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Preface to the Fourth Edition

This new edition contains three new chapters concerned with material that is
meant to provide a deeper foundation for the quantum processes described
previously, and to provide a statistical bridge to phenomena involving charge
transport. The recent theoretical and experimental interest in fundamental
quantum behaviour involving mixed and entangled states and the possible
exploitation in quantum computation meant that some account of this should
be included. A comprehensive treatment of this important topic involving
many-particle theory would be beyond the scope of the book, and I have
settled on an account that is based on the single-particle density matrix. A
remarkably successful bridge between single-particle behaviour and the
behaviour of populations is the Boltzmann equation, and the inclusion of an
account of this and some of its solutions for hot-electrons was long overdue. If
the Boltzmann equation embodied the important step from quantum statis-
tical to semi-classical statistical behaviour, the drift-diffusion model completes
the trend to fully phenomenological description of transport. Since many
excellent texts already cover this area I have chosen to describe only some of
the more exciting transport phenomena in semiconductor physics such as
those involving a differential negative resistance, or involving acoustoelectric
effects, or even both, and something of their history.

A new edition affords the opportunity to correct errors and omissions in the
old. No longer being a very assiduous reader of my own writings, I rely on
others, probably more than I should, to bring errors and omissions to my
attention. I have been lucky, therefore, to work with someone as knowledgable
as Dr N.A. Zakhleniuk who has suggested an update of the discussion of
cascade capture, and has noted that the expressions for the screened Bloch-
Gruneisen regime were for 2-D systems and not for bulk material. The update
and corrections have been made, and I am very grateful for his comments.

My writing practically always takes place at home and it tends to involve a
mild autism that is not altogether sociable, to say the least. Nevertheless, my
wife has put up with this once again with remarkable good humour and I
would like to express my appreciation for her support.

Thorpe-le-Soken, 1999 B.K.R.



Preface to the Third Edition

One of the topics conspicuously absent in the previous editions of this
book was the scattering of phonons. In a large number of cases phonons
can be regarded as an essentially passive gas firmly anchored to the lattice
temperature, but in recent years the importance to transport of the role
of out-of-equilibrium phonons, particularly optical phonons, has become
appreciated, and a chapter on the principal quantum processes involved
is now included. The only other change, apart from a few corrections to
the original text (and I am very grateful to those readers who have taken
the trouble to point out errors) is the inclusion of a brief subsection on
exciton annihilation, which replaces the account of recombination involv-
ing an excitonic component. Once again, only processes taking place in
bulk material are considered.

Thorpe-le-Soken B.K.R.
December 1992



Preface to the Second Edition

This second edition contains three new chapters—'Quantum processes in a
magnetic field, Scattering in a degenerate gas, and Dynamic screening'—
which I hope will enhance the usefulness of the book. Following the
ethos of the first edition I have tried to make the rather heavy
mathematical content of these new topics as straightforward and acces-
sible as possible. I have also taken the opportunity to make some
corrections and additions to the original material—a brief account of
alloy scattering is now included—and I have completely rewritten the
section on impact ionization. An appendix on the average separation of
impurities has been added, and the term 'third-body exclusion' has
become 'statistical screening', but otherwise the material in the first
edition remains substantially unchanged.

Thorpe-le-Soken 1988 B.K.R.



Preface to the First Edition

It is a curious fact that in spite of, or perhaps because of, their over-
whelming technological significance, semiconductors receive compara-
tively modest attention in books devoted to solid state physics. A student
of semiconductor physics will find the background theory common to all
solids well described, but somehow all the details, the applications, and
the examples—just those minutiae which reveal so vividly the conceptual
cast of mind which clarifies a problem—are all devoted to metals or
insulators or, more recently, to amorphous or even liquid matter. Nor
have texts devoted exclusively to semiconductors, excellent though they
are, fully solved the student's problem, for they have either attempted
global coverage of all aspects of semiconductor physics or concentrated
on the description of the inhomogeneous semiconducting structures which
are used in devices, and in both cases they have tended to confine their
discussion of basic physical processes to bare essentials in order to
accommodate breadth of coverage in the one and emphasis on application
in the other. Of course, there are distinguished exceptions to these
generalizations, texts which have specialized on topics within semiconduc-
tor physics, such as statistics and band structure to take two examples, but
anyone who has attempted to teach the subject to postgraduates will, I
believe, agree that something of a vacuum exists, and that filling it means
resorting to research monographs and specialist review articles, many of
which presuppose a certain familiarity with the field.

Another facet to this complex and fascinating structure of creating,
assimilating, and transmitting knowledge is that theory, understandably
enough, tends to be written by theoreticians. Such is today's specialization
that the latter tend to become removed from direct involvement in the
empirical basis of their subject to a degree that makes communication
with the experimentalist fraught with mutual incomprehension. Some-
times the difficulty is founded on a simple confusion between the dispa-
rate aims of mathematics and physics—an axiomatic formulation of a
theory may make good mathematical sense but poor physical sense—or it
may be founded on a real subtlety of physical behaviour perceived by one
and incomprehended by the other, or more usually it may be founded on
ignorance of each other's techniques, of the detailed analytic and numeri-
cal approximations propping up a theory on the one hand, and of the
detailed method and machinery propping up an experimental result on
the other. Certainly, experimentalists cannot avoid being theoreticians
from time to time, and they have to be aware of the basic theoretical
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structure of their subject. As students of physics operating in an area
where physical intuition is more important than logical deduction they are
not likely to appreciate a formalistic account of that basic structure even
though it may possess elegance. Intuition functions on rough approxima-
tion rather than rigour, but too few accounts of theory take that as a
guide.

This book, then, is written primarily for the postgraduate student and
the experimentalist. It attempts to set out the theory of those basic
quantum-mechanical processes in homogeneous semiconductors which
are most relevant to applied semiconductor physics. Therefore the subject
matter is concentrated almost exclusively on electronic processes. Thus no
mention is made of phonon-phonon interactions, nor is the optical
absorption by lattice modes discussed. Also, because I had mainstream
semiconductors like silicon and gallium arsenide in mind, the emphasis is
on crystalline materials in which the electrons and holes in the bands obey
non-degenerate statistics, and little mention is made of amorphous and
narrow-gap semiconductors. Only the basic quantum-mechanics is discus-
sed; no attempt is made to follow detailed applications of the basic theory
in fields such as hot electrons, negative-differential resistance, acousto-
electric effects, etc. To do that would more than triple the size of the
book. The theoretical level is at elementary first- and second-order
perturbation theory, with not a Green's function in sight; this is inevita-
ble, given that the author is an experimentalist with a taste for doing his
own theoretical work. Nevertheless, those elementary conceptions which
appear in the book are, I believe, the basic ones in the field which most of
us employ in everyday discussions, and since there is no existing book to
my knowledge which contains a description of all these basic processes I
hope that this one will make a useful reference source for anyone
engaged in semiconductor research and device development.

Finally, a word of caution for the reader. A number of treatments in
the book are my own and are not line-by-line reproductions of standard
theory. Principally, this came about because the latter did not exist in a
form consistent with the approach of the book. One or two new expres-
sions have emerged as a by-product, although most of the final results are
the accepted ones. Where the treatment is mine, the text makes this
explicit.

Colchester 1981 B.K.R.



This page intentionally left blank 



Contents

1. BAND STRUCTURE OF SEMICONDUCTORS
1.1. The crystal Hamiltonian
1.2. Adiabatic approximation
1.3. Phonons
1.4. The one-electron approximation
1.5. Bloch functions
1.6. Nearly-free-electron model

1.6.1. Group theory notation
1.7. Energy gaps
1.8. Spin-orbit coupling and orbital characteristics
1.9. Band structures
1.10. Chemical trends
1.11. k • p perturbation and effective mass

1.11.1 Oscillator strengths
1.12. Temperature dependence of energy gaps
1.13. Deformation potentials
1.14. Alloys

2. ENERGY LEVELS
2.1. The effective-mass approximation
2.2. Electron dynamics
2.3. Zener-Bloch oscillations
2.4. Landau levels
2.5. Plasma oscillations
2.6. Excitons
2.7. Hydrogenic impurities
2.8. Hydrogen molecule centres
2.9. Core effects
2.10. Deep-level impurities
2.11. Scattering states
2.12. Impurity bands

3. LATTICE SCATTERING
3.1. General features
3.2. Energy and momentum conservation

3.2.1. Spherical parabolic band
3.2.2. Spherical non-parabolic band

1
1
1
2
3
4
6
9
10
13
16
21
28
34
35
38
41

44
44
47
50
53
58
59
61
67
69
71
75
75

82
82
86
86
92



xii Contents

3.3.

3.4.

3.5.

3.6.
3.7.
3.8.
3.9.

. IMF
4.1.
4.2.

4.3.

4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10,
4.11.

3.2.3. Ellipsoidal parabolic band
3.2.4. Equivalent valleys
3.2.5. Non-equivalent valleys
Acoustic phonon scattering
3.3.1. Spherical bands: equipartition
3.3.2. Spherical band: zero-point scattering
3.3.3. Spheroidal parabolic bands
3.3.4. Momentum and energy relaxation
Optical phonon scattering
3.4.1. Inter-valley scattering
3.4.2. First-order processes
Polar optical mode scattering
3.5.1. The effective charge
3.5.2. Energy and momentum relaxation
Piezoelectric scattering
Scattering-induced electron mass
Mobilities
Appendix: Acoustic waves in the diamond lattice

URITY SCATTERING
General features
Charged-impurity scattering
4.2.1. Conwell-Weisskopf approximation
4.2.2. Brooks-Herring approach
4.2.3. Uncertainty broadening
4.2.4. Statistical screening
Neutral-impurity scattering
4.3.1. Hydrogenic models
4.3.2. Square-well models
4.3.3. Sclar's formula
4.3.3. Resonance scattering
4.3.5. Statistical screening
Central-cell contribution to charged-impurity scattering
Dipole scattering
Electron-hole scattering
Electron-electron scattering
Mobilities
Appendix: Debye screening length
Appendix: Average separation of impurities
Appendix: Alloy scattering

4.

5. RADIATIVE TRANSITIONS
5.1. Transition rate

5.1.1. Local field correction

93
93
94
94
97
99
100
103
106
110
110
113
116
117
119
125
128
130

138
138
141
142
143
147
149
152
152
154
156
156
159
161
168
171
173
176
179
181
181

184
184
187



5.2.
5.3.
5.4.

5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.

5.13.

5.14.

6.1.
6.2.

6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.

6.

7.

5.1.2. Photon drag
Photo-ionization and radiative capture cross-section
Wavefunctions
Direct interband transitions
5.4.1. Excitonic absorption
Photo-deionization of a hydrogenic acceptor
Photo-ionization of a hydrogenic donor
Photo-ionization of quantum-defect impurities
Photo-ionization of deep-level impurities
Summary of photo-ionization cross-sections
Indirect transitions
Indirect interband transitions
Free-carrier absorption
5.12.1. Energy and momentum
5.12.2. Scattering matrix elements
5.12.3. Electron scattering by photons
5.12.4. Absorption coefficients
Free-carrier scattering of light
5.13.1. Scattering of laser light
Appendix: Justification of effective-mass approximation
in light scattering

NON-RADIATIVE PROCESSES
Electron-lattice coupling
The configuration co-ordinate diagram
6.2.1. Semi-classical thermal broadening
Semi-classical thermal generation rate
Thermal broadening of radiative transitions
Thermal generation and capture rates
Electron-lattice coupling strength
Selection rules for phonon-impurity coupling
Phonon-cascade capture
The Auger effect
Impact ionization
Appendix: The multiphonon matrix element

QUANTUM PROCESSES IN A MAGNETIC
FIELD
7.1. Introduction
7.2. Collision-free situation

7.2.1. Quantum states in a magnetic field
7.2.2. Magnitudes
7.2.3. Density of states
7.2.4. Spin

188
188
190
193
197
198
200
202
208
210
210
214
218
220
221
222
224
227
231

233

235
235
238
240
241
244
252
256
263
265
269
276
278

282
282
283
283
285
286
287

Contents xiii



xiv Contents

7.2.5. Phenomenological quantities
7.3. Collision-induced current

7.3.1. Expression for the scattering rate in the extreme
quantum limit

7.3.2. Energy and momentum conservation
7.3.3. Integrations
7.3.4. General expression for the drift velocity
7.3.5. Diffusion

7.4. Scattering mechanisms
7.4.1. Acoustic phonon scattering
7.4.2. Piezoelectric scattering
7.4.3. Charged-impurity scattering

7.5. Transverse Shubnikov-de Haas oscillations
7.5.1. Magnetoconductivity in the presence of many

Landau levels
7.5.2. The oscillatory component
7.5.3. Collision broadening
7.5.4. Thermal broadening
7.5.5. Spin-splitting
7.5.6. Shubnikov-de Haas formula

7.6. Longitudinal Shubnikov-de Haas oscillations
7.7. Magnetophonon oscillations

8. SCATTERING IN A DEGENERATE GAS
8.1. General equations
8.2. Elastic collisions
8.3. Acoustic phonon scattering

8.3.1. Low-temperature limit
8.3.2. High-temperature limit
8.3.3. Strong screening

8.4. Energy relaxation time

9. DYNAMIC SCREENING
9.1. Introduction
9.2. Polar optical modes
9.3. Plasma modes
9.4. Coupled modes
9.5. The Lindhard dielectric function
9.6. Fluctuations
9.7. Screening regimes

10. PHONON PROCESSES
10.1. Introduction
10.2. Three-phonon processes

288
289

289
290
292
293
296
296
296
299
300
304

304
307
308
308
309
309
310
313

318
318
320
321
323
324
325
327

328
328
329
331
332
339
342
346

347
347
349



Contents xv

10.2.1. Coupling constants
10.2.2. Selection rules for acoustic phonons
10.2.3. Rates for LA modes via normal processes
10.2.4. Rates for TA modes via normal processes
10.2.5. Rates for umklapp processes
10.2.6. Higher-order processes
10.2.7. Lifetime of optical phonons

10.3. Scattering by imperfections
10.4. Scattering by charged impurities
10.5. Scattering by electrons
10.6. Other scattering mechanisms

11. QUANTUM TRANSPORT
11.1. The density matrix
11.2. Screening
11.3. The two-level system
11.4. Fermi's Golden Rule
11.5. Wannier-Stark states
11.6. The intracollisional field effect
11.7. The semi-classical approximation

12. SEMI-CLASSICAL TRANSPORT
12.1. The Boltzmann equation
12.2. Weak electric fields
12.3. Electron-electron scattering
12.4. Hot electrons
12.5. Hot-electron distribution functions

12.5.1. Scattering by non-polar acoustic phonons
12.5.2. Scattering by non-polar optical modes
12.5.3. The drifted Maxwellian

13. SPACE-CHARGE WAVES
13.1. Phenomenological equations
13.2. Space-charge and acoustoelectric waves
13.3. Parametric processes
13.4. Domains and filaments
13.5. Recombination waves

AUTHOR INDEX

SUBJECT INDEX

349
350
352
355
356
358
358
360
362
364
366

369
372
375
377
378
380
381

382
382
387
391
394
398
400
402
403

409
409
412
416
417
421

427

431



This page intentionally left blank 



1. Band structure of semiconductors

1.1. The crystal Hamiltonian

FOR an assembly of atoms the classical energy is the sum of the following:
(a) the kinetic energy of the nuclei;
(b) the potential energy of the nuclei in one another's electrostatic

field;
(c) the kinetic energy of the electrons;
(d) the potential energy of the electrons in the field of the nuclei;
(e) the potential energy of the electrons in one another's field;
(f) the magnetic energy associated with the spin and the orbit.
Dividing the electrons into core and valence electrons and leaving out

magnetic effects leads to the following expression for the crystal Hamilto-
nian:

where l and m label the ions, i and j label the electrons, p is the
momentum, M is the ionic mass, m is the mass of the electron, l/(R1 -
Rm) is the interionic potential, and V(r i—R l) is the valence-electron-ion
potential.

