2.00 mm. (a) Find the
maximum charge that can be placed on the capacitor if air is between the plates. (b) Find the maximum charge if
the air is replaced by polystyrene.

Answers (a) 7 � 10�8 C (b) 1.4 � 10�6 C

Solve the basic capacitance equation for Q max, and
substitute �Vmax and C :

Q max � C �Vmax � (2.0 � 10�11 F)(1.6 � 104 V)

� 0.32 �C
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560 Chapter 16 Electrical Energy and Capacitance

The molecule is arranged so that the negative oxygen atom is bonded to the
positively charged hydrogen atoms with a 105° angle between the two bonds.
The center of negative charge is at the oxygen atom, and the center of positive
charge lies at a point midway along the line joining the hydrogen atoms (point
x in the diagram). Materials composed of molecules that are permanently polar-
ized in this way have large dielectric constants, and indeed, Table 16.1 shows
that the dielectric constant of water is large ( � 80) compared to other common
substances.

A symmetric molecule (Fig. 16.29a) can have no permanent polarization, but a
polarization can be induced in it by an external electric field. A field directed to
the left, as in Figure 16.29b, would cause the center of positive charge to shift to
the left from its initial position and the center of negative charge to shift to the
right. This induced polarization is the effect that predominates in most materials
used as dielectrics in capacitors.

To understand why the polarization of a dielectric can affect capacitance, con-
sider the slab of dielectric shown in Figure 16.30. Before placing the slab in be-
tween the plates of the capacitor, the polar molecules are randomly oriented (Fig.
16.30a). The polar molecules are dipoles, and each creates a dipole electric field,
but because of their random orientation, this field averages to zero.

After insertion of the dielectric slab into the electric field between the plates
(Fig. 16.30b), the positive plate attracts the negative ends of the dipoles, while the
negative plate attracts the positive ends of the dipoles. These forces exert a torque
on the molecules making up the dielectric, reorienting them so that on the aver-
age the negative pole is more inclined toward the positive plate and the positive
pole more aligned toward the negative plate. The positive and negative charges in
the middle still cancel each other, but there is a net accumulation of negative
charge in the dielectric next to the positive plate and a net accumulation of posi-
tive charge next to the negative plate. This configuration can be modeled as an ad-
ditional pair of charged plates, as in Figure 16.30c, creating an induced electric
field that partly cancels the original electric field . If the battery is not con-
nected when the dielectric is inserted, the potential difference �V0 across the
plates is reduced to �V0/.

If the capacitor is still connected to the battery, however, the negative poles
push more electrons off the positive plate, making it more positive. Meanwhile,
the positive poles attract more electrons onto the negative plate. This situation
continues until the potential difference across the battery reaches its original mag-
nitude, equal to the potential gain across the battery. The net effect is an increase
in the amount of charge stored on the capacitor. Because the plates can store
more charge for a given voltage, it follows from C � Q�V that the capacitance
must increase.

E
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0E
:

ind

E
:

0

O

x•

HH 105°

� �

––

Figure 16.28 The water molecule,
H2O, has a permanent polarization
resulting from its bent geometry.
The point labeled x is the center of
positive charge.
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Figure 16.29 (a) A symmetric
molecule has no permanent
polarization. (b) An external electric
field induces a polarization in the
molecule.
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Figure 16.30 (a) In the absence
of an external electric field, polar
molecules are randomly oriented.
(b) When an external electric field is
applied, the molecules partially align
with the field. (c) The charged edges
of the dielectric can be modeled
as an additional pair of parallel plates
establishing an electric field in
the direction opposite to .E

:
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Consider a parallel-plate capacitor with a dielectric material between the plates. If the
temperature of the dielectric increases, the capacitance (a) decreases (b) increases
(c) remains the same.

Quick Quiz 16.9
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Take a practice test by logging into 
PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

16.1 Potential Difference 
and Electric Potential
The change in the electric potential energy of a system
consisting of an object of charge q moving through a dis-
placement �x in a constant electric field is given by

�PE � � WAB � � qEx�x [16.1]

where Ex is the component of the electric field in the 
x-direction and �x � xf � xi. The difference in electric po-
tential between two points A and B is

[16.2]

where �PE is the change in electrical potential energy as a
charge q moves between A and B. The units of potential
difference are joules per coulomb, or volts; 1 J/C � 1 V.

The electric potential difference between two points A
and B in a uniform electric field is

[16.3]

where �x � xf � xi is the displacement between A and B
and Ex is the x-component of the electric field in that re-
gion.

16.2 Electric Potential and Potential 
Energy Due to Point Charges
The electric potential due to a point charge q at distance r
from the point charge is

[16.4]

The electric potential energy of a pair of point charges
separated by distance r is

[16.5]

These equations can be used in the solution of conserva-
tion of energy problems and in the work–energy theorem.

16.3 Potentials and Charged Conductors
16.4 Equipotential Surfaces
Every point on the surface of a charged conductor in elec-
trostatic equilibrium is at the same potential. Further, the
potential is constant everywhere inside the conductor and
equals its value on the surface.

The electron volt is defined as the energy that an elec-
tron (or proton) gains when accelerated through a poten-
tial difference of 1 V. The conversion between electron
volts and joules is

1 eV � 1.60 � 10�19 C � V � 1.60 � 10�19 J [16.7]

Any surface on which the potential is the same at every
point is called an equipotential surface. The electric field is
always oriented perpendicular to an equipotential surface.

PE � k e 
q1q2

r

V � ke 
q
r

�V � �Ex�x

E
:

�V � VB � VA � 
�PE

q

E
:

16.6 Capacitance
A capacitor consists of two metal plates with charges that
are equal in magnitude but opposite in sign. The capaci-
tance C of any capacitor is the ratio of the magnitude of
the charge Q on either plate to the magnitude of potential
difference �V between them:

[16.8]

Capacitance has the units coulombs per volt, or farads;
1 C/V � 1 F.

16.7 The Parallel-Plate Capacitor
The capacitance of two parallel metal plates of area A sep-
arated by distance d is

[16.9]

where �0 � 8.85 � 10�12 C2/N � m2 is a constant called the
permittivity of free space.

16.8 Combinations of Capacitors
The equivalent capacitance of a parallel combination of
capacitors is

Ceq � C1 � C2 � C3 � � � � [16.12]

If two or more capacitors are connected in series, the
equivalent capacitance of the series combination is

[16.15]

Problems involving a combination of capacitors can be
solved by applying Equations 16.12 and 16.13 repeatedly
to a circuit diagram, simplifying it as much as possible.
This is followed by working backwards to the original dia-
gram, applying C � Q /�V, the fact that parallel capacitors
have the same voltage drop, and the fact that series capaci-
tors have the same charge.

16.9 Energy Stored in a Charged 
Capacitor
Three equivalent expressions for calculating the energy
stored in a charged capacitor are

[16.17]

16.10 Capacitors with Dielectrics
When a nonconducting material, called a dielectric, is
placed between the plates of a capacitor, the capacitance
is multiplied by the factor , which is called the di-
electric constant, a property of the dielectric material.
The capacitance of a parallel-plate capacitor filled with a
dielectric is

[16.19]C � �0 
A
d

Energy stored � 1
2 Q�V � 1

2C(�V )2 �
Q 2

2C

1
Ceq

�
1

C1
�

1
C 2

�
1

C3
� � � �

C � �0 
A
d

C � 
Q

�V

SUMMARY
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562 Chapter 16 Electrical Energy and Capacitance

CONCEPTUAL QUESTIONS
1. (a) Describe the motion of a proton after it is released

from rest in a uniform electric field. (b) Describe the
changes (if any) in its kinetic energy and the electric po-
tential energy associated with the proton.

2. Describe how you can increase the maximum operating
voltage of a parallel-plate capacitor for a fixed plate sepa-
ration.

3. A parallel-plate capacitor is charged by a battery, and the
battery is then disconnected from the capacitor. Because
the charges on the capacitor plates are opposite in sign,
they attract each other. Hence, it takes positive work to
increase the plate separation. Show that the external
work done when the plate separation is increased leads
to an increase in the energy stored in the capacitor.

4. Distinguish between electric potential and electrical
potential energy.

5. Suppose you are sitting in a car and a 20-kV power line
drops across the car. Should you stay in the car or get
out? The power line potential is 20 kV compared to the
potential of the ground.

6. Why is it important to avoid sharp edges or points on
conductors used in high-voltage equipment?

7. Explain why, under static conditions, all points in a con-
ductor must be at the same electric potential.

8. If you are given three different capacitors C1, C2, and C3,
how many different combinations of capacitance can you
produce, using all capacitors in your circuits.

9. Why is it dangerous to touch the terminals of a high-volt-
age capacitor even after the voltage source that charged
the battery is disconnected from the capacitor? What can
be done to make the capacitor safe to handle after the
voltage source has been removed?

10. The plates of a capacitor are connected to a battery.
What happens to the charge on the plates if the connect-
ing wires are removed from the battery? What happens to
the charge if the wires are removed from the battery and
connected to each other?

11. Can electric field lines ever cross? Why or why not? Can
equipotentials ever cross? Why or why not?

12. Is it always possible to reduce a combination of capacitors
to one equivalent capacitor with the rules developed in
this chapter? Explain.

13. If you were asked to design a capacitor for which a small
size and a large capacitance were required, what factors
would be important in your design?

14. Explain why a dielectric increases the maximum operat-
ing voltage of a capacitor even though the physical size of
the capacitor doesn’t change.

15. (a) Capacitors connected in parallel all have the same
(i) charge on them, (ii) potential difference across them,
or (iii) neither of the above. (b) Capacitors connected in
series all have the same (i) charge on them, (ii) potential
difference across them, or (iii) neither of the above.

16. (a) The equivalent capacitance for a group of capaci-
tors connected in parallel is (i) greater than the capaci-
tance of any of the capacitors in the group, (ii) less
than the capacitance of any of the capacitors in the
group, or (iii) neither of the above. (b) The equivalent
capacitance for a group of capacitors connected in
series is (i) greater than the capacitance of any of the
capacitors in the group, (ii) less than the capacitance
of any of the capacitors in the group, or (iii) neither of
the above.

17. Suppose scientists had chosen to measure small energies
in proton volts rather than electron volts. What differ-
ence would this make?

18. (a) Under what conditions can the equation VB � VA �
� Ex�x be used? (b) Can the equation be used to find
the difference in potential between two points in an elec-
tric field set up by a point charge? (c) Can the equation
be used to find the difference in potential between two
points in the electric field between the plates of a
charged parallel-plate capacitor?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 16.1 Potential Difference and Electric Potential
1. A proton moves 2.00 cm parallel to a uniform electric

field of E � 200 N/C. (a) How much work is done by the
field on the proton? (b) What change occurs in the po-
tential energy of the proton? (c) What potential differ-
ence did the proton move through?

2. A uniform electric field of magnitude 250 V/m is directed
in the positive x-direction. A 12-�C charge moves from
the origin to the point (x, y) � (20 cm, 50 cm). (a) What
was the change in the potential energy of this charge?
(b) Through what potential difference did the charge
move?

A potential difference of 90 mV exists between the inner
and outer surfaces of a cell membrane. The inner surface

3.

is negative relative to the outer surface. How much work
is required to eject a positive sodium ion (Na�) from the
interior of the cell?

4. An ion accelerated through a potential difference of 
60.0 V has its potential energy decreased by 1.92 � 10�17 J.
Calculate the charge on the ion.

5. The potential difference between the accelerating plates
of a TV set is about 25 kV. If the distance between the
plates is 1.5 cm, find the magnitude of the uniform elec-
tric field in the region between the plates.

6. To recharge a 12-V battery, a battery charger must move
3.6 � 105 C of charge from the negative terminal to the
positive terminal. How much work is done by the charger?
Express your answer in joules.
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Problems 563

Oppositely charged parallel plates are
separated by 5.33 mm. A potential difference of 600 V
exists between the plates. (a) What is the magnitude of the
electric field between the plates? (b) What is the magni-
tude of the force on an electron between the plates?
(c) How much work must be done on the electron to
move it to the negative plate if it is initially positioned
2.90 mm from the positive plate?

8. Calculate the speed of a proton that is accelerated from
rest through a potential difference of 120 V. (b) Calcu-
late the speed of an electron that is accelerated through
the same potential difference.

9. A 4.00-kg block carrying a charge Q � 50.0 �C is con-
nected to a spring for which k � 100 N/m. The block lies
on a frictionless horizontal track, and the system is
immersed in a uniform electric field of magnitude E �
5.00 � 105 V/m directed as in Figure P16.9. (a) If the
block is released at rest when the spring is unstretched
(at x � 0), by what maximum amount does the spring ex-
pand? (b) What is the equilibrium position of the block?

7. 14. Three charges are situated at corners of a rectangle as in
Figure P16.13. How much energy would be expended in
moving the 8.00-�C charge to infinity?

15. Two point charges Q1 � � 5.00 nC and Q 2 � � 3.00 nC
are separated by 35.0 cm. (a) What is the electric poten-
tial at a point midway between the charges? (b) What is
the potential energy of the pair of charges? What is the
significance of the algebraic sign of your answer?

16. A point charge of 9.00 � 10�9 C is located at the origin.
How much work is required to bring a positive charge of
3.00 � 10�9 C from infinity to the location x � 30.0 cm?

17. The three charges in Figure P16.17 are at the vertices of
an isosceles triangle. Let q � 7.00 nC, and calculate the
electric potential at the midpoint of the base.

18. An electron starts from rest 3.00 cm from the center of a
uniformly charged sphere of radius 2.00 cm. If the
sphere carries a total charge of 1.00 � 10�9 C, how fast
will the electron be moving when it reaches the surface
of the sphere?

In Rutherford’s famous scattering ex-
periments that led to the planetary model of the atom,
alpha particles (having charges of � 2e and masses of
6.64 � 10�27 kg) were fired toward a gold nucleus with
charge � 79e. An alpha particle, initially very far from the
gold nucleus, is fired at 2.00 � 107 m/s directly toward
the nucleus, as in Figure P16.19. How close does the al-
pha particle get to the gold nucleus before turning
around? Assume the gold nucleus remains stationary.

19.

k
m, Q

E

x = 0

Figure P16.9

4.00 cm

q

–q –q

2.00 cm

Figure P16.17

6.00 cm

3.00 cm

8.00 mC

2.00 mC 4.00 mC

Figure P16.13 (Problems 13 and 14)

2e
+

+

+

+ +
+ +

+ +

d

v = 0
79e

++

Figure P16.19

10. On planet Tehar, the free-fall acceleration is the same as
that on Earth, but there is also a strong downward electric
field that is uniform close to the planet’s surface. A 2.00-kg
ball having a charge of 5.00 �C is thrown upward at a
speed of 20.1 m/s. It hits the ground after an interval of
4.10 s. What is the potential difference between the start-
ing point and the top point of the trajectory?

Section 16.2 Electric Potential and Potential Energy 
Due to Point Charges
Section 16.3 Potentials and Charged Conductors
Section 16.4 Equipotential Surfaces
11. (a) Find the electric potential 1.00 cm from a proton.

(b) What is the electric potential difference between two
points that are 1.00 cm and 2.00 cm from a proton?

12. Two point charges are on the y -axis, one of magnitude
3.0 � 10�9 C at the origin and a second of magnitude
6.0 � 10�9 C at the point y � 30 cm. Calculate the poten-
tial at y � 60 cm.
(a) Find the electric potential, taking zero at infinity, at
the upper right corner (the corner without a charge) of
the rectangle in Figure P16.13. (b) Repeat if the 2.00-�C
charge is replaced with a charge of � 2.00 �C.

13.

20. Starting with the definition of work, prove that the sur-
face must be perpendicular to the local electric field at
every point on an equipotential surface.
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564 Chapter 16 Electrical Energy and Capacitance

21. A small spherical object carries a charge of 8.00 nC. At
what distance from the center of the object is the poten-
tial equal to 100 V? 50.0 V? 25.0 V? Is the spacing of the
equipotentials proportional to the change in voltage?

Section 16.6 Capacitance
Section 16.7 The Parallel-Plate Capacitor
22. (a) How much charge is on each plate of a 4.00-�F ca-

pacitor when it is connected to a 12.0-V battery? (b) If
this same capacitor is connected to a 1.50-V battery, what
charge is stored?

23. Consider the Earth and a cloud layer 800 m above the
planet to be the plates of a parallel-plate capacitor. (a) If
the cloud layer has an area of 1.0 km2 � 1.0 � 106 m2,
what is the capacitance? (b) If an electric field strength
greater than 3.0 � 106 N/C causes the air to break down
and conduct charge (lightning), what is the maximum
charge the cloud can hold?

24. The potential difference between a pair of oppositely
charged parallel plates is 400 V. (a) If the spacing be-
tween the plates is doubled without altering the charge
on the plates, what is the new potential difference be-
tween the plates? (b) If the plate spacing is doubled
while the potential difference between the plates is kept
constant, what is the ratio of the final charge on one of
the plates to the original charge?
An air-filled capacitor consists of two parallel plates, each
with an area of 7.60 cm2 and separated by a distance of
1.80 mm. If a 20.0-V potential difference is applied to these
plates, calculate (a) the electric field between the plates,
(b) the capacitance, and (c) the charge on each plate.

26. A 1-megabit computer memory chip contains many
60.0 � 10�15-F capacitors. Each capacitor has a plate
area of 21.0 � 10�12 m2. Determine the plate separation
of such a capacitor. (Assume a parallel-plate configura-
tion). The diameter of an atom is on the order of 
10�10 m � 1 Å. Express the plate separation in angstroms.

27. A parallel-plate capacitor has an area of 5.00 cm2, and
the plates are separated by 1.00 mm with air between
them. The capacitor stores a charge of 400 pC. (a) What
is the potential difference across the plates of the capaci-
tor? (b) What is the magnitude of the uniform electric
field in the region between the plates?

28. A small object with a mass of 350 mg carries a charge of
30.0 nC and is suspended by a thread between the vertical
plates of a parallel-plate capacitor. The plates are separated
by 4.00 cm. If the thread makes an angle of 15.0° with the
vertical, what is the potential difference between the plates?

Section 16.8 Combinations of Capacitors
29. A series circuit consists of a 0.050-�F capacitor, a 0.100-�F

capacitor, and a 400-V battery. Find the charge (a) on
each of the capacitors and (b) on each of the capacitors if
they are reconnected in parallel across the battery.

30. Three capacitors, C1 � 5.00 �F, C2 � 4.00 �F, and 
C3 � 9.00 �F, are connected together. Find the effective
capacitance of the group (a) if they are all in parallel,
and (b) if they are all in series.

31. (a) Find the equivalent capacitance of the capacitors in
Figure P16.31. (b) Find the charge on each capacitor
and the potential difference across it.

25.

Two capacitors give an equivalent capacitance of 9.00 pF
when connected in parallel and an equivalent capaci-
tance of 2.00 pF when connected in series. What is the
capacitance of each capacitor?

33. Four capacitors are connected as shown in Figure P16.33.
(a) Find the equivalent capacitance between points a
and b. (b) Calculate the charge on each capacitor if a
15.0-V battery is connected across points a and b.

32.

34. Consider the combination of capacitors in Figure P16.34.
(a) What is the equivalent capacitance of the group?
(b) Determine the charge on each capacitor.

Find the charge on each of the capaci-
tors in Figure P16.35.

35.

36. To repair a power supply for a stereo amplifier, an elec-
tronics technician needs a 100-�F capacitor capable of
withstanding a potential difference of 90 V between its
plates. The only available supply is a box of five 100-�F
capacitors, each having a maximum voltage capability of
50 V. Can the technician substitute a combination of
these capacitors that has the proper electrical character-
istics, and if so, what will be the maximum voltage across
any of the capacitors used? [Hint: The technician may
not have to use all the capacitors in the box.]

12.0 V

4.00 mF

3.00 mF

2.00 mF

Figure P16.31

6.00 mF

20.0 mF

3.00 mF15.0 mF

a b

Figure P16.33

36.0 V

24.0 mF

8.00 mF

2.00 mF4.00 mF

Figure P16.34

5.00 mF
24.0 V

+

–
1.00 mF

8.00 mF 4.00 mF

Figure P16.35
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37. A 25.0-�F capacitor and a 40.0-�F capacitor are charged
by being connected across separate 50.0-V batteries.
(a) Determine the resulting charge on each capacitor.
(b) The capacitors are then disconnected from their bat-
teries and connected to each other, with each negative
plate connected to the other positive plate. What is the fi-
nal charge of each capacitor, and what is the final poten-
tial difference across the 40.0-�F capacitor?

38. A 10.0-�F capacitor is fully charged across a 12.0-V bat-
tery. The capacitor is then disconnected from the battery
and connected across an initially uncharged capacitor
with capacitance C. The resulting voltage across each ca-
pacitor is 3.00 V. What is the value of C ?
A 1.00-�F capacitor is charged by being connected across
a 10.0-V battery. It is then disconnected from the battery
and connected across an uncharged 2.00-�F capacitor.
Determine the resulting charge on each capacitor.

40. Find the equivalent capacitance between points a and b
for the group of capacitors connected as shown in Figure
P16.40 if C1 � 5.00 �F, C2 � 10.0 �F, and C3 � 2.00 �F.

39.

41. For the network described in the previous problem and
in Figure P16.40, if the potential between points a and b
is 60.0 V, what charge is stored on C3?

42. Find the equivalent capacitance between points a and b
in the combination of capacitors shown in Figure P16.42.

Section 16.9 Energy Stored in a Charged Capacitor
43. A parallel-plate capacitor has 2.00-cm2 plates that are

separated by 5.00 mm with air between them. If a 12.0-V
battery is connected to this capacitor, how much energy
does it store?

44. Two capacitors, C1 � 25.0 �F and C2 � 5.00 �F, are
connected in parallel and charged with a 100-V power
supply. (a) Calculate the total energy stored in the two
capacitors. (b) What potential difference would be re-
quired across the same two capacitors connected in series

in order that the combination store the same energy as
in (a)?
Consider the parallel-plate capacitor formed by the
Earth and a cloud layer as described in Problem 16.23.
Assume this capacitor will discharge (i.e., produce light-
ning) when the electric field strength between the plates
reaches 3.0 � 106 N/C. What is the energy released if
the capacitor discharges completely during a lightning
strike?

46. A certain storm cloud has a potential difference of
1.00 � 108 V relative to a tree. If, during a lightning
storm, 50.0 C of charge is transferred through this poten-
tial difference and 1.00% of the energy is absorbed by
the tree, how much water (sap in the tree) initially at
30.0°C can be boiled away? Water has a specific heat of
4 186 J/kg°C, a boiling point of 100°C, and a heat of
vaporization of 2.26 � 106 J/kg.

Section 16.10 Capacitors with Dielectrics
47. A capacitor with air between its plates is charged to 100 V

and then disconnected from the battery. When a piece of
glass is placed between the plates, the voltage across the
capacitor drops to 25 V. What is the dielectric constant of
the glass? (Assume the glass completely fills the space
between the plates.)

48. Two parallel plates, each of area 2.00 cm2, are separated by
2.00 mm with purified nonconducting water between
them. A voltage of 6.00 V is applied between the plates. Cal-
culate (a) the magnitude of the electric field between the
plates, (b) the charge stored on each plate, and (c) the
charge stored on each plate if the water is removed and
replaced with air.

Determine (a) the capacitance and
(b) the maximum voltage that can be applied to a
Teflon®-filled parallel-plate capacitor having a plate area
of 175 cm2 and an insulation thickness of 0.040 0 mm.

50. A commercial capacitor is constructed as in Figure
16.25a. This particular capacitor is made from a strip of
aluminum foil separated by two strips of paraffin-coated
paper. Each strip of foil and paper is 7.00 cm wide. The
foil is 0.004 00 mm thick, and the paper is 0.025 0 mm
thick and has a dielectric constant of 3.70. What length
should the strips be if a capacitance of 9.50 � 10�8 F is
desired before the capacitor is rolled up? (Use the
parallel-plate formula. Adding a second strip of paper
and rolling up the capacitor doubles its capacitance by
allowing both surfaces of each strip of foil to store
charge.)
A model of a red blood cell portrays the cell as a spheri-
cal capacitor—a positively charged liquid sphere of sur-
face area A separated from the surrounding negatively
charged fluid by a membrane of thickness t. Tiny elec-
trodes introduced into the interior of the cell show a po-
tential difference of 100 mV across the membrane. The
membrane’s thickness is estimated to be 100 nm and
whose dielectric constant is 5.00. (a) If an average red
blood cell has a mass of 1.00 � 10�12 kg, estimate the
volume of the cell and thus find its surface area. The
density of blood is 1 100 kg/m3. (b) Estimate the capaci-
tance of the cell. (c) Calculate the charge on the surface
of the membrane. How many electronic charges does the
surface charge represent?

51.

49.

45.

C2 C2

C1 C1

C2 C2

C3

b

a

Figure P16.40 (Problems 40 and 41)

ba

6.0 mF

5.0 mF

7.0 mF

4.0 mF

Figure P16.42
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ADDITIONAL PROBLEMS
52. Three parallel-plate capacitors are constructed, each hav-

ing the same plate spacing d and with C1 having plate
area A1, C2 having area A2, and C3 having area A3. Show
that the total capacitance C of the three capacitors
connected in parallel is the same as that of a capacitor
having plate spacing d and plate area A � A1 � A2 � A3.

53. Three parallel-plate capacitors are constructed, each hav-
ing the same plate area A and with C1 having plate spac-
ing d1, C2 having plate spacing d2, and C3 having plate
spacing d3. Show that the total capacitance C of the three
capacitors connected in series is the same as a capacitor
of plate area A and with plate spacing d � d1 � d2 � d3.

54. Two capacitors give an equivalent capacitance of Cp when
connected in parallel and an equivalent capacitance of
Cs when connected in series. What is the capacitance of
each capacitor?

55. An isolated capacitor of unknown capacitance has been
charged to a potential difference of 100 V. When the
charged capacitor is disconnected from the battery and
then connected in parallel to an uncharged 10.0-�F ca-
pacitor, the voltage across the combination is measured
to be 30.0 V. Calculate the unknown capacitance.

56. Two charges of 1.0 �C and �2.0 �C are 0.50 m apart at
two vertices of an equilateral triangle as in Figure P16.56.
(a) What is the electric potential due to the 1.0-�C
charge at the third vertex, point P ? (b) What is the elec-
tric potential due to the �2.0-�C charge at P ? (c) Find
the total electric potential at P. (d) What is the work
required to move a 3.0-�C charge from infinity to P.

57. Find the equivalent capacitance of the group of capaci-
tors shown in Figure P16.57.

A spherical capacitor consists of a spherical conducting
shell of radius b and charge �Q concentric with a smaller
conducting sphere of radius a and charge Q. (a) Find the
capacitance of this device. (b) Show that as the radius b

58.

of the outer sphere approaches infinity, the capacitance
approaches the value a/ke � 4��0a.
The immediate cause of many deaths is ventricular fibril-
lation, an uncoordinated quivering of the heart, as op-
posed to proper beating. An electric shock to the chest
can cause momentary paralysis of the heart muscle, after
which the heart will sometimes start organized beating
again. A defibrillator is a device that applies a strong elec-
tric shock to the chest over a time of a few milliseconds.
The device contains a capacitor of a few microfarads,
charged to several thousand volts. Electrodes called pad-
dles, about 8 cm across and coated with conducting
paste, are held against the chest on both sides of the
heart. Their handles are insulated to prevent injury to
the operator, who calls, “Clear!” and pushes a button on
one paddle to discharge the capacitor through the
patient’s chest. Assume that an energy of 300 W � s is to
be delivered from a 30.0-�F capacitor. To what potential
difference must it be charged?

60. When a certain air-filled parallel-plate capacitor is
connected across a battery, it acquires a charge of 150 �C
on each plate. While the battery connection is maintained,
a dielectric slab is inserted into, and fills, the region
between the plates. This results in the accumulation of
an additional charge of 200 �C on each plate. What is
the dielectric constant of the slab?

61. Capacitors C1 � 6.0 �F and C2 � 2.0 �F are charged as a
parallel combination across a 250-V battery. The capaci-
tors are disconnected from the battery and from each
other. They are then connected positive plate to negative
plate and negative plate to positive plate. Calculate the
resulting charge on each capacitor.

62. Capacitors C1 � 4.0 �F and C2 � 2.0 �F are charged as a
series combination across a 100-V battery. The two capac-
itors are disconnected from the battery and from each
other. They are then connected positive plate to positive
plate and negative plate to negative plate. Calculate the
resulting charge on each capacitor.

63. The charge distribution shown in Figure P16.63 is re-
ferred to as a linear quadrupole. (a) Show that the electric
potential at a point on the x-axis where x 
 d is

(b) Show that the expression obtained in (a) when x 

 d
reduces to

V �
2keQd 2

x3

V �
2keQd 2

x3 � xd 2

59.

P

0.50 m 0.50 m

0.50 m
�2.0 mC1.0 mC

Figure P16.56

48.0 V

5.00 mF

3.00 mF

2.00 mF

3.00 mF

7.00 mF

4.00 mF

6.00 mF

Figure P16.57

y

x

Quadrupole

+Q +Q

(–d, 0) (d, 0)

–2Q

Figure P16.63

64. The energy stored in a 52.0-�F capacitor is used to melt a
6.00-mg sample of lead. To what voltage must the capacitor
be initially charged, assuming that the initial tempera-
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ture of the lead is 20.0°C? Lead has a specific heat of 
128 J/kg�°C, a melting point of 327.3°C, and a latent heat
of fusion of 24.5 kJ/kg.
Consider a parallel-plate capacitor with charge Q and
area A, filled with dielectric material having dielectric
constant . It can be shown that the magnitude of the
attractive force exerted on each plate by the other is 
F � Q2/(2�0A). When a potential difference of 100 V
exists between the plates of an air-filled 20-�F parallel-
plate capacitor, what force does each plate exert on the
other if they are separated by 2.0 mm?

66. An electron is fired at a speed v0 � 5.6 � 106 m/s and at
an angle �0 � � 45° between two parallel conducting plates
that are D � 2.0 mm apart, as in Figure P16.66. If the volt-
age difference between the plates is �V � 100 V, determine
(a) how close, d, the electron will get to the bottom plate
and (b) where the electron will strike the top plate.

65.

ACTIVITIES
1. It takes an electric field of about 30 kV/cm to cause a

spark in dry air. Shuffle across a rug and reach toward a
doorknob. By estimating the length of the spark, deter-
mine the electric potential difference that existed be-
tween your finger and the doorknob just before you
touched the knob. Try this experiment again on a very
humid day, and you will find that the spark is much
shorter or is imperceptible. Why?

2. Suppose you are given a battery, a capacitor, two switches,
a lightbulb, and several pieces of connecting wire. On a
sheet of paper, design a circuit that will do the following:
(1) When switch 1 is closed and switch 2 is open, the ca-
pacitor charges, but no current moves through the light-
bulb. (2) Then, when switch 1 is opened and switch 2
closed, the lightbulb is connected to the capacitor, but
not to the battery. Describe the motion of charge in the
circuit when switch 1 is closed and switch 2 is open. Is en-
ergy being stored in the capacitor? What measurements
would you have to make to determine how much energy,
if any, is stored? What happens to the lightbulb when
switch 1 is opened after the capacitor has charged and
switch 2 is then closed? Will the bulb light and stay lit?
What happens to the charge on the capacitor when
switch 2 is closed in this way?

 0

y

x
0

D �V

d

v0

Path of
the electron

u

Figure P16.66
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These power lines transfer energy
from the power company to homes
and businesses. The energy is trans-
ferred at a very high voltage, possibly
hundreds of thousands of volts in
some cases. The high voltage results
in less loss of power due to resistance
in the wires, so it is used despite the
fact that it makes power lines very
dangerous.

Many practical applications and devices are based on the principles of static electricity, but
electricity was destined to become an inseparable part of our daily lives when scientists
learned how to produce a continuous flow of charge for relatively long periods of time using
batteries. The battery or voltaic cell was invented in 1800 by the Italian physicist Alessandro
Volta. Batteries supplied a continuous flow of charge at low potential, in contrast to earlier
electrostatic devices that produced a tiny flow of charge at high potential for brief periods.
This steady source of electric current allowed scientists to perform experiments to learn how
to control the flow of electric charges in circuits. Today, electric currents power our lights,
radios, television sets, air conditioners, computers, and refrigerators. They ignite the gasoline
in automobile engines, travel through miniature components making up the chips of
microcomputers, and provide the power for countless other invaluable tasks.

In this chapter we define current and discuss some of the factors that contribute to the
resistance to the flow of charge in conductors. We also discuss energy transformations in
electric circuits. These topics will be the foundation for additional work with circuits in later
chapters.

17.1 ELECTRIC CURRENT
In Figure 17.1, charges move in a direction perpendicular to a surface of area A.
(The area could be the cross-sectional area of a wire, for example.) The current is
the rate at which charge flows through this surface.

Suppose �Q is the amount of charge that flows through an area A in a
time interval �t and that the direction of flow is perpendicular to the area.
Then the current I is equal to the amount of charge divided by the time
interval:
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A

I

+

+

+
+

+

Figure 17.1 Charges in motion
through an area A. The time rate of
flow of charge through the area is de-
fined as the current I. The direction
of the current is the direction of flow
of positive charges.

[17.1]

SI unit: coulomb/second (C/s), or the ampere (A).

One ampere of current is equivalent to one coulomb of charge passing through
the cross-sectional area in a time interval of 1 s.

When charges flow through a surface as in Figure 17.1, they can be positive, nega-
tive, or both. The direction of conventional current used in this book is the direction
positive charges flow. (This historical convention originated about 200 years ago,
when the ideas of positive and negative charges were introduced.) In a common con-
ductor such as copper, the current is due to the motion of negatively charged elec-
trons, so the direction of the current is opposite the direction of motion of the elec-
trons. On the other hand, for a beam of positively-charged protons in an accelerator,
the current is in the same direction as the motion of the protons. In some cases—
gases and electrolytes, for example—the current is the result of the flows of both pos-
itive and negative charges. Moving charges, whether positive or negative, are referred
to as charge carriers. In a metal, for example, the charge carriers are electrons.

In electrostatics, where charges are stationary, the electric potential is the same
everywhere in a conductor. This is no longer true for conductors carrying current:
as charges move along a wire, the electric potential is continually decreasing (ex-
cept in the special case of superconductors).

I � 
�Q
�t

EXAMPLE 17.1 Turn on the Light
Goal Apply the concept of current.

Problem The amount of charge that passes through the filament of a certain lightbulb in 2.00 s is 1.67 C. Find
(a) the current in the bulb and (b) the number of electrons that pass through the filament in 5.00 s.

Strategy Substitute into Equation 17.1 for part (a), then multiply the answer by the time given in part (b) to get
the total charge that passes in that time. The total charge equals the number N of electrons going through the circuit
times the charge per electron.

Solution
(a) Compute the current in the lightbulb.

Substitute the charge and time into Equation 17.1:

(b) Find the number of electrons passing through the
filament in 5.00 s.

The total number N of electrons times the charge per
electron equals the total charge, I �t :

Substitute and solve forN : N(1.60 � 10�19 C/electron) � (0.835 A)(5.00 s)

N � 2.61 � 1019 electrons

(1) Nq � I �t

0.835 AI �
�Q
�t

�
1.67 C
2.00 s

�

Remarks In developing the solution, it was important to use units to ensure the correctness of equations such as
Equation (1). Notice the enormous number of electrons passing through a given point in a typical circuit.

Exercise 17.1
Suppose 6.40 � 1021 electrons pass through a wire in 2.00 min. Find the current.

Answer 8.53 A

TIP 17.1 Current Flow is 
Redundant
The phrases flow of current and current
flow are commonly used, but here the
word flow is redundant because cur-
rent is already defined as a flow (of
charge). Avoid this construction!

� Direction of current
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17.2 A MICROSCOPIC VIEW: CURRENT 
AND DRIFT SPEED

Macroscopic currents can be related to the motion of the microscopic charge car-
riers making up the current. It turns out that current depends on the average
speed of the charge carriers in the direction of the current, the number of charge
carriers per unit volume, and the size of the charge carried by each.

Consider identically charged particles moving in a conductor of cross-sectional
area A (Fig. 17.3). The volume of an element of length �x of the conductor is 
A �x. If n represents the number of mobile charge carriers per unit volume, then
the number of carriers in the volume element is nA �x. The mobile charge �Q in
this element is therefore

�Q � number of carriers � charge per carrier � (nA �x)q

where q is the charge on each carrier. If the carriers move with a constant average
speed called the drift speed vd, the distance they move in the time interval �t is 
�x � vd �t. We can therefore write

�Q � (nAvd �t)q

If we divide both sides of this equation by �t, we see that the current in the con-
ductor is

[17.2]

To understand the meaning of drift speed, consider a conductor in which the
charge carriers are free electrons. If the conductor is isolated, these electrons un-
dergo random motion similar to the motion of the molecules of a gas. The drift
speed is normally much smaller than the free electrons’ average speed between
collisions with the fixed atoms of the conductor. When a potential difference is ap-
plied between the ends of the conductor (say, with a battery), an electric field is set
up in the conductor, creating an electric force on the electrons and hence a cur-
rent. In reality, the electrons don’t simply move in straight lines along the conduc-
tor. Instead, they undergo repeated collisions with the atoms of the metal, and the
result is a complicated zigzag motion with only a small average drift speed along
the wire (Active Fig. 17.4). The energy transferred from the electrons to the metal
atoms during a collision increases the vibrational energy of the atoms and causes
a corresponding increase in the temperature of the conductor. Despite the
collisions, however, the electrons move slowly along the conductor in a direction
opposite with the drift velocity .v:dE

:

I �
�Q
�t

� nqvdA

Consider positive and negative charges moving horizontally through the four re-
gions in Figure 17.2. Rank the magnitudes of the currents in these four regions
from lowest to highest. (Ia is the current in Figure 17.2a, Ib the current in Figure
17.2b, etc.) (a) Id, Ia, Ic, Ib (b) Ia, Ic, Ib, Id (c) Ic, Ia, Id, Ib (d) Id, Ib, Ic, Ia
(e) Ia, Ib, Ic, Id (f) none of these

Quick Quiz 17.1

(a)

+
+

+

+
+

+
+

+

(b) (c) (d)

–

––

––

–

Figure 17.2 (Quick 
Quiz 17.1)∆x

A
q

vd

vd∆t

Figure 17.3 A section of a uniform
conductor of cross-sectional area A.
The charge carriers move with a speed
vd , and the distance they travel in time
�t is given by �x � vd�t. The number
of mobile charge carriers in the 
section of length �x is given by
nAvd�t, where n is the number of 
mobile carriers per unit volume.

vd

E

–

ACTIVE FIGURE 17.4
A schematic representation of the
zigzag motion of a charge carrier in
a conductor. The sharp changes in 
direction are due to collisions with
atoms in the conductor. Note that the
net motion of electrons is opposite
the direction of the electric field.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 17.4, where you can observe
the random zigzag motion of a
charge carrier and see how the
motion is affected by an electric field.

TIP 17.2 Electrons are 
Everywhere in the Circuit
Electrons don’t have to travel from
the light switch to the light for the
light to operate. Electrons already in
the filament of the lightbulb move in 
response to the electric field set up by
the battery. Also, the battery does not
provide electrons to the circuit; it 
provides energy to the existing 
electrons.
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Example 17.2 shows that drift speeds are typically very small. In fact, the drift
speed is much smaller than the average speed between collisions. Electrons travel-
ing at 2.46 � 10�4 m/s, as in the example, would take about 68 min to travel 1 m!

EXAMPLE 17.2 Drift Speed of Electrons
Goal Calculate a drift speed and compare it with the rms speed of an electron gas.

Problem A copper wire of cross-sectional area 3.00 � 10�6 m2 carries a current of 10.0 A. (a) Assuming that each
copper atom contributes one free electron to the metal, find the drift speed of the electrons in this wire. (b) Use the
ideal gas model to compare the drift speed with the random rms speed an electron would have at 20.0°C. The den-
sity of copper is 8.92 g/cm3, and its atomic mass is 63.5 u.

Strategy All the variables in Equation 17.2 are known except for n, the number of free charge carriers per unit vol-
ume. We can find n by recalling that one mole of copper contains an Avogadro’s number (6.02 � 1023) of atoms and
each atom contributes one charge carrier to the metal. The volume of one mole can be found from copper’s known
density and atomic mass. The atomic mass is the same, numerically, as the number of grams in a mole of the sub-
stance.

Solution
(a) Find the drift speed of the electrons.

Calculate the volume of one mole of copper from its
density and its atomic mass:

V �
m
�

�
63.5 g

8.92 g/cm3 � 7.12 cm3

Convert the volume from cm3 to m3: 7.12 cm3 � 1 m
102 cm �

3
� 7.12 � 10�6 m3

Divide Avogadro’s number (the number of electrons in
one mole) by the volume per mole to obtain the num-
ber density:  � 8.46 � 1028 electrons/m3

 n �
6.02 � 1023 electrons/mole

7.12 � 10�6 m3/mole

Solve Equation 17.2 for the drift speed, and substitute:

vd � 2.46 � 10�4 m/s

�
10.0 C/s

(8.46 � 1028 electrons/m3)(1.60 � 10�19 C)(3.00 � 10�6 m2)

 vd �
I

nqA

(b) Find the rms speed of a gas of electrons at 20.0°C.

Apply Equation 10.18: vrms � √ 3kBT
me

Convert the temperature to the Kelvin scale, and substi-
tute values:

� 1.15 � 105 m/s

vrms � √ 3(1.38 �  10�23 J/K)(293 K )
9.11 �  10�31 kg

Remarks The drift speed of an electron in a wire is very small—only about one-billionth of its random thermal
speed.

Exercise 17.2
What current in a copper wire with a cross-sectional area of 7.50 � 10�7 m2 would result in a drift speed of 
5.00 � 10�4 m/s?

Answer 5.08 A
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572 Chapter 17 Current and Resistance

In view of this low speed, you might wonder why a light turns on almost instanta-
neously when a switch is thrown. Think of the flow of water through a pipe. If a
drop of water is forced into one end of a pipe that is already filled with water, a
drop must be pushed out the other end of the pipe. Although it may take an indi-
vidual drop a long time to make it through the pipe, a flow initiated at one end
produces a similar flow at the other end very quickly. Another familiar analogy is
the motion of a bicycle chain. When the sprocket moves one link, the other links
all move more or less immediately, even though it takes a given link some time to
make a complete rotation. In a conductor, the electric field driving the free elec-
trons travels at a speed close to that of light, so when you flip a light switch, the
message for the electrons to start moving through the wire (the electric field)
reaches them at a speed on the order of 108 m/s!

17.3 CURRENT AND VOLTAGE MEASUREMENTS 
IN CIRCUITS

To study electric current in circuits, we need to understand how to measure cur-
rents and voltages.

The circuit shown in Figure 17.5a is a drawing of the actual circuit necessary for
measuring the current in Example 17.1. Figure 17.5b shows a stylized figure called
a circuit diagram which represents the actual circuit of Figure 17.5a. This circuit
consists of only a battery and a lightbulb. The word “circuit” means “a closed loop

Suppose a current-carrying wire has a cross-sectional area that gradually becomes
smaller along the wire, so that the wire has the shape of a very long cone. How
does the drift speed vary along the wire? (a) It slows down as the cross section be-
comes smaller. (b) It speeds up as the cross section becomes smaller. (c) It doesn’t
change. (d) More information is needed.

Quick Quiz 17.2
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Ammeter

Voltmeter

Bulb

(b)(a)

I

I

I
I

0.835 A

0.0 V

+ –
+ –

+–

Figure 17.5 (a) A sketch of an actual circuit used to measure the current in a flashlight bulb and the
potential difference across it. (b) A schematic diagram of the circuit shown in part (a). (c) A digital
multimeter can be used to measure both currents and potential differences. Here, the meter is measur-
ing the potential difference across a 9-V battery.
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17.4 Resistance and Ohm’s Law 573

of some sort around which current circulates.” The battery pumps charge through
the bulb and around the loop. No charge would flow without a complete conduct-
ing path from the positive terminal of the battery into one side of the bulb, out the
other side, and through the copper conducting wires back to the negative termi-
nal of the battery. The most important quantities that characterize how the bulb
works in different situations are the current I in the bulb and the potential differ-
ence �V across the bulb. To measure the current in the bulb, we place an amme-
ter, the device for measuring current, in line with the bulb so there is no path for
the current to bypass the meter; all of the charge passing through the bulb must
also pass through the ammeter. The voltmeter measures the potential difference,
or voltage, between the two ends of the bulb’s filament. If we use two meters simul-
taneously as in Figure 17.5a, we can remove the voltmeter and see if its presence
affects the current reading. Figure 17.5c shows a digital multimeter—a convenient
device, with a digital readout, that can be used to measure voltage, current, or re-
sistance. An advantage of using a digital multimeter as a voltmeter is that it will
usually not affect the current, since a digital meter has enormous resistance to the
flow of charge in the voltmeter mode.

At this point, you can measure the current as a function of voltage (an I – �V
curve) of various devices in the lab. All you need is a variable voltage supply (an
adjustable battery) capable of supplying potential differences from about � 5 V
to � 5 V, a bulb, a resistor, some wires and alligator clips, and a couple of multi-
meters. Be sure to always start your measurements using the highest multimeter
scales (say, 10 A and 1 000 V), and increase the sensitivity one scale at a time to
obtain the highest accuracy without overloading the meters. (Increasing the
sensitivity means lowering the maximum current or voltage that the scale
reads.) Note that the meters must be connected with the proper polarity with
respect to the voltage supply, as shown in Figure 17.5b. Finally, follow your in-
structor’s directions carefully to avoid damaging the meters and incurring a
soaring lab fee.

17.4 RESISTANCE AND OHM’S LAW
When a voltage (potential difference) �V is applied across the ends of a metallic
conductor as in Figure 17.7, the current in the conductor is found to be propor-
tional to the applied voltage; I � �V. If the proportionality holds, we can write 
�V � IR , where the proportionality constant R is called the resistance of the
conductor. In fact, we define the resistance as the ratio of the voltage across the
conductor to the current it carries:

[17.3]R � 
�V
I

Look at the four “circuits” shown in Figure 17.6 and select those that will light the
bulb.

Quick Quiz 17.3

– +

(b)

– +

(c) (d)

AMPS

+ –

+ –+–

(a)

Figure 17.6 (Quick Quiz 17.3)

l

E

Vb Va

IA

Figure 17.7 A uniform conductor
of length l and cross-sectional area A.
The current I in the conductor is 
proportional to the applied voltage 
�V � Vb � Va. The electric field 

set up in the conductor is also 
proportional to the current.
E
:

� Resistance
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Resistance has SI units of volts per ampere, called ohms (	). If a potential differ-
ence of 1 V across a conductor produces a current of 1 A, the resistance of the
conductor is 1 	. For example, if an electrical appliance connected to a 120-V
source carries a current of 6 A, its resistance is 20 	.

The concepts of electric current, voltage, and resistance can be compared with
the flow of water in a river. As water flows downhill in a river of constant width
and depth, the flow rate (water current) depends on the steepness of descent of
the river and the effects of rocks, the riverbank, and other obstructions. The volt-
age difference is analogous to the steepness, and the resistance to the obstruc-
tions. Based on this analogy, it seems reasonable that increasing the voltage ap-
plied to a circuit should increase the current in the circuit, just as increasing the
steepness of descent increases the water current. Also, increasing the obstructions
in the river’s path will reduce the water current, just as increasing the resistance
in a circuit will lower the electric current. Resistance in a circuit arises due to col-
lisions between the electrons carrying the current with fixed atoms inside the
conductor. These collisions inhibit the movement of charges in much the same
way as would a force of friction. For many materials, including most metals, ex-
periments show that the resistance remains constant over a wide range of applied
voltages or currents. This statement is known as Ohm’s law, after Georg Simon
Ohm (1789–1854), who was the first to conduct a systematic study of electrical
resistance.

Ohm’s law is given by

[17.4]

where R is understood to be independent of �V, the potential drop across the re-
sistor, and I, the current in the resistor. We will continue to use this traditional
form of Ohm’s law when discussing electrical circuits. A resistor is a conductor
that provides a specified resistance in an electric circuit. The symbol for a resistor
in circuit diagrams is a zigzag line: .

Ohm’s law is an empirical relationship valid only for certain materials. Materials
that obey Ohm’s law, and hence have a constant resistance over a wide range of
voltages, are said to be ohmic. Materials having resistance that changes with
voltage or current are nonohmic. Ohmic materials have a linear current–voltage
relationship over a large range of applied voltages (Fig. 17.8a). Nonohmic materi-
als have a nonlinear current–voltage relationship (Fig. 17.8b). One common semi-
conducting device that is nonohmic is the diode, a circuit element that acts like
a one-way valve for current. Its resistance is small for currents in one direction
(positive �V ) and large for currents in the reverse direction (negative �V ). Most
modern electronic devices, such as transistors, have nonlinear current–voltage re-
lationships; their operation depends on the particular ways in which they violate
Ohm’s law.

�V � IR

GEORG SIMON OHM
(1787–1854)
A high school teacher in Cologne and later
a professor at Munich, Ohm formulated
the concept of resistance and discovered
the proportionalities expressed in 
Equation 17.5.
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Figure 17.8 (a) The current–
voltage curve for an ohmic material.
The curve is linear, and the slope
gives the resistance of the conductor.
(b) A nonlinear current–voltage
curve for a semiconducting diode.
This device doesn’t obey Ohm’s law.

Ohm’s law �
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17.5 RESISTIVITY
Electrons don’t move in straight-line paths through a conductor. Instead, they un-
dergo repeated collisions with the metal atoms. Consider a conductor with a volt-
age applied across its ends. An electron gains speed as the electric force associated
with the internal electric field accelerates it, giving it a velocity in the direction
opposite that of the electric field. A collision with an atom randomizes the elec-
tron’s velocity, reducing it in the direction opposite the field. The process then
repeats itself. Together, these collisions affect the electron somewhat as a force of
internal friction would. This is the origin of a material’s resistance.

The resistance of an ohmic conductor increases with length, which makes sense
because the electrons going through it must undergo more collisions in a longer
conductor. A smaller cross-sectional area also increases the resistance of a conduc-
tor, just as a smaller pipe slows the fluid moving through it. The resistance, then, is
proportional to the conductor’s length l and inversely proportional to its cross-
sectional area A,

[17.5]

where the constant of proportionality, �, is called the resistivity of the material.1

Every material has a characteristic resistivity that depends on its electronic struc-
ture and on temperature. Good electric conductors have very low resistivities, and
good insulators have very high resistivities. Table 17.1 lists the resistivities of vari-
ous materials at 20°C. Because resistance values are in ohms, resistivity values must
be in ohm-meters (	 
 m).

R � � 
l
A

An assortment of resistors used for a
variety of applications in electronic
circuits.

Co
ur

te
sy

 o
f H

en
ry

 L
ea

p 
an

d 
Ji

m
 L

eh
m

an

In Figure 17.8b, does the resistance of the diode (a) increase or (b) decrease as
the positive voltage �V increases?

Quick Quiz 17.4

EXAMPLE 17.3 Resistance of a Steam Iron
Goal Use Ohm’s law to calculate a resistance.

Problem All electric devices are required to have identifying plates that specify their electrical characteristics. 
The plate on a certain steam iron states that the iron carries a current of 6.40 A when connected to a source of 
1.20 � 102 V. What is the resistance of the steam iron?

Strategy Substitute into Ohm’s law.

Solution
Apply Equation 17.3: 18.8 	R �

�V
I

�
1.20 � 102 V

6.40 A
 � 

Exercise 17.3
The resistance of a hot plate is 48.0 	. How much current does the plate carry when connected to a 1.20 � 102-V
source?

Answer 2.50 A

1The symbol � used for resistivity shouldn’t be confused with the same symbol used earlier in the book for density. Of-
ten, a single symbol is used to represent different quantities.
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576 Chapter 17 Current and Resistance

TABLE 17.1
Resistivities and Temperature Coefficients of Resistivity 
for Various Materials (at 20°C)

Temperature Coefficient
Resistivity of Resistivity

Material (	 
 m) [(°C)�1]

Silver 1.59 � 10�8 3.8 � 10�3

Copper 1.7 � 10�8 3.9 � 10�3

Gold 2.44 � 10�8 3.4 � 10�3

Aluminum 2.82 � 10�8 3.9 � 10�3

Tungsten 5.6 � 10�8 4.5 � 10�3

Iron 10.0 � 10�8 5.0 � 10�3

Platinum 11 � 10�8 3.92 � 10�3

Lead 22 � 10�8 3.9 � 10�3

Nichromea 150 � 10�8 0.4 � 10�3

Carbon 3.5 � 105 � 0.5 � 10�3

Germanium 0.46 � 48 � 10�3

Silicon 640 � 75 � 10�3

Glass 1010–1014

Hard rubber � 1013

Sulfur 1015

Quartz (fused) 75 � 1016

aA nickel–chromium alloy commonly used in heating elements.

As a lightbulb ages, why does it gives off less light than
when new?

Explanation There are two reasons for the lightbulb’s
behavior, one electrical and one optical, but both are
related to the same phenomenon occurring within the
bulb. The filament of an old lightbulb is made of a
tungsten wire that has been kept at a high temperature
for many hours. High temperatures evaporate tung-
sten from the filament, decreasing its radius. From
R � �l/A, we see that a decreased cross-sectional area
leads to an increase in the resistance of the filament.

This increasing resistance with age means that the
filament will carry less current for the same applied
voltage. With less current in the filament, there is less
light output, and the filament glows more dimly.

At the high operating temperature of the filament,
tungsten atoms leave its surface, much as water mole-
cules evaporate from a puddle of water. The atoms
are carried away by convection currents in the gas in
the bulb and are deposited on the inner surface of the
glass. In time, the glass becomes less transparent
because of the tungsten coating, which decreases the
amount of light that passes through the glass.

Applying Physics 17.1 Dimming of Aging Lightbulbs

INTERACTIVE EXAMPLE 17.4 The Resistance of Nichrome Wire
Goal Combine the concept of resistivity with Ohm’s law.

Problem (a) Calculate the resistance per unit length of a 22-gauge nichrome wire of radius 0.321 mm. (b) If a po-
tential difference of 10.0 V is maintained across a 1.00-m length of the nichrome wire, what is the current in the
wire? (c) The wire is melted down and recast with twice its original length. Find the new resistance RN as a multiple of
the old resistance RO .

Strategy Part (a) requires substitution into Equation 17.5, after calculating the cross-sectional area, while part (b) is
a matter of substitution into Ohm’s law. Part (c) requires some algebra. The idea is to take the expression for the new
resistance and substitute expressions for lN and AN , the new length and cross-sectional area, in terms of the old length
and cross-section. For the area substitution, use the fact that the volumes of the old and new wires are the same.
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17.6 TEMPERATURE VARIATION OF RESISTANCE
The resistivity �, and hence the resistance, of a conductor depends on a number of
factors. One of the most important is the temperature of the metal. For most
metals, resistivity increases with increasing temperature. This correlation can be
understood as follows: as the temperature of the material increases, its constituent
atoms vibrate with greater amplitudes. As a result, the electrons find it more diffi-
cult to get by those atoms, just as it is more difficult to weave through a crowded

Solution
(a) Calculate the resistance per unit length.

Find the cross-sectional area of the wire: A � �r 2 � �(0.321 � 10�3 m)2 � 3.24 � 10�7 m2

Obtain the resistivity of nichrome from Table 17.1, solve
Equation 17.5 for R/l, and substitute:

4.6 	/m
R
l

�
�

A
�

1.5 � 10�6 	
m
3.24 � 10�7 m2  �

(b) Find the current in a 1.00-m segment of the wire if
the potential difference across it is 10.0 V.

Substitute given values into Ohm’s law: 2.2 AI �
�V
R

�
10.0 V
4.6 	

 �

(c) If the wire is melted down and recast with twice its
original length, find the new resistance as a multiple of
the old.

Find the new area AN in terms of the old area AO , using
the fact the volume doesn’t change and lN � 2lO :

VN � VO : AN lN � AO lO : AN � AO(lO /l N)

AN � AO(l O /2lO) � AO/2

Substitute into Equation 17.5: 4RORN �
�lN

AN
�

�(2lO)
(AO/2)

� 4 
�lO

AO
 �

Remarks From Table 17.1, the resistivity of nichrome is about 100 times that of copper, a typical good conductor.
Therefore, a copper wire of the same radius would have a resistance per unit length of only 0.052 	/m, and a 1.00-m
length of copper wire of the same radius would carry the same current (2.2 A) with an applied voltage of only 0.115 V.

Because of its resistance to oxidation, nichrome is often used for heating elements in toasters, irons, and electric
heaters.

Exercise 17.4
What is the resistance of a 6.0-m length of nichrome wire that has a radius 0.321 mm? How much current does it
carry when connected to a 120-V source?

Answer 28 	; 4.3 A

You can explore the resistance of different materials by logging into PhysicsNow at www.cp7e.com
and going to Interactive Example 17.4.

Suppose an electrical wire is replaced with one having every linear dimension
doubled (i.e. the length and radius have twice their original values). Does the wire
now have (a) more resistance than before, (b) less resistance, or (c) the same
resistance?

Quick Quiz 17.5
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578 Chapter 17 Current and Resistance

room when the people are in motion than when they are standing still. The in-
creased electron scattering with increasing temperature results in increased resis-
tivity. Technically, thermal expansion also affects resistance; however, this is a very
small effect.

Over a limited temperature range, the resistivity of most metals increases lin-
early with increasing temperature according to the expression

� � �0[1 � �(T � T0)] [17.6]

where � is the resistivity at some temperature T (in Celsius degrees), �0 is the resis-
tivity at some reference temperature T0 (usually taken to be 20°C), and � is a pa-
rameter called the temperature coefficient of resistivity. Temperature coefficients
for various materials are provided in Table 17.1. The interesting negative values of
� for semiconductors arise because these materials possess weakly bound charge
carriers that become free to move and contribute to the current as the tempera-
ture rises.

Because the resistance of a conductor with a uniform cross section is propor-
tional to the resistivity according to Equation 17.5 (R � �l/A), the temperature
variation of resistance can be written

R � R0[1 � �(T � T0)] [17.7]

Precise temperature measurements are often made using this property, as shown
by the following example.

EXAMPLE 17.5 A Platinum Resistance Thermometer
Goal Apply the temperature dependence of resistance.

Problem A resistance thermometer, which measures temperature by measuring the change in resistance of a con-
ductor, is made of platinum and has a resistance of 50.0 	 at 20.0°C. (a) When the device is immersed in a vessel con-
taining melting indium, its resistance increases to 76.8 	. From this information, find the melting point of indium.
(b) The indium is heated further until it reaches a temperature of 235°C. What is the ratio of the new current in the
platinum to the current Imp at the melting point?

Strategy In part (a), solve Equation 17.7 for T � T0 and get � for platinum from Table 17.1, substituting known
quantities. For part (b), use Ohm’s law in Equation 17.7.

Solution
(a) Find the melting point of indium.

Solve Equation 17.7 for T � T0:

 � 137C

 T � T0 �
R � R0

�R 0
�

76.8 	 � 50.0 	
[3.92 � 10�3 (C)�1][50.0 	]

Substitute T0 � 20.0°C and obtain the melting point of
indium:

T � 157°C

(b) Find the ratio of the new current to the old when
the temperature rises from 157°C to 235°C.

Write Equation 17.7, with R0 and T0 replaced by Rmp and
Tmp, the resistance and temperature at the melting point.

R � R mp[1 � �(T � Tmp)]

According to Ohm’s law, R � �V/I and R mp � �V/Imp.
Substitute these expressions into Equation 17.7:

�V
I

�
�V
Imp

[1 � �(T � Tmp)]

Cancel the voltage differences, invert the two expres-
sions, and then divide both sides by Imp:

I
Imp

�
1

1 � �(T � Tmp) 

In an old-fashioned carbon filament
incandescent lamp, the electrical re-
sistance is typically 10 	, but changes
with temperature.
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17.7 Superconductors 579

17.7 SUPERCONDUCTORS
There is a class of metals and compounds with resistances that fall virtually to zero
below a certain temperature Tc called the critical temperature. These materials are
known as superconductors. The resistance– temperature graph for a superconduc-
tor follows that of a normal metal at temperatures above Tc (Fig. 17.9). When the
temperature is at or below Tc , however, the resistance suddenly drops to zero. This
phenomenon was discovered in 1911 by the Dutch physicist H. Kamerlingh Onnes
as he and a graduate student worked with mercury, which is a superconductor
below 4.1 K. Recent measurements have shown that the resistivities of supercon-
ductors below Tc are less than 4 � 10�25 	
m—around 1017 times smaller than
the resistivity of copper and in practice considered to be zero.

Today thousands of superconductors are known, including such common met-
als as aluminum, tin, lead, zinc, and indium. Table 17.2 lists the critical tempera-
tures of several superconductors. The value of Tc is sensitive to chemical composi-
tion, pressure, and crystalline structure. Interestingly, copper, silver, and gold,
which are excellent conductors, don’t exhibit superconductivity.

One of the truly remarkable features of superconductors is the fact that once a
current is set up in them, it persists without any applied voltage (because R � 0). In
fact, steady currents in superconducting loops have been observed to persist for
years with no apparent decay!

An important development in physics that created much excitement in the
scientific community was the discovery of high-temperature copper-oxide-based
superconductors. The excitement began with a 1986 publication by J. Georg
Bednorz and K. Alex Müller, scientists at the IBM Zurich Research Laboratory in
Switzerland, in which they reported evidence for superconductivity at a tempera-
ture near 30 K in an oxide of barium, lanthanum, and copper. Bednorz and
Müller were awarded the Nobel Prize for physics in 1987 for their important dis-
covery. The discovery was remarkable in view of the fact that the critical tempera-
ture was significantly higher than those of any previously known superconductors.
Shortly thereafter a new family of compounds was investigated, and research activ-
ity in the field of superconductivity proceeded vigorously. In early 1987, groups at
the University of Alabama at Huntsville and the University of Houston announced
the discovery of superconductivity at about 92 K in an oxide of yttrium, barium,
and copper (YBa2Cu3O7), shown as the gray disk in Figure 17.10. Late in 1987,
teams of scientists from Japan and the United States reported superconductivity at
105 K in an oxide of bismuth, strontium, calcium, and copper. More recently,
scientists have reported superconductivity at temperatures as high as 150 K in an
oxide containing mercury. The search for novel superconducting materials contin-
ues, with the hope of someday obtaining a room-temperature superconducting
material. This research is important both for scientific reasons and for practical
applications.

An important and useful application is the construction of superconducting
magnets in which the magnetic field intensities are about ten times greater than
those of the best normal electromagnets. Such magnets are being considered as a
means of storing energy. The idea of using superconducting power lines to transmit

Substitute T � 235°C, Tmp � 157°C, and the value for
�, obtaining the desired ratio:

0.766
I

Imp
 �

Exercise 17.5
Suppose a wire made of an unknown alloy and having a temperature of 20.0°C carries a current of 0.450 A. At 52.0°C
the current is 0.370 A for the same potential difference. Find the temperature coefficient of resistivity of the alloy.

Answer 6.76 � 10�3 (°C)�1

0.10

0.05

4.44.24.0
T(K)

0.15
R(Ω)

Tc

0.00

Figure 17.9 Resistance versus 
temperature for a sample of mercury
(Hg). The graph follows that of a
normal metal above the critical 
temperature Tc . The resistance drops
to zero at the critical temperature,
which is 4.2 K for mercury, and 
remains at zero for lower 
temperatures.

TABLE 17.2
Critical Temperatures for
Various Superconductors
Material Tc (K)

Zn 0.88
Al 1.19
Sn 3.72
Hg 4.15
Pb 7.18
Nb 9.46
Nb3Sn 18.05
Nb3Ge 23.2
YBa2Cu3O7 90
Bi–Sr–Ca–Cu–O 105
Tl–Ba–Ca–Cu–O 125
HgBa2Ca2Cu3O8 134
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580 Chapter 17 Current and Resistance

power efficiently is also receiving serious consideration. Modern superconducting
electronic devices consisting of two thin-film superconductors separated by a
thin insulator have been constructed. Among these devices are magnetometers
(magnetic-field measuring devices) and various microwave devices.

17.8 ELECTRICAL ENERGY AND POWER
If a battery is used to establish an electric current in a conductor, chemical energy
stored in the battery is continuously transformed into kinetic energy of the charge
carriers. This kinetic energy is quickly lost as a result of collisions between the
charge carriers and fixed atoms in the conductor, causing an increase in the tem-
perature of the conductor. In this way, the chemical energy stored in the battery is
continuously transformed into thermal energy.

In order to understand the process of energy transfer in a simple circuit, con-
sider a battery with terminals connected to a resistor (Active Fig. 17.11; remember
that the positive terminal of the battery is always at the higher potential). Now
imagine following a quantity of positive charge �Q around the circuit from point
A, through the battery and resistor, and back to A. Point A is a reference point that

is grounded (the ground symbol is ), and its potential is taken to be zero. As

the charge �Q moves from A to B through the battery, the electrical potential
energy of the system increases by the amount �Q �V, and the chemical potential
energy in the battery decreases by the same amount. (Recall from Chapter 16 that
�PE � q �V.) However, as the charge moves from C to D through the resistor, it
loses this electrical potential energy during collisions with atoms in the resistor. In
the process, the energy is transformed to internal energy corresponding to in-
creased vibrational motion of those atoms. Because we can ignore the very small
resistance of the interconnecting wires, no energy transformation occurs for paths
BC and DA. When the charge returns to point A, the net result is that some of the
chemical energy in the battery has been delivered to the resistor and has caused its
temperature to rise.

The charge �Q loses energy �Q �V as it passes through the resistor. If �t is the
time it takes the charge to pass through the resistor, then the rate at which it loses
electric potential energy is

where I is the current in the resistor and �V is the potential difference across it. Of
course, the charge regains this energy when it passes through the battery, at the
expense of chemical energy in the battery. The rate at which the system loses
potential energy as the charge passes through the resistor is equal to the rate at
which the system gains internal energy in the resistor. Therefore, the power �,
representing the rate at which energy is delivered to the resistor, is

[17.8]

While this result was developed by considering a battery delivering energy to a re-
sistor, Equation 17.8 can be used to determine the power transferred from a volt-
age source to any device carrying a current I and having a potential difference �V
between its terminals.

Using Equation 17.8 and the fact that �V � IR for a resistor, we can express the
power delivered to the resistor in the alternate forms

[17.9]

When I is in amperes, �V in volts, and R in ohms, the SI unit of power is the watt
(introduced in Chapter 5). The power delivered to a conductor of resistance R is

� � I 2R �
�V 2

R

� � I�V

�Q
�t

 �V � I�V

Figure 17.10 A small permanent
magnet floats freely above a ceramic
disk made of the superconductor
YBa2Cu3O7, cooled by liquid nitrogen
at 77 K. The superconductor has zero
electric resistance at temperatures 
below 92 K and expels any applied
magnetic field.
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ACTIVE FIGURE 17.11
A circuit consisting of a battery and a
resistance R. Positive charge flows
clockwise from the positive to the
negative terminal of the battery. Point
A is grounded.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 17.11, where
you can adjust the battery voltage and
the resistance, and see the resulting
current in the circuit and the power
dissipated as heat by the resistor.

Power �

Power delivered to a resistor �
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17.8 Electrical Energy and Power 581

often referred to as an I 2R loss. Note that Equation 17.9 applies only to resistors
and not to nonohmic devices such as lightbulbs and diodes.

Regardless of the ways in which you use electrical energy in your home, you ulti-
mately must pay for it or risk having your power turned off. The unit of energy
used by electric companies to calculate consumption, the kilowatt-hour, is defined
in terms of the unit of power and the amount of time it’s supplied. One kilowatt-
hour (kWh) is the energy converted or consumed in 1 h at the constant rate of
1 kW. It has the numerical value

1 kWh � (103 W)(3600 s) � 3.60 � 106 J [17.10]

On an electric bill, the amount of electricity used in a given period is usually stated
in multiples of kilowatt-hours.

Why do lightbulbs fail so often right after they’re
turned on?

Explanation Once the switch is closed, the line voltage
is applied across the bulb. As the voltage is applied
across the cold filament when the bulb is first turned
on, the resistance of the filament is low, the current is

high, and a relatively large amount of power is deliv-
ered to the bulb. This current spike at the beginning
of operation is the reason why lightbulbs often fail just
after they are turned on. As the filament warms, its 
resistance rises and the current decreases. As a result,
the power delivered to the bulb decreases, and the
bulb is less likely to burn out.

Applying Physics 17.2 Lightbulb Failures

A voltage �V is applied across the ends of a nichrome heater wire having a cross-
sectional area A and length L . The same voltage is applied across the ends of a sec-
ond heater wire having a cross-sectional area A and length 2L. Which wire gets
hotter? (a) the shorter wire, (b) the longer wire, or (c) more information is
needed.

Quick Quiz 17.6

For the two resistors shown in
Figure 17.12, rank the currents
at points a through f from
largest to smallest.

(a) Ia � Ib � Ie � If � Ic � Id
(b) Ia � Ib � Ic � Id � Ie � If
(c) Ie � If � Ic � Id � Ia � Ib

Quick Quiz 17.7

Two resistors, A and B, are connected in a series circuit with a battery. The resist-
ance of A is twice that of B. Which resistor dissipates more power? (a) resistor A
(b) resistor B (c) More information is needed.

Quick Quiz 17.8

�V

30 W

60 W

e f

c d

a b

A

B

Figure 17.12 (Quick
Quiz 17.7)

TIP 17.3 Misconception
About Current
Current is not “used up” in a resistor.
Rather, some of the energy the
charges have received from the 
voltage source is delivered to the 
resistor, making it hot and causing it
to radiate. Also, the current doesn’t
slow down when going through the
resistor: it’s the same throughout the
circuit.
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Example 17.6 The Cost of Lighting Up Your Life
Goal Apply the electric power concept, and calculate the cost of power usage using kilowatt-hours.

Problem A circuit provides a maximum current of 20.0 A at an operating voltage of 1.20 � 102 V. (a) How many
75 W bulbs can operate with this voltage source? (b) At $0.120 per kilowatt-hour, how much does it cost to operate
these bulbs for 8.00 h?

Strategy Find the necessary power with � � I�V, then divide by 75.0 W per bulb to get the total number of bulbs.
To find the cost, convert power to kilowatts and multiply by the number of hours, then multiply by the cost per
kilowatt-hour.

Solution
(a) Find the number of bulbs that can be lighted.

Substitute into Equation 17.8 to get the total power: �total � I�V � (20.0 A)(1.20 � 102 V) � 2.40 � 103 W

Divide the total power by the power per bulb to get the
number of bulbs.

32.0Number of bulbs �
�total

�bulb
�

2.40 � 103 W
75.0 W

 �

(b) Calculate the cost of this electricity for an 8.00-h day.

Find the energy in kilowatt-hours:

 � 19.2 kWh

Energy � �t � (2.40 � 103 W)� 1.00 kW
1.00 � 103 W �(8.00 h)

Multiply by the cost per kilowatt-hour: Cost � (19.2 kWh)($0.12/kWh) � $2.30

Remarks This amount of energy might correspond to what a small office uses in a working day, taking into account all
power requirements (not just lighting). In general, resistive devices can have variable power output, depending on how
the circuit is wired. Here, power outputs were specified, so such considerations were unnecessary.

Exercise 17.6
(a) How many Christmas tree lights drawing 5.00 W of power each could be run on a circuit operating at 
1.20 � 102 V and providing 15.0 A of current? (b) Find the cost to operate one such string 24.0 h per day for the
Christmas season (two weeks), using the rate $0.12/kWh.

Answers (a) 3.60 � 102 bulbs (b) $72.60

EXAMPLE 17.7 The Power Converted by an Electric Heater
Goal Calculate an electrical power output, and link to its effect on the environment through the first law of
thermodynamics.

Problem An electric heater is operated by applying a potential difference of 50.0 V to a nichrome wire of total
resistance 8.00 	. (a) Find the current carried by the wire and the power rating of the heater. (b) Using this heater,
how long would it take to heat 2.50 � 103 moles of diatomic gas (e.g., a mixture of oxygen and nitrogen—air) from
a chilly 10.0°C to 25.0°C? Take the molar specific heat at constant volume of air to be .

Strategy For part (a), find the current with Ohm’s law and substitute into the expression for power. Part (b) is an
isovolumetric process, so the thermal energy provided by the heater all goes into the change in internal energy, �U.
Calculate this quantity using the first law of thermodynamics, and divide by the power to get the time.

5
2 R

Solution
(a) Compute the current and power output.

Apply Ohm’s law to get the current: 6.25 AI �
�V
R

�
50.0 V
8.00 	

�
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17.9 Electrical Activity in The Heart 583

17.9 ELECTRICAL ACTIVITY IN THE HEART
Electrocardiograms
Every action involving the body’s muscles is initiated by electrical activity. The volt-
ages produced by muscular action in the heart are particularly important to physi-
cians. Voltage pulses cause the heart to beat, and the waves of electrical excitation
that sweep across the heart associated with the heartbeat are conducted through
the body via the body fluids. These voltage pulses are large enough to be detected
by suitable monitoring equipment attached to the skin. A sensitive voltmeter mak-
ing good electrical contact with the skin by means of contacts attached with con-
ducting paste can be used to measure heart pulses, which are typically of the order
of 1 mV at the surface of the body. The voltage pulses can be recorded on an
instrument called an electrocardiograph, and the pattern recorded by this instru-
ment is called an electrocardiogram (EKG). In order to understand the informa-
tion contained in an EKG pattern, it is necessary first to describe the underlying
principles concerning electrical activity in the heart.

The right atrium of the heart contains a specialized set of muscle fibers called
the SA (sinoatrial) node that initiates the heartbeat (Fig. 17.13). Electric impulses
that originate in these fibers gradually spread from cell to cell throughout the
right and left atrial muscles, causing them to contract. The pulse that passes
through the muscle cells is often called a depolarization wave because of its effect on
individual cells. If an individual muscle cell were examined in its resting state, a
double-layer electric charge distribution would be found on its surface, as shown
in Figure 17.14a (page 584). The impulse generated by the SA node momentarily
and locally allows positive charge on the outside of the cell to flow in and neutral-
ize the negative charge on the inside layer. This effect changes the cell’s charge
distribution to that shown in Figure 17.14b. Once the depolarization wave has
passed through an individual heart muscle cell, the cell recovers the resting-state
charge distribution (positive out, negative in) shown in Figure 17.14a in about 
250 ms. When the impulse reaches the atrioventricular (AV) node (Fig. 17.13), the
muscles of the atria begin to relax, and the pulse is directed to the ventricular

Substitute into Equation 17.9 to find the power: � � I 2R � (6.25 A)2(8.00 	) � 313 W

(b) How long does it take to heat the gas?

Calculate the thermal energy transfer from the first law.
Note that W � 0 because the volume doesn’t change.

 � 7.79 � 105 J

 � (2.50 � 103 mol)(5
2 
8.31 J/mol
K)(298 K � 283 K)

 Q � �U � nCv�T 

Divide the thermal energy by the power, to get the time: 2.49 � 103 st �
Q
�

�
7.79 � 105 J

313 W
�

Remarks The number of moles of gas given here is approximately what would be found in a bedroom. Warming
the air with this space heater requires only about forty minutes. However, the calculation doesn’t take into account
conduction losses. Recall that a 20-cm-thick concrete wall, as calculated in Chapter 11, permitted the loss of over two
megajoules an hour by conduction!

Exercise 17.7
A hot-water heater is rated at 4.50 � 103 W and operates at 2.40 � 102 V. (a) Find the resistance in the heating
element, and the current. (b) How long does it take to heat 125 L of water from 20.0°C to 50.0°C, neglecting con-
duction and other losses?

Answers (a) 12.8 	, 18.8 A (b) 3.49 � 103 s

Sinoatrial (SA)
node

Purkinje
fibers

LA

LV

RV

RA

Atrioventricular (AV)
node

Figure 17.13 The electrical con-
duction system of the human heart.
(RA: right atrium; LA: left atrium; 
RV: right ventricle; LV: left ventricle.)

A P P L I C AT I O N
Electrocardiograms
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584 Chapter 17 Current and Resistance

muscles by the AV node. The muscles of the ventricles contract as the depolariza-
tion wave spreads through the ventricles along a group of fibers called the Purkinje
fibers. The ventricles then relax after the pulse has passed through. At this point,
the SA node is again triggered and the cycle is repeated.

A sketch of the electrical activity registered on an EKG for one beat of a normal
heart is shown in Figure 17.15. The pulse indicated by P occurs just before the
atria begin to contract. The QRS pulse occurs in the ventricles just before they con-
tract, and the T pulse occurs when the cells in the ventricles begin to recover.
EKGs for an abnormal heart are shown in Figure 17.16. The QRS portion of the
pattern shown in Figure 17.16a is wider than normal, indicating that the patient
may have an enlarged heart. (Why?) Figure 17.16b indicates that there is no con-
stant relationship between the P pulse and the QRS pulse. This suggests a blockage
in the electrical conduction path between the SA and AV nodes which results in
the atria and ventricles beating independently and inefficient heart pumping. Fi-
nally, Figure 17.16c shows a situation in which there is no P pulse and an irregular
spacing between the QRS pulses. This is symptomatic of irregular atrial contrac-
tion, which is called fibrillation. In this condition, the atrial and ventricular contrac-
tions are irregular.

As noted previously, the sinoatrial node directs the heart to beat at the appro-
priate rate, usually about 72 beats per minute. However, disease or the aging
process can damage the heart and slow its beating, and a medical assist may be
necessary in the form of a cardiac pacemaker attached to the heart. This matchbox-
sized electrical device implanted under the skin has a lead that is connected to the
wall of the right ventricle. Pulses from this lead stimulate the heart to maintain its
proper rhythm. In general, a pacemaker is designed to produce pulses at a rate of
about 60 per minute, slightly slower than the normal number of beats per minute,

(a) (b)

Depolarization wave front

Figure 17.14 (a) Charge distribu-
tion of a muscle cell in the atrium 
before a depolarization wave has
passed through the cell. (b) Charge
distribution as the wave passes.
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Figure 17.15 An EKG response
for a normal heart.

Figure 17.16 Abnormal EKGs.

A P P L I C AT I O N
Cardiac Pacemakers

44920_17_p568-591  1/5/05  1:42 PM  Page 584
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but sufficient to maintain life. The circuitry basically consists of a capacitor charg-
ing up to a certain voltage from a lithium battery and then discharging. The de-
sign of the circuit is such that, if the heart is beating normally, the capacitor is not
allowed to charge completely and send pulses to the heart.

An Emergency Room in Your Chest
In June 2001, an operation on Vice President Dick Cheney focused attention on
the progress in treating heart problems with tiny implanted electrical devices.
Aptly termed “an emergency room in your chest” by Cheney’s attending physician,
devices called Implanted Cardioverter Defibrillators (ICD’s) can monitor, record,
and logically process heart signals and then supply different corrective signals to
hearts beating too slowly, too rapidly, or irregularly. ICD’s can even monitor and
send signals to the atria and ventricles independently! Figure 17.17a shows a
sketch of an ICD with conducting leads that are implanted in the heart. Figure
17.17b shows an actual titanium-encapsulated dual-chamber ICD.

The latest ICD’s are sophisticated devices capable of a number of functions:

1. monitoring both atrial and ventricular chambers to differentiate between atrial
and potentially fatal ventricular arrhythmias, which require prompt regulation;

2. storing about a half hour of heart signals that can easily be read out by a physi-
cian;

3. being easily reprogrammed with an external magnetic wand;
4. performing complicated signal analysis and comparison;
5. supplying either 0.25- to 10-V repetitive pacing signals to speed up or slow down

a malfunctioning heart, or a high-voltage pulse of about 800 V to halt the po-
tentially fatal condition of ventricular fibrillation, in which the heart quivers
rapidly rather than beats (people who have experienced such a high-voltage jolt
say that it feels like a kick or a bomb going off in the chest);

6. automatically adjusting the number of pacing pulses per minute to match the
patient’s activity.

ICD’s are powered by lithium batteries and have implanted lifetimes of 4–6
years. Some basic properties of these adjustable ICD’s are given in Table 17.3
(page 586). In the table, tachycardia means “rapid heartbeat” and bradycardia

Dual-chamber ICD

Blowup of defibrillator/
monitor lead

(a) (b)

FIGURE 17.17 (a) A dual-chamber ICD with leads in the heart. One lead monitors and stimulates
the right atrium, and the other monitors and stimulates the right ventricle. (b) Medtronic Dual 
Chamber ICD.
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586 Chapter 17 Current and Resistance

TABLE 17.3
Properties of Implanted Cardioverter Defibrillatorsa

Physical Specifications

Mass (g) 85
Size (cm) 7.3 � 6.2 � 1.3 (about five stacked

silver dollars)
Antitachycardia Pacing ICD delivers a burst of critically

timed low-energy pulses
Number of Bursts 1–15
Burst Cycle Length (ms) 200–552
Number of Pulses per Burst 2–20
Pulse Amplitude (V) 7.5 or 10
Pulse Width (ms) 1.0 or 1.9

High-Voltage Defibrillation
Pulse energy ( J) 37 stored/33 delivered
Pulse Amplitude (V) 801

Bradycardia Pacing A dual-chamber ICD can steadily
deliver repetitive pulses to both
the atrium and the ventricle

Base Frequency (beats/minute) 40–100
Pulse Amplitude (V) 0.25–7.5
Pulse Width (ms) 0.05, 0.1–1.5, 1.9

aFor more information see www.photonicd.com/specs.html.

means “slow heartbeat.” A key factor in developing tiny electrical implants that
serve as defibrillators is the development of capacitors with relatively large capaci-
tance (125 �f ) and small physical size.

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

17.1 Electric Current
The electric current I in a conductor is defined as

[17.1]

where �Q is the charge that passes through a cross section
of the conductor in time �t. The SI unit of current is the
ampere (A); 1 A � 1 C/s. By convention, the direction of
current is the direction of flow of positive charge.

17.2 A Microscopic View: Current 
and Drift Speed
The current in a conductor is related to the motion of the
charge carriers by

[17.2]

where n is the number of mobile charge carriers per unit
volume, q is the charge on each carrier, vd is the drift speed

I � nqvdA

I � 
�Q
�t

of the charges, and A is the cross-sectional area of the
conductor.

17.4 Resistance and Ohm’s Law
The resistance R of a conductor is defined as the ratio of
the potential difference across the conductor to the cur-
rent in it:

[17.3]

The SI units of resistance are volts per ampere, or ohms
(	); 1 	 � 1 V/A.

Ohm’s law describes many conductors, for which the ap-
plied voltage is directly proportional to the current it
causes. The proportionality constant is the resistance:

�V � IR [17.4]

17.5 Resistivity
If a conductor has length l and cross-sectional area A, its
resistance is

[17.5]R � �
l
A

R � 
�V
I
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where �, is an intrinsic property of the conductor called the
electrical resistivity. The SI unit of resistivity is the ohm-
meter (	 
 m).

17.6 Temperature Variation of Resistance
Over a limited temperature range, the resistivity of a con-
ductor varies with temperature according to the expression

� � �0[1 � �(T � T0)] [17.6]

where � is the temperature coefficient of resistivity and �0
is the resistivity at some reference temperature T0 (usually
taken to be 20°C).

The resistance of a conductor varies with temperature
according to the expression

R � R0[1 � �(T � T0)] [17.7]

17.8 Electrical Energy and Power
If a potential difference �V is maintained across an electri-
cal device, the power, or rate at which energy is supplied to
the device, is

� � I �V [17.8]

Because the potential difference across a resistor is 
�V � IR , the power delivered to a resistor can be expressed
as

[17.9]

A kilowatt-hour is the amount of energy converted or
consumed in one hour by a device supplied with power at
the rate of 1 kW. This is equivalent to

1 kWh � 3.60 � 106 J [17.10]

� � I 2R �
�V 2

R

CONCEPTUAL QUESTIONS
1. Car batteries are often rated in ampere-hours. Does this

unit designate the amount of current, power, energy, or
charge that can be drawn from the battery?

2. We have seen that an electric field must exist inside a con-
ductor that carries a current. How is that possible in view
of the fact that in electrostatics we concluded that the
electric field must be zero inside a conductor?

3. Why don’t the free electrons in a metal fall to the bottom
of the metal due to gravity? And charges in a conductor
are supposed to reside on the surface—why don’t the
free electrons all go to the surface?

4. In an analogy between traffic flow and electrical current,
what would correspond to the charge Q? What would cor-
respond to the current I ?

5. Newspaper articles often have statements such as “10 000
volts of electricity surged through the victim’s body.” What
is wrong with this statement?

6. Two lightbulbs are each connected to a voltage of 120 V.
One has a power of 25 W, the other 100 W. Which bulb has
the higher resistance? Which bulb carries more current?

7. When the voltage across a certain conductor is doubled,
the current is observed to triple. What can you conclude
about the conductor?

8. There is an old admonition given to experimenters to
“keep one hand in the pocket” when working around
high voltages. Why is this warning a good idea?

9. What factors affect the resistance of a conductor?

10. Some homes have light dimmers that are operated by
rotating a knob. What is being changed in the electric cir-
cuit when the knob is rotated?

11. Two wires A and B with circular cross section are made of the
same metal and have equal lengths, but the resistance of wire
A is three times greater than that of wire B. What is the ratio
of their cross-sectional areas? How do the radii compare?

12. What single experimental requirement makes supercon-
ducting devices expensive to operate? In principle, can
this limitation be overcome?

13. What could happen to the drift velocity of the electrons in
a wire and to the current in the wire if the electrons could
move through it freely without resistance?

14. Use the atomic theory of matter to explain why the resist-
ance of a material should increase as its temperature
increases.

15. When is more power delivered to a lightbulb, just after it is
turned on and the glow of the filament is increasing or af-
ter it has been on for a few seconds and the glow is steady?

PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide

= coached problem with hints available at www.cp7e.com = biomedical application

Section 17.1 Electric Current
Section 17.2 A Microscopic View: Current and Drift Speed

If a current of 80.0 mA exists in a metal wire, how many
electrons flow past a given cross section of the wire in
10.0 min? Sketch the direction of the current and the di-
rection of the electrons’ motion.

2. A certain conductor has 7.50 � 1028 free electrons per
cubic meter, a cross-sectional area of 4.00 � 10�6 m2, and

1.

carries a current of 2.50 A. Find the drift speed of the
electrons in the conductor.

3. A 1.00-V potential difference is maintained across a 
10.0-	 resistor for a period of 20.0 s. What total charge
passes through the wire in this time interval?

4. In a particular television picture tube, the measured beam
current is 60.0 � A. How many electrons strike the screen
every second?
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5. In the Bohr model of the hydrogen atom, an electron in
the lowest energy state moves at a speed of 2.19 � 106

m/s in a circular path having a radius of 5.29 � 10�11 m.
What is the effective current associated with this orbiting
electron?

6. If 3.25 � 10�3 kg of gold is deposited on the negative
electrode of an electrolytic cell in a period of 2.78 h, what
is the current in the cell during that period? Assume that
the gold ions carry one elementary unit of positive
charge.

A 200-km-long high-voltage transmis-
sion line 2.0 cm in diameter carries a steady current of
1 000 A. If the conductor is copper with a free charge
density of 8.5 � 1028 electrons per cubic meter, how many
years does it take one electron to travel the full length of
the cable?

8. An aluminum wire carrying a current of 5.0 A has a cross-
sectional area of 4.0 � 10�6 m2. Find the drift speed
of the electrons in the wire. The density of aluminum
is 2.7 g/cm3. (Assume that one electron is supplied by
each atom.)

9. If the current carried by a conductor is doubled, what
happens to (a) the charge carrier density? (b) the elec-
tron drift velocity?

Section 17.4 Resistance and Ohm’s Law
Section 17.5 Resistivity
10. A lightbulb has a resistance of 240 	 when operating at a

voltage of 120 V. What is the current in the bulb?

11. A person notices a mild shock if the current along a path
through the thumb and index finger exceeds 80 �A.
Compare the maximum possible voltage without shock
across the thumb and index finger with a dry-skin resist-
ance of 4.0 � 105 	 and a wet-skin resistance of 2 000 	.

12. Suppose that you wish to fabricate a uniform wire out
of 1.00 g of copper. If the wire is to have a resistance 
R � 0.500 	, and if all of the copper is to be used, what
will be (a) the length and (b) the diameter of the wire?

13. Calculate the diameter of a 2.0-cm length of tungsten fila-
ment in a small lightbulb if its resistance is 0.050 	.

14. Eighteen-gauge wire has a diameter of 1.024 mm. Calcu-
late the resistance of 15 m of 18-gauge copper wire at
20°C.

15. A potential difference of 12 V is found to produce a cur-
rent of 0.40 A in a 3.2-m length of wire with a uniform
radius of 0.40 cm. What is (a) the resistance of the wire?
(b) the resistivity of the wire?

16. Make an order-of-magnitude estimate of the cost of one
person’s routine use of a hair dryer for 1 yr. If you do not
use a blow dryer yourself, observe or interview someone
who does. State the quantities you estimate and their
values.

A wire 50.0 m long and 2.00 mm in diameter is connected
to a source with a potential difference of 9.11 V, and the
current is found to be 36.0 A. Assume a temperature of
20°C, and, using Table 17.1, identify the metal out of
which the wire is made.

18. A rectangular block of copper has sides of length 10 cm,
20 cm, and 40 cm. If the block is connected to a 6.0-V
source across two of its opposite faces, what are (a) the

17.

7.

maximum current and (b) the minimum current that the
block can carry?

19. A wire of initial length L0 and radius r0 has a measured
resistance of 1.0 	. The wire is drawn under tensile stress
to a new uniform radius of r � 0.25r0. What is the new
resistance of the wire?

Section 17.6 Temperature Variation of Resistance
20. A certain lightbulb has a tungsten filament with a resist-

ance of 19 	 when cold and 140 	 when hot. Assume that
Equation 17.7 can be used over the large temperature
range involved here, and find the temperature of the fila-
ment when it is hot. Assume an initial temperature of
20°C.
While taking photographs in Death Valley on a day when
the temperature is 58.0°C, Bill Hiker finds that a certain
voltage applied to a copper wire produces a current of
1.000 A. Bill then travels to Antarctica and applies the
same voltage to the same wire. What current does he reg-
ister there if the temperature is � 88.0°C? Assume that no
change occurs in the wire’s shape and size.

22. A metal wire has a resistance of 10.00 	 at a temperature
of 20°C. If the same wire has a resistance of 10.55 	 at
90°C, what is the resistance of the wire when its tempera-
ture is � 20°C?

23. At 20°C, the carbon resistor in an electric circuit con-
nected to a 5.0-V battery has a resistance of 200 	. What is
the current in the circuit when the temperature of the
carbon rises to 80°C?

24. A wire 3.00 m long and 0.450 mm2 in cross-sectional area
has a resistance of 41.0 	 at 20°C. If its resistance
increases to 41.4 	 at 29.0°C, what is the temperature
coefficient of resistivity?

25. The copper wire used in a house has a cross-sectional area
of 3.00 mm2. If 10.0 m of this wire is used to wire a circuit
in the house at 20.0°C, find the resistance of the wire at
temperatures of (a) 30.0°C and (b) 10.0°C.

26. A 100-cm-long copper wire of radius 0.50 cm has a poten-
tial difference across it sufficient to produce a current of
3.0 A at 20°C. (a) What is the potential difference? (b) If
the temperature of the wire is increased to 200°C, what
potential difference is now required to produce a current
of 3.0 A?

(a) A 34.5-m length of copper wire at
20.0°C has a radius of 0.25 mm. If a potential difference
of 9.0 V is applied across the length of the wire, deter-
mine the current in the wire. (b) If the wire is heated to
30.0°C while the 9.0-V potential difference is maintained,
what is the resulting current in the wire?

28. A toaster rated at 1 050 W operates on a 120-V household
circuit and a 4.00-m length of nichrome wire as its heating
element. The operating temperature of this element is
320°C. What is the cross-sectional area of the wire?

29. In one form of plethysmograph (a device for measuring
volume), a rubber capillary tube with an inside diameter of
1.00 mm is filled with mercury at 20°C. The resistance of
the mercury is measured with the aid of electrodes sealed
into the ends of the tube. If 100.00 cm of the tube is wound
in a spiral around a patient’s upper arm, the blood flow dur-
ing a heartbeat causes the arm to expand, stretching the
tube to a length of 100.04 cm. From this observation, and

27.

21.
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assuming cylindrical symmetry, you can find the change in
volume of the arm, which gives an indication of blood flow.
(a) Calculate the resistance of the mercury. (b) Calculate
the fractional change in resistance during the heartbeat.
[Hint: The fraction by which the cross-sectional area of the
mercury thread decreases is the fraction by which the
length increases, since the volume of mercury is constant.]
Take �Hg � 9.4 � 10�7 	 
 m.

30. A platinum resistance thermometer has resistances of
200.0 	 when placed in a 0°C ice bath and 253.8 	 when
immersed in a crucible containing melting potassium.
What is the melting point of potassium? [Hint: First
determine the resistance of the platinum resistance
thermometer at room temperature, 20°C.]

Section 17.8 Electrical Energy and Power
31. A toaster is rated at 600 W when connected to a 120-V

source. What current does the toaster carry, and what is its
resistance?

32. If electrical energy costs 12 cents, or $0.12, per kilowatt-
hour, how much does it cost to (a) burn a 100-W lightbulb
for 24 h? (b) operate an electric oven for 5.0 h if it carries
a current of 20.0 A at 220 V?

33. How many 100-W lightbulbs can you use in a 120-V circuit
without tripping a 15-A circuit breaker? (The bulbs are
connected in parallel, which means that the potential dif-
ference across each lightbulb is 120 V.)

34. A high-voltage transmission line with a resistance of
0.31 	/km carries a current of 1 000 A. The line is at a
potential of 700 kV at the power station and carries the
current to a city located 160 km from the station. (a) What
is the power loss due to resistance in the line? (b) What
fraction of the transmitted power does this loss represent?
The heating element of a coffeemaker operates at 120 V
and carries a current of 2.00 A. Assuming that the water
absorbs all of the energy converted by the resistor, calcu-
late how long it takes to heat 0.500 kg of water from room
temperature (23.0°C) to the boiling point.

36. The power supplied to a typical black-and-white television
set is 90 W when the set is connected to 120 V. (a) How
much electrical energy does this set consume in 1 hour?
(b) A color television set draws about 2.5 A when con-
nected to 120 V. How much time is required for it to
consume the same energy as the black-and-white model
consumes in 1 hour?

37. What is the required resistance of an immersion heater
that will increase the temperature of 1.50 kg of water from
10.0°C to 50.0°C in 10.0 min while operating at 120 V?

38. A certain toaster has a heating element made of
Nichrome resistance wire. When the toaster is first con-
nected to a 120-V source of potential difference (and the
wire is at a temperature of 20.0°C), the initial current is
1.80 A. However, the current begins to decrease as the
resistive element warms up. When the toaster reaches its
final operating temperature, the current has dropped
to 1.53 A. (a) Find the power the toaster converts when
it is at its operating temperature. (b) What is the final
temperature of the heating element?

A copper cable is designed to carry a
current of 300 A with a power loss of 2.00 W/m. What is
the required radius of this cable?

39.

35.

40. A small motor draws a current of 1.75 A from a 120-V line.
The output power of the motor is 0.20 hp. (a) At a rate of
$0.060/kWh, what is the cost of operating the motor for
4.0 h? (b) What is the efficiency of the motor?

41. It has been estimated that there are 270 million plug-in
electric clocks in the United States, approximately one
clock for each person. The clocks convert energy at the
average rate of 2.50 W. To supply this energy, how many
metric tons of coal are burned per hour in coal-fired elec-
tric generating plants that are, on average, 25.0%
efficient? The heat of combustion for coal is 33.0 MJ/kg.

42. The cost of electricity varies widely throughout the United
States; $0.120/kWh is a typical value. At this unit price,
calculate the cost of (a) leaving a 40.0-W porch light on
for 2 weeks while you are on vacation, (b) making a piece
of dark toast in 3.00 min with a 970-W toaster, and (c) dry-
ing a load of clothes in 40.0 min in a 5 200-W dryer.

43. How much does it cost to watch a complete 21-hour-long
World Series on a 180-W television set? Assume that elec-
tricity costs $0.070/kWh.

44. A house is heated by a 24.0-kW electric furnace that uses
resistance heating. The rate for electrical energy is
$0.080/kWh. If the heating bill for January is $200, how
long must the furnace have been running on an average
January day?
An 11-W energy-efficient fluorescent lamp is designed to
produce the same illumination as a conventional 40-W
lamp. How much does the energy-efficient lamp save dur-
ing 100 hours of use? Assume a cost of $0.080/kWh for
electrical energy.

46. An office worker uses an immersion heater to warm 250 g
of water in a light, covered, insulated cup from 20°C to
100°C in 4.00 minutes. The heater is a Nichrome resist-
ance wire connected to a 120-V power supply. Assume that
the wire is at 100°C throughout the 4.00-min time inter-
val. Specify a diameter and a length that the wire can
have. Can it be made from less than 0.5 cm3 of Nichrome?

47. The heating coil of a hot-water heater has a resistance of 
20 	 and operates at 210 V. If electrical energy costs
$0.080/kWh, what does it cost to raise the 200 kg of water in
the tank from 15°C to 80°C? (See Chapter 11.)

ADDITIONAL PROBLEMS
48. One lightbulb is marked “25 W 120 V,” and another

“100 W 120 V”; this means that each converts its respec-
tive power when plugged into a constant 120-V potential
difference. (a) Find the resistance of each bulb. (b) How
long does it take for 1.00 C to pass through the dim bulb?
How is this charge different upon its exit from, versus its
entry into, the bulb? (c) How long does it take for 1.00 J
to pass through the dim bulb? How is this energy different
upon its exit from, versus its entry into, the bulb? (d) Find
the cost of running the dim bulb continuously for 30.0
days if the electric company sells its product at $0.070 0
per kWh. What physical quantity does the electric company
sell? What is its price for one SI unit of this quantity?
A particular wire has a resistivity of 3.0 � 10�8 	 
 m and a
cross-sectional area of 4.0 � 10�6 m2. A length of this wire
is to be used as a resistor that will develop 48 W of power
when connected across a 20-V battery. What length of wire
is required?

49.

45.
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50. A steam iron draws 6.0 A from a 120-V line. (a) How
many joules of internal energy are produced in 20 min?
(b) How much does it cost, at $0.080/kWh, to run the
steam iron for 20 min?

51. An experiment is conducted to measure the electrical re-
sistivity of Nichrome in the form of wires with different
lengths and cross-sectional areas. For one set of measure-
ments, a student uses 30-gauge wire, which has a cross-
sectional area of 7.30 � 10�8 m2. The student measures
the potential difference across the wire and the current in
the wire with a voltmeter and an ammeter, respectively.
For each of the measurements given in the following
table taken on wires of three different lengths, calculate
the resistance of the wires and the corresponding value
of the resistivity:

L (m) �V (V) I (A) R (�) � (� � m)

0.540 5.22 0.500
1.028 5.82 0.276
1.543 5.94 0.187

What is the average value of the resistivity, and how does
this value compare with the value given in Table 17.1?

52. Birds resting on high-voltage power lines are a common
sight. The copper wire on which a bird stands is 2.2 cm in
diameter and carries a current of 50 A. If the bird’s feet
are 4.0 cm apart, calculate the potential difference across
its body.

53. You are cooking breakfast for yourself and a friend using
a 1 200-W waffle iron and a 500-W coffeepot. Usually, you
operate these appliances from a 110-V outlet for 0.500 h
each day. (a) At 12 cents per kWh, how much do you
spend to cook breakfast during a 30.0 day period? (b) You
find yourself addicted to waffles and would like to up-
grade to a 2 400-W waffle iron that will enable you to cook
twice as many waffles during a half-hour period, but you
know that the circuit breaker in your kitchen is a 20-A
breaker. Can you do the upgrade?

54. The current in a conductor varies in time as shown in Fig-
ure P17.54. (a) How many coulombs of charge pass
through a cross section of the conductor in the interval
from t � 0 to t � 5.0 s? (b) What constant current would
transport the same total charge during the 5.0-s interval as
does the actual current?

is the current delivered to the motor? (b) If the electric
motor draws 8.00 kW as the car moves at a steady speed of
20.0 m/s, how far will the car travel before it is “out of
juice”?

56. (a) A 115-g mass of aluminum is formed into a right
circular cylinder, shaped so that its diameter equals its
height. Calculate the resistance between the top and
bottom faces of the cylinder at 20°C. (b) Calculate the
resistance between opposite faces if the same mass of
aluminum is formed into a cube.

57. A length of metal wire has a radius of 5.00 � 10�3 m and
a resistance of 0.100 	. When the potential difference
across the wire is 15.0 V, the electron drift speed is found
to be 3.17 � 10�4 m/s. On the basis of these data, calcu-
late the density of free electrons in the wire.

58. A carbon wire and a Nichrome wire are connected one af-
ter the other. If the combination has a total resistance of
10.0 k	 at 20°C, what is the resistance of each wire at
20°C so that the resistance of the combination does not
change with temperature?

59. (a) Determine the resistance of a lightbulb marked
100 W @ 120 V. (b) Assuming that the filament is tungsten
and has a cross-sectional area of 0.010 mm2, determine the
length of the wire inside the bulb when the bulb is operat-
ing. (c) Why do you think the wire inside the bulb is
tightly coiled? (d) If the temperature of the tungsten wire
is 2 600°C when the bulb is operating, what is the length of
the wire after the bulb is turned off and has cooled to
20°C? (See Chapter 10, and use 4.5 � 10�6/°C as the coef-
ficient of linear expansion for tungsten.)

60. In a certain stereo system, each speaker has a resistance of
4.00 	. The system is rated at 60.0 W in each channel.
Each speaker circuit includes a fuse rated at a maximum
current of 4.00 A. Is this system adequately protected
against overload?
A resistor is constructed by forming a material of resistiv-
ity 3.5 � 105 	 
 m into the shape of a hollow cylinder
of length 4.0 cm and inner and outer radii 0.50 cm and
1.2 cm, respectively. In use, a potential difference is
applied between the ends of the cylinder, producing a
current parallel to the length of the cylinder. Find the
resistance of the cylinder.

62. The graph in Figure P17.62a shows the current I in a
diode as a function of the potential difference �V across
the diode. Figure P17.62b shows the circuit used to make
the measurements. The symbol represents the
diode. (a) Using Equation 17.3, make a table of the resist-
ance of the diode for different values of �V in the range
from � 1.5 V to �1.0 V. (b) Based on your results, what
amazing electrical property does a diode possess?

63. An x-ray tube used for cancer therapy operates at 4.0 MV,
with a beam current of 25 mA striking the metal target.
Nearly all the power in the beam is transferred to a stream
of water flowing through holes drilled in the target. What
rate of flow, in kilograms per second, is needed if the rise
in temperature (�T ) of the water is not to exceed 50°C?

64. A 50.0-g sample of a conducting material is all that is avail-
able. The resistivity of the material is measured to be 
11 � 10�8 	 
 m, and the density is 7.86 g/cm3. The mate-
rial is to be shaped into a solid cylindrical wire that has a
total resistance of 1.5 	. (a) What length of wire is
required? (b) What must be the diameter of the wire?

61.
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Figure P17.54

An electric car is designed to run off
a bank of 12.0-V batteries with a total energy storage of
2.00 � 107 J. (a) If the electric motor draws 8.00 kW, what

55.
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Figure P17.62

65. (a) A sheet of copper (� � 1.7 � 10�8 	 
 m) is 2.0 mm
thick and has surface dimensions of 8.0 cm � 24 cm. If
the long edges are joined to form a tube 24 cm in length,
what is the resistance between the ends? (b) What mass of
copper is required to manufacture a 1 500-m-long spool
of copper cable with a total resistance of 4.5 	?
When a straight wire is heated, its resistance changes ac-
cording to the equation

R � R0[1 � �(T � T0)]

(Eq. 17.7), where � is the temperature coefficient of resis-
tivity. (a) Show that a more precise result, which includes
the fact that the length and area of a wire change when it
is heated, is

where �� is the coefficient of linear expansion. (See Chap-
ter 10.) (b) Compare the two results for a 2.00-m-long cop-
per wire of radius 0.100 mm, starting at 20.0°C and heated
to 100.0°C.

67. A man wishes to vacuum his car with a canister vacuum
cleaner marked 535 W at 120 V. The car is parked far from
the building, so he uses an extension cord 15.0 m long to
plug the cleaner into a 120-V source. Assume that the
cleaner has constant resistance. (a) If the resistance of each
of the two conductors of the extension cord is 0.900 	,
what is the actual power delivered to the cleaner? (b) If, in-
stead, the power is to be at least 525 W, what must be the
diameter of each of two identical copper conductors in the
cord the young man buys? (c) Repeat part (b) if the power
is to be at least 532 W. [Suggestion: A symbolic solution can
simplify the calculations.]

ACTIVITIES
1. Connect one terminal of a D-cell battery to the base of a

flashlight bulb with insulated wire, tape a second wire to
the other battery terminal, and tape a third wire to the
center conductor of the bulb, as in Figure A17.1. Make

R �
R0[1 � �(T � T0)][1 � ��(T � T0)]

[1 � 2��(T � T0)]

66.
Touch objects
with these
wires

+

–
Figure A17.1

sure to remove about 1 cm of insulation from the ends of
all wires before making the connections. Now bridge the
gap between the open wires with different objects, such as
a plastic pen, an aluminum can, a penny, a rubber band,
and a spoon. Which objects make the bulb light up? Ex-
plain your observations.

2. When the lightbulbs in your home are turned on, they are
always connected across the same potential difference.
Which do you believe has a filament with the highest re-
sistance when cool, a 60-W bulb or a 100-W bulb? To
check your prediction, ask your instructor to lend you a
device called an ohmmeter and to instruct you in its use.
A resistor must always be disconnected from a circuit
when its resistance is measured with an ohmmeter. 

3. Examine the labels on several appliances, such as a toaster,
a television set, a lamp, a stereo system, an air conditioner,
and a clock. From each label, determine the power rating
of the device in watts. Check the billing statement from
your electric utility company to find the cost of electrical
energy per kilowatt-hour. (Prices usually range from about
a nickel to 20 cents.) Calculate the cost of running each
appliance for 1 h. Estimate how many hours per day each
appliance is used. Then, on the basis of your daily esti-
mate, calculate the monthly cost of using each appliance.
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Batteries, resistors, and capacitors can be used in various combinations to construct electric
circuits, which direct and control the flow of electricity and the energy it conveys. Such cir-
cuits make possible all the modern conveniences in a home—electric lights, electric stove
tops and ovens, washing machines, and a host of other appliances and tools. Electric circuits
are also found in our cars, in tractors that increase farming productivity, and in all types of
medical equipment that saves so many lives every day.

In this chapter, we study and analyze a number of simple direct-current circuits. The analy-
sis is simplified by the use of two rules known as Kirchhoff’s rules, which follow from the prin-
ciple of conservation of energy and the law of conservation of charge. Most of the circuits are
assumed to be in steady state, which means that the currents are constant in magnitude and
direction. We close the chapter with a discussion of circuits containing resistors and capaci-
tors; in which current varies with time.

18.1 SOURCES OF EMF
A current is maintained in a closed circuit by a source of emf.1 Among such
sources are any devices (for example, batteries and generators) that increase the
potential energy of the circulating charges. A source of emf can be thought of as a
“charge pump” that forces electrons to move in a direction opposite the electro-
static field inside the source. The emf of a source is the work done per unit
charge; hence the SI unit of emf is the volt.

Consider the circuit in Active Figure 18.1a consisting of a battery connected to a
resistor. We assume that the connecting wires have no resistance. If we neglect the
internal resistance of the battery, the potential drop across the battery (the termi-
nal voltage) equals the emf of the battery. Because a real battery always has some

�

The complex circuits in modern
electronic devices allow a highly
sophisticated control of current,
which in turn can be used to obtain,
store, manipulate, and transmit data.

1The term was originally an abbreviation for electromotive force, but emf is not really a force, so the long form is discouraged.
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internal resistance r, however, the terminal voltage is not equal to the emf. The
circuit of Active Figure 18.1a can be described schematically by the diagram in
Active Figure 18.1b. The battery, represented by the dashed rectangle, consists of a
source of emf in series with an internal resistance r. Now imagine a positive
charge moving through the battery from a to b in the figure. As the charge passes
from the negative to the positive terminal of the battery, the potential of the
charge increases by . As the charge moves through the resistance r, however, its
potential decreases by the amount Ir, where I is the current in the circuit. The ter-
minal voltage of the battery, �V � Vb � Va, is therefore given by

�V � � Ir [18.1]

From this expression, we see that is equal to the terminal voltage when the cur-
rent is zero, called the open-circuit voltage. By inspecting Figure 18.1b, we find
that the terminal voltage �V must also equal the potential difference across the ex-
ternal resistance R , often called the load resistance; that is, �V � IR . Combining
this relationship with Equation 18.1, we arrive at

� IR � Ir [18.2]

Solving for the current gives

The preceding equation shows that the current in this simple circuit depends on both
the resistance external to the battery and the internal resistance of the battery. If R is
much greater than r, we can neglect r in our analysis (an option we usually select).

If we multiply Equation 18.2 by the current I, we get

I � I 2R � I 2r

This equation tells us that the total power output I of the source of emf is con-
verted at the rate I 2R at which energy is delivered to the load resistance, plus the
rate I 2r at which energy is delivered to the internal resistance. Again, if r �� R ,
most of the power delivered by the battery is transferred to the load resistance.

Unless otherwise stated, we will assume in our examples and end-of-chapter
problems that the internal resistance of a battery in a circuit is negligible.

18.2 RESISTORS IN SERIES
When two or more resistors are connected end to end as in Active Figure 18.2, they
are said to be in series. The resistors could be simple devices, such as lightbulbs or
heating elements. When two resistors R1 and R 2 are connected to a battery as in
Active Figure 18.2, the current is the same in the two resistors, because any charge
that flows through R1 must also flow through R2. This is analogous to water flowing
through a pipe with two constrictions, corresponding to R1 and R 2. Whatever vol-
ume of water flows in one end in a given time interval must exit the opposite end.

Because the potential difference between a and b in Active Figure 18.2b equals
IR 1 and the potential difference between b and c equals IR 2, the potential differ-
ence between a and c is

�V � IR1 � IR2 � I(R1 � R2)

Regardless of how many resistors we have in series, the sum of the potential differ-
ences across the resistors is equal to the total potential difference across the com-
bination. As we will show later, this is a consequence of the conservation of energy.
Active Figure 18.2c shows an equivalent resistor R eq that can replace the two
resistors of the original circuit. The equivalent resistor has the same effect on the
circuit because it results in the same current in the circuit as the two resistors.
Applying Ohm’s law to this equivalent resistor, we have

�V � IReq

�
�

I �
�

R � r

�

�
�

�

�

+

Resistor

Battery
–

(a)

a

d R

I

br
– +

c

(b)

I

�

ACTIVE FIGURE 18.1
(a) A circuit consisting of a resistor
connected to the terminals of a bat-
tery. (b) A circuit diagram of a source
of emf having internal resistance r
connected to an external resistor R .

Log into PhysicsNow at
www.cp7e.com and go to Active Fig-
ure 18.1, where you can adjust the
emf and the resistances r and R, and
see the effect on the current in 
part (b).

�

An assortment of batteries.
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or
ge
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TIP 18.1 What’s Constant 
in a Battery?
Equation 18.2 shows that the current
in a circuit depends on the resistance
of the battery, so a battery can’t be
considered a source of constant cur-
rent. Even the terminal voltage of a
battery given by Equation 18.1 can’t
be considered constant, because the
internal resistance can change (due
to warming, for example, during the
operation of the battery). A battery is,
however, a source of constant emf.
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Equating the preceding two expressions, we have

IReq � I(R1 � R 2)

or

R eq � R1 � R2 (series combination) [18.3]

An extension of the preceding analysis shows that the equivalent resistance of
three or more resistors connected in series is

Req � R1 � R2 � R 3 � � � � [18.4]

Therefore, the equivalent resistance of a series combination of resistors is the
algebraic sum of the individual resistances and is always greater than any individ-
ual resistance.

Note that if the filament of one lightbulb in Active Figure 18.2 were to fail, the
circuit would no longer be complete (an open-circuit condition would exist) and
the second bulb would also go out.

+ –

(a) (b)

I

R1 R2

I

�V
+ –

a b c

Battery

R1 R2

(c)

Req

I

�V
+ –

a c

ACTIVE FIGURE 18.2
A series connection of two resistors, R1 and R2. The currents in the resistors are the same, and the
equivalent resistance of the combination is given by Req � R1 � R2.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 18.2, where you can adjust the battery
voltage and resistances R1 and R2, observing the effect on the current and voltages of the individual 
resistors.

A new design for Christmas tree lights allows 
them to be connected in series. A failed bulb in 
such a string would result in an open circuit, 
and all of the bulbs would go out. How can the
bulbs be redesigned to prevent this from 
happening?

Explanation If the string of lights contained the
usual kind of bulbs, a failed bulb would be hard 
to locate. Each bulb would have to be replaced 
with a good bulb, one by one, until the failed 
bulb was found. If there happened to be two 
or more failed bulbs in the string of lights, 
finding them would be a lengthy and annoying 
task.

Applying Physics 18.1 Christmas Lights in Series 

Filament

Jumper

Glass insulator

Figure 18.3 (Applying
Physics 18.1) Diagram of a
modern miniature holiday
lightbulb, with a jumper con-
nection to provide a current if
the filament breaks.

Equivalent resistance of a series 
combination of resistors �
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18.2 Resistors in Series 595

Christmas lights use special bulbs that have an insu-
lated loop of wire (a jumper) across the conducting
supports to the bulb filaments (Fig. 18.3). If the fila-
ment breaks and the bulb fails, the bulb’s resistance in-
creases dramatically. As a result, most of the applied

voltage appears across the loop of wire. This voltage
causes the insulation around the loop of wire to burn,
causing the metal wire to make electrical contact with
the supports. This produces a conducting path
through the bulb, so the other bulbs remain lit.

When a piece of wire is used to connect points b and c in Figure 18.2b, the bright-
ness of bulb R1 (a) increases, (b) decreases but remains lit, (c) stays the same,
(d) goes out. The brightness of bulb R2 (a) increases, (b) decreases but remains
lit, (c) stays the same, (d) goes out. (Assume connecting wires have no resistance.)

Quick Quiz 18.1

In Figure 18.4a the current is
measured with the ammeter at
the right side of the circuit. When
the switch is opened as in Figure
18.4b, the reading on the amme-
ter (a) increases (b) decreases
(c) doesn’t change.

Quick Quiz 18.2

EXAMPLE 18.1 Four Resistors in Series
Goal Analyze several resistors connected in series.

Problem Four resistors are arranged as shown in Figure
18.5a. Find (a) the equivalent resistance of the circuit and
(b) the current in the circuit if the emf of the battery is
6.0 V.

Strategy Because the resistors are connected in series,
summing their resistances gives the equivalent resistance.
Ohm’s law can then be used to find the current.

A

R1

(a)

R2 A

R1

(b)

R2

Figure 18.4 (Quick Quiz 18.2)

(b)

R1 R2

6.0 V(a)

R3 R4

6.0 V

2.0 	 4.0 	 5.0 	 7.0 	 18.0 	

Figure 18.5 (Example 18.1) (a) Four resistors connected in 
series. (b) The equivalent resistance of the circuit in (a).

Solution
(a) Find the equivalent resistance of the circuit.

Apply Equation 18.4, summing the resistances: Req � R1 � R2 � R3 � R4 � 2.0 	 � 4.0 	 � 5.0 	 � 7.0 	

� 18.0 	

(b) Find the current in the circuit.

Apply Ohm’s law to the equivalent resistor in Figure
18.5b, solving for the current:

1
3 AI �

�V
Req

�
6.0 V

18.0 	
�
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596 Chapter 18 Direct-Current Circuits

18.3 RESISTORS IN PARALLEL
Now consider two resistors connected in parallel, as in Active Figure 18.6. In this
case, the potential differences across the resistors are the same because each is
connected directly across the battery terminals. The currents are generally not the
same. When charges reach point a (called a junction) in Active Figure 18.6b, the
current splits into two parts: I1, flowing through R1; and I2, flowing through R2. If
R1 is greater than R2, then I1 is less than I2. In general, more charge travels
through the path with less resistance. Because charge is conserved, the current I
that enters point a must equal the total current I1 � I2 leaving that point. Mathe-
matically, this is written

I � I1 � I 2

The potential drop must be the same for the two resistors and must also equal the
potential drop across the battery. Ohm’s law applied to each resistor yields

Ohm’s law applied to the equivalent resistor in Active Figure 18.6c gives

When these expressions for the currents are substituted into the equation I � I1 � I2
and the �V ’s are cancelled, we obtain

(parallel combination) [18.5]
1

Req
�

1
R1

�
1

R 2

I �
�V
Req

I2 �
�V
R 2

I1 �
�V
R 1

Exercise 18.1
Because the current in the equivalent resistor is A, this must also be the current in each resistor of the original cir-
cuit. Find the voltage drop across each resistor.

Answers ; ; ; .�V7	 � 7
3 V�V5	 � 5

3 V�V4	 � 4
3 V�V2	 � 2

3 V

1
3

(c)

I

∆V
+ –

b

(b)

I1

R1

R2

∆V
+ –

a

I
I2

+ –

(a)

R1

R2

Battery

∆V1 = ∆V2 = ∆V

Req      R1    R2

1 1 1=        +

ACTIVE FIGURE 18.6
(a) A parallel connection of two 
lightbulbs with resistances R1 and R2. 
(b) Circuit diagram for the two-
resistor circuit. The potential 
differences across R1 and R2 are the
same. (c) The equivalent resistance
of the combination is given by the 
reciprocal relationship 
1/Req � 1/R1 � 1/R 2.

Log into PhysicsNow at
www.cp7e.com, and go to Active Fig-
ure 18.6, where you can adjust the
battery voltage and resistances R1
and R 2 and see the effect on the 
currents and voltages in the individ-
ual resistors.
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18.3 Resistors in Parallel 597

An extension of this analysis to three or more resistors in parallel produces the
following general expression for the equivalent resistance:

[18.6]

From this expression, we see that the inverse of the equivalent resistance of two or
more resistors connected in parallel is the sum of the inverses of the individual re-
sistances and is always less than the smallest resistance in the group.

1
Req

�
1

R 1
�

1
R 2

�
1

R 3
� � � �

INTERACTIVE EXAMPLE 18.2 Three Resistors in Parallel
Goal Analyze a circuit having resistors connected in parallel.

Problem Three resistors are connected in parallel as in Figure 18.7. A potential dif-
ference of 18 V is maintained between points a and b. (a) Find the current in each resis-
tor. (b) Calculate the power delivered to each resistor and the total power. (c) Find the
equivalent resistance of the circuit. (d) Find the total power delivered to the equivalent
resistance.

Strategy We can use Ohm’s law and the fact that the voltage drops across parallel re-
sistors are all the same to get the current in each resistor. The rest of the problem just
requires substitution into the equation for power delivered to a resistor, � � I 2R , and
the reciprocal-sum law for parallel resistors.

Solution
(a) Find the current in each resistor.

Apply Ohm’s law, solved for the current I delivered by
the battery to find the current in each resistor:

2.0 AI3 �
�V
R 3

�
18 V
9.0 	

�

3.0 AI 2 �
�V
R 2

�
18 V
6.0 	

�

6.0 AI1 �
�V
R 1

�
18 V
3.0 	

�

(b) Calculate the power delivered to each resistor and
the total power.

Apply � � I 2R to each resistor, substituting the results
from part (a).

3 	: �1 � I1
2R1 � (6.0 A)2(3.0 	) �

6 	: �2 � I2
2R2 � (3.0 A)2(6.0 	) �

9 	: �3 � I3
2R3 � (2.0 A)2(9.0 	) � 36 W

54 W

110 W

Sum to get the total power: �tot � 110 W � 54 W � 36 W � 2.0 
 102 W

(c) Find the equivalent resistance of the circuit.

Apply the reciprocal-sum rule, Equation 18.6:

1.6 	 Req �
18
11

  	 �

 
1

Req
�

1
3.0 	

�
1

6.0 	
�

1
9.0 	

�
11

18 	

 
1

Req
�

1
R 1

�
1

R 2
�

1
R 3

18 V

b

a

I1 I2 I3

I

3.0 	 6.0 	 9.0 	

Figure 18.7 (Example 18.2)
Three resistors connected in
parallel. The voltage across each
resistor is 18 V.

� Equivalent resistance of a parallel
combination of resistors
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598 Chapter 18 Direct-Current Circuits

Household circuits are always wired so that the electrical devices are connected
in parallel, as in Active Figure 18.6a. In this way, each device operates independ-
ently of the others, so that if one is switched off, the others remain on. For exam-
ple, if one of the lightbulbs in Active Figure 18.6 were removed from its socket, the
other would continue to operate. Equally important, each device operates at the
same voltage. If the devices were connected in series, the voltage across any one
device would depend on how many devices were in the combination and on their
individual resistances.

In many household circuits, circuit breakers are used in series with other circuit
elements for safety purposes. A circuit breaker is designed to switch off and open
the circuit at some maximum value of the current (typically 15 A or 20 A) that de-
pends on the nature of the circuit. If a circuit breaker were not used, excessive cur-
rents caused by operating several devices simultaneously could result in excessive
wire temperatures, perhaps causing a fire. In older home construction, fuses were
used in place of circuit breakers. When the current in a circuit exceeded some
value, the conductor in a fuse melted and opened the circuit. The disadvantage of
fuses is that they are destroyed in the process of opening the circuit, whereas cir-
cuit breakers can be reset.

Remarks There’s something important to notice in part (a): the smallest 3.0 	
resistor carries the largest current, while the other, larger resistors of 6.0 	 and
9.0 	 carry smaller currents. The largest current is always found in the path of least
resistance. In part (b), the power could also be found with � � (�V )2/R . Note that
�1 � 108 W, but is rounded to 110 W because there are only two significant figures.
Finally, notice that the total power dissipated in the equivalent resistor is the same
as the sum of the power dissipated in the individual resistors, as it should be.

Exercise 18.2
Suppose the resistances in the example are 1.0 	, 2.0 	, and 3.0 	, respectively, and a new voltage source is pro-
vided. If the current measured in the 3.0-	 resistor is 2.0 A, find (a) the potential difference provided by the new bat-
tery, and the currents in each of the remaining resistors, (b) the power delivered to each resistor, and the total
power, (c) the equivalent resistance, and (d) the total current, and the power dissipated by the equivalent resistor.

Answers (a) � 6.0 V, I1 � 6.0 A, I2 � 3.0 A  (b) �1 � 36 W, �2 � 18 W, �3 � 12 W, �tot � 66 W 
(c) (d) I � 11 A, �eq � 66 W

Explore different configurations of the battery and resistors by logging into PhysicsNow at
www.cp7e.com and going to Interactive Example 18.2.

6
11 	

�

Compare the brightness of the four identical bulbs
shown in Figure 18.8. What happens if bulb A fails, so
that it cannot conduct current? What if C fails? What
if D fails?

Explanation Bulbs A and B are connected in series
across the emf of the battery, whereas bulb C is
connected by itself across the battery. This means the

Applying Physics 18.2 Lightbulb Combinations

(d) Compute the power dissipated by the equivalent
resistance.

Use the alternate power equation: 2.0 
 102 W� �
(�V )2

R eq
�

(18 V)2

(1.6 	)
�

A B

C D

Figure 18.8 (Applying 
Physics 18.2)

TIP 18.2 Don’t Forget 
to Flip It!
The most common mistake in calcu-
lating the equivalent resistance for re-
sistors in parallel is to forget to invert
the answer after summing the recip-
rocals. Don’t forget to flip it!

A P P L I C AT I O N
Circuit Breakers
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18.3 Resistors in Parallel 599

Figure 18.9 illustrates how a three-way lightbulb is
constructed to provide three levels of light intensity.
The socket of the lamp is equipped with a three-way
switch for selecting different light intensities. The
bulb contains two filaments. Why are the filaments
connected in parallel? Explain how the two filaments
are used to provide the three different light
intensities.

Explanation If the filaments were connected in
series and one of them were to fail, there would be no
current in the bulb, and the bulb would not glow,
regardless of the position of the switch. However,
when the filaments are connected in parallel and one
of them (say, the 75-W filament) fails, the bulb will still
operate in one of the switch positions because there is
current in the other (100-W) filament. The three light
intensities are made possible by selecting one of three
values of filament resistance, using a single value of

120 V for the applied voltage. The 75-W filament
offers one value of resistance, the 100-W filament
offers a second value, and
the third resistance is
obtained by combining
the two filaments in paral-
lel. When switch S1 is
closed and switch S2 is
opened, only the 75-W
filament carries current.
When switch S1 is open
and switch S2 is closed,
only the 100-W filament
carries current. When
both switches are closed,
both filaments carry
current and a total illumi-
nation corresponding to
175 W is obtained.

Applying Physics 18.3 Three-Way Lightbulbs

voltage drop across C has the same magnitude as
the battery emf, whereas this same emf is split
between bulbs A and B. As a result, bulb C will glow
more brightly than either of bulbs A and B, which will
glow equally brightly. Bulb D has a wire connected

across it—a short circuit— so the potential difference
across bulb D is zero and it doesn’t glow. If bulb A
fails, B goes out, but C stays lit. If C fails, there is no
effect on the other bulbs. If D fails, the event is
undetectable, because D was not glowing initially.

120 V

100-W filament

75-W filament

S1

S2

Figure 18.9 (Applying
Physics 18.3)

In Figure 18.10a the current is
measured with the ammeter on
the right side of the circuit dia-
gram. When the switch is closed,
the reading on the ammeter
(a) increases, (b) decreases, or
(c) remains the same.

Quick Quiz 18.3

(a)

A

R1

R2

(b)

A

R1

R2

Figure 18.10 (Quick Quiz 18.3)

Suppose you have three identical lightbulbs, some wire, and a battery. You connect
one lightbulb to the battery and take note of its brightness. You add a second light-
bulb, connecting it in parallel with the previous bulbs, again taking note of the
brightness. Repeat the process with the third bulb, connecting it in parallel with
the other two. As the lightbulbs are added, what happens to (a) the brightness of
the bulbs? (b) the individual currents in the bulbs? (c) the power delivered by the
battery? (d) the lifetime of the battery? (Neglect the battery’s internal resistance)

Quick Quiz 18.4
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600 Chapter 18 Direct-Current Circuits

If the lightbulbs in Quick Quiz 18.4 are connected, one by one, in series instead of
in parallel, what happens to (a) the brightness of the bulbs? (b) the individual cur-
rents in the bulbs? (c) the power delivered by the battery? (d) the lifetime of the
battery? (Again, neglect the battery’s internal resistance)

Quick Quiz 18.5

Problem-Solving Strategy Simplifying Circuits 
with Resistors
1. Combine all resistors in series by summing the individual resistances, and draw the

new, simplified circuit diagram.
Useful facts: R eq � R1 � R2 � R 3 � � � �

The current in each resistor is the same.
2. Combine all resistors in parallel by summing the reciprocals of the resistances and

then taking the reciprocal of the result. Draw the new, simplified circuit diagram.

Useful facts:

The potential difference across each resistor is the same.
3. Repeat the first two steps as necessary, until no further combinations can be made.

If there is only a single battery in the circuit, this will usually result in a single
equivalent resistor in series with the battery.

4. Use Ohm’s Law, �V � IR , to determine the current in the equivalent resistor.
Then work backwards through the diagrams, applying the useful facts listed in step
1 or step 2 to find the currents in the other resistors. (In more complex circuits,
Kirchhoff’s rules will be needed, as described in the next section).

1
R eq

�
1

R 1
�

1
R 2

�
1

R 3
� � � �

EXAMPLE 18.3 Equivalent Resistance
Goal Solve a problem involving both series and
parallel resistors.

Problem Four resistors are connected as shown in
Figure 18.11a. (a) Find the equivalent resistance be-
tween points a and c. (b) What is the current in
each resistor if a 42-V battery is connected between
a and c ?

Strategy Reduce the circuit in steps, as shown in
Figures 18.11b and 18.11c, using the sum rule for
resistors in series and the reciprocal-sum rule for re-
sistors in parallel. Finding the currents is a matter of
applying Ohm’s law while working backwards
through the diagrams.

c
b

I1

I2

a

cba

ca

(a)

(b)

(c)

I

6.0 	

8.0 	 4.0 	

3.0 	

2.0 	12 	

14 	 Figure 18.11 (Example 18.3)
The four resistors shown in (a) can
be reduced in steps to an equivalent
14-	 resistor.

Solution
(a) Find the equivalent resistance of the circuit.

The 8.0-	 and 4.0-	 resistors are in series, so use the sum
rule to find the equivalent resistance between a and b :

Req � R1 � R2 � 8.0 	 � 4.0 	 � 12 	

The 6.0-	 and 3.0-	 resistors are in parallel, so use the
reciprocal-sum rule to find the equivalent resistance 
between b and c (don’t forget to invert!): Req � 2.0 	

1
Req

�
1

R1
�

1
R 2

�
1

6.0 	
�

1
3.0 	

�
1

2.0 	
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18.4 Kirchhoff’s Rules and Complex DC Circuits 601

In the new diagram, 18.11b, there are now two resistors
in series. Combine them with the sum rule to find the
equivalent resistance of the circuit:

Req � R1 � R2 � 12 	 � 2.0 	 � 14 	

(b) Find the current in each resistor if a 42-V battery is
connected between points a and c.

Find the current in the equivalent resistor in Figure
8.11c, which is the total current. Resistors in series all
carry the same current, so this is the current in the 12-	
resistor in Figure 8.11b, and also in the 8.0-	 and 4.0-	
resistors in Figure 8.11a.

3.0 AI �
�Vac

R eq
�

42 V
14 	

�

Apply the junction rule to point b : (1) I � I1 � I2

The 6.0-	 and 3.0-	 resistors are in parallel, so the volt-
age drops across them are the same:

�V6 	 � �V3 	 : (6.0 	)I1 � (3.0 	)I2 :

2.0I1 � I2

Substitute this result into Equation (1), with I � 3.0 A: 3.0 A � I1 � 2I1 � 3I1 : I1 �

I2 � 2.0 A

1.0 A

Remarks As a final check, note that �Vbc � (6.0 	)I1 � (3.0 	)I2 � 6.0 V and �Vab � (12 	)I1 � 36 V; therefore,
�Vac � �Vab � �Vbc � 42 V, as expected.

Exercise 18.3
Suppose the series resistors in Example 18.3 are now 6.00 	 and 3.00 	 while the parallel resistors are 8.00 	 (top)
and 4.00 	 (bottom), and the battery provides an emf of 27.0 V. Find (a) the equivalent resistance and (b) the cur-
rents I, I1, and I2.

Answers (a) 11.7 	 (b) I � 2.31 A, I1 � 0.770 A, I2 � 1.54 A

18.4 KIRCHHOFF’S RULES AND COMPLEX 
DC CIRCUITS

As demonstrated in the preceding section, we can analyze simple circuits using
Ohm’s law and the rules for series and parallel combinations of resistors. However,
there are many ways in which resistors can be connected so that the circuits
formed can’t be reduced to a single equivalent resistor. The procedure for analyz-
ing more complex circuits can be facilitated by the use of two simple rules called
Kirchhoff’s rules:

1. The sum of the currents entering any junction must equal the sum of the
currents leaving that junction. (This rule is often referred to as the junc-
tion rule.)

2. The sum of the potential differences across all the elements around any
closed circuit loop must be zero. (This rule is usually called the loop rule.)

The junction rule is a statement of conservation of charge. Whatever current enters
a given point in a circuit must leave that point because charge can’t build up or dis-
appear at a point. If we apply this rule to the junction in Figure 18.12a, we get

I1 � I2 � I3

Figure 18.12b represents a mechanical analog of the circuit shown in Figure
18.12a. In this analog, water flows through a branched pipe with no leaks. The
flow rate into the pipe equals the total flow rate out of the two branches.

(a)

I1

I2

I3

(b)

Flow in

Flow out

Figure 18.12 (a) A schematic dia-
gram illustrating Kirchhoff ’s junction
rule. Conservation of charge requires
that whatever current enters a junc-
tion must leave that junction. In this
case, therefore, I1 � I 2 � I 3. (b) A
mechanical analog of the junction
rule: the net flow in must equal the
net flow out.
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602 Chapter 18 Direct-Current Circuits

The loop rule is equivalent to the principle of conservation of energy. Any charge
that moves around any closed loop in a circuit (starting and ending at the same
point) must gain as much energy as it loses. It gains energy as it is pumped
through a source of emf. Its energy may decrease in the form of a potential drop
�IR across a resistor or as a result of flowing backward through a source of emf,
from the positive to the negative terminal inside the battery. In the latter case,
electrical energy is converted to chemical energy as the battery is charged.

When applying Kirchhoff’s rules, you must make two decisions at the beginning
of the problem:

1. Assign symbols and directions to the currents in all branches of the circuit.
Don’t worry about guessing the direction of a current incorrectly; the resulting
answer will be negative, but its magnitude will be correct. (This is because the
equations are linear in the currents—all currents are to the first power.)

2. When applying the loop rule, you must choose a direction for traversing the
loop, and be consistent in going either clockwise or counterclockwise. As you
traverse the loop, record voltage drops and rises according to the following
rules (summarized in Figure 18.13, where it is assumed that movement is from
point a toward point b):

(a) If a resistor is traversed in the direction of the current, the change in elec-
tric potential across the resistor is �IR (Fig. 18.13a).

(b) If a resistor is traversed in the direction opposite the current, the change in
electric potential across the resistor is �IR (Fig. 18.13b).

(c) If a source of emf is traversed in the direction of the emf (from � to � on
the terminals), the change in electric potential is � (Fig. 18.13c).

(d) If a source of emf is traversed in the direction opposite the emf (from � to
� on the terminals), the change in electric potential is � (Fig. 18.13d).

There are limits to the number of times the junction rule and the loop rule can
be used. You can use the junction rule as often as needed as long as, each time you
write an equation, you include in it a current that has not been used in a previous
junction-rule equation. (If this procedure isn’t followed, the new equation will just
be a combination of two other equations that you already have.) In general, the
number of times the junction rule can be used is one fewer than the number of
junction points in the circuit. The loop rule can also be used as often as needed,
so long as a new circuit element (resistor or battery) or a new current appears in
each new equation. To solve a particular circuit problem, you need as many inde-
pendent equations as you have unknowns.

�

�

(a)

I

a b
�V = Vb – Va =  –IR

(b)

I

a b
�V = Vb – Va =  +IR

(c)
a b

�V = Vb – Va =  +�
– +

(d)
a b

�V = Vb – Va =  –�
–+

�

�

Figure 18.13 Rules for determin-
ing the potential differences across a
resistor and a battery, assuming the
battery has no internal resistance.

Problem-Solving Strategy Applying Kirchhoff’s
Rules to a Circuit
1. Assign labels and symbols to all the known and unknown quantities.
2. Assign directions to the currents in each part of the circuit. Although the assign-

ment of current directions is arbitrary, you must stick with your original choices
throughout the problem as you apply Kirchhoff ’s rules.

3. Apply the junction rule to any junction in the circuit. The rule may be applied as
many times as a new current (one not used in a previously found equation) ap-
pears in the resulting equation.

4. Apply Kirchhoff’s loop rule to as many loops in the circuit as are needed to solve
for the unknowns. In order to apply this rule, you must correctly identify the
change in electric potential as you cross each element in traversing the closed
loop. Watch out for signs!

5. Solve the equations simultaneously for the unknown quantities, using substitution
or any other method familiar to the student.

6. Check your answers by substituting them into the original equations.

GUSTAV KIRCHHOFF, German
Physicist (1824–1887)
Together with German chemist Robert
Bunsen, Kirchhoff, a professor at Heidel-
berg, invented the spectroscopy that we
study in Chapter 28. He also formulated
another rule that states, “A cool substance
will absorb light of the same wavelengths
that it emits when hot.”
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18.4 Kirchhoff’s Rules and Complex DC Circuits 603

EXAMPLE 18.4 Applying Kirchhoff’s Rules
Goal Use Kirchhoff’s rules to find currents in a circuit with three currents and one battery.

Problem Find the currents in the circuit shown in Figure 18.14 by using Kirchhoff’s rules.

Strategy There are three unknown currents in this circuit, so we must obtain three in-
dependent equations, which then can be solved by substitution. We can find the equa-
tions with one application of the junction rule and two applications of the loop rule. We
choose junction c. ( Junction d gives the same equation.) For the loops, we choose the
bottom loop and the top loop, both shown by blue arrows, which indicate the direction
we are going to traverse the circuit mathematically (not necessarily the direction of the
current). The third loop gives an equation that can be obtained by a linear combination
of the other two, so it provides no additional information.

6.0 V
ab

c d

I3

I1

I2

5.0 	

4.0 	

9.0 	

Figure 18.14 (Example
18.4)

Solution
Apply the junction rule to point c. I1 is directed into the
junction, I 2 and I3 are directed out of the junction.

I1 � I 2 � I3

Select the bottom loop, and traverse it clockwise starting
at point a, generating an equation with the loop rule:

��V � �Vbat � �V4.0	 � �V9.0	 � 0

6.0 V � (4.0 	)I1 � (9.0 	)I3 � 0

Select the top loop, and traverse it clockwise from point
c. Notice the gain across the 9.0-	 resistor, because it is
traversed against the direction of the current!

��V � �V5.0	 � �V9.0	 � 0

� (5.0 	)I 2 � (9.0 	)I 3 � 0

Rewrite the three equations, rearranging terms and
dropping units for the moment, for convenience:

(1) I1 � I2 � I3

(2) 4.0I1 � 9.0I3 � 6.0

(3) � 5.0I2 � 9.0I3 � 0

Solve Equation 3 for I2 and substitute into Equation 1: I2 � 1.8I3

I1 � I2 � I3 � 1.8I3 � I3 � 2.8I3

Substitute the latter expression into Equation 2 and
solve for I3:

4.0(2.8I3) � 9.0I3 � 6.0 : I3 � 0.30 A

Substitute I3 back into Equation 3 to get I2: � 5.0I2 � 9.0(0.30 A) � 0 : I2 � 0.54 A

Substitute I3 into Equation 2 to get I1: 4.0I1 � 9.0(0.30 A) � 6.0 : I1 � 0.83 A

Remarks Substituting these values back into the original equations verifies that
they are correct, with any small discrepancies due to rounding. The problem can
also be solved by first combining resistors.

Exercise 18.4
Suppose the 6.0-V battery is replaced by a battery of unknown emf, and an ammeter
measures I1 � 1.5 A. Find the other two currents and the emf of the battery.

Answers I2 � 0.96 A, I3 � 0.54 A, � 11 V�

INTERACTIVE EXAMPLE 18.5 Another Application of Kirchhoff’s Rules
Goal Find the currents in a circuit with three currents and two batteries when some current directions are chosen
wrongly.

Problem Find I1, I2, and I3 in Figure 18.15a on page 604.

TIP 18.3 More Current Goes
in the Path of Less Resistance
You may have heard the statement
“Current takes the path of least resist-
ance.” For a parallel combination of
resistors, this statement is inaccurate,
because current actually follows all
paths. The most current, however,
travels in the path of least resistance.
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Strategy Use Kirchhoff’s two rules, the junction rule once and the loop rule twice, to develop three equations for
the three unknown currents. Solve the equations simultaneously.

14 V
e

b – +

10 V

–+ f

I2

c

I3

I1

da

4.0 	

6.0 	

2.0 	

(a)

5.0 V

I3

I1
I2

–+

–+

5.0 V1.0 	

2.0 	

1.0 	

(b)

Solution
Apply Kirchhoff’s junction rule to junction c. Because of
the chosen current directions, I1 and I2 are directed into
the junction and I3 is directed out of the junction.

(1) I3 � I1 � I2

Figure 18.15 (a) (Example 18.5) (b) (Exercise 18.5)

Apply Kirchhoff’s loop rule to the loops abcda and befcb.
(Loop aefda gives no new information.) In loop befcb, a
positive sign is obtained when the 6.0-	 resistor is tra-
versed, because the direction of the path is opposite the
direction of the current I1.

(2) Loop abcda: 10 V � (6.0 	)I1 � (2.0 	)I3 � 0

(3) Loop befcb:
�14 V � (6.0 	)I1 � 10 V � (4.0 	)I2 � 0

Using Equation (1), eliminate I3 from Equation (2) 
(ignore units for the moment):

10 � 6.0I1 � 2.0(I1 � I2) � 0

(4) 10 � 8.0I1 � 2.0I2

Divide each term in Equation (3) by 2 and rearrange
the equation so that the currents are on the right side:

(5) �12 � � 3.0I1 � 2.0I2

Subtracting Equation (5) from Equation (4) eliminates
I2 and gives I1:

22 � 11I1 : I1 � 2.0 A

Substituting this value of I1 into Equation (5) gives I2: 2.0I2 � 3.0I1 � 12 � 3.0(2.0) � 12 � � 6.0 A

I2 � �3.0 A

Finally, substitute the values found for I1 and I2 into
Equation (1) to obtain I3:

I3 � I1 � I2 � 2.0 A � 3.0 A � �1.0 A

Remarks The fact that I2 and I3 are both negative indicates that the wrong directions were chosen for these cur-
rents. Nonetheless, the magnitudes are correct. Choosing the right directions of the currents at the outset is unim-
portant because the equations are linear, and wrong choices result only in a minus sign in the answer.

Exercise 18.5 Find the three currents in Figure 18.15b. (Note that the direction of one current was deliberately
chosen wrongly!)

Answers I1 � � 1.0 A, I2 � 1.0 A, I3 � 2.0 A

Practice applying Kirchhoff’s rules for different values of resistance and voltage by logging into
PhysicsNow at www.cp7e.com and going to Interactive Example 18.5.
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18.5 RC CIRCUITS
So far, we have been concerned with circuits with constant currents. We now con-
sider direct-current circuits containing capacitors, in which the currents vary with
time. Consider the series circuit in Active Figure 18.16. We assume that the capaci-
tor is initially uncharged with the switch opened. After the switch is closed, the bat-
tery begins to charge the plates of the capacitor and the charge passes through the
resistor. As the capacitor is being charged, the circuit carries a changing current.
The charging process continues until the capacitor is charged to its maximum
equilibrium value, Q � C , where is the maximum voltage across the capacitor.
Once the capacitor is fully charged, the current in the circuit is zero. If we assume
that the capacitor is uncharged before the switch is closed, and if the switch is
closed at t � 0, we find that the charge on the capacitor varies with time according
to the equation

q � Q(1 � e�t/RC) [18.7]

where e � 2.718 . . . is Euler’s constant, the base of the natural logarithms. Active
Figure 18.16b is a graph of this equation. The charge is zero at t � 0 and approaches
its maximum value, Q , as t approaches infinity. The voltage �V across the capacitor
at any time is obtained by dividing the charge by the capacitance: �V � q/C.

As you can see from Equation 18.7, it would take an infinite amount of time, in
this model, for the capacitor to become fully charged. The reason for this is math-
ematical: in obtaining that equation, charges are assumed to be infinitely small,
whereas in reality the smallest charge is that of an electron, with a magnitude of
1.60 
 10�19 C. For all practical purposes, the capacitor is fully charged after a fi-
nite amount of time. The term RC that appears in Equation 18.7 is called the time
constant � (Greek letter tau), so

� � RC [18.8]

The time constant represents the time required for the charge to increase from
zero to 63.2% of its maximum equilibrium value. This means that in a period of
time equal to one time constant, the charge on the capacitor increases from zero
to 0.632Q. This can be seen by substituting t � � � RC into Equation 18.7 and solv-
ing for q. (Note that 1/e � 0.632.) It’s important to note that a capacitor charges
very slowly in a circuit with a long time constant, whereas it charges very rapidly in
a circuit with a short time constant. After a time equal to ten time constants, the
capacitor is over 99.99% charged.

Now consider the circuit in Active Figure 18.17a, consisting of a capacitor with
an initial charge Q , a resistor, and a switch. Before the switch is closed, the potential
difference across the charged capacitor is Q /C. Once the switch is closed, the
charge begins to flow through the resistor from one capacitor plate to the other un-
til the capacitor is fully discharged. If the switch is closed at t � 0, it can be shown
that the charge q on the capacitor varies with time according to the equation

q � Qe�t/RC [18.9]

��

q

t

(b)

C

R

S

(a)

C

0.632 C t =RC�

�

�

t

ACTIVE FIGURE 18.16
(a) A capacitor in series with a resis-
tor, a battery, and a switch. (b) A
plot of the charge on the capacitor
versus time after the switch on the
circuit is closed. After one time con-
stant �, the charge is 63% of the
maximum value, C . The charge
approaches its maximum value as t
approaches infinity.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 18.16, where you can adjust
the values of R and C and observe
the effect on the charging of the 
capacitor.

�

� Time constant of an RC circuit
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606 Chapter 18 Direct-Current Circuits

The charge decreases exponentially with time, as shown in Active Figure 18.17b.
In the interval t � � � RC, the charge decreases from its initial value Q to
0.368Q. In other words, in a time equal to one time constant, the capacitor loses
63.2% of its initial charge. Because �V � q/C, the voltage across the capacitor
also decreases exponentially with time according to the equation �V � e�t/RC,
where (which equals Q /C) is the initial voltage across the fully charged
capacitor.

�
�

C R

S

(a)

Q

t < 0

+

–Q

q

t

0.368Q

(b)

Q

t

ACTIVE FIGURE 18.17
(a) A charged capacitor connected to
a resistor and a switch. (b) A graph of
the charge on the capacitor versus
time after the switch is closed.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 18.17, where you can adjust
the values of R and C and see the 
effect on the discharging of the 
capacitor.

Many automobiles are equipped with windshield
wipers that can be used intermittently during a light
rainfall. How does the operation of this feature
depend on the charging and discharging of a
capacitor?

Explanation The wipers are part of an RC circuit
with time constant that can be varied by selecting 
different values of R through a multiposition switch.
The brief time that the wipers remain on and the time
they are off are determined by the value of the time
constant of the circuit.

Applying Physics 18.4 Timed Windshield Wipers

In biological applications concerned with population
growth, an equation is used that is similar to the
exponential equations encountered in the analysis of
RC circuits. Applied to a number of bacteria, this
equation is

Nf � Ni 2n

where Nf is the number of bacteria present after n
doubling times, Ni is the number present initially, and
n is the number of growth cycles or doubling times.
Doubling times vary according to the organism. The
doubling time for the bacteria responsible for leprosy
is about 30 days, and that for the salmonella bacteria

responsible for food poisoning is about 20 minutes.
Suppose only 10 salmonella bacteria find their way
onto a turkey leg after your Thanksgiving meal. Four
hours later you come back for a midnight snack. How
many bacteria are present now?

Explanation The number of doubling times is
240 min/20 min � 12. Thus, we have

Nf � Ni 2n � (10 bacteria)(212) � 40 960 bacteria.

So your system will have to deal with an invading host
of about 41 000 bacteria, which are going to continue
to double in a very promising environment.

Applying Physics 18.5 Bacterial Growth

Many roadway construction sites have flashing yellow
lights to warn motorists of possible dangers. What
causes the lights to flash?

Explanation A typical circuit for such a flasher is
shown in Figure 18.18. The lamp L is a gas-filled lamp
that acts as an open circuit until a large potential

Applying Physics 18.6 Roadway Flashers
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difference causes a discharge, which gives off a bright
light. During this discharge, charge flows through the
gas between the electrodes of the lamp. When the
switch is closed, the battery charges the capacitor. At
the beginning, the current is high and the charge on
the capacitor is low, so that most of the potential dif-
ference appears across the resistance R . As the capaci-
tor charges, more potential difference appears across
it, reflecting the lower current and lower potential 
difference across the resistor. Eventually, the potential
difference across the capacitor reaches a value at
which the lamp will conduct, causing a flash. This dis-
charges the capacitor through the lamp, and the
process of charging begins again. The period between
flashes can be adjusted by changing the time constant
of the RC circuit.

C

SR

L

�V

Figure 18.18 (Applying
Physics 18.6)

The switch is closed in Figure 18.19. After a long
time compared to the time constant of the capaci-
tor, what will the current be in the 2-	 resistor?
(a) 4 A (b) 3 A (c) 2 A (d) 1 A (e) more informa-
tion is needed

Quick Quiz 18.6
2

1 F

6 V

 	

1 	

1 	

Figure 18.19 (Quick Quiz 18.6)

EXAMPLE 18.6 Charging a Capacitor in an RC Circuit
Goal Calculate elementary properties of a simple RC circuit.

Problem An uncharged capacitor and a resistor are connected in series to a battery, as in Active Figure 18.16a. If 
� 12.0 V, C � 5.00 F, and R � 8.00 
 105 	, find (a) the time constant of the circuit, (b) the maximum charge

on the capacitor, (c) the charge on the capacitor after 6.00 s, (d) the potential difference across the resistor after 
6.00 s, and (e) the current in the resistor at that time.

Strategy Finding the time constant in part (a) requires substitution into Equation 18.8. For part (b), the maxi-
mum charge occurs after a long time, when the current has dropped to zero. By Ohm’s law, �V � IR , the potential
difference across the resistor is also zero at that time, and Kirchhoff ’s loop rule then gives the maximum charge.
Finding the charge at some particular time, as in part (c), is a matter of substituting into Equation 18.7. Kirchhoff’s
loop rule and the capacitance equation can be used to indirectly find the potential drop across the resistor in part
(d), and then Ohm’s law yields the current.

�

Solution
(a) Find the time constant of the circuit.

Use the definition of the time constant, Equation 18.8: � � RC � (8.00 
 105 	)(5.00 
 10�6 F) � 4.00 s
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(b) Calculate the maximum charge on the capacitor.

Apply Kirchhoff’s loop rule to the RC circuit, going
clockwise, which means that the voltage difference
across the battery is positive and the differences across
the capacitor and resistor are negative.

(1) �V bat � �VC � �VR � 0

From the definition of capacitance (Equation 16.8) and
Ohm’s law, we have �VC � � q/C and �VR � � IR . These
are voltage drops, so they’re negative. Also, �Vbat �
� � 12.0 V.�

(2) � �
q
c

� IR � 0

When the maximum charge q � Q is reached, I � 0.
Solve Equation (2) for the charge:

� � 0 : Q � C�Q
C

�

Substitute to find the maximum charge: Q � (5.00 
 10�6 F)(12.0 V) � 60.0 C

(c) Find the charge on the capacitor after 6.00 s.

Substitute into Equation 18.7: q � Q(1 � e�t/� ) � (60.0 C)(1 � e�6.00 s/4.00 s)

� 46.6 C

(d) Compute the potential difference across the resistor
after 6.00 s.

Compute the voltage drop �VC across the capacitor at
that time: � � 9.32 V�VC � � 

q
C

�
�46.6 C
5.00 F

Solve Equation 1 for �VR , and substitute: �VR � � �V bat � �VC � � 12.0 � (� 9.32 V)

� �2.68 V

(e) Find the current in the resistor after 6.00 s.

Apply Ohm’s law, using the results of part (d) (remem-
ber that �VR � � IR here):

� 3.4 
 10�6 A

I �
� �VR

R
� � 

(� 2.68 V)
(8.0 
 105 	)

Remark In solving this problem, we paid scrupulous attention to signs. These signs must always be chosen when ap-
plying Kirchhoff’s loop rule, and must remain consistent throughout the problem. Alternately, magnitudes can be
used and the signs chosen by physical intuition. For example, the magnitude of the potential difference across the re-
sistor must equal the magnitude of the potential difference across the battery minus the magnitude of the potential
difference across the capacitor.

Exercise 18.6
Find (a) the charge on the capacitor after 2.00 s have elapsed, (b) the magnitude of the potential difference across
the capacitor after 2.00 s, and (c) the magnitude of the potential difference across the resistor at that same time.

Answers (a) 23.6 C (b) 4.72 V (c) 7.28 V

EXAMPLE 18.7 Discharging a Capacitor in an RC Circuit
Goal Calculate some elementary properties of a discharging capacitor in an RC circuit.

Problem Consider a capacitor C being discharged through a resistor R as in Figure 18.17a, page 606. (a) How long
does it take for the charge on the capacitor to drop to one-fourth of its initial value? (b) Compute the initial charge
and time constant. (c) How long does it take to discharge all but the last quantum of charge, 1.60 
 10�19 C, if the

44920_18_p592-623  1/6/05  9:58 AM  Page 608



18.6 Household Circuits 609

18.6 HOUSEHOLD CIRCUITS
Household circuits are a practical application of some of the ideas presented in
this chapter. In a typical installation, the utility company distributes electric power
to individual houses with a pair of wires, or power lines. Electrical devices in a

initial potential difference across the capacitor is 12.0 V, the capacitance is 3.50 
 10�6 F, and the resistance is 
2.00 	? (Assume an exponential decrease during the entire discharge process.)

Strategy This problem requires substituting given values into various equations, as well as a couple algebraic ma-
nipulations involving the natural logarithm. In part (a), set in Equation 18.9 for a discharging capacitor,
where Q is the initial charge, and solve for time t. For part (b), substitute into Equations 16.8 and 18.8 to find the 
initial capacitor charge and time constant, respectively. In part (c), substitute the results of part (b) and 
q � 1.60 
 10�19 C into the discharging-capacitor equation, again solving for time.

q � 1
4Q

Solution
(a) How long does it take for the capacitor to drain to
one-fourth its initial value?

Apply Equation 18.9: q(t) � Qe�t/RC

Substitute q(t) � Q /4 into the preceding equation and
cancel Q :

1
4Q � Qe�t/RC : 1

4 � e�t/RC 

Take natural logarithms of both sides and solve for the
time t :

1.39�t � �RC ln�1
4� � 1.39RC �

ln�1
4� � �t/RC

(b) Compute the initial charge and time constant from
the given data.

Use the capacitance equation to find the initial charge:

Q � 4.20 
  10�5 C

C �
Q

�V
 : Q � C �V � (3.50 
  10�6 F)(12.0 V)

Now calculate the time constant: � � RC � (2.00 	)(3.50 
 10�6 F) � 7.00 
 10�6 s

(c) How long does it take to drain all but the last quan-
tum of charge?

Apply Equation 18.9, divide by Q , and take natural loga-
rithms of both sides:

q(t) � Qe�t/� : e�t/� �
q
Q

Take the natural logs of both sides: �t/� � ln � q
Q � : t � ��  ln � q

Q � 

Substitute q � 1.60 
 10�19 C and the values for Q and
� found in part (b):

� 2.32 
 10�4 s

t � �(7.00 
 10�6 s)ln � 1.60 
 10�19 C
4.20 
 10�5 C �

Remarks Part (a) shows how useful information can often be obtained even when no details concerning capacitances,
resistances, or voltages are known. Part (c) demonstrates that capacitors can be rapidly discharged (or conversely,
charged), despite the mathematical form of Equations 18.7 and 18.9, which indicate an infinite time would be required.

Exercise 18.7
Suppose the same type of series circuit has R � 8.00 
 104 	, C � 5.00 F, and an initial voltage across the capacitor
of 6.0 V. (a) How long does it take the capacitor to lose half its initial charge? (b) How long does it take to lose all but
the last 10 electrons on the negative plate?

Answers (a) 0.277 s (b) 12.2 s

A P P L I C AT I O N
Fuses and Circuit Breakers
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610 Chapter 18 Direct-Current Circuits

house are then connected in parallel to these lines, as shown in Figure 18.20. The
potential difference between the two wires is about 120 V. (These currents and
voltages are actually alternating currents and voltages, but for the present discus-
sion we will assume that they are direct currents and voltages.) One of the wires is
connected to ground, and the other wire, sometimes called the “hot” wire, is at a
potential of 120 V. A meter and a circuit breaker (or a fuse) are connected in se-
ries with the wire entering the house, as indicated in the figure.

In modern homes, circuit breakers are used in place of fuses. When the cur-
rent in a circuit exceeds some value (typically 15 A), the circuit breaker acts as a
switch and opens the circuit. Figure 18.21 shows one design for a circuit breaker.
Current passes through a bimetallic strip, the top of which bends to the left
when excessive current heats it. If the strip bends far enough to the left, it settles
into a groove in the spring-loaded metal bar. When this occurs, the bar drops
enough to open the circuit at the contact point. The bar also flips a switch which
indicates that the circuit breaker is not operational. (After the overload is re-
moved, the switch can be flipped back on.) Circuit breakers based on this design
have the disadvantage that some time is required for the heating of the strip, so
the circuit may not be opened rapidly enough when it is overloaded. Because of
this, many circuit breakers are now designed to use electromagnets (discussed in
Chapter 19).

The wire and circuit breaker are carefully selected to meet the current de-
mands of a circuit. If the circuit is to carry currents as large as 30 A, a heavy-
duty wire and an appropriate circuit breaker must be used. Household circuits
that are normally used to power lamps and small appliances often require only
20 A. Each circuit has its own circuit breaker to accommodate its maximum safe
load.

As an example, consider a circuit that powers a toaster, a microwave oven,
and a heater (represented by R1, R2, and R3 in Fig. 18.20). Using the equation 
� � I �V, we can calculate the current carried by each appliance. The toaster,
rated at 1 000 W, draws a current of 1 000/120 � 8.33 A. The microwave oven,
rated at 800 W, draws a current of 6.67 A, and the heater, rated at 1 300 W, draws
a current of 10.8 A. If the three appliances are operated simultaneously, they
draw a total current of 25.8 A. Therefore, the breaker should be able to handle at
least this much current, or else it will be tripped. As an alternative, the toaster
and microwave oven could operate on one 20-A circuit and the heater on a sepa-
rate 20-A circuit.

Many heavy-duty appliances, such as electric ranges and clothes dryers, require
240 V to operate. The power company supplies this voltage by providing, in
addition to a live wire that is 120 V above ground potential, another wire, also
considered live, that is 120 V below ground potential (Fig. 18.22). Therefore, the
potential drop across the two live wires is 240 V. An appliance operating from a
240-V line requires half the current of one operating from a 120-V line; conse-
quently, smaller wires can be used in the higher-voltage circuit without becoming
overheated.

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Meter

R3

Figure 18.20 A wiring diagram for
a household circuit. The resistances
R1, R2, and R3 represent appliances
or other electrical devices that oper-
ate at an applied voltage of 120 V.

Spring

Contact
points Metal

bar

Bimetallic
strip

Figure 18.21 A circuit breaker
that uses a bimetallic strip for its 
operation.

+120 V –120 V

(a) (b)
Figure 18.22 Power connections
for a 240-V appliance.
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18.7 ELECTRICAL SAFETY
A person can be electrocuted by touching a live wire (which commonly is live be-
cause of a frayed cord and exposed conductors) while in contact with ground. The
ground contact might be made by touching a water pipe (which is normally at
ground potential) or by standing on the ground with wet feet, because impure
water is a good conductor. Obviously, such situations should be avoided at all costs.

Electric shock can result in fatal burns, or it can cause the muscles of vital or-
gans, such as the heart, to malfunction. The degree of damage to the body depends
on the magnitude of the current, the length of time it acts, and the part of the body
through which it passes. Currents of 5 mA or less can cause a sensation of shock,
but ordinarily do little or no damage. If the current is larger than about 10 mA, the
hand muscles contract and the person may be unable to let go of the live wire. If a
current of about 100 mA passes through the body for just a few seconds, it can be
fatal. Such large currents paralyze the respiratory muscles. In some cases, currents
of about 1 A through the body produce serious (and sometimes fatal) burns.

As an additional safety feature for consumers, electrical equipment manufactur-
ers now use electrical cords that have a third wire, called a case ground. To under-
stand how this works, consider the drill being used in Figure 18.23. A two-wire
device that has one wire, called the “hot” wire, is connected to the high-potential
(120-V) side of the input power line, and the second wire is connected to ground
(0 V). If the high-voltage wire comes in contact with the case of the drill (Fig
18.23a), a short circuit occurs. In this undesirable circumstance, the pathway for
the current is from the high-voltage wire through the person holding the drill and
to Earth—a pathway that can be fatal. Protection is provided by a third wire, con-
nected to the case of the drill (Fig. 18.23b). In this case, if a short occurs, the path
of least resistance for the current is from the high-voltage wire through the case

(a)

Motor

“Hot”

Wall
outlet

Circuit
breaker

120 V

“Neutral”

Ground

“Ouch!”

I

I
I

(b)

Motor

“Hot”

3-wire
outlet

Circuit
breaker

120 V

“Neutral”

Ground
I

I

“Ground”

I

I Figure 18.23 The “hot” (or “live”)
wire, at 120 V, always includes a cir-
cuit breaker for safety. (a) When the
drill is operated with two wires, the
normal current path is from the “hot”
wire, through the motor connections,
and back to ground through the
“neutral” wire. However, here the
high-voltage side has come in contact
with the drill case, so that the person
holding the drill receives an electrical
shock. (b) Shock can be prevented by
a third wire running from the drill
case to the ground.

A P P L I C AT I O N
Third Wire on Consumer 
Appliances
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612 Chapter 18 Direct-Current Circuits

and back to ground through the third wire. The resulting high current produced
will blow a fuse or trip a circuit breaker before the consumer is injured.

Special power outlets called ground-fault interrupters (GFIs) are now being
used in kitchens, bathrooms, basements, and other hazardous areas of new homes.
They are designed to protect people from electrical shock by sensing small cur-
rents—approximately 5 mA and greater— leaking to ground. When current
above this level is detected, the device shuts off (interrupts) the current in less
than a millisecond. (Ground-fault interrupters are discussed in Chapter 19.)

18.8 CONDUCTION OF ELECTRICAL 
SIGNALS BY NEURONS2

The most remarkable use of electrical phenomena in living organisms is found in
the nervous system of animals. Specialized cells in the body called neurons form a
complex network that receives, processes, and transmits information from one
part of the body to another. The center of this network is located in the brain,
which has the ability to store and analyze information. On the basis of this infor-
mation, the nervous system controls parts of the body.

The nervous system is highly complex and consists of about 1010 intercon-
nected neurons. Some aspects of the nervous system are well known. Over the past
45 years, the method of signal propagation through the nervous system has been
established. The messages transmitted by neurons are voltage pulses called action
potentials. When a neuron receives a strong enough stimulus, it produces identical
voltage pulses that are actively propagated along its structure. The strength of the
stimulus is conveyed by the number of pulses produced. When the pulses reach
the end of the neuron, they activate either muscle cells or other neurons. There is
a “firing threshold” for neurons: action potentials propagate along a neuron only
if the stimulus is sufficiently strong.

Neurons can be divided into three classes: sensory neurons, motor neurons,
and interneurons. The sensory neurons receive stimuli from sensory organs that
monitor the external and internal environment of the body. Depending on their
specialized functions, the sensory neurons convey messages about factors such as
light, temperature, pressure, muscle tension, and odor to higher centers in the
nervous system. The motor neurons carry messages that control the muscle cells.
The messages are based on the information provided by the sensory neurons and
by the brain. The interneurons transmit information from one neuron to another.

Each neuron consists of a cell body to which are attached input ends called den-
drites and a long tail called the axon, which transmits the signal away from the cell
(Fig. 18.24). The far end of the axon branches into nerve endings that transmit
the signal across small gaps to other neurons or to muscle cells. A simple sensori-
motor neuron circuit is shown in Figure 18.25. A stimulus from a muscle produces
nerve impulses that travel to the spine. Here the signal is transmitted to a motor
neuron, which in turn sends impulses to control the muscle. Figure 18.26 shows an
electron microscope image of neurons in the brain.

The axon, which is an extension of the neuron cell, conducts electric impulses
away from the cell body. Some axons are extremely long. In humans, for example,
the axons connecting the spine with the fingers and toes are more than 1 m long.
The neuron can transmit messages because of the special active electrical charac-
teristics of the axon. (The axon acts as an active source of energy like a battery,
rather than like a passive stretch of resistive wire.) Much of the information about
the electrical and chemical properties of the axon is obtained by inserting small
needlelike probes into it. Figure 18.27 shows an experimental setup.

Note that the outside of the axon is grounded, so that all measured voltages are
with respect to a zero potential on the outside. With these probes, it is possible to in-
ject current into the axon, measure the resulting action potential as a function of
time at a fixed point, and sample the cell’s chemical composition. Such experiments

2This section is based upon an essay by Paul Davidovits of Boston College.
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18.8 Conduction of Electrical Signals by Neurons 613

are usually difficult to run because the diameter of most axons is very small. Even
the largest axons in the human nervous system have a diameter of only about 
20 
 10�4 cm. The giant squid, however, has an axon with a diameter of about
0.5 mm, which is large enough for the convenient insertion of probes. Much of the
information about signal transmission in the nervous system has come from experi-
ments with the squid axon.

In the aqueous environment of the body, salts and other molecules dissociate
into positive and negative ions. As a result, body fluids are relatively good conduc-
tors of electricity. The inside of the axon is filled with an ionic fluid that is sepa-
rated from the surrounding body fluid by a thin membrane that is only about
5 nm to 10 nm thick. The resistivities of the internal and external fluids are about
the same, but their chemical compositions are substantially different. The external
fluid is similar to seawater: Its ionic solutes are mostly positive sodium ions and
negative chloride ions. Inside the axon, the positive ions are mostly potassium ions
and the negative ions are mostly large organic ions.

Ordinarily, the concentrations of sodium and potassium ions inside and outside
the axon would be equalized by diffusion. The axon, however, is a living cell with
an energy supply and can change the permeability of its membranes on a time
scale of milliseconds.

When the axon is not conducting an electric pulse, the axon membrane is
highly permeable to potassium ions, slightly permeable to sodium ions, and imper-
meable to large organic ions. Consequently, although sodium ions cannot easily
enter the axon, potassium ions can leave it. As the potassium ions leave the axon,
however, they leave behind large negative organic ions, which cannot follow them
through the membrane. As a result, a negative potential builds up inside the axon
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Nerve endings

Dendrites

Signals from
another neuron

Figure 18.24 Diagram of a 
neuron.
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Interneuron

Spine

Muscle
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Figure 18.25 A simple neural 
circuit.

Figure 18.26 Stellate neuron from
human cortex.
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614 Chapter 18 Direct-Current Circuits

with respect to the outside. The final negative potential reached, which has been
measured at about � 70 mV, holds back the outflow of potassium ions so that at
equilibrium, the concentration of ions is as we have stated.

The mechanism for the production of an electric signal by the neuron is concep-
tually simple, but was experimentally difficult to sort out. When a neuron changes its
resting potential because of an appropriate stimulus, the properties of its membrane
change locally. As a result, there is a sudden flow of sodium ions into the cell that lasts
for about two milliseconds. This produces the � 30 mV peak in the action potential
shown in Figure 18.28a. Immediately after, there is an increase in potassium ion flow
out of the cell which restores the resting action potential of � 70 mV in an additional
3 ms. Both the Na� and K� ion flows have been measured by using radioactive Na
and K tracers. The nerve signal has been measured to travel along the axon at speeds
of 50 m/s to about 150 m/s. This flow of charged particles (or signal transmission) in
a nerve axon is unlike signal transmission in a metal wire. In an axon, charges move in
a direction perpendicular to the direction of travel of the nerve signal, and the nerve
signal moves much more slowly than a voltage pulse traveling along a metallic wire.

Although the axon is a highly complex structure, and much of how Na� and K�

ion channels open and close is not understood, standard electric circuit concepts
of current and capacitance can be used to analyze axons. It is left as a problem
(Problem 41) to show that the axon, having equal and opposite charges separated
by a thin dielectric membrane, acts like a capacitor.

54321
Time (ms)

–80

–60

–40

–20

0

+20

Action potential (mV)

54321
Time (ms)0

Current in
membrane wall
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–

+

(a)

(b)

Na+ in

K+ out

Figure 18.28 (a) Typical action
potential as a function of time. 
(b) Current in the axon membrane 
wall as a function of time.

SUMMARY
Take a practice test by logging into

PhysicsNow at www.cp7e.com and clicking on the Pre-
Test link for this chapter.

18.1 Sources of emf
Any device, such as a battery or generator, that increases the
electric potential energy of charges in an electric circuit is
called a source of emf. Batteries convert chemical energy

into electrical potential energy, and generators convert me-
chanical energy into electrical potential energy.

The terminal voltage �V of a battery is given by

�V � � Ir [18.1]

where is the emf of the battery, I is the current, and r is
the internal resistance of the battery. Generally, the inter-
nal resistance is small enough to be neglected.

�

�
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Conceptual Questions 615

18.2 Resistors in Series
The equivalent resistance of a set of resistors connected in
series is

R eq � R1 � R2 � R3 � � � � [18.4]

The current remains at a constant value as it passes
through a series of resistors. The potential difference
across any two resistors in series is different, unless the
resistors have the same resistance.

18.3 Resistors in Parallel
The equivalent resistance of a set of resistors connected in
parallel is

[18.6]

The potential difference across any two parallel resistors is
the same; however, the current in each resistor will be
different unless the two resistances are equal.

18.4 Kirchhoff’s Rules and 
Complex DC Circuits
Complex circuits can be analyzed using Kirchhoff’s rules:

1. The sum of the currents entering any junction must
equal the sum of the currents leaving that junction.

2. The sum of the potential differences across all the
elements around any closed circuit loop must be zero.

1
R eq

�
1

R 1
�

1
R 2

�
1

R 3
� � � �

The first rule, called the junction rule, is a statement of
conservation of charge. The second rule, called the loop
rule, is a statement of conservation of energy. Solving prob-
lems involves using these rules to generate as many equa-
tions as there are unknown currents. The equations can
then be solved simultaneously.

18.5 RC Circuits
In a simple RC circuit with a battery, a resistor, and a capac-
itor in series, the charge on the capacitor increases accord-
ing to the equation

q � Q(1 � e�t /RC) [18.7]

The term RC in Equation 18.7 is called the time constant
� (Greek letter tau), so

� � RC [18.8]

The time constant represents the time required for the
charge to increase from zero to 63.2% of its maximum
equilibrium value.

A simple RC circuit consisting of a charged capacitor in
series with a resistor discharges according to the expression

q � Q e�t/RC [18.9]

Problems can be solved by substituting into these equa-
tions. The voltage �V across the capacitor at any time is ob-
tained by dividing the charge by the capacitance: 
�V � q/C. Using Kirchhoff’s loop rule yields the potential
difference across the resistor. Ohm’s law applied to the
resistor then gives the current.

CONCEPTUAL QUESTIONS
1. Is the direction of current in a battery always from the

negative terminal to the positive one? Explain.

2. Given three lightbulbs and a battery, sketch as many
different circuits as you can.

3. Suppose the energy transferred to a dead battery during
charging is W. The recharged battery is then used until
fully discharged again. Is the total energy transferred out
of the battery during use also W ?

4. (a) A group of resistors connected in parallel have the
same (i) current in them, (ii) potential difference across
them, or (iii) neither of the above. (b) A group of resis-
tors connected in series have the same (i) current in
them, (ii) potential difference across them, or (iii) nei-
ther of the above. Justify your answers by considering a
circuit consisting of a 3.0-	 resistor and a 5.0-	 resistor
connected across a 12-V battery.

5. If you have your headlights on while you start your car,
why do they dim while the car is starting?

6. (a) The equivalent resistance of a group of resistors con-
nected in parallel is (i) greater than any of the resistors in
the group, (ii) less than any of the resistors in the group,
or (iii) neither of the above. (b) The equivalent resistance
of a group of resistors connected in series is (i) greater
than any of the resistors in the group, (ii) less than any of
the resistors in the group, or (iii) neither of the above.
Justify your answers by considering a circuit consisting of a

3.0-	 resistor and a 5.0-	 resistor connected across a 12-V
battery.

7. Electrical devices are often rated with a voltage and a
current— for example, 120 V, 5 A. Batteries, however, are
rated only with a voltage— for example, 1.5 V. Why?

8. A short circuit is a circuit containing a path of very low
resistance in parallel with some other part of the circuit.
Discuss the effect of a short circuit on the portion of the
circuit it parallels. Use a lamp with a frayed line cord as an
example.

9. Connecting batteries in series increases the emf applied
to a circuit. What advantage might there be to connecting
them in parallel?

10. If electrical power is transmitted over long distances, the
resistance of the wires becomes significant. Why? Which
mode of transmission would result in less energy loss—
high current and low voltage or low current and high volt-
age? Discuss.

11. Describe what happens to the lightbulb in Figure Q18.11
after the switch is closed. Assume the capacitor has a large
capacitance and is initially uncharged. Assume also that
the bulb lights up when connected directly across the bat-
tery terminals.

12. Two sets of Christmas tree lights are available. For set A,
when one bulb is removed, the remaining bulbs remain
illuminated. For set B, when one bulb is removed, the
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616 Chapter 18 Direct-Current Circuits

remaining bulbs do not operate. Explain the difference in
wiring for the two sets.

13. Why is it possible for a bird to sit on a high-voltage wire
without being electrocuted? (See Fig. Q18.13.)

14. (a) Two resistors are connected in series across a battery.
The power delivered to each resistor is (i) the same or
(ii) not necessarily the same. (b) Two resistors are con-
nected in parallel across a battery. The power delivered to
each resistor is (i) the same or (ii) not necessarily the
same.

15. Embodied in Kirchhoff’s rules are two conservation laws.
What are they?

16. A ski resort consists of a few chairlifts and several inter-
connected downhill runs on the side of a mountain, with
a lodge at the bottom. The lifts are analogous to batter-
ies and the runs are analogous to resistors. Describe how
two runs can be in series. Describe how three runs can
be in parallel. Sketch a junction of one lift and two
runs. One of the skiers is carrying an altimeter. State
Kirchhoff’s junction rule and Kirchhoff’s loop rule for
ski resorts.

17. Suppose you are flying a kite when it strikes a high-voltage
wire (a very dangerous situation). What factors determine
how great a shock you will receive?

18. Why is it dangerous to turn on a light when you are in a
bathtub?

19. Suppose a parachutist lands on a high-voltage wire and
grabs the wire as she prepares to be rescued. Will she be
electrocuted? If the wire then breaks, should she continue
to hold onto the wire as she falls to the ground?

20. Would a fuse or circuit breaker work successfully if it
were placed in parallel with the device it was supposed to
protect?

21. A series circuit consists of three identical lamps connected
to a battery as in Figure Q18.21. When the switch S is
closed, what happens (a) to the intensities of lamps A and
B, (b) to the intensity of lamp C, (c) to the current in the
circuit, and (d) to the voltage drop across the three
lamps? (e) Does the power dissipated in the circuit in-
crease, decrease, or remain the same?

22. Figure Q18.22 shows a series connection of three lamps,
all rated at 120 V, with power ratings of 60 W, 75 W, and
200 W, respectively. Why do the intensities of the lamps
differ? Which lamp has the greatest resistance? How
would their intensities differ if they were connected in
parallel?

23. A student claims that, of two lightbulbs connected, in
series the second is less bright than the first, because the
first bulb uses up some of the current. How would you
respond to this statement?

24. Two identical, parallel copper wires are placed under-
ground between two points 1.00 mile apart. These wires
are usually not connected, but a construction accident
shorts the wires together at some point. To try to isolate
the spot so that repair can be initiated, a technician goes
to end A of the lines and finds that a 12.0-V battery
connected across the wires at that end produces a current
of 1.00 A. Doing the same at the other end, B, produces
a current of 0.20 A. Is the break closer to end A or to
end B?

Switch
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C

Figure Q18.11

Figure Q18.13 Birds on a high-voltage wire.
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Problems 617

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 18.1 Sources of emf
Section 18.2 Resistors in Series
Section 18.3 Resistors in Parallel

A battery having an emf of 9.00 V delivers 117 mA when
connected to a 72.0-	 load. Determine the internal resist-
ance of the battery.

2. A 4.0-	 resistor, an 8.0-	 resistor, and a 12-	 resistor are
connected in series with a 24-V battery. What are (a) the
equivalent resistance and (b) the current in each resistor?
(c) Repeat for the case in which all three resistors are con-
nected in parallel across the battery.

3. A lightbulb marked “75 W [at] 120 V” is screwed into a
socket at one end of a long extension cord in which each
of the two conductors has a resistance of 0.800 	. The
other end of the extension cord is plugged into a 120-V
outlet. Draw a circuit diagram, and find the actual power
of the bulb in the circuit described.

4. A 9.0-	 resistor and a 6.0-	 resistor are connected in
series with a power supply. (a) The voltage drop across
the 6.0-	 resistor is measured to be 12 V. Find the voltage
output of the power supply. (b) The two resistors are
connected in parallel across a power supply, and the current
through the 9.0-	 resistor is found to be 0.25 A. Find the
voltage setting of the power supply.

(a) Find the equivalent resistance be-
tween points a and b in Figure P18.5. (b) Calculate the
current in each resistor if a potential difference of 34.0 V
is applied between points a and b.

5.

1.

7. What is the equivalent resistance of the combination of
resistors between points a and b in Figure P18.7? Note
that one end of the vertical resistor is left free.

8. (a) Find the equivalent resistance of the circuit in Figure
P18.8. (b) If the total power supplied to the circuit is
4.00 W, find the emf of the battery.

9. Consider the circuit shown in Figure P18.9. Find (a) the
current in the 20.0-	 resistor and (b) the potential differ-
ence between points a and b.

10. Two resistors, A and B, are connected in parallel across a
6.0-V battery. The current through B is found to be 2.0 A.
When the two resistors are connected in series to the 6.0-V
battery, a voltmeter connected across resistor A measures a
voltage of 4.0 V. Find the resistances of A and B.
The resistance between terminals a and b in Figure P18.11
is 75 	. If the resistors labeled R have the same value,
determine R .

11.

ba

4.00 	

7.00 	

9.00 	

10.0 	

Figure P18.5

30 V

18 	

9.0 	

6.0 	
12 	

Figure P18.6

6. Find the equivalent resistance of the circuit in Figure P18.6.

R

R

ba

R

R R

Figure P18.7

�

3.00 	

3.00 	

5.00 	

10.0 	

4.00 	

Figure P18.8

a

25.0 V

b

10.0 	

10.0 	

5.00 	 5.00 	 20.0 	

Figure P18.9

R
a

b

R

120 	 40 	

5.0 	

Figure P18.11
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618 Chapter 18 Direct-Current Circuits

12. Three 100-	 resistors are connected as shown in Figure
P18.12. The maximum power that can safely be delivered
to any one resistor is 25.0 W. (a) What is the maximum
voltage that can be applied to the terminals a and b?
(b) For the voltage determined in part (a), what is the
power delivered to each resistor? What is the total power
delivered?

13. Find the current in the 12-	 resistor in Figure P18.13.

14. Calculate the power delivered to each resistor in the cir-
cuit shown in Figure P18.14.

15. (a) You need a 45-	 resistor, but the stockroom has only
20-	 and 50-	 resistors. How can the desired resistance
be achieved under these circumstances? (b) What can you
do if you need a 35-	 resistor?

Section 18.4 Kirchhoff’s Rules and Complex DC Circuits

Note : For some circuits, the currents are not necessarily in
the direction shown.

16. The ammeter shown in Figure P18.16 reads 2.00 A. Find
I1, I2, and .�

17. Determine the current in each branch of the circuit
shown in Figure P18.17.

18. Determine the potential difference �Vab for the circuit in
Figure P18.18.

Figure P18.19 shows a circuit diagram. Determine (a) the
current, (b) the potential of wire A relative to ground,
and (c) the voltage drop across the 1 500-	 resistor.

19.

15.0 V

I2

I1

A

7.00 	

5.00 	

2.00 	 �

Figure P18.16

4.00 V
+ 12.0 V

+

�

�

8.00 	

5.00 	

1.00 	

3.00 	

1.00 	

Figure P18.17

3.0 Ω+

12 V

6.0 Ω+

4.0 V

2.0 Ω+

8.0 V

10 Ω

5.0 Ω

a b

Figure P18.18

a b

100 	

100 	

100 	

Figure P18.12

18 V

3.0 	

3.0 	

6.0 	

6.0 	

2.0 	

4.0 	

12 	

Figure P18.13

18.0 V

2.00 	

4.00 	

3.00 	 1.00 	

Figure P18.14

+
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–

+

–

20.0 V

30.0 V 25.0 V

A

1 000 	 1 500 	

2 000 	 500 	

Figure P18.19
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Problems 619

20. In the circuit of Figure P18.20, the current I1 is 3.0 A
while the values of and R are unknown. What are the
currents I2 and I3?

�

21. What is the emf of the battery in the circuit of Figure
P18.21?

�

22. Four resistors are connected to a battery with a terminal
voltage of 12 V, as shown in Figure P18.22. Determine the
power delivered to the 50-	 resistor.

Using Kirchhoff’s rules, (a) find the current in each resis-
tor shown in Figure P18.23 and (b) find the potential dif-
ference between points c and f.

23.

24. Two 1.50-V batteries—with their positive terminals in the
same direction—are inserted in series into the barrel of a
flashlight. One battery has an internal resistance of
0.255 	, the other an internal resistance of 0.153 	.
When the switch is closed, a current of 0.600 A passes
through the lamp. (a) What is the lamp’s resistance? (b)
What fraction of the power dissipated is dissipated in the
batteries?

25. Calculate each of the unknown currents I1, I2, and I3 for
the circuit of Figure P18.25.

26. A dead battery is charged by connecting it to the live bat-
tery of another car with jumper cables (Fig. P18.26). De-
termine the current in the starter and in the dead battery.

I1R

b

I2I3

a
24 V�

3.0 	 6.0 	

Figure P18.20

8.00 V

I = 2.00 A

+

+

3.00 	

1.00 	

1.00 	

5.00 	

12.0 	

�

Figure P18.21

90 Ω

+    –

30 Ω 50 Ω

20 Ω
12 V

Figure P18.22

60.0 V70.0 V 80.0 V

R2

a f e

R3

cb d

R1

4.00 k	

3.00 k	

2.00 k	

�1 �2 �3

Figure P18.23

24 V

12 V

I3

I1

I2

2.0 	

4.0 	

3.0 	

5.0 	

1.0 	

Figure P18.25

27. Find the current in each resistor in Figure P18.27.

Live
battery

+

–

+

–

Starter

Dead
battery

12 V 10 V

0.01 	
0.06 	

1.00 	

Figure P18.26

20.0 V

10.0 V

30.0 	

5.00 	

20.0 	

Figure P18.27

28. (a) Determine the potential difference �Vab for the
circuit in Figure P18.28. Note that each battery has an
internal resistance as indicated in the figure. (b) If points
a and b are connected by a 7.0-	 resistor, what is the
current in this resistor?
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620 Chapter 18 Direct-Current Circuits

Find the potential difference across
each resistor in Figure P18.29.

29.

much current does each appliance draw? (b) Is a 30.0-A
circuit breaker sufficient in this situation? Explain.

38. A lamp (R � 150 	), an electric heater (R � 25 	), and a
fan (R � 50 	) are connected in parallel across a 120-V line.
(a) What total current is supplied to the circuit? (b) What is
the voltage across the fan? (c) What is the current in the
lamp? (d) What power is expended in the heater?

A heating element in a stove is de-
signed to dissipate 3 000 W when connected to 240 V.
(a) Assuming that the resistance is constant, calculate the
current in the heating element if it is connected to 120 V.
(b) Calculate the power it dissipates at that voltage.

40. Your toaster oven and coffeemaker each dissipate 1 200 W
of power. Can you operate them together if the 120-V line
that feeds them has a circuit breaker rated at 15 A? Explain.

Section 18.8 Conduction of Electrical Signals by Neurons
41. Assume that a length of axon membrane of about 10 cm is

excited by an action potential (length excited � nerve
speed 
 pulse duration � 50 m/s 
 2.0 ms � 10 cm). In
the resting state, the outer surface of the axon wall is
charged positively with K� ions and the inner wall has an
equal and opposite charge of negative organic ions, as
shown in Figure P18.41. Model the axon as a parallel-plate
capacitor, and take C � ��0A/d and Q � C�V to investi-
gate the charge as follows: Use typical values for a cylindri-
cal axon of cell wall thickness d � 1.0 
 10�8 m, axon
radius r � 10 m, and cell-wall dielectric constant � � 3.0.
(a) Calculate the positive charge on the outside of a 10-cm
piece of axon when it is not conducting an electric pulse.
How many K� ions are on the outside of the axon? Is this a
large charge per unit area? [Hint : Calculate the charge per
unit area in terms of the number of angstroms (Å2) per
electronic charge. An atom has a cross section of about 
1 Å2 (1 Å � 10�10 m)] (b) How much positive charge must
flow through the cell membrane to reach the excited state
of � 30 mV from the resting state of � 70 mV? How many
sodium ions (Na�) is this? (c) If it takes 2.0 ms for the Na�

ions to enter the axon, what is the average current in the
axon wall in this process? (d) How much energy does
it take to raise the potential of the inner axon wall to
� 30 mV, starting from the resting potential of � 70 mV?

39.
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Figure P18.41 (Problems 41 and 42)

Section 18.5 RC Circuits
30. Show that � � RC has units of time.
31. Consider a series RC circuit for which C � 6.0 F, R �

2.0 
 106 	, and � 20 V. Find (a) the time constant of
the circuit and (b) the maximum charge on the capacitor
after a switch in the circuit is closed.

32. An uncharged capacitor and a resistor are connected in
series to a source of emf. If � 9.00 V, C � 20.0 F, and
R � 100 	, find (a) the time constant of the circuit,
(b) the maximum charge on the capacitor, and (c) the
charge on the capacitor after one time constant.

33. Consider a series RC circuit for which R � 1.0 M	, C �
5.0 F, and � 30 V. Find the charge on the capacitor
10 s after the switch is closed.
A series combination of a 12-k	 resistor and an unknown
capacitor is connected to a 12-V battery. One second after
the circuit is completed, the voltage across the capacitor is
10 V. Determine the capacitance of the capacitor.

35. A capacitor in an RC circuit is charged to 60.0% of its
maximum value in 0.900 s. What is the time constant of
the circuit.

36. A series RC circuit has a time constant of 0.960 s. The bat-
tery has an emf of 48.0 V, and the maximum current in
the circuit is 0.500 mA. What are (a) the value of the ca-
pacitance and (b) the charge stored in the capacitor 1.92
s after the switch is closed?

Section 18.6 Household Circuits
37. An electric heater is rated at 1 300 W, a toaster at 1 000 W,

and an electric grill at 1 500 W. The three appliances are
connected in parallel to a common 120-V circuit. (a) How

34.

�

�

�
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42. Consider the model of the axon as a capacitor from Prob-
lem 41 and Figure P18.41. (a) How much energy does it
take to restore the inner wall of the axon to � 70 mV,
starting from � 30 mV? (b) Find the average current in
the axon wall during this process.

43. Using Figure 18.28b and the results of Problems 18.41d
and 18.42a, find the power supplied by the axon per ac-
tion potential.

ADDITIONAL PROBLEMS
44. Consider an RC circuit in which the capacitor is being

charged by a battery connected in the circuit. After a time
equal to two time constants, what percentage of the final
charge is present on the capacitor?
Find the equivalent resistance between points a and b in
Figure P18.45.

45.

46. For the circuit in Figure P18.46, calculate (a) the equivalent
resistance of the circuit and (b) the power dissipated by the
entire circuit. (c) Find the current in the 5.0-	 resistor.

47. Find (a) the equivalent resistance of the circuit in Figure
P18.47, (b) each current in the circuit, (c) the potential
difference across each resistor, and (d) the power dissi-
pated by each resistor.

48. Three 60.0-W, 120-V lightbulbs are connected across a
120-V power source, as shown in Figure P18.48. Find (a)
the total power delivered to the three bulbs and (b) the
potential difference across each. Assume that the resist-
ance of each bulb is constant (even though, in reality, the
resistance increases markedly with current).

