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To my parents, my wife and my children



Wahrheit und Klarheit sind komplementär.
E. Mollwo

This aphorism was coined in the nineteen-fifties by E. Mollwo, Professor
of Physics at the Institut für Angewandte Physik of the Universität Erlangen
during a discussion with W. Heisenberg. The author hopes that, with respect
to his book, the deviations from exact scientific truth (Wahrheit) and perfect
understandability (Klarheit) are in a reasonable balance.

Just as an illustration of the above statement, the attention of the author
has been drawn to the fact, that the same statement has been reported even
in German language also from Niels Bohr. See Steven Weinberg, Dreams of
a Final Theory, Vintage Books, New York (1994) p. 74.



Preface to the Second Edition

The book on Semiconductor Optics has been favourably received by the stu-
dents and the scientific community worldwide. After the first edition, which
appeared in 1995 several reprints became necessary starting from 1997, one
of them for the Chinese market. They contained only rather limited updates
of the material and corrections.

In the meantime scientific progress brought a lot of new results, which
necessitate a new, seriously revised edition. This progress includes bulk semi-
conductors, but especially structures of reduced dimensionality. These new
trends and results are partly included in existing chapters e.g. for phonons or
for time-resolved spectroscopy, partly new chapters have been introduced like
the ones on cavity polaritons and photonic structures.

We based the description of the optical properties again on the simple and
intuitively clear model of the Lorentz-oscillators and the concept of polaritons
as the quanta of light in matter. But since there is presently a trend to describe
at least the optical properties of the electronic system of semiconductors by
the optical or the semiconductor Bloch equations, a chapter has been added
on this topic written by Prof. Dr. R. v. Baltz (Karlsruhe) to familiarize the
reader with this concept, too, which needs a bit more quantum mechanics
compared the approach used here. The chapter on group theory has been
revised by Prof.Dr. K. Hümmer (Karlsruhe/Forchheim)

Karlsruhe, C.F. Klingshirn
September 2004



Preface to the First Edition

One of the most prominent senses of many animals and, of course, of human
beings is sight or vision. As a consequence, all phenomena which are connected
with light and color, or with the optical properties of matter, have been focal
points of interest throughout the history of mankind. Natural light sources
such as the Sun, the Moon and stars, or fire, were worshipped as gods or
godesses in many ancient religions. Fire, which gives light and heat, was for
many centuries thought to be one of the four elements – together with earth,
water, and air. In alchemy, which marks the dawn of our modern science, the
Sun and the Moon appeared as symbols of gold and silver, respectively, and
many people tried to produce these metals artificially. Some time later, Jo-
hann Wolfgang von Goethe (1749–1832) considered his “Farbenlehre” as more
important than his poetry. In the last two centuries a considerable fraction of
modern science has been devoted to the investigation and understanding of
light and the optical properties of matter. Many scientists all over the world
have added to our understanding of this topic. As representatives of the many
we should like to mention here only a few of them: I. Newton (1643–1727),
J.C. Maxwell (1831–1879), M. Planck (1858–1947), A. Einstein (1879–1955),
N. Bohr (1885–1962), and W. Heisenberg (1901–1976).

The aim of this book is more modest. It seeks to elucidate one of the nu-
merous aspects in the field of light and the optical properties of matter, namely
the interaction of light with semiconductors, i.e., semiconductor optics. The
investigation of the properties of semiconductors has, in turn, its own history,
which has been summarized recently by H.J. Queisser [85Q1]. In Queisser’s
book one can find early examples of semiconductor optics, namely the ob-
servation of artificially created luminescence by V. Cascariolo in Bologna at
the beginning of the 17th century, or by K.F. Braun (1850–1918), inventor of
the “Braun’sche Röhre” (Braun’s tube) now usually called CRT (cathode ray
tube), at the beginning of this century.

Another root of semiconductor optics comes from the investigation of the
optical properties of insulators, especially of the color (Farb- or F-) centers
in alkali halides. This story has been written down recently by J. Teich-



XII Preface to the First Edition

mann [88T1]. It is inseparably connected with names such as Sir Nelville
Mott and A. Smakula, but especially with R.W. Pohl (1884–1976) and his
school in Gottingen.

Together with J. Franck (1882–1964) and M. Born (1882–1970) R.W. Pohl
was one of the outstanding physicists of the “golden years of physics” at
Göttingen before 1933 [77B1,84M1,88H1]. The present author considers him-
self a scientific grandson of Pohl, with E. Mollwo (1909–1993), F. Stöckmann
(1918–1998) and W. Martienssen (*1926) as the intermediate generation, and
he owes to them a large part of his scientific education.

Scientific interest in semiconductor optics comprises both fundamental and
applied research. It has been an extremely lively, rapidly developing area of
research for the last five decades and more, as can be seen from the con-
tributions to the series of International Conferences on the Physics of Semi-
conductors [50I1] and on Luminescence [81I1] or on Non-linear Optics and
Excitation Kinetics [87N1]. It does not need much of a prophetic gift to pre-
dict that semiconductor optics will continue to be a major topic of solid state
physics far into the next century. Many applications of semiconductor optics
are known from everyday life such as light-emitting diodes (LED) in displays,
laser diodes in compact-disk (CD) players, laser printers and laser scanners
or solar cells.

Karlsruhe, C.F. Klingshirn
February 1995
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W. Stößel (Karlsruhe).

From the colleagues I should like to mention with great pleasure fruitful
and stimulating discussions e.g. with Profs. Drs. H. Haug, W. Martienssen,
E. Mohler and L. Banyai (Frankfurt am Main), J.B. Grun, B. Hönerlage and
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1

Introduction

This introductory chapter consists of an outline of the fundamental concepts
and ideas on which the text is based, including the rather limited prerequisites
so that the reader can follow it and, finally, some hints about its contents.

1.1 Aims and Concepts

The aim of this book is to explain the optical properties of semiconductors,
e.g., the spectra of transmission, reflection and luminescence, or of the com-
plex dielectric function in the infrared, visible and near-ultraviolet part of
the electromagnetic spectrum. We want to evoke in the reader a clear and
intuitive understanding of the physical concepts and foundations of semicon-
ductor optics and of some of their numerous applications. To this end, we
try to keep the mathematical apparatus as simple and as limited as possi-
ble in order not to conceal the physics behind mathematics. We give ample
references for those who want to enter more deeply into the mathematical
concepts [62F1, 74B1, 75Z1, 76A1, 81M1, 88Z1, 91D1, 91L1, 93B1, 93H1, 93O1,
95I1, 95M1,96S1,97B1,02S1].

Though many devices are based on the optical properties of semiconduc-
tors like photodiodes and solar cells or light emitting and laser diodes, we
will not go into the details of such devices except for laser diodes, which are
shortly treated in Chap. 22. Information on these topics can be found, e.g.,
in [65S1,85P1,86P1,92E1,94C1,97E1,97N1,99B1,00I1, 02C1,02S2].

In this spirit, this present textbook is not only suitable for graduate and
postgraduate students of physics, but also for students of neighboring disci-
plines, such as material science and electronics.

The prerequisites for the reader are an introductory or undergradu-
ate course in general physics and some basic knowledge in atomic physics
and quantum mechanics. The reader should know, for example, what the
Schrödinger equation is, what the words eigen- (or proper-) state and eigen
energy mean, and what quantum mechanics predicts about plane waves, the
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hydrogen atom or the harmonic oscillator, how to calculate transition proba-
bilities e.g., by Fermi’s golden rule. Some basic knowledge of solid state physics
will facilitate reading of this book, although the basic concepts will always be
outlined here.

At the end of every chapter we give several problems which can be solved
with the information given in the text, combined with some basic knowledge
of physics, some thinking and some creativity. For fields which are actually
rather active we give at the end of the corresponding sections references with
only short explanations, which allow the reader to enter such a field of research
e.g. in the preparation of a PhD thesis.

1.2 Outline of the Book and a lot of References

In the first part of this book (Chaps. 2–18 we shall present the linear
optical properties of semiconductors. We start in Chap. 2 with Maxwell’s
equations, photons and the density of states and introduce in Chap. 3
the basic concepts of the interaction of light with matter. In Chaps. 4–6
a model system of oscillators is treated with respect to the optical prop-
erties which can be expected for such a system. Chapters 7–10 are used
to introduce the elementary excitations or quasiparticles in semiconductors,
followed by a presentation of the linear optical properties resulting from
the interaction of these quasiparticles with light in Chaps. 11–17. Chap-
ter 18 gives a short résumé of the linear optical properties of semiconduc-
tors. We include in Chaps. 7–17 modern concepts of semiconductor optics
such as the properties of systems of reduced dimensionality, e.g. quantum
wells, microcavities, photonic crystals or disordered systems which lead to
localization.

At present, more than 600 different semiconductor materials are known.
Many of them and their properties are listed in several volumes of Landolt–
Börnstein [82L1,01L1]. We shall concentrate here on the most important ones.
They are usually tetrahedrally coordinated and comprise, e.g. the group IV
elements Si and Ge, the III–V compounds such as GaAs, the IIb–VI semi-
conductors such as CdS or ZnSe, and the Ib–VII materials such as the Cu
halides.

Chapters 19–24 contain the main aspects of the nonlinear optical proper-
ties of semiconductors including optical gain and lasing as an example for an
application of nonlinear optical properties.

In Chaps. 25–27, which can be considered as a kind of appendix, we shall
outline some experimental techniques of semiconductor spectroscopy and some
elements of group theory which are relevant for the description of semicon-
ductor optics and a pedestrian approach to semiconductor Bloch equations
including some applications of this concept.

In the sections on the linear and on the nonlinear optical properties of
semiconductors, the main emphasis is placed on those properties which are
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connected with excitations in the electronic system of semiconductors, since
these aspects have obtained the widest interest both in fundamental and ap-
plied research as can be seen from an inspection of the conference series men-
tioned in the preface. However, we give also broad information on phonons
and other quasiparticles or elementary excitations in semiconductors and on
their optical properties.

In most chapters or sections a selection of references will be given for
further reading which penetrate deeper into the topic, consider some further
aspects, or give a more detailed theoretical description. Since the number of
original publications, conference proceedings or summer schools on the top-
ics covered here is “close to infinite”, it is definitely only possible to cite
a very small fraction of them, the choice of which is partly arbitrary and
determined by the author’s research interest. Furthermore, we shall not give
references at all for things which can be considered to belong to the “gen-
eral education or culture” in physics but we give references to the sources of
original data in the figures. These figures have all been redrawn and generally
modified for the didactic purpose of this textbook. We apologize for these
deficiencies.

The present book thus complements the textbooks like [75B1,77L1,86L1,
89L1, 90K1, 91D1, 03T1] which concentrate more on atomic and molecular
spectroscopy and on solid state spectroscopy in general. A rather remarkable
series of books on various aspects of optical properties of solids, with some
emphasis on insulators, results from the International Schools on “Atomic
and Molecular Spectroscopy” held every two years in Erice (Sicily) [81A1].
Other series, which contain a lot of information on solid state optics are listed
in [55S1,62F1,66S1,82M1].

A selection of textbooks on general solid state physics are available [73H1,
75Z1,76A1,81H1,81M1,89K1,93K1,95A1,95C1,95W1,00M1]. Semiconductor
physics is treated generally, e.g., in [80N1,91E1,91S1,92E2,93O1,96Y1,97S1,
99G1,00L1,01H2,01S1,02D1], general optics in [01H3,95L1], optical properties
of solids in [59M1,69O1,72W1,75B1,77L1,86L1,89L1,90K1,91D1], including
some older work.

For semiconductor optics, semiconductor structures of reduced dimen-
sionality or semiconductor growth, including some specialized topics see,
e.g., [59M1,84H1,86U1,88Z1,90G1,91L1,92L1,92S1,93B1,93H1,93O1,93P1,
93S1,94C1,95C1,96K1,96O1,96S2,97B1,97W1,98D1,98G1,98J1,98R1,98S1,
99B1,99M1,00A1,01C1,01H1,02R1,02S1].

For various aspects of nonlinear optics and spectroscopy see, e.g., [77L1,
84S1,86L1,88Z1,89L1,93O1,95M1,96H1,96S2,98M1,02S1,04O1].

Recent data collections on bulk semiconductors and on optical properties
of quantum structures are compiled in [82L1, 01L1]. The Volumes III 17a,
34C1 and 41A1 also contain condensed treatments of the underlying physics
and of experimental techniques.

Complimentary information on the optical properties of metals, which are
obviously not a topic of this book, can be found in [72W1,90K1,02D1].
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1.3 Some Personal Thoughts

At the end of this introduction we want to consider some more general, partly
historic or even philosophic aspects in connection with semiconductor optics.
We mentioned in the preface of the first edition, that semiconductor optics
will be an active and exciting field of research well into the next (now the
present) century. We want to dwell on this aspect here a little bit longer. The
quantum mechanical understanding of the electronic system of matter started
from atoms and developed over molecules to three-dimensional solid, resulting
in the beautiful concepts of quasi particles, band structures, etc., which we will
outline in a didactic fashion in the following chapters. When these concepts
were established, an opposite trend appeared, namely to go backwards from
three-dimensional semiconductors (or more generally solids) to structures of
reduced dimensionality like quasi two-dimensional quantum wells, quasi one-
dimensional quantum wires and finally quasi zero-dimensional quantum dots
also known as artificial atoms. We shall also treat these aspects in this book
in detail. Presently, a repetition of this development is starting in the sense
the that quantum dots are assembled to form one-, two- or three-dimensional
arrays and photonic atoms are put together to form photonic crystals in one
or two dimensions.

In this sense one has the impression that the field of semiconductor sci-
ence, including optics, tends towards maturity. It seems difficult to reduce the
quasi dimensionality of semiconductor quantum structures below zero, or to
do spectroscopy with laser pulses, which are shorter than one or a few cycles
of light or with intensities or fluences exceeding those which are sufficient to
melt or to evaporate the sample.

On the other hand, at the time of the finishing of this manuscript (end of
2003) there were many open, somewhat controversially discussed and rapidly
developing fields of basic and applied semiconductor research, which include,
e.g., excitonic Bose–Einstein condensation, photonic crystals (or ∼band gap
materials), understanding of the spin properties, THz spectroscopy, organic
semiconductors or the development of reliable, long lived semiconductor laser
diodes for the whole visible spectrum including the near UV and IR for display
purposes, data storage or optical (glass) fiber communication.

Furthermore, one can expect that the spectroscopic techniques developed
in semiconductor optics and the theoretical concepts (especially those which
are not based on the translational invariance of a crystal) can be used effi-
cently to contribute to the exploration and understanding of materials other
than conventional inorganic semiconductors like macromolecules, soft matter,
organic semiconductors or (nano-) biophysics, just to mention some of the key
words that are presently en vogue.

The author himself has been doing research in semiconductor optics to-
gether with his co-workers for more than 30 years.

During this time he has noticed that many topics are in style for some
time and then disappear, partly because they are understood, partly because
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they are too difficult to be understood or handled and partly simply because
something new is being developed.

Strangely enough, the “old” topics tend to reappear after ten or 20 years
as something terribly new or modern. To mention only a few recent examples
we recall excitonic Bose–Einstein condensation, biexcitons in quantum dots
in glass or organic matrices or on the material side GaN or ZnO, which are
presently seeing a renaissance. Generally, a new aspect is indeed added, like
a reduced dimensionality or a better spatial or temporal resolution. However,
often there is a mere reinvention of things that are already known and the
new generation of scientists claims some “firsts” because they are not aware
of the older work. When this is done not by ignorance, but deliberately, it is
especially annoying.

When the author was himself a young PhD student and he or other mem-
bers of the institute approached their “Doktorvater” Prof. Dr.E. Mollwo with
some terribly exciting new results, he often used to state, “Ich wundere mich,
aber ich wundere mich nicht sehr” (I am surprised, but I am not very much
surprised) and recall some similiar or related phenomenon, which had been in-
vestigated some twenty or forty years ago. The author is presently at a stage of
age (or possibly wisdom) that he can appreciate this attitude. In this context
one could also mention Ben Akiba who cited “Es geschieht nichts Neues unter
der Sonne” (There is nothing new under the sun) or more simply phrased,
“Alles schon mal da gewesen”. This experience should however by no means
discourage young (or old) scientists from enthusiastically following their re-
search projects to develop new ideas and concepts and to venture into new
fields.

1.4 Problems

1. What are the basic conservation laws in nature?
2. Try to remember some of the basic concepts of quantum mechanics:

– What is the Hamiltonian in classical and in quantum mechanics?
– Write down the time-independent and the time-dependent Schrödinger

equation for a single particle.
– What are the eigenenergies and eigenfunctions of a one-dimensional har-

monic oscillator and of the hydrogen atom?
– What can you calculate with time-independent perturbation theory?
– What does Fermi’s golden rule say about transition probabilities?
– Did you hear terms like density matrix formalism or second quantization?

If yes, what do they mean?
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2

Maxwell’s Equations, Photons and the Density
of States

In this chapter we consider Maxwell’s equations and what they reveal about
the propagation of light in vacuum and in matter. We introduce the concept
of photons and present their density of states. Since the density of states is
a rather important property in general and not only for photons, we approach
this quantity in a rather general way. We will use the density of states later
also for other (quasi-) particles including systems of reduced dimensionality.
In addition, we introduce the occupation probability of these states for various
groups of particles.

It should be noted, that we shall approach the concept of photons on an
elementary level only, in correspondence with the concept of this book. We
do not delve into present research topics on photon physics itself like photon-
correlation and -statistics, squeezed light, photon anti-bunching, entangled
photon states, etc., but give some introductory references for those interested
in these fields [89S1, 92M1, 94A1, 01M1, 01T1, 01T2, 02B1, 02D1, 02G1, 02L1,
02Y1]. Einstein, who obtained the Nobel prize for physics in 1921 for the
explanation of the photo-electric effect (not for the theory of relativity!), once
stated: “Was das Licht sei, das weiß ich nicht” (What the light might be, I do
not know). So there still seems to be ample place for research in these fields.

2.1 Maxwell’s Equations

Maxwell’s equations can be written in different ways. We use here the macro-
scopic Maxwell’s equations in their differential form. Throughout this book
the internationally recommended system of units known as SI (systéme inter-
national) is used. These equations are given in their general form in (2.1a–
f), where bold characters symbolize vectors and normal characters scalar
quantities.

∇ · D = ρ , ∇ · B = 0 , (2.1a,b)

∇× E = −Ḃ , ∇× H = j + Ḋ , (2.1c,d)
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D = ε0E + P , B = µ0H + M . (2.1e,f)

The various symbols have the following meanings and units:

E = electric field strength; 1 V/m = 1 m kg s−3 A−1

D = electric displacement; 1 A s/m2 = 1 C/m2

H = magnetic field strength; 1 A/m
B = magnetic induction or magnetic flux density ; 1 V s/m2 = 1 T =

1 Wb/m2

ρ = charge density; 1 A s/m3 = 1 C/m3

j = electrical current density; 1 A/m2

P = polarization density of a medium, i.e., electric dipole moment per unit
volume; 1 A s/m2

M = magnetization densityof the medium, i.e., magnetic dipole moment per
unit volume1; 1 V s/m2

ε0 � 8.859 × 10−12 As/V m is the permittivity of vacuum
µ0 = 4π × 10−7 V s/Am is the permeability of vacuum
∇ = Nabla-operator, in Cartesian coordinates ∇ = (∂/∂x, ∂/∂y, ∂/∂z)
˙ = ∂/∂t i.e., a dot means differentiation with respect to time.

The applications of ∇ to scalar or vector fields are usually denoted by

∇ · f(r) = grad f,
∇ · A(R) = div A,

∇× A(r) = curl A,

and the Laplace operator ∆ is defined as

∆ ≡ ∇2.

If ∆ is applied to a scalar field ρ we obtain

∆ρ =
∂2ρ

∂x2
+
∂2ρ

∂y2
+
∂2ρ

∂z2
(2.2)

Application to a vector field E results in

∆E =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂2Ex

∂x2
+
∂2Ex

∂y2
+
∂2Ex

∂z2

∂2Ey

∂x2
+
∂2Ey

∂y2
+
∂2Ey

∂z2

∂2Ez

∂x2
+
∂2Ez

∂y2
+
∂2Ez

∂z2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.3)

1 Some authors prefer to use M ′ = Mµ−1
0 and thus B = µ0(H + M ′). We prefer

(2.1e,f) for symmetry arguments.
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Further rules for the use of ∇ and of ∆ and their representations in other
than Cartesian coordinates (polar or cylindrical coordinates) are found in
compilations of mathematical formulae [84A1,91B1,92S1].

Equations (2.1a,b) show that free electric charges ρ are the sources of the
electric displacement and that the magnetic induction is source-free. Equa-
tions (2.1c,d) demonstrate how temporally varying magnetic and electric fields
generate each other. In addition, the H field can be created by a macro-
scopic current density j. Equations (2.1e,f) are the material equations in
their general form. From them we learn that the electric displacement is
given by the sum of electric field and polarization, while the magnetic flux
density is given by the sum of magnetic field and magnetization. Some au-
thors prefer not to differentiate between H and B. This leads to difficulties,
as can be easily seen from the fact that B is source-free (2.1b) but H is
not, as follows from the inspection of the fields of every simple permanent
magnet.

By applying ∇· to (2.1d) we obtain the continuity equation for the electric
charges

div j = − ∂

∂t
ρ , (2.4)

which corresponds to the conservation law of the electric charge in a closed
system.

The integral forms of (2.1) can be obtained from the differential forms by
integration and the use of the laws of Gauss or Stokes resulting in∫

ρ(r)dV =
∮

D · df (2.5a)

− ∂

∂t

∫
B · df =

∮
E · ds (2.5b)

where dV , df and ds give infinitesimal elements of volume, surface or area
and line, respectively.

In their microscopic form, Maxwells equations contain all charges as
sources of the electric field Emicro including all electrons, protons bound in
atoms as ρbound and not only the free space charges ρ. By analogy, not only
the microscopic current density j has to be used as a source of Hmicro but
all spins and l �= 0 orbits of charged particles have to be included as “bound”
current density jbound. The transition to macroscopic quantities can then be
performed by averaging over small volumes (larger than an atom but smaller
than the wavelength of light) and replacing ρbound by −−→∇ · P and jbound by
P + curlM/µ0. For more details see [98B1,98D1] or Chap. 27.

Concerning the units, some theoreticians still prefer the so-called c g s
(cm, g, second) system. Though it has only marginal differences in me-
chanics to the SI system, which is based on the units 1 m, 1 kg, 1 s, 1 A,
1 K, 1 mol and 1 cd, the c g s system produces strange units in electro-
dynamics like the electrostatic units (esu), which contain square roots of
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mass and are therefore unphysical and even ill-defined. For conversion tables
see [96L1].

2.2 Electromagnetic Radiation in Vacuum

In vacuum the following conditions are fulfilled

P = 0 ; M = 0 ; ρ = 0 ; j = 0. (2.6)

With the help of (2.1e,f) this simplifies (2.1c,d) to

∇× E = −µ0Ḣ and ∇× H = ε0Ė (2.7a,b)

Applying ∇× to (2.7a) and ∂/∂t to (2.7b) yields

∇× (∇× E) = −µ0∇× Ḣ and ∇× Ḣ = ε0Ë . (2.8)

From (2.8) we find with the help of the properties of the ∇ operator

−µ0ε0Ë = ∇× (∇× E) = ∇(∇ · E) −∇2E. (2.9)

With (2.6), (2.3) and (2.1a) we see that

∇E = 0 (2.10)

and (2.9) reduces to the usual wave equation, written here for the electric field

∇2E − µ0ε0Ë = 0 . (2.11)

An analogous equation can be obtained for the magnetic field strength. Solu-
tions of this equation are all waves of the form

E(r, t) = E0f(kr − ωt). (2.12)

E0 is the amplitude, f is an arbitrary function whose second derivate
exists. As can be shown by inserting the ansatz (2.12) into (2.11) the wave
vector k and the angular frequency ω obey the relation

ω

k
=
(

1
µ0ε0

)1/2

= c with k = |k| = 2π/λv. (2.13)

In the following we use for simplicity only the term “frequency” for ω =
2π/T where T is the temporal period of the oscillation.

In (2.13), c is the vacuum speed of light and λv is the wavelength in
vacuum. From all possible solutions of the form (2.12) we shall concentrate
in the following on the most simple ones, namely on plane harmonic waves,
which can be written as

E(r, t) = E0 exp[i(kr − ωt)]. (2.14)
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For all waves (not only those in vacuum), the phase and group velocities
vph and vg are given by

vph =
ω

k
; vg =

∂ω

∂k
= gradkω, (2.15)

where vph gives the velocity with which a certain phase propagates, (e.g.,
a maximum of a monochromatic wave) while vg gives the speed of the center
of mass of a wave packet with middle frequency ω and covering a small fre-
quency interval dω as shown schematically in Figs. 2.1a,b, respectively. The
formulas (2.15) are of general validity. The gradk on the r.h.s. of (2.15) means
a differentiation with respect to k; in the sense of ∇k = (∂/∂kx, ∂/∂ky, ∂/∂kz)
and has to be used instead of the more simple expression ∂ω/∂k in anisotropic
media. For the special case of electromagnetic radiation in vacuum we find
from (2.13), (2.15)

vph = vg = c = (µ0ε0)−1/2 (2.16)

Fig. 2.1. A harmonic wave (a) and a wave packet (b) shown at two different times
t and t + ∆t to illustrate the concepts of phase and group velocity, respectively
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Now we want to see what constraints are imposed by Maxwell’s equations
on the various quantities such as E0 and k. Inserting (2.12) or (2.14) into
(2.10) gives

∇ · E = iE0 · k exp[i(kr − ωt)] = 0. (2.17)

This means that
E0 ⊥ k (2.18)

or, in other words, the electromagnetic wave is transverse in E. What can we
learn from Maxwell’s equations for the other fields? From (2.7) we have for
plane waves

H = (ωµ0)−1k × E = H0 exp[i(kr − ωt)] (2.19a)

with
H0 = (ωµ0)−1k × E0. (2.19b)

Furthermore we have with (2.1e,f) and (2.6)

D = D0 exp[i(kr − ωt)] = ε0E0 exp[i(kr − ωt)], (2.19c)

B = B0 exp[i(kr − ωt)] = ω−1k × E0 exp[i(kr − ωt)]. (2.19d)

The electromagnetic wave is, according to (2.19b), also transverse in B
and the electric and magnetic fields are perpendicular to each other, that is,
we have in general

D ⊥ k ⊥ B ⊥ D. (2.19e)

In vacuum and isotropic media one has in addition

E ‖ D and H ‖ B. (2.19f)

As we shall see later in connection with (2.17) and (2.43),(2.44) one has
in matter usually transverse waves, which obey (2.19e) but additionally, lon-
gitudinal waves exist under certain conditions.

The momentum density Π of the electromagnetic field is given by

Π = D × B, Π ‖ k (2.20)

and the energy flux density by the Poynting vector S

S = E × H (2.21)

with S ‖ Π in vacuum and isotropic materials.
S is a rapidly oscillating function of space and time. The average value

〈S〉 is usually called the intensity I or the energy flux density The intensity is
proportional to the amplitude squared for all harmonic waves. For the plane
monochromatic waves treated here, we obtain

〈S〉 =
1
2
|E0 × H0| =

1
2

1
cµ0

E2
0 =

1
2
c

µ0
B2

0 =
1
2
cµ0H

2
0 . (2.22)

Equations (2.20) and (2.21) are also valid in matter.
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2.3 Electromagnetic Radiation in Matter; Linear Optics

Now we treat Maxwell’s equations in matter. Doing so we have in principle
to use the equations in their general from (2.1). However we will still make in
several steps some assumptions which are reasonable for semiconductors: we
assume first that there are no macroscopic free space charges i.e. ρ = 0. Then
a treatment of (2.1) in analogy with (2.7)–(2.11) results in

∇2E − µ0ε0Ë = µ0P̈ + µ0j̇ + ∇× Ṁ , (2.23)

Actually, there also occurs in the derivation of (2.23) a term ∇(∇P ) or
∇(∇E). This term vanishes for transverse waves and is therefore neglected if
not mentioned otherwise.

This equation is the inhomogeneous analogue of (2.11) telling us that the
sources of an electro-magnetic radiation field can be

– A dipole moment p or a polarization P with a non-vanishing second time
derivative

– A temporally varying current density
– The curl of a temporally varying magnetization

Again a similar equation can be obtained for the magnetic field. We continue
now with the application of further simplifications and assume that we have
a nonmagnetic material, i.e., that the third term on the r.h.s. of (2.23) van-
ishes. Actually, all matter has some diamagnetism. But this is a rather small
effect of the order of 10−6 so it can be neglected for our purposes. Param-
agnetic and especially ferromagnetic contributions can be significantly larger
for low frequencies. However, even these contributions diminish rapidly for
higher frequencies. Consequently the assumption of a nonmagnetic material
is a good approximation over a wide range of the electromagnetic spectrum
starting in the IR even for ferromagnetic materials. Furthermore, the more
common semiconductors are not ferro-, ferri- or antiferromagnetic and have
only a small concentration of paramagnetic centres which may be seen in elec-
tron paramagnetic resonance (EPR), but which have negligible influence on
the optical properties. The only exceptions are semiconductors which contain
a considerable amount of e.g., Mn or Fe ions as does Zn1−yMnySe. We refer
the reader to [88D1,91O1,92G1,92Y1,94D1,94G1,96H1,03D1] or to Sect. 16.1
and references therein for this class of materials.

The current term j in (2.1d) deserves some more consideration. The cur-
rent is driven by the electric field

j = σE, (2.24)

where σ is the conductivity. For intrinsic or weakly doped semiconductors,
the carrier density is small and consequently σ is as well. Then the following
inequality holds

|j| = |σE| � |Ḋ|. (2.25)
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In the following we will consider this case and neglect j in (2.1d). For
heavily doped semiconductors (2.25) is no longer valid and σ will have some
influence on the optical properties at least in the infrared (IR). We come back
to this situation in connection with plasmons in Chaps. 10 and 12.

The basic material equation still left in comparison with the vacuum case
is now (2.1e) D = ε0E + P .

If we proceed with this equation again in the manner of (2.7)–(2.11) the
result is

∇2E − µ0ε0Ë = µ0P̈ (2.26)

Equation (2.26) states the well-known fact that every dipole p and every
polarization P with a non vanishing second derivative in time radiates an
electromagnetic wave.

As long as we have no detailed knowledge about the relationships between
D, E and P we cannot go beyond (2.26). Now we make a very important
assumption. We assume a linear relationship between P and E:

1
ε0

P = χE (2.27a)

or
D = ε0(1 + χ)E = εε0E (2.27b)

with
ε = χ+ 1. (2.27c)

This linear relation is the reason why everything that is treated in the
following Chaps. 3 to 18 is called linear optics. A linear relation is what
one usually assumes between two physical quantities as long as one does not
have more precise information. In principle we can also consider (2.27a) as an
expansion of P (E) in a power series in E which is truncated after the linear
term. We come back to this aspect in Chap. 19.2 The quantities ε and χ are
called the dielectric function and the susceptibility, respectively. They can be
considered as linear response functions [93S1,98B1,98D1].

Both quantities depend on the frequency ω and on the wave-vector k, and
they both have a real and an imaginary part as shown for ε.

ε = ε(ω,k); χ = χ(ω,k) = ε(ω,k) − 1, (2.28)
ε(ω,k) = ε1(ω,k) + iε2(ω,k). (2.29)

The frequency dependence is dominant and will be treated first in Chaps. 3
to 4. We drop the k dependence for the moment but come back to it in

2 A constant term in this power expansion such as P = P 0 + χE would describe
a spontaneous polarization of matter which occurs e.g., in pyro- or ferro-electric
materials. With arguments similar to the ones given for ferromagnetics we can
neglect such phenomena in the discussion of the optical properties of semicon-
ductors.
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connection with spatial dispersion in Chap. 5. In Chap. 6 we discuss the
properties of ε as a function of frequency and wave vector or as a function of
time and space.

The value of ε(ω) for ω � 0 is usually called the dielectric constant.
In general ε and χ are tensors. For simplicity we shall consider them to be

scalar quantities if not stated otherwise, e.g., in connection with birefringence
in Sect. 3.1.7.

Using the linear relations of (2.27) we can transform (2.23) into

∇2E − µ0ε0ε(ω)Ë = 0, (2.30a)

where we assumed also that ε(ω) is spatially constant on a length scale of the
order of the wavelength of light. Deviations of this assumption are treated in
Sects. 17.2–4.

If magnetic properties are to be included, a corresponding linear approach
would lead to

∇2E − µ0µ(ω)ε0ε(ω)Ë = 0, (2.30b)

where µ(ω) is the magnetic permeability. As outlined above we have in the
visible for most semiconductors µ(ω) � 1.

As for (2.12) the solutions of (2.30) are again all functions of the type

E = E0f(kr − ωt), (2.31)

or for our present purposes, i.e. again for the case of plane harmonic waves

E = E0 exp[i(kr − ωt)]. (2.32)

The relationship between k and ω is however now significantly different
from (2.13). It follows again from inserting the ansatz (2.31 or 32) into (2.30)
and now reads:

c2k2

ω2
= ε(ω). (2.33)

This relation appears in Chap. 5 again under the name “polariton equa-
tion”. It can also be written in other forms:

k =
ω

c
ε1/2(ω) =

2π
λv
ε1/2(ω) = kvε

1/2(ω), (2.34)

where λv and kv refer to the vacuum values of the light wave.
For the square root of ε we introduce for simplicity a new quantity ñ(ω)

which we call the complex index of refraction

ñ(ω) = n(ω) + iκ(ω) = ε1/2(ω). (2.35)

The equations (2.13) and (2.33–35) can be interpreted in the following
way. In vacuum an electromagnetic wave propagates with a wave vector kv

which is real and given by (2.13). In matter, light propagates with a wave
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vector k which can be a complex quantity given by (2.34), or, with the help
of (2.35), by

k =
ω

c
ñ(ω) =

ω

c
n(ω) + i

ω

c
κ(ω) =

2π
λv
ñ(ω) = kvñ. (2.36)

We should notice that k is for complex ñ not simply |k| since |k| is always
a positive, real quantity. Here k means just neglecting the vector character of
k but k can still be a real, imaginary or complex quantity according to (2.36).
The direction of the real part of k, which describes the oscillatory part of the
wave, is still parallel to D × B as in (2.20).

Writing the plane wave explicitly we have:

E0 exp[i(kr − ωt)] = E0 exp
{
i
[ω
c
n(ω)k̂r − ωt

]}
exp

[
−ω
c
κ(ω)k̂r

]
, (2.37)

where k̂ is the unit vector in the direction of k, i.e., in the direction of prop-
agation.

Obviously n(ω) describes the oscillatory spatial propagation of light in
matter; it is often called the refractive index in connection with Snells’ law of
refraction. This means that the wavelength λ in a medium is connected with
the wavelength λv in vacuum by

λ = λvn
−1(ω). (2.38)

In (2.37) κ(ω) describes a damping of the wave in the direction of propa-
gation. This effect is usually called absorption or, more precisely, extinction.
We give the precise meaning of these two quantities in Sect. 3.1.5. Here we
compare (2.37) with the well-known law of absorption for the light intensity
I of a parallel beam propagating in z-direction

I(z) = I(z = 0)e−αz (2.39)

where α(ω) is usually called the absorption coefficient, especially in Anglo-
Saxon literature. In German literature α(ω) is also known as “Absorptions-
konstante” (absorption constant) and dimensionless quantities proportional to
κ(ω) are called “Absorptionskoeffizient” or “Absorptions index” (absorption
coefficient or absorption index). So some care has to be taken regarding what
is meant by one or the other of the above terms.

Bearing in mind that the intensity is still proportional to the amplitude
squared (2.24), a comparison between (2.37) and (2.39) yields

α(ω) =
2ω
c
κ(ω) =

4π
λv
κ(ω). (2.40)

The phase velocity of light in a medium is now given by (2.15)

vph =
ω

Re{k} = cn−1(ω). (2.41)
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For the group velocity we can get rather complicated dependencies origi-
nating from

vg =
∂ω

∂k
. (2.42)

We return to this aspect later.

2.4 Transverse, Longitudinal and Surface Waves

The only solution of (2.9) for light in vacuum is a transverse electromagnetic
wave (2.19). This solution exists for light in matter as well. However (2.9) has
now with the use of (2.27) the form

∇ · D = ∇ε0ε(ω)E = 0 (2.43)

Apart from the above-mentioned transverse solution with E ⊥ k there is
a new solution which does not exist in vacuum (εvac ≡ 1), namely

ε(ω) = 0. (2.44a)

This means that we can find longitudinal solutions at the frequencies at
which ε(ω) vanishes. We call these frequencies correspondingly ωL and note
that for

ε(ωL) = 0; E ‖ k is possible (2.44b)
Now let us consider the other fields for this longitudinal wave in matter.

From (2.27) we see immediately that we have for the longitudinal modes

D = 0 and E = − 1
ε0

P . (2.45)

In matter, the Maxwell’s equation ∇× E = −Ḃ is still valid. This leads for
plane waves in nonmagnetic material to

H0 = (ωµ0)−1k × E0. (2.46)

For the longitudinal wave it follows from (2.44) that

H = 0 and B = µ0H = 0 (2.47)

The longitudinal waves which we found in matter are not electromagnetic
waves but pure polarization waves with E and P opposed to each other with
vanishing D, B and H.

Until now we were considering the properties of light in the bulk of
a medium. The boundary of this medium will need some extra consideration
e.g., the interface between vacuum (air) and a semiconductor. This interface
is crucial for reflection of light and we examine this problem in Sects. 3.1.1–4;
5.4.2 and 5.6. Here we only want to state that the boundary conditions al-
low a surface mode, that is, a wave which propagates along the interface and
has field amplitudes which decay exponentially on both sides. These waves
are also known as surface polaritons for reasons discussed in more detail in
Sect. 5.6.
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2.5 Photons and Some Aspects of Quantum Mechanics
and of Dispersion Relations

Maxwell’s equations are the basis of the classical theory of light. They de-
scribe problems like light propagation and the diffraction at a slit or a grating
e.g., in the frame of Huygen’s principle or of Fourier optics [93S1].

In the interaction of light with matter, its quantum nature becomes ap-
parent, e.g., in the photoelectric effect which shows that a light field of fre-
quency ω can exchange energy with matter only in quanta �ω. Therefore,
the proper description of light is in terms of quantum mechanics or of quan-
tum electrodynamics. However, we shall not go through these theories here
in detail nor do we want to address the aspects of quantum statistics of co-
herent and incoherent light sources, but we present in the following some
of their well-known results and refer the reader to the corresponding litera-
ture [85G1, 92M1, 94A1, 94B1, 01M1, 01T1, 02B1, 02D1, 02G1, 02L1, 02Y1] for
a comprehensive discussion.

The electromagnetic fields can be described by their potentials A and φ by

E = −gradφ− Ȧ; B = ∇× A . (2.48)

where A is the so-called vector potential. Since ∇ · (∇×A) ≡ 0 the notation
of (2.48) fulfills automatically ∇ · B = 0 and reduces the six components of
E and B to four.

The vector potential A is not exactly defined by (2.48). A gradient of
a scalar field can be added. We can choose the so-called Coulomb gauge

∇ · A = 0 . (2.49)

In this case φ is the usual electrostatic potential obeying the Poisson equation:

∇2φ = − ρ

ε0ε(ω)
. (2.50)

In vacuum we still have ρ = 0 and we assume the same for the description of
the optical properties of matter.

Now we should carry out the procedure of second quantization, for sim-
plicity again for plane waves. A detailed description of how one begins with
Maxwell’s equations and arrives at photons within the framework of second
quantization is beyond the scope of this book see [55S1, 71F1, 73H1, 76H1,
80H1,85G1,92M1,94A1,94B1]. On the other hand we want to avoid that the
creation and annihilation operators appear like a “deus ex machina”. There-
fore we try at least to outline the procedure.

First we have to write down the classical Hamilton function H which is
the total energy of the electromagnetic field using A and φ. Then we must
find some new, suitable quantities pk,s and qk,s which are linear in A and
which fulfill the canonic equations of motion

∂H

∂qk,s
= −ṗk,s,

∂H

∂pk,s
= −q̇k,s (2.51)
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and are thus canonically conjugate variables. Here k is the wave vector of our
plane electromagnetic or A-wave and s the two possible transverse polariza-
tions. The Hamilton function reads in these variables:

H =
1
2

∑
k,s

(p2k,s) + ω2
kq

2
k,s (2.52)

This is the usual form of the harmonic oscillator. The quantization condi-
tion

pk,sqk,s − qk,spk,s =
�

i
(2.53)

for all k and s = 1, 2 gives then the well-known result for the harmonic oscil-
lator: The electromagnetic radiation field has for every k and polarization s
energy steps

Ek =
(
nk +

1
2

)
�ωk with nk = 0, 1, 2 . . . (2.54)

It can exchange energy with other systems only in units of �ω. These energy
units or quanta are called photons. The term �ω/2 in (2.54) is the zero-point
energy of every mode of the electromagnetic field.

The so-called particle-wave dualism, that is, the fact that light propagates
like a wave showing, e.g., diffraction or interference and interacts with matter
via particle-like quanta, can be solved by the simple picture that light is an
electromagnetic wave, the amplitude of which can have only discrete values
so that the energy in the waves just fulfills (2.54).

From the above introduced, or better, postulated quantities pk,s and qk,s

we can derive by linear combinations operators a†k,s and ak,s with the following
properties: If ak,s acts on a state which contains nk,s quanta of momentum k
and polarization s it produces a new state with nk,s − 1 quanta. Correspond-
ingly, a†k,s increases nk,s by one. We call therefore ak,s and a†k,s annihilation
and creation operators, respectively. Since the operators ak,s and a†k,s describe
bosons (see below), their permutation relation is

ak,sa
†
k,s − a†k,sak,s = 1. (2.55a)

This holds for equal k and s. The commutator is zero otherwise.
The operator a†k,sak,s acting on a photon state gives the number of photons

nk,s times the photon state and is therefore called the number operator. Sum-
ming over all possible k-values and polarizations s gives finally the Hamilton
operator

H =
∑
k,s

�ωk,sa
†
k,sak,s. (2.55b)

It is clear to the author that the short outline given here is not sufficient
to explain the procedure to a reader who is not familiar with it. However,
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since the intent is not to write a textbook on quantum electrodynamics, we
want to stress here only that the electromagnetic radiation field in vacuum
can be brought into a mathematical form analogous to that of the harmonic
oscillator, and that quantum mechanics gives for every harmonic oscillator
the energetically equidistant terms of (2.54).

The harmonic oscillator is one of the fundamental systems, which has been
investigated in physics and is understood in great detail. In theoretical physics
a problem can be considered as “solved” if it can be rewritten in the form
of the harmonic oscillator. Apart from the electromagnetic radiation field in
vacuum, we will come across some other systems which are treated in this way.
For those readers who are not familiar with the concept of quantization and
who wish to study the procedure in a quiet hour by themselves, we recommend
the above given references.

Here are some more results: The two basic polarizations of single quanta
of the electromagnetic field, – of the photons – are left and right circular σ−

and σ+, respectively. A linearly polarized wave can be considered as a coherent
superposition of a left and right circularly polarized one with equal frequen-
cies and wave vector k. The term coherent means that two light beams have
a fixed-phase relation relative to each other. The component of the angular
momentum s in the direction of the quantization axis which is parallel to k
is for photons thus

s‖ = ±�. (2.56)

This means that photons have integer spin and are bosons. The third possi-
bility s‖ = 0 expected for spin one particles is forbidden, because longitudinal
electromagnetic waves do not exist at least in vacuum.

Photons in thermodynamic equilibrium are described by Bose-statistics.
The occupation probability fBE of a state with frequency ω is given by

fBE = [exp(�ω/kBT ) − 1]−1
, (2.57)

where T is the absolute temperature and kB is Boltzmann’s constant.
The chemical potential µ which could appear in (2.57) is zero in thermal

equilibrium, since the number of photons is not conserved.
An approach to describe non-thermal photon fields e.g. luminescence by

a non-vanishing µ and Kirchhoff’s law in the sense of a generalized Planck’s
law is found in [82W1,92S2,95D1].

The momentum p of a photon with wave vector k is given, as for all quanta
of harmonic waves, by

p = �k. (2.58)

where k is the real part of the wave vector, which describes as already men-
tioned the oscillatory, propagating aspect of the plane wave.

To summarize, we can state that photons are bosons with spin ±�, en-
ergy �ω and momentum �k which propagate according to the wave equations.

A very important property of particles in quantum mechanics is their dis-
persion relation. By this we mean the dependence of energy E or frequency ω



2.5 Photons and Dispersion Relations 25

on the wave vector k i.e., the E(k) or ω(k) relation. For photons in vacuum
we find the classical relation given already in (2.13)

E = �ω = �ck. (2.59)

The dispersion relation for photons in vacuum is thus a linear function
with slope �c as shown in Fig. 2.2. Correspondingly we find again both for
phase and group velocity with (2.15)

vph = vg = c . (2.60)

We conclude this subsection with an explanation of energy units. In the
SI system the energy unit is 1 N m = 1 kgm2/s2 with the following identity
relations

1 N m = 1 m kg s−2 = 1 V A s = 1 W s = 1 J . (2.61a)

Since the energies of the quanta in optical spectroscopy are much smaller,
we frequently use the unit 1 eV. This is the energy that an electron gains if it
passes, in vacuum, through a potential difference of one volt, resulting in

1 eV = 1.60217733× 10−19 J ≈ 1.6 × 10−19 J . (2.61b)

In spectroscopy another measure of energy is frequently used the wave
number. The definition is as follows. One expresses the energy of a (quasi-)
particle by the number of wavelengths per cm of a photon with the same
energy. So

1 eV =̂ 8065.4 cm−1 or 104 cm−1 =̂ 1.23986 eV (2.61c)

Another quantity that is sometimes confused with the wave number, which
gives the energy and is therefore a scalar quantity, is the wave vector, since it
has also the dimension 1/length.

The amount of the (real part of the) wave vector is given by k = 2π/λ,
where λ is the wavelength of the corresponding quantum or particle (electron,

Fig. 2.2. The dispersion relation of
photons in vacuum
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phonon, photon, etc.). The direction of k is the direction of propagation, i.e., k
is normal to the wave-front, in the case of light in vacuum or in matter normal
to D×B. The quantity k is very closely related to the (quasi-)momentum of
the (quasi-)particle p through

p = �k . (2.58)

For the discussion of the concept of quasi-momentum see, e.g., Sects. 5.2,
3 and 5 or [98B2]. The dispersion relation of (quasi-) particles is thus given
by E(k). The wave vector of light is in the visible in vacuum, falling in the
range of a few times 104 cm−1 while the border of the first Brillouin zone (see
Sect. 7.2) is of the order of 108 cm−1.

It is obvious, that a quantity like a wave-number vector (Wellenzahlvektor)
is ill-defined and does not exist!

2.6 Density of States and Occupation Probabilities

A quantity which is crucial in quantum mechanics for the properties of parti-
cles is their density of states. It enters, e.g., in Fermi’s golden rule which allows
one to calculate transition probabilities. We want to discuss this problem in
a general way for systems of different dimensionalities d = 3, 2 and 1. We shall
need these results later on for low-dimensional semiconductor structures. The
discussion of the density of states, especially in various dimensions, is not so
commonly treated as the harmonic oscillator, and so we shall spend some time
on this problem and dwell more on the details. At the end of this section we
shall also state the occupation probability in thermodynamic equilibrium for
classical particles, for fermions and bosons.

If we consider a particle which is described by a wave function3 φ(r) then
the probability w to find it in a small element of space dτ = dxdydz around
r is

w(r)τ = φ∗(r)φ(r)dτ (2.62a)

Since the particle has to be somewhere in the system, w(r) has to be
“normalized”, that is,∫

system

w(r)dτ =
∫

system

φ∗(r)φ(r)dτ = 1. (2.62b)

Here, the functions φ(r) are of the form exp(ikr). For normalization purposes
a factor has to be added

φ(r) = Ω−1/2 exp(ikr). (2.63)
3 The letter φ has been already used for the electrostatic potential e.g., in (2.50).

Since there are more different physical quantities than letters of the alphabet,
we sometimes use the same letter for different quantities, but from the context it
should be clear what is meant.
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The normalization condition (2.62b) results in

Ω−1

∫
system

exp(−ikr) exp(ikr)dτ = Ω−1

∫
system

dτ = Ω−1Vsystem = 1,

(2.64)
where Vsystem is the volume of our physical system. Consequently Ω is just
the volume of the system. To avoid a factor of zero in front of the plane-wave
term, one assumes that the system is so big that it contains all physically
relevant parts, but that it is not infinite. The simplest choice is a box of
length L, or, more precisely speaking, a cube in three dimensions, a square
in two, and an interval in one. This procedure is known as “normalization in
a box”. Consequently we have

Vsystem = Ld with d = dimensionality of the system (2.65)

and
Ω1/2 = Ld/2 for d = 3, 2, 1. (2.66)

The wave vectors which can exist in such a box are limited by the boundary
conditions.

If we assume that we have an infinitely high potential barrier around
the box, then the wavefunction must have nodes at the walls (Fig. 2.3a).
Consequently the components ki of k must fulfill

ki = ni
π

L
; ni = 1, 2, 3, . . . ; i = 1, . . . , d, (2.67)

where the index i runs over all dimensions.
Such a wave is a standing wave, i.e., a coherent superposition of two waves

with k and −k and equal amplitudes. In the following we must consider
therefore only positive values of k. The various modes are distributed equally
spaced over the ki-axes with a spacing ∆ki,

∆ki =
π

L
. (2.68)

In other words, every state (or mode) needs a volume Vk in k-space given by

Vk =
(π
L

)d

. (2.69)

Another approach is to impose periodic boundary conditions. Then the
plane wave should have equal amplitude and slope on opposite sides of the
cube according to Fig. 2.3b. In this case one can fill the infinite space by
adding boxes in all dimensions and one finds:

ki = n′i
2π
L

; n′i = ±1,±2,±3 . . . (2.70)

This means for ∆ki
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Fig. 2.3. Plane waves which have nodes at the boundaries (a) or which obey periodic
boundary conditions (b)

∆k′i =
2π
L
. (2.71)

In contrast to the case of standing waves, we now have to consider positive
and negative values of ni separately. This procedure results finally in the same
density of states.

As a consequence we find that plane waves have in Cartesian coordinates
in k-space a constant density on all axes.
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This result can also be derived qualitatively from the uncertainty principle.
If a particle is confined to a length L in direction i its momentum has an
uncertainly ∆pi = ∆�ki ≥ �/L. Consequently two states, which should be
distinguishable or “different”, must have ki values, which differ by roughly
1/L.

Often one wants to know the number of states in a shell between k and
k + dk independent of the direction of k. This question can be answered
by introducing polar coordinates in k-space. The differential volume dVk of
a shell of thickness dk in a d-dimensional k-space is given by

dVk = 2dk for d = 1,

dVk = 2πkdk for d = 2,

dVk = 4πk2 dk for d = 3.

(2.72)

Depending on the boundary condition we have to take into account only
positive (2.67), or positive and negative (2.70), values of k or ni with corre-
sponding modifications of the prefactors in (2.72).

The number D̂(k) of states in k-space found between k and k + dk in
polar coordinates is given by dividing dVk by the volume for each state and
by multiplying by gs. The quantity gs considers degeneracies such as the spin
degeneracy. For photons we have gs = 2 according to the σ+ and σ− polar-
izations (see above). The results are

D̂(k)dk = gs
L

π
dk for d = 1,

D̂(k)dk = gs
L2

2π
kdk for d = 2,

D̂(k)dk = gs
L3

2π2
k2 dk for d = 3.

(2.73)

The derivation of this result is depicted for d = 2 in Fig. 2.4. If we neglect
constant prefactors and divide by dk we find

D̂(k) ∝ gsL
dkd−1, d = 1, 2, 3 . . . . (2.74)

If we consider not the number of states in the box of volume Ld but the
density of states D(k) per unit of space (e.g., per cm3 or m3) the term Ld in
(2.74) disappears yielding

D(k) ∝ gsk
d−1 (2.75)

The concept of periodic boundary conditions yields the same result.
This result has to be expected since the density of states per unit volume

must be independent of the size of the box which we have in mind provided
the box is sufficiently large.

We want to stress here that we assumed only plane waves but did not
make any specific assumptions about which type of particles are represented
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Fig. 2.4. A two-dimensional k-space in which the states are equally spaced on the
kx-and ky-axes to derive (2.73) for d = 2

by these plane waves – photons, electrons etc. Therefore this result is valid
for all particles described by plane waves.

The next step is now to calculate the density of states on the energy axis,
i.e.,

D(E)dE. (2.76)

This quantity gives the number of states in the energy interval from E to
E + dE. To calculate this quantity we need the specific dispersion relation
E(k) and its inverse k(E) as seen from the identity (2.77):

D(E)dE = D[k(E)]
dk
dE

· dE = D[k(E)]
1

|gradkE(k)| dE. (2.77)

The term on the right-hand side of (2.77) gives the generalized equation
which is also valid for anistropic cases.

In particular for photons in vacuum we have with (2.59)

k =
E

�c
=
ω

c
;

dk
dE

=
1
�c

(2.78)

Inserting this result in (2.77), for the case d = 3 we find

D(E)dE =
E2

π2(�c)3
dE

or
D(ω)dω ∝ ω2 dω (2.79a)
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For massive particles, i.e. particles the dispersion relation of which can be
described by an (effective) mass m according to

E(k) =
�2k2

2m
(2.79b)

we obtain with (2.77) for a d-dimensional space

D(E)dE ∝ gsE
d
2−1 dE . (2.79c)

This formula includes the well-known square root density of states for massive
particles in three dimensions.

We repeat again that the density in k-space is constant on all Cartesian
axes in a d-dimensional space for all particles, which can be described by
a plane wave, but the density of states depends on the individual dispersion
relation when plotted as a function of energy.

The next quantity, which we need is the occupation probability of the
states discussed above. We restrict ourselves in the following to thermody-
namic equilibrium. There are three types of statistics which can be considered:

For classical, distinguishable particles, Boltzmann statistics apply:

fB = exp[−(E − µ)/kBT ]. (2.80a)

For bosons, i.e., indistinguishable particles with integer spin, photons being
an example, one must use the Bose–Einstein statistics

fBE = {exp[(E − µ)/kBT ]− 1}−1. (2.80b)

Fermions, or indistinguishable particles with half-integer spin e.g., elec-
trons obey the Fermi–Dirac statistics fFD

fFD = {exp[−(E − µ)/kBT ] + 1}−1. (2.80c)

The Boltzmann constant is kB and the chemical potential is µ which gives the
average energy necessary to add one more particle to the system. For fermions
µ is also known as the Fermi energy EF. The probability to find a particle in
the interval from E to E + dE is then given by the product of the density of
states D(E) and the occupation probability f

D(E)f(E, T, µ)dE (2.81)

In Fig. 2.5 we plot fB, fBE and fFD as a function of (E − µ)/kBT .
The Boltzmann statistics shows the well-known exponential dependence.

The Fermi–Dirac statistics never exceeds one, realizing thus Pauli’s exclusion
principle. The Bose–Einstein statistics has a singularity for E = µ. This gives
rise to Bose–Einstein condensation, or in other words, a macroscopic popu-
lation of a single state, if µ touches a region with a finite density of states.
In this case the species with energies E = µ and those with E > µ must be
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Fig. 2.5. The Boltzmann,
Bose–Einstein and Fermi–
Dirac distribution func-
tions versus (E − µ)/kBT

considered separately. Furthermore it is obvious from Fig. 2.5 that fBE and
fFD converge to fB for (E − µ)/kT > 1.

In Sects. 7.7, 8.2 and 9 or 20.5 we discuss, when classical Boltzmann
statistics is a good approximation and when the use of Fermi–Dirac or Bose–
Einstein statistics is obligatory.

The chemical potential µ is zero in thermodynamic equilibrium for quanta
whose number is not conserved, for e.g., photons or phonons. We introduce
this topic in Chap. 7.

If the number N or density n of particles in a system is known, as is the
case for electrons at non-relativistic energies, then µ is well defined by (2.82).∫

D(E)f(E, µ, T )dE = n, (2.82)

which says that the density of particles is equal to the integral over the product
of the density of states and the probability that a state is occupied.

As an example, we apply now the above statements to photons in a three-
dimensional box in thermodynamic equilibrium. With (2.79b) and (2.80b),
(2.83) is obtained.

N(ω)dω = D(ω)fBE(ω, T )dω ∝ ω2

[
exp

(
�ω

kBT

)
− 1

]−1

dω . (2.83)

For the energy content U(T ) of the radiation field, the result is

U(T ) = �

∫ ∞

0

ωN(ω)dω ∝
∫ ∞

0

ω3

[
exp

(
�ω

kBT

)
− 1

]−1

dω . (2.84)

Equation (2.83) is nothing other than Planck’s law of black-body radiation.
By substituting x for the variable �ω/kBT in (2.84) we immediately find the
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Stefan–Boltzmann T 4 law

U(T ) ∝ T 4

∫ ∞

0

x3(expx− 1)−1 dx = T 4A , (2.85)

where A is a constant.

2.7 Problems

1. The intensity of the sunlight falling on the earth is, for normal incidence
and before its passage through the atmosphere, about 1.5 kW m−2. Cal-
culate the electric-field strength.

2. Pulsed high power lasers can be easily focussed to a power density I of
10 GW/cm2. Calculate the E andB fields. Compare them with the electric
field in an H atom at a distance of one Bohr radius, and the magnetic
field on the surface of the earth, respectively.

3. Calculate the number of photon modes in the visible part of the spectrum
(≈ 400 nm � λv � 800 nm) in a box of 1 cm3.

4. Calculate the momentum and energy of a photon with λv = 500nm. At
which acceleration voltage has an electron the same momentum?

5. Show qualitatively the B, H and M fields of a homogeneously mag-
netized, brick-shaped piece of iron and for a hollow sphere with inner
radius R0 and outer radius R0+∆R, which is radially magnetized. Use es-
pecially for the second case symmetry considerations together with (2.1).

6. Check whether the maximum of N(ω) in (2.83) shifts in proportion to
T (Wien’s law), originally formulated as λmax ∝ T−1.

7. Compare the contribution of the electric conductivity of a typical semicon-
ductor to that of the polarisation in (2.23) or (2.25). For which frequencies
does the second one dominate?

8. Write down the time and space dependence of a spherical wave. Note
that the energy flux density varies usually like the amplitude squared. Is
it possible to create a spherical vector wave?

9. Inspect (with the help of a textbook or a computer program) the electric
field of a static electric dipole and the near and far fields of an oscillating
electric dipole. Note that in the near field the electric and magnetic fields
are not orthogonal.

10. Show that the definition vg = 1
�

gradkE(k) leads, for massive and massless
particles, directly to the relation (quasi-)momentum p = �k.

11. How does the density of states as a function of energy vary for a linear
dispersion relation (like photons) in 3, 2 and 1 dimensional systems?

12. Consider or find in a textbook the pattern of the collective motion of
the H2O molecules in a surface water wave. Which effects contribute to
the restoring force? Are water waves harmonic waves? What happens at
a seashore, where the depth of the water decreases gradually? Is there
a net transport of matter? Assume that the particles have an electric
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charge and move relative to a fixed background of opposite charge. Which
charge pattern do you expect close to the surface? Compare with Fig. 4.4b.
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3

Interaction of Light with Matter

In the next two sections we present some basic interaction processes of light
with matter from two different points of view. First we consider matter as
a homogeneous medium described by the complex dielectric function ε(ω) or
by the complex index of refraction ñ(ω) (Sect. 3.1). We concentrate especially
on the reflection and transmission of light at the plane interface between two
media. As an especially simple case we investigate the boundary of matter and
vacuum. In the later Sect. 3.2 we will discuss the interaction of the radiation
field with individual atoms. In this case quantum mechanics must be used.
We will employ what we have explored in Chap. 2.

3.1 Macroscopic Aspects for Solids

3.1.1 Boundary Conditions

Let us start with the macroscopic description of the optical properties of
semiconductors. In Fig. 3.1 we show the wave vectors and field amplitudes in
the vicinity of the interface between two media for two linear polarizations.
In Fig. 3.1a the electric field Ei of the incident beam is polarized parallel to
the plane of incidence, which is defined by the wave vector of the incident
light ki and the normal to the plane interface en. As we will see later from the
boundary conditions, the wave vectors and the electric fields of transmitted
and reflected beams (indices tr and r, respectively) are in the same plane; the
magnetic fields according to (2.19) perpendicular to it. In Fig. 3.1b we have
just the opposite situation for E and H.

One often assumes for simplicity that the medium I is vacuum (or air), i.e.,
εI(ω) = ñI(ω) ≡ 1. We do not use this approximation here but we still assume
that media I and II are isotropic. This means εI(ω) and εII(ω) are scalar
functions and ñ(ω) does not depend on orientation. Phenomena which appear
if we drop this assumption are dealt with later. Furthermore, we assume that
there is only one reflected and one transmitted beam. This assumption seems
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trivial and it is indeed for reflection. In transmission there may be more than
one propagating beam, as we shall discuss in Chap. 5. What we first want
to know are the dependences of the angles αr and αtr on αi i.e., the laws of
reflection and refraction. We then want to know the coefficients of reflection r
and transmission t of the interface between media I and II. We can define
these coefficients for the field amplitudes E0.

r‖ =
E0r

E0i
; t‖ =

E0tr

E0i
(3.1a)

for the configuration of Fig. 3.1a or

r⊥ =
E0r

E0i
; t⊥ =

E0tr

E0i
(3.1b)

for the configuration of Fig. 3.1b. However, what is usually measured is the
reflectivity R and transmittivity T of an interface for the intensities. We have

R⊥,‖ =| r⊥,‖ |2 (3.2)

because incident and reflected beams propagate in the same medium. For the
transmission see Fig. 3.7. In order to calculate all the quantities given above
we need the corresponding number of equations. They can be deduced from
Maxwell’s equations as boundary conditions which must be fulfilled at the
interface. To do so, we need two general laws of vector analysis which are
known as the laws of Gauß and of Stokes, respectively. They read for a given
vector field A. ∫

volume

∇ · Adτ =
∮

surface

A · df (3.3a)

and ∫
surface

(∇× A) · df =
∮

line

A · ds (3.3b)

Starting with (2.1)a, with the help of (3.3a), we obtain∫
v

divDdτ =
∮

D · df =
∫

v

ρdτ. (3.4)

We choose the integration volume in the form of a tiny (differentially small)
cylinder which contains the interface and has its top and bottom in the media
I and II, respectively (Fig. 3.2). Furthermore it is assumed that the ratio of
the height to the radius of this cylinder is also infinitesimally small, so that
the contribution to the whole integral from the lateral surface of the cylinder
is negligible. Then the middle and right-hand-side terms of (3.4) yield

(DI − DII) · df = (Dn,I −Dn,II)df = ρs df, (3.5)

where the index n means the normal component and ρs a surface charge
density. The contribution of a volume charge density ρv goes to zero with
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Fig. 3.1. The E and H fields and the wave vectors k for incident, transmitted
and reflected beams at an interface between two isotropic media for two different,
orthogonal, linear polarizations (a) and (b) respectively

decreasing height of the cylinder as compared to a possible contibution of
a two-dimensional surface charge density ρs.

Since we assumed that there are no free charges ρ at all (Sect. 2.3) and
consequently no surface charges, the right-hand side of (3.5) vanishes and we
find as a boundary condition that the normal component of D is continuous
across the interface:

DI
n = DII

n . (3.6a)

Starting from (2-1)b we find in the same way

BI
n = BII

n . (3.6b)

Using (2.1c,d) and (3.3b) we get in an analogous way requirements for the
tangential components of E and H .

EI
t = EII

t . (3.7a)

HI
t = HII

t . (3.7b)

Equations (3.6) and (3.7) represent the boundary conditions for electric
and magnetic fields. Actually only two of them are independent, the other ones
follow directly with the linear approaches (2.27). This is enough to calculate
for a given incident beam the properties of the reflected and refracted ones. In
order to do so the boundary conditions must be applied to a specific problem.
For the configuration of Fig. 3.1 this reads for the incident, reflected and
transmitted electric fields

en × Ei − en × Er = en × Etr, (3.8)
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Fig. 3.2. Schematic drawing of the infinitesimally small cylinder used to deduce
with (3.4) the boundary condition (3.6)

since the vector products of the various Es with the unit vector en normal
to the interface generate just the tangential components. Using another one
of the set of equations (3.7),(3.8) allows one to calculate the properties of the
reflected and transmitted beams. This procedure involves some basically sim-
ple but lengthy algebra and does not give further insight into the physics. In
accordance with the concept of this book, we consequently skip these calcula-
tions which can be found in the literature, (See e.g. [76P1, 77B1, 87H1, 97L1]
and references therein) but present the results giving some cross-links to other
physical approaches to obtain them.

3.1.2 Laws of Reflection and Refraction

The first, not too surprising, result from the above-mentioned procedure is

ωi = ωr = ωtr. (3.9)

This means all three beams have the same frequency. This becomes clear
from classical physics, as we shall see in Chap. 4 since atoms perform forced
oscillations with frequency ωi under the influence of the incident field and
can therefore radiate, according to the linear approach (2.27), only at this
frequency. The relation (3.9) is also intelligible from the point of view of
quantum mechanics, bearing in mind the law of energy conservation and the
fact that a single photon has energy �ω and can be either reflected or refracted.

The next results are the laws of reflection and Snell’s law of refraction.
The first one states

αi = αr (3.10a)

and;
ki,kr and en are in one plane , (3.10b)

namely in the above-introduced plane of incidence. The second one reads

sin αi

sin αtr
=
nII

nI
; ki,kr and en are in one plane. (3.10c)
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Fig. 3.3. The evanescent wave in the case of total internal reflection (a) and the
arrangement for the “optical tunneling” effect or attenuated total reflection (b)

In Fig. 3.1 we manifest the situation for nI < nII, i.e., the refraction from
an optically thinner into an optically thicker medium. In the opposite case,
one reaches a critical angle αc

i for which αtr = 90o given by the condition

αc
i = arcsin

nII

nI
. (3.11)

For αi ≥ αc
i there is a totally reflected beam but no longer a transmit-

ted one. However, the boundary conditions (3.6) and (3.7) require finite field
amplitudes in medium II. Inspection of the boundary conditions shows that
a so-called evanescent wave exists in medium II which propagates parallel to
the surface. Its field-amplitudes decay exponentially in the direction normal to
the interface over a distance of a few wavelengths, as shown schematically in
Fig. 3.3a. The reflected wave has under these conditions the same intensity as
the incident one. Correspondingly the phenomen is known as total (internal)
reflection.

If medium II has only a thickness of the order of a wavelength and is
then covered by material I again, then the evanescent wave couples into this
medium giving rise to a propagating refracted wave (Fig. 3.3b). Consequently
the intensity of the reflected wave decreases. This phenomenon is called at-
tenuated, or frustrated, total reflection (ATR) or the optical tunnel effect in
analogy to the quantum-mechanical tunnel effect.

The laws (3.10),(3.11) can be also deduced from the principle of Mauper-
tius or Fermat , which says that for geometrical optics the optical path length,
i.e., the product of the geometrical path length and the refractive index n be-
tween two points A and B is an extremum, generally a minimum. This is
shown schematically for the case of refraction in Fig. 3.4. From all in principle
possible ways to travel from A to B,the light propagation is along the one for
which (3.12) holds.

δ

∫
nds = δ(nIAC + nIICB) = 0 , (3.12)
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Fig. 3.4. Various possible paths of a light beam travelling from A to B

i.e., the variation δ of the optical path length vanishes. Equation (3.10) can
be deduced from (3.12).

3.1.3 Noether’s Theorem and Some Aspects of Conservation Laws

A third way of deriving (3.9),(3.10) relies on the law of momentum conserva-
tion. Since conservation laws are essential in other fields as well as in physics
(See problem 1 of Chap. 1) we shall dwell here on them for some time.

We start with the theorem of E. Noether, which is usually not taught in
standard physics courses, though it is of great importance. In simple words it
says:

A conservation law follows from every invariance of the Hamilton opera-
tor H .

We are not going to prove this statement. Instead we give some well known
applications.

If H is invariant against infinitesimal translations in time dt, i.e., if H does
not depend explicitly on time, then the total energy E of the system described
by H is conserved

H(t) = H(t+ dt) −→ E = const. (3.13a)

If H is invariant against an infinitesimal translation along an axis x, then the
x-component of the total momentum p is conserved

H(x) = H(x+ dx) −→ px = const. (3.13b)

If H is invariant against an infinitesimal rotation dφ, e.g., around an axis z,
that is, dφ = (0, 0, dφ) then the z-component of the angular moment L is
conserved

H(r) = H(r − r × dφz) −→ Lz = const. (3.13c)

The axis along which (3.13c) is valid is called the quantization axis.
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For the problem of light reflection and refraction at an interface, (3.13a)
is still valid, resulting in energy conservation which we used, e.g., in con-
nection with (3.9). Concerning (3.13b) the problem is only invariant against
infinitesimal translation parallel to the interface. Correspondingly only the
momentum parallel to this interface is conserved. We learned with (2.58) that
the momentum of photons (and of all other free particles) is �k. Consequently
at the interface the conservation laws must be fufilled.

ki‖ = kr‖ , (3.14a)

ki‖ = ktr‖ . (3.14b)

Since incident and reflected beams propagate in the same medium, the lengths
of the wave vectors are equal, too.

|ki| = |kr| , (3.15)

The only solution for (3.14a) and (3.15) is then obviously the law of reflection
(3.10). For the relation of ki and kt we find accordingly in addition to (3.15)

kj = kvacnj =
ω

c
nj ; j = I, II. (3.16)

The simultaneous solution of (3.15) and of (3.16) gives just (3.10c).
When we describe damping by a complex wave vector (2.36),(2.37) then

the above conservation laws applied to the real, i.e., oscillatory parts of k. For
clarity, the situation is depicted (again) in Fig. 3.5.

The conservation law (3.13c) still holds for a quantization axis perpendic-
ular to the interface.

Fig. 3.5. The momenta �k of incident, reflected and refracted beams at an interface
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3.1.4 Reflection and Transmission at an Interface
and Fresnel’s Formulae

Continuing to exploit the boundary conditions (3.6),(3.7) we give now the
results for the transmission t and the reflection r of an interface for the sim-
plifying assumption that both media are transparent. This means that the
imaginary part κ of the complex index of refraction ñ is negligible, i.e., much
smaller than the real part n. This is the case of weak absorption.

|κ| � |n| � 1 weak absorption, |κ| � |n| � 1 strong absorption. (3.17)

The resulting equations are known as the Fresnel formulae for the regime
of weak absorption. They read, according to [76P1,77B1,87H1,97L1] (as usual
our treatment is for non-magnetic materials)

r⊥ =
nIcosαi − nIIcosαtr

nIcosαi + nIIcosαtr
= − sin(αi − αtr)

sin(αi + αtr)
, (3.18a)

r‖ =
−nIIcosαi + nIcosαtr

nIcosαtr + nIIcosαi
= − tan(αi − αtr)

tan(αi + αtr)
, (3.18b)

t⊥ =
2nIcosαi

nIcosαi + nIIcosαtr
=

2sinαtrcosαi

sin(αi + αtr)
(3.18c)

t‖ =
2nIcosαi

nIcosαtr + nIIcosαi
=

2sinαtrcosαi

sin(αi + αtr)cos(αi − αtr)
. (3.18d)

The relation between αi and αtr according to (3.10c) is used to progress
from one set of formula to the other. The signs in (3.18) depend on the way
in which we defined the field amplitudes in Fig. 3.1. However it is obvious
from (3.18a,b), that there is for normal incidence (αi = 0◦) a phase shift of 0
or of π between the incident and reflected field for reflection at the optically
thinner or thicker medium, respectively, i.e.,

r‖,⊥(αi = 0) =
nI − nII

nI + nII
; t‖,⊥(αi = 0) =

2nI

nI + nII
. (3.18e)

These signs are, however, not a serious problem since it is usually not possible
to measure directly the field amplitudes in the optical regime but only the
intensities I = 〈S〉.[See (2.21),(2.22)]

We display in Fig. 3.6 formulae (3.18) graphically and the phase shift
between the various reflected components, assuming that the incident ones
are “in phase”. Furthermore we show the results for strong absorption not
covered by (3.18).

The experimentally accessible quantities are R and T which can be calcu-
lated from (2.22),(3.2).

We discuss first the reflectivity R. For the orientation R⊥, R increases
monotonically with αi. The limiting values for αi = 0◦ and αi = 90◦ are given
in (3.19).
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Fig. 3.6. The reflection coefficient r for the (electric) field amplitudes according to
(3.18) and the phase difference between the reflected amplitudes for the orientations
r⊥ and r‖, and reflection at an optically thicker (a) and thinner (b) medium and
for reflection at a strongly absorbing medium (c). According to [76P1]

For weak absorption (n� κ)

R(αi = 0) =
(
nII − nI

nII + nI

)2

(3.19a)

For nI = 1 the answer, again for weak absorption, is

R(αi = 0) =
(
nII − 1
nII + 1

)2

; (3.19b)

and for strong absorption and nI = 1

R(αi = 0) =
(nII − 1)2 + κ2

II

(nII + 1)2 + κ2
II

, (3.19c)

while for grazing incidence

R(αi = 90o) = 1 (3.19d)

in all cases.
R⊥ increases monotonically with increasing αi in all cases. In contrast R‖

goes through a minimum at a certain angle αB with

R‖(α = αB) = 0 (3.20)
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for the case of weak absorption. The angle αB is known as Brewster’s angle
or the polarization angle. For α = αB only the component polarized perpen-
dicularly to the plane of incidence is reflected. So this angle can be used to
polarize light, if unpolarized light is directed to the interface. Note that the
transmitted beam is not strictly polarized, but has only some preference for
the orientation parallel to the plane of incidence.

The condition which comes from (3.18b) for r‖ = 0 is

nIIcosαi = nIcosαtr or tan(αi + αtr) = ∞. (3.21)

Equation (3.21) has, apart from the trivial solution (no interface → nI = nII;
αi = αtr), the solution

αi + αtr = 90o , (3.22)

i.e., the reflected and refracted beams propagate perpendicularly to each other.
This fact can be easily understood. As we shall see in Chap. 4 the reflected
beam is radiated from the forced oscillations of the atoms close to the surface
which forms the optically thicker medium (assuming for the moment that
medium I is vacuum). Since dipoles do not radiate in the direction of their axis,
and since the polarization in the medium is perpendicular to ktr (transverse
wave) we find directly (3.22).

For the case nII < nI we also find the critical angle αc for total internal
reflection in Fig. 3.6b which we mentioned already earlier.

If we send light on the interface polarized differently than E‖ or E⊥ to
the plane of incidence, we can decompose it always into two components with
the above orientations, we calculate their reflected or transmitted amplitudes
with (3.18) or Fig. 3.6 and superpose them again, taking into account the
relative phase shifts given in Fig. 3.6. In the general case of a phase shift
different from 0o or 180o the reflected light will be elliptically polarized for
a linearly polarized incident beam. However, in experimental investigations
of the optical properties of semiconductors, one tries to avoid this additional
complication, usually by choosing the simplest geometries.

For strong absorption,R does not reach zero for any polarization (Fig. 3.6c),
and starts already for αi = 0 rather close to one. This leads to a statement
which may seem contradictory in itself at first glance: strongly absorbing ma-
terials absorb only a small fraction of the incident light. The solution is clear,
since the bigger fraction is reflected. The smaller fraction which actually enters
the medium is absorbed however over a short distance. In a weakly absorbing
medium, the major portion of the light is transmitted through the surface and
may be completely absorbed if the medium is thick enough. Indian ink is in
the sense of (3.17) a weakly absorbing medium, metals are strongly absorbing
over wide spectral ranges and have R close to unity.

With increasing αi, R⊥ increases monotonically while R‖ goes through
a shallow minimum as seen in Fig. 3.6c. The principle angle of incidence αp

is defined by some authors as the αi for which the slopes of the curves R‖(αi)
and R⊥(αi) are equal. Other authors prefer to use the minimum of R⊥ as
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definition of αp. The difference is marginal. The phase shift between the two
components is just π

2 for αp.
A consequence of the smooth variation of the phase shift with αi is the

fact that linearly polarized light impinging on a metallic mirror is usually
elliptically polarized after reflection except for the simple orientations E‖,
and E⊥. This fact should be remembered when building an optical setup in
the lab.

To conclude this subsection, we shall shortly consider transmission through
a single interface. For a lossless interface, energy conservation requires for the
incident, reflected and transmitted powers P of the light

Pi = Pr + Ptr, (3.23a)

where the power is defined as energy per unit of time.
Despite (3.23a), | r |2 and | t |2 do not add up to unity, since these quan-

tities give information about the reflected and transmitted light intensities.
This quantity gives, as stated already earlier, the energy flux density, i.e., the
energy per unit of time and of area. Since the cross-sections of the incident and
reflected beams are equal, but different from the transmitted one for αi �= 0
as shown in Fig. 3.7, a corresponding correction factor has to be added to
T = |t|2 to fulfill (3.23a):

T‖,⊥ =
Itr
Ii

cosαtr

cosαi
=| t‖,⊥ |2 cosαtr

cosαi
. (3.23b)

For more details about transmission and reflection at a plane interface see
[76P1,77B1,87H1,97L1] or the references given therein.

Fig. 3.7. The relation of the cross sections of incident, transmitted and reflected
beams at a plane interface between two media



48 3 Interaction of Light with Matter

3.1.5 Extinction and Absorption of Light

Until now we have considered mainly what happens in the immediate sur-
roundings of a plane interface between two media. Now we shall spend a few
minutes on the propagation of a beam within a medium, continuing the dis-
cussion in Sect. 2.3 in connection with (2.37).

If light propagates in a medium other than vacuum, its intensity or field am-
plitude decreases in most cases with increasing distance, even if we (un-physic-
ally) assume a strictly parallel beam and neglect all diffraction losses connected
with its finite diameter. In reality, both assumptions above can be fulfilled only
to a good approximation but never in a strict, mathematical sense. The decay
is usually exponential with increasing distance d [See (2.37)–(2.40)].

I = I0e−α(ω)d . (3.24)

If energy is pumped into a suitable material and in a suitable way α(ω)
may even become negative for a certain range of frequencies and consequently
light is amplified. We call these materials active, laser or inverted materials
in contrast to passive materials with α ≥ 0.

The attenuation of light according to (3.24) is called “extinction”. It com-
prises two groups of phenomena:

αextinction(ω) = αabsorption(ω) + αscattering(ω) (3.25)

Extinction is the more comprehensive term. It enters in the damping γ in
Chap. 4 or in the phase relaxation time T2 discussed in more detail in Chap. 23
via γ = 2�T2

−1 and contains two contributions. Absorption is the transfor-
mation of the energy of the light field into other forms of energy like heat,
chemical energy or electromagnetic radiation which is not coherent and gener-
ally also frequency shifted with respect to the incident beam. This latter phe-
nomenon is usually called (photo-) luminescence. The other contribution to
extinction is attenuation by (coherent) scattering of light. The unshifted com-
ponent is called Rayleigh Scattering and requires some disorder in the medium.
We come back to this phenomenon in Chap. 23. The frequency shifted (co-
herent) parts are known as Raman- or Brillouin Scattering. See Chap. 11 for
these effects or [75C1]. If the scattering particles do not show absorption in
the visible and have typical sizes large compared to the wavelength of the
light λ, the material usually looks white. Examples are the powder of ZnO
(just to start with a semiconductor), ground sugar and salt, clouds, snow, the
foam of beer, milky quartz or the bark of a birch tree. The reason is that
the scattering of light at the interfaces by reflection and refraction is roughly
wavelength independent and thus the same for all colors.

If the particles are small compared to λ, the scattering at these particles
becomes wavelength dependent. Often one finds an ω4 law

Iscatter
Iincident

∝ ω4 (3.26)
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This relation follows from a combination of (2.26) and (2.22). It explains
that the sunlight propagating through clear atmosphere preferentially looses
the high frequencies, i.e., short wavelength or blue parts of its spectrum by
scattering from N2, O2 and other molecules of the atmosphere. Consequently
the sun itself looks yellow to red depending on the thickness of air through
which the sunlight has to travel and the sky appears blue from the scattered
light. The above mentioned disorder necessary for this type of Rayleigh scat-
tering comes from density fluctuations of the particles constituting the air
within the coherence volume of (sun-) light. For more details of light scatter-
ing, including particles with sizes comparable to the wavelength (the so-called
Mie-scattering) see e.g. [77B1,87H1,97L1].

If the scattering or absorbing particles are diluted and do not interact with
each other, one finds proportionality between their concentration np and α

α(ω) = npαs(ω), (3.27)

where αs is the specific extinction constant. Equation (3.27) is also known as
Beer’s law. Sometimes not the proportionality between α and np is denoted
as Beer’s or Lambert–Beer’s law, but the exponential dependence of the light
intensity on the distance (3.24).

Though there is evidently a rather clear definition of the terms “extinction”
and “absorption”, one uses often in “every day” language in the lab and also
in many books including this one the word absorption instead of extinction,
sometimes for convenience, and sometimes because it is not always clear which
group of phenomena is responsible for the attenuation of a light beam along
its path through matter.

3.1.6 Transmission Through a Slab of Matter
and Fabry Perot Modes

We discuss now in connection with Figs. 3.8 and 3.9 the transmission and
reflection of a plane-parallel slab of matter of geometrical thickness d with
ideal, lossless surfaces. The surrounding material I is air or vacuum (nI = 1,
κI = 0). The total transmission T̂ or reflection R̂ does not only depend on
material II and on the angle αi but also on the properties of the incident
light field, e.g., on its polarization and on its coherence length lc, i.e., the
distance over which there is a fixed phase-relation. We can discuss here only
some limiting cases. See also e.g. [76P1, 77B1, 85C1, 87H1, 97L1] or [82L1] of
Chap. 1, especially Vol. 17a p 11.

For strong absorption in the sense discussed in connection with (3.18) it
is easily possible to detect the beam reflected from the front surface. The
transmitted beam is strongly attenuated for d � λ � 0.5µm in the vis-
ible part of the spectrum, i.e., for an optical density α(ω)d � 1. Conse-
quently R̂ reduces to R given for normal incidence by (3.19c). T is difficult
to measure since sufficiently thin samples are often not easily available and
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Fig. 3.8. Multiple reflection of an incident light beam in a plane-parallel slab of
matter

sometimes have optical properties different from the bulk material. Similar
statements for R̂ are true for α(ω)d � 1 even if α(ω) is small. This can be
expressed by

R̂(ω) = R(ω) for α(ω)d� 1 . (3.28)

The most convenient regime in which to measure α(ω) is 1 � α(ω)d � 5. The
reflection has to be taken into account only once at the front and rear surfaces
since multiply reflected beams are very weak due to the absorption. We find
with Fig. 3.8

T̂ (ω) =
[
1 −RI→II(ω, αi)

]
exp

[−α(ω)dcos−1αtr

]
× [

1 −RII→I(ω, αtr)
]
. (3.29a)

This simplifies for normal incidence to (3.29b) bearing in mind that RI→II =
RII→I = R(ω) for weakly absorbing material (See (3.19a)).

T̂ (ω) � [1 −R(ω)]2 e−α(ω)d. (3.29b)

For the conditions of (3.28) we can write

R̂(ω) � R(ω) +
[
1 −R(ω)2

]
R(ω)e−2α(ω)d � R(ω) . (3.29c)

For materials with an optical density α(ω)d ≤ 1 things become more com-
plicated again, because we must consider multiple reflection. The behavior
depends strongly on the relation of the optical pathlength and the coherence
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Fig. 3.9. Transmission T̂ (b, d) through and reflection R̂ (a, c) from a Fabry–Perot
resonator as a function of the phase shift δ for one half round trip for various values
of the reflectivity R of a single surface or the optical density αd of the medium in
the resonator

length lc of the light beam. For dl−1
c � 1 we have to add intensities resulting

in (in this case, for normal incidence)

T̂ (ω) � [1 −R(ω)]2 e−α(ω)d

1 −R2(ω)e−2α(ω)d
� [1 −R(ω)]2 e−α(ω)d for αd � 1. (3.29d)

For long coherence lengths, the field amplitudes interfere with approriate
phases and the two plane-parallel interfaces form a Fabry–Perot resonator.
There are two limiting cases: in one case all partial waves reflected at the
two surfaces interfere constructively in the resonator. This condition is ful-
filled if an integer number m of half waves fits in the resonator, expressed
mathematically as

λm =
d2n(ω)
m

or ωm =
mπc

dn(ωm)
or km = m

π

d
with m = 1, 2, 3 . . . . (3.30)

In this case we have a large field amplitude in the resonator which may
surpass even the amplitude of the incident beam, a total transmission T̂
close to unity and correspondingly a weak total reflection R̂ (even if R
is close to unity!). In the opposite case of mainly destructive interference
of the partial waves in the resonator, we find just the opposite situation,
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that is, R̂ ≤ 1; T̂ � 1. Such a device is called etalon or Fabry–Perot res-
onator (or FP resonator). Sometimes the two names Fabry and Perot are
interchanged.

The general formula for the FP resonator reads approximately [85C1]

T̂ =
A

1 + F sin2 δ
, R̂ =

B + F sin2 δ

1 + F sin2 δ
(3.31a)

with
F =

4Rα

(1 −Rα)2
,

A =
e−αd(1 −RF)(1 −RB)

(1 −Rα)2
,

B =
RF(1 −Rα/RF)

(1 −Rα)2
,

(3.31b)

RF: reflectivity of front surface of the Fabry–Perot resonator;
RB: reflectivity of back surface of the Fabry–Perot resonator;
Rα = (RFRB)1/2e−αd; δ = n(ω)kvacd = n(ω)ωd/c.

One often has RF = RB = R. For this condition and αd = 0 one has the
simplification A = 1, B = 1.

For a lossless medium α = 0, and normal incidence these expressions
reduce to 1

T̂ =
1

1 + F ′ sin2 δ
, (3.32a)

R̂ =
F ′ sin2 δ

1 + F ′sin2δ
= 1 − T̂ . (3.32b)

with the phase shift δ given in (3.31) and the finesse F ′ given by

F ′ =
4R

(1 −R)2
. (3.32c)

In Fig. 3.9 we show T̂ and R̂ as a function of δ for various values of R
and αd. For vanishing damping T̂ (ω) reaches unity and R̂(ω) zero for the con-
ditions of (3.32). Increasing F ′ makes the FP resonances narrower. T̂ and R̂
always add up to unity. For finite damping or α this is no longer the case. T̂ re-
mains below unity and the height of the resonance decreases with decreasing
F ′, i.e., increasing α for constant values of R. Sometimes lossless, high finesse
Fabry–Perot etalons are used as high resolution monochromators. In this case
not only the width of the resonance is of importance, but also the spectral
distance between the resonances, the so-called free spectral range given by
δ = π. A more detailed treatment of the Fabry–Perot and of related problems
like dielectric single and multilayer coatings is beyond the scope of this book
and [76P1, 77B1, 85C1, 87H1, 89T1, 97L1] are suggested for further reading.
We shall come back to Fabry–Perot resonator including oblique incidence in
Chap. 17.
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3.1.7 Birefringence and Dichroism

Until now we have assumed, for the sake of simplicity, that our sample is
isotropic, i.e., that ε(ω) is a scalar function and that means with (2.20),(2.21)
and (2.27) that D and E as well as S and Π are parallel. Later on we shall
in general use this assumption again. Here we want to have a short look at
what happens if we have an anisotropic material. Indeed, many crystals are
anisotropic, including the hexagonal wurtzite structure of several semiconduc-
tors. Even cubic crystals can show a weak anisotropy for a finite wave vector
k �= 0 since cubic symmetry is lower in symmetry than spherical symmetry,
see also [96T1] and Chap. 26. This latter aspect will not be considered for the
moment. In the mechanical model which we shall treat in Chap. 4, we can
already understand such anisotropies if we assume that some oscillators can
be excited (i.e., elongated) only in one direction, e.g., in the x-direction but
not in the others. Such an oscillator would react only on the component of
an incident electric field polarized E ‖ x̂. In the microscopic model the same
approach means that the oscillator strength f introduced also in Chap. 4 de-
pends on the direction of polarization and is, e.g., finite for light polarized
parallel to a crystallographic axis and zero perpendicular to it. Indeed it is
already sufficient that the oscillator strength is different for different orienta-
tions of the polarization with respect to the crystallographic axis in order to
obtain birefringence.

To describe such situations it is necessary to remember that the dielectric
function ε(ω) is generally a tensor. It describes the connection between the
two vectors D and E.

Di = ε0
∑

j

εijEj ; i, j = x, y, z (3.33)

In principle the ε-tensor has nine components. It can be shown ( [77B1,
83K1, 87H1, 97L1] and [74B1] of Chap. 1) that the conservation law for the
electromagnetic field energy requires εij = εji so we are left with a maximum
of six independent components. Furthermore, it can be shown that every sym-
metric 3 × 3 tensor can be brought into diagonal form by a suitable rotation
of the cartesian coordinate system. If we choose this coordinate system, the
εij = 0 for i �= j and we are left with the three elements on the main diago-
nal εxx, εyy, εzz, which are all different in the general case, i.e., for so-called
biaxial crystals (see below).

Usually one tries to align the cartesian coodinates for ε(ω) in a simple way
with respect to the crystallographic axes. In uniaxial systems one identifies
the z-axis with the crystallographic c-axis and the x-y plane with the (usually
almost isotropic) plane perpendicular to c.

If transformed on these main axes, the tensor ε(ω) has therefore in the
main diagonal two equal elements

εxx(ω) = εyy(ω) �= εzz(ω) (3.34a)

and zeros otherwise.
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For biaxial systems of even lower symmetry, such simple connections are
often no longer possible and one finds

εxx(ω) �= εyy(ω) �= εzz(ω) �= εxx(ω) . (3.34b)

For cubic crystals one finds for k = 0: εxx(ω) = εyy(ω) = εzz(ω). This
situation allows us to treat ε(ω) as a scalar quantity. For k �= 0 birefringence
and dichroism (though weak) may appear for certain orientations as already
mentioned [96T1].

Since all of the important semiconductors crystallize either in cubic sys-
tems (diamond structure with point-group Oh, zincblende structure Td or
hexagonal ones (wurtzite structure C6v)) we will not go below uniaxial sym-
metry and refer the reader for these problems to books on crystal optics
[76P1,77B1,84A1,97L1] or on crystallography [83K1]. The meaning of “point
groups” will be explained Chap. 26.

The consequences of the tensor character of ε(ω) are birefringence and
dichroism. We briefly outline both effects below. Dichroism means literally
that a crystal has two different colors depending on the direction of obser-
vation. In a more general sense one describes with the word dichroism ev-
ery dependence of the absorption spectra on the direction of polarization. In
Fig. 3.10 we show schematically transmission spectra for a dichroitic, uniaxial
material of a certain thickness. The sample is transparent for both polariza-
tions below �ω1. The resonance at �ω1 is assumed to couple more strongly
to the light field (i.e., to have larger “oscillator strength”) for the orientation
E ⊥ c than for E ‖ c. Above �ω2 light is absorbed almost completely for both
orientations. The dichroitic region obviously lies between �ω1 and �ω2.

In some materials this region covers a wide spectral range, in some cases
the whole visible part of the spectrum. In such a case this material can be used
as a polarizer. As an example polaroid films contain long organic molecules
which are oriented parallel to each other by the stretching of the film during
the manufacturing process. These molecules absorb radiation polarized paral-
lel to the chain, and transmit for the perpendicular orientation over most of
the visible spectrum. Another material which is known for its dichroism are
some colored varieties of tourmaline. In many semiconductors the dichroitic
spectral range is rather narrow and amounts often only to a few tens of meV.
These materials are, of course, of no use as commercial polarizers, but the
investigation of the dichroism gives very important information on the sym-
metries and selection rules of the resonances. We will see some examples of
this effect in Chap. 13.

If we assume that the eigenfrequencies and/or oscillator strengths of some
resonance(s) depend on polarization, then we know immediately from the
Kramers-Kronig relations, presented in Chap. 6, that the real part of the re-
fractive index n(ω) depends also on the orientation of E relative to c, i.e.,
the material is birefringent. We can even state that every dichroitic mate-
rial must show birefringence and that birefringent material must have some
spectral range in which dichroism occurs. For uniaxial materials (e.g., crystals
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with uniaxial symmetry C6v or as a prototype calcite with point group D3d)
an incident light beam can always be decomposed into two components of the
electric field polarized parallel and perpendicular to the main section. The
main section is the plane defined by the crystallographic axis and the incident
wave vector. The beam polarized perpendicular to the main section is called
the ordinary (o) beam. Its refraction is described by Snells’ law and the re-
fractive index ñ(ω) is independent of orientation. This fact can be understood
since the ordinary beam is always polarized perpendicular to the c-axis and we
assume that uniaxial materials are isotropic in the plane ⊥ c. This is strictly
correct only for vanishing wave vectors (and corresponds just to the situation
for the dipole approximation in Sect. 3.2.2 and to a very good approximation
for small but finite k values. The so-called extraordinary beam (eo), the po-
larization of which falls in the main section, has components E ‖ c and E ⊥ c
the weights of which depend on the angle γ = ∠(k, c). It is not surprising
that the refractive index experienced by the extraordinary beam depends an
γ, since the relative coupling to the oscillators active for the orientations ‖ c
or ⊥ c changes with γ. For a general direction of incidence an unpolarized
(or elliptically polarized) beam will be decomposed into two beams polarized
perpendicular to each other – the ordinary and the extraordinary ones - which
will be separated in space, as shown schematically in Fig. 3.11. This is the
concept, which allows us to use birefringent materials as polarizers. We note
here already that the wave vector k and the Poynting vector S of the eo
beam are not necessarily parallel to each other. The reason will be given in
connection with Fig. 3.13. In the case of Fig. 3.11 the refractive index of the

Fig. 3.10. Schematic drawing of the transmission spectra of a dichroitic material
for two different polarizations of light with respect to the crystallographic axis
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Fig. 3.11. Birefringence for an unpolarized beam falling on a birefringent material
at a given angle with the crystallographic axis c parallel to the interface

ordinary beam is greater than that of the extraordinary one. This situation is
called negative-uniaxial birefringence, the opposite situation corrrespondingly
positive-uniaxial birefringence, since ∆n is defined as

∆n := neo − no (3.34c)

where the indices o and eo stand for ordinary and extraordinary.
There are two limiting orientations which result in rather clear and simple

situations. Therefore these orientations are usually investigated in semicon-
ductor optics. One situation is k ‖ c. In this case the E field can be only
perpendicular to c, this means one observes the ordinary beam only, indepen-
dent of the polarization of the incident beam. The other clear orientation is
k ⊥ c. In this case one can choose by a polarizer the orientation E ⊥ c for the
ordinary beam or E ‖ c for the extraordinary beam. In the latter situation,
the E field acts only on oscillators which can be elongated parallel to c.

Oblique incidence on a surface cut parallel or perpendicular to c or normal
incidence on a surface cut under an arbitrary angle (Fig. 3.12) with respect to
c are much more complicated to evaluate concerning the spectra of reflection
or transmission. The worst situation is, of course, oblique incidence on a plane
at an arbitrary angle to the c-axis. Scientists working on semiconductor optics
usually try to avoid these situations, scientists devoting their work to crystal
optics find it challenging and even prefer biaxial systems to others.

A situation which allows us to discuss various aspects of birefringence is
perpendicualr incidence on a plane at an oblique angle with respect to c. We
shall dwell a few minutes on this topic.

The experimental result is shown in Fig. 3.12. The incident beam is split
into two when entering the birefringent material. The ordinary beam contin-
ues to propagate normal to the surface as expected from Snells’ law (3.10b)
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Fig. 3.12. Same as Fig. 3.11 but for normal incidence on a surface cut under an
arbitrary angle with respect to c

or from the conservation of momentum parallel to the surface (3.14). The
extraordinary one seems to violate these two rules. Since a violation of the
law of momentum conservation would be very serious, not only for physics,
we have to look more closely at this problem.

There are two rather simple ways to present birefringence. One, which we
shall outline towards the end of this subsection is in terms of the indicatrix. In
the other method, one uses in polar coordinates a plot which gives the phase
velocity vph = cn−1(ω). This is basically the inverse of the real part of ñ(ω)
as a function of the direction of propagation. In a uniaxial system, the figures
produced when we include all directions are a sphere for the ordinary beam
and a figure with rotational symmetry with respect to c for the extraordinary
one. They touch for propagation of light parallel to the crystallographic axis
as shown in Fig. 3.13 since there are only o-waves for this orientation, as
mentioned above. Now recall Huygens’ principle for the propagation of light
which says that every point illuminated by an incident primary wave front
becomes the source of a secondary wavelet such that the primary wavefront
at a later time results from the superposition of the amplitudes of all wavelets.
In addition, we must discard the back-travelling waves in the way shown by
Fresnel and Kirchhoff which would appear otherwise from the above given
principle. With this amendment we can construct wavefronts when we identify
the shape of the wavelets with Fig. 3.13. For more details see e.g. [83K1,96T1,
02T1] and references given therein.

Shown in Fig. 3.12 are the S,Π ,k,E and D vectors. The vectors k and Π
are always parallel to each other. The magnetic vectors B and H are parallel
to each other and normal to the electric vectors and are, in this context, of
no further interest since we are dealing with nonmagnetic material.

In Fig. 3.14a the situation is shown for the o-beam. The wavelets are
spheres, the resulting wave front is parallel to the vacuum-medium inter-
face. The vectors of energy-flux density S = E × H, of momentum density
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Fig. 3.13. The phase velocity of light in an optically uniaxial material shown for
one frequency ω in polar coordinates for positive (a) and negative (b) birefringence
for the ordinary (o) and extraordinary (eo) beams

Π = D × B and the wavevector k (=̂ momentum �k) are parallel. (Diffrac-
tion effects caused by the finite beam diameter are neglected here, though
they are obviously also described by Huygens’ principle.) The situation for
the eo-beam is presented in Fig. 3.14b. The wave front produced by the su-
perposition (or interference) of the wavelets, and constructed as the tangent to
the wavelets, is still parallel to the interface. This wave front describes the D
field because we know from Maxwell’s equations and the boundary conditions
of Sect. 3.1.1 that the boundary condition for D is that the normal compo-
nent Dn is continuous over the interface. In our case, Dn = 0 on both sides.
As a consequence, the classical momentum density Π and the momentum �k
of the light quanta are still perpendicular to the interface, as required by the
conservation of the momentum component parallel to the interface, which is
here obviously zero.

On the other hand, we can see that the whole wave front is shifting side-
ways with continuing propagation into the medium. This shift is described by
the Poynting vector S = E × H. The direction of this vector is just given by
the origin of the wavelet and the point where the tangent touches it. The E
field is necessarily perpendicular to S. As required by the boundary condition
for E as deduced from Maxwell’s equations, the tangential component Et,
must be the same on both sides of the interface (including incident, refracted
and reflected beams). The normal component of E can change, and that is
what happens in the orientation of Fig. 3.14b. To summarize, we observe that
there are no violations of any conservation laws. The tangential components
of the momentum are conserved at the interface and for this quantity Snells’
law is still valid. However, the direction of energy propagation given by S
changes, but there are no conservation laws for this direction. The law of en-
ergy conservation itself has, of course, to be fulfilled, this means in this case
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Fig. 3.14. The construction of the wave fronts of the ordinary (a, c) and the
extraordinary (b, d) beams for various geometries using Fig. 3.13

that the total amount of energy falling per unit time on the interface equals
the sum of transmitted and reflected energies.

Figures 3.14c and d finally shows schematically the general situation i.e.,
oblique incidence on a surface cut at an arbitrary angle with respect to c.
The construction simply uses the size of the wavelets around point A when
the incident wave front just reaches the interface at point B. We see that the
refractive index for k is different for both polarisations and that the directions
of ktr and Str differ for the eo beam.

The basic idea of the representation of birefringence by the indicatrix is
explained in connection with Fig. 3.15. We plot from the origin lines in all
directions with a length equal to the refractive index n(ω) of a wave with D
polarized in this direction. In doing so, we get a sphere for an isotropic material
(Fig. 3.15a) and ellipsoids with rotational symmetry for uniaxial materials. In
Figs. 3.15b and c we show the situation for positively and negatively birefrigent
uniaxial crystals, respectively. The rotation axis coincides in this case with the
crystallographic c-axis.
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Fig. 3.15. The indicatrix for isotropic (a) uniaxial (b, c) and biaxial materials (d)
according to [83K1,87H1]

For crystals of even lower symmetry, all three axes of the indicatrix have dif-
ferent lenghts (Fig. 3.15d) in agreement with the situation for ε(ω) in (3.34b).

The use of the indicatrix is now the following: For a given direction of prop-
agation k one cuts the indicatrix with a plane normal to k which contains the
origin. In general, this cross section is an ellipse except for isotropic materials.
The distance from the origin to this ellipse in a certain direction gives the re-
fractive index of a beam with D polarized in this direction and propagating in
the direction of k. The optical axes are for anisotropic materials (Figs. 3.15b–
d) now defined as those directions of propagation for which the cross section
of the indicatrix is a circle. For the uniaxial materials in Figs. 3.15b and c
there is obviously only one optical axis, which coincides with the c-axis as
stated already above. For systems of lower symmetry, where all three main
axes of the indicatrix (and all three εii(ω), i = x, y, z of the dielectric tensor)
are different, one finds two optical axes, which generally do not coincide with
any of the cartesian coordinates (Fig. 3.15d) and the direction of which can
even vary with ω.

It should be mentioned that birefringence can be created in non-birefringent
materials, e.g., by the application of electric- or strain-fields. These phenomena
are known as Pockels and Kerr effect and as mechanical or stress birefringence
or “photoelasticity”, respectively. The Pockels effect occurs in crystals with-
out centers of inversion and the effects vary proportially with E. The Kerr
effect occurs in isotropic solids like glass, in fluids like nitrobenzol and varies
therefore proportionally with E2. While these effects are often deliberately
investigated, especially the last ones can produce unwanted, spurious effects
if a sample is not mounted strain-free, e.g., in a cryostat.

All the phenomena of birefringence which we discussed here for a uniaxial
material are as mentioned at the beginning of this subsection, simply due
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to the fact that the dielectric function ε(ω) is a tensor for crystallographic
systems of symmetry lower than cubic and that D and E need therefore
no longer be parallel to each other. More information on the topic of this
subsection is found in [75C1,76P1,77B1,83K1,84A1,87H1,96T1,97L1,02T1]
and references therein.

3.1.8 Optical Activity

The last aspect we want to mention in this first subchapter on macroscopic
optical properties is optical activity. In this case a linearly polarized light
beam remains linearly polarized when propagating through an optically active
medium but the direction of polarization rotates slowly by an amount δrot that
varies with increasing distance l, which is the distance the light travels through
the medium, i.e.

δrot = al (3.35)

where a depends on the material and on ω.
While a birefringent material splits an incident beam in two, orthogonally

polarized ones, which propagate with different phase velocities through the
sample and thus accumulate a phase shift with increasing distance (see prob-
lem 8 in Sect. 3.3). An optically active material splits a linearly polarized
incident beam into a left (σ−) and right (σ+) circularly polarized one with
equal amplitude. Again both components travel with different phase veloci-
ties. A superposition after a certain distance results again in linearly polarized
light as long as there is no difference in the absorption for σ+ and σ− polarized
light, but with a tilted direction of polarization.

This phenomenon already occurs in amorphous solids including liquids
and gases if they contain molecules with a well defined chirality or handiness
like dextrose or laevulose which have both the chemical composition C6H12O6.
In crystalline solids, including semiconductors, optical activity occurs if either
the molecules in the unit cell have a chirality or if atoms or isotropic molecules
are arranged in the unit cell in such a way that a screw-axis appears. Examples
are quartz or wurtzite-type crystals parallel to their c-axes, which are both
essentially built from tetrahedrons, but are arranged in a way that a shift and
a rotation along the axis transforms the crystal into itself.

The optical activity induced in a material by a magnetic field in the direc-
tion of light propagation is known as the Faraday effect. In magnetic dichroism
one investigates the difference in the absorption spectra for σ+ and σ− polar-
ized light induced by the B-field.

3.2 Microscopic Aspects

In contrast to the preceding section, we present now the basic interaction
processes between light and matter from a microscopic point of view. We use
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here the perturbative or weak coupling approach for the interaction between
light and matter, which is in most cases sufficient for dilute systems such as
gases. For solids the strong coupling approach is often necessary, which leads
to the concept of polaritons and which is introduced in Chap. 5. We describe
first in words the basic interaction mechanisms between light and matter,
namely absorption, spontaneous and stimulated emission (Sect. 3.2.1), then
we proceed to the treatment of linear optical properties in the framework of
perturbation theory (Sect. 3.2.2). Since these topics are also treated in many
textbooks (e.g. References [81M1,90K1,93H1,96Y1] of Chap. 1 or [55S1,71F1,
73H1, 76H1, 92M1] of Chap. 2) it is not necessary to go into too much detail
here.

3.2.1 Absorption, Stimulated and Spontaneous Emission,
Virtual Excitation

For simplicity we assume that we have a certain number of two-level “atoms”
as shown in Fig. 3.16. Every atom has one electron which can be either in the
ground or in the excited state. Later we will extend the model from a two-
level system to bands in semiconductors, but the basic interaction processes
remain the same.

In Fig. 3.16a an incident photon hits an atom in its ground state. With
a certain probability the photon is annihilated and the electron gains enough
energy to reach the excited state. For reasons of energy conservation, the
photon has to fulfill the condition

�ω = Eex − Eg , (3.36)

where Eex−Eg is the energy difference between the ground and excited states.
We call this process absorption in agreement with the definition in Sect. 3.1.5 if
the energy of the photon is soon converted into other forms of energy, that is, if
the electron undergoes some scattering processes, which destroy its coherence
or more precisely the coherence of the electric polarization connected with this
transition to the incident light field. See Chap. 23. The electron eventually
returns to its ground state and looses its energy e.g., as phonons i.e., as heat
or as a photon which is not coherent with the incident one.

If an incident photon hits an atom with its electron in the excited state
it can induce with a certain probability a transition of the electron from the
excited to the ground state. In this process a second photon is created which
is identical in momentum, energy, polarization and phase to the incident one.
This process is called induced or stimulated emission. This process can be
used to amplify a photon field. It is therefore the basic mechanism for all
lasers (Light Amplification by Stimulated Emission of Radiation). Absorption
and stimulated emission are closely related events (Fig. 3.16b).

An electron in the excited state can also with a certain probability reenter
the ground state by itself, either by emitting a photon (Fig. 3.16c) or by
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loosing the transition energy through phonons or collisions. In the present
context, the first mechanism is of interest. It is called spontaneous emission
or spontaneous radiative recombination, while the second possibility is known
as non-radiative recombination. Spontaneous emission can also be understood
in another way. In Sect. 2.5 we saw in connection with (2.54) that photons
are similar to harmonic oscillators and have consequently a zero-point energy.
This zero-point energy exists for all photon modes. It cannot be absorbed
because a harmonic oscillator does not have any states below the zero-point
energy, but it can induce a transition in the way as discussed in connection
with Fig. 3.16b. So we can consider spontaneous emission as a process induced
by the zero-point vibrations of the electro-magnetic field, which are also called
vacuum fluctuations (Fig. 3.16c).

The last process presented here is virtual excitation. Understanding this
phenomenon often causes some problems for students. So we develop this
topic slowly and try to explain it from various points of view in context with
Fig. 3.16d. Virtual excitation means the creation of a state with the same
wave function as the excited state, but with an energy which is different from
the eigenenergy of this excited state. This process becomes possible through
the uncertainty principle of quantum mechanics which can be written in space
and momentum coordinates.

∆xi∆pi ≥ h for i = 1, 2, 3 . (3.37a)

A similar relation exists for energy and time

∆E∆t ≈ � . (3.37b)

We need here (3.37b). It says that it is possible to violate energy conserva-
tion by an amount ∆E up until a maximum time ∆t which fulfills the above
condition. Or, in other words, if we want to define the energy with a cer-
tain precision ∆E, the state has to exist at least for a time ∆t. In principle
(3.37b) is valid also in simple classical wave theory (e.g., acoustics) and is very

Fig. 3.16. Schematic representations of various interaction processes of light with
matter namely absorption (a), stimulated emission (b), spontaneous emission (c)
and virtual excitation (d)
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well known from Fourier transformations. A harmonic oscillation with central
frequency ω which lasts only for a time ∆t, has a spectral width ∆ω given by

∆ω∆t ≥ 1 . (3.37c)

The connection between (3.37b) to (3.37c) comes simply from the relation

E = �ω . (3.37d)

It should be mentioned that a similar set of arguments holds for (3.37a),
too. If we send now a photon with energy �ω′ to the atom, we can excite the
electron for a maximum time ∆t given by (3.37b) or for our specific case by

∆t ≈ �[| (Eex − Eg) − �ω′ |]−1 . (3.38)

At the latest after the time ∆t has elapsed, the excited state must col-
lapse. The simplest way to collapse is to emit a photon identical to the one
which caused the virtual excitation. This “new” photon has however a cer-
tain phase delay with respect to the incident photon, because the energy was
stored for a maximum time ∆t in the atom. As a consequence, an electro-
magnetic wave propagates with a lower phase-velocity through an ensemble
of atoms than through vacuum. The same effect is described phenomeno-
logically by the refractive index n(ω). (See (2.15) and (2.41).) So we get
a first hint of how n(ω) can be understood and calculated in quantum me-
chanics. Obviously ∆t increases if we approach the resonance condition in
(3.38) and consequently wave propagation through a material will deviate
more strongly from that through vacuum. This is indeed the case, as we shall
see in Sect. 4.3.

If the virtually excited state emits a photon �ω′ in a direction different
from the incident one, we have a scattering process as discussed in connection
with (3.26). If �ω′ approaches the resonance energy, this scattering process is
also known as resonance fluorescence.

In connection with this scattering, we may ask how can light propagate
at all in a clear or transparent medium? The answer is that we have in dense
media many scattering atoms or centers in the coherence volume of light, in-
dependent of whether it is light from an incandescent lamp, a laser or another
source. As a consequence, every scattered wave finds another one which has
a phase difference, resulting in destructive interference. The only way that all
scattered waves interfere constructively is just the usual propagating wave.
The explanation for blue sky, which we gave in Sect. 3.1.5 fulfills, apart from
the condition that the diameter of the scattering centers is small compared
to the wavelength of the scattered radiation, another condition, namely that
there are only a few scattering centers i.e., gas molecules, density fluctuations
or other inhomogenities per coherence volume of sunlight, so that the mutually
destructive interference of the scattered waves is not complete. For a detailed
discussion of spatial and temporal coherence see e.g. [93S1] of Chap. 2.
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If the virtually excited state disappears under simultaneous emission of
a photon and the creation or annihilation of a phonon (i.e., a quantum of
the lattice vibrations, as in Sect. 11.1), energy conservation for the emitted
photon �ωR implies

�ωR = �ω′ ± �Ωphonon . (3.39)

This phenomenon is called Raman scattering for optical phonons, and
Brillouin scattering for acoustic phonons. The “−” sign gives the Stokes and
the “+” sign the anti-Stokes emission. Similar processes are also possible with
more than one phonon or with excitations in the electronic or spin system of
the semiconductor.

From the few phenomena outlined briefly above which involve virtual exci-
tation, it is obvious that this mechanism is of some importance for the optical
properties of matter. Therefore we want to examine it from another point
of view and outline the well-known classical analog of the virtually excited
states. In addition this analogy gives some justification for the calculation of
the dielectric function used in Chap. 4.

Virtual excitation in quantum mechanics corresponds to a driven or forced
oscillation in classical mechanics. If we have an oscillator of eigen frequency ω0

(corresponding to the energetic differences Eex − Eg in quantum mechanics)
and if we excite it with an external frequence ω, it will oscillate with frequency
ω after a short damped transient feature of oscillations with ω0. The ampli-
tude of these steady oscillations increases with decreasing detuning |ω − ω0|
depending on the properties of the oscillator, e.g., its damping. This increase
of the amplitude of the classical oscillator corresponds to the increase of ∆t in
(3.39) in the picture of virtual excitation, and it is qualitatively understand-
able that we will get the strongest deviations of ε(ω) or ñ(ω) from the vacuum
value ε = ñ = 1 in the vicinity of the resonance ω0. We elaborate this concept
in detail in Chap. 4.

However, before doing so, we shall demonstrate how the various transitions
shown in Fig. 3.16 and some others can be treated quantitatively in quantum
mechanics by perturbation theory.

3.2.2 Perturbative Treatment of the Linear Interaction of Light
with Matter

In this section we present first the Hamiltonian of the system elaborating the
perturbation terms. Then we outline shortly how a perturbation causes tran-
sitions between various eigenstates. Finally we join these two things together
ending with an understanding of the theoretical description of absorption and
stimulated or spontaneous transitions.

The Hamiltonian of the total system consisting of the electron states in
Fig. 3.16 of the two level atoms (or of the bands of the semiconductor), the
radiation field and the interaction of these two systems can be written as

H = Hel +Hrad +Hinterac . (3.40)
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In the picture of second quantization outlined in Sect. 2.5 Hinterac contains
terms which describe, e.g., the annihilation of a photon and of an electron
in the ground state and the creation of an electron in the excited state for
the process shown in Fig. 3.16a, weighted with a factor which contains the
transition matrix element.

The exact solution of the total Hamiltonian leads to the polariton concept
(Chap. 5) in the field of linear optics and describes among other things the
changes of the electronic states introduced by the presence of the radiation in
nonlinear optics for which we will see some examples in Sects. 20.1 to 20.4.

For our present purposes we follow an approach which is widely used
and which treats the radiation field as a small perturbation, that is, we as-
sume that the eigenstates ϕ and the eigenenergies En of Hel, do not change
much in the presence of the electromagnetic field, and that the eigenstates
of Hrad are the photons described already in Sect. 2.5. The approximation
which we use now is known as the semiclassical treatment of radiation. It
consists of replacing the canonical conjugate momentum p in the Hamilton
function by

p → p − eA , (3.41)

where A is the vector potential (2.48).
If we replace p by its operator

p =
�

i
∇ (3.42)

the single particle Hamiltonian reads

H =
1

2m

(
�

i
∇− eA

)2

+ V (r) (3.43)

including any electrostatic potential into V (r). Making use of the Coulomb
gauge (2.49) we can evaluate (3.43) to obtain

H = − �
2

2m
∇2 + V (r) − e

m
A

�

i
∇ +

e2

2m
A2 , (3.44)

H = Hel − e

m
A

�

i
∇ +

e2

2m
A2 , (3.45)

H = Hel +H(1) +H(2) . (3.46)

In (3.46) there are two perturbation terms H(1) and H(2). If we assume
that A and thus the light intensity are small, and in the regime of lin-
ear optics they are small by definition, then H(1) is a perturbation term
of first order and H(2) is small of second order. Consequently H(1) must
be used in first-order perturbation theory. In the second-order approxima-
tion we have to use H(1) in second-order perturbation theory and H(2) in
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first-order perturbation theory, etc. We shall come back to this latter aspect
in Chap. 19.

In order to arrive at Fermi’s golden rule for the transition rate wji from
an initial state i (e.g., the ground state g in Fig. 3.16) to another state j (e.g.,
the excited state ex in Fig. 3.16) one uses the time-dependent Schrödinger
equation

Hψ = i�
∂ψ

∂t
(3.47a)

with the stationary solutions when H = H0

ψn(r, t) = ϕn(r)e−i(En/�)t . (3.47b)

For the solution in the presence of a perturbation H(1) we make the ansatz

ψ(r, t) =
∑
n

an(t)ϕn(r)e−i(En/�)t . (3.48)

We assume that the perturbation is switched on at t = 0. Before the system
is in state i, i.e.,

ai(t) = 1
an �=i(t) = 0

}
for t ≤ 0 . (3.49)

For t > 0 the an �=i(t) start to grow and under these conditions the transition
rate wij of Fermi’s golden rule becomes

wij =
2π
�

∣∣∣H(1)
ij

∣∣∣2D(E) , (3.50a)

where D(E) is the density of the final states modified by momentum conser-
vation if applicable. H(1)

ij is the transition matrix element given by

H
(1)
ij =

∫
ψ∗

j (r)H(1)ψi(r) dτ =:< ψj | H(1) | ψi > (3.50b)

For a non-degenerate two level system D(E) is simply one per atom. The
square of the transition matrix element |Hij |2 is known as the transition prob-
ability. Later on we will assume, for simplicity of writing, that some constant
factors as the term 2π/� are incorporated in this |Hij |2. Transition proba-
bilities are given apart from some coefficients by the square of the respective
transition matrix elements of (3.50) in the case of first order perturbation and
by the terms (3.51) for second order.

The transition rate wij is proportional to the transition probability mul-
tiplied by the square of the amplitude of the perturbation H(1), i.e., here by
|A0|2 ∼ I where I is the light intensity, i.e. as already mentioned the energy
flux per unit of area and time.
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If the first-order perturbation term (3.50b) vanishes, then according to
what we stated above the second-order contribution reads

w
(2)
ij =

2π
�

∣∣∣∣∣∣
∑

k �=i,j

H
(1)
jk H

(1)
ki

Ei − Ek
+H

(2)
ij

∣∣∣∣∣∣
2

D(E) . (3.51)

We restrict ourselves for the moment to the first order according to (3.50)
and discuss the term H

(1)
ij in some more detail for the perturbations of (3.45).

With the vector potential A

A = A0e
i(kr−ωt) (3.52a)

we find, e.g., for the absorption process (3.50)

wg→ex =
2π

�

∣∣∣∣−e�

im
A0 ·

∫
ϕ∗

ex(r)ei(Eex/�)teA ei(kr−ωt)∇ϕg(r)e−i(Eg/�)tdτ

∣∣∣∣2D(Eg + �ω)

∝ |A0 < ϕex|H(1) |ϕg >|2 D(Eg + �ω) =:

A2
0 | H

(1)
eg |2 D(Eg + �ω) , (3.52b)

where eA is the unit vector in the direction of A. We also give in (3.52) a gen-
erally used abreviation for the integral. A significant transition rate occurs
only if the time dependent exponential functions vanish, or, mathematically

Eex − Eg − �ω = 0 . (3.53a)

This is again the law of energy conservation. If the ϕi have plane-wave char-
acter and are described by a wave vector k, a similar argument results in k
conservation.

�kex − �kg − �k = 0 (3.53b)

This is not the case for the two-level atoms discussed here but is true for most
of the eigenstates of crytalline semiconductors.

We see that the transition rate is proportional to A2
0, and thus to the light

intensity I = 〈S〉 or the density of photons Nph(ω) in a certain mode:

wij ∝ A2
0

∣∣∣H(1)
eg

∣∣∣2 ∝ I
∣∣∣H(1)

eg

∣∣∣2 ∝ Nph

∣∣∣H(1)
eg

∣∣∣2 . (3.54)

By partial integration using the fact that the eigenfunctions form an othonor-
mal set, or that the H(1) is Hermitian adjoint, or by the argument of the
microscopic reversibility of a transitions from state i → j and from j → i
induced by some perturbation H(1), we find that∣∣∣∣∫ ϕ∗

jH
(1)ϕi dτ

∣∣∣∣2 =
∣∣∣∣∫ ϕ∗

iH
(1)ϕj dτ

∣∣∣∣2 . (3.55)

We see that the probabilities for induced emission and absorption are the same
and that the rates differ only by factors containing the number of atoms in
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the upper and lower states. This fact is the basis for the relation between the
Einstein coefficients. See Problem 10 in Sect. 3.3. Spontaneous emission has
to be treated in the sense mentioned above as emission stimulated by the zero
field. We return to this aspect in a moment. First the interaction operator
H(1) should be simplified to reach the so-called dipole approximation.

We note that the radius of an atom (r � 0.1 nm) and the distance between
neighboring atoms in a solid (a � 0.3 nm) are small compared to the wave-
length in the visible (λ � 500 nm). Therefore there is practically no phase
shift of the electromagnetic radiation over one atom or between one atom and
its neighbors. Thus we can expand the term eikr in (3.52) in a power series
and stop after the constant term

eikr = 1 +
ikr

1!
+

ikr2

2!
+ . . . � 1 . (3.56)

This is the first step towards the dipole approximation. It means, that the
momentum of the photon �k in (3.53b) is negligible.

The matrix element H(1)
ij still contains the momentum operator p = �

i ∇

H
(1)
ij ∼ 〈ϕi |p|ϕi〉 =: 〈pi,j〉 .

With the semiclassical relation

�

i
∇ = p = mṙ (3.57)

and some arguments of plausibility (See e.g. [55S1] of Chap. 2), we find that∫
ϕ∗

j

�

i
∇ϕi dτ = m

i
�

(Ei − Ej)
∫
ϕ∗

jrϕi dτ = mω

∫
ϕ∗

jrϕi dτ . (3.58)

For a detailed derivation of this relation actually some knowledge of the wave
functions is required. (For details see e.g. [55S1,85G1,92M1] of Chap. 2).

We note that in this so-called dipole approximation (3.56) to (3.59) the
transition rate is given by

wij ∼ Iω2 |eA < erij >|2D(E) = Iw2
∣∣HD

ij

∣∣2D(E) . (3.59)

This result can also be obtained in a more intuitive way if we remember
that the energy of a dipole er in an electric field E = Ȧ is given by

er · E = H(1) (3.60)

Using this approach in combination with (3.50) yields directly (3.59).
From now on we will call

∣∣HD
ij

∣∣2 the dipole-transition probability and the
operator er the dipole operator HD.

This result can be obtained still in another way using for A a suitable gauge
different from the Coulomb gauge (∇ · A = 0) (see (2.49)) via A′ = A + ∇χ
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and Φ′ = Φ − χ̇ where χ is a scalar field with existing second derivative. It
can be shown that A′ results in identical electric and magnetic fields as A.
The choice χ(r, t) = iω−1rE = iω−1r · E0 exp [i(kr − ωt)] results for H(1)

directly in (3.60).
Transitions using higher terms in (3.44), (3.51), (3.56) correspond to

quadrupole, octupole and higher order transitions.
To conclude this section, we calculate the net rate of the transitions shown

in Fig. 3.16a–c.
We assume that we have a density of photons Nph which populate only

one mode in the sense used for the calculation of the density of states in
Sect. 2.6 that is, all photons have the same wave vector k, polarization eA

and energy �ω.
Furthermore �ω fulfills the energy conservation law according to (3.54).

The density of identical two-level atoms is NA where a fraction αg is in the
ground state and correspondingly (1 − αg) are in the excited state. The net
rate of the change of Nph with time is then given using (3.54,59)

∂Nph

∂t
= −NAαgNph

∣∣HD
g→e

∣∣2 +NA(1 − αg)(1 +Nph)
∣∣HD

g→e

∣∣2 . (3.61)

The first term on the r.h.s. describes the absorption of photons, the second
one the spontaneous and stimulated emission in the factor (1 +Nph).

From (3.55) we see that∣∣HD
g→e

∣∣2 =
∣∣HD

e→g

∣∣2 =
∣∣HD

∣∣2 (3.62)

and hence

1

|HD|2
∂Nph

∂t
= Nph ·NA(1 − 2αg) +NA(1 − αg) . (3.63)

The first term on the right-hand side depends linearly on Nph and describes
the net rate of absorption and stimulated emission. The second terms gives
the spontaneous emission since it is independent of Nph.

There is net absorption for αg > 1/2 (absorption coefficient α(ω) > 0 or
∂Nph/∂t < 0) and amplification or optical gain for αg < 1/2, i.e., for gain,
more than half of the atoms have to be in the upper state. This situation
cannot be reached in thermal equilibrium, but only under the influence of
a suitable source of pump power. Usually one or more additional energy levels
are required (three- and four-level lasers). This fact can be easily elucidated
with the following argument. We start with a situation where all atoms are
in the ground state i.e., αg(t = 0) = 1. If we send for t > 0 a photon field
with frequency ω fulfilling (3.52a) into the system we initially have absorption
since α(ω) is given by

−α(ω) ∼ NA(1 − 2αg) . (3.64)

With increasing time and pump power α(ω) decreases because αg decreases.
For the situation αg = 1/2 the absorption vanishes and the material becomes
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transparent. This means no more pumping is possible under (quasi-) station-
ary excitation to reach αg > 1/2. In Chaps. 21 to 23 we will reexamine the
above considerations using the proper statistics introduced in Sect. 2.6. In
Chaps. 23 and 27 we shall see further that without dephasing processes or
for sufficiently intense pulses shorter than the dephasing time it is possible to
drive the system periodically from the ground state to the completely inverted
state (αg = 0) and back again. This process is known as Rabi flopping.

3.3 Problems

1. Consider the interface between vacuum (or air) and glass (n = 1.45) at
a wavelength λvac of 0.5µm.
Calculate for an angle of incidence αi = 45o the incident, reflected, and
transmitted wave vectors, and the transmitted and reflected intensities
for both polarizations.
Calculate Brewster’s angle for the transition air→glass and glass→air and
the angle for the onset of total internal reflection.

2. Find a piece of polarizing material (polaroid) and observe the light re-
flected from a nicely polished floor or scattered from the blue sky using
different orientations of the light propagation and of the polarization. Do
not look into the sun! Try to explain your findings.

3. Play with a piece of clear calcite and the polaroid.
4. From Figs. 3.11 and 3.12 one can understand that a birefringent crystal

can be used as a polarizer if the lateral diameter of the beams is smaller
than their lateral displacement after the passage. Usually one uses slightly
more complex arrangements known as Glan-Thomson or Taylor polariz-
ers. Make yourself familiar with the way of operation of these optical
components. What can happen if you use them under oblique incidence
or with a di- or convergent light beam with large angle of aperture?

5. Derive the laws of reflection and refraction from the principle of Mauper-
tins (see Fig. 3.4) and from momentum conservation (3.16). Does this law
also hold if you kick a soccer ball against a wall?

6. Consider Fig. 3.9c. Explain in words why only in this diagram the three
curves intersect, i.e., why zero absorption gives both the highest maxima
and the lowest minima in reflectance.

7. Verify the energy conservation law (3.23a) with the help of (3.23b) and
(3.18).

8. What is a quarter (λ/4) or half (λ/2) wave plate? How thick is it? What
is the state of polarisation of the transmitted light beam, when the in-
cident beam is linearly polarized? Does it depend on the orientation of
the incident linear polarization with respect to the crystallographic axis.
Make a simple sketch. (Generally one uses a uniaxial material and normal
incidence for theses devices.) What is a low order λ/4 plate? Why are
achromatic λ/4 plates rather expensive?
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9. Make a simple sketch tomake yourself familiarwith optical activity.Canyou
imagine, that the absorption can be different for σ+ and σ− polarized light?

10. Find in a textbook the definition and meaning of Einstein’s coefficients.
11. Inform yourself on time independent perturbation theory. The perturbed

wave function contains in first order virtually excited states and the per-
turbed energy in second order. Inspect time dependent perturbation the-
ory for virtual excitations. Derive Fermi’s golden rule.

12. Verify some of the prominent features in Fig. 3.6 with (3.18), e.g., normal
and grazing incidence, αB or αtot.
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4

Ensemble of Uncoupled Oscillators

The optical properties of matter are determined by the coupling of various
types of oscillators in matter to the electromagnetic radiation field. In other
words, an incident electromagnetic field will cause these oscillators to per-
form driven or forced oscillations. The amplitude of these driven oscillations
depends on the angular frequency ω of the incident field, on the eigenfre-
quency ω0 of the oscillators, on the coupling strength f between electromag-
netic field and oscillator, and on its damping γ. In semiconductors these oscil-
lators or resonances include optical phonons, excitons including their ionisa-
tion continuum and higher band-to-band transitions or plasmons. They will
be explained in some detail in Chaps. 7–10. We can anticipate that many ba-
sic features of the optical properties of these resonances are similar. Therefore
it is reasonable to discuss first, in a general way, the optical properties of an
ensemble of model oscillators. By using the results of Chaps. 4–6 we shall ob-
tain in Chaps. 11–15 a quite simple and straightforward access to the optical
properties of semiconductors.

It turns out that a treatment of the optical properties of an ensemble of
model oscillators in terms of classical mechanics and electrodynamics yields
results which are, in many respects, very close to reality see Chap. 27. This is
especially true for the spectra of the complex dielectric function or refractive
index, or of the spectra of reflection and transmission. All four are closely
connected (Chap. 6). We shall therefore follow this classical approach for
some while, and explain at the appropriate places what modifications appear
if quantum mechanics is applied.

These model oscillators are known as Lorentz oscillators. A treatment of
these Lorentz oscillators, or if a finite electrical conductivity σ(ω) is included
[see, e.g., (2.24)] of the Drude–Lorentz model, is found in many textbooks on
optics and solid state physics like those mentioned in Chaps. 1 and 2. See
also [63H1,72W1].

As mentioned in the preface to this second edition, there is presently
a trend to describe the optical properties, especially those of the electronic
system of semiconductors, by the optical or the semiconductor Bloch equa-
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tions. In this approach, there is a great risk that the physics is concealed
behind a rather complex mathematical formalism or it disappears partly in
numerical solutions. We start therefore with the simple and intuitively clear
concept of the Lorentz oscillators, but present the other concept in Chap. 27
so that the reader can familiarize himself with it.

We will now consider the optical properties of an ensemble of oscillators.
We begin with the simplest case of uncoupled oscillators and refine the concept
in various steps up to Chap. 8.

4.1 Equations of Motion and the Dielectric Function

We assume that we have an ensemble of identical uncoupled harmonic os-
cillators. For simplicity we choose a periodic one-dimensional array in the
direction of light propagation with a lattice-constant a as shown in Fig. 4.1a.
These harmonic oscillators all have the same eigenfrequency ω′

0. If we neglect
damping for the moment, then ω′

0 can be expressed in a mechanical model by
the mass m and the force constant β of the springs as

ω′2
0 = βm−1. (4.1)

If we elongate the oscillators in phase (Fig. 4.1b) the whole ensemble os-
cillates with ω′

0 and the same will be true if we excite neighboring oscillators
in antiphase (Fig. 4.1c). The first case corresponds to

λ = ∞ or k = 0, (4.2a)

and the second one to

λmin = 2a or kmax =
π

a
. (4.2b)

The point k = 0 is usually called the Γ -point in k-space and the condition
(4.2b) gives the boundary of the first Brillouin zone for a simple linear chain or
cubic lattice. The values given by (4.2b) are the shortest physically meaningful
wavelength and the largest k-vector in our system. The eigenfrequency will
also be ω′

0 for all λ or k-values in between and so we get the horizontal
dispersion relation for our system in Fig. 4.2a, i.e., the width of the band of
eigenfrequencies is zero (so-called flat band). A wave packet created in our
system by elongating only one oscillator (Fig. 4.1d) will not propagate, since
there is no coupling to the neighboring oscillators. In agreement we find from
(2.15) that the group velocity ∂ω/∂k is zero.

What we have seen here is an example of the general rule that in an ensem-
ble of identical oscillators [or of atoms or of other (quasi-) particles] a finite
coupling between neighbors results in a finite bandwidth and a non-vanishing
group velocity while vanishing coupling results in vanishing bandwidth and
group velocity
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Fig. 4.1. A part of a periodic array of uncoupled oscillators in their equilibrium
position (a); elongated with a wavelength λ ⇒ ∞ (b); with the shortest physically
meaningful wavelength λmin (c), and a non-propagating wave packet (d). After
[63H1]

zero coupling ←→ zero bandwidth ←→ vg = 0, Fig.4.2a
finite coupling ←→ finite bandwidth ←→ vg �= 0. Fig.4.2b (4.3)

We will discuss the implications of relaxing the assumption ”uncoupled”
later on, proceeding to the more realistic assumption of coupled oscillators in
Sect. 5.4.

In the next step we couple the independent oscillators to the electric field
of the electromagnetic radiation given by

E = (E0, 0, 0) exp [i(kzz − ωt)] . (4.4a)

This means that the light wave propagates in the z-direction and is po-
larized in the x-direction, parallel to the elongation of the oscillators. By
considering the oscillator at z = 0 or making use of the dipole approximation
of (3.56−60) (i.e., a� λ) we can drop the spatial variation in (4.4a) to obtain

E = (E0, 0, 0) e−iωt . (4.4b)

For the coupling, we assume that the mass m of every oscillator carries
a charge e. For neutrality reasons, we need then a charge −e fixed at the
equilibrium position of every mass. E will then exert a force on the oscillator,
and the elongation x is connected with an electric dipole moment via

px = ex. (4.5)
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Fig. 4.2. The dispersion relation of an ensemble of uncoupled (a) and of coupled
(b) oscillators

This or similar models and/or the resulting equations for ε(ω), go by
various names such as Lorentz or Selmaier oscillator, Helmholtz–Ketteler or
Kramers–Heisenberg formula.

The equation of motion is given by

mẍ+ γmẋ+ βx = eE0 e−iωt, (4.6)

where we have included a phenomenological damping constant γ. For a more
elaborate theory e.g. in the frame of the fluctuation-dissipation theorem or for
the aspect of Markov-damping used here compared to non-Markovian damp-
ing see e.g. [67K1, 85C1, 01W1, 02S1] or to some extend Sect. 23.2 and the
references given there. Equation (4.6) is a linear, inhomogeneous differential
equation of second order. The general solution is a sum of the general solution
of the corresponding homogeneous equation and of a special solution of the
inhomogeneous one. Correspondingly we use the following ansatz:

x(t) = x0 exp
[
−i
(
ω′2

0 − γ2/4
)1/2

t
]
exp (−tγ/2) + xp e−iωt . (4.7)

The first term on the right-hand side is the solution of the homogeneous
equation and describes a transient feature. For

ω′2
0 − γ2/4 > 0 , (4.8)

one finds a damped oscillation with a damping-dependent eigenfrequency(
ω′2

0 − γ2/4
)1/2. The inequality (4.8) defines the regime of weak damping.

For stronger damping one gets essentially an exponentially decaying term.
This transient feature disappears in any case after t > γ−1. It is thus of

importance for (ultra-) fast, time-resolved spectroscopy treated in Chap. 23.
For the stationary, linear optics regime, in which we are presently interested,
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we may safely omit this term. What is then left is a forced oscillation with
amplitude xp. Inserting the ansatz (4.7) into (4.6) we find

xp =
eE0

m

(
ω′2

0 − ω2 − iωγ
)−1

, (4.9)

i.e., the usual resonance term.
This oscillation is connected with a dipole moment at every oscillator of

px = exp (4.10)

and a polarizability â(ω). The hat on â and the prime on ω′
0 indicate that we

shall introduce two corrections here and in Sect. 4.2

â(ω) =
exp

E0
=
e2

m

(
ω′2

0 − ω2 − iωγ
)−1

. (4.11)

If we use a three-dimensional array of oscillators with density N , the result is
the same and we shall get a preliminary polarization density P

P = NâE0 =
Ne2

m

(
ω′2

0 − ω2 − iωγ
)−1

E0 . (4.12)

This means that we describe the ensemble of oscillators as an effec-
tive medium, an approach which is well justified for a � λ. See (4.4b) or
Ref. [97W1] of Chap. 1 and [97S1] of Chap. 5.

From (4.12) and (2.27) we get the following expressions for the dielectric
displacement D, the dielectric function ε(ω), and the susceptibility χ(ω).

D = ε0E + P = ε0

[
1 +

Ne2

ε0m

(
ω′2

0 − ω2 − iωγ
)−1

]
E (4.13)

and

ε(ω) = 1 +
Ne2

ε0m

(
ω′2

0 − ω2 − iωγ
)−1

= χ(ω) + 1 . (4.14)

where N is the number of oscillators per unit volume. Now we want to ad-
dress two corrections to the above set of equations in order to obtain the final
expression for ε(ω).

4.2 Corrections Due to Quantum Mechanics
and Local Fields

The term Ne2m−1, e.g., in (4.12) gives the coupling strength of the electro-
magnetic field to the oscillators in our mechanical model.

In quantum mechanics, this coupling is given by the transition matrix ele-
ment squared. For dipole-allowed transitions this reads, as mentioned already
in Sect. 3.2.2, Eqs. (3.58)–(3.60):∣∣HD

ij

∣∣2 =
∣∣〈j ∣∣HD

∣∣ i〉∣∣2 . (4.15)
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where i and j stand for initial and final state andHD for the dipole operator er
or ex. For dipole-forbidden transitions, magnetic dipole or electric quadrupole
matrix elements can become relevant. They are usually orders of magnitude
smaller. There are different conventions for introducing the transition matrix
element into the dielectric function:

Some authors define a dimensionless quantity f̂ = 2mω′
0

�e

∣∣HD
ij

∣∣2, call it the
oscillator strength, and use it to multiply the term Ne2m−1ε−1

0 . Others call
the whole numerator oscillator strength f ; i.e.,

f =
2Nω′

0

ε0�

∣∣HD
ij

∣∣2 (4.16)

We follow the second way for simplicity of notation, but stress that there is
no physical difference between the methods. We obtain

ε(ω) = 1 +
f

ω′2
0 − ω2 − iωγ

. (4.17)

For the next correction to (4.17) we have to consider what is the electric
field E [e.g., in (4.6)] acting on the oscillators. For dilute systems, E is just
the external incident field and we can use (4.17) as it is. For dense systems,
i.e., systems with a high density N of oscillators, the local field Eloc acting
on the oscillators consists of two parts, namely the external field and the field
created by all the other dipoles. Taking into account this effect leads for cubic
or amorphous materials to the so-called Clausius–Mosotti or Lorenz–Lorentz
equation, which relates the polarizability â to ε(ω) through

ε(ω) − 1
ε(ω) + 2

=
Nâ(ω)

3ε0
=

1
3N

e2

mε0

ω′2
0 − ω2 − iωγ

. (4.18a)

See also [02B1]. Obviously (4.18a) recovers the form (4.17) for dilute sys-
tems (small N) for whichNâ is small and ε(ω) deviates only a little from unity.
If this approximation is not valid, ε(ω) can be rewritten for small damping in
the form (4.17) but with a shifted eigenfrequency

ω2
0 = ω′2

0 − Ne2

3mε0
= ω′2

0 − f/3 . (4.18b)

resulting in

ε(ω) = 1 +
f

ω2
0 − ω2 − iωγ

. (4.19)

This formula now incorporates local field effects and the quantum mechan-
ical transition probabilities. The new eigenfrequency ω0 is the only physically
relevant and experimentally accessible one. Therefore only this quantity ap-
pears in experiments. A similar procedure is also valid for crystal symmetries
other than the cubic one, but in these cases the tensor character of ε(ω) comes
into play (see Sect. 3.1.7), resulting in parameters f , ω0 and γ depending on
the orientation of the electric field relative to the crystal axes.
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4.3 Spectra of the Dielectric Function
and of the Complex Index of Refraction

As we shall see later, a semiconductor contains not only one type of oscillators
and one resonance frequency ω0, but many of them – like phonons, excitons
etc. In linear optics, i.e. in linear response theory, we can just to sum over all
resonances leading to

ε(ω) = 1 +
∑

j

fj

ω2
0j − ω2 − iωγj

. (4.20a)

This is essentially the so-called Helmholtz–Ketteler formula or Kramers–
Heisenberg dielectric function.

If the eigenfrequencies ω0 form a continuous band, like in the ionisation
continuum of the excitons or in an inhomogeneously broadened system where
every oscillator has a slightly different frequency ω0, then the Σ in (4.20a) is
better replaced by an integral over these contributions∫

f(ω0)
ω0 − ω2 − iωγ(ω0)

dω0 (4.20b)

where f(ω0) is a oscillator strength per frequency interval.
We keep this in mind, but for simplicity of writing use the form (4.20a) in

the following text.
We now want to discuss the contribution of an isolated resonance at ω0j′

in (4.20a) which allows some simplification. For closely spaced resonances the
whole formula (4.20a) has to be used. We discuss this situation seperately in
Sect. 4.5. For the present purposes a single resonance well seperated from all
other resonances, we note that the contribution of a single resonance at ω0j′ ,
is constant for ω � ω0j′ with a contribution to ε(ω)

fj′

ω2
0j′

= const (4.21)

and tends to zero for ω � ω0j′ .
This means that in the vicinity of a resonance ω0j′ we can neglect the

contributions from all lower resonances ω0j � ω0j′ and the constant contri-
butions of all higher resonances ω0j � ω0j′ can be summarized in a so-called
background dielectric constant εb. Obviously εb is unity for the highest reso-
nance in the system, i.e. in the sum of (4.20a). For our purposes this highest
resonance would be in the X-ray regime connected e.g. with the K absorption
edge. So we finally get the simplified expression in the spectral surroundings
of ω0j′

ε(ω) = εb +
fj′

ω2
0j′ − ω2 − iωγj′

(4.22a)
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In the following we drop the index j′. Equation (4.22a) can be separated into
real and imaginary parts

ε(ω) = εb

(
1 +

f(ω2
0 − ω2)

(ω2
0 − ω2)2 + ω2γ2

+ i
ωγf

(ω2
0 − ω2)2 + ω2γ2

)
= ε1(ω) + iε2(ω) . (4.22b)

For vanishing damping γ ⇒ 0 and in the vicinity of ω0 (4.22a) can be
simplified by noting (ω2

0 − ω2) = (ω0 + ω)(ω0 − ω) ≈ 2ω0(ω0 − ω) to

ε(ω) = εb +
f

2ω0

1
ω0 − ω

(4.22c)

In Fig. 4.3 we show the real and imaginary parts of ε(ω). For negligible
damping γ → 0 we find a pole in Re{ε(ω)}, and Im{ε(ω)} converges to a δ
function at ω0. Finite damping results in a broadening of Im{ε(ω)} to the
Lorentzian lineshape of (4.22b) and a smooth connection of the two branches
of Re{ε(ω)}.

We concentrate now on the case of small damping. One of the two frequen-
cies of special interest for ε(ω) is the eigenfrequency ω0, which is connected
with the singularity. The other one corresponds to the point at which Re{ε(ω)}
crosses zero. Going back to (2.17) and (2.43) we find

∇ · D = ε0∇ · ε(ω) · E = 0 . (4.23)

As already discussed, this equation is usually used to argue that electro-
magnetic waves are transverse, since ∇·E = 0 is zero for this case. The other
solution ε(ω = ωL) = 0 gives the frequency of a longitudinal mode. This mode
is a pure polarization mode with ε0E = −P , i.e., antiparallel polarization and
electric field (see Sect. 2.4).

For γ ⇒ 0 we find

ε(ω = ωT ≡ ω0) = ∞,

ε(ω = ωL) = 0. (4.24)

The relation between these two frequencies is given by

ω2
L − ω2

T = f/εb ∼ ∣∣HD
ij

∣∣2 , (4.25)

and we can make the following statements. A finite oscillator strength f is nec-
essarily connected with a finite longitudinal-transverse splitting energy ∆LT

and vice versa.∣∣HD
ij

∣∣2 �= 0 ⇔ f �= 0 ⇔ ∆LT = �(ωL − ωT) �= 0 . (4.26)

The physical reason for this energy splitting is that the longitudinal po-
larisation wave produces, in contrast to the transverse wave a longitudinal
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Fig. 4.3. The real (a) and imaginary
(b) parts of the dielectric function for
zero and finite damping

electric field (2.45), which acts as an additional restoring force and increases
the longitudinal eigenfrequency ωL above the transverse eigenfrequency. This
is illustrated in Fig. 4.4a for a slab of matter with finite thickness. In the case
of Fig. 4.4b no additional restoring force results from the surface polarization
charges in contrast to Fig. 4.4a. The polarisation charges in Fig. 4.4b gives
rather rise to a surface mode, to which we come back to in Sect. 5.6. The
spreading of the field lines of this surface mode on both sides of the inter-
face explain qualitatively the fact that the frequency of the surface mode is
situated between ω0 and ωL. See Sects. 2.4 and 5.6.

If we call the roughly constant value of ε(ω) well below ω0 the static
dielectric constant εs and the value above εb, as already mentioned, we find

εs = εb + f/ω0 (4.27)

and the Lyddane-Sachs-Teller relation

εs
εb

=
ω2

L

ω2
0

> 1 for f > 0. (4.28)
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Fig. 4.4. The polarisation charges and the resulting electric and polarisation fields
(solid and dashed arrows, respectively) in a slab of matter for a longitudinal (a) and
a transversal wave (b)

Furthermore we can make the slightly tricky statement that the back-
ground dielectric constant εb of a resonance ω0j is simultaneously the static
dielectric constant for the next higher resonance ω0j+1.

Finally we can define the term “small damping” already used several times
above by

γ < �
−1∆LT = ωL − ωT (4.29)

and frequencies ω far above or below ω0 means

� |ω − ω0| � ∆LT. (4.30)

Now we concentrate on the complex index of refraction ñ(ω) = n(ω) +
iκ(ω), which is connected to the dielectric function via (2.35)

ñ(ω) = ε1/2(ω) (4.31)

and consequently

ε1(ω) = n2(ω) − κ2(ω)
ε2(ω) = 2n(ω)κ(ω)

or

n(ω) =
(

1
2

{
ε1(ω) +

[
ε21(ω) + ε22(ω)

]1/2
})1/2

κ(ω) =
(

1
2

{
−ε1(ω) +

[
ε21(ω) + ε22(ω)

]1/2
})1/2

. (4.32)
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In Fig. 4.5 we show the real and imaginary parts of ñ for vanishing and
for finite γ.

When approaching the resonsance from the low-frequency side, one sees
that both Re{ñ} = n and thus also the real part of k = ω

c n(ω) increase
drastically. Between ω0 and ωL we find

ω0 ≤ ω ≤ ωL

⎧⎨⎩
n = 0 for γ = 0
n� 1 for γ �= 0
κ > n

(4.33)

The imaginary part of ñ(ω); i.e. κ(ω) starts with a singularity at ω = ω0

for γ = 0 and then drops to small values for ω approaching ωL.
This means that for γ = 0 there is no propagating, i.e., no spatially oscil-

lating or wave-like solution in the medium for the spectral region addressed
in (4.33). Instead we have only a spatially exponentially decaying amplitude
similar to the type known for total reflection in the medium with the lower
index of refraction. For finite γ we get a small real part of ñ which means
that some light can penetrate into the medium, but this light is damped over

Fig. 4.5. Real (a) and imaginary (b) parts of the complex index of refraction for
zero and finite damping
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a distance shorter than the wavelength in the medium since we have κ > n
i.e., “strong absorption” according to (3.17).

If all oscillators have the same eigenfrequency and the broadening in ε2(ω)
results only from a finite damping γ, the system is said to be homogenously
broadened and ε2(ω) shows the usual Lorentzian shape. If the system con-
tains many oscillators with slightly different frequencies ω0, the system is
said to be inhomogeneously broadened. The shape of ε1(ω) and ε2(ω) is
then determined by the distribution function of eigenfrequencies and/or of
oscillator strengths in (4.20b). The width of ε2(ω) is then a convolution of
a Lorentzian L(ω) for every single oscillator and of the distribution. In the
case of a Gaussian G(ω) this convolution leads to a Voigt lineshape in the
sense of (4.34)

V (ω) =

+∞∫
−∞

L(ω − ω
′)G(ω′)dω′ =

1
(2π)3/2

+∞∫
−∞

Γ

σ

exp
{
− (ω′−ω0)

2

2σ2

}
(ω − ω′)2 +

(
Γ
2

)2 dω′

(4.34)
where σ and Γ give the inhomogeneous and homogenous broadening, respec-
tively.

It should also be noted that even for homogeneously broadened resonances
κ(ω) and α(ω) do not exhibit intrinsically a Lorentzian lineshape in contrast
to ε2(ω). See, e.g., Fig. 4.4b or (4.32). However for small oscillator strength
and/or concentration of the oscillators and finite damping, α(ω) can recover
a Lorentz-like lineshape. See, e.g., [76P1] of Chap. 3.

4.4 The Spectra of Reflection and Transmission

With a knowledge of ñ(ω) we can now discuss the spectra of reflection and
transmission. We start with the reflectivity R(ω) of a single interface between
vacuum (or air) and the medium. We discuss only the situation of normal
incidence [see Sect. 3.1.4 and (3.19)].

R(ω) =
Ir
Ii

=
[n(ω) − 1]2 + κ2(ω)
[n(ω) + 1]2 + κ2(ω)

(4.35a)

Oblique incidence is described by the Fresnel formula (3.18).
R(ω) is plotted in Fig. 4.6. First we discuss the situation for γ = 0. When

approaching the resonance from the low frequency side, R starts with an
almost constant value determined from (3.19b) and (4.27), (4.28):

R =

(
ε
1/2
s − 1

)2

(
ε
1/2
s + 1

)2 for ω0 − ω � 1
�
∆LT . (4.35b)



4.4 The Spectra of Reflection and Transmission 85

Fig. 4.6. The reflection spec-
trum of a single resonance
with zero and finite damping
for normal incidence

Above ωL, the reflectivity converges towards a lower constant value

R =

(
ε
1/2
b − 1

)2

(
ε
1/2
b + 1

)2 for ω − ω0 � �
−1∆LT . (4.35c)

For vanishing damping, the reflectivity R increases just below ω0 and
reaches the value R = 1 for ω = ω0. Between ω0 and ωL we have R = 1.
For ω > ωL R drops rapidly and reaches zero at the frequency where
n(ω) = 1. Then R increases again towards a constant value given by (4.35c).
We see now that all light is reflected in the region where we have no prop-
agating mode in the medium in agreement with the discussion of (4.33).
Such a band is also called stop-band because the light is “stopped” and
sent back.

An alternative approach to understanding the stop-band is via total inter-
nal reflection. See (3.18) or Fig. 3.6b. For vacuum we have n ≡ 1. Between
ω0 and ωL the value of n is below unity. Consequently, matter is optically
“thinner” than a vacuum. In such a situation, the total “internal” reflection
occurs for angles of incidence exceeding αc.

In general, αc is defined such that sinαc cannot be larger than unity re-
sulting in (3.10c) in the general case of

sinαc =
nII

nI
for nII < nI (4.36)

where nI ≡ 1. For nII → 0 we find αc → 0 resulting in total internal reflection
already for normal incidence.

For finite γ the reflection spectrum is smoothed out due to the finite values
of n(ω) for ω0 ≤ ω ≤ ωL and of κ(ω) for ω ≤ ω0 and for ωL ≤ ω. It should be
noted, that the reflection minimum occurs also for weak damping only slightly
above ωL, but the reflection maximum is no longer related to ω0. We shall
see in Sect. 5.4 that this is even true for γ = 0 in the case of resonances with
spatial dispersion.
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Fig. 4.7. An arrangement for mul-
tiple reflection from a medium (a)
and the resulting “Reststrahlban-
de” (b)

The spectral region between ω0 and ωL is often called “Reststrahlbande”1

for the following reason. If we send a light beam with a broad, essentially flat,
spectral distribution of the intensity around ω0 onto a sample and allow it
to be reflected several times, e.g., in the configuration given in Fig. 4.7, then
significant intensity will remain as a “rest” only in the region ω0 ≤ ω ≤ ωL.
It should be noted that we do not assume any coherent superposition of the
beams, i.e., the Reststrahlbande comes only from ε(ω) and has nothing to
do with Fabry–Perot resonators (Sect. 3.1.6) or a Lummer–Gehrke plate. See
[76P1] of Chap. 3 for this device.

Up to now we have discussed the reflectivity of a single interface. In experi-
ments it is usually easier to handle semiconductor plates with two surfaces and
a geometrical thickness d rather than samples filling a semi-infinite half-space.
To handle this problem, we use the results of Sect. 3.1.6.

In the vicinity of the resonance the reflection spectrum will remain the
same as in Fig. 4.6 since multiple reflection is suppressed due to the large
value of κ and thus of the absorption coefficient (2.40)

α(ω) = 2
ω

c
κ(ω). (4.37)

Away from the resonance we have to consider for the total transmission T̂
contributions due to multiple reflections at the two surfaces. There are two
cases, as already discussed in Sect. 3.1.6; if d is longer than the coherence
length of the light source, or if the two surfaces of the slab are not exactly
plane-parallel (e.g., due to steps on the surfaces or due to a small angle between
them) we have to add intensities. This results in a total transmission T̂ and
reflection R̂ of the slab given by (3.29).
1 This term has been introduced in 1987 by H. Rubens and is used also in the

english literature as a synonym for stop-band.
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Fig. 4.8. The reflectivity R̂ of a thin slab of matter in the vicinity of a resonance
for the cases where intensities (a) or field amplitudes (b) have to be added and the
transmission (b) for the case where amplitudes add

In Fig. 4.8a we show R̂ for this situation. We start with a reflectivity
given by the combined contributions of front and rear side. Approaching the
resonance, R̂ drops first slightly because the absorption reduces the influence
of the rear side. The reflection around the resonance remains the same as
above in Fig. 4.6. If the sample becomes transparent above the resonance, we
again find a contribution from the rear side to the reflectivity.

In Figs. 4.8b and c we give an example for the T̂ and R̂ spectra for the
second case when the sample forms a FP resonator using the set of equa-
tions (3.31),(3.32). We see that the finesse F is reduced close to the resonance
due to increasing absorption. The spectral spacing between the resonances de-
creases as the resonance is approached from lower frequencies, due to the steep
increase of n(ω) or of k. Above resonance, the FP mode structure reappeares.

Every directional dependence of the quantities ω0, f and γ which describe
a resonance will lead to a directional dependence of n(ω) and κ(ω), i.e., to
birefringence and dichroism, discussed in Sect. 3.1.7. In Chap. 5 we shall see
that a dependence of the dispersion ω0(k) can lead to a weak birefringence,
and indeed this effect is observed. For a cubic crystal with point group Td

(see Chap. 26) one finds that light propagating with k parallel to the [110]
direction may display slightly different optical properties when the electric
field is polarized in the directions [110] and [001].
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We will not consider the spectra of luminescence in this section since they
require more detailed knowledge of the excitations in the semiconductor and
especially of the radiative and nonradiative decay channels. Examples will be
given in Chaps. 14 and 15.

4.5 Interaction of Close Lying Resonances

Until now we have considered a single resonance, well separated from oth-
ers. Now we discuss what happens for two close-lying resonances. Such
a situation occurs, for instance, for the A and B Γ5 excitons in ZnO. See
[81K1, 93F1, 02B1] and references therein. To this end we consider two reso-
nances with equal oscillator strength f and slightly different eigenfrequencies
ωA < ωB. For simplicity we neglect damping and spatial dispersion, which
we introduce only in Sect. 5.4, but which would be adequate for exciton
resonances.

The equations displayed graphically in Fig. 4.9 are

εA (�ω) = εb +
f

�2 (ω2
A − ω2)

, (4.37a)

εB (�ω) = εb +
f

�2 (ω2
B − ω2)

, and (4.38a)

εtot (�ω) = εb +
f

�2 (ω2
A − ω2)

+
f

�2 (ω2
B − ω2)

(4.38b)

= εA (�ω) + εB (�ω) − εb . (4.38c)

We see in Fig. 4.9a and b what we expect already from Fig. 4.3a. Especially
we see that the longitudinal transverse splitting ∆LT is about 5 meV, the
same for both resonances, because we used the same oscillator strength f and
background dielectric constant εb for both resonances.

The situation becomes significantly different for (4.38c) shown in Fig. 4.9c.
Though the oscillator strengths are still the same for both resonances, the
value of ∆LT is now smaller for resonance A and larger for resonance B,
as indicated by the arrows while the singularities ωA and ωB did not shift.
∆LT decreased to about 2 meV for the resonance A and increased to about
8 meV for resonance B. This is a first example of level repulsion, which we
will encounter more frequently in the following chapters of this book. The
“moral of the story” is, that one cannot deduce from ∆LT or the spectral
width of the stop-band, in a straight-forward way, the oscillator strengths of
two close-lying resonances, but has to go through a careful analysis. As an
outlook to Sect. 13.1.3 we state here that the AΓ5 and BΓ5 exciton resonances
of CdS are sufficiently separated spectrally, i.e., several times ∆LT to treat
them to a good approximation as independent resonances, while those of ZnO
are not.
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Fig. 4.9. The real part of ε (�ω) for two resonances separately (a, b) and for two
close lying resonances (c). Numbers on the x-axis refer roughly to ZnO

4.6 Problems

1. Study for the case of weak damping, some reflection spectra in the in-
frared (optical phonons) of at least partly ionic bound semiconductors,
and compare with the data for ω0 and ωL given there.
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2. Calculate the spectra of reflection for a single surface for weak and for
strong damping with otherwise constant parameters. Compare the shift
of the reflection maxima and minima with respect to the transverse and
longitudinal eigenenergies ω0 and ωL, respectively. Which quantity can be
deduced with reasonable accuracy from a first inspection of the reflection
spectra?