The Schrodinger equation determines the time-independent energies of
the system:

where H is now the Hamiltonian operator.

1.2. Adiabatic approximation

The mass of an ion is at least a factor of 1.8 x 103 greater than that of an
electron, and for most semiconductors the factor is well over 104. For
comparable energies and perturbations ions therefore move some 102

times slower than do electrons, and the latter can be regarded as
instantaneously adjusting their motion to that of the ions. Therefore the
total wavefunction is approximately of the form

where <I>(R) is the wavefunction for all the ions and *(i,R) is the
wavefunction for all the electrons instantaneously dependent on the ionic
position.



2 Band structure of semiconductors

The Schrodinger equation can be written

The relative contribution of H' is of the order m/A^. The adiabatic
approximation consists of neglecting this term. In this case eqn (1.4) splits
into a purely ionic equation

where

and a purely electronic equation

1.3. Phonons

Provided that the ions do not move far from their equilibrium positions in
the solid their motion can be regarded as simple harmonic. If the
equilibrium position of an ion is denoted by the vector R10 and its
displacement by u1, the Hamiltonian can be written

where DIm(R, -Rm) is the restoring force per unit displacement, HLO(R,O)
is an additive constant dependent only on the equilibrium separation of
the ions, and HL represents the contribution of anharmonic forces. The
displacements can be expanded in terms of the normal modes of vibration
of the solid. The latter take the form of longitudinally polarized and
transversely polarized acoustic waves plus, in the case of lattices with a
basis, i.e. more than one atom per primitive unit cell, longitudinally and
transversely polarized 'optical' modes. (See Section 3.9 for an account of
the theory for long-wavelength acoustic modes.) Ionic motion therefore
manifests itself in terms of travelling plane waves

which interact weakly with one another through the anharmonic term HL.
Figure 1.1 shows the typical dispersion relation between w and q.
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FIG. 1.1. Dispersion of lattice waves.

The energy in a mode is given by

where n(w, q) is the statistical average number of phonons, i.e. vibrational
quanta, excited. At thermodynamic equilibrium n(w, q) = n(w) is given by
the Bose-Einstein function for a massless particle

The following points should be noted.
(1) The limits of q according to periodic boundary conditions are

2ir/Na and the Brillouin zone boundary, where N is the number of
unit cells of length a along the cavity.

(2) The magnitude of a wavevector component is 2irl/Na, where l is an
integer. The curves in Fig. 1.1 are really closely spaced points.

(3) An impurity or other defect may introduce localized modes of
vibration in its neighbourhood if its mass and binding energy are
different enough from those of its host,

(4) For long-wavelength acoustic modes to = vsq. For others it is often
useful to approximate their dispersion by w = constant.

1.4. The one-electron approximation

If the electron-electron interaction is averaged we can regard any
deviation from this average as a small perturbation. Thus we replace the
repulsion term as follows:

where He0 contributes a constant repulsive component to the electronic
energy and Hee is a fluctuating electron-electron interaction which can be
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regarded as small. If Hee is disregarded each electron reacts indepen-
dently with the lattice of ions. Consequently we can take

with the proviso that the occupation of the one-electron states is in
accordance with the Pauli exclusion principle. We obtain the one-electron
Schrodinger equation

where

This Hamiltonian still depends on the fluctuating position of ions, and it is
useful to reduce the Hamiltonian into one that depends on the interaction
with the ions in their equilibrium positions with the effect of ionic
vibrations taken as a perturbation. Thus we take

where the Hep is the electron-phonon interaction. The electronic band
structure is obtained from (dropping the subscripts i and e)

1.5. Bloch functions

In the case of a perfectly periodic potential the eigenfunction is a Bloch
function:

where R is a vector of the Bravais lattice, n labels the band and k is the
wavevector of the electron in the first Brillouin zone (Fig. 1.2). From eqns
(1.21) and (1.22) if follows that

If a macroscopic volume V is chosen whose shape is a magnified version
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FIG. 1.2. The first and second zones for a face-centred cubic lattice. The first has half the
volume of the cube that is determined by extending the six square faces. The second has the

same volume as this cube.

of the primitive cell, then we can apply the periodic boundary condition

where a is a vector of the unit cell and N is the number of unit cells along
the side of V in the direction of a. This decouples the properties of the
wavefunction from the size of a crystal, provided the crystal is macros-
copic. Equations (1.23) and (1.24) constrain k such that

Therefore

where n is an integer. In terms of reciprocal lattice vectors K, defined by

the electronic wavevector assumes the values

Thus the volume of an electronic state in k-space is given by

If q is any vector that satisfies the periodic boundary conditions then
the wavefunction can be written generally as an expansion in plane
waves:

This general expansion can be related to the Bloch form by putting
q = k—K where k is not necessarily confined to the first Brillouin zone:
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and thus

Yet another form for a Bloch function can be formed out of functions
<f>n(r—R) which are centred at the lattice points R. These are known as
Wannier functions. The relation between Bloch and Wannier functions is

This is a useful formulation for describing narrow energy bands when the
Wannier function can be approximated by atomic orbitals in the tight-
binding approximation.

Since the Bloch functions are eigenfunctions of the one-electron
Schrodinger equation they are orthogonal to one another, viz.

with

1.6. Nearly-free-electron model

When the periodic potential is very weak the valence electron is almost
free, and hence

In the cases of semiconductors with diamond and sphalerite structure
there are two atoms in each primitive cell and eight valence electrons.
Therefore there have to be four valence bands with two electrons of
opposing spin in each state. By allowing k to extend beyond the first zone,
we can work out the total width of the four valence bands by equating it
with the Fermi energy EF for a free-electron gas of the same density as
the valence electrons. Observations of soft X-ray emission confirm that
the width of the valence band in these semiconductors is indeed close to
EF. Thus it is reasonable to assume that the valence electrons are almost
free, and eqn (1.35) is a good approximation to the energy provided we
take into account the effect of the lattice.

Restricting k to the first Brillouin zone (Fig. 1.2) we obtain
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The first band is obtained for K = (0, 0, 0)2ir/a, and is obviously parabolic.
At the zone boundary there is an energy gap in general. The second band
is obtained from the smallest non-zero reciprocal lattice vectors, which
are K = (l, 1, l)2ir/a and its cubic fellows (e.g. (-1, 1, l)2ir/a) and K2 =
(2, 0, 0)2ir/a and its cubic fellows (e.g. (0,2,0)2i/a)). At the zone
boundary along the (100) direction q = K2/2 = 2ir/a and k = — K2/2 =
—2ir/a. As q increases fc moves towards zero, reaching it when q = K2 =
4ir/a. At the zone boundary along the (111) direction q = K1/2 = V3ir/a
and k = —Ka/2 = —V3ir/a. As q increases, k moves to zero, reaching it
when q = Ki = 2-J3ir/a. The band continues to be parabolic in both
directions, except close to the zone boundaries.

The first and second bands are parabolic directions because the appro-
priate reciprocal lattice vector simply subtracts from q. Bands 3 and 4 are
not that simple because KI and K2 are neither parallel nor anti-parallel in
this case. The region in reciprocal lattice space which contains the first
four Brillouin zones is the Jones zone (Fig. 1.3).

Bands 1 and 2 reach the surface of the Jones zone arihe points (2, 0, 0)
and (1, 1, 1). Bands 3 and 4 are associated with combinations of k, K,,
and K2 which keep q close to the zone boundary for all k. The smallest q
corresponds to the centre of a face q = Ki-K2/2 (q = 2^2irld). With k
along the (100) direction the band is described by q - KI -k. When k = 0,
q = K1 (q = 2V3ir/a). Thus q changes by an amount -/3—-J2 in unite of
2ir/a as k sweeps through the zone in the (100) direction, and hence the
energy changes very little with k. This band is far from being free-electron-
like. The other band is also flat, for again q changes comparatively little
with k because k is more or less perpendicular to the reciprocal vector.

FIG. 1.3. The Jones zone for face-centred cubic crystals containing eight electrons per cell
includes the first four Brillouin zones.



8 Band structure of semiconductors

FIG. 1.4. The general form of the valence band. The symmetry symbols and orbitals are
appropriate for diamond and silicon.

The free-electron model predicts different energies at the q corres-
ponding to the corners of the Jones zone. We have already seen that
q = KI at one. Along the cube-edge direction q = K2 (q = 4ir/a), which has
a greater magnitude. Thus the energy of the latter is greater on the
free-electron model. The periodic potential with its cubic symmetry (in
the case under discussion) alters that picture to one in which these
energies are identical. This common energy is the maximum attained at
the surface of the Jones zone, which is a free-electron-like result since the
corners are indeed furthest from the zone centre. The minimum energy
for bands 3 and 4 appearing at K = K2/2, corresponding to the middle of
the face which is the nearest point of the surface to the zone centre, is
equally free electron like. The valence band has the general form de-
picted in Fig. 1.4.

Pushing the free-electron model beyond the Jones zone in order to
describe the conduction band is simplest, as in the case of the valence
band, when k and K are in the same direction. In bands 3 and 4 and in
bands 5 and 6 this will correspond to directions perpendicular to the
surface of the Jones zone, and in these directions the mass of the electron
will be near that for the free electron and the bands will be parabolic.
However, in the principle directions (100) and (111), for which k lies
more or less parallel to the surface of the Jones zone, bands 5 and 6 will
be flat like bands 3 and 4, and for the same reason. They might also be
expected to be separated from the valence bands by an energy gap which
remains constant in these directions of k, and this is approximately true.
However, unlike the valence bands, bands 5 and 6 are not degenerate.
Moreover, their form, particularly near the corners and edges of the
Jones zone, is much more complex, and minima at k = 0(T), k = K2/2(X),
and k = Ki/2(L) are general features. Because the minimum energy of
bands 3 and 4 is at the X point and because the energy gap is roughly
constant it is expected that the lowest minimum of the conduction band
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also lies at X, but this is only roughly correct and holds only for
semiconductors involving elements in the early rows of the periodic table.

1.6.1. Group theory notation
Many features of band structure depend upon symmetry, and in particular
the symmetry of the cubic lattice. The special points in the Brillouin zone
of a simple lattice are shown in Fig. 1.5 (see also Figs. 1.6 and 1.7). The
symmetry types at various points as illustrated by simple basis functions
are given in Table 1.1. The representations for the F group are given in
Table 1.2.

FIG. 1.6. Special points in the Brillouin zone of a body-centred cubic lattice.
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FIG. 1.7. Special points in the Brillouin zone of a face-centred cubic lattice.

1.7. Energy gaps

The periodic potential of the crystal (eqn (1.20)) can be expanded in a
Fourier series:

and a constant potential can be added to make VK = 0 when K' = 0. If the
Bloch function is taken to be of the form (eqn 1.30)

the Schrodinger equation yields+

which will hold for each k and for each K. When the periodic potential is
weak the solution of eqn (1.40) is approximately given by
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r,R IV orAlg
b 1

T2 A2K X4(y2-z2)+y4(z2-x2) + z4(x2-y2)
Ti2 Eg z2-i(x2 + y2), x2-y2

T15, Tu xy(x*-y2), yz(y2-z2), zx(z2-x2)
TZS- T2 xy, yz, zx
T'x Alu Xyz{x4(y2-z2)+y4(z2-x2) + z4(x2-y2)}
r2 A20 xyz
rw E,, xyz{z2-Kx2+y2)}, xyz(x2-y2)
TIS Tlu x, y, z
F25 T2u z(x2-y2), x(y2-z2), y(z2-x2)

X,M X! 1
X2 x2-y2

X3 xy
X4 xy(x2-y2)
X5 yz, zx
Xr xyz(x2-y2)
X2, xyz
X3. z(x2-y2)
X4. z
X5. x, y

A,T At 1
A2 x2-y2

A3 xy
A4 xy(x2-y2)
A5 x, y

S, S Sj 1
22 z(x-y)
S3

24 x-y

Z Zl 1
Z2 yz
Z3 V
z4 z

A A1 1
A2 xy(x-y) + yz(y-z)+zx(z-x)
A3 x-z, y-z

From Kittel 1963.
" Notation of Bouckaert, Smoluchowski, and Wigner 1936.
b Chemical notation: g stands for even function, u for odd function, under

inversion.

TABLE 1.2
F Group representation with spin

Without spin I\r2r12 I\5. r25, T1'T2T12 T15 T25with spin r6r7rg r6+ra r7+rg r6r7r8 r6+r8 r7+r8
T6 and T7 are doublets; T8 is a quartet.

TABLE 1.1
Symmetry types and basis functions of a cubic lattice

Points Notation Basis functions
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or

In the non-degenerate case, when eqn (1.41) is satisfied for only one K,
say K = Ka, a more accurate solution is obtained by noting that for K = Kb,
where Kb=Ka,

where Ea = h(k-Ka)2/2m and Eb = h2(k-Kb)
2/2m. Putting this back in

eqn (1.40) gives

The effect of energy states lying above E is to depress E(k), and the effect
of those lying below Ea is to raise E(k), i.e. energy levels tend to repel
one another.