49. An automobile battery has an emf of 12.6 V and an internal
resistance of 0.080 	. The headlights have a total resistance
of 5.00 	 (assumed constant). What is the potential differ-
ence across the headlight bulbs (a) when they are the only
load on the battery and (b) when the starter motor is oper-
ated, taking an additional 35.0 A from the battery?

50. In Figure P18.50, suppose that the switch has been closed
for a length of time sufficiently long for the capacitor to
become fully charged. Find (a) the steady-state current in
each resistor and (b) the charge on the capacitor.

a

b

5.1 	

3.5 	

3.6 	

1.8 	

2.4 	

Figure P18.45
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b

5.0 	 3.0 	 3.0 	
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4.0 	 2.0 	
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Figure P18.46
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6.0 	
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6.0 	 6.0 	

9.0 	
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Figure P18.47

R1

120 V R2 R3

Figure P18.48

51. Find the values of I l, I2, and I3 for the circuit in Figure
P18.51.

52. The resistance between points a and b in Figure P18.52
drops to one-half its original value when switch S is closed.
Determine the value of R .

A generator has a terminal voltage of
110 V when it delivers 10.0 A and 106 V when it delivers
30.0 A. Calculate the emf and the internal resistance of
the generator.

53.

S

10.0 mF

9.00 V

12.0 k	

R2 =15.0 k	

3.00 k	

Figure P18.50

I2
9.0 V 14 V

4.0 V

I1 I3

5.0 	

10 	

10 	

Figure P18.51

b

a S

R

10 	

10 	

90 	

90 	

Figure P18.52
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59. A battery with an internal resistance of 10.0 	 produces
an open-circuit voltage of 12.0 V. A variable load resist-
ance with a range from 0 to 30.0 	 is connected across
the battery. (Note : A battery has a resistance that depends
on the condition of its chemicals and that increases as the
battery ages. This internal resistance can be represented
in a simple circuit diagram as a resistor in series with the
battery.) (a) Graph the power dissipated in the load resis-
tor as a function of the load resistance. (b) With your
graph, demonstrate the following important theorem: The
power delivered to a load is a maximum if the load resistance
equals the internal resistance of the source.
The circuit in Figure P18.60 contains two resistors, 
R1 � 2.0 k	 and R2 � 3.0 k	, and two capacitors, C1 �
2.0 F and C 2 � 3.0 F, connected to a battery with emf 

� 120 V. If there are no charges on the capacitors before
switch S is closed, determine the charges q1 and q2 on ca-
pacitors C1 and C 2, respectively, as functions of time, after
the switch is closed. [Hint : First reconstruct the circuit so
that it becomes a simple RC circuit containing a single resis-
tor and single capacitor in series, connected to the battery,
and then determine the total charge q stored in the circuit.]

�

60.

61. Consider the circuit shown in Figure P18.61. Find (a) the
potential difference between points a and b and (b) the
current in the 20.0-	 resistor.

62. In Figure P18.62, R1 � 0.100 	, R2 � 1.00 	, and R 3 �
10.0 	. Find the equivalent resistance of the circuit and
the current in each resistor when a 5.00-V power supply is
connected between (a) points A and B, (b) points A and
C, and (c) points A and D.

622 Chapter 18 Direct-Current Circuits

54. An emf of 10 V is connected to a series RC circuit consist-
ing of a resistor of 2.0 
 106 	 and a capacitor of 3.0 F.
Find the time required for the charge on the capacitor to
reach 90% of its final value.

55. The student engineer of a campus radio station wishes to
verify the effectiveness of the lightning rod on the an-
tenna mast (Fig. P18.55). The unknown resistance Rx is
between points C and E. Point E is a “true ground,” but is
inaccessible for direct measurement, since the stratum in
which it is located is several meters below the Earth’s
surface. Two identical rods are driven into the ground at
A and B, introducing an unknown resistance Ry. The
procedure for finding the unknown resistance Rx is as
follows: Measure resistance R1 between points A and B.
Then connect A and B with a heavy conducting wire, and
measure resistance R2 between points A and C. (a) Derive
a formula for Rx in terms of the observable resistances R1
and R2. (b) A satisfactory ground resistance would be
Rx � 2.0 	. Is the grounding of the station adequate if
measurements give R1 � 13 	 and R2 � 6.0 	?

56. The resistor R in Figure P18.56 dissipates 20 W of power.
Determine the value of R .

57. A voltage �V is applied to a series configuration of n resis-
tors, each of resistance R. The circuit components are
reconnected in a parallel configuration, and voltage �V is
again applied. Show that the power consumed by the
series configuration is 1/n2 times the power consumed by
the parallel configuration.

58. For the network in Figure P18.58, show that the resistance
between points a and b is . [Hint : Connect a bat-
tery with emf across points a and b and determine /I,
where I is the current in the battery.]

��
Rab � 27

17  
	

Ry Rx

A BC

Ry

E

Figure P18.55
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Problems 623

What are the expected readings of the ammeter and volt-
meter for the circuit in Figure P18.63?

63. ACTIVITIES
1. Using insulated wire, connect one terminal of a D-cell

battery to the base of a flashlight bulb, tape a second
wire to the other battery terminal, and tape a third wire
to the center conductor of the bulb, as shown in the Fig-
ure A18.1a. Be sure to remove about 1 cm of insulation
from the ends of all wires before making connections.
Connect the two open wires together to complete the
circuit, and note the illumination of the bulb. Now add a
second D-cell battery to the circuit as in Figure A18.1b to
give a total voltage of 3.0 V, connect the two open wires
together to complete the circuit, and note the illumina-
tion of the bulb again. Why does the bulb grow brighter
in this case?

64. Consider the two arrangements of batteries and bulbs
shown in Figure P18.64. The two bulbs are identical and
have resistance R, and the two batteries are identical with
output voltage �V. (a) In case 1, with the two bulbs in se-
ries, compare the brightness of each bulb, the current in
each bulb, and the power delivered to each bulb? (b) In
case 2, with the two bulbs in parallel, compare the bright-
ness of each bulb, the current in each bulb, and the
power supplied to each bulb. (c) Which bulbs are
brighter, those in case 1 or those in case 2? (d) In each
case, if one bulb fails, will the other go out as well? If the
other bulb doesn’t fail, will it get brighter or stay the
same?

(Problem 64 is courtesy of E.F. Redish. For other problems
of this type, visit http://www.physics.umd.edu/perg/.)

V

A

10.0 Ω

5.00 Ω

6.00 V

4.50 V

6.00 Ω

6.00 Ω

Figure P18.63

B

A

Case 1

B

Case 2

A

�V �V

Figure P18.64

–

Touch
wires

Touch
wires

1.5 V

+

–

3.0 V

(a) (b)

+

Figure A18.1

2. Use the basic equipment of activity 1 plus a few more
items to test some additional features of circuits. First,
note the brightness of a single bulb connected to the bat-
tery. Now connect two bulbs in series with each other and
the battery. Predict whether the bulbs will be dimmer or
brighter than when operated separately. Try it and see.
Continue for three bulbs in series.

3. Repeat activity 2, but this time connect the bulbs in paral-
lel with each other. Predict how the brightness will change
as you add more bulbs in parallel. Explain.

4. Continue your experimentation with circuits by connect-
ing the battery to one bulb, followed in the same circuit
by two bulbs in parallel and then back to the battery. Pre-
dict the brightness of each bulb in this situation before
you connect the circuit. Explain the results you obtain.
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In terms of applications, magnetism is one of the most important fields in physics. Large elec-
tromagnets are used to pick up heavy loads. Magnets are used in such devices as meters,
motors, and loudspeakers. Magnetic tapes and disks are used routinely in sound- and video-
recording equipment and to store computer data. Intense magnetic fields are used in mag-
netic resonance imaging (MRI) devices to explore the human body with better resolution and
greater safety than x-rays can provide. Giant superconducting magnets are used in the
cyclotrons that guide particles into targets at nearly the speed of light, and magnetic bottles
hold antimatter, possibly the key to future space propulsion systems.

Magnetism is closely linked with electricity. Magnetic fields affect moving charges, and
moving charges produce magnetic fields. Changing magnetic fields can even create electric
fields. These phenomena signify an underlying unity of electricity and magnetism, which
James Clerk Maxwell first described in the 19th century. The ultimate source of any magnetic
field is electric current.

19.1 MAGNETS
Most people have had experience with some form of magnet. You are most likely
familiar with the common iron horseshoe magnet that can pick up iron-containing
objects such as paper clips and nails. Several commercially available magnets are
shown in Figure 19.1. In the discussion that follows, we assume the magnet has the
shape of a bar. Iron objects are most strongly attracted to either end of such a bar
magnet, called its poles. One end is called the north pole and the other the south
pole. The names come from the behavior of a magnet in the presence of Earth’s
magnetic field. If a bar magnet is suspended from its midpoint by a piece of string
so that it can swing freely in a horizontal plane, it will rotate until its north pole
points to the north and its south pole points to the south. The same idea is used to
construct a simple compass. Magnetic poles also exert attractive or repulsive forces
on each other similar to the electrical forces between charged objects. In fact, simple

Aurora borealis, the Northern Lights.
Displays such as this one are caused
by cosmic ray particles trapped in the
magnetic field of Earth. When the
particles collide with atoms in the
atmosphere, they cause the atoms to
emit visible light.
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19.1 Magnets 625

experiments with two bar magnets show that like poles repel each other and unlike
poles attract each other.

Although the force between opposite magnetic poles is similar to the force
between positive and negative electric charges, there is an important difference:
positive and negative electric charges can exist in isolation of each other; north
and south poles don’t. No matter how many times a permanent magnet is cut,
each piece always has a north pole and a south pole. There is some theoretical
basis for the speculation that magnetic monopoles (isolated north or south poles)
exist in nature, and the attempt to detect them is currently an active experimental
field of investigation.

An unmagnetized piece of iron can be magnetized by stroking it with a magnet.
Magnetism can also be induced in iron (and other materials) by other means. For
example, if a piece of unmagnetized iron is placed near a strong permanent
magnet, the piece of iron eventually becomes magnetized. The process can be
accelerated by heating and then cooling the iron.

Naturally occurring magnetic materials such as magnetite are magnetized in
this way because they have been subjected to Earth’s magnetic field for long peri-
ods of time. The extent to which a piece of material retains its magnetism depends
on whether it is classified as magnetically hard or soft. Soft magnetic materials,
such as iron, are easily magnetized, but also tend to lose their magnetism easily. In
contrast, hard magnetic materials, such as cobalt and nickel, are difficult to
magnetize, but tend to retain their magnetism.

In earlier chapters we described the interaction between charged objects
in terms of electric fields. Recall that an electric field surrounds any stationary
electric charge. The region of space surrounding a moving charge includes a
magnetic field as well. A magnetic field also surrounds a properly magnetized
magnetic material.

To describe any type of vector field, we must define its magnitude, or strength,
and its direction. The direction of a magnetic field at any location is the
direction in which the north pole of a compass needle points at that location.
Active Figure 19.2a shows how the magnetic field of a bar magnet can be traced
with the aid of a compass, defining a magnetic field line. Several magnetic field

B
:

Figure 19.1 An assortment of commercially
available magnets. The four red magnets and
the large black magnet on the left are made of
an alloy of iron, aluminum, and cobalt. The
six horseshoe magnets on the right are made
of different nickel–steel alloys. The rectangu-
lar magnets on the lower right are ceramics
made of iron, nickel, and beryllium oxides.
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ACTIVE FIGURE 19.2
(a) Tracing the magnetic field of a
bar magnet. (b) Several magnetic
field lines of a bar magnet.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 19.2, where
you can move the compass around
and trace the magnetic field for 
yourself.
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626 Chapter 19 Magnetism

lines of a bar magnet traced out in this way appear in the two-dimensional repre-
sentation in Active Figure19.2b. Magnetic field patterns can be displayed by plac-
ing small iron filings in the vicinity of a magnet, as in Figure 19.3.

Forensic scientists use a technique similar to that shown in Figure 19.3 to find
fingerprints at a crime scene. One way to find latent, or invisible, prints is by sprin-
kling a powder of iron dust on a surface. The iron adheres to any perspiration or
body oils that are present and can be spread around on the surface with a mag-
netic brush that never comes into contact with the powder or the surface.

19.2 EARTH’S MAGNETIC FIELD
A small bar magnet is said to have north and south poles, but it’s more accurate
to say it has a “north-seeking” pole and a “south-seeking” pole. By these expres-
sions, we mean that if such a magnet is used as a compass, one end will “seek,” or
point to, the geographic North Pole of Earth and the other end will “seek,” or
point to, the geographic South Pole of Earth. We conclude that the geographic
North Pole of Earth corresponds to a magnetic south pole, and the geographic
South Pole of Earth corresponds to a magnetic north pole. In fact, the configu-
ration of Earth’s magnetic field, pictured in Figure 19.4, very much resembles

(a) (b) (c)

Figure 19.3 (a) The magnetic field pattern of a bar magnet, as displayed with iron filings on a sheet
of paper. (b) The magnetic field pattern between unlike poles of two bar magnets, as displayed with
iron filings. (c) The magnetic field pattern between two like poles.
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Figure 19.4 Earth’s magnetic field
lines. Note that magnetic south is at
the north geographic pole and mag-
netic north is at the south geographic
pole.

A P P L I C AT I O N
Dusting for Fingerprints

TIP 19.1 The Geographic
North Pole is the Magnetic
South Pole
The north pole of a magnet in a 
compass points north because it’s 
attracted to the Earth’s magnetic south
pole— located near the Earth’s 
geographic north pole.
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19.2 Earth’s Magnetic Field 627

what would be observed if a huge bar magnet were buried deep in the Earth’s
interior.

If a compass needle is suspended in bearings that allow it to rotate in the verti-
cal plane as well as in the horizontal plane, the needle is horizontal with respect to
Earth’s surface only near the equator. As the device is moved northward, the nee-
dle rotates so that it points more and more toward the surface of Earth. The angle
between the direction of the magnetic field and the horizontal is called the dip
angle. Finally, at a point just north of Hudson Bay in Canada, the north pole of the
needle points directly downward, with a dip angle of 90°. This site, first found in
1832, is considered to be the location of the south magnetic pole of Earth. It is
approximately 1 300 miles from Earth’s geographic North Pole and varies with
time. Similarly, Earth’s magnetic north pole is about 1 200 miles from its geo-
graphic South Pole. This means that compass needles point only approximately
north. The difference between true north, defined as the geographic North Pole,
and north indicated by a compass varies from point to point on Earth, a difference
referred to as magnetic declination. For example, along a line through South
Carolina and the Great Lakes a compass indicates true north, whereas in Washington
state it aligns 25° east of true north (Fig. 19.5).

Although the magnetic field pattern of Earth is similar to the pattern that
would be set up by a bar magnet placed at its center the source of Earth’s field
can’t consist of large masses of permanently magnetized material. Earth does have
large deposits of iron ore deep beneath its surface, but the high temperatures in
the core prevent the iron from retaining any permanent magnetization. It’s con-
sidered more likely that the true source of Earth’s magnetic field is electric current
in the liquid part of its core. This current, which is not well understood, may be
driven by an interaction between the planet’s rotation and convection in the hot
liquid core. There is some evidence that the strength of a planet’s magnetic field is
related to the planet’s rate of rotation. For example, Jupiter rotates faster than
Earth, and recent space probes indicate that Jupiter’s magnetic field is stronger
than Earth’s, even though Jupiter lacks an iron core. Venus, on the other hand,
rotates more slowly than Earth, and its magnetic field is weaker. Investigation into
the cause of Earth’s magnetism continues.

An interesting fact concerning Earth’s magnetic field is that its direction
reverses every few million years. Evidence for this phenomenon is provided by
basalt (an iron-containing rock) that is sometimes spewed forth by volcanic activity
on the ocean floor. As the lava cools, it solidifies and retains a picture of the direc-
tion of Earth’s magnetic field. When the basalt deposits are dated, they provide
evidence for periodic reversals of the magnetic field. The cause of these field
reversals is still not understood.

It has long been speculated that some animals, such as birds, use the magnetic
field of Earth to guide their migrations. Studies have shown that a type of anaero-
bic bacterium that lives in swamps has a magnetized chain of magnetite as part of
its internal structure. (The term anaerobic means that these bacteria live and grow

5°W

10°W

15°W

20°W

20°E

15°E

10°E 5°E 0°

Figure 19.5 A map of the continen-
tal United States showing the declina-
tion of a compass from true north.

A P P L I C AT I O N
Magnetic Bacteria
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628 Chapter 19 Magnetism

without oxygen; in fact, oxygen is toxic to them.) The magnetized chain acts as a
compass needle that enables the bacteria to align with Earth’s magnetic field.
When they find themselves out of the mud on the bottom of the swamp, they
return to their oxygen-free environment by following the magnetic field lines of
Earth. Further evidence for their magnetic sensing ability is the fact that bacteria
found in the Northern Hemisphere have internal magnetite chains that are
opposite in polarity to those of similar bacteria in the Southern Hemisphere. This
is consistent with the fact that in the Northern Hemisphere Earth’s field has a
downward component, whereas in the Southern Hemisphere it has an upward
component. Recently, a meteorite originating on Mars has been found to contain
a chain of magnetite. NASA scientists believe it may be a fossil of ancient Martian
bacterial life.

The magnetic field of Earth is used to label runways at airports according to
their direction. A large number is painted on the end of the runway so that it can
be read by the pilot of an incoming airplane. This number describes the direction
in which the airplane is traveling, expressed as the magnetic heading, in degrees
measured clockwise from magnetic north divided by 10. A runway marked 9 would
be directed toward the east (90° divided by 10), while a runway marked 18 would
be directed toward magnetic south.

A P P L I C AT I O N
Labeling Airport Runways

On a business trip to Australia, you take along your
American-made compass that you may have used on a
camping trip. Does this compass work correctly in
Australia?

Explanation There’s no problem with using the
compass in Australia. The north pole of the magnet in
the compass will be attracted to the south magnetic

pole near the geographic North Pole, just as it was 
in the United States. The only difference in the 
magnetic field lines is that they have an upward 
component in Australia, whereas they have a down-
ward component in the United States. Held in a 
horizontal plane, your compass can’t detect this, 
however— it only displays the direction of the 
horizontal component of the magnetic field.

Applying Physics 19.1 Compasses Down Under

19.3 MAGNETIC FIELDS
Experiments show that a stationary charged particle doesn’t interact with a static
magnetic field. When a charged particle is moving through a magnetic field, how-
ever, a magnetic force acts on it. This force has its maximum value when the
charge moves in a direction perpendicular to the magnetic field lines, decreases in
value at other angles, and becomes zero when the particle moves along the field
lines. This is quite different from the electric force, which exerts a force on a
charged particle whether it’s moving or at rest. Further, the electric force is di-
rected parallel to the electric field while the magnetic force on a moving charge is
directed perpendicular to the magnetic field.

In our discussion of electricity, the electric field at some point in space was
defined as the electric force per unit charge acting on some test charge placed at
that point. In a similar way, we can describe the properties of the magnetic field 
at some point in terms of the magnetic force exerted on a test charge at that point.
Our test object is a charge q moving with velocity . It is found experimentally
that the strength of the magnetic force on the particle is proportional to the mag-
nitude of the charge q, the magnitude of the velocity , the strength of the external
magnetic field , and the sine of the angle � between the direction of and the
direction of . These observations can be summarized by writing the magnitude of
the magnetic force as 

[19.1]

This expression is used to define the magnitude of the magnetic field as

F � qvB sin �

B
:

v:B
:

v:

v:

B
:
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19.3 Magnetic Fields 629

[19.2]

If F is in newtons, q in coulombs, and v in meters per second, then the SI unit
of magnetic field is the tesla (T), also called the weber (Wb) per square meter
(1 T � 1 Wb/m2). If a 1-C charge moves in a direction perpendicular to a mag-
netic field of magnitude 1 T with a speed of 1 m/s, the magnetic force exerted on
the charge is 1 N. We can express the units of as

[19.3]

In practice, the cgs unit for magnetic field, the gauss (G), is often used. The gauss
is related to the tesla through the conversion

1 T � 104 G

Conventional laboratory magnets can produce magnetic fields as large as about
25 000 G, or 2.5 T. Superconducting magnets that can generate magnetic fields as
great as 3 � 105 G, or 30 T, have been constructed. These values can be compared
with the value of Earth’s magnetic field near its surface, which is about 0.5 G, or
0.5 � 10�4 T.

From Equation 19.1 we see that the force on a charged particle moving in a
magnetic field has its maximum value when the particle’s motion is perpendicular to
the magnetic field, corresponding to � � 90°, so that sin � � 1. The magnitude of
this maximum force has the value

Fmax � qvB [19.4]

Also from Equation 19.1, F is zero when is parallel to (corresponding to � � 0°
or 180°), so no magnetic force is exerted on a charged particle when it moves in
the direction of the magnetic field or opposite the field.

Experiments show that the direction of the magnetic force is always perpen-
dicular to both and , as shown in Figure 19.6 for a positively charged particle.
To determine the direction of the force, we employ the right-hand rule number 1:

1. Point the fingers of your right hand in the direction of the velocity .
2. Curl the fingers in the direction of the magnetic field , moving through

the smallest angle (as in Fig. 19.7).
3. Your thumb is now pointing in the direction of the magnetic force 

exerted on a positive charge.

If the charge is negative rather than positive, the force is directed opposite that
shown in Figures 19.6 and 19.7. So if q is negative, simply use the right-hand rule
to find the direction for positive q, and then reverse that direction for the negative
charge.

F
:

F
:

B
:

v:

B
:

v:

B
:

v:

[B] � T �
Wb
m2 �

N
C �m/s

�
N

A�m

B
:

B � 
F

qv sin�

+ q u

F

B

v

Figure 19.6 The direction of the
magnetic force on a positively
charged particle moving with a veloc-
ity in the presence of a magnetic
field. When is at an angle � with
respect to , the magnetic force is
perpendicular to both and .B

:
v:

B
:

v:
v:

F

B

v

Figure 19.7 Right-hand rule num-
ber 1 for determining the direction
of the magnetic force on a positive
charge moving with a velocity in a
magnetic field . Point the fingers of
your right hand in the direction of ,
and then curl them in the direction
of . The magnetic force points in
the direction of your right thumb.

F
:

B
:

v:
B
:

v:

A charged particle moves in a straight line through a region of space. Which of the
following answers must be true? (Assume any other fields are negligible.) The mag-
netic field (a) has a magnitude of zero (b) has a zero component perpendicular to
the particle’s velocity (c) has a zero component parallel to the particle’s velocity in
that region.

Quick Quiz 19.1

The north-pole end of a bar magnet is held near a stationary positively charged
piece of plastic. Is the plastic (a) attracted, (b) repelled, or (c) unaffected by the
magnet?

Quick Quiz 19.2
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630 Chapter 19 Magnetism

EXAMPLE 19.1 A Proton Traveling in Earth’s Magnetic Field
Goal Calculate the magnitude and direction of a magnetic force.

Problem A proton moves with a speed of 1.00 � 105 m/s through Earth’s magnetic field, which has a value of 55.0 �T
at a particular location. When the proton moves eastward, the magnetic force acting on it is directed straight upward,
and when it moves northward, no magnetic force acts on it. (a) What is the direction of the magnetic field, and
(b) what is the strength of the magnetic force when the proton moves eastward? (c) Calculate the gravitational force
on the proton and compare it with the magnetic force. Compare it also with the electric force if there were an elec-
tric field with magnitude E � 1.50 � 102 N/C at that location, a common value at Earth’s surface. Note that the mass
of the proton is 1.67 � 10�27 kg.

Strategy The direction of the magnetic field can be found from an application of the right-hand rule, together
with the fact that no force is exerted on the proton when it’s traveling north. Substituting into Equation 19.1 yields
the magnitude of the magnetic field.

Solution
(a) Find the direction of the magnetic field.

No magnetic force acts on the proton when it’s going
north, so the angle such a proton makes with the mag-
netic field direction must be either 0° or 180°. There-
fore, the magnetic field must point either north or
south. Now apply the right-hand rule. When the particle

travels east, the magnetic force is directed upward. 
Point your thumb in the direction of the force and your
fingers in the direction of the velocity eastward. When
you curl your fingers, they point north, which must
therefore be the direction of the magnetic field.

B
:

(b) Find the magnitude of the magnetic force.

Substitute the given values and the charge of a proton
into Equation 19.1. From part (a), the angle between
the velocity of the proton and the magnetic field 
is 90.0°.

B
:

v:

F � qvB sin � � (1.60 � 10�19 C)(1.00 � 105 m/s)

� (55.0 � 10�6 T)sin(90.0°)

� 8.80 � 10�19 N

(c) Calculate the gravitational force on the proton and
compare it with the magnetic force, and also with the
electric force if E � 1.50 � 102 N/C:

Fgrav � mg � (1.67 � 10�27 kg)(9.80 m/s2)

�

Felec � qE � (1.60 � 10�19 C)(1.50 � 102 N/C)

� 2.40 � 10�17 N

1.64 � 10�26 N

Remarks The information regarding a proton moving north was necessary to fix the direction of the magnetic field.
Otherwise, an upward magnetic force on an eastward-moving proton could be caused by a magnetic field pointing
anywhere northeast or northwest. Notice in part (c) the relative strengths of the forces, with the electric force larger
than the magnetic force and both much larger than the gravitational force, all for typical field values found in nature.

Exercise 19.1
Suppose an electron is moving due west in the same magnetic field as in Example 19.1 at a speed of 2.50 � 105 m/s.
Find the magnitude and direction of the magnetic force on the electron.

Answer 2.20 � 10�18 N, straight up. (Don’t forget, the electron is negatively charged!)

EXAMPLE 19.2 A Proton Moving in a Magnetic Field
Goal Calculate the magnetic force and acceleration when a particle moves at an angle other than ninety degrees to
the field.

Problem A proton moves at 8.00 � 106 m/s along the x-axis. It enters a region in which there is a magnetic
field of magnitude 2.50 T, directed at an angle of 60.0° with the x -axis and lying in the xy -plane (Fig. 19.8). 

44920_19_p624-659  1/5/05  1:47 PM  Page 630



19.4 Magnetic Force on a Current-Carrying Conductor 631

19.4 MAGNETIC FORCE ON A CURRENT-CARRYING
CONDUCTOR

If a magnetic field exerts a force on a single charged particle when it moves
through a magnetic field, it should be no surprise that magnetic forces are exerted
on a current-carrying wire, as well (see Fig. 19.9). This follows from the fact that
the current is a collection of many charged particles in motion; hence, the result-
ant force on the wire is due to the sum of the individual forces on the charged
particles. The force on the particles is transmitted to the “bulk” of the wire
through collisions with the atoms making up the wire.

Some explanation is in order concerning notation in many of the figures. To
indicate the direction of , we use the following conventions: 

If is directed into the page, as in Figure 19.10 (page 632), we use a series 
of blue crosses, representing the tails of arrows. If is directed out of 
the page, we use a series of blue dots, representing the tips of arrows. If lies
in the plane of the page, we use a series of blue field lines with arrowheads.

B
:

B
:

B
:

B
:

(a) Find the initial magnitude and direction of
the magnetic force on the proton. (b) Calculate
the proton’s initial acceleration.

Strategy Finding the magnitude and direction
of the magnetic force requires substituting values
into the equation for magnetic force, Equation
19.1, and using the right-hand rule. Applying
Newton’s second law solves part (b).

Solution
(a) Find the magnitude and direction of the 
magnetic force on the proton.

60°
v

y+ e

x

z

F

B

Figure 19.8 (Example 19.2) 
The magnetic force on a proton is in
the positive z-direction when and 
lie in the xy -plane.

B
:

v:
F
:

Substitute v � 8.00 � 106 m/s, the magnetic field strength
B � 2.50 T, the angle, and the charge of a proton into
Equation 19.1:

F � qvB sin �

� (1.60 � 10�19 C)(8.00 � 106 m/s)(2.50 T)(sin 60°)

F � 2.77 � 10�12 N

Apply the right-hand rule number 1 to find the initial
direction of the magnetic force:

Point the fingers of the right hand in the x -direction
(the direction of ), and then curl them towards . The
thumb points upwards, in the positive z-direction.

B
:

v:

(b) Calculate the proton’s initial acceleration.

Substitute the force and the mass of a proton into
Newton’s second law:

ma � F : (1.67 � 10�27 kg)a � 2.77 � 10�12 N

a � 1.66 � 1015 m/s2

Remarks The initial acceleration is also in the positive z-direction. Because the direction of changes, however, the
subsequent direction of the magnetic force also changes. In applying right-hand rule number 1 to find the direction, it
was important to take into consideration the charge. A negatively charged particle accelerates in the opposite direction.

Exercise 19.2
Calculate the acceleration of an electron that moves through the same magnetic field as in Example 19.2, at the same
velocity as the proton. The mass of an electron is 9.11 � 10�31 kg.

Answer 3.04 � 1018 m/s2 in the negative z-direction

v:

Figure 19.9 This apparatus
demonstrates the force on a current-
carrying conductor in an external
magnetic field. Why does the bar
swing away from the magnet after the
switch is closed?
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632 Chapter 19 Magnetism

The force on a current-carrying conductor can be demonstrated by hanging a
wire between the poles of a magnet, as in Figure 19.10. In this figure, the magnetic
field is directed into the page and covers the region within the shaded area. The
wire deflects to the right or left when it carries a current.

We can quantify this discussion by considering a straight segment of wire of
length � and cross-sectional area A carrying current I in a uniform external mag-
netic field , as in Figure 19.11. We assume that the magnetic field is perpendicu-
lar to the wire and is directed into the page. A force of magnitude Fmax � qvdB is
exerted on each charge carrier in the wire, where vd is the drift velocity of the
charge. To find the total force on the wire, we multiply the force on one charge
carrier by the number of carriers in the segment. Because the volume of the seg-
ment is A�, the number of carriers is nA�, where n is the number of carriers per
unit volume. Hence, the magnitude of the total magnetic force on the wire of
length � is as follows:

Total force � force on each charge carrier � total number of carriers

Fmax � (qvdB)(nA�)

From Chapter 17, however, we know that the current in the wire is given by 
I � nqvdA, so

Fmax � BI� [19.5]

This equation can be used only when the current and the magnetic field are at
right angles to each other.

If the wire is not perpendicular to the field, but is at some arbitrary angle, as in
Figure 19.12, the magnitude of the magnetic force on the wire is

[19.6]

where � is the angle between and the direction of the current. The direction of
this force can be obtained by the use of right-hand rule number 1. However, in
this case you must place your fingers in the direction of the positive current I,
rather than in the direction of . The current, naturally, is made up of charges
moving at some velocity, so this really isn’t a separate rule. In Figure 19.12, the
direction of the magnetic force on the wire is out of the page.

Finally, when the current is either in the direction of the field or opposite the
direction of the field, the magnetic force on the wire is zero.

The fact that a magnetic force acts on a current-carrying wire in a magnetic
field is the operating principle of most speakers in sound systems. One speaker
design, shown in Figure 19.13, consists of a coil of wire called the voice coil, a flexi-
ble paper cone that acts as the speaker, and a permanent magnet. The coil of wire
surrounding the north pole of the magnet is shaped so that the magnetic field
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B
:

F � BI� sin �
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Figure 19.10 A segment of a flexi-
ble vertical wire partially stretched
between the poles of a magnet, with
the field (blue crosses) directed into
the page. (a) When there is no cur-
rent in the wire, it remains vertical.
(b) When the current is upward, the
wire deflects to the left. (c) When the
current is downward, the wire
deflects to the right.

q
vd

A
Bin

+

Fmax

× × × × ×

× × × × ×

×

×
�

Figure 19.11 A section of a 
wire containing moving charges in an
external magnetic field .B

:

I

B

u

Figure 19.12 A wire carrying a
current I in the presence of an exter-
nal magnetic field that makes an
angle � with the wire.

B
:

N

S

S

Voice
coil

Paper
cone

Current

B
F

Figure 19.13 A diagram of a 
loudspeaker.

TIP 19.2 The Origin of the
Magnetic Force on a Wire
When a magnetic field is applied at
some angle to a wire carrying a cur-
rent, a magnetic force is exerted on
each moving charge in the wire. The
total magnetic force on the wire is the
sum of all the magnetic forces on the
individual charges producing the
current.
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19.4 Magnetic Force on a Current-Carrying Conductor 633

lines are directed radially outward from the coil’s axis. When an electrical signal is
sent to the coil, producing a current in the coil as in Figure 19.13, a magnetic
force to the left acts on the coil. (This can be seen by applying right-hand rule
number 1 to each turn of wire.) When the current reverses direction, as it would
for a current that varied sinusoidally, the magnetic force on the coil also reverses
direction, and the cone, which is attached to the coil, accelerates to the right. An
alternating current through the coil causes an alternating force on the coil, which
results in vibrations of the cone. The vibrating cone creates sound waves as it
pushes and pulls on the air in front of it. In this way, a 1-kHz electrical signal is
converted to a 1-kHz sound wave.

An unusual application of the force on a current-carrying conductor is illus-
trated by the electromagnetic pump shown in Figure 19.14. Artificial hearts
require a pump to keep the blood flowing, and kidney dialysis machines also
require a pump to assist the heart in pumping blood that is to be cleansed.
Ordinary mechanical pumps create problems because they damage the blood
cells as they move through the pump. The mechanism shown in the figure
has demonstrated some promise in such applications. A magnetic field is
established across a segment of the tube containing the blood, flowing in the
direction of the velocity . An electric current passing through the fluid in the
direction shown has a magnetic force acting on it in the direction of , as
applying the right-hand rule shows. This force helps to keep the blood in
motion.

v:
v:

A P P L I C AT I O N
Loudspeaker Operation

I

B

v

Figure 19.14 A simple electromag-
netic pump has no moving parts to
damage a conducting fluid, such as
blood, passing through. Application
of the right-hand rule #1 (right fin-
gers in the direction of the current I,
curl them in the direction of ,
thumb points in the direction of the
force) shows that the force on the
current-carrying segment of the fluid
is in the direction of the velocity.

B
:

In a lightning strike there is a rapid movement of 
negative charge from a cloud to the ground. In what
direction is a lightning strike deflected by Earth’s 
magnetic field?

Explanation The downward flow of negative charge
in a lightning stroke is equivalent to a current moving
upward. Consequently, we have an upward- moving
current in a northward-directed magnetic field. 
According to right-hand rule number 1, the lightning
strike would be deflected toward the west.

Applying Physics 19.2 Lightning Strikes

A P P L I C AT I O N
Electromagnetic Pumps for
Artificial Hearts and Kidneys

Substitute into Equation 19.6, using the fact that the
magnetic field and the current are at right angles to
each other:

F � BI� sin � � (0.500 � 10�4 T)(22.0 A)(36.0 m) sin 90.0°

� 3.96 � 10�2 N

EXAMPLE 19.3 A Current-Carrying Wire in Earth’s Magnetic Field
Goal Compare the magnetic force on a current-carrying wire with the gravitational force exerted on the wire.

Problem A wire carries a current of 22.0 A from west to east. Assume that at this location the magnetic field of
Earth is horizontal and directed from south to north and that it has a magnitude of 0.500 � 10�4 T. (a) Find the
magnitude and direction of the magnetic force on a 36.0-m length of wire. (b) Calculate the gravitational force on
the same length of wire if it’s made of copper and has a cross-sectional area of 2.50 � 10�6 m2.

Solution
(a) Calculate the magnetic force on the wire.

Apply right-hand rule number 1 to find the direction of
the magnetic force:

With the fingers of your right hand pointing west to east
in the direction of the current, curl them north in the
direction of the magnetic field. Your thumb points
upward.

(b) Calculate the gravitational force on the wire segment.

First, obtain the mass of the wire from the density of cop-
per, the length, and cross-sectional area of the wire:

m � �V � �(A�)

� (8.92 � 103 kg/m3)(2.50 � 10�6 m2 �36.0 m)

� 0.803 kg
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634 Chapter 19 Magnetism

To get the gravitational force, multiply the mass by the
acceleration of gravity:

Fgrav � mg � 7.87 N

Remarks This calculation demonstrates that under normal circumstances, the gravitational force on a current-carrying
conductor is much greater than the magnetic force due to the Earth’s magnetic field.

Exercise 19.3
What current would make the magnetic force in the example equal in magnitude to the gravitational force?

Answer 4.37 � 103 A, a large current that would very rapidly melt the wire.

19.5 TORQUE ON A CURRENT LOOP 
AND ELECTRIC MOTORS

In the preceding section we showed how a magnetic force is exerted on a current-
carrying conductor when the conductor is placed in an external magnetic field.
With this as a starting point, we now show that a torque is exerted on a current
loop placed in a magnetic field. The results of this analysis will be of great practical
value when we discuss generators and motors in Chapter 20.

Consider a rectangular loop carrying current I in the presence of an external
uniform magnetic field in the plane of the loop, as shown in Figure 19.15a. The
forces on the sides of length a are zero because these wires are parallel to the field.
The magnitudes of the magnetic forces on the sides of length b, however, are

F1 � F2 � BIb

The direction of , the force on the left side of the loop, is out of the page, and
that of , the force on the right side of the loop, is into the page. If we view the
loop from the side, as in Figure 19.15b, the forces are directed as shown. If we
assume that the loop is pivoted so that it can rotate about point O, we see that
these two forces produce a torque about O that rotates the loop clockwise. The
magnitude of this torque, 	max, is

where the moment arm about O is a/2 for both forces. Because the area of the
loop is A � ab, the torque can be expressed as 

	max � BIA [19.7]

This result is valid only when the magnetic field is parallel to the plane of the loop,
as in Figure 19.15b. If the field makes an angle � with a line perpendicular to the
plane of the loop, as in Figure 19.15c, the moment arm for each force is given by
(a/2) sin �. An analysis similar to the previous gives, for the magnitude of the
torque,

	max � F1
a
2


 F2
a
2

� (BIb)
a
2


 (BIb)
a
2

� BIab

F
:

2

F
:

1
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(b)

F1

O

F2

a
2

(c)
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2

sin u
B
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B B

Figure 19.15 (a) Top view of a rec-
tangular loop in a uniform magnetic
field . No magnetic forces act on
the sides of length a parallel to , but
forces do act on the sides of length b.
(b) A side view of the rectangular
loop shows that the forces and 
on the sides of length b create a
torque that tends to twist the loop
clockwise. (c) If is at an angle �
with a line perpendicular to the plane
of the loop, the torque is given by 
BIA sin �.

B
:

F
:

2F
:

1

B
:

B
:
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	 � BIA sin � [19.8]

This result shows that the torque has the maximum value BIA when the field is par-
allel to the plane of the loop (� � 90°) and is zero when the field is perpendicular
to the plane of the loop (� � 0). As seen in Figure 19.15c, the loop tends to rotate
to smaller values of � (so that the normal to the plane of the loop rotates toward
the direction of the magnetic field).

Although the foregoing analysis was for a rectangular loop, a more general
derivation shows that Equation 19.8 applies regardless of the shape of the loop.
Further, the torque on a coil with N turns is

[19.9a]

The quantity � � IAN is defined as the magnitude of a vector called the magnetic
moment of the coil. The vector always points perpendicular to the plane of the
loop(s). The angle � in Equations 19.8 and 19.9 lies between the directions of the
magnetic moment and the magnetic field . The magnetic torque can then be
written

[19.9b]	 � �B sin �

B
:

�:

�:
�:

	 � BIAN sin �

A square and a circular loop with the same area lie in the xy-plane, where there is a
uniform magnetic field pointing at some angle � with respect to the positive 
z-direction. Each loop carries the same current, in the same direction. Which mag-
netic torque is larger? (a) the torque on the square loop (b) the torque on the cir-
cular loop (c) the torques are the same (d) more information is needed

B
:

Quick Quiz 19.3

EXAMPLE 19.4 The Torque on a Circular Loop in a Magnetic Field
Goal Calculate a magnetic torque on a loop of current.

Problem A circular wire loop of radius 1.00 m is placed
in a magnetic field of magnitude 0.500 T. The normal to
the plane of the loop makes an angle of 30.0° with the
magnetic field (Fig. 19.16a). The current in the loop is
2.00 A in the direction shown. (a) Find the magnetic
moment of the loop and the magnitude of the torque at
this instant. (b) The same current is carried by the rectangu-
lar 2.00-m by 3.00-m coil with three loops shown in Figure
19.16b. Find the magnetic moment of the coil and the
magnitude of the torque acting on the coil at that instant.

Strategy For each part, we just have to calculate the
area, use it in the calculation of the magnetic moment,
and multiply the result by B sin �. Altogether, this
amounts to substituting values into Equation 19.9.

Solution
(a) Find the magnetic moment of the circular loop 
and the magnetic torque exerted on it.

First, calculate the enclosed area of the circular loop: A � �r 2 � �(1.00 m)2 � 3.14 m2

Calculate the magnetic moment of the loop: � � IAN � (2.00 A)(3.14 m2)(1) � 6.28 A�m2

B

30°
�

I

r � 1.00 m

I

yx
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(a) (b)

z
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30°

2.00 m 3.00 m
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I
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B
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2.00 m 3.00 m

�

Figure 19.16 (Example 19.4) (a) A circular current loop in 
an external magnetic field . (b) A rectangular current loop in the
same field. (c) (Exercise 19.4)

B
:
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Electric Motors
It’s hard to imagine life in the 21st century without electric motors. Some appli-
ances that contain motors include computer disk drives, CD players, VCR and
DVD players, food processors and blenders, car starters, furnaces, and air condi-
tioners. The motors convert electrical energy to kinetic energy of rotation, and
consist basically of a rigid current-carrying loop that rotates when placed in the
field of a magnet.

As we have just seen (Fig. 19.15), the torque on such a loop rotates the loop to
smaller values of � until the torque becomes zero, when the magnetic field is
perpendicular to the plane of the loop and � � 0. If the loop turns past this
angle and the current remains in the direction shown in the figure, the torque
reverses direction and turns the loop in the opposite direction— that is, counter-
clockwise. To overcome this difficulty and provide continuous rotation in one
direction, the current in the loop must periodically reverse direction. In
alternating current (AC) motors, such a reversal occurs naturally 120 times
each second. In direct current (DC) motors, the reversal is accomplished mechan-
ically with split-ring contacts (commutators) and brushes, as shown in Active
Figure 19.17.

636 Chapter 19 Magnetism

Now substitute values for the magnetic moment, 
magnetic field, and � into Equation 19.9b:

	 � �B sin � � (6.28 A � m2)(0.500 T)(sin 30.0°)

� 1.57 N�m

(b) Find the magnetic moment of the rectangular coil
and the magnetic torque exerted on it.

Calculate the area of the coil: A � L � H � (2.00 m)(3.00 m) � 6.00 m2

Calculate the magnetic moment of the coil: � � IAN � (2.00 A)(6.00 m2)(3) � 36.0 A�m2

Substitute values into Equation 19.9b: 	 � �B sin � � (0.500 T)(36.0 A � m2)(sin 30.0°)

� 9.00 N�m

Remarks In calculating a magnetic torque, it’s not strictly necessary to calculate the magnetic moment. Instead,
Equation 19.9a can be used directly.

Exercise 19.4
Suppose a right triangular coil with base of 2.00 m and height 3.00 m having two loops carries a current of 2.00 A as
shown in Figure 19.16c. Find the magnetic moment and the torque on the coil. The magnetic field is again 0.500 T
and makes an angle of 30.0° with respect to the normal direction.

Answer � � 12.0 A � m2, 	 � 3.00 N � m

A P P L I C AT I O N
Electric Motors

+–

N

S

I

Brushes Split-ring
commutators

Axis of
rotation
of loop

DC Power
source

B

ACTIVE FIGURE 19.17
Simplified sketch of a DC electric motor.

Log into PhysicsNow at www.cp7e.com and go
to Active Figure 19.17, where you can adjust
the speed of rotation and the strength of the
field and see the effects on the generated emf.
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Although actual motors contain many current loops and commutators, for sim-
plicity Active Figure 19.17 shows only a single loop and a single set of split-ring
contacts rigidly attached to and rotating with the loop. Electrical stationary con-
tacts called brushes are maintained in electrical contact with the rotating split ring.
These brushes are usually made of graphite, because graphite is a good electrical
conductor as well as a good lubricant. Just as the loop becomes perpendicular to
the magnetic field and the torque becomes zero, inertia carries the loop forward
in the clockwise direction and the brushes cross the gaps in the ring, causing
the loop current to reverse its direction. This provides another pulse of torque in
the clockwise direction for another 180°, the current reverses, and the process
repeats itself. Figure 19.18 shows a modern motor used to power a hybrid
gas–electric car.

19.6 MOTION OF A CHARGED PARTICLE 
IN A MAGNETIC FIELD

Consider the case of a positively charged particle moving in a uniform magnetic
field so that the direction of the particle’s velocity is perpendicular to the field, as in
Active Figure 19.19. The label and the crosses indicate that is directed into
the page. Application of the right-hand rule at point P shows that the direction of
the magnetic force at that location is upward. The force causes the particle to
alter its direction of travel and to follow a curved path. Application of the right-hand
rule at any point shows that the magnetic force is always directed toward the center
of the circular path; therefore, the magnetic force causes a centripetal accelera-
tion, which changes only the direction of and not its magnitude. Because pro-
duces the centripetal acceleration, we can equate its magnitude, qvB in this case,
to the mass of the particle multiplied by the centripetal acceleration v 2/r. From
Newton’s second law, we find that

which gives

[19.10]

This equation says that the radius of the path is proportional to the momentum
mv of the particle and is inversely proportional to the charge and the magnetic
field. Equation 19.10 is often called the cyclotron equation, because it’s used in the
design of these instruments (popularly known as atom smashers).

If the initial direction of the velocity of the charged particle is not perpendicu-
lar to the magnetic field, as shown in Active Figure 19.20, the path followed by the
particle is a spiral (called a helix) along the magnetic field lines.

r �
mv
qB

F � qvB �
mv2

r

F
:

v:

F
:

B
:

B
:

in

Figure 19.18 The Honda Insight com-
bines a three-cylinder gasoline automobile
engine with a thin electric motor for
improved efficiency and added power
when needed. The electric motor (circled)
also acts as a generator during braking or
coasting downhill to recharge the batteries,
with the result that they never need to be
recharged by the owner.
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ACTIVE FIGURE 19.19
When the velocity of a charged parti-
cle is perpendicular to a uniform
magnetic field, the particle moves in
a circle whose plane is perpendicular
to , which is directed into the page.
(The crosses represent the tails of the
magnetic field vectors.) The magnetic
force on the charge is always di-
rected toward the center of the circle.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 19.19, where you can adjust
the mass, speed, charge of the parti-
cle, and the magnitude of the mag-
netic field, and observe the resulting
circular motion.

F
:

B
:

Helical
path

B

x

+q

z

y

+

ACTIVE FIGURE 19.20
A charged particle having a velocity di-
rected at an angle with a uniform mag-
netic field moves in a helical path.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 19.20, where
you can adjust the x -component of
the velocity of the particle and observe
the resulting helical motion.
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EXAMPLE 19.5 The Mass Spectrometer: Identifying Particles
Goal Use the cyclotron equation to identify a particle.

Problem A charged particle enters the magnetic field of a mass spectrometer at a speed of 1.79 � 106 m/s. It subse-
quently moves in a circular orbit with a radius of 16.0 cm in a uniform magnetic field of magnitude 0.350 T having a
direction perpendicular to the particle’s velocity. Find the particle’s mass-to-charge ratio, and identify it based on the
table on page 639.

Strategy After finding the mass-to-charge ratio with Equation 19.10, compare it to the values in the table, identify-
ing the particle.

Solution

638 Chapter 19 Magnetism

Storing charged particles is important for a variety of
applications. Suppose a uniform magnetic field exists
in a finite region of space. Can a charged particle 
be injected into this region from the outside and
remain trapped in the region by magnetic force
alone?

Explanation It’s best to consider separately the 
components of the particle velocity parallel and
perpendicular to the field lines in the region. There is
no magnetic force on the particle associated with the
velocity component parallel to the field lines, so that
velocity component remains unchanged.

Now consider the component of velocity perpen-
dicular to the field lines. This component will result 
in a magnetic force that is perpendicular to both the
field lines and the velocity component itself. The 
path of a particle for which the force is always perpen-
dicular to the velocity is a circle. The particle there-
fore follows a circular arc and exits the field on the
other side of the circle, as shown in Figure 19.21 for a
particle with constant kinetic energy. On the other
hand, a particle can become trapped if it loses some
kinetic energy in a collision after entering the field, as
in Active Figure 19.20.

Particles can be injected and contained if, in addi-
tion to the magnetic field, electrostatic fields are
involved. These fields are used in the Penning trap. With
these devices, it’s possible to store charged particles for
extended periods. Such traps are useful, for example,
in the storage of antimatter, which disintegrates com-
pletely on contact with ordinary matter.

Applying Physics 19.3 Trapping Charges

F

v

Magnetic field
region (out of page)

Particle
motion

Figure 19.21 (Applying Physics 19.3)

As a charged particle moves freely in a circular path in the presence of a constant
magnetic field applied perpendicular to the particle’s velocity, its kinetic energy
(a) remains constant, (b) increases, or (c) decreases.

Quick Quiz 19.4

Write the cyclotron equation:
r �

mv
qB

Solve this equation for the mass divided by the charge,
m/q and substitute values: 3.13 � 10�8 

kg
C

m
q

�
rB
v

�
(0.160 m)(0.350 T)

1.79 � 106 m/s
�
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19.6 Motion of a Charged Particle in a Magnetic Field 639

Identify the particle from the table. All particles are
completely ionized.

particle m (kg) q (C) m/q (kg/C)

Hydrogen 1.67 � 10�27 1.60 � 10�19 1.04 � 10�8

Deuterium 3.35 � 10�27 1.60 � 10�19 2.09 � 10�8

Tritium 5.01 � 10�27 1.60 � 10�19 3.13 � 10�8

Helium-3 5.01 � 10�27 3.20 � 10�19 1.57 � 10�8

The particle is tritium.

Remarks The mass spectrometer is an important tool in both chemistry and physics. Unknown chemicals can be
heated and ionized, and the resulting particles passed through the mass spectrometer and subsequently identified.

Exercise 19.5
Suppose a second charged particle enters the mass spectrometer at the same speed as the particle in Example 19.5. If
it travels in a circle with radius 10.7 cm, find the mass-to-charge ratio and identify the particle from the table above.

Answer 2.09 � 10�8 kg/C; deuterium

EXAMPLE 19.6 The Mass Spectrometer: Separating Isotopes
Goal Apply the cyclotron equation to the process of separating isotopes.

Problem Two singly ionized atoms move out of a slit at point S in Figure 19.22 and
into a magnetic field of magnitude 0.100 T pointing into the page. Each has a speed of
1.00 � 106 m/s. The nucleus of the first atom contains one proton and has a mass of
1.67 � 10�27 kg, while the nucleus of the second atom contains a proton and a neutron
and has a mass of 3.34 � 10�27 kg. Atoms with the same number of protons in the
nucleus but different masses are called isotopes. The two isotopes here are hydrogen
and deuterium. Find their distance of separation when they strike a photographic
plate at P.

Strategy Apply the cyclotron equation to each atom, finding the radius of the path of
each. Double the radii to find the path diameters, and then find their difference.

Solution

Bin

SP

2r1

2r2

Figure 19.22 (Example 19.6)
Two isotopes leave the slit at point
S and travel in different circular
paths before striking a photo-
graphic plate at P.

Use Equation 19.10 to find the radius of the 
circular path followed by the lighter isotope, hydrogen.

 � 0.104 m

r1 �
m1v
qB

�
(1.67 � 10�27 kg)(1.00 � 106 m/s)

(1.60 � 10�19 C)(0.100 T)

A P P L I C AT I O N
Mass Spectrometers

Use the same equation to calculate the radius of the
path of deuterium, the heavier isotope:

 � 0.209 m

 r2 �
m2v
qB

�
(3.34 � 10�27 kg)(1.00 � 106 m/s)

(1.60 � 10�19 C)(0.100 T)

Multiply the radii by 2 to find the diameters, and take the
difference, getting the separation x between the isotopes:

x � 2r2 � 2r1 � 0.210 m

Remarks During World War II, mass spectrometers were used to separate the highly radioactive uranium isotope 
U-235 from its far more common isotope, U-238.

Exercise 19.6
Use the same mass spectrometer as in Example 19.6 to find the separation between two isotopes of helium: normal
helium-4, which has a nucleus consisting of two protons and two neutrons, and helium-3, which has two protons and
a single neutron. Assume both nuclei, doubly ionized (having a charge of 2e � 3.20 � 10�19 C), enter the field at 
1.00 � 106 m/s. The helium-4 nucleus has a mass of 6.64 � 10�27 kg, and the helium-3 nucleus has a mass of 
5.01 � 10�27 kg.

Answer 0.102 m
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19.7 MAGNETIC FIELD OF A LONG, STRAIGHT
WIRE AND AMPÈRE’S LAW

During a lecture demonstration in 1819, the Danish scientist Hans Oersted
(1777–1851) found that an electric current in a wire deflected a nearby compass nee-
dle. This momentous discovery, linking a magnetic field with an electric current for
the first time, was the beginning of our understanding of the origin of magnetism.

A simple experiment first carried out by Oersted in 1820 clearly demonstrates
that a current-carrying conductor produces a magnetic field. In this experiment,
several compass needles are placed in a horizontal plane near a long vertical wire,
as in Active Figure 19.23a. When there is no current in the wire, all needles point in
the same direction (that of Earth’s field), as one would expect. However, when the
wire carries a strong, steady current, the needles all deflect in directions tangent to
the circle, as in Active Figure 19.23b. These observations show that the direction of

is consistent with the following convenient rule, right-hand rule number 2:

Point the thumb of your right hand along a wire in the direction of positive
current, as in Figure 19.24a. Your fingers then naturally curl in the direction
of the magnetic field .

When the current is reversed, the filings in Figure 19.24b also reverse.

B
:

B
:

640 Chapter 19 Magnetism

(a) (b)

I  =  0

I

B

HANS CHRISTIAN OERSTED
(1777–1851), Danish Physicist and
Chemist
Oersted is best known for observing that a
compass needle deflects when placed near
a wire carrying a current. This important
discovery was the first evidence of the con-
nection between electric and magnetic
phenomena. Oersted was also the first to
prepare pure aluminum.
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ACTIVE FIGURE 19.23
(a) When there is no current in the vertical wire, all compass needles point in the same direction.
(b) When the wire carries a strong current, the compass needles deflect in directions tangent to the 
circle, pointing in the direction of , due to the current.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 19.23, where you can change the value
of the current and see the effect on the compasses.

B
:

a

I

(a)

B

(b)

Figure 19.24 (a) Right-hand rule
number 2 for determining the direc-
tion of the magnetic field due to a
long, straight wire carrying a current.
Note that the magnetic field lines form
circles around the wire. (b) Circular
magnetic field lines surrounding a
current-carrying wire, displayed by
iron filings.
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TIP 19.3 Raise Your Right
Hand!
We have introduced two right-hand
rules in this chapter. Be sure to use
only your right hand when applying
these rules.
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19.7 Magnetic Field of a Long, Straight Wire and Ampère’s Law 641

Because the filings point in the direction of , we conclude that the lines of 
form circles about the wire. By symmetry, the magnitude of is the same every-
where on a circular path centered on the wire and lying in a plane perpendicular
to the wire. By varying the current and distance from the wire, it can be experi-
mentally determined that is proportional to the current and inversely propor-
tional to the distance from the wire. These observations lead to a mathematical
expression for the strength of the magnetic field due to the current I in a long,
straight wire:

[19.11]

The proportionality constant �0, called the permeability of free space, has the
value

[19.12]

Ampère’s Law and a Long, Straight Wire
Equation 19.11 enables us to calculate the magnetic field due to a long, straight
wire carrying a current. A general procedure for deriving such equations was pro-
posed by the French scientist André-Marie Ampère (1775–1836); it provides a
relation between the current in an arbitrarily shaped wire and the magnetic field
produced by the wire.

Consider an arbitrary closed path surrounding a current as in Figure 19.25. The
path consists of many short segments, each of length ��. Multiply one of these
lengths by the component of the magnetic field parallel to that segment, where
the product is labeled According to Ampère, the sum of all such products
over the closed path is equal to �0 times the net current I that passes through the
surface bounded by the closed path. This statement, known as Ampère’s circuital
law, can be written

[19.13]

where is the component of parallel to the segment of length �� and 
means that we take the sum over all the products around the closed path.
Ampère’s law is the fundamental law describing how electric currents create mag-
netic fields in the surrounding empty space.

We can use Ampère’s circuital law to derive the magnetic field due to a long,
straight wire carrying a current I. As discussed earlier, each of the magnetic field
lines of this configuration forms a circle with the wire at its centers. The magnetic
field is tangent to this circle at every point, and its magnitude has the same value B
over the entire circumference of a circle of radius r, so that , as shown in
Figure 19.26 (page 642). In calculating the sum over the circular path, no-
tice that can be removed from the sum (because it has the same value B for
each element on the circle). Equation 19.13 then gives

Dividing both sides by the circumference 2�r, we obtain

This is identical to Equation 19.11, which is the magnetic field due to the current
I in a long, straight wire.

B �
�0I
2�r

�B, �� � B, � �� � B(2�r) � �0I

B,

B,��
B, � B

B,��
B,��B

:
B,

B, �� � �0I

B,��.

�0 � 4� � 10�7 T�m/A

B �
�0I
2�r

B
:

B
:

B
:

B
:

||

I
Arbitrary
closed path

��

��

B

B

Figure 19.25 An arbitrary closed
path around a current is used to cal-
culate the magnetic field of the cur-
rent by the use of Ampère’s rule.

ANDRÉ-MARIE AMPÈRE
(1775–1836)
Ampère, a Frenchman, is credited with the
discovery of electromagnetism—the rela-
tionship between electric currents and
magnetic fields. Ampère’s genius, particu-
larly in mathematics, became evident by
the age of 12, but his personal life was
filled with tragedy. His father, a wealthy
city official, was guillotined during the
French Revolution, and his wife died
young, in 1803. Ampère died of pneumo-
nia at the age of 61. His judgment of his
life is clear from the epitaph he chose for his
gravestone: Tandem felix (Happy at last).
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� Magnetic field due to a long,
straight wire
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Ampère’s circuital law provides an elegant and simple method for calculating
the magnetic fields of highly symmetric current configurations. However, it can’t
easily be used to calculate magnetic fields for complex current configurations that
lack symmetry. In addition, Ampère’s circuital law in this form is valid only when
the currents and fields don’t change with time.

642 Chapter 19 Magnetism

r
B

Figure 19.26 A closed circular path
of radius r around a long, straight
current-carrying wire is used to calculate
the magnetic field set up by the wire.

EXAMPLE 19.7 The Magnetic Field of a Long Wire
Goal Calculate the magnetic field of a long, straight wire and the force that the field exerts on a particle.

Problem A long, straight wire carries a current of 5.00 A. At one
instant, a proton, 4.00 mm from the wire, travels at 1.50 � 103 m/s
parallel to the wire and in the same direction as the current (Fig.
19.27). (a) Find the magnitude and direction of the magnetic field
created by the wire. (b) Find the magnitude and direction of the
magnetic force the wire’s magnetic field exerts on the proton.

Strategy First use Equation 19.11 to find the magnitude of the
magnetic field at the given point. Use right-hand rule number 2
to find the direction of the field. Finally, substitute into Equation
19.1, computing the magnetic force on the proton.

Solution
(a) Find the magnitude and direction of the wire’s 
magnetic field.

I

+

v

BF

Figure 19.27 (Example 19.7)
The magnetic field due to the cur-
rent is into the page at the location
of the proton, and the magnetic
force on the proton is to the left.

Use Equation 19.11 to calculate the magnitude of the
magnetic field 4.00 mm from the wire:

� 2.50 � 10�4 T

 B �
�0I
2�r

�
(4� � 10�7 T�m/A)(5.00 A)

2�(4.00 � 10�3 m)

Apply right-hand rule number 2 to find the direction of
the magnetic field :B

:
With the right thumb pointing in the direction of the
current in Figure 19.27, the fingers curl into the page at
the location of the proton. The angle � between and

is therefore 90°.B
:

v:

(b) Compute the magnetic force exerted by the wire on
the proton.

Substitute into Equation 19.1, which gives the 
magnitude of the magnetic force on a charged 
particle:

F � qvB sin � � (1.60 � 10�19 C)(1.50 � 103 m/s)

� (2.50 � 10�4 T)(sin 90°) 

� 6.00 � 10�20 N

Find the direction of the magnetic force with right-hand
rule number 1:

Point your right fingers in the direction of , curling
them into the page toward . Your thumb points to the
left , which is the direction of the magnetic force.

B
:

v:

Remarks The location of the proton is important. On the left-hand side, the wire’s magnetic field points outward,
and the magnetic force on the proton is to the right.
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19.8 Magnetic Force between Two Parallel Conductors 643

19.8 MAGNETIC FORCE BETWEEN TWO 
PARALLEL CONDUCTORS

As we have seen, a magnetic force acts on a current-carrying conductor when the
conductor is placed in an external magnetic field. Because a conductor carrying
a current creates a magnetic field around itself, it is easy to understand that two
current-carrying wires placed close together exert magnetic forces on each other.
Consider two long, straight, parallel wires separated by the distance d and carry-
ing currents I1 and I2 in the same direction, as shown in Active Figure 19.28. 
Wire 1 is directly above wire 2. What’s the magnetic force on one wire due to a
magnetic field set up by the other wire?

In this calculation, we are finding the force on wire 1 due to the magnetic field
of wire 2. The current I2, sets up magnetic field at wire 1. The direction of is
perpendicular to the wire, as shown in the figure. Using Equation 19.11, we find
that the magnitude of this magnetic field is

According to Equation 19.5, the magnitude of the magnetic force on wire 1 in
the presence of field due to I2 is

We can rewrite this relationship in terms of the force per unit length:

[19.14]

The direction of is downward, toward wire 2, as indicated by right-hand rule
number 1. This calculation is completely symmetric, which means that the force 
on wire 2 is equal to and opposite , as expected from Newton’s third law of
action–reaction.

We have shown that parallel conductors carrying currents in the same direction
attract each other. You should use the approach indicated by Figure 19.28 and the
steps leading to Equation 19.14 to show that parallel conductors carrying currents
in opposite directions repel each other.

The force between two parallel wires carrying a current is used to define the SI
unit of current, the ampere (A), as follows:

If two long, parallel wires 1 m apart carry the same current, and the magnetic
force per unit length on each wire is 2 � 10�7 N/m, then the current is
defined to be 1 A.

The SI unit of charge, the coulomb (C), can now be defined in terms of the ampere
as follows:

If a conductor carries a steady current of 1 A, then the quantity of charge
that flows through any cross section in 1 s is 1 C.

F
:

1

F
:

2

F
:

1

F1

�
�

�0I1I2

2�d

F1 � B2I1� � � �0I2

2�d � I1� �
�0I1I2�

2�d

B
:

2

B2 �
�0I2

2�d

B
:

2B
:

2

Exercise 19.7
Find (a) the magnetic field created by the wire and (b) the magnetic force on a helium-3 nucleus located 7.50 mm to
the left of the wire in Figure 19.27, traveling 2.50 � 103 m/s opposite the direction of the current. (See the data
table presented in Example 19.5 on page 639).

Answers (a) 1.33 � 10�4 T (b) 1.07 � 10�19 N, directed to the left in Figure 19.27.

2

1

B2

�

a

I1

I2

F1

d

ACTIVE FIGURE 19.28
Two parallel wires, oriented vertically,
carry steady currents and exert forces
on each other. The field at wire 1
due to wire 2 produces a force on
wire 1 given by F1 � B2I1�. The force
is attractive if the currents have the
same direction, as shown, and repul-
sive if the two currents have opposite
directions.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 19.28, where you can adjust
the currents in the wires and the 
distance between them, and see the
effect on the force.

B
:

2

� Definition of the ampere

� Definition of the coulomb
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644 Chapter 19 Magnetism

If, in Figure 19.28, I1 � 2 A and I2 � 6 A, which of the following is true? (a) F1 �
3F2 (b) F1 � F2 or (c) F1 � F2/3

Quick Quiz 19.5

EXAMPLE 19.8 Levitating a Wire
Goal Calculate the magnetic force of one current-carrying wire on a parallel current-carrying wire.

Problem Two wires, each having a weight per unit length of 1.00 � 10�4 N/m, are parallel with one directly above
the other. Assume that the wires carry currents that are equal in magnitude and opposite in direction. The wires are
0.10 m apart, and the sum of the magnetic force and gravitational force on the upper wire is zero. Find the current
in the wires. (Neglect Earth’s magnetic field.)

Strategy The upper wire must be in equilibrium under the forces of magnetic repulsion and gravity. Set the sum of
the forces equal to zero and solve for the unknown current, I.

Solution
Set the sum of the forces equal to zero, and substitute
the appropriate expressions. Notice that the magnetic
force between the wires is repulsive. �mg 


�0I1I2

2�d
 � � 0

F
:

grav 
 F
:

mag � 0

The currents are equal, so I1 � I2 � I. Make these sub-
stitutions and solve for I 2.

�0I 2

2�d
 � � mg : I 2 �

(2�d)(mg/�)
�0

Substitute given values, finding I 2, then take the square
root. Notice that the weight per unit length, , is
given.

mg/�

I � 7.07 A

I 2 �
(2� �0.100 m)(1.00 � 10�4 N/m)

(4� � 10�7 T�m)
� 50.0 A2

Remark Exercise 19.3 showed that using the Earth’s magnetic field to levitate a wire required extremely large cur-
rents. Currents in wires can create much stronger magnetic fields than Earth’s in regions near the wire.

Exercise 19.8
If the current in each wire is doubled, how far apart should the wires be placed if the magnitudes of the gravitational
and magnetic forces on the upper wire are to be equal?

Answer 0.400 m

19.9 MAGNETIC FIELDS OF CURRENT LOOPS 
AND SOLENOIDS

The strength of the magnetic field set up by a piece of wire carrying a current can
be enhanced at a specific location if the wire is formed into a loop. You can under-
stand this by considering the effect of several small segments of the current loop,
as in Figure 19.29. The small segment at the top of the loop, labeled �x1, produces
a magnetic field of magnitude B1 at the loop’s center, directed out of the page.
The direction of can be verified using right-hand rule number 2 for a long,
straight wire. Imagine holding the wire with your right hand, with your thumb
pointing in the direction of the current. Your fingers then curl around in the
direction of .

A segment of length �x2 at the bottom of the loop also contributes to the field
at the center, increasing its strength. The field produced at the center by the
segment �x2 has the same magnitude as B1 and is also directed out of the page.
Similarly, all other such segments of the current loop contribute to the field. The
net effect is a magnetic field for the current loop as pictured in Figure 19.30a.

B
:

B
:

∆x1

1

∆x2

I
B

Figure 19.29 All segments of the
current loop produce a magnetic
field at the center of the loop,
directed out of the page.
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19.9 Magnetic Fields of Current Loops and Solenoids 645

Notice in Figure 19.30a that the magnetic field lines enter at the bottom of the
current loop and exit at the top. Compare this to Figure 19.30b, illustrating the
field of a bar magnet. The two fields are similar. One side of the loop acts as
though it were the north pole of a magnet, and the other acts as a south pole.
The similarity of these two fields will be used to discuss magnetism in matter in an
upcoming section.

(a) (b)

S

N

I
S

N

(c)

Figure 19.30 (a) Magnetic field lines for a current loop. Note that the lines resemble those of a bar
magnet. (b) The magnetic field of a bar magnet is similar to that of a current loop. (c) Field lines of a
current loop, displayed by iron filings.
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In electrical circuits, it is often the case that insulated
wires carrying currents in opposite directions are
twisted together. What is the advantage of doing this?

Explanation If the wires are not twisted together, the
combination of the two wires forms a current loop,

which produces a relatively strong magnetic field. This
magnetic field generated by the loop could be strong
enough to affect adjacent circuits or components.
When the wires are twisted together, their magnetic
fields tend to cancel.

Applying Physics 19.4 Twisted Wires

The magnitude of the magnetic field at the center of a circular loop carrying
current I as in Figure 19.30a is given by

This must be derived with calculus. However, it can be shown to be reasonable
by calculating the field at the center of four long wires, each carrying current I
and forming a square, as in Figure 19.31, with a circle of radius R inscribed
within it. Intuitively, this arrangement should give a magnetic field at the center
that is similar in magnitude to the field produced by the circular loop. The cur-
rent in the circular wire is closer to the center, so that wire would have a mag-
netic field somewhat stronger than just the four legs of the rectangle, but the
lengths of the straight wires beyond the rectangle compensate for this. Each
wire contributes the same magnetic field at the exact center, so the total field is
given by

This is approximately the same as the field produced by the circular loop of current.
When the coil has N loops, each carrying current I, the magnetic field at the

B � 4 �
�0I
2�R

�
4
�

 � �0I
2R � � (1.27)� �0I

2R �

B �
�0I
2R

I

I

R

I I

Figure 19.31 The field of a circu-
lar loop carrying current I can be 
approximated by the field due to 
four straight wires, each carrying 
current I .
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center is given by

[19.15]

Magnetic Field of a Solenoid
If a long, straight wire is bent into a coil of several closely spaced loops, the result-
ing device is a solenoid, often called an electromagnet. This device is important in
many applications because it acts as a magnet only when it carries a current. The
magnetic field inside a solenoid increases with the current and is proportional to
the number of coils per unit length.

Figure 19.32 shows the magnetic field lines of a loosely wound solenoid of
length � and total number of turns N. Notice that the field lines inside the sole-
noid are nearly parallel, uniformly spaced, and close together. As a result, the field
inside the solenoid is strong and approximately uniform. The exterior field at the
sides of the solenoid is nonuniform, much weaker than the interior field, and
opposite in direction to the field inside the solenoid.

If the turns are closely spaced, the field lines are as shown in Figure 19.33a,
entering at one end of the solenoid and emerging at the other. This means that
one end of the solenoid acts as a north pole and the other end acts as a south
pole. If the length of the solenoid is much greater than its radius, the lines that
leave the north end of the solenoid spread out over a wide region before return-
ing to enter the south end. The more widely separated the field lines are, the
weaker the field. This is in contrast to a much stronger field inside the solenoid,
where the lines are close together. Also, the field inside the solenoid has a
constant magnitude at all points far from its ends. As will be shown subsequently,
these considerations allow the application of Ampere’s law to the solenoid,
giving a result of

[19.16]

for the field inside the solenoid, where n � N/� is the number of turns per unit
length of the solenoid.

So-called steering magnets placed along the neck of the picture tube in a televi-

B � �0nI

B � N 
�0I
2R
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Exterior

Interior

Figure 19.32 The magnetic field
lines for a loosely wound solenoid.

(a)

S

N

(b)

Figure 19.33 (a) Magnetic field lines for a tightly wound solenoid of finite length carrying a steady
current. The field inside the solenoid is nearly uniform and strong. Note that the field lines resemble
those of a bar magnet, so the solenoid effectively has north and south poles. (b) The magnetic field
pattern of a bar magnet, displayed by small iron filings on a sheet of paper. 
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19.9 Magnetic Fields of Current Loops and Solenoids 647

EXAMPLE 19.9 The Magnetic Field inside a Solenoid
Goal Calculate the magnetic field of a solenoid from given data and the momentum of a charged particle in this
field.

Problem A certain solenoid consists of 100 turns of wire and has a length of 10.0 cm. (a) Find the magnitude of the
magnetic field inside the solenoid when it carries a current of 0.500 A. (b) What is the momentum of a proton orbit-
ing inside the solenoid in a circle with a radius of 0.020 m? The axis of the solenoid is perpendicular to the plane of
the orbit. (c) Approximately how much wire would be needed to build this solenoid? Assume the solenoid’s radius is
5.00 cm.

Strategy In part (a), calculate the number of turns per meter and substitute that and given information into Equa-
tion 19.16, getting the magnitude of the magnetic field. Part (b) is an application of Newton’s second law.

Solution
(a) Find the magnitude of the magnetic field inside 
the solenoid when it carries a current of 0.500 A.

Calculate the number of turns per unit length: n �
N
�

�
100 turns
0.100 m

� 1.00 � 103 turns/m

Substitute n and I into Equation 19.16 to find the 
magnitude of the magnetic field:

B � �0nI

� (4� � 10�7 T � m/A)(1.00 � 103 turns/m)(0.500 A)

� 6.28 � 10�4 T

(b) Find the momentum of a proton orbiting in a circle
of radius 0.020 m near the center of the solenoid.

Write Newton’s second law for the proton: ma � F � qvB

Substitute the centripetal acceleration a � v2/r : m 
v2

r
� qvB

Cancel one factor of v on both sides and multiply by r,
getting the momentum mv :

p � mv � 2.01 � 10�24 kg�m/s

mv � rqB � (0.020 m)(1.60 � 10�19 C)(6.28 � 10�4 T)

(c) Approximately how much wire would be needed to
build this solenoid?

Multiply the number of turns by the circumference of
one loop:

length of wire � (number of turns)(2�r)

� (1.00 � 102 turns)(2� � 0.0500 m)

� 31.4 m

Remarks An electron in part (b) would have the same momentum as the proton, but a much higher speed. It
would also orbit in the opposite direction. The length of wire in part (c) is only an estimate, because the wire has a
certain thickness, slightly increasing the size of each loop. In addition the wire loops aren’t perfect circles, because
they wind slowly up along the solenoid.

Exercise 19.9
Suppose you have a 32.0-m length of copper wire. If the wire is wrapped into a solenoid 0.240 m long and having a
radius of 0.0400 m, how strong is the resulting magnetic field in its center when the current is 12.0 A?

Answer 8.00 � 10�3 T
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sion set, as in Figure 19.34, are used to make the electron beam move to the
desired locations on the screen, tracing out the images. The rate at which the elec-
tron beam sweeps over the screen is so fast that to the eye it looks like a picture
rather than a sequence of dots.

Ampère’s Law Applied to a Solenoid
We can use Ampère’s law to obtain the expression for the magnetic field inside a
solenoid carrying a current I. A cross section taken along the length of part of our
solenoid is shown in Figure 19.35. inside the solenoid is uniform and parallel to
the axis, and outside is approximately zero. Consider a rectangular path of
length L and width w, as shown in the figure. We can apply Ampère’s law to this
path by evaluating the sum of over each side of the rectangle. The contribu-
tion along side 3 is clearly zero, because in this region. The contributions
from sides 2 and 4 are both zero, because is perpendicular to �� along these
paths. Side 1 of length L gives a contribution BL to the sum, because is uniform
along this path, and parallel to ��. Therefore, the sum over the closed rectangular
path has the value

� � BL

The right side of Ampère’s law involves the total current that passes through the
area bounded by the path chosen. In this case, the total current through the rec-
tangular path equals the current through each turn of the solenoid, multiplied by
the number of turns. If N is the number of turns in the length L, then the total
current through the rectangular path equals NI. Ampère’s law applied to this path
therefore gives

� � BL � �0NI

or

where n � N/L is the number of turns per unit length.

19.10 MAGNETIC DOMAINS
The magnetic field produced by a current in a coil of wire gives us a hint as to
what might cause certain materials to exhibit strong magnetic properties. A single
coil like that in Figure 19.30a has a north pole and a south pole, but if this is true
for a coil of wire, it should also be true for any current confined to a circular path.
In particular, an individual atom should act as a magnet because of the motion of the elec-
trons about the nucleus. Each electron, with its charge of 1.6 � 10�19 C, circles the
atom once in about 10�16 s. If we divide the electric charge by this time interval,
we see that the orbiting electron is equivalent to a current of 1.6 � 10�3 A. Such a
current produces a magnetic field on the order of 20 T at the center of the circu-
lar path. From this we see that a very strong magnetic field would be produced if
several of these atomic magnets could be aligned inside a material. This doesn’t
occur, however, because the simple model we have described is not the complete
story. A thorough analysis of atomic structure shows that the magnetic field pro-
duced by one electron in an atom is often canceled by an oppositely revolving
electron in the same atom. The net result is that the magnetic effect produced by
the electrons orbiting the nucleus is either zero or very small for most materials.

The magnetic properties of many materials can be explained by the fact that an
electron not only circles in an orbit, but also spins on its axis like a top, with spin
magnetic moment as shown (Fig. 19.36). (This classical description should not
be taken too literally. The property of electron spin can be understood only in the
context of quantum mechanics, which we will not discuss here.) The spinning elec-

B � �0
N
L

I � �0nI
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B,��
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Path of
beam

Screen

Electron
gun

Electromagnets

TV
tube

Figure 19.34 Electromagnets are
used to deflect electrons to desired
positions on the screen of a television
tube.
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Figure 19.35 A cross-sectional
view of a tightly wound solenoid. If
the solenoid is long relative to its
radius, we can assume that the mag-
netic field inside is uniform and the
field outside is zero. Ampère’s law
applied to the blue dashed rectangu-
lar path can then be used to calculate
the field inside the solenoid.

spinµµ

Figure 19.36 Classical model of a
spinning electron.
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Summary 649

tron represents a charge in motion that produces a magnetic field. The field due to
the spinning is generally stronger than the field due to the orbital motion. In atoms
containing many electrons, the electrons usually pair up with their spins opposite
each other, so that their fields cancel each other. That is why most substances are
not magnets. However, in certain strongly magnetic materials, such as iron, cobalt,
and nickel, the magnetic fields produced by the electron spins don’t cancel com-
pletely. Such materials are said to be ferromagnetic. In ferromagnetic materials,
strong coupling occurs between neighboring atoms, forming large groups of atoms
with spins that are aligned. Called domains, the sizes of these groups typically range
from about 10�4 cm to 0.1 cm. In an unmagnetized substance the domains are ran-
domly oriented, as shown in Figure 19.37a. When an external field is applied, as in
Figure 19.37b, the magnetic field of each domain tends to come nearer to align-
ment with the external field, resulting in magnetization.

In what are called hard magnetic materials, domains remain aligned even after
the external field is removed; the result is a permanent magnet. In soft magnetic ma-
terials, such as iron, once the external field is removed, thermal agitation produces
motion of the domains and the material quickly returns to an unmagnetized state.

The alignment of domains explains why the strength of an electromagnet is
increased dramatically by the insertion of an iron core into the magnet’s center.
The magnetic field produced by the current in the loops causes the domains to
align, thus producing a large net external field. The use of iron as a core is also
advantageous because it is a soft magnetic material that loses its magnetism almost
instantaneously after the current in the coils is turned off.

(a) (b) B(c)
B

Figure 19.37 (a) Random orientation of domains in an unmagnetized substance. (b) When an
external magnetic field is applied, the domains tend to align with the magnetic field. (c) As the field
is made even stronger, the domains not aligned with the external field become very small.

B
:

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

19.3 Magnetic Fields
The magnetic force that acts on a charge q moving with
velocity in a magnetic field has magnitude

F � qvB sin � [19.1]

where � is the angle between and .
To find the direction of this force, use right-hand rule

number 1: point the fingers of your open right hand in the
direction of and then curl them in the direction of .
Your thumb then points in the direction of the magnetic
force .

If the charge is negative rather than positive, the force is
directed opposite the force given by the right-hand rule.

F
:

B
:

v:

B
:

v:

B
:

v:

The SI unit of the magnetic field is the tesla (T), or weber
per square meter (Wb/m2). An additional commonly used
unit for the magnetic field is the gauss (G); 1 T � 104 G.

19.4 Magnetic Force on a 
Current-Carrying Conductor
If a straight conductor of length � carries current I, the
magnetic force on that conductor when it is placed in a
uniform external magnetic field is

F � BI� sin � [19.6]

where � is the angle between the direction of the current
and the direction of the magnetic field.

Right-hand rule number 1 also gives the direction of the
magnetic force on the conductor. In this case, however, you
must point your fingers in the direction of the current
rather than in the direction of .v:

B
:

TIP 19.4 The Electron
Spins—but Doesn’t!
Even though we use the word spin,
the electron, unlike a child’s top, isn’t
physically spinning in this sense. The
electron has an intrinsic angular
momentum that causes it to act as if it
were spinning, but the concept of spin
angular momentum is actually a rela-
tivistic quantum effect.
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19.5 Torque on a Current Loop 
and Electric Motors
The torque 	 on a current-carrying loop of wire in a mag-
netic field has magnitude

	 � BIA sin � [19.8]

where I is the current in the loop and A is its cross-sectional
area. The magnitude of the magnetic moment of a current-
carrying coil is defined by � � IAN, where N is the number
of loops. The magnetic moment is considered a vector, ,
that is perpendicular to the plane of the loop. The angle
between and is �.

19.6 Motion of a Charged Particle 
in a Magnetic Field
If a charged particle moves in a uniform magnetic field so
that its initial velocity is perpendicular to the field, it will
move in a circular path in a plane perpendicular to the
magnetic field. The radius r of the circular path can be
found from Newton’s second law and centripetal accelera-
tion, and is given by

[19.10]

where m is the mass of the particle and q is its charge.

19.7 Magnetic Field of a Long, Straight
Wire and Ampère’s Law
The magnetic field at distance r from a long, straight wire
carrying current I has the magnitude

[19.11]B �
�0I
2�r

r �
mv
qB

�:B
:

�:

B
:

where �0 � 4� � 10�7 T � m/A is the permeability of free
space. The magnetic field lines around a long, straight wire
are circles concentric with the wire.

Ampère’s law can be used to find the magnetic field
around certain simple current-carrying conductors. It can
be written

 � �0I [19.13]

where is the component of tangent to a small current
element of length �� that is part of a closed path and I is
the total current that penetrates the closed path.

19.8 Magnetic Force between Two 
Parallel Conductors
The force per unit length on each of two parallel wires sep-
arated by the distance d and carrying currents I1 and I2 has
the magnitude

[19.14]

The forces are attractive if the currents are in the same
direction and repulsive if they are in opposite directions.

19.9 Magnetic Field of Current 
Loops and Solenoids
The magnetic field at the center of a coil of N circular
loops of radius R, each carrying current I, is given by

[19.15]

The magnetic field inside a solenoid has the magnitude

B � �0nI [19.16]

where n � N/� is the number of turns of wire per unit length.

B � N 
�0I
2R

F
�

�
�0I1I2
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CONCEPTUAL QUESTIONS
1. In your home television set, a beam of electrons moves

from the back of the picture tube to the screen, where it
strikes a fluorescent dot that glows with a particular color
when hit. The Earth’s magnetic field at the location of the
television set is horizontal and toward the north. In which
direction(s) should the set be oriented so that the beam
undergoes the largest deflection?

2. Can a constant magnetic field set a proton at rest into
motion? Explain your answer.

3. A proton moving horizontally enters a region where a uni-
form magnetic field is directed perpendicular to the
proton’s velocity, as shown in Figure Q19.3. Describe the
subsequent motion of the proton. How would an electron
behave under the same circumstances.

4. No magnetic force acts upon a current-carrying conduc-
tor when it is placed in a certain manner in a uniform
magnetic field. Explain.

5. How can the motion of a charged particle be used to dis-
tinguish between a magnetic field and an electric field in
a certain region?

6. Which way would a compass point if you were at Earth’s
north magnetic pole?

7. Why does the picture on a television screen become
distorted when a magnet is brought near the screen as in
Figure Q19.7? [Caution: You should not do this at home
on a color television set, because it may permanently
affect the picture quality.]

+
v

Figure Q19.3 Figure Q19.7
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Problems 651

8. A magnet attracts a piece of iron. The iron can then
attract another piece of iron. On the basis of domain
alignment, explain what happens in each piece of iron.

9. A Hindu ruler once suggested that he be entombed in a
magnetic coffin with the polarity arranged so that he
could be forever suspended between heaven and Earth. Is
such magnetic levitation possible? Discuss.

10. Will a nail be attracted to either pole of a magnet?
Explain what is happening inside the nail when it is
placed near the magnet.

11. Suppose you move along a wire at the same speed as the
drift speed of the electrons in the wire. Do you now mea-
sure a magnetic field of zero?

12. Describe the change in the magnetic field in the space
enclosed by a solenoid carrying a steady current I if
(a) the length of the solenoid is doubled, but the number
of turns remains the same, and (b) the number of turns is
doubled, but the length remains the same.

13. Can you use a compass to detect the currents in wires in
the walls near light switches in your home?

14. Why do charged particles from outer space, called cosmic
rays, strike Earth more frequently at the poles than at the
equator?

15. Two wires carry currents in opposite directions and are
oriented parallel, with one above the other. The wires
repel each other. Is the upper wire in a stable levitation
over the lower wire? Suppose the current in one wire is
reversed, so that the wires now attract. Is the lower wire
hanging in a stable attraction to the upper wire?

16. How can a current loop be used to determine the pres-
ence of a magnetic field in a given region of space?

17. A hanging Slinky® toy is attached to a powerful battery
and a switch. When the switch is closed so that the toy now
carries current, does the Slinky® compress or expand?

18. Is it possible to orient a current loop in a uniform mag-
netic field such that the loop will not tend to rotate?

19. Parallel wires exert magnetic forces on each other. What
about perpendicular wires? Imagine two wires oriented
perpendicular to each other and almost touching. Each
wire carries a current. Is there a force between the wires?

20. Is the magnetic field created by a current loop uniform?
Explain.

21. The electron beam in Figure Q19.21 is projected to the
right. The beam deflects downward in the presence of a
magnetic field produced by a pair of current-carrying
coils. (a) What is the direction of the magnetic field?
(b) What would happen to the beam if the magnetic field
were reversed in direction?

Figure Q19.21

22. Figure Q19.22 shows two permanent magnets, each hav-
ing a hole through its center. Note that the upper magnet
is levitated above the lower one. (a) How does this occur?
(b) What purpose does the pencil serve? (c) What can
you say about the poles of the magnets from this observa-
tion? (d) If the upper magnet were inverted, what do you
suppose would happen?

Figure Q19.22
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PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 19.3 Magnetic Fields
1. An electron gun fires electrons into a magnetic 

field directed straight downward. Find the direction of the
force exerted by the field on an electron for each of the fol-
lowing directions of the electron’s velocity: (a) horizontal
and due north; (b) horizontal and 30° west of north; (c) due
north, but at 30° below the horizontal; (d) straight upward.
(Remember that an electron has a negative charge.)

2. (a) Find the direction of the force on a proton (a posi-
tively charged particle) moving through the magnetic fields
in Figure P19.2 (page 652), as shown. (b) Repeat part (a),
assuming the moving particle is an electron.
Find the direction of the magnetic field acting on the pos-
itively charged particle moving in the various situations

3.

shown in Figure P19.3 (page 652) if the direction of the
magnetic force acting on it is as indicated.

4. Determine the initial direction of the deflection of
charged particles as they enter the magnetic fields, as
shown in Figure P19.4 (page 652).

5. At the equator, near the surface of Earth, the magnetic
field is approximately 50.0 �T northward, and the electric
field is about 100 N/C downward in fair weather. Find the
gravitational, electric, and magnetic forces on an electron
with an instantaneous velocity of 6.00 � 106 m/s directed
to the east in this environment.

6. The magnetic field of the Earth at a certain location is
directed vertically downward and has a magnitude of
50.0 �T. A proton is moving horizontally toward the west
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9. A proton moves perpendicularly to a uniform magnetic
field at 1.0 � 107 m/s and exhibits an acceleration of
2.0 � 1013 m/s2 in the 
x-direction when its velocity is in
the 
z -direction. Determine the magnitude and direc-
tion of the field.
Sodium ions (Na
) move at 0.851 m/s through a blood-
stream in the arm of a person standing near a large magnet.
The magnetic field has a strength of 0.254 T and makes an
angle of 51.0° with the motion of the sodium ions. The arm
contains 100 cm3 of blood with 3.00 � 1020 Na
 ions per
cubic centimeter. If no other ions were present in the arm,
what would be the magnetic force on the arm?

Section 19.4 Magnetic Force on a 
Current-Carrying Conductor

A current I � 15 A is directed along the positive x -axis
and perpendicular to a magnetic field. A magnetic force
per unit length of 0.12 N/m acts on the conductor in the
negative y -direction. Calculate the magnitude and direc-
tion of the magnetic field in the region through which
the current passes.

12. In Figure P19.2, assume that in each case the velocity vec-
tor shown is replaced with a wire carrying a current in the
direction of the velocity vector. For each case, find the
direction of the magnetic force acting on the wire.

13. In Figure P19.3, assume that in each case the velocity
vector shown is replaced with a wire carrying a current in
the direction of the velocity vector. For each case, find the
direction of the magnetic field that will produce the mag-
netic force shown.

14. A wire having a mass per unit length of 0.500 g/cm
carries a 2.00-A current horizontally to the south.
What are the direction and magnitude of the minimum
magnetic field needed to lift this wire vertically upward?

15. A wire carries a current of 10.0 A in a direction that
makes an angle of 30.0° with the direction of a magnetic
field of strength 0.300 T. Find the magnetic force on a
5.00-m length of the wire.

16. At a certain location, Earth has a magnetic field of 
0.60 � 10�4 T, pointing 75° below the horizontal in a
north– south plane. A 10.0-m-long straight wire carries a
15-A current. (a) If the current is directed horizontally
toward the east, what are the magnitude and direction of
the magnetic force on the wire? (b) What are the magni-
tude and direction of the force if the current is directed
vertically upward?
A wire with a mass of 1.00 g/cm is placed on a horizontal
surface with a coefficient of friction of 0.200. The wire
carries a current of 1.50 A eastward and moves horizon-
tally to the north. What are the magnitude and the direc-
tion of the smallest vertical magnetic field that enables the
wire to move in this fashion?

18. A conductor suspended by two flexible wires as shown in
Figure P19.18 has a mass per unit length of 0.040 0 kg/m.
What current must exist in the conductor for the tension
in the supporting wires to be zero when the magnetic
field is 3.60 T into the page? What is the required direc-
tion for the current?

19. An unusual message delivery system is pictured in Figure
P19.19. A 15-cm length of conductor that is free to move is
held in place between two thin conductors. When a 5.0-A

17.

11.

10.

B
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Figure P19.3 (Problems 3 and 13) For Problem 13, 
replace the velocity vector with a current in that direction.
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Figure P19.4

in this field with a speed of 6.20 � 106 m/s. What are the
direction and magnitude of the magnetic force the field
exerts on the proton?

What velocity would a proton need to
circle Earth 1 000 km above the magnetic equator, where
Earth’s magnetic field is directed horizontally north and
has a magnitude of 4.00 � 10�8 T?

8. An electron is accelerated through 2 400 V from rest and
then enters a region where there is a uniform 1.70-T mag-
netic field. What are (a) the maximum and (b) the mini-
mum magnitudes of the magnetic force acting on this
electron?

7.

(b)
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Figure P19.2 (Problems 2 and 12) For Problem 12,
replace the velocity vector with a current in that direction.
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Problems 653

Bin

Figure P19.18

current is directed as shown in the figure, the wire segment
moves upward at a constant velocity. If the mass of the wire
is 15 g, find the magnitude and direction of the minimum
magnetic field that is required to move the wire. (The wire
slides without friction on the two vertical conductors.)

it. If the coil is in a uniform magnetic field of 2.00 � 10�4 T
directed toward the left of the page, what is the magni-
tude of the torque on the coil? [Hint : The area of an
ellipse is A � �ab, where a and b are, respectively, the
semimajor and semiminor axes of the ellipse.]

15 cm

5.0 A 5.0 A

5.0 A

Figure P19.19

20. A wire 2.80 m in length carries a current of 5.00 A in a
region where a uniform magnetic field has a magnitude
of 0.390 T. Calculate the magnitude of the magnetic force
on the wire, assuming the angle between the magnetic
field and the current is (a) 60.0°, (b) 90.0°, (c) 120°.

21. In Figure P19.21, the cube is 40.0 cm on each edge. Four
straight segments of wire—ab, bc, cd, and da— form a closed
loop that carries a current I � 5.00 A in the direction
shown. A uniform magnetic field of magnitude B � 0.020 0 T
is in the positive y -direction. Determine the magnitude and
direction of the magnetic force on each segment.

y

x

I

a

B

b

cz

d

Figure P19.21

Section 19.5 Torque on a Current Loop and Electric Motors
22. A current of 17.0 mA is maintained in a single circular

loop with a circumference of 2.00 m. A magnetic field of
0.800 T is directed parallel to the plane of the loop. What
is the magnitude of the torque exerted by the magnetic
field on the loop?

An eight-turn coil encloses an elliptical
area having a major axis of 40.0 cm and a minor axis of
30.0 cm (Fig. P19.23). The coil lies in the plane of the
page and has a 6.00-A current flowing clockwise around

23.

30.0 cm

40.0 cm

I

B

Figure P19.23

24. A rectangular loop consists of 100 closely wrapped turns
and has dimensions 0.40 m by 0.30 m. The loop is hinged
along the y-axis, and the plane of the coil makes an angle
of 30.0° with the x-axis (Fig. P19.24). What is the magni-
tude of the torque exerted on the loop by a uniform mag-
netic field of 0.80 T directed along the x-axis when the
current in the windings has a value of 1.2 A in the direc-
tion shown? What is the expected direction of rotation of
the loop?

y

x
z

0.40 m

0.30 m

30.0°

I = 1.2 A

Figure P19.24

25. A long piece of wire with a mass of 0.100 kg and a total
length of 4.00 m is used to make a square coil with a side
of 0.100 m. The coil is hinged along a horizontal side, car-
ries a 3.40-A current, and is placed in a vertical magnetic
field with a magnitude of 0.010 0 T. (a) Determine the
angle that the plane of the coil makes with the vertical
when the coil is in equilibrium. (b) Find the torque acting
on the coil due to the magnetic force at equilibrium.

26. A copper wire is 8.00 m long and has a cross-sectional
area of 1.00 � 10�4 m2. The wire forms a one-turn loop
in the shape of square and is then connected to a battery
that applies a potential difference of 0.100 V. If the loop is
placed in a uniform magnetic field of magnitude 0.400 T,
what is the maximum torque that can act on it? The resis-
tivity of copper is 1.70 � 10�8 � � m.

Section 19.6 Motion of a Charged Particle 
in a Magnetic Field

A proton moving freely in a circular path perpendicular to a
constant magnetic field takes 1.00 �s to complete one
revolution. Determine the magnitude of the magnetic field.

27.
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28. A cosmic-ray proton in interstellar space has an energy of
10.0 MeV and executes a circular orbit having a radius
equal to that of Mercury’s orbit around the Sun, which is
5.80 � 1010 m. What is the magnetic field in that region
of space?

29. Figure P19.29a is a diagram of a device called a velocity
selector, in which particles of a specific velocity pass
through undeflected while those with greater or lesser
velocities are deflected either upwards or downwards. An
electric field is directed perpendicular to a magnetic field,
producing an electric force and a magnetic force on the
charged particle that can be equal in magnitude and
opposite in direction (Fig. P19.29b) and hence cancel.
Show that particles with a speed of v � E/B will pass
through the velocity selector undeflected.

magnetic field of 0.600 T directed perpendicularly to the
velocity of the ions. What is the distance between the
impact points formed on the photographic plate by singly
charged ions of 235U and 238U?

33. A proton is at rest at the plane vertical boundary of a
region containing a uniform vertical magnetic field B. An
alpha particle moving horizontally makes a head-on elas-
tic collision with the proton. Immediately after the colli-
sion, both particles enter the magnetic field, moving per-
pendicular to the direction of the field. The radius of the
proton’s trajectory is R . Find the radius of the alpha parti-
cle’s trajectory. The mass of the alpha particle is four times
that of the proton, and its charge is twice that of the proton.

Section 19.7 Magnetic Field of a Long, Straight 
Wire and Ampère’s Law
34. In each of parts (a), (b), and (c) of Figure P19.34, find

the direction of the current in the wire that would pro-
duce a magnetic field directed as shown.
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Figure P19.29

30. Consider the mass spectrometer shown schematically in
Figure P19.30. The electric field between the plates of the
velocity selector is 950 V/m, and the magnetic fields in
both the velocity selector and the deflection chamber
have magnitudes of 0.930 T. Calculate the radius of the
path in the system for a singly charged ion with mass 
m � 2.18 � 10�26 kg. [Hint : See Problem 29.]

r

P

Bin

Velocity selector

E

0, in

q

Photographic
plate

B

v

Figure P19.30 A mass spectrometer. Charged particles are
first sent through a velocity selector. They then enter a region
where a magnetic field (directed inward) causes positive
ions to move in a semicircular path and strike a photographic
film at P.

B
:

0

31. A singly charged positive ion has a mass of 2.50 � 10�26 kg.
After being accelerated through a potential difference of
250 V, the ion enters a magnetic field of 0.500 T, in a
direction perpendicular to the field. Calculate the radius
of the path of the ion in the field.
A mass spectrometer is used to examine the isotopes of
uranium. Ions in the beam emerge from the velocity
selector at a speed of 3.00 � 105 m/s and enter a uniform

32.

Bin

Bout

(a) (b)

B

Bin

Bout

(c)

Figure P19.34

35. A lightning bolt may carry a current of 1.00 � 104 A for a
short time. What is the resulting magnetic field 100 m
from the bolt? Suppose that the bolt extends far above
and below the point of observation.

36. In 1962, measurements of the magnetic field of a large
tornado were made at the Geophysical Observatory in
Tulsa, Oklahoma. If the magnitude of the tornado’s field
was B � 1.50 � 10�8 T pointing north when the tornado
was 9.00 km east of the observatory, what current was car-
ried up or down the funnel of the tornado? Model the
vortex as a long, straight wire carrying a current.

37. A cardiac pacemaker can be affected by a static magnetic
field as small as 1.7 mT. How close can a pacemaker
wearer come to a long, straight wire carrying 20 A?

38. The two wires shown in Figure P19.38 carry currents of
5.00 A in opposite directions and are separated by 10.0 cm.
Find the direction and magnitude of the net magnetic
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field (a) at a point midway between the wires; (b) at point
P1, 10.0 cm to the right of the wire on the right, and (c) at
point P2, 20.0 cm to the left of the wire on the left.

43. The magnetic field 40.0 cm away from a long, straight
wire carrying current 2.00 A is 1.00 �T. (a) At what dis-
tance is it 0.100 �T? (b) At one instant, the two conduc-
tors in a long household extension cord carry equal 2.00-A
currents in opposite directions. The two wires are 
3.00 mm apart. Find the magnetic field 40.0 cm away
from the middle of the straight cord, in the plane of the
two wires. (c) At what distance is it one-tenth as large? 
(d) The center wire in a coaxial cable carries current 
2.00 A in one direction, and the sheath around it carries
current 2.00 A in the opposite direction. What magnetic
field does the cable create at points outside?

Section 19.8 Magnetic Force between 
Two Parallel Conductors
44. Two parallel wires are 10.0 cm apart, and each carries a

current of 10.0 A. (a) If the currents are in the same
direction, find the force per unit length exerted on one
of the wires by the other. Are the wires attracted to or
repelled by each other? (b) Repeat the problem with the
currents in opposite directions.

45. A wire with a weight per unit length of 0.080 N/m is sus-
pended directly above a second wire. The top wire carries
a current of 30.0 A and the bottom wire carries a current
of 60.0 A. Find the distance of separation between the
wires so that the top wire will be held in place by magnetic
repulsion.
In Figure P19.46, the current in the long, straight wire is
I1 � 5.00 A, and the wire lies in the plane of the rectangu-
lar loop, which carries 10.0 A. The dimensions shown
are c � 0.100 m, a � 0.150 m, and � � 0.450 m. Find the
magnitude and direction of the net force exerted by the
magnetic field due to the straight wire on the loop.

46.

20.0 cm 10.0 cm 10.0 cm

P1P2

5.00 A 5.00 A

Figure P19.38

39. Four long, parallel conductors carry equal currents of
I � 5.00 A. Figure P19.39 is an end view of the conduc-
tors. The direction of the current is into the page at
points A and B (indicated by the crosses) and out of the
page at C and D (indicated by the dots). Calculate the
magnitude and direction of the magnetic field at point P,
located at the center of the square with edge of
length 0.200 m.

0.200 m

0.200 m

A

B

C

P

D

�

�

Figure P19.39

40. The two wires in Figure P19.40 carry currents of 3.00 A
and 5.00 A in the direction indicated. (a) Find the direc-
tion and magnitude of the magnetic field at a point
midway between the wires. (b) Find the magnitude and
direction of the magnetic field at point P, located 20.0 cm
above the wire carrying the 5.00-A current.

5.00 A

20.0 cm

3.00 A

20.0 cm

P

Figure P19.40

A wire carries a 7.00-A current along
the x -axis, and another wire carries a 6.00-A current along
the y -axis, as shown in Figure P19.41. What is the mag-
netic field at point P, located at x � 4.00 m, y � 3.00 m?

42. A long, straight wire lies on a horizontal table and carries
a current of 1.20 �A. In a vacuum, a proton moves paral-
lel to the wire (opposite the direction of the current) with
a constant velocity of 2.30 � 104 m/s at a constant
distance d above the wire. Determine the value of d. (You
may ignore the magnetic field due to Earth.)

41.

6.00 A

7.00 A

(4.00, 3.00) m

y

x

P

Figure P19.41

I1

�

c a

I2

Figure P19.46
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Section 19.9 Magnetic Fields of Current Loops 
and Solenoids
47. What current is required in the windings of a long sole-

noid that has 1 000 turns uniformly distributed over a
length of 0.400 m in order to produce a magnetic field of
magnitude 1.00 � 10�4 T at the center of the solenoid?

48. It is desired to construct a solenoid that will have a resist-
ance of 5.00 � (at 20°C) and produce a magnetic field of
4.00 � 10�2 T at its center when it carries a current of
4.00 A. The solenoid is to be constructed from copper
wire having a diameter of 0.500 mm. If the radius of the
solenoid is to be 1.00 cm, determine (a) the number of
turns of wire needed and (b) the length the solenoid
should have.

A single-turn square loop of wire 2.00 cm
on a side carries a counterclockwise current of 0.200 A.
The loop is inside a solenoid, with the plane of the loop
perpendicular to the magnetic field of the solenoid. The
solenoid has 30 turns per centimeter and carries a coun-
terclockwise current of 15.0 A. Find the force on each side
of the loop and the torque acting on the loop.

50. An electron is moving at a speed of 1.0 � 104 m/s in a 
circular path of radius of 2.0 cm inside a solenoid. The
magnetic field of the solenoid is perpendicular to the
plane of the electron’s path. Find (a) the strength of the
magnetic field inside the solenoid and (b) the current in
the solenoid if it has 25 turns per centimeter.

ADDITIONAL PROBLEMS
51. A circular coil consisting of a single loop of wire has a

radius of 30.0 cm and carries a current of 25 A. It is
placed in an external magnetic field of 0.30 T. Find the
torque on the wire when the plane of the coil makes an
angle of 35° with the direction of the field.

52. An electron enters a region of magnetic field of magni-
tude 0.010 0 T, traveling perpendicular to the linear
boundary of the region. The direction of the field is per-
pendicular to the velocity of the electron. (a) Determine
the time it takes for the electron to leave the “field-filled”
region, noting that its path is a semicircle. (b) Find the
kinetic energy of the electron if the radius of its semicir-
cular path is 2.00 cm.

53. Two long, straight wires cross each other at right angles,
as shown in Figure P19.53. (a) Find the direction and
magnitude of the magnetic field at point P, which is in the
same plane as the two wires. (b) Find the magnetic field at
a point 30.0 cm above the point of intersection (30.0 cm
out of the page, toward you).

49.

54. A 0.200-kg metal rod carrying a current of 10.0 A glides
on two horizontal rails 0.500 m apart. What vertical mag-
netic field is required to keep the rod moving at a con-
stant speed if the coefficient of kinetic friction between
the rod and rails is 0.100?

55. Two species of singly charged positive ions of masses 
20.0 � 10�27 kg and 23.4 � 10�27 kg enter a magnetic
field at the same location with a speed of 1.00 � 105 m/s.
If the strength of the field is 0.200 T, and the ions move
perpendicularly to the field, find their distance of separa-
tion after they complete one-half of their circular path.

56. Two parallel conductors carry currents in opposite direc-
tions, as shown in Figure P19.56. One conductor carries a
current of 10.0 A. Point A is the midpoint between the
wires, and point C is 5.00 cm to the right of the 10.0-A
current. I is adjusted so that the magnetic field at C is
zero. Find (a) the value of the current I and (b) the value
of the magnetic field at A.
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40.0 cm

30.0 cm P

3.00 A

y

x
5.00 A

Figure P19.53

I 10.0  A

A C

10.0 cm

Figure P19.56

57. Using an electromagnetic flowmeter (Fig. P19.57), a heart
surgeon monitors the flow rate of blood through an
artery. Electrodes A and B make contact with the outer
surface of the blood vessel, which has interior diameter
3.00 mm. (a) For a magnetic field magnitude of 0.040 0 T,
a potential difference of 160 �V appears between the
electrodes. Calculate the speed of the blood. (b) Verify
that electrode A is positive, as shown. Does the sign of the
emf depend on whether the mobile ions in the blood are
predominantly positively or negatively charged? Explain.

A+

To
voltmeter

Blood
flow

Electrodes B–

S

Artery

N

Figure P19.57

58. Two circular loops are parallel, coaxial, and almost in con-
tact 1.00 mm apart (Fig. P19.58). Each loop is 10.0 cm in
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radius. The top loop carries a clockwise current of 140 A.
The bottom loop carries a counterclockwise current of
140 A. (a) Calculate the magnetic force that the bottom
loop exerts on the top loop. (b) The upper loop has a
mass of 0.021 0 kg. Calculate its acceleration, assuming
that the only forces acting on it are the force in part
(a) and its weight. [Hint : The distance between the loops
is small in comparison to their radius of curvature, so the
loops may be treated as long, straight parallel wires.]

62. A uniform horizontal wire with a linear mass density of
0.50 g/m carries a 2.0-A current. It is placed in a constant
magnetic field with a strength of 4.0 � 10�3 T. The field
is horizontal and perpendicular to the wire. As the wire
moves upward starting from rest, (a) what is its accelera-
tion and (b) how long does it take to rise 50 cm? Neglect
the magnetic field of Earth.

63. Three long parallel conductors carry currents of I � 2.0 A.
Figure P19.63 is an end view of the conductors, with each
current coming out of the page. Given that a � 1.0 cm,
determine the magnitude and direction of the magnetic
field at points A, B, and C.

140 A

140 A

Figure P19.58

59. A 1.00-kg ball having net charge Q � 5.00 �C is thrown
out of a window horizontally at a speed v � 20.0 m/s. The
window is at a height h � 20.0 m above the ground. A uni-
form horizontal magnetic field of magnitude B � 0.010 0 T
is perpendicular to the plane of the ball’s trajectory. Find
the magnitude of the magnetic force acting on the ball
just before it hits the ground. [Hint : Ignore magnetic
forces in finding the ball’s final velocity.]

60. The idea that static magnetic fields might have a thera-
peutic value has been around for centuries. A currently
available rare-Earth magnet that is advertised to relieve
joint pain is shown in Figure P19.60. It is 1.0 mm thick
and has a field strength of 5.0 � 10�2 T at the center of
the flat surface. The magnetic field strength at points
away from the center of the disk is inversely proportional
to h 3, where h is the distance from the midplane of the
disk. How far from the surface of the disk will the field
strength be reduced to that of Earth (5.0 � 10�5 T)?

Figure P19.60

Two long parallel conductors carry currents I1 � 3.00 A
and I2 � 3.00 A, both directed into the page in Figure
P19.61. Determine the magnitude and direction of the
resultant magnetic field at P.

61.

13.0 cm

5.00 cm

12.0 cm

I2

I1

P

�

�

Figure P19.61
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A B C a Ia

a

a

a

Figure P19.63

64. Two long parallel wires, each with a mass per unit length of
40 g/m, are supported in a horizontal plane by 6.0-cm-long
strings, as shown in Figure P19.64. Each wire carries the
same current I, causing the wires to repel each other so
that the angle � between the supporting strings is 16°.
(a) Are the currents in the same or opposite directions?
(b) Determine the magnitude of each current.

6.0 cm

u = 16°

y

z
x

Figure P19.64

Protons having a kinetic energy of 5.00 MeV are moving
in the positive x-direction and enter a magnetic field of
0.050 0 T in the z-direction, out of the plane of the page,
and extending from x � 0 to x � 1.00 m as in Figure
P19.65 (page 658). (a) Calculate the y -component of the
protons’ momentum as they leave the magnetic field. 
(b) Find the angle � between the initial velocity vector of
the proton beam and the velocity vector after the beam
emerges from the field. [Hint : Neglect relativistic effects
and note that 1 eV � 1.60 � 10�19 J.]

65.
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66. A straight wire of mass 10.0 g and length 5.0 cm is sus-
pended from two identical springs that, in turn, form a
closed circuit (Fig. P19.66). The springs stretch a distance
of 0.50 cm under the weight of the wire. The circuit has a
total resistance of 12 �. When a magnetic field directed
out of the page (indicated by the dots in the figure is
turned on, the springs are observed to stretch an addi-
tional 0.30 cm. What is the strength of the magnetic field?
(The upper portion of the circuit is fixed.)

location of I1? (d) What is the force per length exerted
by I2 on I1?

ACTIVITIES
1. For this activity, you will need a small bar magnet, a small

plastic container, and a bowl of water. Tape the magnet to
the bottom of the container, and float the container and
magnet on the surface of the bowl as in Figure A19.1. The
magnet and the container should rotate and come to
equilibrium, with the magnet pointing along a
north– south line. The compass you have constructed is
similar to the type used by early sailing vessels. How can
you determine which direction is north and which is
south?

Figure P19.65

5.0 cm

24 V

Figure P19.66

67. A solenoid 10.0 cm in diameter and 75.0 cm long is made
from copper wire of diameter 0.100 cm with very thin
insulation. The wire is wound onto a cardboard tube in a
single layer, with adjacent turns touching each other. To
produce a field of magnitude 20.0 mT at the center of the
solenoid, what power must be delivered to the solenoid?

68. Assume that the region to the right of a certain vertical plane
contains a vertical magnetic field of magnitude 1.00 mT
and that the field is zero in the region to the left of the
plane. An electron, originally traveling perpendicular to
the boundary plane, passes into the region of the field.
(a) Noting that the path of the electron is a semicircle,
determine the time interval required for the electron to
leave the “field-filled” region. (b) Find the kinetic energy
of the electron if the maximum depth of penetration into
the field is 2.00 cm.

69. Three long wires (wire 1, wire 2, and wire 3) are coplanar
and hang vertically. The distance between wire 1 and wire
2 is 20.0 cm. On the left, wire 1 carries an upward current
of 1.50 A. To the right, wire 2 carries a downward current
of 4.00 A. Wire 3 is located such that when it carries a cer-
tain current, no net force acts upon any of the wires. Find
(a) the position of wire 3 and (b) the magnitude and
direction of the current in wire 3.

70. Two long parallel conductors separated by 10.0 cm carry
currents in the same direction. The first wire carries a
current I1 � 5.00 A and the second carries I2 � 8.00 A.
(a) What is the magnitude of the magnetic field
created by I1 at the location of I2? (b) What is the force
per unit length exerted by I1 on I2? (c) What is the
magnitude of the magnetic field created by I2 at the

Magnet

Water

Figure A19.01

2. In the Northern Hemisphere, the direction of Earth’s
magnetic field becomes more and more nearly vertical
the farther north one goes. To find the variation from the
horizontal of the magnetic field in your locale, try the
following: press an unmagnetized needle through a Ping-
Pong® ball, and balance the structure between two drink-
ing glasses that are lined up along an east–west line.
Next, press a magnetized needle through the ball at right
angles to the unmagnetized needle so that the needle
points north. The magnetized needle can now rotate in
the vertical direction and will point in the direction of
Earth’s magnetic field, which is at some angle below the
horizontal. Take several measurements of this dip angle
and obtain an average value.

3. Construct an electromagnet by wrapping about 1 meter of
small-diameter insulated wire around a steel nail. Tape
the ends of the wires to a D-cell battery as in Figure A19.3.
How many staples or paper clips can you pick up with
your electromagnet? How would you increase the mag-
netic field set up by the nail? Disconnect the wires from

+ –

Figure A19.03
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the battery and test how much magnetism is retained by
the nail by seeing how many staples it can pick up. A
convenient way to test the strength of a magnet is to
attach a paper clip to a rubber band. Note how far the
rubber band is stretched before the clip comes free of the
magnet. Test your electromagnet in this way. Where is the
magnetic field of the electromagnet strongest, at the ends
of the nail or near its center? When you have your nail
magnetized, bang it against a table or the floor and then
check its magnetism. Why does the nail lose its magnetism
by this procedure?

4. You can trace out the field pattern of a magnet with iron
filings. Any machine shop will supply the filings, which
should be soaked in a soap solution to remove grit and oil
and then dried. Scatter them lightly over the surface of a
paper covering the magnet, and then tap the paper gently
to jar the filings into alignment. Explain why the filings
form their pattern. Examine the field pattern set up in the
following situations: (a) Arrange two bar magnets about 4
cm apart, aligned with opposite poles facing each other.
(b) Use two bar magnets about 4 cm apart, aligned with
like poles facing each other. (c) Use a horseshoe magnet.

44920_19_p624-659  1/5/05  1:49 PM  Page 659



660

20
CHAPTER

O U T L I N E

20.1 Induced emf and 
Magnetic Flux

20.2 Faraday’s Law of Induction
20.3 Motional emf
20.4 Lenz’s Law Revisited 

(the Minus Sign 
in Faraday’s Law)

20.5 Generators
20.6 Self-Inductance
20.7 RL Circuits
20.8 Energy Stored in 

a Magnetic Field

Ph
ot

oD
is

c/
Ge

tty
 Im

ag
es

The vibrating strings induce a voltage
in pickup coils that detect and amplify
the musical sounds being produced.
The details of how this phenomenon
works are discussed in this chapter.

Induced Voltages 
and Inductance
In 1819, Hans Christian Oersted discovered that an electric current exerted a force on a mag-
netic compass. Although there had long been speculation that such a relationship existed,
Oersted’s finding was the first evidence of a link between electricity and magnetism. Because
nature is often symmetric, the discovery that electric currents produce magnetic fields led
scientists to suspect that magnetic fields could produce electric currents. Indeed, experiments
conducted by Michael Faraday in England and independently by Joseph Henry in the United
States in 1831 showed that a changing magnetic field could induce an electric current in a
circuit. The results of these experiments led to a basic and important law known as Faraday’s
law. In this chapter we discuss Faraday’s law and several practical applications, one of which is
the production of electrical energy in power generation plants throughout the world.

20.1 INDUCED EMF AND MAGNETIC FLUX
An experiment first conducted by Faraday demonstrated that a current can be pro-
duced by a changing magnetic field. The apparatus shown in Active Figure 20.1
(page 661) consists of a coil connected to a switch and a battery. We will refer to
this coil as the primary coil and to the corresponding circuit as the primary circuit.
The coil is wrapped around an iron ring to intensify the magnetic field produced
by the current in the coil. A second coil, at the right, is wrapped around the iron
ring and is connected to an ammeter. This is called the secondary coil, and the cor-
responding circuit is called the secondary circuit. It’s important to notice that
there is no battery in the secondary circuit.

At first glance, you might guess that no current would ever be detected in 
the secondary circuit. However, when the switch in the primary circuit in Active
Figure 20.1 is suddenly closed, something amazing happens: the ammeter
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20.1 Induced EMF and Magnetic Flux 661

measures a current in the secondary circuit and then returns to zero! When the
switch is opened again, the ammeter reads a current in the opposite direction and
again returns to zero. Finally, whenever there is a steady current in the primary
circuit, the ammeter reads zero.

From observations such as these, Faraday concluded that an electric current could
be produced by a changing magnetic field. (A steady magnetic field doesn’t produce a
current, unless the coil is moving, as explained below.) The current produced in the
secondary circuit occurs only for an instant while the magnetic field through the sec-
ondary coil is changing. In effect, the secondary circuit behaves as though a source of
emf were connected to it for a short time. It’s customary to say that an induced emf is
produced in the secondary circuit by the changing magnetic field.

Magnetic Flux
In order to evaluate induced emfs quantitatively, we need to understand what factors
affect the phenomenon. While changing magnetic fields always induce electric fields,
there are also situations in which the magnetic field remains constant, yet an induced
electric field is still produced. The best example of this is an electric generator: A
loop of conductor rotating in a constant magnetic field creates an electric current.

The physical quantity associated with magnetism that creates an electric field is
a changing magnetic flux. Magnetic flux is defined in the same way as electric flux
(Section 15.9) and is proportional to both the strength of the magnetic field
passing through the plane of a loop of wire and the area of the loop.

The magnetic flux �B through a loop of wire with area A is defined by

[20.11]

where B� is the component of perpendicular to the plane of the loop, as
in Figure 20.2a, and � is the angle between and the normal (perpendicular)
to the plane of the loop.
SI unit: weber (Wb)

B
:

B
:

�B  � B�A � BA cos �

MICHAEL FARADAY, British
physicist and chemist
(1791–1867)
Faraday is often regarded as the greatest
experimental scientist of the 1800s. His
many contributions to the study of elec-
tricity include the invention of the electric
motor, electric generator, and transformer,
as well as the discovery of electromagnetic
induction and the laws of electrolysis.
Greatly influenced by religion, he refused
to work on military poison gas for the
British government.
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Faraday’s experiment. When the switch in the primary circuit at the left is closed, the ammeter in the
secondary circuit at the right measures a momentary current. The emf in the secondary circuit is in-
duced by the changing magnetic field through the coil in that circuit.

Ammeter

Secondary
coil

Primary
coil

Iron

Switch

+
–

Battery

(b)(a)

B
B

Loop of
area A

u

u
u

u

B

B

Figure 20.2 (a) A uniform mag-
netic field making an angle � with a
direction normal to the plane of a
wire loop of area A.(b) An edge view
of the loop.

B
:

� Magnetic flux

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 20.1, where you can open and
close the switch and observe the
current in the ammeter.
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From Equation 20.1, it follows that B� � B cos �. The magnetic flux, in other words,
is the magnitude of the part of that is perpendicular to the plane of the loop
times the area of the loop. Figure 20.2b is an edge view of the loop and the pene-
trating magnetic field lines. When the field is perpendicular to the plane of the
loop as in Figure 20.3a, � � 0 and �B has a maximum value, �B, max � BA. When
the plane of the loop is parallel to as in Figure 20.3b, � � 90° and �B � 0. The
flux can also be negative. For example, when � � 180°, the flux is equal to �BA.
Because the SI unit of B is the tesla, or weber per square meter, the unit of flux is
T � m2, or weber (Wb).

We can emphasize the qualitative meaning of Equation 20.1 by first drawing
magnetic field lines, as in Figure 20.3. The number of lines per unit area increases
as the field strength increases. The value of the magnetic flux is proportional to
the total number of lines passing through the loop. We see that the most lines pass
through the loop when its plane is perpendicular to the field, as in Figure 20.3a,
so the flux has its maximum value at that time. As Figure 20.3b shows, no lines
pass through the loop when its plane is parallel to the field, so in that case �B � 0.

B
:

B
:
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= 0°

= BA

= 90°

= 0

(a) (b)

u u

�B, max �B

Figure 20.3 An edge view of a
loop in a uniform magnetic field. 
(a) When the field lines are perpen-
dicular to the plane of the loop, the
magnetic flux through the loop is a
maximum and equal to �B � BA. 
(b) When the field lines are parallel
to the plane of the loop, the mag-
netic flux through the loop is zero.

Argentina has more land area (2.8 � 106 km2) than
Greenland (2.2 � 106 km2). Why is the magnetic flux
of the Earth’s magnetic field larger through Green-
land than through Argentina?

Explanation Greenland (latitude 60° north to 80° north)
is closer to a magnetic pole than Argentina (latitude 20°

south to 50° south), so the magnetic field is stronger
there. That in itself isn’t sufficient to conclude that the
magnetic flux is greater, but Greenland’s proximity to a
pole also means the angle magnetic field lines make
with the vertical is smaller than in Argentina. As a result,
more field lines penetrate the surface in Greenland, de-
spite Argentina’s slightly larger area.

Applying Physics 20.1 Flux Compared

EXAMPLE 20.1 Magnetic Flux
Goal Calculate magnetic flux and a change in flux.

Problem A conducting circular loop of radius 0.250 m is placed in the xy-plane in a uniform magnetic field of
0.360 T that points in the positive z-direction, the same direction as the normal to the plane. (a) Calculate the mag-
netic flux through the loop. (b) Suppose the loop is rotated clockwise around the x-axis, so the normal direction now
points at a 45.0° angle with respect to the z-axis. Recalculate the magnetic flux through the loop. (c) What is the
change in flux due to the rotation of the loop?

Strategy After finding the area, substitute values into the equation for magnetic flux for each part.

Solution
(a) Calculate the initial magnetic flux through the loop.

First, calculate the area of the loop: A � �r 2 � �(0.250 m)2 � 0.196 m2

Substitute A, B, and � � 0° into Equation 20.1 to find
the initial magnetic flux:

�B � AB cos � � (0.196 m2)(0.360 T) cos (0°)

� 0.070 6 T � m2 � 0.070 6 Wb

�B � AB cos � � (0.196 m2)(0.360 T) cos (45.0°)

� 0.049 9 T � m2 � 0.049 9 Wb

(b) Calculate the magnetic flux through the loop after it
has rotated 45.0° around the x -axis.

Make the same substitutions as in part (a), except the
angle between and the normal is now � � 45.0°:B

:

(c) Find the change in the magnetic flux due to the 
rotation of the loop.
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Subtract the result of part (a) from the result of part (b): 	�B � 0.049 9 Wb � 0.070 6 Wb � � 0.020 7 Wb

Remarks Notice that the rotation of the loop, not any change in the magnetic field, is responsible for the change
in flux. This changing magnetic flux is essential in the functioning of electric motors and generators.

Exercise 20.1
The loop, having rotated by 45
, rotates clockwise another 30
, so the normal to the plane points at an angle of 75

with respect to the direction of the magnetic field. Find (a) the magnetic flux through the loop when � � 75
 and
(b) the change in magnetic flux during the rotation from 45
 to 75
.

Answers (a) 0.018 3 Wb (b) � 0.031 6 Wb

20.2 FARADAY’S LAW OF INDUCTION
The usefulness of the concept of magnetic flux can be made obvious by another sim-
ple experiment that demonstrates the basic idea of electromagnetic induction. Con-
sider a wire loop connected to an ammeter as in Active Figure 20.4. If a magnet is
moved toward the loop, the ammeter reads a current in one direction, as in Active
Figure 20.4a. When the magnet is held stationary, as in Active Figure 20.4b, the am-
meter reads zero current. If the magnet is moved away from the loop, the amme-
ter reads a current in the opposite direction, as in Active Figure 20.4c. If the mag-
net is held stationary and the loop is moved either toward or away from the
magnet, the ammeter also reads a current. From these observations, it can be con-
cluded that a current is set up in the circuit as long as there is relative motion be-
tween the magnet and the loop. The same experimental results are found whether
the loop moves or the magnet moves. We call such a current an induced current,
because it is produced by an induced emf.

This experiment is similar to the Faraday experiment discussed in Section 20.1.
In each case, an emf is induced in a circuit when the magnetic flux through the
circuit changes with time. It turns out that the instantaneous emf induced in a
circuit equals the negative of the rate of change of magnetic flux with respect to
time through the circuit. This is Faraday’s law of magnetic induction.

If a circuit contains N tightly wound loops and the magnetic flux through
each loop changes by the amount 	�B during the interval 	t, the average
emf induced in the circuit during time 	t is

[20.2]� � �N
	�B

	t

Ammeter

Ammeter

Ammeter

(b)

(a)

N S

(c)

N S

N S

I

I

ACTIVE FIGURE 20.4
(a) When a magnet is moved toward a wire loop
connected to an ammeter, the ammeter reads a cur-
rent as shown, indicating that a current I is induced
in the loop. (b) When the magnet is held stationary,
no current is induced in the loop, even when the
magnet is inside the loop. (c) When the magnet is
moved away from the loop, the ammeter reads a cur-
rent in the opposite direction, indicating an induced
current going opposite the direction of the current
in part (a).

Log into PhysicsNow at www.cp7e.com and go to
Active Figure 20.4, where you can move the magnet
and observe the current in the ammeter.

� Faraday’s law

TIP 20.1 Induced Current 
Requires a Change in 
Magnetic Flux
The existence of magnetic flux
through an area is not sufficient to
create an induced emf. A change in
the magnetic flux over some time
interval 	t must occur for an emf to
be induced.
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Because �B � BA cos �, a change of any of the factors B, A, or � with time pro-
duces an emf. We explore the effect of a change in each of these factors in the
following sections. The minus sign in Equation 20.2 is included to indicate the
polarity of the induced emf. This polarity simply determines which of two different
directions current will flow in a loop, a direction given by Lenz’s law:

The current caused by the induced emf travels in the direction that creates a
magnetic field with flux opposing the change in the original flux through
the circuit.

Lenz’s law says that if the magnetic flux through a loop is becoming more positive,
say, then the induced emf creates a current and associated magnetic field that pro-
duces negative magnetic flux. Some mistakenly think this “counter magnetic field”
created by the induced current, called (“ind” for induced) will always point in
a direction opposite the applied magnetic field , but this is only true half the
time! Figure 20.5 shows a field penetrating a loop. The graph in Figure 20.5b shows
that the magnitude of the magnetic field shrinks with time. This means the flux
of is shrinking with time, so the induced field will actually be in the same di-
rection as . In effect, “shores up” the field , slowing the loss of flux through
the loop.

The direction of the current in Figure 20.5 can be determined by right-hand
rule number 2: Point your right thumb in the direction that will cause the fingers
on your right hand to curl in the direction of the induced field . In this case,
that direction is counterclockwise: with the right thumb pointed in the direction
of the current, your fingers curl down outside the loop and around and up
through the inside of the loop. Remember, inside the loop is where it’s important
for the induced magnetic field to be pointing up. 

B
:

ind

B
:

B
:

indB
:

B
:

indB
:

B
:

B
:

B
:

ind
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Lenz’s law �

Bind

B

I

z

y

t

B

x

(a)

(b)

Figure 20.5 (a) The magnetic
field becomes smaller with time, 
reducing the flux, so current is in-
duced in a direction that creates 
an induced magnetic field 
opposing the change in magnetic
flux. (b) Graph of the magnitude 
of the magnetic field as a function 
of time.

B
:

ind

B
:

Figure 20.6 is a graph of the magnitude B
versus time for a magnetic field that passes
through a fixed loop and is oriented perpendi-
cular to the plane of the loop. Rank the magni-
tudes of the emf generated in the loop at
the three instants indicated, from largest to
smallest.

Quick Quiz 20.1 B

t
a b c

Figure 20.6 (Quick Quiz 20.1)

EXAMPLE 20.2 Faraday and Lenz to the Rescue
Goal Calculate an induced emf and current with Faraday’s law, and apply Lenz’s
law, when the magnetic field changes with time.

Problem A coil with 25 turns of wire is wrapped on a frame with a square cross-
section 1.80 cm on a side. Each turn has the same area, equal to that of the frame,
and the total resistance of the coil is 0.350 �. An applied uniform magnetic field is
perpendicular to the plane of the coil, as in Figure 20.7. (a) If the field changes
uniformly from 0.00 T to 0.500 T in 0.800 s, find the induced emf in the coil while
the field is changing. Find (b) the magnitude and (c) the direction of the induced
current in the coil while the field is changing.

Strategy Part (a) requires substituting into Faraday’s law, Equation 20.2. The necessary information is given,
except for 	�B , the change in the magnetic flux during the elapsed time. Compute the initial and final magnetic
fluxes with Equation 20.1, find the difference, and assemble all terms in Faraday’s law. The current can then be
found with Ohm’s law, and its direction with Lenz’s law.

I
y

x

z

B

Figure 20.7 (Example 20.2)
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Solution
(a) Find the induced emf in the coil.

To compute the flux, the area of the coil is needed: A � L2 � (0.018 0 m)2 � 3.24 � 10�4 m2

The magnetic flux �B,i through the coil at t � 0 is zero
because B � 0. Calculate the flux at t � 0.800 s:

�B,f � BA cos � � (0.500 T)(3.24 � 10�4 m2) cos (0°)

� 1.62 � 10�4 Wb

Compute the change in the magnetic flux through the
cross-section of the coil over the 0.800-s interval:

	�B � �B,f � �B,i � 1.62 � 10�4 Wb

Substitute into Faraday’s law of induction to find the 
induced emf in the coil:

� � 5.06 � 10�3 V

� � �N
	�B

	t
� (25 turns)� 1.62 � 10�4 Wb

0.800 s �

(b) Find the magnitude of the induced current in the
coil.

Substitute the voltage difference and the resistance into
Ohm’s law:

1.45 � 10�2 AI �
	V
R

�
5.06 � 10�3 V

0.350 �
�

(c) Find the direction of the induced current in the coil.

The magnetic field is increasing up through the loop, 
in the same direction as the normal to the plane; hence
the flux is positive and increasing, also. A downward-
pointing induced magnetic field will create negative

flux, opposing the change. If you point your right
thumb in the clockwise direction along the loop, your
fingers curl down through the loop— the correct direc-
tion for the counter magnetic field.

Remark Lenz’s law can best be handled by sketching a diagram, first.

Exercise 20.2
Suppose the magnetic field changes uniformly from 0.500 T to 0.200 T in the next 0.600 s. Compute (a) the induced
emf in the coil and (b) the magnitude and direction of the induced current.

Answers (a) 4.05 � 10�3 V (b) 1.16 � 10�2 A, counterclockwise

The ground fault interrupter (GFI) is an
interesting safety device that protects peo-
ple against electric shock when they touch
appliances and power tools. Its operation
makes use of Faraday’s law. Figure 20.8
shows the essential parts of a ground fault
interrupter. Wire 1 leads from the wall out-
let to the appliance to be protected, and
wire 2 leads from the appliance back to the
wall outlet. An iron ring surrounds the two
wires to confine the magnetic field set up by
each wire. A sensing coil, which can activate a circuit breaker when changes in 
magnetic flux occur, is wrapped around part of the iron ring. Because the currents 
in the wires are in opposite directions, the net magnetic field through the sensing
coil due to the currents is zero. However, if a short circuit occurs in the appliance so
that there is no returning current, the net magnetic field through the sensing coil is
no longer zero. This can happen if, for example, one of the wires loses its insulation,
providing a path through you to ground if you happen to be touching the appliance
and are grounded as in Figure 18.23a. Because the current is alternating, the mag-
netic flux through the sensing coil changes with time, producing an induced voltage
in the coil. This induced voltage is used to trigger a circuit breaker, stopping the 

Circuit
breaker

Sensing
coil

Alternating
current

Iron
ring

1

2

Figure 20.8 Essential components
of a ground fault interrupter (contents
of the gray box in Fig. 20.9a). In newer
homes, such devices are built directly
into wall outlets. The purpose of the
sensing coil and circuit breaker is to cut
off the current before damage is done.

A P P L I C AT I O N
Ground Fault Interrupters
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current quickly in about a millisecond before it reaches a level that might be harmful
to the person using the appliance. A ground fault interrupter provides faster and
more complete protection than even the case-ground-and-circuit-breaker combina-
tion shown in Figure 18.23b. For this reason, ground fault interrupters are commonly
found in bathrooms, where electricity poses a hazard to people. (See Fig. 20.9.)

Another interesting application of Faraday’s law is the production of sound in an
electric guitar. A vibrating string induces an emf in a coil (Fig. 20.10). The pickup coil
is placed near the vibrating guitar string, which is made of a metal that can be mag-
netized. The permanent magnet inside the coil magnetizes the portion of the string
nearest the coil. When the guitar string vibrates at some frequency, its magnetized
segment produces a changing magnetic flux through the pickup coil. The changing
flux induces a voltage in the coil; the voltage is fed to an amplifier. The output of the
amplifier is sent to the loudspeakers, producing the sound waves that we hear.

Sudden infant death syndrome (SIDS) is a devastating affliction in which a baby
suddenly stops breathing during sleep without an apparent cause. One type of
monitoring device, called an apnea monitor, is sometimes used to alert caregivers
of the cessation of breathing. The device uses induced currents, as shown in Figure
20.11. A coil of wire attached to one side of the chest carries an alternating current.
The varying magnetic flux produced by this current passes through a pickup coil at-
tached to the opposite side of the chest. Expansion and contraction of the chest
caused by breathing or movement changes the strength of the voltage induced in
the pickup coil. However, if breathing stops, the pattern of the induced voltage sta-
bilizes, and external circuits monitoring the voltage sound an alarm to the care-
givers after a momentary pause to ensure that a problem actually does exist.

666 Chapter 20 Induced Voltages and Inductance

(a)

Wall outlet

120 V

Ground fault
interrupter

Hair dryer

A P P L I C AT I O N
Electric Guitar Pickups

Figure 20.9 (a) This hair dryer has been plugged into a ground fault interrupter that is in turn
plugged into an unprotected wall outlet. (b) You likely have seen this kind of ground fault interrupter in
a hotel bathroom, where hair dryers and electric shavers are often used by people just out of the shower
or who might touch a water pipe, providing a ready path to ground in the event of a short circuit.
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Figure 20.10 (a) In an electric
guitar, a vibrating string induces a
voltage in the pickup coil. (b) Several
pickups allow the vibration to be
detected from different portions of
the string.

b,
 C

ha
rle

s 
D.

 W
in

te
rs

A P P L I C AT I O N
Apnea Monitors
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20.3 MOTIONAL emf
In Section 20.2, we considered emfs induced in a circuit when the magnetic field
changes with time. In this section we describe a particular application of Faraday’s
law in which a so-called motional emf is produced. This is the emf induced in a
conductor moving through a magnetic field.

First consider a straight conductor of length � moving with constant velocity
through a uniform magnetic field directed into the paper, as in Figure 20.12. For
simplicity, we assume that the conductor moves in a direction perpendicular to the
field. A magnetic force of magnitude Fm � qvB, directed downward, acts on the
electrons in the conductor. Because of this magnetic force, the free electrons
move to the lower end of the conductor and accumulate there, leaving a net posi-
tive charge at the upper end. As a result of this charge separation, an electric field
is produced in the conductor. The charge at the ends builds up until the down-
ward magnetic force qvB is balanced by the upward electric force qE. At this point,
charge stops flowing and the condition for equilibrium requires that

qE � qvB or E � vB

Because the electric field is uniform, the field produced in the conductor is
related to the potential difference across the ends by 	V � E�, giving

[20.3]

Because there is an excess of positive charge at the upper end of the conductor
and an excess of negative charge at the lower end, the upper end is at a higher po-
tential than the lower end. There is a potential difference across a conductor as
long as it moves through a field. If the motion is reversed, the polarity of the po-
tential difference is also reversed.

A more interesting situation occurs if the moving conductor is part of a closed
conducting path. This situation is particularly useful for illustrating how a chang-
ing loop area induces a current in a closed circuit described by Faraday’s law. Con-
sider a circuit consisting of a conducting bar of length �, sliding along two fixed
parallel conducting rails, as in Active Figure 20.13a. For simplicity, assume that the
moving bar has zero resistance and that the stationary part of the circuit has con-
stant resistance R . A uniform and constant magnetic field is applied perpendicu-
lar to the plane of the circuit. As the bar is pulled to the right with velocity 
under the influence of an applied force , a magnetic force along the length of
the bar acts on the free charges in the bar. This force in turn sets up an induced
current because the charges are free to move in a closed conducting path. In this
case, the changing magnetic flux through the loop and the corresponding
induced emf across the moving bar arise from the change in area of the loop as the
bar moves through the magnetic field.

F
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B
:

	V � E� � B�v

Figure 20.11 This infant is wear-
ing a monitor designed to alert care-
givers if breathing stops. Note the two
wires attached to opposite sides of the
chest.
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Figure 20.12 A straight conductor
of length � moving with velocity 
through a uniform magnetic field di-
rected perpendicular to . The vector

m is the magnetic force on an elec-
tron in the conductor. An emf of B�v
is induced between the ends of the bar.
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ACTIVE FIGURE 20.13
(a) A conducting bar sliding with
velocity along two conducting rails
under the action of an applied force

. The magnetic force opposes
the motion, and a counterclockwise
current is induced in the loop. (b) The
equivalent circuit of that in (a).

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 20.13, where
you can adjust the applied force, the
magnetic field, and the resistance, and
observe the effects on the motion of
the bar.
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Assume that the bar moves a distance 	x in time 	t, as shown in Figure 20.14.
The increase in flux 	�B through the loop in that time is the amount of flux that
now passes through the portion of the circuit that has area �	x :

	�B � BA � B� 	x

Using Faraday’s law and noting that there is one loop (N � 1), we find that the
magnitude of the induced emf is

[20.4]

This induced emf is often called a motional emf because it arises from the motion
of a conductor through a magnetic field.

Further, if the resistance of the circuit is R , the magnitude of the induced cur-
rent in the circuit is

[20.5]

Active Figure 20.13b shows the equivalent circuit diagram for this example.

I �
���
R

�
B�v
R

��� �
	�B

	t
� B� 

	x
	t

� B�v

�R

	x

Figure 20.14 As the bar moves to
the right, the area of the loop
increases by the amount �	x and 
the magnetic flux through the loop
increases by B�	x .

Applying a force on the bar will result in an induced
emf in the circuit shown in Active Figure 20.13.
Suppose we remove the external magnetic field in the
diagram and replace the resistor with a high-voltage
source and a switch, as in Figure 20.15. What will
happen when the switch is closed? Will the bar move,
and does it matter which way we connect the 
high-voltage source?

Explanation Suppose the source is capable of estab-
lishing high current. Then the two horizontal con-
ducting rods will create a strong magnetic field in the
area between them, directed into the page. (The

movable bar also creates a magnetic field, but this
field can’t exert force on the bar itself.) Because the
moving bar carries a downward current, a magnetic
force is exerted on the bar, directed to the right.
Hence, the bar accelerates along the rails away from
the power supply. If the polarity of the power were
reversed, the magnetic field would be out of the page,
the current in the bar would be upward, and the force
on the bar would still be directed to the right. The BI�
force exerted by a magnetic field according to Equa-
tion 19.6 causes the bar to accelerate away from the
voltage source. Studies have shown that it’s possible to
launch payloads into space with this technology. (This
is the working principle of a rail gun.) Very large
accelerations can be obtained with currently available
technology, with payloads being accelerated to a speed
of several kilometers per second in a fraction of a
second. This is a larger acceleration than humans can
tolerate.

Rail guns have been proposed as propulsion sys-
tems for moving asteroids into more useful orbits. The
material of the asteroid could be mined and launched
off the surface by a rail gun, which would act like a
rocket engine, modifying the velocity and hence the
orbit of the asteroid. Some asteroids contain trillions
of dollars worth of valuable metals.

Applying Physics 20.2 Space Catapult

A horizontal metal bar oriented east–west drops straight down in a location where
the Earth’s magnetic field is due north. As a result, an emf develops between the
ends. Which end is positively charged? (a) the east end (b) the west end (c) neither
end carries a charge

Quick Quiz 20.2

S

Conducting
bar free
to slide

Conducting
rails

Figure 20.15 (Applying Physics 20.2)
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You intend to move a rectangular loop of wire into a region of uniform magnetic
field at a given speed so as to induce an emf in the loop. The plane of the loop
must remain perpendicular to the magnetic field lines. In which orientation
should you hold the loop while you move it into the region with the magnetic field
in order to generate the largest emf ? (a) With the long dimension of the loop par-
allel to the velocity vector, (b) with the short dimension of the loop parallel to the
velocity vector, or (c) either way— the emf is the same regardless of orientation.

Quick Quiz 20.3

EXAMPLE 20.3 The Electrified Airplane Wing
Goal Find the emf induced by motion through a magnetic field.

Problem An airplane with a wingspan of 30.0 m flies due north at a location where the downward component 
of the Earth’s magnetic field is 0.600 � 10�4 T. There is also a component pointing due north which has a magni-
tude of 0.470 � 10�4 T. (a) Find the difference in potential between the wingtips when the speed of the plane is 
2.50 � 102 m/s. (b) Which wingtip is positive?

Strategy Because the plane is flying north, the northern component of the magnetic field won’t have any effect on
the induced emf. The induced emf across the wing is caused solely by the downward component of the Earth’s mag-
netic field. Substitute the given quantities into Equation 20.4. Use right-hand rule number 1 to find the direction
positive charges would be propelled by the magnetic force.

Solution
(a) Calculate the difference in potential across the 
wingtips.

Write the motional emf equation and substitute the
given quantities:

� B �v � (0.600 � 10�4 T)(30.0 m)(2.50 � 102 m/s)

� 0.450 V

�

(b) Which wingtip is positive?

Apply right hand rule number 1: Point your right fingers north, in the direction of the
velocity, curl them down, in the direction of the
magnetic field. Your thumb points west.

Remark An induced emf such as this can cause problems on an aircraft.

Exercise 20.3
Suppose the magnetic field in a given region of space is parallel to the Earth’s surface, points north, and has magni-
tude 1.80 � 10�4 T. A metal cable attached to a space station stretches radially outwards 2.50 km. (a) Estimate the
potential difference that develops between the ends of the cable if it’s traveling eastward around Earth at 7.70 � 103 m/s.
(b) Which end of the cable is positive, the lower end or the upper end?

Answer (a) 3.47 � 103 V (b) The upper end is positive.

EXAMPLE 20.4 Where Is the Energy Source?
Goal Use motional emf to find an induced emf and a current.

Problem (a) The sliding bar in Figure 20.13a has a length of 0.500 m and moves at 2.00 m/s in a magnetic field of
magnitude 0.250 T. Using the concept of motional emf, find the induced voltage in the moving rod. (b) If the 
resistance in the circuit is 0.500 �, find the current in the circuit and the power delivered to the resistor. (Note : The
current, in this case, goes counterclockwise around the loop.) (c) Calculate the magnetic force on the bar. (d) Use
the concepts of work and power to calculate the applied force.
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670 Chapter 20 Induced Voltages and Inductance

20.4 LENZ’S LAW REVISITED (The Minus
Sign in Faraday’s Law)

To reach a better understanding of Lenz’s law, consider the example of a bar mov-
ing to the right on two parallel rails in the presence of a uniform magnetic field
directed into the paper (Fig. 20.16a). As the bar moves to the right, the magnetic
flux through the circuit increases with time because the area of the loop increases.
Lenz’s law says that the induced current must be in a direction such that the flux it
produces opposes the change in the external magnetic flux. Because the flux due

Strategy For part (a), substitute into Equation 20.4 for the motional emf. Once the emf is found, substitution into
Ohm’s law gives the current. In part (c), use Equation 19.6 for the magnetic force on a current-carrying conductor.
In part (d), use the fact that the power dissipated by the resistor multiplied by the elapsed time must equal the work
done by the applied force.

Solution
(a) Find the induced emf with the concept of motional emf.

Substitute into Equation 20.4 to find the induced emf: � B�v � (0.250 T)(0.500 m)(2.00 m/s) � 0.250 V�

(b) Find the induced current in the circuit and the
power dissipated by the resistor.

Substitute the emf and the resistance into Ohm’s law to
find the induced current:

0.500 AI �
�
R

�
0.250 V
0.500 �

�

Substitute I and � 0.250 V into Equation 17.8 to find
the power dissipated by the 0.500-� resistor:

� � � I	V � (0.500 A)(0.250 V) � 0.125 W

(c) Calculate the magnitude and direction of the mag-
netic force on the bar.

Substitute values for I, B, and � into Equation 19.6 (with
sin � � sin (90°) � 1) to find the magnitude of the force:

6.25 �10�2 NFm �IB� �(0.500 A)(0.250 T)(0.500 m) �

Apply right hand rule number 2 to find the direction of
the force:

Point the fingers of your right hand in the direction of
the positive current, then curl them in the direction 
of the magnetic field. Your thumb points in the 
negative x -direction.

(d) Find the value of Fapp, the applied force.

Set the work done by the applied force equal to the
dissipated power times the elapsed time:

Wapp � Fappd � �	t

Solve for Fapp and substitute d � v 	t : 6.25 � 10�2 NFapp �
�	t

d
�

�	t
v 	t

�
�

v
�

0.125 W
2.00 m/s

�

Remarks Part (d) could be solved by using Newton’s second law for an object in equilibrium: two forces act hori-
zontally on the bar, and the acceleration of the bar is zero, so the forces must be equal in magnitude and opposite in
direction. Notice the agreement between the answers for Fm and Fapp, despite the very different concepts used.

Exercise 20.4
Suppose the current suddenly increases to 1.25 A in the same direction as before, due to an increase in speed of the
bar. Find (a) the emf induced in the rod, (b) the new speed of the rod.

Answers (a) 0.625 V (b) 5.00 m/s
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20.4 Lenz’s Law Revisited (the Minus Sign in Faraday’s Law) 671

to the external field is increasing into the paper, the induced current, to oppose
the change, must produce a flux out of the paper. Hence, the induced current
must be counterclockwise when the bar moves to the right. (Use right-hand rule
number 2 from Chapter 19 to verify this direction.) On the other hand, if the bar
is moving to the left, as in Figure 20.16b, the magnetic flux through the loop
decreases with time. Because the flux is into the paper, the induced current has to
be clockwise to produce its own flux into the paper (which opposes the decrease
in the external flux). In either case, the induced current tends to maintain the
original flux through the circuit.

Now we examine this situation from the viewpoint of energy conservation. Sup-
pose that the bar is given a slight push to the right. In the preceding analysis, we
found that this motion led to a counterclockwise current in the loop. Let’s see
what would happen if we assume that the current is clockwise, opposite the direc-
tion required by Lenz’s law. For a clockwise current I, the direction of the mag-
netic force BI� on the sliding bar is to the right. This force accelerates the rod and
increases its velocity. This, in turn, causes the area of the loop to increase
more rapidly, thereby increasing the induced current, which increases the force,
which increases the current, and so forth. In effect, the system acquires energy
with zero input energy. This is inconsistent with all experience and with the law
of conservation of energy, so we’re forced to conclude that the current must be
counterclockwise.

Consider another situation. A bar magnet is moved to the right toward a sta-
tionary loop of wire, as in Figure 20.17a. As the magnet moves, the magnetic flux
through the loop increases with time. To counteract this rise in flux, the induced
current produces a flux to the left, as in Figure 20.17b; hence, the induced current
is in the direction shown. Note that the magnetic field lines associated with the
induced current oppose the motion of the magnet. The left face of the current
loop is therefore a north pole and the right face is a south pole.

On the other hand, if the magnet were moving to the left, as in Figure 20.17c,
its flux through the loop, which is toward the right, would decrease with time.
Under these circumstances, the induced current in the loop would be in a
direction to set up a field directed from left to right through the loop, in an
effort to maintain a constant number of flux lines. Hence, the induced
current in the loop would be as shown in Figure 20.17d. In this case, the
left face of the loop would be a south pole and the right face would be a north
pole.

As another example, consider a coil of wire placed near an electromagnet, as in
Figure 20.18a (page 672). We wish to find the direction of the induced current in
the coil at various times: at the instant the switch is closed, after the switch has
been closed for several seconds, and when the switch is opened.

When the switch is closed, the situation changes from a condition in which no
lines of flux pass through the coil to one in which lines of flux pass through in the

m

Bin

I
R

(a)

m

I
R

(b)

F

F

v

v

Figure 20.16 (a) As the conduct-
ing bar slides on the two fixed con-
ducting rails, the magnetic flux
through the loop increases with time.
By Lenz’s law, the induced current
must be counterclockwise so as to
produce a counteracting flux out of
the paper. (b) When the bar moves to
the left, the induced current must be
clockwise. Why?

TIP 20.2 There are Two 
Magnetic Fields to Consider
When applying Lenz’s law, there are
two magnetic fields to consider. The
first is the external changing mag-
netic field that induces the current in
a conducting loop. The second is the
magnetic field produced by the
induced current in the loop.
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I

(b)

I

(a)
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v
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I

v
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Figure 20.17 (a) When the magnet is moved toward the stationary conducting loop, a current is
induced in the direction shown. (b) This induced current produces its own flux to the left to counter-
act the increasing external flux to the right. (c) When the magnet is moved away from the stationary
conducting loop, a current is induced in the direction shown. (d) This induced current produces its
own flux to the right to counteract the decreasing external flux to the right.
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672 Chapter 20 Induced Voltages and Inductance

direction shown in Figure 20.18b. To counteract this change in the number of
lines, the coil must set up a field from left to right in the figure. This requires a
current directed as shown in Figure 20.18b.

After the switch has been closed for several seconds, there is no change in the
number of lines through the loop; hence, the induced current is zero.

Opening the switch causes the magnetic field to change from a condition in
which flux lines thread through the coil from right to left to a condition of zero
flux. The induced current must then be as shown in Figure 20.18c, so as to set up
its own field from right to left.

(c)

(a) (b)

Electromagnet Coil

� �

�

Figure 20.18 An example of
Lenz’s law.

A bar magnet is falling through a loop of wire with constant velocity with the north
pole entering first. Viewed from the same side of the loop as the magnet, as the
north pole approaches the loop, what is the direction of the induced current?
(a) clockwise (b) zero (c) counterclockwise (d) along the length of the magnet

Quick Quiz 20.4

Tape Recorders
One common practical use of induced currents and emfs is associated with the
tape recorder. Many different types of tape recorders are made, but the basic prin-
ciples are the same for all. A magnetic tape moves past a recording and playback
head, as in Figure 20.19a. The tape is a plastic ribbon coated with iron oxide or

Rollers

Tape

Record/playback headBulk erase head

Motion
of tape

Coil

From
amplifier

Magnetic
field lines

Iron core

N  S

N  S

(a) (b)

Figure 20.19 (a) Major parts of a magnetic tape recorder. If a new recording is to be made, the 
bulk erase head wipes the tape clean of signals before recording. (b) The fringing magnetic field 
magnetizes the tape during recording.

A P P L I C AT I O N
Magnetic Tape Recorders
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20.5 Generators 673

chromium oxide. The hard drives in computers work on the same principle, but
use a coated disk instead of tape, allowing for faster access.

The recording process uses the fact that a current in an electromagnet pro-
duces a magnetic field. Figure 20.19b illustrates the steps in the process. A sound
wave sent into a microphone is transformed into an electric current, amplified,
and allowed to pass through a wire coiled around a doughnut-shaped piece of
iron, which functions as the recording head. The iron ring and the wire constitute
an electromagnet, in which the lines of the magnetic field are contained com-
pletely inside the iron except at the point where a slot is cut in the ring. Here the
magnetic field fringes out of the iron and magnetizes the small pieces of iron
oxide embedded in the tape. As the tape moves past the slot, it becomes magnet-
ized in a pattern that reproduces both the frequency and the intensity of the
sound signal entering the microphone.

To reconstruct the sound signal, the previously magnetized tape is allowed to
pass through a recorder head operating in the playback mode. A second wire-
wound doughnut-shaped piece of iron with a slot in it passes close to the tape, so
that the varying magnetic fields on the tape produce changing field lines through
the wire coil. The changing flux induces a current in the coil which corresponds
to the current in the recording head that originally produced the tape. This
changing electric current can be amplified and used to drive a speaker. Playback is
thus an example of induction of a current by a moving magnet.

20.5 GENERATORS
Generators and motors are important practical devices that operate on the prin-
ciple of electromagnetic induction. First, consider the alternating-current (AC)
generator, a device that converts mechanical energy to electrical energy. In its
simplest form, the AC generator consists of a wire loop rotated in a magnetic
field by some external means (Active Fig. 20.20a). In commercial power plants,
the energy required to rotate the loop can be derived from a variety of sources.
For example, in a hydroelectric plant, falling water directed against the blades
of a turbine produces the rotary motion; in a coal-fired plant, heat produced by
burning coal is used to convert water to steam, and this steam is directed
against the turbine blades. As the loop rotates, the magnetic flux through
it changes with time, inducing an emf and a current in an external circuit.
The ends of the loop are connected to slip rings that rotate with the loop.

Slip rings

External
rotor

(a)

N

t

(b)

max

Brushes

External
circuit

Loop

S

�

�

ACTIVE FIGURE 20.20
(a) A schematic diagram of an AC generator. An emf is induced in a coil, which rotates by some exter-
nal means in a magnetic field. (b) A plot of the alternating emf induced in the loop versus time.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 20.20, where you can adjust the speed of
rotation and the strength of the field to see the effects on the generated emf.

A P P L I C AT I O N
Alternating-Current Generators

44920_20_p660-692  1/12/05  8:29 AM  Page 673



674 Chapter 20 Induced Voltages and Inductance

Connections to the external circuit are made by stationary brushes in contact
with the slip rings.

We can derive an expression for the emf generated in the rotating loop by mak-
ing use of the equation for motional emf, � B�v. Figure 20.21a shows a loop of
wire rotating clockwise in a uniform magnetic field directed to the right. The mag-
netic force (qvB) on the charges in wires AB and CD is not along the lengths of the
wires. (The force on the electrons in these wires is perpendicular to the wires.)
Hence, an emf is generated only in wires BC and AD. At any instant, wire BC has
velocity at an angle � with the magnetic field, as shown in Figure 20.21b. (Note
that the component of velocity parallel to the field has no effect on the charges in
the wire, whereas the component of velocity perpendicular to the field produces a
magnetic force on the charges that moves electrons from C to B.) The emf gener-
ated in wire BC equals B�v�, where � is the length of the wire and v� is the compo-
nent of velocity perpendicular to the field. An emf of B�v� is also generated 
in wire DA, and the sense of this emf is the same as that in wire BC. Because 
v� � v sin �, the total induced emf is

� 2B�v� � 2B�v sin � [20.6]

If the loop rotates with a constant angular speed �, we can use the relation � � �t
in Equation 20.6. Furthermore, because every point on the wires BC and DA
rotates in a circle about the axis of rotation with the same angular speed �, we
have v � r � � (a/2)�, where a is the length of sides AB and CD. Equation 20.6
therefore reduces to

If a coil has N turns, the emf is N times as large because each loop has the same
emf induced in it. Further, because the area of the loop is A � �a, the total emf is

[20.7]

This result shows that the emf varies sinusoidally with time, as plotted in Active
Figure 20.20b. Note that the maximum emf has the value

max � NBA� [20.8]

which occurs when �t � 90° or 270°. In other words, � max when the plane of
the loop is parallel to the magnetic field. Further, the emf is zero when �t � 0 or
180°, which happens whenever the magnetic field is perpendicular to the plane of
the loop. In the United States and Canada the frequency of rotation for commer-
cial generators is 60 Hz, whereas in some European countries 50 Hz is used.
(Recall that � � 2�f , where f is the frequency in hertz.)

The direct current (DC) generator is illustrated in Active Figure 20.22a. The
components are essentially the same as those of the AC generator, except that the
contacts to the rotating loop are made by a split ring, or commutator. In this
design, the output voltage always has the same polarity and the current is a pulsat-
ing direct current, as in Active Figure 20.22b. This can be understood by noting

��
�

� � NBA� sin �t

� � 2B� � a
2 � � sin �t � B�a� sin �t

�
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Figure 20.21 (a) A loop rotating
at a constant angular velocity in an
external magnetic field. The emf
induced in the loop varies sinusoidally
with time. (b) An edge view of the
rotating loop.

Turbines turn electric generators at a
hydroelectric power plant.
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A P P L I C AT I O N
Direct Current Generators
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20.5 Generators 675

that the contacts to the split ring reverse their roles every half cycle. At the same
time, the polarity of the induced emf reverses. Hence, the polarity of the split ring
remains the same.

A pulsating DC current is not suitable for most applications. To produce a
steady DC current, commercial DC generators use many loops and commutators
distributed around the axis of rotation so that the sinusoidal pulses from the loops
overlap in phase. When these pulses are superimposed, the DC output is almost
free of fluctuations.

Commutator

(a)

Brush

Armature

N

S

t

(b)

�

ACTIVE FIGURE 20.22
(a) A schematic diagram of a DC
generator. (b) The emf fluctuates in
magnitude, but always has the same
polarity.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 20.22, where
you can adjust the speed of rotation
and the strength of the field, observing
the effects on the generated emf.

EXAMPLE 20.5 Emf Induced in an AC Generator
Goal Understand physical aspects of an AC generator.

Problem An AC generator consists of eight turns of wire, each having area A � 0.090 0 m2, with a total resistance of
12.0 �. The loop rotates in a magnetic field of 0.500 T at a constant frequency of 60.0 Hz. (a) Find the maximum
induced emf. (b) What is the maximum induced current? (c) Determine the induced emf and current as functions of
time. (d) What maximum torque must be applied to keep the coil turning?

Strategy From the given frequency, calculate the angular frequency � and substitute it, together with given quanti-
ties, into Equation 20.8. As functions of time, the emf and current have the form A sin �t, where A is the maximum
emf or current, respectively. For part (d), calculate the magnetic torque on the coil when the current is at a maxi-
mum. (See Chapter 19.) The applied torque must do work against this magnetic torque to keep the coil turning.

Solution
(a) Find the maximum induced emf.

First, calculate the angular frequency of the rotational
motion:

� � 2�f � 2�(60.0 Hz) � 377 rad/s.

Substitute the values for N, A, B, and � into 
Equation 20.8, obtaining the maximum induced emf:

max � NAB� � 8(0.090 0 m2)(0.500 T)(377 rad/s)

� 136 V

�

(b) What is the maximum induced current?

Substitute the maximum induced emf  max and the
resistance R into Ohm’s law to find the maximum
induced current:

� 11.3 AImax �
�max

R
�

136 V
12.0 �

�

(c) Determine the induced emf and the current as func-
tions of time.

Substitute max and � into Equation 20.7 to obtain the
variation of with time t in seconds:�

� � max sin �t � (136 V) sin 377t��
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Motors and Back emf
Motors are devices that convert electrical energy to mechanical energy. Essentially,
a motor is a generator run in reverse: instead of a current being generated by a
rotating loop, a current is supplied to the loop by a source of emf, and the
magnetic torque on the current-carrying loop causes it to rotate.

A motor can perform useful mechanical work when a shaft connected to its
rotating coil is attached to some external device. As the coil in the motor rotates,
however, the changing magnetic flux through it induces an emf which acts to
reduce the current in the coil. If it increased the current, Lenz’s law would be
violated. The phrase back emf is used for an emf that tends to reduce the applied
current. The back emf increases in magnitude as the rotational speed of the
coil increases. We can picture this state of affairs as the equivalent circuit in
Figure 20.23. For illustrative purposes, assume that the external power source sup-
plying current in the coil of the motor has a voltage of 120 V, that the coil has a
resistance of 10 �, and that the back emf induced in the coil at this instant is 70 V.
The voltage available to supply current equals the difference between the applied
voltage and the back emf, 50 V in this case. The current is always reduced by the
back emf.

When a motor is turned on, there is no back emf initially, and the current is
very large because it’s limited only by the resistance of the coil. As the coil begins
to rotate, the induced back emf opposes the applied voltage and the current in the
coil is reduced. If the mechanical load increases, the motor slows down, which de-
creases the back emf. This reduction in the back emf increases the current in the
coil and therefore also increases the power needed from the external voltage
source. As a result, the power requirements for starting a motor and for running it
under heavy loads are greater than those for running the motor under average
loads. If the motor is allowed to run under no mechanical load, the back emf re-
duces the current to a value just large enough to balance energy losses by heat and
friction.

The time variation of the current looks just like this,
except with the maximum current out in front:

I � (11.3 A) sin 377t

(d) Calculate the maximum applied torque necessary to
keep the coil turning.

Write the equation for magnetic torque: � � �B sin �

Calculate the maximum magnetic moment of the coil, � : � � ImaxAN � (11.3 A)(0.090 m2)(8) � 8.14 A � m2

Substitute into the magnetic torque equation, with 
� � 90° to find the maximum applied torque:

�max � (8.14 A � m2)(0.500 T) sin 90° � 4.07 N�m

Remarks The number of loops, N, can’t be arbitrary, because there must be a force strong enough to turn the coil.

Exercise 20.5
An AC generator is to have a maximum output of 301 V. Each coil has an area of 0.100 m2 and a resistance of 16.0 �
and rotates in a magnetic field of 0.600 T with a frequency of 40.0 Hz. (a) How many turns of wire should the coil
have to produce the desired emf? (b) Find the maximum current induced in the coil. (c) Determine the induced
emf as a function of time.

Answers (a) 20 turns (b) 18.8 A (c) � (301 V) sin 251t�

70 V
back emf

10 �         coil
resistance

120 V external source

Figure 20.23 A motor can be 
represented as a resistance plus a
back emf.

A P P L I C AT I O N
Motors
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20.6 SELF-INDUCTANCE
Consider a circuit consisting of a switch, a resistor, and a source of emf, as in
Figure 20.24. When the switch is closed, the current doesn’t immediately change
from zero to its maximum value, /R . The law of electromagnetic induction—
Faraday’s law—prevents this. What happens instead is the following: as the current
increases with time, the magnetic flux through the loop due to this current also
increases. The increasing flux induces an emf in the circuit that opposes the
change in magnetic flux. By Lenz’s law, the induced emf is in the direction
indicated by the dashed battery in the figure. The net potential difference across
the resistor is the emf of the battery minus the opposing induced emf. As the mag-
nitude of the current increases, the rate of increase lessens and hence the induced
emf decreases. This opposing emf results in a gradual increase in the current. For
the same reason, when the switch is opened, the current doesn’t immediately 
fall to zero. This effect is called self-induction because the changing flux
through the circuit arises from the circuit itself. The emf that is set up in the cir-
cuit is called a self-induced emf.

As a second example of self-inductance, consider Figure 20.25 (page 678),
which shows a coil wound on a cylindrical iron core. (A practical device would
have several hundred turns.) Assume that the current changes with time. When
the current is in the direction shown, a magnetic field is set up inside the coil,
directed from right to left. As a result, some lines of magnetic flux pass through

�

EXAMPLE 20.6 Induced Current in a Motor
Goal Apply the concept of a back emf in calculating the induced current in a motor.

Problem A motor has coils with a resistance of 10.0 � and is supplied by a voltage of 	V � 1.20 � 102 V. When the
motor is running at its maximum speed, the back emf is 70.0 V. Find the current in the coils (a) when the motor is
first turned on and (b) when the motor has reached its maximum rotation rate.

Strategy For each part, find the net voltage, which is the applied voltage minus the induced emf. Divide the net
voltage by the resistance to get the current.

Solution
(a) Find the initial current, when the motor is first 
turned on.

If the coil isn’t rotating, the back emf is zero and the
current has its maximum value. Calculate the difference
between the emf and the initial back emf and divide by
the resistance R , obtaining the initial current:

12.0 AI �
� � �back

R
�

1.20 � 102 V � 0
10.0 �

�

(b) Find the current when the motor is rotating at its
maximum rate.

Repeat the calculation, using the maximum value of the
back emf:

� 5.00 A

I �
� � �back

R
�

1.20 � 102 V � 70.0 V
10.0 �

�
50.0 V
10.0 �

Remark The phenomenon of back emf is one way in which the rotation rate of electric motors is limited.

Exercise 20.6
If the current in the motor is 8.00 A at some instant, what is the back emf at that time?

Answer 40.0 V

B

R

S
I

I

�

Figure 20.24 After the switch in
the circuit is closed, the current pro-
duces its own magnetic flux through
the loop. As the current increases
towards its equilibrium value, the flux
changes in time and induces an emf
in the loop. The battery drawn with
dashed lines is a symbol for the self-
induced emf.
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the cross-sectional area of the coil. As the current changes with time, the flux
through the coil changes and induces an emf in the coil. Lenz’s law shows that this
induced emf has a direction so as to oppose the change in the current. If the cur-
rent is increasing, the induced emf is as pictured in Figure 20.25b, and if the cur-
rent is decreasing, the induced emf is as shown in Figure 20.25c.

To evaluate self-inductance quantitatively, first note that, according to Faraday’s
law, the induced emf is given by Equation 20.2:

The magnetic flux is proportional to the magnetic field, which is proportional to
the current in the coil. Therefore, the self-induced emf must be proportional to
the rate of change of the current with time, or

[20.9]

where L is a proportionality constant called the inductance of the device. The neg-
ative sign indicates that a changing current induces an emf in opposition to the
change. This means that if the current is increasing (	I positive), the induced emf
is negative, indicating opposition to the increase in current. Likewise, if the
current is decreasing (	I negative), the sign of the induced emf is positive, indicat-
ing that the emf is acting to oppose the decrease.

The inductance of a coil depends on the cross-sectional area of the coil and
other quantities, all of which can be grouped under the general heading of
geometric factors. The SI unit of inductance is the henry (H), which, from Equa-
tion 20.9, is equal to 1 volt-second per ampere:

1 H � 1 V � s/A

In the process of calculating self-inductance, it is often convenient to equate
Equations 20.2 and 20.9 to find an expression for L :

[20.10]L � N
	�B

	I
�

N�B

I

N
	�B

	t
� L

	I
	t

� � �L
	I
	t

� � � N
	�B

	t

(c)

Lenz’s law emf

I  decreasing

+ –

(b)

Lenz’s law emf

I  increasing

+–

(a)

B

I

Figure 20.25 (a) A current in the
coil produces a magnetic field di-
rected to the left. (b) If the current
increases, the coil acts as a source of
emf directed as shown by the dashed
battery. (c) The induced emf in the
coil changes its polarity if the current
decreases.

Inductance �

In some circuits, a spark occurs between the poles
of a switch when the switch is opened. Why isn’t
there a spark when the switch for this circuit is
closed?

Explanation According to Lenz’s law, the direction of
induced emfs is such that the induced magnetic field
opposes change in the original magnetic flux. When

the switch is opened, the sudden drop in the magnetic
field in the circuit induces an emf in a direction that
opposes change in the original current. This induced
emf can cause a spark as the current bridges the air
gap between the poles of the switch. The spark 
doesn’t occur when the switch is closed, because the
original current is zero and the induced emf opposes
any change in that current.

Applying Physics 20.3 Making Sparks Fly

JOSEPH HENRY, American
physicist (1797–1878)
Henry became the first director of the
Smithsonian Institution and first president
of the Academy of Natural Science. He was
the first to produce an electric current with
a magnetic field, but he failed to publish
his results as early as Faraday because of
his heavy teaching duties at the Albany
Academy in New York State. He improved
the design of the electromagnet and con-
structed one of the first motors. He also
discovered the phenomenon of self-
induction. The unit of inductance, the
henry, is named in his honor.
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20.6 Self-Inductance 679

In general, determining the inductance of a given current element can be
challenging. Finding an expression for the inductance of a common solenoid,
however, is straightforward. Let the solenoid have N turns and length �.
Assume that � is large compared with the radius and that the core of the
solenoid is air. We take the interior magnetic field to be uniform and given by
Equation 19.16,

where n � N/� is the number of turns per unit length. The magnetic flux through
each turn is therefore

where A is the cross-sectional area of the solenoid. From this expression and
Equation 20.10, we find that

[20.11a]

This shows that L depends on the geometric factors � and A and on �0 and is
proportional to the square of the number of turns. Because N � n�, we can also
express the result in the form

[20.11b]

where V � A� is the volume of the solenoid.

L � �0
(n�)2

�
A � �0n2A� � �0n2V

L �
N�B

I
�

�0N 2A
�

�B � BA � �0
N
�

AI

B � �0nI � �0
N
�

I

EXAMPLE 20.7 Inductance, Self-Induced emf, and Solenoids
Goal Calculate the inductance and self-induced emf of a solenoid.

Problem (a) Calculate the inductance of a solenoid containing 300 turns if the length of the solenoid is 25.0 cm
and its cross-sectional area is 4.00 � 10�4 m2. (b) Calculate the self-induced emf in the solenoid described in (a) if
the current in the solenoid decreases at the rate of 50.0 A/s.

Strategy Substituting given quantities into Equation 20.11a gives the inductance L. For part (b), substitute the re-
sult of part (a) and 	I/	t � � 50.0 A/s into Equation 20.9 to get the self-induced emf.

Solution
(a) Calculate the inductance of the solenoid.

Substitute the number N of turns, the area A, and the
length � into Equation 20.11a to find the inductance:

� 0.181 mH� 1.81 � 10�4 T�m2/A

 �(4� � 10�7 T�m/A)
(300)2(4.00 � 10�4 m2)

25.0 � 10�2 m

 L �
�0N 2A

�

(b) Calculate the self-induced emf in the solenoid.

Substitute L and 	I/	t � � 50.0 A/s into 
Equation 20.9, finding the self-induced emf:

� 9.05 mV

� � � L
	I
	t

� �(1.81 � 10�4 H)(� 50.0 A/s)

Remark Notice that 	I/	t is negative because the current is decreasing with time.
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680 Chapter 20 Induced Voltages and Inductance

20.7 RL CIRCUITS
A circuit element that has a large inductance, such as a closely wrapped coil of
many turns, is called an inductor. The circuit symbol for an inductor is 

. We will always assume that the self-inductance of the remainder of
the circuit is negligible compared with that of the inductor in the circuit.

To gain some insight into the effect of an inductor in a circuit, consider the two
circuits in Figure 20.26. Figure 20.26a shows a resistor connected to the terminals
of a battery. For this circuit, Kirchhoff’s loop rule is � IR � 0. The voltage drop
across the resistor is

	VR � �IR [20.12]

In this case, we interpret resistance as a measure of opposition to the current. Now
consider the circuit in Figure 20.26b, consisting of an inductor connected to the
terminals of a battery. At the instant the switch in this circuit is closed, because
IR � 0, the emf of the battery equals the back emf generated in the coil. Hence,
we have

[20.13]

From this expression, we can interpret L as a measure of opposition to the rate of
change of current.

Active Figure 20.27 shows a circuit consisting of a resistor, an inductor, and a
battery. Suppose the switch is closed at t � 0. The current begins to increase,
but the inductor produces an emf that opposes the increasing current. As a
result, the current can’t change from zero to its maximum value of /R instan-
taneously. Equation 20.13 shows that the induced emf is a maximum when the
current is changing most rapidly, which occurs when the switch is first closed. 
As the current approaches its steady-state value, the back emf of the coil falls off
because the current is changing more slowly. Finally, when the current reaches
its steady-state value, the rate of change is zero and the back emf is also zero.
Active Figure 20.28 plots current in the circuit as a function of time.1 This plot
is similar to that of the charge on a capacitor as a function of time, discussed in
Chapter 18. In that case, we found it convenient to introduce a quantity called
the time constant of the circuit, which told us something about the time required
for the capacitor to approach its steady-state charge. In the same way, time
constants are defined for circuits containing resistors and inductors. The
time constant � for an RL circuit is the time required for the current in the
circuit to reach 63.2% of its final value /R ; the time constant of an RL circuit
is given by

[20.14]� �
L
R

�

�

�L � � L
	I
	t

�

Exercise 20.7
A solenoid is to have an inductance of 0.285 mH, a cross-sectional area of 6.00 � 10�4 m2, and a length of 36.0 cm.
(a) How many turns per unit length should it have? (b) If the self-induced emf is �12.5 mV at a given time, at what
rate is the current changing at that instant?

Answers (a) 1 025 turns/m (b) 43.9 A/s

L

S

(b)

�

R

S

(a)

�

Figure 20.26 A comparison of the
effect of a resistor with that of an
inductor in a simple circuit.

1The equation for the current in the circuit as a function of time may be obtained from calculus and is

I �
�
R

(1 � e�Rt/L)

b

a

I

R

S

L
�



�
�

ACTIVE FIGURE 20.27
A series RL circuit. As the current in-
creases towards its maximum value,
the inductor produces an emf that
opposes the increasing current.

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 20.27, where you can adjust
the values of R and L and observe the
effect on current. A graphical display
as in Active Figure 20.28 is available.

Time constant for an RL circuit �
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I

t

L/R =R0.632

/R�

�

t

t

ACTIVE FIGURE 20.28
A plot of current versus time for the RL circuit shown in Figure
20.27. The switch is closed at t � 0, and the current increases to-
wards its maximum value /R . The time constant � is the time it
takes the current to reach 63.2% of its maximum value.

Log into PhysicsNow at www.cp7e.com and go to Active Figure
20.28, where you can observe this graph develop after the switch
in Active Figure 20.27 is closed.

�

S

L
Iron bar

AC
Source

The switch in the circuit shown in Figure 20.29 is
closed and the lightbulb glows steadily. The in-
ductor is a simple air-core solenoid. An iron rod
is inserted into the interior of the solenoid, in-
creasing the magnitude of the magnetic field in
the solenoid. As the rod is inserted, the bright-
ness of the lightbulb (a) increases, (b) decreases,
or (c) remains the same.

Quick Quiz 20.5

Figure 20.29 (Quick Quiz 20.5)

EXAMPLE 20.8 An RL Circuit
Goal Calculate a time constant and relate it to current in an RL circuit.

Problem A 12.6-V battery is in a circuit with a 30.0-mH inductor and a 0.150-� resistor, as in Active Figure 20.27.
The switch is closed at t � 0. (a) Find the time constant of the circuit. (b) Find the current after one time constant
has elapsed. (c) Find the voltage drops across the resistance when t � 0 and t � one time constant. (d) What’s the
rate of change of the current after one time constant?

Solution
(a) What’s the time constant of the circuit?

Substitute the inductance L and resistance R into 
Equation 20.14, finding the time constant:

0.200 s� �
L
R

�
30.0 � 10�3 H

0.150 �
�

(b) Find the current after one time constant has
elapsed.

First, use Ohm’s law to compute the final value of the
current after many time constants have elapsed:

I max �
�
R

�
12.6 V

0.150 �
� 84.0 A

After one time constant, the current rises to 63.2% of its
final value:

53.1 AI1� � (0.632)I max � (0.632)(84.0 A) �

(c) Find the voltage drops across the resistance when 
t � 0 and t � one time constant.

Initially, the current in the circuit is zero, so, from
Ohm’s law, the voltage across the resistor is zero:

	VR � IR

	VR (t � 0 s) � (0 A)(0.150 �) � 0

Next, using Ohm’s law, find the magnitude of the volt-
age drop across the resistor after one time constant: 

	VR (t � 0.200 s) � (53.1 A)(0.150 �) � 7.97 V

(d) What’s the rate of change of the current after one
time constant?

Using Kirchhoff ’s voltage rule, calculate the voltage
drop across the inductor at that time:

 	VR  	VL � 0�
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682 Chapter 20 Induced Voltages and Inductance

20.8 ENERGY STORED IN A MAGNETIC FIELD
The emf induced by an inductor prevents a battery from establishing an instanta-
neous current in a circuit. The battery has to do work to produce a current. We
can think of this needed work as energy stored in the inductor in its magnetic
field. In a manner similar to that used in Section 16.9 to find the energy stored in
a capacitor, we find that the energy stored by an inductor is

[20.15]

Note that the result is similar in form to the expression for the energy stored in a
charged capacitor (Equation 16.18):

PEC � 1
2 C(	V )2

PEL � 1
2 LI 2

Solve for 	VL: 	VL � � � 	VR � �12.6 V � (�7.97 V) � � 4.6 V�

Now solve Equation 20.13 for 	I/	t and substitute:

150 A/s
	I
	t

� �
	VL

L
� �

�4.6 V
30.0 � 10�3 H

�

	VL � �L
	I
	t

Remarks The values used in this problem were taken from actual components salvaged from the starter system of a
car. Because the current in such an RL circuit is initially zero, inductors are sometimes referred to as “chokes,” since
they temporarily choke off the current. In solving part (d), we traversed the circuit in the direction of positive cur-
rent, so the voltage difference across the battery was positive and the differences across the resistor and inductor
were negative.

Exercise 20.8
A 12.6-V battery is in series with a resistance of 0.350 � and an inductor. (a) After a long time, what is the current in
the circuit? (b) What is the current after one time constant? (c) What’s the voltage drop across the inductor at this
time? (d) Find the inductance if the time constant is 0.130 s.

Answers (a) 36.0 A (b) 22.8 A (c) 4.62 V (d) 4.55 � 10�2 H

Energy stored in an inductor �

Energy stored in a capacitor �

EXAMPLE 20.9 Magnetic Energy
Goal Relate the storage of magnetic energy to currents in an RL circuit.

Problem A 12.0-V battery is connected in series to a 25.0-� resistor and a 5.00-H inductor. (a) Find the maximum
current in the circuit. (b) Find the energy stored in the inductor at this time. (c) How much energy is stored in the
inductor when the current is changing at a rate of 1.50 A/s?

Strategy In part (a), Ohm’s law and Kirchhoff’s voltage rule yield the maximum current, because the voltage
across the inductor is zero when the current is maximal. Substituting the current into Equation 20.15 gives 
the energy stored in the inductor. In part (c), the given rate of change of the current can be used to calculate the
voltage drop across the inductor at the specified time. Kirchhoff’s voltage rule and Ohm’s law then give the current I
at that time, which can be used to find the energy stored in the inductor.

Solution
(a) Find the maximum current in the circuit.

Apply Kirchhoff’s voltage rule to the circuit: 	Vbatt  	VR  	VL � 0

� � IR � L
	I
	t

� 0
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When the maximum current is reached, 	I/	t is zero,
so the voltage drop across the inductor is zero. Solve for
the maximum current Imax:

0.480 AI max �
�
R

�
12.0 V
25.0 �

�

(b) Find the energy stored in the inductor at this time.

Substitute known values into Equation 20.15: 0.576 JPEL � 1
2 L I max

2 � 1
2 (5.00 H)(0.480 A)2 �

(c) Find the energy in the inductor when the current
changes at a rate of 1.50 A/s.

Apply Kirchhoff’s voltage rule to the circuit, once again: � � IR � L
	I
	t

� 0

Solve this equation for the current I and substitute:

�
1

25.0 �
[12.0 V � (5.00 H)(1.50 A/s)] � 0.180 A

I �
1
R

 �� � L 
	I
	t �

Finally, substitute the value for the current into 
Equation 20.15, finding the energy stored in the inductor:

0.081 0 JPEL � 1
2 LI 2 � 1

2 (5.00 H)(0.180 A)2 �

Remark Notice how important it is to combine concepts from previous chapters. Here, Ohm’s law and Kirchhoff’s
loop rule were essential to the solution of the problem.

Exercise 20.9
For the same circuit, find the energy stored in the inductor when the rate of change of the current is 1.00 A/s.

Answer 0.196 J

SUMMARY
Take a practice test by logging into 

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

20.1 Induced emf and Magnetic Flux
The magnetic flux �B through a closed loop is defined as

[20.1]

where B is the strength of the uniform magnetic field, A is
the cross-sectional area of the loop, and � is the angle
between and a direction perpendicular to the plane of
the loop.

20.2 Faraday’s Law of Induction
Faraday’s law of induction states that the instantaneous emf
induced in a circuit equals the negative of the rate of
change of magnetic flux through the circuit,

[20.2]

where N is the number of loops in the circuit. The
magnetic flux �B can change with time whenever the
magnetic field , the area A, or the angle � changes with
time.

B
:

� � � N 
	�B

	t

B
:

�B � BA cos �

Lenz’s law states that the current from the induced emf
creates a magnetic field with flux opposing the change in
magnetic flux through a circuit.

20.3 Motional emf
If a conducting bar of length � moves through a magnetic
field with a speed v so that is perpendicular to the bar,
then the emf induced in the bar, often called a motional
emf, is

[20.4]

20.5 Generators
When a coil of wire with N turns, each of area A, rotates
with constant angular speed � in a uniform magnetic field

, the emf induced in the coil is

� NAB� sin �t [20.7]

Such generators naturally produce alternating current
(AC), which changes direction with frequency �/2�. The
AC current can be transformed to direct current.

20.7 RL Circuits
When the current in a coil changes with time, an emf 
is induced in the coil according to Faraday’s law. This 

�
B
:

��� � B �v

B
:
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684 Chapter 20 Induced Voltages and Inductance

self-induced emf is defined by the expression

[20.9]

where L is the inductance of the coil. The SI unit for induc-
tance is the henry (H); 1 H � 1 V � s/A.

The inductance of a coil can be found from the expression

[20.10]

where N is the number of turns on the coil, I is the current
in the coil, and �B is the magnetic flux through the coil
produced by that current. For a solenoid, the inductance is
given by

[20.11]L �
�0N 2 A

�

L �
N �B

I

� � �L
	I
	t

If a resistor and inductor are connected in series to a bat-
tery and a switch is closed at t � 0, the current in the cir-
cuit doesn’t rise instantly to its maximum value. After one
time constant � � L/R, the current in the circuit is 63.2%
of its final value /R. As the current approaches its final,
maximum value, the voltage drop across the inductor
approaches zero.

20.8 Energy Stored in a Magnetic Field
The energy stored in the magnetic field of an inductor
carrying current I is

[20.15]

As the current in an RL circuit approaches its maximum
value, the stored energy also approaches a maximum
value.

PEL � 1
2LI 2

�

CONCEPTUAL QUESTIONS
1. A circular loop is located in a uniform and constant

magnetic field. Describe how an emf can be induced in
the loop in this situation.

2. Does dropping a magnet down a copper tube produce a
current in the tube? Explain.

3. A spacecraft orbiting the Earth has a coil of wire in it. An
astronaut measures a small current in the coil, although
there is no battery connected to it and there are no
magnets in the spacecraft. What is causing the current?

4. A loop of wire is placed in a uniform magnetic field. For
what orientation of the loop is the magnetic flux a
maximum? For what orientation is the flux zero?

5. As the conducting bar in Figure Q20.5 moves to the right,
an electric field directed downward is set up. If the bar
were moving to the left, explain why the electric field
would be upward.

9. Eddy currents are induced currents set up in a piece of
metal when it moves through a nonuniform magnetic
field. For example, consider the flat metal plate swinging
at the end of a bar as a pendulum, as shown in Figure
Q20.9. At position 1, the pendulum is moving from a
region where there is no magnetic field into a region
where the field is directed into the paper. Show that at
position 1 the direction of the eddy current is counter-
clockwise. Also, at position 2 the pendulum is moving out
of the field into a region of zero field. Show that the direc-
tion of the eddy current is clockwise in this case. Use right-
hand rule number 2 to show that these eddy currents lead
to a magnetic force on the plate directed as shown in the
figure. Because the induced eddy current always produces
a retarding force when the plate enters or leaves the field,
the swinging plate quickly comes to rest.

B
:

in

E

Bin

v

Figure Q20.5 (Conceptual Questions 5 and 6)

6. As the bar in Figure Q20.5 moves perpendicular to the
field, is an external force required to keep it moving with
constant speed?

7. Wearing a metal bracelet in a region of strong magnetic
field could be hazardous. Discuss this statement.

8. How is electrical energy produced in dams? (That is, how
is the energy of motion of the water converted to AC
electricity?)

Pivot

1 2

in

v

m mF F

B

v

Figure Q20.9

10. Suppose you would like to steal power for your home
from the electric company by placing a loop of wire near
a transmission cable in order to induce an emf in the loop
(Don’t do this; it’s illegal.) Should you locate the loop so
that the transmission cable passes through your loop or
simply place your loop near the transmission cable? Does
the orientation of the loop matter?

11. A piece of aluminum is dropped vertically downward
between the poles of an electromagnet. Does the magnetic

44920_20_p660-692  1/12/05  8:29 AM  Page 684



Problems 685

field affect the velocity of the aluminum? [Hint: See Con-
ceptual Question 9.]

12. A bar magnet is dropped toward a conducting ring lying
on the floor. As the magnet falls toward the ring, does it
move as a freely falling object?

13. If the current in an inductor is doubled, by what factor
does the stored energy change?

14. Is it possible to induce a constant emf for an infinite
amount of time?

15. Why is the induced emf that appears in an inductor called
a back (counter) emf?

16. A magneto is used to cause the spark in a spark plug in
many lawn mowers today. A magneto consists of a perma-
nent magnet mounted on a flywheel so that it spins past a
fixed coil. Explain how this arrangement generates a large
enough potential difference to cause the spark.

17. A ramp runs from the bed of a truck down to the level
ground. The ramp holds two parallel conducting rails
connected at its base. A metal bar slides on the rails with-
out friction. A magnet supplies an external magnetic field
directed toward the ground. It is found that the bar slides
down the ramp at a constant speed. (a) What is the direc-
tion of the induced current in the bar as viewed from
above? (b) What can you conclude about the forces
exerted on the bar? 

18. A bar magnet is held above the center of a wire loop in a
horizontal plane, as shown in Figure Q20.18. The south
end of the magnet is toward the loop. The magnet is
dropped. Find the direction of the current in the resistor

as viewed from above (a) while the magnet is falling
toward the loop and (b) after the magnet has passed
through the loop and moved away from it.

R

S

N

Figure Q20.18

19. What is the direction of the current induced in the
resistor when the current in the long, straight wire in
Figure Q20.19 decreases rapidly to zero?

I

R

Figure Q20.19

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � � full solution available in Student Solutions Manual/Study Guide 

� coached problem with hints available at www.cp7e.com � biomedical application

Section 20.1 Induced emf and Magnetic Flux
1. A magnetic field of strength 0.30 T is directed perpendi-

cular to a plane circular loop of wire of radius 25 cm. Find
the magnetic flux through the area enclosed by this loop.

2. Find the flux of the Earth’s magnetic field of magnitude
5.00 � 10�5 T through a square loop of area 20.0 cm2

(a) when the field is perpendicular to the plane of the
loop, (b) when the field makes a 30.0° angle with the nor-
mal to the plane of the loop, and (c) when the field
makes a 90.0° angle with the normal to the plane.

3. A square loop 2.00 m on a side is placed in a magnetic
field of magnitude 0.300 T. If the field makes an angle of
50.0° with the normal to the plane of the loop, find the
magnetic flux through the loop.

4. A long, straight wire carrying a current of 2.00 A is placed
along the axis of a cylinder of radius 0.500 m and a length
of 3.00 m. Determine the total magnetic flux through the
cylinder.
A long, straight wire lies in the plane of a circular coil
with a radius of 0.010 m. The wire carries a current of 
2.0 A and is placed along a diameter of the coil. (a) What
is the net flux through the coil? (b) If the wire passes
through the center of the coil and is perpendicular to the
plane of the coil, find the net flux through the coil.

5.

6. A solenoid 4.00 cm in diameter and 20.0 cm long has 
250 turns and carries a current of 15.0 A. Calculate the
magnetic flux through the circular cross-sectional area 
of the solenoid.

7. A cube of edge length � � 2.5 cm is positioned as shown
in Figure P20.7. There is a uniform magnetic field
throughout the region with components Bx � 5.0 T, By �
4.0 T, and Bz � 3.0 T. (a) Calculate the flux through
the shaded face of the cube. (b) What is the total flux

�

B

y

x

z

�
�

Figure P20.7
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emerging from the volume enclosed by the cube (i.e., the
total flux through all six faces)?

Section 20.2 Faraday’s Law of Induction
8. Transcranial magnetic stimulation (TMS) is a noninvasive

technique used to stimulate regions of the human brain.
A small coil is placed on the scalp, and a brief burst of
current in the coil produces a rapidly changing magnetic
field inside the brain. The induced emf can be sufficient
to stimulate neuronal activity. One such device generates
a magnetic field within the brain that rises from zero to
1.5 T in 120 ms. Determine the induced emf within a
circle of tissue of radius 1.6 mm and that is perpendicular
to the direction of the field.
A square, single-turn coil 0.20 m on a side is placed with
its plane perpendicular to a constant magnetic field. An
emf of 18 mV is induced in the coil winding when the
area of the coil decreases at the rate of 0.10 m2/s. What is
the magnitude of the magnetic field?

10. The flexible loop in Figure P20.10 has a radius of 12 cm
and is in a magnetic field of strength 0.15 T. The loop is
grasped at points A and B and stretched until its area is
nearly zero. If it takes 0.20 s to close the loop, find the
magnitude of the average induced emf in it during this
time.

9.