3. Make a qualitative sketch of the electric fields for normal incidence of
light on a medium with higher or lower index of refraction and weak or
vanishing absorption, for strong absorption and for frequency ω0 < ω < ωL

and vanishing damping.
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[81K1] R. Kuhnert, R. Helbig, K.Hümmer: phys. stat. sol. (b) 107, 83 (1981).
[85C1] H.B. Callen: Thermodynamics and an Introduction to Thermostatistics, 2nd

ed., Wiley, New York (1985).
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5

The Concept of Polaritons

Here we want to discuss in more detail what is actually propagating when
“light” travels through matter. In vacuum the situation was quite clear on
our present level of understanding in Sect 2.2. Light in vacuum is a transverse
electromagnetic wave, the quanta of which are known as photons.

There are two levels at which one can describe the interaction of light
with matter. One is the so-called perturbative treatment or weak coupling
case. In this approach, which we used in Sect. 3.2, the electromagnetic field
and the excitations of the matter are treated as independent quantities.
As shown in Fig. 3.16a a photon is absorbed and the matter goes from
the ground state to the excited state, and that’s it. This approach is suffi-
cient for many purposes but, if we look closer, we see that this is not the
whole story. The optically excited state of the matter is necessarily connected
with some polarization P . Otherwise the transition would be optically for-
bidden, i.e., it would not couple to the electromagnetic field e.g. via the
dipole-operator. On the other hand, we know that every oscillating polar-
ization emits an electromagnetic wave, which may act back onto the inci-
dent electromagnetic field. This interplay will lead us in the following to the
strong coupling limit between light and matter and to the concept of po-
laritons, see [58H1, 63H1, 75C1, 84A1, 85H1, 98K1] and references therein. In
later chapters we shall see that many of the experimentally observed phe-
nomena can be described quantitatively only in the strong coupling limit. In
this chapter we introduce the concept of polaritons including the aspects of
spatial dispersion and of surface polaritons. The concept of polaritons was
originally introduced for crystalline solids [63H1], but it can be easily gen-
eralized to non-crystalline materials including gases. We want to stress here
the general concept and give examples from different fields, which are other-
wise not the topic of this book. A large number of examples from the field
of semiconductor optics can be found in later chapters, e.g., for phonon-,
plasmon or exciton polaritons including systems of reduced dimensionality,
cavity (i.e. Fabry–Perot) polaritons or photonic crystals (see Chaps. 11–13,
15, 17).
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5.1 Polaritons as New Quasiparticles

Due to the relation (2.28) repeated here:

P = ε0 [ε(ω) − 1] E, (5.1)

the electric field in matter is always accompanied by a polarization wave. This
statement is true as long as ε(ω) or ñ(ω) deviate from one, and holds in the
whole spectral range from ω = 0 well beyond the highest eigenfrequencies of
the system. These highest eigenfrequencies are actually situated in the X-ray
region, for example, the K or L absorption edges. Above this region ε(ω) and
ñ(ω) approach unity from below according to (4.19). In other words, we can
state that, for the whole spectral range discussed in this book, i.e., for the IR,
VIS and UV, light travelling in a solid is always a mixture or superposition
of an electromagnetic wave and a “mechanical” polarization wave and this is
not only true for semiconductors, but also for other dense media like metals,
insulators and liquids and close to resonance even for gases. This mixed state
of electromagnetic and polarization waves is quantized (see below) in the sense
that it can exchange energy with other systems, including the photon–field in
vacuum only by integer multiples of �ω.

The name of these energy quanta is polariton. This name is composed of
polarization and photon, thus directly describing what it is, especially since
the ending -on is generally used for (quasi-) particles (for an explanation of
“quasi-” see Sect. 7.6) like photon, electron, gluon, proton, meson, plasmon,
phonon and many others, but with a few exceptions (neutrino, quark). As we
shall later see, these polarization waves include motions of different ions in
a semiconductor relative to each other, two particle, i.e., electron–hole pair
excitations, and collective motions of the electron cloud with respect to the
nuclei and the inner filled electron shells. Later (Chaps. 7–10), we shall discuss
these excitations in more detail and see that they can also be quantized to
form quasiparticles with energy �ω and momentum �k in a similar way as
for photons. The names of these quanta, or quasiparticles, are phonons, exci-
tons and plasmons, respectively. We can therefore repeat the above statement
about what is propagating as “light” in matter, namely that it is a mixture
of photons and other quasiparticles that describe the quanta of the polar-
ization field, with the new aspect, that the mixed state is quantized, not its
constituents.

In the mechanical model used in Chap. 4 we would describe this phe-
nomenon as follows: an incident electromagnetic wave excites the oscillators.
This oscillation is connected with a polarization which itself radiates again an
electromagnetic wave; this in turn excites the oscillators, etc.

In the following we outline shortly the concept of polaritons in the picture
of second quantization for a crystal in which k is a good quantum number.

Anyone who is not familiar with the concept of second quantization can
simply skip the following treatment. There will be no problems in understand-
ing the rest of the book. It must just be remembered that light propagating
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in matter is a mixture of an electromagnetic and a polarization wave. This
mixed wave can be quantized and the energy quanta are known as polaritons.
They are the quasiparticles of “light” in matter.

The Hamiltonian, which, in the picture of second quantization, describes
the interacting system of the photons and other quasiparticles (or excitations
of matter) reads according to e.g. [93H1,93P1] of Chap. 1.

H =
∑

k

�ωka
+
k ak +

∑
k′
E(k′)B+

k′Bk′ + i�
∑

k

gk

(
B+

k ak + h.c.
)
. (5.2)

The first two terms on the right-hand side contain the number opera-
tors a+

k ak and B+
k′Bk′of the photons and of the other quasiparticles (see also

(2.55b)) which are in most cases also bosons, and represent the Hamiltonian
of the non-interacting systems. The third term describes the interaction, e.g.,
the annihilation of a photon ak and creation of another quasiparticle B+

k (un-
der momentum conservation) or vice versa. The prefactors gk simply contain
the transition matrix elements Hij discussed in Sect. 3.2.2. If we use these
terms as a perturbation, we arrive back at the weak-coupling limit.

The crucial point now is that the whole Hamiltonian (5.2) can be diagonal-
ized by a proper choice of linear combinations pk of creation and annihilation
operators of photons and of the quasiparticles representing the matter. In
the following, we merely outline briefly this Bogoliubov-transformation-like
procedure. For details the reader is referred again to [93H1,93P1] of Chap. 1.

The above procedure brings the Hamiltonian of (5.2) into the following
form:

H =
∑

k

Ekp
+
k pk (5.3)

with suitable coefficients uk and vk:

pk = ukBk + vkak. (5.4)

The pk and p+k are the annihilation and creation operators for the quanta
of the mixed state of photon and polarization wave with wave vector k, which
are consequently called polaritons and E(k) is their energy and dispersion
relation.

5.2 Dispersion Relation of Polaritons

All wave-like excitations can be described by two quantities, namely their
(angular) frequency ω which is connected with the quantum energy simply by
E = �ω and their wave vector k which gives the (quasi-) momentum �k. The
relation which connects ω and k is usually called dispersion relation E(k) or
ω(k)

The dispersion relations E(k) which we have encountered until now were
very simple. For photons in vacuum it was a straight line with slope �c



94 5 The Concept of Polaritons

(Fig. 2.2) and for the polarization wave of an ensemble of uncoupled oscilla-
tors a horizontal line (Fig. 4.2a). The relation between ω and k for polaritons,
i.e., for the light quanta in matter, can be derived from classical physics and
agrees with the results of the quantum-mechanical treatment outlined above.

We remember that the wave vector in matter k is connected with the wave
vector in vacuum kv by the complex refractive index ñ(ω) (2.36). To get rid
of the vector character, we consider the squares

k2 = k2 = ñ2(ω)k2
v (5.5)

Now we also recall (2.35), (2.13) saying that ñ2(ω) = ε(ω) and k2
v =

(2π/λv)2 = (ω/c)2 and obtain again (2.33)

c2k2

ω2
= ε(ω). (5.6)

This is the so-called polariton equation. On the other hand, we know ε(ω)
which is given in the vicinity of a single resonance by (4.20), (4.22). Putting
(5.6) and (4.22) together we find

c2k2

ω2
= εb +

f

ω2
0 − ω2 + iωγ

. (5.7)

This is an implicit representation of ω(k) for the polaritons. For the sim-
plest case, namely vanishing damping γ and no dependence of ω0 or f on
k, it is quite easy to calculate k(ω) and ω(k). We do not give the formu-
las here because they bring no further physical insight, but in Fig. 5.1 we
give the dispersion relation for the case just mentioned including only one

Fig. 5.1. The polariton dispersion in the vicinity of a single resonance for vanishing
damping (solid lines) and finite damping (dashed lines) for εb = 1. The dashed-
dotted line gives the disperson of photons in vacuum (a); real and imaginary parts
of ñ(ω) for vanishing damping (b) and the creation of the polariton dispersion (solid
lines) from those of excitons and photons (dashed lines) and the non-crossing rule;
(εb > 1) (c)
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resonance. For several resonances the r.h.s. of (4.22) has to be replaced by
(4.20). The dispersion relation starts for ω = 0 and k = 0 as a straight line.
This part is called the lower polariton branch (LPB). Since the dispersion
of photons in vacuum is also a straight line, but with a slope �c instead of
�cε

−1/2
s , the dispersion relation is said to be “photon-like” as long as it is

a straight line.
It bends over when we approach the resonance frequency ω0, and in this

region the polariton dispersion is called phonon-like or exciton-like, depending
on whether the resonance corresponds to a phonon or an exciton, respectively.
Between the transverse and longitudinal eigenfrequencies there is no propa-
gating mode for the present approximation of uncoupled oscillators and for
vanishing damping, i.e., we have again the stop-band or Reststrahlbande dis-
cussed in Sect. 4.4. There may be a longitudinal branch at �ωL, which does
usually not couple to the electromagnetic field. At �ωL also the upper polari-
ton branch (UPB) begins. This bends upwards again displaying a photon-like
behaviour, but now with a slope �cε

−1/2
b compared to �cε

−1/2
s for the LPB.

Between ωT and ωL, k is purely imaginary since ñ(ω) is imaginary in this
range; the consequences for the optical properties were discussed already in
Sect. 4.4 above.

Actually, the dispersion relation shown in Fig. 5.1a is not so surprising
as it looks at first glance. If we take the spectral dependences of n(ω) and
of κ(ω), i.e., of the real and imaginary parts of ñ(ω), from Fig. 4.4, turn the
ω-axis from the x-direction into the y-direction (see Fig. 5.1b) and multiply
n(ω) and κ(ω) by ωc−1, i.e., essentially by a straight line through the origin,
according to

Re{k} = n(ω)ωc−1; Im{k} = κ(ω)ωc−1, (5.8)

we obtain Fig. 5.1a.
The dispersion relation of the polariton can also be deduced from the

quantum-mechanical “non-crossing rule”. This non-crossing rule says roughly
the following: There are two energy levels E1 and E2, which depend on
some parameter p. This parameter can be the wave vector, a particle den-
sity, a constant electric or magnetic field, a strain field, etc. We assume
that these two levels cross as a function of the parameter as sketched in
Fig. 5.2 by the dashed lines. If there is any coupling between these two lev-
els, then the cross-over point disappears, and the two levels repel each other
in the way shown by the solid lines in Fig. 5.2. The splitting at the former
cross-over point is just proportional to the coupling strength between the two
levels.

Actually this behaviour is not new or characteristic for quantum me-
chanics. It is basically only the splitting of the eigenfrequencies of two
coupled identical pendula (or more generally of two harmonic oscillators)
caused by a weak coupling found in every undergraduate textbook on clas-
sic mechanics including the beating if both eigenfrequencies are excited.
In [98J1] it has been shown in detail that the classical and the quantum-
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Fig. 5.2. A sketch to illustrate the
quantum-mechanical non-crossing rule
for two non-interacting (dashed line)
and interacting (solid line) energy lev-
els

mechanical splitting of coupled oscillators are indeed governed by the some
set of equations.

We now apply the general knowledge obtained above and with Fig. 5.2
to the polariton problem. See Fig. 5.1c. The “parameter” in Fig. 5.2 is now
obviously the k vector. We have the horizontal dispersion of the ensemble
of uncoupled oscillators and the steep straight line for the photons. If the
ensemble of oscillators does not couple to the electromagnetic photon field,
the dashed lines already describe the system. If there is, however, a finite
coupling (e.g., a non-vanishing dipole or quadrupole coupling matrix element)
the crossing is avoided and the solid lines describe the dispersion relation of
the coupled system. Note that (apart from a possible longitudinal branch, not
shown in Fig. 5.1c for clarity) the solid lines in Fig. 5.1c are the only states of
this system. There is no state at �ω0 for k = 0, as we shall see later in various
realistic examples.

If we relax the assumption of vanishing damping, the polariton dispersion
is changed as shown in Fig. 5.1a by the dashed line. Now the propagating
modes below ωT and above ωL experience damping too. Between ωT and
ωL there appears a region with negative group velocity dω/dk < 0. At first
glance, this situation seems unphysical in the sense that a light pulse moves
out of a sample (vg < 0) when we send it onto the sample. A first way out of
this dilemma is given by the strong absorption which is necessarily connected
with the region of negative vg. It allows one to interpret the negative vg in this
spectral region as a wave that is damped out faster than it can propagate.

Another interpretation can be found later in Sect. 5.4, where we take into
account spatial dispersion. For this more general case, the problem of negative
vg essentially disappears and we obtain in addition an understanding, why e.g.
the TO-phonon branch can be observed by inelastic neutron scattering over
the whole Brillouin zone, though the dashed line in Fig. 5.1a turns around for
rather small k-values already.

For a discussion of the fact, that both the phase- and group velocities can
exceed for some frequencies the vacuum speed of light see [94R1]. It should be
noted, however, that the signal and energy transport velocities never exceed c.
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We have stated several times that at �ωL, i.e., at the frequency where
ε(ω = ωL) = 0, a longitudinal branch may exist. We want to give now some
insight into when this will be the case with the help of Fig. 5.3. In Fig. 5.3a we
assume that the ensemble of oscillators can be excited with the same eigen-
frequency in all directions of space. This situation frequently occurs to a good
approximation in cubic materials. If a light beam is shone on the sample, e.g.,
in the direction kx, then the oscillators oriented along y and z couple to the
light field and form a twofold degenerate, transverse upper and lower polari-
ton branch, while the oscillators oriented in the x direction are parallel to kx

and give rise to a singly degenerate longitudinal branch.
If we have a uniaxial material, we frequently find oscillators, which can

either be excited with the same eigenfrequency in the xy plane normal to the
crystallographic c ≡ z axis or with another eigenfrequency parallel to z only.
In the first of these two cases shown in Fig. 5.2b, we obtain only a twofold
degenerate upper and lower polariton branch, but no longitudinal branch for
k‖ z since both oscillators in the xy plane are then transversal. For k in xy
plane, e.g., k‖ x there is a nondegenerate transverse polariton branch for E‖ y
and a longitudinal branch from the x-oriented oscillators. For k‖ x and E‖ z
the oscillators do not couple and we obtain intersecting dispersion curves.

Finnally, if we consider an oscillator that can be elongated only in one
direction (e.g., z) we obtain only one nondegenerate transverse lower and
upper polariton branch for k⊥z and E‖ z, an intersecting longitudinal branch
for k‖ z and no interaction at all for k⊥z, E⊥z.

If a light beam propagates with angle α different from 0◦ or 90◦ relative
to the c-axis in a uniaxial material, we obtain the ordinary beam for E per-
pendicular to the plane defined by k and z, since E is then always in the xy
plane, i.e., normal to the main section and couples to the oscillators. For E⊥k
but in the plane defined by k and z we obtain the extraordinary beam with
an orientation dependent refractive index. (See Sect. 3.1.7).

In the language of polaritons this is called a mixed-mode polariton for the
following reason. The “quantization axis” for the light field is the crystallo-
graphic c or z axis. For a light beam propagating under an angle α to the
c axis is different from 0◦ and 90◦ the electric field can be decomposed into
two components E‖c and E⊥c, the relative strength of which depends on α.
For the situation of Fig. 5.3b only the component E⊥c couples to the oscil-
lators and in Fig. 5.3c only E‖c. In Fig. 5.3d we show the dispersion of these
mixed mode polaritons for an ensemble of oscillators, which can be excited
only in the c direction, and light polarized linearly in the k , z plane. The os-
cillator strength and thus the L−T splitting depend on the ratio E‖c/E⊥c.
It is maximal for β = ∠(E, z) = 0◦ corresponding to the situation on the l.h.s.
of Fig. 5.3c and is zero for ∠(E, z) = 90◦ corresponding to the middle one. In
between the oscillator strength and ∆LT vary according to

∆LT(β) = ∆LT(β = 0) cos2 β . (5.9)
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It should be noted there that we always used the angles α and β of k
and E relative to c in the medium, i.e., the Snellius law with a β-dependent
refractive index has to be used in addition when considering the external
angles.

For biaxial materials the situation becomes even more complex, but as
stated in Sect. 3.1.7, this leads to crystal optics, which is beyond the scope of
this book.

Similarly to the dielectric function in Fig. 4.9 the polariton dispersion is
modified in the case of two close-lying resonances, i.e., the transition matrix
element cannot be deduced directly from the width of the stopband.

Fig. 5.3. Sketches of the polariton dispersion and of possible longitudinal branches
for various orientations and an ensemble of oscillators that can be excited with the
same eigenfrequency and oscillator strength in all three directions of space (a) only
in the xy plane (b) and only along z = c (c). The angle-dependent mixed-mode
polariton dispersion for the situation as in (c) is shown in (d)
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5.3 Polaritons in Solids, Liquids and Gases
and from the IR to the X-ray Region

We shall see in later chapters many examples for polaritons in semiconductors
in the infrared (IR) part of the spectrum (phonon-, magnon- or plasmon-
polaritons) and in the visible (VIS) and near ultraviolet (exciton-, cavity-
and plasmon-polaritons). Here we want to stress that the polariton concept is
by no means an academic problem or restricted to semiconductors. It works
well for the description of the optical properties of insulators or metals, but
also for disordered systems like amorphous solids, liquids and gases, and it is
also valid for any resonance coupling to the electromagnetic field, including
intranuclear transitions in the X or γ-ray region.

5.3.1 Common Optical Properties of Polaritons

To demonstrate that a spectrum of the refractive index as shown, e.g., in
Fig. 5.4 is not a characterisation of solids we present an 100-year-old exam-
ple for Na vapor in Fig. 5.4. See [02W1, 03L1, 09M1] or [76P1] from Chap. 3
and references therein. If a continuous spectrum (a so-called white light spec-
trum) is transmitted through a cell filled with Na vapor of homogenous density
(Fig. 5.4a,b) one finds the transmitted light absorption bands. One of the most
prominent bands corresponds to the well-known yellow emission (and absorp-
tion) line with is actually a double line at 589.35930nm and 588.99631nm cor-
responding to the 2.1 eV range. The absorption process is due to the transition
of the outer electron from 2S1/2 to 2P3/2 and 2P1/2, respectively. See [91D1]
of Chap. 1. The emission is just the reverse process. If the white light beam
is sent through a prism of Na vapor, the light is defected around this reso-
nance as shown in Fig. 5.4c,d. The behavior is just the one we expect for the
refractive index and the polariton dispersion in the vicinity of a resonance.
When we approach the resonance from lower photon energies, n and k in-
crease rapidly. At the resonance absorption occurs and above the refractive
index

√
εb approaches from below, explaining the deflection of light in oppo-

site directions for ω < ω0 and ω > ωL, respectively. In contrast to solids, gases
and vapors are very dilute. Consequently, the oscillator strength is small and
n deviates considerably from unity only in the very vicinity of the resonance.
Similar experiments have been performed with many other vapors of, e.g., Sr,
Ca, Ba [02W1, 03L1, 09M1]. The results allowed to develop and to verify the
concept of the Lorentz oscillators. At that time neither the concept of photons
nor of polaritons was known. The quantization of the electromagnetic field in
photons was first introduced by Planck in 1905 and allowed him to explain
black body radiation [see (2.85)]. Later on it was beautifully confirmed in the
explanation of the (external) photoelectric effect by Einstein, which had been
earlier observed by Milikan and Hertz.

From our present point of view, it is clear that the light field in Na vapor
is also quantized in energy packets of �ω. The fact that the dispersion relation
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Fig. 5.4. Absorption and dispersion of Na vapour in the vicinity of the yellow
sodium line. Schematic arrangement for the absorption (a) in a homogeneous vapour
and the resulting absorption spectrum (b). Deflection in a “prism” of Na vapor (c)
and the dispersion relation (d). The energy axis is normal to the paper in (a) and
(c); (b) and (d) are photographic positives ( [00K1] and [76P1] of Chapt. 3 and
references therein)

�ω(k) and the refractive index deviate in the vicinity of the resonance clearly
from �ω = �ck and n = 1, respectively, is proof that these quanta consist not
only of electromagnetic radiation, but that they are necessarily accompanied
by a polarisation wave. Therefore it is straightforward to generalize the con-
cept of polaritons beyond ordered or crystalline systems. One point which has
to be considered, however, is the wave vector. We come back to this aspect in
Sect. 5.3.2.

To conclude the discussion of Fig. 5.4 it should be noted that the vapor
prisms were generally not obtained by keeping the Na vapor in a prism shaped
cell, but that a concentration gradient has been created laterally over the light
beam by a transverse temperature gradient and results in a density gradient
which in turn gives a gradient in oscillator strength and finally a variation of
the optical path length across the beam in a similar way as a usual (glass)
prism does.

Now we present beautiful experiments that further prove the validity of
the polariton concept in seemingly completely different systems.

The basic idea is illustrated in Fig. 5.5a where we show the polariton
dispersion in the vicinity of a resonance. We now send a short light pulse on the
sample. The duration of the pulse τP is assumed to be so short that its spectral
width ∆ω covers the vicinity of the resonance via τP ·∆ω ≈ 1 and ∆ω > ∆LT.
We can now discuss the propagation of this pulse through the medium in
different ways. We know, that a pulse propagates with its group velocity υg =
∂ω/∂k [see (2.15)]. Evidently we find on the lower and the upper polariton
branches pairs of states with equal υg, i.e., equal slope as shown for one case in
Fig. 5.5a. Since these states are both excited coherently by the incident pulse
and since they have slightly different frequencies, they accumulate a relative
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phase shift, which increases linearly with time and traveling distance and
changes the superposition periodically from constructive to destructive and
back again. This is nothing but the well know beating phenomenon. Depending
on the sample thickness and υg, some of the polariton pairs will arrive at
the end of the sample with constructive interference, and adjacent pairs will
arrive in a destructive superposition, the next with a constructive one, etc.
The consequence is that there will be no simple pulse at the end of the sample
but one will find an envelope of the amplitude and intensity of the transmitted
beam oscillating in time. The period of this oscillation increases with time,
since the polariton pairs with large υg, i.e., a steep slope arrives first. They
have a bigger frequency difference and consequently a faster beating period.
The pairs with smaller υg also have a smaller beat period and arrive later.
This is exactly the behavior observed for an incident ns pulse centered around
the yellow resonance in Na vapor (Fig. 5.5b and [84R1]) and propagating
through a cell with Na vapor with a length of 40 mm. The temporal decay of
the transmitted signal is governed by the damping of the resonance and by the
energy density per frequency interval of the incident pulse. The experiment
in Fig. 5.5b thus confirms again the validity of the polariton concept in this
system.

An alternative way to describe the experiment is to Fourier transform the
incident pulse from the time to the frequency domain (see e.g. [99B1]). Then
one allows each frequency component to propagate through the sample accord-
ing to its complex index of refraction ñ(ω) = n(ω) + iκ(ω) resulting for each
frequency ω after the sample in a well-defined phase and amplitude. All com-
ponents are then coherently superimposed and this sum is back transformed
to the time domain, resulting in a very good description of the experimental
finding. Actually the theoretical curve shown in Fig. 5.5b has been calculated
along these lines.

With Fig. 5.5c,d we demonstrate that identical results have been obtained
with completely different systems. Figure 5.5c shows these propagation quan-
tum beats for the well known exciton resonance in the yellow spectral range
of Cu2O. (More precisely, in the 1s ortho exciton of the yellow series, which
is only quadrupole allowed. For details see Sect. 13.2.) The spectral region is
approximately the same as for Na vapor, but Cu2O is a crystalline solid more
precisely a semiconductor.

The third example in Fig. 5.5d from [99B1] is, by contrast, in a completely
different spectral rage. The resonance is the 14.4 keV Mösbauer transition of
57Fe. The resonance is not even in the electronic system of the solid, but in
the nucleus and the light pulse has been produced in a synchrotron. Never-
theless the phenomenon is identical, revealing that the polariton concept is
also applicable in this spectral range of X or γ-rays.

A further common feature of the polariton dispersion is the dramatic de-
crease of the slope of the dispersion curve just below ω0. Consequently, the
group velocity should also obtain in this spectral region, values considerably
below the vacuum speed of light c ≈ 3 × 108 m/s. Indeed this phenomenon
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Fig. 5.5. The schematic explanation for the occurrence of propagation quantum
beats (a) and their observation in Na vapor (b) in the ortho exciton resonance of the
yellow series in Cu2O (c) and in an ensemble of 57Fe nuclei (d) ([84R1,91F1,99B1])

has been observed, e.g., for the exciton polariton in CuCl, GaAs or InSe with
values of υg down to 104 m/s. See Sect. 13.1 or [79M1, 79U1, 81I1, 97N1] and
more recently also in Cu2O [04F1]. In the vicinity of the Mösbauer transition
of 57Fe nuclei at 14.4 keV, even values down to the 10 m/s range have been
observed [99B1]. Comparably low values and even a complete stop of light for
a short time have been found in Na vapor [99H1,99K1,01K1]. In the latter case
an additional trick has been used, namely excitation induced transparency in
a small spectral interval of the upper of the two yellow Na lines, which results
via Kramers–Kronig relations in a very steep structure in the group-velocity
spectrum.
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5.3.2 How the k-vector Develops

In nature, there are several conservation laws. See also Sect. 3.1.3. The most
basic ones state that in a closed system (c.s.), i.e., a system that has no inter-
action with the surroundings whatsoever, the sum of all energies (including
the rest-mass energies m0c

2), of all momenta p, of all angular momenta L
(including spins) and of all electric charges ρ are constant. The sum of all
entropies Si is either constant, if there are no or only reversible processes, or
it increases in the case of an irreversible processes. These conservation laws
are presented in (5.10). ∑

c.s.

Ei = const (5.10a)

∑
c.s.

P i = const (5.10b)

∑
c.s.

Li = const (5.10c)

∑
c.s.

ρi = const (5.10d)

∑
c.s.

Si ≥ const (5.10e)

These conservation laws are facts of experience that cannot be proven from
first principles, but can be traced back to symmetries as outlined already in
Sect. 3.1.4.

The only closed system in a strict sense is the whole universe. But much
smaller parts on a laboratory scale are frequently a very good approximation of
closed systems as we use them, e.g., in the lectures or practice to demonstrate
elastic and inelastic scattering processes.

We have already used a subsystem in the above sense, without mentioning
it, in derivation of the law of reflection and refraction in Sect. 3.1.4.

As a preparation for what follows, we show in Fig. 5.6 the reflection or
diffraction of a single photon at a plane interface between the vacuum and
matter repeating in Fig. 3.5.

In Sect. 3.1.4 we argued that energy conservation requires ωi = ωr =
ωtr and that there is only translational invariance along the interface plane,
consequently only the parallel component of �k is conserved. This argument is
correct for the considered subsystem. If we consider the whole closed system,
the total momentum has to be conserved. This means that momentum is
transferred to the matter, namely 2�ki normal in the case of reflection and
� (ki normal − ktr, normal) for refraction. The energy transfer to the matter
connected with this momentum transfer is completely negligible, however,
due to the mass of the matter M , which is many orders of magnitude larger
than the “mass” of the photon �ωc−2.
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Fig. 5.6. Reflection and refraction of a single photon at an interface between vacuum
and matter

So it is safe to say for the subsystem that the matter can “take up” mo-
mentum without energy transfer or to restrict ourselves to the subsystem
“interface” with the restricted translational symmetry. For a more detailed
discussion of this aspect see [98B1] and the references given therein.

Now we want to use a similar set of arguments to show how k conservation
develops in optics or the law that a light beam propagates along a straight
line in a homogenous medium.

We start with the situation of light scattering at a single atom in Fig. 5.7.
An incident plane electromagnetic wave with k in hits an atom. In classical

physics this atom performs a forced oscillation with an amplitude that depends
on the detuning between ωi and the resonance frequency ω0 of the atom and
on damping. This oscillation is connected with an oscillating dipole, radiating
a dipole wave as shown schematically in Fig. 5.7. Evidently, the emission goes
into all directions with the angular dependent amplitude of an oscillating

Fig. 5.7. Schematic drawing of the wave fronts in a light scattering event at a single
atom or oscillator ([98J1])
.
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dipole. This means that there is nothing like a straight propagation of the
light beam in the interaction with a single atom.

The same result is obtained in the quantum mechanical description.
A photon comes in with �ki, �ωi and virtually excites the atom. After
a time ∆t, limited by �(ωi − ω0)∆t ≤ �, where �ω0 is now a transition
energy in the atom, the atom again radiates a photon �ks, �ωs in an ar-
bitrary direction. If we repeat this experiment many times, the integrated
angular intensity distribution will be the one of a radiating dipole. The
process is known as light scattering or if ωi approaches ω0 as resonance
fluorescence.

Momentum conservation can now be discussed in the two ways outlined
above. We can either state that space with a single atom, e.g., at the origin of
our coordinate system, no longer has translational invariance. Consequently,
there is no longer momentum conservation and an incident photon �ki can be
scattered in any direction �ks.

The law of global momentum conservation can be satisfied by stating that
the atom takes over some momentum patom

patom = �(ki − ks) . (5.11a)

The energy transfer connected with this momentum transfer

Ei = p2
atom/2M (5.11b)

is in the neV regime for the visible and therefore for most practical purposes
completely negligible, except for laser cooling of atoms. So we are again safe
with both statements that either the atom takes up momentum but no energy
or that the translational invariance is broken by the presence of the atom and
momentum conservation is violated. This situation may change if we go to
the X or γ-ray regime, where k increases. In the case of extremely narrow
resonances, the frequency shift in the scattering process can be measurable.
See problem 5.7.4.

Now we discuss the transition to a dense medium.
When we have a few of such atoms in the coherence volume of the in-

cident light, like in a dilute gas, the scattered waves interfere constructively
or destructively as a function of their direction dependent relative phases.
So we obtain (momentarily) a rather complex scattering pattern, similar to
a Speckle pattern, but is averaged out over time if the scattering centers move
statistically as the atoms in a dilute gas do. The coherence volume of light
is the volume over which the light wave has a well defined phase relation.
The coherence volume depends on the light source and is generally smaller
for incandescent light as compared to laser light. For details see, e.g., refer-
ences [93S1] of Chap. 2 or [98B2] of Chap. 1.

The situation becomes simpler again if we have many oscillators or atoms
in the coherence volume of light. It can be shown, that all scattered waves
interfere essentially destructively except for the forward scattered waves. This
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means that the straight propagation of a light beam, which implies k con-
servation, is trivial in vacuum and develops in matter again with increasing
density of oscillators N .

A lower limit for the coherence volume of light Vcoh is given by the wave-
length λ

Vcoh ≥ λ3 . (5.12a)

The condition to have many oscillators in the coherence volume of light is
fulfilled in any case if we have

N · λ3 � 1 . (5.12b)

This is equivalent with the statement that the average distance d between
the atoms or oscillators is small compared to the wavelength

d� λ . (5.12c)

Consequently the light field cannot “resolve” the individual oscillators and
a description in the sense of an effective medium is adequate [97S1] or reference
[97W1] of Chap. 1. Equation (5.12) can be also used as a definition of a “dense”
medium. See also the derivation of the dipole approximation in Sect. 3.2.2.

To summarize we can state that in a dense medium, k conservation is
recovered, including its application in the laws of reflection and refraction at
the boundary of a dense medium, and the electromagnetic wave propagating
in this medium is accompanied by a polarization wave, bringing us back again
to the polariton concept.

If the medium is completely ordered, i.e., a defect-free crystal, then there is
only the straight propagating beam, since in such a situation we recover trans-
lational invariance modulo integer multiples of the reciprocal lattice vectors,
(see Sect. 7.2).

If there are any inhomogeneities like defects in a crystal or inhomogeneous
strain or fluctuations of N in a gas, there is always a small amount of light
that is scattered without frequency shift, the so-called Rayleigh scattering.
We come back to this topic in Sect. 23.2.

While k conservation (modulo reciprocal lattice vector G see Sect. 7.2) is
a strict law in perfect crystals the situation is different in disordered systems
like gases, liquids, amorphous solids or alloys as outlined below.

For waves with a wavelength λ that fulfills (5.12), holds the law of
k conservation and we make use of it whenever we look through a glass
window, onto a clear lake or through atmosphere. If we go to shorter and
shorter wavelengths, however, the conditions (5.12) are less and less fulfilled
and k conversation is more and more relaxed. This transition can be nicely
followed by comparing, e.g., crystalline quartz (c-SiO2) on one side and amor-
phous fused silica (a-SiO2) or glass on the other.

In the visible, (5.12) is fulfilled in both cases, light propagates along
a straight line, k conservation holds and we have well-defined laws of reflection
and refraction at the surface.
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If we go to the X-ray regime we have

λ ≤ a . (5.13)

For the c-SiO2 k conservation modulo reciprocal, lattice vectors is still valid
for elastic scattering, resulting in the Ewald’s-construction and well-defined
diffraction spots fulfilling

ki − ks = G; �ωi = �ωs ⇒ |ki| = |ks| . (5.14)

In contrast in this regime for a-SiO2 we obtain only blurred ring structures,
indicating a substantial relaxation of k conversation at these short wave-
lengths.

So we can state that k conservation is valid in disordered systems if (5.12)
is fulfilled, but is increasingly relaxed if we approach the condition (5.13).

5.4 Coupled Oscillators and Polaritons
with Spatial Dispersion

For our model system we have assumed until now zero coupling between neigh-
boring oscillators as shown in Fig. 4.1. The consequence of this assumption was
a dispersion relation which is simply a horizontal line (Fig. 4.2a). We now re-
lax this assumption by using a concept introduced in [58H1,62P1,63H1,74A1]
and elaborated in detail e.g. in [75C1,75L1,78B1,78H1,78S1,79B1,79S1,81B1,
81L1, 81S1, 82O1, 82R1, 82S1, 83M1, 84A1, 84H1, 84S1, 85H1, 89R1, 91R1] and
consider a more realistic coupling between neighboring oscillators realized,
e.g., by weak springs, as shown schematically in Fig. 5.8. The most important
consequence of this coupling is that the eigenfrequency is now a function of
k as shown in Fig. 4.2b. For very long wavelength, i.e., k → 0, neighboring
oscillators are still in phase and the coupling springs are not elongated. There-
fore they still oscillate with the same frequency as the uncoupled ones. For
decreasing wavelength, the coupling springs are elongated and increase the
“effective” spring constant. As a consequence, ω0 increases with increasing k.
The resulting band width 2B indicated in Fig. 4.2b is directly proportional to
the coupling strength between neighboring oscillators. A wave packet created
by elongating one or a few oscillators, as in Fig. 4.1d, will now propagate with
a finite group velocity vg = dω/dk and will show some dispersion. This means
that the width of the spatial envelope of the wave packet will increase with
time as indicated in Fig. 2.1b. This phenomenon can be easily observed by
throwing a stone onto the still surface of a lake. The expanding ring-like wave
structure shows a drastic increase of the width of its envelope function during
propagation. The detailed shape of ω(k) depends on the physical nature of
the oscillators and the coupling mechanism.

For our model system, ω0 increases with k and we shall see that this is
also true, e.g., for excitons. For optical phonons one has usually a decrease of
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Fig. 5.8. An ensemble of coupled oscilla-
tors. Compare with Fig. 4.1. After [63H1]

the eigenfrequency with increasing k. These points will be presented in more
detail in Chaps. 7, 9 to 13. For the following discussion of our model system
we shall use the dispersion relation of Fig. 4.2b, but the conclusions will also
be qualitatively valid for other dependences of ω0(k).

The fact that the eigenfrequency ω0 of some excitation of a solid depends
on k is often called “spatial dispersion”, for reasons given later. However, the
ω(k) dependence of the photons themselves, or of the polaritons, is not usually
classed as spatial dispersion.

Since we have used the word dispersion now in various connections, we
shall summarize the meanings here:

The term “dispersion relation” or simply “dispersion” means the relation
E(k) or ω(k) for all wave-like excitations independent of the functional de-
pendence. It can be simply a horizontal line, a linear or parabolic relation, or
something more complicated. Every excitation which has a wave-like character
has a dispersion relation.

The term “spatial dispersion” means that the eigenfrequency of one of the
elementary excitations in a solid depends on k and is not just a horizontal
line (Fig. 4.2a,b).

In technical optics, dispersion often refers more specifically to the depen-
dence of the refractive index n on the wavelength. Materials such as the glass
used to make lenses, generally have a decreasing refractive index with increas-
ing wavelength i.e., dn/dλ < 0. This behavior is called “normal dispersion”
and is the usual behavior in the transparent spectral region, while an anormal
dispersion, i.e., dn/dλ > 0 is limited to strongly absorbing regions (Fig. 4.4).

Finally, the word dispersion is also used for the fact that the envelope of
a wavepacket, e.g., of a short light pulse in matter, becomes spatially broader
with time.

The last two meanings of the word dispersion are actually consequences or
special examples of the general definition of the term given first. If not stated
otherwise, we use the term dispersion (-relation) in this book to mean the
E(k) or ω(k) relation.
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5.4.1 Dielectric Function and the Polariton States
with Spatial Dispersion

The dielectric function given in (4.22) for the simple case of an isolated res-
onance has to be modified if we want to take spatial dispersion effects into
account. The eigenfrequency ω0 has to be replaced by ω0(k) and the oscillator
strength f and the damping γ may also depend on k resulting in

ε(ω,k) = εb =
f(k)

ω2
0(k) − ω2 − iωγ(k)

(5.15)

The most significant change is the fact that ε is now a function of two
independent variables, ω and k.

Along with the transverse eigenfrequency ω0(k) the longitudinal eigen-
frequency ωL defined as ε(ωL) = 0 also becomes k-dependent, i.e., ωL =
ωL(k). The same is true for the longitudinal-transverse splitting ∆LT which is
connected with f(k). In principle all of the above quantities have to be given
as a function of k.

What one usually does is to give – if possible – an analytic expression for
ω0(k) and to still consider f and γ as k-independent. Though there is clear
experimental evidence that f and γ depend on k(see e.g. [82O1, 83M1, 84S1,
85K1,89R1,91R1] and references therein), these dependences are usually less
critical for the correct description of the optical properties of semiconductors
than the k-dependence of ω0 and will be neglected in the following. For ω0(k)
we again use for simplicity a parabolic relation, which monitors nicely the
onset of the dispersion relation in Fig. 4.2b but also that of excitons (see
Chap. 9). But we stress once more that the consequences are qualitatively
similar for other relations. We have

ε(ω,k) = εb +
f(k)

ω2
0 + 2ω0Ak2 − ω2 − iωγ

. (5.16a)

with

ω2
0(k) =

(
ω0 +Ak2

)2
= ω2

0 + 2ω0Ak2 +A2k4 ≈ ω2
0 + 2ω0Ak2

for |k| � π/a . (5.16b)

The approximation used in (5.16b) is usually valid for massive and for
effective mass particles (see Sect. 8.5) like excitons.

To determine the dispersion relation of the polariton we must again com-
bine the polariton equation with the dielectric function resulting again in an
implicit relation for ω0(k):

c2k2

ω2
= εb +

f

ω2
0 + 2ω0Ak2 − ω2 − iωγ

. (5.16c)

We consider first the case of vanishing damping in Fig. 5.9a and start
with the real part of k. The transverse lower polariton branch starts (LPB)
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photon-like and then bends over to asymptotically approach the parabolic
dispersion relation of the resonance. If there is a constant ∆LT, i.e., f �= f(k),
then the longitudinal branch shown by the dashed line in Fig. 5.9a starts at
ωL and is then essentially parallel to the exciton-like part of the LPB. At
ωL the transverse upper polariton branch (UPB) also begins, going over into
a photon-like (i.e., linear) dispersion relation with slightly steeper slope, as
shown already in Fig. 5.1a. The imaginary part of k starts at ωL and bends
downwards to reach asymptotically a curve which is produced by reflecting the
transverse eigenfrequency ω0(k) through the point (ω0,k = 0). This means
that the UPB has a purely imaginary continuation below ωL.

If we include a small but finite damping, we end up with the situation
shown in Fig. 5.9b. Compare to Fig. 5.1a without spatial dispersion. It can
be seen that the LPB and the UPB now extend over the whole energy range.
They have both a real and an imaginary part at all frequencies. The imagi-
nary part of the LPB is very small below ω0, peaks between ω0 and ωL, and

Fig. 5.9. The real and imaginary
parts of a polariton dispersion re-
lation in the vicinity of a reso-
nance with spatial dispersion for
vanishing (a) small �Γ < ∆LT)
(b) and strong �Γ ≈ ∆LT) damp-
ing (c). After [83M1]
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decreases gradually for higher energies. The UPB has a very small imaginary
part above ωL which increases continuously below, but there is also a small
real part of the UPB below ωL. The problem of negative group velocity in the
spectral region of the resonance, mentioned already in Sect. 5.2, has become
less severe and appears only in the form of a small hump in the dispersion
relation for finite damping. For the case of strong damping shown in Fig. 5.9c
the role of the LPB is gradually taken over by the UPB below ω0 [83M1]
and one approaches a situation similar to the case without spatial dispersion
(compare with Fig. 5.1a). In other words this means that one can describe the
optical properties of a strongly damped resonance by neglecting the influence
of spatial dispersion. However, it should be stressed, that this effect is still
present in principle, but the strong damping is what dominates the optical
properties.

Even with strong damping there remains at least one transversal branch
that extends over the whole Brillouin zone in contrast to Fig. 5.1a for γ �= 0
and possibly also a longitudinal one.

These branches are the ones observed, e.g., in inelastic neutron scattering
when determining the dispersion relation of TO- and LO-phonons in the whole
Brillouin zone.

5.4.2 Reflection and Transmission
and Additional Boundary Conditions

From the polariton dispersion with spatial dispersion shown in Fig. 5.9 we can
easily recover the real and imaginary parts of ñ by just reversing the procedure
given in (5.8). We will not spend time on this procedure (See e.g. the formulae
given in [75L1, 78B1, 78H1, 78S1, 79B1, 81L1, 82R1, 82S1] but discuss directly
the optical spectra, especially the consequences of spatial dispersion on the
reflection as compared to the situation of Fig. 4.5 where spatial dispersion
was still neglected. The two most important points are, first, that there is
no more strict stop-band, i.e., there is at least one propagating mode for
every frequency ω (with and without damping) and, second, that in some
spectral regions there is more than one propagating mode. This second point
is especially obvious for ω > ωL in Fig. 5.9a.

We now want to discuss the consequences of these two new phenomena
arising from spatial dispersion on the optical spectra, especially on the reflec-
tion spectrum.

The fact that we have at least one propagating mode – generally with real
and imaginary part – for all frequencies even between ωT and ωL, means that
the reflectivity for (normal) incidence no longer reaches unity, even for the
case of vanishing damping, as sketched in Fig. 5.10.

The fact that we have more than one mode (propagating or evanescent,
i.e., Im(k) � Re(k) or Im(k) � Re(k) respectively, in the solid for one fre-
quency means that the two independent boundary conditions deduced from
Maxwell’s equations in connection with (3.6), (3.7) and Figs. 3.1, 3.2 are no
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longer sufficient. For a given incident wave we could deduce the amplitudes
of one reflected and one transmitted wave. If there are two or even more
states in the medium at the same frequency coupling to the incident field, we
need one or more additional boundary conditions (abc). To make the situa-
tion clear, we show in Fig. 5.11 the wave vectors for such a case for normal
and oblique incidence. The incident and reflected beams obey the usual law
of reflection, their components parallel to the surface are equal. The same
is true for the transmitted beams, but the total length of the wave vectors
on the LPB and the UPB are different, in agreement with Fig. 5.9. Obvi-
ously the two beams are travelling in different spatial directions and this is
a reason why the k-dependence of ω0 is called “spatial dispersion”. Though
Fig. 5.11 has some similarity with the picture for birefringence (See Sect. 3.1.7)
we point out that the reasons are quite different. In Fig. 3.12 the o and eo
beams have orthogonal polarization and the phenomenon needs uniaxial or
lower symmetry. Spatial dispersion occurs independent of the symmetry and
even for cubic symmetry and the two beams are polarized in the same di-
rection. Spatial dispersion also occurs for crystals of lower symmetry which
then may show birefringence in addition. In this case the dispersion curves of
Fig. 5.9 have to be drawn twice with different parameters for the o and the
eo beams.

As already mentioned, the abc cannot be deduced from Maxwell’s equa-
tions. Their capacity is exhausted with one reflected and one transmitted
beam. Since the complex index of refraction around the resonance is rather
different for the LPB and the UPB, which therefore contribute differently to
the reflection spectrum according to (3.20), the abc should contain informa-
tion about the “branching ratio”, i.e., which fractions of the incident beam
couple in the medium to the LPB and to the UPB as a function of frequency.

The abc are somewhat arbitrary (we shall explain later on why) and are
based mainly on arguments of physical plausibility. On the vacuum side of the

Fig. 5.10. Sketch of the reflection
spectrum in the vicinity of a resonance
with spatial dispersion and without
damping. Compare with Fig. 4.5. Af-
ter [82R1]
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interface the polarization is trivially zero. To avoid an unphysical discontinuity
in the polarization, one possible abc is that the polarization of the medium
must be zero at the interface

P (z = 0) = 0 . (5.17a)

Another argument says that the polarization should vary smoothly across
the interface, implying that the derivative with respect to the normal direction
has to vanish, resulting in

dP

dz

∣∣∣∣
z=0

= 0 . (5.17b)

Some authors favor a linear combination of the two conditions:

P |z=0 + β
∂P

∂z

∣∣∣∣
z=0

= 0 with − 1 ≤ β ≤ +1 . (5.17c)

The reflection spectrum shown in Fig. 5.10 is actually calculated for an
exciton resonance using the material parameters of CdS and the abc (5.10),
the so-called Pekar–Hopfield abc. See also Chap. 13 and [62P1, 74A1, 75L1,
78B1,78H1,78S1,79B1,79S1,81B1,81L1,81S1,82O1,82R1,82S1,83M1,84H1,
84S1,85H1,89R1,91R1] for further details of the abc.

It turns out that experimentally observed spectra, e.g., of exciton res-
onances, can be fitted with all the above-mentioned abc, but with slightly
different values for the other parameters, such as f and γ, that describe the
resonance.

Fig. 5.11. The wave vectors of a resonance with spatial dispersion for ω > ωL. Note
that there is more than one propagating wave in the medium
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As a rule of thumb, one can state for all abc and weak damping that the
light propagating in matter at frequencies ω sufficiently below the transverse
eigenfrequency and above the longitudinal one travels almost completely on
the LPB and on the UPB, respectively. “Sufficiently” means in this context

� |ω − ωT,L| � 10∆LT . (5.18)

The crucial spectral range where spatial dispersion and the problem of abc
are of importance is thus the resonance and its vicinity.

Now let us have a look at the transmission, including spatial dispersion.
Since both the LPB and the UPB have substantial imaginary parts in the
vicinity of the resonance, we again expect a dip in the transmission in the
region around the resonance. At considerably lower frequencies, the light cou-
ples almost completely to the LPB – which has an almost negligible imag-
inary part in this region – so that the sample is transparent. The same is
true significantly above ωL for the UPB, at least if there are no other res-
onances. The shape of the effective absorption coefficient α(ω) or of κ(ω)
can look somewhat different from Fig. 4.4 possibly developing a spike at the
longitudinal eigenfrequency, as indicated in Fig. 5.12. In addition, one can
see from Fig. 5.9 that the imaginary parts of k and thus κ or α are dif-
ferent for the two polariton branches. The amplitudes and light intensities
of each polariton branch therefore decay exponentially with thickness, but
the sum of both, which is the only experimentally accessible quantity, may
show a non-exponential decay with sample thickness. Furthermore the damp-
ing may in some cases be higher close to the surface compared to the bulk
of the sample due to imperfections introduced into the lattice close to the
surface.

Strong damping, i.e., �γ ≥ ∆LT, reduces the importance of the influence
of spatial dispersion on the optical spectra as already mentioned above. The
resonance in the reflection spectrum is then already so strongly washed out
by damping that the details, whose description relies on spatial dispersion,
are no longer observable.

Fig. 5.12. A possible spec-
trum of the effective absorp-
tion coefficient in the vicinity
of a resonance with spatial
dispersion ([82R1])
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It is physically not completely satisfying that the choice of the abc is to
some extent arbitrary (5.17a–c). The parameters of the resonance deduced
with the use of different abc are (slightly) different. On the other hand, the
value of quantities such as f cannot depend on the abc chosen by the physi-
cist running the fitting program. The answer is that the problem of the abc is
an artificial one. The dielectric function ε(ω,k) describes the optical prop-
erties in the bulk of the sample. In our derivation of ε(ω,k) in Chap. 4
no surface was included. Later on, however, we use this dielectric function
to describe the optical properties of the interface between two semi-infinite
half-spaces, one usually being vacuum, the other the semiconductor under
consideration. The price we have to pay for this “improper” use of the di-
electric function is the problem of the abc. If we were to calculate the optical
properties of a half-space from the outset, the problem of the abc could be
avoided. Indeed, some calculations have used this idea [79S1,81B1,81S1,82S1]
or [98H1,99H2]. However, this procedure has its own problems. For example,
the band-structure and the exciton states have to be calculated for the half-
space, which means that we can in principle no longer use Bloch’s theorem
for the direction normal to the interface. This causes complications which
can be overcome only with difficulty and by using various approximations
and simplifications. Therefore most authors prefer to use the bulk dielectric
function and some of the abc to evaluate the optical spectra. More infor-
mation about the problem of abc and the rather lengthy formulas for calcu-
lating the spectra of reflection can be found in the references given already
above.

More recently a very interesting solution to the problem of abc’s was put
forward by [98H1], which triggered some discussion [99H2], but allows one to
avoid the abc-problem.

5.5 Real and Imaginary Parts of Wave Vector
and Frequency

Until now, we have assumed that we can describe the light wave or polariton
wave propagating in matter by a real frequency and a wave vector which has
a real and an imaginary part according to the complex index of refraction.
In principle, however, one could take k to be real and introduce a complex
frequency ω̃ by including the damping term iωγ as in (4.14), (4.22):

ω̃ = ω − iγ (5.19)

At first glance, there is no reason to prefer one approach over the other.
Actually both approaches are possible and it is the experiments performed
that decide which model is the more appropriate one.

If we shine a monochromatic wave with well-defined frequency ω (e.g.,
a spectrally narrow laser beam) on the sample, or if we select such a fre-
quency with a monochromator, then we have the situation of (4.14), (4.32)
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i.e., a forced oscillation, and here we have to use a purely real ω, but a com-
plex k to describe the decrease in amplitude of the polariton wave as it travels
through the crystal.

If, on the other hand, we could by some means create at a certain time
(e.g., t = 0), a polariton wave in the sample with constant amplitude every-
where and let it evolve for t > 0, then the amplitude would decay with time,
but would remain the same everywhere in space. This is just the situation de-
scribed by a real k only and a complex ω̃. The reader might think that a wave
with constant amplitude from −∞ to +∞ in space is highly unphysical, but in
fact this approximation is as valid as that of a strictly monochromatic wave,
which necessarily endures from t = −∞ to t = +∞. Everything with a finite
temporal duration has a finite spectral halfwidth.

These are just consequences of the fact that the time t and frequency ω
domains and the space r and wave vector k domains are connected with each
other by one and three-dimensional Fourier transforms, respectively.

Multiplication of ω or k with � then immediately gives the “uncertainty
relations” for energy and time or momentum and space (3.37).

Since the experimental situation discussed first is much more frequently
used than the second one, we will restrict ourselves for the rest of this book
to the situation of complex k and real ω. Bearing in mind, however, that
there is a third uncertainty relation for truth and understandability of a text
as stated at the beginning of the book, we should inform the reader that,
in principle, one needs to use both a complex k and a complex ω since all
excitations usually have a finite lifetime or phase relaxation time. Chapter 23
gives further details on this topic.

5.6 Surface Polaritons

For almost every wave-like excitation in the bulk of a solid or even liquid
sample, there exists a surface or interface mode including Rayleigh-waves in
earthquakes or the usual waves on the surface of water. There are, e.g., surface
acoustic phonons, surface plasmons, etc. For recent reviews see, e.g., [82M1]a
of Chap. 1 or [98B2] and the references therein.

Here we want to say a few more words about the surface polaritons already
mentioned briefly in Sect. 2.4.

Surface polaritons are also quanta or quasiparticles of the mixed state of
an electromagnetic and a polarization wave. They are distinguished from bulk
modes by the fact that they can only propagate along the interface between
two different media. The amplitudes decay exponentially with distance from
the interface on both sides, as shown schematically in Fig. 5.13a, i.e., surface
polaritons are evanescent waves on both sides of the interface, in contrast
to the one-sided evanescent wave in the case of total internal reflection of
Fig. 3.3a. See also Fig 4.4. For every volume polariton there exists a surface
polariton.
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We want now to discuss the conditions for which surface polaritons can
exist. For simplicity we restrict ourselves to the case of vanishing damping and
no spatial dispersion: γ = 0 and A = 0 in (5.16). We assume that the interface
is formed by an essentially non-dispersive medium I described by a constant
real index of refraction n2

I = εI on one side (for vacuum nI = 1) and the
medium under consideration with ε(ω) = ñ2(ω) on the other (medium II). If
the surface polariton cannot propagate into medium I or II, there must be
some physical reasons preventing its decay by radiating into the halfspaces I
and II.

As a first condition we may state that in medium II there are no prop-
agating waves between the transverse and longitudinal eigenfrequencies ωT

and ωL, as discussed for example in connection with Figs. 4.4, 4.5 and 5.1a.
The propagation into medium I can be excluded if the wave vector ks of the
surface polariton, which is directed parallel to the interface, is larger than kI

of any wave propagating in medium I. Under such a condition the conservation
law for k parallel to the interface results with Fig. 5.13b in

k2
s + k2

⊥ = k2
I and k2

s > k2
I ⇒ k2

⊥ < 0. (5.20)

The r.h.s of (5.20) simply says that k⊥ is purely imaginary and this is
what we need for an evanescent wave normal to the interface.

We can summarize these arguments by saying that surface polaritons can
be expected in the spectral region given by

ω0 ≡ ωT ≤ ωs ≤ ωL in medium II and (5.21a)

ks ≥ nIωc
−1, in medium I (5.21b)

or
Re{εII(ω)} < 0 and |Re{εII(ω)}| > εI. (5.21c)

Fig. 5.13. Schematic
drawing of the decay of
the amplitudes of a sur-
face polariton propagating
along an interface (a) and
a sketch to illustrate the
derivation of (5.20) (b)
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The dispersion relation of surface polaritons ωs(ks) can be deduced for
the present assumptions from the boundary conditions given by Maxwell’s
equations. We will not go through the procedure here, but merely give the
result and refer the reader for its derivation to the literature e.g. [82M1]a,d of
Chap. 1 or [74O1,81L1] and references therein.

ks =
(
εI · εII(ω)
εI + εII(ω)

)1/2
ω

c
. (5.22)

We should note that εII(ω) is negative in the region of (5.21a). In order to
get a real value of ks we evidently have, in addition to (5.21a,b) to fulfill also
(5.21c).

The polarization of the surface polaritons is as follows. If the interface is
the xy-plane and the surface wave propagates in the x-direction, i.e., ks ‖x
then the electric field is in the xz-plane and the magnetic induction is along
the y-axis.

For large ks one finds that the surface polariton occurs at a frequency ωs

where
Re {εII (ωs)} = −1 for ks � ω

c
and εI = 1 . (5.23)

In the case of a simple plasmon we have

ε(ω) = εb +
ω2

PL

−ω2 − iωγ
(5.24)

as will be shown later in Chap. 10. For simplifying conditions, γ ⇒ 0 and
εb = 1 (the latter being realistic only for some simple metals), we find from
(5.24) the frequently given relation [80R1,88R1]

ωs = ωPL/
√

2 for large ks . (5.25)

In Fig. 5.14 we show as a summary of this chapter the dispersion of po-
laritons and of surface polariton for a resonance without (a), and with (b),
spatial dispersion and vanishing damping. In the latter case the calculated
dispersion relation ωs(ks) is slightly influenced by the abc used. The con-
dition (5.23) is reached for large ks generally slightly below the longitudi-
nal branch as seen, e.g., in Fig. 4.3. The dispersion relation for large ks

is parallel to the longitudinal branch without reaching it. For more details
see [74O1,81L1].

To conclude this section we should briefly stress one point. Since surface
polaritons cannot propagate into medium I (generally vacuum) they cannot
be created by shining light of an appropriate frequency on the sample. The
same is true for the other side. As a consequence, it is not possible to excite
surface polaritons directly. A frequently used method involves attenuated total
reflection. This technique will be outlined briefly in Sects. 11.1.5, 12.2, 13.1.5
and 25.1.
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Fig. 5.14. The dispersion of the surface polariton for a resonance without (a), and
with (b), spatial dispersion. The damping is assumed to be negligible in both cases.

5.7 Problems

1. What dispersion relations would you expect for the polariton resulting
from oscillators with the dispersion relations of Figs. 4.2a and b? Do not
forget that a finite coupling between photons and the oscillator necessarily
implies a finite ∆LT.
Check if you were right when you come to the chapters on phonon and
on exciton polaritons.

2. Calculate the frequency shift a photon experiences when it is scattered
off an atom in a backward direction. Compare with the homogenous line-
width of luminescence lines in semiconductor optics, which hardly fall
below 0.1 meV.

3. Inform yourself about the possibility of cooling atoms by absorption and
emission of photons.

4. What is the Mösbauer effect? How does it work?
5. In Na vapor it is possible to slow light down to an almost complete stop.

Inform yourself with the help of some literature. Effects apart from the
extremely flat dispersion relation for large k-vectors contribute to this
phenomenon.

6. Calculate the dispersion relation ω(k) from (5.7) for vanishing damping.
What changes if ω0 = ω0(k) and/or if a small but finite damping γ are
introduced?

7. Write down the equations of motion of two coupled harmonic oscillators
and try to solve them. Find or imagine examples in classical physics and
in quantum mechanical systems.
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8. Which dependence of ∆LT(k) do you expect for a transition that is dipole
forbidden but allowed in quadrupole approximation.

9. Can you give an intuitive explanation as to why a photon with spin ±�

can excite a quadrupole transition, e.g., from an atomic s state to a d (or
s) state? Hint: Place the atom in the origin of the coordinate system and
vary the impact parameter of the photon.

10. Sketch the dispersion of a polariton resonance with spatial dispersion and
an oscillator strength which increases with k. (Assume for simplicity zero
damping). Does ∆LT then also depend on k?

11. Sketch the dispersion of the polariton for two close lying resonances A
and B, with and without spatial dispersion for an order of the energies at
k = 0 �ωA

0 < �ωA
L < �ωB

0 < �ωB
L . Is it possible for a single orientation of

the polarization to have the sequence �ωA
0 < �ωB

0 < �ωA
L < �ωB

L ?
12. Find out something about the method of attenuated total reflection

(ATR) from Chap. 26. Compare this method with the ”optical tunnel
effect” of Fig. 3.3b.

13. Apart from the use of ATR methods, it is possible to excite surface po-
laritons optically if a periodic structure, i.e., a grating, is formed at the
interfaces. What is the principle behind this? Compare this with the state-
ments about momentum conservation in Sects. 3.1.3 and 9.2.
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6

Kramers–Kronig Relations

In this chapter we want to investigate some general relations between the real
and imaginary parts of ñ or ε. For more details see e.g. [72A1, 78H1, 95P1]
or [72W1,82L1,90K1,96Y1] of Chap. 1 and further references given therein.

6.1 General Concepts

We stated in Sect. 2.3 that the susceptibility χ and the dielectric function
ε = χ+ 1 are response functions of the medium which describe the response
(in this case the polarization) to a stimulus (in this case the incident electric
field) for the special case of an incident monochromatic wave with frequency ω.
We now leave ω- and k-space for a moment and go to t and r space, i.e., to
time and real space.

The most general expression for a linear response function is

1
ε0

P (r, t) =

+∞∫
−∞

+∞∫
−∞

χ (r, r′, t, t′)E (r′, t′) dt′dr′. (6.1)

This means that the polarization P at point r and time t depends on the
electric field at all other places and at all times.

Similar arguments can be given for the current density j (r, t) replacing
the susceptibility by the electric conductivity σ (r, r′, t, t′). We are now going
to simplify (6.1) in various steps.

First we assume that the sample is homogeneous in time, i.e., its prop-
erties do not depend on t explicitly. Then χ depends only on the time dif-
ference t − t′. Since our medium consists of atoms, it is not homogenous in
space, but if we assume that all wavelengths present in E (r′, t′) are much
longer than the lattice constant, then an analogous approach holds for r− r′.
This is essentially the same assumption as made in the dipole approxima-
tion (3.2).
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Equation (6.1) then transforms into

1
ε0

P (r, t) =

+∞∫
−∞

+∞∫
−∞

χ (r − r′, t− t′)E (r′, t′) dt′ dr′. (6.2)

The response function χ is said to be non-local, i.e., the polarization at r
also depends on the electric field at other places r′. In other words, a polar-
isation created at one place r′ by the electric field at this place contributes
at a later time to the polarisation at another place r′. The finite propagation
time is known as retardation.

This is just the phenomenon of spatial dispersion, as becomes clear by
inspecting the models of Fig. 4.1 or of Sect. 5.2.

The integral (6.1),(6.2) is a convolution both in space and in time. It sim-
plifies to a product under Fourier transformation (see [98B1,98D1] of Chap. 2)
that is one dimensional in time and three dimensional in space. Executing this
Fourier transform we obtain

1
ε0

P (k, ω) = χ (k, ω)E (k, ω) . (6.3)

We now simplify the expression (6.3) in various steps.
First we neglect spatial dispersion, i.e., we go from the situation in Fig. 5.8

back to Fig. 4.1. In this case the response function is local, i.e., P(r) depends
only on E(r), reducing the dependence on r − r′ in (6.2) to a δ function
δ (r − r′) and simplifying

χ (k, ω) ⇒ χ (ω) (6.4)

or (6.5)

1
ε0

P (t) =

+∞∫
−∞

χ(t− t′)E(t′)dt′ . (6.5)

Now we use a very important physical argument, namely causality. This
argument is, in this context, valid both in classical physics and in quantum
mechanics and means that the response P cannot come before the stimulus
and thus

χ(t− t′) ≡ 0 for t′ > t (6.6)

or
1
ε0

P (t) =

t∫
−∞

χ(t− t′)E(t′)dt′ . (6.7)

We now execute the above mentioned Fourier transform with respect to
time, resulting in

P (ω) =

+∞∫
−∞

P (t)eiωt dt , (6.8a)
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E(ω) =

+∞∫
−∞

E(t)eiωt dt , (6.8b)

χ(ω) =

+∞∫
−∞

χ(t− t′)eiω(t−t′) dt . (6.8c)

Here we see that a complex χ(ω) results from a real χ(t − t′). Inserting
(6.7) into (6.8a) results in

1
ε0

P (ω) =

+∞∫
−∞

eiωt

⎡⎣ t∫
−∞

χ(t− t′)E(t′)dt′

⎤⎦ dt . (6.9)

Introducing
1 = e−iωt′ eiωt′ (6.10)

in the inner integral and rearranging the terms gives

1
ε0

P (ω) =
∫

E(t′)eiωt′
[∫

χ(t− t′)eiω(t−t′) dt
]

dt′ = χ(ω)E(ω) . (6.11)

This is identical to (2.27),(2.28).
With the knowledge of (6.11) we can apply Cauchy’s theorem, which con-

nects the real and imaginary parts of the Fourier transforms of analytic func-
tions. This theorem leads us to

ε1(ω) − 1 =
1
π
P

+∞∫
−∞

ε2(ω′)
ω′ − ω

dω′

and

ε2(ω) = − 1
π

+∞∫
−∞

ε1(ω′) − 1
ω′ − ω

dω′, (6.12)

where P in front of the integral means the principal value. Equation (6.12)
can be rewritten as

ε1(ω) − 1 = Re{χ(ω)} =
2
π
P

∞∫
0

ω′ε2(ω)
ω′2 − ω2

dω′

and

ε2(ω) = Im{χ(ω)} = −2ω
π
P

∞∫
0

ε1(ω′) − 1
ω′2 − ω2

dω′. (6.13)

since ε(ω) = ε∗(−ω).
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Similar relations hold for the phase φ(ω) and amplitude ρ(ω) of the reflec-
tivity r(ω) given for normal incidence by

r⊥(ω) =
n(ω) − 1 + iκ(ω)
n(ω) + 1 + iκ(ω)

= ρ(ω)eiφ(ω). (6.14)

Compare (6.14) with the expression for R⊥ in (3.19).

ln{ρ(ω)} =
1
π
P

+∞∫
−∞

φ(ω′)
ω′ − ω

dω′,

φ(ω) = − 1
π
P

+∞∫
−∞

ln ρ(ω′)
ω′ − ω

dω′ =
−2ω
π

P

∞∫
0

ln ρ(ω′)
ω′2 − ω2

dω′. (6.15)

Relations between n(ω) and κ(ω), i.e., between the real and imaginary
parts of ñ(ω) can be deduced from the relations

Im{χ(ω)} = ε2(ω) = 2n(ω)κ(ω)

Re{χ(ω)} = ε1(ω) − 1 = n2(ω) − κ2(ω) − 1 . (6.16)

For systems, where χ(ω) is small compared to unity, the following approx-
imate relations hold

n(ω) − 1 =
2
π
P

∞∫
0

ω′κ(ω′)
ω′2 − ω2

dω′

κ(ω) = −2ω
π
P

∞∫
0

nr(ω′)
ω′2 − ω2

dω′ . (6.17)

Furthermore, the following relations hold [95P1].

n(ω) =
1 − ρ2(ω)

1 + ρ2(ω) − 2ρ(ω) cosφ(ω)

κ(ω) =
2 − ρ(ω) sinφ(ω)

1 + ρ2(ω) − 2ρ(ω) cosφ(ω)
and

f =
2
π

∞∫
0

ωε2(ω)dω . (6.18)

The transverse and longitudinal eigenfrequencies can be deduced from the
maxima of ε2(ω) and of the so-called loss function Im

{
− 1

ε(ω)

}
, respectively.

See also [80R1,88R1] of Chap. 5.
The relations (6.12),(6.13),(6.15),(6.17) are known as Kramers–Kronig re-

lations. They are of very general nature and rely only on causality and locality
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of the response. The two most important consequences are first, that if ε1(ω)
or n(ω) deviate in some frequency range from 1, then there must necessar-
ily be absorption structures somewhere, i.e. spectral regions must exist with
ε2(ω) �= 0 or κ(ω) �= 0 and vice versa and, second, that if either the real or
imaginary part of ε(ω), ñ(ω) or r(ω) is known over the whole spectral range,
then the other part can be calculated. Due to the denominator it is in practice
sufficient to know the real or imaginary part over only a finite but not too
small region around ω to be able to calculate the other part.

If spatial dispersion i.e. a non local response are included, the Kramer–
Kronig relations become more complicated. This topic is beyond the scope of
this book and for further details we refer the reader to [78H1] or [98B1,98D1]
of Chap. 2 and references therein.

We now leave the subject of ensembles of oscillators and proceed to con-
sider the elementary excitations characteristic of semiconductors. They will
later replace the model oscillators considered so far.

6.2 Problem

If you are interested in the analysis of complex functions, derive the Kramers-
Kronig relations from the properties of analytic complex functions f(z) with
z ∈ C and give the restrictions imposed on f(z).

References to Chap. 6
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Crystals, Lattices, Lattice Vibrations
and Phonons

In this chapter we start to discuss topics that are specific to crystalline solids
and, starting with Chap. 8, to semiconductors. We shall inspect the elementary
excitations and quasi particles in semiconductors in Chaps. 7 to 10. These
will be needed to describe and understand the linear optical properties in
Chaps. 11 to 18. More details about these elementary excitations are found
in textbooks on solid state physics; see for examples the References given in
Chap. 1 like [81A1]a and h or [75Z1,81M1,89K1,93K1,95C1,95I1, 97S1] and
many others.

7.1 Adiabatic Approximation

If we want to describe a semiconductor, all we have to do in principle, is
to solve the Schrödinger equation for the problem. It depends on the co-
ordinates of the ion cores, consisting of the nucleus and the tightly bound
electrons in the inner shells and the outer or valence electrons with coor-
dinates Rj and ri, and masses Mj and m0, respectively. The Hamiltonian
reads:

H = − �2

2

M∑
j=1

1
Mj

∆Rj
− �

2

2m0

N∑
i=1

∆ri
+

1
4πε0

×
⎛⎝∑

j>j′

e2ZjZj′

|Rj − Rj′ | +
∑
i>i′

e2

|ri − ri′ | +
∑
i,j

e2Zj

|Rj − ri|

⎞⎠ . (7.1)

Zj is the effective charge of the ion core j and the indices j and i run over
all M ion cores and N electrons, respectively.

We want to stress here that out of the four fundamental interactions so
far known, namely strong, electromagnetic, weak, and gravitational interac-
tion, only the electromagnetic one is of importance for all chemical prop-
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erties including binding and thus also for the typical properties of semi-
conductors such as the transport and the optical properties discussed in
this book. Within the electromagnetic interaction we restrict ourselves here
to the electric ones (including exchange interaction) since electric interac-
tions are usually much stronger than magnetic ones, basically since elec-
tric interactions begin with monopole-monopole (i.e., Coulomb) interaction,
whereas magnetic interactions start only with dipole-dipole interactions, due
to the absence of magnetic monopoles [see (2.1a)]. Magnetic interactions,
however, do have a certain subtle importance e.g. in (dilluted) magnetic
semiconductors.

The wavefunction solving (7.1) depends on all coordinates Rj and ri in-
cluding spins.

Hφ(ri,Rj) = Eφ(ri,Rj) (7.2)

Since the indices j and i running from one to M and N , respectively,
both count of the order of 1023 particles per cm3 of semiconductor, it is
obvious that there is at present no realistic chance of solving (7.1),(7.2) though
a proper solution would, in principle, contain all information about a given
semiconductor. If we do not want to get stuck at this point we must use some
approximations to simplify (7.1). The most important one is the so-called
adiabatic or Born–Oppenheimer approximation. It starts from the fact that
the mass of an ion core is three to five orders of magnitude heavier than a free
electron, i.e.,

Mj � 1836 ·Ajm0 (7.3)

where Aj is the mass number of ion j. Since the electric forces that bind the
outer electrons to the atom, and which can be described by a force constant β,
are comparable to the ones which bind neighboring atoms or ions, we can easily
see, even from classical arguments, that the highest resonance frequencies Ω
with which ions can oscillate are much lower than the corresponding values ω
for electrons

Ω � (
βM−1

j

)1/2 � ω =
(
βm−1

0

)1/2
. (7.4)

Consequently, the electrons can practically instantaneously follow the mo-
tion of the ion cores, but not vice versa. This is the essence of the adiabatic
approximation. On this basis we can separate φ(ri,Rj) into a product of
a wavefunction which depends only on the Rj and describes the motion of
the ion cores, and another one which gives the wavefunction of the electron
system depending on the momentary values of the Rj . In a next step we
will further assume that all ions are fixed at their equilibrium positions Rj0

resulting finally in
φ(ri,Rj) = φ(ri)φ(Rj0) , (7.5)

and treating both the interaction between electrons and the deviation of the
ions from their equilibrium positions in perturbation theory.

Before we start to inspect both factors of (7.5), we shall briefly outline
how we describe a periodic lattice.
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7.2 Lattices and Crystal Structures
in Real and Reciprocal Space

In most cases we shall consider crystalline semiconductors. Disordered or
amorphous systems will be mentioned explicitly. Crystalline solids have a pe-
riodic spatial arrangement of atoms, i.e., they show long-range order. We
can define in such a case three non-coplanar elementary translation vectors
ai(i = 1, 2, 3) with the property that if we start at a special atom, e.g., a Ga
atom in a GaAs crystal, we reach an identical atom if we move by a vector R
given by

R = nia1 + n2a2 + n3a3 (7.6)

with ni = 0,±1,±2, . . .
The vector R is called a translation vector of the lattice. If we shift the

lattice by R it comes to a position which is identical to the starting one.
The vectors a, define a parallelepiped which is called the unit cell (see also

Figs. 7.1,2). The whole volume of a crystal is completely filled with identical
unit cells. The unit cell and the vectors ai are called primitive if the unit cell
has the minimum possible volume. This definition is not unique as we explain
for a two-dimensional cubic lattice in Fig. 7.1, where we show a non-primitive
unit cell and two primitive ones. By convention, a special primitive unit cell
is agreed upon. In our case the one defined by a1 and a2.

The vectors R evidently form for an infinite crystal an Abelian group
which is called the translational group (Chap. 26). The positions of the atoms
in the unit cell are given by the so-called basis. In Fig. 7.1 the basis consists
of two atoms, one atom A at (0, 0) and one atom B at (1/2a1, 1/2a2). The
translation vectors ai and the basis is all that we need to describe a crystal
structure.

The translation vectors ai define an abstract, translation invariant lattice,
the basis gives the information where the atoms are really located in the prim-
itive unit cell. The lattice and the basis define together the crystal structure.

Apart from the translational group there is another type of symmetry
operation which transforms the lattice into itself, but for which at least one
point is kept fixed. These symmetry operations also form a group which is
called the point group. The elements of this group are for example reflections
at mirror planes, rotations around axes with two-, three-, four- or six-fold
symmetry or the inversion through the origin.

Furthermore there may be screw axes or glide planes, which combine either
a rotation axis or a mirror plane with a translation by a rational fraction of
the ai. The abstract translation lattices can be grouped into 14 Bravais lattices
namely one triclinic, two monoclinic, four orthorhombic, two tetragonal, three
cubic, one trigonal (rhombohedral) and one hexagonal lattice.

If we include the positions of the atoms and the translational invariance
we find from all possible combinations of the symmetry operations which
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Fig. 7.1. Two primitive (r.h.s) and a non-primitive (l.h.s.) unit cells in a two-
dimensional cubic lattice with a basis consisting of two different atoms per primitive
unit cell

transform an infinite crystal into itself a total of 230 so-called space groups, out
of which 73 can be written as a product of the translation group and the point
group. For details see Chap. 26 and the references therein. The most important
point groups for semiconductors are Oh (realized e.g. in the crystal structures
of diamond, Si, Ge, Cu2O or NaCl), Td (realized e.g. in the zincblende type
crystal structure of ZnS, ZnSe, GaAs, InP, CuCl or AgBr) and C6v (realized
e.g. in the wurtzite type crystal structure of ZnS, ZnO, CdS or GaN). We give
in Fig. 7.2 the crystal structures of diamond, zinblende and wurtzite. The
diamond crystal structure consist of C atoms occupying the lattice points of
two face-centered cubic lattices shifted by 1/4 of the space diagonal of the
cubic unit cell. For zincblende one has the same principle, however one of
the two sublattices is occupied by atoms A, the other by B. The wurtzite
crystal structure is hexagonal with a polar crystallographic c-xis. In all three
cases, one atom is surrounded tetrahedrally by its four nearest neighbours.
The difference between zincblende and wurtzit structures is in the positions
of the next nearest neighbours only. Therefore several of the above mentioned
compound semiconductors can crystallize in both structures like ZnS (which
is notorious for these two polytypes), CdS or GaN. It is recommended that
the reader visualizes these differences using some crystal models.

The chemical binding of the semiconductors is covalent for the elements (C,
Si, Ge) with sp3 hybridization, and acquires an increasing and finally dominant
ionic admixture when going to the III–V, IIb–VI and Ib–VII compounds.

Now we want to introduce the so-called reciprocal lattice. It is defined by
its elementary translation vectors bi in the same way as the lattice in real
space. The bi are given by:

b1 =
2π
Vuc

a2 × a3 (7.7)
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Fig. 7.2. The unit cells for the diamond and zinc-blende-type crystal structures (a)
and of the wurtzite crystal structures (b) (see [82L1] of Chap. 1)

and cyclic permutations of the indices Vuc is the volume of the unit cell given by

Vuc = a1(a2 × a3). (7.8)

A general translation vector of the reciprocal lattice is usually called G

G = l1b1 + l2b2 + l3b3 li = 0,±1,±2, . . . i = 1, 2, 3 . (7.9)

Without trying to be complete, we give some properties of the reciprocal
lattice and its connections with the real one.

Every periodic function in real space which is sufficiently smooth and has
a periodicity given by f(r +R) = f(r) and R defined by (7.6) can be written
as a Fourier series summing over all vectors of the reciprocal lattice

f(r) =
∑
G

fG eiGr (7.10)

with
fG = V −1

uc

∫
uc

f(r)e−iGr dτ .

The scalar product of R and G always fulfills

R · G = 2πm; m = 0,±1,±2, . . . (7.11)

As a consequence, we can choose to describe effects occurring in periodic
lattices in real space or in reciprocal space. The latter is the appropriate space
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for wave vectors k or (quasi-)momenta �k. The “translation” from one space
into the other is given by the three-dimensional Fourier series of (7.10).

In a crystal lattice we no longer have invariance with respect to infinites-
imal translations in space (Sect. 3.1.3) but only invariance with respect to
translations by integer multiples of ai. The conservation law for the mo-
mentum �k which follows from an invariance with respect to infinitesimal
translations according to Noether’s theorem (3.14b) is modified for a pe-
riodic lattice so that �k is conserved only to within integer mupltiples of
the bi, i.e., we can add to a given k-vector a vector from the reciprocal
lattice G:

k � k + G . (7.12)

This is a very important statement which forms, together with energy
conservation, the basis, for example, of Ewald’s construction for the diffraction
of X-rays or neutrons from a periodic lattice.

From (7.12) it is clear that we do not have to consider the whole k-space,
but can restrict ourselves to a “unit-cell” defined by the vectors bi. Every k-
vector that is outside the unit cell can be shifted inside the unit cell by adding
an appropriate G. Usually one does not work in reciprocal space with unit
cells defined as in Fig. 7.1 or 7.2, but uses another construction explained in
Fig. 7.3 for the two-dimensional case. One constructs the planes perpendicu-
larly bisecting the lines connecting one point of the reciprocal lattice, which
is chosen as the origin, with all others. The figure thereby enclosed around
the origin is called the first Brillouin zone; the equivalent pieces which are
next together form the second Brillouin zone, and so on. All Brillouin zones
have equal area or volume in two or three dimensions, respectively. All higher
Brillouin zones can be shifted into the first one by adding appropriate G vec-
tors. The Brillouin zones also form a type of elementary cells, but constructed

Fig. 7.3. The first Brillouin zones of a two-dimensional, hexagonal lattice
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according to Fig. 7.3 and not according to Fig. 7.1. The first cell constructed
in real space according to Fig. 7.3 is known as a Wigner–Seitz cell. The names
of points and lines of high symmetry in the first Brillouin zone are indicated
in Fig. 7.4.

For a simple cubic lattice with

a1 = (a, 0, 0), a2 = (0, a, 0), a3 = (0, 0, a) , (7.13)

the bi are also orthogonal with

b1 =
[
2π
a
, 0, 0

]
, b2 =

[
0,

2π
a
, 0
]
, b3 =

[
0, 0,

2π
a

]
, (7.14)

and the first Brillouin zone is a cube which extends in all three directions from

−π
a
≤ ki ≤ +

π

a
, i = x, y, z . (7.15)

In Fig. 7.4 we give the first Brillouin zones for this simple cubic lattice and
for the point groups Td, 0h and C6v using the primitive unit cell including
the notation for some special points and directions. The center of the first
Brillouin zone k = (0, 0, 0) is always called the Γ -point, other points of high
symmetry are labelled by capital Latin letters and directions of high symmetry
by capital Greek letters. As an example: in Td symmetry, when leaving the
Γ -point in the Σ-direction one arrives in at the point K at the border of the
first Brillouin zone.

The quantity �k of an excitation in a periodic lattice is usually called
quasi-momentum if one wants to stress the difference compared to the mo-
mentum p = �k of a free particle in vacuum, e.g., a photon or an electron,
where, in contrast to (7.12) no reciprocal lattice vector may be added. Actu-
ally it is possible to make a transition from one case to the other: if the lattice

Fig. 7.4. The first Brillouin zones for a simple cubic lattice (a), of the diamond and
zinc-blende-type structures (point groups 0h, and Td, respectively) (b) and of the
hexagonal wurtzite-type structure (C6v) (c). The names of points and of directions
of high symmetry are indicated. According e.g. to Reference [82L1] of Chap. 1
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constant a goes to zero, the system regains translational invariance with re-
spect to infinitessimally small shifts in real space. On the other hand, the bi

go to infinity in this limit (7.7) and the first Brillouin zone fills the whole
k-space, so that reciprocal lattice vectors become physically meaningless. For
a more detailed discussion of the term “quasi”-momentum see e.g. Sect. 7.6
or [98B1] of Chap. 2.

7.3 Vibrations of a String

In Sects. 7.3 to 7.6 we treat the lattice vibrations and the resulting quanta, the
phonons, in the way adopted in many textbooks, i.e., we start with a homo-
geneous string, proceed to monatomic and diatomic chains and finally arrive
at the three-dimensional solid.

Let us first consider a quasi one-dimensional string, as shown schematically
in Fig. 7.5. Two types of waves can propagate along it, transverse and longi-
tudinal ones. The direction of the elongation is perpendicular to the direction
of propagation, i.e., in the x–y plane, or parallel to it, i.e., in the z-direction,
respectively. We start with the latter case. The mass density of the string is ρ
its cross-section A, and the elongation of an infinitesimally small piece dz of
the string at z from its equilibrium position is u(z). Then, Newton’s equation
of motion reads

dm
∂2u

∂t2
= ρA · dz · ∂

2u

∂t2
= F . (7.16)

The force F is connected to the elasticity modulus E via

F = A · E∂
2u

∂z2
. (7.17)

The appearance of the second derivative in (7.17) is for some students
surprising, bearing in mind Hooke’s law. However, we must consider that the
stress σ is indeed given by

σ(z) = E
∂u

∂z
. (7.18)

If the stress is the same on both sides of the infinitesimal element of
length dz, the resulting forces at z and z + dz compensate each other to
zero. The restoring force F is therefore given by dσ/dz leading to (7.17).

Fig. 7.5. A piece of a string as a model to explain the derivation of (7.19)



7.3 Vibrations of a String 137

Putting (7.16) and (7.17) together leads to the standard harmonic wave
equation

ρ
∂2u

∂t2
= E

∂2u

∂z2
. (7.19)

With the ansatz
u = u0 exp [i(kz − ωt)] (7.20)

for a plane wave we find the dispersion relation for longitudinal waves

ωL = (E/ρ)1/2k . (7.21)

This is a linear relation as shown in Fig. 7.6. Consequently phase and
group velocity are constant and equal, namely, with (2.13):

vL
ph = vL

g = (E/ρ)1/2 . (7.22)

For the two degenerate, transverse waves we find in a similar way

ωT = (G/ρ)1/2k (7.23)

or
vT
ph = vT

g = (G/ρ)1/2 . (7.24)

where G is the shear or torsion modulus.
Since it is known from the theory of elasticity that

G ≤ E , (7.25)

we find
vT
ph ≤ vL

ph , (7.26)

a result comparable to (4.28).

Fig. 7.6. The dispersion relation of waves on a homogeneous string
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7.4 Linear Chains

We now should consider the regime of validity of the above calculation. We
assumed a homogeneous string, neglecting the fact that a solid is made up from
atoms. Therefore the above approximation can only be valid for wavelengths
much longer than the lattice constant or for wave vectors close to the center
of the first Brillouin zone, i.e.,

λ� a or k � π

a
. (7.27)

For shorter wavelengths we have to consider the atomic structure of solids.
The interaction potential between neighboring atoms as a function of the lat-
tice constant a looks approximately like Fig. 7.7 for all types of binding,
e.g., covalent, ionic or metallic. For sufficiently large lattice constants there
is no interaction between the atoms, i.e., V = 0; then comes an attractive
regime (without which there would be no solids); and this is finally followed
by a steep repulsive increase due to Pauli’s exclusion principle when the filled
inner shells of neighboring atoms start to overlap. Different analytic approx-
imations to V (a) are known for example the Born-Mayer or Lennard-Jones
potentials. These details have at present no relevance for us. We note that
a crystal left to itself will come to a state close to the energetic minimum,
i.e., to the equilibrium position a0. In the vicinity of a0, V (a) can be approx-
imated by a parabola, that is by a harmonic potential, shown by the dashed
line. It is at least qualitatively clear that this harmonic approximation is valid
only very close to a0. For larger deviations from a0 significant anharmonicities
(i.e., deviations from the harmonic potential) have to be expected. The an-
harmonicities are characteristic for lattice vibrations and manifest themselves,
among other things, in the thermal expansion of solids and in phonon–phonon
interaction.

For the moment, however, the harmonic approximation is good enough
and we consider a linear model solid in which every atom with mass M is
connected to its neighbors by a “spring” with a force constant D, representing
the harmonic potential, leading to the linear-chain model of Fig. 7.8a in which

Fig. 7.7. Sketch of the potential V between neighboring atoms in a solid as a func-
tion of the lattice constant a
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Fig. 7.8. The linear chain model for the cases of one atom per unit cell (a) and two
atoms per unit cell (b)

we indicate also the lattice constant a. Evidently we have a basis consisting
of one atom per primitive unit cell. At this point it is important to stress the
difference between the models of Figs. 4.1 and 5.8 on one side and of Fig. 7.8
on the other side. In the first case we had independent oscillators, and a weak
coupling between them was introduced only to simulate spatial dispersion.
Here, in Sect. 7.4, the coupling springs from the only forces acting on the
atoms. We introduce now the displacement of atom un from the equilibrium
position and obtain the equation of motion, again for the longitudinal mode

M
∂2un

∂t2
= D [(un+1 − un) − (un − un−1)] = D(un+1 − 2un + un−1) . (7.28)

Instead of the second differential quotient in the homogeneous approximation
we are now left with a second order difference equation.

As a solution of (7.28) we again try a plane wave which reads, in this
discrete case,

un = un,0 exp [i(kna− ωt)] (7.29a)

un±1 = un±1,0 exp {i [k(n± 1)a− ωt]} . (7.29b)

For a plane wave we conclude that the amplitudes of the various atoms
are equal, i.e.,

un,0 = un+1,0 = un−1,0 . (7.29c)

Inserting (7.29a,b,c) into (7.28) gives

−Mω2 = D
(
e−ika − 2 + eika

)
= −2D (1 − cos ka) (7.30)

or

ω =
(

4D
M

)1/2 ∣∣∣∣sin ka2
∣∣∣∣ . (7.31)

The dispersion relation according to (7.31) is shown in Fig. 7.9 together
with the phase and group velocities in the first Brillouin zone.
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Fig. 7.9. The dispersion relation and the phase and group velocities of the longi-
tudinal vibrations of the monatomic chain of Fig. 7.8a

As can be expected from the discussion in Sect. 7.2, the dispersion relation
outside the first Brillouin zone repeats just what is inside, or, in other words,
the branches inside and outside can be shifted into each other by adding or
subtracting reciprocal lattice vectors l · 2π/a, where l is a positive or negative
integer.

The fact that there is nothing new outside the first Brillouin zone can be
easily elucidated for the case of lattice vibrations in connection with Fig. 7.10.

If adjacent atoms are displaced in antiphase, we end up with the shortest
physically meaningful wavelength (solid line) λmin by

λmin = 2a→ kmax =
2π
λmin

=
π

a
. (7.32)

Of course we can define a shorter wavelength as indicated by the dashed
line resulting here in k = 3π/a. But this definition is physically meaningless
since we have no atoms at the positions between z = na and z = (n + 1)a.
On the other hand, k = 3π/a corresponds to π/a by just adding G = −2π/a.

Fig. 7.10. A vibration of the linear chain of Fig. 7.8a with a wave vector inside and
outside the first Brillouin zone
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We now inspect vph and vs in the first Brillouin zone. Except at k = 0 the
two quantities are no longer equal and change with k. Consequently a wave
packet will become broader during propagation, i.e., it will show “dispersion”
in the sense discussed in Chap. 5. The fact that the dispersion relation is
horizontal at the border of the first Brillouin zone in the direction normal to
this border is generally the case.

Since most semiconductors have more than one atom per primitive unit
cell, we address this situation with Fig. 7.8b where we evidently have a basis
consisting of two atoms with masses M and m. The lattice constant is now a′.

Using the nomenclature of Fig. 7.8b we obtain the following equations of
motion in analogy to (7.28):

M
∂2u2n

∂t2
= D (u2n+1 − 2u2n + u2n−1) , (7.33a)

m
∂2u2n+1

∂t2
= D (u2n+2 − 2u2n+1 + u2n) . (7.33b)

Using again the ansatz

u2n = u2n,0 exp [i(2nak − ωt)] , (7.34a)

u2n+1 = u2n+1,0 exp {i [(2n+ 1)ak − ωt]} , (7.34b)

and noting again that the amplitudes of equal masses are equal

u2n,0 = u2n+2,0 = AM , (7.35a)

u2n+1,0 = u2n−1,0 = Am , (7.35b)

we get the following set of linear equations

(2D − ω2M)AM − 2D cos(ka)Am = 0 ,
−2D cos(ka)AM + (2D − ω2m)Am = 0 .

}
(7.36)

These have a non-trivial solution (i.e., one other than AM = Am = 0)
only if the determinant of the coefficients vanishes. The dispersion relation
resulting from the corresponding secular equation reads:

ω2 = D

(
1
m

+
1
M

)
±D

[(
1
m

+
1
M

)2

− 4
Mm

sin2 ka
′

2

]1/2

(7.37)

The dispersion relation has now two branches, as shown in Fig. 7.11, where
we give also the values at some special points. The lower branch is usually
called the acoustic branch since sound waves propagate according to its modes.
The upper branch is called the optical one, for reasons given below.

We can enter the solution (7.37) into (7.36) and calculate the ratio
AM/Am. The procedure is straightforward but lengthy and so we present
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Fig. 7.11. The dispersion relation
for the diatomic chain

the result only graphically in Fig. 7.12 in agreement with our statement in
Sect. 1.1, and discuss it in connection with Fig. 7.13. For the acoustic branch,
the two different atoms are displaced in the same direction, Fig. 7.13a. For
very long wavelengths (i.e., k � 0) the amplitudes are equal. Actually the
case k = 0 corresponds to a simple displacement of the whole crystal. For
increasing k the amplitude of the heavy mass M gets larger than that of m
for M > m, and, at the boundary of the first Brillouin zone, only the heavy
masses oscillate (Fig. 7.13b), resulting in an eigenfrequency (2D/M)1/2 as
indicated in Fig. 7.11.

For the optical branch, the two atoms are displaced in anti-phase (Fig. 7.13c).
At the boundary of the first Brillouin zone only the light masses oscillate
(Fig. 7.13d).

If the two different atoms carry an electric charge, i.e., if the binding is
at least partly ionic, then the oscillation according to Fig. 7.13c is connected
with an oscillating electric dipole. This allows it to couple to the electro-
magnetic light field at least for the transverse eigenmodes and this is why
these oscillations are called “optical” modes. We come back to this aspect in
Chap. 11.

Fig. 7.12. The ratio of the am-
plitudes AM/Am of the two differ-
ent masses for the two dispersion
branches of Fig. 7.11 as a function of k
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Fig. 7.13. Sketch of the displacements of the atoms on the acoustic (a, b) and the
optical branches for two different wave vectors (c, d)

Here we have discussed in detail only the longitudinal modes, but it is
obvious that both for the monatomic and the diatomic chain, for every wave
vector and every branch, two (degenerate) transverse oscillations also exist.

The dispersion relation of Fig. 7.11 can also be deduced in another way
starting from the one of Fig. 7.9, i.e., from the monatomic chain which we re-
peat in Fig. 7.14a. Now we imagine that we paint the atoms of the monatomic
chain in two different alternating colors, but without changing their physical
properties. As a consequence we have increased the length of the primitive
unit cell by a factor of two and the new lattice constant a′ is given by

a′ = 2a (7.38)

and this in turn reduces the length of the first Brillouin zone by one-half as
shown in Fig. 7.14a,b. Consequently, we can shift the outer parts of the dis-
persion relation by vectors of the new reciprocal lattice into the first Brillouin
zone. This situation is shown in Fig. 7.14b. Since the atoms are still identical,
the two branches cross at the border of the first Brillouin zone. If we now
also introduce differences in the physical properties of the atoms, for example
giving them different masses, then we end up with the situation of Fig. 7.14c
which is identical to Fig. 7.11. We shall use this set of arguments again in
connection with superlattices later on in Sect. 8.10. First we want to extend
this discussion of the lattice vibrations of three-dimensional systems.
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Fig. 7.14. The transition from the monatomic (a) to the diatomic (c) chain. (See
text for explanation)

7.5 Three-Dimensional Crystals

If we consider a three-dimensional crystal, not too much changes with respect
to the chain model of Sect. 7.4, at least for the dispersion relations. The atoms
are connected with nearest (and possibly next-nearest) neighbors in the three-
dimensional crystal stucture. The set of equations analogous to (7.28) or (7.33)
will become correspondingly more complex, but the result will be qualitatively
the same. There are still the acoustic branches and, in addition, optical ones
if we have more than one atom in the primitive unit cell. There are always
three acoustic branches, namely one longitudinal and two transverse ones for
every k-vector and 3s− 3 optic ones:

number of acoustic branches: 3
number of optical branches: 3s− 3

}
(7.39)

where s is the number of atoms per primitive unit cell.

Fig. 7.15. Sketch of the dispersion re-
lation of lattice vibrations for a three-
dimensional anisotropic crystal with
partly ionic binding and two atoms per
primitive unit cell
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If the crystal is anisotropic the dispersion relations will be different for
different directions in the Brillouin zone and the degeneracy between the two
transverse modes for every k may be lifted. We show such a situation schemat-
ically in Fig. 7.15.

7.6 Quantization of Lattice Vibrations:
Phonons and the Concept of Quasiparticles

If we look again at (7.28) or (7.33) for the un(t) we see that these equations
are rather similar to the equation of motion for an harmonic oscillator

m
∂2vn

∂t2
= −Dvn . (7.40)

The only difference are the terms with indices n± 1, i.e., the off-diagonal
terms in the language of matrix representation. It is now possible to find
appropriate linear combinations of the un, so-called normal coordinates vn

vn =
∑
n′
an′un′ (7.41)

such that the vn obey equations like (7.40) or (2.52) or, in other words, to
diagonalize the problem. In doing so one usually closes the linear chain (or
the three-dimensional equivalent) to a huge ring in order to close the set of
differential equations.

On the other hand a quantum mechanical treatment of the harmonic os-
cillator leads to discrete energy levels given by

En = �ωn

(
n+

1
2

)
, n = 0, 1, 2, 3 . . . . (7.42)

It is now important to note that the dispersion relation shown for example
in Fig. 7.15 is not influenced by a linear transformation of the coordinates.

As a consequence we may say that the lattice vibrations (more precisely
the vibrations of the crystal structure) consist of quanta according to (7.42)
for each wave vector k and branch i. The total energy of the lattice vibrations
can be written as

E =
∑
k,i

�ωk,i

(
nk,i +

1
2

)
(7.43)

in analogy to (2.55b) or (5.3), where the index i labels the various branches.
In the framework of second quantization it is possible to define creation

and annihilation operators b+k,i and bk,i respectively, and the Hamiltonian can
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then again be written in terms of the number operator, in a similar way to
that used already for photons

H =
∑
k,i

�ωk,i

(
b+k,ib

+
k,i +

1
2

)
. (7.44)

Obviously there is a close analogy between the quanta or particles of the
electromagnetic radiation in vacuum, the photons, and the quanta of the lat-
tice vibrations. The quanta of the lattice vibrations are called phonons and
are considered as quasi-particles. The attribute “quasi” has two reasons. In
contrast to “real” particles like photons, electrons or protons, phonons can ex-
ist only in matter and not in vacuum. They are characterized by their energy
and momentum �k but, in contrast to vacuum, �k is a “quasi-momentum”
which is defined only modulo integer multiplies of the elementary translation
vectors bi of the reciprocal lattice for a crystalline solid (Sect. 7.2). The con-
cept of quasi-particles, which as been introduced by Landau about 50 years
ago, is a very important one for the understanding of solids. In the next chap-
ters we shall become familiar with several other quasi-particles in solids. The
phonons are just the first example.

The existence and the dispersion relation of phonons can be investigated
by inelastic neutron scattering. An incident neutron from a mono-energetic
beam with

Ei =
�

2k2
i

2mn
(7.45)

is scattered under creation or annihilation of a phonon, resulting in a neutron
in the final state with Ef, kf, which are given via the conservation laws of
energy and quasi-momentum

Ef =
�

2k2
f

2mn
= Ei ± �ωPhonon

and
kf = ki ± kPhonon + G (7.46)

By measuring the properties of the incident and scattered neutrons it is
possible to prove the existence of phonons and to determine their dispersion
relation. Note that the scattering probability for the neutrons may depend
on G.

Figure 7.16 shows the dispersion relation of the phonons in two different
semiconductors, Si and CdS, for various directions in k-space (see Fig. 7.4).
All well-known semiconductors, including the elemental ones like Si and Ge,
have more than one atom per unit cell and therefore support both acoustic
and optical branches. Si has only covalent binding in contrast to CdS which
has a mixed ionic-covalent binding. Therefore the Si atoms do not carry an
electric charge and, as a result, even the optical phonons do not couple directly
to the radiation field, resulting at k = 0 in an oscillator strength f = 0 and
consequently in ∆LT = 0 as a result of (4.26).
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Fig. 7.16. Dispersion relation of phonons in Si and CdS for various directions in
k-space (a) and (c) show essentially directions in k space, which originate, from the
Γ point and (b) on the surface of the first Brillouin zone After [82L1] of Chap. 1

In connection with Fig. 7.7 we have introduced a harmonic interaction po-
tential between atoms. Actually there are strong anharmonicities, as already
mentioned, which are, among others, due to the fact that the electron dis-
tribution changes almost instantaneously with the changing positions Rj of
the atoms, c.f. the adiabatic approximation of Sect. 7.1. This fact results in
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a variation of the “spring-constant” D with the lattice constant a, i.e., in an
anharmonicity.

The resulting anharmonicity manifests itself, for example, in scattering
processes between phonons. We show some of them schematically in Fig. 7.17.
However, one should bear in mind that all combination possibilities are ex-
hausted only when the three-dimensional k-space is considered.

In (a) a TO phonon decays under energy and momentum conservation into
two acoustic phonons in (b) two transverse acoustic phonons combine to form
a longitudinal acoustic phonon. Energy and momentum conservation read e.g.
for (a) and (b):

(a) �ωi = �ωf1 + �ωf2, ki = kf1 + kf2 (7.47a)

(b) �ωi1 + �ωi2 = �ωf, ki1 = ki2 + kf . (7.47b)

These are so-called n or normal processes. In the decay process (c) we end
up in the second Brillouin zone with one phonon and fold the phonon back
with a vector of the reciprocal lattice G.

�ωi = �ωf1 + �ωf2; ki = kf1 + kf2 + G . (7.47c)

The situation of (c) is known as a u or Umklapp process.

7.7 The Density of States and Phonon Statistics

Now we want to calculate the density of states of phonons as a first application
of what we have learned in Sect. 2.6 for a three-dimensional crystal.

Fig. 7.17. Sketch of three possible decay or fusion processes of phonons
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Fig. 7.18. Schematic drawing of the density of states of a three-dimensional,
isotropic semiconductor with two atoms per unit cell and degenerate optical and
acoustic branches

We assume for simplicity that we have two atoms per unit cell and that
the resulting three acoustic and optical branches are degenerate i.e. transverse
and longitudinal branches coincide. Furthermore we assume an isotropic semi-
conductor. This results in Fig. 7.18 where we plot on one side of the x-axis k
and on the other the density of states D(ω). As stated in Sect. 2.6 we need
the dispersion relation to calculate D(ω). In the linear part of the acoustic
branch we have

ω = vsk , (7.48)

where vs is the constant velocity of sound. This linear relation results imme-
diately in

D(ω) = const · ω2 (7.49)

i.e., a parabolic density of states similar to that for photons in vacuum. The
difference is only in the proportionality factor of (7.48),(7.49).

When deviations from the linear dispersion relation start, the calculations
get more lengthy and we will not go into details. The denominator on the
right of (2.77) tells us, however, that the density of states has in principle
a singularity and in practice a steep maximum when we have a horizontal
slope of the ω(k) relation, as indicated in Fig. 7.18.

Note that the situation is in reality more complex than in in Fig. 7.18 due
to the facts, that the dispersion relation may depend in the direction of k, the
transverse and longitudinal branches are not degenerate, and that the first
Brillouin zone is not a sphere but a polyhedron, with the consequence, that
the range of k vectors depends on the direction in the Brillouin zone. For
realistic densities of states see e.g. [82L1] of Chap. 1.
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If we want to know the number of phonons we must integrate over the
density of states weighted with the probability that the state is populated.
The commutation relations for phonons obey[

bk,i, b
+
k′,i′

]−
= ∂k,k′∂i,i′ (7.50)

where i is the label of the branch. This means that phonons are bosons. So
we have in thermal equilibrium to use Bose–Einstein statistics (2.80b)

fBE(�ω, T ) = {exp [(�ω − µ)/kBT ]− 1}−1 (7.51)

Since the number of phonons is not conserved, due e.g., to phonon–phonon
interaction (see above), the chemical potential µ is zero in thermal equilibrium
(Sect. 2.6). For the total number of phonons, N(T ), we obtain

N(T ) =

∞∫
0

D(�ω) [exp(�ω/kBT ) − 1]−1 dω (7.52a)

and for the energy of the phonon system

U(T ) =

∞∫
0

�ωD(�ω) [exp(�ω/kBT ) − 1]−1 dω . (7.52b)

Starting from (7.52b) it is easy to calculate the specific heat of the phonon
system

cp � cv =
∂U

∂T
(7.53)

if appropriate approximations are made for D(ω). Einstein assumed that
all phonons have the same frequency ωE i.e., he approximated D(�ω) by a δ-
function

D(�ω) = δ(ω − ωE)3Ns , (7.54a)

and Debye continued the linear part of the dispersion relation up to a fre-
quency which is also chosen to accommodate all 3Ns degrees of freedom of
the atoms, where N is the number of unit cells and s the number of atoms
per unit cell

3Ns =

ωD∫
0

D(�ω)dω with D(ω) ∝ ω2 . (7.54b)

For high temperatures (i.e., kBT > �ωD or �ωE) both approximations give
the classical limit, namely the law of Dulong and Petit

cv = 3NskB (7.55)
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and a continuous approach to zero for T → 0. In the case of Debye’s approx-
imation one finds the well-known T 3 law:

cv ∼ (T/θ)3 with kBθ = �ωD and T < θ . (7.56)

Since the discussion of specific heat cv is outside the scope of this book,
we do not take it any further, having introduced it simply to illustrate the
applicability of the concept of the density of states, and mention only that
the approach in (7.52b),(7.54b) is, apart from some constants and ωD → ∞
identical to the one used to describe Planck’s law of blackbody radiation as
seen by comparing with (2.84).

Finally, we want to point out the following. Since phonons are bosons,
processes which involve phonons can be stimulated in the same way as was
discussed in connection with photons in Sect. 3.2.1, i.e., we get in transitions
involving the emission of a phonon in a certain mode, apart from other terms,
a factor like

Wi→f ∼ (Nk
Ph + 1) (7.57)

To get a feeling we assume a lattice temperture of 77 K (i.e., liquid N2)
and an acoustic phonon with an energy around 0.2 meV (such phonons will be
used in Brillouin scattering in Sect. 13.3) and find for these conditions with
(7.51)

Nk
Ph � 30 � 1 . (7.58)

This means that the occupation number is much larger than one and processes
which involve the emission of phonons with energies smaller than the thermal
energy are stimulated by the phonons. Depending on the process under con-
sideration, it is however necessary to consider the reverse process, too, which
depends on Nk

Ph.

7.8 Phonons in Alloys

An alloy is a random binary, ternary or higher mixture of atoms. In con-
trast to amorphous materials, the atoms in an alloy are still sitting on well
defined, periodically arranged lattice sites. Two very widely investigated semi-
conductor alloys are Al1−yGayAs or CdS1−xSex. The first one cristallizes in
the cubic zinc-blende structure the second usually in the hexagonal wurtzite
type. However the two different kations Al and Ga or the two anions S and Se
are randomly distributed over the respective sublattice with an average con-
centration y or x. See for the concept of the virtual crystal approach Sect. 8.15.

What are the consequences of alloying for the phonons.
For long-wavelenth acoustic phonons the situation is generally rather sim-

ple. The dispersion relation starts linear as in Figs. 7.9, 7.11 or 7.14 with
a slope or velocity of sound which is a weighted average of the two parent
components. Long wavelength means large compared to the interatomic dis-
tance. When approaching the boarder of the first Brillouin zone, things become
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less clear. Since only one sublattice is elongated (see Fig. 7.13b) the phonon
frequency may be broadened depending on which type of atom oscillates due
to their different masses and “spring constants” to their neighbours. In this
sense even a chemically pure crystal, containing however different isotopes of
the same element, has to be considered as an alloy. For details of this topic
see e.g. [94C1,94R1].

For the optical phonons, two different situations may arise. If the bands of
e.g. the LO-phonons overlap energetically in the two parent materials as is the
case e.g. in Zn1−yCdyS one finds the so called amalgamation type behaviour,
i.e. the LO eigenfrequency shifts continuously with the composition y from
the one of AB to the one of AC in an alloy AB1−xCx as shown in Fig. 7.19a.

If the bands do not overlap energetically an AB oscillation mode does
not find a resonant partner of AC modes for any k vector and vice versa
and the alloys exhibit generally the so-called persistent mode behaviour. This
means, that the eigenfrequencies of the pure AB and AC modes vary only
marginally under alloying as a function of x, but their relative weights or
oscillator strengths change as shown schematically in Fig. 7.19b.

Examples of the optical properties will be given in Chap. 11.

7.9 Defects and Localized Phonon Modes

In our discussion of phonons (and of our model substance in Chaps. 4
and 5), we assumed until now a perfect arrangement of atoms. In fact,
every real semiconductor contains a lot of crystal or lattice defects. There
are point defects, one-dimensional defects like dislocations, two-dimensional

Fig. 7.19. Composition dependence of the LO phonon energies in alloys for the cases
of amalgamation type (a) and persistent mode type (b) behaviour of the phonons
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defects like stacking faults and (small angle) grain boundaries, or three-
dimensional ones like precipitates or voids. In the present context the most
important are the point defects. For an introduction to this topic see e.g.
textbooks on solid state physics like [75Z1, 81H1, 81M1, 93K1, 95C1, 95I1,
95W1] of Chap. 1. Point defects include vacancies, interstitital and sub-
stitutional atoms. We give some examples for a compound semiconductor
AB in Fig. 7.20. We come back to this topic when we discuss electron
states in semiconductors. What we need here is the fact that a point de-
fect may have a different mass m′ and/or chemical binding, i.e., spring con-
stant D′ as compared to the atom which would be at this place in a perfect
lattice.

A consequence of such a point defect is that a localized phonon mode
may appear. This is a mode which cannot propagate through the sample
with a plane-wave factor as in ((7.29a,b) or (7.34)). Instead the amplitude
has a maximum at the place of the defect and decays exponentially with
increasing distance from it. Obvisouly such a mode is localized at or in the
vicinity of the point defect.

If the eigenfrequency ωloc of such a localized phonon mode falls into the
bands of the intrinsic acoustic or optic modes and couples to them, it will not
produce a big effect. Once such a localized mode is excited, it decays rapidly
into bulk modes. The situation is different if ωloc falls either in a spectral
region where the pure material has no eigenfrequences at all, or couples only
weakly to the bulk modes. Then the localized mode can produce, for example,
an additional absorption band or Raman satellite. We come to this point later.
The situation

ωloc > ωLO
bulk (7.59)

Fig. 7.20. The lattice of a semiconductor AB containing various types of point
defects
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can be realized for example by incorporating a substitutional atom, which has
approximately the same “spring constant”D but a much lighter massm′ than
the atom which it replaces, according to (7.37) or Fig. 7.11.

Since the translation invariance of the lattice is destroyed at the point
defect, the eigenfrequency ωloc cannot be connected with a well-defined wave
vector. There is, however, a possibility to incorporate a localized mode in
a dispersion relation based on the following consideration. A localized mode
can be constructed in a Fourier-transform-like method by a superposition of
bulk modes with appropriate coefficients:

uloc(r) =
∑
k,i

ak,iuk,i(r) , (7.60)

where the index i runs over the various branches. Modes which are localized
to one unit cell will need contributions from the whole Brillouin zone, while
those which are more extended in real space involve contributions from smaller
wave vectors only.

We can now indicate a localized mode in the dispersion relation by a hori-
zontal line covering the region of k values that make substantial contributions
to the expansion of (7.62). We show such a situation in Fig. 7.21 where the
thickness of the horizontal line is related to the amount of the coefficients |ak|
in (7.62).

It should be noted that every defect is a scattering center for phonons and
contributes, together with the anharmonicity mentioned above, to the finite
phase relaxation time of phonons.

To conclude this discussion we would like to stress that even different
isotopes act as scattering centers due to their different masses. If, for exam-
ple, the intrinsic ballistic propagation of phonons is to be investigated, it is

Fig. 7.21. A localized phonon
mode represented schemati-
cally in a dispersion diagram
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desirable to use materials which consist of one isotope only. For more infor-
mation of this topic see Ref. [81A1]g of Chap. 1 or [94C1] and references given
therein.

7.10 Phonons in Superlattices
and in other Structures of Reduced Dimensionality

Until now we were mainly considering homogeneous, three-dimensional semi-
conductors. For the phonons, however, we started with a one-dimensional
chain, but we stated that the dimensionality does not have significant influ-
ence on the dispersion relation but it does on the density of states, according
to what we learned in Sect. 2.6. For the regime of a linear dispersion relation,
i.e., for acoustic phonons with not too large wave vectors see Figs. 7.15 – 7.18
we get with (2.77)

D(ω) ∼ ωd−1 (7.61)

where d is the dimensionality of the system.
Now we want to address in the context of phonons for the first time a rather

modern topic in semiconductor physics, namely superlattices.
A superlattice is a man-made periodic structure which consists of thin

alternating layers of two different materials, as shown in Fig. 7.22. The dif-
ferent layers are only a few lattice constants thick and can be prepared
by various techniques like molecular-beam epitaxy (MBE), metal-organic
chemical vapor-phase deposition (MOCVD), hot-wall epitaxy (HWE) or
atomic layer epitaxy (ALE). A description of these methods is beyond the
scope of this book, but we give some references for the interested reader,
e.g., [80M1, 89H1, 89R1]. See also Sects. 8.11 – 8.13. Especially well-suited
materials for growing superlattices are the III–V compounds GaAs, AlAs

Fig. 7.22. A superlattice consisting of alternating thin layers of two different ma-
terials
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and their alloys Al1−y, GayAs, since the lattice constant is almost inde-
pendent of y. Other systems under investigation involve the two elemental
semiconductors Si and Ge or ZnSe and ZnS1−xSex. Due to their different
lattice constants, the fabrication of superlattices is in this case more diffi-
cult and the layers are strained (strained layer superlattice). For other struc-
tures of reduced dimensionality like quantum wells, ∼wires or ∼dots see again
Sects. 8.11 – 8.13.

The formation of a superlattice results in strong modifications of the dis-
persion relation for phonons in the growth direction, i.e. normal to the planes,
while the in-plane dispersion is generally at least not quantitatively modified.
We concentrate therefore on this direction, which is frequently identified with
the z-direction.

As can be seen from Fig. 7.22 we created a new artificial periodicity lz
which is an integer multiple of the (strained) lattice constants of materials
A and B

lz = n1aA + n2aB (7.62)

This is why such structures are called (artificial) superlattices. Now we use
a similar argument as in connection with Fig. 7.14.

The Brillouin zone in the z-direction extends no longer from −π/a ≤ kz ≤
π/a but only from

− π
lz

≤ kz ≤ π

lz
(7.63a)

All parts of the dispersion curve outside this interval can be shifted into the
first mini-Brillouin zone by vectors of the new reciprocal lattice

Gz = l3
2π
lz

; l3 = 0,±1,±2, . . . (7.63b)

For a single acoustic phonon branch this procedure results in a disper-
sion relation like in Fig. 7.23, where we show the first few of these so-called
backfolded acoustic phonon branches.

The dispersion relation which enters is an average of the dispersion rela-
tions of the two materials, weighted by their relative thicknesses (the so-called
Rytov-model) [89J1,96G1,98G1,01D1].

Usually one can observe only the few lowest, backfolded acoustic phonon
branches. The higher ones are broadened and washed out e.g. due to thickness-
fluctuations of the layers.

For the optical phonon branches two different things can happen. If the
branches in the two different materials overlap energetically, one obtains in
a similar way as for the acoustic phonons mentioned above backfolded optic
phonons.

If the do not overlap energetically, TO or LO optical phonon oscillation
in one material do not find a resonant partner in the other (and vice versa)
similarly to the case of alloys. Consequently the phonons become localized or
confined to the respective layer. The elongation-pattern of the atoms has nodes
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Fig. 7.23. The influence of super-
lattice formation on the acoustic
phonon branch

at the interface or extends only marginally with an exponentially decaying
amplitude into the other material as shown schematically in Fig. 7.24a. With
minor corrections it can therefore be stated that an integer number of half-
waves has to fit into the layer of one material resulting in possible values for
kz in one layer of thickness niai

k(m)
z = m

π

niai
;m = 1, 2, 3, . . . ; i = A,B (7.64)

These discrete kz values are mapped in Fig. 7.24b on the dispersion relation
of an optical phonon branch of e.g. material B. The observation of the higher
orders of such confined optical phonons allows to investigate the dispersion
relation �ω (kz) over large parts of the first bulk Brillouin zone [89J1, 94C1,
94R1,98G1,01D1] and references therein.

If the superlattice is made of a ternary system, e.g. layers AB and AC,
generally no new valences and oscillation modes will appear at the interface,
which do not already exist in one or the other material. The situation is differ-
ent for quaternary systems of alternating layers AB and DC. In this case new
modes may appear at the interface (here AC and BD oscillations) which exist
in neither of the parent compounds. A recently studied system of this type are
e.g. CdS/ZnSe superlattices [01D1]: Depending on the chemical termination
of the layers, there may be CdSe and ZnS modes. If these modes are situated
energetically in a region, where no eigenmodes (confined or backfolded) of
AB or DC (here of CdS or ZnSe) occur, these interface modes can exist only
at the interface with amplitudes decaying to both sides as shown schemat-
ically in Fig. 7.24a. A similar system is BeTe/ZnSe. Interface phonons may
also occur at the boundary between a polar material (e.g. GaAs) and a non-
polar one (e.g. Si). Details of this situation are discussed e.g. in [96Y1] of
Chap. 1.
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Fig. 7.24. Schematic representation of the envelope of an optical phonon mode
confined to material B in a superlattice and of an interface phonon (a) and the
discrete values of kz on an optical phonon branch of material B. (b)

As a result, we may summarize that in superlattices there may be as
new phenomena backfolded or confined phonon modes as well as interface
modes.

To conclude this subsection we mention that in the extreme confine-
ment case of phonons in all three directions of space, which may occur in
so called quantum dots (also known as quantum boxes, nano-crystallites or
nano-islands, depending partly on the way of creation (see Sect. 8.13), the
dispersion relation of the phonons breaks up into a series of discrete modes,
which is governed by the boundary conditions (e.g. free or clamped). See
e.g. [92N1,93T1,95O1,96W1,98A1] and references therein.

7.11 Problems

1. Inspect or build some lattice and crystal models to become familiar with
the topics presented in Sect. 7.2.

2. Show that the reciprocal lattice of a face-centered cubic (fcc) lattice is
a body centered cubic (bcc) lattice and vice versa.

3. Calculate and draw the unit cell and the Wigner-Seitz cell in real space
and the first three Brillouin zones in reciprocal space for a simple cubic
and a hexagonal two-dimensional lattice.

4. Study with the data found in [82L1] of Chap. 1 the transverse and longi-
tudinal eigen-frequencies of optical phonons of a series of semiconductors
like ZnO, ZnS, ZnSe, and ZnTe, or of a similar series with the same anion
and different cations. What do you conclude?

5. Compare the longitudinal-transverse splitting at k = 0 for Ge and the
corresponding III–V, II–VI and I–VII compounds on the same line of
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the periodic table of the elements. Can you qualitatively explain the
findings?

6. Inspect a model of a cubic crystal (e.g. zinc-blende). Find the non primi-
tive cubic unit cell and the primitive one. Explain qualitatively that such
a crystal should be optically isotropic for light propagating (k �= 0!) e.g.
in the directions (100) or (111) but not in (110).
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8

Electrons in a Periodic Crystal

Let us now return for a moment to the Hamiltonian (7.1) which describes
a crystal. By introducing the phonons we have treated the motion of the
atoms. We now assume that the atoms are fixed at their equilibrium positions,
i.e., that no phonons are excited. Then the sum over the potentials of all
atoms forms a periodic potential for the electrons; but we are still left with
a Hamiltonian for about 1023 interacting outer electrons per cubic centimeter,
which should be properly treated in a many particle formalism. Unfortunately
it is extremely difficult to handle this approach. Instead one generally uses
a so-called one-electron approximation. The idea is the following: One assumes
that the periodically arranged atoms and all interaction potentials between
electrons together form a periodic potential V (r) with

V (r + R) = V (r) . (8.1)

where R is a translation vector of the lattice (see Sect. 7.2).
This is a valid approach especially for semiconductors or simple metals.

In semiconductors there is only a low density (generally between 109 and
1019 cm−3) of free electrons (or holes) that can react easily on their mutual
interaction. In simple metals the density of free carriers is higher, but the
density of those reacting on their mutual interaction is limited to the fraction
situated in an interval of width ∆E ≈ 4kBT <<< EF energetically around
the Fermi energy. It must be noted that there are other systems in which the
mutual interaction between carriers plays a crucial role like in the Hubbard
model, in heavy Fermion systems or in connection with the Kondo effect.
These topics are, however, beyond the scope of this book but we provide
some references for the interested reader [93F1,93H1].

We return now to the approximation (8.1). One calculates the eigenstates
for one electron of the corresponding Schrödinger equation and populates these
states with electrons according to Fermi–Dirac statistics until all electrons
have been accommodated. The potential V (r) should ideally be calculated in
a self-consistent way e.g. by Hartree or Hartree–Fock approaches. But simpler
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and more feasible approaches are often used such as a periodic arrangement
of screened Coulomb potentials or a “muffin-tin” potential.

It is beyond the scope of this book to present details of band structure
calculations. There are excellent reviews and (text)books on this topic with
various degrees of sophistication, some of which were already cited in Chap. 1
like [75B1, 75Z1, 81M1, 81S1, 91E1, 93K1, 95C1, 95I1, 96S1, 96Y1, 97S1, 99B1,
01H2,01S1] in addition to [70M1,88C1,88R1,91E1] of this chapter, from which
much of the following material has been taken. On the other hand, the topic is
crucial for the understanding of the optical properties of the electronic subsys-
tem of semiconductors. Therefore we first summarize in the following the main
results and explain the existence of metals, semiconductors and insulators for
those who do not want to go deeper into details, then we give an overview on
the various approaches to the bandstructure calculations starting, e.g., from
free electrons or from atomic orbitals and including the basic concept of k · p
theory. The next sections are devoted to consequences of the band structure of
semiconductors like the concepts of crystal electrons and holes as new quasi-
particles, the effective mass approach, realistic semiconductor band structures
and others, before we concentrate on structures of reduced dimensionality.

8.1 Bloch’s Theorem

There are essentially two approaches to the problem of band structure cal-
culations. In one case one starts with free electrons, which have the simple
parabolic dispersion relation in the non-relativistic regime

E(k) =
p2

2m0
=

�
2k2

2m0
(8.2)

shown in Fig. 8.1a by the dashed line. One introduces a weak periodic (see
(8.1)) potential as a perturbation. These techniques include the “empty lat-
tice”, the nearly-free-electron (NFE), augmented plane wave (APW) and or-
thogonalized plane wave (OPW) approaches. In the last two cases, terms are
added to make sure that the plane waves are orthogonal to the deeper atomic
levels. These terms are treated as potentials and are known as pseudo poten-
tials. These pseudo potentials may be energy dependent.

The introduction of such a weak periodic potential does not alter the
dispersion relation very much, but results in the formation of energy gaps at
the boarders of the Brillouin zones in which no stationary electron states exist
(see Fig. 8.1a). We will explain this point in more detail in Sect. 8.7.

The other group of methods starts with the atomic orbitals of the atoms
forming the solid or more specifically the semiconductor. They involve the
summation over one or more atomic orbitals placed at every atom site in the
crystal and treat the interaction between the orbitals at neighbouring sites,
i.e., the wave function overlap as perturbation. These techniques include, e.g.,



8.1 Bloch’s Theorem 163

Fig. 8.1. The reduced-zone scheme (b) of electronic energy bands in a crystalline
solid reached either starting from (nearly) free electrons (a) or from atomic orbitals
(c, d)

the tight-binding approximation, the linear combination of atomic orbitals
(LCAO) or the extended Hückel method (see Fig. 8.1c,d).

This interaction between atoms leads to a splitting of the atomic level in as
many states as there are atoms (Fig. 8.1c,d) similarly as in classical mechan-
ics where coupling between two identical oscillators leads to two close-lying
eigenfrequencies, three oscillators to three eigenfrequencies and 1023 oscilla-
tors to 1023 eigenfrequencies. The level spacing is so small that for all practical
purposes the result is a continuous energy band. For some more details also
see Sect. 8.7.

The first group of band structure calculation methods is usually more suit-
able for conduction band states of semiconductors the second one for valence
band states. For the meaning of these two terms in the context of semicon-
ductors see Sect. 8.2.

Furthermore, there is an increasing trend to start less with intuitive phys-
ical considerations but to trust more the increasing power of computers to
handle many particle problems.

Independent from the individual approach, one finds in all cases that elec-
tron states in a periodic potential are energetically arranged in energy bands
of a certain width, which may be separated by gaps in which no stationary
eigenstates exist (Fig. 8.1). The electron eigenstates of a periodic potential
are so-called Bloch waves φk,i(r),

φk,i(r) = eikruk,i(r) , (8.3a)
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where
uk,i(r) = uk,i(r + R) . (8.3b)

The φk,i are evidently a product of a plane wave and a lattice periodic
term uk,i (8.3b), where k is the wave vector and i the index of the band, as
shown in Fig. 8.2. The eigenenergies in the bands depend both on k and i and
are periodic in k-space, i.e.,

Ei(k) = Ei(k + G) (8.4)

In a similar way one finds that

φk,i(r) = φk+G,i(r) . (8.5)

These are the fundamental points of Bloch’s theorem. Since the uk,i(r)
remember the wave function of the parent atoms and the exponential term the
plane wave character, the Bloch functions (8.3) incorporate the two limiting
approaches (e.g., NFE and LCAO) mentioned above.

The Bloch theorem is also known as the Ewald–Bloch theorem since Ewald
has found almost identical rules for the propagation of X-rays in crystals (see
textbooks on solid state physics).

The statement of (8.4) once more allows the dispersion relation E(k) to
be reduced to the first Brillouin zone (Fig. 8.1a,b) in a similar way as for
phonons in Sect. 7.4. Actually there are various possibilities to present the
electronic band structure, which are shown in Fig. 8.3. See also Fig. 8.5.

Figure 8.3a shows the extended zone scheme in which various branches
of the dispersion relation E(k) are situated in various Brillouin zones. Equa-
tion (8.4) allows to shift the outer branches into the first Brillouin zone with
suitable vectors of the reciprocal lattice G (here G = ±2π/a) resulting in the
reduced zone scheme of Figs. 8.1b or 8.3b. Alternatively we may repeat all
branches periodically over the various Brillouin zones as shown in Fig. 8.3c.

Usually one uses the reduced scheme of Fig. 8.3b. The extrema of the
various bands tend to occur either at the centre of the first Brillouin zone,

Fig. 8.2. Schematic drawing of the real (or imaginary) part of a Bloch wave in one
dimension
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Fig. 8.3. The extended (a) the reduced (b) and the periodic band structure (c)

i.e., at k = 0 (the so-called Γ -point) or at the boarders of the Brillouin zone
as shown in Fig. 8.3b, but as we shall see later, extrema may also occur
somewhere else on the interval 0 ≤ |k| < π/a. The bands tend to be to a good
approximation parabolic in the vicinity of the extrema but the positive or
negative curvature can be different at every extremum and may even depend
on the direction of k in systems of higher dimensionality than one including
three. When approaching the boarder of the Brillouin zone, the slope of E(k)
normal to this boarder is generally zero.

With increasing energy the width of the allowed bands tends to increase,
while the width of the forbidden gaps decreases. It is even possible that various
bands overlap energetically.

Fig. 8.4. The representation of bands in k-space (a) and in real space (b)
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We will give some arguments for this behavior later in this chapter.
To conclude this section we want to mention that the bands are usu-

ally represented in one of two different ways. The first is the dispersion re-
lation (Figs. 8.1b, 8.3, 8.4a). In the other case one plots the width of the
bands and of the gaps between them as a function of the space coordinate
r (Fig. 8.4b). The latter is especially useful to demonstrate spatial inho-
mogeneities or localized states. We shall meet some examples of both cases
later.

8.2 Metals, Semiconductors, Insulators

Having obtained a first insight into the electronic bandstructure in the above
section, we now want to make the second step and put all electrons into
the bands using, of course, Fermi–Dirac statistics. We further assume zero
temperature.

Some of the energetically lower-lying bands will be completely filled. We
call bands which are completely filled at T = 0 K “valence bands”, while all
partly filled or empty bands are “conduction bands”.

The important region for our purposes is that around the highest valence
and the lowest conduction bands. This region determines not only the optical
properties around the fundamental absorption edge, but also the magnetic
properties and the electronic contributions to the conductivities of electricity
and of heat.

If the filling procedure of the bands ends in such a way that, at T = 0 K
there are one or more partly-filled conduction bands (Fig. 8.5a,b), we have
a metal. This situation arises for example if the atomic orbital which forms
the band is itself only partly occupied (e.g., the outer s-level of the alkali
metals Li, Na . . . ) (Fig. 8.5a) or if a completely filled orbital forms a band
which overlaps with a band stemming from an empty atomic orbital, as is the
case in the rare earth metals (Ca, Mg . . . ) in Fig. 8.5b. If, on the other hand,
the filling procedure gives one or more completely-filled valence bands which
are separated by a gap Eg from completely empty conduction bands, we have
a semiconductor for

0 < Eg ≤ 4 eV (8.6a)

and an insulator for
Eg ≥ 4 eV . (8.6b)

The ”boarder line” of 4 eV is set by convention and is not sharp.
Diamond has, e.g., a gap of 5.5 eV, but is still considered to be a semicon-

ductor, especially because it can be n or p doped.
Materials with

Eg = 0 , (8.7a)

i.e., materials in which the lowest conduction and uppermost valence band
“touch” each other but do not overlap are called semimetals.
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Fig. 8.5. Occupation of the bands for a metal (a,b) a semiconductor (c) and an
insulator (d)

Semiconductors with
0 < Eg ≤ 0.5 eV (8.7b)

are called narrow gap semiconductors.
In the range

0.5 eV < Eg ≤ 2 eV

we find the usual semiconductors, from which many are of wide technical
importance like Ge, Si or GaAs. The regime

2 eV < Eg ≤ 4 eV (8.7c)

characterizes the wide gap semiconductors, which lead continuously to the
insulators.

To conclude this section we want to introduce the terms “direct” and “in-
direct” gap semiconductors. A semiconductor is said to have a direct gap,
or to be a direct semiconductor, if the global maximum of the highest va-
lence band and the global minimum of the lowest conduction band occur at
the same point of the first Brillouin zone in the reduced zone scheme as in
Fig. 8.4a. This point is frequently but not necessarily the Γ -point (i.e., k = 0).
There are also direct gap semiconductors where the gap occurs at a specific
point on the boarder of the Brillouin zone. Semiconductors, in which the two
above-mentioned extrema occur at different k values in the Brillouin zone
have an indirect gap or are called indirect semiconductors. The reason for
this terminology comes from optical transitions between the band extrema.
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A photon with an energy equivalent to the typical width of a semiconductor
band gap has (almost) vanishing momentum on the scale of the first Brillouin
zone. Optical transitions are in this sense vertical in a E(k) relation. If the
band extrema occur at the same point in k-space, a transition between the
extrema is directly possible by absorption (or emission) of a photon. In the
other case this transition is forbidden by the k-conservation law and only in-
direct transitions are possible, which also involve the absorption or emission
of a phonon for momentum conservation.

We shall see examples for both cases in Sect. 8.8.

8.3 An Overview of Semiconducting Materials

We now understand that semiconductors are solids that have at T = 0 K
a series of completely filled valence bands. The uppermost band is separated
by an energy gap Eg from the empty conduction bands.

Since a crystal can be considered a huge molecule, we should also give
the terms used in chemistry. The uppermost valence band is known in this
scientific discipline as highest occupied molecular orbital (HOMO). The low-
est conduction band is called consequently the lowest unoccupied molec-
ular orbital (LUMO). If not stated explicitly otherwise, when we use va-
lence and conduction band we always mean the highest and lowest ones,
respectively.

Presently more than 600 element and compound semiconductors are
known. They are listed with their propeties in the volumes by Landolt–
Börnstein ( [82L1] of Chap. 1).

With the help of the periodic Table 8.1 we try to localize the most impor-
tant semiconductors. In the first two lines we give the current internationally
recommended numbering system for the columns used by chemists, which
runs from 1 to 18, and the old one, which we and most other semiconductor
physicists use. It runs from I o VIII and has subclassifications such as IIA

and IIB.
The technically most important semiconductor is Si. It is found in col-

umn IVA. Conduction and valence bands are formed from the antibonding
and bonding sp3 hybrid orbitals. The binding is completely covalent and Eg

is around 1.1 eV at room temperature. See, e.g., Table 8.2 where we give
some data, which we partly explain later. Silicon crystallizes in the diamond
structure with point group 0h. The modification diamond of carbon is a semi-
conductor as well as Ge.

Tin is usually a metal, but there exists a modification, which is a semimetal
namely grey tin, which also crystallizes in the diamond structure. Lead, finally,
is a metal.

We can already see a general trend, namely that the width of the band
gap decreases if one goes down the columns. SiC also belongs to the group IV
semiconductors. SiC is notorious for forming many different polytypes. The
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Table 8.1. Periodic table of the elements. The names of elements 104 to 110 might
change and others may be discovered in the future.

indirect band gaps of all of them are around 3 eV, i.e., they lie between the
gaps of diamond and Si.

Carbon has two further modifications namely graphite and fullerene (C60).
Graphite is a semimetal with rather strong covalent sp2 hybrid binding within
the hexagonal layers and weak van der Waals binding between the layers. C60

is a semiconductor with Eg ≈ 2.2 eV.



170 8 Electrons in a Periodic Crystal

In the diamond structure every atom is tetrahedrally surrounded by its
nearest neighbors. See Fig. 7.2. We can now replace, e.g., the Ge atoms on
one sublattice by Ga, which has one outer electron less, and the others by As,
which has one electron more than Ge, leaving the total number of electrons per
unit unchanged, but adding a little bit of ionic binding to the still dominant
covalent one. This procedure leads to the so-called zincblende type crystal
structure with point group Td and to the group of III–V semiconductors. To
this group of semiconductors belong the compounds of B, Al, Ga or In with
N, P, As or Sb. We see again the general trend of the band gap with BN being
an insulator, AlN, GaN being wide gap semiconductors while InSb is a narrow
gap semiconductor.

The group III nitrides crystallize preferentially in the hexagonal wurtzite
type structure (point group C6v). In this case every atom of one type is still
tetrahedrally surrounded by the others, but the arrangement of the next-
nearest neighbours is such, that a hexagonal structure evolves (see Fig. 7.2).

If we repeat this step, which leads from the group IV semiconductors to the
III–V compounds, once more or even twice more, we come to the II–VI (more
precisely IIB–VIA) and I–VII (more precisely IB–VIIA) semiconductors, with
increasing and finally dominating ionic binding, but still generally tetrahedral
coordination. The IIA–VIA and IA–VIIA components are usually insulators.

The II–VI semiconductors comprise the compounds of Zn, Cd or Hg with
O, S, Se or Te. The gap generally decreases when going down the columns ZnS,
ZnO and CdS are wide gap semiconductors, while the mercury compounds are
usually semimetals. The II–VI semiconductors usually crystallize in zincblende
or wurtzite type structures with a few exceptions. Both structures are partly
possible with only minor energetic differences, as is the case for ZnS.

Some compounds have other structures like CdO (rocksalt structure), HgO
(rhombohedral). HgS is a semimetal in the zincblende structure but a semicon-
ductor with a gap around 2.2 eV in the trigonal modification (red cinnabar).

The main I–VII compounds are listed in Table 8.1. Not much is known
about the fluorides or the Au+ halides concerning their properties as semi-
conductors.

Until now the list included only elements or binary compounds. In a similar
way as above one can come to ternary semiconductors like CuGaSe2 or even
to quaternary ones like Ag2CdGeS4.

Furthermore, some of the elements and many of the binary compounds par-
tially form alloys even without a miscibility gap like Si1−xGex, Ga1−yAlyAs,
CdS1−xSex, ZnSe1−xTex or Cd1−yHgyTe. In an alloy one still has, in prin-
ciple, nice crystals with a periodic lattice structure, but the lattice sites of
one sublattice are randomly occupied by the two different atoms (Si1−xGex),
anions (e.g., CdS1−xSex) or cations (e.g., Ga1−yAlyAs). However, on a mi-
croscopic scale, the concentration fluctuations of the composition x introduce
some disorder.

Some alloys tend to form ordered structures for compositions close to 0.5
like Ga0.5In0.5P adopting the so-called CuPt structure [95C1].
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Alloying is also possible on both sublattices like in Ga1−yInyNxAs1−x.
Most of the examples in the rest of this book will be taken from these

more common semiconductors, but there are many more, some of which we
mention below.

The IV–VI compounds (also known as lead salts) include the compounds
of Pb or Sn with S, Se and Te. They serve partly as IR laser diodes.

There are further elemental semiconductors like S, Se, Te some modifica-
tions of P or I (As and Sb are considered semimetals). There exist various ox-
ides as semiconductors apart from the group IIB oxides like GeO2, SnO2 (SiO2

= quartz is an insulator); Cu2O; TiO2 in its various modifications (anatase,
rutil, brookit) or the highly poisonous Tl–halides. To conclude this section
we mention organic semiconductors like crystals of anthracene (C14H10), pen-
tacene (C22H14), dibenzothiophene C12H8S and hexathiophene. Organic semi-
conductors do not fall within the focus of this book, but we will occasionally
give examples of their optical properties.

There is a general trend that the band gap of semiconductors decreases
with increasing temperature. The decrease Eg(T = 0) − Eg(T ) = ∆Eg(T )
tends to vary quadratically with temperature at lower temperatures (T ≤ 100K)
and linearly above. This behavior is often described by the Varshni for-
mula [67V1]

∆Eg (T ) =
αT 2

β + γT
. (8.8)

More complex formula were recently suggested, e.g., in [94A1,02G1,03G1]
and references therein.

Some semiconductors like CuCl or some lead salts also show an increase
in Eg with increasing temperature, for some others like CuBr Eg(T ) goes
through a maximum with increasing temperature. For data see, e.g., in [82L1]
of Chap. 1 and references therein.

8.4 Electrons and Holes in Crystals
as New Quasiparticles

As we shall see later, the optical properties of the electronic system of semicon-
ductors are largely determined by transitions of electrons between the upper
valence bands and the lower conduction bands.

The bandstructure as presented until now, i.e., in connection with Figs. 8.1 –
8.5, describes the so-called N ± 1 particle problem in the following sense: if
we consider a semiconductor with a completely filled valence band containing
N electrons per cm3

N � 1022 − 1023 cm−3 (8.9)

and a completely empty conduction band and add one more electron, we find
that this electron can be placed into exactly the conduction band states. If
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Table 8.3. Properties of a hole in the valence band compared to the properties of
the electron that has been removed from the valence band to create the hole

Property Hole Removed electron

electric charge q qh = −qre, qre ≈ −1.6 × 10−19 As
wave vector kh = −kre

spin σh = −σre

eff. mass mh > 0 = −mre, mre < 0

we remove one of the N electrons and ask from which state it came, we find
the valence band states.

An obvious step now is to consider the one or few electrons in an otherwise
empty conduction band (CB). For an almost filled valence band, however, it
is easier to consider the few empty states and their properties instead of
the many occupied ones. This idea leads to the concept of “defect-electrons”
or “holes”. The properties of the hole are connected in the following way
(Table 8.3) with the properties of the electron that has been removed from
the valence band (VB).

From Table 8.3 we see that the hole has a positive charge and that its wave
vector and spin are opposite to those of the electron removed from the valence
band. The two latter statements are easy to understand. A semiconductor with
a completely filled valence band has total momentum and spin equal to zero.
If we take one particle out, the remainder acquires for the above quantities
values exactly opposite to those of the removed particle. For clarity Figs. 8.6a,b
show the bandstructure containing one electron in the conduction band and
one hole in the valence band, respectively. The states are equidistant in k (see
Sect. 2.6) but we should note that there are usually 1022–1023 states in each
band per cm3 and not only the few shown in Fig. 8.6.

The electrons and holes in a semiconductor crystal are quasi-particles.
They can exist only in the crystal and not in vacuum, in contrast to nor-
mal electrons and positrons with which they have a lot in common, except
the magnitude of the energy gap which is � 1 MeV for normal electrons and
positrons i.e., twice the rest mass of 511 keV = m0c

2. The dispersion relations
of electrons and holes are different from those of free electrons and positrons
which for the non-relativistic case are given by

Ee,p = ±
(
m0c

2 +
�

2k2

2m0

)
, (8.10)

where m0 is the free electron mass.
The quantity �ke,h of crystal electron and hole is a quasi-momentum,

since it is conserved only modulo reciprocal lattice vectors – see (8.4),(8.5) –
and since the Bloch waves of (8.2),(8.3) are not proper eigenstates of the
momentum operator �

i ∇. For more details of the concept of quasi-momentum
see [98B1] of Chap. 5.
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Fig. 8.6. One electron in the conduction band (a) and one hole in the valence band
(b). Full circles: occupied states; open circles: empty states

One should note that the energy of a hole increases if it is brought deeper
into the valence band.

8.5 The Effective-Mass Concept

If we want to describe the motion of an electron or hole in a semiconductor
under the influence of an external field (e.g., an electric or magnetic field) it
is intuitively clear that we ought to consider a wave packet rather than the
infinitely extended Bloch waves. To describe such a wave packet we super-
pose Bloch waves of a certain range of k-vectors around a k0 as described
schematically in (8.11)

φk0(r) =
∑

k

ak eik·ruk(r) . (8.11)

These types of wave packet are known as Wannier-functions. In order to
keep the k-vector reasonably well defined, we localize the wavefunction only
to a volume larger than a unit cell. Due to the uncertainty relation we would
need wavefunctions from the whole Brillouin zone if we wanted to localize an
electron to within one unit cell.

An external force F changes the energy of the wave packet according to

dE(k) = F · ds = F · vg dt (8.12)
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with the group velocity according to (2.13)

vg =
1
�
gradkE(k) (8.13a)

or simplified

vg =
1
�

dE
dk

(8.13b)

Since, on the other hand, we have

dE(k) =
dE(k)

dk
· dk = �vg dk , (8.13c)

we find from combining (8.12) and (8.13c)

�
dk

dt
= F = ṗ (8.13d)

This expression corresponds to Newton’s law of motion, but now for the
quasi-momenta �k of the crystal electrons or holes.

From (8.13b), (8.13d) we get for the acceleration a of the wave packet

a =
dvg

dt
=

1
�

∂2E

∂k∂t
=

1
�

∂2E

∂k2

dk

dt
=

1
�2

∂2E

∂k2
F . (8.13e)

Comparing with the trivial form of (8.13d)

a =
1
m

F (8.13f)

we find that the crystal electron and hole move under the influence of external
fields through the crystal like a particle, however, with an effective mass given
by

1
meff

=
1
�2

∂2E

∂k2
=

1
�2

∂2E

∂ki∂kj
; i, j = x, y, z . (8.14)

For free electrons and positrons (8.14) leads to meff = m0.
The right-hand side of (8.14) snows that the effective mass is actually

a tensor and can depend on the direction in which the electron or hole moves.
The important point now is that the bands of semiconductors tend to

be parabolic in the vicinity of the band extrema, as shown schematically in
Fig. 8.7 or in the real band structures discussed below with Figs. 8.9–8.12.
These extrema are most important for the optical and transport properties.
The effective masses are constant in these regions. This leads to the so-called
effective-mass approximation. Electrons and holes in a semiconductor are sim-
ply treated as free particles, but with an effective mass given by (8.14).

We should mention that the mass of an electron is positive if the curvature
of the band is positive. Due to the change of the sign of the properties of holes
compared to those of the missing electron in the valence band (Table 8.3) the
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mass of the hole is positive at the maximum where the curvature is actually
negative.

The explanation behind the effective masses of electrons and holes is basi-
cally the following. The forces which act on an electron are the ones from the
other ions and electrons in the crystal and the externally applied ones. For
simplicity, we condensed the first of these forces to yield the periodic potential
of (8.1) using the one-electron approximation. Then we chose to consider only
the external forces acting on the electrons and the price we have to pay is
the fact that the electrons and holes react with an effective mass. This mass
is fortunately, in some regions at least, constant, allowing the effective-mass
approximation mentioned above, but it can change as a function of k and
become negative or infinite, as can be seen in Fig. 8.7.

It is important to note that an increasing curvature of a band is neces-
sarily connected with an increasing width of the band. Therefore we find the
qualitative relation:

electron easy to move and accelerate ←→ low effective mass
←→ large curvature of the band ←→ large band width
←→ strong coupling between adjacent atoms and vice versa . (8.15)

Thus we have here another example of the more general discussion given in
the introduction to Sect. 5.4.

Furthermore it can be stated as a trend that a large band width leaves less
space on the energy scale for gaps. Therefore we can also state as a rule of
thumb, that narrow gap semiconductors tend to have small effective masses
and wide gap semiconductors tend to have carriers with larger effective masses.

Fig. 8.7. Schematic dispersion (a) of a conduction band and the resulting effective
mass (b). After [95I1] of Chap. 1
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In the rest of this book we shall use the effective-mass approximation if
not stated otherwise, including the polaron correction discussed in the next
section.

We will in future omit the prefix “crystal” when talking about electrons
and holes in semiconductors and we indicate the effective masses by indices e
and h:

me = effective mass of electron ,
mh = effective mass of hole , (8.16)

sometimes with an additional index to distinguish different bands, but we
always remember, that these charge carriers are quasi-particles, characterized
by their band index, energy and (quasi-!) momentum.

It should be mentioned that the Fermi energy is often situated in metals
with partly-filled bands in regions where the band structure E(k) is no longer
parabolic. On the other hand, the electrons close to the Fermi energy are
in metals the relevant ones for many physical properties like the electrical
conductivity, the specific heat or the paramagnetic behavior of the electron
gas. Therefore the use of the effective mass concept as given with (8.14) is
less frequently used in metal physics and replaced by another concept that is
based on the fact that the first derivative gradkE(k) vanishes per definition
close to the extrema of the conduction and valence bands of semiconductors
but usually not around EF in a metal.

One can then define a “momentum effective mass” mi in contrast to the
“force effective mass” meff in (8.13) via

�k = p = mv (8.17)

resulting in vg = 1
�
gradkE(k) in the vicinity of EF(kF) in

1
mi

=
1

�kF
gradkE (k = kF) . (8.18)

8.6 The Polaron Concept
and Other Electron–Phonon Interaction Processes

Before proceeding to some basic concepts of bandstructure calculations and
to the band structures of real semiconductors, we shall discuss here various
aspects of electron–phonon interaction (see also [69R1,76C1,77P1,79T1,80M1,
80P1]).

If we introduce an electron or a hole into a semiconductor which has at least
partially ionic binding, the additional charge carrier will polarize the lattice
provided we relax the assumption that the ions are “fixed” at their lattice
sites. An electron will attract atoms with a positive charge and repel those
with a negative one (Fig. 8.8). For holes, the situation is just the opposite.
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We can describe this lattice distortion as a superposition of preferentially
longitudinal optical phonons, i.e., a free carrier is accompanied by a “phonon
cloud”. The entity of charge carrier plus phonon cloud is called a polaron.
In semiconductors, the radius of the phonon cloud is larger than the lattice
constant, resulting in a so-called “large polaron” in contrast to the “small
polaron” which occurs in ionic insulators and may lead to self-localization
within a unit cell. The effective mass me,h of a polaron is greater than that
of an electron in a rigid lattice mr.l.

e,h See e.g. [69R1, 70M1, 77P1, 79T1, 80M1,
80P1,88C1] or [75Z1,76A1,81M1,82L1,99B1] of Chap. 1.

me,h � mr.l.
e,h

(
1 +

αe,h

6

)
, (8.19a)

where the index r.l. stands for ”rigid lattice” and α is a dimensionless quantity
which describes the Fröhlich coupling of carriers to the LO phonons. One finds

αe,h =
e2

8πε0�ωLO

(
2mr.l.

e,hωLO

�

)1/2(
1
εb

− 1
εs

)
. (8.19b)

where εs and εb are the low-and high-frequency values of the dielectric function
below and above the optical phonon resonances, respectively; see also Chaps. 4
and 12.

Obviously semiconductors without an ionic binding contribution have εb =
εs [see (4.26), (4.28)] and thus α = 0. For all normal semiconductors one finds

α ≤ 1 . (8.19c)

Additionally the lattice relaxation leads to a decrease of the width of the
gap by an amount ∆Eg with contributions for electrons and holes

∆Ee,h
g = αe,h�ωLO . (8.19d)

Fig. 8.8. The lattice distortion around a carrier in a (partly) ionic semiconductor
illustrating the polaron concept
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The radius of the phonon cloud in the polaron rp is finally given by

re,hp =
(
�/2mr.l.

e,hωLO

)1/2
. (8.19e)

Basically it is very difficult to ”fix the atoms at their lattice sites”. There-
fore all common experimental techniques to determine the effective masses of
electrons and holes, e.g., by cyclotron resonance, or the value of the gap, e.g.,
by optical spectroscopy, will give polaron values. We therefore continue to
use the effective mass approximation and simply bear in mind that all values
given for me,h or Eg are actually polaron values.

Apart from the renormalization of mass and energy there are other con-
sequences of carrier–phonon interaction, the most important being scattering
phenomena. An electron or hole can be scattered inelastically, e.g., by emitting
or absorbing a phonon under energy and momentum conservation.

Ei
e = Ef

e ± �ωPhonon , (8.20a)

ki
e = kf

e ± kPhonon(+G) . (8.20b)

The interaction Hamiltonian which describes such processes can have various
origins as shown e.g. in [73H1,82L1,96Y1] of Chap. 1.

� Optical phonons are often accompanied by an electric field (Sect. 7.4, 7.5
and 11.1). The interaction of carriers with the electric field of preferentially
longitudinal optical phonons is known as the Fröhlich interaction.

� Since the width of the gap depends on the lattice constant and on the
arrangement of the atoms in the basis, a change of these quantities will in-
fluence the bandstructure. On the other hand, a phonon can be considered
as a periodic deformation of the arrangement of atoms, and the carriers
“feel” the resulting modulation of the bands. The resulting interaction
between carriers and phonons is called deformation-potential scattering.
The deformation potential scattering occurs for both acoustic and optical
phonons. The deformation potential Ξ connects usually the relative dis-
placement ∆a/a of an atom with a = lattice constant with the energetic
shift of a band ∆E resulting schematically in

∆E = Ξ
∆a
a

(8.21)

Typical values of deformation potentials are in the range of 5 to 10 eV.
Note that (8.21) is valid only for ∆a/a <<< 1.

� Finally, it is known that many non-centrosymmetric crystals show the
piezo-electric effect, i.e., the appearance of an electric field as a conse-
quence of strain, i.e., of lattice distortion. Again we can consider an acous-
tic (or optical) phonon as a periodic modulation of the lattice parameters,
which produces, via the piezo-electric effect, a varying electric field which
interacts with the electrons and holes. This effect is the so-called piezo
(acoustic) coupling.
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More details about the polaron concept and on carrier-phonon coupling
can be found in the references given above.

In the so-called semimagnetic semiconductors, usually II–VI compounds
in which the cations are partly replaced by Mn or Fe ions, one finds so-called
magnetic polarons, i.e., a spin alignment of the paramagnetic ions in the
vicinity of a carrier. For details see e.g. references given in Chap. 16

8.7 Some Basic Approaches
to Band Structure Calculations

In this section we will take a closer look at band structure calculations. Since
this topic is already treated in many (text)books and review articles, it does
not make too much sense to simply write it down here again. Instead we want
to present the basic concepts and ideas but we are not aiming towards a strin-
gent mathematical treatment of the topic. For this aspect we refer the reader
rather to the literature like the textbooks on solid state and semiconductor
physics of Chap. 1 and references given therein.

We start with the concept of nearly free electrons, proceed to the approach
starting from atomic orbitals and finish this section with the so-called k · p
perturbation theory, which is very useful to calculate band structures in the
vicinity of the extrema.

As already stated, the dispersion relation of a free electron in vacuum is
a parabola in the nonrelativistic regime as shown in Fig. 8.9a or 8.1a, i.e.,

E (k) =
�2k2

2m0
(8.22)

We start, for simplicity, with a one-dimensional system and represent the
relation (8.22) for this case in Fig. 8.9a.

Next we introduce a very weak periodic potential as shown schematically
in Fig. 8.10 with a periodicity a. Weak means, in this context, that the dis-
persion relation of Fig. 8.9a is only marginally influenced by this potential.
Nevertheless, we have introduced a periodicity by this potential in real space,
which evokes the (Ewald–)Bloch theorem. As a consequence, the dispersion
relation can be repeated in k-space by shifting it by integer multiples of 2π/a
resulting in the extended zone scheme of Fig. 8.9b (dashed lines). Compare
with Fig. 8.1. In the limit that the amplitude of the periodic potential goes
to zero, this is all. If the potential is small but finite, a further modification
occurs. Small gaps open at the borders of the Brillouin zones as shown by the
solid lines. There are various possibilities to explain the appearance of these
gaps and the fact that two different energy eigenvalues exist for the same
k-vector at the Brillouin zone boundary.

In a first argumentation this splitting can be considered as an example
of the non-crossing rule already discussed in Sect. 5.1. The coupling between
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Fig. 8.9. The (one-dimensional) dispersion relation of a free electron in vacuum
(a) in a weak periodic potential (b) and the resulting reduced zone scheme (c)

the degenerate states at k = nπ/a is mediated by the periodic potential. In-
deed it can be shown that the width of the band gap is determined by the
Fourier component of the periodic potential (see, e.g., (7.10)) with the recip-
rocal lattice vector G, which couples the bands that intersect for vanishing
potential.

Another set of arguments works as follows. Assume a plane electron wave is
impinging on the periodic potential. Then the potential will produce scattered
waves. For an arbitrary k-vector, i.e., wavelength and (in dimensions higher
than one) direction of incidence, the scattered waves will have various phase
shifts relative to each other and will essentially cancel. However, there are
special wave vectors, namely just the ones at the borders of the Brillouin zones
(in our present one-dimension model k = ±nπ/a) where all scattered waves
interfere constructively to form a backscattered wave with large amplitude,
i.e., an incident wave with, e.g., ki = π/a creates a backscattered wave with
kb = −π/a (and ki − kb = 2π/a = G). Since the backscattered wave with
kb scatters again off the periodic potential contributing to the wave with ki

we end up under stationary conditions with two counterpropagating waves of
equal amplitudes and ki = −kb. As is well known, the superposition of two
waves with k and −k and equal amplitudes produces a standing wave. This
fact has in our context two consequences:

� A wave packet built up from a standing wave and its surroundings in
k-space has zero group velocity. Consequently the slope of the dispersion
relation must be zero, normal to the border of the Brillouin zone.

� The standing wave can be the sine- or the cosine-type with the same
wavelength and k-vector as shown in Fig. 8.10, where the probabilities are
plotted. These two waves have their maxima at the positions of the maxima
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or of the minima of the periodic potential, respectively. Consequently they
see different average potential energies but have equal kinetic energy. This
fact results in the energy splitting, i.e., in the appearance of the gaps at
the borders of the Brillouin zones.

We proceed now, still in the context of nearly free electrons, to two- and
three-dimensional potentials.

In Fig. 8.11a we show the parabolic dispersion relation of (8.22) over a two
dimensional k-space assuming a hexagonal, two-dimensional lattice but van-
ishing potential. The differently hatched areas in the kx, ky plain correspond
to the different Brillouin zones. Figure 8.11a thus corresponds to the extended
zone scheme. Figure 8.11b shows the resulting reduced zone scheme, which is
obtained by shifting the parts outside the first Brillouin zone by suitable vec-
tors G of the reciprocal lattice into the first zone. The various energy surfaces
or bands should touch, e.g., at the border of the first Brillouin zone for van-
ishing potentials like in Fig. 8.9b for the one-dimensional case, but have been
displaced in Fig. 8.11b and c for clarity along the energy axis to allow an
“insight” into the first Brillouin zone.

In Fig. 8.11c a weak potential has been switched on. As we expect from
our knowledge from the one dimensional case the overall appearance of the
E(k) relation does not change very much but kinks are smoothed out, energy
gaps open, e.g., at the boarder or the center of the first Brillouin zone and the
slope of the dispersion relation vanishes at the zone boundary in the direction
normal to it. Figure 8.11d finally gives the dispersion relation along various di-
rections in the two-dimensional k-space for vanishing and for weak potentials.

In Fig. 8.12a and b we finally go through the same procedure as in
Fig. 8.11d, but now for a real three-dimensional crystal structure, namely
that for diamond (point group Oh).

Fig. 8.10. Schematic drawing of two Bloch waves with equal k-vector but different
potential energies at the boundary of the first Brillouin zone over a periodic potential
V (x)
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The case of the empty lattice in Fig. 8.12a already shows a rather complex
band structure and we understand that the complexity of a three-dimensional
band structure comes to a large extent from the back-folding of the parabolic
dispersion into the first Brillouin–zone.

Actually there is a possibility to test various band structure calculations,
the so-called empty lattice datetest. One runs any type of band structure
calculation but with vanishing potential. Since the solution is known exactly,
e.g., for the diamond structure in Fig. 8.12a the band structure calculation
must give this result. If it fails, something might be wrong, at least for the
calculation of the bands arising from the outer, weakly bound atomic orbitals.