In the degenerate case, when eqn (1.41) is satisfied for a given
eigenvalue E(k) by, say, K = Ka = Kb, neglecting all coefficients except
those for Ka and Kb gives

whence, with

Therefore

which for Ea = Eb = E0 becomes

corresponding to an energy gap of magnitude 2/ VK|.
When the unit cell consists of two atoms, which are not necessarily

identical, the potential can be denoted

where R10, R11, and R12 are the position vectors of the centre of the cell,
atom 1, and atom 2 respectively. If R11 = R|0+rc and R,2 = R10-rc where
rc is the covalent bond length (half the interatomic distance), eqn (1.48)
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becomes

and so, instead of eqn (1.38), we can put

where a division has been made into a symmetric part VsK=
(V1K + V2r)/2 and an antisymmetric part VaK = (V2K- V1K)/2. The latter
will be zero if the atoms are identical. The energy gap is therefore given
by

Thus the energy gap can be regarded as having a symmetric or homopolar
component and an antisymmetric or polar component. A division in this
way is useful for understanding how the covalent and polar aspects of
binding influence the electronic structure of semiconductors, as we shall
see.

The eigenfunctions for the two bands (eqn 1.39), at the band-edges, are of
the form

with |cak| = |cb | . In the case of the direct gap between valence and
conduction bands we can take Ka = 0, k—»k+kF , where k is now re-
stricted to the first Brillouin zone, kF is the Fermi-level vector for the
free-electron valence band, and Kb^lkp, which in effect assumes the
Jones zone to be a sphere of radius kF. In this approximation (isotropic
model)

1.8. Spin-orbit coupling and orbital characteristics

In the crystal Hamiltonian of eqn (1.1) we left out magnetic energy. Even
in non-magnetic semiconductors the contribution of magnetic energy,
although small compared with purely electrostatic components, is not
negligible in relation to the energy gaps. The source of this energy in
non-magnetic materials is the interaction between spin and orbit, as
described by the one-electron Hamiltonian
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where p is the momentum operator and a is the spin operator. As in the
case of a free atom the effect of spin-orbit coupling is to remove orbital
degeneracies.

The degeneracies occurring in the band structure of semiconductors
near the principle energy gap are those associated with bands 2, 3, and 4
at k = 0, and between bands 3 and 4 elsewhere in the zone. In order to
discover how spin-orbit coupling splits these degeneracies we need to
know the orbital characteristics associated with these bands. For
diamond, sphalerite, and wurzite type crystals the constituent atoms in
their free state possess valence electrons in the atomic |s) and |p) states,
and we expect the valence and indeed the lower conduction bands to have
|s)- and |p)-like orbital characteristics. (In the case of heavier atoms |d)
states are also involved, but we ignore this complication for the present.)
The chemical picture of bonding in these lattices involves the production
of sp3 hybridized bonds directed towards the corners of a regular tet-
rahedron. The two atoms in the unit cell contribute their |s) and |p)
orbitals in bonding combinations to give the valence band in which the
electron density is high between the atoms, or in anti-bonding combina-
tions to give the conduction band in which the electron density tends to
be high at, rather than between, the atoms. We can therefore associate
bonding |s) orbital characteristics with the lowest valence band and
bonding |p> orbital characteristics with bands 2, 3, and 4 at k = 0, and also
anti-bonding |s) orbital characteristics with the conduction band, again at
k = 0. Orbital characteristics can be assigned to high symmetry points in
the zone on the basis of symmetry (Table 1.3). (Note that the Bloch
function in eqn (1.53), which is that for the two-band isotropic model,
evidently has a bonding |s) character or an anti-bonding |s) character.) At
other points of the zone the orbitals become a mixture of |s) and |p)
characteristics.

Returning to the question of spin-orbit splitting, we can write eqn
(1.54) as follows for a spherically symmetric field:

where L is the orbital angular momentum operator, S is the spin angular
momentum operator, and A = (dV/dr)/2m2c2r. Since L and S combine
vectorially to give a total angular momentum I we can write

whence
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r r, |s)
(k=o) r15 |Px>, |ipy), |Pz)

L,A L1 |s)

(K = k(111) L1 ^ta+Py+Pz)

|

16 lpx+Py,-2Pz>

1
^b,-Pv>

> -̂>*> (Ti)
(k = k<10o>) X3 ^(|S>B + |P,>A)

X5 ^Ipy-Pz>

^IPv+P2>

From Bassani 1966.

At the top of the valence band are three degenerate |p>-like bands.
Thus l = 1 and j = 3/2 or /12, since j = l±s, and s =1/2 for one electron. For
j =1/2, <L.S) = -h2, and for j = §, <L.S) = +h2/2. Thus the states are split by
an amount a0 proportional to §ft2, the double degenerate j = 3/2 state
moving up A0/3 and the single j =1/2 state moving down by 2Ao/3 (Fig.
1.8). The upper pair remain degenerate at k = 0 and each member retains
an orbital characteristic which is |p) like with, for k = 0, lobes directed

FIG. 1.8. Valence band with spin-orbit splitting.

TABLE 1.3
Orbital character of Block functions

Symmetry point Symmetry symbol Orbital character
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FIG. 1.9. Orbital characters of valence bands.

along mutually perpendicular directions which are themselves perpen-
dicular to the k direction. However, the split-off band assumes an orbital
which is |p) like with a lobe along the k direction when k=O (Fig. 1.9).
When k = 0 the degeneracy of the upper bands is removed by spin-orbit
splitting, except for k along the cube edge. The splitting is maximum
along the <111) (A) directions and at L it is denoted by Aj. If we take |p)
orbitals at the L point we obtain an identical splitting to that at F, but
since we have only two |p) states and not three we must weight that
splitting by a factor of f. Thus A1 = 2A0/3, and one band moves up Ai/2
and the other down by A12 (Fig. 1.8). (In directions other than (100) and
(111) the degeneracy is removed not only by spin-orbit splitting but by
the much larger splitting of the cubic field.)

In silicon the lowest conduction band at F is triply degenerate like the
top of the valence band and is split only weakly by the spin-orbit
interaction. In other semiconductors the conduction band in the vicinity
of the gap exhibits non-degenerate valleys at F, L, and A or X, all of
which have an orbital character which is |s) like.

1.9. Band structures

Electronic band structures have been calculated using various models:
(1) linear combination of atomic orbitals (LCAO);
(2) linear combination of molecular orbitals (LCMO);
(3) free-electron approximations;
(4) cellular methods;
(5) muffin-tin potential (a) augmented plane wave (APW) and (b)

Green's function;
(6) orthogonalized plane-wave (OPW);
(7) pseudopotential.

Models (1) and (2) are tight-binding approximations.
These methods are well reviewed in standard texts. In Figs. 1.10-1.12

we give the results of pseudopotential calculations for Group TV elemen-
tal, III-V compound, and II-VI compound semiconductors. Observed
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FIG. 1.10. Band structures for (a) silicon, (b) germanium, and (c) a-tin. In the case of
silicon two results are presented: the non-local pseudopotential (solid curve) and the local

pseudopotential (dotted curve). (From Chelikowsky and Cohen 1976.)
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FIG. 1.11. Band structures of III-IV compounds: (a) GaP; (b) GaAs; (c) GaSb; (d) InP; (e)
InAs; (f) InSb. (From Chelikowsky and Cohen 1976.)



Band structures 19

FIG. 1.11. (b) and (c).
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FIG. 1.11. (d) and (e).



Chemical trends 21

FIG. 1.11. (f).

energy gaps at 300 K between the top of the valence band and the F, L,
and X valleys in the conduction band for several Group IV and III-V
compound semiconductors are depicted in Fig. 1.13.

The major points to be noted are as follows:
(1) light atoms tend to have the X valley lowest in agreement with the

nearly-free-electron model;
(2) heavy atoms tend to have small energy gaps;
(3) polar materials tend to have larger energy gaps than non-polar

materials;
(4) the energy gaps of polar materials tend to be direct gaps, i.e. at the

F point.
(5) germanium is peculiar in having the lowest conduction valley at L.

1.10. Chemical trends

A semi-quantitative account of chemical trends in band structure can be
given on the basis of a model developed by Phillips (1968, 1973) and Van
Vechten (1969) which is very much in the spirit of Pauling's discussion of
the nature of the chemical bond (Pauling 1960).



22 Band structure of semiconductors

FIG. 1.12. Band structures for (a) ZnSe and (b) CdTe. (From Chelikowsky and Cohen
1976.)
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FIG. 1.13. Energies of T, L, and X valleys above the valence band for some Group IV
elements and III-IV compounds at 300 K: O, T valley; •, L valley; x, X valley.

The energy gaps which are of most importance in semiconductors are
those between the valence band and the valleys in the conduction band at
the centre of the zone (F) and at the zone edge in the (111) direction (L)
and in the (100) direction (X). These gaps are labelled E0, E1, and E2

respectively (Fig. 1.14).
The absolute levels below the vacuum level are fixed by the valence

band energy at X, i.e. Ex4. This point is distinctive as being at the centre
of a face in the Jones zone, and is an obvious candidate to be the central
strut about which the band structure is supported.

Increasing polarity causes bands to become narrower, and in the limit
to go to the free-atomic level. This level is therefore one which is
independent of polarity and about which the valence band broadens. It
turns out that EX4 is within 5 per cent of the ionization potential for the
free atom in the cases of silicon and germanium, and so is a good choice
to be the polarity-independent pivot for the band structure. It is therefore
assumed that

where EX4(Si) is the silicon gap and dsi is its covalent interatomic distance
(2-35 A). Since EX4 is observed to be close to the free-atom ionization
energy for silicon and germanium, it is taken to be a property of the row
of the periodic table to which the constituent atoms belong. Thus dA and
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FIG. 1.14. Principal energy gaps (ignoring spin-orbit splitting).

dB are the interatomic distances of the Group IV elements in rows A and
B, to which the constituent atoms belong, and these distances are referred
to as 'normal' covalent interatomic distances to distinguish them from the
actual ones found in compounds AB.

The other basic strut is the ionization energy /. The structure of energy
gaps implied by the nearly-free-electron picture (eqn (1.51)) suggests that
an energy gap can be considered to be formed of two components, a
symmetric or homopolar part and an antisymmetric or polar part. Thus

where Ih is the homopolar ionization energy and C is a polar contribution
which is dependent on the difference between the electron affinities of the
two atoms in the unit cell. Values for C have been given by Van Vechten
(1969). The purely covalent part is taken to depend upon the observed
nearest neighbour d as follows:

The absolute level of the valence band at L is simply assumed to be the
arithmetic mean of the energies at F and X, i.e.
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All energy gaps are then taken to be of the form of eqn (1.59) provided
that no d-band intrudes. A filled d-band affects E0 and E1 because the
conduction band states with which these gaps are associated have |s)
orbitals which penetrate the atomic core, while the |p) orbitals of the
valence states do not, and thus the gaps are sensitive to the presence of a
full d-shell. However, E'0 and E1, which involve only |p> orbitals which do
not penetrate the core, are not affected. Although the orbital character is
|s)-like for the X1 and X3 bands, it is only half as strongly so as r1 or L1;

and the effect of the d-band mixing is deemed negligible for E2. Thus for
the unaffected gaps we have equations of the form

but for E0 and E1,

where UA and UB are the valencies of the two atoms, DA = 1 for rows up
to and including silicon, DA = l-25 for the row containing germanium,
and DA= 1-46 for the row containing tin. Like the Eih, the AEj depend
upon the nearest-neighbour distance in the usual way:

Finally, the splitting of the conduction band at X in polar compounds is
taken to be simply related to the polar component of energy C as follows:
(Fig. 1.14)

The lower minima Xt correspond to Bloch functions with anti-nodes at
the anion site. Since the anion is more electronegative (Table 1.4) it is
more attractive for electrons. The higher minima X3 correspond to Bloch
functions with anti-nodes at the cation.

TABLE 1.4
Phillips' electronegativities

I II III IV V VI VII

Li 1-00
NaO'72
Cu 0-79
Ag 0-57
Au 0-64

Be 1-50
Mg 0-95
Zn 0-91
Cd 0-83
Hg 0-79

B 2'00
Al 1-18
Gal-13
In 0-99
Tl 0-94

C 2-50
Si 1-41
Ge 1-35
Sn 1-15
Pb 1-09

N 3-00
P 1-64
As 1-57
Sb 1-31
Bi 1-24

O 3-50
S 1-87
Se 1-79
Te 1-47

F 4-00
Cl 2-10
Br2-01
I 1-63

From Phfflips 1973.
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TABLE 1.5
Basic energies for predicting chemical trends

Parameter Value for Si (eV) Exponent S

Ih
EX4,
EOH
Hlh

E2h
E&h
E'lh
AE0
AE,

5.17
8.63
4.10
3.60
4.50
3.40
5.90

12.80
4.98

1.308
1.43
2.75
2.22
2.382
1.92
1.67
5.07
4.97

From Van Vechten 1969.

FIG. 1.15. Homopolar energies. (Data from Van Vechten 1969.)
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The foregoing equations provide a reasonably successful basis for
understanding the sources of variation of band structure and for predict-
ing roughly the principal energies. Table 1.5 gives the various quantities
which appear, and these are plotted in Fig. 1.15. Table 1.6 gives the
observed and calculated parameters for semiconductors with diamond or
sphalerite structure.

Figure 1.16 shows the homopolar energy gaps between the top of the
valence band and each of the conduction-band valleys. These are distin-
guished notationally from the gaps described above by the subscript g
(although Eg = E0). These gaps apply directly only to silicon, germanium,
and a-tin. For silicon D = 1 and the smallest gap is the indirect one to X.
For germanium D = 1.25 and d-shell mixing has reduced the gaps at F
and L just enough to make the indirect gap to L the smallest. For a-tin
D = 1.46 and the direct gap undercuts the gap at L. Figure 1.17 shows a
similar set of curves for a polar material with C = 3. The polar interaction
enhances the gaps appreciably even in the case of strong d-shell mixing.

Spin-orbit splitting is readily incorporated. Following the discussion in
Section 1.8 we merely subtract Ao/3 from the 'unprimed' gaps (E0> Elt I)
at T and L, and 2A0/3 from the 'primed' gaps (E'0, E1).