15. A 300-turn solenoid with a length of 20 cm and a radius
of 1.5 cm carries a current of 2.0 A. A second coil of four
turns is wrapped tightly about this solenoid so that it can
be considered to have the same radius as the solenoid.
Find (a) the change in the magnetic flux through the coil
and (b) the magnitude of the average induced emf in the
coil when the current in the solenoid increases to 5.0 A in
a period of 0.90 s.
A circular coil enclosing an area of 100 cm2 is made of
200 turns of copper wire. The wire making up the coil has
resistance of 5.0 �, and the ends of the wire are connected
to form a closed circuit. Initially, a 1.1-T uniform magnetic
field points perpendicularly upward through the plane of
the coil. The direction of the field then reverses so that
the final magnetic field has a magnitude of 1.1 T and
points downward through the coil. If the time required
for the field to reverse directions is 0.10 s, what average
current flows through the coil during that time?

17. To monitor the breathing of a hospital patient, a thin belt
is girded around the patient’s chest as in Figure P20.17.
The belt is a 200-turn coil. When the patient inhales, the
area encircled by the coil increases by 39.0 cm2. The mag-
nitude of the Earth’s magnetic field is 50.0 �T and makes
an angle of 28.0° with the plane of the coil. Assuming a
patient takes 1.80 s to inhale, find the magnitude of the
average induced emf in the coil during that time.

16.
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B

A

Figure P20.10

11. A wire loop of radius 0.30 m lies so that an external mag-
netic field of magnitude 0.30 T is perpendicular to the
loop. The field reverses its direction, and its magnitude
changes to 0.20 T in 1.5 s. Find the magnitude of the aver-
age induced emf in the loop during this time.

12. A 500-turn circular-loop coil 15.0 cm in diameter is
initially aligned so that its axis is parallel to the Earth’s
magnetic field. In 2.77 ms, the coil is flipped so that its
axis is perpendicular to the Earth’s magnetic field. If an
average voltage of 0.166 V is thereby induced in the coil,
what is the value of the Earth’s magnetic field at that
location?

13. The plane of a rectangular coil, 5.0 cm by 8.0 cm, is
perpendicular to the direction of a magnetic field . If
the coil has 75 turns and a total resistance of 8.0 �, at
what rate must the magnitude of change to induce a
current of 0.10 A in the windings of the coil?

14. A square, single-turn wire loop 1.00 cm on a side is placed
inside a solenoid that has a circular cross section of radius
3.00 cm, as shown in Figure P20.14. The solenoid is
20.0 cm long and wound with 100 turns of wire. (a) If the
current in the solenoid is 3.00 A, find the flux through
the loop. (b) If the current in the solenoid is reduced to
zero in 3.00 s, find the magnitude of the average induced
emf in the loop.

B
:

B
:

3.00 cm

1.00 cm

1.00 cm

Figure P20.14

Coil

Figure P20.17

Section 20.3 Motional emf
18. Consider the arrangement shown in Figure P20.18.

Assume that R � 6.00 � and � � 1.20 m, and that a
uniform 2.50-T magnetic field is directed into the page. At
what speed should the bar be moved to produce a current
of 0.500 A in the resistor?

19. A Boeing 747 jet with a wingspan of 60.0 m is flying hori-
zontally at a speed of 300 m/s over Phoenix, Arizona, at a
location where the Earth’s magnetic field is 50.0 �T at
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58.0° below the horizontal. What voltage is generated
between the wingtips?

25. A rectangular coil with resistance R has N turns, each of
length � and width w as shown in Figure P20.25. The coil
moves into a uniform magnetic field with constant
velocity . What are the magnitude and direction of the
total magnetic force on the coil (a) as it enters the mag-
netic field, (b) as it moves within the field, and (c) as it
leaves the field? 

v:
B
:

app

�R

F

Figure P20.18 (Problems 18 and 57)

20. A 12.0-m-long steel beam is accidentally dropped by a
construction crane from a height of 9.00 m. The horizon-
tal component of the Earth’s magnetic field over the
region is 18.0 �T. What is the induced emf in the beam
just before impact with the Earth? Assume the long
dimension of the beam remains in a horizontal plane,
oriented perpendicular to the horizontal component of
the Earth’s magnetic field.

An automobile has a vertical radio
antenna 1.20 m long. The automobile travels at 
65.0 km/h on a horizontal road where the Earth’s mag-
netic field is 50.0 �T, directed toward the north and
downwards at an angle of 65.0° below the horizontal. (a)
Specify the direction the automobile should move in or-
der to generate the maximum motional emf in the an-
tenna, with the top of the antenna positive relative to the
bottom. (b) Calculate the magnitude of this induced emf.

22. A helicopter has blades of length 3.0 m, rotating at 
2.0 rev/s about a central hub. If the vertical component of
Earth’s magnetic field is 5.0 � 10�5 T, what is the emf
induced between the blade tip and the central hub?

Section 20.4 Lenz’s Law Revisited (the Minus 
Signin Faraday’s Law)
23. A bar magnet is positioned near a coil of wire as shown in

Figure P20.23. What is the direction of the current in the
resistor when the magnet is moved (a) to the left? (b) to
the right?

21.

v

R

S N

Figure P20.23

24. A conducting rectangular loop of mass M, resistance R ,
and dimensions w by � falls from rest into a magnetic field

as shown in Figure P20.24. During the time interval
before the top edge of the loop reaches the field, the loop
approaches a terminal speed vT. (a) Show that

(b) Why is vT proportional to R? (c) Why is it inversely
proportional to B2?

vT �
MgR
B2w2

B
:

�

Bout

w

v

Figure P20.24

B

v

w

in

× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×
�

Figure P20.25

26. In Figure P20.26, what is the direction of the current
induced in the resistor at the instant the switch is closed?

R

S�
Figure P20.26

27. A copper bar is moved to the right while its axis is main-
tained in a direction perpendicular to a magnetic field, as
shown in Figure P20.27. If the top of the bar becomes

+
+

–
–

v

Figure P20.27
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positive relative to the bottom, what is the direction of the
magnetic field?

28. Find the direction of the current in the resistor shown
in Figure P20.28 (a) at the instant the switch is closed,
(b) after the switch has been closed for several minutes,
and (c) at the instant the switch is opened.

maximum emf that can be generated around the perime-
ter of the cell.

32. A motor has coils with a resistance of 30 � and operates
from a voltage of 240 V. When the motor is operating at
its maximum speed, the back emf is 145 V. Find the
current in the coils (a) when the motor is first turned on
and (b) when the motor has reached maximum speed.
(c) If the current in the motor is 6.0 A at some instant,
what is the back emf at that time?

33. A coil of 10.0 turns is in the shape of an ellipse having a
major axis of 10.0 cm and a minor axis of 4.00 cm. The
coil rotates at 100 rpm in a region in which the magni-
tude of the Earth’s magnetic field is 55 �T. What is the
maximum voltage induced in the coil if the axis of
rotation of the coil is along its major axis and is aligned
(a) perpendicular to the Earth’s magnetic field and
(b) parallel to the Earth’s magnetic field? (Note that
the area of an ellipse is given by A � �ab, where a is the
length of the semimajor axis and b is the length of the
semiminor axis.)

34. A flat coil enclosing an area of 0.10 m2 is rotating at
60 rev/s, with its axis of rotation perpendicular to a 0.20-T
magnetic field. (a) If there are 1 000 turns on the coil,
what is the maximum voltage induced in the coil?
(b) When the maximum induced voltage occurs, what is
the orientation of the coil with respect to the magnetic
field?

In a model AC generator, a 500-turn
rectangular coil 8.0 cm by 20 cm rotates at 120 rev/min in
a uniform magnetic field of 0.60 T. (a) What is the maxi-
mum emf induced in the coil? (b) What is the instanta-
neous value of the emf in the coil at t � (�/32) s? Assume
that the emf is zero at t � 0. (c) What is the smallest value
of t for which the emf will have its maximum value?

Section 20.6 Self-Inductance
36. A coiled telephone cord forms a spiral with 70.0 turns, a

diameter of 1.30 cm, and an unstretched length of
60.0 cm. Determine the self-inductance of one conductor
in the unstretched cord.

37. A coil has an inductance of 3.0 mH, and the current in it
changes from 0.20 A to 1.5 A in 0.20 s. Find the magni-
tude of the average induced emf in the coil during this
period.

38. Show that the two expressions for inductance given by

and

have the same units.
A solenoid of radius 2.5 cm has 400 turns and a length of
20 cm. Find (a) its inductance and (b) the rate at which
current must change through it to produce an emf of
75 mV.

40. An emf of 24.0 mV is induced in a 500-turn coil when the
current is changing at a rate of 10.0 A/s. What is the mag-
netic flux through each turn of the coil at an instant when
the current is 4.00 A?

Section 20.7 RL Circuits
41. Show that the SI units for the inductive time constant

� � L/R are seconds.

39.

L �
��

	I/	t
L �

N�B

I

35.

R

S

�
Figure P20.28

Find the direction of the current in the resistor R shown
in Figure P20.29 after each of the following steps (taken
in the order given): (a) The switch is closed. (b) The
variable resistance in series with the battery is decreased.
(c) The circuit containing resistor R is moved to the left.
(d) The switch is opened.

29.

S

R

�
Figure P20.29

Section 20.5 Generators
30. A 100-turn square wire coil of area 0.040 m2 rotates about

a vertical axis at 1 500 rev/min, as indicated in Figure
P20.30. The horizontal component of the Earth’s
magnetic field at the location of the loop is 2.0 � 10�5 T.
Calculate the maximum emf induced in the coil by the
Earth’s field.

20 cm

20 cm

v

Figure P20.30

31. Considerable scientific work is currently underway to
determine whether weak oscillating magnetic fields such
as those found near outdoor electric power lines can
effect human health. One study indicated that a magnetic
field of magnitude 1.0 � 10�3 T, oscillating at 60 Hz,
might stimulate red blood cells to become cancerous. If
the diameter of a red blood cell is 8.0 �m, determine the
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42. An RL circuit with L � 3.00 H and an RC circuit with 
C � 3.00 �F have the same time constant. If the two
circuits have the same resistance R , (a) what is the value
of R and (b) what is this common time constant?

43. A 6.0-V battery is connected in series with a resistor and an
inductor. The series circuit has a time constant of 600 �s,
and the maximum current is 300 mA. What is the value of
the inductance?

44. A 25-mH inductor, an 8.0-� resistor, and a 6.0-V battery
are connected in series. The switch is closed at t � 0. Find
the voltage drop across the resistor (a) at t � 0 and (b) after
one time constant has passed. Also, find the voltage drop
across the inductor (c) at t � 0 and (d) after one time
constant has elapsed.

Calculate the resistance in an RL circuit
in which L � 2.50 H and the current increases to 90.0%
of its final value in 3.00 s.

46. Consider the circuit shown in Figure P20.46. Take � 6.00
V, L � 8.00 mH, and R � 4.00 �. (a) What is the inductive
time constant of the circuit? (b) Calculate the current in
the circuit 250 �s after the switch is closed. (c) What is the
value of the final steady-state current? (d) How long does it
take the current to reach 80.0% of its maximum value?

�

45.

51. In Figure P20.51, the bar magnet is being moved toward
the loop. Is (Va � Vb) positive, negative, or zero during
this motion? Explain.

L

R

S

�

Figure P20.46

20.8 Energy Stored in a Magnetic Field
47. How much energy is stored in a 70.0-mH inductor at an

instant when the current is 2.00 A?
48. A 300-turn solenoid has a radius of 5.00 cm and a length

of 20.0 cm. Find (a) the inductance of the solenoid and
(b) the energy stored in the solenoid when the current in
its windings is 0.500 A.

A 24-V battery is connected in series
with a resistor and an inductor, with R � 8.0 � and
L � 4.0 H, respectively. Find the energy stored in the
inductor (a) when the current reaches its maximum value
and (b) one time constant after the switch is closed.

ADDITIONAL PROBLEMS
50. What is the time constant for (a) the circuit shown in Figure

P20.50a and (b) the circuit shown in Figure P20.50b?

49.

R

S

L

R

S

L

R

R

(a) (b)

� �

Figure P20.50

a
R

b

Motion toward
the loop

S

N

Figure P20.51

52. Your physics teacher asks you to help her set up a
demonstration of Faraday’s law for the class. The appara-
tus consists of a strong permanent magnet that has a
field of 0.10 T, a small 10-turn coil of radius 2.0 cm
cemented on a wood frame with a handle, some flexible
connecting wires, and an ammeter, as in Figure P20.52.
The idea is to pull the coil out of the center of the mag-
netic field as quickly as possible and read the average
current registered on the meter. The combined resist-
ance of the coil, leads, and meter is 2.0 �, and you must
flip the coil out of the field in about 0.20 s. The amme-
ter you must use has a full-scale sensitivity of 1 000 �A.
Will this meter be sensitive enough to show the induced
current clearly?

N

r
S

Coil

Magnet
poles

m

m

t = 0.20 S	

B

Figure P20.52

53. An 820-turn wire coil of resistance 24.0 � is placed on
top of a 12 500-turn, 7.00-cm-long solenoid, as in Figure
P20.53 (page 690). Both coil and solenoid have cross-
sectional areas of 1.00 � 10�4 m2. (a) How long does it
take the solenoid current to reach 0.632 times its maxi-
mum value? (b) Determine the average back emf caused
by the self-inductance of the solenoid during this inter-
val. The magnetic field produced by the solenoid at the
location of the coil is one-half as strong as the field at
the center of the solenoid. (c) Determine the average
rate of change in magnetic flux through each turn of the
coil during the stated interval. (d) Find the magnitude
of the average induced current in the coil.
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54. Figure P20.54 is a graph of induced emf versus time for a
coil of N turns rotating with angular speed � in a uniform
magnetic field directed perpendicular to the axis of
rotation of the coil. Copy this sketch (increasing the
scale), and, on the same set of axes, show the graph of
emf versus t when (a) the number of turns in the coil is
doubled, (b) the angular speed is doubled, and (c) the
angular speed is doubled while the number of turns in
the coil is halved.

1.00 km in diameter would be fabricated. It would carry a
maximum current of 50.0 kA through each winding of a
150-turn Nb3Sn solenoid. (a) If the inductance of this
huge coil were 50.0 H, what is the total stored energy?
(b) What is the compressive force per meter acting
between two adjacent windings 0.250 m apart? [Hint :
Because the radius of the coil is so large, the magnetic
field created by one winding and acting on an adjacent
turn can be considered to be that of a long, straight wire.]

57. A conducting rod of length � moves on two horizontal
frictionless rails, as in Figure P20.18. A constant force of
magnitude 1.00 N moves the bar at a uniform speed of
2.00 m/s through a magnetic field that is directed into
the page. (a) What is the current in an 8.00-� resistor R?
(b) What is the rate of energy dissipation in the resistor?
(c) What is the mechanical power delivered by the
constant force?

58. The square loop in Figure P20.58 is made of wires with a
total series resistance of 10.0 �. It is placed in a uniform
0.100-T magnetic field directed perpendicular into the
plane of the paper. The loop, which is hinged at each
corner, is pulled as shown until the separation between
points A and B is 3.00 m. If this process takes 0.100 s, what
is the average current generated in the loop? What is the
direction of the current?

B
:

24.0 �
820 turns

12 500
 turns

14.0 �

60.0 V –
+

Figure P20.53
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Figure P20.54

The plane of a square loop of wire with edge length
a � 0.200 m is perpendicular to the Earth’s magnetic field
at a point where B � 15.0 �T, as in Figure P20.55. The
total resistance of the loop and the wires connecting it to
the ammeter is 0.500 �. If the loop is suddenly collapsed
by horizontal forces as shown, what total charge passes
through the ammeter?

55.

Ammeter

a
F F

a

Figure P20.55

56. A novel method of storing electrical energy has been
proposed. A huge underground superconducting coil 

3.00 m

3.00 m

3.00 m

3.00 m

A

B

Figure P20.58

The bolt of lightning depicted in Figure P20.59 passes 200 m
from a 100-turn coil oriented as shown. If the current in
the lightning bolt falls from 6.02 � 106 A to zero in 10.5 �s,
what is the average voltage induced in the coil? Assume
that the distance to the center of the coil determines the
average magnetic field at the coil’s position. Treat the
lightning bolt as a long, vertical wire.

59.

200 m

0.
80

0 
m

Figure P20.59

60. The wire shown in Figure P20.60 is bent in the shape of
a “tent” with � � 60° and L � 1.5 m, and is placed in a
uniform magnetic field of 0.30 T directed perpendicu-
lar to the tabletop. The wire is “hinged” at points a
and b. If the tent is flattened out on the table in 0.10 s,
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2The idea for this problem and Figure P20.64 is from Oleg D. Jefimenko,
Electricity and Magnetism: An Introduction to the Theory of Electric and Magnetic Fields
(Star City, WV, Electret Scientific Co., 1989).

what is the average induced emf in the wire during this
time?

In Figure P20.63, the rolling axle, 1.50 m long, is pushed
along horizontal rails at a constant speed v � 3.00 m/s. A
resistor R � 0.400 � is connected to the rails at points a
and b, directly opposite each other. (The wheels make
good electrical contact with the rails, so the axle, rails,
and R form a closed-loop circuit. The only significant
resistance in the circuit is R.) A uniform magnetic field
B � 0.800 T is directed vertically downwards. (a) Find the
induced current I in the resistor. (b) What horizontal
force is required to keep the axle rolling at constant
speed? (c) Which end of the resistor,a or b, is at the
higher electric potential? (d) After the axle rolls past the
resistor, does the current in R reverse direction?

F
:

63.

L

L
a

b

u u

B
B

Figure P20.60

61. The magnetic field shown in Figure P20.61 has a uniform
magnitude of 25.0 mT directed into the paper. The initial
diameter of the kink is 2.00 cm. (a) The wire is quickly
pulled taut, and the kink shrinks to a diameter of zero in
50.0 ms. Determine the average voltage induced between
endpoints A and B. Include the polarity. (b) Suppose the
kink is undisturbed, but the magnetic field increases to
100 mT in 4.00 � 10�3 s. Determine the average voltage
across terminals A and B, including polarity, during this
period.

A B

2.00 cm

Figure P20.61

62. An aluminum ring of radius 5.00 cm and resistance
3.00 � 10�4 � is placed around the top of a long air-core
solenoid with 1 000 turns per meter and a smaller radius
of 3.00 cm, as in Figure P20.62. If the current in the sole-
noid is increasing at a constant rate of 270 A/s, what is the
induced current in the ring? Assume that the magnetic
field produced by the solenoid over the area at the end of
the solenoid is one-half as strong as the field at the center
of the solenoid. Assume also that the solenoid produces a
negligible field outside its cross -sectional area.

5.00 cm

3.00 cm

I

I

Figure P20.62

B

R

a

b

v

Figure P20.63

64. In 1832, Faraday proposed that the apparatus shown in
Figure P20.64 could be used to generate electric current
from the water flowing in the Thames River.2 Two con-
ducting plates of length a and width b are placed facing
one another on opposite sides of the river, a distance w
apart and immersed entirely. The flow velocity of the river
is , and the vertical component of Earth’s magnetic field
is B. Show that the current in the load resistor R is

where � is the resistivity of the water. (b) Calculate the
short-circuit current (R � 0) if a � 100 m, b � 5.00 m,
v � 3.00 m/s, B � 50.0 �T, and � � 100 � � m.

I �
abvB

�  abR/w

v:

b

R I

wa

B

v

Figure P20.64

65. A horizontal wire is free to slide on the vertical rails of a
conducting frame, as in Figure P20.65 (page 692). The wire
has mass m and length �, and the resistance of the circuit is
R. If a uniform magnetic field is directed perpendicular to
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the frame, what is the terminal speed of the wire as it falls
under the force of gravity? (Neglect friction.)

ACTIVITIES
1. Experimenting with induced currents is not easy. For

small magnets and small coils of wire, the resulting in-
duced currents are so small that they are difficult to de-
tect. Thus, you may have to try this exercise several times
before you are satisfied with your results. Wind a coil of
wire on a cardboard mailing tube. Use insulated wire with
as small a diameter as possible, because you need as many
turns as possible on the coil. Connect the coil to a flash-
light bulb, and see if you can get it to light by moving a
bar magnet into and out of the coil in rapid succession.
Why does the speed of movement make a difference? If
you are unsuccessful, place two magnets side by side and
repeat the experiment.

After you have finished experimenting with the bulb,
ask your instructor to let you use a galvanometer as a cur-
rent detector. These devices are capable of measuring
very small currents, and they have the added advantage of
detecting the direction of the current in a circuit.

Use your equipment to observe or test the following:
(a) Does the magnitude of the induced current depend
on the speed of movement of the magnet? (b) Can you in-
duce a current by holding the magnet still and moving
the coil over it? (c) Does the direction of the current de-
pend on whether the magnet is pushed in or pulled out
of the coil? (d) Does the direction of the current depend
on whether the inserted pole of the magnet is the north
pole or the south pole? (e) Can you predict the direction
of the current by using Lenz’s law? (f) Replace your bar
magnet with the electromagnet you constructed in the
last chapter, and repeat the preceding observations.

2. As explained in the text, a cassette tape is made up of tiny
particles of metal oxide attached to a long plastic strip. Pull
a tape out of a cassette that you do not mind destroying,
and see if it is repelled or attracted by a refrigerator mag-
net. Also, try this with an expendable floppy computer disk.

3. This experiment takes steady hands, a dime, and a strong
magnet. After verifying that a dime is not attracted to the
magnet, carefully balance the coin on its edge. (This will
not work with other coins, because they require too much
force to topple them.) Hold one pole of the magnet
within a millimeter of the face of the dime, but do not
make contact with it. Now very rapidly pull the magnet
straight back away from the coin. Which way does the
dime tip? Does the coin fall the same way most of the
time? Explain what is going on in terms of Lenz’s law.

Bout

�

m

R

Figure P20.65

66. A one-turn coil of wire of area 0.20 m2 and resistance
0.25 � is in a magnetic field that varies with time as
shown in Figure P20.66a. The magnetic flux through the
coil at t � 0 is as shown in Figure P20.66b. (a) When is
the induced current the largest? (b) When is it zero?
(c) Is the induced current always in the same direction?
(d) Find the direction (clockwise or counterclockwise)
and magnitude of the current between times t � 0 and t �
2.0 s, between t � 2.0 s and t � 4.0 s, and between t �
4.0 s and t � 6.0 s.

B(T )

t(s)
2 4 6

0

0.3

0.6

(a)

Bin

(b)

Coil

Figure P20.66
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Every time we turn on a television set, a stereo system, or any of a multitude of other electric
appliances, we call on alternating currents (AC) to provide the power to operate them. We
begin our study of AC circuits by examining the characteristics of a circuit containing a source
of emf and one other circuit element: a resistor, a capacitor, or an inductor. Then we examine
what happens when these elements are connected in combination with each other. Our
discussion is limited to simple series configurations of the three kinds of elements.

We conclude this chapter with a discussion of electromagnetic waves, which are
composed of fluctuating electric and magnetic fields. Electromagnetic waves in the form of
visible light enable us to view the world around us; infrared waves warm our environment;
radio-frequency waves carry our television and radio programs, as well as information about
processes in the core of our galaxy. X-rays allow us to perceive structures hidden inside our
bodies, and study properties of distant, collapsed stars. Light is key to our understanding of
the universe.

21.1 RESISTORS IN AN AC CIRCUIT
An AC circuit consists of combinations of circuit elements and an AC generator or
an AC source, which provides the alternating current. We have seen that the
output of an AC generator is sinusoidal and varies with time according to

�v � �Vmax sin 2�ft [21.1]

where �v is the instantaneous voltage, �Vmax is the maximum voltage of the AC gen-
erator, and f is the frequency at which the voltage changes, measured in hertz (Hz).
(Compare Equations 20.7 and 20.8 with Equation 21.1.) We first consider a simple

Arecibo, a large radio telescope in
Puerto Rico, gathers electromagnetic
radiation in the form of radio waves.
These long wavelengths pass through
obscuring dust clouds, allowing
astronomers to create images of the
core region of the Milky Way Galaxy,
which can't be observed in the visible
spectrum.

44920_21_p693-725  1/12/05  8:33 AM  Page 693



694 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

circuit consisting of a resistor and an AC source (designated by the symbol

), as in Active Figure 21.1. The current and the voltage across the 

resistor are shown in Active Figure 21.2.
To explain the concept of alternating current, we begin by discussing the

current-versus-time curve in Active Figure 21.2. At point a on the curve, the cur-
rent has a maximum value in one direction, arbitrarily called the positive direc-
tion. Between points a and b, the current is decreasing in magnitude but is still in
the positive direction. At point b, the current is momentarily zero; it then begins to
increase in the opposite (negative) direction between points b and c. At point c,
the current has reached its maximum value in the negative direction.

The current and voltage are in step with each other because they vary identi-
cally with time. Because the current and the voltage reach their maximum values at
the same time, they are said to be in phase. Notice that the average value of the cur-
rent over one cycle is zero. This is because the current is maintained in one direction
(the positive direction) for the same amount of time and at the same magnitude as
it is in the opposite direction (the negative direction). However, the direction of
the current has no effect on the behavior of the resistor in the circuit: the colli-
sions between electrons and the fixed atoms of the resistor result in an increase in
the resistor’s temperature regardless of the direction of the current.

We can quantify this discussion by recalling that the rate at which electrical
energy is dissipated in a resistor, the power �, is

� � i2R

where i is the instantaneous current in the resistor. Because the heating effect of a
current is proportional to the square of the current, it makes no difference whether
the sign associated with the current is positive or negative. However, the heating
effect produced by an alternating current with a maximum value of Imax is not the
same as that produced by a direct current of the same value. The reason is that the
alternating current has this maximum value for only an instant of time during a
cycle. The important quantity in an AC circuit is a special kind of average value of
current, called the rms current—the direct current that dissipates the same
amount of energy in a resistor that is dissipated by the actual alternating current.
To find the rms current, we first square the current, Then find its average value,
and finally take the square root of this average value. Hence, the rms current is the
square root of the average (mean) of the square of the current. Because i2 varies as
sin2 2�ft, the average value of i2 is (Fig. 21.3b).1 Therefore, the rms current
I rms is related to the maximum value of the alternating current Imax by

[21.2]

This equation says that an alternating current with a maximum value of 3 A pro-
duces the same heating effect in a resistor as a direct current of (3/ ) A. We can
therefore say that the average power dissipated in a resistor that carries alternating
current I is

.�av � I 2
rmsR

√2

I rms �
Imax

√2
� 0.707Imax

I 2
max

1
2 

R

∆vR

�v = �Vmax sin 2�ft

ACTIVE FIGURE 21.1
A series circuit consisting of a resistor
R connected to an AC generator,
designated by the symbol 

.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 21.1, where
you can adjust the resistance, the
frequency, and the maximum voltage
of the circuit shown. The results can be
studied with the graph and phasor
diagram in Active Figure 21.2.

iR ,∆vR

Imax

∆Vmax

iR

∆vR

t

a

b

c

T

ACTIVE FIGURE 21.2
A plot of current and voltage across a
resistor versus time.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 21.2, where
you can adjust the resistance, the 
frequency, and the maximum voltage
of the circuit in Active Figure 21.1. 
The results can be studied with the
graph and phasor diagram in Active
Figure 21.20.

1The fact that (i2)av � I 2
max/2 can be shown as follows: The current in the circuit varies with time according to 

the expression i � Imax sin 2�ft, so i2 � I 2
max sin2 2�ft . Therefore, we can find the average value of i2 by calculating

the average value of sin2 2�ft. Note that a graph of cos2 2�ft versus time is identical to a graph of sin2 2�ft versus time,
except that the points are shifted on the time axis. Thus, the time average of sin2 2�f t is equal to the time average of
cos2 2�f t, taken over one or more cycles. That is,

(sin2 2�f t)av � (cos2 2�ft)av

With this fact and the trigonometric identity sin2 � � cos2 � � 1, we get

(sin2 2�f t)av � (cos2 2�f t)av � 2(sin2 2�ft)av � 1

When this result is substituted into the expression i 2 � I 2
max sin2 2�f t, we get (i2)av � I 2

rms �I 2
max/2, or 

I rms � Imax/ , where Irms is the rms current.√2

(sin2 2�f t)av � 1
2
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21.1 Resistors in an AC Circuit 695

Alternating voltages are also best discussed in terms of rms voltages, with a rela-
tionship identical to the preceding one,

[21.3]

where �V rms is the rms voltage and �Vmax is the maximum value of the alternating
voltage.

When we speak of measuring an AC voltage of 120 V from an electric outlet, we
really mean an rms voltage of 120 V. A quick calculation using Equation 21.3 shows
that such an AC voltage actually has a peak value of about 170 V. In this chapter we
use rms values when discussing alternating currents and voltages. One reason is
that AC ammeters and voltmeters are designed to read rms values. Further, if we
use rms values, many of the equations for alternating current will have the same
form as those used in the study of direct-current (DC) circuits. Table 21.1 summa-
rizes the notations used throughout the chapter.

Consider the series circuit in Figure 21.1, consisting of a resistor connected to
an AC generator. A resistor impedes the current in an AC circuit, just as it does in
a DC circuit. Ohm’s law is therefore valid for an AC circuit, and we have

[21.4a]

The rms voltage across a resistor is equal to the rms current in the circuit times the
resistance. This equation is also true if maximum values of current and voltage are
used:

[21.4b]�VR,max � ImaxR

�VR,rms � IrmsR

�Vrms �
�Vmax

√2
� 0.707 �Vmax

Imax

I 2

i2

I 21
2

t

t

(a)

(b)

i

=(i2)av

max

max

Figure 21.3 (a) Plot of the current
in a resistor as a function of time. 
(b) Plot of the square of the current
in a resistor as a function of time.
Notice that the gray shaded regions
under the curve and above the dashed
line for have the same area 
as the gray shaded regions above the
curve and below the dashed line 
for . Thus, the average 
value of I 2 is .I 2

max/2
I 2

max/2

I 2
max/2

� rms voltage

TABLE 21.1
Notation Used in This 
Chapter

Voltage Current

Instantaneous �v i
value

Maximum �Vmax Imax
value

rms value �Vrms Irms

Which of the following statements can be true for a resistor connected in a simple
series circuit to an operating AC generator? (a) �av � 0 and iav � 0 (b) �av � 0
and iav � 0 (c) �av � 0 and iav � 0 (d) �av � 0 and iav � 0

Quick Quiz 21.1

EXAMPLE 21.1 What Is the rms Current?
Goal Perform basic AC circuit calculations for a purely resistive circuit.

Problem An AC voltage source has an output of �v � (2.00 � 102 V) sin 2� f t . This source is connected to a 
1.00 � 102-	 resistor as in Figure 21.1. Find the rms voltage and rms current in the resistor.

Strategy Compare the expression for the voltage output just given with the general form, �v � �Vmax sin 2� f t,
finding the maximum voltage. Substitute this result into the expression for the rms voltage.
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696 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

21.2 CAPACITORS IN AN AC CIRCUIT
To understand the effect of a capacitor on the behavior of a circuit containing an
AC voltage source, we first review what happens when a capacitor is placed in a cir-
cuit containing a DC source, such as a battery. When the switch is closed in a series
circuit containing a battery, a resistor, and a capacitor, the initial charge on the
plates of the capacitor is zero. The motion of charge through the circuit is there-
fore relatively free, and there is a large current in the circuit. As more charge accu-
mulates on the capacitor, the voltage across it increases, opposing the current.
After some time interval, which depends on the time constant RC, the current
approaches zero. Consequently, a capacitor in a DC circuit limits or impedes the
current so that it approaches zero after a brief time.

Now consider the simple series circuit in Figure 21.4, consisting of a capacitor
connected to an AC generator. We sketch curves of current versus time and volt-
age versus time, and then attempt to make the graphs seem reasonable. The
curves are shown in Figure 21.5. First, note that the segment of the current curve
from a to b indicates that the current starts out at a rather large value. This can be
understood by recognizing that there is no charge on the capacitor at t � 0; as a
consequence, there is nothing in the circuit except the resistance of the wires to
hinder the flow of charge at this instant. However, the current decreases as the
voltage across the capacitor increases from c to d on the voltage curve. When
the voltage is at point d, the current reverses and begins to increase in the opposite
direction (from b to e on the current curve). During this time, the voltage across
the capacitor decreases from d to f because the plates are now losing the charge
they accumulated earlier. The remainder of the cycle for both voltage and current
is a repeat of what happened during the first half of the cycle. The current reaches
a maximum value in the opposite direction at point e on the current curve and
then decreases as the voltage across the capacitor builds up.

In a purely resistive circuit, the current and voltage are always in step with each
other. This isn’t the case when a capacitor is in the circuit. In Figure 21.5, when an
alternating voltage is applied across a capacitor, the voltage reaches its maximum
value one-quarter of a cycle after the current reaches its maximum value. We say
that the voltage across a capacitor always lags the current by 90°.

The impeding effect of a capacitor on the current in an AC circuit is expressed
in terms of a factor called the capacitive reactance XC , defined as

[21.5]XC � 
1

2�fC

Solution
Obtain the maximum voltage by comparison of the given 
expression for the output with the general expression:

�v � (2.00 � 102 V) sin 2�ft �v � �Vmax sin 2�ft

: �Vmax � 2.00 � 102 V

Next, substitute into Equation 21.3 to find the rms
voltage of the source:

141 V�Vrms �
�Vmax

√2
�

2.00 �  102 V
√2

�

Substitute this result into Ohm’s law to find the rms
current:

1.41 AI rms �
�V rms

R
�

141 V
1.00 � 102 	

�

Remarks Notice how the concept of rms values allows the handling of an AC circuit quantitatively in much the
same way as a DC circuit.

Exercise 21.1
Find the maximum current in the circuit and the average power delivered to the circuit.

Answer 2.00 A; 2.00 � 102 W

C

�vC

�v = �Vmax sin 2�ft

Figure 21.4 A series circuit 
consisting of a capacitor C connected
to an AC generator.

a

d

f
bc

e

iC

t

�vC , iC

Imax

�Vmax �vC

T

Figure 21.5 Plots of current and
voltage across a capacitor versus time
in an AC circuit. The voltage lags the
current by 90°.

The voltage across a capacitor 
lags the current by 90° �

Capacitive reactance �
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When C is in farads and f is in hertz, the unit of XC is the ohm. Notice that 2�f � 
,
the angular frequency.

From Equation 21.5, as the frequency f of the voltage source increases, the
capacitive reactance XC (the impeding effect of the capacitor) decreases, so the
current increases. At high frequency, there is less time available to charge the capaci-
tor, so less charge and voltage accumulate on the capacitor, which translates into
less opposition to the flow of charge and, consequently, a higher current. The
analogy between capacitive reactance and resistance means that we can write an
equation of the same form as Ohm’s law to describe AC circuits containing capaci-
tors. This equation relates the rms voltage and rms current in the circuit to the
capacitive reactance:

[21.6]�VC,rms � IrmsXC

EXAMPLE 21.2 A Purely Capacitive AC Circuit
Goal Perform basic AC circuit calculations for a capacitive circuit.

Problem An 8.00-�F capacitor is connected to the terminals of an AC generator with an rms voltage of 1.50 � 102 V
and a frequency of 60.0 Hz. Find the capacitive reactance and the rms current in the circuit.

Strategy Substitute values into Equations 21.5 and 21.6.

Solution
Substitute the values of f and C into 
Equation 21.5:

332 	XC �
1

2�fC
�

1
2� (60.0 Hz)(8.00 � 10�6 F)

�

Solve Equation 21.6 for the current, and substitute XC
and the rms voltage to find the rms current:

0.452 AI rms �
�VC ,rms

XC
�

1.50 � 102 V
332 	

�

Remark Again, notice how similar the technique is to that of analyzing a DC circuit with a resistor.

Exercise 21.2
If the frequency is doubled, what happens to the capacitive reactance and the rms current?

Answer XC is halved, and I rms is doubled.

21.3 INDUCTORS IN AN AC CIRCUIT
Now consider an AC circuit consisting only of an inductor connected to the
terminals of an AC source, as in Active Figure 21.6. (In any real circuit, there is
some resistance in the wire forming the inductive coil, but we ignore this for now.)
The changing current output of the generator produces a back emf that impedes
the current in the circuit. The magnitude of this back emf is

[21.7]

The effective resistance of the coil in an AC circuit is measured by a quantity called
the inductive reactance, XL:

[21.8]

When f is in hertz and L is in henries, the unit of XL is the ohm. The inductive
reactance increases with increasing frequency and increasing inductance. Contrast
these facts with capacitors, where increasing frequency or capacitance decreases the
capacitive reactance.

XL � 2� fL

�vL � L  
�I
�t

L

�v = �Vmax sin 2�ft

�vL

ACTIVE FIGURE 21.6
A series circuit consisting of an induc-
tor L connected to an AC generator.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 21.6, where
you can adjust the inductance, the
frequency, and the maximum voltage.
The results can be studied with the
graph and phasor diagram in Active
Figure 21.7.
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698 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

To understand the meaning of inductive reactance, compare Equation 21.8
with Equation 21.7. First, note from Equation 21.8 that the inductive reactance
depends on the inductance L. This is reasonable, because the back emf (Eq. 21.7)
is large for large values of L. Second, note that the inductive reactance depends on
the frequency f. This, too, is reasonable, because the back emf depends on �I/�t,
a quantity that is large when the current changes rapidly, as it would for high
frequencies.

With inductive reactance defined in this way, we can write an equation of the
same form as Ohm’s law for the voltage across the coil or inductor:

[21.9]

where �VL ,rms is the rms voltage across the coil and Irms is the rms current in the coil.
Active Figure 21.7 shows the instantaneous voltage and instantaneous current

across the coil as functions of time. When a sinusoidal voltage is applied across an
inductor, the voltage reaches its maximum value one-quarter of an oscillation
period before the current reaches its maximum value. In this situation, we say that
the voltage across an inductor always leads the current by 90°.

To see why there is a phase relationship between voltage and current, we exam-
ine a few points on the curves of Active Figure 21.7. At point a on the current
curve, the current is beginning to increase in the positive direction. At this instant,
the rate of change of current, �I/�t (the slope of the current curve), is at a
maximum, and we see from Equation 21.7 that the voltage across the inductor is
consequently also at a maximum. As the current rises between points a and b on
the curve, �I/�t gradually decreases until it reaches zero at point b. As a result, the
voltage across the inductor is decreasing during this same time interval, as the
segment between c and d on the voltage curve indicates. Immediately after point b,
the current begins to decrease, although it still has the same direction it had dur-
ing the previous quarter cycle. As the current decreases to zero (from b to e on the
curve), a voltage is again induced in the coil (from d to f ), but the polarity of this
voltage is opposite the polarity of the voltage induced between c and d. This occurs
because back emfs always oppose the change in the current.

We could continue to examine other segments of the curves, but no new
information would be gained because the current and voltage variations are
repetitive.

�VL,rms � IrmsXL

∆vL , iL

Imax

∆Vmax

iL

∆vL

ta

c

d

b

e
T

f

ACTIVE FIGURE 21.7
Plots of current and voltage across an
inductor versus time in an AC circuit.
The voltage leads the current by 90°.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 21.6, where
you can adjust the inductance, the
frequency, and the maximum voltage.
The results can be studied with the
graph and phasor diagram in Active
Figure 21.7.

EXAMPLE 21.3 A Purely Inductive AC Circuit
Goal Perform basic AC circuit calculations for an inductive circuit.

Problem In a purely inductive AC circuit (see Active Fig. 21.6), L � 25.0 mH and the rms voltage is 1.50 � 102 V.
Find the inductive reactance and rms current in the circuit if the frequency is 60.0 Hz.

Solution
Substitute L and f into Equation 21.8 to get the 
inductive reactance:

XL � 2�fL � 2�(60.0 s�1)(25.0 � 10�3 H) � 9.42 	

Solve Equation 21.9 for the rms current and substitute: 15.9 AI rms �
�VL ,rms

XL
�

1.50 � 102 V
9.42 	

�

Remark The analogy with DC circuits is even closer than in the capacitive case, because in the inductive equivalent
of Ohm’s law, the voltage across an inductor is proportional to the inductance L, just as the voltage across a resistor is
proportional to R in Ohm’s law.

Exercise 21.3
Calculate the inductive reactance and rms current in a similar circuit if the frequency is again 60.0 Hz, but the rms
voltage is 85.0 V and the inductance is 47.0 mH.

Answers XL � 17.7 	; I � 4.80 A
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21.4 The RLC Series Circuit 699

21.4 THE RLC SERIES CIRCUIT
In the foregoing sections, we examined the effects of an inductor, a capacitor, and
a resistor when they are connected separately across an AC voltage source. We now
consider what happens when these devices are combined.

Active Figure 21.8 shows a circuit containing a resistor, an inductor, and a
capacitor connected in series across an AC source that supplies a total voltage �v
at some instant. The current in the circuit is the same at all points in the circuit at
any instant and varies sinusoidally with time, as indicated in Active Figure 21.9a.
This fact can be expressed mathematically as

i � Imax sin 2�f t

Earlier, we learned that the voltage across each element may or may not be in
phase with the current. The instantaneous voltages across the three elements,
shown in Active Figure 21.9, have the following phase relations to the instanta-
neous current:

1. The instantaneous voltage �vR across the resistor is in phase with the instanta-
neous current. (See Active Fig. 21.9b.)

2. The instantaneous voltage �vL across the inductor leads the current by 90°. (See
Active Fig. 21.9c.)

3. The instantaneous voltage �vC across the capacitor lags the current by 90°. (See
Active Fig. 21.9d.)

The net instantaneous voltage �v supplied by the AC source equals the sum of
the instantaneous voltages across the separate elements: �v � �vR � �vC � �vL.
This doesn’t mean, however, that the voltages measured with an AC voltmeter
across R, C, and L sum to the measured source voltage! In fact, the measured
voltages don’t sum to the measured source voltage, because the voltages across R,
C, and L all have different phases.

To account for the different phases of the voltage drops, we use a technique
involving vectors. We represent the voltage across each element with a rotating
vector, as in Figure 21.10. The rotating vectors are referred to as phasors, and
the diagram is called a phasor diagram. This particular diagram represents the
circuit voltage given by the expression �v � �Vmax sin(2�ft � ), where �Vmax
is the maximum voltage (the magnitude or length of the rotating vector or
phasor) and  is the angle between the phasor and the � x-axis when t � 0.
The phasor can be viewed as a vector of magnitude �Vmax rotating at a constant
frequency f so that its projection along the y-axis is the instantaneous voltage
in the circuit. Because  is the phase angle between the voltage and cur-
rent in the circuit, the phasor for the current (not shown in Fig. 21.10) 
lies along the positive x-axis when t � 0 and is expressed by the relation
i � Imax sin(2�ft).

The phasor diagrams in Figure 21.11 (page 700) are useful for analyzing the
series RLC circuit. Voltages in phase with the current are represented by vectors
along the positive x-axis, and voltages out of phase with the current lie along
other directions. �VR is horizontal and to the right because it’s in phase with
the current. Likewise, �VL is represented by a phasor along the positive y-axis
because it leads the current by 90°. Finally, �VC is along the negative y-axis be-
cause it lags the current2 by 90°. If the phasors are added as vector quantities in
order to account for the different phases of the voltages across R, L, and C,
Figure 21.11a shows that the only x-component for the voltages is �VR and
the net y-component is �VL � �VC . We now add the phasors vectorially
to find the phasor �Vmax (Fig. 21.11b), which represents the maximum
voltage. The right triangle in Figure 21.11b gives the following equations for
the maximum voltage and the phase angle  between the maximum voltage and
the current:

�vR

R L C

�vL �vC

ACTIVE FIGURE 21.8
A series circuit consisting of a resistor,
an inductor, and a capacitor con-
nected to an AC generator.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 21.8, where
you can adjust the resistance, the in-
ductance, and the capacitance. The re-
sults can be studied with the graph in
Active Figure 21.9 and the phasor dia-
gram in Figure 21.10.

�vR

(a)

(b)

(c)

(d)

(e)

�vL

�vC

�v

i
t

t

t

t

t

ACTIVE FIGURE 21.9
Phase relations in the series RLC
circuit shown in Figure 21.8.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 21.9, where
you can adjust the resistance, the in-
ductance, and the capacitance in Ac-
tive Figure 21.8. The results can be
studied with the graph in this figure
and the phasor diagram in Figure

y

�v

x
�

�Vmax

f(Hz)

Figure 21.10 A phasor diagram
for the voltage in an AC circuit,
where  is the phase angle between
the voltage and the current and �v is
the instantaneous voltage.

2A mnemonic to help you remember the phase relationships in RLC circuits is “ ELI the ICE man.” E represents the
voltage , I the current, L the inductance, and C the capacitance. Thus, the name ELI means that, in an inductive
circuit, the voltage leads the current I. In a capacitive circuit, ICE means that the current leads the voltage.�

�
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[21.10]

[21.11]

In these equations, all voltages are maximum values. Although we choose to use
maximum voltages in our analysis, the preceding equations apply equally well to
rms voltages, because the two quantities are related to each other by the same fac-
tor for all circuit elements. The result for the maximum voltage �Vmax given by
Equation 21.10 reinforces the fact that the voltages across the resistor, capacitor,
and inductor are not in phase, so one cannot simply add them to get the voltage
across the combination of element, or the source voltage.

 tan  �
�VL � �VC

�VR

 �Vmax � √�VR
2 � (�VL � �VC)2

For the circuit of Figure 21.8, is the instantaneous voltage of the source equal to
(a) the sum of the maximum voltages across the elements, (b) the sum of the in-
stantaneous voltages across the elements, or (c) the sum of the rms voltages across
the elements?

Quick Quiz 21.2

y

x�VR

�VL

�VC

(a)

�

�VL 
_

 �VC

(b)

�Vmax

�VR

�

XL 
_

 XC

(c)

Z

R

Figure 21.11 (a) A phasor dia-
gram for the RLC circuit. (b) Addition
of the phasors as vectors gives

. 
(c) The reactance triangle that gives
the impedance relation

.Z � √R2 � (XL � XC )2

�Vmax � √�VR 2 � (�VL � �VC)2

We can write Equation 21.10 in the form of Ohm’s law, using the relations
�VR � ImaxR , �VL � ImaxXL , and �VC � ImaxXC , where Imax is the maximum
current in the circuit:

[21.12]

It’s convenient to define a parameter called the impedance Z of the circuit as

[21.13]

so that Equation 21.12 becomes

[21.14]

Equation 21.14 is in the form of Ohm’s law, �V � IR, with R replaced by the
impedance in ohms. Indeed, Equation 21.14 can be regarded as a generalized form
of Ohm’s law applied to a series AC circuit. Both the impedance and, therefore, the
current in an AC circuit depend on the resistance, the inductance, the capacitance,
and the frequency (because the reactances are frequency dependent).

It’s useful to represent the impedance Z with a vector diagram such as the one
depicted in Figure 21.11c. A right triangle is constructed with right side XL � XC ,
base R, and hypotenuse Z . Applying the Pythagorean theorem to this triangle, we
see that

which is Equation 21.13. Furthermore, we see from the vector diagram in Figure
21.11c that the phase angle  between the current and the voltage obeys the

Z � √R2 � (XL � XC)2

�Vmax � ImaxZ

Z � √R2 � (XL � XC)2

�Vmax � Imax√R 2 � (XL � XC)2

Impedance �
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relationship 

[21.15]

The physical significance of the phase angle will become apparent in Section 21.5.
Table 21.2 provides impedance values and phase angles for some series circuits

containing different combinations of circuit elements.
Parallel alternating current circuits are also useful in everyday applications. We

won’t discuss them here, however, because their analysis is beyond the scope of
this book.

tan  �
XL � XC

R

XC

R

C

L

CR

R

R CL

L

R

XL

R2 + X 2
C

R2 + X 2
L

R2 + (XL – XC)2

0°

–90°

+90°

Negative,
between –90° and 0°

Positive,
between 0° and 90°

Negative if XC > XL
Positive if XC < XL

TABLE 21.2
Impedance Values and Phase Angles for Various Combinations 
of Circuit Elementsa

Circuit Elements Impedance Z Phase Angle 

� Phase angle 

The switch in the circuit shown in Figure 21.12 is
closed and the lightbulb glows steadily. The
inductor is a simple air-core solenoid. As an iron
rod is being inserted into the interior of the
solenoid, the brightness of the lightbulb (a) in-
creases, (b) decreases, or (c) remains the same.

Quick Quiz 21.3

Switch

Iron
R

L

�
Figure 21.12 (Quick Quiz 21.3)

NIKOLA TESLA (1856–1943)
Tesla was born in Croatia, but spent most
of his professional life as an inventor in
the United States. He was a key figure in
the development of alternating-current
electricity, high-voltage transformers, and
the transport of electrical power via AC
transmission lines. Tesla’s viewpoint was at
odds with the ideas of Edison, who
committed himself to the use of direct
current in power transmission. Tesla’s AC
approach won out.
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Problem-Solving Strategy Alternating Current
The following procedure is recommended for solving alternating-current problems:
1. Calculate as many of the unknown quantities, such as XL and XC , as possible.
2. Apply the equation �Vmax � ImaxZ to the portion of the circuit of interest. For

example, if you want to know the voltage drop across the combination of an inductor
and a resistor, the equation for the voltage drop reduces to .�Vmax � Imax√R2 � XL

2

EXAMPLE 21.4 An RLC Circuit
Goal Analyze a series RLC AC circuit and find the phase angle.

Problem A series RLC AC circuit has resistance R � 2.50 � 102 	, inductance L � 0.600 H, capacitance 
C � 3.50 �F, frequency f � 60.0 Hz, and maximum voltage �Vmax � 1.50 � 102 V. Find (a) the impedance, (b) the
maximum current in the circuit, (c) the phase angle, and (d) the maximum voltages across the elements.

a In each case, an AC voltage (not shown) is applied across the combination of elements 
(that is, across the dots).
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21.5 POWER IN AN AC CIRCUIT
No power losses are associated with pure capacitors and pure inductors in an AC
circuit. A pure capacitor, by definition, has no resistance or inductance, while a
pure inductor has no resistance or capacitance. (These are idealizations: in a real
capacitor, for example, inductive effects could become important at high frequen-
cies.) We begin by analyzing the power dissipated in an AC circuit that contains
only a generator and a capacitor.

When the current increases in one direction in an AC circuit, charge accumu-
lates on the capacitor and a voltage drop appears across it. When the voltage
reaches its maximum value, the energy stored in the capacitor is

However, this energy storage is only momentary: When the current reverses direc-
tion, the charge leaves the capacitor plates and returns to the voltage source. During
one-half of each cycle the capacitor is being charged, and during the other half

PEC � 1
2C (�Vmax)2

Solution
(a) Find the impedance of the circuit.

First, calculate the inductive and capacitive reactances:

Substitute these results and the resistance R into Equa-
tion 21.13 to obtain the impedance of the circuit:

� 588 	� √(2.50 � 102 	)2 � (226 	 � 758 	)2

Z � √R2 � (XL � XC)2

XL � 2�f L � 226 	 XC � 1/2�f C � 758 	

(b) Find the maximum current.

Use Equation 21.12, the equivalent of Ohm’s law, to find
the maximum current:

(c) Find the phase angle.

Calculate the phase angle between the current and the
voltage with Equation 21.15:

(d) Find the maximum voltages across the elements.

Substitute into the “Ohm’s law” expressions for each
individual type of current element:

�VR, max � ImaxR � (0.255 A)(2.50 � 102 	) � 

�VL,max � ImaxXL � (0.255 A)(2.26 � 102 	) � 

�VC, max � ImaxXC � (0.255 A)(7.58 � 102 	) � 193 V

57.6 V

63.8 V

� 64.8� � tan�1
 
XL � XC

R
� tan�1 �226 	 � 758 	

2.50 � 102 	 ��

0.255 AImax �
�Vmax

Z
�

1.50 � 102 V
588 	

�

Remarks Because the circuit is more capacitive than inductive (XC � XL),  is negative. A negative phase angle
means that the current leads the applied voltage. Notice also that the sum of the maximum voltages across the ele-
ments is �VR � �VL � �VC � 314 V, which is much greater than the maximum voltage of the generator, 150 V. As we
saw in Quick Quiz 21.2, the sum of the maximum voltages is a meaningless quantity because when alternating volt-
ages are added, both their amplitudes and their phases must be taken into account. We know that the maximum voltages
across the various elements occur at different times, so it doesn’t make sense to add all the maximum values. The cor-
rect way to “add” the voltages is through Equation 21.10.

Exercise 21.4
Analyze a series RLC AC circuit for which R � 175 	, L � 0.500 H, C � 22.5 �F, f � 60.0 Hz, and �Vmax � 325 V.
Find (a) the impedance, (b) the maximum current, (c) the phase angle, and (d) the maximum voltages across the
elements.

Answers (a) 189 	 (b) 1.72 A (c) 22.0° (d) � VR ,max � 301 V, �VL,max � 324 V, �VC,max � 203 V

Strategy Calculate the inductive and capacitive reactances, then substitute them and given quantities into the
appropriate equations.
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the charge is being returned to the voltage source. Therefore, the average power
supplied by the source is zero. In other words, no power losses occur in a capacitor
in an AC circuit.

Similarly, the source must do work against the back emf of an inductor that is
carrying a current. When the current reaches its maximum value, the energy
stored in the inductor is a maximum and is given by

When the current begins to decrease in the circuit, this stored energy is returned
to the source as the inductor attempts to maintain the current in the circuit. The
average power delivered to a resistor in an RLC circuit is

[21.16]

The average power delivered by the generator is converted to internal energy in
the resistor. No power loss occurs in an ideal capacitor or inductor.

An alternate equation for the average power loss in an AC circuit can be found
by substituting (from Ohm’s law) R � �VR/I rms into Equation 21.16:

�av � Irms�VR

It’s convenient to refer to a voltage triangle that shows the relationship among
�Vrms, �VR , and �VL � �VC , such as Figure 21.11b. (Remember that Fig. 21.11
applies to both maximum and rms voltages.) From this figure, we see that the
voltage drop across a resistor can be written in terms of the voltage of the source,
�Vrms:

�VR � �Vrms cos 

Hence, the average power delivered by a generator in an AC circuit is

[21.17]

where the quantity cos  is called the power factor.
Equation 21.17 shows that the power delivered by an AC source to any circuit

depends on the phase difference between the source voltage and the resulting cur-
rent. This fact has many interesting applications. For example, factories often use
devices such as large motors in machines, generators, and transformers that have a
large inductive load due to all the windings. To deliver greater power to such de-
vices without using excessively high voltages, factory technicians introduce capaci-
tance in the circuits to shift the phase.

�av � Irms �Vrms cos 

�av � I 2
rmsR

PEL � 1
2 
LI 2

max

� Average power

A P P L I C AT I O N
Shifting Phase to Deliver 
More Power

EXAMPLE 21.5 Average Power in an RLC Series Circuit
Goal Understand power in RLC series circuits.

Problem Calculate the average power delivered to the series RLC circuit described in Example 21.4.

Strategy After finding the rms current and rms voltage with Equations 21.2 and 21.3, substitute into Equation
21.17, using the phase angle found in Example 21.4.

Solution
First, use Equations 21.2 and 21.3 to calculate the rms 
current and rms voltage:

 �V rms �
�Vmax

√2
�

1.50 � 102 V
√2

� 106 V

 I rms �
Imax

√2
�

0.255 A
√2

� 0.180 A

Substitute these results and the phase angle  � �64.8°
into Equation 21.17 to find the average power:

�av � Irms�V rms cos  � (0.180 A)(106 V) cos (�64.8°)

� 8.12 W
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21.6 RESONANCE IN A SERIES RLC CIRCUIT
In general, the rms current in a series RLC circuit can be written

[21.18]

From this equation, we see that if the frequency is varied, the current has its maxi-
mum value when the impedance has its minimum value. This occurs when XL � XC .
In such a circumstance, the impedance of the circuit reduces to Z � R . The fre-
quency f0 at which this happens is called the resonance frequency of the circuit.
To find f0, we set XL � XC , which gives, from Equations 21.5 and 21.8,

[21.19]

Figure 21.13 is a plot of current as a function of frequency for a circuit contain-
ing a fixed value for both the capacitance and the inductance. From Equation
21.18, it must be concluded that the current would become infinite at resonance
when R � 0. Although Equation 21.18 predicts this result, real circuits always have
some resistance, which limits the value of the current.

The tuning circuit of a radio is an important application of a series resonance
circuit. The radio is tuned to a particular station (which transmits a specific radio-
frequency signal) by varying a capacitor, which changes the resonance frequency
of the tuning circuit. When this resonance frequency matches that of the incom-
ing radio wave, the current in the tuning circuit increases.

f0 �
1

2� √LC

 2�f0L �
1

2�f0C

I rms �
�V rms

Z
�

�V rms

√R 2 � (XL � XC)2

Remark The same result can be obtained from Equation 21.16, �av � I 2
rmsR .

Exercise 21.5
Repeat this problem, using the system described in Exercise 21.4.

Answer 259 W

Resonance frequency �

f0 f

Irms
Irms =

�Vrms

Z

Figure 21.13 A plot of current am-
plitude in a series RLC circuit versus
frequency of the generator voltage.
Note that the current reaches its
maximum value at the resonance
frequency f0.

A P P L I C AT I O N
Tuning Your Radio

When you walk through the doorway of an airport
metal detector, as the person in Figure 21.14 is
doing, you are really walking through a coil of 
many turns. How might the metal detector 
work?

Explanation The metal detector is essentially a
resonant circuit. The portal you step through is an
inductor (a large loop of conducting wire) that is 
part of the circuit. The frequency of the circuit is
tuned to the resonant frequency of the circuit when
there is no metal in the inductor. When you walk
through with metal in your pocket, you change the
effective inductance of the resonance circuit, 
resulting in a change in the current in the circuit.
This change in current is detected, and an 
electronic circuit causes a sound to be emitted 
as an alarm.

Figure 21.14 (Applying
Physics 21.1) An airport
metal detector.

Applying Physics 21.1 Metal Detectors in Airports
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21.7 The Transformer 705

21.7 THE TRANSFORMER
It’s often necessary to change a small AC voltage to a larger one or vice versa. Such
changes are effected with a device called a transformer.

In its simplest form, the AC transformer consists of two coils of wire wound
around a core of soft iron, as shown in Figure 21.15. The coil on the left, which is
connected to the input AC voltage source and has N1 turns, is called the primary
winding, or the primary. The coil on the right, which is connected to a resistor R
and consists of N2 turns, is the secondary. The purpose of the common iron core is
to increase the magnetic flux and to provide a medium in which nearly all the flux
through one coil passes through the other.

When an input AC voltage �V1 is applied to the primary, the induced voltage
across it is given by

[21.20]�V1 � �N1 
��B

�t

EXAMPLE 21.6 A Circuit in Resonance
Goal Understand resonance frequency and its relation to inductance, capacitance, and the rms current.

Problem Consider a series RLC circuit for which R � 1.50 � 102 	, L � 20.0 mH, �Vrms � 20.0 V, and f � 796 s�1.
(a) Determine the value of the capacitance for which the rms current is a maximum. (b) Find the maximum rms
current in the circuit.

Strategy The current is a maximum at the resonance frequency f0, which should be set equal to the driving fre-
quency, 796 s�1. The resulting equation can be solved for C. For part (b), substitute into Equation 21.18 to get the
maximum rms current.

Solution
(a) Find the capacitance giving the maximum current 
in the circuit (the resonance condition).

Solve the resonance frequency for the capacitance:

 C �
1

4� 2f 2
0 L

 f0 �
1

2� √LC
 :  √LC �

1
2�f0

 :  LC �
1

4� 2f 2
0

Insert the given values, substituting the source
frequency for the resonance frequency, fo :

2.00 � 10�6 FC �
1

4�2(796 Hz)2(20.0 � 10�3 H)
�

(b) Find the maximum rms current in the circuit.

The capacitive and inductive reactances are equal, so 
Z � R � 1.50 � 102 	. Substitute into Equation 21.18 to
find the rms current:

Remark Because the impedance Z is in the denominator of Equation 21.18, the maximum current will always
occur when XL � XC , since that yields the minimum value of Z.

Exercise 21.6
Consider a series RLC circuit for which R � 1.20 � 102 	, C � 3.10 � 10�5 F, �Vrms � 35.0 V, and f � 60.0 s�1.
(a) Determine the value of the inductance for which the rms current is a maximum. (b) Find the maximum rms
current in the circuit.

Answers (a) 0.227 H (b) 0.292 A

0.133 AI rms �
�V rms

Z
�

20.0 V
1.50 � 102 	

�

Soft iron
S

R

Z2
Secondary
(output)

Primary
(input)

�V1

Z1

N1 N2

Figure 21.15 An ideal transformer
consists of two coils wound on the
same soft iron core. An AC voltage
�V1 is applied to the primary coil,
and the output voltage �V2 is
observed across the load resistance R
after the switch is closed.
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706 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

where �B is the magnetic flux through each turn. If we assume that no flux leaks from
the iron core, then the flux through each turn of the primary equals the flux through
each turn of the secondary. Hence, the voltage across the secondary coil is

[21.21]

The term ��B /�t is common to Equations 21.20 and 21.21 and can be alge-
braically eliminated, giving

[21.22]

When N2 is greater than N1, �V2 exceeds �V1 and the transformer is referred to as
a step-up transformer. When N2 is less than N1, making �V2 less than �V1, we have a
step-down transformer.

By Faraday’s law, a voltage is generated across the secondary only when there is
a change in the number of flux lines passing through the secondary. The input cur-
rent in the primary must therefore change with time, which is what happens when
an alternating current is used. When the input at the primary is a direct current,
however, a voltage output occurs at the secondary only at the instant a switch in
the primary circuit is opened or closed. Once the current in the primary reaches a
steady value, the output voltage at the secondary is zero.

It may seem that a transformer is a device in which it is possible to get some-
thing for nothing. For example, a step-up transformer can change an input volt-
age from, say, 10 V to 100 V. This means that each coulomb of charge leaving the
secondary has 100 J of energy, whereas each coulomb of charge entering the pri-
mary has only 10 J of energy. That is not the case, however, because the power
input to the primary equals the power output at the secondary: 

I1 �V1 � I2 �V2 [21.23]

While the voltage at the secondary may be, say, ten times greater than the voltage at
the primary, the current in the secondary will be smaller than the primary’s current
by a factor of ten. Equation 21.23 assumes an ideal transformer, in which there are
no power losses between the primary and the secondary. Real transformers typi-
cally have power efficiencies ranging from 90% to 99%. Power losses occur
because of such factors as eddy currents induced in the iron core of the trans-
former, which dissipate energy in the form of I 2R losses.

When electric power is transmitted over large distances, it’s economical to use a
high voltage and a low current because the power lost via resistive heating in the
transmission lines varies as I 2R. This means that if a utility company can reduce
the current by a factor of ten, for example, the power loss is reduced by a factor of
one hundred. In practice, the voltage is stepped up to around 230 000 V at the
generating station, then stepped down to around 20 000 V at a distribution station,
and finally stepped down to 120 V at the customer’s utility pole.

�V2 �
N2

N1
 �V1

�V2 � �N2 
��B

�t

In an ideal transformer, the input
power equals the output power. �

A P P L I C AT I O N
Long-Distance Electric Power
Transmission

EXAMPLE 21.7 Distributing Power to a City
Goal Understand transformers and their role in reducing power loss.

Problem A generator at a utility company produces 1.00 � 102 A of current at 4.00 � 103 V. The voltage is stepped
up to 2.40 � 105 V by a transformer before being sent on a high-voltage transmission line across a rural area to a city.
Assume that the effective resistance of the power line is 30.0 	 and that the transformers are ideal. (a) Determine the
percentage of power lost in the transmission line. (b) What percentage of the original power would be lost in the
transmission line if the voltage were not stepped up?

Strategy Solving this problem is just a matter of substitution into the equation for transformers and the equation for
power loss. To obtain the fraction of power lost, it’s also necessary to compute the power output of the generator—
the current times the potential difference created by the generator.
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21.8 MAXWELL’S PREDICTIONS
During the early stages of their study and development, electric and magnetic phe-
nomena were thought to be unrelated. In 1865, however, James Clerk Maxwell
(1831–1879) provided a mathematical theory that showed a close relationship
between all electric and magnetic phenomena. In addition to unifying the for-
merly separate fields of electricity and magnetism, his brilliant theory predicted
that electric and magnetic fields can move through space as waves. The theory he
developed is based on the following four pieces of information:

1. Electric field lines originate on positive charges and terminate on negative charges.
2. Magnetic field lines always form closed loops— they don’t begin or end anywhere.
3. A varying magnetic field induces an emf and hence an electric field. This is a

statement of Faraday’s law (Chapter 20).
4. Magnetic fields are generated by moving charges (or currents), as summarized

in Ampère’s law (Chapter 19).

Solution
(a) Determine the percentage of power lost in the line.

Substitute into Equation 21.23 to find the current in the
transmission line:

I2 �
I1�V1

�V2
�

(1.00 � 102 A)(4.00 � 103 V)
2.40 � 105 V

� 1.67 A

Now use Equation 21.16 to find the power lost in the
transmission line:

(1) �lost � I2
2R � (1.67 A)2(30.0 	) � 83.7 W

Calculate the power output of the generator:

Finally, divide �lost by the power output and multiply 
by 100 to find the percentage of power lost:

0.020  9%% power lost � � 83.7 W
4.00 � 105 W � � 100 �

� � I1�V1 � (1.00 � 102 A)(4.00 � 103 V) � 4.00 � 105 W

(b) What percentage of the original power would be lost
in the transmission line if the voltage were not stepped
up?

Replace the stepped-up current in equation (1) by the
original current of 1.00 � 102 A.

�lost � I 2R � (1.00 � 102 A)2(30.0 	) � 3.00 � 105 W

Calculate the percentage loss, as before: 75%% power lost � � 3.00 � 105 W
4.00 � 105 W � � 100 �

Remarks This example illustrates the advantage
of high-voltage transmission lines. At the city, a
transformer at a substation steps the voltage back
down to about 4 000 V, and this voltage is main-
tained across utility lines throughout the city.
When the power is to be used at a home or busi-
ness, a transformer on a utility pole near the
establishment reduces the voltage to 240 V or
120 V.

Exercise 21.7
Suppose the same generator has the voltage
stepped up to only 7.50 � 104 V and the resistance
of the line is 85.0 	. Find the percentage of power
lost in this case.

Answer 0.604%

This cylindrical step-down trans-
former drops the voltage from 4 000 V
to 220 V for delivery to a group of
residences.Ge

or
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708 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

The first statement is a consequence of the nature of the electrostatic force
between charged particles, given by Coulomb’s law. It embodies the fact that free
charges (electric monopoles) exist in nature.

The second statement— that magnetic fields form continuous loops— is exem-
plified by the magnetic field lines around a long, straight wire, which are closed
circles, and the magnetic field lines of a bar magnet, which form closed loops. It
says, in contrast to the first statement, that free magnetic charges (magnetic
monopoles) don’t exist in nature.

The third statement is equivalent to Faraday’s law of induction, and the fourth
is equivalent to Ampère’s law.

In one of the greatest theoretical developments of the 19th century, Maxwell
used these four statements within a corresponding mathematical framework to
prove that electric and magnetic fields play symmetric roles in nature. It was
already known from experiments that a changing magnetic field produced an
electric field according to Faraday’s law. Maxwell believed that nature was symmet-
ric, and he therefore hypothesized that a changing electric field should produce a
magnetic field. This hypothesis could not be proven experimentally at the time it
was developed, because the magnetic fields generated by changing electric fields
are generally very weak and therefore difficult to detect.

To justify his hypothesis, Maxwell searched for other phenomena that might be
explained by it. He turned his attention to the motion of rapidly oscillating (acceler-
ating) charges, such as those in a conducting rod connected to an alternating volt-
age. Such charges are accelerated and, according to Maxwell’s predictions, generate
changing electric and magnetic fields. The changing fields cause electromagnetic
disturbances that travel through space as waves, similar to the spreading water waves
created by a pebble thrown into a pool. The waves sent out by the oscillating charges
are fluctuating electric and magnetic fields, so they are called electromagnetic waves.
From Faraday’s law and from Maxwell’s own generalization of Ampère’s law,
Maxwell calculated the speed of the waves to be equal to the speed of light, 
c � 3 � 108 m/s. He concluded that visible light and other electromagnetic waves
consist of fluctuating electric and magnetic fields traveling through empty space,
with each varying field inducing the other! This was truly one of the greatest discov-
eries of science, on a par with Newton’s discovery of the laws of motion. Like New-
ton’s laws, it had a profound influence on later scientific developments.

21.9 HERTZ’S CONFIRMATION OF 
MAXWELL’S PREDICTIONS

In 1887, after Maxwell’s death, Heinrich Hertz (1857–1894) was the first to gener-
ate and detect electromagnetic waves in a laboratory setting, using LC circuits. In
such a circuit, a charged capacitor is connected to an inductor, as in Figure 21.16.
When the switch is closed, oscillations occur in the current in the circuit and in
the charge on the capacitor. If the resistance of the circuit is neglected, no energy
is dissipated and the oscillations continue.

In the following analysis, we neglect the resistance in the circuit. We assume
that the capacitor has an initial charge of Q max and that the switch is closed at t � 0.
When the capacitor is fully charged, the total energy in the circuit is stored in the
electric field of the capacitor and is equal to Q 2

max/2C . At this time, the current is
zero, so no energy is stored in the inductor. As the capacitor begins to discharge,
the energy stored in its electric field decreases. At the same time, the current
increases and energy equal to L I 2/2 is now stored in the magnetic field of the
inductor. Thus, energy is transferred from the electric field of the capacitor to the
magnetic field of the inductor. When the capacitor is fully discharged, it stores no
energy. At this time, the current reaches its maximum value and all of the energy is
stored in the inductor. The process then repeats in the reverse direction. The
energy continues to transfer between the inductor and the capacitor, correspon-
ding to oscillations in the current and charge.

JAMES CLERK MAXWELL,
Scottish Theoretical Physicist
(1831–1879)
Maxwell developed the electromagnetic
theory of light, the kinetic theory of gases,
and explained the nature of Saturn’s rings
and color vision. Maxwell’s successful in-
terpretation of the electromagnetic field
resulted in the equations that bear his
name. Formidable mathematical ability
combined with great insight enabled him
to lead the way in the study of electro-
magnetism and kinetic theory.
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HEINRICH RUDOLF HERTZ,
German Physicist (1857–1894)
Hertz made his most important discovery
of radio waves in 1887. After finding that
the speed of a radio wave was the same
as that of light, Hertz showed that radio
waves, like light waves, could be reflected,
refracted, and diffracted. Hertz died of
blood poisoning at the age of 36. During
his short life, he made many contributions
to science. The hertz, equal to one com-
plete vibration or cycle per second, is
named after him.
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As we saw in Section 21.6, the frequency of oscillation of an LC circuit is called
the resonance frequency of the circuit and is given by

The circuit Hertz used in his investigations of electromagnetic waves is similar
to that just discussed and is shown schematically in Figure 21.17. An induction coil
(a large coil of wire) is connected to two metal spheres with a narrow gap between
them to form a capacitor. Oscillations are initiated in the circuit by short voltage
pulses sent via the coil to the spheres, charging one positive, the other negative.
Because L and C are quite small in this circuit, the frequency of oscillation is quite
high, f � 100 MHz. This circuit is called a transmitter because it produces electro-
magnetic waves.

Several meters from the transmitter circuit, Hertz placed a second circuit, the
receiver, which consisted of a single loop of wire connected to two spheres. It had
its own effective inductance, capacitance, and natural frequency of oscillation.
Hertz found that energy was being sent from the transmitter to the receiver when the
resonance frequency of the receiver was adjusted to match that of the transmitter.
The energy transfer was detected when the voltage across the spheres in the
receiver circuit became high enough to produce ionization in the air, which
caused sparks to appear in the air gap separating the spheres. Hertz’s experiment
is analogous to the mechanical phenomenon in which a tuning fork picks up the
vibrations from another, identical tuning fork.

Hertz hypothesized that the energy transferred from the transmitter to the re-
ceiver is carried in the form of waves, now recognized as electromagnetic waves. In
a series of experiments, he also showed that the radiation generated by the trans-
mitter exhibits wave properties: interference, diffraction, reflection, refraction,
and polarization. As you will see shortly, all of these properties are exhibited by
light. It became evident that Hertz’s electromagnetic waves had the same known
properties of light waves and differed only in frequency and wavelength. Hertz ef-
fectively confirmed Maxwell’s theory by showing that Maxwell’s mysterious electro-
magnetic waves existed and had all the properties of light waves.

Perhaps the most convincing experiment Hertz performed was the measure-
ment of the speed of waves from the transmitter, accomplished as follows: waves of
known frequency from the transmitter were reflected from a metal sheet so that
an interference pattern was set up, much like the standing-wave pattern on a
stretched string. As we learned in our discussion of standing waves, the distance
between nodes is �/2, so Hertz was able to determine the wavelength �. Using the
relationship v � �f , he found that v was close to 3 � 108 m/s, the known speed of
visible light. Hertz’s experiments thus provided the first evidence in support of
Maxwell’s theory.

21.10 PRODUCTION OF ELECTROMAGNETIC
WAVES BY AN ANTENNA

In the previous section, we found that the energy stored in an LC circuit is contin-
ually transferred between the electric field of the capacitor and the magnetic field
of the inductor. However, this energy transfer continues for prolonged periods of
time only when the changes occur slowly. If the current alternates rapidly, the cir-
cuit loses some of its energy in the form of electromagnetic waves. In fact, electro-
magnetic waves are radiated by any circuit carrying an alternating current. The
fundamental mechanism responsible for this radiation is the acceleration of a
charged particle. Whenever a charged particle accelerates it radiates energy.

An alternating voltage applied to the wires of an antenna forces electric charges
in the antenna to oscillate. This is a common technique for accelerating charged
particles and is the source of the radio waves emitted by the broadcast antenna of
a radio station.

f0 �
1

2� √LC

S

L
C

Qmax

+

–

Figure 21.16 A simple LC circuit.
The capacitor has an initial charge of
Q max and the switch is closed at t � 0.

Input

Transmitter

Receiver

Induction
coil

q –q

+ –

Figure 21.17 A schematic diagram
of Hertz’s apparatus for generating
and detecting electromagnetic waves.
The transmitter consists of two spheri-
cal electrodes connected to an induc-
tion coil, which provides short voltage
surges to the spheres, setting up oscil-
lations in the discharge. The receiver
is a nearby single loop of wire con-
taining a second spark gap.

A P P L I C AT I O N
Radio-Wave Transmission
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710 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

Figure 21.18 illustrates the production of an electromagnetic wave by oscillating
electric charges in an antenna. Two metal rods are connected to an AC source,
which causes charges to oscillate between the rods. The output voltage of the gen-
erator is sinusoidal. At t � 0, the upper rod is given a maximum positive charge and
the bottom rod an equal negative charge, as in Figure 21.18a. The electric field
near the antenna at this instant is also shown in the figure. As the charges oscillate,
the rods become less charged, the field near the rods decreases in strength, and the
downward-directed maximum electric field produced at t � 0 moves away from the
rod. When the charges are neutralized, as in Figure 21.18b, the electric field has
dropped to zero, after an interval equal to one-quarter of the period of oscillation.
Continuing in this fashion, the upper rod soon obtains a maximum negative charge
and the lower rod becomes positive, as in Figure 21.18c, resulting in an electric
field directed upward. This occurs after an interval equal to one-half the period of
oscillation. The oscillations continue as indicated in Figure 21.18d. Note that the
electric field near the antenna oscillates in phase with the charge distribution: the
field points down when the upper rod is positive and up when the upper rod is neg-
ative. Further, the magnitude of the field at any instant depends on the amount of
charge on the rods at that instant.

As the charges continue to oscillate (and accelerate) between the rods, the elec-
tric field set up by the charges moves away from the antenna in all directions at the
speed of light. Figure 21.18 shows the electric field pattern on one side of the
antenna at certain times during the oscillation cycle. As you can see, one cycle of
charge oscillation produces one full wavelength in the electric field pattern.

Because the oscillating charges create a current in the rods, a magnetic field is
also generated when the current in the rods is upward, as shown in Figure 21.19.
The magnetic field lines circle the antenna (recall right-hand rule number 2) and
are perpendicular to the electric field at all points. As the current changes with
time, the magnetic field lines spread out from the antenna. At great distances
from the antenna, the strengths of the electric and magnetic fields become very
weak. At these distances, however, it is necessary to take into account the facts that
(1) a changing magnetic field produces an electric field and (2) a changing
electric field produces a magnetic field, as predicted by Maxwell. These induced
electric and magnetic fields are in phase: at any point, the two fields reach their
maximum values at the same instant. This synchrony is illustrated at one instant of
time in Active Figure 21.20. Note that (1) the and fields are perpendicular to
each other, and (2) both fields are perpendicular to the direction of motion of the
wave. This second property is characteristic of transverse waves. Hence, we see that
an electromagnetic wave is a transverse wave.

21.11 PROPERTIES OF ELECTROMAGNETIC WAVES
We have seen that Maxwell’s detailed analysis predicted the existence and proper-
ties of electromagnetic waves. In this section we summarize what we know about
electromagnetic waves thus far and consider some additional properties. In our dis-
cussion here and in future sections, we will often make reference to a type of wave
called a plane wave. A plane electromagnetic wave is a wave traveling from a very
distant source. Active Figure 21.20 pictures such a wave at a given instant of time. In
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Figure 21.18 An electric field set
up by oscillating charges in an
antenna. The field moves away from
the antenna at the speed of light.

I

Figure 21.19 Magnetic field lines
around an antenna carrying a chang-
ing current.

TIP 21.1 Accelerated Charges
Produce Electromagnetic Waves
Stationary charges produce only elec-
tric fields, while charges in uniform
motion (i.e., constant velocity) pro-
duce electric and magnetic fields, but
no electromagnetic waves. In contrast,
accelerated charges produce electro-
magnetic waves as well as electric and
magnetic fields. An accelerating
charge also radiates energy.
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21.11 Properties of Electromagnetic Waves 711

this case, the oscillations of the electric and magnetic fields take place in planes
perpendicular to the x-axis and are therefore perpendicular to the direction
of travel of the wave. Because of the latter property, electromagnetic waves are trans-
verse waves. In the figure, the electric field is in the y-direction and the magnetic
field is in the z-direction. Light propagates in a direction perpendicular to these
two fields. That direction is determined by yet another right-hand rule: (1) point
the fingers of your right hand in the direction of , (2) curl them in the direc-
tion of , (3) the right thumb then points in the direction of propagation of the
wave.

Electromagnetic waves travel with the speed of light. In fact, it can be shown
that the speed of an electromagnetic wave is related to the permeability and per-
mittivity of the medium through which it travels. Maxwell found this relationship
for free space to be

[21.24]

where c is the speed of light, �0 � 4� � 10�7 N � s2/C2 is the permeability con-
stant of vacuum, and �0 � 8.854 19 � 10�12 C2/N � m2 is the permittivity of free
space. Substituting these values into Equation 21.24, we find that

c � 2.997 92 � 108 m/s [21.25]

The fact that electromagnetic waves travel at the same speed as light in vacuum led
scientists to conclude (correctly) that light is an electromagnetic wave.

Maxwell also proved the following relationship for electromagnetic waves:

[21.26]
E
B

� c

c �
1

√�0�0
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ACTIVE FIGURE 21.20
An electromagnetic wave sent out by oscillating charges in an antenna, represented at one instant of
time and far from the antenna, moving in the positive x-direction with speed c. Note that the electric
field is perpendicular to the magnetic field, and both are perpendicular to the direction of wave
propagation. The variations of E and B with time are sinusoidal.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 21.20, where you can observe the wave
and the variations of the fields. In addition, you can take a “snapshot” of the wave at an instant of time
and investigate the electric and magnetic fields at that instant.

� Speed of light.
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712 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

which states that the ratio of the magnitude of the electric field to the magnitude
of the magnetic field equals the speed of light.

Electromagnetic waves carry energy as they travel through space, and this
energy can be transferred to objects placed in their paths. The average rate at
which energy passes through an area perpendicular to the direction of travel of a
wave, or the average power per unit area, is called the intensity I of the wave, and is
given by

[21.27]

where Emax and Bmax are the maximum values of E and B. The quantity I is analo-
gous to the intensity of sound waves introduced in Chapter 14. From Equation
21.26, we see that . Equation 21.27 can therefore also
be expressed as

[21.28]

Note that in these expressions we use the average power per unit area. A detailed
analysis would show that the energy carried by an electromagnetic wave is shared
equally by the electric and magnetic fields.

Electromagnetic waves have an average intensity given by Equation 21.28. When
the waves strike an area A of an object’s surface for a given time �t, energy 
U � IA�t is transferred to the surface. Momentum is transferred, as well. Hence,
pressure is exerted on a surface when an electromagnetic wave impinges on it. In
what follows, we assume that the electromagnetic wave transports a total energy U
to a surface in a time �t. If the surface absorbs all the incident energy U in this
time, Maxwell showed that the total momentum delivered to this surface has a
magnitude 

(complete absorption) [21.29]

If the surface is a perfect reflector, then the momentum transferred in a time �t
for normal incidence is twice that given by Equation 21.29. This is analogous to a
molecule of gas bouncing off the wall of a container in a perfectly elastic collision.
If the molecule is initially traveling in the positive x-direction at velocity v, and
after the collision is traveling in the negative x-direction at velocity �v, then its
change in momentum is given by �p � mv � (�mv) � 2mv. Light bouncing off a
perfect reflector is a similar process, so for complete reflection,

(complete reflection) [21.30]

Although radiation pressures are very small (about 5 � 10�6 N/m2 for direct
sunlight), they have been measured with a device such as the one shown in
Figure 21.21. Light is allowed to strike a mirror and a black disk that are con-
nected to each other by a horizontal bar suspended from a fine fiber. Light strik-
ing the black disk is completely absorbed, so all of the momentum of the light is
transferred to the disk. Light striking the mirror head-on is totally reflected;
hence, the momentum transfer to the mirror is twice that transmitted to the disk.
As a result, the horizontal bar supporting the disks twists counterclockwise as seen
from above. The bar comes to equilibrium at some angle under the action of the
torques caused by radiation pressure and the twisting of the fiber. The radiation
pressure can be determined by measuring the angle at which equilibrium occurs.
The apparatus must be placed in a high vacuum to eliminate the effects of air cur-
rents. It’s interesting that similar experiments demonstrate that electromagnetic
waves carry angular momentum, as well.

In summary, electromagnetic waves traveling through free space have the
following properties:

p �
2U
c

p �
U
c

p:

I �
E 2

max

2�0c
�

c
2�0

 B2
max

Emax � cBmax � Bmax /√�0�0

I �
EmaxBmax

2�0

TIP 21.2 E Stronger Than B?
The relationship E � Bc makes it
appear that the electric fields associ-
ated with light are much larger than
the magnetic fields. This is not the
case: The units are different, so the
quantities can’t be directly compared.
The two fields contribute equally to
the energy of a light wave.

Light is an electromagnetic wave and
transports energy and momentum. �

Light

Black
disk

Mirror

Figure 21.21 An apparatus for
measuring the radiation pressure of
light. In practice, the system is
contained in a high vacuum.
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21.11 Properties of Electromagnetic Waves 713

1. Electromagnetic waves travel at the speed of light.
2. Electromagnetic waves are transverse waves, because the electric and magnetic

fields are perpendicular to the direction of propagation of the wave and to each
other.

3. The ratio of the electric field to the magnetic field in an electromagnetic wave
equals the speed of light.

4. Electromagnetic waves carry both energy and momentum, which can be deliv-
ered to a surface.

In the interplanetary space in the Solar System, there
is a large amount of dust. Although interplanetary
dust can in theory have a variety of sizes— from
molecular size upward—why are there very few 
dust particles smaller than about 0.2 �m in the 
Solar System? [Hint: The Solar System originally 
contained dust particles of all sizes.]

Explanation Dust particles in the Solar System are sub-
ject to two forces: the gravitational force toward the Sun
and the force from radiation pressure, which is directed

away from the Sun. The gravitational force is propor-
tional to the cube of the radius of a spherical dust parti-
cle, because it is proportional to the mass (�V ) of the
particle. The radiation pressure is proportional to the
square of the radius, because it depends on the cross-
sectional area of the particle. For large particles, the
gravitational force is larger than the force of radiation
pressure, and the weak attraction to the Sun causes such
particles to move slowly towards it. For small particles,
less than about 0.2 �m, the larger force from radiation
pressure sweeps them out of the Solar System.

Applying Physics 21.2 Solar System Dust

In an apparatus such as that in Figure 21.21, suppose the black disk is replaced by
one with half the radius. Which of the following are different after the disk is
replaced? (a) radiation pressure on the disk; (b) radiation force on the disk; 
(c) radiation momentum delivered to the disk in a given time interval.

Quick Quiz 21.4

EXAMPLE 21.8 A Hot Tin Roof (Solar-Powered Homes)
Goal Calculate some basic properties of light and relate them
to thermal radiation.

Problem Assume that the Sun delivers an average power
per unit area of about 1.00 � 103 W/m2 to Earth’s surface.
(a) Calculate the total power incident on a flat tin roof 8.00 m
by 20.0 m. Assume that the radiation is incident normal (per-
pendicular) to the roof. (b) Calculate the peak electric field
of the light. (c) Compute the peak magnetic field of the light.
(d) The tin roof reflects some light, and convection, conduc-
tion, and radiation transport the rest of the thermal energy
away, until some equilibrium temperature is established. If
the roof is a perfect blackbody and rids itself of one-half of
the incident radiation through thermal radiation, what’s its
equilibrium temperature? Assume the ambient temperature
is 298 K.

Solution
(a) Calculate the power delivered to the roof.

Multiply the intensity by the area to get the power: � � IA � (1.00 � 103 W/m2)(8.00 m � 20.0 m)

� 1.60 � 105 W

(Example 21.8) A solar home in Oregon.
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714 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

(c) Compute the peak magnetic field of the light.

Obtain Bmax using Equation 21.26: 2.89 � 10�6 TBmax �
Emax

c
�

868 V/m
3.00 � 108 m/s

�

(d) Find the equilibrium temperature of the roof.

Substitute into Stefan’s law. Only one-half the incident
power should be substituted, and twice the area of the
roof (both the top and the underside of the roof
count).

T � 333 K � 60.0° C

  � (298 K)4 �
(0.500)(1.60 � 105 W/m2)

(5.67 � 10�8 W/m2�K4)(1)(3.20 � 102 m2)

 T 4 � T 4
0 �

�

�eA

 � � �e A(T 4 � T 4
0 )

Remarks If the incident power could all be converted to electric power, it would be more than enough for the aver-
age home. Unfortunately, solar energy isn’t easily harnessed, and the prospects for large-scale conversion are not as
bright as they may appear from this simple calculation. For example, the conversion efficiency from solar to electrical
energy is far less than 100%; 10% is typical for photovoltaic cells. Roof systems for using solar energy to raise the tem-
perature of water with efficiencies of around 50% have been built. Other practical problems must be considered,
however, such as overcast days, geographic location, and energy storage.

Exercise 21.8
A spherical satellite orbiting Earth is lighted on one side by the Sun, with intensity 1 340 W/m2. (a) If the radius of
the satellite is 1.00 m, what power is incident upon it? [Note: The satellite effectively intercepts radiation only over a
cross section—an area equal to that of a disk, �r 2.) (b) Calculate the peak electric field. (c) Calculate the peak mag-
netic field.

Answer (a) 4.21 � 103 W (b) 1.01 � 103 V/m (c) 3.35 � 10�6 T

EXAMPLE 21.9 Clipper Ships of Space
Goal Relate the intensity of light to its mechanical effect on matter.

Problem Aluminized mylar film is a highly reflective, lightweight material that could be used to make sails for
spacecraft driven by the light of the sun. Suppose a sail with area 1.00 km2 is orbiting the Sun at a distance of 
1.50 � 1011 m. The sail has a mass of 5.00 � 103 kg and is tethered to a payload of mass 2.00 � 104 kg. (a) If the in-
tensity of sunlight is 1.34 � 103 W and the sail is oriented perpendicular to the incident light, what radial force is ex-
erted on the sail? (b) About how long would it take to change the radial speed of the sail by 1.00 km/s? Assume that
the sail is perfectly reflecting.

Strategy Equation 21.30 gives the momentum imparted when light strikes an object and is totally reflected. The
change in this momentum with time is a force. For part (b), use Newton’s second law to obtain the acceleration. The
velocity kinematics equation then yields the necessary time to achieve the desired change in speed.

Solution
(a) Find the force exerted on the sail.

(b) Calculate the peak electric field of the light.

Solve Equation 21.28 for Emax:

� 868 V/m

Emax � √2(4� � 10�7 N�s2/C2)(3.00 � 108 m/s)(1.00 � 103 W/m2)

I �
E2

max

2�0c
 :  E max � √2�0cI
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21.12 The Spectrum of Electromagnetic Waves 715

21.12 THE SPECTRUM OF ELECTROMAGNETIC
WAVES

All electromagnetic waves travel in a vacuum with the speed of light, c. These waves
transport energy and momentum from some source to a receiver. In 1887, Hertz
successfully generated and detected the radio-frequency electromagnetic waves
predicted by Maxwell. Maxwell himself had recognized as electromagnetic waves
both visible light and the infrared radiation discovered in 1800 by William
Herschel. It is now known that other forms of electromagnetic waves exist that are
distinguished by their frequencies and wavelengths.

Because all electromagnetic waves travel through free space with a speed c, their
frequency f and wavelength � are related by the important expression

c � f � [21.31]

The various types of electromagnetic waves are presented in Figure 21.22 (page 716).
Note the wide and overlapping range of frequencies and wavelengths. For instance,
an AM radio wave with a frequency of 5.00 MHz (a typical value) has a wavelength of

The following abbreviations are often used to designate short wavelengths and
distances:

� �
c
f

�
3.00 � 108 m/s
5.00 � 106 s�1 � 60.0 m

Write Equation 21.30, and substitute U � � �t � IA �t
for the energy delivered to the sail:

�p �
2U
c

�
2��t

c
�

2IA �t
c

Divide both sides by �t, obtaining the force �p/�t
exerted by the light on the sail:

� 8.93 N

F �
�p
�t

�
2IA

c
�

2(1340 W/m2)(1.00 � 106 m2) 
3.00 � 108 m/s

(b) Find the time it takes to change the radial speed by
1.00 km/s.

Substitute the force into Newton’s second law and solve
for the acceleration of the sail:

a �
F
m

�
8.93 N

2.50 � 104 kg
� 3.57 � 10�4 m/s2

Apply the kinematics velocity equation: v � at � v0

Solve for t : 2.80 � 106 st �
v � v0

a
�

1.00 � 103 m/s
3.57 � 10�4 m/s2 �

Remarks The answer is a little over a month. While the acceleration is very low, there are no fuel costs, and within a
few months the velocity can change sufficiently to allow the spacecraft to reach any planet in the solar system. Such
spacecraft may be useful for certain purposes and are highly economical, but require a considerable amount of
patience.

Exercise 21.9
A laser has a power of 22.0 W and a beam radius of 0.500 mm. (a) Find the intensity of the laser. (b) Suppose you
were floating in space and pointed the laser beam away from you. What would your acceleration be? Assume your to-
tal mass, including equipment is 72.0 kg and that the force is directed through your center of mass. (Hint: The
change in momentum is the same as in the nonreflective case.) (c) Compare the acceleration found in part (b) with
the acceleration of gravity of a space station of mass 1.00 � 106 kg, if the station’s center of mass is 100.0 m away.

Answers (a) 2.80 � 107 W/m2 (b) 1.02 � 10�9 m/s2 (c) 6.67 � 10�9 m/s2. If you were planning to use your
laser welding torch as a thruster to get you back to the station, don’t bother— the force of gravity is stronger. Better
yet, get somebody to toss you a line.

Wearing sunglasses lacking ultraviolet
(UV) protection is worse for your eyes
than wearing no sunglasses at all.
Sunglasses without protection absorb
some visible light, causing the pupils
to dilate. This allows more UV light to
enter the eye, increasing the damage
to the lens of the eye over time.
Without the sunglasses, the pupils
constrict, reducing both visible and
dangerous UV radiation. Be cool:
wear sunglasses with UV protection.
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716 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

1 micrometer (�m) � 10�6 m

1 nanometer (nm) � 10�9 m

1 angstrom (Å) � 10�10 m

The wavelengths of visible light, for example, range from 0.4 �m to 0.7 �m, or
400 nm to 700 nm, or 4 000 Å to 7 000 Å.

Wavelength

1 pm

1 nm

1 µm

1 cm

1 m

1 km

Long wave

AM

TV, FM

Microwaves

Infrared

Visible light

Ultraviolet

X-rays

Gamma rays

Frequency, Hz

1022

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

109

108

107

106

105

104

103

µ

Radio waves

1 mm

Violet
Blue
Green
Yellow

Orange

Red

~400 nm

~700 nm

Figure 21.22 The electromagnetic
spectrum. Note the overlap between
adjacent types of waves. The
expanded view to the right shows
details of the visible spectrum.

Which of the following statements are true about light waves? (a) The higher the
frequency, the longer the wavelength. (b) The lower the frequency, the longer the
wavelength. (c) Higher frequency light travels faster than lower frequency light.
(d) The shorter the wavelength, the higher the frequency. (e) The lower the fre-
quency, the shorter the wavelength.

Quick Quiz 21.5

Brief descriptions of the wave types follow, in order of decreasing wavelength.
There is no sharp division between one kind of electromagnetic wave and the next.
All forms of  electromagnetic radiation are produced by accelerating charges.

Radio waves, which were discussed in Section 21.10, are the result of charges
accelerating through conducting wires. They are, of course, used in radio and tele-
vision communication systems.

Microwaves (short-wavelength radio waves) have wavelengths ranging between
about 1 mm and 30 cm and are generated by electronic devices. Their short wave-
lengths make them well suited for the radar systems used in aircraft navigation and for
the study of atomic and molecular properties of matter. Microwave ovens are an inter-
esting domestic application of these waves. It has been suggested that solar energy
might be harnessed by beaming microwaves to Earth from a solar collector in space.

Infrared waves (sometimes incorrectly called “heat waves”), produced by hot
objects and molecules, have wavelengths ranging from about 1 mm to the longest
wavelength of visible light, 7 � 10�7 m. They are readily absorbed by most materials.
The infrared energy absorbed by a substance causes it to get warmer because the
energy agitates the atoms of the object, increasing their vibrational or translational
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21.12 The Spectrum of Electromagnetic Waves 717

motion. The result is a rise in temperature. Infrared radiation has many practical
and scientific applications, including physical therapy, infrared photography, and
the study of the vibrations of atoms.

Visible light, the most familiar form of electromagnetic waves, may be defined
as the part of the spectrum that is detected by the human eye. Light is produced
by the rearrangement of electrons in atoms and molecules. The wavelengths of
visible light are classified as colors ranging from violet (� � 4 � 10�7 m) to red
(� � 7 � 10�7 m). The eye’s sensitivity is a function of wavelength and is greatest
at a wavelength of about 5.6 � 10�7 m (yellow green).

Ultraviolet (UV) light covers wavelengths ranging from about 4 � 10�7 m
(400 nm) down to 6 � 10�10 m (0.6 nm). The Sun is an important source of ultra-
violet light (which is the main cause of suntans). Most of the ultraviolet light from
the Sun is absorbed by atoms in the upper atmosphere, or stratosphere. This is for-
tunate, because UV light in large quantities has harmful effects on humans. One
important constituent of the stratosphere is ozone (O3), produced from reactions
of oxygen with ultraviolet radiation. The resulting ozone shield causes lethal high-
energy ultraviolet radiation to warm the stratosphere.

X-rays are electromagnetic waves with wavelengths from about 10�8 m (10 nm)
down to 10�13 m (10�4 nm). The most common source of x-rays is the accelera-
tion of high-energy electrons bombarding a metal target. X-rays are used as a diag-
nostic tool in medicine and as a treatment for certain forms of cancer. Because x-
rays easily penetrate and damage or destroy living tissues and organisms, care must
be taken to avoid unnecessary exposure and overexposure.

Gamma rays—electromagnetic waves emitted by radioactive nuclei—have
wavelengths ranging from about 10�10 m to less than 10�14 m. They are highly
penetrating and cause serious damage when absorbed by living tissues. Accord-
ingly, those working near such radiation must be protected by garments contain-
ing heavily absorbing materials, such as layers of lead.

When astronomers observe the same celestial object using detectors sensitive to
different regions of the electromagnetic spectrum, striking variations in the
object’s features can be seen. Figure 21.23 shows images of the Crab Nebula made
in four different wavelength ranges. The Crab Nebula is the remnant of a super-
nova explosion that was seen on the Earth in 1054 A.D. (Compare with Fig. 8.28).

(a) (b) (c) (d)

The center of sensitivity of our eyes coincides with the
center of the wavelength distribution of the Sun. Is
this an amazing coincidence?

Explanation This is not a coincidence; rather it’s the
result of biological evolution. Humans have evolved

with vision most sensitive to wavelengths that are
strongest from the Sun. If aliens from another planet
ever arrived at Earth, their eyes would have the center
of sensitivity at wavelengths different from ours. If
their sun were a red dwarf, for example, they’d be
most sensitive to red light.

Applying Physics 21.3 The Sun and the Evolution of the Eye

Figure 21.23 Observations in different parts of the electromagnetic spectrum show different fea-
tures of the Crab Nebula. (a) X-ray image. (b) Optical image. (c) Infrared image. (d) Radio image.
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718 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

21.13 THE DOPPLER EFFECT FOR 
ELECTROMAGNETIC WAVES

As we saw in Section 14.6, sound waves exhibit the Doppler effect when the
observer, the source, or both are moving relative to the medium of propagation.
Recall that in the Doppler effect, the observed frequency of the wave is larger or
smaller than the frequency emitted by the source of the wave.

A Doppler effect also occurs for electromagnetic waves, but it differs from the
Doppler effect for sound waves in two ways. First, in the Doppler effect for sound
waves, motion relative to the medium is most important, because sound waves re-
quire a medium in which to propagate. In contrast, the medium of propagation
plays no role in the Doppler effect for electromagnetic waves, because the waves
require no medium in which to propagate. Second, the speed of sound that
appears in the equation for the Doppler effect for sound depends on the
reference frame in which it is measured. In contrast, as we shall see in Chapter
26, the speed of electromagnetic waves has the same value in all coordinate
systems that are either at rest or moving at constant velocity with respect to one
another.

The single equation that describes the Doppler effect for electromagnetic waves
is given by the approximate expression

[21.32]

where fO is the observed frequency, fS is the frequency emitted by the source, c is
the speed of light in a vacuum, and u is the relative speed of the observer and
source. Note that Equation 21.32 is valid only if u is much smaller than c . Further,
it can also be used for sound as long as the relative velocity of the source and
observer is much less than the velocity of sound. The positive sign in the equation
must be used when the source and observer are moving toward one another, while
the negative sign must be used when they are moving away from each other. Thus,
we anticipate an increase in the observed frequency if the source and observer are
approaching each other and a decrease if the source and observer recede from
each other.

Astronomers have made important discoveries using Doppler observations on
light reaching Earth from distant stars and galaxies. Such measurements have
shown that most distant galaxies are moving away from the Earth. Thus, the Uni-
verse is expanding. This Doppler shift is called a red shift because the observed
wavelengths are shifted towards the red portion (longer wavelengths) of the visible
spectrum. Further, measurements show that the speed of a galaxy increases with
increasing distance from the Earth. More recent Doppler effect measurements
made with the Hubble Space Telescope have shown that a galaxy labeled M87 is
rotating, with one edge moving toward us and the other moving away. Its meas-
ured speed of rotation was used to identify a supermassive black hole located at its
center.

fO � fS �1 �
u
c �  if u �� c

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

21.1 Resistors in an AC Circuit
If an AC circuit consists of a generator and a resistor, the
current in the circuit is in phase with the voltage, which
means the current and voltage reach their maximum values
at the same time.

In discussions of voltages and currents in AC circuits,
rms values of voltages are usually used. One reason is that

AC ammeters and voltmeters are designed to read rms val-
ues. The rms values of currents and voltage (I rms and
�V rms), are related to the maximum values of these quanti-
ties (Imax and �Vmax) as follows:

and [21.2, 21.3]

The rms voltage across a resistor is related to the rms
current in the resistor by Ohm’s law:

�VR,rms � IrmsR [21.4]

�Vrms �
�Vmax

√2
Irms �

Imax

√2
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21.2 Capacitors in an AC Circuit
If an AC circuit consists of a generator and a capacitor, the
voltage lags behind the current by 90°. This means that the
voltage reaches its maximum value one-quarter of a period
after the current reaches its maximum value.

The impeding effect of a capacitor on current in an AC
circuit is given by the capacitive reactance XC , defined as

[21.5]

where f is the frequency of the AC voltage source.
The rms voltage across and the rms current in a capaci-

tor are related by

�VC,rms � I rmsXC [21.6]

21.3 Inductors in an AC Circuit
If an AC circuit consists of a generator and an inductor, the
voltage leads the current by 90°. This means the voltage
reaches its maximum value one-quarter of a period before
the current reaches its maximum value.

The effective impedance of a coil in an AC circuit is
measured by a quantity called the inductive reactance XL,
defined as

[21.8]

The rms voltage across a coil is related to the rms cur-
rent in the coil by

�VL ,rms � I rmsXL [21.9]

21.4 The RLC Series Circuit
In an RLC series AC circuit, the maximum applied voltage
�V is related to the maximum voltages across the resistor
(�VR), capacitor (�VC), and inductor (�VL) by

[21.10]

If an AC circuit contains a resistor, an inductor, and a
capacitor connected in series, the limit they place on the
current is given by the impedance Z of the circuit, defined as

[21.13]

The relationship between the maximum voltage sup-
plied to an RLC series AC circuit and the maximum cur-
rent in the circuit, which is the same in every element, is

�Vmax � ImaxZ [21.14]

In an RLC series AC circuit, the applied rms voltage and
current are out of phase. The phase angle � between the
current and voltage is given by

[21.15]

21.5 Power in an AC Circuit
The average power delivered by the voltage source in an
RLC series AC circuit is

�av � I rms�Vrms cos  [21.17]

where the constant cos  is called the power factor.

tan  �
XL � XC

R

Z  � √R2 � (XL � XC)2

�Vmax � √�VR
2 � (�VL � �VC)2

X L � 2� fL

XC  � 
1

2� fC

21.6 Resonance in a Series RLC Circuit
In general, the rms current in a series RLC circuit can be
written

[21.18]

The current has its maximum value when the impedance
has its minimum value, corresponding to XL � XC and Z � R .
The frequency f0 at which this happens is called the
resonance frequency of the circuit, given by

[21.19]

21.7 The Transformer
If the primary winding of a transformer has N1 turns and
the secondary winding consists of N2 turns, then if an input
AC voltage �V1 is applied to the primary, the induced volt-
age in the secondary winding is given by

[21.22]

When N 2 is greater than N1, �V2 exceeds �V1 and the
transformer is referred to as a step-up transformer. When N 2
is less than N1, making �V2 less than �V1, we have a step-
down transformer. In an ideal transformer, the power output
equals the power input.

21.8–21.13 Electromagnetic Waves 
and their Properties
Electromagnetic waves were predicted by James Clerk
Maxwell and experimentally confirmed by Heinrich Hertz.
These waves are created by accelerating electric charges,
and have the following properties:

1. Electromagnetic waves are transverse waves, because the
electric and magnetic fields are perpendicular to the di-
rection of propagation of the waves.

2. Electromagnetic waves travel at the speed of light.
3. The ratio of the electric field to the magnetic field at a

given point in an electromagnetic wave equals the speed
of light:

[21.26]

4. Electromagnetic waves carry energy as they travel
through space. The average power per unit area is the
intensity I, given by

[21.27, 21.28]

where E max and Bmax are the maximum values of the
electric and magnetic fields.

5. Electromagnetic waves transport linear and angular mo-
mentum as well as energy. The momentum p delivered
in time �t at normal incidence to an object that com-
pletely absorbs light energy U is given by

(complete absorption) [21.29]p �
U
c

I �
Emax Bmax

2�0
�

E 2
max

2�0c
�

c
2�0

 B2
max

E
B

� c

�V2 �
N2

N1
 �V1

f 0 �
1

2� √LC

Irms �
�Vrms

Z
�

�Vrms

√R2 � (XL � XC)2
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720 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

If the surface is a perfect reflector, then the momentum
delivered in time �t at normal incidence is twice that
given by Equation 21.29:

(complete reflection) [21.30]

6. The speed c, frequency f, and wavelength � of an elec-
tromagnetic wave are related by

c � f � [21.31]

The electromagnetic spectrum includes waves covering a
broad range of frequencies and wavelengths. These waves
have a variety of applications and characteristics, depend-

p �
2U
c

ing on their frequencies or wavelengths. The frequency of
a given wave can be shifted by the relative velocity of
observer and source, with the observed frequency fO
given by

[21.32]

where fS is the frequency of the source, c is the speed of
light in a vacuum, and u is the relative speed of the observer
and source. The positive sign is used when the source and
observer approach each other, the negative sign when they
recede from each other.

fO � fS  �1 �
u
c �    if  u �� c

CONCEPTUAL QUESTIONS
1. Before the advent of cable television and satellite dishes,

homeowners either mounted a television antenna on the
roof or used “rabbit ears” atop their sets. (See Fig. Q21.1.)
Certain orientations of the receiving antenna on a televi-
sion set gave better reception than others. Furthermore,
the best orientation varied from station to station.
Explain.

8. When light (or other electromagnetic radiation) travels
across a given region, what is it that oscillates? What is it
that is transported?

9. In space sailing, which is a proposed alternative for trans-
port to the planets, a spacecraft carries a very large sail.
Sunlight striking the sail exerts a force, accelerating the
spacecraft. Should the sail be absorptive or reflective to be
most effective?

10. How can the average value of an alternating current be zero,
yet the square root of the average squared value not be zero?

11. Suppose a creature from another planet had eyes that
were sensitive to infrared radiation. Describe what it
would see if it looked around the room that you are now
in. That is, what would be bright and what would be dim?

12. Why should an infrared photograph of a person look
different from a photograph taken using visible light?

13. Radio stations often advertise “instant news.” If what they
mean is that you hear the news at the instant they speak it,
is their claim true? About how long would it take for a
message to travel across the United States by radio waves,
assuming that the waves could travel that great distance
and still be detected?

14. Would an inductor and a capacitor used together in an
AC circuit dissipate any energy?

15. Does a wire connected to a battery emit an electromag-
netic wave?

16. If a high-frequency current is passed through a solenoid
containing a metallic core, the core becomes warm due to
induction. Explain why the temperature of the material
rises in this situation.

17. If the resistance in an RLC circuit remains the same, but
the capacitance and inductance are each doubled, how
will the resonance frequency change?

18. Why is the sum of the maximum voltages across each of
the elements in a series RLC circuit usually greater than the
maximum applied voltage? Doesn’t this violate Kirchhoff ’s
loop rule?

19. What is the advantage of transmitting power at high
voltages?

20. What determines the maximum voltage that can be used
on a transmission line?

21. Will a transformer operate if a battery is used for the
input voltage across the primary? Explain.

Figure Q21.1
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2. What is the impedance of an RLC circuit at the resonance
frequency?

3. When a DC voltage is applied to a transformer, the pri-
mary coil sometimes will overheat and burn. Why?

4. Why are the primary and secondary coils of a transformer
wrapped on an iron core that passes through both coils?

5. Receiving radio antennas can be in the form of conduct-
ing lines or loops. What should the orientation of each of
these antennas be relative to a broadcasting antenna that
is vertical?

6. If the fundamental source of a sound wave is a vibrating
object, what is the fundamental source of an electromag-
netic wave?

7. In radio transmission, a radio wave serves as a carrier
wave, and the sound signal is superimposed on the carrier
wave. In amplitude modulation (AM) radio, the ampli-
tude of the carrier wave varies according to the sound
wave. The Navy sometimes uses flashing lights to send
Morse code between neighboring ships, a process that has
similarities to radio broadcasting. Is this process AM or
FM? What is the carrier frequency? What is the signal fre-
quency? What is the broadcasting antenna? What is the
receiving antenna?

44920_21_p693-725  1/12/05  8:34 AM  Page 720



Problems 721

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 21.1 Resistors in an AC Circuit
1. An rms voltage of 100 V is applied to a purely resistive

load of 5.00 	. Find (a) the maximum voltage applied,
(b) the rms current supplied, (c) the maximum current
supplied, and (d) the power dissipated.

2. (a) What is the resistance of a lightbulb that uses an aver-
age power of 75.0 W when connected to a 60-Hz power
source with an peak voltage of 170 V? (b) What is the
resistance of a 100-W bulb?

3. An AC power supply that produces a maximum voltage of
�Vmax � 100 V is connected to a 24.0-	 resistor. The cur-
rent and the resistor voltage are respectively measured
with an ideal AC ammeter and an ideal AC voltmeter, as
shown in Figure P21.3. What does each meter read? Note
that an ideal ammeter has zero resistance and an ideal
voltmeter has infinite resistance.

6. An AC voltage source has an output voltage given by 
�v � (150 V) sin 377t. Find (a) the rms voltage output,
(b) the frequency of the source, and (c) the voltage at 
t � 1/120 s. (d) Find the maximum current in the circuit
when the voltage source is connected to a 50.0-	 resistor.

Section 21.2 Capacitors in an AC Circuit
7. Show that the SI unit of capacitive reactance Xc is the

ohm.
8. What is the maximum current delivered to a circuit

containing a 2.20-�F capacitor when it is connected
across (a) a North American outlet having �V rms � 120 V
and f � 60.0 Hz and (b) a European outlet having �Vrms �
240 V and f � 50.0 Hz?

When a 4.0-�F capacitor is connected
to a generator whose rms output is 30 V, the current in
the circuit is observed to be 0.30 A. What is the frequency
of the source?

10. What maximum current is delivered by an AC generator
with a maximum voltage of �Vmax � 48.0 V and a frequency
f � 90.0 Hz when it is connected across a 3.70-�F capacitor?

11. What must be the capacitance of a capacitor inserted in a
60-Hz circuit in series with a generator of 170 V maxi-
mum output voltage to produce an rms current output of
0.75 A?

12. The generator in a purely capacitive AC circuit has an
angular frequency of 120� rad/s. If �Vmax � 140 V and
C � 6.00 �F, what is the rms current in the circuit?

Section 21.3 Inductors in an AC Circuit
13. Show that the inductive reactance XL has SI units of ohms.
14. The generator in a purely inductive AC circuit has an

angular frequency of 120� rad/s. If Vmax � 140 V and
L � 0.100 H, what is the rms current in the circuit?

15. An inductor has a 54.0-	 reactance at 60.0 Hz. What will
be the maximum current if this inductor is connected to a
50.0-Hz source that produces a 100-V rms voltage?

16. An inductor is connected to a 20.0-Hz power supply that
produces a 50.0-V rms voltage. What inductance is
needed to keep the maximum current in the circuit below
80.0 mA?
Determine the maximum magnetic flux through an
inductor connected to a standard outlet (�V rms � 120 V,
f � 60.0 Hz).

Section 21.4 The RLC Series Circuit
18. An inductor (L � 400 mH), a capacitor (C � 4.43 �F),

and a resistor (R � 500 	) are connected in series. A
50.0-Hz AC generator connected in series to these
elements produces a maximum current of 250 mA in
the circuit. (a) Calculate the required maximum voltage 
�Vmax. (b) Determine the phase angle by which the
current leads or lags the applied voltage.

19. A 40.0-�F capacitor is connected to a 50.0-	 resistor and
a generator whose rms output is 30.0 V at 60.0 Hz. Find

17.

9.

A

V

R = 24 	

�Vmax = 100 V

Figure P21.3

4. Figure P21.4 shows three lamps connected to a 120-V AC
(rms) household supply voltage. Lamps 1 and 2 have 150-W
bulbs; lamp 3 has a 100-W bulb. Find the rms current and
the resistance of each bulb.

120 V 1 2 3

Figure P21.4

An audio amplifier, represented by the AC source and the
resistor R in Figure P21.5, delivers alternating voltages at
audio frequencies to the speaker. If the source puts out an
alternating voltage of 15.0 V (rms), the resistance R is 8.20 	,
and the speaker is equivalent to a resistance of 10.4 	,
what is the time-averaged power delivered to the speaker?

5.

Speaker

R

Figure P21.5
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722 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

(a) the rms current in the circuit, (b) the rms voltage
drop across the resistor, (c) the rms voltage drop across
the capacitor, and (d) the phase angle for the circuit.

20. A 50.0-	 resistor, a 0.100-H inductor, and a 10.0-�F capac-
itor are connected in series to a 60.0-Hz source. The rms
current in the circuit is 2.75 A. Find the rms voltages
across (a) the resistor, (b) the inductor, (c) the capacitor,
and (d) the RLC combination. (e) Sketch the phasor
diagram for this circuit.

21. A resistor (R � 900 	), a capacitor (C � 0.25 �F), and an
inductor (L � 2.5 H) are connected in series across a 
240-Hz AC source for which �Vmax � 140 V. Calculate
(a) the impedance of the circuit, (b) the maximum
current delivered by the source, and (c) the phase angle
between the current and voltage. (d) Is the current lead-
ing or lagging the voltage?

22. An AC source operating at 60 Hz with a maximum voltage
of 170 V is connected in series with a resistor (R � 1.2 k	)
and a capacitor (C � 2.5 �F). (a) What is the maximum
value of the current in the circuit? (b) What are the maxi-
mum values of the potential difference across the resistor
and the capacitor? (c) When the current is zero, what
are the magnitudes of the potential difference across the
resistor, the capacitor, and the AC source? How much
charge is on the capacitor at this instant? (d) When the cur-
rent is at a maximum, what are the magnitudes of the poten-
tial differences across the resistor, the capacitor, and the AC
source? How much charge is on the capacitor at this instant?
A 60.0-	 resistor, a 3.00-�F capacitor, and a 0.400-H in-
ductor are connected in series to a 90.0-V (rms), 60.0-Hz
source. Find (a) the voltage drop across the LC combina-
tion and (b) the voltage drop across the RC combination.

24. An AC source operating at 60 Hz with a maximum voltage
of 170 V is connected in series with a resistor (R � 1.2 k	)
and an inductor (L � 2.8 H). (a) What is the maximum
value of the current in the circuit? (b) What are the maxi-
mum values of the potential difference across the resistor
and the inductor? (c) When the current is at a maximum,
what are the magnitudes of the potential differences
across the resistor, the inductor, and the AC source?
(d) When the current is zero, what are the magnitudes of
the potential difference across the resistor, the inductor,
and the AC source?

25. A person is working near the secondary of a transformer,
as shown in Figure P21.25. The primary voltage is 120 V
(rms) at 60.0 Hz. The capacitance Cs, which is the stray
capacitance between the hand and the secondary
winding, is 20.0 pF. Assuming that the person has a body
resistance to ground of Rb � 50.0 k	, determine the rms
voltage across the body. (Hint: Redraw the circuit with the
secondary of the transformer as a simple AC source.)

23.

26. A coil of resistance 35.0 	 and inductance 20.5 H is in
series with a capacitor and a 200-V (rms), 100-Hz source.
The rms current in the circuit is 4.00 A. (a) Calculate the
capacitance in the circuit. (b) What is �Vrms across
the coil?

An AC source with a maximum voltage
of 150 V and f � 50.0 Hz is connected between points a
and d in Figure P21.27. Calculate the rms voltages
between points (a) a and b, (b) b and c, (c) c and d, and
(d) b and d.

27.

Rb

Cs

5 000 V

Transformer

Figure P21.25

a dcb

40.0 	 185 mH 65.0 mF

Figure P21.27

Section 21.5 Power in an AC Circuit
28. A 50.0-	 resistor is connected to a 30.0-�F capacitor and

to a 60.0-Hz, 100-V (rms) source. (a) Find the power
factor and the average power delivered to the circuit.
(b) Repeat part (a) when the capacitor is replaced with a
0.300-H inductor.

29. A multimeter in an RL circuit records an rms current of
0.500 A and a 60.0-Hz rms generator voltage of 104 V. A
wattmeter shows that the average power delivered to the
resistor is 10.0 W. Determine (a) the impedance in the
circuit, (b) the resistance R, and (c) the inductance L.

30. An AC voltage with an amplitude of 100 V is applied to a
series combination of a 200-�F capacitor, a 100-mH
inductor, and a 20.0-	 resistor. Calculate the power dissi-
pation and the power factor for frequencies of (a) 60.0 Hz
and (b) 50.0 Hz.
An inductor and a resistor are connected in series. When
connected to a 60-Hz, 90-V (rms) source, the voltage
drop across the resistor is found to be 50 V (rms) and
the power delivered to the circuit is 14 W. Find (a) the
value of the resistance and (b) the value of the inductance.

32. Consider a series RLC circuit with R � 25 	, L � 6.0 mH,
and C � 25 �F. The circuit is connected to a 10-V (rms),
600-Hz AC source. (a) Is the sum of the voltage drops
across R, L, and C equal to 10 V (rms)? (b) Which is great-
est, the power delivered to the resistor, to the capacitor, or
to the inductor? (c) Find the average power delivered to
the circuit.

Section 21.6 Resonance in a Series RLC circuit
33. An RLC circuit is used to tune a radio to an FM station

broadcasting at 88.9 MHz. The resistance in the circuit is
12.0 	 and the capacitance is 1.40 pF. What inductance
should be present in the circuit?

34. Consider a series RLC circuit with R � 15 	, L � 200 mH,
C � 75 �F, and a maximum voltage of 150 V. (a) What is
the impedance of the circuit at resonance? (b) What is
the resonance frequency of the circuit? (c) When will the
current be greatest—at resonance, at ten percent below
the resonant frequency, or at ten percent above the reso-
nant frequency? (d) What is the rms current in the circuit
at a frequency of 60 Hz?

35. The AM band extends from approximately 500 kHz to
1 600 kHz. If a 2.0-�H inductor is used in a tuning cir-
cuit for a radio, what are the extremes that a capacitor

31.
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must reach in order to cover the complete band of
frequencies?

36. A series circuit contains a 3.00-H inductor, a 3.00-�F
capacitor, and a 30.0-	 resistor connected to a 120-V
(rms) source of variable frequency. Find the power deliv-
ered to the circuit when the frequency of the source is
(a) the resonance frequency, (b) one-half the resonance
frequency, (c) one-fourth the resonance frequency, (d) two
times the resonance frequency, and (e) four times the res-
onance frequency. From your calculations, can you draw a
conclusion about the frequency at which the maximum
power is delivered to the circuit?

A 10.0-	 resistor, a 10.0-mH inductor,
and a 100-�F capacitor are connected in series to a 50.0-V
(rms) source having variable frequency. Find the energy
delivered to the circuit during one period if the operating
frequency is twice the resonance frequency.

Section 21.7 The Transformer
38. An AC adapter for a telephone-answering unit uses a

transformer to reduce the line voltage of 120 V (rms) to a
voltage of 9.0 V. The rms current delivered to the answer-
ing system is 400 mA. (a) If the primary (input) coil in the
transformer in the adapter has 240 turns, how many turns
are there on the secondary (output) coil? (b) What is the
rms power delivered to the transformer? Assume an ideal
transformer.

39. An AC power generator produces 50 A (rms) at 3 600 V.
The voltage is stepped up to 100 000 V by an ideal trans-
former, and the energy is transmitted through a long-dis-
tance power line that has a resistance of 100 	. What per-
centage of the power delivered by the generator is
dissipated as heat in the power line?

40. A transformer is to be used to provide power for a com-
puter disk drive that needs 6.0 V (rms) instead of the 120 V
(rms) from the wall outlet. The number of turns in the
primary is 400, and it delivers 500 mA (the secondary cur-
rent) at an output voltage of 6.0 V (rms). (a) Should the
transformer have more turns in the secondary compared
with the primary, or fewer turns? (b) Find the current in the
primary. (c) Find the number of turns in the secondary.
A transformer on a pole near a factory steps the voltage
down from 3 600 V (rms) to 120 V (rms). The transformer
is to deliver 1 000 kW to the factory at 90% efficiency. Find
(a) the power delivered to the primary, (b) the current in
the primary, and (c) the current in the secondary.

42. A transmission line that has a resistance per unit length of
4.50 � 10�4 	/m is to be used to transmit 5.00 MW over
400 miles (6.44 � 105 m). The output voltage of the
generator is 4.50 kV (rms). (a) What is the line loss if a
transformer is used to step up the voltage to 500 kV
(rms)? (b) What fraction of the input power is lost to the
line under these circumstances? (c) What difficulties
would be encountered on attempting to transmit the
5.00 MW at the generator voltage of 4.50 kV (rms)?

Section 21.10 Production of Electromagnetic 
Waves by an Antenna

Section 21.11 Properties of Electromagnetic Waves
43. The U.S. Navy has long proposed the construction of

extremely low frequency (ELF waves) communications

41.

37.

systems; such waves could penetrate the oceans to reach
distant submarines. Calculate the length of a quarter-
wavelength antenna for a transmitter generating ELF
waves of frequency 75 Hz. How practical is this antenna?

44. Experimenters at the National Institute of Standards and
Technology have made precise measurements of the
speed of light using the fact that, in vacuum, the speed of
electromagnetic waves is , where the con-
stants �0 � 4� � 10�7 N � s2/C2 and �0 � 8.854 � 10�12

C2/N � m2. What value (to four significant figures) does
this formula give for the speed of light in vacuum?

45. Oxygenated hemoglobin absorbs weakly in the red
(hence its red color) and strongly in the near infrared,
while deoxygenated hemoglobin has the opposite absorp-
tion. This fact is used in a “pulse oximeter” to measure
oxygen saturation in arterial blood. The device clips onto
the end of a person’s finger and has two light-emitting
diodes [a red (660 nm) and an infrared (940 nm)] and a
photocell that detects the amount of light transmitted
through the finger at each wavelength. (a) Determine the
frequency of each of these light sources. (b) If 67% of the
energy of the red source is absorbed in the blood, by what
factor does the amplitude of the electromagnetic wave
change? [Hint: The intensity of the wave is equal to the av-
erage power per unit area as given by Equation 21.28.]

46. Operation of the pulse oximeter (see previous problem).
The transmission of light energy as it passes through a
solution of light-absorbing molecules is described by the
Beer–Lambert law

which gives the decrease in intensity I in terms of the dis-
tance L the light has traveled through a fluid with a con-
centration C of the light-absorbing molecule. The quantity
� is called the extinction coefficient, and its value depends
on the frequency of the light. (It has units of m2/mol.)
Assume that the extinction coefficient for 660-nm light
passing through a solution of oxygenated hemoglobin is
identical to the coefficient for 940-nm light passing through
deoxygenated hemoglobin. Assume also that 940-nm light
has zero absorption (� � 0) in oxygenated hemoglobin
and 660-nm light has zero absorption in deoxygenated
hemoglobin. If 33% of the energy of the red source and
76% of the infrared energy is transmitted through the
blood, determine the fraction of hemoglobin that is
oxygenated.

47. A microwave oven is powered by an electron tube called a
magnetron that generates electromagnetic waves of fre-
quency 2.45 GHz. The microwaves enter the oven and are
reflected by the walls. The standing-wave pattern pro-
duced in the oven can cook food unevenly, with hot spots
in the food at antinodes and cool spots at nodes, so a
turntable is often used to rotate the food and distribute
the energy. If a microwave oven is used with a cooking
dish in a fixed position, the antinodes can appear as burn
marks on foods such as carrot strips or cheese. The
separation distance between the burns is measured to
be 6.00 cm. Calculate the speed of the microwaves from
these data.

48. Assume that the solar radiation incident on Earth is
1 340 W/m2 (at the top of Earth’s atmosphere). Calculate

I � I010��CL   or     log10  � I
I0
� � ��CL

c � 1/√�0�0

44920_21_p693-725  1/12/05  8:34 AM  Page 723



724 Chapter 21 Alternating Current Circuits and Electromagnetic Waves

the total power radiated by the Sun, taking the average
separation between Earth and the Sun to be 1.49 � 1011 m.

The Sun delivers an average power of
1 340 W/m2 to the top of Earth’s atmosphere. Find the
magnitudes of and for the electromagnetic
waves at the top of the atmosphere.

Section 21.12 The Spectrum of Electromagnetic Waves
50. A diathermy machine, used in physiotherapy, generates

electromagnetic radiation that gives the effect of “deep
heat” when absorbed in tissue. One assigned frequency
for diathermy is 27.33 MHz. What is the wavelength of this
radiation?

51. What are the wavelength ranges in (a) the AM radio
band (540–1 600 kHz) and (b) the FM radio band
(88–108 MHz)?

52. An important news announcement is transmitted by radio
waves to people who are 100 km away, sitting next to their
radios, and by sound waves to people sitting across the
newsroom, 3.0 m from the newscaster. Who receives the
news first? Explain. Take the speed of sound in air to
be 343 m/s.
Infrared spectra are used by chemists to help identify an
unknown substance. Atoms in a molecule that are bound
together by a particular bond vibrate at a predictable fre-
quency, and light at that frequency is absorbed strongly by
the atom. In the case of the C"O double bond, for
example, the oxygen atom is bound to the carbon by a
bond that has an effective spring constant of 2 800 N/m.
If we assume that the carbon atom remains stationary (it
is attached to other atoms in the molecule), determine
the resonant frequency of this bond and the wavelength
of light that matches that frequency. Verify that this wave-
length lies in the infrared region of the spectrum. (The
mass of an oxygen atom is 2.66 � 10�26 kg.)

21.13 The Doppler Effect for Electromagnetic Waves
54. A spaceship is approaching a space station at a speed of

1.8 � 105 m/s. The space station has a beacon that emits
green light with a frequency of 6.0 � 1014 Hz. What is the
frequency of the beacon observed on the spaceship? What
is the change in frequency? (Carry five digits in these
calculations.)

55. While driving at a constant speed of 80 km/h, you are
passed by a car traveling at 120 km/h. If the frequency of
light emitted by the taillights of the car that passes you is
4.3 � 1014 Hz, what frequency will you observe? What is
the change in frequency?

56. A speeder tries to explain to the police that the yellow
warning lights on the side of the road looked green to her
because of the Doppler shift. How fast would she have
been traveling if yellow light of wavelength 580 nm had
been shifted to green with a wavelength of 560 nm? (Note
that, for speeds less than 0.03c, Equation 21.32 will lead to
a value for the change of frequency accurate to approxi-
mately two significant digits.)

ADDITIONAL PROBLEMS
57. As a way of determining the inductance of a coil used in a

research project, a student first connects the coil to a 12.0-V
battery and measures a current of 0.630 A. The student

53.

B
:

maxE
:

max

49.

then connects the coil to a 24.0-V (rms), 60.0-Hz genera-
tor and measures an rms current of 0.570 A. What is the
inductance?

58. The intensity of solar radiation at the top of Earth’s
atmosphere is 1 340 W/m3. Assuming that 60% of the
incoming solar energy reaches Earth’s surface, and assum-
ing that you absorb 50% of the incident energy, make an
order-of-magnitude estimate of the amount of solar
energy you absorb in a 60-minute sunbath.

A 200-	 resistor is connected in series with a 5.0-�F
capacitor and a 60-Hz, 120-V rms line. If electrical energy
costs $0.080/kWh, how much does it cost to leave this cir-
cuit connected for 24 h?

60. A series RLC circuit has a resonance frequency of
2 000/� Hz. When it is operating at a frequency of

 � 
0, XL � 12 	 and XC � 8.0 	. Calculate the values
of L and C for the circuit.

61. Two connections allow contact with two circuit elements
in series inside a box, but it is not known whether the
circuit elements are R , L, or C. In an attempt to find what
is inside the box, you make some measurements, with the
following results: when a 3.0-V DC power supply is con-
nected across the terminals, a maximum direct current of
300 mA is measured in the circuit after a suitably long
time. When a 60-Hz source with maximum voltage of
3.0 V is connected instead, the maximum current is meas-
ured as 200 mA. (a) What are the two elements in the
box? (b) What are their values of R , L, or C?

62. (a) What capacitance will resonate with a one-turn loop of
inductance 400 pH to give a radar wave of wavelength
3.0 cm? (b) If the capacitor has square parallel plates sep-
arated by 1.0 mm of air, what should the edge length of
the plates be? (c) What is the common reactance of the
loop and capacitor at resonance?

63. A dish antenna with a diameter of 20.0 m receives (at nor-
mal incidence) a radio signal from a distant source, as
shown in Figure P21.63. The radio signal is a continuous
sinusoidal wave with amplitude Emax � 0.20 �V/m.
Assume that the antenna absorbs all the radiation that
falls on the dish. (a) What is the amplitude of the mag-
netic field in this wave? (b) What is the intensity of the
radiation received by the antenna? (c) What is the power
received by the antenna?

59.

Figure P21.63

64. A particular inductor has appreciable resistance. When
the inductor is connected to a 12-V battery, the current in
the inductor is 3.0 A. When it is connected to an AC
source with an rms output of 12 V and a frequency of 60 Hz,
the current drops to 2.0 A. What are (a) the impedance at
60 Hz and (b) the inductance of the inductor?
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Problems 725

One possible means of achieving space flight is to place a
perfectly reflecting aluminized sheet into Earth’s orbit
and to use the light from the Sun to push this solar sail.
Suppose such a sail, of area 6.00 � 104 m2 and mass
6 000 kg, is placed in orbit facing the Sun. (a) What force
is exerted on the sail? (b) What is the sail’s acceleration?
(c) How long does it take for this sail to reach the Moon,
3.84 � 108 m away? Ignore all gravitational effects, and
assume a solar intensity of 1 340 W/m2. [Hint: The radia-
tion pressure by a reflected wave is given by 2(average
power per unit area)/c.]

66. Suppose you wish to use a transformer as an impedance-
matching device between an audio amplifier that has an
output impedance of 8.0 k	 and a speaker that has an
input impedance of 8.0 	. What should be the ratio of
primary to secondary turns on the transformer?

67. Compute the average energy content of a liter of sunlight
as it reaches the top of Earth’s atmosphere, where its
intensity is 1 340 W/m2.

68. In an RLC series circuit that includes a source of alternat-
ing current operating at fixed frequency and voltage, the
resistance R is equal to the inductive reactance. If the
plate separation of the capacitor is reduced to one-half of
its original value, the current in the circuit doubles. Find
the initial capacitive reactance in terms of R.

ACTIVITIES
1. For this observation, you will need some items that can be

found at many electronics stores. You will need a bicolored

65. light-emitting diode (LED), a resistor of about 100 	, 2 m
of flexible wire, and a step-down transformer with an out-
put of 3 to 6 V. Use the wire to connect the LED and the
resistor in series with the transformer. A bicolored LED is
designed such that it emits a red color when the current
in the LED is in one direction and green when the cur-
rent reverses. When connected to an AC source, the LED
is yellow. Why?

Hold the wires and whirl the LED in a circular path. In
a darkened room, you will see red and green bars at
equally spaced intervals along the path of the LED. Why?

As you continue to whirl the LED in a circular path,
have your partner count the number of green bars in the
circle, then measure the time it takes for the LED to travel
ten times around the circular path. Based on this informa-
tion, determine the time it takes for the color of the LED
to change from green to red to green. You should obtain
an answer of (1/60) s. Why?

2. Rotate a portable radio (with a telescoping antenna)
about a horizontal axis while it is tuned to a weak station.
Such an antenna detects the varying electric field
produced by the station. What can you determine about
the direction of the electric field produced by the
transmitter?

Now turn on your radio to a nearby station and ex-
periment with shielding the radio from incoming waves.
Is the reception affected by surrounding the radio by
aluminum foil? By plastic wrap? Use any other material
you have available. What kinds of material block the
signal? Why?
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Light has a dual nature. In some experiments it acts like a particle, while in others it acts like a
wave. In this part of the book, we concentrate on the aspects of light that are best under-
stood through the wave model. First we discuss the reflection of light at the boundary
between two media and the refraction (bending) of light as it travels from one medium into
another. We use these ideas to study the refraction of light as it passes through lenses and
the reflection of light from mirrored surfaces. Finally, we describe how lenses and mirrors can
be used to view objects with telescopes and microscopes and how lenses are used in photog-
raphy. The ability to manipulate light has greatly enhanced our capacity to investigate and
understand the nature of the universe.

22.1 THE NATURE OF LIGHT
Until the beginning of the 19th century, light was modeled as a stream of particles
emitted by a source that stimulated the sense of sight on entering the eye. The
chief architect of the particle theory of light was Newton. With this theory, he pro-
vided simple explanations of some known experimental facts concerning the
nature of light—namely, the laws of reflection and refraction.

Most scientists accepted Newton’s particle theory of light. During Newton’s lifetime,
however, another theory was proposed. In 1678, the Dutch physicist and astronomer
Christian Huygens (1629–1695) showed that a wave theory of light could also
explain the laws of reflection and refraction.

The wave theory didn’t receive immediate acceptance, for several reasons. First,
all the waves known at the time (sound, water, and so on) traveled through some
sort of medium, but light from the Sun could travel to Earth through empty space.

Light is bent (refracted) as it passes
through water, with different
wavelengths bending by different
amounts (which is called dispersion).
Together with reflection, these
physical phenomena lead to the
creation of a rainbow when light
passes through small, suspended
droplets of water.
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22.2 Reflection and Refraction 727

Further, it was argued that if light were some form of wave, it would bend around
obstacles; hence, we should be able to see around corners. It is now known that
light does indeed bend around the edges of objects. This phenomenon, known as
diffraction, is difficult to observe because light waves have such short wavelengths.
Even though experimental evidence for the diffraction of light was discovered by
Francesco Grimaldi (1618–1663) around 1660, for more than a century most
scientists rejected the wave theory and adhered to Newton’s particle theory, proba-
bly due to Newton’s great reputation as a scientist.

The first clear demonstration of the wave nature of light was provided in 1801
by Thomas Young (1773–1829), who showed that under appropriate conditions,
light exhibits interference behavior. Light waves emitted by a single source and
traveling along two different paths can arrive at some point and combine and can-
cel each other by destructive interference. Such behavior couldn’t be explained at
that time by a particle model, because scientists couldn’t imagine how two or more
particles could come together and cancel each other.

The most important development in the theory of light was the work of
Maxwell, who predicted in 1865 that light was a form of high-frequency electro-
magnetic wave (Chapter 21). His theory also predicted that these waves should
have a speed of 3 � 108 m/s, in agreement with the measured value.

Although the classical theory of electricity and magnetism explained most known
properties of light, some subsequent experiments couldn’t be explained by the as-
sumption that light was a wave. The most striking of these was the photoelectric effect
(which we will examine more closely in Chapter 27), discovered by Hertz. Hertz
found that clean metal surfaces emit charges when exposed to ultraviolet light.

In 1905, Einstein published a paper that formulated the theory of light quanta
(“particles”) and explained the photoelectric effect. He reached the conclusion
that light was composed of corpuscles, or discontinuous quanta of energy. These
corpuscles or quanta are now called photons to emphasize their particlelike nature.
According to Einstein’s theory, the energy of a photon is proportional to the fre-
quency of the electromagnetic wave associated with it, or:

[22.1]

where h � 6.63 � 10�34 J � s is Planck’s constant. This theory retains some features
of both the wave and particle theories of light. As we will discuss later, the photo-
electric effect is the result of energy transfer from a single photon to an electron
in the metal. This means the electron interacts with one photon of light as if the
electron had been struck by a particle. Yet the photon has wavelike characteristics,
as implied by the fact that a frequency is used in its definition.

In view of these developments, light must be regarded as having a dual nature :
In some experiments light acts as a wave and in others it acts as a particle. Classical
electromagnetic wave theory provides adequate explanations of light propagation
and of the effects of interference, whereas the photoelectric effect and other
experiments involving the interaction of light with matter are best explained by
assuming that light is a particle.

So in the final analysis, is light a wave or a particle? The answer is neither and
both: light has a number of physical properties, some associated with waves and oth-
ers with particles.

22.2 REFLECTION AND REFRACTION
When light traveling in one medium encounters a boundary leading into a second
medium, the processes of reflection and refraction can occur. In reflection, part of
the light encountering the second medium bounces off that medium. In
refraction, the light passing into the second medium bends through an angle with
respect to the normal to the boundary. Often, both processes occur at the same
time, with part of the light being reflected and part refracted. To study reflection
and refraction we need a way of thinking about beams of light, and this is given by
the ray approximation.

E � hf

CHRISTIAN HUYGENS
(1629–1695), Dutch Physicist 
and Astronomer
Huygens is best known for his contribu-
tions to the fields of optics and dynamics.
To Huygens, light was a vibratory motion
in the ether, spreading out and producing
the sensation of light when impinging on
the eye. On the basis of this theory, he
deduced the laws of reflection and refrac-
tion and explained the phenomenon of
double refraction.
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728 Chapter 22 Reflection and Refraction of Light

The Ray Approximation in Geometric Optics
An important property of light that can be understood based on common
experience is the following: light travels in a straight-line path in a
homogeneous medium, until it encounters a boundary between two different
materials. When light strikes a boundary, it is either reflected from that
boundary, passes into the material on the other side of the boundary, or partially
does both.

The preceding observation leads us to use what is called the ray approximation
to represent beams of light. As shown in Figure 22.1, a ray of light is an imaginary
line drawn along the direction of travel of the light beam. For example, a beam of
sunlight passing through a darkened room traces out the path of a light ray. We
will also make use of the concept of wave fronts of light. A wave front is a surface
passing through the points of a wave that have the same phase and amplitude. For
instance, the wave fronts in Figure 22.1 could be surfaces passing through the
crests of waves. The rays, corresponding to the direction of wave motion, are
straight lines perpendicular to the wave fronts. When light rays travel in parallel
paths, the wave fronts are planes perpendicular to the rays.

Reflection of Light
When a light ray traveling in a transparent medium encounters a boundary lead-
ing into a second medium, part of the incident ray is reflected back into the first
medium. Figure 22.2a shows several rays of a beam of light incident on a smooth,
mirrorlike reflecting surface. The reflected rays are parallel to each other, as indi-
cated in the figure. The reflection of light from such a smooth surface is called
specular reflection. On the other hand, if the reflecting surface is rough, as in
Figure 22.2b, the surface reflects the rays in a variety of directions. Reflection from
any rough surface is known as diffuse reflection. A surface behaves as a smooth
surface as long as its variations are small compared with the wavelength of the inci-
dent light. Figures 22.2c and 22.2d are photographs of specular and diffuse reflec-
tion of laser light, respectively.

As an example, consider the two types of reflection from a road surface that
a driver might observe while driving at night. When the road is dry, light from
oncoming vehicles is scattered off the road in different directions (diffuse
reflection) and the road is clearly visible. On a rainy night when the road is wet,

Rays

Wave fronts

Figure 22.1 A plane wave traveling
to the right. Note that the rays, corre-
sponding to the direction of wave mo-
tion, are straight lines perpendicular
to the wave fronts.

(b)(a)

Figure 22.2 A schematic represen-
tation of (a) specular reflection,
where the reflected rays are all paral-
lel to each other, and (b) diffuse
reflection, where the reflected rays
travel in random directions. (c, d)
Photographs of specular and diffuse
reflection, made with laser light.
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A P P L I C AT I O N
Seeing the Road on a Rainy
Night
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22.2 Reflection and Refraction 729

road’s irregularities are filled with water. Because the wet surface is smooth, the
light undergoes specular reflection. This means that the light is reflected
straight ahead, and the driver of a car sees only what is directly in front of him.
Light from the side never reaches his eye. In this book we concern ourselves
only with specular reflection, and we use the term reflection to mean specular
reflection.

Which part of Figure 22.3, (a) or (b), better shows specular reflection of light
from the roadway?

Quick Quiz 22.1

(a) (b)

Figure 22.3 (Quick Quiz 22.1)
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Consider a light ray traveling in air and incident at some angle on a flat,
smooth surface, as in Active Figure 22.4. The incident and reflected rays make
angles �1 and �1�, respectively, with a line perpendicular to the surface at the point
where the incident ray strikes the surface. We call this line the normal to the
surface. Experiments show that the angle of reflection equals the angle of
incidence;

[22.2]

You may have noticed a common occurrence in photographs of individuals:
their eyes appear to be glowing red. This occurs when a photographic flash device
is used and the flash unit is close to the camera lens. Light from the flash unit
enters the eye and is reflected back along its original path from the retina. This
type of reflection back along the original direction is called retroreflection. If the
flash unit and lens are close together, retroreflected light can enter the lens. Most
of the light reflected from the retina is red, due to the blood vessels at the back of
the eye, giving the red-eye effect in the photograph.

�1� � �1

Normal

Incident
ray

Reflected
ray

θ1 ′θ1θ θ

ACTIVE FIGURE 22.4
According to the law of reflection, 
�1 � �1�.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 22.4, where
you can vary the incident angle and see
the effect on the reflected ray.

A P P L I C AT I O N
Red Eyes in Flash Photographs

An observer on the west-facing beach of a large lake is
watching the beginning of a sunset. The water is very
smooth except for some areas with small ripples. The
observer notices that some areas of the water are blue
and some are pink. Why does the water appear to be
different colors in different areas?

Explanation The different colors arise from specular
and diffuse reflection. The smooth areas of the water

will specularly reflect the light from the west, which is
the pink light from the sunset. The areas with small
ripples will reflect the light diffusely, so light from all
parts of the sky will be reflected into the observer’s
eyes. Because most of the sky is still blue at the begin-
ning of the sunset, these areas will appear to be blue.

Applying Physics 22.1 The Colors of Water Ripples at Sunset

44920_22_p726-753  1/12/05  8:51 AM  Page 729



730 Chapter 22 Reflection and Refraction of Light

When looking outdoors through a glass window at night,
why do you sometimes see a double image of yourself ?

Explanation Reflection occurs whenever there is an
interface between two different media. For the glass in

the window, there are two such surfaces. The first is
the inner surface of the glass, and the second is the
outer surface. Each of these interfaces results in an
image.

Applying Physics 22.2 Double Images

INTERACTIVE EXAMPLE 22.1 The Double-Reflecting Light Ray
Goal Calculate a resultant angle from two reflec-
tions.

Problem Two mirrors make an angle of 120°
with each other, as in Figure 22.5. A ray is inci-
dent on mirror M1 at an angle of 65° to the
normal. Find the angle the ray makes with the
normal to M2 after it is reflected from both mirrors.

Strategy Apply the law of reflection twice. Given the incident ray at angle � inc, find the final resultant angle, � ref.

Solution
Apply the law of reflection to M1 to find the angle 
of reflection, �ref :

�ref � � inc � 65°

Find the angle 	 that is the complement of the 
angle �ref :

	 � 90° � �ref � 90° � 65° � 25°

Find the unknown angle 
 in the triangle of M1, M2,
and the ray traveling from M1 to M2, using the fact that
the three angles sum to 180°:

180° � 25° � 120° � 
 : 
 � 35°

The angle 
 is complementary to the angle of inci-
dence, � inc, for M2:


 � � inc � 90° : � inc � 90° � 35° � 55°

Apply the law of reflection a second time, obtaining
� ref :

�ref � � inc � 55�

Remarks Notice the heavy reliance on elementary geometry and trigonometry in these reflection problems.

Exercise 22.1
Repeat the problem if the angle of incidence is 55° and the second mirror makes an angle of 100° with the first
mirror.

Answer 45°

Investigate reflection for various mirror angles by logging into PhysicsNow at www.cp7e.com and
going to Interactive Example 22.1.

M1

M2

120°

bref

binc

f

u
a

� 65°inc
uref

Figure 22.5 (Example 22.1)
Mirrors M1 and M2 make an angle of
120° with each other.

Refraction of Light
When a ray of light traveling through a transparent medium encounters a bound-
ary leading into another transparent medium, as in Active Figure 22.6a, part of the
ray is reflected and part enters the second medium. The ray that enters the
second medium is bent at the boundary and is said to be refracted. The incident ray,
the reflected ray, the refracted ray, and the normal at the point of incidence all lie
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22.2 Reflection and Refraction 731

in the same plane. The angle of refraction, �2, in Active Figure 22.6a depends on
the properties of the two media and on the angle of incidence, through the
relationship

[22.3]

where v1 is the speed of light in medium 1 and v2 is the speed of light in medium 2.
Note that the angle of refraction is also measured with respect to the normal. In
Section 22.7 we will derive the laws of reflection and refraction using Huygens’
principle.

Experiment shows that the path of a light ray through a refracting surface is
reversible. For example, the ray in Active Figure 22.6a travels from point A to
point B. If the ray originated at B, it would follow the same path to reach point A,
but the reflected ray would be in the glass.

sin�2

sin�1
�

v2

v1
� constant

B

Glass
Air

Incident
ray

Refracted
ray

Reflected
ray

Normal

A

v1

v2

(a)

u1
u1�

u2

� �

� �

�

(b)

� �

� �

�

(b)

ACTIVE FIGURE 22.6
(a) A ray obliquely incident on an
air–glass interface. The refracted ray
is bent toward the normal because
v2  v1. (b) Light incident on the 
Lucite block bends both when it
enters the block and when it leaves 
the block.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 22.6, where
you can vary the incident angle and
see the effect on the reflected and
refracted rays.
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If beam 1 is the incoming beam in Active Figure 22.6b, which of the other four
beams are due to reflection? Which are due to refraction?

Quick Quiz 22.2

When light moves from a material in which its speed is high to a material in
which its speed is lower, the angle of refraction �2 is less than the angle of inci-
dence. The refracted ray therefore bends toward the normal, as shown in Active
Figure 22.7a. If the ray moves from a material in which it travels slowly to a mate-
rial in which it travels more rapidly, �2 is greater than �1, so the ray bends away
from the normal, as shown in Active Figure 22.7b.

Glass
Air

Normal

(a)

Normal

(b)

Glass

Air

1θ

2θ

2θ1θ >

v2 < v1

v1

v2 > v1

v1 1θ

2θ

2θ1θ <

ACTIVE FIGURE 22.7
(a) When the light beam moves from
air into glass, its path is bent toward
the normal. (b) When the beam
moves from glass into air, its path is
bent away from the normal.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 22.7. Light
passes through three layers of material.
You can vary the incident angle and
see the effect on the refracted rays for
a variety of values of the index of re-
fraction (Table 22.1, page 732) of the
three materials.
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732 Chapter 22 Reflection and Refraction of Light

22.3 THE LAW OF REFRACTION
When light passes from one transparent medium to another, it’s refracted because
the speed of light is different in the two media1. The index of refraction, n, of a
medium is defined as the ratio c/v ;

[22.4]

From this definition, we see that the index of refraction is a dimensionless number
that is greater than or equal to one because v is always less than c. Further, n is
equal to one for vacuum. Table 22.1 lists the indices of refraction for various
substances.

As light travels from one medium to another, its frequency doesn’t change. To
see why, consider Figure 22.8. Wave fronts pass an observer at point A in medium
1 with a certain frequency and are incident on the boundary between medium 1
and medium 2. The frequency at which the wave fronts pass an observer at point
B in medium 2 must equal the frequency at which they arrive at point A. If this
were not the case, the wave fronts would either pile up at the boundary or be
destroyed or created at the boundary. Because neither of these events occurs,
the frequency must remain the same as a light ray passes from one medium into
another.

Therefore, because the relation v � f � must be valid in both media, and
because f1 � f 2 � f, we see that

v1 � f �1 and v2 � f �2

Because v1 � v2, it follows that �1 � �2. A relationship between the index of
refraction and the wavelength can be obtained by dividing these two
equations and making use of the definition of the index of refraction given by
Equation 22.4:

[22.5]

which gives

�1n1 � �2n2 [22.6]

�1

�2
�

v1

v2
�

c/n1

c/n2
�

n2

n1

n � 
speed of light in vacuum

speed of light in a medium
�

c
v

1The speed of light varies between media because the time lags caused by the absorption and reemission of light as it
travels from atom to atom depend on the particular electronic structure of the atoms constituting each material.

Index of refraction �

TABLE 22.1
Indices of Refraction for Various Substances, Measured with Light of Vacuum
Wavelength �0 � 589 mn

Index of Index of 
Substance Refraction Substance Refraction

Solids at 20°C Liquids at 20°C
Diamond (C) 2.419 Benzene 1.501
Fluorite (CaF2) 1.434 Carbon disulfide 1.628
Fused quartz (SiO2) 1.458 Carbon tetrachloride 1.461
Glass, crown 1.52 Ethyl alcohol 1.361
Glass, flint 1.66 Glycerine 1.473
Ice (H2O) (at 0°C) 1.309 Water 1.333
Polystyrene 1.49
Sodium chloride (NaCl) 1.544 Gases at 0°C, 1 atm
Zircon 1.923 Air 1.000 293

Carbon dioxide 1.000 45

TIP 22.1 An Inverse 
Relationship
The index of refraction is inversely
proportional to the wave speed.
Therefore, as the wave speed v
decreases, the index of refraction 
n increases.

TIP 22.2 The Frequency 
Remains the Same
The frequency of a wave does not
change as the wave passes from one
medium to another. Both the wave
speed and the wavelength do change,
but the frequency remains the same.

1
2

A

B

v2

v1

n2

n1
c
v1

c
v2

=

=

1

2

l

l

Figure 22.8 As the wave moves
from medium 1 to medium 2, its
wavelength changes, but its frequency
remains constant.

44920_22_p726-753  1/12/05  8:51 AM  Page 732



22.3 The Law of Refraction 733

Let medium 1 be the vacuum, so that n1 � 1. It follows from Equation 22.6 that
the index of refraction of any medium can be expressed as the ratio

[22.7]

where �0 is the wavelength of light in vacuum and �n is the wavelength in the
medium having index of refraction n. Figure 22.9 is a schematic representation of
this reduction in wavelength when light passes from a vacuum into a transparent
medium.

We are now in a position to express Equation 22.3 in an alternate form. If we
substitute Equation 22.5 into Equation 22.3, we get

[22.8]

The experimental discovery of this relationship is usually credited to Willebord
Snell (1591–1627) and is therefore known as Snell’s law of refraction.

n1 sin �1 � n2 sin �2

n �
�0

�n

� Snell’s law of refraction

A material has an index of refraction that increases continuously from top to
bottom. Of the three paths shown in Figure 22.10, which path will a light ray
follow as it passes through the material?

Quick Quiz 22.3

As light travels from a vacuum (n � 1) to a medium such as glass (n � 1), which of
the following properties remains the same? (a) wavelength, (b) wave speed, or
(c) frequency? 

Quick Quiz 22.4

n2n1

n1n2

�2 �1

>

<

�1 �2

Figure 22.9 A schematic diagram
of the reduction in wavelength when
light travels from a medium with a
low index of refraction to one with a
higher index of refraction.

(c)(b)(a) Figure 22.10 (Quick Quiz 22.3)

EXAMPLE 22.2 Angle of Refraction for Glass
Goal Apply Snell’s law to a slab of glass.

Problem A light ray of wavelength 589 nm (produced by
a sodium lamp) traveling through air is incident on a
smooth, flat slab of crown glass at an angle of 30.0° to the
normal, as sketched in Figure 22.11. Find the angle of
refraction, �2.

Strategy Substitute quantities into Snell’s law and solve
for the unknown angle of refraction, �2.

Solution
Solve Snell’s law (Eq. 22.8) for sin �2:

Glass
Air

NormalIncident
ray

Refracted
ray

30.0°

2u

Figure 22.11 (Example 22.2)
Refraction of light by glass.

(1) sin �2 �
n1

n2
  sin �1

From Table 22.1, find n1 � 1.00 for air and n2 � 1.52
for crown glass. Substitute these values into (1) and take
the inverse sine of both sides: �2 � sin�1 (0.329) � 19.2�

sin�2 � � 1.00
1.52 � (sin 30.0�) � 0.329
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734 Chapter 22 Reflection and Refraction of Light

Remarks Notice the light ray bends toward the normal when it enters a material of a higher index of refraction. If
the ray left the material following the same path in reverse, it would bend away from the normal.

Exercise 22.2
If the light ray moves from inside the glass toward the glass–air interface at an angle of 30.0° to the normal, deter-
mine the angle of refraction.

Answer The ray bends 49.5° away from the normal, as expected.

EXAMPLE 22.3 Light in Fused Quartz
Goal Use the index of refraction to determine the effect of a medium on light’s speed and wavelength.

Problem Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction 
n � 1.458. (a) Find the speed of light in fused quartz. (b) What is the wavelength of this light in fused quartz?
(c) What is the frequency of the light in fused quartz?

Strategy Substitute values into Equations 22.4 and 22.7.

Solution
(a) Find the speed of light in fused quartz.

Obtain the speed from Equation 22.4: 2.06 � 108 m/sv �
c
n

�
3.00 � 108 m/s

1.458
�

(b) What is the wavelength of this light in fused quartz?

Use Eq. 22.7 to calculate the wavelength: 404 nm�n �
�0

n
�

589 nm
1.458

�

(c) What is the frequency of the light in fused quartz?

The frequency in quartz is the same as in vacuum. Solve
c � f � for the frequency:

5.09 � 1014 Hzf �
c
�

�
3.00 � 108 m/s
589 � 10�9 m

�

Remarks It’s interesting to note that the speed of light in vacuum, 3.00 � 108 m/s, is an upper limit for the speed
of material objects. In our treatment of relativity in Chapter 26, we will find that this upper limit is consistent with
experimental observations. However, it’s possible for a particle moving in a medium to have a speed that exceeds the
speed of light in that medium. For example, it’s theoretically possible for a particle to travel through fused quartz at a
speed greater than 2.06 � 108 m/s, but it must still have a speed less than 3.00 � 108 m/s.

Exercise 22.3
Light with wavelength 589 nm passes through crystalline sodium chloride. Find (a) the speed of light in this
medium, (b) the wavelength, and (c) the frequency of the light.

Answer (a) 1.94 � 108 m/s (b) 381 nm (c) 5.09 � 1014 Hz

INTERACTIVE EXAMPLE 22.4 Light Passing through a Slab
Goal Apply Snell’s law when a ray passes into and
out of another medium.

Problem A light beam traveling through a trans-
parent medium of index of refraction n1 passes
through a thick transparent slab with parallel faces
and index of refraction n2 (Fig. 22.12). Show that
the emerging beam is parallel to the incident
beam.

n2

n1

n1

u1

u2

u2

u3

Figure 22.12 (Example 22.4)
When light passes through a flat slab
of material, the emerging beam is
parallel to the incident beam, and
therefore �1 � �3.
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22.3 The Law of Refraction 735

Strategy Apply Snell’s law twice, once at the upper surface and once at the lower surface. The two equations will
be related because the angle of refraction at the upper surface equals the angle of incidence at the lower surface.
The ray passing through the slab makes equal angles with the normal at the entry and exit points. This procedure
will enable us to compare angles �1 and �3.

Solution
Apply Snell’s law to the upper surface: (1) sin�2 �

n1

n2
 sin�1

Apply Snell’s law to the lower surface: (2) sin�3 �
n2

n1
 sin�2

Substitute Equation 1 into Equation 2: sin�3 �
n2

n1
 � n1

n2
 sin�1� � sin�1

Take the inverse sine of both sides, noting that the
angles are positive and less than 90°:

�3 � �1

Remarks The preceding result proves that the slab doesn’t alter the direction of the beam. It does, however,
produce a lateral displacement of the beam, as shown in Figure 22.12.

Exercise 22.4
Suppose the ray, in air with n � 1.00, enters a slab with n � 2.50 at a 45.0° angle with respect to the normal, then
exits the bottom of the slab into water, with n � 1.33. At what angle to the normal does the ray leave the slab?

Answer 32.1°

Explore refraction through slabs of various thickness by logging into PhysicsNow at www.cp7e.com
and going to Interactive Example 22.4.

EXAMPLE 22.5 Refraction of Laser Light in a Digital Video Disk (DVD)
Goal Apply Snell’s law together with geometric constraints.

Problem A DVD is a video recording consisting of a spiral track about 1.0 �m wide with digital information. (See
Fig. 22.13a.) The digital information consists of a series of pits that are “read” by a laser beam sharply focused on a
track in the information layer. If the width a of the beam at the information layer must equal 1.0 �m to distinguish
individual tracks, and the width w of the beam as it enters the plastic is 0.7000 mm, find the angle �1 at which the
conical beam should enter the plastic. (See Fig. 22.13b.) Assume the plastic has a thickness t � 1.20 mm and an
index of refraction n � 1.55. Note that this system is relatively immune to small dust particles degrading the video

(a)

a bb

t

w

Information
layer

Plastic
n =1.55

Air

u2 u2

u1u1

(b)

Figure 22.13 (Example 22.5)A micrograph of a DVD surface showing tracks and pits along each track. (b) Cross section of a
cone-shaped laser beam used to read a DVD.
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736 Chapter 22 Reflection and Refraction of Light

22.4 DISPERSION AND PRISMS
In Table 22.1, we presented values for the index of refraction of various materi-
als. If we make careful measurements, however, we find that the index of refrac-
tion in anything but vacuum depends on the wavelength of light. The depend-
ence of the index of refraction on wavelength is called dispersion. Figure 22.14
is a graphical representation of this variation in the index of refraction with
wavelength. Because n is a function of wavelength, Snell’s law indicates that the
angle of refraction made when light enters a material depends on the wave-
length of the light. As seen in the figure, the index of refraction for a material
usually decreases with increasing wavelength. This means that violet light (� �
400 nm) refracts more than red light (� � 650 nm) when passing from air into
a material.

To understand the effects of dispersion on light, consider what happens
when light strikes a prism, as in Figure 22.15a. A ray of light of a single wave-
length that is incident on the prism from the left emerges bent away from its
original direction of travel by an angle �, called the angle of deviation. Now sup-
pose a beam of white light (a combination of all visible wavelengths) is incident
on a prism. Because of dispersion, the different colors refract through different
angles of deviation, and the rays that emerge from the second face of the prism
spread out in a series of colors known as a visible spectrum, as shown in
Figure 22.16. These colors, in order of decreasing wavelength, are red,
orange, yellow, green, blue, and violet. Violet light deviates the most, red light
the least, and the remaining colors in the visible spectrum fall between these
extremes.

Prisms are often used in an instrument known as a prism spectrometer, the
essential elements of which are shown in Figure 22.17a (page 738). This instrument

quality, because particles would have to be as large as 0.700 mm to obscure the beam at the point where it enters
the plastic.

Strategy Use right-triangle trigonometry to determine the angle �2, and then apply Snell’s law to obtain the angle �1.

Solution
From the top and bottom of Figure 22.13b, obtain 
an equation relating w, b, and a:

w � 2b � a

Solve this equation for b and substitute given values: b �
w �a

2
�

700.0 �10�6 m � 1.0 � 10�6 m
2

� 349.5 �m

Now use the tangent function to find �2: tan�2 �
b
t

�
349.5 �m

1.20 � 103 �m
 : �2 � 16.2�

Finally, use Snell’s law to find �1:

�1 � sin�1 (0.433) � 25.7�

 sin �1 �
n2 sin �2

n1
�

1.55 sin 16.2�

1.00
� 0.433

 n1 sin �1 � n2 sin �2

Remarks Despite its apparent complexity, the problem isn’t that different from Example 22.2.

Exercise 22.5
Suppose you wish to redesign the system to decrease the initial width of the beam from 0.700 0 mm to 0.600 0 mm,
but leave the incident angle �1 and all other parameters the same as before, except the index of refraction for the
plastic material (n2) and the angle �2. What index of refraction should the plastic have?

Answer 1.79

1.54

1.52

1.50

1.48

1.46

400 500 600 700

n

Fused quartz

Acrylic

Crown glass

, nmλ

Figure 22.14 Variations of index
of refraction in the visible spectrum
with respect to vacuum wavelength
for three materials.
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22.4 Dispersion and Prisms 737

is commonly used to study the wavelengths emitted by a light source, such as a
sodium vapor lamp. Light from the source is sent through a narrow, adjustable slit
and lens to produce a parallel, or collimated, beam. The light then passes through
the prism and is dispersed into a spectrum. The refracted light is observed
through a telescope. The experimenter sees different colored images of the
slit through the eyepiece of the telescope. The telescope can be moved or the
prism can be rotated in order to view the various wavelengths, which have different
angles of deviation. Figure 22.17b (page 738) shows one type of prism spectrometer
used in undergraduate laboratories.

All hot, low-pressure gases emit their own characteristic spectra. Thus, one use
of a prism spectrometer is to identify gases. For example, sodium emits only two
wavelengths in the visible spectrum: two closely spaced yellow lines. (The bright
linelike images of the slit seen in a spectroscope are called spectral lines.) A gas
emitting these, and only these, colors can thus be identified as sodium. Likewise,
mercury vapor has its own characteristic spectrum, consisting of four prominent
wavelengths—orange, green, blue, and violet lines —along with some wave-
lengths of lower intensity. The particular wavelengths emitted by a gas serve as
“fingerprints” of that gas. Spectral analysis, which is the measurement of the
wavelengths emitted or absorbed by a substance, is a powerful general tool in
many scientific areas. As examples, chemists and biologists use infrared spec-
troscopy to identify molecules, astronomers use visible-light spectroscopy to
identify elements on distant stars, and geologists use spectral analysis to identify
minerals.

White
light

Prism
Increasing
wavelength

(a) (b)

(a)

�

Red

White
light

Blue
(b)

�
B

�
R

(c)

Figure 22.15 (a) A prism refracts a light ray and deviates the light through the angle �. (b) When
light is incident on a prism, the blue light is bent more than the red. (c) Light of different colors passes
through a prism and two lenses. Note that as the light passes through the prism, different wavelengths
are refracted at different angles.
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Figure 22.16 (a) Dispersion of white light by a prism. Since n varies with wavelength, the prism 
disperses the white light into its various spectral components. (b) Different colors of light that pass
through a prism are refracted at different angles because the index of refraction of the glass depends
on wavelength. Violet light bends the most, red light the least.
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738 Chapter 22 Reflection and Refraction of Light

22.5 THE RAINBOW
The dispersion of light into a spectrum is demonstrated most vividly in nature
through the formation of a rainbow, often seen by an observer positioned between
the Sun and a rain shower. To understand how a rainbow is formed, consider
Active Figure 22.19. A ray of light passing overhead strikes a drop of water in the
atmosphere and is refracted and reflected as follows: It is first refracted at the
front surface of the drop, with the violet light deviating the most and the red light
the least. At the back surface of the drop, the light is reflected and returns to the
front surface, where it again undergoes refraction as it moves from water into air.
The rays leave the drop so that the angle between the incident white light and the
returning violet ray is 40° and the angle between the white light and the returning
red ray is 42°. This small angular difference between the returning rays causes us
to see the bow as explained in the next paragraph.

Now consider an observer viewing a rainbow, as in Figure 22.20a. If a raindrop
high in the sky is being observed, the red light returning from the drop can reach

(a)

Slit

Source

Telescope

(b)

Figure 22.17 (a) A diagram of a prism spectrometer. The colors in the spectrum are viewed through
a telescope. (b) A prism spectrometer with interchangeable components.
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When a beam of light enters a glass prism, which has
nonparallel sides, the rainbow of color exiting the
prism is a testimonial to the dispersion occurring in
the glass. Suppose a beam of light enters a slab of
material with parallel sides. When the beam exits the
other side, traveling in the same direction as the origi-
nal beam, is there any evidence of dispersion?

Explanation Due to dispersion, light at the violet end
of the spectrum exhibits a larger angle of refraction
on entering the glass than light at the red end. All
colors of light return to their original direction of
propagation as they refract back out into the air. As a
result, the outgoing beam is white. But the net shift in
the position of the violet light along the edge of the
slab is larger than the shift of the red light, so one
edge of the outgoing beam has a bluish tinge to it 
(it appears blue rather than violet, because the eye is
not very sensitive to violet light), whereas the other
edge has a reddish tinge. This effect is indicated in

Figure 22.18. The colored edges of the outgoing beam
of white light are evidence of dispersion.

Applying Physics 22.3 Dispersion

Transparent slab

Incident
white light

Outgoing
white light

Figure 22.18 (Applying Physics 22.3)
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22.6 Huygens’ Principle 739

the observer because it is deviated the most, but the violet light passes over the
observer because it is deviated the least. Hence, the observer sees this drop as
being red. Similarly, a drop lower in the sky would direct violet light toward the
observer and appear to be violet. (The red light from this drop would strike the
ground and not be seen.) The remaining colors of the spectrum would reach
the observer from raindrops lying between these two extreme positions. Figure
22.20b shows a beautiful rainbow and a secondary rainbow with its colors reversed.

22.6 HUYGENS’ PRINCIPLE
The laws of reflection and refraction can be deduced using a geometric method
proposed by Huygens in 1678. Huygens assumed that light is a form of wave
motion rather than a stream of particles. He had no knowledge of the nature of
light or of its electromagnetic character. Nevertheless, his simplified wave model is
adequate for understanding many practical aspects of the propagation of light.

Huygens’ principle is a geometric construction for determining at some instant
the position of a new wave front from knowledge of the wave front that preceded
it. (A wave front is a surface passing through those points of a wave which have the
same phase and amplitude. For instance, a wave front could be a surface passing

Sunlight

40° 42°

V

R

V
R

ACTIVE FIGURE 22.19
Refraction of sunlight by a spherical
raindrop.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 22.19, where
you can vary the point at which the
sunlight enters the raindrop and verify
that the angles shown are maximum
angles.White

White

40° 42°

42°

(a)

40°

(b)

Figure 22.20 (a) The formation of a rainbow. (b) This photograph of a rainbow shows a distinct
secondary rainbow with the colors reversed.
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740 Chapter 22 Reflection and Refraction of Light

through the crests of waves.) In Huygens’ construction, all points on a given wave
front are taken as point sources for the production of spherical secondary waves,
called wavelets, which propagate in the forward direction with speeds characteris-
tic of waves in that medium. After some time has elapsed, the new position of the
wave front is the surface tangent to the wavelets.

Figure 22.21 illustrates two simple examples of Huygens’ construction. First,
consider a plane wave moving through free space, as in Figure 22.21a. At t � 0,
the wave front is indicated by the plane labeled AA�. In Huygens’ construction,
each point on this wave front is considered a point source. For clarity, only a few
points on AA� are shown. With these points as sources for the wavelets, we draw cir-
cles of radius c�t, where c is the speed of light in vacuum and �t is the period of
propagation from one wave front to the next. The surface drawn tangent to these
wavelets is the plane BB �, which is parallel to AA�. In a similar manner, Figure
22.21b shows Huygens’ construction for an outgoing spherical wave.

Figure 22.22 shows a convincing demonstration of Huygens’ principle. Plane
waves coming from far off shore emerge from the openings between the barriers
as two-dimensional circular waves propagating outward.

Huygens’ Principle Applied to Reflection and Refraction
The laws of reflection and refraction were stated earlier in the chapter without
proof. We now derive these laws using Huygens’ principle. Figure 22.23a illustrates
the law of reflection. The line AA� represents a wave front of the incident light. As
ray 3 travels from A� to C, ray 1 reflects from A and produces a spherical wavelet of
radius AD. (Recall that the radius of a Huygens wavelet is v�t.) Because the two

(a) (b)

Old
wave front

New
wave front

c �t

A B

Old
wave front

New
wave front

A� B �

c �t

Figure 22.21 Huygens’ construc-
tions for (a) a plane wave propagat-
ing to the right and (b) a spherical
wave.

Huygens’ principle �

Figure 22.22 This photograph of
the beach at Tel Aviv, Israel, shows
Huygens wavelets radiating from each
opening between breakwalls. Note
how the beach has been shaped by
the wave action. Co
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22.6 Huygens’ Principle 741

wavelets having radii A�C and AD are in the same medium, they have the same speed
v, so AD � A�C . Meanwhile, the spherical wavelet centered at B has spread only half
as far as the one centered at A, because ray 2 strikes the surface later than ray 1.

From Huygens’ principle, we find that the reflected wave front is CD, a line tan-
gent to all the outgoing spherical wavelets. The remainder of our analysis depends
on geometry, as summarized in Figure 22.23b. Note that the right triangles ADC
and AA�C are congruent because they have the same hypotenuse, AC, and because
AD � A�C. From the figure, we have

and

The right-hand sides are equal, so sin � � sin �1�, and it follows that �1 � �1�,
which is the law of reflection.

Huygens’ principle and Figure 22.24a can be used to derive Snell’s law of
refraction. In the time interval �t, ray 1 moves from A to B and ray 2 moves from
A� to C . The radius of the outgoing spherical wavelet centered at A is equal to 
v2 �t. The distance A�C is equal to v1 �t . Geometric considerations show that an-
gle A�AC equals �1 and angle ACB equals �2. From triangles AA�C and ACB, we
find that

and

If we divide the first equation by the second, we get

But from Equation 22.4 we know that v1 � c/n1 and v2 � c/n2. Therefore,

sin�1

sin�2
�

c/n1

c/n2
�

n2

n1

sin�1

sin�2
�

v1

v2

sin�2 �
v2 �t
AC

sin�1 �
v1 �t
AC

sin�1
� �

AD
AC

sin�1 �
A�C
AC

A C

D

(b)

BA C

D
l

(a)

2
3

A� A�

u1 u1�

Figure 22.23 (a) Huygens’ 
construction for proving the law of
reflection. (b) Triangle ADC is 
congruent to triangle AA�C .

Concrete

Grass
This end slows
first; as a result,
the barrel turns.

(b)(a)

1

1

2

2

C
A

B

v1�t

v2�t

A�

u1
u1

u2

u2

Medium 1,
speed of light v1

Medium 2,
speed of light v2

Figure 22.24 (a) Huygens’ construction for proving the law of refraction. (b) Overhead view of a
barrel rolling from concrete onto grass.
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742 Chapter 22 Reflection and Refraction of Light

and it follows that

n1 sin �1 � n2 sin �2

which is the law of refraction.
A mechanical analog of refraction is shown in Figure 22.24b. When the left end

of the rolling barrel reaches the grass, it slows down, while the right end remains
on the concrete and moves at its original speed. This difference in speeds causes
the barrel to pivot, changing its direction of its motion.

22.7 TOTAL INTERNAL REFLECTION
An interesting effect called total internal reflection can occur when light encounters
the boundary between a medium with a higher index of refraction and one with a
lower index of refraction. Consider a light beam traveling in medium 1 and meet-
ing the boundary between medium 1 and medium 2, where n1 is greater than n2
(Active Fig. 22.25). Possible directions of the beam are indicated by rays 1 through 5.
Note that the refracted rays are bent away from the normal because n1 is greater
than n2. At some particular angle of incidence �c , called the critical angle, the
refracted light ray moves parallel to the boundary, so that �2 � 90° (Active
Fig. 22.25b). For angles of incidence greater than �c , the beam is entirely reflected at
the boundary, as is ray 5 in Active Figure 22.25a. This ray is reflected as though it
had struck a perfectly reflecting surface. It and all rays like it obey the law of
reflection: the angle of incidence equals the angle of reflection.

We can use Snell’s law to find the critical angle. When �1 � �c , �2 � 90°, Snell’s
law (Eq. 22.8) gives

n1 sin �c � n2 sin 90° � n2

for n1 � n2 [22.9]

Equation 22.9 can be used only when n1 is greater than n2, because total internal
reflection occurs only when light attempts to move from a medium of higher index
of refraction to a medium of lower index of refraction. If n1 were less than n2,
Equation 22.9 would give sin �c � 1, which is an absurd result because the sine of
an angle can never be greater than one.

When medium 2 is air, the critical angle is small for substances with large indices
of refraction, such as diamond, where n � 2.42 and �c � 24.0°. By comparison, for
crown glass, n � 1.52 and �c � 41.0°. This property, combined with proper
faceting, causes a diamond to sparkle brilliantly.

sin�c �
n2

n1

This photograph shows nonparallel
light rays entering a glass prism. The
bottom two rays undergo total inter-
nal reflection at the longest side of
the prism. The top three rays are
refracted at the longest side as they
leave the prism.
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ACTIVE FIGURE 22.25
(a) Rays from a medium with index of refraction n1 travel to a medium with index of refraction n2,
where n1 � n2. As the angle of incidence increases, the angle of refraction �2 increases until �2 is 90°
(ray 4). For even larger angles of incidence, total internal reflection occurs (ray 5). (b) The angle of
incidence producing a 90° angle of refraction is often called the critical angle �c .

Log into PhysicsNow at www.cp7e.com and go to Active Figure 22.25, where you can vary the incident
angle and see how the refracted ray undergoes total internal reflection when the incident angle exceeds
the critical angle.
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EXAMPLE 22.6 A View from the Fish’s Eye
Goal Apply the concept of total internal reflection. (a) Find the critical angle for a water–air boundary if the index
of refraction of water is 1.33. (b) Use the result of part (a) to predict what a fish will see (Fig. 22.28) if it looks up to-
ward the water surface at angles of 40.0°, 48.8°, and 60.0°.

Strategy After finding the critical angle by substitu-
tion, use the fact that the path of a light ray is re-
versible: at a given angle, wherever a light beam can go
is also where a beam of light can come from, along the
same path.

Solution
(a) Find the critical angle for a water–air boundary.

22.7 Total Internal Reflection 743

A prism and the phenomenon of total internal reflection can alter the direction of
travel of a light beam. Figure 22.26 illustrates two such possibilities. In one case the light
beam is deflected by 90.0° (Fig. 22.26a), and in the second case the path of the beam is
reversed (Fig. 22.26b). A common application of total internal reflection is a subma-
rine periscope. In this device, two prisms are arranged as in Figure 22.26c, so that an
incident beam of light follows the path shown and the user can “see around corners.”

(a) (b) (c)

45°

90° 45°

90°

45°

45°

45°
90°

45°

Figure 22.26 Internal reflection in
a prism. (a) The ray is deviated by
90°. (b) The direction of the ray is
reversed. (c) Two prisms used as a
periscope.

A beam of white light is incident on the curved edge
of a semicircular piece of glass, as shown in Figure
22.27. The light enters the curved surface along the
normal, so it shows no refraction. It encounters the
straight side of the glass at the center of curvature of
the curved side and refracts into the air. The incom-
ing beam is moved clockwise (so that the angle �

increases) such that the beam always enters along the
normal to the curved side and encounters the straight
side at the center of curvature of the curved side. Why
does the refracted beam become redder as it ap-
proaches a direction parallel to the straight side?

Explanation When the outgoing beam approaches the
direction parallel to the straight side, the incident an-
gle is approaching the critical angle for total internal
reflection. Dispersion occurs as the light passes out of
the glass. The index of refraction for light at the violet
end of the visible spectrum is larger than at the red
end. As a result, as the outgoing beam approaches the
straight side, the violet light undergoes total internal
reflection, followed by the other colors. The red light
is the last to undergo total internal reflection, so just
before the outgoing light disappears, it’s composed of
light from the red end of the visible spectrum.

Applying Physics 22.4 Total Internal Reflection and Dispersion

A P P L I C AT I O N
Submarine Periscopes

u

Figure 22.27 (Applying Physics 22.4)

θ

Figure 22.28 (Example 22.6)
A fish looks upward toward the
water’s surface.
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744 Chapter 22 Reflection and Refraction of Light

Fiber Optics
Another interesting application of total internal reflection is the use of solid glass
or transparent plastic rods to “pipe” light from one place to another. As indicated
in Figure 22.29, light is confined to traveling within the rods, even around gentle
curves, as a result of successive internal reflections. Such a light pipe can be quite
flexible if thin fibers are used rather than thick rods. If a bundle of parallel fibers
is used to construct an optical transmission line, images can be transferred from
one point to another.

Very little light intensity is lost in these fibers as a result of reflections on the
sides. Any loss of intensity is due essentially to reflections from the two ends and
absorption by the fiber material. Fiber-optic devices are particularly useful for view-
ing images produced at inaccessible locations. Physicians often use fiber-optic ca-
bles to aid in the diagnosis and correction of certain medical problems without the
intrusion of major surgery. For example, a fiber-optic cable can be threaded
through the esophagus and into the stomach to look for ulcers. In this application,
the cable consists of two fiber-optic lines: one to transmit a beam of light into the
stomach for illumination and the other to allow the light to be transmitted out of
the stomach. The resulting image can, in some cases, be viewed directly by the
physician, but more often is displayed on a television monitor or captured on film.

Substitute into Equation 22.9 to find the critical angle:

�c � 48.8�

sin�c �
n2

n1
�

1.00
1.33

� 0.752

(b) Predict what a fish will see if it looks up toward the water surface at angles of 40.0°, 48.8°, and 60.0°.

At an angle of 40.0°, a beam of light from underwater will be refracted at the surface and enter the air above. Be-
cause the path of a light ray is reversible (Snell’s law works both going and coming), light from above can follow the
same path and be perceived by the fish. At an angle of 48.8°, the critical angle for water, light from underwater is
bent so that it travels along the surface. This means that light following the same path in reverse can reach the fish
only by skimming along the water surface before being refracted towards the fish’s eye. At angles greater than the
critical angle of 48.8°, a beam of light shot toward the surface will be completely reflected down toward the bottom
of the pool. Reversing the path, the fish sees a reflection of some object on the bottom.

Exercise 22.6
Suppose a layer of oil with n � 1.50 coats the surface of the water. What is the critical angle for total internal reflec-
tion for light traveling in the oil layer and encountering the oil-water boundary?

Answer 62.7°

(Left) Strands of glass optical fibers
are used to carry voice, video, and
data signals in telecommunication
networks. (Right) A bundle of optical
fibers is illuminated by a laser. De
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Figure 22.29 Light travels in a
curved transparent rod by multiple
internal reflections.

A P P L I C AT I O N
Fiber Optics in Medical 
Diagnosis and Surgery
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Summary 745

In a similar way, fiber-optic cables can be used to examine the colon or to help
physicians perform surgery without the need for large incisions.

The field of fiber optics has revolutionized the entire communications industry.
Billions of kilometers of optical fiber have been installed in the United States to
carry high-speed internet traffic, radio and television signals, and telephone calls.
The fibers can carry much higher volumes of telephone calls and other forms of
communication than electrical wires because of the higher frequency of the
infrared light used to carry the information on optical fibers. Optical fibers are
also preferable to copper wires because they are insulators and don’t pick up stray
electric and magnetic fields or electronic “noise.”

An optical fiber consists of a transparent core sur-
rounded by cladding, which is a material with a lower
index of refraction than the core (Fig. 22.30). A cone
of angles, called the acceptance cone, is at the entrance
to the fiber. Incoming light at angles within this cone
will be transmitted through the fiber, whereas light
entering the core from angles outside the cone will not
be transmitted. The figure shows a light ray entering
the fiber just within the acceptance cone and undergo-
ing total internal reflection at the interface between
the core and the cladding. If it is technologically diffi-
cult to produce light so that it enters the fiber from a
small range of angles, how could you adjust the indices
of refraction of the core and cladding to increase the
size of the acceptance cone—would you design the
indices to be farther apart or closer together?

Explanation The acceptance cone would become
larger if the critical angle (�c in the figure) could be

made smaller. This can be done by making the index
of refraction of the cladding material smaller, so that
the indices of refraction of the core and cladding
material would be farther apart.

Applying Physics 22.5 Design of an Optical Fiber

A P P L I C AT I O N
Fiber Optics in 
Telecommunications

Cladding

Core

Jacket

c

1

2

u

f

f

Figure 22.30 (Applying Physics 22.5)

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

22.1 The Nature of Light
Light has a dual nature. In some experiments it acts like a
wave, in others like a particle, called a photon by Einstein.
The energy of a photon is proportional to its frequency,

E � hf [22.1]

where h � 6.63 � 10�34 J � s is Planck’s constant.

22.2 Reflection and Refraction
In the reflection of light off a flat, smooth surface, the an-
gle of incidence, �1, with respect to a line perpendicular to
the surface is equal to the angle of reflection, �1�:

�1� � �1 [22.2]

Light that passes into a transparent medium is bent at the
boundary and is said to be refracted. The angle of refrac-
tion is the angle the ray makes with respect to a line

perpendicular to the surface after it has entered the new
medium.

22.3 The Law of Refraction
The index of refraction of a material, n, is defined as

[22.4]

where c is the speed of light in a vacuum and v is the speed
of light in the material. The index of refraction of a mate-
rial is also

[22.7]

where �0 is the wavelength of the light in vacuum and �n is
its wavelength in the material.

The law of refraction, or Snell’s law, states that

n1 sin �1 � n2 sin �2 [22.8]

where n1 and n2 are the indices of refraction in the two
media. The incident ray, the reflected ray, the refracted ray,
and the normal to the surface all lie in the same plane.

n �
�0

�n

n � 
c
v
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746 Chapter 22 Reflection and Refraction of Light

22.4 Dispersion and Prisms & 
22.5 The Rainbow
The index of refraction of a material depends on the wave-
length of the incident light, an effect called dispersion. Light
at the violet end of the spectrum exhibits a larger angle of
refraction on entering glass than light at the red end. Rain-
bows are a consequence of dispersion.

22.6 Huygens’ Principle
Huygens’ principle states that all points on a wave front are
point sources for the production of spherical secondary
waves called wavelets. These wavelets propagate forward at
a speed characteristic of waves in a particular medium. Af-
ter some time has elapsed, the new position of the wave

front is the surface tangent to the wavelets. This principle
can be used to deduce the laws of reflection and refraction.

22.7 Total Internal Reflection
Total internal reflection can occur when light, traveling in a
medium with higher index of refraction, is incident on the
boundary of a material with a lower index of refraction. The
maximum angle of incidence �c for which light can move from a
medium with index n1 into a medium with index n2, where
n1 is greater than n2, is called the critical angle and is given by

for n1 � n2 [22.9]

Total internal reflection is used in the optical fibers that
carry data at high speed around the world.

sin�c �
n 2

n 1

CONCEPTUAL QUESTIONS
1. Under certain circumstances, sound can be heard from

extremely far away. This frequently happens over a body
of water, where the air near the water surface is cooler
than the air at higher altitudes. Explain how the refrac-
tion of sound waves could increase the distance over
which sound can be heard.

2. What are some reasons that most ceilings are made of
white textured material?

3. The color of an object is said to depend on the wave-
lengths the object reflects. So, if you view colored objects
under water, in which the wavelength of the light will be
different, does the color change?

4. How is it possible that a complete circle of a rainbow can
sometimes be seen from an airplane?

5. A ray of light is moving from a material having a high
index of refraction into a material with a lower index of
refraction. (a) Is the ray bent toward the normal or
away from it? (b) If the wavelength is 600 nm in the
material with the high index of refraction, is it
greater, smaller, or the same in the material with
the lower index of refraction? (c) How does the
frequency change as the light moves between the two
materials? Does it increase, decrease, or remain the
same?

6. Why does the arc of a rainbow appear with red on top and
violet on the bottom?

7. A scientific supply catalog advertises a material having an
index of refraction of 0.85. Is this a good product to buy?
Why or why not?

8. Under what conditions is a mirage formed? On a hot day,
what are we seeing when we observe a mirage of a water
puddle on the road?

9. In dispersive materials, the angle of refraction for a light
ray depends on the wavelength of the light. Does the
angle of reflection from the surface of the material
depend on the wavelength? Why or why not?

10. A type of mirage called a pingo is often observed in Alaska.
Pingos occur when the light from a small hill passes to an
observer by a path that takes the light over a body of water
warmer than the air. What is seen is the hill and an
inverted image directly below it. Explain how these mirages
are formed.

11. Explain why a diamond loses most of its sparkle when sub-
merged in carbon disulfide.

12. Suppose you are told that only two colors of light (X and Y )
are sent through a glass prism and that X is bent more
than Y. Which color travels more slowly in the prism?

13. The level of water in a clear, colorless glass can easily be
observed with the naked eye. The level of liquid helium in
a clear glass vessel is extremely difficult to see with the
naked eye. Explain. [Hint : The index of refraction of liq-
uid helium is close to that of air.]

14. Is it possible to have total internal reflection for light inci-
dent from air on water? Explain.

15. Why does a diamond show flashes of color when observed
under white light?

16. Explain why an oar partially submearged in water appears
to be bent.

17. Why do astronomers looking at distant galaxies talk about
looking backward in time?

18. If a beam of light with a given cross section enters a new
medium, the cross section of the refracted beam is differ-
ent from that of the incident beam. Is it larger or smaller,
or is there no definite direction to the change?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached solution with hints available at www.cp7e.com = biomedical application

Section 22.1 The Nature of Light
1. During the Apollo XI Moon landing, a retroreflecting

panel was erected on the Moon’s surface. The speed of
light can be found by measuring the time it takes a laser
beam to travel from Earth, reflect from the panel, and re-

turn to Earth. If this interval is found to be 2.51 s, what is
the measured speed of light? Take the center-to-center
distance from Earth to Moon to be 3.84 � 108 m. Assume
that the Moon is directly overhead and do not neglect the
sizes of the Earth and Moon.
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Problems 747

2. Figure P22.2 shows the apparatus used by Armand H. L.
Fizeau (1819–1896) to measure the speed of light. The
basic idea is to measure the total time it takes light to
travel from some point to a distant mirror and back. If d is
the distance between the light source and the mirror, and
if the transit time for one round-trip is t, then the speed
of light is c � 2d/t. To measure the transit time, Fizeau
used a rotating toothed wheel, which converts an other-
wise continuous beam of light to a series of light pulses.
The rotation of the wheel controls what an observer at the
light source sees. For example, assume that the toothed
wheel of the Fizeau experiment has 360 teeth and is rotat-
ing at a speed of 27.5 rev/s when the light from the
source is extinguished— that is, when a burst of light pass-
ing through opening A in Figure P22.2 is blocked by
tooth B on return. If the distance to the mirror is 7 500 m,
find the speed of light.

have rotated to position B, causing the light to be
reflected to the eye? (b) What is the next-higher angular
velocity that will enable the source of light to be seen?
Figure P22.5 shows an apparatus used to measure the dis-
tribution of the speeds of gas molecules. The device con-
sists of two slotted rotating disks separated by a distance d,
with the slots displaced by the angle �. Suppose the speed
of light is measured by sending a light beam toward the
left disk of this apparatus. (a) Show that a light beam will
be seen in the detector (that is, will make it through both
slots) only if its speed is given by c � �d/�, where � is the
angular speed of the disks and � is measured in radians.
(b) What is the measured speed of light if the distance
between the two slotted rotating disks is 2.500 m, the slot in
the second disk is displaced 1/60 of 1 degree from the slot
in the first disk, and the disks are rotating at 5 555 rev/s?

5.

d

A

B
C

Toothed
wheel

Mirror

Figure P22.2 (Problems 2 and 3)

3. In an experiment designed to measure the speed of light
using the apparatus of Fizeau described in the preceding
problem, the distance between light source and mirror
was 11.45 km and the wheel had 720 notches. The experi-
mentally determined value of c was 2.998 � 108 m/s.
Calculate the minimum angular speed of the wheel for
this experiment.

4. Albert A. Michelson very carefully measured the speed of
light using an alternative version of the technique devel-
oped by Fizeau. (See Problem 22.2.) Figure P22.4 shows
the approach Michelson used. Light was reflected from
one face of a rotating eight-sided mirror towards a station-
ary mirror 35.0 km away. At certain rates of rotation, the
returning beam of light was directed toward the eye of an
observer as shown. (a) What minimum angular speed
must the rotating mirror have in order that side A will

Observer

Rotating
mirror

Light
source

Stationary
mirror

35.0 km

A

B

Figure P22.4

Motor

Detector

Beam

d

u
v

Figure P22.5

Section 22.2 Reflection and Refraction
Section 22.3 The Law of Refraction

6. The two mirrors in Figure P22.6 meet at a right angle. The
beam of light in the vertical plane P strikes mirror 1 as
shown. (a) Determine the distance the reflected light beam
travels before striking mirror 2. (b) In what direction does
the light beam travel after being reflected from mirror 2?