In Fig. 8.12b a realistic band structure calculation is shown for Si which
crystallizes in the diamond structure, as already mentioned in Sect. 8.3, but
still neglecting spin. The dispersion relation is given for the direction from the
Γ -point towards the X and L points as in Fig. 7.4b, but also from Γ along the
Σ direction to the U, K points and from there along the surface of the first
Brillouin zone to the X point. The indirect band-gap in Si occurs between the

Fig. 8.11. The parabolic disper-
sion relation of free electrons over
a two-dimensional k-space, assuming
a hexagonal lattice with vanishing po-
tential (the so-called empty lattice)
(a) the resulting reduced zone scheme
for vanishing (b) and weak but finite
potential (c) and the E(k) relation
along various lines of high symmetry
for both cases (d). In b and c the
bands are displaced vertically for clar-
ity ([81M1] of Chap. 1)
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Fig. 8.12. Band structure for the three dimensional diamond structure. For vanish-
ing potential (a) and a realistic band structure calculation for Si (b). The numbers
at Γ give the irreducible representations (see Sect. 26.4 to 6), still neglecting spin:
According to [76A1,81M1,96Y1] of Chap. 1

maximum of the valence band at the Γ point, set here as energy zero and the
minimum of the conduction band close to the X point.

While we stressed, in the nearly free electron approach, the plane wave
factor of the Bloch–wave and assumed that the lattice periodic part is essen-
tially a constant, we now start from the opposite side, by placing one or more
atomic orbitals at every atom site as shown, e.g., in Fig. 8.3 for simple 1s like
atomic orbitals.

Now we translate this concept into an equation assuming, for simplicity,
that we have a three-dimensional simple-cubic lattice with one atom per unit
cell and a nondegenerate normalized atomic orbital ϕi(r−Ri) at every lattice
site Ri.

In the linear combination of atomic orbitals (LCAO), or tight binding
approximation, the total wave function ψ(r) is then given by

ψk (r) =
∑

i

Ck,iϕi (r − Ri) . (8.23a)

The fact that this form has to be of the Bloch–type determines the Ck,i

to be
Ck,i = N− 1

2 eikRi (8.23b)

where N
−1
2 is the normalization factor for a crystal consisting of N atoms.

Inserting (8.23b) in (8.23a) results in the LCAO wave function

|k〉 = ψk (r) = N− 1
2

∑
i

eikRiϕ (r − Ri) . (8.24a)
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The energy belonging to these wave functions can be calculated in first
order with the help of the Hamiltonian H which contains, apart from the
kinetic energy terms, the sum over the atomic potentials via

E (k) =〈k |H |k〉 = N−1
∑

i

∑
j

eik(Ri−Rj)

×
∫
ϕ · (r − Ri)Hϕ (r − Ri) d3r . (8.24b)

Since only relative distances enter, we simplify (8.23b) by introducing
Rm = Ri − Rj and obtain

E (k) = 〈k |H |k〉 =
∑
m

eikRm

∫
ϕ · (r − Rm)Hϕ (r) d3r . (8.24c)

The next simplification is to assume realistically that in the sum only the
terms with Rm = 0 and contribution for nearest neighbors Rn in the overlap
integral give considerable contributions. With the abbreviations∫

ϕ∗ (r)Hϕ (r) d3r = −A (8.25)

and ∫
ϕ∗ (r −Rn)Hϕ (r) d3r = −B (8.26)

we obtain
E (k) = 〈k |H |k〉 = −A−B

∑
n

eikRn (8.27)

where the sum now runs only over the nearest neighbors.
The term −A is close to but generally slightly lower in energy than the

eigenenergy of the parent atomic orbital ϕ(r) since the Hamiltonian contains
not only the potential of a single atom but the sum over them as stated above.

For the simple-cubic lattice, which we consider, Rn adapts the following
six values

Rn = (±a, 0, 0); (0,±a, 0); (0, 0,±a) . (8.28)

This finally results in a simple band structure of width 12B centered ar-
ound −A:

E(k) = −A− 2B(cos kxa+ cos kya+ cos k2a) . (8.29)

We see from (8.29) that the overlap between atomic orbitals leads to the
formation of bands out of sharp atomic levels while the nearly free electron
methods explained the appearance of gaps in the simple parabolic dispersion
relation (see again Fig. 8.1).

Physically the formation of bands by the overlap described by B in (8.29)
is nothing but the splitting of the eigenenergies of coupled harmonic oscillators
as already mentioned in Sect. 8.1.
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The band width increases with increasing overlap integral B. Conse-
quently, the width of the forbidden gaps tends to decrease, as does the effective
mass, and the lattice periodic part of the Bloch–function uk(r) is smoothed
out. See also Sect. 8.5.

An early example of the LCAO method is the Wigner–Seitz approach
[47L1] which can already show, for the simple alkali-metals, that the nearly

free electron and the LCAO approaches give consistent results.
To finish this subsection on LCAO we want to discuss two further exam-

ples. First we consider qualitatively a hypothetic situation in which a valence-
band is formed from atomic 2p orbitals in a simple-cubic lattice [97U1].

In Fig. 8.13a we show a layer of px orbitals. In the x direction the overlap
integral B (see above) is small since adjacent wave function lobes of differ-
ent atoms have opposite sign, i.e., there is a node line. Small overlap means
a narrow band in the kx direction and a heavy hole mass. The same or-
bitals have a large overlap integral in the y direction since adjacent lobes
of neighboring atoms have the same sign. Consequently, B is larger in the
y direction the band is broader in the ky direction and the effective mass
is small as shown by the solid line in Fig. 8.13b. For the py orbitals we ob-
tain just the opposite behavior as shown by the dashed line in Fig. 8.13b.
Including the pz orbitals gives an analogous behaviour in all three direc-
tions of k space. We can reinterpret this finding in the following way. There
is one valence-band in all three directions, which has low curvature, i.e.,
a heavy effective mass and another one, which is degenerate at the Γ -point,
with large curvature and low effective mass. Consequently the holes in these
bands are called heavy holes (hh) and light holes (lh). We should remem-
ber that we were treating a hypothetical material, but we shall encounter
in Sect. 8.8 a very similar but slightly more complex situation for the va-
lence bands of many semiconductors crystallizing in diamond- or blende-type
structures.

Fig. 8.13. A hypothetic layer of px orbitals (a) and the resulting E(k) relation in
the direction kx and ky (solid line) and the analogon for py orbitals (dashed line)
(b). The heavy dots in a give the positions of the atoms
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As a last example we discuss with Fig. 8.14 the tight binding approach for
Si (or diamond or Ge) as a function of the lattice constant a. Si has a filled Ne
configuration plus 3s23p2, i.e., four electrons in the outer nB = 3 shell, which
are responsible for the chemical binding, while the lower electron states (1s2,
2s2, 2p6) form deeper valence bands, which are presently of no interest.

For a large lattice constant the overlap integral vanishes and one starts
with the atomic 3s and 3p levels. With decreasing distance the levels shift to
lower energy and broaden since both A and B in (8.29) depend on the lattice
constant. For further decreasing distance the two bands start to overlap. This
is the distance between the atoms at which the sp3 hybrid orbitals start to
form. For even smaller values the bands split again. In contrast to the two
fold degenerate 3s and six-fold degenerate 3p levels, two four-fold degenerate
bands form the binding and the antibinding states of the sp3 hybrids. Since
there are two Si-atoms in the primitive unit cell, the valence band originating
from the HOMO (see Sect. 8.2) accommodates eight electrons and the con-
duction band (LUMO) also has place for eight electrons per unit cell. The
binding orbitals of the sp3 hybrid point towards the corners of a tetrahe-
dron giving rise to the tetrahedral coordination of many semiconductors (see
Sect. 7.2).

The minimum of the total free energy gives the equilibrium distance r0,
which is indicated in Fig. 8.14. For even smaller values of a the bands shift to
higher energies, again due to the action of Pauli’s principle, and the increasing
kinetic energy of the wave functions.

Fig. 8.14. The bands originating from the 3s and 3p levels of Si as a function of the
lattice constant a or the distance between atoms ([95I1] of Chap. 1). The numbers
in the circles give the number of electrons per atom in the respective state or band.
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To conclude this section we give a few introductory remarks to the widely
used k · p perturbation theory, which is very valuable to calculate the band
structure in the vicinity of band extrema but by extrapolation allows one to
obtain an idea about the band structure over the whole Brillouin zone. For
more details see again the textbooks on solid state physics and on semicon-
ductor physics cited in Chap. 1 and in this chapter.

We assume in the following that the band extrema are situated at k0 and
introduce the further simplification that k0 = 0. If this is not the case, the
following considerations are valid for k′ = k − k0.

We start again with the one-electron approximation and the periodic po-
tential V (r) = V (r + R). The Hamiltonian reads

H =
p2

2m0
+ V (r) . (8.30)

We insert the Bloch-wave ansatz of Sect. 8.1 into (8.30) and obtain (8.31a)
where n is the band index, m0 the free electron mass and p = �

i ∇:(
p2

2m0
+

�
2k · p
m0

+
�

2k2

2m0
+ V (r)

)
unk (r) = En (k)unk (r) . (8.31a)

For the case k = k0 = 0 (8.31a) simplifies to(
p2

2m0
+ V (r)

)
un0 (r) = En (k = 0)un0 (r) = En,0un,0 (r) . (8.31b)

We now assume, that the solution of (8.31b) is known. Then we can use the
terms �2kp/m0 (this is the reason for the name of this method) and �2k2/2m0

in (8.31a) as perturbations of the first and second order in k.
For the simple case of a nondegenerate band (or a two-fold spin degenerate

one) we obtain for the lattice periodic part of the eigenfunctions unk(r)

unk (r) = un0 (r) +
�

m0

∑
n′ �=n

〈uno |k · p|un′0〉
En0 − En′0

un′0 (r) . (8.32a)

The above-mentioned situation of nondegeneracy frequently holds for the
lowest conduction band of semiconductors.

The dispersion relation is then given by

En (k) = En,0 +
�

2k2

2m0
+

�
2

m2
0

∑
n′ �=n

|〈un0 |k · p|un′0〉|2
En0 − En′0

(8.32b)

From (8.32b) we can easily deduce the effective mass of e.g. the conduction
band n

1
me

=
1
m0

+
2

m2
0k

2

∑
n′ �=n

|〈uno |k · p|un′0〉|2
En0 − En′0

(8.32c)
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The coupling between various bands, which influences me, depends essen-
tially on the momentum matrix element, which in turn is closely related to
the dipole-matrix element (see Sect. 3.2.2) and can at least in principle be
deduced from optical absorption spectra.

The knowledge, which of the matrix elements vanish and which are non-
zero, can be obtained from group theory (see Chap. 26).

As already stated various times above, the effective electron mass decreases
with decreasing width of the gap En0 − En′0 if the dominant term in (8.32c)
comes from the coupling between conduction- and valence band.

Since the k · p theory starts for all bands with the free electron mass
(see (8.31a)) the appearance of effective masses can be considered again as
a consequence of level repulsion, e.g., between conduction and valence band
in the way indicated schematically by the arrows in Fig. 8.15. The coupling
between the bands arises in this model from the k · p term (also see the
Kane-model [57K1]).

The treatment of degenerate bands, especially of the upper valence bands
in k ·p theory is more complicated, and beyond the scope of this chapter. We
refer the reader to the above-mentioned literature for details and formula but
mention that we shall meet results in the next section on band structures of
real semiconductors.

8.8 Bandstructures of Real Semiconductors

In this section we present band structures of real semiconductors.
As already mentioned the upper valence bands frequently arise, in the case

of ionic binding, from the highest occupied atomic p-levels of the anions with

Fig. 8.15. Conduction and valence band
with free electron mass m0 (dashed lines)
and the modifications (arrows) resulting from
level repulsion (solid lines)
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Fig. 8.16. An overview of the band structures of some cubic semiconductors [70M1]

a more-or-less pronounced admixture of d-levels, or from the bonding states
of the sp3 hybrid orbitals for covalent binding. The lowest conduction bands
come from the lowest empty s-levels of the cations or the antibonding sp3

hybrid, respectively. In Fig. 8.16 we give the essentials of the bandstructure
for cubic semiconductors like diamond, Si or Ge (point groupOh) or the III–V,
II–VI and I–VII compounds crystallizing in zincblende (Td) structure.

The valence band has its maximum at the Γ point, i.e., at k = 0. It
is six-fold degenerate including spin corresponding to the parent p orbitals.
In Sect. 8.7 we stated that eight levels form the bonding sp3 hybrid state
since there are two atoms in a unit cell. Six of them, which are treated
in the following, form the top of the valence band and the other two the
rather low lying Γ1 (with spin Γ6) level seen, e.g., in Fig. 8.14b. This band is
not included in the following. The upper valence band splits due to spin–
orbit coupling at k = 0 into a two-fold degenerate band (symmetry Γ+

7

in Oh or Γ7 in Td) and a four-fold degenerate band (symmetry Γ+
8 in Oh

or Γ8 in Td). Usually the Γ (+)
8 band is the upper and the Γ (+)

7 the lower
one. The spin–orbit splitting increases in atoms with increasing charge Z
of the nucleus and this also applies in the semiconductor. In CuCl the or-
dering of the valence bands is inverted due to the influence of close-lying
d levels.
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The Γ (+)
8 valence band splits for k �= 0 into two bands which have different

curvature and are therefore known as heavy- and light-hole bands. All bands
have cubic symmetry, which is lower than spherical symmetry. As a con-
sequence the dispersion and thus the hole masses depend on the direction
of k. This phenomenon is known as band-warping. The valence bands are fre-
quently treated in k · p perturbation theory. The theory has been developed,
e.g., by Kane, Luttinger, Cardona, Pollack and many others (see [57K1,87B1]
or [96Y1] of Chap. 1) and is briefly outlined in Sect. 8.7.

Basically one has to start with the 16 bonding and antibonding states
resulting from two atoms per primitive unit cell. Often one considers the
lowest two-fold degenerate conduction band (symmetry Γ6) separately, e.g.,
in the way described in Sect. 8.7 and is then left with eight valence band
states. Since the lowest Γ1 (or Γ6) state is energetically rather far away, it
has only minor influence and may be neglected in the treatment of the upper
valence bands. The remaining six states in the Γ8 and Γ7 valence bands can
be treated in a 6 × 6 matrix. If the spin-orbit coupling is large, it is, how-
ever, often possible to treat the Γ8 band alone resulting in a 4 × 4 matrix,
which can be solved analytically. The resulting band structure is frequently
described by the so-called Luttinger parameters γ1, γ2 and and γ3 accord-
ing to

E1,2 =E0 +
�

2

2m0

[
γ1k

2 ± 2
[
γ2

(
k4

x + k4
y + k4

z

)
+3

(
γ2
3 − γ2

2

) (
k2

xk
2
y + k2

yk
2
z + k2

zk
2
x

)]1/2
]

(8.33a)

where γ−1
1 describes the average effective mass and γ2 and γ3 the splitting

into heavy- and light-hole bands and the warping via the term 3
(
γ2
3 − γ2

2

)
. If

warping is negligible (i.e. γ2 = γ3) the light and heavy hole effective masses
are given by

mhh =
m0

γ1 − 2γ2
; mlh =

m0

γ1 + 2γ2
(8.33b)

The conduction band has a minimum at the Γ point and other minima in the
direction ∆ close to the X points and at the L points.

If the minimum of the Γ point is the deepest one, the semiconductor is
said to have a “direct gap” since transitions between the global maximum of
the valence band and the global minimum of the conduction band are directly
possible with photons, having kphoton � 0. In other cases, the semiconductor
is called “indirect” since a momentum-conserving phonon is involved in the
transitions between the band extrema.

Examples of indirect semiconductors are diamond, Si and Ge, some of the
III–V compounds such as AlAs and GaP, and some of the I–VII compounds
like AgBr. Direct gap semiconductors include some of the III–V compounds
like GaAs or InP, the II–VI compounds ZnS, ZnSe, ZnTe and CdTe, and I–VII
materials like CuCl, CuBr and CuI. See also Table 8.1.
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The conduction band minimum at the Γ point is usually, to a very good
approximation, isotropic and parabolic. Only some narrow-gap materials like
InSb show significant nonparabolicities in the vicinity of k = 0 (Fig. 8.16).

The minima of the L points of Ge or in the ∆ direction of Si are parabolic
but highly anisotropic (Fig. 8.16). The dispersion relation around the mini-
mum at k0 can consequently be expressed by

E(k) = Eg +
�2

2

(
(kx − k0x)2

ml
+

(ky − k0y)2

mt
+

(kz − k0z)2

mt

)
. (8.34)

Here ml is the effective mass for k-components in the direction from Γ to
k0 and mt that for the two directions perpendicular to it.

In GaAs the minimum at the Γ point is the deepest, but other minima at
different points of the Brillouin zone are close in energy, e.g., in the ∆ direction
giving rise to the Gunn effect, which arises from the transfer of electrons under
the influence of a strong electric field from the minimum at k = 0 with low
effective mass to side minima with higher effective masses.

The direct gap semiconductors are also called “single-valley”, and the in-
direct ones “multi-valley” semiconductors because they have several (6 for Si
and 8 · 1/2 for Ge) equivalent conduction-band minima.

Semiconductors with hexagonal wurtzite structure (point group C6v) are
usually “direct”. They are found preferentially among the II–VI compounds
such as ZnO, ZnS, CdS and CdSe, but also among the III–V materials like
GaN.

The upper six valence band states of the C6v semiconductors are split by
spin–orbit coupling and by the hexagonal crystal field into three subbands
which are usually labelled from higher to lower energies as A, B and C bands
with symmetries Γ9, Γ7 and Γ7 (Fig. 8.17a). In ZnO, the symmetries of the
two upper bands are most probably inverted as in the case of CuCl. Some
references on this presently again ongoing discussion are e.g. [69R1, 82B1,
02W1] or [01G1] of Chap. 4. The effective masses of the valence bands are
often strongly anisotropic in these compounds, m⊥ usually being smaller than
m‖ where the indices refer to k-vectors perpendicular and parallel to the polar
crystallographic c-axis:

mvb
⊥ � mvb

‖ for C6v , (8.35a)

mDOS = (m2
⊥m‖)1/3 . (8.35b)

If one restricts oneself to the four states in the A and B bands k · p theory
predicts for negligible warping, i.e., γ2 = γ3 = γ for the effective masses [92E1]

mA‖ =
m0

γ1 − 2γ
;mA⊥ =

m0

γ1 + γ
(8.36a)

mB‖ =
m0

γ1 + 2γ
;mB⊥ =

m0

γ1 − γ
. (8.36b)
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The effective mass that enters in the calculation of the density of states
mDOS is given in (8.35b). A pecularity of the states of Γ7 symmetry is that
they can have a term linear in k in the dispersion relation for k⊥ c as
shown in Fig. 8.17b. This term has some influence on the optical proper-
ties. In principle, it can also occur for the Γ7 conduction band, but is much
smaller there and usually neglected. The same is true for the hexagonal warp-
ing which is, in principle, possible for C6v symmetry in the plane normal
to c.

As already mentioned, the crystal structures of zincblende and of wurtzite
are rather similar and differ only in the arrangements of the next-nearest
neighbors. The unit cell of the wurtzite structure is in one direction twice as
long as the primitive unit cell of the zinkblende structure. As a consequence
the first Brillouin zone is only half as long in one direction. The resulting
folding back of the dispersion is shown schematically in Fig. 8.18 neglecting
spin [69R1] for the two lowest conduction bands and the highest valence band.
Obviously the number of bands doubles in this procedure, as does the number
of states at the Γ point. This is in agreement with the fact that diamond and
zincblende structures have two atoms in the basis of the primitive unit cell
but wurtzite has four.

Due to the p- and s-type character of valence and conduction bands, for
the more ionic bound semiconductors and of the binding and antibinding sp3

states close to the fundamental gap, respectively, the band-to-band transi-
tion is dipole allowed – possibly with some additional selection rules for the
hexagonal symmetry.

Fig. 8.17. Details of the band structure of hexagonal semiconductors around the Γ
point. The splitting into three valence bands (a) and the influence of a term linear
in k (b)
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Fig. 8.18. The relation between the band structure of semiconductors with
zinkblende and wurtzite type structures along the corresponding direction in k-
space, neglecting spin [69R1]

In Table 8.4 we summarize some band parameters of semiconductors. An
exhaustive list is found in [82L1] of Chap. 1. See as additional information
Table 8.2

It is beyond the scope of this book to review all types of semiconductors.
Instead we give only some selected examples beyond those mentioned already
above.

The lead salts (PbS, PbSe, PbTe) are narrow-gap semiconductors crys-
tallizing in the NaCl structure. They have a direct gap. In contrast to the
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Table 8.4. Effective masses of some selected semiconductors. From [82L1] of Chap. 1

SC Sy dir/ind me/m0 mhh/m0 mlh/m0 mA⊥ ‖ /m0

C Td i 2.18 0.7

Si Td i

{⊥0.19
‖ 0.92

0.54 0.15

Ge Td i

{⊥0.081
‖ 1.6

0.3 0.043

AlAs Td i

{⊥1.56, 5.8
‖ 0.19

0.76 0.15

AlSb Td i

{⊥0.26
‖ 1.0

0.94 0.11

GaN C6v d 0.22 ≈ 0.8

GaP Td i

{⊥0.25
‖ 7.25; 2.2

0.6 0.17

GaAs Td d 0.066 0.47 0.07

GaSb Td d 0.042 0.35 0.05

ZnO C6v d 0.28

{⊥0.45
‖ 0.59

ZnS C6v d 0.28 0.5

ZnSe Td d 0.15 0.8 0.145

ZnTe Td d 0.12 0.6

CdS C6v d 0.2

{⊥0.7
‖ 2.5

CdSe C6v d 0.13

{⊥0.45
‖ 1.1

CdTe Td d 0.1 0.4

CdCl Td d 0.4 2.4

CuBr Td d 0.25 1.4

CdI Td d 0.3 ≈ 2

above-mentioned direct semiconductors, the band extrema are situated at the
L points. Some semiconductors, such as the IV–VI compounds TiO2 (rutil)
and SnO2 or the I–VI compound Cu2O have a direct gap. The transitions
between the band extrema are, in contrast to the other materials mentioned
above, dipole forbidden because of their equal parity. The symmetry groups of
these materials contain inversion as an element and parity is therefore a good
quantum number. This feature has significant consequences for the optical
properties.

A last example is shown in Fig. 8.19 where we demonstrate the transition of
the alloy system Cd1−yHgyTe from a normal semiconductor (y = 0) to a nar-
row gap material 0 < y < 0.85, and finally to a semimetal for 1 ≥ y ≥ 0.85.
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Fig. 8.19. The transition from a semiconductor (a) to a semimetal (c) for the alloy
Cd1−y ,Hgy,.Te (b) as a function of the composition y [70M1]

8.9 Density of States, Occupation Probability
and Critical Points

We start now to consider the density of states D(E) for crystal electrons and
holes using simple parabolic bands in the effective mass approximation, i.e.,

conduction band (CB) : E(ke) = Eg +
�2k2

e

2me
, (8.37a)

valence band (VB) : E(kh =
�

2k2
h

2mh
, (8.37b)

where we take into account that the energy of a hole increases if it is brought
deeper into the valence band.

With the help of (2.79) we find that the density of states depends on the
energy in the conduction and valence bands according to

CB : D(E) = (E − Eg)
d/2−1 ; E > Eg (8.38a)

VB : D(E) =Ed/2−1 ; E > 0 ; d = dimensionality (8.38b)

for three-, two- and one-dimensional systems. This situation is shown schemat-
ically in Fig. 8.20 where we also include a set of δ-functions for the density of
states in a quasi-zero-dimensional system.

The appearance of the various subbands for d < 3 will be explained in the
next section.
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The statistics with which we describe the occupation probability are the
Fermi–Dirac statistics, as already mentioned. It reads for electrons and holes

electrons : fFD(E) =
(

e(E−Ee
F)/(kBT ) + 1

)−1

(8.39a)

holes : fFD(E) = 1 −
(

e(E−Eh
F)/(kBT ) + 1

)−1

=
(

e−(E−Eh
F)/(kBT ) + 1

)−1

. (8.39b)

The Fermi energies (or chemical potentials) for electrons and holes Ee,h
F

are non-zero, unlike the situation for phonons or photons, since there is
a conservation law for the number of electrons. The Fermi energies depend
on the concentrations of electrons (and holes), on the temperature of the
electron gas, and on material parameters such as Eg, me, or mh as shown
below.

Since electrons can be exchanged between the valence and conduction
bands, for example by thermal excitation and recombination, it follows that

Fig. 8.20. Schematic drawing of the density of states as a function of energy for
three-, and quasi-two-, one- and zero-dimensional systems in the effective mass
approximation. The dashed line corresponds to disorder-induced localized states
(Sect. 8.15)
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in thermodynamic equilibrium

Ee
F = Eh

F = EF (8.40a)

or, in other words, the chemical potential of the electron–hole pair system µeh

is zero
µeh = Ee

F − Eh
F = 0 . (8.40b)

We shall come back to this point later.
The density of electrons in a certain energy range, say in the conduction

band, is then given by the integral over the density of states weighted by the
occupation probability. For parabolic bands with a degeneracy g we find for
d = 3 and for the total density of electrons in the conduction band n:

n =
N

L3
=

∞∫
Eg

ge
1

2π2

(
2me

�2

)3/2

(E − Eg)
1/2

(
e(E−EF)/(kBT ) + 1

)−1

dE ,

(8.41)
where we have used our knowledge from Sect. 2.6 and the dispersion relation
(8.37). Equation (8.41) leads to the Fermi integral which cannot be solved
analytically but can be found in mathematical tables.

Very often EF lies in the gap. In this case the electron gas is said to be
non-degenerate and the part of the Fermi function which overlaps with a finite
density of states can be approximated quite well by the Boltzmann function,
as can be seen in Fig. 2.5 where we compare Fermi–Dirac, Bose–Einstein and
Boltzmann statistics.

With this assumption the Fermi–Dirac statistics (8.41) can be replaced
by classical Boltzmann statistics and the integral can be solved analytically
giving

n = ge

(
mekBT

2π�2

)3/2

e(E−EF)/(kBT ) . (8.42a)

The term in front of the exponential is the so-called effective density of states
neff depending on T and on material parameters. So we can write

n = neff (T,me) e(Eg−EF)/(kBT ) . (8.42b)

If the electron gas is degenerate, i.e., if EF is situated in the conduction
band, we have to use the full (8.41) except for T → 0 where the Fermi function
converges to a step function and n is given by

n =
2

6π2
g

(
2me

�2

)3/2

(EF − Eg)
3/2 for T = 0 K . (8.42c)

In analogy we find for a three-dimensional non-degenerate gas of holes

p = peff e−EF/kBT (8.42d)
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with

peff = gh

(
mhkBT

2π�2

)3/2

. (8.42e)

We should mention here that in thermodynamic equilibrium, i.e., when
(8.40a) is valid, one finds that the product np is independent of EF in the
non-degenerate case, i.e.,

np = neff peff e−EF/kBT =: n2
i (T ) . (8.43)

where ni(T ) is the intrinsic carrier density.
Out of thermal equilibrium, a situation that occurs, e.g., under optical

pumping or via carrier injection in a p-n junction, one frequently has a ther-
mal distribution of the carriers within their bands with some effective carrier
temperature Te,h, which may be higher than the lattice temperature TL. In
this case, the distribution of the carriers in their respective bands can be
described by Fermi-functions, which contain separate quasi-Fermi levels for
electrons and holes. In this case one has

n · p �= n2
i (T ) (8.44a)

and in contrast to (8.40b)

µeh = Ee
F − Eh

F �= 0 (8.44b)

The occupation of donor or acceptor levels situated in the forbidden gap
or of localized tail states can be also covered by the concept of Fermi–Dirac
occupation probabilities. For defect states degeneracy factors appear in the
Fermi statistics which take care, e.g., of the fact that an unoccupied simple
donor in a direct gap semiconductor offers two empty, spin degenerate states.
But if one electron sits on the donor, the other electron level is shifted to higher
energies due to Coulomb interaction. For details of this topic see, e.g., [87B1].

The last aspect we want to discuss in this section are the so-called critical
points or van Hove singularities. One type of these critical points has already
been treated. If a parabolic band starts at energy E0 (e.g., a conduction band)
we have above a density of states given by (8.45a) and zero below, i.e., in a d
dimensional system

D (E) ∼
{

(E − E0)
d
2 − 1 for E ≥ E0

0 for E < E0
. (8.45a)

This is a so-called M0 critical point in three dimensions.
If a parabolic band ends at a certain energy E0 like a valence band, we

have the inverse situation, i.e.,

D (E) ∼
{

(E0 − E)
d
2 − 1 for E ≤ E0

0 for E > E0

. (8.45b)
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The name of this type of critical point is Md where d is the dimensionality.
In three dimensions we can additionally have a situation where the curva-

ture of E(k) is positive in two orthogonal directions and negative in the third
one or vice versa. These so-calledM1 andM2 critical points exhibit a constant
density of states D0 (similar to a two-dimensional system) on the energy side
of E0 where two branches exist and a dependence

D (E) ∼
(

1 −A (E − E0)
1/2
)

(8.45c)

on the other side.
A saddle point or M1 critical point in a two dimensional system finally

gives a logarithmic singularity on both sides of E0

D (E) ∼ − ln (|E − E0|) . (8.45d)

For details see, e.g, [96Y1] of Chap. 1.
Critical points are also important in the optical properties of vertical band-

to-band transitions. In this case not the density of states in each of the two
bands is important, but rather the joint or combined density of states of
conduction and valence band separated in their E(k) dispersion vertically by
the photon energy �ω.

8.10 Electrons and Holes in Quantum Wells
and Superlattices

We have already introduced structures of reduced dimensionality in connec-
tion with the discussion of phonons in Sect. 7.10.

This topic is presently of even much wider relevance for the charge carriers
in semiconductors, both concerning basic and applied research. Therefore we
shall spend some time (or pages) here to explain the main ideas in some
detail, trying again to stress the physical and intuitive understanding of the
basic concepts and we refer the reader for more theory oriented treatments,
e.g., to [86B1,87P1,87W1,88G1,88R1,99B1,99B2,00B1,02K1] or [92L1,93H1,
93S1,95I1, 96O1,98D1,98G1,98S1,99B1,01C1,01H1,01L1,02S1] of Chap. 1.

A quasi two-dimensional electron system can be realized, if the motion of
the carriers is confined in one dimension by a suitable potential on a length
scale comparable to or smaller than the de Broglie wavelength of these par-
ticles, or the mean distance between scattering events in the sense of a re-
laxation time approach. For typical semiconductors this limit is reached for
the width of the confining potential below a few tens of nm at least at low
temperatures.

In the plane normal to this confining potential the electron is assumed to
move freely as a Bloch wave or as a plane wave in the sense of the effective
mass approximation.



8.10 Electrons and Holes in Quantum Wells and Superlattices 201

One of the first realizations was via simple heterostructures, where two
different semiconductors where grown on top of each other. If the band-
discontinuity at the heterointerface and the position of the Fermi levels are
suitable, an arrangement of the bottom of the conduction band may appear
as depicted schematically in Fig. 8.21.

In thermodynamic equilibrium the Fermi energy is constant across the
interface. The bottom of the conduction band forms a roughly triangular
potential (of finite height only) for the electrons. The electrons can move freely
in the plane of the interface but are quantized in their motion normal to it. The
envelope functions of the first two quantized states are shown schematically.

In effective mass approximation the wave function can be written as

Ψn

(
r,k ‖

)
= exp {i (kxx+ kyy)}χn (z) (8.46a)

with

En

(
k||
)

= En +
�2
(
k2

x + k2
y

)
2me

. (8.46b)

The so-called envelope function χn(z) with quantization-energy En is ob-
tained as the solution of the given potential. For the solution of the potential

Fig. 8.21. Conduction and valence band edges around a heterojunction between
two different semiconductors, forming a quasi-two-dimensional electron gas at the
interface. EF: Fermi level
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of Fig. 8.21 the first two quantized states are shown schematically. At every
value En starts a quasi-two-dimensional band with constant density of states
as already discussed in Sect. 2.6 and shown in Fig. 8.20.

In the situation of Fig. 8.21 it is assumed that EF is situated slightly above
E1 so that a quasi-two-dimensional electron gas exists in the first subband
already without excitation or carrier injection.

Note that this structure does not provide any confining potential for
the holes.

The single heterostructures of Fig. 8.21 play an important role for elec-
tronic devices like field-effect transistors. There and especially in (electro) op-
tic devices and structures, however one much more frequently uses so-called
quantum wells. They consist of two close-lying heterointerfaces as shown in
Fig. 8.22a for the conduction band only. We come back to the valence band
in a few pages.

The band discontinuities at the two interfaces form, in the simplest ap-
proximation, a one-dimensional square well potential of finite depth. An ide-
alization with infinitely high barriers is shown in Fig. 8.22b. If we define the
potential at the bottom of the well as zero and the zero of the z-axis in the
middle of the well, we find as the solutions of this textbook problem with
increasing energy wavefunctions alternating between even and odd parity of
the cosine- and sine-type, i.e., for even nz

Ψn (r) = χn (z) eik‖r‖ = V − 1
2 ei(kxx+kyy) cos

(
nz
π

lz
z

)
(8.47a)

and an analogous expression with sine for odd nz and

En

(
k‖
)

=
�

2k2
‖

2me
+ Enz =

�
2k2

‖
2me

+
�2π2n2

z

2mel2z
=

�2

2me

(
k2

‖ + n2
z

π2

l2z

)
(8.47b)

with nz = 1, 2, 3, . . ..

Fig. 8.22. The confining potential for electrons in a quantum well (a) and the
idealization with infinitely high barriers (b) and the density of states (c)
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This means we have an infinite number of quantized states Enz and at
every Enz a new subband starts with constant density of states as shown in
Fig. 8.22c.

For the more realistic case of a finite potential V 0 (Fig. 8.22a) the wave
functions penetrate exponentially decaying into the barrier.

Since the problem has inversion symmetry, the wave functions again have
even or odd parity. From the Schrödinger equation we obtain for the envelope
function in z direction:

−�
2

2
∂

∂z

(
1

me(z)
∂

∂z

)
χnz(z) + V (z)χnz (z) = Enzχ(z) (8.48a)

with

V (z) =
{

0 for |z| ≤ lz/2
V0 for |z| > lz/2

(8.48b)

The term me(z) allows to include different effective masses in well (mate-
rial I) and barrier (material II).

The ansatz for the wave function χnz (z) is

χn (z) =

⎧⎪⎪⎨⎪⎪⎩
±B exp(κz) for z ≤ −lz/2
A

{
cos
sin

}
(kz) for − lz/2 ≤ z ≤ lz/2

B exp {−κz} for z ≥ lz/2

(8.48c)

with

k =

√
2mI

eEnz

�2
; κ =

√
2mII

e (V0 − E)
�2

, (8.48d)

which fulfils the necessity for normalizability.
The boundary conditions at the interfaces require the steadiness of both

the wave function and the current for stationary solutions, i.e., of

χ (z) and
1
me

∂

∂z
χ (z) . (8.48e)

This leads to a transcendental equation, which can be solved graphically
or numerically as detailed in the above references.

The main results are that there exists only a finite number of quantized
states as shown schematically in Fig. 8.22a and a continuum of states above V0.

The first few quantized states also follow, to a good approximation, a n2
z

law, but with a slightly smaller prefactor than in (8.47b) due to the finite
barrier height.

We have seen in Sect. 8.8 that the top of the valence band is usually more
complex around the Γ -point than the conduction band minimum. Even if we
neglect the spin–orbit split-off band we are left with heavy and light hole
bands in cubic semiconductors and the crystal field split A and B valence
bands in wurtzite type materials.
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In the first approximation we expect that the heavy and light hole sub-
bands form two different series of subbands due to their different effective
masses and the resulting different quantization energies as can be deduced,
e.g., from (8.48). This is shown schematically in Fig. 8.23 where we plot the
valence band maximum for a quantum well and the envelope functions of the
first four quantized levels.

The next complication is that the wave function of the heavy hole in z di-
rection (which results in the quantization energies Enzhh) exhibits a light
hole dispersion in the plane of the well and vice versa as we have explained
schematically for px,y,z orbitals with Fig. 8.13 (instead of the real sp3 hybrid
wave functions). Consequently, the in-plane dispersion relations tend to cross
for finite k‖. In fact, this crossing is avoided due to the coupling between the
various subbands, resulting in a rather complex in-plane dispersion relation as
shown in Fig. 8.24 for a GaAs quantum well embedded between Al1−yGayAs
barriers. As can be seen, the dispersion relation sometimes deviates strongly
from a parabolic one and may in some intervals of k even obtain the oppo-
site curvature. Consequently there will be deviations from the constant two-
dimensional density of states expected in the effective mass approximation.
Due to these corrections, the 1hh dispersion in the plane fortunately shows
a dispersion that comes close to mhh while the 2hh states obtain an in-plane
effective mass, which is even smaller than the light hole mass.

The above consideration is valid if the quantum well is grown on a (100)
plane. For high-index planes, things may get even more complicated as de-
tailed in [95I1] of Chap. 1 and [96T1] of Chap. 3.

Until now we have treated only single quantum wells (SQW) and the
situation for electrons and holes separately. Now we want to introduce the
terms multiple quantum well (MQW), coupled quantum wells and superlattice
(SL) and discuss the various types of band alignment.

In Fig. 8.25a we assume, that the band discontinuities of CB and VB are
such that electrons and holes are confined in the same material. This is a so-

Fig. 8.23. The first two quantized levels for heavy and light holes (schematic)
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called type I band alignment. If the width of the barrier is so large, that the
wave functions of the first quantized electron states of adjacent wells do not
overlap as in Fig. 8.25a we speak of a multiple quantum well (MQW). The
density of states still increases as a sum over Heavyside functions at every
Enz only the prefactor grows in proportion to the number of identical QW in
the MQW.

If we now start to make the thickness of the barriers thinner and thinner
we come to a regime, where the exponential tails of the wave functions in the
barriers start to overlap as shown in Fig. 8.25b.

If we couple only a few, e.g., two quantum wells in this way we obtain
evidently coupled quantum wells. If they are identical, the ground state splits
into a symmetric and an anti-symmetric wave function, which is slightly higher
in energy as shown in Fig. 8.26a.

For coupled wells of different width as in Fig. 8.26b parity is no longer
a good quantum number and the lowest states of the wide and the narrow
well tend to obtain a slight admixture of the other wave function.

Fig. 8.24. The in-plane dispersion relation of the first three valence subbands in
a GaAs/Al1−yGayAs quantum well without (- - -) and with (—) intersubband in-
teraction ( [86B1] or [01L1] of Chap. 1)
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Fig. 8.25. The spatial variation of CB and VB extrema of a multiple quantum well
(MQW) (a) and of a superlattice (SL) (b)

If we couple many identical quantum wells via sufficiently narrow barriers
as shown in Fig. 8.25b we obtain in the z direction a new periodicity d = lz+lb
and the structure is known as a (one-dimensional) superlattice (SL). Ideally
d is given by a sum of integer multiple monolayers of materials I and II.

We can now apply what we have learned before e.g. in Sect. 4.1, 5.1 or
7.10. We obtain in the kz direction a Brillouin zone extending from

−π/d ≤ kz ≤ π/d (8.49)

much smaller than the extension in the kx and ky direction, and a series
of mini bands in this mini Brillouin zone with a finite curvature as shown
schematically in Fig. 8.27a,b for k‖ = 0. These bands arise from the quanti-
zation levels Enz in the uncoupled (M)QW. The width of the mini-bands is
typically a few meV and increases with increasing band index and decreasing
barrier width since the coupling, which determines the bandwidth, increases
in both cases (Fig. 8.27c).

The curvature and shape of the bands in the kx, ky plane remains essen-
tially the one of the QW. In Fig. 8.26d,e we finally compare the density of
states for a SL with the one of a MQW. Instead of a sum of Heavyside func-
tions starting at Enz we obtain a steady variation of DOS(E), starting with

Fig. 8.26. Two coupled identical (a) and different (b) quantum wells and the
envelope functions of the lowest states (schematic)
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a square-root behavior of a M0 critical point and reaching the constant 2d
density of states in a M1 type behavior (see Sect. 8.9).

Similar mini bands can form for the various quantized hole states. If the
hole mass is heavier, the penetration of the wave function into the barrier and
the width of the bands are smaller.

If the band discontinuities and the band alignment is such that electrons
and holes are confined in the same material as shown, e.g., in Fig. 8.28a, we
speak of a type I band alignment.

If the arrangements of the band edges are as in Fig. 8.27b we speak of type
II staggered. The electrons are confined in material I and the holes are essen-
tially confined to material II. The transition is said to be spatially indirect.
In Sect. 9.3 or 15.2 we shall see an example for a type I → type II transition
as a function of layer thickness in GaAs/AlAs superlattices.

The arrangement of Fig. 8.28c where the bottom of the conduction band
of material I falls below the top of the valence band of material II is known
as type II misaligned. The combination of a semiconductor (Eg > 0) with
a semimetal (Eg ≈ 0) forms a type III structure (Fig. 8.28d). Examples for
the various cases can be found, e.g., in [01L1] of Chap. 1 or in the next sections.

It should be mentioned that it is also possible to produce almost parabolic
confinement potentials by a suitable and continuous spatial variation of the

Fig. 8.27. Mini bands in the z direction (kx = ky = 0) of a SL (a, b) the width
and position of these mini bands as a function of the superlattice period (c) and the
density of states (e) compared to the one of MQW (d). According to [99B1, 01L1]
of Chap. 1
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composition x(z) from the well, e.g., GaAs towards the barrier Al1−x(z)Gax(z)

As. In this case the energetic spacing between the first few quantized levels
Enz is almost constant as can be expected for the parabolic harmonic oscillator
potential.

An almost parabolic confinement potential is also obtained in so-called nipi
structures or doping superlattices. These structures do not contain abrupt or
continuous hetero junctions but are made from one material but with alter-
nating n and p doping. Usually the differently doped layers are separated by
undoped intrinsic layers explaining the name nipi structure. Electrons from
the donors (see Sect. 8.14) and the holes from the acceptors recombine, leav-
ing the space-charge layers of D+ and A− behind. By solving the Poisson
equation for the electrostatic potential φ( r)

∇2ϕ (r) = −ϕ (r)
εε0

(8.50)

one obtains in growth direction a periodic modulation of the conduction and
valence band edges as shown in Fig. 8.29.

The effective band gap of the spatially indirect transition indicated in
Fig. 8.29 is much smaller than that of the parent material. The confinement
potential is parabolic in the vicinity of the extrema resulting in energetically
equidistant subband levels for electrons and holes.

The spatial overlap between the wave functions in the first confined states
of electrons and holes is small. Consequently their lifetime is long. This makes
such structures very sensitive, but slow photodetectors.

Fig. 8.28. Various band alignments in MQW or SL: type I (a), type II staggered
(b), type II misaligned (c), type III (d)
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Fig. 8.29. The band alignment in a doping superlattice or nipi structure

In some cases MQW structures are incorporated into nipi structures for
special purposes. For more details see, e.g., [86D1,92M1].

8.11 Growth of Quantum Wells and of Superlattices

The growth of SQWs, MQWs and SLs presently is not a topic of this book
but since structures of reduced dimensionality form a large fraction of the
research in semiconductor optics (and physics) we give a short outline of the
most widely used techniques for the epitaxy of quantum wells and superlattices
and later on in this chapter for quantum wires and quantum dots. For more
detailed information the reader is referred to [90G1, 01L1] of Chap. 1 and
references given therein.

The two most important ways to grow thin (quantum)films and related
(nano)structures are molecular beam epitaxy (MBE) and metal-organic chem-
ical vapour deposition (MOCVD) also known as metal-organic vapour phase
epitaxy (MOVPE) (see Fig. 8.30).

In MBE one creates, in an ultra-high vacuum chamber, atomic or molecular
beams of the constituents of the semiconductor layers to be grown from heated
effusion cells with mechanical shutters. By simultaneously or alternatively
opening the shutters of, e.g., Ga and As cells it is possible to grow a GaAs
layer on a suitable, heated, monocrystalline substrate and with the Al and
As cells an AlAs layer, respectively. Doping atoms can be incorporated with
further cells, e.g., Si or Be for n and p doping of III–V compounds. In II–VI
epitaxy one sometimes also uses compound sources, e.g., for CdS.

Some modifications of the MBE process are known as atomic layer eptiaxy
(ALE) or migration enhanced epitaxy (MEE), which allow one to grow layers
controlled on a monolayer scale.
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In MBE the atomic or molecular beams propagate collision-free from the
effusion cells through the ultrahigh vacuum to the substrate where they are
physisorbed and then either chemisorbed and integrated in the growing surface
or desorbed again. This is a technique where one grows far from thermody-
namic equilibrium.

In hot-wall (beam) epitaxy (HWE or HWBE) one grows, in contrast, close
to equilibrium. In this technique the substrate is mounted directly on top of
the effusion cell or very close to it. The source is kept at a temperature T so,
the walls at higher temperature Tw > Tso to avoid condensation of the source
material at the walls and the substrate is kept at slightly lower temperature
Tsub < Tso, to allow a net flow of material from the source to the substrate.
In this case, growth occurs close to thermodynamic equilibrium.

In MOCVD so-called precursors like AsH3 and Ga(CH3)3 are brought with
an inert gas like N2 as a carrier into the reactor. A chemical reaction ideally
takes place directly on the heated substrate in our case, e.g.,

AsH3 + Ga(CH3)3 → GaAs + 3CH4 (8.51)

resulting in the deposition of GaAs.
It should be noted that many of the materials used in MBE or MOCVD are

highly poisonous and some of them cancerogen. Therefore, safety precautions
have to be used when opening a MBE chamber or in conditioning the exhaust
gas of a MOCVD reactor. It should be noted further that epitaxy is, similarly
to crystal growing in general, a highly developed art that demands a lot of
experience and skill to be mastered.

The next topic we address in this subsection is which materials can be
grown epitaxially on top of each other with good quality? The materials should
be similar, in other words, they should have:

Fig. 8.30. The schematics of a MBE chamber (a) and of a MOCVD reactor (b)
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� Equal or similar crystal structures, e.g., both should crystallize in the
zincblende structure or should show at least the same coordination like
a tetrahedral one in diamond, zincblende and wurtzite structures.

� Almost identical lattice constants. Below we discuss consequences resulting
from a lattice misfit.

� The same valences, which means that III–V semiconductors are more easy
to grow on a III–V substrate than on II–VI or group IV substrates and
vice versa.

� Similar types of chemical binding, e.g., either preferentially covalent or
ionic.

The trivial way to fulfil these conditions is homoepitaxy, i.e., to grow
on a substrate the same material. This partly allows one to produce high
quality, e.g., chemically very pure layers on a less perfect substrate of the
same material.

In contrast, substrate and growing layers are different in heteroepitaxy. As
can be seen in Fig. 8.31 the system GaAs, AlAs and their alloys Ga1−yAlyAs,
which exist for all values 0 ≤ y ≤ 1, fulfil these conditions in an almost ideal
manner. The band alignment is of type I where GaAs forms the well with
about 60% of the band discontinuity in the conduction band. GaAs is a direct
gap semiconductor, AlAs an indirect one. The transition occurs in the alloy
for y ≈ 0.43 (see [96K1] of Chap. 1). To avoid complications by combining
a direct gap material with an indirect one, one usually limits y to values
0.3 ≤ y ≤ 0.4.

Since GaAs substrates are available in the highest quality compared to all
other substrate materials, one tries to use it and to choose the compositions
of the layers in a way to match the lattice constants like in In0.51Al0.49P,
AlAs0.96P0.04 or Ga0.51In0.49P. InP is another widely used substrate to which
III–V alloys can be lattice matched like Al0.48In0.52As, GaAs0.5Sb0.5 or
Ga0.47In0.53As. Quaternary alloys like In1−yGayAs1−xPx allow one to vary
the lattice constant and the gap to some extent independently as can be seen
from the border lines.

A further III–V system, which has become rather popular in recent years
due to the success of building blue- and UV-light emitting and laser diodes, is
GaN including its alloys with InN and AlN. Due to the huge lattice mismatch
to GaAs, this system is usually grown on SiC, ZnO or Al2O3, in contrast to
the ZnSe based blue-green emitting structures, which are in most cases grown
on GaAs due to the almost perfect lattice match and in spite of the problems
resulting from the interface between a III–V and a II–VI compound.

A type-I system, which was and is still intensely investigated because
of possible applications of laser diodes in the blue-green to yellow spectral
range are ZnSe-based structures including Zn1−yCdySe or ZnSe1−xTex wells
or Zn1−yMgySe1−xSx barriers.

In many cases it is unavoidable to grow materials on each other, that have
different lattice constants, e.g., for In1−yGayAs on GaAs, ZnSe1−xTex wells on
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Fig. 8.31. Width of the band gaps as a function of the lattice constant for various
semiconductors and their alloys. Solid lines: direct gap; dashed lines: indirect gap.
Note that this Figure gives information about the band gap only, but not about the
relative alignment, i.e., whether the combination will be of type I, II or III. Data
from [82L1,01L1] of Chap. 1

ZnSe or for type II CdS/ZnSe or CdSe/CdS superlattices. Another presently
widely investigated strained layer superlattice system is formed by the group
V elements C, Si and Ge.

Such a lattice misfit has consequences for the growing layer. If the growing
layer wets the substrate, it will start to grow as a tensile or compressively
strained layer, depending on the sign of the lattice mismatch. In addition
tensile in-plane strain usually results in a uniaxial compressive distortion of
the lattice in growth direction and vice versa.

The elastic energy stored in the strained layer increases with layer thick-
ness until the lattice relaxes at a critical thickness lc to its own lattice con-
stant. This relaxation can result in the formation of dislocations like in CdS
on GaAs [94G1,97H1]. The formation of dislocations is highly undesirable be-
cause they form scattering and nonradiative recombination centres, degrading
the in plane carrier mobility and the luminescence efficiency. The formation
(and multiplication) of dislocations in strained ZnSe-based laser diode struc-
tures (still) limits their lifetime to values unacceptable for commercial de-
vices [82P1].
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Fig. 8.32. Schematic drawing of the lhh–lh splitting, of the spin orbit splitting
and of the change of the band gap under two-dimensional compressive (εxx < 0) or
tensile strain (εxx > 0) [93T1]

The other possibility is that the growing layer starts to form on the wetting
layer small islands, in which it can relax to its own lattice constant. This
growth mode is known as Stranski-Krastanov growth mode [99B1].

In contrast the ideal two-dimensional layer by layer growth is known as
Frank-Van der Merwe mode, and the direct formation of island without wet-
ting layer is called Vollmer-Weber growth mode.

We come back to the Stranski-Kastanov growth mode in Sect. 8.13. As
a consequence, strained layers are usually grown only below the critical thick-
ness lc in (M)QW or SL. Superlattices with many periods (e.g., 50 to 100) may
adapt, after a few periods, an intermediate lattice constant which results in
two-dimensional compressive and tensile strain in the two different materials,
respectively, with a complementary uniaxial distortion normal to the layers.
These are so-called free standing superlattices.

The strain also has consequences for the band structure. The width of the
gap depends on strain via the deformation potentials, and the heavy and light
hole bands split under the influence of strain already at k = 0. This effect
comes in addition to the splitting of these bands by quantization as already
discussed in Sect. 8.10.

The usual behavior under tensile and compressive strain is shown in
Fig. 8.32.

For compressive strain the band gap widens and the hh valence band is
closer to the conduction band. For tensile strain the situation the opposite.

Depending on the sign of the strain this splitting may either enhance or
partly compensate the splitting induced by quantization.
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Fig. 8.33. Thickness fluctuations of a quantum well with two different length scales
on both sides (schematic)

To conclude this section we briefly mention some complications encoun-
tered in real quantum wells and superlattices.

In spite of all progress in epitaxy, real quantum wells exhibit, at both
interfaces fluctuations of at least one monolayer height as shown schematically
in Fig. 8.33.

The length scale of the fluctuations may be different, e.g., compared to
the excitonic Bohr radius and it may even depend on the growth sequence,
i.e., if GaAs is grown an AlAs or vice versa.

The next problem is that the interfaces are usually not sharp but washed
out by diffusion and segregation. These effects are, e.g., well known for InAs
wells in GaAs or for CdSe wells in ZnSe. See, e.g., [97W1] or [01L1] of Chap. 1
and the references given therein. They can be influenced to some extent by
the growth parameters.

In the caption of Fig. 8.31 we noted that it gives the band gap of the
various compounds, but not the band alignment. The band alignment depends
trivially on the two materials but is often not very precisely known (see, e.g.,
[01L1] of Chap. 1). In the case of alloys in wells or barriers the offset ratio of
the conduction and valence band may depend on the composition of the alloy.
It depends further on strain, on the crystallographic orientation of the two
materials, on well and barrier thicknesses, on the termination of the interfaces
especially in case of quaternary systems AB/CD without common anion or
cation, on the presence of dipole-layers at the interface, on intermixing (see
above) and even on the growth sequence, i.e., if material I is grown on top of
material II or vice versa, the so-called non-commutativity.

It should be emphasised that all these types of disorder – like well-width
fluctuations, intermixing or alloy formations – result in the formation of lo-
calized states, as will be explained in more detail in Sect. 8.15.

These statements show that quantum-structures give, in addition to the
confinement effects themselves, ample place for problems, research, well-
thought-out experiments and controversial interpretations.
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8.12 Quantum Wires

If we confine the motion of the carriers in a second direction the y direction, by
a suitable potential, e.g., a discontinuity of the band gap in a heterostructure
or the transition to vacuum or air, there remains only free motion in one
direction. Consequently, such structures are called quasi-one-dimensional or
quantum wires.

The energies of the carriers are given in an effective mass approximation by

E (kx) = Eni,nj +
�

2k2
x

2me,h
(8.52)

where we assume that the only remaining direction of free motion is along the
x-axis. At every energy level Eni,nj starts a quasi-one-dimensional subband.
The singularities of the density of states according to Fig. 8.20 expected at
the edge of the energy subband is more or less smeared out by wire-width
fluctuations, interdiffusion or segregation as already discussed for quantum
wells in the preceding section.

The quantization energy Eni,nj depends on the cross section, of the wire.
As we shall see below, these cross sections may be rather complex.

The first attempts to create quantum wires was by lithographical and
etching of quantum wells as shown in Fig. 8.34a.

For this rectangular cross section the confinement in two directions is the
one of the well Enz. In the y-direction the confinement comes from the transi-
tion to vacuum (air) or, if the structure is overgrown by some barrier material
to reduce the density of surface states, by the transition to the overgrown bar-
rier material. In this case, the confinement energies are simply additive, i.e.,

Eni,nj = Enz + Eny . (8.53)

Fig. 8.34. Various possibilities to create quasi-one-dimensional quantum wires. Pho-
tolithography and etching of quantum wells (a) growth in V-grooves (b) on ridges
(c) or T-shaped quantum wires occurring at the junction of two orthogonal quantum
wells. In all cases the wire extends normal to the paper
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A problem in these structures is that the width of the quantum well lz
typically has values between 3 and 10 nm while the best values, which can
be reached by lithography and dry or wet etching are usually in the range of
20 nm ≤ ly ≤ 50 nm. Since the quantization energy varies roughly with l−2

i

one finds that usually

Enz � Eny for nz = ny . (8.54)

Often it is already considered as a success and an argument for two-
dimensional confinement if, e.g., the excitonic transition energies are blue-
shifted by a few meV compared to the quantum well. We shall see examples
in Sect. 15.3. Therefore many different alternatives to form quantum wires
have been invented. We show three of them in Fig. 8.34b–d.

By means of lithography and selective etching it is possible to create pre-
patterned substrates with either V grooves (Fig. 8.34b) or ridges (Fig. 8.34c).
If a quantum well is now grown on these pre-patterned substrates, generally
by MOCVD on the V-grooves and by MBE on the ridges, this quantum well is
thicker on the bottom of the V-groove or on the top surface of the ridge, than
on the side flanks of the structures or on the flat parts of the substrate. Since
the confinement energy increases quadratically with decreasing well width
this effect produces a confinement potential along the curved quantum well in
addition to the potential step normal to it. Both confining potentials produce
together the confinement in two, here usually not orthogonal, directions and
leaving a free motion of the carriers only in x-direction.

In the case of V-grooves it is possible to stack several identical quantum
wires on top of each other leading to quantum wire superlattices. For more
details see, e.g., [99B2,00B1,02K1].

The last method to produce wires that we want to discuss in some detail
is shown in Fig. 8.34d. One first grows a quantum well. The sample is cleaved
in ultra high vacuum normal to this quantum well and another quantum well
is grown on this cleaved surface followed by barrier material. This technique
is known as cleaved-edge overgrowth. In the region, where the two quantum
wells meet, the “average width” of the confining potential is wider than in
each of the two quantum wells. This again produces a confining potential in
two directionns. If one starts from a multiple quantum well or a superlattice
one obtains by the cleaved edge overgrowth an array of uncoupled or coupled
quantum wires, respectively.

We mention briefly that on highly indexed planes, like [311], corrugated
layers can be grown that have periodically modulated thickness. Actually it
has been found that one interface is intermixed and the other is corrugated.
For more details of these structures, which were also known as quantum well
wire superlattices (QWWSL) and are now generally called corrugated super-
lattices see, e.g., [98L1] or [96K1,01L1] of Chap. 1.

To conclude this section we mention the increasing interest in growing thin
columnar crystals, so-called nanorods, with several µm length and a few tens
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of nm thickness preferentially from ZnO [01H1, 01P1, 03L1, 03Z1, 04Z1] (see
Sect 15.3).

8.13 Quantum Dots

The ultimate limit in reducing the quasi-dimension is confinement in all three
directions of space leaving no more possibility for free propagation of the car-
riers. The resulting quasi zero-dimensional structures are known as quantum
dots, quantum boxes, artificial atoms and nano crystals.

The energy levels in a single quantum dot are discrete (see Fig. 8.20), i.e.,

E = Enk,nj,nk (8.55)

like in atoms below the ionization threshold. If a sample contains many quan-
tum dots one usually has some size fluctuations, which lead to an inhomoge-
neous broadening of the energy spectrum. This statement is generally true,
independent of how these quantum dots have been formed.

In the following we give together with Fig. 8.35 some of the many possibili-
ties to produce quantum dots (QD). For more details, including various growth
techniques, see, e.g., [88F1, 89H1, 89P1, 90B1, 90P1, 91B1, 91E1, 92H1, 93D1,
93E1,93M1,93P1,93R1,93W1,94I1,95G1,95W1,97H3,99B1,99G1,01S1,03K1]
or [93B1,96K1,98G1,98J1,01L1] of Chap. 1 and references given therein.

The first possibility we mention is again the micro- or nanostructuring
of a quantum well by lithography and etching as shown schematically in
Fig. 8.35a. As for the wires, the lateral dimensions of the dots are usually
considerably larger than the thickness of the well, leading to pancake-shaped
dots, with the consequence that the quantization energy from lateral confine-
ment is usually small compared to the one from the parent quantum well
itselfs, (see e.g. [93D1,93P1,94I1, 95G1]).

Fig. 8.35. Various possibilities to form quantum dots by microstructuring of quan-
tum wells (a), by precipitation in glasses or organic solutions (b) and by “self-
assembly” (c, d) (schematic)
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The other possibility is to grow QDs by an annealing procedure in glasses
doped with the constituents of a semiconductor. This technique is widely used
for II–VI compounds such as CdS1−xSex including the cases x = 0 and x = 1,
for CdTe or for the Cu halides. The commercially available glass edge filters are
made in this way. The average diameter of the dots increases with annealing
time and temperature. We show schematically in Fig. 8.35b a high-resolution
transmission electron (HRTEM) micrograph of a single dot in a silicate glass
matrix. The lattice planes within the almost spherical nano crystallite are
already visible [95W1].

Other techniques involve chemical precipitation of, for example, CdS in
(organic) liquids or gels [88F1,89H1,89P1,90B1,91B1,91E1,93E1,93M1,93R1].
These techniques have the advantage of giving dots that are almost spherical
and have a high barrier, but the disadvantage is that one always gets a dis-
tribution of the dot radii with a certain width that is rarely below 10%. Since
the quantization energy depends on the radius, this gives one contribution to
the inhomogeneous broadening of the ideal δ-function density of states. Still
another possibility is to grow the dots in the voids of zeolithe crystals or of
synthetic opals [99G1].

A topic that has recently gained interest is “self-assembled” quantum dots
or thickness fluctuations occurring, e.g., for Ga1−yIny as wells under suitable
conditions.

As we have seen in Sect. 8.11 there is, in strongly lattice misfit systems
(strong means a lattice misfit beyond about 5%), apart from the formation
of misfit dislocations, the possibility of so-called Stranski-Krastanov growth
mode, where small hillocks form on a wetting layer. In theses hillocks or small
pyramids the growing layer relaxes towards its own lattice constant. These
pyramids have been observed, e.g., by scanning microscopy (see Fig. 8.35c)
[97W1, 99B1, 00K1, 00R1, 01S1] and a lot of effort has been invested in cal-
culating the electron and hole eigenstates and energies in these structures
including the spatially varying strain.

The preferential systems in which these so-called self-organized quantum
dots or better quantum islands (because of their rather flat island-like shape)
are investigated are In1−yGayAs/GaAs including y = 0 and CdSe/ZnSe.

Then there come some drawbacks. It has been found by HRTEM inves-
tigations in both systems that during overgrowth a substantial intermixing
between well and carrier material frequently occurs, with the consequence
that the quantum islands consist in most cases of more pronounced thick-
ness or composition fluctuations than well-defined pyramids after overgrowth,
where they are no longer directly accessible to scanning microscopy. We give
an example in Fig. 8.35d. Furthermore it has been found that in some cases
the pyramids even do not have the expected chemical composition. On ZnSe
these pyramids formed, e.g., in air even in the absence of CdSe [97H1, 97R1]
and in the CdSe/CdS system scanning microscopy revealed also islands, which
are more likely some Se precipitates [89G1]. However, recently it became pos-
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sible to create quantum islands, which contain, at least in their center, almost
pure InAs and CdSe, respectively.

Presently there is no clear criterion from where on a localization site in
a quantum well caused by thickness or composition fluctuations should be
called a quantum island or a dot. It is more a case of personal taste, of sales-
strategy when fundraising, of semantics or of the personality of the scientist,
if he called a deep localization site a quantum dot or vice versa.

Maybe one can speak about islands (which, by the way, exist, e.g., in
the CdSe/ZnSe system in different sizes [00K1]) if one tries to create them
intentionally and about localization sites if they occur unintentionally.

In spite of these draw backs there has also been some progress in the field.
Especially it becomes possible to stack these quantum islands on top of each
other if the barrier layer in multiple quantum well (or island) systems was
thin enough that the (n+ 1)th layer feels the lattice distortion of the islands
in the nth layer below. For examples of the InAs/GaAs and the CdSe/ZnSe
systems, see, e.g., [99B1,00K1,01S1].

To conclude this section we want to mention briefly some further possibil-
ities of dot formation.

If the cleaved edge overgrowth mentioned in Sect. 8.12 is applied a second
time in a way that three orthogonal quantum wells meet at one point, one
has with the same arguments as above a potential minimum that may confine
a carrier in all three dimensions of space.

Another possibility is so-called stressors. These are small areas of a non-
lattice matched material grown on top of a thin barrier layer over a quantum
well. The strain exerted by the stressors on the quantum well material must
be in way to reduce the band gap in the well below the stressor and to create
in this way a confining lateral potential.

A further method, which is used less in optical spectroscopy but frequently
in transport experiments, is to define a dot by applying suitable electrostatic
potentials to micro electrode structures deposited on the barrier material over
a quantum well. Keywords are, e.g., Coulomb blockade, single electron tun-
neling, or electron turn style. For some reviews of these topics, which do not
fall into the realm of this book see, e.g., [95H1, 95K1, 95P1, 97P1]. The same
holds for quantum dot or antidot arrays [90M1,93M1].

Still another method uses the growth on prepatterned surfaces containing
instead of V-grooves or ridges, corner-cube holes or pyramids [97H3,02K1].

Presently there is also some effort seen to arrange QDs in three dimensional
lattices to create an artificial bulk material [97H1,97R1,99A1,01A1].

This is one of the examples where history repeats itself to some extend.
At the beginning of the century one started to understand the discrete en-
ergy level scheme of atoms, then of molecules, and finally one assembled the
atoms to bulk crystalline solids resulting, e.g., in the band structure and the
Ewald–Bloch theorem presented in Sects. 8.1 – 8.9. Then one started to reduce
the dimensionality until one arrived at artificial atoms, which have again dis-
crete energy levels caused, however, by a confining potential different from
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the (screened) Coulomb potential of atoms. Now one starts again to assemble
these artificial atoms to three-dimensional solids. One does not need much of
a prophetic gift to predict that one will again find some type of band structure
provided that the artificial atoms are sufficiently uniform in size and shape
and provide enough electronic coupling between them. A similar approach is
used in photonic crystals as will be detailed in Sects. 17.2 – 17.4.

8.14 Defects, Defect States and Doping

In connection with local phonon modes, we have already mentioned the im-
perfections which are present in all real crystals. Here we outline the electronic
states connected with defects and concentrate again on point defect neglect-
ing thus one dimensional defects like dislocations, two dimensional ones like
stacking faults, grain boundaries, surfaces or interfaces or three dimensional
ones like precipitates or voids. These are present, even in good materials,
with densities of up to 1013 – 1017 cm−3. Values of 109 – 1013 cm−3 which are
given in literature, usually refer only to “electrically active” defects and this
means the difference between the concentrations of ionized donors and ac-
ceptors (see below) and neglecting defects, which are electrically not active
but which may act still as scattering or recombination centers. The density of
dislocations ranges from zero to some 104 per cm2 in high quality materials.

In Fig. 7.21 we classified the point defects according to the way in which
they are incorporated in the lattice, e.g., as interstitials or -substitutionals.
Now we consider their electronic properties and present donors, acceptors,
isoelectronic traps and recombination centers in Fig. 8.36. A donor is a shallow
center which has an energy level just below the conduction band and can easily
give an electron, e.g., by thermal ionization, to this band

D0 � D+ + e . (8.56a)

Donors are often formed by substitutional atoms situated in the periodic table
one column to the right of the atom which they replace, like N or P in Ge or
Si, Si on Ga site in GaAs, or Cl on Se sites in ZnSe, Ga or In on Zn site in Zn
etc. Furthermore, donors can be formed by interstitials which have a weakly
bound electron such as H, Li or Na, in a II–VI compound.

In analogy, acceptors can easily accommodate an electron from the valence
band, i.e., they emit a hole into it

A0 � A− + h . (8.56b)

Acceptors may be formed by substitutional atoms which have one electron
less than the one which they replace. Thus these impurities are often found
in the periodic table to the left of the atom which they replace, for example,
Ga or B in Si and Ge, Li or Na on the cation site and N on the anion site in
II–VI compounds, or Si on the As or Be on Ga site in GaAs.
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It is clear from some of the above-mentioned examples that the same atom
can act as donor or acceptor depending on the way it is introduced into the
lattice. This is one possibility for self-compensation. Another arises from the
fact that some vacancies or interstitials can act as donors or as acceptors
or that the incorporation of an acceptor (donor) in one of the II–VI com-
pounds, which are notoriously n-type (p-type) like ZnSe, CdS or ZnO (ZnTe)
triggers in thermodynamic equilibrium rather the formation of another de-
fect, which acts as a donor (acceptor) instead of shifting the Fermi-level
close to the valence (conduction) band to produce p-type (n-type) conduc-
tivity [88W1,95F1]. Actually the recent success of p-doping of ZnSe is based
entirely on freezing in a non-equilibrium substitutional N occupation on Se
sites created during growth. A material which has a higher concentration of
donors (acceptors) is called n-type (p-type) and we recall that np = n2

i (T )
in thermodynamic equilibrium. The ability to choose the type and concentra-
tion of carriers over a wide range by doping with donors and/or acceptors
is the basis for the widespread and important application of semiconduc-
tors in electronic devices like diodes, transistors, thyristors, etc. This topic
is beyond the scope of this book and we refer the reader to text books on
the physics of semiconductor devices, like [65S1, 81S1, 85P1, 86P1, 92E1] of
Chap. 1.

A shallow donor (acceptor) can be considered as a positively (negatively)
charged center to which an electron (hole) is bound by Coulomb interaction.
So we are faced with a problem similar to that of a hydrogen atom, leading,
in the simplest approximation, to a series of states with binding energy

ED,A
b = Ry

me,h

m0

1
ε2

1
n2

B

(8.57a)

where Ry is the Rydberg energy of the H atom (Ry = 13.6 eV), nB the main
quantum number and ε a dielectric constant. In Fig. 8.36 we show only the

Fig. 8.36. Schematic drawing of various impurity levels in semiconductors
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states for nB = 1. Depending on the material parameters, one usually finds
values for the donor and acceptor binding energies of

5 meV ≤ ED
b ≤ 50 meV , (8.57b)

20 meV ≤ ED
b ≤ 200meV, . (8.57c)

For a listing of various donor and acceptor binding energies in various semi-
conductors, center see e.g. [81S1,82L1] of Chap. 1.

The radius of the nB = 1 state is given by

alattice < aD,A = aBε
m0

me,h
(8.57d)

ranging from 1 to 20 nm depending again on the material parameters. The
fact that these values are larger than the lattice constant justifies the use of
the effective mass approximation. Details concerning which value of ε has to
be used are similar to those for excitons, as discussed in Sect. 9.2. In addition,
there is some smaller influence of the chemical nature of the atom forming the
donor or acceptor which is known as the central-cell correction or chemical
shift.

Similar to the localized phonon modes, the wave function of a shallow
donor (or acceptor) can be described as a superposition of Bloch states

φ(r) =
∑

k

akφ
CB
k (r) . (8.58)

The range of k from which significant contributions can be expected increases
with decreasing radius in (8.57d).

The occupation probability of donors and/or acceptors in thermodynamic
equilibrium is again governed by Fermi statistics. However, some correction
terms appear

fD/A =
1

1 + 1/gi exp
{(
ED/A ∓ EF

)
/kBT

} (8.59)

where the gi describe the degeneracy of the level and take care of the fact,
that, e.g., an ionized donor D+ offers two states for electrons with opposite
spin in the ground state. However, if this state is occupied by one electron, the
level for the second one is considerably blue shifted due to Coulomb repulsion.
For details see, e.g., [87B1].

Pairs of donors and acceptors that are so close in space that their wave-
functions overlap are known as donor–acceptor pairs. As we shall see later in
Sect. 14.2, they give rise to a characteristic emission feature.

Donors and acceptors exist in bulk semiconductors, but also in quantum
structures, possibly with the complication that the binding energy, e.g., of an
electron to a donor also depends on the position of this donor relative to the
interfaces to the barrier material.



8.14 Defects, Defect States and Doping 223

In connection with (M)QW two special methods of doping should be men-
tioned:

δ-doping means the introduction of a two-dimensional sheet of doping
atoms during epitaxial growth. The concentration in the growth direction
then has an almost δ-function-like profile.

Modulation doping means introducing the doping atoms into the barriers
of a (M)QW. The electrons (holes) are thermally ionized into the conduc-
tion (valence) band of the barrier, reach the well by thermal diffusion, and
are captured in it. This allows the production of high two-dimensional carrier
densities in the well with high mobility, since the charged impurities are sepa-
rated spatially from the mobile carriers, partly even by an additional undoped
barrier layer between the doped barrier and the quantum well, thus reducing
the scattering with them. The space charges of the ionized doping atoms and
of the free carriers lead to a characteristic curvature of the bands which can
be calculated by solving the Poisson equation

−∆φ =
ρ

εε0
, (8.60)

where φ is the electrostatic potential and ρ the space charge as shown schemat-
ically in Fig. 8.37. Modulation doping is the basis of devices called high-
electron-mobility transistors (HEMT) or modulation-doped field-effect tran-
sistors (MODFET). The binding energy of donors and acceptors in SL and
(M)QW depends in addition to the parameters (8.57) on the distance from
the barrier.

Apart from the shallow donor and acceptors there are deep donors and
acceptors and a variety of other deep centers. These are atoms which have one
or more energy levels somewhere around the middle of the gap. See e.g. [82L1]
of Chap. 1 or [01H1].

Fig. 8.37. The curvature of the band edges in the case of symmetric modulation
doping of a MQW (schematic) including the first quantized electron level
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For deep centers an approach as in (8.57) is not adequate. The wave func-
tion is better described by the parent atomic orbitals, modified by the influence
of the surrounding atoms, i.e., by the symmetry of the arrangements of the
neighbors. Copper, nickel, iron, chromium and other elements can give rise to
such deep levels.

Some deep centers can exchange carriers with both the conduction and
the valence band (in contrast to the donors and acceptors). In this case
they are called recombination centers. The recombination can be radiative
or non-radiative and some centers provide fast channels of for de-excitation
of electron–hole pairs.

A group of (deep) centers is often formed by so-called isoelectronic traps.
These are frequently atoms of the same column of the periodic table as the
one which they substitute, i.e., they have the same electron configuration in
the outer shell. An example of an isoelectronic trap would be Te replacing S
or Se in ZnS or ZnSe.

Some centers have various levels in the forbidden gap and so transi-
tions within the center can be investigated as in Cu, Ni or other ions.
Since the chance of having various levels in the gap increases with increas-
ing width of the gap, such internal transitions are best investigated in wide
gap semiconductors and in insulators. Carriers in deep centers can some-
times couple strongly to bulk and/or localized phonon modes giving rise
to very broad emission (and absorption) features with Huang-Rhys factors
S significantly larger than 1. This topic however leads beyond the scope of
this book and we refer the reader to [81A1]b,c,f of Chap. 1 and references
therein.

To summarize this section we show schematically in Fig. 8.38 the density
of states including some impurity centers, the occupation probability in ther-
modynamic equilibrium and the resulting density of electrons and holes per
unit energy.

More information on defects in bulk materials and in MQW structures is
given e.g. in [88P1,91E2] and references therein.

8.15 Disordered Systems and Localization

In this section we will first outline briefly what is new in disordered sys-
tems and then we present some examples of how disorder can be realized in
semiconductors. More exhaustive treatments of these topics, from which the
following facts were largely extracted, are [79M1,79Z1,83Z1,84S1,85K1,85S1,
86L1, 00A1] or [81A1]d of Chap. 1. Furthermore we mention the pioneering
work [58A1].

In Fig. 8.39a we show schematically a periodic potential. It is known as
the Kronig–Penney potential. Due to the tunneling of the wavefunction into
the barriers, we get finite overlap integrals and consequently a band of Bloch
states with a certain width B.
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Fig. 8.38. The density of states DOS in the effective-mass approximation of an
idealized three-dimensional semiconductor containing some impurities, here a donor
state, and the resulting population (hatched areas). Usually the relation kBT � Eg

holds and the Fermi-function looks more step-like with the consequence that the
populations in conduction and valence bands cannot be shown simultaneously on
the same linear scale

We now want to introduce disorder into this system. This can be done by
varying the depths of the potentials statistically within a width V 0 (“diagonal
disorder”) or by varying the widths of the potential wells and barriers and
thus the coupling (“off-diagonal disorder”). The first case leads to the so-called
Anderson model, the second to the Lifshitz model. In practice, both aspects of
disorder will occur simultaneously, but from the theoretical point of view it is
sufficiently difficult to treat one of them. Figures 8.39 and 8.40 briefly outline
the ideas of the Anderson model. If some diagonal disorder is introduced, as
in Fig. 8.39c, two things happen – the sharp edges of the density of states
are smeared out by exponential tails, and a new type of eigenstate appears,
namely localized states. If

BV −1
0 > 1 , (8.61a)

then there are both localized states at the band tails and extended states in
the center, which, however, are different from Bloch states, as we shall see
shortly (Figs. 8.39d and 8.40b,c). For

BV −1
0 < 1 , (8.61b)

there are only localized states in the band (Figs. 8.39c and 8.40c).
To explain the concept of extended and localized states we show in

Fig. 8.40a a Bloch wave which is a superposition of atomic orbitals φn placed
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at every lattice site Ri with a proper long-range phase correlation, corre-
sponding to the LCAO method mentioned in Sect. 8.7:

φBloch
k (r) =

∑
i

eik·Riφn(r − Ri)

= eik·r ∑
i

e−ik·(r−Ri)φn(r − Ri) = eik·ruk(r) . (8.62a)

In an extended state in a disordered system (Fig. 8.40b) we lose the long-range
phase correlation resulting in

φext(r) =
∑

i

ciφn(r − Ri) (8.62b)

and for a localized state we obtain an envelope which is centered around a lo-
calization site r0 and which decays exponentially with a localization length ξ
(Fig. 8.40c)

φloc(r) =
∑

i

diφn(r − Ri)e−|r−r0|/ξ . (8.62c)

The energy which separates extended from localized states is called the
mobility edge. If the carriers were to have an infinite phase-relaxation time T 2

in their states and thus also an infinite lifetime, it is easy to show that the

Fig. 8.39. A periodic potential (a) and the resulting band, represented by its density
of states (b), a disordered system (c) and bands with localized and delocalized states
(d) and with localized states only (e)
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Fig. 8.40. Schematic drawing of the real part of the wave function for a periodic
potential (a) and for a disordered system an extended state (b) and a localized
one (c)

mobility edge is sharp: if extended and localized states were to coexist in
a certain energy range, then the slightest perturbation would mix these states
and consequently every localized state would obtain some admixture of an
extended wave function (and vice versa) transforming it to an extended state.
Since the T 2 times of the carriers in their states are limited, the mobility edge
is usually a transition region of a certain width.

Another important consequence of disorder is the following. A disordered
system is no longer invariant with respect to translations. As a consequence,
the wave vector is no longer a good quantum number and the dispersion
relation E(k) loses, strictly speaking, its meaning. A disordered system is in
principle characterized only by its density of states D(E).

As usual, there are exceptions to this rule: excitations with a wavelength
λ long compared to the typical length scale of the disorder fluctuations “av-
erage” over the disorder and can be characterized by a wave vector k in
the sense of a continuum approximation. This is fulfilled for example for
long wavelength (acoustic) phonons or photons. The latter case is easily
checked by looking through a glass window or into clear water. See also
Sect. 5.3.2.
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Weak disorder, e.g., as defined by (8.61a), will produce some localized
states at the band edges (1016 – 1018 cm−3) but the extended states in the
band (1022 – 1023 cm−3) will be close to Bloch-type waves. See Fig. 8.40.

A crucial property for localization effects is the dimensionality of the sys-
tem. It has been shown by general arguments that the slightest disorder will
in principle localize all states for dimensions d ≤ 2. However the localization
length [ξ in (8.62c)] can be extremely long and in many cases exceeds the
length of the sample used. As a consequence these considerations are largely
of theoretical interest and only to a limited extent of practical relevance.

After characterizing briefly some properties of disordered systems we now
proceed to the inspection of realizations of disorder in semiconductors. We
discuss, in roughly increasing magnitude of disorder, heavily doped semicon-
ductors, alloy semiconductors, well-width fluctuations, and amorphous semi-
conductors.

In Fig. 8.41a, we show the density of states for the conduction band of
a semiconductor containing donors of variable concentration. If the concen-
tration of donors is so low that the wavefunctions do not overlap, i.e.,

a3
BND � 1 , (8.63)

whereND is the concentration of donors and aB the radius of the wave function
according to (8.57d), then their density of states is δ-function-like. We show in
Fig. 8.41a, for simplicity, for the donor with one electron only the state with
nB = 1. A donor may bind a second electron with opposite spin. As a result of
the Coulomb interaction the energy for the two electrons will be higher. This
is indicated by the second peak. The states with nB > 1, which the electron
could also occupy, are again neglected.

If ND is increased, the wave functions of the donors start to overlap and
this again results in the formation of a so-called impurity band. Its width
increases with ND and eventually merges with the conduction band, forming
an (exponential) tail of the density of states. Depending on the doping and
possibly on compensation through acceptors, the Fermi level can be situated
for T → 0 above or below the mobility edge. In the first case, the system
is called a metal, since it has finite conductivity at T → 0, in the second it
is an insulator. The transition from an insulator to a metal with increasing
doping is also known as a Mott transition and there was a long discussion as to
whether this transition is continuous or not, i.e., whether there is something
like minimum metallic conductivity in the second case. Experiments, e.g.,
with phosphorous-doped silicon (Si:P), indicate that there is no minimum
conductivity, [84S1,85K1,86L1].

The next case of disorder are alloy semiconductors like Ga1−yAlyAs,
CdS1−xSex, ZnSe1−x Tex or Zn1−yCdyS. Many, but not all of them can all
be grown for every value of x or y between 0 and 1, others like Ga1−yInyN or
GaAs1−xNx have a miscibility gap. They usually have a well-defined crystal
structure (e.g., of the zincblende or of the wurtzite type). The disorder is in-
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Fig. 8.41. The appearance of tails of localized states due to increasing doping (a),
potential fluctuations, e.g., in an alloy (b, c) or in amorphous semiconductors (d)

troduced by the statistically distributed occupation of anion (or cation) sites
with the two different atoms.

Though an alloy has no translational invariance one can create it artifi-
cially in the so-called virtual crystal approach. One assumes that the unit cell
contains atoms with a mixture of the properties according to x or y. This
approach explains for example the often observed continuous shift of Eg with
composition (Fig. 8.31). This shift can be described by

Eg(x) = Eg(x = 0) + [Eg(x = 1) − Eg(x = 0)]
[
(1 − b)x+ bx2

]
(8.64)

where the usually small “bowing” or “bending” parameter b describes the
deviation from a linear relation. In some cases, like in In1−yGayAs1−xNx the
bowing parameter is so large, that the system goes with increasing x through
a band gap minimum which is situated considerably below that of x = 0 or 1.

The fluctuations now arise from the fact that the composition has fluc-
tuations on a microscopic scale (e.g., the exciton radius, see below). In
CdS1−xSex, for example, there is in some places a little more S, in others
more Se. This compositional disorder results frequently in the more ionic
systems in preferential fluctuation of the valence band for anion substituted
materials like CdS1−xSex, or of the conduction band for cation-substituted



230 8 Electrons in a Periodic Crystal

materials like Zn1−yCdyS. In the more covalent materials like Al1−yGayAs
both bands fluctuate with composition. These fluctuations can again lead to
localized states. The “tailing parameter” E0, which describes the exponential
tail in

D(E) =
N0

E0
e−E/E0 , (8.65)

where N0 is the total number of tail states, depends on the material para-
meters and on the composition. It is obvious that E0 disappears for x, y = 1
and x, y = 0, that it increases for increasing Eg(x = 1) − Eg(x = 0) and
for decreasing effective mass of the particle which is localized. The latter
point depends on the fact that in three dimensions a potential well must have
a certain width R and depth V to localize or bind a particle of mass in m
with

V R2 ≥ �
2

me,h
(8.66)

and explains why holes are more easily localized than electrons.
For the dependence of E0 on x one finds different but similar formulas in

literature. We give here one according to [78B1]. For more recent discussions
of this topic concerning also excitons see [78B1,84S1,91K1,92P1,99K1,00P1].

E0 =
1

178
β4x2 (1 − x)2m3

e,h

(
�

6N2
)−1

, (8.67)

where N is the density of atoms and β the derivative of the position of the
edge of the band with respect to x. Often one finds from experiment a slightly
asymmetric behavior of E0(x) caused by the term β and other effects.

We now consider disorder in systems of reduced dimensionality like MQW.
Actually there are two origins of disorder. One is the alloy “broadening” or
disorder felt by the carriers if the well or the barrier or both are made from an
alloy or if an alloy forms at the boundary due to interdiffusion or segregation.
Another is due to well-width fluctuations. Though great progress has been
made in growing atomically flat interfaces by modern epitaxial techniques,
fluctuations of lz of at least the order of one atomic (or molecular) layer are
hardly avoidable. Due to the dependence of the quantization energy on lz,
carriers (and excitons) can be localized or trapped at regions with larger lz.

The continuous transition from these localization sites to so-called assem-
bled quantum islands has already been mentioned in Sects. 8.10 and 8.13. For
examples of localization in two dimensions see, e.g., [85K1, 86L1, 00P1] and
references therein.

The strongest disorder occurs in amorphous semiconductors, the promi-
nent example being amorphous or α-Si. In these systems only short-range or-
der remains (e.g., a tetrahedral coordination of most but not of all Si atoms)
but no long-range order at all caused by the facts that the coordination of
some atoms is different from the one in a perfect crystal and that the bond
lengths and the angles between the bonds show some fluctuations. If we start
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in a CdS1−xSex crystal at a S atom and proceed by a lattice vector R we will
hit an atom. We are not sure, however, whether it will be S or Se. In an α-Si
there is only an average bond length but nothing like a lattice “constant” and
if we move from a Si atom by a vector R of crystalline Si we are not even sure
whether we will find an atom at all.

To illustrate this concept, we show in Fig. 8.42 a hypothetic two-dimen-
sional crystal with hexagonal structure and threefold coordinaton and in (b)
the corresponding amorphous material in which some five and seven atom
rings occur and also some dangling bonds.

This strong disorder leads to substantial exponential tails of the densities
of states both for conduction and valence bands, which cover the whole “for-
bidden gap” (Fig. 8.41d). Unsaturated covalent bonds in Si, so-called “dan-
gling” bonds, form states situated energetically close to the center of the gap
(Fig. 8.41d) since it is undetermined whether they would form a bonding or
an antibonding orbital with the next Si. The states of the dangling bonds can
be saturated by hydrogen doping, opening interesting technological applica-
tions for α-Si:H. A short selection of books and conference proceedings for the
properties of amorphous semiconductors is [74A1,84H1,84T1].

Fig. 8.42. A hypothetical two-dimensional crystalline (a) and amorphous (b) ma-
terial
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Fig. 8.43. Various possibilities for a particle to come from A to B or to be backscat-
tered from C to C. The open dots symbolize scattering centers

To conclude this section, we now outline the concepts of weak localisa-
tion by enhanced backscattering and of percolation. We come back to these
approaches in Sect. 14.4.

In the first case we consider an otherwise perfect crystal which contains
randomly distributed elastic scattering centers. See Fig. 8.43.

To obtain the probability wA→Bthat a particle, e.g., a carrier starting from
A reaches B we have to sum over the amplitudes aA→B

i of all possible ways
to come from A to B and to square the sum

wA→B ∼
∣∣∣∣∣∑

i

aA→B
i

∣∣∣∣∣
2

=
∑∣∣aA→B

i

∣∣2 +
∑
i,j

aA→B
i aA→B

j ≈
∑∣∣aA→B

i

∣∣2 .
(8.68a)

The mixed terms all have different relative phases and cancel essentially as
a sum. In the case of backscattering we have to start in the same way, i.e.,

wC→C =

∣∣∣∣∣∑
i

aC→C
i

∣∣∣∣∣
2

=
∑

i

∣∣aC→C
i

∣∣2 +
∑
i,j

aC→C
i aC→C

j . (8.68b)

What is different from (8.68a) is that there not only remains the term∣∣∣∣∑
i

aC→C
i

∣∣∣∣2but also those of the mixed terms, which are made up from aC→C
i

and their time-reversed parts shown for one case in Fig. 8.43, since the total
phase shift encountered in both directions and assuming, that only elastic
scattering occurs, is equal. As a consequence we obtain

wC→C = 2

∣∣∣∣∣∑
i

aC→C
i .

∣∣∣∣∣
2

(8.68c)
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This result means that backscattering is by a factor of two more probable
than scattering from A → B �= A.

It should be noted that similar arguments can also be formulated in
k-space. Due to elastic scattering only the length of k remains constant and
the scattering from an initial ki to kf = −ki is again by a factor of two more
probable that scattering to any other kf �= ki.

This enhanced backscattering is obviously a beginning of localization. The
concept has been verified for scattering of photons from small polysysteme
spheres [85A1, 85W1, 86A1, 86S1] and in electric conductivity. In the latter
case there are also considerable contributions from inelastic carrier scattering
to the resistivity. The part due to enhanced backscattering can be identified
by applying a magnetic field B, since the simple time reversal argument is no
longer valid for B �= 0. For more details see, e.g., [84B1].

The concept of percolation will be explained with a simple-cubic lattice in
Fig. 8.44.

Some of the unit cells are randomly painted black. All neighboring cells
that are painted black are said to belong to one cluster.

We see in Fig. 8.44 clusters consisting of one, two, three and seven unit
cells. With increasing occupation probability (i.e., increasing number of black
unit cells) of the average cluster size growths. Eventually a cluster appears
that extends from −∞ → +∞. This is the percolating cluster that corre-
sponds to an extended state, while finite clusters are “localized”. The occu-
pation probability at which the first percolating cluster appears is the critical
occupation fc.

Fig. 8.44. Cluster formation in a simple cubic lattice in two dimensions
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Fig. 8.45. Clusters of overlapping spheres

It is easy to understand that fc depends on the dimensionality (in a one-
dimensional case fc is trivially equal to unity) on the type of lattice e.g. cubic,
hexagonal, or triangular and on the fact if we consider site or bond percolation.
For details see, e.g., [85S1].

One possibility to make the percolation model more realistic is e.g. the fol-
lowing one, which has been used with some more sophistication to successfully
explain the optical properties of excitons in alloys like CdS1−xSex (see [99K1]
and Sect. 9.6).

We assume that a localized state like the hole state in Fig. 8.41b is caused
by a cluster of Se atoms in CdS1−xSex and that the wave function localized
at this Se cluster has a spherical shape as indicated in a two-dimensional
analogue (which corresponds to quantum wells [00P1]) in Fig. 8.45.

Wave functions that overlap spatially form a cluster. At a certain density
of spheres a percolating cluster will appear that corresponds to an extended
state while finite clusters again correspond to localized ones. The density and
the size of the spheres can be influenced, e.g., by varying the energy in the
tail of the density of states. The appearance of a percolating cluster with
increasing energy corresponds then to the mobility edge.

An experiment showing localization in a disordered chain of macroscopic,
coupled pendula has been described and verified experimentally in [89K1].

We will end the discussion of the properties of electronic states in semicon-
ductors here and concentrate in the next section on electron–hole pairs, which
are actually the relevant complexes for optical properties, but which cannot
be understood without knowledge of the properties of electrons and holes.
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8.16 Problems

1. Try to find the highest and lowest values for effective electron and hole
masses in group-IV materials and in binary III–V, II–VI and I–VII
semiconductors. (Use a compilation of semiconductor data from the li-
brary). What is the trend of the dependence of the effective masses
on Eg?

2. Calculate the effective density of states, i.e., the onset of degeneracy,
for electrons and holes at 10 K and at room temperature in bulk GaAs
and ZnSe.

3. Calculate the effective density of states per unit volume at 300K for
electrons and holes in bulk GaAs and the density of states per unit
area in a GaAs QW. Calculate the corresponding density per volume for
lz = 10 nm.

4. Calculate the density of states and the effective densities of states for
a nondegenerate three-, two- or one-dimensional electron gas in the effec-
tive mass approximation.

5. What is the minimum power consumption per unit area required to keep
a degenerate electron and hole population at room temperature in ZnSe
and in GaAs for a lifetime of 0.3 ns and layers with lz = 1 µm, 0.2 µm, and
10 nm thickness? (The first two cases can be considered as bulk material
the third one as quasi-two-dimensional).

6. Calculate the binding energy of electrons (holes) to donors (acceptors)
for some of the materials mentioned in the first problem. Compare with
experimental data such as that given in [82L1] of Chap. 1. Deduce the
order of magnitude of the central cell correction. Check the ratio of the
binding energy and of the energy of the LO phonon, and try to anticipate
the consequence for the choice of ε.

7. Calculate the Bohr radii of acceptors and donors for the extreme values
found in the first problem. How many unit cells or atoms are contained
in the volume of a donor?

8. Make a sketch of surfaces of constant energy in a two- (or even three-) di-
mensional k-space for spherical, simple cubic, and hexagonal (plane k⊥c)
symmetries. Is spherical symmetry compatible with cubic and hexagonal
symmetry?

9. Show that the wave vectors for which the scattered waves interfere con-
structively in one- and two-dimensional square lattices in the concept of
nearly free electrons are just the borders of the Brillouin zones.

10. Identify the various branches of the 2d electron band structure of Fig. 8.11
in the reduced zone scheme with the corresponding ones in the extended
scheme and the G-vectors that have been used to shift them into the first
Brillouin zone.

11. Verify that (8.23a) fulfils the Bloch criterion, i.e., that the wave func-
tion is transformed onto itself under a translation Ri apart from a phase
factor.
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12. Calculate the positions of the first three quantized electron levels for
a GaAs quantum well assuming infinitely high barriers and the realistic
band discontinuity to Al0.40Ga0.60As and compare them.

13. Make a sketch and calculate approximately the electrostatic potential as-
suming a single QW (width 10 nm) with an n-type modulation doping of
1017 cm−3 on both sides in a layer of 20 nm thickness and buffer layers
of 10 nm (me = 0.1m0) and assuming that all donor electrons are col-
lected by the QW. What is the minimum height of the conduction band
offset necessary to avoid substantial parallel conductivity of well and bar-
rier?

14. Occupy a one-, two- and three-dimensional simple cubic lattice with
six places in every dimension by throwing dies. Indicate the percola-
tion threshold for this finite lattice and compare with data in litera-
ture.

15. What is a dislocation? Which types of dislocations do you know or can
you find in textbooks?
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9

Excitons, Biexcitons and Trions

In Chap. 8 we defined the bandstructure for electrons and holes as the solu-
tions to the (N ± 1)-particle problem and later we saw that the number of
electrons in a band can be increased or decreased by donors and acceptors, re-
spectively (Sect. 8.14). In contrast, the number of electrons remains constant
in the case of optical excitations with photon energies in the eV or band gap
region. What we can do, however, is to excite an electron from the valence
to the conduction band by absorption of a photon. In this process, we bring
the system of N electrons from the ground state to an excited state. What we
need for the understanding of the optical properties of the electronic system
of a semiconductor an insulator or even a metal is therefore a description of
the excited states of the N particle problem. The quanta of these excitations
are called “excitons” in semiconductors and insulators.

We can look at this problem from various points of view.
The ground state of the electronic system of a perfect semiconductor is

a completely filled valence band and a completely empty conduction band.
We can define this state as the “zero” energy or “vacuum” state. In addition
it has total momentum K = 0, angular momentum L = 0 and spin S = 0.
From this point E = 0, K = 0 we will start later on to consider the dispersion
relation of the excitons in connection with Fig. 9.1b.

Another point of view is the following. If we start from the above-defined
groundstate and excite one electron to the conduction band, we simultaneously
create a hole in the valence band (Fig. 9.1a). In this sense an optical excitation
is a two-particle transition. The same is true for the recombination process. An
electron in the conduction band can return radiatively or non-radiatively into
the valence band only if there is a free place, i.e., a hole. Two quasiparticles
are annihilated in the recombination process.

This concept of electron–hole pair excitation is also used successfully in
other disciplines of physics. If one excites, e.g., an electron in a (larger) atom
or a neutron or proton in a nucleus from a deeper lying occupied state into
a higher, empty one, a quantitative description concerning the transitions
energies is obtained only if one takes into account both the particle in the
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excited state and the hole left behind. This is even true if one excites an
electron in a metal from a state in the Fermi sea with an energy below the
Fermi energy EF to an empty state above.

Excitons can be described at various levels of sophistication. We present
in the next sections the most simple and intuitive picture using the effective
mass approximation. Other approaches are described in [57E1, 62N1, 63K1,
63P1, 77B1, 78U1, 79E1, 79R1, 79S1, 81F1, 81K1, 85H1] or [82M1, 86U1, 93P1,
96Y1,98E1,98R1,04O1] of Chap. 1 and references therein.

In Chap. 27 we shall also see how excitons are described in semiconductor
Bloch equations.

The concepts of Wannier and Frenkel excitons were introduced in the
second half of the 1930s [31F1, 37W1]. There is some controversy concerning
the first experimental observations. The author does not wish to act as the
referee to settle this point. Instead we give some references to early work
[50H1,52G1,56G1,58N1,62N1] and to Fig. 13.9 and leave the decision to the
reader.

9.1 Wannier and Frenkel Excitons

Using the effective mass approximations, Fig. 9.1a suggests that the Coulomb
interaction between electron and hole leads to a hydrogen-like problem with
a Coulomb potential term – e2/(4 π ε0 ε |re − rh|).

Indeed excitons in semiconductors form, to a good approximation, a hy-
drogen or positronium like series of states below the gap. For simple parabolic

Fig. 9.1. A pair excitation in the scheme of valence and conduction band (a) in the
exciton picture for a direct (b) and for an indirect gap semiconductor (c)
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bands and a direct-gap semiconductor one can separate the relative motion
of electron and hole and the motion of the center of mass. This leads to the
dispersion relation of excitons in Fig. 9.1b.

Eex(nB,K) = Eg − Ry∗ 1
n2

B

+
�

2K2

2M
(9.1a)

with
nB = 1, 2, 3 . . . principal quantum number ,

Ry∗ = 13.6 eV
µ

m0

1
ε2

exciton Rydberg energy , (9.1b)

M = me +mh, K = ke + kh translational mass and
wave vector of the exciton . (9.1c)

For the moment, we use a capital K for the exciton wave vector to distinguish
this two-particle state from the one-particle states. When we are more familiar
with the exciton as a new quasi-particle we shall return to k.

µ =
memh

me +mh
reduced exciton mass , (9.1d)

aex
B = aH

Bε
m0

µ
excitonic Bohr radius . (9.1e)

The radii of higher states can be considered on various levels of complexity.
If one only takes into account the exponential term exp {Zr/naH

B} in the radial
part of the wave function of the hydrogen problem appearing as the envelope
function in (9.4a) and defines the (excitonic) Bohr radius by the decrease of
this term to 1/e, one obtains with Z = 1 for excitons

aB (nB) = aH
B ε

m0

µ
nB , (9.2a)

i.e., a linear increase with nB.
If, on the other hand, one takes the full radial function into account, i.e.,

also including the factor
ρl L2l + 1

nB + l
(ρ) (9.2b)

where l is the angular quantum number and ρ = 2Z r/nB · aH
B and L2l + 1

n0B + l

are the Laguerre polynomials and calculates the average distance between
electron and proton or hole, respectively, one obtains [55S1,94L1]

〈r (nB)〉 =
aB

2
[
3n2

B − l (l + 1)
]

(9.2c)

i.e., for the nBS states (i.e. l = 0) a quadratic dependence starting with 3 aB/2
for nB = 1.
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The series of exciton states in (9.1a) has an effective Rydberg energy Ry∗

modified by the reduced mass of the electron and hole and the dielectric
“constant” of the medium in which these particles move; nB is the principal
quantum number. The kinetic energy term in (9.1a) involves the translational
mass M and the total wave vector K of the exciton. The radius of the exciton
equals the Bohr radius of the H atom again modified by ε and µ. Using the
material parameters for typical semiconductors one finds

1 meV ≤ Ry∗ ≤ 200meV � Eg (9.3a)

and

50 nm � aB ≥ 1 nm > alattice . (9.3b)

This means that the excitonic Rydberg energy Ry∗ is usually much smaller
than the width of the forbidden gap and the Bohr radius is larger than the
lattice constant. This second point is crucial. It says that the “orbits” of
electron and hole around their common center of mass average over many
unit cells and this in turn justifies the effective mass approximation in a self-
consistent way. These excitons are called Wannier excitons [37W1].

In this limit, excitons can usually also be described in the frame of semicon-
ductor Bloch equations, but finer details or corrections to this simple model,
which we shall treat in Sect. 9.2 and which are necessary to understand optical
spectra, are usually not incorporated in the semiconductor Bloch equations
of Chap. 27.

It should be mentioned that in insulators like NaCl, or in organic crys-
tals like anthracene, excitons also exist with electron–hole pair wavefunctions
confined to one unit cell. These so-called Frenkel excitons [31F1] cannot be
described in the effective mass approximation. As a rule of thumb, one can
state that in all semi-conductors the inequalities (9.3a,b) hold, so that we
always deal with Wannier excitons.

A series of conferences devoted both to excitons in anorganic semicon-
ductors and in organic ones as well as in anorganic and organic insulators is
EXCON (excitonic process in condensed matter). The proceedings have been
published in [94E1]

To get an impression of the wavefunction, we form wave packets for elec-
trons and holes φe,h(re,h) in the sense of the Wannier function of (8.10) and
obtain schematically for the exciton wavefunction

φ(K , nB, l,m) = Ω−1/2eiK·Rφe(re)φh(rh)φenv
nB,l,m(re − rh) , (9.4a)

with the center of mass R

R = (me re +mh rh)/(me +mh) , (9.4b)

where Ω−1/2 is the normalization factor. The plane-wave factor describes the
free propagation of a Wannier exciton through the periodic crystal similarly as
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for the Bloch waves of Sect. 8.1, and the hydrogen-atom-like envelope function
φenv describe the relative motion of electron and hole.

The quantum numbers l andm, with l < nB and −l ≤ m ≤ l have the same
meaning as for the hydrogen atom in the limit that the angular momentum
is a good quantum number in a solid (see Chap. 26).

As for the H atom, the exciton states converge for nB → ∞ to the ioniza-
tion continuum, the onset of which coincides with Eg.

Excitons features are especially strong for regions of the electron and hole
dispersions, where the group velocities of electrons and holes υe

g and υh
g are

equal e.g. zero. See e.g. [96Y1] of Chap. 1. This means, that in direct gap
semiconductors excitons form preferentially around K = 0 if the direct gap
occurs at the Γ point.

In indirect gap semiconductors exciton states form preferentially with the
hole around kh = 0 and the electron in its respective minimum, as shown in
Fig. 9.1c schematically e.g. for Ge where the conduction band has minima
at ke = 0 and ke �= 0. Electrons and holes with different group velocities
still “see” their mutual Coulomb interaction, but the dashed continuation of
exciton dispersion from the indirect to the direct gap is an oversimplification,
among others because the states away from the band extrema are strongly
damped and their binding energy varies. See e.g. again [96Y1] of Chap. 1.

The discrete and continuum states of the excitons will be the resonances or
oscillators which we have to incorporate into the dielectric function of Chaps.
4 and 5.

For direct semiconductors with dipole allowed band-to-band transitions,
one finds an oscillator strength for excitons in discrete states with S(l = 0)
envelope function proportional to the band-to-band dipole transition matrix
element squared and to the probability of finding the electron and hole in
the same unit cell. For the derivation of this relation see [57E1]. This latter
condition leads to the n−3

B dependence of the oscillator strength for three-
dimensional systems.

fnB ∝ |HD
cv|2

1
n3

B

. (9.5)

These fnB result in corresponding longitudinal–transverse splitting as
shown in connection with (4.26). Equation ((9.5)) holds for so-called singlet
excitons with antiparallel electron and hole spin. Triplet excitons involve a spin
flip, in their creation which significantly reduces their oscillator strength (spin
flip forbidden transitions).

Since the singlet and triplet pair or exciton states will play some role in
later chapters (see, e.g., Chaps. 13 to 16) we give some simplified information
on this topic here.

The crystal ground state, i.e., completely filled valence bands and com-
pletely empty conduction bands, has, as already mentioned above, angular
momentum L, spin S and total angular momentum J equal to zero. If we
excite optically an electron from the valence band to the conduction band,
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e.g., by an electric dipole transition, the spin of the excited electron does
not change because the electric field of the light does not act on the spin.
Consequently, the simultaneously created hole has a spin opposite to the
one of the excited electron and the total spin S of the electron–hole pair
state is still zero. Consequently, the electron–hole pair, and likewise the ex-
citon, is said to be in a spin singlet state. The spin S = 1 of the photon
is accommodated by the spatial part of the band-to-band matrix element in
((9.5)) or by the envelope function of the exciton (see (9.4a) and [96Y1] of
Chap. 1).

If the spin flips in the transition, e.g., by interaction with the magnetic
component of the light field, one ends up with a total spin S = 1 corresponding
to spin triplet (exciton) state. The triplet state is situated energetically below
the singlet state and the splitting is due to a part of the electron–hole exchange
interaction, essentially the so-called short-range or analytic (for K → 0) part
of the exchange interaction. There are names other than triplet and singlet
used for certain materials like para and ortho exciton (e.g., for Cu2O) or dark
and bright excitons (in quantum dots). The last pair of names reflects the fact
that triplet excitons have small oscillator strength because they are “spin-flip
forbidden.” Since spin and angular momentum are, strictly speaking, no good
quantum numbers in a crystal (see Chap. 26) it is not obligatory that the
triplet exciton is threefold degenerate and the singlet is not degenerate. There
are cases where the triplet or para exciton is nondegenerate, as in Cu2O,
and the singlet is threefold degenerate, as in many zinc-blende type crystals
like CuCl or ZnSe or GaAs. This is possibly the reason that in some older,
especially French, literature the names singlet and triplet exciton states are
interchanged.

The oscillator strength of the continuum states is influenced by the so-
called Sommerfeld enhancement factor. We come back to this point later in
(9.3) and in Chaps. 13 and 15, when we discuss the optical properties.

In the picture of second quantization, we can define creation operators for
electrons in the conduction band and for holes in the valence band α+

ke
and

β+
kh

, respectively. The combination of both gives creation operators for elec-
tron hole pairs α+

ke
β+

kh
. The exciton creation operator B+ can be constructed

via a sum over electron–hole pair operators (see [81K1] or [93H1] of Chap. 1).

B+
K =

∑
k′

ekh

δ[K − (ke + kh)]αke,khα
+
ke
β+

kh
; (9.6)

the expansion coefficients ake,kh correspond, in principle, to those also used in
an (slightly old-fashioned) expansion into Slater determinantes of the many
particle problem, which contains either all valence band states ϕkh

(ri,h) for
the ground state or always has one line being replaced by a conduction band
state [63K1].

It can be shown that the B+
K , BK , obey Bose commutation relations

with a density-dependent correction term which increases with the number
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of electrons and holes contained in the volume of one exciton 4π(aex
B )3/3

[77H2,81K1].
This has two consequences: in thermodynamic equilibrium for low densities

and not too low temperatures, the excitons can be well described by Boltz-
mann statistics with a chemical potential ruled by their density and temper-
ature similar to (8.43). For higher densities they deviate more and more from
ideal bosons until they end up in an electron–hole plasma made up entirely
from fermions (see Sect. 20.5). This makes the creation of a Bose-condensed
state of excitons (or of biexcitons) a very complicated problem. Though the-
ory predicts a region in the temperature density plane where an excitonic
Bose–Einstein condensed state could occur [77H2], there are currently many
hints but no generally accepted, clearcut observation of a spontaneous Bose
condensation of excitons. There are some experiments that prove the Bose
character of excitons [76L1,83H1,83M1,83P1,84W1,87F1]. We come back to
this problem in Sect. 20.5 where we shall discuss also more recent results.

9.2 Corrections to the Simple Exciton Model

The simple model outlined in the preceeding section is, as already mentioned,
adequate for non-degenerate, parabolic bands. We keep these assumptions for
the moment and inspect a first group of corrections which are relevant for the
parameters ε and µ entering in (9.1a–e). We already know from Chaps. 4–7
that ε is a function of ω, resulting in the question of which value should be
used.

As long as the binding energy of the exciton Eb
ex is small compared to the

optical phonon energies and, consequently, the excitonic Bohr radius ((9.1e))
larger than the polaron radius (8.16)

Eb
ex < �ωLO; aB > aPol ⇒ ε = εs , (9.7a)

we can use for ε the static value εs below the phonon resonances and the
polaron masses and polaron gap. This situation is fulfilled for some semi-
conductors for all values of nB, e.g., for GaAs where Ry∗ � 5 meV and
�ωLO � 36 meV.

In many other semiconductors including especially the wide gap semicon-
ductors (see Fig. 9.3) the inequality (9.7a) holds only for the higher states
nB ≥ 2, while for the ground state exciton (nB = 1) we find

Eb
ex � �ωLO; aB � aPol −→ εs ≥ ε ≥ εb . (9.7b)

Examples are CdS, ZnO, CuCl or Cu2O.
In this situation a value for ε between εs and εb seems appropriate, because

the polarization of the lattice can only partly follow the motion of electron
and hole. A useful approach is the so-called Haken potential [55H1] which
interpolates between εs and εb depending on the distance between electron
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and hole, where reh, rpe and rhp are the distances between electron and hole,
and the polaran radii of electron and hole, respectively:

1
ε(re,h)

=
1
εb

−
(

1
εb

− 1
εs

)(
1 − exp(−reh/r

p
e ) + exp(−reh/r

p
h)

2

)
. (9.8)

The next correction concerns the effective masses. The polarization clouds
of the polarons (Sect. 8.6) have different signs for electron and hole. If both
particles are bound together in an exciton state fulfilling (9.7b) the polaron
renormalization is partly quenched, with the consequence that values for the
effective masses will lie somewhere between the polaron values and the ones
for a rigid lattice. The gap “seen” by the exciton in the 1S state will likewise
be situated between the two above extrema. Fortunately, the above effects
tend to partly compensate each other. A transition from the polaron gap to
the larger rigid lattice gap shifts the exciton energy to larger photon energies.
A transition from εs to εb and a increase of the effective masses increases
the binding energy and shift the 1S exciton to lower photon energies. As
a consequence one finds, even for many semiconductors for which inequality
(9.7b) holds, that the 1S exciton fits together with the higher exciton states
reasonably well into the hydrogen-like series of (9.1). We shall use this ap-
proach in the future if not stated otherwise. In other cases like Cu2O or CuCl,
the higher states with nB ≥ 2 follow a hydrogen-like n−2

B series converging
to the polaron gap, but the 1S exciton shows, with respect to the polaron
gap, a binding energy Eb

ex, which differs from and is generally larger than
the excitonic Rydberg energy deduced from the higher states. We call the
experimentally observed energetic distance between the 1S exction and the
polaron gap the exciton binding energy Eb

ex, in contrast to Ry∗ in (9.1). This
discrepancy introduces some ambiguity when comparing theoretical results
with experimental data, since in theory one often normalizes energies with
the excitonic Rydberg energy Ry∗, but the 1S exciton has a different value
for Eb

ex.
There is a general trend of the material parameters meff and ε with Eg

which results in an increase of the exciton binding energy with increasing Eg

as shown in Fig. 9.3.
This is an analogous consequence of increasing the band width or in other

words decreasing effective mass with decreasing width of the gap as described,
e.g., in the band structure model of Sect. 8.5.

The next complication comes from the band structure. If the bands are
degenerate, as is the Γ8 valence band in Td symmetry, it is no longer possible
to separate the relative and the center of mass motion – they are coupled
together. Similar effects stem from k-linear terms and other sources. We get
light- and heavy-hole exciton branches and splittings, e.g., between the 2S
and 2P exciton states partly induced by the envelope function. An example
for Cu2O will be given in Sect. 13.2.

Furthermore it should be mentioned, without going into details, that the
splitting between singlet and triplet excitons ∆st and the splitting of the
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singlet state into a transverse and a longitudinal one ∆LT, are both due to
exchange interaction between electron and hole caused by their Coulomb in-
teraction [73D1, 88F1, 03G1] if we consider the N -electron problem in the
form of Slater’s determinant where the ground state consists only of valence-
band states and the excited state of a sum of determinants in each of which
one valence-band state is replaced by a conduction-band state. This aspect is
treated in detail in [73D1] or in [93H1,93P1] of Chap. 1.

Usually the following relation holds for Wannier excitons

∆st � ∆LT with 0.1 meV � ∆LT � 15 meV. (9.9)

For the AΓ5-excitons in CdS or ZnO one finds, e.g., ∆CdS
LT = 1.8 meV,

∆CdS
st = 0.2 meV and ∆ZnO

LT = 1.2 meV, ∆ZnO
st = 0.17meV. Since the

short range interaction increases with decreasing exciton radius as a−3
B the

situation begins to change for 1S excitons with a value of aex
B exceeding only

slightly the lattice constant, and leading thus also to the limit of the concept
Wannier excitons. One finds, e.g., for CuCl or Cu2O, ∆CuCL

LT = 5.5 meV,
∆CuCl

st = 2.5 meV, ∆Cu2O
LT ≈ 50 µeV, ∆Cu2O

st = 12 meV (see [85H1]). The
extremely low value of ∆LT in Cu2O comes from the fact, that the band-to-
band transition is parity forbidden and the 1S singlet or ortho exciton is only
allowed in quadrupole approximation (see Sect. 13.2).

The singlet-triplet splitting is even enhanced by the compression of the
excitonic wave function in quantum wells and especially in quantum dots (see,
e.g., [98F1,03G1]). We come back to this aspect in Sect. 9.3 and Chap. 15.

Fig. 9.2. The splitting of the 1S exciton with the notation of the various contri-
butions to exchange splitting for bulk samples (a) and in a quantum dot (b). The
abreviations have the following meanings: S = singlet, T = triplet, ∆lr = long range
or nanoanalytic (for k → 0) part of the exchange interaction, ∆sr = short range or
analytic part of the exchange interaction [03G1]
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Fig. 9.3. The exciton bind-
ing energy Eb

ex as a function
of the band-gap for various di-
rect gap semiconductors ([82L1,
93H1,93P1] of Chap. 1)

It should be mentioned that the excitation of an optically (dipol-) allowed
exciton is accompanied by a polarization as detailed in Chaps. 5 and 27 on
polaritons and on (semiconductor) Bloch equations, respectively.

The concept of exciton-phonon boundstates has been introduced in [68T1,
72K1,02B1].

Finally we mention that excitons can also be formed with holes in deeper
valence bands. These so-called “core-excitons” are usually situated in the VUV
or X-ray region of the spectrum and have a rather short lifetime. An example
and further references are given in Sect. 13.1.7 and [87C1,88K1].

9.3 The Influence of Dimensionality

If we consider the exciton again as an effective mass particle with parabolic
dispersion relations, as given by (9.1), we expect a first influence of the di-
mensionality on the density of states analogous to the situation shown in Fig.
8.20 for every exciton branch nB = 1, 2, 3 . . .

Another effect of the dimensionality manifests itself in the binding energy,
the Rydberg series and the oscillator strength. We consider an exciton, for
which the motion of electron and hole is restricted to a two-dimensional plane,
but the interaction is still a 3d one, i.e., proportional to e2/|re − rh| and
find (9.10a), (9.10b) in comparison to the 3d case of (9.1) (see e.g. [93H1] of
Chap. 1):

3d: E(K, nB) = Eg − Ry∗ 1
n2

B

+
�2(K2

x +K2
y +K2

z )
2M

(9.10a)

and for the oscillator strength f for the principal quantum number nB in the
limit of (9.2a):

f(nB) ∝ n−3
B ; aB ∝ aH

BnB; nB = 1, 2, 3 . . . . (9.10b)
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2d: E(K, nB) = Eg + EQ − Ry∗ 1
(nB − 1

2 )2
+

�2(K2
x +K2

y)
2M

(9.10c)

with EQ quantization energy

f(nB) ∝
(
nB − 1

2

)−3

; aB ∝ aH
B

(
nB − 1

2

)
, nB = 1, 2, 3 . . . . (9.10d)

Essentially nB has to be replaced by nB − 1/2 when going from 3d to
2d systems and the quantization energies EQ of electrons and holes must
be considered. Actually EQ diverges for confinement in a mathematically 2d
plane, see Sect. 8.10. The excitonic Rydberg Ry∗ is the same in both cases with
the consequence that the binding energy of the 1S exciton is Ry∗ in three, and
4Ry∗ in two dimensions. The oscillator strength increases and the excitonic
Bohr radius decreases when going from three- to two-dimensional systems.

The usual realization of quasi-2d excitons is via (M)QW of type I. In this
case the motion in the z-direction is quantized, but the width of the quantum
well lz is non-zero.

In Fig. 9.4 we show the exciton binding energy for GaAs as a function of
lz for infinitely high barriers, where the curve reaches 4Ry∗ for lz = 0 and for
finite barrier height, where the binding energy converges to the value of the
barrier material for lz = 0 passing through a maximum of about 2 to 3 times
Ry∗ depending on the material parameters.

It is possible to describe the binding energy of the exciton in the quasi
two-dimensional case of a QW in terms of an “effective” dimensionality deff

that ranges between three and two and interpolates thus between the limiting
cases of (9.10a) and (9.10c) by [91H1,92M1].

Eb
ex (1S) =

Ry∗(
1 + deff − 3

2

)2 (9.10e)

with deff = 3 − exp
(−LW

2aβ

)
(9.10f)

where aβ is the three-dimensional excitonic Bohr radius and LW the width
of the quantum well increased by the penetration depth of electron and hole
into the barrier.

The increase of the oscillator strength of the 1S exciton comes from the fact
that the quantization in the z-direction increases both the overlap between
electron and hole and their attraction, which results in turn in a reduction of
the two-dimensional Bohr radius.

The Sommerfeld factor F , which describes the enhancement of the os-
cillator strength of the continuum states and which arises from the residual
electron–hole correlation, depends also on the dimensionality [66S1, 91O1].
It reads

3d: F3d =
π

W 1/2

eπW 1/2

sinh(πW 1/2)
with W = (E − Eg)Ry∗−1 ; (9.11a)
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Fig. 9.4. The calculated bind-
ing energy of nz = 1hh excitons
in AlGaAs/GaAs quantum wells
as a function of the well thick-
ness lz ([81M1,84G1,88K2])

2d: F2d =
eπW 1/2

cosh(πW 1/2)
with W = (E − Eg + EQ)Ry∗−1 . (9.11b)

In the three-dimensional case it has a square-root singularity at Eg and
decreases gradually to unity for E > Eg. In two dimensions it decays only from
two to one with increasing energy and in a one-dimensional system it is even
below unity above the gap quenching thus the singularity in the (combined)
density of states. We shall see the consequences in Chap. 13.

The corrections which we mentioned in Sect. 9.2 hold partly also in the
quasi-2d case. The 2d valence band structure may be even more complex,
than the 3d one, comparing e.g. Figs. 8.17 and Fig. 8.24. However, it should
be noted that the most widely investigated (M) QW are based on AlGaAs
and InGaAs, which fulfill the inequality (9.6).

The most striking feature of excitons in quasi-two-dimensional systems
and in systems of even lower dimensionality, however, are the facts, that ex-
citon series (nB = 1 . . .∞) exist for every combination of electron- and hole
subband, though partly with small or vanishing oscillator strength and that
the exciton splits into light- and heavy-hole excitons which results from the
corresponding splitting of the valence-band states (Figs. 8.23 and 8.24). To
describe the exciton states we thus need more quantum numbers. Apart from
the principal quantum number nB in (9.1) or (9.10a), we must state which
of the quantized conduction- and valence-band states are involved. The sim-
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plest optical interband selection rule is ∆nz = 0, so that we shall see in optical
spectra mainly excitons which obey this rule. Finally we must specify whether
we are speaking of the light- or the heavy-hole series. Complete information
might thus be the nh

z = 2hh, ne
z = 2, nB = 1 exciton state. Usually one uses

the abbreviation nz = 2hh exciton involving the above selection rule and the
fact that excitons in MQW with nB > 1 are usually difficult to resolve due to
broadening effects. For examples see Sect. 15.1.

As already discussed with one particle states in Sect. 8.10, minibands also
form for excitons in superlattices.

In type II structures, the Coulomb interaction is decreased due to the spa-
tial separation of electrons and holes in the two materials with wave function
overlap reduced to the interface region. Excitons in such structures are also
said to be indirect in real space.

In strictly one- and zero-dimensional cases the binding energy for the ex-
citon diverges. So it is not possible to give general formulas like (9.10c) for
these situations. One is always limited to numerical calculations which have to
explicitly include the finite dimensions of the quantum wire or quantum dot.

The various possibilities to produce quantum wells, superlattices, quan-
tum wires and dots have been discussed already in Sects. 8.11 to 8.13. In the
following, we give some information relevant for approximately spherical quan-
tum dots, as they occur frequently for semiconductor nanocrystals in glass or
organic matrices. For details see e.g. [93B1,97W1,98G1,98J1] of Chap. 1.

Three regimes of quantization are usually distinguished in quantum dots
in which the crystallite radius R is compared with the Bohr radius of the
excitons or related quantities:

weak confinement: R � aB, EQ < Ry∗ ; (9.12a)

medium or intermediate confinement: ae
B ≥ R ≥ ah

B; EQ ≈ Ry∗ , (9.12b)

with ae,h
B = aH

Bε
m0

me,h

strong confinement: R ≤ ah
B; EQ > Ry∗ . (9.12c)

In the first case (9.12a) the quantum dot (QD) is larger than the exciton. As
a consequence the center-of-mass motion of the exciton, which is described in
(9.1a) and (9.4a) by the term eiK·R, is quantized while the relative motion
of electron and hole given by the envelope function φnB,l,m(re − rh) is hardly
affected. This situation is found, e.g., for the Cu halides where aB is small, or
for CdSe QD with R ≥ 10 nm. In the second case (9.12b) R has a value be-
tween the radii of the electron orbit and the hole orbit around their common
center of mass. As a consequence, the electron state is quantized and the hole
moves in the potential formed by the dot and the space charge of the quan-
tized electron. This case is the most demanding from the theoretical point of
view since Coulomb effects and quantization energies are of the same order of
magnitude. However,it is often realized for QD of II–VI semiconductors. The
regime given by (9.12c) becomes easier again. The Coulomb energy increases
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roughly with R−1, and the quantization energy with R−2, so that for suffi-
ciently small values of R one should reach a situation where the Coulomb term
can be neglected. However, recent investigation showed that EQ � Ry∗ holds
only for R values which are comparable with the lattice constant. In this case
the applicability of the effective mass approximation becomes questionable,
and the dot may be better considered as a huge molecule. The increase of
the electron–hole exchange energy with decreasind dot radius has alredy been
addressed in Sect. 9.2 with Fig. 9.2.

In addition to the above-mentioned difficulties, there are some others which
lead to an inhomogeneous broadening of the spectra as compared to the δ-
like density of states in Fig. 8.20 as well as other complications. The dots
usually have a certain spread of R values, as already mentioned, which directly
influences the quantization and the Coulomb energies. Though the “gap” of
the surrounding amorphous glass matrix is usually much larger than that of
the semiconductor.

ESC
g < Eglass

g (9.13)

there is no abrupt, infinitely high barrier. Interface states may appear, which
depend both on the surrounding matrix and on the growth regime of the QD;
image forces have to be considered in quantitative calculations, since the di-
electric functions of semiconductor and glass are different; deviations of the
QD from an ideal sphere are obvious from TEM investigations but usually
neglected; the coupling of excitions to phonons is enhanced, especially in the
regime of (9.12b), since the different radial distributions of the electron and
hole wavefunctions give rise to a dipole layer. Finally a realistic bandstructure
has to be taken into account at least as long as the effective mass approxima-
tion is still valid.

Presently, a lot of work is devoted to so-called quantum dots or, their better
name, quantum islands, which form in a self-organized way in quantum wells
in the form of pronounced thickness or composition fluctuations. Such islands,
the diameter of which is usually much larger than their height, form especially
in the strained systems InAs/GaAs and CdSe/ZnSe. In addition to the above
problems, theses islands show, apart from their more pancake like shape, com-
plications due to alloying and spatially inhomogeneous compositions, due to
strain distributions within the island and due to the strong anisotropy of the
confinement potential in the plane of the QW and normal to it. For more de-
tails of the structures of reduced dimensionality see e.g. [03O1] or [93B1,93H1,
93P1, 93O1, 93S1, 95I1, 96S2, 97W1, 98D1, 98G1, 98J1, 98R1, 98S1, 99B1, 99B2,
99G1,99M1,01H1,01L1,02S1,03T1,04O1] of Chap. 1 and references therein.

9.4 Biexitonns and Trions

When introducing the concept of excitons, we stated that they can be un-
derstood on a certain level of sophistication as the analogue to the hydrogen
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atom or – even better – to the positronium atom. This analogy can be even
pushed further. It is well known that two hydrogen atoms with opposite elec-
tron spin can bind to a form a hydrogen molecule. In the same sense it has
been calculated, that two positronium atoms can form a positronium molecule
as bound state.

So the idea was not far away, that two excitons could bind to form a new
quasiparticle, the so-called biexciton or excitonic molecule [58L1,58M1].

It has been found theoretically that the biexciton should form a bound
state for all ratios of effective electron and hole masses and dimensionali-
ties of the sample. The biexciton binding energy expressed in units of the
excitonic Rydberg energy (see the discussion in Sect. 9.2) starts for bulk
samples for σ = me/mh ⇒ 0 at Eb

biex/Ry
∗ ≈ 0.3 corresponding to the

value of a hydrogen molecule and then drops monotonically until σ = 1,
reaching values of 0.027 or 0.12 for σ = 1 [72A1, 72B1, 73H1, 81K1]. It
approaches for σ ⇒ ∞ again the value of σ = 0, since the four-
particle problem is symmetric against the exchange of electrons and holes,
i.e., σ ⇒ 1/σ.

The dispersion relation is given in the simplest case by

Ebiex (k) = 2
(
Eg − Eb

ex

) − Eb
biex +

�
2k2

4Mex
(9.14)

assuming that the effective mass of the biexciton is just twice that of the
exciton.

Many of the complications mentioned for excitons in Sect. 9.2 also apply
here. As we shall see in Sect. 20.3 biexcitons have indeed been observed ex-
perimentally in a wide variety of bulk semiconductors with both direct and
indirect band gaps.

Biexcitons also form bound states in quantum wells, wires and dots again
in agreement with experiments. The enhancement of the exciton binding en-
ergy in structures of reduced dimensionality also shows up in an increasing
biexciton binding energy with increasing confinement [83K1,96S1,99D1].

In [96S1] it has been calculated, that the biexciton binding energy in quan-
tum wells should be approximately 22% of the corresponding exciton binding
energy independent of the well width. Though doubts have been raised con-
cerning the theoretical model, it was found to be in good agreement with
experiment.

Furthermore it has been predicted theoretically [76S1, 97S1] and verified
experimentally, at least for quantum structures [95F1, 97S2], that trions also
form bound states contributing to the luminescence below the free exciton
energy. Trions are charged excitons or biexcitons, i.e., quasiparticles consisting
of two electrons and one hole or vice versa. As we shall see, in Sect. 20.3
their observation is favored by a moderate n or p (modulation) doping of
quantum well structures. Localization effects (see Sect. 9.6) may play a role.
See e.g. [04K2]
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9.5 Bound Exciton Complexes

Similar to the way that free carriers can be bound to (point-) defects, it is
found that excitons can also be bound to defects.

We discuss first shallow impurities. The binding energy of an exciton (X)
is highest for a neutral acceptor (A0X complex), lower for a neutral donor
(D0X) and lower still for an ionized donor (D+X). An ionized acceptor does
not usually bind an exciton since a neutral acceptor and a free electron are
energetically more favorable, because the hole mass is usually considerably
heavier than the reduced mass of electron and hole. The absorption and emis-
sion lines of A0X, D0X and D+X are often labelled I1, I2 and I3 lines, re-
spectively. The binding energy of an exciton to a neutral donor (acceptor)
is usually much smaller than the binding energy of an electron (hole) to the
donor (acceptor). The ratio of the two energies depends only weakly on the
material parameters and amounts approximately to 0.1 . This fact is known
as Heynes rule [60H1,77H1].

The binding energy of the exciton to the complex depends also on the
chemical nature of the complex (known as chemical shift or central cell cor-
rections) and on the surroundings, leading in high resolution spectroscopy to
a splitting of the Ii lines. Furthermore, bound exciton complexes may have
a certain manifold of excited states due to the various mutual arrangements
and envelope functions of the two electrons (holes) and the hole (electron)
in the D0X(A0X) complex [79D1, 81B1]. We shall meet some examples in
Sect. 14.1.

The wavefunctions of excitons bound to shallow centers can be described
by a superposition of free exciton wavefunctions in a similar way to that shown
in (8.14) for free carriers.

To conclude this section on bound exciton complexes we give mention
excitons bound to point defects other than single shallow donors or acceptors
like deep centers formed partly by isoelectronic traps (see (8.14)).

Donor–acceptor pairs (Fig. 8.36) can be considered as “polycentric” bound
excitons. On the other hand, it has been found that one center can, under
certain conditions, bind several excitons. The formation of such multi-exciton
complexes is especially favored in indirect semiconductors due to the high
degeneracy of the multivalley conduction band and the fourfold degenerate
Γ+

8 valence band [78T1,89G1]. A review of bound exciton complexes is found
in [76D1,79D1,04M1].

Finally, it should be mentioned that such complexes also exist in quantum
wells. In this case, the energy of the bound exciton depends in addition on the
spatial position of the impurity relative to the barriers. The binding energy
usually decreases if the impurity is located not in the center of the well but
closer to one of the barriers because the wavefunction is pushed away from
the impurity [88F1]. This phenomenon results in an additional inhomogeneous
broadening of the absorption and emission lines, which then often merge with
the tail-states caused by disorder (see below) and/or with the free-exciton line.
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9.6 Excitons in Disordered Systems

In our discussion of disordered systems in Sect. 8.15 we saw that disorder
leads to the appearance of localized electron and/or hole states.

In a similar way the two-particle complex exciton can be localized in a dis-
ordered semiconductor.

If we look to the potential wells and barriers in the valence band e.g., of
CdS1−xSex (Fig. 8.4) we can envisage two different mechanisms of localization.
In very deep potential wells for holes, such a quasiparticle can be localized,
and the electron is bound to the localized hole by Coulomb interaction. The
other possibility is that we have a wide potential well with dimensions larger
than the excitonic Bohr radius. In this case the exciton is localized as a whole.
As mentional already in Sect. 8.15, approaches based on percolation theory
are used to describe carrier or exciton localization.

In Fig. 9.5 we show schematically the density of localized exciton states for
nB = 1. At low energies we start with excitons for which one carrier is localized
and the other bound to it by Coulomb attraction. With increasing energy there
is a continuous transition to excitons which are localized as a whole, which
in turn ends at the transition region to extended exciton states known as
the mobility “edge”. Above this there are the extended exciton states with
properties approaching those of free excitons in ordered materials.

In principle, pictures similar to Fig. 9.5 should hold also for nB > 1. Due
to the significant inhomogeneous broadening of the nB = 1 state, however,
there is not much chance of identifying higher states of the Rydberg series
by optical spectroscopy. Therefore usually only the exciton ground states are
considered.

As long as the tailing parameters E0 (8.64) describing the localized exci-
tons is much smaller than Eg, we can use the effective mass approximation for
localized excitons to give the following rules of thumb. Since heavier particles
are easier to localize according to (8.64), we will find significant features of
localized excitons more frequently in those ionic semiconductors with alloy-

Fig. 9.5. The density of exciton
states for nB = 1 in a disordered
semiconductor
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ing in the anions that form the valence band like CdS1−xSex or ZnSe1−xTex
than in cation-substituted materials such as Zn1−yCdySe. In semiconductors
with more covalent binding, localization occurs both in the conduction and
valence bands, as in α-Si or in Ga1−yAlyAs. However, especially in the latter
example, both the electron and hole masses are relatively low and, as a con-
sequence, it is difficult to localize excitons, i.e., the tailing parameter E0 and
the total number of localized exciton states N0 are small. Another aspect
of the same feature is the following: Due to the low effective masses men-
tioned above, the exciton Bohr radius is much larger in Al1−yGayAs than in
CdS1−xSex. This means that the exciton averages over a larger volume, thus
diminishing the effective fluctuation and reducing the tail of localized exciton
states.

As a consequence, in CdS1−xSex or ZnSe1−xTex for x around 0.1 to 0.4, the
tail of localized exciton states contains roughly 1018 to 1019 states per cm3,
while this number may be one or two orders of magnitude smaller for the
Al1−yGayAs system (or for cation-substituted materials). More information
on localized excitons is given in [85H1, 91C1, 92S1, 92S2, 93C1, 93K1, 01R1,
01T1,01W1,04K1,04K2].

Recently, a very successful model has been developed for the description of
exciton localization in bulk semiconductor alloys, which can also be extended
for systems of reduced dimensionality. See, e.g. [04K1] and [99K1, 00P1] of
Chap. 8. The idea is based on the percolation theory already mentioned in
Sect. 8.15 and above. Clusters of atoms of the lower gap material form localiza-
tion sites. If the wave function of excitons in neighboring clusters overlap, they
are assumed to form superclusters. The absorption is governed by ground and
excited states of all isolated and superclusters and their phonon side bands.
The low temperature and density luminescence is, in contrast, only emitted
from the ground states of isolated and/or superclusters. Taking state filling,
hopping and relaxation processes into account as well as electrons and holes
in the same or in different (super) clusters (so-called distant pairs) this model
allows one to describe quantitatively the cw absorption and emission spectra
and the dynamics of the latter after pulsed excitation. The model describes
qualitatively the S-shaped temperature dependence of the emission maximum
observed in many disordered systems [01K1,01R1,01T1,01W1,04K1].

In quantum wells various types of disorder can contribute to the formation
of tails of localized exciton states as already discussed for one-particle states:

� alloy disorder if the well and/or the barrier material is an alloy. The first
case obviously has a stronger influence since the probability of finding the
electron and hole in the well of a type I structure is larger than that of
finding it in the barrier.

� interface roughness, i.e., well-width fluctuations. Usually quantum wells
can only be grown with well-width fluctuations of at least one monolayer.
These fluctuations of lz influence the exciton energy via the lz-dependence
of the quantization energy, and via the lz-dependence of the exciton bind-
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ing energy (Fig. 9.4). Usually the first effect is the dominant one. For some
recent reviews of this topic see [85H1,93K1,04K1] and references therein.

For quantum wells a remarkable evolution has been observed over the last
decades concerning the question of exciton localization. In the first euphoric
years, many authors claimed that the excitonic features in the emission and
absorption spectra are all due to free excitons, because the (MBE-grown)
structures are “so pure and the structures so perfect” despite of the facts that
it was well-known that the low-temperature luminescence of even the best
parent bulk materials was generally dominated by bound exciton complexes
and that the low-temperature widths of absorption and emission feature were
in the quantum wells frequently in the 5 to 10 meV range, a value far too high
to be understood without involving impurity-bound or localized excitons.

Later on, one learned about localization by the various disorder effects in
quantum wells mentioned above and presently there is a trend to sell the local-
ization sites as quantum dots. Indeed there is – as already mentioned in (8.15)
– no clear and generally accepted criterion to distinguish between a localiza-
tion site and a quantum island formed by an especially pronounced thickness
and/or composition fluctuation of a quantum well. Instead the transition is
smooth. But it seems fair to call, e.g., some Zn1−xCdxSe or GaxIn1−xAs re-
gions with x close to unity and considerably larger than of the embedding
quantum well (or wetting layer) between ZnSe or GaAs barriers quantum is-
lands, though the lateral in-plane confinement is usually much smaller than the
normal confinement caused by the quantum well (see also [01L1] of Chap. 1).

Similar statements and arguments for localization also hold for quantum
wires, though localization is less intensively studied in quasi 1d structures.
For some examples see, e.g., [91C1,93C1] or Sect. 15.3.

For systems that are confined in all three dimensions, i.e., quantum dots,
the question of localization is irrelevant.

9.7 Problems

1. Calculate the Rydberg energy and the Bohr radius of excitons for some
of the semiconductors for which you found the material parameters in the
problems of Chap. 8. Compare these with the experimentally determined
binding energies and lattice constants, respectively.

2. How many (different) exciton states can be constructed in a semiconductor
with zinc-blende (Td) structure for the principal quantum numbers nB =
1, 2 and 3?

3. Compare the magnitude of the relative splitting between 2s and 2p states
in a hydrogen atom (what are the physical reasons?) with the 2s–2p split-
ting of excitons.

4. Plot the Rydberg series of an idealized three- and two-dimensional exciton
and indicate the oscillator strengths.
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5. Calculate the (combined) density of states in the continuum of a three- and
a two-dimensional exciton in the effective mass approximation. Multiply
by the corresponding Sommerfeld enhancement factor.

6. Find in the literature data for the binding energies of the exciton ground
state and of the higher states (i.e. nBS or nBP states with nB ≥ 2), e.g.,
for GaAs, ZnO, CuCl and Cu2O and determine for which ones the 1S
state fits into the hydrogen series with higher states.

7. Show by a semiquantitative guess that the A−X complex is usually un-
bound.
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10

Plasmons, Magnons
and some Further Elementary Excitations

Here we will briefly address some other collective excitations in semiconduc-
tors and the quasi-particles which result from the quantization of these exci-
tations like plasmons or magnons.

10.1 Plasmons, Pair Excitations and Plasmon-Phonon
Mixed States

The excitons presented in Chap. 9 are the energetically lowest elementary exci-
tations of the electronic system of an ideal semiconductor (or insulator). How-
ever, if we produce in a semiconductor a large density of free electrons and/or
holes, e.g., by doping (Sect. 8.1) or by high (photo-) excitation (Chap. 21),
other elementary excitations appear in the electronic system which are partly
well known in metals like plasmons.

We consider in the following a semiconductor which contains a large num-
ber of electrons (say 1017 – 1019 cm−3). Analogous results are found for holes.

The gas of free electrons can perform collective oscillations relative to the
positive background of ionized donors. We consider in Fig. 10.1a the three-
dimensional situation. A displacement of the electron gas of density n by an
amount ∆x produces a surface charge density ρs

ρs = ne∆x (10.1a)

and an electric field, according to (2.1a)

Ex =
ne∆x
εε0

(10.1b)

provided we can neglect boundary effects in the y and z directions.
This electric field acts back on the electrons, leading to an equation of

motion
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Fig. 10.1. Schematic drawing of a displacement of the electron system in a plasma
oscillation in a three- (a), two- (b) and one-dimensional semiconductor (c)

eEx =
e2n∆x
εε0

= me
∂2

∂t2
(∆x) . (10.1c)

The solution of ((10.1c)) is a harmonic oscillation with frequency

ω0
PL =

(
e2n

meε0ε

)1/2

= ωL, ωT = 0 . (10.1d)

The dielectric “constant” ε which enters (10.1a–d) is εs provided ω0
PL � ωL0.

What happens if this condition does not hold will be discussed in a few mo-
ments.

The oscillations described by (10.1a–d) are known as plasma oscillations.
Their quantization leads to new quasiparticles which obey Bose statistics and
which are known as plasmons. In gases, including the electron gas consid-
ered here, only longitudinal oscillations can propagate since gases have a non-
vanishing compression but no shear stiffness. See also Sects. 4.1 and 4.3 or
5.6.

Consequently the value of ω0
PL in (10.1d) gives the longitudinal eigen-

frequency for λ ⇒ ∞ or k ⇒ 0. The transverse one is zero. If we go to
shorter wavelengths we find a weak parabolic dispersion for the plasmons.
See [97B1,80R1,88R1] or [02D1] in Chap. 1:

ωPL(k) = ω0
PL(1 + ak2 + · · · ) (10.2)

shown in Fig. 10.2a.
For the densities mentioned above, �ω0

PL, is situated in the range 10 −
100 meV for typical semiconductors, i.e., in the (F)IR. This situation is dif-
ferent in metals, where the plasma frequency is usually situated in the VIS
or UV part of the spectrum and causes the high reflectivity of this class of
materials which extends from the IR up to ωPL.
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For large k-vectors, the plasmon modes are strongly damped because they
fall in the continuum of one-particle (or, as shown below more precisely, two-
particle) intraband excitations. These excitations are shown in Fig. 10.3 where
we give the dispersion relation of the conduction band filled up to the Fermi
energy EF by a degenerate electron gas and, for simplicity, T = 0. We can
produce excitations in this “Fermi sea” of electrons by lifting an electron
from a state below EF into a state above, actually by simultaneously cre-
ating a hole in the Fermi sea, below EF, again resulting in a two particle
excitation. In contrast to the two particle excitations in semiconductors and
insulators across the gap, this two-particle state occurs in one band. Addi-
tionally the Coulomb interaction is substantially screened by the free car-
riers. We come back to this aspect in connection with electron–hole plas-
mas in Chap. 21. The excitation energies range from zero to values given by
the width of the band, i.e., several eV . Small excitation energies can be cre-
ated for all wave vectors between zero and 2kF if the k-space is at least two
dimensional. For finite excitation energies the shaded range in Fig. 10.2 is
accessible.

For strictly two- and one-dimensional systems, the restoring electric field
E is not constant but decreases for long wavelengths as λ−1 or λ−2, re-
spectively. As a consequence the dispersion of plasmons starts for k =
0 at zero energy as shown in Fig. 10.2b, but plasmons in MQW or SL
show rather the 3d dispersion relation, if the electrons are displaced in
phase for many adjacent wells. For details see [90M1,98P1,99A1,99F1,00J1,
01O1].

The dielectric function of plasmons can be deduced in different ways, here
for bulk materials. We can either use the dielectric function of a Lorentz

Fig. 10.2. The plasmon dispersion and the range of two-particle excitations in
a three- (a) and a two-dimensional system (b) (schematic)
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Fig. 10.3. Two-particle excitations within one band with degenerate population

oscillator but setting ω0 = ωT = 0 resulting in

ε (ω) = εb +
ne2

ε0m

−ω2 − iωγ
(10.3)

where n is now the density of free carriers and γ = 1/τ .
Equation (10.3) again reproduces for vanishing damping the longitudinal

plasma frequency of (10.1d) by setting ε (ωL) = 0.
The so-called Drude–Lorentz model considers bound and unbound charges

separately. For bound charges the Lorentz-oscillator model of Chap. 4 is used
while the equation of motion reads for free carriers for an electric field in the
x-direction

mẍ+
m

τ
ẋ = Fx = eEx = eE0

xe
−iωt (10.4a)

where τ = 1/γ is the relaxation time, i.e., the time between collisions resulting
in a frequency-dependent electrical conductivity σ (ω)

σ (ω) = σ0
1

1 − iωτ
(10.4b)

and to a total dielectric function

εtotal (ω) = εLorentz (ω) + χfree carrier (ω) . (10.4c)

With the help of Maxwells equations.

∇× H = j + Ḋ = σE + ε0εLorentzĖ , (10.4d)

we obtain for χfree carrier (ω)
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χfree carrier (ω) =
i
ε0ω

σ (ω) (10.4e)

and for the total dielectric function

εtotal (ω) = εLorentz (ω) +
i
ε0ω

σ (ω) = εLorentz (ω) +
ω02

PL

−ω2 − iω/τ
. (10.4f)

The k-dependence of ωPL, or in other words the spatial dispersion of this
resonance (see Sect. 5.4.1), can be neglected in a good approximation for
bulk materials but is crucial for systems of lower dimensionality as seen from
Fig. 10.2b.

If all Lorentz oscillators are situated at frequencies much higher (lower)
than ωPL, their influence on the plasmon resonance can be approximated by
their static (background) dielectric constant εs (εb).

We show in Fig. 10.4 the dielectric function of a plasmon resonance for
such a situation for vanishing damping and the resulting reflection spectrum.
Compare with Fig. 4.3 and 4.6 for ω0 = 0.

In this way we can incorporate a finite conductivity into a total dielectric
function. Evidently, the real (dissipative) part of the conductivity contributes
to the imaginary part of ε (ω) and vice versa. In some disciplines it is also
common to include all contributions in the total conductivity, but the author
has strong semantic problems to speak about the complex conductivity of
phonons or excitons and recommends speaking of conductivity only when
carriers can move freely through the sample.

Surface plasmon modes exist in agreement with the statements in Sect. 5.6
at the frequency for which ε (ω) = −1.

Quantized (surface) plasmon modes exist in small metal spheres or colloids.
They are, e.g., responsible for the beautiful color of gold-ruby glasses.

The plasmon energy increases with the square-root of the carrier density.
What happens when ω0

PL approaches the energies of the optical phonons is

Fig. 10.4. The dielectric function of a plasmon resonance (a) and the resulting
reflection spectrum (b) for vanishing damping
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Fig. 10.5. The eigenenergies of
the plasmon–phonon mixed state as
a function of the square-root of the
carrier density n

shown in Fig. 10.5. Plasmons and phonons interact with each other due to their
electric fields. This interaction results in another example of the quantum-
mechanical non-crossing rule (Chap. 5) here as a function of the carrier density
n. The plasmon frequency bends over to the transverse optical phonon branch
and reappears above the longitudinal one. These two new branches are usually
known as ω− and ω+ modes of this plasmon phonon mixed state, respectively.
For examples see e.g. [00N1,02N1] or Sect. 12.3.

This behavior can also be understood classically in the frame of linear
optics by just adding the susceptibilities of a plasmon resonance and (for
simplicity) of one single Lorentz oscillator, again neglecting spatial dispersion

ε (ω) = εb +
f

ω2
0 − ω2 − iωγ

+
ω02

PL

−ω2 − iω/τ
. (10.5)

We show in Fig. 10.6 the contribution of both parts separately and their
sum for vanishing damping, which explains the appearance of the ω−mode
for situations when ω0

PL < ω0. Care has to be taken to introduce εb in (10.5)
only once.

For plasmon frequencies considerably above those of longitudinal optical
phonons, the background dielectric constant εb has to be used in (10.1d). For
more details see. e.g. [97B1].

Finally it should be mentioned that there are also valenceband plasmons
connected with collective excitations of the electron system of a filled valence
band. Their eigenfrequencies are situated at energies much larger than Eg.
Therefore they are not further considered. For details of this aspect see [85E1].

10.2 Magnons and Magnetic Polarons

We discuss next the collective excitations of the spin system, the so-called
magnons, existing in ferro-, ferri- and antiferromagentic materials. Semicon-
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ductor examples are NiO and MnSe. See, e.g., ref [81M1] of Chapt. 1 and
other textbooks on solid state physics.

The material examples show, that magnetic semiconductors are not the
most widely used ones, but might become interesting in the future in “spin-
electronics” or, i.e., “spintronics.” See, e.g., [90M1, 98P1, 99A1, 99F1, 00J1,
01O1] and Chap. 24.

The trivial excitation of a ferromagnetic spin system would be to tilt one
spin by an amount � off the magnetization direction. Due to the (exchange)
interaction with the other (surrounding) spins and magnetic moments, this
excitation has a finite energy. The nontrivial possibility is to tilt every spin
by a small amount in a correlated way so that the total angular momentum is
also reduced by an amount �. This results in a collective excitation, the quanta
of which are called magnons. The dispersions relation starts with zero energy
for infinite wavelength, i.e., E(k = 0) = 0 and shows a parabolic disper-
sion see Fig. 10.7a. In antiferromagnetic or ferrimagnetic materials there are
various magnon branches due to in-phase or antiphase excitation of the spin
subsystems. In analogy to phonons, the lowest branch is called the “acoustic”
magnon branch, the higher ones “optic” magnon branches though magnons
exhibit generally weak or vanishing coupling to the light field. The dispersion
relation of magnons is usually investigated by inelastic neutron scattering.

To complete the zoo of quasiparticles relevant to semiconductors, we in-
troduce the concept of magnetic polarons. These are analogous to the usual or
phonon polarons of Sect.8.6. Free carriers, i.e., electrons or holes that are ac-
companied by a magnetization cloud of paramagnetic ions (mostly Mn or Fe)
incorporated with a concentration of up to several percent in a nonmagnetic
semiconductor, generally II–VI materials like Cd1−xMnxTe or Zn1−xMnxSe,

Fig. 10.6. The (undamped) dielectric functions of a Lorentz oscillator (- - -) of
a plasma resonance (− · − · −·) and of the sum of both (—–) (schematic).
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Fig. 10.7. The schematic dispersion relation of magnons in a ferromagnet (a) and
an antiferromagnet (b)

but also III–V compounds like Ga1−xMnxAs. In the latter group the incor-
poration of Mn2+ results simultaneously in a (usually unwanted) p-type dop-
ing. Consequently G1−yMnyAs tends to be a metal i.e. it has finite electrical
conductivity at T ⇒ 0 K. See Sect. 8.2. The p-doping can be compensated
by a codoping with donors. This group of materials is known as diluted or
semimagnetic semiconductors (DMS). The idea is the following. While MnSe
shows a antiferromagnetic ordering, an alloy with a small percentage of Mn2+

or Fe3+ does not develop a spontaneous magnetic ordering due to the larger
distance of the magnetic centers, but behaves as a paramagnet with very high
susceptibility resulting, e.g., in excitonic Zeeman splitting several orders of
magnitude larger than in nonmagnetic materials. In some cases the magnetic
field resulting from the magnetic moment of a free carrier, e.g., an electron,
is able to align the magnetic moments of the surrounding Mn2+ ions. The
electron can still move freely through the lattice, but it carries with it a mag-
netization cloud. Therefore these charge carriers are called magnetic polarons.

Some further quasiparticles in solids are, e.g., fluxons, skirmions and com-
posite fermions, but they are of minor importance for the optical properties
of semiconductors and therefore not treated here.

10.3 Problems

1. Calculate the plasmon energy �ω0
PL for a typical three-dimensional semi-

conductor (me = 0.1 m0) and n = 1016, 1017 and 1018 cm−3. Compare
with the eigenenergies of optical phonons.

2. Calculate �ω0
PL for a metal (n ≈ 1022 − 1023 cm3). Using the knowledge

of Chap. 4, consider which value should be taken for the dielectric “con-
stant” ε?
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3. What is the origin of the color of some metals like gold or copper? Remem-
ber that there are, apart from plasmons, interband-transitions in metals.

4. Why are radio waves in the short wave range (KW) reflected by the upper
layers of the atmosphere but not ultrashort waves (UKW)?

5. Would you expect differences in the diffraction pattern of a crystal using
X-rays or (thermal) neutrons if these materials are dia-, para-, ferro- or
antiferromagnetic?

6. Qualitatively, what would be the temperature dependence of the satura-
tion magnetisation of a ferromagnet if magnons do exist or do not exist?
Compare your hypothesis with the information in a textbook.

7. Why are surface plasmons important for the spectral efficiency of a metal-
covered diffraction grating?

8. Make a sketch of the dielectric function of plasmon-phonon mixed states
for ω0

PL > ω0.
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Optical Properties of Phonons

Having presented the optical properties of a system of model oscillators and
the elementary excitations in semiconductors, we shall now start to put these
two parts together. As a first example we investigate the optical properties of
phonons. We start with the properties of bulk materials.

11.1 Phonons in Bulk Semiconductors

As already mentioned, optical phonons can couple strongly to the electromag-
netic field if the solid has at least partly ionic binding. The k dependence of
the eigenfrequency is rather weak and covers generally only some ten meV
or even less over the whole Brillouin zone. It is completely negligible if we
concentrate on the region of k vectors reached in the IR or VIS part of the
spectrum, i.e., k < 106 cm−1 as seen from Figs. 7.15, 7.16, bearing in mind
that the first Brillouin zone extends up to k values of around 108 cm−1.

We can therefore treat the phonon polariton according to Chaps. 4 and 5,
neglecting spatial disperison remembering, however, that due to the small but
finite spatial dispersion, a transverse branch extends over the hole Brillouin
zone and, if appropriate (see Fig. 5.3), also a longitudinal one.

11.1.1 Reflection Spectra

In Fig. 11.1a we show the reflection spectrum of CdS in the IR around the
phonon resonance. Spectra of other more or less ionic materials look very
similar. For further examples see e.g. [81M1,82L1,90K1,96Y1,98R1] of Chap. 1
and the references given therein. We can clearly see the reststrahlbande i.e.
the stop band between ωT and ωL as we predicted in Fig. 4.6. The reflectivity
reaches values above 0.9 at room temperature and for the polarization E ‖ c
where the Γ1 phonons are dipole allowed (see Fig. 11.1a). The spectrum of the
reststrahlenbande around 250 cm−1 looks very similar to the one calculated
for the model of Lorentz oscillators without spatial dispersion in Fig. 4.6 (the
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Fig. 11.1. (a) The reflection spectrum of the phonon stop band (reststrahlbande)
in CdS at room temperature for E ‖ c (b) Real and imaginary parts of the complex
index of refraction (c) Real and imaginary parts of the dielectric function (c) The
loss function Im{−1/ε(ω)} [97G1]

small feature around 203 cm−1 is a multi-phonon resonance). In Fig. 11.1b
we show also the real and imaginary parts of the complex index of refraction
ñ (ω) = n (ω) + iκ (ω) (b), the real and imaginary parts of the dielectric
function ε (ω) = ε1 (ω)+ iε2 (ω) (c) and the so-called loss function Im−1/ε(ω)
(d), which describes the energy loss of electrons transmitted through a thin
sample. The transverse and longitudinal eigenfrequencies coincide very well
with the maxima of ε2 (ω) and Im{−1/ε(ω)}, respectively.

The spectra in Fig. 11.1b to d have been deduced from the reflection
spectrum with the help of the Kramers–Kronig relations and other formulae
given in Chap. 6.

Also, these curves coincide nicely with the results of our model calculations
in Figs. 4.4 and 4.5. Transmission spectra of thin samples also agree with
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Fig. 11.1as shown, e.g., in [97G1]. This agreement allows us to claim good
understanding of the optical properties of phonons. It should be remembered
here, that optical phonons in semiconductors with purely covalent binding
like Si or Ge have, at k = 0, zero longitudinal-transverse splitting and zero
oscillator strength, as shown in Fig. 7.16. Furthermore, it should be noted that
in samples with (partly) ionic binding, optical phonon modes may exist, which
do not carry a dipole moment and therefore do not couple to the radiation
field, i.e., they are not optically active.

Coherent optical phonon packets have been reported in [98B1].

11.1.2 Raman Scattering

Raman scattering with phonons is the inelastic scattering of light under
emission or absorption of an optical phonon or a phonon polariton for
the case, that the phonon mode under consideration is both Raman and
IR active. Raman active phonons modulate the polarizability of the crys-
tal while infrared active phonons modulate the electric dipole moment.
In crystals with inversion symmetry, optical phonons are either Raman
or IR active. The selection rules thus complement each other. In samples
without inversion symmetry, optical phonons may be both Raman and IR
active.

In the weak coupling picture one can also say that a photon creates virtu-
ally an excition or an electron–hole band-to-band transition and is scattered
by emission or absorption of an optical phonon, but this model fails in some
respects as we shall see below.

In the Raman-scattering process energy and (quasi-)momentum have to
be conserved, i.e.,

�ωR = �ωi ± �ΩPh ,kR = ki ± kPh , (11.1)

where the index i stands for the initial or incident light quantum, e.g., a
(phonon- or excitonlike) exciton polariton, R for the Raman signal and Ph for
the created or annihilated phonon (polariton). Usually one chooses ωi and ωR

in the transparent spectral region of the semiconductor well above the phonon
resonance and below the exciton resonances. Often �ωi is determined by the
emission lines of a readily available laser such as an Ar+ laser.

Equation (11.1) results in values around 105 cm−1 for ki and kR. In a back-
ward or 90◦ scattering geometry kPh is also around 10

5
cm−1 and thus clearly

lies on the phonon-like part of the dispersion relation (see e.g., Fig. 11.2) or
on the longitudinal branch. In Fig. 11.2a we plot the dispersion of acoustic
phonons, of transverse optical phonon polaritons and of a longitudinal optical
phonon from the position of the incident (exciton-) polariton �ωi; ki to the
left (backward scattering) and into the negative energy direction (represent-
ing the “–” sign in Stokes emission). In Fig. 11.2 we also give typical Raman
spectra.
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Fig. 11.2. Schematic drawing of energy and momentum conservation in (11.1) for
a Raman scattering process (Stokes emission) in a backscattering configuration (a),
and typical spectra for Raman (b) and Brillouin scattering (c). Note the different
scales on the x-axes in (b) and (c) [71M1,80B1,94C1]

This case is covered by the weak-coupling picture. The selection rules are
given in a classical description by the Raman tensor (see, e.g., [90K1,96Y1] of
Chap. 1) and in quantum mechanics by the transition matrix elements. The
group theory presented in Chap. 26 gives in this case preliminary information
about which transitions are allowed and which are not. We do not want to go
into details on this topic which is treated at length, e.g., in the above cited
references but cite here only the easily intelligible formula for the intensity
ratio of Stokes to anti-Stokes emission, i.e., scattering under emission or ab-
sorption of a phonon and assuming that the density of final states for Stokes
and anti-Stokes emissions are practically identical

Is
Ia

=
(
ωi − ΩPh

ωi + ΩPh

)4

· NPh + 1
NPh

=
(
ωi − ΩPh

ωi + ΩPh

)4

· exp
{

�ΩPh

kBT

}
, (11.2)

which just reflects the fact that the phonon emission is proportional to
(Nph + 1) and the absorption proportional to NPh, where NPh is the phonon
occupation number of the respective mode.

The first term incorporates the emission probability proportional to ω4.
This factor is usually close to unity because ωi � ΩPh.
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11.1.3 Phonon Polaritons

If we go now from a backward (or 90◦) Raman scattering geometry to forward
scattering we see that kPh can become small and can fall for IR and Raman
active modes into the transition region from phonon-like to photon-like polar-
itoris. Measurements in this geometry allow one to measure the dispersion of
the phonon polariton rather directly. Beautiful experiments of this type, de-
scribed, e.g., in [65H1,75C1,80C1], are performed by collecting the scattered
light on the entrance slit of a spectrometer so that the height on the slit is
a measure of ki −kR (Fig. 11.3a). The wavelength dispersion of the spetrom-
eter then gives the Ω axis. We show an example schematically in Fig. 11.3b.
Figure 11.4 gives the dispersion relation for the phonon polariton in GaP re-
constructed from this type of experiments, which of course, has to take into
account the refraction of the beams at the surface of the sample in contrast
to the simplifications in Fig. 11.3a. These experiments can obviously only be
understood in the strong-coupling or polariton picture.