TABLE 1.6
Band-structure parameters of diamond and sphalerite structures

Band gaps without spin-orbit splitting

Egr-(eV) Egl(eV) Eex(eV)
Semi-

conductor ac(A) C(eV) D Calc. Obs. Calc. Obs. Calc. Obs. Ao(eV)

C 3.567 0 1.00 13.04 5.77 5.48 5.48 0.006
Si 5.431 0 1.00 4.10 4.08 1.87 1.04 1.13 0.044
Ge 5.657 0 1.25 0.96 0.89 0.61 0.76 0.84 0.96 0.29
Sn 6.489 0 1.46 0.13 0.1 0.18 0.3 0.35 0.48
BP 4.538 0.68 1.00 6.76 2.88 1.81 2.0
BAs 4.777 0.38 1.11
AlP 5.4625 3.14 1.00 4.6 3.7 2.4 0.06
AlAs 5.6611 2.67 1.11 3.05 2.9 2.26 0.29
AlSb 6.1355 3.10 1.19 2.67 2.5 2.39 2.0 2.15 1.87 0.75
GaP 5.4495 3.30 1.11 2.85 2.77 2.75 2.5 3.05 2.38 0.127
GaAs 5.6419 2.90 1.235 1.55 1.55 1.89 1.86 2.37 2.03 0.34
GaSb 6.094 2.10 1.325 1.00 0.99 1.17 1.07 1.36 1.30 0.80
InP 5.868 3.34 1.19 1.45 1.37 2.25 2.0 2.93 2.1 0.11
InAs 6.058 2.74 1.325 0.56 0.5 1.45 1.77 2.14 2.1 0.38
InSb 6.478 2.10 1.425 0.39 0.5 1.01 0.91 1.40 1.47 0.82
ZnS 5.4093 6.20 1.08 4.37 3.80 5.72 6.96 0.07
ZnSe 5.6676 5.60 1.175 3.37 2.9 4.26 5.82 0.43
ZnTe 6.101 4.48 1.235 2.72 2.56 3.64 4.26 0.93
CdTe 6.477 4.90 1.303 1.89 1.80 3.40 4.32 0.92
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FIG. 1.16. Homopolar energy gaps: broken curves, with d-band mixing as for germanium;
chain curves, with d-band mixing as for tin.

1.11. K.p perturbation and effective mass

In practice the important regions of the band structure are those which
are most commonly populated by the mobile excitations of the crystal:
electrons in the lowest conduction-band valley and holes at the top of the
valence band. If we know the solution of the one-electron Schrodinger
equation at these points in the Brillouin zone it is possible to obtain
solutions in the immediate neighbourhood by regarding the scalar product
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FIG. 1.17. Energy gaps in polar material (C = 3).

k.p, where k is the wavevector measured from the Brillouin zone point,
as a perturbation.

Suppose that the eigenvalues and Bloch functions are known for all
bands at the centre of the zone (F). The Schrodinger equation

can be transformed to an equation containing only the periodic part of
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the Bloch function by using p = -ihV:

where V(r) is merely a simpler notation for the periodic potential.
Provided that hk«p we can write eqn (1.68) as

and regard Ht as a first-order and H2 as a second-order perturbation.
To zero order

To first order

Crystals with inversion symmetry, like silicon and germanium, have
similarly symmetrical Bloch functions. Since p is antisymmetric there will
be no first-order correction to the energy. Where inversion symmetry is
lacking, as in the sphalerite and wurtzite structures, the correction may be
non-zero and a term proportional to k appears. This indeed occurs at the
top of the valence band and at the X point in the conduction band in
these materials, and results in a shift of the extremum in k (Fig. 1.18).

However, there is always a first-order correction to the Bloch function.
For example, the Bloch functions of the conduction band and valence
band are respectively; js) like and |p) like and have a strong momentum
matrix element connecting them. The second-order correction is not as
urgent for the Bloch function as it is for the energy.

To second-order the energy becomes, neglecting the first-order correc-
tion,
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FIG. 1.18. Shifts in extrema caused by lack of inversion symmetry: (a) top of valence band;
(b) camel's back structure in the conduction band near X (the broken curves are for silicon).

We can express this result in terms of an effective mass m* as follows:

where

and clearly m* is a second-order tensor. Once again we have an example
in eqn (1.76) of the repulsion of bands. A narrow gap between the
conduction and valence bands produces small effective masses.

Degenerate perturbation theory is necessary for the valence band. The
result near k = 0 at the F point, considering only the conduction and
valence bands, and neglecting terms linear in k is (Kane 1957)

conduction band

heavy hole
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light hole

split-off

where pCT is the momentum matrix element between the conduction band
|s) and the valence band |p). For germanium 2p2cv/m = 22.5eV and for
GaAs 2p2cv/m = 21.5 eV (Phillips 1973). When the effect of more remote
bands is included, the effective mass of the heavy-hole band becomes
negative, as in the case of the other two. The two valence bands, which
are degenerate at k = 0, have the form of warped spheres (Fig. 1.19):

For silicon A =4.0, B - 1.1, and C = 4.l which corresponds to a heavy-
hole mass of about 0.49m and a light-hole mass of about 016m. For
germanium A = 13.1, B = 8.3, and C = 12.5 which corresponds to a
heavy-hole mass of about 0.28m and a light-hole mass of about 0.044m.

The split-off band is spherical, as is the |s> like conduction band at T.
However, away from k = 0 the bands become non-parabolic and take the

FIG. 1.19. Constant-energy surfaces for valence bands in the (x, y) plane.
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FIG. 1.20. The non-parabolicity of the conduction band of InSb. N(E) is the density of
states and E*r is the effective energy gap equal to 0.23 eV at 0 K. (From Ehrenreich 1957.)

form (Fig. 1.20) (for A0 not too close to Eg)

The conduction-band valleys at L and X are prolate spheroidal, each
with the general form near the extremum

where k is measured from the minimum, x' is along the principal direction
of the prolate spheroid, and y' and z' are at right-angles. Silicon has six
equivalent valleys at points along the (100) directions distant from the X

FIG. 1.21. Spheriodal conduction-band baileys: (a) silicon-like valleys; (b) germanium-like
valleys.
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points by 0.15(27r/a). For these m1* = 0.98m and mt = 0.19m. Ger-
manium's lowest valleys are at the L points, so there are four equivalent
valleys in this case. For these m1* = l.66m and mf = 0.082m (Fig. 1.21).

1.11.1. Oscillator strengths

In a radiative transition between band n and band m the perturbation is

where A is the vector potential of the electromagnetic wave. Conse-
quently, the matrix elements which determine the transition rate contain
the momentum matrix element pmn connecting the two bands at k = 0:

which are exactly the quantities that appear in k.p theory and determine
the curvature of band extrema. The strength of the transition is usually
described by a dimensionless quantity known as the oscillator strength
which is defined as

where hav = Em0—En0. Equation (1.76) shows that oscillator strengths
obey the following sum rule for spherical bands:

The optical transition of most interest is that from valence band to
conduction band. Limiting our discussion to direct transitions at the
centre of the zone, we observe that since nearby bands produce the
largest effects in many cases the major part of the sum in eqn (1.88)
comes from the interaction between the conduction band and the three
valence bands. The sum for the conduction band consists approximately
of only three terms, each deriving from its interaction with one of the
valence bands as in simple k.p theory (cf. eqn (1.77)). Likewise, the sum
for a given valence band would consist of three terms, but in this case two
of the terms are expected to be very small since they derive from
interactions with the other two valence bands (such interactions are zero
in simple k.p theory). Furthermore, a valence band is usually even
further removed from more remote bands than is the conduction band,
and so the approximation of replacing the sum by its major components is
usually more valid for a valence band. These considerations suggest that a
reasonably good approximation for the oscillator strength of a direct
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interband transition is

where m* = —mv* and m* is the hole effective mass for the given valence
band. Going back to eqn (1.87) we see that this is equivalent to taking

This approximation is applied in the theory of radiative transitions
(Chapter 5) and in the theory of the Auger effect (Chapter 6).

1.12. Temperature dependence of energy gaps

Direct and indirect band gaps in semiconductors become smaller as the
temperature increases. This effect is caused by lattice vibrations acting in
four different ways:

(1) anhannonicity which produces thermal expansion and therefore
changes of energy gap through the latter's dependence on lattice
constant;

(2) smearing out of the periodic potential as measured by the so-called
Debye-Waller factor in neutron and X-ray scattering;

(3) mutual repulsion of intraband electronic states through increased
electron-phonon coupling in second-order perturbation—the so-
called Fan terms;

(4) Fan terms for interband coupling.
As Heine and Van Vechten (1976) have pointed out, all of these effects
can conveniently be taken into account by relating to a single parameter,
namely the change in frequency of the phonons, following the original
discussion of Brooks (1955).

The statistical mechanics of the problem is as follows. The probability
of an electron occupying a state s is given by the Fermi factor

where Es is the Helmholtz free energy of the crystal when one electron
occupies the state s and is given by

Esi is the energy of the electron when it occupies the state s while the rest
of the crystal is in state j. Thus Es is a thermal average energy. If the
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system is at constant pressure we replace ES by E's where

Vs is the volume of the crystal and E's is a Gibbs free energy. This
incorporates the effect of thermal expansion.

Now Es, will consist of a purely electronic term Ees, a vibrational term
Epj, and an electron-phonon interaction Eepsj:

If q is the phonon wavevector and w(q) is the angular frequency, then

where the sum is over all q and all branches, and nj(w) is the number of
quanta excited, i.e. 0, 1, 2, etc.

If the electron-phonon interaction is a small perturbation

where c(q) is the interaction energy. Thus

where ws(q) is the frequency including the electron-phonon interaction.
Noting that

we obtain, by substituting eqn (1.97) into eqn (1.92),

Thus the band gap Eg varies with temperature according to

where wu(q) is the frequency when an electron occupies the upper state
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and wi(q) that when an electron occupies the lower state. Since wu(q) <
w1(q), because exciting an electron weakens the atomic binding and hence
lowers the elastic restoring force, the logarithm is negative and so the
gaps reduce as the temperature increases. Modes with already weak
restoring force constants, such as the transverse acoustic (TA) modes, are
particularly affected by electron-hole generation, and the shift in fre-
quency of these modes provides the greatest contribution. At high tem-
peratures.

Observed variations obey a linear law of the form Eg(T) = EE(0) —BT,
B = 4x 10~4 eVK-1, at high temperatures (Fig. 1.22). Since the contribu-
tion from thermal expansion is usually small, this implies that the sum in
eqn (1.101) is about 5. If one bond were broken per electron-hole pair
and only N TA modes were involved, we would expect w1/2 = wu(l- 1/N)
or w1 = wu(l — 1/2N), whence the sum would be only 0.5. The observation
that it is 5 suggests that the equivalent of 10 bonds are disrupted per
electron-hole pair.

The dependence of energy gaps on the lattice constant was discussed in
Section 1.10. It is interesting to see how little that dependence determines
the temperature variation, though it is the principal component in deter-
mining the variation with hydrostatic pressure. The latter can readily be
measured and the corresponding temperature variation deduced from it
using the relation

FIG. 1.22. Typical variation of the energy gap with temperature.
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Typical pressure dependences are of the form Eg = Eg0 + aP with a»
7 x 10~6 eV cm2 kg-1 (though from the discussion in Section 1.10 it is
clear that a can vary widely and even be negative). Corresponding
temperature dependences are usually less than 10~4 eV K-1.

1.13. Deformation potentials

In general the application of mechanical stress alters the band structure
by shifting energies and, where it destroys symmetry, by removing de-
generacies. We have already mentioned the effect of hydrostatic pressure
in the previous section. Usually the effect is regarded as not changing
band curvature, and therefore not changing effective masses, but merely
as shifting the energy states of interest. In semiconductors the states of
interest are usually those near a band extremum, and the shift in energy
of the band edge per unit elastic strain is called the deformation potential
B.

If a is the displacement of a unit cell, the strain tensor is defined by

and the change in energy of a given non-degenerate band edge can be
defined by

where H is the deformation potential tensor. Since the strain tensor is
symmetric there exist six independent components, and hence there exist
six independent components of the deformation potential. For cubic
crystals this number reduces to three independent deformation potential
components denoted Ed, Bu, and Hp, and the symmetry of the f, L, and
X valleys reduces this further to two, Hd and Bu- Herring and Vogt (1956)
gave a table in which it was defined that in each case the components are
related to a system of axes which coincide with the principal axes of the
given spheroidal valleys, and this is reproduced in Table 1.7. The con-
stants Hd and B,, have values which are characteristic of the conduction
band valley. Ed relates to pure dilation and Bu is associated with a pure
shear involving a uniaxial stretch along the major axis plus a symmetrical
compression along the minor axis. The F valley is unaffected by shear
strains. Note that a given shear strain can remove the degeneracy of
equivalent conduction band valleys, raising some and lowering others.
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In addition to acoustic strains of the type considered above in which the
whole unit cell is deformed, another type known as optical strain exists in
materials where each unit cell contains two atoms and is associated with
the contrary displacement of the two atoms. Thus, for group IV materials,
if BI is the displacement of one atom, u2

 = -u1 is the displacement of the
other. If the atoms are separated by a distance d at equilibrium the
optical strain can be defined as a vector:

We can in general associate a change of energy with this strain. Usually
the change of energy is associated directly with the displacement rather
than the strain:

where D is an optical deformation constant. Optical strains are like
acoustic shear strains and affect L valleys but not T or X valleys. Harrison
(1956) has shown that for L valleys D is directed along the major axis.

In the case of the degenerate valence bands, uniaxial strains tend to
remove the degeneracy. The situation is generally more complicated, and
four deformation potentials a, b, d and d0, where a, b, and d are
associated with acoustic strains and d0 with optical strains, are required.

In eqn (1.81) we gave the form of the energy dependence of the
wavevector for the heavy- and light-hole bands. When acoustic strains are
present the energy takes the rather complicated form (Pikus and Bir
1959)

TABLE 1.7
Deformation constants

Valley

r L x
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where

The degeneracy at k = 0 is removed when EK is non-zero, e.g. for a pure
shear. Pure dilation produced by hydrostatic pressure does not remove
the degeneracy but merely shifts the band edge by an amount determined
by the deformation potential a. The response of the gaps between the
valence-band and the conduction-band valleys at L and X to hydrostatic
pressure is determined by the gap deformation potentials as follows:

Thus valence- and conduction-band deformation potentials always com-
bine and cannot be determined separately by a measurement of the
energy gap. Note that the hydrostatic pressure can generally be used to
alter the energy gap between the F valley and the L and X minima in the
conduction band. It is worth pointing out that the sign convention for
valence-band deformation potentials is that positive means that a positive
strain increases the hole energy, and so a positive a means that a positive
strain lowers the valence-band edge.

The shift of band edges with hydrostatic pressure can readily be
understood from the standpoint of the Phillips and Van Vechten model.
Thus for a homopolar energy gap Eh a d~s there is an associated defor-
mation energy shift per unit strain of

The optical deformation potential d0 for the valence band is usually
defined as an energy rather than as an energy per unit displacement as is
the case for electrons. However, it is useful to retain the latter description
since it is more directly related to the physical mechanism. If this is done
with optical phonon scattering in mind we can relate a scalar magnitude
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Si -6.0 7.8 2.1 3.1 (109 intervalley)b
9.2 2.5 5.3

Ge -9.1 15.9 2.6 -2.4 -4.1 6.4 7xl08(lll)
-12.3 19.3 3.9a -2.7a -4.7a

AlSb +1.8
+2.2 6.2 -1.4 -4.3

GaSb 20 -2 -4.6
22.6 -3.3 -8.4

GaAs +7.0 +7.4 -8.7 -1.8 -4.6 (=109 intervalley)b
-9.2 -2.0 -6.0

GaP 6.2 -1.3 -4.0
InSb +4.5 -88 -0.2 -4.6

+16.2 -2.1 -5
InP 21 -1.6 -4.4

The data are the uppermost and lowermost values reported by Neuberger (1971). Hd and
Hu refer to the lowest conduction band valley.

aData from Lawaetz 1967.
bSee Chapter 3, Sections 3.4.1 and 3.4.2.