Mirror
2

Mirror
1

Light
beam

P

40.0°

1.25 m

Figure P22.6

7. An underwater scuba diver sees the Sun at an apparent
angle of 45.0° from the vertical. What is actual direction
of the Sun?

8. Light is incident normal to a 1.00-cm layer of water that lies
on top of a flat Lucite® plate with a thickness of 0.500 cm.
How much more time is required for light to pass
through this double layer than is required to traverse the
same distance in air (nLucite � 1.59)?
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748 Chapter 22 Reflection and Refraction of Light

A laser beam is incident at an angle of
30.0° to the vertical onto a solution of corn syrup in water. If
the beam is refracted to 19.24° to the vertical, (a) what is
the index of refraction of the syrup solution? Suppose
the light is red, with wavelength 632.8 nm in a vacuum.
Find its (b) wavelength, (c) frequency, and (d) speed in the
solution.

10. Light containing wavelengths of 400 nm, 500 nm, and
650 nm is incident from air on a block of crown glass at an
angle of 25.0°. (a) Are all colors refracted alike, or is one
color bent more than the others? (b) Calculate the angle of
refraction in each case to verify your answer.

11. Light of wavelength �0 in a vacuum has a wavelength of
438 nm in water and a wavelength of 390 nm in benzene.
(a) What is the wavelength �0? (b) Using only the given
wavelengths, determine the ratio of the index of refrac-
tion of benzene to that of water.

12. Light of wavelength 436 nm in air enters a fishbowl filled
with water, then exits through the crown-glass wall of the
container. Find the wavelengths of the light (a) in the
water and (b) in the glass.

13. A ray of light is incident on the surface of a block of clear
ice at an angle of 40.0° with the normal. Part of the light
is reflected and part is refracted. Find the angle between
the reflected and refracted light.

14. The laws of refraction and reflection are the same for
sound as for light. The speed of sound is 340 m/s in air
and 1 510 m/s in water. If a sound wave traveling in air
approaches a plane water surface at an angle of incidence
of 12.0°, what is the angle of refraction?

15. The light emitted by a helium–neon laser has a wave-
length of 632.8 nm in air. As the light travels from air into
zircon, find (a) its speed in zircon, (b) its wavelength in
zircon, and (c) its frequency.

16. A flashlight on the bottom of a 4.00-m-deep swimming
pool sends a ray upward and at an angle so that the ray
strikes the surface of the water 2.00 m from the point
directly above the flashlight. What angle (in air) does the
emerging ray make with the water’s surface?
How many times will the incident beam shown in Figure
P22.17 be reflected by each of the parallel mirrors?

17.

9.

20. Find the time required for the light to pass through the
glass block described in Problem 19.
The light beam shown in Figure P22.21 makes an angle
of 20.0° with the normal line NN � in the linseed oil.
Determine the angles � and ��. (The refractive index for
linseed oil is 1.48.)

21.

Mirror Mirror

1.00 m

1.00 m

Incident beam
5.00°

Figure P22.17

18. A ray of light strikes a flat 2.00-cm-thick block of glass (n �
1.50) at an angle of 30.0° with the normal (Fig. P22.18).
Trace the light beam through the glass, and find the angles
of incidence and refraction at each surface.

19. When the light ray in Problem 18 passes through the glass
block, it is shifted laterally by a distance d (Fig. P22.18).
Find the value of d.

2.00 cm

d

30.0°

Figure P22.18 (Problems 18, 19, and 20)

Linseed oil

Water

20.0°

N �

N

Air

u�

u

Figure P22.21

22. A submarine is 300 m horizontally out from the shore and
100 m beneath the surface of the water. A laser beam is
sent from the sub so that it strikes the surface of the water
at a point 210 m from the shore. If the beam just strikes
the top of a building standing directly at the water’s edge,
find the height of the building.

23. Two light pulses are emitted simultaneously from a
source. The pulses take parallel paths to a detector 6.20 m
away, but one moves through air and the other through a
block of ice. Determine the difference in the pulses’ times
of arrival at the detector.

24. A narrow beam of ultrasonic waves reflects off the liver
tumor in Figure P22.24. If the speed of the wave is 10.0%
less in the liver than in the surrounding medium, deter-
mine the depth of the tumor.

50.0°

12.0 cm

Liver

Tumor

Figure P22.24
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A beam of light both reflects and refracts at the surface
between air and glass, as shown in Figure P22.25. If the
index of refraction of the glass is ng , find the angle of inci-
dence, �1, in the air that would result in the reflected ray
and the refracted ray being perpendicular to each other.
[Hint : Remember the identity sin(90° � �) � cos �.]

25. 32. The index of refraction for violet light in silica flint glass
is 1.66, and that for red light is 1.62. What is the angular
dispersion of visible light passing through an equilateral
prism of apex angle 60.0° if the angle of incidence is
50.0°? (See Fig. P22.32.)

n g

u1

Figure P22.25

26. Three sheets of plastic have unknown indices of refrac-
tion. Sheet 1 is placed on top of sheet 2, and a laser beam
is directed onto the sheets from above so that it strikes the
interface at an angle of 26.5° with the normal. The
refracted beam in sheet 2 makes an angle of 31.7° with
the normal. The experiment is repeated with sheet 3 on
top of sheet 2, and with the same angle of incidence, the
refracted beam makes an angle of 36.7° with the normal.
If the experiment is repeated again with sheet 1 on top of
sheet 3, what is the expected angle of refraction in sheet
3? Assume the same angle of incidence.

27. An opaque cylindrical tank with an open top has a diame-
ter of 3.00 m and is completely filled with water. When the
afternoon Sun reaches an angle of 28.0° above the horizon,
sunlight ceases to illuminate the bottom of the tank. How
deep is the tank?

28. A cylindrical cistern, constructed below ground level, is
3.0 m in diameter and 2.0 m deep and is filled to the brim
with a liquid whose index of refraction is 1.5. A small
object rests on the bottom of the cistern at its center. How
far from the edge of the cistern can a girl whose eyes are
1.2 m from the ground stand and still see the object?

Section 22.4 Dispersion and Prisms
29. The index of refraction for red light in water is 1.331, and

that for blue light is 1.340. If a ray of white light enters the
water at an angle of incidence of 83.00°, what are the un-
derwater angles of refraction for the blue and red compo-
nents of the light?

30. A certain kind of glass has an index of refraction of 1.650
for blue light of wavelength 430 nm and an index of 1.615
for red light of wavelength 680 nm. If a beam containing
these two colors is incident at an angle of 30.00° on a
piece of this glass, what is the angle between the two
beams inside the glass?

A ray of light strikes the midpoint of
one face of an equiangular (60°–60°–60°) glass prism
(n � 1.5) at an angle of incidence of 30°. (a) Trace the
path of the light ray through the glass, and find the angles
of incidence and refraction at each surface. (b) If a small
fraction of light is also reflected at each surface, find the
angles of reflection at the surfaces.

31.

Visible light

Angular
dispersion

Deviation of
yellow light

Screen

R
O

Y

G

B

V

Figure P22.32

Section 22.7 Total Internal Reflection
33. Calculate the critical angles for the following materials

when surrounded by air: (a) zircon, (b) fluorite, and
(c) ice. Assume that � � 589 nm.

34. For light of wavelength 589 nm, calculate the critical
angle for the following materials surrounded by air: 
(a) diamond and (b) flint glass.

35. Repeat Problem 34, but this time suppose that the materi-
als are surrounded by water.

A beam of light is incident from air on
the surface of a liquid. If the angle of incidence is 30.0°
and the angle of refraction is 22.0°, find the critical angle
for the liquid when surrounded by air.

37. A plastic light pipe has an index of refraction of 1.53. For
total internal reflection, what is the minimum angle of
incidence if the pipe is in (a) air? (b) water?

38. Determine the maximum angle � for which the light rays
incident on the end of the light pipe in Figure P22.38 are
subject to total internal reflection along the walls of the
pipe. Assume that the light pipe has an index of refrac-
tion of 1.36 and that the outside medium is air.

36.

2.00 mm

u

Figure P22.328

39. Consider a common mirage formed by superheated air
just above a roadway. A truck driver whose eyes are 2.00 m
above the road, where n � 1.000 3, looks forward. She has
the illusion of seeing a patch of water ahead on the road,
where her line of sight makes an angle of 1.20° below the
horizontal. Find the index of refraction of the air just
above the road surface. [Hint : Treat this as a problem one
involving total internal reflection.]
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750 Chapter 22 Reflection and Refraction of Light

40. A jewel thief hides a diamond by placing it on the bottom
of a public swimming pool. He places a circular raft on
the surface of the water directly above and centered over
the diamond, as shown in Figure P22.40. If the surface
of the water is calm and the pool is 2.00 m deep, find the
minimum diameter of the raft that would prevent the dia-
mond from being seen.

10.0° intervals from 0° to 90.0°. (d) Do the same for light
rays traveling up to the interface through the glass.

45. A layer of ice having parallel sides floats on water. If light
is incident on the upper surface of the ice at an angle of
incidence of 30.0°, what is the angle of refraction in the
water?

46. A light ray of wavelength 589 nm is incident at an angle �
on the top surface of a block of polystyrene surrounded
by air, as shown in Figure P22.46. (a) Find the maximum
value of � for which the refracted ray will undergo total
internal reflection at the left vertical face of the block.
(b) Repeat the calculation for the case in which the poly-
styrene block is immersed in water. (c) What happens if
the block is immersed in carbon disulfide?

d

2.00 m

Raft

Diamond

Figure P22.40

A room contains air in which the speed of sound is
343 m/s. The walls of the room are made of concrete, in
which the speed of sound is 1 850 m/s. (a) Find the
critical angle for total internal reflection of sound at
the concrete–air boundary. (b) In which medium must
the sound be traveling in order to undergo total internal
reflection? (c) “A bare concrete wall is a highly efficient
mirror for sound.” Give evidence for or against this state-
ment.

42. Three adjacent faces (that all share a corner) of a plastic
cube of index of refraction n are painted black. A clear
spot at the painted corner serves as a source of diverging
rays when light comes through it. Show that a ray from
this corner to the center of a clear face is totally reflected
if 

43. The light beam in Figure P22.43 strikes surface 2 at the
critical angle. Determine the angle of incidence, �i .

n � √3.

41.

Surface 1

Su
rf

ac
e 

2

42.0°

60.0°

42.0°

ui

Figure P22.43

ADDITIONAL PROBLEMS
44. (a) Consider a horizontal interface between air above and

glass with an index of 1.55 below. Draw a light ray
incident from the air at an angle of incidence of 30.0°.
Determine the angles of the reflected and refracted rays,
and show them on the diagram. (b) Suppose instead that
the light ray is incident from the glass at an angle of
incidence of 30.0°. Determine the angles of the reflected
and refracted rays, and show all three rays on a new
diagram. (c) For rays incident from the air onto the
air–glass surface, determine and tabulate the angles of
reflection and refraction for all the angles of incidence at

u

Figure P22.46

Figure P22.47 shows the path of a beam of light through
several layers with different indices of refraction. (a) If �1 �
30.0°, what is the angle �2 of the emerging beam?
(b) What must the incident angle �1 be in order to have
total internal reflection at the surface between the
medium with n � 1.20 and the medium with n � 1.00?

47.

n = 1.60

n = 1.40

n = 1.20

n = 1.00

u1

u2

Figure P22.47

48. The walls of a prison cell are perpendicular to the four
cardinal compass directions. On the first day of spring,
light from the rising Sun enters a rectangular window in
the eastern wall. The light traverses 2.37 m horizontally to
shine perpendicularly on the wall opposite the window. A
prisoner observes the patch of light moving across this
western wall and for the first time forms his own under-
standing of the rotation of the Earth. (a) With what speed
does the illuminated rectangle move? (b) The prisoner
holds a small square mirror flat against the wall at one
corner of the rectangle of light. The mirror reflects light
back to a spot on the eastern wall close beside the window.
How fast does the smaller square of light move across that
wall? (c) Seen from a latitude of 40.0° north, the rising
Sun moves through the sky along a line making a 50.0°
angle with the southeastern horizon. In what direction
does the rectangular patch of light on the western wall of
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the prisoner’s cell move? (d) In what direction does the
smaller square of light on the eastern wall move?

49. As shown in Figure P22.49, a light ray is incident normal
to on one face of a 30°–60°–90° block of dense flint glass
(a prism) that is immersed in water. (a) Determine the
exit angle �4 of the ray. (b) A substance is dissolved in the
water to increase the index of refraction. At what value of
n2 does total internal reflection cease at point P ?

53. A piece of wire is bent through an angle �. The bent wire
is partially submerged in benzene (index of refraction �
1.50), so that, to a person looking along the dry part, the
wire appears to be straight and makes an angle of 30.0°
with the horizontal. Determine the value of �.

54. A light ray traveling in air is incident on one face of a
right-angle prism with index of refraction n � 1.50, as
shown in Figure P22.54, and the ray follows the path
shown in the figure. Assuming that � � 60.0° and the base
of the prism is mirrored, determine the angle 	 made by
the outgoing ray with the normal to the right face of the
prism.60.0°

30.0°

P

n 1n 2 u3

u4

u1

Figure P22.49

50. A narrow beam of light is incident from air onto a glass
surface with index of refraction 1.56. Find the angle of
incidence for which the corresponding angle of refraction
is one-half the angle of incidence. [Hint: You might want
to use the trigonometric identity sin 2� � 2 sin � cos �.]
One technique for measuring the angle of a prism is
shown in Figure P22.51. A parallel beam of light is
directed onto the apex of the prism so that the beam
reflects from opposite faces of the prism. Show that the
angular separation of the two reflected beams is given
by B � 2A.

51.

A

B

ui

ur

Figure P22.51

52. An optical fiber with index of refraction n and diameter d
is surrounded by air. Light is sent into the fiber along its
axis, as shown in Figure P22.52. (a) Find the smallest out-
side radius R permitted for a bend in the fiber if no light is
to escape. (b) Does the result for part (a) predict reason-
able behavior as d approaches zero? As n increases? As n ap-
proaches unity? (c) Evaluate R , assuming that the diameter
of the fiber is 100 �m and its index of refraction is 1.40.

R

d

Figure P22.52

Incoming ray

θ

Outgoing ray

Mirror base

n

φ

90° – θ

Figure P22.54

A transparent cylinder of radius R �
2.00 m has a mirrored surface on its right half, as shown
in Figure P22.55. A light ray traveling in air is incident on
the left side of the cylinder. The incident light ray and the
exiting light ray are parallel, and d � 2.00 m. Determine
the index of refraction of the material.

55.

Mirrored
surface

Incident ray

Exiting ray

R

d
C

n

Figure P22.55

56. A laser beam strikes one end of a slab of material, as in
Figure P22.56. The index of refraction of the slab is 1.48.
Determine the number of internal reflections of the beam
before it emerges from the opposite end of the slab.

42.0 cm

50.0°
3.10 mmn  = 1.48

Figure P22.56

57. For this problem, refer to Figure 22.15. For various angles
of incidence, it can be shown that the deviation angle � is
a minimum when the ray passes through the glass so that
the interior ray is parallel to the base of the prism. A
measurement of this minimum angle of deviation enables
one to find the index of refraction of the prism material.
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752 Chapter 22 Reflection and Refraction of Light

Show that n is given by the expression

where A is the apex angle of the prism.
58. A hiker stands on a mountain peak near sunset and

observes a rainbow caused by water droplets in the air
about 8.00 km away. The valley is 2.00 km below the moun-
tain peak and entirely flat. What fraction of the complete
circular arc of the rainbow is visible to the hiker?
A light ray incident on a prism is refracted at the first sur-
face, as shown in Figure P22.59. Let 	 represent the apex
angle of the prism and n its index of refraction. Find, in
terms of n and 	, the smallest allowed value of the angle of
incidence at the first surface for which the refracted ray will
not undergo total internal reflection at the second surface.

59.

n �

sin� 1
2

(A � �min)�
sin � A

2 �

the plastic. (b) If the light ray enters the plastic at a point
L � 50.0 cm from the bottom edge, how long does it take
the light ray to travel through the plastic?

62. A. H. Pfund’s method for measuring the index of refrac-
tion of glass is illustrated in Figure P22.62. One face of a
slab of thickness t is painted white, and a small hole
scraped clear at point P serves as a source of diverging
rays when the slab is illuminated from below. Ray PBB�
strikes the clear surface at the critical angle and is totally
reflected, as are rays such as PCC ’. Rays such as PAA�
emerge from the clear surface. On the painted surface
there appears a dark circle of diameter d, surrounded by
an illuminated region, or halo. (a) Derive an equation for
n in terms of the measured quantities d and t. (b) What is
the diameter of the dark circle if n � 1.52 for a slab
0.600 cm thick? (c) If white light is used, the critical angle
depends on color caused by dispersion. Is the inner edge
of the white halo tinged with red light or violet light?
Explain.

u
f

Figure P22.59

60. Students allow a narrow beam of laser light to strike a
water surface. They arrange to measure the angle of
refraction for selected angles of incidence and record the
data shown in the following table:

Angle of Incidence Angle of Refraction

(degrees) (degrees)

10.0 7.5
20.0 15.1
30.0 22.3
40.0 28.7
50.0 35.2
60.0 40.3
70.0 45.3
80.0 47.7

Use the data to verify Snell’s law of refraction by plotting
the sine of the angle of incidence versus the sine of the
angle of refraction. From the resulting plot, deduce the
index of refraction of water.

61. A light ray enters a rectangular block of plastic at an angle
�1 � 45.0° and emerges at an angle �2 � 76.0°, as shown
in Figure P22.61. (a) Determine the index of refraction of

n

2

L

1θ

θ

Figure P22.61

A′

B ′C ′

t

C B A

P
d

Clear
surface

Painted
surface

Figure P22.62

ACTIVITIES
1. Tape a coin to the bottom of a large opaque bowl, as

shown in Figure A22.1a. Stand over the bowl so that you
are looking at the coin, and then move backwards away
from the bowl until you can no longer see the coin over
the bowl’s rim. Remain at that position, and have a friend
fill the bowl with water, as shown in Figure A22.1b. You
can now see the coin again because the light is refracted
at the water–air interface.

(a)

(b)

Water

Coin

Figure A22.1

2. Tape a piece of black paper to the end of a flashlight and
cut a narrow slit in the middle of the paper, as shown in
Figure A22.2. Lean a flat mirror against one end of a tray
partially filled with water. Shine your flashlight on that
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part of the mirror which is under water, and hold a sheet
of white paper such that the reflected light shines on the
paper. You should observe a spectrum of colors on the
paper as the light is dispersed when it travels from air into
water and then from water into air. According to your
observations, which color is bent the most? Which is bent
the least?

If the droplets are close to you in the experiment
above, you may be able to see two rainbows, one for each
eye. Close one eye, and only one bow is seen.

With the Sun high in the sky, stand on a ladder and
spray the hose toward the ground. In this case, you should
be able to form a complete circle rainbow.

4. By observing the shadows formed by large and small light
sources, you can demonstrate that light rays travel in
straight-line paths. Figure A22.4 shows the shadows
formed on a screen by a baseball when the light from a
lightbulb (a large source) falls on it. Use the figure to
explain why the shadow is dark at location A and less dark
at B. Replace the light source with a small source, such as
a high-intensity lamp with a small, clear bulb. (A substi-
tute for a high-intensity lamp is an ordinary lightbulb with
a piece of cardboard close in front of it with a hole about
the size of a penny punched in the cardboard. The hole
serves as the small source of light.) What kind of shadow
is formed in this case? Why?

Paper
screen

Black paper
with slit

WaterTilted
mirror

Figure A22.2

3. Create an artificial rainbow by standing with your back to
the sun and spraying water into the air with a hose. You
should cover the end of the hose slightly with a finger or use
a nozzle so that the water is broken up into tiny droplets.
Which color is on the outside of the arc? The inside?

B

A

Figure A22.4
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The development of the technology of mirrors and lenses led to a revolution in the progress
of science. These devices, relatively simple to construct from cheap materials, led to micro-
scopes and telescopes, extending human sight and opening up new pathways to knowledge,
from microbes to distant planets.

This chapter covers the formation of images when plane and spherical light waves fall on
plane and spherical surfaces. Images can be formed by reflection from mirrors or by refraction
through lenses. In our study of mirrors and lenses, we continue to assume that light travels
in straight lines (the ray approximation), ignoring diffraction.

23.1 FLAT MIRRORS
We begin by examining the flat mirror. Consider a point source of light placed at
O in Figure 23.1, a distance p in front of a flat mirror. The distance p is called the
object distance. Light rays leave the source and are reflected from the mirror.
After reflection, the rays diverge (spread apart), but they appear to the viewer to
come from a point I behind the mirror. Point I is called the image of the object at
O. Regardless of the system under study, images are formed at the point where rays
of light actually intersect or where they appear to originate. Because the rays in the
figure appear to originate at I, which is a distance q behind the mirror, that is the
location of the image. The distance q is called the image distance.

Images are classified as real or virtual. In the formation of a real image, light
actually passes through the image point. For a virtual image, the light doesn’t pass
through the image point, but appears to come (diverge) from there. The image
formed by the flat mirror in Figure 23.1 is a virtual image. In fact, the images seen
in flat mirrors are always virtual (for real objects). Real images can be displayed on
a screen (as at a movie), but virtual images cannot.

We will examine some of the properties of the images formed by flat mirrors by
using the simple geometric techniques shown in Active Figure 23.2. To find out

This beautiful photograph shows a
raindrop suspended from a leaf. The
raindrop acts as a lens. It refracts
light twice to produce a real, inverted
image of the foliage beyond.
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23.1 Flat Mirrors 755

where an image is formed, it’s necessary to follow at least two rays of light as they
reflect from the mirror. One of those rays starts at P, follows the horizontal path
PQ to the mirror, and reflects back on itself. The second ray follows the oblique
path PR and reflects as shown. An observer to the left of the mirror would trace
the two reflected rays back to the point from which they appear to have origi-
nated: point P �. A continuation of this process for points other than P on the
object would result in a virtual image (drawn as a yellow arrow) to the right of the
mirror. Because triangles PQR and P �QR are identical, PQ � P �Q. Hence, we con-
clude that the image formed by an object placed in front of a flat mirror is as far
behind the mirror as the object is in front of the mirror. Geometry also shows that
the object height h equals the image height h�. The lateral magnification M is
defined as

[23.1]

This is a general definition of the lateral magnification of any type of mirror. For a
flat mirror, M � 1 because h� � h.

In summary, the image formed by a flat mirror has the following properties:

1. The image is as far behind the mirror as the object is in front.
2. The image is unmagnified, virtual, and upright. (By upright, we mean

that if the object arrow points upward, as in Figure 23.2, so does the image
arrow. The opposite of an upright image is an inverted image.)

Finally, note that a flat mirror produces an image having an apparent left–right
reversal. You can see this reversal standing in front of a mirror and raising your
right hand. Your image in the mirror raises his left hand. Likewise, your hair
appears to be parted on the opposite side, and a mole on your right cheek appears
to be on your image’s left cheek.

M � 
image height
object height

�
h�

h

Mirror

O I

qp

Figure 23.1 An image formed by
reflection from a flat mirror. The
image point I is behind the mirror at
distance q , which is equal in magni-
tude to the object distance p .

Object

h R

QP

Image

p q

u

u

P�

h �

ACTIVE FIGURE 23.2
A geometric construction to locate
the image of an object placed in front
of a flat mirror. Because the triangles
PQR and P �QR are identical, p � �q �
and h � h�.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 23.2, where
you can move the object and see the
effect on the image.

In the overhead view of Figure 23.3, the image of the stone seen by observer 1 is at
C . Where does observer 2 see the image—at A , at B , at C , at E , or not at all?

Quick Quiz 23.1

Figure 23.3 (Quick Quiz 23.1)

2 1

A B C D E

TIP 23.1 Magnification �
Enlargement
Note that the word magnification, as
used in optics, doesn’t always mean
enlargement, because the image could
be smaller than the object.

EXAMPLE 23.1 “Mirror, Mirror, on the Wall”
Goal Apply the properties of a flat mirror.

Problem A man 1.80 m tall stands in front of a mirror and sees his full height, no more and no less. If his eyes are
0.14 m from the top of his head, what is the minimum height of the mirror?
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756 Chapter 23 Mirrors and Lenses

Most rearview mirrors in cars have a day setting and a night setting. The night
setting greatly diminishes the intensity of the image so that lights from trailing cars
will not blind the driver. To understand how such a mirror works, consider Figure
23.5. The mirror is a wedge of glass with a reflecting metallic coating on the back
side. When the mirror is in the day setting, as in Figure 23.5a, light from an object
behind the car strikes the mirror at point 1. Most of the light enters the wedge, is
refracted, and reflects from the back of the mirror to return to the front surface,
where it is refracted again as it reenters the air as ray B (for bright). In addition, a
small portion of the light is reflected at the front surface, as indicated by ray D (for

Strategy Figure 23.4 shows two rays of light, one from his feet and the
other from the top of his head, reflecting off the mirror and entering his eye.
The ray from his feet just strikes the bottom of the mirror, so if the mirror
were longer, it would be too long; if shorter, the ray would not be
reflected. The angle of incidence and the angle of reflection are equal,
labeled �. This means the two triangles, ABD and DBC, are identical
because they are right triangles with a common side (DB) and two identical
angles �. Use this key fact and the small isosceles triangle FEC to solve the
problem.

Solution

F E

B

d

C

D

A

u

u

Figure 23.4 (Example 23.1)

We need to find BE , which equals d . Relate this length
to lengths on the man’s body:

(1)BE � DC � 1
2 CF

We need the lengths DC and CF. Set the sum of sides
opposite the identical angles � equal to AC :

AD � DC � AC � (1.80 � 0.14) � 1.66 m (2)

AD � DC, so substitute into Equation 2 and solve for DC : AD � DC � 2DC � 1.66 m : DC � 0.83 m

CF is given as 0.14 m. Substitute this and DC into
Equation 1:

0.90 mBE � d � DC � 1
2 CF � 0.83 m � 1

2 (0.14 m) �

Remarks The mirror must be exactly equal to half the height of the man in order for him to see only his full height
and nothing more or less. Notice that the answer doesn’t depend on his distance from the mirror.

Exercise 23.1
How large should the mirror be if he wants to see only the upper third of his body?

Answer 0.30 m

A P P L I C AT I O N
Day and Night Settings 
for Rearview Mirrors

B

D
1

Daytime setting

Incident
light

Reflecting
side of mirror

B

D

Incident
light

Nighttime setting

(b)(a)

Figure 23.5 Cross-sectional views
of a rearview mirror. (a) With the day
setting, the silvered back surface of
the mirror reflects a bright ray B into
the driver’s eyes. (b) With the night
setting, the glass of the unsilvered
front surface of the mirror reflects a
dim ray D into the driver’s eyes. 
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23.2 Images Formed by Spherical Mirrors 757

dim). This dim reflected light is responsible for the image observed when the mir-
ror is in the night setting, as in Figure 23.5b. Now the wedge is rotated so that the
path followed by the bright light (ray B) doesn’t lead to the eye. Instead, the dim
light reflected from the front surface travels to the eye, and the brightness of trail-
ing headlights doesn’t become a hazard.

The professor in the box shown in Figure 23.6
appears to be balancing himself on a few fingers 

with both of his feet elevated from the floor. He can
maintain this position for a long time, and appears to
defy gravity. How do you suppose this illusion was
created?

Explanation This is an example of an optical illu-
sion, used by magicians, that makes use of a mirror.
The box that the professor is standing in is a cubical
open frame that contains a flat vertical mirror
through a diagonal plane. The professor straddles
the mirror so that one leg is in front of the mirror
and the other leg is behind it, out of view. When 
he raises his front leg, that leg’s reflection rises 
also, making it appear both his feet are off the
ground, creating the illusion that he’s floating in the
air. In fact, he supports himself with the leg behind
the mirror, which remains in contact with the
ground.

Applying Physics 23.1 Illusionist’s Trick

Figure 23.6 (Applying Physics 23.1)
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23.2 IMAGES FORMED BY SPHERICAL MIRRORS
Concave Mirrors
A spherical mirror, as its name implies, has the shape of a segment of a sphere.
Figure 23.7 shows a spherical mirror with a silvered inner, concave surface;
this type of mirror is called a concave mirror. The mirror has radius of curvature
R, and its center of curvature is at point C . Point V is the center of the
spherical segment, and a line drawn from C to V is called the principal axis of
the mirror.

Now consider a point source of light placed at point O in Figure 23.7b, on the
principal axis and outside point C . Several diverging rays originating at O are
shown. After reflecting from the mirror, these rays converge to meet at I, called
the image point. The rays then continue and diverge from I as if there were an
object there. As a result, a real image is formed. Whenever reflected light actually
passes through a point, the image formed there is real.

We often assume that all rays that diverge from the object make small angles with
the principal axis. All such rays reflect through the image point, as in Figure 23.7b.

Mirror

C V

(a)

Center of
curvature R

Principal
axis

Mirror

O VI

(b)

C

Figure 23.7 (a) A concave mirror
of radius R . The center of curvature,
C , is located on the principal axis.
(b) A point object placed at O in
front of a concave spherical mirror of
radius R, where O is any point on the
principal axis farther than R from the
surface of the mirror, forms a real
image at I. If the rays diverge from 
O at small angles, they all reflect
through the same image point.
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Rays that make a large angle with the principal axis, as in Figure 23.8, converge to
other points on the principal axis, producing a blurred image. This effect, called
spherical aberration, is present to some extent with any spherical mirror and will
be discussed in Section 23.7.

We can use the geometry shown in Figure 23.9 to calculate the image distance
q from the object distance p and radius of curvature, R . By convention, these dis-
tances are measured from point V. The figure shows two rays of light leaving the
tip of the object. One ray passes through the center of curvature, C , of the mirror,
hitting the mirror head-on (perpendicular to the mirror surface) and reflecting
back on itself. The second ray strikes the mirror at point V and reflects as shown,
obeying the law of reflection. The image of the tip of the arrow is at the point at
which the two rays intersect. From the largest triangle in Figure 23.9 we see that
tan � � h/p ; the light-blue triangle gives tan � � �h �/q . The negative sign has
been introduced to satisfy our convention that h � is negative when the image is
inverted with respect to the object, as it is here. From Equation 23.1 and these
results, we find that the magnification of the mirror is

[23.2]

From two other triangles in the figure, we get

and

from which we find that

[23.3]

If we compare Equation 23.2 to Equation 23.3, we see that

Simple algebra reduces this to

[23.4]

This expression is called the mirror equation.
If the object is very far from the mirror— if the object distance p is great

enough compared with R that p can be said to approach infinity— then 1/p � 0,
and we see from Equation 23.4 that q � R/2. In other words, when the object is
very far from the mirror, the image point is halfway between the center of curva-
ture and the center of the mirror, as in Figure 23.10a. The incoming rays are
essentially parallel in that figure because the source is assumed to be very far from
the mirror. In this special case, we call the image point the focal point F and the

1
p

�
1
q

�
2
R

R � q
p � R

�
q
p

h�

h
� �

R � q
p � R

tan � � �
h�

R � q
tan � �

h
p � R

M �
h�

h
� �

q
p

Figure 23.8 Rays at large angles
from the horizontal axis reflect from
a spherical, concave mirror to inter-
sect the principal axis at different
points, resulting in a blurred image.
This phenomenon is called spherical
aberration.

h

O
Principal

axis

R

C

q

p

VIa
a

u
uh �

Figure 23.9 The image formed by
a spherical concave mirror, where the
object at O lies outside the center of
curvature, C .

Mirror equation �
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image distance the focal length f , where

[23.5]

The mirror equation can therefore be expressed in terms of the focal length:

[23.6]

Note that rays from objects at infinity are always focused at the focal point.

23.3 CONVEX MIRRORS AND 
SIGN CONVENTIONS

Figure 23.11 shows the formation of an image by a convex mirror, which is silvered
so that light is reflected from the outer, convex surface. This is sometimes called a
diverging mirror because the rays from any point on the object diverge after
reflection, as though they were coming from some point behind the mirror. The
image in Figure 23.11 is virtual rather than real because it lies behind the mirror
at the point at which the reflected rays appear to originate. In general, the image
formed by a convex mirror is upright, virtual, and smaller than the object.

We won’t derive any equations for convex spherical mirrors. If we did, we
would find that the equations developed for concave mirrors can be used
with convex mirrors if particular sign conventions are used. We call the region in
which light rays move the front side of the mirror, and the other side, where virtual
images are formed, the back side. For example, in Figures 23.9 and 23.11, the side
to the left of the mirror is the front side and the side to the right is the back side.

1
p

�
1
q

�
1
f

f �
R
2

C F

R

f

(a) (b)

Figure 23.10 (a) Light rays from a
distant object ( p � �) reflect from a
concave mirror through the focal
point F. In this case, the image
distance q � R/2 � f, where f is the
focal length of the mirror. (b) A pho-
tograph of the reflection of parallel
rays from a concave mirror.
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TIP 23.2 Focal Point � Focus
Point
The focal point is not the point at
which light rays focus to form an
image. The focal point of a mirror is
determined solely by its curvature— it
doesn’t depend on the location of
any object.

Front
Back

O I F C

p q
Figure 23.11 Formation of an
image by a spherical, convex mirror.
Note that the image is virtual and
upright.
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Figure 23.12 is helpful for understanding the rules for object and image distances,
and Table 23.1 summarizes the sign conventions for all the necessary quantities.
Notice that when the quantities p, q, and f (and R) are located where the light
is— in front of the mirror— they are positive, whereas when they are located be-
hind the mirror (where the light isn’t), they are negative.

Ray Diagrams for Mirrors
We can conveniently determine the positions and sizes of images formed by mir-
rors by constructing ray diagrams similar to the ones we have been using. This
kind of graphical construction tells us the overall nature of the image and can
be used to check parameters calculated from the mirror and magnification
equations. Making a ray diagram requires knowing the position of the object
and the location of the center of curvature. To locate the image, three rays
are constructed (rather than just the two we have been constructing so far),
as shown by the examples in Active Figure 23.13. All three rays start from
the same object point; for these examples, the tip of the arrow was chosen.
For the concave mirrors in Active Figure 23.13a and b, the rays are drawn as
follows:

1. Ray 1 is drawn parallel to the principal axis and is reflected back through
the focal point F.

2. Ray 2 is drawn through the focal point and is reflected parallel to the
principal axis.

3. Ray 3 is drawn through the center of curvature, C, and is reflected back on
itself.

Note that rays actually go in all directions from the object; we choose to follow
those moving in a direction that simplifies our drawing.

The intersection of any two of these rays at a point locates the image. The third
ray serves as a check of our construction. The image point obtained in this fashion
must always agree with the value of q calculated from the mirror formula.

In the case of a concave mirror, note what happens as the object is moved closer
to the mirror. The real, inverted image in Active Figure 23.13a moves to the left as
the object approaches the focal point. When the object is at the focal point, the
image is infinitely far to the left. However, when the object lies between the focal
point and the mirror surface, as in Active Figure 23.13b, the image is virtual and
upright.

With the convex mirror shown in Active Figure 23.13c, the image of a real
object is always virtual and upright. As the object distance increases, the virtual
image shrinks and approaches the focal point as p approaches infinity. You should
construct a ray diagram to verify this.

The image-forming characteristics of curved mirrors obviously determine
their uses. For example, suppose you want to design a mirror that will help

TABLE 23.1
Sign Conventions for Mirrors

Upright Inverted 
Quantity Symbol In Front In Back Image Image

Object location p � �

Image location q � �

Focal Length f � �

Image height h� � �

Magnification M � �

Front, or
real, side

Reflected light

Back, or
virtual, side

p and q negative

No light

p and q positive

Incident light

Convex or
concave mirror

Figure 23.12 A diagram describ-
ing the signs of p and q for convex
and concave mirrors.
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people shave or apply cosmetics. For this, you need a concave mirror that puts
the user inside the focal point, such as the mirror in Active Figure 23.13b. With
that mirror, the image is upright and greatly enlarged. In contrast, suppose that
the primary purpose of a mirror is to observe a large field of view. In that case,

(a)

1

2

3

C FO

Front Back

I

Principal axis

(b)

1

2

3
C F O I

Front Back

(c)

CFO I

1

2

3

Front Back

ACTIVE FIGURE 23.13
Ray diagrams for spherical mirrors and corresponding photographs of the images of candles. (a) When
an object is outside the center of curvature of a concave mirror, the image is real, inverted, and reduced
in size. (b) When an object is between a concave mirror and the focal point, the image is virtual, upright,
and magnified. (c) When an object is in front of a convex mirror, the image is virtual, upright, and 
reduced in size.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 23.13, where you can move the objects,
change the focal lengths of the mirrors, and see the effect on the images.
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you need a convex mirror such as the one in Active Figure 23.13c. The dimin-
ished size of the image means that a fairly large field of view is seen in the mir-
ror. Mirrors like this one are often placed in stores to help employees watch for
shoplifters. A second use of such a mirror is as a side-view mirror on a car (Fig.
23.14). This kind of mirror is usually placed on the passenger side of the car and
carries the warning “Objects are closer than they appear.” Without such warning,
a driver might think she is looking into a flat mirror, which doesn’t alter the size
of the image. She could be fooled into believing that a truck is far away because
it looks small, when it’s actually a large semi very close behind her, but
diminished in size because of the image formation characteristics of the convex
mirror.

Figure 23.14 A convex side-view
mirror on a vehicle produces an
upright image that is smaller than the
object. The smaller image means the
object is closer than its apparent
distance as observed in the mirror.
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A virtual image can be anywhere behind a concave
mirror. Why is there a maximum distance at which the
image can exist behind a convex mirror?

Explanation Consider the concave mirror first, and
imagine two different light rays leaving a tiny object
and striking the mirror. If the object is at the focal
point, the light rays reflecting from the mirror will be
parallel to the mirror axis. They can be interpreted as
forming a virtual image infinitely far away behind the
mirror. As the object is brought closer to the mirror,
the reflected rays will diverge through larger and larger
angles, resulting in their extensions converging closer

and closer to the back of the mirror. When the object is
brought right up to the mirror, the image is right
behind the mirror. When the object is much closer to
the mirror than the focal length, the mirrors acts like a
flat mirror, and the image is just as far behind the mir-
ror as the object is in front of it. The image can there-
fore be anywhere from infinitely far away to right at the
surface of the mirror. For the convex mirror, an object
at infinity produces a virtual image at the focal point.
As the object is brought closer, the reflected rays di-
verge more sharply and the image moves closer to the
mirror. As a result, the virtual image is restricted to the
region between the mirror and the focal point.

Applying Physics 23.2 Concave versus Convex

Large trucks often have a sign on the back saying, “If you
can’t see my mirror, I can’t see you.” Explain this sign.

Explanation The trucking companies are making use
of the principle of the reversibility of light rays. In or-

der for an image of you to be formed in the driver’s
mirror, there must be a pathway for rays of light to
reach the mirror, allowing the driver to see your
image. If you can’t see the mirror, then this pathway
doesn’t exist.

Applying Physics 23.3 Reversible Waves

INTERACTIVE EXAMPLE 23.2 Images Formed by a Concave Mirror
Goal Calculate properties of a concave mirror.

Problem Assume that a certain concave spherical mirror has a focal length of 10.0 cm. (a) Locate the image and
find the magnification for an object distance of 25.0 cm. Determine whether the image is real or virtual, inverted or
upright, and larger or smaller. Do the same for object distances of (b) 10.0 cm and (c) 5.00 cm.

Strategy For each part, substitute into the mirror and magnification equations. Part (b) involves a limiting process,
because the answers are infinite.

Solution
(a) Find the image position for an object distance of 25.0 cm. 
Calculate the magnification and describe the image.
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Use the mirror equation to find the image distance: (1)
1
p

�
1
q

�
1
f

Substitute and solve for q. According to Table 23.1, 
p and f are positive.

q � 16.7 cm

1
25.0 cm

�
1
q

�
1

10.0 cm

Because q is positive, the image is in front of the mirror
and is real. The magnification is given by substituting
into Equation 23.2:

� 0.668M � �
q
p

� �
16.7 cm
25.0 cm

�

The image is smaller than the object because �M � 	 1,
and inverted because M is negative. (See Fig. 23.13a.)

(b) Locate the image distance when the object distance
is 10.0 cm. Calculate the magnification and describe the
image.

The object is at the focal point. Substitute p � 10.0 cm
and f � 10.0 cm into the mirror equation:

q � �
1
q

� 0 :

1
10.0 cm

�
1
q

�
1

10.0 cm

Since M � � q/p, the magnification is infinite, also.

(c) Locate the image distance when the object distance
is 5.00 cm. Calculate the magnification and describe the
image.

Once again, substitute into the mirror equation:

q � � 10.0 cm

1
q

�
1

10.0 cm
�

1
5.00 cm

� �
1

10.0 cm

1
5.00 cm

�
1
q

�
1

10.0 cm

The image is virtual (behind the mirror) because q is neg-
ative. Use Equation 23.2 to calculate the magnification:

2.00M � �
q
p

� �� �10.0 cm
5.00 cm � �

The image is larger (magnified by a factor of 2) because
�M � 
 1, and upright because M is positive. (See Fig.
23.13b.)

Remarks Note the characteristics of an image formed by a concave, spherical mirror. When the object is outside
the focal point, the image is inverted and real; at the focal point, the image is formed at infinity; inside the focal
point, the image is upright and virtual.

Exercise 23.2
If the object distance is 20.0 cm, find the image distance and the magnification of the mirror.

Answer q � 20.0 cm, M � � 1.00

Investigate the image formed for various object positions and mirror focal lengths by logging into
PhysicsNow at www.cp7e.com and going to Interactive Example 23.2.
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EXAMPLE 23.3 Images Formed by a Convex Mirror
Goal Calculate properties of a convex mirror.

Problem An object 3.00 cm high is placed 20.0 cm from a convex mirror with a focal length of 8.00 cm. Find
(a) the position of the image, (b) the magnification of the mirror, and (c) the height of the image.

Strategy This problem again requires only substitution into the mirror and magnification equations. Multiplying
the object height by the magnification gives the image height.

Solution
(a) Find the position of the image.

Because the mirror is convex, its focal length is negative.
Substitute into the mirror equation:

 
1

20.0 cm
�

1
q

�
1

� 8.00 cm

 
1
p

�
1
q

�
1
f

Solve for q : q � �5.71 cm

(b) Find the magnification of the mirror.

Substitute into Equation 23.2: 0.286M � �
q
p

� �� � 5.71 cm
20.0 cm � �

(c) Find the height of the image.

Multiply the object height by the magnification: h� � hM � (3.00 cm)(0.286) � 0.858 cm

Remarks The negative value of q indicates the image is virtual, or behind the mirror, as in Figure 23.13c. The
image is upright because M is positive.

Exercise 23.3
Suppose the object is moved so it is 4.00 cm from the same mirror. Repeat parts (a)–(c).

Answer (a) �2.67 cm (b) 0.668 (c) 2.00 cm; the image is upright and virtual.

EXAMPLE 23.4 The Face in the Mirror
Goal Find a focal length from a magnification and an object distance.

Problem When a woman stands with her face 40.0 cm from a cosmetic mirror, the upright image is twice as tall as
her face. What is the focal length of the mirror?

Strategy To find f in this example, we must first find q, the image distance. Because the problem states that the
image is upright, the magnification must be positive (in this case, M � � 2), and because M � � q/p , we can
determine q.

Solution
Obtain q from the magnification equation:

q � � 2p � � 2(40.0 cm) � � 80.0 cm

M � �
q
p

� 2

Because q is negative, the image is on the opposite side
of the mirror and hence is virtual. Substitute q and p
into the mirror equation and solve for f : f � 80.0 cm

1
40.0 cm

�
1

80.0 cm
�

1
f
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23.4 Images Formed by Refraction 765

23.4 IMAGES FORMED BY REFRACTION
In this section we describe how images are formed by refraction at a spherical
surface. Consider two transparent media with indices of refraction n1 and n2,
where the boundary between the two media is a spherical surface of radius R
(Fig. 23.15). We assume that the medium to the right has a higher index of
refraction than the one to the left: n2 
 n1. This would be the case for light
entering a curved piece of glass from air or for light entering the water in a
fishbowl from air. The rays originating at the object location O are refracted at
the spherical surface and then converge to the image point I. We can begin
with Snell’s law of refraction and use simple geometric techniques to show that 
the object distance, image distance, and radius of curvature are related by the
equation

[23.7]

Further, the magnification of a refracting surface is

[23.8]

As with mirrors, certain sign conventions hold, depending on circumstances.
First note that real images are formed by refraction on the side of the surface
opposite the side from which the light comes, in contrast to mirrors, where real
images are formed on the same side of the reflecting surface. This makes sense,
because light reflects off mirrors, so any real images must form on the same side
the light comes from. With a transparent medium, the rays pass through and natu-
rally form real images on the opposite side. We define the side of the surface in
which light rays originate as the front side. The other side is called the back side.
Because of the difference in location of real images, the refraction sign conven-
tions for q and R are the opposite of those for reflection. For example, p, q, and R
are all positive in Figure 23.15. The sign conventions for spherical refracting
surfaces are summarized in Table 23.2 (page 766).

M �
h�

h
� �

n1q
n2p

n1

p
�

n2

q
�

n2 � n1

R

Remarks The positive sign for the focal length tells us the mirror is concave, a fact we already knew because the
mirror magnified the object. (A convex mirror would have produced a smaller image.)

Exercise 23.4
Suppose a fun-house mirror makes you appear to have one-third your normal height. If you are 1.20 m away from
the mirror, find its focal length. Is the mirror concave or convex?

Answer �0.600 m, convex

n1 < n2

O I

p q

n2n1
R

Figure 23.15 An image formed by refrac-
tion at a spherical surface. Rays making
small angles with the principal axis diverge
from a point object at O and pass through
the image point I.
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Flat Refracting Surfaces
If the refracting surface is flat, then R approaches infinity and Equation 23.7
reduces to

[23.9]

From Equation 23.9 we see that the sign of q is opposite that of p . Consequently,
the image formed by a flat refracting surface is on the same side of the surface as
the object. This is illustrated in Active Figure 23.16 for the situation in which n1 is
greater than n2, where a virtual image is formed between the object and the sur-
face. Note that the refracted ray bends away from the normal in this case, because
n1 
 n2.

 q � �
n2

n1
 p

 
n1

p
� �

n2

q

TABLE 23.2
Sign Conventions for Refracting Surfaces

Upright Inverted
Quantity Symbol In Front In Back Image Image

Object location p � �

Image location q � �

Radius R � �

Image height h� � �

Why does a person with normal vision see a blurry
image if the eyes are opened underwater with no
goggles or diving mask in use?

Explanation The eye presents a spherical refraction
surface. The eye normally functions so that light
entering from the air is refracted to form an image in
the retina located at the back of the eyeball. The dif-
ference in the index of refraction between water and
the eye is smaller than the difference in the index of

refraction between air and the eye. Consequently,
light entering the eye from the water doesn’t
undergo as much refraction as does light entering
from the air, and the image is formed behind the
retina. A diving mask or swimming goggles have no
optical action of their own; they are simply flat pieces
of glass or plastic in a rubber mount. However, they
provide a region of air adjacent to the eyes, so that
the correct refraction relationship is established and
images will be in focus.

Applying Physics 23.4 Underwater Vision

O

I

q

p

n1 > n2

n1  n2

ACTIVE FIGURE 23.16
The image formed by a flat refracting
surface is virtual and on the same
side of the surface as the object. Note
that if the light rays are reversed in
direction, we have the situation
described in Example 22.6.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 23.16, where
you can move the object and observe
the effect on the location of the image.

A person spearfishing from a boat sees a fish located 3 m from the boat at an
apparent depth of 1 m. To spear the fish, should the person aim (a) at, (b) above,
or (c) below the image of the fish?

Quick Quiz 23.2

True or false? (a) The image of an object placed in front of a concave mirror is
always upright. (b) The height of the image of an object placed in front of a con-
cave mirror must be smaller than or equal to the height of the object. (c) The
image of an object placed in front of a convex mirror is always upright and smaller
than the object.

Quick Quiz 23.3
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EXAMPLE 23.5 Gaze into the Crystal Ball
Goal Calculate the properties of an image created by a spherical lens.

Problem A coin 2.00 cm in diameter is embedded in a solid glass ball of radius
30.0 cm (Fig. 23.17). The index of refraction of the ball is 1.50, and the coin is 20.0 cm
from the surface. (a) Find the position of the image of the coin, and (b) the height
of the coin’s image.

Strategy Because the rays are moving from a medium of high index of refraction
(the glass ball) to a medium of lower index of refraction (air), those originating at
the coin are refracted away from the normal at the surface and diverge outward.
The image is formed in the glass and is virtual. Substitute into Equations 23.7 and
23.8 for the image position and magnification, respectively.

Solution

30.0 cm

20.0 cm

q

n2
n1

n1 > n2

Figure 23.17 (Example 23.5) A
coin embedded in a glass ball forms a
virtual image between the coin and
the surface of the glass.

Apply Equation 23.7, and take n 1 � 1.50, n2 � 1.00, 
p � 20.0 cm, and R � � 30.0 cm:

 
1.50

20.0 cm
�

1.00
q

�
1.00 � 1.50
�30.0 cm

 
n1

p
�

n2

q
�

n2 � n1

R

Solve for q : q � �17.1 cm

To find the image height, we use Equation 23.8 for the
magnification:

h� � 1.28h � (1.28)(2.00 cm) � 2.56 cm

M � �
n1q
n2p

� �
1.50(�17.1 cm)
1.00(20.0 cm)

�
h�

h

Remarks The negative sign on q indicates that the image is in the same medium as the object (the side of incident
light), in agreement with our ray diagram, and therefore must be virtual. The positive value for M means the image is
upright.

Exercise 23.5
A coin is embedded 20.0 cm from the surface of a similar ball of transparent substance having radius 30.0 cm and un-
known composition. If the coin’s image is virtual and located 15.0 cm from the surface, find (a) the index of refrac-
tion of the substance and (b) the magnification.

Answers (a) 2.00 (b) 1.50

EXAMPLE 23.6 The One That Got Away
Goal Calculate the properties of an image created by 
a flat refractive surface.

Problem A small fish is swimming at a depth d
below the surface of a pond (Fig. 23.18). (a) What is
the apparent depth of the fish as viewed from directly
overhead? (b) If the fish is 12 cm long, how long is its
image?

Strategy In this example the refracting surface is
flat, so R is infinite. Hence, we can use Equation 23.9
to determine the location of the image, which is the
apparent location of the fish.

Solution
(a) Find the apparent depth of the fish.

d

q

n2 = 1.00

n1 = 1.33

Figure 23.18 (Example 23.6)
The apparent depth q of the fish
is less than the true depth d.
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23.5 ATMOSPHERIC REFRACTION
Images formed by refraction in our atmosphere lead to some interesting phenom-
ena. One such phenomenon that occurs daily is the visibility of the Sun at dusk
even though it has passed below the horizon. Figure 23.19 shows why this occurs.
Rays of light from the Sun strike the Earth’s atmosphere (represented by the
shaded area around the planet) and are bent as they pass into a medium that has
an index of refraction different from that of the almost empty space in which they
have been traveling. The bending in this situation differs somewhat from the
bending we have considered previously in that it is gradual and continuous as the
light moves through the atmosphere toward an observer at point O. This is
because the light moves through layers of air that have a continuously changing
index of refraction. When the rays reach the observer, the eye follows them back
along the direction from which they appear to have come (indicated by the
dashed path in the figure). The end result is that the Sun appears to be above the
horizon even after it has fallen below it.

Substitute n1 � 1.33 for water and p � d into 
Equation 23.9:

� 0.752d  q � �
n2

n1
 p � �

1
1.33

 d �

(b) What is the size of the fish’s image?

Use Equation 23.9 to eliminate q from the Equation
23.8, the magnification equation:

h� � h � 12 cm

M �
h�

h
� �

n1q
n2p

� �

n1 ��
n2

n1
 p�

n2p
� 1

Remarks Again, because q is negative, the image is virtual, as indicated in Figure 23.18. The apparent depth is
three-fourths the actual depth. For instance, if d � 4.0 m, then q � � 3.0 m.

Exercise 23.6
A spear fisherman estimates that a trout is 1.5 m below the water’s surface. What is the actual depth of the fish?

Answer 2.0 m

O

Figure 23.19 Because light is
refracted by the Earth’s atmosphere,
an observer at O sees the Sun even
though it has fallen below the
horizon.

A

B

(a) (b)

Figure 23.20 (a) A mirage is produced by the bending of light rays in the atmosphere when there
are large temperature differences between the ground and the air. (b) Notice the reflection of the cars
in this photograph of a mirage. The road looks like it’s flooded with water, but is actually dry.
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The mirage is another phenomenon of nature produced by refraction in the
atmosphere. A mirage can be observed when the ground is so hot that the air
directly above it is warmer than the air at higher elevations. The desert is a region
in which such circumstances prevail, but mirages are also seen on heated roadways
during the summer. The layers of air at different heights above the Earth have dif-
ferent densities and different refractive indices. The effect this can have is pictured
in Figure 23.20a. The observer sees the sky and a tree in two different ways. One
group of light rays reaches the observer by the straight-line path A, and the eye
traces these rays back to see the tree in the normal fashion. In addition, a second
group of rays travels along the curved path B . These rays are directed toward the
ground and are then bent as a result of refraction. As a consequence, the observer
also sees an inverted image of the tree and the background of the sky as he traces
the rays back to the point at which they appear to have originated. Because an
upright image and an inverted image are seen when the image of a tree is observed
in a reflecting pool of water, the observer unconsciously calls on this past experi-
ence and concludes that the sky is reflected by a pool of water in front of the tree.

23.6 THIN LENSES
A typical thin lens consists of a piece of glass or plastic, ground so that each of its
two refracting surfaces is a segment of either a sphere or a plane. Lenses are com-
monly used to form images by refraction in optical instruments, such as cameras,
telescopes, and microscopes. The equation that relates object and image distances
for a lens is virtually identical to the mirror equation derived earlier, and the
method used to derive it is also similar.

Figure 23.21 shows some representative shapes of lenses. Notice that we have
placed these lenses in two groups. Those in Figure 23.21a are thicker at the center
than at the rim, and those in Figure 23.21b are thinner at the center than at the
rim. The lenses in the first group are examples of converging lenses, and those in
the second group are diverging lenses. The reason for these names will become
apparent shortly.

As we did for mirrors, it is convenient to define a point called the focal
point for a lens. For example, in Figure 23.22a (page 770), a group of rays par-
allel to the axis passes through the focal point F after being converged by the
lens. The distance from the focal point to the lens is called the focal length f .
The focal length is the image distance that corresponds to an infinite object
distance. Recall that we are considering the lens to be very thin. As a result, it
makes no difference whether we take the focal length to be the distance from
the focal point to the surface of the lens or the distance from the focal point to
the center of the lens, because the difference between these two lengths is
negligible. A thin lens has two focal points, as illustrated in Figure 23.22, one
on each side of the lens. One focal point corresponds to parallel rays traveling
from the left and the other corresponds to parallel rays traveling from the
right.

Rays parallel to the axis diverge after passing through a lens of biconcave shape,
shown in Figure 23.22b. In this case, the focal point is defined to be the point at
which the diverged rays appear to originate, labeled F in the figure. Figures 23.22a

(a) (b)

Convex–
concave

Convex–
concave

Plano–
concave

Plano–
convex

Biconvex Biconcave

Figure 23.21 Various lens shapes.
(a) Converging lenses have positive
focal lengths and are thickest at the
middle. (b) Diverging lenses have
negative focal lengths and are thick-
est at the edges.
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and 23.22b indicate why the names converging and diverging are applied to these
lenses.

Now consider a ray of light passing through the center of a lens. Such a ray is
labeled ray 1 in Figure 23.23. For a thin lens, a ray passing through the center is
undeflected. Ray 2 in the same figure is parallel to the principal axis of the lens
(the horizontal axis passing through O), and as a result it passes through the focal
point F after refraction. Rays 1 and 2 intersect at the point that is the tip of the
image arrow.

We first note that the tangent of the angle � can be found by using the blue and
gold shaded triangles in Figure 23.23:

or

From this we find that

[23.10]

The equation for magnification by a lens is the same as the equation for magnifica-
tion by a mirror. We also note from Figure 23.23 that

M �
h�

h
� �

q
p

tan � � �
h�

q
tan � �

h
p

f f

(a)

F FF F

f f

(b)

F FF F

Figure 23.22 (Left) Photographs of the effects of converging and diverging lenses on parallel rays.
(Right) The focal points of (a) the biconvex lens and (b) the biconcave lens.
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Figure 23.23 A geometric
construction for developing the thin-
lens equation.
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or

However, the height PQ used in the first of these equations is the same as h, the
height of the object. Therefore,

Using the latter equation in combination with Equation 23.10 gives

which reduces to

[23.11]

This equation, called the thin-lens equation, can be used with both converging and
diverging lenses if we adhere to a set of sign conventions. Figure 23.24 is useful for
obtaining the signs of p and q, and Table 23.3 gives the complete sign conventions
for lenses. Note that a converging lens has a positive focal length under this con-
vention and a diverging lens has a negative focal length. Hence the names positive
and negative are often given to these lenses.

The focal length for a lens in air is related to the curvatures of its front and
back surfaces and to the index of refraction n of the lens material by

[23.12]

where R1 is the radius of curvature of the front surface of the lens and R 2 is the
radius of curvature of the back surface. (As with mirrors, we arbitrarily call the
side from which the light approaches the front of the lens.) Table 23.3 gives the
sign conventions for R1 and R2. Equation 23.12, called the lens maker’s
equation, enables us to calculate the focal length from the known properties of
the lens.

Ray Diagrams for Thin Lenses
Ray diagrams are essential for understanding the overall image formation by a
thin lens or a system of lenses. They should also help clarify the sign conven-
tions we have already discussed. Active Figure 23.25 (page 772) illustrates this
method for three single-lens situations. To locate the image formed by a con-
verging lens (Active Fig. 23.25a and b), the following three rays are drawn from
the top of the object:

1
f

� (n � 1) � 1
R1

�
1

R2
�

1
p

�
1
q

�
1
f

q
p

�
q � f

f

h�

h
� �

q � f
f

h
f

� �
h�

q � f

tan � � �
h�

q � f
tan � �

PQ
f

� Thin-lens equation

Front

p positive
q negative

Incident light

Back

p negative
q positive

Refracted light

Figure 23.24 A diagram for
obtaining the signs of p and q for a
thin lens or a refracting surface.

TABLE 23.3
Sign Conventions for Thin Lenses
Quantity Symbol In Front In Back Convergent Divergent

Object location p � �

Image location q � �

Lens Radii R1, R2 � �

Focal Length f � �
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1. The first ray is drawn parallel to the principal axis. After being refracted by
the lens, this ray passes through (or appears to come from) one of the focal points.

2. The second ray is drawn through the center of the lens. This ray continues in a
straight line.

3. The third ray is drawn through the other focal point and emerges from the
lens parallel to the principal axis.

A similar construction is used to locate the image formed by a diverging lens, as
shown in Active Figure 23.25c. The point of intersection of any two of the rays in
these diagrams can be used to locate the image. The third ray serves as a check on
construction.

For the converging lens in Active Figure 23.25a, where the object is outside the
front focal point (p 
 f ), the ray diagram shows the image is real and inverted.
When the real object is inside the front focal point (p 	 f ), as in Active Figure
23.25b, the image is virtual and upright. For the diverging lens of Active Figure
23.25c, the image is virtual and upright.

O

(a)

F

Front

F

Back

I

I

(b)

F

Front

F

Back

O

O

(c)

F

Front

F

Back

I

1

2

3
1

2

3

1

2

3

ACTIVE FIGURE 23.25
Ray diagrams for locating the image of an object. (a) The object is outside the focal point of a converg-
ing lens. (b) The object is inside the focal point of a converging lens. (c) The object is outside the focal
point of a diverging lens.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 23.25, where you can move the objects
and change the focal lengths of the lenses, observing the effect on the images.

A clear plastic sandwich bag filled with water can act as a crude converging lens in
air. If the bag is filled with air and placed under water, is the effective lens (a) con-
verging or (b) diverging?

Quick Quiz 23.4

In Active Figure 23.25a, the blue object arrow is replaced by one that is much
taller than the lens. How many rays from the object will strike the lens?

Quick Quiz 23.5

An object is placed to the left of a converging lens. Which of the following state-
ments are true and which are false? (a) The image is always to the right of the lens.
(b) The image can be upright or inverted. (c) The image is always smaller or the
same size as the object. Justify your answers with ray diagrams.

Quick Quiz 23.6

TIP 23.3 We Choose Only 
a Few Rays
Although our ray diagrams in Figure
23.25 only show three rays leaving an
object, an infinite number of rays can
be drawn between the object and its
image.
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Your success in working lens or mirror problems will be determined largely by
whether you make sign errors when substituting into the lens or mirror equations.
The only way to ensure that you don’t make sign errors is to become adept at
using the sign conventions. The best way to do this is to work a multitude of prob-
lems on your own and to construct confirming ray diagrams. Watching an instruc-
tor or reading the example problems is no substitute for practice.

Diving masks often have a lens built into the glass face-
plate for divers who don’t have perfect vision. This allows
the individual to dive without the necessity of glasses, be-
cause the faceplate performs the necessary refraction to
produce clear vision. Normal glasses have lenses that are
curved on both the front and rear surfaces. The lenses in
a diving-mask faceplate often have curved surfaces only
on the inside of the glass. Why is this design desirable?

Solution The main reason for curving only the inner
surface of the lenses in the diving-mask faceplate is to

enable the diver to see clearly while underwater and
in the air. If there were curved surfaces on both the
front and the back of the diving lens, there would be
two refractions. The lens could be designed so that
these two refractions would give clear vision while
the diver is in air. When the diver went underwater,
however, the refraction between the water and the
glass at the first interface would differ, because the
index of refraction of water is different from that of
air. Consequently, the diver’s vision wouldn’t be clear
underwater.

Applying Physics 23.5 Vision and Diving Masks

INTERACTIVE EXAMPLE 23.7 Images Formed by a Converging Lens
Goal Calculate geometric quantities associated with a converging lens.

Problem A converging lens of focal length 10.0 cm forms images of an object situated at various distances. (a) If
the object is placed 30.0 cm from the lens, locate the image, state whether it’s real or virtual, and find its magnifica-
tion. (b) Repeat the problem when the object is at 10.0 cm and (c) again when the object is 5.00 cm from the lens.

Strategy All three problems require only substitution into the thin-lens equation and the associated
magnification equation—Equations 23.10 and 23.11, respectively. The conventions of Table 23.3 must be followed.

Solution
(a) Find the image distance and describe the image
when the object is placed at 30.0 cm.

The ray diagram is shown in Figure 23.26a. Substitute
into the thin-lens equation to locate the image:

 
1

30.0 cm
�

1
q

�
1

10.0 cm

 
1
p

�
1
q

�
1
f

Solve for q, the image distance. It’s positive, so the image
is real and on the far side of the lens.

q � �15.0 cm

The magnification of the lens is obtained from Equation
23.10. M is negative and less than one in absolute value,
so the image is inverted and smaller than the object:

�0.500M � �
q
p

� �
15.0 cm
30.0 cm

�

(b) Repeat the problem, when the object is placed at
10.0 cm.

Locate the image by substituting into the thin-lens
equation:

This equation is satisfied only in the limit as q becomes
infinite.

1
10.0 cm

�
1
q

�
1

10.0 cm
 : 1

q
� 0

q : �
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(c) Repeat the problem when the object is placed 
5.00 cm from the lens.

See the ray diagram in Figure 23.26b. Substitute into the
thin-lens equation to locate the image:

1
5.00 cm

�
1
q

�
1

10.0 cm

Solve for q, which is negative, meaning the image is on
the same side as the object and is virtual:

q � �10.0 cm

Substitute the values of p and q into the magnification
equation. M is positive and larger than one, so the
image is upright and double the object size:

� 2.00M � �
q
p

� �� �10.0 cm
5.00 cm � �

Remarks The ability of a lens to magnify objects led to the inventions of reading glasses, microscopes, and
telescopes.

Exercise 23.7
Suppose the image of an object is upright and magnified 1.75 times when the object is placed 15.0 cm from a lens.
Find the location of the image and the focal length of the lens.

Answers (a) �26.3 cm (virtual, on the same side as the object) (b) 34.9 cm

Investigate the image formed for various object positions and mirror focal lengths by logging into
PhysicsNow at www.cp7e.com and going to Interactive Example 23.7.

INTERACTIVE EXAMPLE 23.8 The Case of a Diverging Lens
Goal Calculate geometric quantities associated with a diverging lens.

Problem Repeat the problem of Example 23.7 for a diverging lens of focal length 10.0 cm.

Strategy Once again, substitution into the thin-lens equation and the associated magnification equation, together
with the conventions in Table 23.3, solve the various parts. The only difference is the negative focal length.

(a)

O F

F I

15.0 cm

30.0 cm

10.0 cm

(b)

O FI, F

10.0 cm5.00 cm

10.0 cm Position of
convex lens

Figure 23.26 (Interactive Example 23.7)
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Solution
(a) Locate the image and its magnification if the object is at 
30.0 cm.

IO

(a)

F

30.0 cm

10.0 cm

7.50 cm

F

IO

(b)

F

5.00 cm

3.33 cm

10.0 cm

F

Figure 23.27 (Interactive Example 23.8)

The ray diagram is given in Figure 23.27a. Apply the
thin-lens equation with p � 30.0 cm to locate the image:

 
1

30.0 cm
�

1
q

� �
1

10.0 cm

 
1
p

�
1
q

�
1
f

Solve for q, which is negative, hence virtual: q � � 7.50 cm

Substitute into Equation 23.10 to get the magnification.
Because M is positive and has absolute value less than
one, the image is upright and smaller than the object.

� 0.250M � �
q
p

� �� �7.50 cm
30.0 cm � �

(b) Locate the image and find its magnification if the
object is 10.0 cm from the lens.

Apply the thin-lens equation, taking p � 10.0 cm:
1

10.0 cm
�

1
q

� �
1

10.0 cm

Solve for q (once again, the result is negative, so the
image is virtual):

q � � 5.00 cm

Calculate the magnification. Because M is positive and
has absolute value less than 1, the image is upright and
smaller than the object.

� 0.500M � �
q
p

� �� �5.00 cm
10.0 cm � �

(c) Locate the image and find its magnification when
the object is at 5.00 cm.

The ray diagram is given in Figure 23.27b. Substitute p �
5.00 cm into the thin-lens equation to locate the image:

1
5.00 cm

�
1
q

� �
1

10.0 cm

Solve for q . The answer is negative, so once again the
image is virtual.

q � � 3.33 cm

Calculate the magnification. Because M is positive and
less than one, the image is upright and smaller than the
object.

� 0.666M � �� � 3.33 cm
5.00 cm � �

Remarks Notice that in every case the image is virtual, hence on the same side of the lens as the object. Further,
the image is smaller than the object. For a diverging lens and a real object, this is always the case, as can be proven
mathematically.
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Exercise 23.8
Repeat the calculation, finding the position of the image and the magnification if the object is 20.0 cm from the lens.

Answers q � �6.67 cm, M � 0.334

Investigate the image formed for various object positions and mirror focal lengths by logging into
PhysicsNow at www.cp7e.com and going to Interactive Example 23.8.

Combinations of Thin Lenses
Many useful optical devices require two lenses. Handling problems involving two lenses
is not much different from dealing with a single-lens problem twice. First, the image
produced by the first lens is calculated as though the second lens were not present.
The light then approaches the second lens as if it had come from the image formed by
the first lens. Hence, the image formed by the first lens is treated as the object for the
second lens. The image formed by the second lens is the final image of the system. If
the image formed by the first lens lies on the back side of the second lens, then the
image is treated as a virtual object for the second lens, so p is negative. The same proce-
dure can be extended to a system of three or more lenses. The overall magnification of
a system of thin lenses is the product of the magnifications of the separate lenses.

INTERACTIVE EXAMPLE 23.9 Two Lenses in a Row
Goal Calculate geometric quantities for a sequential pair of lenses.

Problem Two converging lenses are placed 20.0 cm apart, as shown in Figure 23.28a, with an object 30.0 cm in front
of lens 1 on the left. (a) If lens 1 has a focal length of 10.0 cm, locate the image formed by this lens and determine its

30.0 cm 20.0 cm

Object

f1 = 10.0 cm f2 = 20.0 cm

(a)

(b)

I2 I1

Lens 1 Lens 2
20.0 cm

6.67 cm

15.0 cm10.0 cm

F1 F2 F2F1O1

30.0 cm

Figure 23.28 (Interactive Example 23.9)
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23.7 LENS AND MIRROR ABERRATIONS
One of the basic problems of systems containing mirrors and lenses is the imper-
fect quality of the images, which is largely the result of defects in shape and form.
The simple theory of mirrors and lenses assumes that rays make small angles with
the principal axis and that all rays reaching the lens or mirror from a point source
are focused at a single point, producing a sharp image. This is not always true in
the real world. Where the approximations used in this theory do not hold, imper-
fect images are formed.

If one wishes to analyze image formation precisely, it is necessary to trace each ray,
using Snell’s law, at each refracting surface. This procedure shows that there is no
single point image; instead, the image is blurred. The departures of real (imperfect)

magnification. (b) If lens 2 on the right has a focal length of 20.0 cm, locate the final image formed and find the total
magnification of the system.

Strategy We apply the thin-lens equation to each lens. The image formed by lens 1 is treated as the object for lens
2. Also, we use the fact that the total magnification of the system is the product of the magnifications produced by
the separate lenses.

Solution
(a) Locate the image and determine the magnification of 
lens 1.

See the ray diagram, Figure 23.28b. Apply the thin-lens
equation to lens 1:

1
30.0 cm

�
1
q

�
1

10.0 cm

Solve for q, which is positive, hence to the right of the
first lens:

q � � 15.0 cm

Compute the magnification of lens 1: � 0.500M1 � �
q
p

� �
15.0 cm
30.0 cm

�

(b) Locate the final image, and total magnification.

The image formed by lens 1 becomes the object for lens
2. Compute the object distance for lens 2:

p � 20.0 cm � 15.0 cm � 5.00 cm

Once again apply the thin-lens equation to lens 2 to
locate the final image:

q � � 6.67 cm

1
5.00 cm

�
1
q

�
1

20.0 cm

Calculate the magnification of lens 2: M2 � �
q
p

� �
( � 6.67 cm)

5.00 cm
� �1.33

Multiply the two magnifications to get the overall
magnification of the system:

M � M1M2 � (� 0.500)(1.33) � � 0.665

Remarks The negative sign for M indicates that the final image is inverted, and smaller than the object because the
absolute value of M is less than one. Because q is negative, the final image is virtual.

Exercise 23.9
If the two lenses in Figure 23.28 are separated by 10.0 cm, locate the final image and find the magnification of the
system. [Hint: The object for the second lens is virtual!]

Answer 4.00 cm behind the second lens; M � � 0.400

Investigate the image formed by a combination of two lenses by logging into PhysicsNow at
www.cp7e.com and going to Interactive Example 23.9.
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images from the ideal predicted by the simple theory are called aberrations. Two
common types of aberrations are spherical aberration and chromatic aberration.
Photographs of three forms of lens aberrations are shown in Figure 23.29.

Spherical Aberration
Spherical aberration results from the fact that the focal points of light rays passing
far from the principal axis of a spherical lens (or mirror) are different from the
focal points of rays with the same wavelength passing near the axis. Figure 23.30
illustrates spherical aberration for parallel rays passing through a converging lens.
Rays near the middle of the lens are imaged farther from the lens than rays at the
edges. Hence, there is no single focal length for a spherical lens.

Most cameras are equipped with an adjustable aperture to control the light
intensity and, when possible, reduce spherical aberration. (An aperture is an open-
ing that controls the amount of light transmitted through the lens.) As the aper-
ture size is reduced, sharper images are produced, because only the central por-
tion of the lens is exposed to the incident light when the aperture is very small. At
the same time, however, progressively less light is imaged. To compensate for this
loss, a longer exposure time is used. An example of the results obtained with small
apertures is the sharp image produced by a pinhole camera, with an aperture size
of approximately 0.1 mm.

In the case of mirrors used for very distant objects, one can eliminate, or at least
minimize, spherical aberration by employing a parabolic rather than spherical sur-
face. Parabolic surfaces are not used in many applications, however, because they
are very expensive to make with high-quality optics. Parallel light rays incident on
such a surface focus at a common point. Parabolic reflecting surfaces are used in
many astronomical telescopes to enhance the image quality. They are also used in
flashlights, in which a nearly parallel light beam is produced from a small lamp
placed at the focus of the reflecting surface.

Chromatic Aberration
The fact that different wavelengths of light refracted by a lens focus at different
points gives rise to chromatic aberration. In Chapter 22 we described how the
index of refraction of a material varies with wavelength. When white light passes
through a lens, for example, violet light rays are refracted more than red light rays
(see Fig. 23.31), so the focal length for red light is greater than for violet light.

(b)(a) (c)

Figure 23.29 Lenses can produce various forms of aberrations, as shown by these blurred photo-
graphic images of a point source. (a) Spherical aberration occurs when light passing through the lens
at different distances from the principal axis is focused at different points. (b) Astigmatism is an aberra-
tion that occurs when the object is not on the principal axis of the lens. (c) Coma. This aberration
occurs when light passing through the lens far from the principal axis focuses at a different part of the
focal plane than light passing near the center of the lens.
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Figure 23.30 Spherical aberration
produced by a converging lens. Does
a diverging lens produce spherical
aberration? (Angles are greatly exag-
gerated for clarity.)

Violet
Red

Red
Violet

FR

FV

Figure 23.31 Chromatic aberra-
tion produced by a converging lens.
Rays of different wavelengths focus at
different points. (Angles are greatly
exaggerated for clarity.)
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Conceptual Questions 779

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

23.1 Flat Mirrors
Images are formed where rays of light intersect or where
they appear to originate. A real image is formed when light
intersects, or passes through, an image point. In a virtual
image the light doesn’t pass through the image point, but
appears to diverge from it.

The image formed by a flat mirror has the following
properties:

1. The image is as far behind the mirror as the object is in
front.

2. The image is unmagnified, virtual, and upright.

23.2 Images Formed by Spherical Mirrors &
23.3 Convex Mirrors and Sign 
Conventions
The magnification M of a spherical mirror is defined as the
ratio of the image height h� to the object height h, which is
the negative of the ratio of the image distance q to the
object distance p :

[23.2]

The object distance and image distance for a spherical
mirror of radius R are related by the mirror equation:

[23.6]

where f � R/2 is the focal length of the mirror.
Equations 23.2 and 23.6 hold for both concave and

convex mirrors, subject to the sign conventions given in
Table 23.1.

1
p

�
1
q

�
1
f

M �
h�

h
� �

q
p

23.4 Images Formed by Refraction
An image can be formed by refraction at a spherical
surface of radius R . The object and image distances for
refraction from such a surface are related by

[23.7]

The magnification of a refracting surface is

[23.8]

where the object is located in the medium with index of
refraction n1 and the image is formed in the medium with
index of refraction n2. Equations 23.7 and 23.8 are subject
to the sign conventions of Table 23.2.

23.6 Thin Lenses
The magnification of a thin lens is

[23.10]

The object and image distances of a thin lens are related by
the thin-lens equation:

[23.11]

Equations 23.10 and 23.11 are subject to the sign conven-
tions of Table 23.3.

23.7 Lens and Mirror Aberrations
Aberrations are responsible for the formation of imperfect
images by lenses and mirrors. Spherical aberration results
from the fact that the focal points of light rays far from the
principal axis of a spherical lens or mirror are different from
those of rays passing through the center. Chromatic aberra-
tion arises from the fact that light rays of different wave-
lengths focus at different points when refracted by a lens.
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CONCEPTUAL QUESTIONS
1. Tape a picture of yourself on a bathroom mirror. Stand

several centimeters away from the mirror. Can you focus
your eyes on both the picture taped to the mirror and your
image in the mirror at the same time ? So where is the
image of yourself ?

2. One method for determining the position of an image,
either real or virtual, is by means of parallax. If a finger or
another object is placed at the position of the image, as
shown in Figure Q23.2, and the finger and the image are
viewed simultaneously (the image is viewed through the
lens if it is virtual), the finger and image have the same
parallax; that is, if the image is viewed from different

positions, it will appear to move along with the finger. Use
this method to locate the image formed by a lens. Explain
why the method works.

Other wavelengths (not shown in the figure) would have intermediate focal
points. Chromatic aberration for a diverging lens is opposite that for a converging
lens. Chromatic aberration can be greatly reduced by a combination of converging
and diverging lenses.

Finger

Image

Figure Q23.02
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3. A flat mirror creates a virtual image of your face. Suppose
the flat mirror is combined with another optical element.
Can the mirror form a real image in such a combination?

4. Explain why a mirror cannot give rise to chromatic
aberration.

5. You are taking a picture of yourself with a camera that
uses an ultrasonic range finder to measure the distance to
the object. When you take a picture of yourself in a mirror
with this camera, your image is out of focus. Why?

6. A solar furnace can be constructed by using a concave mir-
ror to reflect and focus sunlight into the enclosure of a fur-
nace. What factors in the design of the reflecting mirror
will guarantee that very high temperatures can be reached?

7. A virtual image is often described as an image through
which light rays don’t actually travel, as they do for a real
image. Can a virtual image be photographed?

8. What is wrong with the caption of the cartoon shown in
Figure Q23.8?

14. Lenses used in eyeglasses, whether converging or diverg-
ing, are always designed such that the middle of the lens
curves away from the eye. Why?

15. Why does the focal length of a mirror not depend on the
mirror material when the focal length of a lens does
depend on the lens material?

16. If a cylinder of solid glass or clear plastic is placed
above the words LEAD OXIDE and viewed from the side,
as shown in Figure Q23.16, the word LEAD appears
inverted, but the word OXIDE does not. Explain.

Figure Q23.08 “Most mirrors reverse left and right. This one
reverses top and bottom.”

9. Suppose you want to use a converging lens to project the
image of two trees onto a screen. One tree is a distance x
from the lens; the other is at 2x, as in Figure Q23.9. You
adjust the screen so that the near tree is in focus. If you
now want the far tree to be in focus, do you move the
screen towards or away from the lens?

2x
Image of
near tree

Screen

x

Lens Near tree Far tree

Figure Q23.09
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Figure Q23.16

10. Why does a clear stream always appear to be shallower
than it actually is?

11. Can a converging lens be made to diverge light if placed
in a liquid? How about a converging mirror?

12. A common mirage is formed when the air gets gradually
cooler as the height above the ground increases. What
might happen if the air grows gradually warmer as
the height increases? This often happens over bodies of
water or snow-covered ground; the effect is called looming.

13. In a Jules Verne novel, a piece of ice is shaped into a mag-
nifying lens to focus sunlight to start a fire. Is this possible?

17. A concave makeup mirror has a focal length of 15 cm.
(a) If an object is placed 25 cm in front of the mirror,
determine the signs of the focal length, the object dis-
tance, and the image distance. (b) Repeat part (a) if the
object is placed 5 cm in front of the mirror.

18. Light from an object passes through a lens and forms a
visible image on a screen. If the screen is removed,
would you be able to see the image if (a) you remained
in your present position? (b) you could look at the lens
along the its axis, beyond the original position of the
screen?

19. An object placed to the left of a converging lens forms a
sharp image on a screen to the right of the lens. If the
screen is moved towards the lens, the image on the
screen (a) gets larger, but remains sharp, (b) gets
smaller, but remains sharp, (c) becomes fuzzy and disap-
pears, or (d) remains unchanged.

20. An inverted image of an object is viewed on a screen
from the side facing a converging lens. An opaque card
is then introduced covering only the upper half of the
lens. What happens to the image on the screen? (a) Half
the image would disappear. (b) The entire image would
appear and remain unchanged. (c) Half the image
would disappear and be dimmer. (d) The entire image
would appear, but would be dimmer.
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Problems 781

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached solution with hints available at www.cp7e.com = biomedical application

Section 23.1 Flat Mirrors
1. Does your bathroom mirror show you older or younger

than your actual age? Compute an order-of-magnitude
estimate for the age difference, based on data that you
specify.

2. Use Active Figure 23.2 to give a geometric proof that the
virtual image formed by a plane mirror is the same dis-
tance behind the mirror as the object is in front of it.
A person walks into a room that has, on opposite walls,
two plane mirrors producing multiple images. Find the
distances from the person to the first three images seen in
the left-hand mirror when the person is 5.00 ft from the
mirror on the left wall and 10.0 ft from the mirror on the
right wall.

4. In a church choir loft, two parallel walls are 5.30 m apart.
The singers stand against the north wall. The organist
faces the south wall, sitting 0.800 m away from it. So that
she can see the choir, a flat mirror 0.600 m wide is
mounted on the south wall, straight in front of the organ-
ist. What width of the north wall can she see? [Hint: Draw
a top-view diagram to justify your answer.]

Section 23.2 Images Formed by Spherical Mirrors
Section 23.3 Convex Mirrors and Sign Conventions

In the following problems, algebraic signs are not given. We leave
it to you to determine the correct sign to use with each quantity,
based on an analysis of the problem and the sign conventions in
Table 23.1.

At an intersection of hospital hallways, a
convex mirror is mounted high on a wall to help people
avoid collisions. The mirror has a radius of curvature of
0.550 m. Locate and describe the image of a patient 10.0 m
from the mirror. Determine the magnification of the image.

6. To fit a contact lens to a patient’s eye, a keratometer can be
used to measure the curvature of the cornea— the front
surface of the eye. This instrument places an illuminated
object of known size at a known distance p from the
cornea, which then reflects some light from the object,
forming an image of it. The magnification M of the image
is measured by using a small viewing telescope that allows
a comparison of the image formed by the cornea with a
second calibrated image projected into the field of view
by a prism arrangement. Determine the radius of curva-
ture of the cornea when p � 30.0 cm and M � 0.013 0.

7. A concave spherical mirror has a radius of curvature of 
20.0 cm. Locate the images for object distances of
(a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. In each case,
state whether the image is real or virtual and upright or
inverted, and find the magnification.

8. A dentist uses a mirror to examine a tooth that is 1.00 cm
in front of the mirror. The image of the tooth is formed
10.0 cm behind the mirror. Determine (a) the mirror’s
radius of curvature and (b) the magnification of the image.

9. A large church has a niche in one wall. On the floor plan
it appears as a semicircular indentation of radius 2.50 m.
A worshiper stands on the centerline of the niche, 2.00 m
out from its deepest point, and whispers a prayer. Where

5.

3.

is the sound concentrated after it reflects from the back
wall of the niche?

10. While looking at her image in a cosmetic mirror, Dina
notes that her face is highly magnified when she is close
to the mirror, but as she backs away from the mirror, her
image first becomes blurry, then disappears when she is
about 30 cm from the mirror, and then inverts when she
is beyond 30 cm. Based on these observations, what can
she conclude about the properties of the mirror?
A 2.00-cm-high object is placed 3.00 cm in front of a con-
cave mirror. If the image is 5.00 cm high and virtual, what
is the focal length of the mirror?

12. A dedicated sports car enthusiast polishes the inside and
outside surfaces of a hubcap that is a section of a sphere.
When he looks into one side of the hubcap, he sees an
image of his face 30.0 cm in back of it. He then turns the
hubcap over, keeping it the same distance from his face.
He now sees an image of his face 10.0 cm in back of
the hubcap. (a) How far is his face from the hubcap?
(b) What is the radius of curvature of the hubcap?

13. A concave makeup mirror is designed so that a person
25 cm in front of it sees an upright image magnified by a
factor of two. What is the radius of curvature of the mirror?

14. A certain Christmas tree ornament is a silver sphere hav-
ing a diameter of 8.50 cm. Determine an object location
for which the size of the reflected image is three-fourths
the size of the object. Use a principal-ray diagram to
arrive at a description of the image.
A man standing 1.52 m in front of a shaving mirror pro-
duces an inverted image 18.0 cm in front of it. How close to
the mirror should he stand if he wants to form an upright
image of his chin that is twice the chin’s actual size?

16. A convex spherical mirror with a radius of curvature of
10.0 cm produces a virtual image one-third the size of the
real object. Where is the object?

17. A child holds a candy bar 10.0 cm in front of a convex
mirror and notices that the image is only one-half the size
of the candy bar. What is the radius of curvature of the
mirror?

18. It is observed that the size of a real image formed by a con-
cave mirror is four times the size of the object when the
object is 30.0 cm in front of the mirror. What is the radius
of curvature of this mirror?

19. A spherical mirror is to be used to form an image, five
times as tall as an object, on a screen positioned 5.0 m
from the mirror. (a) Describe the type of mirror required.
(b) Where should the mirror be positioned relative to the
object?

20. A ball is dropped from rest 3.00 m directly above the ver-
tex of a concave mirror having a radius of 1.00 m and
lying in a horizontal plane. (a) Describe the motion of the
ball’s image in the mirror. (b) At what time do the ball
and its image coincide?

Section 23.4 Images Formed by Refraction
21. A cubical block of ice 50.0 cm on an edge is placed on a

level floor over a speck of dust. Locate the image of the

15.

11.
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speck, when viewed from directly above, if the index of
refraction of ice is 1.309.

22. The top of a swimming pool is at ground level. If the pool
is 2 m deep, how far below ground level does the bottom
of the pool appear to be located when (a) the pool is
completely filled with water? (b) the pool is filled halfway
with water?

23. A paperweight is made of a solid glass hemisphere with
index of refraction 1.50. The radius of the circular cross
section is 4.0 cm. The hemisphere is placed on its flat sur-
face, with the center directly over a 2.5-mm-long line
drawn on a sheet of paper. What length of line is seen by
someone looking vertically down on the hemisphere?

24. A flint glass plate (n � 1.66) rests on the bottom of an
aquarium tank. The plate is 8.00 cm thick (vertical dimen-
sion) and covered with water (n � 1.33) to a depth of
12.0 cm. Calculate the apparent thickness of the plate as
viewed from above the water. (Assume nearly normal inci-
dence of light rays.)
A transparent sphere of unknown composition is observed
to form an image of the Sun on its surface opposite the
Sun. What is the refractive index of the sphere material?

26. A goldfish is swimming at 2.00 cm/s toward the front wall
of a rectangular aquarium. What is the apparent speed of
the fish as measured by an observer looking in from
outside the front wall of the tank? The index of refraction
of water is 1.333.

Section 23.6 Thin Lenses
27. A contact lens is made of plastic with an index of refrac-

tion of 1.50. The lens has an outer radius of curvature of
� 2.00 cm and an inner radius of curvature of � 2.50 cm.
What is the focal length of the lens?

28. The left face of a biconvex lens has a radius of curvature
of 12.0 cm, and the right face has a radius of curvature of
18.0 cm. The index of refraction of the glass is 1.44.
(a) Calculate the focal length of the lens. (b) Calculate
the focal length if the radii of curvature of the two faces
are interchanged.

A converging lens has a focal length
of 20.0 cm. Locate the images for object distances of
(a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. For each case,
state whether the image is real or virtual and upright or
inverted, and find the magnification.

30. Where must an object be placed to have unit magnifica-
tion (�M � � 1.00) (a) for a converging lens of focal
length 12.0 cm? (b) for a diverging lens of focal length
12.0 cm?

31. A diverging lens has a focal length of 20.0 cm. Locate the
images for object distances of (a) 40.0 cm, (b) 20.0 cm,
and (c) 10.0 cm. For each case, state whether the image
is real or virtual and upright or inverted, and find the
magnification.

32. The use of a lens in a certain situation is described by the
equation

Determine (a) the object distance and (b) the image
distance. (c) Use a ray diagram to obtain a description of
the image. (d) Identify a practical device described by the

1
p

�
1

� 3.50p
�

1
7.50 cm

29.

25.

given equation, and write the statement of a problem
having a solution that contains the equation.
A transparent photographic slide is placed in front of a
converging lens with a focal length of 2.44 cm. The lens
forms an image of the slide 12.9 cm from it. How far is the
lens from the slide if the image is (a) real? (b) virtual?

34. The nickel’s image in Figure P23.34 has twice the diame-
ter of the nickel when the lens is 2.84 cm from the nickel.
Determine the focal length of the lens.

33.

Figure P23.34

35. A certain LCD projector contains a single thin lens. An
object 24.0 mm high is to be projected so that its image
fills a screen 1.80 m high. The object-to-screen distance is
3.00 m. (a) Determine the focal length of the projection
lens. (b) How far from the object should the lens of the
projector be placed in order to form the image on the
screen?

36. A person uses a converging lens that has a focal length
of 12.5 cm to inspect a gem. The lens forms a virtual im-
age 30.0 cm away. Determine the magnification. Is the im-
age upright or inverted?

37. A diverging lens is to be used to produce a virtual image
one-third as tall as the object. Where should the object be
placed?

38. An object is 5.00 m to the left of a flat screen. A converg-
ing lens for which the focal length is f � 0.800 m is placed
between object and screen. (a) Show that there are two
lens positions that form an image on the screen, and
determine how far these positions are from the object.
(b) How do the two images differ from each other?
A converging lens is placed 30.0 cm to the right of a
diverging lens of focal length 10.0 cm. A beam of parallel
light enters the diverging lens from the left, and the beam
is again parallel when it emerges from the converging
lens. Calculate the focal length of the converging lens.

40. An object is placed 20.0 cm to the left of a converging
lens of focal length 25.0 cm. A diverging lens of focal
length 10.0 cm is 25.0 cm to the right of the converging
lens. Find the position and magnification of the final image.

41. Two converging lenses, each of focal length 15.0 cm, are
placed 40.0 cm apart, and an object is placed 30.0 cm in
front of the first lens. Where is the final image formed,
and what is the magnification of the system?

42. Object O1 is 15.0 cm to the left of a converging lens with a
10.0-cm focal length. A second lens is positioned 10.0 cm
to the right of the first lens and is observed to form a final
image at the position of the original object O1. (a) What is
the focal length of the second lens? (b) What is the overall
magnification of this system? (c) What is the nature (i.e.,
real or virtual, upright or inverted) of the final image?

39.
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A 1.00-cm-high object is placed 4.00 cm
to the left of a converging lens of focal length 8.00 cm. A
diverging lens of focal length �16.00 cm is 6.00 cm to the
right of the converging lens. Find the position and height
of the final image. Is the image inverted or upright? Real
or virtual?

44. Two converging lenses having focal lengths of 10.0 cm
and 20.0 cm are placed 50.0 cm apart, as shown in Figure
P23.44. The final image is to be located between the
lenses, at the position indicated. (a) How far to the left of
the first lens should the object be positioned? (b) What is
the overall magnification of the system? (c) Is the final
image upright or inverted?

43. the thicknesses of the lenses can be ignored in compari-
son to the other distances involved.

ADDITIONAL PROBLEMS
47. An object placed 10.0 cm from a concave spherical mirror

produces a real image 8.00 cm from the mirror. If the
object is moved to a new position 20.0 cm from the
mirror, what is the position of the image? Is the final
image real or virtual?

48. An object is placed 12 cm to the left of a diverging lens of
focal length �6.0 cm. A converging lens of focal length
12 cm is placed a distance d to the right of the diverging
lens. Find the distance d that places the final image at
infinity.

49. A convergent lens with a 50.0-mm focal length is used to
focus an image of a very distant scene onto a flat screen
35.0 mm wide. What is the angular width � of the scene
included in the image on the screen?
The object in Figure P23.50 is midway between the lens
and the mirror. The mirror’s radius of curvature is
20.0 cm, and the lens has a focal length of �16.7 cm.
Considering only the light that leaves the object and trav-
els first towards the mirror, locate the final image formed
by this system. Is the image real or virtual? Is it upright or
inverted? What is the overall magnification of the image?

50.

f2 (20.0 cm)f1 (10.0 cm)

Final image
Object

p 31.0 cm

50.0 cm

Figure P23.44

45. Lens L1 in Figure P23.45 has a focal length of 15.0 cm
and is located a fixed distance in front of the film plane of
a camera. Lens L2 has a focal length of 13.0 cm, and its
distance d from the film plane can be varied from 5.00 cm
to 10.0 cm. Determine the range of distances for which
objects can be focused on the film.

L1 L2
Film

d

12.0 cm

Figure P23.45

46. Consider two thin lenses, one of focal length f1 and the
other of focal length f2, placed in contact with each other
as shown in Figure P23.46. Apply the thin-lens equation to
each of these lenses and combine the results to show that
this combination of lenses behaves like a thin lens having
a focal length f given by 1/f � 1/f1 � 1/f2. Assume that

f2f1

Figure P23.46

Lens Object
Mirror

25.0 cm

51. The lens and mirror in Figure P23.51 are separated
by 1.00 m and have focal lengths of �80.0 cm and
�50.0 cm, respectively. If an object is placed 1.00 m to the
left of the lens, locate the final image. State whether the
image is upright or inverted, and determine the overall
magnification.

Figure P23.50

MirrorLens

1.00 m1.00 m

Object

Figure P23.51

52. A diverging lens (n � 1.50) is shaped like that in Active
Figure 23.25c. The radius of the first surface is 15.0 cm,
and that of the second surface is 10.0 cm. (a) Find the
focal length of the lens. Determine the positions of
the images for object distances of (b) infinity, (c) 3 � f �,
(d) � f �, and (e) � f �/2.
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53. A parallel beam of light enters a glass hemisphere perpen-
dicular to the flat face, as shown in Figure P23.53. The
radius of the hemisphere is R � 6.00 cm, and the index of
refraction is n � 1.560. Determine the point at which the
beam is focused. (Assume paraxial rays— that is, assume
that all rays are located close to the principal axis.)

(Fig. P23.58). If a strawberry is placed on the bottom mir-
ror, an image of the strawberry forms at the small opening
at the center of the top mirror. Show that the final image
forms at that location, and describe its characteristics.
[Note : A flashlight beam shone on these images has a very
startling effect: Even at a glancing angle, the incoming
light beam is seemingly reflected off the images of the
strawberry! Do you understand why?]

n

R

Air

I

q

Figure P23.53

54. A converging lens of focal length 20.0 cm is separated by
50.0 cm from a converging lens of focal length 5.00 cm.
(a) Find the position of the final image of an object
placed 40.0 cm in front of the first lens. (b) If the height
of the object is 2.00 cm, what is the height of the final
image? Is the image real or virtual? (c) If the two lenses
are now placed in contact with each other and the object
is 5.00 cm in front of this combination, where will the
image be located? (See Problem 46.)

To work this problem, use the fact that
the image formed by the first surface becomes the object
for the second surface. Figure P23.55 shows a piece of
glass with index of refraction 1.50. The ends are hemi-
spheres with radii 2.00 cm and 4.00 cm, and the centers of
the hemispherical ends are separated by a distance of
8.00 cm. A point object is in air, 1.00 cm from the left end
of the glass. Locate the image of the object due to refrac-
tion at the two spherical surfaces.

55.

4.00 cm
8.00 cm

2.00 cmO

1.00 cm

Figure P23.55

56. In a darkened room, a burning candle is placed 1.50 m
from a white wall. A lens is placed between candle and
wall at a location that causes a larger, inverted image to
form on the wall. When the lens is moved 90.0 cm toward
the wall, another image of the candle is formed. Find
(a) the two object distances that produce the images just
described and (b) the focal length of the lens. (c) Charac-
terize the second image.

57. An object 2.00 cm high is placed 40.0 cm to the left of a
converging lens having a focal length of 30.0 cm. A
diverging lens having a focal length of �20.0 cm is placed
110 cm to the right of the converging lens. (a) Determine
the final position and magnification of the final image.
(b) Is the image upright or inverted? (c) Repeat parts
(a) and (b) for the case where the second lens is a con-
verging lens having a focal length of �20.0 cm.

58. A “floating strawberry” illusion can be produced by two
parabolic mirrors, each with a focal length of 7.5 cm,
facing each other so that their centers are 7.5 cm apart

Strawberry

Small hole

Figure P23.58
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59. Figure P23.59 shows a converging lens with radii R1 �
9.00 cm and R 2 � � 11.00 cm, in front of a concave
spherical mirror of radius R � 8.00 cm. The focal points
(F 1 and F 2) for the thin lens and the center of curvature
(C ) of the mirror are also shown. (a) If the focal points F 1
and F 2 are 5.00 cm from the vertex of the thin lens, deter-
mine the index of refraction of the lens. (b) If the lens
and mirror are 20.0 cm apart, and an object is placed
8.00 cm to the left of the lens, determine the position of
the final image and its magnification as seen by the eye in
the figure. (c) Is the final image inverted or upright?
Explain.

F2

C

F1

Figure P23.59

60. Find the object distances (in terms of f ) for a thin con-
verging lens of focal length f if (a) the image is real and
the image distance is four times the focal length; (b) the
image is virtual and the image distance is three times the
focal length. (c) Calculate the magnification of the lens
for cases (a) and (b).
The lens maker’s equation for a lens with index n1 immersed
in a medium with index n2 takes the form

1
f

� � n1

n2
� 1�� 1

R1
�

1
R 2

�

61.
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A thin diverging glass (index � 1.50) lens with R1 �
� 3.00 m and R 2 � � 6.00 m is surrounded by air. An
arrow is placed 10.0 m to the left of the lens. (a) Determine
the position of the image. Repeat part (a) with the arrow
and lens immersed in (b) water (index � 1.33); (c) a
medium with an index of refraction of 2.00. (d) How can
a lens that is diverging in air be changed into a converg-
ing lens.

62. An observer to the right of the mirror– lens combination
shown in Figure P23.62 sees two real images that are the
same size and in the same location. One image is upright
and the other is inverted. Both images are 1.50 times
larger than the object. The lens has a focal length of
10.0 cm. The lens and mirror are separated by 40.0 cm.
Determine the focal length of the mirror. (Don’t assume
that the figure is drawn to scale.)

When you place your finger on the wick of the unlit can-
dle, you will get the illusion that your finger is burning.
Explain your observation.

A similar experiment can be performed with a flat mir-
ror and two pencils. Hold one of the pencils in front of
the mirror at a distance of about 10 inches from the mir-
ror and at a position such that about half of the image
appears in the mirror. Move the second pencil back and
forth behind the mirror until it appears to align perfectly
with the image in the mirror. When the two pencils are
aligned, measure the distance from the mirror to the loca-
tion of the second pencil. This pencil is situated at the
apparent position of the virtual image. Why? The two pen-
cils should be at equal distances from the mirror. Why?

2. Fill a clear glass tumbler with water and place a pencil or
straw into the tumbler as in Figure A23.2. Now observe
the pencil from the side at an angle of about 45° to the
surface, and note that the line of the portion of the pencil
under water is not parallel with the line of the portion in
air. That is, the pencil appears to be bent at the point
where it enters the water. Use the techniques of Section
23.4 to explain this observation.

Object

Mirror Lens

Images

Figure P23.62

63. The lens maker’s equation applies to a lens immersed in a
liquid if n in the equation is replaced by n1/n2. Here n1
refers to the refractive index of the lens material and n2 is
that of the medium surrounding the lens. (a) A certain
lens has focal length of 79.0 cm in air and a refractive
index of 1.55. Find its focal length in water. (b) A certain
mirror has focal length of 79.0 cm in air. Find its focal
length in water.

ACTIVITIES
1. This experiment will enable you to examine some of the

properties of images formed by flat mirrors. As shown in
Figure A23.1, place a clear plastic sheet between two small
candles of the same height. Light one candle placed
about 6 inches from the sheet and observe the reflected
flame from the front side. Move the unlit candle until it
also appears to be lit. The candles should be approxi-
mately equidistant from the sheet at this point. Why?

Rigid plastic
sheet

Lit candle

Figure A23.1

Figure A23.2

3. View yourself in a full-length mirror. Stand close to the
mirror, and place one piece of tape at the top of the im-
age of your head and another piece at the very bottom of
the image of your feet. Now step back a few meters and
observe your image. How big is it relative to the original
size? How does the distance between the pieces of tape
compare with your actual height?

Move to a position in front of the mirror such that you
can see a full image of yourself with the top of your head
just level with the top of the mirror. Have a friend gradu-
ally block off the lower portion of the mirror with a sheet
or newspaper page until you can see your complete
image—but no more! Measure the length of the mirror
and compare this measurement with your height. How do
the two compare?

4. Compare the images formed of your face when you look
first at the front side and then at the back side of a shiny
soupspoon. For each side, observe the change in the
image of your face as you move closer to and farther away
from the spoon.

5. Draw a sketch of you and your image in a plane mirror
when you are walking away from it with velocity . Indicate
on your diagram the velocity vectors for you and your image.
Keep the relative lengths of the two velocities as you believe
they will be. Explain your answer. (b) Repeat the procedure
in part (a), but now do it as you are walking towards the mir-
ror. Explain why you have the vectors drawn as you do.

v:

44920_23_p754-785  1/12/05  8:56 AM  Page 785



786

24
CHAPTER

Wave OpticsO U T L I N E

24.1 Conditions for Interference
24.2 Young’s Double-Slit 

Experiment
24.3 Change of Phase Due 

to Reflection
24.4 Interference in Thin Films
24.5 Using Interference to Read

CD’s and DVD’s
24.6 Diffraction
24.7 Single-Slit Diffraction
24.8 The Diffraction Grating
24.9 Polarization of Light

Waves

RO
-M

A/
In

de
x 

St
oc

k 
Im

ag
er

y

Colors swirl on a soap bubble as it drifts through the air on a summer day, and vivid rainbows
reflect from the filth of oil films in the puddles of a dirty city street. Beachgoers, covered with
thin layers of oil, wear their coated sunglasses that absorb half the incoming light. In labora-
tories, scientists determine the precise composition of materials by analyzing the light they
give off when hot, and in observatories around the world, telescopes gather light from distant
galaxies, filtering out individual wavelengths in bands and thereby determining the speed of
expansion of the universe.

Understanding how these rainbows are made and how certain scientific instruments can
determine wavelengths is the domain of wave optics. Light can be viewed as either a particle or
a wave. Geometric optics, the subject of the previous chapter, depends on the particle nature
of light. Wave optics depends on the wave nature of light. The three primary topics we exam-
ine in this chapter are interference, diffraction, and polarization. These phenomena can’t be
adequately explained with ray optics, but can be understood if light is viewed as a wave.

24.1 CONDITIONS FOR INTERFERENCE
In our discussion of interference of mechanical waves in Chapter 13, we found
that two waves could add together either constructively or destructively. In con-
structive interference, the amplitude of the resultant wave is greater than that of
either of the individual waves, whereas in destructive interference, the resultant
amplitude is less than that of either individual wave. Light waves also interfere with
each other. Fundamentally, all interference associated with light waves arises when
the electromagnetic fields that constitute the individual waves combine.

Interference effects in light waves aren’t easy to observe because of the short wave-
lengths involved (about 4 � 10�7 m to about 7 � 10�7 m). For sustained interference
between two sources of light to be observed, the following conditions must be met:

1. The sources must be coherent, which means the waves they emit must maintain
a constant phase with respect to each other.

2. The waves must have identical wavelengths.

The colors in many of a humming-
bird’s feathers are not due to pig-
ment. The iridescence which makes
the brilliant colors that often appear
on the bird’s throat and belly is due
to an interference effect caused by
structures in the feathers. The colors
vary with the viewing angle.

Conditions for interference �
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24.2 Young’s Double-Slit Experiment 787

Two sources (producing two traveling waves) are needed to create interference.
To produce a stable interference pattern, the individual waves must maintain a
constant phase with one another. When this situation prevails, the sources are said
to be coherent. The sound waves emitted by two side-by-side loudspeakers driven
by a single amplifier can produce interference because the two speakers respond
to the amplifier in the same way at the same time—they are in phase.

If two light sources are placed side by side, however, no interference effects are
observed, because the light waves from one source are emitted independently of
the waves from the other source; hence, the emissions from the two sources don’t
maintain a constant phase relationship with each other during the time of observa-
tion. An ordinary light source undergoes random changes about once every 10�8 s.
Therefore, the conditions for constructive interference, destructive interference,
and intermediate states have durations on the order of 10�8 s. The result is that no
interference effects are observed, because the eye can’t follow such short-term
changes. Ordinary light sources are said to be incoherent.

An older method for producing two coherent light sources is to pass light from
a single wavelength (monochromatic) source through a narrow slit and then allow
the light to fall on a screen containing two other narrow slits. The first slit is
needed to create a single wave-front that illuminates both slits coherently. The
light emerging from the two slits is coherent because a single source produces the
original light beam and the slits serve only to separate the original beam into two
parts. Any random change in the light emitted by the source will occur in the two
separate beams at the same time, and interference effects can be observed.

Currently it’s much more common to use a laser as a coherent source to demon-
strate interference. A laser produces an intense, coherent, monochromatic beam
over a width of several millimeters. This means that the laser may be used to illumi-
nate multiple slits directly and that interference effects can be easily observed in a
fully lighted room. The principles of operation of a laser are explained in Chapter 28.

24.2 YOUNG’S DOUBLE-SLIT EXPERIMENT
Thomas Young first demonstrated interference in light waves from two sources in
1801. Active Figure 24.1a is a schematic diagram of the apparatus used in this
experiment. (Young used pinholes rather than slits in his original experiments.)

(a)

S0

S1

S2

First screen

Second screen

 Screen

max

min

max

min

max

min

max

min

max

C

ACTIVE FIGURE 24.1
(a) A diagram of Young’s double-
slit experiment. The narrow slits
act as sources of waves. Slits S1
and S2 behave as coherent sources
that produce an interference pat-
tern on screen C. (The drawing is
not to scale.) (b) The fringe pat-
tern formed on screen C could
look like this.

Log into PhysicsNow at
www.cp7e.com and go to Active
Figure 24.1, where you can adjust
the slit separation and the wave-
length of the light, observing the
effect on the interference pattern.(b)
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788 Chapter 24 Wave Optics

Light is incident on a screen containing a narrow slit S0. The light waves emerging
from this slit arrive at a second screen that contains two narrow, parallel slits S1
and S2. These slits serve as a pair of coherent light sources because waves emerg-
ing from them originate from the same wave front and therefore are always in
phase. The light from the two slits produces a visible pattern on screen C consist-
ing of a series of bright and dark parallel bands called fringes (Active Fig. 24.1b).
When the light from slits S1 and S2 arrives at a point on the screen so that con-
structive interference occurs at that location, a bright fringe appears. When the
light from the two slits combines destructively at any location on the screen, a dark
fringe results. Figure 24.2 is a photograph of an interference pattern produced by
two coherent vibrating sources in a water tank.

Figure 24.3 is a schematic diagram of some of the ways in which the two waves
can combine at screen C of Figure 24.1. In Figure 24.3a, two waves, which leave
the two slits in phase, strike the screen at the central point P. Because these waves
travel equal distances, they arrive in phase at P, and as a result, constructive inter-
ference occurs there and a bright fringe is observed. In Figure 24.3b, the two light
waves again start in phase, but the upper wave has to travel one wavelength farther
to reach point Q on the screen. Because the upper wave falls behind the lower one
by exactly one wavelength, the two waves still arrive in phase at Q , so a second
bright fringe appears at that location. Now consider point R, midway between P
and Q , in Figure 24.3c. At R , the upper wave has fallen half a wavelength behind
the lower wave. This means that the trough of the bottom wave overlaps the crest
of the upper wave, giving rise to destructive interference. As a result, a dark fringe
can be observed at R .

We can describe Young’s experiment quantitatively with the help of Figure 24.4.
Consider point P on the viewing screen; the screen is positioned a perpendicular
distance L from the screen containing slits S1 and S2, which are separated by dis-
tance d , and r1 and r2 are the distances the secondary waves travel from slit to
screen. We assume the waves emerging from S1 and S2 have the same constant fre-
quency, have the same amplitude, and start out in phase. The light intensity on the
screen at P is the result of light from both slits. A wave from the lower slit, however,
travels farther than a wave from the upper slit by the amount d sin �. This distance
is called the path difference � (lower case Greek delta), where

� � r2 � r1 � d sin � [24.1]

Equation 24.1 assumes that the two waves travel in parallel lines, which is approxi-
mately true, because L is much greater than d. As noted earlier, the value of this
path difference determines whether the two waves are in phase when they arrive at
P. If the path difference is either zero or some integral multiple of the wavelength,
the two waves are in phase at P and constructive interference results. Therefore,
the condition for bright fringes, or constructive interference, at P is

[24.2]� � d sin �bright � m� m � 0, �1, �2, . . .

Figure 24.2 An interference pat-
tern involving water waves is produced
by two vibrating sources at the water’s
surface. The pattern is analogous to
that observed in Young’s double-slit
experiment. Note the regions of con-
structive and destructive interference.
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(a)

Bright
area

S1

S2

Slits P

Screen
(b)

Bright
area

S1

S2

P

Q

Dark
area

(c)

P

R

Q

S2

S1

Figure 24.3 (a) Constructive interference occurs at P when the waves combine. (b) Constructive
interference also occurs at Q. (c) Destructive interference occurs at R when the wave from the upper
slit falls half a wavelength behind the wave from the lower slit. (These figures are not drawn to scale.)

Path difference �

Condition for constructive interference
(two slits) �

44920_24_p786-818  1/13/05  7:18 AM  Page 788



24.2 Young’s Double-Slit Experiment 789

The number m is called the order number. The central bright fringe at �bright � 0
(m � 0) is called the zeroth-order maximum. The first maximum on either side,
where m � � 1, is called the first-order maximum, and so forth.

When � is an odd multiple of �/2, the two waves arriving at P are 180° out of
phase and give rise to destructive interference. Therefore, the condition for dark
fringes, or destructive interference, at P is

[24.3]

If m � 0 in this equation, the path difference is � � �/2, which is the condition
for the location of the first dark fringe on either side of the central (bright) maxi-
mum. Likewise, if m � 1, the path difference is � � 3�/2, which is the condition
for the second dark fringe on each side, and so forth.

It’s useful to obtain expressions for the positions of the bright and dark fringes
measured vertically from O to P. In addition to our assumption that L �� d, we
assume that d �� �. These can be valid assumptions because, in practice, L is often
on the order of 1 m, d is a fraction of a millimeter, and � is a fraction of a microm-
eter for visible light. Under these conditions � is small, so we can use the approxi-
mation sin � � tan �. Then, from triangle OPQ in Figure 24.4, we see that

[24.4]

Solving Equation 24.2 for sin � and substituting the result into Equation 24.4, we
find that the positions of the bright fringes, measured from O, are

m � 0, � 1, � 2, . . . [24.5]

Using Equations 24.3 and 24.4, we find that the dark fringes are located at

[24.6]

As we will show in Example 24.1, Young’s double-slit experiment provides a
method for measuring the wavelength of light. In fact, Young used this tech-
nique to do just that. In addition, his experiment gave the wave model of light a
great deal of credibility. It was inconceivable that particles of light coming
through the slits could cancel each other in a way that would explain the dark
fringes.

ydark �
�L
d

 (m 	 1
2)  m � 0, �1, �2, . . .

ybright �
�L
d

 m

y � L tan � � L  sin �

� � d sin �dark � (m 	 1
2)� m � 0, �1, �2, . . .

(b)

d = r2 – r1 = d sin u 

S1

S2

d

r2

r1

(a)

d

S1

S2

Q

L
Viewing screen

P

O

Source

y

r1

r2

u

u

d

u

Figure 24.4 A geometric construction that describes Young’s double-slit experiment. The path
difference between the two rays is � � r2 � r1 � d sin �. (This figure is not drawn to scale.)

� Condition for destructive
interference (two slits)

TIP 24.1 Small-Angle 
Approximation: Size 
Matters!
The small-angle approximation 
sin � � tan � is true to three-digit
precision only for angles less than
about 4°.

Reflection, interference, and 
diffraction can be seen in this aerial
photograph of waves in the sea.
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790 Chapter 24 Wave Optics

Consider a double-slit experiment in which a laser
beam is passed through a pair of very closely spaced
slits and a clear interference pattern is displayed on a
distant screen. Now suppose you place smoke particles
between the double slit and the screen. With the pres-
ence of the smoke particles, will you see the effects of
interference in the space between the slits and the
screen, or will you see only the effects on the screen?

Explanation You will see the interference pattern
both on the screen and in the area filled with smoke
between the slits and the screen. There will be bright
lines directed toward the bright areas on the screen
and dark lines directed toward the dark areas on the
screen. This is because Equations 24.5 and 24.6
depend on the distance to the screen, L , which can
take any value.

Applying Physics 24.1 A Smoky Young’s Experiment

Suppose you are watching television by means of an
antenna rather than a cable system. If an airplane flies
near your location, you may notice wavering ghost
images in the television picture. What might cause this
phenomenon?

Explanation Your television antenna receives two
signals: the direct signal from the transmitting

antenna and a signal reflected from the surface of
the airplane. As the airplane changes position,
there are some times when these two signals are in
phase and other times when they are out of phase.
As a result, the intensity of the combined signal
received at your antenna will vary. The wavering of
the ghost images of the picture is evidence of this
variation.

Applying Physics 24.2 Television Signal Interference

In a two-slit interference pattern projected on a screen, the fringes are equally
spaced on the screen (a) everywhere (b) only for large angles (c) only for small
angles.

Quick Quiz 24.1

INTERACTIVE EXAMPLE 24.1 Measuring the Wavelength of a Light Source
Goal Show how Young’s experiment can be used to measure the wavelength of coherent light.

Problem A screen is separated from a double-slit source by 1.20 m. The distance between the two slits is 0.030 0 mm.
The second-order bright fringe (m � 2) is measured to be 4.50 cm from the centerline. Determine (a) the wavelength
of the light and (b) the distance between adjacent bright fringes.

Strategy Equation 24.5 relates the positions of the bright fringes to the other variables, including the wavelength
of the light. Substitute into this equation and solve for �. Taking the difference between ym	1 and ym results in a
general expression for the distance between bright fringes.

Solution
(a) Determine the wavelength of the light.

Solve Equation 24.5 for the wavelength and substitute
m � 2, y2 � 4.50 � 10�2 m, L � 1.20 m, and 
d � 3.00 � 10�5 m: 563 nm� 5.63 � 10�7 m �

� �
y2d
mL

�
(4.50 � 10�2 m)(3.00 � 10�5 m)

2(1.20 m)

(b) Determine the distance between adjacent bright
fringes.

Use Equation 24.5 to find the distance between any adja-
cent bright fringes (here, those characterized by m and
m 	 1): 2.25 cm�

(5.63 � 10�7 m)(1.20 m)
3.00 � 10�5 m

�


y � ym 	1 � ym �
�L
d

 (m 	 1) �
�L
d

 m �
�L
d
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24.3 Change of Phase Due to Reflection 791

24.3 CHANGE OF PHASE DUE TO REFLECTION
Young’s method of producing two coherent light sources involves illuminating a
pair of slits with a single source. Another simple, yet ingenious, arrangement for
producing an interference pattern with a single light source is known as Lloyd’s
mirror. A point source of light is placed at point S, close to a mirror, as illustrated in
Figure 24.5. Light waves can reach the viewing point P either by the direct path SP
or by the path involving reflection from the mirror. The reflected ray can be
treated as a ray originating at the source S � behind the mirror. Source S �, which is
the image of S , can be considered a virtual source.

At points far from the source, an interference pattern due to waves from S and
S� is observed, just as for two real coherent sources. However, the positions of the
dark and bright fringes are reversed relative to the pattern obtained from two real
coherent sources (Young’s experiment). This is because the coherent sources S
and S � differ in phase by 180°, a phase change produced by reflection.

To illustrate the point further, consider P �, the point where the mirror inter-
sects the screen. This point is equidistant from S and S �. If path difference alone
were responsible for the phase difference, a bright fringe would be observed at P �
(because the path difference is zero for this point), corresponding to the central
fringe of the two-slit interference pattern. Instead, we observe a dark fringe at P,
from which we conclude that a 180° phase change must be produced by reflection
from the mirror. In general, an electromagnetic wave undergoes a phase change of
180° upon reflection from a medium that has an index of refraction higher than
the one in which the wave was traveling.

An analogy can be drawn between reflected light waves and the reflections of a
transverse wave on a stretched string when the wave meets a boundary, as in
Figure 24.6. The reflected pulse on a string undergoes a phase change of 180°

Remarks This calculation depends on the angle � being small, because the small-angle approximation was implic-
itly used. The measurement of the position of the bright fringes yields the wavelength of light, which in turn is a
signature of atomic processes, as will be discussed in the chapters on modern physics. This kind of measurement,
therefore, helped open the world of the atom.

Exercise 24.1
Suppose the same experiment is run with a different light source. If the first-order maximum is found at 1.85 cm
from the centerline, what is the wavelength of the light?

Answer 463 nm

Investigate the double-slit interference pattern by logging into PhysicsNow at www.cp7e.com and
going to Interactive Example 24.1.

S ′

S

Real
source

Viewing
screen

Mirror

P

P ′

Virtual
source

Figure 24.5 Lloyd’s mirror. An
interference pattern is produced on a
screen at P as a result of the combina-
tion of the direct ray (blue) and the
reflected ray (brown). The reflected
ray undergoes a phase change 
of 180°.

180° phase change

(a)

No phase change

(b)

Free support
n1

n1

n2

n2>Rigid support
n1

n1

n2

n2<

Incident wave

Reflected wave

Incident wave

Reflected wave

Figure 24.6 (a) A ray reflecting from a medium of higher refractive index undergoes a 180° phase
change. The right side shows the analogy with a reflected pulse on a string. (b) A ray reflecting from a
medium of lower refractive index undergoes no phase change.
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792 Chapter 24 Wave Optics

when it is reflected from the boundary of a denser string or from a rigid barrier
and undergoes no phase change when it is reflected from the boundary of a less
dense string. Similarly, an electromagnetic wave undergoes a 180° phase change
when reflected from the boundary of a medium with index of refraction higher
than the one in which it has been traveling. There is no phase change when the
wave is reflected from a boundary leading to a medium of lower index of
refraction. The transmitted wave that crosses the boundary also undergoes no
phase change.

24.4 INTERFERENCE IN THIN FILMS
Interference effects are commonly observed in thin films, such as the thin surface
of a soap bubble or thin layers of oil on water. The varied colors observed when
incoherent white light is incident on such films result from the interference of
waves reflected from the two surfaces of the film.

Consider a film of uniform thickness t and index of refraction n, as in Figure 24.7.
Assume that the light rays traveling in air are nearly normal to the two surfaces of
the film. To determine whether the reflected rays interfere constructively or
destructively, we first note the following facts:

1. An electromagnetic wave traveling from a medium of index of refraction n1
toward a medium of index of refraction n2 undergoes a 180° phase change on
reflection when n2 � n1. There is no phase change in the reflected wave if
n2 � n1.

2. The wavelength of light �n in a medium with index of refraction n is

[24.7]

where � is the wavelength of light in vacuum.

We apply these rules to the film of Figure 24.7. According to the first rule, ray 1,
which is reflected from the upper surface A, undergoes a phase change of 180°
with respect to the incident wave. Ray 2, which is reflected from the lower surface
B, undergoes no phase change with respect to the incident wave. Therefore, ray 1
is 180° out of phase with respect to ray 2, which is equivalent to a path difference
of �n/2. However, we must also consider the fact that ray 2 travels an extra dis-
tance of 2t before the waves recombine in the air above the surface. For example,
if 2t � �n/2, then rays 1 and 2 recombine in phase, and constructive interference
results. In general, the condition for constructive interference in thin films is

2t � (m 	 )�n m � 0, 1, 2, . . . [24.8]

This condition takes into account two factors: (1) the difference in path length for
the two rays (the term m�n) and (2) the 180° phase change upon reflection (the
term �n/2). Because �n � �/n, we can write Equation 24.8 in the form

[24.9]

If the extra distance 2t traveled by ray 2 is a multiple of �n , then the two waves
combine out of phase and the result is destructive interference. The general equa-
tion for destructive interference in thin films is

2nt � m� m � 0, 1, 2, . . . [24.10]

Equations 24.9 and 24.10 for constructive and destructive interference are valid
when there is only one phase reversal. This will occur when the media above and
below the thin film both have indices of refraction greater than the film or when
both have indices of refraction less than the film. Figure 24.7 is a case in point: the
air (n � 1) that is both above and below the film has an index of refraction less
than that of the film. As a result, there is a phase reversal on reflection off the top
layer of the film, but not the bottom, and Equations 24.9 and 24.10 apply. If the
film is placed between two different media, one of lower refractive index than the

2nt � (m 	 1
2)�  m � 0, 1, 2, . . .

1
2

�n �
�

n

2

Surface A

Air
Film with
index n 

No phase
change

Air

180� phase
change

1

Surface B

t

Figure 24.7 Interference observed
in light reflected from a thin film is
due to a combination of rays reflected
from the upper and lower surfaces.

Condition for constructive interference
(thin film) �

Condition for destructive interference
(thin film) �

Soap bubbles on water. The colors are
due to interference between light rays
reflected from the front and back of
the thin film of soap making up the
bubble. The color depends on the
thickness of the film, ranging from
black where the film is at its thinnest
to magenta where it is thickest.
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24.4 Interference in Thin Films 793

film and one of higher refractive index, Equations 24.9 and 24.10 are reversed:
Equation 24.9 is used for destructive interference, and Equation 24.10 for destruc-
tive interference. In this case, either there is a phase change of 180° for both ray 1
reflecting from surface A and ray 2 reflecting from surface B, as in Figure 24.9 of
Example 24.3 (page 794), or there is no phase change for either ray, which would
be the case if the incident ray came from underneath the film. Hence, the net
change in relative phase due to the reflections is zero .

A thin film of oil on water displays
interference, evidenced by the pat-
tern of colors when white light is inci-
dent on the film. Variations in the
film’s thickness produce the intersect-
ing color pattern. The razor blade
gives you an idea of the size of the
colored bands.
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TIP 24.2 The Two Tricks 
of Thin Films
Be sure to include both effects—path
length and phase change—when you
analyze an interference pattern from
a thin film.

Suppose Young’s experiment is carried out in air, and then, in a second experi-
ment, the apparatus is immersed in water. In what way does the distance between
bright fringes change? (a) They move further apart. (b) They move closer to-
gether. (c) There is no change.

Quick Quiz 24.2

Newton’s Rings
Another method for observing interference in light waves is to place a planocon-
vex lens on top of a flat glass surface, as in Figure 24.8a. With this arrangement,
the air film between the glass surfaces varies in thickness from zero at the point of
contact to some value t at P. If the radius of curvature R of the lens is much greater
than the distance r, and if the system is viewed from above light of wavelength �, a
pattern of light and dark rings is observed (Fig. 24.8b). These circular fringes, dis-
covered by Newton, are called Newton’s rings. The interference is due to the com-
bination of ray 1, reflected from the plate, with ray 2, reflected from the lower sur-
face of the lens. Ray 1 undergoes a phase change of 180° on reflection, because it
is reflected from a boundary leading into a medium of higher refractive index,
whereas ray 2 undergoes no phase change, because it is reflected from a medium
of lower refractive index. Hence, the conditions for constructive and destructive
interference are given by Equations 24.9 and 24.10, respectively, with n � 1
because the “film” is air. The contact point at O is dark, as seen in Figure 24.8b,
because there is no path difference and the total phase change is due only to the
180° phase change upon reflection. Using the geometry shown in Figure 24.8a, we
can obtain expressions for the radii of the bright and dark bands in terms of the
radius of curvature R , and vacuum wavelength �. For example, the dark rings have
radii of .

One of the important uses of Newton’s rings is in the testing of optical lenses. A
circular pattern like that in Figure 24.8b is achieved only when the lens is ground
to a perfectly spherical curvature. Variations from such symmetry might produce a

r � √m�R/n

(b) (c)

Figure 24.8 (a) The combination of rays reflected from the glass plate and the curved surface of the
lens gives rise to an interference pattern known as Newton’s rings. (b) A photograph of Newton’s rings.
(c) This asymmetric interference pattern indicates imperfections in the lens.
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794 Chapter 24 Wave Optics

pattern like that in Figure 24.8c. These variations give an indication of how the
lens must be reground and repolished to remove imperfections.

Problem-Solving Strategy Thin-Film Interference
The following steps are recommended in addressing thin-film interference problems:
1. Identify the thin film causing the interference, and the indices of refraction in the

film and in the media on either side of it.
2. Determine the number of phase reversals: zero, one, or two.
3. Consult the following table, which contains Equations 24.9 and 24.10, and select

the correct column for the problem in question:

Equation (m � 0,1, . . .) 1 phase reversal 0 or 2 phase reversals

2nt � (m 	 )� [24.9] constructive destructive
2nt � m� [24.10] destructive constructive

4. Substitute values in the appropriate equations, as selected in the previous step.

1
2

EXAMPLE 24.2 Interference in a Soap-Film
Goal Calculate interference effects in a thin film when there is one phase reversal.

Problem Calculate the minimum thickness of a soap-bubble film (n � 1.33) that will result in constructive interfer-
ence in the reflected light if the film is illuminated by light with wavelength 602 nm in free space.

Strategy There is only one inversion, so the condition for constructive interference is . The mini-
mum film thickness for constructive interference corresponds to m � 0 in this equation.

Remark The swirling colors in a soap bubble are due to the fact that the thickness of the soap layer varies from one
place to another.

Solution

2nt � (m 	 1
2)�

Solve 2nt � �/2 for the thickness t, and substitute: 113 nmt �
�

4n
�

602 nm
4(1.33)

�

Exercise 24.2
What other film thicknesses will produce constructive interference?

Answer 339 nm, 566 nm, 792 nm, and so on

INTERACTIVE EXAMPLE 24.3 Nonreflective Coatings for Solar Cells and Optical Lenses
Goal Calculate interference effects in a thin film
when there are two inversions.

Problem Semiconductors such as silicon are used
to fabricate solar cells — devices that generate elec-
tric energy when exposed to sunlight. Solar cells are
often coated with a transparent thin film, such as
silicon monoxide (SiO; n � 1.45) to minimize re-
flective losses (Fig. 24.9). A silicon solar cell (n �
3.50) is coated with a thin film of silicon monoxide
for this purpose. Assuming normal incidence, deter-
mine the minimum thickness of the film that will
produce the least reflection at a wavelength of 
552 nm. Si

180° phase
change

1 2

SiO

Air

n = 3.50

n = 1.45

n = 1

180° phase
change

t

Figure 24.9 (Example 24.3) 
Reflective losses from a silicon 
solar cell are minimized by coating
it with a thin film of silicon monox-
ide (SiO).

Interference in a vertical film of
variable thickness. The top of the film
appears darkest where the film is
thinnest.
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24.4 Interference in Thin Films 795

Strategy Reflection is least when rays 1 and 2 in Figure 24.9 meet the condition for destructive interference.
Note that both rays undergo 180° phase changes on reflection. The condition for a reflection minimum is therefore
2nt � �/2.

Solution
Solve 2nt � �/2 for t , the required thickness: 95.2 nmt �

�

4n
�

552 nm
4(1.45)

�

Remarks Typically, such coatings reduce the reflective loss from 30% (with no coating) to 10% (with a coating),
thereby increasing the cell’s efficiency because more light is available to create charge carriers in the cell. In reality,
the coating is never perfectly nonreflecting, because the required thickness is wavelength dependent and the inci-
dent light covers a wide range of wavelengths.

Exercise 24.3
Glass lenses used in cameras and other optical instruments are usually coated with one or more transparent thin
films, such as magnesium fluoride (MgF2), to reduce or eliminate unwanted reflection. Carl Zeiss developed this
method; his first coating was 1.00 � 102 nm thick. Using n � 1.38 for MgF2, what visible wavelength would be elimi-
nated by destructive interference in the reflected light?

Answer 552 nm

Investigate the interference for various film properties by logging into PhysicsNow at www.cp7e.com
and going to Interactive Example 24.3.

EXAMPLE 24.4 Interference in a Wedge-Shaped Film
Goal Calculate interference effects when the film
has variable thickness.

Problem A pair of glass slides 10.0 cm long and with
n � 1.52 are separated on one end by a hair, forming
a triangular wedge of air as illustrated in Figure 24.10.
When coherent light from a helium–neon laser with
wavelength 633 nm is incident on the film from
above, 15.0 dark fringes per centimeter are observed. How thick is the hair?

Strategy The interference pattern is created by the thin film of air having variable thickness. The pattern is a
series of alternating bright and dark parallel bands. A dark band corresponds to destructive interference, and
there is one phase reversal, so 2nt � m� should be used. We can also use the similar triangles in Figure 24.10 to
obtain the relation t/x � D/L . We can find the thickness for any m, and if the position x can also be found, this
last equation gives the diameter of the hair, D.

Solution

D

x

t

L

Figure 24.10 (Example 24.4)
Interference bands in reflected
light can be observed by illuminat-
ing a wedge-shaped film with mono-
chromatic light. The dark areas 
correspond to positions of destruc-
tive interference. 

Solve the destructive-interference equation for the
thickness of the film, t, with n � 1 for air:

t �
m�

2

If d is the distance from one dark band to the next, then
the x-coordinate of the mth band is a multiple of d :

x � md

By dimensional analysis, d is just the inverse of the num-
ber of bands per centimeter.

d � �15.0  
bands

cm �
�1

� 6.67 � 10�2 
cm

band

Now use similar triangles, and substitute all the 
information:

t
x

�
m�/2

md
�

�

2d
�

D
L

Solve for D and substitute given values: � 4.75 � 10�5 mD �
�L
2d

�
(633 � 10�9 m)(0.100 m)

2(6.67 � 10�4 m)
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24.5 USING INTERFERENCE TO READ 
CD’S AND DVD’S

Compact disks (CD’s) and digital video disks (DVD’s) have revolutionized the
computer and entertainment industries by providing fast access; high-density stor-
age of text, graphics, and movies; and high-quality sound recordings. The data on
these disks are stored digitally as a series of zeros and ones, and these zeros and
ones are read by laser light reflected from the disk. Strong reflections (construc-
tive interference) from the disk are chosen to represent zeros and weak reflections
(destructive interference) represent ones.

To see in more detail how thin-film interference plays a crucial role in
reading CD’s, consider Figure 24.11. This shows a photomicrograph of several CD
tracks which consist of a sequence of pits (when viewed from the top or label side of
the disk) of varying length formed in a reflecting-metal information layer. A cross-
sectional view of a CD as shown in Figure 24.12 reveals that the pits appear as bumps
to the laser beam, which shines on the metallic layer through a clear plastic coating
from below.

As the disk rotates, the laser beam reflects off the sequence of bumps and lower
areas into a photodetector, which converts the fluctuating reflected light
intensity into an electrical string of zeros and ones. To make the light fluctuations
more pronounced and easier to detect, the pit depth t is made equal to one-
quarter of a wavelength of the laser light in the plastic. When the beam hits a
rising or falling bump edge, part of the beam reflects from the top of the
bump and part from the lower adjacent area, ensuring destructive interference
and very low intensity when the reflected beams combine at the detector. Bump
edges are read as ones, and flat bump tops and intervening flat plains are read as
zeros.

In Example 24.5 the pit depth for a standard CD, using an infrared laser of
wavelength 780 nm, is calculated. DVDs use shorter wavelength lasers of 635 nm,

Remarks Some may be concerned about interference caused by light bouncing off the top and bottom of, say, the
upper glass slide. It’s unlikely, however, that the thickness of the slide will be half an integer multiple of the wave-
length of the helium-neon laser (for some very large value of m). In addition, in contrast to the air wedge, the thick-
ness of the glass doesn’t vary.

Exercise 24.4
The air wedge is replaced with water, with n � 1.33. Find the distance between dark bands when the helium–neon
laser light hits the glass slides.

Answer 5.01 � 10�4 m

Figure 24.11 A photomicrograph
of adjacent tracks on a compact disc
(CD). The information encoded in
these pits and smooth areas is read by
a laser beam.
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The Physics of CD’s and DVD’s

(2)
(1)

incident laser beamreflected beam

transparent
plastic, n = 1.6

t pit pit

formed
metal
layer

Protective coating

Figure 24.12 Cross section of a
CD showing metallic pits of depth t
and a laser beam detecting the edge
of a pit.
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24.6 Diffraction 797

and the track separation, pit depth, and minimum pit length are all smaller. This
allows a DVD to store about 30 times more information than a CD.

EXAMPLE 24.5 Pit Depth in a CD
Goal Apply interference principles to a CD.

Problem Find the pit depth in a CD that has a plastic transparent layer with index of refraction of 1.60 and is
designed for use in a CD player using a laser with a wavelength of 7.80 � 102 nm in air.

Strategy (See Fig. 24.12.) Rays (1) and (2) both reflect from the metal layer which acts like a mirror, so there is no
phase difference due to reflection between those rays. There is, however, the usual phase difference caused by the
extra distance 2t traveled by ray (2). The wavelength is �/n , where n is the index of refraction in the substance.

Solution

Use the appropriate condition for destructive interfer-
ence in a thin film:

2t �
�

2n

Solve for the thickness t and substitute: 1.22 � 102 nmt �
�

4n
�

7.80 � 102 nm
(4)(1.60)

�

Remarks Different CD systems have different tolerances for scratches. Anything that changes the reflective proper-
ties of the disk can affect the readability of the disk.

Exercise 24.5
Repeat the example for a laser with wavelength 635 nm.

Answer 99.2 nm

24.6 DIFFRACTION
Suppose a light beam is incident on two slits, as in Young’s double-slit experiment.
If the light truly traveled in straight-line paths after passing through the slits, as in
Figure 24.13a, the waves wouldn’t overlap and no interference pattern would be
seen. Instead, Huygens’s principle requires that the waves spread out from the
slits, as shown in Figure 24.13b. In other words, the light bends from a straight-
line path and enters the region that would otherwise be shadowed. This spreading
out of light from its initial line of travel is called diffraction.

In general, diffraction occurs when waves pass through small openings, around
obstacles, or by sharp edges. For example, when a single narrow slit is placed
between a distant light source (or a laser beam) and a screen, the light produces a
diffraction pattern like that in Figure 24.14. The pattern consists of a broad,
intense central band flanked by a series of narrower, less intense secondary bands
(called secondary maxima) and a series of dark bands, or minima. This phenomenon

(a) (b)

Figure 24.13 (a) If light did not
spread out after passing through the slits,
no interference would occur. (b) The
light from the two slits overlaps as it
spreads out, filling the expected shad-
owed regions with light and producing
interference fringes.

Figure 24.14 The diffraction pat-
tern that appears on a screen when
light passes through a narrow vertical
slit. The pattern consists of a broad
central band and a series of less
intense and narrower side bands.
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798 Chapter 24 Wave Optics

can’t be explained within the framework of geometric optics, which says that light
rays traveling in straight lines should cast a sharp image of the slit on the screen.

Figure 24.15 shows the diffraction pattern and shadow of a penny. The pattern
consists of the shadow, a bright spot at its center, and a series of bright and dark
circular bands of light near the edge of the shadow. The bright spot at the center
(called the Fresnel bright spot ) is explained by Augustin Fresnel’s wave theory of
light, which predicts constructive interference at this point for certain locations
of the penny. From the viewpoint of geometric optics, there shouldn’t be
any bright spot: the center of the pattern would be completely screened by the
penny.

One type of diffraction, called Fraunhofer diffraction, occurs when the rays
leave the diffracting object in parallel directions. Fraunhofer diffraction can be
achieved experimentally either by placing the observing screen far from the slit or
by using a converging lens to focus the parallel rays on a nearby screen, as in
Active Figure 24.16a. A bright fringe is observed along the axis at � � 0, with alter-
nating dark and bright fringes on each side of the central bright fringe. Active
Figure 24.16b is a photograph of a single-slit Fraunhofer diffraction pattern.

24.7 SINGLE-SLIT DIFFRACTION
Until now we have assumed that slits have negligible width, acting as line sources
of light. In this section we determine how their nonzero widths are the basis for
understanding the nature of the Fraunhofer diffraction pattern produced by a
single slit.

We can deduce some important features of this problem by examining waves
coming from various portions of the slit, as shown in Figure 24.17. According to
Huygens’ principle, each portion of the slit acts as a source of waves. Hence, light
from one portion of the slit can interfere with light from another portion, and the
resultant intensity on the screen depends on the direction �.

To analyze the diffraction pattern, it’s convenient to divide the slit into halves,
as in Figure 24.17. All the waves that originate at the slit are in phase. Consider
waves 1 and 3, which originate at the bottom and center of the slit, respectively.
Wave 1 travels farther than wave 3 by an amount equal to the path difference

Figure 24.15 The diffraction pat-
tern of a penny placed midway
between the screen and the source.
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ACTIVE FIGURE 24.16
(a) The Fraunhofer diffraction pattern of a single slit. The parallel rays are brought into focus on the
screen with a converging lens. The pattern consists of a central bright region flanked by much weaker
maxima. (This drawing is not to scale.) (b) A photograph of a single-slit Fraunhofer diffraction pattern.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 24.16, where you can adjust the slit
width and the wavelength of the light, observing the effect on the diffraction pattern.
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Figure 24.17 Diffraction of light
by a narrow slit of width a. Each
portion of the slit acts as a point
source of waves. The path difference
between rays 1 and 3 or between rays
2 and 4 is equal to (a/2)sin �. (This
drawing is not to scale, and the rays
are assumed to converge at a distant
point.)
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24.7 Single-Slit Diffraction 799

(a/2) sin �, where a is the width of the slit. Similarly, the path difference between
waves 3 and 5 is (a/2) sin �. If this path difference is exactly half of a wavelength
(corresponding to a phase difference of 180°), the two waves cancel each other
and destructive interference results. This is true, in fact, for any two waves that
originate at points separated by half the slit width, because the phase difference
between two such points is 180°. Therefore, waves from the upper half of the slit
interfere destructively with waves from the lower half of the slit when

or when

If we divide the slit into four parts rather than two and use similar reasoning, we
find that the screen is also dark when

Continuing in this way, we can divide the slit into six parts and show that darkness
occurs on the screen when

Therefore, the general condition for destructive interference for a single slit of
width a is

[24.11]

Equation 24.11 gives the values of � for which the diffraction pattern has zero
intensity, where a dark fringe forms. However, the equation tells us nothing about
the variation in intensity along the screen. The general features of the intensity
distribution along the screen are shown in Figure 24.18. A broad central bright
fringe is flanked by much weaker bright fringes alternating with dark fringes. The
various dark fringes (points of zero intensity) occur at the values of � that satisfy
Equation 24.11. The points of constructive interference lie approximately halfway
between the dark fringes. Note that the central bright fringe is twice as wide as the
weaker maxima having m � 1.

sin �dark � m 
�

a
  m � �1, �2, �3 , . . .

sin � �
3�

a

sin � �
2�

a

sin � �
�

a

a
2

  sin � �
�

2

� Condition for destructive interference
(single slit)

θ

sin   dark = 2  /a

sin   dark =   /a

sin   dark = –  /a

sin   dark = –2  /aL

a 0

y2

y1

– y1

– y2

Viewing screen

θ

θ

θ

θ

λ

λ

λ

λ

In a single-slit diffraction experiment, as the width of the slit is made smaller, the
width of the central maximum of the diffraction pattern (a) becomes smaller,
(b) becomes larger, or (c) remains the same.

Quick Quiz 24.3

Figure 24.18 Positions of the minima for
the Fraunhofer diffraction pattern of a single
slit of width a. (This drawing is not to scale.)

TIP 24.3 The Same, But 
Different
Although Equations 24.2 and 24.11
have the same form, they have
different meanings. Equation 24.2
describes the bright regions in a two-
slit interference pattern, while Equa-
tion 24.11 describes the dark regions
in a single-slit interference pattern.
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If a classroom door is open even just a small amount,
you can hear sounds coming from the hallway. Yet you
can’t see what is going on in the hallway. How can this
difference be explained?

Explanation The space between the slightly open
door and the wall is acting as a single slit for waves.

Sound waves have wavelengths larger than the width
of the slit, so sound is effectively diffracted by the
opening, and the central maximum spreads through-
out the room. Light wavelengths are much smaller
than the slit width, so there is virtually no diffraction
for the light. You must have a direct line of sight to
detect the light waves.

Applying Physics 24.3 Diffraction of Sound Waves

INTERACTIVE EXAMPLE 24.6 A Single-Slit Experiment
Goal Find the positions of the dark fringes in single-slit diffraction.

Problem Light of wavelength 5.80 � 102 nm is incident on a slit of width 0.300 mm. The observing screen is placed
2.00 m from the slit. Find the positions of the first dark fringes and the width of the central bright fringe.

Strategy This problem requires substitution into Equation 24.11 to find the sines of the angles of the first dark
fringes. The positions can then be found with the tangent function, since for small angles sin � � tan �. The extent
of the central maximum is defined by these two dark fringes.

Solution
The first dark fringes that flank the central bright fringe
correspond to m � � 1 in Equation 24.11:

sin � � � 
�

a
� � 

5.80 � 10�7 m
0.300 � 10�3 m

� �1.93 � 10�3

Use the triangle in Figure 24.18 to relate the position of
the fringe to the tangent function:

tan � �
y1

L

Because � is very small, we can use the approximation
sin � � tan � and then solve for y1:

sin � � tan � �

�3.86 � 10�3 my1 � L sin � � �L  
�

a
�

y1

L

Compute the distance between the positive and negative
first-order maxima, which is the width w of the central
maximum:

w � 	3.86 � 10�3 m � (�3.86 � 10�3 m) � 7.72 � 10�3 m

Remarks Note that this value of w is much greater than the width of the slit. However, as the width of the slit is
increased, the diffraction pattern narrows, corresponding to smaller values of �. In fact, for large values of a , the
maxima and minima are so closely spaced that the only observable pattern is a large central bright area resembling
the geometric image of the slit. Because the width of the geometric image increases as the slit width increases, the
narrowest image occurs when the geometric and diffraction widths are equal.

Exercise 24.6
Determine the width of the first-order bright fringe.

Answer 3.86 mm

Investigate the single-slit diffraction pattern by logging into PhysicsNow at www.cp7e.com and going
to Interactive Example 24.6.

24.8 THE DIFFRACTION GRATING
The diffraction grating, a useful device for analyzing light sources, consists of a large
number of equally spaced parallel slits. A grating can be made by scratching parallel
lines on a glass plate with a precision machining technique. The clear panes between
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scratches act like slits. A typical grating contains several thousand lines per
centimeter. For example, a grating ruled with 5 000 lines/cm has a slit spacing d
equal to the reciprocal of that number; hence, d � (1/5 000) cm � 2 � 10�4 cm.

Figure 24.19 is a schematic diagram of a section of a plane diffraction grating. A
plane wave is incident from the left, normal to the plane of the grating. The inten-
sity of the pattern on the screen is the result of the combined effects of interfer-
ence and diffraction. Each slit causes diffraction, and the diffracted beams in turn
interfere with one another to produce the pattern. Moreover, each slit acts as a
source of waves, and all waves start in phase at the slits. For some arbitrary direc-
tion � measured from the horizontal, however, the waves must travel different path
lengths before reaching a particular point P on the screen. From Figure 24.19,
note that the path difference between waves from any two adjacent slits is d sin �. If
this path difference equals one wavelength or some integral multiple of a wave-
length, waves from all slits will be in phase at P and a bright line will be observed at
that point. Therefore, the condition for maxima in the interference pattern at the
angle � is

[24.12]

Light emerging from a slit at an angle other than that for a maximum interferes
nearly completely destructively with light from some other slit on the grating. All
such pairs will result in little or no transmission in that direction, as illustrated in
Active Figure 24.20.

Equation 24.12 can be used to calculate the wavelength from the grating
spacing and the angle of deviation, �. The integer m is the order number of the
diffraction pattern. If the incident radiation contains several wavelengths, each
wavelength deviates through a specific angle, which can be found from Equation
24.12. All wavelengths are focused at � � 0, corresponding to m � 0. This is called
the zeroth-order maximum. The first-order maximum , corresponding to m � 1, is
observed at an angle that satisfies the relationship sin � � �/d ; the second-order
maximum , corresponding to m � 2, is observed at a larger angle �, and so on.
Active Figure 24.20 is a sketch of the intensity distribution for some of the orders

d  sin �bright � m�  m � 0, 1, 2, . . .

d

d � d sin u

P

First-order
maximum

(m = 1)

Central (or
zeroth-order)
maximum

(m = 0)

First-order
maximum

(m = 1)

Incoming plane
wave of light

P

Diffraction
grating

u

u

u

Figure 24.19 A side view of a
diffraction grating. The slit separation
is d, and the path difference between
adjacent slits is d sin �.

� Condition for maxima in the 
interference pattern of a diffraction
grating

_2 _1  0  1  2

 0

m

2�
d

_  �
d

_

sin

2�
d

 �
d

u

l l l l

ACTIVE FIGURE 24.20
Intensity versus sin � for the diffrac-
tion grating. The zeroth-, first-, and
second-order principal maxima are
shown.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 24.20, where
you can choose the number of slits to
be illuminated and observe the effect
on the diffraction pattern.
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produced by a diffraction grating. Note the sharpness of the principal maxima and
the broad range of the dark areas, a pattern in direct contrast to the broad bright
fringes characteristic of the two-slit interference pattern.

A simple arrangement that can be used to measure the angles in a diffraction
pattern is shown in Active Figure 24.21. This is a form of diffraction-grating
spectrometer. The light to be analyzed passes through a slit and is formed into a
parallel beam by a lens. The light then strikes the grating at a 90° angle. The
diffracted light leaves the grating at angles that satisfy Equation 24.12. A tele-
scope is used to view the image of the slit. The wavelength can be determined
by measuring the angles at which the images of the slit appear for the various
orders.

Telescope

Slit

Source

Grating

Collimator

u

ACTIVE FIGURE 24.21
A diagram of a diffraction grating
spectrometer. The collimated beam
incident on the grating is diffracted
into the various orders at the angles �
that satisfy the equation d sin � � m �,
where m � 0, 1, 2, . . .

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 24.21, where
you can use the spectrometer and un-
derstand how spectra are measured.

When white light enters through an opening in an
opaque box and exits through an opening on the
other side of the box, a spectrum of colors appears on
the wall. From this observation, how would you be
able to determine whether the box contains a prism
or a diffraction grating?

Explanation The determination could be made by
noticing the order of the colors in the spectrum rela-
tive to the direction of the original beam of white
light. For a prism, in which the separation of light is a

result of dispersion, the violet light will be refracted
more than the red light. Hence, the order of the spec-
trum from a prism will be from red, closest to the orig-
inal direction, to violet. For a diffraction grating, the
angle of diffraction increases with wavelength, so the
spectrum from the diffraction grating will have colors
in the order from violet, closest to the original direc-
tion, to red. Furthermore, the diffraction grating will
produce two first-order spectra on either side of the
grating, while the prism will produce only a single
spectrum.

Applying Physics 24.4 Prism vs. Grating

If laser light is reflected from a phonograph record or a compact disc, a dif-
fraction pattern appears. The pattern arises because both devices contain par-
allel tracks of information that act as a reflection diffraction grating. Which de-
vice, record or compact disc, results in diffraction maxima that are farther
apart?

Quick Quiz 24.4
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24.8 The Diffraction Grating 803

Use of a Diffraction Grating in CD Tracking
If a CD player is to reproduce sound faithfully, the laser beam must follow the spi-
ral track of information perfectly. Sometimes the laser beam can drift off track,
however, and without a feedback procedure to let the player know this is happen-
ing, the fidelity of the music can be greatly reduced.

Figure 24.23 shows how a diffraction grating is used in a three-beam method to
keep the beam on track. The central maximum of the diffraction pattern reads the
information on the CD track, and the two first-order maxima steer the beam. The
grating is designed so that the first-order maxima fall on the smooth surfaces on
either side of the information track. Both of these reflected beams have their own
detectors, and because both beams are reflected from smooth surfaces, they
should have the same strong intensity when they are detected. If the central beam
wanders off the track, however, one of the steering beams will begin to strike
bumps on the information track and the amount of light reflected will decrease.
This information is then used by electronic circuits to drive the main beam back to
its desired location.

White light reflected from the surface of a compact
disc has a multicolored appearance, as shown in
Figure 24.22. The observation depends on 
the orientation of the disc relative to the eye and the

position of the light source. Explain how all this
works.

Explanation The surface of a compact disc has a
spiral-shaped track (with a spacing of approximately 
1 m) that acts as a reflection grating. The light scat-
tered by these closely spaced parallel tracks interferes
constructively in certain directions that depend on
both the wavelength and the direction of the incident
light. Any one section of the disc serves as a diffrac-
tion grating for white light, sending beams of con-
structive interference for different colors in different
directions. The different colors you see when viewing
one section of the disc change as the light source, the
disc, or you move to change the angles of incidence or
diffraction.

Applying Physics 24.5 Rainbows from a Compact Disc

Figure 24.22 (Applying
Physics 24.5) Compact discs
act as diffraction gratings
when observed under white
light.
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Laser

Diffraction
grating

Central
maximum

First-order
maxima

Compact disc

A P P L I C AT I O N
Tracking Information on a CD

Figure 24.23 The laser beam in a
CD player is able to follow the spiral
track by using three beams produced
with a diffraction grating.
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804 Chapter 24 Wave Optics

INTERACTIVE EXAMPLE 24.7 A Diffraction Grating
Goal Calculate different-order principal maxima for a diffraction grating.

Problem Monochromatic light from a helium–neon laser (� � 632.8 nm) is incident normally on a diffraction
grating containing 6.00 � 103 lines/cm. Find the angles at which one would observe the first-order maximum, the
second-order maximum, and so forth.

Strategy Find the slit separation by inverting the number of lines per centimeter, then substitute values into Equa-
tion 24.12.

Solution
Invert the number of lines per centimeter to obtain the
slit separation:

d �
1

6.00 � 103 cm�1 � 1.67 � 10�4 cm � 1.67 � 103 nm

Substitute m � 1 into Equation 24.12 to find the sine of
the angle corresponding to the first-order maximum:

sin �1 �
�

d
�

632.8 nm
1.67 � 103 nm

� 0.379

Take the inverse sine of the preceding result to find �1: �1 � sin�1 0.379 � 22.3�

Repeat the calculation for m � 2:

�2 � 49.3�

sin �2 �
2�

d
�

2(632.8 nm)
1.67 � 103 nm

� 0.758

Repeat the calculation for m � 3: sin �3 �
3�

d
�

3(632.8 nm)
1.67 � 103 nm

� 1.14

Because sin � can’t exceed one, there is no solution for �3.

Remarks The foregoing calculation shows that there can only be a finite number of principal maxima. In this case,
only zeroth-, first-, and second-order maxima would be observed.

Exercise 24.7
Suppose light with wavelength 7.80 � 102 nm is used instead and the diffraction grating has 3.30 � 103 lines per cen-
timeter. Find the angles of all the principal maxima.

Answers 0°, 14.9°, 31.0°, 50.6°

Investigate the diffraction pattern from a diffraction grating by logging into PhysicsNow at
www.cp7e.com and going to Interactive Example 24.7.

24.9 POLARIZATION OF LIGHT WAVES
In Chapter 21, we described the transverse nature of electromagnetic waves.
Figure 24.24 shows that the electric and magnetic field vectors associated with an
electromagnetic wave are at right angles to each other and also to the direction of
wave propagation. The phenomenon of polarization, described in this section, is
firm evidence of the transverse nature of electromagnetic waves.

E

cx

y

z
B

Figure 24.24 A schematic diagram of a
polarized electromagnetic wave propagating in
the x-direction. The electric field vector vi-
brates in the xy-plane, while the magnetic field
vector vibrates in the xz-plane.B

:

E
:

44920_24_p786-818  1/13/05  7:19 AM  Page 804



24.9 Polarization of Light Waves 805

An ordinary beam of light consists of a large number of electromagnetic waves
emitted by the atoms or molecules of the light source. The vibrating charges asso-
ciated with the atoms act as tiny antennas. Each atom produces a wave with its own
orientation of , as in Figure 24.24, corresponding to the direction of atomic
vibration. However, because all directions of vibration are possible, the resultant
electromagnetic wave is a superposition of waves produced by the individual
atomic sources. The result is an unpolarized light wave, represented schematically
in Figure 24.25a. The direction of wave propagation shown in the figure is perpen-
dicular to the page. Note that all directions of the electric field vector are equally
probable and lie in a plane (such as the plane of this page) perpendicular to the
direction of propagation.

A wave is said to be linearly polarized if the resultant electric field vibrates in
the same direction at all times at a particular point, as in Figure 24.25b. (Some-
times such a wave is described as plane polarized or simply polarized.) The wave in
Figure 24.24 is an example of a wave that is linearly polarized in the y-direction. As
the wave propagates in the x-direction, is always in the y-direction. The plane
formed by and the direction of propagation is called the plane of polarization of
the wave. In Figure 24.24, the plane of polarization is the xy-plane.

It’s possible to obtain a linearly polarized beam from an unpolarized beam by
removing all waves from the beam except those with electric field vectors that
oscillate in a single plane. We now discuss three processes for doing this: (1) selec-
tive absorption, (2) reflection, and (3) scattering.

Polarization by Selective Absorption
The most common technique for polarizing light is to use a material that transmits
waves having electric field vectors that vibrate in a plane parallel to a certain direc-
tion and absorbs those waves with electric field vectors vibrating in directions per-
pendicular to that direction.

In 1932, E. H. Land discovered a material, which he called Polaroid, that polar-
izes light through selective absorption by oriented molecules. This material is fab-
ricated in thin sheets of long-chain hydrocarbons, which are stretched during
manufacture so that the molecules align. After a sheet is dipped into a solution
containing iodine, the molecules become good electrical conductors. However,
conduction takes place primarily along the hydrocarbon chains, because the
valence electrons of the molecules can move easily only along those chains. (Recall
that valence electrons are “free” electrons that can move easily through the
conductor.) As a result, the molecules readily absorb light having an electric field
vector parallel to their lengths and transmit light with an electric field vector per-
pendicular to their lengths. It’s common to refer to the direction perpendicular to
the molecular chains as the transmission axis. In an ideal polarizer, all light with 
parallel to the transmission axis is transmitted and all light with perpendicular
to the transmission axis is absorbed.

Polarizing material reduces the intensity of light passing through it. In Active
Figure 24.26, an unpolarized light beam is incident on the first polarizing sheet,
called the polarizer; the transmission axis is as indicated. The light that passes

E
:

E
:

E
:

E
:

E
:

E
:

E

(a)

E

(b)

Figure 24.25 (a) An unpolarized
light beam viewed along the direction
of propagation (perpendicular to the
page). The transverse electric field
vector can vibrate in any direction
with equal probability. (b) A linearly
polarized light beam with the electric
field vector vibrating in the vertical
direction.

Analyzer

Unpolarized
light

Transmission
axis

Polarized
light

0

Polarizer

u

uE0 cos

E

ACTIVE FIGURE 24.26
Two polarizing sheets whose transmis-
sion axes make an angle � with each
other. Only a fraction of the polarized
light incident on the analyzer is trans-
mitted.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 24.26, where
you can rotate the second polarizer
and see the effect on the transmitted
light.
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806 Chapter 24 Wave Optics

through this sheet is polarized vertically, and the transmitted electric field vector is
. A second polarizing sheet, called the analyzer, intercepts this beam with its

transmission axis at an angle of � to the axis of the polarizer. The component of
that is perpendicular to the axis of the analyzer is completely absorbed. The

component of that is parallel to the analyzer axis, E0 cos �, is allowed to pass
through the analyzer. Because the intensity of the transmitted beam varies as the
square of its amplitude E , we conclude that the intensity of the (polarized) beam
transmitted through the analyzer varies as

I � I0 cos2 � [24.13]

where I0 is the intensity of the polarized wave incident on the analyzer. This
expression, known as Malus’s law, applies to any two polarizing materials having
transmission axes at an angle of � to each other. Note from Equation 24.13 that
the transmitted intensity is a maximum when the transmission axes are parallel
(� � 0 or 180°) and is zero (complete absorption by the analyzer) when the trans-
mission axes are perpendicular to each other. This variation in transmitted inten-
sity through a pair of polarizing sheets is illustrated in Figure 24.27.

When unpolarized light of intensity I0 is sent through a single ideal polarizer,
the transmitted linearly polarized light has intensity I0/2. This fact follows from
Malus’s law, because the average value of cos2 � is one-half.

E
:

0

E
:

0

E
:

0

(b) (c)(a)

Figure 24.27 The intensity of light transmitted through two polarizers depends on the relative
orientations of their transmission axes. (a) The transmitted light has maximum intensity when the
transmission axes are aligned with each other. (b) The transmitted light intensity diminishes when the
transmission axes are at an angle of 45° with each other. (c) The transmitted light intensity is a
minimum when the transmission axes are at right angles to each other.
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A polarizer for microwaves can be made as a grid of
parallel metal wires about a centimeter apart. Is the
electric field vector for microwaves transmitted
through this polarizer parallel or perpendicular to 
the metal wires?

Explanation Electric field vectors parallel to the metal
wires cause electrons in the metal to oscillate parallel to

the wires. Thus, the energy from the waves with these
electric field vectors is transferred to the metal by accel-
erating the electrons and is eventually transformed to
internal energy through the resistance of the metal.
Waves with electric field vectors perpendicular to the
metal wires are not able to accelerate electrons and
pass through the wires. Consequently, the electric field
polarization is perpendicular to the metal wires.

Applying Physics 24.6 Polarizing Microwaves

EXAMPLE 24.8 Polarizer
Goal Understand how polarizing materials affect light intensity.

Problem Unpolarized light is incident upon three polarizers. The first polarizer has a vertical transmission axis, the
second has a transmission axis rotated 30.0° with respect to the first, and the third has a transmission axis rotated
75.0° relative to the first. If the initial light intensity of the beam is Ib , calculate the light intensity after the beam
passes through (a) the second polarizer and (b) the third polarizer.

Malus’s law �
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Polarization by Reflection
When an unpolarized light beam is reflected from a surface, the reflected light is
completely polarized, partially polarized, or unpolarized, depending on the angle
of incidence. If the angle of incidence is either 0° or 90° (a normal or grazing
angle), the reflected beam is unpolarized. For angles of incidence between 0° and
90°, however, the reflected light is polarized to some extent. For one particular
angle of incidence the reflected beam is completely polarized.

Suppose an unpolarized light beam is incident on a surface, as in Figure 24.28a
(page 808). The beam can be described by two electric field components, one parallel
to the surface (represented by dots) and the other perpendicular to the first compo-
nent and to the direction of propagation (represented by brown arrows). It is found
that the parallel component reflects more strongly than the other components, and
this results in a partially polarized beam. In addition, the refracted beam is also par-
tially polarized.

Now suppose that the angle of incidence, �1, is varied until the angle between
the reflected and refracted beams is 90° (Fig. 24.28b). At this particular angle of
incidence, called the polarizing angle �p , the reflected beam is completely polar-
ized, with its electric field vector parallel to the surface, while the refracted beam is
partially polarized.

An expression relating the polarizing angle to the index of refraction of the
reflecting surface can be obtained by the use of Figure 24.28b. From this figure we
see that at the polarizing angle, �p 	 90° 	 �2 � 180°, so that �2 � 90° � �p .
Using Snell’s law and taking n1 � nair � 1.00 and n2 � n yields

Because sin �2 � sin(90° � �p) � cos �p , the expression for n can be written

n �
sin �1

sin �2
�

sin �p

sin �2

Strategy After the beam passes through the first polarizer, it is polarized and its intensity is cut in half. Malus’s law
can then be applied to the second and third polarizers. The angle used in Malus’s law must be relative to the immedi-
ately preceding transmission axis.

Solution
(a) Calculate the intensity of the beam after it passes 
through the second polarizer:

The incident intensity is Ib/2. Apply Malus’s law to the
second polarizer:

3
8

 I bI2 � I0 cos2 � �
Ib

2
  cos2 (30.0o) �

I b

2
 � √3

2 �
2

�

(b) Calculate the intensity of the beam after it passes
through the third polarizer.

The incident intensity is now 3I b/8. Apply Malus’s law to
the third polarizer:

3
16

 IbI3 � I2 cos2 � �
3
8

 Ib cos2 (45.0o) �
3
8

 Ib  � √2
2 �

2
�

Remarks Notice that the angle used in part (b) was not 75.0°, but 75.0° � 30.0° � 45.0°. The angle is always with
respect to the previous polarizer’s transmission axis, because the polarizing material physically determines what
direction the transmitted electric fields can have.

Exercise 24.8
The polarizers are rotated, so that the second polarizer has a transmission axis of 40.0° with respect to the first polarizer
and the third polarizer has an angle of 90.0° with respect to the first. If Ib is the intensity of the original unpolarized light,
what is the intensity of the beam after it passes through (a) the second polarizer, and (b) the third polarizer? (c) What is
the final transmitted intensity if the second polarizer is removed?

Answers (a) 0.293Ib (b) 0.121Ib (c) 0
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808 Chapter 24 Wave Optics

[24.14]

Equation 24.14 is called Brewster’s law, and the polarizing angle �p is sometimes
called Brewster’s angle after its discoverer, Sir David Brewster (1781–1868). For
example, Brewster’s angle for crown glass (where n � 1.52) has the value 
�p � tan�1(1.52) � 56.7°. Because n varies with wavelength for a given substance,
Brewster’s angle is also a function of wavelength.

Polarization by reflection is a common phenomenon. Sunlight reflected from
water, glass, or snow is partially polarized. If the surface is horizontal, the electric
field vector of the reflected light has a strong horizontal component. Sunglasses
made of polarizing material reduce the glare, which is the reflected light. The
transmission axes of the lenses are oriented vertically to absorb the strong horizon-
tal component of the reflected light. Because the reflected light is mostly polarized,
most of the glare can be eliminated without removing most of the normal light.

Polarization by Scattering
When light is incident on a system of particles, such as a gas, the electrons in the
medium can absorb and reradiate part of the light. The absorption and reradia-
tion of light by the medium, called scattering, is what causes sunlight reaching an
observer on Earth from straight overhead to be polarized. You can observe this ef-
fect by looking directly up through a pair of sunglasses made of polarizing glass.
Less light passes through at certain orientations of the lenses than at others.

Figure 24.29 illustrates how the sunlight becomes polarized. The left side of the
figure shows an incident unpolarized beam of sunlight on the verge of striking an air
molecule. When the beam strikes the air molecule, it sets the electrons of the mole-
cule into vibration. These vibrating charges act like those in an antenna except that
they vibrate in a complicated pattern. The horizontal part of the electric field vector
in the incident wave causes the charges to vibrate horizontally, and the vertical part of
the vector simultaneously causes them to vibrate vertically. A horizontally polarized
wave is emitted by the electrons as a result of their horizontal motion, and a vertically
polarized wave is emitted parallel to the Earth as a result of their vertical motion.

Scientists have found that bees and homing pigeons use the polarization of
sunlight as a navigational aid.

Optical Activity
Many important practical applications of polarized light involve the use of certain
materials that display the property of optical activity. A substance is said to be
optically active if it rotates the plane of polarization of transmitted light. Suppose

n �
sin �p

cos �p
� tan �p

Refracted
beam

Refracted
beam

(a) (b)

n1

Incident
beam

Incident
beam

n2

n1

n2

Reflected
beam

Reflected
beam

u1 u1

u2

up

u2

up

90°

Figure 24.28 (a) When unpolar-
ized light is incident on a reflecting
surface, the reflected and refracted
beams are partially polarized. (b) The
reflected beam is completely polar-
ized when the angle of incidence
equals the polarizing angle �p , satisfy-
ing the equation n � tan �p .

Brewster’s law �

Unpolarized
light

Air
molecule

A P P L I C AT I O N
Polaroid Sunglasses

Figure 24.29 The scattering of
unpolarized sunlight by air mole-
cules. The light observed at right
angles is linearly polarized because
the vibrating molecule has a horizon-
tal component of vibration.
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unpolarized light is incident on a polarizer from the left, as in Figure 24.30a. The
transmitted light is polarized vertically, as shown. If this light is then incident on
an analyzer with its axis perpendicular to that of the polarizer, no light emerges
from it. If an optically active material is placed between the polarizer and analyzer,
as in Figure 24.30b, the material causes the direction of the polarized beam to ro-
tate through the angle �. As a result, some light is able to pass through the ana-
lyzer. The angle through which the light is rotated by the material can be found by
rotating the polarizer until the light is again extinguished. It is found that the an-
gle of rotation depends on the length of the sample and, if the substance is in so-
lution, on the concentration. One optically active material is a solution of com-
mon sugar, dextrose. A standard method for determining the concentration of a
sugar solution is to measure the rotation produced by a fixed length of the
solution.

Optical activity occurs in a material because of an asymmetry in the shape of its
constituent molecules. For example, some proteins are optically active because of
their spiral shapes. Other materials, such as glass and plastic, become optically ac-
tive when placed under stress. If polarized light is passed through an unstressed
piece of plastic and then through an analyzer with an axis perpendicular to that of
the polarizer, none of the polarized light is transmitted. If the plastic is placed un-
der stress, however, the regions of greatest stress produce the largest angles of rota-
tion of polarized light, and a series of light and dark bands are observed in the
transmitted light. Engineers often use this property in the design of structures
ranging from bridges to small tools. A plastic model is built and analyzed under
different load conditions to determine positions of potential weakness and failure
under stress. If the design is poor, patterns of light and dark bands will indicate
the points of greatest weakness, and the design can be corrected at an early stage.
Figure 24.31 shows examples of stress patterns in plastic.

Unpolarized
light

Analyzer

Polarizer

Polarized
light

Optically active
material

(a)

(b)

u

Figure 24.30 (a) When crossed
polarizers are used, none of the
polarized light can pass through the
analyzer. (b) An optically active mate-
rial rotates the direction of polariza-
tion through the angle � , enabling
some of the polarized light to pass
through the analyzer.

(a) (b)

Figure 24.31 (a) Strain distribu-
tion in a plastic model of a replace-
ment hip used in a medical research
laboratory. The pattern is produced
when the model is placed between a
polarizer and an analyzer oriented
perpendicular to each other. (b) A
plastic model of an arch structure
under load conditions observed
between perpendicular polarizers.
Such patterns are useful in the 
optimum design of architectural
components.
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A P P L I C AT I O N
Finding the Concentrations 
of Solutions by Means of Their 
Optical Activity
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Liquid Crystals
An effect similar to rotation of the plane of polarization is used to create the famil-
iar displays on pocket calculators, wristwatches, notebook computers, and so forth.
The properties of a unique substance called a liquid crystal make these displays
(called LCD’s, for liquid crystal displays) possible. As its name implies, a liquid
crystal is a substance with properties intermediate between those of a crystalline
solid and those of a liquid; that is, the molecules of the substance are more orderly
than those in a liquid, but less orderly than those in a pure crystalline solid. The
forces that hold the molecules together in such a state are just barely strong
enough to enable the substance to maintain a definite shape, so it is reasonable to
call it a solid. However, small inputs of mechanical or electrical energy can disrupt
these weak bonds and make the substance flow, rotate, or twist.

To see how liquid crystals can be used to create a display, consider Figure
24.32a. The liquid crystal is placed between two glass plates in the pattern shown,
and electrical contacts, indicated by the thin lines, are made. When a voltage is
applied across any segment in the display, that segment turns dark. In this fashion,
any number between 0 and 9 can be formed by the pattern, depending on the
voltages applied to the seven segments.

To see why a segment can be changed from dark to light by the application of a
voltage, consider Figure 24.32b, which shows the basic construction of a portion of

Glass
Liquid
crystal Glass

Incoming
light

Polarizer
Without voltage Polarizer


V = 0 Reflecting
surface

With voltage

Light
absorbed

here

(a)

(b)

(c)

Figure 24.32 (a) The light-
segment pattern of a liquid crystal
display. (b) Rotation of a polarized
light beam by a liquid crystal when the
applied voltage is zero. (c) Molecules
of the liquid crystal align with the
electric field when a voltage is
applied.

A P P L I C AT I O N
Liquid Crystal Displays (LCD’s)
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SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

24.1 Conditions for Interference
Interference occurs when two or more light waves overlap
at a given point. A sustained interference pattern is
observed if (1) the sources are coherent (that is, they main-
tain a constant phase relationship with one another),
(2) the sources have identical wavelengths, and (3) the
superposition principle is applicable.

24.2 Young’s Double-Slit Experiment
In Young’s double-slit experiment, two slits separated by dis-
tance d are illuminated by a single-wavelength light source.
An interference pattern consisting of bright and dark fringes
is observed on a screen a distance L from the slits. The con-
dition for bright fringes (constructive interference) is

d sin �bright � m� m � 0, � 1, � 2, . . . [24.2]

The number m is called the order number of the fringe.
The condition for dark fringes (destructive interference) is

[24.3]

The position ym of the bright fringes on the screen can be de-
termined by using the relation sin � � tan � � ym/L, which is
true for small angles. This can be substituted into Equations
24.2 and 24.3, yielding the location of the bright fringes:

m � 0, � 1, � 2, . . . [24.5]

A similar expression can be derived for the dark fringes.
This equation can be used either to locate the maxima or
to determine the wavelength of light by measuring ym .

24.3 Change of Phase Due to Reflection &
24.4 Interference in Thin Films
An electromagnetic wave undergoes a phase change of
180° on reflection from a medium with an index of refrac-

ybright �
�L
d

 m

d sin �dark � (m 	 1
2)�  m � 0, �1, �2, . . .

tion higher than that of the medium in which the wave is
traveling. There is no change when the wave, traveling in a
medium with higher index of refraction, reflects from a
medium with a lower index of refraction.

The wavelength �n of light in a medium with index of
refraction n is

[24.7]

where � is the wavelength of the light in free space. Light
encountering a thin film of thickness t will reflect off the
top and bottom of the film, each ray undergoing a possible
phase change as described above. The two rays recombine,
and bright and dark fringes will be observed, with the con-
ditions of interference given by the following table:

Equation 1 phase 0 or 2 phase
(m � 0, 1, . . .) reversal reversals

[24.9] constructive destructive
2nt � m� [24.10] destructive constructive

24.6 Diffraction &
24.7 Single-Slit Diffraction
Diffraction occurs when waves pass through small open-
ings, around obstacles, or by sharp edges. The diffraction
pattern produced by a single slit on a distant screen con-
sists of a central bright maximum flanked by less bright
fringes alternating with dark regions. The angles � at which
the diffraction pattern has zero intensity (regions of
destructive interference) are described by

[24.11]

where a is the width of the slit and � is the wavelength of
the light incident on the slit.

24.8 The Diffraction Grating
A diffraction grating consists of many equally spaced,
identical slits. The condition for maximum intensity in the

sin �dark � m  
�

a
  m � � 1, � 2, � 3, . . .

2nt � (m 	 1
2)�

�n �
�

n

the display. The liquid crystal is placed between two glass substrates that are pack-
aged between two pieces of Polaroid material with their transmission axes perpen-
dicular. A reflecting surface is placed behind one of the pieces of Polaroid. First
consider what happens when light falls on this package and no voltages are
applied to the liquid crystal, as shown in Figure 24.32b. Incoming light is polarized
by the polarizer on the left and then falls on the liquid crystal. As the light passes
through the crystal, its plane of polarization is rotated by 90o, allowing it to pass
through the polarizer on the right. It reflects from the reflecting surface and
retraces its path through the crystal. Thus, an observer to the left of the crystal sees
the segment as being bright. When a voltage is applied as in Figure 24.32c, the
molecules of the liquid crystal don’t rotate the plane of polarization of the light.
In this case, the light is absorbed by the polarizer on the right and none is
reflected back to the observer to the left of the crystal. As a result, the observer
sees this segment as black. Changing the applied voltage to the crystal in a precise
pattern at precise times can make the pattern tick off the seconds on a watch,
display a letter on a computer display, and so forth.
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CONCEPTUAL QUESTIONS
1. Your automobile has two headlights. What sort of interfer-

ence pattern do you expect to see from them? Why?

2. Holding your hand at arm’s length, you can readily block
sunlight from your eyes. Why can you not block sound
from your ears this way?

3. Consider a dark fringe in an interference pattern, at
which almost no light energy is arriving. Light from both
slits is arriving at this point, but the waves cancel. Where
does the energy go?

4. If Young’s double-slit experiment were performed under
water, how would the observed interference pattern be
affected?

5. In a laboratory accident, you spill two liquids onto water,
neither of which mixes with the water. They both form
thin films on the water surface. As the films spread and
become very thin, you notice that one film becomes
bright and the other black in reflected light. Why might
this be?

6. If white light is used in Young’s double-slit experiment,
rather than monochromatic light, how does the interfer-
ence pattern change?

7. In our discussion of thin-film interference, we looked at
light reflecting from a thin film. Consider one light ray, the
direct ray, that transmits through the film without reflect-
ing. Then consider a second ray, the reflected ray, that
transmits through the first surface, reflects back to the
second, reflects again from the first, and then transmits
out into the air, parallel to the direct ray. For normal inci-
dence, how thick must the film be, in terms of the wave-
length of the light, for the outgoing rays to interfere de-
structively? Is it the same thickness as for reflected
destructive interference?

8. What is the necessary condition on the difference in path
length between two waves that interfere (a) constructively
and (b) destructively? Assume that the wave sources are
coherent.

9. A lens with outer radius of curvature R and index of
refraction n rests on a flat glass plate, and the combina-
tion is illuminated from white light from above. Is there a

dark spot or a light spot at the center of the lens? What
does it mean if the observed rings are noncircular?

10. Often, fingerprints left on a piece of glass such as a win-
dowpane show colored spectra like that from a diffraction
grating. Why?

11. In everyday experience, why are radio waves polarized,
while light is not?

12. Suppose reflected white light is used to observe a thin,
transparent coating on glass as the coating material is
gradually deposited by evaporation in a vacuum. Describe
some color changes that might occur during the process
of building up the thickness of the coating.

13. Would it be possible to place a nonreflective coating on
an airplane to cancel radar waves of wavelength 3 cm?

14. Certain sunglasses use a polarizing material to reduce the
intensity of light reflected from shiny surfaces, such as
water or the hood of a car. What orientation of the trans-
mission axis should the material have to be most effective?

15. Why is it so much easier to perform interference experi-
ments with a laser than with an ordinary light source?

16. A simple way of observing an interference pattern is to
look at a distant light source through a stretched hand-
kerchief or an open umbrella. Explain how this works.

17. When you receive a chest x-ray at a hospital, the x-rays
pass through a series of parallel ribs in your chest. Do the
ribs act as a diffraction grating for x-rays?

18. Can a sound wave be polarized? Explain.

19. Astronomers often observe occulations, in which a star
passes behind another object, such as the Moon. During
an occultation, the intensity of light from the star doesn’t
suddenly drop to zero as the star passes behind the edge
of the Moon. Instead, the intensity fluctuates for a short
time before dropping to zero. Why should this happen?

20. In one experiment, light from a laser passes through a dou-
ble slit and forms an interference pattern on a distant
screen. The experiment is repeated after increasing the slit
separation by 50%. In which experiment is the distance from
the central maximum to the next maximum the greatest?

interference pattern of a diffraction grating is

d sin �bright � m� m � 0, 1, 2, . . . [24.12]

where d is the spacing between adjacent slits and m is the
order number of the diffraction pattern. A diffraction grat-
ing can be made by putting a large number of evenly
spaced scratches on a glass slide. The number of such lines
per centimeter is the inverse of the spacing d.

24.9 Polarization of Light Waves
Unpolarized light can be polarized by selective absorption,
reflection, or scattering. A material can polarize light if it
transmits waves having electric field vectors that vibrate in a
plane parallel to a certain direction and absorbs waves with
electric field vectors vibrating in directions perpendicular
to that direction. When unpolarized light pass through a
polarizing sheet, its intensity is reduced by half, and the
light becomes polarized. When this light passes through a

second polarizing sheet with transmission axis at an angle
of � with respect to the transmission axis of the first sheet,
the transmitted intensity is given by

I � I0 cos2 � [24.13]

where I0 is the intensity of the light after passing through
the first polarizing sheet.

In general, light reflected from an amorphous material,
such as glass, is partially polarized. Reflected light is com-
pletely polarized, with its electric field parallel to the sur-
face, when the angle of incidence produces a 90° angle
between the reflected and refracted beams. This angle of 
incidence, called the polarizing angle �p, satisfies Brewster’s
law, given by

n � tan �p [24.14]

where n is the index of refraction of the reflecting
medium.
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Problems 813

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached solution with hints available at www.cp7e.com = biomedical application

Section 24.2 Young’s Double-Slit Experiment
1. A laser beam (� � 632.8 nm) is incident on two slits 

0.200 mm apart. How far apart are the bright interfer-
ence fringes on a screen 5.00 m away from the double
slits?

2. In a Young’s double-slit experiment, a set of parallel slits
with a separation of 0.100 mm is illuminated by light hav-
ing a wavelength of 589 nm, and the interference pattern
is observed on a screen 4.00 m from the slits. (a) What is
the difference in path lengths from each of the slits to the
location of a third-order bright fringe on the screen?
(b) What is the difference in path lengths from the two
slits to the location of the third dark fringe on the screen,
away from the center of the pattern?

3. A pair of narrow, parallel slits separated by 0.250 mm is
illuminated by the green component from a mercury
vapor lamp (� � 546.1 nm). The interference pattern is
observed on a screen 1.20 m from the plane of the paral-
lel slits. Calculate the distance (a) from the central maxi-
mum to the first bright region on either side of the
central maximum and (b) between the first and second
dark bands in the interference pattern.

4. Light of wavelength 460 nm falls on two slits spaced
0.300 mm apart. What is the required distance from the
slit to a screen if the spacing between the first and second
dark fringes is to be 4.00 mm?

In a location where the speed of sound
is 354 m/s, a 2 000-Hz sound wave impinges on two slits
30.0 cm apart. (a) At what angle is the first maximum
located? (b) If the sound wave is replaced by 3.00-cm
microwaves, what slit separation gives the same angle for
the first maximum? (c) If the slit separation is 1.00 m,
what frequency of light gives the same first maximum
angle?

6. White light spans the wavelength range between about
400 nm and 700 nm. If white light passes through two slits
0.30 mm apart and falls on a screen 1.5 m from the slits,
find the distance between the first-order violet and the
first-order red fringes.

7. Two radio antennas separated by 300 m, as shown in Figure
P24.7, simultaneously transmit identical signals of the
same wavelength. A radio in a car traveling due north
receives the signals. (a) If the car is at the position of the
second maximum, what is the wavelength of the signals?
(b) How much farther must the car travel to encounter
the next minimum in reception? [Hint: Determine the
path difference between the two signals at the two loca-
tions of the car.]

5.

8. If the distance between two slits is 0.050 mm and the dis-
tance to a screen is 2.50 m, find the spacing between the
first- and second-order bright fringes for yellow light of
600-nm wavelength.

9. Waves from a radio station have a wavelength of 300 m.
They travel by two paths to a home receiver 20.0 km from
the transmitter. One path is a direct path, and the second
is by reflection from a mountain directly behind the
home receiver. What is the minimum distance from the
mountain to the receiver that produces destructive inter-
ference at the receiver? (Assume that no phase change
occurs on reflection from the mountain.)

10. A pair of slits, separated by 0.150 mm, is illuminated by
light having a wavelength of � � 643 nm. An interference
pattern is observed on a screen 140 cm from the slits.
Consider a point on the screen located at y � 1.80 cm
from the central maximum of this pattern. (a) What is the
path difference � for the two slits at the location y ?
(b) Express this path difference in terms of the wave-
length. (c) Will the interference correspond to a maxi-
mum, a minimum, or an intermediate condition?

11. A riverside warehouse has two open doors, as in Figure
P24.11. Its interior is lined with a sound-absorbing mate-
rial. A boat on the river sounds its horn. To person A, the

21. Light in air that is reflected from a water surface is found
to be completely polarized at an angle �. If the light is
instead reflected from a glass coffee table, will the new
angle for complete polarization be larger or smaller?

22. In one experiment, blue light passes through a diffrac-
tion grating and forms an interference pattern on a

screen. In a second experiment, red light passes
through the same diffraction grating and forms another
interference pattern. How do the separations between
bright lines in the two experiments compare with each
other?

400 m

1000 m
300 m

Figure P24.7

20.0 m

150 m

A

B

Figure P24.11
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814 Chapter 24 Wave Optics

sound is loud and clear. To person B, the sound is barely
audible. The principal wavelength of the sound waves is
3.00 m. Assuming person B is at the position of the first
minimum, determine the distance between the doors,
center to center.

12. The waves from a radio station can reach a home receiver
by two different paths. One is a straight-line path from the
transmitter to the home, a distance of 30.0 km. The sec-
ond path is by reflection from a storm cloud. Assume that
this reflection takes place at a point midway between
receiver and transmitter. If the wavelength broadcast by
the radio station is 400 m, find the minimum height of
the storm cloud that will produce destructive interference
between the direct and reflected beams. (Assume no
phase changes on reflection.)
Radio waves from a star, of wavelength 250 m, reach a
radio telescope by two separate paths, as shown in Figure
P24.13. One is a direct path to the receiver, which is situ-
ated on the edge of a cliff by the ocean. The second is by
reflection off the water. The first minimum of destructive
interference occurs when the star is 25.0° above the hori-
zon. Find the height of the cliff. (Assume no phase
change on reflection.)

13.

light (wavelength 600 nm in air). Assuming the maximum
occurs in the first order, determine the thickness of the
oil slick.

A possible means for making an airplane invisible to radar
is to coat the plane with an antireflective polymer. If radar
waves have a wavelength of 3.00 cm and the index of
refraction of the polymer is n � 1.50, how thick would
you make the coating?

20. A beam of light of wavelength 580 nm passes through two
closely spaced glass plates, as shown in Figure P24.20. For
what minimum non-zero value of the plate separation d
will the transmitted light be bright? This arrangement is
often used to measure the wavelength of light and is
called a Fabry–Perot interferometer.

19.

Direct
path

Reflected
path

Figure P24.13

Section 24.3 Change of Phase Due to Reflection
Section 24.4 Interference in Thin Films
14. Determine the minimum thickness of a soap film (n �

1.330) that will result in constructive interference of
(a) the red H� line (� � 656.3 nm); (b) the blue H� line
(� � 434.0 nm).

15. Suppose the film shown in Figure 24.7 has an index of
refraction of 1.36 and is surrounded by air on both sides.
Find the minimum thickness that will produce construc-
tive interference in the reflected light when the film is
illuminated by light of wavelength 500 nm.

16. A thin film of glass (n � 1.50) floats on a liquid of n � 1.35
and is illuminated by light of � � 580 nm incident from
air above it. Find the minimum thickness of the glass,
other than zero, that will produce destructive interference
in the reflected light.

17. A coating is applied to a lens to minimize reflections. The in-
dex of refraction of the coating is 1.55, and that of the lens is
1.48. If the coating is 177.4 nm thick, what wavelength
is minimally reflected for normal incidence in the lowest
order?

18. A transparent oil with index of refraction 1.29 spills on
the surface of water (index of refraction 1.33), producing
a maximum of reflection with normally incident orange

d

Figure P24.20

21. Astronomers observe the chromosphere of the sun with a
filter that passes the red hydrogen spectral line of wave-
length 656.3 nm, called the H� line. The filter consists of
a transparent dielectric of thickness d held between two
partially aluminized glass plates. The filter is kept at a con-
stant temperature. (a) Find the minimum value of d that
will produce maximum transmission of perpendicular H�

light if the dielectric has an index of refraction of 1.378.
(b) If the temperature of the filter increases above the
normal value increasing its thickness, what happens to the
transmitted wavelength? (c) The dielectric will also pass
what near-visible wavelength? One of the glass plates is
colored red to absorb this light.

22. Two rectangular optically flat plates (n � 1.52) are in con-
tact along one end and are separated along the other end
by a 2.00-m-thick spacer (Fig. P24.22). The top plate is
illuminated by monochromatic light of wavelength
546.1 nm. Calculate the number of dark parallel bands
crossing the top plate (including the dark band at zero
thickness along the edge of contact between the plates).

Figure P24.22 (Problems 22 and 23)

An air wedge is formed between two glass plates separated
at one edge by a very fine wire, as in Figure P24.22. When
the wedge is illuminated from above by 600-nm light, 30
dark fringes are observed. Calculate the radius of the
wire.

24. A planoconvex lens with radius of curvature R � 3.0 m is
in contact with a flat plate of glass. A light source and the
observer’s eye are both close to the normal, as shown in

23.
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Figure 24.8a. The radius of the 50th bright Newton’s ring
is found to be 9.8 mm. What is the wavelength of the light
produced by the source?

25. A planoconvex lens rests with its curved side on a flat glass
surface and is illuminated from above by light of wave-
length 500 nm. (See Fig. 24.8.) A dark spot is observed at
the center, surrounded by 19 concentric dark rings (with
bright rings in between). How much thicker is the air
wedge at the position of the 19th dark ring than at the
center?

26. Nonreflective coatings on camera lenses reduce the loss of
light at the surfaces of multilens systems and prevent inter-
nal reflections that might mar the image. Find the mini-
mum thickness of a layer of magnesium fluoride (n � 1.38)
on flint glass (n � 1.66) that will cause destructive inter-
ference of reflected light of wavelength 550 nm near the
middle of the visible spectrum.

A thin film of MgF2 (n � 1.38) with
thickness 1.00 � 10�5 cm is used to coat a camera lens.
Are any wavelengths in the visible spectrum intensified in
the reflected light?

28. A flat piece of glass is supported horizontally above the
flat end of a 10.0-cm-long metal rod that has its lower end
rigidly fixed. The thin film of air between the rod and the
glass is observed to be bright when illuminated by light of
wavelength 500 nm. As the temperature is slowly increased
by 25.0°C, the film changes from bright to dark and back
to bright 200 times. What is the coefficient of linear
expansion of the metal?

Section 24.7 Single-Slit Diffraction
29. Helium–neon laser light (� � 632.8 nm) is sent through

a 0.300-mm-wide single slit. What is the width of the
central maximum on a screen 1.00 m from the slit?

30. Light of wavelength 600 nm falls on a 0.40-mm-wide slit
and forms a diffraction pattern on a screen 1.5 m away.
(a) Find the position of the first dark band on each side
of the central maximum. (b) Find the width of the central
maximum.
Light of wavelength 587.5 nm illuminates a slit of width 
0.75 mm. (a) At what distance from the slit should a
screen be placed if the first minimum in the diffraction
pattern is to be 0.85 mm from the central maximum?
(b) Calculate the width of the central maximum.

32. Microwaves of wavelength 5.00 cm enter a long, narrow
window in a building that is otherwise essentially opaque
to the incoming waves. If the window is 36.0 cm wide, what
is the distance from the central maximum to the first-
order minimum along a wall 6.50 m from the window?

33. A slit of width 0.50 mm is illuminated with light of wave-
length 500 nm, and a screen is placed 120 cm in front of
the slit. Find the widths of the first and second maxima on
each side of the central maximum.

34. A screen is placed 50.0 cm from a single slit, which is illu-
minated with light of wavelength 680 nm. If the distance
between the first and third minima in the diffraction pat-
tern is 3.00 mm, what is the width of the slit?

Section 24.8 The Diffraction Grating
35. Three discrete spectral lines occur at angles of 10.1°,

13.7°, and 14.8°, respectively, in the first-order spectrum

31.

27.

of a diffraction-grating spectrometer. (a) If the grating
has 3 660 slits/cm, what are the wavelengths of the light?
(b) At what angles are these lines found in the second-
order spectra?

36. Intense white light is incident on a diffraction grating that
has 600 lines/mm. (a) What is the highest order in which
the complete visible spectrum can be seen with this grat-
ing? (b) What is the angular separation between the violet
edge (400 nm) and the red edge (700 nm) of the first-
order spectrum produced by the grating?
The hydrogen spectrum has a red line at 656 nm and a
violet line at 434 nm. What angular separation between
these two spectral lines obtained with a diffraction grating
that has 4 500 lines/cm?

38. A grating with 1 500 slits per centimeter is illuminated
with light of wavelength 500 nm. (a) What is the highest-
order number that can be observed with this grating?
(b) Repeat for a grating of 15 000 slits per centimeter.