In another group of experiments, the dispersion of phonon polaritons has
been investigated or verified by an inelastic scattering of two light quanta in
which the differences of the wave vectors and of the quantum energies match
a point on the dispersion curve of the phonon polariton [98B1, 99R1, 01W1,
02C1].

To conclude our discussion of Raman scattering in bulk semiconductors,
we want to mention that Raman processes are also possible in which two
phonons are created (or annihilated), e.g., due to the strong anharmonicity
of the potential between atoms resulting in phonon–phonon interaction men-
tioned in connection with (7.47a–c). If this is a two-step process, in the sense
that the Raman polariton ωR in (13.1) undergoes a second Raman scattering
process, then both phonons have small wavevector compared to the size of
the Brillouin zone. If, on the other hand, both phonons are emitted simulta-
neously, only the sum of the phonon wavevectors has to fulfill (13.1b). The
individual phonon can come from any part of the Brillouin zone. Consequently

Fig. 11.3. Schematics of a Raman scattering experiment in the forward direction
with a spectrometer (a) and the visualization of the relation between Θ and �Ω of
a in the output plane of the spectrometer (b)
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Fig. 11.4. The dispersion of the phonon polariton in GaP, measured by the method
shown in Fig. 11.3 [65H1]

the Raman spectrum then reflects to a certain extent the density of states of
the phonons. Details of such processes are given in [79S1,94C1,03H1].

For the direct observation of the THz emission of optical phonons see
[92K1] and references therein and for the influence of isotopes [93C1].

11.1.4 Brillouin Scattering

Brillouin scattering is the analog of Raman scattering for acoustic phonons.
Because of the rather flat dispersion relation of acoustic phonons, with a slope
given by the velocity of sound (instead of c/n), one finds even in a back cat-
tering configuration only much smaller (anti-) Stokes shifts, which are usually
≤ 1 meV (Fig. 11.2c). Since the coupling of acoustic phonons to photon-like
exciton polaritons is also much weaker than for optical phonons, some high-
resolution techniques and an efficient suppression of stray light are necessary
to detect Brillouin scattering, as can be seen by comparing the abscissa of
Figs. 11.2b and c. Since the dispersion relation of acoustic phonons is linear
in the range of interest, (11.1) can be rewritten for Brillouin scattering in
a backscattering configuration as

ΩLA,TA
Ph

vLA,TA
s

=
ωi − ωLA,TA

R

vLA,TA
s

= 2
ωi

c
n(ωi) (11.3)

if we assume that we are so far away from the exciton resonance that the
real part of the refractive index n(ω) does not change significantly over the
Brillouin shift. In this case either n(ω) or vs can be determined from Brillouin
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scattering if the other quantity is known. If ωi approaches the resonance of
the exciton polariton, Brillouin scattering is an efficient means of k-space
spectroscopy of these resonances. We come back to this aspect in Sect. 13.1.4

11.1.5 Surface Phonon Polaritons

We already mentioned in Sect. 5.6 that surface polariton modes exist in the
range between the transverse and longitudinal eigenmodes. These modes can
be observed by attenuated total reflection (ATR), i.e., by coupling the evanes-
cent wave of Fig. 3.3 to the material under investigation. More details of this
technique are given in Chap. 25.

Here we show in Fig. 11.5a ATR spectra and in b the dispersion relation
of the surface phonon polariton in GaP. The agreement with the schematic
drawing of Fig. 5.14a is obvious. For more details see [74B1] and references
given therein.

Fig. 11.5. Spectra of attenuated total reflection (a) in the region of the optical
phonon resonances of GaP and the resulting dispersion relation of the surface phonon
polariton (b). Compare with Fig. 11.4 for the bulk modes. According to [72M1]
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11.1.6 Phonons in Alloys

Many semiconductors form alloys like Ga1−yAlyAs, CdS1−xSex or Zn1−yMgy

S1−xSex. See, e.g., [95C1] of Chap. 1 or Sects. 7.8 and 8.15. In some cases
the alloys exist for the whole range 0 ≤ x, y ≤ 1. In other cases, there
is a miscibility gap. We concentrate here on ternary alloys of two binary
compounds. There is a simple rule of thumb for how the phonon modes behave
in an alloy: If the equivalent branches of the two parent binary compounds,
e.g., the LA or the TO, overlap energetically, there is a smooth transition
of the phonon properties from one limiting case (e.g., x = 0) to the other
(x = 1). This is the so-called amalgamation type. If, on the other hand,
the two equivalent branches do not overlap energetically, the phonon modes
remain essentially as they are in the two parent binary compounds, e.g., CdS
and CdSe, but their weights, e.g., their oscillator strengths, vary continuously
with x or y. This is the so-called persistent mode type. The reason for this
rule is essentially the coupling between oscillators with approximately equal
or clearly different resonance frequencies.

The acoustic phonons start in all materials at k = 0 and E = 0 so they are
always of the amalgamation type, i.e., the longitudinal and transverse sound
velocities vary in alloys continuously with composition.

For optical phonons both cases can appear. CdS1−xSex belongs to the per-
sistent mode type concerning the optical phonons. We show in Fig. 11.6a the
composition dependence of the TO and LO eigenenergies. One sees clearly that
the frequencies remain essentially unchanged but the longitudinal-transversal
splitting ∆LT which is proportional to the oscillator strength varies contin-
uously and complementary with composition. Figure 11.6 shows data for

Fig. 11.6. The composition dependence of the optical phonon frequencies for a per-
sistent mode, type alloy, here CdS1−xSe (a) and an amalgamation, type alloy, here
Zn1−yCdyS (b) [68C1]
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Cd1−yZny. The TO and LO phonon energies shift continuously with com-
position corresponding to the amalgamation type. Data have been deduced
from Raman and IR spectroscopy.

Isotopes of one element have per definition different masses. For phonons,
the eigenfrequencies depend on the mass of the atoms (see Sect. 7.1). Thus
isotope mixtures in a solid already present some (weak) alloying or disor-
der, contributing to a broadening of phonon resonances. The narrowing of
these resonances by materials containing only one isotope has been beauti-
fully demonstrated in [93C1,94C2].

11.1.7 Defects and Localized Phonon Modes

As a last example of the optical properties of phonons in bulk materials we
consider the observation of localized phonon modes e.g. in absorption. The
example is a GaAs crystal doped with Si which can occupy Ga or As sites as
SiGa and SiAs and thereby act as donor or acceptor, respectively. Addition-
ally the samples have been codoped with Li to keep the concentration of free
carriers low since the Si acceptors and donors do not compensate completely.
The absorption spectrum of this system in the energy range above the optical
bulk phonon modes is shown in Fig. 11.7. Most of the peaks can be identified
as local phonon modes of the centers or complexes indicated by arrows. Since
Si and Li have considerably lower atomic masses than Ga or As and since
the force constants are not too much lower, it is not surprising that the local-
ized phonon modes appear at frequencies above the bulk modes. The isotope
shift introduced by 7Li and 8Li is clearly visible in further data of [71S1].
More information on this topic may be found in [89J1,94R1,02K1] and refer-
ences given therein. Localized phonon modes can also be observed in Raman
scattering or in luminescence or absorption in the visible as side-bands. See,
e.g., [81A1]a of Chap. 1.

Fig. 11.7. Absorption spectrum of a GaAs: Si, Li, doped sample, showing localized
phonon modes [71S1]
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11.2 Phonons in Superlattices

Phonons in heterostructures like superlattices have been investigated for many
systems including AlAs/GaAs or CdS/CdSe. See, e.g., [01L1] of Chap. 1
or [72C1, 79S1, 97C1, 98G1, 99D1, 01D1] and references given therein. We se-
lect here as an example the quaternary system CdS/ZnSe since backfolded
acoustic, confined optic and interface phonons have been observed.

11.2.1 Backfolded Acoustic Phonons

The rules for backfolding or confinement of phonons in a superlattice are
essentially the same as for amalgamation and persistent mode type in alloys
(see Sect. 11.1.6 above and Sect. 7.9).

Consequently, backfolding always applies for acoustic phonons. For the
above-mentioned CdS/ZnSe system we show in Fig. 11.8 the calculated dis-
persion of backfolded longitudinal acoustic phonons, which can be observed
in the geometry used in [99D1, 01D1] for two different samples and the first
three backfolded LA modes (so-called FLAPS) in the corresponding Raman
spectra. The experimental data are compared in Fig. 11.8 with calculated
dispersion relations. Excellent agreement has been found.

Under favorable conditions it is even possible to observe backfolded acous-
tic phonons directly in the IR. An example of a CdS/CdSe SL is given
in [98G1]. References for backfolded acoustic phonons in other systems like
GaAs/AlAs or CdS/ZnS superlattices are found, e.g., in [72C1,93R1,99D1].

Fig. 11.8. Raman spectra of the first three backfolded longitudinal acoustic phonons
(FLAPS) in two different CdS/ZnSe superlattices (a) and their calculated dispersion
relation together with the data points from (a) (b) [01D1]
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11.2.2 Confined Optic Phonons

The CdS/ZnSe system is a persistent mode type. Consequently there are con-
fined optical phonon modes in the two different sublattices. In Fig 11.9a the
displacement patterns of the first two confined LO phonon modes are shown
for the CdS and for the ZnSe layers. Due to the mismatch of the eigenfrequen-
cies, the amplitudes decay extremely fast beyond the boundary. In the Raman
spectrum are well-resolved the first two confined LO phonon modes in ZnSe,
while those in CdS are more broadened and the corresponding structure is
washed out. The polarization-dependent selection rules are obvious, i.e. the
odd confined phonon modes are seen preferentially in off-diagonal polarisa-

Fig. 11.9. Calculated atomic displacement patterns for the first two confined lon-
gitudinal optical phonon modes in a (CdS)6/(ZnSe)5 superlattice and of the ZnS
interface mode (a) and the Raman spectra for parallel (diagonal) and orthogonal
(off-diagonal) polarization with the calculated frequencies indicated by dashed ver-
tical lines (b) [01D1]



284 11 Optical Properties of Phonons

Fig. 11.10. The dispersion relation of LO phonons of ZnSe over one half of the first
Brillouin zone deduced from confined optic phonons in a CdS/ZnSe superlattice
[01D1].

tion and the even ones in diagonaql polarisation. The calculated energies are
marked by the dashed lines.

By measuring the eigenfrequencies of confined phonons of different order
and in superlattice layers of different thicknesses it is possible to investigate
optically the phonon dispersion over a substantial part of the first Brillouin
zone, including possibly some minor shifts or modifications in strained layer
superlattices due to the phononic deformation potentials. An example is shown
for ZnSe in Fig. 11.10. The dispersion relation is shifted by 4 cm−1 due to
strain as compared to bulk ZnSe. This technique is much cheaper than inelas-
tic neutron scattering and can be performed in almost every well-equipped
laboratory for optical spectroscopy and not only at one of the few thermal
neutron sources.

More examples of this type of experiment and references are found, e.g,
in [93R1,94C1,97V1] or [96Y1,01L1] of Chap. 1.

11.2.3 Interface Phonons

In some quaternary superlattices, like CdS/ZnSe or BeTe/ZnSe, so-called in-
terface phonons may appear. These are phonon modes that occur, as the
name suggest, at the interface between two materials with amplitudes de-
caying rapidly on both sides. In this sense they correspond to the surface
(polariton) modes of Sect. 5.6.
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In the CdS/ZnSe system, two bonds can appear at the interface, which
are not present in either of the two compounds, namely CdSe and ZnS bonds.
While CdSe interface phonon modes are difficult to detect since their fre-
quency is rather low due to the heavy masses of Cd and Se and they might
consequently merge in some other confined or backfolded modes, the situa-
tion is different for the ZnS mode, which involves the light cation and anion
masses. The peak with the highest energy in the Raman spectrum of Fig. 11.9b
is attributed to this interface mode. The displacement pattern is shown in
Fig. 11.7a and the excellent coincidence of the calculated and measured ener-
gies supports this interpretation.

11.3 Phonons in Quantum Dots

In quantum dots, phonons may be confined in all three directions of space sim-
ilarly to charge carriers or excitons. One peculiar consequence is that acoustic
phonons show a discrete energy spectrum starting at finite energy. There are
modes where, e.g., one half of a spherical quantum dot rotates against the
other and others where a sphere oscillates adopting the shape of an American
football. The appearance of the various modes is obviously closely linked to
the boundary conditions of the dot. For details see, e.g., [92N1,93W1,96W1].
These modes can be observed, e.g., as satellites in resonant photoluminescence
or photoluminescence excitation spectroscopy.

The confined acoustic phonons shift in energy according to R−1 where R is
the dot radius and can thus be distinguished from other splitting mechanisms
with a comparable order of magnitude but a different size dependence. The
singlet-triplet splitting also observed in [96W1] varies, e.g., with powers R−2.5

to R−3.

11.4 Problems

1. Try to find more reflection spectra like that in Fig. 11.1b in the litera-
ture. Deduce �ωT, ∆LT, εs and εb from these spectra and compare with
values in the literature.

2. Show that the (eventually only weak) dependence of ω on k is important
to explain the experimental fact that the TO and LO phonon modes
can be followed through the whole Brillouin zone by neutron scattering.
Compare for the explanation with Fig. 5.1 and (6.2) for vanishing and
finite damping.

3. Why is the phonon spectrum of high Tc superconductors so complex?
4. Which trend would you expect for the zone boundary LA and TA

phonons when going from ZnO via ZnS and ZnSe to ZnTe. Compare
with data in the literature. What do you expect for zone center optic
phonons?
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5. Can you give qualitative arguments for why the optical phonons in
CdS1−xSex and Zn1−yCdyS are of the persistent and amalgamation
type, respectively? Consider the atomic masses of the oscillating atoms.
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12

Optical Properties of Plasmons,
Plasmon-Phonon Mixed States and of Magnons

Plasmons as collective excitations of the carriers in a partly filled band do
not usually exist in pure semiconductors under thermodynamic equilibrium,
since the probability of thermal excitation across the forbidden gap is almost
negligible, except for narrow gap semiconductors or for semimetals.

There are, however, two conditions under which plasmons can be observed,
and these are either highly doped semiconductors or highly excited ones. Un-
der high doping and in thermodynamic equilibrium one has (see Sects. 8.9,14)

np = n2
i (T ) = N e

effN
h
effe−Eg/kBT (12.1)

Fig. 12.1. The reflection spectrum in
the vicinity of the plasmon resonance
in doped InSb samples [57S1]
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i.e., one has a high density either of electrons or of holes, and the data of the
majority carriers have to be used in the calculation of ωP1 according to (10.1).

Under high excitation an electron–hole plasma can be formed, which con-
sists of electrons and holes (for details see Chap. 21). In this case the reduced
mass of electron and hole enters in (10.1).

In Fig. 12.1 we show the IR reflection spectra of InSb samples with differ-
ent n-doping. In agreement with our statements that the transverse eigenfre-
quency of plasmons is zero, we see reflectivity close to one from zero up to the
plasma frequency, which is, as we remember, the longitudinal eigenfrequency.
The reflection minimum corresponds to the frequency at which the refractive
index of the upper polariton branch is unity. Above the minimum R reaches
a value determined by the background dielectric constant of the plasma reso-
nance. The shift of the reflection minimum with increasing doping reflects the
n1/2 dependence of the plasmon frequency.

12.1 Surface Plasmons

Adapting Fig. 5.14 to the situation ωT = 0 we expect, for the case of plasmons,
that surface plasmon modes exist in the whole frequency range between zero
and ωPL (Fig. 12.2). These surface plasmons can be investigated either by
attenuated total reflection (see Sects. 11.1 or 25.1) or by another method
which we will now outline briefly, since it has been used to obtain the data
in Fig. 12.2. If a grating with spacing Λ is engraved in the surface, then the
parallel component of the wave vector is conserved only modulo reciprocal
vectors of this surface grating (see Sect. 3.1.3), i.e., modulo

Fig. 12.2. The dispersion of the surface plasmon mode in n-doped InSb [71M1]
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G‖ =
2π
Λ
m; m = 0,±1,±2 . . . . (12.2)

Adding such G‖ values to the wave vectors of the incident light beam allows
coupling to the surface polariton modes for m �= 0. By varying the frequency
and the angle of the incident light beam and thus

ω,k‖ + G‖ (12.3)

independently, it is possible to measure the dispersion of the surface plasmon
polariton.

By changing the doping concentration (or the pump power in the case of
an electron–hole plasma or the current in forward direction in a p-n junction)
it is possible to deliberately vary the carrier concentration in a semiconductor
and thus the plasmon frequency.

12.2 Plasmon-Phonon Mixed States

Eventually we encounter conditions where ωPL ≈ ωLO and plasmon-phonon
mixed states develop (see Sect. 10.1). Depending on the selection rule, they
may be detected in Raman scattering and/or in IR reflection spectroscopy.
We give examples for both cases. In Fig. 12.3. the longitudinal modes �ω−
and �ω+ of Fig. 10.5 have been detected in an electron–hole plasma as a func-
tion of electron–hole pair density confirming nicely the concept developed in
Sect. 10.1.

Fig. 12.3. The dependence of the plasmon-phonon mixed mode on the electron–hole
pair density in highly photon-excited GaAs [84N1]
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Fig. 12.4. Reflection spectra of n-doped ZnO:Ga samples with two different doping
levels (note the different abscissas) (a,b) and the various transverse and longitudinal
eigenenergeis of the plasmon-phonon mixed states as a function of carrier density
(c) [97G1]

In [00N1,02N1] of Chapt. 10 the plasmon-phonon mixed states have been
observed in transient time-resolved reflection spectroscopy in various semicon-
ductors after pulsed excitation.

In Fig. 12.4a,b we show reflection spectra of ZnO:Ga with various n-type
doping levels and in Fig. 12.4c the resulting transverse and longitudinal
eigenenergies. One can nicely see that in Fig. 12.4a, the plasma resonance
occurs below 15 meV, but in Fig. 12.4b the density of 2.3 × 1019 cm−3 gives
�ωPL around 400meV.

The alternating stopbands starting at the various transverse eigenfrequen-
cies (�ωT,PL = 0; �ωTO) and the reflection minima, occurring at the longitu-
dinal eigenfrequencies �ω− and �ω+, respectively, can be nicely seen.
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In simple metals the plasma frequency occurs in the 5 to 15 eV range,
i.e., they show R � 1 over the whole IR and visible spectral range up to the
UV. The colour of some metals like Cu, Au or the dip in the reflectivity of
Ag in the near UV are due to a superposition of the plasmon resonance and
band-to-band transitions in a similar way as the plasmon-phonon interaction
in semiconductors in the IR [81N1].

12.3 Plasmons in Systems of Reduced Dimensionality

As already explained in Sect. 10.1 the plasma frequency starts at k = 0, i.e.,
λ = ∞ in two- and one-dimensional systems at �ωPL = 0. This holds, e.g.,
for single quantum wells and multiple quantum wells as long as the coupling
between them is negligible.

In Fig. 12.5 we show such a situation for two different modulation-doped
GaAs/Al1−yGayAs samples. The data points have been deduced from angle-
resolved Raman scattering, which allows variation of k‖.

If the quantum wells couple in a MQW sample one can also define a trans-
verse wavelength or k⊥.

A dispersion for ωPL

(
k‖, k⊥

)
taking such effects into account is given,

e.g., by [82O1]

ωPL =
{

2πne2

εMm∗
eff

k‖
sin k‖d

cosh k‖d− cos k⊥d

}1/2

(12.4)

with n being the two-dimensional carrier density in every quantum well, m*
the effective mass of the carriers, d the distance between quantum wells and
εM the dielectric constant of the barriers.

Fig. 12.5. The in-plane dispersion rela-
tion of plasmons in two different modu-
lation doped GaAs/Al1−yGayAs samples
[82O1]
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The solid lines have been calculated with (12.4) and the dashed lines are
linear approximations.

Obviously, various branches can be expected for various values of k⊥. Ad-
ditionally, a coupling to phonon resonances or to intersubband transitions may
complicate things. Examples are found, e.g., in [86F1,89Z1,93S1] or in [01L1]
of Chapt. 1.

Just as an addendum we mention again that the beautiful red color of
gold ruby glasses results from surface plasmon excitation of gold colloids (or
quantum dots) in the glass matrix [95K1].

12.4 Optical Properties of Magnons

As already mentioned in Sect. 10.2 only few semiconductors show magnetic
ordering like the antiferromagnet MnSe.

One of the very few examples for the observation of magnon polaritons
has been reported for antiferromagnetic FeF2 in [97J1]. The optical magnons
have been observed in reflection and the corresponding surface polaritons by
attenuated total reflection, both in a narrow spectral range around 52.5 cm−1

(6.5 meV).
An example the difficulty to assign spectral features to plasmons see the

references in [96G1,96R1].
The optical properties of diluted (or semimagnetic) semiconductors (DMS)

will be treated in Sect. 16.1.2.

12.5 Problems

1. Calculate the plasmon energy for n- (or p-) doped GaAs and carrier con-
centrations of 1010, 1015 and 1020 cm−3.

2. Calculate the density of electrons at which �ωPL = �ΩLO for ZnO and
InAs. Up to which temperatures are the electron gases degenerate.

3. Show that a treatment of the optical properties of free carriers like the
Drude model outlined in (10.3 to 5) results in similar optical properties
to those discussed above.

4. Which interband transition are responsible, together with the plasmon
reststrahlbande for the color of Cu and Au?
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13

Optical Properties of Intrinsic Excitons
in Bulk Semiconductors

Having treated the optical properties of phonons, plasmons and magnons, we
come in this and the following chapters to the essence of semiconductor optics,
namely the optical properties of excitons.

Phonons are necessary to describe the optical properties of semiconductors
and of insulators in the IR; plasmons determine the optical properties of
metals from the IR through the visible to the near UV, and in semiconductors,
if present at all, they contribute along with the phonons to the IR spectra.
Excitons, on the other hand, determine together with their continuum stats
or the band-to-band transition the optical properties around the band gap,
i.e., in the visible including the near UV and IR in the case of semiconductors
and in the (V)UV for insulators. Although inorganic insulators like the alkali
halides and organic ones such as anthracene have specific optical properties,
many of the aspects presented in the following for excitons in semiconductors
also apply to them.

13.1 Excitons with strong Oscillator Strength

We concentrate in this chapter on the intrinsic linear optical properties of
excitons in bulk semiconductors starting from semiconductors with a dipole-
allowed, direct band-to-band transition because they exhibit dipole-allowed
excitons with the highest oscillator strength. Values of their longitudinal–
transverse splitting ∆LT range from 0.1 to beyond 10 meV.

It should be mentioned, however, that not all excitons in this group of
semiconductors have high oscillator strength and that some excitons in semi-
conductors with dipole-forbidden band-to-band transitions may be dipole al-
lowed, but with considerably lower oscillator strength. We come back to these
cases in Sect. 13.2, ending with indirect gap materials.

13.1.1 Exciton–Photon Coupling

In semiconductors with dipole-allowed direct band-to-band transitions, exci-
tons occur, which couple strongly to the radiation field. As a consequence
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many optical properties can be understood quantitatively only in the strong-
coupling or polariton picture. Thus we use this occasion to elucidate once
more for this particular case the concept of weak and of strong coupling to
the radiation field, heeding the classical dogma “repetitio est mater studio-
rum”.

In Sects. 2.1–2.4 we introduced the electromagnetic radiation field, and
in Sect. 2.5 the photons as its quanta. In Chaps. 9–11 we presented the
properties of various elementary excitations. The interaction between the two
can be treated in perturbation theory. This is the so-called weak coupling
approach. The one-photon absorption coefficient α(ω) is then at resonance
proportional to the dipole matrix element squared in (13.1a), i.e., by first
order-perturbation theory with the initial and final state:

α(ω) ∝ |〈f |HD | i〉|2 δ (Ei − Ef + �ω) . (13.1a)

The refractive index is obtained at this level of approximation either by
a Kramers–Kronig transformation of α(ω) or, away from the resonance, by
second-order perturbation theory according to

n2(ω) − 1 ∝
∑

z

〈i|HD|z〉 〈z|HD|i〉
Ez − Ei − �ω

(13.1b)

A photon �ω creates virtually an excited intermediate state |z〉 under
momentum conservation, which, after a time ∆t limited by

∆E∆t = (Ez − Ei − �ω)∆t � � , (13.2)

emits again a photon which is identical to the incident one, while the electronic
system returns to the initial state |i〉. The time ∆t during which the energy is
“stored” in the virtually excited state reduces the phase velocity of the light
and thus evidently describes an n(ω) which increases when ω approaches the
resonance energy Ez − Ei from below, since ∆E goes to zero and ∆t can be
very long, in agreement with Fig. 4.4.

In the polariton concept, on the other hand, one quantizes the mixed state
of the electromagnetic radiation and the excitation of the medium, i.e., the
polarization wave. We already introduced this concept in Chap. 5. Since it is
a very important one we want to demonstrate it here again for the exciton
polariton.

For readers who are not satisfied with the simple statement that the po-
laritons are the quanta of the mixed states of electromagnetic radiation and
excitation (or polarization), we give two other approaches. The first is just
a diagrammatic representation of what was said before.

In Fig. 13.1 an incident photon creates an electron–hole pair, which recom-
bines again to give a photon, and so on. The Coulomb interaction between
electron and hole, which is responsible for the formation of the exciton, is
represented by a virtual exchange of photons between electron and hole, i.e.,
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by the vertical lines. Consequently the whole diagram of Fig. 13.1 can be
considered as a representation of the exciton polariton.

In the other approach, which follows [93H1] of Chap. 1, we start with the
electron and hole operators, construct from them the exciton and finally the
exciton polariton. (see also Sect. 9.1)

We start with the creation and annihilation operators for excitons:

B+
v,k ; Bv,k . (13.3)

The index v stands for the quantum numbers nB, l,m.
It can be shown that the Bv,k deviate from the commutator relations of

ideal bosons by a term proportional to the mean number of electron–hole
pairs, n, contained in the volume of an exciton ad

B (see e.g. [93H1, 93P1] of
Chap. 1)

〈[B 0 , 0, B
+
0 , 0]

−〉 = 1 − O (nad
B) , (13.4)

where d is the dimensionality of the system. The Hamiltonian of a non-
interacting exciton gas is then

H =
∑
v,k

E (v,k)B+
v,kBv,k . (13.5)

Using an analogous expression for the photons with the number opera-
tor c+k ck, for the interacting system of excitons and photons considering the
leading, i.e., resonant terms around a specific resonance only, we obtain

H =
∑

k

[∑
v

EvkB
+
vk Bvk + �ωk c

+
k ck − i �

∑
v

gvk (B+
vk ck − h.c.)

]
.

(13.6)
The coupling coefficients gvk contain the transition matrix elements as in (13.1).

If we consider the third term on the right-hand side of (13.6) as a pertur-
bation, we are back once more to the weak coupling limit.

The polariton concept is obtained if we diagonalize the whole Hamiltonian
(13.6) by a suitable linear combination of the Bvk and the ck, leading to the
polariton operator Pk

Pk = uvkBv,k − vk ck (13.7)

with |uvk|2 + |vk|2 = 1 . (13.8)

Fig. 13.1. Diagrammatic representation of an exciton polariton
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Fig. 13.2. The energy
dependence of the uv,k

and vk of (13.7) for the
upper polariton branch.
According to [93H1] of
Chap. 1

The uvk give the exciton-like character of the polaritons. They are close
to one around the exciton energy Ev,0 and decrease on the upper and lower
polariton branches with decreasing energetic distance from the resonance.
The vk give the photon-like part and, according to (13.8), show the opposite
behavior. In Fig. 13.2 we give an example for the upper polariton branch.
As a rule of thumb we can state that the polariton wavefunction contains
considerable exciton-like parts over energies

| �ω − Eex | � 10 ∆LT . (13.9)

It is interesting to note that the dispersion relation that we obtain from
this approach is identical to the one obtained from the set of classical coupled
oscillators treated in Chaps. 4 and 5.

13.1.2 Consequences of Spatial Dispersion

In contrast to that of optical phonons, the k dependence of the exciton energy
is significant. For k vectors in the transition region from the photon-like to
the exciton-like part of the dispersion relation, the so-called bottle-neck, the
kinetic energy term in (9.1a) becomes comparable to the longitudinal trans-
verse splitting ∆LT. The consequences of spatial dispersion have already been
outlined in connection with Figs. 5.3–5.5, so that we can restrict ourselves to
just recalling them here. For all frequencies there is at least one propagating
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mode. This fact reduces the reflectivity in the reststrahlbande to values be-
low 1, even in the case of negligible damping. For frequencies above ωL there
are several propagating modes, and below it there is at least one propagat-
ing mode and one or more evanescent ones. This situation is not covered by
the boundary conditions deduced from Maxwell’s equations and additional
boundary conditions (abc) have to be introduced containing the information
about what fraction of the energy transmitted through the interface travels
on which polariton branch. Since this “branching” ratio is ω-dependent and
since the imaginary parts of the various branches differ, the decay of the in-
tensity into the depth of the sample can be nonexponential. This means the
“effective” absorption coefficient can be thickness dependent. Furthermore it
looks more complex (Fig. 5.5) than Fig. 4.4.

The abc which have been introduced by Pekar and by Hopfield [58H1,
62H1, 62P1, 63H1, 64M1] assume that the excitonic part of the polarization
at the surface vanishes, or its derivative normal to the surface, or a linear
combinations of both. See Sect. 5.4 and e.g. [74A1, 75L1, 78B1, 78H1, 78S1,
79B1,79S1,80B1,81B1,81L1,81S1,82O1,82R1,82S1,83M1,84H1,84S1,85H1]
of Chap. 5. In [98H1] a way out of this abc problem has been shown. For
even more recent approaches see [00T1, 01S1]. Furthermore one can assume
that excitons do not “leak out” of the semiconductor into vacuum and that
there should consequently be an exciton-free surface layer (dead layer), the

Fig. 13.3. The problem of reflection for a semiconductor in the vicinity of an exciton
resonance for normal incidence including multiple reflection in a dead layer and two
propagating modes due to spatial dispersion
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optical properties of which are described by εb and which has a minimum
thickness of the excitonic Bohr radius. Electric fields, which occur often at
surfaces normal to them, can ionize, i.e., destroy the exciton and lead to an
increase in the thickness of the dead layer. The problem which thus has to be
solved to calculate a reflection spectrum is shown in Fig. 13.3. An incident
beam passes first the dead layer in which multiple reflection occurs and then
enters the semiconductor in which several modes can be excited. Sometimes
scientists apply even more complex models assuming, e.g., that the damping
and/or the eigenfrequencies are depth dependent [79E1,81L1,82S1].

The formulas to calculate the spectra are rather complex and we do not
give them here but refer the reader to [75L1, 78S1, 79E1, 80B1, 81L1, 82B1,
82S1, 84R1, 85H1, 93K1, 95B1] or the references from Chap. 5 given above.
Instead we give in the next section examples of reflection, transmission, and
luminescence spectra of the exciton polariton in bulk semiconductors with
direct, dipole-allowed band-to-band transitions.

13.1.3 Spectra of Reflection, Transmission and Luminescence

In Fig. 13.4a we show the bandstructure of CdS in part b the dispersion of the
exciton polariton for the orientation k ⊥ c,E ⊥ c and including the nB = 1
excitons involving a hole either in the A or in the B valence band. The A exci-
ton is a rather simple resonance for this orientation, comparable to our model
system in Sect. 5.2. The k-linear term of the B valence band (Sect. 8.8) mixes
the singlet and triplet states for k⊥ �= 0 (see Sect. 13.2.1.1) and gives rise to an
additional polariton branch. Figure 13.4c finally gives the reflection spectra of
the two resonances for E ⊥ c and E ‖ c and of some higher states (nB ≥ 2).
The combination of the Γ1 (S-) envelope function for nB = 1 with the symme-
tries of the electron Γ7 and the holes (AΓ9, BΓ7) gives excitons of symmetries
AΓ5 and AΓ6 and BΓ1, BΓ2, BΓ5 as explained in more detail in Chap. 26. The
Γ6 and Γ2 states are triplets which couple only weakly to the radiation field
since they are spin-flip and dipole-forbidden and do not show up in reflection
(see Sect. 13.2.1.1). Γ5 and Γ1, states couple to the radiation field for the ori-
entations E ⊥ c and E ‖ c, respectively. These selection rules show up clearly
in the reflection spectra, the nB = 1 A excitons being seen only in E ⊥ c.

A fit to the reflection spectra (not shown here) using spatial dispersion,
an exciton-free layer and some abc coincides with experiments within a few
percent.

The AΓ5 resonance is quite simple, as already mentioned. R remains sig-
nificantly below 1 due to spatial dispersion as predicted above. For smaller
oscillator strength or longitudinal-transverse splitting, the maximum almost
disappears and only a narrow dip close to the longitudinal eigenfrequency
remains, as shown in Fig. 13.5 for ZnTe.

The small spike around AΓL
5 in Fig. 13.4c is partly caused by the onset of

the UPB but mainly by the dead layer. An increase of its thickness increases
the importance of the spike due to multiple reflections (Fig. 13.3) and may
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Fig. 13.4. The bandstructure of CdS around the Γ -point (a); the dispersion of the
nB = 1 A and B exciton polariton resonances (b); and the reflection spectra for the
polarizations E ⊥ c and E ‖ c (c). According to [82B1,85H1,93K1]

even lead to an “inversion” of the usual reflection spectrum, i.e., to a dip at
low energies and a maximum above. A set of calculated spectra showing this
phenomenon is given in Fig. 13.6.

The BΓ1 exciton resonance is again a simple one, but the BΓ5 has a small
dip stemming from the additional polariton branch shown in Fig. 13.4b, which
at this energy reaches exactly n = 1.

While the A and BΓ5 excitons have in CdS for E ⊥ c roughly equal oscilla-
tor strength and ∆LT [85H1], the situation changes for close lying resonances
as occurs for ZnO [85H1]. In this case the longitudinal transverse splitting
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Fig. 13.5. A reflection spectrum for
ZnTe. According to [83M1]. For the
dispersion of the exciton polariton see
Sect. 16.1.1

∆LT of the AΓ5 exciton is reduced and that of the BΓ5 increased as discussed
already in Sect. 4.5. Only the sum of ∆LTAΓ5 and ∆LTBΓ5 has to be constant
and equal to ∆LTCΓ1 [60H1]. See also Fig. 13.21

At higher energies we see nB ≥ 2 exciton states which split into sev-
eral sublevels due to the various L and/or Lz values of the envelope func-
tion. The reflection signal of these higher states decreases due to the n−3

B

dependence of the oscillator strength. In the band-to-band transition region
the reflection spectra are usually flat and structureless. The C-excitons ex-
pected from Fig. 13.4a are situated around 2.61 eV and are off the scale
of Figs. 13.4b, c. These resonances are washed out even at low tempera-
ture because the C-exciton is situated in the continuum of the A- and B-
excitons and thus has a rather short phase relaxation time T2, i.e., strong
damping.

With increasing lattice temperature the exciton resonances are broadened
due to increasing scattering with phonons. Sometimes they are hardly visible
at RT as shown in Fig. 13.7 for CdS. A similar washing out of the exciton
resonance can occur even at low temperatures in samples with high impurity
content and/or lower crystalline quality or for increasing excitation desenty.

To summarize, we can state that the reflection spectra of semiconduc-
tors are determined around the gap by exciton polaritons. The longitudinal
eigenenergy can be reasonably well determined from the reflection minimum
which corresponds to n = 1 on the UPB and is therefore situated only slightly
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Fig. 13.6. A set of calculated exciton reflection spectra of CdS for 45◦ incidence
and for various thicknesses of the exciton-free layer with all other parameters kept
constant. According to [82R1]

(< 1 meV) above �ωL. The transverse eigenenergy, the oscillator strength, the
damping, and the effective mass of the exciton can be extracted only with the
help of a rather complicated line-shape analysis.

For uniaxial, hexagonal materials like CdS or ZnO it can be shown from
group-theoretical considerations that the Γ5-excitons are the resonances for
the ordinary beam (Sect. 3.1.7) because the polarization E ⊥ c can be realized
for all angles between k and c. The Γ1 resonances have dipoles oriented parallel
to c. As a consequence they have maximum coupling to the radiation field for
E ‖ c and k ⊥ c, but develop as extraordinary or mixed-mode polaritons to
the longitudinal state if the angle ∠(k, c) is continuously changed from k ⊥ c
to k ‖ c. In Fig. 13.8 we show the dispersion of the CΓ1 exciton polariton in
ZnO, which has an oscillator strength varying according to

∆LT = ∆0
LT sin2 ∠(k, c) . (13.10)

Experimental data for mixed mode polaritons can be found in [72W1,
75L1]. The small refection spike seen at BΓ5L in [03C1] might similarly well
be due to a mixed mode polariton due to the finite angle of aperture of the
incident beam.
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Fig. 13.7. A set of reflection spectra of the A- and B-exciton resonances of CdS for
various lattice temperatures. According to [80B2]

The absorption spectra of nB = 1 polariton resonances are usually dif-
ficult to measure quantitatively, since in the resonance region the effective
absorption, or rather extinction, coefficient reaches values in the range

104 cm−1 � αeff � 106 cm−1 . (13.11)

As a consequence for samples with d � 1 µm, the transmitted light intensity
goes to “zero”, i.e., to values comparable to or smaller than the stray light
of the spectrometer. We show in Fig. 13.9a an absorption spectrum of a ZnO
layer at RT. The layer is of polycrystalline nature, produced by evaporating
Zn on a substrate of quartz glass and subsequent oxidation [43M1]. The crys-
tallites have their c axis oriented perpendicular to the substrate. The peak at
3.3 eV is due to the close lying and thermally broadened AΓ5 and BΓ5 exciton
resonances ([75L1,78H1,80B1,81L1,82B1,85H1,03C1] and references therein).
This is possibly one of the first experimental observations of a Wannier exci-
ton in absorption, though the author of [43M1] was most probably not aware
of this fact. See also Sect. 9.1. In Fig. 13.9b experimental transmission spectra
are shown A and BΓ5 resonance of a thin CdS platelet type sample. There
are Fabry–Perot modes (see Sect. 3.1.6) in the transparent region due to the
natural reflectivity of the surfaces of the as-grown platelet type sample. A de-
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Fig. 13.8. Dispersion of the exciton polariton in a uniaxial material for various
angles between k and c. Data for the CΓ1 exciton polariton in ZnO. According
to [78H1]

tailed analysis of αeff (ω) in the resonance region is possible only for sample
thicknesses of the order of 1 µm, such that α d � 4. Such samples cannot
usually be produced by grinding and polishing of thicker samples, since these
processes introduce so much damage to the lattice that the damping γ of the
resonance becomes too large (i.e., �γ > ∆LT).

Sometimes epitaxial layers can be used for this type of investigation, but
care has to be taken that these layers do not contain (inhomogeneous) strain
since transmission measurements integrate over the whole sample thickness.
Fortunately some semiconductors, such as CdS or CdSe, tend to grow as thin,
single crystal platelets. The absorption spectrum of Fig. 13.9b stems from
such a sample. Figure 13.9c shows a calculated tranmission spectrum of the
AΓ5 nB = 1 resonance. The similarity to the A1 resonance in Fig. 13.9b and
the deviations from the simple case without spatial dispersion of Figs. 4.4
or 11.1 are evident. In Fig. 13.9d we give an overview of the absorption
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spectrum of a thin GaAs sample. GaAs has, in comparison to CdS or ZnO,
a much lower oscillator strength due to the larger value of aB (see Sect. 9.1);
(∆LT GaAs ≈ 0.1 meV). Therefore it is easier to measure the absorption of the
nB = 1 exciton. We can see in this figure similarly as for CdS in Fig. 13.9b
also the nB = 2 and 3 levels with S-envelope function. Even higher states
(nB > 3) merge with the continuum. The decrease of the oscillator strength
with n−3

B [57E1] is at least qualitatively confirmed by this spectrum.
The rather constant value of α (ω) in the region of the continuum states

comes from the product of the square root combined density of states (the
dashed line gives the calculated absorption spectrum for a simple band-to-
band transition without Coulomb effects for comparison) and the Sommerfeld
factor, already discussed in Sect. 9.1,3 for d = 3.

At higher temperatures, the excitons develop an absorption tail to lower
photon energies, which is described by the so-called Urbach or Urbach–
Martienssen rule [53U1,57M1,58D1,71K1,71S1,72D1,85L1]

α(�ω) = α0 exp [−σ (T ) (E0 − �ω)/ kB T ] , (13.12)

�ω < E0

whereα0 andE0 arematerial parameters.E0 is an energy situated several 10meV
above the energy of the lowest free exciton at TL = 0 K. σ is a function varying
only weakly with temperature. An example is given in Fig. 13.10 for CdS.

The temperature dependence of the band gap, which can also be nicely
seen in Figs. 13.7 or 13.10, is already incorporated in (13.12) since the exciton
peak shifts in parallel to the gap.

The reason for the behavior described by (13.12), which is of rather uni-
versal nature in semiconductors and insulators, is the interaction of excitons
with optical phonons. Two effects are usually discussed in theory: a momen-
tary localization of the excitons in the randomly fluctuating field of optical
phonons, or an ionization in their electric field. These two effects seem to con-
tribute with a weight that depends on the material parameters. Details about
the theory can be found in [71S1,72D1,85L1] and references therein.

The absorption of direct excitons in indirect materials will be addressed
in Sect. 13.2.2.

The investigation of the luminescence from excitons or more precisely
exciton polaritons is a rather difficult task. For early investigations see
[72B2, 72W2]. The emission from these states is generally very weak even at
low temperatures even in high quality sampels. This has various reasons: the
total luminescence yield η lum of semiconductors is often very low. Frequently
one finds, even for direct gap materials,

10−1 � η lum � 10−3 , (13.13)

i.e., the main recombination channel is non-radiative involving defect centers.
A large part of the emission stems from phonon replica and, especially at
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Fig. 13.9. An experimental absorbtion spectrum of ZnO at RT (a), an experimental
transmission spectrum of CdS for the orientation E ⊥ c in the region of the A and
B exciton resonances (b); a calculated one for the AΓ5 resonance for nB = 1 (c);
and an absorption spectrum for a thin GaAs sample (d). According to [43M1] to
[79V1,82R1] and to [91U1], respectively
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Fig. 13.10. The absorption edge of CdS for various temperatures and the polariza-
tion E ‖ c. According to [76S1]

low temperatures, from bound-exciton complexes, donor–acceptor pairs, or
other defect centers which are considered in Chap. 14. Furthermore, the direct
emission from free exciton polaritons is limited by various effects: One is the
internal reflection, another the small escape depth. These points will be further
clarified below.

If we excite an electron–hole pair, e.g., in the continuum states, it will relax
to lower energies and thermalize by emission of phonons, as described in more
detail in Chap. 23. At very low temperatures (kBT < ∆LT) the excitons end
up on the LPB where they further relax by acoustic phonon emission. Since
the scattering matrix element and the density of final states both decrease in
the transition region between exciton- and photon-like dispersion, the excitons
accumulate there. This is the reason why this region is called a bottle-neck.
At higher temperatures the excitons reach essentially a Boltzmann-like distri-
bution on the exciton-like part of the LPB, on the longitudinal branch, and on
the UPB. In the polariton picture the luminescence from these states cannot
be described as a “recombination” of the exciton polariton with emission of
a photon, since the photon will be immediately reabsorbed to form an exciton,
or in other words, since we are considering the quanta of the mixed state of
exciton and photon.

The proper description is the following: The exciton polariton moves with
its group velocity through the sample. It can be scattered by impurities or
phonons or be trapped. Eventually it reaches the surface. In most cases it
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will be reflected back into the sample. The limiting angle for total internal
reflections αTR is, e.g., for n = 5 – a typical value on the LPB in the bottle
neck region as shown in Sect. 13.1.4, only about 13◦. Of the excitons impinging
under an angle smaller than αTR, a considerable fraction are also reflected
back into the sample, as becomes clear if one considers the formulas for the
reflection under normal incidence or if one integrates over Fresnel formula of
Sect. 3.1.4.

Furthermore, the luminescence yield of free-exciton polaritons is limited
by the small escape depth lesc, i.e., the depth from which they can reach
the surface. If one excites in the band-to-band transition region, the exciting
light penetrates about 0.1–1µm into the sample corresponding to α-values
of 104–105 cm−1 in this spectral range. By diffusion, the excitons spread out
over a region of 1–2 µm. The depth from which they can reach the surface is
much less than this. A rough estimate can be obtained either from the inverse
effective absorption coefficient in the exciton resonance or from the product
of phase-relaxation time T2 (Sect. 23.1) and the group velocity in the exciton
resonance (Sect. 13.4):

α−1
eff = (104 − 106 cm−1)−1 = 0.01− 1 µm (13.14a)

lesc = vgT2 = (10−3 − 10−5 · c) (10− 40 ps) = 10− 0.03 µm . (13.14b)

In spite of all these difficulties it was possible to observe the emission from the
exciton polariton in many semiconductors and we give an example for ZnO
in Fig. 13.11. On the left the dispersion relation of the A-exciton is shown
for k ⊥ c and k ‖ c. Since the Γ7 and Γ9 valence bands are most probably
inverted in ZnO as compared to CdS, see Sect. 8.8, the k-linear term appears
in the A-exciton for the orientation k ⊥ c. The influences of the resulting
additional polariton branch, of the longitudinal branch, and of the UPB are
seen by comparison with the orientation k ‖ c where the longitudinal branch
and the k-linear term are missing. A luminescence polarized E ‖ c in the
A exciton resonance has been observed in [03C1] possibly indicative for the
weak AΓ1 contribution according to [60H1]. Some other examples for the
polariton luminescence including also other materials, both as bulk samples
and epitaxial layers are found e.g. in [68V1, 77V1, 79P1, 80D1, 95S1, 97N1,
97N2,98M1,99R1,00T1,01R1,01S1].

A luminescence channel of the exciton polaritons with higher lumines-
cence yield in semiconductors with strong exciton-LO phonon coupling are
the LO-phonon replicas. In this case a polariton on the exciton-like part of
the dispersion relation or in the bottleneck is scattered onto the photon-like
branch by emission of one or more longitudinal optical phonons. The cou-
pling with this type of phonon is stronger than with transverse optical or
acoustic phonons since the lattice distortion of the polaron (Sect. 8.6) can
be described largely as a superposition of longitudinal optical phonons. Once
the polariton is on the photon-like branch, it travels over long distances with
almost negligible damping and is transmitted through the surface into vac-
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uum with quite high probability, since n � 2 in the corresponding spectral
range.

In Fig. 13.12 we show the appearance of the LO-phonon satellites schemat-
ically. If we neglect the bottleneck region for the moment, we can deduce
with the Boltzmann occupation probability the distribution of the excitons as
a function of their kinetic energy Ekin

N(Ekin) ∝
{
E

1/2
kin exp {−Ekin/kBT } for Ekin ≥ 0

0 otherwise

with Ekin =
�

2k2

2M
. (13.15a)

The lineshape of the luminescence of the m-th LO-phonon replica is then
given by [82P1]:

Fig. 13.11. The dispersion of the nB = 1 A-exciton resonance in ZnO for the polar-
izations E ⊥ c (Γ5) and E ‖ c (Γ1) (a, c) and the observed polariton luminescence
(b, d). According to [78H1,81K1]
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I lum
m (�ω) ∝

{
E

1/2
kin exp (−Ekin/kBT )Wm(Ekin) for Ekin ≥ 0

0 otherwise

with �ω = E0 −m�ωLO + Ekin . (13.15b)

where E0 is the energy of the dipole allowed, transverse exciton at k = 0.
The transition probability Wm(Ekin) can be often expressed by a power

law, i.e.,
Wm(Ekin) ∝ Elm

kin . (13.16)

For m = 1 one finds l1 = 1 since the density of final states for the
LO phonons increases with Ekin ∝ k2 assuming that the wave vector of the
photon-like exciton polariton in the final state is negligible.

For m = 2 many different combinations of the two-phonon wave vectors
are possible for a given k of the exciton-like polariton. As a consequence l2
is zero and the lineshape of the second LO phonon replica directly reflects
the distribution of exciton polaritons in the initial state. In Fig. 13.13 we
show the emission of ZnO at 55 K. The free exciton polariton is not seen in
emission for the reasons given above. There is a little bound exciton emission
(Sect. 14.1) around 3.34 eV and the LO phonon replicas for m = 1, 2, 3. The
theoretical curves are calculated according to (13.15), (13.16) assuming that
the lattice temperature and the temperature of the gas of exciton-like polari-
tons are equal. The fit coincides very nicely with experiment, thus confirming
concepts developed above and proving especially that excitons are good quasi
particles, the distribution of which can be described in many cases by Boltz-
mann statistics. A further example will be given for Cu2O in Sect. 13.2.1.2.

Fig. 13.12. Schematic
drawing of the decay
mechanisms of the
exciton-mLO phonon
emission processes
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The small tail on the low energy side comes from the population in the bot-
tleneck which is not considered in (13.15), (13.16) and from a homogeneous
broadening of the excitons increasing with temperature. From (13.15), (13.16)
one can deduce that the ratio of the integrated intensities of the first and the
second LO-phonon replica is proportional to T

Q1,2 =
∫
I lum
1 (ω) dω∫
I lum
2 (ω) dω

∝ T . (13.17)

In Fig. 13.14 we give experimental data for Q1,2 in ZnO for volume exci-
tation and surface excitation. The first case has been realized by two-photon
excitation with a ruby laser, which allows relatively homogeneous excitation
of samples up to thicknesses in the mm range, and the second by UV excita-
tion in the continuum states where the excitation depth is limited mainly by
diffusion to values of the order of µm as discussed above.

Up to temperatures of 100K the points follow nicely the predictions of
(13.17), then they drop. This deviation is due to reabsorption effects caused
by the absorption tail described by (13.12), which starts to influence the escape
depth of the polaritons also in the m = 1 range at higher temperatures. This
effect is evidently more pronounced for volume excitation than for surface
excitation. In semiconductors with less polar coupling, such as GaAs, the
LO-phonon replicas are less pronounced.

For those who work on luminescent ions in insulators and are therefore
familiar with the concept of the Huang–Rhys factor S, it should be mentioned
that for free excitons in most semiconductors S is below one. The large ratio
of first to zero phonon intensity seen in Fig. 13.13 is not connected with a large
value of S but with other processes that reduce the zero phonon emission, as
outlined above (See e.g. [68V1,79P1]).

LO-phonon replicas do not only appear in the excitonic luminescence
spectra on the low energy side, but may also appear in case of sufficiently
strong exciton LO-phonon coupling in the absorption spectra on the high
energy side, extending into the continuum. Examples for one- and two-

Fig. 13.13. LO-phonon replica in the luminescence spectrum of ZnO at 55 K.
According to [75K1]
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Fig. 13.14. The ratio of the integrated intensities of first and second LO-phonon
replica in ZnO as a function of temperature for two different excitation conditions.
According to [75K1]

photon absorption in Cu halides are found, e.g., in [66R1, 72B1] and for
PbI2 in [94W1]. The term exciton-phonon bound state was introduced in
[68T1,72K1].

The interaction of excitons and photons with acoustic phonons in Cu2O
leads to the introduction of the concept of phonoritons [00H1].

It should be mentioned that excitons can also be scattered also by emission
of quasiparticles other than phonons onto the photon-like part of the polariton
branch. Examples can be found, e.g., in Sect. 20.2 and we mention here scat-
tering by magnons, which may occur in (anti) ferromagnetic semiconductors
like RbMnF3 or Cr2O3 [76S2,99D1].

To conclude this discussion of free exciton luminescence, it should be men-
tioned, that a recent calculation [98K1] predicts, that a luminescence feature
may occur at the position of the free exciton resonance, resulting, however,
from the recombination of an electron–hole plasma (see Chap. 21) going under
emission of a photon from a state containing n electron–hole pairs to one with
(n − 1) pairs. Though these calculations do by no means rule out the exis-
tence of excitons as good quasi-particles, a luminescence feature at the exciton
energy alone is not necessarily a proof of their existence. The observation of
additional features, like intra excitonic transitions (see Sect. 13.3 and [03K1])
can help to clarify possible discrepancies.

As a rule of thumb it can be stated that the formation of excitons is
likely for resonant and low or intermediate exciton densities (see Chap. 20). If
the thermal energy kBT is comparable to or larger than the exciton binding
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energy Eb
x the excitons will be thermally ionized with time. Under band-

to-band excitation, exciton formation is likely for kbT � Eb
x and for exciton

formation times shorter than the exciton lifetime. The formation time is short,
if the exess energy can be dissipated by LO-phonon emission especially in
polar materials, while acoustic phonon emission is slower, especially in less
polar materials. We come back to this topic in Chaps. 15 and 23.

13.1.4 Spectroscopy in Momentum Space

It is clear from the above discussion that the concept of exciton polaritons
allows one to understand the spectra of reflection, transmission, and lumi-
nescence, but that a quantitative interpretation of the data usually involves
a rather elaborate theoretical fit. Therefore various techniques have been de-
veloped which allow more or less directly the spectroscopy of exciton polari-
tons in momentum space, i.e., they provide the possibility of measuring the
dispersion relation E(k) more directly.

In this section we therefore recall briefly the consequences of “spatial dis-
persion”, i.e., of the dependence of ω0 on k, and then present various methods
of k- or momentum-space spectroscopy.

As mentioned earlier in Chap. 5, the combination of the dielectric function
ε(ω,k) (6.1) and the polariton equation forms an implicit representation of the
polariton dispersion. For ω > ω0,L we get two propagating modes in the sample
or even more if the dispersion relation is complex (Fig. 13.4b or Fig. 13.11)
or if the longitudinal branch couples to the radiation field as may occur for
k �= 0 or for oblique incidence in uniaxial crystals. Since the k vectors of the
various modes in the sample are different, the diffracted beams propagate in
different directions, thus giving some meaning to the term “spatial dispersion”.
Below ω0,L we have at least one propagating and one evanescent mode, which
however, for finite damping also acquires a small real part. The consequences
of this fact for the reflection spectra have already been discussed above.

The first method of k-space spectroscopy uses the analysis of the Fabry–
Perot modes introduced in Sect. 3.1.6, which appear for example in as-grown,
thin, platelet type samples with plane-parallel surface. For an example see
Fig. 13.9b. As already pointed out there, transmission maxima occur when an
integer number of half-waves fit into the resonator, i.e.,

km(ωm) = m
π

d
, m = 1, 2, 3 . . . , (13.18)

where d is the geometrical thickness of the sample and k is the real part of
the wave vector in the medium. If ωm and km are known for one m1 then the
dispersion relation can be reconstructed from (13.18) by reading the �ωm from
the transmission spectrum and by progressing in steps of πd−1 on the k-axis.
In Fig. 13.15 we show the dispersion of the nB = 1 A-Γ5-exciton polariton
in CdSe, together with a measured and a calculated reflection spectrum. The
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Fig. 13.15. The polariton dispersion in CdSe with an equidistant ruling of the k-axis
(a) and the observed (b) and calculated structure (c) of the resulting Fabry–Perot
modes. According to [75K2]

condition for the reflection minima coincides with that for the transmission
maxima in (13.18).

The equidistance on the k-axis is clearly visible and the good agreement
of theory and experiment is obvious. Above ω0L one can clearly see closely
spaced modes of the LPB and superimposed widely spaced ones from the
part of the light travelling on the UPB. The fact that the small modulation
decreases with increasing photon energy indicates that the fraction of light
travelling on the LPB through the sample decreases with increasing energy
above ω0L.

Similar data have also been found in CdS and CuCl [80M1,84M1,93K1].
The next method is resonant Brillouin scattering. We introduced this scat-

tering process with acoustic phonons in Sect. 11.1.4 and know that the Bril-
louin shift is directly proportional to the transfer of momentum due to the
linear dispersion relation of acoustic phonons around the Γ point.

Figure 13.16 shows schematically the Brillouin scattering in the resonance
region of an exciton polariton in a backward scattering configuration. The
effect has been observed in GaAs, CdS, ZnSe and CuBr [78U1, 79S1, 80B3,
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Fig. 13.16. Schematic drawing of Brillouin scattering in backward geometry in the
resonance of an exciton polariton [78U1] (a) and experimental data for GaAs [78U1]
(c) and for CdS [84M1,84W1] (b)
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80K1, 81C1, 84M1, 84S1, 84W1]. In Fig. 13.16b and c we give data for CdS
and GaAs partly involving TA and LA phonons. The soild lines have been
calculated in a fit procedure with the parameters in the inset; these of course,
also allow the calculation of the polariton dispersion itself.

A close inspection of the Brillouin line shape shows that the damping
constant is energy or k-dependent [84S1]. This result has also been obtained
in CuCl from nondegenerate four-wave mixing [85H1]. See Sect. 20.2 and
25.2 for this technique. Similarly one finds that ∆LT is also a function of
k [82O1,85H1].

It is well known that refraction from a prism can be used to determine
the real part of ñ and thus of k. If sufficiently thin (d � 1 µm), prism-shaped
samples are available, it is also possible to extend this technique to the res-
onance region of the exciton polariton. Fortunately some CdS platelets grow
in the desired form, presumably involving a small-angle grain boundary.

Figure 13.17 gives two examples for CdS, where n is given and not k,
but where both quantities are simply connected with each other according to
Re {k} = ω/cRe {ñ}, see (2.36). In Fig. 13.17a one sees again the birefringence
and dichroism for the polarizations E ⊥ c (i.e., Γ5) and E ‖ c (i.e., Γ1) of
the nB = 1 A-exciton resonance known already from the reflection spectra
of Fig. 13.4. In Fig. 13.17b the dispersion of the LPB can be followed up to
n ≈ 20 corresponding to ε1 = 400 or k = 2.5 × 106 cm−1.

If one compares the time of flight of a picosecond pulse through a sam-
ple with its propagation through vacuum one can deduce the group veloc-
ity vg and, with (2.13)b, the slope of the dispersion relation. In Fig. 13.18b
experimental values are given for vg at the lowest exciton polariton reso-
nance in CuCl, together with a curve deduced from the dispersion relation of
Fig. 13.18a. The excellent agreement between experiment and theory again
proves the validity of the polariton concept. One can see from Fig. 13.18b that
in CuCl vg can be as low as 5× 10−5c. In the region above ω0L two pulses are
created in the medium from one incident pulse due to the different group ve-
locities on the LPB and the UPB. The spatial distance between them increases
with sample thickness and this is another reason to call the k-dependence of
ω0 “spatial dispersion”. Similar experiments have been performed in GaAs,
CdSe and CdS [79U1,81I1, 83S1].

We conclude this subsection with two nonlinear methods of k-space spec-
troscopy, namely two-photon spectroscopy or absorption (TPA) and two-
photon (or hyper-) Raman scattering (TPRS, HRS), anticipating some of the
results of Sect. 20.3. In TPA two laser beams are directed onto the sample,
sometimes with a finite angle between them. They have energies �ω1,2 and
momenta �k1,2. A TPA signal, i.e., a signal which occurs only if both beams
are on, is observed only if the sum of energies and momenta coincide in the
sample with those of an excited state, i.e., (see Fig 13.19a)

�ω1 + �ω2 = Ef ,

�k1 + �k2 = �kf . (13.19)
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Fig. 13.17. Dispersion re-
lations of the A- and B-
exciton resonances deter-
mined with the thin-prism
method [81B1,84L1]

Due to the curvature of the LPB it is only possible with TPA to reach
states on the longitudinal exciton branch or on the UPB. The selection rules
are usually different from those of one-photon absorption and depend in ad-
dition on the polarizations of the beams relative to each other and to the
crystallo-graphic axes. Examples will be given in Sect. 20.1. More recently,
even three-photon spectroscopy has been used to determine the exciton po-
lariton branches in various semiconductors and insulators [93F1,94F1].

In HRS one or two incident laser beams create in the sample two (gen-
erally photon-like) polaritons. This two polariton state decays under energy
and momentum conservation into a photon-like polariton �ωR , which is ob-
served as a Raman-like emission, and another final state particle �ωf which
can be photon- or exciton-like. If a single incident beam is used to deliver
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Fig. 13.18. The dispersion relation of the lowest free exciton resonance in CuCl (a)
and the group velocity determined from the time-of-flight of picosecond laser pulses
and from the dispersion relation (b) [79M1]

both incident quanta, i.e., �ω1 = �ω2, this process reads

2�ω1 = �ωR + �ωf

2�k1 = �kR + �kf . (13.20)

Usually one aims to have one or both of the incident quanta almost in res-
onance with the exciton and/or the biexciton state (see below). This choice
enhances the transition probability due to the small resonance denominators
appearing in perturbation theory. In Fig. 13.19 we show schematically TPA
and the HRS processes where in both cases the longitudinal state has been
reached. Figure 13.20 shows the polariton dispersion in CuCl around the low-
est nB = 1, Γ5-resonance and the states reached by two photon absorption
and by HRS.

A large number of semiconductors have been investigated by TPA and
HRS. TPA has also been used to detect higher states (nB > 1). For recent
reviews see, e.g. [71F1,81K2,85H1]. Three-photon absorption has proved the
validity of the polariton concept also in insulators like KCl [85B1,94F1].

A slightly more involved observation of the polariton dispersion with short
and thus spectrally broad pulses (∆LT < ∆Pulse) has been already addressed
in Sect. 5.3 in the context of propagation quantum beats between lower and
upper branch polaritons. The example of the dipole-forbidden direct gap semi-
conductor for Cu2O can be complemented by data for dipole-allowed ones, like
ZnSe or InSe [96N1,97N1].

The investigation of the properties of exciton polaritons came to a tem-
porary stop, when structures of reduced dimensionality moved into the fo-
cus of interest, mainly quantum wells. At the beginning, these structures
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Fig. 13.19. Two-photon transition from the crystal ground state to the longitudinal
exciton branch (a) and the hyper-Raman process which is almost resonant with the
exciton and the biexciton state (b)

Fig. 13.20. The polariton dispersion of the lowest Γ5-exciton resonance in CuCl
measured by two-photon absorption and by hyper-Raman scattering [71F1, 81K2,
85H1]

exhibited such strong inhomogeneous broadening of the exciton resonances,
that details of the polariton concept could not be observed. In the mean-
time, the concept of exciton polaritons has been developed for quantum
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wells and wires (see Chap. 15) and it has been extended to cavity polari-
tons. See Chap 17. Even more recently, exciton polaritons were discussed
again for materials like ZnO (see the references in Sect. 8.8 and Figs.
in this chapter including [03C1]), GaN [99R1, 01R1, 02L1, 02P1] or GaAs
[00T1,01S1].

13.1.5 Surface-Exciton Polaritons

As already mentioned in Sect. 5.6, one also finds surface-exciton polaritons
in the spectral region between the LPB and the longitudinal exciton. Their
dispersion can be measured by attenuated (or frustrated) total internal re-
flection (ATR). A light beam is sent into a prism in such a way that total
internal reflection occurs at its base (Fig. 13.21a). Under these conditions
an evanescent wave leaks into the vacuum as is indicated schematically (see
also Fig. 3.3). The frequency of this wave can be tuned trivally, and its wave
vector k‖ by varying the angle of incidence. If a semiconductor is brought
close enough to the base of the prism, the evanescent wave can couple to
the surface-exciton polariton modes in the semiconductors if both �ω and k‖
coincide. “Close enough” means distances of the order of λ, i.e., fractions of
a µm and the realization of this condition involves some experimental skill.
The coupling to the surface-exciton polariton mode attenuates the total reflec-
tion. In Fig. 13.21b measured and calculated ATR spectra are shown for the
nB = 1CΓ1-exciton resonance in ZnO, which has a rather large ∆LT splitting
of about 12 meV. The calculated dispersion relation of the surface-exciton po-
lariton is given in Fig. 13.21c together with the states reached by ATR. Good
agreement between experiment and theory can be claimed in both Figs. 13.21b
and c. More details about surface-exciton polaritons can be found in [78L1]
or in [82M1]a,d of Chap. 1.

13.1.6 Excitons in Organic Semiconductors and in Insulators

The number of well-characterized organic semiconductors is much smaller than
that of inorganic ones. In [82L1] of Chap. 1 roughly 600 inorganic semicon-
ductors are listed but only a dozen or so organic ones, with anthracene being
a model substance.

On the other hand, research on organic semiconductors has increased
greatly in recent years. It is hoped that applications as cheap, large area
luminescence devices and as electronic devices like field-effect transistors will
be developed.

Crystalline organic semiconductors usually contain several molecules per
unit cell, anthracene, e.g., four molecules of C14H10. Correspondingly complex
is the spectrum of lattice vibrations. Sometimes it is possible to distinguish
between phonons or intermolecular modes, i.e., modes where the molecules in
the unit cell oscillate relative to each other in the sense of acoustic and optic
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modes and vibrons or intramolecular modes, where the atoms oscillate within
one molecule. Obviously there may be some coupling between these two types
of modes.

Fig. 13.21. The principle of the experimental technique of attenuated total reflec-
tion (ATR) (a) experimental and calculated ATR spectra for the nB = 1CΓ1-exciton
in ZnO (b) and the resulting dispersion of the surface and volume polaritons (c).
According to [78L1]
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Concerning the electrons, there are valence bands (highest occupied molec-
ular orbitals, HOMO) and conduction bands (lowest unoccupied molecular
orbitals, LUMO) with a gap between them.

The bands are usually rather narrow, due to the small electronic overlap
between molecules, resulting in large effective masses of the charge carriers
(electrons and holes) and low mobilities ranging from 1 to 10 cm2/V s.

The interband excitations in the electronic system form excitons, how-
ever with some characteristic differences from the (Wannier) excitons in most
inorganic semiconductors.

One usually deals in organic semiconductors and especially in the wide
gap ones with Frenkel excitons, i.e., electrons and holes reside in the same
molecule. This close spatial confinement results in singlet-triplet splittings
which can easily exceed 1 eV. See again, e.g., [82L1] of Chap. 1 and below.
The triplet states have low oscillator strength, low luminescence yield and
long lifetime in the ms range. The singlet states have high oscillator strength
and a short life time in the ns-range and a tendency to relax into the lower
lying triplet states.

Depending on the nature of the chemical bonding, coupling of excitons
to (Raman- and/or IR-active) phonons may be strong, possibly leading to
self-trapping.

Furthermore there are charge transfer (CT) excitons, in which the two
carriers (i.e., electron and hole) reside in adjacent molecules forming, e.g.,
a pair of a positively and a negatively charged anthracene molecules.

Excitons with large oscillator strength form polaritons in sufficiently pure
materials in a similar way as in inorganic semiconductors.

Below we give two examples of the optical properties of excitons in organic
semiconductors.

In Fig. 13.22a,b we give an overview of the absorption spectra of an-
thracene and tetracene. One can see the transitions from the crystal ground
states (S0) to triplet (T1) and singlet (S1) excitons. The oscillator strength of
the first transition is too low to observe it directly in absorption.

Therefore, the photoluminescence excitation spectra (see Chap. 25) of the
delayed triplet fluorescence are plotted. The singlet states have, as already
mentioned, a high oscillator strength resulting in values of the absorption
coefficients exceeding 3 × 10105

cm−1. CT stands for charge transfer exciton,
IPC for the intrinsic photoconductivity threshold and EPE for the external
photoemission threshold. The crystals are anisotropic, therefore the spectra
are given for the polarizations parallel and perpendicular to the crystallo-
graphic b axis.

Figure 13.22c shows a close-up of the absorption spectrum of the singulet
exciton polariton absorption, measured here with the technique of photo-
current excitation spectroscopy (see Chap. 25).

In recent years oligothiophenes and especially α-hexathiophene are under
intensive investigation concerning both their optical properties and their (con-
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troversial) applications in optoelectronic devices like field effect transistors or
luminescence diodes. See, e.g., [00F1,01F1].

Fig. 13.22. Overview of the absorption spectra of anthracene (a) and tetracene (b)
and photocurrent excitation spectra (PCE) of the singulet exciton in anthracene.
According to [77C1,79S2] and [82L1] of Chap. 1
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These two papers also contain together with [82L1] of Chap. 1 references to
various (text)books on the properties of organic semiconductors. For further
recent publications of optical properties of organic and inorganic insulators
and organic semiconductors see e.g. [04P1] or [94E1] of Chap. 9.

As an example of the exciton polariton dispersion in an inorganic insulator,
namely KI, we show the dispersion relation obtained from three-photon sum
and difference frequency spectroscopy in Fig. 13.23. Note the high value of
∆LT ≈ 100 meV. Further information including similar compounds, is found,
e.g., in [85B1]. More information on excitons in insulators, including self trap-
ping or solid rare gases can be found, e.g., in [64K1,67K1,67O1,78G1,83G1]
or in [94E1] of Chap.9.

13.1.7 Optical Transitions Above the Fundamental Gap
and Core Excitons

So far, this chapter has concentrated on electronic transitions in semiconduc-
tors close to the fundamental gap. But transitions from deeper valence bands
and/or into higher conduction bands are also possible. The structures con-
nected with these transitions are obviously found at �ω > Eg, i.e., in the
(V)UV part of the spectrum.

The absorption in the exciton continuum is influenced by the Sommerfeld
enhancement as discussed in [91O1] and shown in Fig. 13.9d. Its importance,
i.e., the dependence on the transition energy of this Sommerfeld factor de-

Fig. 13.23. The exciton polari-
ton dispersion in KI obtained from
three-photon spectroscopy includ-
ing the lower and upper polariton
branches and the longitudinal ex-
citon. According to [94F1]
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creases with increasing energy above the onset of the excitonic ionization
continuum, (the band gap) and we are left more or less with band-to-band
transitions. We therefore discuss their properties here and show various ex-
amples, but return later to the influence of electron–hole interaction.

We introduced in Sect. 8.9 the concept of critical points in the band struc-
ture and their consequences for the density of states. For band to band tran-
sitions it is not the density of states in a single band that determines the
spectral shape of the optical properties, i.e., of the reflectivity R(ω), of the
complex dielectric function ε(ω) = ε1(ω) + ε2(ω) or of the complex index of
refraction ñ(ω) = n(ω) + iκ(ω), but the so-called combined density of states.
This concept will be explained with the schematic band structure of Fig. 13.24.

We show vertical transitions between a filled valence band and an empty
conduction band for a one-dimensional k-space. We assume as in the dipole
approximation, that the wave vector of the photon is negligible. At an ar-
bitrary photon energy (indicated by arrow ‘a’) there is only one transition
possibility for a given photon energy, i.e., only one point in k-space for which
transitions between the bands are possible (in a 2-dimensional k-space actu-
ally along a line etc.). If the two bands are parallel it is possible for transitions
with the same energy to occur over a small interval in k-space and we can

Fig. 13.24. Band-to-band transitions at an arbitrary point of the Brillouin zone
(a) and at critical points of the combined density of states where the two bands are
parallel (b, c)
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expect a distinct structure in the absorption spectrum at this photon energy.
Such a situation occurs if either the gradkEj(k) of both bands is zero as shown
in Fig. 13.24 for the Γ -point or if the distance between the bands is constant,
i.e., they are parallel, having the same value of gradkEj(k).

If we go from the one-dimensional k-space of Fig. 13.24 to the usual three-
dimensional one, the situation remains qualitatively similar. This means, that
we can expect structures, whenever

gradk[Ei(k) − Ej(k)] = 0 , (13.21)

where the indices i and j stand for valence and conduction bands, respec-
tively. If we insert (13.21) into (2.77) we get the so-called combined density of
states, which is the one relevant for the description of optical band-to-band
transitions. If we further make the generally realistic assumption that the
transition matrix element varies only smoothly with the transition energy, we
expect in the band-to-band absorption spectra features, that look similar to

Fig. 13.25. The band structure of Ge (a), the spectra of ε2 for Ge (b), of n and κ of
Ge (c) and of ε1 and ε2 of GaAs (d). According to [90K1] of Chap. 1 (a), [90K1,96Y1]
of Chap. 1 (b), [76P1] of Chap. 3 (c), and [96Y1] of Chap. 1 and [83A1] (d)
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the (combined) density of states in Sect. 8.9 for various critical points (and
various quasi dimensions of the system).

In experiments, one usually measures the reflection spectrum from �ω ≈ Eg

up to higher energies and applies Kramers–Kronig relations (Chap. 6) to de-
duce from R(ω) either ε1(ω) and ε2(ω) or n(ω) and κ(ω).

Another possibility is to use ellipsometry to determine these quantities.
See Chap. 25

In Fig. 13.25 we show various examples for higher energy transitions
starting from the band-structure of Ge. Other examples may be found in
[80H1,83M3,93M1,96T1] or in [82L1,90K1,96Y1] of Chap. 1.

The various transitions at critical points and the type of the critical point
in the combined three-dimensional density of states (Mi = 0, 1, 2, 3) are indi-
cated. In Fig. 13.25b we show the spectra of ε2, where the various transitions
are labeled. Theory is able to reproduce these experimental data reasonably
well, and tend, however, to vary slightly from author to author (compare e.g.
data for Ge in [90K1, 96Y1] of Chap. 1). In Fig. 13.25c we show rather old
data for n and κ, again for Ge and in Fig. 13.25d finally ε1 and ε2 for GaAs.
In c and d the absorptive and dispersive behavior of the real and imaginary
parts is obvious. It is remarkable that at these energy scales neither the low-

Fig. 13.26. The (combined) density of states for the three-dimensional critical
points M0 to M3. See also Sect. 8.9.
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est M0 critical point, which results in the beautiful exciton spectra shown for
GaAs in Fig. 13.9c, nor the indirect transition (e.g., at the indirect gap of
Ge) contribute significantly to the overall spectra. The two peaks occurring
around 2 eV and 5 eV are usually called E1 and E2. They are dominated by
M1 and M2 critical points.

The fact that the structures in Fig. 13.25 look generally more like peaks
and less like Fig. 13.26 is to a large extent due to the neglect of the electron–
hole Coulomb interaction in the latter. The resulting excitons, which are re-
sponsible for the rich variety of phenomena discussed in the preceding part of
this chapter, also modify the optical properties of the higher energy transi-
tions (core excitons, saddle-point excitons). However, these excitons are often
not resolved as individual structures, even at low temperatures, because the
damping of these states is too high (or the phase-relaxation time too short)
since they can decay rapidly into lower energy states.

To illustrate this statement, we give in Fig. 13.27 an example for CdTe. The
direct gap is at 1.4 eV. The E1 feature is located around 3.5 eV. The dashed line
shows the expected spectrum for ε2 bearing in mind the M1 critical point in
the combined density of states. The measured spectrum deviates significantly,
but coincides nicely with a model calculation taking, in addition to the M1

critical point, the Coulomb interaction between electron and hole, i.e. excitonic
effects into account.

If we got to even higher photon energies than those shown in Fig. 13.25
we come to the X-ray regime. There we expect the K, L, . . . absorp-
tion edges of the elements forming the semiconductor [93M1, 96T1]. These
deep core levels are influenced only slightly by the chemical binding, but
the absorption spectrum is still influenced by the position and proper-

Fig. 13.27. The imaginary part of ε1 in the region of the E1 feature in CdTe com-
pared with two calculations taking electron–hole Coulomb correlations into account
or not. According to [69K1,70W1] and [96Y1] of Chap. 1
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ties of the conduction band since the electron has to be brought to an
empty state, or in other words, by the interference of excited electrons
scattered from neighboring atoms. These facts are exploited in EXAFS
(extended X-ray absorption fine structure) and XANES (X-ray absorption
near edge structure). The absorption coefficient may still reach consider-
able values in the X-ray regime, but has an overall tendency to decrease
with increasing photon energy as shown in Fig. 13.28. The imaginary part
of ñ is in contrast rather small in this region and the real part is very
close to unity, approaching this value above the highest resonance from be-
low.

In Fig. 13.28 we show these trends for NaCl. This is an insulator but
this does not matter to much in the present context. The data compiled in
Fig. 13.28 are remarkable, because they cover eight orders of magnitude in
photon energy and show nicely the optical phonon resonance in the IR, the
exciton and band edge in the UV slightly below 10 eV leading to the element
specific absorption edges in the X-ray regime.

More information about core excitons and related topics can be found
in [65C1, 65C2, 93M1, 94J1, 96T1] or [90K1] of Chap. 1 and references given
therein.

Fig. 13.28. The spectra of the absorption coefficient of NaCl (a) and of the real
and imaginary parts of ñ (b). According to [76P1] of Chap. 3
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13.2 Forbidden Exciton Transitions

In the preceding section, we treated the optical properties of exciton res-
onances with large oscillator strength, requiring the polariton concept for
a quantitative description. There are also intrinsic excitons which, for vari-
ous reasons, couple only weakly to the radiation field. In this case the weak
coupling approach is usually but not always sufficient for their description.

Reasons why excitons can have low oscillator strength include spin-flips,
dipole-forbidden transitions, or the necessity to involve a third particle, e.g.,
a phonon in their creation. We give some examples in the following.

13.2.1 Direct Gap Semiconductors

We start with direct gap semiconductors.

13.2.1.1 Triplet States and Related Transitions

Even in direct gap semiconductors with dipole-allowed band-to-band tran-
sitions there are exciton states with very small oscillator strength, so-called
forbidden transitions. Among them there are spin triplet states (see Sect. 9.2),
which involve a spin-flip, longitudinal excitons, and states whose symmetry
forbids the transition in the dipole approximation (Sect. 26.5). The latter sit-
uation can occur e.g. for nB ≥ 2 and L or Lz = 1, 2 . . . . Such exciton states
can sometimes be observed in one-photon transitions in higher-order pertur-
bation theory, e.g. as electric quadrupole or magnetic dipole transitions. This,
however, is only possible if no strong one-photon transition occurs in the same
spectral range, which masks the weak transition. An example is again CdS.
We have already stated that the nB = 1 A-excitons are dipole allowed only
for the polarization E ⊥ c, i.e., Γ5. For E ‖ c one can weakly see the AΓ6

triplet or the AΓL
5 . In the latter case the finite angle of aperture of every real

light beam plays a role because small deviations from k ⊥ c lead to a small
oscillator strength of mixed-mode states according to (13.10). In Fig. 13.29
we show a transmission spectrum of CdS around the nB = 1 A-exciton states
for the orientation E ‖ c; k ⊥ c, where the AΓ6 triplet and the AΓL

5 states
are seen. A further example for ZnO will be given in Sect. 16.1.

The other way of reaching some of these states is via two-photon absorp-
tion (TPA). The selection rules for TPA differ from those for one-photon
absorption as will be outlined in Sect. 26.5.

A first example has already been presented in Fig. 13.20, where the longi-
tudinal branch of the Γ5 exciton is seen in TPA. Another example for states
with nB ≥ 2 will be given in Sect. 16.1, where we discuss the influence of
magnetic fields on excitons.
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13.2.1.2 Parity Forbidden Band-to-Band Transitions

There is a group of semiconductors that have a direct gap at the Γ point. But
the transition between the uppermost valence band and the lowest conduction
band is dipole forbidden because both bands have the same parity. The best
investigated material of this group is Cu2O, but there are many others such as
SnO2, TiO2, and GeO2. In these materials exciton states with an S envelope
(i.e., L = 0) are all dipole forbidden.

For nB ≥ 2 there are also envelope functions with L = 1, which have odd
parity. Via their envelope, these states acquire a weak oscillator strength and
can be seen in absorption.

Figure 13.30 gives an example of the “yellow” exciton series in Cu2O,
where the one- and two-photon absorption spectra are compared. The nB = 1
states of the yellow and green exciton series have been found by two-photon
absorption. Their positions are indicated. These states do not fit into the
n−2

B series, for the reasons discussed already in Sect. 9.2. However, even for
the tiny quadrupole oscillator strength of this nB = 1 S-exciton, it has been
shown that the polariton effect exists and can be measured. See [91F1] and
the polariton propagation quantum beats discussed in Sect. 5.3.

The 1S ortho exciton of the yellow series, to which we concentrate in
the following, has a binding energy of 140meV while the nP (n > 1) states
follow a hydrogen series with Ry∗ = 93.26meV. See, e.g., [98J1] and references
therein.

Due to the small exciton Bohr radius in Cu2O of about 0.53 nm the singlet-
triplet (or ortho-para) splitting is much larger than in usual semiconductors
and amounts to 12 meV. The lower lying para-exciton is optically forbid-

Fig. 13.29. A transmission spectrum of CdS in the resonance region of the nB = 1A-
exciton for the orientation k ⊥ c showing the dipole-forbidden transitions AΓ6 and
AΓL

5 . According to [82B1]
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den to all orders of perturbation theory. Its position has been deduced by
applying magnetic (or strain) fields, which mix ortho and para states, and
by extrapolating to zero field [79M1]. Additionally, it has been claimed that
a weak Γ−

5 phonon replica of the para-exciton occurs in luminescence around
2.01 eV [78B1].

Since Cu2O is a kind of model substance and textbook example for excitons
and brings after several decades of intense research still new and exciting
results (also see Sect. 20.5) we dwell a little bit longer and give in Fig. 13.31
some further examples of the optical properties of its yellow exciton series.

The 1s ortho exciton states around k = 0 show up only weakly in ab-
sorption or luminescence as seen in Figs. 13.30a and 13.31a,c, respectively.
But the LO phonon replica reproduce nicely the square root density of states
of this effective mass particle. The onset of this Γ−

12 LO-phonon absorption
band is shown together with a calculated square-root function in Fig. 13.31a.
This is one of the few cases, where this square root DOS shows up directly in
experiment.

Superimposed on this absorption band (also including higher bands) is the
absorption of the nP ortho-excitons as shown in Fig. 13.31b. Their line shape
is asymmetric resulting from the constructive and destructive interference of
the transition amplitudes on both sides of the resonance, respectively, with
the LO-phonon continuum in the sense of a Fano type resonance.

The exciton luminescence is similarly dominated by the phonon replicas as
seen in Fig. 13.31c showing both Stokes and anti-Stokes emissions. The long
exciton lifetime results in thermalization of the excitons with the lattice. The
theoretical curves in this figure are calculated essentially as a product of the

Fig. 13.30. The absorption of the forbidden “yellow” exciton series in CuO2 in one
and two absorption (OPA and TPA, respectively). According to [81U1]
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!

Fig. 13.31. Absorp-
tion (a, b) and lumi-
nescence spectra (c)
of Cu2O. According
to [98J1]
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square root DOS and a Bose–Einstein or Boltzmann occupation probability.
The exciton temperatures deduced from this fit and from the ratio of Stokes
and anti-Stokes emission agree very well with the lattice temperature. This
also holds for temperatures down to or even below 5 K [98J1].

Further recent topics in Cu2O exciton spectroscopy include the deter-
mination of the absolute luminescence yield as a function of temperature
[99J1,01J1], the observation of the excitonic Lyman series (see Sect. 13.3), the
discussion about Bose–Einstein condensation or of superfluid exciton trans-
port (see Sect. 20.5), the observation of the coupling of exciton polaritons
with acoustic phonons, the so-called phonoritons [00H1], the observation of
extremely narrow 1s absorption peaks [03D1], the investigation of the effective
masses of ortho- and para-excitons, which become different and direction de-
pendent du to exchange interaction [04D1], or of extremely weak LO-phonon
assisted absorption below the exciton resonance deduced from luminescence
and generalized Planck’s law [99J1].

13.2.2 Indirect Gap Semiconductors

Many semiconductors, some of great technological importance such as Si or
Ge, but also GaP or AgBr, have an indirect band structure, as explained
in Sect. 8.8. Consequently, the lowest free excitons occur at k �= 0, as out-
lined in Sect. 9.2. Due to momentum-conservation, these states cannot cou-
ple directly to the radiation field. In both absorption and emission processes
a third, momentum conserving particle has to be involved, usually a phonon.
At low temperature only photon absorption with the creation (i.e., emission)
of one or more phonons is possible. At higher temperatures, when the relevant
phonon states are populated thermally with finite probability, absorption of
light quanta is possible with both phonon emission and absorption.

Figure 13.32a shows schematically the process of absorption accompanied
by the creation or emission of a phonon, and in Fig. 13.32b, as an example,
the absorption spectrum of GaP at low temperature. The exciton states do
not appear as peaks as in direct gap materials (Fig. 13.9) but instead as
onset energies, since the participation of phonons allows one to reach the
whole density of states. Thus the absorption spectra are given in the simplest
approximation by sums of expressions like

αem(�ω) ∝ α0[�ω − Eex(k0) + �ωph]1/2(1 +Nph) , (13.22a)

αabs(�ω) ∝ α0[�ω − Eex(k0) − �ωph]1/2Nph , (13.22b)

where α0 contains the transition matrix element squared, which is assumed
not to depend (or only weakly) on the momentum of the phonon. Eex(k0)
is the exciton energy at the indirect minimum, �ωph the phonon energy for
k ≈ k0, and Nph is the number for the phonons in a given mode.

The photon energy in the square root term, which describes the density of
states of the excitons above Eex(k0), has to be chosen so that the argument
is positive. For other values of �ωph, αem and αabs are zero.
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Fig. 13.32. The creation of an exciton in an indirect gap semiconductor accompa-
nied by reation or annihilation of a momentum-conserving phonon (a). The absorp-
tion spectrum of GaP (b). According to [70M1]

The participation of the phonon makes the transition probability for ab-
sorption in indirect-gap semiconductors several orders of magnitude smaller
than that for direct, dipole-allowed transitions. Typical values of the “indi-
rect” absorption coefficient are in the range

1 cm−1 ≤ αind ≤ 102 cm−1 . (13.22c)

These values are so low that no significant structures appear in the reflec-
tion spectra.
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Fig. 13.33. The spectra of the square of the absorption coefficient of the phonon-
assisted absorption onset in Ge and its wavelength modulated signal. According
to [75F1]

In Fig. 13.33 we show the onset of the phonon assisted exciton absorp-
tion band of Ge (actually α2 (�ω)) and the wavelength modulated spectrum
∆α (�ω), exhibiting some structures due to the mass reversal of the exciton,
i.e. a change of the curvature, and to the anisotropy of its dispersion close to
the L-point (see Sect. 8.8).

The absorption process under absorption of phonons is even weaker at low
temperatures, i.e., at kB T < �ωPhonon. Nevertheless, it was possible to deduce
the absorption spectra, e.g., in Si down to α = 10−17 cm−1 at 90 K from
the luminescence spectra, from Kirchhoff’s law and the generalized Planck
equation [95D1,95W1].

Above the indirect exciton, there can also be direct excitons which show
absorption structures of the type already discussed in the preceding section.

We give an example in Fig. 13.34 for Ge. Since the direct exciton can decay
rapidly into lower states, it is strongly damped, preventing the observation of
finestructure such as states with nB > 1.

The luminescence of free excitons in indirect-gap materials involves – as
does the absorption – one or more phonons (Fig. 13.32a). Consequently the
excitonic emission is red-shifted with respect to Eex(k0). In Fig. 13.35 we show
an example for Ge where one sees the contributions of the various phonons.

Due to the participation of a third particle, the luminescence yield of
indirect-gap materials is much smaller than that of direct ones. This makes
the application of bulk Si in light emitting devices impossible. On the other
hand, the lifetime of excitons (or carriers) is rather long in indirect materials
and ranges from less than 1 µs to many µs depending on the purity of the
material, while the lifetime in direct-gap materials is in the (sub-) ns range
as will be demonstrated later.
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Fig. 13.34. Absorption around the direct exciton in Ge. According to [83S2]

13.3 Intraexcitonic Transitions

Excitons are frequently compared to hydrogen or positronium atoms, essen-
tially with modifications of the masses of the two charge carriers and of the
dielectric constant of the embedding medium. We have also used this ap-
proach, e.g., in Sect. 9.1 and 9.2.

Concerning the spectroscopy of excitons described, e.g., in this chapter
so far and of H atoms, there is a crucial difference. If we do, e.g., absorption
spectroscopy on H atoms, the H atoms are there already before we send a light
beam on them, and with the light beam we measure, e.g., the transitions from
the 1s state to the nBp states (nB = 2, 3, . . .), i.e., the Lyman series.

In a semiconductor, in contrast, there is no exciton before the light is
switched on, i.e., a “vacuum” state and the incident light beam creates the
excitons, e.g., in the nBs states (nB = 1, 2, 3, . . .).

A further difference resulting from the a priori presence of H atoms is the
fact that the 1s → 2p transitions are usually Doppler broadened, while the
excitons can be resonantly created on a well-defined point on their dispersion
relation.

The question is now if it is possible to observe the Lyman series also for
excitons? The answer is yes! What one needs is a certain density of 1s excitons
in the semiconductor created, e.g., by optical pumping from the vacuum into
some exciton states including their continuum.
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Fig. 13.35. A luminescence spectrum of Ge showing various phonon satellites.
According to [76T1]

With a probe beam in the suitable spectral range one tries to detect the
changes in the transmission induced by the created excitons. This so-called
pump-and-probe or differential transmission spectroscopy is, after two-photon
absorption and hyper-Raman scattering, in Sect. 13.1.4, a further example of
nonlinear optical spectroscopy. We will see more examples for these techniques
in Chaps. 19 to 24.

Early examples of such transitions between excitonic sublevels, also known
as intra excitonic transitions, have been given for the indirect gap materials
Si and Ge [76T2,78T1,88L1].

We give here an example for Si in Fig. 13.36. The sample is cw pumped by
a laser and the induced absorption is plotted. The three main features ranging
from 10 to 12 meV are attributed to the transitions from the 1s exciton state to
various 2p states split by the anisotropy and degeneracy of the band structure
of Si at the ∆-point, including the interaction of the carrier spins and the
angular momentum of the envelope function.

Though there is a clear signature of these transitions, there are not too
many reports of bulk materials for the following reason: The transition ener-
gies fall in the range of a few to over 100meV depending on the exciton binding
energy necessitating Fourier spectroscopy or other means of THz spectroscopy.
The transition energy should not coincide with some phononic absorption fea-
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Fig. 13.36. The 1s → 2p transitions in an optically-pumped Si crystal at 8 K. (a)
and in Cu2O (b). According to [78T1,04J1].

tures and, finally, the lifetime of the excitons should be long, so that it is possi-
ble to accumulate a sufficiently high density n of excitons under cw pumping,
which should exceed e.g. the density of bound exciton sites (see Sect. 14.1).

Apart from the indirect gap semiconductors like Si or Ge mentioned above,
Cu2O fulfils the requirements because it has a direct but dipole forbidden
band-to-band transition, as detailed in Sect. 13.2, which results in rather
long lifetimes. Indeed signatures of 1s → 2p transitions have been reported.
See [03J1] and references therein. However, contributions from defect states,
from biphonons or from phonon overtones can not be ruled out in these data
[04J1, 04K2]. The transition from the 1s para exciton to 2p states has been
identified [04J1,04K1,04K3].

We show an example in Fig. 13.36b. Thought the total feature looks tempt-
ingly similar to the calculated induced absorption spectrum of a Bose con-
dened gas of para excitons [01J1] (see Sect. 20.5) a detailed analysis shows,
that the peak at 129 eV is due to a 1s para → 2s para transition in a classical
Boltzmann exciton gas while the narrow line at 127meV is probably due to
a similar transition in a bound exciton complex (see Sect. 14.1)

The fast development of time resolved spectroscopy with THz probe pulses
in recent years (see Chap. 23 and 25) allows one to observe the 1s → 2p
transition in GaAs under resonant exciton creation and to follow the rather
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slow relaxation of excitons from the continuum states into their 1s ground
state in this material [03K1].

13.4 Problems

1. Make a plot of the longitudinal-transverse splitting of nB = 1 exciton
resonances as a function of the exciton binding energy. Include only semi-
conductors with direct, dipole-allowed band-to-band transitions. Compare
with similar Figs. in Chap. 9.

2. Consider a band-to-band transition in a direct-gap semiconductor neglect-
ing the Coulomb interaction between electron and hole and calculate the
absorption spectrum for a dipole-allowed and a dipole-forbidden transi-
tion, i.e. for a transition with a matrix element varying linearly with k.

3. Consider the nB = 1 AΓ5-polariton resonances in CdS (Fig. 13.4b) and
determine for a light beam incident at 45◦ to the surface (E ⊥ c, k ⊥ c)
the length and direction of the wave vectors of the propagating modes in
the sample and their phase and group velocities. Select a few characteristic
photon energies. Explain the term “spatial dispersion”.

4. Explain the differences between the concepts of polaritons, of spatial dis-
persion and of birefringence.

5. Can the transition energy of a dipole-allowed intraexcitonic transition 1s
→ 2p coincide with the energy of a dipole-allowed TO phonon?
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14

Optical Properties of Bound
and Localized Excitons and of Defect States

In the previous chapter we discussed mainly the optical properties of intrinsic
excitons. Here we consider the optical properties of defect and localized states
in bulk materials, but mention that many of these aspects are also relevant
for the structures of reduced dimensionality presented in the next chapter.

14.1 Bound-Exciton and Multi-exciton Complexes

We have already introduced point defects in Sect. 8.14. Some of these defects
can bind an exciton resulting in a bound exciton complex (BEC), see also
Sect. 9.5. In Fig. 14.1 we visualize excitons bound to an ionized donor (D+X),
a neutral donor (D0X), and a neutral acceptor (A0X). Excitons are usually
not bound to ionized acceptors, as explained in Sect. 9.5 The binding energy
Eb of the exciton to the complex usually increases according to

Eb
D+X < Eb

D0X < Eb
A0X . (14.1)

The binding energy is defined as the energetic distance from the lowest free
exciton state at k = 0 to the energy of the complex.

Fig. 14.1. Visualization of an exciton bound to an ionized donor (a), a neutral
donor (b), and a neutral acceptor (c)
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There is a rule of thumb, known as Hayne’s rule, which relates the binding
energy of the exciton to the neutral complex with the binding of the additional
carrier to the point defect. For the D0X complex, for example, this says that
the ratio of Eb

D0X to the binding energy of the electron to the donor Eb
D

is a constant, depending only on material parameters such as the effective
masses:

Eb
D0X/E

b
D = const . (14.2)

The constant is often found to have a value around 0.1 to 0.2 (Hayne’s
rule, see [60H1,77H1,04M1]). Isoelectronic traps (such as a Te on a Se site in
ZnSe) sometimes form deep centers, with binding energies for excitons exceed-
ing those of neutral acceptors. A long-standing and controversially discussed
problem is that of the EL2 luminescence in GaAs. For details including related
defects see, e.g., [93S1,97S1,98S1] and references therein.

The BEC do not have any degree of freedom for translational motion. As
a consequence BEC often show up in luminescence and absorption spectra
as extremely narrow peaks. In Fig. 14.2 we give as examples luminescence
spectra of ZnO, ZnSe and GaAs. See also Fig. 13.9d.

Figure 14.2a gives an overview of the low-temperature luminescence of
a high-quality ZnO single crystal from [76H1,76T1]. The interpretation of the
various groups of emission bands is as follows. FE is the recombination of free
exciton polaritons (see also Chap. 13). Then comes a group of bound exciton
complexes, the assignment of which is presently reconsidered. According to
the above references the complexes were attributed with decreasing energy,
i.e., with increasing binding energy to the defect, to D+X, D0X and A0X,
respectively, according to Fig. 14.1. The neutral acceptors were assumed to
be, e.g., Na or Li on Zn sites. Later on, a large fraction of the lines D0X
and A0X has been attributed to excitons bound to neutral acceptors [97G1].
Presently, all of the lines labeled D0X in the lower line in Fig. 14.2 are assigned
to excitons bound to neutral donors based on the analysis of the two electron
transitions, while hardly any shallow acceptors have been identified [04M1].
For the nitrogen acceptor in ZnO:N see [02Z1,04W1].

Independently of the detailed interpretation of the various lines, we see
within one group a splitting of the lines caused by the chemical nature of the
binding atom. This effect is known as chemical shift or central cell correction.
Similar shifts or splittings can be caused by the presence of other defects in
the vicinity of the center binding the exciton.

Towards lower energies in Fig. 14.2a we see the luminescence of excitons
bound to deep centers, possibly deep acceptors. Then follows a range of two
electron transitions (see below) and the LO-phonon replica of free and bound
excitons, denoted as X-LO and BEC-LO, respectively.

In ZnSe or GaAs we find a similar behavior, as can be seen in Fig. 14.2b,c.
To conclude this part it can be stated that the low temperature lumines-

cence of high quality samples is generally dominated by defect-(or localiation-)
related recombination processes.
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Fig. 14.2. Low-temperature and low-excitation luminescence spectra of ZnO (a) of
two differently grown ZnSe samples (solid line: MBE growth with element sources,
dashed line: with a compound source) (b) and of GaAs (c) [76H1,76T1,91V1,03D1]
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Since k-conservation is relaxed for BEC due to the lack of translational
invariance, BEC can also couple to acoustic phonons, for example via the
deformation potential or piezoacoustic coupling. This coupling leads to a so-
called acoustic wing in the emission or absorption spectra of a BEC. Fig-
ure 14.4 shows an example for the I1, line in CdS. Since only few phonon
states are thermally populated at low temperature, the emission manifests
itself essentially as a wing on the low energy side according to

EA0X −→ E0
A + �ω1um + �ΩA , (14.3a)

where �ΩA is the energy of the emitted acoustic phonon. The shape of the
phonon wing is determined by the energy dependence of the coupling of the
BEC to the phonons and by their population, especially the ratio of Stokes
to anti-Stokes emission. In Fig. 14.3 the influence of the lattice temperature
on the emission line shape is illustrated.

Figure 14.4 shows the acoustic phonon side bands of the I1 and I2 BEC
in CdS and in addition an absorption spectrum of the same sample. In this
special case actually the reabsorption of a rather broad luminescence band
appearing under higher excitation was used. The acoustic wing appears in
absorption on the high energy side of the zero-phonon line according to

EA0 + �ωabs −→ EA0X + �ΩA . (14.3b)

Another recombination process leaves the point defect in an excited state,
this means that the donor electron of a D0X complex is transferred in the

Fig. 14.3. The Stokes and anti-Stokes emission in the vicinity of the I1 BEC in
CdS for two lattice temperatures [74D1,74S1]
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Fig. 14.4. The emission (lower trace) and (re)absorption spectrum of a CdS sample
around the I1 BEC, showing the acoustic wing [79S1]

recombination process from its ground state into an excited state. The energy
conservation for these “two-electron transitions” reads in the simplest approx-
imation for the D0X complex, and assuming that the binding energy of the
donor forms a hydrogen-like series of states described by the main quantum
number nB,

�ω1um = ED0X − ED0

(
1 − n−2

B

)
(14.4)

with ED0 = Ryme(m0ε
2)−1 .

In Fig. 14.5 we show an example for ZnO. See also [04M1]
A similar “two-hole transition” may occur for acceptor-bound excitons

(A0X). Corresponding transitions to various 1s, 2s and 3s states are indicated
in Fig. 14.2c.

The BEC have a very rich and complex spectrum of excited states.
Apart from the quantum numbers known from free excitons nB, l, m, (see
Sects. 9.1,2), excited states can be created by the relative orientations of the
spins of identical carriers (with corresponding parities of the envelope func-
tion), or in the A0X complex, for example, by the participation of holes from
deeper valence bands. As an example we give in Fig. 14.6 the photolumines-
cence excitation spectrum of a A0X or D0X complex in ZnO. See the discussion
above with Fig. 14.2a. The peaks labelled R2 and R5 are thought to be due
to complexes which involve one or two holes from the B valence band instead
of the A valence band. The former is separated from the uppermost A valence
band by about 5.4 meV. The resonances R1, R3 and R6 could then be due to
the excitation of internal degrees of freedom of the complexes with various



350 14 Optical Properties of Bound and Localized Excitons and of Defect States

Fig. 14.5. An emission spec-
trum of a ZnO sample with
an especially pronounced two-
electron transition. According
to [75K1]. Concerning the iden-
tification of the lower BEC see
the discussion above

Fig. 14.6. Photoluminescence excitation spectrum of an BEC complex in ZnO
[81B1]
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hole configurations. Note that the interpretation for R5 does not work for
a D0X complex, which continues only one hole.

A more elaborate treatment of this topic is described in [81B1,86G1,97G1,
04M1].

Many defects act as fast nonradiative recombination centers or lumines-
cence killers like dislocations [99L1,00F1]. In some cases they give rise, how-
ever, to characteristic luminescence features. The so-called Y-emission line in
ZnSe is, e.g., due to the recombination of an exciton bound to the lattice
disortion field of a dislocation. An example is given in Fig. 14.2b.

The use of A0X luminescence in a ZnSe quantum well as a single photon
source has been described in [02S1]

Although we first treat quantum structures in the next section, we want to
mention here that BEC also exists in quantum wells. Partly their luminescence
merges with that of the so-called free, i.e., generally disorder broadened intrin-
sic emission lines as is often the case in GaAs/Al1−yGayAs structures, partly
it appears as a spectrally separated line. An example is shown in Fig. 14.7 for
structures with different quantum well widths lz, centre-doped with Be accep-
tors. For further references see, e.g., [01L1] of Chap. 1. It should be especially
noted that for quantum structures, the binding energy of the excitons to the
center additionally depends on its position relative to the barriers.

The bandstructure of some indirect semiconductors allows multiple occu-
pation of the conduction band due to the many-valley structure, and of the
valence band due to the four-fold degeneracy of the Γ8 valence-band maxi-
mum. In these materials multiple bound-exciton complexes can be formed,
i.e., BEC which contain one, two, three or even more electron–hole pairs. The
emission lines are due to transitions of a complex containing m electron–hole
pairs to one with m− 1 pairs. In Fig. 14.8 we give as an example a lumines-
cence spectrum of Si:P. The usual (m = 1) emission line of the phosphorous
D0X complex dominates. It is followed at lower energies by a series of lines
with indices m up to 6. The decay of the higher members of the series is obvi-
ously faster than of the lower ones, as expected already from simple reaction
kinetics. These multiple BEC can be considered as a precursors or nucleation
centers for the electron–hole plasma droplet discussed in Chap. 21. Another
noteworthy point is that Si is an indirect semiconductor and optical transi-
tions usually involve a momentum conserving phonon. Since the k-selection
rule is relaxed for BEC as mentioned above, we can see these lines even with-
out phonon participation.

BECs can be best observed at low lattice temperatures. With increasing TL

the BEC disappear depending on the material, often at temperatures between
20 and 100K due to thermal dissociation of the exciton from the complex.
For an example see Fig. 14.4. Below this temperature the halfwidth of the
emission lines increase partly linearly and partly quadratically with TL.

For optimal observation conditions the concentration of the point defects
should be low enough (� 1016 cm−3) to avoid broadening due to interaction
between the BEC.
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Due to this low concentration BEC are usually best observed in lumines-
cence or photoluminescence excitation spectroscopy and only partly in ab-
sorption see e.g. Fig. 13.9d, and only very rarely do they give rise to reflection
structures, simply because the modulation of n and/or κ is too small to result
in a significant signal in R(ω). For an exception to this rule see [78B1].

To conclude this section it should be mentioned that BEC are sometimes
said to have a “giant” oscillator strength. This expression is partly the result
of a misconception because the maximum absorption coefficient αmax for the
free excitons per unit cell was compared with the corresponding quantity of
the BEC per defect center. However, in both cases the (Wannier-) excitons
cover many unit cells.

Fig. 14.7. The luminescence of GaAs/Al1−yGayAs structures, of two different well
width lz center doped with Be acceptors at low temperature showing the emission
from localized intrinsic excitons labelled FE and of acceptor bound excitons (A0X)
[89H1]
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Fig. 14.8. The zero-phonon luminescence spectra of a multiple-bound-exciton com-
plex in Si:P after pulsed excitation, normalized to the a1 line [78T1]

For some reviews on bound exciton complexes in bulk materials and quan-
tum wells see e.g. [79D1,97G1,04M1] or Ref. [82L1,01L1] in Chap. 1 and the
references given therein or in Sect. 9.5.

14.2 Donor–Acceptor Pairs and Related Transitions

Until now we have assumed that the BEC involves only one defect center.
Actually one can also imagine poly-centric bound-exciton complexes, which
involve two or more close-lying centers.

The simplest such defect combination is the donor–acceptor pair. In
Fig. 14.9 we show schematically an electron on a donor and a hole on an
acceptor. If their wavefunctions overlap, they can recombine. The energy of
the photon resulting from radiative recombination is given by

�ωDA = Eg − Eb
D0 − Eb

A0 +
e2

4πεε0rDA
−m�ωLO (14.5)
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Fig. 14.9. A donor–acceptor pair (a) and a free-to-bound recombination process (b)

Fig. 14.10. Donor–acceptor pair luminescence in CdS including some phonon
replica [79B1]

for singly charged centers if we neglect the energetic shift caused by the overlap
of the wavefunctions of the neutral donor and acceptor. Eb

D0A0 are the binding
energies of electron and hole to their respective centers.

The forth term on the rhs of (14.5), which depends on the distance rDA

of the centers, reflects the Coulomb energy of the ionized centers after the
recombination. The last term describes LO phonon replica. We give examples
in Figs. 14.2b and 14.10.

If the donors and acceptors are introduced substitutionally in a rather
simple (e.g., cubic) lattice, then only discrete, well-defined values for rDA are
possible, to nearest neighbors and next-nearest neighbors, etc. Consequently
under high resolution one sometimes observes that the zero-phonon band con-
sists of discrete lines corresponding to the discrete values of rDA [79C1,79D1].
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With increasing pump intensity, the number of occupied donor and accep-
tor centers increases and their average distance rDA necessarily decreases. As
a consequence one finds that the emission maximum of the pair-band shifts to
the blue with increasing excitation due to the Coulomb term in (14.5). This
is a very characteristic feature of donor–acceptor pair recombination. For an
example in the less commonly investigated semiconductor SnO2 see [80B1].

Another recombination process connected with neutral donors or acceptors
is the so-called free-to-bound transition. In this case a free electron or hole
recombines with a neutral acceptor or donor, respectively, as shown schema-
tically in Fig. 14.9. The corresponding emission peak is at

�ωFB = Eg − Eb
D0/A0 −m�ωLO . (14.6)

Obviously �ωFB is blue-shifted as compared to �ωDA and often both processes
overlap together with their phonon replica in one complex or broadened lumi-
nescence spectrum. Exampels are shown in Fig. 14.2c both for donor–acceptor
pairs (D0,A0) (the index C means a carbon acceptor) and free electron to
bound hole transitions (e, A0).

14.3 Internal Transitions and Deep Centers

Some defects have not only one (or a few) levels close to one band, but they
have several of them, partly around the middle of the gap. The chance of
encountering such a situation evidently increases with increasing Eg and is
thus of higher relevance for insulators, e.g, solid state laser materials, like the
(Cr, Ti or Nd) doped ones, than for semiconductors.

Such deep centers can sometimes interact with both the conduction and
valence band and serve then as recombination centers. If this recombination
is fast and non-radiative, these centers are known as “luminescence killers”.
They are to a large extent responsible for the low luminescence yield of many
semiconductors. Iron is an example of such a center.

Other deep centers show either also free-to-bound or internal transitions
that reflect the atomic orbitals. These, however, are perturbed with respect to
the free atom by the environment of neighboring atoms. Examples of this type
of center are copper, sodium, the rare earths, and the transition metals. They
give rise to the green, orange and red emission bands of wide-gap semiconduc-
tors such as CdS, ZnO and ZnS. We give an example in Fig. 14.11 but do not
go into details, but mention, that there is also another green emission band
in ZnO, which is spectrally smooth without the pronounced phonon structure
and which is related to an oxygen vacancy [96V1] in addition to ZnO:Cu and
citing for ZnO:OH [78G1]. Recently an emission band has been observed in
ZnO in the orange spectral range, with the unusual property that the lumi-
nescence cloud expands after the switching on of cw band-to-band excitation
over distances of several mm in some tenths of a second. The effect can be
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Fig. 14.11. Deep center emission of ZnO:Cu [81K1]

observed at temperatures from 70 K to 150K. It has been attributed ten-
tatively to a (possibly thermally activated) Forster or Foster–Dexter energy
transfer [04D1].

As already mentioned above, the topic of deep centers is much more im-
portant for insulators. Ample information for this group of materials and
for semiconductors can be found in [75O1, 81H1, 90K1] or in [81A1] b,c,e of
Chap. 1.

14.4 Excitons in Disordered Systems

In Sect. 8.15 we outlined the appearance of localized tail states with increasing
doping, for alloy semiconductors and in amorphous materials. In quantum
wells the fluctuations of lz may also result in the formation of localized tail
states because of the dependence of the quantization energy on lz as mentioned
earlier.

If we create electron–hole pairs in such systems, they may be localized, too,
in the energetic regime below the mobility “edge” which is usually a transition
region of finite width.

Whole excitons can be localized in potential fluctuations of sufficient depth
and with diameters larger than their Bohr radius. In other cases, only one of
the carriers is localized–usually the hole, because of its heavier mass–and binds
the other carrier to it by Coulomb attraction. For a more detailed discussion of
localization, including a percolation approach, see Sects. 8.15 and 9.6, [03E1]
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and the references therein. For localization in various quantum structures
see [02R1] and for organic alloys see [76K1] and for amorphous semiconductors
[03S2].

The typical shape of the absorption spectrum of a strongly disordered
(e.g., amorphous) system is shown in Fig. 14.12.

In region I the absorption is weak and is caused by impurities in the alloy
or amorphous semiconductor, i.e., atoms of a different chemical nature.

Then region II follows where the absorption coefficient increases exponen-
tially with photon energy. This regime is also known as the “Urbach tail”
in analogy to Fig. 13.10 and (13.12). Its origin in disordered semiconduc-
tors is, however, not the interaction with phonons, but simply the exponen-
tial tail of the density of states of localized excitons which can be reached
without k-selection. Above follows region III comprising the absorption via

Fig. 14.12. The various regimes of the absorption coefficient in disordered semi-
conductors [72W1]
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transitions into extended states. An extrapolation of this part to lower ener-
gies, e.g., with a (E′ − E0)

2 law, allows one to define an optical or mobility
gap. For this so-called Tauc-regime see, e.g., [89S1, 89T1]. The latter quan-
tity can also be found by excitation-spectroscopy of the photo-current. Ab-
sorption spectra corresponding to the schematic drawing of Fig. 14.12 have
been found in amorphous Si, in chalcogenide glasses, and in alloy semicon-
ductors such as CdS1−xSex and ZnSe1−xTex. Examples are presented, e.g.,
in [72W1,89T1,99R1,04K1].

The gradual increase of the absorption, and via Kramers–Kronig analy-
sis also of the real part of the reflective index, in many cases prevents the
observation of discrete exciton resonances in reflection.

The analysis of the “Urbach” part of the absorption spectrum gives the
tailing parameter εloc describing the density of localized states below the
mobility edge EME.

N(E) =
N0

εloc
e−E/εloc E < EME (14.7)

In Fig. 14.13 we show εloc for CdS1−xSex as a function of x. This quantity
necessarily vanishes for the ordered binary compounds x = 0 and x = 1, see
also Sects. 8.15 and 9.6. In between it goes through a maximum with a shape
that is not symmetric with respect to x = 0.5, partly since the quantity
dEg/dx changes with x, which enters in (8.64,67).

Fig. 14.13. The dependence of the tailing parameter [92P1]
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Further information on the localized states can be deduced from the lu-
minescence spectra. In Fig. 14.14 we show the luminescence of a CdS1−xSex

crystal under excitation of the extended states and under resonant excitation
of the localized ones; see also the spectra in [92P1]. One sees here a rather
broad zero-phonon line peaking at 2.21 eV and the first LO-phonon replica
around 2.18 eV. The phonon replicas are resolved under resonant excitation
into the vibrations of CdS and of CdSe, since in this alloy the phonons are of
the “persistent-mode” type, i.e., they keep approximately the energies corre-
sponding to x = 0 and x = 1 and contribute to the emission with a weight
changing with x, while the gap in this case varies continuously with x. See
Sects. 7.8, 11.1.6 and 8.15 and 9.6, respectively.

The high energy edge of the luminescence band can be identified with the
transition region from extended to localized states [92P1, 99R1, 04K1]. This
statement can be supported by the following argument: As long as excitons
are in extended states, they “scan” the sample and have a good chance of
hitting one of the fast nonradiative recombination centers mentioned above in
Sect. 13.1.3. Once it is sitting in a localized state which does not have such
a center within the localization length, the exciton can either recombine ra-
diatively or reach a deeper localized state, e.g., by phonon-assisted tunneling.
The probability for the latter process decreases with decreasing energy and
density of the localized states, resulting in increasing luminescence yield. This

Fig. 14.14. Luminescence spectrum of CdS1−xSex under resonant and non-resonant
excitation [93K1]
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idea has been confirmed by investigations of the phase-relaxation times and
of the polarization memory as will be outlined in Chap. 23. For a more recent
discussion of the absorption and luminescence properties of bulk semiconduc-
tor alloys at low temperature involving the ideas of clusters, superclusters and
of metastable states introduced in Sect. 8.15 and 9.6 see [99R1,04K1] and the
references given therein.

At higher lattice temperatures defined by

kBTL � ε1oc (14.8)

the majority of the excitons are thermally (re-) excited from the localized into
extended states where they behave similarly to free excitons in ordered crystals
except for a rather short phase-relaxation time due to the alloy scattering.
This transition is partly connected to a non-monotonous dependence on the
emission maximum and also partly on the FWHM of the band as shown for
a CdS1−xSex sample in Fig. 14.15, which includes the CdS LO phonon replica.
For an earlier example see, e.g., [78K1].

Fig. 14.15. The low excitation photoluminescence spectra of CdS.97Se.03 for various
lattice temperatures Tl [88S1]
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Such behavior was rediscovered recently in quantum well structures. We
come back to this topic in the next chapter.

At low temperatures the luminescence yield of localized excitons can come
close to unity in selected samples [97W1].

Similar results as presented for CdS1−xSex have also been observed in
ZnSe1−xTex, [92P1] and in Ga1−yA1yAs [92S1]. In the first case the local-
ization effects are even more pronounced than in CdS1−xSex. Furthermore,
self-trapping of excitons seems to occur for x ≈ 0.01 at single Te atoms or at
small Te clusters. In the second case, εloc is much smaller, partly due to the
smaller translational exciton mass which makes localization less probable and
partly because of the larger Bohr radius of the exciton which averages over
a larger area of the lattice. More recently ZnO based alloys like Zn1−yMgyO
or GaN based ones like Ga1−yInyN have been investigated with similar re-
sults concerning the optical properties of excitons [01P1, 03S1]. Localisation
effects occur also in group IV alloys like Si1−xGex. For some references see,
e.g., [92L1, 92N1, 94T1]. The importance of disorder for Rayleigh scattering
and the appearance of speckles is investigated in [04M1, 04Z1] and will be
treated in Sect. 23.2.

For recent reviews on localized excitons in disordered semiconductors see
[86L1,89T1,91K1,92S1,92S2,99K1,04K1] and references given in Sects. 8.15
and 9.6. As already mentioned localization of excitons in quantum wells and
wires will be treated in the next chapter. But we mention here that (quantum-
mechanical) level repulsion occurs for states, which are spatially and energet-
ically close lying [03Z1] because this effect should also occur in bulk material,
but is there much more difficult to observe experimentally.

14.5 Problems

1. For some standard semiconductors, such as Si, Ge, or GaAs, calculate the
binding energy of electrons and holes to donors and acceptors, respectively.
Find some data for the binding energies of excitons to these complexes
and compare the results with Haynes’ rule.

2. Calculate the shift in energy for the donor–acceptor pair recombination
when donor and acceptor are nearest possible neighbors in a zinc-blende
lattice, and when they have a separation of three, and of ten lattice con-
stants. Can one observe emission from pairs with a separation d� aBε

m0
mc
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Optical Properties of Excitons in Structures
of Reduced Dimensionality

As in the presentation of elementary excitations in Chaps. 7–12, we now pro-
ceed from bulk materials to the optical properties of excitons in systems of
reduced dimensionality. For some recent reviews see [89S1,90C1,90G1,93C1,
01H1, 03R1, 03S1] or, e.g., the following References [81A1h,i,k,l,93B1,93H1,
93O1,93P1,93S1,95I1, 96S2,97W1, 98D1,98G1, 98S1, 99B1,01C1,01H1, 01L1,
02S1] of Chap. 1.

In Sects. 8.10, 8.13 and 9.3 we outlined the influence of the dimensional-
ity on the eigenstates of carriers and of excitons. Now we describe the opti-
cal properties of excitons in such structures, starting with quantum wells in
Sect. 15.1 and proceeding to coupled wells, superlattices and to structures of
even lower (quasi-) dimensionality in the following sections.

15.1 Qantum Wells

Here we treat transitions between valence– and conduction band (interband
transitions) and intraexatonic transitions. For intersubband transitions see
Sect. 21.5 We start with type–I structures, where the electron and hole are
quantized in the same material.

The description will remain almost exclusively in the weak coupling
limit, mainly because the quality of presently available samples in rela-
tion to interface roughness or alloy disorder is not sufficient for the fine
details stemming from the polariton concept to be observable. The most
widely investigated groups of MQW are based on GaAs/Al1−yGayAs and
on InP/InGaAs/InAlAs. See Sect. 8.11. In the meantime, considerable in-
terest has also arisen in II–VI systems, especially for wide gap materials,
like structures based on ZnCdMg/SSeTe, ZnMgCd/O and in new III–V sys-
tems like GaAlIn/N and GaInNAs for the blue and IR regions, respectively.
The II–VI compounds are covered, e.g., in the corresponding proceedings
like [82P1] in Chap. 8, while data on the nitrides can be found in [97N1,00I1]
of Chap. 1.
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In Fig. 15.1 we show how the spectra of a quantum well system develop
from the bulk material.

The layer with lz = 400 nm is almost bulk-like and shows the 1 s exci-
ton absorption peak followed by its ionization continuum. Compare this with
Sect. 13.1.3.

With decreasing quantum well width, the excitons of the various subband
transitions appear (labelled by nz = 1, 2, . . .) and the splitting into heavy hole
and light hole excitons caused by the different, mass dependent quantization
energies. Some weaker structures appear in between, which are dipole forbid-
den, but obtain some oscillator strength, e.g., via internal band bending. For
further examples see, e.g., [01L1] of Chap. 1 and the references given therein.

In Fig. 15.2a,b we compare the spectra for GaAs/Al1−yGayAs and
In1−yGayAs/InP multiple quantum well structures MQW.

We see the exciton and the continuum transitions between the first quan-
tized heavy- and light-hole levels and the first quantized electron state,
nz = 1hh and nz = 1lh, respectively. The peaks are due to the nB = 1
state. The higher states nB � 2 are usually not visible, due to their rela-

Fig. 15.1. Low temperature absorption spectra of GaAs (quantum) films of various
thicknesses ( [83G1,90G1] or [01L1] of Chap. 1)
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tively small binding energies and oscillator strengths (see Sect. 9.3) and due
to the broadening mechanisms mentioned above. The absorption coefficient
in the continuum states essentially reflects the constant density of states for
two-dimensional effective-mass particles. It is not influenced much by the Som-
merfeld enhancement because it varies only by a factor two. See Sect. 9.3
unlike the three-dimensional systems mentioned in Sects. 9.2 and 13.1. The
next prominent structures are the nz = 2hh and lh excitons. Higher states are
usually less clearly seen, among other reasons because the electron states are
often no longer quantized for nz > 3, depending on lz, me and the band offset.

In contrast to the InP system, the GaAs substrate of the AlGaAs MQW
is opaque for the exciton resonances. So it has to be removed by selective

Fig. 15.2. The low temperature absorption spectra of multiple quantum well sam-
ples of GaAs/Al1−yGayAs (a) and of In1−yGayAs/InP (b) [89S1] and [01L1] of
Chap. 1, respectively
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etching [80P1] for the observation of absorption spectra. Before this technique
was known, scientists often measured the luminescence–excitation spectra, i.e.,
they detected the exciton luminescence as a function of the photon energy of
excitation �ωexc for constant incident intensity (or rather constant photon flux
density). Similarly, the dependence of the photo current on �ωexc can be used
in a pin diode biased in the blocking direction, which contains the (M)QW in
the intrinsic region. The quantities

I lum = f(�ωexc)
jphoto = f(�ωexc)

}
Iexc = const (15.1)

are related to, but not identical with, the absorption spectrum α(�ω). See
Chap. 25. The above-mentioned techniques are still useful if a single quantum
well (SQW) is investigated. The absorption coefficients of two-dimensional
excitons in the above-mentioned systems are of the order of 104 cm−1. A SQW
with lz = 10 nm therefore gives an optical density of only

lz · α ≈ 10 nm · 104 cm−1 = 10−2 , (15.2)

which is hardly detectable in a simple transmission experiment. The obser-
vation of such a small variation needs either highly developed modulation
techniques or photo-luminescence excitation spectroscopy.

The advantage of studying only a SQW is that fluctuations of lz from
one QW to the next can be avoided. Furthermore some (opto-) electronic
devices contain only a SQW, e.g., some field-effect transitors (MOD–FET,
HEMT). The additional optical selection rules which arise when the excitons
are confined to a QW are rather simple:

∆nz = 0 . (15.3)

Transitions with odd ∆nz are forbidden by parity and those for even non-
zero ∆nz are forbidden for rectangular shaped QW in the limit of infinetly
high barriers. Transitions which violate (15.3) can be observed if there are
symmetry breaking perturbations such as external or internal electric fields.
Examples will be given in Sect. 16.2.

The luminescence spectra of excitons in QW are often rather broad and
partly Stokes-shifted with respect to the absorption. We give two-rather dif-
ferent examples in Fig. 15.3. The effects can be explained by assuming that
the luminescence is a superposition of the recombination of excitons in ex-
tended states at k‖ ≈ 0 (excitons with larger k‖ cannot decay radiatively
because of momentum conservation), of excitons localized in tail states due
to well-width fluctuations and/or alloy disorder, and finally of excitons bound
to impurities such as neutral acceptors or donors. As we saw in Chap. 14, the
latter complexes lead to spectrally very narrow emission bands in 3d systems,
but in QW, their energies are strongly inhomogeneously broadened because
the energy of the complex depends on its positions relative to the barriers.
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The latter effect can be reduced by deliberately doping only a narrow layer,
e.g., in the center of the well, as shown, e.g., earlier in Fig. 14.7.

In samples of very high quality the mechanisms mentioned above are less
pronounced, resulting simultaneously in a reduction of the spectral widths of
absorption and emission bands and of the Stokes shift. Both quantities are
related to each other as shown, e.g., in [93Y2, 94G1]. An example is given
in Fig. 15.3. The shoulders in the emission on the low energy side can have
various origins: fluctuations of lz by one monolayer, recombination of a bound
exciton complex, or recombination of a trion or a biexciton (see Sects. 9.4 and
20.3 for the latter two processes). Due to the weaker coupling of carriers and
excitons to optical phonons in the III–V compounds compared to the more

Fig. 15.3. A comparison of absorption and luminescence spectra in two samples of
different quality [92O2]
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ionic II–VI semiconductors, LO-phonon replica are hardly detectable in the
former materials.

As an example of a II–VI system we show in Fig. 15.4 the photolumi-
nescence (PL) and photoluminescence excitation (PLE) spectra of a ZnSe/
ZnS1−xSex MQW sample.

One observes in PL the light and heavy hole exciton, a bound exciton
complex (BEC) and their LO phonon replica. The PLE spectrum taken at
the position of the hh luminescence shows the lh exciton resonance and above
peaks spaced by integer multiples of LO phonons. They indicate that electron-
hole pairs first form excitons and then relax by LO phonon emission in contrast
to, e.g., GaAs systems where the carriers relax individually and an exciton
is formed only at the end of the LO-phonon emission cascade [93K2, 95B2,
96W3,96W4]. Concerning the discussion to which extend luminescence at the
exciton energy is due to excitons or to a Coulomb correlated electron–hole gas
or plasma see [02H1,04C1] or [98K1] of Chap. 13. More details on relaxation
processes will be given in Chap. 23.

In this context it is remarkable that in the early and euphoric times of
quantum well research, most excitonic low temperature absorption and lu-
minescence bands have been attributed to free excitons, even if their width
reached or even exceeded 10 meV. Absorption and emission of free, quasi-
two-dimensional excitons within the “light cone” k‖ ≤ ω/c would result
in a linewidth of only one or a few hundred µeV, depending on the effec-
tive mass. Even if a homogeneous broadening corresponding to dephasing

Fig. 15.4. Photoluminescence (PL) (- - - -) and PL-excitation spectra (——) of
a ZnSe/ZnS1−xSex MQW sample [98K1]
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times on the order of a few ps is added (see Chap. 23) one has to con-
sider low temperature exciton line width exceeding 1 meV as substantially
inhomogeneously broadened due to the formation of localized states caused
by well width and alloy fluctuations and especially in luminescence by con-
tributions of bound exciton complexes. Presently we see the opposite trend
that every localization site is considered a quasi zero-dimensional quantum
dot. As already mentioned in Sects. 8.13 and 9.3 and discussed in [01L1] of
Chap. 1, there is presently no clear and generally accepted set of criteria to
decide when a localization site should be called a quantum dot or island and
vice versa.

The homogeneous width of excitons localized by well width and alloy fluc-
tuations are at low temperatures often rather narrow (< 100 µeV). If only
a small ensemble of such localized states is probed, e.g., in luminescence, the
localized excitons show up in emission as individual narrow lines while they
merge to an inhomogeneously broadened band if their number increases. Ex-
amples are found, e.g., in [98P1,00L1] or [01L1] of Chap. 1. We give an example
of a CdSe/ZnSe quantum well in Fig. 15.5, showing a macro- and micropho-
toluminescence spectrum (resolution 1 µm in the latter case) of a single CdSe
quantum well in ZnSe.

The nominally deposited amount of CdSe was two monolayers. Due to
segregation and diffusion it is spread over about 10 monolayers and islands of
higher CdSe are formed resulting in the localization sites.

The relaxation and thermalization of the excitons in localized and extended
states give rise to a frequently observed so-called S-shape dependence of the
spectral position of the emission maximum of the macro-PL with temperature.
Actually, it is really an n-shaped dependence, rather than an S-shaped one,
but the term is established and is difficult to change.

Fig. 15.5. Macro- and microphotolumi-
nescence spectra of a CdSe/ZnSe single
quantum well [01K3]
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Examples of the non-monotonous variation of the emission maximum and
of the half-width with temperature are given in Fig. 15.6 and in [98P1,01T1,
01W1,02R1,03K2]. The behavior here is very similar to the behavior of local-
ized excitons in bulk alloys, as already shown in Sect. 14.3. There are various
approaches to theoretically model this behavior [01T1,04K1].

If two localization sites of excitons with almost identical energies are spa-
tially so close to each other in one quantum well that they interact slightly,
a phenomenon occurs that we have already seen several times, namely, level
repulsion. This level repulsion can be observed if high spatial and spectral
resolutions are used simultaneously. For theoretical calculations and experi-
mental evidence see, e.g., [03K3,03N1,03Z1] and references therein. A further
effect, connected with the disorder inherent to quantum wells is (resonant)
Rayleigh scattering. See, e.g., [03M1, 03N1] and references therein. We come
back to this topic in Chap. 23.

Presently there is a trend to investigate excitons in individual localization
sites or quantum islands by spatially resolved spectroscopy. See also Sect. 15.4.

At excitations below about 40 K the excitons are trapped, after excitation
into the continuum states, randomly by various localization sites. The individ-
ual lines follow the temperature dependence of the band gap. The maximum of
the macro-PL tends to show a stronger red shift for T between 50 and 100 K.
In this regime the excitons undergo thermally activated hopping processes to
neighboring, deeper localization sites. At even higher temperatures T > 100K
scattering into extended states dominates, which have a much higher density
of states. Above 150 K the temperature dependence again roughly follows the
band gap. The transition from localized to extended states is frequently ac-

Fig. 15.6. The temperature dependences of the band gap of CdSe according to
Varshni’s formula, of the narrow emission lines of individual localization sites (o) of
the maximum of the macrophotoluminescence (	) and of the FWHM (∆) [01W1]
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companied by a non-monotonous behavior of the width of the emission band
as shown in Fig. 15.6.

The investigation of the reflection spectra of quantum wells is difficult due
to inhomogeneous broadening and due to the fact that a single layer typically
10 nm in width contributes much less to a resonance signal than a bulk sample.

Nevertheless, it became possible to observe excitonic reflection spectra
with improving sample quality. In Fig. 15.7 we give an example of a single
GaAs well embedded between superlattices as barriers.

Under normal incidence, the typical reflectivity is around 30% for the
AlGaAs system away from the resonance, and the heavy and light hole ex-
citons in the well (A, B) and in the superlattice (C, D) produce only weak
structures. To enhance them, the authors of [88U1] used a nice trick. They
illuminated the sample with linearly polarized light under oblique incidence
close to Brewster’s angle (Fig. 15.7c). This procedure reduced the background
reflectivity and thus enhanced the exciton resonances. Note the different scales
in Fig. 15.7b and c on the ordinate.

In the meantime good reflection features have also been obtained under
normal incidence in III–V and II–VI quantum wells. For examples see [96S1]
or [01L1] of Chap. 1.

Exciton polaritons also exist in quantum well structures, however, the
usually strong inhomogeneous broadening prevents the observation of finer

Fig. 15.7. Reflection spectra of a single GaAs quantum well with an
Al.32Ga.68As/GaAs superlattice as barrier (a) and the reflection spectra for nor-
mal (b) and oblique (c) incidence [88U1]
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details. In Fig. 15.8 we show calculated in-plane polariton dispersions for the
heavy and light hole exciton resonances of an ideal single QW without any
disorder using the assumption that the background dielectric constant of the
well is equal to the dielectric constant of the barrier.

The polariton dispersion in the barrier material is shown by the dotted,
almost vertical line. There exists a lower polariton branch that looks similar to
the bulk material, with one difference being that the longitudinal-transverse
splitting ∆LT depends on the well width lz and on k‖ according to

∆LT ∼ lz · k‖ (15.4)

since there is no coupling of light to excitons in a single well with vanishing
thickness, nor for infinite wavelength, i.e., k‖ = 0. The lower polariton branch
corresponds to a guided mode since the refractive index below the resonance
is higher in the well than in the barrier. There is a longitudinal mode but no
upper polariton branch in the usual sense, since the refractive index above the
resonance is smaller than that of the barrier. Consequently, one has a radiative
or antiguided mode, which looses its amplitude rapidly (typical in 10 ps) by
radiating into the barrier. If the background constant off the well exceeds that
of the barrier, an upper polariton branch may appear as well [94J1]. The light
hole resonance shows a splitting in the Γ5 and Γ4 state. The Γ5 hh and lh
states are dipole allowed for E⊥z, where z is the growth direction, and show
up in usual transmission spectroscopy, while Γ4 is dipole allowed for E ‖ z
only, and is therefore not seen in the usual geometry k ‖ z; E⊥z.

From the experimental side, time of flight measurements have been per-
formed, which show a clear decrease of the group velocity around the reson-
ances [90O1], but much less pronounced than for bulk material. See Sect. 13.1.4.

Fig. 15.8. The calculated in-plane polariton dispersion for an ideal 5 nm-wide
single quantum well between Al1−yGayAs barriers for the heavy (a) and light (b)
hole exciton. Only dipole allowed states are shown [93J1]
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Further information may be found in [90A1, 90T1, 95A1, 95B1, 95C1, 00M2,
01K1]. Some further suggestions to observe quantum well polaritons in exper-
iment have been presented in [98K2].

For the geometry k ‖ z and E⊥z, a stack of quantum wells acts as an en-
semble of localized oscillators with infinite translational mass and with a very
heavy one in the case of a superlattice, in the sense that it is an effective
medium, as long as the distances between the wells and the well thickness it-
self are considerably lower than the wavelength of light. For radiative coupling
between adjacent quantum wells see, e.g., [90I1, 94C1,96S2,96W1].

The topic of polaritons obtained new interest when quantum wells were
incorporated in a microcavity. We come back to this aspect in Chap. 17.

We mention the inversion between the longitudinal transverse splitting
∆LT and the singlet triplet splitting ∆st. For bulk semiconductor samples with
direct, dipole-allowed gaps one finds for the 1 s Wannier exciton (polariton)

∆LT > ∆st (15.5)

while ∆LT decreases with decreasing volume fraction of the material showing
the resonance ∆st increases with increasing confinement. This is already true
for (multiple) quantum wells and even more so for quantum dots. See also
Fig. 9.2.

Intraexcitonic transitions have been observed, e.g., in GaAs/Al1−yGayAs
quantum wells in [89O1,96C1,96S3]. For the observation of this transition as
a proof for the presence of excitons see [04C1].

15.2 Coupled Quantum Wells and Superlattices

Symmetric and asymmetric coupled double quantum wells show interesting
features like level splitting. We show in Fig. 15.9 luminescence spectra of an
asymmetric, coupled quantum well consisting of two GaAs wells, which are 9
and 18 nm wide and are separated by 3 nm of Al.32G.68As.

With increasing pump power, the exciton gas is heated (the effective exci-
ton temperature is given in the inset as a function of pump power) resulting in
wider emission bands and increasing importance of the higher states proceed-
ing from the hh exciton of the wide well (ww) to the lh exciton of the narrow
well (nw). Coupled quantum wells are an attractive topic for intersubband
spectroscopy. We come back to this aspect in Chap. 21.

Now we concentrate on superlattices, which are characterized by miniband
formation in growth direction, as outlined in Sect. 9.3. We first give some
general examples and then concentrate on some peculiarities.

The optical properties of type-I superlattices (SL) do not deviate very
much from those of MQW except for some broadening due to the formation
of mini-bands in the direction of periodicity of the SL and the increase of
the importance of monolayer fluctuations with decreasing lz. In superlattices
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Fig. 15.9. Luminescence spectra of an asymmetric coupled double quantum well
sample at T = 10 K for various cw excitation conditions [94L1]

obviously also fluctuations in the barrier width are contributing to disorder.
For an investigation of the concept of polaritions in superlattices see, e.g.,
[95B1,97P1].

Figure 15.10 shows the absorption spectrum of a superlattice consisting of
200 × (2.2 nm GaAs/2.5 nm Al.3Ga.7As).

Very similarly to a multiple quantum well sample one observes the nB =
1hh and lh exciton resonances and possibly, as a small shoulder, the nB = 2hh
exciton. The features Shh and Slh are attributed to saddle point excitons at
the van Hoove singularities at the boarder of the first mini-Brillouin zone.

In Fig. 15.11 we show absorption spectra for a series of ZnSe/ZnS super-
lattices. The increasing blue shift with decreasing well width is obvious. Also,
the increasing spectral broadening of the light and heavy hole features are due
to the increasing relative importance of well and barrier width fluctuations
and alloying as already mentioned above.

The CdS/ZnSe system forms superlattices and quantum wells of type II
with electron confinement in the CdS layers and a remarkably large conduction
band offset by 750±50meV. The second remarkable finding both in quantum
wells and superlattices is the wide tunability of the emission peak position
from about 2.0 to 2.6 eV [99D1,00D2,01S3,04P1].
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Fig. 15.10. The absorption spectrum of a GaAs/Al1−yGayAs superlattice [90C2]

In the superlattice, the electron and hole wave functions have a stronger
overlap than in single and multiple quantum wells of the same CdS well
width due to the confinement of the holes in ZnSe in the first case. Ad-
ditionally, the overlap increases in both cases with decreasing width of the
CdS well. Consequences are a more strongly pronounced hh exciton-feature
in the superlattice compared to quantum wells, a higher oscillator-strength
and a faster luminescence decay time. Peculiarities of single CdS quan-
tum wells will be presented in Chap. 23. In quaternary type II systems
like BeTe/ZnSe or CdS/ZnSe the overlap of electron and hole wave func-
tions is limited to the interface region. Depending on the type of inter-
face the bands can be oriented in (110) or (1-10) directions. Depending on
this orientation the luminescence can be polarized preferentially in one of
these two directions, although both constituents have cubic symmetry. Exam-
ples for the BeTe/ZnSe system are found, e.g., in [00Y1] and for CdS/ZnSe
in [00S1].

The II–VI compounds usually have a rather strong lattice mismatch, as
can be seen from data of Sec. 8.11. As a consequence only rather thin films
(a few mono-layers) can be grown if one is to avoid the formation of misfit
dislocations. The results are so-called strained-layer superlattices where the
two different materials forming the wells and the barriers adapt to a common,
intermediate lattice constant.
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Fig. 15.11. Absorption spectra of a series of ZnSe/ZnS superlattices with various
well (ZnSe) and barrier (ZnS) widths [92O1,92S1]

The strain in superlattices mentioned above produces, via the piezoeffect
in the layers, electric fields in the growth direction. The piezoeffect requires
at least partially ionic binding and the absence of inversion symmetry in the
crystal. Both conditions are fulfilled, e.g., for the zincblende- and wurtzite-
type III–V and II–VI compounds. Since these built-in fields tilt the bands
and shift the exciton energies, such superlattices are also known as Stark-
superlattices.

The piezoeffect is generally stronger in the more ionic II–VI compounds
compared to III–V materials and in wurtzite structure compared to the
zincblende one. We present here example data for wurtzite CdSe/CdS su-
perlattices from [94G1, 94K1, 94L2, 95L2]. References for other materials are
found, e.g., in [93C2,94K1,95L1].

CdSe/CdS has a slightly type II band alignment with a conduction band
offset of 100 ± 100meV. In Fig. 15.12a we show the conduction and valence
band edges including the envelope wave functions of electrons and holes in the
first two minibands at kz = 0, the temporal evolution of the emission spectra
after ps excitation with 2.46 eV photons, a fluence of 0.3 mJ/cm2 and the
calculated shift of the various transitions with time together with experimental
data of the emission maximum.

The conduction and valence band edges are tilted by alternating piezo-
electric fields with a field strength of 2 × 108 V/m. Figure 15.12b gives the
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same results calculated self-consistently for a carrier density per layer of
1.2 × 109 cm−2. Obviously the carrier separation into the different layers
produces a strong depolarisation field that almost compensates the piezo
fields under the conditions of Fig. 15.12b. As can be seen by comparing
Figs. 15.12a and b both the transition energies and the electron hole over-
lap, i.e., the transition matrix element depends strongly on the carrier den-
sity. This effect can be nicely seen under pulsed (Fig. 15.12c) or cw excita-
tion [94K1].

Fig. 15.12. The conduction and valence band edges of CdSe/CdS superlattices
influenced by the piezofield (a) for zero carrier density and for a density of ne =
nh = 1.2 × 109 cm−2 (b) the temporal evolution of the luminescence spectra after ps
excitation (c) and the experimental and calculated shifts of emission maxima with
time (d) [94K1,95L2]
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Both the decay rate and the position of the emission maxima shift to
lower values with increasing time after the excitation pulse, leading to an
almost logarithmic dependence, as seen in Fig. 15.12d. The temporal evolution
of various calculated inter-band transitions are compared to the one of the
emission maximum.

In addition, the position of the chemical potential µ of the electron hole
pair system is given, i.e., the energetic distance between the quasi-Fermi levels
of electrons and holes. At the beginning, it reaches values in the miniband, i.e.,
one has population inversion. Indeed stimulated emission has been observed
from the transition e2 → hhl, which has a larger oscillator strength than the
e1 → hhl process [95L2].

A good review of the present state of the art of II–VI epitaxy and of their
optical properties is found in the proceedings of recent conferences on this
topic ([82P1] of Chap. 8 or [91T1]).

Since the luminescence tail of excitons localized by well-width fluctuations
in II–VI superlattices is sometimes spectrally broader than the energy of the
optical phonons, and since the coupling of the excitons to the phonons is
stronger than in the III–V system AlGaAs, one can observe interesting phe-
nomena related to the relaxation or “freezing” of excitons in these tail states.
More information about this topic and about the magnetic polaron effects
which appear for II–VI SL containing Mn can be found in [93H1,93J2,93K1].

We come back to this topic in the sections of magnetic field effects
(Sect. 16.1) and on time-resolved spectroscopy Sect. 23.3.

Corrugated superlattices have been grown on highly indexed substrate sur-
faces like (113). For some time the aspect of quantum well-wire superlattices
has been discussed for this type of structure. However, more recently it has
been found that the quantum wire aspect in these structures is marginal or
completely absent [96L1].

The transition from a type-I to type-II band alignment can be observed in
short period GaAs/AlAs SL.

The generally used nomenclature is (GaAs)m(AlAs)n where m and n give
the number of respective monolayers. GaAs is a direct gap material and AlAs
an indirect one with a larger gap. If the width of the GaAs barrier is made
smaller and smaller, then the k = 0 nz = 1 conduction band state shifts to
higher and higher energies until it is situated above the indirect conduction
band state in AlAs. This situation is shown schematically in Fig. 15.13.

In contrast to the type-II GaSb/AlAs SL, the short period GaAs/AlAs SL
are indirect in real space and in k-space. The peculiarities of absorption in
the well, relaxation of the electrons into the “barrier”, and subsequent recom-
bination are discussed in detail in [90G1]. An example is shown in Fig. 15.13,
where the photoluminescence excitation spectra and the luminescence spectra
are given for a type-I and a type-II GaAs/AlAs SL.

In the case of a type-II arrangement, the optical matrix element from the
direct maximum in the valence band of GaAs to the indirect minimum in the
conduction band of AlAs is so small that the transition hardly shows up in
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the absorption spectrum. The thermal population factor is responsible for the
fact that the low-temperature luminescence nevertheless originates essentially
from this transition (Fig. 15.13c).

We mention that efforts are also being made to grow strained Ge/Si SL,
though there are considerable technical problems in growing good quality
samples due to the different lattice constants. The idea is that a similar folding-
back mechanism as outlined in connection with phonons, in Sects. 7.10 and
11.2 should yield a direct electronic bandstructure which would allow the
highly developed Si technology to be used also for light-emitting devices.

For recent publications and reviews of this topic see, e.g., [92N1, 92V1,
92W1,93A1,93M1,93V1,94H1,95F1,95L1,95Z1,96L2,96O1,97K1,00G1,00P1]

Fig. 15.13. The band alignment of a (GaAs)m(AlAs)n short-period superlattice of
type II showing the conduction and valence band edges at Γ (——), the conduction
band edge at X (- - - -) and the quantized electron and hole states (a), PL and PLE
for a type I (b) and a type II superlattice (c) [90G1]
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Fig. 15.14. Luminescence spectra of
a nipi structure compared to the RT
absorption edge of bulk GaAs [86D1,
92M1]. Compare with Fig. 15.12c

and references therein, which partly indicate that even this approach is un-
likely to result in extremely high luminescence yields.

To conclude this section we briefly return to the concept of nipi structures
or doping superlattices introduced in Sect. 8.11. The probability of transitions
between electron states in the conduction-band minima and holes in the va-
lence band maxima is low because of the “spatially indirect” bandstructure.
Consequently strong absorption sets in only around the energy of the “di-
rect” gap, i.e., at an energy corresponding to that between the bands at the
same place, modified by the Coulomb interaction. The carriers are spatially
separated after their creation resulting in a very long lifetime. The radiative
recombination which can nevertheless occur due to the small overlap between
electron and hole wavefunctions in their respective spatial band minima is
strongly Stokes-shifted with respect to the spatially direct absorption edge.
We give an example in Fig. 15.14, which shows the emission spectra for two
different pump intensities and the position of the absorption edge of bulk
GaAs. An analogous shift of the emission with excitation is also seen in piezo-
superlattices see Fig. 15.12 or [93C2, 94K1, 95L2]. The nipi structures have
quite amazing nonlinear optical properties [86D1,92M1].

15.3 Quantum Wires

As already mentioned in Sects. 8.12 and 9.3 there are various possibilities to
produce quantum wires, e.g., by laterally structuring quantum wells, by grow-
ing in V-groves or on ridges, by cleaved edge overgrowth producing T-shaped
structures or by growing free standing, whisker-like needles, also known as
nanorods. See, e.g., [90C1,90G1,93C1,93D1,93P1,02K1,03Y1] and references
therein.
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In the following, we present a few examples.
The problem encountered in lateral structuring is that the quantization

length lz in the growth direction of the QW is usually much smaller than the
length ly of the subsequent lateral structuring. Typical values are

lz ≈ 10 nm ,
ly ≈ 50 − 100 nm .

(15.6)

Consequently, the confinement energies resulting from confinement in the two
directions are very different. Usually one observes only a narrow modulation of
the luminescence or photoluminescence excitation spectra due to quantization
in the y-direction.

We provide examples for the confinement in the second direction in
Figs. 15.15 and 15.16.

Figure 15.15 shows PLE spectra of a 8 nm-wide GaAs quantum well be-
tween Al1−yGayAs barriers in the upper trace, showing the well-known heavy
and light hole excitons.

In the PLE spectrum of the quantum wires these two resonances are
slightly blue shifted according to the lateral confinement and for the heavy
hole exciton even the first two laterally confined states could be resolved,
labeled hh11 and hh12. The PLE spectra have been taken at the spectral
positions indicated by the vertical arrows.

The progress in nanolithography is obvious when comparing the data in
Fig. 15.16 for InAs wells.

Fig. 15.15. PLE spectra of a 8 nm-wide GaAs/Al1−yGayAs multiple quantum well
sample (upper trace) and of 65 nm-wide quantum wires patterned from this sample
(lower trace) [95S2]
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Samples have been prepared by either etching through the upper bar-
rier and the well into the substrate (deep etched), or only the upper barrier
has been thinned down close to the well (modulated barrier). In both cases,
a significant increase of the exciton binding energy from the value of the well
around 8 meV by a factor of 1.5 or 2 has been obtained by additional lateral
confinement.

In Fig. 15.17 we show the cathodo-luminescence spectra of a single GaAs
V-groove wire.

Fig. 15.16. Exciton binding energies as a function of wire width (a) or of dot
diameter (b) for InAs samples [98B2]

Fig. 15.17. Normalized cathode-luminescence spectra of a single GaAs V-groove
quantum wire for increasing electron beam density on the sample at an acceleration
voltage of 12.5 kV (a) and an overview over the whole spectrum (b) [95G1]
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The overview spectrum shows, at the lower energy side, the emission from
the quantum wire (QWR) at the bottom of the V-groove. At the higher energy
side it shows the emission from the quantum wells (QW) at the side flanks
of V-groove, which are considerably narrower, and therefore the form lateral
confining potential of the wire-states though have higher quasi dimensionality
d = 2. The emission VQW finally results from a vertical quantum well which
forms unintentionally in the middle of the V-groove.

The lateral confining potential of the V-groove is not as abrupt as, e.g.,
quantum wires formed by nanolithography, but rather smooth. Therefore the
higher states, which are populated at higher excitation current and are seen
in luminescence, are in first approximation as equally spaced as in a harmonic
oscillator. They are labeled in Fig. 15.17a by n = 1, 2, 3 .

As a last example we show in Fig. 15.18 the luminescence spectra of two
different T-shaped quantum wires formed by cleaved edge overgrowth. Their
emission is again red shifted with respect to the emission from the quantum
wells on the (001) and (110) surfaces.

For recent data both for GaAs and In1−yGayAs based structures see, e.g.,
[88H1,96L4,98L1,99F1,00D1,00K1] and references therein.

For localization in quantum wires see, e.g., [97R1,98V1].
The dispersion relations of quantum wire polaritons are calculated for vari-

ous cross-sections, e.g., [92T1,93C1,93K1,93Y1,99C1] yielding partly different
results. For experimental data see, e.g., [88K1].

For the optical properties of nanorods see the above references and [97S1,
01H2,02K3,04P2,04L1].

Fig. 15.18. Low-temperature photoluminescence spectra of two different T-shaped
quantum wires [96L3]
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15.4 Quantum Dots

As already explained in Sects. 8.13 and 9.3 there are many different ways to
produce quantum dots or islands.

We present here some selected examples of “real” dots or nanocrystals
that are embedded in glass or polymer matrices with high barrier ener-
gies in the eV range and almost spherical shape and for quantum islands
formed in quantum wells by generally more oblate insertions of low-band-gap
material.

The most frequently used groups of semiconductors for the first type of
quantum dots are Cu-halides and II–VI compounds and to a much lower
degree III–V materials. For the latter group, examples are found in [96G1,
97B1] and for the two former groups in [93B1,97W1,98G1,01L1] of Chap. 1.

The research on epitaxially-grown quantum islands started essentially with
the III–V system In(Ga)As/GaAs followed by the II–VI material combination
CdSe/ZnSe.

A limited selection of textbooks, monographs and review articles on this
topic is: [81A1 g,k,l, 93B1, 97W1, 98G1, 01H1] of Chap. 1 and [86B1, 87S1,
90M1, 92P1, 93W1, 95P1, 95W1, 00K2, 00L2, 01K1, 01K2, 01K3]. In these ref-
erences some comments can also be found on the history of this field. Actu-
ally, II–VI semiconductor doped glasses have been used as color- and edge
filters from the IR to the near UV from the 1930s. It was also known that
these glasses obtain their color only during an annealing process and that
the absorption edges shifts to the red with increasing annealing time and
temperature. The fact that this is a consequence of quantum confinement in
nanocrystallites was mentioned explicitly only in the beginning of the 1980s,
e.g., by [82E1,82H1,83J1].

A rather recent development in this field is nanostructures grown in in-
verted tetrahedral pyramids [98H1,00K2,00L2] and references therein.

One distinguishes three quantization regimes. Below we give some formulae
for the quantization energies assuming spherical dots, simple isotropic and
parabolic conduction and valence bands and infinite barriers. As outlined
already in Sects. 8.13 and 9.3 the regime I is obtained for dots larger than
the excitonic Bohr radius;

regime I: R̄ � aB . (15.7a)

In this case, only the center of mass motion of the exciton is quantized, while
the relative motion of electron and hole are hardly affected. The quantization
energy is given, in the above approximations of a spherical dot with infinitely
high barriers and neglecting the difference in the dielectric properties of the
microcrystallite and the surrounding matrix, by

∆EI
Q =

�
2π2

2MR̄2
, (15.7b)
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where M = me + mh is the translationed mass of the exciton. Regime II is
given by

regime II: ae
B > R̄ > ah

B , (15.7c)

where ae,h
B are the respective radii of the electron and hole orbits in the exciton

around their common center of mass.
In this case the motion of the electron is quantized and the hole moves in

the potential of the QD and of the space-charge of the electron for the usual
situation me � mh .

Continuing to use the above-mentioned approximations, and neglecting
the Coulomb energy between electron and hole, one finds

∆EII
Q = CRy∗

(aBπ

R̄

)2

; with C = 0.67 . (15.7d)

Regime III is defined by

regime III: R̄� ae,h
B . (15.7e)

Since the quantization energy scales with R̄−2 and the Coulomb energy
with R̄−1, for this regime one can ww.mozilla.org/start/1.7/ expect as a first
guess

�2π2

2µR̄2
= EIII

Q � EIII
Coulomb (15.7f)

where µ is the reduced mass of electron and hole. The influence of the Coulomb
energy is still partly incorporated, e.g., in a formula used in [97M1]

∆E(R) =
�2π2

2µR̄2
− 1.78e2

εR̄
+ 0.752ERy . (15.7g)

Slightly different formulae can be found, e.g., in [86S1, 91E1] or in [01L1] of
Chap. 1.

The values of R̄ where (15.7e,f) hold are comparable to the lattice con-
stant. In this situation, the whole effective mass concept breaks down and
a description of the dot in terms of molecular orbitals becomes more appro-
priate. An exhaustive list of references for calculations using the full valence
band structure of cubic and hexagonal quantum dots and of calculations for
very small clusters where tight binding methods are more appropriate is given
in [01L1] of Chap. 1.

Recently it became obvious that the size of the dots is not the only rel-
evant quantity affecting their linear and especially nonlinear optical proper-
ties. The three different growth regimes of the dots which occur during the
annealing process of the glasses, namely nucleation, normal growth of the dots
and growth through coalescence, result is significantly different properties of,
among other things, the interface states between glass matrix and semicon-
ductor dot. Furthermore, the capping of dots plays a crucial role. In glass or
organic matrices one generally has a lot of surface and interface states, the
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number of which can be significantly decreased by capping with hydrogen or
organic ligands, which saturate the dangling bonds, or with similar semicon-
ductors with a higher band gap of type-I band alignment. For recent reviews
see [88H2,90K1,91E1,93G1,93W1] and the above mentioned references.

From our considerations of the density of states in Sects. 7.7 and 8.9 we
would expect QD to have an absorption spectrum consisting of a series of δ-
functions or of Lorentians, if some homogeneous broadening is included. Such
behavior is not observed in reality for ensembles of dots since various processes
contribute to a broadening of the resonances, e.g., the size distribution of the
crystallites considered in Fig. 15.19, the coupling to optical phonons, which
may be enhanced in the quantum dots as compared to the bulk material,
and the influence of impurity, surface, or interface states; see [91E1, 93G1,
93W1,95W1,96W1] and again references of Sects. 8.13 and 9.3 and references
therein.

The range of the size distribution for nanocrystallites in glass matrices
is typically in the range of 10 to 30%. In organic solvents it can be reduced
by size selective precipitation to a few percent [95W1]. The size distribution
of quantum dots produced by nanolithography is, especially for the smallest
dots, which show substantial lateral confinement effects, also in the range

Fig. 15.19. Calculated spectra of the optical density of quantum dots for various
relative widths of thier size distribution [90K1]
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of (20 ± 10)%. Quantum islands in MBE-grown layers usually show strong
size and composition fluctuations. Ways out of the resulting inhomogeneous
broadening are single dot spectroscopy and site- or size-selective spectroscopy,
including spectral hole burning.

In Fig. 15.19 we present calculated absorption spectra, with a simplified
energy level scheme, showing the influence of inhomogeneous broadening. In
Figs.15.16, 15.20 and 15.21 we show experimental data.

Regime I is usually realized for QD made from the copper halides CuCl,
CuBr and CuI since the values of aB for these materials are in the range of
1 nm. Figure 15.20a shows an example for CuBr which clearly illustrates the
blue-shift of the nB = 1 exciton resonances from the two uppermost valence
bands with decreasing R̄.

In Fig. 15.20b we show the blue-shift of the absorption edge of glasses
containing CdSe QD with decreasing values of R̄. The calculated transition
energies and their oscillator strengths are given by the positions and heights
of the vertical lines. For more data see also [92K1].

The luminescence is usually considerably Stokes-shifted with respect to
the absorption, in Fig. 15.21 by roughly 200 meV. This shift can be partly
attributed to a relaxation of the carriers into defect or surface states, and
partly to stronger phonon coupling resulting in Huang-Rhys factors SQD in
the QD of around 1, which is larger than for the corresponding bulk materials.
For CdS1−xSexQD, for example, one finds

0.2 ≈ Sbulk < SQD ≈ 1 . (15.8)

In Fig. 15.22a,b we show for CdSe dots in an organic solvent, the energy
of the lowest electron-hole pair state as a function of the dot radius, and the
energy spacing to higher states as a function of the energy of the lowest state.
Good agreement between experiment and theory is observed.

Further examples for other materials are found in [97W1,01L1] of Chap. 1.
Transitions between the various electron-hole pair states in the IR under

optical excitation across the band gap have been reported for CdSe in [98G1]
and for ZnO dots in [00H1].

To demonstrate the relation of inhomogeneous broadening of the spec-
trum of a dot ensemble and to the homogeneous broadening of a single dot,
we show corresponding luminescence spectra of CdSe dots capped with ZnS
in Fig. 15.23. Capping with larger gap semiconductors or with organic lig-
ands tends to reduce the homogeneous line width compared to QD in sim-
ple (boro–silikate) glass matrix. The satellite shifted by 25.6 meV is the LO
phonon replica.

The absolute photo-luminescence quantum efficiency can be rather high,
reaching values of 0.1 to 0.9 [95N1].