D0 to d0 as follows:

where a0 is the lattice constant. (The factor 1 comes out of averaging the
effect of optical strains over all directions.) This relation can then be used
to describe the interaction between holes and optical phonons.

The effect of strain on the electronic energy considered above is short
range and is confined to the unit cell subjected to deformation. In polar
materials long-range electric fields are produced by some strains, and
these fields also change the energy of the electron. Electric fields pro-
duced by acoustic strain are described by the piezoelectric third-order
tensor (Nye 1957). Optical strains produce directly a dipole moment,
which can couple strongly to light, and is the property giving rise to the
designation 'optical'. These polar effects will be discussed further in the
section on lattice scattering of electrons. The deformation potentials for
some semiconductors are given in Table 1.8.

1.14. Alloys

When alloys of two semiconducting compounds AB and CD are made
with the formula (AB)x(CD)1_x one might expect that the band structure

TABLE 1.8
Deformation potentials for some semiconductors

Hd Hu a b d d0 D0
(eV) (eV) (eV) (eV) (eV) (eV) (eVcnr1)
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of the alloy could be deduced by linear extrapolation from the band
structures of the pure compounds, but in fact this turns out to be a poor
approximation. A band gap Eg is generally observed to have the form

where c is the non-linear coefficient which is usually called the bowing
parameter. The latter is significant and cannot be neglected. (Fig. 1.23.)

Its origin is twofold. One part of c arises from the dependence of
energy gaps on the lattice constant as described in Section 1.10. If,
instead of regarding Eg as a linear function of composition, its compo-
nents such as the lattice constant and the homopolar and ionic energy
gaps are taken to vary linearly with composition, then a bowing parame-
ter q emerges naturally as Van Vechten and Bergstresser (1970) have
shown. In addition to cs there exists a component ce associated with
disorder. Disorder produces potential fluctuations which will be propor-
tional to the difference in electronegativities of the two component
cations or anions. As such, these fluctuations will be associated with the
difference of ionic energy gaps of the two compounds. Potential fluctua-
tions will scatter electrons and, to second order, will mix band states
which, as we saw in the case of electron-phonon mixing in Section 1.12,
drives states at the bottom of a conduction-band valley down and drives
states at the top of the valence band up, thus reducing the band gap. The
curve .Eg versus x therefore sags downwards as a result of disorder,
corresponding to an increase in the bowing parameter.

Disorder also appears to be responsible for deviations from the ex-
pected behaviour of the conduction-band effective mass and the valence-
band spin-orbit splitting as well as the direct band gap in III-V alloys.
Potential fluctuations mix conduction and valence band wavefunctions,
and therefore the degree of spin-orbit splitting at T is reduced and the
effective mass also bows downward less markedly than a simple Kane k.p
model would suggest.

Quantitatively, the reduction in energy caused by disorder in a ternary
alloy MF1_XG, is of the form

where CFG is the Phillips electronegativity difference between F and G,
and A is a bandwidth parameter equal to 1 eV (Berolo, Woolley, and
Van Vechten (1973)). CFG has been computed for several ternary alloys
by Van Vechten and Bergstresser (1970) (these values are significantly
different from AC obtained from Table 1.4).
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FIG. 1.23. Bowing effect in the energy-gap dependence on composition.
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Z. Energy levels

2.1. The effective-mass approximation

WHEN there is a perturbing potential present, either internally associated
with crystal defects or externally applied, the time-independent one-
electron Schrodinger equation becomes

where H0 is the unperturbed Hamiltonian and Vp is the perturbation
potential energy which is assumed to satisfy VP«H0 and is in general a
function of space. Following standard perturbation theory we form a
wave packet out of the unperturbed eigenfunctions, choosing for the
latter the Bloch functions wnk(r):

where the sum is over all bands, labelled n, and all k. We obtain

We now multiply this equation by exp(ik'.r), sum over k', and define an
effective-mass wavefunction for the band m as follows:

Equation (2.3) may then be cast in the form

where, for a simple band,

and

Note that all energies are measured from the band edge.
What We have done is to subsume the effect of the background periodic

potential into the effective Hamiltonian H%, so that the electron can be
considered to be a particle of mass m* subject to the perturbation V*
rather than a particle of mass m subject to a perturbation Vp. So far no



The effective-mass approximation 45

approximation has been used. This procedure becomes useful only if we
may take V*Fm(r)*» VpFm(r) and this may be done if Vp is slowly varying.

If we represent Vp by the Fourier expansion

then

where the integral is over the whole volume of the crystal. Because u^
is the same function in each unit cell we can convert the integral to one
over a unit cell and a sum over the unit cells. By putting

where r0 is measured from an origin within a unit cell and R is the
position vector of the unit cell, we obtain

The integral in eqn (2.11) is the same for each cell regardless, and
consequently the sum is infinitesimal unless

where K is a reciprocal-lattice vector, whence the sum is N where N is the
number of unit cells. Since uk+q_K exp(iK • r0) = uk+q, eqn (2.11) becomes

If Unk varies only slightly over the effective range of q we can approxi-
mate the integral as follows

In this approximation, only states in one band are affected by the
perturbation. Thus

In the case of a simple band when the potential is slowly varying, the
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effective values of k, q, and k' are all small, and K = 0. Thus

The equation

is known as the effective-mass equation. In this approximation the
perturbed wavefunction (eqn 2.2) is taken to be of the form

When there are several equivalent valleys K need not be zero. The
potential couples states in different valleys and therefore the total
envelope wavefunction must consist of a linear combination of single-
valley envelope functions. Thus for L equivalent valleys at Ki

and

where the ai are constants determined by symmetry and Fim(r) is the
localized function associated with valley i. The unperturbed effective-
mass Hamiltonian for a given spheroidal valley is now

where p± and pn are the components of the momentum perpendicular and
parallel to the major axis and m* and m* are the corresponding effective
masses. The many-valley effective-mass Schrodinger equation is therefore

In the case of a band with two sets of equivalent valleys eqn (2.20)
generalizes to

and two coupled equations like eqn (2.22) have to be solved.
When there are several degenerate or nearly degenerate bands at an

extremum, as is the case of the valence band, the treatment is inevitably
more complicated (Kittel and Mitchell 1954; Luttinger and Kohn 1955).
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For the valence band the wavefunction is a linear combination of UjFj(r),
and the effective mass equation takes the form

where D^ are parameters of the band structure, AQ is the spin-orbit splitting
(assumed small), and 6,3 = 1 for j = 3 (split-off band) and zero otherwise.

The effective-mass equation is useful for describing shallow localized
impurity states, for describing the scattering of electrons by defects, other
electrons, and lattice vibrations, and for describing the motion of elec-
trons in weak applied fields. However, before exploiting this approach we
must turn to the more general features of electron dynamics.

2.2. Electron dynamics1

In the previous section it was shown that a time-independent potential
perturbation induced a static wave packet, made up of waves from one
band, which was associated with the eigenvalue Ep. If E p >0 we can
choose a travelling wave packet consisting of waves centred about a
particular wavevector k and describe the effect of the perturbation on the
motion of this wave packet. Thus we can take

where the cmk' are appreciable only near k' = k. The group velocity is,
quite generally,

If the potential perturbation is of the form — .r, where 3F is a force, then
we can conceive of the perturbation inducing transitions of the electron
between states within the same band such that the energy of the electron
changes with time as follows:

Since E(k) is a static function of k, a change of energy must be associated
with a change of k. Thus

'See also Section 11.5.
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whence

which is Newton's law of motion if ftk is interpreted as the momentum of
the packet moving through the crystal. This quantity ftk is referred to as
crystal momentum, and, as we discovered in the discussion of the k.p
approximation in Section 1.11, it can be assumed to be much smaller than
the total momentum, the latter being principally associated with motion
within a unit cell as determined by the cell-periodic part of the Bloch
function.

The ratio of crystal momentum and total momentum is measured by
the ratio of effective mass and free-electron mass. Thus, if v(k) is the
group velocity, then the total momentum is, by definition,

whereas the crystal momentum in a parabolic band is

Equation (2.30) describes how an electron in a band responds to a
force. It may be derived more rigorously by using time-dependent pertur-
bation and regarding the potential perturbation as inducing transitions
between band states. Thus, within the effective-mass approximation, we
can take

We can easily obtain the following expression for the initial rate by
substituting into the time-dependent effective-mass equation and putting

Now

where Ak = k'—k is the increase in the wavevector and the crystal has
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been assumed to be a rectanguloid of dimensions 2X X 2Y X 2Z. Con-
sider the x component

This is large when Afc* is small but not zero and when Aky = Akr = 0. The
minimum value of Ak* which is non-zero is given by the periodic
boundary conditions (which also ensure the orthogonality of the waves):

whence

Thus

or

It is worth noting that the expression 'force equals rate of change of
crystal momentum' does not contain the effective mass explicitly, and it is
therefore particularly useful for considering the motion of holes since it is
easy to avoid ambiguities connected with the negative effective mass at
the top of the valence band (Fig. 2.1). Electrons always move through
k-space in the direction of the force.

FIG. 2.1. Group velocity: (a) simple conduction band; (b) simple valence band.
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2.3. Zener-Bloch oscillations1

If we can neglect the possibility of an electron making interband transi-
tions in the presence of an applied electric field, the law governing the
rate of change of crystal momentum (eqn (2.30)) shows that the electron
transits through k-space at a rate equal to the strength of the force. In a
uniform electric field S this rate is a constant and given by

where e is the elementary charge. (The bar over the e will be taken throughout
to denote that the sign of the charge is contained within the symbol, so that we
avoid any trouble connected with the conventional assignation of current
direction and electron force applied to the negatively charged electron by
writing the equations as if the electron were positively charged and eventually
substituting for electrons e = —1.6 x 10~19C). In the absence of collisions the
electron transits the Brillouin zone, is ultimately reflected at the zone
boundary, and transits the zone once again to be once again reflected at the
zone boundary. Thus the unimpeded motion of an electron in a band under the
influence of a constant field is oscillatory in k-space (Fig. 2.1) and therefore
oscillatory in ordinary space. These oscillations have been termed Zener
oscillations (Zener 1934) or alternatively Bloch oscillations, and we shall refer
to them as Zener-Bloch oscillations.

Suppose the field S to be directed along a reciprocal-lattice vector K
defining the reflecting zone boundary. In one oscillation the electron
traverses K. If K= 2n/a, where a is a dimension of the unit cell, then the
angular frequency is given by

Since a«3 A, the angular frequency for a field of 2 x 105V cm 'is about
1013s~1. The oscillation is confined in space and is centred on a particular
unit cell. In such a situation the energy levels in the band are modified by
the perturbing potential " eS.r (Fig. 2.2). The situation produces states

FIG. 2.2. Zener-Bloch states: (a) no field; (b) applied potential differences; (c) Zener-Bloch
states.

* See also Section 11.5.
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separated in energy by the amount e£a, and the step-like variation of
energy along a band edge gives rise to its description as a Stark ladder in
an allusion to the Stark effect in atomic physics. Clearly, the spatial
amplitude Lz of the oscillation is determined by the bandwidth Eb:

Since there is one state per unit cell the number of states in the band
remains unchanged, but they become uniformly spaced in energy.

The wavefunction of an electron in a Zener-Bloch state is clearly very
different from a travelling plane wave since k is no longer a good
quantum number. Regarding the applied potential as a perturbation, we
have

where the 0(r) are the Bloch functions of the band. Perturbation theory
gives

The matrix element is most conveniently calculated by noting that

Converting the sum over k into an integral according to

we readily obtain by integrating by parts and using the orthogonality
properties of the plane waves

By substituting in eqn (2.46) we obtain

whence

To retain the periodicity of the wavefunction ck must be periodic. If we
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let

where E0 is the energy at the band centre, then periodicity demands that

where n' is an integer and a is a unit-cell vector. Thus the state whose
eigenvalue is Ez is spatially centred about the unit cell at n'a, and if we
put n'a = r0 we obtain

This is as far as one can go without going into the band structure in detail;
thus

Let us take a simple model for the band in the direction of <?:

(which is the form obtained in a tight-binding approximation) where Eb is
the bandwidth. Further, let us assume that wk(r) is not dependent on k.
Then

where Jn(z) is a Bessel function, n is an integer, and the field is along the
x direction. Near x = x0, Jn(z) behaves like a standing wave of vector
7r/2a, i.e. the vector midway between the centre and the boundary of the
zone. When \x0 — x\ >> a, an asymptotic expansion gives

where Lz (eqn (2.43)) is the 'classical' spatial amplitude and en is the base
of Naperian logarithms. Clearly, the wavefunction attenuates very rapidly
once \x0 — x\ > enLz/2, but is a maximum at \x0 -x\ = Lz/2 and declines
towards \x0 - x\ —> 0. Qualitatively the behaviour is like that of a simple
harmonic oscillator—the wavefunction is piled up at the extremities which
are the classical turning points. Such oscillators have not been observed to
date. The cause is not hard to find. In order for a Zener-Bloch oscillation
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to establish, the condition

where T is the collision time, must be satisfied. Calculations of T are
usually made for the state near the band edges, and values of order
10~13 s are typical. As we have just seen, the electron is a Zener-Bloch
oscillation that spends most time near one or other band edge, so perhaps
to take an effective T of 10-13 s is not unreasonable, in which case a field
in excess of 2 x 10s V cm-1 is required to satisfy eqn (2.60). In many cases
a field of such magnitude produces electrical breakdown.

Another reason why the oscillations are difficult to obtain is that
tunnelling between bands becomes increasingly probable towards high
fields. Such tunnelling is observed in tunnel diodes and takes place across
the forbidden gap. Furthermore, overlap of bands would tend to make
interband transitions very probable, and this would virtually rule put the
possibility of oscillations. All in all, the observation of Zener-Bloch
oscillations is very difficult in practice. They are nevertheless intriguing
manifestations of the quantum properties of crystals, implying that the
action of a steady electric field on a perfect crystal is primarily to produce
an oscillating electric current, although transitions between Zener-Bloch
states would eventually produce a net flow of electrons down the poten-
tial gradient. However, provided that transitions between bands occur
with a time constant long enough to satisfy eqn (2.60), Zener-Bloch
oscillations, though transient, ought to play a role in breakdown or
tunnelling phenomena for example by replacing plane waves with Zener-
Bloch wavefunctions.