39. A light source emits two major spectral lines: an orange
line of wavelength 610 nm and a blue-green line of wave-
length 480 nm. If the spectrum is resolved by a diffraction
grating having 5 000 lines/cm and viewed on a screen
2.00 m from the grating, what is the distance (in centime-
ters) between the two spectral lines in the second-order
spectrum?

40. White light is spread out into its spectral components by a
diffraction grating. If the grating has 2 000 lines per
centimeter, at what angle does red light of wavelength
640 nm appear in the first-order spectrum?

41. Sunlight is incident on a diffraction grating that has
2 750 lines/cm. The second-order spectrum over the visi-
ble range (400–700 nm) is to be limited to 1.75 cm along
a screen that is a distance L from the grating. What is the
required value of L?

42. Light containing two different wavelengths passes
through a diffraction grating with 1 200 slits/cm. On a
screen 15.0 cm from the grating, the third-order maxi-
mum of the shorter wavelength falls midway between
the central maximum and the first side maximum for the
longer wavelength. If the neighboring maxima of the
longer wavelength are 8.44 mm apart on the screen, what
are the wavelengths in the light? [Hint: Use the small-
angle approximation.]

A beam of 541-nm light is incident on a
diffraction grating that has 400 lines/mm. (a) Determine
the angle of the second-order ray. (b) If the entire appara-
tus is immersed in water, determine the new second-order
angle of diffraction. (c) Show that the two diffracted
rays of parts (a) and (b) are related through the law of
refraction.

44. Light from a helium–neon laser (� � 632.8 nm) is inci-
dent on a single slit. What is the maximum width for
which no diffraction minima are observed? [Hint: Values
of sin � � 1 are not possible.]

Section 24.9 Polarization of Light Waves
45. The angle of incidence of a light beam in air onto a

reflecting surface is continuously variable. The reflected
ray is found to be completely polarized when the angle of
incidence is 48.0°. (a) What is the index of refraction of
the reflecting material? (b) If some of the incident light

43.

37.
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(at an angle of 48.0°) passes into the material below the
surface, what is the angle of refraction?

46. Unpolarized light passes through two polaroid sheets.
The axis of the first is vertical, and that of the second is at
30.0° to the vertical. What fraction of the initial light is
transmitted?
The index of refraction of a glass plate is 1.52. What is the
Brewster’s angle when the plate is (a) in air? (b) in water?
(See Problem 51.)

48. At what angle above the horizon is the Sun if light from it
is completely polarized upon reflection from water?

49. A light beam is incident on heavy flint glass (n � 1.65) at
the polarizing angle. Calculate the angle of refraction for
the transmitted ray.

50. The critical angle for total internal reflection for sapphire
surrounded by air is 34.4°. Calculate the Brewster angle
for sapphire if the light is incident from the air.

51. Equation 24.14 assumes that the incident light is in air. If
the light is incident from a medium of index n1 onto a
medium of index n2 , follow the procedure used to derive
Equation 24.14 to show that tan �p � n2/n1.

52. Plane-polarized light is incident on a single polarizing
disk, with the direction of E0 parallel to the direction of
the transmission axis. Through what angle should the disk
be rotated so that the intensity in the transmitted beam is
reduced by a factor of (a) 3.00, (b) 5.00, (c) 10.0?

Three polarizing plates whose planes
are parallel are centered on a common axis. The direc-
tions of the transmission axes relative to the common ver-
tical direction are shown in Figure P24.53. A linearly
polarized beam of light with plane of polarization parallel
to the vertical reference direction is incident from the left
onto the first disk with intensity Ii � 10.0 units (arbitrary).
Calculate the transmitted intensity If when �1 � 20.0°, 
�2 � 40.0°, and �3 � 60.0°. [Hint: Make repeated use of
Malus’s law.]

53.

47.

ADDITIONAL PROBLEMS
56. A beam containing light of wavelengths �1 and �2 is inci-

dent on a set of parallel slits. In the interference pattern,
the fourth bright line of the �1 light occurs at the same
position as the fifth bright line of the �2 light. If �1 is
known to be 540 nm, what is the value of �2?

57. Light of wavelength 546 nm (the intense green line from
a mercury source) produces a Young’s interference pat-
tern in which the second minimum from the central max-
imum is along a direction that makes an angle of 18.0 min
of arc with the axis through the central maximum. What
is the distance between the parallel slits?

58. The two speakers are placed 35.0 cm apart. A single oscil-
lator makes the speakers vibrate in phase at a frequency of
2.00 kHz. At what angles, measured from the perpendicu-
lar bisector of the line joining the speakers, would a 
distant observer hear maximum sound intensity? Mini-
mum sound intensity? (Take the speed of sound to be 
340 m/s.)

59. Interference effects are produced at point P on a screen
as a result of direct rays from a 500-nm source and
reflected rays off a mirror, as in Figure P24.59. If the
source is 100 m to the left of the screen and 1.00 cm
above the mirror, find the distance y (in millimeters) to
the first dark band above the mirror.

Ii

If

u1

u2

u3

Figure P24.53 (Problems 53 and 62)

54. Light of intensity I0 and polarized parallel to the transmis-
sion axis of a polarizer, is incident on an analyzer. (a) If
the transmission axis of the analyzer makes an angle of
45° with the axis of the polarizer, what is the intensity
of the transmitted light? (b) What should the angle
between the transmission axes be to make I/I0 � 1/3?

55. Light with a wavelength in vacuum of 546.1 nm falls per-
pendicularly on a biological specimen that is 1.000 m
thick. The light splits into two beams polarized at right
angles, for which the indices of refraction are 1.320 and
1.333, respectively. (a) Calculate the wavelength of each
component of the light while it is traversing the specimen.
(b) Calculate the phase difference between the two beams
when they emerge from the specimen.

O

Source
P

Screen

Mirror

y

u

Figure P24.59

60. Many cells are transparent and colorless. Structures of
great interest in biology and medicine can be practically
invisible to ordinary microscopy. An interference microscope
reveals a difference in refractive index as a shift in inter-
ference fringes, to indicate the size and shape of cell
structures. The idea is exemplified in the following
problem: An air wedge is formed between two glass plates
in contact along one edge and slightly separated at the
opposite edge. When the plates are illuminated with
monochromatic light from above, the reflected light has
85 dark fringes. Calculate the number of dark fringes that
appear if water (n � 1.33) replaces the air between the
plates.

61. A thin layer of oil (n � 1.25) is floating on water. How
thick is the oil in the region that strongly reflects green
light (� � 525 nm)?

62. Three polarizers, centered on a common axis and with
their planes parallel to each other, have transmission axes
oriented at angles of �1, �2, and �3 from the vertical, as
shown in Figure P24.53. Light of intensity I i , polarized with
its plane of polarization oriented vertically, is incident from
the left onto the first polarizer. What is the ratio If/Ii of
the final transmitted intensity to the incident intensity if
(a) �1 � 45°, �2 � 90°, and �3 � 0°? (b) �1 � 0°, �2 � 45°,
and �3 � 90°?
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Figure P24.63 shows a radio-wave transmitter and a
receiver, both h � 50.0 m above the ground and d � 600 m
apart. The receiver can receive signals directly from the
transmitter, and indirectly, from signals that bounce off
the ground. If the ground is level between the transmitter
and receiver and a �/2 phase shift occurs upon reflection,
determine the longest wavelengths that interfere (a) con-
structively and (b) destructively.

63. 750 nm. From this information, calculate the thickness of
the oil film.

69. The condition for constructive interference by reflection
from a thin film in air, as developed in Section 24.4, assumes
nearly normal incidence. (a) Show that for large angles of
incidence, the condition for constructive interference of
light reflecting from a thin film of thickness t, with index
of refraction n, and surrounded by air may be written as

where �2 is the angle of refraction. (b) Calculate the mini-
mum thickness for constructive interference if sodium
light (� � 590 nm) is incident at an angle of 30.0° on a
film with an index of refraction of 1.38.

70. Figure P24.70 illustrates the formation of an interference
pattern by the Lloyd’s mirror method. Light from source
S reaches the screen via two different pathways. One is a
direct path, and the second is by reflection from a
horizontal mirror. The effect is as if light from two differ-
ent sources S and S � had interfered as in the Young’s dou-
ble-slit arrangement. Assume that the actual source S and
the virtual source S � are in a plane 25 cm to the left of the
mirror and the screen is a distance L � 120 cm to the
right of that plane. Source S is a distance h � 2.5 mm
above the top surface of the mirror, and the light is mono-
chromatic with � � 620 nm. Determine the distance of
the first bright fringe above the surface of the mirror.

2nt cos �2 � �m 	
1
2 � �

Transmitter Receiver

d

h

Figure P24.63

64. A planoconvex lens (flat on one side, convex on the
other) with index of refraction n rests with its curved
side (radius of curvature R) on a flat glass surface of the
same index of refraction with a film of index nfilm
between them. The lens is illuminated from above by light
of wavelength �. Show that the dark Newton rings which
appear have radii of

where m is an integer.
65. The transmitting antenna on a submarine is 5.00 m above

the water when the ship surfaces. The captain wishes to
transmit a message to a receiver on a 90.0-m-tall cliff at
the ocean shore. If the signal is to be completely polarized
by reflection off the ocean surface, how far must the ship
be from the shore?

66. (a) If light is incident at an angle � from a medium of
index n1 on a medium of index n2 so that the angle
between the reflected ray and refracted ray is �, show that

Hint: Use the trigonometric identity:

sin(A 	 B) � sin A cos B 	 cos A sin B

(b) Show that the foregoing equation for tan � reduces to
Brewster’s law when � � 90°, n1 � 1, and n2 � n.
A diffraction pattern is produced on a screen 140 cm
from a single slit, using monochromatic light of wave-
length 500 nm, The distance from the center of the cen-
tral maximum to the first-order maximum is 3.00 mm.
Calculate the slit width. [Hint: Assume that the first-order
maximum is halfway between the first- and second-order
minima.]

68. A glass plate (n � 1.61) is covered with a thin, uniform
layer of oil (n � 1.20). A light beam of variable wave-
length is normally incident from air onto the oil surface.
Observation of the reflected beam shows destructive inter-
ference at 500 nm and constructive interference at 

67.

tan � �
n 2 sin �

n1 � n 2 cos �

r � √m�R/n film Region of
interference

on screen

Screen
Glass slabVirtual

image
of source

h

Source
S

A

★

★S �

Figure P24.70

71. A piece of transparent material having an index of refrac-
tion n is cut into the shape of a wedge as shown in Figure
P24.71. The angle of the wedge is small. Monochromatic
light of wavelength � is normally incident from above,
and viewed from above. Let h represent the height of the
wedge and � its width. Show that bright fringes occur at
the positions x � ��(m 	 )/2hn and dark fringes occur
at the positions x � ��m/2hn, where m � 0, 1, 2, . . . and
x is measured as shown.

1
2

�
x

h

Figure P24.71

ACTIVITIES
1. Place a clear dish or plate on a black surface, such as a

sheet of black construction paper. Now add a thin layer of
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818 Chapter 24 Wave Optics

water to the glass, and place a few drops of kerosene or
light machine oil on the water. Darken the room and
shine a flashlight from an angle, as in Figure A24.1. Note
the interference pattern of various colors you observe
under the white light. How does the pattern change if you
cover the flashlight with a sheet of red, blue, or green
cellophane, which acts as a filter?

As an extension of the preceding experiment, observe
the colors appearing to swirl on the surface of a soap bub-
ble. What color do you see just before a bubble bursts?

and also determine the radius of the disc. Use this infor-
mation to find the angle � to the first-order maximum for
violet light. Now use the relationship d sin � � m� to
determine the spacing between the grooves of the disc.
The industry standard is 1.6 m. How close did you come?
While you are observing the spectrum from a CD, note
that the color of the light from a given point changes with
the viewing angle. Explain this effect in terms of changes
in the path length. It is of interest that the blues and blue-
greens in hummingbird feathers and butterflies are
caused by diffraction off finely aligned structures in feath-
ers and wings. (See chapter opener photo.)

3. (a) Devise a way to use a protractor, a desk lamp, and
polarizing sunglasses to measure Brewster’s angle for the
glass in a window. From this, determine the index of
refraction of the glass. (b) Put on a pair of polarizing
sunglasses and close one eye. Hold up a lens of a second
pair of polarizing glasses in front of your open eye so that
light must pass through a lens of each pair before enter-
ing your eye. Now rotate the second pair of glasses
around. You will note that the light reaching your eye is
considerably reduced at some orientations and will pass
freely at others. (c) On a sunny day, rotate your polariz-
ing sunglasses in front of your eye and observe how light
reflects from a window or the surface of water. Note the
change in the amount of light entering your eye for vari-
ous orientations of the glasses. (d) For a final observation
concerning polarized light, rotate a pair of polarizing
sunglasses while looking at various areas of the sky. From
what direction do you find the light to be most highly
polarized?

Oil

Water
Figure A24.1

2. Stand a couple of meters from a lightbulb. Facing away
from the light, hold a compact disc about 10 cm from your
eye and tilt it until the reflection of the bulb is located in
the hole at the disc’s center. You should see spectra radiat-
ing out from the center, with violet on the inside and red
on the outside. Now move the disc away from your eye
until the violet band is at the outer edge. Carefully mea-
sure the distance from your eye to the center of the disc,

44920_24_p786-818  1/13/05  7:19 AM  Page 818



25
CHAPTER

Optical Instruments O U T L I N E

25.1 The Camera
25.2 The Eye
25.3 The Simple Magnifier
25.4 The Compound 

Microscope
25.5 The Telescope
25.6 Resolution of Single-Slit

and Circular Apertures
25.7 The Michelson 

Interferometer
Summary

©
 D

en
is 

Sc
ot

t/C
O

RB
IS

We use devices made from lenses, mirrors, or other optical components every time we put on
a pair of eyeglasses or contact lenses, take a photograph, look at the sky through a telescope,
and so on. In this chapter we examine how these and other optical instruments work. For the
most part, our analyses will involve the laws of reflection and refraction and the procedures of
geometric optics. To explain certain phenomena, however, we must use the wave nature of
light.

25.1 THE CAMERA
The single-lens photographic camera is a simple optical instrument having the fea-
tures shown in Figure 25.1 (page 820). It consists of an opaque box, a converging
lens that produces a real image, and a film behind the lens to receive the image.
Focusing is accomplished by varying the distance between lens and film—with an
adjustable bellows in antique cameras and with some other mechanical arrange-
ments in contemporary models. For proper focusing, which leads to sharp images,
the lens-to-film distance depends on the object distance as well as on the focal
length of the lens. The shutter, located behind the lens, is a mechanical device that
is opened for selected time intervals. With this arrangement, moving objects can
be photographed by using short exposure times, dark scenes (with low light levels)
by using long exposure times. If this adjustment were not available, it would be im-
possible to take stop-action photographs. A rapidly moving vehicle, for example,
could move far enough while the shutter was open to produce a blurred image.
Another major cause of blurred images is movement of the camera while the shut-
ter is open. To prevent such movement, you should mount the camera on a tripod
or use short exposure times. Typical shutter speeds (that is, exposure times) are
1/30, 1/60, 1/125, and 1/250 s. Stationary objects are often shot with a shutter
speed of 1/60 s.

The Hubble Space Telescope does its
viewing above the atmosphere and
doesn’t suffer from the atmospheric
blurring, caused by air turbulence,
that plagues ground-based tele-
scopes. Despite this advantage, it
does have limitations due to diffrac-
tion effects. In this chapter, we show
how the wave nature of light limits
the ability of any optical system to
distinguish between closely spaced
objects.
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820 Chapter 25 Optical Instruments

Most cameras also have an aperture of adjustable diameter to further control
the intensity of the light reaching the film. When an aperture of small diameter is
used, only light from the central portion of the lens reaches the film, so spherical
aberration is reduced.

The intensity I of the light reaching the film is proportional to the area of the
lens. Because this area in turn is proportional the square of the lens diameter D,
the intensity is also proportional to D2. Light intensity is a measure of the rate at
which energy is received by the film per unit area of the image. Because the area
of the image is proportional to q 2 in Figure 25.1, and q � f (when p �� f, so that p
can be approximated as infinite), we conclude that the intensity is also propor-
tional to 1/f 2, so that I � D 2/f 2. The brightness of the image formed on the film
depends on the light intensity, so we see that it ultimately depends on both the fo-
cal length f and diameter D of the lens. The ratio f/D is called the f -number (or
focal ratio) of a lens:

[25.1]

The f -number is often given as a description of the lens “speed.” A lens with a
low f -number is a “fast” lens. Extremely fast lenses, which have an f -number as low
as approximately 1.2, are expensive because of the difficulty of keeping aberra-
tions acceptably small with light rays passing through a large area of the lens.
Camera lenses are often marked with a range of f -numbers, such as 1.4, 2, 2.8, 4,
5.6, 8, 11, . . . . Any one of these settings can be selected by adjusting the aperture,
which changes the value of D. Increasing the setting from one f -number to the
next-higher value (for example, from 2.8 to 4) decreases the area of the aperture
by a factor of two. The lowest f -number setting on a camera corresponds to a wide
open aperture, and the use of the maximum possible lens area.

Simple cameras usually have a fixed focal length and fixed aperture size, with
an f -number of about 11. This high value for the f -number allows for a large
depth of field. This means that objects at a wide range of distances from the lens
form reasonably sharp images on the film. In other words, the camera doesn’t
have to be focused. Most cameras with variable f -numbers adjust them automati-
cally.

25.2 THE EYE
Like a camera, a normal eye focuses light and produces a sharp image. However,
the mechanisms by which the eye controls the amount of light admitted and ad-
justs to produce correctly focused images are far more complex, intricate, and
effective than those in even the most sophisticated camera. In all respects, the eye
is a physiological wonder.

Figure 25.2a shows the essential parts of the eye. Light entering the eye passes
through a transparent structure called the cornea, behind which are a clear liquid
(the aqueous humor), a variable aperture (the pupil , which is an opening in the iris),
and the crystalline lens. Most of the refraction occurs at the outer surface of the eye,
at which the cornea is covered with a film of tears. Relatively little refraction oc-
curs in the crystalline lens, because the aqueous humor in contact with the lens
has an average index of refraction close to that of the lens. The iris, which is the
colored portion of the eye, is a muscular diaphragm that controls pupil size. The
iris regulates the amount of light entering the eye by dilating the pupil in low-light
conditions and contracting the pupil under conditions of bright light. The 
f -number range of the eye is from about 2.8 to 16.

The cornea– lens system focuses light onto the back surface of the eye—the
retina—which consists of millions of sensitive receptors called rods and cones. When
stimulated by light, these structures send impulses to the brain via the optic nerve,
converting them into our conscious view of the world. The process by which the
brain performs this conversion is not well understood and is the subject of much
speculation and research. Unlike film in a camera, the rods and cones chemically

f -number � 
f
D

Film

q

Image

Lens

Shutter

p
Aperture

Figure 25.1 A cross-sectional view
of a simple camera.
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25.2 The Eye 821

adjust their sensitivity according to the prevailing light conditions. This adjust-
ment, which takes about 15 minutes, is responsible for the experience of “getting
used to the dark” in such places as movie theaters. Iris aperture control, which
takes less than one second, helps protect the retina from overload in the adjust-
ment process.

The eye focuses on an object by varying the shape of the pliable crystalline lens
through an amazing process called accommodation. An important component in
accommodation is the ciliary muscle, which is situated in a circle around the rim of
the lens. Thin filaments, called zonules, run from this muscle to the edge of the
lens. When the eye is focused on a distant object, the ciliary muscle is relaxed,
tightening the zonules that attach the ciliary muscle to the edge of the lens. The
force of the zonules causes the lens to flatten, increasing its focal length. For an
object distance of infinity, the focal length of the eye is equal to the fixed distance
between lens and retina, about 1.7 cm. The eye focuses on nearby objects by tens-
ing the ciliary muscle, which relaxes the zonules. This action allows the lens to
bulge a bit and its focal length decreases, resulting in the image being focused on
the retina. All these lens adjustments take place so swiftly that we are not even
aware of the change. In this respect, even the finest electronic camera is a toy com-
pared with the eye.

There is a limit to accommodation because objects that are very close to the eye
produce blurred images. The near point is the closest distance for which the lens
can accommodate to focus light on the retina. This distance usually increases with
age and has an average value of 25 cm. Typically, at age 10 the near point of the
eye is about 18 cm. This increases to about 25 cm at age 20, 50 cm at age 40, and
500 cm or greater at age 60. The far point of the eye represents the farthest dis-
tance for which the lens of the relaxed eye can focus light on the retina. A person
with normal vision is able to see very distant objects, such as the Moon, and so has
a far point at infinity.

Conditions of the Eye
When the eye suffers a mismatch between the focusing power of the lens–cornea
system and the length of the eye so that light rays reach the retina before they con-
verge to form an image, as in Figure 25.3a, the condition is known as farsighted-
ness (or hyperopia). A farsighted person can usually see faraway objects clearly but

retina

fovea

optic
disk
(blind
spot)

optic
nerve

choroid

iris

lens
pupil

cornea

aqueous
humor

ciliary
muscle

vitreous humor

sclera

(a) (b)

Figure 25.2 (a) Essential parts of the eye. Can you correlate the essential parts of the eye with those
of the simple camera in Figure 25.1? (b) Close-up photograph of the human cornea.
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not nearby objects. Although the near point of a normal eye is approximately
25 cm, the near point of a farsighted person is much farther than that. The eye of
a farsighted person tries to focus by accommodation, by shortening its focal
length. This works for distant objects, but because the focal length of the far-
sighted eye is longer than normal, the light from nearby objects can’t be brought
to a sharp focus before it reaches the retina, causing a blurred image. The condi-
tion can be corrected by placing a converging lens in front of the eye, as in Figure
25.3b. The lens refracts the incoming rays more toward the principal axis before
entering the eye, allowing them to converge and focus on the retina.

Nearsightedness (or myopia) is another mismatch condition in which a person is
able to focus on nearby objects, but not faraway objects. In the case of axial myopia,
nearsightedness is caused by the lens being too far from the retina. It is also possible
to have refractive myopia, in which the lens–cornea system is too powerful for the nor-
mal length of the eye. The far point of the nearsighted eye is not at infinity and may
be less than a meter. The maximum focal length of the nearsighted eye is insuffi-
cient to produce a sharp image on the retina, and rays from a distant object con-
verge to a focus in front of the retina. They then continue past that point, diverging
before they finally reach the retina and produce a blurred image (Fig. 25.4a).

Nearsightedness can be corrected with a diverging lens, as shown in Figure
25.4b. The lens refracts the rays away from the principal axis before they enter the
eye, allowing them to focus on the retina.

Beginning with middle age, most people lose some of their accommodation abil-
ity as the ciliary muscle weakens and the lens hardens. Unlike farsightedness, which
is a mismatch of focusing power and eye length, presbyopia (literally, “old-age
vision”) is due to a reduction in accommodation ability. The cornea and lens aren’t
able to bring nearby objects into focus on the retina. The symptoms are the same as
with farsightedness, and the condition can be corrected with converging lenses.

In the eye defect known as astigmatism, light from a point source produces a
line image on the retina. This condition arises when either the cornea or the lens
(or both) are not perfectly symmetric. Astigmatism can be corrected with lenses
having different curvatures in two mutually perpendicular directions.

Optometrists and ophthalmologists usually prescribe lenses measured in
diopters:

822 Chapter 25 Optical Instruments

Converging
lens

Contracted
muscle

Image
behind retina

Image
at retina

(a)

(b)

ObjectNear
point

Near
point Object

Relaxed lens

Figure 25.3 (a) A farsighted eye is
slightly shorter than normal; hence,
the image of a nearby object focuses
behind the retina. (b) The condition
can be corrected with a converging
lens. (The object is assumed to be
very small in these figures.)

A P P L I C AT I O N
Using Optical Lenses to 
Correct for Defects

44920_25_p819-842  1/13/05  10:44 AM  Page 822



25.2 The Eye 823

(a)

(b)

Diverging
lens

Relaxed lens

Image in
front of retina

Image
at retina

Far point

Far point

Object

Object

Figure 25.4 (a) A nearsighted eye
is slightly longer than normal; hence,
the image of a distant object focuses
in front of the retina. (b) The 
condition can be corrected with a 
diverging lens. (The object is 
assumed to be very small in these 
figures.)

EXAMPLE 25.1 Prescribing a Corrective Lens for a Farsighted Patient
Goal Apply geometric optics to correct farsightedness.

Problem The near point of a patient’s eye is 50.0 cm. (a) What focal length must a corrective lens have to enable
the eye to see clearly an object 25.0 cm away? Neglect the eye– lens distance. (b) What is the power of this lens?
(c) Repeat the problem, taking into account the fact that, for typical eyeglasses, the corrective lens is 2.00 cm in front
of the eye.

Strategy This problem requires substitution into the thin-lens equation (Eq. 23.11) and then using the definition
of lens power in terms of diopters. The object is at 25.0 cm, but the lens must form an image at the patient’s near
point, 50.0 cm, the closest point at which the patient’s eye can see clearly. In part (c), 2.00 cm must be subtracted
from both the object distance and the image distance to account for the position of the lens.

Solution
(a) Find the focal length of the corrective lens, neglect-
ing its distance from the eye.

Apply the thin-lens equation: 1
p

�
1
q

�
1
f

The power � of a lens in diopters equals the inverse of the focal length in
meters: � � 1/f .

For example, a converging lens with a focal length of � 20 cm has a power of � 5.0
diopters, and a diverging lens with a focal length of � 40 cm has a power of � 2.5
diopters. (Although the symbol is the same as for mechanical power, there is no re-
lationship between the two concepts.)

The position of the lens relative the eye causes differences in power, but this
usually amounts to less than a quarter diopter, which isn’t noticeable to most pa-
tients. As a result, practicing optometrists deal in increments of a quarter diopter.
Neglecting the eye– lens distance is equivalent to doing the calculation for a con-
tact lens, which rests directly on the eye.
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824 Chapter 25 Optical Instruments

Substitute p � 25.0 cm and q � � 50.0 cm (the latter is
negative because the image must be virtual) on the
same side of the lens as the object:

1
25.0 cm

�
1

�50.0 cm
�

1
f

Solve for f . The focal length is positive, corresponding
to a converging lens.

f � 50.0 cm

(b) What is the power of this lens?

The power is the reciprocal of the focal length in 
meters:

�2.00 diopters� �
1
f

�
1

0.500 m
�

(c) Repeat the problem, noting that the corrective lens
is actually 2.00 cm in front of the eye.

Substitute the corrected values of p and q into the 
thin-lens equation:

f � 44.2 cm

1
p

�
1
q

�
1

23.0 cm
�

1
(�48.0 cm)

�
1
f

Compute the power: �2.26 diopters� �
1
f

�
1

0.442 m
�

Remarks Notice that the calculation in part (c), which doesn’t neglect the eye– lens distance, results in a difference
of 0.26 diopter.

Exercise 25.1
Suppose a lens is placed in a device that determines its power as 2.75 diopters. Find (a) the focal length of the lens
and (b) the minimum distance at which a patient will be able to focus on an object if the patient’s near point is
60.0 cm. Neglect the eye– lens distance.

Answers (a) 36.4 cm (b) 22.7 cm

EXAMPLE 25.2 A Corrective Lens for Nearsightedness
Goal Apply geometric optics to correct nearsightedness.

Problem A particular nearsighted patient can’t see objects clearly when they are beyond 25 cm (the far point of the
eye). (a) What focal length should the prescribed contact lens have to correct this problem? (b) Find the power of
the lens, in diopters. Neglect the distance between the eye and the corrective lens.

Strategy The purpose of the lens in this instance is to take objects at infinity and create an image of them at the
patient’s far point. Apply the thin-lens equation.

Solution
(a) Find the focal length of the corrective lens.

Apply the thin-lens equation for an object at infinity and
image at 25.0 cm:

f � �25.0 cm

1
p

�
1
q

�
1
�

�
1

(�25.0 cm)
�

1
f

(b) Find the power of the lens in diopters: � �
1
f

�
1

�0.250 m
� �4.00 diopters

Remarks The focal length is negative, consistent with a diverging lens. Notice that the power is also negative and
has the same numeric value as the sum on the left side of the thin-lens equation.
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25.3 THE SIMPLE MAGNIFIER
The simple magnifier is one of the most basic of all optical instruments because it
consists only of a single converging lens. As the name implies, this device is used to
increase the apparent size of an object. Suppose an object is viewed at some dis-
tance p from the eye, as in Figure 25.5. Clearly, the size of the image formed at the
retina depends on the angle � subtended by the object at the eye. As the object
moves closer to the eye, � increases and a larger image is observed. However, a
normal eye can’t focus on an object closer than about 25 cm, the near point (Fig.
25.6a, page 826). (Try it!) Therefore, � is a maximum at the near point.

To further increase the apparent angular size of an object, a converging lens
can be placed in front of the eye with the object positioned at point O, just inside
the focal point of the lens, as in Figure 25.6b. At this location, the lens forms a vir-
tual, upright, and enlarged image, as shown. The lens allows the object to be
viewed closer to the eye than is possible without the lens. We define the angular
magnification m as the ratio of the angle subtended by the object when the lens is
in use (angle � in Fig. 25.6b) to the angle subtended by the object placed at the
near point with no lens in use (angle �0 in Fig. 25.6a):

[25.2]

For the case where the lens is held close to the eye, the angular magnification is a
maximum when the image formed by the lens is at the near point of the eye,
which corresponds to q � � 25 cm (see Fig. 25.6b). The object distance corre-
sponding to this image distance can be calculated from the thin-lens equation:

[25.3]

p �
25f

25 � f

1
p

�
1

�25 cm
�

1
f

m � 
�

�0

Exercise 25.2
(a) What power lens would you prescribe for a patient with a far point of 35.0 cm? Neglect the eye– lens distance.
(b) Repeat, assuming an eye-corrective lens distance of 2.00 cm.

Answer (a) � 2.86 diopters (b) � 3.03 diopters

A classic science fiction story, The Invisible Man by 
H.G. Wells, tells of a person who becomes invisible by
changing the index of refraction of his body to that 
of air. Students who know how the eye works have 
criticized this story; they claim the invisible man
would be unable to see. On the basis of your 
knowledge of the eye, would he be able to see ?

Explanation He wouldn’t be able to see. In order for
the eye to see an object, incoming light must be 
refracted at the cornea and lens to form an image on
the retina. If the cornea and lens have the same index
of refraction as air, refraction can’t occur, and an 
image wouldn’t be formed.

Applying Physics 25.1 Vision of the Invisible Man

Two campers wish to start a fire during the day. One camper is nearsighted and
one is farsighted. Whose glasses should be used to focus the Sun’s rays onto some
paper to start the fire? (a) either camper (b) the nearsighted camper (c) the far-
sighted camper.

Quick Quiz 25.1

p

u

Figure 25.5 The size of the image
formed on the retina depends on the
angle � subtended at the eye.

� Angular magnification with the 
object at the near point
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Here, f is the focal length of the magnifier in centimeters. From Figures 25.6a and
25.6b, the small-angle approximation gives

and [25.4]

Equation 25.2 therefore becomes

so that

[25.5]

The maximum angular magnification given by Equation 25.5 is the ratio of the
angular size seen with the lens to the angular size seen without the lens, with the
object at the near point of the eye. Although the normal eye can focus on an im-
age formed anywhere between the near point and infinity, it’s most relaxed when
the image is at infinity (Sec. 25.2). For the image formed by the magnifying lens to
appear at infinity, the object must be placed at the focal point of the lens, so that
p � f. In this case, Equation 25.4 becomes

and the angular magnification is

[25.6]

With a single lens, it’s possible to achieve angular magnifications up to about 4
without serious aberrations. Magnifications up to about 20 can be achieved by us-
ing one or two additional lenses to correct for aberrations.

m �
�

�0
�

25 cm
f

�0 �
h
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  and  � �

h
f

mmax � 1 �
25 cm
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�

�0
�

h/p
h/25

�
25
p

�
25

25f/(25 � f )

tan � � � �
h
p
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h
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Figure 25.6 (a) An object placed
at the near point ( p � 25 cm) 
subtends an angle of �0 � h/25 at the
eye. (b) An object placed near the 
focal point of a converging lens 
produces a magnified image, which
subtends an angle of � � h	/25 at 
the eye. Note that, in this situation, 
q � � 25 cm.

EXAMPLE 25.3 Magnification of a Lens
Goal Compute magnifications of a lens when the image is at the near point and when it’s at infinity.

Problem (a) What is the maximum angular magnification of a lens with a focal length of 10.0 cm? (b) What is the
angular magnification of this lens when the eye is relaxed? Assume an eye– lens distance of zero.
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25.4 THE COMPOUND MICROSCOPE
A simple magnifier provides only limited assistance with inspection of the minute
details of an object. Greater magnification can be achieved by combining two
lenses in a device called a compound microscope, a schematic diagram of which is
shown in Active Figure 25.7a. The instrument consists of two lenses: an objective
with a very short focal length f o (where f o 
 1 cm), and an ocular lens, or eye-
piece, with a focal length f e of a few centimeters. The two lenses are separated by
distance L that is much greater than either f o or f e .

The basic approach used to analyze the image formation properties of a micro-
scope is that of two lenses in a row: the image formed by the first becomes the
object for the second. The object O placed just outside the focal length of the
objective forms a real, inverted image at I1 that is at or just inside the focal point
of the eyepiece. This image is much enlarged. (For clarity, the enlargement of I1 is
not shown in Active Fig. 25.7a.) The eyepiece, which serves as a simple magnifier,
uses the image at I1 as its object and produces an image at I2. The image seen by
the eye at I2 is virtual, inverted, and very much enlarged.

The lateral magnification M1 of the first image is � q1/p1. Note that q1 is ap-
proximately equal to L, because the object is placed close to the focal point of the

Solution
(a) Find the maximum angular magnification of the lens.

Substitute into Equation 25.5: 3.5mmax � 1 �
25 cm

f
� 1 �

25 cm
10.0 cm

�

(b) Find the magnification of the lens when the eye is
relaxed.

When the eye is relaxed, the image is at infinity, so 
substitute into Equation 25.6:

2.5m �
25 cm

f
�

25 cm
10.0 cm

�

Exercise 25.3
What focal length would be necessary if the lens were to have a maximum angular magnification of 4.00?

Answer 8.3 cm

(b)

Objective Eyepiece

L

(a)

I2

O

Fo

fo

p1 q1

Fe I l

fe

ACTIVE FIGURE 25.7
(a) A diagram of a compound 
microscope, which consists of an 
objective and an eyepiece, or ocular
lens. (b) A compound microscope.
The three-objective turret allows the
user to switch to several different
powers of magnification. 
Combinations of eyepieces with 
different focal lengths and different
objectives can produce a wide range
of magnifications.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 25.7, where
you can adjust the focal lengths of the
objective and eyepiece lenses, and see
the effect on the final image.
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Strategy The maximum angular magnification occurs when the image formed by the lens is at the near point of
the eye. Under these circumstances, Equation 25.5 gives us the maximum angular magnification. In part (b), the eye
is relaxed only if the image is at infinity, so Equation 25.6 applies.
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objective lens, which ensures that the image formed will be far from the objective
lens. Further, because the object is very close to the focal point of the objective
lens, p1 � fo . Therefore, the lateral magnification of the objective is

From Equation 25.6, the angular magnification of the eyepiece for an object (cor-
responding to the image at I1) placed at the focal point is found to be

The overall magnification of the compound microscope is defined as the prod-
uct of the lateral and angular magnifications:

[25.7]

The negative sign indicates that the image is inverted with respect to the object.
The microscope has extended our vision into the previously unknown realm of

incredibly small objects, and the capabilities of this instrument have increased
steadily with improved techniques in precision grinding of lenses. A natural ques-
tion is whether there is any limit to how powerful a microscope could be. For ex-
ample, could a microscope be made powerful enough to allow us to see an atom?
The answer to this question is no, as long as visible light is used to illuminate the
object. In order to be seen, the object under a microscope must be at least as large
as a wavelength of light. An atom is many times smaller than the wavelength of visi-
ble light, so its mysteries must be probed via other techniques.

The wavelength dependence of the “seeing” ability of a wave can be illustrated
by water waves set up in a bathtub in the following way: Imagine that you vibrate
your hand in the water until waves with a wavelength of about 6 in. are moving
along the surface. If you fix a small object, such as a toothpick, in the path of the
waves, you will find that the waves are not appreciably disturbed by the toothpick,
but continue along their path. Now suppose you fix a larger object, such as a toy
sailboat, in the path of the waves. In this case, the waves are considerably disturbed
by the object. The toothpick was much smaller than the wavelength of the waves,
and as a result, the waves didn’t “see” it. The toy sailboat, however, is about the
same size as the wavelength of the waves and hence creates a disturbance. Light
waves behave in this same general way. The ability of an optical microscope to view
an object depends on the size of the object relative to the wavelength of the light
used to observe it. Hence, it will never be possible to observe atoms or molecules
with such a microscope, because their dimensions are so small (� 0.1 nm) relative
to the wavelength of the light (� 500 nm).

m � M1me � �
L
fo

 � 25 cm
fe

�

me �
25 cm

fe

M1 � �
q1

p1
� �

L
fo
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EXAMPLE 25.4 Microscope Magnifications
Goal Understand the critical factors involved in determining the magnifying power of a microscope.

Problem A certain microscope has two interchangeable objectives. One has a focal length of 2.0 cm, and the other
has a focal length of 0.20 cm. Also available are two eyepieces of focal lengths 2.5 cm and 5.0 cm. If the length of the
microscope is 18 cm, compute the magnifications for the following combinations: the 2.0-cm objective and 5.0-cm
eyepiece; the 2.0-cm objective and 2.5-cm eyepiece; the 0.20-cm objective and 5.0-cm eyepiece.

Strategy The solution consists of substituting into Equation 25.7 for three different combinations of lenses.

Solution
Apply Equation 25.7 and combine the 2.0-cm objective
with the 5.0-cm eyepiece:

�45m � �
L
fo

 � 25 cm
fe

� � �
18 cm
2.0 cm

 � 25 cm
5.0 cm � �

Magnification of a microscope �
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25.5 THE TELESCOPE
There are two fundamentally different types of telescope, both designed to help us
view distant objects such as the planets in our Solar System. These two types are
(1) the refracting telescope, which uses a combination of lenses to form an image,
and (2) the reflecting telescope, which uses a curved mirror and a lens to form an
image. Once again, we will be able to analyze the telescope by considering it to be
a system of two optical elements in a row. As before, the basic technique followed
is that the image formed by the first element becomes the object for the second.

In the refracting telescope, two lenses are arranged so that the objective forms a
real, inverted image of the distant object very near the focal point of the eyepiece
(Active Fig. 25.8a, page 830). Further, the image at I1 is formed at the focal point of
the objective because the object is essentially at infinity. Hence, the two lenses are sep-
arated by the distance fo � f e , which corresponds to the length of the telescope’s
tube. Finally, at I2, the eyepiece forms an enlarged, inverted image of the image at I1.

The angular magnification of the telescope is given by �/�o, where �o is the
angle subtended by the object at the objective and � is the angle subtended by
the final image. From the triangles in Active Figure 25.8a, and for small angles,
we have

and

Therefore, the angular magnification of the telescope can be expressed as

[25.8]

This equation says that the angular magnification of a telescope equals the ratio of
the objective focal length to the eyepiece focal length. Here again, the angular
magnification is the ratio of the angular size seen with the telescope to the angular
size seen with the unaided eye.

In some applications— for instance, the observation of relatively nearby objects
such as the Sun, the Moon, or planets—angular magnification is important. Stars,
however, are so far away that they always appear as small points of light regardless
of how much angular magnification is used. The large research telescopes used to
study very distant objects must have great diameters to gather as much light as pos-
sible. It’s difficult and expensive to manufacture such large lenses for refracting
telescopes. In addition, the heaviness of large lenses leads to sagging, which is an-
other source of aberration.

These problems can be partially overcome by replacing the objective lens with a
reflecting, concave mirror, usually having a parabolic shape so as to avoid spherical
aberration. Figure 25.9 (page 830) shows the design of a typical reflecting tele-
scope. Incoming light rays pass down the barrel of the telescope and are reflected

m �
�

�o
�

h	/fe
h	/fo

�
fo
fe

�o �
h	

fo
� �

h	

fe

Combine the 2.0-cm objective with the 2.5-cm eyepiece: �9.0 � 101m � �
18 cm
2.0 cm

 � 25 cm
2.5 cm � �

Combine the 0.20-cm objective with the 5.0-cm eyepiece: �450m � �
18 cm

0.20 cm
 � 25 cm

5.0 cm � �

Remarks Much higher magnifications can be achieved, but the resolution starts to fall, resulting in fuzzy images
that don’t convey any details. (See Section 25.6 for further discussion of this point.)

Exercise 25.4
Combine the 0.20-cm objective with the 2.5-cm eyepiece.

Answer 9.0 � 102

The Hubble Space Telescope enables
us to see both further into space and
further back in time than ever before.

N
AS

A

� Angular magnification of a 
telescope
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by a parabolic mirror at the base. These rays converge toward point A in the fig-
ure, where an image would be formed on a photographic plate or another detec-
tor. However, before this image is formed, a small flat mirror at M reflects the light
toward an opening in the side of the tube that passes into an eyepiece. This design
is said to have a Newtonian focus, after its developer. Note that in the reflecting tele-
scope the light never passes through glass (except for the small eyepiece). As a re-
sult, problems associated with chromatic aberration are virtually eliminated.

The largest optical telescopes in the world are the two 10-m-diameter Keck reflec-
tors on Mauna Kea in Hawaii. The largest single-mirrored reflecting telescope in the
United States is the 5-m-diameter instrument on Mount Palomar in California. (See
Fig. 25.10.) In contrast, the largest refracting telescope in the world, at the Yerkes
Observatory in Williams Bay, Wisconsin, has a diameter of only 1 m.

830 Chapter 25 Optical Instruments

Objective lens

Eyepiece lens

fo

fe fe

Fe Fo

I1

Fe'

θh'

(a)

I2

oθ

oθ

(b)

ACTIVE FIGURE 25.8
(a) A diagram of a refracting telescope, with the object at infinity. (b) A refracting telescope.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 25.8, where you can adjust the focal
lengths of the objective and eyepiece lenses, and observe the effect on the final image.
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M
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Figure 25.9 A reflecting telescope
with a Newtonian focus.

Figure 25.10 The Hale telescope
at Mount Palomar Observatory. Just
before taking the elevator up to the
prime-focus cage, a first-time observer
is always told, “Good viewing! And, 
if you should fall, try to miss the 
mirror.” Co
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25.6 Resolution of Single-Slit and Circular Apertures 831

25.6 RESOLUTION OF SINGLE-SLIT 
AND CIRCULAR APERTURES
The ability of an optical system such as the eye, a microscope, or a telescope to distin-
guish between closely spaced objects is limited because of the wave nature of light. To
understand this difficulty, consider Figure 25.12, which shows two light sources far

EXAMPLE 25.5 Hubble Power
Goal Understand magnification in telescopes.

Problem The Hubble telescope is 13.2 m long, but has a second-
ary mirror that increases its effective focal length to 57.8 m. (See
Fig. 25.11.) The telescope doesn’t have an eyepiece, because vari-
ous instruments, not a human eye, record the collected light. How-
ever, it can produce images several thousand times larger than
they would appear with the unaided human eye. What focal length
eyepiece used with the Hubble mirror system would produce a
magnification of 8.00 � 103?

Strategy Equation 25.8 for telescope magnification can be
solved for the eyepiece focal length. The equation for finding 
the angular magnification of a reflector is the same as that for a 
refractor.

Solution
Solve for f e in Equation 25.8 and substitute values: 7.23 � 10�3 mm �

fo
fe
 :  fe �

fo
m

�
57.8 m

8. 00 � 103 �

Remarks The result of this magnification is an image with “good” resolution. However, the light-gathering power
of a telescope largely determines the resolution of the image, and is far more important than magnification. A
high-resolution image can always be magnified so its details can be examined. Such details are often blurred when a
low-resolution image is magnified.

Exercise 25.5
The Hale telescope on Mt. Palomar has a focal length of 16.8 m. Find the magnification of the telescope in conjunc-
tion with an eyepiece having a focal length of 5.00 mm.

Answer 3.36 � 103

Secondary
mirror

Primary
mirror

Focal
plane

Central
baffle

Main
baffle

Secondary
mirror
baffle

Aperture
door

Figure 25.11 A schematic of the Hubble telescope.
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S2

S1

S2

Slit Viewing screen

(a) (b)

Slit Viewing screen

θ θ
Figure 25.12 Two point sources
far from a narrow slit each produce a
diffraction pattern. (a) The angle 
subtended by the sources at the 
aperture is large enough so that 
the diffraction patterns are 
distinguishable. (b) The angle 
subtended by the sources is so small
that the diffraction patterns are not
distinguishable. (Note that the angles
are greatly exaggerated. The drawing
is not to scale.)
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from a narrow slit of width a. The sources can be taken as two point sources S1 and
S2 that are not coherent. For example, they could be two distant stars. If no diffrac-
tion occurred, two distinct bright spots (or images) would be observed on the screen
at the right in the figure. However, because of diffraction, each source is imaged as a
bright central region flanked by weaker bright and dark rings. What is observed on
the screen is the sum of two diffraction patterns, one from S1 and the other from S2.

If the two sources are separated so that their central maxima don’t overlap, as
in Figure 25.12a, their images can be distinguished and are said to be resolved. If
the sources are close together, however, as in Figure 25.12b, the two central max-
ima may overlap and the images are not resolved. To decide whether two images are
resolved, the following condition is often applied to their diffraction patterns:

When the central maximum of one image falls on the first minimum of an-
other image, the images are said to be just resolved. This limiting condition
of resolution is known as Rayleigh’s criterion.

Figure 25.13 shows diffraction patterns in three situations. The images are just
resolved when their angular separation satisfies Rayleigh’s criterion (Fig. 25.13a).
As the objects are brought closer together, their images are barely resolved (Fig.
25.13b). Finally, when the sources are very close to each other, their images are
not resolved (Fig. 25.13c).

From Rayleigh’s criterion, we can determine the minimum angular separation
�min subtended by the source at the slit so that the images will be just resolved. In
Chapter 24 we found that the first minimum in a single-slit diffraction pattern oc-
curs at the angle that satisfies the relationship

where a is the width of the slit. According to Rayleigh’s criterion, this expression
gives the smallest angular separation for which the two images can be resolved. Be-
cause � 

 a in most situations, sin � is small and we can use the approximation
sin � � �. Therefore, the limiting angle of resolution for a slit of width a is

[25.9]�min �
�

a

sin� �
�

a

(b) (c)(a)

Figure 25.13 The diffraction 
patterns of two point sources (solid
curves) and the resultant pattern
(dashed curve) for three angular 
separations of the sources. (a) The
sources are separated such that their
patterns are just resolved. (b) The
sources are closer together, and their
patterns are barely resolved. (c) The
sources are so close together that
their patterns are not resolved.
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where �min is in radians. Hence, the angle subtended by the two sources at the slit
must be greater than �/a if the images are to be resolved.

Many optical systems use circular apertures rather than slits. The diffraction
pattern of a circular aperture (Fig. 25.14) consists of a central circular bright re-
gion surrounded by progressively fainter rings. Analysis shows that the limiting an-
gle of resolution of the circular aperture is

[25.10]

where D is the diameter of the aperture. Note that Equation 25.10 is similar to
Equation 25.9, except for the factor 1.22, which arises from a complex mathemati-
cal analysis of diffraction from a circular aperture.

�min � 1.22 
�

D

Figure 25.14 The diffraction 
pattern of a circular aperture consists
of a central bright disk surrounded by
concentric bright and dark rings.
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Suppose you are observing a binary star with a telescope and are having difficulty
resolving the two stars. Which color filter will better help resolve the stars? (a) blue
(b) red (c) neither—colored filters have no affect on resolution

Quick Quiz 25.2

Cats’ eyes have vertical pupils in dim light. Which
would cats be most successful at resolving at night,
headlights on a distant car or vertically separated run-
ning lights on a distant boat’s mast having the same
separation as the car’s headlights?

Explanation The effective slit width in the vertical di-
rection of the cat’s eye is larger than that in the hori-
zontal direction. Thus, it has more resolving power for
lights separated in the vertical direction and would be
more effective at resolving the mast lights on the boat.

Applying Physics 25.2 Cat’s Eyes

EXAMPLE 25.6 Resolution of a Microscope
Goal Study limitations on the resolution of a microscope.

Problem Sodium light of wavelength 589 nm is used to view an object under a microscope. The aperture of the 
objective has a diameter of 0.90 cm. (a) Find the limiting angle of resolution for this microscope. (b) Using visible
light of any wavelength you desire, find the maximum limit of resolution for this microscope. (c) Water of index of
refraction 1.33 now fills the space between the object and the objective. What effect would this have on the resolving
power of the microscope, using 589 nm light?

Strategy Parts (a) and (b) require substitution into Equation 25.10. Because the wavelength appears in the numer-
ator, violet light, with the shortest visible wavelength, gives the maximum resolution. In part (c), the only difference
is that the wavelength changes to �/n , where n is the index of refraction of water.

Solution
(a) Find the limiting angle of resolution for this 
microscope.

Substitute into Equation 25.10 to obtain the limiting 
angle of resolution:

� 8.0 � 10�5 rad

�min � 1.22 
�

D
� 1.22 � 589 � 10�9 m

0.90 � 10�2 m �

(b) Calculate the microscope’s maximum limit of 
resolution.

To obtain the maximum resolution, substitute the 
shortest visible wavelength available—violet light, of
wavelength 4.0 � 102 nm: � 5.4 � 10�5 rad

�min � 1.22 
�

D
� 1.22 � 4.0 � 10�7 m

0.90 � 10�2 m �
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(c) What effect does water between the object and the
objective lens have on the resolution, with 589-nm light?

Calculate the wavelength of the sodium light in the water: �w �
�a

n
�

589 nm
1.33

� 443 nm

Substitute this wavelength into Equation 25.10 to get the
resolution:

6.0 � 10�5 rad�min � 1.22 � 443 � 10�9 m
0.90 � 10�2 m � �

Remarks In each case, any two points on the object subtending an angle of less than the limiting angle �min at the
objective cannot be distinguished in the image. Consequently, it may be possible to see a cell, but then be unable to
clearly see smaller structures within the cell. Obtaining an increase in resolution is the motivation behind placing a
drop of oil on the slide for certain objective lenses.

Exercise 25.6
Suppose oil with n � 1.50 fills the space between the object and the objective for this microscope. Calculate the limit-
ing angle �min for sodium light of wavelength 589 nm in air.

Answer 5.3 � 10�5 rad

EXAMPLE 25.7 Resolving Craters on the Moon
Goal Calculate the resolution of a telescope.

Problem The Hubble Space Telescope has an aperture of diameter 2.40 m. (a) What is its limiting angle of resolu-
tion at a wavelength of 6.00 � 102 nm? (b) What’s the smallest crater it could resolve on the Moon? (The Moon is
3.84 � 108 m from Earth.)

Strategy After substituting into Equation 25.10 to find the limiting angle, use s � r � to compute the minimum size
of crater that can be resolved.

Solution
(a) What is the limiting angle of resolution at a wave-
length of 6.00 � 102 nm?

Substitute D � 2.40 m and � � 6.00 � 10�7 m into
Equation 25.10:

� 3.05 � 10�7 rad

�min � 1.22 
�

D
� 1.22 � 6.00 � 10�7 m

2.40 m �

(b) What’s the smallest lunar crater the Hubble Space
Telescope can resolve?

The two opposite sides of the crater must subtend the
minimum angle. Use the arc length formula:

s � r � � (3.84 � 108 m)(3.05 � 10�7 rad) � 117 m

Remarks The distance is so great and the angle so small that using the arc length of a circle is justified— the circu-
lar arc is very nearly a straight line. The Hubble Space Telescope has produced several gigabytes of data every day for
over 20 years.

Exercise 25.7
The Hale telescope on Mount Palomar has a diameter of 5.08 m (200 in.). (a) Find the limiting angle of resolution
for a wavelength of 6.00 � 102 nm. (b) Calculate the smallest crater diameter the telescope can resolve on the Moon.
(c) The answers appear better than what the Hubble can achieve. Why are the answers misleading?

Answers (a) 1.44 � 10�7 rad (b) 55.3 m (c) While the numbers are better than Hubble’s, the Hale telescope must con-
tend with the effects of atmospheric turbulence, so the smaller space-based telescope actually obtains far better results.
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It’s interesting to compare the resolution of the Hale telescope with that of a
large radio telescope, such as the system at Arecibo, Puerto Rico, which has a
diameter of 1 000 ft (305 m). This telescope detects radio waves at a wavelength of
0.75 m. The corresponding minimum angle of resolution can be calculated as
3.0 � 10�3 rad (10 min 19 s of arc), which is more than 10 000 times larger than
the calculated minimum angle for the Hale telescope.

With such relatively poor resolution, why is Arecibo considered a valuable astro-
nomical instrument? Unlike its optical counterparts, Arecibo can see through
clouds of dust. The center of our Milky Way galaxy is obscured by such
dust clouds, which absorb and scatter visible light. Radio waves easily penetrate the
clouds, so radio telescopes allow direct observations of the galactic core.

Resolving Power of the Diffraction Grating
The diffraction grating studied in Chapter 24 is most useful for making accurate
wavelength measurements. Like the prism, it can be used to disperse a spectrum
into its components. Of the two devices, the grating is better suited to distinguish-
ing between two closely spaced wavelengths. We say that the grating spectrometer
has a higher resolution than the prism spectrometer. If �1 and �2 are two nearly
equal wavelengths between which the spectrometer can just barely distinguish, the
resolving power of the grating is defined as

[25.11]

where � � �1 � �2 and � � �2 � �1. From this equation, it’s clear that a grating
with a high resolving power can distinguish small differences in wavelength. Fur-
ther, if N lines of the grating are illuminated, it can be shown that the resolving
power in the mth-order diffraction is given by

R � Nm [25.12]

So the resolving power R increases with the order number m and is large for a grat-
ing with a great number of illuminated slits. Note that for m � 0, R � 0, which sig-
nifies that all wavelengths are indistinguishable for the zeroth-order maximum. (All
wavelengths fall at the same point on the screen.) However, consider the second-
order diffraction pattern of a grating that has 5 000 rulings illuminated by the
light source. The resolving power of such a grating in second order is R � 5 000 �
2 � 10 000. Therefore, the minimum wavelength separation between two spectral
lines that can be just resolved, assuming a mean wavelength of 600 nm, is calcu-
lated from Equation 25.12 to be � � �/R � 6 � 10�2 nm. For the third-order
principal maximum, R � 15 000 and � � 4 � 10�2 nm, and so on.

R � 
�

�2 � �1
�

�

�

EXAMPLE 25.8 Light from Sodium Atoms
Goal Find the necessary resolving power to distinguish spectral lines.

Problem Two bright lines in the spectrum of sodium have wavelengths of 589.00 nm and 589.59 nm, respectively.
(a) What must the resolving power of a grating be in order to distinguish these wavelengths? (b) To resolve these
lines in the second-order spectrum, how many lines of the grating must be illuminated?

Strategy This problem requires little more than substituting into Equations 25.11 and 25.12.

Solution
(a) What must the resolving power of a grating be in 
order to distinguish the given wavelengths?

Substitute into Equation 25.11 to find R:

� 1.0 � 103

R �
�

�
�

589.00 nm
589.59 nm � 589.00 nm

�
589 nm
0.59 nm

� Resolving power of a grating
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25.7 THE MICHELSON INTERFEROMETER
The Michelson interferometer is an optical instrument having great scientific im-
portance. Invented by the American physicist A. A. Michelson (1852–1931), it is
an ingenious device that splits a light beam into two parts and then recombines
them to form an interference pattern. The interferometer is used to make accu-
rate length measurements.

Active Figure 25.15 is a schematic diagram of an interferometer. A beam of light
provided by a monochromatic source is split into two rays by a partially silvered
mirror M inclined at an angle of 45° relative to the incident light beam. One ray is
reflected vertically upward to mirror M1, and the other ray is transmitted horizon-
tally through mirror M to mirror M2. Hence, the two rays travel separate paths, L1
and L 2. After reflecting from mirrors M1 and M2, the two rays eventually recom-
bine to produce an interference pattern, which can be viewed through a tele-
scope. The glass plate P, equal in thickness to mirror M, is placed in the path of
the horizontal ray to ensure that the two rays travel the same distance through
glass.

836 Chapter 25 Optical Instruments

(b) To resolve these lines in the second-order spectrum,
how many lines of the grating must be illuminated?

Solve Equation 25.12 for N and substitute: 5.0 � 102 linesN �
R
m

�
1.0 � 103

2
�

Remarks The ability to resolve spectral lines is particularly important in experimental atomic physics.

Exercise 25.8
When the lines of a spectrum are examined at high resolution, each line is actually found to be two closely spaced
lines called a doublet, due to a phenomenon called electron spin. An example is the doublet in the hydrogen spec-
trum having wavelengths of 656.272 nm and 656.285 nm. (a) What must be the resolving power of a grating in order
to distinguish these wavelengths? (b) How many lines of the grating must be illuminated to resolve these lines in the
third-order spectrum?

Answer (a) 5.0 � 104 (b) 1.7 � 104 lines

L1

M
Light source

L2

P
M2

Telescope

Beam
splitter

Adjustable mirror

Image of M2

M1

M2	

ACTIVE FIGURE 25.15
A diagram of the Michelson 
interferometer. A single beam is split
into two rays by the half-silvered 
mirror M. The path difference 
between the two rays is varied with
the adjustable mirror M1.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 25.15, where
you can move one of the mirrors, ob-
serving the effect on the interference 
pattern, and use the interferometer to
measure the speed of light.
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The interference pattern for the two rays is determined by the difference in
their path lengths. When the two rays are viewed as shown, the image of M2 is at
M 2	, parallel to M 1. Hence, the space between M 2	 and M1 forms the equivalent
of a parallel air film. The effective thickness of the air film is varied by using a
finely threaded screw to move mirror M 1 in the direction indicated by the ar-
rows in Active Figure 25.15. If one of the mirrors is tipped slightly with respect
to the other, the thin film between the two is wedge shaped, and an interfer-
ence pattern consisting of parallel fringes is set up, as described in Example
24.4. Now suppose we focus on one of the dark lines with the crosshairs of a tel-
escope. As the mirror M 1 is moved to lengthen the path L 1, the thickness of the
wedge increases. When the thickness increases by �/4, the destructive interfer-
ence that initially produced the dark fringe has changed to constructive inter-
ference, and we now observe a bright fringe at the location of the crosshairs.
The term fringe shift is used to describe the change in a fringe from dark to light
or light to dark. Thus, successive light and dark fringes are formed each time
M 1 is moved a distance of �/4. The wavelength of light can be measured by
counting the number of fringe shifts for a measured displacement of M1.
Conversely, if the wavelength is accurately known (as with a laser beam), the
mirror displacement can be determined to within a fraction of the wavelength.
Because the interferometer can measure displacements precisely, it is often
used to make highly accurate measurements of the dimensions of mechanical
components.

If the mirrors are perfectly aligned, rather than tipped with respect to one an-
other, the path difference differs slightly for different angles of view. This arrange-
ment results in an interference pattern that resembles Newton’s rings. The pattern
can be used in a fashion similar to that for tipped mirrors. An observer pays atten-
tion to the center spot in the interference pattern. For example, suppose the spot
is initially dark, indicating that destructive interference is occurring. If M1 is now
moved a distance of �/4, this central spot changes to a light region, corresponding
to a fringe shift.

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

25.1 The Camera
The light-concentrating power of a lens of focal length f
and diameter D is determined by the f -number, defined
as

[25.1]

The smaller the f -number of a lens, the brighter is the im-
age formed.

25.2 The Eye
Hyperopia (farsightedness) is a defect of the eye that
occurs either when the eyeball is too short or when the cil-
iary muscle cannot change the shape of the lens enough to
form a properly focused image. Myopia (nearsightedness)
occurs either when the eye is longer than normal or when
the maximum focal length of the lens is insufficient to pro-
duce a clearly focused image on the retina.

The power of a lens in diopters is the inverse of the
focal length in meters.

f -number � 
f
D

25.3 The Simple Magnifier
The angular magnification of a lens is defined as

[25.2]

where � is the angle subtended by an object at the eye
with a lens in use and �0 is the angle subtended by the
object when it is placed at the near point of the eye and
no lens is used. The maximum angular magnification of a
lens is

[25.5]

When the eye is relaxed, the angular magnification is

[25.6]

25.4 The Compound Microscope
The overall magnification of a compound microscope of
length L is the product of the magnification produced by
the objective, of focal length fo , and the magnification pro-
duced by the eyepiece, of focal length f e :

m �
25 cm

f

m max � 1 �
25 cm

f

m � 
�

�0
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[25.7]

25.5 The Telescope
The angular magnification of a telescope is

[25.8]

where fo is the focal length of the objective and fe is the
focal length of the eyepiece.

25.6 Resolution of Single-Slit and 
Circular Apertures
Two images are said to be just resolved when the central
maximum of the diffraction pattern for one image falls on
the first minimum of the other image. This limiting condi-
tion of resolution is known as Rayleigh’s criterion. The lim-
iting angle of resolution for a slit of width a is

m �
fo
fe

M � �
L
fo

 � 25 cm
fe

� [25.9]

The limiting angle of resolution of a circular aperture is

[25.10]

where D is the diameter of the aperture.
If �1 and �2 are two nearly equal wavelengths between

which a grating spectrometer can just barely distinguish,
the resolving power R of the grating is defined as

[25.11]

where � � �1 � �2 and � � �2 � �1. The resolving power
of a diffraction grating in the mth order is

R � Nm [25.12]

where N is the number of illuminated rulings on the grating.

R � 
�

�2 � �1
�

�

�

�min � 1.22 
�

D

�min �
�

a

CONCEPTUAL QUESTIONS
1. A lens is used to examine an object across a room. Is the

lens probably being used as a simple magnifier?

2. Why is it difficult or impossible to focus a microscope on
an object across a room?

3. The optic nerve and the brain invert the image formed
on the retina. Why don’t we see everything upside down?

4. If you want to examine the fine detail of an object with a
magnifying glass with a power of � 20.0 diopters, where
should the object be placed in order to observe a magni-
fied image of the object?

5. Suppose you are observing the interference pattern
formed by a Michelson interferometer in a laboratory and
a joking colleague holds a lit match in the light path of
one arm of the interferometer. Will this have an effect on
the interference pattern?

6. Compare and contrast the eye and a camera. What parts
of the camera correspond to the iris, the retina, and the
cornea of the eye?

7. Large telescopes are usually reflecting rather than refract-
ing. List some reasons for this choice.

8. If you want to use a converging lens to set fire to a piece
of paper, why should the light source be farther from the
lens than its focal point?

9. Explain why it is theoretically impossible to see an object
as small as an atom regardless of the quality of the light
microscope being used.

10. Which is most important in the use of a camera photoflash
unit, the intensity of the light (the energy per unit area per
unit time) or the product of the intensity and the time of
the flash, assuming the time is less than the shutter speed?

11. A patient has a near point of 1.25 m. Is she nearsighted or
farsighted? Should the corrective lens be converging or
diverging?

12. A lens with a certain power is used as a simple magnifier.
If the power of the lens is doubled, does the angular mag-
nification increase or decrease?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 25.1 The Camera
1. A camera used by a professional photographer to shoot

portraits has a focal length of 25.0 cm. The photographer
takes a portrait of a person 1.50 m in front of the camera.
Where is the image formed, and what is the lateral magni-
fication?

2. The lens of a certain 35 mm camera (35 mm is the
width of the film strip) has a focal length of 55 mm and a
speed (an f -number) of f/1.8. Determine the diameter of
the lens.

3. A photographic image of a building is 0.092 0 m high.
The image was made with a lens with a focal length of

52.0 mm. If the lens was 100 m from the building when
the photograph was made, determine the height of the
building.

4. The full Moon is photographed using a camera with a
120-mm-focal-length lens. Determine the diameter of the
Moon’s image on the film. [Note : The radius of the Moon
is 1.74 � 106 m, and the distance from the Earth to the
Moon is 3.84 � 108 m.]

5. A camera is being used with the correct exposure at f/4
and a shutter speed of 1/32 s. In order to “stop” a fast-
moving subject, the shutter speed is changed to 1/256 s.
Find the new f - stop that should be used to maintain
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satisfactory exposure, assuming no change in lighting
conditions.

6. (a) Use conceptual arguments to show that the intensity
of light (energy per unit area per unit time) reaching the
film in a camera is proportional to the square of the recip-
rocal of the f -number, as

(b) The correct exposure time for a camera set to f/1.8 is
(1/500) s. Calculate the correct exposure time if the
f -number is changed to f/4 under the same lighting con-
ditions.
A certain type of film requires an exposure time of 0.010 s
with an f/11 lens setting. Another type of film requires
twice the light energy to produce the same level of expo-
sure. What f -stop does the second type of film need with
the 0.010-s exposure time?

8. Assume that the camera in Figure 25.1 has a fixed focal
length of 65.0 mm and is adjusted to properly focus the
image of a distant object. How far and in what direction
must the lens be moved to focus the image of an object
that is 2.00 m away?

Section 25.2 The Eye
9. A retired bank president can easily read the fine print of

the financial page when the newspaper is held no closer
than arm’s length, 60.0 cm from the eye. What should be
the focal length of an eyeglass lens that will allow her to
read at the more comfortable distance of 24.0 cm?

10. A person has far points 84.4 cm from the right eye and
122 cm from the left eye. Write a prescription for the pow-
ers of the corrective lenses.
The accommodation limits for Nearsighted Nick’s eyes
are 18.0 cm and 80.0 cm. When he wears his glasses, he is
able to see faraway objects clearly. At what minimum dis-
tance is he able to see objects clearly?

12. The near point of an eye is 100 cm. A corrective lens is to
be used to allow this eye to clearly focus on objects 25.0 in
front of it. (a) What should be the focal length of the
lens? (b) What is the power of the needed corrective lens?

13. An individual is nearsighted; his near point is 13.0 cm and
his far point is 50.0 cm. (a) What lens power is needed to
correct his nearsightedness? (b) When the lenses are in
use, what is this person’s near point?

14. A certain child’s near point is 10.0 cm; her far point (with
eyes relaxed) is 125 cm. Each eye lens is 2.00 cm from the
retina. (a) Between what limits, measured in diopters,
does the power of this lens–cornea combination vary?
(b) Calculate the power of the eyeglass lens the child
should use for relaxed distance vision. Is the lens converg-
ing or diverging?

15. An artificial lens is implanted in a person’s eye to replace
a diseased lens. The distance between the artificial lens
and the retina is 2.80 cm. In the absence of the lens, an
image of a distant object (formed by refraction at the
cornea) falls 2.53 cm behind the retina. The lens is de-
signed to put the image of the distant object on the
retina. What is the power of the implanted lens? [Hint:
Consider the image formed by the cornea to be a virtual
object.]

11.

7.

I � 
1

( f/D)2

A person is to be fitted with bifocals.
She can see clearly when the object is between 30 cm and
1.5 m from the eye. (a) The upper portions of the bifocals
(Fig. P25.16) should be designed to enable her to see
distant objects clearly. What power should they have?
(b) The lower portions of the bifocals should enable her
to see objects comfortably at 25 cm. What power should
they have?

16.

Section 25.3 The Simple Magnifier
17. A stamp collector uses a lens with 7.5-cm focal length as a

simple magnifier. The virtual image is produced at the
normal near point (25 cm). (a) How far from the lens
should the stamp be placed? (b) What is the expected an-
gular magnification?

18. A lens having a focal length of 25 cm is used as a simple
magnifier. (a) What is the angular magnification obtained
when the image is formed at the normal near point (q �
� 25 cm)? (b) What is the angular magnification pro-
duced by this lens when the eye is relaxed?

19. A biology student uses a simple magnifier to examine the
structural features of the wing of an insect. The wing is
held 3.50 cm in front of the lens, and the image is formed
25.0 cm from the eye. (a) What is the focal length of the
lens? (b) What angular magnification is achieved?

20. A lens that has a focal length of 5.00 cm is used as a mag-
nifying glass. (a) To obtain maximum magnification,
where should the object be placed? (b) What is the mag-
nification?
A leaf of length h is positioned 71.0 cm in front of a
converging lens with a focal length of 39.0 cm. An ob-
server views the image of the leaf from a position 1.26 m
behind the lens, as shown in Figure P25.21. (a) What is
the magnitude of the lateral magnification (the ratio of
the image size to the object size) produced by the lens?
(b) What angular magnification is achieved by viewing
the image of the leaf rather than viewing the leaf
directly?

21.

Far vision

Near vision

Figure P25.16

Leaf

71.0 cm 1.26 m

Figure P25.21
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Section 25.4 The Compound Microscope &
Section 25.5 The Telescope
22. The objective lens in a microscope with a 20.0-cm-long

tube has a magnification of 50.0, and the eyepiece has
a magnification of 20.0. What are the focal lengths of
(a) the objective and (b) the eyepiece? (c) What is the
overall magnification of the microscope?

23. The desired overall magnification of a compound micro-
scope is 140�. The objective alone produces a lateral
magnification of 12�. Determine the required focal
length of the eyepiece.

24. A microscope has an objective lens with a focal length of
16.22 mm and an eyepiece with a focal length of 9.50 mm.
With the length of the barrel set at 29.0 cm, the diameter
of a red blood cell’s image subtends an angle of 1.43
mrad with the eye. If the final image distance is 29.0 cm
from the eyepiece, what is the actual diameter of the red
blood cell?

25. The length of a microscope tube is 15.0 cm. The focal
length of the objective is 1.00 cm, and the focal length of
the eyepiece is 2.50 cm. What is the magnification of the
microscope, assuming it is adjusted so that the eye is re-
laxed? [Hint: To solve this question go back to basics and
use the thin lens equation.]

26. A certain telescope has an objective of focal length
1 500 cm. If the Moon is used as an object, a 1.0-cm-long
image formed by the objective corresponds to what
distance, in miles, on the Moon? Assume 3.8 � 108 m for
the Earth–Moon distance.

The lenses of an astronomical telescope
are 92 cm apart when adjusted for viewing a distant object
with minimum eyestrain. The angular magnification
produced by the telescope is 45. Compute the focal
length of each lens.

28. An elderly sailor is shipwrecked on a desert island, but
manages to save his eyeglasses. The lens for one eye has a
power of � 1.20 diopters, and the other lens has a power
of � 9.00 diopters. (a) What is the magnifying power of
the telescope he can construct with these lenses? (b) How
far apart are the lenses when the telescope is adjusted for
minimum eyestrain?

29. Astronomers often take photographs with the objective
lens or mirror of a telescope alone, without an eyepiece.
(a) Show that the image size h	 for a telescope used in this
manner is given by h	 � fh/( f � p), where h is the object
size, f is the objective focal length, and p is the object dis-
tance. (b) Simplify the expression in part (a) if the object
distance is much greater than the objective focal length.
(c) The “wingspan” of the International Space Station is
108.6 m, the overall width of its solar panel configuration.
When it is orbiting at an altitude of 407 km, find the
width of the image formed by a telescope objective of fo-
cal length 4.00 m.

30. Galileo devised a simple terrestrial telescope that produces
an upright image. It consists of a converging objective lens
and a diverging eyepiece at opposite ends of the telescope
tube. For distant objects, the tube length is the objective
focal length less the absolute value of the eyepiece focal
length. (a) Does the user of the telescope see a real or vir-
tual image? (b) Where is the final image? (c) If a telescope
is to be constructed with a tube of length 10.0 cm and a

27.

magnification of 3.00, what are the focal lengths of the
objective and eyepiece?
A person decides to use an old pair of eyeglasses to make
some optical instruments. He knows that the near point
in his left eye is 50.0 cm and the near point in his right
eye is 100 cm. (a) What is the maximum angular magnifi-
cation he can produce in a telescope? (b) If he places the
lenses 10.0 cm apart, what is the maximum overall magni-
fication he can produce in a microscope? (Go back to
basics and use the thin-lens equation to solve part (b).)

Section 25.6 Resolution of Single-Slit 
and Circular Apertures
32. If the distance from the Earth to the Moon is 3.8 � 108 m,

what diameter would be required for a telescope objective
to resolve a Moon crater 300 m in diameter? Assume a
wavelength of 500 nm.

33. A converging lens with a diameter of 30.0 cm forms an im-
age of a satellite passing overhead. The satellite has two
green lights (wavelength 500 nm) spaced 1.00 m apart. If
the lights can just be resolved according to the Rayleigh
criterion, what is the altitude of the satellite?

34. The pupil of a cat’s eye narrows to a vertical slit of width
0.500 mm in daylight. What is the angular resolution for a
pair of horizontally separated mice? (Use 500-nm light in
your calculation.)

To increase the resolving power of a microscope, the ob-
ject and the objective are immersed in oil (n � 1.5). If the
limiting angle of resolution without the oil is 0.60 �rad,
what is the limiting angle of resolution with the oil?
[Hint: The oil changes the wavelength of the light.]

36. (a) Calculate the limiting angle of resolution for the eye,
assuming a pupil diameter of 2.00 mm, a wavelength of
500 nm in air, and an index of refraction for the eye of
1.33. (b) What is the maximum distance from the eye at
which two points separated by 1.00 cm could be resolved?

37. Two stars in a binary system are 8.0 lightyears away from
the observer and can just be resolved by a 20-in. telescope
equipped with a filter that allows only light of wavelength
500 nm to pass. What is the distance between the two
stars?

38. A spy satellite circles the Earth at an altitude of 200 km
and carries out surveillance with a special high-resolution
telescopic camera having a lens diameter of 35 cm. If the
angular resolution of this camera is limited by diffraction,
estimate the separation of two small objects on the Earth’s
surface that are just resolved in yellow-green light (� �
550 nm).

39. Suppose a 5.00-m-diameter telescope were constructed on
the Moon, where the absence of atmospheric distortion
would permit excellent viewing. If observations were
made using 500-nm light, what minimum separation be-
tween two objects could just be resolved on Mars at closest
approach (when Mars is 8.0 � 107 km from the Moon)?

40. The H� line in hydrogen has a wavelength of 656.20 nm.
This line differs in wavelength from the corresponding
spectral line in deuterium (the heavy stable isotope of
hydrogen) by 0.18 nm. (a) Determine the minimum
number of lines a grating must have to resolve these two
wavelengths in the first order. (b) Repeat part (a) for the
second order.

35.

31.
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A 15.0-cm-long grating has 6 000 slits
per centimeter. Can two lines of wavelengths 600.000 nm
and 600.003 nm be separated with this grating? Explain.

Section 25.7 The Michelson Interferometer
42. Light of wavelength 550 nm is used to calibrate a Michel-

son interferometer. With the use of a micrometer screw,
the platform on which one mirror is mounted is moved
0.180 mm. How many fringe shifts are counted?

43. An interferometer is used to measure the length of a bac-
terium. The wavelength of the light used is 650 nm. As
one arm of the interferometer is moved from one end of
the cell to the other, 310 fringe shifts are counted. How
long is the bacterium?

44. Mirror M1 in Figure 25.15 is displaced a distance L. Dur-
ing this displacement, 250 fringe shifts are counted. The
light being used has a wavelength of 632.8 nm. Calculate
the displacement L.

45. A thin sheet of transparent material has an index of re-
fraction of 1.40 and is 15.0 �m thick. When it is inserted
in the light path along one arm of an interferometer,
how many fringe shifts occur in the pattern? Assume
that the wavelength (in a vacuum) of the light used is
600 nm. [Hint : The wavelength will change within the
material.]
The Michelson interferometer can be used to measure
the index of refraction of a gas by placing an evacuated
transparent tube in the light path along one arm of the
device. Fringe shifts occur as the gas is slowly added to the
tube. Assume that 600-nm light is used, that the tube is
5.00 cm long, and that 160 fringe shifts occur as the pres-
sure of the gas in the tube increases to atmospheric pres-
sure. What is the index of refraction of the gas? [Hint:
The fringe shifts occur because the wavelength of the
light changes inside the gas-filled tube.]

47. The light path in one arm of a Michelson interferometer
includes a transparent cell that is 5.00 cm long. How
many fringe shifts would be observed if all the air were
evacuated from the cell? The wavelength of the light
source is 590 nm and the refractive index of air is 1.000
29. (See the hint in Problem 46.)

ADDITIONAL PROBLEMS
48. A person with a nearsighted eye has near and far points of

16 cm and 25 cm, respectively. (a) Assuming a lens is
placed 2.0 cm from the eye, what power must the lens
have to correct this condition? (b) Suppose that contact
lenses placed directly on the cornea are used to correct
the person’s eye. What is the power of the lens required in
this case, and what is the new near point? [Hint : The con-
tact lens and the eyeglass lens require slightly different
powers because they are at different distances from the
eye.]
The near point of an eye is 75.0 cm. (a) What should be
the power of a corrective lens prescribed to enable the
eye to see an object clearly at 25.0 cm? (b) If, using the
corrective lens, the person can see an object clearly at
26.0 cm, but not at 25.0 cm, by how many diopters did the
lens grinder miss the prescription?

50. If a typical eyeball is 2.00 cm long and has a pupil open-
ing that can range from about 2.00 mm to 6.00 mm, what

49.

46.

41. are (a) the focal length of the eye when it is focused on
objects 1.00 m away, (b) the smallest f -number of the eye
when it is focused on objects 1.00 m away, and (c) the
largest f -number of the eye when it is focused on objects
1.00 m away?

A cataract-impaired lens in an eye may
be surgically removed and replaced by a manufactured
lens. The focal length required for the new lens is deter-
mined by the lens-to-retina distance, which is measured by
a sonarlike device, and by the requirement that the im-
plant provide for correct distance vision. (a) If the dis-
tance from lens to retina is 22.4 mm, calculate the power
of the implanted lens in diopters. (b) Since there is no ac-
commodation and the implant allows for correct distance
vision, a corrective lens for close work or reading must be
used. Assume a reading distance of 33.0 cm, and calculate
the power of the lens in the reading glasses.

52. Estimate the minimum angle subtended at the eye of a
hawk flying at an altitude of 50 m necessary to recognize a
mouse on the ground.

53. The wavelengths of the sodium spectrum are �1 �
589.00 nm and �2 � 589.59 nm. Determine the minimum
number of lines in a grating that will allow resolution of
the sodium spectrum in (a) the first order and (b) the
third order.

54. The text discusses the astronomical telescope. Another
type is the Galilean telescope, in which an objective lens
gathers light (Fig. P25.54) and tends to form an image at
point A. An eyepiece consisting of a diverging lens inter-
cepts the light before it comes to a focus and forms a
virtual image at point B . When adjusted for minimum
eyestrain, B is an infinite distance in front of the lens and
parallel rays emerge from the lens, as in Figure P25.54b.
An opera glass, which is a Galilean telescope, is used to
view a 30.0-cm-tall singer’s head that is 40.0 m from
the objective lens. The focal length of the objective is
� 8.00 cm, and that of the eyepiece is � 2.00 cm. The tele-
scope is adjusted so parallel rays enter the eye. Compute
(a) the size of the real image that would have been
formed by the objective, (b) the virtual object distance for
the diverging lens, (c) the distance between the lenses,
and (d) the overall angular magnification.

51.

Objective

25.0 cm

(a)

(b)

AB

Eyepiece

Figure P25.54
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A laboratory (astronomical) telescope is used to view a
scale that is 300 cm from the objective, which has a focal
length of 20.0 cm; the eyepiece has a focal length of 2.00
cm. Calculate the angular magnification when the tele-
scope is adjusted for minimum eyestrain. [Note : The ob-
ject is not at infinity, so the simple expression m � fo/fe is
not sufficiently accurate for this problem. Also, assume
small angles, so that tan � � �.)

56. If the aqueous humor of the eye has an index of refrac-
tion of 1.34 and the distance from the vertex of the
cornea to the retina is 2.00 cm, what is the radius of curva-
ture of the cornea for which distant objects will be fo-
cused on the retina? (For simplicity, assume that all refrac-
tion occurs in the aqueous humor.)

57. A boy scout starts a fire by using a lens from his eyeglasses
to focus sunlight on kindling 5.0 cm from the lens. The
boy scout has a near point of 15 cm. When the lens is
used as a simple magnifier, (a) what is the maximum
magnification that can be achieved, and (b) what is the
magnification when the eye is relaxed? [Caution: The
equations derived in the text for a simple magnifier
assume a “normal” eye.]

ACTIVITIES
1. (a) Move this book toward your face until the letters just

begin to blur. The distance from the book to your eye is
your near point. (b) On a sheet of paper, make a dot near
the center. Then place an x about 3 inches to the left of the
dot and another x about 3 inches to the right of the dot.
With one eye shut and while looking at the dot, move the
paper slowly toward your eye. You will notice that a certain
distance from your eye, one of the x’s will disappear. This is

55. the location of the blind spot of your eye— the point where
the optic nerve enters the eye. (c) Stand before a mirror in
a darkened room for a few minutes. Then turn on a light in
the room and observe your pupils in the mirror as they
change size. Such adaptation to the dark also takes place at
the rods and cones as they chemically adjust their sensitiv-
ity. This adjustment takes 15–30 minutes, as you may have
noted whenever you entered a darkened movie theater. Iris
aperture control takes less than a second and helps protect
the retina from overload.

2. On a sunny day, hold a magnifying glass above a nonflam-
mable surface, such as a sidewalk, so the image of the Sun
forms a round spot of light on the surface. Note where
the spot formed by the lens is most distinct, or smallest.
Use a ruler to measure the distance between the glass and
the image. The distance is equal to the focal length of the
lens.

3. Hold a pair of prescription glasses about 12 cm from your
eye, and look at different objects through the lenses. Try
this with different types of glasses, such as those for
farsightedness and nearsightedness, and describe what
effects the differences have on the image you see. If
you have bifocals, how do the images produced by the top
and bottom portions of the bifocal lens compare?

4. If you have never experimented with a 35-mm camera
with adjustable f -numbers and shutter speeds, use up a
couple of rolls of film to see what happens. Take several
shots of the same object with different settings for these
two variables. (You should record your f -numbers and
shutter speeds for each photograph.) Explain any differ-
ences you see in the final images in terms of the settings
used.
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Most of our everyday experiences and observations have to do with objects that move at
speeds much less than the speed of light. Newtonian mechanics was formulated to describe
the motion of such objects, and its formalism is quite successful in describing a wide range of
phenomena that occur at low speeds. It fails, however, when applied to particles having
speeds approaching that of light.

This chapter introduces Einstein’s theory of special relativity and includes a section on gen-
eral relativity. The concepts of special relativity often violate our common sense. Moving
clocks run slow, and the length of a moving meter stick is contracted. Nonetheless, the theory
has been rigorously tested, correctly predicting the results of experiments involving speeds
near the speed of light. The theory is verified daily in particle accelerators around the world.

26.1 INTRODUCTION
Experimentally, the predictions of Newtonian theory can be tested at high speeds
by accelerating electrons or other charged particles through a large electric poten-
tial difference. For example, it’s possible to accelerate an electron to a speed of
0.99c (where c is the speed of light) by using a potential difference of several mil-
lion volts. According to Newtonian mechanics, if the potential difference is
increased by a factor of 4, the electron’s kinetic energy is four times greater and its
speed should double to 1.98c. However, experiments show that the speed of the
electron—as well as the speed of any other particle that has mass—always remains
less than the speed of light, regardless of the size of the accelerating voltage.

The existence of a universal speed limit has far-reaching consequences. It
means that the usual concepts of force, momentum, and energy no longer apply
for rapidly moving objects. Less obvious consequences include the fact that
observers moving at different speeds will measure different time intervals and dis-
placements between the same two events. Newtonian mechanics was contradicted
by experimental observations, so it was necessary to replace it with another theory.

Albert Einstein revolutionized modern
physics. He explained the random
movements of pollen grains, which
proved the existence of atoms, and
the photoelectric effect, which
showed that light was a particle as
well as a wave. His theory of special
relativity made clear the foundations
of space and time, and his theory of
gravitation—general relativity—is
the most accurate theory in physics
today. He was also deeply concerned
with the social impact of scientific
discovery.
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844 Chapter 26 Relativity

In 1905, at the age of 26, Einstein published his special theory of relativity.
Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradictions in the old
theory from which there seemed no escape. The strength of the new theory lies in the
consistency and simplicity with which it solves all these difficulties, using only a few very
convincing assumptions.1

Although Einstein made many other important contributions to science, his
theory of relativity alone represents one of the greatest intellectual achievements
of all time. With this theory, experimental observations can be correctly predicted
over the range of speeds from v � 0 to speeds approaching the speed of light.
Newtonian mechanics, which was accepted for more than 200 years, remains valid,
but only for speeds much smaller than the speed of light.

At the foundation of special relativity is reconciling the measurements of two
observers moving relative to each other. Normally, two such observers will measure
different outcomes for the same event. If the measurement is the speed of a car,
for example, an observer standing on the road will measure a different speed for
the car than an observer in a truck traveling at speed v relative the stationary
observer. Special relativity is all about relating two such measurements—and this
rather innocuous relating of measurements leads to some of the most bizarre con-
sequences in physics!

26.2 THE PRINCIPLE OF GALILEAN RELATIVITY
In order to describe a physical event, it’s necessary to choose a frame of reference. For
example, when you perform an experiment in a laboratory, you select a coordi-
nate system, or frame of reference, that is at rest with respect to the laboratory.
However, suppose an observer in a passing car moving at a constant velocity with
respect to the lab were to observe your experiment. Would the observations made
by the moving observer differ dramatically from yours? That is, if you found
Newton’s first law to be valid in your frame of reference, would the moving
observer agree with you?

According to the principle of Galilean relativity, the laws of mechanics must
be the same in all inertial frames of reference. Inertial frames of reference are
those reference frames in which Newton’s laws are valid. Practically, such frames
are those in which objects subjected to no forces move in straight lines at constant
speed—thus the name “inertial frame” because objects observed from these
frames obey Newton’s first law, the law of inertia. For the situation described in the
previous paragraph, the laboratory coordinate system and the coordinate system
of the moving car are both inertial frames of reference. Consequently, if the laws
of mechanics are found to be true in the laboratory, then the person in the car
must also observe the same laws.2

Consider an airplane in flight, moving with a constant velocity, as in Figure 26.1a.
If a passenger in the airplane throws a ball straight up in the air, the passenger
observes that the ball moves in a vertical path. The motion of the ball is precisely
the same as it would be if the ball were thrown while at rest on Earth. The law of
gravity and the equations of motion under constant acceleration are obeyed
whether the airplane is at rest or in uniform motion.

Now consider the same experiment when viewed by another observer at rest on
Earth. This stationary observer views the path of the ball in the plane to be a
parabola, as in Figure 26.1b. Further, according to this observer, the ball has a
velocity to the right equal to the velocity of the plane. Although the two observers
disagree on the shape of the ball’s path, both agree that the motion of the ball
obeys the law of gravity and Newton’s laws of motion, and even agree on how long

1A. Einstein and L. Infeld, The Evolution of Physics (New York: Simon and Schuster, 1961).
2What is an example of a noninertial frame? A frame undergoing translational acceleration or a frame rotating with
respect to the two inertial frames just mentioned.
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26.3 The Speed of Light 845

the ball is in the air. We draw the following important conclusion: There is no
preferred frame of reference for describing the laws of mechanics.

26.3 THE SPEED OF LIGHT
It’s natural to ask whether the concept of Galilean relativity in mechanics also applies
to experiments in electricity, magnetism, optics, and other areas. Experiments
indicate the answer is no. For example, if we assume that the laws of electricity and
magnetism are the same in all inertial frames, a paradox concerning the speed
of light immediately arises. This can be understood by recalling that, according
to electromagnetic theory, the speed of light always has the fixed value of 
2.997 924 58 � 108 m/s in free space. But this is in direct contradiction to
common sense. For example, suppose a light pulse is sent out by an observer in a
boxcar moving with a velocity (Fig. 26.2). The light pulse has a velocity 
relative to observer S’ in the boxcar. According to Galilean relativity, the speed of
the pulse relative to the stationary observer S outside the boxcar should be c � v.
This obviously contradicts Einstein’s theory, which postulates that the velocity of
the light pulse is the same for all observers.

In order to resolve this paradox, we must conclude that either (1) the addition
law for velocities is incorrect or (2) the laws of electricity and magnetism are not
the same in all inertial frames. Assume that the second conclusion is true; then a
preferred reference frame must exist in which the speed of light has the value c,
but in any other reference frame the speed of light must have a value that is
greater or less than c. It’s useful to draw an analogy with sound waves, which prop-
agate through a medium such as air. The speed of sound in air is about 330 m/s
when measured in a reference frame in which the air is stationary. However, the
speed of sound is greater or less than this value when measured from a reference
frame that is moving with respect to the air.

In the case of light signals (electromagnetic waves), recall that electromagnetic
theory predicted that such waves must propagate through free space with a speed

c:v:

(a)

v

(b)

v
Figure 26.1 (a) The observer on
the airplane sees the ball move in a
vertical path when thrown upward.
(b) The observer on Earth views the
path of the ball to be a parabola.

S

S'
vc

Figure 26.2 A pulse of light is sent
out by a person in a moving boxcar.
According to Newtonian relativity, the
speed of the pulse should be 
relative to a stationary observer.

c: � v:
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846 Chapter 26 Relativity

equal to the speed of light. However, the theory doesn’t require the presence of a
medium for wave propagation. This is in contrast to other types of waves, such as
water and sound waves, that do require a medium to support the disturbances. In
the 19th century, physicists thought that electromagnetic waves also required a
medium in order to propagate. They proposed that such a medium existed and
gave it the name luminiferous ether. The ether was assumed to be present every-
where, even in empty space, and light waves were viewed as ether oscillations.
Further, the ether would have to be a massless but rigid medium with no effect on
the motion of planets or other objects. These are strange concepts indeed. In
addition, it was found that the troublesome laws of electricity and magnetism
would take on their simplest forms in a special frame of reference at rest with
respect to the ether. This frame was called the absolute frame. The laws of electricity
and magnetism would be valid in this absolute frame, but they would have to be
modified in any reference frame moving with respect to the absolute frame.

As a result of the importance attached to the ether and the absolute frame, it
became of considerable interest in physics to prove by experiment that they
existed. Since it was considered likely that Earth was in motion through the ether,
from the view of an experimenter on Earth, there was an “ether wind” blowing
through his laboratory. A direct method for detecting the ether wind would use an
apparatus fixed to Earth to measure the wind’s influence on the speed of light. If v
is the speed of the ether relative to Earth, then the speed of light should have its
maximum value, c � v, when propagating downwind, as shown in Figure 26.3a.
Likewise, the speed of light should have its minimum value, c � v, when propagat-
ing upwind, as in Figure 26.3b, and an intermediate value, (c 2 � v 2)1/2, in the
direction perpendicular to the ether wind, as in Figure 26.3c. If the Sun were
assumed to be at rest in the ether, then the velocity of the ether wind would be
equal to the orbital velocity of Earth around the Sun, which has a magnitude of
approximately 3 � 104 m/s. Because c � 3 � 108 m/s, it should be possible to
detect a change in speed of about 1 part in 104 for measurements in the upwind
or downwind directions. However, as we will see in the next section, all attempts to
detect such changes and establish the existence of the ether (and hence the
absolute frame) proved futile.

In conclusion, we see that the second hypothesis in our introduction to this sec-
tion is false—and we now believe that the laws of electricity and magnetism are
the same in all inertial frames. It is the simple classical addition laws for velocities
that are incorrect and must be modified, as shown in Section 26.8.

26.4 THE MICHELSON–MORLEY EXPERIMENT
The most famous experiment designed to detect small changes in the speed of
light was first performed in 1881 by Albert A. Michelson (1852–1931) and later
repeated under various conditions by Michelson and Edward W. Morley
(1838–1923). We state at the outset that the outcome of the experiment contra-
dicted the ether hypothesis.

The experiment was designed to determine the velocity of Earth relative to the
hypothetical ether. The experimental tool used was the Michelson interferometer,
which was discussed in Section 25.7 and is shown again in Active Figure 26.4. Arm
2 is aligned along the direction of Earth’s motion through space. Earth’s moving
through the ether at speed v is equivalent to the ether’s flowing past Earth in the
opposite direction with speed v. This ether wind blowing in the direction opposite
the direction of Earth’s motion should cause the speed of light measured in Earth
frame to be c � v as the light approaches mirror M2 and c � v after reflection,
where c is the speed of light in the ether frame.

The two beams reflected from M1 and M2 recombine, and an interference pat-
tern consisting of alternating dark and bright fringes is formed. The interference
pattern was observed while the interferometer was rotated through an angle of
90°. This rotation supposedly would change the speed of the ether wind along the
direction of arm 1. The effect of such rotation should have been to cause the

c + v

(a) Downwind

(b) Upwind

(c) Across wind

vc

v

c  – v

c

v

cc 2 – v 2√

Figure 26.3 If the speed of the
ether wind relative to Earth is v, and 
c is the speed of light relative to the
ether, the speed of light relative to
Earth is (a) c � v in the downwind
direction, (b) c � v in the upwind
direction, and (c) in the
direction perpendicular to the wind.

√c2 � v2
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26.4 The Michelson – Morley Experiment 847

fringe pattern to shift slightly but measurably; however, measurements failed to
show any change in the interference pattern! The Michelson–Morley experiment
was repeated at different times of the year when the ether wind was expected to
change direction, but the results were always the same: no fringe shift of the
magnitude required was ever observed.

The negative results of the Michelson–Morley experiment not only contradicted
the ether hypothesis, but also showed that it was impossible to measure the absolute
velocity of Earth with respect to the ether frame. However, as we will see in the next
section, Einstein suggested a postulate in the special theory of relativity that places
quite a different interpretation on these negative results. In later years, when more
was known about the nature of light, the idea of an ether that permeates all of
space was relegated to the theoretical graveyard. Light is now understood to be an
electromagnetic wave, which requires no medium for its propagation. As a result,
the idea of an ether in which these waves could travel became unnecessary.

Details of the Michelson–Morley Experiment
As we mentioned earlier, the Michelson–Morley experiment was designed to
detect the motion of Earth with respect to the ether. Before we examine the details
of this historical experiment, it is instructive to consider a race between two air-
planes, as shown in Figure 26.5a. One airplane flies from point O to point A per-
pendicular to the direction of the wind, and the second airplane flies from point
O to point B parallel to the wind. We will assume that they start at O at the same
time, travel the same distance L with the same cruising speed c with respect to the
wind, and return to O. Which airplane will win the race? In order to answer this
question, we calculate the time of flight for both airplanes.

First, consider the airplane that moves along path I parallel to the wind. As it
moves to the right, its speed is enhanced by the wind, and its speed with respect to
Earth is c � v. As it moves to the left on its return journey, it must fly opposite the
wind; hence, its speed with respect to Earth is c � v. The times of flight to the
right and to the left are, respectively,

and

and the total time of flight for the airplane moving along path I is

[26.1]

Now consider the airplane flying along path II. If the pilot aims the airplane
directly toward point A, it will be blown off course by the wind and won’t reach its
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ACTIVE FIGURE 26.4
According to the ether wind theory,
the speed of light should be c � v as
the beam approaches mirror M2 and
c � v after reflection.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 26.4, where
you can adjust the speed of a fictitious
ether wind and observe the effect on
beams of light.
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Figure 26.5 (a) If an airplane trav-
els from O to A with a wind blowing
to the right, it must head into the
wind at some angle. (b) Vector dia-
gram for determining the airplane’s
direction for the trip from O to A. 
(c) Vector diagram for determining
its direction for the trip from A to O.
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848 Chapter 26 Relativity

destination. To compensate for the wind, the pilot must point the airplane into
the wind at some angle, as shown in Figure 26.5a. This angle must be selected so
that the vector sum of and leads to a velocity vector pointed directly toward A.
The resultant vector diagram is shown in Figure 26.5b, where is the velocity of
the airplane with respect to the ground as it moves from O to A. From the
Pythagorean theorem, the magnitude of the vector is

Likewise, on the return trip from A to O, the pilot must again head into the wind
so that the airplane’s velocity with respect to Earth will be directed toward O, as
shown in Figure 26.5c. From this figure, we see that

The total time of flight for the trip along path II is therefore

[26.2]

Comparing Equations 26.1 and 26.2, we see that the airplane flying along path II
wins the race. The difference in flight times is given by

This expression can be simplified by noting that the ratio of wind speed to plane
speed, v/c, is usually much smaller than 1, and by using the following binomial
expansions in v/c after dropping all terms higher than second order:

and

The difference in flight times is therefore

for v/c �� 1 [26.3]

The analogy between this airplane race and the Michelson–Morley experiment
is shown in Figure 26.6a. Two beams of light travel along two arms of an interfer-
ometer. In this case, the “wind” is the ether blowing across Earth from left to right
as Earth moves through the ether from right to left. Because the speed of Earth in
its orbital path is approximately 3 � 104 m/s, it is reasonable to use that value for
the speed of the ether wind. Notice in this case that v/c � 1 � 10�4 �� 1. The two
light beams start out in phase and return to form an interference pattern. We
assume that the interferometer is adjusted for parallel fringes and that a telescope
is focused on one of these fringes. The time difference between the two light
beams gives rise to a phase difference between the beams, producing an interfer-
ence pattern when they combine at the position of the telescope. The difference
in the pattern is detected by rotating the interferometer through 90° in a horizon-
tal plane, so that the two beams exchange roles (Fig. 26.6b). This results in a net
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26.5 Einstein’s Principle of Relativity 849

time shift of twice the time difference given by Equation 26.3. The net time differ-
ence is therefore

[26.4]

The corresponding path difference is

[26.5]

In the first experiments by Michelson and Morley, each light beam was reflected
by the mirrors many times to give an increased effective path length L of about
11 meters. Using this value and taking v to be equal to 3 � 104 m/s gives a path
difference of

This extra travel distance should produce a noticeable shift in the fringe pattern.
Specifically, calculations show that if the pattern is viewed while the interferometer
is rotated through 90°, a shift of about 0.4 fringe should be observed. The instru-
ment used by Michelson and Morley was capable of detecting a shift in the fringe
pattern as small as 0.01 fringe. However, it detected no shift whatsoever in the fringe
pattern. Since then, the experiment has been repeated many times by different
scientists under a wide variety of conditions and no fringe shift has ever been
detected. The inescapable conclusion is that motion of Earth with respect to the
ether can’t be detected.

Many efforts were made to explain the null results of the Michelson–Morley
experiment and to save the ether frame concept and the Galilean addition law for
the velocity of light. All proposals resulting from these efforts have been shown to
be wrong. No experiment in the history of physics has received such valiant efforts
to explain the absence of an expected result as was the Michelson–Morley experi-
ment. The stage was set for Einstein, who, at the age of only 26, solved the prob-
lem in 1905 with his special theory of relativity.

26.5 EINSTEIN’S PRINCIPLE OF RELATIVITY
In the previous section we noted the serious contradiction between the Galilean
addition law for velocities and the fact that the speed of light is the same for all
observers. In 1905 Albert Einstein proposed a theory that resolved this contradic-
tion but at the same time completely altered our notions of space and time. He
based his special theory of relativity on two postulates:

�d �
2(11 m)(3.0 � 104 m/s)2

(3.0 � 108 m/s)2 � 2.2 � 10�7 m

�d � c �t net �
2Lv2

c2

�t net � 2 �t �
2Lv2

c3

Velocity of
 ether wind

L

L

(a) (b)

v

II

I

I

II

Figure 26.6 (a) Top view of the
Michelson–Morley interferometer,
where is the velocity of the ether
and L is the length of each arm.
(b) When the interferometer is
rotated by 90°, the role of each arm 
is reversed.

v:

ALBERT EINSTEIN,
German-American Physicist
(1879–1955)
One of the greatest physicists of all time,
Einstein was born in Ulm, Germany. In
1905, at the age of 26, he published four
scientific papers that revolutionized
physics. Two of these papers were con-
cerned with what is now considered his
most important contribution: the special
theory of relativity. In 1916, Einstein pub-
lished his work on the general theory of
relativity. The most dramatic prediction of
this theory is the degree to which light is
deflected by a gravitational field. Measure-
ments made by astronomers on bright
stars in the vicinity of the eclipsed Sun in
1919 confirmed Einstein’s prediction, and
as a result, Einstein became a world
celebrity. Einstein was deeply disturbed by
the development of quantum mechanics in
the 1920s despite his own role as a scien-
tific revolutionary. In particular, he could
never accept the probabilistic view of
events in nature that is a central feature of
quantum theory. The last few decades of
his life were devoted to an unsuccessful
search for a unified theory that would com-
bine gravitation and electromagnetism.
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1. The principle of relativity: All the laws of physics are the same in all iner-
tial frames.

2. The constancy of the speed of light: The speed of light in a vacuum has
the same value, c � 2.997 924 58 � 108 m/s, in all inertial reference
frames, regardless of the velocity of the observer or the velocity of the
source emitting the light.

The first postulate asserts that all the laws of physics are the same in all refer-
ence frames moving with constant velocity relative to each other. This postulate is
a sweeping generalization of the principle of Galilean relativity, which refers only
to the laws of mechanics. From an experimental point of view, Einstein’s principle
of relativity means that any kind of experiment—mechanical, thermal, optical, or
electrical—performed in a laboratory at rest, must give the same result when per-
formed in a laboratory moving at a constant speed past the first one. Hence, no
preferred inertial reference frame exists, and it is impossible to detect absolute
motion.

Although postulate 2 was a brilliant theoretical insight on Einstein’s part in
1905, it has since been confirmed experimentally in many ways. Perhaps the most
direct demonstration involves measuring the speed of photons emitted by particles
traveling at 99.99% of the speed of light. The measured photon speed in this case
agrees to five significant figures with the speed of light in empty space.

The null result of the Michelson–Morley experiment can be readily understood
within the framework of Einstein’s theory. According to his principle of relativity,
the premises of the Michelson–Morley experiment were incorrect. In the process
of trying to explain the expected results, we stated that when light traveled against
the ether wind its speed was c � v. However, if the state of motion of the observer
or of the source has no influence on the value found for the speed of light, the
measured value must always be c. Likewise, the light makes the return trip after
reflection from the mirror at a speed of c, not at a speed of c � v. Thus, the motion
of Earth does not influence the fringe pattern observed in the Michelson–Morley
experiment, and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that uniform rela-
tive motion is unimportant when measuring the speed of light. At the same time,
we have to adjust our commonsense notions of space and time and be prepared
for some rather bizarre consequences.

26.6 CONSEQUENCES OF SPECIAL RELATIVITY
Almost everyone who has dabbled even superficially in science is aware of some of
the startling predictions that arise because of Einstein’s approach to relative
motion. As we examine some of the consequences of relativity in this section, we’ll
find that they conflict with some of our basic notions of space and time. We will
restrict our discussion to the concepts of length, time, and simultaneity, which are
quite different in relativistic mechanics from what they are in Newtonian mechan-
ics. For example, in relativistic mechanics, the distance between two points and the
time interval between two events depend on the frame of reference in which they
are measured. In relativistic mechanics, there is no such thing as absolute length or
absolute time. Further, events at different locations that are observed to occur
simultaneously in one frame are not observed to be simultaneous in another frame
moving uniformly past the first.

Simultaneity and the Relativity of Time
A basic premise of Newtonian mechanics is that a universal time scale exists that is
the same for all observers. In fact, Newton wrote, “Absolute, true, and mathemati-
cal time, of itself, and from its own nature, flows equably without relation to any-
thing external.” Newton and his followers simply took simultaneity for granted. In
his special theory of relativity, Einstein abandoned that assumption.

Postulates of relativity �

Absolute length and absolute 
time intervals are meaningless in 

relativity. �
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26.6 Consequences of Special Relativity 851

Einstein devised the following thought experiment to illustrate this point: a
boxcar moves with uniform velocity, and two lightning bolts strike its ends, as in
Figure 26.7a, leaving marks on the boxcar and the ground. The marks on the box-
car are labeled A� and B�, and those on the ground are labeled A and B. An
observer at O� moving with the boxcar is midway between A� and B�, and an
observer on the ground at O is midway between A and B . The events recorded by
the observers are the striking of the boxcar by the two lightning bolts.

The light signals recording the instant at which the two bolts struck reach
observer O at the same time, as indicated in Figure 26.7b. This observer realizes
that the signals have traveled at the same speed over equal distances, and so rightly
concludes that the events at A and B occurred simultaneously. Now consider the
same events as viewed by observer O�. By the time the signals have reached
observer O, observer O� has moved as indicated in Figure 26.7b. Thus, the signal
from B� has already swept past O �, but the signal from A� has not yet reached O�.
In other words, O � sees the signal from B� before seeing the signal from A�.
According to Einstein, the two observers must find that light travels at the same speed.
Therefore, observer O � concludes that the lightning struck the front of the boxcar
before it struck the back.

This thought experiment clearly demonstrates that the two events which appear
to be simultaneous to observer O do not appear to be simultaneous to observer O�.
In other words,

Two events that are simultaneous in one reference frame are in general not
simultaneous in a second frame moving relative to the first. Simultaneity
depends on the state of motion of the observer, and is therefore not an
absolute concept.

At this point, you might wonder which observer is right concerning the two
events. The answer is that both are correct, because the principle of relativity states
that there is no preferred inertial frame of reference. Although the two observers
reach different conclusions, both are correct in their own reference frames
because the concept of simultaneity is not absolute. In fact, this is the central point
of relativity. Any inertial frame of reference can be used to describe events and do
physics.

Time Dilation
We can illustrate the fact that observers in different inertial frames may measure
different time intervals between a pair of events by considering a vehicle moving to
the right with a speed v as in Active Figure 26.8a (page 852). A mirror is fixed to
the ceiling of the vehicle, and an observer O� at rest in this system holds a laser
a distance d below the mirror. At some instant, the laser emits a pulse of light

v

A' B'
O'

O
A B

v

A' B'

A B

(a) (b)

O'

O

Figure 26.7 Two lightning bolts strike the ends of a moving boxcar. (a) The events appear to be
simultaneous to the stationary observer at O, who is midway between A and B. (b) The events don’t
appear to be simultaneous to the observer at O�, who claims that the front of the train is struck before
the rear.

TIP 26.1 Who’s Right?
Which person is correct concerning
the simultaneity of the two events?
Both are correct, because the princi-
ple of relativity states that no inertial
frame of reference is preferred.
Although the two observers may
reach different conclusions, both are
correct in their own reference frame.
Any uniformly moving frame of refer-
ence can be used to describe events
and do physics.
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directed toward the mirror (event 1), and at some later time after reflecting from
the mirror, the pulse arrives back at the laser (event 2). Observer O� carries a clock
and uses it to measure the time interval �tp between these two events which she
views as occurring at the same place. (The subscript p stands for proper, as we’ll see
in a moment.) Because the light pulse has a speed c, the time it takes it to travel
from point A to the mirror and back to point A is

[26.6]

The time interval �tp measured by O� requires only a single clock located at the
same place as the laser in this frame.

Now consider the same set of events as viewed by O in a second frame, as
shown in Active Figure 26.8b. According to this observer, the mirror and laser
are moving to the right with a speed v, and as a result, the sequence of events
appears different. By the time the light from the laser reaches the mirror, the
mirror has moved to the right a distance v �t/2, where �t is the time it takes the
light pulse to travel from point A to the mirror and back to point A as measured
by O. In other words, O concludes that, because of the motion of the vehicle, if
the light is to hit the mirror, it must leave the laser at an angle with respect to
the vertical direction. Comparing Active Figures 26.8a and 26.8b, we see that
the light must travel farther in (b) than in (a). (Note that neither observer
“knows” that he or she is moving. Each is at rest in his or her own inertial
frame.)

According to the second postulate of the special theory of relativity, both
observers must measure c for the speed of light. Because the light travels farther in
the frame of O, it follows that the time interval �t measured by O is longer than
the time interval �tp measured by O�. To obtain a relationship between these two
time intervals, it is convenient to examine the right triangle shown in Active Figure
26.8c. The Pythagorean theorem gives

Solving for �t yields

�t �
2d

√c 2 � v2
�

2d

c√1 � v2/c2

� c�t
2 �

2
� � v�t

2 �
2

� d 2

�tp �
Distance traveled

Speed
�

2d
c

v

O

y

(b)

d

(c)

v
Mirror

d

(a)

y 9

A

O 9
x 9

A A A

x

v�t
v�t

2

c�t
2

ACTIVE FIGURE 26.8
(a) A mirror is fixed to a moving vehicle, and a light pulse leaves O � at rest in the vehicle. (b) Relative
to a stationary observer on Earth, the mirror and O � move with a speed v. Note that the distance the
pulse travels is greater than 2d as measured by the stationary observer. (c) The right triangle for calcu-
lating the relationship between �t and �tp.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 26.8, where you can observe the bouncing
of the light pulse for various speeds of the train.
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Because �tp � 2d/c, we can express this result as

[26.7]

where

[26.8]

Because 	 is always greater than one, Equation 26.7 says that the time interval �t
between two events measured by an observer moving with respect to a clock3 is
longer than the time interval �tp between the same two events measured by an
observer at rest with respect to the clock. Consequently, �t 
 �tp , and the proper
time interval is expanded or dilated by the factor 	. Hence, this effect is known as
time dilation.

For example, suppose the observer at rest with respect to the clock measures
the time required for the light flash to leave the laser and return. We assume that
the measured time interval in this frame of reference, �tp, is one second. (This
would require a very tall vehicle.) Now we find the time interval as measured by
observer O moving with respect to the same clock. If observer O is traveling at half
the speed of light (v � 0.500c), then 	 � 1.15, and according to Equation 26.7,
�t � 	 �tp � 1.15(1.00 s) � 1.15 s. Therefore, when observer O� claims that 1.00 s
has passed, observer O claims that 1.15 s has passed. Observer O considers the
clock of O� to be reading too low a value for the elapsed time between the two
events and says that the clock of O � is “running slow.” From this phenomenon, we
may conclude the following:

A clock moving past an observer at speed v runs more slowly than an identi-
cal clock at rest with respect to the observer by a factor of 	�1.

The time interval �tp in Equations 26.6 and 26.7 is called the proper time. In
general, proper time is the time interval between two events as measured by an
observer who sees the events occur at the same position.

Although you may have realized it by now, it’s important to spell out that relativity
is a scientific democracy: the view of O� that O is really the one moving with speed v
to the left and that O�s clock is running more slowly is just as valid as the view of O.
The principle of relativity requires that the views of two observers in uniform relative
motion be equally valid and capable of being checked experimentally.

We have seen that moving clocks run slow by a factor of 	�1. This is true for
ordinary mechanical clocks as well as for the light clock just described. In fact, we
can generalize these results by stating that all physical processes, including chemi-
cal and biological ones, slow down relative to a clock when those processes occur
in a frame moving with respect to the clock. For example, the heartbeat of an
astronaut moving through space would keep time with a clock inside the space-
ship. Both the astronaut’s clock and heartbeat would be slowed down relative to a
clock back on Earth (although the astronaut would have no sensation of life slow-
ing down in the spaceship).

Time dilation is a very real phenomenon that has been verified by various
experiments involving the ticking of natural clocks. An interesting example of
time dilation involves the observation of muons—unstable elementary particles
that are very similar to electrons, having the same charge, but 207 times the mass.
Muons can be produced by the collision of cosmic radiation with atoms high in
the atmosphere. These particles have a lifetime of 2.2 �s when measured in a ref-
erence frame at rest with respect to them. If we take 2.2 �s as the average lifetime
of a muon and assume that their speed is close to the speed of light, we find that

	 �
1

√1 � v2/c2

�t �
�tp

√1 � v2/c2 � 	 �tp
� Time dilation

3Actually, Figure 26.8 shows the clock moving and not the observer, but this is equivalent to observer O moving to the
left with velocity with respect to the clock.v:

� A clock in motion runs more slowly
than an identical stationary clock.

TIP 26.2 Proper Time Interval
You must be able to correctly identify
the observer who measures the
proper time interval. The proper
time interval between two events is
the time interval measured by an
observer for whom the two events
take place at the same position.
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these particles can travel only about 600 m before they decay (Fig. 26.9a). Hence,
they could never reach Earth from the upper atmosphere where they are pro-
duced. However, experiments show that a large number of muons do reach Earth,
and the phenomenon of time dilation explains how. Relative to an observer on
Earth, the muons have a lifetime equal to 	�p , where �p � 2.2 �s is the lifetime in
a frame of reference traveling with the muons. For example, for v � 0.99c, 	 � 7.1
and 	�p � 16 �s. Hence, the average distance muons travel as measured by an
observer on Earth is 	v�p � 4 800 m, as indicated in Figure 26.9b. Consequently,
muons can reach Earth’s surface.

In 1976 experiments with muons were conducted at the laboratory of the
European Council for Nuclear Research (CERN) in Geneva. Muons were injected
into a large storage ring, reaching speeds of about 0.9994c. Electrons produced by
the decaying muons were detected by counters around the ring, enabling scientists
to measure the decay rate, and hence the lifetime of the muons. The lifetime of
the moving muons was measured to be about 30 times as long as that of stationary
muons to within two parts in a thousand, in agreement with the prediction of
relativity.

(a)

4.8 � 103 m

(b)

6.6 � 102 m

Muon is created

Muon decays

Muon is created

Muon decays

Figure 26.9 (a) The muons travel
only about 6.6 � 102 m as measured
in the muons’ reference frame, in
which their lifetime is about 2.2 �s.
Because of time dilation, the muons’
lifetime is longer as measured by the
observer on Earth. (b) Muons travel-
ing with a speed of 0.99c travel a dis-
tance of about 4.80 � 103 m as mea-
sured by an observer on Earth.

Suppose you’re an astronaut being paid according to the time you spend traveling
in space. You take a long voyage traveling at a speed near that of light. Upon your
return to Earth, you’re asked how you’d like to be paid: according to the time
elapsed on a clock on Earth or according to your ship’s clock. Which should you
choose in order to maximize your paycheck? (a) the Earth clock (b) the ship’s
clock (c) Either clock, it doesn’t make a difference.

Quick Quiz 26.1

EXAMPLE 26.1 Pendulum Periods
Goal Apply the concept of time dilation.

Problem The period of a pendulum is measured to be 3.00 s in the inertial frame of the pendulum. What is the
period as measured by an observer moving at a speed of 0.950c with respect to the pendulum?

Strategy Here, we’re given the period of the clock as measured by an observer in the rest frame of the clock, so
that’s a proper time interval �tp . We want to know how much time passes as measured by an observer in a frame
moving relative to the clock, which is �t. Substitution into Equation 26.7 then solves the problem.

Solution
Substitute the proper time and relative speed into
Equation 26.7:

9.61 s�t �
�tp

√1 � v2/c2
�

3.00 s

√1 �
(0.950c)2

c2

�

Remarks The moving observer considers the pendulum to be moving, and moving clocks are observed to run more
slowly: while the pendulum oscillates once in 3 s for an observer in the rest frame of the clock, it takes nearly 10 s to
oscillate once according the moving observer.

Exercise 26.1
What pendulum period does a third observer moving at 0.900c measure?

Answer 6.88 s
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The confusion that arises in problems like Example 26.1 lies in the fact that move-
ment is relative: from the point of view of someone in the pendulum’s rest frame,
the pendulum is standing still (except, of course, for the swinging motion),
whereas to someone in a frame that is moving with respect to the pendulum, it’s
the pendulum that’s doing the moving. To keep this straight, always focus on the
observer who is doing the measurement, and ask yourself whether the clock being
measured is moving with respect to that observer. If the answer is no, then the ob-
server is in the rest frame of the clock and measures the clock’s proper time. If the
answer is yes, then the time measured by the observer will be dilated— larger than
the clock’s proper time.

This confusion of perspectives led to the famous “twin paradox.”

The Twin Paradox
An intriguing consequence of time dilation is the so-called twin paradox
(Fig. 26.10). Consider an experiment involving a set of twins named Speedo and
Goslo. When they are 20 years old, Speedo, the more adventuresome of the two, sets
out on an epic journey to Planet X, located 20 lightyears from Earth. Further, his
spaceship is capable of reaching a speed of 0.95c relative to the inertial frame of 
his twin brother back home. After reaching Planet X, Speedo becomes homesick
and immediately returns to Earth at the same speed of 0.95c. Upon his return,
Speedo is shocked to discover that Goslo has aged 2D/v � 2(20 ly)/(0.95 ly/y) �
42 years and is now 62 years old. Speedo, on the other hand, has aged only 13 years.

Some wrongly consider this the paradox; that twins could age at different rates
and end up after a period of time having very different ages. While contrary to our
common sense, this isn’t the paradox at all. The paradox lies in the fact that from
Speedo’s point of view, he was at rest while Goslo (on Earth) sped away from him at
0.95c and returned later. So Goslo’s clock was moving relative to Speedo and
hence running slow compared with Speedo’s clock. The conclusion: Speedo, not
Goslo, should be the older of the twins!

To resolve this apparent paradox, consider a third observer moving at a constant
speed of 0.5c relative to Goslo. To the third observer, Goslo never changes inertial
frames: His speed relative to the third observer is always the same. The third
observer notes, however, that Speedo accelerates during his journey, changing
reference frames in the process. From the third observer’s perspective, it’s clear that
there is something very different about the motion of Goslo when compared to
Speedo. The roles played by Goslo and Speedo are not symmetric, so it isn’t sur-
prising that time flows differently for each. Further, because Speedo accelerates,
he is in a noninertial frame of reference— technically outside the bounds of spe-
cial relativity (though there are methods for dealing with accelerated motion in
relativity). Only Goslo, who is in a single inertial frame, can apply the simple time-
dilation formula to Speedo’s trip. Goslo finds that instead of aging 42 years,

(a) (b)

Figure 26.10 (a) As the twins depart,
they’re the same age. (b) When Speedo
returns from his journey to Planet X,
he’s younger than his twin Goslo, who
remained on Earth.

� The space traveler ages more slowly
than his twin who remains on Earth.
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Speedo ages only (1 � v 2/c2)1/2(42 years) � 13 years. Of these 13 years, Speedo
spends 6.5 years traveling to Planet X and 6.5 years returning, for a total travel
time of 13 years, in agreement with our earlier statement.

Length Contraction
The measured distance between two points depends on the frame of reference of
the observer. The proper length Lp of an object is the length of the object as mea-
sured by an observer at rest relative to the object. The length of an object mea-
sured in a reference frame that is moving with respect to the object is always less
than the proper length. This effect is known as length contraction.

To understand length contraction quantitatively, consider a spaceship traveling
with a speed v from one star to another, as seen by two observers, one on Earth and
the other in the spaceship. The observer at rest on Earth (and also assumed to be at
rest with respect to the two stars) measures the distance between the stars to be Lp.
According to this observer, the time it takes the spaceship to complete the voyage is
�t � Lp/v. Because of time dilation, the space traveler, using his spaceship clock,
measures a smaller time of travel: �tp � �t/	. The space traveler claims to be at rest
and sees the destination star moving toward the spaceship with speed v. Because the
space traveler reaches the star in time �tp , he concludes that the distance L between
the stars is shorter than Lp . The distance measured by the space traveler is

Because Lp � v �t, it follows that

[26.9]

According to this result, illustrated in Active Figure 26.11, if an observer at rest
with respect to an object measures its length to be Lp, an observer moving at a
speed v relative to the object will find it to be shorter than its proper length by the
factor . Note that length contraction takes place only along the direc-
tion of motion.

Time-dilation and length contraction effects have interesting applications for
future space travel to distant stars. In order for the star to be reached in a fraction
of a human lifetime, the trip must be taken at very high speeds. According to an
Earth-bound observer, the time for a spacecraft to reach the destination star will
be dilated compared with the time interval measured by travelers. As was discussed
in the treatment of the twin paradox, the travelers will be younger than their twins
when they return to Earth. Therefore, by the time the travelers reach the star, they
will have aged by some number of years, while their partners back on Earth will
have aged a larger number of years, the exact ratio depending on the speed of the
spacecraft. At a spacecraft speed of 0.94c, this ratio is about 3:1.

√1 � v2/c2

L �
Lp

	
� Lp√1 � v2/c2

L � v �tp � v 
�t
	

TIP 26.3 The Proper Length
You must be able to correctly identify
the observer who measures the
proper length. The proper length
between two points in space is the
length measured by an observer at
rest with respect to the length. Very
often, the proper time interval and
the proper length are not measured
by the same observer.

Lp

(a)

L
y

O
(b)

x

v

y�

x �O �

ACTIVE FIGURE 26.11
A meter stick moves to the right with
a speed v. (a) The meter stick as
viewed by an observer at rest with
respect to the meter stick. (b) The
meter stick as seen by an observer
moving with a speed v with respect to
it. The moving meter stick is always
measured to be shorter than in its own
rest frame by a factor of .

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 26.11, where
you can view the meter stick from the
points of view of two observers and
compare the measured lengths of the
stick.

√1 � v2/c 2

Length contraction �

You are packing for a trip to another star, and on your journey you will be traveling
at a speed of 0.99c. Can you sleep in a smaller cabin than usual, because you will
be shorter when you lie down? Explain your answer.

Quick Quiz 26.2

You observe a rocket moving away from you. Compared to its length when it was at
rest on the ground, you will measure its length to be (a) shorter, (b) longer, or
(c) the same. Compared to the passage of time measured by the watch on your wrist,
the passage of time on the rocket’s clock is (d) faster, (e) slower, or (f ) the same.
Answer the same questions if the rocket turns around and comes toward you.

Quick Quiz 26.3
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EXAMPLE 26.2 Starship Contraction
Goal Apply the concept of length contraction to a moving object.

Problem A starship is measured to be 125 m long while it is at rest with respect to an observer. If this starship now
flies past the observer at a speed of 0.99c, what length will the observer measure for the starship?

Strategy Moving objects are observed to be contracted, or shorter. Substitute into Equation 26.9.

Solution
Substitute into Equation 26.9 to find the length as mea-
sured by the observer:

17.6 mL � Lp √1 � v2/c2 � (125 m)√1 � (0.99 c)2/c 2 �

Exercise 26.2
If the ship moves past the observer with a speed of 0.80c, what length will the observer measure?

Answer 75.0 m

EXAMPLE 26.3 Speedy Plunge
Goal Apply the concept of length contraction to a distance.

Problem (a) An observer on Earth sees a spaceship at an altitude of 4 350 km moving downward toward Earth with
a speed of 0.970c . What is the distance from the spaceship to Earth as measured by the spaceship’s captain? (b) After
firing his engines, the captain measures her ship’s altitude as 267 km, while the observer on Earth measures it to be
625 km. What is the speed of the spaceship at this instant?

Strategy To the captain, the Earth is rushing toward her ship at 0.970c ; hence the distance between her ship and
the Earth is contracted. Substitution into Equation 26.9 yields the answer. In part (b) use the same equation, substi-
tuting the distances and solving for the speed.

Solution
(a) Find the distance from the ship to Earth as measured 
by the captain.

Substitute into Equation 26.9, getting the altitude as
measured by the captain in the ship.

� 1.06 � 103 km

L � Lp√1 � v2/c2 � (4 350 km)√1 � (0.970c)2/c2

(b) What is the subsequent speed of the spaceship if the
Earth observer measures the distance from the ship to
Earth as 625 km and the captain measures it as 267 km?

Apply the length-contraction equation: L � Lp √1 � v2/c2

Square both sides of this equation and solve for v :

v � 0.904c

v � c √1 � (L/Lp)2 � c √1 � (267 km/625 km)2

L2 � Lp 

2(1 � v2/c2) : 1 � v2/c2 � � L
Lp

�
2

Remarks The proper length is always the length measured by an observer at rest with respect to that length.

Exercise 26.3
Suppose the observer on the ship measures the distance from Earth as 50.0 km, while the observer on Earth meas-
ures the distance as 125 km. At what speed is the spacecraft approaching Earth?

Answer 0.917c
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Length contraction occurs only in the direction of the observer’s motion. No
contraction occurs perpendicular to that direction. For example, a spaceship at rest
relative to an observer may have the shape of an equilateral triangle, but if it passes
the observer at relativistic speed in a direction parallel to its base, the base will
shorten while the height remains the same. Hence, the craft will be observed to be
isosceles. An observer traveling with the ship will still observe it to be equilateral.

26.7 RELATIVISTIC MOMENTUM
Properly describing the motion of particles within the framework of special relativity
requires generalizing Newton’s laws of motion and the definitions of momentum
and energy. These generalized definitions reduce to the classical (nonrelativistic)
definitions when v is much less than c.

First, recall that conservation of momentum states that when two objects
collide, the total momentum of the system remains constant, assuming that the
objects are isolated, reacting only with each other. However, analyzing such colli-
sions from rapidly moving inertial frames, it is found that momentum is not con-
served if the classical definition of momentum, p � mv, is used. In order to have
momentum conservation in all inertial frames—even those moving at an apprecia-
ble fraction of c— the definition of momentum must be modified to read

[26.10]

where v is the speed of the particle and m is its mass as measured by an observer at
rest with respect to the particle. Note that when v is much less than c, the denomi-
nator of Equation 26.10 approaches one, so that p approaches mv. Therefore, the
relativistic equation for momentum reduces to the classical expression when v is
small compared with c.

p � 
mv

√1 � v2/c2
� 	 mvMomentum �

EXAMPLE 26.4 The Relativistic Momentum of an Electron
Goal Contrast the classical and relativistic definitions of momentum.

Problem An electron, which has a mass of 9.11 � 10�31 kg, moves with a speed of 0.750c. Find the classical (nonrel-
ativistic) momentum and compare it to its relativistic counterpart prel.

Strategy Substitute into the classical definition to get the classical momentum, then multiply by the gamma factor
to obtain the relativistic version.

Solution
First, compute the classical (nonrelativistic) momentum
with v � 0.750c :

p � mv � (9.11 � 10�31 kg)(0.750 � 3.00 � 108 m/s)

� 2.05 � 10�22 kgm/s

Multiply this result by 	 to obtain the relativistic 
momentum:

� 3.10 � 10�22 kgm/s

prel �
mv

√1 � v2/c2
�

2.05 � 10�22 kgm/s

√1 � (0.750c/c)2

Remark The (correct) relativistic result is 50% greater than the classical result. In subsequent calculations, no nota-
tional distinction will be made between classical and relativistic momentum. For problems involving relative speeds
of 0.2c, the answer using the classical expression is about 2% below the correct answer.

Exercise 26.4
Repeat the calculation for a proton traveling at 0.600c.

Answers p � 3.01 � 10�19 kg  m/s, p rel � 3.76 � 10�19 kg  m/s
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26.8 RELATIVISTIC ADDITION OF VELOCITIES
Imagine a motorcycle rider moving with a speed of 0.80c past a stationary
observer, as shown in Figure 26.12. If the rider tosses a ball in the forward
direction with a speed of 0.70c relative to himself, what is the speed of the
ball as seen by the stationary observer at the side of the road? Common
sense and the ideas of Newtonian relativity say that the speed should be the
sum of the two speeds, or 1.50c . This answer must be incorrect because it
contradicts the assertion that no material object can travel faster than the speed
of light.

Einstein resolved this dilemma by deriving an equation for the relativistic addi-
tion of velocities. Here, only one dimension of motion will be considered. Let two
frames or reference be labeled b and d, and suppose that frame d is moving at
velocity vdb in the position x-direction relative frame b. If the velocity of an object
a as measured in frame d is called vad, then the velocity of a as measured in frame
b, vab, is given by

[26.11]

The left side of this equation and the numerator on the right are like the equa-
tions of Galilean relativity discussed in Chapter 3, and the evaluation of subscripts
is applied in the same way as discussed in Section 3.6. The denominator of Equa-
tion 26.11 is a correction to Galilean relativity based on length contraction and
time dilation. 

We apply Equation 26.11 to Figure 26.13, which shows a motorcyclist, his ball,
and a stationary observer. We are given

vbm � the velocity of the ball with respect to the motorcycle � 0.70c

vmo � the velocity of the motorcycle with respect to the stationary

observer � 0.80c,

and we want to find

v bo � the velocity of the ball with respect to the stationary observer.

Thus,

vbo �
vbm � vmo

1 �
vbmvmo

c2

�
0.70c � 0.80c

1 �
(0.70c)(0.80c)

c2

� 0.96c

vab �
vad � vdb

1 �
vadvdb

c2

0.70c

0.80c

Figure 26.12 A motorcycle moves past a stationary observer with a speed of 0.80c ; the motorcyclist
throws a ball in the direction of motion with a speed of 0.70c relative to himself.

SPEED
LIMIT

3�108
m/s

The speed of light is the speed limit
of the Universe.

� Relativistic velocity addition
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EXAMPLE 26.5 Urgent Course Correction Needed!
Goal Apply the concept of the relativistic addition of velocities.

Problem Suppose that Bob’s spacecraft is traveling at 0.600c in the positive x-direction, as measured by a nearby
observer, while Mike is traveling in his own vehicle directly toward Bob in the negative x-direction at �0.800c relative
the nearby observer. What’s the velocity of Bob relative to Mike?

Strategy This problem requires correctly identifying the quantities that go into Equation 26.11, followed by substi-
tution. The measurement of Bob’s velocity as determined in the observer’s frame O is given, and the measurement of
Bob’s velocity in Mike’s frame is desired.

Solution
Identify the velocity terms in Equation 26.11. vBM � the velocity of Bob with respect to Mike. This will

be substituted for vad in Equation 26.11.

vMO � the velocity of the Mike with respect to the
stationary observer � � 0.800c. This will be substituted
for vdb in Equation 26.11.

vBO � the velocity of the Bob with respect to the station-
ary observer � 0.600c. This will be substituted for vab in
Equation 26.11.

Substitute the velocity expressions into Equation 26.11.
Examining the form of Equation 26.11, we can see intu-
itively that vBM and vMO belong on the right hand side
(the letter M appears in both a first and a second posi-
tion), so our previous choices are verified.

vBO �
vBM � vMO

1 �
vBMvMO

c2

Substitute given quantities and solve for vBM:

0.600c � 0.480 vBM � vBM � 0.800c

vBM � 0.946c

�1 �
0.800vBM

c �0.600c � vBM � 0.800c

0.600c �
vBM � 0.800c

1 �
vBM(�0.800c)

c 2

Remarks Notice how much care had to be taken in identifying quantities and their proper signs. Common sense
might lead us to believe that Mike would measure Bob’s velocity as 1.40c, but as the calculation shows, Mike measures
Bob’s velocity as less than that of light. 

Exercise 26.5
Suppose Bob shines a laser beam in the direction of his ship’s motion. What speed would the nearby observer meas-
ure for the beam? Don’t guess: do the calculation that proves the answer.

Answer c

26.9 RELATIVISTIC ENERGY AND THE 
EQUIVALENCE OF MASS AND ENERGY

We have seen that the definition of momentum required generalization to make it
compatible with the principle of relativity. Likewise, the definition of kinetic
energy requires modification in relativistic mechanics. Einstein found that the
correct expression for the kinetic energy of an object is

[26.12]K E � 	mc2 � mc2Kinetic energy �
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The constant term mc2 in Equation 26.12, which is independent of the speed of
the object, is called the rest energy of the object, ER:

[26.13]

The term 	mc 2 in Equation 26.12 depends on the object’s speed and is the sum of
the kinetic and rest energies. We define 	mc 2 to be the total energy E , so that

total energy � kinetic energy � rest energy

or, using Equation 26.12,

E � KE � mc2 � 	mc2 [26.14]

Because , we can also express E as

[26.15]

This is Einstein’s famous mass–energy equivalence equation.4

The relation E � 	mc 2 � KE � mc2 shows the amazing result that a stationary
particle with zero kinetic energy has an energy proportional to its mass. Further, a
small mass corresponds to an enormous amount of energy because the propor-
tionality constant between mass and energy is large: c2 � 9 � 1016 m2/s2. The
equation ER � mc 2, as Einstein first suggested, indirectly implies that the mass of a
particle may be completely convertible to energy and that pure energy— for exam-
ple, electromagnetic energy—may be converted to particles having mass. This is
indeed the case, as has been shown in the laboratory many times. For example, the
coming together of a slowly moving electron and its antiparticle, the positron, a
particle with the same mass me as the electron, but opposite charge, results in the
disappearance of both particles and the appearance of a burst of electromagnetic
energy in the amount 2mec2. The reverse process is also fairly easily observed in
the laboratory: A high-energy pulse of electromagnetic energy, a gamma ray—
disappears near an atom and an electron–positron pair is created with nearly
100% conversion of the gamma ray’s energy into mass. Such a pair-production
process is shown in the bubble chamber photo of Figure 26.13. We will discuss pair
production and annihilation in more detail in Section 26.10.

On a larger scale, nuclear power plants produce energy by the fission of ura-
nium, which involves the conversion of a small amount of the mass of the uranium
into energy. The Sun, too, converts mass into energy, and continually loses mass in
pouring out a tremendous amount of electromagnetic energy in all directions.

It’s extremely interesting that while we have been talking about the interconver-
sion of mass and energy for particles, the expression E � mc2 is universal and
applies to all objects, processes, and systems: a hot object has slightly more mass
and is slightly more difficult to accelerate than an identical cold object because it
has more thermal energy, and a stretched spring has more elastic potential energy
and more mass than an identical unstretched spring. A key point, however, is that
these changes in mass are often far too small to measure. Our best bet for measur-
ing mass changes is in nuclear transformations, where a measurable fraction of the
mass is converted into energy.

E �
mc2

√1 � v2/c2

	 � (1 � v2/c2)�1/2

ER � mc2 � Rest energy

4Although this doesn’t look exactly like the famous equation E � mc2, it used to be common to write m � 	m0
(Einstein himself wrote it that way), where m is the effective mass of an object moving at speed v and m 0 is the mass 
of that object as measured by an observer at rest with respect to the object. Then our E � 	mc2 becomes the familiar
E � mc2. It is currently unfashionable to use m � 	m0 .

� Total energy

Figure 26.13 Bubble-chamber
photograph of electron (green) and
positron (red) tracks produced by
energetic gamma rays. The highly
curved tracks at the top are due to
the electron and positron in an
electron–positron pair bending in
opposite directions in the magnetic
field.
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EXAMPLE 26.6 Pool Heater
Goal Combine the concepts of density, rest mass, and heat capacity.

Problem Suppose some mechanism allowed the conversion of the rest mass of water completely into energy.
(a) How much rest energy is contained in 0.500 mm3 of water? (b) If all this energy is used to heat an Olympic swim-
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862 Chapter 26 Relativity

Energy and Relativistic Momentum
Often the momentum or energy of a particle is measured rather than its speed, so
it’s useful to have an expression relating the total energy E to the relativistic
momentum p. This is accomplished by using the expressions E � 	mc2 and p � 	mv.
By squaring these equations and subtracting, we can eliminate v. The result, after
some algebra, is

[26.16]

When the particle is at rest, p � 0, so E � ER � mc2. In this special case, the total
energy equals the rest energy. For the case of particles that have zero mass, such as

E 2 � p2c2 � (mc2)2

ming pool with dimensions 2.00 m deep, 25.0 m wide, and 50.0 m long, what is the change in temperature of the
water?

Strategy Use the density of water to find the mass in the given volume of water, and multiply by c2 to get the
energy. The heat capacity equation then yields the temperature change.

Solution
(a) How much rest energy is contained in 0.500 mm3

of water?

Use the density to find the mass of this volume of water:

 � 5.00 � 10�7 kg

m � (1.00 � 103 kg/m3)(0.500 mm3)� 1.00 m
1.00 � 103 mm �

3

 � �
m
V
 : m � �V

The energy equivalent of the water is found from Equa-
tion 26.13:

� 4.50 � 1010 J

ER � mc2 � (5.00 � 10�7 kg)(3.00 � 108 m/s)2

(b) Find the change in temperature of the pool water.

First find the volume of water in the pool: V � L � W � H � (50.0 m)(25.0 m)(2.00 m)

� 2.50 � 103 m3

Using the definition of density, calculate the mass of the
water in the pool:

m � �V � (1.00 � 103 kg/m3)(2.50 � 103 m3)

� 2.50 � 106 kg

Use the heat capacity equation and the result of part 
(a) to calculate the temperature change of the water in
the pool:

Q � mc�T

� 4.30 K

�T �
Q
mc

�
4.50 � 1010 J

(2.50 � 106 kg)(4.19 � 103 J/kgK)

Remarks Only 12 mm3 of water, completely converted to energy, could raise the water temperature of an Olympic-
sized pool by 100 K! However, it’s generally impossible to achieve the complete conversion of mass to energy. Nuclear
power plants convert only a tiny percentage of the mass of uranium. An exception is the interaction of matter with
antimatter.

Exercise 26.6
(a) What mass, when completely converted into energy, would provide the annual energy needs of the entire world
(about 4 � 1020 J) (b) What volume of water contains that much energy?

Answers (a) 4 � 103 kg (b) 4 m3
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26.9 Relativistic Energy and the Equivalence of Mass and Energy 863

photons (massless, chargeless particles of light), we set m � 0 in Equation 26.16
and find that

E � pc [26.17]

This equation is an exact expression relating energy and momentum for photons,
which always travel at the speed of light.

In dealing with subatomic particles, it’s convenient to express their energy in
electron volts (eV), because the particles are given energy when accelerated
through an electrostatic potential difference. The conversion factor is

1 eV � 1.60 � 10�19 J

For example, the mass of an electron is 9.11 � 10�31 kg. Hence, the rest energy
of the electron is

mec2 � (9.11 � 10�31 kg)(3.00 � 108 m/s)2 � 8.20 � 10�14 J

Converting to eV, we have

mec2 � (8.20 � 10�14 J)(1 eV/1.60 � 10�19 J) � 0.511 MeV

Because we frequently use the expression E � 	mc2 in nuclear physics, and because
m is usually in atomic mass units, u, it is useful to have the conversion factor 
1 u � 931.494 MeV/c2. Using this factor makes it easy, for example, to find the
rest energy in MeV of the nucleus of a uranium atom with a mass of 235.043 924 u:

ER � mc2 � (235.043 924 u)(931.494 MeV/u c2)(c2) � 2.189 42 � 105 MeV

A photon is reflected from a mirror. True or false: (a) Because a photon has zero
mass, it does not exert a force on the mirror. (b) Although the photon has energy,
it can’t transfer any energy to the surface because it has zero mass. (c) The photon
carries momentum, and when it reflects off the mirror, it undergoes a change in
momentum and exerts a force on the mirror. (d) Although the photon carries
momentum, its change in momentum is zero when it reflects from the mirror, so it
can’t exert a force on the mirror.

Quick Quiz 26.4

EXAMPLE 26.7 A Speedy Electron
Goal Compute a total energy and a relativistic kinetic energy.

Problem An electron moves with a speed v � 0.850c. Find its total energy and kinetic energy in mega electron volts
(MeV), and compare the latter to the classical kinetic energy (106 eV � 1 MeV).

Strategy Substitute into Equation 26.15 to get the total energy, and subtract the rest mass energy to obtain the
kinetic energy.

Solution
Substitute values into Equation 26.15 to obtain the total
energy:

� 0.975 MeV

� 1.56 � 10�13 J � (1.56 � 10�13 J)� 1.00 eV
1.60 � 10�19 J �

E �
mec2

√1 � v2/c2
�

(9.11 � 10�31 kg)(3.00 � 108 m/s)2

√1 � (0.850c/c)2

The kinetic energy is obtained by subtracting the rest
energy from the total energy:

KE � E � mec2 � 0.975 MeV � 0.511 MeV � 0.464 MeV

Calculate the classical kinetic energy: KE classical � mev2

� (9.11 � 10�31 kg)(0.850 � 3.00 � 108 m/s)2

� 2.96 � 10�14 J � 0.185 MeV

1
2

1
2
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864 Chapter 26 Relativity

Remarks Notice the large discrepancy between the relativistic kinetic energy and the classical kinetic energy.

Exercise 26.7
Calculate the total energy and the kinetic energy in MeV of a proton traveling at 0.600c. (The rest energy of a proton
is approximately 938 MeV.)

Answers E � 1.17 � 103 MeV, KE � 232 MeV

EXAMPLE 26.8 The Conversion of Mass to Kinetic Energy in Uranium Fission
Goal Understand the production of energy from nuclear sources.

Problem The fission, or splitting, of uranium was discovered in 1938 by Lise Meitner, who successfully interpreted
some curious experimental results found by Otto Hahn as due to fission. (Hahn received the Nobel prize.) The fis-
sion of begins with the absorption of a slow-moving neutron that produces an unstable nucleus of 236U. The
236U nucleus then quickly decays into two heavy fragments moving at high speed, as well as several neutrons. Most of
the kinetic energy released in such a fission is carried off by the two large fragments. (a) For the typical fission
process

calculate the kinetic energy in MeV carried off by the fission fragments. (b) What percentage of the initial energy is
converted into kinetic energy? The atomic masses involved are given below in atomic mass units.

Strategy This is an application of the conservation of relativistic energy. Write the conservation law as a sum of
kinetic energy and rest energy, and solve for the final kinetic energy. Equation 26.15, solved for v, then yields the
speeds.

Solution
(a) Calculate the final kinetic energy for the given process.

92
36Kr � 91.907 936 u141

56Ba � 140.903 496 u235
92U � 235.043 924 u1

0n �  1.008 665 u

1
0n �  235

92U :  141
56Ba � 92

36Kr � 31
0n

235
92U

Apply the conservation of relativistic energy equation,
assuming that KE initial � 0:

0 � mnc2 � mUc2 � mBac2 � mKrc2 � 3mnc2 � KEfınal

(KE � mc2)initial � (KE � mc2)fınal

Solve for KEfinal and substitute, converting to MeV in
the last step:

� 200.422 MeV

� (0.215 162 u)(931.494 MeV/uc2)(c2)

�[140.903 496 u � 91.907 936 u �  3(1.008 665 u)]c2

KE fınal � (1.008 665u � 235.043 924 u)c2

KEfınal � [(mn � mU) � (mBa � mKr � 3mn)]c2

(b) What percentage of the initial energy is converted
into kinetic energy?

Compute the total energy, which is the initial energy:

 � 2.198 82 � 105 MeV

 � (236.052 59 u)(931.494 MeV/u c2)(c2)

 � (1.008 665u � 235.043 924 u)c2

 E initial � 0 � mnc2 � mUc2

Divide the kinetic energy by the total energy and
multiply by 100%:

9.115 � 10�2%
200.422 MeV

2.198 82 � 105 MeV
� 100% �

Remarks This calculation shows that nuclear reactions liberate only about a tenth of one percent of the rest energy
of the constituent particles. Some fusion reactions better that number by several times.
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26.10 PAIR PRODUCTION AND ANNIHILATION
In general, converting mass into energy is a low-yield process. Burning wood or
coal, or even the fission or fusion processes presented in Example 26.8, convert
only a very small percentage of the available energy. An exception is the reaction
of matter with antimatter.

A common process in which a photon creates matter is called pair production,
illustrated in Figure 26.14. In this process, an electron and a positron are simulta-
neously produced, while the photon disappears. (Note that the positron is a posi-
tively charged particle having the same mass as an electron. The positron is often
called the antiparticle of the electron.) In order for pair production to occur,
energy, momentum, and charge must all be conserved during the process. It’s
impossible for a photon to produce a single electron because the photon has zero
charge and charge would not be conserved in the process. 

As we explain in more detail in Chapter 27, the energy of a photon having a fre-
quency f is given by E � hf, where h is Planck’s constant. The minimum energy that
a photon must have to produce an electron–positron pair can be found using
conservation of energy by equating the photon energy hfmin to the total rest
energy of the pair. That is,

hf min � 2mec2 [26.18]

Because the energy of an electron is mec2 � 0.51 MeV, the minimum energy
required for pair production is 1.02 MeV.

Pair production can’t occur in a vacuum, but can only take place in the pres-
ence of a massive particle such as an atomic nucleus. The massive particle must
participate in the interaction in order that energy and momentum be conserved
simultaneously.

Pair annihilation is a process in which an electron–positron pair produces two
photons— the inverse of pair production. Figure 26.15 is one example of pair
annihilation in which an electron and positron initially at rest combine with each
other, disappear, and create two photons. Because the initial momentum of the pair
is zero, it’s impossible to produce a single photon. Momentum can be conserved
only if two photons moving in opposite directions, both with the same energy and
magnitude of momentum, are produced. We will discuss particles and their
antiparticles further in Chapter 30.

26.11 GENERAL RELATIVITY
Special relativity relates observations of inertial observers. Einstein sought a more
general theory that would address accelerating systems. His search was motivated in
part by the following curious fact: mass determines the inertia of an object and also
the strength of the gravitational field. The mass involved in inertia is called inertial
mass, mi, whereas the mass responsible for the gravitational field is called the

Exercise 26.8
In a fusion reaction, light elements combine to form a heavier element. Deuterium, which is also called heavy hydro-
gen, has an extra neutron in its nucleus. Two such particles can fuse into a heavier form of hydrogen, called tritium,
plus an ordinary hydrogen atom. The reaction is 

(a) Calculate the energy released in the form of kinetic energy, assuming for simplicity that the initial kinetic energy
is zero. (b) What percentage of the rest mass was converted to energy? The atomic masses involved are as follows:

Answers (a) 4.033 37 MeV (b) 0.1075%

1
1H � 1.007 825 u3

1T � 3.016 049 u2
1D � 2.014 102 u

2
1D � 2

1D : 3
1T � 1

1H

Massive
particle

Photon

Before

+

+

Positron

Electron

+

–

After

Figure 26.14 Representation of
the process of pair production.

Positron Electron

Before

+ –

Photon Photon

After

Figure 26.15 Representation of
the process of pair annihilation.
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gravitational mass, mg . They appear in Newton’s law of gravitation and in the sec-
ond law of motion:

Gravitational property

Inertial property Fi � mia

The value for the gravitational constant G was chosen to make the magnitudes
of mg and mi numerically equal. Regardless of how G is chosen, however, the strict
proportionality of mg and mi has been established experimentally to an extremely
high degree: a few parts in 1012. It appears that gravitational mass and inertial
mass may indeed be exactly equal: mi � mg .

There is no reason a priori, however, why these two very different quantities
should be equal. They seem to involve two entirely different concepts: a force of
mutual gravitational attraction between two masses and the resistance of a single
mass to being accelerated. This question puzzled Newton and many other physi-
cists over the years and was finally incorporated as a fundamental principle of
Einstein’s remarkable theory of gravitation, known as general relativity, in 1916.

In Einstein’s view, the remarkable coincidence that mg and mi were exactly equal
was evidence for an intimate connection between the two concepts. He pointed out
that no mechanical experiment (such as releasing a mass) could distinguish between
the two situations illustrated in Figures 26.16a and 26.16b. In each case, a mass re-
leased by the observer undergoes a downward acceleration of g relative to the floor.

Einstein carried this idea further and proposed that no experiment, mechanical
or otherwise, could distinguish between the two cases. This extension to include
all phenomena (not just mechanical ones) has interesting consequences. For
example, suppose that a light pulse is sent horizontally across the box, as in
Figure 26.16c. The trajectory of the light pulse bends downward as the box accel-
erates upward to meet it. Einstein proposed that a beam of light should also be
bent downward by a gravitational field (Fig. 26.16d).

The two postulates of Einstein’s general relativity are as follows:

1. All the laws of nature have the same form for observers in any frame of refer-
ence, accelerated or not.

2. In the vicinity of any given point, a gravitational field is equivalent to an accel-
erated frame of reference without a gravitational field. (This is the principle of
equivalence.)

Fg � G  

mgmg�

r 2

(b)

F

(a) (c) (d)

F

Fgrav
Fgrav

n n

Figure 26.16 (a) The observer in the cubicle is at rest in a uniform gravitational field . He experi-
ences a normal force . (b) Now the observer is in a region where gravity is negligible, but an external
force acts on the frame of reference, producing an acceleration with magnitude g. Again, the man
experiences a normal force that accelerates him along with the cubicle. According to Einstein, the
frames of reference in parts (a) and (b) are equivalent in every way. No local experiment could distin-
guish between them. (c) The observer turns on his pocket flashlight. Because of the acceleration of the
cubicle, the beam would appear to bend toward the floor, just as a tossed ball would. (d) Given the
equivalence of the frames, the same phenomenon should be observed in the presence of a gravity field.

n:
F
:

n:
g:
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The second postulate implies that gravitational mass and inertial mass are com-
pletely equivalent, not just proportional. What were thought to be two different
types of mass are actually identical.

One interesting effect predicted by general relativity is that time scales are altered
by gravity. A clock in the presence of gravity runs more slowly than one in which grav-
ity is negligible. As a consequence, light emitted from atoms in a strong gravity field,
such as the Sun’s, is observed to have a lower frequency than the same light emitted
by atoms in the laboratory. This gravitational shift has been detected in spectral lines
emitted by atoms in massive stars. It has also been verified on Earth by comparing the
frequencies of gamma rays emitted from nuclei separated vertically by about 20 m.

Two identical clocks are in the same house, one upstairs in a bedroom and the other
downstairs in the kitchen. Which statement is correct? (a) The clock in the kitchen
runs more slowly than the clock in the bedroom. (b) The clock in the bedroom runs
more slowly than the clock in the kitchen. (c) Both clocks keep the same time.

Quick Quiz 26.5

The second postulate suggests that a gravitational field may be “transformed
away” at any point if we choose an appropriate accelerated frame of reference—a
freely falling one. Einstein developed an ingenious method of describing the
acceleration necessary to make the gravitational field “disappear.” He specified a cer-
tain quantity, the curvature of spacetime, that describes the gravitational effect at every
point. In fact, the curvature of spacetime completely replaces Newton’s gravitational
theory. According to Einstein, there is no such thing as a gravitational force. Rather,
the presence of a mass causes a curvature of spacetime in the vicinity of the mass.
Planets going around the Sun follow the natural contours of the spacetime, much as
marbles roll around inside a bowl. In 1979, John Wheeler summarized Einstein’s
general theory of relativity in a single sentence: “Mass one tells spacetime how to
curve; curved spacetime tells mass two how to move.” The fundamental equation of
general relativity can be roughly stated as a proportion as follows:

Average curvature of spacetime � energy density

The equation corresponding to this proportion is solved for a mathematical
quantity called the metric, which can be used to measure the lengths of vectors and
to compute trajectories of bodies through space. The metric looks something like
a matrix, with different entries at each point of space and time. (There are a few
important differences, beyond the level of this course.)

Einstein pursued a new theory of gravity in large part because of a discrepancy
in the orbit of Mercury as calculated from Newton’s second law. The closest
approach of the Mercury to the Sun, called the perihelion, changes position slowly
over time. Newton’s theory accounted for all but 43 seconds of arc per century;
Einstein’s general relativity explained the discrepancy.

The most dramatic test of general relativity came shortly after the end of World
War I. The theory predicts that a star would bend a light ray by a certain precise
amount. Sir Arthur Eddington mounted an expedition to Africa and, during a
solar eclipse, confirmed that starlight bent on passing the Sun in an amount
matching the prediction of general relativity (Fig. 26.17). When this discovery was
announced, Einstein became an international celebrity.

1.75"

Sun
To star

(actual direction)

Apparent
direction to star

Deflected path of light
from star

Earth

Figure 26.17 Deflection of
starlight passing near the Sun.
Because of this effect, the Sun and
other remote objects can act as a
gravitational lens. In his general theory
of relativity, Einstein calculated that
starlight just grazing the Sun’s surface
should be deflected by an angle 
of 1.75�.
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Other tests were proposed and verified long after Einstein’s death, including
the time delay of radar bounced off Venus, and the gradual lengthening of the pe-
riod of binary pulsars due to the emission of gravitational radiation. The latter has
been verified with such precision that general relativity can lay claim to being the
most accurate theory in physics.

General relativity also predicts extreme states of matter created by gravitational
collapse. If the concentration of mass becomes very great, as is believed to occur
when a large star exhausts its nuclear fuel and collapses to a very small volume, a
black hole may form. Here the curvature of spacetime is so extreme that all matter
and light within a certain radius becomes trapped. This radius, called the Schwarz-
schild radius or event horizon, is about 3 km for a black hole with the mass of our
Sun. At the black hole’s center may lurk a singularity—a point of infinite density
and curvature where spacetime comes to an end.

There is strong evidence for the existence of a black hole having a mass of mil-
lions of Suns at the center of our galaxy.

Atomic clocks are extremely accurate; in fact, an error
of 1 second in 3 million years is typical. This error can
be described as about one part in 1014. On the other
hand, the atomic clock in Boulder, Colorado, is often
15 ns faster than the one in Washington after only one
day. This is an error of about one part in 6 � 1012,
which is about 17 times larger than the typical error. If
atomic clocks are so accurate, why does a clock in Boul-
der not remain synchronous with one in Washington?

Explanation According to the general theory of rela-
tivity, the passage of time depends on gravity—clocks
run more slowly in strong gravitational fields. Wash-
ington is at an elevation very close to sea level,
whereas Boulder is about a mile higher in altitude.
Hence, the gravitational field at Boulder is weaker
than at Washington. As a result, an atomic clock runs
more rapidly in Boulder than in Washington. (This
effect has been verified by experiment.)

Applying Physics 26.1 Faster Clocks in a “Mile High City”

SUMMARY
Take a practice test by logging into Physics-

Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

26.5 Einstein’s Principle of Relativity
The two basic postulates of the special theory of relativity
are as follows:

1. The laws of physics are the same in all inertial frames of
reference.

2. The speed of light is the same for all inertial observers,
independently of their motion or of the motion of the
source of light.

26.6 Consequences of Special Relativity
Some of the consequences of the special theory of relativity
are as follows:

1. Clocks in motion relative to an observer slow down, a phe-
nomenon known as time dilation. The relationship be-
tween time intervals in the moving and at-rest systems is

�t � 	�tp [26.7]

where �t is the time interval measured in the system in
relative motion with respect to the clock,

[26.8]	 �
1

√1 � v2/c2

and �tp is the proper time interval measured in the sys-
tem moving with the clock.

2. The length of an object in motion is contracted in the
direction of motion. The equation for length contrac-
tion is

[26.9]

where L is the length measured by an observer in mo-
tion relative to the object and Lp is the proper length
measured by an observer for whom the object is at rest.

3. Events that are simultaneous for one observer are not
simultaneous for another observer in motion relative to
the first.

26.7 Relativistic Momentum
The relativistic expression for the momentum of a particle
moving with velocity v is

[26.10]

26.8 Relativistic Addition of Velocities
The relativistic expression for the addition of velocities is

[26.11]vab �
vad � vdb

1 �
vadvdb

c2

p � 
mv

√1 � v2/c2
� 	mv

L � Lp√1 � v2/c2
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where vab is the velocity of object a with as measured in
frame b, vad is the velocity of object a as measured in frame
d, and vdb is the velocity of frame d as measured in frame b.

26.9 Relativistic Energy and the 
Equivalence of Mass and Energy
The relativistic expression for the kinetic energy of an object is

KE � 	mc2 � mc2 [26.12]

where mc2 is the rest energy of the object, ER.
The total energy of a particle is

[26.15]E �
mc 2

√1 � v 2/c 2

This is Einstein’s famous mass–energy equivalence equation.
The relativistic momentum is related to the total energy

through the equation

E 2 � p2c2 � (mc2)2 [26.16]

26.10 Pair Production and Annihilation
Pair production is a process in which the energy of a
photon is converted into mass. In this process, the photon
disappears as an electron–positron pair is created. Likewise,
the energy of an electron–positron pair can be converted
into electromagnetic radiation by the process of pair
annihilation.

CONCEPTUAL QUESTIONS
1. A spacecraft with the shape of a sphere of diameter D

moves past an observer on Earth with a speed 0.5c. What
shape does the observer measure for the spacecraft as it
moves past?

2. The equation E � mc 2 is often given in popular descrip-
tions of Einstein’s theory of relativity. Is this expression
strictly correct? For example, does it accurately account
for the kinetic energy of a moving mass?

3. You are in a speedboat on a lake. You see ahead of you a
wave front, caused by the previous passage of another boat,
moving away from you. You accelerate, catch up with, and
pass the wave front. Is this scenario possible if you are in a
rocket and you detect a wave front of light ahead of you?

4. What two speed measurements will two observers in rela-
tive motion always agree upon?

5. The speed of light in water is 2.30 � 108 m/s. Suppose an
electron is moving through water at 2.50 � 108 m/s. Does
this particle speed violate the principle of relativity?

6. With regard to reference frames, how does general relativ-
ity differ from special relativity?

7. Some distant starlike objects, called quasars, are
receding from us at half the speed of light (or greater).

What is the speed of the light we receive from these
quasars?

8. It is said that Einstein, in his teenage years, asked the
question, “What would I see in a mirror if I carried it in
my hands and ran at a speed near that of light?” How
would you answer this question?

9. List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

10. Two identically constructed clocks are synchronized. One
is put into orbit around Earth while the other remains on
Earth. Which clock runs more slowly? When the moving
clock returns to Earth, will the two clocks still be synchro-
nized.

11. Photons of light have zero mass. How is it possible that
they have momentum?

12. Imagine an astronaut on a trip to Sirius, which lies 8
lightyears from Earth. Upon arrival at Sirius, the astronaut
finds that the trip lasted 6 years. If the trip was made at a
constant speed of 0.8c, how can the 8-lightyear distance
be reconciled with the 6-year duration?

13. Explain why it is necessary, when defining length, to spec-
ify that the positions of the ends of a rod are to be mea-
sured simultaneously.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 26.4 The Michelson–Morley Experiment
1. Two airplanes fly paths I and II specified in Figure 26.5a.

Both planes have air speeds of 100 m/s and fly a distance
L � 200 km. The wind blows at 20.0 m/s in the direction
shown in the figure. Find (a) the time of flight to each
city, (b) the time to return, and (c) the difference in total
flight times.

2. In one version of the Michelson–Morley experiment,
the lengths L in Figure 26.6 were 28 m. Take v to be 
3.0 � 104 m/s, and find the time difference caused by rota-
tion of the interferometer and (b) the expected fringe shift,
assuming that the light used has a wavelength of 550 nm.

Section 26.6 Consequences of Special Relativity
3. A deep-space probe moves away from Earth with a speed

of 0.80c. An antenna on the probe requires 3.0 s,
in probe time, to rotate through 1.0 rev. How much
time is required for 1.0 rev according to an observer on
Earth?

4. If astronauts could travel at v � 0.950c, we on Earth
would say it takes (4.20/0.950) � 4.42 years to reach
Alpha Centauri, 4.20 lightyears away. The astronauts dis-
agree. (a) How much time passes on the astronauts’
clocks? (b) What is the distance to Alpha Centauri as
measured by the astronauts?
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5. A friend in a spaceship travels past you at a high speed.
He tells you that his ship is 20 m long and that the identi-
cal ship you are sitting in is 19 m long. According to
your observations, (a) how long is your ship, (b) how
long is his ship, and (c) what is the speed of your friend’s
ship?

6. An astronaut at rest on Earth has a heartbeat rate of
70 beats/min. When the astronaut is traveling in a space-
ship at 0.90c, what will this rate be as measured by (a) an
observer also in the ship and (b) an observer at rest on
Earth?
The average lifetime of a pi meson in its own frame of ref-
erence (i.e., the proper lifetime) is 2.6 � 10�8 s. If the
meson moves with a speed of 0.98c, what is (a) its mean
lifetime as measured by an observer on Earth, and (b) the
average distance it travels before decaying, as measured
by an observer on Earth? (c) What distance would it travel
if time dilation did not occur?

8. An astronaut is traveling in a space vehicle that has a
speed of 0.500c relative to Earth. The astronaut measures
his pulse rate at 75.0 per minute. Signals generated by the
astronaut’s pulse are radioed to Earth when the vehicle is
moving perpendicularly to a line that connects the vehicle
with an Earth observer. What pulse rate does Earth
observer measure? What would be the pulse rate if the
speed of the space vehicle were increased to 0.990c?

9. A muon formed high in Earth’s atmosphere travels at
speed v � 0.99c for a distance of 4.6 km before it decays
into an electron, a neutrino, and an antineutrino (�� :
e� � � � ). (a) How long does the muon live, as mea-
sured in its reference frame? (b) How far does the muon
travel, as measured in its frame?

10. A box is cubical with sides of proper lengths L1 � L2 � L3,
as shown in Figure P26.10, when viewed in its own rest
frame. If this block moves parallel to one of its edges with
a speed of 0.80c past an observer, (a) what shape does it
appear to have to this observer, and (b) what is the length
of each side as measured by the observer?

�

7.

50 m. As seen by a trackside observer, is the train ever
completely within the tunnel? If so, by how much?

14. An observer moving at a speed of 0.995c relative to a rod
(Fig. P26.14) measures its length to be 2.00 m and sees its
length to be oriented at 30.0° with respect to its direction
of motion. What is the proper length of the rod?
(b) What is the orientation angle in a reference frame
moving with the rod?

L2

L1

L3

Figure P26.10

The proper length of one spaceship is three times that of
another. The two spaceships are traveling in the same
direction and, while both are passing overhead, an Earth
observer measures the two spaceships to have the same
length. If the slower spaceship is moving with a speed of
0.350c, determine the speed of the faster spaceship.

12. Observer A measures the length of two rods, one station-
ary, the other moving with a speed of 0.955c. She finds
that the rods have the same length, L0. A second observer
B travels along with the moving rod. (a) What is the
length observer B measures for the rod in observer A’s
frame? (b) What is the ratio of the length of A’s rod to the
length of B’s rod, according to observer B?

13. A supertrain of proper length 100 m travels at a speed of
0.95c as it passes through a tunnel having proper length

11.

Motion of observer

30.0°

2.00 m

Figure P26.14 View of rod as seen by an observer moving to
the right.

15. In 1963, when Mercury astronaut Gordon Cooper orbited
Earth 22 times, the press stated that for each orbit,
he aged 2 millionths of a second less than that if he
remained on Earth. (a) Assuming that he was 160 km
above Earth in a circular orbit, determine the time
difference between someone on Earth and the orbiting
astronaut for the 22 orbits. You will need to use the
approximation

for x �� 1

(b) Did the press report accurate information? Explain.
An interstellar space probe is launched from Earth. After
a brief period of acceleration it moves with a constant
velocity, 70.0% of the speed of light. Its nuclear-powered
batteries supply the energy to keep its data transmitter
active continuously. The batteries have a lifetime of
15.0 years as measured in a rest frame. (a) How long do
the batteries on the space probe last as measured by mission
control on Earth? (b) How far is the probe from Earth
when its batteries fail, as measured by mission control?
(c) How far is the probe from Earth, as measured by its
built-in trip odometer, when its batteries fail? (d) For what
total time after launch are data received from the probe by
mission control? Note that radio waves travel at the speed of
light and fill the space between the probe and Earth at the
time the battery fails.

Section 26.7 Relativistic Momentum
17. An electron has a speed v � 0.90c. At what speed will a

proton have a momentum equal to that of the electron?
18. Calculate the momentum of an electron moving with a

speed of (a) 0.010c, (b) 0.50c, (c) 0.90c.
An unstable particle at rest breaks up

into two fragments of unequal mass. The mass of the
lighter fragment is 2.50 � 10�28 kg, and that of the heav-
ier fragment is 1.67 � 10�27 kg. If the lighter fragment
has a speed of 0.893c after the breakup, what is the speed
of the heavier fragment?

20. The nonrelativistic expression for the momentum of a
particle, p � mv, can be used if v �� c. For what speed
does the use of this formula give an error in the momen-
tum of (a) 1.00% and (b) 10.0%?

19.

16.

1
√1 � x

� 1 �
x
2
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Section 26.8 Relativistic Addition of Velocities
21. An electron moves to the right with a speed of 0.90c rela-

tive to the laboratory frame. A proton moves to the left
with a speed of 0.70c relative to the electron. Find the
speed of the proton relative to the laboratory frame.

22. Spaceship R is moving to the right at a speed of 0.70c with
respect to Earth. A second spaceship, L, moves to the left
at the same speed with respect to Earth. What is the speed
of L with respect to R?
A Klingon spaceship moves away from Earth at a speed of
0.800c (Fig. P26.23). The starship Enterprise pursues at a
speed of 0.900c relative to Earth. Observers on Earth see
the Enterprise overtaking the Klingon ship at a relative
speed of 0.100c. With what speed is the Enterprise overtak-
ing the Klingon ship as seen by the crew of the Enterprise ?

23.

29. What is the speed of a particle whose kinetic energy is
equal to its own rest energy?

30. If it takes 3 750 MeV of work to accelerate a proton from
rest to a speed of v, determine v.

31. What speed must a particle attain before its kinetic energy
is double the value predicted by the nonrelativistic expres-
sion ?

32. Determine the energy required to accelerate an electron
from (a) 0.500c to 0.900c and (b) 0.900c to 0.990c.

A cube of steel has a volume of 1.00 cm3

and a mass of 8.00 g when at rest on Earth. If this cube is
now given a speed v � 0.900c, what is its density as meas-
ured by a stationary observer? Note that relativistic density
is ER/c2V.

34. An unstable particle with a mass equal to 3.34 � 10�27 kg
is initially at rest. The particle decays into two fragments
that fly off with velocities of 0.987c and �0.868c, respec-
tively. Find the masses of the fragments. [Hint : Conserve
both mass–energy and momentum.]

Section 26.10 Pair Production and Annihilation
35. How much total kinetic energy will an electron–positron

pair have if produced by a photon of energy 3.00 MeV?
36. If an electron–positron pair with a total kinetic energy of

2.50 MeV is produced, find (a) the energy of the photon
that produced the pair and (b) its frequency.

Two photons are produced when a pro-
ton and an antiproton annihilate each other. What are
the minimum frequency and the corresponding wave-
length of each photon?

38. An electron moving at a speed of 0.60c collides head-on
with a positron also moving at 0.60c. Determine the
energy and momentum of each photon produced in the
process.

ADDITIONAL PROBLEMS
39. What is the speed of a proton that has been accelerated

from rest through a difference of potential of (a) 500 V
and (b) 5.00 � 108 V?

40. An electron has a total energy equal to five times its
rest energy. (a) What is its momentum? (b) Repeat for a
proton.
What is the momentum (in units of MeV/c) of an elec-
tron with a kinetic energy of 1.00 MeV?

42. An astronomer on Earth observes a meteoroid in the
southern sky approaching Earth at a speed of 0.800c. At
the time of its discovery, the meteoroid is 20.0 lightyears
from Earth. Calculate (a) the time required for the mete-
oroid to reach Earth, as measured by Earthbound
astronomer, (b) this time as measured by a tourist on the
meteoroid, and (c) the distance to Earth as measured by
the tourist.

43. Ted and Mary are playing a game of catch in frame S�,
which is moving with a speed of 0.60c ; Jim in frame S is
watching (Fig. P26.43, page 872). Ted throws the ball to
Mary with a speed of 0.80c (according to Ted) and their
separation (measured in S�) is 1.8 � 1012 m. (a) Accord-
ing to Mary, how fast is the ball moving? (b) According to
Mary, how long will it take the ball to reach her? (c) Ac-
cording to Jim, how far apart are Ted and Mary and how
fast is the ball moving?

41.

37.

33.

KE � 1
2mv2

u = 0.900c

S

x

v = 0.800c

S�

x�

Figure P26.23

24. A spaceship travels at 0.750c relative to Earth. If the space-
ship fires a small rocket in the forward direction, how fast
(relative to the ship) must it be fired for it to travel at
0.950c relative to Earth?

25. A rocket moves with a velocity of 0.92c to the right with
respect to a stationary observer A. An observer B moving
relative to observer A finds that the rocket is moving with
a velocity of 0.95c to the left. What is the velocity of
observer B relative to observer A? [Hint: Consider observer
B ’s velocity in the frame of reference of the rocket.]

26. A pulsar is a stellar object that emits light in short bursts.
Suppose a pulsar with a speed of 0.950c approaches Earth
and a rocket with a speed of 0.995c heads toward the pul-
sar. (Both speeds are measured in Earth’s frame of refer-
ence.) If the pulsar emits 10.0 pulses per second in its
own frame of reference, at what rate are the pulses emit-
ted in the rocket’s frame of reference?
Spaceship I, which contains students taking a physics
exam, approaches Earth with a speed of 0.60c, while space-
ship II, which contains instructors proctoring the exam,
moves away from Earth at 0.28c, as in Figure P26.27. If the
instructors in spaceship II stop the exam after 50 min have
passed on their clock, how long does the exam last as mea-
sured by (a) the students? (b) an observer on Earth?

27.

0.60c

I

0.28c

II

Figure P26.27

Section 26.9 Relativistic Energy and the Equivalence 
of Mass and Energy
28. A proton moves with a speed of 0.950c. Calculate (a) its

rest energy, (b) its total energy, and (c) its kinetic energy.
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44. An alarm clock is set to sound in 10 h. At t � 0, the clock
is placed in a spaceship moving with a speed of 0.75c (rel-
ative to Earth). What distance, as determined by an Earth
observer, does the spaceship travel before the alarm clock
sounds?
A radioactive nucleus moves with a speed v relative to a
laboratory observer. The nucleus emits an electron in
the positive x-direction with a speed of 0.70c relative to
the decaying nucleus and a speed of 0.85c in the �x-
direction relative to the laboratory observer. What is the
value of v?

46. A certain quasar recedes from Earth at v � 0.870c. A jet of
material ejected from the quasar back toward Earth moves
at 0.550c relative to the quasar. Find the speed of the
ejected material relative to Earth.

47. An astronaut wishes to visit the Andromeda galaxy, mak-
ing a one-way trip that will take 30.0 years in the space-
ship’s frame of reference. Assume that the galaxy is
2.00 million light years away and that his speed is con-
stant. (a) How fast must he travel relative to Earth?
(b) What will be the kinetic energy of his spacecraft,
which has mass is 1.00 � 106 kg? (c) What is the cost of
this energy if it is purchased at a typical consumer price
for electric energy, 13.0 cents per kWh? The following
approximation will prove useful:

for x �� 1

48. The cosmic rays of highest energy are protons that have
kinetic energy on the order of 1013 MeV. (a) How long
would it take a proton of this energy to travel across the
Milky Way galaxy, having a diameter �105 light years, as
measured in the proton’s frame? (b) From the point of
view of the proton, how many kilometers across is the
galaxy?

49. A spaceship of proper length 300 m takes 0.75 �s to pass
an Earth observer. Determine the speed of this spaceship
as measured by the Earth observer.

50. Find the kinetic energy of a 78.0-kg spacecraft launched out
of the solar system with speed 106 km/s by using (a) the
classical equation and (b) the relativistic equa-
tion. You will need to use the approximation

for x �� 1

An alien spaceship traveling 0.600c
toward Earth launches a landing craft with an advance
guard of purchasing agents. The lander travels in the

51.

1

√1 � x
� 1 �

x

2

KE � 1
2 mv2

1

√1 � x
� 1 �

x

2

45.

same direction with a velocity of 0.800c relative to 
the spaceship. As observed on Earth, the spaceship is
0.200 light year from Earth when the lander is launched.
(a) With what velocity is the lander observed to be
approaching by observers on Earth? (b) What is the
distance to Earth at the time of lander launch, as
observed by the aliens on the mother ship? (c) How long
does it take the lander to reach Earth, as observed by the
aliens on the mother ship? (d) If the lander has a mass of
4.00 � 105 kg, what is its kinetic energy as observed in
Earth reference frame?

52. (a) Show that a potential difference of 1.02 � 106 V
would be sufficient to give an electron a speed equal to
twice the speed of light if Newtonian mechanics remained
valid at high speeds. (b) What speed would an electron
actually acquire in falling through a potential difference
of 1.02 � 106 V?

53. The muon is an unstable particle that spontaneously
decays into an electron and two neutrinos. In a reference
frame in which the muons are stationary, if the number
of muons at t � 0 is N0, the number at time t is given by 
N � N0e�t/�, where � is the mean lifetime, equal to 2.2 �s.
Suppose that the muons move at a speed of 0.95c and that
there are 5.0 � 104 muons at t � 0. (a) What is the
observed lifetime of the muons? (b) How many muons
remain after traveling a distance of 3.0 km?

54. An observer in a rocket moves toward a mirror at speed v
relative to the reference frame labeled by S in Figure
P26.54. The mirror is stationary with respect to S. A light
pulse emitted by the rocket travels toward the mirror and
is reflected back to the rocket. The front of the rocket is a
distance d from the mirror (as measured by observers in S)
at the moment the light pulse leaves the rocket. What is the
total travel time of the pulse as measured by observers in
(a) the S frame and (b) the front of the rocket?

v = 0.600c

Ted

1.80 � 1012 m

Mary

Jim
x

S 0.800c

S�

x �

Figure P26.43

MirrorS

0

v = 0.800c

Figure P26.54

55. A physics professor on Earth gives a final exam to her stu-
dents, who are on a rocket ship traveling at speed v with
respect to Earth. The moment the ship passes the profes-
sor, she signals the start of the exam. If she wishes her stu-
dents to have T0 (rocket time) to complete the exam,
show that she should wait a time

(Earth time) before sending a light signal telling them to
stop. [Hint: Remember that it takes some time for the
second light signal to travel from the professor to the
students.]

56. Imagine that the entire Sun collapses to a sphere of radius
Rg such that the work required to remove a small mass m
from the surface would be equal to its rest energy mc2. This

T � T0 √ 1 � v/c
1 � v/c
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radius is called the gravitational radius for the Sun. Find Rg .
(It is believed that the ultimate fate of very massive stars is to
collapse beyond their gravitational radii into black holes.)
A rod of length L0 moves with a speed of v along the hori-
zontal direction. The rod makes an angle of �0 with
respect to the axis of a coordinate system moving with the
rod. (a) Show that the length of the rod, as measured by a
stationary observer, is given by

(b) Show that the angle the rod makes with the axis, as
seen by the stationary observer, is given by the expression
tan � � 	 tan �0. These results demonstrate that the rod is
both contracted and rotated. (Take the lower end of the
rod to be at the origin of the moving coordinate system.)

L � L0  �1 � � v2

c2 � cos2 �0�
1/2

57.

58. The speed limit on a certain roadway is 90.0 km/h.
Suppose that speeding fines are made proportional to
the amount by which a vehicle’s momentum exceeds
the momentum the vehicle would have when traveling
at the speed limit. The fine for driving at 190 km/h
(that is, 100 km/h over the speed limit) is $80.0.
What then will be the fine for traveling (a) at 1 090 km/h?
(b) at 1 000 000 090 km/h?

59. The identical twins Speedo and Goslo join a migration
from the Earth to Planet X. It is 20.0 lightyears away in a
reference frame in which both planets are at rest. The
twins, of the same age, depart at the same time on differ-
ent spacecraft. Speedo’s craft travels steadily at 0.950c,
Goslo’s at 0.750c. Calculate the age difference between
the twins after Goslo’s spacecraft lands on Planet X.
Which twin is the older?
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Although many problems were resolved by the theory of relativity in the early part of the 20th
century, many other problems remained unsolved. Attempts to explain the behavior of matter
on the atomic level with the laws of classical physics were consistently unsuccessful. Various
phenomena, such as the electromagnetic radiation emitted by a heated object (blackbody
radiation), the emission of electrons by illuminated metals (the photoelectric effect), and the
emission of sharp spectral lines by gas atoms in an electric discharge tube, couldn’t be under-
stood within the framework of classical physics. Between 1900 and 1930, however, a modern
version of mechanics called quantum mechanics or wave mechanics was highly successful in
explaining the behavior of atoms, molecules, and nuclei.

The earliest ideas of quantum theory were introduced by Planck, and most of the subse-
quent mathematical developments, interpretations, and improvements were made by a num-
ber of distinguished physicists, including Einstein, Bohr, Schrödinger, de Broglie, Heisenberg,
Born, and Dirac. In this chapter we introduce the underlying ideas of quantum theory and the
wave–particle nature of matter, and discuss some simple applications of quantum theory,
including the photoelectric effect, the Compton effect, and x-rays.

27.1 BLACKBODY RADIATION AND 
PLANCK’S HYPOTHESIS

An object at any temperature emits electromagnetic radiation, called thermal
radiation. Stefan’s law, discussed in Section 11.5, describes the total power radi-
ated. The spectrum of the radiation depends on the temperature and properties
of the object. At low temperatures, the wavelengths of the thermal radiation are
mainly in the infrared region and hence not observable by the eye. As the temper-
ature of an object increases, the object eventually begins to glow red. At sufficiently
high temperatures, it appears to be white, as in the glow of the hot tungsten fila-
ment of a lightbulb. A careful study of thermal radiation shows that it consists of a

Color-enhanced scanning electron
micrograph of the storage mite
Lepidoglyphus destructor. These
common mites grow to 0.75 mm and
feed on molds, flour, and rice. They
thrive at 25°C and high humidity and
can trigger allergies.
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continuous distribution of wavelengths from the infrared, visible, and ultraviolet
portions of the spectrum.

From a classical viewpoint, thermal radiation originates from accelerated
charged particles near the surface of an object; such charges emit radiation, much
as small antennas do. The thermally agitated charges can have a distribution of fre-
quencies, which accounts for the continuous spectrum of radiation emitted by the
object. By the end of the 19th century, it had become apparent that the classical
theory of thermal radiation was inadequate. The basic problem was in understand-
ing the observed distribution energy as a function of wavelength in the radiation
emitted by a blackbody. By definition, a blackbody is an ideal system that absorbs
all radiation incident on it. A good approximation of a blackbody is a small hole
leading to the inside of a hollow object, as shown in Figure 27.1. The nature of
the radiation emitted through the small hole leading to the cavity depends only on
the temperature of the cavity walls, and not at all on the material composition of the
object, its shape, or other factors.

Experimental data for the distribution of energy in blackbody radiation at three
temperatures are shown in Active Figure 27.2 (page 876). The radiated energy
varies with wavelength and temperature. As the temperature of the blackbody in-
creases, the total amount of energy (area under the curve) it emits increases. Also,
with increasing temperature, the peak of the distribution shifts to shorter wave-
lengths. This shift obeys the following relationship, called Wien’s displacement law,

�maxT � 0.2898 � 10�2 m � K [27.1]

where �max is the wavelength at which the curve peaks and T is the absolute tem-
perature of the object emitting the radiation.

Figure 27.1 An opening in the cav-
ity of a body is a good approximation
of a blackbody. As light enters the
cavity through the small opening, part
is reflected and part is absorbed on
each reflection from the interior walls.
After many reflections, essentially all
of the incident energy is absorbed.

TIP 27.1 Expect to Be 
Confused
Your life experiences take place in
the macroscopic world, where quan-
tum effects are not evident. Quantum
effects can be even more bizarre than
relativistic effects, but don’t despair:
confusion is normal and expected. As
the Nobel prize-winning physicist
Richard Feynman once said, “Nobody
understands quantum mechanics.”

If you look carefully at stars in the night sky, you can
distinguish three main colors: red, white, and blue.
What causes these particular colors?

Explanation These colors result from the different 
surface temperatures of stars. A relatively cool star, with
a surface temperature of 3 000 K, has a radiation curve

like the middle curve in Active Figure 27.2 (page 876).
The peak in this curve is above the visible wavelengths,
0.4 �m–0.7 �m, beyond the wavelength of red light, so
significantly more radiation is emitted within the visible
range at the red end than the blue end of the spectrum.
Consequently, the star appears reddish in color, similar
to the red glow from the burner of an electric stove.

Applying Physics 27.1 Star Colors

A hotter star has a radiation curve more like the upper curve in Active Figure 27.2.
In this case, the star emits significant radiation throughout the visible range, and
the combination of all colors causes the star to look white. This is the case with our
own Sun, with a surface temperature of 5 800 K. For very hot stars, the peak can
be shifted so far below the visible range that significantly more blue radiation is
emitted than red, so the star appears bluish in color.

EXAMPLE 27.1 Thermal Radiation from the Human Body
Goal Apply Wien’s law.

Problem The temperature of the skin is approximately 35.0°C. At what wavelength does the radiation emitted from
the skin reach its peak?

Strategy This is a matter of substitution into Wien’s law, Equation 27.1.

Solution
Apply Wien’s displacement law: �maxT � 0.289 8 � 10�2 m � K
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Attempts to use classical ideas to explain the shapes of the curves shown in
Active Figure 27.2 failed. Active Figure 27.3 shows an experimental plot of the
blackbody radiation spectrum (red curve), together with the theoretical picture of
what this curve should look like based on classical theories (blue curve). At long
wavelengths, classical theory is in good agreement with the experimental data. At
short wavelengths, however, major disagreement exists between classical theory
and experiment. As � approaches zero, classical theory predicts that the amount of
energy being radiated should increase. In fact, the theory erroneously predicts
that the intensity should be infinite, when the experimental data shows it should
approach zero. This contradiction is called the ultraviolet catastrophe, because
theory and experiment disagree strongly in the short-wavelength, ultraviolet
region of the spectrum.

In 1900 Planck developed a formula for blackbody radiation that was 
in complete agreement with experiments at all wavelengths, leading to a
curve shown by the red line in Active Figure 27.3. Planck hypothesized that
blackbody radiation was produced by submicroscopic charged oscillators, which
he called resonators. He assumed that the walls of a glowing cavity were
composed of billions of these resonators, although their exact nature was
unknown. The resonators were allowed to have only certain discrete energies
E n, given by

[27.2]

where n is a positive integer called a quantum number, f is the frequency of vibra-
tion of the resonator, and h is a constant known as Planck’s constant, which has the
value

[27.3]

Because the energy of each resonator can have only discrete values given by
Equation 27.2, we say the energy is quantized. Each discrete energy value represents
a different quantum state, with each value of n representing a specific quantum state.
(When the resonator is in the n � 1 quantum state, its energy is hf ; when it is in
the n � 2 quantum state, its energy is 2 hf ; and so on.)

The key point in Planck’s theory is the assumption of quantized energy states.
This is a radical departure from classical physics, the “quantum leap” that led to a
totally new understanding of nature. It’s shocking: it’s like saying a pitched base-
ball can have only a fixed number of different speeds, and no speeds in between
those fixed values. When Planck presented his theory, most scientists (including
Planck!) didn’t consider the quantum concept to be realistic; however, subsequent
developments showed that a theory based on the quantum concept (rather than
on classical concepts) had to be used to explain a number of other phenomena at
the atomic level.

h � 6.626 � 10�34 J�s

En � nhf

Solve for �max, noting that 35.0°C corresponds to an
absolute temperature of 308 K:

9.41 �m�max �
0.289 8 � 10�2 m�K

308 K
�

Remark This radiation is in the infrared region of the spectrum.

Exercise 27.1
(a) Find the wavelength corresponding to the peak of the radiation curve for the heating element of an electric oven
at a temperature of 1.20 � 103 K. (Note that although this radiation peak lies in the infrared, there is enough visible
radiation at this temperature to give the element a red glow.) (b) The peak in the radiation curve of the Sun is
510 nm. Calculate the temperature of the surface of the Sun.

Answers (a) 2.42 �m; (b) 5 700 K 
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4 000 K
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2 000 K
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ACTIVE FIGURE 27.2
Intensity of blackbody radiation versus
wavelength at three different tempera-
tures. Note that the total radiation
emitted (the area under a curve)
increases with increasing temperature.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 27.2, where
you can adjust the temperature of the
blackbody and study the radiation
emitted from it.
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ACTIVE FIGURE 27.3
Comparison of experimental data
with the classical theory of blackbody
radiation. Planck’s theory matches
the experimental data perfectly.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 27.3, where
you can investigate the discrete 
energies emitted in the Planck model.
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EXAMPLE 27.2 The Quantized Macroscopic Oscillator
Goal Contrast the classical and quantum oscillator.

Problem A 2.00-kg mass is attached to a spring having force constant k � 25.0 N/m and negligible mass. The
spring is stretched 0.400 m from its equilibrium position and released. (a) Find the total energy and frequency of
oscillation according to classical calculations. (b) Assume that Planck’s law of energy quantization applies to any oscil-
lator, atomic or large scale, and find the quantum number n for this system. (c) How much energy would be carried
away in a one-quantum change?

Strategy We are given the spring constant and the oscillation amplitude, so we can find the total energy with the
conservation of mechanical energy, using the point of maximum displacement. Equation 13.10 gives the frequency of
a spring system, which can then be used with the quantum hypothesis, Equation 27.2, to obtain the value of the quan-
tum number n. In part (c), a single quantum of energy is always equal to Planck’s constant times the frequency.

Solution
(a) Find the energy and the classical frequency of the system.

Substitute into the classical energy when the block is at
maximum amplitude:

2.00 JE �
1
2

 kA2 �
1
2

 (25.0 N/m)(0.400 m)2 �

Compute the frequency of oscillation: 0.563 Hzf �
1

2�
 √ k

m
�

1
2�

 √ 25.0 N/m
2.00 kg

�

(b) Calculate the value of the quantum number n corre-
sponding to the classical energy.

Solve Equation 27.2 for n :

5.36 � 1033 �
2.00 J

(6.63 � 10�34 J�s)(0.563 Hz)
�

En � nhf : n �
En

hf
 

(c) How much energy would be carried away in a one-
quantum change?

Compute the difference between two adjacent energy
levels and substitute:

�E � En	1 � En � hf

� (6.63 � 10�34 J � s)(0.563 Hz) � 3.73 � 10�34 J

Remarks The energy carried away by a one-quantum change is such a small fraction of the total energy of the oscil-
lator that we couldn’t expect to measure it. Consequently, the energy of an object–spring system decreases by such
small quantum transitions that the decrease in energy appears to be continuous. Quantum effects become important
and measurable only on the submicroscopic level of atoms and molecules.

Exercise 27.2
A pendulum has a length of 1.50 m. Treating it as a quantum system, calculate (a) its frequency in the presence of
Earth’s gravitational field and (b) the energy carried away in a change of energy levels from n � 3 to n � 1.

Answers (a) 0.407 Hz (b) 5.39 � 10�34 J

27.2 THE PHOTOELECTRIC EFFECT AND 
THE PARTICLE THEORY OF LIGHT

In the latter part of the 19th century, experiments showed that light incident on
certain metallic surfaces caused the emission of electrons are emitted from the
surfaces. This phenomenon is known as the photoelectric effect, and the emitted
electrons are called photoelectrons. The first discovery of this phenomenon was
made by Hertz, who was also the first to produce the electromagnetic waves pre-
dicted by Maxwell.
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Active Figure 27.4 is a schematic diagram of a photoelectric effect apparatus.
An evacuated glass tube known as a photocell contains a metal plate E (the emit-
ter) connected to the negative terminal of a variable power supply. Another metal
plate, C (the collector), is maintained at a positive potential by the power supply.
When the tube is kept in the dark, the ammeter reads zero, indicating that there is
no current in the circuit. However, when plate E is illuminated by light having a
wavelength shorter than some particular wavelength that depends on the material
used to make plate E, a current is detected by the ammeter, indicating a flow of
charges across the gap between E and C. This current arises from photoelectrons
emitted from the negative plate E and collected at the positive plate C.

Active Figure 27.5 is a plot of the photoelectric current versus the potential differ-
ence �V between E and C for two light intensities. At large values of �V, the current
reaches a maximum value. In addition, the current increases as the incident light in-
tensity increases, as you might expect. Finally, when �V is negative—that is, when the
power supply in the circuit is reversed to make E positive and C negative—the current
drops to a low value because most of the emitted photoelectrons are repelled by the
now negative plate C. In this situation, only those electrons having a kinetic energy
greater than the magnitude of e�V reach C, where e is the charge on the electron.

When �V is equal to or more negative than ��Vs , the stopping potential, no
electrons reach C and the current is zero. The stopping potential is independent of
the radiation intensity. The maximum kinetic energy of the photoelectrons is
related to the stopping potential through the relationship

[27.4]

Several features of the photoelectric effect can’t be explained with classical
physics or with the wave theory of light:

• No electrons are emitted if the incident light frequency falls below some cutoff
frequency fc , which is characteristic of the material being illuminated. This is
inconsistent with the wave theory, which predicts that the photoelectric effect
should occur at any frequency, provided the light intensity is sufficiently high.