The homogeneous width Γ (T ) increases with temperature typically with
a function like [99R1]

Γ (T ) = Γ0 +
Γel–phon

exp {�ΩLO/kBT} − 1
(15.9)
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Fig. 15.20. A set of absorption spectra of CuBr quantum dots with different average
radii R̄ (a) and a set of measured absorption spectra together with the calculated
positions of the optical transitions in CdSe QD (b) [88H1,93E1]
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Fig. 15.21. The Stokes-shift between the absorbtion and emission spectra of
Cd1−xSex quantum dots [93W2]

Fig. 15.22. Measured and calculated energies of the lowest electron-hole pair state
in CdSe as a function of the dot radius (a) and the splitting of higher states as
a function of this energy (b) [96N1]

where Γ0 describes the low temperature limit. The second term gives the
interaction with LO phonons including their thermal population probability.
A term linear in T could be added, describing the interaction with (weakly
confined) acoustic phonons. See also [01B1]. An alternative formula is given
in [01P1]. Values of Γ0 down to a few tens of µeV have been found for excitons
in quantum dots and islands. See [02K5,03S2,04S1] and references therein.

Various interesting features can be observed in single dot spectroscopy:
One is spectral diffusion and fluorescence intermittency or blinking [96N2,
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Fig. 15.23. Luminescence spectra of ZnS-
capped CdSe quantum dots for an ensemble
of average radius R̄ = 4.5 nm and of a single
dot [96E1]

00N1,01S4]. Both effects are attributed to the ionization of carriers from the
dot and their capture at the interface or in the surroundings of the dot. These
carriers either shift the emission energy by the quantum confined Stark effect,
caused by the electric field of the extra carrier, or even bring them into a non-
luminescent state. Removal of the carrier by optical or thermal activation
brings the QD back to the original state.

For the mapping of the excitonic wave function in quantum dots by optical
near field microscopy see, e.g., [01C1,03M3,04K1].

Another interesting phenomenon is the fact that a single dot can emit
only one photon at a time. It then has to be re-excited again before it can
emit another photon. As a consequence, the photons emitted from a single
dot are anti-correlated. This photon anti-bunching shows up in a dip in the
correlation function of the photons for zero time delay. Examples are found,
e.g., in [00L3,00M3,01M1,02S1,03U1].

A related topic is quantum entanglement of excitons in single or coupled
quantum dots [98B1,99Q1,00C1,00R1,01B1,03Z2].

The exciton or electron–hole pair ground state usually shows a fine-
structure, due to the exchange splitting. The lower state is the triplet, in
quantum dots usually called the dark state, since it is spin flip forbidden.
This ordering of the states is the same since it already exists in bulk ma-
terials, with the difference that in bulk materials the splitting between the
triplet and the transverse dipole allowed singlet states of Wannier excitons
is much smaller than the transverse-longitudinal splitting of the singlet. In
quantum dots the situation is inverted due to a strong enhancement of the
(short-range) exchange interaction caused by three-dimensional confinement,
while the oscillator strength is reduced by the dilution of the oscillators, i.e.,
the dots in their matrix. See also Fig. 9.2.

In Fig. 15.24 we show data from various authors for the exchange splitting
of the excitons in CdSe quantum dots as a function of the dot radius.

Similar data are found for Cu and Ag halogenid dots [00G2,03G1] where
bulk band parameters have also been deduced from dot spectroscopy.
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The interaction of excitons (i.e., electron–hole pair states) in quantum
dots with phonons has already been addressed above in connection with
the homogeneous width. It also shows up in luminescence. An example is
given in Fig. 15.23. Typically one finds that the spacing of the zero phonon
line and its one LO phonon replica is slightly smaller than the LO phonon
energy in bulk at k = 0. This effect is caused by the facts that the LO
phonon mode confined in a quantum dot has an effective k > 0 and
that the dispersion of LO phonons is generally negative, i.e., ELO(k) de-
creases with increasing k. See, e.g., [96E2]. Furthermore one observes sur-
face phonon modes [99H1] and confined acoustic phonons [96W1, 01P1].
For exciton-phonon complexes or exciton-polarons see [04K2] and references
therein.

The Huang-Rhys factor, which is a measure for the coupling between an
electronic resonance and LO phonons can be deduced from luminescence spec-
tra, in contrast to bulk materials, because problems with reabsorption and k
selection rules in the zero phonon line are relaxed, which are relevant in the
latter case. The values of the Huang–Rhys factor depend partly on the indi-
vidual properties of the dots like capping or surface states and have values
between 0.2 and 0.9. For data see [01L1] of Chap. 1 or [93S1] or the discussion
with (15.8).

The interaction of excitons with single carriers or other excitons will be
considered in connection with trions and biexcitons in Sect. 20.3.

Quantum dots, especially from the group of II–VI semiconductors, have
been used as markers attached to organic molecules [98B3, 01D3, 02G1] to
impregnate the voids in photonic crystals [99R2, 02P1] or for incorporation
in microcavities [03M3].

It is well known, that the vapor pressure of small droplets increases with
decreasing droplet radius. Consequently their boiling point or temperature
decreases. A similar phenomenon also occurs for the solid to liquid phase

Fig. 15.24. Exchange splitting as a function of the exciton ground state in CdSe
dots as a function of the dot radius (data from various authors, [96W1])
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transition of small crystallites. This effect has been known and used since
ancient times for metals like Au, e.g., in granulation techniques. Recently this
phenomenon has also been observed for CdS(e), Si or Cu-halide semiconductor
quantum dots [92G1,96G1,99V1,01Z1,03G1].

In Fig. 15.25 we show examples for two glass samples doped with CuCl
crystals of different average radii. The optical density in the lowest exciton
resonance (compare with Fig. 15.20) is plotted as a function of sample temper-
ature. The steep decrease (increase) is attributed to the melting (solidification)
of the CuCl dots. Note that these temperatures are below the glass transition
temperature of the host. One observes two prominent features: a hysteresis
in the temperature cycle, as indicated by the arrows, which is characteristic
of a first order phase transition, and a shift of this hysteresis loop to temper-
atures below the bulk melting temperature TM of CuCl, which is indicated
by the vertical arrow. This shift increases with decreasing dot radius as pre-
dicted above.

Quantum dots or islands have also been made from indirect gap semicon-
ductors, with an emphasis on Si, which is the dominant material for elec-
tronic devices. The hope is that the relaxation of the k-conservation under
three-dimensional confinement might increase the luminescence yield of this
material, allowing one to integrate light emitters with other (opto) electronic
devices based on the same material (Si) on one chip. However, at the end
of 2004 this aim had only been achieved with limited success for Si based
quantum wells or superlattices.

Various approaches have been used to prepare Si nanocrystals, which are
reviewed in, e.g., Chap. 9 and [97W1] of Chap. 1. For more recent data see,
e.g., [94K2, 94P1, 96G3, 96M1, 98P2, 99K1, 01Y1, 02Y1, 02Z1] and references
therein.

Fig. 15.25. Optical density in the exciton resonance of CuCl quantum dots in glass
matrices as function of temperature for two different average dot radii [03G1]
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A special type of Si nanocrystals is porous silicon (p-Si). In 1984 a visible,
low temperature emission was observed in p-Si [84P1,90C3,97C1]. Since then
more than 1000 papers have appeared on this topic, which is still being con-
troversially discussed. Therefore we give here only a very short overview and
a few references.

Porous silicon is prepared by anodic oxidation of doped Si, e.g., in HF-
ethanol electrolytes. The result is a porous layer on the Si chip, which contains
nanocrystals and nanorods with dimensions of a few to several nm. These sam-
ples show (photo) luminescence in the visible spectrum from the red-orange
to the blue region depending on the preparation and excitation conditions.

One idea to explain the blue shift and the enhanced intensity of the emis-
sion compared to bulk Si is by the above mentioned quantum confinement
effect. However, alternative explanations have been put forward, attributing
the origin of the emission to siloxene (Si6O3H6)n or to Si-oxihydrides or sub-
oxides and other Si-related compounds, which may form during the etching
process in the porous layer, partly even in the form of surface states or traps
at the nanocrystals. On the other hand, the siloxene usually shows lumines-
cence bands comparable to those of p-Si only after a certain heat treatment,
during which Si nanocrystals might form.

There seems to be a trend to assume that the blue-shifted absorption
of p-Si and parts of its red-orange luminescence including the polarization
anisotropy might be related to Si nanocrystals or nanorods, while the shorter
wavelength emission components might have their origin in the alternative
compounds mentioned above. We cannot currently provide a definite answer
to this problem. Instead we give some references for both approaches and leave
the final decision to the reader or to future research [92S2,95S2,97G1,97R2,
97R3,99B1,99J1,01D1,02K4].

As already mentioned in the introduction we presently see increasing work
to pack quantum dots so closely that the wave functions start to overlap.
According to what we have learned for periodic potentials in general and more
specifically for superlattices in Sects. 4.1, 5.4, and in Chap. 8 this interaction
will result in the formation of (mini)bands from the discrete energy levels in
isolated dots. If the dots are periodically arranged and if their size distribution
and thus their inhomogeneous level broadening are sufficiently small, these
new bands can be described by a dispersion relation E(k). In the opposite
case, there will be no good quantum number k, but there will be bands in
the density of states, similarly to disordered systems. The first examples of
this development can be found in the following small selection of references:
[92T2,95L3,96K1,98M1,01D2,00L4].

A similar phenomenon is found if fullerene molecules C60, are put together
to form a solid. Solid C60 crystals are semiconductors with a band gap of about
2.2 eV [99M1].

To finish this section on quantum dots we want to give some references
for quantum islands or self-assembled quantum dots occurring in thin MBE
layers for lattice-mismatched systems. A calculation of the wave functions for
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Fig. 15.26. Cathodo-luminescence spectrum of an InAs/GaAs sample containing
self-assembled islands [95G3]

idealized, pyramid shaped islands can be found in [95G2]. Some recent reviews
are, e.g., [01K2, 01K3, 02K2, 02K5, 03S2, 04S1] or [01L1] of Chap. 1. We give
two examples of the optical spectra of these quantum islands. In Fig. 15.26
we show a cathodo-luminescence spectrum of an ensemble of In(Ga)As islands
embedded in a InGaAs well sandwiched between GaAs barriers. The nominal
deposited InAs layer thickness was 0.6 nm.

The narrow emission lines arise from various islands or localization sites.
The width of individual lines is ≤ 0.15meV and does not change significantly
with temperature up to 70 K, giving thus some evidence for the immobility
of the state and its isolation from the surroundings. Compare, e.g., Figs. 15.5
and 15.23. For more details on InAs-based islands see [99B2].

As a second example we show in Fig. 15.27 the photoluminescent spectra of
the ground state luminescence of three different CdSe/ZnSe quantum islands.

The energy of the emission line is set to zero. The sharp features in the
PLE spectra around 40 meV are considered as excited states while the wing
above zero and the broad peak at 25 meV are considered as acoustic and LO
phonon sidebands, respectively. See also Sects. 14.1 and 14.4 or Figs. 14.3 and
14.5.

The exciton states in the quantum islands thus show analogies both to
localized excitons in quantum wells and alloys and even to bound exciton
complexes, but also to the strongly confined states in quantum dots in glass
and organic matrices. One has narrow homogeneous widths of the states,
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Fig. 15.27. PLE spectra of three dif-
ferent Cd(Zn)Se/ZnSe islands [01H3]

i.e., long dephasing times (see Chap. 23) and a confinement-enhanced singlet-
triplet splitting as in QD doped glasses and organic matrices (Fig. 15.24).
See, e.g., [98G2, 01H1] for the system CdS/ZnSe. One can also observe spec-
tral diffusion and intermittency [98Z1,00S2] and one tries to build up higher
dimensional structures by coupling quantum islands, e.g., in vertical stacks
or even in three dimensional ordered structures [99Y1, 01H2, 01K3, 01P1,
03K2].

For examples of level repulsion between spatially and energetically close
lying states see, e.g., [03G1,03W1] and references therein.

With these examples and the following problems we finish the chapter on
excitonic optical properties of semiconductors quantum structures. We shall
meet reduced dimensionalities again including “photonic dots” in the next
chapters.

15.5 Problems

1. Try to make a simple estimate of the radius of an ideal quantum dot at
which the quantization energy and the Coulomb energy are equal.

2. In a quantum well with infinitely high barriers one expects an energy level
scheme that depends quadratically on the quantum number nz. Check if
a similar relation holds for the (few) bound exciton states in wells with
finite barriers. Inspect, e.g., data for the system GaAs/AlGaAs.
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3. Make a qualitative sketch of the conduction and valence band edges of an
ideal, undoped, type I quantum well, of a barrier or a well-doped sample
or of a type II MQW with a slight homogeneous n-doping.

4. Make a rough sketch of the absorption spectrum for the band-to-band
transition with and without Coulomb interaction of a direct gap, dipole
allowed bulk semiconductor and for quantum wells, wires and dots.

5. Calculate the first few energy levels and wave functions in a spherical and
a cubic dot with infinitely high barriers.
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16

Excitons Under the Influence
of External Fields

A technique which reveals fascinating new phenomena as well as providing
a powerful tool to detect and probe the properties of excitons is the application
of external fields. For a rather early treatment see [08V1].

An exhaustive review of this field including the cases of temporally con-
stant fields [79E1, 85H1] and of modulation techniques [69C1, 73S1, 04G1]
would itself fill a whole book. Therefore, we restrict ourselves here to the
presentation of general features and of some selected topics and examples.

We consider the influence of magnetic, electric and strain fields on the
optical properties of excitons including their continuum states and we proceed
again from bulk materials to structures of lower quasi-dimensionality.

16.1 Magnetic Fields

First we consider magneto-optics, i.e., the influence of a magnetic field B
on excitons. There are two “natural” energy units which can be compared.
One is the excitonic Rydberg energy Ry∗ the other the cyclotron energy
�ωc = �(eB/µ), where µ is the reduced mass of the exciton. The regime

Ry∗ � �ωc;⇒ γ = �
eB

µRy∗ � 1 (16.1a)

characterizes the weak field limit. The Coulomb energy dominates and the
magnetic field can be treated as a perturbation.

In the strong-field limit

Ry∗ � �ωc;⇒ γ � 1 , (16.1b)

we have to consider first the Landau levels resulting from the free particle
states by the quantization of the motion in the plane perpendicular to B, and
then the Coulomb energy. The intermediate regime γ ≈ 1, which pertains in
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many semiconductors in typical dc-fields of superconducting or Bitter-type
magnets (Bmax ≈ 40 T) is more complicated to describe quantitatively.

It should be mentioned that a sufficiently strong magnetic field also pro-
duces quasi one-dimensional subbands similar to the case of quantum wires,
i.e., of quasi one-dimensional systems (Sects. 8.9 and 8.12) according to the
following argument. The carriers can move freely only parallel to B, i.e., in
one dimension. In the plane perpendicular to B the motion is quantized to
circles in the classical picture resulting in a quantum mechanical description
in a harmonic-oscillator-like term level scheme, the so-called Landau levels,

E
(
nl,k‖

)− E0 =
(
nl +

1
2

)
�ωc +

�
2k2

‖
2meff

, (16.1c)

where nl is the quantum number of the Landau level and E0 the band ex-
tremum without magnetic field. The density of states is again as in quantum
wires for every subband proportional to (E − Enl,k‖)

−1/2, i.e., one obtains
a similar picture as in Fig. 8.20 for vanishing damping with the main differ-
ence that the Landau levels are equidistant in energy. Damping washes the
singularities out (see below). The selection rules for inter-Landau level tran-
sition are within one fan of Landau-levels and for simple, parabolic bands
∆nl = ±1 and for interband transitions nl,CB − nl,VB = 0 .

In accordance with the philosophy of this book, we present here the main
effects, namely the diamagnetic shift, the Zeeman splitting, and the appear-
ance of Landau levels, in a very elementary way and give some examples.
References leading deeper into this field are [69C1, 73S1, 79E1, 82A1, 85H1,
97P1,01K1,04G1].

If we apply a magnetic field to an exciton, the relative motion of electron
and hole is deformed by Lorentz forces. In perturbation theory, this deforma-
tion can be described by a weak admixture of other states. If we consider the
ground-state nB = 1, l = 0, which has an S-like envelope function without
angular momentum, we can describe this deformation as a small admixture
of l = 1 (or P -) envelope states. The angular momentum resulting from this
admixture is proportional to B and is oriented according to Lenz’ rule (i.e.,
the minus sign in (2.1c)) antiparallel to B. Since the energy of a magnetic
dipole in a magnetic field also increases linearly with B we obtain in total
a quadratic, so-called diamagnetic shift ∆Edia to higher energies

∆Edia = aB2 . (16.2a)

The constant a is a material parameter which is proportional to the square
of the Bohr radius of the exciton or more general, to its cross-section normal
to B. The dependence on aB or nB and on the material parameters explains
that the diamagnetic shift increases with nB. A typical value for the A-excitons
in CdS (aB ≈ 2.8 nm) is a(nB = 1) ≈ 2 × 10−6 eV T−2, i.e., for 10 T one finds
a diamagnetic blue-shift of about 0.2 meV, which is just at the detection limit.
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Exciton states that at B = 0 already have a non-vanishing magnetic mo-
ment, which can be aligned relative to B, exhibit in addition the linear Zeeman
splitting.

This magnetic moment can come from the spins of electron and hole.
For singlet and triplet excitons with S envelope the difference or the sum of
electron and hole g-factors enters, in simpliest approximation,

∆Ez = ±1
2
| ge ± gh | µBB (16.2b)

due to the relative alignment of electron and hole spin. The g-factors of elec-
trons and holes can deviate significantly from two, due to influences of the
bandstruckture or crystal symmetry. Tables are found e.g. in [82B1, 85H1,
02L1] or in Ref. [82L1,01L1] of Chap. 1.

For states with nB � 2 there is an additional contribution from the mag-
netic moment of the envelope function for l � 1, depending on the orienta-
tional quantum number m in Sects. 9.1, 9.2.

If the states, which are subject to Zeeman splitting are split for some other
reasons already for B = 0 by an amount ∆, the Zeeman splitting is suppressed
until ∆Ez becomes according to (16.2b) comparable to ∆. This fact can be
easily seen by solving (or diagonalizing) a 2 × 2 Hamiltonian of the following
type (

E0 + aB2 + �
2k‖2

2m − E − 1
2µBgB

− 1
2µBgB E0 + ∆ + aB2 + �

2k‖2

2m − E

)
(16.3)

For a quantitative calculation, perturbation theory for (almost) degen-
erate states has to be used, e.g., in the eight-fold space of nB = 1 ex-
citons which can be constructed from the four-fold degenerate Γ8 valence
band and the twofold degenerate Γ6 conduction band in Td symmetry. The
terms describing the diamagnetic shift appear together with the kinetic en-
ergy terms, the singlet-triplet and the longitudinal-transverse splitting in the
main diagonal of the resulting 8 × 8 matrix, while the Zeeman terms, k-
linear terms and others contribute to the off-diagonal elements. A detailed
description is – as already mentioned – beyond the scope of this book; see
e.g., [79E1,82B1,85H1]. Instead we give in the following some results starting
with bulk materials.

16.1.1 Nonmagnetic Bulk Semiconductors

Figure 16.1 shows the behavior of the nB = 1 AΓ5-exciton resonance of CdS
with increasing magnetic field. The splitting is obviously connected with the
Zeeman effect while the diamagnetic shift is hardly visible (see above).

In Fig. 16.2 we give transmission spectra of ZnO in the spectral region
of the nB = 1 A- and B-exciton resonances, for the polarization E ‖ c. In
this orientation all transitions have only very weak oscillator strength. Again
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Fig. 16.1. Reflection spectra of the
nB = 1AΓ5-exciton resonance for various
magnetic fields [82B1]

we observe the Zeeman splitting of the AΓ1,2 triplet states with increasing
B, which show at B = 0 an accidental degeneracy, and the AΓL

5 state. The
narrow spike S is due to an isotropic point, i.e., a photon energy for which the
exciton polariton dispersion relations for the polarizations E ‖ c and E ⊥ c
cross or in other words where the ordinary and extraordinary refractive indices
are equal. In this situation energy can be transferred from one polarization
(here E ‖ c) to the other under energy and momentum conservation, lead-
ing to the dip in transmission. For a more recent discussion of the g-factors
resulting from these data see also [60H1, 60T1, 02L1, 03C2, 04A1, 04M1] and
Sect. 14.1.

Figure 16.3 depicts the splitting pattern of the nB = 1A- and B-exciton
resonances in CdS as a function of the magnetic field for the orientation B ⊥ c,
E ⊥ c, showing nicely the combined influences of terms linear and quadratic
in B.

Figure 16.4a gives the dispersion relation of the nB = 1Γ5-exciton-
polariton resonance in cubic (Td) ZnTe. The influence of the light and heavy
holes on the dispersion is clearly visible. Figure 16.4b shows the situation for
finite B in a fairly arbitrary direction. In this situation all degeneracies are
lifted and all exciton branches acquire some admixture of oscillator strength
resulting in a total of eight different exciton and nine polariton branches.
This is a rather frightening example for the dispersion of so-called magneto-
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Fig. 16.2. Transmission spectra in the
region of the nB = 1A and B exciton res-
onances of ZnO for the orientation E ‖ c
[82B1]

Fig. 16.3. The splitting pattern
of the nB = 1A- and B-exciton res-
onances in CdS with increasing
magnetic field [82B1,85H1]
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Fig. 16.4. Dispersion relation of the nB = 1 exciton poloriton resonances in ZnTe
without (a) and with (b) an applied magnetic field [85H1]

Fig. 16.5. The influence of a magnetic field on the nB = 2 exciton resonances in
ZnSe, determined in two-photon absorption spectroscopy [82H1]

polaritons. From Fig. 16.4b it is clear that it is wise to use “simple” geometries
for the measurements, so that the effects remain relatively simple.

Until now we have considered in the examples exclusively the excitonic
ground state nB = 1. Therefore we now give in Fig. 16.5 the magnetic field
behavior of the nB = 2, l = 1 exciton resonances in ZnSe. There is already
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a finite splitting for B = 0. For higher fields this splitting increases due to
Zeeman terms. In addition, there is a pronounced diamagnetic shift due to the
large radius. The total angular momentum M, consisting of spin and envelope
contributions, could be chosen in the two-photon absorption experiments of
Fig. 16.5 by using circular and/or linear polarizations of the two beams (see
also Sects. 19.1 and 25.5).

Similar splitting patterns as for free excitons can also be observed for
bound exciton complexes (BEC), where one has to take into account that the
B-field influences both the initial and the final state, e.g., in a recombination
process from A0X to A0. Examples of the magnetic field behavior of BEC are
given in [79E1,81B1,82K1,86G1,89G1,04A1,04M1].

At the beginning of this section we noted that the observation of Landau
levels might be difficult, since for most semiconductors the limit γ � 1 can be
reached only for fields B � 102 T, which, if available at all, are usually only
in pulsed form.

There is, however, a way to overcome this difficulty by investigating the
continuum states, where the Coulomb interaction still influences the oscillator

Fig. 16.6. The reflectivity in the exciton continuum in ZnO for various magnetic
fields [73H1]
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strength but where the motion of electron and hole is almost free. To observe
the Landau levels, their broadening must be smaller than the cyclotron energy
as in micro wave experiments, in other words

ωcT2 � 1 (16.4)

where T2 is the phase-relaxation time. Bulk samples with direct, dipole-
allowed band-to-band transitions are usually opaque in this region so that
reflection spectroscopy is the appropriate tool.

In Fig. 16.6 we give as an example the reflectivity of ZnO at the beginning
of the continuum states of the C -exciton series. The Landau-level structure
becomes obvious for the highest B -fields. The observation of the Landau levels
allows the sum of electron and hole masses to be determined. If the electron
mass is known, e.g., from cyclotron absorption by n-type materials, the hole
mass can then be determined.

In semiconductors with relatively small exciton binding energies like GaAs,
the magnetic field may shift states into the continuum, resulting in Fano-
interference-type lineshapes. The quantization of the continuum leads to a re-
duction of this effect. For some examples see, e.g., [95S1,97B1].

16.1.2 Diluted Magnetic Bulk Semiconductors

An interesting group of semiconductors are the so-called diluted or semimag-
netic semiconductors (DMS or SMSC).

Some review books and papers on their properties are [88S1,91O1,92G2,
92S1,92Y1,94G1,95M1,96Y1,01D1,01O1,02S1,03D1,03D2] and the references
therein. While the older articles concentrate more on bulk materials, the more
recent ones give general results for quantum structures.

Most of the information given below is taken from the above references.
The DMS are generally II–VI and more recently also III–V semiconductors

doped with magnetic ions up to several tens of percent, i.e., they can also be
considered as alloys for higher concentrations, with the corresponding con-
sequences for composition dependencies for phonons, the band gap, exciton
binding energies and localization, as outlined in Sects. 7.8, 8.15, 9.6, 11.1.6 and
14.4. The doping atoms must carry, by definition, spin and magnetic moment.
The most widely used one is Mn2+ with a half-filled 3d shell but also the influ-
ences of Fe, Co, Ni, V, Cr, Eu or Gd are investigated. These atoms sit ideally
on the metal or cation site of the host. The most widely used host materials
are narrow and wide gap II–VI materials like Hg1−xMnxTe,Cd1−xMnxTe or
Zn1−xMnxSe. More recently ZnO:V and ZnO:Co have also been investigated
in addition to III–V compounds like GaAs:Mn. Since Mn2+ acts on a Ga site
and acts as an acceptor, GaAs:Mn samples are metallic without compensating
co-doping.

Most of the binary DMS compounds show antiferromagnetic ordering like
MnTe and Cd1−xMnxTe for concentrations x down to about 0.35. Some
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others are ferromagnetic like Ga1−xMnxAs or Ga1−xMnxN or ZnO:V and
ZnO:Co [98O1,00D1,02D1,02S2,02S3]. The ferromagnetism can be influenced
by the concentration of free carriers e.g. holes in GaAs:Mn. Their density can
be decreased by codoping with a donor. Similarly codoping with a donor like
Ga or Al increases the electron density in ZnO:V or ZnO:Co.

At low concentration they are paramagnetic with very high saturation
magnetization and can exhibit spin glass behavior at low T .

We now start to list more of the specific semimagnetic properties for
bulk DMS.

The main point is that the exchange interaction occurs between the
s- and/or p-type conduction and valence bands of the host and the 3d or-
bitals of the magnetic ions, known as sp-d exchange. A free or bound carrier
can polarize the magnetic moments of the surroundings, e.g., Mn2+ ions. This
fact results in extremely high Zeeman splitting and effective g-factors for
both the free or bound carriers and for the excitons. The effective g-factors
can reach values up to 100 and the Zeemann splitting saturates at values
between 10 and 100meV for fields of a few T. Both the splitting values and
the g-factors are thus by one or two orders of magnitude larger than in non-
magnetic semiconductors. We give an example in Fig. 16.7 that can be com-
pared, e.g., to Figs. 16.1–16.3. These large values of the Zeeman splitting are
also held responsible for the large values of Faraday and Kerr rotation ob-

Fig. 16.7. (a) Zeeman splitting of the exciton of Cd0.9Mn0.1Te as a function of
magnetic field in the Faraday configuration, i.e., k ‖ B. (b) Saturation Zeeman
splitting per average Mn2+ spin per cation site [88G1]
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served in transmission and reflection geometries, respectively. For examples
see, e.g., [78G1].

Free and even more bound carriers can form so-called magnetic polarons.
This is a carrier surrounded by a magnetization cloud of oriented Mn2+ mo-
ments in a similar way as a usual carrier can be surrounded by a phonon cloud
forming a polaron (see Sect. 8.6). The formation time of a magnetic polaron
after creation of a carrier (e.g., by optical excitation) is finite and in the range
of 100 ps or longer. The formation of the magnetic polaron cloud lowers the
energy of the carrier. This energy decreases with increasing temperature and
increasing external magnetic field [92Y1,96Y1].

In narrow gap DMS one observes with increasing magnetic field well-
resolved Landau-level fans [91O1]. Mn2+ ions in II–VI DMS show an internal
transition resulting in a luminescence band around 2.2 eV, i.e., in the yellow
spectral range and absorption features starting at or above this energy when
the band gap, or better exciton energies, are situated above theses transitions.
This is the case for Cd1−xyMnxTe approximately for x > 0.4 [84L1].

For a collection of data see, e.g., [82L1] of Chap. 1.

16.1.3 Semiconductor Structures of Reduced Dimensionality

In quasi two-dimensional systems the transmission spectra are easily measured
if the substrate is transparent or has been removed by selective etching. If both
conditions are not fulfilled, there remain the techniques applicable to bulk
materials, i.e., photoluminescence, photoexcitation or reflection spectroscopy.

Many properties are similar to bulk samples, e.g., there is a diamagnetic
shift proportional to the area of the exciton in the quantum well if B is
normal to it, there is a Zeeman splitting, and there are Landau levels. See,
e.g., [92B2,92O1,92R1,92S1,95B1,01K1,03S1] or [01L1] of Chap. 1.

It should be noted that the electron and hole states are fully quantized in
all three directions for a magnetic field normal to the quantum well.

In Fig. 16.8 we give an example for the development of the Landau-levels
of a GaAs quantum well sample with 8.5 nm-wide wells for magnetic fields up
to 12T.

The two features at lowest energy, the heavy and light hole excitons, are
only weakly affected by B but energetical above them beautifully develops
the fan of Landau levels.

Apart from similarities to bulk materials there are also new phenomena:
Due to the strong anisotropies of quantum wells and wires, the magnetic

field effects depend not only on its orientation to the crystallographic axes
but also on its orientation relative to the well or wire, e.g., [96O1].

A further effect comes from the well-width dependence of the lateral part
of the wavefunctions. With decreasing well width the wave function pene-
trates deeper into the barrier. Consequently the influence of the magnetic
properties of the barrier, e.g., of its g-factors, grows. In Fig. 16.9 we give two
examples. The electron g-factor is negative in GaAs and positive in AlAs.
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Fig. 16.8. The linear magneto absorption spectra for two different circular polar-
izations of the light (a, b) The resulting contour plots (c, d) [91S1,92S1]

Consequently ge increases with decreasing well width of GaAs/Al1−yGayAs
(a) or GaAs/AlAs structures and even exhibits a change of sign. Further-
more one observes a variation of gh with lz and a dependence on the ori-
entation of the magnetic field being either perpendicular or parallel to the
quantum well.

For an example of Si/Si0.76Ge0.24 quantum wells see [00P1].
In diluted magnetic semiconductors the magnetic ions can be incorpo-

rated into one or both barriers or into the well itself, allowing information
on the interface to be obtained [94G1]. The huge Zeeman splitting and the
formation of bound or free magnetic polarons have been investigated, e.g.,
in [92G1,92Y1,96Y1]. Due to the huge Zeeman splitting it might even be
possible to change the band alignment from type I to type II by a magnetic
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Fig. 16.9. Dependence of electron (and hole) g-factors on the well width and on
the orientation of B in GaAs/Al1−yGayAs (a) and GaAs/AlAs structures (b). In
(b) the transition from a type I to a type II band alignment is also indicated (see
Sect. 15.2) [92I1,95H1]

field if the respective band offset is small [86B1,91J1,94F1,03C1] or [01L1]of
Chap. 1.

For biexciton states in diluted magnetic semiconductor quantum wells in
high magnetic fields see [01M1].

To conclude this section we give some references on excitonic magneto
optics in quantum wires and dots, which allow the reader to become familiar
with this field of research.

For microstructured, V-groove and T-shaped quantum wires see, e.g.,
[94P1, 95O1, 96W1, 98B1, 98L1, 00L1, 01K1, 02M1]. For DMS wire structures
see [00O1,00T1,01I1,01K2], for self-organized quantum islands including DMS
see [96R1, 99B1, 99B2, 00K1, 01K1, 02B1, 02M1, 03C1, 03P1] and for quantum
dots in insulating matrices see [94N1,97O1,98K1,99G1].

16.2 Electric Fields

In the same way that we know the quadratic (diamagnetic) and linear (Zee-
man) effects of a B-field from atomic physics and now also for excitons in
semiconductors we can guess what will happen if we apply a static electric
field Es to the exciton resonances in semiconductors. For the ac or optical
Stark effect see Sect. 20.4. There will be a Stark effect, i.e., a shift (and split-
ting) of the exciton resonances, usually quadratic but possibly also linear in
Es. The influence of Es on the band-to-band transitions, i.e., on the con-
tinuum states is also known as the Franz–Keldysh effect. The tilting of the
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bands by an applied static electric field Es allows, in this case, the Bloch-type
electron and hole wave functions to tunnel into the forbidden gap thus re-
sulting in a red-shift of the band-to-band absorption tail and the appearance
of an oscillatory structure above, i.e., in the continuum states. The modifica-
tions of the absorption spectra due to Es also influence the refractive index in
the transparent spectral region below the exciton resonances according to the
Kramers–Kronig relations (Chap. 6), resulting in Pockels- or Kerr-effect-like
phenomena, which describe the modification of an existing or the introduction
of a new birefringence, depending linearly or quadratically on Es, respectively.
We shall concentrate here on the influence of Es on the eigenfrequencies.

16.2.1 Bulk Semiconductors

The observation of the Stark effect for excitons in three-dimensional (or bulk)
samples is not easy, for the following reason: To get an observable shift of the
eigenstates, the “electric field energy” eEsaB should be comparable with the
spectral width of the absorption bands, i.e. at low temperatures,

eEsaB � ∆LT . (16.5)

Equation (16.5) requires fields of the order of 106 Vm−1 depending on the
material parameters. On the other hand, such fields broaden or even destroy
the exciton resonances due to two effects. One is field ionization of the exciton,
by tunneling through the finite Coulomb barrier at finite fields, as illustrated
in Fig. 16.10. The other is impact ionization; this means that carriers which
are always present in a semiconductor at finite temperature can gain such
high energies in the electric field, that they can ionize an exciton if they hit
it, resulting in two more carriers and a collision-broadening of the exciton

Fig. 16.10. The Coulomb potential of a three-dimensional exciton without (a) and
with (b) an applied constant electric field
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resonance. For the above reason, not too many successful attempts have been
reported to observe the Stark effect for excitons in bulk materials directly.

Instead, small modifications occurring at low fields have usually been used
in modulation spectroscopy [67G1, 69C1, 70H1, 71M1, 73S1, 76H1, 82L1, 84S1,
85S1].

Some (early) references for the observation of the Stark effect of excitons in
inorganic semiconductors like CdS, CdSe or CuCl are [69H1,70M1,71L1,73R1]
and for organic ones [73B1].

Examples for the Franz–Keldysh effect in bulk semiconductors can be
found, e.g., in [71S1, 73B2, 76B1] and for the Pockels effect, e.g., in ZnO
in [70M1,71M1].

In Fig. 16.11 we show an example for the quadratic Stark effect of the
nB = 1 exciton in CdS. The shift and a slight broadening of the excitonic
absorption band are clearly visible.

As mentioned above, the Franz–Keldysh oscillations appear in the band-
to-band transition region. The energies of the alternating maxima and minima
En follow the relation [04G1]

(En − Eg)3/2 ∼ n (16.6)

In Fig 16.12 we show modulation spectra of GaAs samples at 100 K exhibiting
the Franz-Keldysh effect and the verification of (16.6). The Franz–Keldysh
effect has been induced by a surface electric field.

In Fig. 16.13 we give results of a rather unusual type of excitation spec-
troscopy. A GaSe sample is illuminated with monochromatic light through

Fig. 16.11. Influence of an exter-
nal field on the absorption spec-
trum of the B, nB = 1 exciton
of CdS for various applied electric
fields [71L1]
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Fig. 16.12. Franz–Keldysh oscil-
lations observed in a GaAs sam-
ple (a) and the relation (16.6) (b)
[95L1,04G1]

Fig. 16.13. Photovoltage excitation spectra of GaSe. The spectra are normalized
in the continuum regime and shifted for clarity [02G1]
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a semitransparent Au electrode and the photovoltage that develops between
the contacts is measured as a function of the photon energy. This type of pho-
tovoltage excitation spectroscopy gave different spectra depending on sample
temperature.

At low temperature one only sees the continuum transitions superimposed
by some oscillatory structure, possibly Franz–Keldysh oscillations, which may
result from the built-in field of the Schottky contact. With increasing tem-
peratures these oscillations disappear and the exciton resonance shows up,
shifts with the band gap and broadens. The exciton resonance is probably
suppressed at low temperatures by field ionization in the Schottky barrier.
Which features dominate depends on the various length scales like the exten-
sion of and field strength in the Schottky barrier or the penetration depth of
the light.

16.2.2 Semiconductor Structures of Reduced Dimensionality

The problem of field ionisation in bulk semiconductors can be overcome by
confining the electron and hole between barriers, e.g., in quantum wells, wires
or dots, as shown schematically in Fig. 16.14. With increasing Es oriented
perpendicular to the layers the electron and hole shift into their respective cor-
ners, reducing their energetic separation. This results in a roughly quadratic
redshift of the gap and thus of the exciton resonance.

The overlap between electron and hole wavefunction is thereby reduced,
resulting in a decrease of the oscillator strength and a decrease of the ex-
citon binding energy. This latter effect, however, is only a small correction
to the reduction of the energetic separation of the first quantized levels.
In addition the selection rule ∆nz = 0 is relaxed because Es mixes states
with odd and even parity, inducing some transitions which are forbidden for
Es = 0. For a detailed elaboration of this so-called quantum-confined Stark
effect (QCSE) see [85M1, 86M1]. All three above-mentioned effects, namely
the redshift of the exciton, the decrease of its oscillator strength, and the
appearance of forbidden transitions, are illustrated in Fig. 16.15, where this
quantum-confined Stark effect is shown for an InP1−yGayAs based MQW
located in the intrinsic region of a reverse-biased pin diode as shown in
the inset.

For the quantum confined Stark effect in Si1−yCy/Si quantum wells see,
e.g., [99F1] and the references therein.

If an electron moves in a quantum well in an electric field normal to the
well, the spin of the electron precesses due to spin-orbit coupling. This effect
allows the manipulation of the electron spin as shown in [03R1].

The application of an electric field normal to the planes of superlattices
shifts adjacent wells energetically with respect to each other by an amount

∆E = e |Es| · d (16.7)
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where Es is the applied field and d is the superlattice period. This fact de-
stroys the origin of the miniband formation namely the overlap of the levels
of adjacent wells with equal energy. Instead one obtains a so-called Wannier–
Stark ladder. An example will be shown later in Sect. 23.2 in connection with
the Bloch oscillations. Further examples can be found, e.g., in [93M1, 94Y1]
or Ref. [01L1] of Chap. 1

For the observation of the quantum confined Stark effect in quantum wires
see, e.g., [99W1] and the references therein.

The quantum confined Stark and Franz–Keldysh effects are also known for
quantum dots in insulating matrices or for (self-assembled) quantum islands
in quantum wells. For references see, e.g., [88M1,90E1,98H1,02W1].

The electric field of charges trapped in the vicinity of quantum dots and
islands is also (at least partly) responsible for the abrupt steps in the emission
energy of single dots. For examples see [89H1,90R1,92N1,93W1,98R1,99E1,
01F1,01K3,01K4].

Electroluminescence of quantum dots has been reported in [97A1,02C1].
Phenomena like that of Fig. 16.15 lead into the regime of opto-electronics

or electro-optics, to which we shall return briefly in Sect. 24.1.5 and 24.2.

Fig. 16.14. The bandstructure of a quantum well without (a) and with (b) an
applied constant electric field perpendicular to the wells, but neglecting the Coulomb
interaction between electrons and holes
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Fig. 16.15. The quantum-confined Stark effect in InGaAs MQW samples [87B1]

16.3 Strain Fields

The third external perturbation which we shall consider here are mechanical
strain fields. The crucial quantity which enters here is the dependence of the
energy of the band extrema on the strain, the so-called deformation potential.
It is defined for conduction and valance band by (see (8.21))

Ξ = a
dEc,v

dx
(16.8)

where a is the lattice constant, dEc,v is the shift of the band edge caused by
a length variation of the unit cell by an amount dx. Deformation potentials
are defined for various types of strain like hydrostatic, uniaxial or shear strain.
For details see, e.g., [82L1,96Y1] of Chap. 1 or Sect. 8.6.

For excitons the relevant quantity is the sum of the deformation potentials
of conduction and valence bands. As in the case of magnetic and electric fields,
an applied stress changes the eigenenergies of the exciton states and may
also lead to a splitting of degenerate states, if the resulting strain is oriented
such that it reduces the symmetry of the crystal. The latter situation is e.g.
realized when stress is applied perpendicular to the crystallographic c axis of
a uniaxial material (e.g., the Wurtzite structure) where it lifts the degeneracy
in the plane perpendicular to c, but not if the stress acts in the direction of c.
This orientation leads only to a shift of eigenenergies but not to a splitting
since the symmetry is not changed. For details see Chap. 26 on group theory.
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16.3.1 Bulk Semiconductors

We now give various examples: Figure 16.16 shows reflection spectra of CdS for
zero and finite stress perpendicular to the c axis. The shift and the splitting of
the nB = 1AΓ5 and BΓ5 exciton resources and the variation of their oscillator
strengths are obvious. Measurements of this type can be used to determine
the deformation potentials. For materials with zinc-blende structure see [70L1,
79T1,79R1].

Since bound exciton complexes (BEC) often have very narrow absorption
and emission bands (Sect. 14.1) one can easily study the influence of magnetic
or strain fields, which affect both the ground and the excited state as already
mentioned above. In Fig. 16.17 we give the shift of the luminescence of a BEC
in ZnO which shows clearly the influence of the strain. According to the
statement given above, a shift but no splitting occurs for the orientation S ‖ c
in contrast to the situation of Fig. 16.16. For more details see [68S1].

Recently the influence of strain acquired new importance in the field of
epitaxial growth of heterolayers.

There are two contributions to the “biaxial” strain, which occurs in the
plane of epitaxial growth, and which can be considered as a superposition
of a hydrostatic and a uniaxial strain. One contribution to the strain al-
ready arises during the growth process if the lattice constants of substrate
and layer do not coincide at growth temperature. The first epitaxial lay-

Fig. 16.16. The excitonic reflection spectra of CdS under uniaxial stress [70L1]
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Fig. 16.17. The shift of a BEC lumines-
cence line in ZnO under the influence of
strain [68S1]

ers will often grow with some strain, trying to match the lattice constant
of the substrate. With increasing layer thickness it is energetically more
favorable for the layer to create a dislocation network which relaxes the
strain [85P1, 87D1], or to form islands. This latter growth mode is known
as Stronski–Krastanov mode. See Sect. 8.13. Sometimes a small residual
strain remains, independent of the layer thickness [92W1, 92W2, 92G1]. The
critical thickness lc for the onset of dislocation formation depends on the
lattice misfit, on the elastic constants of the epilayer, on the energy nec-
essary to produce the dislocations, on the surface energies etc. It can be
as small as a few atomic layers only. The dislocation network explains
the function of a buffer layer or a short period superlattice, which are of-
ten used if two materials of different lattice constant are grown on top
of each other. In this case the crystalline quality of the interface is con-
siderably poorer than that of the surface of the layer after a thickness of
about 0.1 µm.

The other part of the biaxial strain arises during the cooling from the
growth temperature to the temperature at which the (optical) measurements
are performed if the coefficients of thermal expansion are different for sub-
strate and layer, as is usually the case. A part of this thermal strain can
sometimes be accommodated by modifications in the dislocation network. In
Fig. 16.18 we show reflection spectra in the region of the nB = AΓ5 and BΓ5

excitons in CdS grown on SrF2.
Since the cubic SrF2 substrate was oriented (111), the hexagonal CdS

grows with the c axis perpendicular to the interface. Consequently the C6v
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symmetry is not affected by the biaxial strain, but the eigenenergies are
shifted. The bulk values for the longitudinal eigenenergies (or the reflec-
tion minima) are given by the vertical lines. In agreement with the discus-
sion above, we see that the excitons are shifted and that this shift is dif-
ferent at the interface and the surface. Furthermore, the damping is larger
at the interface than at the surface due to the dislocations in the former
region.

In contrast to Fig. 16.18, we show in Fig. 16.19 a luminescence spectrum
of the cubic material ZnTe grown on GaAs(00l). In this case, the biaxial strain
reduces the cubic Td symmetry of bulk ZnTe and the Γ5 exciton of Sect. 13.1
splits into its light and heavy hole components.

Splittings as in Fig. 16.19 also play a role in strained-layer superlattices in
addition to the mass-dependent quantization energies.

The biaxial in-plane tensile strain results essentially from the different
thermal expansion coefficients of the GaAs and ZnTe layers since the ZnTe
layer thickness of 2 µ m is well above lc and the ZnTe layer grows with its own
lattice constant.

Inhomogeneous strain can be used to create potential traps for excitons.
See, e.g., Sect. 21.3 for Si or Ge and [03N1] for Cu2O. However, strain resulting
from the fixation of the sample on the holder in a cryostat is usually unwanted
and should be avoided.

Fig. 16.18. Reflection spectra of the nB = 1AΓ5 and BΓ5 excitons of a CdS layer
grown on SrF2 and measured at the surface and at the interface. The positions of
the longitudinal eigenenergies in the bulk are indicated by vertical arrows [92B1]
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Fig. 16.19. Luminescence spectrum of a ZnTe layer grown on GaAs (001), showing
the strain-induced splitting of the light and heavy hole nB = 1 exciton resonances
[92G1,92W1,92W2]. Compare with Fig. 16.4a

16.3.2 Structures of Reduced Dimensionality

The above-mentioned strain-induced splitting of the Γ8 valence band is of
special importance for strained quantum wells and superlattices whenever
a layer is grown with a lattice constant different from that of the substrate.

A two-dimensional tensile strain in the plain of the layer is usually ac-
companied by a uniaxial compressive strain normal to it and vice versa. The
results of this strain on the width of the gap and on the arrangement of the
hh and lh valence bands is shown schematically in Fig. 16.20 and verified for
tensile strain, e.g., in Fig. 16.19.

In quantum wells and superlattices (and in structures of even lower quasi-
dimensionalities) the strain induced effects come in addition to the quantiza-
tion energies, which are always larger for the lh exciton compared to the hh.
Consequently, strain effects may enhance or reduce the splitting caused by
confinement. For strained superlattices one frequently uses a substrate with
a lattice constant situated between the values of the two different layer mate-
rials of the superlattice resulting in so-called strain symmetrized superlattices
because the layers show alternating compressive and tensile strain. A similar
situation can be reached in “free standing” superlattices, which occur when
the thickness of the superlattice is so thick that the coherence of its lattice
constant to the substrate is lost, e.g., by the formation of dislocations.

While many III–V systems can be grown lattice-matched to GaAs, InAs
or InP substrates, the II–VI and IV–IV systems are usually strained, as seen
in Fig. 8.31. Typical examples are, e.g., Si1−yGey/Si superlattices (e.g. [97K1]
and references above), CdS/ZnS [97H1] or CdS/ZnSe [99P2,01D1].
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Fig. 16.20. Schematic drawing of the influence of strain on the alignment of the hh
and lh valence bands and on the value of the gap (a) zero strain (b) two-dimensional
tensile strain and normal uniaxial compressive strain (c) and two-dimensional com-
pressive strain and normal uniaxial tensile strain. See also Fig. 8.32

For the creation of an inhomogeneous strain, acting as a potential trap for
excitons in quantum wells see, e.g., [99N1].

Phase transitions from zincblende or wurtzite to the rock salt structure
can be induced by high hydrostatic pressures. For examples see [93T1,94T1].

16.4 Problems

1. Typical values of the deformation potential are around 10 eV. What is the
shift of the band edges for ∆a/a = 10−3?

2. Do you expect the band-gap shifts due to the lattice deformation by acous-
tic and by optical phonons to be identical or not? Why?

3. Calculate the diamagnetic shift at B = 10 T for excitons characterized
by Eb

ex = 5 meV, ε = 15 and by Eb
ex = 100meV, ε = 6, respectively.

4. Calculate the Zeeman splitting for a spin singlet and a triplet exciton for
nB = 1, ge = 1.6 and gh = 2.2. What is the difference if at B = 0 the two
states already show a finite energy splitting δ?

5. Do you expect that the linear Stark effect can occur for nB = 1 and/or
for nB = 2 excitons? Why?

6. Calculate in the simplest approximation the Stark shift for excitons with
the data given in connection with Problem 3 and for an electric field
strength E of 103 Vm−1, 106 Vm−1, and 10−2Eb

ex(eaB)−1.
7. Calculate the quantum confined Stark effect by perturbation theory for

a quantum well with infinitely high barriers and the other data as for the
hh exciton in GaAs or InAs. Compare with experimental data.
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17

From Cavity Polaritons to Photonic Crystals

In this chapter we return briefly to the concept of a Fabry–Perot resonator
in the form of a (micro) cavity and then proceed to the cavity polaritons
as a mixed state between a resonance in a solid (these are generally exciton
resonances in quantum wells, wires or dots) and a cavity resonance. From
there we reach, via different paths, the presently very active and potentially
application-relevant field of photonic crystals with a subspecies known as pho-
tonic band gap materials.

17.1 Cavity Polaritons

We start from an empty cavity and introduce then the concept of a cavity
polaritons.

17.1.1 The Empty Resonator

A one-dimensional Fabry–Perot resonator, etalon or cavity is, in the simplest
case, an arrangement of two plane-parallel, lossless mirrors with a reflectivity
close to unity, i.e., R ≤ 1 at a distance d (see Fig. 17.1a). Concerning the
nomenclature, it can be stated that all the above names mean physically
essentially the same thing. Sometimes the following distinctions are made.

A Fabry–Perot resonator (also known as Perot–Fabry) often has a length
of many wavelengths like, e.g., the resonators of many gas, dye or solid-state
lasers with a consequently narrow spectral longitudinal mode spacing. A cavity
often has a width of only one or a few multiples of λ/2. An etalon is often
made of a plane-parallel slab of transparent matter like Al2O3 with dielectric
mirrors on both sides to enhance the reflectivity.

We consider here only the case of plane-parallel surfaces. But Fabry–Perot
resonators may also have one or two curved, generally spherical mirrors. This
topic is generally treated in books or articles on laser physics or laser design.
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The cavities may be also (micro)spheres ( [01A1, 02A1, 02M1, 03M2] or Ref.
[03W1] of Chap. 15) or even cylinders [02K1].

An incident plane, monochromatic wave will be partly reflected and partly
transmitted at each of the two mirrors. If the coherence length is � d, then the
partial waves can interfere. In most cases this interference will be destructive,
resulting in a reflectivity of the whole structure Rtot ≈ 1 and a transmission
Ttot = 1 − Rtot ≈ 0 and a very low field amplitude in the resonator. See
Fig. 17.1b. There are, as already outlined in Sect. 3.1.6, special situations
when an integer number of half waves fits into the resonator, i.e., if

m
λ

2
= d or k⊥ = m

π

d
m = 1, 2, 3, . . . . (17.1)

In this case all partial waves in the resonator interfere constructively and
the field amplitude in the resonator can considerably exceed the incident one
and the transmission of the whole arrangement is close to unity, although
the reflectivity of every single mirror is also close to unity. If the finesse (see
Sect. 3.1.6) is sufficiently high, this constructive interference results in the
narrow spikes (dips) in the spectra of Ttot (Rtot) as shown in Fig. 17.1b. This
situation is shown for m = 2 in Fig. 17.1a.

Fig. 17.1. (a) Schematic drawings of the incident, internal and transmitted fields
in a Fabry–Perot resonator for normal incidence. (b) The spectra of total transmis-
sion T and reflection R as a function of the phase shift δ per roundtrip. (c) The
decomposition of the incident and transmitted wave vectors for oblique incidence.
(d,e) The construction of the dispersion relation from the light cone [01K1]
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We can reformulate ((17.1)) by saying that these so-called eigenmodes of
a Fabry–Perot resonator or cavity or etalon occur for the normal component
of the incident k-vector

k⊥, m = m
π

d
; m = 1, 2, 3, . . . (17.2)

or that the modes are equally spaced on the k⊥ axis with a distance

∆k⊥ = k⊥,m+1 − k⊥,m =
π

d
. (17.3)

For oblique incidence, the wave vector of the incident beam can be decomposed
in components parallel and normal to the resonator as shown in Fig. 17.1c:

k = k‖ + k⊥ . (17.4)

The normal component has to fulfill (17.2) for the resonator modes, while
a conservation law holds for k‖ in reflection and transmission, due to the
translational invariance of the problem in the plane of the resonator (see
Noether’s theorem in Sect. 3.1.3).

For photons, i.e., for the quanta of light in vacuum, the dispersion is a cone
when we plot �ω over a two-dimensional k-plane. The cross section of this cone
with a fixed k⊥m is a parabola as shown in Fig. 17.1d. The photon energy �ωm

belonging to k⊥m is
Em = �ωm = �ck⊥m . (17.5)

This energy corresponds to the minimum of the dispersion relation of a reso-
nator as shown in Fig. 17.1e.

If one tilts a Fabry–Perot resonator in a parallel light beam away from
normal incidence, i.e., away from k‖ = 0 the photon energy of the transmitted
mode shifts of higher values, i.e., to shorter wavelength. This effect is slightly
counterintuitive, but can be easily verified when viewing an incandescent lamp
through a line interference filter and tilting this filter.

If a semiconductor physicist sees a parabolic dispersion relation, the effec-
tive mass concept comes immediately to mind. The effective mass connected
with the curvature is given by (see Sect. 8.5):

1/meff =
∂2

�∂k2
ω (k) (17.6)

and it turns out that meff is something like the “rest mass” of the light quanta
of the resonator modes in the sense of (17.7):

meffc
2 = �ωm,k‖=0 . (17.7)

For a more detailed treatment of this topic, also considering wave guides and
resonators with confinement in more than one direction, see [03B1] and the
references therein.
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17.1.2 Cavity Polaritons

In the next step we bring some matter into the resonator, which has an eigen-
mode at a certain frequency �ωM. Since such a resonance is generally con-
nected with some absorption, and since absorption deteriorates the finesse of
a resonator (see, e.g., Sect. 3.1.6), only a small overall oscillator strength is
recommended, e.g., only a thin layer. Therefore one places generally one or
a few quantum wells in the resonator at the position(s) of an antinode of the
electric field with an eigenfrequency of the lowest free exciton resonance close
to a resonance frequency of the resonator.

Some early examples for such situations are, e.g., [92W1,94H1]. More re-
cent work can be found in [95K1,98Q1,98S1,99K1,03K1,04G1] and the refer-
ences given therein. Recently quantum wires and quantum islands have also
been incorporated into resonators [99A1, 99C1]. For microsphere resonators
see, e.g., [01A1,01A2,02K1,02M1,03M1,03M2]. After this short excursion to
the literature, we return to the physics of the planar resonator. In Fig. 17.2a
we show schematically the dispersion relation of a resonator mode �ωFP

(
k‖
)

and of an excitation in matter, e.g., of the hh exciton resonance in a quantum
well �ωM

(
k‖
)
.

The curvature of the latter is negligible compared to the one of �ωFP.
If both modes do not couple to each other, their dispersion relations may
cross as indicated by the dashed lines. If there is a finite coupling, we observe
once again the non- (or avoided) crossing behavior (see Chap. 5) and the
dispersion describes mixed states of the resonator or cavity mode with an
exciton resonance of the quantum well, the so-called cavity polaritons.

In Fig. 17.2b we show luminescence spectra obtained under band-to-band
excitation as a function of the angle of observation Θ relative to the normal of
the cavity. The variation of this angle corresponds to a variation of k‖. Both
branches of the cavity polariton show up in luminescence. This fact shows,
that we really observe the quanta of a mixed polariton state. A resonator
alone would not luminesce at �ωFP if illuminated with light of a considerably
higher photon energy.

In Fig. 17.2d the dispersion relations deduced from the luminescence data
are shown together with the calculation as a dashe-dotted line for three sam-
ples with slightly different detuning, together with calculations without cou-
pling, beautifully verifying the above statements. Figure 17.2c finally shows
schematically the layout of the sample. The cavity has a width of 3λ/2 and
three quantum wells are placed at the positions of the two antinodes. The
mirrors are dielectric Bragg mirrors (see below). The calculated buildup of
the electric field in these Bragg reflectors is also shown.

The above concept is valid if a resonator mode with low index m coincides
with an exciton (or other) resonance.

If the resonator is made wider and wider, the modes start at decreasing
photon energy and their spacing decreases until one approaches a bulk-like
situation. See, e.g., [95Ü1, 98N1].
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Fig. 17.2. (a) Schematic drawing of the dispersion relation of a microcavity and of
an exciton resonance without (dashed line) and with coupling (solid line) LPB and
UPB stand for lower and upper polariton branch. Compare to Chaps. 5, 13 and 15.
(b) Experimental luminescence spectra for various external angles of incidence of
the structure shown in (c) and the measured and calculated data with coupling
(-·-·-) and the calculated dispersion witout coupling (- - -). According to [94H1]
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If the resonator is, on the other hand, too narrow, its eigenmodes shift
energetically to above the exciton resonances.

A further necessary prerequisite for the appearance of cavity polaritons
is the following. The dephasing time of the excitation in matter T2 must be
longer than the roundtrip time of the resonator. Otherwise, the coupled modes
can not develop. Such a situation may occur for increasing excitation (or
temperature), since T2 becomes shorter, e.g., by excitation induced dephasing
via exciton-exciton or exciton-electron collisions (see [99K1, 03H1, 04G1] or
Chap. 23) or the transition to an electron–hole plasma (see Chap. 21). It
should be mentioned, however, that lasing from microcavity modes can be
observed. We come back to this point in Chap. 22.

17.2 Photonic Crystals
and Photonic Band Gap Structures

We introduce first the basic concepts of photonic crystals using a certain
analogy between the Schrödinger equation and Maxwell’s equations, then we
continue with various examples and approaches.

17.2.1 Introduction to the Basic Concepts

The concept of photonic crystals has been introduced by the pioneering pa-
pers of Yablonovitch and John [87J1, 87Y1] although the first experimental
realizations date many years earlier, as it occurs frequently in science and as
we shall see below.

For some recent reviews of the topic see [95J1, 96M1, 96P1, 99B1, 01B1,
01S1,03B1,03P1] and the references given therein. Recently scientists started
to use also metals instead of semiconductors in photonic structures. Though
this is not a topic of this book we give at least one Ref. [03C1].

A first approach to a one-dimensional photonic crystal or photonic band
gap material can be found via the understanding of dielectric or Bragg mirrors.
A photonic band gap material is, in analogy to the band gap for electrons in
crystals a material that has in a certain energy interval no propagating light
modes.

It has been long known that a high reflectivity very close to unity is equi-
valent to a gap caused by the absence of a propagating mode and can be
achieved over a certain frequency interval (the photonic band gap) if one
produces a stack of layers of different refractive indices nI and nII, where each
layer has a thickness di equal to a quarter wavelength, i.e.,

di =
λi

4
=

cπ

2niω0
i = I, II . (17.8)

See also Fig. 17.2d. The partial waves reflected at every interface interfere
under the condition (17.8) in a certain interval ∆ω of frequencies around ω0 in
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a way that high reflectivity occurs and that there is no propagating mode, i.e.,
there is a photonic energy gap. The spectral width ∆ω of this photonic band
gap increases with increasing difference of the refractive indices |nI − nII| and
the reflectivity converges to unity with an increasing number of layer pairs,
provided that these layers and the interfaces are lossless.

An example of such a structure and its reflectivity are shown schematically
in Fig. 17.3c,f. These things have been known for decades and can be found
in textbooks like [89T1].

Now, we approach the problem from another point of view, recalling what
we have learned for the properties of electrons in a periodic potential in
Chap. 8.

The Schrödinger equation reads in its general form

− �2

2m
∆Φ (r, t) + V (r)Φ (r, t) = −�

i

∂

∂t
Φ (r, t) . (17.9a)

We deduced in Sect. 2.3 from Maxwell’s equations for the electric field strength
E(r, t)

∆E − 1
c2
ε (ω)µ (ω) Ë = 0 . (17.9b)

If we consider stationary states with a e−iωt time dependence, real V and
ε, nonmagnetic material (µ (ω) ≡ 1) and use the approximation of a disper-
sionless dielectric function ε �= ε (ω) and n2 = ε, which always applies over
a sufficiently small frequency interval, we obtain

∆Φ (r) +
2m
�2

(E − V )Φ (r) = 0 (17.9c)

and

∆E (r) +
ω2

c2
n2E (r) = 0 . (17.9d)

Evidently there is a close analogy between (17.9c) and (17.9d). There is a sec-
ond derivative with respect to space. The term E − V corresponds to n2

and since the eigenenergy E is simply a constant for the stationary states, in
which we are presently only interested in, we can identify in this analogy as
essentially the potential V with n2 or ε.

There are, however, differences: Φ (r) is a scalar quantity E(r) a vector
field, the eigenenergy E = �ω appears linearly in (17.9c) while (17.9d) is
quadratic in ω. These similarities and differences between the two equations
allow us to predict similar but not identical properties for electrons and light.
We consider first the situation of spatially constant V (r) = V0 and n(r) = n0.

Then the solutions are plane waves (for E ≥ V0 or n2 > 0) with the
dispersion relations typical for massive and massless particles, as shown in
Fig. 17.3a,b, i.e.,

E =
�2k2

2m
for E ≥ V0 (17.10a)
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Fig. 17.3. (a) The parabolic dispersion of electrons in a constant potential V0. (b)
The linear dispersion of photon-like polaritons in a material with constant refractive
index n0. (c) The periodic potential of the Kronig-Penney model with a “defect”.
(d,e) The resulting dispersion relations and band gaps for electrons and light without
defects. (f) The reflectivity of a Bragg mirror and of a Fabry–Perot cavity formed by
two Bragg mirrors with a cavity (solid and dashed lines, respectively). All drawings
are schematic according to [01K1]
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and
E = �ω = �

c

n0
kvac = �ck . (17.10b)

The difference comes from the linear and quadratic E or ω dependencies
mentioned above, which in turn go back to the first and second time derivatives
in (17.9a,b).

Now we allow for a periodic variation of V (r), e.g., in the sense of a periodic
square potential (the so-called Kronig–Penney potential) of Fig. 17.3c. The
results are as known from Chap. 8. The appearance of band gaps, the concepts
of the periodicity of E(k) = E(k + G), the quasi momentum �k are shown
schematically in Fig. 17.3d.

We now consider the case of a periodic variation of n(r). If we want to use
(17.9d) we are limited to small spatially periodic variations of n (e.g., in the
sense of nearly free electrons in Sect. 8.7 for the following reason.

In the derivation of (17.9d) one comes across the term

∇× (∇× E) = ∇ (∇ · E) − ∆E . (17.11a)

If and only if ε is spatially constant, we can use the chain of arguments

0 = ρ = ∇D = ∇ (εE)
!= ε∇ · E = 0 . (17.11b)

If ε = ε (r) we are either left with an additional term E∇·ε (r), which is only
small for small variations of ε (r) (see above), but is in any case also periodic in
space. Furthermore it is possible in one- and twodimensional arrays to select
orientations with E ⊥ ∇ε(r). Otherwise, we have to use the general from
(17.11c)

∇× (∇× E (r)) − ω2

c2
ε (r)E (r) = 0 (17.11c)

with ∇ (ε (r) E) = 0 , which is correct for every ε (r) but is not Hermitian with
respect to the usual scalar product. Alternatively one can use the equation
for the magnetic field H

∇×
(

1
ε (r)

∇× H

)
− ω2

c2
H = 0 (17.11d)

with ∇B = ∇H = 0 since we assumed nonmagnetic materials, i.e., µ = 1.
Equation (17.11d) is Hermitian.

If we introduce ε̄ as the spatial average value of ε (r) then the variations
around this average value are given by ε (r) − ε̄ and we end up with

∇× (∇× E) − ω2

c2
(ε̂ (r) − ε̄) E = −ω

2

c2
E , (17.11e)

which makes the analog to the eigenvalue (17.9c) even more plausible:

∇ · ∇Φ (r) − 2m
�
V (r)Φ (r) = EΦ (r) . (17.11f)
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The vector character of E(r) compared to the scalar field Φ (r) causes the
∇×∇× term in (17.11e) instead of the ∇ · ∇ in (17.11c,i).

It should be noted that E⊥H is still valid, but due to the variations or
steps in ε (r), E is not necessarily perpendicular to k.

Having now played, to some extent, with the equations for E and H, we
now present some analogies and differences assuming a periodic variation of
n2 (r) = ε (r), e.g., as in Fig. 17.3c. The results include again the concept
of quasi momentum �k and the periodicity ω (k) = ω (k + G) with G a vec-
tor the reciprocal lattice. The differences to the electronic case are a linear
(photon-like) increase of the dispersion close to the origin. Furthermore, we
have to calculate the band structure for two orthogonal orientations of E as
soon as we deviate from normal incidence on a one-dimensional structure.

As a last aspect of this introductory treatment, we consider the following
point.

A defect in the periodic potential as indicated on the right hand side of
the Kronig–Penney model of Fig. 17.3c may result in an energetically narrow,
localized state in the gap if the defect has a suitable shape, e.g., concerning
width and/or depth.

In a similar way, a “defect” in the periodicity of n(ω) may result in an
energetically narrow defect state in the photonic band gap of a Bragg-mirror
if its parameters are adequately chosen. This defect state is nothing but the
Fabry–Perot mode, which allows propagation of light in a narrow frequency
interval (Fig. 17.3f).

The light quanta in a photonic crystal with periodicity

n2 (r) = ε (r) = ε (r + R) (17.12a)

with
R = a1n1a1 + n2a2 + n3a3 , (17.12b)

as in Sects. 7.2 and 8.1, are actually also a superposition of a polarization and
an electromagnetic wave. Therefore the terms polaritonic crystal and polari-
tonic band structure would be more adequate. However, the terms photonic
crystals and band structures have been introduced and are established. So
there is no sense in trying to change them and we continue to use them here.

17.2.2 Realization of Photonic Crystals and Applications

While dielectric or Bragg mirrors have been known for decades and are now
considered an example of a one-dimensional photonic structure, artificial two-
and three-dimensional systems have been developed only recently and are
based on the pioneering work mentioned at the beginning of this chapter.
This means that we see here the opposite trend as compared to semiconduc-
tors where the development started with three-dimensional or bulk material
and proceeded to quasi two-, one- and zero-dimensional structures. However,
we shall also see a similar approach in Sect. 17.3, and should mention that
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there is a precious gemstone namely (noble) opal that consists of a three-
dimensional periodic array of small SiO2 spheres forming a natural photonic
crystal. We come back to this below but start first with two-dimensional
structures.

The technology of processing Si is highly developed. Using patterning and
selective etching, among other methods, it is possible to produce periodic
(hexagonal) arrays of holes in Si that have a spacing or lattice constant on
the order of 1 µm and some are 10 µm deep (see Fig. 17.4). Such structures
form evidently a two-dimensional photonic crystal. This structure has a true
two-dimensional photonic band gap, i.e., a band gap that exists for all values
and directions of k‖ centered around a frequency ω0 given by

ω0 ≈ 0.4c
2π
a

(17.13)

where a and c are the lattice constant and the vacuum speed of light, respec-
tively. Obviously, the band structure depends on the polarization of the light
field and it turns out that the photonic gap is narrower for the electric field
polarized parallel to the tubes than for the orthogonal polarization.

Obviously a in (17.13) has to be chosen such that �ω0 falls in the trans-
parent region of Si, i.e., �ω0 < ESi

g .
Details of such structures are found, e.g., in [97F1,98B1,99B1,99B2] and

the references therein.
Here we concentrate on only a few aspects. A chain of defects, missing

holes, act for frequencies in the photonic gap as a wave guide. The insert
in Fig. 17.4a shows a simple linear wave guide. Since the light field cannot
radiate from this wave guide into the two-dimensional photonic structure in
the spectral region of the photonic gap, curvatures of wave guides can be
realized (Fig. 17.4a) that have much narrower curvatures than classical optical
fibers can have. A realization of a beam splitter is shown in Fig. 17.4b and
a resonator in Fig. 17.4c. The central defect “localizes” light field. It is weakly
contacted by the two wave guides.

In a similar way, a ridge wave guide of Si on SiO2 has been converted
in a Fabry–Perot resonator by a periodic arrangement of holes, which act as

Fig. 17.4. (a) A hexagonal periodic array of cylindrical holes in Si with a wave-guide
(b) a beam splitter (c) a resonator [98B1,99B2]
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Bragg mirrors and the central part as a cavity. See [97F1, 98B1, 98B2, 99B1]
and references therein.

The application potential of such structures is obvious, allowing the inte-
gration of wave guides with dimensions of only a few tens of µm on a Si chip.
The drawback is presently still that these structures have very high insertion
losses. Furthermore, they are much larger than the building blocs in highly in-
tegrated electronic chips, despite the fact, that they are smaller than classical
waveguide structures.

Now we discuss three-dimensional structures that have a true photonic
band gap for all polarizations and directions k-vectors within a certain energy
interval.

Different lattices and ways to create them have been proposed and are con-
sidered. An early example is the so-called Yablonovite. Three sets of parallel
holes are drilled in a solid. The angle between the axes of the holes is 120 ◦ and
their inclination to the normal of the surface is 35.26 ◦. If the refractive index
of the material is sufficiently large, one obtains a photonic gap. For details
see, e.g., [91Y1].

Drilling of holes under oblique, well-defined directions is not yet possible
for distances comparable to the wavelength of light, but it has been shown for
longer wavelengths that the concept works.

A modified version uses the interference of three laser beams falling
obliquely on a photoresistant layer together with a reference beam impinging
normal on the surface. The interference creates a three-dimensional intensity
pattern that results after development of the photoresistant layer in a photonic
crystal. The present status of this technique is found, e.g., in [03M1].

Still another idea is so-called wood piles. These are semiconductor “rods”
(with diameters on the order of 1 µm) placed in subsequent layers orthogonally
on top of each other. Again, one expects a photonic gap for sufficiently high
index contrast |nI − nII| .

A system that is presently under intense theoretical and experimental in-
vestigation is inverted opals [98B2,01B2,01R1,02G1,02H1,03B2,03W1]. An
opal itself is a periodic arrangement of SiO2 spheres forming a diamond lattice.
The spheres are surrounded by air (or water). The difference of the refractive
indices in opal is too small to obtain a complete gap, as can be seen, e.g., in
the calculated density of states in Fig. 17.5c.

Natural opal, however, has gaps for certain directions in k-space. The
position and width depends on the orientation of k relative to the lattice.
This fact, together with differently oriented domains, explains the changing
colors of opal in different places and for varying viewing angles. The idea
of an inverted opal is now to fill or impregnate the voids between the SiO2

spheres by Si, which below Eg has a rather high refractive index above 3, and
to remove then the SiO2 spheres by selective etching, resulting in a periodic
arrangement of air-spheres surrounded by Si. The band-structure calculation
in Fig. 17.5a shows the gap around ωa/2πc = 0.8. The complexity of the
band-structure, similarly to the electron case, is to a large extent due to the



17.3 Photonic Atoms, Molecules and Crystals 445

Fig. 17.5. (a) The calculated photonic band-structure of close-packed air spheres
in Si, a so-called inverted opal. (b) The resulting density of states (DOS), showing
clearly a gap around ωa/2πc ≈ 0.8 for this system and for (c) SiO2 spheres in air
corresponding to natural opal [99J1]

back folding of the extended scheme into the first Brillouin zone (see Chap. 8).
The calculated density of states starts quadratically as expected for a linear
dispersion relation in three dimensions, but then develops a rather complex
structure, which is much more “peaky” compared to the one of natural opal
in Fig. 17.5c.

17.3 Photonic Atoms, Molecules and Crystals

In this section we present still another approach to photonic crystals, starting
in this case with “photonic atoms” i.e., three-dimensional microcavities and
coupling them to create molecules or extended periodic structures. For reviews
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and some original work see, e.g., [97R1, 98B3, 98G1, 98G2, 99B3, 99G1, 01B1,
01B3,01G1,02G2,03S1].

The concept of a photonic-atom is explained in Fig. 17.6a. A quantum
well is grown in a cavity consisting of two stacks of dielectric Bragg mirrors
as explained above for cavity polaritons. The luminescence is shown in the
lowest trace of Fig. 17.6b.

We now see the well-known effect that the emission maximum is shifted
away from the exciton resonance of the quantum well without a cavity.

Fig. 17.6. (a) A photonic atom consisting of a square mesa prepared from a struc-
ture containing a quantum well in a cavity with stacks of Bragg mirrors on both
sides. (b) The luminescence of the mesa with w ⇒ ∞ and for various finite values of
w. (c) The coincidence of the measured and calculated emission peaks as a function
of w [97R1]
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In the next step a three-dimensional resonator is formed by etching a small
square (or cylindrical) mesa of width w (see Fig. 17.6a). The natural reflectiv-
ity of the side walls resulting from refractive indices around three is sufficient
to form a resonator with three-dimensional confinement for light as seen from
the increasing spacing of the emission peaks, which correspond to the various
cavity modes, with decreasing w in Fig. 17.6b,c.

The name “photonic atom” is coined in analogy to the artificial atoms or
quantum dots of Sects. 8.13 and 15.4 in which there is no translational degree
of freedom and the energy level spectrum is discrete as in an atom.

The spectral positions of the emission peaks are given by

�ω =
�c

n

(
k2
0 + k2

x + k2
y

)1/2
(17.14a)

where k0 is the wave vector defined by the Bragg mirror cavity (see Sect. 17.1)
and the discrete values of kx and ky are given by

ki = (mi + 1)
π

w
, mi = 0, 1, 2, . . . , i = x, y . (17.14b)

Figure 17.6c shows excellent agreement between the experimental data and
the results of (17.14a,b) for various modes.

The next step is to couple two of the photonic atoms to a photonic molecule
by a bridge between them as shown in Fig. 17.7a.

The two lowest modes have even and odd parity in close analogy to the
binding and anti-binding states in an H2 molecule. Increasing coupling, as
seen in Fig. 17.7c, by increasing the width of the bridge at constant length of
1 µm leads to a splitting of the otherwise degenerate levels with one node line
in each photonic dot or atom.

The obvious extension is to couple more and more identical photonic
atoms, for simplicity, in a linear array. One observes a splitting in more and
more discrete levels as expected from coupled identical harmonic oscillators.
These discrete levels arrange themselves into bands in a similar way as for the
periodic Kronig–Penney model.

In Fig. 17.8 we show the one-dimensional band-structure of a linear array
of 50 coupled photonic atoms. The formation of bands and of band gaps at
the border of the Brillouin zones (indicated by the vertical dotted lines) is
obvious. The absence of a gap at the border of the third Brillouin zone is an
effect of the specific choice of parameters of the sample used in [99B3,01B1].

Now it is possible to introduce a defect in the linear chain of otherwise
identical photonic atoms, e.g., by incorporating one atom with a different size.
Depending on this size, the defect may form a state in the bands, which is
not so interesting, or one in the gap. This latter case corresponds again to
the Fabry–Perot resonator with a spectral narrow transmitting mode in the
high-reflectivity photonic gap [02G2].

Sometimes these states are called acceptor- or donator-like, if they are
situated energetically just above a (valence) band or just below a (conduction)
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Fig. 17.7. (a) A photonic molecule made by coupling of two atoms via a bridge.
(b) Calculations of the field distributions of the six lowest coupled states. (c) Their
spectral positions as a function of the bridge width [98B3,01B1]
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Fig. 17.8. The dispersion relation of a linear chain of 50 coupled microresonators.
The vertical dotted lines give the borders of the one-dimensional Brillouin zones,
nπ/a; n = 1, 2, 3, . . . [99B3]

band and a photonic band gap material is referred to as a “semiconductor
for light”. The author feels that this nomenclature is stressing the analogy to
electronic band-structure somewhat too far, since electrons are fermions and it
consequently makes sense to speak about an up most, completely filled valence
band and an empty conduction band. But since light quanta are bosons there
are no such things as a completely filled photonic valence band or an ionized
donor.

17.4 Further Developments of Photonic Crystals

The investigation of photonic crystals and especially of photonic band gap
materials is presently a very active field of research into which more and more
international research groups are joining.

One aim is of course to improve the quality of the periodic arrays, to verify
the existence of band gaps and to compare to theoretical models.
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This field, apart from being a beautiful physical playground, holds promises
for both fundamental research and applications. We give a few examples.

Imagine that a luminescent atom or an electronic quantum dot is incor-
porated into a three-dimensional photonic band gap material such that the
emission wavelength of this atom falls into the forbidden photonic gap. Then
this atom can not radiate. An emitted light quantum cannot propagate away
from the radiator but remains confined in the vicinity and will be reabsorbed.
This is a chance to test basic questions of quantum electrodynamics. The first
examples showing at least an increase in the radiative decay time have been
reported, e.g., in [00V1].

An application of this fact could result from the possibility of influencing
the band-structure and the position and/or width of a photonic gap by an
external electric or magnetic field, e.g., by incorporating liquid crystal ma-
terial [99B2] or semimagnetic semiconductors in the photonic structure. The
emission of the above mentioned atom can then be switched, e.g., by an elec-
tric field if it shifts the band gap away from the emission wavelength.

The application of photonic structures as wave guides, mirrors, cavities,
etc., has already been mentioned and one hopes to build, with the help of such
structures, microlasers with extremely low threshold and pumping power.

Presently there are (theoretical) attempts to calculate the band-structure
for the case of spectrally strong varying ε (ω, r) as it occurs in the vicinity
of resonances or to treat complex dielectric functions that involve absorption
with the obvious consequence that there are no longer stationary eigenstates.

As has been seen many times in the past, the availability of a new class
of materials allows one to repeat experiments done before on simpler sys-
tems. In this sense, one can expect to see, in the near future, experiments
of time-resolved and/or nonlinear spectroscopy, like time of flight measure-
ments for light pulses through photonic crystals, similar to the data presented
in Sect. 13.1.4, or experiments on nonlinear optics in the simplest case sec-
ond harmonic generation or of k-space spectroscopy (see Sect. 13.1.4 and
Chap. 19).

17.5 Problems

1. Calculate the parabolic dispersion relation of Fig. 17.1e and the effective
mass of (17.7).

2. In connection with disorder, we introduced the concept of enhanced
backscattering. Could this concept also work for elastic scattering of light
by small polystyrol or H2O spheres?

3. Recall the way we calculated the density of states in k- and E-space. Are
there similarities to the mode counting in a Fabry–Perot resonator?

4. Why is a dielectric mirror also called a Bragg mirror?
5. Formulate the equations for the magnetic and electric fields for a material

with spatially periodic, but frequency independent, refractive index n.
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What is different if n = n(ω) ? What would you expect qualitatively
for a complex index of refraction (or dielectric function) in analogy to
a complex potential?

References to Chap. 17

[87J1] S. John, Phys. Rev. Lett. 58, 2486 (1987)
[87Y1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)
[89T1] A. Thelen, The Design of Optical Interference Coatings, Mc Graw Hill,

New York (1989)
[91Y1] E. Yablonovitch, T.J. Gnütter, and K.M. Leung, Phys. Rev. Lett. 67, 2295

(1991)
[92W1] C. Weisbuch et al., Phys. Rev. Lett. 69, 3314 (1992)
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18

Review of the Linear Optical Properties

In this brief chapter, we shall review and summarize some of the aspects of
the linear optical properties of semiconductors that were presented in the
preceeding chapters in some detail.

18.1 Review of the Linear Optical Properties

In Fig. 18.1 we give a schematic overview of the spectra of the complex di-
electric function, of the complex index of refraction and of the reflectivity for
a typical direct-gap semiconductor over the whole spectral range from the IR
to the UV. For simplicity, we consider one optically active phonon mode, one
exciton resonance, and one further resonance which represents all continuum
and band-to-band transitions. We include some damping for every resonance
but neglect details including spatial dispersion. The additive structure of the
resonances in the dielectric function is clearly visible. The back ground dielec-
tric constant εb of one resonance is simultaneously the “static” one εs for the
next higher resonance.

Figure 18.1a includes contributions which might come from two other ef-
fects. The dashed-dotted line gives the modifications introduced by a plasma.
[This plasma can be caused either by high doping levels (Sects. 10.1, 12.1)
or by high excitation (Chap. 21)]. In the first case it consists of either elec-
trons or of holes, in the second case it is a bipolar plasma. If we remember
that the transverse eigenfrequency of a plasma is zero, we immediately ob-
tain the dashed-dotted line in Fig. 18.1. We should mention that the presence
of a plasma also influences the other resonances, e.g., the phonon resonance,
due to plasmon–phonon mixed states (Sect. 12.3), or the exciton resonances
by increasing damping, by screening of the Coulomb attraction of electron
and hole and by band gap renormalization and band filling (Chap. 21). These
effects are not shown in Fig. 18.1 for sake of clarity.

The other contribution to the dielectric function is the so-called orienta-
tional polarization shown by the dashed line. It describes the contribution
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of freely rotatable permanent electric dipoles to ε(ω), i.e., a para-electric
contribution. Freely rotatable means that the dipoles do not have a restor-
ing force, but that an orientation of the dipoles which has been established,
e.g., by an external field, decays after switching off of this field with a re-
laxation time τ by (thermal) collisions with the surroundings. The contri-
bution of the orientational polarization to ε1 is constant for low frequencies
as long as the dipoles can follow the driving field and decays for ωτ � 1

Fig. 18.1. A schematic overview from the IR to the UV of the spectra of the
real and imaginary parts of ε(ω) (a), of ñ(ω) (b), and of the reflectivity (c) for
a semiconductor
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as is usual for relaxation phenomena. The imaginary part has its maximum
at ωτ = 1. This is reasonable if we assume that the “friction losses” of the
rotating dipoles are proportional to the amplitude and the speed ω of the
rotation. The orientational polarization is a very important effect for polar
liquids (e.g., water) and organic solids containing some rotatable radicals. In
semiconductors this effect is less common but is mentioned here for sake of
completeness.

Another “summary” of what we have learned up to now is the dispersion
relation in Fig. 18.2, where we again include one phononic and two electronic
resonances. For simplicity we consider zero damping and give only the real
part of k, but properly including the spatial dispersion, i.e., the k-dependence
of the eigenfrequencies. The “global” polariton dispersion of Fig. 18.2 shows
nicely the various resonances and how, above the highest eigenfrequency, the
dispersion asymptotically approaches that of photons in vacuum.

Finally, Fig. 18.3 summarizes the spectra of the dispersion, the absorption
coefficient, the reflectivity, and the luminescence of a direct-gap semiconductor
at low temperature including free and bound excitons and donor–acceptor
pairs, all with their LO-phonon replica.

To end this summary, we refer the reader to a small collection of more-
or-less recent textbooks covering some aspects of semiconductor optics [69O1,
72O1,72W1,75B1,90H1,91K1,91L1,93P1,93O1,95K1,96S1,96Y1,01H1,02D1,
02S1,03Q1,04O1]. Further titels are given in the references of Chap. 1. These
books also demonstrate nicely the progress that has been made in this field

Fig. 18.2. A schematic overview of the real part of the dispersion relation of light
in a semiconductor from the IR to the UV, neglecting damping
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Fig. 18.3. A schematic
drawing of the dispersion
(a), and the spectra of the
absorption (b), reflection
(c) and luminescence (d)
of a high-quality, direct-
gap semiconductor at low
temperatures in the region
of the exciton resonances

over the last four decades. The author considers all these book of high scientific
and didactic value, but enjoys especially [04O1] as becomes clear from its
preface.

18.2 Problem

Try to identify what is sketched on the front cover. Which features are wrong?
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High Excitation Effects and Nonlinear Optics

In this and in some of the following chapters we shall leave the regime of
linear optics introduced in Sect. 2.3 and proceed to the field of nonlinear
optics. Nonlinear optics including high excitation phenomena, laser emission
and electro-optics, forms together with the investigation of semiconductors
of reduced dimensionality, presently the most active fields in semiconductor
science.

In the next two sections we give the definition and the general scenario. In
Sect. 19.3 we then present a short outlook to extreme nonlinear optics, which
leads, however, beyond the field of semiconductor optics and thus beyond the
scope of this book. Then we continue in Chaps. 20–24 with discussions of
the most important effects and phenomena contributing to nonlinear optics
in semiconductors including time-resolved spectroscopy.

For a rather early theoretical work on nonlinear optics see [31G1] and for
early experiments and more recent reviews [61K1, 62B1, 62M1, 63F1, 64B1,
64B2,65B1,65B2,66K1,71K1] and [75A1,84S1,86E1,89N1,90B1,91M1,95M1,
99N1, 00N1, 02S1, 03W1, 04O1], respectively, the references given therein and
some further textbooks given in the references of Chaps. 1 and 20–24. In [00N1]
an overview is given among others of various definitions of nonlinear suscepti-
bilities and a conversion tables between various units like SI and esu. As can be
seen from [31G1], in which Göppert-Mayer predicted two photon absorption
on the basis of perturbation theory, there were early predictions of nonlinear
optical effects, but the field started to develop only after the invention of the
laser in 1960.

19.1 Introduction and Definition

In linear optics we learned how the optical properties of matter depend on the
frequency of the incident radiation field and on the direction of polarization or
propagation relative to the crystallographic axes. But we explicitly assumed
that the optical properties do not depend on the field amplitude(s) Ei (or the
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intensities, I) of the incident light beam(s). As a consequence, the polarization
of matter oscillates with the same frequency as the incident field(s) and two
light beams can cross each other in matter without mutual interaction.

The regime of nonlinear optics comprises all effects for which the above
assumptions are no longer valid. As a definition of the term “nonlinear optics”
we can thus say that these are all phenomena in which the optical properties
like ε(ω) or ñ(ω) depend in a reversible way on the illumination. We stress here
the term “reversible”. This means that the system returns to its initial state,
after the illumination has been switched off, possibly after some time delay. We
therefore exclude from our considerations phenomena like the photographic
process or simply drilling a hole into a sample by intense laser excitation,
a process known also as “laser ablation” “evaporation” or optical breakdown.
Some references to this field are found, e.g., in [84S1] and more recently [92B1,
97G1, 00H1], which show that these effects may even have some relevance
towards application. An example from every-day life for an optical nonlinearity
are phototropic sun-glasses, which are transparent under weak illumination,
become dark under the influence of UV radiation, e.g. from sunlight, and
become transparent again after a few seconds if the illumination is reduced.

There are two limiting approaches to nonlinear optics. In the first we as-
sume that the response of the medium to the incident field(s) depends only
on the instantaneous field amplitudes. This condition is fulfilled if the elec-
tronic excitations, on which we shall concentrate in the following, are created
only virtually using the language of weak coupling (see Sect. 3.2) or, in the
language of strong coupling, introduced in Chap. 5 and Sect. 13.1, if we treat
only interactions of coherent polaritons. This approach may also be used, if
the duration of the exciting laser pulse is shorter than the dephasing time T2

of the excitation.
In fact, the weak coupling approach is used in most cases including the

optical- and semiconductor-Block equations treated in Chap. 27 to describe
optical nonlinearities, and we follow this trend here. But we also give some ex-
amples and hints for the proper description of the phenomena in the polariton
picture.

As already stated, we now assume that the dielectric susceptibility depends
on the instantaneous field amplitudes, i.e.,

χ(ωi,Ei) = ε(ωi,Ei) − 1 . (19.1)

Since the dependence on Ei is usually not known explicitly we expand
χ(ωi,Ei) into a power series of the incident field amplitudes [63F1, 65B1,
65B2,84S1]:

1
ε0

P i =
∑

j

χ
(1)
ij Ej +

∑
j,k

χ
(2)
ijkEjEk +

∑
j,k,l

χ
(3)
ijklEjEkEl + . . . . (19.2)

If all frequencies are equal, a similar expansion can be formulated for the
refractive index using intensities, i.e.,
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ñ(ω, I) = ñ0(ω) + ñ2I + . . . (19.3)

where ñ0 is again the linear refractive index and ñ2 describes changes induced
by I.

The first term on the right-hand side of (19.2),(19.3) describes the linear
optical properties discussed in Chaps. 2–18. The second term of (19.2) con-
taining the phenomenologically introduced parameter χ(2) describes effects
like second-harmonic, sum- and difference-frequency generation or the dc ef-
fect, i.e., rectification of the electric field of a light beam.

It immediately becomes clear what is meant by these terms if we direct
a (laser) light beam with frequency ω onto the sample. The second term then
reads

χ(2)E2
0 sin2 ωt =

1
2
χ(2)E2

0(1 − cos 2ωt) . (19.4)

The cos 2ωt term in (19.4) tells us that a contribution to the polarization is
created, which oscillates at 2ω, and is radiated by the sample, the so-called
second harmonic generation. The first term in the bracket describes a tem-
porally constant polarization, which results in a voltage across the sample as
shown schematically in Fig 19.1. This corresponds to a partial rectification of
the ac field of the light beam. The corresponding effect is therefore also called
the “dc effect”. The dc effect is, to a good approximation, an inversion of the
linear electro-optic effect as mentioned, e.g., in [71K1,84S1]. If two fields with
different frequencies ω1 and ω2 interact in the sample via χ(2) effects, a similar
approach as in (19.4) gives contributions to the polarization which oscillate
with frequencies ω1 ± ω2, i.e.,

sum-frequency generation: (ω1 + ω2) ,
difference-frequency generation: (ω1 − ω2) ,

(19.5)

which are also radiated.
χ(2) and all other even terms in the expansion (19.2) vanish for crystals

whose symmetry elements contain the inversion. This is immediately clear by
letting E → −E and consequently P → −P .

For non-centrosymmetric crystals, the χ(2) tensor contains one or more
non-zero elements. Which elements vanish and which are equal depends on
the point group of the crystal. Details are given in [63F1,65B1].

Another aspect of the χ(2) and of higher order phenomena concerns in-
terference. When the fundamental beam propagates in the sample, it creates
everywhere the second harmonic with the same relative phase between fun-
damental wave and second harmonic. On the other hand, the second har-
monic, created at one place propagates and interferes with the second har-
monic generated deeper in the sample. In order to get a maximum output
of the second harmonic, this interference should be always constructive. The
requires that

n(ω) = n(2ω) (19.6a)
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or

k(2ω) = 2k(ω) . (19.6b)

The second version is nothing but momentum conservation i.e., two light
quanta of frequency �ω and (quasi-) momentum �k(ω) are annihilated to
give one with 2�ω and �k(2ω). The condition (19.6) is also known as phase-
matching and can usually be fulfilled only in some birefringent materials, when
the polarizations of the waves with ω and 2ω are different, because n(ω) tends
to increase in the transparent window of a crystal with increasing ω, generally
leading to

n(ω) < n(2ω) . (19.6c)

Additionally one needs a special orientation for a given frequency. Similar
arguments to (19.6b) hold also for sum- and difference-frequency genera-
tion.

If phase matching is perfectly realized, the intensity of the second harmonic
starts to grow quadratically with the propagation distance in the sample with
a simultaneous decrease in the fundamental wave. The increase of the second
harmonic intensity tends, however, to saturation, if the intensity of the fun-
damental wave drops substantially. Ideally one could expect 100% transfer of
energy into the second harmonic for an infinitely thick crystal. In reality, an
efficiency of 10 to 30% is realistic, depending on the quality of the laser beam,
on the sample thickness or the value of χ(2), etc.

If phase matching is not fulfilled, the second harmonic also starts to in-
crease with sample thickness. For thicker samples the second harmonic con-
tributions created at various places start, however, to interfere destructively,

Fig. 19.1. Schematic drawing of an experimental situation in which second har-
monic generation and the dc effect can be observed
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again feeding the fundamental wave. This effect results in an oscillation of the
second harmonic intensity with sample thickness (the so-called Maker fringes)
[62M1, 65B2, 84S1]. Consequently, sufficiently thin samples are adequate for

non-phase-matching conditions.
The χ(3) effects describe four-wave mixing (FWM) and hyper-Raman scat-

tering (HRS), coherent anti-Stokes Raman scattering (CARS) etc. Some of
these effects are described with the examples below.

The linear and nonlinear optical effects discussed here can be described
in perturbation theory of increasing order either with the dipole operator
H1 ⇒ HD or the second-order term H

(2)
2 of (3.46).

We give in Fig. 19.2 schematic drawings of various nonlinear processes in
the picture of two- and three-level systems and in (19.7) to (19.16) a schematic
or intuitive translation into equations. A detailed treatment of the formalism
including Feynman diagrams can be found, e.g., in [65B2,84S1].

Fig. 19.2. Schematic presentation of various linear (a,b) and nonlinear optical
processes (c-f)
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The linear one photon absorption α (ω) is then at resonance proportional to

α (ω) ∝ wif ∝ |〈f |HD(ω) |i〉|2 . (19.7a)

It should be noted that the absorption process is only completed when the
final state undergoes some scattering process, which destroys the coherence
of the polarization of the transition with the incident light field. Otherwise,
an intensity dependent coherent oscillation between the ground and excited
states initiates, in the sense of Rabi oscillations [37R1] or flopping discussed
in Sect. 20.4 and in Chap. 27.

The corresponding linear refractive index can be visualized off resonance
by a process involving one virtually excited intermediate states |z〉 (Fig 19.2b)
which after some phase delay spontaneously emits a photon, which is other-
wise identical to the incident one. We use the following notation: Absorption
processes leading to real or virtual excited states are described by positive
frequencies in χ(n) and stimulated or spontaneous emission processes induced
by an incident field or by the zero-point fluctuations, respectively, by negative
frequencies.

We recall the dipole operatorHD from (3.58) and write for small imaginary
parts κ(ω) of ñ(ω), i.e., away from the resonance energy Ezj for the real part
of the linear susceptibility (see also (4.22c))

χ(1)(ω) = n2(ω) − 1 ∝
∑
zj

〈
i
∣∣HD(−ω)

∣∣ zj

〉 〈
zj

∣∣HD(ω)
∣∣ i〉

�ω − (Ezj − Ei)
(19.7b)

Alternatively n(ω) can be obtained from κ(ω) via the Kramers–Kronig rela-
tions (Chap. 6) or vice versa.

The two-photon absorption coefficient β introduced phenomenologically
for a one-beam experiment in (19.8) and Fig 18.2c,

− dI
dx

= βI2 , (19.8)

is then at resonace with the final state |f〉 proportional to

β ∝
∣∣∣∣∣∣
∑
zj

〈
f
∣∣HD(ω2)

∣∣ zj

〉 〈
zj

∣∣HD(ω1)
∣∣ i〉

�ω1 − (Ezj − Ei)
+ c.p.

∣∣∣∣∣∣
2

, (19.9)

where we allow for two different frequencies ω1 and ω2, represented by their
respective dipole operators, and where c.p. stands for cyclic permutations.
Again a decoherence process must occur in the final states for the two photon
absorbtion process to be completed.

Energy conservation has to be fulfilled between initial state |i〉 and final
state |f〉, momentum conservation in every step, i.e.,

Ef = Ei + �ω1 + �ω2 ,
ki + k(ω1) = kzj

kzi + k(ω2) = ktf .
and

⎫⎬⎭ (19.10)
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The dipole approximation actually means k(ω1,2) = 0; see (3.55). For
early examples of two-photon absorption see, e.g., [62B1, 64B2] and for
two step transitions with a really and not virtually excited intermediate
state [67B1].

After the short discussion of n, κ and β we turn now to the χ(n). For the
linear susceptibility we obtain (see Chaps. 4, 27 and (19.7b) above)

χ(1)(ω) ∝
⎡⎣∑

zj

〈
i
∣∣HD(ω)

∣∣ zj

〉 〈
zj

∣∣HD(ω)
∣∣ i〉

�ω − (Ei − Ezj) + iγ
−

∑
zj

〈
i
∣∣HD(ω)

∣∣ zj

〉 〈
zj

∣∣HD(ω)
∣∣ i〉

�ω + (Ei − Ezj) + iγ

⎤⎦ (19.11)

where the first term on the r.h.s. is the resonant one and where we have
introduced a small damping γ to avoid a singularity.

From the imaginary part of χ(1) we get κ(ω) and α(ω) and from the real
part n2(ω) − 1 for weak absorption as indicated above and in more detail in
Chaps. 4 and 27.

Second-harmonic and sum- or differece-frequency generation involve two
virtually excited intermediate states |zi〉 and |zj〉 and are thus described by
a contribution to χ(2) which reads, according to Fig 19.2d for off-resonance
conditions:

χ(2) ∝
∑
zj,zk

〈
i
∣∣HD[−(ω1 + ω2)]

∣∣ zk

〉 〈
zk

∣∣HD(ω2)
∣∣ zj

〉 〈
zj

∣∣HD(ω1)
∣∣ i〉

[�(ω1 + ω2) − (Ezk
− Ei)][�ω1 − Ezj − Ei]

+ c.p.

(19.12)
Another off-resonance contribution to the second-harmonic generation comes
from first-order perturbation theory, using the term H(2) in (3.46) which was
considered to be small of second order.

χ(2) ∝
∑
zk

〈
i
∣∣HD(−2ω)

∣∣ zk

〉 〈
zk

∣∣HD(2ω)
∣∣ i〉

2�ω − Ezk

(19.13)

If the decay of the second virtually excited intermediate state is stimulated
by a third photon field, this induces a χ(3) effect of the type shown in
Figs. 19.2e,f. We denote the frequencies in these contributions to χ(3) in the
following way:

χ(3)(ω : ±ωj ,±ωk,±ωl) , with ω = ±ωl ± ωk ± ωj , (19.14)

where the incident, absorbing, and/or stimulating frequencies are given with
their respective sign after the colon, and the resulting frequency of the po-
larization that is radiated in the process under consideration before the
colon.
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One of the many contributions to χ(3) (Fig. 19.2f) is then given by (19.15)
again for off-resonance conditions

χ(3)(ω : −ω3, ω2, ω1) ∝∑
zj,zk,zl

〈
i
∣∣HD(ω)

∣∣ zl

〉 〈
zl

∣∣HD(−ω3)
∣∣ zk

〉 〈
zk

∣∣HD(ω2)
∣∣ zj

〉 〈
zj

∣∣HD(ω1)
∣∣ i〉

[�(ω1 +ω2 −ω3)− (Ezl
−Ei)][�(ω1 +ω2)− (Ezk

−Ei)][�ω1 − (Ezj −Ei)]

+ c.p. (19.15)

If we inspect the terms describing one- and two-photon absorption (19.7a)
and (19.9), or for three photon absorption not given here, or those which de-
scribe processes in which a photon is emitted like (19.7b), (19.10) and (19.13),
the rules become intuitively clear. For every next higher order of perturba-
tion theory there is one more dipole matrix element and one more resonance
denominator. A product of two dipole matrix elements and of two resonance
denominators can be replaced by one H2 term as can be seen by comparing
(19.10) and (19.11).

With increasing order of the perturbation there is an increasing number
of cyclic permutations and of ± as in (19.14). An exhaustive presentation of
all phenomena up to order three is given, e.g., in [63F1,65B1,65B2,84S1] and
an investigation of higher orders, e.g., in [64B1,65B2,66K1,95A1,00A1,01A1]
and references therein. A group of possible contributions to higher orders of
χ(n) is shown schematically in Fig. 19.2g.

As a further example, we give in (19.16) a combination which contributes
to an excitation-induced change of the real part of the refractive index, i.e.,
to Re{n2} in (19.3) in the way sketched in Fig 19.2f:

χ(3)(ω : ω,−ω, ω) =∑
zj,zk,zl

〈
i
∣∣HD(−ω)

∣∣ zl

〉 〈
zl

∣∣HD(ω)
∣∣ zk

〉 〈
zk

∣∣HD(−ω)
∣∣ zj

〉 〈
zj

∣∣HD(ω)
∣∣ i〉

[�ω − (Ezl
− Ei)][�(ω − ω) − (Ezk

− Ei)][�ω − (Ezj − Ei)]

+ c.p. (19.16)

This process describes evidently an intensity dependent contribution to the
refractive index at the frequency ω as in (19.3). The sum of all analogous
χ(3)(ω : ±ω,±ω,±ω) is proportional to Re{ñ2(ω)}. These effects lead, e.g., to
a self-focussing or defocussing of a light beam with a Gaussian beam profile,
depending on the sign of Re{ñ2(ω)} or to self-phase modulation of a short
(laser-) pulse. The dynamic blue and red shift of the light frequency resulting
from this effect on the leading and trailing edges of the pulse is known as chirp.

In all of the above processes, momentum has to be conserved in every
step and energy must be conserved between initial and final states, as already
mentioned. Apart from the above mentioned references, more details can be
found, e.g., in [81K1,89S1,90G1,91C1,94P1,97C1,99N1,01Z1,02S3] and the
references given therein.
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The second group of nonlinear optical phenomena involves modifications of
the optical properties by really or incoherently excited species, e.g., electron–
hole pairs, excitons, or phonons. These species have finite lifetimes T1 which
can be of the order of sub-ns to ms. Due to this finite lifetime, their den-
sity N does not instantaneously follow the incident light field, but depends
on the generation rate in the past weighted by some decay function such as
an exponential.

In this case we have:
1
ε0

P = χ(ω,N)E (19.17)

with

N(t) =
∫ t

−∞
G(t′) exp[−(t− t′)/T1]dt′ . (19.18)

The generation rate G(t′) is connected with the intensity at time t′, e.g., in
the presence of one- and two-photon excitation by

G(t′, x) =
αI(t′, x)

�ωexc
+
βI2(t′, x)
2�ωexc

, (19.19)

where α and β are the one- and two-photon absorption coefficients for the
excitation light with photon energy �ωexc and intensity I(t′, x).

A further complication is introduced if we assume that the parameters
T1, α, β in (19.18),(19.19) are not constants but depend themselves on N or
I. In this case we are left with rather complex systems of coupled integro-
differential equations, which generally can be solved only numerically, often
using some further approximations as shown, e.g., in [90H1, 02S1]. Alterna-
tively these problems are treat in the framework of the optical or semiconduc-
tor Bloch equations of Chap. 27.

It is obvious that a power expansion as in (19.2), (19.3) is not adequate
to describe optical nonlinearities which depend on an incoherent popula-
tion N(t). This population is created by a laser pulse which ends, e.g., at
t = 0. For t > 0, the electric fields in (19.2) are zero; nevertheless there
are changes of the optical properties for as long as the incoherent population
lives.

In order to be able to compare the magnitude of the coherent and incoher-
ent optical nonlinearities, some authors prefer to describe, e.g., the diffraction
efficiency of a laser-induced population grating (Chap. 25) as a χ(3) process
also in the case of incoherent population gratings. Though this approach is
basically wrong, it may be of some practical use for the above-mentioned pur-
pose especially if quasi-stationary conditions are used. We shall see later an
example for such an effective χ(3)

eff .
On the other hand we should note, that one can follow with extremely

short laserpulses the temporal build-up and decay of coherent polarisation
fields going thus beyond (19.2). Examples are given in Chap. 23 or in [04W1].
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At the end of this section, we want to introduce some terms that are closely
related to nonlinear optics and which may even be used as synonyms.

At the beginning of the investigation of optical nonlinearities in semicon-
ductors in the 1960s, these physical effects were and sometimes still are known
as high-excitation, high-density or many-particle effects.

The reason is that optical nonlinearities can often be observed under high
excitation, usually with laser light. Typical values of the light intensities in
the field of nonlinear optics range from 10

3
to far above 106 W/cm2. Under

these conditions many particles, i.e., electron–hole pairs, are created, really or
virtually. This means that they exist in high density. The nonlinearities are
due to the interactions between these many particles.

Changes of the optical properties under strong illumination are also known
as renormalization effects of the optical properties. When they are induced
by a laser of frequency ωexc at this very frequency one thus speaks of self-
renormalization of the optical properties.

To conclude this excursion into semantics we may state that optical non-
linearities are the consequence of the many-particle or renormalization effects
that occur under high excitation.

19.2 General Scenario for High Excitation Effects

In the following chapters we shall discuss optical nonlinearities in detail. We
concentrate on those due to many-particle effects in the electron–hole pair
system of semiconductors. This means that we again concentrate on the spec-
tral region around the exciton resonances and the band gap. We later consider
interaction processes between excitons and phonons, but we shall not treat
nonlinearities that occur in the spectral region of the (optical) phonon reso-
nance, e.g., due to anharmonic phonon–phonon interaction.

A general scenario for the many-particle effects and the resulting opti-
cal nonlinearities has been developed over the last four decades. It is shown
schematically in Fig 19.3. At low light levels (i.e., in the low-density regime)
the optical properties are determined by single electron–hole pairs, either in
the exciton states or in the continuum. At low temperatures these excitons
may also be bound to some defects to form BEC.

With increasing excitation intensity we reach the so-called intermedi-
ate density regime. In this regime, excitons are still good quasi–particles,
but their density is so high, that they start to interact with each other.
There are, e.g., elastic and inelastic scattering processes between excitons
and (at higher temperatures) between excitons and free carriers. These scat-
tering processes may lead to a collision-broadening of the exciton reso-
nances and to the appearance of new luminescence bands, to an excitation-
induced increase of absorption, to bleaching or to optical amplification, i.e.,
to gain or negative absorption depending on the excitation conditions. An-
other group of coherent and incoherent interaction processes in this interme-
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diate density regime involves transitions to the excitonic molecule or biex-
citon. The biexciton, which was briefly mentioned in Sect. 9.4, is a new
quasiparticle which consists of two electrons and two holes. If the exciton
can be seen in analogy to the hydrogen or rather the positronium atom,
then the biexciton corresponds to the H2 or the positronium molecule.
Similarly, there are so-called trions, which consist of two electrons and
one hole ore vice versa. They are also known as X− and X+

2 , respec-
tively, and correspond to H− or H+

2 . As we shall see in Sect. 20.3, tran-
sitions involving biexcitons or trions give rise to a large variety of optical
nonlinearities.

If we pump the sample even harder, we leave the intermediate and ar-
rive at the high density regime, where the excitons lose their identity as
individual quasiparticles and where a new collective phase is formed which
is known as the electron–hole plasma (EHP). In this regime, the density of

Fig. 19.3. The general scenario for many-particle effects in semiconductors
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electron–hole pairs np is at least in parts of the excited volume so high that
their average distance is comparable to or smaller than their Bohr radius aB,
i.e., we reach a “critical density” nc

p in an EHP, given to a first approxima-
tion by

a3
Bn

c
p ≈ 1 . (19.20)

We shall meet some more elaborate formulas than (19.20) in Chap. 21.
In this high-density regime, we can no longer say that a certain electron is

bound to a certain hole; instead, we have the new collective EHP phase. As we
shall see in more detail in Chap. 21, the transition to an EHP is connected with
very strong changes of the electronic excitations and the optical properties of
semiconductors.

The scenario outlined in Fig 19.3 has been observed in every group of semi-
conductors investigated so far including structures of reduced dimensionality.
However, the ranges of observability of the various groups of phenomena can
be very different. In the indirect gap material Ge it is possible in favorable
cases to observe an EHP even under illumination with an incandescent lamp,
due to the long lifetime of the carriers which can reach ms in the bulk of high
quality samples. In contrast, for CuCl pump powers in the range of GW/cm2

have to be used to fulfill the condition of (19.20) and to produce an EHP. Such
high power densities can be applied only for a few ps, otherwise the sample
will be evaporated.

As a rule of thumb, one can say that plasma phenomena are most easily
observed in indirect gap materials due to the long carrier lifetime or in direct
gap materials with large excitonic Bohr radius, so that (19.20) can also be
readily satisfied as in GaAs. The Cu halides, on the other hand, are model
substances for biexciton phenomena, due to the large exciton and biexciton
binding energies. The II–VI compounds have an intermediate position allow-
ing observation of all of the effects shown in Fig 19.3 (and some more). This is
very satisfying but poses the challenge of separating the various contributions,
which partly overlap spectrally. Recent reviews which cover high excitation
effects are [81K1, 89S1, 90G1, 90H1, 91C1, 94P1, 99N1, 02S1, 04O1] and refer-
ences therein.

In the following chapters we describe the various effects in some detail,
always beginning with three-dimensional materials but also giving examples of
systems of reduced dimensionality. We start in Chap. 20 with the intermediate
density regime and continue in Chap. 21 with the electron–hole plasma.

It should be added that at low temperatures theory predicts between
the intermediate and high density regime the possibilities of excitonic Bose–
Einstein condensation and superfluidity. We come back to this aspect in
Sect. 20.5.

A Bose–Einstein condensation (also generally abbreviated by BEC) is dif-
ficult to depict in a figure like Fig. 19.3 since it is a condensation in k-space.
We tried very tentatively to do it as shown in Fig. 19.3
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19.3 Beyond the χ(n) Approximations

An expansion of the susceptibility in a power series of the electric field like
in (19.2) only makes sense if it converges fast. Though terms up to χ(7) are
discussed in the literature, e.g., in [95A1,00A1,01A1], one usually stops with
χ(3) terms.

On the other hand, presently available pulsed lasers bring focus intensities
up to 1020 Wcm−2. These intensities, the resulting generation rates, and the
related electrical field strengths clearly go far beyond the applicability of the
approaches used in Sects. 19.1 and 19.2.

Expected effects have been discussed in [51S1, 64B1, 66K1, 97C1, 98M1,
01C1, 01Z1, 02M1, 02S2, 02S3, 03W1, 04W1] and the references given therein.
We give here only a short and limited listing since most of these effects are no
longer specific for semiconductors and thus lead beyond the scope of this book.

– The Rabi frequency mentional already, discussed in more detail in Sect. 20.4
and in Chap. 23 and 27, can become comparable to the light frequency,
allowing the population to flip coherently from the ground to the excited
state and back during a laser pulse with only a few cycles of light. This
so-called (carrier-wave) Rabi flopping has been predicted in [37R1] and
observed, in semiconductors in [01M1,02S1].

– Higher harmonics can be generated up to the soft X-ray regime from atoms
[66K1,93H1,01P1] or from a laser induced plasma on a solid surface [01C1,
02S2].

– Since laser pulses with extreme intensity are often very short and partly
comprise only a few cycles of light, the nonlinear properties start to depend
on the relative phase of the carrier wave of the light and the maximum of
the pulse envelope. If this phase shifts in a controlled manner from pulse to
pulse, the resulting carrier envelope offset frequency can be measured and
possibly used as a frequency normal (see, e.g., [02M2,03C1,04W1]).

– Solids can be melted or evaporated [92B1,97G1,00H1,01C1].
– A plasma can be produced at the surface or in the bulk of solids [97G1,02S2].
– A fusion can be ignited [98M1,02M1].
– The so-called ponderomotive energy of electrons can reach relativistic ener-

gies. The ponderomotive energy is defined as the energy a free electron can
reached during acceleration in the light field of a laser pulse. If we assume
that the electron is free, initially at rest, and consider only the electric field
over one half a period of light, neglecting the B field or relativistic effects,
we can easily show that [96J1]

Epond =
p2

2m
=

2e2E2
0

mω2
0

(19.21a)

with

p =
∫ π

0

ṗdt =
∫ π

0

E0 sinω0tdt = 2eE0ω
−1
0 (19.21b)



472 19 High Excitation Effects and Nonlinear Optics

Since the therm ev×B of the Lorenz-force depends via (19.21b) quadratically
on the field amplitude it can give rise to photon-drag effects [03H1]. Epond

can easily exceed the width of the forbidden gap of a semiconductor or the
work function of electrons by orders of magnitude, thus giving only limited
importance to whether an electron is initially free or bound in an atom or
a solid. Expected effects that are partly observed are, e.g., nuclear fusion or
second harmonic generation from a single electron in vacuum. Effects that are
expected for the future are, e.g., nonlinear optics involving the Dirac sea with
effects like e−e+ pair production in vacuum with two counter propagating light
beams (see, e.g., [98M1,00C1,02M1,03W1,04W1] and references therein).

Obviously, exciting phenomena are emerging in this field.

19.4 Problems

1. Try to make a rough guess of the electric field strength due to the posi-
tively charged nucleus of Si at the distance of the outer electron shell. At
what light intensities would you expect to observe coherent optical non-
linearities assuming that the electric field in the light beam is about 0.1
of the electric field from the nucleus. How do the field strength and the
light intensity change if you consider excitons instead of atoms?

2. Calculate the light intensity necessary to create in a semiconductor with
Eg ≈ 1.5 eV a stationary density np of 1018 cm−3 electron–hole pairs, if
their lifetime is 0.1 ns (direct gap semiconductor) or 1 µs (indirect gap
semiconductor).

3. Give a schematic drawing as in Fig. 19.2 for a three-photon absorption
process and for third-harmonic (3ω) generation. Give the formula for the
three-photon absorption coefficient β3 and for the third-harmonic gen-
eration in perturbation theory. Can third-harmonic generation occur in
centrosymmetric crystals?

4. Try to find some more processes which contribute to Re{ñ2(ω)}.
5. Calculate the critical densities nc

p for some semiconductors using the for-
mula (19.20).

6. Letaparallel laserbeamwithalateralGaussianenvelopefallonasamplewith
Re{ñ2} �= 0. Explain qualitatively how self-focussing or defocussing works.

7. If the pulse of problem 6 also has a short temporally Gaussian envelope,
one expects so-called self-phase modulation, which broadens the spectrum
beyond the Fourier limit (the so-called chirp mentioned in the text). Try
to figure out qualitatively how this effect works.
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20

The Intermediate Density Regime

In the following sections we present selected examples from the intermedi-
ate density regime where excitons biexcitons and trions are still good quasi-
particles.

20.1 Two-Photon Absorption by Excitons

We have mentioned already the two-photon absorption (TPA) to the exciton
level in connection with k-space spectroscopy of polaritons (Sect. 13.1.4) and
with the magnetic properties of excitons (Sect. 16.1). The process is described
in the weak coupling limit by (19.9), i.e., a first photon virtually excites an
intermediate state which is converted by a second photon to the exciton in the
final state. In the strong coupling limit, one would say that two photon-like
polaritons merge to form one exciton-like polariton. The momentum conser-
vation

�k1 + �k2 = �kexc (20.1)

usually allows only the longitudinal exciton and the upper polariton branch
(UPB) to be reached. The two-photon selection rules are different from those
for one photon. Consequently it is sometimes possible by TPA to reach states
that are forbidden in one-photon absorption and vice versa. Examples are
given in Chap. 26 on group theory. Experimental result for the two-photon
spectroscopy of excitons have already been given in Figs. 13.20, 13.23, 13.30
and in Fig. 16.5. More details, including three-photon absorption, are found
in [81F1].

More recent data on two- and three-photon absorption spectroscopy e.g. of
ZnTe or ZnO and on the influence of stress are found in [93F1,98W1]. Some
examples for two-photon spectroscopy of excitons in quantum-wells can be
found in [01L1] of Chap. 1.

The two-photon absorption coefficient β of (19.8), (19.9) has been in-
vestigated for various bulk semiconductors in the band-to-band transition
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region in, e.g., [80K1]. More data for this quantity as well as for second
harmonic-, sum- and difference frequency generation in bulk or at surfaces
or for the dc-effect can be found e.g. in [71K1, 84S1, 97C1, 01Z1, 02S3] and
the books [65B2,75A1,86E1,90B1,95M1,00N1] both of Chap. 19. Some more
recent data on second harmonic generation including quantum structures are
given e.g. in [98W1, 01L1, 01W1]. The creation of squeezed light via an n2

process (see (19.3)) has been reported in [95F1]. We will come across further
examples of two-photon absorption and χ(3) and higher processes in Sects. 20.3
and 23.2.

20.2 Elastic and Inelastic Scattering Processes

If we increase the density of really excited excitons, it can happen that two ex-
citons meet during their lifetimes on their diffusive motion through the sample
and scatter via their mutual dipole-dipole interaction while a dipole-monopole
interaction would describe the scattering of excitons with free carriers. Scat-
tering of excitons with LO-phonons has already been introduced in Sect. 13.1.
For an early description of such scattering processes see [69B1] and for a re-
view [81K1]. All of these scattering processes will disturb the phase of the ex-
citon (exciton-like polaritons). We will meet an example of this phenomenon
in Chap. 23.

The scattering processes themselves can be categorized into elastic and
inelastic. For elastic scattering the sums of kinetic energies before and after
the collision are equal, in addition to momentum conservation. For an elastic
scattering event between two excitons we obtain, e.g.,

ki,1 + ki,2 = kf,1 + kf,2 (20.2a)

�2

2M
(
k2

i,1 + k2
i,2

)
=

�2

2M
(
k2

f,1 + k2
f,2

)
(20.2b)

in analogy to the definition in classical mechanics. These processes show up
mainly in the reduction of the phase relaxation time T2 i.e. in an increase
of the homogeneous broadening. In the inelastic processes on which we shall
concentrate now, an exciton is scattered into a higher excited state with prin-
cipal quantum number nB,f ≥ 2, while another is scattered on the photon-like
part of the polariton dispersion and leaves the sample with high probabil-
ity as a luminescence photon, when this photon-like particle hits the surface
of the sample. This process is shown schematically in Fig. 20.1. The mo-
mentum conservation law is given by (20.2a) with one of the kf being ≈ 0.
If we assume that both excitons are initially in states nB,i = 1 and that
the momentum of the photon-like polariton is zero, then energy conserva-
tion reads

�ωPnB,f
= Eex(nB = 1,k = 0) − Eb

ex

(
1 − 1

n2
B,f

)
− �2

M
ki,1ki,2 . (20.3)



20.2 Elastic and Inelastic Scattering Processes 477

The resulting emission bands are usually called P -bands with an index
given by nB,f. The bands are broadened by averaging over the last term on the
right of (19.3) and by the fine structure of the exciton states, e.g., the splitting
of the nB = 2 exciton into states with S, P0 and P1 envelope functions.

The transition probability into the continuum (P∞) decay rather fast with
increasing excess energy. A summary of the calculations for the transition
probabilities and further references are given in [69B1,81K1,94K1].

In the simplest approximation, one expects that the luminescence intensity
of these scattering processes increases quadratically with the density of exci-
tons. Indeed one finds a superlinear increase of these bands with increasing
pump power with exponents ranging from 1.5 to 2.

In Fig. 20.2 we give an example for ZnO showing the P2 and P∞ bands.
References to further experimental results are compiled in [75K1,81K1,85H1,
94K1]. Fo r more recent data in semiconductors like ZnO or CuI see [97Z2,02T1]

At higher lattice (and exciton) temperatures a fraction of the exci-
tons will be thermally ionized. In this situation a similar inelastic scat-
tering process becomes possible, in which an nB = 1 exciton-like polari-
ton is again scattered onto the photon-like branch of the dispersion curve,
while a free carrier (electron or hole) is scattered under energy and mo-
mentum conservation into a higher state in the respective band. A char-
acteristic feature of the resulting rather broad and unstructured emission
band is that its maximum shifts with increasing temperature considerably
faster to lower energies than the band gap does. Examples are given in
Fig. 20.3, for CdS and ZnO. While the basis for exciton-exciton scatter-
ing is the dipole-dipole interaction, we have to consider dipole-monopole in-
teraction for the scattering between excitons and free carriers. For exaples
see [76H1,78K1,78M1,81K1].

In the literature one can find many other inelastic scattering processes not
considered here in detail involving both free and localized states, for example,
biexciton-biexciton scattering, scattering between a bound-exciton complex
and a free carrier, and scattering processes involving phonons. A review is
given in [81K1].

Most of these inelastic scattering processes give rise to the appearance of
new emission bands (which usually grow more than linearly with the genera-
tion rate), to induced absorption and, eventually, to optical gain. The latter
point will be addressed specifically in Chap. 22.

The inelastic scattering processes have been studied in great detail in the
hexagonal and cubic II–VI semiconductors, but they have also been observed
in III–V and I–VII compounds [69B1, 73H1, 74H1, 75G1, 75K1, 76H1, 78K1,
78M1,81K1,86U1,90P1,91C1,94K1,97Z2,02T1].

A density-dependent scattering between exciton polartons and LA phonons
leads to the concept of phonoritons, e.g., in Cu2O [99H1].

Inelastic scattering processes between excitons or between excitons and
free carriers have also been observed in quantum wells [01L1] and references
therein.
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Fig. 20.1. Schematic representation of the inelastic exciton-exciton scattering pro-
cesses P2 and P∞

Presently we see a lot of activities to extend or to reinvent the concept
of inelastic scattering processes to cavity polaritons, introduced in (17.1).
Examples for exciton-exciton or polariton-polariton scattering are found e.g.
in [00B1, 00T1, 02B4, 02B5, 02H1, 02S5] and for electron-polariton scattering
in [03L1]. Energy conservation has to be valid again similarly to (20.2) while
k conservation is restricted to the two-dimensional k‖-space. As it is fre-
quently the case in such a situation, partly also the nomenclature changes.
The photon-like lower polariton branch, which shows more a parabolic dis-
persion in microcavities (Fig. 17.2a) than a light cone, is named k-space trap,
the fulfillment of k conservation involves a “magic” angle, and the polaritons
themselves are introduced as “mysterious” particles, which are half light, half
matter [02B4]. See also Fig. 13.2

20.3 Biexcitons and Trions

We start with the discussion of biexcitons and trions for bulk material in
Sect. 20.3.1 and proceed to structures of reduced dimensionality in Sect. 20.3.2
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Fig. 20.2. The P2 and P∞ bands in the luminescence spectra of ZnO. According
to [73H1,74H1]

Fig. 20.3. The temperature dependence of various emission band maxima in CdS
(b) and ZnO (a). According to [75K1,81K1,94K1]

including in both cases also external fields, generally magnetic fields. The
concept of excitons and trions has already been introduced in Sect. 9.4.

20.3.1 Bulk Semiconductors

The idea that biexcitons might exist as bound states of two excitons has
been put forward in [58L1,58M1]. Relatively recent reviews of this topic are,
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e.g., [81K1,85H1,86U1,98I1]. Data for bulk semiconductors and for structures
of reduced dimensionality are compiled also in [99L1,02L1] and [01L1,04L1],
respectively.

The biexciton or excitonic molecule is, as already mentioned, a quasi-
particle consisting of two electrons and two holes, in analogy to the H2 or the
positronium molecule.

Its dispersion relation is given, in the simplest approximation, by

Ebiex(k) = 2Eex(nB = 1,k = 0) − Eb
biex +

�
2k2

4M
, (20.4)

where one assumes that the envelope function in the ground state is symmetric
under the exchange of equal particles, while the combination of the electrons
and of the holes is antisymmetric including spin.

General calculations have been made of the biexciton binding energy nor-
malized by the exciton binding energy as a function of the ratio of electron
and hole mass σ = me/mh (Fig. 20.4). The experimental data points for Ebiex

are normalized to the experimentally determined values of Eb
ex or to the calcu-

lated excitonic Rydberg energy. We have seen already in Sect. 9.2 that these
two quantities partly disagree. What is important from the theoretical point
of view is that the biexciton exists as a bound state for all values of σ and
that the curve Eb

biex/Ry∗ decreases monotonically in the range 0 ≤ σ ≤ 1.
The data points scatter around the theoretical predictions with an accuracy
comparable to that of the various calculations.

The semiconductor Cu2O (see Sect. 13.2.1.2) is possibly an exception.
Calculations indicate that the biexciton binding energy vanishes, though the
exciton binding energy is about 150meV [76B1]. This fact is cused by the
large ortho-para exciton splitting.

In the following we concentrate on optical nonlinearities connected with
the creation and the decay of biexcitons. For further reading see [76N1,81K1,
85H1,86U1,91C1,94K1,01K1].

The probability of creating two electron–hole pairs with one photon is
very low, but the probability for two-photon excitation is rather high and
is sometimes said to have a “giant” oscillator strength, since the virtually
created intermediate state is almost resonant with the exciton if photons with
�ωexc ≈ Ebiex/2 are used.

In connection with Fig. 20.5 we discuss this process as a two-polariton
transition. We give the real part of k and schematically the imaginary part.
The latter is close to zero for low damping away from the exciton resonance
(see Figs. 4.5 and 5.1). If we shine (laser-) light of an energy �exc onto the
sample, we populate this state on the lower polariton branch (LPB). A second
polariton with an energy

�ωabs = Ebiex − �ωexc (20.5)

can accomplish the transition from there to the biexciton. This means that
we get an absorption dip or a peak in Im k at �ωabs with an oscillator-
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Fig. 20.4. Calculations of the
binding energy of the biexciton
in units of the excitonic Ryd-
berg energy Ry∗. Experimen-
tal data for various semicon-
ductors, normalized to the ex-
perimentally observed exciton
binding energy (open symbols)
and to the calculated Ry∗ en-
ergy (full symbols). According
to [81K1]. Theories according
to [72A1,72A2,72B1,73H2]

strength which increases with the population at �ωexc on the LPB, evidently
an optically nonlinear effect. The peak in Im k is necessarily connected with
a resonance-like structure in the real part of the dispersion relation. In the fol-
lowing we give examples of both phenomena, but first we should mention that
there is another way to create biexcitons. This starts from exciton-like polari-
tons, which may even have an incoherent, e.g., thermal population. In the
latter case an exciton is converted into a biexciton by absorption of a photon
of energy �ω′

abs fulfilling energy and momentum conservation. Considering the
different curvatures, i.e., effective masses, of exciton and biexciton dispersion,
this process yields an induced absorption at

�ω′
abs = Eex(nB = 1,k = 0) − Eb

biex −
�

2k2
i

4M
, (20.6)

where M is the translational exciton mass, 2M the biexciton mass and ki the
momentum of the exciton-like polariton in the initial state, which equals the
momentum of the biexciton in the final state if we neglect the wave vector
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Fig. 20.5. The two-photon (or two-polariton) transition from the crystal ground
state to the biexciton state and the two-step process starting from the exciton state

of the photon-like polariton. This process is also known as a two-step process
to distinguish it from the two-polariton (or two-photon) transition discussed
first. See also Sect. 19.1.

Actually one difference lies in the fact that in the latter case one of the
polaritons is either on the photon- or on the exciton–like branch, respectively.
A second difference is that the laser at �ωexc generally produces a more-or-
less coherent population on the LPB while the population on the exciton-like
branch produced, e.g., by some resonant or non-resonant pump laser, tends
to lose its coherence within a few ps (see Sect. 23.2).

In Fig. 20.6 we give an example of the various processes in a pump and
probe beam experiment for CuCl. One can see the scattered, spectrally narrow
pump laser light �ωexc and the absorption dips in the probe continuum, which
correspond to a bound-exciton complex labelled BEC, the TPA process of
(20.5) which shifts oppositely to the energy of the laser, and the two-step or
induced absorption process of (20.6) which is fixed in energy and has a larger
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Fig. 20.6. Two-photon and two-step transitions to the biexciton observed in CuCl.
According to [85H1]

width due to the incoherent distribution of the excitons on their dispersion
curve.

By varying the wave vectors of pump and probe beams relative to each
other, it is even possible to measure the dispersion relation of the biexciton
in a TPA experiment. An example is shown in Fig. 20.7 for CuBr. Due to the
four-fold degeneracy of the Γ 8 valence band, the biexciton ground state splits
into three states with symmetries Γ 1, Γ 5 and Γ 3. The Γ 1 state shows the
simple dispersion of (20.4), while the higher states show some k-dependent
splitting.

The dispersion of the biexciton has been also measured in CuCl [84K1,
85H1] or CdS [82L1]. In [98I1] it has been shown, that the polariton-polariton
interaction in a biexciton may result in a modification of the dispersion rela-
tion of the biexciton. For experimental data see, e.g., [01M1].

The decay of biexcitons into an exciton-like and a photon-like polariton is
just the reverse process of the two-step transition of (20.6).

Energy and momentum conservation show, that these luminescence bands,
which are frequently called M -bands, have an inverted Boltzmann line shape.
Consequently the binding energy of the molecule has to be deduced not from
the emission maximum but from its high energy edge (see, e.g., [81K1]).

Furthermore it should be noted that the biexciton luminescence generally
occurs in the same spectral range as the emission from bound exciton com-
plexes like A◦X and D◦X, which are also made up of two positively and two
negatively charged particles. Side bands of these complexes originating, e.g.,
from emission of acoustic phonons or inelastic scattering with free carriers
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Fig. 20.7. The dispersion of the lowest biexciton states in CuBr. According to [85H1]

often look very similar to biexcitonic M bands and can be easily confused.
For more details on this topic see [81K1].

Figure 20.8 shows biexciton luminescence spectra of CuCl under non-
resonant and resonant high excitation. In the first case excitons are created,
which form biexcitons with a thermal distribution. The temperature of the
exciton and the biexciton gas can be higher than the lattice temperature TL

which describes the phonon system and, in the situation of Fig. 20.8, lies
around 25 K.

In the decay process a longitudinal exciton or a transverse exciton-like
polariton can appear in the final state together with the photon-like lumi-
nescence. Consequently one observes in cubic materials the so-called ML and
MT bands. Under resonant two-photon excitation of the biexciton, one creates
a biexciton gas with a narrow, non-thermal distribution, the decay of which
gives rise to narrow emission structures NT and NL at the high energy sides
of the ML and MT bands, respectively. This spectral position corresponds to
the recombination of biexcitons with small wave vectors [76L1, 79H1, 85H1].
Similar effects are also known for CuBr [85H1,86U1] or for CdS [79S1] or for
β-ZnP2 [01D1].

For (inconclusive) attempts to observe a Bose–Einstein condensation of
biexcitons see [76N1,82P1] and Sect. 20.5.
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Fig. 20.8. Biexciton luminescence of CuCl under resonant and non-resonant exci-
tation. According to [85H1]

As stated in Chap. 26, the angular momentum can be used (with con-
siderable care) for arguments concerning selection rules, especially for cubic
materials. This fact has been used for beautiful experiments with circularly
polarized light. Starting from the Γ1 ground state a Γ1 biexciton state can
only be reached by two quanta with opposite circular polarization as veri-
fied in [78I1,82I1,82K3,84K1,86I1,86K1,96H1]. This approach was also used
later in quantum wells wires and dots to prove the assignment of an observed
transition to biexcitons. See e.g. [96P1,99W1,03P1] and references therein.

The diamagnetic shift of the biexciton has been measured, e.g., in CdS
[82K1]. It is larger than that of the exciton due to the larger radius of the
biexcitons.

In the II–VI compounds, the emission bands of biexcitons are less struc-
tured due to the orientation-dependent mixed mode final states (see Sect. 13.1
and [81K1,85H1]). Furthermore, in many II–VI compounds the biexciton emis-
sion is spectrally almost degenerate with other recombination processes, espe-
cially ones involving bound-exciton complexes like inelastic BEC-free-carrier
scattering or the acoustic phonon side-band of EEC. Therefore a clear-cut
proof of the existence and the properties of biexcitons is difficult to obtain
in these materials from luminescence alone. Details of this topic are given
in [81K1]. Some recent work on biexcitons in epitaxial layers of wide gap semi-
conductors such as ZnO, ZnS or GaN is found in [97Z1,00K1,00Y1,00Y2,03A1,
03H2,04A1]. As earlier in bulk ZnO [83H1] biexcitons have been observed re-
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Fig. 20.9. The two-photon Raman scattering via intermediate exciton and biexciton
states in a backward scattering geometry (a) and for the lower polariton branch over
a two-dimensional k space (b) [82K2]

cently with countain two holes from the A valence band, one hole from the
A and one from the B valence band for ZnO and GaN and even two holes
from the B valence band in ZnO [03A1,03H2,04A1]. Slight discrepancies exist
between the energies of the three levels in ZnO, especially concerning the BB
biexciton in [83H1,03H2,04A1]. The data in [83H1] have been consistently ob-
served by different groups and in different samples, while it is known [83H1],
that resonances in two-photon Ramon scattering, a technique from the group
of four-wave mixing experiments (see Chap. 25), may lead to erroneous results.

Excitonic molecules have also been observed in the indirect materials Ge
and Si in the intermediate density regime before the onset of plasma forma-
tion [79G1, 79M1, 82T1, 84T1, 01R1]. Furthermore, biexcitons have not only
been found in I–VII, II–VI and group-IV materials, but also in other less com-
mon semiconductors like HgI2 or AgBr [81K1, 85H1, 99L1, 02L1], so that the
formation of biexcitons can be considered a rather general feature in the in-
termediate density regime at low temperatures. At higher temperatures biex-
citons are rapidly ionized and their resonances become so broad that they can
generally no longer be detected.

Trions have been p redicted for bulk material, e.g., in [76S1, 97S1], but
there is not much of experimental evidence for their existence in contrast to
quantum wells (see Sect. 20.3.2).

To conclude this subsection on biexcitons in bulk semiconductors we de-
scribe in some detail a coherent process which is doubly resonant and which
belongs into the group of χ(3) phenomena. We refer to the two-photon or
hyper-Raman scattering and the associated (non-) degenerate four-wave mix-
ing. The idea is described in the following in both the weak and the strong
coupling limits (see Fig. 20.9a,b and compare with Fig. 19.2).
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An incident photon, which is almost resonant with the exciton state, is
converted by a second photon into a virtually excited biexciton. This biexciton
has to decay again after a time ∆t determined by the energy-time uncertainty
relation. If it decays into two photons, which are identical to the incident ones,
this process would describe an intensity induced change of the phase velocity,
i.e., a contribution to Re{ñ2} in (19.3). However, there are many other decay
processes which fulfill energy and momentum conservation.

In a backward scattering process, the virtually excited biexciton at wave
vector

(
k

(1)
i + k

(2)
i

)
can decay into a transverse or a longitudinal exciton at

kf and a Raman-like photon with �ωRt,l according to

kR = k
(1)
i + k

(2)
i − kf , (20.7a)

�ωRt,l = �ω
(1)
i + �ω

(2)
i − El,t , (20.7b)

Since the transverse and longitudinal eigenenergies do not vary much with
k in this range, we get for �ω

(1)
i = �ω

(2)
i simply

�ωRt,l = +2�ωi − El,t , (20.7c)

where the factor 2 on the right explains the name two-photon Raman scat-
tering.

In forward scattering and for all intermediate scattering geometries ((20.7))
would be the same in the weak coupling limit. In the polariton picture this
statement is only true if one particle in the final state is a longitudinal exci-
ton. Indeed, the two-polariton state created by the two incident beams, which
is almost resonant with the biexciton, can decay either into a longitudinal
exciton and a transverse polariton or into two polaritons. In the latter situ-
ation both final state particles are on the transverse branches. One particle
is exciton-like in the backward configuration, but moves down into the bottle
neck if the scattering geometry is changed towards forward scattering. In this
case both final state particles have a certain chance of leaving the sample as
a photon. For ω(1)

i = ω
(2)
i they will be situated in scattering geometries close

to forward scattering slightly above and below ωi and they will be therefore
called �ω+

R and �ω−
R , respectively. The resulting relation between �ωR and �ωi

deviates significantly from the slope-two relation of (20.7c).
In Fig. 20.9b we show a graphical solution. The kx-ky plane is the scatter-

ing plane which contains k
(1)
i = k

(2)
i = ki and kf. The lower polariton branch

is plotted centered around k = 0 and again in negative energy direction, start-
ing from 2ki, 2�ω; according to (20.7a), (20.7b). The intersection line between
both energy surfaces or dispersion relations gives just the solutions of (20.7a-
c). An avoided crossing has not been considered in Fig. 20.9b. It leads to the
additional modification shown in [98I1] and mentioned above in the context
of bipolaritons. We come to various (self-) renormalization effects below, but
first discuss the solution obtained, if they are neglected.
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Examples for forward and backward scattering are given in Fig. 20.10 for
CuCl and various geometries. A self-consistent fit of the data with calculated
dispersion curves for the exciton polaritons allows one to determine their
dispersion curve with high accuracy, as was mentioned in Sect. 13.4 on k-space
spectroscopy of excitonic polaritons. It should be stressed that the deviations
from the slope-two relation in Fig. 20.10c can be only understood in the
polariton or strong coupling picture.

The excitation-induced resonance of Fig. 20.5 shows up as an anomaly in
the otherwise smooth relation between �ωi and �ωR if one of the incoming
or outgoing energies coincides with it. An example of this density dependent
renormalization of the polariton dispersion is shown in Fig. 20.11.

The fact that the splitting between �ωexc and �ωRT± does not converge
to zero for higher intensities in exact forward scattering indicates that there
are also self-renormalization effects of the dispersion at �ωexc in the sense
of an n2 effect in (19.3) [85H1]. For further examples of renormalizations of
the polariton dispersion with increasing excitation see, e.g., [78I1,79M2,82I1,
82K3,83H1,84K1,86K1,96H2] and the reviews [81K1,85H2,98I1]. These ref-
erences also give examples and/or references for hyper- or two-photon Raman

Fig. 20.10. The dependence on �ωexc of the two-photon Raman emission via an
intermediate biexciton state in CuCl for various scattering geometries (a,c) and a set
of spectra for forward scattering (b). According to [85H1]
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Fig. 20.11. The anomaly in the relation between �ωexc and �ωemission caused by
the TPA resonance explained with Fig. 20.5. The dashed and solid lines give the
theory without and with this resonance. According to [85H1]

scattering in semiconductors other than CuCl, like CuBr or various II–VI
compounds.

Until now we have been considering the “spontaneous” decay of the virtu-
ally excited biexciton in the intermediate state. It is also possible to stimulate
this decay by directing a third beam onto the sample which coincides in di-
rection and energy with one of the particles in the final state. The emission
of the other particle is then stimulated and we get a typical χ(3) process in
the sense of Fig. 19.2d. Alternatively we can describe this process as (non-)
degenerate four-wave mixing (N)DFWM or as a diffraction of the third beam
from a coherent laser-induced grating set up by the interference of the other
two incident beams. Actually the close relation between two-photon Raman
scattering and (N)DFWM has been verified by various groups, e.g., for CuCl.
Details are given, e.g., in [85H1, 86U1]. For a measurement of second order
nonlinear susceptibility in various II-VI compounds see [98W2].

20.3.2 Structures of Reduced Dimensionality

Trions, biexcitons and even higher complexes have been observed in many dif-
ferent quantum wells, wires and dots. We give a small selection of results here
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and refer the reader for further data to [98I1, 01L1, 04L1] and the references
given therein.

In III–V quantum wells and superlattices like GaAs/Al1−yGayAs biex-
citons have been predicted and observed experimentally. See, e.g., [83K1,
91B1, 92B1, 92O1, 92P1, 92P2, 93P1, 94P1, 96B1, 97M1, 01E1]. Though there
is still some controversy concerning the calculation of their binding energy
[83K1,96S1,98I1,99D1,02R1], there is general agreement that the binding en-
ergy of the biexciton is around 1.8meV for a GaAs well with a width around
10 nm. Actually it has been found that the ratio of the width dependent bind-
ing energies of biexcitons and excitons is roughly constant [96B1, 96S1]. For
In1−yGayAs wells see [99B1].

Eb
biex/E

b
ex ≈ 0.23 (20.8)

In Fig. 20.12 we show normalized emission spectra of an lz = 10 nm
GaAs/Al1−yGayAs MQW sample at low temperature and for various pump
powers.

The peak labeled M on the low energy side of the exciton emission grows
more strongly than that of the exciton as shown in the insert. It is at-
tributed to the radiative decay of a thermal population of biexcitons into
photons and excitons. The line shape fit gives Eb

biex = (1.75 ± 0.05) meV in
good agreement with other experimental findings, e.g., quantum beats (see
Sect. 23.2 or [92O1,92P1]).

Fig. 20.12. The absorption and normalized emission spectra of an AlGaAs MQW
sample, showing the biexciton luminescence band M , which grows superlinearly as
shown in the insert. According to [92O1,93P1,94P1,96B1]



20.3 Biexcitons and Trions 491

Similarly as for excitons, one realized that also biexcitons tend to be lo-
calized by, e.g., well width fluctuations. This effect may even enhance the
biexcitons binding energy [99L2, 03P1] opening a bridge to the investigation
of biexcitons in quantum islands (see below).

Biexcitons have been investigated in external magnetic fields in GaAs and
In1−yGayAs wells [94B2,01B1] partly revealing an unexpected field indepen-
dence of the biexciton binding energy.

Biexcitons have also been observed in quantum wells embedded in mi-
cro cavities (see Sect. 17.1.2) resulting in an additional resonance due to the
exciton to biexciton transition [00D1,03B3].

Trions have been observed in quantum wells by many groups. This fact
contrasts the situation in bulk samples (see above) and has the following
origin. Quantum wells (or wires) can contain a moderate density of electrons
or of holes by slightly doping the barrier. Excitons created by optical pumping
then have a rather high probability to bind another carrier resulting in X− =
(e, e, h) or X+

2 = (e, h, h) trion complexes.
Trions are usually observed in luminescence. Their binding energy is

slightly smaller than that of the biexciton. Examples can be found, e.g., in
[95F2,96F1,96O1,99L4,00E1,03P1] and in the references given in [01L1,04L1].
For charge transport by X− see, e.g., [01S1].

Until now we have mainly presented references for III–V, GaAs-based
quantum wells, a group of semiconductors in which biexcitons are hardly
detectable in bulk materials due to their small binding energy.

In contrast, biexcitons are already well known in bulk II–VI semiconduc-
tors as shown in Sect. 20.3.1. Consequently they must also exist in II–VI quan-
tum wells with an even confinement enhanced binding energy. In the following
we give a small selection of references. More will be compiled in [03N2,04L1].

The binding energy of biexcitons reaches values up to 6 meV in ZnSe-
based quantum wells as shown, e.g., in [02W1]. The ratio Eb

biex/E
b
ex varies

here systematically from 0.10 to 0.23 with decreasing lz in contrast to (20.8),
but is at least in the same range.

For localized excitons and biexcitons values up to Eb
biex ≈ 8, 5 meV are

reported in [96P1, 97L1, 99G1, 99L2, 00W1] in agreement with findings for
GaAs-based structures mentioned above.

Biexcitons containing one hh and one lh have been identified using the
selection rules for circularly polarized light in [96P1, 99W1]. This finding is
in close analogy as for biexcitons in bulk ZnO, which may contain two holes
from the A valence band, one from the A and another from the B valence
band, or two B holes as discussed above [83H2].

Biexcitons in semi-magnetic semiconductors are treated in [01M1] and stim-
ulated emission in [95K1]. Biexcitons in type II ZnSe/BeTe superlattices are ob-
served in [01M1,04J2]. Eletrons and holes reside in the two different materials.

The existence and the properties of trions in II-VI quantum wells are also
well established. They show up in luminescence, reflection and transmission
spectra [02A1,02G1].
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Their binding energies tend to be larger for X− compared to X+
2 . The

influence of a magnetic field on this quantity has been investigated in [02A1].
The differences between electron singlet and triplet states of X− are elabo-
rated in [02G1]. The trion reflection signal has been used to determine the
carrier density [02A2] and optical gain connected with the recombination of
trions is reported in [01P1].

For quantum wires, the situation is similar as for quantum wells. The
existence of biexcitons and of trions is well established in nanostructured, T-
shaped and V-groove wires. For biexcitons see, e.g., [98B1, 98V1, 99L3, 01L1,
02W1,04L1]. It has been found in [98B2] that the binding energy of the biex-
citon is 40% higher than in a corresponding quantum well.

For trions, data can be found in [04K1]. For recent reviews see [93B1,
97W1,01L1,04L1].

Biexcitons in quantum dots in glasses have been observed both in lumi-
nescence and in pump-and-probe beam spectroscopy. The biexciton ground
state is lower in energy than twice the energy of a single exciton in a dot
[90H1]. Due to the three-dimensional confinement there is also a large num-
ber of excited states of the biexciton or two electron–hole pair system in
a dot [90U1,93B1,94K1,97W1].

In the following we show two examples. Figure 20.13a gives luminescence
spectra of CuBr dots in a glass matrix for increasing excitation intensity.

The peak on the high energy side is due to the recombination of single ex-
citons in the dots. The peak on the low energy side, which grows more rapidly
with increasing Iexc than the other one, is attributed to the recombination
of a biexciton, giving a photon and a single exciton in the dot. This inter-
pretation is not only confirmed by the superlinear increase of the biexciton
luminescence band but also by the dependence of the emission maxima on
the (inverse squared) average dot radius R. The extrapolation to large dot
radii converges to the energies of the free exciton and the lowest biexciton
luminescence band in bulk samples. The binding energy of the biexciton as
a function of R agrees well with theory (Fig. 20.13c).

In Fig. 20.14 we show the inhomogeneously broadened absorption spectra
of two (photo-darkened) glass samples containing CdSe quantum dots and the
change of the optical density for various pump photon energies �ωexc.

In Fig. 20.14a,b we observe a bleaching or spectral hole burning at �ωexc

in the inhomogeneously broadened absorption band, and at a second energy
for the dot size of Fig. 20.14a. These two features correspond to the saturation
of the transitions form the two uppermost quantized hole states to the lowest
conduction band state.

The two structures of induced absorption marked by arrows, correspond
to transitions in dots containing one exciton to the ground and an excited
state of the biexciton, respectively.

Quantum dots of various II–VI compounds have been also produced by
precipitation in organic solvents. For biexcitons in these materials see, e.g.,
[97W1,02M1,02M2].
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Fig. 20.13. The normalized emission of CuBr quantum dots for various excitation
intensities (a); the spectral positions of the emission maxima as a function of the
average dot radius R̄ (b); and the binding energy of the biexciton compared to
theory (c). According to [90H1,94W1]

Presently, self-assembled quantum islands are preferentially investigated
and dots grown on the top of nanopyramids. Model substances for the first
type are InAs/GaAs and CdSe/ZnSe and for the second GaAs/Al1−yGayAs
but other combination are also used. For some recent data see [01W2, 02A3,
03K2, 03P1, 04K2, 04L2] and Sects. 8.13 and 15.4. After the observation of
biexcitons in many different groups of semiconductors and in all (quasi-) di-
mensions from three to zero, their verification in self assembled islands was
not really a surprise. Currently the work concentrates on the spectroscopy of
single or a few dots or islands, generally under the influence of a magnetic
field and under exploitation of the selection rules for (circularly) polarized
light. Examples for such type of investigations are, e.g., [98K1] where binding
energies of biexcitons in In0.6Ga0.4As islands of 3.1 meV have been reported.
For trions see, e.g., [01B2,02B1].



494 20 The Intermediate Density Regime

Fig. 20.14. The absorption spectra of two photo-darkened glass samples containing
dots of CdSe and the differential transmission spectra for various pump-photon
energies. According to [93G1]

Phonon-assisted biexciton generation or recombination is a topic treated
both in III–VI [00F1,00F2,01Z1] and II–VI islands [99G1].

Multiexciton complexes in quantum islands also form a recent topic of re-
search [98B1,00D2,00D3,00F2,01W2,01W3]. These complexes have a certain
similarity to the multiexciton complexes bound to point defects like P in Si
(see Sect. 14.1).

For singly or even higher charged excitons see, e.g., [00H1, 01B1, 01H1,
01W2,01Z1,02S1,02S2] and for internal transitions in biexcitons [01P2].

In II–VI islands the binding energy of excitons is partly larger than that of
excitons in the parent bulk material. Values above 20 meV have been reported,
e.g., in [99W2,00W1,01H2].

Optical gain resulting from the recombination of excitons, biexcitons or of
even higher complexes has been reported, e.g., in [92D1, 95W1, 95W2, 96G1,
96W1,02M1,02M2,03H1]

To conclude, we state that biexcitons, trions and mutliexciton complexes
are well established phenomena in semiconductors.

Correlated photons have been observed in the single InAs dot emission
from the optical transitions biexciton → exciton and subsequently exciton →
ground state [01M2,02S1,02S2,03U1]. We shall briefly return to this topic in
Chap. 23.
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20.4 Optical or ac Stark Effect

A further example of optical nonlinearities in the intermediate density regime
is the optical, ac or dynamical Stark effect. The name implies that we are
dealing with a shift of the exciton resonance caused by the electric field of
a light beam in the sample. For recent reviews see, e.g., [88O1, 89C1, 90Z1,
93Z1,01B4] and references therein.

This phenomenon is well known in atomic spectroscopy [92C1] and is fre-
quently described in the “dressed atom” picture, i.e., as an atom in the pre-
sence of photons. A simple explanation, outlined in the following, is in terms
of level repulsion, a phenomenon which we encountered already several times
and which generally occurs in quantum mechanics for two energetically close
lying levels which interact with each other.

We assume that the energy of the incident photons is chosen slightly be-
low the exciton resonance and use the weak coupling picture. Then a state
|m,n = 0〉 containingm photons and n = 0 excitons is almost degenerate with
a state |m− 1, n = 1〉. Since the two states are coupled via dipole interaction,
an energetic repulsion of the two levels occurs.

The frequency of the photons ω is held constant from the outside by the
incident laser. Consequently the exciton resonance shifts in a model which
includes only the 1 s exciton resonance to slightly higher energies for �ω −
Eexc < 0 and possibly to lower energies for �ω − Eexc > 0 by an amount δE.
This quantity has been calculated by various authors [88O1,89C1,89S1,90Z1,
93Z1,01B4]. We cite here the result from [89S1]:

δE =
2 |ercvEp|2 |φ1s (re − rh = 0)|2

(E1s − �ωp)NPSF
S

, (20.9)

where ercv is the band-to-band transition matrix element or polarizability, Ep

the field amplitude of the incident laser at frequency ωp, |φ1s (re − rh = 0)|2
describes the (Sommerfeld) enhancement of the transition probability of the 1s
exciton, E1s − �ωp the detuning, and NPSF

S the density of electron–hole pairs
necessary to block the exciton resonance by phase-space filling (Chap. 21).

The term ercvEpφ1s(re − rh) gives the so-called Rabi frequency (see also
Chap. 27) for the 1s exciton. This is basically a field-dependent beat frequency
with which the excitation oscillates coherently back and forth between the
electronic excitation and the photon state.

The Rabi frequency also gives the splitting if �ω and the exciton energy
coincide.

Actually there are more terms in the shift that include, apart from the
renormalization of the 1s exciton resonance, the continuum transitions, phase
space filling, etc. with the consequence that the exciton resonance might shift
to blue even if �ω is chosen above the exciton [96N2,00M2]. In the experiments
one is generally restricted to the situation �ω < E1s to avoid real excitation,
which would mask the optical Stark effect. Exceptions are the experiments
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on ZnSe [96N2], which allowed also to tune the laser in the transparent win-
dow above the exciton energy and gave clear evidence for dominating level
repulsion according to (20.9) in this situation.

We show in Fig. 20.15 two different experiments and two calculations,
namely in Fig. 20.15a subpicosecond pump-and-probe absorption spectra for
zero delay for a MQW sample with 10 nm GaAs and Al1−yGayAs barriers
from [86M1]. The pump beam was tuned significantly below the hh exciton
resonance. A clear blue shift of the hh exciton and a less pronounced one
of the lh exciton are observed. The rather strong reduction of the oscillator
strength might be due to some real excitation, e.g., via two photon absorption.
Figure 20.15c and d show some calculations from [96H1] using Boltzmann and
quantum kinetics for a single resonance. The fact that the latter shows better
agreement with experiments underlines the importance of this approach, to
which we come back in Sect. 23.2.

Fig. 20.15b finally shows, that very intense (generally several 10 MW/cm2)
subpicosecond lasers are not necessary to observe the optical Stark effect.
Nanosecond pulses properly chosen concerning intensity and detuning work
also. The fact that the differential transmission signal is almost symmetric and
coincides very well with the derivative of a Lorentzian fit to the absorption
spectrum indicate, that one observes a blue-shift without a change in oscillator
strength under quasi-stationary conditions.

The quantity

σ =
δE(E1hh − �ωp)

IP
, (20.10)

deduced from Fig. 20.15b is σexp = 8.5 × 10−8 (meV)2 cm2 W−1 and com-
pares favorably with the theoretical value and ps experiments giving σtheory ≈
5.8 × 10−8 (meV)2 cm2 W−1 [90K1].

A better description would again be in terms of polariton-polariton inter-
action [92K1]. This picture describes not only the shift of the exciton reso-
nance by an amount δE but also the appearance of optical gain positioned
symmetrically to the low energy side of the pump laser, i.e., at

�ωg = �ωP − (Eex + δ − �ωp) (20.11)

Equation (20.11) follows from the simple picture that a state with two po-
laritons at �ωp decays into a Stark-shifted exciton-like polariton and a photon-
like polariton at �ωg [88S1].

The optical Stark effect has also been observed in bulk materials like Cu2O
[85F1] and GaN [02C1] and in quantum wires [03F1].

To conclude, we may state that the optical or ac Stark-effect is also nowa-
days well understood for excitons in semiconductors. Apart from the specific
reviews [88O1, 89S1, 90Z1] mentioned above more details may also be found
in [96H1,96S1,01L1].

If we pump the samples even harder we leave the intermediate density
regime and enter the high density regime where the optical properties are
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Fig. 20.15. Pump-and-probe beam spectra of a 10 nm GaAs/10 nm Al1−yGayAs
MQW sample showing the optical Stark effect [86M1] (a) an absorption spectrum
without excitation and the differential transmission using 10ns pulses showing the
same effect according to [90K1] (b). Calculations using Boltzmann (c) and quantum
kinetics (d) [96H1]

determined by the electron–hole plasma. This concept was introduced in
Sect. 19.2. However, before treating this aspect we discuss briefly the Bose–
Einstein condensation of excitons and biexcitons and introduce another group
of optical nonlinearities, the so-called photo-thermal nonlinearities which also
generally belong to the intermediate density regime.

20.5 Excitonic Bose–Einstein Condensation

Excitons are Bosons to a good approximation, but are made up of two fermions
i.e. they are composite Bosons. Actually, the creation and annihilation oper-
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ators of excitons obey the commutation rules for Bosons, however, with an
additional correction term of the order 0

(
npa

3
B

)
where aB is the excitonic

Bohr radius and np is the density of electron hole pairs.
This fact already triggered predictions of excitonic Bose Einstein condensa-

tion (BEC)andexcitonic superfluidity (ESF) fortyyears ago [62B1,62M1,68K1].
For older and more recent reviews of this topic see [77H1,95B2,00M1,03P2].

On the other hand, the fermionic constituents result in a transition to an
electron–hole plasma at the highest intensities (see Fig. 19.3 and Chap. 21).
While the existence of the EHP is well established, excitonic BEC was, at the
time of writing this manuscript, still a controversially discussed topic [04I1],
in contrast to the situation of (alkali-)atoms in a trap (see, e.g., [95B2,02K2]
and the references given therein). Alkali atoms are also composite Bosons,
but the ratio between the ionisation energy and the thermal energy kBTC (see
(20.12)) is by many orders of magnitude larger than for excitons.

In the following we concentrate on attempts and possibilities to observe
excitonic BEC and ESF.

We start with some general considerations in Sect. 20.5.1, and then treat
the attempts to observe it in bulk (Sect. 20.5.2) and quasi-two-dimensional
semiconductors (Sect. 20.5.3). The section will be completed with short com-
ments about excitonic insulators and so-called “driven BEC”.

20.5.1 Basic Properties

BEC is a macroscopic population of one quantum mechanical state by Bose
particles (ideally, non- or weakly interacting) in thermal (quasi-)equilibrium
[24B1,24E1]. It occurs if either the temperature T is lowered below a critical
temperature Tc at constant particle density n, or if n is raised above nc at
constant T .

For non-interacting ideal Bosons, one finds the following relation between
nc and Tc [00M1]:

nc = 2.612g
(
mkBTc

2π�2

)3/2

(20.12)

where m and g are the mass of the particles and the degeneracy of the state,
respectively. The condensate can show superfluidity.

The fact that the mass of excitons is comparable to the free electron mass,
while those of, e.g., alkali atoms are ten to 100 times the proton mass and
that excitons can easily be created by pulsed lasers in a density range up
to 1017 cm−3, allows one to expect values of TC up to around 10 K, while
successful experiments to observe atomic BEC in traps required T as low as
a few 10 µK.

The weak interaction should be slightly repulsive, to avoid condensation
of the particles in real space, since a BEC is a condensation in k-space.

The only example of a BEC of weakly interacting Bosons is the condensa-
tion of alkali and H atoms in a trap treated, e.g., in the reviews [95B2,02K2].
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There are further examples of BEC for Bosons with rather strong inter-
action like the superfluidity of 4He and systems that involve the pairing of
Fermions and the formation of a gap, like superconductors or superfluid 3He.

Excitons would evidently be another example for weakly interacting Bosons.
Before we start to treat experimental attempts to observe excitonic BEC and
the objections against these interpretations, first we illustrate how (20.12) can
be understood.

We showed in Fig. 2.5 three occupation probabilities for particles with an
effective mass m, namely the Boltzmann statistics for distinguishable parti-
cles and the Fermi–Dirac and Bose–Einstein statistics for indistinguishable
particles with half or integer spin, respectively. They are given by

fB (T,E, µ) =
1

e(E−µ)/kBT
, (20.13a)

fFD (T,E, µ) =
1

e(E−µ)/kBT + 1
(20.13b)

fBE (T,E, µ) =
1

e(E−µ)/kBT − 1
(20.13c)

where µ is the chemical potential or for Fermions the Fermi energy. Evidently,
they coincide for (E − µ)/kBT > 2 and show characteristic differences below.