2.4. Landau levels

Turning to the case of electronic motion in a magnetic field, we first
observe that, unlike electron fields, magnetic fields do not change the
energy of the electron since the force they exert is at right angles to the
motion. The basic force equation is

where B is the magnetic intensity and v the group velocity. Let B be in the
x direction. Then
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FIG. 2.3. A constant-energy track through k-space.

and kx is a constant of the motion. Also

Since vz = h l dE/dkz and uy = h 1 dE/dky, eqn (2.63) is equivalent to

The quantity dky dkz is an elementary area of the electronic orbit in a
plane perpendicular to B. The electron cannot change energy and so its
orbit must lie along a constant energy contour on k-space. (Fig. 2.3.) After
a period T the orbit is closed and has an area dA. Thus integrating
eqn (2.64) gives

and

where wc is the cyclotron frequency. The latter carries information about
the rate at which energy surfaces vary with k through the quantity dE/dA.
For a simple spherical parabolic band E = h2k2/2m*, A = irk2, and so
dE/dA = h/2mn*, whence

Measurement of this frequency is therefore a direct measurement of
effective mass. By varying the direction of the magnetic field the curva-
ture of the band can be mapped out. Measurement is effected by
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observing the absorption of radio frequency or infra-red waves at the
resonant frequency.

In the presence of an electromagnetic field defined by vector potential A
and scalar potential <£ the Hamiltonian is

where

In the case where only a uniform magnetic field exists, say in the x
direction, a suitable choice for A in addition to the periodic potential is

Now

In the gauge we are considering V.A = 0, and so the perturbing Hamilto-
nian is

The perturbation is of a different character from the straightforward
potential energy which led to the effective-mass equation since it is a
perturbation of the kinetic energy, and so we cannot use the effective-
mass formulation. However, we might expect that, provided that the
perturbation remains small, the effective-mass equation could be used if
the perturbation is changed from eqn (2.72) to the effective Hamiltonian

That this turns out to be the case can be shown by using second-order
perturbation theory and retaining terms up to A2. The general result for
the energy to second order is

where the eigenfunction has been expanded in terms of all the Bloch
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functions in the usual way. Now

where vn(k) is the group velocity associated with the state k in the band n.
For parabolic bands vn(k) = hk/m*, and so

Also

The last step follows from k.p perturbation theory (eqn (1.76)) for a
spherical band near k = 0:

Substitution in eqn (2.74) gives

which justifies eqn (2.73). This result holds good provided that A varies
negligibly over a unit cell.

Thus the effective-mass equation containing the kinetic perturbation
produced by the field is

where F(r) is the envelope function. Substitution for A from eqn (2.70)
gives
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or

where wac = eB/m* is the cyclotron frequency. Apart from the term in p2,
the Hamiltonian in this equation is that for a classical particle in a (y, z)
circular trajectory with orbiting frequency wc and momentum components
hky and hkz (Morse and Feshbach 1953, p. 296). We can take k2y + k2 as
a constant and transform the equation to

where R is the classical radius of the orbit and E' is the energy for a given
kR = (k2y + k2z)1/2. Since ky and kz merely specify the position of the centre
of the orbit, the states described by this Schrodinger equation are as
degenerate as the number of ways of choosing ky and kz for constant kR.
The equation describes a freely travelling electron in the x direction and a
simple harmonic oscillator in the (y, z) plane. Thus

and

where Hn(z) is a Hermite polynomial and C is a normalizing constant.
The energies of the quantized states thus described are known as Landau
levels (Fig. 2.4).

The degeneracy of these states is just the number of zero-field k states
between adjacent Landau levels for a given kx. Thus the number between
kR and kR+dkR, i.e. the degeneracy, is

FIG. 2.4. Landau levels.
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where Ly and Lx are the dimensions of the periodic crystal in the y and z
directions, and the spread of kR between adjacent Landau levels is given
for a parabolic band by

i.e.

Therefore

Once again, such states are observable only if the collision time T
such that WCT > 1 or

Since er/m* = u., where u is the mobility, this condition can be expressed
as

For u = 1 m2V-1s-1, B>lT. Unlike the case of Zener-Bloch states,
Landau 'cyclotron' states can be formed comparatively easily. As men-
tioned previously, measurement of hwc by observing the frequency of
resonant absorption of radiofrequency or infra-red radiation gives m*
directly. In the case of non-spherical energy surfaces the measure is of an
average m* around the orbit.

The effects of magnetic quantization are observed in optical absorption
spectra, magnetic freeze-out of carriers at impurities, and the mag-
netophonon effect in which interaction with lattice vibrational modes is
involved (Lax and Mavroides 1960; Button 1970; Harper, Hodby, and
Stradling 1973).

2.5. Plasma oscillations

Electrons in the bottom of the conduction band move through a relatively
immobile background of positively charged atoms. On average, neutrality
prevails, but if fluctuations in the electron density occur strong electric
forces appear which attempt to restore neutrality but succeed only in
causing oscillations. This may be seen easily by considering the electrons
to form a continuum gas of average density n0 and writing down the
equation of motion of an electron in the presence of an electric field £:
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where we assume that the fields are such that the effective-mass approxi-
mation is valid. Gauss's equation gives

where e is an appropriate permittivity and n — n0 is the density fluctua-
tion. Finally, if the electron number is conserved, we have the continuity
equation

Regarding terms like vVn as second order we readily obtain from these
three equations

corresponding to harmonic oscillations of density with angular frequency
given by

where <ap is the plasma frequency. In this derivation purely elastic forces
associated with dilations and contractions of the electron gas, considered
as a neutral collection of particles, have been ignored. If they are included
solutions exist in the form of travelling plane waves of density fluctuations
with the dispersion relation

where v(q) is the velocity of acoustic waves in the electron gas. Quantiza-
tion leads to the appearance of plasmons, each of energy hw(q) (Bohm
and Pines 1953. See Chapter 9 for a fuller discussion).

In order for plasma oscillations to be established the condition

must be fulfilled, where T is the collision time. Since T is about 10 13-
10~14 s, the condition is satisfied in semiconductors for carrier densities
typically in excess of 1018 cm"3. In practice such conditions are generally
of importance only in narrow-gap materials or in wide-gap materials in
very special circumstances such as those associated with intense laser
illumination or exceptionally heavy doping.

2.6. Excitons

The minimum energy required to produce an electron-hole pair in pure
materials is less than the band-gap energy because of the mutual coulom-
bic attraction which exists between the two particles. The two-particle
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structure involving an electron and a hole mutually bound together is
known as an exciton. Its energy states in semiconductors can be obtained,
often very accurately, within the effective-mass approximation.

If we assume spherical bands at k = 0, we can write the effective-mass
Hamiltonian as follows:

where m* and m* are the effective masses of the electron and hole, re

and rh are their position vectors, P is the momentum of the exciton
conjugate to the centre-of-mass coordinate R where

r = re-rh, and u* is the reduced effective mass given by

Clearly the envelope wavefunction must be of the form F(r)exp(ik.R),
where F(r) obeys the Schrodinger equation

The total energy is then (Fig. 2.5)

Equation (2.102) is the hydrogenic wave equation, and consequently

FIG. 2.5. Exciton band. The exciton band is shown juxtaposed to the conduction band. It
could equally well be shown with opposite curvature juxtaposed to the valence band.
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where n is an integer, and the envelope wavefunction takes the hyd-
rogenicform

where Rnl(r) is the radial function, Ym1(0, <f>) is a spherical harmonic, and I
and m are the orbital and magnetic quantum numbers respectively.
Compared with the hydrogen atom the radius of the ground state is
generally large because e>e0 and p,*<m. The effective Bohr radius is
given by

where aOH is the Bohr radius h2/(me2/4pe0) - 0.528 A. The factor multi-
plying aOH in eqn (2.106) is about 200 in GaAs and the ground state
binding energy is about 5 meV.

In the case of spheroidal or ellipsoidal valleys the Hamiltonian must
reflect the anisotropy of the effective mass and also any anisotropy of
permittivity which may exist (see Section 2.7).

2.7. Hydrogenic impurities

Impurity atoms generally give rise to localized electronic states with
energies lying in the forbidden gap. In many cases the potential surround-
ing the impurity cannot be regarded as slowly varying, and an effective-
mass treatment is ruled out. However, there exists a class of impurities for
which the effective-mass approximation is reasonably valid, and these
impurities give rise to hydrogenic states. This class consists of shallow-
level donors and acceptors associated with substitutional impurities whose
valency differs from the substituted host atom by unity, plus interstitial
lithium which is a small enough atom to occupy interstitial sites and has a
loosely bound electron. A substitutional atom with one extra valence
electron is a donor whose extra electron is easily removed to the conduc-
tion band leaving a fixed positive charge at the impurity site. An atom
with one valence electron too little is an acceptor which can easily
abstract an electron from the valence band producing a mobile hole and
thereby acquiring a negative charge. In each case the mobile particle finds
itself moving in a long-range attractive coulombic potential analogous to
the hydrogen atom, except that in the immediate vicinity of the origin the
potential departs from being a simple coulombic one reduced by the
dielectric constant of the host lattice. However, if these core anomalies
are neglected the bound states can be described in the same way as
exciton states with k = 0 and ft* = m* for donors, u* = m* for acceptors.
Thus for a spherical band at k = 0 the energy levels are given by
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GaAS 0.067 13.18 104 5.25 0.088 5.33
GaSb 0.049 15.69 169 2.71 0.031 2.72
InP 0.080 12.35 81.7 7.14 0.127 7.29
InAs 0.023 14.55 335 1.48 0.063 1.50
InSb 0.014 17.72 . 670 0.607 0.025 0.610
ZnS 0.3 8.32 14.7 59.0 0.725 66.6
ZnSe 0.16 9.2 30.4 25.7 0.462 27.8
CdTe 0.096 10.6 58.4 11.6 0.298 12.2

a Taking wLO as the zone-edge value.

where RH is the effective Rydberg energy, and the effective Bohr radius
is

This result is very good in the case of excited states for which core effects
are negligible; the level structure is independent of the chemical nature of
the impurity (Table 2.1). The excited states for multiple donors and
acceptors can be approximately described by substituting Ze for e in the
above equations, but the ground-state energy is hopelessly underesti-
mated in these cases.

In polar materials there is an ambiguity concerning the permittivity e:
which is to be used, the high-frequency or the low-frequency value? The
dilemma can be resolved by comparing the characteristic frequency R*/h
of the electron in the ground state, with the frequency O>TO of transversely
polarized optical phonons, since it is the excitation of these which
provides the component of ionic shielding in the low-frequency permittiv-
ity. If R*/h«a>TO the static permittivity es is used; if R*/h»(oTO the
high-frequency permittivity e» is used. In the case of III-V compounds es

is the better choice.
In weakly polar materials a refinement can be made which takes into

account the continuous interaction of the electron with the longitudinal
optical modes. The strength of this interaction is determined by the
dimensionless coupling constant

TABLE 2.1
Hydrogenic factors for spherical conduction bands in sphalerite semicon-

ductors

Polaron

H RH RH
m*/m e/e0 (A) (meV) aa (meV)
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which is about 0-09 for GaAs. Frohlich, Pelzer, and Zieman (1950) have
shown that the effect is as though the effective mass were raised by the
extra inertia of the lattice polarization. The electron is now a 'dressed'
particle and is known as a polaron. Its mass is given by

and the ground-state energy is increased accordingly (Table 2.1) (see
Frohlich 1962).

For an ellipsoidal valley in an anisotropic crystal the effective-mass
equation for hydrogenic impurity states must be modified. To obtain the
form of the potential we note that with the electric displacement related
to the field as follows

and

the potential satisfies

or, referred to the principal axes of

Equation (2.114) is most easily solved by transforming the coordina
according to

As a consequence the space-charge density is transformed as follows:

and

The effective-mass equation for one valley is (assuming that the principal
axes of m* coincide with those of e)
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In the case of silicon, germanium, and the III-V and II-VI sphalerites,
which are cubic crystals, there is no anisotropy of the permittivity, and the
L and X valleys are spheroidal with m* = m* = m* and m* = m||f. In the
case of the II-VI wurzites, which are hexagonal crystals, the symmetry is
axial and el = E2 = e± and e3 = eg, though the anisotropy is small, and at
k = 0 the conduction band is slightly spheroidal (for CdS m* = 0.19 and
m* = 0.18m). Equation (2.118) is directly applicable to the wurzite F
valley.

For L equivalent valleys in cubic crystals we have, from eqns (2.118)
and (2.222), the equation

To zero order, the intervalley mixing can be neglected and the equation
can be solved for a single valley. The axial symmetry of the single-valley
equation has the effect of splitting the three spin-degenerate p-states of
the hydrogenic solution with quantum numbers m = 0, ±1 into |p, 0} and
|p, ±1). Taking these one-valley states for a given eigenvalue from each
valley, we can form different linear combinations compatible with the
symmetry of the tetrahedral character of the substitutional impurity site
(Table 2.2).

A1 1
xyz

f2z2 - x2 - y2

E 2 2U2-y2

rx(y2-z2)
T, {y(z2-x2)

Iz(x2-y2)

*
ryz

T2 zx
Ixy

rx(2x2-3y2-3z2)
T2 \ y(2y2 -3z2 - 3x2)

Iz(2z2 - 3x2 - 3y2)

TABLE 2.2
Symmetry types for the tetrahedral

point group

Notation Basis function
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It turns out that in silicon the six degenerate |ls) states (one for each A
valley) group into three combinations denoted by the symmetry types Als

E, and T2, i.e. a singlet, a doublet, and a triplet (not counting spin). The
|p, 0) state behaves likewise, and the |p, ±1) state groups into two T! and
two T2 combinations, i.e. two double sets of triplets.

The degeneracy of these respective combinations is removed once the
intervalley coupling caused by the impurity potential is included. The
resultant splitting is most important for the ground state, which divides
into A1, T2, and E in order of binding energy.