• The maximum kinetic energy of the photoelectrons is independent of light
intensity. According to wave theory, light of higher intensity should carry more
energy into the metal per unit time and therefore eject photoelectrons having
higher kinetic energies.

• The maximum kinetic energy of the photoelectrons increases with increasing
light frequency. The wave theory predicts no relationship between photoelec-
tron energy and incident light frequency.

• Electrons are emitted from the surface almost instantaneously (less than 10�9 s
after the surface is illuminated), even at low light intensities. Classically, we
expect the photoelectrons to require some time to absorb the incident radia-
tion before they acquire enough kinetic energy to escape from the metal.

KEmax � e�Vs

MAX PLANCK, German Physicist,
(1858–1947)
Planck introduced the concept of a “quan-
tum of action” (Planck’s constant h) in an
attempt to explain the spectral distribution
of blackbody radiation, which laid the foun-
dations for quantum theory. In 1918, he
was awarded the Nobel Prize for this dis-
covery of the quantized nature of energy.
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PhotoelectronsACTIVE FIGURE 27.4
A circuit diagram for studying the
photoelectric effect. When light
strikes plate E (the emitter), photo-
electrons are ejected from the plate.
Electrons moving from plate E to
plate C (the collector) create a
current in the circuit, registered at
the ammeter, A.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 27.4, where
you can observe the motion of 
electrons for various frequencies and
voltages.

High intensity

Low intensity

Applied voltage–�Vs

Current

ACTIVE FIGURE 27.5
Photoelectric current versus applied
potential difference for two light
intensities. The current increases with
intensity, but reaches a saturation
level for large values of �V. At volt-
ages equal to or less than ��Vs ,
where �Vs is the stopping potential,
the current is zero.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 27.5, where
you can sweep through the voltage
range and observe the current curve
for different intensities of radiation.
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A successful explanation of the photoelectric effect was given by Einstein in
1905, the same year he published his special theory of relativity. As part of a gen-
eral paper on electromagnetic radiation, for which he received the Nobel Prize in
1921, Einstein extended Planck’s concept of quantization to electromagnetic
waves. He suggested that a tiny packet of light energy or photon would be emitted
when a quantized oscillator made a jump from an energy state En � nhf to the
next lower state En�1 � (n � 1)hf . Conservation of energy would require the
decrease in oscillator energy, hf, to be equal to the photon’s energy E, so that

E � hf [27.5]

where h is Planck’s constant and f is the frequency of the light, which is equal to
the frequency of Planck’s oscillator.

The key point here is that the light energy lost by the emitter, hf, stays sharply
localized in a tiny packet or particle called a photon. In Einstein’s model, a photon
is so localized that it can give all its energy hf to a single electron in the metal.
According to Einstein, the maximum kinetic energy for these liberated photoelec-
trons is

[27.6]

where 
 is called the work function of the metal. The work function, which repre-
sents the minimum energy with which an electron is bound in the metal, is on the
order of a few electron volts. Table 27.1 lists work functions for various metals.

With the photon theory of light, we can explain the previously mentioned
features of the photoelectric effect that cannot be understood using concepts of
classical physics:

• Photoelectrons are created by absorption of a single photon, so the energy of
that photon must be greater than or equal to the work function, else no photo-
electrons will be produced. This explains the cutoff frequency.

• From Equation 27.6, KE max depends only on the frequency of the light and the
value of the work function. Light intensity is immaterial, because absorption of
a single photon is responsible for the electron’s change in kinetic energy.

• Equation 27.6 is linear in the frequency, so KEmax increases with increasing
frequency.

• Electrons are emitted almost instantaneously, regardless of intensity, because
the light energy is concentrated in packets rather than spread out in waves. If
the frequency is high enough, no time is needed for the electron to gradually
acquire sufficient energy to escape the metal.

Experimentally, a linear relationship is observed between f and KEmax, as sketched
in Figure 27.6. The intercept on the horizontal axis, corresponding to K E max � 0,
gives the cutoff frequency below which no photoelectrons are emitted, regardless of
light intensity. The cutoff wavelength �c can be derived from Equation 27.6:

[27.7]

where c is the speed of light. Wavelengths greater than �c incident on a material
with work function 
 don’t result in the emission of photoelectrons.

�c �
hc



KE max � hfc � 
 � 0 : h 
c
�c

� 
 � 0

K Emax � hf � 


� Energy of a photon

� Photoelectric effect equation

TABLE 27.1
Work Functions of 
Selected Metals
Metal � (eV)

Na 2.46
Al 4.08
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14
Fe 4.50

KEmax

fc f

Figure 27.6 A sketch of KEmax ver-
sus the frequency of incident light for
photoelectrons in a typical photoelec-
tric effect experiment. Photons with
frequency less than fc don’t have 
sufficient energy to eject an electron
from the metal.

INTERACTIVE EXAMPLE 27.3 Photoelectrons from Sodium
Goal Understand the quantization of light and its role in the photoelectric effect.

Problem A sodium surface is illuminated with light of wavelength 0.300 �m. The work function for sodium is 2.46 eV.
(a) Calculate the energy of each photon in electron volts, (b) the maximum kinetic energy of the ejected photoelec-
trons, and (c) the cutoff wavelength for sodium.
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Strategy Parts (a), (b), and (c) require substitution of values into Equations 27.5, 27.6, and 27.7, respectively.

Solution
(a) Calculate the energy of each photon.

Obtain the frequency from the wavelength:

f � 1.00 � 1015 Hz

 c � f � : f �
c
�

�
3.00 � 108 m/s
0.300 � 10�6 m

Use Equation 27.5 to calculate the photon’s energy:

4.14 eV� (6.63 � 10�19 J)� 1.00 eV
1.60 � 10�19 J � �

 � 6.63 � 10�19 J

 E � hf � (6.63 � 10�34 J � s)(1.00 � 1015 Hz)

(b) Find the maximum kinetic energy of the 
photoelectrons.

Substitute into Equation 27.6: K E max � hf � 
 � 4.14 eV � 2.46 eV � 1.68 eV

(c) Compute the cutoff wavelength.

Convert 
 from electron volts to joules: 
 � 2.46 eV � (2.46 eV)(1.60 � 10�19 J/eV)

� 3.94 � 10�19 J

Find the cutoff wavelength using Equation 27.7.

505 nm� 5.05 � 10�7 m �

�c �
hc



�
(6.63 � 10�34 J �s)(3.00 � 108 m/s)

3.94 � 10�19 J

Remark The cutoff wavelength is in the yellow-green region of the visible spectrum.

Exercise 27.3
(a) What minimum-frequency light will eject photoelectrons from a copper surface? (b) If this frequency is tripled,
find the maximum kinetic energy (in eV) of the resulting photoelectrons. (Answer in eV.)

Answers (a) 1.13 � 1015 Hz (b) 9.40 eV

Investigate the photoelectric effect for different materials and different wavelengths of light by log-
ging into PhysicsNow at www.cp7e.com and going to Interactive Example 27.3.

Photocells
The photoelectric effect has many interesting applications using a device called
the photocell. The photocell shown in Active Figure 27.4 produces a current in the
circuit when light of sufficiently high frequency falls on the cell, but it doesn’t
allow a current in the dark. This device is used in streetlights: a photoelectric con-
trol unit in the base of the light activates a switch that turns off the streetlight
when ambient light strikes it. Many garage-door systems and elevators use a light
beam and a photocell as a safety feature in their design. When the light beam
strikes the photocell, the electric current generated is sufficiently large to main-
tain a closed circuit. When an object or a person blocks the light beam, the cur-
rent is interrupted, which signals the door to open.

27.3 X-RAYS
In 1895 at the University of Wurzburg, Wilhelm Roentgen (1845–1923) was study-
ing electrical discharges in low-pressure gases when he noticed that a fluorescent
screen glowed even when placed several meters from the gas discharge tube and

A P P L I C AT I O N
Photocells
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even when black cardboard was placed between the tube and the screen. He con-
cluded that the effect was caused by a mysterious type of radiation, which he called
x-rays because of their unknown nature. Subsequent study showed that these rays
traveled at or near the speed of light and that they couldn’t be deflected by either
electric or magnetic fields. This last fact indicated that x-rays did not consist of
beams of charged particles, although the possibility that they were beams of
uncharged particles remained.

In 1912 Max von Laue (1879–1960) suggested that if x-rays were electromag-
netic waves with very short wavelengths, it should be possible to diffract them
by using the regular atomic spacings of a crystal lattice as a diffraction grating,
just as visible light is diffracted by a ruled grating. Shortly thereafter, researchers
demonstrated that such a diffraction pattern could be observed, similar to that
shown in Figure 27.7 for NaCl. The wavelengths of the x-rays were then deter-
mined from the diffraction data and the known values of the spacing between
atoms in the crystal. X-ray diffraction has proved to be an invaluable technique for
understanding the structure of matter (as discussed in more detail in the next
section).

Typical x-ray wavelengths are about 0.1 nm, which is on the order of the atomic
spacing in a solid. We now know that x-rays are a part of the electromagnetic spec-
trum, characterized by frequencies higher than those of ultraviolet radiation and
having the ability to penetrate most materials with relative ease.

X-rays are produced when high-speed electrons are suddenly slowed down—
for example, when a metal target is struck by electrons that have been accelerated
through a potential difference of several thousand volts. Figure 27.8a shows
a schematic diagram of an x-ray tube. A current in the filament causes
electrons to be emitted, and these freed electrons are accelerated toward a dense
metal target, such as tungsten, which is held at a higher potential than the
filament.

Figure 27.9 represents a plot of x-ray intensity versus wavelength for the spec-
trum of radiation emitted by an x-ray tube. Note that the spectrum has are two
distinct components. One component is a continuous broad spectrum that
depends on the voltage applied to the tube. Superimposed on this component
is a series of sharp, intense lines that depend on the nature of the target
material. The accelerating voltage must exceed a certain value, called the
threshold voltage, in order to observe these sharp lines, which represent
radiation emitted by the target atoms as their electrons undergo rearrange-
ments. We will discuss this further in Chapter 28. The continuous radiation is
sometimes called bremsstrahlung, a German word meaning “braking radiation,”
because electrons emit radiation when they undergo an acceleration inside the
target.

Figure 27.10 (page 882) illustrates how x-rays are produced when an electron
passes near a charged target nucleus. As the electron passes close to a positively

Figure 27.7 X-ray diffraction
pattern of NaCl. 
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Figure 27.8 (a) Diagram of an 
x-ray tube. (b) Photograph of an x-ray
tube.
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Figure 27.9 The x-ray spectrum of a metal target consists of a
broad continuous spectrum plus a number of sharp lines, which
are due to characteristic x-rays. The data shown were obtained
when 35-keV electrons bombarded a molybdenum target. Note
that 1 pm � 10�12 m � 10�3 nm.
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882 Chapter 27 Quantum Physics

charged nucleus contained in the target material, it is deflected from its path be-
cause of its electrical attraction to the nucleus; hence, it undergoes an acceleration.
An analysis from classical physics shows that any charged particle will emit electro-
magnetic radiation when it is accelerated. (An example of this phenomenon is the
production of electromagnetic waves by accelerated charges in a radio antenna, as
described in Chapter 21.) According to quantum theory, this radiation must appear
in the form of photons. Because the radiated photon shown in Figure 27.10 carries
energy, the electron must lose kinetic energy because of its encounter with the
target nucleus. An extreme example would consist of the electron losing all
of its energy in a single collision. In this case, the initial energy of the electron
(e�V ) is transformed completely into the energy of the photon (hf max). In
equation form,

[27.8]

where e�V is the energy of the electron after it has been accelerated through a
potential difference of �V volts and e is the charge on the electron. This says that
the shortest wavelength radiation that can be produced is

[27.9]

The reason that not all the radiation produced has this particular wavelength is
because many of the electrons aren’t stopped in a single collision. This results in
the production of the continuous spectrum of wavelengths.

Interesting insights into the process of painting and revising a masterpiece are
being revealed by x-rays. Long wavelength x-rays are absorbed in varying degrees
by some paints, such as those having lead, cadmium, chromium, or cobalt as a
base. The x-ray interactions with the paints give contrast, because the different
elements in the paints have different electron densities. Also, thicker layers will
absorb more than thin layers. To examine a painting by an old master, a film is
placed behind it while it is x-rayed from the front. Ghost outlines of earlier paint-
ings and earlier forms of the final masterpiece are sometimes revealed when the
film is developed.

�min �
hc

e�V

e�V � hfmax �
hc

�min

Figure 27.10 An electron passing
near a charged target atom experi-
ences an acceleration, and a photon
is emitted in the process.
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A P P L I C AT I O N
Using X-Rays to Study the
Work of Master Painters

EXAMPLE 27.4 An X-Ray Tube
Goal Calculate the minimum x-ray wavelength due to accelerated electrons.

Problem Medical x-ray machines typically operate at a potential difference of 1.00 � 105 V. Calculate the minimum
wavelength their x-ray tubes produce when electrons are accelerated through this potential difference.

Strategy The minimum wavelength corresponds to the most energetic photons. Substitute the given potential dif-
ference into Equation 27.9.

Solution
Substitute into Equation 27.9:

� 1.24 � 10�11 m

 �
(6.63 � 10�34 J �s)(3.00 � 108 m/s)

(1.60 � 10�19 C)(1.00 � 105 V)

 �min �
hc

e�V

Remarks X-ray tubes generally operate with half the voltage with respect to Earth, 	50 000 V, applied to the
anode, and the other half, �50 000 V, applied to the cathode. This lengthens tube lifetime by reducing the probabil-
ity of voltage breakthroughs.
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27.4 DIFFRACTION OF X-RAYS BY CRYSTALS
In Chapter 24 we described how a diffraction grating could be used to measure
the wavelength of light. In principle, the wavelength of any electromagnetic wave
can be measured if a grating having a suitable line spacing can be found. The
spacing between lines must be approximately equal to the wavelength of the radia-
tion to be measured. X-rays are electromagnetic waves with wavelengths on the
order of 0.1 nm. It would be impossible to construct a grating with such a small
spacing. However, as noted in the previous section, Max von Laue suggested that
the regular array of atoms in a crystal could act as a three-dimensional grating for
observing the diffraction of x-rays.

One experimental arrangement for observing x-ray diffraction is shown in
Figure 27.11. A narrow beam of x-rays with a continuous wavelength range is inci-
dent on a crystal such as sodium chloride. The diffracted radiation is very intense
in certain directions, corresponding to constructive interference from waves
reflected from layers of atoms in the crystal. The diffracted radiation is detected by
a photographic film and forms an array of spots known as a Laue pattern. The crys-
tal structure is determined by analyzing the positions and intensities of the various
spots in the pattern.

The arrangement of atoms in a crystal of NaCl is shown in Figure 27.12. The
smaller red spheres represent Na	 ions, and the larger blue spheres represent Cl�

ions. The spacing between successive Na	 (or Cl�) ions in this cubic structure,
denoted by the symbol a in Figure 27.12, is approximately 0.563 nm.

A careful examination of the NaCl structure shows that the ions lie in various
planes. The shaded areas in Figure 27.12 represent one example, in which the
atoms lie in equally spaced planes. Now suppose an x-ray beam is incident at
grazing angle � on one of the planes, as in Figure 27.13. The beam can be
reflected from both the upper and lower plane of atoms. However, the
geometric construction in Figure 27.13 shows that the beam reflected from
the lower surface travels farther than the beam reflected from the upper surface
by a distance of 2d sin �. The two portions of the reflected beam will combine
to produce constructive interference when this path difference equals some integral
multiple of the wavelength �. The condition for constructive interference is
given by

[27.10]2d sin � � m�    (m � 1, 2, 3, . . .)

Exercise 27.4
What potential difference would be necessary to produce gamma rays with wavelength 1.00 � 10�15 m? This wave-
length is about the same size as the diameter of a proton.

Solution 1.24 � 109 V

X-ray
tube

X-rays

Crystal

Collimator Photographic
film

Figure 27.11 Schematic diagram
of the technique used to observe the
diffraction of x-rays by a single crystal.
The array of spots formed on the film
by the diffracted beams is called a
Laue pattern. (See Fig. 27.7.)

a

Figure 27.12 A model of the cubic
crystalline structure of sodium chlo-
ride. The blue spheres represent the
Cl� ions, and the red spheres repre-
sent the Na	 ions. The length of the
cube edge is a � 0.563 nm.

� Bragg’s law

Incident
beam

Reflected
beam

Upper plane

Lower plane

d

d sin u

u

u

u
Figure 27.13 A two-dimensional
depiction of the reflection of an x-ray
beam from two parallel crystalline
planes separated by a distance d. The
beam reflected from the lower plane
travels farther than the one reflected
from the upper plane by an amount
equal to 2d sin �.
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This condition is known as Bragg’s law, after W. L. Bragg (1890–1971), who
first derived the relationship. If the wavelength and diffraction angle are
measured, Equation 27.10 can be used to calculate the spacing between atomic
planes.

The method of x-ray diffraction to determine crystalline structures was thor-
oughly developed in England by W. H. Bragg and his son W. L. Bragg, who shared
a Nobel prize in 1915 for their work. Since then, thousands of crystalline
structures have been investigated. Most importantly, the technique of x-ray diffrac-
tion has been used to determine the atomic arrangement of complex organic mol-
ecules such as proteins. Proteins are large molecules containing thousands of
atoms that help to regulate and speed up chemical life processes in cells. Some
proteins are amazing catalysts, speeding up the slow room temperature reactions
in cells by 17 orders of magnitude. In order to understand this incredible
biochemical reactivity, it is important to determine the structure of these intricate
molecules.

The main technique used to determine the molecular structure of proteins,
DNA, and RNA is x-ray diffraction using x-rays of wavelength of about 1.0 A. This
technique allows the experimenter to “see” individual atoms that are separated by
about this distance in molecules. Since the biochemical x-ray diffraction sample is
prepared in crystal form, the geometry (position of the bright spots in space) of the
diffraction pattern is determined by the regular three-dimensional crystal lattice
arrangement of molecules in the sample. The intensities of the bright diffraction
spots are determined by the atoms and their electronic distributions in the funda-
mental building block of the crystal: the unit cell. Using complicated computa-
tional techniques, investigators can essentially deduce the molecular structure by
matching the observed intensities of diffracted beams with a series of assumed
atomic positions that determine the atomic structure and electron density of the
molecule. Figure 27.14 shows a classic x-ray diffraction image of DNA made by
Rosalind Franklin in 1952.

This and similar x-ray diffraction photos played an important role in the
determination of the double-helix structure of DNA by F. H. C. Crick and
J. D. Watson in 1953. A model of the famous DNA double helix is shown in 
Figure 27.15.

Figure 27.14 An x-ray diffraction
photograph of DNA taken by Rosalind
Franklin. The cross pattern of spots was
a clue that DNA has a helical structure.
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Figure 27.15 The double-helix
structure of DNA.

EXAMPLE 27.5 X-Ray Diffraction from Calcite
Goal Understand Bragg’s law and apply it to a crystal.

Problem If the spacing between certain planes in a crystal of calcite (CaCO3) is 0.314 nm, find the grazing angles at
which first- and third-order interference will occur for x-rays of wavelength 0.070 0 nm.

Strategy Solve Bragg’s law for sin � and substitute, using the inverse-sine function to obtain the angle.

Solution
Find the grazing angle corresponding to m � 1, for first-
order interference:

� � sin�1(0.111) � 6.37�

sin � �
m�

2d
�

(0.070 0 nm)
2(0.314 nm)

� 0.111

Repeat the calculation for third-order interference 
(m � 3):

� � sin�1(0.334) � 19.5�

sin � �
m�

2d
�

3(0.070 0 nm)
2(0.314 nm)

� 0.334

Remark Notice there is little difference between this kind of problem and a Young’s slit experiment.
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27.5 The Compton Effect 885

27.5 THE COMPTON EFFECT
Further justification for the photon nature of light came from an experiment
conducted by Arthur H. Compton in 1923. In his experiment, Compton directed an
x-ray beam of wavelength �0 toward a block of graphite. He found that the scattered
x-rays had a slightly longer wavelength � than the incident x-rays, and hence the en-
ergies of the scattered rays were lower. The amount of energy reduction depended
on the angle at which the x-rays were scattered. The change in wavelength ��
between a scattered x-ray and an incident x-ray is called the Compton shift.

In order to explain this effect, Compton assumed that if a photon behaves like a
particle, its collision with other particles is similar to a collision between two bil-
liard balls. Hence, the x-ray photon carries both measurable energy and momentum,
and these two quantities must be conserved in a collision. If the incident photon
collides with an electron initially at rest, as in Figure 27.16, the photon transfers
some of its energy and momentum to the electron. As a consequence, the energy
and frequency of the scattered photon are lowered and its wavelength increases.
Applying relativistic energy and momentum conservation to the collision de-
scribed in Figure 27.16, the shift in wavelength of the scattered photon is given by

[27.11]

where me is the mass of the electron and � is the angle between the directions of
the scattered and incident photons. The quantity h/mec is called the Compton
wavelength and has a value of 0.002 43 nm. The Compton wavelength is very small
relative to the wavelengths of visible light, so the shift in wavelength would be
difficult to detect if visible light were used. Further, note that the Compton shift
depends on the scattering angle � and not on the wavelength. Experimental
results for x-rays scattered from various targets obey Equation 27.11 and strongly
support the photon concept.

�� � � � �0 �
h

mec
 (1 � cos �)

Exercise 27.5
X-rays of wavelength 0.060 0 nm are scattered from a crystal with a grazing angle of 11.7°. Assume m � 1 for this
process. Calculate the spacing between the crystal planes.

Answer 0.148 nm

ARTHUR HOLLY COMPTON,
American Physicist (1892–1962)
Compton was born in Wooster, Ohio, and
he attended Wooster College and Princeton
University. He became director of the labo-
ratory at the University of Chicago, where
experimental work concerned with sus-
tained chain reactions was conducted. This
work was of central importance to the
construction of the first atomic bomb. His
discovery of the Compton effect and his
work with cosmic rays led to his sharing the
1927 Nobel Prize in physics with Charles
Wilson.
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An x-ray photon is scattered by an electron. The frequency of the scattered photon
relative to that of the incident photon (a) increases, (b) decreases, or (c) remains
the same.

Quick Quiz 27.1

Figure 27.16 Diagram represent-
ing Compton scattering of a photon
by an electron. The scattered photon
has less energy (or a longer wave-
length) than the incident photon.

� The Compton shift formula
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A photon of energy E0 strikes a free electron, with the scattered photon of energy
E moving in the direction opposite that of the incident photon. In this Compton
effect interaction, the resulting kinetic energy of the electron is 
(a) E0 (b) E (c) E0 � E (d) E0 	 E (e) None of the above

Quick Quiz 27.2

The Compton effect involves a change in wavelength
as photons are scattered through different angles.
Suppose we illuminate a piece of material with a beam
of light and then view the material from different an-
gles relative to the beam of light. Will we see a color
change corresponding to the change in wavelength of
the scattered light?

Explanation There will be a wavelength change for visi-
ble light scattered by the material, but the change will

be far too small to detect as a color change. The largest
possible wavelength change, at 180° scattering, will be
twice the Compton wavelength, about 0.005 nm. This
represents a change of less than 0.001% of the wave-
length of red light. The Compton effect is only de-
tectable for wavelengths that are very short to begin
with, so that the Compton wavelength is an appreciable
fraction of the incident wavelength. As a result, the
usual radiation for observing the Compton effect is in
the x-ray range of the electromagnetic spectrum.

Applying Physics 27.2 Color Changes through the Compton Effect

INTERACTIVE EXAMPLE 27.6 Scattering X-Rays
Goal Understand Compton scattering and its effect on the photon’s energy.

Problem X-rays of wavelength �0 � 0.200 000 nm are scattered from a block of material. The scattered x-rays are
observed at an angle of 45.0° to the incident beam. (a) Calculate the wavelength of the x-rays scattered at this angle.
(b) Compute the fractional change in the energy of a photon in the collision.

Solution
(a) Calculate the wavelength of the x-rays.

Substitute into Equation 27.11 to obtain the wavelength
shift:

� 7.11 � 10�13 m � 0.000 711 nm

�
6.63 � 10�34 J �s

(9.11� 10�31 kg)(3.00 � 108 m/s)
 (1 � cos 45.0�)

�� �
h

mec
 (1 � cos �)

Add this shift to the original wavelength to obtain the
wavelength of the scattered photon:

� � �� 	 �0 � 0.200 711 nm

(b) Find the fraction of energy lost by the photon in the
collision.

Rewrite the energy E in terms of wavelength, using c � f �: E � hf � h 
c
�

Compute �E/E using this expression:
�E
E

�
Ef � Ei

Ei
�

hc/�f � hc/�i

hc/�i

Cancel hc and rearrange terms:
�E
E

�
1/�f � 1/�i

1/�i
�

�i

�f
� 1 �

�i � �f

�f
� �

��

�f

Substitute values from part (a): �3.54 � 10�3�E
E

� �
0.000 711 nm
0.200 711 nm

�

Remarks It is also possible to find this answer by substituting into the energy expression at an earlier stage, but the
algebraic derivation is more elegant and instructive.
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27.6 THE DUAL NATURE OF LIGHT AND MATTER
Light and Electromagnetic Radiation
Phenomena such as the photoelectric effect and the Compton effect offer evi-
dence that when light (or other forms of electromagnetic radiation) and matter
interact, the light behaves as if it were composed of particles having energy hf and
momentum h/�. In other contexts, however, light acts like a wave, exhibiting inter-
ference and diffraction effects. Is light a wave or a particle?

The answer depends on the phenomenon being observed. Some experiments
can be better explained with the photon concept, whereas others are best
described with a wave model. The end result is that both models are needed.
Light has a dual nature, exhibiting both wave and particle characteristics.

To understand why photons are compatible with electromagnetic waves, con-
sider 2.5-MHz radio waves as an example. The energy of a photon having this
frequency is only about 10�8 eV, too small to allow the photon to be detected. A
sensitive radio receiver might require as many as 1010 of these photons to produce
a detectable signal. Such a large number of photons would appear, on the average,
as a continuous wave. With so many photons reaching the detector every second,
we wouldn’t be able to detect the individual photons striking the antenna.

Now consider what happens as we go to higher frequencies. In the visible
region, it’s possible to observe both the particle characteristics and the wave char-
acteristics of light. As we mentioned earlier, a light beam shows interference phe-
nomena (thus, it is a wave) and at the same time can produce photoelectrons
(thus, it is a particle). At even higher frequencies, the momentum and energy of
the photons increase. Consequently, the particle nature of light becomes more
evident than its wave nature. For example, the absorption of an x-ray photon is
easily detected as a single event, but wave effects are difficult to observe.

The Wave Properties of Particles
In his doctoral dissertation in 1924, Louis de Broglie postulated that, because
photons have wave and particle characteristics, perhaps all forms of matter have
both properties. This was a highly revolutionary idea with no experimental confir-
mation at that time. According to de Broglie, electrons, just like light, have a dual
particle–wave nature.

In Chapter 26 we found that the relationship between energy and momentum
for a photon, which has a rest energy of zero, is p � E/c. We also know from Equa-
tion 27.5 that the energy of a photon is

[27.12]

Consequently, the momentum of a photon can be expressed as

[27.13]

From this equation, we see that the photon wavelength can be specified by its
momentum, or � � h/p . De Broglie suggested that all material particles with
momentum p should have a characteristic wavelength � � h/p. Because the

p �
E
c

�
hc
c�

�
h
�

E � hf �
hc
�

Exercise 27.6
Repeat the exercise for a photon with wavelength 3.00 � 10�2 nm that scatters at an angle of 60.0°.

Answers (a) 3.12 � 10�2 nm (b) �E/ E � � 3.88 � 10�2

Study Compton scattering for different angles by logging into PhysicsNow at www.cp7e.com and
going to Interactive Example 27.6.

LOUIS DE BROGLIE, French
Physicist, (1892–1987)
De Broglie was born in Dieppe, France. At
the Sorbonne in Paris, he studied history in
preparation for what he hoped to be a
career in the diplomatic service. The world
of science is lucky that he changed his
career path to become a theoretical physi-
cist. De Broglie was awarded the Nobel
Prize in 1929 for his discovery of the wave
nature of electrons.

AI
P 

N
ie

ls
 B

oh
r L

ib
ra

ry

� Momentum of a photon
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momentum of a particle of mass m and speed v is mv � p, the de Broglie wavelength
of a particle is

[27.14]

Further, de Broglie postulated that the frequencies of matter waves (waves asso-
ciated with particles having nonzero rest energy) obey the Einstein relationship
for photons, E � hf , so that

[27.15]

The dual nature of matter is quite apparent in Equations 27.14 and 27.15, because
each contains both particle concepts (mv and E ) and wave concepts (� and f ).
The fact that these relationships had been established experimentally for photons
made the de Broglie hypothesis that much easier to accept.

The Davisson–Germer Experiment
De Broglie’s proposal in 1923 that matter exhibits both wave and particle proper-
ties was first regarded as pure speculation. If particles such as electrons had wave-
like properties, then, under the correct conditions, they should exhibit diffraction
effects. In 1927, three years after de Broglie published his work, C. J. Davisson
(1881–1958) and L. H. Germer (1896–1971) of the United States succeeded in
measuring the wavelength of electrons. Their important discovery provided the
first experimental confirmation of the matter waves proposed by de Broglie.

The intent of the initial Davisson–Germer experiment was not to confirm the de
Broglie hypothesis. In fact, their discovery was made by accident (as is often the
case). The experiment involved the scattering of low-energy electrons (about 54 eV)
from a nickel target in a vacuum. During one experiment, the nickel surface was
badly oxidized because of an accidental break in the vacuum system. After the nickel
target was heated in a flowing stream of hydrogen to remove the oxide coating, elec-
trons scattered by it exhibited intensity maxima and minima at specific angles. The
experimenters finally realized that the nickel had formed large crystalline regions
upon heating and that the regularly spaced planes of atoms in the crystalline regions
served as a diffraction grating for electron matter waves. (See Section 27.5.)

Shortly thereafter, Davisson and Germer performed more extensive diffraction
measurements on electrons scattered from single-crystal targets. Their results
showed conclusively the wave nature of electrons and confirmed the de Broglie
relation � � h/p. In the same year, G. P. Thomson (1892–1975) of Scotland also
observed electron diffraction patterns by passing electrons through very thin gold
foils. Diffraction patterns have since been observed for helium atoms, hydrogen
atoms, and neutrons. Hence, the universal nature of matter waves has been estab-
lished in various ways.

f �
E
h

� �
h
p

�
h

mv
de Broglie’s hypothesis �

Frequency of matter waves �

A nonrelativistic electron and a nonrelativistic proton are moving and have the
same de Broglie wavelength. Which of the following are also the same for the two
particles?
(a) speed (b) kinetic energy (c) momentum (d) frequency

Quick Quiz 27.3

We have seen two wavelengths assigned to the electron: the Compton wavelength
and the de Broglie wavelength. Which is an actual physical wavelength associated
with the electron? (a) the Compton wavelength (b) the de Broglie wavelength
(c) both wavelengths (d) neither wavelength

Quick Quiz 27.4
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27.6 The Dual Nature of Light and Matter 889

Application: The Electron Microscope
A practical device that relies on the wave characteristics of electrons is the electron
microscope. A transmission electron microscope, used for viewing flat, thin sam-
ples, is shown in Figure 27.17 (page 890). In many respects, it is similar to an opti-
cal microscope, but the electron microscope has a much greater resolving power
because it can accelerate electrons to very high kinetic energies, giving them very
short wavelengths. No microscope can resolve details that are significantly smaller
than the wavelength of the radiation used to illuminate the object. Typically, the
wavelengths of electrons are about 100 times smaller than those of the visible light
used in optical microscopes. (Radiation of the same wavelength as the electrons in
an electron microscope is in the x-ray region of the spectrum.)

EXAMPLE 27.7 The Electron versus the Baseball
Goal Apply the de Broglie hypothesis to a quantum and a classical object.

Problem (a) Compare the de Broglie wavelength for an electron (me � 9.11 � 10�31 kg) moving at a speed of 
1.00 � 107 m/s with that of a baseball of mass 0.145 kg pitched at 45.0 m/s. (b) Compare these wavelengths with that
of an electron traveling at 0.999c.

Strategy This is a matter of substitution into Equation 27.14 for the de Broglie wavelength. In part (b), the rela-
tivistic momentum must be used.

Solution
(a) Compare the de Broglie wavelengths of the 
electron and the baseball.

Substitute data for the electron into Equation 27.14:

� 7.28 � 10�11 m

�e �
h

mev
�

6.63 � 10�34 J�s
(9.11 � 10�31 kg)(1.00 � 107 m/s)

Repeat the calculation with the baseball data: 1.02 � 10�34 m�b �
h

mbv
�

6.63 � 10�34 J�s
(0.145 kg)(45.0 m/s)

�

(b) Find the wavelength for an electron traveling at
0.999c.

Replace the momentum in Equation 27.14 with the rela-
tivistic momentum:

�e �
h

mev/√1 � v2/c2
�

h √1 � v2/c2

mev

Substitute:

� 1.09 � 10�13 m

�e �
(6.63 � 10�34 J�s)√1 � (0.999c)2/c2

(9.11 � 10�31 kg)(0.999 �3.00 � 108 m/s)

Remarks The electron wavelength corresponds to that of x-rays in the electromagnetic spectrum. The baseball,
by contrast, has a wavelength much smaller than any aperture through which the baseball could possibly pass,
so we couldn’t observe any of its diffraction effects. It is generally true that the wave properties of large-scale objects 
can’t be observed. Notice that even at extreme relativistic speeds, the electron wavelength is still far larger than the
baseball’s.

Exercise 27.7
Find the de Broglie wavelength of a proton (mp � 1.67 � 10�27 kg) moving with a speed of 1.00 � 107 m/s.

Answer 3.97 � 10�14 m

A P P L I C AT I O N
Electron Microscopes
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890 Chapter 27 Quantum Physics

The electron beam in an electron microscope is controlled by electrostatic or
magnetic deflection, which acts on the electrons to focus the beam to an image.
Rather than examining the image through an eyepiece as in an optical microscope,
the viewer looks at an image formed on a fluorescent screen. (The viewing screen
must be fluorescent because otherwise the image produced wouldn’t be visible.) 

(a)

Electron gun

Electromagnetic
condenser
lens

Screen

Visual
transmission

Vacuum

Core

Coil

Electron
beam

Specimen
goes
here

Projector
lens

Photo
chamber

Specimen
chamber
door

Anode

Electromagnetic
lens

Cathode

(b)

Figure 27.17 (a) Diagram of a transmission electron microscope for viewing a thin sectioned sample.
The “lenses” that control the electron beam are magnetic deflection coils. (b) An electron microscope.
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Electron microscopes (Fig. 27.17) take advantage 
of the wave nature of particles. Electrons are acceler-
ated to high speeds, giving them a short de Broglie
wavelength. Imagine an electron microscope using
electrons with a de Broglie wavelength of 0.2 nm. 
Why don’t we design a microscope using 0.2-nm
photons to do the same thing?

Explanation Because electrons are charged particles,
they interact electrically with the sample in the micro-
scope and scatter according to the shape and density
of various portions of the sample, providing a means
of viewing the sample. Photons of wavelength 0.2 nm
are uncharged and in the x-ray region of the spec-
trum. They tend to simply pass through the thin sam-
ple without interacting.

Applying Physics 27.3 X-Ray Microscopes?

27.7 THE WAVE FUNCTION
De Broglie’s revolutionary idea that particles should have a wave nature soon
moved out of the realm of skepticism to the point where it was viewed as a neces-
sary concept in understanding the subatomic world. In 1926, the Austrian–German
physicist Erwin Schrödinger proposed a wave equation that described how matter
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27.8 The Uncertainty Principle 891

waves change in space and time. The Schrödinger wave equation represents a key
element in the theory of quantum mechanics. It’s as important in quantum me-
chanics as Newton’s laws in classical mechanics. Schrödinger’s equation has been
successfully applied to the hydrogen atom and to many other microscopic systems.

Solving Schrödinger’s equation (beyond the level of this course) determines a
quantity  called the wave function. Each particle is represented by a wave func-
tion  that depends both on position and on time. Once  is found, 2 gives us
information on the probability (per unit volume) of finding the particle in any
given region. To understand this, we return to Young’s experiment involving co-
herent light passing through a double slit.

First, recall from Chapter 21 that the intensity of a light beam is proportional to
the square of the electric field strength E associated with the beam: I � E 2. Accord-
ing to the wave model of light, there are certain points on the viewing screen
where the net electric field is zero as a result of destructive interference of waves
from the two slits. Because E is zero at these points, the intensity is also zero, and
the screen is dark there. Likewise, at points on the screen at which constructive
interference occurs, E is large, as is the intensity; hence, these locations are bright.

Now consider the same experiment when light is viewed as having a particle na-
ture. The number of photons reaching a point on the screen per second increases
as the intensity (brightness) increases. Consequently, the number of photons that
strike a unit area on the screen each second is proportional to the square of the
electric field, or N � E 2. From a probabilistic point of view, a photon has a high
probability of striking the screen at a point at which the intensity (and E 2) is high
and a low probability of striking the screen where the intensity is low.

When describing particles rather than photons,  rather than E plays the role
of the amplitude. Using an analogy with the description of light, we make the fol-
lowing interpretation of  for particles: If  is a wave function used to describe a
single particle, the value of 2 at some location at a given time is proportional to
the probability per unit volume of finding the particle at that location at that time.
Adding up all the values of 2 in a given region gives the probability of finding the
particle in that region.

27.8 THE UNCERTAINTY PRINCIPLE
If you were to measure the position and speed of a particle at any instant, you would
always be faced with experimental uncertainties in your measurements. According to
classical mechanics, no fundamental barrier to an ultimate refinement of the appara-
tus or experimental procedures exists. In other words, it’s possible, in principle, to
make such measurements with arbitrarily small uncertainty. Quantum theory predicts,
however, that such a barrier does exist. In 1927, Werner Heisenberg (1901–1976) in-
troduced this notion, which is now known as the uncertainty principle:

If a measurement of the position of a particle is made with precision �x and a
simultaneous measurement of linear momentum is made with precision �px ,
then the product of the two uncertainties can never be smaller than h/4� :

[27.16]

In other words, it is physically impossible to measure simultaneously the exact
position and exact linear momentum of a particle. If �x is very small, then �px is
large, and vice versa.

To understand the physical origin of the uncertainty principle, consider the fol-
lowing thought experiment introduced by Heisenberg. Suppose you wish to mea-
sure the position and linear momentum of an electron as accurately as possible. You
might be able to do this by viewing the electron with a powerful light microscope.
For you to see the electron and determine its location, at least one photon of light
must bounce off the electron, as shown in Figure 27.18a, and pass through the

�x �px �
h

4�

ERWIN SCHRÖDINGER, Austrian
Theoretical Physicist (1887–1961)
Schrödinger is best known as the creator of
wave mechanics, a less cumbersome theory
than the equivalent matrix mechanics
developed by Werner Heisenberg. In 1933
Schrödinger left Germany and eventually
settled at the Dublin Institute of Advanced
Study, where he spent 17 happy, creative
years working on problems in general rela-
tivity, cosmology, and the application of
quantum physics to biology. In 1956, he re-
turned home to Austria and his beloved
Tirolean mountains, where he died in 1961.
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WERNER HEISENBERG, German
Theoretical Physicist (1901–1976)
Heisenberg obtained his Ph.D. in 1923 at the
University of Munich, where he studied under
Arnold Sommerfeld.While physicists such as
de Broglie and Schrödinger tried to develop
physical models of the atom, Heisenberg
developed an abstract mathematical model
called matrix mechanics to explain the wave-
lengths of spectral lines. Heisenberg made
many other significant contributions to
physics, including his famous uncertainty
principle, for which he received the Nobel
Prize in 1932; the prediction of two forms of
molecular hydrogen; and theoretical models
of the nucleus of an atom.
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892 Chapter 27 Quantum Physics

microscope into your eye, as shown in Figure 27.18b. When it strikes the electron,
however, the photon transfers some unknown amount of its momentum to the elec-
tron. Thus, in the process of locating the electron very accurately (that is, by making
�x very small), the light that enables you to succeed in your measurement changes
the electron’s momentum to some undeterminable extent (making �px very large).

The incoming photon has momentum h/�. As a result of the collision, the pho-
ton transfers part or all of its momentum along the x-axis to the electron. There-
fore, the uncertainty in the electron’s momentum after the collision is as great as
the momentum of the incoming photon: �px � h/�. Further, because the photon
also has wave properties, we expect to be able to determine the electron’s position
to within one wavelength of the light being used to view it, so �x � �. Multiplying
these two uncertainties gives

The value h represents the minimum in the product of the uncertainties. Because
the uncertainty can always be greater than this minimum, we have

�x �px � h

Apart from the numerical factor 1/4� introduced by Heisenberg’s more precise
analysis, this inequality agrees with Equation 27.16.

Another form of the uncertainty relationship sets a limit on the accuracy with
which the energy E of a system can be measured in a finite time interval �t :

[27.17]

It can be inferred from this relationship that the energy of a particle cannot be
measured with complete precision in a very short interval of time. Thus, when an
electron is viewed as a particle, the uncertainty principle tells us that (a) its posi-
tion and velocity cannot both be known precisely at the same time and (b) its
energy can be uncertain for a period given by �t � h/(4� �E ).

�E �t �
h

4�

�x �px � � � h
� � � h

Scattered
photon

After
collision

Recoiling
electron

(b)(a)

Incident
photon

Before
collision

Electron

Figure 27.18 A thought experi-
ment for viewing an electron with a
powerful microscope. (a) The electron
is viewed before colliding with the
photon. (b) The electron recoils 
(is disturbed) as the result of the
collision with the photon.

A common, but erroneous, description of the absolute
zero of temperature is “that temperature at which all
molecular motion ceases.” How can the uncertainty
principle be used to argue against this description?

Explanation Imagine a particular molecule in a piece of
material. The molecule is confined within the material,
so there is a fixed uncertainty �x in its position along
one axis, corresponding to the size of that piece of mate-

rial. If all molecular motion ceased at absolute zero, the
given molecule’s velocity, in particular, would be exactly
zero, so its uncertainty in velocity would be �v � 0,
meaning its uncertainty in momentum would also be
zero, since p � mv. The product of zero uncertainty in
momentum and a nonzero uncertainty in position is
zero, violating the uncertainty principle. So according to
the uncertainty principle, there must be some molecular
motion even at absolute zero.

Applying Physics 27.4 Motion at Absolute Zero
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27.8 The Uncertainty Principle 893

EXAMPLE 27.8 Locating an Electron
Goal Apply Heisenberg’s position–momentum uncertainty principle.

Problem The speed of an electron is measured to be 5.00 � 103 m/s to an accuracy of 0.003 00%. Find the mini-
mum uncertainty in determining the position of this electron.

Strategy After computing the momentum and its uncertainty, substitute into Heisenberg’s uncertainty principle,
Equation 27.16.

Solution
Calculate the momentum of the electron: px � me v � (9.11 � 10�31 kg)(5.00 � 103 m/s)

� 4.56 � 10�27 kg � m/s

The uncertainty in p is 0.003 00% of this value: �px � 0.000 030 0p � (0.000 030 0)(4.56 � 10�27 kg � m/s)

� 1.37 � 10�31 kg � m/s

Now calculate the uncertainty in position using this
value of �px and Equation 27.17:

� 0.384  mm

�x �
6.626 � 10�34 J�s

4�(1.37 � 10�31 kg�m/s)
� 0.384 � 10�3 m

�x�px �
h

4�
 : �x �

h
4��px

Remarks Notice that this isn’t an exact calculation: the uncertainty in position can take any value, as long as it’s
greater than or equal to the value given by the uncertainty principle.

Exercise 27.8
Suppose an electron is found somewhere in an atom of diameter 1.25 � 10�10 m. Estimate the uncertainty in the
electron’s momentum (in one dimension).

Answer �p � 4.22 � 10�25 kg � m/s

EXAMPLE 27.9 Excited States of Atoms
Goal Apply the energy– time form of the uncertainty relation.

Problem As we’ll see in the next chapter, electrons in atoms can be found in certain high states of energy called
excited states for short periods of time. If the average time that an electron exists in one of these states is 1.00 � 10�8 s,
what is the minimum uncertainty in energy of the excited state?

Strategy Substitute values into Equation 27.17, the energy– time form of Heisenberg’s uncertainty relation.

Solution
Use Equation 27.17 to obtain the minimum uncertainty
in the energy:

� 3.30 � 10�8 eV

�E �
h

4��t
�

6.63 � 10�34 J�s
4�(1.00 � 10�8 s)

� 5.28 � 10�27 J

Remarks This is again an imprecise calculation, giving only a lower bound on the uncertainty.

Exercise 27.9
A muon may be considered to be an excited state of an electron, to which it decays in an average of 2.2 � 10�6 s.
What’s the minimum uncertainty in the muon’s (rest) energy, according to the uncertainty principle?

Answer 2.40 � 10�29 J
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27.9 THE SCANNING TUNNELING MICROSCOPE1

One of the basic phenomena of quantum mechanics—tunneling—is at the heart
of a very practical device—the scanning tunneling microscope, or STM—which
enables us to get highly detailed images of surfaces with a resolution comparable
to the size of a single atom.

Figure 27.19 shows an image of a ring of 48 iron atoms located on a copper
surface. Note the high quality of the STM image and the recognizable ring of iron
atoms. What makes this image so remarkable is that its resolution—the size of the
smallest detail that can be discerned—is about 0.2 nm. For an ordinary
microscope, the resolution is limited by the wavelength of the waves used to
make the image. An optical microscope has a resolution no better than 200 nm,
about half the wavelength of visible light, and so could never show the 
detail displayed in Figure 27.19. Electron microscopes can have a resolution 
of 0.2 nm by using electron waves of that wavelength, given by the de Broglie
formula � � h/p. The electron momentum p required to give this wavelength 
is 10 000 eV/c, corresponding to an electron speed of 2% of the speed of 
light. Electrons traveling at this speed would penetrate into the interior of the
sample in Figure 27.20 and so could not give us information about individual
surface atoms.

The STM achieves its very fine resolution by using the basic idea shown in
Figure 27.20. A conducting probe with a sharp tip is brought near the surface to
be studied. Because it is attracted to the positive ions in the surface, an electron in
the surface has a lower total energy than an electron in the empty space between
surface and tip. The same thing is true for an electron in the probe tip, which is
attracted to the positive ions in the tip. In Newtonian mechanics, this means that
electrons cannot move between surface and tip because they lack the energy to
escape either material. Because the electrons obey quantum mechanics, however,
they can “tunnel” across the barrier of empty space. By applying a voltage
between surface and tip, the electrons can be made to tunnel preferentially from
surface to tip. In this way, the tip samples the distribution of electrons just above
the surface.

Because of the nature of tunneling, the STM is very sensitive to the distance z
from tip to surface. The reason is that in the empty space between tip and surface,
the electron wave function falls off exponentially with a decay length on the order
of 0.1 nm; that is, the wave function decreases by 1/e over that distance. For dis-

1This section was written by Roger A. Freedman, University of California, Santa Barbara.

Figure 27.19 This is a photograph
of a “quantum corral” consisting of a
ring of 48 iron atoms located on a
copper surface. The diameter of the
ring is 143 nm. The photograph was
obtained with a low-temperature
scanning tunneling microscope
(STM). IB
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tances z greater than 1 nm (that is, beyond a few atomic diameters), essentially no
tunneling takes place. This exponential behavior causes the current of electrons
tunneling from surface to tip to depend very strongly on z. This sensitivity is the
basis of the operation of the STM: by monitoring the tunneling current as the tip
is scanned over the surface, scientists obtain a sensitive measure of the topography
of the electron distribution on the surface. The result of this scan is used to
make images like that in Figure 27.20. In this way the STM can measure the
height of surface features to within 0.001 nm, approximately 1/100 of an atomic
diameter!

The STM has, however, one serious limitation: it depends on electrical conduc-
tivity of the sample and the tip. Unfortunately, the surfaces of most materials are
not electrically conductive. Even metals such as aluminum are covered with non-
conductive oxides. A newer microscope—the atomic force microscope, or AFM—
overcomes this limitation. It measures the force between a tip and the sample,
rather than an electrical current. This force depends strongly on the tip–sample
separation just as the electron tunneling current does for the STM. The AFM has
comparable sensitivity for measuring topography and has become widely used for
technological applications.

Perhaps the most remarkable thing about the STM is that its operation is based
on a quantum mechanical phenomenon—tunneling—that was well understood
in the 1920s, even though the first STM was not built until the 1980s. What other
applications of quantum mechanics may yet be waiting to be discovered?

x piezo

y p
iez

o

z piezo

I

Figure 27.20 A schematic view of an STM.
The tip, shown as a rounded cone, is mounted
on a piezoelectric x, y, z scanner. A scan of the
tip over the sample can reveal contours of the
surface down to the atomic level. An STM im-
age is composed of a series of scans displaced
laterally from each other.
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896 Chapter 27 Quantum Physics

SUMMARY
Take a practice test by logging into

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

27.1 Blackbody Radiation and Planck’s 
Hypothesis

The characteristics of blackbody radiation can’t be
explained with classical concepts. The peak of a black-
body radiation curve is given by Wien’s displace-
ment law;

�maxT � 0.289 8 � 10�2 m � K [27.1]

where �max is the wavelength at which the curve peaks
and T is the absolute temperature of the object emitting
the radiation.

Planck first introduced the quantum concept when
he assumed that the subatomic oscillators responsible
for blackbody radiation could have only discrete
amounts of energy given by

En � nhf [27.2]

where n is a positive integer called a quantum num-
ber and f is the frequency of vibration of the res-
onator.

27.2 The Photoelectric Effect and the 
Particle Theory of Light

The photoelectric effect is a process whereby electrons
are ejected from a metal surface when light is incident
on that surface. Einstein provided a successful explana-
tion of this effect by extending Planck’s quantum hy-
pothesis to electromagnetic waves. In this model, light is
viewed as a stream of particles called photons, each with
energy E � hf, where f is the light frequency and h is
Planck’s constant. The maximum kinetic energy of the
ejected photoelectrons is

KEmax � hf � 
 [27.6]

where 
 is the work function of the metal.

27.3 X-Rays

27.4 Diffraction of X-Rays by 
Crystals

X-rays are produced when high-speed electrons are
suddenly decelerated. When electrons have been accel-

erated through a voltage V, the shortest-wavelength radi-
ation that can be produced is

[27.9]

The regular array of atoms in a crystal can act as a dif-
fraction grating for x-rays and for electrons. The condi-
tion for constructive interference of the diffracted rays
is given by Bragg’s law:

2d sin � � m� (m � 1, 2, 3, . . .) [27.10]

Bragg’s law bears a similarity to the equation for the dif-
fraction pattern of a double slit.

27.5 The Compton Effect

X-rays from an incident beam are scattered at various
angles by electrons in a target such as carbon. In such a
scattering event, a shift in wavelength is observed for the
scattered x-rays. This phenomenon is known as the
Compton shift. Conservation of momentum and energy
applied to a photon–electron collision yields the
following expression for the shift in wavelength of the
scattered x-rays:

[27.11]

Here, me is the mass of the electron, c is the speed of
light, and � is the scattering angle.

27.6 The Dual Nature of Light 
and Matter

Light exhibits both a particle and a wave nature. De
Broglie proposed that all matter has both a particle and
a wave nature. The de Broglie wavelength of any particle
of mass m and speed v is

[27.14]

De Broglie also proposed that the frequencies of the
waves associated with particles obey the Einstein relation-
ship E � hf .

27.7 The Wave Function

In the theory of quantum mechanics, each particle is
described by a quantity  called the wave function.

� �
h
p

�
h

mv

�� � � � �0 �
h

mec
 (1 � cos�)

�min �
hc
eV
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Problems 897

CONCEPTUAL QUESTIONS

1. If you observe objects inside a very hot kiln why is it
difficult to discern the shapes of the objects?

2. Why is an electron microscope more suitable than 
an optical microscope for “seeing” objects of atomic
size?

3. Are blackbodies black?

4. Why is it impossible to simultaneously measure the
position and velocity of a particle with infinite accu-
racy?

5. All objects radiate energy. Why, then, are we not able
to see all objects in a dark room?

6. Is light a wave or a particle? Support your answer by cit-
ing specific experimental evidence.

7. A student claims that he is going to eject electrons
from a piece of metal by placing a radio transmitter
antenna adjacent to the metal and sending a strong
AM radio signal into the antenna. The work function
of a metal is typically a few electron volts. Will this
work?

8. Light acts sometimes like a wave and sometimes like a
particle. For the following situations, which best de-
scribes the behavior of light? Defend your answers.
(a) The photoelectric effect. (b) The Compton effect.
(c) Young’s double-slit experiment.

9. In the photoelectric effect, explain why the stopping
potential depends on the frequency of the light but
not on the intensity.

10. Which has more energy, a photon of ultraviolet radia-
tion or a photon of yellow light?

11. Why does the existence of a cutoff frequency in the
photoelectric effect favor a particle theory of light
rather than a wave theory?

12. What effect, if any, would you expect the tempera-
ture of a material to have on the ease with which
electrons can be ejected from it via the photoelectric
effect?

13. The cutoff frequency of a material is f0. Are electrons
emitted from the material when (a) light of frequency
greater than f0 is incident on the material? (b) Less than
f 0?

14. The brightest star in the constellation Lyra is the
bluish star Vega, whereas the brightest star in Boötes is
the reddish star Arcturus. How do you account for the
difference in color of the two stars?

15. If the photoelectric effect is observed in one metal,
can you conclude that the effect will also be ob-
served in another metal under the same conditions?
Explain.

16. A beam of blue light and a beam of red light carry the
same total amount of energy. Which beam contains the
larger number of photons?

17. An x-ray photon is scattered by an electron which is
initially at rest. What happens to the frequency of
the scattered photon relative to that of the incident
photon?

The probability per unit volume of finding the particle
at a particular point at some instant is proportional to
2. Quantum mechanics has been highly successful
in describing the behavior of atomic and molecular
systems.

27.8 The Uncertainty Principle

According to Heisenberg’s uncertainty principle, it is
impossible to measure simultaneously the exact position
and exact momentum of a particle. If �x is the
uncertainty in the measured position and �px the
uncertainty in the momentum, the product �x �px is
given by

[27.16]�x �px �
h

4�

Also,

[27.17]

where �E is the uncertainty in the energy of the particle
and �t is the uncertainty in the time it takes to measure
the energy.

�E �t �
h

4�
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PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging � � full solution available in Student Solutions Manual/Study Guide 

� coached problem with hints available at www.cp7e.com � biomedical application

Section 27.1 Blackbody Radiation and Planck’s 
Hypothesis

What is the surface temperature of
(a) Betelgeuse, a red giant star in the constellation of
Orion, which radiates with a peak wavelength of about
970 nm? (b) Rigel, a bluish-white star in Orion, radi-
ates with a peak wavelength of 145 nm? Find the tem-
perature of Rigel’s surface.

2. (a) Lightning produces a maximum air temperature
on the order of 104 K, while (b) a nuclear explosion
produces a temperature on the order of 107 K. Use
Wien’s displacement law to find the order of magnitude
of the wavelength of the thermally produced photons
radiated with greatest intensity by each of these
sources. Name the part of the electromagnetic spec-
trum where you would expect each to radiate most
strongly.

3. If the surface temperature of the Sun is 5 800 K, find
the wavelength that corresponds to the maximum rate
of energy emission from the Sun.

4. A beam of blue light and a beam of red light each
carry a total energy of 2 500 eV. If the wavelength of
the red light is 690 nm and the wavelength of the
blue light is 420 nm, find the number of photons in
each beam.

5. Calculate the energy in electron volts of a photon hav-
ing a wavelength (a) in the microwave range, 5.00 cm,
(b) in the visible light range, 500 nm, and (c) in the 
x-ray range, 5.00 nm.

6. A certain light source is found to emit radiation whose
peak value has a frequency of 1.00 � 1015 Hz. Find the
temperature of the source assuming that it is a blackbody
radiator.

An FM radio transmitter has a power output of 
150 kW and operates at a frequency of 99.7 MHz. 
How many photons per second does the transmitter
emit?

8. The threshold of dark-adapted (scotopic) vision is
4.0 � 10�11 W/m2 at a central wavelength of 500 nm.
If light with this intensity and wavelength enters the
eye when the pupil is open to its maximum diameter
of 8.5 mm, how many photons per second enter the
eye?

9. A 1.5-kg mass vibrates at an amplitude of 3.0 cm on the
end of a spring of spring constant 20.0 N/m. (a) If the
energy of the spring is quantized, find its quantum num-

7.

1.

ber. (b) If n changes by 1, find the fractional change in
energy of the spring.

10. A 70.0-kg jungle hero swings at the end of a vine at a
frequency of 0.50 Hz at 2.0 m/s as he moves through
the lowest point on his arc. (a) Assume the energy
is quantized and find the quantum number n for this
system. (b) Find the energy carried away in a one-
quantum change in the jungle hero’s energy.

Section 27.2 The Photoelectric Effect and 
the Particle Theory of Light

When light of wavelength 350 nm
falls on a potassium surface, electrons having a maxi-
mum kinetic energy of 1.31 eV are emitted. Find (a) the
work function of potassium, (b) the cutoff wavelength,
and (c) the frequency corresponding to the cutoff
wavelength.

12. When a certain metal is illuminated with light of fre-
quency 3.0 � 1015 Hz, a stopping potential of 7.0 V is
required to stop the most energetic ejected electrons.
What is the work function of this metal?

13. What wavelength of light would have to fall on sodium
(with a work function of 2.46 eV) if it is to emit elec-
trons with a maximum speed of 1.0 � 106 m/s?

14. Lithium, beryllium, and mercury have work functions
of 2.30 eV, 3.90 eV, and 4.50 eV, respectively. If 400-nm
light is incident on each of these metals, determine
(a) which metals exhibit the photoelectric effect and
(b) the maximum kinetic energy of the photoelectrons
in each case.

15. From the scattering of sunlight, Thomson calculated
that the classical radius of the electron has a value
of 2.82 � 10�15 m. If sunlight having an intensity
of 500 W/m2 falls on a disk with this radius, estimate
the time required to accumulate 1.00 eV of energy.
Assume that light is a classical wave and that the
light striking the disk is completely absorbed. How
does your estimate compare with the observation
that photoelectrons are promptly (within 10�9 s)
emitted?

16. An isolated copper sphere of radius 5.00 cm, initially
uncharged, is illuminated by ultraviolet light of wave-
length 200 nm. What charge will the photoelectric ef-
fect induce on the sphere? The work function for cop-
per is 4.70 eV.

11.
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17. When light of wavelength 254 nm falls on cesium,
the required stopping potential is 3.00 V. If light of
wavelength 436 nm is used, the stopping potential
is 0.900 V. Use this information to plot a graph like
that shown in Figure 27.6, and from the graph deter-
mine the cutoff frequency for cesium and its work
function.

Ultraviolet light is incident normally on the surface of
a certain substance. The binding energy of the
electrons in this substance is 3.44 eV. The incident
light has an intensity of 0.055 W/m2. The electrons
are photoelectrically emitted with a maximum speed of
4.2 � 105 m/s. How many electrons are emitted from
a square centimeter of the surface each second?
Assume that the absorption of every photon ejects an
electron.

Section 27.3 X-Rays

19. The extremes of the x-ray portion of the electromag-
netic spectrum range from approximately 1.0 � 10�8

m to 1.0 � 10�13 m. Find the minimum accelerating
voltages required to produce wavelengths at these
two extremes.

20. Calculate the minimum-wavelength x-ray that can be
produced when a target is struck by an electron that
has been accelerated through a potential difference of
(a) 15.0 kV and (b) 100 kV.

21. What minimum accelerating voltage would be
required to produce an x-ray with a wavelength of
0.030 0 nm?

Section 27.4 Diffraction of X-Rays by 
Crystals

22. A monochromatic x-ray beam is incident on a NaCl
crystal surface with d � 0.353 nm. The second-order
maximum in the reflected beam is found when the
angle between the incident beam and the surface is
20.5°. Determine the wavelength of the x-rays.

Potassium iodide has an interplanar spacing of
d � 0.296 nm. A monochromatic x-ray beam shows a
first-order diffraction maximum when the grazing
angle is 7.6°. Calculate the x-ray wavelength.

24. The spacing between certain planes in a crystal is
known to be 0.30 nm. Find the smallest angle of inci-
dence at which constructive interference will occur for
wavelength 0.070 nm.

25. X-rays of wavelength 0.140 nm are reflected from a cer-
tain crystal, and the first-order maximum occurs at an
angle of 14.4°. What value does this give for the inter-
planar spacing of the crystal?

23.

18.

Section 27.5 The Compton Effect

26. X-rays are scattered from electrons in a carbon target.
The measured wavelength shift is 1.50 � 10�3 nm.
Calculate the scattering angle.

27. Calculate the energy and momentum of a photon of
wavelength 700 nm.

28. A beam of 0.68-nm photons undergoes Compton scat-
tering from free electrons. What are the energy and
momentum of the photons that emerge at a 45° angle
with respect to the incident beam?

A 0.001 6-nm photon scatters from a free electron. For
what (photon) scattering angle will the recoiling elec-
tron and scattered photon have the same kinetic
energy?

30. X-rays with an energy of 300 keV undergo Compton
scattering from a target. If the scattered rays are
deflected at 37.0° relative to the direction of the
incident rays, find (a) the Compton shift at this angle,
(b) the energy of the scattered x-ray, and (c) the ki-
netic energy of the recoiling electron.

A 0.110-nm photon collides with a
stationary electron. After the collision, the
electron moves forward and the photon recoils back-
wards. Find the momentum and kinetic energy of the
electron.

32. After a 0.800-nm x-ray photon scatters from a free 
electron, the electron recoils with a speed equal to 
1.40 � 106 m/s. (a) What was the Compton shift 
in the photon’s wavelength? (b) Through what angle
was the photon scattered?

33. A 0.45-nm x-ray photon is deflected through a 23°
angle after scattering from a free electron. (a) What is
the kinetic energy of the recoiling electron? (b) What
is its speed?

Section 27.6 The Dual Nature of Light and Matter
34. Calculate the de Broglie wavelength of a proton mov-

ing at (a) 2.00 � 104 m/s; (b) 2.00 � 107 m/s.

(a) If the wavelength of an electron is 5.00 � 10�7 m,
how fast is it moving? (b) If the electron has a speed of
1.00 � 107 m/s, what is its wavelength?

36. A 0.200-kg ball is released from rest at the top of a
50.0-m tall building. Find the de Broglie wavelength of
the ball just before it strikes the Earth.

37. The nucleus of an atom is on the order of 10�14 m
in diameter. For an electron to be confined to a
nucleus, its de Broglie wavelength would have to be of
that order of magnitude or smaller. (a) What would
be the kinetic energy of an electron confined to

35.

31.

29.
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900 Chapter 27 Quantum Physics

this region? (b) On the basis of your result in part
(a), would you expect to find an electron in a nucleus?
Explain.

38. After learning about de Broglie’s hypothesis that
particles of momentum p have wave characteristics
with wavelength � � h/p, an 80.0-kg student has
grown concerned about being diffracted when pass-
ing through a 75.0 -cm-wide doorway. Assume that
significant diffraction occurs when the width of the
diffraction aperture is less than 10.0 times the
wavelength of the wave being diffracted. (a) Deter-
mine the maximum speed at which the student
can pass through the doorway in order to be signifi-
cantly diffracted. (b) With that speed, how long
will it take the student to pass through the doorway
if it is 15.0 cm thick? Compare your result with 
the currently accepted age of the Universe, which is
4.00 � 1017 s. (c) Should this student worry about
being diffracted?

39. De Broglie postulated that the relationship � � h/p is
valid for relativistic particles. What is the de Broglie
wavelength for a (relativistic) electron whose kinetic
energy is 3.00 MeV?

40. A monoenergetic beam of electrons is incident on a
single slit of width 0.500 nm. A diffraction pattern is
formed on a screen 20.0 cm from the slit. If the
distance between successive minima of the diffraction
pattern is 2.10 cm, what is the energy of the incident
electrons?

The resolving power of a microscope is proportional
to the wavelength used. A resolution of 1.0 �

10�11 m (0.010 nm) would be required in order
to “see” an atom. (a) If electrons were used (electron
microscope), what minimum kinetic energy would be
required of the electrons? (b) If photons were used,
what minimum photon energy would be needed to
obtain 1.0 � 10�11 m resolution?

Section 27.7 The Wave Function

Section 27.8 The Uncertainty Principle

42. A 50.0-g ball moves at 30.0 m/s. If its speed is meas-
ured to an accuracy of 0.10%, what is the minimum
uncertainty in its position?

43. In the ground state of hydrogen, the uncertainty 
in the position of the electron is roughly 0.10 nm. 
If the speed of the electron is on the order of the
uncertainty in its speed, how fast is the electron
moving?

44. Suppose Fuzzy, a quantum mechanical duck, lives in a
world in which h � 2� J � s. Fuzzy has a mass of 2.00 kg

41.

and is initially known to be within a pond 1.00 m
wide. (a) What is the minimum uncertainty in his
speed? (b) Assuming this uncertainty in speed to prevail
for 5.00 s, determine the uncertainty in Fuzzy’s posi-
tion after this time.

Suppose optical radiation (� � 5.00
� 10�7 m) is used to determine the position of an
electron to within the wavelength of the light. What
will be the resulting uncertainty in the electron’s
velocity?

46. (a) Show that the kinetic energy of a nonrelativistic
particle can be written in terms of its momentum as
KE � p2/2m. (b) Use the results of (a) to find the
minimum kinetic energy of a proton confined within a
nucleus having a diameter of 1.0 � 10�15 m.

ADDITIONAL PROBLEMS

47. Figure P27.47 shows the spectrum of light emitted by a
firefly. Determine the temperature of a blackbody that
would emit radiation peaked at the same frequency.
Based on your result, would you say firefly radiation is
blackbody radiation?

45.
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Figure P27.47

48. An x-ray tube is operated at 50 000 V. (a) Find the min-
imum wavelength of the radiation emitted by this tube.
(b) If the radiation is directed at a crystal, the first-
order maximum in the reflected radiation occurs
when the grazing angle is 2.5°. What is the spacing
between reflecting planes in the crystal?

The spacing between planes of nickel atoms in a
nickel crystal is 0.352 nm. At what angle does a second-
order Bragg reflection occur in nickel for 11.3-keV 
x-rays?

50. Johnny Jumper’s favorite trick is to step out of his
16th-story window and fall 50.0 m into a pool. A 
news reporter takes a picture of 75.0-kg Johnny
just before he makes a splash, using an exposure

49.
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time of 5.00 ms. Find (a) Johnny’s de Broglie wave-
length at this moment, (b) the uncertainty of his
kinetic energy measurement during such a period of
time, and (c) the percent error caused by such an
uncertainty.

Photons of wavelength 450 nm are incident on a
metal. The most energetic electrons ejected from the
metal are bent into a circular arc of radius 20.0 cm by a
magnetic field with a magnitude of 2.00 � 10�5 T.
What is the work function of the metal?

52. A 200-MeV photon is scattered at 40.0° by a free pro-
ton that is initially at rest. Find the energy (in MeV) of
the scattered photon.

53. A light source of wavelength � illuminates a metal and
ejects photoelectrons with a maximum kinetic
energy of 1.00 eV. A second light source of wavelength
�/2 ejects photoelectrons with a maximum kinetic
energy of 4.00 eV. What is the work function of the
metal?

54. Red light of wavelength 670 nm produces photoelec-
trons from a certain photoemissive material. Green
light of wavelength 520 nm produces photoelectrons
from the same material with 1.50 times the maxi-
mum kinetic energy. What is the material’s work
function?

How fast must an electron be moving if all its kinetic
energy is lost to a single x-ray photon (a) at the high
end of the x-ray electromagnetic spectrum with a
wavelength of 1.00 � 10�8 m; (b) at the low end of
the x-ray electromagnetic spectrum with a wavelength
of 1.00 � 10�13 m?

56. Show that if an electron were confined inside an
atomic nucleus of diameter 2.0 � 10�15 m, it would
have to be moving relativistically, while a proton con-
fined to the same nucleus can be moving at less than
one-tenth the speed of light.

57. A photon strikes a metal with a work function 
 and
produces a photoelectron with a de Broglie wavelength
equal to the wavelength of the original photon.
(a) Show that the energy of this photon must have
been given by

where me is the mass of the electron. [Hint : Begin
with the conservation of energy, 

.] (b) If one of these photons strikes
platinum (
 � 6.35 eV), determine the resulting
maximum speed of the photoelectron that is 
emitted.

√(pc)2 	(mec 2)2
E 	mec2 � 
 	

E �

(mec2 � 
/2)

mec 2 � 


55.

51.

58. In a Compton scattering event, the scattered photon
has an energy of 120.0 keV and the recoiling
electron has a kinetic energy of 40.0 keV. Find
(a) the wavelength of the incident photon, (b) the
angle � at which the photon is scattered, and (c) the
recoil angle of the electron. [Hint : Conserve both
mass–energy and relativistic momentum.]

59. A woman on a ladder drops small pellets toward a
point target on the floor. (a) Show that, according to
the uncertainty principle, the average distance by
which she misses the target must be at least

where H is the initial height of each pellet above
the floor and m is the mass of each pellet. Assume
that the spread in impact points is given by �xf �

�xi 	 (�vx)t. (b) If H � 2.00 m and m � 0.500 g, what
is �xf ?

60. Show that the speed of a particle having de Broglie
wavelength � and Compton wavelength �C � h/(mc) is

61. (a) Find the mass of a solid iron sphere 2.00 cm in
radius. (b) Assume that it is at 20°C and has emissiv-
ity 0.860. Find the power with which it is radiating
electromagnetic waves. (c) If this sphere were alone
in the Universe, at what rate would its temperature
be changing? (d) Assume Wien’s law describes the
sphere. Find the wavelength �max of electromagnetic
radiation it emits most strongly. Although it emits a
spectrum of waves having all different wavelengths,
model its whole power output as carried by photons
of wavelength �max. Find (e) the energy of one pho-
ton and (f) the number of photons it emits each
second. When the sphere is at thermal equilibrium
with its surroundings, it emits and also absorbs pho-
tons at this rate.

ACTIVITIES

1. Use a black marker or pieces of dark electrical tape
to make a very dark area on the outside of a shoebox.
Poke a hole in the center of the dark area with a
pencil. Now put a lid on the box, and compare the
blackness of the hole with the blackness of the sur-
rounding dark area. Based on your observation,
explain why the radiation emitted from the hole is
like that emitted from a black body.

v �
c

√1 	 (�/�C)2

�xf � � 2 �

m �
1/2

� 2H
g �

1/4
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902 Chapter 27 Quantum Physics

2. On a clear night, go outdoors far from city lights
and find the constellation Orion. Your instructor
should be able to furnish you with a star chart to
assist you in locating this grouping of stars.
Look very carefully at the color of the two stars
Betelgeuse and Rigel. (See Fig. A27.2.) Can you
tell which star is hotter? Orion is visible only from
November through April in the evening sky, so
if Orion is not visible when you go out, compare
two of the brightest stars you can see, such as
Vega in the constellation Lyra and Arcturus in
Boötes.

Betelgeuse

Rigel

Figure A27.2Jo
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A large portion of this chapter concerns the hydrogen atom. Although the hydrogen atom is
the simplest atomic system, it’s especially important for several reasons:

• The quantum numbers used to characterize the allowed states of hydrogen can also be
used to describe (approximately) the allowed states of more complex atoms. This enables
us to understand the periodic table of the elements, one of the greatest triumphs of quan-
tum mechanics.

• The hydrogen atom is an ideal system for performing precise comparisons of theory with
experiment and for improving our overall understanding of atomic structure.

• Much of what is learned about the hydrogen atom with its single electron can be ex-
tended to such single-electron ions as He� and Li2�.

In this chapter we first discuss the Bohr model of hydrogen, which helps us understand many
features of that element but fails to explain finer details of atomic structure. Next we examine
the hydrogen atom from the viewpoint of quantum mechanics and the quantum numbers
used to characterize various atomic states. Quantum numbers aren’t mere mathematical ab-
stractions: they have physical significance, such as the role they play in the effect of a mag-
netic field on certain quantum states. The fact that no two electrons in an atom can have the
same set of quantum numbers—the Pauli exclusion principle—is extremely important in un-
derstanding the properties of complex atoms and the arrangement of elements in the peri-
odic table. Finally, we apply our knowledge of atomic structure to describe the mechanisms
involved in the production of x-rays, the operation of a laser, and the behavior of solid-state
devices such as diodes and transistors.

28.1 EARLY MODELS OF THE ATOM
The model of the atom in the days of Newton was a tiny, hard, indestructible
sphere. Although this model was a good basis for the kinetic theory of gases, new
models had to be devised when later experiments revealed the electronic nature of

“Neon lights,” commonly used in 
advertising signs, consist of thin glass
tubes filled with various gases, such
as neon and helium. The gas atoms
are excited to higher energy levels by
electric discharge through the tube.
When the electrons in these excited
levels return to lower energy levels,
the atoms emit light having a 
wavelength (color) that depends on
the type of gas in the tube. For 
example, a tube filled with neon 
produces a red-orange color, while
helium produces pink.
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904 Chapter 28 Atomic Physics

atoms. J. J. Thomson (1856–1940) suggested a model of the atom as a volume of
positive charge with electrons embedded throughout the volume, much like the
seeds in a watermelon (Fig. 28.1).

In 1911 Ernest Rutherford (1871–1937) and his students Hans Geiger and
Ernest Marsden performed a critical experiment showing that Thomson’s model
couldn’t be correct. In this experiment, a beam of positively charged alpha parti-
cles was projected against a thin metal foil, as in Figure 28.2a. The results of the
experiment were astounding. Most of the alpha particles passed through the foil as
if it were empty space, but a few particles deflected from their original direction of
travel were scattered through large angles. Some particles were even deflected
backwards, reversing their direction of travel. When Geiger informed Rutherford
of these results, Rutherford wrote, “It was quite the most incredible event that has
ever happened to me in my life. It was almost as incredible as if you fired a 15-inch
shell at a piece of tissue paper and it came back and hit you.”

Such large deflections were not expected on the basis of Thomson’s model. Ac-
cording to that model, a positively charged alpha particle would never come close
enough to a large positive charge to cause any large-angle deflections. Rutherford
explained these astounding results by assuming that the positive charge in an atom
was concentrated in a region that was small relative to the size of the atom. He
called this concentration of positive charge the nucleus of the atom. Any electrons
belonging to the atom were assumed to be in the relatively large volume outside
the nucleus. In order to explain why electrons in this outer region of the atom
were not pulled into the nucleus, Rutherford viewed them as moving in orbits
about the positively charged nucleus in the same way that planets orbit the Sun, as
shown in Figure 28.2b. Alpha particles themselves were later identified as the nu-
clei of helium atoms.

There are two basic difficulties with Rutherford’s planetary model. First, an atom
emits certain discrete characteristic frequencies of electromagnetic radiation and no
others; the Rutherford model is unable to explain this phenomenon. Second, the
electrons in Rutherford’s model undergo a centripetal acceleration. According to
Maxwell’s theory of electromagnetism, centripetally accelerated charges revolving
with frequency f should radiate electromagnetic waves of the same frequency.
Unfortunately, this classical model leads to disaster when applied to the atom. As the
electron radiates energy, the radius of its orbit steadily decreases and its frequency of
revolution increases. This leads to an ever-increasing frequency of emitted radiation
and a rapid collapse of the atom as the electron spirals into the nucleus.

28.2 ATOMIC SPECTRA
The hydrogen atom is the simplest atomic system and an especially important one
to understand. Much of what we know about the hydrogen atom (which consists of
one proton and one electron) can be extended directly to other single-electron

Electron

Figure 28.1 Thomson’s model 
of the atom, with the electrons 
embedded inside the positive charge
like seeds in a watermelon.

Source
Lead

screen

Target

Viewing
screen

(a) (b)

+

–

–

Figure 28.2 (a) Geiger and 
Marsden’s technique for observing
the scattering of alpha particles 
from a thin foil target. The source 
is a naturally occurring radioactive 
substance, such as radium. 
(b) Rutherford’s planetary model 
of the atom.

SIR JOSEPH JOHN THOMSON,
English Physicist (1856–1940)
Thomson, usually considered the discov-
erer of the electron, opened up the field of
subatomic particle physics with his exten-
sive work on the deflection of cathode
rays (electrons) in an electric field. He
received the 1906 Nobel prize for his
discovery of the electron.
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28.2 Atomic Spectra 905

ions such as He� and Li2�. Further, a thorough understanding of the physics un-
derlying the hydrogen atom can then be used to describe more complex atoms
and the periodic table of the elements.

Suppose an evacuated glass tube is filled with hydrogen (or some other gas) at
low pressure. If a voltage applied between metal electrodes in the tube is great
enough to produce an electric current in the gas, the tube emits light having a
color that depends on the gas inside. (This is how a neon sign works.) When the
emitted light is analyzed with a spectrometer, discrete bright lines are observed,
each having a different wavelength, or color. Such a series of spectral lines is com-
monly called an emission spectrum. The wavelengths contained in such a spec-
trum are characteristic of the element emitting the light (Fig. 28.3). Because no
two elements emit the same line spectrum, this phenomenon represents a mar-
velous and reliable technique for identifying elements in a gaseous substance.

The emission spectrum of hydrogen shown in Figure 28.4 includes four promi-
nent lines that occur at wavelengths of 656.3 nm, 486.1 nm, 434.1 nm, and
410.2 nm, respectively. In 1885 Johann Balmer (1825–1898) found that the wave-
lengths of these and less prominent lines can be described by the simple empirical
equation

[28.1]

where n may have integral values of 3, 4, 5, . . . , and R H is a constant, called the
Rydberg constant. If the wavelength is in meters, R H has the value

R H � 1.097 373 2 � 107 m�1 [28.2]

The first line in the Balmer series, at 656.3 nm, corresponds to n � 3 in Equation
28.1, the line at 486.1 nm corresponds to n � 4, and so on. In addition to the
Balmer series of spectral lines, a Lyman series was subsequently discovered in the
far ultraviolet, with the radiated wavelengths described by a similar equation.

In addition to emitting light at specific wavelengths, an element can absorb
light at specific wavelengths. The spectral lines corresponding to this process form
what is known as an absorption spectrum. An absorption spectrum can be ob-
tained by passing a continuous radiation spectrum (one containing all wave-
lengths) through a vapor of the element being analyzed. The absorption spectrum
consists of a series of dark lines superimposed on the otherwise bright continuous
spectrum. Each line in the absorption spectrum of a given element coincides with
a line in the emission spectrum of the element. This means that if hydrogen is the

1
�

� RH  � 1
22 �

1
n2 �

400 500 600 700l(nm)
(b)

H

400 500 600 700

Ne

Hg

H

(a)

l(nm)

Figure 28.3 Visible spectra. (a) Line spectra produced by emission in the visible range for the ele-
ments hydrogen, mercury, and neon. (b) The absorption spectrum for hydrogen. The dark absorption
lines occur at the same wavelengths as the emission lines for hydrogen shown in (a).
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Figure 28.4 The Balmer series of
spectral lines for atomic hydrogen,
with several lines marked with the
wavelength in nanometers. The line
labeled 346.6 is the shortest-wave-
length line and is in the ultraviolet 
region of the electromagnetic 
spectrum. The other labeled lines are
in the visible region.

� Balmer series

� Rydberg constant
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906 Chapter 28 Atomic Physics

absorbing vapor, dark lines will appear at the visible wavelengths 656.3 nm,
486.1 nm, 434.1 nm, and 410.2 nm, as shown in Figures 28.3b and 28.4.

The absorption spectrum of an element has many practical applications. For ex-
ample, the continuous spectrum of radiation emitted by the Sun must pass
through the cooler gases of the solar atmosphere before reaching the Earth. The
various absorption lines observed in the solar spectrum have been used to identify
elements in the solar atmosphere, including one that was previously unknown.
When the solar spectrum was first being studied, some lines were found that didn’t
correspond to any known element. A new element had been discovered! Because
the Greek word for Sun is helios, the new element was named helium. It was later
identified in underground gases on Earth. Scientists are able to examine the light
from stars other than our Sun in this way, but elements other than those present
on Earth have never been detected.

28.3 THE BOHR THEORY OF HYDROGEN
At the beginning of the 20th century, scientists were perplexed by the failure of
classical physics to explain the characteristics of spectra. Why did atoms of a given
element emit only certain lines? Further, why did the atoms absorb only those wave-
lengths that they emitted? In 1913 Bohr provided an explanation of atomic spectra
that includes some features of the currently accepted theory. Using the simplest
atom, hydrogen, Bohr developed a model of what he thought must be the atom’s
structure in an attempt to explain why the atom was stable. His model of the hydro-
gen atom contains some classical features, as well as some revolutionary postulates
that could not be justified within the framework of classical physics. The basic as-
sumptions of the Bohr theory as it applies to the hydrogen atom are as follows:

1. The electron moves in circular orbits about the proton under the influence of
the Coulomb force of attraction, as in Figure 28.5. The Coulomb force pro-
duces the electron’s centripetal acceleration.

A P P L I C AT I O N
Discovery of Helium

On observing a yellow candle flame, your laboratory
partner claims that the light from the flame originates
from excited sodium atoms in the flame. You disagree,
stating that because the candle flame is hot, the radia-
tion must be thermal in origin. Before the disagree-
ment leads to fisticuffs, how could you determine who
is correct?

Explanation A simple determination could be made
by observing the light from the candle flame through

a spectrometer, which is a slit and diffraction grating
combination discussed in Chapter 25. If the spectrum
of the light is continuous, then it’s probably thermal
in origin. If the spectrum shows discrete lines, it’s
atomic in origin. The results of the experiment show
that the light is indeed thermal in origin and origi-
nates from random molecular motion in the candle
flame.

Applying Physics 28.1 Thermal or Spectral?

At extreme northern latitudes, the aurora borealis
provides a beautiful and colorful display in the 
night sky. A similar display occurs near the 
southern polar region and is called the aurora 
australis. What’s the origin of the various colors 
seen in the auroras?

Explanation The aurora is due to high speed particles
interacting with the Earth’s magnetic field and 

entering the atmosphere. When these particles collide
with molecules in the atmosphere, they excite the
molecules in a way similar to the voltage in the 
spectrum tubes discussed earlier in this section. In 
response, the molecules emit colors of light according
to the characteristic spectrum of their atomic 
constituents. For our atmosphere, the primary 
constituents are nitrogen and oxygen, which provide
the red, blue, and green colors of the aurora.

Applying Physics 28.2 Auroras

+ e

r

– e
me

vF

Figure 28.5 Diagram representing
Bohr’s model of the hydrogen atom.
The orbiting electron is allowed only
in specific orbits of discrete radii.
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28.3 The Bohr Theory of Hydrogen 907

2. Only certain electron orbits are stable. These are orbits in which the hydrogen
atom doesn’t emit energy in the form of electromagnetic radiation. Hence, the
total energy of the atom remains constant, and classical mechanics can be used
to describe the electron’s motion.

3. Radiation is emitted by the hydrogen atom when the electron “jumps” from a
more energetic initial state to a less energetic state. The “jump” can’t be visualized
or treated classically. In particular, the frequency f of the radiation emitted in the
jump is related to the change in the atom’s energy and is independent of the frequency
of the electron’s orbital motion. The frequency of the emitted radiation is given by

Ei � Ef � hf [28.3]

where Ei is the energy of the initial state, Ef is the energy of the final state, h is
Planck’s constant, and Ei � Ef .

4. The size of the allowed electron orbits is determined by a condition imposed
on the electron’s orbital angular momentum: the allowed orbits are those for
which the electron’s orbital angular momentum about the nucleus is an inte-
gral multiple of � (pronounced “h bar”), where :

n � 1, 2, 3, . . . [28.4]

With these four assumptions, we can calculate the allowed energies and emis-
sion wavelengths of the hydrogen atom. We use the model pictured in Figure 28.5,
in which the electron travels in a circular orbit of radius r with an orbital speed v.

The electrical potential energy of the atom is

where ke is the Coulomb constant. Assuming the nucleus is at rest, the total energy
E of the atom is the sum of the kinetic and potential energy:

[28.5]

We apply Newton’s second law to the electron. We know that the electric force
of attraction on the electron, kee 2/r 2, must equal mear , where ar � v 2/r is the cen-
tripetal acceleration of the electron. Thus,

[28.6]

From this equation, we see that the kinetic energy of the electron is

[28.7]

We can combine this result with Equation 28.5 and express the energy of the atom as

[28.8]

where the negative value of the energy indicates that the electron is bound to the
proton.

An expression for r is obtained by solving Equations 28.4 and 28.6 for v and
equating the results:

n � 1, 2, 3, . . . [28.9]

This equation is based on the assumption that the electron can exist only in cer-
tain allowed orbits determined by the integer n.
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NIELS BOHR, Danish Physicist
(1885–1962)
Bohr was an active participant in the early
development of quantum mechanics and
provided much of its philosophical frame-
work. During the 1920s and 1930s, he
headed the Institute for Advanced Studies
in Copenhagen. The institute was a mag-
net for many of the world’s best physicists
and provided a forum for the exchange of
ideas. When Bohr visited the United States
in 1939 to attend a scientific conference,
he brought news that the fission of ura-
nium had been observed by Hahn and
Strassman in Berlin. The results were the
foundations of the atomic bomb devel-
oped in the United States during World
War II. Bohr was awarded the 1922 Nobel
Prize for his investigation of the structure
of atoms and of the radiation emanating
from them.
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� Energy of the hydrogen atom

� The radii of the Bohr orbits 
are quantized
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908 Chapter 28 Atomic Physics

The orbit with the smallest radius, called the Bohr radius, a 0, corresponds to
n � 1 and has the value

[28.10]

A general expression for the radius of any orbit in the hydrogen atom is ob-
tained by substituting Equation 28.10 into Equation 28.9:

rn � n2a0 � n2(0.052 9 nm) [28.11]

The first three Bohr orbits for hydrogen are shown in Active Figure 28.6.
Equation 28.9 may be substituted into Equation 28.8 to give the following ex-

pression for the energies of the quantum states:

n � 1, 2, 3, . . . [28.12]

If we insert numerical values into Equation 28.12, we obtain

[28.13]

The lowest energy state, or ground state, corresponds to n � 1 and has an energy
E1 � � meke

2e4/2�2 � � 13.6 eV. The next state, corresponding to n � 2, has an
energy E2 � E1/4 � � 3.40 eV, and so on. An energy level diagram showing the
energies of these stationary states and the corresponding quantum numbers is
given in Active Figure 28.7. The uppermost level shown, corresponding to E � 0
and n : 	, represents the state for which the electron is completely removed
from the atom. In this state, the electron’s KE and PE are both zero, which means
that the electron is at rest infinitely far away from the proton. The minimum en-
ergy required to ionize the atom—that is, to completely remove the electron—is
called the ionization energy. The ionization energy for hydrogen is 13.6 eV.

Equations 28.3 and 28.12 and the third Bohr postulate show that if the electron
jumps from one orbit with quantum number ni to a second orbit with quantum
number, nf , it emits a photon of frequency f given by

[28.14]

where nf 
 ni.
Finally, to compare this result with the empirical formulas for the various spec-

tral series, we use Equation 28.14 and the fact that for light, �f � c, to get

[28.15]

A comparison of this result with Equation 28.1 gives the following expression for
the Rydberg constant:

[28.16]

If we insert the known values of me , ke , e, c, and � into this expression, the resulting
theoretical value for RH is found to be in excellent agreement with the value de-
termined experimentally for the Rydberg constant. When Bohr demonstrated this
agreement, it was recognized as a major accomplishment of his theory.

In order to compare Equation 28.15 with spectroscopic data, it is convenient to
express it in the form

[28.17]
1
�

� RH  � 1
nf

2 �
1

ni
2 �

RH �
meke

2e4

4�c�3

1
�

�
f
c

�
meke

2e4

4�c�3  � 1
nf

2 �
1

ni
2 �

f �
Ei � Ef

h
�

meke
2e4

4� �3  � 1

nf
2 �

1

ni
2 �

En � �
13.6
n2  eV

En � �
meke

2e4

2�2  � 1
n2 �

a0 �
�2

mkee2 � 0.052 9 nm9a0

4a0
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ACTIVE FIGURE 28.6
The first three circular orbits 
predicted by the Bohr model of 
the hydrogen atom.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 28.6, where you can choose
the initial and final states of the
hydrogen atom and observe the
transition.
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1

2
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series

Paschen
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Lyman
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–0.5442
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ACTIVE FIGURE 28.7
An energy level diagram for hydrogen.
Quantum numbers are given on the
left and energies (in electron volts)
are given on the right. Vertical arrows
represent the four lowest-energy 
transitions for each of the spectral 
series shown. The colored arrows for
the Balmer series indicate that this 
series results in visible light.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 28.7, where you can choose
the initial and final states of the
hydrogen atom and observe the
transition.
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28.3 Th Bohr Theory of Hydrogen 909

We can use this expression to evaluate the wavelengths for the various series in the
hydrogen spectrum. For example, in the Balmer series, nf � 2 and ni � 3, 4, 5, . . .
(Eq. 28.1). For the Lyman series, we take nf � 1 and ni � 2, 3, 4, . . . . The energy
level diagram for hydrogen shown in Active Figure 28.7 indicates the origin of the
spectral lines described previously. The transitions between levels are represented
by vertical arrows. Note that whenever a transition occurs between a state desig-
nated by ni to one designated by nf (where ni � nf), a photon with a frequency 
(Ei � Ef )/h is emitted. This can be interpreted as follows: the lines in the visible
part of the hydrogen spectrum arise when the electron jumps from the third,
fourth, or even higher orbit to the second orbit. Likewise, the lines of the Lyman
series (in the ultraviolet) arise when the electron jumps from the second, third, or
even higher orbit to the innermost (nf � 1) orbit. Hence, the Bohr theory success-
fully predicts the wavelengths of all the observed spectral lines of hydrogen.

INTERACTIVE EXAMPLE 28.1 The Balmer Series for Hydrogen
Goal Calculate the wavelength, frequency, and energy of a photon emitted during an
electron transition in an atom.

Problem The Balmer series for the hydrogen atom corresponds to electronic transi-
tions that terminate in the state with quantum number n � 2, as shown in Figure 28.8.
(a) Find the longest-wavelength photon emitted in the Balmer series and determine its
frequency and energy. (b) Find the shortest-wavelength photon emitted in the same
series.

Strategy This is a matter of substituting values into Equation 28.17. The frequency can
then be obtained from c � f � and the energy from E � hf. The longest wavelength
photon corresponds to the one that is emitted when the electron jumps from the ni � 3
state to the nf � 2 state. The shortest wavelength photon corresponds to the one that is
emitted when the electron jumps from ni � 	 to the state nf � 2.

Solution
(a) Find the longest wavelength photon emitted in the
Balmer series, and determine its energy.

Substitute into Equation 28.17, with ni � 3 and nf � 2:
1
�

� RH  � 1
n 2

f
�

1
n 2

i
� � RH  � 1

22 �
1
32 � �

5RH

36

n

5

Balmer
series

4
3

2

E (eV)
0.00

–0.54
–0.85
–1.51

–3.40

6 –0.38

∞

Figure 28.8 (Example 28.1) 
Transitions responsible for the
Balmer series for the hydrogen
atom. All transitions terminate
at the n � 2 level.

Take the reciprocal and substitute, finding the wave-
length:

� 656.3  nm

� �
36

5RH
�

36
5(1.097 �  107 m�1)

� 6.563 � 10�7 m

Now use c � f � to obtain the frequency: 4.568 � 1014 Hzf �
c
�

�
2.998 � 108 m/s
6.563 � 10�7 m 

�

Calculate the photon’s energy by substituting into Equa-
tion 27.5:

E � hf � (6.626 � 10�34 J � s)(4.568 � 1014 Hz)

� 3.027 � 10�19 J � 1.892 eV

(b) Find the shortest wavelength photon emitted in the
Balmer series.

Substitute into Equation 28.17, with ni � 	 and nf � 2.
1
�

� RH  � 1
n 2

f
�

1
n 2

i
� � RH  � 1

22 �
1
	 � �

RH

4

Take the reciprocal and substitute, finding the wave-
length:

� 364.6 nm

� �
4

RH
�

4
(1.097 �  107 m�1)

� 3.646 �  10�7 m

TIP 28.1 Energy Depends 
On n Only for Hydrogen
According to Equation 28.13, the en-
ergy depends only on the quantum
number n. Note that this is only true
for the hydrogen atom. For more
complicated atoms, the energy levels
depend primarily on n, but also on
other quantum numbers.
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910 Chapter 28 Atomic Physics

Bohr’s Correspondence Principle
In our study of relativity in Chapter 26, we found that Newtonian mechanics can-
not be used to describe phenomena that occur at speeds approaching the speed of
light. Newtonian mechanics is a special case of relativistic mechanics and applies
only when v is much smaller than c. Similarly, quantum mechanics is in agreement
with classical physics when the energy differences between quantized levels are
very small. This principle, first set forth by Bohr, is called the correspondence
principle.

For example, consider the hydrogen atom with n � 10 000. For such large val-
ues of n, the energy differences between adjacent levels approach zero and the lev-
els are nearly continuous, as Equation 28.13 shows. As a consequence, the classical
model is reasonably accurate in describing the system for large values of n. Accord-
ing to the classical model, the frequency of the light emitted by the atom is equal
to the frequency of revolution of the electron in its orbit about the nucleus. Calcu-
lations show that for n � 10 000, this frequency is different from that predicted by
quantum mechanics by less than 0.015%.

28.4 MODIFICATION OF THE BOHR THEORY
The Bohr theory of the hydrogen atom was a tremendous success in certain areas
because it explained several features of the hydrogen spectrum that had previously
defied explanation. It accounted for the Balmer series and other series; it pre-
dicted a value for the Rydberg constant that is in excellent agreement with the ex-
perimental value; it gave an expression for the radius of the atom; and it predicted
the energy levels of hydrogen. Although these successes were important to scien-
tists, it is perhaps even more significant that the Bohr theory gave us a model of
what the atom looks like and how it behaves. Once a basic model is constructed,
refinements and modifications can be made to enlarge on the concept and to ex-
plain finer details.

The analysis used in the Bohr theory is also successful when applied to hydrogen-
like atoms. An atom is said to be hydrogen-like when it contains only one electron.
Examples are singly ionized helium, doubly ionized lithium, triply ionized beryllium,
and so forth. The results of the Bohr theory for hydrogen can be extended to hydro-
gen-like atoms by substituting Ze2 for e2 in the hydrogen equations, where Z is the
atomic number of the element. For example, Equations 28.12 and 28.15 become

n � 1, 2, 3, . . . [28.18]

and

[28.19]
1
�

�
meke

2Z 2e4

4�c�3  � 1
nf

2 �
1

ni
2 �

En � �
meke

2Z 2e4

2�2  � 1
n2 �

Remarks The first wavelength is in the red region of the visible spectrum. We could also obtain the energy of the
photon by using Equation 28.3 in the form hf � E3 � E2, where E2 and E3 are the energy levels of the hydrogen
atom, calculated from Equation 28.13. Note that this is the lowest energy photon in the Balmer series, because it in-
volves the smallest energy change. The second photon, the most energetic, is in the ultraviolet region.

Exercise 28.1
(a) Calculate the energy of the shortest wavelength photon emitted in the Balmer series for hydrogen. (b) Calculate
the wavelength of a transition from n � 4 to n � 2.

Answers (a) 3.40 eV (b) 486 nm

Investigate transitions between various states by logging into PhysicsNow at www.cp7e.com and go-
ing to Interactive Example 28.1.
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28.4 Modification of the Bohr Theory 911

Although many attempts were made to extend the Bohr theory to more com-
plex, multi-electron atoms, the results were unsuccessful. Even today, only approxi-
mate methods are available for treating multi-electron atoms.

Consider a hydrogen atom and a singly-ionized helium atom. Which atom has the
lower ground state energy? (a) hydrogen (b) helium (c) the ground state energy is
the same for both

Quick Quiz 28.1

Consider once again a singly-ionized helium atom. Suppose the remaining elec-
tron jumps from a higher to a lower energy level, resulting in the emission of pho-
ton, which we’ll call photon-He. An electron in a hydrogen atom then jumps
between the same two levels, resulting in an emitted photon-H. Which photon has
the shorter wavelength? (a) photon-He (b) photon-H (c) The wavelengths are the
same.

Quick Quiz 28.2

EXAMPLE 28.2 Singly Ionized Helium
Goal Apply the modified Bohr theory to a hydrogen-like atom.

Problem Singly ionized helium, He�, a hydrogen-like system, has one electron in the 1s orbit when the atom is in
its ground state. Find (a) the energy of the system in the ground state in electron volts, and (b) the radius of the
ground-state orbit.

Strategy Part (a) requires substitution into the modified Bohr model, Equation 28.18. In part (b), modify Equa-
tion 28.9 for the radius of the Bohr orbits by replacing e2 by Ze2, where Z is the number of protons in the nucleus.

Solution
(a) Find the energy of the system in the ground state.

Write Equation 28.18 for the energies of a hydrogen-like
system:

En � �
meke

2Z 2e4

2�2  � 1
n2 �

Substitute the constants and convert to electron volts: En � �
Z 2(13.6)

n2  eV

Substitute Z � 2 (the atomic number of helium) and
n � 1 to obtain the ground state energy:

E1 � � 4(13.6) eV � �54.4 eV

(b) Find the radius of the ground state.

Generalize Equation 28.9 to a hydrogen-like atom by
substituting Ze 2 for e2:

rn �
n2�2

mekeZe2 �
n2

Z
(a0) �

n2

Z
(0.052 9 nm)

For our case, n � 1 and Z � 2: r1 � 0.026 5 nm

Remarks Notice that for higher Z the energy of a hydrogen-like atom is lower, which means that the electron is
more tightly bound than in hydrogen. This results in a smaller atom, as seen in part (b).

Exercise 28.2
Repeat the problem for the first excited state of doubly-ionized lithium (Z � 3, n � 2).

Answers (a) E2 � � 30.6 eV (b) r2 � 0.070 5 nm
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912 Chapter 28 Atomic Physics

Within a few months following the publication of Bohr’s paper, Arnold Sommer-
feld (1868–1951) extended the Bohr model to include elliptical orbits. We examine
his model briefly because much of the nomenclature used in this treatment is still in
use today. Bohr’s concept of quantization of angular momentum led to the principal
quantum number n, which determines the energy of the allowed states of hydrogen.
Sommerfeld’s theory retained n, but also introduced a new quantum number �
called the orbital quantum number, where the value of � ranges from 0 to n � 1 in in-
teger steps. According to this model, an electron in any one of the allowed energy
states of a hydrogen atom may move in any one of a number of orbits corresponding
to different � values. For each value of n, there are n possible orbits corresponding to
different � values. Because n � 1 and � � 0 for the first energy level (ground state),
there is only one possible orbit for this state. The second energy level, with n � 2, has
two possible orbits, corresponding to � � 0 and � � 1. The third energy level, with
n � 3, has three possible orbits, corresponding to � � 0, � � 1, and � � 2.

For historical reasons, all states with the same principal quantum number n are
said to form a shell. Shells are identified by the letters K, L, M, . . . , which designate
the states for which n � 1, 2, 3, . . . . Likewise, the states with given values of n and �
are said to form a subshell. The letters s, p, d, f, g, . . . are used to designate the states
for which � � 0, 1, 2, 3, 4, . . . . These notations are summarized in Table 28.1.

States that violate the restriction 0 � � � n � 1, for a given value of n, can’t exist.
A 2d state, for instance, would have n � 2 and � � 2, but can’t exist because the
highest allowed value of � is n � 1, or 1 in this case. For n � 2, 2s and 2p are allowed
subshells, but 2d, 2f, . . . are not. For n � 3, the allowed states are 3s, 3p, and 3d.

Another modification of the Bohr theory arose when it was discovered that the
spectral lines of a gas are split into several closely spaced lines when the gas is placed
in a strong magnetic field. (This is called the Zeeman effect, after its discoverer.) Figure
28.9 shows a single spectral line being split into three closely spaced lines. This indi-
cates that the energy of an electron is slightly modified when the atom is immersed in
a magnetic field. In order to explain this observation, a new quantum number, m�,
called the orbital magnetic quantum number, was introduced. The theory is in accord
with experimental results when m � is restricted to values ranging from � � to � � in
integer steps. For a given value of �, there are 2� � 1 possible values of m�.

Finally, very high resolution spectrometers revealed that spectral lines of gases
are in fact two very closely spaced lines even in the absence of an external magnetic
field. This splitting was referred to as fine structure. In 1925 Samuel Goudsmit and
George Uhlenbeck introduced the idea of an electron spinning about its own axis
to explain the origin of fine structure. The results of their work introduced yet an-
other quantum number, ms, called the spin magnetic quantum number.

For each electron there are two spin states. A subshell corresponding to a given
factor of � can contain no more than 2(2� � 1) electrons. This number comes
from the fact that electrons in a subshell must have unique pairs of the quantum
numbers (m�, ms). There are 2� � 1 different magnetic quantum numbers m�,
and two different spin quantum numbers ms, making 2(2� � 1) unique pairs 
(m�, ms). For example, the p subshell (� � 1) is filled when it contains 2(2 � 1 � 1) � 6
electrons. This fact can be extended to include all four quantum numbers, as will
be important to us later when we discuss the Pauli exclusion principle.

All these quantum numbers (addressed in more detail in upcoming sections)
were postulated to account for the observed spectra of elements. Only later were
comprehensive mathematical theories developed that naturally yielded the same
answers as these empirical models.

28.5 DE BROGLIE WAVES AND 
THE HYDROGEN ATOM

One of the postulates made by Bohr in his theory of the hydrogen atom was that
the angular momentum of the electron is quantized in units of �, or 

mevr � n�

A

B

Figure 28.9 A single line (A) can
split into three separate lines (B) in a
magnetic field.

TABLE 28.1
Shell and Subshell Notation

Shell Subshell
n Symbol � Symbol

1 K 0 s
2 L 1 p
3 M 2 d
4 N 3 f
5 O 4 g
6 P 5 h

. . . . . .
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28.6 Quantum Mechanics and the Hydrogen Atom 913

For more than a decade following Bohr’s publication, no one was able to explain why
the angular momentum of the electron was restricted to these discrete values. Finally,
de Broglie gave a direct physical way of interpreting this condition. He assumed that
an electron orbit would be stable (allowed) only if it contained an integral number of
electron wavelengths. Figure 28.10a demonstrates this point when three complete
wavelengths are contained in one circumference of the orbit. Similar patterns can be
drawn for orbits containing one wavelength, two wavelengths, four wavelengths, five
wavelengths, and so forth. These waves are analogous to standing waves on a string,
discussed in Chapter 14. There, we found that strings have preferred (resonant) fre-
quencies of vibration. Figure 28.10b shows a standing-wave pattern containing three
wavelengths for a string fixed at each end. Now imagine that the vibrating string is re-
moved from its supports at A and B and bent into a circular shape that brings those
points together. The end result is a pattern such as the one shown in Figure 28.10a.

In general, the condition for a de Broglie standing wave in an electron orbit is
that the circumference must contain an integral number of electron wavelengths.
We can express this condition as

2�r � n� n � 1, 2, 3, . . .

Because the de Broglie wavelength of an electron is � � h/mev, we can write the
preceding equation as 2�r � nh/mev, or

This is the same as the quantization of angular momentum condition imposed by
Bohr in his original theory of hydrogen.

The electron orbit shown in Figure 28.10a contains three complete wavelengths
and corresponds to the case in which the principal quantum number n � 3. The
orbit with one complete wavelength in its circumference corresponds to the first
Bohr orbit, n � 1; the orbit with two complete wavelengths corresponds to the sec-
ond Bohr orbit, n � 2; and so forth.

By applying the wave theory of matter to electrons in atoms, de Broglie was able
to explain the appearance of integers in the Bohr theory as a natural consequence
of standing-wave patterns. This was the first convincing argument that the wave na-
ture of matter was at the heart of the behavior of atomic systems. Although the
analysis provided by de Broglie was a promising first step, gigantic strides were
made subsequently with the development of Schrödinger’s wave equation and its
application to atomic systems.

28.6 QUANTUM MECHANICS 
AND THE HYDROGEN ATOM

One of the first great achievements of quantum mechanics was the solution of the
wave equation for the hydrogen atom. The details of the solution are far beyond
the level of this course, but we’ll describe its properties and implications for
atomic structure.

mevr � n�

r

A B

(b)(a)

l

Figure 28.10 (a) Standing-wave
pattern for an electron wave in a 
stable orbit of hydrogen. There are
three full wavelengths in this orbit.
(b) Standing-wave pattern for a 
vibrating stretched string fixed at its
ends. This pattern also has three full
wavelengths.
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914 Chapter 28 Atomic Physics

According to quantum mechanics, the energies of the allowed states are in ex-
act agreement with the values obtained by the Bohr theory (Eq. 28.12) when the
allowed energies depend only on the principal quantum number n.

In addition to the principal quantum number, two other quantum numbers
emerged from the solution of the wave equation: � and m�. The quantum number
� is called the orbital quantum number, and m� is called the orbital magnetic quan-
tum number. As pointed out in Section 28.4, these quantum numbers had already
appeared in empirical modifications made to the Bohr theory. The significance of
quantum mechanics is that those numbers and the restrictions placed on their val-
ues arose directly from mathematics and not from any ad hoc assumptions to
make the theory consistent with experimental observation. Because we will need to
make use of the various quantum numbers in the sections that follow, the allowed
ranges of their values are repeated:

The value of n can range from 1 to 	 in integer steps.
The value of � can range from 0 to n � 1 in integer steps.
The value of m� can range from � � to � in integer steps.

From these rules, it can be seen that for a given value of n, there are n possible val-
ues of �, while for a given value of � there are 2� � 1 possible values of m�. For ex-
ample, if n � 1, there is only 1 value of �, � � 0. Because 2� � 1 � 2 � 0 � 1 � 1,
there is only one value of m�, which is m� � 0. If n � 2, the value of � may be 0 or 1;
if � � 0, then m� � 0, but if � � 1, then m� may be 1, 0, or �1. Table 28.2 summa-
rizes the rules for determining the allowed values of � and m� for a given value of n.

States that violate the rules given in Table 28.2 cannot exist. For instance, one
state that cannot exist is the 2d state, which would have n � 2 and � � 2. This state
is not allowed because the highest allowed value of � is n � 1, or 1 in this case.
Thus, for n � 2, 2s and 2p are allowed states, but 2d, 2f, . . . are not. For n � 3, the
allowed states are 3s, 3p, and 3d.

In general, for a given value of n1 there are n2 states with distinct pairs of values
of � and m�.

TABLE 28.2
Three Quantum Numbers for the Hydrogen Atom

Number of 
Quantum Allowed
Number Name Allowed Values States

N Principal quantum number 1, 2, 3, . . . Any number
Orbital quantum number 0, 1, 2, . . . , n � 1 n
Orbital magnetic quantum , � 1, . . . , 2 � 1

number 0, . . . , � 1, ��
�����m�

�

When the principal quantum number is n � 5, how many different values of (a) �
and (b) m� are possible? (c) How many states have distinct pairs of values of � and m�?

Quick Quiz 28.3

EXAMPLE 28.3 The n � 2 Level of Hydrogen
Goal Count states and determine energy based on atomic energy level.

Problem (a) Determine the number of states with a unique set of values for � and m� in the hydrogen atom for n � 2.
(b) Calculate the energies of these states.

Strategy This is a matter of counting, following the quantum rules for n, �, and m�. “Unique” means that no other
quantum state has the same pair of numbers for � and m� the energies are all the same because all states have the
same principal quantum number, n � 2.
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28.7 The Spin Magnetic Quantum Number 915

28.7 THE SPIN MAGNETIC QUANTUM NUMBER
As we’ll see in this section, there actually are eight states corresponding to n � 2
for hydrogen, not four as given in Example 28.3. This happens because another
quantum number, ms, the spin magnetic quantum number, has to be introduced to
explain the splitting of each level into two.

The need for this new quantum number first came about because of an unusual
feature in the spectra of certain gases, such as sodium vapor. Close examination of
one of the prominent lines of sodium shows that it is, in fact, two very closely
spaced lines. The wavelengths of these lines occur in the yellow region of the spec-
trum, at 589.0 nm and 589.6 nm. In 1925, when this doublet was first noticed,
atomic theory couldn’t explain it. To resolve the dilemma, Samuel Goudsmit and
George Uhlenbeck, following a suggestion by the Austrian physicist Wolfgang
Pauli, proposed the introduction of a fourth quantum number to describe atomic
energy levels, called the spin quantum number.

In order to describe the spin quantum number, it’s convenient (but technically in-
correct) to think of the electron as spinning on its axis as it orbits the nucleus, just as
the Earth spins on its axis as it orbits the Sun. Strangely, there are only two ways in
which the electron can spin as it orbits the nucleus, as shown in Figure 28.11. If the
direction of spin is as shown in Figure 28.11a, the electron is said to have “spin up.” If
the direction of spin is reversed, as in Figure 28.11b, the electron is said to have “spin
down.” The energy of the electron is slightly different for the two spin directions, and
this energy difference accounts for the sodium doublet. The quantum numbers asso-
ciated with electron spin are ms � for the spin-up state and for the spin-
down state. As we’ll see in Example 28.5, this new quantum number doubles the
number of allowed states specified by the quantum numbers n, �, and m�.

ms � �1
2

1
2

Solution
(a) Determine the number of states with a unique set of
values for � and m� in the hydrogen atom for n � 2.

Determine the different possible values of � for n � 2: 0 � � � n � 1, so, for n � 2, 0 � � � 1 and � � 0 or 1

Find the different possible values of m� for � � 0: � � � m� � �, so � 0 � m� � 0 implies m� � 0

List the distinct pairs of (�, m�) for � � 0: There is only one: (�, m�) � (0, 0).

Find the different possible values of m� for � � 1: � � � m� � �, so � 1 � m� � 1 implies m� � � 1, 0, or 1

List the distinct pairs of (�, m�) for � � 1: There are three: (�, m�) � ( 1, � 1), (1, 0), and (1, 1).

Sum the results for � � 0 and � � 1: Number of states � 1 � 3 � 4

(b) Calculate the energies of these states.

The common energy of all of the states can be found
with Equation 28.13:

�3.40 eVEn � �
13.6 eV

n2  : E2 � �
13.6 eV

22 �

Remarks While these states normally have the same energy, applying a magnetic field will result in their taking
slightly different energies centered around the energy corresponding to n � 2. As seen in the next section, there are
in fact twice as many states, corresponding to a new quantum number called spin.

Exercise 28.3
(a) Determine the number of states with a unique pair of values for � and m� in the n � 3 level of hydrogen.
(b) Determine the energies of those states.

Answers (a) 9 (b) E 3 � � 1.51 eV

Nucleus

Spin down
(b)

Nucleus

Spin up

(a)

Figure 28.11 As an electron moves
in its orbit about the nucleus, its spin
can be either (a) up or (b) down.
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Any classical description of electron spin is incorrect because quantum mechan-
ics tells us that since the electron can’t be located precisely in space, it cannot be
considered to be a spinning solid object, as pictured in Figure 28.11. In spite of
this conceptual difficulty, all experimental evidence supports the fact that an elec-
tron does have some intrinsic property that can be described by the spin magnetic
quantum number.

The spin quantum number didn’t come from the original formulation of quan-
tum mechanics by Schrodinger (and independently, by Heisenberg). The English
mathematical physicist P. A. M. Dirac developed a relativistic quantum theory in
which spin appears naturally.

28.8 ELECTRON CLOUDS
The solution of the wave equation, discussed in Section 27.7, yields a wave func-
tion  that depends on the quantum numbers n, �, and m�. We assume that we
have found such a wave function  and see what it may tell us about the hydrogen
atom. Let n � 1 for the principal quantum number, which corresponds to the low-
est energy state for hydrogen. For n � 1, the restrictions placed on the remaining
quantum numbers are that � � 0 and m� � 0.

The quantity 2 has great physical significance. If p is a point and Vp a very
small volume containing that point, then 2Vp is approximately the probability of
finding the electron inside the volume Vp. Figure 28.12 gives the probability per
unit length of finding the electron at various distances from the nucleus in the 1s
state of hydrogen. Some useful and surprising information can be extracted from

EXAMPLE 28.4 The Quantum Numbers for the 2p Subshell
Goal List the distinct quantum states of a subshell by their quantum numbers, including spin.

Problem List the unique sets of quantum numbers for electrons in the 2p subshell.

Strategy This is again a matter following the quantum rules for n, �, and m�, and now ms as well. The 2p subshell
has n � 2 (that’s the “2” in 2p) and � � 1 (that’s from the p in 2p).

Solution
Because � � 1, the magnetic quantum number can have
the values � 1, 0, 1, and the spin quantum number is al-
ways or . Consequently, there are 3 � 2 � 6 possi-
ble sets of quantum numbers with n � 2 and � � 1,
listed in the table at right.

�1
2�1

2

n � m� ms

2 1 � 1
2 1 � 1
2 1 0
2 1 0
2 1 1
2 1 1 1

2

�1
2

1
2

�1
2

1
2

�1
2

Remark Remember that these quantum states are not just abstractions; they have real physical consequences, such
as which electronic transitions can be made within an atom and, consequently, which wavelengths of radiation can be
observed.

Exercise 28.4
(a) How many different sets of quantum numbers are there in the 3d subshell? (b) How many sets of quantum num-
bers are there in a 2d subshell?

Answers (a) 10 (b) None. A 2d subshell doesn’t exist because that would imply a quantum state with n � 2 and
� � 2, impossible because � � n � 1.

TIP 28.2 The Electron Isn’t
Really Spinning
The electron is not physically 
spinning. Electron spin is a purely
quantum effect that gives the 
electron an angular momentum as if
it were physically spinning.
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this curve. First, the curve peaks at a value of r � 0.052 9 nm, the Bohr radius for
the first (n � 1) electron orbit in hydrogen. This means that there is a maximum
probability of finding the electron in a small interval centered at that distance
from the nucleus. However, as the curve indicates, there is also a probability of
finding the electron in a small interval centered at any other distance from the nu-
cleus. In other words, the electron is not confined to a particular orbital distance
from the nucleus, as assumed in the Bohr model. The electron may be found at
various distances from the nucleus, but the probability of finding it at a distance
corresponding to the Bohr radius is a maximum. Quantum mechanics also
predicts that the wave function for the hydrogen atom in the ground state is spher-
ically symmetric; hence the electron can be found in a spherical region surround-
ing the nucleus. This is in contrast to the Bohr theory, which confines the position
of the electron to points in a plane. The quantum mechanical result is often inter-
preted by viewing the electron as a cloud surrounding the nucleus. An attempt at
picturing this cloud-like behavior is shown in Figure 28.13. The densest regions of
the cloud represent those locations where the electron is most likely to be found.

If a similar analysis is carried out for the n � 2, � � 0, state of hydrogen, a peak
of the probability curve is found at 4a 0. Likewise, for the n � 3, � � 0 state, the
curve peaks at 9a 0. Thus, quantum mechanics predicts a most probable electron
distance to the nucleus that is in agreement with the location predicted by the
Bohr theory.

28.9 THE EXCLUSION PRINCIPLE 
AND THE PERIODIC TABLE

Earlier, we found that the state of an electron in an atom is specified by four quan-
tum numbers: n, �, m�, and ms. For example, an electron in the ground state of hy-
drogen could have quantum numbers of n � 1, � � 0, m� � 0, and . As it
turns out, the state of an electron in any other atom may also be specified by this
same set of quantum numbers. In fact, these four quantum numbers can be used
to describe all the electronic states of an atom, regardless of the number of elec-
trons in its structure.

How many electrons in an atom can have a particular set of quantum numbers?
This important question was answered by Pauli in 1925 in a powerful statement
known as the Pauli exclusion principle:

No two electrons in an atom can ever have the same set of values for the set of quantum
numbers n, �, m�, and ms.

The Pauli exclusion principle explains the electronic structure of complex atoms
as a succession of filled levels with different quantum numbers increasing in en-
ergy, where the outermost electrons are primarily responsible for the chemical
properties of the element. If this principle weren’t valid, every electron would end
up in the lowest energy state of the atom and the chemical behavior of the ele-
ments would be grossly different. Nature as we know it would not exist—and we
would not exist to wonder about it!

As a general rule, the order that electrons fill an atom’s subshell is as follows:
once one subshell is filled, the next electron goes into the vacant subshell that is
lowest in energy. If the atom were not in the lowest energy state available to it, it
would radiate energy until it reached that state. A subshell is filled when it con-
tains 2(2� � 1) electrons. This rule is based on the analysis of quantum numbers
to be described later. Following the rule, shells and subshells can contain numbers
of electrons according to the pattern given in Table 28.3.

The exclusion principle can be illustrated by an examination of the electronic
arrangement in a few of the lighter atoms.

Hydrogen has only one electron, which, in its ground state, can be described by
either of two sets of quantum numbers: 1, 0, 0, or 1, 0, 0, . The electronic
configuration of this atom is often designated as 1s1. The notation 1s refers to a

�1
2

1
2

ms � 1
2

P (r) 1s

a0 = 0.052 9 nm r

Figure 28.12 The probability per
unit length of finding the electron
versus distance from the nucleus 
for the hydrogen atom in the 1s
(ground) state. Note that the graph
has its maximum value when r equals
the first Bohr radius, a0.

Figure 28.13 The spherical 
electron cloud for the hydrogen 
atom in its 1s state.

z

x

y

TIP 28.3 The Exclusion 
Principle is More General
The exclusion principle stated here is
a limited form of the more general
exclusion principle, which states that
no two fermions (particles with spin
1/2, 3/2, . . .) can be in the same
quantum state.

� The Pauli exclusion principle
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state for which n � 1 and � � 0, and the superscript indicates that one electron is
present in this level.

Neutral helium has two electrons. In the ground state, the quantum numbers for
these two electrons are 1, 0, 0, and 1, 0, 0, . No other possible combinations of
quantum numbers exist for this level, and we say that the K shell is filled. The he-
lium electronic configuration is designated as 1s2.

Neutral lithium has three electrons. In the ground state, two of these are in the
1s subshell and the third is in the 2s subshell, because the latter is lower in energy
than the 2p subshell. Hence, the electronic configuration for lithium is 1s22s1.

A list of electronic ground-state configurations for a number of atoms is pro-
vided in Table 28.4. In 1871 Dmitri Mendeleev (1834–1907), a Russian chemist,
arranged the elements known at that time into a table according to their atomic
masses and chemical similarities. The first table Mendeleev proposed contained
many blank spaces, and he boldly stated that the gaps were there only because
those elements had not yet been discovered. By noting the column in which these
missing elements should be located, he was able to make rough predictions about
their chemical properties. Within 20 years of this announcement, the elements
were indeed discovered.

The elements in our current version of the periodic table are still arranged so
that all those in a vertical column have similar chemical properties. For example,
consider the elements in the last column: He (helium), Ne (neon), Ar (argon), Kr
(krypton), Xe (xenon), and Rn (radon). The outstanding characteristic of these
elements is that they don’t normally take part in chemical reactions, joining with
other atoms to form molecules, and are therefore classified as inert. Because of
this “aloofness,” they are referred to as the noble gases. We can partially understand
their behavior by looking at the electronic configurations shown in Table 28.4,
page 919. The element helium has the electronic configuration 1s2. In other
words, one shell is filled. The electrons in this filled shell are considerably sepa-
rated in energy from the next available level, the 2s level.

The electronic configuration for neon is 1s22s22p6. Again, the outer shell is
filled and there is a large difference in energy between the 2p level and the 3s
level. Argon has the configuration 1s22s22p63s23p6. Here, the 3p subshell is filled
and there is a wide gap in energy between the 3p subshell and the 3d subshell.
Through all the noble gases, the pattern remains the same: a noble gas is formed
when either a shell or a subshell is filled, and there is a large gap in energy before
the next possible level is encountered.

The elements in the first column of the periodic table are called the alkali
metals and are highly active chemically. Referring to Table 28.4, we can understand
why these elements interact so strongly with other elements. All of these alkali

�1
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1
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WOLFGANG PAULI (1900–1958)
An extremely talented Austrian theoretical
physicist who made important contribu-
tions in many areas of modern physics,
Pauli gained public recognition at the age
of 21 with a masterful review article on
relativity that is still considered one of the
finest and most comprehensive introduc-
tions to the subject. Other major contribu-
tions were the discovery of the exclusion
principle, the explanation of the connec-
tion between particle spin and statistics,
and theories of relativistic quantum elec-
trodynamics, the neutrino hypothesis, and
the hypothesis of nuclear spin.
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TABLE 28.3
Number of Electrons in Filled Subshells and Shells

Number of Number of
Electrons in Electrons in

Shell Subshell Filled Subshell Filled Shell

K (n � 1) s(� � 0) 2 2

L (n � 2)
s(� � 0) 2

8p(� � 1) 6

s(� � 0) 2
M (n � 3) p(� � 1) 6 18

d(� � 2) 10

s(� � 0) 2

N (n � 4)
p(� � 1) 6

32d(� � 2) 10
f(� � 3) 14

}

}
}
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metals have a single outer electron in an s subshell. This electron is shielded from
the nucleus by all the electrons in the inner shells. Consequently, it’s only loosely
bound to the atom and can readily be accepted by other atoms that bind it more
tightly to form molecules.

The elements in the seventh column of the periodic table are called the
halogens and are also highly active chemically. All these elements are lacking one
electron in a subshell, so they readily accept electrons from other atoms to form
molecules.

TABLE 28.4
Electronic Configurations of Some Elements

Ground-State Ionization Ground-State Ionization
Z Symbol Configuration Energy (eV) Z Symbol Configuration Energy (eV)

1 H 1s1 13.595 19 K [Ar] 4s1 4.339
2 He 1s2 24.581 20 Ca 4s2 6.111

21 Sc 3d4s2 6.54
3 Li [He] 2s1 5.390 22 Ti 3d24s2 6.83
4 Be 2s2 9.320 23 V 3d34s2 6.74
5 B 2s22p1 8.296 24 Cr 3d 54s1 6.76
6 C 2s22p2 11.256 25 Mn 3d 54s2 7.432
7 N 2s22p3 14.545 26 Fe 3d 64s2 7.87
8 O 2s22p4 13.614 27 Co 3d 74s2 7.86
9 F 2s22p5 17.418 28 Ni 3d 84s2 7.633

10 Ne 2s22p6 21.559 29 Cu 3d104s1 7.724
30 Zn 3d104s2 9.391

11 Na [Ne] 3s1 5.138 31 Ga 3d104s24p1 6.00
12 Mg 3s2 7.644 32 Ge 3d104s24p2 7.88
13 Al 3s23p1 5.984 33 As 3d104s24p3 9.81
14 Si 3s23p2 8.149 34 Se 3d104s24p4 9.75
15 P 3s23p3 10.484 35 Br 3d104s24p5 11.84
16 S 3s23p4 10.357 36 Kr 3d104s24p6 13.996
17 Cl 3s23p5 13.01
18 Ar 3s23p6 15.755

Note : The bracket notation is used as a shorthand method to avoid repetition in indicating inner-shell electrons. Thus, [He] represents 1s2, [Ne] represents 1s22s22p6,
[Ar] represents 1s22s22p63s23p6, and so on.

Krypton (atomic number 36) has how many electrons in its next to outer shell
(n � 3)?
(a) 2 (b) 4 (c) 8 (d) 18

Quick Quiz 28.4

Scanning from left to right across one row of the 
periodic table, the effective size of the atoms first 
decreases and then increases. What would cause this
behavior?

Explanation Starting on the left side of the periodic
table and moving toward the middle, the nuclear
charge is increasing. As a result, there is an increasing

Coulomb attraction between the nucleus and the 
electrons, and the electrons are pulled into an average
position that is closer to the nucleus. From the middle
of the row to the right side, the increasing number of
electrons being placed in proximity to each other 
results in a mutual repulsion that increases the 
average distance from the nucleus and causes the
atomic size to grow.

Applying Physics 28.3 The Periodic Table
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28.10 CHARACTERISTIC X-RAYS
X-rays are emitted when a metal target is bombarded with high-energy electrons.
The x-ray spectrum typically consists of a broad continuous band and a series of in-
tense sharp lines that are dependent on the type of metal used for the target, as
shown in Figure 28.14. These discrete lines, called characteristic x-rays, were dis-
covered in 1908, but their origin remained unexplained until the details of atomic
structure were developed.

The first step in the production of characteristic x-rays occurs when a bombard-
ing electron collides with an electron in an inner shell of a target atom with suffi-
cient energy to remove the electron from the atom. The vacancy created in the
shell is filled when an electron in a higher level drops down into the lower energy
level containing the vacancy. The time it takes for this to happen is very short, less
than 10�9 s. The transition is accompanied by the emission of a photon with en-
ergy equaling the difference in energy between the two levels. Typically, the energy
of such transitions is greater than 1 000 eV, and the emitted x-ray photons have
wavelengths in the range of 0.01 nm to 1 nm.

We assume that the incoming electron has dislodged an atomic electron from
the innermost shell, the K shell. If the vacancy is filled by an electron dropping
from the next higher shell, the L shell, the photon emitted in the process is re-
ferred to as the K� line on the curve of Figure 28.14. If the vacancy is filled by an
electron dropping from the M shell, the line produced is called the K� line.

Other characteristic x-ray lines are formed when electrons drop from upper
levels to vacancies other than those in the K shell. For example, L lines are pro-
duced when vacancies in the L shell are filled by electrons dropping from higher
shells. An L� line is produced as an electron drops from the M shell to the L shell,
and an L� line is produced by a transition from the N shell to the L shell.

We can estimate the energy of the emitted x-rays as follows: consider two elec-
trons in the K shell of an atom whose atomic number is Z. Each electron partially
shields the other from the charge of the nucleus, Ze, so each is subject to an effec-
tive nuclear charge Z eff � (Z � 1)e. We can now use a modified form of Equation
28.18 to estimate the energy of either electron in the K shell (with n � 1). We have

where E0 is the ground-state energy. Substituting Z eff � Z � 1 gives

E K � � (Z � 1)2(13.6 eV) [28.20]

As Example 28.5 will show, we can estimate the energy of an electron in an L or an
M shell in a similar fashion. Taking the energy difference between these two levels,
we can then calculate the energy and wavelength of the emitted photon.

In 1914, Henry G. J. Moseley plotted the Z values for a number of elements
against , where l is the wavelength of the K� line for each element. He found
that such a plot produced a straight line, as in Figure 28.15. This is consistent with
our rough calculations of the energy levels based on Equation 28.20. From his
plot, Moseley was able to determine the Z values of other elements, providing a
periodic chart in excellent agreement with the known chemical properties of the
elements.
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Figure 28.14 The x-ray spectrum
of a metal target consists of a broad
continuous spectrum (bremstrahlung)
plus a number of sharp lines that are
due to characteristic x-rays. The data
shown were obtained when 35-keV
electrons bombarded a molybdenum
target. Note that 1 pm � 10�12 m �
0.001 nm.

Figure 28.15 A Moseley plot 
of versus Z , where � is the 
wavelength of the K� x-ray line of 
the element of atomic number Z.
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EXAMPLE 28.5 Characteristic X-Rays
Goal Calculate the energy and wavelength of characteristic x-rays.

Problem Estimate the energy of the characteristic x-ray emitted from a tungsten target when an electron drops
from an M shell (n � 3 state) to a vacancy in the K shell (n � 1 state).

Strategy Develop two estimates, one for the electron in the K shell (n � 1) and one for the electron in the M shell
(n � 3). For the K-shell estimate, we can use Equation 28.20. For the M shell, we need a new equation. There is one
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28.11 ATOMIC TRANSITIONS
We have seen that an atom will emit radiation only at certain frequencies that cor-
respond to the energy separation between the various allowed states. Consider an
atom with many allowed energy states, labeled E1, E2, E3, . . . , as in Figure 28.16.
When light is incident on the atom, only those photons whose energy hf matches
the energy separation �E between two levels can be absorbed by the atom. A
schematic diagram representing this stimulated absorption process is shown in Ac-
tive Figure 28.17. At ordinary temperatures, most of the atoms in a sample are in
the ground state. If a vessel containing many atoms of a gas is illuminated with a
light beam containing all possible photon frequencies (that is, a continuous spec-
trum), only those photons of energies E2 � E1, E3 � E1, E 4 � E1, and so on, can
be absorbed. As a result of this absorption, some atoms are raised to various al-
lowed higher energy levels, called excited states.

Once an atom is in an excited state, there is a constant probability that it will jump
back to a lower level by emitting a photon, as shown in Active Figure 28.18 (page 922).

electron in the K shell (because one is missing) and 8 in the L shell, making 9 electrons shielding the nuclear
charge. This means Zeff � 74 � 9 and E M � � Z eff

2 E 3, where E 3 is the energy of the n � 3 level in hydrogen. The
difference E M � E K is the energy of the photon.

Solution
Use Equation 28.20 to estimate the energy of an elec-
tron in the K shell of tungsten, atomic number Z � 74:

EK � � (74 � 1)2(13.6 eV) � � 72 500 eV

Estimate the energy of an electron in the M shell in the
same way:

 � � 6 380 eV

 EM � �Z eff
2 E3 � �(Z � 9)2

  
E0

32 � �(74 � 9)2
 
(13.6 eV)

9

Calculate the difference in energy between the M and K
shells:

EM � EK � � 6 380 eV � (� 72 500 eV) � 66 100 eV

Find the wavelength of the emitted light:

0.018 8 nm� 1.88 � 10�11 m �

� �
(6.63 � 10�34 J�s)(3.00 � 108 m/s)
(6.61 � 104 eV)(1.60 � 10�19 J/eV)

�E � hf � h 
c
�
 : � �

hc
�E

Exercise 28.5
Repeat the problem for a 2p electron transiting from the L shell to the K shell. (For technical reasons, the L shell
electron must have � � 1, so a single 1s electron and two 2s electrons shield the nucleus.)

Answer (a) 5.54 � 104 eV (b) 0.022 4 nm

E4

E3

E2

E1

Figure 28.16 Energy level diagram
of an atom with various allowed
states. The lowest energy state, E 1, 
is the ground state. All others are 
excited states.

ACTIVE FIGURE 28.17
Diagram representing the process of 
stimulated absorption of a photon by an atom.
The blue dot represents an electron. The
electron is transferred from the ground state
to the excited state when the atom absorbs a
photon of energy hf � E2 � E1.

Log into PhysicsNow at www.cp7e.com and
go to Active Figure 28.17 to observe 
stimulated absorption.

Atom in
excited state

Atom in
ground state

E2E2

∆E
hf

E1 E1

Before After
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This process is known as spontaneous emission. Typically, an atom will remain in an
excited state for only about 10�8 s.

A third process that is important in lasers, stimulated emission, was predicted by
Einstein in 1917. Suppose an atom is in the excited state E2, as in Active Figure
28.19, and a photon with energy hf � E2 � E1 is incident on it. The incoming pho-
ton increases the probability that the excited atom will return to the ground state
and thereby emit a second photon having the same energy hf. Note that two
identical photons result from stimulated emission: the incident photon and the
emitted photon. The emitted photon is exactly in phase with the incident photon. These
photons can stimulate other atoms to emit photons in a chain of similar processes.
The many photons produced in this fashion are the source of the intense, coher-
ent (in-phase) light in a laser.

28.12 LASERS AND HOLOGRAPHY
We have described how an incident photon can cause atomic transitions either up-
ward (stimulated absorption) or downward (stimulated emission). The two
processes are equally probable. When light is incident on a system of atoms, there

Atom in
ground state

Atom in
excited state

E2E2

E1 E1

Before After

∆E
hf = ∆E

Atom in
ground state

E2E2

hf

E1 E1

Before After

hf

hf = ∆E ∆E

Atom in
excited state

ACTIVE FIGURE 28.18
Diagram representing the process of
spontaneous emission of a photon by an
atom that is initially in the excited
state E2. When the electron falls to
the ground state, the atom emits a
photon of energy hf � E2 � E1.

Log into PhysicsNow at
www.cp7e.com and go to Active 
Figure 28.18 to observe spontaneous
emission.

ACTIVE FIGURE 28.19
Diagram representing the process of stimulated emission of a photon by an incoming photon of energy
hf. Initially, the atom is in the excited state. The incoming photon stimulates the atom to emit a second
photon of energy hf � E2 � E1.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 28.19 to observe stimulated emission.

A physics student is watching a meteor shower in the
early morning hours. She notices that the streaks of
light from the meteoroids entering the very high 
regions of the atmosphere last for as long as 2 or 3
seconds before fading. She also notices a lightning
storm off in the distance. The streaks of light from the
lightning fade away almost immediately after the flash,
certainly in much less than 1 second. Both lightning
and meteors cause the air to turn into a plasma be-
cause of the very high temperatures generated. The
light is given off when the stripped electrons in the
plasma recombine with the ionized atoms. Why would
the light last longer for meteors than for lightning?

Explanation To answer this question, we examine 
the phrase “the streaks of light from the meteoroids 

entering the very high regions of the atmosphere.” In
the very high regions of the atmosphere, the pressure is
very low, so the density is also very low and the atoms of
the gas are relatively far apart. Low density means that
after the air is ionized by the passing meteoroid, the
probability of freed electrons finding an ionized atom
with which to recombine is relatively low. As a result, the
recombination process occurs over a relatively long time,
measured in seconds. Lightning, however, occurs in the
lower regions of the atmosphere (the troposphere),
where the pressure and density are relatively high. After
the ionization by the lightning flash, the electrons and
ionized atoms are much closer together than in the 
upper atmosphere. The probability of a recombination
is accordingly much higher, and the time for the 
recombination to occur is much shorter.

Applying Physics 28.4 Streaking Meteoroids
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is usually a net absorption of energy, because when the system is in thermal equi-
librium, there are many more atoms in the ground state than in excited states.
However, if the situation can be inverted so that there are more atoms in an ex-
cited state than in the ground state, a net emission of photons can result. Such a
condition is called population inversion. This is the fundamental principle in-
volved in the operation of a laser, an acronym for l ight amplification by stimulated
emission of r adiation. The amplification corresponds to a buildup of photons in
the system as the result of a chain reaction of events. The following three condi-
tions must be satisfied in order to achieve laser action:

1. The system must be in a state of population inversion (that is, more atoms in
an excited state than in the ground state).

2. The excited state of the system must be a metastable state, which means its life-
time must be long compared with the otherwise usually short lifetimes of ex-
cited states. When that is the case, stimulated emission will occur before spon-
taneous emission.

3. The emitted photons must be confined within the system long enough to allow
them to stimulate further emission from other excited atoms. This is achieved
by the use of reflecting mirrors at the ends of the system. One end is totally re-
flecting, and the other is slightly transparent to allow the laser beam to escape.

One device that exhibits stimulated emission of radiation is the helium–neon
gas laser. Figure 28.20 is an energy-level diagram for the neon atom in this system.
The mixture of helium and neon is confined to a glass tube sealed at the ends by
mirrors. A high voltage applied to the tube causes electrons to sweep through it,
colliding with the atoms of the gas and raising them into excited states. Neon
atoms are excited to state E3* through this process and also as a result of collisions
with excited helium atoms. When a neon atom makes a transition to state E2, it
stimulates emission by neighboring excited atoms. This results in the production
of coherent light at a wavelength of 632.8 nm. Figure 28.21 summarizes the steps
in the production of a laser beam.

Metastable state
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Input
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Figure 28.20 Energy-level diagram
for the neon atom in a helium–neon
laser. The atom emits 632.8-nm pho-
tons through stimulated emission in
the transition E3

* : E2. This is the
source of coherent light in the laser.
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Figure 28.21 (a) Steps in the 
production of a laser beam. The tube
contains atoms, which represent the
active medium. An external source of
energy (optical, electrical, etc.) is
needed to “pump” the atoms to 
excited energy states. The parallel
end mirrors provide the feedback of
the stimulating wave. (b) Photograph
of the first ruby laser, showing the
flash lamp surrounding the ruby rod.
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924 Chapter 28 Atomic Physics

Since the development of the first laser in 1960, laser technology has exhibited
tremendous growth. Lasers that cover wavelengths in the infrared, visible, and
ultraviolet regions of the spectrum are now available. Applications include the
surgical “welding” of detached retinas, “lasik” surgery, precision surveying and
length measurement, a potential source for inducing nuclear fusion reactions,
precision cutting of metals and other materials, and telephone communication
along optical fibers. These and other applications are possible because of the
unique characteristics of laser light. In addition to being highly monochromatic
and coherent, laser light is also highly directional and can be sharply focused to
produce regions of extremely intense light energy.

Holography
One interesting application of the laser is holography: the production of three-
dimensional images of objects. Figure 28.22a shows how a hologram is made.
Light from the laser is split into two parts by a half-silvered mirror at B. One part
of the beam reflects off the object to be photographed and strikes an ordinary
photographic film. The other half of the beam is diverged by lens L2, reflects from
mirrors M1 and M2, and finally strikes the film. The two beams overlap to form an
extremely complicated interference pattern on the film, one that can be produced
only if the phase relationship of the waves is constant throughout the exposure of
the film. This condition is met through the use of light from a laser, because such
light is coherent. The hologram records not only the intensity of the light scat-
tered from the object (as in a conventional photograph), but also the phase differ-
ence between the reference beam and the beam scattered from the object. Be-
cause of this phase difference, an interference pattern is formed that produces an
image with full three-dimensional perspective.

A hologram is best viewed by allowing coherent light to pass through the devel-
oped film while you look back along the direction from which the beam comes.
Figure 28.22b is a photograph of a hologram made using a cylindrical film.

28.13 ENERGY BANDS IN SOLIDS
In this section we trace the changes that occur in the discrete energy levels of
isolated atoms when the atoms group together and form a solid. We find that in
solids, the discrete levels of isolated atoms broaden into allowed energy bands

(a)

M2

Film

L1

B

L2

Laser

M1

(b)

Figure 28.22 (a) Experimental arrangement for producing a hologram. (b) Photograph of a holo-
gram made with a cylindrical film. Note the detail of the Volkswagen image.
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Scientist checking the performance
of an experimental laser-cutting 
device mounted on a robot arm. The
laser is being used to cut through a
metal plate.
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28.13 Energy Bands in Solids 925

separated by forbidden gaps. The separation and electron population of the
highest bands determines whether a given solid is a conductor, an insulator, or a
semiconductor.

Consider two identical atoms, initially widely separated, that are brought closer
and closer together. If two identical atoms are very far apart, they do not interact,
and their electronic energy levels can be considered to be those of isolated atoms.
Hence, the energy levels are exactly the same. As the atoms come close together,
they essentially become one quantum system, and the Pauli exclusion principle de-
mands that the electrons be in different quantum states for this single system. The
exclusion principle manifests itself as a changing or splitting of electron energy
levels that were identical in the widely separated atoms, as shown in Figure 28.23a.
Figure 28.23b shows that with 5 atoms, each energy level in the isolated atom splits
into five different, more closely spaced levels. 

If we extend this argument to the large number of atoms found in solids (on
the order of 1023 atoms/cm3), we obtain a large number of levels so closely spaced
that they may be regarded as a continuous band of energy levels, as in Figure
28.23c. An electron can have any energy within an allowed energy band, but can-
not have an energy in the band gap, or the region between allowed bands. Note
that the band gap energy Eg is indicated in Figure 28.23c. In practice we are only
interested in the band structure of a solid at some equilibrium separation of its
atoms r0, and so we remove the distance scale on the x-axis and simply plot the al-
lowed energy bands of a solid as a series of horizontal bands, as shown in Figure
28.24 for sodium.

Conductors and Insulators
Figure 28.24 shows that the band structure of a particular solid is quite compli-
cated with individual atomic levels broadening by varying amounts and some levels
(3s and 3p) broadening so much that they overlap. Nevertheless, it is possible to
gain a qualitative understanding of whether a solid is a conductor, an insulator, or
a semiconductor by considering only the structure of the upper or upper two en-
ergy bands and whether they are occupied by electrons.

Deciding whether an energy band is empty (unoccupied by electrons), partially
filled, or full is carried out in basically the same way as for the energy-level popula-
tion of atoms: we distribute the total number of electrons from the lowest energy
levels up in a way consistent with the exclusion principle. While we omit the details
of this process here, one important case is that shown in Figure 28.25a (page 926),
where the highest-energy occupied band is only partially full. The other important
case, where the highest occupied band is completely full, is shown in Figure 28.25b.
Notice that this figure also shows that the highest filled band is called the valence
band and the next higher empty band is called the conduction band. The energy
band gap, which varies with the solid, is also indicated as the energy difference Eg
between the top of the valence band and the bottom of the conduction band.
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Figure 28.23 (a) Splitting of the 
1s and 2s states when two atoms are
brought together. (b) Splitting of the
1s and 2s states when five atoms are
brought close together. (c) Formation
of energy bands when a large number
of sodium atoms are assembled to
form a solid.

3p

3s

2p

2s

1s

Figure 28.24 Energy bands of
sodium. Note the energy gaps (white
regions) between the allowed bands;
electrons can’t occupy states that lie
in these forbidden gaps. Blue 
represents energy bands occupied by
the sodium electrons when the atom
is in its ground state. Gold represents
energy bands that are empty. Note
that the 3s and 3p levels broaden so
much that they overlap.
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926 Chapter 28 Atomic Physics

With these ideas and definitions we are now in a position to understand
what determines, quantum mechanically, whether a solid will be a conductor or an
insulator. When a modest voltage is applied to a good conductor, the electrons ac-
celerate and gain energy. In quantum terms, electron energies increase if there are
higher unoccupied energy levels for electrons to jump to. For example, electrons near the
top of the partially filled band in sodium need to gain very little energy from the
applied voltage to reach one of the nearby, closely spaced, empty states. Thus, it is
easy for a small voltage to kick electrons into higher energy states, and charge
flows easily in sodium, an excellent conductor.

Now consider the case of a material in which the highest occupied band is com-
pletely full of electrons and there is a band gap separating this filled valence band
from the vacant conduction band, as in Figure 28.25b. A typical case might be dia-
mond (carbon), in which the band gap is about 10 eV. When a voltage is applied,
electrons can’t easily gain energy, because there are no vacant energy states nearby
to which electrons can make transitions. Because the only empty band is the con-
duction band, an electron must gain an amount of energy at least equal to the
band gap in order for it to move through the solid. This large amount of energy
can’t be supplied by a modest applied voltage, so no charge flows and diamond is
a good insulator. In summary then, a conductor has a highest-energy occupied
band which is partially filled, and in an insulator, has a highest-energy occupied
band which is completely filled with a large energy gap between the valence and con-
duction bands.

Semiconductors
To this point, we have completely ignored the influence of temperature on the
electronic populations of energy bands. Recalling that the average thermal energy
of a particle at temperature T is 3kBT/2, we find that an electron at room tempera-
ture has an average energy of about 0.04 eV. Because this energy is about 100 times
smaller than the band gap in a typical insulator, very few electrons would have
enough random thermal energy to jump the energy gap in an insulator and con-
tribute to conduction. However things are different for a semiconductor. As we see
in Figure 28.25c, a semiconductor is a material with a small band gap of about
1 eV whose conductivity results from appreciable thermal excitation of electrons
across the gap into the conduction band at room temperature. The most com-
monly used semiconductors are silicon and gallium arsenide, with band gaps of
1.14 eV and 1.43 eV, respectively, at 300 K. As you might expect, the resistivity of
semiconductors usually decreases with increasing temperature, because k BT be-
comes a larger fraction of the band gap energy.

It is interesting that the electrons in the conduction band of a semiconductor
don’t carry the entire current when a voltage is applied, as Figure 28.26 shows. 
(It might be said that conduction electrons do not constitute the “whole” story.)
The missing electrons in the valence band, shown as a narrow white band in the

Metal

(a)

Conduction band

Energy gap

Valence band

Insulator
Eg � 10 eV

Eg

(b)

Eg

Valence band

Semiconductor
Eg � 1 eV

Conduction band

(c)

Figure 28.25 (a) Half-filled band
of a metal, an electrical conductor.
(b) An electrical insulator at T � 0 K
has a filled valence band and an
empty conduction band. (c) Band
structure of a semiconductor at 
ordinary temperatures (T � 300 K).
The energy gap is much smaller than
in an insulator, and many electrons
occupy states in the conduction band.
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28.13 Energy Bands in Solids 927

figure, provide a few empty states called holes for valence band electrons to fill; so
some electrons in the valence band can gain energy and move towards a positive
electrode and thus also carry the current. Since the valence band electrons that fill
holes leave behind other holes, it is equally valid and more common to view the
conduction process in the valence band as a flow of positive holes towards the neg-
ative electrode applied to a semiconductor. Thus, a pure semiconductor, such as
silicon, can be viewed in a symmetric way: silicon has equal numbers of mobile
electrons in the conduction band and holes in the valence band. Furthermore,
when an external voltage is applied to the semiconductor, electrons move toward
the positive electrode and holes move toward the negative electrode. In the next
section we will look at the concepts of an electron and a hole in a simpler, more
graphic way as the presence or absence of an outer-shell electron at a particular
location in a crystal lattice.

When small amounts of impurities are added to a semiconductor such as
silicon (about one impurity atom per 107 silicon atoms), both the band struc-
ture of the semiconductor and its resistivity are modified. The process of adding
impurities, called doping, is important in making devices having well-defined
regions of different resistivity. For example, when an atom containing five
outer-shell electrons, such as arsenic, is added to a semiconductor such as sili-
con, four of the arsenic electrons form shared bonds with atoms of the semicon-
ductor and one is left over. This extra electron is nearly free of its parent atom
and has an energy level that lies in the energy gap, just below the conduction
band. Such a pentavalent atom in effect donates an electron to the structure
and hence is referred to as a donor atom. Because the spacing between the en-
ergy level of the electron of the donor atom and the bottom of the conduction
band is very small (typically, about 0.05 eV), only a small amount of thermal
energy is needed to cause this electron to move into the conduction band.
(Recall that the average thermal energy of an electron at room temperature is
3k BT/2 � 0.04 eV). Semiconductors doped with donor atoms are called n -type
semiconductors, because the charge carriers are electrons, the charge of which
is negative.

If a semiconductor is doped with atoms containing three outer-shell electrons,
such as aluminum, the three electrons form shared bonds with neighboring semi-
conductor atoms, leaving an electron deficiency—a hole—where the fourth bond
would be if an impurity-atom electron was available to form it. The energy level of
this hole lies in the energy gap, just above the valence band. An electron from the
valence band has enough energy at room temperature to fill that impurity level,
leaving behind a hole in the valence band. Because a trivalent atom, in effect, ac-
cepts an electron from the valence band, such impurities are referred to as accep-
tor atoms. A semiconductor doped with acceptor impurities is known as a p -type
semiconductor, because the majority of charge carriers are positively charged
holes.

Conduction electrons Conduction band

Narrow forbidden gap

Valence band

electrons

holes

Applied  field

Energy

E

Figure 28.26 Movement of
charges (holes and electrons) in a
semiconductor. The electrons move
in the direction opposite the direc-
tion of the external electric field, and
the holes move in the direction of the
field.
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928 Chapter 28 Atomic Physics

28.14 SEMICONDUCTOR DEVICES
The p–n Junction
Now let us consider what happens when a p - semiconductor is joined to an
n - semiconductor to form a p –n junction. The junction consists of the three
distinct regions shown in Figure 28.27a: a p - region, a depletion region, and an
n - region.

The depletion region, which extends several micrometers to either side of the
center of the junction, may be visualized as arising when the two halves of the
junction are brought together. Mobile donor electrons from the n side nearest the
junction (the blue area in Fig. 28.27a) diffuse to the p side, leaving behind immo-
bile positive ions. At the same time, holes from the p side nearest the junction dif-
fuse to the n side and leave behind a region (the red area in Fig. 28.27a) of fixed
negative ions. The depletion region is so named because it is depleted of mobile
charge carriers.

The depletion region contains an internal electric field (arising from the
charges of the fixed ions) on the order of 104 to 106 V/cm. This field sweeps mo-
bile charge out of the depletion region and keeps it truly depleted. This internal
electric field creates an internal potential difference �V0 that prevents further dif-
fusion of holes and electrons across the junction and thereby ensures zero current
in the junction when no external potential difference is applied.

Perhaps the most notable feature of the p–n junction is its ability to pass cur-
rent in only one direction. Such diode action is easiest to understand in terms of
the potential-difference graph shown in Figure 28.27c. If an external voltage �V is
applied to the junction such that the p side is connected to the positive terminal of
a voltage source as in Figure 28.27a, the internal potential difference �V0 across
the junction is decreased, resulting in a current that increases exponentially with
increasing forward voltage, or forward bias. In reverse bias (where the n side of the
junction is connected to the positive terminal of a voltage source), the internal 
potential difference �V0 increases with increasing reverse bias. This results in a 
very small reverse current that quickly reaches a saturation value I 0. The current–
voltage relationship for an ideal diode is

[28.21]I � I0(eq �V/kBT � 1)
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Figure 28.27 (a) Physical 
arrangement of a p–n junction. 
(b) Internal electric field versus x for
the p–n junction. (c) Internal electric
potential �V versus x for the p–n
junction. �V0 represents the potential
difference across the junction in the
absence of an applied electric field.
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where q is the electron charge, k B is Boltzmann’s constant, and T is the tempera-
ture in kelvins. Figure 28.28 shows an I–�V plot characteristic of a real p–n junc-
tion, along with a schematic of such a device under forward bias.

The most common use of the semiconductor diode is as a rectifier, a device that
changes 120-V AC voltage supplied by the power company to, say the 12-V DC volt-
age needed by your music keyboard. We can understand how a diode rectifies a
current by considering Figure 28.29a, which shows a diode connected in series
with a resistor and an AC source. Because appreciable current can pass through
the diode in just one direction, the alternating current in the resistor is reduced to
the form shown in Figure 28.29b. The diode is said to act as a half-wave rectifier,
because there is current in the circuit during only half of each cycle.

Figure 28.30a shows a circuit that lowers the AC voltage to 12 V with a step-
down transformer and then rectifies both halves of the 12-V AC. Such a rectifier is
called a full-wave rectifier and when combined with a step-down transformer is the
most common DC power supply around the home today. A capacitor added in par-
allel with the load will yield an even steadier DC voltage.

The Junction Transistor
The invention of the transistor by John Bardeen (1908–1991), Walter Brattain
(1902–1987), and William Shockley (1910–1989) in 1948 totally revolutionized
the world of electronics. For this work, these three men shared a Nobel prize in
1956. By 1960, the transistor had replaced the vacuum tube in many electronic ap-
plications. The advent of the transistor created a multitrillion-dollar industry that
produced such popular devices as pocket radios, handheld calculators, computers,
television receivers, and electronic games. In this section we explain how a transis-
tor acts as an amplifier to boost the tiny voltages and currents generated in a mi-
crophone to the ear-splitting levels required to drive a speaker.

One simple form of the transistor, called the junction transistor, consists of a
semiconducting material in which a very narrow n region is sandwiched between
two p regions. This configuration is called a pnp transistor. Another configuration
is the npn transistor, which consists of a p region sandwiched between two n re-
gions. Because the operation of the two transistors is essentially the same, we de-
scribe only the pnp transistor. The structure of the pnp transistor, together with its
circuit symbol, is shown in Figure 28.31 (page 930). The outer regions are called
the emitter and collector, and the narrow central region is called the base.
The configuration contains two junctions: the emitter–base interface and the
collector–base interface.

Figure 28.28 (a) Schematic of a p–n junction under forward bias. (b) The characteristic curve for a
real p–n junction.
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Figure 28.29 (a) A diode in series
with a resistor allows current to pass
in only one direction. (b) The 
current versus time for the circuit 
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Figure 28.30 (a) A full-wave recti-
fier circuit. (b) The current versus
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930 Chapter 28 Atomic Physics

Suppose a voltage is applied to the transistor so that the emitter is at a higher
electric potential than the collector. (This is accomplished with the battery labeled
�Vec in Figure 28.31c.) If we think of the transistor as two diodes back to back, we
see that the emitter–base junction is forward biased and the base–collector junc-
tion is reverse biased. The emitter is heavily doped relative to the base, and as a re-
sult, nearly all the current consists of holes moving across the emitter–base junc-
tion. Most of these holes do not recombine with electrons in the base because it is
very narrow. Instead they are accelerated across the reverse-biased base–collector
junction, producing the emitter current I e in Figure 28.31c.

Although only a small percentage of holes recombine in the base, those that do
limit the emitter current to a small value because positive charge carriers accumu-
lating in the base prevent holes from flowing in. In order not to limit the emitter
current, some of the positive charge on the base must be drawn off; this is accom-
plished by connecting the base to the battery labeled �Veb in Figure 28.31c. Those
positive charges that are not swept across the base–collector junction leave the
base through this added pathway. This base current Ib is very small, but a small
change in it can significantly change the collector current Ic . If the transistor is
properly biased, the collector (output) current is directly proportional to the base
(input) current and the transistor acts as a current amplifier. This condition may
be written

Ic � �Ib

where �, the current gain factor, is typically in the range from 10 to 100. Thus, the
transistor may be used to amplify a small signal. The small voltage to be amplified
is placed in series with the battery Ve b. The input signal produces a small variation
in the base current, resulting in a large change in the collector current and hence
a large change in the voltage across the output resistor.

The Integrated Circuit
Invented independently by Jack Kilby (b. 1923) at Texas Instruments in late 1958
and by Robert Noyce at Fairchild Camera and Instrument in early 1959, the inte-
grated circuit has been justly called “the most remarkable technology ever to hit
mankind.” Kilby’s first device is shown in Figure 28.32a. Integrated circuits have in-
deed started a “second industrial revolution” and are found at the heart of com-
puters, watches, cameras, automobiles, aircraft, robots, space vehicles, and all sorts
of communication and switching networks.

In simplest terms, an integrated circuit is a collection of interconnected transis-
tors, diodes, resistors, and capacitors fabricated on a single piece of silicon
known as a chip. State-of-the-art chips easily contain several million components in
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Figure 28.31 (a) The pnp transistor consists of an n region (base) sandwiched between two 
p regions (emitter and collector). (b) Circuit symbol for the pnp transistor. (c) A bias voltage �Ve b
applied to the base as shown produces a small base current I b that is used to control the collector 
current Ic in a pnp transistor.
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a 1-cm2 area, with the number of components per square inch having doubled
every year since the integrated circuit was invented.

Integrated circuits were invented partly to solve the interconnection problem
spawned by the transistor. In the era of vacuum tubes, power and size considera-
tions of individual components set significant limits on the number of compo-
nents that could be interconnected in a given circuit. With the advent of the tiny,
low-power, highly reliable transistor, design limits on the number of components
disappeared and were replaced by the problem of wiring together hundreds of
thousands of components. The magnitude of this problem can be appreciated
when we consider that second-generation computers (consisting of discrete tran-
sistors rather than integrated circuits) contained several hundred thousand com-
ponents requiring more than a million hand-soldered joints to be made and
tested.

In addition to solving the interconnection problem, integrated circuits possess
the advantages of miniaturization and fast response, two attributes critical for
high-speed computers. The fast response results from the miniaturization and
close packing of components, because the response time of a circuit depends on
the time it takes for electrical signals traveling at about the speed of light to pass
from one component to another. This time is clearly reduced by packing compo-
nents closely.

(a) (b)

Figure 28.32 (a) Jack Kilby’s first integrated circuit was tested on September 12, 1958. 
(b) Integrated circuits continue to shrink in size and price while simultaneously growing in 
capability.
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SUMMARY
Take a practice test by logging into

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

28.3 The Bohr Theory of Hydrogen &

28.4 Modification of the Bohr Theory
The Bohr model of the atom is successful in describing
the spectra of atomic hydrogen and hydrogenlike ions.
One of the basic assumptions of the model is that the
electron can exist only in certain orbits such that its an-

gular momentum mvr is an integral multiple of �, where
� is Planck’s constant divided by 2�. Assuming circular
orbits and a Coulomb force of attraction between elec-
tron and proton, the energies of the quantum states for
hydrogen are

n � 1, 2, 3, . . . [28.12]

where ke is the Coulomb constant, e is the charge on
the electron, and n is an integer called a quantum
number.

En � �
meke

2e4

2�2  � 1
n2 �
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932 Chapter 28 Atomic Physics

If the electron in the hydrogen atom jumps from an
orbit having quantum number ni to an orbit having
quantum number nf , it emits a photon of frequency f,
given by

[28.14]

Bohr’s correspondence principle states that quantum
mechanics is in agreement with classical physics when
the quantum numbers for a system are very large.

The Bohr theory can be generalized to hydrogen-like
atoms, such as singly ionized helium or doubly ionized
lithium. This modification consists of replacing e 2 by Ze2

wherever it occurs.

28.6 Quantum Mechanics and the 
Hydrogen Atom &

28.7 The Spin Magnetic Quantum 
Number
One of the many successes of quantum mechanics is
that the quantum numbers n, �, and m� associated with
atomic structure arise directly from the mathematics of
the theory. The quantum number n is called the princi-
pal quantum number, � is the orbital quantum number,
and m� is the orbital magnetic quantum number. These
quantum numbers can take only certain values: 1 � n 
 	
in integer steps, 0 � � � n � 1, and �� � m� � �. In
addition, a fourth quantum number, called the spin
magnetic quantum number ms , is needed to explain a
fine doubling of lines in atomic spectra, with .

28.9 The Exclusion Principle and the 
Periodic Table
An understanding of the periodic table of the elements
became possible when Pauli formulated the exclusion
principle, which states that no two electrons in an atom
in the same atom can have the same values for the set
of quantum numbers n, �, m�, and ms. A particular set

ms � �1
2

f �
meke

2e4

4��3  � 1
nf

2 �
1

ni
2 �

of these quantum numbers is called a quantum state.
The exclusion priniciple explains how different energy
levels in atoms are populated. Once one subshell is
filled, the next electron goes into the vacant subshell
that is lowest in energy. Atoms with similar configura-
tions in their outermost shell have similar chemical
properties and are found in the same column of the pe-
riodic table.

28.10 Characteristic X-Rays
Characteristic x-rays are produced when a bombarding
electron collides with an electron in an inner shell of an
atom with sufficient energy to remove the electron from
the atom. The vacancy is filled when an electron from a
higher level drops down into the level containing the va-
cancy, emitting a photon in the x-ray part of the spec-
trum in the process.

28.11 Atomic Transitions &

28.12 Lasers and Holography
When an atom is irradiated by light of all different wave-
lengths, it will only absorb only wavelengths equal to the
difference in energy of two of its energy levels. This phe-
nomenon, called stimulated absorption, places an
atom’s electrons into excited states. Atoms in an excited
state have a probability of returning to a lower level of
excitation by spontaneous emission. The wavelengths
that can be emitted are the same as the wavelengths that
can be absorbed. If an atom is in an excited state and a
photon with energy hf � E2 � E1 is incident on it, the
probability of emission of a second photon of this en-
ergy is greatly enhanced. The emitted photon is exactly
in phase with the incident photon. This process is called
stimulated emission. The emitted and original photon
can then stimulate more emission, creating an amplify-
ing effect.

Lasers are monochromatic, coherent light sources
that work on the principle of stimulated emission of ra-
diation from a system of atoms.

CONCEPTUAL QUESTIONS
1. In the hydrogen atom, the quantum number n can in-

crease without limit. Because of this, does the fre-
quency of possible spectral lines from hydrogen also
increase without limit?

2. Does the light emitted by a neon sign constitute a
continuous spectrum or only a few colors? Defend
your answer.

3. In an x-ray tube, if the energy with which the elec-
trons strike the metal target is increased, the wave-
lengths of the characteristic x-rays do not change.
Why not?

4. Must an atom first be ionized before it can emit
light? Discuss.
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PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging       � = full solution available in Student Solutions Manual/Study Guide 

= coached problem with hints available at www.cp7e.com = biomedical application

Section 28.1 Early Models of the Atom

Section 28.2 Atomic Spectra

1. Use Equation 28.1 to calculate the wavelength 
of the first three lines in the Balmer series for hy-
drogen.

2. Show that the wavelengths for the Balmer series sat-
isfy the equation

where n � 3, 4, 5, . . .

3. The “size” of the atom in Rutherford’s model is
about 1.0 � 10�10 m. (a) Determine the attractive
electrostatic force between an electron and a proton
separated by this distance. (b) Determine (in eV)
the electrostatic potential energy of the atom.

� �
364.5n2

n2 � 4
 nm

4. The “size” of the nucleus in Rutherford’s model of
the atom is about 1.0 fm � 1.0 � 10�15 m. (a) De-
termine the repulsive electrostatic force between
two protons separated by this distance. (b) Deter-
mine (in MeV) the electrostatic potential energy
of the pair of protons.

The “size” of the atom in Ruther-
ford’s model is about 1.0 � 10�10 m. (a) Determine
the speed of an electron moving about the proton
using the attractive electrostatic force between an
electron and a proton separated by this distance.
(b) Does this speed suggest that Einsteinian relativ-
ity must be considered in studying the atom? 
(c) Compute the de Broglie wavelength of the elec-
tron as it moves about the proton. (d) Does this
wavelength suggest that wave effects, such as diffrac-
tion and interference, must be considered in study-
ing the atom?

5.

5. Is it possible for a spectrum from an x-ray tube to
show the continuous spectrum of x-rays without the
presence of the characteristic x-rays?

6. Suppose that the electron in the hydrogen atom
obeyed classical mechanics rather than quantum
mechanics. Why should such a hypothetical atom
emit a continuous spectrum rather than the ob-
served line spectrum?

7. When a hologram is produced, the system (includ-
ing light source, object, beam splitter, and so on)
must be held motionless within a quarter of the
light’s wavelength. Why?

8. If matter has a wave nature, why is it not observable
in our daily experience?

9. Discuss some consequences of the exclusion princi-
ple.

10. Can the electron in the ground state of hydrogen
absorb a photon of energy less than 13.6 eV? Can it
absorb a photon of energy greater than 13.6 eV?
Explain.

11. Why do lithium, potassium, and sodium exhibit sim-
ilar chemical properties?

12. List some ways in which quantum mechanics altered
our view of the atom pictured by the Bohr theory.

13. It is easy to understand how two electrons (one with
spin up, one with spin down) can fill the 1s shell for a

helium atom. How is it possible that eight more elec-
trons can fit into the 2s, 2p level to complete the
1s2s22p6 shell for a neon atom?

14. The ionization energies for Li, Na, K, Rb, and Cs
are 5.390, 5.138, 4.339, 4.176, and 3.893 eV, respec-
tively. Explain why these values are to be expected
in terms of the atomic structures.

15. Why is stimulated emission so important in the op-
eration of a laser?

16. The Bohr theory of the hydrogen atom is based
upon several assumptions. Discuss these assump-
tions and their significance. Do any of them contra-
dict classical physics?

17. Explain why, in the Bohr model, the total energy of
the hydrogen atom is negative.

18. Consider the quantum numbers n, �, m�, and ms.
(a) Which of these are integers and which are frac-
tional? (b) Which are always positive and which can
be negative? (c) If n � 2, what is the largest value of
�? (d) If � � 1, what are the possible values of m �?

19. Photon A is emitted when an electron in a hydrogen
atom drops from the n � 3 level to the n � 2 level.
Photon B is emitted when an electron in a hydrogen
atom drops from the n � 4 level to the n � 2 level.
(a) In which case is the wavelength of the emitted
photon greater? (b) In which case is the energy of
the emitted photon greater? 
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934 Chapter 28 Atomic Physics

6. In a Rutherford scattering experiment, an �-parti-
cle (charge � � 2e) heads directly toward a gold
nucleus (charge � � 79e). The �-particle had a ki-
netic energy of 5.0 MeV when very far ( )
from the nucleus. Assuming the gold nucleus to
be fixed in space, determine the distance of clos-
est approach. [Hint : Use conservation of energy
with PE � k e q1q2/r.]

Section 28.3 The Bohr Theory of Hydrogen

A hydrogen atom is in its first excited state (n � 2).
Using the Bohr theory of the atom, calculate (a) the
radius of the orbit, (b) the linear momentum of the
electron, (c) the angular momentum of the elec-
tron, (d) the kinetic energy, (e) the potential energy,
and (f ) the total energy.

8. For a hydrogen atom in its ground state, use the
Bohr model to compute (a) the orbital speed of the
electron, (b) the kinetic energy of the electron, and
(c) the electrical potential energy of the atom.

9. Show that the speed of the electron in the nth Bohr
orbit in hydrogen is given by

10. A photon is emitted as a hydrogen atom undergoes
a transition from the n � 6 state to the n � 2 state.
Calculate (a) the energy, (b) the wavelength, and
(c) the frequency of the emitted photon.

11. A hydrogen atom emits a photon of wavelength 
656 nm. From what energy orbit to what lower en-
ergy orbit did the electron jump?

12. Following are four possible transitions for a hydro-
gen atom

I. ni � 2; nf � 5 II. ni � 5; nf � 3

III. ni � 7; nf � 4 IV. ni � 4; nf � 7

(a) Which transition will emit the shortest-wave-
length photon? (b) For which transition will the
atom gain the most energy? (c) For which transi-
tion(s) does the atom lose energy?

13. What is the energy of a photon that, when absorbed
by a hydrogen atom, could cause (a) an electronic
transition from the n � 3 state to the n � 5 state
and (b) an electronic transition from the n � 5
state to the n � 7 state?

A hydrogen atom initially in its ground state (n �
1) absorbs a photon and ends up in the state for

14.

vn �
k ee2

n�

7.

r : 	

which n � 3. (a) What is the energy of the ab-
sorbed photon? (b) If the atom eventually returns
to the ground state, what photon energies could
the atom emit?

15. Determine both the longest and the shortest wave-
lengths in (a) the Lyman series (nf � 1) and (b) the
Paschen series (nf � 3) of hydrogen.

16. Show that the speed of the electron in the first
(ground-state) Bohr orbit of the hydrogen atom may
be expressed as

v � (1/137)c.

17. A monochromatic beam of light is absorbed by a
collection of ground-state hydrogen atoms in such a
way that six different wavelengths are observed
when the hydrogen relaxes back to the ground
state. What is the wavelength of the incident beam?

18. A particle of charge q and mass m, moving with a
constant speed v, perpendicular to a constant mag-
netic field, B, follows a circular path. If in this case
the angular momentum about the center of this cir-
cle is quantized so that , show that the al-
lowed radii for the particle are

where n � 1, 2, 3, . . .

(a) If an electron makes a transi-
tion from the n � 4 Bohr orbit to the n � 2 orbit,
determine the wavelength of the photon created in
the process. (b) Assuming that the atom was initially
at rest, determine the recoil speed of the hydrogen
atom when this photon is emitted.

20. Consider a large number of hydrogen atoms, with
electrons all initially in the n � 4 state. (a) How
many different wavelengths would be observed in
the emission spectrum of these atoms? (b) What is
the longest wavelength that could be observed? To
which series does it belong?

21. Analyze the Earth–Sun system by following the Bohr
model, where the gravitational force between Earth
(mass m) and Sun (mass M) replaces the Coulomb
force between the electron and proton (so that F �
GMm/r 2 and PE � � GMm/r). Show that (a) the to-
tal energy of the Earth in an orbit of radius r is given
by (a) E � � GMm/2r, (b) the radius of the nth orbit
is given by rn � r0n2, where r0 � �2/GMm2 � 2.32 �
10�138 m, and (c) the energy of the nth orbit is given
by En � � E0/n2, where E0 � G2M 2m3/2�2 � 1.71
� 10182 J. (d) Using the Earth–Sun orbit radius of 
r � 1.49 � 1011 m, determine the value of the quan-

19.

rn � √ 2 n�

qB

mvr � 2n�
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tum number n. (e) Should you expect to observe
quantum effects in the Earth–Sun system?

22. An electron is in the nth Bohr orbit of the hydrogen
atom. (a) Show that the period of the electron is 
T � ton3, and determine the numerical value of to.
(b) On the average, an electron remains in the n � 2
orbit for about 10 �s before it jumps down to the 
n � 1 (ground-state) orbit. How many revolutions
does the electron make before it jumps to the
ground state? (c) If one revolution of the electron is
defined as an “electron year” (analogous to an
Earth year being one revolution of the Earth
around the Sun), does the electron in the n � 2 or-
bit “live” very long? Explain. (d) How does the
above calculation support the “electron cloud” con-
cept?

23. Consider a hydrogen atom. (a) Calculate the fre-
quency f of the n � 2 : n � 1 transition, and com-
pare it with the frequency forb of the electron or-
bital motion in the n � 2 state. (b) Make the same
calculation for the n � 10 000 : n � 9 999 transi-
tion. Comment on the results.

24. Two hydrogen atoms collide head-on and end 
up with zero kinetic energy. Each then emits a
121.6-nm photon (n � 2 to n � 1 transition). At
what speed were the atoms moving before the 
collision?

Two hydrogen atoms, both initially in the ground
state, undergo a head-on collision. If both atoms are
to be excited to the n � 2 level in this collision,
what is the minimum speed each atom can have be-
fore the collision?

26. (a) Calculate the angular momentum of the Moon
due to its orbital motion about the Earth. In your
calculation, use 3.84 � 108 m as the average
Earth– Moon distance and 2.36 � 106 s as the pe-
riod of the Moon in its orbit. (b) If the angular
momentum of the moon obeys Bohr’s quantization
rule ( ), determine the value of the quantum
number n. (c) By what fraction would the
Earth–Moon radius have to be increased to in-
crease the quantum number by 1?

Section 28.4 Modification of the Bohr Theory

Section 28.5 De Broglie Waves and 
the Hydrogen Atom

27. (a) Find the energy of the electron in the ground
state of doubly ionized lithium, which has an
atomic number Z � 3. (b) Find the radius of its
ground-state orbit.

L � n�

25.

28. (a) Construct an energy level diagram for the He�

ion, for which Z � 2. (b) What is the ionization en-
ergy for He�?

29. The orbital radii of a hydrogen-like atom is given by
the equation

.

What is the radius of the first Bohr orbit in (a) He�,
(b) Li2�, and (c) Be3�?

30. (a) Substitute numerical values into Equation 28.19
to find a value for the Rydberg constant for singly
ionized helium, He�. (b) Use the result of part (a)
to find the wavelength associated with a transition
from the n � 2 state to the n � 1 state of He�. (c)
Identify the region of the electromagnetic spectrum
associated with this transition.

Determine the wavelength of an
electron in the third excited orbit of the hydrogen
atom, with n � 4.

32. Using the concept of standing waves, de Broglie
was able to derive Bohr’s stationary orbit postu-
late. He assumed that a confined electron could
exist only in states where its de Broglie waves form
standing-wave patterns, as in Figure 28.10a. Con-
sider a particle confined in a box of length L to be
equivalent to a string of length L and fixed at both
ends. Apply de Broglie’s concept to show that 
(a) the linear momentum of this particle is quan-
tized with p � mv � nh/2L and (b) the allowed
states correspond to particle energies of En � n2E0,
where .

Section 28.6 Quantum Mechanics and 
the Hydrogen Atom

Section 28.7 The Spin Magnetic Quantum 
Number

33. List the possible sets of quantum numbers for elec-
trons in the 3p subshell.

34. When the principal quantum number is n � 4,
how many different values of (a) � and (b) m� are
possible?

The � -meson has a charge of �e , a spin quantum
number of 1, and a mass 1 507 times that of the
electron. If the electrons in atoms were replaced by
� -mesons, list the possible sets of quantum numbers
for � -mesons in the 3d subshell.

35.

E 0 � h2/(8mL2)

31.

r � n2�2

Zmekee 2

44920_28_p903-938  1/14/05  12:08 PM  Page 935



936 Chapter 28 Atomic Physics

Section 28.9 The Exclusion Principle and 
the Periodic Table

36. (a) Write out the electronic configuration of the
ground state for oxygen (Z � 8). (b) Write out the
values for the set of quantum numbers n, �, m�, and
ms for each of the electrons in oxygen.

Two electrons in the same atom have n � 3 and
� � 1. (a) List the quantum numbers for the possi-
ble states of the atom. (b) How many states would
be possible if the exclusion principle did not apply
to the atom?

38. How many different sets of quantum numbers are
possible for an electron for which (a) n � 1, 
(b) n � 2, (c) n � 3, (d) n � 4, and (e) n � 5?
Check your results to show that they agree with the
general rule that the number of different sets of
quantum numbers is equal to 2n2.

39. Zirconium (Z � 40) has two electrons in an incom-
plete d subshell. (a) What are the values of n and �
for each electron? (b) What are all possible values
of m� and ms? (c) What is the electron configura-
tion in the ground state of zirconium?

Section 28.10 Characteristic 
X-Rays

40. The K-shell ionization energy of copper is 8 979 eV.
The L-shell ionization energy is 951 eV. Determine
the wavelength of the K� emission line of copper.
What must the minimum voltage be on an x-ray
tube with a copper target in order to see the K�

line?

41. The K� x-ray is emitted when an electron undergoes
a transition from the L shell (n � 2) to the K shell 
(n � 1). Use the method illustrated in Example 28.5
to calculate the wavelength of the K� x-ray from a
nickel target (Z � 28).

42. When an electron drops from the M shell (n � 3)
to a vacancy in the K shell (n � 1), the measured
wavelength of the emitted x-ray is found to be 
0.101 nm. Identify the element.

The K series of the discrete spectrum of tungsten
contains wavelengths of 0.018 5 nm, 0.020 9 nm,
and 0.021 5 nm. The K-shell ionization energy is
69.5 keV. Determine the ionization energies of the
L, M, and N shells. Sketch the transitions that pro-
duce the above wavelengths.

43.

37.

ADDITIONAL PROBLEMS

44. In a hydrogen atom, what is the principle quantum
number of the electron orbit with a radius closest to
1.0 �m?

45. (a) How much energy is required to cause an elec-
tron in hydrogen to move from the n � 1 state to
the n � 2 state? (b) If the electrons gain this en-
ergy by collision between hydrogen atoms in a
high-temperature gas, find the minimum tempera-
ture of the heated hydrogen gas. The thermal en-
ergy of the heated atoms is given by 3kBT/2, where
kB is the Boltzmann constant.

46. A pulsed ruby laser emits light at 694.3 nm. For a
14.0-ps pulse containing 3.00 J of energy, find (a)
the physical length of the pulse as it travels through
space and (b) the number of photons in it. (c) If
the beam has a circular cross section 0.600 cm in di-
ameter, find the number of photons per cubic mil-
limeter.

The Lyman series for a (new?) one-electron atom
is observed in a distant galaxy. The wavelengths of
the first four lines and the short-wavelength limit
of this Lyman series are given by the energy-level
diagram in Figure P28.47. Based on this informa-
tion, calculate (a) the energies of the ground
state and first four excited states for this one-
electron atom and (b) the longest-wavelength (al-
pha) lines and the short-wavelength series limit in
the Balmer series for this atom.

47.

n = ∞

n = 5

n = 4

n = 3

n = 2

n = 1

E∞ = 0

E5

E4

E3

E2

E1

= 
16

2.
1 

n
m

= 
15

8.
3 

n
m = 
15

2.
0 

n
m

= 
20

2.
6 

n
m

λ

= 
17

0.
9 

n
m

λ

λ

λ

λ

E
N

E
R

G
Y

Figure P28.47
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48. A dimensionless number that often appears in
atomic physics is the fine-structure constant

, where ke is the Coulomb constant. 
(a) Obtain a numerical value for 1/�. (b) In terms
of �, what is the ratio of the Bohr radius a0 to the
Compton wavelength �C � h/mec ? (d) In terms of
�, what is the ratio of the reciprocal of the Rydberg
constant 1/RH to the Bohr radius?

49. Mercury’s ionization energy is 10.39 eV. The three
longest wavelengths of the absorption spectrum of
mercury are 253.7 nm, 185.0 nm, and 158.5 nm.
(a) Construct an energy-level diagram for mercury.
(b) Indicate all emission lines that can occur when
an electron is raised to the third level above the
ground state. (c) Disregarding recoil of the mercury
atom, determine the minimum speed an electron
must have in order to make an inelastic collision
with a mercury atom in its ground state.

50. Suppose the ionization energy of an atom is 4.100
eV. In this same atom, we observe emission lines
that have wavelengths of 310.0 nm, 400.0 nm, and 
1 378 nm. Use this information to construct the en-
ergy-level diagram with the least number of levels.
Assume the higher energy levels are closer together.

A laser used in eye surgery emits a 
3.00-mJ pulse in 1.00 ns, focused to a spot 30.0 �m
in diameter on the retina. (a) Find (in SI units) the
power per unit area at the retina. (This quantity is
called the irradiance.) (b) What energy is delivered
per pulse to an area of molecular size—say, a circu-
lar area 0.600 nm in diameter.

52. An electron has a de Broglie wavelength equal to
the diameter of a hydrogen atom in its ground state.
(a) What is the kinetic energy of the electron? 
(b) How does this energy compare with the ground-
state energy of the hydrogen atom?

53. Use Bohr’s model of the hydrogen atom to show
that, when the atom makes a transition from the
state n to the state n � 1, the frequency of the emit-
ted light is given by

54. Calculate the classical frequency for the light emit-
ted by an atom. To do so, note that the frequency of
revolution is v/2�r, where r is the Bohr radius.
Show that as n approaches infinity in the equation
of the preceding problem, the expression given
there varies as 1/n3 and reduces to the classical fre-
quency. (This is an example of the correspondence
principle, which requires that the classical and
quantum models agree for large values of n.)

f �
2� 2mk e

2e4

h3  � 2n � 1
(n � 1)2n 2 �

51.

� � kee2/�c

55. A pi meson (��) of charge �e and mass 273 times
greater than that of the electron is captured by a
helium nucleus (Z � � 2) as shown in Figure
P28.55. (a) Draw an energy-level diagram (in units
of eV) for this “Bohr-type” atom up to the first six
energy levels. (b) When the �-meson makes a
transition between two orbits, a photon is emitted
that Compton scatters off a free electron initially
at rest, producing a scattered photon of wave-
length �� � 0.089 929 3 nm at an angle of � �
42.68°, as shown on the right-hand side of Figure
P28.55. Between which two orbits did the � -meson
make a transition?

O

ni

nf

Free electron

“Pi mesonic” He+ atom
(Z = 2, mp = 273me)

'

l

u

l

Figure P28.55

56. When a muon with charge �e is captured by a pro-
ton, the resulting bound system forms a “muonic
atom,” which is the same as hydrogen, except with
a muon (of mass 207 times the mass of an elec-
tron) replacing the electron. For this “muonic
atom,” determine (a) the Bohr radius and (b) the
three lowest energy levels.

In this problem, you will estimate the classical life-
time of the hydrogen atom. An accelerating charge
loses electromagnetic energy at a rate given by � �
� 2keq 2a2/(3c3), where ke is the Coulomb constant,
q is the charge of the particle, a is its acceleration,
and c is the speed of light in a vacuum. Assume that
the electron is one Bohr radius (0.052 9 nm) from
the center of the hydrogen atom. (a) Determine its
acceleration. (b) Show that � has units of energy
per unit time and determine the rate of energy loss.
(c) Calculate the kinetic energy of the electron and
determine how long it will take for all of this energy
to be converted into electromagnetic waves, assum-
ing that the rate calculated in part (b) remains con-
stant throughout the electron’s motion.

58. An electron in a hydrogen atom jumps from some
initial Bohr orbit ni to some final Bohr orbit nf , as in

57.
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938 Chapter 28 Atomic Physics

Figure P28.58. (a) If the photon emitted in the
process is capable of ejecting a photoelectron from
tungsten (work function � 4.58 eV), determine nf .
(b) If a minimum stopping potential of V0 � 7.51
volts is required to prevent the photoelectron from
hitting the anode, determine the value of ni.

ACTIVITIES

1. With your partner not looking, use modeling clay to
build one or more mounds on top of a table. Place a
piece of cardboard over your mound(s), and assign
your partner the task of determining the size, shape,
and number of mounds without looking. He is to do
this by rolling marbles at the unseen mounds and
observing how they emerge. This experiment mod-
els the Rutherford scattering experiment.

2. Your instructor can probably lend you a small plastic
diffraction grating to enable you to examine the
spectrum of different light sources. You can use
these gratings to examine a source by holding the
grating very close to your eye and noting the spec-
trum produced by glancing out of the corner of
your eye while looking at a light source. You should
look at light sources such as sodium vapor lights and
mercury vapor lights used in many parking lots,
neon lights used in many signs, black lights, ordi-
nary incandescent light bulbs, and so forth.
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Figure P28.58
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In 1896, the year that marks the birth of nuclear physics, Henri Becquerel (1852–1908)
discovered radioactivity in uranium compounds. A great deal of activity followed this discov-
ery as researchers attempted to understand and characterize the radiation that we now know
to be emitted by radioactive nuclei. Pioneering work by Rutherford showed that the radiation
was of three types, which he called alpha, beta, and gamma rays. These types are classified
according to the nature of their electric charge and their ability to penetrate matter. Later
experiments showed that alpha rays are helium nuclei, beta rays are electrons, and gamma
rays are high-energy photons.

In 1911 Rutherford and his students Geiger and Marsden performed a number of impor-
tant scattering experiments involving alpha particles. These experiments established the idea
that the nucleus of an atom can be regarded as essentially a point mass and point charge and
that most of the atomic mass is contained in the nucleus. Further, such studies demonstrated
a wholly new type of force: the nuclear force, which is predominant at distances of less than
about 10�14 m and drops quickly to zero at greater distances.

Other milestones in the development of nuclear physics include

• the first observations of nuclear reactions by Rutherford and coworkers in 1919, in which
naturally occurring particles bombarded nitrogen nuclei to produce oxygen,

• the first use of artificially accelerated protons to produce nuclear reactions, by Cockcroft
and Walton in 1932,

• the discovery of the neutron by Chadwick in 1932,
• the discovery of artificial radioactivity by Joliot and Irene Curie in 1933,
• the discovery of nuclear fission by Hahn, Strassman, Meitner, and Frisch in 1938, and
• the development of the first controlled fission reactor by Fermi and his collaborators

in 1942.

In this chapter we discuss the properties and structure of the atomic nucleus. We start by
describing the basic properties of nuclei and follow with a discussion of the phenomenon of
radioactivity. Finally, we explore nuclear reactions and the various processes by which nuclei decay.

�

Aerial view of a nuclear power plant
that generates electrical power.
Energy is generated in such plants
from the process of nuclear fission, in
which a heavy nucleus such as 235U
splits into smaller particles having a
large amount of kinetic energy. This
surplus energy can be used to heat
water into high pressure steam and
drive a turbine.
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940 Chapter 29 Nuclear Physics

29.1 SOME PROPERTIES OF NUCLEI
All nuclei are composed of two types of particles: protons and neutrons. The only
exception is the ordinary hydrogen nucleus, which is a single proton. In describ-
ing some of the properties of nuclei, such as their charge, mass, and radius, we
make use of the following quantities:

• the atomic number Z, which equals the number of protons in the nucleus,
• the neutron number N, which equals the number of neutrons in the nucleus,
• the mass number A, which equals the number of nucleons in the nucleus 

(nucleon is a generic term used to refer to either a proton or a neutron).

The symbol we use to represent nuclei is , where X represents the chemical
symbol for the element. For example, has the mass number 27 and the atomic
number 13; therefore, it contains 13 protons and 14 neutrons. When no confusion
is likely to arise, we often omit the subscript Z, because the chemical symbol can al-
ways be used to determine Z .

The nuclei of all atoms of a particular element must contain the same number
of protons, but they may contain different numbers of neutrons. Nuclei that are
related in this way are called isotopes. The isotopes of an element have the same Z
value, but different N and A values. The natural abundances of isotopes can differ
substantially. For example, , , , and are four isotopes of carbon. The
natural abundance of the isotope is about 98.9%, whereas that of the iso-
tope is only about 1.1%. Some isotopes don’t occur naturally, but can be produced
in the laboratory through nuclear reactions. Even the simplest element, hydrogen,
has isotopes: , hydrogen; , deuterium; and , tritium.

Charge and Mass
The proton carries a single positive charge � e � 1.602 177 33 � 10�19 C, the elec-
tron carries a single negative charge � e, and the neutron is electrically neutral.
Because the neutron has no charge, it’s difficult to detect. The proton is about
1 836 times as massive as the electron, and the masses of the proton and the neu-
tron are almost equal (Table 29.1).

For atomic masses, it is convenient to define the unified mass unit u in
such a way that the mass of one atom of the isotope 12C is exactly 12 u, where
1 u � 1.660 559 � 10�27 kg. The proton and neutron each have a mass of
about 1 u, and the electron has a mass that is only a small fraction of an atomic
mass unit.

Because the rest energy of a particle is given by ER � mc2, it is often convenient
to express the particle’s mass in terms of its energy equivalent. For one atomic
mass unit, we have an energy equivalent of

ER � mc2 � (1.660 559 � 10�27 kg)(2.997 92 � 108 m/s)2

� 1.492 431 � 10�10 J � 931.494 MeV

In calculations, nuclear physicists often express mass in terms of the unit
MeV/c2, where

1 u � 931.494 MeV/c2
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ERNEST RUTHERFORD,
New Zealand Physicist
(1871–1937)
Rutherford was awarded the Nobel Prize in
1908 for discovering that atoms can be
broken apart by alpha rays and for studying
radioactivity. “On consideration, I realized
that this scattering backward must be the
result of a single collision, and when I made
calculations I saw that it was impossible to
get anything of that order of magnitude un-
less you took a system in which the greater
part of the mass of the atom was concen-
trated in a minute nucleus. It was then that
I had the idea of an atom with a minute
massive center carrying a charge.”

N
or

th
 W

in
d 

Pi
ct

ur
e 

Ar
ch

iv
es

TIP 29.1 Mass Number is not
the Atomic Mass
Don’t confuse the mass number A with
the atomic mass. Mass number is an
integer that specifies an isotope and
has no units— it’s simply equal to the
number of nucleons. Atomic mass is
an average of the masses of the
isotopes of a given element and has
units of u.

Definition of the unified mass unit u �  

TABLE 29.1
Masses of the Proton, Neutron, and Electron in Various Units

Mass

Particle kg u MeV/c2

Proton 1.6726 � 10�27 1.007 276 938.28
Neutron 1.6750 � 10�27 1.008 665 939.57
Electron 9.109 � 10�31 5.486 � 10�4 0.511
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29.1 Some Properties of Nuclei 941

The Size of Nuclei
The size and structure of nuclei were first investigated in the scattering experi-
ments of Rutherford, discussed in Section 28.1. Using the principle of conserva-
tion of energy, Rutherford found an expression for how close an alpha particle
moving directly toward the nucleus can come to the nucleus before being turned
around by Coulomb repulsion.