For particles with a well defined density n, µ is defined by (20.14)

n =

∞∫
E0

D (E) · fB,FD,BE (T,E, µ) dE. (20.14)

For particles like photons in black body radiation or phonons in thermal
equilibrium, the density of which is not conserved, one has µ ≡ 0. In Fig. 8.20
we showed the square root density of states of particles with a finite and
constant (effective) mass m in three dimensions starting at energy E0

D (E) ≈
√
E − E0 . (20.15)

If one now performs the integration (20.14) for a low density, then µ,
i.e., the origin of Fig. 2.5, is situated below E0. If the density increases, µ
shifts towards E0. Eventually µ coincides with E0. There is no singularity
for Boltzmann particles and Fermions. The density one reaches under this
condition for Fermions is given by

neff = g

(
mkBT

2π�2

)
(20.16)

and is known as effective density of states (see Sect. 8.9). For further increasing
n, µ shifts into the band. For Fermions, the distribution is then said to be
degenerate since the Pauli principle reduces the occupation probability from
1 to 1/2 at µ and limits it to 1.
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For Bosons the situation is different. The singularity at E − µ = 0 does
not allow µ to shift beyond E0. For µ = E0 the integrated population is finite
and corresponds to nc in (20.12).

For further increasing n > nc a macroscopic and coherent population of
the lowest state develops and accommodates all particles beyond nc. This is
the Bose–Einstein condensation. The condensed phase may show superfluidity,
i.e., loss- or frictionless motion.

Apart from a prefactor of the order of unity, the densities for the onset
of a degenerate population for Fermions and for the onset of BEC for Bosons
are equal.

20.5.2 Attempts to find BEC in Bulk Semiconductors

We now present various attempts to observe excitonic BEC in bulk semi-
conductors and the objections against these interpretations brought forward.
Since the topic of excitonic BEC and/or superfluidity appears almost regu-
larly every few years in literature since its prediction in 1962 we cannot treat
all examples. We briefly mention some older ones and then concentrate on
recent experiments for Cu2O.

The macroscopic population of one state should or could show up in a nar-
row luminescence peak. Therefore, several attempts have concentrated on
spectrally narrow emission lines. Unfortunately, not only a condensed exci-
ton phase gives rise to narrow emission lines but other processes, too. The
narrow emission bands from bound exciton complexes (which are, by the way,
also abbreviated BEC) have been misinterpreted as excitonic BEC, e.g., in
AgBr, CdS or CuCl [74C1,74J1,75A1,75N1,76W1,77H1,77W1].

The recombination of biexcitons into a photon and an exciton gives rise to
well-known and well-understood emission bands in different semiconductors
like the Cu-halides, II–VI compounds or Si as described above in Sect. 20.3.
Under resonant two-photon excitation of the biexciton narrow emission bands
appeared, which also have been interpreted as a BEC of biexcitons [76N1].
It was shown, however, by two independent groups, that these narrow lines
result from a cold but uncondensed gas of biexcitons and/or from resonant
two-photon or Hyper-Raman scattering [76L1,78D1,78H1,78O1,79K1,85H1].
In the meantime cold biexcitons have been also identified in β-ZnP2 [01D1].
However, it was possible to verify the Bosonic character of biexcitons in CuCl
in the sense that they are preferentially scattered into a state, that is strongly
populated by an external laser pump source [82P1,83P1], but again no spon-
taneous BEC could be reached.

For a short while the disappearance of excitonic features from the reflection
and transmission spectra of CdSe under high excitation was considered as an
indication for an excitonic BEC [70A1], but as we will learn in Chap. 21, this
is actually an indication for a transition to an EHP.

In Ge the formation of an EHL at low temperatures could be suppressed
by the application of stress and magnetic field. Nevertheless, it was also not
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possible in this case to reach an excitonic BEC with increasing pump power,
although a Bosonic line narrowing was observed at intermediate densities
[83T1].

After this short overview of older work we now concentrate on Cu2O.
This is a direct gap semiconductor with a large exciton binding energy of
150 meV, but with parity forbidden band-to-band transition. See Sect. 13.2.1.2
and references therein. The lowest exciton state (nB = 1) is split by exchange
interaction by 12 meV in a lower para–exciton, which is optically forbidden
to all orders. Only its Γ−

5 -LO phonon satellite is seen very weakly in the
luminescence spectra. The ortho-exciton is only quadrupole allowed, never-
theless resulting in a beautiful polariton dispersion leading continuously from
the ortho-exciton branch over the bottleneck and the photon-like branch to
E → 0 for k → 0 [81U1,91F1]. It is weakly seen both in absorption and emis-
sion and strongly in two-photon absorption (see Fig. 13.30). Furthermore its
various LO phonon replica show up strongly in luminescence and absorption.
The LO-phonon assisted absorption shows nicely the square root dependence
of the density of states. This absorption band is superimposed by the nBP
exciton states, which are weakly dipole allowed due to the odd parity of the
P -envelope function. In good samples the nBP series can be observed up to
nB = 9 and beyond.

The LO-assisted luminescence bands, which reflects the distribution of
the excitons in their bands, prove that the excitons reach thermal equilibrium
with the lattice down to temperatures well below 10 K, at least under low
excitation. Examples for all of these statements can be found in Sect. 13.2.1.2
and the references given therein.

Since the relaxation of ortho-excitons to para-excitons is rather slow at low
temperatures [01J1] there was a hope that ortho-excitons might be pumped to
beyond the critical density nc of (20.12) at low crystal temperatures. A certain
change of the emission line shape from a simple Boltzmann-type to a narrower
Bose-type has been found [83H1, 83M1, 83M2, 90S1, 00M1]. However, various
authors agree, that the density approaches the nc(Tc) curve from low densities,
but never reaches it [87F1,90S2,96K1,96N1,00M1,01K1]. For calculations of
the relaxation dynamics see [98E1,00T2].

The next approach came from transport measurements of presumably
para-excitons [95B1, 96M1]. The experimental setup and the main findings
are the following. A brick-shaped Cu2O sample is exited on one side by in-
tense ns pulses in the LO phonon continuum, producing a cloud of excitons.
Their arrival at the opposite side is monitored by a current pulse produced by
their field ionization in a Cu2O/Cu Schottky barrier contact. The resulting
current pulse is monitored on an oscilloscope. The signal starts after a delay
time given by the LA velocity of sound vLA. The following signal is temporally
rather broad, indicating a diffusive transport of the excitons over the sample
length of about 3.5 mm. However, the signal becomes steeper and gets shorter
if the density is increased at low temperature or if the temperature is lowered
at high excitation.
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The interpretation given in [95B1, 96M1] is that the excitons undergo
a BEC into a superfluid state, when the critical values of nc and Tc are
met, and the condensed cloud propagates with vLA through the sample to
the Schottky barrier.

A first small problem in this interpretation is that the signal area saturates
with increasing intensity while one would rather expect the opposite behavior
for a BEC.

As is usual in the field of excitonic BEC, various alternative explanations
have been put forward and BEC and superfluidity have seriously been ques-
tioned in various ways.

Due to the weak absorption in the 1s ortho-exciton state, excitons have to
be excited in the LO-phonon or ionization continuum, if one wants to reach
high densities. Consequently, a large non thermal population of optical and
then of acoustic phonons is created by the relaxation of the excitons to the
(para-) exciton ground state, and later on by their dominantly non-radiative
recombination [01J1]. The phonon cloud created near the surface propagates
into the sample and it has been calculated by [96K2, 97T1, 02J1] that an
exciton flux caused by the phonon wind and very similar to the experimentally
observed signal can be expected at the detector, i.e., a (quasi-) ballistic motion
of the excitons driven by the expanding nonthermal cloud of LA phonons. This
interpretation does not involve any superfluidity or BEC of the excitons and
explains easily why the signal onset delay at the detector coincides with the
time of flight of LA phonons.

Spatially and temporally resolved pump and probe beam spectroscopy
of a thin Cu2O rod has been performed in [02J2] using the broadening and
bleaching of the higher nBP excitons states caused by a high density of exci-
tons [98J1, 00J1] as a measure of the density of excitons along the crystal as
a function of distance from the excited surface and of time.

The results show exciton transport over distances of around 1 mm, but the
whole propagation process could be simulated within experimental error by
classical diffusive propagation for a temperature range from 2 to 30 K and the
average propagation velocity of the exciton cloud was well below vLA.

Another criticism came from a detailed analysis of the intensity and dy-
namics of the ortho-exciton luminescence in [99O1,99O2] and led the authors
to the conclusion, that the Bose–Einstein luminescence line shape is due to
inhomogeneities of the exciton population and more importantly, that the
Auger-recombination of the excitons and the heating of the exciton gas are so
dramatic, that one cannot even come close to the conditions of an excitonic
BEC.

This huge Auger cross-section has in turn been questioned since the Bohr
radius is small and the excitons do not even carry an electric dipole moment.
Instead, an efficient ortho → para conversion mechanism has been put for-
ward in theoretical investigations [00K2] for high densities. Experimentally, it
has been found independently in [02D1,02J2] that the Auger cross-section is
indeed small, however this topic has been introduced again in [04W1].
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Fig. 20.16. pedestrian approach to a phase diagram [04K2]

Even more recently it has been shown [02K1] that the Schottky barrier
exciton detector used in [95B1, 96M1] to monitor the arrival of the excitons
might be driven under the highest excitation conditions by several orders
of magnitude into saturation, explaining both qualitatively the variation of
the time dependence of the electrical signal with increasing excitation and
the saturation behaviour of its time integral. The discussion on this aspect
was still going on during the writing this manuscript [03K3,03M1,04K2]. See
also [80A1] in this context.

First attempts failed to confine excitons at sufficiently high densities
in Cu2O in a potential trap caused by externally applied inhomogeneous
stress [86T1], but new experiments in this direction using two-photon pump-
ing partly connected with stress-induced wells started recently [01S2, 02N1,
02N2,03N1]. They present possibly the most promissing approch towards the
experimental verification of excitonic BEC in analogy to [02K2], but have not
yet resulted in conclusive evidence for excitonic BEC.

The same statement is true for excitonic inter-subband spectroscopy (i.e.,
the investigation of the excitonic Lyman series) for which theory predicts fea-
tures characteristic of excitonic BEC [01J2,03J1,04J1]. See also the discussion
with Fig. 13.36b. The influence of the recently discovered anisotropy of the
exciton masses in Cu2O [03D1] on the issue of excitonic BEC has only to be
explored.

Though it is not possible to cite all experimental work published during
the last forty years, the selection shown here makes clear, that there is cur-
rently no clear-cut and generally accepted proof for excitonic BEC. On the
other hand, there is no generally accepted theoretical result explaining why
it should not occur [74J1]. So the search for proof will and does continue, in-
cluding structures of reduced dimensionality. Before we go to such structures
in Sect. 20.5.3 we consider a simple phase diagram in Fig. 20.16.
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A transition to an EHP (see for more details Chap. 21) occurs beyond
a certain density nM or if the screening length lc becomes comparable to the
excitonic Bohr radius aB (see Chap. 22).

In the Debye–Hückel approximation, lc is given by

lDH =
(
εε0kBT

e2nP

)1/2

(20.17a)

resulting in

nDH
M = (1.19)2

εε0kBT

e2a2
B

= (1.19)2
kBT

2a3
BRy∗ . (20.17b)

This approach is only valid as long as the exciton and carrier gases can
be described by classical statistics. For very low temperatures it would give
the unphysical result that a vanishing density already results in a screening of
the exciton. We therefore give nDH

M in Fig. 20.16 for higher temperatures only.
At low temperatures, where the carrier gas is degenerate, the Thomas–Fermi
screening length is more appropriate. It gives a temperature-independent value
of nTF

M given roughly by
nTF

M a3
B ≈ 1 , (20.17c)

which is also given in Fig. 20.16. This means than an EHP exists to the right
and below these two curves.

Now we give the criterion for a BEC for ideal Bosons according to (20.12).
We can anticipate, that excitons will no longer behave as ideal Bosons close
to the Mott transition to a Fermi gas.

In [71F1] it is claimed that excitons behave as weakly interacting Bosons
for

nPa
3
B � 1

8π
≈ 0.04 . (20.17d)

The limit 0.04 is shown as a vertical line in Fig. 20.16, too.
The shaded region where an excitonic BEC can be expected already be-

comes rather small.
Now we add the phase diagram for EHL formation from Chap. 21 for

a finite binding Φ > 0 of the EHL and see that the possibility to observe
an excitonic BEC disappears completely. This is also stated in ( [00M1], p
12) but is then set aside rather quickly. The author feels, that some more
consideration should be given to this argument.

In Si, Ge and diamond the EHL has been clearly observed (see Sect. 21.3.2).
Even if Φ was brought close to zero by external fields, no excitonic BEC oc-
curred.

In all III–V and II–VI compounds the plasma forms a bound state. The
fact that no phase separation was observed is not due to the fact that the
plasma is not bound, but that the carrier lifetime is too short for the phase
separation to form. Possibly it is also too short for the BEC condensation to
take place, which would explain the failure to observe it in this rather large
group of materials.
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In CuCl the creation of an EHP has been verified experimentally [85H2]
and recently even the formation of an EHL [02N3], however our knowledge
of its properties is too limited to give a definite statement about Φ. In Cu2O
no report of an EHP is known to the author. Under conditions where it is
possible to bleach all nBP exciton states [00J1], the 1s excitons are possibly
far away from being idealized, weakly interacting Bosons.

To conclude this section, it should be mentioned, that more complex phase
diagrams are discussed in theory, which allow for an excitonic BEC pocket and
are reviewed, e.g., in [00M1]. However there does not yet seem to be much of
an experimental verification of these diagrams.

20.5.3 Structures of Reduced Dimensionality

Before discussing recent results on coupled quantum wells, we want to have
a short look into two-dimensional systems in general.

Shifting the step-like density of states function of the two-dimensional sys-
tem of massive particles in Fig. 8.20 relative to the Bose–Einstein distribution
function in Fig. 2.5 shows immediately that, strictly speaking, a BEC is not
possible in two dimensions. Either µ is below E0, and there is no BEC or
µ coincides with E0 and a divergence of the particle density arises from the
product of a finite density of states and the divergence in their occupation
probability.

Actually, the DOS is not step-like in the sense of a mathematical heavy side
function Θ(E−E0). One has a (often exponential) tail of localized states below
E0. These tail states behave, however, unlike Bosons. They can be empty and
they can be occupied by one exciton. If two excitons (i.e., a biexciton) are
placed in this state the energy of both shifts to the red. Higher occupancies
lead, if possible, to a blue shift (see also Sect. 20.3.2).

On the other hand it would also be difficult to imagine what a BEC of
localized excitons means when every particle sits in another place and at
a different energy.

Though there is strictly no BEC in two dimensions for massive particles,
a transition to a superfluid state is possible according to Kosterlitz and Touless
[00M1] (KTS) for densities nc above or temperatures below Tc given by

Tc ≈
(
�

2/2m
)
4πnc

ln ln (1/nca2)
(20.18a)

resulting, to a good approximation, in

nc ≈ 0.32gmkBTc

�2
. (20.18b)

In the following we describe to which extent these ideas could be realized
in a system not completely different from the one proposed in [75L1].
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Fig. 20.17. Schematic sketch of the band alignment of the samples used by
[98B3, 01B3, 02B2, 02B3, 02S3, 02S4] (a) schematic drawings of the luminescence
ring structure observed by [02S3,02S4] (b) and by [98B3,01B3,02B2,02B3] (c) and
the behavior observed by both groups when two excitation spots are used with
decreasing distance (d)

There have been recent attempts by two groups (Butov et al. and Snoke et
al.) to observe excitonic superfluidity in the frame of KTS using two coupled
and quantum wells, tilted by an external electric field [94B1,98B3,01B3,02B2,
02B3, 02S3, 02S4]. The appearance of narrow emission bands has also been
described in [02L2]. The basic idea of the samples is the same in both cases
and is shown in Fig. 20.17a. In a n+in+ structure, two coupled wells with
a narrow barrier are incorporated in the intrinsic layer. A voltage applied to
the n+ cladding layers tilts the band structure and spatially separates the
lowest electron state from the highest hole state as shown in Fig. 20.17a.
Butov et al. use n+GaAs and Al1−yGayAs barriers around and between the
two GaAs wells in the intrinsic region while Snoke et al. use In1−yGayAs wells.

In both cases excitons are formed, which carry a permanent dipole moment
due to the spatial separation of electrons and holes under the action of an
external field. This separation increases the exciton lifetime to values in the
100 ns regime, but also reduces the exciton binding energy [03S1]. The parallel-
oriented excitonic dipole moments create a repulsive interaction that prevents
biexciton formation.
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At low temperatures, and under cw excitation, both authors observe rather
similar phenomena. With increasing excitation in the barrier, luminescence is
not only observed from the excitation spot but also from a bright ring with no
detectable emission between Fig. 20.17b,c except for some localization centers
in the case of [98B3,01B3,02B2,02B3]. The diameter of the ring increases with
increasing pump power reaching diameters in the mm regime. If the excitation
spot is moved on the sample, the ring structure follows the excitation spot.

Abrupt temporal variations of the excitation intensity result in variations
of the luminescence in the ring structure indicating radial velocities on the
order of 1 × 106 to 5 × 106 cm/s which is considerably larger than the LA
velocity of sound in GaAs [02S3,02S4,03S2].

Snoke at al. investigate the ring at temperatures of a few K but can follow
it up to T ≈ 90K. Butov et al. works preferentially at lower temperatures and
observes a fragmentation of the ring into bright spots, which are rather equally
spaced along the ring with some bright spots between the directly excited
area and the ring resulting from localization sites in the MQW structure
[98B3,01B3,02B2,02B3,02S3,02S4,03S2] (see Fig. 21.7c).

If two widely separated spots are excited, they are surrounded by indi-
vidual rings. If the excitation spots are brought closer together, both groups
find that the rings are deformed and merge into a single structure as shown
in Fig. 21.17d.

Though the experimental findings are rather similar, the interpretations
of both groups are very different.

Butov et al. claim that the mutual repulsion of the excitons (which is
even enhanced by the depolarization field) results in a rapid, presumably
ballistic expansion of the excitons with k‖ > klight so that they cannot radiate
because k‖ is conserved at a plane interface. The velocities given by Snoke are
consistent with such arguments. After that expansion, the excitons undergo
a BEC transition resulting in the ring and the bright dots along the ring are
considered superfluid vortices.

In contrast Snoke claims that the excitons are in the KTS superfluid state
in the dark range between the excitation spot and the ring. The bright ring
results from the transition of the excitons into their normal state due to di-
lution and subsequent recombination. While being in the superfluid state,
emission is forbidden for the excitons for some reason, e.g., because of their
large value of k‖. The argument of Snoke against the interpretation of Bu-
tov is that a purely ballistic propagation of excitons in these structures over
distances up to one mm is extremely unlikely. If, on the other hand, scatter-
ing is allowed, then excitons will also be created at smaller values of k‖ and
a measurable luminescence should be observed between the exciton spot and
the ring.

The merging of the rings is more difficult to explain in the model of Butov,
because the density should be higher in the overlapping region, while the
observation of the equally spaced bright spots is difficult to explain in Snoke’s
model.
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At a recent workshop as part of the seventh “Nonlinear Optics and Exci-
tation Kinetics in Semiconductors” meeting (NOEKS 7) [03N2], Snoke came
up with a completely different interpretation of the data [03S2]. He observed,
that the ring only appears if the sample is excited in the barrier. If one excites
the sample directly in the wells, no ring structure appears, even if the incident
intensity is increased to compensate for the reduced absorption.

Snoke’s present interpretation is, that the formation of the ring has nothing
to do with a superfluid state at all. If excited in the well, carriers essentially
recombine at the excitation spot. When excited in the barrier, the holes are
captured in their well, but electrons partly escape from the wells to the n+

layer or are not captured at all due to their smaller effective mass. This has
the consequence that a two-dimensional “puddle” of holes forms in the well
around the excitation spot. Apart from the directly excited area, hardly any
electrons exist in this “puddle” and consequently no luminescence appears.
The luminescence only occurs at its boarder when electrons reach it, coming,
e.g., from the n+ layers. This model easily explains the merging of the rings
in Fig. 20.17d by a merging of the two hole “puddles”. However, this model
cannot explain the equally spaced bright dots on the ring. Butov still explains
these bright dots superfluid vortices [03B1, 03B2]. Future investigation must
clarify the origin of the dots. See also the proceedings [04I1], where the ring
has been reported also by a third group [04R2] and where Snoke introduced
the possibility of a strain induced trap also for quantum wells [99N1,04S1].

As a short addendum it can be stated that similar rings have been observed
by V. Lyssenko in GaAs single quantum wells and superlattices [03L1]. The
appearance and disappearance of theses rings can be influenced by varying
the focus of the excitation beam.

Luminescence ring structures have also been observed in thin CdS platelets
under pulsed excitation and at low temperatures [78L1] but have been inter-
preted as light scattering under conditions of stimulated emission.

Evidently we are left in quasi two-dimensional systems with the same
situation as in bulk material. There is presently no clear, generally accepted
evidence for excitonic BEC nor for superfluidity.

There are possibly some unknown reasons why it does not occur, which is
a challenge to the theoreticians, or, as L.V. Keldysh stated [03K1] “Possibly we
had it all the time without noticing it, because its influences on the optical prop-
erties are completely unspectacular,” which is a challenge to experimentalists.

Furthermore, Snoke stated as a joke during NOEKS 7 [03N2] that not
every circular emission is connected with KTS or BEC, as the reader can
confirm by entering “Hoag’s Object” in a search engine on the Web.

20.5.4 Driven Excitonic Bose–Einstein Condensations

Since it is obviously difficult to find and to uniquely prove excitonic BEC
or (KTS) superfluidity in semiconductors, some authors invented the term
“driven BEC”.
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A general property of these suggestions, which are briefly reviewed, e.g.,
in [02L3,02S3,02S4] is, that no process is occurring in thermal (quasi-) equi-
librium distribution and thus no BEC.

Instead, one is either creating a coherent population by an external laser
into which or out of which particles are scattered, as already found for the
biexciton case in CuCl mentioned above, or it involves lasing on the (photon-
like) part of the exciton-polariton dispersion.

It is also a common feature that very similar phenomena have been found
one or a few decades ago under different, less spectacular names and are now
being reinvented under the name “driven BEC”.

For example, all of the processes shown in Figs. 19.3 and 22.1 in the
intermediate density regime can result in stimulated emission on the lower
polariton branch as found theoretically and verified experimentally in bulk
materials and in structures of reduced dimensionality including cavity polari-
tons [81K1, 85H1, 94H1, 01E1] but at that time nobody had the idea to call
such a phenomenon a BEC.

As already mentioned, the scattering of biexcitons into a state which is
populated coherently by an external laser source was considered as proof of
the Bosonic character of biexcitons, but not as a BEC [82P1, 83P1, 84W1]
(also see above).

Another phenomenon connected with biexcitons or more generally two-
polariton states, which has been observed in several I–VII and II–VI com-
pounds [81K1, 85H1], has been introduced as two-photon or hyper Raman
scattering. See Sects. 13.1.4 and 20.3.1. This process can occur spontaneously,
but it can also show gain and stimulated emission in the sense of an optical
parametric amplifier. Actually, it is a process belonging to the group of χ(3)

or of higher order processes like four-wave mixing (FWM).
The decay can also be stimulated by sending an external laser beam into

one of the outgoing channels resulting in an enhanced scattering into this and
also into the other channel. This would then be a typical example for non-
degenerate four-wave mixing (NDFWM) or electronic coherent (anti-) Stokes
Raman scattering (CARS).

Apart form the fact that one has transfered the experiments from bulk
samples to quasi two-dimensional systems and cavities they are extremely
similar to the processes described in connection with Figs. 20.9 to 20.11.

20.5.5 Excitonic Insulators and Other Systems

To conclude this section on BEC we shortly mention another concept of exci-
tonic BEC, namely the so-called excitonic insulators. There are two scenarios
for the occurrence of this phenomenon, that will be briefly outlined below.
More details and many references can be found in [00M1].

One scenario occurs in narrow gap semiconductors with En
g , or semi-

metals (Eg = 0). If the binding energy of excitons is still finite, the sys-
tem may lower its energy at sufficiently low temperatures by the spon-
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taneous formation of excitons provided that the following inequalities are
fulfilled

Ry∗ > En
g and Ry∗ � kBT . (20.19)

Since a gas of excitons is insulating compared to the gas of free carriers,
usually present in semimetals and narrow gap semiconductors, the transition
to the excitonic insulator should show up in a characteristic variation of the
resistivity.

One candidate is (or was) the semimetal grey tin but no experimental
indication of spontaneous exciton formation nor of their condensation is known
to the author.

In [91B2,03W1] experiments have been reported for TmSe0.45Te0.55, where
the resistivity varies by roughly three orders of magnitude when tuning the
gap by external pressure.

Other systems, where a transition to an excitonic insulator can occur, are
wide-gap semiconductors in which a degenerate EHP has been created. If the
effective masses of electrons and holes are equal (a situation generally not
met in real semiconductors) a gap in the sense of a BCS-theory could open
simultaneously in the degenerate conduction and valence band populations
with decreasing temperature resulting in a vanishing of the total conductivity
of the condensates.

The BEC of magnons in TlCuCl3 has been reported in [00N1]. For
quantum-Hall exciton condensates in bilayers see [02B6,02B7,03S3,04K3]

20.5.6 Conclusion and Outlook

We shall see in the next chapter, that the existence and the properties of
the electron–hole plasma in semiconductors are well established both exper-
imentally and theoretically. Concerning excitonic BEC and superfluidity, the
situation is still unclear and controversially discussed in the literature even 40
years after the first theoretical prediction and it is to some extent a question
of taste or of the personal experiences of the scientist if he stresses the “pros”
or “cons.” Obviously, the author is presently more on the “contra” side. In
any case, there is much more theoretical work on the topic than hard experi-
mental facts or, as Littlewood stated [03L2], the “smoking gun” argument is
still missing. Maybe it will come in the future, to finish with an optimistic
statement.

20.6 Photo-thermal Optical Nonlinearities

The first interaction of visible light with matter is usually via the electronic
system, i.e., an incoming photon is absorbed creating an electron–hole pair.
This pair recombines after a while and, since most recombination processes
in semiconductors are nonradiative, energy is transferred to the lattice, i.e.,
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to the phonon system. In simpler words, the lattice is heated. An increase of
the lattice temperature in turn results in changes of the absorption spectrum,
e.g., via the Urbach rule of (13.12) and of the real part of the refractive index
(Chap. 6).

We show an example in Fig. 20.18. The transmission spectrum (a) of a CdS
sample is measured at RT with a weak cw probe beam from an incandescent
lamp. We see Fabry–Perot modes of the platelet type sample in the trans-
parent region and the onset of the excitonic absorption. When we illuminate
the sample with the green (514.5 nm) line of a cw Ar+ laser with a power
of about 2 kW/cm2 we find the spectrum (b). The sample temperature in-
creases in the laser spot by roughly 50 K and the consequences are seen in the
spectrum. The absorption edge becomes less steep and shifts to the red. The
Fabry–Perot modes also show a slight red shift revealing an increase of the
refractive index.

At the position of the Ar +-laser line, which is indicated by an arrow, we
find a strong excitation-induced increase of absorption.

The photo-thermal optical nonlinearities are thus much less complex than
some of the electronic effects of preceding sections and they usually have
rather long relaxation time constants, often in the ms range. If one wants
to investigate the electronic properties of semiconductors, thermal effects are
often unwanted and disturbing. But, as we shall see in Chap. 24, it is pre-
cisely because of these properties that they can be used as model systems
for the applicability of (electro-) optical nonlinearities in optical bistabil-
ity or in (electro-) optic data handling. We come back to these aspects in
Chap. 23

Fig. 20.18. Transmission spec-
tra of a CdS platelet at a sur-
rounding temperature of 300 K
without (a) and with (b) excita-
tion by the green line of an Ar+

laser. According to [92K2]
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20.7 Problems

1. If a crystal has inversion symmetry, then the parity of the eigenstates is
well defined. Which states can you reach from the crystal ground state
(even parity) in one-, two- and three-photon absorption processes? Com-
pare your results later with the information given in Chap. 26.

2. Assume that the scattering cross section of excitons is determined simply
by their Bohr radius. Try to estimate the density at which an exciton
has a probability of 0.1 of hitting another exciton during its lifetime.
Which other parameters of the exciton do you need to make this estimate?
Compare with values of the Mott density in Chap. 21.

3. Calculate the spectra of the luminescence of the biexciton and of the in-
duced absorption. From which feature can you deduce the binding energy
of the biexciton?

4. What are the best conditions for observing the optical Stark effect? Check
if they have been met in some of the experiments described in the refer-
ences.

5. Calculate the increase of the lattice temperature of a semiconductor under
pulsed excitation: Iexc = 106 W/cm2; �ωexc = 2 eV; pulse duration =
10 ns; repetion rate = 10 s−1; α(�ωexc) = 105 cm−1; diffusion length of
excitons Td = 1 µm. Consider bath temperatures of 5 K and of 300K and
use Debye’s approximation for the specific heat with lD = 300K. Can you
make a modified guess if you know that the velocity of sound in solids is
of the order of 3 × 103 m/s?

6. Calculate the critical density for the onset of BEC in a typical semicon-
ductor ( electron mass 0.1 m0, hole mass 0.6 m0 dielectric constant ε = 10)
for T = 4.2 and 100 K. Campare with the densities for the transition to
an electron–hole plasma given in Chap. 21.
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21

The Electron–Hole Plasma

Having introduced the basic idea of the electron–hole plasma (EHP) in
Sect. 19.2, we now give details of some of its properties, e.g., the density
at which the transition from an exciton gas to an EHP occurs in Sect. 21.1,
the renormalization of the band gap in the EHP and its thermodynamic prop-
erties in Sect. 21.2. Then we present results for indirect and direct-gap semi-
conductors showing some characteristic differences in these properties. The
next section brings the results of the EHP in semiconductor structures of re-
duced dimensionality followed by aspects of inter-subband transitions in bulk
semiconductors and in structures of reduced dimensionality (Sect. 21.5).

For early ideas of the EHP see, e.g., [68K1, 74T1, 77H1, 77R1] and the
references therein. The concept of the Mott-transition was introduced for
highly doped semiconductors and later adapted for highly excited ones [74M1].
Strong input also came from the physics of metals including the jellium model.
Some reviews for further reading beyond the selected topics addressed below
are, e.g., [81K1, 84H1, 84K1, 85B1, 85E1, 88Z1, 90C1, 90H1, 92K1, 94C1, 94K1,
94K2,96K1,04O1].

21.1 The Mott Density

Equation (19.20) and (20.17) gave a very crude approximation of the density
of electron–hole pairs nc at which the transition from an excitonic system to an
EHP can be expected. In this section we give some more refined considerations.

The transition to the EHP can be tackled in the following way. We consider
one exciton in a sea of free carriers (electrons and holes) of density np. The
free carriers screen the Coulomb potential of the exciton transforming it to
a Yukawa-type potential. For the derivation of this and the following formula
see [84H1,84K1,88Z1,90H1] and references therein.

1
4πε0ε

e2

|re − rh| ⇒
1

4πε0ε (nP)
exp

{
−|re − rh|

l

}
· e2

|re − rh| (21.1)
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where some thought is necessary concerning the value of ε entering in this
equation. In the simplest approximation one could use the static dielectric
constant (static screening). A better approximation is obtained if both the
dependence of ε on frequency and on np are taken into account and thus the
contributions of plasmons or of plasmon–phonon mixed states to ε (ω, nP),
the so-called dynamic screening [81K1, 85B1, 88Z1]. If the screening length
l falls below a certain value lc, the Yukawa potential no longer has a bound
state, at least in three-dimensional systems. The excitonic Bohr radius and lc
are connected with each other by

aBl
−1
c = 1.19 ; l−1 =: ks . (21.2)

The inverse screening lenght l−1 is also called screening-“vector”.
By considering an electron–hole gas described by classical Boltzmann

statistics, one can find the so-called Debye–Hückel screening length lDH [23D1]
and the density nM at which the EHP starts to exist or, in other words, where
the excitons cease to exist as individual quasi-particles, is given by

lDH =
(
ε0εkBT

e2nP

)1/2

, (21.3a)

nM = (1.19)2
εε0kBT

e2a2
B

= (1.19)2
kBT

2a3
BRy∗ , (21.3b)

since we have

aBRy∗ =
�

2εε0
µe2

· e4µ

2 (εε0)
2

�2
=

e2

2εε0
, (21.3c)

where µ is the reduced mass of electron and hole.
Though this is a reasonable approach at higher temperatures at which

a large fraction of excitons is thermally ionized, it gives the physically un-
reasonable result that in the limit T ⇒ 0 lc is reached already for vanishing
values of np, which can be orders of magnitude smaller than what is given by
(19.20).

For the case of a degenerate electron–hole plasma, which is more likely
at low temperatures, (see, (8.41)), one obtains the Thomas–Fermi screening
length lTF [27T1,28F1] and correspondingly a different value for nM

l−2
TF =

e2

εε0

∑
i=e,h

∂ni

∂Ei
F

, (21.4a)

where Ei
F stands for the quasi Fermi levels of electrons and holes, respec-

tively, and the terms ∂ni/∂E
i
F give the densities of states at the quasi Fermi

energies. In the effective mass approximation (21.4a) simplifies for isotropic,
non-degenerate bands to:

l−1
TF =

[
3e2

εε0�2
(me +mh)

(
1

3π2

)2/3

n
1/3
P

]1/2
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and

nM = (1.19)6 a−6
B

(
εε0�

2

3e2
1

me +mh

)3 (
3π2

)2
(21.4b)

The density nM given by (21.3),(21.4) is also known as the Mott density,
because it describes the transition from an insulating gas of excitons at lower
densities to the metal-like state of an EHP at higher densities [74M1].

A description of the screening on a more sophisticated theoretical level
involves the so-called random-phase approximation (RPA) or the simplified
version of the single plasmon pole (SPP) approximation. In the latter case the
contribution of the free carriers in the EHP to ε(ω) is described by a pole at the
plasma frequency ωPL (Sect. 10.1) or more precisely by the plasmon–phonon
mixed state (Sects. 10.1 and 12.4). These topics are however beyond the scope
of this book and we refer the reader to [77H1, 77R1, 81K1, 84H1, 84K1, 88Z1]
for earlier calculations, to [98M1,98M2,98P1,98S1] for more recent ones and
references therein.

21.2 Band Gap Renormalization and Phase Diagram

In addition to the screening of the Coulomb interaction in the exciton, there
are further important renormalization effects of the electronic eigenstates in
an EHP. They will be treated in this section and we shall show how they
result in the formation of a liquid-like state of the plasma below some critical
temperature Tc, at least under thermodynamic quasi-equilibrium conditions.

The width of the forbidden gap is a monotonically decreasing function of
the electron–hole pair density nP in the plasma, due to exchange and correla-
tion effects as shown in Fig. 21.1, where we give various energies as a function
of nP. This statement can be explained qualitatively in the following way.
In the plasma we have Coulomb energies which attract carriers of opposite
charge and repel those of like charge. If electrons and holes were completely
randomly distributed in the sample, then the Coulomb attraction and repul-
sion energies would cancel exactly and the width of the forbidden gap would
be independent of nP.

In reality, the carriers are not randomly distributed. The Pauli principle
which is a consequence of the exchange interaction of identical fermions forbids
two electrons with parallel spin from sitting in the same unit cell. Since this
situation would occur for a random distribution, but does not for fermions, we
can conclude that the exchange energy increases the average distance between
electrons with parallel spin and consequently reduces their total repulsive
Coulomb energy. The reduction of a repulsive energy term means a lowering
of the total energy of the electron system. The same arguments also hold for
the holes.

The correlation energy is spin independent and describes the fact that the
electron–hole pair system can lower its energy further, if the distribution of
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electrons and holes relative to each other is not random, but if in the vicinity
of a hole an electron is found with higher probability than another hole and
vice versa. This correlation really occurs. It is a “reminder” of the Coulomb
interaction between electron and hole which is responsible for the formation
of excitons at low densities. Usually the sum of these two terms is called
exchange and correlation energy.

There are some universal formula that describe the reduction of the band
gap ∆Eg normalized by the excitonic Rydberg energy as a function of the
normalized plasma density nP including the exchange (or Hartree–Fock) and
the correlation energy [82V1,88Z1,88Z2]. Usually one chooses a dimensionless
quantity called rs in which the volume occupied by a carrier pair in the plasma
is compared with the volume of an exciton

rs =
(

4πa3
B

3
nP

)−1/3

. (21.5)

One should note that rs decreases with increasing nP due to the negative
exponent. In an EHP in semiconductors values of rs generally lie between 1
and 4.

In Fig. 21.2 we give approaches to the universal behavior of

∆Eg/Ry∗ = f(rs) (21.6)

Fig. 21.1. Schematic dependence of the width of the forbidden gap E′
g, of the

exciton energies, and of the chemical potential of the electron–hole pair system µ
on the electron–hole pair density nP. Numerical data for CdS [88Z1]
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from the three references [82V1,88Z1,88Z2]. It can be stated that the band-gap
renormalization is almost temperature independent, and that the universal
curves describe the experimental situation very well in the more covalently
bound semiconductors like Si, Ge, GaAs, GaP etc. For clarity these are not
shown in Fig. 21.2 since the experimental data for these substances coincide
closely with the theoretical curves. In contrast, further corrections have to
be considered for substances with increasing degree of ionic binding like the
II–VI materials CdS or ZnSe. We come back to this aspect later.

In addition to E′
g (nP) Fig. 21.1 shows the energy of the 1s exciton as

a function of nP. It has been found that the excitons roughly maintain their
absolute energy with increasing nP until the binding energy vanishes at the
Mott density. Sometimes a small red- or blue-shift is observed with increasing
nP, especially in narrow QW see, e.g., [00M1] and references therein. This
finding is due to the almost complete compensation of two effects. One is the
decrease of E′

g with increasing nP which should shift the exciton energy to the
red. The other is the decrease of the exciton binding energy with increasing
nP due to the screening of the Coulomb energy mentioned in Sect. 21.1 which
shifts the exciton closer to the gap, i.e., towards the blue.

This screening of the binding energy leads to an increase of the excitonic
radius and thus to a decrease of the overlap of electron and hole wavefunction
and a decrease of oscillator-strength with increasing nP. Furthermore, the
damping of the exciton resonances increases with nP due to an increasing
scattering rate which reduces the phase relaxation time T2. This effect is
indicated schematically by the hatched area in Fig. 21.1. The Mott density
introduced in Sect. 21.1 is, in the representation of Fig. 21.1, the density

Fig. 21.2. The universal relation between the band-gap renormalization ∆Eg mea-
sured in units of the excitonic Rydberg energy Ry∗ and the normalized carrier
density rs(nP) together with data for various II–VI compounds [82K1,88Z2,90K1]
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at which the curves Eex(nP) and E′
g(nP) cross. This density decreases with

increasing quantum number nB. For experimental verifications of these facts
see, e.g., [78L1,00J1]. Usually one concentrates on the lowest exciton, i.e., on
nB = 1.

Until now we have discussed mainly the screening of the Coulomb in-
teraction between electrons and holes as a reason for the disappearance
of the exciton as a bound electron–hole pair state. Actually there is an-
other process which contributes, namely phase-space filling [88C1]. As has
been explained in connection with (8.10) and (9.4),(9.6), one needs electron
and hole wavefunctions from a certain regime in k-space to build up the
exciton wavefunction. If these states are occupied by electrons and holes,
they are blocked and can no longer be used for the construction of the
exciton. This phase-space filling is again a consequence of the fermionic
character of the constituents of the exciton. It is already present in three-
dimensional semiconductors but plays a more important role in QW and
in structures of even lower quasi-dimensionality, where the screening of the
Coulomb interaction is reduced, since it is not so easy to screen the elec-
tric field lines between electron and hole which propagate through the barri-
ers.

The next quantity given in Fig. 21.1 is the chemical potential µ of the
electron–hole pair system. In a pumped system away from thermodynamic
equilibrium the distribution of electrons and holes in their bands can no longer
be described by a single Fermi energy (or chemical potential) EF. Instead
individual quasi Fermi energies Ee

F and Eh
F have to be introduced for electrons

and holes, respectively. The chemical potential of the electron–hole pair system
is just the energetic distance between Ee

F and Eh
F. If we measure them from

the extrema of the renormalized bands, we get

µ(nP, TP) = Ee
F(nP, TP) +Eh

F(nP, TP) +E′
g(nP) , (21.7)

where we assume that the carriers have a thermal distribution in their re-
spective bands and that the temperatures of electrons Te and of holes Th are
equal. We call this temperature then the plasma temperature TP:

Te = Th = TP . (21.8)

Depending on the material and the excitation conditions, TP can be higher
than the lattice temperature TL [81K1, 04C1]. This means that a thermal
distribution of electrons and holes is established by mutual scattering (this
generally happens in an EHP on a ps time scale) but that this distribution is
not in equilibrium with the phonon system described by TL.

Without pumping, µ is zero. It increases with increasing density. At some
density, µ will exceed E′

g(nP). In this case the quasi Fermi level of the electrons
and possibly also of the holes are situated in the bands. This is the onset of
population inversion between conduction and valence band. We speak in this
situation of a degenerate EHP and the use of Fermi statistics is mandatory.
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When neither Ee
F nor Eh

F are situated in the respective bands, Boltzman
statistics are a good approximation.

In the degenerate case, the mean kinetic energy of the particles increases
rapidly with density. At zero temperature a simple relation holds in the effec-
tive mass approximation

Ēe,h
kin =

3
5
Ee,h

F . (21.9)

The steep increase of µ with increasing nP is due to this effect and at high
densities (21.9) overcomes the decrease of E′

g(nP). In the literature one often
finds the term “Burstein–Moss shift”. It means a blue shift of the absorp-
tion edge for highly doped or excited semiconductors and it is explained by
a generally degenerate population of, e.g., electrons in the conduction band,
which blocks optical transitions close to the band extremum. The inspection
of Fig. 21.1 tells us that the situation is more complex because we have the
interplay of band gap renormalization, which shifts the onset of absorption
to the red, and state filling, which shifts it to the blue. The application of
a simple Burstein–Moss shift would only be justified for a situation where the
band-gap renormalization is much smaller than the band filling.

The free energy F (nP, TP) of the EHP is connected with µ(nP, TP) by
[74T1]

µ (nP, TP) =
(
∂nPF (nP, TP)

∂nP

)
T,V

. (21.10a)

On the other hand, it is given by

F (nP, TP) = U(nP, TP) − TPS(nPTP) (21.10b)

with S being entropy and U being the internal energy of the EHP. The pressure
p(nP, TP) of the plasma is given by

p (nP, TP) = n2
P

(
∂F (nP, TP)

∂nP

)
N,T

(21.10c)

where N is the number of the electron hole pairs in the system.
Below a certain critical temperature Tc the dependence of µ on nP is not

monotonic but may go through a maximum and a minimum as shown in
Fig. 21.1. In this situation quasi-equilibrium thermodynamics predict a first-
order phase transition to an electron–hole liquid (EHL) [74T1, 81K1, 84H1,
84K1,88Z1]. Thus, similar to the case of a real or van der Waals gas, below Tc

we expect a phase separation into a liquid-like EHL surrounded by a gas phase
of excitons and free carriers. Liquid-like means essentially that the density
of the plasma is constant for constant TP. An increase of the pump-power,
i.e., of the average density then merely increases the ratio of the volumes
filled by the EHL and the gas. The phase diagram of this transition follows
from a Maxwell-type construction and is shown in Fig. 21.3 for the simplest
case, where we have a coexistence region of gas and liquid below Tc while
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a distinction between gas and liquid is not physically meaningful above Tc.
Modifications of this simple phase diagram may be introduced if one considers
excitons and biexcitons, possible regions where these quasi-particles might
undergo a Bose condensation, the influence of the finite lifetime, etc. These
complications have already been partly discussed in Sect. 20.5 in connection
with Fig. 20.16 and are therefore not repeated here.

There are some scaling rules for the phase diagram assuming parabolic
bands, a temperature independent exchange and correlation energy (see
Fig. 21.2) and a free energy varying quadratically with temperature

E0

kBTc
= const (21.11a)

nc

n0
= const (21.11b)

where E0 is the ground state energy of the EHP at T = 0 K with respect to
the gap at nP = 0, i.e.,

E0 (n0) = E′
g (n0, T = 0) +

3
5
EF (n0, TP = 0) − Eg (nP = 0, T = 0) (21.11c)

and where Tc and nc are data of the critical point.
The binding energy Φ(n0, TP = 0) of the EHP is defined as the difference

Φ(n0, TP = 0) = Eex − µ(n0, TP = 0) . (21.11d)

The EHL has indeed been observed in some semiconductors in the form of
small liquid-like EHP droplets (EHD), especially if the lifetime of the carriers
is long enough that the spatial separation into a liquid and a gas phase can
develop. This is often the case for indirect gap materials like C, Si, Ge, GaP
or Al1−yGayAs (y > 0.45) [75R1, 77H1, 77H2, 77R1, 84H1, 84K1, 85B1, 85E1,
92K1,96K1,02N3,02N4,02S1,03N1].

Fig. 21.3. The phase diagram
for an EHP under thermody-
namic quasi-equilibrium con-
ditions [88Z1]. Compare with
Fig. 20.16
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In the direct gap materials with dipole allowed band-to-band transition the
lifetime of the carriers is generally so short (τ ≈ 0.1 ns) that no liquid phase
can develop, though an EHP is created under sufficiently strong pumping. It
has a positive binding energy Φ as for the indirect gap materials [78B1,79C1].
We shall see examples of both cases (the formation of a liquid-like phase or
not) in the next sections. Recently EHL formation has even been claimed in
CuCl under resonant excitation [00N1,02N1].

Before that we comment briefly on the description of the EHP used so
far. We considered an exciton in a sea of electrons and holes. This descrip-
tion is adequate at higher temperatures, where a significient fraction of the
excitons is thermally ionized, or at densities around nM, or under band-to-
band excitation, where primarily free carriers are created, which form exci-
tons only after relaxation from the continuum to the bound states [04C1]. If
we excite excitons resonantly, we should consider the screening and phase-
space filling of excitons by excitons and not by free carriers. Furthermore,
the curve of µ(nP) should start for TP = 0 K and nP → 0 not from Eg

but from Eex. The corresponding calculations and experiments have been
made and indicate that the above-outlined scenario of the EHP formation
remains qualitatively valid except for a possible shift of nM to higher val-
ues [81S1,82F1,82F2,84M1,98M1,98M2,98P1,98S1,00M2].

21.3 Electron–Hole Plasmas in Bulk Semiconductors

We preset now some selected results starting with indirect gap semiconduc-
tors, which have usuallly sufficiently long carrier lifetimes to develop a phase
separation to an electron–hole liquid below Tc.

21.3.1 Indirect Gap Materials

The first observation of an EHP was in Si. The “history” of its investiga-
tion is outlined briefly in reviews [77H1, 77R1, 85E1]. In Fig. 21.4 we show
a luminescence spectrum of Ge under high excitation. Due to the indirect
bandstructure, the emission bands shown involve a momentum-conserving
LA phonon. We see the recombination of free excitons and a broad band
which is the emission of the EHL. Due to the long carrier lifetime in pure
samples, which is in the µs to ms regime, the phase separation can develop
and the carriers can cool down to equilibrium with the lattice so that very
low values of TP close to TL can be reached. As expected for the liquid phase
the shape of this emission does not change with increasing pump intensity
below Tc but the ratio of free exciton to EHP emission changes according
to the changing volume fractions that the two phases occupy. The density of
electron–hole pairs can be estimated from the generation rate and the lifetime.
The onset of plasma luminescence for a fixed TL then gives the low density
side of the coexistence region in the phase diagram. The high density side
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can be deduced more easily from an analysis of the lineshape of the plasma
luminescence.

Since a momentum-conserving phonon is involved, the emission at a certain
energy �ω is given simply by an integral over all transitions separated by
�ω + �ΩLA, independent of the wave vectors of electron and hole, weighted
by the density of states and the occupation probabilities of electrons and of
holes in their respective bands.

For spontaneous emission we get in the simplest approximation

Ilum (�ω) =c1
∫ ∞

0

∫ ∞

0

(Ee
kin)1/2 (Eh

kin

)1/2
fefhδ [�ω

− (
E′

g + Ee
kin + Eh

kin + �ΩLA

)]
dEe

kin dEh
kin , (21.12)

where we have assumed parabolic bands, i.e., Ee,h
kin = �2k2

e,h/2me,h resulting
in the square-root dependence of the density of states and the energy con-
servation contained in the δ-function. The quasi Fermi functions are given
by

fe,h (�ω) =

[
1 + exp

(
±E

e,h
kin − Ee,h

F

kBT

)]−1

. (21.13)

Furthermore the transition probability is assumed in (21.12) to be energy
independent and to be contained in c1 together with other constant terms.

The term for stimulated emission or reabsorption looks similar, except that
the product fefh in (21.12) is replaced by (1 − fe − fh). Stimulated emission
however is of no importance for most indirect gap materials since the transition
probability is very small. This prevents the standard semiconductor Si from
being used as a material for laser diodes.

Recently it has been shown, however, that stimulated emission from the
EHP can be obtained in indirect Al1−xGaxAs and similar compounds for
compositions x close to the direct-indirect transition due to a strong coupling

Fig. 21.4. The luminescence of
Ge in the presence of an EHP (LA
phonon replica) [77M1]
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of the direct and the indirect conduction band minima due to alloy scattering
[88K1,90F1,92K1,92K2,92P1,94K1,96K1,98D1].

Some modifications can be introduced in (21.12), e.g., by final state damp-
ing Γ0. We come back to these effects in connection with direct gap materials
in Sect. 21.3.2.

A detailed analysis of luminescence spectra like that of. Fig. 21.4 along
the lines outlined above gives the values of TP, Ee,h

F and consequently the
densities nP and E′

g(nP). This allows one to determine the high density side
of the phase diagram of the EHL. The low density side can be deduced from
the onset of EHL luminescence with increasing excitation, i.e., generation rate.
Examples of such results are shown in Fig. 21.5 for Ge and Si. The critical
temperatures Tc for the EHL in Si and Ge have been determined to be around
23 and 6.5 K, respectively. In addition, the band-gap renormalization E′

g(nP)
is found. It agrees nicely with the universal formula of Fig. 21.2.

The multi-valley structure of the conduction band reduces the kinetic en-
ergy and helps to stabilize the plasma. By applying homogeneous uniaxial
stress to the samples it is possible to lift the degeneracy of the multi-valley
conduction band structure. The results elucidated the influence of the band
peculiarity on the kinetic energy and on µ(nP, TP) [81F1,82F1]. More complex
phase diagrams are discussed, e.g., in [95S1].

As an example for a less common semiconductor and for an indirect gap
compound semiconductors we give a references for the EHP phase diagram in
C and GaP [79M1, 02N4, 02S1, 03N1]. For the discussion of EHL in the wide
gap, direct semiconductor CuCL see [02N1].

The size and the number of carriers in the EHD has been determined by
various techniques including disintegrating them in the internal field of a pn-

Fig. 21.5. The phase diagrams of the electron–hole liquid in Si and Ge. According
to [81F1] and [74T1], respectively. Note the linear and logarithmic scales on the
x-axes of Figs. 21.3 and 21.5
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junction and measuring the current pulses connected with this event. Usually
one finds about 103 carrier pairs per droplet in Si or Ge [77H1, 77R1, 83C1,
85E1].

The EHD can be pinned by impurities such as those which produce the
multi-exciton complexes (see Sect. 14.1) and which may act thus as nucle-
ation centers for the EHD condensation [79M1]. In pure materials the EHP
may move through the sample in a diffusive way or be driven by a heat
flow (phonon wind) if there is a spatial gradient in the phonon popula-
tions [79W1,80G1]. In Fig. 21.6a and b we show an example. The phonons are
created in the excitation spot by the nonradiative recombination of carriers.
Since the phonons propagate (ballistically) into some preferential directions
determined by their dispersion, they push the droplets also into these di-
rections. The expansion of the droplet cloud is therefore in-homogeneous as
seen in Fig. 21.6 a where the luminescence from the EHD is recorded directly
and even better in b where contours of equal luminescence brightness are
given.

We want to conclude the discussion of indirect bulk semiconductors with
a beautiful experiment concerning the so-called γ-drops in Fig. 21.6c,d. The

Fig. 21.6. The expansion of a plasma droplet cloud under the influence of the
phonon wind (a, b) and the flow of excitons and plasma droplets into a γ-drop.
Front and side views of the sample (c, d) [77M2,80G1]
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basic idea is the following. The width of the forbidden gap depends on strain
as already mentioned above. If inhomogeneous stress is applied to a sample in
an appropriate orientation, a situation can be created in which a minimum of
Eg appears in the volume of a sample and not at its surface. If the sample is
strongly pumped at the surface (e.g., by a blue laser) then the excitons and the
droplets move under the influence of the gradient of Eg and accumulate in the
potential minimum, forming there a macroscopic drop called a γ-drop. The
diameter of such drops can be as large as one millimeter. In Fig. 21.6c,d this
situation is seen recorded again by imaging the luminescence of the electron–
hole pair recombination.

21.3.2 Electron–Hole Plasmas in Direct-Gap Semiconductors

Many properties of the EHP in direct-gap materials are comparable to those
in indirect-gap semiconductors, for example, the renormalization of the gap
and the transition from a degenerate to a non-degenerate EHP with increasing
plasma temperature at constant density or with decreasing density at constant
temperature. Calculations in the limit of quasi-equilibrium thermodynamics
predict for direct gap materials, too, a first-order phase separation into an
EHL. For CdS these calculations yield a value of Tc of 64 K [81K1,88Z1]

However, there are also characteristic differences between the EHP in di-
rect and indirect gap materials. One is the appearance of strong stimulated
emission in a degenerate EHP in semiconductors with a direct, dipole-allowed
band-to-band transition. Gain values of up to 104 cm−1, i.e., 1 µm−1 can be
expected. Another difference is the short carrier lifetime, which is in the (sub)-
ns regime for a nondegenerate EHP and may be as short as 100 ps or below
in the degenerate case.

We now discuss the consequences of these two differences and other aspects
of the EHP in direct gap semiconductors. The EHP has been observed in many
direct gap III–V, II–VI and I–VII compounds [81K1,82F1,85H2,90K1,90K2,
93D1,93P1,94I1,94K2,95G1,02N1,04C1,04K2,04P1]. We concentrate here on
CdS and GaAs for bulk materials.

The gain in the degenerate EHP leads to stimulated emission which dis-
torts the luminescence spectra so that their evaluation becomes very difficult.
Only if extremely small volumes are excited with a few µm length in all three
dimensions is it possible to observe sometimes the spontaneous emission of
the EHP. In Fig. 21.7 we give an example where an excitation spot of a few
µm2 has been used and even there some laser modes start to show up. We
stress that the spectral width of the emission increases with increasing pump
intensity, in contrast to the situation in Si or Ge below Tc.

In order to overcome the problem of stimulated emission, the gain spec-
tra have been investigated directly. The experimental technique is pump-and-
probe beam spectroscopy. One measures the transmission or reflection spectra
with a weak, spectrally broad probe beam, once without and once with a spec-
trally narrow, intense pump beam on. The difference between the two spec-
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Fig. 21.7. The plasma emission of
CdS for increasing excitation us-
ing an extremely small excited vol-
ume [75L1]

tra gives information about optical nonlinearities and renormalization effects.
With pulses of several ns duration one observes a quasi-stationary situation,
while measurements with ps excitation allow the investigation of the decay
dynamics of the EHP. A tuning of the pump energy �ωexc can be used for
excitation spectroscopy of the plasma gain, and even spatially resolved pump
and probe beam experiments are possible [81B1,84K2,85M1]. For more details
see Chap. 25.

We discuss now in connection with Fig. 21.8 the changes of the absorption
spectra which we expect in a direct gap semiconductor when we go from a low-
density exciton gas to an EHP. Without excitation we observe in absorption
(or reflection) the series of exciton resonances and the continuum transitions
above Eg. In the presence of a plasma the exciton resonances are gone, the
forbidden gap E′

g(nP) is renormalized and the states are filled in the degener-
ate case up to the chemical potential µ(nP, TP). As will be explained in more
detail below, we expect optical gain between E′

g and µ and absorption due to
band-to-band transitions above. For a detailed analysis of the gain spectra we
consider the recombination rate r(�ω) at a certain photon energy �ω. Since in
direct gap semiconductors no momentum-conserving phonon is involved, we
have to consider here recombination under energy and momentum conserva-
tion in contrast to the indirect semiconductors. For the recombination rate,
which contributes to the emission at a certain photon energy �ω we obtain

r (�ω) ∝ fefh (1 +N) − (fh − 1) (fe − 1)N . (21.14)



21.3 Electron–Hole Plasmas in Bulk Semiconductors 535

Fig. 21.8. Schematic drawing of the low temperature absorption spectra of a direct-
gap semiconductor at low excitation and in the presence of an electron–hole plasma

The first term describes spontaneous and stimulated emission, where N is the
density of photons in the (laser) mode with frequency ω under consideration.
The second term describes the reabsorption.

Equation (21.14) can be rewritten as a term independent of N giving the
spontaneous emission and a term linear in N giving the net rate of stimulated
emission and of reabsorption

r ∝ fefh −N (1 − fe − fh) (21.15a)

∝ rspont + rstim . (21.15b)

Net gain evidently results for fe + fh > 1 and this simply means

µ (nP, TP) > E′
g (nP) (21.16)

as mentioned above.
Using now the square-root dependence of the combined density of states

(Sects. 8.9 and 13.1) and also momentum conservation, we get for the spectra
of spontaneous emission Ilum(�ω) and of gain g(�ω) for �ω ≥ E′

g(nP)

Ilum (�ω) = c2
[
�ω − E′

g (nP)
]1/2

fefh , (21.17a)

g (�ω) = c2
[
�ω − E′

g (nP)
]1/2 (fe + fh − 1) , (21.17b)
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where �ω is given by

�ω = E′
g (nP) +

�
2k2

e

2me
+

�
2k2

h

2mh
(21.18)

with ke = −kh, and c2 is a proportionality constant including once more
the transition matrix element, which is assumed to be k-independent. The
expression (21.17) leads to a square-root increase of the gain spectra at the
low energy side and a transition to absorption at �ω = µ see Fig. 21.8.

Some modifications of the simple shape of the spectra given in (21.17) are
necessary. One is the so-called Landsberg or final-state damping explained
on the right of Fig. 21.9. If an electron recombines with a hole there is an
empty state in the Fermi sea of electrons in the conduction band and an
occupied state in the sea of holes in the valence band. Both states relax very
rapidly as indicated by the dashed arrows. This short lifetime enters as an
energy-dependent broadening which is also known as Landsberg damping.
Consequently the gain spectrum has to be convoluted with a Lorentzian. The
parameter Γ in this Lorentzian depends on energy [81K1]. It has a minimum
at the quasi Fermi energies and increases below and above roughly linearly

Fig. 21.9. Schematic explanation of the recombination and of the final state damp-
ing in a plasma
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with energy; see Fig. 21.10a. This final-state damping is the reason why the
gain and luminescence spectra do not actually start at E′

g with a square-
root dependence but with a smooth tail extending below E′

g as indicated in
Fig. 21.8. Further contributions to the broadening include the scattering with
other quasiparticles such as carriers or plamsons. This phenomenon is also
known as “Fermi-sea shake up”. It has been stressed recently in [93S1] and
references therein and is a “remainder” of or analogy to the inelastic scattering
processes discussed in the previous chapter.

The other correction is the so-called excitonic enhancement [81K1,88Z1]
which is in metals also known as Fermi-edge singularity or Mahan ex-
citon. See [88Z1, 89K1, 93C1] and references therein. It describes an en-
hancement of the oscillator strength around µ as a multiplicative term
ρ(�ω) to the gain, absorption or luminescence spectra Fig. 21.10b. The
physical origin is the following. Around the quasi Fermi levels there are
close-lying occupied and empty states. Electrons and holes in the EHP
can therefore perform around µ under their mutual Coulomb attraction
at least pieces of a Bohr-orbit-like motion. This correlation effect is remi-
niscent of the exciton and enchances the oscillator strength. In Fig. 21.10
we give as examples the k-dependence of the damping for the conduction
and valence bands in GaAs and the excitonic enhancement ρ(�ω). More
recent discussions of the optical properties of an EHP can be found, e.g.,
in [98M1, 98M2, 98P1, 98S1, 04C1, 04K2]. Especially it has been shown in
[04C1, 04K2] that an exciton-like peak can appear in a (dilute) EHP at the
spectral position of the exciton due to the e-h Coulomb correlation. See also
the above information about the role of the excitonic enhancement in the
transmission spectrum.

Fig. 21.10. The damping in the conduction and valence bands of GaAs in the
presence of a plasma (a) and the excitonic enhancement (b). From [81K1]
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After these general considerations we want to see some examples. In
Fig. 21.11 we show transmission spectra of a CdS single crystal platelet with
a thickness of a few µm without and with additional excitation in the band-
to-band transition region.

The plane parallel surfaces of the sample give rise to Fabry–Perot modes
in the transparent spectral regions. At low temperatures we see without exci-
tation the absorption dip of the AΓ5 exciton (cf. Fig. 13.9), the transparent
window above, and the onset of the BΓ5 exciton resonance. For higher lattice
temperatures the absorption becomes less steep and shifts to the red accord-
ing to the Urbach rule of (13.12) or Fig. 13.10. With pump, we see that the
exciton resonance disappears at low temperatures. This fact is also confirmed
in the reflection spectra not shown here [81B1, 85M1]. In addition we clearly
see optical amplification. In Fig. 21.11a the chemical potential µ coinciding
with the crossover from gain to absorption is situated around 2.54 eV and the
reduced gap is at 2.49 eV compared to 2.58 eV in the unexcited sample. For
higher temperatures, population inversion is no longer reached (see the curve
for TL = 300K) because of the temperature dependence of the effective den-
sity of states (8.41) which gives the onset of degeneracy. Nevertheless it is still
possible to bleach the tail of the absorption.

Fig. 21.11. Transmission
spectra of a CdS platelet-
type sample without (- - -)
and with (—–) additional
excitation and for various
lattice temperatures [88S1]
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In addition we see a blue-shift of the Fabry–Perot modes at all tempera-
tures. This means that the refractive index decreases. This finding is easily
intelligible with the help of the Kramers–Kronig relations of Chap. 6, if we
consider that the exciton resonance disappears from the absorption spectrum.
For more recent details of this phenomenon see, e.g., [82K1,83S1].

From raw data as in Fig. 21.11 it is possible to deduce the gain spectra.
Examples are given in Fig. 21.12 for CdS for different values of Iexc and for
GaAs. The fit including the above mentioned phenomena gives nP, TP, E′

g(nP)
and µ(nP, TP). The agreement between calculated data for these quantities
and experiment is shown in Fig. 21.12b. Figure 21.12c gives finally the gain
spectrum of a 1 µm thick epitaxial GaAs layer. The energies of the exciton
and of the gap without excitation are given and the data for E′

g and µ under
excitation. The density reached here is considerable higher than in bulk GaAs
because of the confirment of the EHP to a 1 µm thick layer. We now list several
typical features of the EHP observed in many direct gap semiconductors, but
without giving figures or detailed references in every case. They may be found
in [78B1, 80B1, 81K1, 82D1, 84H1, 85B1, 88Z1, 89K4, 89K5, 90H1, 90K2, 94K2,

Fig. 21.12. Gain spectra of CdS at low temperatures for various pump intensities
(a) the reduced gap E′

g(nP) and chemical potential µ(nP, TP) deduced from spectra
like in (a), (b) and a gain spectrum for a thin GaAs epitaxial layer (c) [81B1,80B1,
89K4]. Note the different directions of positive gain in (a) and (c)
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02N2, 02N3]. The width of the gain spectra increases under quasi-stationary
nanosecond excitation with the generation rate as long as there is no pinning
of the quasi Fermi levels by stimulated emission, and decreases in time after
picosecond excitation. This means that the density is not constant, although
TP is clearly below Tc e.g. for CdS. In Fig. 21.12 the values for the highest
excitation are nP = 3.1018 cm2; TP = 20 K (TL = 7 K, Tc = 64 K). Evidently
no liquid phase is formed. The reason is the short lifetime of the carriers of
about 100 to 200 ps in a degenerate EHP [81B1]. This time is not long enough
for the formation of a spatial phase separation into liquid like droplets and
a gas phase. There will be strong spatio–temporal density fluctuations and in
some regions (e.g., in the vicinity of fast recombination centers in the volume
or at the surface) the density will stay lower than in others, possibly even below
the Mott density. No clear evidence of a phase separation has been observed in
a binary direct gap semiconductor up to now. A pinning of nP with increasing
excitation and spatial density inhomogeneities are often results of stimulated
emission and not of a phase separation. However, recently EHL formation has
been claimed in the direct gap semiconductor CuCl, based among others on
the dynamics of luminescence and IR-reflection spectra [02N1].

The plasma temperature TP usually lies above the lattice temperature TL.
The difference is only a few ten K in the more ionic II–VI compounds with
good coupling of the carriers to the lattice. However, after pulsed excitation
the difference can reach several tens of K up to around a hundred K in a first
transient cooling period. In the more covalent III–V compounds the differ-
ences between TP and TL are generally higher. This temperature difference
also increases with the excess energy of the excitation, i.e., with �ωexc −Eex.
A rather cool electron–hole plasma can consequently be created under reso-
nant excitation in the exciton region or even slightly below.

Since the absorption coefficient is rather high in direct gap semiconduc-
tors (104 − 105 cm−1) the penetration depth of the pump light is � 1 µm.
Consequently a strongly inhomogeneous spatial density distribution is cre-
ated in thicker bulk samples. The gradient of the chemical potential (or
of the density) causes an expansion of the plasma. Typical values of the
drift or diffusion length lD of a degenerate EHP, e.g., in CdS or CdSe, are
lD ≈ (10 ± 5)µm, while the values for the nondegenerate case are closer to
1 µm [81B1,84K2,88S1,89R1]. Depending on the experimental conditions one
therefore often has to consider an inhomogeneous density distribution in the
evaluation of luminescence or gain spectra. In quasi-stationary pump and
probe beam experiments it is therefore advisable to probe only in the spatial
and temporal center of the pump pulse and to use thin (� 10 µm) samples.
In narrow gap materials such as InSb values of lD up to 60 µm have been
reported due to the longer carrier lifetimes and the smaller effective masses
in this group of materials [85H1].

In Fig. 21.2 we compare finally the calculated, normalized band-gap renor-
malization as a function of rs [see (21.5)] with experimental data. As already
mentioned, good agreement is found for the mainly covalently bound direct
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and indirect gap semiconductors like Si, Ge, GaAs, GaP etc. For clarity we do
not give data points for them here. In the case of several populated (in-) equiv-
alent minima, the distribution of the carriers over the various minima has to
be considered explicitly [82F2,88K1,92K2,96K1]. Beautiful experiments along
these lines exist for Al1−yGayAs in the transition region from a direct to an
indirect band structure around y = 0.43 [88K1,92G1,92K2,98D1].

The data for various II–VI semiconductors are shown explictly in Fig. 21.2.
They follow the trend of the theory, but with an average shift of about 0.5 Ry∗

to lower energies. This discrepancy has two main causes. The ionic part of the
binding in the II–VI stabilizes the plasma, e.g., via plasma-phonon mixed
states. This contribution is not contained in the general formula. Addition-
ally the values of Ry∗ and of the experimentally determined exciton binding
energies do not exactly coincide, as was mentioned in Sects. 9.2 and 20.3.1
in connection with the biexciton. Similar arguments also hold for aB which
appears in rs.

In mixed crystals such as CdS1−xSex and Al1−yGayAs it has been found
that the many-particle effects are strongly reduced as long as the electron–
hole pairs occupy only the localized states. One finds essentially a bleach-
ing of the absorption tail of the localized states with increasing density, but
not much of a band-gap renormalization [87M1]. If the extended states are
populated, however, the properties of the band renormalization and band
filling are very similar to those of the binary compounds CdS, CdSe and
GaAs [85C1,87M1,89K1,96K1]. The population of the extended states occurs
e.g. under sufficiently strong pumping so that the total density of electron–
hole pairs exceeds the density of localized states. Nloc. This situation can be
achieved quite easily in Al1−yGayAs but not in CdS1−xSex where Nloc is be-
tween 1018 and 1019 cm−3. In the latter case, however, the extended states

Fig. 21.13. The shift of the absorption edge in CdS, CdSe, and CdS1−xSex under
high excitation as a function of temperature [89K1]
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are also populated to a considerable degree for TP � TL > εloc/kB where εloc

is the tailing parameter introduced in (14.7). In Fig. 21.13 we show the shift
of the absorption edge under high excitation for CdS (see also Fig. 21.11),
CdSe, and CdS1−xSex,. In CdS1−xSex one finds at low temperatures a blue
shift, due to state filling without renormalization, but a higher temperatures
a behavior similar to that for the EHP in the binary compounds.

For the observation of plasmons or plasmon-phonon mixed states in uni-
polar plasmas created by high doping levels see e.g. Fig. 12.1 and 12.4
or [97G2], for bipolar plasmas Fig. 12.3 or for more recent work in Si, C,
GaAs, GaN or CuCl [00N1, 02N2, 02N3, 02N4, 02S1]. As a short preview to
Chap. 23, we mention that the formation time of Coulomb screening and
band-gap renormalisation has been found to be a few ten fs [01H1].

21.4 Electron–Hole Plasma in Structures
of Reduced Dimensionality

In this section, we look at the electron–hole plasma in systems of reduced
dimensionality. For recent reviews of this topic see [90C1, 90H1, 94C1, 94K1,
94K2,94K3,96K1,01L1,04C1,04K1,04O1] and references therein.

In Fig. 21.14a we show pump and probe spectra of an Al1−yGayAs/GaAs
MQW sample, the GaAs substrate of which has been removed by a selec-
tive etching technique. Without excitation we see the now familiar features
of the nz = 1 and 2hh and lh exciton resonances. With increasing pump
power, again using quasi-stationary ns excitation, a scenario develops similar
to that for the three-dimensional system: The exciton resonances disappear,
and there is population inversion between the reduced gap and the chemi-
cal potential. The weak modulation in the resulting gain spectra comes from
residual Fabry–Perot modes of the structure. The slope of the transition from
gain to absorption gives the plasma temperature if the excitonic enhance-
ment is also properly taken into account. The approximately constant gain
value reflects the constant density of states for effective mass particles in
a two-dimensional system (see Fig. 8.20). In agreement with the statements
above, TP is higher than in the more ionic II–VI compounds. In Fig. 21.14b
we show the density dependence of E′

g and of µ and a calculation of E′
g for

a strictly two-dimensional system using some effective parameters of the exci-
tonic Rydberg energy to account for the finite well thickness lz. The band gap
renormalization shown in Fig. 21.14b has been confirmed for lower densities
(0.5 to 2 × 1011 cm−2) in [01I1]

Looking closer, we find some differences that are characteristic of the two-
dimensional system. The nz = 2hh resonance is still seen quite clearly at
densities where the nz = 1hh feature has already vanished. The screening of
the Coulomb interaction by the free carriers would act on occupied and empty
states in the same way. Consequently we may conclude that phase-space filling,
which depends on the occupation of the states, is more important in quasi-2d
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Fig. 21.14. Transmission spectra of an Al1−yGayAs/GaAs MQW sample for various
pump intensities (a) and the resulting dependence of the reduced gap E′

g (b) and of
the chemical potential µ on the electron–hole pair density per unit area nP [89K4,
91S1]

systems than in 3d ones. This interpretation is confirmed by the fact that the
nz = 2hh resonance disappears only when the chemical potential comes close
to it, i.e., when the occupation of the higher subbands starts.

Qualitatively this finding can be understood as follows: The Coulomb in-
teraction between electron and hole can be screened in a 3d system in all
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Fig. 21.15. Luminescence spectra of small mesas of InGaAs MQW samples [89K2]

directions of space, whereas the screening in a QW affects preferenentially the
field lines in the well. It is more difficult to screen the field lines which go
through the barrier since here the probability of finding carriers is reduced to
the exponential tails of wave function shown in Figs. 8.22 and 23.

The other point concerns the fact that the renormalization of the higher
subbands (nz � 2) in a QW system is smaller than that of the fundamental
gap, as long as the higher subbands are not populated. One reason for this
finding [88C1, 89K2, 89K3, 89K4, 91S1] is that electrons (and holes) in differ-
ent subbands are no longer subject to the exchange interaction, which forms
an important contribution to the renormalization of the gap, as outlined in
Sect. 21.2.

In Fig. 21.15 we give as a further example for the above phenomena lumi-
nescence spectra of an In1−yGayAs MQW sample. In this case the plasma
has been confined laterally by the formation of mesa-structures of about
10 µm × 10 µm, resulting in a very homogeneous excitation. The band renor-
malization and the successive filling of states and of higher subbands with
increasing pump power are clearly visible even under cw excitation. The band
gap renormalization in short period type II GaAs/AlAs superlattices (see
Sect. 15.2) has been investigated in [95L1,96K1]. Due to the redistribution of
the carriers between the various band extrema, even a negative, differential
band gap renormalization occurs.

The influence of a unipolar plasma on the optical spectra of an In1−yGayAs
single quantum well has been presented in [87B1,88C1]. The two-dimensional
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carrier density has been varied by the gate voltage in a MODFET. See also
[04C1,04K2] for a discussion of the luminescence spectra of this material.

Obviously electron–hole plasmas also exist in Si/Si1−xGex quantum wells.
In [92X1] a band gap renormalization of about 15 meV has been observed for
wider wells, which tend to vanish for narrower wells.

Recent results on the EHP in quasi-one-dimensional quantum wires are
compiled in [90C1,94C1,96K1,01L1,04K1].

In quantum wires, the screening is even less important than in quasi two-
dimensional systems. To a good approximation it can be neglected. Calcu-
lations of the band gap renormalization (BGR) by exchange and correlation
effects can be found, e.g., in [96B1,97G1,99P1]. Experiments for, e.g., GaAs-
or InAs-based quantum wires are found, e.g., in [95G1,95G2,99B1,99P1,01L1]
and the references given therein.

In quantum dots, it is to some extent a question of semantics to distin-
guish between (possibly charged) multiexciton complexes (see Sect. 20.3.2)
and a plasma. We give here some references for type II Ge/Si dots [02Y1].
References for GaAs- and InAs-based dots are found, e.g., in [95G2, 96B2,
96S1,98H1,01L1].

In this section we have mentioned several times the appearance of optical
gain or of stimulated emission in an EHP. Actually this phenomenon does
not only appear in an EHP but also in connection with other high-excitation
processes. We give more information about these cases in the next chapter.

21.5 Inter-subband Transitions in Unipolar
and Bipolar Plasmas

In Sect. 13.3 we gave examples for intra-excitonic transitions.
When the excitons disappear in a unipolar or bipolar plasma, there is still

the possibility to observe transitions between various subbands both in bulk
semiconductors and in structures of reduced dimensionality. These transitions
are known as inter-valence band or inter sub-band transitions.

21.5.1 Bulk Semiconductors

In Fig. 21.16 we show the valence band structure of a cubic group IV or binary
semiconductor including heavy and light holes and the spin orbit split-off (so)
valence band.

The dashed line corresponds to a situation without interaction between the
lh and the so bands and the solid lines include such an interaction resulting
in an avoided crossing (also see Sect. 8.8). This interaction increases with
decreasing spin orbit splitting ∆so. The calculation in Fig. 21.6 has been
made for InP [99D1] where ∆so ≈ 100 meV.

If holes are present, e.g., in the hh band created either by p-doping or by
optical interband excitation of electrons from the valence to the conduction
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Fig. 21.16. Valence band of a cubic
semiconductor with heavy hole (hh), light
hole (lh), spin orbit split-off band (so)
and transitions of holes [99D1]

band, these holes can be excited to deeper bands by absorption of a photon
as shown by the two arrows.

At elevated temperatures, these transitions usually lead to rather broad
and unstructured absorption bands. Examples for InP are found, e.g., in
[99K1]. Data for other materials including Si or Ge can be found in [02L1].

The electron and hole states can already be quantized for bulk materials
by applying a sufficiently strong magnetic field. If electrons and/or holes are
created by doping, optical excitation or carrier injection the inter-Landau
level transitions or cyclotron transitions can be observed in luminescence or
absorption. A few out of the many references in this field are, e.g., [76B1,
83L1,92U1,02L1].

21.5.2 Structures of Reduced Dimensionality

In structures of reduced dimensionality the valence and conduction bands are
already split without external magnetic field into various subbands. For an
early example see [85W1].

The selection rules for inter-subband transitions in a simple conduction
band are simple

∆nz = ±1; for E⊥ well . (21.19)

The selection rule between different subbands connects states of opposite
parity and the orientation of the electric field results from the orientation
of the dipoles normal to the plane of the well as becomes obvious, e.g., by
inspecting the wave functions of the first two quantized electron states in
Fig. 8.21.

We show various examples in Fig. 21.17. Figure 21.17a gives the absorp-
tion of an n-type modulation doped, 6 nm wide GaAs multiple quantum well



21.5 Inter-subband Transitions in Unipolar and Bipolar Plasmas 547

Fig. 21.17. (a) The inter-
subband absorption of
an n-modulation doped
GaAs/Al1−yGayAs MQW
sample. (b) The inter-
miniband absorption of
a homogenously n doped
200 × (7.5 nm GaAs/2.5 nm
Al1−yGayAs) superlattice
[95T1, 93H1] and (c) of an
optically pumped 140 × (2 nm
CdS/1.9 nm ZnSe) superlat-
tice [00G1,02G1]
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sample. The absorption band for the nz = 1 → nz = 2 transitions is rather
narrow. If the two conduction subbands are parallel, the width comes from ho-
mogeneous broadening and an additional inhomogeneous contribution caused
by interface disorder.

The situation is quite different for superlattices. The miniband disper-
sion results in a characteristic broadening of the inter-miniband absorption
as shown for the conductions bands of a III–V and a II–VI superlattice in
Fig. 21.17b, c.

Figure 21.17c is also an example for the verification of the selection rules for
conduction subbands. The sample is undoped and optical excitation creates
both electrons and holes [00G1, 02G1]. In this reference data are also given
for multiple quantum wells and many particle effects and their influence on
inter-subband transitions are discussed.

Inter- and intra-subband transitions in GaAs/Al1−yGayAs and in GaN/
Al1−yGayN multiple quantum wells are discussed in [98Z1,03C1] and data on
inter-subband transitions in Si/Si1−xGex multiple quantum wells are found
in [94F1]. Inter-miniband transitions are reviewed in [95H1].

For quantum wires see, e.g., [00C1]. Further examples and references are
given in [01L1].

21.6 Problems

1. Compare the values of the Mott density of CuCl, CdS, and InSb at 0 and
at 300 K using the appropriate formulas and material parameters. What
are the excitation intensities needed to reach the Mott density under quasi-
stationary conditions if you excite with �ωexc � Eg and assume a diffusion
length of the carrier of 1, 10 or 50 µm and a lifetime of 0.1 ps?

2. Develop formulas to deduce the gain spectra from raw data as in Fig. 21.11
assuming that the diffusion length of the plasma is greater than (less than)
the thickness of the sample. If you get stuck, try to make reasonable
assumptions.

3. How would the gain spectra (21.17) change qualitatively, if you assume
a drift of the carriers with a velocity v = 1

2vF? Here, vF is the Fermi
velocity.

4. Deduce the effective plasma temperature from some of the spectra of
Figs. 21.12, 21.14 and 21.15, neglecting excitonic enhancement and final-
state damping.
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(1981)
[82D1] R. Dai et al., Z. Physik B 46, 189 (1982)
[82F1] A. Forchel, Ph.D. Thesis, Stuttgart (1982)
[82F2] G.W. Fehrenbach et al., Phys. Rev. Lett. 49, 1281 (1982)
[82K1] A. Kreissl et al., phys. stat. sol. (b) 114, 537 (1982)
[82V1] P. Vashista and R.K. Kalia, Phys. Rev. B 25, 6492 (1982)
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[92G1] S. Gürtler et al., phys. stat. sol. (b) 173, 441 (1992)
[92K1] H. Kalt, Festkörperprobleme / Adv. Solid State Phys. 32, 145 (1992)
[92K2] H. Kalt and M. Rinker, Phys. Rev. B 45, 1139 (1992)
[92P1] P.P. Paskov, Europhys. Lett. 20, 143 (1992)
[92U1] K. Unterrainer et al., Semicond. Sci and Technol. 7, B 604 (1992)
[92X1] X. Xiao et al., Appl. Phys. Lett. 60, 1720 (1992)
[93C1] M. Combescot and Ch. Tanguy, in Proc. 21st Int. Conf. on Physics of Semi-

conductors, Beijing 1992, Ping Jiang, Hou-Zhi Zheng eds., World Scientific,
Singapore, p. 141 (1993)

[93D1] F. Daminger et al., In Proc. 21st Int. Conf. on Physics of Semiconductors,
Beijing 1992, Ping Jiang, Hou-Zhi Zheng eds., World Scientific, Singapore,
p. 1293 (1993)

[93H1] M. Helm et al., Phys. Rev. B 48, 1601 (1993)
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[02G1] M. Göppert et al., Phys. Rev. B 65, 115334 (2002)
[02I1] T.J. Inagaki and M. Aihara, Phys. Rev. B 65, 205204 (2002)
[02L1] Landolt-Börnstein New Series, Group III, Vol. 41 A1 B, U. Rössler, ed.,
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22

Stimulated Emission and Laser Processes

Stimulated emission from semiconductors is usually identified in experiments
by the occurrence of one or several of the following criteria: a strongly super-
linear increase of the optical luminescence output Ilum as a function of the
pump power Iexc above a certain threshold Ith

exc with slopes α in Ilum ∝ Iα
exc of

three and more; a simultaneous spectral narrowing of the emission, often ac-
companied by the appearance of laser modes imposed by some cavity length
and a spatially directed emission above Ith

exc. The increase of the coherence
length of the emitted light is also characteristic for laser emission, but is less
used to identify laser emission from semiconductors, though semiconductors
laser with external, wavelength-selective cavities are developed with extremly
narrow spectral emission.

Many of the high excitation effects outlined in Chaps. 19 to 21 can lead
to stimulated emission under suitable conditions; see, e.g., [73B1,75K1,81K1,
81S1, 92E1, 93K1, 94C1, 95K1, 97N1, 99M1, 03I1, 03R1, 03R2] and references
therein. In this chapter we treat those aspects of the high excitation phenom-
ena of Chaps. 19 to 21 which are specific for stimulated emission.

Pumping can be accomplished by excitation with intense (laser-) light
[81K1, 94C1], (Iexc � 104 W/cm2 depending on the material and the pump
conditions), with electron beams [64B1, 73B1, 92B1, 92N1] (j � 10 A/cm2,
U � 30 keV), by a flash-lamp [83B1] or by a forward biased pn junction
[81S1, 92E1, 92N1, 04H1], provided that it is possible to grow the material
in the desired highly p- and n-doped versions. Optical pumping is usually
the proper choice for scientific investigations of the gain processes, since it
allows resonant excitation of some species, e.g., certain exciton or biexciton
levels. Pumping by electron beams, on the other hand, is unselective and an
energy of about 3Eg is deposited for the creation of one electron–hole pair.
Electron–beam pumping was widely used before high power lasers were avail-
able [64B1,73B1] and more recently for the realization of color projection TV
tubes with high brightness [92B1,92N1].

Pumping by a pn (hetero-) junction biased in the forward direction is
obviously the best choice for most technical applications in laser diodes, which
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are found, for example, in every CD player, laser scanner, laser printer or bar
code reader [81S1,92E1].

Stimulated emission has, until now been almost exclusively limited to
direct gap semiconductors. An exception, namely Al1−yGayAs close to the
direct-indirect crossover, was mentioned in Sect. 21.3 and in [96K1] and we
shall come back to this later. Our considerations are restricted therefore to
direct gap materials where not stated otherwise.

22.1 Excitonic Processes

The processes which lead to stimulated emission can either be of intrinsic
nature, i.e., they involve only excitations of the perfect lattice, or of extrinsic
nature, involving some impurity or defect states. We shall see in the following
examples of both groups.

We use the language of the weak coupling limit for reasons of simplicity,
but state, that we are actually dealing with polaritons. We start with intrinsic
processes in the intermediate density regime, namely the recombination of an
exciton with emission of one or more LO phonons, or with inelastic scatter-
ing by another exciton or a free carrier, or finally the decay of a biexciton
into a photon and an exciton. All these processes were already introduced
in Chap. 20. In Fig. 22.1 we summarize these effects again actually drawing
them in the strong coupling or polariton picture.

In all four cases some initial state decays under emission of a photon and
leaves behind in the crystal another excitation, for example an exciton in
its ground state in the case of biexciton decay, an LO phonon in the case
of the phonon replica, or an exciton in an excited state nB � 2 or a free
carrier at higher kinetic energy in the cases of inelastic exciton-exciton or-
free carrier scattering, respectively. All these processes have the low threshold
for population inversion typical for four-level laser systems as long as this
excited final state in the sample is not (thermally) populated. If there are no
excitons thermally excited into nB = 2 state, or no thermally populated LO
phonons, then population inversion is reached in the presence of two or even
one exciton, respectively. See also (22.2c). We consider now the rate equations
for these processes, assuming that for a given photon energy �ω there is just
one (laser-) mode containing photons with a density Nph. The general rate
equation which holds is [81K1]:

dNPh

dt
= −2κNPh +

∑ 2π
�
δ (∆E) |W |2Q , (22.1)

where −2κNPh contains all losses of the resonator, e.g., due to finite reflection
or diffraction. The second term on the right of (22.1) contains a sum over all
(scattering) processes contributing to the emission at �ω,δ(∆E) stands for the
energy conservation, Q is a population factor into which we can integrate the
k-conservation, and |W |2 finally is the transition matrix element. As a first
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approach to the strong coupling limit one can also incorporate into |W |2 the
probabilities that the exciton polariton is exciton-like in the initial state and
photon-like in the final state. The next step would involve the use of the
polariton dispersion curves of Fig. 22.1 instead that of excitons and photons.
See [81K1].

We consider here as an example the P2 line, i.e., the inelastic scatter-
ing between two excitons in the nB = 1 state, from which one is scattered
under energy and momentum conservation into a state with nB = 2, while
the other one appears as a photon. In the strong coupling limit one would
state, that there occours an inelastic polariton-polariton scattering process
between two exciton polaritons, from which one is scattered onto the pho-
tonlike (lower) polariton branch and the other into an excited exciton-like
polariton state.

In this case we have

∆E = Eex (nB = 1,k1) +Eex (nB = 1,k2)
−�ω − Eex (nB = 2,k1 + k2) ,

(22.2a)

Fig. 22.1. Inelastic scattering processes in the intermediate density regime: exciton-
LO phonon emission (c), inelastic exciton–exciton scattering (b), inelastic exciton–
electron scattering (a) and biexciton decay (d) [81K1]
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and the population factor Q reads

Q = Nex (k1, nB = 1) ×Nex (k2, nB = 1)
× [1 +Nex (k1 + k2, nB = 2)] (1 +NPh)
−NPhNex (k1 + k2, nB = 2) [1 +Nex (k1, nB = 1)]
× [1 +Nex (k2, nB = 1)] ,

(22.2b)

where we consider photons and excitons as bosons.
We can now decompose Q into two terms. One which is independent of

NPh and describes the spontaneous emission and another one which is linear
in NPh and gives the net gain or absorption. For the latter, Qstim, we find

Qstim = NPh {Nex (k1, nB = 1)Nex (k2, nB = 1)
−Nex (k1k2, nB = 2)
× [1 +Nex (k1, nB = 1) +Nex (k2, nB = 1)]} .

(22.2c)

If we assume thermal equilibrium between the excitons in the various
states, we see that inversion occurs, i.e., Qstim > 0 at low temperatures, even
if we have only two excitons which collide as mentioned already above.

The luminescence and gain increase roughly quadratically with the exci-
ton density and thus superlinearly with the pump intensity at low tempera-
ture until the gain overcomes the losses and stimulated emission sets in. At
higher temperatures the nB = 2 states will be also populated, reabsorption
occurs and may even overcome the gain in some spectral regions, resulting in
excitation-induced absorption.

The biexciton decay and the exciton-free carrier scattering also have gain
values which increase superlinearly with density, while the gain of the ex-n LO
process grows essentially linearly with the generation rate until laser emission
sets in.

If Fig. 22.2 we show the calculated temperature dependences of the laser
threshold densities for three of the above-mentioned processes for a given con-
stant value of κ. A variation of κ will shift the various quadratic processes
with respect to the linear one. The increase of the thresholds with increasing
temperature comes from the thermal population of the final states as indi-
cated above. The high threshold at low temperatures of the process involving
free carriers originates from the assumption of thermal equilibrium. In this
case no free carriers (i.e., excitons in the continuum state) are present at low
temperatures. The exciton-free carrier-scattering process can be influenced
by doping. The fact that the calculated carrier densities are relatively high
and may exceed the Mott density (Chap. 21) is due to the use of rather high
losses in the calculations. Lower loss values reduce the calculated threshold
densities.

On the other hand this finding shows that stimulated emission occurs fre-
quently in the transition region between intermediate and high densities. The
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exciton binding energy decreases with increasing density, i.e., the excitons be-
come “soft” and inelastic scattering processes between carriers may take place
in an EHP or the emission of phonons or plasmons in the recombination pro-
cess of an electron–hole pair. While scientists tried to separate these various
processes in the 1970s and 1980s it is now, at least from the theoretical side,
the aim to present calculations that are valid continuously from low densities
to the EHP as already mentioned in Chap. 21 where some references are also
given. A technical term to describe these effects is gain and loss in a “strongly
Coulomb correlated electron–hole plasma”. For some more experimental and
theoretical references see, apart from the references given in Chap. 21, e.g.
[96G1,96H1,96K1,97P1,98M1,98P1].

For the purpose of didactics and clarity, we still separate these processes
here, but one should be aware of the continuous transition from the interme-
diate to the high density regime, especially in direct-gap semiconductors.

In Fig. 22.2 we give experimental data for the excitation intensity at
threshold for CdS which show the trends predicted by theory and dicussed
above. The low value of the threshold around 80 K comes from a cooperative
effect, since various processes are spectrally degenerate in CdS at this tem-
perature; see Fig. 20.3. Similar data are known for other semiconductors like
ZnO. See [81K1] and reference therein. For more recent data on GaN and ZnO
see Sect. 22.3.

Fig. 22.2. The calculated threshold density N th
theory for various gain processes in the

intermediate density regime of CdS as a function of temperature, and the experi-
mentally observed excitation intensity at threshold Ith

exc as a function of the lattice
temperature [81K1]
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Fig. 22.3. The luminescence intensity of
the first two LO phonon replicas of ZnO as
a function of the generation rate G, showing
the laser threshold [75K1,80W1]

In Fig. 22.3 we show an example of the optical input-output curves, show-
ing clearly the laser threshold. As an example, the exciton-LO process in ZnO
has been chosen [80W1].

Similar input–output curves are obtained for the light output as a function
of the forward current (density) in laser diodes. Often one defines a differential
or slope efficiency which is the (maximum) of the derivative of curves like
Fig. 22.3. It must be mentioned that theses slope efficencies may raech unit
but they say nothing about the absolute internal or external luminescence
yield of the device.

Recent publications also stressing (bi-) excitonic gain processes in quantum
structures are, e.g., [95K1, 95K2, 97C1, 01L1, 01R1], which are even partly
claimed to coexist with EHP phenomena.

Inelastic scattering processes between two excitons or free carriers are
treated in quantum structures, e.g., in [87F1,89F1,94C2,96R1,97F1].

We come back to the laser emission in structures of reduced dimensionality
below and in Sect. 22.3.

Another group of intrinsic laser processes, still in the intermediate density
regime, involves only interaction processes of virtually and coherently created
particles. As an example we take the two-photon or hyper-Raman scattering
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already introduced in Sects. 20.3 and 13.1.4. There we presented a process
where a biexciton is created virtually by two quanta and decays under energy
and momentum conservation.

If we now send an additional third quantum �ωs into the sample with
momentum and energy coinciding with those of a possible decay channel,
this quantum can stimulate the decay of the virtually excited biexciton into
another photon �ωs, ks. A second photon �ωf, kf must then necessarily be
simultaneously emitted according to (20.7). See [85H1].

If the third quantum lies energetically below the two pump quanta, �ωf is
necessarily located above, and the whole process is an example of electronic
CARS (coherent anti-Stokes Raman scattering). This latter process also oc-
curs with optical phonons. The sample in this case is again illuminated with
some pump photon and with quanta corresponding to the Stokes emission,
resulting in stimulated emission of the anti-Stokes line.

Alternatively these processes can be named non-degenerate four-wave mix-
ing (NDFWM) and can also be considered as diffraction from a moving laser-
induced grating written by the interference of one pump and one stimulating
quantum, �ωp and �ωs, respectively, and read by one of the two incident beams
resulting in a Doppler-shifted diffracted signal. After the investigation of the
above mentioned inelatic scattering or coherent NDFWM processes with re-
spect to their laser properties in bulk material and in quantum structures
(see above or [01L1]), we see now that analogous phenomena are investigated
involving cavity polaritons, as outlined already in Sect. 20.2. The experiments
are beautiful and the introduction of a new language in connection with the
rediscovery continues. Stimulated emission due to polariton-polariton scatter-
ing in a microcavity in analogy to Fig. 20.1 or 22.1b is named polariton laser
or PLASER, and the low theshold well known for four level laser systems men-
tioned above comes now partly under names like thesholdless lasing or lasing
without inversion. See e.g. the Ref. [00B1, 00T1, 02B4, 02B5, 02S5, 03L1] of
Chap. 20 or for more recent considerations of microcavity lasers [02K3,02Z1].
The close connection between stimulated emission and Bose–Einstein conden-
sation of cavity polaritons has already been mentioned in Sect. 20.5.4. Further
references are e.g. [01O1,02L2].

We now give two examples of stimulated emission in disordered systems.
The tail of localized states in CdS1−xSex. typically has a maximum tailing
parameter E0(x) of about 5 meV and contains roughly 1018 states per cm3.
So the lower portion of this tail can be easily filled by optical pumping at low
temperatures where thermal excitation into the extended states with a much
higher density of states is prevented. If the gain value, i.e., the inversion, of
the filled states is sufficiently large, laser emission sets in.

We show schematically in Fig. 22.4 (left-hand side) the density of states
with the mobility edge ME and the chemical potential, µ, which indicates the
energy up to which the states are filled at the highest excitation intensity.
The right-hand side gives observed emission spectra showing the spikes of
laser modes slightly above threshold.
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Another aspect of disordered systems has been exploited recently to ob-
serve stimulated emission in indirect gap Al1−yGayAs and similar materi-
als [90C1, 94C1, 94K1, 94W1, 96K1] as mentioned briefly in Chap. 21 and
references therein. GaAs is a direct-gap material with Eg ≈ 1.4 eV at 4 K
and AlAs an indirect one with Eg ≈ 2.2 eV. There exist alloys of all com-
positions y. For y < yc = 0.57, the minimum in the conduction band at
the X point in the first Brillouin zone becomes lower than that at Γ. Under
high (optical) pumping most of the electrons therefore sit in the X min-
imum. However, the alloy disorder couples the states and Γ and at X so
that the electron–hole pairs can recombine without participation of phonons.
This fact enhances the transition rate so strongly that stimulated emission
has been reached for y < 0.57 at a wavelength of 620 nm corresponding to
2.2 eV, i.e., already in the orange part of the spectrum with gain values up to
200 cm−1 [94W1].

The coupling between Γ andX states can also be presented in another way.
The alloying destroys to some extent the translational invariance of the lattice.
As a consequence the k-conservation, which is based on this translational
invariance as shown in Sect. 3.1.3, is partly relaxed, allowing recombination
processes which violate a strict k-conservation rule.

We should like to mention that some recombination processes which in-
volve impurity centers also lead to optical gain. In fact, one of the first theoret-
ical considerations of stimulated emission from semiconductors started with
the recombination of bound-exciton complexes (BEC) like excitons bound to

Fig. 22.4. Left: The density of localized and extended states in CdS1−xSex

(schematic). Right: Observed emission spectra below and above threshold [87M1]



22.1 Excitonic Processes 561

neutral acceptors or donors in CdS [62T1], because of their small spectral
width. However, direct stimulated emission from BEC is observed only very
rarely, but a slightly more complex mechanism gives optical gain. This is the
recombination of a BEC under emission of a photon and an acoustic phonon,
the so-called acoustic sideband. See Sect. 14.1 and [81K1]. This process also
becomes possible because of the disturbed translational invariance. It is again
a four-level process with low threshold as long as the acoustic phonon states
are not (thermally) populated.

The two-electron transition explained in connection with Fig. 14.5 also
yields gain as shown in [75K1] for ZnO.

One expects some advantages for semiconductor lasers in structures of
reduced dimensionality. We come back to this aspect in Sect. 22.3. As a con-
sequence of these expectations, gain processes have been widely investigated
in structures of reduced dimensionality. We already mentioned a few examples
above. Often the parameters of the gain are provided, such as its spectral posi-
tion, spectral width, maximum value, temperature dependence and the pump
power necessary to observe it, but no detailed information is given about the
recombination process. We give in the following a further, rather limited selec-
tion of references to gain measurements, allowing the reader to enter deeper
into the field. Apart from [92E1,94C1,99K1,01L1] we mention the following.

The gain in GaN-based structures or more generally group III-nitrides
is investigated, e.g., in [97N1,98O1,99M1,03R1]. These structures resulted in
commercially available light-emitting and laser diodes for the short wavelength
part of the visible spectrum including the near-UV.

For the green spectral range, gain processes in Zn1−yCdySe-based struc-
tures have been investigated [92N1,95K1,95U1,96G1,97C1,97P1,98M1,02G1]
as well as ZnTe-based structures [94M1, 01C2, 01S3]. Laser diodes based on
this material combination are still awaiting their commercial application, be-
cause the device lifetime is still limited to unacceptably low values by the
creation of dark line defects under operation.

For laser emission in the IR based on lead salts or Ga1−yInyN1−xAsx

see [01L1,03I1] and [02K4,04K1,04P2,04S1], respectively.
Some examples for the investigation of gain and lasing in quantum wires of

III–V and II–VI materials can be found, e.g., in [90C1,94C1,94C2,94K1,99K1].
A further reduction of the dimensionality leads to gain and lasing from

quantum dots including dots in insulators or self-assembled islands in semi-
conductors [92N1,93F1,93M1,95G1,95W1,99E1,99I1,99K1,01B1,01E1,02E1,
02S1,03C1], in [97W1] of Chap. 1 and [95W1,95W2,96G1,96W1] of Chap. 20.

Other materials for gain and laser emission in the blue and near-UV, which
have become fashionable again, are ZnO [75K1, 81K1, 04P1] and ZnO-based
quantum structures including nanorods (see, e.g., [02K3,02Z1] or [97S1,01H1,
02K4] of Chap. 15) allowing, similarly to GaN, partial lasing well above room
temperature [98B1,00O1,04P1].

ZnO powders are also used to investigate lasing in “active random media”,
a process that involves enhanced backscattering of light at the ZnO grains
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[99C1,00S1,01C1,01M1,01S1,04H2,04Q1]. This process has been discussed in
Sects. 8.15, 9.6 and 14.4 in connection with localization of free carriers and/or
excitons.

22.2 Electron–Hole Plasmas

The laser process which has presently the highest importance with respect to
technical applications in laser diodes is the stimulated emission of a degenerate
electron–hole plasma as outlined in Sect. 21.4. Population inversion occurs
when the chemical potential µ of the electron–hole pair system is located
above the reduced gapE′

g. See Fig. 21.1 or (21.16). It should be mentioned that
some of the inelastic scattering processes or recombination under emission of
a phonon or of a plasmon-phonon mixed state quasiparticle mentioned above
may also occur in a plasma, contributing to the long-wavelength part of the
gain spectra, or at densities below those fulfilling (21.16).

Population inversion can be achieved much more easily in indirect gap
semiconductors like Si or Ge due to the longer carrier lifetimes, but the
indirect nature of the transition makes the gain values so small that im-
practicably large volumes have to be pumped. However, far-infrared lasing
has been reported in p-Ge between the heavy and light hole valence bands,
or in a magnetic field between hole Landau (or cyclotron) levels [91G1].
Light emission and possibly gain from (partly doped) Si nanostructures are
discussed in [01D1, 01K2, 02L1, 03D1] and the references given therein. On
the other hand, gain values of up to 104 cm−1 can be reached with direct
gap semiconductors, so that devices with a length of the active material
of about 100µm can be pumped in a forward-biased pn junction to give
power densities in the 105 W/cm2 range at the surface of the laser. Dif-
ferential internal quantum efficiencies deduced from the slope of the light
power output versus electrical current input in excess of 50% have been re-
ported.

We come now to one of the reasons why structures of reduced dimension-
ality are in principle favorable for the use as active materials in laser diodes.

In Fig. 22.5 we show calculated gain spectra resulting from an EHP for
idealized In.53Ga.47As/InP quantum structures of various quasi-dimensions d
from 3 down to 0 as indicated in the figure.

The density is kept constant and the confining linear lengths are always
10 nm. It is obvious that the absolute gain values increase and that the widths
of the gain spectra decrease with decreasing d. This effect would allow smaller
active volumes and/or lower threshold currents for decreasing d.

We stress that these calculations are valid for idealized structures. The
calculations include, e.g., only homogeneous broadening.

In reality, inhomogeneous broadening due to alloying and fluctuations of
the width in the confinement direction(s) tend to increase the width and to



22.3 Basic Concepts of Laser Diodes and Present Research Trends 563

Fig. 22.5. Calculated gain spectra
of idealized In1−yGaAs/InP quantum
structures for various quasi-dimensions
but with constant electron–hole pair
density nP = 3 × 1018 cm−3 [86A1,
99K1]

decrease the height of the gain spectra with decreasing d. Furthermore the
confining potentials are sometimes rather moderate, e.g., for self-assembled
islands so that carriers can escape at elevated temperatures. Consequently,
commercially available laser diodes are based on double-heterostructures or
quantum wells. The future will show if the various types of wires, e.g., etched,
T-shaped or V-grooves (see Sects. 8.11 to 13) or even quantum dots or islands
will make it into application.

22.3 Basic Concepts of Laser Diodes
and Present Research Trends

Though this is not a textbook on semiconductor technology or devices, we
outline in the first part of this section some developments and trends in the
design of light emitting and laser diodes. A detailed discussion of this topic
is, however, beyond the scope of this book and may be found, e.g., in [81S1,
92E1, 94C1, 99K1] and references therein. In the second part we list some of
the present research trends in the field of semiconductors lasers.

The simplest way to build a laser diode would be to strongly bias a pn
junction in the forward direction. In order to fulfill the condition µ > E′

g for
simple band-to-band recombination at least one (better both) of the n and p
doped layers had to be doped so highly, that the Fermi level is in the band,
i.e., that the population is degenerate (see Fig. 22.6a).

This design has the disadvantage that neither the carriers nor the photons
are confined or guided in any direction. Consequently, the threshold current
density of such structures is extremely high so that such devices could only
be operated in a pulsed mode and at reduced temperatures. This means that
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they were essential to prove that the concept of laser diodes works, but they
were only of very limited practical use.

A major breakthrough was the invention of double-heterostructures em-
bedded in the intrinsic region of a pin diode (Fig. 22.6b). An undoped
GaAs layer is, e.g., grown between n- and p-doped Al1−yGayAs layers.
The reduced band gap of this layer allows one to reduce the doping lev-
els, as can be seen from a comparison between Figs. 22.6a and b. Fur-
thermore the carriers are confined and the light quanta are already guided
in one dimension since the larger band gap material has a smaller refrac-
tive index. Lateral guiding of the light can be achieved, e.g., by gain guid-
ing (Fig. 22.6c) using a strip-like contact. Consequently, the current is in-
jected along this line and photons experience maximum amplification along
the direction of this line, which coincides trivially with the axis of the res-
onator, which in turn consists generally in the cases shown in Fig. 22.6a-d
of cleaved semiconductor surfaces. Photons emitted under an oblique angle
with respect to the resonator axis are lost for the laser, but are only ampli-
fied over a shorter distance. A lateral wave guiding can be achieved, e.g.,
by etching a ridge under the upper contact, possibly followed by a coat-
ing or overgrowth with high-band-gap (i.e., low-index) material to reduce
surface recombination. This design already allows cw room temperature
operation.

Since the threshold current in the forward-biased pin laser diode depends,
among other things, on the volume in which inversion has to be reached,
a more advanced design has been realized in which the electrons and holes are

Fig. 22.6. Schematic drawings of a simple pn junction laser biased in the forward
direction (a) of a double-heterostructure (b) of the effect of gain guiding (c) of
a GRINSCH structure (d) and of a VCSEL (e)
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confined in one (or a few) quantum wells with a typical width of about 10 nm,
while the light quanta are guided in a structure with a width comparable
to their wavelength, i.e., about 1 µm [81S1, 92E1, 96K1]. These graded index
separate confinement heterostructure (GRINSCH) structures are shown in
Fig. 22.6d. The funnel-shaped bandstructure of the optical waveguide helps to
collect the injected carriers in the quantum well. Minimum threshold currents
reached with these and similar structures are in the 1 mA range. A certain
drawback of these structures is the limited spatial overlap of light-field and
electron wavefunction.

Another currently very lively field of research concerns the development
of surface-emitting laser diodes which can be arranged in one- and two-
dimensional arrays and addressed individually. These arrays are very impor-
tant ingredients for high brightness displays and in parallel electro–optic data
handling (Sect. 24.2).

Among the most promising concepts are so-called vertical cavity sur-
face emitting lasers (VCSELs) shown in Fig. 22.6e. These are monolithic
devices, where two stacks of Bragg mirrors (BM) are grown epitaxially to-
gether with the cavity, which contains one or a few quantum wells at the
positions of the antinodes of the cavity (also see Sect. 17.1). The cur-
rent is injected, e.g., through n+ and p+ doped Bragg reflectors form-
ing the cavity. Ideally two-dimensional arrays of VCSELs are fabricated,
in which every single laser structure can be addressed individually to al-
low, for high-brightness two-dimensional displays. The concept of VCESL’s
is closely related to lasing involving cavity polaritons and their interaction
processes. See Sect. 22.1 [04K1] or Refs. [00B1, 00T1, 02B4, 02B5, 02S5, 03L1]
of Chap. 20.

Laser diodes have developed into various directions. Linear arrays are op-
timized towards maximum output to pump, e.g., Nd-solid-state lasers. Oth-
ers are optimized towards minimum threshold currents or towards maximum
modulation band width for data transfer. A basically simple way to mod-
ulate the output power is via current modulation. Another possibility has
been realized by sending short optical pulses from the laser [98H1] with suf-
ficient excess energy to heat the carrier gas to temperatures that reduce µ
below E′

g. As a consequence, the laser switches off, although the electron-hole
pair density is increased. After cooling the carriers the laser starts operating
again.

Concerning the emission wavelength there are the two windows in glass
fiber communication at 1.55 µm and 1.3 µm that can be covered by Ga1−yIny

As1−xPx-based structures and more recently by Ga1−yInyNxAs1−x-based
ones. Ga1−yAlyAs-based structures emit in the (nearinfra-) red.

For full color displays, diodes in the yellow and green (e.g., those based
on Cd1−yZnySe) and in the blue (based on Aly1Ga1−y1−y2Iny2N or on
Cdy1Mgy2Zn1−y1−y2O) are under investigation. References for these materi-
als have been given above, but some can be added, e.g., [96R1,96R2] for ZnO
(though this is definitely not the “first report on lasing in ZnO by optical
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pumping” as can be seen from [75K1,81K1] and the references given therein)
or [01C2, 01S3] for ZnTe-based materials and [00F1, 00T1] for Zn1−yCdySe-
based structures or [02A1] for CdS-based ones.

Shorter emission wavelengths also allow one to increase the density of bits
per unit area nb, e.g., on CDs. There is a rough scaling law nb ∼ λ−2. This
means that a transition from the near-IR to the near-UV allows one to increase
nb by a factor often.

Organic semiconductors or phosphors are also being investigated for the
purpose of (full color) displays. Presently these are mainly in the shape of
light emitting diodes or electroluminescent devices, i.e., devices that operate
below the onset of stimulated emission [02T1,03M1,04H1]. In this sense, one
also investigates Si nanocrystals as they occur in porous Si (see, e.g., [01K2]
and references therein).

Now we give a few references on some further present research trends in
semiconductor lasers.

The incorporation of CdSe-based quantum islands as active materials
might help to improve the lifetime of Cd1−yZnyS1−xSex-based II–VI lasers
[01K1,02K1].

Inter-subband or inter-miniband transitions like the ones described in
Sect. 21.5 can be inverted to give laser emission. Examples for quantum struc-
tures can be found, e.g., in [96W1,02K2]. We already mentioned an example
for bulk p-Ge [91G1].

Quantum cascade lasers are unipolar devices that use, e.g., an electron
several times for the emission of photons. See, e.g., [96F1, 02K2] and refer-
ences therein. The basic idea is roughly the following. Electrons are injected
in a p+in+ structure, which contains a periodic array of superlattices and
quantum wells in the intrinsic region. The electron reaches the nz = 2 state
in the quantum well through the miniband states of the SL and performs
a nz = 2 → nz = 1 transition under emission of a photon, e.g., in the mid-IR,
and tunnels from the nz = 1 state into the miniband of the next SL, where
the process repeats itself. For the incorporation of quantum cascade lasers in
photonic crystals see [03C1].

Another topic are lasers without inversion, treated, e.g., in [89H1, 96F1,
01B2] and references therein.

Concerning the resonators, semiconductor laser resonators are made in
the simplest case by cleaved surfaces. They may also contain Bragg mir-
rors like the cavities in Sect. 17.1 or the VCSEL structures mentioned
above or in [01E1, 02P1], or other distributed feedback (DFB) structures
[81S1,92E1].

A recently investigated topic in this field is microdisc lasers emitting into
so-called whispering gallery modes (see, e.g., [94J1,00C1,00L1,03R1]).

For quantum kinetics, spatio-temporal dynamics and quantum fluctuations
in semiconductor lasers see, e.g., [96H1,03G1].

The last point we want to address is the temperature dependence of the
laser threshold. As seen, e.g., from Fig. 22.2 there may be various types of de-
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pendencies. For laser diodes one often finds for the forward current at thresh-
old an empirical relation

Ith (T ) = I0 exp {T/T0} . (22.3)

The art of device development and materials engineering is currently to
make I0 as small as possible, e.g., by reducing losses including the density
dependent Auger-recombination and to make T0 large so that the properties
of the laser do not change much with varying operating temperature.

With this small excursion into more application-oriented topics in semi-
conductor laser research and development we close this chapter.

22.4 Problems

1. How would you expect the curves of Fig. 22.2 a to shift with respect
to each other if the total losses of the cavity increases or decreases by
a factor

√
10?

2. Why is lasing via a degenerate EHP at room temperature more likely
in standard III–V than in II–VI compounds? To answer this question
calculate the effective density of states for electrons and holes in various
2d and 3d materials. Why should you do so?

3. Calculate the gain spectra for a 3d degenerate EHP of a direct and an
indirect-gap semiconductor with otherwise identical parameters. Do the
same for a quasi-2d direct gap material.

4. Why does lasing generally occur not at the maxima of the gain spectra
but rather on their low-energy sides?
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23

Time Resolved Spectroscopy

Until now we have considered the linear and nonlinear optical properties of
semiconductors mainly under quasi-stationary conditions, i.e., the excitation
or measuring pulse lengths were assumed to be longer than the lifetime of the
excited species.

The development of ps sub ps and finally of fs lasers pulses, with pulse
durations down to only two cycles of the electromagnetic field [03T1] during
the last two decades has allowed the dynamics of the optical excitations in
semiconductors to be measured directly in the time domain. Since the charac-
teristic time constants can be as short as a few fs, this field of research is also
known as “ultrafast Spectroscopy”. The field developed very rapidly through
the competitive work of many research groups worldwide who were investigat-
ing intra- and inter-subband transitions in bulk semiconductors and quantum
structures. When the pulse duration reached the limit of only two cycles of
light (FWHM) and when all (quasi) dimensions had been explored from d = 3
down to d = 0 and the spatial resolution has been stretched to the resolution
limit, the field reached, though still very active, a certain degree of maturity.
The development of the field can be nicely followed in the Proceedings of the
Series of International Conferences on the Physics of Semiconductors (ICPS)
mentioned in the introduction, in Ultrafast Phenomena [93U1], in Nonlinear
Optics and Excitation Kinetics (NOEKS) [88N1] and in some monographs, re-
views and data collections such as [96H1, 96S1, 01L1, 02L1, 02S1,03Q1,04O1]
or some older ones like [77L1, 78S1, 84S1, 91D1]. The diversity of topics in
the various time regimes mentioned below is so large that it is completely
impossible to cover all phenomena in all types of materials or structures
in a general textbook on semiconductor optics. We therefore present here
a didactic, but also to some extent, arbitrary selection of topics and exam-
ples.

We start with an introduction of the basic time constants and then pro-
ceed from shorter to longer times, or in other words, from coherent pro-
cesses over intra- and inter-subband relaxation to the lifetime of electron–hole
pairs.
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23.1 The Basic Time Constants

We first introduce the basic time constants on a very elementary level and
refine these concepts later to some extend. We concentrate again on the prop-
erties of electronic excitations in semiconductors and present the basic mech-
anisms with the help of Fig. 23.1, again using the weak-coupling limit if not
stated otherwise.

With a short laser pulse an electronic excitation is created, here excitons
in the continuum states.

The polarization, P , produced by the incident electromagnetic field of this
pulse is initially in phase with this field, i.e. the two waves are coherent. The
first scattering processes which occur destroy this coherence. The characteris-
tic time in which the fraction of the polarization that is still in phase with the
exciting pulse decays to e−1 is called the phase-relaxation time T2 ore more
precisely the decoherence time (see also Chap. 4 and Sect. 3.1.5). For the part
of the polarization wave which is still coherent with the exciting pulse we can
write, to a first approximation

P coh = P 0 exp (−t/T2) . (23.1)

Here we assume that the decay of the polarization is simply exponential and
that this decay starts immediately after the excitation due to coupling to some
“bath”. For details see the so-called fluctuation-dissipation theorem treated,
e.g., in refs. [81A1]k,l of Chap. 1. These are the so-called Markovian processes.

Fig. 23.1. A schematic drawing of the dispersion relation of excitons and of the
main time constants
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Deviations from this simple behavior then obviously form the non-Markovian
processes. We shall see examples for both cases below [01B3,01W1,04O1].

The scattering processes which destroy the phase include:

(i) scattering with phonons. The interaction mechanisms are the Fröhlich
coupling with the electric field of (preferentially longitudinal) optical
phonons, the deformation potential and the piezo-coupling to acoustic
and optical phonons. For the interaction processes with phonons see
Sect. 8.6.

(ii) scattering with other electronic excitations, e.g., elastic and inelastic
exciton-exciton or exciton-electron scattering,

(iii) scattering at impurities or other lattice defects. These processes also in-
clude the interface roughness scattering in quantum wells and scattering
with alloy fluctuations in mixed crystals,

(iv) recombination. If there are no other phase-destroying processes, the phase
will ultimately be lost in the recombination process, which can be de-
scribed by a lifetime T1 of the excited species with density N(t). We
assume again a simple exponential decay in this case we have as an up-
per limit

N = N0e−t/T1 ∝ P 2 ∝ [P 0 exp (−t/T2)]
2 (23.2)

since the number-density N is proportional to the amplitude squared. From
(23.2) follows the inequality

T2 � 2T1 . (23.3a)

The “<” sign is valid if there are phase disturbing processes other than recom-
bination, the equality is valid if recombination is the only phase-destroying
process. We shall see in the future examples of both cases.

Sometimes one wants to investigate the “pure” dephasing T ∗
2 , i.e., all pro-

cesses that destroy the phase other than recombination. In this case one can
write

1
T2

=
1

2T1
+

1
T ∗

2

(23.3b)

where T ∗
2 can exceed T1 by more than the factor 2 present in (23.3a).

The first process (i) obviously obtains increasing importance with in-
creasing temperatures, and the second one (ii) with increasing optical ex-
citation or doping. The third process (iii) is especially important for free
excitons in ordered structures and for excitons in extended states in disor-
dered structures, while it can be considerably reduced at low temperatures
for spatially localized excitons occurring, e.g., as bound-exciton complexes
(Sects. 8.14 and 14.1, 2) or as localized excitons in alloys or quantum struc-
tures (Chap. 15).

To make this simple picture slightly more “true” in the sense of the state-
ment at the beginning of this book, we state that there is a collection of times
describing the phase relaxation.
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The first aspect we mention is homogenous versus inhomogeneous broad-
ening.

If all oscillators have exactly the same frequency, as introduced, e.g., in
Chap. 4, the decay times of the polarization of the ensemble and of every indi-
vidual oscillator are the same. The damping or the width Γ of the (Lorentzian)
resonance are given by [77L1,91D1,96S1]

T2 =
2�

Γ
. (23.4a)

In numbers this means that

Γ = 1 meV =̂ T2 ≈ 1.3 ps . (23.4b)

On the contrary, for a periodic harmonic oscillation a period T of 1 ps corre-
sponds to

�ω = hν =
h

T
(23.4c)

resulting in
T = 1 ps =̂ �ω ≈ 4 meV . (23.4d)

If we have, on the other hand, an inhomogeneously broadened system, where
every oscillator has a slightly different eigenfrequency distributed over an in-
terval ∆ωin around ω0, e.g., according to a Gaussian distribution, the decay
of the polarization of the ensemble is shorter than the decoherence of every
individual oscillator for the following reason.

At the beginning, all oscillators are excited in-phase by a short pulse. Due
to the slightly different eigenfrequencies a phase shift develops with time be-
tween the various oscillators with the consequence that the polarizations of the
individual oscillators cancel. The dephasing of the macroscopic polarization
or the “free polarisation” decay Tpd is given roughly by

Tpd · ∆ωin ≈ 1 , (23.4e)

which also depends on details of the frequency distribution. The decoherence
time of the individual oscillator T2 can be considerably longer than Tpd.

The amplitude of the radiation emitted according to (2.26), e.g., from an
ensemble of oscillating dipoles, decays for inhomogeneous broadening with Tpd

due to dephasing of the ensemble. This effect is called free polarisation decay
in analogy to the free induction (or magnetization) decay of spin systems,
e.g., in electron paramagnetic resonance (EPR, ESR) or nuclear magnetic
resonance (NMR) experiments (see Chap. 27 for details and references).

Inhomogeneous broadening is important for localized or bound excitons,
e.g., in alloys or quantum structures at low temperature, while homogeneous
broadening dominates for free exciton resonances in high-quality bulk samples
or at elevated temperatures when the homogenous broadening due to inelastic
scattering with optic and acoustic phonons dominates over inhomogeneous
contributions.
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We shall see below that it is possible to distinguish, e.g., in four-wave mix-
ing experiments, between homogenous and inhomogeneous broadening and to
deduce the decoherence time T2 of individual oscillators even in the presence
of inhomogeneous broadening.

The coherence in the time interval from the excitation pulse to the dephas-
ing is also known under the keyword quantum coherence and manipulations
carried out during this time interval under coherent control.

The discussion has so far concentrated on the dynamics of the so-called
interband polarization, which is valid, e.g., for excitons or band-to-band tran-
sitions, i.e., for the optical properties in the vicinity of the fundamental gap.

For electrical transport properties, e.g., through nanowires or point con-
tacts another quantity is relevant, the so-called intraband coherence. This
coherence is destroyed only by inelastic scattering processes. Elastic scat-
tering of the charge carriers at defects does not destroy this type of coher-
ence as becomes clear if we consider, e.g., the weak localization by enhanced
backscattering introduced in Sects. 8.15 or 9.6. This topic is beyond the scope
of this book, but we mention it here so that the reader is familiar with the
terms.

A further aspect concerns the difference of the coherence of the interband
polarisation of an (in)homogeneously broadened transition and the dephasing
or decoherence of the spin of either the exciton as a whole or of an individual
carrier (i.e., electron or hole) in the exciton. Since spins interact only weakly
with phonons and electric polarisation, the coherence of the spin may be
maintained even if the coherence of the interband polarization is destroyed,
e.g., by some scattering process. This is especially true if the spatial part of the
wave function and the spin part are not strongly coupled, e.g., via spin-orbit
interaction. As we shall see below it is also possible to measure the dephasing
of the spin independently of the dynamics of the spatial part of the wave
function.

To conclude this short tour d’horizon on dephasing we mention a more
philosophical aspect. If we make the system under consideration larger and
larger (in the ultimate limit the whole universe) there is no more “bath” left by
the coupling to which dephasing is introduced. Instead, all degrees of freedom
oscillate with their proper energy factors exp{iωt}. At the end, this aspect
may lead to similar philosophical problems like the deterministic point of view
in classical physics, but this aspect leads even further beyond the scope of this
book than intraband coherence above.

The above aspects are treated in great detail in [96S1,99A1,02S1] and the
references given therein, in addition to some of the text books mentioned at
the beginning of this chapter.

Now we return to the discussion of the longer time constant.
A next step during the lifetime of an electron–hole pair is the intraband

relaxation. This process is sometimes desbribed by a time constant T3. It is
of special importance when the excess energy with which the pair has been
created is considerably larger than kBT .
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The usual intraband relaxation for excess energies above �ωLO takes place
by emission of optical phonons. This process is rather fast with typical time
constants in the (sub-) ps regime. The rest of the excess energy has to be dis-
sipated by emission of acoustic phonons. This process is usually much slower
and takes progressively more time with decreasing energy- and increasing mo-
mentum transfer towards the bottom of a parabolic dispersion.

After a few scattering processes among themselves and with the lattice,
free electron–hole pairs (excitons) reach a thermal distribution which can be
described by a temperature Te and (usually) by Boltzmann statistics. (This
statement is not true at low temperatures for excitons in localized tail states
[93K1,99K1]).

If the lifetime of the exciton is sufficiently long and the coupling to phonons
sufficiently strong, the excitons thermalize with the lattice. This means that
the temperatures Te and TL describing the distribution of excitons and of
phonons in their respective bands become equal.

If the excitons are created with some excess energy Eexcess � kBTL, ther-
malization means a decrease of the average kinetic energy towards a value of
3/2kBTL. If, in contrast, excitons are created resonantly at the bottom of the
lowest band, thermalization means an increase of energy and a spreading in
k-space, since the kinetic energy connected with the photon momentum kph

is usually much smaller than kBTL even for TL ≈ 4.2 K, i.e., at liquid He tem-
perature. The quantity kB “times” 4.2 K is roughly 0.4 meV while �2k2

ph/2M
is in the 10 µeV range depending on the material parameters.

Finally the excitons recombine radiatively or non-radiatively with a time
constant T1. T1 is generally in the ns regime for direct gap semiconductors
and reaches values in the µs or even ms range for indirect materials.

In most semiconductors, the recombination process is predominantly non-
radiative. Only for some high quality quantum well or alloy samples has the
luminescence yield η (i.e., the ratio of the number of emitted photons to ex-
cited electron–hole pairs) been claimed to reach unity [98W5,03F1]. Otherwise
typical values of η are 10−3 � η � 10−1 for good direct gap bulk materials
with dipole-allowed band-to-band transition. For materials containing a lot
of non-radiative centers (so-called luminescence killers like Fe or Cu ions in
some compounds) or in indirect gap materials like Si and Ge or in direct
ones with dipole-forbidden band-to-band transition like Cu2O, η can be even
considerably smaller.

This means that the decay time of the luminescence generally does
not give, i.e., for all cases with η < 0.5, the radiative decay time in
contrast to frequent claims of this sort found in the literature. The fact
that good agreement between theories assuming η = 1 and experiment is
nevertheless often found can possibly be reasoned as follows. The radia-
tive and many of the nonradiative recombination channels depend on the
electron–hole overlap integral. Since this quantity is generally not very pre-
cisely known in absolute units, it is frequently used as a fitting parame-
ter, with the result that both radiative and nonradiative recombination pro-



23.1 The Basic Time Constants 577

cesses are taken into account implicitly but unintentionally in the theoretical
description.

Apart from the “mono-molecular” recombination processes which result in
an exponential decay described by T1 in (23.2), there are other recombination
processes like inelastic scattering described in Sect. 20.2 or the nonradiative
Auger recombination. In the latter process one electron–hole pair (exciton) re-
combines and transfers all of its energy to a third particle, e.g., a free electron,
as additional kinetic energy. This process can limit the quantum efficiency in
high density electron–hole pair systems, e.g., in laser diodes [75H1,79H1]. Still
other processes involve the subsequent capture of a carrier, e.g., an electron at
some deep center and the subsequent recombination with or capture of a hole
at the same center. All these processes lead to a nonexponential decay that
can in principle not be described by a single time constant T1 but involves
more complex models of recombination kinetics, which generally tend to con-
tain a lot of unknown cross-sections or reaction constants. Sometimes it is at
least possible to give an effective lifetime T eff

1 averaged over a certain density
or spectral interval. In the following, we shall see examples for the various
situations.

Wegivehere a short summaryof variousdecay relations for apopulationN(t)

N = N0e
−t/T1 (23.5a)

is the simple (and single-) exponential decay obtained for mono-molecular
decay processes.

Sometimes one observes a multi-exponential decay

N =
∑

i

N0ie
−t/T1 (23.5b)

which goes over to

N =
∫ ∞

0

N(T1)
T1

e−t/T1 dT1 (23.5c)

if the number of different T1i gets large.
In some cases one observes a stretched exponential decay

N = N0e
−(t/T1)

β

(23.5d)

especially for localized states.
In some other cases power laws appear

N =
∑

i

N0i(t/T1i)
−α (23.5e)

with −α = −1 for a bimolecular decay process.
In order to be also to make a reliable distiction between the various pos-

sibilities (23.5a to e), one should be able to follow the decay of N(t) over
at least three orders of magnitude. For a smaller variation a reasoable fit i
possible with various models by an appropriate selection of the parameters.
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The possibilities to introduce the various time constants, like T2, and to
decribe the various phenomena like four wave mixing in the frame of optical
or semiconductor Bloch equations are given in Chap. 27 and the references
listed there.

After this general introduction, we present some selected and we trust,
representative examples together with some information about the relevant
experimental techniques. For the latter topic see also Sect. 25.3.

23.2 Decoherence and Phase Relaxation

We start with some selected examples of the measurements of the T2-time and
then present examples for non-Markovian processes and coherent control.

23.2.1 Determination of the Phase Relaxation Times

The most widely used techniques to determine T2-times are based on four-
wave mixing experiments. Therefore we start with them and then present
other, sometimes even older techniques.

23.2.1.1 Four-Wave Mixing Experiments

The standard mathematical description of what follows is in terms of optical
or semiconductor Bloch equations and the density matrix formulation. These
aspects are presented in a didactic fashion in Chap. 27. Additionally we refer
the reader to [46B1, 57F1] and textbooks like [96H1, 96S1, 02S1, 03Q1, 04O1]
or to conference proceedings like [88N1,93U1,03C1]. Here we give an intuitive
description.

In Fig. 23.2a–c we show the principle setup and in (b) the temporal evolu-
tion of various quantities for an homogeneously broadened situation. In this
case all oscillators in the medium have exactly the same eigenfrequency ω0

and the finite width of a resonance comes exclusively from its finite T2 time.
In Fig. 23.2c we give the frequently more realistic case of inhomogeneous
broadening. In this case the eigenfrequencies are additionally distributed over
a certain frequency range ∆ωinh around ω0.

We start with the homogeneous case. A first incident pulse with wave
vector k1 and frequency ω1 produces in the sample a polarization P 1, the
coherent part of which decays with T2. During its decay, this polarization
radiates according to the well-known law

Irad ∝
∣∣∣P̈ ∣∣∣2 . (23.6)

This radiation was known as “free induction decay” in analogy to correspond-
ing techniques in magnetic (spin-) systems. A more appropriate and nowadays
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Fig. 23.2. The setup for a photon-echo experiment (a), and the time dependence
of the polarization for a homogeneously (b) and an inhomogeneously (c) broadened
two-level system

generally used name is “free polarization decay”. Usually radiation has only
a minor influence on the damping, i.e., T2 is usually limited by scattering pro-
cesses rather than by the radiative lifetime. Exception will be mentioned later.

After a delay τ a second pulse k2 arrives which is coherent with the first
one and (usually) has the same frequency but a different direction. To achieve
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this coherence the two pulses are generally produced from a single pulse using
a beam splitter and a variable optical delay for one of them.

The second pulse creates a polarization P 2, which interferes with the co-
herent part left over from the first one. This interference produces a laser-
induced grating (LIG) of the polarization which radiates its first orders in
the directions given by (23.7), assuming a thin grating, i.e., the Raman–Nath
regime:

k
(1)
diff = 2k2 − k1; k

(−1)
diff = k1 . (23.7)

The Raman–Nath regime is characterized to a first approximation by the
following inequality between the thickness of the sample d, the spacing of the
grating Λ and the wavelength of the incident beams λ:

d2 < λΛ . (23.8)

The negative first-order signal is difficult to detect since it coincides with the
direction of the transmitted part of the pulse 1. So we concentrate on the
other, background-free direction.

Since, in the homogeneously broadened case, all oscillators have the same
eigenfrequency, the coherent parts of the polarizations all have the same phase
and the scattered signal Is starts to develop immediately when the second
pulse arrives. It reaches its maximum Isp when the second pulse is over, as-
suming that the duration τp of both pulses is much shorter than T2, i.e.,

τp � T2 . (23.9)

The diffracted signal in the case of homogeneous broadening depends on
the delay time τ in the following way

Ihom
+1 ∝ |P (τ)|2 ∝ [exp (−τ/T2)]

2 ∝ exp (−2τ/T2) , (23.10a)

and the same relation holds for the time-integrated signal as shown below in
Fig. 23.3a.

For the inhomogeneously broadened case of Fig. 23.2b, the part of the
polarization amplitude of every oscillator which is still coherent with pulse 1
again decays with T2. But since all oscillators have (slightly) different eigen-
frequencies, they lose phase with one other in a time inversely proportional to
the inhomogeneous broadening (∆ωin)−1, resulting essentially in destructive
interference of the radiation of all oscillators. The emission of the free po-
larization decay is then also limited by this quantity as shown in Fig. 23.2b.
When the second pulse arrives after τ , a rephasing starts in the sense of phase
conjugation or cum grano salis of a time reversal. See Chap. 27. After another
time τ all oscillators are in phase again and radiate the so-called photon-echo
(Figs. 23.2c and 23.3b). Its temporal width is limited by the free polariza-
tion decay and thus by τp or by (∆ωin)−1, and the (time-integrated) signal
intensity decays with τ according to
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Fig. 23.3. The temporal evolution of the diffracted order as a function of the
delay between the two pump pulses and the time after the second pump pulse for
a homogeneously (a) and an inhomogeneously broadened system (b). The time-
integrated diffracted signal is also given [89D1]

I inhom
s(0) ∝ |P (t = 2τ)|2 ∝ [exp (−2τ/T2)]

2 ∝ exp (−4τ/T2) . (23.10b)

The appearance of an echo as shown in Figs. 23.2c and 23.3b is thus a clear
indication of an inhomogeneous broadening.

The formula to calculate the diffracted orders and their time evolution
tend to get rather lengthy and can be treated only numerically when going
from the optical to the semiconductor Bloch equations ore when using realistic
laser pulses of finite duration and not just δ-pulses (see Chap. 27). Therefore
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we refer the reader to the books mentioned at the beginning of this chapter,
in addition to Chap. 27, for approximate formulae on the basis of two- and
three-level systems.

The appearance of a photon echo can be demonstrated in a didactic way
also by Fig. 23.4 (see Chap. 27).

A bunch of runners representing the polarisation of the various oscillators
starts in a stadion at t = 0, i.e., at the arrival time of the first pulse. Since
they all have different speeds (inhomogeneous broadening) their angular po-
sitions spread with time. At the time of the second pulse arriving at t = τ
they turn around instantaneously and run back with the same speed. This
results in a collective arrival at the starting point t = 2τ , (emission of the
echo). The decay of the echo amplitude with τ can be visualized in this pic-
ture if we assume that some runners stumble during their way and fall down
(recombination). Even if they get up again after a while and continue to run
they will not arrive back at the starting point in time. The same holds for
runners who change their speed (these two processes would correspond to in-
elastic scattering) or who arbitrarily change their direction without stopping
or changing |υ| (inelastic scattering).

A peculiarity of the description in the weak coupling limit in the framework
of χ(3) and of the optical Bloch equations is the fact that no signal appears in
the direction 2k2 −ki for negative delay, i.e., if pulse 2 arrives before pulse 1.
This fact is surprising since a negative delay corresponds to an interchange of
pulse 1 and 2 and the first diffracted orders of pulse 1 and 2 go in the direction
of k2 and 2k1 −k2 and k1 and 2k2 −k1, respectively. If the polariton picture
or the semiconductor Bloch equations are used which include among others
the Coulomb interaction between the carriers (see Chap. 27), a signal is also
expected for negative delays. First calculations show [91W1] that the temporal
buildup of the signal for negative delays has twice the slope of the decay for
positive τ .

Fig. 23.4. The illustration of the appearance of a photon echo with runners in
a stadion
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We have mentioned already that most transitions in semiconductors are
inhomogeneously broadened, at least at low temperatures and densities.
Bound exciton complexes are inhomogeneously broadened since the sur-
roundings of every impurity are slightly different due, e.g., to other impu-
rities in the neighborhood. For the localized tail states in disordered sys-
tems and for quantum structurs at low temperatures the inhomogeneous
broadening is obvious. For free excitons or exciton polaritons the question
of homogeneous or inhomogeneous broadening is less clear since a differ-
ent eigenenergy belongs to every k-vector due to dispersion. The contin-
uum states of the excitons or the band-to-band transitions in an electron–
hole plasma again form, to a good approximation, an inhomogeneously
broadened system with, however, very short T2 times. At higher densities
or temperatures the T2 times get shorter and may become so short that
they dominate the broadening, i.e., we get a transition to homogeneous
broadening.

We now present first experimental results for bulk samples, namely FWM
results obtained in the (nB = 1) AΓ5 free exciton resonance of CdSe at low
temperature. Since even samples of a few µm thickness are opaque in this
regime, the diffracted signal in reflection was used (Fig. 23.5a). With increas-
ing pump power, the signal increases, too, but the decay gets faster. This is due
to inelastic exciton-exciton scattering. Using these data and others obtained
in the exciton to biexciton transition (Fig. 23.5b), the curve of Fig. 23.5c is ob-
tained which shows a linear increase of the dephasing rate T−1

2 with increasing
excitation. The extrapolation to zero density (and temperature) gives T2 val-
ues around 50 ps. The slope of the curve in Fig. 23.5c allows one to determine
additionally the exciton-exciton scattering cross-section via

T−1
2 = T−1

02 + δNex (23.11a)

and one finds with [89D1]

σex−ex = δvth (23.11b)

σex−ex = 6.87πa2
B, i.e., a value slightly larger than the geometrical one.

In [91W1, 98W1] a linear dependence of the dephasing rate on the density
has been found both for bulk-like and quasi 2d ZnSe structures, with some
dependence on the fact that if the exciton population is still coherent or not.
It should be mentioned that for much higher densities corresponding to those
reached in an electron–hole plasma and short times one finds a decay time
Ts of the FWM mixing signal on the electron–hole pair density neh given
by [88B1,91W1,01W2]

T−1
s = T−1

0 + cn
1/3
eh (23.11c)

for all quasi-dimensions.
The temperature dependence of the dephasing rate is given in all dimen-

sions by the sum over a low temperature value Γ0, a term linear in T due to
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Fig. 23.5. The evolution of the time-integrated photon echo as a function of τ in
the nB = 1AΓ5 exciton resonance of CdSe for different pump powers in reflection
geometry (a) in the exciton → biexciton transition, where a well-defined exciton
density is created by a prepulse in transmission geometry (b) and the dependence
of T−1

2 on the exciton density (c) [89D1]
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scattering with acoustic phonons and a Bose term proportional to the occu-
pation probability of LO phonons [92O1,98W1,04H1], i.e.,

T−1
2 = Γ0 + βacT +

βLO

(exp (�ωLO/kBT ) − 1)
. (23.11d)

The onset of the signal for negative delays is not covered by the simple theory,
as mentioned above, but by the improvements given in [91W1,98W1].

Photon-echo experiments at low temperature in GaAs revealed T2 values
around 10 ps [89K1,92O1]. Diffusion measurements with laser-induced popu-
lation gratings in CdS gave a diffusion constant D(5 K) ≈ 20 cm2s−1 and with
the Nernst–Townsend–Einstein relations,

D = µ
kBT

e
, µ = e

T ′
2

M
, D =

kBT

M
T ′

2 , (23.11e)

for classical effective mass particles, a time between scattering events T ′
2 ≈

30 ps [88W1]. Here, µ is the mobility of excitons and T ′
2 the time between two

scattering processes. Evidently this quantity is closely related to the phase
relaxation time. We shall describe a more detailed experiment concerning this
point later in connection with MQW. Here, we can state that T2 times in the
range a ps up to a few tens of ps are obviously typical for the lowest free exciton
states in high quality bulk (and MQW, see below) samples at low temperature
and density in agreement with data from reflection spectroscopy. The T1 values
under these conditions are in the 0.3–3 ns regime, i.e., we have T2 � T1. T2

decreases with increasing density and with increasing temperature. In the
latter case T2 values in the range of 100 fs are reached at room temperature,
so that the homogeneous dominates the inhomogeneous broadening.

The damping of polaritions has been deduced in CuCl by FWM in [83M1,
91V1]. Polaritons and bipolaritons have been analyzed for CdS in [01M1]
reaching the T2 = 2T1 limit of (23.3a) for the biexciton with times of a few ps.

Now we consider, still in 3d semiconductors, excitons which cannot move
freely through the sample. We start with an example of a bound-exciton com-
plex (Sects. 9.5, 14.1), more precisely with an exciton bound to a neutral
acceptor (A0X) in CdSe.

In Fig. 23.6a we show directly the time-resolved photon-echo for the laser
tuned into the A0X resonance of CdSe at low temperatures. One sees clearly
the scattered intensities of the two pump pulses P1,2 and the photon-echo
Ps. A first inspection already shows that the T2 times of this BEC are much
longer than for free excitons. Extrapolation of the data to T = 0 K (Fig. 23.6b)
gives T2 ≈ 600 ps. Since the lifetime T1 of this BEC in this same sample has
been determined to be around 400 ps, we come here again close to the limit
given by (23.3a). The comparison of this value, which corresponds roughly to
a homogeneous width of 20 µeV, with the spectral width of the BEC lumi-
nescence, which in good samples is between 0.1 and 1 meV, together with the
observation of a photon-echo, clearly shows the inhomogeneous broadening of
the BEC resonances.
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Fig. 23.6. Photon-echo observed in the resonance of a bound exciton complex in
CdSe (a) and the dephasing rate as a function of temperature (b) [92P1,92P2,94P1]

The temperature dependence of T2 time is given in Fig. 23.6b. It can be
fitted by an activation law.

T−1
2 = T−1

02 + ν0 exp(−Ea/kBT ) (23.12)

with T02 ≈ 600 ps, ν0 = 3 × 1011s−1 and an activation energy of Ea ≈
5.6 meV. This value corresponds approximately to the binding energy of the
exciton to the complex. Since T02 is slightly above the observed luminescence
decay time and thus of T1 [92P2], we can conclude that the main phase de-
stroying processes for this complex at low temperature are the recombination
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and at higher temperatures the thermal ionization of the exciton from the
neutral acceptor by absorption of a phonon.

In CdS a T2 value of 400 ps has recently been observed for the D+X com-
plex with the quantum-beat technique to which we shall return later [91S1].

The difference in the T2 times of BEC compared to free excitons at low
temperatures can be qualitatively understood in the following way. A free
exciton moves through the sample with a certain velocity and has a good
chance of hitting a defect like an impurity or a dislocation. The resulting
scattering process destroys the phase coherence with the driving laser pulse.
A resonantly created bound exciton sits on the defect, oscillates in phase with
the generating light field and cannot do much more at low temperatures until
it recombines, provided that the density of other centers is so low that there
is no interaction between them. The same type of arguments seems to hold
for localized excitons in some disordered systems (Sects. 9.6 and 14.4) such as
CdS1−xSex to which we turn now. See, e.g., [92S1,92S2] and references therein.

In Fig. 23.7 we show the luminescence spectrum of a CdS0.65Se0.35 sample
at T = 2 K excited at the high energy edge of the zero phonon luminescence
band, i.e., in the transition region from extended to localized states. One
observes the zero phonon emission from the localized states around 2.21 eV
and the CdSe and CdS LO phonon replica around 2.19 and 2.18 eV, respec-
tively. The full dots give T2 values at the respective energies measured with
the photon-echo technique. The values range from T2 � 400 ps close to the
“mobility edge” up to T2 ≈ 3 ns for deeper localized states. Again these values
are comparable with the intraband relaxation times T3 and the interband re-
combination times T1. Data for these latter quantities have been determined
from time- and spectrally resolved luminescence and range from some hun-

Fig. 23.7. The low temperature luminescence spectrum of a CdS1−xSex, sample and
the energy dependence of the T2 times deduced from photon-echo experiments [92S1]
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dreds of ps to several ns; see [92S1] and references therein. An increase of the
lattice temperature leads once more, via an increasing phonon scattering, to
a decrease of T2.

An interesting aspect of ultrafast time-resolved spectroscopy can be treated
in connection with Fig. 23.8, where we give the temporal decay curves of the
time-integrated photon echo for CdS1−xSex using laser pulse durations from
0.12 to 10 ps at low temperatures (4.2 K � T � 10 K). The density of ex-
cited carrier pairs is in all cases roughly equal and in two cases even the same
sample has been used.

Two effects are striking. The exponential tail from which we deduce T 2

is missing or at least below the detection limit for τp = 0.12 ps. However, it
becomes increasingly stronger and longer for increasing τp. Furthermore the
ratio of the first initial spike, which corresponds roughly to the autocorrelation
function of the laser pulse and which is also known as the “coherent artefact”,
to the slower decaying part decreases with increasing τp. The interpretation
follows Fig. 23.8e where we show the density of states for extended and for
localized states, and the spectral shape of a short (τp = 0.12 ps) and a long
(τp = 10 ps) laser pulse imposed by the relation

∆E · τp � � . (23.13)

Fig. 23.8. The decay of the time-integrated photon-echo as a function of the delay
between the two pump pulses for various durations of the pump laser (a–d) and the
density of localized states and the minimum spectral width of the laser pulses for
τlaser = 10 ps and τlaser = 0.12 ps, respectively (e) [92S1,99S3]
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A spectrally narrow, rather long pump pulse tuned to the spectral range
of localized states allows one to measure the true T2 of these states. If the
pulse length is reduced, the high energy tail of the laser extends into the
region of extended states. In alloy semiconductors even at low temperatures
these states have a very short T2 time of the order of 0.1 ps due to alloy
disorder scattering [91S1,92S2]. This value explains the short autocorrelation
spike. Furthermore, the excitons in the extended states which are created by
a short, spectrally broad pulse also scatter with the excitons in the localized
states and thus reduce the T2 values of the latter. Consequently the T2 values
obtained with rather long, spectrally narrow pulses with ∆E from (23.14)
much smaller than the tailing parameter ε0

∆E � ε0 (23.14)

will give the most reliable results. See also the discussion in connection with
Fig. 23.11.

The spectral proximity of states with different T2 times occurs not only
for disordered systems and necessitates some considerations concerning the
selection of a laser for a planned experiment.

It must be mentioned here that short phase relaxation times have been
observed in other disordered systems like Al1−yGayAs crystals, amorphous
(α-) Si, and InGaAs MQW [91W1, 92S2]. The T2 values at low temperature
are only around or below a few ps. The difference is presently explained as
follows. If the disorder causes fluctuations essentially only in one band (in
CdS1−xSex this is the valence band originating mainly from the 3p and 4p
orbitals of S2 and Se2, respectively) a stationary state with long T2 time can
be constructed from a localized carrier of one type (here a hole) binding a free
carrier of the other type by Coulomb attraction to form a localized exciton.
If, on the other hand, fluctuations and localization occur in both bands, as
is the case for the more covalently bound materials Al1−yGayAs and α-Si,
it is not possible to get a stationary state with two localized carriers plus
Coulomb interaction. Here alloy disorder scattering always appears as a phase-
destroying process. More details about these topics are found in [92S2] and
references therein. Furthermore, the short pulses used in these experiments
may play a role in the sense of the discussion in connection with Fig. 23.8
and with data for quantum wells cited below. Before we present results on
structures of reduced dimensionality we introduce another aspect of FWM
experiments namely (quantum) beats.

In this case a short laser pulse of sufficient spectral width simultane-
ously excites coherently two spectrally narrow, well-separated resonances.
This means the spectral width of the laser ∆E, the spectral separation of
the two resonances ∆Er and the homogenous width of each of them ∆Eh

should obey the inequality

∆E � ∆Er � ∆Eh . (23.15)
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Under these conditions a beating occurs, as known already from two cou-
pled pendula in classical mechanics, with a beat frequency ωb

�ωb = ∆Er . (23.16)

In our case a modulation of the intensity with ωb can be observed, e.g., in
a FWM experiment or in the free polarization decay signal. In Fig. 23.9 we
give examples of the beating between the nz = 1 heavy- and light-hole exci-
ton resonances (a, b) and the beating between the exciton resonance and the
induced transition exciton → biexciton (c, d). Since the beating is a coherent
process, the decay of the envelope of the beat signal contains information on
the T2 of the resonance with the lower T2 value.

The beat frequency just fulfils (23.17). These quantum beats have re-
cently been observed in many systems, such as excitons in the indirect
gap semiconductor AgBr [91S1], between strain-split heavy and light hole
excitons in ZnSe layers [96W1], in bound exciton complexes in CdS and
CdSe [91S1, 92P1, 93P1, 93P2, 94E1, 94P1, 96B1] and even between the lower
and upper polariton branches of the lowest dipole-forbidden nB = 1 ex-
citon resonance in Cu2O, which has a longitudinal transverse splitting of

Fig. 23.9. Quantum beats and their Fourier transforms for the beating between the
heavy- and light-hole exciton in an Al1−yGayAs/GaAs MQW (a, c) sample and for
the exciton → biexciton transition (b, d) [92O1,93P1]
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a few µeV only [91F1]. Other experiments concern the beating between var-
ious polariton branches in CdSe [93P2, 94E1, 96B1] or in InGaAs MQW
[91W1] or between the exciton and the biexciton state in AlGaAs MQW;
see [92O1,93P1,93P2,94E1,96B1] and references therein.

Recently it has been possible to distinguish between a beating of two
electronic transitions and a mere interference of the electromagnetic waves
radiated from two independent, slightly detuned oscillators [91B1,92G1,92K1,
92P1,94P1].

For a “real” quantum beat, i.e., a beating between to spectrally close-lying
transitions that have at least one state in common or, in other words, that
occur in one quantum mechanical system, one expects maxima in a plot of the
FWM intensity over a two-dimensional plane of real time t and delay time τ
for

T = τ + nTB (23.17a)

where TB is the beat period. Meanwhile, the interference of the radiation
emitted from two independent systems on the detector results in

t = 2τ + nB . (23.17b)

In Fig. 23.10 examples are given for both situations. In Fig. 23.10a one ob-
serves upconverted and time resolved quantum beats between the light and

Fig. 23.10. Quantum beats between hh and lh exciton in a MQW sample (a)
Polarization interference from the hh resonance of a sample containing quantum
wells of two different thicknesses [92G1,92K1]
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heavy hole over a two-dimensional t, τ plane. Figure 23.10b gives, in contrast,
the polarization interference of the hh excitons of spatially separated QWs
with lz = 9 nm and 8 nm. The main maxima follow the relations (23.18a) and
(23.18b), respectively.

This picture is very clear, but not completely true, since the whole semi-
conductor sample has one common ground state and since even spatially sep-
arated oscillating dipoles have some, though possibly weak, radiative cou-
pling. This coupling is, in a classical description, responsible for the Clausius–
Massotti correction to the dielectric function (see Sect. 4.2).

Consequently, in calculated or measured data that show a pronounced
behavior according to (23.17b), one usually observes weaker intensity modu-
lations obeying (23.17a) and vice versa.

In the picture of strong exciton–photon coupling, a generalized descrip-
tion of the quantum beats can be expected that includes both of the above-
mentioned aspects as limiting cases.

In Fig. 23.11 we present a FWM experiment on a GaAs/Al1−yGayAs sam-
ple containing wells of different thicknesses, as shown in the absorption spec-
trum.

The laser pulse is so short that it covers spectrally several transitions. For
the 8 nm QW only the hh is excited. One observes the rise and the slow signal
decay of predominantly localized excitons. As compiled, e.g., in [01L1] the T2

times range at low temperatures up to several tens of ps. For the 10 nm QW
the hh and the lh exciton are excited simultaneously, resulting in quantum
beat features and again a slow signal decay. For the 13 and 16 nm-wide wells,

Fig. 23.11. Time integrated FWM spectra as a function of time delay for a sam-
ple containing quantum wells of various thicknesses as indicated in the absorption
spectrum [97E1,98H1]
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both the hh and the lh excitons are excited as well as the continuum states
with even higher intensity. As shown in [97E1] this has the consequence that
a FWM signal appears spectrally at the position of the exciton, but first with
a rapid decay given by the inverse of the spectral width of the laser pulse
rather than by the T2 time of the exciton. Note that the spectral widths of
the exciton absorption features are not compatible with the short decay times
via (23.4). After this first decay, a much weaker, but slowly decaying signal is
observed that gives the actual T2 time. It is possible that this slow and weak
part of the signal was partly below the detection limit of the experiments
described in connection with Fig. 23.8.

In [01W1] the FWM signal has been analyzed as a function of delay time
between the pulses and the real time after the second pulse, revealing details
of the FWM process, which go beyond both the simple explanations given
here and the scope of this book.

Recently, beautiful experiments have been reported on FWM on a graded
superlattice, i.e., one where the well width varied systematically from well
to well. By spectral filtering of the laser, excitons in adjacent wells or next-
nearest neighbors could be excited deliberately and the beating between the
resonances in one well as well as the interactions between wells could be
observed in the spectrally resolved, time-integrated signal as a function of
the delay time between the pulses [04L1].

Now we give a small selection of further results of FWM in various quan-
tum structures: The dephasing in the quasi-two-dimensional exciton-biexciton
system of GaAs/Al0.3Ga0.7As single quantum wells has been treated in [00L1]
and for In0.18GA0.82As SQW in [99B2]. The contributions of acoustic and op-
tic phonons to the dephasing have been analyzed and separated in [99B1] for
In1−yGayAs/GaAs SQW.

The oscillations of wave packets in space and time in In1−yGayAs/
GaAs1−xPx MQW samples are investigated in [99O1] and the influence of
strong magnetic fields on excitons and biexcitons has been detailed in [94B1]
and references therein.

For data on exciton and biexciton dephasing in various types of III–V and
II–VI quantum wires see, e.g., [98W2,98W3,99L1] and references therein.

In self-assembled III–V quantum islands, very long dephasing times have
been measured for excitons, biexcitons and multiexcitons for the reasons given
above for localized states [01B1,01B2,02B1,02B3,04L2]. For localized exciton
and biexciton states in II–VI structures, data are found in [97L1,99W1], where
it has been shown that an inhomogeneous broadening of the biexciton binding
energy results in a fast decay of the FWM signal that is not related to the
much longer dephasing of the biexciton.

Excitons in single dots are probed in [98B1,01F1,01F2]. Data for the de-
phasing in electrically pumped InAs/In1−yGayAs amplifiers are given in [00B2].

More data for III–V compounds can be found, e.g., in [01L1].
It should be noted that the observation of higher diffracted orders than the

first one in FWM experiments are indications of χ(2n+1) processes with n > 1.
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In CdS1−xSex it was, e.g., easy to observe three diffraction orders [89D1,89D2,
91S2], but these higher orders also contribute to the properties of the first
diffracted orders. Recently χ(5) and χ(7) processes have been investigated in
GaAs-based and ZnSe-based quantum wells [01A1,01L2].

We move on now to a third experimental technique to determine T2 which
is again connected with FWM and laser-induced gratings. This is nondegen-
erate four-wave mixing (NDFWM), and the system to which we apply it are
quantum dots in glass matrix. It is a method to determine T2 from spec-
troscopy, i.e., in the frequency rather than in the time domain.

In this case one writes a grating with two laser beams of different fre-
quencies ω1 and ω2. The coherence time of each laser must be long enough to
provide a sufficiently coherent overlap between them. One generally uses ns
dye lasers with an additional intracavity etalon to reduce their linewidths. In
the polariton picture one would describe the diffraction process in the follow-
ing way: Two quanta of beam 1 (or 2) create an intermediate two-polariton
state, the decay of which is stimulated by a polariton from beam 2 (or 1)
resulting in the emission of a quantum in the direction

2k1 − k2 (or 2k2 − k1) (23.18a)

with energies
�(2ω1 − ω2) (or �(2ω2 − ω1)) , (23.18b)

as shown schematically in Fig. 23.12. Higher diffracted orders correspond to
higher χ(n) processes and show frequency shifts which are integer multiples of
(ω1 − ω2).

In the weak coupling limit, the first order corresponds to a process of the
type (see Sect. 19.3)

χ(3) (ω : ω1, ω1,−ω2) . (23.18c)

Fig. 23.12. The schematics of a non-degenerate four-wave mixing (NDFWM) ex-
periment
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In a classical wave picture we have the following description. The two incident
waves interfere to form a moving interference pattern. It moves laterally with
a speed vG given by

vG =
ω1 − ω2

|k1 − k2| . (23.19)

The orders diffracted off this moving grating are Doppler shifted and a quan-
titative analysis of these ideas leads to exactly the same results as given in
(23.18).

If there is an optical nonlinearity due to the real or virtual excitation
of some species with a lifetime T1 or T2, respectively, then the grating will
be washed out if it moves over one period Λ in a time shorter than T1,2.
Consequently the efficiency drops, when

Λv−1
G < T1 or T2 . (23.20)

A quantitative analysis leads to the following relation for the efficiency η±1 of
the ± first diffracted order [78Y1].

η±1 ∝
∣∣∣χ(3)

∣∣∣2 ∝ [(
1 + Ω2T 2

1

) (
1 + Ω2T 2

2

)]−1
(23.21)

with Ω = ω1 − ω2. This means that there is a narrow central spike, whose
decay with increasing detuning Ω is determined by T1 and wider wings from
which one can deduce T2 in the case T1 � T2.

In Fig. 23.13 we give as an example results for a semiconductor-doped glass
with CdS crystallites with an average radius of 7.5 nm. The narrow central

Fig. 23.13. The NDFWM signal as a function of the detuning in a silicate glass
doped with CdS nanocrystals for various pump powers Ip [94W1]
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spike is limited rather by the spectral width of the lasers than by T1. The T1

time of a few hundred ps typical for such a system was measured independently
by time-resolved luminescence and would give a width below 0.1 meV. The
wider wing can be fitted with (23.21) to give a T2 time of the resonantly
excited electron–hole pairs in these quantum dots of about 100 fs, decreasing
with increasing pump power as shown in the inset. These values increase only
slightly when going to lower temperatures. The reason why this value is so
short in comparison with bound exciton complexes is not completely clear at
present. The stronger coupling to the optical phonons in QD compared to the
bulk material may be of importance or the scattering at, or the relaxation
of the carriers into, some interface states between the semiconductor and the
surrounding matrix.

Similar values of T2 have been obtained from spectral hole burning (see be-
low) and also from time-resolved FWM experiments. It should be mentioned,
however, that much longer dephasing times of several tens of ps have been
observed by various techniques for quantum dots capped by or embedded in
organic matrices [97W1].

23.2.1.2 Other Techniques and Coherent Processes

In the following sections we briefly present some further techniques to deter-
mine dephasing times and some other coherent phenomena including, e.g., the
spin system, to give the reader an impression of the width and wealth of the
field and present research activities.