To see how the |ls) state splits into these groupings for X valley donors
we note that equivalent valleys lie at kx and —kx, ky and — ky, and kx and
—kz. Taking linear combinations of Bloch functions means that symmetric
combinations w*, transforming as cos kx or x2, and antisymmetric combi-
nations <£", transforming as sin kx or x, are formed out of opposite
valleys. Thus the basic wavefunction for the donor ground state is made
up of functions Flsx<£*, Flsy<t>*, and Flsz<£* where Flsx is the envelope for
the | Is) state associated with the valley in the x direction. The appropriate
combinations are

In III-V compounds the silicon-like valleys are split at the zone
boundary into a lower set of minima with X1 symmetry and an upper set
with X3 symmetry. The former's Bloch functions pile up more on the
anion, the latter's more on the cation. A donor on the anion (group VI
impurity) implies that «/»1s(A) and (/>ls(E), which are made up of Bloch
functions which have an antinode <f>+ at the impurity, are those associated
with the X1 minima. The i/»is(T2) consist of Bloch functions with a node at
the impurity having X3 symmetry and therefore do not appear as
effective-mass ground states associated with the X1 minima. When the
donor is on the cation site (group IV impurity) states A and E are
associated with the X3 minima, and only the triplet T2 state is associated
with X1 and is therefore the lowest in energy.

In the case of L valleys in groups IV and III-V semiconductors, the
donor ground state is quadruply degenerate and splits in the tetrahedral
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field into A and T2, of which the spherically symmetric state A is the
lower in energy.

It is worth noting that i1s(E) and i1s(T2) both have nodes at the
impurity and they are therefore less affected by core effects than «^1s(A).

Hydrogenic acceptor states are more complicated to derive because of
the degeneracy of the valence bands. When the spin-orbit splitting is
much larger than the acceptor binding energy the split-off band F7 can be
decoupled from quadruply degenerate upper bands F8 otherwise all six
bands must be considered together. The full degeneracy must be taken
into account in the case of silicon because of its small spin-orbit splitting,
but the F8 and F7 bands can be considered separately in the case of
germanium. In the latter case the F8 band |s) states have F8 symmetry, |p)
states are split into F6 + r7 + 2F8, the F7 band |s) states have F7 symmetry,
and the |p) states are split into F6 + F8. The ground state is therefore F8

which is quadruply degenerate. In silicon the situation is qualitatively the
same.

Although excited states are rather well described by hydrogenic
effective-mass theory (Pantelides 1978), ground states are not, as Table
2.3 shows. Much of the discrepancy is occasioned not so much by a
breakdown of effective-mass theory but by having the wrong impurity
potential. A simple coulombic potential with constant permittivity is too

f P 45.51 12.76
Donors As 53.7 \ 31.2 14.04 9.78 —

ISb 42.7 10.19

I
B 45 10.47

in 151 44 11.61 9.73In 151 11.61
As site f S _ _ 6.10

donors Se 5.89 I
Ga site f Si _ _ 5.85

donors Ge 6.08
C 26.7 "

As site \ Si — — 35 2acceptors Ge 35.2 I

Gasite Be 30 I
acceptorsMg 31.4

TABLE 2.3
Observed and calculated ground-state A1 Energies (meV)

Silicon Germanium Gallium arsenide

Observed Theory Observed Theory Observed Theory
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FIG. 2.6. Localized and resonant states.

inaccurate for describing conditions near the core. If more realistic forms
are taken, a distinction has to be made between those impurities in the
same row of the periodic table as the substitute atom and those from
different rows. The former are termed isocoric impurities. Such impurities
do not introduce potentials which differ appreciably from what one would
expect on the basis of a point-charge model with varying permittivity.
Non-isocoric impurities, however, do introduce variations in potential
which may be so substantial as to invalidate the effective-mass approach.
Thus isocoric impurities may be successfully modelled within effective-
mass theory with a point-charge potential with varying permittivity, and
the discrepancy between theory and experiment can be reduced in
the cases Si: P and Ge: Ga for example, A full account can be found in
the review by Pantelides (1978).

There is a consequence of having impurity states associated with
individual band extrema which we have yet to mention, namely the
appearance of resonant states. Levels associated in the effective-mass
approximation with an upper valley of a many-valley conduction band or
with a split-off valence band are degenerate with lower energy bands (Fig.
2.6). Consequently a carrier cannot be permanently localized in them and
only spends a time T in the level. The level is therefore broadened by this
effect by an amount AE«ft/r, which depends on how easily the carrier
tunnels through k-space and what the density of states is in the band state
which is degenerate with the impurity state. Conversely, carriers in the
band at this energy may suffer temporary capture. In so far as they
disturb the motion of carriers, such states act as resonant scattering
centres (see Bassani, ladonisi, and Prezcori 1974).

2.8. Hydrogen molecule centres

The effective-mass approximation may be applied to more complex
centres, the simplest being centres analogous to the hydrogen molecule,
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either charged or neutral. Donor pairs immediately suggest themselves as
possible candidates (as do acceptor pairs), but such complexes are likely
to be rare since at high temperatures they are usually ionized and hence
unlikely to form pairs against the force of electrostatic repulsion. A more
commonly occurring candidate is the bound exciton, and such a complex
has been successfully described by the straightforward application of the
standard theory for the hydrogen molecule.

Two types of excitons bound at donors are immediately apparent, that
bound to an ionized donor D+eh and that bound to a neutral donor
D+eeh. The first is analogous to H2 and the second to H2. The analogy is
particularly close if the effective mass of the hole is much larger than that
of the electron, for then the kinetic energy of the hole can be neglected
and the hole acts approximately as a second fixed charge. In this case the
ground state energy for D+eh can be directly related to the hydrogenic
energy using exactly the relation between the energies of H2 and H:

In general, binding is possible only if me/mh<0.4. Binding to an
acceptor is possible only if m*/m* <0.4, which is not usually the case. It
follows that if 0.4<m*/m*< 2.25 binding to either ionized donor or
ionized acceptor is ruled out, however, binding to a neutral donor or to a
neutral acceptor is possible whatever the ratio of masses. The energy to
separate two hydrogen atoms is 4.48 eV which is 0-33RH- A general rule
for the binding energy EB of an exciton to a neutral donor or to a neutral
acceptor (Haynes 1960) in silicon is

Four-body centres which are not hydrogen-molecule-like are donor-
acceptor pairs, which commonly occur in compensated material. Informa-
tion about pairing may be strikingly obtained from the observation of
radiation emitted when the electron or the donor recombines directly
with the hole on the acceptor. If the separation is much larger than the
Bohr radii the centres are virtually independent, and the photon energy
hv is just

Since R is determined by the position of the lattice sites the resulting
spectrum consists of a set of lines, each line being associated with a
possible lattice vector (Dean 1973).

A three-body centre may exist which consists of two electrons and a
donor (D+ee) or two holes and an acceptor (A~hh), which is the analogue
of the negatively charged hydrogen ion H-. The binding energy of the
latter is 0.75 eV, which is 0.06RH so one might expect the binding
energy in a semiconductor to be about 0.06RH-
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2.9. Core effects

Substitutional impurities which have the same valency as the substituted
host atom are known as isovalent or, alternatively, iso-electronic im-
purities. As such they do not necessarily introduce localized states. None
are known for iso-electronic impurities in germanium and silicon, but N
and Bi replacing P in GaP and O replacing Te in ZnTe do introduce
localized levels, though Se in SnTe does not. This variability may be
understood in terms of the short-range nature of the potential variation
introduced into the crystal by the impurity. Though iso-electronic, the
impurity is a different atom, and that difference may be quantified by two
quantities, electronegativity and size. Electronegativity difference meas-
ures the intrinsic difference in attractiveness to electrons of the impurity
and host atoms, and difference in size introduces elastic strain and an
associated deformation potential. A net potential U(r) results which is
short range compared with a coulombic potential. If U/(r) < 0 the impurity
may bind an electron; if l/(r) > 0 it may bind a hole. If U(r) is assumed to
be a square well of depth |U0| and radius r0 and the effective-mass
approximation is applicable, we must have

in order to bind an electron or a hole. Thus not all iso-electronic
impurities may introduce localized states. Those which do are usually
observed via bound exertions and luminescence rather than via the
straightforward trapping of an electron or hole.

Core effects are also responsible for the deviations from hydrogenic
values of the ground states of ordinary donors and acceptors. The
effective-mass approximation can still be used where U(r) is not large. A
model potential which is useful both for conceptual purposes and for
modelling simple impurity wavefunctions is that shown in Fig. 2.7. The
envelope function for the ground state in the core region is of the form

where A1 is a constant, j0(ar) is the zero-order spherical Bessel function,
and

where ET is the observed binding energy of the carrier. In the outer
region the envelope function is
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FIG. 2.7. Model potential.

where A2 is a constant, W^ 1/2(z) is a Whittaker function (Whittaker and
Watson 1946), and ft = ZvT where Z is the number, including the sign, of
the charge on the centre. Usually it is sufficient to take the asymptotic
form of the Whittaker function with an appropriate normalizing constant
A to represent the whole wavefunction, even that in the core region
(Bebb 1969):

Normalizing to unity gives

Though this procedure underestimates the amplitude of the wavefunction
outside of the core, it leads to a wavefunction which reduces correctly to
the pure hydrogenic result when VT= 1 and Z = 1. The influence of the
core is reflected in the deviation of VT from unity, a deviation referred to
as the quantum defect. In the case of neutral centres, u = 0 and eqn
(2.131) becomes the wavefunction of the Lucovsky model (1965) used in
the calculation of photo-ionization cross-section. The modified Bohr
radius is vTa*. This relation quantifies a characteristic feature of the
effective-mass theory, namely the deeper the level, the less extended the
orbit.

The wavefunction of eqn (2.131) applies in principle to centres with a
repulsive coulomb (Z, ft < 0), but no normalization is possible unless
ft > —1/2. Physically, this is a reflection of the necessity for the wavefunction
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to be concentrated centrally around the attractive core for stability. Thus
a critical level is defined and only relatively deep levels are stable.
However, this is an entirely artificial condition which arises out of the
neglect of the core wavefunction. Nevertheless, the necessity for a tight
orbit around an attractive core in the case of a centre with long-range
coulomb repulsion is a real one. Consequently, it is not possible to neglect
details of the core potential, and it follows that in the case of repulsive
centres the application of the effective-mass approximation is of dubious
validity, even if the level is shallow. An example of the latter is the Au2~
centre in germanium which can bind a third electron at a level 0.04eV
below the conduction band.

2.10. Deep-level impurities

In general, core effects in iso-electronic impurities, deep-level single and
multiple donors and acceptors, vacancies, and other defects cannot be
treated within the effective-mass approximation. The short-range nature
of the potential in such centres and the tightness of the orbit of the
localized state means that the impurity wavefunction, if expanded in
terms of Bloch functions, must consist of contributions from the whole of
k-space and from many bands. It is then no longer possible to associate a
deep level with one or other of the conduction-band or valence-band
extrema. To describe impurities of this sort theoretically requires methods
akin to band-structure calculations. There is the added complication that
lattice distortion around the centre must also be computed when the
centre is in its ground state and when it is in the excited state correspond-
ing to one electron in the conduction band. The theoretical task is truly
formidable (see Pantelides 1978; Bassani et al. 1974). Nor is the experi-
mental definition of a deep-level impurity straightforward. Energies of
excitation are commonly measured optically and thermally, but their
interpretation is not always obvious. Let us suppose impurity X is known
to introduce a localized level in the forbidden gap of some semiconductor.
The following observations can be made.

(1) Resonant absorption at a photon energy hvr. This is interpreted as
a transition between the ground state and an excited state, probably of
the same impurity but possibly belonging to a neighbouring impurity.
Two well-defined levels separated by hvT are picked out, but there is no
indication of where the levels are situated in the forbidden gap. If the
lattice distortion changes after excitation, the Franck-Condon principle,
which states that because the electron is so light no change in ionic
configuration occurs during an optical transition, implies that the excited
state is a metastable one and exceeds the stable excited state by the
Franck-Condon shift dFC (Fig. 2.8). Thus
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FIG. 2.8. Franck-Condon shift.

and an investigation of thermal broadening may yield dFC. (A fuller
account of lattice relaxation is given in Chapter 6; see also Stoneham
(1975).)

(2) Edge absorption at a photon energy hve (i.e. zero absorption up to
ve and increasing absorption without structure beyond). This is inter-
preted as a transition of an electron either from the valence band to the
empty level or from a full level to the conduction band, to distinguish
which usually requires electrical measurements of some sort. Let us
suppose that the absorption edge is associated with the excitation of an
electron to the conduction band at Ec. Then

Sometimes it is possible to obtain the edge corresponding to a transition to
the other band, in this case the valence band at energy Ev, and hence

Thus

where Eg is the energy gap of the semiconductor and 2dFC is known as
the Stokes shift; the sum of the photon energies exceeds the band gap.

(3) Provided that the concentration is of the same order as for absorp-
tion, i.e. usually about 1016 cm~3 or greater, it is often possible to observe
luminescence, say at hv1, corresponding to a transition which is the
reverse of optical absorption. Since electrons in a band are on average
within an energy of about kBT of the edge the distinction between
resonant luminescence and 'edge' luminescence is not as marked as in the
reverse situation pertaining to optical absorption. In either case equations
like (2.133) and (2.134) apply but with dFc replaced with -dpc-
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(4) Measurement of photoconductivity and transport properties can be
made when the concentration of impurities is much lower than that
required for optical absorption. Although there are many pitfalls to be
avoided in the interpretation of results, it is possible to obtain the spectral
dependence of the photo-ionization cross-section which gives essentially
the same information as obtained from edge absorption. In addition it is
sometimes possible to obtain information about the charge carried by the
centre from the observation of the capture of carriers. Transport proper-
ties such as mobility can yield information about the charge on the centre
and about the existence of resonant states.

(5) Measurements of the thermal activation of carriers out of the
impurity X are usually carried out via observations of Hall effect and
electrical resistivity. What is observed is an exponential dependence of
the form exp(—Eth/kBT) which, if the temperature dependence of the
mobility can be disentangled, may be associated with the increase of
carrier density with temperature. Consequently the activation energy Eth
can be related to the impurity centre. Unfortunately there is a dilemma. If
the levels are full at absolute zero then Eth = (Ec-Eo)/2, as is well known
from the elementary non-degenerate statistics. However, if the levels are
only partially full then Eth = Ec-E0. This dilemma may be resolved for
instance by appeal to observation of the dependence of photoconductivity
on intensity, partially filled levels giving a linear variation and full levels
giving a square-root variation. In either case Eth, is generally different
from the optical excitation energy hvec, not only because of the Franck-
Condon shift but because Eth, is the activation energy at absolute zero,
given a linear dependence of energy on temperature (Section 1.12).