In such a head-on collision, the kinetic energy of the incoming alpha particle
must be converted completely to electrical potential energy when the particle
stops at the point of closest approach and turns around (Active Fig. 29.1). If we
equate the initial kinetic energy of the alpha particle to the maximum electrical
potential energy of the system (alpha particle plus target nucleus), we have

where d is the distance of closest approach. Solving for d, we get

From this expression, Rutherford found that alpha particles approached to within
3.2 � 10�14 m of a nucleus when the foil was made of gold. Thus, the radius of the
gold nucleus must be less than this value. For silver atoms, the distance of closest
approach was 2 � 10�14 m. From these results, Rutherford concluded that the
positive charge in an atom is concentrated in a small sphere, which he called the
nucleus, with radius no greater than about 10�14 m. Because such small lengths
are common in nuclear physics, a convenient unit of length is the femtometer (fm),
sometimes called the fermi and defined as 

Since the time of Rutherford’s scattering experiments, a multitude of other
experiments have shown that most nuclei are approximately spherical and have
an average radius given by

[29.1]

where A is the total number of nucleons and r0 is a constant equal to 1.2 � 10�15 m.
Because the volume of a sphere is proportional to the cube of its radius, it follows
from Equation 29.1 that the volume of a nucleus (assumed to be spherical) is
directly proportional to A, the total number of nucleons. This relationship then
suggests that all nuclei have nearly the same density. Nucleons combine to form a
nucleus as though they were tightly packed spheres (Fig. 29.2).

r � r0A1/3

1 fm � 10�15 m

d �
4keZe2

mv2

1
2 mv2 � ke

q1q2

r
� ke

(2e)(Ze)

d

d

Ze
2e v = 0 + +

+
++

+
+

+
++ +

ACTIVE FIGURE 29.1
An alpha particle on a head-on colli-
sion course with a nucleus of charge
Ze. Because of the Coulomb repulsion
between the like charges, the alpha
particle will stop instantaneously at a
distance d from the nucleus, called
the distance of closest approach.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 29.1, where
you can adjust the atomic number of
the target nucleus and the kinetic
energy of the alpha particle. Then
observe the approach of the alpha
particle toward the nucleus.

Figure 29.2 A nucleus can be
visualized as a cluster of tightly packed
spheres, each of which is a nucleon.

EXAMPLE 29.1 Sizing a Neutron Star
Goal Apply the concepts of nuclear size.

Problem One of the end stages of stellar life is a neutron star, where matter collapses and electrons combine with pro-
tons to form neutrons. Some liken neutron stars to a single gigantic nucleus. (a) Approximately how many nucleons are
in a neutron star with a mass of 3.00 � 1030 kg? (This is the mass number of the star.) (b) Calculate the radius of the
star, treating it as a giant nucleus. (c) Calculate the density of the star, assuming the mass is distributed uniformly.

Strategy The effective mass number of the neutron star can be found by dividing the star mass in kg by the mass of
a neutron. Equation 29.1 then gives an estimate of the radius of the star, which together with the mass determines
the density.

Solution
(a) Find the approximate number of nucleons in the star.

Divide the star’s mass by the mass of a neutron to find A: 1.79 � 1057A � � 3.00 � 1030 kg
1.675 � 10�27 kg � �
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942 Chapter 29 Nuclear Physics

Nuclear Stability
Given that the nucleus consists of a closely packed collection of protons and
neutrons, you might be surprised that it can even exist. The very large repulsive
electrostatic forces between protons should cause the nucleus to fly apart.
However, nuclei are stable because of the presence of another, short-range
(about 2 fm) force: the nuclear force, an attractive force that acts between all
nuclear particles. The protons attract each other via the nuclear force, and at the
same time they repel each other through the Coulomb force. The attractive
nuclear force also acts between pairs of neutrons and between neutrons and
protons.

The nuclear attractive force is stronger than the Coulomb repulsive force
within the nucleus (at short ranges). If this were not the case, stable nuclei
would not exist. Moreover, the strong nuclear force is nearly independent of
charge. In other words, the nuclear forces associated with proton–proton,
proton–neutron, and neutron–neutron interactions are approximately the
same, apart from the additional repulsive Coulomb force for the proton–proton
interaction.

There are about 260 stable nuclei; hundreds of others have been observed,
but are unstable. A plot of N versus Z for a number of stable nuclei is given in
Figure 29.3. Note that light nuclei are most stable if they contain equal numbers of
protons and neutrons, so that N � Z, but heavy nuclei are more stable if N � Z.
This difference can be partially understood by recognizing that as the number of
protons increases, the strength of the Coulomb force increases, which tends to
break the nucleus apart. As a result, more neutrons are needed to keep the
nucleus stable, because neutrons are affected only by the attractive nuclear
forces. In effect, the additional neutrons “dilute” the nuclear charge density. Even-
tually, when Z � 83, the repulsive forces between protons cannot be compensated
for by the addition of neutrons. Elements that contain more than 83 protons don’t
have stable nuclei, but decay or disintegrate into other particles in various
amounts of time. The masses and some other properties of selected isotopes are
provided in Appendix B.

(b) Calculate the radius of the star, treating it as a giant
atomic nucleus.

Substitute into Equation 29.1: r � r0A1/3 � (1.2 � 10�15 m)(1.79 � 1057)1/3

� 1.46 � 104 m

(c) Calculate the density of the star, assuming that its
mass is distributed uniformly.

Substitute values into the equation for density and
assume the star is a uniform sphere:

� 2.30 � 1017 kg/m3

� �
m
V

�
m

4
3 	r 3 �

3.00 � 1030 kg
4
3 	(1.46 � 104 m)3

Remarks This density is typical of atomic nuclei as well as of neutron stars. A ball of neutron star matter having a
radius of only 1 meter would have a powerful gravity field: it could attract objects a kilometer away at an acceleration
of over 50 m/s2!

Exercise 29.1
Estimate the radius of a uranium-235 nucleus.

Answer 7.41 � 10�15 m

MARIA GOEPPERT-MAYER,
German Physicist (1906–1972)
Goeppert-Mayer was born and educated
in Germany. She is best known for her
development of the shell model of the
nucleus, published in 1950. A similar
model was simultaneously developed by
Hans Jensen, a German scientist. Maria
Goeppert-Mayer and Hans Jensen were
awarded the Nobel Prize in physics in 1963
for their extraordinary work in
understanding the structure of the nucleus.
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29.2 Binding Energy 943

29.2 BINDING ENERGY
The total mass of a nucleus is always less than the sum of the masses of its nucle-
ons. Also, because mass is another manifestation of energy, the total energy of the
bound system (the nucleus) is less than the combined energy of the separated
nucleons. This difference in energy is called the binding energy of the nucleus and
can be thought of as the energy that must be added to a nucleus to break it apart
into its separated neutrons and protons.
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Figure 29.3 A plot of the neutron
number N versus the proton number
Z for the stable nuclei (solid points).
The dashed straight line corresponds
to the condition N � Z. They are 
centered on the so-called line of 
stability. The shaded area shows 
radioactive (unstable) nuclei.

EXAMPLE 29.2 The Binding Energy of the Deuteron
Goal Calculate the binding energy of a nucleus.

Problem The nucleus of the deuterium atom, called the deuteron, consists of a proton and a neutron. Calculate
the deuteron’s binding energy in MeV, given that its atomic mass— that is, the mass of a deuterium nucleus plus an
electron— is 2.014 102 u.

Strategy Calculate the sum of the masses of the individual particles and subtract the mass of the combined parti-
cle. The masses of the neutral atoms can be used instead of the nuclei because the electron masses cancel. Use the
values from Table 29.4 or Table B of the appendix. The mass of an atom given in Appendix B includes the mass of Z
electrons, where Z is the atom’s atomic number.

Solution
To find the binding energy, first sum the masses of the
hydrogen atom and neutron and subtract the mass of
the deuteron:


m � (mp � mn) � md

� (1.007 825 u � 1.008 665 u) � 2.014 102 u

� 0.002 388 u

Convert this mass difference to its equivalent in MeV: 2.224  MeVE b � (0.002 388 u)
931.5 MeV

1 u
�

Remarks This result tells us that to separate a deuteron into a proton and a neutron, it’s necessary to add 2.224 MeV
of energy to the deuteron to overcome the attractive nuclear force between the proton and the neutron. One way of
supplying the deuteron with this energy is by bombarding it with energetic particles.
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944 Chapter 29 Nuclear Physics

It’s interesting to examine a plot of binding energy per nucleon, Eb/A, as a
function of mass number for various stable nuclei (Fig. 29.4). Except for the
lighter nuclei, the average binding energy per nucleon is about 8 MeV. Note that
the curve peaks in the vicinity of A � 60, which means that nuclei with mass num-
bers greater or less than 60 are not as strongly bound as those near the middle of
the periodic table. As we’ll see later, this fact allows energy to be released in fission
and fusion reactions. The curve is slowly varying for A � 40, which suggests that
the nuclear force saturates. In other words, a particular nucleon can interact with
only a limited number of other nucleons, which can be viewed as the “nearest
neighbors” in the close-packed structure illustrated in Figure 29.2.

If the binding energy of a nucleus were zero, the nucleus would separate into its constituent protons and neutrons
without the addition of any energy; that is, it would spontaneously break apart.

Exercise 29.2
Calculate the binding energy of .

Answer 7.718 MeV
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Figure 29.4 shows a graph of the amount of energy
required to remove a nucleon from the nucleus. The
figure indicates that an approximately constant amount
of energy is necessary to remove a nucleon above A � 40,
whereas we saw in Chapter 28 that widely varying
amounts of energy are required to remove an electron
from the atom. What accounts for this difference?

Explanation In the case of Figure 29.4, the approxi-
mately constant value of the nuclear binding energy is a
result of the short-range nature of the nuclear force. A
given nucleon interacts only with its few nearest neigh-
bors, rather than with all of the nucleons in the nucleus.
Thus, no matter how many nucleons are present in the
nucleus, pulling any one nucleon out involves separating

it only from its nearest neighbors. The energy to do this,
therefore, is approximately independent of how many
nucleons are present. For the clearest comparison with
the electron, think of averaging the energies required to
strip all of the electrons out of a particular atom, from
the outermost valence electron to the innermost K-shell
electron. This average increases steeply with increasing
atomic number. The electrical force binding the elec-
trons to the nucleus in an atom is a long-range force. An
electron in an atom interacts with all the protons in the
nucleus. When the nuclear charge increases, there is a
stronger attraction between the nucleus and the elec-
trons. Therefore, as the nuclear charge increases, more
energy is necessary to remove an average electron.

Applying Physics 29.1 Binding Nucleons and Electrons

Figure 29.4 Binding energy per
nucleon versus the mass number A
for nuclei that are along the line of
stability shown in Figure 29.3. Some
representative nuclei appear as blue
dots with labels. (Nuclei to the right
of 208Pb are unstable. The curve
represents the binding energy for 
the most stable isotopes.)
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29.3 RADIOACTIVITY
In 1896, Becquerel accidentally discovered that uranium salt crystals emit an invisi-
ble radiation that can darken a photographic plate even if the plate is covered to
exclude light. After several such observations under controlled conditions, he con-
cluded that the radiation emitted by the crystals was of a new type, one requiring
no external stimulation. This spontaneous emission of radiation was soon called
radioactivity. Subsequent experiments by other scientists showed that other
substances were also radioactive.

The most significant investigations of this type were conducted by Marie
and Pierre Curie. After several years of careful and laborious chemical
separation processes on tons of pitchblende, a radioactive ore, the Curies
reported the discovery of two previously unknown elements, both of which
were radioactive. These were named polonium and radium. Subsequent experi-
ments, including Rutherford’s famous work on alpha-particle scattering,
suggested that radioactivity was the result of the decay, or disintegration, of unsta-
ble nuclei.

Three types of radiation can be emitted by a radioactive substance: alpha (�)
particles, in which the emitted particles are nuclei; beta (�) particles, in which
the emitted particles are either electrons or positrons; and gamma (�) rays, in
which the emitted “rays” are high-energy photons. A positron is a particle similar
to the electron in all respects, except that it has a charge of � e. (The positron is
said to be the antiparticle of the electron.) The symbol e� is used to designate an
electron, and e� designates a positron.

It’s possible to distinguish these three forms of radiation by using the scheme
described in Figure 29.5. The radiation from a radioactive sample is directed into
a region with a magnetic field, and the beam splits into three components, two
bending in opposite directions and the third not changing direction. From this
simple observation it can be concluded that the radiation of the undeflected beam
(the gamma ray) carries no charge, the component deflected upward contains
positively charged particles (alpha particles), and the component deflected down-
ward contains negatively charged particles (e�). If the beam includes a positron
(e�), it is deflected upward.

The three types of radiation have quite different penetrating powers. Alpha
particles barely penetrate a sheet of paper, beta particles can penetrate a few
millimeters of aluminum, and gamma rays can penetrate several centimeters of
lead.

The Decay Constant and Half-Life
Observation has shown that if a radioactive sample contains N radioactive nuclei at
some instant, then the number of nuclei, 
N, that decay in a small time interval 
t
is proportional to N ; mathematically,

or


N � � N 
t [29.2]

where  is a constant called the decay constant. The negative sign signifies that N
decreases with time; that is, 
N is negative. The value of  for any isotope deter-
mines the rate at which that isotope will decay. The decay rate, or activity R, of a
sample is defined as the number of decays per second. From Equation 29.2, we see
that the decay rate is

[29.3]

Isotopes with a large  value decay rapidly; those with small  decay slowly.

R � � 
N

t � � N


N

t

 �N

4
2He

MARIE CURIE, Polish Scientist
(1867–1934)
In 1903 Marie Curie shared the Nobel
Prize in physics with her husband, Pierre,
and with Becquerel for their studies of
radioactive substances. In 1911 she was
awarded a second Nobel Prize in chem-
istry for the discovery of radium and polo-
nium. Marie Curie died of leukemia caused
by years of exposure to radioactive sub-
stances. “I persist in believing that the
ideas that then guided us are the only
ones which can lead to the true social
progress. We cannot hope to build a better
world without improving the individual.
Toward this end, each of us must work
toward his own highest development,
accepting at the same time his share of
responsibility in the general life of
humanity.”
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Figure 29.5 The radiation from a
radioactive source, such as radium,
can be separated into three compo-
nents using a magnetic field to de-
flect the charged particles. The detec-
tor array at the right records the
events. The gamma ray isn’t deflected
by the magnetic field.
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A general decay curve for a radioactive sample is shown in Active Figure 29.6. It
can be shown from Equation 29.2 (using calculus) that the number of nuclei pres-
ent varies with time according to the equation

[29.4a]

where N is the number of radioactive nuclei present at time t, N0 is the number
present at time t � 0, and e � 2.718 . . . is Euler’s constant. Processes that obey
Equation 29.4a are sometimes said to undergo exponential decay.1

Another parameter that is useful for characterizing radioactive decay is the half-
life T1/2. The half-life of a radioactive substance is the time it takes for half of a
given number of radioactive nuclei to decay. Using the concept of half-life, it can
be shown that Equation 29.4a can also be written as

[29.4b]

where n is the number of half-lives. The number n can take any non-negative value
and need not be an integer. From the definition, it follows that n is related to time
t and the half-life T1/2 by

[29.4c]

Setting N � N0/2 and t � T1/2 in Equation 29.4a gives

Writing this in the form and taking the natural logarithm of both sides,
we get

[29.5]

This is a convenient expression relating the half-life to the decay constant. Note
that after an elapsed time of one half-life, N0/2 radioactive nuclei remain (by defi-
nition); after two half-lives, half of these will have decayed and N0/4 radioactive
nuclei will be left; after three half-lives, N0/8 will be left; and so on.

The unit of activity R is the curie (Ci), defined as

[29.6]

This unit was selected as the original activity unit because it is the approximate 
activity of 1 g of radium. The SI unit of activity is the becquerel (Bq):

1 Bq � 1 decay/s [29.7]

Therefore, 1 Ci � 3.7 � 1010 Bq. The most commonly used units of activity are the
millicurie (10�3 Ci) and the microcurie (10�6 Ci).

1 Ci � 3.7 � 1010 decays/s

T1/2 �
ln 2


�

0.693


e T1/2 � 2

N0

2
� N0e�T1/2

n �
t

T1/2

N � N0� 1
2 �

n

N � N0e�t

The hands and numbers of this lumi-
nous watch contain minute amounts
of radium salt. The radioactive decay
of radium causes the phosphors to
glow in the dark.

N(t)

N0

N0

N0

1
2

1
4

t

N =N0e –  t

T1/2 2T1/2

�

ACTIVE FIGURE 29.6
Plot of the exponential decay law for
radioactive nuclei. The vertical axis
represents the number of radioactive
nuclei present at any time t, and the
horizontal axis is time. The parameter
T1/2 is the half-life of the sample.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 29.6, where
you can observe the decay curves for
nuclei with varying half-lives.

1Other examples of exponential decay were discussed in Chapter 18 in connection with RC circuits and in Chapter 20
in connection with RL circuits.

What fraction of a radioactive sample has decayed after two half-lives have elapsed?
(a) 1/4 (b) 1/2 (c) 3/4 (d) not enough information to say

Quick Quiz 29.1

Suppose the decay constant of radioactive substance A is twice the decay constant of
radioactive substance B. If substance B has a half life of 4 hr, what’s the half life of
substance A? (a) 8 hr (b) 4 hr (c) 2 hr (d) not enough information to say 

Quick Quiz 29.2

TIP 29.2 Two Half-Lives Don’t
Make a Whole-Life
A half-life is the time it takes for half
of a given number of nuclei to decay.
During a second half-life, half the
remaining nuclei decay, so in two
half-lives, three-quarters of the
original material has decayed, 
not all of it.
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INTERACTIVE EXAMPLE 29.3 The Activity of Radium
Goal Calculate the activity of a radioactive substance at different times.

Problem The half-life of the radioactive nucleus is 1.6 � 103 yr. If a sample initially contains 3.00 � 1016 such
nuclei, determine (a) the initial activity in curies, (b) the number of radium nuclei remaining after 4.8 � 103 yr, and
(c) the activity at this later time.

Strategy For parts (a) and (c), find the decay constant and multiply it by the number of nuclei. Part (b) requires
multiplying the initial number of nuclei by one-half for every elapsed half-life. (Essentially, this is an application of
Equation 29.4b.)

Solution
(a) Determine the initial activity in curies.

226
88Ra

Convert the half-life to seconds: T1/2 � (1.6 � 103 yr)(3.156 � 107 s/yr) � 5.0 � 1010 s

Substitute this value into Equation 29.5 to get the decay
constant:

 �
0.693
T1/2

�
0.693

5.0 � 1010 s
� 1.4 � 10�11 s�1

Calculate the activity of the sample at t � 0, using 
R0 � N0, where R 0 is the decay rate at t � 0 and N0 is
the number of radioactive nuclei present at t � 0:

R0 � N0 � (1.4 � 10�11 s�1)(3.0 � 1016 nuclei)

� 4.2 � 105 decays/s

Convert to curies to obtain the activity at t � 0, using
the fact that 1 Ci � 3.7 � 1010 decays/s:

� 11 �Ci �1.1 � 10�5 Ci

 R 0 � (4.2 � 105 decays/s)� 1 Ci
3.7 � 1010 decays/s �

(b) How many radium nuclei remain after 
4.8 � 103 years?

Calculate the number of half-lives, n : n �
4.8 �  103 yr

1.6 �  103 yr/half-life
� 3.0 half-lives

Multiply the initial number of nuclei by the number of
factors of one-half :

(1)N � N0� 1
2 �

n

Substitute N0 � 3.0 � 1016 and n � 3.0: 3.8 � 1015 nucleiN � (3.0 � 1016 nuclei)� 1
2 �

3.0
�

(c) Calculate the activity after 4.8 � 103 yr.

Multiply the number of remaining nuclei by the decay
constant to find the activity R :

R � N � (1.4 � 10�11 s�1)(3.8 � 1015 nuclei)

� 5.3 � 104 decays/s

� 1.4 �Ci

Remarks The activity is reduced by half every half-life, which is naturally the case because activity is proportional to the
number of remaining nuclei. The precise number of nuclei at any time is never truly exact, because particles decay
according to a probability. The larger the sample, however, the more accurate are the predictions from Equation 29.4.

Exercise 29.3
Find (a) the number of remaining radium nuclei after 3.2 � 103 yr and (b) the activity at this time.

Answer (a) 7.5 � 1015 nuclei (b) 2.8 �Ci

Practice evaluating the parameters for the radioactive decay of various isotopes of radium by logging
into PhysicsNow at www.cp7e.com and going to Interactive Example 29.3.
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EXAMPLE 29.4 Radon Gas
Goal Calculate the number of nuclei after an arbitrary time and the time required for a given number of nuclei to decay.

Problem Radon is a radioactive gas that can be trapped in the basements of homes, and its presence in high
concentrations is a known health hazard. Radon has a half-life of 3.83 days. A gas sample contains 4.00 � 108 radon
atoms initially. (a) How many atoms will remain after 14.0 days have passed if no more radon leaks in? (b) What is the
activity of the radon sample after 14.0 days? (c) How long before 99% of the sample has decayed?

Strategy The activity can be found by substitution into Equation 29.5, as before. Equation 29.4a (or Eq. 29.4b)
must be used to find the number of particles remaining after 14.0 days. To obtain the time asked for in part
(c), Equation 29.4a must be solved for time.

Solution
(a) How many atoms will remain after 14.0 days have passed?

Determine the decay constant from Equation 29.5:

222
86Rn

 �
0.693
T1/2

�
0.693

3.83 days
� 0.181 day�1

Now use Equation 29.4a, taking N0 � 4.0 � 108, and the
value of  just found to obtain the number N remaining
after 14 days:

� 3.17 � 107 atoms

N � N0e �t � (4.00 � 108 atoms)e �(0.181 day�1)(14.0 days)

(b) What is the activity of the radon sample after 
14.0 days?

Express the decay constant in units of s�1:  � (0.181 day�1)� 1 day
8.64 � 104 s � � 2.09 � 10�6 s�1

From Equation 29.3 and this value of , compute the 
activity R :

R � N � (2.09 � 10�6 s�1)(3.17 � 107 atoms)

� 66.3 decays/s � 66.3 Bq

(c) How much time must pass before 99% of the sample
has decayed?

Solve Equation 29.4a for t, using natural logarithms:

 t �
ln(N0) � ln(N )


�

ln(N0/N )


 ln(N ) � ln(N0) � ln(e�t) � � t

 ln(N ) � ln(N0e�t ) � ln(N0) � ln(e�t )

Substitute values: 25.5 dayst �
ln(N0/0.01 N0)
2.09 � 10�6 s�1 � 2.20 � 106 s �

Remarks This kind of calculation is useful in determining how long you would have to wait for radioactivity at a
given location to fall to safe levels.

Exercise 29.4
(a) Find the activity of the radon sample after 12.0 days have elapsed. (b) How long would it take for 85.0% of the
sample to decay?

Answer (a) 95.3 Bq (b) 9.08 � 105 s � 10.5 days

29.4 THE DECAY PROCESSES
As stated in the previous section, radioactive nuclei decay spontaneously via alpha,
beta, and gamma decay. As we’ll see in this section, these processes are very differ-
ent from each other.
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Alpha Decay
If a nucleus emits an alpha particle (4

2He), it loses two protons and two neutrons.
Therefore, the neutron number N of a single nucleus decreases by 2, Z decreases
by 2, and A decreases by 4. The decay can be written symbolically as

[29.8]

where X is called the parent nucleus and Y is known as the daughter nucleus. As
examples, 238U and 226Ra are both alpha emitters and decay according to the
schemes

[29.9]

and

[29.10]

The half-life for 238U decay is 4.47 � 109 years, and the half-life for 226Ra decay is
1.60 � 103 years. In both cases, note that the A of the daughter nucleus is four less
than that of the parent nucleus, while Z is reduced by two. The differences are ac-
counted for in the emitted alpha particle (the 4He nucleus).

The decay of 226Ra is shown in Active Figure 29.7. When one element changes
into another, as happens in alpha decay, the process is called spontaneous decay or
transmutation. As a general rule, (1) the sum of the mass numbers A must be the
same on both sides of the equation, and (2) the sum of the atomic numbers Z
must be the same on both sides of the equation.

In order for alpha emission to occur, the mass of the parent must be greater
than the combined mass of the daughter and the alpha particle. In the
decay process, this excess mass is converted into energy of other forms and
appears in the form of kinetic energy in the daughter nucleus and the alpha
particle. Most of the kinetic energy is carried away by the alpha particle because
it is much less massive than the daughter nucleus. This can be understood
by first noting that a particle’s kinetic energy and momentum p are related as
follows:

Because momentum is conserved, the two particles emitted in the decay of a
nucleus at rest must have equal, but oppositely directed, momenta. As a result, the
lighter particle, with the smaller mass in the denominator, has more kinetic energy
than the more massive particle.

KE �
p2

2m

226
88Ra : 222

86Rn � 4
2He

238
92U : 234

90Th � 4
2He

A
Z X : A�4

Z�2 Y � 4
2He

222
Rn 

86

After decay

KE
KE

Rn

α
Rn

Before decay

226
Ra 

88

KERa = 0

pRa = 0

α

αpp

ACTIVE FIGURE 29.7
The alpha decay of radium-226. The
radium nucleus is initially at rest. After
the decay, the radon nucleus has 
kinetic energy KERn and momentum

, and the alpha particle has kinetic
energy KE� and momentum .

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 29.7, where
you can observe the decay of 
radium-226.

p:�

p:Rn

If a nucleus such as 226Ra that is initially at rest undergoes alpha decay, which of
the following statements is true? (a) The alpha particle has more kinetic energy
than the daughter nucleus. (b) The daughter nucleus has more kinetic energy
than the alpha particle. (c) The daughter nucleus and the alpha particle have the
same kinetic energy.

Quick Quiz 29.3

In comparing alpha decay energies from a number of
radioactive nuclides, why is it found that the half-life of
the decay goes down as the energy of the decay goes up?

Explanation It should seem reasonable that the 
higher the energy of the alpha particle, the more

likely it is to escape the confines of the nucleus. 
The higher probability of escape translates to a 
faster rate of decay, which appears as a shorter 
half-life.

Applying Physics 29.2 Energy and Half-life
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Beta Decay
When a radioactive nucleus undergoes beta decay, the daughter nucleus has the same
number of nucleons as the parent nucleus, but the atomic number is changed by 1:

[29.11]

[29.12]

Again, note that the nucleon number and total charge are both conserved in these
decays. However, as we will see shortly, these processes are not described com-
pletely by these expressions. A typical beta decay event is

[29.13]

The emission of electrons from a nucleus is surprising, because, in all our previ-
ous discussions, we stated that the nucleus is composed of protons and neutrons
only. This apparent discrepancy can be explained by noting that the emitted elec-
tron is created in the nucleus by a process in which a neutron is transformed into
a proton. This process can be represented by the equation

[29.14]

Consider the energy of the system of Equation 29.13 before and after decay.
As with alpha decay, energy must be conserved in beta decay. The next example
illustrates how to calculate the amount of energy released in the beta decay of .14

6C

1
0n  :   11p � e�

14
6C  :  14

7N � e�

A
ZX  :   A

Z�1Y � e�

A
ZX  :   A

Z�1Y � e�

EXAMPLE 29.5 Decaying Radium
Goal Calculate the energy released during an alpha decay.

Problem We showed that the nucleus undergoes alpha decay to (Eq. 29.10). Calculate the amount
of energy liberated in this decay. Take the mass of to be 226.025 402 u, that of to be 222.017 571 u, and
that of to be 4.002 602 u, as found in Appendix B.

Strategy This is a matter of subtracting the neutral masses of the daughter particles from the original mass of the
radon nucleus.

Solution

4
2He

222
86Rn226

88 Ra

222
86Rn226

88 Ra

Compute the sum of the mass of the daughter particle,
md, and the mass of the alpha particle, m� :

md � m� � 222.017 571 u � 4.002 602 u � 226.020 173 u

Compute the loss of mass, 
m, during the decay by sub-
tracting the previous result from Mp, the mass of the
original particle:


m � Mp � (md � m�) � 226.025 402 u � 226.020 173 u

� 0.005 229 u

Convert the loss of mass 
m to its equivalent energy 
in MeV:

E � (0.005 229 u)(931.494 MeV/u) � 4.871 MeV

Remark The potential barrier is typically higher than this value of the energy, but quantum tunneling permits the
event to occur, anyway.

Exercise 29.5
Calculate the energy released when splits into two alpha particles. Beryllium-8 has an atomic mass of 8.005 305 u.

Answer 0.094 1 MeV

8
4Be

EXAMPLE 29.6 The Beta Decay of Carbon-14
Goal Calculate the energy released in a beta decay.

Problem Find the energy liberated in the beta decay of to , as represented by Equation 29.13. That
equation refers to nuclei, while Appendix B gives the masses of neutral atoms. Adding six electrons to both sides of
Equation 29.13 yields

atom : atom14
7N14

6C

14
7N14

6C
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From Example 29.6, we see that the energy released in the beta decay of 14C is
approximately 0.16 MeV. As with alpha decay, we expect the electron to carry away
virtually all of this energy as kinetic energy because, apparently, it is the lightest
particle produced in the decay. As Figure 29.8 shows, however, only a small num-
ber of electrons have this maximum kinetic energy, represented as KEmax on the
graph; most of the electrons emitted have kinetic energies lower than that pre-
dicted value. If the daughter nucleus and the electron aren’t carrying away this lib-
erated energy, then where has the energy gone? As an additional complication,
further analysis of beta decay shows that the principles of conservation of both
angular momentum and linear momentum appear to have been violated!

In 1930 Pauli proposed that a third particle must be present to carry away the
“missing” energy and to conserve momentum. Later, Enrico Fermi developed a
complete theory of beta decay and named this particle the neutrino (“little neutral
one”) because it had to be electrically neutral and have little or no mass. Although
it eluded detection for many years, the neutrino (�) was finally detected experi-
mentally in 1956. The neutrino has the following properties:

• Zero electric charge
• A mass much smaller than that of the electron, but probably not zero. (Recent

experiments suggest that the neutrino definitely has mass, but the value is
uncertain—perhaps less than 1 eV/c2.)

• A spin of
• Very weak interaction with matter, making it difficult to detect

With the introduction of the neutrino, we can now represent the beta decay
process of Equation 29.13 in its correct form:

[29.15]

The bar in the symbol indicates an antineutrino. To explain what an antineutrino
is, we first consider the following decay:

[29.16]12
7N  :   12

6C � e� � �

�

14
6C  :   14

7N � e� � �

1
2

Strategy As in preceding problems, finding the released energy involves computing the difference in mass
between the resultant particle(s) and the initial particle(s) and converting to MeV.

Solution
Obtain the masses of and from Appendix B and 
compute the difference between them:

14
7N14

6C 
m � mC � mN � 14.003 242 u � 14.003 074 u � 0.000 168u

Convert the mass difference to MeV: E � (0.000 168 u)(931.494 MeV/u) � 0.156 MeV

Remarks The calculated energy is generally more than the energy observed in this process. The discrepancy led to
a crisis in physics, because it appeared that energy wasn’t conserved. As discussed below, this crisis was resolved by the
discovery that another particle was also produced in the reaction.

Exercise 29.6
Calculate the maximum energy liberated in the beta decay of radioactive potassium to calcium: .

Answer 1.31 MeV

40
19K  : 40

20Ca

Kinetic energy

N
um

be
r 

of
  

-p
ar

ti
cl

es

K max

�

(a)

Kinetic energy

N
um

be
r 

of
  

-p
ar

ti
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es
�

(b)

Figure 29.8 (a) Distribution of
beta particle energies in a typical beta
decay. All energies are observed up to
a maximum value. (b) In contrast,
the energies of alpha particles from
an alpha decay are discrete.

� Properties of the neutrino

TIP 29.3 Mass Number of the
Electron
Another notation that is sometimes
used for an electron is . This
notation does not imply that the
electron has zero rest energy. The
mass of the electron is much smaller
than that of the lightest nucleon, so
we can approximate it as zero when
we study nuclear decays and
reactions.

0
� 1e
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Here, we see that when 12N decays into 12C, a particle is produced which is identi-
cal to the electron except that it has a positive charge of � e. This particle is called
a positron. Because it is like the electron in all respects except charge, the positron
is said to be the antiparticle of the electron. We will discuss antiparticles further in
Chapter 30; for now, it suffices to say that, in beta decay, an electron and an anti-
neutrino are emitted or a positron and a neutrino are emitted.

Unlike beta decay, which results in a daughter particle with a variety of possible
kinetic energies, alpha decays come in discrete amounts, as seen in Figure 29.8b.
This is because the two daughter particles have momenta with equal magnitude
and opposite direction and are each composed of a fixed number of nucleons.

Gamma Decay
Very often a nucleus that undergoes radioactive decay is left in an excited energy
state. The nucleus can then undergo a second decay to a lower energy state—
perhaps even to the ground state—by emitting one or more high-energy photons.
The process is similar to the emission of light by an atom. An atom emits radiation
to release some extra energy when an electron “jumps” from a state of high energy
to a state of lower energy. Likewise, the nucleus uses essentially the same method
to release any extra energy it may have following a decay or some other nuclear
event. In nuclear de-excitation, the “jumps” that release energy are made by pro-
tons or neutrons in the nucleus as they move from a higher energy level to a lower
level. The photons emitted in the process are called gamma rays, which have very
high energy relative to the energy of visible light.

A nucleus may reach an excited state as the result of a violent collision with
another particle. However, it’s more common for a nucleus to be in an excited
state as a result of alpha or beta decay. The following sequence of events typifies
the gamma decay processes:

[29.17]

[29.18]

Equation 29.17 represents a beta decay in which 12B decays to 12C*, where the 
asterisk indicates that the carbon nucleus is left in an excited state following the
decay. The excited carbon nucleus then decays to the ground state by emitting a
gamma ray, as indicated by Equation 29.18. Note that gamma emission doesn’t 
result in any change in either Z or A.

Practical Uses of Radioactivity

Carbon Dating The beta decay of 14C given by Equation 29.15 is commonly used
to date organic samples. Cosmic rays (high-energy particles from outer space) in
the upper atmosphere cause nuclear reactions that create 14C from 14N. In fact,
the ratio of 14C to 12C (by numbers of nuclei) in the carbon dioxide molecules of
our atmosphere has a constant value of about 1.3 � 10�12, as determined by mea-
suring carbon ratios in tree rings. All living organisms have the same ratio of 14C
to 12C because they continuously exchange carbon dioxide with their surround-
ings. When an organism dies, however, it no longer absorbs 14C from the atmos-
phere, so the ratio of 14C to 12C decreases as the result of the beta decay of 14C. It’s
therefore possible to determine the age of a material by measuring its activity per
unit mass as a result of the decay of 14C. Through carbon dating, samples of wood,
charcoal, bone, and shell have been identified as having lived from 1 000 to 25 000
years ago. This knowledge has helped researchers reconstruct the history of living
organism— including human—during that time span.

A particularly interesting example is the dating of the Dead Sea Scrolls. This
group of manuscripts was first discovered by a young Bedouin boy in a cave at
Qumran near the Dead Sea in 1947. Translation showed the manuscripts to be
religious documents, including most of the books of the Old Testament. Because
of their historical and religious significance, scholars wanted to know their age.
Carbon dating applied to fragments of the scrolls and to the material in which

12
6C* :   12

6C � �

12
5B  :   12

6C* � e� � �

ENRICO FERMI, Italian Physicist
(1901–1954)
Fermi was awarded the Nobel Prize in
1938 for producing the transuranic
elements by neutron irradiation and for 
his discovery of nuclear reactions bought
about by slow neutrons. He made many
other outstanding contributions to physics,
including his theory of beta decay, the
free-electron theory of metals, and the
development of the world’s first fission
reactor in 1942. Fermi was truly a gifted
theoretical and experimental physicist. He
was also well known for his ability to
present physics in a clear and exciting
manner. “Whatever Nature has in store for
mankind, unpleasant as it may be, men
must accept, for ignorance is never better
than knowledge.”

A P P L I C AT I O N
Carbon Dating of the 
Dead Sea Scrolls
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they were wrapped established that they were about 1950 years old. The scrolls are
now stored at the Israel museum in Jerusalem.

Smoke Detectors Smoke detectors are frequently used in homes and industry for
fire protection. Most of the common ones are the ionization-type that use radioac-
tive materials. (See Fig. 29.9.) A smoke detector consists of an ionization chamber,
a sensitive current detector, and an alarm. A weak radioactive source ionizes the
air in the chamber of the detector, which creates charged particles. A voltage is
maintained between the plates inside the chamber, setting up a small but
detectable current in the external circuit. As long as the current is maintained, the
alarm is deactivated. However, if smoke drifts into the chamber, the ions become
attached to the smoke particles. These heavier particles do not drift as readily as
do the lighter ions, which causes a decrease in the detector current. The external
circuit senses this decrease in current and sets off the alarm.

Radon Detection Radioactivity can also affect our daily lives in harmful ways. Soon
after the discovery of radium by the Curies, it was found that the air in contact with
radium compounds becomes radioactive. It was then shown that this radioactivity
came from the radium itself, and the product was therefore called “radium emana-
tion.” Rutherford and Soddy succeeded in condensing this “emanation,” confirm-
ing that it was a real substance: the inert, gaseous element now called radon (Rn).
Later, it was discovered that the air in uranium mines is radioactive because of the
presence of radon gas. The mines must therefore be well ventilated to help protect
the miners. Finally, the fear of radon pollution has moved from uranium mines
into our own homes. (See Example 29.4.) Because certain types of rock, soil, brick,
and concrete contain small quantities of radium, some of the resulting radon gas
finds its way into our homes and other buildings. The most serious problems arise
from leakage of radon from the ground into the structure. One practical remedy is
to exhaust the air through a pipe just above the underlying soil or gravel directly to
the outdoors by means of a small fan or blower.

A P P L I C AT I O N
Smoke Detectors

Radioactive
source

Alarm

Current
detector

+ –

Ions

Figure 29.9 An ionization-type
smoke detector. Smoke entering 
the chamber reduces the detected
current, causing the alarm to sound.

A P P L I C AT I O N
Radon Pollution

In 1991, a German tourist discovered the well-preserved
remains of a man trapped in a glacier in the Italian
Alps. (See Fig. 29.10.) Radioactive dating of a sample
of bone from this hunter – gatherer, dubbed the 
“Iceman,” revealed an age of 5 300 years. Why 
did scientists date the sample using the isotope14C,
rather than 11C, a beta emitter with a half-life of 
20.4 min?

Explanation 14C has a long half-life of 5 730 years, so
the fraction of 14C nuclei remaining after one half-life
is high enough to accurately measure changes in the
sample’s activity. The 11C isotope, which has a very
short half-life, is not useful, because its activity
decreases to a vanishingly small value over the age 
of the sample, making it impossible to detect.

If a sample to be dated is not very old— say, about
50 years— then you should select the isotope of some
other element with half-life comparable to the age of
the sample. For example, if the sample contained
hydrogen, you could measure the activity of 3H
(tritium), a beta emitter of half-life 12.3 years. As a
general rule, the expected age of the sample 
should be long enough to measure a change in

activity, but not so long that its activity can’t be
detected.

Applying Physics 29.3 Radioactive Dating of the Iceman

Figure 29.10 (Applying Physics 29.3) The body of an ancient man
(dubbed the Iceman) was exposed by a melting glacier in the Alps.
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To use radioactive dating techniques, we need to recast some of the equations
already introduced. We start by multiplying both sides of Equation 29.4 by :

N � N0e�t

From Equation 29.3, we have N � R and N0 � R 0. Substitute these expressions
into the above equation and divide through by R 0 :

R is the present activity and R0 was the activity when the object in question was
part of a living organism. We can solve for time by taking the natural logarithm of
both sides of the foregoing equation:

[29.19]t � � 

ln� R
R 0

�


ln� R
R0

� � ln(e �t) � �t

  
R
R0

� e�t

EXAMPLE 29.7 Should We Report This to Homicide?
Goal Apply the technique of carbon-14 dating.

Problem A 50.0-g sample of carbon is taken from the pelvis bone of a skeleton and is found to have a carbon-14
decay rate of 200.0 decays/min. It is known that carbon from a living organism has a decay rate of 15.0 decays/min � g
and that 14C has a half-life of 5 730 yr � 3.01 � 109 min. Find the age of the skeleton.

Strategy Calculate the original activity and the decay constant, and then substitute those numbers and the current
activity into Equation 29.19.

Solution
Calculate the original activity R0 from the decay rate 
and the mass of the sample:

R0 � �15.0 
decays
min�g �(50.0 g) � 7.50 � 102 

decays
min

Find the decay constant from Equation 29.5:  �
0.693
T1/2

�
0.693

3.01 � 109 min
� 2.30 � 10�10 min�1

R is given, so now we substitute all values into Equation
29.19 to find the age of the skeleton:

1.09 � 104 yr� 5.74 � 109 min �

 �
1.32

2.30 � 10 �10 min�1

 t � � 

ln� R
R0

�


� � 

ln� 200.0 decays/min
7.50 � 102 decays/min �
2.30 � 10�10 min�1

Remark For much longer periods, other radioactive substances with longer half-lives must be used to develop estimates.

Exercise 29.7
A sample of carbon of mass 7.60 g taken from an animal jawbone has an activity of 4.00 decays/min. How old is the
jawbone?

Answer 2.77 � 104 yr

Carbon-14 and the Shroud of Turin
Since the Middle Ages, many people have marveled at a 14-foot-long, yellowing
piece of linen found in Turin, Italy, purported to be the burial shroud of Jesus Christ
(Fig. 29.11). The cloth bears a remarkable, full-size likeness of a crucified body, with

A P P L I C AT I O N
Carbon-14 Dating of the
Shroud of Turin

44920_29_p939-972  1/14/05  2:21 PM  Page 954



29.6 Nuclear Reactions 955

wounds on the head that could have been caused by a crown of thorns and another
wound in the side that could have been the cause of death. Skepticism over the
authenticity of the shroud has existed since its first public showing in 1354; in fact, a
French bishop declared it to be a fraud at the time. Because of its controversial
nature, religious bodies have taken a neutral stance on its authenticity.

In 1978 the bishop of Turin allowed the cloth to be subjected to scientific analy-
sis, but notably missing from these tests was carbon-14 dating. The reason for this
omission was that, at the time, carbon-dating techniques required a piece of cloth
about the size of a handkerchief. In 1988 the process had been refined to the
point that pieces as small as one square inch were sufficient, and at that time
permission was granted to allow the dating to proceed. Three labs were selected
for the testing, and each was given four pieces of material. One of these was a
piece of the shroud, and the other three pieces were control pieces similar in
appearance to the shroud.

The testing procedure consisted of burning the cloth to produce carbon diox-
ide, which was then converted chemically to graphite. The graphite sample was
subjected to carbon-14 analysis, and in the end all three labs agreed amazingly well
on the age of the shroud. The average of their results gave a date for the cloth of
A.D. 1 320 � 60 years, with an assurance that the cloth could not be older than 
A.D. 1 200. Carbon-14 dating has thus unraveled the most important mystery con-
cerning the shroud, but others remain. For example, investigators have not yet
been able to explain how the image was imprinted.

29.5 NATURAL RADIOACTIVITY
Radioactive nuclei are generally classified into two groups: (1) unstable nuclei
found in nature, which give rise to what is called natural radioactivity, and (2)
nuclei produced in the laboratory through nuclear reactions, which exhibit
artificial radioactivity.

Three series of naturally occurring radioactive nuclei exist (Table 29.2). Each
starts with a specific long-lived radioactive isotope with half-life exceeding that of
any of its descendants. The fourth series in Table 29.2 begins with 237Np, a
transuranic element (an element having an atomic number greater than that of
uranium) not found in nature. This element has a half-life of “only” 2.14 � 106 yr.

The two uranium series are somewhat more complex than the 232Th series
(Fig. 29.12). Also, there are several other naturally occurring radioactive isotopes,
such as 14C and 40K, that are not part of either decay series.

Natural radioactivity constantly supplies our environment with radioactive ele-
ments that would otherwise have disappeared long ago. For example, because the
Solar System is about 5 � 109 years old, the supply of 226Ra (with a half-life of only
1 600 yr) would have been depleted by radioactive decay long ago were it not for
the decay series that starts with 238U, with a half-life of 4.47 � 109 yr.

29.6 NUCLEAR REACTIONS
It is possible to change the structure of nuclei by bombarding them with energetic
particles. Such changes are called nuclear reactions. Rutherford was the first to
observe nuclear reactions, using naturally occurring radioactive sources for the

Figure 29.11 The Shroud of Turin
as it appears in a photographic nega-
tive image.
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TABLE 29.2
The Four Radioactive Series
Series Starting Isotope Half-life (years) Stable End Product

Uranium 4.47 � 109

Actinium 7.04 � 108

Thorium 1.41 � 1010

Neptunium 2.14 � 106 209
83 Bi237

93 Np

208
82Pb232

90Th

207
82Pb235

92U

206
82Pb238

92U

N

Z

140

135

130

125

80 85 90

216Po

e–
e–

e–

e–

220Rn

212Pb

208Tl

208Pb

212Po
212Bi

224Ra

228Ra

232Th

228Ac
228Th

�

�

�

�

�

�
�

Figure 29.12 Decay series begin-
ning with 232Th.
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bombarding particles. He found that protons were released when alpha particles
were allowed to collide with nitrogen atoms. The process can be represented
symbolically as

[29.20]

This equation says that an alpha particle strikes a nitrogen nucleus and pro-
duces an unknown product nucleus (X) and a proton . Balancing atomic
numbers and mass numbers, as we did for radioactive decay, enables us to con-
clude that the unknown is characterized as . Because the element with atomic
number 8 is oxygen, we see that the reaction is

[29.21]

This nuclear reaction starts with two stable isotopes—helium and nitrogen—and
produces two different stable isotopes—hydrogen and oxygen.

Since the time of Rutherford, thousands of nuclear reactions have been ob-
served, particularly following the development of charged-particle accelerators in
the 1930s. With today’s advanced technology in particle accelerators and particle
detectors, it is possible to achieve particle energies of at least 1 000 GeV � 1 TeV.
These high-energy particles are used to create new particles whose properties are
helping to solve the mysteries of the nucleus (and indeed, of the Universe itself).

4
2He � 14

7N  :   17
8 O � 1

1H

17
8X

(1
1H)

(4
2He)

4
2 He �  14

7N  :   X � 11H

Which of the following are possible reactions?

(a)

(b)

(c) 1
0n � 239

94Pu  : 127
53I � 93

41Nb � 3(1
0n)

1
0n � 235

92U  : 132
50Sn � 101

42 Mo � 3(1
0n)

1
0n � 235

92U  :   140
54Xe � 94

38Sr � 2(1
0n)

Quick Quiz 29.4

EXAMPLE 29.8 The Discovery of the Neutron
Goal Balance a nuclear reaction to determine an unknown decay product.

Problem A nuclear reaction of significant note occurred in 1932 when Chadwick, in England, bombarded a
beryllium target with alpha particles. Analysis of the experiment indicated that the following reaction occurred:

What is in this reaction?

Strategy Balancing mass numbers and atomic numbers yields the answer.

Solution
Write an equation relating the atomic masses on either side:

A
ZX

4
2He � 9

4Be : 12
6C � A

Z X

4 � 9 � 12 � A : A � 1

Write an equation relating the atomic numbers: 2 � 4 � 6 � Z : Z � 0

Identify the particle: 1
0 n (a neutron)A

ZX �

Remarks This experiment was the first to provide positive proof of the existence of neutrons. 

Exercise 29.8
Identify the unknown particle in this reaction:

Answer (a neutral hydrogen atom)A
ZX � 1

1H

4
2He � 14

7 N : 17
8O � A

ZX
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Q Values
We have just examined some nuclear reactions for which mass numbers and
atomic numbers must be balanced in the equations. We will now consider the en-
ergy involved in these reactions, because energy is another important quantity that
must be conserved.

We illustrate this procedure by analyzing the following nuclear reaction:

[29.22]2
1H � 14

7N  :   12
6C �  42He

EXAMPLE 29.9 Synthetic Elements
Goal Construct equations for a series of radioactive decays.

Problem (a) A beam of neutrons is directed at a target of . The reaction products are a gamma ray and an-
other isotope. What is the isotope? (b) The isotope  is radioactive and undergoes beta decay. Write the equation
symbolizing this decay and identify the resulting isotope.

Strategy Balance the mass numbers and atomic numbers on both sides of the equations.

Solution
(a) Identify the isotope produced by the reaction of a 
neutron with a target of , with production of a 
gamma ray.

Write an equation for the reaction in terms of the 
unknown isotope:

238
92U

239
92U

238
92U

1
0n � 238

92U  :    AZX � �

Write and solve equations for the atomic mass and
atomic number:

A � 1 � 238 � 239; Z � 0 � 92 � 92

Identify the isotope: 239
92 UA

Z X �

(b) Write the equation for the beta decay of  , iden-
tifying the resulting isotope.

Write an equation for the decay of  by beta emis-
sion in terms of the unknown isotope:

239
92U

239
92U

239
92U :    AZ Y � e� � �

Write and solve equations for the atomic mass and
charge conservation (the electron counts as �1 on the
right):

A � 239; 92 � Z � 1 : Z � 93

Identify the isotope: 93
239Np (neptunium)A

Z Y �

Remarks The interesting feature of these reactions is the fact that uranium is the element with the greatest number
of protons (92) which exists in nature in any appreciable amount. The reactions in parts (a) and (b) do occur occa-
sionally in nature; hence, minute traces of neptunium and plutonium are present. In 1940, however, researchers
bombarded uranium with neutrons to produce plutonium and neptunium. These two elements were the first ele-
ments made in the laboratory. Since then, the list of synthetic elements has been extended to include those up to
atomic number 112. Recently, elements 113 and 115 have been observed, but as of this writing, their existence has
not yet been confirmed.

Exercise 29.9
The isotope  is also radioactive and decays by beta emission. What is the end product?

Answer 239
94Pu

238
93U

44920_29_p939-972  1/14/05  2:21 PM  Page 957



958 Chapter 29 Nuclear Physics

The total mass on the left side of the equation is the sum of the mass of 
(2.014 102 u) and the mass of (14.003 074 u), which equals 16.017 176 u.

Similarly, the mass on the right side of the equation is the sum of the mass of 
(12.000 000 u) plus the mass of (4.002 602 u), for a total of 16.002 602 u.

Thus, the total mass before the reaction is greater than the total mass after 
the reaction. The mass difference in the reaction is equal to 16.017 176 u �
16.002 602 u � 0.014 574 u. This “lost” mass is converted to the kinetic energy of
the nuclei present after the reaction. In energy units, 0.014 574 u is equivalent to
13.576 MeV of kinetic energy carried away by the carbon and helium nuclei.

The energy required to balance the equation is called the Q value of the reaction.
In Equation 29.22, the Q value is 13.576 MeV. Nuclear reactions in which there is a
release of energy— that is, positive Q values—are said to be exothermic reactions.

The energy balance sheet isn’t complete, however: We must also consider the
kinetic energy of the incident particle before the collision. As an example, assume
that the deuteron in Equation 29.22 has a kinetic energy of 5 MeV. Adding this to
our Q value, we find that the carbon and helium nuclei have a total kinetic energy
of 18.576 MeV following the reaction.

Now consider the reaction

[29.23]

Before the reaction, the total mass is the sum of the masses of the alpha particle and
the nitrogen nucleus: 4.002 602 u � 14.003 074 u � 18.005 676 u. After the reaction,
the total mass is the sum of the masses of the oxygen nucleus and the proton:
16.999 133 u � 1.007 825 u � 18.006 958 u. In this case, the total mass after the reac-
tion is greater than the total mass before the reaction. The mass deficit is 0.001 282 u,
equivalent to an energy deficit of 1.194 MeV. This deficit is expressed by the negative
Q value of the reaction, �1.194 MeV. Reactions with negative Q values are called 
endothermic reactions. Such reactions won’t take place unless the incoming particle
has at least enough kinetic energy to overcome the energy deficit.

At first it might appear that the reaction in Equation 29.23 can take place if the
incoming alpha particle has a kinetic energy of 1.194 MeV. In practice, however,
the alpha particle must have more energy than this. If it has an energy of only
1.194 MeV, energy is conserved but careful analysis shows that momentum isn’t.
This can be understood by recognizing that the incoming alpha particle has some
momentum before the reaction. However, if its kinetic energy is only 1.194 MeV,
the products (oxygen and a proton) would be created with zero kinetic energy and
thus zero momentum. It can be shown that in order to conserve both energy and
momentum, the incoming particle must have a minimum kinetic energy given by

[29.24]

where m is the mass of the incident particle, M is the mass of the target, and the
absolute value of the Q value is used. For the reaction given by Equation 29.23, we
find that

This minimum value of the kinetic energy of the incoming particle is called the
threshold energy. The nuclear reaction shown in Equation 29.23 won’t occur if the
incoming alpha particle has a kinetic energy of less than 1.535 MeV, but can occur
if its kinetic energy is equal to or greater than 1.535 MeV.

K E min � �1 �
4.002 602
14.003 074 � � �1.194 MeV � � 1.535 MeV

K E min � �1 �
m
M � �Q �

4
2He � 14

7N  :   17
8O � 11H

4
2He12

6C

14
7N2

1H

If the Q value of an endothermic reaction is �2.17 MeV, then the minimum kinetic
energy needed in the reactant nuclei if the reaction is to occur must be (a) equal
to 2.17 MeV, (b) greater than 2.17 MeV, (c) less than 2.17 MeV, or (d) exactly half
of 2.17 MeV.

Quick Quiz 29.5
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29.7 MEDICAL APPLICATIONS OF RADIATION
Radiation Damage in Matter
Radiation absorbed by matter can cause severe damage. The degree and kind of
damage depend on several factors, including the type and energy of the radiation
and the properties of the absorbing material. Radiation damage in biological
organisms is due primarily to ionization effects in cells. The normal function of a
cell may be disrupted when highly reactive ions or radicals are formed as the result
of ionizing radiation. For example, hydrogen and hydroxyl radicals produced
from water molecules can induce chemical reactions that may break bonds in
proteins and other vital molecules. Large acute doses of radiation are especially
dangerous because damage to a great number of molecules in a cell may cause the
cell to die. Also, cells that do survive the radiation may become defective, which
can lead to cancer.

In biological systems, it is common to separate radiation damage into two cate-
gories: somatic damage and genetic damage. Somatic damage is radiation damage
to any cells except the reproductive cells. Such damage can lead to cancer at high
radiation levels or seriously alter the characteristics of specific organisms. Genetic
damage affects only reproductive cells. Damage to the genes in reproductive cells
can lead to defective offspring. Clearly, we must be concerned about the effect of
diagnostic treatments, such as x-rays and other forms of exposure to radiation.

Several units are used to quantify radiation exposure and dose. The roentgen
(R) is defined as that amount of ionizing radiation which will produce 2.08 � 109

ion pairs in 1 cm3 of air under standard conditions. Equivalently, the roentgen is
that amount of radiation which deposits 8.76 � 10�3 J of energy into 1 kg of air.

For most applications, the roentgen has been replaced by the rad (an acronym
for radiation absorbed dose), defined as follows: One rad is that amount of radia-
tion which deposits 10�2 J of energy into 1 kg of absorbing material.

Although the rad is a perfectly good physical unit, it’s not the best unit for
measuring the degree of biological damage produced by radiation, because the
degree of damage depends not only on the dose, but also on the t ype of radiation.
For example, a given dose of alpha particles causes about 10 times more biological
damage than an equal dose of x-rays. The RBE (relative biological e ffectiveness)
factor is defined as the number of rads of x-radiation or gamma radiation that pro-
duces the same biological damage as 1 rad of the radiation being used. The RBE
factors for different types of radiation are given in Table 29.3. Note that the values
are only approximate because they vary with particle energy and the form of
damage.

Finally, the rem (roentgen e quivalent in man) is defined as the product of the
dose in rads and the RBE factor:

Dose in rem � dose in rads � RBE

According to this definition, 1 rem of any two kinds of radiation will produce the
same amount of biological damage. From Table 29.3, we see that a dose of 1 rad of
fast neutrons represents an effective dose of 10 rem and that 1 rad of x-radiation is
equivalent to a dose of 1 rem.

TABLE 29.3
RBE Factors for Several Types of Radiation
Radiation RBE Factor

X-rays and gamma rays 1.0
Beta particles 1.0–1.7
Alpha particles 10–20
Slow neutrons 4–5
Fast neutrons and protons 10
Heavy ions 20
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Low-level radiation from natural sources, such as cosmic rays and radioactive
rocks and soil, delivers a dose of about 0.13 rem/year per person. The upper limit
of radiation dose recommended by the U.S. government (apart from background
radiation and exposure related to medical procedures) is 0.5 rem/year. Many oc-
cupations involve higher levels of radiation exposure, and for individuals in these
occupations, an upper limit of 5 rem/year has been set for whole-body exposure.
Higher upper limits are permissible for certain parts of the body, such as the
hands and forearms. An acute whole-body dose of 400 to 500 rem results in a mor-
tality rate of about 50%. The most dangerous form of exposure is ingestion or in-
halation of radioactive isotopes, especially those elements the body retains and
concentrates, such as 90Sr. In some cases, a dose of 1000 rem can result from in-
gesting 1 mCi of radioactive material.

Sterilizing objects by exposing them to radiation has been going on for at least
25 years, but in recent years the methods used have become safer to use and more
economical. Most bacteria, worms, and insects are easily destroyed by exposure to
gamma radiation from radioactive cobalt. There is no intake of radioactive nuclei by
an organism in such sterilizing processes, as there is in the use of radioactive tracers.
The process is highly effective in destroying Trichinella worms in pork, salmonella
bacteria in chickens, insect eggs in wheat, and surface bacteria on fruits and vegetables
that can lead to rapid spoilage. Recently, the procedure has been expanded to include
the sterilization of medical equipment while in its protective covering. Surgical gloves,
sponges, sutures, and so forth are irradiated while packaged. Also, bone, cartilage, and
skin used for grafting is often irradiated to reduce the chance of infection.

Tracing
Radioactive particles can be used to trace chemicals participating in various reac-
tions. One of the most valuable uses of radioactive tracers is in medicine. For ex-
ample, 131I is an artificially produced isotope of iodine. (The natural, nonradioac-
tive isotope is 127I.) Iodine, a necessary nutrient for our bodies, is obtained largely
through the intake of seafood and iodized salt. The thyroid gland plays a major
role in the distribution of iodine throughout the body. In order to evaluate the
performance of the thyroid, the patient drinks a small amount of radioactive
sodium iodide. Two hours later, the amount of iodine in the thyroid gland is deter-
mined by measuring the radiation intensity in the neck area.

A medical application of the use of radioactive tracers occurring in emergency
situations is that of locating a hemorrhage inside the body. Often the location of
the site cannot easily be determined, but radioactive chromium can identify the
location with a high degree of precision. Chromium is taken up by red blood cells
and carried uniformly throughout the body. However, the blood will be dumped at
a hemorrhage site, and the radioactivity of that region will increase markedly.

The tracer technique is also useful in agricultural research. Suppose the best
method of fertilizing a plant is to be determined. A certain material in the fertil-
izer, such as nitrogen, can be tagged with one of its radioactive isotopes. The fertil-
izer is then sprayed onto one group of plants, sprinkled on the ground for a
second group, and raked into the soil for a third. A Geiger counter is then used to
track the nitrogen through the three types of plants.

Tracing techniques are as wide ranging as human ingenuity can devise. Present
applications range from checking the absorption of fluorine by teeth to checking
contamination of food-processing equipment by cleansers to monitoring deterio-
ration inside an automobile engine. In the last case, a radioactive material is used
in the manufacture of the pistons, and the oil is checked for radioactivity to deter-
mine the amount of wear on the pistons.

Computed Axial Tomography (CAT) Scans
The normal x-ray of a human body has two primary disadvantages when used as a
source of clinical diagnosis. First, it is difficult to distinguish between various types
of tissue in the body because they all have similar x-ray absorption properties.

A P P L I C AT I O N
Irradiation of Food 
and Medical Equipment

A P P L I C AT I O N
Radioactive Tracers 
in Medicine

A P P L I C AT I O N
Radioactive Tracers in 
Agricultural Research

A P P L I C AT I O N
Occupational Radiation 
Exposure Limits
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Second, a conventional x-ray absorption picture is indicative of the average
amount of absorption along a particular direction in the body, leading to some-
what obscured pictures. To overcome these problems, an instrument called a CAT
scanner was developed in England in 1973; the device is capable of producing pic-
tures of much greater clarity and detail than previously possible.

The operation of a CAT scanner can be understood by considering the follow-
ing hypothetical experiment: suppose a box consists of four compartments,
labeled A, B, C, and D, as in Figure 29.13a. Each compartment has a different
amount of absorbing material from any other compartment. What set of experi-
mental procedures will enable us to determine the relative amounts of material in
each compartment? The following steps outline one method that will provide this
information: first, a beam of x-rays is passed through compartments A and C, as in
Figure 29.13b. The intensity of the exiting radiation is reduced by absorption by
some number that we assign as 8. (The number 8 could mean, for example, that
the intensity of the exiting beam is reduced by eight-tenths of 1% from its initial
value.) Because we don’t know which of the compartments, A or C, was responsi-
ble for this reduction in intensity, half the loss is assigned to each compartment, as
in Figure 29.13c. Next, a beam of x-rays is passed through compartments B and D,
as in Figure 29.13b. The reduction in intensity for this beam is 10, and again we as-
sign half the loss to each compartment. We now redirect the x-ray source so that it
sends one beam through compartments A and B and another through compart-
ments C and D, as in Figure 29.13d. Once more, we measure the absorption. Sup-
pose the absorption through compartments A and B in this experiment is mea-
sured to be 7 units. On the basis of our first experiment, we would have guessed it
would be 9 units: 4 by compartment A and 5 by compartment B. Thus, we have re-
duced the guessed absorption for each compartment by 1 unit, so that the sum is 7
rather than 9, giving the numbers shown in Figure 29.13e. Likewise, when the
beam is passed through compartments C and D, as in Figure 29.13d, we may find
the total absorption to be 11 as compared to our first experiment of 9. In this case,
we add 1 unit of absorption to each compartment to give a sum of 11, as in Figure
29.13e. This somewhat crude procedure could be improved by measuring the ab-
sorption along other paths. However, these simple measurements are sufficient to
enable us to conclude that compartment D contains the most absorbing material
and A the least. A visual representation of these results can be obtained by assign-
ing, to each compartment, a shade of gray corresponding to the particular number

A B

C D
(a)

A B

C D
(b)

A B

C D
(c)

A B

C D
(d)

A B

C D
(e)

3

8

4

4

5 6

5

4 5

10

7

11

Incident
beam

Exit
beam

Incident
beam

Exit
beam

Figure 29.13 An experimental procedure for
determining the relative amounts of x-ray absorp-
tion by four different compartments in a box.
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associated with the absorption. In this example, compartment D would be very
dark and compartment A would be very light.

The steps outlined previously are representative of how a CAT scanner pro-
duces images of the human body. A thin slice of the body is subdivided into per-
haps 10 000 compartments, rather than 4 as in our simple example. The function
of the CAT scanner is to determine the relative absorption in each of these 10 000
compartments and to display a picture of its calculations in various shades of gray.
Note that “CAT” stands for computed axial tomography. The term axial is used
because the slice of the body to be analyzed corresponds to a plane perpendicular
to the head-to-toe axis. Tomos is the Greek word for slice and graph is the Greek
word for picture. In a typical diagnosis, the patient is placed in the position shown
in Figure 29.14 and a narrow beam of x-rays is sent through the plane of interest.
The emerging x-rays are detected and measured by photomultiplier tubes behind
the patient. The x-ray tube is then rotated a few degrees, and the intensity is
recorded again. An extensive amount of information is obtained by rotating the
beam through 180° at intervals of about 1° per measurement, resulting in a set of
numbers assigned to each of the 10 000 “compartments” in the slice. These num-
bers are then converted by the computer to a photograph in various shades of gray
for the segment of the body that is under observation.

A brain scan of a patient can now be made in about 2 s, and a full-body scan
requires about 6 s. The final result is a picture containing much greater quantita-
tive information and clarity than a conventional x-ray photograph. Because CAT
scanners use x-rays, which are an ionizing form of radiation, the technique pre-
sents a modest health risk to the patient being diagnosed.

Magnetic Resonance Imaging (MRI)
At the heart of magnetic resonance imaging (MRI) is the fact that when a nucleus
having a magnetic moment is placed in an external magnetic field, its moment
precesses about the magnetic field with a frequency that is proportional to the
field. For example, a proton, with a spin of 1/2, can occupy one of two energy
states when placed in an external magnetic field. The lower energy state corre-
sponds to the case in which the spin is aligned with the field, whereas the higher
energy state corresponds to the case in which the spin is opposite the field. Transi-
tions between these two states can be observed with a technique known as nuclear
magnetic resonance. A DC magnetic field is applied to align the magnetic mo-
ments, and a second, weak oscillating magnetic field is applied perpendicular to
the DC field. When the frequency of the oscillating field is adjusted to match the
precessional frequency of the magnetic moments, the nuclei will “flip” between

X-ray

X-ray
detectors

Patient

(a) (b)
Figure 29.14 (a) CAT scanner detector assembly. (b) Photograph of a patient undergoing a CAT
scan in a hospital.
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29.8 Radiation Detectors 963

the two spin states. These transitions result in a net absorption of energy by the
spin system, which can be detected electronically.

In MRI, image reconstruction is obtained using spatially varying magnetic fields
and a procedure for encoding each point in the sample being imaged. Some MRI
images taken on a human head are shown in Figure 29.15. In practice, a com-
puter-controlled pulse-sequencing technique is used to produce signals that are
captured by a suitable processing device. The signals are then subjected to appro-
priate mathematical manipulations to provide data for the final image. The main
advantage of MRI over other imaging techniques in medical diagnostics is that it
causes minimal damage to cellular structures. Photons associated with the rf sig-
nals used in MRI have energies of only about 10�7 eV. Because molecular bond
strengths are much larger (on the order of 1 eV), the rf photons cause little cellular
damage. In comparison, x-rays or �-rays have energies ranging from 104 to 106 eV
and can cause considerable cellular damage.

29.8 RADIATION DETECTORS
Although most medical applications of radiation require instruments to make
quantitative measurements of radioactive intensity, we have not yet explained how
such instruments operate. Various devices have been developed to detect the ener-
getic particles emitted when a radioactive nucleus decays. The Geiger counter
(Fig. 29.16) is perhaps the most common device used to detect radioactivity. It can
be considered the prototype of all counters that use the ionization of a medium as
the basic detection process. A Geiger counter consists of a thin wire electrode
aligned along the central axis of a cylindrical metallic tube filled with a gas at low
pressure. The wire is maintained at a high positive voltage of about 1 000 V relative
to the tube. When an energetic charged particle or gamma-ray photon enters
the tube through a thin window at one end, some of the gas atoms are ionized. 
The electrons removed from these atoms are attracted toward the wire electrode,

(b)(a)

Figure 29.15 Computer-enhanced
MRI images of (a) a normal human
brain and (b) a human brain with a
glioma tumor.
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Figure 29.16 (a) Diagram of a
Geiger counter. The voltage between
the wire electrode and the metallic
tube is usually about 1 000 V. (b) A
Geiger counter.
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and in the process they ionize other atoms in their path. This sequential ionization
results in an avalanche of electrons that produces a current pulse. After the pulse
has been amplified, it can either be used to trigger an electronic counter or deliv-
ered to a loudspeaker that clicks each time a particle is detected. Although a
Geiger counter reliably detects the presence and quantity of radiation, it cannot
be used to measure the energy of the detected radiation.

A semiconductor diode detector is essentially a reverse biased p–n junction. As
an energetic particle passes through the junction, it produces electron–hole pairs
that are separated by the internal electric field. This movement of electrons and
holes creates a brief pulse of current that is measured with an electronic counter.
In a typical device, the duration of the pulse is 10�8 s.

A scintillation counter usually uses a solid or liquid material having atoms that
are easily excited by radiation. The excited atoms then emit photons of visible
light when they return to their ground state. Common materials used as scintilla-
tors are transparent crystals of sodium iodide and certain plastics. If the scintillator
material is attached to one end of a device called a photomultiplier (PM) tube, as
shown in Figure 29.17, the photons emitted by the scintillator can be converted to
an electrical signal. The PM tube consists of numerous electrodes, called dynodes,
whose electric potentials increase in succession along the length of the tube.
Between the top of the tube and the scintillator material is a plate called a
photocathode. When photons leaving the scintillator hit this plate, electrons are
emitted because of the photoelectric effect. As one of these emitted electrons
strikes the first dynode, the electron has sufficient kinetic energy to eject several
other electrons from the surface of the dynode. When these electrons are
accelerated to the second dynode, many more electrons are ejected, and a
multiplication process occurs. The end result is 1 million or more electrons
striking the last dynode. Hence, one particle striking the scintillator produces a
sizable electrical pulse at the PM output, and this pulse is sent to an electronic
counter.

Both the scintillator and the semiconductor diode detector are much more sen-
sitive than a Geiger counter, mainly because of the higher mass density of the
detecting medium. Both can also be used to measure particle energy from the
height of the pulses produced.

Track detectors are various devices used to view the tracks or paths of charged
particles directly. High-energy particles produced in particle accelerators may have
energies ranging from 109 to 1012 eV. The energy of such particles can’t be
measured with the small detectors already mentioned. Instead, their energy and

Scintillation
crystal

Incoming
particle

Photocathode
0 V

+400 V

+800 V

+1 200 V

+1 600 V

+200 V

+600 V

+1 000 V

+1 400 V

Vacuum

Output
to counter

Figure 29.17 Diagram of a scintillation counter 
connected to a photomultiplier tube.
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momentum are found from the curvature of their paths in a magnetic field of
known magnitude and direction.

A photographic emulsion is the simplest example of a track detector. A charged
particle ionizes the atoms in an emulsion layer. The path of the particle corre-
sponds to a family of points at which chemical changes have occurred in the emul-
sion. When the emulsion is developed, the particle’s track becomes visible.

A cloud chamber contains a gas that has been supercooled to just below its
usual condensation point. An energetic charged particle passing through ionizes
the gas along its path. The ions serve as centers for condensation of the super-
cooled gas. The track can be seen with the naked eye and can be photographed. A
magnetic field can be applied to determine the charges of the radioactive parti-
cles, as well as their momentum and energy.

A device called a bubble chamber, invented in 1952 by D. Glaser, uses a liquid
(usually liquid hydrogen) maintained near its boiling point. Ions produced by in-
coming charged particles leave bubblelike tracks, which can be photographed
(Fig. 29.18). Because the density of the liquid in a bubble chamber is much higher
than the density of the gas in a cloud chamber, the bubble chamber has a much
higher sensitivity.

A wire chamber consists of thousands of closely spaced parallel wires that collect
the electrons created by a passing ionizing particle. A second grid, with wires per-
pendicular to the first, allows the x,y position of the particle in the plane of the two
sets of wires to be determined. Finally several such x,y grids arranged parallel to
each other along the z-axis can be used to determine the particle’s track in three
dimensions. Wire chambers form a part of most detectors used at high-energy
accelerator labs and provide electronic readouts to a computer for rapid recon-
struction and display of tracks.

(a) (b)

Figure 29.18 (a) Artificially col-
ored photograph showing tracks of
particles that have passed through a
bubble chamber. (b) This research
scientist is studying a photograph of
particle tracks made in a bubble
chamber at Fermilab.
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SUMMARY
Take a practice test by logging into

PhysicsNow at www.cp7e.com and clicking on the Pre-Test
link for this chapter.

29.1 Some Properties of Nuclei & 
29.2 Binding Energy

Nuclei are represented symbolically as , where X repre-
sents the chemical symbol for the element. The quantity A

A
Z X

is the mass number, which equals the total number of
nucleons (neutrons plus protons) in the nucleus. The
quantity Z is the atomic number, which equals the number
of protons in the nucleus. Nuclei that contain the same
number of protons but different numbers of neutrons are
called isotopes. In other words, isotopes have the same Z
value but different A values.

Most nuclei are approximately spherical, with an
average radius given by

r � r0A1/3 [29.1]
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where A is the mass number and r0 is a constant equal
to 1.2 � 10�15 m.

The total mass of a nucleus is always less than the sum
of the masses of its individual nucleons. This mass differ-
ence 
m, multiplied by c2, gives the binding energy of
the nucleus.

29.3 Radioactivity

The spontaneous emission of radiation by certain nuclei
is called radioactivity. There are three processes by
which a radioactive substance can decay: alpha (�) decay,
in which the emitted particles are nuclei; beta (�)
decay, in which the emitted particles are electrons or
positrons; and gamma (�) decay, in which the emitted
particles are high-energy photons.

The decay rate, or activity, R, of a sample is given by

[29.3]

where N is the number of radioactive nuclei at some in-
stant and  is a constant for a given substance called the
decay constant.

Nuclei in a radioactive substance decay in such a way
that the number of nuclei present varies with time ac-
cording to the expression

N � N0e�t [29.4a]

where N is the number of radioactive nuclei present at
time t, N0 is the number at time t � 0, and e � 2.718 . . . is
the base of the natural logarithms.

The half-life T1/2 of a radioactive substance is the
time required for half of a given number of radioactive
nuclei to decay. The half-life is related to the decay con-
stant by

[29.5]

29.4 The Decay Processes

If a nucleus decays by alpha emission, it loses two pro-
tons and two neutrons. A typical alpha decay is

[29.9]238
92U  :   234

90 Th � 42He

T1/2 �
0.693



R � � 
N

t � � N

4
2He

Note that in this decay, as in all radioactive decay
processes, the sum of the Z values on the left equals the
sum of the Z values on the right; the same is true for the
A values.

A typical beta decay is

[29.15]

When a nucleus undergoes beta decay, an antineutrino
is emitted along with an electron, or a neutrino along
with a positron. A neutrino has zero electric charge and
a small mass (which may be zero) and interacts weakly
with matter.

Nuclei are often in an excited state following radioac-
tive decay, and they release their extra energy by emit-
ting a high-energy photon called a gamma ray (�). A
typical gamma ray emission is

[29.18]

where the asterisk indicates that the carbon nucleus was
in an excited state before gamma emission.

29.6 Nuclear Reactions

Nuclear reactions can occur when a bombarding parti-
cle strikes another nucleus. A typical nuclear reaction is

[29.21]

In this reaction, an alpha particle strikes a nitrogen nu-
cleus, producing an oxygen nucleus and a proton. As in
radioactive decay, atomic numbers and mass numbers
balance on the two sides of the arrow.

Nuclear reactions in which energy is released are said
to be exothermic reactions and are characterized by
positive Q values. Reactions with negative Q values,
called endothermic reactions, cannot occur unless the
incoming particle has at least enough kinetic energy to
overcome the energy deficit. In order to conserve both
energy and momentum, the incoming particle must
have a minimum kinetic energy, called the threshold
energy, given by

[29.24]

where m is the mass of the incident particle and M is the
mass of the target atom.

KE min � �1 �
m
M � �Q �

4
2He �  14

7N  :   17
8O � 11H

12
6C* :   12

6C � �

14
6C  :   14

7N � e� � �
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Problems 967

CONCEPTUAL QUESTIONS
1. Isotopes of a given element have different physical

properties, such as mass, but the same chemical
properties. Why is this?

2. If a heavy nucleus that is initially at rest undergoes
alpha decay, which has more kinetic energy after the
decay, the alpha particle or the daughter nucleus?

3. A student claims that a heavy form of hydrogen de-
cays by alpha emission. How do you respond?

4. Explain the main differences between alpha, beta,
and gamma rays.

5. In beta decay, the energy of the electron or positron
emitted from the nucleus lies somewhere in a rela-
tively large range of possibilities. In alpha decay,
however, the alpha particle energy can only have
discrete values. Why is there this difference?

6. If film is kept in a box, alpha particles from a ra-
dioactive source outside the box cannot expose the
film, but beta particles can. Explain.

7. In positron decay, a proton in the nucleus becomes
a neutron, and the positive charge is carried away by
the positron. But a neutron has a larger rest energy
than a proton. How is this possible?

8. An alpha particle has twice the charge of a beta parti-
cle. Why does the former deflect less than the latter

when passing between electrically charged plates, as-
suming they both have the same speed?

9. Can carbon-14 dating be used to measure the age of
a stone?

10. Pick any beta-decay process and show that the neu-
trino must have zero charge.

11. Why do heavier elements require more neutrons in
order to maintain stability?

12. Suppose it could be shown that the intensity of cos-
mic rays was much greater 10 000 years ago. How
would this affect the ages we assign to ancient sam-
ples of once-living matter?

13. Compare and contrast a photon and a neutrino.
14. Why is carbon dating unable to provide accurate es-

timates of very old materials?
15. Two samples of the same radioactive nuclide are

prepared. Sample A has twice the intial activity of
sample B. How does the half-life of A compare with
the half-life of B ? After each has passed through five
half-lives, what is the ratio of their activities?

16. (a) Describe what happens to the number of pro-
tons and neutrons in a nucleus when the nucleus
undergoes alpha decay. (b) Repeat for beta decay.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging � � full solution available in Student Solutions Manual/Study Guide 

� coached problem with hints available at www.cp7e.com � biomedical application

Table 29.4 will be useful for many of these problems. A more
complete list of atomic masses is given in Appendix B.

Section 29.1 Some Properties of Nuclei

1. Compare the nuclear radii of the following nu-
clides: , , , .

2. What is the order of magnitude of the number of
protons in your body? Of the number of neutrons?
Of the number of electrons?

3. Using the result of Example 29.1, find the radius of
a sphere of nuclear matter that would have a mass
equal to that of the Earth. The Earth has a mass of
5.98 � 1024 kg and average radius of 6.37 � 106 m.

4. Consider the hydrogen atom to be a sphere of ra-
dius equal to the Bohr radius, 0.53 � 10�10 m, and
calculate the approximate value of the ratio of the
nuclear density to the atomic density.

An alpha particle (Z � 2, mass 6.64 � 10�27 kg) ap-
proaches to within 1.00 � 10�14 m of a carbon nu-
cleus (Z � 6). What are (a) the maximum Coulomb

5.

239
94Pu197

79Au60
27Co2

1H

TABLE 29.4
Some Atomic Masses
Element Atomic Mass (u) Element Atomic Mass (u)
( ) 0.000 549 Na 22.989 770
( ) 1.008 665 Mg 22.994 127

1.007 825 Al 26.981 538
2.014 102 P 29.978 310

He 4.002 602 Ca 39.962 591
Li 7.016 003 Ca 41.958 622
Be 9.012 174 Ca 42.958 770
B 10.012 936 Fe 55.934 940
C 12.000 000 Zn 63.929 144
C 13.003 355 Cu 63.929 599
N 14.003 074 Nb 92.906 377
N 15.000 108 Au 196.966 543
O 15.003 065 Hg 201.970 617
O 16.999 131 Po 216.001 790
O 17.999 160 Rn 220.011 401
F 18.000 937 Th 234.043 583
Ne 19.992 435 U 238.050 784238

92
20
10

234
90

18
9

220
86

18
8

216
84

17
8

202
80

15
8

197
79

15
7

93
41

14
7

64
29

13
6

64
30

12
6

56
26

10
5

43
20

9
4

42
20

7
3

40
20

4
2

30
15

2
1H

27
13

1
1H

23
12

0
1n

23
11

0
�1e
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968 Chapter 29 Nuclear Physics

force on the alpha particle, (b) the acceleration of the
alpha particle at this time, and (c) the potential en-
ergy of the alpha particle at the same time?

6. Singly ionized carbon atoms are accelerated
through 1 000 V and passed into a mass spectrome-
ter to determine the isotopes present. (See Chapter
19.) The magnetic field strength in the spectrome-
ter is 0.200 T. (a) Determine the orbital radii for the
12C and the 13C isotopes as they pass through the
field. (b) Show that the ratio of the radii may be
written in the form

and verify that your radii in part (a) satisfy this
formula.

7. (a) Find the speed an alpha particle requires to
come within 3.2 � 10�14 m of a gold nucleus. 
(b) Find the energy of the alpha particle in MeV.

8. Find the radius of a nucleus of (a) and 
(b) .

Section 29.2 Binding 
Energy

9. Calculate the average binding energy per nucleon
of and .

10. Calculate the binding energy per nucleon for
(a) , (b) , (c) , and (d) .

A pair of nuclei for which Z1 � N2 and Z2 � N1 are
called mirror isobars. (The atomic and neutron num-
bers are interchangeable.) Binding-energy measure-
ments on such pairs can be used to obtain evidence
of the charge independence of nuclear forces.
Charge independence means that the proton–
proton, proton–neutron, and neutron–neutron
forces are approximately equal. Calculate the differ-
ence in binding energy for the two mirror nuclei

and .

12. The peak of the stability curve occurs at . This is
why iron is prominent in the spectrum of the Sun
and stars. Show that has a higher binding en-
ergy per nucleon than its neighbors and .
Compare your results with Figure 29.4.

13. Two nuclei having the same mass number are
known as isobars. Calculate the difference in binding
energy per nucleon for the isobars and .
How do you account for this difference?

23
12Mg23

11Na

59Co55Mn

56Fe

56Fe

15
7 N15

8O

11.

238U56Fe4He2H

197
79 Au93

41 Nb

238
92 U

4
2He

r1

r2
� √ m 1

m 2

14. Calculate the binding energy of the last neutron
in the nucleus. [Hint : You should compare the
mass of with the mass of plus the mass of a
neutron. The mass of � 41.958 622 u.]

Section 29.3 Radioactivity

The half-life of an isotope of phos-
phorus is 14 days. If a sample contains 3.0 � 1016

such nuclei, determine its activity. Express your
answer in curies.

16. A drug tagged with (half-life � 6.05 h) is pre-
pared for a patient. If the original activity of the sample
was 1.1 � 104 Bq, what is its activity after it has sat on
the shelf for 2.0 h?

17. The half-life of is 8.04 days. (a) Calculate the de-
cay constant for this isotope. (b) Find the number of

nuclei necessary to produce a sample with an ac-
tivity of 0.50 �Ci.

18. After 2.00 days, the activity of a sample of an un-
known type of radioactive material has decreased to
84.2% of the initial activity. (a) What is the half-life
of this material? (b) Can you identify it by using the
table of isotopes in Appendix B?

19. Suppose that you start with 1.00 � 10�3 g of a pure
radioactive substance and 2.0 h later determine that
only 0.25 � 10�3 g of the substance remains. What
is the half-life of this substance?

20. Radon gas has a half-life of 3.83 days. If 3.00 g of
radon gas is present at time t � 0, what mass of
radon will remain after 1.50 days have passed?

Many smoke detectors use small quantities of the
isotope in their operation. The half-life of

is 432 yr. How long will it take for the activity
of this material to decrease to 1.00 � 10�3 of the
original activity?

22. After a plant or animal dies, its 14C content de-
creases with a half-life of 5 730 yr. If an archaeolo-
gist finds an ancient firepit containing partially
consumed firewood, and the 14C content of the
wood is only 12.5% that of an equal carbon sam-
ple from a present-day tree, what is the age of the
ancient site?

23. A freshly prepared sample of a certain radioactive
isotope has an activity of 10.0 mCi. After 4.00 h, the
activity is 8.00 mCi. (a) Find the decay constant and
half-life of the isotope. (b) How many atoms of the
isotope were contained in the freshly prepared
sample? (c) What is the sample’s activity 30 h after it
is prepared?

241Am

241Am
21.

131I

131I

99
43 Tc

15.

42
20Ca

42
20Ca43

20Ca

43
20Ca
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Problems 969

24. A building has become accidentally contaminated
with radioactivity. The longest-lived material in
the building is strontium-90. (The atomic mass of

is 89.907 7.) If the building initially contained
5.0 kg of this substance, and the safe level is less
than 10.0 counts/min, how long will the building
be unsafe?

Section 29.4 The Decay Processes

25. Complete the following radioactive decay for-
mulas:

26. Complete the following radioactive decay for-
mulas:

27. Complete the following radioactive decay for-
mulas:

28. Figure P29.28 shows the steps by which decays
to . Enter the correct isotope symbol in each
square.

207
82 Pb

235
92 U

144
60 Nd  :   ? � 140

58Ce

94
44Ru  :   42 He � ?

?  :   e � � 40
19K

?   :   14
7 N � e�

234
90 Th :  230

88 Ra � ?

12
5 B  :   ? � e�

?  :   2
4 He � 58

140Ce
36
95 Kr  :   ? � e �

212
83 Bi  :   ? � 4

2He

90
38Sr

31. Determine which of the following suggested decays
can occur spontaneously:

(a) : e� � ; (b) : �

32. (mass � 65.929 1 u) undergoes beta decay
to (mass � 65.9289 u). (a) Write the complete
decay formula for this process. (b) Find the maxi-
mum kinetic energy of the emerging electrons.

33. An 3H nucleus beta decays into 3He by creating 
an electron and an antineutrino according to the
reaction

: � e� �

Use Appendix B to determine the total energy re-
leased in this reaction.

34. A piece of charcoal used for cooking is found at the
remains of an ancient campsite. A 1.00-kg sample of
carbon from the wood has an activity of 2.00 � 103

decays per minute. Find the age of the charcoal.
[Hint: Living material has an activity of 15.0 de-
cays/minute per gram of carbon present.]

A wooden artifact is found in an ancient tomb. Its car-
bon-14 ( ) activity is measured to be 60.0% of that
in a fresh sample of wood from the same region. As-
suming the same amount of 14C was initially present
in the wood from which the artifact was made, de-
termine the age of the artifact.

36. A living specimen in equilibrium with the atmos-
phere contains one atom of 14C (half-life � 5 730 yr)
for every 7.70 � 1011 stable carbon atoms. An arche-
ological sample of wood (cellulose, C12H22O11) 
contains 21.0 mg of carbon. When the sample is
placed inside a shielded beta counter with 88.0%
counting efficiency, 837 counts are accumulated in
one week. Assuming that the cosmic-ray flux and the
Earth’s atmosphere have not changed appreciably
since the sample was formed, find the age of the 
sample.

Section 29.6 Nuclear Reactions

37. The first known reaction in which the product nu-
cleus was radioactive (achieved in 1934) was one 
in which was bombarded with alpha particles.
Produced in the reaction were a neutron and a
product nucleus. (a) What was the product nucleus? 
(b) Find the Q value of the reaction.

38. Complete the following nuclear reactions:

7
3 Li �  11 H  :   42 He � ?

? � 14
7 N :   11H � 17

8 O

27
13 Al

14
6 C

35.

�3
2 He3

1 H

66
29Cu

66
28 Ni

140
58Ce4

2 He144
60 Nd40

19 K40
20 Ca

e–235
 92

�

U

e– e– e– e–

e–

e– e–

207
  82

Pb

� � � �

� � � �

�

�

Figure P29.28

The mass of 56Fe is 55.934 9 u and
the mass of 56Co is 55.939 9 u. Which isotope decays
into the other and by what process?

30. Find the energy released in the alpha decay of .
The following mass value will be useful: has a
mass of 234.043 583 u.

234
90 Th

238
92 U

29.
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970 Chapter 29 Nuclear Physics

39. Identify the unknown particles X and X� in the fol-
lowing nuclear reactions:

X � He : Mg � n

U � n : Sr � X � 2 n

2 H : H � X � X�

40. The first nuclear reaction utilizing particle accelera-
tors was performed by Cockcroft and Walton. Accel-
erated protons were used to bombard lithium nu-
clei, producing the following reaction:

H � Li : He � He

Since the masses of the particles involved in the re-
action were well known, these results were used to
obtain an early proof of the Einstein mass–energy
relation. Calculate the Q value of the reaction.

(a) Suppose B is struck by an alpha particle, re-
leasing a proton and a product nucleus in the reac-
tion. What is the product nucleus? (b) An alpha par-
ticle and a product nucleus are produced when C
is struck by a proton. What is the product nucleus?

42. (a) Determine the product of the reaction Li �
He : ? � n. (b) What is the Q value of the reaction?

43. Natural gold has only one isotope: . If gold 
is bombarded with slow neutrons, e� particles 
are emitted. (a) Write the appropriate reaction
equation. (b) Calculate the maximum energy of 
the emitted beta particles. The mass of is
197.966 75 u.

44. Find the threshold energy that an incident neutron
must have to produce the reaction

n � He : H � H

When 18O is struck by a proton, 18F
and another particle are produced. (a) What is the
other particle? (b) The reaction has a Q value of
�2.453 MeV, and the atomic mass of 18O is
17.999 160 u. What is the atomic mass of 18F?

Section 29.7 Medical Applications of Radiation

46. In terms of biological damage, how many rad of
heavy ions is equivalent to 100 rad of x-rays?

47. A person whose mass is 75.0 kg is exposed to a
whole-body dose of 25.0 rads. How many joules of
energy are deposited in the person’s body?

48. A 200-rad dose of radiation is administered to a pa-
tient in an effort to combat a cancerous growth. As-
suming all of the energy deposited is absorbed by the
growth, (a) calculate the amount of energy delivered
per unit mass. (b) Assuming the growth has a mass of
0.25 kg and a specific heat equal to that of water,
calculate its temperature rise.

45.

3
1

2
1

4
2

1
0

198
80 Hg

197
79 Au

4
2

7
3

13
6

10
541.

4
2

4
2

7
3

1
1

2
1

1
1

1
0

90
38

1
0

235
92

1
0

24
12

4
2

49. A “clever” technician decides to heat some water for
his coffee with an x-ray machine. If the machine
produces 10 rad/s, how long will it take to raise the
temperature of a cup of water by 50°C. Ignore heat
losses during this time.

50. An x-ray technician works 5 days per week, 50 weeks
per year. Assume that the technician takes an aver-
age of eight x-rays per day and receives a dose of
5.0 rem/yr as a result. (a) Estimate the dose in rem
per x-ray taken. (b) How does this result compare
with the amount of low-level background radiation
the technician is exposed to?

A patient swallows a radiopharma-
ceutical tagged with phosphorus-32 ( P), a emit-
ter with a half-life of 14.3 days. The average kinetic
energy of the emitted electrons is 700 keV. If the ini-
tial activity of the sample is 1.31 MBq, determine 
(a) the number of electrons emitted in a 10-day 
period, (b) the total energy deposited in the body
during the 10 days, and (c) the absorbed dose if 
the electrons are completely absorbed in 100 g of
tissue.

52. A particular radioactive source produces 100 mrad of 
2-MeV gamma rays per hour at a distance of 1.0 m.
(a) How long could a person stand at this distance
before accumulating an intolerable dose of 1 rem?
(b) Assuming the gamma radiation is emitted
uniformly in all directions, at what distance would
a person receive a dose of 10 mrad/h from this
source?

ADDITIONAL PROBLEMS

A 200.0-mCi sample of a radioactive isotope is pur-
chased by a medical supply house. If the sample has
a half-life of 14.0 days, how long will it keep before
its activity is reduced to 20.0 mCi?

54. A sample of organic material is found to contain 18 g
of carbon. The investigators believe the material to be
20 000 years old, based on samples of pottery found at
the site. If so, what is the expected activity of the
organic material? Take data from Example 29.7.

55. Deuterons that have been accelerated are used to
bombard other deuterium nuclei, resulting in the
reaction

H � H : He � n

Does this reaction require a threshold energy? If so,
what is its value?

56. Free neutrons have a characteristic half-life of 12
min. What fraction of a group of free neutrons at a
thermal energy of 0.040 eV will decay before travel-
ing a distance of 10.0 km?

1
0

3
2

2
1

2
1

53.

� �32
15

51.
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57. A by-product of some fission reactors is the isotope
Pu, an alpha emitter having a half-life of 

24 120 yr. The reaction involved is

Pu : U � �

Consider a sample of 1.00 kg of pure Pu at t � 0.
Calculate (a) the number of Pu nuclei present at
t � 0 and (b) the initial activity in the sample. 
(c) How long does the sample have to be stored if a
“safe” activity level is 0.100 Bq?

58. (a) Find the radius of the C nucleus. (b) Find the
force of repulsion between a proton at the surface
of a C nucleus and the remaining five protons. 
(c) How much work (in MeV) has to be done to over-
come this electrostatic repulsion in order to put the
last proton into the nucleus? (d) Repeat (a), (b),
and (c) for U.

In a piece of rock from the Moon, the 87Rb content
is assayed to be 1.82 � 1010 atoms per gram of mate-
rial and the 87Sr content is found to be 1.07 � 109

atoms per gram. (The relevant decay is 87Rb :
87Sr � e�. The half-life of the decay is 4.8 � 1010 yr.)
(a) Determine the age of the rock. (b) Could the ma-
terial in the rock actually be much older? What as-
sumption is implicit in using the radioactive-dating
method?

60. Many radioisotopes have important industrial, med-
ical, and research applications. One such radioiso-
tope is 60Co, which has a half-life of 5.2 yr and de-
cays by the emission of a beta particle (energy 
0.31 MeV) and two gamma photons (energies 
1.17 MeV and 1.33 MeV). A scientist wishes to pre-
pare a 60Co sealed source that will have an activity of
at least 10 Ci after 30 months of use. What is the
minimum initial mass of 60Co required?

61. A medical laboratory stock solution is prepared with
an initial activity due to 24Na of 2.5 mCi/ml, and
10.0 ml of the stock solution is diluted at t 0 � 0 to a
working solution whose total volume is 250 ml. After
48 h, a 5.0-ml sample of the working solution is
monitored with a counter. What is the measured ac-
tivity? (Note that 1 ml � 1 milliliter.)

62. A theory of nuclear astrophysics is that all the
heavy elements such as uranium are formed in su-
pernova explosions of massive stars, which imme-
diately release the elements into space. If we as-
sume that at the time of an explosion there were
equal amounts of 235U and 238U, how long ago
were the elements that formed our Earth released,
given that the present 235U/238U ratio is 0.007?
(The half-lives of 235U and 238U are 0.70 � 109 yr
and 4.47 � 109 yr, respectively.)

59.

238
92

12
6

12
6

239
94

239
94

235
92

239
94

239
94

63. A fission reactor is hit by a nuclear weapon, causing
5.0 � 106 Ci of 90Sr (T1/2 � 28.7 yr) to evaporate
into the air. The 90Sr falls out over an area of 104

km2. How long will it take the activity of the 90Sr to
reach the agriculturally “safe” level of 2.0 �Ci/m2?

64. After the sudden release of radioactivity from the
Chernobyl nuclear reactor accident in 1986, the
radioactivity of milk in Poland rose to 2 000 Bq/L
due to iodine-131, with a half-life of 8.04 days. Radioac-
tive iodine is particularly hazardous, because the thy-
roid gland concentrates iodine. The Chernobyl acci-
dent caused a measurable increase in thyroid
cancers among children in Belarus. (a) For compar-
ison, find the activity of milk due to potassium. As-
sume that 1 liter of milk contains 2.00 g of potas-
sium, of which 0.011 7% is the isotope 40K, which
has a half-life of 1.28 � 109 yr. (b) After what length
of time would the activity due to iodine fall below
that due to potassium?
During the manufacture of a steel engine compo-
nent, radioactive iron (59Fe) is included in the total
mass of 0.20 kg. The component is placed in a test
engine when the activity due to the isotope is 
20.0 �Ci. After a 1 000-h test period, oil is removed
from the engine and is found to contain enough
59Fe to produce 800 disintegrations/min per liter of
oil. The total volume of oil in the engine is 6.5 L.
Calculate the total mass worn from the engine com-
ponent per hour of operation. (The half-life of 59Fe
is 45.1 days.)

66. After determining that the Sun has existed for hun-
dreds of millions of years, but before the discovery
of nuclear physics, scientists could not explain why
the Sun has continued to burn for such a long time.
For example, if it were a coal fire, the Sun would
have burned up in about 3 000 yr. Assume that the
Sun, whose mass is 1.99 � 1030 kg, originally con-
sisted entirely of hydrogen and that its total power
output is 3.76 � 1026 W. (a) If the energy-generating
mechanism of the Sun is the transforming of hydro-
gen into helium via the net reaction

4 H � 2e� : He � 2� � �

calculate the energy (in joules) given off by this
reaction. (b) Determine how many hydrogen atoms
constitute the Sun. Take the mass of one hydrogen
atom to be 1.67 � 10�27 kg. (c) Assuming that the
total power output remains constant, after what
time will all the hydrogen be converted into helium,
making the Sun die? The actual projected lifetime
of the Sun is about 10 billion years, because only the
hydrogen in a relatively small core is available as a
fuel. (Only in the Sun’s core are temperatures and
densities high enough for the fusion reaction to be
self-sustaining).

4
2

1
1

65.
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ACTIVITIES

1. This experiment will take a little longer to do than
most that we have suggested, but the time spent is
worthwhile to help you understand the concept of
half-life. Obtain a box of sugar cubes and with a
pencil make a mark on one side of each of about
200 cubes. Each of these cubes will represent the
nucleus of a radioactive substance. Thus, at t � 0,
you have 200 undecayed nuclei. Now, put the 200
marked cubes in a box and roll them out on a table,
just as you would roll dice. Next, count and remove
any cubes that have landed marked-side up. These
cubes represent nuclei that emitted radiation dur-
ing the roll. They are no longer radioactive and thus
do not participate in the rest of the action. Record
the number of undecayed cubes remaining as the
number of undecayed nuclei at t � 1 roll.

Continue rolling, counting, and removing until
you have completed 12 to 15 rolls. By then, you
should have only a few cubes remaining. Plot a
graph of undecayed cubes versus the roll number
and from this determine the “half-roll” of the cubes.

2. Use a nail to punch a hole in the bottom of a large
tin can. Hold the can beneath a faucet and adjust
the water flow from the faucet to a fine constant
stream. Although water flows from the hole at the
bottom, you will note that the level of the water in
the can rises. As it does so, however, the flow of wa-
ter leaving the can increases due to increased water
pressure caused by the greater depth of water. Un-
less the flow of water is too great, an equilibrium
point will be reached at which the amount of water
flowing out of the can each second exactly equals
the amount flowing in each second. When this hap-
pens, the level of water in the can is constant. As
noted in the text, carbon-14 is continually being
produced in the atmosphere and is also continually
disappearing as it decays into nitrogen. What is the
analogy between water entering the can, remaining
in the can, and flowing out of the can and the be-
havior of carbon-14 in the atmosphere?
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In this concluding chapter we discuss the two means by which energy can be derived from
nuclear reactions: fission, in which a nucleus of large mass number splits into two smaller
nuclei, and fusion, in which two light nuclei fuse to form a heavier nucleus. In either case,
there is a release of large amounts of energy, which can be used destructively through bombs
or constructively through the production of electric power. We end our study of physics by
examining the known subatomic particles and the fundamental interactions that govern their
behavior. We also discuss the current theory of elementary particles, which states that all mat-
ter in nature is constructed from only two families of particles: quarks and leptons. Finally, we
describe how such models help us understand the evolution of the Universe.

30.1 NUCLEAR FISSION
Nuclear fission occurs when a heavy nucleus, such as 235U, splits, or fissions, into
two smaller nuclei. In such a reaction, the total mass of the products is less than
the original mass of the heavy nucleus.

Nuclear fission was first observed in 1939 by Otto Hahn and Fritz Strassman, fol-
lowing some basic studies by Fermi. After bombarding uranium (Z � 92) with neu-
trons, Hahn and Strassman discovered two medium-mass elements, barium and
lanthanum, among the reaction products. Shortly thereafter, Lise Meitner and
Otto Frisch explained what had happened: the uranium nucleus had split into two
nearly equal fragments after absorbing a neutron. This was of considerable interest
to physicists attempting to understand the nucleus, but it was to have even more
far-reaching consequences. Measurements showed that about 200 MeV of energy is
released in each fission event, and this fact was to affect the course of human
history.

This photo shows scientist Melissa
Douglas and part of the Z machine,
an inertial-electrostatic confinement
fusion apparatus at Sandia National
Laboratories. In the device, giant 
capacitors discharge through a grid 
of tungsten wires finer than human
hairs, vaporizing them. The tungsten
ions implode inward at a million miles
an hour. Braking strongly in the grip
of a “Z-pinch,” they emit powerful 
x-rays that compress a deuterium 
pellet, causing collisions between the
deuterium atoms that lead to fusion
events.
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974 Chapter 30 Nuclear Energy and Elementary Particles

The fission of 235U by slow (low-energy) neutrons can be represented by the
sequence of events

[30.1]

where 236U* is an intermediate state that lasts only for about 10�12 s before
splitting into nuclei X and Y, called fission fragments. There are many combina-
tions of X and Y that satisfy the requirements of conservation of energy and
charge. In the fission of uranium, about 90 different daughter nuclei can be
formed. The process also results in the production of several (typically two or
three) neutrons per fission event. On the average, 2.47 neutrons are released per
event.

A typical reaction of this type is

[30.2]

The fission fragments, barium and krypton, and the released neutrons have a
great deal of kinetic energy following the fission event.

The breakup of the uranium nucleus can be compared to what happens to a
drop of water when excess energy is added to it. All of the atoms in the drop have
energy, but not enough to break up the drop. However, if enough energy is added
to set the drop vibrating, it will undergo elongation and compression until the
amplitude of vibration becomes large enough to cause the drop to break apart. In
the uranium nucleus, a similar process occurs (Fig. 30.1). The sequence of events
is as follows:

1. The 235U nucleus captures a thermal (slow-moving) neutron.
2. The capture results in the formation of 236U*, and the excess energy of this

nucleus causes it to undergo violent oscillations.
3. The 236U* nucleus becomes highly elongated, and the force of repulsion

between protons in the two halves of the dumbbell-shaped nucleus tends to
increase the distortion.

4. The nucleus splits into two fragments, emitting several neutrons in the process.

The energy released in a typical fission process Q can be estimated. From Figure
29.4, we see that the binding energy per nucleon is about 7.2 MeV for heavy nuclei
(those having a mass number of approximately 240) and about 8.2 MeV for nuclei
of intermediate mass. This means that the nucleons in the fission fragments are
more tightly bound, and therefore have less mass, than the nucleons in the origi-
nal heavy nucleus. The decrease in mass per nucleon appears as released energy
when fission occurs. The amount of energy released is (8.2 � 7.2) MeV per nu-
cleon. Assuming a total of 240 nucleons, we find that the energy released per fis-
sion event is

Q � 240 nucleons/(8.2 MeV/nucleon � 7.2 MeV/nucleon) � 240 MeV

This is a large amount of energy relative to the amount released in chemical
processes. For example, the energy released in the combustion of one molecule of
the octane used in gasoline engines is about one hundred-millionth the energy
released in a single fission event!

1
0n � 235

92U  :  141
56 Ba � 92

36Kr � 31
0n

1
0n � 235

92U : 236
92U* :  X � Y � neutrons

235U
236U*

Y

X

(a) (b) (c) (d)

Figure 30.1 A nuclear fission
event as described by the liquid-drop
model of the nucleus. (a) A slow
neutron approaches a 235U nucleus.
(b) The neutron is absorbed by the
235U nucleus, changing it to 236U*,
which is a 236U nucleus in an excited
state. (c) The nucleus deforms and
oscillates like a liquid drop. (d) The
nucleus undergoes fission, resulting
in two lighter nuclei X and Y, along
with several neutrons.

Sequence of events in 
a nuclear fission process �
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30.1 Nuclear Fission 975

If a heavy nucleus were to fission into just two product
nuclei, they would be very unstable. Why is this?

Explanation According to Figure 29.3, the ratio of the
number of neutrons to the number of protons increases

with Z . As a result, when a heavy nucleus splits in a
fission reaction to two lighter nuclei, the lighter nuclei
tend to have too many neutrons. This leads to instability,
as the nucleus returns to the curve in Figure 29.3 by
decay processes that reduce the number of neutrons.

Applying Physics 30.1 Unstable Products

EXAMPLE 30.1 The Fission of Uranium
Goal Balance a nuclear equation to determine details of the fission fragments.

Problem When 235U is struck by a neutron, there are various possible fission fragments. Determine the number of
neutrons produced when the fission fragments are 140Xe and 94Sr (isotopes of xenon and strontium).

Strategy This is something like balancing chemical equations: the atomic numbers and mass numbers should
balance on either side of the equation.

Solution
Write the equation describing the process, with an
unknown number x of neutrons:

1
0n � 235

92U :  140
54Xe � 94

38Sr � x(1
0n)

The atomic numbers balance already, as they should.
Write an equation relating the mass numbers:

1 � 235 � 140 � 94 � x : x � 2

Remark In this case, the number of protons balanced automatically. If that were not the case, there might be other
possible daughter particles, such as protons or helium nuclei (also called alpha particles).

Exercise 30.1
Find the number of neutrons released if the two major fragments are 132Sn and 101Mo.

Answer Three neutrons

In the first atomic bomb, the energy released was equivalent to about 30 kilotons
of TNT, where a ton of TNT releases an energy of about 4.0 � 109 J. Estimate the
amount of mass converted into energy in this event. (a) 1 �g (b) 1 mg (c) 1 g 
(d) 1 kg (e) 20 kilotons

Quick Quiz 30.1

EXAMPLE 30.2 A Fission-Powered World
Goal Relate raw material to energy output.

Problem (a) Calculate the total energy released if 1.00 kg of 235U undergoes fission, taking the disintegration
energy per event to be Q � 208 MeV (a more accurate value than the estimate given previously). (b) How many
kilograms of 235U would be needed to satisfy the world’s annual energy consumption (about 4 � 1020 J)?

Strategy In part (a), use the concept of a mole and Avogadro’s number to obtain the total number of nuclei.
Multiplying by the energy per reaction then gives the total energy released. Part (b) requires some light algebra.

Solution
(a) Calculate the total energy released from 1.00 kg of 235U.

Find the total number of nuclei in 1.00 kg of uranium:

 � 2.56 � 1024 nuclei

 N � � 6.02 � 1023 nuclei/mol
235 g/mol � (1.00 � 103 g)
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976 Chapter 30 Nuclear Energy and Elementary Particles

30.2 NUCLEAR REACTORS
We have seen that neutrons are emitted when 235U undergoes fission. These neu-
trons can in turn trigger other nuclei to undergo fission, with the possibility of a
chain reaction (Active Fig. 30.2). Calculations show that if the chain reaction isn’t
controlled, it will proceed too rapidly and possibly result in the sudden release of
an enormous amount of energy (an explosion), even from only 1 g of 235U. If the
energy in 1 kg of 235U were released, it would equal that released by the detonation

Multiply N by the energy yield per nucleus, obtaining
the total disintegration energy:

� 5.32 � 1026 MeV

 E � NQ � (2.56 � 1024 nuclei)�208 
MeV

nucleus �

(b) How many kilograms would provide for the world’s
annual energy needs?

Set the energy per kilogram, Ekg, times the number of
kilograms, Nkg, equal to the total annual energy con-
sumption. Solve for Nkg :

EkgNkg � E tot

� 5 � 106 kg

Nkg �
E tot

Ekg
�

4 � 1020 J
(5.32 � 1032 eV/kg)(1.60 � 10�19 J/eV)

Remark The calculation implicitly assumes perfect conversion to usable power, which is never the case in real sys-
tems. There are enough known uranium deposits to provide the world’s current energy requirements for a few hun-
dred years.

Exercise 30.2
How long can one kilogram of U-235 keep a 100-watt lightbulb burning if all its released energy is converted to elec-
trical energy?

Answer �30 000 yr

235
92U

141
56Ba

92
36Kr

95
38Sr

235
92U

95
39Y

I
98
41Nb

Neutron

138
54Xe

138
53

135
51Sb

ACTIVE FIGURE 30.2
A nuclear chain reaction initiated by the capture of a neutron.

Log into PhysicsNow at www.cp7e.com and go to Active Figure 30.2 to observe a chain reaction.
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30.2 Nuclear Reactors 977

of about 20 000 tons of TNT! An uncontrolled fission reaction, of course, is the
principle behind the first nuclear bomb.

A nuclear reactor is a system designed to maintain what is called a self-
sustained chain reaction. This important process was first achieved in 1942 by a
group led by Fermi at the University of Chicago, with natural uranium as the fuel.
Most reactors in operation today also use uranium as fuel. Natural uranium con-
tains only about 0.7% of the 235U isotope, with the remaining 99.3% being the
238U isotope. This is important to the operation of a reactor because 238U almost
never undergoes fission. Instead, it tends to absorb neutrons, producing neptu-
nium and plutonium. For this reason, reactor fuels must be artificially enriched so
that they contain several percent of the 235U isotope.

Earlier we mentioned that an average of about 2.5 neutrons are emitted in each
fission event of 235U. In order to achieve a self-sustained chain reaction, one of
these neutrons must be captured by another 235U nucleus and cause it to undergo
fission. A useful parameter for describing the level of reactor operation is the
reproduction constant K, defined as the average number of neutrons from each
fission event that will cause another event. As we have seen, K can have a maxi-
mum value of 2.5 in the fission of uranium. In practice, however, K is less than this
because of several factors, which we soon discuss.

A self-sustained chain reaction is achieved when K � 1. Under this condition,
the reactor is said to be critical. When K is less than one, the reactor is subcritical
and the reaction dies out. When K is greater than one the reactor is said to be su-
percritical, and a runaway reaction occurs. In a nuclear reactor used to furnish
power to a utility company, it is necessary to maintain a K value close to one.

The basic design of a nuclear reactor is shown in Figure 30.3. The fuel elements
consist of enriched uranium. The functions of the remaining parts of the reactor
and some aspects of its design are described next.

Neutron Leakage
In any reactor, a fraction of the neutrons produced in fission will leak out of the
core before inducing other fission events. If the fraction leaking out is too large,
the reactor will not operate. The percentage lost is large if the reactor is very small
because leakage is a function of the ratio of surface area to volume. Therefore, a
critical requirement of reactor design is choosing the correct surface-area-to-
volume ratio so that a sustained reaction can be achieved.

Regulating Neutron Energies
The neutrons released in fission events are highly energetic, with kinetic energies
of about 2 MeV. It is found that slow neutrons are far more likely than fast
neutrons to produce fission events in 235U. Further, 238U doesn’t absorb slow

Painting of the world’s first nuclear
reactor. Because of wartime secrecy,
there are no photographs of the com-
pleted reactor, which was composed
of layers of graphite interspersed with
uranium. A self-sustained chain reac-
tion was first achieved on December 2,
1942. Word of the success was tele-
phoned immediately to Washington
with this message: “The Italian navi-
gator has landed in the New World
and found the natives very friendly.”
The historic event took place in an
improvised laboratory in the racquet
court under the west stands of the
University of Chicago’s Stagg Field.
The Italian navigator was Fermi.
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Figure 30.3 Cross section of a
reactor core showing the control
rods, fuel elements containing
enriched fuel, and moderating 
material, all surrounded by a 
radiation shield.
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978 Chapter 30 Nuclear Energy and Elementary Particles

neutrons. In order for the chain reaction to continue, therefore, the neutrons
must be slowed down. This is accomplished by surrounding the fuel with a sub-
stance called a moderator.

In order to understand how neutrons are slowed down, consider a collision
between a light object and a massive one. In such an event, the light object
rebounds from the collision with most of its original kinetic energy. However, if
the collision is between objects having masses that are nearly the same, the incom-
ing projectile transfers a large percentage of its kinetic energy to the target. In the
first nuclear reactor ever constructed, Fermi placed bricks of graphite (carbon)
between the fuel elements. Carbon nuclei are about 12 times more massive than
neutrons, but after about 100 collisions with carbon nuclei, a neutron is slowed
sufficiently to increase its likelihood of fission with 235U. In this design the carbon
is the moderator; most modern reactors use heavy water (D2O) as the moderator.

Neutron Capture
In the process of being slowed down, neutrons may be captured by nuclei that do
not undergo fission. The most common event of this type is neutron capture by 238U.
The probability of neutron capture by 238U is very high when the neutrons have high
kinetic energies and very low when they have low kinetic energies. The slowing down
of the neutrons by the moderator serves the dual purpose of making them available
for reaction with 235U and decreasing their chances of being captured by 238U.

Control of Power Level
It is possible for a reactor to reach the critical stage (K � 1) after all neutron losses
described previously are minimized. However, a method of control is needed to ad-
just K to a value near one. If K were to rise above this value, the heat produced in
the runaway reaction would melt the reactor. To control the power level, control
rods are inserted into the reactor core. (See Fig. 30.3.) These rods are made of ma-
terials such as cadmium that are highly efficient in absorbing neutrons. By adjusting
the number and position of the control rods in the reactor core, the K value can be
varied and any power level within the design range of the reactor can be achieved.

A diagram of a pressurized-water reactor is shown in Figure 30.4. This type of
reactor is commonly used in electric power plants in the United States. Fission

A P P L I C AT I O N
Nuclear Reactor Design

Control rod

Uranium
fuel rod

Nuclear
reactor

Steam turbine
and electric generator

Steam

Pump

Cold water Warm water

Heat
exchanger

Condenser (steam from turbine
is condensed by cold water)

Molten sodium
or liquid water
under high
pressure (carries
energy to steam
generator)

+
–

Steam

Heat
exchanger

Condenser (steam from turbine
is condensed by cold water)

Primary
loop

Secondary loop

Figure 30.4 Main components of a pressurized-water nuclear reactor.
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events in the reactor core supply heat to the water contained in the primary
(closed) system, which is maintained at high pressure to keep it from boiling. This
water also serves as the moderator. The hot water is pumped through a heat
exchanger, and the heat is transferred to the water contained in the secondary sys-
tem. There the hot water is converted to steam, which drives a turbine–generator
to create electric power. Note that the water in the secondary system is isolated
from the water in the primary system in order to prevent contamination of the sec-
ondary water and steam by radioactive nuclei from the reactor core.

Reactor Safety1

The safety aspects of nuclear power reactors are often sensationalized by the
media and misunderstood by the public. The 1979 near disaster of Three Mile
Island in Pennsylvania and the accident at the Chernobyl reactor in the Ukraine
rightfully focused attention on reactor safety. Yet the safety record in the United
States is enviable. The records show no fatalities attributed to commercial nuclear
power generation in the history of the United States nuclear industry.

Commercial reactors achieve safety through careful design and rigid operating
procedures. Radiation exposure and the potential health risks associated with such
exposure are controlled by three layers of containment. The fuel and radioactive
fission products are contained inside the reactor vessel. Should this vessel rupture,
the reactor building acts as a second containment structure to prevent radioactive
material from contaminating the environment. Finally, the reactor facilities must
be in a remote location to protect the general public from exposure should radia-
tion escape the reactor building.

According to the Oak Ridge National Laboratory Review, “The health risk of living
within 8 km (5 miles) of a nuclear reactor for 50 years is no greater than the risk
of smoking 1.4 cigarettes, drinking 0.5 liters of wine, traveling 240 km by car, flying
9 600 km by jet, or having one chest x-ray in a hospital. Each of these activities is
estimated to increase a person’s chances of dying in any given year by one in a
million.”

Another potential danger in nuclear reactor operations is the possibility that
the water flow could be interrupted. Even if the nuclear fission chain reaction
were stopped immediately, residual heat could build up in the reactor to the point
of melting the fuel elements. The molten reactor core would melt its way to the
bottom of the reactor vessel and conceivably into the ground below— the so-
called China syndrome. Although it might appear that this deep underground
burial site would be an ideal safe haven for a radioactive blob, there would be dan-
ger of a steam explosion should the molten mass encounter water. This nonnu-
clear explosion could spread radioactive material to the areas surrounding the
power plant. To prevent such an unlikely chain of events, nuclear reactors are
designed with emergency core cooling systems, requiring no power, that automati-
cally flood the reactor with water in the event of a loss of coolant. The emergency
cooling water moderates heat build-up in the core, which in turn prevents the
melting of the reactor vessel.

A continuing concern in nuclear fission reactors is the safe disposal of radioac-
tive material when the reactor core is replaced. This waste material contains long-
lived, highly radioactive isotopes and must be stored for long periods of time in
such a way that there is no chance of environmental contamination. At present,
sealing radioactive wastes in waterproof containers and burying them in deep salt
mines seems to be the most promising solution.

Transportation of reactor fuel and reactor wastes poses additional safety risks.
However, neither the waste nor the fuel of nuclear power reactors can be used to
construct a nuclear bomb.

Accidents during transportation of nuclear fuel could expose the public to
harmful levels of radiation. The Department of Energy requires stringent crash

1The authors are grateful to Professor Gene Skluzacek of the University of Nebraska at Omaha for rewriting this section.
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980 Chapter 30 Nuclear Energy and Elementary Particles

tests on all containers used to transport nuclear materials. Container manufactur-
ers must demonstrate that their containers will not rupture, even in high-speed
collisions.

The safety issues associated with nuclear power reactors are complex and often
emotional. All sources of energy have associated risks. Coal, for example, exposes
workers to health hazards (including radioactive radon) and produces atmos-
pheric pollution (including greenhouse gases). In each case, the risks must be
weighed against the benefits and the availability of the energy source.

30.3 NUCLEAR FUSION
Figure 29.4 shows that the binding energy of light nuclei (those having a mass
number lower than 20) is much smaller than the binding energy of heavier nuclei.
This suggests a process that is the reverse of fission. When two light nuclei combine
to form a heavier nucleus, the process is called nuclear fusion. Because the mass
of the final nucleus is less than the masses of the original nuclei, there is a loss of
mass, accompanied by a release of energy. Although fusion power plants have not
yet been developed, a worldwide effort is under way to harness the energy from
fusion reactions in the laboratory.

Fusion in the Sun
All stars generate their energy through fusion processes. About 90% of stars,
including the Sun, fuse hydrogen, whereas some older stars fuse helium or other
heavier elements. Stars are born in regions of space containing vast clouds of dust
and gas. Recent mathematical models of these clouds indicate that star formation
is triggered by shock waves passing through a cloud. These shock waves are similar
to sonic booms and are produced by events such as the explosion of a nearby star,
called a supernova. The shock wave compresses certain regions of the cloud, caus-
ing them to collapse under their own gravity. As the gas falls inward toward the
center, the atoms gain speed, which causes the temperature of the gas to rise. Two
conditions must be met before fusion reactions in the star can sustain its energy
needs: (1) The temperature must be high enough (about 107 K for hydrogen) to
allow the kinetic energy of the positively charged hydrogen nuclei to overcome
their mutual Coulomb repulsion as they collide, and (2) the density of nuclei must
be high enough to ensure a high rate of collision.

It’s interesting that temperatures inside stars like the Sun are not sufficient to
allow colliding protons to overcome Coulomb repulsion. In a certain percentage
of collisions, the nuclei pass through the barrier anyway, an example of quantum
tunneling. So a quantum effect is key in making sunshine.

When fusion reactions occur at the core of a star, the energy that is liberated
eventually becomes sufficient to prevent further collapse of the star under its own
gravity. The star then continues to live out the remainder of its life under a bal-
ance between the inward force of gravity pulling it toward collapse and the out-
ward force due to thermal effects and radiation pressure.

The proton–proton cycle is a series of three nuclear reactions that are believed
to be the stages in the liberation of energy in the Sun and other stars rich in
hydrogen. An overall view of the proton–proton cycle is that four protons
combine to form an alpha particle and two positrons, with the release of 25 MeV
of energy in the process.

The specific steps in the proton–proton cycle are

and

[30.3]

where D stands for deuterium, the isotope of hydrogen having one proton and one
neutron in the nucleus. (It can also be written as .) The second reaction is2

1H

1
1H � 2

1D :  3
2He � �

1
1H � 1

1H :  2
1D � e� � �

This photograph of the Sun, taken on
December 19, 1973, during the third
and final manned Skylab mission,
shows one of the most spectacular
solar flares ever recorded, spanning
more than 588 000 km (365 000 mi)
across the solar surface. Several active
regions can be seen on the eastern
side of the disk. The photograph was
taken in the light of ionized helium
by the extreme ultraviolet spectro-
heliograph instrument of the U.S.
Naval Research Laboratory.
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followed by either hydrogen–helium fusion or helium–helium fusion:

or

The energy liberated is carried primarily by gamma rays, positrons, and neutrinos,
as can be seen from the reactions. The gamma rays are soon absorbed by the
dense gas, thus raising its temperature. The positrons combine with electrons to
produce gamma rays, which in turn are also absorbed by the gas within a few cen-
timeters. The neutrinos, however, almost never interact with matter; hence, they
escape from the star, carrying about 2% of the energy generated with them. These
energy-liberating fusion reactions are called thermonuclear fusion reactions. The
hydrogen (fusion) bomb, first exploded in 1952, is an example of an uncontrolled
thermonuclear fusion reaction.

Fusion Reactors
The enormous amount of energy released in fusion reactions suggests the possibil-
ity of harnessing this energy for useful purposes on Earth. A great deal of effort is
under way to develop a sustained and controllable thermonuclear reactor—a
fusion power reactor. Controlled fusion is often called the ultimate energy source
because of the availability of its fuel source: water. For example, if deuterium, the
isotope of hydrogen consisting of a proton and a neutron, were used as the fuel,
0.06 g of it could be extracted from 1 gal of water at a cost of about four cents.
Such rates would make the fuel costs of even an inefficient reactor almost insignifi-
cant. An additional advantage of fusion reactors is that comparatively few radioac-
tive by-products are formed. As noted in Equation 30.3, the end product of the
fusion of hydrogen nuclei is safe, nonradioactive helium. Unfortunately, a ther-
monuclear reactor that can deliver a net power output over a reasonable time
interval is not yet a reality, and many problems must be solved before a successful
device is constructed.

We have seen that the Sun’s energy is based, in part, on a set of reactions in which
ordinary hydrogen is converted to helium. Unfortunately, the proton–proton
interaction is not suitable for use in a fusion reactor because the event requires
very high pressures and densities. The process works in the Sun only because of
the extremely high density of protons in the Sun’s interior. In fact, even at the
densities and temperatures that exist at the center of the Sun, the average proton
takes 14 billion years to react!

The fusion reactions that appear most promising in the construction of a fusion
power reactor involve deuterium (D) and tritium (T), which are isotopes of hydro-
gen. These reactions are

[30.4]

and

where the Q values refer to the amount of energy released per reaction. As noted
earlier, deuterium is available in almost unlimited quantities from our lakes and
oceans and is very inexpensive to extract. Tritium, however, is radioactive (T1/2 �
12.3 yr) and undergoes beta decay to 3He. For this reason, tritium doesn’t occur
naturally to any great extent and must be artificially produced.

One of the major problems in obtaining energy from nuclear fusion is the fact
that the Coulomb repulsion force between two charged nuclei must be overcome
before they can fuse. The fundamental challenge is to give the two nuclei enough
kinetic energy to overcome this repulsive force. This can be accomplished by

2
1D � 3

1T :  4
2He � 1

0n   Q � 17.59 MeV

2
1D � 2

1D :  3
1T � 1

1H   Q � 4.03 MeV

2
1D � 2

1D : 3
2He � 1

0n  Q � 3.27 MeV

3
2He � 3

2He :  4
2He � 2(1

1H)

1
1H � 3

2He :   42He � e� � �

A P P L I C AT I O N
Fusion Reactors
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982 Chapter 30 Nuclear Energy and Elementary Particles

heating the fuel to extremely high temperatures (about 108 K, far greater than the
interior temperature of the Sun). As you might expect, such high temperatures
are not easy to obtain in a laboratory or a power plant. At these high temperatures,
the atoms are ionized and the system consists of a collection of electrons and
nuclei, commonly referred to as a plasma.

In addition to the high temperature requirements, there are two other critical fac-
tors that determine whether or not a thermonuclear reactor will function: the plasma
ion density n and the plasma confinement time 	 — the time the interacting ions are
maintained at a temperature equal to or greater than that required for the reaction to
proceed. The density and confinement time must both be large enough to ensure
that more fusion energy will be released than is required to heat the plasma.

Lawson’s criterion states that a net power output in a fusion reactor is possible
under the following conditions:

n	 
 1014 s/cm3 Deuterium– tritium interaction [30.5]

n	 
 1016 s/cm3 Deuterium–deuterium interaction

The problem of plasma confinement time has yet to be solved. How can a plasma be
confined at a temperature of 108 K for times on the order of 1 s? The basic plasma-
confinement technique under investigation is discussed following Example 30.3.

Lawson’s criterion �

EXAMPLE 30.3 Astrofuel on the Moon
Goal Calculate the energy released in a fusion reaction.

Problem Find the energy released in the reaction of helium-3 with deuterium:

Strategy The energy released is the difference between the mass energy of the reactants and the products.

Solution

3
2He � 2

1D :  4
2He � 1

1H

Add the masses on the left-hand side, and subtract the
masses on the right, obtaining �m in atomic mass units:

�m � mHe-3 � m D � mHe-4 � mH

� 3.016 029 u � 2.014 102 u � 4.002 602 u � 1.007 825 u

� 0.019 704 u

Convert the mass difference to an equivalent amount of
energy in MeV:

18.35 MeVE � (0.019 704 u)� 931.5 MeV
1 u ��

Remarks This is a large amount of energy per reaction. Helium-3 is rare on Earth, but plentiful on the Moon,
where it has become trapped in the fine dust of the lunar regolith. Helium-3 has the advantage of producing more
protons than neutrons (some neutrons are still produced by side reactions, such as D–D), but has the disadvantage
of a higher ignition temperature. If fusion power plants using helium-3 became a reality, studies indicate that it
would be economically advantageous to mine helium-3 robotically and return it to Earth. The energy return per dol-
lar would be far greater than for mining coal or drilling for oil!

Exercise 30.3
Find the energy yield in the fusion of two helium-3 nuclei:

Answer 12.9 MeV

3
2He � 3

2He :  4
2He � 2(1

1H)

Magnetic Field Confinement
Most fusion experiments use magnetic field confinement to contain a plasma. One
device, called a tokamak, has a doughnut-shaped geometry (a toroid), as shown
in Figure 30.5a. This device, first developed in the former Soviet Union, uses a
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30.3 Nuclear Fusion 983

combination of two magnetic fields to confine the plasma inside the doughnut. A
strong magnetic field is produced by the current in the windings, and a weaker
magnetic field is produced by the current in the toroid. The resulting magnetic
field lines are helical, as shown in the figure. In this configuration, the field lines
spiral around the plasma and prevent it from touching the walls of the vacuum
chamber.

In order for the plasma to reach ignition temperature, some form of auxiliary
heating is necessary. A successful and efficient auxiliary heating technique that has
been used recently is the injection of a beam of energetic neutral particles into the
plasma.

When it was in operation, the Tokamak Fusion Test Reactor (TFTR) at Prince-
ton reported central ion temperatures of 510 million degrees Celsius, more than
30 times hotter than the center of the Sun. TFTR n	 values for the D–T reaction
were well above 1013 s/cm3 and close to the value required by Lawson’s criterion.
In 1991, reaction rates of 6 � 1017 D–T fusions per second were reached in the
JET tokamak at Abington, England.

One of the new generations of fusion experiments is the National Spherical
Torus Experiment (NSTX) shown in Figure 30.5c. Rather than generating the
donut-shaped plasma of a tokamak, the NSTX produces a spherical plasma that
has a hole through its center. The major advantage of the spherical configuration
is its ability to confine the plasma at a higher pressure in a given magnetic field.
This approach could lead to the development of smaller and more economical
fusion reactors.

There are a number of other methods of creating fusion events. In inertial laser
confinement fusion, the fuel is put into the form of a small pellet and then col-
lapsed by ultrahigh-power lasers. Fusion can also take place in a device the size of
a TV set, and in fact was invented by Philo Farnsworth, one of the fathers of elec-

Vacuum

Current

Plasma

(a)

B

(b) (c)

Figure 30.5 (a) Diagram of a tokamak used in the magnetic confinement scheme. The plasma is
trapped within the spiraling magnetic field lines as shown. (b) Interior view of the Tokamak Fusion Test
Reactor (TFTR) vacuum vessel located at the Princeton Plasma Physics Laboratory, Princeton
University, Princeton, New Jersey. (c) The National Spherical Torus Experiment (NSTX) that began
operation in March 1999.
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984 Chapter 30 Nuclear Energy and Elementary Particles

tronic television. In this method, called inertial electrostatic confinement, posi-
tively charged particles are rapidly attracted towards a negatively charged grid.
Some of the positive particles then collide and fuse.

An international collaborative effort involving four major fusion programs is
currently under way to build a fusion reactor called the International Thermonu-
clear Experimental Reactor (ITER). This facility will address the remaining tech-
nological and scientific issues concerning the feasibility of fusion power. The
design is completed, and site and construction negotiations are under way. If the
planned device works as expected, the Lawson number for ITER will be about six
times greater than the current record holder, the JT-60U tokamak in Japan.

30.4 ELEMENTARY PARTICLES
The word “atom” is from the Greek word atomos, meaning “indivisible.” At one
time, atoms were thought to be the indivisible constituents of matter; that is, they
were regarded as elementary particles. Discoveries in the early part of the 20th
century revealed that the atom is not elementary, but has protons, neutrons, and
electrons as its constituents. Until 1932, physicists viewed these three constituent
particles as elementary because, with the exception of the free neutron, they are
highly stable. The theory soon fell apart, however, and beginning in 1937, many
new particles were discovered in experiments involving high-energy collisions be-
tween known particles. These new particles are characteristically unstable and have
very short half-lives, ranging between 10�23 s and 10�6 s. So far more than 300 of
them have been cataloged.

Until the 1960s, physicists were bewildered by the large number and variety of
subatomic particles being discovered. They wondered whether the particles were
like animals in a zoo or whether a pattern could emerge that would provide a
better understanding of the elaborate structure in the subnuclear world. In the
last 30 years, physicists have made tremendous advances in our knowledge of the
structure of matter by recognizing that all particles (with the exception of elec-
trons, photons, and a few others) are made of smaller particles called quarks.
Protons and neutrons, for example, are not truly elementary but are systems of
tightly bound quarks. The quark model has reduced the bewildering array of parti-
cles to a manageable number and has predicted new quark combinations that
were subsequently found in many experiments.

30.5 THE FUNDAMENTAL FORCES OF NATURE
The key to understanding the properties of elementary particles is to be able to
describe the forces between them. All particles in nature are subject to four funda-
mental forces: strong, electromagnetic, weak, and gravitational.

The strong force is responsible for the tight binding of quarks to form neu-
trons and protons and for the nuclear force, a sort of residual strong force, bind-
ing neutrons and protons into nuclei. This force represents the “glue” that holds
the nucleons together and is the strongest of all the fundamental forces. It is a
very short-range force and is negligible for separations greater than about 
10�15 m (the approximate size of the nucleus). The electromagnetic force, which
is about 10�2 times the strength of the strong force, is responsible for the binding
of atoms and molecules. It is a long-range force that decreases in strength as the
inverse square of the separation between interacting particles. The weak force is a
short-range nuclear force that tends to produce instability in certain nuclei. It is
responsible for beta decay, and its strength is only about 10�6 times that of the
strong force. (As we discuss later, scientists now believe that the weak and electro-
magnetic forces are two manifestations of a single force called the electroweak
force). Finally, the gravitational force is a long-range force with a strength only
about 10�43 times that of the strong force. Although this familiar interaction is
the force that holds the planets, stars, and galaxies together, its effect on elementary
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particles is negligible. The gravitational force is by far the weakest of all the fun-
damental forces.

Modern physics often describes the forces between particles in terms of the
actions of field particles or quanta. In the case of the familiar electromagnetic
interaction, the field particles are photons. In the language of modern physics, the
electromagnetic force is mediated (carried) by photons, which are the quanta of the
electromagnetic field. Likewise, the strong force is mediated by field particles
called gluons, the weak force is mediated by particles called the W and Z bosons,
and the gravitational force is thought to be mediated by quanta of the gravita-
tional field called gravitons. All of these field quanta have been detected except for
the graviton, which may never be found directly because of the weakness of the
gravitational field. These interactions, their ranges, and their relative strengths are
summarized in Table 30.1.

30.6 POSITRONS AND OTHER ANTIPARTICLES
In the 1920s, the theoretical physicist Paul Adrien Maurice Dirac (1902–1984)
developed a version of quantum mechanics that incorporated special relativity.
Dirac’s theory successfully explained the origin of the electron’s spin and its mag-
netic moment. But it had one major problem: its relativistic wave equation
required solutions corresponding to negative energy states even for free electrons,
and if negative energy states existed, we would expect a normal free electron in a
state of positive energy to make a rapid transition to one of these lower states,
emitting a photon in the process. Normal electrons would not exist and we would
be left with a universe of photons and electrons locked up in negative energy
states.

Dirac circumvented this difficulty by postulating that all negative energy states
are normally filled. The electrons that occupy the negative energy states are said to
be in the “Dirac sea” and are not directly observable when all negative energy
states are filled. However, if one of these negative energy states is vacant, leaving a
hole in the sea of filled states, the hole can react to external forces and therefore
can be observed as the electron’s positive antiparticle. The general and profound
implication of Dirac’s theory is that for every particle, there is an antiparticle with
the same mass as the particle, but the opposite charge. For example, the electron’s
antiparticle, the positron, has a mass of 0.511 MeV/c2 and a positive charge of 
1.6 � 10�19 C. As noted in Chapter 29, we usually designate an antiparticle with a
bar over the symbol for the particle. For example, denotes the antiproton and 
the antineutrino. In this book, the notation e� is preferred for the positron.

The positron was discovered by Carl Anderson in 1932, and in 1936 he was
awarded the Nobel prize for his achievement. Anderson discovered the positron
while examining tracks created by electron-like particles of positive charge in a
cloud chamber. (These early experiments used cosmic rays—mostly energetic
protons passing through interstellar space— to initiate high-energy reactions
on the order of several GeV.) In order to discriminate between positive and
negative charges, the cloud chamber was placed in a magnetic field, causing
moving charges to follow curved paths. Anderson noted that some of the

�p

TABLE 30.1
Particle Interactions
Interaction Relative Mediating
(Force) Strengtha Range of Force Field Particle

Strong 1 Short (�1 fm) Gluon
Electromagnetic 10�2 Long (�1/r 2) Photon
Weak 10�6 Short (�10�3 fm) W and Z bosons
Gravitational 10�43 Long (�1/r2) Graviton

a For two quarks separated by 3 � 10�17 m.

PAUL ADRIEN MAURICE DIRAC
(1902–1984)
Dirac was instrumental in the understand-
ing of antimatter and in the unification of
quantum mechanics and relativity. He
made numerous contributions to the
development of quantum physics and
cosmology, and won the Nobel Prize for
physics in 1933.
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986 Chapter 30 Nuclear Energy and Elementary Particles

electronlike tracks deflected in a direction corresponding to a positively charged
particle.

Since Anderson’s initial discovery, the positron has been observed in a number
of experiments. Perhaps the most common process for producing positrons is pair
production, introduced in Chapter 26. In this process, a gamma ray with suffi-
ciently high energy collides with a nucleus, creating an electron–positron pair.
Because the total rest energy of the pair is 2mec2 � 1.02 MeV, the gamma ray must
have at least this much energy to create such a pair.

Practically every known elementary particle has a distinct antiparticle. Among
the exceptions are the photon and the neutral pion (�0), which are their own an-
tiparticles. Following the construction of high-energy accelerators in the 1950s,
many of these antiparticles were discovered. They included the antiproton , dis-
covered by Emilio Segrè and Owen Chamberlain in 1955, and the antineutron ,
discovered shortly thereafter.

The process of electron–positron annihilation is used in the medical diagnostic
technique of positron emission tomography (PET). The patient is injected with a
glucose solution containing a radioactive substance that decays by positron emis-
sion. Examples of such substances are oxygen-15, nitrogen-13, carbon-11, and
fluorine-18. The radioactive material is carried to the brain. When a decay occurs,
the emitted positron annihilates with an electron in the brain tissue, resulting in
two gamma ray photons. With the assistance of a computer, an image can be cre-
ated of the sites in the brain at which the glucose accumulates.

The images from a PET scan can point to a wide variety of disorders in the
brain, including Alzheimer’s disease. In addition, because glucose metabolizes
more rapidly in active areas of the brain, the PET scan can indicate which areas of
the brain are involved in various processes such as language, music, and vision.

30.7 MESONS AND THE BEGINNING 
OF PARTICLE PHYSICS

Physicists in the mid-1930s had a fairly simple view of the structure of matter. The
building blocks were the proton, the electron, and the neutron. Three other parti-
cles were known or postulated at the time: the photon, the neutrino, and the
positron. These six particles were considered the fundamental constituents of mat-
ter. Although the accepted picture of the world was marvelously simple, no one
was able to provide an answer to the following important question: Because the
many protons in proximity in any nucleus should strongly repel each other due to
their like charges, what is the nature of the force that holds the nucleus together?
Scientists recognized that this mysterious nuclear force must be much stronger
than anything encountered up to that time.

The first theory to explain the nature of the nuclear force was proposed in 1935
by the Japanese physicist Hideki Yukawa (1907–1981), an effort that later earned
him the Nobel prize. In order to understand Yukawa’s theory, it is useful to first
note that two atoms can form a covalent chemical bond by the exchange of
electrons. Similarly, in the modern view of electromagnetic interactions, charged
particles interact by exchanging a photon. Yukawa used this same idea to explain
the nuclear force by proposing a new particle that is exchanged by nucleons in the
nucleus to produce the strong force. Further, he demonstrated that the range of
the force is inversely proportional to the mass of this particle, and predicted that
the mass would be about 200 times the mass of the electron. Because the new par-
ticle would have a mass between that of the electron and the proton, it was called a
meson (from the Greek meso, meaning “middle”).

In an effort to substantiate Yukawa’s predictions, physicists began looking for
the meson by studying cosmic rays that enter the Earth’s atmosphere. In 1937,
Carl Anderson and his collaborators discovered a particle with mass 106 MeV/c2,
about 207 times the mass of the electron. However, subsequent experiments
showed that the particle interacted very weakly with matter and hence could not be
the carrier of the nuclear force. This puzzling situation inspired several theoreticians
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HIDEKI YUKAWA, Japanese
Physicist (1907–1981)
Yukawa was awarded the Nobel Prize in
1949 for predicting the existence of
mesons. This photograph of Yukawa at
work was taken in 1950 in his office at
Columbia University.
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TIP 30.2 The Nuclear Force
and the Strong Force
The nuclear force discussed in
Chapter 29 was originally called the
strong force. Once the quark theory was
established, however, the phrase strong
force was reserved for the force between
quarks. We will follow this convention:
the strong force is between quarks and
the nuclear force is between nucleons.

A P P L I C AT I O N

Positron Emission 
Tomography 

TIP 30.1 Antiparticles
An antiparticle is not identified solely
on the basis of opposite charge: even
neutral particles have antiparticles.
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to propose that there are two mesons with slightly different masses, an idea that
was confirmed in 1947 with the discovery of the pi meson (�), or simply pion,
by Cecil Frank Powell (1903–1969) and Guiseppe P. S. Occhialini (1907–1993).
The lighter meson discovered earlier by Anderson, now called a muon (�),
has only weak and electromagnetic interactions and plays no role in the strong
interaction.

The pion comes in three varieties, corresponding to three charge states: ��,
��, and �0. The �� and �� particles have masses of 139.6 MeV/c2, and the �0 has
a mass of 135.0 MeV/c2. Pions and muons are highly unstable particles. For exam-
ple, the ��, which has a lifetime of about 2.6 � 10�8 s, decays into a muon and an
antineutrino. The muon, with a lifetime of 2.2 �s, then decays into an electron, a
neutrino, and an antineutrino. The sequence of decays is

[30.6]

The interaction between two particles can be understood in general with a sim-
ple illustration called a Feynman diagram, developed by Richard P. Feynman
(1918–1988). Figure 30.6 is a Feynman diagram for the electromagnetic interac-
tion between two electrons. In this simple case, a photon is the field particle that
mediates the electromagnetic force between the electrons. The photon transfers
energy and momentum from one electron to the other in the interaction. Such a
photon, called a virtual photon, can never be detected directly because it is ab-
sorbed by the second electron very shortly after being emitted by the first electron.
The existence of a virtual photon might be expected to violate the law of conserva-
tion of energy, but it does not because of the time–energy uncertainty principle.
Recall that the uncertainty principle says that the energy is uncertain or not con-
served by an amount �E for a time �t such that .

Now consider the pion exchange between a proton and a neutron via the
nuclear force (Fig. 30.7). The energy needed to create a pion of mass m� is given
by �E � m�c2. Again, the existence of the pion is allowed in spite of conservation
of energy if this energy is surrendered in a short enough time �t, the time it takes
the pion to transfer from one nucleon to the other. From the uncertainty princi-
ple, , we get

[30.7]

Because the pion can’t travel faster than the speed of light, the maximum distance
d it can travel in a time �t is c �t. Using Equation 30.7 and d � c �t, we find this
maximum distance to be

[30.8]

The measured range of the nuclear force is about 1.5 � 10�15 m. Using this value
for d in Equation 30.8, the rest energy of the pion is calculated to be

This corresponds to a mass of 130 MeV/c2 (about 250 times the mass of the elec-
tron), which is in good agreement with the observed mass of the pion.

The concept we have just described is quite revolutionary. In effect, it says that a
proton can change into a proton plus a pion, as long as it returns to its original
state in a very short time. High-energy physicists often say that a nucleon under-
goes “fluctuations” as it emits and absorbs pions. As we have seen, these fluctua-
tions are a consequence of a combination of quantum mechanics (through the
uncertainty principle) and special relativity (through Einstein’s energy–mass rela-
tion E � mc2).

 � 2.1 � 10�11 J � 130 MeV

m�c2 �
�c
d

�
(1.05 � 10�34 J�s)(3.00 � 108 m/s)

1.5 � 10�15 m

d �
�

m�c

�t �
�

�E
�

�

m�c2

�E �t � �

�E �t � �

�� :   e� � � � �

�� :   �� � �

Time Virtual
photon

e–

e–

e–

e–

Figure 30.6 Feynman diagram 
representing a photon mediating the
electromagnetic force between two
electrons.

RICHARD FEYNMAN, American
Physicist (1918–1988)
Feynman, together with Julian S. Schwinger
and Shinichiro Tomonaga, won the 1965
Nobel Prize for physics for fundamental
work in the principles of quantum
electrodynamics. His many important contri-
butions to physics include work on the first
atomic bomb in the Manhattan project, the
invention of simple diagrams to represent
particle interactions graphically, the theory
of the weak interaction of subatomic parti-
cles, a reformulation of quantum mechanics,
and the theory of superfluid helium. Later he
served on the commission investigating the
Challenger tragedy, demonstrating the prob-
lem with the O-rings by dipping a scale-
model O-ring in his glass of ice water and
then shattering it with a hammer. He also
contributed to physics education through the
magnificent three-volume text The Feynman
Lectures on Physics.
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Figure 30.7 Feynman diagram
representing a proton interacting
with a neutron via the strong force.
In this case, the pion mediates the
nuclear force.
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This section has dealt with the early theory of Yukawa of particles that mediate
the nuclear force, pions, and the mediators of the electromagnetic force, photons.
Although his model led to the modern view, it has been superseded by the more
basic quark–gluon theory, as explained in Sections 30.12 and 30.13.

30.8 CLASSIFICATION OF PARTICLES
Hadrons
All particles other than photons can be classified into two broad categories,
hadrons and leptons, according to their interactions. Particles that interact through
the strong force are called hadrons. There are two classes of hadrons, known as
mesons and baryons, distinguished by their masses and spins. All mesons are known
to decay finally into electrons, positrons, neutrinos, and photons. The pion is the
lightest of known mesons, with a mass of about 140 MeV/c 2 and a spin of 0. An-
other is the K meson, with a mass of about 500 MeV/c 2 and spin 0 also.

Baryons have masses equal to or greater than the proton mass (the name baryon
means “heavy” in Greek), and their spin is always a non-integer value (1/2 or 3/2).
Protons and neutrons are baryons, as are many other particles. With the exception
of the proton, all baryons decay in such a way that the end products include a pro-
ton. For example, the baryon called the � hyperon first decays to a �0 in about
10�10 s. The �0 then decays to a proton and a p� in about 3 � 10�10 s.

Today it is believed that hadrons are composed of quarks. (Later, we will have
more to say about the quark model.) Some of the important properties of hadrons
are listed in Table 30.2.

TABLE 30.2
Some Particles and Their Properties

Principal
Anti- Mass Decay

Category Particle Name Symbol particle B S Lifetime(s) Modesa

Leptons Electron 0.511 0 � 1 0 0 0 Stable
Electron–neutrino 0 � 1 0 0 0 Stable
Muon 105.7 0 0 � 1 0 0
Muon–neutrino 0 0 � 1 0 0 Stable
Tau 1 784 0 0 0 � 1 0
Tau–neutrino 0 0 0 � 1 0 Stable

Hadrons
Mesons Pion 139.6 0 0 0 0 0

Self 135.0 0 0 0 0 0
Kaon 493.7 0 0 0 0 � 1

497.7 0 0 0 0 � 1
497.7 0 0 0 0 � 1

Eta Self 548.8 0 0 0 0 0
Self 958 0 0 0 0 0

Baryons Proton p 938.3 � 1 0 0 0 0 Stable
Neutron n 939.6 � 1 0 0 0 0 920
Lambda 1 115.6 � 1 0 0 0 �1
Sigma 1 189.4 � 1 0 0 0 �1

1 192.5 � 1 0 0 0 �1
1 197.3 � 1 0 0 0 �1

Xi 1 315 � 1 0 0 0 �2
1 321 � 1 0 0 0 �2

Omega 1 672 � 1 0 0 0 �3

a Notations in this column, such as p��, n� 0 mean two possible decay modes. In this case, the two possible decays are �0 : p � �� and �0 : n � �0.

�0�0, �0K�0.82 � 10�10����

�0��1.64 � 10�10����

�0�02.9 � 10�10�0�0
n��1.5 � 10�10����

�0�6 � 10�20�0�0
p�0, n��0.80 � 10�10����

p��, n�02.6 � 10�10�0�0
pe��en

p
�����2.2 � 10�21��

2�, 3�� 10�18�

� ����

� e��e, 3�05.2 � 10�8K0
LK0

L

� ���, 2�00.89 � 10�10K0
SK0

S

����, � ��01.24 � 10�8K�K�

2�0.83 � 10�16�0
���� 2.60 � 10�8��� �

� 30�	�	

e��ev	�����	,� 4 � 10�13	�	�

� 0.3����

e� �e��2.20 � 10�6����

� 7eV/c2�e�e

e�e�

L�L�Le(MeV/c 2)
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Leptons
Leptons (from the Greek leptos, meaning “small” or “light”) are a group of parti-
cles that participate in the weak interaction. All leptons have a spin of 1/2.
Included in this group are electrons, muons, and neutrinos, which are less massive
than the lightest hadron. Although hadrons have size and structure, leptons
appear to be truly elementary, with no structure down to the limit of resolution of
experiment (about 10�19 m).

Unlike hadrons, the number of known leptons is small. Currently, scientists
believe there are only six leptons (each having an antiparticle): the electron, the
muon, the tau, and a neutrino associated with each:

The tau lepton, discovered in 1975, has a mass about twice that of the proton.
Although neutrinos have masses of about zero, there is strong indirect evidence

that the electron neutrino has a nonzero mass of about 3 eV/c2, or 1/180 000 of
the electron mass. A firm knowledge of the neutrino’s mass could have great sig-
nificance in cosmological models and in our understanding of the future of the
Universe.

30.9 CONSERVATION LAWS
A number of conservation laws are important in the study of elementary particles.
Although the two described here have no theoretical foundation, they are sup-
ported by abundant empirical evidence.

Baryon Number
The law of conservation of baryon number tells us that whenever a baryon is cre-
ated in a reaction or decay, an antibaryon is also created. This information can be
quantified by assigning a baryon number: B � � 1 for all baryons, B � � 1 for all
antibaryons, and B � 0 for all other particles. Thus, the law of conservation of
baryon number states that whenever a nuclear reaction or decay occurs, the sum
of the baryon numbers before the process equals the sum of the baryon numbers
after the process.

Note that if the baryon number is absolutely conserved, the proton must be
absolutely stable: if it were not for the law of conservation of baryon number, the
proton could decay into a positron and a neutral pion. However, such a decay has
never been observed. At present, we can only say that the proton has a half-life of
at least 1031 years. (The estimated age of the Universe is about 1010 years.) In one
recent version of a so-called grand unified theory (GUT), physicists have predicted
that the proton is actually unstable. According to this theory, the baryon number
(sometimes called the baryonic charge) is not absolutely conserved, whereas electric
charge is always conserved.

�e�

�e
�  ���

��
�  �	�

�	
�

EXAMPLE 30.4 Checking Baryon Numbers
Goal Use conservation of baryon number to determine whether a given reaction can occur.

Problem Determine whether the following reaction can occur based on the law of conservation of baryon number.

Strategy Count the baryons on both sides of the reaction, recalling that that B � � 1 for baryons and B � � 1 for
antibaryons.

Solution
Count the baryons on the left: The neutron and proton are both baryons; hence, 1 � 1 � 2.

p � n  :   p � p � n � p

� Conservation of baryon number
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990 Chapter 30 Nuclear Energy and Elementary Particles

Lepton Number
There are three conservation laws involving lepton numbers, one for each variety
of lepton. The law of conservation of electron-lepton number states that the sum
of the electron-lepton numbers before a reaction or decay must equal the sum of
the electron-lepton numbers after the reaction or decay. The electron and the
electron neutrino are assigned a positive electron-lepton number Le � � 1, the
antileptons e� and are assigned the electron-lepton number Le � � 1, and all
other particles have L e � 0. For example, consider neutron decay:

Before the decay, the electron-lepton number is Le � 0; after the decay, it is 
0 � 1 � (�1) � 0, so the electron-lepton number is conserved. It’s important to rec-
ognize that the baryon number must also be conserved. This can easily be seen by not-
ing that before the decay B � � 1, whereas after the decay B � � 1 � 0 � 0 � � 1.

Similarly, when a decay involves muons, the muon-lepton number L� is conserved.
The �� and the are assigned L� � � 1, the antimuons �� and are assigned 
L� � � 1, and all other particles have L� � 0. Finally, the tau-lepton number L	 is
conserved, and similar assignments can be made for the 	 lepton and its neutrino.

����

 n  :   p� � e� � �e

�e

Count the baryons on the right: There are three baryons and one antibaryon, so 
1 � 1 � 1 � (�1) � 2.

Remark Baryon number is conserved in this reaction, so it can occur, provided the incoming proton has sufficient
energy.

Exercise 30.4
Can the following reaction occur, based on the law of conservation of baryon number?

Answer No. (Show this by computing the baryon number on both sides and finding that they’re not equal.)

p � n  :   p � p � p

Conservation of lepton number �

Neutron decay �

EXAMPLE 30.5 Checking Lepton Numbers
Goal Use conservation of lepton number to determine whether a given process is possible.

Problem Determine which of the following decay schemes can occur on the basis of conservation of lepton number.

(1)

(2)

Strategy Count the leptons on either side and see if the numbers are equal.

Solution
Because decay 1 involves both a muon and an electron, L� and Le must both be conserved. Before the decay, L� � � 1
and Le � 0. After the decay, L� � 0 � 0 � 1 � � 1 and Le � � 1 � 1 � 0 � 0. Both lepton numbers are conserved,
and on this basis, the decay mode is possible.

Before decay 2 occurs, L� � 0 and Le � 0. After the decay, L� � � 1 � 1 � 0 � 0, but Le � � 1. This decay isn’t
possible because the electron-lepton number is not conserved.

Exercise 30.5
Determine whether the decay can occur.

Answer No. (Show this by computing muon-lepton numbers on both sides and showing they’re not equal.)

�� : e� � �e

� �  :   �� � �� � �e

��  :   e� � �e � ��
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30.10 STRANGE PARTICLES AND STRANGENESS
Many particles discovered in the 1950s were produced by the nuclear interaction
of pions with protons and neutrons in the atmosphere. A group of these particles,
namely the K, �, and � particles, was found to exhibit unusual properties in their
production and decay and hence were called strange particles.

One unusual property of strange particles is that they are always produced
in pairs. For example, when a pion collides with a proton, two neutral strange par-
ticles are produced with high probability (Fig. 30.8) following the reaction

On the other hand, the reaction has never occurred, even
though it violates no known conservation laws and the energy of the pion is suffi-
cient to initiate the reaction.

The second peculiar feature of strange particles is that although they are pro-
duced by the strong interaction at a high rate, they do not decay into particles that
interact via the strong force at a very high rate. Instead, they decay very slowly,
which is characteristic of the weak interaction. Their half-lives are in the range
from 10�10 s to 10�8 s; most other particles that interact via the strong force have
lifetimes on the order of 10�23 s.

To explain these unusual properties of strange particles, a law called conserva-
tion of strangeness was introduced, together with a new quantum number S called
strangeness. The strangeness numbers for some particles are given in Table 30.2.
The production of strange particles in pairs is explained by assigning S � � 1
to one of the particles and S � � 1 to the other. All nonstrange particles are
assigned strangeness S � 0. The law of conservation of strangeness states that
whenever a nuclear reaction or decay occurs, the sum of the strangeness numbers
before the process must equal the sum of the strangeness numbers after the
process.

The slow decay of strange particles can be explained by assuming that the
strong and electromagnetic interactions obey the law of conservation of strange-
ness, whereas the weak interaction does not. Because the decay reaction involves
the loss of one strange particle, it violates strangeness conservation and hence pro-
ceeds slowly via the weak interaction.

�� � p� :   K0 � n

�� � p�  :    K0 � �0

Which of the following reactions cannot occur?
(a) (b)
(c) (d) ��  :   �� � ����  :   e� � �e � ��

n  :   p � e� � �ep � p  :   p � p � p

Quick Quiz 30.2

Which of the following reactions cannot occur?
(a) (b) 
(c) (d) �� � p  :   K� � ���0 � n  :   K� � ��

� � p  :   n � �0p � p  :  2�

Quick Quiz 30.3

Suppose a claim is made that the decay of a neutron is given by n : p� � e�.
Which of the following conservation laws are necessarily violated by this proposed
decay scheme? (a) energy (b) linear momentum (c) electric charge (d) lepton
number (e) baryon number

Quick Quiz 30.4

Figure 30.8 This drawing repre-
sents tracks of many events obtained
by analyzing a bubble-chamber photo-
graph. The strange particles �0

and K0 are formed (at the bottom) 
as the �� interacts with a proton
according to the interaction

. (Note that 
the neutral particles leave no tracks,
as is indicated by the dashed lines.)
The �0 and K0 then decay according
to the interactions �0 : � � p and

.K0 : � � �� � ��

� � � p : �0 � K0
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992 Chapter 30 Nuclear Energy and Elementary Particles

30.11 THE EIGHTFOLD WAY
Quantities such as spin, baryon number, lepton number, and strangeness are la-
bels we associate with particles. Many classification schemes that group particles
into families based on such labels have been proposed. First, consider the first
eight baryons listed in Table 30.2, all having a spin of 1/2. The family consists of
the proton, the neutron, and six other particles. If we plot their strangeness versus
their charge using a sloping coordinate system, as in Figure 30.9a, a fascinating
pattern emerges: six of the baryons form a hexagon, and the remaining two are at
the hexagon’s center. (Particles with spin quantum number 1/2 or 3/2 are called
fermions.)

Now consider the family of mesons listed in Table 30.2 with spins of zero. (Parti-
cles with spin quantum number 0 or 1 are called bosons.) If we count both parti-
cles and antiparticles, there are nine such mesons. Figure 30.9b is a plot of
strangeness versus charge for this family. Again, a fascinating hexagonal pattern
emerges. In this case, the particles on the perimeter of the hexagon lie opposite
their antiparticles, and the remaining three (which form their own antiparticles)

A student claims to have observed a decay of an elec-
tron into two neutrinos traveling in opposite direc-
tions. What conservation laws would be violated by
this decay?

Explanation Several conservation laws are violated.
Conservation of electric charge is violated because the
negative charge of the electron has disappeared.
Conservation of electron lepton number is also
violated, because there is one lepton before the decay
and two afterward. If both neutrinos were electron-
neutrinos, electron lepton number conservation

would be violated in the final state. However, if one of the
product neutrinos were other than an electron-neutrino,
then another lepton conservation law would be violated,
because there were no other leptons in the initial state.

Other conservation laws are obeyed by this decay.
Energy can be conserved— the rest energy of the elec-
tron appears as the kinetic energy (and possibly some
small rest energy) of the neutrinos. The opposite
directions of the velocities of the two neutrinos allow
for the conservation of momentum. Conservation of
baryon number and conservation of other lepton
numbers are also upheld in this decay.

Applying Physics 30.2 Breaking Conservation Laws

EXAMPLE 30.6 Is Strangeness Conserved?
Goal Apply conservation of strangeness to determine whether a process can occur.

Problem Determine whether the following reactions can occur on the basis of conservation of strangeness:

(1)

(2)

Strategy Count strangeness on each side of a given process. If strangeness is conserved, the reaction is possible.

Solution
In the first process, the neutral pion and neutron both have strangeness of zero, so S initial � 0 � 0 � 0. Because the
strangeness of the K� is S � � 1, and the strangeness of the �� is S � � 1, the total strangeness of the final state is
Sfinal � � 1 � 1 � 0. Strangeness is conserved and the reaction is allowed.

In the second process, the initial state has strangeness Sinitial � 0 � 0 � 0, but the final state has strangeness 
Sfinal � 0 � (�1) � � 1. Strangeness is not conserved and the reaction isn’t allowed.

Exercise 30.6
Does the reaction obey the law of conservation of strangeness? Show why or why not.

Answer Yes. (Show this by computing the strangeness on both sides.)

p� � ��  :  K0 � �0

�� � p  :   �� � ��

�0 � n  :   K� � ��
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are at its center. These and related symmetric patterns, called the eightfold way,
were proposed independently in 1961 by Murray Gell-Mann and Yuval Ne’eman.

The groups of baryons and mesons can be displayed in many other symmetric
patterns within the framework of the eightfold way. For example, the family of
spin-3/2 baryons contains ten particles arranged in a pattern like the tenpins in a
bowling alley. After the pattern was proposed, one of the particles was missing— it
had yet to be discovered. Gell-Mann predicted that the missing particle, which he
called the omega minus (��), should have a spin of 3/2, a charge of �1, a strange-
ness of �3, and a mass of about 1 680 MeV/c2. Shortly thereafter, in 1964, scien-
tists at the Brookhaven National Laboratory found the missing particle through
careful analyses of bubble chamber photographs and confirmed all its predicted
properties.

The patterns of the eightfold way in the field of particle physics have much in
common with the periodic table. Whenever a vacancy (a missing particle or ele-
ment) occurs in the organized patterns, experimentalists have a guide for their in-
vestigations.

30.12 QUARKS
As we have noted, leptons appear to be truly elementary particles because they
have no measurable size or internal structure, are limited in number, and do not
seem to break down into smaller units. Hadrons, on the other hand, are complex
particles with size and structure. Further, we know that hadrons decay into other
hadrons and are many in number. Table 30.2 lists only those hadrons that are sta-
ble against hadronic decay; hundreds of others have been discovered. These facts
strongly suggest that hadrons cannot be truly elementary but have some substruc-
ture.

The Original Quark Model
In 1963 Gell-Mann and George Zweig independently proposed that hadrons have
an elementary substructure. According to their model, all hadrons are composite
systems of two or three fundamental constitutents called quarks, which rhymes
with “forks” (though some rhyme it with “sharks”). Gell-Mann borrowed the word
quark from the passage “Three quarks for Muster Mark” in James Joyce’s book
Finnegans Wake. In the original model there were three types of quarks designated
by the symbols u, d, and s. These were given the arbitrary names up, down, and
sideways (or, now more commonly, strange).

An unusual property of quarks is that they have fractional electronic charges, as
shown—along with other properties— in Table 30.3 (page 994). Associated with
each quark is an antiquark of opposite charge, baryon number, and strangeness.
The compositions of all hadrons known when Gell-Mann and Zweig presented
their models could be completely specified by three simple rules:

n p

Σ_ Σ0 Σ+

Ξ_ Ξ0

Λ0

S = 0

S = _1

S = _2

Q = +1

Q = _1 Q = 0

K0 K+

K_ K0

S = +1

S = 0

S = _1

Q = +1

Q = _1 Q = 0
(a) (b)

π_ π+η π0

η'

Figure 30.9 (a) The hexagonal
eightfold-way pattern for the eight 
spin baryons. This strangeness ver-
sus charge plot uses a horizontal axis
for the strangeness values S, but a
sloping axis for the charge number Q.
(b) The eightfold-way pattern for the
nine spin-zero mesons.

�1
2

MURRAY GELL-MANN,
American Physicist (1929– )
Gell-Mann was awarded the Nobel Prize
in 1969 for his theoretical studies dealing
with subatomic particles.
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994 Chapter 30 Nuclear Energy and Elementary Particles

1. Mesons consist of one quark and one antiquark, giving them a baryon number
of 0, as required.

2. Baryons consist of three quarks.
3. Antibaryons consist of three antiquarks.

Table 30.4 lists the quark compositions of several mesons and baryons. Note that
just two of the quarks, u and d, are contained in all hadrons encountered in ordi-
nary matter (protons and neutrons). The third quark, s, is needed only to con-
struct strange particles with a strangeness of either �1 or �1. Active Figure 30.10
is a pictorial representation of the quark compositions of several particles.

TABLE 30.4
Quark Composition 
of Several Hadrons

Quark 
Particle Composition

Mesons

��

��

K�

K�

K0

Baryons

p uud

n udd

�0 uds

�� uus

�0 uds

�� dds

�0 uss

�� dss

�� sss

sd

us

su

ud

du

TABLE 30.3
Properties of Quarks and Antiquarks

Quarks

Baryon
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Up u 0 0 0 0
Down d 0 0 0 0
Strange s �1 0 0 0
Charmed c 0 � 1 0 0
Bottom b 0 0 � 1 0
Top t 0 0 0 � 1

Antiquarks

Baryon
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Anti-up 0 0 0 0

Anti-down 0 0 0 0

Anti-strange � 1 0 0 0

Anti-charmed 0 � 1 0 0

Anti-bottom 0 0 � 1 0
Anti-top 0 0 0 �1�1

3� 2
3e1

2t
�1

3� 1
3e1

2b

�1
3� 2

3e1
2c

�1
3� 1

3e1
2s

�1
3� 1

3e1
2d

�1
3�2

3e1
2u

1
3� 2

3e1
2

1
3�1

3e1
2

1
3� 2

3e1
2

1
3� 1

3e1
2

1
3� 1

3e1
2

1
3� 2

3e1
2

We have seen a law of conservation of lepton number
and a law of conservation of baryon number. Why isn’t
there a law of conservation of meson number?

Explanation We can argue this from the point of
view of creating particle–antiparticle pairs from avail-
able energy. If energy is converted to the rest energy
of a lepton–antilepton pair, then there is no net
change in lepton number, because the lepton has a
lepton number of �1 and the antilepton �1. Energy 
could also be transformed into the rest energy of a

baryon–antibaryon pair. The baryon has baryon num-
ber �1, the antibaryon �1, and there is no net
change in baryon number.

But now suppose energy is transformed into the
rest energy of a quark–antiquark pair. By definition in
quark theory, a quark–antiquark pair is a meson.
There was no meson before, and now there’s a meson,
so already there is violation of conservation of meson
number. With more energy, we can create more
mesons, with no restriction from a conservation law
other than that of energy.

Applying Physics 30.3 Conservation of Meson Number?

Charm and Other Recent Developments
Although the original quark model was highly successful in classifying particles
into families, there were some discrepancies between predictions of the model and
certain experimental decay rates. Consequently, a fourth quark was proposed by
several physicists in 1967. The fourth quark, designated by c, was given a property
called charm. A charmed quark would have the charge �2e/3, but its charm
would distinguish it from the other three quarks. The new quark would have a
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charm C � � 1, its antiquark would have a charm C � � 1, and all other quarks
would have C � 0, as indicated in Table 30.3. Charm, like strangeness, would be
conserved in strong and electromagnetic interactions but not in weak interactions.

In 1974 a new heavy meson called the J/� particle (or simply, �) was discovered
independently by a group led by Burton Richter at the Stanford Linear Accelera-
tor (SLAC) and another group led by Samuel Ting at the Brookhaven National
Laboratory. Richter and Ting were awarded the Nobel Prize in 1976 for this work.
The J/� particle didn’t fit into the three-quark model, but had the properties of a
combination of a charmed quark and its antiquark ( ). It was much heavier than
the other known mesons (�3 100 MeV/c2) and its lifetime was much longer than
those of other particles that decay via the strong force. In 1975, researchers at
Stanford University reported strong evidence for the existence of the tau (	)
lepton, with a mass of 1 784 MeV/c2. Such discoveries led to more elaborate quark
models and the proposal of two new quarks, named top (t) and bottom (b). To
distinguish these quarks from the old ones, quantum numbers called topness and
bottomness were assigned to these new particles and are included in Table 30.3. In
1977 researchers at the Fermi National Laboratory, under the direction of Leon
Lederman, reported the discovery of a very massive new meson � with composi-
tion . In March of 1995, researchers at Fermilab announced the discovery of the
top quark (supposedly the last of the quarks to be found) having mass 173 GeV/c2.

You are probably wondering whether such discoveries will ever end. How many
“building blocks” of matter really exist? The numbers of different quarks and lep-
tons have implications for the primordial abundance of certain elements, so at
present it appears there may be no further fundamental particles. Some properties
of quarks and leptons are given in Table 30.5.

Despite extensive experimental efforts, no isolated quark has ever been ob-
served. Physicists now believe that quarks are permanently confined inside ordinary
particles because of an exceptionally strong force that prevents them from escap-
ing. This force, called the color force (which will be discussed in Section 30.13), in-
creases with separation distance (similar to the force of a spring). The great
strength of the force between quarks has been described by one author as follows:2

Quarks are slaves of their own color charge, . . . bound like prisoners of a chain 
gang. . . . Any locksmith can break the chain between two prisoners, but no locksmith is
expert enough to break the gluon chains between quarks. Quarks remain slaves forever.

bb

cc

Mesons

π

u d

K
_

u s

+
Baryons

p

u u

d

n

u d

d

ACTIVE FIGURE 30.10
Quark compositions of two mesons
and two baryons. Note that the
mesons on the left contain two
quarks, and the baryons on the right
contain three quarks.

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 30.10 to
observe the quark compositions for
the mesons and baryons.

TABLE 30.5
The Fundamental Particles and Some of Their Properties
Particle Rest Energy Charge

Quarks

u 360 MeV

d 360 MeV

c 1500 MeV

s 540 MeV

t 173 GeV

b 5 GeV

Leptons

e� 511 keV � e
�� 107 MeV � e
	� 1784 MeV � e
�e �30 eV   0
�� �0.5 MeV 0
�	 �250 MeV 0

� 
1
3 e 

�2
3 e 

�1
3 e 

� 2
3 e 

�1
3 e 

� 2
3 e 

2Harald Fritzsch, Quarks: The Stuff of Matter (London: Allen Lane, 1983).
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30.13 COLORED QUARKS
Shortly after the theory of quarks was proposed, scientists recognized that certain
particles had quark compositions that were in violation of the Pauli exclusion prin-
ciple. Because all quarks have spins of 1/2, they are expected to follow the exclu-
sion principle. One example of a particle that violates the exclusion principle is
the �� (sss) baryon, which contains three s quarks having parallel spins, giving it a
total spin of 3/2. Other examples of baryons that have identical quarks with paral-
lel spins are the ��� (uuu) and the �� (ddd). To resolve this problem, Moo-
Young Han and Yoichiro Nambu suggested in 1965 that quarks possess a new prop-
erty called color or color charge. This “charge” property is similar in many respects
to electric charge, except that it occurs in three varieties, labeled red, green, and
blue ! (The antiquarks are labeled anti-red, anti-green, and anti-blue.) To satisfy the
exclusion principle, all three quarks in a baryon must have different colors. Just as
a combination of actual colors of light can produce the neutral color white, a com-
bination of three quarks with different colors is also “white,” or colorless. A meson
consists of a quark of one color and an antiquark of the corresponding anticolor.
The result is that baryons and mesons are always colorless (or white).

Although the concept of color in the quark model was originally conceived to
satisfy the exclusion principle, it also provided a better theory for explaining cer-
tain experimental results. For example, the modified theory correctly predicts the
lifetime of the �0 meson. The theory of how quarks interact with each other by
means of color charge is called quantum chromodynamics, or QCD, to parallel
quantum electrodynamics (the theory of interactions among electric charges). In
QCD, the quark is said to carry a color charge, in analogy to electric charge. The
strong force between quarks is often called the color force. The force is carried by
massless particles called gluons (which are analogous to photons for the electro-
magnetic force). According to QCD, there are eight gluons, all with color charge.
When a quark emits or absorbs a gluon, its color changes. For example, a blue
quark that emits a gluon may become a red quark, and a red quark that absorbs
this gluon becomes a blue quark. The color force between quarks is analogous to
the electric force between charges: Like colors repel and opposite colors attract.
Therefore, two red quarks repel each other, but a red quark will be attracted to an
anti-red quark. The attraction between quarks of opposite color to form a meson

is indicated in Figure 30.11a.
Different-colored quarks also attract each other, but with less intensity than

opposite colors of quark and antiquark. For example, a cluster of red, blue, and
green quarks all attract each other to form baryons, as indicated in Figure 30.11b.
Every baryon contains three quarks of three different colors.

Although the color force between two color-neutral hadrons (such as a proton
and a neutron) is negligible at large separations, the strong color force between
their constituent quarks does not exactly cancel at small separations of about 1 fm.
This residual strong force is in fact the nuclear force that binds protons and

(qq)

Baryon

(b)

Meson

(a)

q q

Computers at Fermilab create a
pictorial representation such as
this of the paths of particles after
a collision.
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Figure 30.11 (a) A green quark is
attracted to an anti-green quark to
form a meson with quark structure
( ). (b) Three different-colored
quarks attract each other to form a
baryon.

qq

TIP 30.3 Color is Not 
Really Color
When we use the word color to
describe a quark, it has nothing to do
with visual sensation from light. It is
simply a convenient name for a
property analgous to electric charge.
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neutrons to form nuclei. It is similar to the residual electromagnetic force that
binds neutral atoms into molecules. According to QCD, a more basic explanation
of nuclear force can be given in terms of quarks and gluons, as shown in Figure
30.12, which shows contrasting Feynman diagrams of the same process. Each
quark within the neutron and proton is continually emitting and absorbing virtual
gluons and creating and annihilating virtual pairs. When the neutron and
proton approach within 1 fm of each other, these virtual gluons and quarks can be
exchanged between the two nucleons, and such exchanges produce the nuclear
force. Figure 30.12b depicts one likely possibility or contribution to the process
shown in Figure 30.12a: a down quark emits a virtual gluon (represented by a wavy
line in Fig. 30.12b), which creates a pair. Both the recoiling d quark and the 
are transmitted to the proton where the annihilates a proton u quark (with the
creation of a gluon) and the d is captured.

30.14 ELECTROWEAK THEORY AND 
THE STANDARD MODEL

Recall that the weak interaction is an extremely short range force having an inter-
action distance of approximately 10�18 m (Table 30.1). Such a short-range interac-
tion implies that the quantized particles which carry the weak field (the spin one
W�, W�, and Z0 bosons) are extremely massive, as is indeed the case. These amaz-
ing bosons can be thought of as structureless, pointlike particles as massive as kryp-
ton atoms! The weak interaction is responsible for the decay of the c, s, b, and t
quarks into lighter, more stable u and d quarks, as well as the decay of the massive
� and 	 leptons into (lighter) electrons. The weak interaction is very important be-
cause it governs the stability of the basic particles of matter.

A mysterious feature of the weak interaction is its lack of symmetry, especially
when compared to the high degree of symmetry shown by the strong, electromag-
netic, and gravitational interactions. For example, the weak interaction, unlike the
strong interaction, is not symmetric under mirror reflection or charge exchange.
(Mirror reflection means that all the quantities in a given particle reaction are ex-
changed as in a mirror reflection— left for right, an inward motion toward the
mirror for an outward motion, etc. Charge exchange means that all the electric
charges in a particle reaction are converted to their opposites—all positives to
negatives and vice versa.) When we say that the weak interaction is not symmetric,
we mean that the reaction with all quantities changed occurs less frequently
than the direct reaction. For example, the decay of the K0, which is governed
by the weak interaction, is not symmetric under charge exchange because the
reaction K0 : �� � e� � �e occurs much more frequently than the reaction

.
In 1979, Sheldon Glashow, Abdus Salam, and Steven Weinberg won a Nobel

prize for developing a theory called the electroweak theory that unified the
electromagnetic and weak interactions. This theory postulates that the weak and
electromagnetic interactions have the same strength at very high particle energies,

K0 :  � � � e� � �e

u
uuu

(qq)

–u

(b) Quark model

(a) Yukawa’s pion model

n

p n

p

π –

d u d
n

d uu
p

d u u
p

d d u
n

uu
annihilation

uu pair
production

Time

d

–u

–u

Time

Figure 30.12 (a) A nuclear inter-
action between a proton and a neu-
tron explained in terms of Yukawa’s
pion exchange model. Because the
pion carries charge, the proton and
neutron switch identities. (b) The
same interaction explained in terms
of quarks and gluons. Note that the
exchanged quark pair makes up a
�� meson.
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998 Chapter 30 Nuclear Energy and Elementary Particles

and are different manifestations of a single unifying electroweak interaction. The
photon and the three massive bosons (W and Z0) play a key role in the elec-
troweak theory. The theory makes many concrete predictions, but perhaps the
most spectacular is the prediction of the masses of the W and Z particles at about
82 GeV/c2 and 93 GeV/c2, respectively. A 1984 Nobel Prize was awarded to Carlo
Rubbia and Simon van der Meer for their work leading to the discovery of these
particles at just those energies at the CERN Laboratory in Geneva, Switzerland.

The combination of the electroweak theory and QCD for the strong interaction
form what is referred to in high energy physics as the Standard Model. Although the
details of the Standard Model are complex, its essential ingredients can be summa-
rized with the help of Figure 30.13. The strong force, mediated by gluons, holds
quarks together to form composite particles such as protons, neutrons, and mesons.
Leptons participate only in the electromagnetic and weak interactions. The electro-
magnetic force is mediated by photons, and the weak force is mediated by W and Z
bosons. Note that all fundamental forces are mediated by bosons (particles with spin
1) whose properties are given, to a large extent, by symmetries involved in the theories.

However, the Standard Model does not answer all questions. A major question
is why the photon has no mass while the W and Z bosons do. Because of this mass
difference, the electromagnetic and weak forces are quite distinct at low energies,
but become similar in nature at very high energies, where the rest energies of the
W and Z bosons are insignificant fractions of their total energies. This behavior
during the transition from high to low energies, called symmetry breaking, doesn’t
answer the question of the origin of particle masses. To resolve that problem, a
hypothetical particle called the Higgs boson has been proposed which provides a
mechanism for breaking the electroweak symmetry and bestowing different parti-
cle masses on different particles. The Standard Model, including the Higgs mecha-
nism, provides a logically consistent explanation of the massive nature of the W
and Z bosons. Unfortunately, the Higgs boson has not yet been found, but physi-
cists know that its mass should be less than 1 TeV/c2 (1012 eV).

In order to determine whether the Higgs boson exists, two quarks of at least 1 TeV
of energy must collide, but calculations show that this requires injecting 40 TeV of
energy within the volume of a proton. Scientists are convinced that because of the
limited energy available in conventional accelerators using fixed targets, it is neces-
sary to build colliding-beam accelerators called colliders. The concept of a collider
is straightforward. In such a device, particles with equal masses and kinetic ener-
gies, traveling in opposite directions in an accelerator ring, collide head-on to pro-
duce the required reaction and the formation of new particles. Because the total
momentum of the interacting particles is zero, all of their kinetic energy is avail-
able for the reaction. The Large Electron–Positron (LEP) collider at CERN, near
Geneva, Switzerland, and the Stanford Linear Collider in California collide both
electrons and positrons. The Super Proton Synchrotron at CERN accelerates
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Figure 30.13 The Standard Model
of particle physics.

Co
ur

te
sy

 o
f C

ER
N

A view from inside the Large 
Electron–Positron (LEP) collider tun-
nel, which is 27 km in circumference.

44920_30_p973-1008  1/15/05  10:54 AM  Page 998
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protons and antiprotons to energies of 270 GeV, and the world’s highest-energy
proton acclerator, the Tevatron, at the Fermi National Laboratory in Illinois, pro-
duces protons at almost 1 000 GeV (or 1 TeV). CERN has started construction of
the Large Hadron Collider (LHC), a proton–proton collider that will provide a
center-of-mass energy of 14 TeV and allow an exploration of Higgs-boson physics.
The accelerator is being constructed in the same 27-km circumference tunnel as
CERN’s LEP collider, and construction is expected to be completed in 2005.

Following the success of the electroweak theory, scientists attempted to com-
bine it with QCD in a grand unification theory (GUT). In this model, the elec-
troweak force was merged with the strong color force to form a grand unified
force. One version of the theory considers leptons and quarks as members of the
same family that are able to change into each other by exchanging an appropriate
particle. Many GUT theories predict that protons are unstable and will decay with
a lifetime of about 1031 years, a period far greater than the age of the Universe. As
yet, proton decays have not been observed.

Consider a car making a head-on collision with an
identical car moving in the opposite direction at the
same speed. Compare that collision to one in which
one of the cars collides with a second car that is at
rest. In which collision is there a larger transformation
of kinetic energy to other forms? How does this idea
relate to producing exotic particles in collisions?

Explanation In the head-on collision with both cars
moving, conservation of momentum causes most, if
not all, of the kinetic energy to be transformed to
other forms. In the collision between a moving car and

a stationary car, the cars are still moving after the colli-
sion in the direction of the moving car, but with re-
duced speed. Thus, only part of the kinetic energy is
transformed to other forms. This suggests the advan-
tage of using colliding beams to produce exotic parti-
cles, as opposed to firing a beam into a stationary tar-
get. When particles moving in opposite directions
collide, all of the kinetic energy is available for trans-
formation into other forms— in this case, the creation
of new particles. When a beam is fired into a stationary
target, only part of the energy is available for transfor-
mation, so particles of higher mass cannot be created.

Applying Physics 30.4 Head-on Collisions

30.15 THE COSMIC CONNECTION
In this section we describe one of the most fascinating theories in all of science—
the Big Bang theory of the creation of the Universe—and the experimental
evidence that supports it. This theory of cosmology states that the Universe had a be-
ginning and that this beginning was so cataclysmic that it is impossible to look back
beyond it. According to the theory, the Universe erupted from an infinitely dense
singularity about 15 to 20 billion years ago. The first few minutes after the Big Bang
saw such extremes of energy that it is believed that all four interactions of physics
were unified and all matter was contained in an undifferentiated “quark soup.”

The evolution of the four fundamental forces from the Big Bang to the
present is shown in Figure 30.14. During the first 10�43 s (the ultrahot epoch, with
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Figure 30.14 A brief history of the
Universe from the Big Bang to the
present. The four forces became
distinguishable during the first
microsecond. Following this, all the
quarks combined to form particles
that interact via the strong force. The
leptons remained separate, however,
and exist as individually observable
particles to this day.
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1000 Chapter 30 Nuclear Energy and Elementary Particles

T � 1032 K), it is presumed that the strong, electroweak, and gravitational forces
were joined to form a completely unified force. In the first 10�35 s following the
Big Bang (the hot epoch, with T � 1029 K), gravity broke free of this unification
and the strong and electroweak forces remained as one, described by a grand uni-
fication theory. This was a period when particle energies were so great 
(� 1016 GeV) that very massive particles as well as quarks, leptons, and their an-
tiparticles, existed. Then, after 10�35 s, the Universe rapidly expanded and cooled
(the warm epoch, with T � 1029 to 1015 K), the strong and electroweak forces
parted company, and the grand unification scheme was broken. As the Universe
continued to cool, the electroweak force split into the weak force and the electro-
magnetic force about 10�10 s after the Big Bang.

After a few minutes, protons condensed out of the hot soup. For half an hour
the Universe underwent thermonuclear detonation, exploding like a hydrogen
bomb and producing most of the helium nuclei now present. The Universe con-
tinued to expand, and its temperature dropped. Until about 700 000 years after
the Big Bang, the Universe was dominated by radiation. Energetic radiation
prevented matter from forming single hydrogen atoms because collisions would
instantly ionize any atoms that might form. Photons underwent continuous
Compton scattering from the vast number of free electrons, resulting in a
Universe that was opaque to radiation. By the time the Universe was about 700 000
years old, it had expanded and cooled to about 3 000 K, and protons could bind to
electrons to form neutral hydrogen atoms. Because the energies of the atoms were
quantized, far more wavelengths of radiation were not absorbed by atoms than
were, and the Universe suddenly became transparent to photons. Radiation no
longer dominated the Universe, and clumps of neutral matter grew steadily—first
atoms, followed by molecules, gas clouds, stars, and finally galaxies.

Observation of Radiation from the Primordial Fireball
In 1965 Arno A. Penzias (b. 1933) and Robert W. Wilson (b. 1936) of Bell Laborato-
ries made an amazing discovery while testing a sensitive microwave receiver. A pesky
signal producing a faint background hiss was interfering with their satellite commu-
nications experiments. In spite of their valiant efforts, the signal remained. Ulti-
mately it became clear that they were observing microwave background radiation
(at a wavelength of 7.35 cm) representing the leftover “glow” from the Big Bang.

The microwave horn that served as their receiving antenna is shown in Figure
30.15. The intensity of the detected signal remained unchanged as the antenna
was pointed in different directions. The fact that the radiation had equal strengths
in all directions suggested that the entire Universe was the source of this radiation.
Evicting a flock of pigeons from the 20-foot horn and cooling the microwave
detector both failed to remove the signal. Through a casual conversation, Penzias
and Wilson discovered that a group at Princeton had predicted the residual radia-
tion from the Big Bang and were planning an experiment to confirm the theory.
The excitement in the scientific community was high when Penzias and Wilson
announced that they had already observed an excess microwave background
compatible with a 3-K blackbody source.

Because Penzias and Wilson made their measurements at a single wavelength,
they did not completely confirm the radiation as 3-K blackbody radiation. Subse-
quent experiments by other groups added intensity data at different wavelengths,
as shown in Figure 30.16. The results confirm that the radiation is that of a black-
body at 2.9 K. This figure is perhaps the most clear-cut evidence for the Big Bang
theory. The 1978 Nobel Prize in physics was awarded to Penzias and Wilson for
their important discovery.

The discovery of the cosmic background radiation produced a problem, however:
the radiation was too uniform. Scientists believed there had to be slight fluctuations
in this background in order for such objects as galaxies to form. In 1989, NASA
launched a satellite called the Cosmic Background Explorer (COBE, pronounced
KOH-bee) to study this radiation in greater detail. In 1992, George Smoot

GEORGE GAMOW
(1904–1968)
Gamow and two of his students, Ralph
Alpher and Robert Herman, were the first
to take the first half hour of the Universe
seriously. In a mostly overlooked paper
published in 1948, they made truly
remarkable cosmological predictions. They
correctly calculated the abundances of
hydrogen and helium after the first half
hour (75% H and 25% He) and predicted
that radiation from the Big Bang should
still be present and have an apparent
temperature of about 5 K.
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Figure 30.15 Robert W. Wilson
(left) and Arno A. Penzias (right), with
Bell Telephone Laboratories’ horn-
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(b. 1945) at the Lawrence Berkeley Laboratory found that the background was not
perfectly uniform, but instead contained irregularities corresponding to tempera-
ture variations of 0.000 3 K. It is these small variations that provided nucleation
sites for the formation of the galaxies and other objects we now see in the sky.

30.16 PROBLEMS AND PERSPECTIVES
While particle physicists have been exploring the realm of the very small, cosmolo-
gists have been exploring cosmic history back to the first microsecond of the Big
Bang. Observation of the events that occur when two particles collide in an accel-
erator is essential in reconstructing the early moments in cosmic history. Perhaps
the key to understanding the early Universe is first to understand the world of
elementary particles. Cosmologists and particle physicists find that they have many
common goals and are joining efforts to study the physical world at its most funda-
mental level.

Our understanding of physics at short and long distances is far from complete.
Particle physics is faced with many questions: why is there so little antimatter in the
Universe? Do neutrinos have a small mass, and if so, how much do they contribute
to the “dark matter” holding the universe together gravitationally? How can we
understand the latest astronomical measurements, which show that the expansion
of the universe is accelerating and that there may be a kind of “antigravity force”
acting between widely separated galaxies? Is it possible to unify the strong and
electroweak theories in a logical and consistent manner? Why do quarks and lep-
tons form three similar but distinct families? Are muons the same as electrons
(apart from their different masses), or do they have subtle differences that have
not been detected? Why are some particles charged and others neutral? Why do
quarks carry a fractional charge? What determines the masses of the fundamental
particles? The questions go on and on. Because of the rapid advances and new dis-
coveries in the related fields of particle physics and cosmology, by the time you
read this book some of these questions may have been resolved and others may
have emerged.

An important question that remains is whether leptons and quarks have a sub-
structure. If they do, one could envision an infinite number of deeper structure
levels. However, if leptons and quarks are indeed the ultimate constituents of mat-
ter, as physicists today tend to believe, we should be able to construct a final theory
of the structure of matter, as Einstein dreamed of doing. In the view of many physi-
cists, the end of the road is in sight, but how long it will take to reach that goal is
anyone’s guess.
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Figure 30.16 Theoretical blackbody (brown
curve) and measured radiation spectra (blue
points) of the Big Bang. Most of the data were
collected from the Cosmic Background Explorer
(COBE) satellite. The datum of Wilson and
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SUMMARY
Take a practice test by logging into

PhysicsNow at www.cp7e.com and clicking on the Pre-
Test link for this chapter.

30.1 Nuclear Fission &

30.2 Nuclear Reactors

In nuclear fission, the total mass of the products is al-
ways less than the original mass of the reactants. Nuclear
fission occurs when a heavy nucleus splits, or fissions,
into two smaller nuclei. The lost mass is transformed
into energy, electromagnetic radiation, and the kinetic
energy of daughter particles.

A nuclear reactor is a system designed to maintain a
self-sustaining chain reaction. Nuclear reactors using
controlled fission events are currently being used to
generate electric power. A useful parameter for de-
scribing the level of reactor operation is the reproduc-
tion constant K, which is the average number of 
neutrons from each fission event that will cause an-
other event. A self-sustaining reaction is achieved
when K � 1.

30.3 Nuclear Fusion

In nuclear fusion, two light nuclei combine to form 
a heavier nucleus. This type of nuclear reaction 
occurs in the Sun, assisted by a quantum tunneling
process that helps particles get through the Coulomb
barrier.

Controlled fusion events offer the hope of plentiful
supplies of energy in the future. The nuclear fusion re-
actor is considered by many scientists to be the ultimate
energy source because its fuel is water. Lawson’s crite-
rion states that a fusion reactor will provide a net output
power if the product of the plasma ion density n and
the plasma confinement time 	 satisfies the following
relationships:

n	 
 1014 s/cm3 Deuterium– tritium interaction [30.5]

n	 
 1016 s/cm3 Deuterium–deuterium interaction

30.5 The Fundamental Forces of 
Nature

There are four fundamental forces of nature: the strong
(hadronic), electromagnetic, weak, and gravitational
forces. The strong force is the force between nucleons
that keeps the nucleus together. The weak force is re-
sponsible for beta decay. The electromagnetic and weak

forces are now considered to be manifestations of a sin-
gle force called the electroweak force.

Every fundamental interaction is said to be mediated
by the exchange of field particles. The electromagnetic
interaction is mediated by the photon, the weak interac-
tion by the W and Z0 bosons, the gravitational
interaction by gravitons, and the strong interaction by
gluons.

30.6 Positrons and Other 
Antiparticles

An antiparticle and a particle have the same mass, but
opposite charge, and may also have other properties
with opposite values, such as lepton number and baryon
number. It is possible to produce particle–antiparticle
pairs in nuclear reactions if the available energy is
greater than 2mc2, where m is the mass of the particle
(or antiparticle).

30.8 Classification of Particles

Particles other than photons are classified as hadrons
or leptons. Hadrons interact primarily through the
strong force. They have size and structure and hence
are not elementary particles. There are two types of
hadrons: baryons and mesons. Mesons have a baryon
number of zero and have either zero or integer spin.
Baryons, which generally are the most massive parti-
cles, have nonzero baryon numbers and spins of 1/2
or 3/2. The neutron and proton are examples of
baryons.

Leptons have no known structure, down to the limits
of current resolution (about 10�19 m). Leptons interact
only through the weak and electromagnetic forces.
There are six leptons: the electron, e�; the muon, ��;
the tau, 	�; and their associated neutrinos, �e , ��, 
and �	.