23.2.1.2.1 Propagation Effects

An inherent problem in time-resolved four-wave mixing experiments is the
fact that the pulses have to have a certain time delay. In bulk material the
polarization propagates together with the electromagnetic part of the light
pulse as introduced in the polariton concept in Chap. 5. If the pulses are short,
their shape in the samples is pancake-like. A 100 fs pulse may have, depending
on the parameters for group and phase velocities, a thickness of only a few µm
with some dispersion during propagation through the sample. With a delay
between the pulses of several ps the spatio-temporal overlap of the two pulses
is an issue, which must be carefully checked and depends on the angle between
the beams k1 and k2 in the sample and on the lateral diameter of the pulses.
This is a reason why little FWM data exists in the exciton resonances of
direct-gap bulk semiconductors with dipole-allowed band-to-band transitions.
Another reason is the strong absorption in the exciton resonance of many
semiconductors. A way out also used in Fig. 23.5a is to measure the reflection
geometry since the reflection signals originate from the polarization close to
the surface.

In contrast, for quantum structures the polarization stays essentially con-
fined in the quantum well, wire or dot for the usual close to normal inci-
dence geometry, except for some polarization or radiation coupling between
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the wells. The spatial coincidence of the polarization created by subsequent
pulses is therefore unproblematic.

An adequate method for bulk semiconductors would therefore be to in-
vestigate the polariton propagation. This can and has been done. We already
presented corresponding data for various bulk materials for the case of prop-
agation quantum beats and for time of flight experiments in Sects. 5.3 and
13.1.4, respectively. We add here some references for a thin ZnSe layer [96N1]
for the layered semiconductor InSe [97N1] and for photonic crystal wave
guides [02N1]. We come back on propagation effects under the aspect of trans-
port properties in Sect. 23.2.1.2.5 and 2.3.3.

23.2.1.2.2 Rayleigh Scattering and Speckle Analysis

An effect that has been considered for a long time as more disturbing than
useful in semiconductor spectroscopy is Rayleigh scattering. This means co-
herent and elastic scattering of light without a frequency shift in contrast to
Brillouin or Raman scattering. Rayleigh scattering requires some deviations
from the strict periodicity of a perfect crystal lattice, which are generally al-
ways present even in high quality samples due to, e.g., defects, strain fields or
interface roughness for quantum structures.

In pioneering work summarized in [94S1] it has been shown that the dy-
namics of resonant Rayleigh scattering involved information on the dephasing
of, e.g., bound exciton complexes, confirming the long T2-times mentioned
above. For examples of more recent work see [98B2,99S1,04M1,04M2,04Z1].

The light scattered resonantly and coherently from various regions of the
sample can interfere constructively or destructively depending on the scat-
tering direction. This effect leads for rather small illuminated areas to the
appearance of bright and dark spots in the scattered light field, know as
speckle.

The dependence of the speckles on the direction and their temporal dynam-
ics under pulsed excitation allow one to distinguish pure dephasing from life-
time (see (23.3b)) [99L2,02K1,03M1] or to investigate polaronic effects [00P1]
and the references therein.

23.2.1.2.3 Linear Spectroscopy

If one has no further information it is difficult to learn something about the de-
phasing time T2 of a system from linear absorption, reflection or luminescence
spectra.

If one does not know, e.g., if an absorption band is only homogeneously or
additionally inhomogeneously broadened, its spectral width gives only a lower
limit for the decoherence time T2 or for the time of the free polarization decay
TPD via (23.4) and (23.5).

However, the spectrally extremely narrow emission lines from individual
localization sites of excitons in quantum wells observed at low temperatures
or the narrow emission features of bound exciton complexes, which we have
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seen in some of the preceding chapters, indicate that the T2 times must be in
the range of several tens to hundreds of ps as is indeed found from photon
echoes as shown above. The temperature dependence of the spectral half width
of the emission line of excitons in self-assembled In0.6Ga0.4As islands grows
from values of 2 µeV (T2 > 0.7 ns) to almost 10meV at RT (T2 ≈ 0.13 ps)
[02B2,02B3,04L2].

The reflection spectra of free exciton resonances of high-quality bulk sam-
ples (see, e.g., Chap. 13) can be fitted at low temperatures usually by damping
parameters around or below 1 meV. Therefore T2 times measured by FWM in
the range of some ps (see above) did not come as a big surprise [04H1].

23.2.1.2.4 Spectral Hole Burning and Related Techniques

A further technique to determine the homogeneous width of a transition is
spectral hole burning. This method is frequently used in the spectroscopy of
atoms in gases, solutions or solids but has only more recently been used in
semiconductor optics [77L1,91D1,93W1,94M2,94W1]. We explain shortly the
basic idea before going to examples.

A homogeneously broadened absorption band has a Lorentzian line shape
for the simplest case of a two-level system (see Fig. 23.14a). Its width is given
by (23.4). Pumping at any energy �ωP results in a decrease of the whole
absorption feature if a certain fraction of the carriers is transferred from the
ground to the excited state.

For an inhomogeneously broadened system (see Fig. 23.14b) the absorption
band is composed of different transitions as shown schematically on the r.h.s.
of this figure. If every single transition has a Lorentzian profile, and if the
inhomogeneous distribution is Gaussian, the total line shape is a Voigt profile
as long as both widths are comparable.

Pumping at �ωP saturates the transition at this energy, but does not
influence the others, resulting in a spectral hole. If the pump laser is spectrally
narrower than the homogeneous width of every individual absorption peak in
the inhomogeneous broadened distribution, the width of the spectral hole gives
the homogeneous width according to (23.4).

Care has to be taken that the laser is spectrally sufficiently narrow and
sufficiently weak to avoid the spectral wings saturating adjacent transitions.
This effect is known as power broadening and results in an overestimation at
the homogeneous width (for more details see, e.g., [94M2]).

Examples of spectral hole burning are experiments on CdS1−xSex quantum
dots in glass matrices, revealing homogeneous widths on the order of 10 meV
[93W1,93W2,97W1], corresponding to T2 times of about 100 fs, in agreement
with the NDFWM data of Fig. 23.13 or time resolved FWM [93S1,94M1]. Note
that the dots in organic matrices may show much longer T2 times [96E1,97W1]
as mentioned already above.

Other examples are the spectral hole burning experiments in the gain
region of an inverted bulk semiconductor and of quantum dots [93M1, 96G1,
98M1].
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Fig. 23.14. Schematic drawing of the absorption of a homogeneously (a) and an
inhomogeneously (b) broadened absorption band centered around �ω0 and the mod-
ification induced by optical pumping at �ωP (solid and dashed lines, respectively)

A similar technique has been used in [02W1] for ZnSe quantum wells,
where it has been explicitly shown that the homogeneous width of the exciton
increases with increasing excitation intensity and that the data deduced from
the fit of a density-dependent Voigt profile and from FWM coincide.

For spectral hole burning and bleaching dynamics in the semiconductor
Sr2CuO3, which is related to high Tc superconductors see [00O1].

23.2.1.2.5 Transport Measurements

In transport measurements, another time constant appears in the frame of
a relaxation approach, namely the momentum relaxation time T ′

2, i.e., the
time of free flight between random collisions. We give an example of how
nonlinear optics can contribute to the determination of transport properties.
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In Fig. 23.15 we compare the results for phase-destroying processes mea-
sured with two different techniques. The crosses are data for the scattering
rate, i.e., for T−1

2 , obtained from photon-echo experiments. They start with
values around 30 ps at 2 K and T2 decreases with increasing temperature es-
sentially due to scattering with (acoustic) phonons in the temperature interval
of Fig. 23.15. The open circles are obtained from diffusion measurements. The
idea of this experiment is the following: two coherent pulses falling simultane-
ously on the sample interfere and produce a spatially modulated population
grating (laser-induced grating, LIG). If this population produces any optical
nonlinearity, light will be diffracted from this grating. The grating efficiency
decays for times longer than T2 due to recombination and due to diffusion.
The first process does not depend on the grating period Λ of the LIG, but the
second one does. By variation of Λ the two contributions can be separated.
If two short pulses (τp � T1) are used, the diffracted signal intensity, which
is measured by a third delayed pulse, decays with a characteristic time τs
given by

1
τs

=
2
T1

+
8π2D

Λ2
, (23.22)

which allows the determination of D and via (23.11d) of T ′
2. The values given

by open circles in Fig. 23.15 have been obtained in this way.
As a short aside, we mention here the following alternate method: For

quasistationary conditions (i.e., τp > T1), one can state as a rule of thumb
that the grating efficiency (i.e., the intensity of the diffracted order) decays
with varying Λ to one half for Λ1/2 (see e.g. [88W1])

Λ1/2 = lD2π , (23.23)

Fig. 23.15. The inverse T2 times deduced by photon echo experiments and the
inverse momentum relaxation times T ′

2 or scattering rates deduced from diffusion
experiments for Al1−yGay , As MQW samples. From [93O1]
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where lD is the diffusion length of the relevant particles, i.e., excitons. This
quantity is connected with the diffusion constant D via

lD ≈ (DT1)1/2 (23.24)

and (23.11d).
We return now to the ps experiments.
As can be seen in Fig. 23.15, the values of T2 and T ′

2 coincide approximately
for T around 5 K. For higher temperatures T ′

2 becomes significantly shorter
than T2.

The reason is that at least one additional scattering process contributes
to T2, which is relevant for transport properties and which is absent or much
smaller in photon-echo experiments. One of these processes is the interface
roughness scattering in the quantum wells. The scattering rate increases with
the (thermal) velocity vth of the excitons, i.e., with T 1/2. In photon-echo
experiments the excitons are created optically and have only extremely small
in-plane velocities. The excitons acquire thermal equilibrium with the lattice
and considerably higher velocities after one (or a few) scattering processes
with phonons, but then they no longer contribute to the coherent photon-echo
signal. Thermalization with the lattice means in this case evidently an increase
of energy and momentum of the optically created excitons, as discussed in
Sect. 22.1. The solid curves in Fig. 23.15 have been calculated without and
with inclusion of interface roughness scattering, respectively. For more details
see [92O1,93O1].

For more recent quasiballistic transport measurements of excitons in
ZnSe quantum wells and the dynamic properties deduced from them see,
e.g., [02Z1,04Z2].

23.2.1.2.6 Bloch Oscillations and Terahertz Spectroscopy

In Sect. 16.2.2 we mentioned the Wannier Stark Ladder appearing in superlat-
tices under the influence of an electric field. We treat this topic here, together
with the Bloch oscillations and add some further aspects of THz spectroscopy
because it involves many aspects of ultrafast spectroscopy.

The basic idea is rather old and goes back to the 1930s [28B1,34Z1,65S1].
We shall first introduce the concept of Bloch oscillations, explain why they
have been observed only recently, and then present various approaches to
understand the phenomenon and give experimental data. The presentation
here is essentially based on various recent review articles [92F1, 92L1, 94L1,
94R1, 94V1, 02L1]. Then we outline some analogies and differences between
the concept of Bloch oscillations in the presence of an electric field and the
cyclotron resonance in the presence of a magnetic field. For the latter topic
see also Sect. 16.1. We finish this subsection with some references of THz
spectroscopy.

The basic concept of Bloch oscillations is based on the motion of a wave
packet centered around k in a periodic lattice under the influence of an exter-
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nal force F , e.g., an electric field E, neglecting for the moment all scattering
processes; see [28B1] or Sect. 8.5

�k̇ = F = eE . (23.25)

Under the above conditions the electron will perform a periodic orbit in
k-space in the direction of E as shown schematically in Fig. 23.16.

The carrier starts, e.g., at point A at rest, and is accelerated by the external
field moving thus towards B. At B the sign of the effective mass changes
and the carrier is decelerated by the field but still increasing its momentum
and energy according to (23.25) and reaching the right-hand edge of the first
Brillouin zone at point C with zero group velocity. Instead of considering
wave vectors beyond the first Brillouin zone, we can assume that the electron
is transferred by a reciprocal lattice vector G from π/a to −π/a, i.e., to
point D; see Sects. 7.2 and 8.1. From D, the wave packet is accelerated until it
reaches point E and decelerated from E to A reaching point A again with zero
group velocity. The duration of one orbit in k-space TB and the frequency ωB

are given by [92F1]

ωB = 2π/TB = ae |E|�−1 . (23.26)

This periodic motion in k-space is necessarily connected with a periodic mo-
tion in real space in the direction of E with an amplitude lB [92F1,02L1]:

lB = B/2e |E| , (23.27)

where B is the width of the band. The periodic motions in real and in
momentum space are known as Bloch oscillations or as “Zener Pendeln”
[28B1,34Z1,65S1].

This phenomenon has been used to explain (partly erroneously) the I–V
characterisitcs of Zener diodes in the blocking direction. It was assumed that
the electrons in the valence band under the influence of the blocking voltage

Fig. 23.16. Schematic presentation
of the Bloch oscillation or “Zener Pen-
deln” of a charge carrier in an electric
field in the absence of scattering
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over the pn junction execute such a periodic orbit, and tunnel with a certain
probability to the conduction band whenever they hit the top of the valence
band.

Actually, the carriers in bulk semiconductors have no chance to complete
such an orbit in a partly occupied band (in a completely filled band, there
is no net motion at all due to Pauli’s principle), since the T2 times are too
short. Even at low temperatures the T2 values at the bottom of the band are
only a few tens of ps and they tend towards ten fs deeper in the band; see
Sect. 23.2.1. In order to fulfill the condition

ωB · T2 � 1 (23.28)

which would be necessary to be able to observe Bloch oscillations, one would
need with (23.26) dc electric fields in excess of 107 V/m which would result in
rapid destruction of the sample.

The way out of this dilemma follows from an inspection of (23.26). For
a given T2 an increase of the spatial period of the system results in a decrease
of the electric field strength E necessary to fulfill (23.28). Since the lattice con-
stant a of all simple semiconductors is comparable to the atomic diameters
and thus of the order of 0.5 nm only the use of man-made artificial superlat-
tices can help. With periods d around 10 nm we can expect a reduction of
the field strength by more than an order of magnitude. In connection with
Fig. 23.17, we recall and extend what we have learned about superlattices in
Sect. 8.10.

The solid line in Fig. 23.17 gives the lower edge of the conduction band
of the two materials forming the superlattice. The width of the barriers is so
narrow that the electron wavefunctions of adjacent wells overlap. This over-
lap integral results in a finite band width (Sects. 5.4 and 8.1). The width of
these minibands is directly proportional to the overlap integral and can thus
be varied in this Kronig–Penney-like system by the thickness of the barriers.
Typical widths of the minibands are of the order of a few meV, in contrast
to about 10 eV for the width of the bands in bulk material. Note that the
dispersion E(k) and the motion of the carriers in the plane normal to the
growth direction is still almost bulk-like. The formation of minibands in the

Fig. 23.17. The conduction-band
edge of a superlattice and the re-
sulting miniband for kx = ky = 0
indicated schematically by the
hatched area
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valence band is generally much less pronounced, due to the greater effec-
tive masses of the holes, which reduces the tunneling into the barriers and
consequently the overlap integral. The appearance of the minibands in the
conduction bands also modifies the density of states in the effective-mass ap-
proximation from the step-like function of a two-dimensional system to the
one given in Fig. 8.26e.

Since superlattices usually have some ten to one hundred periods, the
number of different k-states in the growth direction in the interval from −π/d
to +π/d is also some ten to one hundred, in contrast to values above 107 for
a bulk crystal with a length of about one centimeter.

If such a superlattice is incorporated into a pn junction biased in the
blocking direction, electric fields can be applied in the growth direction which
are sufficient to cause optically excited carriers to perform Bloch oscillations
with frequencies ωB which fulfil (23.28).

The experimental observation of these oscillations can be accomplished
by time-resolved four-wave mixing in the way discussed with Figs. 23.2 or
23.9. There is an overall temporal decay of the diffracted signal intensity
as a function of the delay between the two pump pulses, which is governed
essentially by the dephasing time T2, but this decaying signal is modulated
with the frequency ωB. A rather early example for such an experiment is given
in Fig. 23.18.

The frequency of the modulation varies in this type of experiments linearly
with the applied field according to (23.26) giving support to the underlying
concepts.

In a more elaborate model, detailed in [92F1,94L1], the occurrence of the
oscillations can be understood along the following lines. A pump pulse of
duration of about 100 fs has a (Fourier-limited) spectral width comparable
to, or larger than, the width of the minibands. It thus excites coherently all
the several ten to one hundred band-to-band transitions in the miniband.

Fig. 23.18. The temporal evolution of the FWM signal in a GaAs/Al1−yGayAs
superlattice with a period of 11 nm under the influence of an electric field of
0.3 × 107 V/m [92F1]
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Since each of these transitions has a different frequency, the polarizations
connected with the transitions run out of phase with respect to each other.
It can be shown, however, that the influence of an external field is such that
the polarization of all these transitions rephase again after integer multiples
of TB. Consequently the signal peaks for delay times of the two pump beams
which are integer multiples of TB.

This picture has another consequence: If there is a macroscopic polariza-
tion in the medium, which oscillates with frequency ωB, this frequency must
be radiated. Indeed it was recently possible to observe the THz emission at
frequency ωB direclty [94R1,94V1] by the use of a micro-dipole antenna which
is gated in a sampling technique by a part of the 100 fs pump pulse. The ex-
perimental setup is shown in Fig. 23.19. In Fig. 23.20 the signal of the antenna
is shown as a function of the delay time of the gate pulse.

The temperature of the GaAs/Al1−yGayAs superlattice with a period of
11.4 nm was 10 K resulting in a reasonably long T2 time. Beautiful oscillations
with frequency ωB can be seen. With increasing temperature, the decay of the
envelope gets faster due to a decrease of T2. More details of this experiment
are given in [94R1,94V1].

Before we proceed to have a look at Bloch oscillations from another
point of view we make the following statement. Until now we presented
the Bloch oscillations in the picture of free carriers. This is the original
approach and it is easily intelligible from the didactic point of view. Actu-

Fig. 23.19. An experimental setup to observe the Bloch oscillation directly.
Schematic overview of the experiment (a) and of the emission of the THz pulse
at ωB (b) [94R1]
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Fig. 23.20. Electric field at the
antenna as a function of the delay
of the gate pulse [94R1]

ally we should remember, however, that by optical pumping, electron–hole
pairs or excitons are created. At a first glance it seems difficult to under-
stand the concept of Bloch oscillations for the neutral quasi-particle exci-
ton. However, it can be shown theoretically and experimentally [97L2, 00L3,
03D2, 03H1] that the frequency ωB survives when the exciton wave function
is constructed from a superposition of electron and hole wave packets. This
statement is a good example for the motto given at the beginning of this
book.

More recent aspects of Bloch oscillations include, e.g., the direct obser-
vation of the spatial motion of the carriers according to (23.27) [97L2, 98S1,
02L1], the coupling to phonons or plasmons [91D1, 01L2], the appearance of
a dc current [00L2,00L3] or Zener breakdown [01R1].

Now we come back to the formation of the minibands. They appear, as
already stated, from the overlap of the wavefunctions in the various quantum
wells which would have all the same energy without this overlap in the some
way as the bands appear from atomic orbitals in the bulk (Fig. 8.1).

If we apply a constant electric field along the structure of Fig. 23.17 the
whole structure is tilted (Fig. 23.21), and the eigenstates of the carriers in the
various wells no longer have the same eigenenergy.

As a consequence, a miniband is no longer formed and the wavefunctions,
which are extended and of the Bloch-type without electric field, become lo-
calized in the growth direction extending only over a few periods of the su-
perlattice. They have discrete energy levels.

En = E0 + ne |E| d, with n = 0,±1,±2, . . . (23.29)

This picture is especially appropriate for electric fields, which produce a po-
tential drop over one superlattice period e|E|d which is comparable to or
larger than the width of the miniband without field.

The formation of the localized states is also known as Stark localization
and the equally spaced ladder of eigenenergies of (23.29) is known as the
Wannier–Stark ladder. In this picture, the temporal modulation of the FWM
signal in Fig. 23.18 can be understood as quantum beats between adjacent
band-to-band transitions with ∆n = ±1. The (coherent) emission of quanta
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Fig. 23.21. The conduction bandstructure (similar to Fig. 23.16) and the valence
bandstructure of a type-I superlattice, however now under the influence of a constant
electric field in the growth direction. A wave function in the valence band is shown
and several in the conduction band and three different transitions with energies E0

and E0 ± e|E|d [94L1,94R1,02L1]

�ωB in Fig. 23.20 is then just a result of transitions between adjacent rungs
of the ladder.

In addition, the transitions indicated in Fig. 23.21 suggest that the struc-
tures should also be visible in simple linear absorption spectroscopy and
indeed they are. An example is given in Fig. 23.22. Photocurrent excita-
tion spectra are shown instead of absorption because the substrate of the
GaAs/Al1−yGayAs superlattice which is incorporated in a pin junction is
opaque; see Chap. 25.

The parameter in Fig. 23.22 is the bias voltage over the diode which is
closely related to the electric field strength over the depletion region. A rather
complex fan of optical transitions evolves with increasing blocking voltage.
The following transitions can be identified: the quantized heavy hole to elec-
tron transition for n = 0,±1,−2 denoted by 1hh, 0hh,−1hh and −2hh, two
transitions involving the second quantized hh level denoted by 0hh2 and
−1hh2 and one transition starting from the first quantized light hole level.
The fan of the various transitions again follows at least for higher fields, the
linear relations of (23.26) (with a being replaced by the superlattice period d)
and (23.29).

The Bloch oscillation and the Wannier–Stark ladder which we have dis-
cussed now from various points of view evidently allow one to perform beau-
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Fig. 23.22. The photocurrent ex-
citation spectrum of a superlattice
incorporated in a pin junction for
various bias voltages [94L1]

tiful experiments and they may also offer prospects for application, especially
concerning the creation of THz radiation. More information on these topics is
found in [92F1,92L1,94L1,94R1,94V1,01L1,02L1] and references therein.

The THz pulses created by this and other techniques (see Chap. 25) start
to allow ultrafast time resolved spectroscopy in the energy range of a few
meV, which earlier was only accessible by Fourier spectroscopy, which is an
inherently slow technique. Just to give one example we mention the THz
emission of an oscillating wave packet in asymmetric coupled double quantum
wells [92R1,96B2,00H1].

For the observation of Bloch oscillations in ultra cold atoms, its analogy
to the Josephson Effect and other aspects of “nonlinear optics” with atoms,
see [99J1,99M2,00E2,00R2].

Now we address a rather well-known magnetic-field-induced effect, which
has a lot of similarities but also some differences to the above-discussed
electric-field-induced effects, namely the cyclotron resonance. See alsoSect. 16.1.
Under the influence of a magnetic field B a particle with a velocity v per-
forms a periodic orbit in the plane perpendicular to B. For particles with an
isotropic effective mass this orbit is simply a circle (again assuming negligi-
ble scattering) and the frequency around this circle is independent of v (we
assume |v| � c) and given by the cylotron resonance ωc

ωc = 2π/Tc = e |B| /meff . (23.30)

The circular motion in real space is necessarily connected with a periodic
orbit in k-space. In contrast to the Bloch oscillations, however, these orbits
occur at constant energy since the force ev×B is always normal to the orbit.
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If scattering processes are included, the condition for the observability of the
cyclotron orbit is, in analogy with (23.28),

ωcT2 � 1 . (23.31)

In analogy to the THz emission of the Bloch oscillation, the cyclotron
resonance can be observed in absorption or emission at frequency ωc depending
on the relative phase of the electromagnetic radiation and the particle in the
cyclotron orbit.

In the regime of the excitonic continuum or of the band-to-band transition,
the combination of electron and hole cyclotron energies can be seen, as shown
in Fig. 16.6, which corresponds in this comparison to Fig. 23.22.

The analog of the Wannier–Stark ladder are here the Landau levels. The
motion of the carrier is quantized in the plane normal to B resulting in
a harmonic-oscillator-like ladder

E = E0 + (n+ 1/2)�ωc + �
2k2

‖B/2meff n = 0, 1, 2, . . . . (23.32)

The quasi one-dimensional free motion parallel to B results, in the effective
mass approximation, in a DOS for every level of the ladder which varies with
the inverse square-root of the kinetic energy, as found in Sect. 2.6 and shown
in Fig. 23.23.

Quantum beats induced by a magnetic field are described in [91B2,92B1,
94B1], though the explanation is in most cases not quite as simple as outlined
here in connection with the Landau levels.

Further aspects of intersubband transitions in a magnetic field and related
topics are treated in [82H1, 86H1, 87M1, 89H1, 90M1] and references therein,
which leads us back to Chap. 16.

Fig. 23.23. The dispersion of the subbands resulting from the Landau levels and
the corresponding density of states
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23.2.1.2.7 Spin Dynamics

We mentioned in Sect. 23.1 that the decay time of the spin polarization may
be different from the interband decoherence time. Therefore we present here
examples of the measurement of the decay of the electron spin and then some
references to work on spin dynamics.

The basic idea of the experiment is outlined in Fig. 23.24a. A 25 nm-wide
GaAs quantum well is kept at low temperatures in a magnetic field of 2T
normal to the directions of luminescence excitation and detection.

The excitation is either in the continuum states, in the nz = 1lh or in
the hh exciton resonances. The circularly polarized excitation preferentially
produces spin-polarized electron–hole pairs. While the hole spin is assumed
to randomize rapidly due to spin–orbit coupling, the electron spin has a long
dephasing time of several hundred ps, comparable to the luminescence decay
time and produces, by its Larmor precession (r.h.s. of Fig. 23.24a), a modula-

Fig. 23.24. The basic idea to measure the spin dephasing time by observing the Lar-
mor precession for circularly polarized excitation and detection (a) and the temporal
evolution of the hh-luminescence intensity for various excitation energies (b) [96O1]
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tion of the luminescence intensity in the circularly polarized detection channel
(Fig. 23.24b). The long value of the spin decoherence time, exceeding evidently
(Fig. 23.24b) several hundred ps, contrasts with the interband decoherence
time, which hardly exceeds the range of a few tens of ps at low temperature
in the lowest exciton resonance and decreases rapidly with increasing excess
energy and temperature.

Evidently, the electron spin does not even lose its coherence in an inter-
subband transition. Therefore it can be concluded that the electron spin (but
not the hole spin) is strongly decoupled from the spatial part of the electron
wave function.

This effect, which is known as the Hanle effect, has been observed even
more pronouncedly in the (stimulated) emission from a semiconductor micro-
cavity laser [97O1]. An extension of electron and hole spin dynamics in GaAs
quantum wells towards quantum computing is suggested in [01H2,01H3].

The long spin dephasing times have also been observed in self-assembled
InAs quantum islands [01P1,02C1].

The density-dependent spin dynamics in ZnSe quantum wells and dots
have been investigated, e.g., in [00K1,01O1,02T1].

In semi-magnetic semiconductors the interaction of the spin of the carriers
with the Mn2+ spins seems to possibly shorten the interband decoherence
time [96C1], while the spin relaxation times of the free induction decay times
seem to be long [97C1].

23.2.1.2.8 Phonon Dynamics

To conclude this survey of coherence times, we give an example of the phonon
dynamics in Fig. 23.25. Similarly to exciton resonances in reflection spec-
troscopy (see Sect. 23.2.1.2) it is possible to determine the damping parameter
of optically active phonons from a fit of their reststrahlbande (see Chap. 11).
Recently it became possible to determine this quantity in the time domain
by, e.g., impulsive Raman scattering [85Y1,92Z1].

The data shown in Fig. 23.25 have been obtained from phonon generation
via ultra fast screening of surface space charge fields [90C1,92K2].

Many semiconductors have a strong electric field close to the surface result-
ing in band bending. If this field is screened in a time that is short compared to
the oscillation period of optical phonons by creating a high density of electron–
hole pairs with a sufficiently short pulse (< 50 fs) see (23.4d), (23.4e), then
two things happen. The reflectivity of the surface changes over a time until
the surface field recovers (which can be rather long) and a coherent pulse of
LO phonons is excited.

As long as this pulse stays coherent, it modulates the reflectivity with
a frequency �ωLO, e.g., via an electro-optic effect [92K2]. Both effects are
seen in Fig. 23.25 for a GaAs:Cr surface.

The oscillation period of 8.84THz corresponds to the LO phonon energy
of GaAs of about 36 meV and the decay of the periodic part of the signal
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Fig. 23.25. Time resolved
reflection changes of a GaAs:Cr
sample after excitation of
2 × 1018 cm−3 of carrier pairs
with a 50 fs pulse [92K2]

corresponds to a dephasing time of the order of 1 ps in agreement with data
from reflection spectroscopy. For very high excitation densities it was also
possible to excite the TO phonon mode resulting in beating [92K2]. For more
recent data see, e.g., [01D1,01Y1].

With this example we finish the short overview of possibilities to experi-
mentally determine various dephasing times.

Before we come to the generally longer relaxation and recombination times
we give some examples of experiments in the regime of quantum coherence.

23.2.2 Quantum Coherence, Coherent Control
and Non-Markovian Decay

In the following we treat some aspects of quantum kinetics. In the first part
we give an intuitive and didactic example of the distinction between Marko-
vian and non-Markovian damping. Then we proceed with an example of non-
Markovian damping and coherent control. In the third subsection we explain
the concept of Rabi oscillations. Contributions to these topics can be found
e.g. in [01W1,02S1,03Q1,04O1].

23.2.2.1 Markovian versus Non-Markovian Damping

We closely follow an idea presented by M. Wegener in [01W1].
We introduced in Chap. 4 the model of Lorentz-oscillators to understand,

on a basic level, the spectra of complex dielectric functions and the complex
index of refraction and reflection.

For convenience we repeat (4.6) here for the case of vanishing driving force

ẍ(t) + γẋ(t) + ω2
0(t) = 0 . (23.33)
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A mechanical realization would be a pendulum that is for small amplitudes,
to a very good approximation, a harmonic oscillator and the damping could
be realized by attaching a sphere to the pendulum, which is submersed in
a water tank as shown in Fig. 23.26. The friction proportional to the velocity
force Ff would then be given by Stokes’s law

Ff = 6πηrẋ (t) (23.34)

where r and η are the radius of the sphere and the viscosity of the water,
respectively.

The damping is evidently instantaneous in time and does not depend on
the past. This approach is used, e.g., in the Boltzmann equation or in Fermi’s
golden rule.

The second order differential equation says that x ≡ 0 for all times t ≥ t0
if we realized at t = t0 for an infinitely short time x = 0 and ẋ = 0, i.e.,

x (t0) = 0; ẋ (t0) = 0 ⇒ x (t) ≡ 0 for t > t0 . (23.35)

If we stop the oscillating pendulum for a very short time at its equilibrium
position, then the result will be different. The bath itself flows with the moving
pendulum and keeps flowing for a while when we stop it, since the energy
transferred to the water is not immediately or instantaneously dissipated into
a huge (ideally infinite) number of degrees of freedom of the bath.

If we release the pendulum after the above-mentioned very short time, it
will be pushed by the still moving water and continue to perform a damped
harmonic oscillation, although with a much smaller amplitude than before.
This phenomenon is not described by (23.33), (23.35) but requires a memory
kernel of the form

ẍ (t) +

t∫
−∞

γ (t− t′)x (t′) dt′ + ω0x (t) = 0 . (23.36)

Fig. 23.26. A mechanical model to re-
alize the difference between Markovian
and non-Markovian damping. Accord-
ing to [01W1]
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The “history” is taken into account by the integral over the function γ(t− t′).
The equation is non-local in time (see Chap. 5, where we introduced non-
locality in space).

In contrast to the solutions of (23.33) the amplitude of x(t) does not decay
immediately exponentially with time.

A simple approach to the memory function γ(t− t′) would be an exponen-
tial

γ (t− t) ∼ exp
{− (t − t′)

TM

}
(23.37)

where TM is obviously the memory time.
Setting TM to zero or replacing it by a δ function δ (t− t′) would bring

(23.36) back to (23.33).
The limit TM = 0 corresponds to a Markovian and a memory function

extending over a finite time to non-Markovian relaxation.
In the following we give experimental data from [01W1,02S1] as an example

of the damping of the interband polarization of GaAs bulk layers by emission
of LO phonons.

23.2.2.2 Damping by LO Phonon Emission and Other Processes

Various experimental and theoretical examples of quantum kinetics and of
coherent control can be found, e.g., in [96H1, 96S1, 01L1, 02S1, 03Q1] and
the references given therein. We concentrate here first on an example of LO
emission from the inter-subband transition in thin, bulk-like GaAs epilay-
ers [95B1,98W3,98W4].

In Fig. 23.27a,b we show schematically the experimental setups for the
experiments described below and in Fig. 23.27c the band-to-band excitation
and the LO phonon emission process.

Figure 23.27a gives the standard setup for a two-beam four-wave mixing
experiment (also see Chap. 26). In Fig. 23.27b there are two coherent pulses on
one beam line. The delay time τ11′ between them can be tuned with extremely
high precision with a technique based on the Pancharatnam phase [97W2].

Finally, Fig. 23.27c shows the band-to-band excitation at �ωP under k-
conservation. Under the assumption that the electron emits the LO phonon
alone, the transition energy of the final Ef state is given by

�ωP − Ef = �ωmod = �ΩLO

(
1 +

me

mh

)
(23.38)

independent of k.
There are several reasons why the inclusion of excitonic effects can be

neglected in a first approximation for GaAs. The experiments described below
have been performed at 77 K. So for bulk GaAs the inequality Ebind

ex ≤ kBT
holds and the exciton resonance is already significantly damped. In addition
the short Fourier limited pulses with a duration of about 15 fs have a spectral
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Fig. 23.27. Schematic experimental setups for a two-beam four-wave mixing ex-
periment (a), a coherent control experiment (b), and the band-to-band excitation
(c) [98W3,98W4,01W1]

width of almost 100 meV (see (23.4)), thus covering the energy difference given
by (23.38) and exceeding the exciton binding energy by a factor of 20. This
means that excitons and continuum states are excited simultaneously or, in
other words, on such a short timescale that the electron–hole pair does not
yet “know” if it is bound to an exciton due to the time-energy uncertainty
relation.

In Fig. 23.28 we show experimental and theoretical results [95B1, 98W3,
98W4,01W1].

Figure 23.28a gives results of two-beam four-wave mixing for various
electron–hole pair densities from 1.2 × 1016 cm−3 to 6.3 × 1016 cm−3. AC
is the autocorrelation trace of the 15fs laser. The insert shows the laser
spectrum and the spectrum of the four-wave mixing signal for τ1,2 = 0,
which is centered on the exciton energy as already discussed in connec-
tion with Fig. 23.11. The experimental solid traces show the overall decay
of the coherent interband polarization, but additionally a modulation with
a frequency �ωm given by (23.38) in agreement with theory (dots). In the
simplest approximation, the beating can be understood as a coherent su-
perposition of a state at �ωP, which has not yet emitted a LO phonon
and a state at Ef which has. The decay of the oscillation results from
a damping of the LO-phonon, i.e., a decay to lower energy lattice vibra-
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Fig. 23.28. Spectrally and temporally integrated two-beam four-wave mixing exper-
iments on GaAs (a), experiments for coherent control (b), and theoretical modeling
(c) [95B1,98W3,98W4,01W1]

tions corresponding to an increasing number of degrees of freedom of the
heat bath. Only after these processes have occurred, the absorption pro-
cess is irreversibly completed. This is the reason why we stressed the im-
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portance of phase relaxation or a scattering process in the absorption process
in Sect. 3.2.

Once the LO phonon has decayed in (many) other degrees of freedom,
decoherence of the inter-band polarization is completed.

The modulation of the oscillatory signal in Fig. 23.28 a decays faster than
in Fig. 23.25, among others, because of the lower sample temperature in the
latter case, reducing inelastic phonon-phonon scattering.

Similar data have been also obtained for GaAs quantum wells [98W4]
and for ZnSe epitaxial layers [99S2], in the latter case with the impor-
tant difference that the modulation occurs directly with the LO phonon
frequency of ZnSe and not with the mass corrected term of (23.28). This
finding proves that in ZnSe the electron–hole pair or exciton emits the LO-
phonon as a whole and not a single carrier as can also be expected from
the higher exciton binding energy and the stronger polar coupling to LO
phonons.

The emitted, but still coherent phonon obviously corresponds to the flow-
ing water in the tank of Fig. 23.26.

As long as the absorption process or the dephasing are not completed, it
should be possible to influence its decay by a third coherent pulse. This is the
idea of coherent control in the regime of quantum coherence.

In Fig. 23.28b and c we show measured and calculated spectrally and
temporally integrated four-wave mixing signals as a function of the time delay
τ12 but now with the delay τ11′ as a parameter (see Fig. 23.27b). Depending
on the type of interference of the polarizations created by pulses 1 and 1′

(constructive or destructive) the height, the decay time and the degree of
modulation of the signal vary, with a periodicity given by the light frequency
[01W1]. The experimental data can be reproduced to a good approximation
by theory.

Some further examples of quantum coherence and coherent control can be
found for the interaction with phonons in [00W1] with plasmons in [98M2,
00H2, 00H3, 00V1] or for Coulomb quantum kinetics in the regime of band-
to-band transitions [99H1] and references therein, for exciton polaritons and
biexcitons in quantum wells [95H1,97B1,03V1] or single quantum dots [98B3,
98B4] or for inter-subband transition [00S1].

A rather early example was the manipulation of the THz emission of two
coupled and asymmetric quantum wells by the delay between two coherent
incident pulses [93P3].

After this excursion to coherent control we turn to the last, but not least,
effect in the quantum coherent regime, namely to Rabi oscillations.

23.2.2.3 Rabi Oscillations

The idea of coherent oscillations of the population of a two-level system was
introduced by Rabi for atomic systems [37R1,39R1]. For a detailed description
of two-level systems see, e.g., [75A1]. The basic idea is outlined in Fig. 23.29.
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We consider an ensemble of identical (i.e., only homogeneously broadened)
two-level systems with a transition energy

�ω0 = E2 − E1 . (23.39)

This ensemble is illuminated by a monochromatic light beam of frequency ω
resulting in a normalized detuning d defined by

d =
� (ω0 − ω)

�ωR
(23.40)

where ωR is the Rabi frequency. It is given here, in the simplest case, by the
product of the transition dipole matrix element µ multiplied by the amplitude
El of the incident light field

�ωR = µEl . (23.41a)

It should be noted that in the literature there are additions to this simple
term due to, e.g., exciton resonances (see (20.9)), damping of the transition
or many particle effects [96H1,96S1,02S1,03Q1].

Fig. 23.29. A two level system illuminated with coherent light of frequency ω (a)
the normalized population of the upper states ρ22 as a function of normalized time
for various normalized detunings d and vanishing damping (b) and for zero detuning
and various normalized dampings (c) [03D1] and references given therein



23.2 Decoherence and Phase Relaxation 619

If the dephasing time is infinitely long, i.e., η = γ = 0 in Fig. 23.29, the
driving field pumps all systems coherently from the ground state to the excited
state and back again and so on. The characteristic frequency for this process,
the so-called Rabi oscillation, is just the Rabi frequency of (23.40). If the
detuning d is zero the population of the two-level system can be completely
coherently driven between the ground and excited state. For finite detuning,
the maximum value of ρ22, i.e., the population of the upper state, decreases
as shown in Fig. 23.29b.

If the population is flipped once or a few times from the ground state to
an excited state by a short pulse, one speaks of Rabi flopping rather than of
Rabi oscillations.

Zero damping is, of course, an idealization. For finite (normalized) damping
the oscillations disappear with time and one reaches a steady state population
under cw excitation, which can be described by simple recombination kinetics
using, e.g., Einstein’s coefficients. In this case the maximum value of ρ22 is
0.5 after the Rabi oscillations die out (see Fig. 23.29c).

The sample is transparent under these conditions, which is why population
inversion and lasing are usually not possible in a pure two-level system.

While the dephasing times can be rather long in atomic systems and Rabi
oscillations and the optical Stark effect (see Sect. 20.4) have been known for
a long time [75A1], Rabi flopping could only be observed in semiconductors
after the invention of intense fs lasers.

In early experimental examples in In0.08Ga0.92As multiple quantum wells
and CdSe epilayers indications of Rabi flopping have been deduced from the
shape of the transmitted pulse [94C1,95C1,97F1,98G1,01N1] with a duration
of about 100 fs and a peak intensity in the GW cm−2 range. We show here
an example of a 20-period In0.1Ga0.9Ga/GaAs multiple quantum well sample
from [99S3] in Fig. 23.30. In Fig. 23.30a the transmission spectrum exhibits
the nz = 1hh and light hole transitions. Figure 23.30b gives the spectra and
polarization of the 770 fs pump pulse tuned to the hh transition and the 150 fs
probe pulse, centered on the lh resonance.

The almost periodic oscillations of the transmission in Fig. 23.30c are at-
tributed to Rabi oscillations. This interpretation is based on agreement with
calculations including nonlinear Coulomb renormalization of the transitions
(Fig. 23.30d) and the fact that the oscillation frequency increases with the
square root of the energy flux of the pulse, i.e., linearly with the field ampli-
tude.

Rabi oscillations in quantum dots have been reported, e.g., in [01S1,02B2,
02B3,02K2] and for µ-cavities in [01D2].

Usually one has the situation

�ωR � �ωc ≈ Eg (23.42a)

where ωR is the Rabi frequency and ωc the carrier frequency of the laser pulse.
According to (23.40), if the laser intensity is sufficiently high, however, one

may reach a situation
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Fig. 23.30. (a) The transmission spectrum of the In0.1Ga0.9As/GaAs MQW sam-
ple. (b) The spectral shapes and polarizations of pump and probe pulses with the
relevant transitions in a band-to-band model in the inset. (c) The differential trans-
mission signal as a function of pump-probe delay. (d) Calculations neglecting (dotted
line) and including (solid line) Coulomb renormalization [99S3]

�ωR ≈ �ωc ≈ Eg (23.42b)

known as carrier wave Rabi flopping.
This new phenomena, which appears under this unusual situation, belongs

to the regime of extreme nonlinear optics (see Sect. 19.3) and can only be ob-
served for lasers with a duration of a few light cycles to avoid sample damage
or (excitation-induced) dephasing. The Rabi doublets of the fundamental and
the third harmonic may overlap around the second harmonic, producing sig-
nals that depend on the absolute optical phase between the carrier wave and
the envelope, i.e., whether the maximum of the envelope coincides with a max-
imum of the carrier wave or with a zero transition. Examples for this regime
are found in [01M2,03S1].

23.3 Intra-Subband and Inter-Subband Relaxation

After this overview of coherent processes we review incoherent intraband and
inter-subband relaxation and finish this subsection with some transport prop-
erties. For the latter topic see also Sect. 23.2.1.2.5
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23.3.1 Formation Times of Various Collective Excitations

The first processes we consider concern the formation times of some quasipar-
ticles or collective states. These times are partly as short as the decoherence
times and involve concepts of quantum kinetics. A recent review connecting
the regimes of 23.2 and the one here in is [01C1].

The first example is the formation time of excitons. They can be either di-
rectly resonantly excited by a spectrally sufficiently narrow laser (i.e., smaller
than ∆LT) as stationary eigenstates, or can from after band-to-band excitation
i.e. excitation in their ionization continuum with some delay.

In GaAs the exciton binding energy is small
(
Eb

x ≈ 4.5 meV
)

compared to
the LO phonon energy (�ωLO ≈ 36 meV), and the polar coupling to phonons
is weak.

Consequently the formation time of excitons is rather slow in the range of
100 ps for electron–hole pair excitation in the continuum [98K2, 02H1, 03K1,
03K2, 04C1, 04K2, 04O1] in contrast to resonant excitation [03K2]. The pres-
ence of excitons has been deduced for GaAs bulk samples or In1−yGayAs
quantum wells from the 1s → 2p transition at about 6.3 meV in time-resolved
pump and THz probe spectroscopy [03K1]. In these experiments it was also
possible to show the thermal ionization of excitons at a lattice temperature
of 60 K to occur on a time scale around 10 ps.

The rather slow formation time of excitons in bulk GaAs and in GaAs- or
InAs-based wells has even provoked the extreme question of whether excitons
exist at all. For a recent review see, e.g., [03K2] or [04C1] and references
therein. This question has a philosophical aspect, namely “what does the
existence of a quasiparticle in a solid mean”, which we do not attempt to
answer here. The more down-to-earth aspect is if excitons exist in a similar
way as other quasi-particles like phonons, plasmons and magnons. Here, we
think the answer is rather clear and yes.

All the experiments showing the free motion of excitons (see below in
Sect. 23.4), the direct measurements of their (polariton) dispersion curves or
of their thermal distribution on this dispersion as detailed in Chaps. 9, 13
and 15 or the formation of biexcitons (20.3) make it difficult to discard the
concept of excitons as quasiparticles.

Furthermore (time-resolved) photo-luminescence excitation spectra of ex-
citons show in more ionic bound semiconductors with higher binding energy
comparable to the LO phonon energy like in CdTe or ZnSe, that excitons are
formed rapidly, even in the ionization continuum. We already addressed this
point in Sect. 23.2.2 and will see a further example below.

The dynamics of LO phonon emission from heavy holes occurring even
for a kinetic energy below �ωLO has been investigated as a function of the
Fröhlich coupling parameter α in GaAs and CdTe both experimentally and
theoretically using quantum kinetics (see [01B4] and references therein). These
results essentially confirm the more didactically formulated statements above
and also give, for the example of the hh in CdTe, some information on the
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formation times of the polaron of several 10 fs. For the polaron concept see
Sect 8.6.

The formation time of the magnetic polaron introduced in Sect. 10.2 has
been investigated by various groups (see e.g. [87Z1,95D1,96H2] and references
therein). The formation time depends on the Mn concentration, on temper-
ature, on the presence of an external magnetic field and, for quantum wells,
also on the well width. Typical formation times range from several tens of ps
to a few ns. Thus the formation time of magnetic polarons is substantially
longer than that of (phonon) polarons mentioned above.

The last example for formation times is the build-up of Coulomb screening
in an electron–hole plasma. As explained in Chap. 21 a random spatial distri-
bution of electrons and holes does not result in band gap renormalization.

Recently it was possible to observe in beautiful experiments with time
resolved band-to-band pump and THz probe beam spectroscopy the build-up
of Coulomb screening and plasmon scattering on a timescale of a few 10 fs. For
details on the experiment and theory see, e.g., [98B3,98B4,01C1,01H1,01H2,
01H3]. These buildup times are roughly equal to the inverse of the plasma
frequency ωPL, a fact that is not totally surprising.

23.3.2 Intraband and Inter-subband Relaxation

We now leave the regime of ultrashort times and of quantum kinetics and turn
to “usual” intraband and inter-subband relaxation, starting with bulk mate-
rials, proceeding to alloys and then to structures of reduced dimensionality.

We start with rather old measurements on the exciton polariton in CdS
[75W1]. Figure 23.31 shows the polariton dispersion of the nB = 1AΓ5 ex-
citon, the luminescence spectra for two polarizations, and the lifetime mea-
sured from the luminescence decay at various energies after band-to-band
excitation. The excitons relax in about 1 ps by LO-phonon emission onto the
lower polariton brand (LPB). There they can relax further, e.g., by emission
of acoustic phonons. This process becomes slower and slower with decreas-
ing slope of the dispersion, since less and less energy transfer is allowed per
unit of momentum transfer. For this reason the excitons accumulate in the
indicated area, which is known as the “bottle neck”. See also Sect. 13.1.3. As
a loss mechanism, polaritons can be transmitted from the UPB and the LPB
through the surface, but only if the parallel component of their wave vector
k satisfies

k‖ � 2π
λvac

(23.43)

with a probability depending on the reflection coefficient and on the squared
amplitude of the photon-like part of the wavefunction. Additionally the ex-
citons can be trapped at defects and recombine there (non-) radiatively or
be thermally reexcited into extended states. They can be scattered onto the
photon-like branch of the dispersion curve under emission of one or more



23.3 Intra-Subband and Inter-Subband Relaxation 623

LO phonons (Sect. 13.1.3). A further relaxation to the regime below the
bottle-neck by emission of acoustic phonons becomes rather improbable due
to the rapidly decreasing density of final states; see Sect. 2.6 and Fermi’s
golden rule.

A similar scenario exists also for the cavity polaritons introduced in
Sets. 17.1, 20.2 and 22.1.

The accumulation of the exciton-like polaritons in the bottle-neck during
the relaxation in the band directly explains the increase of their radiative
decay times in Fig. 23.31c at these energies.

The relaxation of localized excitons through the localized tail states shows
up in the time dependence of the emission line shape and its maximum po-
sition after pulsed excitation. Some examples have already been given in
Sect. 14.4 and another will be given in Sect. 23.4. The thermally activated
relaxation from metastable states to deeper ones at intermediate tempera-
tures (e.g., 10 K to 50 K) and the thermal excitation to higher, generally ex-
tended states at even higher temperatures caused by the higher density of
these states result in the well-known non-monotonous shift of the emission
maximum with temperature. Examples for various II–VI or III–V materi-
als and theoretical modeling are given for bulk materials and quantum films
in [87S1,87S2,92S1,92S2,92S4,92S5,99K1,00K2,01T1,02K4,02R1,03R1,04K1]
and the references given therein.

Fig. 23.31. The dispersion of the nB = 1AΓ5 exciton polariton in CdS in the
bottle-neck region (a); the luminescence spectra for the dipole allowed orientation
E ⊥ c and the forbidden one E ‖ c (b); and the decay time of the luminescence as
a function of photon energy (c) [75W1] compare also with Figs. 13.4, 11, 14, 15 and 29
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In Fig. 23.32 we give another example of intraband relaxation, this time of
a AlGaAs MQW sample. The differential transmission between unexcited and
excited sample is measured with 50 fs increments when the sample is excited
around t = 0 with a pump pulse of 80 fs duration. There is some bleaching due
to partial blocking of the band-to-band transitions by the bunch of electron–
hole pairs excited in the continuum (dotted areas). The temporal evolution of
the intraband relaxation can be seen nicely. There is a decrease of excitonic ab-
sorption in the region of the nz = 2hh transition around 1.57 eV. This change
is rather small and constant on the time scales shown here (� T1) and is due
to direct screening of the Coulomb interaction in the exciton by the carriers.
This screening is largely independent of the energy and distribution of the free
carriers in the bands. A similar behavior is found for the nz = 1hh and lh res-
onances around 1.46 eV in the three lowest traces. When the excited electrons
relax down into the exciton states, the transmission increases drastically. This
finding is attributed to phase-space filling and exchange interactions which be-
come effective for these exciton resonances only after the excited species start
to populate the respective states. Figure 23.32 thus demonstrates qualitatively

Fig. 23.32. Intraband relaxation of electron–hole pairs in the Al1−yGayAs/GaAs
MQW measured by time-resolved pump and probe experiments [88C1]
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that direct screening of the Coulomb interaction is less efficient in quasi two-
(and one-)dimensional systems than exchange interaction and phase-space fill-
ing. This difference to three-dimensional materials has already been pointed
out Sect. 21.2 and 4 in connection with electron–hole plasmas.

As a further example of quantum wells we provide data in Fig. 23.33 for
a ZnSe/ZnS1−xSex superlattice from [98U1].

The l.h.s. of Fig. 23.33a shows schematically the luminescence spectrum.
There is a zero-phonon line (ZPL) resulting from the emission of excitons lo-
calized in tail states and of a free exciton with small k vector (23.43). The
LO phonon sideband monitors in a similar fashion as for bulk samples in
Figs. 13.12 and 13.13 the whole distribution of excitons since radiative re-
combination through emission of a LO phonon is possible from every k state
as indicated on the r.h.s. of Fig. 23.33a, while Fig. 23.33b shows a time-
integrated photoluminescence spectrum showing free and localized lh, hh and
bound-exciton (BE) luminescence and their LO phonon replicas. The photolu-
minescence excitation spectrum taken at the position of the hh exciton shows
the lh exciton resonance and peaks at integer multiples of LO phonon energies
above the hh. Up to four such LO phonon resonances are visible. The absence
of a mass renormalization factor (23.38) shows, that the electron–hole pairs

Fig. 23.33. (a) Schematics of the luminescence spectrum and of the exciton relax-
ation process in ZnSe/ZnS1−xSex superlattices (b) A time-integrated luminescence
spectrum c, d Time-resolved spectra for two different excess energies [98U1]
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emit the LO phonons together, i.e., that they form a rapidly bound state that
relaxes on the exciton dispersion curve as shown schematically on the r.h.s. of
Fig. 23.32a. This interpretation is confirmed by time-resolved measurements
of the LO phonon replica after ps-pulsed excitation in Fig. 23.32c,d where
the excitation energy is 1.5 and 1.2 LO phonon energies above the hh band.
Within the temporal resolution luminescence appears 2 LO phonons below
the excitation. Then a slower relaxation of the excitons by emission of acous-
tic phonons (see r.h.s. of Fig. 23.32a) leads to a population of hh excitons on
a time scale of 100 ps followed by a lifetime-limited decay of this line of about
0.5 ns. Calculations in [98U1] not shown here agree with the experimental
data and further corroborate this model.

Further relaxation processes include, e.g., the capture of carriers into quan-
tum wells, wires or dots. For some references see, e.g., [96S2,98R1,98U2,99F1,
00L4,00R1,01R1,01L1] and references therein. For the inter-subband or inter-
level relaxation in the quantum structures see, e.g., [99F1,99H1,99H2,99M1,
00L4, 01L1, 01M3, 02B2, 02B3, 02B4, 02D1, 02K2, 02K3, 04O1] and references
therein.

We give here an example for the inter subband relaxation of hh excitons in
a GaAs/Al1−yGayAs MQW sample, which is excited into the third subband
as shown schematically in the inset of Fig. 23.34.

Fig. 23.34. Time-resolved differential transmission (bleaching) signal of the first
three hh exciton resonances [94H1]
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The bleaching of the resonantly excited nz = 3hh exciton decays on a sub
ps timescale by relaxation to deeper levels. Simultaneously, the bleaching of
the nz = 2hh and nz = 1hh builds up. The subsequent decay of the nz = 2hh
resonance bleaching is already much slower, while the nz = 1hh ground state
still shows a slight increase due to feeding from higher states over the time
interval shown in Fig. 23.34 of 3 ps. The lifetime of this state is in the range
of 100 ps as shown below.

Further topics in the field of relaxation concern, e.g., the relaxation by
tunneling processes see [96S1, 96T1, 01L1] and references therein, or the re-
laxation in an electron–hole plasma [93M1,96S1,97M1,97M2,98M1] and ref-
erences therein.

Recent reviews on relaxation processes is also found in [97M2, 04O1] and
in other contributions to this book.

23.3.3 Transport Properties

Transport properties are intimately related to relaxation and collision pro-
cesses, e.g., in the relaxation time approximation of the electrical conductivity
resulting in

σ =
ne2τ

m
and µ =

υD

|E| =
τe

m
(23.44a)

where n is the carrier density, m is the effective mass of the carriers, τ is
the time between collisions, υD is the drift velocity, and µ is the mobility,
resulting in the expression (23.44b) for the diffusion constant according to the
Nernst–Townsend–Einstein Relation

D = kBTτ/m = kBTµ/e . (23.44b)

A more elaborate theoretical concept is given in terms of the Boltzmann
equations, treated in many textbooks of solid state or semiconductor physics.

Electrical transport and conductivity as well as heat conductivity are obvi-
ously not topics of this book. However we give below some examples of exciton
or electron–hole pair transport in semiconductors. See also 23.2.1.2.5 above.

Actually we have already given several examples of such transport mea-
surements, e.g., for excitons in Cu2O in Sect. 20.5.2 of the electron–hole
plasma in Sect. 21.3.1 or above with references [92O2, 02Z1, 03Z1] including
transition from coherent or balistic transport to diffusive one [04D1,04Z2].

Furthermore the coherent polariton transport has been discussed, e.g., in
connection with propagation quantum beats in Sect. 5.2. In the following we
give some more examples.

An early example is exciton diffusion in CdS [59B1]. The transport of
excitons via the decay of laser-induced population grating (also see above)
has been investigated for CdS in [88W1,88W2] revealing a temperature- and
density-dependent diffusion length on the order of 1 µm.
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The influence of the polariton dispersion on the exciton transport has
been investigated by the same technique as for ZnSe/ZnS1−xSex quantum
wells in [98N1] showing the influence of the polariton group velocity on the
transport length.

In contrast, the diffusion length of excitons tends to zero for zero tem-
perature due to localization effects in alloys like CdS1−xSex as found in
[92S1, 92S2, 92S4]. For the influence of disorder in quantum wells on trans-
port see [00Z1] and references therein.

The expansion of an electron–hole plasma in direct gap semiconductors
like CdS or CdSe has been investigated by spatially resolved pump-and-probe
beam spectroscopy resulting in diffusion lengths in the 4 to 10 µm regime
[84K1,85M1].

23.4 Interband Recombination

Now we discuss some measurements of the interband recombination time T1.
For the definition of this quantity see the discussion with (23.5) or Chap. 27.

To measure this quantity it is best in principle to observe effects to which
all excited species contribute by roughly the same amount. One could follow,
e.g., the further temporal evolution of the bleaching of the exciton resonances
in Figs. 23.32 and 23.34 and one would find that the differential transmission
signal disappears with a time constant of about 0.5 ns.

Very often one relies, however, simply on the temporal evolution of the
luminescence, e.g., of excitons or biexcitons, as a monitor of the population of
the respective species, although it is well known that the luminescence yield η
for most semiconductors is considerably smaller than 1. For high quality direct
gap samples one finds, as already mentioned several times,

10−1 � η � 10−3 ; (23.45a)

only for localized excitons in some selected samples of bulk alloys or quan-
tum structures or for some laser diodes have values of η close to 1 been
reported. For indirect gap materials or direct ones with dipole forbidden
band-to-band transitions or for direct ones containing “luminescence killers”
like Fe or Cu ions η can even be much smaller than in (23.45) (see, e.g.,
[97W3,98W5,01J1,03F1,03T1] and the references given therein for examples).
This means that with luminescence decay measurements only, one monitors
the fate of a minority of the exited species and assumes quietly that they
represent the majority.

Furthermore, radiative decay involves the conservation of the component of
k parallel to the surface (see below) so that large k excitons hardly contribute
to the zero phonon line. Finally the luminescence decay is often not simply
exponential after pulsed excitations (see (23.5)), so a definition of a lifetime
is, strictly speaking, not possible. Only something like an effective decay time
over a certain time – or intensity interval – can be given.
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Looking closely, the problem of radiative decay turns out to be rather
complex. An exciton polariton in a perfect three-dimensional crystal cannot
decay radiatively, since it is already the quantum of the mixed state of exciton
and photon.

It can move (diffusively or ballistically) through the sample and be trans-
mitted through or reflected at the surface of the crystal when it hits it with
a certain probability. In the first case it appears as luminescence on the other
side. Transmission through the surface is only possible if the parallel com-
ponent of k, which is conserved at the surface (see Sect. 3.1.3), is smaller
than

k‖ ≤ kvac = 2πω/c . (23.45b)

(see, e.g., Fig. 13.11). For |k| � k‖ given by (23.45b) the transmission proba-
bility decreases rapidly. One can either argue that the polariton is essentially
exciton-like or that the refractive index of these states is very large result-
ing with (3.19) in a high reflectivity or substantial ranges of total internal
reflection.

What can happen in a perfect crystal is that the exciton polariton is scat-
tered by emission of n LO phonons on the photon-like branch of the disper-
sion curve, where it travels with a high group velocity essentially ballistically
through the sample and has a good chance of being transmitted through the
surface when it hits it, appearing as luminescence as shown in Fig. 13.12.

If there are defects in the sample (or at its surface), the exciton polariton
can be trapped at these defects and recombine there either nonradiatively
resulting in (23.45a) or emit a photon-like polariton, which appears with high
probability as a luminescence photon. The same holds for capture in localized
tail states in bulk alloys or quantum structures. Similar arguments are valid
for cavity polaritons.

In quantum wells and wires k‖ is the only component of k, this means
that free exciton (-polaritons) with large k cannot radiate at all. Those with
small k produce photons outside the quantum structure very quickly (in about
10 ps) and particles with higher k have then to relax down to small k values.

This process and the restriction of the emission of free excitons to the light
cone defined by (23.45b) results in a law for the luminescence decay time TL

as a function of the lattice temperature Tlattice ([91A1,91F2,92O1,92O2,94A1,
98L1,00Z2,04P2] and references given therein)

TL α T
d/2
lattice (23.45c)

where d is the quasidimensionality of the system. We give a detailed deriva-
tion for d = 2 below. The linear increase of the luminescence decay time with
temperature for d = 2, i.e., for quantum wells, is frequently used as an ar-
gument for dominant radiative decay. This is a clear over-interpretation of
the data since similar samples show different slopes in the relation (23.45c)
as shown below in Fig. 23.35 and samples with ηlum � 1 can also show such
behavior [91O1, 92O1, 92O2, 92S5, 03F1]. If one assumes that the capture of
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excitons or exciton-like polaritons into nonradiative and radiative centers, in-
cluding localization sites, decrease rapidly with increasing k it becomes clear
that a similar law to (42.343 b) also holds for these cases, no longer restrict-
ing (23.45c) to dominant radiative recombination. However, the decrease of
the luminescence yield observed for many high-temperature samples (e.g., for
GaAs QW is usually above 100 K) implies that excitons or electron–hole pairs
with high thermal kinetic energy find an increasing number of nonradiative
decay channels.

The situation is slightly different for quasi-zero-dimensional quantum dots,
islands and other localization sites since there is no more k-conservation.

In spite of all these implications it is experimentally quite easy to mea-
sure the temporal decay of a luminescence signal, and therefore many data
on T1 of electronic excitations of semiconductors are obtained by this tech-
nique. If one remains aware of the above implications it may be a useful
technique.

We start with a few typical exciton lifetimes in bulk semiconductors.
The exciton lifetimes are at low temperature and density in bulk semi-

conductors with direct, dipole-allowed band-to-band transitions typically in
the range of a few hundred ps to a few ns (see Fig. 23.31) and for dipole-
forbidden materials from several tens of ns to 5 ms (see Sect. 20.5). For
Cu2O the values for the lifetime reported for the forbitten para exciton
range from around 10 ns to beyond 10 ms. See the ref. given in Sects. 13.2.1.2
and 20.5.2.

Fig. 23.35. The decay time of the
luminescence in various Al1−yGay

As/GaAs MQW samples as a func-
tion of the lattice temperature
[92O1]
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In indirect gap materials values from a few tens of ns to ms are ade-
quate. Increasing temperatures and increasing densities tend to decrease the
lifetimes, e.g., due to increasing average k-vectors and inelastic scattering
processes like Auger recombination [75H1, 79H1], respectively. Stimulated
emission also reduces the effective lifetime down to the 100 fs range [85M1].

The localized excitons in alloy semiconductors show that at low tempera-
ture there is a strong dependence of the luminescence decay time on the photon
energy (see e.g. [89G1,91U1,98K1,99K1,04K1] and references therein). How-
ever this decay is governed by a complex interplay of temperature dependent
relaxation between various localized states (see Sects. 23.4, 9.6 and 14.4) and
radiative as well as nonradiative recombination. Typical lifetimes are again
in the range of a few ns but may reach 100ns for deeply localized states and
especially for distant pairs [92S4,98K1,99K1,04K1].

The same holds true for localized excitons in quantum structures, es-
pecially in II–VI quantum wells and superlattices. Examples are found in
[93K2, 01S2, 04O1]. In type II structures the electron–hole overlap depends
strongly on the well widths and therefore also on the lifetime. An example for
CdS/ZnSe structures is found in [01S2,03S2,04P1].

In piezo-superlattices like CdSe/CdS the band bending and consequently
the electron–hole overlap integral depend not only on the layer widths but
also depend strongly on the carrier density via a screening of the piezo fields
resulting in an extremely nonlinear recombination dynamics and in a temporal
shift of the emission photon energy over several hundreds of meV after pulsed
excitation [94L2,95L1].

Now we look in more detail into GaAs/Al1−yGayAs multiple quantum well
samples with less pronounced localization effects.

In the following example (Figs. 23.35 and 23.36) we consider a MQW sam-
ple of high quality with narrow absorption and emission lines and virtually
no Stokes shift between emission and absorption. In emission under cw ex-
citation and at a low temperature this sample shows the nz = 1hh exciton
and weakly, on its high energy side, the nz = 1lh exciton. A shoulder on
the low energy side is presumably due to a bound exciton complex or to an
excitonic molecule or trion (Sect. 20.3) and a band around 1.53 eV due to
a free-to-bound transition (Sect. 14.2). The latter structure saturates rapidly
with increasing pump power. In Fig. 23.36a,b we see the decay of the nz = 1hh
luminescence after resonant and non-resonant ps excitation for various pump
powers. The most striking feature is that a simple exponential decay is almost
never observed.

For low, resonant excitation (curve 1) one observes a rapid decay of the
luminescence, which can be attributed to a rapid capture of excitons into some
deep, presumably non radiative centers. For increasing excitation this process
saturates and for t > 250 ps one gets in curve 2 a simple exponential decay
with T1 ≈ 200 ps. This order of magnitude seems to be representative for the
radiative and nonradiative decay of excitons in good MQW samples at low
temperatures (T � 10 K). For even higher pump power (curve 3) this value is
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Fig. 23.36. The decay curves of the 1hh exciton luminescence for various excitation
fluences for resonant (a) and non-resonant (b) excitation of the nz = 1hh exciton
in an AlGaAs MQW sample, and some calculated decay curves (c) [92O1]

reached only at later times and a hump develops in the decay curves, which is
even more pronounced in the case of non-resonant excitation with some excess
energy (curves 4 to 6).

This feature can be interpreted as a thermalization (or T3) process. In-
creasing Iexc or �ωexc leads to the creation of a hot gas of excitons with
a certain average kinetic energy and with finite k‖ vectors. In contrast to the
three-dimensional case, k‖ is the total momentum k of the excitons in quasi
two-dimensional systems, as mentioned above. Due to the conservation of k‖
in the radiative recombination process only excitons with k‖ around zero (or
excitons in the small tail of localized states caused by well-width fluctuations)
can participate in radiative recombination without emission of LO phonons,
a process which is usually much weaker in standard III–V materials compared,
e.g., to II–VI semiconductors. The humps or plateaux in curves 7 and 8 reflect
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the cooling or the formation process of the exciton gas from states with larger
towards states with smaller k = k‖.

A modeling of the decay along the lines above gives the curves 1′, 2′, 5′,
and 6′, in Fig. 23.14c, which correspond to the unprimed experimental ones.
The good agreement gives some support to these ideas.

A related experimental finding concerns the fact that in quantum wells
one often observes a linear increase of the luminescence decay time T1 time
with lattice temperature for TL � 10 K up to around 100 K. Examples are
given in Fig. 23.35 or in [91A1,91F2,91G1,92O1].

T1 =
T ′

1kBTL

Em
(10 K � TL � 100 K) . (23.46)

where T ′
1/Em is for the moment only a characteristic parameter of the ma-

terial. We will present a simple model from [92O1] which accounts for this
effect. For details and partly similar, partly complementary approaches see
[91A1,91F2,91G1,92O1,96P1,98L1,00Z2].

The relation to the effect discussed above comes from the consideration
that the exciton temperature Tex has the lattice temperature TL as a lower
limit and is close to this limit for low excitation intensities and small excess
energies. In the following we thus assume Tex ≈ TL. It is also reasonable to
assume that only excitons with small (kinetic) energy 0 � E � Em participate
in the recombination process. This condition is fulfilled for radiative decay for
free excitons with [see also (23.45b)]∣∣k‖

∣∣ � 2π
λv

≈ 8 × 104 cm−1 (23.47)

where k‖ is the in-plane wave vector and λv the luminescence wavelength in
vacuum, due to the conservation of the parallel component of k.

The numerical values refer to Al1−yGayAs/GaAs(M)QW and k‖ = 0 and
k‖ = 2π/λv correspond to normal and grazing emission, respectively.

The contribution to Em resulting from (23.47) is

E0
m =

�
2k2

‖
2M

=
�22π
Mλ2

v

≈ 10 µeV . (23.48)

The value of E0
m can be increased by damping and by inhomogeneous broad-

ening. This means that we can include a tail of localized states, provided
that its tailing parameter E0 fulfills the condition E0 � kBTL, i.e., the local-
ized excitons are in equilibrium with the free ones. From the absorption and
luminescence linewidth of good samples (Fig. 15.3a) we can conclude that

E0 < Em ≈ 0.5–1 meV (23.49)

so that the above conditions are fulfilled for TL � 10 K.
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For kBTL < Em the excitons decay with an average lifetime around 200 ps
(Fig. 23.36b). For T > 10 K we give the following treatment.

The two-dimensional density of states in effective mass approximation
D(E) is given according to Sect. 2.6 by

D(E) =

{
D0 for E � 0
0 for E < 0

(23.50a)

with

D0 = g · 1
2π

2M
�2

≈ 1012 (cm2meV)−1 (23.50b)

possibly including a small exponential tail as mentioned above.
The number of excitons per unit interval of energy N(E) is then given by

N(E) = D0 exp[−(E − µ)/kBT ] E � 0 , (23.51)

where µ is the chemical potential of excitons and where Boltzmann statistics
and the weak coupling approach are used.

The total density N0 at a time t follows from integration over (23.51):

N0(t) = kBTD0 exp[µ(t)/kBT ] (23.52a)

This means that the chemical potential µ can be expressed in terms of N0

and T
µ = kBT ln

N0

D0kBT
, (23.52b)

or

N(E) = D0 exp
(
− E

kBT
+ ln

N0

D0kBT

)
. (23.53)

For the Boltzmann approximation to be valid we must have µ < 0 or

N0 < D0kBT ≈ 1012 cm2 for T = 10 K . (23.54)

This condition is very well fulfilled for low excitation.
For a “monoatomic” recombination process one generally uses the ansatz

−dN0

dt
=

1
T ′

1

N0 . (23.55)

This ansatz has to be modified because of momentum conservation, since only
a fraction γ of the excitons can participate in the recombination, namely those
which are sitting in the interval Em around the bottom of the band:

γ =
N(E = 0)Em

N0
. (23.56)
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Equation (23.55) has then to be rewritten as

−dN0

dt
=

1
T ′

1

γN0 =
1
T ′

1

N(E = 0)Em

N0
N0 , (23.57)

which means we have an effective lifetime T1

T1 = T ′
1N(E = 0)Em/N0 . (23.58)

With (23.49) and (23.52), (23.53) we finally obtain

T1 = T ′
1

kBT

Em
≈ 200 ps

kBT

1 meV
for T > 10 K , (23.59)

in agreement with the experimental finding.
The linear increase of T1 with temperature is sometimes used to argue

that the recombination of excitons in quantum wells is essentially radia-
tive [91F1], as mentioned above. This assumption may hold in some se-
lected samples in which the spectral width of the free exciton emission is
governed by E0

m in (23.48). See [03T1]. For other samples, the above ap-
proach seems to be more realistic, especially if one recalls that MQW sam-
ples with comparable parameters can show different slopes in the relation
T1 = f(TL) (Fig. 23.35) and that some II–VI superlattices with rather
low luminescence yields also show a linear relation as mentioned already
above.

We refer the reader for more details and examples to e.g. [88N1,91S1,92P1,
92S1,92S2,93U1,96S1,01L1,03P1,04O1] and references therein.

To conclude this section we give some more references to the recombination
dynamics of excitons, trions or biexcitons as a function of sample parameters
and excitation [96L1,98L1,98Z1,00E1,00Y1,00Z1,00Z2,02G1] for various II–
VI and III–V quantum wells.

For Si1−xGey/Si multiple quantum wells lifetimes on the order of 0.1 µs
have been found [95Z1].

For V grooves see, e.g., [98B5,99O2] and references therein,for ZnO nano-
rods [04P2] and for quantum dots or islands see [97W1, 99B3, 00B1, 00D1,
00F1, 02S2, 03C2, 03H2]. For the dynamics of eletron–hole plasma see e.g.
[00N1,02N2,02N3].

Exciting and beautiful new results emerged recently as shown here or
can be expected in the field of ultrafast spectroscopy of semiconductors in
the near future partly in connection with (extreme) nonlinear optics. They
will comprise e.g. the first elementary interaction processes of the electro-
magnetic radiation field with the electronic system, where memory effects or
non-Markovian behaviour occur, or the coherently driven polarization field
in the sense of Rabi flopping or the consistent description of the phenom-
ena in the strong coupling limit, i.e. in the polariton picture. An impor-
tant step into this direction is the transition from the optical Bloch equa-
tions to the semiconductor Bloch equations, though this approach involves an
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extremely high computational effort see Chap. 27. First results into these
directions will be found e.g. in the recent and future issues of [88N1] or
in [04O1].

23.5 Problems

1. If you prefer the mathematical description of physics to the intuitive pic-
ture given here, then go through the concept of the optical Bloch equa-
tions, e.g., with the help of [75A1, 78S1, 84S1] or Chap. 27, and find out
what the Rabi frequency, a π/2- and a π-pulse are, and what the relation
to a spin system is (spin echo). By the way, the photon echo also works if
pulses other than π/2 and π are used, but the description is more difficult.

2. Find some data for the electrical conductivity of standard semiconductors.
Use the equations given in this chapter to deduce the momentum relax-
ation of free carriers in electrical transport at various temperatures and
compare with the data for excitons. Are the above-mentioned formulas
also adequate to analyse the electrical conductivity of a metal?

3. Many of the above effects of ultrashort time-resolved spectroscopy like
Rabi oscillations, photon echoes, etc., have been previously found in
atomic systems. Find some examples. Why have they been detected so
late for semiconductors?

4. There are several ways to create THz pulses. Find some of them in the
literature.
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24

Optical Bistability, Optical Computing,
Spintronics and Quantum Computing

In this chapter we present some of the properties of optical bistability,
an effect that is not limited to semiconductors, and some of the concepts
of digital optical computing. This concept is based on optical nonlineari-
ties and bi- or multistability. We also explain why digital optical comput-
ing did not make its way into broad commercial use. Then we proceed
to spintronics and quantum computing. The latter concept especially re-
lies, to a limited extent only, on semiconductor optics. We introduce these
ideas here because the author feels that beautiful physics has been ac-
complished in all three fields, though he also sees strong analogies to the
development and the fate of the concept of digital optical computing for
the combinations of semiconductor optics with spintronics and quantum
computing.

24.1 Optical Bistability

Optical bistability in semiconductors, but also in other materials like Na vapor
or liquid crystals, was a hot topic of research in the 1980s and the beginning
of the 1990s. Although there are presently still about 500 papers per year
on optical bistability and 400 on optical computing, the interest in optical
bistability in semiconductors has faded, especially when it became clear that
the hope for a digital optical computer based on optically bistable elements
is unrealistic.

We nevertheless address this topic here in some breadth because beautiful
physics came out of this research and because something can also be learned
from it for the topics of spintronics and quantum computing, which we present
towards the end of this chapter.

The development of optical bistability and optical computing is nicely
documented in the proceedings of a series of conferences and summer schools
that we mention here [80O1,84O1,84O2,85G1,86O1,87F1,88O1,88O2,88O3,
88P1,89O1,92N1,93O1,98D1], where also the history of this field is described.
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24.1.1 Basic Concepts and Mechanisms

An optically bistable element shows a static hysteresis loop in the relation
between incident and transmitted (or reflected) light intensities. In Fig. 24.1
we show two possible input-output characteristics. In the case Fig. 24.1a the
device switches with increasing incident power at I ↑ from a state of low, into
a state of high transmission and stays there for further increasing incident
intensity Iin, but also for decreasing intensity. Only at Iin = I ↓< I ↑ does the
system switch back to the state of low transmission.

In Fig. 24.1b the device switches with increasing incident intensity at I ↓,
from a high transmission a lower one and back at I ↑< I ↓. This means that the
hysteresis loops in Fig. 24.1a and b are rotated anticlockwise and clockwise,
respectively.

In both cases one has two stable output states between I ↑ and I ↓ and
which one of them is realized depends on the history, i.e., on whether one
comes from higher or lower intensities. This is the essence of optical bistability.

The dashed lines in Fig. 24.1 show a third, unstable branch. If the sys-
tem is prepared by some means on this branch it can in principle stay there
forever. However, the slightest deviation from this unstable branch (e.g., due
to fluctuations) causes the system to move into a state on the upper or lower
stable branch, as indicated by the dotted arrows. The dotted line thus sepa-
rates the “basins of attraction” of upper and lower branches and is therefore
also called “separatrix”.

Only two ingredients are necessary to create optical bistability, namely
a sufficiently strong (electro-)optical nonlinearity, e.g., of the types we have
seen in Chaps. 19–22 or Sect. 16.2, and a suitable feedback.

It is not necessary that the optically nonlinear material is a semiconductor,
it can equally be a gas like sodium vapor, but in line with the title of this
book we concentrate here exclusively on semiconductors.

Fig. 24.1. Input–output characteristics of optically bistable elements (a) anticlock-
wise; (b) clockwise
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A hysteresis loop which is rotated anticlockwise as in Fig. 24.1a can be
obtained in transmission with a dispersive nonlinearity and the feedback from
a Fabry–Perot resonator. In reflection one then observes a hysteresis which is
rotated clockwise as in Fig. 24.1b. The hysteresis of Fig. 24.1a in transmission
can be also obtained with bleaching of absorption and again a Fabry–Perot,
while a hysteresis like Fig. 24.1b is obtained in transmission with excitation-
induced absorption. In this case the feedback is “built-in”, as we shall see
later.

To further clarify the terminology we can say that dispersive nonlinearity
means a change of the real part of the refractive index with increasing light
intensity I i.e. ∆n(I) ≷ 0, bleaching means an excitation-induced decrease
of the absorption coefficient or of the imaginary part of ñ i.e., ∆α(I) < 0
or ∆κ < 0, and induced absorption means finally an increase of α or κ with
increasing excitation, i.e., ∆α(I) > 0 or ∆κ(I) > 0.

There are also some other mechanisms which can lead to optical bista-
bility, but those mentioned above are the most important ones and we shall
concentrate on these in the following examples.

24.1.2 Dispersive Optical Bistability

For dispersive optical bistability one starts with an incident wavelength cor-
responding to a transmission minimum of the Fabry–Perot (FP) resonator
(Sect. 3.1.6). In this situation one has destructive interference of the partial
waves reflected from the partly transmitting mirrors at the front and back of
the FP. Consequently most of the incident intensity Iin is reflected and the
intracavity intensity Iintra as well as the transmitted intensity Iout are much
smaller then Iin. Now we increase Iin. Then Iintra increases, too. If Iinlra be-
comes so large that it changes the refractive index n of the medium in the
cavity, the positive feedback sets in: a change on n causes a change of the
phase shift per round trip δ. As a consequence, the interference of the partial
waves becomes more constructive whatever the sign of ∆n, since we started
with maximum destructive interference. Thus, Iintra increases, which changes
δ even more, and so on. If this positive feedback is sufficiently strong, at a cer-
tain incident intensity I ↑, it can cause an abrupt transition to a state of high
transmission close to a transmission maximum of the FP. Then we have a high
Iintra which can even exceed Iin. We can then lower Iin below I ↑ and still keep
the system in the highly transmitting state. Only at some value I ↓ of Iin with
I ↓< I ↑ does the system return to the low transmission state.

To complement these intuitive arguments we now describe the process
mathematically following the sets of equations given in several of the above
references. We have two equations for the transmission of the Fabry–Perot
resonator which have to be solved simultaneously. One is the (Airy-) function
from Sect. 3.1.6, repeated here for convenience:

TFP = (1−R)2{[exp(αL/2)−R exp(−αL/2)]2 +4R sin2 δ}−1 =
Iout

Iin
(24.1a)
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TFP ≈ (1 −R)2

(1 −R)2 + 4R sin2 δ
for αL� 1 , (24.1b)

where R is the reflectivity of one mirror.
Equation (24.1b) holds for weak absorption, and we assume for the moment

that α is small and does not change much with Iintra so that (24.1b) can be
used.

The refractive index and thus the phase shift δ is assumed to depend on
Iintra in the simplest case in a linear way (see Sects. 19.1 and 19.2):

δ = δ0 + ∆δ(Iintra) = nωLc−1(1 + n2Iintra) (24.2a)

or ∆δ ∝ Iintra . (24.2b)

The second equation for the transmission reads

TFP = Iintra

(
1 − R

1 + R

)
1
Iin

(24.3)

Equations (24.1) and (24.2) give the transmission as a function of Iintra,
and (24.3) gives a straight line with a slope inversely proportional to Iin.

In Fig. 24.2a we show both curves. The solutions are the intersections
and are shown in Fig. 24.2b. If we start with small Iin we have an almost
vertical line from (24.3) and only one solution. With increasing Iin two new
solutions appear, but the system still remains in the low transmission state.
At Iin = I ↑ this lower solution disappears (point A) and the FP jumps to the
new solution (point B). The spike in Fig. 24.2b is a transient feature which
can be observed if the transition from A to B is so slow that the system can
be followed through the transmission maximum. For further increasing Iin we
remain on the upper branch. For decreasing Iin this remains true down to I ↓
where this solution disappears (point C) and the system has to return to the
lower state at point D.

The intermediate solution appearing in Fig. 24.2a, e.g., at point E and
indicated in Figs. 24.1a and 24.2b by dotted lines, can be shown to be unstable
in the sense mentioned above.

Since for low absorption the intensity reflected from a FP is just the com-
plement of the transmitted intensity, i.e.,

Ir
I0

= 1 − It
Iin

, (24.4)

one can observe a hysteresis which is rotated clockwise in reflection.
In Fig. 24.3a,b we show this situation for an idealized, lossless FP and

Fig. 24.3c, gives an example. The nonlinear medium is a semiconductor-doped
glass, coated on both plane parallel surfaces by dielectric mirrors to form the
FP. The optical nonlinearity is a photo-thermal one (Sect. 20.6), namely the
increase of the refractive index with increasing temperature caused by the
small absorbed fraction of the intracavity intensity.
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Figure 24.4 shows another example of dispersive optical bistability. In this
case the dispersive nonlinearity of CdS observed under high excitation is ex-
ploited (Fig. 21.11). The surfaces of the platelet type sample are coated with
dielectric mirrors with R ≈ 0.6. In this case pulses of a duration of only 15 ns
are used. The switching processes, which occur on a (sub)ns time scale, are
clearly seen in Fig. 24.4a,b. The resulting hysteresis loop is given in Fig. 24.4c.

Fig. 24.2. The graphical
solution of ((24.1b), (24.2),
(24.3)) (a) and the resulting
input–output characteristic
(b)



650 24 Bistability, Optical and Quantum Computing

Fig. 24.3. The bistable hysteresis loops resulting from a dispersive optical nonlin-
earity in a Fabry–Perot resonator in transmission and reflection; idealized (a, b)
and experimentally observed (c, d) [92G1]

Many other examples are found e.g. in [80O1, 84O1, 86O1, 88B2, 88O1, 04B1]
and the references given therein.

24.1.3 Optical Bistability Due to Bleaching

A hysteresis loop similar to those of Figs. 24.1a, 24.2b, and 24.4c can be
created by bleaching of absorption.

We start with a FP resonator with an absorbing medium and use a wave-
length for which a transmission maximum would occur if the medium in the
resonator were transparent.

This means

sin2 δ = 0 but TFP ≈ (1 − R)2 exp(−αL) � 1 . (24.5)
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Fig. 24.4. The dispersive optical bistability of a CdS platelet with dielectric coatings
observed in the temporal evolution of the incident and transmitted pulses (a) and
in the trans-mision (b). Part (c) shows the resulting hysteresis loop [86W1]

The absorption of the medium with αL � 1 destroys the action of the FP.
If the medium starts to bleach with increasing Iin, however, the constructive
interference in the FP comes into play and increases Iintra even further, causing
an even stronger bleaching, and so on.

Iinlra can again become larger than I0 and TFP reaches unity.
The construction of the bistable loop is similar to that described in

Sect. 24.1.2 above with the main difference that the nonlinearity now oc-
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curs in the α(Iintra) instead of the δ(Iintra). In Fig. 24.5 we give an experi-
mental example. The nonlinearity is the bleaching of the absorption edge in
CdS at room temperature due to the formation of an electron–hole plasma
(Fig. 21.11c). Dielectric mirrors have been evaporated directly onto the plane
parallel surfaces of the platelet type crystal.

Since bleaching is often connected with dispersive changes due to Kramers–
Kronig relations, hysteresis loops like that in Fig. 24.5 are often the result of
a cooperative effect of bleaching and dispersive nonlinearities.

Fig. 24.5. Bistable hysteresis loop caused by bleaching of absorption [86W1]

24.1.4 Induced Absorptive Bistability

We first explain the process of induced absorptive optical bistability in words.
The idea is the following: A sample is used whose absorption increases as
a function of the density N of some excited species. These may be electron–
hole pairs as in Fig. 21.11a around 2.541 eV or simply an increase of the
phonon population, i.e., of the lattice temperature TL as shown in Fig. 20.18.
One starts at low excitation at a wavelength where the sample is almost
transparent. To give a number, let us assume that 10% of the incident light
is absorbed. If we increase Iin, then the absorbed power increases, too, and is
eventually sufficient to raise the density of the excited species N , which causes
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the sample to absorb more. This gives a built-in positive feedback, because an
increase of the absorption in turn increasesN . If the effect is sufficiently strong
the sample can switch at I ↓. in Fig. 24.1b to a state of low transmission and
high absorption. We assume now that 80% of the incident light is absorbed.
Because of this high value, we can lower Iin to values below I ↓ and still
keep the sample on the low transmission branch down to I ↑ (< I ↓) where
the sample switches back again. In our example the two intensities would
obviously be connected by

I ↓ · 0.1 = I ↑ · 0.8 . (24.6)

Note the interchange of I ↓ and I ↑ between Figs. 24.1a and b and between
Figs. 24.2b and 24.6b.

The most important difference between the induced absorptive bistability
and those relying on bleaching or on dispersive nonlinearities is the fact that
no external FP resonator is necessary to produce the positive feedback since
it is “built–in”.

To calculate the hysteresis we again have to solve two simultaneous equa-
tions, as shown in Fig. 24.6a. One is the transmission as a function of N :

T = exp{−α(�ω,N)L} =
It
I0

(24.7)

represented in Fig. 24.6 by the heavy line.
The other equation states that the increase of N , i.e.,

∆N = N −N0 (24.8)

Fig. 24.6. The graphical solution of (24.7)–(24.9) (a) and the resulting input–
output characteristic (b). In this case N is the lattice temperature and the data refer
approximately to a CdS platelet with d < 10 µm, E ⊥ c and �ω ≈ 2.4 eV [92K1]
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is a function of the absorbed fraction of the incident light. In the simplest case
a linear relation can again be assumed

∆N = AIin , (24.9a)

with
A = 1 − T = 1 − exp[−α(�ω,N)L] (24.9b)

or
T = 1 − ∆N

Iin
. (24.9c)

So we once more have a straight line with a negative slope inversely propor-
tional to Iin.

The procedure is now similar to that shown in Fig. 24.2a. For low Iin we
start in Fig. 24.6a with one solution. With increasing Iin two new ones appear.
At I ↓ (point A) the initial solution disappears and the system has to jump
onto the low transmission branch to point B. There it remains for further
increasing Iin and also for Iin below I ↓, down to I ↑ (point C) where the
solution on the low transmission branch disappears and the system jumps to
point D. Again, the intermediate dotted branch is unstable.

It should be noted that the width of the hysteresis, or indeed the fact
if there is optical bistability at all and not just a strongly nonlinear, but
monostable input–output characteristic, depends critically on the initial value
of the absorption at N0 and on the steepness of the T (N) curve [84M1]. We
shall see later in Sect. 24.1.6 an example where this phenomenon will be
used.

In Fig. 24.7 we show two experimental results, again for CdS, based in (a)
on the increase of absorption on the low energy flank of the lowest free exciton
with increasing exciton density, which is shown schematically in Figs 20.18
and 21.11. In Fig. 24.7b the increase of the absorption due to photothermal
nonlinearities is exploited, (see Fig. 20.18). For early examples of induced
optical bistability see e.g. [83B1,84H1,84M1,86H1] and references therein.

In Fig. 20.18 we have also seen that photothermal nonlinearities can lead
to an increase of both n and of κ. In Fig. 24.8 this fact is used to demonstrate
a “butterfly” hysteresis of a CdS sample with dielectric reflecting coatings.
The sample is first in a transmission minimum of the FP. With increasing I0
it switches to the highly transmitting state at I1 ↑ due to dispersive optical
bistability. A further increase of I0 results at I1 ↓ in an induced-absorptive
switch down, which simultaneously switches off the FP. If we now decrease
I0 we have at I2 ↑ the switch back of the induced-absorptive bistability and
the system is again on the upper branch of the dispersive bistability from
which it switches down at I2 ↓. For more details of this phenomenon see
[87W1,88K1,90G1,92G1,92G2].

There are several further topics connected with (photothermal induced-
absorptive) optical bistability which we mention here only briefly, referring
the reader for more details to the literature.
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Fig. 24.7. The induced absorptive optical bistability demonstrated with a photo-
electronic (a) and a photothermal nonlinearity (b) [87K1] and [87W1], respectively

Lateral structure formation occurs, e.g., when a spatially wide holding
beam with an intensity in the bistable regime is switched in a smaller spot.
The resulting “switching waves” have been treated in [90G1, 92G1]. The use
of photothermal optical bistability as a temperature sensor is investigated
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Fig. 24.8. “Butterfly” type hysteresis loops in CdS [87W1]

in [91G1,92G1] and the relation between the dynamic width of the hysteresis
loop and the duration of the incident pulse is analyzed in [91G1] and references
therein.

24.1.5 Electro-Optic Bistability

As a further example of optical bistability, we present an electro-optic device
that relies on the quantum-confined Stark effect (QCSE) introduced in the
Sect. 16.2. The mechanism is the excitation-induced increase of absorption
[88C1,89M1].

The basic concept is outlined in Fig. 24.9a. A constant voltage U0 is ap-
plied in the blocking direction to a MQW pin structure through a resistor R.
If the semiconductor is not or only weakly illuminated, it has an internal
resistivity Ri � R so that most of the voltage drops over the diode. Con-
sequently, the exciton resonances are red-shifted due to the QCSE as shown
in Fig. 16.15 or in Fig. 24.9b. The photon energy �ω of the incident light is
chosen so that it corresponds to the spectral position of the free hh nz = 1
exciton without electric field. This means that the absorption is weaker with
an electric field over the MQW than without. This effect is now exploited.
One starts at low light input Iin with an applied voltage and relatively high
transmission (Fig. 24.9b,c). With increasing Iin free carriers are created in the
MQW, i.e., in the intrinsic region of the pin diode, through thermal ioniza-
tion of the excitons produced by the absorbed fraction of Iin. These carriers
give rise to a photocurrent through the system. With increasing Iin, and thus
increasing photocurrent, a greater voltage drops over R and the electric field
in the MQW decreases. This reduces the QCSE and the exciton resonance
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Fig. 24.9. The basic concept of a self-electro-optic effect device (SEED) (a), the
QCSE in an AlGaAs MQW pin diode (b), its input–output characteristics (c) [89M1]

shifts towards �ω, i.e., the absorption at this photon energy increases and
consequently the photocurrent, too. This is the positive feedback which re-
sults in optical bistability if it is sufficiently strong. An example is given in
Fig. 24.9c.

These devices have been called self-electro-optic effect devices (SEED) and
were considered to be the most promising candidates for application in optical
data handling (see below). The devices used in this field usually have a more
complex structure integrating the diode with field effect transistors to enhance
the width and height of the hysteresis loop and to lower the necessary optical
input power. See e.g. [89M1,89O1].

Finally it should be mentioned that photo–thermal SEEDs have been de-
veloped on the basis of Si, CdS, and other semiconductors [87F2,88B1,88E1,
88W1,90K1,93L1,93Z1,93Z2,95G1,95K1]. One again uses the induced absorp-
tive optical bistability shown in Fig. 24.6b and evaporates some transparent
(ohmic) contacts onto the sample. An applied voltage helps, via the photocur-
rent, to increase the sample temperature. This means that the battery delivers
a part of the energy necessary to switch the sample. The incident light inten-
sity can be correspondingly reduced. Furthermore, the device can be driven
through a bistable loop by varying the incident light intensity at constant
applied voltage and vice versa.
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Other systems that show strong optical nonlinearities and therefore have
been used or proposed for (electro-) optically bistable elements are nipi struc-
tures, sometimes with an incorporated multiple-quantum-well structure (see,
e.g., Sects. 8.10 and 15.2 and [86D1]) and piezo superlattices [93C1,94L1].

24.1.6 Nonlinear Dynamics

A field that in recent years has developed partly in parallel to, and partly
independent of optics is that of nonlinear dynamics and synergetics. In this
field one considers, e.g., phase transitions in driven systems, the formation
of temporal and/or spatial patterns in dissipative systems under a constant
inflow of energy, and other cooperative effects.

Such investigations are of rather general nature and, in addition to physical
systems, may also involve biological and sociological systems. References to
this fascinating field are [83H1,84K1,88S1,92N1,98D1].

Examples in which the concepts of nonlinear dynamics are applied to solids
have been collected in a recent school [92N1]. We concentrate here on some
selected examples in which the nonlinear optical properties of semiconductors
and especially optical bistability play an essential role.

First, we repeat schematically in Fig. 24.10a the well known phase diagram
of a real or van der Waals gas in the p–V plane with the coexistence region
below Tc and Maxwell’s construction showing the familiar aspects of a first
order phase transition below Tc.

A first example of a pumped system was already discussed in Chap. 21.
The transition from an exciton gas to an electron–hole plasma below Tc is
also a first-order phase transition in a driven system with a coexistence region
(Fig. 24.10b) similar to that of a van der Waals gas (Fig. 24.10a).

Another example is the optical bistability. The hysteresis is again a typical
indication of a first-order phase transition in a driven system; it is shown in
Figs. 24.10c and d. The bistable or “coexistence region” depends on some
control parameter such as the initial temperature of the sample in the case of
Figs. 24.2b or 24.6b. We compare it in Fig. 24.10 with the usual p–V phase
diagram of a “real” or van der Waals gas. The usual isothermic way through
the coexistence region follows the Maxwell construction and is shown by a thin
horizontal line. In principle, however, one could go, on the curve given by the
van der Waals equation along the solid lines to the points A and B, resulting
in a hysteresis loop similar to Figs. 24.10c and d. These states correspond
to a supersaturated vapor or superheated liquid. They can occur if care has
been taken to remove all nucleation centers. The dotted line, however, is really
unstable; if the system could be prepared on this branch by some trick, the
slightest fluctuation would cause it to develop into a stable state.

In the case of optical bistability, which is an open, dissipative, driven
system one often has transitions from the extrema and not the “mean-field”
solution of the van der Waals gas given by Maxwell’s construction and imposed
by the law of energy conservation. However, the mean-field solution pertains
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Fig. 24.10. The phase diagram of a van der Waals gas (a) the co-existence region of
an EHP (b) and the input–output characteristics of optically bistable devices (c, d)

if a sufficient amount of “noise” is added to the optical input beam. For more
details of these aspects, see [84K1].

A characteristic of transitions from the extrema (and also of second-order
phase transitions) is the so-called critical slowing down. This term denotes
the following: If we prepare the system in a state, e.g., on the upper branch in
Fig. 24.10d, and increase the incident intensity at t = 0 to a value above I ↓ by
an amount δ, it takes some time tswitch until the system switches to the lower
branch. For small values of δ(� I ↓) one obtains a logarithmic singularity of
tswitch with δ, i.e.,

tswitch ∝ − ln δ/I ↓ for δ/I ↓� 1 . (24.10)

In Fig. 24.11 we show as an example for the critical slowing the case of induced
absorptive photothermal optical bistability of Fig. 24.6b. The experimental
data points coincide nicely with the logarithmic singularity. The singularity
can be understood in this case at least qualitatively in the following way. As
long as the system is on the upper branch, all power which is deposited (i.e.,
absorbed) from the input beam can be dissipated while the system stays on
the upper branch. If we now proceed stepwise to an input power I ↓ + δ, only
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Fig. 24.11. The critical slowing down for the induced absorptive optical bistability
of Fig. 24.6b [87W1]

the small fraction δ will be used to drive the system to the new stable state
on the lower branch. Since a finite amount of energy is needed to go from
one state to the other, i.e., to go to a higher temperature, the transition time
tswitch increases with decreasing δ. The quantitative analysis then gives the
logarithmic singularity of (24.10).

Other features of this driven or non-equilibrium phase transition include
the dynamical blowing-up of the hysteresis loop, the measurement of the un-
stable branch, and the temporal expansion of the switching front in the case
of inhomogeneous excitation. We do not want to go into details here but refer
the reader to [86H1, 87F1, 87W1, 88C1, 88K1, 88W1,89M1, 90G1, 90K1, 91G1,
92G1,92G2,93Z1,95G1,95K1] and references therein.

Instead we now introduce a setup used to study another group of effects
that are characteristic of nonlinear dynamics, namely self-oscillations. The
setup is a ring resonator containing an induced absorptive element, which can
be bistable or monostable. This system is thus complementary to the Ikeda
resonator [80I1,82I1,86M1], which contains a dispersive nonlinear element in
a ring resonator.

The basic idea [86L1,87G1,87W1,87W2] is shown in Fig. 24.12a. We have
a ring resonator whose roundtrip time τR is long compared to the switching
time of the nonlinear device. The incident intensity I0 is chosen such that
the part transmitted through the first beam splitter TI0 is below the switch
back intensity I ↑ of the bistable device and the sample is assumed to be in
the highly transmitting state at the beginning. This means that the inten-
sity falling on the sample I(t) is almost completely transmitted. (We neglect
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Fig. 24.12. The ring resonator with a bistable element (a); the input–output charac-
teristics of this element (b); the realisation of (a) by a electro-optic hybrid resonator
(c); and the resulting self-oscillations (d) [87W1]

the reflectivity of the sample itself for the moment for reasons of simplicity.)
A small fraction of the transmitted intensity It, is coupled through the next
mirror and detected to see what is going on in the resonator. After one round
trip, the incident and the transmitted intensity fall on the sample, and we as-
sume, again for simplicity, that we have to add intensities, i.e., that τR is much
larger than the coherence length of the laser. The above sequence repeats itself
several times, each with a step-like increase of the intensities falling on the
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sample and being transmitted through it, I and It, respectively. After several
round trips I eventually exceeds I ↓ and the crystal switches to the absorbing
state. This means, that almost no more light is transmitted. Consequently
only TI0 falls on the sample after another round trip time and the crystal
switches again into the transmitting state and the above described sequence
begins a new, i.e., for constant incident intensity we observe self-oscillation
(a temporal structure) with a period which is an integer multiple of τR.

For photothermal optical nonlinearities the condition τR � τ would ne-
cessitate ring resonators with a delay time of at least 100 ms, equivalent to
approximately one trip around the globe. Such devices tend to get unwieldy
and therefore the electro-optic hybrid system of Fig. 24.12c has been set up.
The incident light passes through an electro-optic modulator (EOM), oper-
ated in the linear regime. A constant offset U0 on the high-voltage amplifier
(HVA), which drives the EOM models the constant incident intensity I0T of
Fig. 24.12c. The optical nonlinearity is really the photothermal nonlinearity
of a CdS platelet type sample using the green line (514.5 nm) of an Ar+ laser.
The transmitted intensity It, is detected by a photodiode, monitored by an
oscilloscope and sent through an electronic delay line τR. Then the signal re-
turns via the high voltage amplifier on the EOM, which opens according to
the applied signal. The choice of the amplification in the delay time allows
one to monitor the total reflectivity of the set of four mirrors/beamsplitters
in Fig. 24.12a. In this ring resonator, as assumed above, we lose the phase
information of the light, and we neglect lateral structures which may appear
due to partial switching of the sample.

The system is described by the following set of equations [87W1]:

d
dt

∆TL = A (∆TL) I(t)
1
c′L

, (24.11a)

A (∆TL) = 1 − exp[−α(∆TL)] , (24.11b)

I(t) = I0T +R2It(t− τR)

= I0T +R2I(t− τR) exp{−α [∆TL(t− τR)]} , (24.11c)

where ∆TL is the increase of the lattice temperature of the sample in the
illuminated spot above the surrounding temperature T0L at time t

∆TL(t) = TL(t) − T0L (24.11d)

A,c′ and L are the absorption, the heat capacity, and the sample thickness,
respectively; α is the temperature-dependent absorption coefficient; R2 the
total reflectivity of the loop, and I0T the constant intensity which drives the
whole system.

Equation (24.11a) is the rate equation containing the thermal relaxation
time τ0 and, in the generation term, the absorbed fraction A of the intensity
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I(t) falling on the sample. A is given in (24.11b) while (24.11c) is the delay
(or iteration) equation of the system. The experimental results shown below
for a system such as that of Fig. 24.12c can be obtained qualitatively and in
most cases quantitatively by solving the set of equations (24.11) using realistic
material parameters for α(TL), τ0, c′ and L.

In Fig. 24.13 we show three examples of the many different scenarios which
can be realized with the above resonator. In Fig. 24.13a the CdS platelet
is used in the polarization E ‖ c. It shows for sample thicknesses below
10 µm, T0L < 300 K and the green line of the Ar+ laser, photothermally
induced absorptive bistability. In a certain range of incident intensities self-
oscillations occur as described in Fig. 24.12. Depending on R2 or on I0T
various oscillation modes can be observed, which lock into multiples of τR
for τR � τ0. A mode with a total period nτR and m different maxima per
period is designated an n/m mode. With this definition we see in the row (a)
of Fig. 24.13 for different incident intensities a 3/1 and a 2/1 mode. For
intermediate incident intensity we get a 5/2 mode. This new mode can be
predicted from those of the preceding generation by independently adding
the numerators and denominators of the mode. This is exactly the way to
construct a Farey tree and indeed it can be shown using (24.11) that the
modes follow this Farey tree pattern and that the stability ranges of I0T for the
various modes form a devil’s staircase [87W1,87W2,92G1]. Indeed, this ring
resonator with a bistable element seems to be another rather universal system
besides the circle map for the investigation of Farey trees [88S1]. Farey trees
also occur under periodic modulation of the input intensity I0T . With other
forms of hysteresis loop both ascending and descending steps can be realized
and a short perturbation of the incident intensity reveals mode coexistence
[87W1,90G1,92G1,92G2,93Z1].

If the polarization of the light with respect to the crystallographic c axis
is rotated by 90◦ [row (b) of Fig. 24.13], the input–output characteristic is no
longer bistable but monostable, due to the dichroism of CdS and the higher
initial absorption for E ⊥ c compared to E ‖ c. Under favorable conditions
it is then possible to observe another scenario. For a certain value of I0T we
again observe a periodic oscillation locking into a multiple of τR (here 2τR). For
decreasing TI0 we find period doubling to 4τR showing two different maxima.

Finally, for further decreasing TI0, we reach a non periodic behavior, i.e.,
a deterministic chaotic oscillation. This sequence of period doublings is the
so-called Feigenbaum scenario, which represents one of the routes leading from
periodic to deterministic chaotic behavior. The “strange attractor” on which
the system moves in the case of the nonperiodic oscillations was found to
have a fractal dimensionality of about 2.6 [87W1]. The important point here
is the parabolic maximum of the iteration procedure, i.e., of the input–output
characteristic, which is common to the generic system for the Feigenbaum
scenario, namely the logistic equation given by

xn+1 = axn(1 − xn) . (24.12)
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Fig. 24.13. A selection of the rich variety of oscillation modes of the hybrid ring
resonator of Fig. 24.12c using bistable and monostable input–output characteristics
of the optically nonlinear element [87W1,90G1,92G1,93Z1]
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The fast relaxation oscillations which can be seen on the plateaux can pre-
vent the transition to chaotic behavior. Such a situation is shown in part (c)
of Fig. 24.13. Here, the angle between E and c was chosen to yield a mono-
stable input–output characteristic with a very steep descending branch. We
start again with a regular oscillation, which is locked into a multiple of τR.
With changing input parameters, the amplitude of the fast relaxation oscilla-
tion increases until more and more of the spikes result in a modulation over
the whole intensity regime. Finally we are left with a regular oscillation, the
period of which is determined approximately by the period of the relaxation
oscillation τ0 and not by τR, however in such a way that an integer multi-
ple of τ0 equals τR and with every peak having a shape similar to the initial
oscillation governed by τR.

The first two scenarios shown in Figs. 24.13a,b can be deduced from
(24.11) even in the adiabatic limit, i.e., τ0/τR ⇒ 0 whereas the full dynam-
ics are necessary to describe and understand the observations of part (c) of
Fig. 24.13.

Some examples of spatio-temporal structure formation in optical bistabil-
ity in semiconductors are found in [88O2,92N1] and references therein. They
represent a further aspect of nonlinear dynamics which can be investigated
with optically bistable systems, but we do not want to go into details here.
We, nonetheless, hope that the reader has acquired the feeling that nonlinear
semiconductor optics can contribute significantly to the fascinating field of
nonlinear dynamics and synergetics.

24.2 Device Ideas, Digital Optical Computing and Why
It Failed

As mentioned in the introduction, semiconductors have a very wide field of
applications especially in electronics and opto-electronics. It is not the aim
of this book to cover this field, but we refer the reader to [81S1, 92E1] and
references therein.

What we want to do here is to outline an aspect of application of (electro-)
optical bistability in (electro-) optic data processing, also known as (digital)
“optical computing” [84O2,85G1,87F1,89O1,93O1,98D1].

An optically bistable device with an input-output characteristic such as
those shown in Fig. 24.1 can be considered as a binary memory if, in the
bistable region, we identify the states of low and high transmission with the
logic states “zero” and “one”, respectively.

By a suitable choice of the nonlinearity and the excitation conditions,
the width of the bistable loop can be made rather narrow. In this case the
devices can be used as “AND”, “OR” and “NOT” gates (or inverters) as shown
schematically in Fig. 24.14. These three functions, together with a memory,
are the basic ingredients needed to construct a computer. When this fact
became clear in the early nineteen-seventies, there was a very enthusiastic



666 24 Bistability, Optical and Quantum Computing

Fig. 24.14. The use of nonlinear optical devices as logic gates

period, where scientists hoped that it would be relatively easy to build an
all-optical computer based on the above devices [85G1, 87F1, 89O1, 93O1].
Indeed, such an optical computer would in principle have one big advantage
over electronic computers and this is massive parallel data handling. What
one wants to do basically in a computer is the following (Fig. 24.15): One
has a certain input signal which is processed in a logic unit. The processing
depends on the information stored in a large number of memories and results
in an output signal.

In electronic computers one faces the following problem: If there are N
memory cells, the processing unit has to be connected with 2N wires if one

Fig. 24.15. Parallel (a) and serial (b) data handling
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wants to simultaneously know the contents in all memories for the logic de-
cision, since in one wire only one signal can propagate at one (cycle-)time
(Fig. 24.15a). If N becomes large (N � 106) this concept breaks down be-
cause it is impossible to have 2 × 106 pins on one chip. The ingenious way out
of this problem was serial data processing. Here one has only two connections
between the logic unit and the memory and one uses an address and requests
the information in the memories serially, i.e., one after the other (Fig. 24.15b).
Unfortunately this takes time and, together with the propagation time in the
connections, it is the limiting factor for presently available “calculation speed”
in electronic computers. This problem is also known as the “von Neumann”
bottleneck.

In optics, on the other hand, one simple lens can be used to handle many
data-streams in parallel, since photons in vacuum usually do not interact. So
one could imagine a two-dimensional array with let us say N = 103 × 103

data points (Fig. 24.16). All these data points can be focussed simulta-
neously by one lens or by a holographic grating (not shown here) onto
a logic plane which simultaneously reads data from a memory and performs
some logic.

One (or several) further planes can be used to interchange the pixels, e.g.,
with the help of permanent or reconfigurable holographic gratings, to obtain
a “perfect shuffle” function. The output obtained in this way can be processed
further or fed back as input to go several times through a loop.

Fig. 24.16. Schematic sequence of two-dimensional optical logic arrays
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Another approach to optical data handling involves data transport through
(glass) fiber optics. In this case, data have to be brought into an optical form
anyhow and one can try to do progressively more operations in the optical
regime. Here the demand for parallelism is reduced, but the switching speed
has to be high.

At the end of the nineteen-seventies, expectations, especially in digi-
tal all-optical computing, were strongly damped for two reasons. Amplifi-
cation of optical signals with high frequency is very difficult. But this is
a crucial requirement for fan-out, i.e., the output of one device must be
able to drive several others in the next logic plane. The first way found
to solve this problem uses “threshold devices” which, with a constant op-
tical holding beam, are kept just below the switching point and can then
be switched with a small input signal. However, it was found that the sta-
bility of such a “threshold logic” is not sufficient for practical applications.
The other disappointment was that optical switches were found to be infe-
rior to electronic switches concerning speed and power consumption. Optical
switches which need low input powers are usually slow (µs to ms) like the
photothermal ones. The fast ones, exploiting for example the formation of
an electron–hole plasma can have switching times in the ps to ns regime
but need powers that are too high for dc operation and sometimes also low
temperatures.

Apart from the unsolved fan out problem there was another shortcoming.
There was no consistent concept of hard- and software or of devices and
computer architecture for (digital) optical computing. Obviously it did not
make sense to copy the architecture of serial electronic computers and merely
use optical pulses instead of electric ones. A genuine new architecture was
missing that makes use of the massive parallelism offered by optical based
realistic devices.

At the end there was a “demonstrator”, which could optically add 2 + 2
but used one or several Ar+ lasers with an electrical power consumption of
several kW and some PCs to control the whole system, which filled a com-
plete lab.

Although there is presently still some ongoing research into using semicon-
ductors for optical memory and switches (e.g., [99Z1]) and though beautiful
and excellent physics has been made with optically nonlinear or bistable sam-
ples or “devices”, the author does not expect (digital) optical computing to
become a widely used technology in the next few decades.

What emerges, however, and what might spread into common use are
electro-optic devices. With the increasing use of optical fiber communication
systems, electronic data must be transformed into optical signals and back
and we may eventually see an increasing amount of optical data handling at
the interconnects.

Another field of optical data handling in a wider sense is making good
progress in the form of luminescent semiconductor displays, laser scanners
and related devices.
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24.3 Spintronics

As already demonstrated in Sect. 16.1 magnetic fields and the spin of carri-
ers, including diluted magnetic semiconductors (DMS), are exciting topics of
research. Some further examples, which are chosen rather arbitrarily, are the
control of ferromagnetism in materials like In1−yMnyAs or Ga1−yMnyAs by
the carrier concentration in field effect transistor like structures [00A1,00O1],
injection and transport properties of electron spin through a sample or
across hetero interfaces in semiconductors [96C1, 98H1, 99F1, 99K1, 00J1,
00O1, 01G1, 01O1], the generation of spin currents without electric charge
transport [00B1, 03H1, 03S1], and spin coherence and relaxation phenom-
ena [97A1,97K1,97T1,98K1,99A1,99O1,99O2,00K1,01O1,01S1,03T1].

Based on such results, the idea of spintronics was born, i.e., analogous to
electronics but using the spin of the carriers (generally electrons) in addition
to or instead of their electric charge. See, e.g., [02S1, 02S2, 04S1] for reviews
or [95N1,98P1,99P1,00B1,01H1,01S1] for a few individual results.

In a wider sense there is a real success of spintronics in the application of
read heads for magnetic disks, based on the giant magnet resistance (GMR)
that occurs if a nonmagnetic metal layer, e.g., Cu is sandwiched between
ferromagnetic layers (see, e.g., [03A1,04S2] and references therein).

On the other hand the author feels that it will be very unlikely that spin
precision transistors [03R1] or other electronic devices based on DMS will be
able to compete with the highly developed Si technology. The devices are much
more complicated, the relevant effects are often observed in semiconductors
only at low temperatures (e.g., ferromagnetism in Ga1−yMnyAs or ZnO:Co),
the spin coherence times are usually short, rarely exceeding a few ns, except
for a few exceptions [97K1, 02C1] and the spin injection from metallic ferro-
magnets into semiconductors is very difficult and requires tunnel barriers since
the density of states (or the impedance) in the metal and the semiconductor
are too different. Furthermore, and this is an analogy to the failure of digital
optical computing mentioned above, there is no consistent concept for the use
of spins instead of the electric charge, which would show advantages over the
established Si-technology. The author feels that he is not the only scientist
sharing this skepticism [03D1].

24.4 Quantum Computing

In a conventional electronic computer there are two states presenting the
logic “0” and “1”. Their realization is by electric current or voltage “off” and
“on”, respectively. Recently a new idea emerged, namely to use a coherent
superposition of two quantum mechanical states, a so-called quantum- or q-bit

a|0〉 + b|1〉 (24.13)
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and to carry out manipulations or logic operations in a time shorter than the
decoherence time (see Sect. 23.2) of states |0〉 and |1〉.

For an overview see, e.g., [02N1, 02S1]. The realization of the two states
|0〉 and |1〉 is considered via Josephson junctions [99M1], via single atoms in
a cavity or atoms in a coherent state in a trap [95B1, 95D1, 95T1, 01C1] or
via electron or nuclear spins or excitons in semiconductors and semiconductor
structures of reduced dimensionality like quantum dots [98K2, 98L1, 01B2,
01H1,01S2,02S3,03P1,03Q1] and this is why we address this topic here briefly.

The situation seems to be very similar to the one of optical computing
from two decades ago or of spintronics.

There is a huge amount of novel, beautiful and exciting basic research
being performed in this field. However, the realization of the promised or
at least envisaged applications, here via quantum computing, seems rather
unlikely to the author.

There is again no consistent approach for hard- and software or computer
architecture. Many of the possible systems for the realization of q-bits re-
quire low temperatures and they are intrinsically very sensitive to all types of
decoherence processes.

To the best of the author’s knowledge, the only case where an advantage
of quantum computing over conventional computing has been shown theo-
retically is the factorization of large numbers. It is unlikely that industry is
willing to invest too much money in this niche.

The other field of applications of quantum computing including the
presently very fashionable field of entangled states is quantum cryptography.
Though this might be a huge market, practical realizations are a long way
away, if they come at all.

Another approach to the continuing miniaturization of electronic devices
is to use molecular structures including carbon nanotubes [00J2], but this field
leads beyond the scope of this book.

24.5 Problems

1. Find a simple relation for the “sufficiently strong” excitation induced in-
crease of the absorption (Sect. 24.1.4) needed to produce optical bistabil-
ity.

2. Is it possible for longitudinal structures to appear in the switching pro-
cess of induced absorptive optical bistability in thick samples, under the
assumption that the excited species responsible for the increase of absorp-
tion have negligible diffusion length?

3. Can induced absorptive optical bistability occur if the increase of the
absorption depends not on the density of some excited species, but directly
and instantaneously on the amplitude or intensity of the light field? Is
your answer also true for dispersive and bleaching optical bistability in
a Fabry–Perot resonator?
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4. Give the conditions on the finesse of the Fabry–Perot and the bleaching
required to get optical bistability from the combination of both.

5. Iterate the logistic equation (24.12) to get the Feigenbaum scenario.
6. Find some additional information about the “circle map” and the Farey

tree, e.g. in [88S1].
7. Find out what an “entangled state” is. Compare it to the description of two

or more identical Fermions by Slater’s determinate, which was developed
in the 1930s soon after the introduction of quantum mechanics.
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25

Experimental Methods

Warning: Many of the experimental techniques and set-ups generally used in
semiconductor optics, some of which being described below, can involve some
risks. For example lasers beams may damage the eyes, high voltages used in
many lasers are hazardous, gases and liquids used as laser materials may be
poisonous etc. Before you build any set-up or start any experiment read the
relevant safety instructions and regulations and stick to them!

This chapter is based both on the contribution of the author to [89L1, 01L1]
and on the preceding edition of this book. Further references may be found,
e.g., in [82L1,86L1,89S2,92E1,93O1,93H2] or in [86L1,89L1,90K1,91D1,92E1,
92S1,96O1,96Y1,97E1,98D1,01H1,02S1,03T1] of Chap. 1.

The purpose of this chapter is to review experimental techniques, which
have been or can be used for the optical spectroscopy of semiconductors.

In agreement with the concept of this book outlined in the introduction,
it is not the purpose of this chapter to present all possibilities of optical
spectroscopy, which have ever been used. This would fill a whole volume by
its own. Instead we concentrate on typical, widely used techniques.

It is also not the purpose to cite the first, the most recent or the “best”
application of a certain technique of spectroscopy, but rather one or a few
typical examples, which are by no means exhaustive. In this sense the selection
of examples is and must be to some extend arbitrary.

We divide the topic in five main sections namely

25.1 Linear optical spectroscopy
25.2 Nonlinear optical spectroscopy
25.3 Time-resolved spectroscopy
25.4 Spatially resolved spectroscopy
25.5 Spectroscopy under the influence of external fields

and give not only information on the equipment, which has to be used and
the experimental techniques but also some information, which properties or
material parameters can be obtained with the respective technique.
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An important aspect is that many of the techniques can be applied for
various fields or in various combinations. We want to illustrate this statement
with a simple example.

The observation of the photoluminescence (PL) spectrum of a sample un-
der low non-resonant, cw excitation is a method belonging generally to the
field of linear optical spectroscopy. If the photon energy of the exciting light
beam is tuned, one has the method of photoluminescence excitation spec-
troscopy (PLE), which may give some information on the absorption spectrum
or on excited states of the luminescing complex (see below). If the excitation
power is increased, one may reach the intermediate or even the high-density
regimes where e.g. biexcitons and trions or even an electron–hole plasma are
created, see Chaps. 19 to 21. Since these phenomena are usually connected
with strong optical nonlinearities, the PLE has been shifted or applied to
nonlinear spectroscopy. If, on the other hand, the luminescence is excited
with a short pulse, it is possible to monitor the luminescence rise and decay
times leading us to Sect. 25.3 and to Chap. 23. If the short exciting pulses
are strong enough, and tunable, the technique of PLE, which originates from
linear spectroscopy, ends up in a combination of nonlinear and time resolved
spectroscopy. Even spatial resolution techniques or external fields can be com-
bined with PLE.

It is obvious that we cannot list all these combinations and/or modifica-
tions, but restrict here to the basic concepts and leave it to the fantasy and
the experimental skill of the reader to use or even to invent new cases of such
cross-linked techniques.

At the end of this introduction to Chap. 25 we want to give again some re-
ferences to further articles or books in which techniques of optical spectroscopy
have been presented already. Optics in general is outlined e.g. in [98L1,99H1]
and various aspects on experimental techniques used for semiconductors can
be found e.g. in [81K2, 82L1, 85H1, 86L1, 89S2, 89L1, 91D1, 92E1, 93O1, 96Y1,
97K1,98K1,98K3,01A1].

25.1 Linear Optical Spectroscopy

The most widely performed experiments in linear spectroscopy are transmis-
sion-, reflection- and luminescence spectroscopy. Other techniques include, e.g.,
photoluminescence excitation spectroscopy, ellipsometry, modulation spectros-
copy, measurements of the luminescence yield or Raman spectroscopy.

Linear spectroscopy means in general that the intensities of all incident
light-beams are so low that the optical properties of the sample under in-
vestigation are not changed by the illumination or in other words that the
electric and magnetic susceptibilities do not depend on the field strength of
the incident light beams (see Chaps. 2 and 19).

The range or upper limit of the incident energy flux densities of the light
(often called light intensity) for the regime of linear spectroscopy cannot be
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given in general, since they depend strongly on the sample under investigation,
on the lifetime of the excited species and on the experimental conditions like
the spectral position of the incident light beams relative to the fundamental
absorption edge of the sample, on the sample temperature, on the duration of
the excitation pulse etc. There is, however, a rather simple test if one is in the
regime of linear optics: One measures the spectra of reflection or transmission
for a given incident intensity and then again for an intensity which is one or
at least half an order of magnitude different. If the spectra do not change, one
is in the linear regime. The same holds, if the emission spectra grow with the
excitation intensity but do not change their spectral shape, or in other words,
if normalized spectra coincide [81K2].

25.1.1 Equipment for Linear Spectroscopy

The standard set-up for linear optical spectroscopy consists of a light source,
the sample under investigation, frequently placed in a cryostat, a monochro-
mator or spectrometer to disperse the light, a detection unit and a PC to
handle and evaluate the data. The light sources for reflection, transmission
and luminescence spectroscopy can be incandescent lamps for the visible in-
cluding the near IR and UV, glow-bars for the IR, low or high pressure gas
discharge lamps, and cw or pulsed lasers. Without trying to be complete we
mention gas lasers like Ar+, He-Ne for the visible, CO and CO2 lasers for the
IR, Ar+, He-Cd, N2 and excimer lasers for the UV, solid state lasers like the
Nd-based ones for the near IR including their harmonics in the green and near
UV, or tunable titanium sapphire lasers for the red and near IR, dye lasers,
which can cover the whole spectral range from the near IR over the visible to
the near UV depending on the dye and the pump source. Free electron lasers
work in the IR while synchrotron radiation covers the spectral region from
the IR over the visible to the soft X ray regime.

Standard diode lasers are based on Ga1−yAlyAs, (Al1−yGay)1−xInxP or
In1−yGayAs quantum structures and cover the range from the red to the near
IR (see Chap. 4) while lead salt diodes emit deeper in the IR (see Chap. 7).
GaN-based laser diodes for the blue or near UV are now also commercially
available [97N1].

Some more information on these various light sources and references to
detailed literature can be found e.g. in [98K1]. Luminescence is generally ex-
cited optically, especially in fundamental research, but excitation with elec-
tron beams [73B1], by injection of carriers in pn junctions (see e.g. the
Sect. 22.3 on laser diodes) or by impact ionization in electroluminescent de-
vices [89S1,96M1] are also common.

Very recently the use of short THz pulses has been introduced for spec-
troscopy in this range i.e. in the range up to a few meV photon energy. See
e.g. [94S1,97N2,98C1,98K7,00H1,00L1,04C1] and references therein.

The samples under investigation are frequently kept in a cryostat. The
heads of closed cycle refrigerators reach, dependent on the heat inflow, e.g.
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through windows, temperatures down to 5 or 10 K; cold fingers of He-cryostats,
on which the samples are attached in a vacuum chamber, have also lower tem-
peratures around 5 K. If the sample is immersed in liquid He under normal
pressure one finds 4.2 K but has the problem that the He is boiling. Pump-
ing of the He below the λ-point avoids boiling in the volume and results in
temperatures ≤ 2 K.

Though semiconductor devices are generally operated at room tempe-
rature or above, it is very useful in fundamental research to start spectros-
copic experiments at low temperature, since the spectral width of absorption-,
reflection- and luminescence peaks is frequently much smaller at low tem-
peratures and facilitates interpretation. Following the spectral features with
increasing temperature allows then to observe thermal broadening or the
(dis-)appearance of spectral features with temperature.

For the spectral dispersion of the reflected, transmitted or emitted light
grating monochromators or spectrometers are almost exclusively used in the
visible, near UV and near IR. The theoretical resolution limit ∆λ of a grating
is given at a wavelength λ by

λ

∆λ
= Nm (25.1)

where N is the number of coherently illuminated grooves of the grating andm
is the diffraction order. In practice the resolution is rather limited by the width
of entrance and exit slits, by aberrations in the optical system of the spectro-
meter/monochromator or by the spatial resolution of the detector array. Due
to these facts the resolution depends on the focal length of the spectrometer
and on the number of grooves of the grating per mm.

In the visible a resolution of ∆λ ≤ 0.1 nm is usually reached with a fo-
cal spectrometer length around 0.5 m and a grating with 1200 to 2400 lines
per mm.

A grating blazed at a wavelength λB can be generally used for the spec-
tral range

2
3
λB ≤ λ ≤ 1.5λB (25.2)

in first order and for a corresponding interval around λB/2 in second order.
Care has to be taken that the various orders of spectrally broad features may
overlap, i.e. the direction, into which the first order is diffracted at wavelength
λ, coincides with the second order at λ/2. This may cause spurious signals
in the spectra. A prevention is to use filters which cut short wavelengths and
which are available from the near IR over the visible to the near UV.

Though the efficiency of gratings varies rather smoothly with λ over the
range given in (25.2) for unpolarized light, it must be kept in mind that
the efficiency curves are different for light with the electric vector polar-
ized parallel and perpendicular to the grooves of the grating, respectively
[82H1,98L1,99H1]. In polarization sensitive experiments it is therefore either
necessary to correct the spectra with the spectral efficiency curves for both
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polarizations or to have always the some state of polarization at the entrance
slit of the spectrometer e.g. by inserting suitable delay plates or other devices
like polarization scramblers.

Prism spectrometers/monochromators have the advantages to produce
only one spectrum and to have often high optical through put. This makes
them a good tool for the preselection of a wavelength interval or a individual
line of a lamp. Due to their nonlinear dispersion, they are no longer much in
use in spectroscopy itself.

Interference filters may also serve for a preselection of light.
Fabry–Perot resonators with high finesse can be used in contrast as ex-

tremely high resolution devices which can easily exceed λ/∆λ = 106 but which
have usually only a very small free spectral range [88H1,98L1,99H1].

Fourier spectrometers are ideal for the range from the far IR to the red
part of the spectrum [72B1,99H1].

We conclude this subsection with a few words on the detector side of the
set up. Photographic plates and films are generally out dated due to their
nonlinear characteristics and the long processing time between exposure and
the availability of the data.

Vacuum- and semiconductor photodiodes have typical sensitivities of 0.1 A
per Watt of incident light power. Especially vacuum photodiodes can be very
fast with rise- and decay-times in the 0.1 ns regime. Avalanche diodes, pho-
tomultipliers or channeltrons are much more sensitive due to the built-in
multiplication of optically created carriers. Photomultipliers can reach sin-
gle photon sensitivity. However they are generally used behind the exit slit
of monochromators. This means that a spectrum can be recorded only se-
quentially e.g. by turning the grating. This procedure, often connected with
lock-in techniques [83M1] to improve the sensitivity or the signal to noise
ratio, makes the recording of a wider spectrum generally a rather time con-
suming procedure.

If a one- or two-dimensional diode array or a vidicon tube (eventually com-
bined with an image intensifier e.g. a channel plate) are used at the exit of
a spectrometer, one has a significant multiplex advantage, i.e. one records si-
multaneously the spectrum over a certain interval, which is determined by the
dispersion of the spectrometer and the geometrical dimension of the sensitive
area of the detector array. The sensitivity can reach a few photons especially
for cooled detector arrays.

A similar multiplex advantage holds also for a Fourier spectrometer. The
difference is that the spectral resolution is preset with a diode array and
the signal to noise ratio increases with integration time, while the signal
level is essentially given in a Fourier spectrometer but the spectral resolu-
tion increases with increasing shift of the mirror in the Michelson interfero-
meter.

The useful spectral range of the detectors is generally limited on the low
photon energy side by the work function for photo-cathodes and the band
gap (or the ionisation energy of a defect) for semiconductor-based detectors.
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On the high photon energy side, the limitation comes often from the window
material (glass, silica, sapphire, etc) (see e.g. also [98K1]).

25.1.2 Techniques and Results

In the following we give some examples of techniques of linear spectroscopy
and the information, which can be deduced from them. Many further examples
have been given already in Chaps. 11 to 17.

Luminescence spectra give usually information on the deepest radia-
tive states of a system including their optical phonon replica or acoustic
phonon wings. At low temperatures these are often defect states or local-
ized states resulting from some disorder like spatial fluctuations of the well
width or of the composition of alloys. At higher temperatures extended
states become also accessible in luminescence. It should be noted that the
quantum efficiency i.e. the average number of luminescence photons cre-
ated per excited electron–hole pair is in most samples considerably below
unity [98W1, 03F1]. Luminescence spectra give therefore generally only in-
formation on the fate of a minority of excited species as discussed already
in Sect. 23.4. Furthermore it should be noted that the thermal distribution
function (generally a Boltzmann term) can, if reached during the lifetime
of the excited species, enhance at low temperatures the luminescence of low
lying but forbidden transitions (e.g. triplet or so-called dark excitons) com-
pared to energetically slightly higher allowed transitions (see e.g. Sect. 13.2
or Chap. 14).

The spectra of the transmitted and reflected light allow to deduce in var-
ious degrees of sophistication [82L1] the spectra of absorption andreflection.

The absorption- and reflection structures give information of optically al-
lowed transitions from the occupied ground state in the unexcited sample to
excited states [92D1]. The area under the absorption peak is a measure for
the oscillator strength of the transition and the width for the inhomogeneous
or homogeneous broadening whatever is larger. These transitions can be the
various exciton series and their continuum states close to the band gap (for
examples see Chaps. 13 to 15), intersubband transitions e.g. in doped quan-
tum structures (see e.g. Sects. 13.3 and 21.5), phonon transitions (e.g. [98G1]
or Chap. 11) or plasmons (see e.g. [97G1] or Chap. 12). The quantitative
evaluation of reflection spectra needs generally more complex model theories.
Examples are found for excitons in [88U1] or in Sects. 13.1 and 15.1, or for
plasmons in [97G1] and in Chap. 12.

Usually only transitions with rather high oscillator strength show up in
reflection. An experimental trick to enhance the signal is to observe not under
normal incidence, which is the geometry most easily to evaluate, but close to
Brewster’s angle of the barrier or substrate material with light polarized in
the plane of incidence. For an example see Sect. 15.1.

Fabry–Perot modes, which appear often in quantum structures due to
parallel surfaces or interfaces of substrate, buffer layers etc., can be partly
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avoided by anti-reflection coatings [81C1,99H1], otherwise they may produce
spurious structures [95W1].

A way to deduce extremely weak absorption features using a generalized
Planck’s law together with Kirchhoff’s law has been elaborated in [95D1,
95W3]. Also see in this context [57K1,59M1,04C1].

Ellipsometry allows in principle to deduce the spectra of the real and imag-
inary parts of the dielectric function or of the complex index of refraction.
While the method is basically simple and described essentially by Fresnel’s
formulae for a single surface against vacuum, it becomes increasingly complex
if (partly unknown) absorbate layers and multi-layers structures are investi-
gated [77A1,98K1,04K1,04S1].

A classical method to enhance weak signals is modulation spectroscopy
[69C1, 73S1, 94P1, 97H2, 98D1, 98D2]. The basic idea is, to modulate the

spectra slightly by a weak, temporally periodic external perturbation like
an electric field, (electro-modulation), a heating of the sample (thermo-
modulation), a variation of the detection wavelength (wavelength-modulation)
etc. and to detect the reflected or transmitted light with a lock-in ampli-
fier at the frequency of the modulation. In the simplest case, this results
in the observation of the derivative of the spectrum and allows to observe
weak structures on a broad background or dark current. Observation at
twice the modulation frequency gives the second derivative. The increasing
availability of digital data handling reduces the use of analog modulation
techniques.

A widely used technique is the excitation spectroscopy of photolumines-
cence (PLE) or of the photo current in pin-diode structures (PCE). The idea
is to monitor e.g. the intensity of a certain luminescence feature (e.g. the
exciton luminescence of a multiple quantum well) or the photocurrent and
to tune the spectrally narrow excitation source ideally keeping the incident
photonflux density constant. These PLE or PCE spectra show often peaks
at positions of stronger absorption simply because more electron–hole pairs
are created at these energies. For examples see Sects. 13.1, 14.1 and 15.1
or [81B1,81B2,87B1]. It is remarkable that exciton features show up in PCE
spectra at temperatures much too low for thermal ionisation of these excitons.
Field ionisation in some Schottky (surface-) barriers possibly plays a role (see,
e.g., [80A1,82S1,83S1,02K1,03K1] and references therein).

In this sense PLE or PCE spectra are related to the absorption spectrum.
The technique is very useful in cases where the absorption spectrum is not
directly accessible, e.g. because the substrate on which the quantum structure
has been grown is opaque at the spectral region of interest (e.g. in AlGaAs
structures grown on GaAs) and cannot be removed by selective chemical etch-
ing, or because the optical density is too low to be detected (e.g. for a single
quantum well or for forbidden transitions).

However it should be noted that the PLE and PCE spectra are related to
but not identical with the absorption spectrum [87B1]. Processes which enter
are the reflection spectrum in the range in which the exciting photon energy
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is tuned, the absorption length of the exciting light, the diffusion length of
the excited species, the relaxation into the observed luminescent channel in-
cluding the branching ratio for relaxation into other states, and finally the
efficiency and the escape depth of the luminescence. Similar arguments hold
for PCE. In [97K1, 98U1] it has been shown e.g. that the PLE spectra de-
pend strongly on the selected spectral position of the exciton luminescence of
ZnSe-based quantum wells. This dependence has been even used to study the
intra(sub)band relaxation processes.

Measurements of the absolute luminescence efficiency can be performed in
various ways:

A calculation from the signal intensity of the recorded luminescence spec-
trum for a given excitation power involves a quantitative knowledge of the
spectral through-put or the efficiency of all optical components like detector,
monochromator / spectrometer, lenses, mirrors, beamsplitters, etc. and of the
geometry like the solid angle of acceptance of the spectrometer, the size of
the image of the excitation spot on the entrance slit of the spectrometer and
the spatial radiation characteristics of the sample. It is obvious that there are
many possibilities to obtain erroneous results.

The comparison of a measured luminescence spectrum of the sample un-
der investigation with a standard, which has luminescence efficiency close to
unity (usually a laser dye or some luminescence centers in a solid matrix) ne-
cessitates identical geometries for both experiments including the excitation
depth and the spatial radiation characteristics. These conditions are usually
hard to fulfill.

Placing the sample under investigation in an integrating or Ulbricht sphere,
fitted into a cryostat, eliminates the radiation characteristics of the sample and
allows to obtain even absolute luminescence efficiencies per spectral interval
with rather simple calibration techniques. Examples are found in [90L2,93V1,
97W1,98W1,03F1].

In an alternative method, the heat is measured, which is deposited in the
sample under investigation. If the absorbed energy is known, it is easy to cal-
culate the luminescence efficiency. Examples for this calorimetric absorption
spectroscopy (CAS) are found in [88J1, 91B1, 94F1]. However there are two
draw-backs: one is usually limited to very low temperatures, to have suffi-
ciently sensitive bolometers and the other is that the luminescence may be
emitted in a spectral range which is not detected e.g. via deep centers resulting
in an over estimation of the luminescence yield of the monitored luminescence
channels.

For other thermal methods see e.g. [81J1,82I1].
Another general caveat is that often differential efficiencies are given in

literature (partly without explicitely mentioning it), e.g. the slope in the re-
lation between emitted number of photons versus excited electron–hole pairs.
If this relation is strictly linear through the origin, the absolute efficiency
and the differential efficiency are the same. If the relation is nonlinear, e.g.
above the threshold of stimulated emission of a laser diode, the differential
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efficiency may be close to unity while the absolute efficiency is still much
smaller.

While transition energies from the near IR through the visible to the UV
are usually determined directly by luminescence, absorption and reflection
spectroscopy, one uses often inelastic light scattering techniques for the spec-
troscopy of transition energies in the range below a few hundred meV. These
techniques are known as Raman scattering for creation or annihilation of op-
tical phonons (see [76R1, 96Y1, 98K1, 01L1] or Chap. 11) including confined
ones or backfolded acoustic phonons [99D1], electronic excitations like inter-
subband transitions (e.g. [92J1]), spin flips (see e.g. Sect. 16.1), or plasmons
(Chap. 12). The energies of such excitations and consequently the energy
shifts resulting from such excitations in Raman scattering are usually situ-
ated in the range from one or a few meV up to a few hundred meV. Brillouin
(-Mandelstamm) scattering means the scattering under emission or absorption
of acoustic phonons close to the origin of their dispersion relation. It is more
restricted to bulk materials Sect. 13.1.4 and the frequency shift is usually in
the (sub-) meV range.

Raman scattering requires a stable and spectrally very narrow (∆�ω <
0.1meV) laser irradiation. The background of this laser beam caused e.g. by
amplified spontaneous emission (ASE) should be as low as possible. Possibly
it makes sense to send the laser over a grating and through a distant (≈ 1 m)
pinhole or diaphragm. Frequently used lasers are the various lines of Ar+

lasers or tunable dye lasers pumped by Ar+ lasers. Especially in the second
case, the ASE problem has to be considered.

One observes the scattered light frequently in a back scattering geometry
or under a right angle. The scattering geometry is often described by the
so-called Porto-notation

ki [(ei, es)] ks (25.3)

where the k and e give the directions of wavevectors and polarizations (E
fields) and the indices stand for ingoing and scattered light. In the spectral
dispersion of the inelastically scattered light, stray light from the incident
beam has to be suppressed as far as possible to observe the weak Raman- (or
Brillouin-) signals. Therefore double – or even triple spectrometers are used,
followed by a sensitive (single photon) detection. For examples see [76R1,
94D1,95V1,96Y1,98K1,99D1].

The characteristic energies which can be deduced are e.g. those of Raman
active phonons, electronic intersubband transitions, plasmons or plasmon-
phonon mixed states.

Alternatively, these low laying excitations can be observed in the IR by
Fourier spectroscopy if they are IR active. The selection rules are partly
complimentary for both techniques. If the sample has a center of inversion,
phonons are either Raman active or IR active. Without center of inversion
they may be both [76R1,96Y1].
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Since the geometrical and optical thicknesses of many quantum struc-
tures are often very small, and since some transitions are allowed only for
an electric field polarized perpendicular to the well, like intersubband tran-
sitions between neighbouring conduction subbands, one often uses samples
with a “wave-guide” geometry as shown in Fig. 25.1, which allows multiple
pass and an appropriate orientation of the electric field vector. For examples
see [90O1,00G1].

Coupling to surface or quasi two-dimensional excitations with larger
wavevectors than offered by the light can be obtained by producing a grat-
ing on top of the sample with a period Λ. The wavevectors of excited states
accessible in the sample ksample are then given by

ksample = k‖ + n2πΛ−1, n = 0,±1,±2, ... (25.4)

where k‖ is the parallel component of the wavevector of the incident light
beam. For an example in combination with Raman scattering see [88Z1].

For excitation energies around and below a few meV, which tend to be
hardly accessible by Fourier spectroscopy one can use THz spectroscopy with
sources described e.g. in [94S1,97N2,98C1,98K1,00H1,00L1,04C1,04K1], or
in Fig. 23.12.

The scattering of light without frequency shift is known as Rayleigh scat-
tering. The observation of Rayleigh scattered light gives e.g. information on
(static) disorder in the sample but also on phase coherence times, etc. Ex-
amples are found in [94S2]. The spatial structure of the Rayleigh scattered
light is known as “speckle”. One started recently to extract the information
contained therein for quantum wells [99L2]. For recent discussions of Rayleigh
scattering see contributions to Sect. 23.2.1.2.2.

The influence of the barrier thickness between quantum wells in MQW
samples compared to the wavelength λ has a significant influence on the optical
properties. The limiting cases of λ/4 or λ/2, so-called Bragg-structures, are
presented e.g. in [96M2].

Fig. 25.1. The “waveguide” geometry to allow for multiple pass of the probe light
through the quantum structure with a significant component of the electric field
vector normal to this quantum well structure
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25.2 Nonlinear Optical Spectroscopy

The term “nonlinear optics” includes all phenomena in which the optical prop-
erties of a sample are modified by (usually optical) excitation in a reversible
way. Reversible means in this context that the sample returns to its previous
optical properties with a certain relaxation- or decay time, once the excitation
source has been switched off.

These modifications include an excitation-induced increase or decrease of
absorption in some spectral regions, the latter effect being also known as
bleaching, the appearance of optical amplification or gain, excitation-induced
changes of the real part of the refractive index (so-called dispersive optical
nonlinearities) or changes of the spectral shape of luminescence spectra with
increasing excitation, like an excitation-induced broadening of emission bands,
the disappearance or saturation of low excitation features and the appearance
of new ones.

We have intoduced the main ideas already in Chap. 19. A good overview
of the recent development of the field is found e.g. in Ref. [88N1, 04O1] of
Chap. 23

The description of the phenomena in the frame of semiconductors or op-
tical Bloch equations is given in Chap. 27 and the references there.

25.2.1 Equipment for Nonlinear Optics

The excitation source for the observation of optical nonlinearities is usually
a sufficiently strong laser (cw or pulsed). There is again no rule from which
intensity on optical nonlinearities can be expected for the same reasons that
did not allow to give a general value when the regime of linear optics of
Sect. 25.1 is left.

To some extend, the more or less powerful pump lasers necessary for the
observation of optical nonlinearities can be replaced by (cw or pulsed) electron
beams or by a forward biased p(i)n junction. In all cases a high density of
electron–hole pairs can be created, which modify the optical properties of the
semiconductor.

Optical excitation or pumping has the big advantage that lasers exist
for a wide range from the IR, visible and near UV (see (25.1)). They can
be continuously working (cw) or be pulsed down to a few fs pulse dura-
tion [93K1,98F1,98I1,01A1,03C1,03S1,03S2,03T1,03T2,05F1]. Many of them
are tunable over a certain spectral range (e.g. dye-, colour center-, diode-, tita-
nium sapphire- or CO2 lasers) which allows to excite resonantly some species.

In p(i)n junctions the electrons and holes are usually injected close to the
band extrema of the doped regions.

The excitation by electron-beams (typically 10 to 100 keV electrons with
current densities up to some 10 A/cm2) is completely unselective. Usually an
energy of about 3Eg is deposited to create one electron–hole pair. This means
that a lot of heat is introduced into the samples.
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The repetition rate νR of pulsed excitation sources should be smaller than
the inverse of the lifetime of the excited species T1 i.e.

νR · T1 � 1 (25.5)

to avoid accumulation effects.
If quasi stationary conditions shall be reached, the pulse duration TP

should fulfill

TP ≥ T1 (25.6)

and the opposite, if dynamical processes shall be studied (see Chap. 23).
Under quasi stationary conditions, the density of excited species nP can be
approximated by

nP = G · T1 (25.7)

where G is the generation rate i.e. the number of created species per unit
volume (or area) and time. T1 is the “effective” lifetime. The term “effective”
has been introduced, since a lifetime is defined strictly only for an exponential
decay i.e.

dnP

dt
= −nP

1
T1

or nP(t) = nP0 exp(−t/T1) (25.8)

but in certain density intervals it is often useful or convenient to operate with
an effective lifetime even for the case of a non-exponential decay. See (23.5).

Before we present several techniques of nonlinear spectroscopy we want to
give some information on possible general problems.

We defined the regime of nonlinear optics as the one of reversible changes.
The investigation of irreversible changes and damages is a research field of
its own. For examples see e.g. [97M1, 99C1]. Macroscopic damages can be
often identified by observing the sample before and after (but never during!)
illumination through a microscope. Surface and volume damages can be often
caused by melting and/or evaporation of the sample by the energy deposited
by the excitation source.

If the sample has to be viewed in situ during the experiment it is more
convenient and much more safer to view it through a microscope with a small
TV camera and to observe the image on a CRT screen. If the camera is
damaged by an intense laser pulse it can be replaced for a few hundred US �

or less, your eye cannot.
Another simple test is to measure the linear optical properties e.g. the

luminescence spectrum before the experiment of nonlinear optics and after it.
If the spectra coincide, the sample was most likely not damaged. If they are
different, permanent changes or damages have been introduced.

A frequent problem is heating of the sample by the excitation source, while
one is looking for effects caused by high carrier densities. A simple change of
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the lattice temperature may cause significant changes of the optical properties
(see e.g. [82L1]). A test for such phenomena is to reduce the repetition rate
of the pump source, or the duration of the excitation pulse (if possible) and
to check if the phenomena remain the same. One can also try to measure the
decay time of the phenomena and to check if it coincides with the expected
or known lifetime of the excited species or rather with the thermal relaxation
time constant τth, which is given for a homogeneous, isotropic medium in
simplest approximation by

τth = d2/κ (25.9)

[95G1] where d is the diameter of the excitation spot and κ the conductivity
for temperature.

One can also try to calculate the upper limit of the rise in lattice tem-
perature using the energy deposited per unit of volume and the temperature
dependent specific heat. Diffusion of the excited species, heat conductivity or
radiative recombination reduce the rise of the lattice temperature and may
be introduced in refined models.

Sometimes the experimental findings allow directly to exclude thermal
effects as the main origin of optical nonlinearities. An example is an observed
blue-shift of an emission band with increasing excitation in a semiconductor
the gap of which shrinks with temperature.

A further point which we want to address here are inhomogeneities of
the density of excited species, frequently electron–hole pairs or excitons. Such
inhomogeneities can occur, if the thickness of the sample under investigation
is larger than the absorption length of the exciting radiation or the diffusion
length of the excited species.

This is usually not a problem for samples containing one or a few quantum
wells, which are excited in the well but can become a topic to be considered
for excitation of thicker multiple quantum well stacks, or for excitation in
thicker cap or bufferlayers and subsequent capture of the excited carriers into
the wells, or for thick samples containing e.g. quantum dots.

Fast surface recombination can even complicate the issue.
Lateral inhomogeneities over the excited area can result from hot spots or

other inhomogeneities of the beam profile of the exciting laser, from micro-
scopic or macroscopic defects of the sample, which act as fast recombination
centers like dislocations or precipitates, or from local fluctuations of the po-
tential relief, which funnel the carriers or excitons to the local minima.

A point which deserves some consideration is the variation of the intensity
of the incident laser beams.

The simplest and cheapest way is to insert neutral density filters, which are
either homogeneously doped glasses or thin metal films (Pt or Ir) deposited on
glass or silica. The wavelength range over which they have (almost) constant
extinction can be seen in the data sheets of the manufacturers like Schott or
Corning. If the filters are placed normal to the beam, they can possibly pro-
vide an unwanted feedback into the lasers. Therefore they should be inserted
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slightly off normal. This produces however a slight lateral displacement of the
beam, which can be of importance in spatially resolved experiments. Even
worse is the kink in the optical beam resulting from an (un-)intentional slight
wedge shape of the filters.

A variation of the laser beam intensity by variation of its pump power is
usually discouraged, since it results often in a variation of the beam profile or
diameter.

A further possibility to attenuate a laser beam is to use rotatable polariz-
ers. Polaroid foils are easily damaged by high power (pulsed) lasers. The same
holds for polarizers which are glued together with Canda balm. Polarizers with
an air-gap are the choice for high power laser beams, with lateral openings
for the reflected beams. These reflected beams must be carefully blocked to
avoid eye-damage, which can arise from a (collimated) laser beam but even
from scattered laser light.

Since a rotation of the polarizer prism may also displace the beam, a com-
bination of fixed polarizers and suitably oriented Pockels- or Kerr-cells is
recommended but more expensive. The intensity can be then tuned by the
applied voltage without mechanically moving parts.

A special technique to vary the intensity of an incident laser beam is
the so-called z-scan technique [93S2, 95K1]. In this case the laser beam
is focussed by a lens and the sample is moved through the focal point
by varying the relative distance between lens and sample. The method is
simple and cheap. However, it has the disadvantage that the light inten-
sity in the vicinity of the focal point is often calculated in the diffraction
limit assuming aberration free focussing lenses and an ideal laser beam
with plane wave-fronts and a laterally Gaussian profile. Deviations from
these conditions occur frequently and modify the intensity profile in the
vicinity of the focal point. Furthermore, the beam diameter changes nec-
essarily in these experiments, resulting in a variable influence of carrier
diffusion.

25.2.2 Experimental Techniques and Results

The experimental methods can be roughly subdivided in one-beam methods,
pump-and-probe beam spectroscopy and four-wave mixing or laser-induced
gratings. The second and the third one use two (or more) beams. The differ-
ence is essentially that the two beams need not (or even must not) be coherent
for pump-probe spectroscopy, while they must be coherent for four-wave mix-
ing and laser-induced gratings. See Chaps. 19 to 24 for results in addition to
the references given below.

25.2.2.1 One Beam Methods

Experimentally most simple are one beam methods. One sends one, usually
spectrally narrow cw or pulsed laser beam on the sample and is able to observe
e.g. the following phenomena:
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� second, third and higher harmonic generation. (See Chap. 19.) In thin
samples with thickness d � k−1 where k is the normal component of
the wavevector of the incident light, the second harmonic signal growths
often quadratically with increasing sample thickness. In thicker samples
one obtains high signal amplitudes only under so-called phase- or index
matching conditions. This means that the wavevector of the second har-
monic is twice that of the fundamental wave (k conservation) or that the
refractive indices n at ω and 2ω are equal. Since n tends to increase with ω
this condition can be usually fulfilled only in some material with suitable
birefringence for a selected orientation [65B1,84S1,91M1,95K1].

� the rectification of light. This effect, which is also known as dc-effect,
closely related to second harmonic generation (it is just the difference
frequency instead of the sum frequency) and to the linear electro-optic
effect [71K1].

� two-photon absorption [31G1]. In this effect two photons of an incident
beam are absorbed simultaneously to create an excited state. If one- and
two-photon absorption, described by the absorption (or extinction) co-
efficient α and by β, respectively, are simultaneously present, then the
attenuation of a beam propagating over an infinitesimal distance dx in the
sample is given by [71K1,75K1]:

−dI(x) =
[
αI(x) + βI2(x)

]
dx (25.10)

integration over x form zero to the sample thickness d leads to

I(d) =
[

1
I0

eαd − (1 − eαd)
β

α

]−1

(25.11)

where reflection at the surfaces is not yet included.
� two step absorption, which proceeds not via a virtually excited intermedi-

ate state, but via a really excited or populated state created by the same or
another beam. It may show a similar dependence as (25.10), (25.11) [73B2].
For luminescence assisted two-photon absorption spectroscopy (LATS)
see [79S1]

� bleaching of absorption. This effect results in a superlinear increase of the
transmitted intensity. Note that optical amplification cannot be reached
in a one-beam experiment.

� dispersive nonlinearities. This term includes all changes of the real part of
the refractive index by the light field i.e. an increase or a decrease of n(I)
caused by the light intensity I e.g. according to

n(ω, I) = n0(ω) + n2(ω)I (25.12)

Depending on the sign of n2 this may result in self-focusing (n2 > 0) or
self defocussing (n2 < 0) of a beam and in “blooming” of the farfield on
a screen.
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� two-photon- or hyper-Raman scattering [85H1].
� optical bi- or multistability. For details see e.g. Chap. 24 or [86W1] and

references therein.
� Excitation-induced variations of the luminescence spectra. The electronic

eigenstates close to the fundamental absorption edge are strongly modified
with increasing excitation density in the electronic system going e.g. from
excitons at low densities to an electron–hole plasma at the highest densities
(see e.g. Chap. 19 to 21 for these effects).

If a spectrally broad laser beam is used, which covers absorbing and trans-
parent parts of the transmission spectrum of the sample one can excite it
strongly with one spectral part of the incident beam and simultaneously mon-
itor changes in the transmission- or reflection-spectra [88S1]. This technique
leads directly to pump-and-probe measurements.

25.2.2.2 Pump-and-Probe Beam Spectroscopy

As the name says, one uses in pump-and-probe beam spectroscopy two beams.
The pump beam is usually a spectrally narrow, intense, pulsed or cw-laser
beam (possibly replaced by an electron beam or by carrier injection in a for-
ward biased p-n junction) to excite the (electronic system of the) sample. This
pump beam can be tuned to a specific transition or resonance like an exciton.
The second beam is usually spectrally broad, tuned to the spectral interval
of interest and is used to monitor the changes in transmission or reflection
induced by the pump beam. The probe beam has to be so weak that it does
not itself introduce any optical nonlinearities.

If the change in transmission is small one speaks also about differential
transmission spectroscopy (DTS), especially if the signal is the difference of
the transmission spectrum without and with excitation. A related technique
is differential photoluminescence excitation spectroscopy (DPLE) [92B1].

There are many geometries for pump-and-probe beam spectroscopy. An
example is given in Fig. 25.2a.

Both beams can impinge collinearly on the sample. This makes the achieve-
ment of spatial coincidence rather simple. If the sample is not completely
opaque for the pump, it is better to have the pump beam incident under a fi-
nite angle (Fig. 25.2a) or even from the reverse side of the sample to separate
the transmitted pump light from the probe beam.

The spatial coincidence of pump-and-probe beam on the sample can be
checked by placing a pinhole at the place of the sample or by observing the
excitation spot with a small TV camera, possibly through a microscope (but
never with the eye!). The temporal coincidence of pulsed pump and probe
beams can be verified by placing a fast photodiode at the position of the
crystal for pulses longer than the response-time of the detector and display
unit, usually an oscilloscope. For very short pulses, correlation techniques have
to be used and fine delay stages for the two beams.
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If no spatial or temporal resolution is required, it is recommended to
make the diameter of the probe beam and its duration (in case of pulsed
lasers) narrower and shorter than those of the pump beam, to monitor the
changes only during the pump pulse maximum in a region of homogeneous
excitation.

The intensity (power per unit area) or the fluence (energy per unit area) of
the pump pulse can be varied as mentioned above up to the damage threshold.
The intensity of the probe beam has - as already mentioned - to be kept so low
that it does not itself induce any optical nonlinearities. This can be checked
by varying the probe-beam intensity. A factor 10 difference to the pump beam
is minimum. Possibly one has to subtract from the transmitted or reflected
probe beam the luminescence caused by the pump beam and of course the
dark current of the detector. If optical amplification of the probe beam shall
be investigated, care has to be taken, not to saturate the gain by too intense
probe beams [93M1,98K2].

There are some variants of pump-and-probe beam spectroscopy, which use
the light emitted from the excited area of the sample as probe beam. One
is luminescence assisted, two-photon spectroscopy (LATS) [79S1], the other
the so-called stripe-length method [81K2,98K2]. See Fig.2.2b. The excitation
spot is focussed to a narrow stripe of length l and width w with w � l. The
emission spectrum Ilum(�ω, l) is detected which propagates along this stripe.
In case of optical amplification or gain g(�ω) in the excited stripe, the emitted
intensity does not vary linearly with l but according to

Ilum(l, �ω)
Ilum(l + ∆l, ω)

=
exp {g(�ω)l} − 1

exp {g(�ω)(l + ∆l)} − 1
(25.13a)

if the length l of the excited stripe is varied from l to l + ∆l [98K2].

Fig. 25.2. An example for the arrangement of pump-and-probe beam spectroscopy
(a), and for the stripe-length method (b)
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An especially simple situation arises if l is varied between l and 2l [78H1,
98K2]

g(�ω) =
1
l

ln
{
Ilum(2l, �ω)− 1
Ilum(l, �ω) − 1

}
(25.13b)

Similar formula hold for absorption. In the case of gain, care has again to
be taken that the gain is not saturated by the amplified spontaneous emission.
A rough limit is reached for

g(�ω) · l ≥ 1 (25.14)

Since gain values can exceed 103 cm−1 this implies l < 100 µm and
w ≤ 10 µm. For processes with even higher gain values pump-and-probe spec-
troscopy in transmission is recommended. A recent detailed investigation of
the stripe-length method can be found in [95B2,95U1,98K2].

Phenomena, which can be observed with pump-and-probe spectroscopy are
e.g. two-photon or two-step transitions e.g. to biexciton levels [85H1, 97W2],
a broadening of the exciton resonances due to collisions with optically ex-
cited species (like free carriers or other excitons, the so-called excitation-
induced dephasing), a bleaching of the exciton resonances in the transition
to an electron–hole plasma, the band gap renormalization ocurring in this
process, the gain connected with a degenerate electron–hole plasma, and in-
tersubband transitions in the IR induced by optical pumping across the gap
(see e.g. [98S1,00G1] or examples in Chaps. 20 to 23).

25.2.2.3 Four-Wave Mixing and Laser-Induced Gratings

The basic idea of all four-wave mixing (FWM) and laser-induced grating (LIG)
experiments is to have two coherent laserbeams interfere on the sample un-
der investigation. See e.g. [84S1,85H1,86E1,91M1] and references therein. In
Fig. 25.3 the wavefronts are shown and the angle θ between the two beams
with wavevectors k1,2 and (angular) frequencies ω1,2 is defined.

The interference leads to a laterally periodic modulation of field amplitude
and intensity. The period Λ of this grating and its vector in reciprocal space
G are given by

G = k1 − k2 (25.15a)

G =
2π
Λ

(25.15b)

Λ = λ(2 sin θ/2)−1 (25.15c)

One can consider in the calculation of Λ and G wavevectors, wavelength
λ and angle θ of the incident beams in vacuum or of the beams in the sample.
The result will be the same.

If the incident light fields produce any optical nonlinearity either via the
interference of the coherent polarizations, which they create in the medium, or
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Fig. 25.3. The interference of two laser beams on a sample

via incoherent population, which they excite, one obtains a phase-, amplitude-
or mixed grating, which diffracts light.

The names four-wave mixing (FWM) and laser-induced grating (LIG) are
often used synonymously. If one wants to differentiate them, one can use FWM
for the coherent polarization gratings and LIG for incoherent population grat-
ings.

One can now apply various criteria to distinguish different regimes.
A grating is considered as thick or thin if its thickness d is above or below

a critical value dc, respectively. The quantity dc is given in simplest approxi-
mation by

dc = Λ2/λ (25.16)

where λ is the wavelength of the light diffracted from a grating with period
Λ. Refined formulae can be found in [80M1,86E1].

The diffraction properties of thick gratings (the so-called Bragg-regime)
differ from those of thin gratings (Raman-Nath-regime) as will be shown below
for some examples.

The wavevectors of the diffracted orders kD,n are in principle given by

kD,n = ki ± nG, n = 0, 1, 2, . . . (25.17)

where ki is one of the incident beams. The multitude of the values of n is much
more restricted for thick than for thin gratings. See below and Fig. 25.4. For
quantum structures one will be generally in the regime of thin gratings except
e.g. for thick samples filled with semiconductor nanocrystals (e.g. semicon-
ductor doped glasses).
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Another criterion is to distinguish between gratings which are created
by two beams of equal frequency. This is the so-called degenerate four-wave
mixing (DFWM), defined by

DFWM : |k1| = |k2| ;ω1 = ω2 (25.18)

In this case the interference pattern is spatially stationary and the elasti-
cally diffracted light shows no frequency shift. The grating is washed out, if
the diffusion length of the excited species lD is comparable with Λ i.e. with
(25.15b)

lDG ≥ 1 (25.19)

and the diffracted intensity decays for smaller Λ. For an example see [88W1].
Non-degenerate four-wave mixing (NDFWM) occurs for generally small

differences ∆ω
ω1 − ω2 = ∆ω � ωi; i = 1, 2 (25.20)

of the frequencies of the two incident laser beams, resulting in small differences
of the |ki|; i = 1, 2

|k1| − |k2| � ∆k = |k1 − k2| � |ki| ; i = 1, 2 (25.21)

The grating or interference pattern moves in this case laterally with a speed
υgr given by

υgr =
∆ω
∆k

(25.22)

The diffracted orders are Doppler–shifted by integer multiples of ∆ω. In
addition sum and difference frequency generation can occur.

Note that the grating structure is washed out, if the grating moves over
one period in a time short compared to the characteristic decay time Tc of
the species responsible for the grating [78Y1,78Y2] i.e. if

Tc∆ω ≥ 1 (25.23)

For examples see e.g. [88R1,92S2,97W2], and the references therein.
A further criterion is how the gratings are read out. See Fig. 25.4
The simplest possibility is to have the two beams, which form the grat-

ing diffracted off it themselves. This so-called self-diffraction method gives
diffracted orders in transmission or reflection according to Fig. 25.4a. A thin
grating produces several orders if the spatial modulation of the optical proper-
ties is non-sinosoidal. The transmission direction +0t contains the transmitted
part of the incident beam “k1” and the +1 diffracted order of beam k2. The
transmission direction +1t gives the first diffracted order of beam k1 and
the second of k2 and so on. Similar statements hold for the reflected orders.
Sometimes orders up to six or higher can be observed [86E1]. In most cases
the diffracted amplitude decreases rapidly with increasing order. In this case
e.g. “−1t” gives essentially the minus first diffracted order of beam k2.
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Fig. 25.4. A selection of geometries for four-wave mixing and laser-induced grating
arrangements

An exact fulfillment of (25.24), (25.25) resulting from (25.17), (25.18) is
not possible in self-diffraction e.g. in DFWM

kdiff = k1 + G = k1 − (k1 − k2) = 2k2 − k1 (25.24)

and
|kdiff| = |k1| = |k2| (25.25)

As shown in Fig. 25.4b there remains a small misfit of k called ∆, which is
possible for a thin grating since the place at which diffraction occurs is limited
by the grating or sample thickness d and consequently the normal component
of k is defined only according to

d∆ ≈ 1 (25.26)

Multiplied with �, (25.26) is just the uncertainty relation. On the other
hand (25.26) is equivalent to (25.16). Note that self-diffraction is also possible
for NDFWM.

For thick gratings the acceptable value of ∆ tends to zero and conse-
quently there is only diffraction of beam k1 into to direction “−0” i.e. in the
direction of k2 and vice versa. Since transmitted and diffracted beams are
difficult to separate or to distinguish, one chooses often a different geometry
for thick gratings shown in Fig. 25.4c. The beams k1 and k2 interfere to form
a grating from which beam k3 is diffracted as signal beam kS counterpropa-
gating to k2. The beams ks and k2 can be now easily separated by a beam
splitter. Note that the role of the three beams k1, k2 and k3 can be inter-
changed. In all cases the signal beam propagates in direction ks = −k2. The
grating constants are however different e.g. for the interference of k1 and k3

or of k2 and k3, respectively. Consequently the gratings may be differently
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influenced by diffusion. See (25.19). Sometimes one calls two of the three in-
cident beams pump beams and the third one test beam. If the thick sample
is absorbing, care has to taken to have sufficient spatial overlap between the
beams.

With the arrangement of Fig. 25.4c the term “four-wave mixing” becomes
clear. Three beams interfere to produce a forth one. In self-diffraction one of
the incident beams is used twice as pump and as test beam.

A slightly more elaborate technique also for thin gratings is to write the
grating by beams 1 and 2 and to probe it with a third independent beam
3 as shown in Fig. 25.4d. There can be a lot of diffracted orders: not only
of k3 diffracted off the grating produced by k1 and k2, but as in Fig. 25.4c
all other combinations of self- and non-self-diffraction may occur. A possibil-
ity, to separate the various orders is to have the three beams k1, k2 and k3

not coplanar. An especially simple arrangement is to send the beams from
three corners of a square onto the interference spot of the sample. The beam
which results from an interaction of all three incident beams is then radi-
ated into the direction of the remaining fourth corner in transmission. See
Fig. 25.4e.

A further criterion is to distinguish the state of polarization of the inci-
dent (and diffracted) beams. If the beams k1 and k2 are equally polarized,
e.g. both linear and parallel (i.e. collinear), then their interference leads to
a real spatial modulation of the field amplitude and intensity in the inter-
ference pattern. If they are e.g. linearly but orthogonally polarized, then
the light intensity will be spatially constant over the spot, but the state
of polarization will vary periodically from linear over elliptic to circular
and back.

A different approach to the whole group of phenomena is to stress not
the interference of waves and the diffraction off the interference pattern,
but the interaction between light quanta, generally polaritons as discussed
in Chap. 19.

It is obvious that FWM and LIG offer a huge variety of experiments, which
multiplies if time resolution (Sect. 25.3) is added. Therefore we can give only
a very small selection of the information, which can be deduced from these
experiments. The simple observation of any diffracted order proofs that there
must be some optical nonlinearity. These nonlinearities can be due to real and
virtual (or incoherent and coherent) excitations in the electronic system of the
semiconductor, excitation-induced (or collision-) broadening of exciton reso-
nances, two-photon transitions, or the transition to an electron–hole plasma.
A tuning of ω1,2 allows to detect resonances, i.e. frequencies for which certain
nonlinearities are especially strong. Non-self-diffraction (Fig. 25.4d) allows
to probe e.g. dispersive nonlinearities in the transparent part of the sample
caused by a population grating created by the beams k1 and k2 situated in
the absorbing region.

Similarly to the pump-and-probe beam technique, thermal gratings must
be considered, which may result from the deposited energy [91T1].
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The intensity of the diffracted signal varies in lowest approximation lin-
early with the intensity of all three incident beams i.e.

Is ∼ I1I2I3 (25.27)

The proportionality constants contains terms squared which describe the
variation of refractive index or absorption coefficient with light intensity, pop-
ulation density, etc. in the wave picture, the (dipole-) transition matrix el-
ements and resonance denominators in the quantum picture. Generally one
observes a trend towards saturation for high intensities.

A variation of Λ via θ (25.15) allows to determine the diffusion length of
the excited species. See [88W1,92O1,92S2] as examples.

Non-degenerate four-wave mixing allows to determine even with long
pulses extremely short dephasing times of the order of a few tens of fs [97W2].

25.3 Time-Resolved Spectroscopy

Time-resolved spectroscopy is one of the most powerful tools to investigate
the dynamical processes of excited species in semiconductors. Almost step-
like progress of the field was often connected with the development of new
lasers with shorter pulses and easier handling, the most recent example be-
ing the titanium sapphire laser (also Al2O3:Ti or Ti-Sa) [93K1, 97G2, 98F1,
98I1,01A1,03C1,03S1,03S2,03T1,03T2,05F1]. The main dynamical processes
which can be studied by time-resolved spectroscopy are presented in detail in
Chap. 23.

A good overview of the development of this field is presented again in
Ref. [88N1,04O1] of Chap. 23.

25.3.1 Equipment for Time-Resolved Spectroscopy

To obtain time resolution one needs a pulsed or temporally modulated exci-
tation source and possibly a time-resolving detection system.

We start with the excitation sources. One possibility is to chop or modulate
a cw beam. Pulse durations, which can be easily reached with Pockels-cells
or acousto-optic modulators go down to the sub µs regime and reach even to
a few ns.

The other possibility is to use light sources, which already emit pulses.
Flashlamps are available for the ms and µs regimes.

Q-switched neodymium and chromium lasers emit pulses of typically a few
ns duration. The same holds for N2 and excimer lasers and dye lasers pumped
by them.

Shorter pulses from 100 ps down to about 10 fs are produced by mode-
locking ( [98I1] and references therein). Mode-locking means a suitable, phase-
stable superposition of various modes of a laser, which results in short bursts
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of light. The repetition rate νR of mode-locked lasers is given by the inverse
of the round-trip time of the pulses in the cavity TR, and the duration of
the pulses TP is limited by the spectral width ∆ω of the optical amplification
spectrum of the active- or gain medium of the laser.

TRνR = 1 (25.28a)

TP∆ω ≈ 1 (25.28b)

Mode-locked Ar+ lasers reach e.g. pulse durations in the 100ps regime.
Mode-locking can occur spontaneously like for TiSa lasers or it can be induced
actively e.g. by electro-optic or acousto-optic modulators with are tuned to
the round-trip time TR, or passively by saturable absorbers.

If shorter pulses are required than produced by a mode-locked Ar+ or Nd
laser, it is possible to pump with the mode-locked Ar+ (or with the funda-
mental or second harmonic of a mode-locked Nd(YAG-) laser) synchronously
a dye or colour-center laser. Synchronously means in this context that the
round-trip times of both lasers are equal. The dye or colour-center lasers can
emit shorter pulses in the sub-ps to the 100 fs regime due to their wider gain
spectra [87T1,88K1,92S1].

The next step of sophistication were colliding pulse mode-locked (CPM)
lasers pumped usually by a cw Ar+ laser [83F1, 87H1]. Here two counter-
propagating pulses are circulating in the same cavity which contains the gain
medium (usually a dye jet) and the saturable absorber at places chosen for
optimal performance.

Many of these ps to fs lasers became more and more out-dated by the in-
vention of the titanium sapphire laser. The Al2O3:Ti crystal is either pumped
by a cw Ar+ laser or the second harmonic of high power semiconductor laser
diode arrays. The TiSa laser starts mode-locking by itself via the Kerr-lens
mode-locking effect. Typical pulse durations are 100 fs and the corresponding
Fourier-limited width is about 20 meV. The laser is tunable from the near IR
to the red.

The pulses can be amplified e.g. in regenerative amplifiers and shaped e.g.
with pulse stretchers and compressors, the later ones reaching pulse durations
below 10 fs.

A detailed description of these techniques is beyond the scope of this book
and we refer the reader e.g. to [98F1, 98I1, 01A1, 03S1, 03T1, 03T2,05F1] and
references therein.

Tunable fs emission can be also obtained from optical parametric oscilla-
tors (OPO) or -amplifiers (OPA) [97H1].

Presently pulses with a minimum duration of a few fs can be reached in
the IR, the red and the blue [87T1,88K1,92S1,98S2,02M1,02S1]. These pulses
are necessarily spectrally very broad and react very sensitively on a passage
through lenses, windows or other optical elements.

An actual line of development aims at small (shoe-box size) fs-lasers based
on semiconductor laser diodes and glass fibers [98I1].
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Almost deliberate pulse-shaping becomes possible by the development of
diffraction structures combined with suitable apertures [98C1].

The ultimate limit of pulse durations has been discussed in [90K1].
Short THz pulses can be created from Bloch oscillations (see Sect. 23.2)

but also from switching processes of strip lines, difference frequency generation
etc. [94S1,97N2,98C1,00H1,00L1,04K1].

The next aspect is to measure the duration of the laser pulses. These
techniques are partly identical to those which are used to investigate e.g. the
decay time of the luminescence. So we treat them here partly together.

Time constants from cw down to a few ns can be easily monitored by
photomultipliers, semiconductor- or -vacuum photodiodes and a (storage) os-
cilloscope. Faster, but repetitive processes down to the sub ns regime can still
be recorded by sampling oscilloscopes and related techniques.

The range from µs down to a few ps is most conveniently covered by
a streak camera. The way in which such a streak camera works, is shown
schematically in Fig. 25.5.

The light beam, which shall be temporally dispersed falls on a photo-
cathode. The photo-electrons are accelerated and imaged on a luminescence
screen. On their way they are deflected in a capacitor by a voltage varying
linearly with time (see upper part). Consequently one obtains a time resolved
signal on the screen. The time resolution depends for fixed acceleration voltage
and geometry of the set-up on the speed, with which the deflection voltages
varies and on the height of the entrance slit. Both parameters can be changed.
Usually light amplifier stages are incorporated in the tube of the streak camera.

There are single shot cameras which sweep with a certain time delay after
the arrival of a trigger pulse and synchroscan cameras which are synchronized

Fig. 25.5. Schematic diagram of the
operation of a streak camera
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to the repetition rate of a mode-locked laser. These repetition rates are often
in the 80MHz range. Normal to the paper of Fig. 25.5 one can have a photon
energy axis, e.g. if the streak camera is placed behind a spectrometer. On the
screen one obtains then a three-dimensional plot namely signal intensity as
a function of time and photon energy. This allows e.g. to monitor the temporal
and spectral evolution of the luminescence or of a reflected or transmitted
probe pulse. For an example see [98U1].

The regime from a few (tens) of ps down to the shortest optical pulses of
a few fs has to be covered by correlation techniques. For the characterization
of the laser pulse itself one uses autocorrelation techniques. There are many
different ways of these autocorrelation techniques (see e.g. [93K1,97G2,01A1,
03S1,05F1] and references therein). We show here schematically one example
in Fig. 25.6a.

The pulse, which has to be investigated, is split into two parts, which can
be delayed with respect to each other by a variable delay stage. Then they are
focussed together on a nonlinear crystal which produces the second harmonic.
Every beam is frequency doubled by itself, but in the so-called background-
free direction one obtains a signal which is proportional to:

S(τ) =
∣∣∣∣∫ E1(t)E2(t+ τ)dt

∣∣∣∣2 (25.29)

where τ is the relative delay time between the pulses.

Fig. 25.6. Schematic set-up for
an autocorrelation measurement
(a) and for time resolved lu-
minescence spectroscopy using
a Kerr-cell shutter (b) or up-
conversion (c)
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Evidently S(τ) goes to zero, if the pulses do no longer overlap. A problem
with many of these techniques is that they do not give the complete infor-
mation of the pulse and require some additional information e.g. whether the
pulse is Fourier limited or not.

Complete information is available with techniques known as FROG (fre-
quency resolved optical gating) See e.g. [93T1,97G2,98J2,98L3] and references
therein. The basic idea is to measure via an optical gate the spectrum of the
laser pulse at various times. The gate is operated by a part of the laserpulse
itself. These so-called FROG traces contain the complete information on the
electric field E(t) of the laser pulse and allow to detect also a so-called chirp
i.e. a shift of ω of the pulse with time.

Correlation techniques can also be used to determine the temporal de-
velopment of e.g. the luminescence light or a transmitted probe pulse. One
can send the pulse through a sequence of two crossed polarizers with a Kerr-
cell in between. This arrangement transmits light only during the interval
over which a short, suitably polarized gate pulse induces birefringence in the
Kerr medium (Fig. 25.6b). Alternatively the luminescence at frequency ω can
be mixed with a short probe pulse of frequency ωP and the sum frequency
signal is detected as a function of the relative delay between luminescence
and probe pulse (Fig. 25.6c). Examples for these techniques are found e.g.
in [96S1, 99L3] and the references given therein. It should be noted that ev-
ery spectral resolution of the pulses e.g. in a grating monochromator results
in a lengthening of the pulse. Therefore it is necessary to perform the time-
resolution before the pulse is spectrally dispersed. For details of this aspect
see e.g. and [97G2].

The time delay can be controlled with extremely high precision by using
the Pancharatnam phase [97W3].

25.3.2 Experimental Techniques and Results

We proceed in this subsection from longer to shorter times i.e. from the lifetime
(T1) over intraband relaxation (T3) to dephasing times (T2) and coherent
effects.

Before we give some examples for time-resolved spectroscopy, we should
stress again significant differences between bulk or 3d materials and systems
of reduced dimensionality like single and multiple quantum wells. See also
Chap. 23. In bulk material, the wavevector k is a three-dimensional quantity.
If an exciton, or more precisely a polariton hits the surface of the sample, only
the component of k parallel to the surface is conserved, due to the reduced
translational invariance of a surface. Consequently an exciton or polarition
that hits the surface can contribute with a certain transmission probabil-
ity to the emission e.g. to luminescence as long as its parallel component
k‖ of k is

k‖ ≤ ω

c
; |k| ≥ k‖ (25.30a)
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whatever the amount of k is. For ideal quantum wells or wires, the parallel
component of k is in contrast to bulk already the total k, i.e.

k‖ = |k| (25.30b)

For localized states, which tend to appear at the bottom of the bands
due to fluctuations of the composition or of the width of wells or wires or for
quantum dots and ∼islands, k conservation is, however, relaxed.

This has consequences on the luminescence and its dynamics as discussed
e.g. in [92O1] or in Sects. 13.1, 15.1 and 23.4

25.3.2.1 Lifetime Measurements

Luminescence decay measurements are often used to determine the lifetime
of some excited species like excitons. For examples see [95M1, 96S1] and the
remarks to this topic in Sect. 23.5. The statement given already several times
that the luminescence monitors only the fate of a minority of excitons or
electron–hole pairs is also valid here. However, luminescence decay measure-
ments are easy to perform and therefore often used as means to learn some-
thing about T1.

The luminescence decay includes radiative and nonradiative processes,
characterized in the simpliest case by their respecitve time constants Tr and
Tnr. The luminescence decay time Tlum is then given by

1
T1

=
1

Tlum
=

1
Tr

+
1
Tnr

(25.31)

as long as no complications occur as the relaxation from high energy states
to the luminescing ones.

In most cases it will be therefore not correct to identify the luminescence
decay time with the radiative lifetime and this quantity (25.31) with the de-
phasing time.

In ideal, quasi two- or one-dimensional structures without k-relaxing lo-
calization effects, the guided and antiguided or radiative polariton modes have
to be considered. See Sects. 9.3, 13.1 or 15.1. However, at low temperature
and excitation density the luminescence comes generally from more or less
deeply localized states. This is no longer true at higher excitation levels e.g.
in an electron–hole plasma, where all localized states are filled and where the
luminescence and gain spectra reflect the density of states of free particles.
For an example see e.g. Sect. 21.4.

More reliable methods, which involve all excited species, would be time-
resolved pump- and probe beam experiments, which exploit an optical non-
linearity to which all excited species contribute like an excitation-induced
collision broadening of a (exciton) resonance or the band-gap renormaliza-
tion. However, even then the time dependent distribution can influence the
nonlinearity.
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An additional complication may arise through the stimulated emission,
which reduces the effective lifetime of the carriers. In [97M2,99H2] it has been
nicely shown, how this stimulated emission can be manipulated by an addi-
tional pulse with some excess energy, which creates on one hand side additional
carriers, but transiently heats the carrier gas to temperatures, which turn the
carrier gas from an degenerate, inverted population into a non-degenerate one
thus switching off the stimulated emission.

The decay of the diffracted intensity of a laser-induced diffraction grating
(LIG) (see Sect. 25.2) depends both on the lifetime T1 and on the diffusion-
length lD or ∼constant D of the excited species. The decay time constant of
the signal intensity after pulsed excitation of the LIG τs is given in simplest
approximation by [78S1]

1
τs

=
2
T1

+
8πD
Λ2

(25.32)

where Λ is the lateral period of the LIG. A plot τ−1
s = f(Λ−2) gives by its

slope D and its abcissa T1. For an example see e.g. [92O1].
A way to determine an effective lifetime T1 without time resolution is to

use the equation
N = G · T1 (25.33)

where N is the number (or density) of excited species, and G the generation
rate (per unit volume or unit area). This method can be applied if N can
be determined in absolute numbers e.g. by a certain optical nonlinearity like
a certain amount of excitation-induced broadening or bleaching of an exciton
resonance, which can be directly related to the density of present carriers. For
an example see e.g. [98J1,02J1]

25.3.2.2 Intraband and Intersubband Relaxation

The intra- and intersubband-relaxation can be followed most conveniently
by time-resolved luminescence spectroscopy. Examples can be found e.g. in
[98G1,98K2,98K4,98S1].Another possibility is time-resolved pump-and-probe
spectroscopy.

The relaxation of a population e.g. through a tail of localized and radiative
states can be seen in the leading edge of the luminescence dynamics. Often
one finds a delayed onset of luminescence at lower photon energies or a red
shift of the emission maximum with time [93H2,93K2,98U1,99K2]. A detailed
investigation of the intraband relaxation via LO and acoustic phonon scat-
tering has been deduced from time-resolved luminescence spectroscopy e.g. in
ZnSe or CdTe-based quantum wells [98U1].

The evolution of the emission from the resonantly excited states over a non-
thermal, then thermal but hot distribution (i.e. T > Tlattice) and eventually
to a thermal one in equilibrium with the lattice (T = Tlattice), if the lifetime
is sufficiently long, is known also as hot luminescence. Since free states with
large (|k| > ω/c) cannot contribute to the luminescence in quasi two- or
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one-dimensional structures (see above) it is sometimes good to monitor the
radiative recombination to a strongly localized state e.g. a hole bound to an
acceptor, which relaxes k conservation [94H1, 94H2, 94H3, 95L1, 99S1] or to
look for LO phonon replica (see Fig. 23.33). The warning that luminescence
spectroscopy monitors often only the fate of a minority of the excited species
(electron–hole pairs, excitons etc.) holds also here.

Experimentally more difficult is to monitor the temporal evolution of
a cloud of carriers created with some excess energy in time-resolved pump-
and-probe spectroscopy or differential transmission spectroscopy. An example
is found in [92F1]. Here all excited species contribute to phase-space filling
and screening of the Coulomb interaction, however with a weight depending
on their distribution function.

25.3.2.3 Coherent Processes

We come now to some examples of coherent processes. The dephasing time
T2 of the interband polarization and the lifetime T1 are connected by the
inequality

T2 ≤ 2T1 (25.34)

In most cases one has T2 � T1, but the upper limit for T2 is given by
2T1, if there are no other phase-destroying processes than recombination. The
factor 2 comes from the fact that T2 describes the decay of an amplitude and
T1 of a population.

One should note that there are other, partly independent dephasing times
like the one of the intraband polarization or of the spin. See e.g. [92B2,96B2,
96B3,96B4] or Sect. 23.2.

Especially the dephasing time of spin can be much longer than the de-
phasing of the real space part of the wavefunction. This is the case e.g. for
electrons with negligible spin orbit coupling (e.g. for l = 0; j = s = 1

2 ) but not
for almost degenerate hole states (j = 3

2 ,
1
2 , l = 1, s = 1

2 ). See e.g. [96O1,96O2].
The most widely used technique to determine T2 and related phenomena

are FWM experiments. See Sect. 23.2 or [89D1]
Before we give examples, we stress here also some differences between bulk

samples and quantum structures.
A short pulse propagates in bulk material as a polariton wave packet

[83M2, 85H1, 85T1, 93P1, 94B1, 95L2, 95V1, 00D1, 00D2, 01A1] i.e. the polar-
ization and the electric field amplitude propagate together. Consequently
the overlap of two short pulses “1” and “2” in a four-wave mixing experi-
ment, which have a certain relative time delay t12 and which are supposed
to form the grating is an issue, which has thoroughly to be considered for
bulk samples [83M2, 85T1, 00D1, 00D2]. For a single or a few quantum wells
the same holds for pulse propagation in the plane of the well. The situation
becomes however different for the generally used geometry that both pulses
hit the sample under almost normal incidence. The (macroscopic) polariza-
tion created in a quantum well can decay by radiating an electromagnetic
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field, by destructive interference between different oscillators in an inhomo-
geneously broadened ensemble, by dephasing processes like scattering with
phonons, but it stays confined in the well. Therefore there is no problem
for the polarization created by a second, delayed pulse in the well to over-
lap with (the left over of) the polarization of the first pulse. This fact or
advantage compared to bulk material is one of the reasons that a domi-
nant part of coherent spectroscopy is performed in quantum structures or
thin films.

It should be noted that the situation must develop again to bulk-like,
anisotropic behaviour for stacks of quantum wells or superlattices with a total
thickness exceeding the wavelength of the light and an internal spacing small
compared to this quantity. See e.g. [98K3] but also [96H2, 96H3] for larger
spacing.

Another important aspect in time-resolved FWM experiments is to dis-
tinguish between the time delay between the incident pulses t12, which does
not involve a time resolved detection and the “real time” observation of the
diffracted signal appearing at or after the arrival of the second pulse. For
examples see [92G1,96W1] and Sect. 23.2.1.

Now we present some selected experimental techniques. The dephasing
time T2 of the interband polarization can be measured in the time or in the
frequency domain.

Linear measurement in the frequency domain include investigations of the
spectral width of an absorption peak, which is inversely proportional to T2, or
a fit of the reflection feature. However, in both cases one has to know by other
arguments that the spectral feature under investigation is homogeneously but
not inhomogeneously broadened. This is often the case for exciton resonances
at elevated temperatures (e.g. room temperature) but usually not for quantum
structures at very low temperatures, e.g. liquid He temperature.

Spectral hole burning and nondegenerate four-wave mixing (NDFWM)
are nonlinear techniques in the frequency domain which allow to measure
T2 values down to a few tens of fs, which became accessible in the time
domain only very recently. As a first example we cite the dephasing mea-
surements by spectral hole burning in the gain region of an inverted semi-
conductor [93M1]. Another example are CdS and CdSe quantum dots in
glass matrices. Spectral hole burning [93W1, 97W2], non-degenerate four-
wave mixing [97W2] as well as time resolved four-wave mixing [93S1, 94M1]
revealed independently and consistently temperature and excitation den-
sity dependent dephasing times of a few tens of fs. It should be noted
that similar dots in organic matrices can have considerably longer dephas-
ing times, as deduced from spectral widths ≤ 0.1 meV observed in single
dot spectroscopy [96E1]. Spectral hole burning allows with sufficient spec-
tral resolution on the other hand also to deduce extremely long dephasing
times [92M1].

Some further examples for NDFWM with ns and fs pulses can be found
in [92S2,98K5].
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Four-wave mixing spectroscopy in the two-beam, self-diffraction configu-
ration and using two short incident pulses (see Fig. 25.8a) is the usual way to
determine the dephasing time T2 of a resonance in a quantum well or ∼wire
or ∼dot sample in the time domain. See Sect. 23.2.

As an extension of these measurements it is possible to send a prepulse
on the sample, which arrives at a time t13 before pulse one. This allows to
investigate the excitation-induced dephasing, i.e. the decrease of T2 induced
by a well defined incoherent population density if

T1 > t13 > T2 (25.35)

and by a polarization for

T2 > t13 (25.36)

In the latter case also diffracted orders can be observed, which result from
the interference of beams 3 and 1 or 2. For examples see e.g. [98K4].

Recent topics include the investigation of exciton (or carrier) phonon and
exciton-exciton scattering, and its reversibility in the regime of quantum co-
herence also known as coherent control (see Sect. 23.2 or [95B3, 99W2]), the
investigation of the dynamics of Rayleigh scattering and the speckle associ-
ated with it [94D1, 94S2, 96S1, 99L2], or the investigation of the decay of the
excitonic polarization [94B1].

Another group of experiments in the coherent regime is the investigation
of beat phenomena. See again Sect. 23.2 or [96H2,96H3,96M2].

The quantum beat spectroscopy allows to detect a (roughly constant) en-
ergy splitting e.g. between exciton and biexciton transition, even if the in-
homogeneous broadening of the exciton resonance is comparable to or even
larger than this splitting. For examples see e.g. [96A1,99E1].

In superlattices it is possible to observe in the presence of an elec-
tric field applied perpendicular to the layers so-called Bloch oscillations see
Sect. 23.2.1.2.6.

The dephasing of spin states can be investigated by the Hanle effect in
a magnetic field [96O1,96O2].

Examples of time resolved spectroscopy in the THz regime are published
e.g. in [97N2,00H1,00L1,04C1,04K2].

25.4 Spatially Resolved Spectroscopy

Spatially resolved spectroscopy is generally used to investigate the diffusion
length of excited species (carriers, excitons) both in bulk material and in
structures of reduced dimensionality as well as ballistic and tunnelling trans-
port. For the latter group of samples spatially resolved spectroscopy is also
frequently employed to separate one or a few localized states in an inhomo-
geneously broadened resonance.
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25.4.1 Equipment for Spatially Resolved Spectroscopy

The main equipment are various types of microscopes, pinholes or other aper-
tures. Conventional microscopes are limited in their resolution roughly by the
wavelength of the light. Confocal microscopes reach a resolution dmin which
is a factor 1/

√
2 smaller [90W1,98L1,99H1]

Conventional : dmin = 0.61λ/NA (25.37a)

Confocal : dmin = 0.61λ/(NA · √2) (25.37b)

where λ is the used wavelength and NA the numerical aperture. For good
microscope objectives NA can reach values around one.

In both cases, it is easier to use microscope objectives with long working
distance at least for low temperature measurements. This allows to keep the
sample inside a cryostat and the optics outside, which facilitates handling
and alignment considerably. Note that the microscope objectives have to be
corrected for the cryostat window, if the resolution limit shall be reached.
However, better NA can be reached with objectives in the cryostat. For the
use of solid state immersion lenses see [99V1,99V2,03D1,03M1].

The set-up for a confocal microscope is shown schematically in Fig. 25.7.
The improvement of the resolution according to (25.37b) results from the

fact that the excitation beam is focused on a small volume, and that the
emission (luminescence, scattered light, etc.) is re-collected from this excita-
tion spot by the same optics. Excited species, which diffuse out of the fo-
cal “point” contribute hardly to the detected signal. Example can be found
in [98D1,98D2,99L1,02Z1,03D1,03M1,03Z1].

Cathodoluminescence in a scanning electron microscope (SEM) can be also
used for spatially resolved luminescence measurements. If no spatial resolution

Fig. 25.7. Schematic set-up for a con-
focal microscope
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is introduced in the detection system of the luminescence, the resolution is
limited by the diameter of the exciting electron beam or the diffusion length
of the excited species, whatever is larger. For an example see [91H1].

While far-field optics does not allow to reach a resolution below the diffrac-
tion limit given by (25.37), it is possible in near-field optics.

One can either produce, e.g. by lithographic techniques, pinholes in opaque
(metal) layers on the sample, with diameters below the limit given in (25.37).
Due to the close contact, an incident excitation beam leaks through the pinhole
as long as the thickness of the layer is smaller than its diameter. In turn,
luminescence light can leak out of such a pinhole. Problems may arise from
polarization-dependent field enhancement effects at the metal edges of the
pinhole and from strain induced by the metal layer. For examples see [00H2].

More versatile but also more expensive are so-called near field scanning op-
tical microscopes (NSOM) also called frequently (especially in Europe) scan-
ning near field optical microscope (SNOM) [01K1].

The basic idea is the following (see Fig. 25.8)
A fiber tip is produced by pulling or etching [99A1] a monomode glass

fiber. See [95P1] and references therein. The aperture of this fiber can be
considerably below λ in the range down to or even below 100nm. If a light
beam is sent down the fiber it produces an evanescent light field at the tip,
which can couple to the sample, if it is brought very closely (distance � λ) to
the sample surface. Alternatively it can collect luminescence from the sample
from an area which couples to the evanescent light field. For the approach of
the tip to the sample surface and for the scanning over the surface, techniques
are used, which are borrowed from scanning force microscopy. For an uncoated
tip, the evanescent field originates not only from the end of the tip but partly

Fig. 25.8. Schematic drawing of the
fiber tip of a SNOM and of the evanes-
cent light field
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also from its flanks [98F2,98K6]. The aperture can be more tightly defined by
a reflecting metal coating (Al) of the flanks [95P1].

The prize one has to pay for circumventing the diffraction limit of resolu-
tion is a low optical through-put of the fiber tip (or of the pinhole). It depends
on the width of the aperture and on the presence of a metal coating and can
be as low as 10−4 for a single passage.

Therefore one often excites the sample globally by conventional optics
and collects the light locally with the SNOM or vice versa. Local excitation
and collection through the SNOM would give the best spatial resolution but
involves the limited through-put twice i.e. squared.

Note that the reconstruction of spatial structures from SNOM scanning
patterns is a nontrivial task [98F2,99A1].

Present trends in the use of SNOMS aim towards single molecule [96B1,
96H1, 01K3], single quantum dot resolution [96E1], single localization site
spectroscopy [98V1, 00F1] including homogeneity tests [97L1], (ultra-)high
time resolution [93W1,95B1,95W2,99L1], low temperature applications [97B1,
00F1], polarization resolved imaging [96L1,99A1,99B1] or transport measure-
ments [97R1, 99R1]. Nearfield photo-current spectroscopy has been reported
in [97L2]. A light-induced thermal expansion of the SNOM tip has been found
in [96L2].

For a review, also see e.g. [01K2]. In summary, it can be stated that
a SNOM with an uncoated tip gives a spatial resolution around 0.2 to 0.3 µm,
i.e. not much better than a confocal microscope with a solid-state immersion
lens. The first has a larger scanning field on the sample surface, but is much
more expensive than the latter.

A SNOM with a metal-coated tip reaches a spatial resolution below 0.1 µm
but the throughout through the metal coated tip is very small, as already
mentioned.

There are further methods to investigate diffusion and transport e.g. via
laser-induced gratings (see Sect. 25.2 and 25.3) which do not need a special
equipment.

For other approaches to overcome the for field diffraction limit see [03H1].

25.4.2 Experimental Techniques and Results

In the following, we give some examples of experiments, in which spatial res-
olution is crucial.

The diffusion length lD of some excited species can be determined by
various techniques.

A rather simple method is to excite the sample in a narrow spot with
diameter < lD and to observe the luminescence resulting from the recom-
bination spatially resolved. This method has the big disadvantage that the
luminescence light is scattered in the sample and at its surface or interfaces
by any inhomogeneity. Therefore one can in most cases argue, whether a lu-
minescence photon, which is detected at a place outside the excitation spot,
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Fig. 25.9. An ar-
rangement, which al-
lows to detect transport
of electron–hole pairs
through a superlattice

originates from the recombination of an electron–hole pair, which diffused to
this place and recombined there radiatively, or it recombined radiatively in
the excited area and the luminescence photon has been scattered out of the
sample at the place of its detection. For a recent example see [01N1]. Note that
in both cases the luminescence signal will decrease with decreasing distance
from the excitation spot.

If the density of excited species is so high that they result in some optical
nonlinearities, other and more reliable techniques can be used like spatially
resolved pump-and-probe experiments or diffraction from laser-induced pop-
ulation gratings (LIG). In the case of LIG measurements the grating con-
stant has to be varied (see Sect. 25.2.2.3). The diffusion length can be de-
duced under quasi-stationary and pulsed excitation. For examples see e.g.
[84K1,85M1,92O1,98J1,02J1].

The diffusion or tunneling of excited species into the depth of the sample
can be monitored e.g. for a superlattice or for coupled quantum wells by
exciting at the surface of the sample, e.g. in a cap layer and detecting the
luminescence from a wider quantum well with smaller quantization energy in
the depth of the sample, which can be reached by diffusion, ballistic transport
or tunneling as shown schematically in Fig. 25.9.

Examples of the investigation of ballistic and diffusive transport with the
help of a pinhole in a metal coating of the sample are found e.g. in [00H2].

Some further techniques, which have been introduced in the last years for
the investigation of quantum structures are described in the following.

Brightness maps can be obtained by scanning e.g. a quantum well sample
with an electron microscope or a focussed laser beam on the excitation side,
or by a classical, or a confocal microscope or a near-field microscope (SNOM)
on the detection side. Usually one obtains an irregular pattern of brighter and
less bright spots or areas. For examples see e.g. [89C1,90L1,93B1,98V1,00F1].
Sometimes, the luminescence spectra are red shifted at the brighter spots
compared to the less bright ones. Current interpretations include either the
diffusion of excited carriers to and the relaxation into deeper localized states,
resulting e.g. from local variations of the well width, or the diffusion to fast,
nonradiative recombination centers. These centers can be point or line defects
like dislocations [00D3].
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Alternatively, information on the homogeneity of a transition can be ob-
tained from reflection mapping [97L1].

The resolution of an inhomogeneously broadened luminescence band into
a limited number (≤ 100) of individual localization sites can be achieved also
by various types of microscopy or by preparing small and well separated mesa
structures. Examples for both techniques are found in [99K1,99W1,00D3] or
in [98P1], respectively.

See in this context the discussion about the continuous transition from
disorder-induced localization sites via so-called self-organized or ∼assembled
quantum islands or dots to nanocrystals in Sect. 8.13 or 15.4

Single dots or defects can also be observed by conventional microscopy, if
they are sufficiently diluted [96E1,99L4,99L5].

The diffusion of excitons from GaAs wells into GaAs wires has been mon-
itored by near-field spectroscopy in [97R2] and the transport in the well
in [98L2].

To conclude this point on spatially resolved spectroscopy an aspect should
be mentioned which is presently hardly exploited, though it is well known
that a lateral confinement of the resolution ∆x results in an uncertainly ∆kx

according to

∆x · ∆kx ≥ 1 (25.38a)

In SNOM experiments ∆x can be brought considerably below the wave-
length of the light λ i.e.

∆x < λ = 2πc/ω (25.38b)

Consequently ∆kx reaches values

∆kx > 2π/λ = ω/c (25.38c)

This allows to couple to states which are not accessible in conventional
spectroscopy like surface polaritons [97K1] or guided polariton modes in ideal
quantum wells or wires

Furthermore, relative transition intensities can be manipulated via (25.38c)
e.g. for quadrupole transitions, the transition matrix element of which varies
linearly with k.

25.5 Spectroscopy Under the Influence
of External Fields

The external fields which we discuss are mechanical stress/strain, electric and
magnetic fields.

For experimental results see Chap. 16 and the references given therein
and below.
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25.5.1 Equipment for Spectroscopy Under the Influence
of External Fields

For the spectroscopy itself one needs a set-up for linear or nonlinear spec-
troscopy and / or for temporally or spatially resolved spectroscopy as outlined
in Sects. 25.1 to 25.4. In addition and this is what we discuss below, one needs
some means to create and/or to apply the external fields.

Hydrostatic pressure up to some GPa can be applied in diamond anvil
cells. See e.g. [94L1, 94L2] where also references for the construction of such
cells are given. The samples are kept together with a small piece of ruby for
calibration purposes in a liquid or, at low temperatures in liquid/solid He,
which has enough plasticity to reach almost hydrostatic pressure conditions.
The access to the sample is usually through the diamonds. The pressurized
volume is usually tiny for two reasons: big diamonds tend to be expensive
and high pressures are difficult to be realized over large areas with experi-
mentally reasonably accessible forces. Typical sample dimensions are in the
100 × 100 (µm)2 range.

Two-dimensional compressive or tensile strain results generally also in
some lattice distortion in the third dimension in the sense of uniaxial strain
and can be created in different ways, e.g. through

� pseudomorphic growth of thin layers on a substrate with different lattice
constant. This growth-mode is possible only over a thickness below a crit-
ical thickness lc. Above lc lattice relaxation sets in by the formation of
dislocations or by the formation of hillocks or dots (see Sect. 8.13). The
latter tend to alloying and/or segregation during overgrowth.

� mismatch of the thermal expansion coefficients. Even if a material grows
on a lattice matched substrate or is grown in a thickness exceeding lc,
so that it adopts its own lattice constant, strain may occur during the
cooling from the growth temperature (usually a few hundreds of ◦C) to
the measurement temperature e.g. room- or liquid He temperature.

In some cases the quantum well sample has been glued on a new substrate
and the original one has been removed. This procedure allows within some
limits to choose the difference of the thermal expansion coefficients deliber-
ately [89S3].

Inhomogeneous stress with a maximum in the volume of the sample can be
created by applying the pressure via a round plunger (see e.g. [77M1,03N1]).

Magnetic fields can be applied either parallel to the propagation direction
of k i.e. of the incident light beam (Faraday configuration) or perpendicular to
it (Voigt configuration). Since one has often k also normal to the plain of the
quantum wells, the Faraday configuration leads to a complete quantization
of the electron states in all three dimensions for sufficiently strong fields in
quantum wells.

Design questions, which have to be answered for the design of a magnet and
which enter in the costs, concern e.g. the diameter of the bore, the homogeneity
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of the field, the volume over which it is homogeneous, and the arrangement
of the windows.

For magnetic fields up to approximately 14 T one uses generally supercon-
duction coils. Fields up to 25 T can be reached with resistive coils, e.g. of the
Bitter type and 35 T with hybrid magnets which consist of an outer super-
conducting coil and an inner resistive one. Such set-ups are available e.g. at
the high magnetic field laboratory in Grenoble.

Even higher fields up to 100 T can be produced only in a pulsed way by
discharging a capacitor bench through the coil. Such facilities exist e.g. at
the university of Tokyo or at the Humboldt Universität zu Berlin [81K1].
For recent references see e.g. the Conferenc Proceedings of the International
Conferences on High Magnetic Fields in the Physics of Semiconductors [97H3].

Explosive flux compression is also possible, but less frequently used in
semiconductor optics, because every shot is connected with the loss of the
sample.

Electric fields are most conveniently applied by growing the quantum struc-
ture in the intrinsic region of a pin diode, which is then operated in the block-
ing direction.

Since some semiconductor materials cannot be made n- and p-type, or only
with considerable effort, like many of the II–VI compounds, one can also apply
electric fields via metal contacts on high resistivity semiconductur structures.
See e.g. [89W1].

Finally it should be mentioned that high electric fields can result in
strained superlattices or mutliple quantum well structures from the piezo-
effect. The piezoeffect appears if a sample is deformed which has at least
partly ionic binding and no center of inversion. The electric fields in quantum
well structures tend to be higher for materials with the hexagonal wurtzite
type structure than for the cubic zincblende type structure. It tends also to
be higher for the more ionic bound II–VI compounds compared to the III–V
materials. In hexagonal CdSe/CdS and Ga1−yInyN/GaN superlattices piezo-
fields up to 107...8 V/m have been detected [95L3].

25.5.2 Experimental Techniques and Results

Measurements under hydrostatic, bi- or uniaxial stress allow to investigate
shifts and splittings of energy levels like the conduction or valence band,
or – in other words – to determine the corresponding deformation po-
tentials. For the definition of this quantity see e.g. [82L1] and references
therein. A splitting of otherwise (not accidentally) degenerate levels can oc-
cur only if the symmetry of the system is lowered i.e. not through hydro-
static pressure. A frequently observed example is the splitting of the Γ8 va-
lence band of zincblende-type compounds under biaxial stress. See Sect. 16.3
or [01L1]

Another frequently investigated effect is the shift (and splitting) of phonon
states with strain, resulting in deformation potentials for phonons.
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The dominant part of work is devoted to spectroscopy under the influence
of external magnetic fields.

The phenomena and material parameters which can be observed or deter-
mined are manifold, and we list a selection of the most prominent ones below.
Since there are ample examples and references in Sect. 16.1 we give only very
few others here:

� the diamagnetic shift, i.e. a shift quadratic in the magnetic field to higher
energies, allows to determine the extension of the wavefunction of the
species under investigation,e.g. an exciton, in the plane normal to the
magnetic field. In the usual Faraday configuration this is the exciton Bohr
radius in the quantum well. For very high magnetic fields this quantity
starts to decrease with increasing field strength with consequences e.g. on
scattering processes or localization.

� The Zeeman-splitting allows to determine the g-factors of various excited
species like excitons. Since it is an off-diagonal element in a matrix repre-
sentation it mixes also the states and introduces some additional oscillator
strength to otherwise forbidden states. Note that a finite zero-field splitting
can quench the Zeeman splitting for small fields.

A further aspect is the avoided crossing of a B-field-induced fan of levels.
This fan is especially obvious for Landau levels into which the higher exciton
states and the continuum states develop, if the product of cyclotron frequency
ωc and the dephasing time T2 fulfill

ωcT2 > 1 (25.39)

The observation of the Landau levels e.g. in the interband spectroscopy, or
of the cyclotron resonance i.e. the transition between adjacent Landau levels
in one band, allows to determine the effective masses, in simplest case via

ωc =
eB

meff
(25.40)

The selection rules are for simple parabolic bands complementary i.e. in-
terband transitions are allowed between Landau levels with equal quantization
number for electrons and holes

nLLVB = nLLCB (25.41a)

while within one series the relations

∆nLLVB = ±1 or ∆nLLCB = ±1 (25.41b)

hold.
The cyclotron absorption can be observed depending on the material pa-

rameters and the magnetic field in EPR (electron paramagnetic resonance)
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like experiments, in Fourier IR-spectroscopy, in electronic Raman scattering
or in THz spectroscopy. For examples see [94S1].

The g-factor of carriers or of excitons can be also determined from spin-
flip Raman scattering or from spin quantum beats or the Hanle effect. The
g-factors of defects and doping centres are generally deduced in EPR.

Semimagnetic semiconductors (also known as diluted magnetic semicon-
ductors), i.e. structures containing e.g. manganese or iron ions, can have ex-
tremely high g-factors [94G1] and it is even possible to tune the band structure
by a magnetic field [96Y2]. Furthermore such structures allow to investigate
magnetic polarons, i.e. carriers with a spin polarization cloud. See e.g. [96Y2]
Sects. 10.2 or 16.1.2.

Further important experiments, which concern the integer and fractional
quantum Hall-effect and its interpretation, are not subject of this subvolume
but can be found in the Landolt–Börnstein subvolume on transport in quan-
tum structures [01L2].

The optical spectroscopy of semiconductor quantum structures under elec-
tric fields is mainly centered around the following phenomena. See Sect. 16.2

� the quantum-confined Stark effect (QCSE). This effect includes shifts and
transfer of oscillator strength of various exciton levels caused by an electric
field perpendicular to the wells (or wires). While the Stark effect of excitons
is frequently obscured in bulk material by field- or impact ionisation, it
can be nicely observed in quantum structures as long as the field is applied
normal to the confining potential.

� the observation of Bloch oscillations in the minibands of superlattices and
of the Wannier–Stark ladder connected with it.

� tunneling, ballistic or diffusive transport through quantum structures.
Though this is predominantly a topic treated in [01L2], there are also
several examples that transport can be detected optically.

� electroluminescence. This term is not very precisely determined. In a closer
sense it means excitation of some luminescent center by impact excitation
or ionization through free carriers accelerated in an applied electric field.
This effect is less frequently studied in quantum structures. For an example
see [97A1]. In a wider sense, electroluminescence includes all types of light
emission caused by the application of a voltage and includes then also
luminescence- and laser diodes, which form the main part of applications
of semiconductor quantum structures in optics. For nano-optoelectronics
see e.g. [92E1,02N1]

� piezo-superlattices or multiple quantum well have a build-in electric field,
resulting from strained layers. This field tilts the bands and shifts the
transition energies to the red similarly as in nipi-structures or the exci-
ton ground state in the quantum confined Stark effect. The main tasks
are here to determine the field strength, and the band-alignment without
field. Under high excitation, the piezo-field can be screened by the spatial
separation of carriers. For examples see [95L3].
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In some selected cases one applies simultaneously two or three of the external
fields discussed here. Examples are given in [01L1].

25.6 Problems

1. What is the blaze wavelength of a grating? How does it work? Why are
the efficiencies for + and − first order different even for normal incidence?

2. Which type of lens (plane-convex, bi-convex) would you choose to focus
a parallel beam? And which to yield a 1:1 imaging?

3. Is it best to place a crystal polarizer (like a Glan-Thompson) in a parallel,
a convergent, or a divergent beam or in the focus?

4. Discuss the advantages and disadvantages of a spectrometer employing
a grating or a prism as dispersive element.

5. Inform yourself about the advantages of modulation spectroscopy.
6. What happens if you place an optical component with some coatings or

some adhesive layers at the focal point of a high-power laser?
7. What do you see when you look into a phase-conjugating mirror? Solve

this problem by thinking, do not do it!
8. Have a good idea, which you like yourself, for an experiment on semi-

conductor optics. Convince some funding agency that your idea has great
prospects, both in basic and applied research even if you are yourself
rather sceptic about the second aspect, and that it belongs to the best
10% in this universe and this century, and so acquire some 300 kilo units
of Euro, US� or another comparable currency to buy your equipment, pay
overheads, hire coworkers etc. Set up your own experiments. If and when
it works, please send me some comments or addenda for this or any other
chapter based on your own experiences with Murphy’s Laws [86M1].
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26

Group Theory in Semiconductor Optics

By K. Hümmer and C. Klingshirn

In this chapter, we shall give an outline of group theory, its connection to
quantum mechanics, and its applications in semiconductor optics. We shall
present only the most important aspects and rules and generally give no proofs
of the various relations.

The information compiled here has been taken from different books on
group theory and on crystallography, which are listed at the end this Chapter,
namely [60H1,64K1,64T1,67S1,74B1,88L1,90I1,92I1,94H1,96Y1,01L1]. Very
good collections of tables found in the books by Koster et al. and by W. Ludwig
et al. [63K1,88L1], from which most of the Tables 26.6 – 26.15 are taken.

26.1 Introductory Remarks

Noether’s theorem of Sect. 3.1.3, which we have already used several times in
this book, states that a conservation law follows from every invariance of the
Hamiltonian. The classic examples are the following.

� IfH is invariant under an infinitesmally shift in time, then the total energy
of the system described by this Hamiltonian is conserved.

� If H does not depend on a particular spatial coordinate xi, i.e., if it is
invariant under an infinitesimal translation along xi, then the component
of the momentum pi in the direction xi is conserved.

� If H has spherical symmetry (as for a single atom, for example) it is
invariant with respect to an infinitesimal rotation dφ around any axis,
and a conservation law for the angular momentum follows for L2 and for
one component of L, e.g., Lz.

In a crystal the first condition remains valid in the absence of explicitly time-
dependent (perturbative) terms, i.e., energy is still conserved.

The second condition is no longer valid, but is replaced by invariance
with respect to translations by integer multiples of the ai (Sect. 7.2). We
have already presented this subject and its consequences in some detail, e.g.,
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in Sect. 3.1.3 and Sects. 7.1–5, 8.1, but we shall return to it briefly in this
chapter, too.

The third condition concerning infinitesimal rotations likewise no longer
applies to crystals. Instead we have, depending on the crystal structure, only
invariance with respect to rotations around 2-, 3-, 4-, and 6-fold symmetry
axes. This means that strictly speaking L is not a good quantum number
in crystals, but later, in connection with compatibility relations, we shall see
that arguments based on L2 and/or Lz can still sometimes be used, if with
considerable care. In the following sections we give a short introduction to
group theory (Sect. 26.2) and to representations and characters (Sect. 26.3).
Then we present the crucial part, namely the connection between the Hamil-
tonian and group theory, in Sect. 26.4. Finally we give applications both of
general nature and others which are more or less specific to semiconductors
Sects. 26.5, 26.6. The aim of this chapter is not to give the reader a deep
insight into group theory and its implications but rather a feeling and under-
standing of what the γi mean that are met in bandstructures as in Sect. 8.6,
and to enable him or her to calculate simple selection rules.

26.2 Some Aspects of Abstract Group Theory
for Crystals

A group G is a set of elements {Xi} and a connection or composition be-
tween the elements which is often called “multiplication” with the following
properties:

� Closure: if Xi and Xj are elements of G (Xi, Xj ∈ G) then the “product”
is element of G.

XiXj = Xk ∈ G . (26.1)

� Associative law:
Xi (XjXk) = (XiXj)Xk . (26.2)

� There is a neutral element or identity operation or ∼mapping E in G with

EXi = XiE = Xi . for Xi ∈ G . (26.3)

� There is an inverse element X−1
i for each Xi ∈ G with

X−1
i Xi = XiX

−1
i = E . (26.4)

The number g of different elements in a group gives the order of the group.
There are finite and infinite groups. If the commutative law holds, i.e., if

XiXj = XjXi for all XiXj ∈ G (26.5)

the group is said to be Abelian.
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26.2.1 Some Abstract Definitions

A group is called cyclic if it can be generated by one of its elements G =
{X,XX = X2, XXX = X3, . . .}. If one of these elements is the unit element,
Xk = E, then G is finite and cyclic of order k.

A subset H of a group G is called a subgroup of G if H obeys the group
axioms. The whole group G and E are called trivial or improper subgroups;
the others are called proper subgroups and one writes H < G.

A set of elements from which the complete group can be obtained by
composition, is called a set of generators of G.

A cyclic group obviously has exactly one such generator.

26.2.2 Classification of the Group Elements

A distribution of the elements into subsets such that each element belongs
to exactly one subset, i.e., two different subsets have no element in common,
is called a classification. There are two important methods to classify the
elements of a group: (1) coset decomposition and (2) partition into conjugacy
classes.

1. A group can be decomposed into left or right cosets relative to a subgroup,
say H = {Y }, by multiplying each Xi ∈ G with the elements of H from
left Xi{Y } or right {Y }Xi, respectively. Exactly one of these cosets is a
group, namely the subgroup H .

2. An element Xj is called conjugate to Xi, if an element Xk ∈ G exists for
which the following holds:

X−1
k XiXk = Xj .

IfXj is conjugated toXi thenXi is also conjugated toXj with the element
X−1

k ∈ G, which must exist. The subset of the elements of G, which are
conjugate to Xi, Xk running through G, is the conjugacy class of Xi. The
number of elements in a conjugacy class is called its length l, which may
be different for different conjugacy classes, but is always a factor of g.
Elements of the same conjugacy class have the same order with respect
to their cyclic group.

An element for which
X−1

k XiXk = Xi (26.6)

holds for all Xk ∈ G is called self-conjugate in G. Therefore, in Abelian groups
each Xi ∈ G forms a conjugacy class by itself of length l = 1.

Conjugacy is also defined for subgroups. Of special interest are self-
conjugate subgroups, also called normal or invariant subgroups for which
holds:X−1

k {Y }Xk = {Y } for all Xk ∈ G where {Y } = H is a proper subgroup
of G : H < G. Then, {Y }Xk = Xk{Y }, i.e. for a normal subgroup the right
and left coset decomposition coincide.
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The cosets of G relative to a normal subgroup H are elements of a group,
called the factor group F , sometimes denoted as F = G/H . The unit element
of F is the normal subgroup H .

26.2.3 Isomorphism and Homomorphism of Groups

Isomorphism is a special case of the more general concept of homomorphism.
An isomorphism is a one-to-one correspondence between the elements of
groups, which is preserved during multiplication. Two groups G and G′ with
elements Xi and X ′

i are isomorphic if (after suitable ordering of their ele-
ments) there is a reversible mapping of G onto G′: Xi ↔ X ′

i, and for each
pair Xi, Xj ∈ G the product of the images X ′

i X
′
j ∈ G′ is equal to the image

of the product: X ′
iX

′
j = (XiXj)′.

The isomorphism yields a classification of all possible groups into isomor-
phism classes, which is sometimes called an abstract group. The abstract
group displays the common group theoretical features of isomorphic groups
independent of the realization of their elements.

In contrast, a homomorphism maps G onto a possibly smaller group G′

and is then an irreversible, many-to-one correspondence between G and G′,
which is preserved during multiplication; more formally: X ′

iX
′
j = (XiXj)′.

26.2.4 Some Examples of Groups

1. the positive and negative integers including zero {0,±1,±2} with normal
addition as connection. They form an infinite Abelian group.

2. the positive rational numbers p/q with p = 0, 1, 2, 3, . . . and q = 1, 2, 3, . . .
with normal multiplication as connection. They again form an infinite
Abelian group.

3. Symmetry operations of any physical object, e.g., atoms, molecules or
crystalline solids, by definition map object onto itself. Symmetry opera-
tions are geometric mappings that leave all distances invariant, so-called
isometries or rigid motions. They form a group, called the symmetry group
of the object. In any symmetry group the unit element is the identity map-
ping that leaves every point fixed.

4. In the following example we shall use a model in order to explain the de-
finitions of abstract group theory given above. The symmetry operations
that map an equilateral triangle onto itself form a group (Fig. 26.1). The
symmetry operations are: E, the unit element, which simply leaves the
triangle unchanged; J and K are rotations of +120◦ and 240◦ = −120◦,
respectively, around the axis through the center of the triangle and nor-
mal to it; L, M , and N are rotations of 180◦ around the axis a, b and
c. In the latter case the upper and lower faces of the triangle must be
indistinguishable. Alternatively, there can be mirror planes normal to the
triangle that contain the a-, b- or c-axis. The symmetry elements at which
the rotations are carried out are called either a 3-fold or 2-fold axis as the
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cyclic group of J is of order 3: JJJ = J3 = E, J2 = J−1 = K. That of L
is of order 2: LL = L2 = E, L = L−1. In crystallographic groups they are
denoted by 3 and 2, a mirror plane by m. In 3-dimensional space these
are the symmetry groups of a trigonal trapezohedron, denoted as D3 = 32
(Schönflies and Hermann-Mauguin notation) and of a trigonal pyramid,
denoted as C3v = 3m.
The composition (multiplication) of the symmetry operations is to per-
form one after the other in a well-defined order. A convenient way to
display a finite group (of small order) is the multiplication or group table
(Table 26.1). It is a square array, where the product XiXj is listed at the
intersection of the row of operation Xi and the column of operation Xj .
XiXj means first apply Xj and then Xi on a point. In every row and in
every column of the group table, every operation of the group appears
once and only once.
The group table of D3 and C3v, as well as the group of all permutations
of three different symbols, say (abc), can be made identical apart from the
names or symbols of the operations: E = (abc), J = (cab), K = (bca), L =
(acb), M = (cba), N = (bac). There exists a one-to-one correspondence
between the operations of the three groups: they are isomorphic. They are
of order g = 6.
The fact that the group table is not symmetric with respect to the main
diagonal shows that the group is non-Abelian. In fact, it is known as the
non-Abelian group of lowest order.
The following proper subgroups can be deduced as can be seen from an
inspection of the group table:

{E, J,K}, g = 3; {E,L}, {E,M}, {E,N}, g = 2 . (26.7)

Table 26.1. Multiplication table of group D3. We give the names of the elements
and the operations corresponding to Fig. 26.1

E J K L M N

E E
+120
J

−120
K

180a

L
180b

M
180c

N

J J
+120
K

−120
E

180a

N
180b

L
180c

M

+ 120
K

+120
K

−120
E J

180c

M
180a

N
180b

L

−120
L

−120
L M

+120
N

180b

E
180c

J
180a

K

180a

M
180a

M
180b

N
180c

L K
+120◦

E
−120
J

180b

N
180b

N
180c

L
180a

M
−120◦

J K
+120
E

180c 180c 180a 180b +120◦ −120◦
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The coset decomposition relative to the subgroup {E, J,K} gives one more
coset {L,M,N}, i.e. left and right cosets are identical, and {E, J,K} is
a normal or invariant subgroup. The coset decomposition relative to the
subgroup {E,L} gives two additional left cosets {J,N}, {K,M} and two
more right cosets {J,M}, {K,N} as can be seen from an inspection of
the group table.
In the abstract group mentioned above there are three conjugacy classes,
or in short simply Ci classes, as can be verified using the group table:

C1 = {E}, l = 1; C2 = {J,K}, l = 2; C3 = {L,M,N}, l = 3 . (26.8a)

For example, the operations J and K belong to the same class since

N−1JN = NM = K and with N−1 = N . (26.8b)

Geometrically, conjugacy means the search for symmetrically equivalent
symmetry elements. They must be of the same type, or from the point of
view of group theory, their cyclic groups must be of the same order. In
fact, the two 3-fold axes J andK are symmetrically equivalent through the
three 2-fold axes or mirror planes L,M,N and vice versa. The 2-fold axes
or mirror planes are symmetrically equivalent through the 3-fold axes.

5. The set of all symmetry operations (isometries) of an idealized infi-
nite crystal structure forms a crystallographic space group. In three-
dimensional space we distinguish 230 types of crystallographic space
groups of order g = ∞. The most characteristic feature of a crystal is
that its structure can be embedded into a lattice. The existence of a lat-
tice, i.e. the presence of three-dimensional periodicity, gives rise to diffrac-
tion effects, as first shown by Laue, Friedrich and Knipping. In terms of
group theory this corresponds to the existence of a discrete translation
subgroup T of every space group G. The symmetry operations of T are
translations by lattice vectors Rn. Choosing a suitable basis of lattice
vectors, a so-called primitive basis, each lattice vector is represented by a
linear combination of the basis vectors with integer coefficients (see also
Sect. 7.2):

Rn =
∑

i

niai . (26.9)

Isometries are special affine mappings described by a system of equations

x̃ = Dx + R = (D, R)x . (26.10)

The pair (D, R) consists of the (3×3)-matrix D, the rotational part, and
the (3×1)-column R, the translational part. For isometries, i.e., distance,
preserving mappings, the condition detD = ±1 must be obeyed.
The lattice of translation vectors of a crystal imposes restrictions on the
isometries occurring in space groups. The rotational matrix D has to obey
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Dk = E, with the order k = 2, 3, 4, 6. That means a crystal only allows
rotations by multiples of 180, 120, 90, and 60◦.
Therefore, in crystallographic space groups the following symmetry oper-
ations occur. Their symbols are given in the Hermann-Mauguin notation.
a) Identity (E, 0). Symbol 1: E is the unit matrix.
b) Translations by lattice vectors (E,Rn).
c) Rotations and screw rotations detD = +1

i. Rotations. Symbols k = 2, 3, 4, 6 according to their order k; for
each one exists a line of (invariant) fixed points, the rotation axis.

ii. Screw rotations. Symbols kn with n < k : (D,R)k = (E,Rn)
must hold where Rn is a lattice translation; (D,R) can be de-
composed into a rotation around an axis (screw axis) and a trans-
lation by the screw vector parallel to this axis R‖ = n

k R0, where
R0 is the shortest lattice vector along the screw axis.

d) Inversion D = −E. Symbol 1̄: exactly one point is fixed, the center
of inversion or center of symmetry.

e) Rotoinversions detD = −1. Symbols k̄, k �= 2: it may be decomposed
into a rotation followed by an inversion.

f) Reflection and glide reflection detD = −1, D2 = E:
i. Reflection (D,R)2 = (E,0). Symbol m: the fixed points form

a plane at which reflection of space is performed, the so-called
mirror plane. It is a special rotoinversion 2̄ = m where the axis
stands normal to the mirror plane.

ii. Glide reflection (D,R)2 = (E,Rn). Symbols a, b, c, n, d: may be
decomposed into a reflection through a plane (glide plane) and a
translation by the glide vector parallel to this plane.

As already mentioned above, the subset of isometries {(E,Rn)}, i.e.,
translations by lattice vectors, forms a subgroup T of the space group
G. It is normal or invariant since the left and right coset decomposition
coincide. The symmetry operations in each coset relative to T have the
rotational part D in common since the product of any space group op-
eration (D,R) and any lattice translations (E,Rn) does not change the
rotational part D. The factor group F = G/T where the cosets are the
elements of F , is isomorphic to the point group P of the space group G.
This point group P of the crystal can thus be obtained directly from the
coset decomposition relative to T by considering only the rotational parts
given by (3 × 3)-matrices.
To know the point group P or the crystal class of the space group G of the
crystal structure is important with regard to, e.g., the symmetry of the
form of the crystal, the symmetry of the lattice and thus of the reciprocal
lattice and the symmetry of a diffraction pattern.
There is one further important aspect of this coset decomposition, namely
the denotation of space groups by means of the Hermann-Mauguin sym-
bols used in crystallography. The first character is the letter of the type of
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the Bravais lattice of the structure given by the translation subgroup T .
P means primitive; A,B and C mean one face is centered; I means body
centered; F means all faces are centered; R means special centering type
in trigonal crystal classes. Then follows a finite set of symbols (maximum
three) of generators that when combined with {T } permits the generation
of all space group operations.

The following are some examples of space groups for important types of
semiconductor structures.

1. Wurtzite structure. Prototype: ZnO; other examples CdS, CdSe, GaN.

G : P63mc; P : 6mm = C6v (Schönflies notation) .

The point group symbol in the Hermann-Mauguin notation is simply de-
rived by replacing the screw axes by their rotation axes and the glide
planes by their mirror planes.
6mm belongs to the hexagonal crystal system. It is of order g = 12 with
the following symmetry operations. Rotation axis 6 contains the opera-
tions 6+ = rotation by 60◦, 6− = rotation by −60◦, 3+ = rotation by 120◦,
3− = rotation by −120◦, and 2 = rotation by 180◦. There are two triples
of mirror planes. In each triple the symmetrically equivalent mirror planes
enclose an angle of 60◦. However, the mirror planes of different triples are
rotated by 30◦ against each other. Thus, they are not symmetrically equiv-
alent (there is no symmetry operation rotation by 30◦) and they belong to
different conjugacy classes, which is why the Hermann-Mauguin symbol
6mm has two sets of non-equivalent mirror planes indicated. Therefore, in
the single group there are six (conjugacy) classes denoted in the Schönflies
notation as (Table 26.6): E, 2C6, 2C3, C2, 3σd, 3σv.

2. Zincblende structure. Prototype: ZnS, other examples III–V-compounds
like GaAs, InP, or I–VII compounds like the Cu-halides or AgBr.

G : F 4̄3m; P : 4̄3m = Td .

4̄3m belongs to the cubic crystal system. It is of the order g = 24. It is non-
centrosymmetric. The classes of the single group contain (Table 26.10),
apart from the identity class, the operations 3+ and 3− of four diagonal
3-fold axes (8C3) of a cube, 2-fold operations rotation by 180◦ of three
axes 2 = 4̄2(3C2), the operations 4̄1 = 4̄+ and 4̄3 = 4̄−(6S4) of the three
4̄ rotoinversion axes along the axes of a cube and 2-fold operations at six
diagonal mirror planes (6σd)

3. Diamond structure Prototype: C, other examples Ge, Si, Cu2O, NaCl

G : Fd3̄m; P : m3̄m = Oh

m3̄m is centro-symmetric and belongs to the cubic crystal system. It is of
order g = 48. It can be considered as the direct product of 4̄3m = Td and
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the point group 1̄ = Ci. Therefore, we also have the classes (Table 26.14)
Ci, 6C4 (since 4̄ × 1̄ = 4), 8C3i (since 3 × 1̄ = 3̄ = C3i) and 3σh (since
2 × 1̄ = m).

The outer or direct product of two groups G = {Xi} and G′ = {X ′
i} is

again a group G′′ which consists of all ordered pairs Xi, X ′
j. The definition of

the connection of the elements of G′′ is

(Xi, X
′
j)(Xk, X

′
l) = (XiXk, X

′
jX

′
l) , (26.11)

and the order of G′′ is g · g′.

26.3 Theory of Representations and of Characters

Any set of elements which fulfils the multiplication table of a group is called
a representation of this group. The operations in Fig. 26.1 can be considered
as a representation of D3.

In a stricter sense, to which we shall stick from now on, we consider a
representation to be a set of (n×n) matrices (n = 1, 2, 3, . . .) which fulfils the
multiplication table with normal matrix multiplication as the connection.

The name of a certain representation is given by a label α used as an index.
With Γ α we denote a set of g matrices that fulfil the multiplication table

of group G. Γ α(Xi) is the matrix that represents the element Xi of G and
Γ α(Xi)jk is the element of this matrix in row j and column k.

The normal matrix multiplication then results in

Fig. 26.1. The symmetry operations which map an equilateral triangle into itself
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Fig. 26.2. The reduction of a reducible representation into irreducible ones

Γ (Xi, Xj)kl =
∑

h

Γ α(Xi)k,hΓ α(Xj)h,l . (26.12)

We introduce nα to denote the dimension of the (nα × nα) matrices of a
certain representation α; nα is the same for all matrices of one representation
Γ α.

There is an infinite number of representations for one group. If Γ α is a
representation and X is a non-singular matrix of the same dimension nα then
{X−1Γ αX} is again a representation.

In the following we shall destill from this infinite number of representations
some with special properties (the so-called irreducible representations) and
present some of their characteristic properties.

Table 26.2 gives four examples of representations of D3, two one-dimen-
sional ones, a two- and a three-dimensional one. A representation Γ α is called
reducible if a non-singular matrix Y can be found such that all matrices
Y −1Γ α(Xi)Y acquire the same block form. This means there are square
sub-matrices and otherwise zeros; see Fig. 26.2. From the properties of ma-
trix multiplication it follows immediately that only submatrices at identical
positions are connected with each other in multiplication. This means that
the submatrices of all Xi which are located in the same position, alone form
a representation.

A representation Γ α which can be brought into such a block form of sub-
matrices is called reducible. A representation Γ α, for which no matrix Y can
be found to bring all Γ α(Xi) into the same block form is called irreducible.
The representations Γ 1 − Γ 3 in Table 26.2 are irreducible; Γ 4 is evidently
reducible. It is already expressed in the desired block form.

We concentrate in the following on irreducible representations.
Two irreducible representations Γ α, and Γ β are called equivalent, if there

exists a non singular matrix S with

S−1Γ α(Xi)S = Γ β(X i) for all Xi ∈ G (26.13)

With this definition of equivalence we arrive at a very important state-
ment: There exist exactly as many non equivalent ( = different) irreducible
representations of a group as the group has classes Ci.

For D3 we found three classes (see above). Consequently D3 has three
nonequivalent irreducible representations. These are the Γ 1,Γ 2 and Γ 3 in
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Table 26.2. The irreducible representation in which all elements are repre-
sented by 1 is called the trivial representation and is always called Γ 1. The
representations of the identity element are always unit matrices with 1 on the
main diagonal and zeros otherwise. For irreducible representations Γ α and
Γ β there exists an orthogonality relation∑

Xi

Γ α(Xi)kpΓ β(X−1
i )ql =

g

nα
δαβδklδpq (26.14)

with δkl and δpq being the Kroneckers symbol and

δαβ =

⎧⎨⎩
0 if Γ α and Γ β are not equivalent
1 if Γ α and Γ β are identical
�= 0 but undefined if Γ α and Γ β are equivalent

A characteristic quantity which is identical for all equivalent irreducible
representations is the trace of the matrices

χα(Xi) = TrΓ α(Xi) =
∑

j

Γ α(Xi)jj . (26.15)

These traces are called characters. Two equivalent representations have
the same characters since

TrΓ α(Xi) = TrS−1Γ α(Xi)S . (26.16)

We can thus write down the characters of all nonequivalent irreducible
representations in a table. Since the characters of conjugate elements are the
same, as seen from a comparison of (26.6) and (26.16), it is sufficient to give
the characters for the different classes. This results in a square scheme of
numbers. Table 26.3 gives as a first example the character table for the group
D3. It is identical, by the way, to that of the group C3v mentioned above.

As already mentioned, Γ 1, in the first line is always the trivial representa-
tion, while the first column gives the dimensionality nα of the representation
Γ α.

The nomenclature χα(Ci) means the character of the irreducible represen-
tation a for the class Ci.

Introducing the number hi of elements of the class Ci, with a total num-
ber r of classes and of irreducible representations in the group, we find the
following relations for the irreducible representations

r∑
i=1

hiχα(Ci)χ∗
β(Ci) = gδαβ , (26.17a)

r∑
α=1

hiχα(Ci)χ∗
α(Cj) = gδij . (26.17b)
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Two representations Γ α and Γ β are equivalent if χα(Xi) = χβ(Xi) for all
Xi. If a representation Γ is given, it contains the irreducible representation
Γ α pα times in the sense of a decomposition into block form:

Γ =
∑
α

pαΓ α with pα =
∑
Xi

χ(Xi)χ∗
α(Xi) . (26.18)

This means that it is not necessary in practice to try out all possible
non singular matrices since one can immediately deduce from (26.18) the
decomposition of a given representation into irreducible ones. The reducible
representation “Γ 4” in Table 26.2 can consequently be decomposed into

Γ 4 = Γ 2 ⊕ Γ 3 . (26.19)

This process also explains the use of the symbol ⊕.
The direct product Γ α ⊗ Γ β of two representations Γ α and Γ β with di-

mensions nα and nβ , respectively, is a new representation of dimension nα ·nβ .
The new set of matrices is obtained in the following way

Γ α(Xi)⊗Γ β(Xi) =

⎛⎜⎝ Γ α(Xi)11Γ β(Xi) . . . Γ α(Xi)1nαΓ β(Xi)
...

Γ α(Xi)nα1Γ β(Xi) . . . Γ α(Xi)nαnαΓ β(Xi)

⎞⎟⎠ (26.20)

The direct product of two representations is again a representation of the
group. The direct product of two irreducible representations can be reducible
or irreducible.

For the characters of the direct product one finds

χ (Γ α ⊗ Γ β) = χα · χβ . (26.21)

The decomposition of the products of the irreducible representations of a
group is usually given in tables:

Γ α ⊗ Γ β =
∑

γ

gαβγΓ γ (26.22)

with

Table 26.3. The character table of the group D3

Ir
re

d
u
ci

b
le

re
p
re

se
n
ta

ti
o
n
s

Classes of elements

D3 E 2C3 3C2

Γ 1 1 1 1

Γ 2 1 1 −1

Γ 3 2 −1 0
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Table 26.4. Multiplication table for the irreducible representations of the group
D3

D3 Γ 1 Γ 2 Γ 3

Γ 1 Γ 1 Γ 2 Γ 3

Γ 2 Γ 2 Γ 1 Γ 3

Γ 3 Γ 3 Γ 3 Γ 1 + Γ 2 + Γ 3

gαβγ =
1
g

∑
Xi

χα(Xi)χβ(Xi)χ∗
γ(Xi) . (26.23)

We give the direct products of the irreducible representations of D3 in
Table 26.4.

The criterion for a given representation to be irreducible is

Γ α irred ⇔
∑
Xi

|χα(Xi)|2 = g . (26.24)

A representation of a group is also a representation of each of its subgroups.
An irreducible representation of a group can be a reducible or irreducible
representation of the subgroup. Which possibility applies can either be checked
with formula given above or it can be found in the tables. In Table 26.5 we
give these so-called compatibility relations of the irreducible representations
of D3 with the irreducible representations of its two proper subgroups C2 and
C3.

26.4 Hamilton Operator and Group Theory

In this section we derive the connections between the eigenfunctions and eigen-
states of the stationary or time-independent Hamilton operator H and the
irreducible representations of a group.

We do not yet specify a particular type of group, but notice that an opera-
tor P (Xi) which transforms the system into itself commutes with the Hamilton
operator

P (Xi)H = HP (Xi) , (26.25)

where Xi is a symmetry operation of the group. It is known that whenever
an operator P commutes with H , there exists a set of functions which are
simultaneously eigenfunctions of H and of P . These eigenfunctions are called
basis functions. They are given in the tables of Sect. 25.6. We also come back
to them in Sect. 25.5.

The group which transforms the system into itself is also known as the
group of H .

We consider now an eigenvalue Eα of H with eigenfunction(s) ψαj ;
j = 1, . . . ,m. If the eigenvalue Eα is not degenerate one has m = 1. For
a degenerate eigenvalue m > 1.
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Table 26.5. Compatibility table of the irreducible representations of the group D3

with the irreducible representations of its proper subgroups C2 and C3

D3 Γ1 Γ2 Γ3

C3 Γ1 Γ1 Γ2 + Γ3

C2 Γ1 Γ2 Γ1 + Γ2

With
Hψαj = Eαψαj (26.26)

we also have

P (Xi)Hψαj = HP (Xi)ψαj = P (Xi)Eαψαj = EαP (Xi))ψαj , (26.27)

since Eα is just a real number.
This means that together with ψαj also P (Xi)ψαj is an eigenfunction with

eigenvalue Eα. Since the ψαj already include all possible eigenfunctions with
eigenvalue Eα, the P (Xi)ψαj can only be linear combinations of the ψαj .

This means

P (Xi)ψαk =
m∑

j=1

Γ α(Xi)jkψαj . (26.28)

If we perform this procedure for one symmetry operation Xi and for all
ψαk we get a matrix of coefficients Γ α(Xi)jk. For a nondegenerate eigenvalue
this is just a (complex) number of unit magnitude.

If we then perform the procedure for all symmetry operations Xi of the
group of the Hamiltonian we get a set of matrices Γ α(Xi). Now comes the
crucial point: this set of matrices forms a representation of the group of H ,
and generally an irreducible representation.

If this is the case we can identify the eigenvalue Eα which belongs to the
eigenstates ψαj with the label of the irreducible representation Γ α, i.e., we
say that the eigenvalue Eα has symmetry Γ α or the eigenstates ψαj of Eα

transform according to Γ α.
Since most physical systems have an infinite number of eigenstates but

finite groups have only a finite number of non-equivalent irreducible represen-
tations, the name of one irreducible representation will occur many times as
shown schematically in Fig. 26.3.

If the representation of the group produced by the eigenfunctions of one
eigenenergyEα is reducible, we speak of an accidental degeneracy. An example
is shown in Fig. 26.3. This means there are actually two different eigenenergies
with their sets of eigenfunctions which just happen to be equal for the specific
parameters of H, but which could in principle be different.

The important point now is that group theory allows us to make many
important predictions, for example, about selection rules or splitting of states
under external perturbations, without even knowing the Γ α(Xi)ij nor the
eigenvalues or eigenfunctions. There is one drawback, however, group theory
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Fig. 26.3. The schematic relation of the eigenener-
gies Eα, and the corresponding irreducible represen-
tation Γ α

tells us only whether a certain matrix element is zero or not; it does not say
anything about its magnitude if it is non zero. To get quantitative information
we must either use physical arguments to deduce how small or large an effect
can be, once group theory has told us that it exists, or we just have to calculate
the matrix elements. But here group theory helps us again, by telling us which
ones are zero.

Until now we have dealt only with real space. For electronic eigenstates we
should also consider spin. Spin does not have a representation in real space.
Since we do not want to indulge in a lot of mathematics, we simply note that
there exists a group D1/2 which describes the behavior of particles with spin
1/2 under point operations (a translation does not affect spin).

To describe electronic wave functions with spin

ψαj = ψαj · s , (26.29)

we have to consider the “double group” which is formally just the direct
product of D1/2 and the corresponding point group D1/2 ⊗ (point group).
This double group is again a group, possessing conjugate elements, classes,
irreducible representations, and a character table. We shall finally end up with
more classes and more Γα compared to the simple point group without spin.
In the tables given at the end of this chapter for the three most important
point groups of semiconductors one can see from the basis functions which
ones are the additional Γα and classes. For vibrations (phonons) of molecules
and of solids spin is not important. Therefore often only the simple and not
the double groups are given in corresponding books.



26.5 Applications to Semiconductors Optics 741

26.5 Applications to Semiconductors Optics

The two groups that describe crystalline solids are, as already mentioned, the
translation group and the space group. The translation group is an infinite
Abelian group of all translations Rn as introduced in Sects. 7.2 or 8.1 (also
see below).

Additionally, the space group contains all other symmetry operations that
map the crystal onto itself like inversion, rotation axes, screw rotation axes,
mirror (or reflection) planes or glide reflection planes.

Symmorphic space groups can be decomposed into a semi-direct product
of the translation group and a point group that contains symmetry operations
that keep at least one point fixed, e.g., inversion, rotation axes or reflection
planes.

The generators of symmorphic groups do not contain screw rotation axes
or reflection glide planes. Nonsymmorphic groups contain such symmetry ope-
rations in their generators and cannot be decomposed in the above way. Details
about this topic can be found, e.g., in [94H1].

The translation group is obviously Abelian, i.e.,

T (R1)T (R2) = T (R1 + R2) = T (R2 + R1) = T (R2)T (R1) , (26.30)

where R1 and R2 are two translations of the lattice and T is the translation
operator. Consequently every Ri, is self-conjugate and forms a class by itself
and all irreducible representations are one-dimensional. A detailed inspection
of their properties leads to

T (Ri)u(r, k) = eikRiu(r,k) (26.31)

since the prefactor must be linear in Ri and of the magnitude one. This short
argument shows that the Bloch theorem of Sect. 8.1 also follows from group-
theoretical considerations.

Since we have already treated this theorem and its consequences in some
detail in Chaps. 7 and 8, we need not further pursue it here, but concentrate
now on point groups.

We note (again without proof) that according to what we have said above,
we can restrict ourselves trivially for symmorphic space groups to the point
group.

For nonsymmorphic space groups the following statements are correct for
the point group we obtain if we replace screw rotation axes by simple rotation
axes and glide reflection planes by simple reflection planes [94H1]. In this
sense the point group of the wurtzite crystal structure, which contains a screw
rotation axis, is C6v or 6mm.

The proper consideration of screw rotation axes or glide reflection planes
introduces, e.g., phase factors in X-ray scattering but does not change the
statements about matrix elements or selection rules given below.



742 26 Group Theory in Semiconductor Optics

The point group of a crystal defined in this sense contains all symmetry
operations that transform the crystal into itself and keep at least one point
fixed. This group also describes the symmetries of the eigenstates for k = 0,
i.e., at the Γ point in reciprocal space that is the center of the first Brillouin
zone.

Since this is also the region of k-space that is important for the optical
properties of most direct gap semiconductors, we stick in the following to k = 0
(this is the reason why we use Γ to label the irreducible representations) and
discuss only later what happens when we go to k �= 0. For the moment we
note that a statement which is exact for k = 0 will be almost correct in the
close vicinity of the Γ -point.

We now leave the group D3, which we used above for illustration purposes,
and return to the three point groups that are most important for the semi-
conductors, namely Td, Oh, and C6v and which we have introduced already
above.

In Sect. 25.6 we give the character tables and the basis functions of these
three point groups. The remainder of the 32 point groups can be found in
e.g. [63K1, 88L1]. Additionally we give the multiplication tables for the ir-
reducible representations, their compatibility tables with the full rotation
group, which is valid for spherical problems like atoms (see below), and
with the proper subgroups. There we indicate examples of external per-
turbations which reduce the symmetry of the point group to that of its
subgroups.

The classes with a bar come from the formation of the double group when
we include spin and the same is true for the irreducible representations which
contain noninteger J and Jz values in their basis functions φ(J, Jz). Basis
functions are examples of functions that possess the symmetry properties of
the irreducible representation. Basis functions Sx, Sy and Sz transform like
x, y and z, however, without a change of sign under inversion and R means a
spherically symmetric function like x2 +y2 +z2. A superscript + or − appears
where inversion Ci is an element of the group and where, consequently, parity
is a good quantum number. Obviously + or − mean even and odd parity under
inversion, respectively.

The information contained in these tables is sufficient to answer many of
the questions addressed below.

We present the first important rule. If we have to calculate a transition
matrix element Mif (see also Sect. 3.2)

Γ fΓ sΓ i

Mif ∝〈f |Hs| i〉 =
∫
ψ∗

fHsψi dτ , (26.32)

where we start from an initial state |i〉 of symmetry Γ i, and want to reach a
final state 〈f | of symmetry Γ f with a perturbation operator Hs that trans-
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forms like Γ s, then group theory tells us that this matrix element is zero or
non-zero according to:

〈f |Hs| i〉 =

⎧⎪⎪⎨⎪⎪⎩
�= 0 if Γ f is contained in the direct product Γ i ⊗ Γ s or

if Γ 1 is contained in Γ f ⊗ Γ s ⊗ Γ i

These two statements are equivalent;
0 otherwise.

(26.33)

This rule enables us, for example, to calculate the optical selection rules
in crystals. For full spherical symmetry in atoms these rules read, for electric
dipole transitions, ∆l = ±1; ∆m = 0, ±1. For crystals we have to know
the symmetry of Hs. It can be often deduced from inspection of the basis
functions. The dipole operator transforms in Td like Γ 5, in Oh like Γ−

5 , and
in C6v like Γ 1 for E ‖ c and like Γ 5 for E⊥c.

More information about the symmetries of other perturbations like mag-
netic fields, uniaxial stress etc. is found e.g. in [63K1,76C1,77G1,85H1,88L1,
97I1] or in the tables of Sect. 26.6. We now use this knowledge to ask which
states can be reached by one- and two-photon transitions in C6v symmetry,
starting from the crystal ground state, which has always symmetry Γ 1. For
one-photon transitions, we have to consider matrix elements as in (26.32).
Thus for C6v we have,

For two-photon transitions we have to consider expressions such as (see
also Sect. 19.1):

Mif ∝
∑
zj

〈
f
∣∣HD,2

∣∣ zj

〉 〈
zj

∣∣HD,1
∣∣ i〉

�ω − (Ezj − Ei)
+ c.p. (26.34)

and find the following selection rules with the help of the multiplication tables
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This means that in two-photon absorption we can reach states with sym-
metries Γ 1, Γ 2, Γ 5 and Γ 6 depending on the polarization.

Another field in which the vanishing or otherwise of a matrix element is of
importance is perturbation theory. We assume that we have an unperturbed
stationary Hamiltonian H with non-degenerate eigenstate E0

n, ψ
0
n. We now

apply a small stationary perturbation Hs to get a total Hamiltonian

H = H0 +Hs. (26.35a)

The perturbed eigenenergy En, and wavefunction ψn are then given by

En = E0
n +

〈
ψ0

n |Hs|ψ0
n

〉
, (26.35b)

and

ψn = ψ0
n +

∑
k �=0

〈
ψ0

k |Hs|ψ0
n

〉
ψ0

k

E0
n − E0

k

. (26.35c)

Equation (26.33) tells us now which perturbations can change the eigenen-
ergy and mix the states and which cannot. As stated earlier, group theory does
not tell us how large this effect will be.

In the case of a degenerate level E0
n with ψ0

n,i, perturbation theory leads
to a secular equation given by the determinant

det
∣∣〈ψ0

n,i |Hs|ψ0
n,j

〉− Eδij
∣∣ = 0 , (26.36)

and again (26.33) can predict which matrix elements vanish. The problem of
degenerate states has been developed even further with a technique known as
“invariant expansion”. A discussion of this technique is beyond the scope of
this book but the reader may find an elaborate presentation in [76C1, 77G1,
85H1].

Partly equivalent information is obtained if we consider that the pertur-
bation reduces the symmetry of the problem, so that the perturbed problem
corresponds to a subgroup of the unperturbed one. If the irreducible repre-
sentation of E0

n is still irreducible in the subgroup, En, may shift but does
not split. If it decays into more than one irreducible representation in the
subgroup, E0

n can split into a corresponding number of different levels under
the influence of Hs. If some of the new eigenvalues still coincide we have an
accidental degeneracy.

To illustrate this fact, inspection of the compatibility relations C6v shows
that an electrostatic field E⊥c (Γ 5) will result in a splitting of a Γ 5 level into
two states of symmetries Γ 1 and Γ 2 of the group Cs.

Another case in which group theory is helpful concerns product wave func-
tions. If, for example, we know that the spatial part of the hole wave function
φh(rn) in Td transforms like Γ 5 (this results from an atomic p-state as will
be shown below) and we want to add spin σ we get

ψ = φΓ 5
n (rh) · s . (26.37)



26.5 Applications to Semiconductors Optics 745

In order to discover the symmetry of the total wave function we just form
the direct product of the symmetry of the spatial part (here Γ 5) and of the
irreducible representation of spin 1/2. For Td this reads

Γ total = Γ 5,space ⊗ Γ 1/2 = Γ 5 ⊗ Γ 6 = Γ 7 ⊕ Γ 8 . (26.38)

This means that the spin results in a splitting into two states of symmetries
Γ 7 and Γ 8. From physical arguments we know that this is the spin-orbit
splitting.

A very important example of product wave functions in semiconductors
are exciton wave functions. As shown in Sect. 9.1, they are a product of the
electron and hole wavefunctions and of the envelope function.

The possible symmetries of an exciton therefore result from the direct
product of the symmetries of the electron, hole and envelope functions, i.e.,

Γ exciton = Γ el ⊗ Γ h ⊗ Γ env . (26.39)

For the ground state (main quantum number nB = 1) Γ env is always Γ 1. So
in Td, for example, we find excitons formed with the hole in the Γ 7 or Γ 8

valance band and the electron in the Γ 6 conduction band

Γ 6 ⊗ Γ 8 ⊗ Γ 1 = Γ 3 ⊕ Γ 4 ⊕ Γ 5 (26.40a)

Γ 6 ⊗ Γ 7 ⊗ Γ 1 = Γ 2 ⊕ Γ 5 (26.40b)

The Γ 5 is the spin singlet state, which can be reached from the ground
state by an electric-dipole transition; the Γ 3, Γ 4 and Γ 2 states are dipole
forbidden. Actually they are the triplet states with parallel electron and hole
spins.

The number of possible exciton states increases rapidly for nB > 1.
Still another important case is the reduction of symmetry in a quantum

well compared to the parent bulk materials.
In Table 26.6 we give the irreducible representations, the compatibility

relations and the selection rules when going from a bulk zincblende structure
to a QW grown on a (001) surface. For this, but also for other orientations,
see, e.g., [96I1, 97I1, 00S1, 02M1]. A single ideal interface between two differ-
ent materials both having the point group Td reduces the symmetry to C2v.
See [96I1, 97I1] and references therein. A quantum well, i.e., two close-lying
interfaces, results in symmetry D2d if the two materials have a common anion
or cation, e.g., AB/AC. This situation is treated in Table 26.6. In the case of
a well/barrier combination without a common anion or cation AB/CD, the
total symmetry may be D2d or C2v depending on the termination of the inter-
faces. For C2v symmetry, the orthogonal directions [110] and [11̄0] in the plane
of the quantum well are no longer equivalent. This may result in polarization
anisotropies of the optical properties or in different band offsets at both in-
terfaces and in internal electric fields if, e.g., the dipole layers on both sides
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Table 26.6. Group theoretical relations and selection rules for zincblende-type bulk
material and quantum wells grown on (100) oriented substrates [93J1]

Point group
(example)

Td

(GaAs, bulk)
D2d

GaAs QW on
(001) oriented
substrate

Comments

Irreducible representation
of lowest conduction band

Γ 6 Γ 6

Irreducible representation
of highest valence band
(does not apply to CuCl or
a few other exceptions)

Γ 8 Γ 6

Γ 7

Heavy holes
light holes

Excitons with S, i.e., Γ 1

envelope function
Γ LB

6 ⊗ Γ VB
8 ⊗

Γ env
1 = Γ 3 + Γ 4

+Γ 5

Γ LB
6 ⊗ Γ VB

6 ⊗
Γ env

1 = Γ 1 + Γ 2

+Γ 5

Γ LB
6 ⊗ Γ VB

7 ⊗
Γ env

1 = Γ 3 + Γ 4

+Γ 5

Heavy-hole
excitons

Light-hole
excitons

Dipole-allowed transitions Γ 5 Γ 5 for E⊥z
Γ 4 for E ‖ z

z is the growth
direction, i.e., the
normal to the
QW plane

are different. For more details see, e.g., [97I1,00S1,02M1,03T1] and references
therein.

Going one step further, we come to the more complicated entities such
as bound-exciton complexes or biexcitons. The procedure is basically as
above, i.e.,

Γ biex = (Γ el ⊗ Γ el)± ⊗ (Γ h ⊗ Γ h)±Γ∓∓
env . (26.41)

However, one now has to consider that these systems contain partly in-
distinguishable fermions. Therefore the total wave-function must change sign
under the exchange of two identical particles. This means that if the combi-
nation of the two electrons (Γ el ⊗ Γ el)− changes sign under exchange, then
the envelope function must have even parity under this operation and vice
versa. The same holds for the holes. The parity of the combinations can be
seen from the coupling coefficients in tables like [63K1]. We do not go into
details here but mention that the ground state of the biexciton always has
an envelope of Γ 1 symmetry. The possible combinations for the excitons of
(26.40a), (26.40b) are in the ground state Γ 1 and Γ 1⊕Γ 3⊕Γ 5 [77G1,85H1],
respectively. In C6v the biexciton containing two holes from the same valence
band always has only symmetry Γ 1 in the ground state, but with a hole from
the Γ 9 and another from a Γ 7 valence band it is possible to construct in
addition Γ 5 and Γ 6 biexciton levels [77G1,85H1].



26.5 Applications to Semiconductors Optics 747

The bands in semiconductors often still contain some information about
the parent atomic orbitals, especially in the lattice periodic part uk(r) of the
Bloch function. The atomic orbitals result from a spherically symmetric prob-
lem. Therefore it is reasonable to say a few words about this group and its
compatibility relations with the point groups of semiconductors. In the full
spherical rotation group, the system can be rotated around any axis by any
angle and is transformed in to itself. It can be shown that all rotations by the
same angle φ but around arbitrary axes are in the same class. The full rotation
group can therefore be considered as a continuous group (Fig. 26.4) with rota-
tion angle 0 ≤ φ < 2π. Consequently there must be a correspondingly infinite
number of irreducible representations Γ l. Figure 26.4 gives the character of
the representation. For the identity element E we get the dimensionality of
Γ l which is obviously 2l+ 1. The basis functions are the spherical harmonics
Y m

l (φ, θ).
The compatibility relations between the full rotation group for even and

odd parity, called D±
Lz

and D±
Jz

and the three point groups Td, Oh and C6v

are given in Sect. 26.6. These tables may be used as follows: In a tight-binding
approximation we would assume that the uppermost valence band of CdS is
formed from the filled 3p levels of S2−, while the lowest conduction band comes
from the empty 5s levels of Cd2+. From the compatibility tables we learn that
this results in the following band symmetries for C6v, at the Γ -point:

CB : 5s levels ⇒ D1/2 ⇒ Γ 7 ;

VB : 3p levels ⇒
{
D3/2 ⇒ Γ 7 + Γ 9

D1/2 ⇒ Γ 7 .
(26.42)

For Td symmetry one finds similarly

CB : Γ 6, VB : Γ 7 + Γ 8 . (26.43)

This implies a twofold splitting in the valence band of Td symmetry, which
comes from the spin-orbit interaction as already mentioned, and a threefold
splitting in C6v again arising from spin-orbit splitting and, in addition, from
the hexagonal crystal field.

Note, that for covalent sp3 binding the top of the valence band and the
bottom of the conduction band also have p- and s-character, thus leading to
the same results as for ionic binding.

Group theory cannot tell us the magnitude of the splittings nor the or-
dering of the bands. It is found, however, that for Td symmetry the Γ 8 state
usually forms the upper valence band and the Γ 7 comes below (except in CuCl
which has the reverse ordering) and in C6v one usually has an uppermost va-
lence band of symmetry Γ 9 and two Γ 7 levels below (except for ZnO, where
the two upper bands are also most probably interchanged). See Sect. 8.8, 13.1,
16.1

It is clear that angular momentum is no longer a good quantum number
in solids. The good quantities are the Γ i. With great care, however, one can
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Fig. 26.4. The character table of the spherical rotation group

sometimes still use arguments based on angular momentum. In the wurtzite
structure the c axis is the quantization axis and Jz is to some extent usable
for discussions. The p-orbitals forming the valence band have l = 1 and m =
0,±1. The m = 0 states have symmetry Γ 1 (or Γ 2) the m = ±1 states have
symmetry Γ 5. With the z-component of the spin of ±1/2 we can then produce
Jz = ±�/2 and Jz = ±3�/2 states corresponding to Γ 7 and Γ 9 respectively.
For values of Jz larger than 3�/2, however, the rather shaky approach above
breaks down completely. See also the basis functions in the tables for Oh and
Td.

To conclude this last chapter we consider two more topics namely finite
k-values and time-reversal symmetry.

What happens if we leave the Γ point and go to k �= 0? First we apply all
symmetry operations of the point group to the system as shown schematically
in Fig. 26.5a for a two-dimensional square lattice. We end up with a number of
k-vectors, which are known as the “star of k”. If k is in a “general” position
we get as many k-vectors in the star as the group has elements. On the
other hand, all these symmetry operations transform the system into itself.
Consequently the properties must be the same for all elements of the star of
k. We illustrate this statement in Fig. 26.5b for the dispersion E(k). We give
contours of constant energy and see clearly that the star of k allows a fourfold
band warping as indeed occurs for Td and Oh symmetries, simply because
cubic symmetry is lower than spherical symmetry.

If k is not in a “general” direction but coincides with one of the symmetry
lines or planes of the system, then several of the elements of the star of k co-
incide as shown in Fig. 26.5c. The symmetry operations that transform k into
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itself are known as the “group of k”. This group of k is a subgroup of the full
point group. The irreducible representations at the Γ -point are consequently
also representations of the subgroup. If we start at the Γ -point with a certain
level which transforms like Γ α and move along some symmetry direction, the
level Γ α may or may not split, depending on whether Γ α becomes a reducible
representation or remains an irreducible one in the (sub) group of k.

A typical example is the splitting of the fourfold degenerate Γ 8 state in Td

symmetry for k �= 0 into two twofold degenerate states known as heavy and
light-hole bands (Figs. 8.16 and 26.6), where the states (J, Jz) = (3/2,±3/2)
correspond to the heavy hole valence band and (3/2,±1/2) corresponds to
the light holes (see e.g. [74B1,03T1]). The Γ 6 and Γ 7 states do not show such
behavior.

Fig. 26.5. The star of k, (a) the quali-
tative shape of surfaces of constant en-
ergy E(k) (b); and a k-vector of higher
symmetry (c)
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For a general orientation of k all degeneracies can be lifted. In band struc-
ture theory one thus usually calculates E(k) in directions of high symmetry
(see, e.g., Figs. 8.9 – 8.16) to exploit the advantages of group theory and tries
to extrapolate in other directions if necessary.

The final symmetry operation that we address is the invariance of a micro-
scopic physical system under time reversal. If we neglect spin for the moment,
invariance under time reversal has the following consequence for dispersion
relations:

E(k) = E(−k) , (26.44)

even if the point group does not include the inversion. This phenomenon is
known as Kramers degeneracy.

In a power series expansion of the dispersion

E(k) =
∞∑

n=0

ankn (26.45)

Fig. 26.6. The bandstructure around the Γ -point for Td symmetry. Compare with
Fig. 8.16
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Fig. 26.7. Schematic drawing of the Kramers degeneracy without spin (a) and with
spin (b) as occurs e.g., for Γ7 bands in C6v symmetry for k⊥c

this permits only even values for n (Fig. 26.7a). If we now include the spin,
(26.46) changes to

E(k, ↑) = E(−k, ↓) . (26.46)

This means that time reversal flips the spin. This condition can be also
fulfilled with odd powers in the expansion (26.46) and, in particular, allows
terms linear in k (Fig. 26.7b).

Detailed group-theoretical investigations show that k-linear terms are pos-
sible for Γ8 states in Td symmetry or for Γ7 states k⊥c in C6v symmetry, but
not for k ‖ c and not for Γ 9 levels.

Indeed such k-linear terms are known; for example, for the B-exciton in
CdS which contains a hole from the Γ7 valence band or for the A excitons in
ZnO. See Sect. 13.1.

26.6 Some Selected Group Tables

In this section, we give some tables for the three most important groups of
semiconductors. We start in Tables 26.7 – 26.10 with the character tables of
the point group C6v. In the first column we give the names of the irreducible
representations in various notations, in the last one typical basis functions.
From them it becomes clear, which representation belongs to the simple and
which one to the double group, including spin namely here Γ 1 to Γ 6 and Γ 7

to Γ 9, respectively. The next tables give the multiplication tables of the irre-
ducible representations and the combatibility relation with the subgroups and
with the full rotation group. Tables 26.10 – 26.13 give the same information
for Td. For Oh we give only two tables for characters and the compatibility
relation.



752 26 Group Theory in Semiconductor Optics

Table 26.7. Character table and basis functions of the point group C6v (or 6mm).
Below E2 or Γ6 are the additional irreducible representations of the double group
which includes spin

C6v E Ē C2 2C3 2C̄3 2C6 2C̄6 3σ̄d 3σ̄v Basic functions

A1 Γ 1 1 1 1 1 1 1 1 1 1 a R or z

A2 Γ 2 1 1 1 1 1 1 1 −1 −1 a Sz

B1 Γ 3 1 1 −1 1 1 −1 −1 1 −1 a x3 − 3xy2

B2 Γ 4 1 1 −1 1 1 −1 −1 −1 1 a x3 − 3xy2

E1 Γ 5 2 2 −2 −1 −1 1 1 0 0 a (Sx − iSy)

−(Sx + iSy)
E2 Γ 6 2 2 2 −1 −1 −1 −1 0 0 a Γ 3 ⊗ Γ 5

Γ 7 2 −2 0 1 −1
√

3 −√
3 0 0 c φ(1/2,−1/2),

φ(1/2, 1/2)

Γ 8 2 −2 0 1 −1 −√
3

√
3 0 0 c Γ 7 ⊗ Γ 3

Γ 9 2 −2 0 −2 2 0 0 0 0 c φ(3/2,−3/2),

φ(3/2, 3/2)

Table 26.8. Multiplication table for the irreducible representations of the group
C6v

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ1

Γ1 Γ4 Γ3 Γ5 Γ6 Γ7 Γ8 Γ9 Γ2

Γ1 Γ2 Γ6 Γ5 Γ8 Γ7 Γ9 Γ3

Γ1 Γ6 Γ5 Γ8 Γ7 Γ9 Γ4

Γ1 + Γ2 + Γ6 Γ3 + Γ4 + Γ5 Γ7 + Γ9 Γ8 + Γ9 Γ7 + Γ8 Γ5

Γ1 + Γ2 + Γ6 Γ8 + Γ9 Γ7 + Γ9 Γ7 + Γ8 Γ6

Γ1 + Γ2 + Γ5 Γ3 + Γ4 + Γ6 Γ3 + Γ4 Γ7

Γ1 + Γ2 + Γ5 Γ5 + Γ6 Γ8
Γ1 + Γ2

Γ3 + Γ4
Γ9

Table 26.9. Compatibility table of the irreducible representations of the group C6v

with the irreducible representations of its proper subgroups

C6v : E(z) Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6 Γ 7 Γ 8 Γ 9

C6 : H(z) Γ 1 Γ 1 Γ 4 Γ 4 Γ 5 + Γ 6 Γ 2 + Γ 3 Γ 7 + Γ 8 Γ 9 + Γ 10 Γ 11 + Γ 12

C3v Γ 1 Γ 2 Γ 1 Γ 2 Γ 3 Γ 3 Γ 4 Γ 4 Γ 5 + Γ 6

C2v Γ 1 Γ 3 Γ 2 Γ 4 Γ 2 + Γ 4 Γ 1 + Γ 3 Γ 5 Γ 5 Γ 5

Cs : E(x) : H(y) Γ 1 Γ 2 Γ 1 Γ 2 Γ 1 + Γ 2 Γ 1 + Γ 2 Γ 3 + Γ 4 Γ 3 + Γ 4 Γ 3 + Γ 4

Cs : H(x) : E(y) Γ 1 Γ 2 Γ 2 Γ 1 Γ 1 + Γ 2 Γ 1 + Γ 2 Γ 3 + Γ 4 Γ 3 + Γ 4 Γ 3 + Γ 4
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Table 26.10. Compatibility table of the irreducible representations of the full ro-
tation group of angular momentum Lz ≤ 6 and Jz ≤ 13

2
with the irreducible repre-

sentations of the group C6v

D+
0 Γ 1 D−

0 Γ 2

D+
1 Γ 2 + Γ 5 D−

1 Γ 1 + Γ 5

D+
2 Γ 1 + Γ 5 + Γ 6 D−

2 Γ 2 + Γ 5 + Γ 6

D+
3 Γ 2 + Γ 3 + Γ 4 + Γ 5 + Γ 6 D−

3 Γ 1 + Γ 3 + Γ 4 + Γ 5 + Γ 6

D+
4 Γ 1 + Γ 3 + Γ 4 + Γ 5 + 2Γ 6 D−

4 Γ 2 + Γ 3 + Γ 4 + Γ 5 + 2Γ 6

D+
5 Γ 2 + Γ 3 + Γ 4 + 2Γ 5 + 2Γ 6 D−

5 Γ 1 + Γ 3 + Γ 4 + 2Γ 5 + 2Γ 6

D+
6 2Γ 1 + Γ 2 + Γ 3 + Γ 4 + 2Γ 5 + 2Γ 6 D−

6 Γ 1 + 2Γ 2 + Γ 3 + Γ 4 + 2Γ 5 + 2Γ 6

D+
1/2 Γ 7 D−

1/2 Γ 7

D+
3/2 Γ 7 + Γ 9 D−

3/2 Γ 7 + Γ 9

D+
5/2 Γ 7 + Γ 8 + Γ 9 D−

5/2 Γ 7 + Γ 8 + Γ 9

D+
7/2 Γ 7 + 2Γ 8 + 2Γ 9 D−

7/2 Γ 7 + 2Γ 8 + 2Γ 9

D+
9/2 Γ 7 + 2Γ 8 + Γ 9 D−

9/2 Γ 7 + 2Γ 8 + 2Γ 9

D+
11/2 2Γ 7 + 2Γ 8 + 2Γ 9 D−

11/2 2Γ 7 + 2Γ 8 + 2Γ 9

D+
13/2 3Γ 7 + 2Γ 8 + 2Γ 9 D−

13/2 3Γ 7 + 2Γ 8 + 2Γ 9

Table 26.11. Character table and basis functions for the irreducible representations
of the point group Td (or 4̄3m)

Td E Ē 8C3 8C̄3 3C2 6S4 6S̄4 6σd Time reversal Basis functions

A1 Γ 1 1 1 1 1 1 1 1 1 a R or xyz

A2 Γ 2 1 1 1 1 1 −1 −1 −1 a SxSySz

E Γ 3 2 2 −1 −1 2 0 0 0 a (2z2 − x2 − y2)√
3(s2 − y2)

F1 Γ 4 3 3 0 0 −1 1 1 −1 a Sx, Sy, Sz

F2 Γ 5 3 3 0 0 −1 −1 −1 1 a x, y, z

Ē1 Γ 6 2 −2 1 −1 0
√

2 −√
2 0 c φ(1/2,−1/2)

φ(1/2, 1/2)

Ē2 Γ 7 2 −2 1 −1 0 −√
2

√
2 0 c Γ 6 × Γ 2

Ē3 Γ 8 4 −4 −1 1 0 0 0 0 c φ(3/2,−3/2)

φ(3/2,−3/2)

φ(3/2, 1/2)

φ(3/2, 3/2)
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Table 26.14. Compatibility table of the irreducible representations of the full ro-
tation group for Lz ≤ 6 and Jz ≤ 13

2
with the representations of the point group Td

D+
0 Γ 1 D−

0 Γ 2

D+
1 Γ 4 D−

1 Γ 5

D+
2 Γ 3 + Γ 5 D−

2 Γ 3 + Γ 4

D+
3 Γ 2 + Γ 4 + Γ 5 D−

3 Γ 1 + Γ 4 + Γ 5

D+
4 Γ 1 + Γ 3 + Γ 4 + Γ 5 D−

4 Γ 2 + Γ 3 + Γ 4 + Γ 5

D+
5 Γ 3 + 2Γ 4 + Γ 5 D−

5 Γ 3 + Γ 4 + 2Γ 5

D+
6 Γ 1 + Γ 2 + Γ 3 + Γ 4 + 2Γ 5 D−

6 Γ 1 + Γ 2 + Γ 3 + 2Γ 4 + Γ 5

D+
1/2 Γ 6 D−

1/2 Γ 7

D+
3/2 Γ 8 D−

3/2 Γ 8

D+
5/2 Γ 7 + Γ 8 D−

5/2 Γ 6 + Γ 8

D+
7/2 Γ 6 + Γ 7 + Γ 8 D−

7/2 Γ 6 + Γ 7 + Γ 8

D+
9/2 Γ 6 + 2Γ 8 D−

9/2 Γ 7 + 2Γ 8

D+
11/2 Γ 6 + Γ 7 + 2Γ 8 D−

11/2 Γ 6 + Γ 7 + 2Γ 8

D+
13/2 Γ 6 + 2Γ 7 + 2Γ 8 D−

13/2 2Γ 6 + Γ 7 + 2Γ 8
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26.7 Problems

1. Calculate the symmetries of the states which can be reached by one- and
two-photon transitions in point groups Oh and Td.

2. Calculate the possible symmetries of the excitons with principal quantum
number nB = 1, 2 and 3 in the point groups Oh, Td and C6v.

3. Calculate the symmetries of the ground state (Γ 1 envelope) of D0X, A0X
and D+X centers in Oh, Td, and C6v, assuming that the radius of these
complexes is so large that the carriers feel the full symmetry of the lattice
and not only the nearest neighbors.

4. SnO2 is a direct gap semiconductor with the band extrema at the Γ -point.
It crystallizes in the point groupD4h. Which symmetries do you expect for
the highest valence and the lowest conduction band. The lowest band-to-
band transition is dipole forbidden. Why? Do you except dipole-allowed
exciton transitions? Do you think that they will have a big oscillator
strength?

5. Rock salt, diamond and Cu2O all have point group Oh (i.e., a face-
centered-cubic lattice), but different crystal structures. Inspect the crystal
structures. Find the primitive unit cell and the nonprimitive cubic one.
Parity is a good quantum number. The highest valence band is formed
in Cu2O from the 3d levels of Cu+ and the lowest conduction bands re-
sult from the Cu+ 4s and 4p levels. Which symmetries do you expect at
the Γ -point and which exciton states with S envelope? Are they dipole
allowed or forbidden?

References to Chap. 26

[60H1] V. Heine, Group Theory in Quantum Mechanics, Pergamon, Oxford (1960)
[63K1] G.F. Koster, et al., eds., Properties of the Thirty-Two Point Groups, MIT,

Cambridge (1963)
[64K1] R.S. Knox and A. Gold, Symmetry in the Solid State, Benjamin, New York

(1964)
[64T1] W.A. Tinkham, Group Theory in Quantum Mechanics, McGraw-Hill, New

York (1964)
[67S1] H.W. Streitwolf, Gruppentheorie in der Festkörperphysik, Akad. Verl.

Leipzig (1967)
[74B1] G.L. Bir and G.E. Pikus, Symmetry and Strain-Induced Effects in Semi-

conductors, Wiley, New York (1974)
[76C1] K. Cho, Phys. Rev. B 14, 4463 (1976)
[77G1] O. Goede, phys. stat. sol. (b) 81, 235 (1977)
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(1996)

[96Y1] P.Y. Yu and M. Cardona, Fundamental of Semiconductor, Springer, Berlin,
Heidelberg (1996)

[97I1] E.L. Ivchenko and G.E. Pikus, Superlattices and other Heterostructures,
2nd ed. Springer, Berlin (1997)

[00S1] M. Schmidt, et al., Appl. Phys. Lett. 77, 85 (2000)
[01L1] Landolt-Börnstein, New Series, Group III, Vol. 41a1 Part 2, U. Rössler,
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Semiconductor Bloch Equations

By R. v. Baltz

The electrodynamic description of matter requires constitutive equations that
relate the induced charge ρ and current density j of the semiconductor (or,
equivalently, the polarization P , with j = Ṗ and ρ = −divP ) to the electro-
magnetic fields E,B. Generic models in this respect are the Lorentz-oscillator
and the Drude free-carrier model of linear optics that have already been exten-
sively used in Chaps. 4, 5, and 11–13. The description of nonlinear properties
of matter, on the other hand, mostly uses a power series expansion of the
polarization in terms of the electrical field (see Chap. 19). Such an expan-
sion, however, is inappropriate under resonant or near-resonant conditions.
In some cases new solutions may even arise “spontaneously” above a critical
light field and can lead to second harmonic generation although a power ex-
pansion (including even-order terms with respect to the light field) does not
exist. Therefore, a realistic description of semiconductor optics requires the
proper dependence on the light field, the inclusion of the valence conduction
band continuum states, exciton effects, as well as band-filling dynamics. These
phenomena are consistently described by the Semiconductor Bloch-Equations
(SBEs), which have become the standard model for semiconductor optics. 1

In this approach the semiconductor is treated quantum mechanically leads to
a set of coupled nonlinear differential equations for the polarization and the
electron/hole distribution functions (supplemented by higher order correlation
functions, which will be omitted here). The polarization acts as a source term
in the (classical) Maxwell equations as discussed in Chap. 2. In this sense,
the SBEs are a semiclassical theory. It successfully covers linear as well as
nonlinear phenomena such as pump-probe, four-wave-mixing, or photon echo
experiments (see Chaps. 20– 25).

1 The main idea of the SBEs originates from Bloch’s seminal work on the theory
of (nuclear) spin resonance [46B1] and Haken’s theory of the laser [70H1]. For
semiconductors, the band-edge equations were first studied by Stahl [84S1] and
subsequently developed, by Haug and his coworker and colleagues [94H1] and
others, into a powerful tool for semiconductor theory.
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Fig. 27.1. Route for a qualitative derivation of the the semiconductor Bloch equa-
tions. (a) Two-level system (resonant and nonresonant excitation) (b) Noninter-
acting valence and conduction bands viewed as a collection of TLSs with different
transition energies (c) Two interacting bands including some bound exciton states

The SBEs are of considerable complexity in derivation and application,
therefore, we shall give only a “pedestrian version” of their derivation and
some selected applications. Details can be found in Haug and Koch’s text-
book [94H1]. For a recent comprehensive presentation of the SBEs see, e.g.,
Schäfer and Wegener’s book [02S1]. We approach the problem in three steps
as sketched in Fig. 27.1

1. First we study the dynamics of atoms near resonance in the two-level
approximation and derive the optical Bloch equations. In this formulation,
damping processes can also be included on a phenomenological level.

2. Second, we generalize this result for a two-band model of a direct semi-
conductor omitting the Coulomb interaction between electrons and holes.
In this description the semiconductor is sketched as a collection of nonin-
teracting two-level systems (TLSs).

3. Finally, we add the Coulomb interaction between the electrons and holes,
which includes exciton and screening effects. This will lead us to the SBEs
in their simplest form, including excitons or the transition to an electron
hole plasma.

27.1 Dynamics of a Two-Level System2

Near the resonance of an atomic transition, ω ≈ ω0 = (ε2−ε1)/�, we may only
retain the pair of nearly resonant stationary states |1〉 and |2〉 with energies
ε1 and ε2, (ε2 > ε1), between which the transition occurs (see Fig. 27.1a). In
this two-level approximation, the wave function

| ψ(t)〉 = c1(t)|1〉 + c2(t)|2〉 (27.1)

2 The dynamics of a TLS is very well presented in many texts, in particular Allen
and Eberly’s classic book on optical resonance and two-level atoms [87A1] or
the textbooks The Feynman Lectures, Vol. III, in connection with the Ammonia
maser [64F1] and Licht und Materie by Haken [70H1]. Note the different
enumeration of states.
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is described by coefficients c1, c2, which may be arranged as a column vector
c, the time-dependence of which is governed by the Schrödinger equation

i�
∂

∂t

(
c1
c2

)
= Ĥ

(
c1
c2

)
. (27.2)

In addition, we assume that the optical transition between |1〉 and |2〉 is
dipole-allowed and the light is polarized parallel to the z-axis. As a result, the
Hamiltonian reads

Ĥ = Ĥ0 − d̂Ez(t), Ĥ0 =
(
ε1 0
0 ε2

)
, d̂ =

(
0 d∗

d 0

)
. (27.3)

Ĥ0 and d̂ denote the Hamiltonian of the isolated atom and the electric dipole
operator with d = 〈2| − ez|1〉, respectively (see also Sect. 3.2.2).

From c1(t), c2(t) the induced dipole moment d(t) and the population in-
version I(t) of the TLS are determined by

d(t) = c†d̂∗c = 2 Re [d∗ P(t)] , (27.4)
I(t) = |c2(t)|2 − |c1(t)|2, and (27.5)
P(t) = c∗1(t)c2(t), (27.6)

where P(t) is the (dimensionless) complex dipole moment.3 ε1, ε2 and d are
considered as parameters of this model. There are at least three ways to tackle
the problem. These will be discussed in the next sections.

27.1.1 Wave-Function Description

We start with a pure state described by (27.1) and factor off the time depen-
dence of the state vector without an external field (interaction picture),

cj(t) = aj(t)e−ıεjt/�, j = 1, 2, (27.7)

where aj(t) obey the differential equations

ȧ1(t) = i
d∗

�
Ez(t) e−iω0ta2(t), (27.8)

ȧ2(t) = i
d

�
Ez(t) e+iω0ta1(t). (27.9)

Equations (27.8,27.9) are linear and first order. Nevertheless, no analytical
solution is achievable. However, for a monochromatic field with frequency ω
near resonance, ω ≈ ω0, the product of Ez(t) = E0 cos(ωt) and e±iω0t, re-
spectively, contain a term that is almost constant and another that oscillates

3 Haug and Koch [94H1] use a reverse notation concerning P and P .
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rapidly. The first term drives the system coherently whereas the fast oscil-
lating term almost averages to zero, which will be neglected in the following.
For reasons that will become obvious later, this approximation is called the
rotating wave approximation (RWA). Within the RWA, (27.8,27.9) become

ȧ1(t) = i
ω∗

R

2
e+iδta2(t), (27.10)

ȧ2(t) = i
ωR

2
e−iδta1(t), (27.11)

which (besides ω and ω0) contain two characteristic frequencies

� ωR = dE0/�, the Rabi frequency (real, for simplicity) and
� δ = ω − ω0, which is called the “detuning” frequency.

By insertion, (27.10,27.11) lead to an equation of motion for a harmonic
oscillator with “imaginary damping”

ä1(t) − iδȧ1(t) + (
ωR

2
)2a1(t) = 0 , (27.12)

which can be solved by the standard exponential ansatz. For example, at
resonance, δ = 0, and initial conditions a1(0) = 1, a2(0) = 0, we have

a1(t) = cos(
ωR

2
t), a2(t) = i sin(

ωR

2
t). (27.13)

Hence, the probability of finding the TLS in the excited state, |c2(t)|2 =
|a2(t)|2, oscillates with the Rabi frequency ωR. The same holds true for the
population inversion, (see Fig. 27.2). At time t1 = π/ωR the atom is in the
excited state and at 2π/ωR it is back in the ground state. This is called Rabi
flopping. For detuned fields, the solution of (27.12) displays incomplete Rabi
flopping where the period becomes shorter and the amplitude is smaller than
when on resonance. See also Sect. 23.2.2.3.

A numerical example may be found, e.g., in Boyd [92B1]. For atomic
sodium the parameters for the 3s−3p transition are: d = 2.5aBe, λ0 = 589nm
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ω
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πt/2ωR

d(t)

Fig. 27.2. Rabi oscillations of the inversion (left) and induced dipole moment
(right). Resonant excitation (solid line), detuned excitation at ω = 0.5ω0 (dashed
line), ωR = 0.05ω0
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(aB is the Bohr radius). For an intensity of 127 W cm−2 (which can be
easily realized by focusing a low power laser beam) the Rabi frequency
ωR/2π ≈ 1 GHz becomes larger than the natural line width and oscillations
will appear. For further examples see, e.g., Di Bartolo’s article [05B1].

27.1.2 Polarization and Inversion as State Variables

Instead of c1, c2 one can likewise use the inversion I(t) and the complex
polarization P(t) themselves as state variables which – remarkably – obey
a closed set of first order differential equations. Using (27.5,27.6) together
with (27.8,27.9) we obtain (even without RWA)[

d
dt

+ iω0

]
P(t) = −iωR(t) I(t) + Ṗrel, (27.14)

dI(t)
dt

= −4 Im
[
ωR(t)P∗(t)

]
+ İrel, (27.15)

ωR(t) =
d

�
Ez(t). (27.16)

ωR(t) is the instantaneous Rabi frequency. (In the following, d as well as ωR(t),
can be assumed to be real).

The advantage of this description with respect to (27.8,27.9) is the pos-
sibility to include damping (i.e., incoherent interactions with a “bath”) in
a phenomenological way just by adding relaxation terms, which is not possi-
ble to do for (27.8,27.9)4:

Ṗrel = − P
T2
, İrel = −I(t) − Ieq

T1
. (27.17)

T1 and T2 determine the population (or energy) and phase relaxation of the
TLS and they are also called longitudinal and transverse relaxation times.
(The notation will become clear at the end of the next section). As I is the
square of an amplitude, we may expect T2 = 2T1. However, there are always
phase disturbing processes that do not contribute to energy relaxation so that
in general T2 ≤ 2T1. In semiconductors, one finds frequently that T2 � 2T1.
Ieq is the equilibrium value of the inversion in the absence of the driving field,
e.g., at zero temperature Ieq = −1. See also Sect. 23.1.

Without damping, there is a conserved quantity,

4 |P(t)|2 + I2(t) = const , (27.18)

which may be used to eliminate the inversion from (27.14). Its origin becomes
obvious from a remarkable analogy between any TLS and a spin-1/2 system
in a magnetic field as discussed in the following subsection.
4 A microscopic treatment of relaxation processes requires a density matrix ap-

proach or equivalent formulations. I(t) contains the diagonal elements of the
density operator, ρjj(= |cj |2), whereas P(t) probes the off-diagonal element
ρ12(= c∗1 c2).
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27.1.3 Pseudo-Spin Formulation

The Hamiltonian of a single spin-1/2 in a magnetic field B reads

Ĥ = −gµB

�
ŜB = −µBBσ̂, (27.19)

where Ŝ = �

2 σ̂ is the spin vector operator in terms of Pauli matrices σ̂x,
σ̂y, σ̂z, g = 2 is the g-factor of the electron, and µB is the Bohr magneton,
respectively [50H1].

When comparing (27.3) with (27.19) we conclude that any TLS is dynam-
ically equivalent to a spin-1/2 system (zero energy such that ε2 = −ε1). The
level-splitting between the ground state and the excited state of the atom cor-
responds to a constant magnetic field in z-direction, whereas the light field is
equivalent to an oscillatory magnetic field in the x-direction. The expectation
value of the (pseudo-) spin operator is closely related to the complex dipole
moment and the inversion:

S1 = < σ̂x >= c∗1c2 + c1c
∗
2 = 2 Re P(t), (27.20)

S2 = < σ̂y >= −ic∗1c2 + ic1c
∗
2 = 2 Im P(t), (27.21)

S3 = < σ̂z >=| c1 |2 − | c2 |2 = −I(t). (27.22)

The vector S = (S1, S2, S3) obeys the Bloch equation

dS(t)
dt

= Ω × S(t) + Ṡrel, Ω = (−2ωR(t), 0,−ω0) , (27.23)

which describes a rotation of S around a vector Ω at each instant of time.
These equations are identical with the classical equations of motion of a sphe-
rical top in an external field (yet with fixed magnitude of the angular mo-
mentum) (see Fig. 27.3). The relaxation term Ω̇sc is of similar structure as
(27.17).

In RWA, the rotation vector Ω = (−2ωR cosωt, 0,−ω0), is replaced by

ΩRWA = (−ωR cosωt, ωR sinωt,−ω0) (27.24)

so that the notation eventually becomes obvious. The linearly polarized elec-
tromagnetic wave is decomposed into two counter-rotating circular (pseudo-
magnetic) waves and only the resonant component is retained, which rotates
with the same chirality as the spin vector.

In the absence of relaxation, the length of the Bloch vector is conserved,
|S| = 1 [which is equivalent to (27.18)] and its motion can be nicely visualized
(see Fig. 27.3). We consider two limiting cases.

� For E(t) = 0, S rotates on a cone around the z-axis, which is called the
Larmor precession

SL(t) =
(
s0 sinω0t, s0 cosω0t, 1 − s20

)
, 0 ≤ |s0| ≤ 1. (27.25)
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Fig. 27.3. Larmor precession of the Bloch vector in a constant magnetic field B ‖ z
(left) and Rabi flopping due to an additional superimposed ac field along the 1-
direction (right) (without relaxation)

� If the system is excited at a resonance from initial state S(0) = (0, 0, 1)
the angle of the Larmor cone increases with time and the Bloch vector
performs a spiral motion on the unit sphere from the north to the south
pole and vice versa (Rabi flopping). In RWA, we have

SR(t) = (sinωRt sinω0t, sinωRt cosω0t, cosωRt) . (27.26)

For Rabi frequencies comparable with or even larger than the atomic tran-
sition frequency, the regime of extreme nonlinear optics is reached. Obviously,
the two-level approximation is no longer well justified in this regime but, ne-
vertheless, it seems to describe the physics fairly well. For an overview of the
amazing complexity and beauty of the nonlinear optical response see Sect. 19.3
and the paper by Tritschler et al. [03T1].

27.1.4 Linear Response of a Two Level System

We are looking for a solution of (27.14,27.15) in a linear approximation with
respect to the light field and zero temperature. In this case I(t) = −1 in
(27.14) so the problem of finding a solution reduces to[

d
dt

+ (ıω0 + γ)
]
P(t) = −i d

�
Ez(t), (27.27)

where γ = 1/T2. For P(−∞) = 0 the solution reads

P(t) = −i d
�

∫ t

−∞
e−(ıω0+γ)(t−t′)Ez(t′)dt′. (27.28)
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In particular, for a monochromatic field the dipole moment (27.4) becomes

d(t) =Re α(ω)E0 e
−ıωt, (27.29)

α(ω) =
|d|2
�

[
1

ω0 − (ω + ıγ)
+

1
ω0 + (ω + ıγ)

]
. (27.30)

α(ω) is the polarizability of the TLS. Remarkably, this result is almost iden-
tical with the polarizability of a classical harmonic oscillator (e.g., a par-
ticle with mass m and charge e bound to a spring with D = mω2

0, see
Chap. 4).

αcl(ω) =
e2

m

ω2
0 − ω2 − 2ıγω

(27.31)

In contrast to (27.30), the resonance frequency of a classical oscillator shifts
with increasing damping to lower values

√
ω2

0 − γ2
2 .

27.2 Optical Bloch Equations

As sketched in Fig. 27.4 the generalization of the optical Bloch equations
to the case of a two-band semiconductor is straightforward. Neglecting the
momentum of the absorbed photon, the optical transitions are vertical in
k-space. Under homogeneous conditions and neglect of scattering processes
(between different k-states in the same band) a two-band semiconductor is
just an assembly of uncoupled TLSs and resembles the case of a inhomo-

Fig. 27.4. Two noninteracting bands viewed as a collection of TLSs with different
transition energies
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geneously broadened line problem in atomic physics. The equations of mo-
tion are:

i�
∂P(k, t)
∂t

=
[
Ec(k) − Ev(k)

]
P(k, t)

+ dcv(k)E(t)
[
nc(k, t) − nv(k, t)

]
+ i�Ṗrel, (27.32)

∂nc(k, t)
∂t

= − 2 Im
[
dcv(k)E(t)P∗(k, t)

]
+ ṅrel

c , (27.33)

∂nv(k, t)
∂t

= + 2 Im
[
dcv(k)E(t)P∗(k, t)

]
+ ṅrel

v . (27.34)

These are the optical Bloch equations. nc and nv are the mean occupa-
tion numbers (per spin) of the conduction and valence band Bloch states. In
addition, particle conservation requires nc + nv = 1. In a phenomenological
description, relaxation may be included analogously to (27.17). For a quali-
tative treatment and allowed (dipole) transitions, the k-dependence of the
interband dipole matrix element dcv(k) ∝ 〈c, k |p̂| v,k 〉 may often be ne-
glected near the band edge. The k-dependence is only relevant for forbidden
transitions or if the variation of the polarization over the whole Brillouin-zone
is needed. Note that these equations are uncoupled with respect to the wave
number k.

From P(k, t) the electronic polarization of the semiconductor can be ob-
tained from

P (t) =
2
V

Re
∑
k,s

d∗
cv(k)P(k, t), (27.35)

where V denotes volume of the sample, which eventually drops out when
performing the sum over wavenumbers in terms of the integral

1
V

∑
k,s

. . . = 2
1

(2π)d

∫
. . .ddk, (27.36)

where d = 1, 2, 3 specifies the space-dimension and the factor 2 arises from
spin summation.

27.2.1 Optical Susceptibility: Interband Transitions

Next, we discuss the linear response result for the optical susceptibility
of an undoped semiconductor at low temperatures and neglecting crystal
anisotropy. Here, nc and nv can be replaced by the (equilibrium) Fermi func-
tions fc(k) ≈ 0, fv(k) ≈ 1 for the electrons in the conduction and valence
bands. As k is merely a parameter in this approximation, the required solu-
tion of (27.32) can be found by the ansatz

P(k, t) = Q(k, t) exp
[
− i

�
(Ec(k) − Ev(k)) t

]
(27.37)
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with a simple integration of Q(k, t). Eventually, we read off the electrical sus-
ceptibility χ(ω) from the Fourier components of P (t) and E(t) (see Prob. 3):

P (ω) =ε0χ(ω)E(ω), (27.38)

χ(ω) =
1
V ε0

∑
k,s

|dcv(k)|2
{

fv(k) − fc(k)
Ec(k) − Ev(k) − �(ω + iη)

+

+
fv(k) − fc(k)

Ec(k) − Ev(k) + �(ω + iη)

}
, η → +0. (27.39)

For parabolic bands and k-independent dipole matrix elements dcv (along the
field direction) the absorptive part of the susceptibility is proportional to the
joint density of states of the valence and conduction bands. In the d = 1, 2, 3
dimensions, the (joint) density of states, and hence the absorption, rises as
Im χ(ω) ∝ [�ω − Eg]

(d−2)/2 (see also Sect. 7.7 and 8.9).

27.3 Semiconductor Bloch Equations

We are close to the summit of our tour towards SBEs. Two features have not
yet been taken into account:

� There is a change in Coulomb and exchange energy of the interacting
many-electron (ground) state when exciting an electron to the conduction
band and leaving a hole behind. The main part of this interaction turns
out to be an attractive Coulomb potential, which adds to the external
electrical field (also see Chap. 9).

� With increasing band filling there is a renormalization of the electron/hole
band energy by the electron/hole Coulomb interaction (also see Chap. 21).

i�
∂P(k, t)
∂t

=
[
Eg + Ee(k) +Eh(k)

]
P(k, t)

+
[
ne(k, t) + nh(k, t) − 1

]
�ΩR(k, t) + i�Ṗrel, (27.40)

∂nc(k, t)
∂t

= −2 Im
{
ΩRP∗(k, t)

}
+ ṅrel

c , (27.41)

∂nh(k, t)
∂t

= −2 Im
{
ΩRP∗(k, t)

}
+ ṅrel

h (27.42)

For convenience, the change in population of the valence band is formu-
lated within the hole picture (as indicated by the index h):

nv(k, t) = 1 − nh(k, t), Ev(k, t) = −Eg − Eh(k, t). (27.43)

The factor ne(k, t) + nh(k, t) − 1 is again the population inversion at k. Its
influence on the optical absorption is often denoted as phase space filling or
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Pauli-blocking. The term −2Im {ΩRP∗(k, t)} in (27.41, 27.42) describes the
generation of electron hole pairs by the absorption of light.

Ee(k, t) and Eh(k, t) are the electron/hole (Hartree-Fock) energies includ-
ing the interaction with other electrons/holes. For parabolic bands these are:

Ej(k, t) =
�2k2

2mj
− 1
V

∑
q ( �=k)

V (k − q) nj(q, t), j = e, h. (27.44)

Note, mh > 0.
ΩR(k, t) denotes the generalized Rabi frequency (function)

�ΩR(k, t) = dcv(k)E(t) +
1
V

∑
q ( �=k)

V (k − q) P(q, t), (27.45)

where V (q) is the Fourier transform of the (repulsive) Coulomb potential
screened by a background dielectric constant εb

V (q) =
e2

ε0εb q2
, V (r) =

e2

4πε0εb r
. (27.46)

Going beyond the time-dependent Hartree-Fock approximation is not easy
and requires higher-order correlation functions. Physically, this leads to a fur-
ther renormalization of interactions and energies, which are described by four,
six, or more particle (e.g., biexcitons) amplitudes, and a microscopic formula-
tion of the relaxation terms (dephasing of the polarization, collisions of elec-
trons and holes) [88Z1,94H1,96H1]. An important mechanism in this respect
is the dynamical screening of the (e–e, h–h, e–h) Coulomb interactions by the
excited carriers in terms of a (Lindhard-) dielectric function ε(q, ω). Such
contributions are of increasing importance for high excitation and ultrashort
pulses. Moreover, in addition to the purely electronic interactions there are
other scattering mechanisms, such as carrier-phonon scattering or scattering
of the carriers by impurities and interface roughness in spatially confined sys-
tems. For very short times, memory effects of the scattering processes come
into play so that the scattering integrals in the Boltzmann equation for ne, nh

become non-Markovian.
Further refinements of the theory may also include some details of the re-

alistic semiconductor band-structure (e.g., more than two bands, heavy hole-
light hole splitting, band-warping, etc.) or spatial dispersion. This, however,
requires a huge numerical effort. At this level one is generally left with an
approximate numerical treatment and the problem is considered to be under-
stood (or solved) if these results agree well with the experimental findings.

27.3.1 Optical Susceptibility: Excitons

To demonstrate the simplicity as well as the potential of SBEs (e.g., as com-
pared with Elliott’s evaluation of the Kubo formula [57E1]) we discuss the
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linear optical susceptibility of the interacting electron-hole system including
exciton states. At low excitation and zero temperature we have nv = nh ≈ 0
so that (27.40-27.42) reduce to:

i�
∂P(k, t)
∂t

=
[
Eg +

�
2k2

2µr

]
P(k, t)− 1

V

∑
q( �=k)

V (k−q)P(q, t)−dcvE(t). (27.47)

µr denotes the reduced electron hole mass. As opposed to the optical Bloch
equations, (27.32-27.34), k is no longer just a parameter; different ks are
coupled by V (k − q). However, this interaction term is a convolution type
and, by Fourier-transformation, it reveals as the (inhomogeneous) Schrödinger
equation of the hydrogen atom

i�
∂P(r, t)
∂t

=
[
Eg − �2

2µr
∆
]
P(r, t) − V (r)P(r, t) − dcv E(t) δ(r). (27.48)

Equation (27.48) is also known as the Wannier-Equation.P(r, t) plays the part
of the exciton (envelope) wave function. The k-dependence of the interband
matrix element dcv(k) has been neglected.

For E = 0 the stationary states are well known from standard texts on
quantum mechanics

Pα(r, t) = e−i Eα
�

t Ψα(r), Eα = −Ry
∗

n2
, Ry∗ = Ry

µr/m0

ε2b
. (27.49)

Ry = 13.6 . . . eV is the hydrogenic Rydberg energy.5 Quantum numbers
α = (n, l,m) have their usual meaning and, formally, n labels the discrete, as
well as the continuum, states. In a semiconductor, these (bound) hydrogenic
states are called excitons, which have been extensively discussed in previous
chapters, (in particular see Chaps. 9, 13 and the references cited therein).

For E(t) �= 0 (parallel to the z-direction) we seek the solution of P(r, t)
in terms of the complete set of the stationary states as given by (27.49),

P(r, t) =
∑
α

Qα(t)Pα(r, t), (27.50)

where Qα(t) can be found by the simple integration

Qα(t) = i
dcv

�
Ψ∗

α(r = 0)
∫ t

−∞
Ez(t′) ei Eα

�
t′eηt′ dt′, η → 0+. (27.51)

exp(ηt) has been added to switch on the light at t = −∞ adiabatically. Obvi-
ously, the (spatially constant) light-field creates only those exciton states that
have a nonvanishing wave function at the origin; these are the s-states.6

5 If the excitonic Rydberg Ry∗ is smaller than the LO-phonon energy, εb is given
by the static dielectric constant εs and otherwise by ε∞ (see also Sect. 9.2).

6 This result originates from our approximation that dcv(k) = const. If the dipole
element vanishes linearly with k at the band edge, the coupling is solely to p-
states. A prominent example is Cu2O (see Sect. 13.2.1.2 and Prob. 4.)
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Inserting (27.50) in (27.36) and using the completeness relation of the sta-
tionary states (27.49), we finally obtain the electrical susceptibility (isotropic
approximation, dcv along E)

χ(ω) = 2
|dcv|2
ε0

∑
α

|Ψα(r = 0)|2
{

1
Eg + Eα − �(ω + iη)

+

+
1

Eg + Eα + �(ω + iη)

}
. (27.52)

In a bulk semiconductor the absorptive part consists of a series of delta-
functions at the bound exciton s-states with rapidly decreasing oscillator
strength ∝ n−3 and a continuum part [94H1]

Im χ(ω) ∝
∞∑

n=1

4π
n3
δ(∆ +

1
n2

) + θ(∆)
π exp

(
π√
∆

)
sinh( π√

∆
)
. (27.53)

∆ = (�ω − Eg)/Ry∗ denotes the normalized photon energy. Close to the
ionization continuum, ∆ → 0, the absorption increases stepwise in striking
distinction to the square root law for noninteracting bands (cf. (27.39)). Thus,
the attractive Coulomb interaction not only creates bound states below the
gap but leads to a pronounced enhancement of the absorption above the gap
(the so-called Sommerfeld-enhancement). Equation (27.53) was first derived
by Elliott [57E1] but in a much more elaborate way. The corresponding real
part can be calculated from the Kramers–Kronig relations (see Chap. 6).

0
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Fig. 27.5. Electrical susceptibility of a direct semiconductor near the gap energy.
Im χ (A) and Re χ (B) of the interacting electron hole system, (27.53). Im χ (B)
of the noninteracting system, (27.39). Note the different frequency scale above and
below the gap. An appropriate broadening was included phenomenologically [87S1]
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The optical absorption spectrum bulk GaAs is displayed in Fig. 27.5, which
gives a lively impression of the importance of the Coulomb interaction and
exciton states near the band gap. In the very best samples, exciton lines up
to n = 3 can be resolved in this material (see Chap. 13).

27.4 Some Selected Coherent Processes

An important class of optical experiments involves two or three short pulses
impinging from different directions and at different times on the sample (see
Fig. 27.6 and Sects. 23.2.1.1 and 25.2.2.3). From the analysis of such studies on
the dynamics and coherence properties, such as T1, the T2 times are obtained.
In terms of nonlinear optics, the processes in question are of third order with
respect to the light

Pj = χ
(3)
jklmEkElEm. (27.54)

The products are in fact convolutions with respect to time, and j, k, l,m
denote Cartesian components of the (total) electrical light field. One of these
pulses, shown in Fig. 27.6, may have a twofold effect. The following sections
discuss some typical examples.

k1

k2

k3

k1

k2 k2

k1

2k   −k2 1

a) b) c)

Fig. 27.6. (a) Sketch of some third-order nonlinear processes. (b) Pump-probe (c)
Four-wave mixing experiment

27.4.1 Pump-Probe Experiments

In a pump-probe experiment the first pulse (pump) pre-excites the system.
After a delay time τ the linear optical (absorption, reflection) response with
a second pulse (probe) is measured. As a reference, we give the result for the
optical Bloch equations, where a δ(t) shaped pulse #1 induces the following
change in the optical absorption

δα(ω; τ, I1) = α(ω; τ, I1) − α0(ω) ∝ −I1 eτ/T1 α0(ω) . (27.55)
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Hence, pump-probe experiments reflect the influence of the excited car-
riers and their relaxation on the optical properties. α0(ω) is the absorption
coefficient of the system in equilibrium. In Fig. 27.6b the electrical field of
pulse #1 enters twice because I1 ∝ E2

1 .

27.4.2 Four-Wave Mixing Experiments

In a wave mixing experiment the nonlinear response is studied in a so-called
background free direction, which is different from those of the incident pulses
and their transmission or reflection, which, of course, is experimentally fa-
vorable (see also Chap. 25). The first pulse excites a coherent polarization
whose radiation field interferes with the second pulse forming an interference
pattern with wave vector k1 − k2. This pattern, in turn, modulates the (lin-
ear) optical properties of the system and, thus, diffracts off the second pulse
in direction 2k2 − k1 (other directions are less efficient). This phenomenon
is called (degenerate) four-wave mixing (FWM) as four waves are involved:
#1, #2 (counted twice!) and the wave emitted in the direction 2k2 − k1 (see
Fig. 27.6c).

For a general overview of nonlinear coherent processes in semiconductors,
see Haug and Koch [94H1], Shah [96S1], or Schäfer and Wegener [02S1]. A re-
view on the coherent spectroscopy of semiconductor microcavities has been
given by Lyssenko et al. [05L1]. Experimental results for typical semiconductor
systems are discussed in Chap. 23.

27.4.3 Photon Echo

The analogy of a TLS with the spin-1/2 problem offers an unexpected in-
sight into an interesting phenomenon called photon echo. Here, we examine
the rather marvelous notion that not all macroscopic decay processes are ir-
reversible.7 In a photon echo experiment, many TLS are usually involved and
because of different local environments these have individually slightly dif-
ferent transition frequencies (inhomogeneous line broadening, spectral width
parameterized by 1/T ∗

2 ). Hence, the macroscopic (magnetization or polariza-
tion) signal contains many contributions with slightly different frequencies
that add up almost to zero in a rather short time (≈ T ∗

2 ), yet the individual
systems are still oscillating with a fixed phase relation with respect to the ex-
citing pulse and the energy stored in the moments being out of phase can be
recovered in a coherent fashion. Instead of waiting for the extremely unlikely
Poincaré recurrence of the initial state, a second pulse after time T is used,
which – loosely speaking – causes a time reversal operation followed by an
echo of the initial pulse after total time 2T .
7 This technique was developed by Hahn [50H1] for nuclear spin systems and it plays

an important role in measuring the T2-time. For a survey and thorough discussion
we refer readers to Chap. 9 of Allen and Eberly [87A1] and to Chap. 23 of this
book for experimental results.
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To uncover the echo phenomenon it is convenient to describe the dynamics
of the Bloch vector in a frame rotating with the frequency of the light (not
the atomic transition frequency!) around the 3-axis:

R1(t) = S1(t) cosωt− S2(t) sinωt, (27.56)
R2(t) = S1(t) sinωt+ S2(t) cosωt, (27.57)
R3(t) = S3(t). (27.58)

(In complex notation the 1, 2 components can be summarized byR = R1+iR2,
S = S1 + iS2, with R = Seiωt.) In this frame the equations of motion read

Ṙ1(t) = −δR2(t) − R1(t)
T2

, (27.59)

Ṙ2(t) = +δR1(t) + ωRR3(t) − R2(t)
T2

, (27.60)

Ṙ3(t) = −ωRR2(t) − R3(t) −Req
3

T1
. (27.61)

These linear differential equations have constant coefficients so that the so-
lution can be found by an exponential ansatz. In particular, for ωR = 0 the
Bloch vector performs a (damped) Larmor-precession around the 3-axis:

R1(t) = [R1(0) cos δt−R2(0) sin δt] e−
t

T2 , (27.62)

R2(t) = [R1(0) sin δt+R2(0) cos δt] e−
t

T2 , (27.63)

R3(t) = Req
3 + [R3(0) −Req

3 ] e−
t

T1 . (27.64)

At resonance, δ = 0, but by neglecting damping a light pulse causes a Rabi
rotation of the Bloch vector around the 1-axis

R1(t) = +R1(0), (27.65)
R2(t) = +R2(0) cosωRt+R3(0) sinωRt, (27.66)
R3(t) = −R2(0) sinωRt+R3(0) cosωRt. (27.67)

In the discussion of a photon echo experiment four periods have to be
distinguished (see Fig. (27.7)). To simplify matters, we shall assume that the
pulse duration is short with respect to T1, T2, T

∗
2 and intense, ωRT

∗
2 � 1, so

that the influence of damping and detuning can be safely neglected during
the pulses.

1. All TLSs start from the same initial state R(0) = (0, 0, 1). Then the ensem-
ble of atoms is polarized by an initial light pulse (duration τ1), which, ac-
cording to (27.65–27.67), leads to a common Bloch vector R(1) = (u, v, w).
For a so-called π/2-pulse, i.e., φ1 = ωRτ1 = π/2, the polarization (mag-
netization) is “tipped” to the 2-direction: R(1) = (0, 1, 0) (see Fig. 27.7a).

2. After the first light pulse, the individual Bloch vectors R(2) precess ac-
cording to (27.62–27.64). Because of their slightly different frequencies the
individual dipole moments get out of phase (relative to each other) and
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Fig. 27.7. Principle of a photon echo experiment. Upper part: Standard pulse se-
quence (dashed blocks, exaggerated duration) and resulting polarization (solid lines).
Lower part : Dynamics of the Bloch vector in the rotating frame. (a) Alignment of
the individual Bloch vectors along the 2-direction by a π/2-rotation around the 1-
axis. (b) Precession of the individual Bloch vectors in the 1-2 plane as determined
by their various detunings leading to free polarization decay (FPD). (c) π-rotation
around the 1-axis transforms R2 → −R2 but leaves R1 unchanged. (d) Reproduc-
tion of the initial state at time T after the π-pulse (For simplicity only three Bloch
vectors are displayed with detunings δ+ > 0, δ0 = 0, δ− < 0)

add to zero in a time T ∗
2 , which is much shorter than T2. This dephasing

phenomenon is called free polarization decay (FPD) and is depicted in Fig.
27.7b. (Since we are in a rotating frame only the phase deviations relative
to exp(iωt) appear in this figure.)

3. After time T a second light pulse is applied (duration τ2, phase φ2 =
ωRτ2), which, according to (27.65, 27.66), tips the polarization to R(3).

4. After the second pulse the Bloch vectors R(4) again rotate freely around
the 3-axis. As a result, we obtain for the 2-component

R
(4)
2 (t) =

{
u [cos δT sin δt+ cosφ2 sin δT cos δt] (27.68)

−v [sin δT sin δt− cosφ2 cos δT cos δt]
}
e−

t+T
T2 (27.69)

+ sinφ2 cos δt
[
1 + (w − 1) e−T/T1

]
e−T/T2 , (27.70)

where the time t counts from the end of the second pulse. For φ2 = π
the terms in the [..] brackets combine to cos δ(T − t) and sin δ(T − t) and
all individual Bloch vectors are again in phase at time 2T after the first
pulse and add up to a macroscopic polarization. This causes the emission
of a light pulse, the photon echo.

The resurrected free polarization signal has the magic quality of something
coming from nothing. However, this resurrection is only possible for times
comparable with the T2 time. For larger times, the intensity of the photon
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Fig. 27.8. Experimental spin echo for protons in water (ω/2π = 95MHz, duration
of π-pulse: 1.4µs, T2 ≈ 75µs, T ∗

2 ≈ 1µs, T1 ≈ 10s, room temperature) [03F1] (left)
and photon echo in a II-VI semiconductor compound [92S1](right)

echo decays as the square of exp(−2T/T2), i.e., exp(−4T/T2). T2 is also called
the decoherence or dephasing time.

It is interesting that the existence of the echo is not attributed to the π-
character of the second pulse as it is frequently imputed. When decomposing
the products of trigonometric functions cos δT cos δt, etc., in terms of sum and
differences, we realize that there is a contribution to the polarization of the
form:

R
(4)
2 = −1 − cosφ2

2

{
u sin [δ(T − t)] + v cos [δ(T − t)]

}
e
− t+T

T2 + . . . (27.71)

Thus, a second pulse of any duration will induce an echo. However, its intensity
is largest for φ2 = π (and φ1 = π/2). (Terms omitted in (27.71) indicate
nonecho terms).

Although spin and photon echo phenomena have the same theoretical
roots, there are profound experimental differences.

� In semiconductors, photon echoes are generated with light pulses that
correspond to phase shifts much smaller than π. Φ = π would lead to
a complete band inversion, which in turn would lead to a collapse of the
semiconductor band structure. This regime is hardly accessible and would
generate additional fast dephasing processes.

� Spin echoes are generated with rf or microwave fields with wavelengths
much larger than the dimensions of the specimen. The situation is op-
posite for photon echoes in semiconductors where standard experimental
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techniques, e.g., four-wave mixing, uses pulses traveling in different direc-
tions so that the echo signal can be spatially separated from the exciting
pulses (details are discussed in Chaps. 23 and 25).

A popular analogy of the spin echo phenomenon and a group of runners in
a stadium as discussed in Chap. 9 of Allen and Eberly’s book [87A1] and in
Sect. 23.2 of this book. (However, it should be kept in mind that π-rotation
around the 1-axis at time T causes a reconfiguration of the pulse, analogously
to optical phase conjugation, rather than a reversal of time of the individual
Bloch vectors.)

Experimentally, photon echo measurements are often used as a tool to de-
termine the optical dephasing rate T−1

2 . In semiconductor systems, however,
the (dynamically screened) interactions of the electron hole pairs may lead to
significant deviations from the atomic case and the analysis of experimental
results requires a detailed numerical study of the SBEs, which was first un-
dertaken by Lindberg et al. [92L1]. For an overview and details see Haug and
Koch [94H1] and Schäfer and Wegener [02S1]. An easily readable review of
spin echo and photon echo in semiconductors, as well as an overview on related
echo phenomena, was recently published by Meier and Thomas [03M1].

A preliminary version of this chapter was published in the proceedings of
an Erice Summer School [98B1].

27.5 Problems

1. Solve (27.12) for arbitrary detuning and calculate the wave function coef-
ficients cj(t) (or aj(t)), inversion I(t), and complex polarization P(t). Use
the initial conditions c1(0) = 1 and c2(0) = 0.

2. At resonance there are stationary states of the coupled TLS electrical field,
(27.12), with time-independent probabilities |cj(t)|2=const. Find these
“dynamic Stark-states.”

3. Use the ansatz proposed by (27.37) to solve (27.32) for a monochromatic
field and derive the interband susceptibility χ(ω) given by (27.39). Hint: In
the absence of damping, the light field must be switched on adiabatically
at t = −∞, E(t) = E0 exp(ηt) cos(ωt), η → +0. Otherwise the response
contains spurious contributions from the physically irrelevant initial state.

4. If the transitions near the band-edge are forbidden (in first order) the
dipole matrix element behaves as dcv(k) ∝ k. Show that the optical ab-
sorption is now linked to exciton p-states.
Hints: For r→ 0 hydrogenic wave functions behave as Ψn,l,m(r, θ, φ) ∝ rl.
Under Fourier transformation: grad → ık.

5. Find the general solution of the Bloch equations for the photon echo prob-
lem (27.59–27.61). Express the integration constants in terms of the Bloch
vector at t = 0, R(0).
Hint: The solution can be obtained by an exponential ansatz with R(t) =
ρ exp(λt), where ρ is a time-independent 3-component vector.
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6. Consider a photon echo with pulses of equal duration, i.e. Φ = Φ1 = Φ2.
Show that the echo signal has a maximum for Φ = 2π/3 and even a bit
stronger than that for the π/2-π sequence.
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[02S1] W. Schäfer, M. Wegener, Semiconductor Optics and Transport Phenomena,
Advanced Texts in Physics (Springer, Berlin 2002).
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782 27 Semiconductor Bloch Equations

The final problem

Find all errors in this book both in physics and in printing, collect all aspects
which can be improved and all important phenomena which have been omitted
and solve all problems. Send a corresponding listing to the author and help
him by doing so to improve the next editions of this book – if there are any.
Many thank inadvance for your help.

Actually, the author himself is working hard on parts of this problem, trying to

reduce the number of mistakes and misprints from one edition to the next, but

possibly introducing some new ones at the same time. A dear colleague, Prof. Dr.

B. Di Bartolo at Boston College often states, “In science a case is never closed.”

The author generally agrees with this statement and especially as it applies to this

“final problem”.
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ferromagnetic 269
spin–orbit coupling 192, 610
spin-flip Raman scattering 715
spin-flips 331
spin-orbit splitting 745
spintronics 669
splitting of states 739
SPP 523
SQW 204
stacking faults 153
stacks

vertical 397
star of k 748

Stark effect 416
optical 619
quantum confined 392
quantum-confined 420, 656, 715

Stark localization 606
Stark-superlattices 378
states

excited 349
localized 214, 623
quantized 203

Stokes shift 368
Stokes’s law 613
stop-band 85, 95, 111
strain 305, 533

biaxial 425
strained layer 212
strange attractor 663
Stranski-Krastanov 218
Stranski-Krastanov growth mode 213
streak camera 699
stress 503, 531

inhomogeneous 712
stressors 219
stripe-length method 691
strong coupling 296
strong-field limit 405
structure formation

spatio-temporal 665
subband 196, 204, 544

quasi-one-dimensional 215
subband transitions 366
subgroup 727
sublevels

excitonic 339
subsets 727
substitutional 220
sum frequency 701
sum-frequency generation 461
superconduction coils 713
superfluid state 507
superfluidity 498, 499
superlattice 155, 206, 253, 548, 603

doping 382
free standing 213
piezo 658
short period 380
strain symmetrized 426
strained 426
strained layer 156, 212, 377, 425
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superposition
coherent 669

surface charge density 263
surface layer

exciton-free 299
surface plasmon 267
surface recombination 687
susceptibility 18

dielectric 460
electrical 773
nonlinear 489
optical 772

switching waves 655
symmetry

cubic 53, 191
spherical 53, 191
translational 104

symmetry operations 728
synchroscan cameras 699
synergetics 658, 665

T-shaped quantum wires 385
tail states 368

localized 356
tailing parameter 230, 358, 589
Tauc-regime 358
temperature

critical 498
temperature sensor 655
the chemical potential µ 534
thermal expansion 712
thermalization 632
thermo-modulation 681
thickness

critical 212
three-photon absorption 319, 475
threshold

laser 556
threshold logic 668
THz emission 605
THz radiation 608
THz spectroscopy 715
Ti-Sa 697, 698
tight-binding approximation 163
time

dephasing 702
time constants

basic 572
time of flight 317, 374

time reversal 580, 750, 775
titanium sapphire laser 697
total internal reflection

attenuated 321
total reflection

attenuated 41
frustrated 41

TPA 317
TPRS 317
transition matrix element 742
transitions

band-to-band 327
dipole-allowed 331
dipole-forbidden 331
inter-miniband 566
inter-subband 566
internal 224

translation 730, 731
infinitesimal 134

translation group 741
translation vector 131

elementary 131
transport 715

balistic 627
traps

isoelectronic 224
trions 486, 491, 635
triplet 245, 300, 323, 680
triplet fluorescence 323
two particle excitation 265
two polariton state 318
two step absorption 689
two-electron transitions 349
two-level systems 618
two-particle transition 241
two-photon absorption 464, 475, 689
two-photon excitation 312, 480
two-photon spectroscopy 317

luminescence assisted 691
two-photon transitions 743
two-step process 482
type I 207
type II 253, 376
type II misaligned 207
type II staggered 207
type III 207
type–I structures 365

Ulbricht-sphere 682
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uncertainty relation 116, 695
uniaxial 97
uniaxial stress 743
unit cell 133, 134
Urbach–Martienssen rule 306

V grooves 216
V-groove wire 384
vacancies 153, 221
valence band 163, 166
valenceband plasmons 268
valley

multi 192
single 192

van der Waals gas 658
van Hoove singularities 376
van Hove singularities 199
VCSELs 565
vector potential 66, 68
velocity

energy transport 96
group 96, 137, 317
phase 96, 137
signal 96

vibrons 321
vidicon 679
virtual crystal approach 151
void 153
Voigt 598
Voigt configuration 712
Vollmer-Weber growth mode 213
von Neumann bottleneck 667

Wannier–Stark ladder 421, 606, 609,
715

Wannier-Equation 772
wave

backscattered 181
evanescent 41, 321
longitudinal 16, 21, 137
transverse 16

wave equation 14
harmonic 137

wave functions
product 744

wave guide 443
wave packets 593
wave vector 14, 25
wavelength-modulation 681
weak coupling 296
weak field limit 405
well-width fluctuation 228, 230
wetting layer 218
whispering gallery modes 566
width

homogeneous 389
Wigner–Seitz approach 186
Wigner–Seitz cell 135
wurtzite structure 732

X-ray 471
XANES 330

Yablonovite 444
Yukawa-type potential 521

z-scan 688
Zeeman splitting 406, 413, 414
Zeeman-splitting 714
Zener breakdown 606
Zener Pendeln 602
zeolithe 218
zero-point energy 23
zincblende structure 732