30.9 Conservation Laws &

30.10 Strange Particles and 
Strangeness

In all reactions and decays, quantities such as energy,
linear momentum, angular momentum, electric charge,
baryon number, and lepton number are strictly con-
served. Certain particles have properties called strange-
ness and charm. These unusual properties are con-
served only in those reactions and decays that occur via
the strong force.
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Problems 1003

CONCEPTUAL QUESTIONS
1. If high-energy electrons with de Broglie wavelengths

smaller than the size of the nucleus are scattered
from nuclei, the behavior of the electrons is consis-
tent with scattering from very massive structures
much smaller in size than the nucleus, namely,
quarks. How is this similar to a classic experiment
that detected small structures in an atom?

2. What factors make a fusion reaction difficult to
achieve?

3. Doubly charged baryons are known to exist. Why
are there no doubly charged mesons?

4. Why would a fusion reactor produce less radioactive
waste than a fission reactor?

5. Atoms didn’t exist until hundreds of thousands of
years after the Big Bang. Why?

6. Particles known as resonances have very short half-
lives, on the order of 10�23 s. Would you guess they
are hadrons or leptons?

7. Describe the quark model of hadrons, including the
properties of quarks.

8. In the theory of quantum chromodynamics,
quarks come in three colors. How would you jus-
tify the statement “All baryons and mesons are 
colorless?”

9. Describe the properties of baryons and mesons and
the important differences between them.

10. Identify the particle decays in Table 30.2 that occur
by the electromagnetic interaction. Justify your 
answer.

11. Kaons all decay into final states that contain no pro-
tons or neutrons. What is the baryon number of
kaons?

12. When an electron and a positron meet at low speeds
in free space, why are two 0.511-MeV gamma rays
produced, rather than one gamma ray with an en-
ergy of 1.02 MeV ?

13. Two protons in a nucleus interact via the strong in-
teraction. Are they also subject to a weak interac-
tion?

14. Why is a neutron stable inside the nucleus? (In free
space, the neutron decays in 900 s.)

15. An antibaryon interacts with a meson. Can a baryon
be produced in such an interaction? Explain.

16. Why is water a better shield against neutrons than
lead or steel is?

17. How many quarks are there in (a) a baryon, (b) an an-
tibaryon, (c) a meson, and (d) an antimeson? How do
you account for the fact that baryons have half-inte-
gral spins and mesons have spins of 0 or 1? [Hint :
quarks have spin .]1

2

30.12 Quarks &

30.13 Colored Quarks

Recent theories postulate that all hadrons are composed
of smaller units known as quarks which have fractional
electric charges and baryon numbers of 1/3 and come
in six “flavors”: up, down, strange, charmed, top, and
bottom. Each baryon contains three quarks, and each
meson contains one quark and one antiquark.

According to the theory of quantum
chromodynamics, quarks have a property called color,
and the strong force between quarks is referred to as the
color force. The color force increases as the distance 
between particles increases, so quarks are confined 
and are never observed in isolation. When two bound
quarks are widely separated, a new quark–antiquark
pair forms between them, and the single particle breaks

into two new particles, each composed of a quark–
antiquark pair.

30.15 The Cosmic Connection

Observation of background microwave radiation by Pen-
zias and Wilson strongly confirmed that the Universe
started with a Big Bang about 15 billion years ago and
has been expanding ever since. The background radia-
tion is equivalent to that of a blackbody at a tempera-
ture of about 3 K.

The cosmic microwave background has very small ir-
regularities, corresponding to temperature variations of
0.000 3 K. Without these irregularities acting as nucleation
sites, particles would never have clumped together to form
galaxies and stars.
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PROBLEMS
1, 2, 3 � straightforward, intermediate, challenging � � full solution available in Student Solutions Manual/Study Guide 

� coached problem with hints available at www.cp7e.com = biomedical application

Section 30.1 Nuclear Fission
Section 30.2 Nuclear Reactors

1. If the average energy released in a fission event is 
208 MeV, find the total number of fission events re-
quired to operate a 100-W lightbulb for 1.0 h.

2. Find the energy released in the fission reaction

The atomic masses of the fission products are
97.912 0 u for Zr and 134.908 7 u for Te.

3. Find the energy released in the following fission re-
action:

4. Strontium-90 is a particularly dangerous fission
product of 235U because it is radioactive and it sub-
stitutes for calcium in bones. What other direct fis-
sion products would accompany it in the neutron-
induced fission of 235U? [Note : This reaction may
release two, three, or four free neutrons.]

Assume that ordinary soil contains natural uranium in
amounts of 1 part per million by mass. (a) How much
uranium is in the top 1.00 meter of soil on a 1-acre
(43 560-ft2) plot of ground, assuming the specific
gravity of soil is 4.00? (b) How much of the isotope
235U, appropriate for nuclear reactor fuel, is in this
soil? [Hint : See Appendix B for the percent abun-
dance of .]

6. A typical nuclear fission power plant produces
about 1.00 GW of electrical power. Assume that
the plant has an overall efficiency of 40.0% and

235
92U

5.

1
0n � 235

92U  :  88
38Sr � 136

54Xe � 121
0n

135
52

98
40

n � 235
92U  :  98

40Zr � 135
52Te � 3n

that each fission produces 200 MeV of thermal 
energy. Calculate the mass of 235U consumed 
each day.

7. Suppose that the water exerts an average frictional
drag of 1.0 � 105 N on a nuclear-powered ship.
How far can the ship travel per kilogram of fuel if
the fuel consists of enriched uranium containing
1.7% of the fissionable isotope 235U and the ship’s
engine has an efficiency of 20%? (Assume 
208 MeV is released per fission event.)

8. It has been estimated that the Earth contains 
1.0 � 109 tons of natural uranium that can be
mined economically. If all the world’s energy
needs (7.0 � 1012 J/s) were supplied by 235U 
fission, how long would this supply last? [Hint : 
See Appendix B for the percent abundance 
of U.]

An all-electric home uses approxi-
mately 2 000 kWh of electric energy per month.
How much uranium-235 would be required to pro-
vide this house with its energy needs for 1 year? (As-
sume 100% conversion efficiency and 208 MeV re-
leased per fission.)

Section 30.3 Nuclear Fusion

10. Find the energy released in the fusion reaction

H � H : He � �

When a star has exhausted its hydrogen fuel, it may
fuse other nuclear fuels. At temperatures above 
1.0 � 108 K, helium fusion can occur. Write the
equations for the following processes: (a) Two alpha

11.

3
2

2
1

1
1

9.

235
92

18. A typical chemical reaction is one in which a water
molecule is formed by combining hydrogen and
oxygen. In such a reaction, about 2.5 eV of energy
is released. Compare this reaction to a nuclear
event such as .
Would you expect the energy released in this nu-
clear event to be much greater, much less, or
about the same as that released in the chemical re-
action? Explain.

1
0n � 235

92U  :   136
53 I � 98

39 Y � 21
0n

19. The neutral � meson decays by the strong interac-
tion into two pions according to ,
with a half-life of about 10�23 s. The neutral K
meson also decays into two pions according to

, but with a much longer half-life 
of about 10�10 s. How do you explain these obser-
vations?

K0 :  � � � ��

�0 :  �� � ��
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particles fuse to produce a nucleus A and a gamma
ray. What is nucleus A? (b) Nucleus A absorbs an al-
pha particle to produce a nucleus B and a gamma
ray. What is nucleus B? (c) Find the total energy re-
leased in the reactions given in (a) and (b). [Note :
The mass of Be � 8.005 305 u.]

12. Another series of nuclear reactions that can pro-
duce energy in the interior of stars is the cycle de-
scribed below. This cycle is most efficient when the
central temperature in a star is above 1.6 � 107 K.
Because the temperature at the center of the Sun is
only 1.5 � 107 K, the following cycle produces less
than 10% of the Sun’s energy. (a) A high-energy
proton is absorbed by 12C. Another nucleus, A, is
produced in the reaction, along with a gamma ray.
Identify nucleus A. (b) Nucleus A decays through
positron emission to form nucleus B. Identify nucleus
B. (c) Nucleus B absorbs a proton to produce nu-
cleus C and a gamma ray. Identify nucleus C. 
(d) Nucleus C absorbs a proton to produce nucleus
D and a gamma ray. Identify nucleus D. (e) Nucleus
D decays through positron emission to produce nu-
cleus E. Identify nucleus E. (f) Nucleus E absorbs a
proton to produce nucleus F plus an alpha particle.
What is nucleus F ? [Note : If nucleus F is not 12C—
that is, the nucleus you started with—you have
made an error and should review the sequence of
events.]

13. If an all-electric home uses approximately 
2 000 kWh of electric energy per month, how many
fusion events described by the reaction

would be required to keep
this home running for one year?

14. To understand why plasma containment is neces-
sary, consider the rate at which an unconfined
plasma would be lost. (a) Estimate the rms speed of
deuterons in a plasma at 4.00 � 108 K. (b) Estimate
the order of magnitude of the time such a plasma
would remain in a 10-cm cube if no steps were
taken to contain it.

15. The oceans have a volume of 317 million cubic miles
and contain 1.32 � 1021 kg of water. Of all the hydro-
gen nuclei in this water, 0.030 0% of the mass is 
deuterium. (a) If all of these deuterium nuclei 
were fused to helium via the first reaction in Equa-
tion 30.4, determine the total amount of energy 
that could be released. (b) The present world elec-
tric power consumption is about 7.00 � 1012 W. 
If consumption were 100 times greater, how
many years would the energy supply calculated in
part (a) last?

2
1H � 3

1H  : 4
2He � 1

0n

8
4

Section 30.6 Positrons and Other 
Antiparticles

16. Two photons are produced when a proton and an
antiproton annihilate each other. What is the mini-
mum frequency and corresponding wavelength of
each photon?

A photon produces a proton–
antiproton pair according to the reaction

. What is the minimum possible fre-
quency of the photon? What is its wavelength?

18. A photon with an energy of 2.09 GeV creates a 
proton–antiproton pair in which the proton has a
kinetic energy of 95.0 MeV. What is the kinetic en-
ergy of the antiproton?

Section 30.7 Mesons and the Beginning of Particle
Physics

19. When a high-energy proton or pion traveling near
the speed of light collides with a nucleus, it travels
an average distance of 3.0 � 10�15 m before inter-
acting with another particle. From this information,
estimate the time for the strong interaction to 
occur.

Calculate the order of magnitude of the range of the
force that might be produced by the virtual exchange
of a proton.

21. One of the mediators of the weak interaction is the
Z0 boson, which has a mass of 96 GeV/c2. Use this
information to find an approximate value for the
range of the weak interaction.

22. If a �0 at rest decays into two �’s, what is the energy
of each of the �’s?

Section 30.9 Conservation Laws
Section 30.10 Strange Particles and 
Strangeness

23. Each of the following reactions is forbidden. Deter-
mine a conservation law that is violated for each 
reaction.
(a) 
(b) �� � p : p � ��

(c) p � p : p � ��

(d) p � p : p � p � n
(e) � � p : n � �0

p � p : �� � e�

20.

� : p � p

17.
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24. For the following two reactions, the first may occur
but the second cannot. Explain.

K0 : �� � �� (can occur)

�0 : �� � �� (cannot occur)

Identify the unknown particle on
the left side of the reaction

? � p : n � ��

26. Determine the type of neutrino or antineutrino in-
volved in each of the following processes:
(a) �� : �0 � e� � ?
(b) ? � p : �� � p � ��

(c) �0 : p � �� � ?
(d) 	� : �� � ? � ?

27. The following reactions or decays involve one or
more neutrinos. Supply the missing neutrinos.
(a) �� : �� � ?
(b) K� : �� � ?
(c) ? � p : n � e�

(d) ? � n : p � e�

(e) ? � n : p � ��

(f) �� : e� � ? � ?

28. Determine which of the reactions below can occur.
For those that cannot occur, determine the conser-
vation law (or laws) that each violates:
(a) p : �� � �0

(b) p � p : p � p � �0

(c) p � p : p � ��

(d) �� : �� � ��

(e) n : p � e� �
(f) �� : �� � n

29. Which of the following processes are allowed by the
strong interaction, the electromagnetic interaction,
the weak interaction, or no interaction at all?
(a) �� � p : 2�0

(b) K� � n : �0 � ��

(c) K� : �� � �0

(d) �� : �� � �0

(e) �0 : 2�

A K0 particle at rest decays into a �� and a ��. What
will be the speed of each of the pions? The mass of
the K0 is 497.7 MeV/c2 and the mass of each pion is
139.6 MeV/c2.

31. Determine whether or not strangeness is conserved
in the following decays and reactions:
(a) �0 : p � ��

(b) �� � p : �0 � K0

(c) p � p : �0 � �0

30.

�e

25.

(d) �� � p : �� � ��

(e) �� : �0 � ��

(f) �0 : p � ��

32. Fill in the missing particle. Assume that (a) occurs
via the strong interaction while (b) and (c) involve
the weak interaction.
(a) K� � p : ____ � p
(b) �� : ____ � ��

(c) K� : ____ � �� � ��

33. Identify the conserved quantities in the following
processes:
(a) �� : �0 � �� � ��

(b) K0 : 2�0

(c) K� � p : �0 � n
(d) �0 : �0 � �
(e) e� � e� : �� � ��

(f) 

Section 30.12 Quarks
Section 30.13 Colored Quarks

34. The quark composition of the proton is uud, while
that of the neutron in udd. Show that the charge,
baryon number, and strangeness of these particles
equal the sums of these numbers for their quark
constituents.

Find the number of electrons, and of each species
of quark, in 1 L of water.

36. The quark compositions of the K0 and �0 particles
are and uds, respectively. Show that the charge,
baryon number, and strangeness of these particles
equal the sums of these numbers for the quark con-
stituents.

37. Identify the particles corresponding to the following
quark states: (a) suu; (b) ; (c) ; (d) ssd.

38. What is the electrical charge of the baryons with the
quark compositions (a) and (b) ? What are
these baryons called?

39. Analyze the first three of the following reactions at
the quark level, and show that each conserves the
net number of each type of quark; then, in the last
reaction, identify the mystery particle:
(a) �� � p : K0 � �0

(b) �� � p : K� � ��

(c) K� � p : K� � K0 � ��

(d) p � p : K0 � p � �� � ?

ud du u d

sdud

ds

35.

p � n : �0 � ��
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40. Assume binding energies can be neglected. Find the
masses of the u and d quarks from the masses of the
proton and neutron.

ADDITIONAL PROBLEMS

A �0 particle traveling through matter strikes a pro-
ton and a ��, and a gamma ray, as well as a third
particle, emerges. Use the quark model of each to
determine the identity of the third particle.

42. It was stated in the text that the reaction
occurs with high probability,

whereas the reaction never oc-
curs. Analyze these reactions at the quark level and
show that the first conserves the net number of each
type of quark while the second does not.

43. Two protons approach each other with equal and
opposite velocities. Find the minimum kinetic en-
ergy of each of the protons if they are to produce a
�� meson at rest in the reaction

p � p : p � n � ��

44. Name at least one conservation law that prevents
each of the following reactions from occurring:
(a) �� � p : �� � �0

(b) �� : �� � �e
(c) p : �� � �� � ��

Find the energy released in the fu-
sion reaction

H � 3
2He : 4

2He � e� � �

46. Occasionally, high-energy muons collide with elec-
trons and produce two neutrinos according to the
reaction �� � e� : 2�. What kind of neutrinos are
these?

47. Each of the following decays is forbidden. For each
process, determine a conservation law that is vio-
lated:
(a) �� : e� � �
(b) n : p � e� � �e
(c) �0 : p � �0

(d) p : e� � �0

(e) �0 : n � �0

48. Two protons approach each other with 70.4 MeV of
kinetic energy and engage in a reaction in which a
proton and a positive pion emerge at rest. What
third particle, obviously uncharged and therefore
difficult to detect, must have been created?

45.

�� � p� : K0 � n
�� � p� : K0 � �0

41.

The atomic bomb dropped on Hiroshima on August
6, 1945, released 5 � 1013 J of energy (equivalent to
that from 12 000 tons of TNT). Estimate (a) the
number of U nuclei fissioned and (b) the mass of
this U.

50. A �0 particle at rest decays according to �0 : �0 �
�. Find the gamma-ray energy. [Hint : remember to
conserve momentum.]

51. If baryon number is not conserved, then one possi-
ble mechanism by which a proton can decay is

p : e� � �

Show that this reaction violates the conservation of
baryon number. (b) Assuming that the reaction oc-
curs and that the proton is initially at rest, deter-
mine the energy and momentum of the photon af-
ter the reaction. [Hint : recall that energy and
momentum must be conserved in the reaction.] 
(c) Determine the speed of the positron after the
reaction.

52. Classical general relativity views the space– time
manifold as a deterministic structure completely
well defined down to arbitrarily small distances. 
On the other hand, quantum general relativity for-
bids distances smaller than the Planck length 
L � (�G/c3)1/2. (a) Calculate the value of L. The
answer suggests that, after the Big Bang (when all
the known Universe was reduced to a singularity),
nothing could be observed until that singularity
grew larger than the Planck length, L. Since the size
of the singularity grew at the speed of light, we can
infer that during the time it took for light to travel
the Planck length, no observations were possible. 
(b) Determine this time (known as the Planck time
T), and compare it to the ultra-hot epoch discussed
in the text. (c) Does your answer to part (b) suggest
that we may never know what happened between the
time t � 0 and the time t � T ?

(a) Show that about 1.0 � 1010 J would be released
by the fusion of the deuterons in 1.0 gal of water.
Note that 1 out of every 6 500 hydrogen atoms is a
deuteron. (b) The average energy consumption rate
of a person living in the United States is about 1.0 �
104 J/s (an average power of 10 kW). At this rate,
how long would the energy needs of one person be
supplied by the fusion of the deuterons in 1.0 gal of
water? Assume that the energy released per
deuteron is 1.64 MeV.

54. Calculate the mass of 235U required to provide the
total energy requirements of a nuclear submarine

53.

235
92

235
92

49.
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during a 100-day patrol, assuming a constant power
demand of 100 000 kW, a conversion efficiency of
30%, and an average energy released per fission of
208 MeV.

55. A 2.0-MeV neutron is emitted in a fission reactor. If
it loses one-half of its kinetic energy in each colli-
sion with a moderator atom, how many collisions
must it undergo in order to achieve thermal energy
(0.039 eV)?
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A.1

APPENDIX A
Mathematical Review

A.1 MATHEMATICAL NOTATION
Many mathematical symbols are used throughout this book. You are no doubt
familiar with some, such as the symbol � to denote the equality of two quantities.

The symbol � denotes a proportionality. For example, y � x2 means that y is
proportional to the square of x.

The symbol � means is less than, and � means is greater than. For example, 
x � y means x is greater than y.

The symbol � means is much less than, and � means is much greater than.

The symbol � indicates that two quantities are approximately equal to each other.

The symbol � means is defined as. This is a stronger statement than a simple �.

It is convenient to use the notation �x (read as “delta x”) to indicate the change
in the quantity x. (Note that �x does not mean “the product of � and x.”) For exam-
ple, suppose that a person out for a morning stroll starts measuring her distance
away from home when she is 10 m from her doorway. She then moves along a
straight-line path and stops strolling 50 m from the door. Her change in position
during the walk is �x � 50 m 	 10 m � 40 m or, in symbolic form,

�x � xf 	 xi

In this equation xf is the final position and xi is the initial position.
We often have occasion to add several quantities. A useful abbreviation for rep-

resenting such a sum is the Greek letter 
 (capital sigma). Suppose we wish to add
a set of five numbers represented by x1 , x2 , x3 , x4 , and x5 . In the abbreviated no-
tation, we would write the sum as

where the subscript i on x represents any one of the numbers in the set. For exam-
ple, if there are five masses in a system, m1 , m2 , m3 , m4 , and m5 , the total mass of
the system M � m1 � m2 � m3 � m4 � m5 could be expressed as

Finally, the magnitude of a quantity x, written �x �, is simply the absolute value of
that quantity. The sign of �x � is always positive, regardless of the sign of x. For
example, if x � 	 5, �x � � 5; if x � 8, �x � � 8.

A.2 SCIENTIFIC NOTATION
Many quantities that scientists deal with often have very large or very small values.
For example, the speed of light is about 300 000 000 m/s and the ink required to
make the dot over an i in this textbook has a mass of about 0.000 000 001 kg. Obvi-
ously, it is cumbersome to read, write, and keep track of numbers such as these.
We avoid this problem by using a method dealing with powers of the number 10:

105 � 10 � 10 � 10 � 10 � 10 � 100 000

104 � 10 � 10 � 10 � 10 � 10 000 

103 � 10 � 10 � 10 � 1 000 

102 � 10 � 10 � 100 

101 � 10 

100 � 1 

M � �
5

i �1
 mi

x1 � x2 � x3 � x4 � x5 � �
5

i �1
 xi
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and so on. The number of zeros corresponds to the power to which 10 is raised,
called the exponent of 10. For example, the speed of light, 300 000 000 m/s, can
be expressed as 3 � 108 m/s.

For numbers less than one, we note the following:

In these cases, the number of places the decimal point is to the left of the digit 1
equals the value of the (negative) exponent. Numbers that are expressed as some
power of 10 multiplied by another number between 1 and 10 are said to be in 
scientific notation. For example, the scientific notation for 5 943 000 000 is 
5.943 � 109 and that for 0.000 083 2 is 8.32 � 10	5.

When numbers expressed in scientific notation are being multiplied, the follow-
ing general rule is very useful:

10n � 10m � 10n�m [A.1]

where n and m can be any numbers (not necessarily integers). For example, 
102 � 105 � 107. The rule also applies if one of the exponents is negative. For ex-
ample, 103 � 10	8 � 10	5.

When dividing numbers expressed in scientific notation, note that

[A.2]

EXERCISES
With help from the above rules, verify the answers to the following:

1. 86 400 � 8.64 � 104

2. 9 816 762.5 � 9.816 762 5 � 106

3. 0.000 000 039 8 � 3.98 � 10	8

4. (4.0 � 108)(9.0 � 109) � 3.6 � 1018

5. (3.0 � 107)(6.0 � 10	12) � 1.8 � 10	4

6.

7.

A.3 ALGEBRA
A. Some Basic Rules
When algebraic operations are performed, the laws of arithmetic apply. Symbols
such as x, y, and z are frequently used to represent quantities that are not speci-
fied, what are called the unknowns.

First, consider the equation

8x � 32

If we wish to solve for x, we can divide (or multiply) each side of the equation by
the same factor without destroying the equality. In this case, if we divide both sides

(3 � 106)(8 � 10	2)
(2 � 1017)(6 � 105)

� 2 � 10	18

75 � 10	11

5.0 � 10	3 � 1.5 � 10	7

10n

10m � 10n � 10	m � 10n	m

10	5 �
1

10 � 10 � 10 � 10 � 10
� 0.000 01

10	4 �
1

10 � 10 � 10 � 10
� 0.000 1 

10	3 �
1

10 � 10 � 10
� 0.001 

10	2 �
1

10 � 10
� 0.01 

10	1 �
1
10

� 0.1 
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by 8, we have

Next consider the equation

x � 2 � 8

In this type of expression, we can add or subtract the same quantity from each
side. If we subtract 2 from each side, we get

In general, if x � a � b, then x � b 	 a.
Now consider the equation

If we multiply each side by 5, we are left with x on the left by itself and 45 on the
right:

In all cases, whatever operation is performed on the left side of the equality must
also be performed on the right side.

The following rules for multiplying, dividing, adding, and subtracting fractions
should be recalled, where a, b, and c are three numbers:

Rule Example

Multiplying

Dividing

Adding

EXERCISES
In the following exercises, solve for x:

ANSWERS

1.

2.

3.

4.

B. Powers
When powers of a given quantity x are multiplied, the following rule applies:

xnxm � xn�m [A.3]

For example, x2x4 � x2�4 � x6.

x � 	
11
7

5
2x � 6

�
3

4x � 8

x �
7

a 	 b
ax 	 5 � bx � 2

x � 63x 	 5 � 13

x �
1 	 a

a
a �

1
1 � x

2
3

	
4
5

�
(2)(5) 	 (4)(3)

(3)(5)
� 	

2
15

a
b


c
d

�
ad  bc

bd

2/3
4/5

�
(2)(5)
(4)(3)

�
10
12

(a/b)
(c/d)

�
ad
bc

� 2
3 � � 4

5 � �
8

15� a
b � � c

d � �
ac
bd

 x � 45 

� x
5 � (5) � 9 � 5

x
5

� 9

 x � 6 

x � 2 	 2 � 8 	 2

 x � 4 

8x
8

�
32
8
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When dividing the powers of a given quantity, note that

[A.4]

For example, x8/x2 � x8 	 2 � x6.
A power that is a fraction, such as corresponds to a root as follows:

[A.5]

For example, (A scientific calculator is useful for such
calculations.)

Finally, any quantity xn that is raised to the mth power is

(xn)m � xnm [A.6]

Table A.1 summarizes the rules of exponents.

EXERCISES
Verify the following:

1.
2.
3.
4. (Use your calculator.)
5. (Use your calculator.)
6.

C. Factoring
Some useful formulas for factoring an equation are

D. Quadratic Equations
The general form of a quadratic equation is

[A.7]

where x is the unknown quantity and a, b, and c are numerical factors referred to
as coefficients of the equation. This equation has two roots, given by

[A.8]

If b2 � 4ac, the roots will be real.

x �
	b  √b2 	 4ac

2a

ax2 � bx � c � 0

 a2 	 b2 � (a � b)(a 	 b)    differences of squares

a2 � 2ab � b2 � (a � b)2  perfect square 

 ax � ay � az � a(x � y � z)  common factor 

(x4)3 � x12
601/4 � 2.783 158
51/3 � 1.709 975
x10/x	5 � x15
x5x	8 � x	3
32 � 33 � 243

41/3 � √3 4 � 1.587 4.

x1/n � √n x

1
3,

xn

xm � xn	m

EXAMPLE
The equation x2 � 5x � 4 � 0 has the following roots corresponding to the two signs of the square root term:

that is,

where x� refers to the root corresponding to the positive sign and x	 refers to the root corresponding to the
negative sign.

	4x	 �
	5 	 3

2
�	1x� �

	5 � 3
2

�

x �
	5  √52 	 (4)(1)(4)

2(1)
�

	5  √9
2

�
	5  3

2

TABLE A.1
Rules of Exponents

 (xn)m � xnm 
 x1/n � √n x 

xn/xm � xn	m
 xnxm � xn�m

 x1 � x 
 x0 � 1 
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EXERCISES
Solve the following quadratic equations:

ANSWERS

1.
2.
3.

E. Linear Equations
A linear equation has the general form

[A.9]

where a and b are constants. This equation is referred to as being linear because
the graph of y versus x is a straight line, as shown in Figure A.1. The constant b,
called the intercept, represents the value of y at which the straight line intersects
the y axis. The constant a is equal to the slope of the straight line. If any two points
on the straight line are specified by the coordinates (x1, y1) and (x2, y2), as in Fig-
ure A.1, then the slope of the straight line can be expressed

[A.10]

Note that a and b can have either positive or negative values. If a � 0, the
straight line has a positive slope, as in Figure A.1. If a � 0, the straight line has a
negative slope. In Figure A.1, both a and b are positive. Three other possible situa-
tions are shown in Figure A.2: a � 0, b � 0; a � 0, b � 0; and a � 0, b � 0.

EXERCISES

1. Draw graphs of the following straight lines:
(a) (b) (c)

2. Find the slopes of the straight lines described in Exercise 1.
Answers: (a) 5 (b) 	 2 (c) 	 3

3. Find the slopes of the straight lines that pass through the following sets of
points: (a) (0, 	 4) and (4, 2), (b) (0, 0) and (2, 	 5), and (c) (	 5, 2)
and (4, 	2)
Answers: (a) (b) (c)

F. Solving Simultaneous Linear Equations
Consider an equation such as 3x � 5y � 15, which has two unknowns, x and y.
Such an equation does not have a unique solution. That is, (x � 0, y � 3), 
(x � 5, y � 0) and (x � 2, y � ) are all solutions to this equation.

If a problem has two unknowns, a unique solution is possible only if we have two
independent equations. In general, if a problem has n unknowns, its solution re-
quires n independent equations. In order to solve two simultaneous equations in-
volving two unknowns, x and y, we solve one of the equations for x in terms of y
and substitute this expression into the other equation.

9
5

	4
9	5

2
3
2

y � 	3x 	 6y � 	2x � 4y � 5x � 3

Slope �
y2 	 y1

x2 	 x1
�

�y
�x

y � ax � b

x	 � 1 	 √22/2x� � 1 � √22/22x2 	 4x 	 9 � 0
x	 � 1/2x� � 22x2 	 5x � 2 � 0
x	 � 	3x� � 1x2 � 2x 	 3 � 0

EXAMPLE
Solve the following two simultaneous equations:

(1) (2)

Solution From (2), we find that Substitution of this into (1) givesx � y � 2.

2x 	 2y � 45x � y � 	8

Figure A.1

Figure A.2

y

(x1, y1)

(x2, y2)

∆y

∆x(0, b)

(0, 0) x
u

u

y
(1)

(2)

(3)

a > 0
b < 0

a < 0
b > 0

a < 0
b < 0

x
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Alternate Solution Multiply each term in (1) by the factor 2 and add the result to (2):

	3y � x 	 2 �

	1x �

12x � 	12

2x 	 2y � 4

10x � 2y � 	16

	1x � y � 2 �

y � 	3

6y � 	18

5(y � 2) � y � 	8

Two linear equations with two unknowns can also be solved by a graphical
method. If the straight lines corresponding to the two equations are plotted in a
conventional coordinate system, the intersection of the two lines represents the so-
lution. For example, consider the two equations

These are plotted in Figure A.3. The intersection of the two lines has the coordi-
nates x � 5, y � 3. This represents the solution to the equations. You should check
this solution by the analytical technique discussed above.

EXERCISES
Solve the following pairs of simultaneous equations involving two unknowns:

ANSWERS

1.

2.

3.

G. Logarithms
Suppose that a quantity x is expressed as a power of some quantity a:

[A.11]

The number a is called the base number. The logarithm of x with respect to the
base a is equal to the exponent to which the base must be raised in order to satisfy
the expression 

[A.12]

Conversely, the antilogarithm of y is the number x :

[A.13]

In practice, the two bases most often used are base 10, called the common loga-
rithm base, and base e � 2.718 . . . , called the natural logarithm base. When
common logarithms are used,

[A.14]y � log10 x    (or x � 10 y)

x � antiloga y

y � loga x

x � a y:

x � a y

8x 	 4y � 28
x � 2, y � 	36x � 2y � 6

T 	 49 � 5a
T � 65, a � 3.2798 	 T � 10a

x 	 y � 2
x � 5, y � 3x � y � 8

x 	 2y � 	1

 x 	 y � 2 

5
4
3
2
1

x – 2y = –1

1 2 3 4 5 6

(5, 3)

x

x – y = 2

y

Figure A.3
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A.5 Trigonometry A.7

When natural logarithms are used,

[A.15]

For example, log10 52 � 1.716, so that antilog10 1.716 � 101.716 � 52. Likewise, 
lne 52 � 3.951, so antilne 3.951 � e3.951 � 52.

In general, note that you can convert between base 10 and base e with the
equality

[A.16]

Finally, some useful properties of logarithms are

A.4 GEOMETRY
Table A.2 gives the areas and volumes for several geometric shapes used through-
out this text:

ln � 1
a � � � ln alog (an) � n log a

ln ea � alog (a/b) � log a � log b

ln e � 1log (ab) � log a � log b

lne x � (2.302 585)log10 x

y � lne x    (or x � e y)

A.5 TRIGONOMETRY
Some of the most basic facts concerning trigonometry are presented in Chapter 1,
and we encourage you to study the material presented there if you are having trou-
ble with this branch of mathematics. In addition to the discussion of Chapter 1,
certain useful trig identities that can be of value to you follow.

 cos(� � �) � cos � cos � � sin � sin �

 sin(� � �) � sin � cos � � cos � sin �

 cos 2� � cos2 � � sin2 � 

 sin 2� � 2 sin � cos � 

 cos � � sin(90	 � �) 

 sin � � cos(90	 � �) 

sin2 � � cos2 � � 1 

Rectangle

w

r

Circle

Triangle

h

Sphere

r

Cylinder

Rectangular box

r

�
Volume = pr 2�

Surface area = 4pr 2

Volume = 4
3

Surface area =
2(�h + �w + hw)
Volume = �wh

w
h

Area =   bh1
2

  Area = pr 2

Circumference = 2pr

Area = �w

b �

�

Surface area = 2pr 2 + 2pr�

pr 3

TABLE A.2
Useful Information for Geometry
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A.8 Appendix A Mathematical Review

The following relationships apply to any triangle, as shown in Figure A.4:

Law of cosines

Law of sines
a

sin �
�

b
sin �

�
c

sin �

c2 � a2 � b2 	 2ab cos �

b2 � a2 � c2 	 2ac cos �

a2 � b2 � c2 	 2bc cos �

� � � � � � 180°

a b

c

g

ab

Figure A.4
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A.9

APPENDIX B
An Abbreviated Table of Isotopes

Mass
Number

Atomic Chemical (* Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

0 (Neutron) n 1* 1.008 665 10.4 min
1 Hydrogen H 1.007 94 1 1.007 825 99.988 5

Deuterium D 2 2.014 102 0.011 5
Tritium T 3* 3.016 049 12.33 yr

2 Helium He 4.002 602 3 3.016 029 0.000 137
4 4.002 603 99.999 863

3 Lithium Li 6.941 6 6.015 122 7.5
7 7.016 004 92.5

4 Beryllium Be 9.012 182 7* 7.016 929 53.3 days
9 9.012 182 100

5 Boron B 10.811 10 10.012 937 19.9
11 11.009 306 80.1

6 Carbon C 12.010 7 10* 10.016 853 19.3 s
11* 11.011 434 20.4 min
12 12.000 000 98.93
13 13.003 355 1.07
14* 14.003 242 5 730 yr

7 Nitrogen N 14.006 7 13* 13.005 739 9.96 min
14 14.003 074 99.632
15 15.000 109 0.368

8 Oxygen O 15.999 4 15* 15.003 065 122 s
16 15.994 915 99.757
18 17.999 160 0.205

9 Fluorine F 18.998 403 2 19 18.998 403 100
10 Neon Ne 20.179 7 20 19.992 440 90.48

22 21.991 385 9.25
11 Sodium Na 22.989 77 22* 21.994 437 2.61 yr

23 22.989 770 100
24* 23.990 963 14.96 h

12 Magnesium Mg 24.305 0 24 23.985 042 78.99
25 24.985 837 10.00
26 25.982 593 11.01

13 Aluminum Al 26.981 538 27 26.981 539 100
14 Silicon Si 28.085 5 28 27.976 926 92.229 7
15 Phosphorus P 30.973 761 31 30.973 762 100

32* 31.973 907 14.26 days
16 Sulfur S 32.066 32 31.972 071 94.93

35* 34.969 032 87.5 days
17 Chlorine Cl 35.452 7 35 34.968 853 75.78

37 36.965 903 24.22
18 Argon Ar 39.948 40 39.962 383 99.600 3
19 Potassium K 39.098 3 39 38.963 707 93.258 1

40* 39.963 999 0.011 7 1.28 � 109 yr

(Continued)
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A.10 Appendix B An Abbreviated Table of Isotopes

Mass
Number

Atomic Chemical (* Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

20 Calcium Ca 40.078 40 39.962 591 96.941

21 Scandium Sc 44.955 910 45 44.955 910 100

22 Titanium Ti 47.867 48 47.947 947 73.72

23 Vanadium V 50.941 5 51 50.943 964 99.750

24 Chromium Cr 51.996 1 52 51.940 512 83.789

25 Manganese Mn 54.938 049 55 54.938 050 100

26 Iron Fe 55.845 56 55.934 942 91.754

27 Cobalt Co 58.933 200 59 58.933 200 100

60* 59.933 822 5.27 yr

28 Nickel Ni 58.693 4 58 57.935 348 68.076 9

60 59.930 790 26.223 1

29 Copper Cu 63.546 63 62.929 601 69.17

65 64.927 794 30.83

30 Zinc Zn 65.39 64 63.929 147 48.63

66 65.926 037 27.90

68 67.924 848 18.75

31 Gallium Ga 69.723 69 68.925 581 60.108

71 70.924 705 39.892

32 Germanium Ge 72.61 70 69.924 250 20.84

72 71.922 076 27.54

74 73.921 178 36.28

33 Arsenic As 74.921 60 75 74.921 596 100

34 Selenium Se 78.96 78 77.917 310 23.77

80 79.916 522 49.61

35 Bromine Br 79.904 79 78.918 338 50.69

81 80.916 291 49.31

36 Krypton Kr 83.80 82 81.913 485 11.58

83 82.914 136 11.49

84 83.911 507 57.00

86 85.910 610 17.30

37 Rubidium Rb 85.467 8 85 84.911 789 72.17

87* 86.909 184 27.83 4.75 � 1010 yr

38 Strontium Sr 87.62 86 85.909 262 9.86

88 87.905 614 82.58

90* 89.907 738 29.1 yr

39 Yttrium Y 88.905 85 89 88.905 848 100

40 Zirconium Zr 91.224 90 89.904 704 51.45

91 90.905 645 11.22

92 91.905 040 17.15

94 93.906 316 17.38

41 Niobium Nb 92.906 38 93 92.906 378 100

42 Molybdenum Mo 95.94 92 91.906 810 14.84

95 94.905 842 15.92

96 95.904 679 16.68

98 97.905 408 24.13

43 Technetium Tc 98* 97.907 216 4.2 � 106 yr

99* 98.906 255 2.1 � 105 yr

44337_ApB_pA9-A13  11/5/04  10:17 AM  Page 10



An Abbreviated Table of Isotopes A.11

Mass
Number

Atomic Chemical (* Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

44 Ruthenium Ru 101.07 99 98.905 939 12.76
100 99.904 220 12.60
101 100.905 582 17.06
102 101.904 350 31.55
104 103.905 430 18.62

45 Rhodium Rh 102.905 50 103 102.905 504 100
46 Palladium Pd 106.42 104 103.904 035 11.14

105 104.905 084 22.33
106 105.903 483 27.33
108 107.903 894 26.46
110 109.905 152 11.72

47 Silver Ag 107.868 2 107 106.905 093 51.839
109 108.904 756 48.161

48 Cadmium Cd 112.411 110 109.903 006 12.49
111 110.904 182 12.80
112 111.902 757 24.13
113* 112.904 401 12.22 9.3 � 1015 yr
114 113.903 358 28.73

49 Indium In 114.818 115* 114.903 878 95.71 4.4 � 1014 yr
50 Tin Sn 118.710 116 115.901 744 14.54

118 117.901 606 24.22
120 119.902 197 32.58

51 Antimony Sb 121.760 121 120.903 818 57.21
123 122.904 216 42.79

52 Tellurium Te 127.60 126 125.903 306 18.84
128* 127.904 461 31.74 �8 � 1024 yr
130* 129.906 223 34.08 � 1.25 � 1021 yr

53 Iodine I 126.904 47 127 126.904 468 100
129* 128.904 988 1.6 � 107 yr

54 Xenon Xe 131.29 129 128.904 780 26.44
131 130.905 082 21.18
132 131.904 145 26.89
134 133.905 394 10.44
136* 135.907 220 8.87 �2.36 � 1021 yr

55 Cesium Cs 132.905 45 133 132.905 447 100
56 Barium Ba 137.327 137 136.905 821 11.232

138 137.905 241 71.698
57 Lanthanum La 138.905 5 139 138.906 349 99.910
58 Cerium Ce 140.116 140 139.905 434 88.450

142* 141.909 240 11.114 �5 � 1016 yr
59 Praseodymium Pr 140.907 65 141 140.907 648 100
60 Neodymium Nd 144.24 142 141.907 719 27.2

144* 143.910 083 23.8 2.3 � 1015 yr
146 145.913 112 17.2

61 Promethium Pm 145* 144.912 744 17.7 yr
62 Samarium Sm 150.36 147* 146.914 893 14.99 1.06 � 1011 yr

149* 148.917 180 13.82 �2 � 1015 yr
152 151.919 728 26.75
154 153.922 205 22.75

(Continued)
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A.12 Appendix B An Abbreviated Table of Isotopes

Mass
Number

Atomic Chemical (* Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

63 Europium Eu 151.964 151 150.919 846 47.81
153 152.921 226 52.19

64 Gadolinium Gd 157.25 156 155.922 120 20.47
158 157.924 100 24.84
160 159.927 051 21.86

65 Terbium Tb 158.925 34 159 158.925 343 100
66 Dysprosium Dy 162.50 162 161.926 796 25.51

163 162.928 728 24.90
164 163.929 171 28.18

67 Holmium Ho 164.930 32 165 164.930 320 100
68 Erbium Er 167.6 166 165.930 290 33.61

167 166.932 045 22.93
168 167.932 368 26.78

69 Thulium Tm 168.934 21 169 168.934 211 100
70 Ytterbium Yb 173.04 172 171.936 378 21.83

173 172.938 207 16.13
174 173.938 858 31.83

71 Lutecium Lu 174.967 175 174.940 768 97.41
72 Hafnium Hf 178.49 177 176.943 220 18.60

178 177.943 698 27.28
179 178.945 815 13.62
180 179.946 549 35.08

73 Tantalum Ta 180.947 9 181 180.947 996 99.988
74 Tungsten W 183.84 182 181.948 206 26.50

(Wolfram) 183 182.950 224 14.31
184* 183.950 933 30.64 �3 � 1017 yr
186 185.954 362 28.43

75 Rhenium Re 186.207 185 184.952 956 37.40
187* 186.955 751 62.60 4.4 � 1010 yr

76 Osmium Os 190.23 188 187.955 836 13.24
189 188.958 145 16.15
190 189.958 445 26.26
192 191.961 479 40.78

77 Iridium Ir 192.217 191 190.960 591 37.3
193 192.962 924 62.7

78 Platinum Pt 195.078 194 193.962 664 32.967
195 194.964 774 33.832
196 195.964 935 25.242

79 Gold Au 196.966 55 197 196.966 552 100
80 Mercury Hg 200.59 199 198.968 262 16.87

200 199.968 309 23.10
201 200.970 285 13.18
202 201.970 626 29.86

81 Thallium Tl 204.383 3 203 202.972 329 29.524
205 204.974 412 70.476

(Th C�) 208* 207.982 005 3.053 min
(Ra C�) 210* 209.990 066 1.30 min
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An Abbreviated Table of Isotopes A.13

Mass
Number

Atomic Chemical (* Indicates Half-Life
Number Atomic Radioactive) Atomic Percent (If Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

82 Lead Pb 207.2 204* 203.973 029 1.4 �1.4 � 1017 yr

206 205.974 449 24.1
207 206.975 881 22.1
208 207.976 636 52.4

(Ra D) 210* 209.984 173 22.3 yr
(Ac B) 211* 210.988 732 36.1 min
(Th B) 212* 211.991 888 10.64 h
(Ra B) 214* 213.999 798 26.8 min

83 Bismuth Bi 208.980 38 209 208.980 383 100
(Th C) 211* 210.987 258 2.14 min

84 Polonium Po
(Ra F) 210* 209.982 857 138.38 days
(Ra C�) 214* 213.995 186 164 �s

85 Astatine At 218* 218.008 682 1.6 s
86 Radon Rn 222* 222.017 570 3.823 days
87 Francium Fr

(Ac K) 223* 223.019 731 22 min
88 Radium Ra 226* 226.025 403 1 600 yr

(Ms Th1) 228* 228.031 064 5.75 yr
89 Actinium Ac 227* 227.027 747 21.77 yr
90 Thorium Th 232.038 1

(Rd Th) 228* 228.028 731 1.913 yr
(Th) 232* 232.038 050 100 1.40 � 1010 yr

91 Protactinium Pa 231.035 88 231* 231.035 879 32.760 yr
92 Uranium U 238.028 9 232* 232.037 146 69 yr

233* 233.039 628 1.59 � 105 yr
(Ac U) 235* 235.043 923 0.720 0 7.04 � 108 yr

236* 236.045 562 2.34 � 107 yr
(UI) 238* 238.050 783 99.274 5 4.47 � 109 yr

93 Neptunium Np 237* 237.048 167 2.14 � 106 yr
94 Plutonium Pu 239* 239.052 156 2.412 � 104 yr

242* 242.058 737 3.73 � 106 yr
244* 244.064 198 8.1 � 107 yr

aChemical atomic masses are from T. B. Coplen, “Atomic Weights of the Elements 1999,” a technical report to the International Union of Pure and Applied Chemistry,
and published in Pure and Applied Chemistry, 73(4), 667–683, 2001. Atomic masses of the isotopes are from G. Audi and A. H. Wapstra, “The 1995 Update to the Atomic
Mass Evaluation,” Nuclear Physics, A595, vol. 4, 409–480, December 25, 1995. Percent abundance values are from K. J. R. Rosman and P. D. P. Taylor, “Isotopic Composi-
tions of the Elements 1999”, a technical report to the International Union of Pure and Applied Chemistry, and published in Pure and Applied Chemistry, 70(1), 217–236,
1998.
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A.14

APPENDIX C
Some Useful Tables

TABLE C.1
Mathematical Symbols Used in the Text and Their Meaning
Symbol Meaning

� is equal to
� is not equal to
� is defined as
� is proportional to
� is greater than
� is less than
� is much greater than
� is much less than
� is approximately equal to
� is on the order of magnitude of
�x change in x or uncertainty in x
	xi sum of all quantities xi

�x � absolute value of x (always a positive quantity)

TABLE C.2
Standard Symbols for Units
Symbol Unit Symbol Unit

A ampere kcal kilocalorie
Å angstrom kg kilogram
atm atmosphere km kilometer
Bq bequerel kmol kilomole
Btu British thermal unit L liter
C coulomb lb pound
°C degree Celsius ly light year
cal calorie m meter
cm centimeter min minute
Ci curie mol mole
d day N newton
deg degree (angle) nm nanometer
eV electronvolt Pa pascal
°F degree Fahrenheit rad radian
F farad rev revolution
ft foot s second
G Gauss T tesla
g gram u atomic mass unit
H henry V volt
h hour W watt
hp horsepower Wb weber
Hz hertz yr year
in. inch 
m micrometer
J joule � ohm
K kelvin
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Some Useful Tables A.15

TABLE C.3
The Greek Alphabet
Alpha �  Nu � �

Beta � � Xi � �

Gamma � � Omicron � �

Delta � � Pi � �

Epsilon � � Rho � �

Zeta �  Sigma 	 !

Eta " # Tau $ %

Theta & ' Upsilon ( )

Iota * + Phi , -

Kappa . / Chi 0 1

Lambda 2 3 Psi 4 5

Mu 6 
 Omega � 7

TABLE C.4
Physical Data Often Useda

Average Earth-Moon distance 3.84 8 108 m
Average Earth-Sun distance 1.496 8 1011 m
Equatorial radius of Earth 6.38 8 106 m
Density of air (20°C and 1 atm) 1.20 kg/m3

Density of water (20°C and 1 atm) 1.00 8 103 kg/m3

Free-fall acceleration 9.80 m/s2

Mass of Earth 5.98 8 1024 kg
Mass of Moon 7.36 8 1022 kg
Mass of Sun 1.99 8 1030 kg
Standard atmospheric pressure 1.013 8 105 Pa

a These are the values of the constants as used in the text.

TABLE C.5
Some Fundamental Constantsa

Quantity Symbol Valueb

Atomic mass unit u 1.660 540 2(10) 8 10927 kg
931.494 32(28) MeV/c2

Avogadro’s number NA 6.022 136 7(36) 8 1023 (mol)91

Bohr radius 0.529 177 249(24) 8 10910 m

Boltzmann’s constant kB � R/NA 1.380 658(12) 8 10923 J/K

Compton wavelength 2.426 310 58(22) 8 10912 m

Coulomb constant 8.987 551 787 8 109 N : m2/C2 (exact)

Electron mass me 9.109 389 7(54) 8 10931 kg
5.485 799 03(13) 8 1094 u
0.510 999 06(15) MeV/c2

Electron volt eV 1.602 177 33(49) 8 10919 J
Elementary charge e 1.602 177 33(49) 8 10919 C
Gas constant R 8.314 510(70) J/K : mol
Gravitational constant G 6.672 59(85) 8 10911 N : m2/kg2

Hydrogen ionization energy 13.605 698(40) eV

Neutron mass mn 1.674 928 6(10) 8 10927 kg
1.008 664 904(14) u
939.565 63(28) MeV/c2

Permeability of free space 
0 4� 8 1097 T : m/A (exact)
Permittivity of free space �0 � 1/
0c2 8.854 187 817 8 10912 C2/N : m2 (exact)
Planck’s constant h 6.626 075(40) 8 10934 J : s

; � h/2� 1.054 572 66(63) 8 10934 J : s
Proton mass mp 1.672 623(10) 8 10927 kg

1.007 276 470(12) u
938.272 3(28) MeV/c2

Rydberg constant RH 1.097 373 153 4(13) 8 107 m91

Speed of light in vacuum c 2.997 924 58 8 108 m/s (exact)

a These constants are the values recommended in 1986 by CODATA, based on a least-squares adjustment of data from different
measurements. For a more complete list, see Cohen, E. Richard, and Barry N. Taylor, Rev. Mod. Phys. 59:1121, 1987.

b The numbers in parentheses for the values below represent the uncertainties in the last two digits.

9E1 �
me e4ke 

2

2;2 �
e2ke

2a0

ke �
1

4��0

3 C �
h

me c

a0 �
;2

me e 2ke
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A.16

TABLE D.2
Derived SI Units

Expression in Expression in
Terms of Base Terms of

Quantity Name Symbol Units Other SI Units

Plane angle radian rad m/m
Frequency hertz Hz s�1

Force newton N kg � m/s2 J/m
Pressure pascal Pa kg/m � s2 N/m2

Energy: work joule J kg � m2/s2 N � m
Power watt W kg � m2/s3 J/s
Electric charge coulomb C A � s
Electric potential (emf) volt V kg � m2/A � s3 W/A, J/C
Capacitance farad F A2 � s4/kg � m2 C/V
Electric resistance ohm � kg � m2/A2 � s3 V/A
Magnetic flux weber Wb kg � m2/A � s2 V � s, T � m2

Magnetic field intensity tesla T kg/A � s2 Wb/m2

Inductance henry H kg � m2/A2 � s2 Wb/A

TABLE D.1
SI Base Units

SI Base Unit

Base Quantity Name Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

APPENDIX D
SI Units
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A.17

Chapter 15
QUICK QUIZZES

1. (b)
2. (b)
3. (c)
4. (a)
5. (c) and (d)
6. (a)
7. (c)
8. (b)
9. (d)

10. (b) and (d)

CONCEPTUAL QUESTIONS
1. Electrons have been removed from the object.
3. The configuration shown is inherently unstable. The neg-

ative charges repel each other. If there is any slight rota-
tion of one of the rods, the repulsion can result in further
rotation away from this configuration. There are three
conceivable final configurations shown below. Configura-
tion (a) is stable: If the positive upper ends are pushed
towards each other, their mutual repulsion will move the
system back to the original configuration. Configuration
(b) is an equilibrium configuration, but it is unstable: If
the lower ends are moved towards each other, their
mutual attraction will be larger than that of the upper
ends, and the configuration will shift to (c), another pos-
sible stable configuration.

7. An object’s mass decreases very slightly (immeasurably)
when it is given a positive charge, because it loses elec-
trons. When the object is given a negative charge, its mass
increases slightly because it gains electrons.

9. Electric field lines start on positive charges and end on
negative charges. Thus, if the fair-weather field is directed
into the ground, the ground must have a negative charge.

11. The two charged plates create a region with a uniform
electric field between them, directed from the positive to-
ward the negative plate. Once the ball is disturbed so as to
touch one plate (say, the negative one), some negative
charge will be transferred to the ball and it will be acted
upon by an electric force that will accelerate it to the posi-
tive plate. Once the ball touches the positive plate, it will
release its negative charge, acquire a positive charge, and
accelerate back to the negative plate. The ball will con-
tinue to move back and forth between the plates until it
has transferred all their net charge, thereby making both
plates neutral.

13. The electric shielding effect of conductors depends on
the fact that there are two kinds of charge: positive and
negative. As a result, charges can move within the conduc-
tor so that the combination of positive and negative
charges establishes an electric field that exactly cancels
the external field within the conductor and any cavities
inside the conductor. There is only one type of gravitation
charge, however, because there is no negative mass. As a
result, gravitational shielding is not possible.

15. The electric field patterns of each of these three configu-
rations do not have sufficient symmetry to make the calcu-
lations practical. Gauss’s law is useful only for calculating
the electric fields of highly symmetric charge distribu-
tions, such as uniformly charged spheres, cylinders, and
sheets.

17. No, the wall is not positively charged. The balloon in-
duces a charge of opposite sign in the wall, causing the
balloon and the wall to be attracted to each other. The
balloon eventually falls because its charge slowly dimin-
ishes after leaking to ground. Some of the balloon’s
charge could also be lost due to positive ions in the sur-
rounding atmosphere, which would tend to neutralize the
negative charges on the balloon.

19. When the comb is nearby, charges separate on the paper,
and the paper is attracted to the comb. After contact,
charges from the comb are transferred to the paper, so
that it has the same type of charge as the comb. The pa-
per is thus repelled.

21. The attraction between the ball and the object could be
an attraction of unlike charges, or it could be an attrac-
tion between a charged object and a neutral object as a re-
sult of polarization of the molecules of the neutral object.
Two additional experiments could help us determine
whether the object is charged. First, a known neutral ball
could be brought near the object, and if there is an
attraction, the object is negatively charged. Another possi-
bility is to bring a known negatively charged ball near the

(a)

–

+

–

+

(b)

–

+

+

–

(c)

+ –+ –

Figure Q15.3

Answers to Quick Quizzes,
Odd-Numbered Conceptual Questions 

and Problems

5. Move an object A with a net positive charge so it is near,
but not touching, a neutral metallic object B that is insu-
lated from the ground. The presence of A will polarize B,
causing an excess negative charge to exist on the side
nearest A and an excess positive charge of equal magni-
tude to exist on the side farthest from A. While A is still
near B, touch B with your hand. Additional electrons will
then flow from ground, through your body and onto B.
With A continuing to be near but not in contact with B,
remove your hand from B, thus trapping the excess elec-
trons on B. When A is now removed, B is left with excess
electrons, or a net negative charge.  By means of mutual
repulsion, this negative charge will now spread uniformly
over the entire surface of B.

44920_Ans_pA17-A32  1/14/05  1:05 PM  Page A.17



A.18 Answers to Quick Quizzes, Odd-Numbered Conceptual Questions and Problems

object. In that case, if there is a repulsion, then the object
is negatively charged. If there is an attraction, then the
object is neutral.

PROBLEMS
1. 1.1 � 10�8 N (attractive)
3. 91 N (repulsion)
5. (a) 36.8 N (b) 5.54 � 1027 m/s2

7. 5.12 � 105 N
9. (a) 2.2 � 10�5 N (attraction)

(b) 9.0 � 10�7 N (repulsion)
11. 1.38 � 10�5 N at 77.5° below the negative x -axis
13. 0.872 N at 30.0° below the positive x -axis
15. 7.2 nC
17. 1.5 � 10�3 C
19. 7.20 � 105 N/C (downward)
21. 1.2 � 104 N/C
23. (a) 6.12 � 1010 m/s2 (b) 19.6 �s (c) 11.8 m

(d) 1.20 � 10�15 J
25. zero
27. 1.8 m to the left of the �2.5-�C charge
33. (a) 0 (b) 5 �C inside, � 5 �C outside (c) 0 inside,

� 5 �C outside (d) 0 inside, � 5 �C outside
35. 1.3 � 10�3 C
37. (a) 4.8 � 10�15 N (b) 2.9 � 1012 m/s2

39. (a) 858 N � m2/C (b) 0 (c) 657 N � m2/C
41. 4.1 � 106 N/C
43. (a) 0 (b) keq/r 2 outward
47. 57.5 N
49. 24 N/C in the positive x -direction
51. (a) E � 2keqb (a2 � b2)�3/2 in the positive x -direction

(b) E � keQb(a2 � b2)�3/2 in the positive x -direction
53. (a) 0 (b) 7.99 � 107 N/C (outward)

(c) 0 (d) 7.34 � 106 N/C (outward)
55. 3.55 � 105 N � m2/C
57. 4.4 � 105 N/C
59. (a) 10.9 nC (b) 5.44 � 10�3 N
61. �10�7 C
63. (a) 1.00 � 103 N/C (b) 3.37 � 10�8 s (c) accelerate at

1.76 � 1014 m/s2 in the direction opposite that of the
electric field

Chapter 16
QUICK QUIZZES

1. (b)
2. (b), (d)
3. (d)
4. (c)
5. (a)
6. (c)
7. (a) C decreases. (b) Q stays the same. (c) E stays

the same. (d) �V increases. (e) The energy stored
increases.

8. (a) C increases. (b) Q increases. (c) E stays the same.
(d) �V remains the same. (e) The energy stored increases.

9. (a)

CONCEPTUAL QUESTIONS

1. (a) The proton moves in a straight line with constant ac-
celeration in the direction of the electric field. (b) As its
velocity increases, its kinetic energy increases and the elec-
tric potential energy associated with the proton decreases.

3. The work done in pulling the capacitor plates farther
apart is transferred into additional electric energy stored
in the capacitor. The charge is constant and the capaci-
tance decreases, but the potential difference between the
plates increases, which results in an increase in the stored
electric energy.

5. If the power line makes electrical contact with the metal
of the car, it will raise the potential of the car to 20 kV. It
will also raise the potential of your body to 20 kV, because
you are in contact with the car. In itself, this is not a prob-
lem. If you step out of the car, however, your body at
20 kV will make contact with the ground, which is at zero
volts. As a result, a current will pass through your body
and you will likely be injured. Thus, it is best to stay in the
car until help arrives.

7. If two points on a conducting object were at different po-
tentials, then free charges in the object would move and
we would not have static conditions, in contradiction to
the initial assumption. (Free positive charges would mi-
grate from locations of higher to locations of lower poten-
tial. Free electrons would rapidly move from locations of
lower to locations of higher potential.) All of the charges
would continue to move until the potential became equal
everywhere in the conductor.

9. The capacitor often remains charged long after the volt-
age source is disconnected. This residual charge can be
lethal. The capacitor can be safely handled after discharg-
ing the plates by short-circuiting the device with a conduc-
tor, such as a screwdriver with an insulating handle.

11. Field lines represent the direction of the electric force on
a positive test charge. If electric field lines were to cross,
then, at the point of crossing, there would be an ambigu-
ity regarding the direction of the force on the test charge,
because there would be two possible forces there. Thus,
electric field lines cannot cross. It is possible for equipo-
tential surfaces to cross. (However, equipotential surfaces
at different potentials cannot intersect.) For example,
suppose two identical positive charges are at diagonally
opposite corners of a square and two negative charges of
equal magnitude are at the other two corners. Then the
planes perpendicular to the sides of the square at their
midpoints are equipotential surfaces. These two planes
cross each other at the line perpendicular to the square at
its center.

13. You should use a dielectric-filled capacitor whose dielec-
tric constant is very large. Further, you should make the
dielectric as thin as possible, keeping in mind that dielec-
tric breakdown must also be considered.

15. (a) ii (b) i
17. It would make no difference at all. An electron volt is the

kinetic energy gained by an electron in being accelerated
through a potential difference of 1 V. A proton acceler-
ated through 1 V would have the same kinetic energy, be-
cause it carries the same charge as the electron (except
for the sign). The proton would be moving in the oppo-
site direction and more slowly after accelerating through
1 V, due to its opposite charge and its larger mass, but it
would still gain 1 electron volt, or 1 proton volt, of kinetic
energy.

PROBLEMS
1. (a) 6.40 � 10�19 J (b) �6.40 � 10�19 J (c) �4.00 V
3. 1.4 � 10�20 J

44920_Ans_pA17-A32  1/14/05  1:05 PM  Page A.18



Answers to Quick Quizzes, Odd-Numbered Conceptual Questions and Problems A.19

5. 1.7 � 106 N/C
7. (a) 1.13 � 105 N/C (b) 1.80 � 10�14 N

(c) 4.38 � 10�17 J
9. (a) 0.500 m (b) 0.250 m

11. (a) 1.44 � 10�7 V (b) �7.19 � 10�8 V
13. (a) 2.67 � 106 V (b) 2.13 � 106 V
15. (a) 103 V (b) �3.85 � 10�7 J; positive work must be done

to separate the charges.
17. �11.0 kV
19. 2.74 � 10�14 m
21. 0.719 m, 1.44 m, 2.88 m. No. The equipotentials are not

uniformly spaced. Instead, the radius of an equipotenial is
inversely proportional to the potential.

23. (a) 1.1 � 10�8 F (b) 27 C
25. (a) 11.1 kV/m toward the negative plate (b) 3.74 pF

(c) 74.7 pC and �74.7 pC
27. (a) 90.4 V (b) 9.04 � 104 V/m
29. (a) 13.3 �C on each (b) 20.0 �C, 40.0 �C
31. (a) 2.00 �F (b) Q 3 � 24.0 �C, Q4 � 16.0 �C, 

Q 2 � 8.00 �C, (�V )2 � (�V )4 � 4.00 V, (�V )3 � 8.00 V
33. (a) 5.96 �F (b) Q 20 � 89.5 �C, Q6 � 63.2 �C, 

Q 3 � Q 15 � 26.3 �C
35. Q1 � 16.0 �C, Q 5 � 80.0 �C, Q 8 � 64.0 �C, 

Q4 � 32.0 �C
37. (a) Q 25 � 1.25 mC, Q40 � 2.00 mC (b) Q�25 � 288 �C,

Q�40 � 462 �C, �V � 11.5 V
39. Q�1 � 3.33 �C, Q�2 � 6.67 �C
41. 83.6 �C
43. 2.55 � 10�11 J
45. 3.2 � 1010 J
47. 	 � 4.0
49. (a) 8.13 nF (b) 2.40 kV
51. (a) volume 9.09 � 10�16 m3, area 4.54 � 10�10 m2

(b) 2.01 � 10�13 F (c) 2.01 � 10�14 C, 
1.26 � 105 electronic charges

55. 4.29 �F
57. 6.25 �F
59. 4.47 kV
61. 0.75 mC on C1, 0.25 mC on C2
65. 50 N

Chapter 17
QUICK QUIZZES

1. (d)
2. (b)
3. (c), (d)
4. (b)
5. (b)
6. (a)
7. (b)
8. (a)

CONCEPTUAL QUESTIONS

1. Charge. Because an ampere is a unit of current (1 A �
1 C/s) and an hour is a unit of time (1 h � 3 600 s), then
1 A � h � 3 600 C.

3. The gravitational force pulling the electron to the bottom
of a piece of metal is much smaller than the electrical re-
pulsion pushing the electrons apart. Thus, free electrons
stay distributed throughout the metal. The concept of
charges residing on the surface of a metal is true for a

metal with an excess charge. The number of free electrons
in an electrically neutral piece of metal is the same as the
number of positive ions—the metal has zero net charge.

5. A voltage is not something that “surges through” a com-
pleted circuit. A voltage is a potential difference that is ap-
plied across a device or a circuit. It would be more correct
to say “1 ampere of electricity surged through the victim’s
body.” Although this amount of current would have disas-
trous results on the human body, a value of 1 (ampere)
doesn’t sound as exciting for a newspaper article as 10 000
(volts). Another possibility is to write “10 000 volts of elec-
tricity were applied across the victim’s body,” which still
doesn’t sound quite as exciting.

7. We would conclude that the conductor is nonohmic.
9. The shape, dimensions, and the resistivity affect the resist-

ance of a conductor. Because temperature and impurities
affect the conductor’s resistivity, these factors also affect
resistance.

11. The radius of wire B is the square root of three times the
radius of wire A. Therefore the cross-sectional area of B
three times larger than that of A.

13. The drift velocity might increase steadily as time goes on,
because collisions between electrons and atoms in the
wire would be essentially nonexistent and the conduction
electrons would move with constant acceleration. The cur-
rent would rise steadily without bound also, because I is
proportional to the drift velocity.

15. Once the switch is closed, the line voltage is applied across
the bulb. As the voltage is applied across the cold filament
when it is first turned on, the resistance of the filament is
low, the current is high, and a relatively large amount of
power is delivered to the bulb. As the filament warms, its
resistance rises and the current decreases. As a result, the
power delivered to the bulb decreases. The large current
spike at the beginning of the bulb’s operation is the rea-
son that lightbulbs often fail just after they are turned on.

PROBLEMS
1. 3.00 � 1020 electrons move past in the direction opposite

to the current.
3. 2.00 C
5. 1.05 mA
7. 27 yr
9. (a) n is unaffected (b) vd is doubled

11. 32 V is 200 times larger than 0.16 V
13. 0.17 mm
15. (a) 30 
 (b) 4.7 � 10�4 
 � m
17. silver (� � 1.59 � 10�8 
 � m)
19. 256 

21. 1.98 A
23. 26 mA
25. (a) 5.89 � 10�2 
 (b) 5.45 � 10�2 

27. (a) 3.0 A (b) 2.9 A
29. (a) 1.2 
 (b) 8.0 � 10�4 (a 0.080% increase)
31. 5.00 A, 24.0 

33. 18 bulbs
35. 11.2 min
37. 34.4 

39. 1.6 cm
41. 295 metric tons/h
43. 26 cents
45. 23 cents
47. $1.2
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49. 1.1 km
51. 1.47 � 10�6 
 � m; differs by 2.0% from value in 

Table 17.1
53. (a) $3.06 (b) No. The circuit must be able to handle at

least 26 A.
55. (a) 667 A (b) 50.0 km 
57. 3.77 � 1028/m3

59. (a) 144 
 (b) 26 m (c) To fit the required length into a
small space. (d) 25 m

61. 37 M

63. 0.48 kg/s
65. (a) 2.6 � 10�5 
 (b) 76 kg
67. (a) 470 W (b) 1.60 mm or more (c) 2.93 mm or more

Chapter 18
QUICK QUIZZES

1. (a), (d)
2. (b)
3. (a)
4. Parallel : (a) unchanged (b) unchanged (c) increase

(d) decrease
5. Series : (a) decrease (b) decrease (c) decrease

(d) increase
6. (c)

CONCEPTUAL QUESTIONS

1. No. When a battery serves as a source and supplies cur-
rent to a circuit, the conventional current flows through
the battery from the negative terminal to the positive one.
However, when a source having a larger emf than the
battery is used to charge the battery, the conventional
current is forced to flow through the battery from the pos-
itive terminal to the negative one.

3. The total amount of energy delivered by the battery will
be less than W. Recall that a battery can be considered an
ideal, resistanceless battery in series with the internal re-
sistance. When the battery is being charged, the energy
delivered to it includes the energy necessary to charge the
ideal battery, plus the energy that goes into raising the
temperature of the battery due to I 2r heating in the inter-
nal resistance. This latter energy is not available during
discharge of the battery, when part of the reduced avail-
able energy again transforms into internal energy in the
internal resistance, further reducing the available energy
below W.

5. The starter in the automobile draws a relatively large cur-
rent from the battery. This large current causes a signifi-
cant voltage drop across the internal resistance of the bat-
tery. As a result, the terminal voltage of the battery is
reduced, and the headlights dim accordingly.

7. An electrical appliance has a given resistance. Thus, when
it is attached to a power source with a known potential dif-
ference, a definite current will be drawn, and the device
can therefore be labeled with both the voltage and the
current. Batteries, however, can be applied to a number of
devices. Each device will have a different resistance, so the
current will vary with the device. As a result, only the volt-
age of the battery can be specified.

9. Connecting batteries in parallel does not increase the
emf. A high-current device connected to two batteries
in parallel can draw currents from both batteries. Thus,

connecting the batteries in parallel increases the possible
current output and, therefore, the possible power output.

11. The lightbulb will glow for a very short while as the capac-
itor is being charged. Once the capacitor is almost totally
charged, the current in the circuit will be nearly zero and
the bulb will not glow.

13. The bird is resting on a wire of fixed potential. In order to
be electrocuted, a large potential difference is required
between the bird’s feet. The potential difference between
the bird’s feet is too small to harm the bird.

15. The junction rule is a statement of conservation of
charge. It says that the amount of charge that enters a
junction in some time interval must equal the charge that
leaves the junction in that time interval. The loop rule is a
statement of conservation of energy. It says that the in-
creases and decreases in potential around a closed loop in
a circuit must add to zero.

17. A few of the factors involved are as follows: the conductiv-
ity of the string (is it wet or dry?); how well you are insu-
lated from ground (are you wearing thick rubber- or
leather-soled shoes?); the magnitude of the potential dif-
ference between you and the kite; and the type and condi-
tion of the soil under your feet.

19. She will not be electrocuted if she holds onto only one
high-voltage wire, because she is not completing a circuit.
There is no potential difference across her body as long as
she clings to only one wire. However, she should release
the wire immediately once it breaks, because she will be-
come part of a closed circuit when she reaches the
ground or comes into contact with another object.

21. (a) The intensity of each lamp increases because lamp C is
short circuited and there is current (which increases) only
in lamps A and B. (b) The intensity of lamp C goes to zero
because the current in this branch goes to zero. (c) The
current in the circuit increases because the total resistance
decreases from 3R (with the switch open) to 2R (after the
switch is closed). (d) The voltage drop across lamps A and
B increases, while the voltage drop across lamp C becomes
zero. (e) The power dissipated increases from 2/3R (with
the switch open) to 2/2R (after the switch is closed).

23. The statement is false. The current in each bulb is the
same, because they are connected in series. The bulb that
glows brightest has the larger resistance and hence dissi-
pates more power

PROBLEMS
1. 4.92 

3. 73.8 W. Your circuit diagram will consist of two 0.800-


resistors in series with the 192-
 resistance of the bulb.
5. (a) 17.1 
 (b) 1.99 A for 4.00 
 and 9.00 
, 1.17 A for

7.00 
, 0.818 A for 10.0 

7. 2.5R
9. (a) 0.227 A (b) 5.68 V

11. 55 

13. 0.43 A
15. (a) Connect two 50-
 resistors in parallel, and then con-

nect this combination in series with a 20-
 resistor.
(b) Connect two 50-
 resistors in parallel, connect two

20-
 resistors in parallel, and then connect these two
combinations in series with each other.

17. 0.846 A downwards in the 8.00-
 resistor; 0.462 A
downwards in the middle branch; 1.31 A upwards in the
right-hand branch

�
�
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19. (a) 3.00 mA (b) � 19.0 V (c) 4.50 V
21. 10.7 V
23. (a) 0.385 mA, 3.08 mA, 2.69 mA

(b) 69.2 V, with c at the higher potential
25. I 1 � 3.5 A, I 2 � 2.5 A, I 3 � 1.0 A
27. I 30 � 0.353 A, I 5 � 0.118 A, I 20 � 0.471 A
29. �V2 � 3.05 V, �V3 � 4.57 V, �V4 � 7.38 V, �V5 � 1.62 V
31. (a) 12 s (b) 1.2 � 10�4 C
33. 1.3 � 10�4 C
35. 0.982 s
37. (a) heater, 10.8 A; toaster, 8.33 A; grill, 12.5 A

(b) I total � 31.6 A, so a 30-A breaker is insufficient.
39. (a) 6.25 A (b) 750 W
41. (a) 1.2 � 10�9 C, 7.3 � 109 K� ions. Not large, only

1e/290 A2

(b) 1.7 � 10�9 C, 1.0 � 1010 Na� ions (c) 0.83 �A
(d) 7.5 � 10�12 J

43. 11 nW
45. 7.5 

47. (a) 15 


(b) I1 � 1.0 A, I2 � I 3 � 0.50 A, I4 � 0.30 A, and 
I5 � 0.20 A

(c) (�V )ac � 6.0 V, (�V )ce � 1.2 V, (�V )ed � (�V )fd �
1.8 V, (�V )cd � 3.0 V, (�V )db � 6.0 V

(d) �ac � 6.0 W, �ce � 0.60 W, �ed � 0.54 W, �fd � 0.36 W,
�cd � 1.5 W, �db � 6.0 W

49. (a) 12.4 V (b) 9.65 V
51. I1 � 0, I2 � I3 � 0.50 A,
53. 112 V, 0.200 

55. (a) 

(b) Rx � 2.8 
 (inadequate grounding)

59. � �
(144 V2)R

(R � 10.0 
)2

Rx � R2 � 1
4R1

5. The magnetic force on a moving charged particle is always
perpendicular to the particle’s direction of motion. There is
no magnetic force on the charge when it moves parallel to
the direction of the magnetic field. However, the force on a
charged particle moving in an electric field is never zero
and is always parallel to the direction of the field. There-
fore, by projecting the charged particle in different direc-
tions, it is possible to determine the nature of the field.

7. The magnetic field produces a magnetic force on the
electrons moving toward the screen that produce the
image. This magnetic force deflects the electrons to
regions on the screen other than the ones to which they
are supposed to go. The result is a distorted image.

9. Such levitation could never occur. At the North Pole,
where Earth’s magnetic field is directed downward,
toward the equivalent of a buried south pole, a coffin
would be repelled if its south magnetic pole were directed
downward. However, equilibrium would be only transi-
tory, as any slight disturbance would upset the balance
between the magnetic force and the gravitational force.

11. If you were moving along with the electrons, you would
measure a zero current for the electrons, so they would
not produce a magnetic field according to your observa-
tions. However, the fixed positive charges in the metal
would now be moving backwards relative to you, creating
a current equivalent to the forward motion of the elec-
trons when you were stationary. Thus, you would measure
the same magnetic field as when you were stationary, but
it would be due to the positive charges presumed to be
moving from your point of view.

13. A compass does not detect currents in wires near light
switches, for two reasons. The first is that, because the ca-
ble to the light switch contains two wires, one carrying
current to the switch and the other carrying it away from
the switch, the net magnetic field would be very small and
would fall off rapidly with increasing distance. The second
reason is that the current is alternating at 60 Hz. As a re-
sult, the magnetic field is oscillating at 60 Hz also. This
frequency would be too fast for the compass to follow, so
the effect on the compass reading would average to zero.

15. The levitating wire is stable with respect to vertical motion:
If it is displaced upward, the repulsive force weakens, and
the wire drops back down. By contrast, if it drops lower,
the repulsive force increases, and it moves back up. The
wire is not stable, however, with respect to lateral move-
ment: If it moves away from the vertical position directly
over the lower wire, the repulsive force will have a side-
ways component that will push the wire away.

In the case of the attracting wires, the hanging wire is
not stable with respect to vertical movement. If it rises, the
attractive force increases, and the wire moves even closer
to the upper wire. If the hanging wire falls, the attractive
force weakens, and the wire falls farther. If the wire moves
to the right, it moves farther from the upper wire and the
attractive force decreases. Although there is a restoring
force component pulling it back to the left, the vertical
force component is not strong enough to hold the wire
up, and it falls.

17. Each coil of the Slinky® will become a magnet, because a
coil acts as a current loop. The sense of rotation of the
current is the same in all coils, so each coil becomes a
magnet with the same orientation of poles. Thus, all of
the coils attract, and the Slinky® will compress.

3.6 W

Pload

R load10 


61. (a) 5.68 V (b) 0.227 A
63. 0.395 A; 1.50 V

Chapter 19
QUICK QUIZZES

1. (b)
2. (c)
3. (c)
4. (a)
5. (b)

CONCEPTUAL QUESTIONS
1. The set should be oriented such that the beam is moving

either toward the east or toward the west.
3. The proton moves in a circular path upwards on the page.

After completing half a circle, it exits the field and moves
in a straight-line path back in the direction from whence
it came. An electron will behave similarly, but the direc-
tion of traversal of the circle is downward, and the radius
of the circular path is smaller.
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39. 20.0 �T toward bottom of page
41. 0.167 �T out of the page
43. (a) 4.00 m (b) 7.50 nT (c) 1.26 m (d) zero
45. 4.5 mm
47. 31.8 mA
49. 2.26 � 10�4 N away from the center, zero torque
51. 1.7 N � m
53. (a) 0.500 �T out of the page (b) 3.89 �T parallel to 

xy-plane and at 59.0° clockwise from � x-direction
55. 2.13 cm
57. (a) 1.33 m/s (b) the sign of the emf is independent of

the charge
59. 1.41 � 10�6 N
61. 13.0 �T toward the bottom of the page
63. 53 �T toward the bottom of the page, 20 �T toward the

bottom of the page, and 0
65. (a) � 8.00 � 10�21 kg � m/s (b) 8.90°
67. 1.29 kW
69. (a) 12.0 cm to the left of wire 1 (b) 2.40 A, downward

Chapter 20
QUICK QUIZZES

1. b, c, a
2. (a)
3. (b)
4. (c)
5. (b)

CONCEPTUAL QUESTIONS
1. According to Faraday’s law, an emf is induced in a wire

loop if the magnetic flux through the loop changes with
time. In this situation, an emf can be induced either by
rotating the loop around an arbitrary axis or by changing
the shape of the loop.

3. As the spacecraft moves through space, it is apparently
moving from a region of one magnetic field strength to a
region of a different magnetic field strength. The chang-
ing magnetic field through the coil induces an emf and a
corresponding current in the coil.

5. If the bar were moving to the left, the magnetic force on
the negative charges in the bar would be upward, causing
an accumulation of negative charge on the top and posi-
tive charges at the bottom. Hence, the electric field in the
bar would be upward, as well.

7. If, for any reason, the magnetic field should change rap-
idly, a large emf could be induced in the bracelet. If the
bracelet were not a continuous band, this emf would
cause high-voltage arcs to occur at any gap in the band. If
the bracelet were a continuous band, the induced emf
would produce a large induced current and result in
resistance heating of the bracelet.

11. As the aluminum plate moves into the field, eddy cur-
rents are induced in the metal by the changing magnetic
field at the plate. The magnetic field of the electromag-
net interacts with this current, producing a retarding
force on the plate that slows it down. In a similar fashion,
as the plate leaves the magnetic field, a current is in-
duced, and once again there is an upward force to slow
the plate.

13. The energy stored in an inductor carrying a current I
is equal to PEL � (1/2)LI 2. Therefore, doubling the cur-
rent will quadruple the energy stored in the inductor.

19. There is no net force on the wires, but there is a torque.
To understand this distinction, imagine a fixed vertical
wire and a free horizontal wire (see the figure below).
The vertical wire carries an upward current and creates a
magnetic field that circles the vertical wire, itself. To the
right, the magnetic field of the vertical wire points into
the page, while on the left side it points out of the page,
as indicated. Each segment of the horizontal wire (of
length �) carries current that interacts with the magnetic
field according to the equation F � BI� sin . Apply the
right-hand rule on the right side: point the fingers of your
right hand in the direction of the horizontal current and
curl them into the page in the direction of the magnetic
field. Your thumb points downward, the direction of the
force on the right side of the wire. Repeating the process
on the left side gives a force upward on the left side of the
wire. The two forces are equal in magnitude and opposite
in direction, so the net force is zero, but they create a net
torque around the point where the wires cross.

21. (a) The field is into the page. (b) The beam would de-
flect upwards.

PROBLEMS
1. (a) horizontal and due east (b) horizontal and 30° N 

of E (c) horizontal and due east (d) zero force
3. (a) into the page (b) toward the right (c) toward the 

bottom of the page
5. Fg � 8.93 � 10�30 N (downward), 

Fe � 1.60 � 10�17 N (upward),
Fm � 4.80 � 10�17 N (downward)

7. 2.83 � 107 m/s west
9. 0.021 T in the � y -direction

11. 8.0 � 10�3 T in the � z -direction
13. (a) into the page (b) toward the right (c) toward the 

bottom of the page
15. 7.50 N
17. 0.131 T (downward)
19. 0.20 T directed out of the page
21. ab : 0, bc : 0.040 0 N in � x-direction, cd: 0.040 0 N in the

� z-direction da: 0.056 6 N parallel to the xz-plane and at
45° to both the � x- and the � z-directions

23. 9.05 � 10�4 N�m, tending to make the left-hand side of the
loop move toward you and the right-hand side move away.

25. (a) 3.97° (b) 3.39 � 10�3 N�m
27. 6.56 � 10�2 T
31. 1.77 cm
33. r � 3R/4
35. 20.0 �T
37. 2.4 mm

I

I

F

F

B B

44920_Ans_pA17-A32  1/14/05  1:05 PM  Page A.22



Answers to Quick Quizzes, Odd-Numbered Conceptual Questions and Problems A.23

cause of atmospheric variations and reflections of the wave
before it arrives at your location, the orientation of this field
may be in different directions for different stations.

3. The primary coil of the transformer is an inductor. When
an AC voltage is applied, the back emf due to the induc-
tance will limit the current in the coil. If DC voltage is ap-
plied, there is no back emf, and the current can rise to a
higher value. It is possible that this increased current will
deliver so much energy to the resistance in the coil that its
temperature rises to the point at which insulation on the
wire can burn.

5. An antenna that is a conducting line responds to the elec-
tric field of the electromagnetic wave—the oscillating
electric field causes an electric force on electrons in the
wire along its length. The movement of electrons along
the wire is detected as a current by the radio and is ampli-
fied. Thus, a line antenna must have the same orientation
as the broadcast antenna. A loop antenna responds to the
magnetic field in the radio wave. The varying magnetic
field induces a varying current in the loop (by Faraday’s
law), and this signal is amplified. The loop should be in
the vertical plane containing the line of sight to the
broadcast antenna, so the magnetic field lines go through
the area of the loop.

7. The flashing of the light according to Morse code is a
drastic amplitude modulation—the amplitude is chang-
ing from a maximum to zero. In this sense, it is similar to
the on-and-off binary code used in computers and com-
pact disks. The carrier frequency is that of the light, on
the order of 1014 HZ. The frequency of the signal
depends on the skill of the signal operator, but it is on the
order of a single hertz, as the light is flashed on and off.
The broadcasting antenna for this modulated signal is the
filament of the lightbulb in the signal source. The receiv-
ing antenna is the eye.

9. The sail should be as reflective as possible, so that the
maximum momentum is transferred to the sail from the
reflection of sunlight.

11. Suppose the extraterrestrial looks around your kitchen.
Lightbulbs and the toaster glow brightly in the infrared.
Somewhat fainter are the back of the refrigerator and the
back of the television set, while the television screen is
dark. The pipes under the sink show the same weak glow
as the walls, until you turn on the faucets. Then the pipe
on the right gets darker and that on the left develops a
gleam that quickly runs up along its length. The food on
the plates shines, as does human skin, the same color for
all races. Clothing is dark as a rule, but your seat and the
chair seat glow alike after you stand up. Your face appears
lit from within, like a jack-o’-lantern; your nostrils and the
openings of your ear canals are bright; brighter still are
the pupils of your eyes.

13. Radio waves move at the speed of light. They can travel
around the curved surface of the Earth, bouncing between
the ground and the ionosphere, which has an altitude that
is small compared with the radius of the Earth. The
distance across the lower 48 states is approximately
5 000 km, requiring a travel time that is equal to (5 �
106 m)/(3 � 108 m/s) � 10�2 s. Likewise, radio waves
take only 0.07 s to travel halfway around the Earth. In
other words, a speech can be heard on the other side of
the world (in the form of radio waves) before it is heard at
the back of the room (in the form of sound waves).

15. If an external battery is acting to increase the current
in the inductor, an emf is induced in a direction to
oppose the increase of current. Likewise, if we attempt to
reduce the current in the inductor, the emf that is set up
tends to support the current. Thus, the induced emf
always acts to oppose the change occurring in the circuit,
or it acts in the “back” direction to the change.

17. (a) clockwise (b) The net force exerted on the bar must be
zero because it moves at constant speed. The component
of the gravitational force down the incline is balanced by a
component of the magnetic force up the incline.

19. from left to right

PROBLEMS
1. 5.9 � 10�2 T � m2

3. 7.71 � 10�1 T � m2

5. (a) �B,net � 0 (b) 0
7. (a) 3.1 � 10�3 T � m2 (b) �B,net � 0
9. 0.18 T

11. 94 mV
13. 2.7 T/s
15. (a) 4.0 � 10�6 T � m2 (b) 18 �V
17. 10.2 �V
19. 0.763 V
21. (a) toward the east (b) 4.58 � 10�4 V
23. (a) from left to right (b) from right to left
25. (a) F � N 2B2w 2v/R to the left (b) 0

(c) F � N 2B 2w2v/R to the left
27. into the page
29. (a) from right to left (b) from right to left (c) from left

to right (d) from left to right
31. 1.9 � 10�11 V
33. (a) 18.1 �V (b) 0
35. (a) 60 V (b) 57 V (c) 0.13 s
37. 20 mV
39. (a) 2.0 mH (b) 38 A/s
43. 12 mH
45. 1.92 

47. 0.140 J
49. (a) 18 J (b) 7.2 J
51. negative (Va � Vb)
53. (a) 20.0 ms (b) 37.9 V (c) 1.52 mV (d) 51.8 mA
55. 1.20 �C
57. (a) 0.500 A (b) 2.00 W (c) 2.00 W
59. 115 kV
61. (a) 0.157 mV (end B is positive) (b) 5.89 mV (end A is

positive)
63. (a) 9.00 A (b) 10.8 N (c) b is at the higher potential 

(d) No

65.

Chapter 21
ANSWERS TO QUICK QUIZZES

1. (c)
2. (b)
3. (b)
4. (b), (c)
5. (b), (d)

CONCEPTUAL QUESTIONS
1. For best reception, the length of the antenna should be par-

allel to the orientation of the oscillating electric field. Be-

vt �
mgR
B 2�2
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that the sound can reach the listener by this path as well
as by a direct path. Thus, the sound is louder.

3. The color will not change, for two reasons. First, despite
the popular statement that color depends on wavelength,
it actually depends on the frequency of the light, which
does not change under water. Second, when the light en-
ters the eye, it travels through the fluid within. Thus, even
if color did depend on wavelength, the important wave-
length is that of the light in the ocular fluid, which does
not depend on the medium through which the light trav-
eled to reach the eye.

5. (a) Away from the normal (b) increases (c) remains the
same

7. No, the information in the catalog is incorrect. The index
of refraction is given by n � c/v, where c is the speed of
light in a vacuum and v is the speed of light in the mate-
rial. Because light travels faster in a vacuum than in any
other material, it is impossible for the index of refraction
of any material to have a value less than 1.

9. There is no dependence of the angle of reflection on wave-
length, because the light does not enter deeply into the
material during reflection—it reflects from the surface.

11. On the one hand, a ball covered with mirrors sparkles by
reflecting light from its surface. On the other hand, a
faceted diamond lets in light at the top, reflects it by total
internal reflection in the bottom half, and sends the light
out through the top again. Because of its high index of
refraction, the critical angle for diamond in air for total
internal reflection, namely c � sin�1(nair/ndiamond), is
small. Thus, light rays enter through a large area and exit
through a very small area with a much higher intensity.
When a diamond is immersed in carbon disulfide, the
critical angle is increased to c � sin�1(ncarbon disulfide/
ndiamond). As a result, the light is emitted from the dia-
mond over a larger area and appears less intense.

13. The index of refraction of water is 1.333, quite different
from that of air, which has an index of refraction of about 1.
The boundary between the air and water is therefore easy to
detect, because of the differing diffraction effects above and
below the boundary. (Try looking at a glass half full of
water.) The index of refraction of liquid helium, however,
happens to be much closer to that of air. Consequently,
the defractive differences above and below the helium-air
boundary are harder to see.

15. The diamond acts like a prism, dispersing the light into its
spectral components. Different colors are observed as a
consequence of the manner in which the index of refrac-
tion varies with the wavelength.

17. Light travels through a vacuum at a speed of 3 � 108 m/s.
Thus, an image we see from a distant star or galaxy must
have been generated some time ago. For example, the
star Altair is 16 lightyears away; if we look at an image of
Altair today, we know only what Altair looked like 16 years
ago. This may not initially seem significant; however,
astronomers who look at other galaxies can get an idea of
what galaxies looked like when they were much younger.
Thus, it does make sense to speak of “looking backward in
time.”

PROBLEMS
1. 3.00 � 108 m/s
3. 114 rad/s for a maximum intensity of returning light
5. (b) 3.000 � 108 m/s

15. No. The wire will emit electromagnetic waves only if the
current varies in time. The radiation is the result of accel-
erating charges, which can occur only when the current is
not constant.

17. The resonance frequency is determined by the inductance
and the capacitance in the circuit. If both L and C are dou-
bled, the resonance frequency is reduced by a factor of two.

19. It is far more economical to transmit power at a high
voltage than at a low voltage because the I 2R loss on the
transmission line is significantly lower at high voltage.
Transmitting power at high voltage permits the use of
step-down transformers to make “low” voltages and high
currents available to the end user.

21. No. A voltage is induced in the secondary coil only if the
flux through the core changes with time.

PROBLEMS
1. (a) 141 V (b) 20.0 A (c) 28.3 A (d) 2.00 kW
3. 70.7 V, 2.95 A
5. 6.76 W
9. 4.0 � 102 Hz

11. 17 �F
15. 3.14 A
17. 0.450 T � m2

19. (a) 0.361 A (b) 18.1 V (c) 23.9 V (d) � 53.0°
21. (a) 1.4 k
 (b) 0.10 A (c) 51° (d) voltage leads current
23. (a) 89.6 V (b) 108 V
25. 1.88 V
27. (a) 103 V (b) 150 V (c) 127 V (d) 23.6 V
29. (a) 208 
 (b) 40.0 
 (c) 0.541 H
31. (a) 1.8 � 102 
 (b) 0.71 H
33. 2.29 �H
35. Cmin � 4.9 nF, Cmax � 51 nF
37. 0.242 J
39. 0.18% is lost
41. (a) 1.1 � 103 kW (b) 3.1 � 102 A (c) 8.3 � 103 A
43. 1 000 km; there will always be better use for tax money.
45. f red � 4.55 � 1014 Hz, f IR � 3.19 � 1014 Hz, 

Emax,f/Emax,i � 0.57
47. 2.94 � 108 m/s
49. Emax � 1.01 � 103 V/m, Bmax � 3.35 � 10�6 T
51. (a) 188 m to 556 m (b) 2.78 m to 3.4 m
53. 5.2 � 1013 Hz, 5.8 �m
55. 4.299 999 84 � 1014 Hz; �1.6 � 107 Hz 

(the frequency decreases)
57. 99.6 mH
59. 1.7 cents
61. (a) resistor and inductor (b) R � 10 
, L � 30 mH
63. (a) 6.7 � 10�16 T (b) 5.3 � 10�17 W/m2

(c) 1.7 � 10�14 W
65. (a) 0.536 N (b) 8.93 � 10�5 m/s2 (c) 33.9 days
67. 4.47 � 10�9 J

Chapter 22
QUICK QUIZZES

1. (a)
2. Beams 2 and 4 are reflected; beams 3 and 5 are refracted.
3. (b)
4. (c)

CONCEPTUAL QUESTIONS
1. Sound radiated upward at an acute angle with the hori-

zontal is bent back toward Earth by refraction. This means
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5. The ultrasonic range finder sends out a sound wave and
measures the time for the echo to return. Using this infor-
mation, the camera calculates the distance to the subject
and sets the camera lens. When the camera is facing a
mirror, the ultrasonic signal reflects from the mirror sur-
face and the camera adjusts its focus so that the mirror
surface is at the correct focusing distance from the cam-
era. But your image in the mirror is twice this distance
from the camera, so it is blurry.

7. Light rays diverge from the position of a virtual image
just as they do from an actual object. Thus, a virtual im-
age can be as easily photographed as any object can. Of
course, the camera would have to be placed near the
axis of the lens or mirror in order to intercept the light
rays.

9. We consider the two trees to be two separate objects. The
far tree is an object that is farther from the lens than the
near tree. Thus, the image of the far tree will be closer to
the lens than the image of the near tree. The screen must
be moved closer to the lens to put the far tree in focus.

11. If a converging lens is placed in a liquid having an index of
refraction larger than that of the lens material, the direc-
tion of refractions at the lens surfaces will be reversed, and
the lens will diverge light. A mirror depends only on reflec-
tion which is independent of the surrounding material, so
a converging mirror will be converging in any liquid.

13. This is a possible scenario. When light crosses a boundary
between air and ice, it will refract in the same manner as
it does when crossing a boundary of the same shape be-
tween air and glass. Thus, a converging lens may be made
from ice as well as glass. However, ice is such a strong ab-
sorber of infrared radiation that it is unlikely you will be
able to start a fire with a small ice lens.

15. The focal length for a mirror is determined by the law of
reflection from the mirror surface. The law of reflection
is independent of the material of which the mirror is
made and of the surrounding medium. Thus, the focal
length depends only on the radius of curvature and not
on the material. The focal length of a lens depends on
the indices of refraction of the lens material and
surrounding medium. Thus, the focal length of a lens
depends on the lens material.

17. (a) all signs are positive (b) f and p are positive, q is
negative

19. (c) the image becomes fuzzy and disappears

PROBLEMS
1. on the order of 10�9 s younger
3. 10.0 ft, 30.0 ft, 40.0 ft
5. 0.268 m behind the mirror; virtual, upright, and 

diminished; M � 0.026 8
7. (a) 13.3 cm in front of mirror, real, inverted, M � � 0.333

(b) 20.0 cm in front of mirror, real, inverted, M � �1.00
(c) No image is formed. Parallel rays leave the mirror.

9. Behind the worshipper, 3.33 m from the deepest point in
the niche.

11. 5.00 cm
13. 1.0 m
15. 8.05 cm
17. � 20.0 cm
19. (a) concave with focal length f � 0.83 m

(b) Object must be 1.0 m in front of the mirror.
21. 38.2 cm below the upper surface of the ice

7. 19.5° above the horizontal
9. (a) 1.52 (b) 417 nm (c) 4.74 � 1014 Hz

(d) 1.98 � 108 m/s
11. (a) 584 nm (b) 1.12
13. 111°
15. (a) 1.559 � 108 m/s (b) 329.1 nm (c) 4.738 � 1014 Hz
17. five times from the right-hand mirror and six times from

the left
19. 0.388 cm
21.  � 30.4°, � � 22.3°
23. 6.39 ns
25.  � tan�1(ng)
27. 3.39 m
29.  red � 48.22°, blue � 47.79°
31. (a) 1i � 30°, 1r � 19°, 2i � 41°, 2r � 77°

(b) First surface: reflection � 30°; 
second surface: reflection � 41°

33. (a) 31.3° (b) 44.2° (c) 49.8°
35. (a) 33.4° (b) 53.4°
37. (a) 40.8° (b) 60.6°
39. 1.000 08
41. (a) 10.7° (b) air (c) Sound falling on the wall from 

most directions is 100% reflected.
43. 27.5°
45. 22.0°
47. (a) 53.1° (b) � 38.7°
49. (a) 38.5° (b) � 1.44
53. 24.7°
55. 1.93
59.
61. (a) 1.20 (b) 3.40 ns

Chapter 23
QUICK QUIZZES

1. At C .
2. (c)
3. (a) False (b) False (c) True
4. (b)
5. An infinite number
6. (a) False (b) True (c) False

CONCEPTUAL QUESTIONS
1. You will not be able to focus your eyes on both the picture

and your image at the same time. To focus on the picture,
you must adjust your eyes so that an object several cen-
timeters away (the picture) is in focus. Thus, you are fo-
cusing on the mirror surface. But, your image in the mir-
ror is as far behind the mirror as you are in front of it.
Thus, you must focus your eyes beyond the mirror, twice
as far away as the picture to bring the image into focus.

3. A single flat mirror forms a virtual image of an object due
to two factors. First, the light rays from the object are nec-
essarily diverging from the object, and second, the lack of
curvature of the flat mirror cannot convert diverging rays
to converging rays. If another optical element is first used
to cause light rays to converge, then the flat mirror can be
placed in the region in which the converging rays are
present, and it will change the direction of the rays so that
the real image is formed at a different location. For exam-
ple, if a real image is formed by a convex lens, and the flat
mirror is placed between the lens and the image position,
the image formed by the mirror will be real.

 � sin�1�√n2 � 1 sin� � cos��
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reflected from the upper surface, but no such phase
change for the light reflected from the lower surface,
because the index of refraction for water on the other
side is lower than that of the film. Thus, the two reflec-
tions will be out of phase and will interfere destructively.
The material with index of refraction lower than water
will have a phase change for the light reflected from both
the upper and the lower surface, so that the reflections
from the zero-thickness film will be back in phase and the
film will appear bright.

7. For incidence normal to the film, the extra path length
followed by the reflected ray is twice the thickness of
the film. For destructive interference, this must be a dis-
tance of half a wavelength of the light in the material of
the film. For a film in air, no 180° phase change will occur
in these reflections, so the thickness of the film must be
one-quarter wavelength, which is the same as the condi-
tion for constructive interference of reflected light. This
means that the transmitted light is a minimum when the
reflected light is a maximum, and vice versa.

9. Since the light reflecting at the lower surface of the film
undergoes a 180° phase change, while light reflecting
from the upper surface of the film does not undergo such
a change, the central spot (where the film has near zero
thickness) will be dark. If the observed rings are not circu-
lar, the curved surface of the lens does not have a true
spherical shape.

11. For regional communication at the Earth’s surface, radio
waves are typically broadcast from currents oscillating in
tall vertical towers. These waves have vertical planes of
polarization. Light originates from the vibrations of atoms
or electronic transitions within atoms, which represent
oscillations in all possible directions. Thus, light generally
is not polarized.

13. Yes. In order to do this, first measure the radar reflectivity
of the metal of your airplane. Then choose a light,
durable material that has approximately half the radar
reflectivity of the metal in your plane. Measure its index
of refraction, and place onto the metal a coating equal in
thickness to one-quarter of 3 cm, divided by that index.
Sell the plane quick, and then you can sell the supposed
enemy new radars operating at 1.5 cm, which the coated
metal will reflect with extra-high efficiency.

15. If you wish to perform an interference experiment, you
need monochromatic coherent light. To obtain it, you
must first pass light from an ordinary source through a
prism or diffraction grating to disperse different colors
into different directions. Using a single narrow slit, select
a single color and make that light diffract to cover both
slits for a Young’s experiment. The procedure is much
simpler with a laser because its output is already mono-
chromatic and coherent.

17. Strictly speaking, the ribs do act as a diffraction grating,
but the separation distance of the ribs is so much larger
than the wavelength of the x-rays that there are no observ-
able effects.

19. As the edge of the Moon cuts across the light from the
star, edge diffraction effects occur. Thus, as the edge of
the Moon moves relative to the star, the observed light
from the star proceeds through a series of maxima and
minima.

21. Larger. From Brewster’s law, n � tan p , we see that the
angle increases as n increases.

23. 3.8 mm
25. n � 2.00
27. 20.0 cm
29. (a) 40.0 cm beyond the lens, real, inverted, M � �1.00

(b) No image is formed. Parallel rays leave the lens.
(c) 20.0 cm in front of the lens, virtual, upright, M � � 2.00

31. (a) 13.3 cm in front of the lens, virtual, upright, M � � 1/3
(b) 10.0 cm in front of the lens, virtual, upright, M � � 1/2
(c) 6.67 cm in front of the lens, virtual, upright, M � � 2/3

33. (a) either 9.63 cm or 3.27 cm (b) 2.10 cm
35. (a) 39.0 mm (b) 39.5 mm
37. at distance 2 � f � in front of lens
39. 40.0 cm
41. 30.0 cm to the left of the second lens, M � � 3.00
43. 7.47 cm in front of the second lens; 1.07 cm; virtual, upright
45. from 0.224 m to 18.2 m
47. real image, 5.71 cm in front of the mirror
49. 38.6°
51. 160 cm to the left of the lens, inverted, M � � 0.800
53. q � 10.7 cm
55. 32.0 cm to the right of the second surface (real image)
57. (a) 20.0 cm to the right of the second lens; M � � 6.00

(b) inverted
(c) 6.67 cm to the right of the second lens; M � � 2.00;

inverted
59. (a) 1.99

(b) 10.0 cm to the left of the lens
(c) inverted

61. (a) 5.45 m to the left of the lens
(b) 8.24 m to the left of the lens
(c) 17.1 m to the left of the lens
(d) by surrounding the lens with a medium having a

refractive index greater than that of the lens material.
63. (a) 263 cm (b) 79.0 cm

Chapter 24
QUICK QUIZZES

1. (c)
2. (b)
3. (b)
4. The compact disc.

CONCEPTUAL QUESTIONS
1. You will not see an interference pattern from the automo-

bile headlights, for two reasons. The first is that the head-
lights are not coherent sources and are therefore inca-
pable of producing sustained interference. Also, the
headlights are so far apart in comparison to the wave-
lengths emitted that, even if they were made into coher-
ent sources, the interference maxima and minima would
be too closely spaced to be observable.

3. The result of the double slit is to redistribute the energy ar-
riving at the screen. Although there is no energy at the lo-
cation of a dark fringe, there is four times as much energy
at the location of a bright fringe as there would be with
only a single narrow slit. The total amount of energy arriv-
ing at the screen is twice as much as with a single slit, as it
must be according to the law of conservation of energy.

5. One of the materials has a higher index of refraction than
water, and the other has a lower index. The material with
the higher index will appear black as it approaches zero
thickness. There will be a 180° phase change for the light
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in that region will also vary randomly. As a result, the
effective difference in length between the two arms will
fluctuate, resulting in a wildly varying interference
pattern.

7. Large lenses are difficult to manufacture and machine
with accuracy. Also, their large weight leads to sagging,
which produces a distorted image. In reflecting tele-
scopes, light does not pass through glass; hence, problems
associated with chromatic aberrations are eliminated.
Large-diameter reflecting telescopes are also technically
easier to construct. Some designs use a rotating pool of
mercury as the reflecting surface.

9. In order for someone to see an object through a micro-
scope, the wavelength of the light in the microscope must
be smaller than the size of the object. An atom is much
smaller than the wavelength of light in the visible spec-
trum, so an atom can never be seen with the use of visible
light.

11. farsighted; converging

PROBLEMS
1. 30.0 cm beyond the lens, M � � 1/5
3. 177 m
5. f/1.4
7. f/8.0
9. 40.0 cm

11. 23.2 cm
13. (a) � 2.00 diopters (b) 17.6 cm
15. � 17.0 diopters
17. (a) 5.8 cm (b) m � 4.3
19. (a) 4.07 cm (b) m � � 7.14
21. (a) �M � � 1.22 (b) /0 � 6.08
23. 2.1 cm
25. m � � 115
27. fo � 90 cm, fe � 2.0 cm
29. (b) � fh/p (c) �1.07 mm
31. (a) m � 1.50 (b) m � 1.90
33. 492 km
35. 0.40 �rad
37. 9.1 � 107 km
39. 9.8 km
41. No. A resolving power of 2.0 � 105 is needed, and that

available is only 1.8 � 105.
43. 50.4 �m
45. 40
47. 98 fringe shifts
49. (a) � 2.67 diopters (b) 0.16 diopter too low
51. (a) � 44.6 diopters (b) 3.03 diopters
53. (a) 1.0 � 103 lines (b) 3.3 � 102 lines
55. m � 10.7
57. (a) m � 4.0 (b) m � 3.0

Chapter 26
QUICK QUIZZES

1. (a)
2. No. From your perspective you’re at rest with respect to

the cabin, so you will measure yourself as having your 
normal length, and will require a normal-sized cabin.

3. (a), (e); (a), (e)
4. (a) False (b) False (c) True (d) False
5. (a)

PROBLEMS
1. 1.58 cm
3. (a) 2.6 mm (b) 2.62 mm
5. (a) 36.2° (b) 5.08 cm (c) 5.08 � 1014 Hz
7. (a) 55.7 m (b) 124 m
9. 75.0 m

11. 11.3 m
13. 148 m
15. 91.9 nm
17. 550 nm
19. 0.500 cm
21. (a) 238 nm (b) � will increase (c) 328 nm
23. 4.35 �m
25. 4.75 �m
27. No, the wavelengths intensified are 276 nm, 138 nm, 

92.0 nm, . . .
29. 4.22 mm
31. (a) 1.1 m (b) 1.7 mm
33. 1.20 mm, 1.20 mm
35. (a) 479 nm, 647 nm, 698 nm (b) 20.5°, 28.3°, 30.7°
37. 5.91° in first order; 13.2° in second order; and 

26.5° in third order
39. 44.5 cm
41. 9.13 cm
43. (a) 25.6° (b) 19.0°
45. (a) 1.11 (b) 42.0°
47. (a) 56.7° (b) 48.8°
49. 31.2°
53. 6.89 units
55. (a) 413.7 nm, 409.7 nm (b) 8.6°
57. 0.156 mm
59. 2.50 mm
61. Any positive integral multiple of 210 nm
63. (a) 16.6 m (b) 8.28 m
65. 127 m
67. 0.350 mm
69. 115 nm

Chapter 25
QUICK QUIZZES

1. (c)
2. (a)

CONCEPTUAL QUESTIONS

1. The observer is not using the lens as a simple magnifier.
For a lens to be used as a simple magnifier, the object dis-
tance must be less than the focal length of the lens. Also,
a simple magnifier produces a virtual image at the normal
near point of the eye, or at an image distance of about 
q � � 25 cm. With a large object distance and a relatively
short image distance, the magnitude of the magnification
by the lens would be considerably less than one. Most
likely, the lens in this example is part of a lens combina-
tion being used as a telescope.

3. The image formed on the retina by the lens and cornea is
already inverted.

5. There will be an effect on the interference pattern—it
will be distorted. The high temperature of the flame will
change the index of refraction of air for the arm of the
interferometer in which the match is held. As the index
of refraction varies randomly, the wavelength of the light
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33. 18.4 g/cm3

35. 1.98 MeV
37. 2.27 � 1023 Hz, 1.32 fm for each photon
39. (a) 3.10 � 105 m/s (b) 0.758c
41. 1.42 MeV/c
43. (a) 0.80c (b) 7.5 � 103 s (c) 1.4 � 1012 m, 0.38c
45. 0.37c in the � x-direction
47. (a) v/c � 1 � 1.12 � 10�10 (b) 6.00 � 1027 J

(c) $2.17 � 1020

49. 0.80c
51. (a) 0.946c (b) 0.160 ly (c) 0.114 yr (d) 7.50 � 1022 J
53. (a) 7.0 �s (c) 1.1 � 104 muons
59. 5.45 yr; Goslo is older.

Chapter 27
QUICK QUIZZES

1. (b)
2. (c)
3. (c)
4. (b)

CONCEPTUAL QUESTIONS
1. The shape of an object is normally determined by observ-

ing the light reflecting from its surface. In a kiln, the ob-
ject will be very hot and will be glowing red. The emitted
radiation is far stronger than the reflected radiation, and
the thermal radiation emitted is only slightly dependent
on the material from which the object is made. Unlike re-
flected light, the emitted light comes from all surfaces
with equal intensity, so contrast is lost and the shape of
the object is harder to discern.

3. The “blackness” of a blackbody refers to its ideal property
of absorbing all radiation incident on it. If an observed
room temperature object in everyday life absorbs all radia-
tion, we describe it as (visibly) black. The black appear-
ance, however, is due to the fact that our eyes are sensitive
only to visible light. If we could detect infrared light with
our eyes, we would see the object emitting radiation. If
the temperature of the blackbody is raised, Wien’s law
tells us that the emitted radiation will move into the visi-
ble range of the spectrum. Thus, the blackbody could ap-
pear as red, white, or blue, depending on its temperature.

5. All objects do radiate energy, but at room temperature this
energy is primarily in the infrared region of the electromag-
netic spectrum, which our eyes cannot detect. (Pit vipers
have sensory organs that are sensitive to infrared radiation;
thus, they can seek out their warm-blooded prey in what we
would consider absolute darkness.

7. Most metals have cutoff frequencies corresponding to
photons in or near the visible range of the electromag-
netic spectrum. AM radio wave photons have far too little
energy to eject electrons from the metal.

9. We can picture higher frequency light as a stream of pho-
tons of higher energy. In a collision, one photon can give
all of its energy to a single electron. The kinetic energy of
such an electron is measured by the stopping potential.
The reverse voltage (stopping voltage) required to stop
the current is proportional to the frequency of the in-
coming light. More intense light consists of more pho-
tons striking a unit area each second, but atoms are so
small that one emitted electron never gets a “kick” from
more than one photon. Increasing the intensity of the

CONCEPTUAL QUESTIONS
1. An ellipsoid. The dimension in the direction of motion

would be measured to be less than D.
3. This scenario is not possible with light. Light waves are de-

scribed by the principles of special relativity. As you detect
the light wave ahead of you and moving away from you
(which would be a pretty good trick—think about it!), its
velocity relative to you is c. Thus, you will not be able to
catch up to the light wave.

5. No. The principle of relativity implies that nothing can
travel faster than the speed of light in a vacuum, which is
3.00 � 108 m/s.

7. The light from the quasar moves at 3.00 � 108 m/s. The
speed of light is independent of the motion of the source
or the observer.

9. For a wonderful fictional exploration of this question, get
a “Mr. Tompkins” book by George Gamow. All of the rela-
tivity effects would be obvious in our lives. Time dilation
and length contraction would both occur. Driving home
in a hurry, you would push on the gas pedal not to in-
crease your speed very much, but to make the blocks
shorter. Big Doppler shifts in wave frequencies would
make red lights look green as you approached and make
car horns and radios useless. High-speed transportation
would be both very expensive, requiring huge fuel pur-
chases, as well as dangerous, since a speeding car could
knock down a building. When you got home, hungry for
lunch, you would find that you had missed dinner; there
would be a five-day delay in transit when you watch a live
TV program originating in Australia. Finally, we would not
be able to see the Milky Way, since the fireball of the Big
Bang would surround us at the distance of Rigel or
Deneb.

11. A photon transports energy. The relativistic equivalence
of mass and energy means that is enough to give it
momentum.

13. Your assignment: measure the length of a rod as it slides
past you. Mark the position of its front end on the floor
and have an assistant mark the position of the back end.
Then measure the distance between the two marks. This
distance will represent the length of the rod only if the
two marks were made simultaneously in your frame of
reference.

PROBLEMS
1. (a) tOB � 1.67 � 103 s, tOA � 2.04 � 103 s

(b) tBO � 2.50 � 103 s, tAO � 2.04 � 103 s
(c) �t � 90 s

3. 5.0 s
5. (a) 20 m (b) 19 m (c) 0.31c
7. (a) 1.3 � 10�7 s (b) 38 m (c) 7.6 m
9. (a) 2.2 �s (b) 0.65 km

11. 0.950c
13. Yes, with 19 m to spare
15. (a) 39.2 �s (b) Accurate to one digit
17. 3.3 � 105 m/s
19. 0.285c
21. 0.54c to the right
23. 0.357c
25. 0.998c toward the right
27. (a) 54 min (b) 52 min
29.
31. 0.786c

c(√3/2)
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light will generally increase the size of the current, but
will not change the energy of the individual electrons
that are ejected. Thus, the stopping potential remains
constant.

11. Wave theory predicts that the photoelectric effect should
occur at any frequency, provided that the light intensity is
high enough. However, as seen in photoelectric experi-
ments, the light must have sufficiently high frequency for
the effect to occur.

13. (a) Electrons are emitted only if the photon frequency is
greater than the cutoff frequency.

15. No. Suppose that the incident light frequency at which
you first observed the photoelectric effect is above the cut-
off frequency of the first metal, but less than the cutoff
frequency of the second metal. In that case, the photo-
electric effect would not be observed at all in the second
metal.

17. The frequency of the scattered photon must decrease,
because some of its energy is transferred to the electron.

PROBLEMS
1. (a) � 3 000 K (b) � 20 000 K
3. 500 nm
5. (a) 2.49 � 10�5 eV (b) 2.49 eV (c) 249 eV
7. 2.27 � 1030 photons/s
9. (a) 2.3 � 1031 (b) �E/E � 4.3 � 10�32

11. (a) 2.24 eV (b) 555 nm (c) 5.41 � 1014 Hz
13. 234 nm
15. 148 days, incompatible with observation
17. 4.8 � 1014 Hz, 2.0 eV
19. 1.2 � 102 V and 1.2 � 107 V, respectively
21. 41.4 kV
23. 0.078 nm
25. 0.281 nm
27. 1.78 eV, 9.47 � 10�28 kg � m/s
29. 70°
31. 1.18 � 10�23 kg � m/s, 478 eV
33. (a) 1.2 eV (b) 6.5 � 105 m/s
35. (a) 1.46 km/s (b) 7.28 � 10�11 m
37. (a) � 102 MeV (b) No. With kinetic energy much larger

than the magnitude of the negative potential energy, the
electron would immediately escape.

39. 3.58 � 10�13 m
41. (a) 15 keV (b) 1.2 � 102 keV
43. � 106 m/s
45. 116 m/s
47. � 5 200 K; clearly, a firefly is not at that temperature, so

this cannot be blackbody radiation.
49. 18.2°
51. 1.36 eV
53. 2.00 eV
55. (a) 0.022 0c (b) 0.999 2c
57. (b) 3.72 km/s
59. (b) 5.19 � 10�16 m
61. (a) 0.263 kg (b) 1.81 W

(c) � 0.015 3°C/s � � 0.919°C/min (d) 9.89 �m
(e) 2.01 � 10�20 J (f) 8.98 � 1019 photon/s

Chapter 28
QUICK QUIZZES

1. (b)
2. (a)

3. (a) 5 (b) 9 (c) 25
4. (d)

CONCEPTUAL QUESTIONS
1. If the energy of the hydrogen atom were proportional to n

(or any power of n), then the energy would become infinite
as n grew to infinity. But the energy of the atom is inversely
proportional to n2. Thus, as n grows to infinity, the energy
of the atom approaches a value that is above the ground
state by a finite amount, namely, the ionization energy 
13.6 eV. As the electron falls from one bound state to an-
other, its energy loss is always less than the ionization energy.
The energy and frequency of any emitted photon are finite.

3. The characteristic x-rays originate from transitions within
the atoms of the target, such as an electron from the L
shell making a transition to a vacancy in the K shell. The va-
cancy is caused when an accelerated electron in the x-ray
tube supplies energy to the K shell electron to eject it from
the atom. If the energy of the bombarding electrons were
to be increased, the K shell electron will be ejected from
the atom with more remaining kinetic energy. But the en-
ergy difference between the K and L shell has not changed,
so the emitted x-ray has exactly the same wavelength.

5. A continuous spectrum without characteristic x-rays is pos-
sible. At a low accelerating potential difference for the
electron, the electron may not have enough energy to
eject an electron from a target atom. As a result, there will
be no characteristic x-rays. The change in speed of the
electron as it enters the target will result in the continu-
ous spectrum.

7. The hologram is an interference pattern between light
scattered from the object and the reference beam. If any-
thing moves by a distance comparable to the wavelength
of the light (or more), the pattern will wash out. The
effect is just like making the slits vibrate in Young’s experi-
ment, to make the interference fringes vibrate wildly so
that a photograph of the screen displays only the average
intensity everywhere.

9. If the Pauli exclusion principle were not valid, the
elements and their chemical behavior would be grossly
different, because every electron would end up in the low-
est energy level of the atom. All matter would therefore
be nearly alike in its chemistry and composition, since the
shell structures of each element would be identical. Most
materials would have a much higher density, and the spec-
tra of atoms and molecules would be very simple, result-
ing in the existence of less color in the world.

11. The three elements have similar electronic configura-
tions, with filled inner shells plus a single electron in an s
orbital. Since atoms typically interact through their un-
filled outer shells, and since the outer shells of these
atoms are similar, the chemical interactions of the three
atoms are also similar.

13. Each of the eight electrons must have at least one quan-
tum number different from each of the others. They can
differ (in ms) by being spin-up or spin-down. They can dif-
fer (in �) in angular momentum and in the general shape
of the wave function. Those electrons with � � 1 can dif-
fer (in m�) in orientation of angular momentum.

15. Stimulated emission is the reason laser light is coherent
and tends to travel in a well-defined parallel beam. When
a photon passing by an excited atom stimulates that atom
to emit a photon, the emitted photon is in phase with the
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51. (a) 4.24 � 1015 W/m2 (b) 1.20 � 10�12 J
55. (a) En � (� 1.49 � 104 eV)/n2 (b) n � 4 : n � 1
57. (a) 9.03 � 1022 m/s2 (b) � 4.63 � 10�8 W

(c) � 10�11 s

Chapter 29
QUICK QUIZZES

1. (c)
2. (c)
3. (a)
4. (a) and (b)
5. (b)

CONCEPTUAL QUESTIONS
1. Isotopes of a given element correspond to nuclei with dif-

ferent numbers of neutrons. This will result in a variety of
different physical properties for the nuclei, including the
obvious one of mass. The chemical behavior, however, is
governed by the element’s electrons. All isotopes of a
given element have the same number of electrons and,
therefore, the same chemical behavior.

3. An alpha particle contains two protons and two neutrons.
Because a hydrogen nucleus contains only one proton, it
cannot emit an alpha particle.

5. In alpha decay, there are only two final particles: the
alpha particle and the daughter nucleus. There are also
two conservation principles: of energy and of momentum.
As a result, the alpha particle must be ejected with a dis-
crete energy to satisfy both conservation principles. How-
ever, beta decay is a three-particle decay: the beta particle,
the neutrino (or antineutron), and the daughter nucleus.
As a result, the energy and momentum can be shared in a
variety of ways among the three particles while still satisfy-
ing the two conservation principles. This allows a continu-
ous range of energies for the beta particle.

7. The larger rest energy of the neutron means that a free
proton in space will not spontaneously decay into a neu-
tron and a positron. When the proton is in the nucleus,
however, the important question is that of the total rest
energy of the nucleus. If it is energetically favorable for the
nucleus to have one less proton and one more neutron,
then the decay process will occur to achieve this lower en-
ergy.

9. Carbon dating cannot generally be used to estimate the
age of a stone, because the stone was not alive to take up
carbon from the environment. Only the ages of artifacts
that were once alive can be estimated with carbon dating.

11. The protons, although held together by the nuclear force,
are repelled by the electrostatic force. If enough
protons were placed together in a nucleus, the electro-
static force would overcome the nuclear force, which is
based on the number of particles, and cause the nucleus
to fission.

The addition of neutrons prevents such fission. The
neutron does not increase the electrical force, being elec-
trically neutral, but does contribute to the nuclear force.

13. The photon and the neutrino are similar in that both par-
ticles have zero charge and very little mass. (The photon
has zero mass, but recent evidence suggests that certain
kinds of neutrinos have a very small mass.) Both must
travel at the speed of light and are capable of transferring
both energy and momentum. They differ in that the pho-

original photon and travels in the same direction. As this
process is repeated many times, an intense, parallel beam
of coherent light is produced. Without stimulated emis-
sion, the excited atoms would return to the ground state
by emitting photons at random times and in random di-
rections. The resulting light would not have the useful
properties of laser light.

17. The atom is a bound system. The atomic electron does
not have enough kinetic energy to escape from its electri-
cal attraction to the nucleus. The electrical potential en-
ergy of the atom is negative and is greater than the kinetic
energy, so the total energy of the atom is negative.

19. (a) The wavelength of photon A is greater. (b) The
energy of photon B is greater.

PROBLEMS
1. 656 nm, 486 nm, and 434 nm
3. (a) 2.3 � 10�8 N (b) � 14 eV
5. (a) 1.6 � 106 m/s (b) No, v/c � 5.3 � 10�3 �� 1

(c) 0.46 nm (d) Yes. The wavelength is roughly the same
size as the atom.

7. (a) 0.212 nm (b) 9.95 � 10�25 kg � m/s
(c) 2.11 � 10�34 J � s
(d) 3.40 eV (e) � 6.80 eV (f ) � 3.40 eV

11. E � � 1.51 eV (n � 3) to E � � 3.40 eV (n � 2)
13. (a) 0.967 eV (b) 0.266 eV
15. (a) 122 nm, 91.1 nm (b) 1.87 � 103 nm, 820 nm
17. 97.2 nm
19. (a) 488 nm (b) 0.814 m/s
21. (d) n � 2.53 � 1074 (e) No. At such large quantum 

numbers, the allowed energies are essentially 
continuous.

23. (a) 2.47 � 1014 Hz, forb � 8.23 � 1014 Hz
(b) 6.59 � 103 Hz, forb � 6.59 � 103 Hz. For large n, 
classical theory and quantum theory approach each other
in their results.

25. 4.42 � 104 m/s
27. (a) � 122 eV (b) 1.76 � 10�11 m
29. (a) 0.026 5 nm (b) 0.017 6 nm (c) 0.013 2 nm
31. 1.33 nm
33. n � 3, � � 1, m� � � 1, ms � � 1/2; n � 3, � � 1, m� � 0,

ms � � 1/2; n � 3, � � 1, m� � � 1, ms � � 1/2
35. Fifteen possible states, as summarized in the following

table:

n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
� 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
m� �2 �2 �2 �1 �1 �1 0 0 0 �1 �1 �1 �2 �2 �2
ms �1 0 �1 �1 0 �1 �1 0 �1 �1 0 �1 �1 0 �1

37. (a) 30 possible states (b) 36
39. (a) n � 4 and � � 2 (b) m� � (0, � 1, � 2), ms � � 1/2

(c) 1s22s22p63s23p63d104s24p64d25s2 � [Kr] 4d 25s2

41. 0.160 nm
43. L shell: 11.7 keV; M shell: 10.0 keV; N shell: 2.30 keV
45. (a) 10.2 eV (b) 7.88 � 104 K
47. (a) � 8.18 eV, � 2.04 eV, � 0.904 eV, � 0.510 eV, � 0.325 eV

(b) 1.09 � 103 nm and 609 nm
49. The four lowest energies are � 10.39 eV, � 5.502 eV,

� 3.687 eV, and � 2.567 eV (b) The wavelengths of the
emission lines are 158.5 nm, 185.0 nm, 253.7 nm, 
422.5 nm, 683.2 nm, and 1 107 nm
(c) 1.31 � 106 m/s
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ton has spin (intrinsic angular momentum) and is in-
volved in electromagnetic interactions, while the neutrino
has spin /2, and is closely related to beta decays.

15. Since the two samples are of the same radioactive nuclide,
they have the same half-life; the 2:1 difference in activity
is due to a 2:1 difference in the mass of each sample. After
5 half lives, each will have decreased in mass by a power of
25 � 32. However, since this simply means that the mass
of each is 32 times smaller, the ratio of the masses will still
be (2/32) : (1/32), or 2:1. Therefore, the ratio of their
activities will always be 2:1.

PROBLEMS
1. A � 2, r � 1.5 fm; A � 60, r � 4.7 fm; A � 197, r � 7.0 fm;

A � 239, r � 7.4 fm
3. 1.8 � 102 m
5. (a) 27.6 N (b) 4.16 � 1027 m/s2 (c) 1.73 MeV
7. (a) 1.9 � 107 m/s (b) 7.1 MeV
9. 8.66 MeV/nucleon for , 7.92 MeV/nucleon for 

11. 3.54 MeV
13. 0.210 MeV/nucleon greater for , attributable to less

proton repulsion
15. 0.46 Ci
17. (a) 9.98 � 10�7 s�1 (b) 1.9 � 1010 nuclei
19. 1.0 h
21. 4.31 � 103 yr
23. (a) 5.58 � 10�2 h�1, 12.4 h (b) 2.39 � 1013 nuclei

(c) 1.9 mCi
25. , , 
27. , , 
29. e� decay, 
31. (a) cannot occur spontaneously

(b) can occur spontaneously
33. 18.6 keV
35. 4.22 � 103 yr
37. (a) (b) �2.64 MeV
39. (a) (b) (c) X � e�, X� � �

41. (a) (b) 
43. (a) (b) 7.88 MeV
45. (a) (b) Fluoride mass � 18.000 953 u
47. 18.8 J
49. 24 d
51. (a) 8.97 � 1011 electrons (b) 0.100 J (c) 100 rad
53. 46.5 d
55. Q � 3.27 MeV � 0, no threshold energy required
57. (a) 2.52 � 1024 (b) 2.29 � 1012 Bq (c) 1.07 � 106 yr
59. (a) 4.0 � 109 yr (b) It could be no older. The rock could

be younger if some 87Sr were initially present.
61. 54 �Ci
63. 2.3 � 102 yr
65. 4.4 � 10�8 kg/h

Chapter 30
QUICK QUIZZES

1. (c)
2. (a)
3. (b)
4. (d)

CONCEPTUAL QUESTIONS
1. The experiment described is a nice analogy to the Ruther-

ford scattering experiment. In the Rutherford experiment,

1
0n

197
79Au � n : 198

80 Hg � e� � �

10
5B13

6C

144
54 Xe21

10Ne

30
15P

: 56
26 Fe � e� � �56

27 Co

4
2He94

42Mo40
20Ca

144
60Nd95

37Rb208
81Tl

23
11Na

197
79Au93

41Nb

�

� alpha particles were scattered from atoms and the scatter-
ing was consistent with a small structure in the atom con-
taining the positive charge.

3. The largest charge quark is 2e/3, so a combination of only
two particles, a quark and an antiquark forming a meson,
could not have an electric charge of �2e. Only particles
containing three quarks, each with a charge of 2e/3, can
combine to produce a total charge of 2e.

5. Until about 700 000 years after the Big Bang, the tempera-
ture of the Universe was high enough for any atoms that
formed to be ionized by ambient radiation. Once the
average radiation energy dropped below the hydrogen
ionization energy of 13.6 eV, hydrogen atoms could form
and remain as neutral atoms for relatively long period of
time.

7. In the quark model, all hadrons are composed of smaller
units called quarks. Quarks have a fractional electric
charge and a baryon number of . There are six flavors of
quarks: up (u), down (d), strange (s), charmed (c), top
(t), and bottom (b). All baryons contain three quarks,
and all mesons contain one quark and one antiquark. Sec-
tion 30.12 has a more detailed discussion of the quark
model.

9. Baryons and mesons are hadrons, interacting primarily
through the strong force. They are not elementary parti-
cles, being composed of either three quarks (baryons) or
a quark and an antiquark (mesons). Baryons have a
nonzero baryon number with a spin of either or .
Mesons have a baryon number of zero and a spin of either
0 or 1.

11. All stable particles other than protons and neutrons have
baryon number zero. Since the baryon number must be
conserved, and the final states of the kaon decay contain
no protons or neutrons, the baryon number of all kaons
must be zero.

13. Yes, but the strong interaction predominates.
15. Unless the particles have enough kinetic energy to pro-

duce a baryon–antibaryon pair, the answer is no. An-
tibaryons have a baryon number of � 1, baryons have a
baryon number of �1, and mesons have a baryon number
of 0. If such an interaction were to occur and produce a
baryon, the baryon number would not be conserved.

17. Baryons and antibaryons contain three quarks, while
mesons and antimesons contain two quarks. Quarks have
a spin of 1/2; thus, three quarks in a baryon can only
combine to form a net spin that is half-integral. Likewise,
two quarks in a meson can only combine to form a net
spin of 0 or 1.

19. For the first decay, the half-life is characteristic of the
strong interaction, so the �0 must have S � 0, and strange-
ness is conserved. The second decay must occur via the
weak interaction.

PROBLEMS
1. 1.1 � 1016 fissions
3. 126 MeV
5. (a) 16.2 kg (b) 117 g
7. 2.9 � 103 km (�1 800 miles)
9. 1.01 g

11. (a) (b) (c) 7.27 MeV
13. 3.07 � 1022 events/yr
15. (a) 3.44 � 1030 J (b) 1.56 � 108 yr
17. (a) 4.53 � 1023 Hz (b) 0.622 fm

12
6 C8

4Be

3
2

1
2

1
3
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A.32 Answers to Quick Quizzes, Odd-Numbered Conceptual Questions and Problems

39.

41. a neutron, udd
43. 70.45 MeV
45. 18.8 MeV
47. (a) electron-lepton and muon-lepton numbers not conserved

(b) electron-lepton number not conserved
(c) charge not conserved
(d) baryon and electron-lepton numbers not conserved
(e) strangeness violated by 2 units

49. (a) 2 � 1024 nuclei (b) �0.6 kg
51. (a) 1 baryon before and zero baryons after decay. Baryon

number is not conserved.
(b) 469 MeV, 469 MeV/c
(c) 0.999 999 4c

53. (b) 12 days
55. 26 collisions

19. �10�23 s
21. �10�18 m
23. (a) conservation of electron-lepton number and conserva-

tion of muon-lepton number (b) conservation of charge
(c) conservation of baryon number (d) conservation of
baryon number (e) conservation of charge

25.
27. (a) (b) (c) (d) �e (e) (f) and 
29. (a) not allowed; violates conservation of baryon number

(b) strong interaction (c) weak interaction (d) weak in-
teraction (e) electromagnetic interaction

31. (a) not conserved (b) conserved (c) conserved (d) not
conserved (e) not conserved (f) not conserved

33. (a) charge, baryon number, Le, L� (b) charge, baryon
number, Le , L�, L� (c) charge, Le, L�, L�, strangeness
number (d) charge, baryon number, Le , L�, L� , strange-
ness number (e) charge, baryon number, Le , L�, L�,
strangeness number (f) charge, baryon number, Le , L� ,
L� , strangeness number

35. 3.34 � 1026 electrons, 9.36 � 1026 up quarks, 8.70 � 1026

down quarks
37. (a) �� (b) �� (c) K0 (d) ��

�e�����e����

��

Net Quarks
Reaction At Quark Level (before and after)

1 up, 2 down, 
0 strange
3 up, 0 down, 
0 strange
1 up, 1 down, 
1 strange us �d s �sssK�� K0� 
�

us � uud :K� � p :

ud � uud : us � uus��� p : K� � ��

ud � uud : ds � uds�� �p : K0 � �0

(d) The mystery particle is a �0 or a �0.
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Page numbers followed by “f ”
indicate figures; page numbers
followed by “t” indicate tables; page
numbers followed by “n” indicate
footnotes. 

A
Aberrations

chromatic, 778–779, 778f
lens, 777–779, 778f
mirror, 777–779
spherical, 758, 758f, 778, 778f, 779

Absorption, selective, polarization by,
805–807, 805f, 806f

Absorption process, stimulated, 921,
921f

Absorption spectrum, 905–906, 905f
Acceptor atoms, 927f
Accommodation, 821

age-related reduction in, 822
Action potentials, 612, 614f
Air cleaner, electrostatic, 544
Airplane, wing of, electrified,

motional emf and, 669
Alkali metals, 918–919
Alpha decay, 949–950, 949f
Alpha particles, 904
Alternating current (AC) circuits,

693–707
capacitors in, 696–697, 696f, 719
inductors in, 697–698, 697f, 698f,

719
power in, 702–704, 719
resistors in, 693–696, 694f, 695f
transformer for, 705–707, 705f,

707f
Alternating current generators,

673–674, 673f, 674f, 683
Ampere, 569, 586

definition of, 643
Ampère, André-Marie, 641, 641f
Ampère’s circuital law, 641, 650

applied to solenoid, 648
long straight wire and, 641–642,

642f, 650
Analyzer, 805
Anderson, Carl, 985–986
Angle

critical, 742, 746
of deviation, 736
polarizing, 807
of refraction, 731, 731f

for glass, 733–734

Angular magnification
of lens, 825, 826f, 837
of telescope, 829, 838

Antenna, electromagnetic wave
production by, 709–710,
710f

Antineutrino, 951, 952, 966
Antiparticle(s), 865, 985–986

of electron, 945, 952
Antiquarks, properties of, 994t
Apertures, single-slit and circular,

resolution of, 831–836,
831f, 832f, 833f, 838

Apnea monitors, Faraday’s law and,
666, 667f

Appliances, consumer, third wire on,
611–612, 611f

Aqueous humor, 820, 821f
Astigmatism, 822
Atmospheric electric fields, measuring,

512
Atmospheric refraction, 768–769,

768f
Atom(s)

acceptor, 927
donor, 927
excited states of, 893, 921–922,

921f, 922f, 932
hydrogen

Bohr’s model of, 906–907, 906f,
908f

de Broglie waves and, 912–913,
913f

quantum mechanics and,
913–915

models of
early, 903–904, 904f
Rutherford’s planetary, 904, 904f
Thomson’s, 904, 904f

nucleus of, 904
Atomic number of nuclei, 940, 965
Atomic physics, 903–938

atomic spectra in, 904–906, 905f
atomic transitions in, 921–922, 921f,

922f
Bohr theory of hydrogen and,

906–912
characteristic x-rays in, 920–921,

920f, 932
de Broglie waves and hydrogen

atom and, 912–913, 913f
electron clouds in, 916–917, 917f
energy bands in solids in, 924–927,

925f, 926f, 927f
exclusion principle in, 917–919
lasers and, 922–924, 923f, 924f, 932
periodic table and, 917–919

Atomic physics (Continued)
quantum mechanics and hydrogen

atom and, 913–915
spin magnetic quantum number

and, 915–916
Atomic spectra, 904–906, 905f
Atomic transitions, 921–922, 921f,

922f
Aurora borealis, origin of colors in,

906
Automobile

in lightning storm, 515
Average power, in AC circuit, 703,

719
Axial myopia, 822
Axons, 612–614, 613f

B
Bacteria, magnetic, 627–628
Bacterial growth projection, 606
Balmer, Johann, 905
Balmer series, 905, 905f

for hydrogen, 909–910, 909f
Band(s)

energy, in solids, 924–927, 925f,
926f, 927f

of energy levels, 925, 925f
Band gap, 925, 925f
Bardeen, John, 929
Baryon number, 989–990
Baryons, 988, 988t, 1002

quark composition of, 994f, 
985f

Battery(ies)
automobile, electric potential

difference in, 537
in direct current circuits, 592–601,

593f, 594f, 596f
Becquerel, 946
Becquerel, Henri, 939
Bednorz, J. Georg, 579
Beta decay, 950–952, 951f
Big Bang theory, 999–1000, 999f,

1001f
Binding energy

of deuteron, 943–944
of nucleus, 943–944, 944f, 

965
Black hole, 868
Blackbody radiation, 875–877, 875f,

876f, 895
Bohr, Niels, 907f
Bohr radius, 907–908

I.1

Index
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I.2 Index

Bohr theory, of hydrogen, 908–912
modification of, 910–912, 912f,

931
Bohr’s correspondence principle,

910, 931
Bosons, W and Z, 985, 985t
Bradycardia, definition of, 585–586
Bragg, W. H., 884
Bragg, W. L., 884
Bragg’s law, 884, 896
Brattain, Walter, 929
Bremsstrahlung, 881
Brewster, Sir David, 808
Brewster’s angle, 808
Brewster’s law, 808, 812
Bright fringes, 788–789, 788f, 811

in single-slit diffraction, 799, 799f
Brushes, in electric motors, 636f, 

637
Bubble chamber, as track detector,

965, 965f

C
Camera, 819–820, 820f
Camera flash attachments, capacitor

in, 546
Capacitance, 545–548

of circuit in resonance, 705
equivalent, 553–554
of parallel-plate capacitor, 545

Capacitive reactance, 696–697, 719
Capacitor(s), 545–560, 561

in AC circuits, 696–697, 696f, 719
applications of, 555, 558–559
charged, energy stored in,

554–556, 554f, 561
charging/discharging of, in RC

circuit, 607–609
combinations of, 548–554

parallel, 548–550, 549f, 561
series, 550–554, 551f, 561

commercial designs for, 558, 558f
definition of, 545
with dielectrics, 556–560, 557f,

558f, 560f, 561
paper-filled, 559
parallel-plate, 546–548
problem-solving strategy for, 552

Carbon dating, 948–951
Cardiac pacemaker, 584–585
Cardioverter defibrillators,

implanted, 585–586, 585f,
586t

Carlson, Chester, 544
Case ground, 611
CAT scans, 960–962, 961f, 962f
Catapult, space, motional emf and,

668, 668f

Characteristic x-rays, 920–921, 920f,
932

Charge, conservation of, junction
rule and, 601, 615

Charge carriers, 569
in conductor, 570, 570f
in current, 570–571, 570f, 586

Charging
by conduction, 499, 499f
by induction, 500, 500f

Charm, 994–995, 1002
Chromatic aberration, 778–779, 778f
Chromodynamics, quantum, 9996,

1002
Ciliary muscle, in accommodation,

821
Circuit(s)

alternating current, 693–707 (See
also Alternating current
(AC) circuits)

current measurements in, 572–573
direct current, 592–623

complex, Kirchhoff’s rules and,
601–605, 601f, 603f, 604f

household, 609–610, 610f
integrated, in semiconductor

devices, 930–931, 931f
RC, 605–609, 606f, 607f, 615
in resonance, capacitance of, 705
resonance frequency of, 709
RL, 680–682, 683–684
RLC series, 699–702, 719

resonance in, 704–705, 704f
symbols for, 548, 548f
voltage measurements in, 572–573

Circuit breakers, 598
in household circuits, 610, 610f

Circuit diagram, 572–573, 572f
Circuit elements, symbols for, 548,

548f
Circular aperture, limiting angle for,

833, 838
Cloud charger, as track detector, 965
Coherent light sources, interference

and, 786–787
Collector of pnp transistor, 929, 930f
Colliders, 998
Color charge, 9996
Color force, 996, 1002

between quarks, 996–997, 1002
Compact disks (CDs)

tracking information on,
diffraction grating in, 803,
803f

using interference to read, 796–797,
796f

Compound microscope, 827–829,
827f, 837–838

Compton, Arthur Holly, 885f
Compton effect, 885–887, 885f, 896
Compton shift, 885, 896
Compton wavelength, 885, 886

Computed axial tomography (CAT
scans), 960–962, 961f, 
962f

Computer keyboard, capacitor in,
546, 547f

Concave mirrors, 757–759, 757f,
758f, 759f, 761f

images formed by, 762–763
Conduction

charging by, 499, 499f
of electrical signals by neurons,

612–614
Conduction band, 925, 926f
Conductor(s), 499–500, 523

charge carriers in, 570, 570f
charged, potentials and, 

541–542
definition of, 499
in electrostatic equilibrium,

512–515, 523
energy bands of, 925, 926f
field lines and, 514
isolated, properties of, 512–513
parallel, magnetic force between,

643–644, 643f
super, 579–580, 580f

critical temperatures for, 579t
Cones, 820–821
Conservation

of charge, junction rule and, 601,
615

of energy
Lenz’s law and, 671
loop rule and, 602, 615

Conservation laws, 989–991
Constructive interference, 788–789,

788f, 811
in thin films, 792

Converging lenses, 769, 770
images formed by, 773–774, 

774f
Convex mirrors, 759–765, 759f, 760f,

761f, 762f
images formed by, 764

Cornea, 820, 821f
Cosmic connection, 999–1001
Coulomb, 499, 501

definition of, 643
Coulomb, Charles, 500–505, 501f
Coulomb constant, 501, 523
Coulomb’s law, 500–505, 523
Critical angle, 742, 746
Critical temperature, 579

for superconductors, 579t
Crystalline lens, 820, 821, 821f
Crystals

diffraction of x-rays by, 883–885,
883f, 884f, 895–896

liquid, 810–811, 810f
Curie, 946
Curie, Marie, 945, 945f
Curie, Pierre, 945
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Index I.3

Current, 568–573, 586
direction of, 569, 569f
drift speed and, 570–571, 586
induced, magnetic induction and,

663
in lightbulb, 569
measurement of, in circuits,

572–573, 572f
microscopic view of, 570–572, 

586
notations for, 695t
for resistors in series, 593
rms, 694–696, 718
in superconductors, 579

Current loop(s)
in electric motors, 636–637, 

636f
magnetic field of, 644–645, 

644f
torque on, 634–636, 634f, 635f, 

650
Cutoff frequency of light, 878
Cutoff wavelength, 879
Cyclotron equation, 637, 638–639

D
Dark fringes, 788–789, 788f, 811

in single-slit diffraction, 799
Dating

carbon, 952–955
radioactive, 953–954

Daughter nucleus, 949
Davisson, C. J., 888
Davisson-Germer experiment,

888–889
De Broglie, Louis, 887f
De Broglie waves, hydrogen atom

and, 912–913, 913f
De Broglie’s wavelength, 888, 

896
Decay

alpha, 949–950, 949f
beta, 950–952, 951f
exponential, 946, 946f
gamma, 952
neutron, 990
processes of, 948–955, 949f, 951f,

953f, 955f
spontaneous, 949

Decay constant, of radioactive
material, 945–946, 
966

Decay rate, 945, 966
Defibrillator(s)

capacitor in, 555–556
implanted cardioverter, 585–586,

585f, 586t
Dendrites, 612, 613f

Deoxyribonucleic acid (DNA),
double-helix structure of,
884, 884f

Depolarization wave, 583, 584f
Depth of field, of camera, 820
Destructive interference, 788f, 789,

811
in single-slit diffraction, 799
in thin films, 792–793

Deuterium-deuterium reaction, 
982

Deuteron, binding energy of,
943–944

Deviation, angle of, 736
Dielectric constant, 556, 557t, 561
Dielectric strength, 557, 557t
Dielectrics

atomic description of, 559–560,
560f

capacitors with, 556–560, 557f,
558f, 560f, 561

Diffraction, 727, 797–804
single-slit, 798–800, 811
of x-rays by crystals, 883–885, 883f,

884f, 895–896
Diffraction grating, 800–804, 801f,

802f, 803f, 811–812
in CD tracking, 803, 803f
prism vs., 802
resolving power of, 835–836, 838

Diffraction pattern, Fraunhofer, 798,
798f

Diffuse reflection, 728, 728f
Digital video disks (DVDs), using

interference to read,
796–797

Diode, 574
Diopters, 822–823, 837
Dip angle, 627
Dirac, Paul Adrien Maurice, 985, 

985f
Direct current circuits

complex, Kirchhoff’s rules and,
601–605, 601f, 603f, 604f

Direct current generators, 674–675,
675f

Dispersion
of light, into spectrum, 738–739,

738f, 739f
prisms and, 736–738, 737f, 746

Diverging lenses, 769, 770, 774–776,
775f

DNA (deoxyribonucleic acid),
double-helix structure of,
884, 884f

Domains, magnetic, 648–649, 648f,
649f

Donor atom, 927
Doping, in semiconductors, 927
Doppler effect, for electromagnetic

waves, 718
Drift speed, 570–571, 586

E
Earth, magnetic field of, 626–628

deflection of lightning strike by,
633

Eightfold way, 992–983, 983f
Einstein, Albert, 843f, 849f

on light quanta, 727
mass-energy equivalence equation

of, 861
on photoelectric effect, 879
special theory of relativity of, 844,

849–858, 851f, 852f, 854f,
855f, 856f, 868

theory of gravitation of, 867–868
EKGs (electrocardiograms),

583–584, 584f
Electric charge(s)

conservation of, 499
negative versus positive, 498, 498f
properties of, 497–499, 523

Electric current, 568–573. See also
Current

Electric dipole, 510, 511f
Electric field(s), 505–509, 523

atmospheric, measuring, 512
in atom smashers, 537–538
of charged thin spherical shell,

520–521, 520f
of nonconducting plane sheet of

charge, 521–522
Electric field lines, 510–512, 510f,

511f, 523
conductors and, 514

Electric flux, 517–519, 517f, 523
Electric force(s)

electric fields and, 506
gravitational force and, 502
properties of, 500
on proton, 507

Electric motors, 636–637, 636f, 
637f

Electric potential, 531–542, 561
created by point charge, 538–541,

539f
finding, 540–541, 540f
problem-solving strategy for, 540

Electric potential difference, 534, 
561

Electric potential energy
change in, 532
work and, 531–535

Electrical activity
of heart, 583–586, 583f, 584f

Electrical charges, quantized, 499
Electrical energy, power and,

580–583
Electrical potential energy, 538–541,

561
Electrical resistivity, 587
Electrical safety, 611–612
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I.4 Index

Electrical signals, conduction of, by
neurons, 612–614

Electrical storms, driver safety
during, 515

Electrified airplane wing, motional
emf and, 669

Electrocardiograms (EKGs),
583–584, 584f

Electromagnet, 646
Electromagnetic force, 984, 1002
Electromagnetic induction, 555

Faraday’s law of, 663–667, 683
Electromagnetic pump, medical uses

of, 633, 633f
Electromagnetic radiation, light and,

887
Electromagnetic waves, 693, 708,

719–720
Doppler effect for, 718
intensity of, 712
production of, by antenna,

709–710, 710f
properties of, 710–715
spectrum of, 715–717, 720

Electron(s), 498
antiparticle of, 945
binding, nucleons and, 944
charge and mass of, 501t
in copper wire, drift speed of, 571
locating, position-momentum

uncertainty principle in,
893

mass number of, 951
number of, in filled subshells and

shells, 918t
relativistic momentum of, 858, 868
wavelength of, 889

Electron clouds, 916–917, 917f
Electron-lepton number, law of

conservation of, 990
Electron microscope, 889–890, 

890f
Electron volt, 542, 561
Electronic configuration, for

elements, 918–919, 919t
Electrostatic air cleaner, 544
Electrostatic equilibrium, conductors

in, 512–515, 523
Electrostatic precipitator, 543–544,

543f
Electroweak force, 984, 1002
Electroweak theory, 997–999, 998f
Elements, electronic configuration

for, 918–919, 919t
Emf

back, motors and, 676–677, 676f
induced, 660–663, 661f

alternating current generator
and, 675–676

magnetic flux and, 661–663,
661f, 662f

magnetic induction and, 663

Emf (Continued)
motional, 667–670, 667f, 668f, 683
self-induced, 677–680, 677f, 678f,

684
sources of, 592–593, 614

Emission
spontaneous, 922, 922f, 932
stimulated, 922, 922f, 932

Emission spectrum, 905, 905f
Emitter, of pnp transistor, 929, 930f
Endothermic reactions, 958, 966
Energy

binding
of deutron, 943–945
of nucleus, 943–944, 944f, 965

conservation of
junction rule and, 601, 615
Lenz’s law and, 671

electrical, power and, 580–583
electrical potential, 538–541, 561
half-life and, 949
of hydrogen atom, 907
ionization, 908
kinetic, 860, 869

conversion of mass to, in
uranium fission, 864–865

mass and, equivalence of, 861
of photon, 887
potential (See Potential energy)
relativistic momentum and,

862–865
rest, 861, 869
solar, 713–714
stored in charged capacitor,

554–556, 554f, 561
stored in magnetic field, 682–683
threshold, 958, 966
total, 861, 869
of x-ray, estimating, 920

Energy bands in solids, 924–927,
925f, 926f, 927f

Equation
lens maker’s, 771
mass-energy equivalence, 861
mirror, 758–759, 779
photoelectric effect, 879
thin-lens, 79, 770–771, 779

Equilibrium, electrostatic,
conductors in, 512–515,
523

Equipotential surfaces, 542–543, 
561

Equipotentials, 542–543, 543f
Equivalence, principle of, 866
Equivalent capacitance, 553–554
Equivalent resistance

of parallel combination of resistors,
596f, 597, 615

of series combination of resistors,
594, 600–601, 615

Ether, luminiferous, 846
Event horizon, 868

Excited states, of atoms, 921–922,
921f, 922f, 932

Exclusion principle, 912, 917–919,
932

quark model and, 996
Exothermic reactions, 958, 966
Exponential decay, 946, 946f
Eye(s), 820–825, 821f, 822f, 823f

cat’s, resolution in, 833
conditions of, 821–823
evolution of, sun and, 717

F
f -number, of camera lens, 820, 837
Far point, 821
Faraday, Michael, 505, 661f

experiment of, on current
production by changing
magnetic field, 661, 661f

ice-pail experiment of, 514, 
514f

law of induction of, 663–667, 
683

applications of, 665–666, 665f,
666f, 667f

motional emf and, 667–670,
667f, 668f, 683

Farads, 545
Farsightedness, 821–822, 822f,

823–824, 837
Femtometer, 941
Fermi, 941
Fermi, Enrico, 951, 952f
Ferromagnetic materials, 649
Feynman, Richard P., 987, 987f
Feynman diagram, 987, 987f
Fiber optics, 744–745
Fibrillation, 584
Field(s)

electric, 505–509, 506f, 523 (See
also Electric field(s))

magnetic, 628–631, 649
Earth’s, 626–628

deflection of lightning strike
by, 633

Lenz’s law and, 671
Field forces, Coulomb force as, 502
Films

soap, interference in, 794
thin, interference in, 792–796,

792f, 793f, 794f, 795f, 
811

wedge-shaped, interference in,
795–796, 795f

Fingerprints, magnetic field patterns
and, 626

Fireball, primordial, observation of
radiation from, 1000–1001
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Index I.5

Fission
nuclear, 973–976, 974f, 1002
uranium, 973–975

conversion of mass to kinetic
energy in, 864–865

Fission fragments, 974
Focal length

for concave mirror, 759, 759f
for lens, 769, 769f

Focal point
for concave mirror, 758–759, 

759f
for lens, 769, 770f

Force(s)
electric

electric fields and, 506
gravitational force and, 502
on proton, 507

field, Coulomb force as, 502
gravitational, electric force and, 

502
in nature, fundamental, 984–985,

1002
Franklin, Benjamin, 498f

electricity and, 498
Fraunhofer diffraction pattern, 798,

798f
Fresnel bright spot, 798
Fringe shift, 837
Fringes, interference, 787f, 788–789,

788f, 811
diffraction and, 798
Newton’s rings as, 793–794, 793f
in single-slit diffraction, 799, 

799f
Frisch, Otto, 973
Full-wave rectifier, 929, 929f
Fuses, 598

in household circuits, 610
Fusion, nuclear, 980–984, 1002

in sun, 980–981, 980f

G
Galilean relativity, 844–845, 845f
Gamma decay, 952
Gamma rays, 716f, 717, 952, 966
Gamow, George, 1000f
Gas(es)

identification of, using
spectrometer, 737

noble, 918
radon, activity of, 948

Gauss, 629, 649
Gauss, Karl Friedrich, 517
Gauss’s law, 519–523, 523
Geiger, Hans, 904, 939
Geiger counter, 963–964, 963f
Gell-Mann, Murray, 993, 983f

Generator(s), 673–677, 683
alternating current, 673–674, 673f,

674f, 683
induced emf in, 675–676

direct current, 674–675, 675f
Van de Graaff, 516–517, 516f

Genetic damage, 959
Geometric optics, ray approximation

in, 728, 728f
Germer, L. H., 888
Glaser, D., 965
Glashow, Sheldon, 997–998
Glass, angle of refraction for, 733–734
Gluons, 985, 985t

in force between quarks, 996
Goeppert-Mayer, Maria, 942f
Goudsmit, Samuel, 912, 915
Grand unification theory, 999
Grating, diffraction. See Diffraction

grating
Gravitational force, 984–985, 1002

electric force and, 502
Gravitational potential energy,

electric potential energy
and, 533

Gravitational property, of mass,
865–866, 866f

Gravitons, 985, 985t
Grimaldi, Francesco, 727
Ground-fault interrupters (GFIs), 612

Faraday’s law and, 665–666, 665f,
666f

Ground state, 908
Grounding, 500
Guitar, electric, sound production by,

Faraday’s law and, 666, 666f

H
Hadrons, 988, 988t, 1002

quark composition of, 994t
Hahn, Otto, 973
Hale telescope, 830, 830f
Half-life

energy and, 949
of radioactive substance, 946–948,

966
Half-wave rectifier, 929
Halogens, 919
Heart, electrical activity of, 583–586,

583f, 584f
Heisenberg, Werner, 891–892, 

891f
Helium

discovery of, 906
electronic arrangement in, 918
singly ionized, 911

Henry, 678
Henry, Joseph, 678f

Hertz, Heinrich Rudolf, 708f
on Maxwell’s predictions, 708–709

Higgs boson, 998
Holes, for valence band, 927, 927f
Holography, 924, 924f
Hubble telescope, 831
Huygens, Christian, 726, 727f
Huygens’s principle, 739–742, 740f,

741f, 746
applied to reflection and

refraction, 740–742, 741f
Hydrogen

Balmer series for, 909–910, 909f
Bohr theory of, 906–912

modification of, 910–912, 912f,
931

electronic arrangement in, 917–918
Hydrogen atom

de Broglie waves and, 912–913,
913f

quantum mechanics and, 913–915,
914t

Hyperopia, 821–822, 822f, 823–824,
837

I
Image(s)

formed by concave mirrors,
762–763

formed by converging lens,
773–774, 774f

formed by convex mirrors, 764
formed by refraction, 765–768,

779
just resolved, 832, 832f, 838
real, 754, 779
virtual, 754, 779

Image distance, 754, 779
Image point, in concave mirror, 757,

757f, 758
Impedance, of RLC circuit, 700, 701t,

719
Implanted cardioverter defibrillators

(ICDs), 585–586, 585f, 586t
Incoherent light sources,

interference and, 787
Index of refraction, 732, 732t, 736f,

745
Induced emf, 660–663, 661f

alternating current generator and,
675–676

magnetic flux and, 661–663, 661f,
662f

magnetic induction and, 663
Induced voltages, 660–692
Inductance, 678, 684

calculating, 678, 679–680
of solenoid, 679–680
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I.6 Index

Induction
charging by, 500, 500f
electromagnetic, 555

Faraday’s law of, 663–667, 683
Inductive reactance, 697, 719
Inductor(s)

in AC circuits, 697–698, 697f, 698f,
719

in RL circuits, 680–682
Inertial property of mass, 865–866
Infrared waves, 716–717, 716f, 717f
Instruments, optical, 819–842. See

also Optical instruments
Insulator(s), 499–500

definition of, 499, 523
energy bands of, 925–926, 926f

Integrated circuit, in semiconductor
devices, 930–9331, 931f

Intensity, of electromagnetic wave, 712
Interference

in light waves
conditions for, 786–787, 811
constructive, 788–789, 788f, 811
destructive, 788f, 789, 811
Young’s double-slit, 787–791,

787f, 788f, 789f, 811
to read CDs and DVDs, 796–797,

796f
television signal, 790
in thin films, 792–796, 792f, 793f,

794f, 795f, 811
Newton’s rings and, 793–796,

793f
Interferometer, Michelson, 836–837,

836f
Ionization energy, 908
Iris, 820, 821, 821f
Irradiation, of food and medical

equipment, 960
Isotopes, of elements, 940, 965

J
Junction rule, 601, 601f, 602
Junction transistor, in semiconductor

devices, 929–930, 930f
Just resolved images, 832, 832f, 838

K
Keyboard, computer, capacitor in,

546, 547f
Kilby, Jack, 930
Kilowatt-hour, 581, 587
Kinetic energy, 860, 869

conversion of mass to, in uranium
fission, 864–865

Kirchhoff, Gustav, 602f
Kirchhoff’s rules

applications of, 603–605, 603f,
604f

complex DC circuits and, 601–605,
601f, 603f, 604f, 615

problem-solving strategy for, 602

L
Land, E. H., 805
Laser printers, 544, 545f
Lasers, 922–924, 923f, 924f, 932
Laue pattern, 883
Law(s)

Bragg’s, 884, 896
Brewster’s, 808, 812
of conservation, 989–991

of strangeness, 991
Malus’s, 806
of refraction, 732–736, 745

Snell’s, 733, 745
Wien’s displacement, 875, 895

Lawson’s criterion, 982, 1002
Length, proper, 856
Length contraction, 856–858, 856f,

868
Lens(es)

aberrations of, 777–779, 778f
angular magnification of, 825, 826f,

837
camera, f -number of, 820, 837
converging, 769, 770

images formed by, 773–774, 774f
crystalline, 820, 821, 821f
diverging, 769, 770, 774–776, 775f
in diving masks, vision and, 773
power of, 823
prescribing, 823–825
thin, 769–777, 769f, 770f, 771f,

772f, 774f, 775f, 776f
combinations of, 776–777, 776f
ray diagrams for, 771–776, 772f,

774f, 775f, 776f
sign conventions for, 771t

Lens maker’s equation, 771
Lenz’s law, 664, 670–673, 683

applications of, 672–673, 672f
Lepton number, 990–991
Leptons, 988t, 989, 1002
Light, 726–753

dispersion of, into spectrum,
738–739, 738f, 739f

dual nature of, 887–890
electromagnetic radiation and, 887
as electromagnetic wave, 711–712
laser, refraction of, in DVD,

735–736
nature of, 726–727, 745

Light (Continued)
passing through slab, 734–735
photon theory of, 879
reflection of, 727, 745
refraction of, 727, 730–731, 731f,

7452
speed of, 845–846, 845f, 846f

ether wind theory of, 846, 846f,
847f

in fused quartz, 734
Michelson-Morley experiment

on, 846–849, 847f, 849f
ultraviolet, 716f, 717
visible, 716f, 717
wave theory of, 726–727

Light sources
coherent, interference and,

786–787
incoherent, interference and, 787
measuring wavelength of, 790–791

Light waves
linearly polarized, 805, 805f
polarization of, 804–811, 812
unpolarized, 805, 805f

Lightbulb(s)
aging, dimming of, 576
brightness of, in various circuits,

598–599
Christmas, in series, 594–595, 594f
cost of operating, 582
current in, 569
failure of, timing of, 581
three-way, 599

Lightning rods, as conductors, 514
Lightning storm, driver safety during,

515
Lightning strike, deflection of, by

Earth’s magnetic field, 633
Liquid crystals, 810–811, 810f
Lithium, electronic arrangement in,

918
Lloyd’s mirror, 791, 791f
Load resistance, 593
Loop rule, 601, 603f, 604f
Luminiferous ether, 846

M
Magnet(s), 624–626

permanent, 649
superconducting, 579–580, 580f

Magnetic bacteria, 627–628
Magnetic declination, 627, 627f
Magnetic domains, 648–649, 648f,

649f
Magnetic field(s), 628–631, 649

of current loop, 644–645, 644f
torque on, 634–636, 634f, 635f,

650
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Index I.7

Magnetic field(s) (Continued)
Earth’s, 626–628

deflection of lightning strike by,
633

energy stored in, 682–683
Lenz’s law and, 671
of long, straight wire, 640–643,

640f, 641f, 642f, 650
motion of charged particles in,

637–640, 637f, 638f, 639f,
650

of solenoid, 646–648, 646f
Magnetic field confinement,

976–978, 977f
Magnetic field lines, 625–626, 626f
Magnetic flux

change in, Faraday’s law of
induction and, 663

induced emf and, 661–663, 661f,
662f

Magnetic force
on current-carrying conductor,

631–634, 631f, 632f, 633f,
649

between parallel conductors,
643–644, 643f

Magnetic materials, soft versus hard,
625

Magnetic resonance imaging (MRI),
962–963, 963f

Magnetism, 624–659
Magnification

angular
of lens, 825, 826f, 837
of telescope, 829, 838

of compound microscope,
827–829, 827f, 837–838

lateral, 755
of mirror, 755, 779
of refracting surface, 765, 779
for thin lens, 770, 779

Magnifier, simple, 825–827, 825f, 826f
Malus’s law, 806
Marsden, Ernest, 908, 939
Mass

conversion of, to kinetic energy in
uranium fission, 
864–865

energy and, equivalence of, 861
gravitational attraction of, for other

masses, 865–866, 866f
inertial property of, 865–866
of nucleus, 940, 940t

Mass number
of electron, 951
of nuclei, 940, 965

Mass spectrometer, 638–639
Materials

electrically charged, 498
ferromagnetic, 649
nonohmic, 574, 574f
ohmic, 574, 574f

Materials (Continued)
optical activity of, 808–809, 809f
resistivity of, 575–577, 576t

Matter, radiation damage in, 959–960
Maxima

in interference pattern of diffraction
grating, 801–802, 801f

secondary, 797
Maximum angular magnification, of

lens, 826–827, 837
Maxwell, James Clerk, 707, 708f

on electromagnetism, 707–708
Hertz on, 708–709

on light, 727
Medical applications, of radiation,

959–963, 961f, 962f, 963f
Meitner, Lise, 973
Mendeleev, Dmitri, 918
Mesons, 986–988, 1002

quark composition of, 994t, 995f
Metal detectors, in airports as series

resonance circuits, 704
Meteoroids, light streaks of, 922
Metric, 867
Michelson, Albert A., 836

experiment of, on speed of light,
846–849, 847f, 849f

Michelson interferometer, 836–837,
836f

Michelson–Morley experiment, on
speed of light, 846–849,
847f, 849f

Microscope
compound, 827–829, 827f,

837–838
electron, 889–890, 890f
limiting resolution of, 833–834
scanning tunneling, 894–895,

894f, 895f
Microwaves, 716, 716f

polarizing, 806
Millikan, Robert Andrews, 499

oil-drop experiment of, 515–516,
515f

Minima, 797–798
Mirage, 768f, 769
Mirror(s)

concave, 757–759, 757f, 758f, 759f,
761f

convex, 759–765, 759f, 760f, 761f,
762f

diverging, 759
flat, 754–757, 755f, 756f, 757f, 779
Lloyd’s, 791, 791f
ray diagrams for, 760–762, 761f
rearview, day and night settings for,

756–757, 756f
sign conventions for, 759–760,

760t
spherical, images formed by,

757–759
Mirror equation, 758–759, 779

Moderator, in nuclear reactor, 972
Momentum

of photon, 887–888
relativistic, 858, 868

energy and, 862–865
Monitor, apnea, Faraday’s law and,

666, 667f
Morley, Edward W., experiment of,

on speed of light, 846–849,
847f, 849f

Moseley, Henry G. J., 920
Motion of proton between two

charged plates, 537
Motional emf, 667–670, 667f, 668f
Motors

back emf and, 676–677, 676f
electric, 636–637, 636f, 637f

MRI (magnetic resonance imaging),
962–963, 963f

Müller, K. Alex, 579
Multimeter, digital, 572f, 573
Muons, 853–854, 854f, 981
Muscles, ciliary, in accommodation,

821
Myopia, 822, 822f, 824–825, 837

N
n - type semiconductors, 927
Nature, fundamental forces in,

984–985, 1002
Near point, 821
Nearsightedness, 822, 823f, 824–825,

837
Ne’eman, Yuval, 993
Neurons, conduction of electrical

signals by, 612–614
Neutrino, 951, 952, 966
Neutron

charge and mass of, 501t
discovery of, 956

Neutron capture, in nuclear reactors,
998

Neutron decay, 990
Neutron energies, regulation of, in

nuclear reactors, 977–978
Neutron leakage, in nuclear reactors,

977
Neutron number, of nuclei, 940
Newton, Isaac, on time, 850
Newtonian focus, 830
Newton’s law of motion

first, Galilean relativity and, 844
second, motion of charged particle

in magnetic field and, 637,
650

third, magnetic force between two
parallel conductors and,
643
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I.8 Index

Newton’s rings, 793–796, 793f
Noble gases, 918
Nonohmic material, 574, 574f
North pole

Earth’s geographic, 626
of magnet, 624

Noyce, Robert, 930
npn transistor, in semiconductor

devices, 929
Nuclear fission, 973–976, 974f, 1002
Nuclear force, 942
Nuclear fusion, 980–984, 1002

in sun, 980–981, 980f
Nuclear magnetic resonance, 962
Nuclear physics, 939–972

decay processes in, 948–955, 949f,
951f, 953f, 955f

natural radioactivity in, 955, 955f,
955t

nuclear reactions in, 955–958, 966
properties of nuclei in, 940–942,

940t, 941f, 943f
radioactivity in, 945–948, 945f,

946f, 966
Nuclear reactions, 955–958, 966
Nuclear reactors, 976–980, 976f,

977f, 978f, 1002
safety of, 979–980

Nucleus(i)
of atom, 904
atomic number of, 940, 965
binding energy of, 943–944, 944f,

965
charge of, 940
daughter, 949
mass number of, 940, 965
mass of, 940, 940t
neutron number of, 940
parent, 949
properties of, 940–942, 940t, 941f,

943f
size of, 941–942, 941f
stability of, 942, 943f

Numbers, right-hand rule, 640

O
Object distance, 754, 779
Occhialini, Guiseppe P. S., 987
Occupational radiation, exposure

limits for, 960
Oersted, Hans Christian, 640, 640f
Ohm, Georg Simon, 574, 574f
Ohm-meter, 575, 587
Ohmic material, 574, 574f
Ohms, 574, 586
Ohm’s law, 574, 586
Ohm’s law, for AC circuit, 697, 718
Omega minus particle, 993

Onnes, H. Kamerlingh, 579
Open-circuit voltage, 593
Optical activity, 808–809, 809f
Optical instruments, 819–842

camera as, 819–820, 820f
compound microscope as,

827–829, 827f, 837–838
Michelson interferometer as,

836–837, 836f
telescope as, 829–831, 829f, 830f,

831f, 838
Optics

fiber, 744–745
geometric, ray approximation in,

728, 728f
wave, 786–818

Orbital magnetic quantum number,
912, 932

for hydrogen atom, 914, 914t
Orbital quantum number, 912, 932

for hydrogen atom, 914, 914t
Order number

of diffraction pattern, 801–802
of fringe, 789, 811

Oscillator, macroscopic, quantized, 877

P
p -n junction, in semiconductor

devices, 928–929, 928f,
929f

p -type semiconductors, 927
Pacemakers, cardiac, 584–585
Pair annihilation, 865, 865f, 869
Pair production, 865, 865f, 869
Parallel combination of capacitors,

548–550, 549f, 561
Parallel-plate capacitor, 546–548
Parent nucleus, 949
Particle(s)

alpha, 904
charged

motion of, in magnetic field,
637–640, 637f, 638f, 639f,
650

trapping of, by magnetic field, 638
classification of, 988t, 998–999,

1002
elementary, 984
motion of, perpendicular to

uniform magnetic field, 637
strange, 991–992
wave properties of, 887–888

Particle physics
beginning of, 986–988, 987f
problems and perspectives in, 1001

Particle theory of light, 879
Path difference, 788, 789f
Pauli, Wolfgang, 915, 918f

Pauli exclusion principle, 912,
917–919, 932

Penning trap, 638
Penzias, Arno A., 1000, 1000f
Periodic table, 918–919
Periscopes, submarine, internal

reflection in, 743
Permeability, of free space, 641, 

650
Permittivity of free space, 546, 561
PET (positron emission

tomography), 986
Phase angle , for RLC circuit,

699–700, 700t, 719
Phasor diagram, for RLC circuit, 699,

699f, 700f
Phasors, in RLC circuit, 699
Photocells, 880
Photodielectric effect, 727
Photoelectric effect, 877–878, 878f,

895
for sodium, 879–880

Photoelectrons, 877, 878
Photographic emulsion, as track

detector, 965
Photographs, flash, red eyes in, 729
Photomultiplier (PM) tube, 964, 

964f
Photon(s), 277, 985, 985t

energy of, 879
momentum of, 887–888
virtual, 987, 987f

Photon theory, of light, 879
Physics

atomic, 903–938 (See also Atomic
physics)

nuclear, 939–972 (See also Nuclear
physics)

quantum, 874–902 (See also
Quantum physics)

Pion, 987
Planck, Max, 878f
Planck’s constant, 727, 745, 876–877,

895
Plane wave, 710–711
Plasma confinement time, in

thermonuclear reactor, 
982

Plasma ion density, in thermonuclear
reactor, 982

pnp transistor, in semiconductor
devices, 929, 930f

Point charge, electric potential
created by, 538–541, 
539f

Polarization, 500
capacitance and, 559–560, 560f
of light waves, 804–811, 812

by reflection, 807–808, 808f
by scattering, 808, 808f
by selective absorption, 805–807,

805f, 806f

�
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Index I.9

Polarizer, 805–806, 805f, 806–807
Polarizing angle, 808, 812
Polaroid, 805
Poles

Earth’s geographic, 626
of magnet, 624

Population inversion, 923
Positron emission tomography (PET),

986
Positrons, 945, 952, 985–986, 1002
Potential(s)

action, 612, 614f
charged conductors and, 

541–542
electric, 531–542, 561
potential energy and, 536
stopping, 878

Potential difference, voltage as, 549
Potential energy

due to point charges, 538–541
electric

change in, 532
work and, 531–535

gravitational, electric potential
energy and, 533

potential and, 536
Powell, Cecil Frank, 987
Power

in AC circuit, 702–704, 719
average, in AC circuit, 703, 719
converted by electric heater,

582–583
distribution of, to city, transformers

in, 706–707, 707f
electrical energy and, 580–583
of lens, 823, 837
level of, control on, in nuclear

reactors, 978–979, 978f
resolving, of diffraction grating,

835–836, 838
Power factor, in AC circuit, 703, 719
Precipitator, electrostatic, 543–544,

543f
Presbyopia, 822
Primary coil, 660
Primordial fireball, observation of

radiation from, 1000–1001
Principal axis, of mirror, 757–758,

757f, 758f
Principal quantum number, 912, 932
Prism(s)

diffraction grating vs., 802
dispersion and, 736–738, 737f, 746

Prism spectrometer, 736–737, 738f
Problem-solving strategy

for capacitors, 552
for electric forces and fields, 508
for electric potential, 540
for Kirchhoff’s rules, 602
for resistors, 600
for thin-film interference, 794

Proper time, 852

Proton-proton cycle, in sun, 974–975
Proton(s), 498

charge and mass of, 501t
electric force on, 507
motion of, between two charged

plates, 537
motion of, in magnetic field,

630–631, 631f
Pumps, electromagnetic, medical

uses of, 633, 633f
Pupil, 820
Purkinje fibers, 583f, 584

Q
Q values, 957–958
Quantized charge, 499
Quantum chromodynamics, 996,

1002
Quantum mechanics

hydrogen atom and, 913–915, 914t
theory of, 891, 896

Quantum number(s), 876
for 2 p subshell, 916
energy and, 908, 908f
orbital, 912, 932

for hydrogen atom, 914, 914t
orbital magnetic, 912, 932

for hydrogen atom, 914, 914t
principal, 912, 932
spin magnetic, 912, 915–916, 932

Quantum physics, 874–902
blackbody radiation in, 875–877,

875f, 876f, 895
Compton effect of, 885–887, 885f,

896
diffraction of x-rays by crystals in,

883–885, 883f, 884f,
895–896

photoelectric effect and, 877–878,
878f, 895

photon theory of light and, 879
Planck’s hypothesis in, 876–877
scanning tunneling microscope in,

894–895, 894f, 895f
uncertainty principle in, 891–893,

892f, 896
wave function in, 890–891, 896
wave properties of particles in,

887–888
x-rays in, 880–885, 881f, 882f, 883f,

884f, 895–896
Quarks, 499n, 984, 996–997, 994t,

995f, 995t, 996f, 997f, 1002
color force between, 996–997, 1002
colored, 996–997, 996f, 997f, 

1002
force between, 996
properties of, 994t

R
Radiation

blackbody, 875–877, 875f, 876f,
895

electromagnetic, light and, 887
medical applications of, 959–963,

961f, 962f, 963f
observation of, from primordial

fireball, 1000–1001
occupational, exposure limits for,

960
thermal, 874–876

color of stars and, 875
from human body, 875–876

Radiation damage, in matter,
959–960

Radiation detectors, 963–965,
963–965, 963f, 963f, 964f,
965f

Radio, tuning of, series resonance
circuit and, 704

Radio-wave transmission, 709–710
Radio waves, 716, 716f, 717f
Radioactive material

decay constant of, 945–946, 966
half-life of, 946–948, 966

Radioactive tracing, 960
Radioactivity, 945–948, 945f, 946f,

966
artificial, 955
for carbon dating, 952–953
natural, 955, 955f, 955t
practical uses of, 952–954

Radium
activity of, 947
decaying, 950

Radon detecting, radioactivity in, 953
Radon gas, activity of, 948
Rainbow, 738–739, 739f, 746
Ray approximation, in geometric

optics, 728, 728f
Ray diagrams

for mirrors, 760–762, 761f
for thin lenses, 771–776, 772f,

774f, 775f, 776f
Rayleigh’s criterion, 832, 838
Rays, gamma, 716f, 717, 952, 966
RBE (relative biological

effectiveness), 959, 959t
RC circuits, 605–609, 606f, 607f, 615
Reactance

capacitive, 696–697, 719
inductive, 697, 719

Reactors
fusion, 981–982
nuclear, 976–980, 976f, 977f, 978f,

1002
Real image, 754, 779
Rectifier, in semiconductor devices,

929, 929f
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I.10 Index

Reflecting telescope, 829–830, 830f
Reflection

change of phase due to, 791–792,
791f

diffuse, 728, 728f
Huygen’s principle applied to,

740–742, 741f
of light, 727, 745
polarization by, 807–808, 808f
specular, 728–729, 728f
total internal, 742–745, 746

Refracting surfaces
flat, 766–768, 766f, 767f
sign conventions for, 766t

Refracting telescope, 829, 830, 830f
Refraction

angle of, 731, 731f
for glass, 733–734

atmospheric, 768–769, 768f
Huygens’s principle applied to,

740–742, 741f
images formed by, 765–768, 779
index of, 732, 732t, 736f, 745
of laser light in DVD, 735–736
law of, 732–736, 745

Snell’s, 733, 745
of light, 727, 730–731, 731f, 745

Refractive myopia, 822
Relative biological effectiveness

(RBE), 959, 959t
Relativistic energy, 860–861
Relativistic momentum, 858, 868

energy and, 862–865
Relativity, 843–873

Einstein’s principle of, 849–850
Galilean, principle of, 844–845,

845f
general, 865–868, 866f, 867f
special theory of, 844, 849–858,

851f, 852f, 854f, 855f, 856f,
868

consequences of, 850–858
length contraction and,

856–858, 856f, 868
simultaneity and relativity of time

and, 850–851, 851f
time dilation and, 851–855,

852f, 854f, 868
twin paradox and, 855–856, 855f

Rem, 959
Resistance, 573, 586–587

equivalent
of parallel combination of

resistors, 596f, 597,
600–601, 615

of series combination of
resistors, 594, 615

load, 593
of nichrome wire, 576–577
of steam iron, 575
temperature variation of, 577–579

Resistance thermometer, platinum,
578–579

Resistivity, 575–577, 576t, 586
electrical, 587
temperature coefficient of, 578, 587

Resistor(s), 574, 575f
in AC circuits, 693–696, 694f, 695f
in parallel, 596–601, 596f, 597f,

598f, 599f
in three-way lightbulb, 599

power delivered to, 587
power dissipated by, 580–581
problem-solving strategy for, 600
in series, 593–596, 594f

Resolving power, of diffraction
grating, 835–836, 838

Resonance
circuit in, capacitance of, 705
in RLC series circuit, 704–705,

704f
Resonance frequency, 704

of circuit, 709
Resonators, 876
Rest energy, 861, 869
Retina, 820–821, 821f
Retroreflection, 729
Richter, Burton, 995
Right-hand rule

number 1, 629, 629f, 649
number 2, 640, 640f

RL circuits, 680–682, 683–684
RLC series circuit, 699–702, 719

resonance in, 704–705, 704f
rms current, 694–696, 718
rms voltage, 695, 718
Roadway flashers as RC circuits,

606–607
Rods, 820
Roentgen, Wilhelm, 880–881
Rubbia, Carlo, 998
Rutherford, Ernest, 904, 939, 940f,

941, 955–956
planetary model of, of atom, 904,

904f
Rydberg constant, 905

S
Safety

electrical, 611–612
reactor, 979–980

Salam, Abdus, 997–998
Scalar quantity, electric potential as,

536, 539
Scanning tunneling microscope,

894–895, 894f, 895f
Scattering, polarization of light waves

by, 808, 808f
Schrödinger, Erwin, 890–891, 891f
Schwarzschild radius, 868
Scintillation counter, 964, 964f
Secondary coil, 660

Self-induced emf, 677–680, 677f,
678f, 684

Self-inductance, 677–680, 677f, 678f,
684

Self-sustained chain reaction, in
nuclear reactor, 977

Semiconductor(s), 499
energy bands of, 926–927, 926f,

927f
Semiconductor devices, 928–929,

928f, 929f, 930f, 931f
junction transistor in, 929–930,

930f
p-n junction in, 928–929, 928f,

929f
Semiconductor diode detector, 

964
Series combination of capacitors,

550–554, 551f, 561
Shells, 912, 912t

number of electrons in, 918t
Shockley, William, 929
SI unit(s)

for capacitance, 545
for change in electric potential

energy, 532
for charge, 643
for current, 569, 586, 643
for electric charge, 499, 501
for electric potential difference

between two points, 536
for electrical field, 505
for emf, 592
for inductance, 678
for magnetic field, 629
for magnetic flux, 661
for radioactivity, 946
for resistance, 574
for resistivity, 587

Sign conventions for mirrors,
759–760, 760t

Simultaneity, relativity of time and,
850–851, 851f

Singularity, 868
Slit, limiting angle for, 832–833, 

838
Smoke detectors, radioactive

materials in, 953, 953f
Snell’s law, of refraction, 733, 745
Sodium, photoelectric effect for,

879–880
Solar cells, nonreflective coatings for,

794–795, 794f
Solar energy, 713–714
Solenoid

Ampère’s law applied to, 648
inductance of, 679–680
magnetic field of, 646–648, 646f

Solids, energy bands in, 924–927,
925f, 926f, 927f

Somatic damage, 959
Sommerfeld, Arnold, 912
Sound waves, diffraction of, 800
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Index I.11

South pole
Earth’s geographic, 626
of magnet, 624

Space catapult, motional emf and,
668, 668f

Space travel
length contraction and, 856–858,

856f
special theory of relativity and,

855–856, 855f
Spacetime, curvature of, 867
Spectral lines, 737
Spectrometer

diffraction grating, 802, 802f
mass, 638–639
prism, 736–737, 738f

Spectrum(a), 736, 736f
absorption, 905–906, 905f
atomic, 905–906, 905f
dispersion of light into, 738–739,

738f, 739f
electromagnetic, 715–717, 720
emission, 905, 905f

Specular reflection, 728–729, 728f
Speed(s)

drift, 570–571, 586
of light

ether wind theory of, 846, 846f,
847f

Michelson-Morley experiment,
846–849, 847f, 849f

Spherical aberration, 758, 758f, 778,
778f, 779

Spin magnetic quantum number,
912, 915–916, 932

Spontaneous decay, 949
Spontaneous emission, 922, 922f, 932
Standard Model, 998
Stars, colors of, 875
Step-down transformer, 706
Step-up transformer, 706
Stimulated absorption process, 921,

921f, 932
Stopping potential, 878
Storms, electrical, driver safety

during, 515
Strange particles, 991–992
Strangeness, 991–992, 1002
Strassman, Fritz, 973
Strong force, 984, 1002
Stud finders, capacitors in, 558
Submarine periscopes, internal

reflection in, 743
Subshells, 912, 912t

number of electrons in, 918t
Sun, fusion in, 980–981, 980f
Superconductors, 579–580, 580f

critical temperatures for, 579t
Superposition principle, 503

in calculating electric field, 506
electric potential for two or more

charges and, 539
Symmetry breaking, 998

T
Tachycardia, definition of, 585
Tape recorders, Lens’s law and,

672–673, 672f
Telecommunications, fiber optics in,

745
Telescope, 829–831, 829f, 830f, 831f,

838
resolution of, 834

Television signal interference, 790
Temperature, critical, 579

for superconductors, 579t
Temperature coefficients

of resistivity, 578, 587
for various materials, 576t

Temperature variation
of resistance, 577–579

Tesla, 629, 649
Tesla, Nikola, 701f
Thermal radiation, 874–876

colors of stars and, 875
from human body, 875–876

Thermometer, resistance, platinum,
578–579

Thermonuclear fusion reactions, 981
Thin films, interference in, 792–796,

792f, 793f, 794f, 795f, 811
Thin-lens equation, 770–771, 779
Thin lenses, 769–777, 769f, 770f,

771f, 772f, 774f, 775f, 776f
combinations of, 776–777, 776f
ray diagrams for, 771–776, 772f,

774f, 775f, 776f
sign conventions for, 771t

Thomson, G. P., 888
Thomson, Sir Joseph John, 904f

model of, of atom, 904, 904f
Three Mile Island, 979
Threshold energy, 958, 966
Threshold voltage, 881
Time

proper, 852
relativity of, simultaneity and,

850–851, 851f
Time constant, 605, 615

for RL circuit, 680, 681–682, 684
Time dilation, 851–855, 852f, 854f,

868
Ting, Samuel, 995
Tokamak, 982–983, 983f
Tomography

computed axial, 960–962, 961f, 962f
positron emission, 986

Torque, on current loop, 634–636,
634f, 635f, 650

Total energy, 861, 869
Tracing, radioactive, 960
Track detectors, 964–965, 965f
Transformer, AC, 705–707, 705f, 707f
Transistor, junction, in semiconductor

devices, 929–930, 930f

Transmission axis, 805, 805f
Transmission electron microscope,

889–890, 890f
Twin paradox, 855–856, 855f

U
Uhlenbeck, George, 912, 915
Ultraviolet catastrophe, 876
Ultraviolet light, 716f, 717
Uncertainty principle, 891–893, 892f,

896
Unified mass unit, definition of, 940
Uranium fission, 973–975

conversion of mass to kinetic
energy in, 864–865

V
Valence band, 925, 926, 926f

holes for, 927, 927f
Van de Graaff, Robert J.

generator of, 516–517, 516f
Van der Meer, Simon, 998
Velocity, relativistic addition of,

859–860, 859f, 868–869
Virtual image, 754, 779
Virtual photon, 987, 987f
Visible light, 716f, 717
Volt, 592

electron, 542
Voltage(s)

induced, 660–692
measurement of, in circuits,

572–573
notations for, 695t
open-circuit, 593
potential difference as, 549
rms, 695, 718
threshold, 881

Von Laue, Max, 881, 883

W
Wave(s)

de Broglie, hydrogen atom and,
912–913, 913f

electromagnetic, 693, 708, 719
Doppler effect for, 718
intensity of, 712
production of, by antenna,

709–710, 710f
properties of, 710–715
spectrum of, 715–717, 720
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I.12 Index

Wave(s) (Continued)
infrared, 716–717, 716f, 717f
light

linearly polarized, 805, 805f
polarization of, 804–811
unpolarized, 805, 805f

plane, 710–711
radio, 716, 716f, 717f
sound, diffraction of, 800

Wave front, 728, 728f
in Huygens’ construction,

739–740, 740f
Wave function, 890–891, 896
Wave optics, 786–818
Wave properties, of particles,

887–888
Wave theory, of light, 726–727
Wavelength

Compton, 885, 886
cutoff, 879
de Broglie’s, 888, 896

of baseball, 889
of electron, 889

of light source, measuring, 790–791
Wavelets, 740
Weak force, 984, 1002
Weber, 661
Weber per square meter, 629
Weinberg, Steven, 997–998
Wheeler, John, 867

Wien’s displacement law, 875, 895
Wilson, Robert W., 1000, 1000f
Windshield wipers, timed, as RC

circuits, 606
Wire

levitating, 644
long, straight

Ampère’s law and, 641–642,
642f, 650

magnetic field of, 640–643, 640f,
641f, 642f, 650

magnetic force on, origin of, 632,
632f

Wire chamber, as track detector, 
965

Work, electric potential energy and,
531–535

Work function, of metal, 879, 879t,
895

X
X-rays, 716f, 717, 717f, 805–896,

880–885, 881f, 882f, 883f,
884f

characteristic, 920–921, 920f, 
932

X-rays (Continued)
diffraction of, by crystals, 883–885,

883f, 884f, 895–896
energy of, estimating, 920
scattering of, 886–887
in study of work of master painters,

882
Xerography, 544, 545f

Y
Yerkes Observatory, 830
Young, Thomas, 727

double-slit interference
experiment of, 787–791,
787f, 788f, 789f, 811

Yukawa, Hideki, 986–987, 986f

Z
Zeeman effect, 912
Zonules, in accommodation, 

821
Zweig, George, 993
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PEDAGOGICAL USE OF COLOR

Displacement and
position vectors

Light rays

Lenses and prisms

Mirrors

Images

Objects

Capacitors

Inductors (coils)

Voltmeters V

Ammeters A

Lightbulbs

AC sources

Switches Ground symbol

Batteries and other
DC power supplies – +

Resistors

Negative charges –

Positive charges +

Magnetic fields

Electric fields

Springs

Linear or rotational
motion directions

Torque (t) and
angular momentum
(L) vectors

Acceleration vectors (a)
Acceleration component vectors

Force vectors (F)
Force component vectors

Velocity vectors (v)
Velocity component vectors
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CONVERSION FACTORS

Length

1 m � 39.37 in. � 3.281 ft
1 in. � 2.54 cm
1 km � 0.621 mi
1 mi � 5280 ft � 1.609 km
1 light year (ly) � 9.461 � 1015 m
1 angstrom (Å) � 10�10 m

Mass

1 kg � 103 g � 6.85 � 10�2 slug
1 slug � 14.59 kg
1 u � 1.66 � 10�27 kg � 931.5 MeV/c2

Time

1 min � 60 s
1 h � 3600 s
1 day � 8.64 � 104 s
1 yr � 365.242 days � 3.156 � 107 s

Volume

1 L � 1000 cm3 � 3.531 � 10�2 ft3

1 ft3 � 2.832 � 10�2 m3

1 gal � 3.786 L � 231 in.3

Angle

180° � � rad
1 rad � 57.30°
1° � 60 min � 1.745 � 10�2 rad

Speed

1 km/h � 0.278 m/s � 0.621 mi/h
1 m/s � 2.237 mi/h � 3.281 ft/s
1 mi/h � 1.61 km/h � 0.447 m/s � 1.47 ft/s

Force

1 N � 0.2248 lb � 105 dynes
1 lb � 4.448 N
1 dyne � 10�5 N � 2.248 � 10�6 lb

Work and energy

1 J � 107 erg � 0.738 ft � lb � 0.239 cal
1 cal � 4.186 J
1 ft � lb � 1.356 J
1 Btu � 1.054 � 103 J � 252 cal
1 J � 6.24 � 1018 eV
1 eV � 1.602 � 10�19 J
1 kWh � 3.60 � 106 J

Pressure

1 atm � 1.013 � 105 N/m2 (or Pa) � 14.70 lb/in.2

1 Pa � 1 N/m2 � 1.45 � 10�4 lb/in.2

1 lb/in.2 � 6.895 � 103 N/m2

Power

1 hp � 550 ft � lb/s � 0.746 kW
1 W � 1 J/s � 0.738 ft � lb/s
1 Btu/h � 0.293 W
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PHYSICAL CONSTANTS

Quantity Symbol Value SI unit

Speed of light in vacuum c 3.00 � 108 m/s

Permittivity of free space �0 8.85 � 10�12 C2/N � m2

Coulomb constant, 1/4��0 ke 8.99 � 109 N � m2/C2

Permeability of free space �0 1.26 � 10�6 T � m/A
(4� � 10�7 exactly)

Elementary charge e 1.60 � 10�19 C

Planck’s constant h 6.63 � 10�34 J � s
� � h/2� 1.05 � 10�34 J � s

Electron mass me 9.11 � 10�31 kg
5.49 � 10�4 u

Proton mass mp 1.672 65 � 10�27 kg
1.007 276 u

Neutron mass mn 1.674 95 � 10�27 kg
1.008 665 u

Avogadro’s number NA 6.02 � 1023 mol�1

Universal gas constant R 8.31 J/mol � K

Boltzmann’s constant kB 1.38 � 10�23 J/K

Stefan-Boltzmann constant 	 5.67 � 10�8 W/m2 � K4

Molar volume of ideal gas at STP V 22.4 L/mol
2.24 � 10�2 m3/mol

Rydberg constant RH 1.10 � 107 m�1

Bohr radius a0 5.29 � 10�11 m

Electron Compton wavelength h/mec 2.43 � 10�12 m

Gravitational constant G 6.67 � 10�11 N � m2/kg2

Standard free-fall acceleration g 9.80 m/s2

Radius of Earth (at equator) RE 6.38 � 106 m

Mass of Earth ME 5.98 � 1024 kg

Radius of Moon RM 1.74 � 106 m

Mass of Moon MM 7.36 � 1022 kg

The values presented in this table are those used in computations in the text. Generally, the physical constants are
known to much better precision.
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