(6) A quite different problem exists concerning the relationship be-
tween wavefunction and ionization energy in many-electron centres.
Where unpaired electron spins exist the study of electron spin resonance
(e.s.r.), i.e. the resonant absorption of microwave radiation in a magnetic
field, may yield information about the symmetry of the wavefunction and
about its strength on neighbouring lattice sites. More often than not the
wavefunction has to be inferred from the premises of some theoretical
model. In either situation the wavefunction is usually a one-electron
wavefunction associated with an eigenvalue Et and satisfying, say, a
Hartree self-consistent central-field one-electron equation of the form

where the sum is over the other electrons in the centre and represents
their screening of the central charge. The field is self-consistent in that the
screening is determined by the wavefunctions of the other electrons, and
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these wavefunctions are determined by the field. The equation is for one
electron since it is assumed that the true wavefunction can be expressed
as the product of one-electron wavefunctions. (Correlation of electronic
movement is ignored.) The many-electron character of the centre reveals
itself in the relation between Ei and the energy ET to remove an electron
for these are not identical because of the phenomenon of electron
relaxation. In a one-electron centre Ei=ET because the field is indepen-
dent of the occupation of the orbital. In a many-electron centre Ei is only
approximately equal to ET- because the field is dependent on screening.
As the electron is removed to infinity its screening contribution di-
minishes and the other electrons move to tighter orbits in which their
screening contribution becomes greater. Since electrons are light particles
this adjustment will happen very rapidly and the electron being removed
will experience a repulsive component. Thus ET<Ei, i.e. the energy to
remove an electron will be less than its eigenvalue by an amount
associated with this electron relaxation. What this implies for modelling
impurity wavefunctions can be seen by referring to the quantum-defect
wavefunction (eqn (2. 131)). The extent of the wavefunction is determined
by the effective Bohr radius a* and the quantum-defect parameter
z>T = CH*/ET)1/2 through the product vTa*. With electronic relaxation VT

should be replaced by v i=(R^/E i)
1/2 .

(7) A question associated with lattice distortion is whether the impurity
introduces local vibrational modes since these may interact strongly with
localized electrons. Such modes manifest themselves in experiments on
optical absorption and scattering. In order for localized modes to exist at
all the impurity mass difference 8M from the host must exceed some
critical value, rather as a short-range potential well must exceed some
critical value in order to bind an electron. Therefore not all impurities
possess localized vibrational modes. If SM >0, i.e. a heavier impurity, a
localized state can be extracted from the optical modes of the crystal but
not from the acoustic modes since this condition implies a reduction in
frequency and no state can be pulled below a frequency o> = 0. However,
if 8M<0 states can be pulled from the tops of the acoustic band and the
optical band. In either case the vibration is of short wavelength with an
amplitude that falls off exponentially with distance. The simplest type of
localized vibration has spherical symmetry and is referred to as a 'brea-
thing mode'. Although mass difference is the transparent candidate for
introducing local modes, it is not the only one; changes in force constants
can obviously have the same effect, although these are not easy to predict.

(8) Shifts in localized electronic levels and a reduction in symmetry can
be achieved by applying uniaxial stress, an electric field, or a magnetic
field, and observing the changes produced in the optical properties of the
centre. This approach can help in some cases to interpret the previous
observation of electronic states. (It may often merely create a more
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TABLE 2.4
Characteristics of deep-level impurities

Property Effect

(1) Size: radius of ground state
wavefunction

(2) Shape and symmetry: point
defect or complex?

(3) Parity: relative to band-edge
Bloch waves.

(4) Charge

(5) Energy-level structure

(6) Occupation and degeneracy of
localized states

(7) Magnetic moment

(8) Coupling to lattice vibrations

(9) Local vibrational mode
structure

Transition cross-sections
Interaction with neighbouring defects
Solubility
As for size

Transition probabilities

Electron scattering and capture
Defect pairing.
Optical absorption; optical and

thermal ionization
Luminescence; capture and emission

through excited states
Electron Scattering
Determination of energy levels
Electronic relaxation effects
E.S.R. Magnetic interaction with

other defects.
Thermal broadening; determination

of energy levels.
Electron capture rate
As for (8); optical absorption and

scattering

complex situation to analyse which at best provides confirmatory evidence
for assigned models.) A full account can be found in the review by
Bassani et al. (1974).

The principal characteristics of a defect which require description are
listed in Table 2.4. Some impurity levels are noted in Table 2.5. Com-
prehensive reviews have been written by Milnes (1973), Grimmeiss
(1977), and Queisser (1978).

2.11. Scattering states

As well as introducing localized states into the forbidden gap or semi-
localized states associated with upper minima, impurities modify the
states in the conduction and valence bands. The positive energy solutions
of the Schrodinger equation containing the impurity potential describe
how an electron moving in a band is affected by the defect. As such they
describe the scattering of electrons by the impurity potential. This topic
will be taken up in the chapter devoted to impurity scattering.

2.12. Impurity bands

Hydrogenic impurities have spatially extended ground states and can
easily reach concentrations at which significant interaction between indi-
vidual centres occurs and the discrete levels broaden into an impurity
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TABLE 2.5
Impurity levels in silicon, germanium, GaAs, and GaP (meV)

I(a) Li 31.0a 9.9 230
510

Na 31.5a

I(b) Cu 240b 260 40 150b 500d

320 400d 700d

Ag 290 260 100 140 110
250

Au 540 350 40 50
200 150

II(a) Be 30c 50a
Mg 107.5 30c 54°

206.5

II(b) Zn 550 310 29 24b 64b
83

Cd 100 45 97a

300 160
Hg 360 330 90/160

370

III B 45" 10.47a
Al 68" 10.80a
Ga 71a 10.97a
In 151a 11.61a
T1 260 10

IV C 26.7c 48a
Si 5.85c 35.2C 83" 204a
Ge 6.08c 41.2C 200a 300"
Sn 510 66"

V N 45.0
P 45.5a 12.76a
As 53.7a 14.04a
Sb 42.7a 10.19a
Bi 12

VI O 160 350 400* 895a
380 690*

S 320d 180a 6.10c 104a
590d

Se 300d 5.89c 102°
570d

Te 140 5.8d 89.8d

Transition Cr 890C 120 790 1200d

elements Mn 330C 90c 410s

Fe 570C 270 340 500d 750d

Silicon Germanium GaAs GaP

Group Impurity CB VB CB VB CB VB CB VB
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TABLE 2.5 (continued)
Impurity levels in silicon, germanium, GaAs, and GaP (meV)

Silicon Germanium GaAs GaP

Group Impurity CB VB CB VB CB VB CB VB

Co 580C 250 160C 41C

310
Ni 350c 310 230 500c

920c
Pt 250 360 200 40

a From Pantelides (1975).
b From Partin, Chen, Mimes, and Vassamillet (1979).
cFrom Watts (1977).
d Ledebo (private communication)
Other data are from Neuberger (1971).
* May not be O: the 690 meV level is probably associated with a Ga vacancy.
CB, conduction band; VB valence band.

band. Were impurities to be uniformly distributed, an impurity band
would exist at all concentrations, however small, and if there were
sufficient compensation of donors by uniformly distributed acceptors only
a few electrons would occupy the band states and the latter can be
described by a one-electron theory. At low concentrations nearest-
neighbour overlap will be small and the tight-binding approximation is
appropriate.

In general the wavefunction for a periodic potential can be taken in the
form of Wannier functions (see eqn (1.32), namely

where <£n(r-R) is a Wannier function centred about the site at R.
Neglecting electron-electron interactions and assuming appreciable over-
lap of Wannier functions only on neighbouring sites we can apply
tight-binding theory and obtain for a simple cubic lattice (Fig. 2.9)

for a face-centred cubic lattice

and for a body-centred cubic lattice

where a is the lattice constant and I in each case is an overlap integral of
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FIG. 2.9. Tight-binding band.

the form

where H is the Hamiltonian. The bandwidth B is given generally by

where z is the co-ordination number (6 for simple cubic, 12 for face-
centred cubic, and 8 for body-centred cubic). By taking the Wannier
function to be a |ls) hydrogenic function, the Bohr radius a^ (eqn
(2.108)), and 2=£a/a£«4 Mott (1972) has shown that

The effective mass associated with the impurity band edge (ka —> 0) can
be found from

For a simple cubic lattice

This model predicts essentially metallic behaviour at any concentration,
however low. An electron is free to move through the impurity superlat-
tice with an effective mass mI*. Such behaviour has never been observed
and there are several good physical reasons for this:

(1) the impurity distribution is non-uniform;
(2) the electron experiences a random potential arising from compen-

sating impurities;
(3) in reality many electrons occupy the band and their mutual interac-

tion cannot be neglected.
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The effect of a random set of potential wells was first pointed out by
Anderson (1958): it is to produce a localization of the electron. If the
potentials vary randomly in the range U±1/2V0, localization occurs when
the localization parameter P exceeds 2, i.e.

Such localization can be understood on the basis of the uncertainty
principle. If the macroscopic size of the crystal is AL, then the uncertainty
in the wave vector is Ak such that Ak AL «1. In terms of energy in the
band this translates to

The random potential introduces an uncertainty V0/2 into the energy,
thus inverting the argument which led to eqn (2.148), and an uncertainty
Ax is implied such that

Localization, defined by Ax « a, occurs when V0/B « 2 in accordance with
eqn (2.147).

Although Anderson localization is predicted specifically for random
potential variations, it is likely to be valid for a random spatial distribu-
tion of impurities as Mott (1972) has pointed out. Thus point (1)
concerning a non-uniform distribution and point (2) concerning random
potentials lead to the conclusion that unless the bandwidth exceeds the
amplitude of the potential variations the electron remains localized and
can migrate through the crystal only by a thermally activated hopping
process. This is commonly observed.

However, even when the bandwidth is large enough for substantial
delocalization to occur there will always be a few impurity clusters with
large V0 which will produce localization. The band edges will then exhibit
density-of-states tails which decay roughly exponentially away from the
band. Electrons in such tail states will be localized, whereas above a
critical energy Ec they will be mobile. The energy is known as the
mobility edge (Fig. 2.10). Such tails are to be expected not only for
impurity bands but also for conduction and valence bands.

FIG. 2.10. Density of states and mobility edge.
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In well-occupied narrow bands the interaction between electrons can-
not be ignored. Screening, polarization, and magnetic effects all become
important and severely modify the simple tight-binding band structure.
The quantitative measure of electron-electron interaction is the energy
associated with the repulsion of two electrons of opposite spin on the
same atom:

For hydrogenic |ls) states (Slater 1963)

(Since Uee>RK the H ion ought to be unstable, but it is not (see Section
2.8). The electronic motion becomes correlated to reduce Uee just below
RH- This correlation energy is not important in the present context.) With
one electron per atom (zero compensation) and UK » B, Uee is the energy
to activate an electron so that it can migrate through the crystal and is
known as the Hubbard gap. In the ground state electrons on adjacent
atoms must have opposite spins, and so the system acts as an antifer-
romagnetic insulator with an energy gap Uee (Fig. 2.11). However, if
electrons are removed or added, hole or electron conduction can occur
and the system acts like a metal. With a finite band width the Hubbard
gap becomes Uee- B, and when the concentration of impurities increases
to a critical value Ncirt the gap becomes zero and the behaviour is entirely
metallic. This metal-insulator transition occurs when B = Uee. From eqns
(2.143), (2.144), and (2.151) the critical concentration is given by

Detailed discussions of this topic and the closely related one of
amorphous semiconductors can be found in the book by Mott and Davis
(1971).

FIG. 2.11. Hubbard bands.
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3. Lattice scattering

3.1. General features

IN broad-band semiconductors an electron migrates through the crystal with
properties determined principally by the periodic potential associated with the
array of ions at the lattice points. Vibrations of the ions about their equili-
brium positions produce practically instantaneous changes in the energy of
electrons and thus introduce a time-dependent component Hep into the time-
independent adiabatic one-electron Schrodinger equation. This interaction is
the adiabatic electron-phonon interaction and it is usually weak enough for
Hep to be regarded as a small perturbation which in the usual way induces
transitions between unperturbed states. The rate is given by the familiar
equation of first-order perturbation theory:

where f and i refer to final and initial states, the integral is over all final states Sf,
and the time dependence is subsumed in the delta function conserving energy.

Strict conservation of energy is of course an approximation. What
first-order perturbation theory gives is not a delta function but a function
of energy of the form sin{(£f — Ei)t/ii}/(Ef-Ei)p, where t is time, which
approaches a delta function when t—>oc. The difference between this
function and a delta function will, however, be unimportant provided the
'duration' td of the collision is short compared with the time tc between
collisions where td is defined (Paige 1964) by

Usually, where first-order perturbation theory is applicable it is found
that td <r rc.

f

The interaction energy in its simplest form depends linearly on strain—
acoustic strain in the case of acoustic modes and optical strain in the case
of optical modes (eqns (1.103) and (1.105)). These strains influence the
electron in a band in two distinct ways. In the first way, short-range
disturbances of the periodic potential cause practically instantaneous
changes in energy, and these changes are the ones quantified by deforma-
tion potentials (Section 1.13). Disturbance of the electron's motion by

*A fuller account will be found in Section 11.4.
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this effect is referred to as deformation-potential scattering. By its nature
it is common to all semiconductors and indeed all solids. In the second
way, the distortion of the lattice may destroy local electric neutrality, and
produce electrical polarization and associated macroscopic comparatively
long-range electric fields to which the electron responds. Disturbance of
the electron's motion by this effect is referred to as piezoelectric scatter-
ing, associated with acoustic modes, and polar optical mode scattering,
associated with optical modes. Such scattering occurs only in polar
materials.

The displacement u(R) associated with a given mode of the unit cell at
R can be expressed in terms of plane waves:

(the time dependence being already incorporated in the delta function
conserving energy) where N is the number of unit cells in the periodic
crystal, the Qq, are normal coordinates, aq, is a unit polarization vector, q
is the wavevector, and c.c. stands for complex conjugate. In acoustic
waves u(R) refers to the displacement of the unit cell; in optical waves it
refers to the relative displacement of the two atoms in the unit cell. The
linear dependence of Hep on strain, either acoustic or optical, means that
it is also linearly dependent on the normal coordinates of individual
simple harmonic oscillators. This has the well-known consequence that a
given mode may only change its phonon occupancy by unity.

The wavefunction ui of the initial state can be expressed as a product
of a one-electron wavefunction, i.e. a Bloch function </fnk(r), and harmonic
oscillator wavefunctions:

where the product is of all modes of a given branch b and of all branches.
Also, the final state will consist of a product of a Bloch function * n ' k ' ( r )
and oscillator functions <t>'9,b(Q), where the prime denotes that the
number n,,b (<»,,&) of quanta excited is different in general from the
number excited in the initial state. Because of the linear dependence of
Hep on the Q,_b, the matrix element will contain factors linear in the
normal coordinate. These are as follows:

where <o9fb is the angular frequency of the mode with wavevector q, M' is
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the appropriate mass of the oscillator, e.g. the total mass of the unit cell in
the case of acoustic modes or in the case of long-wavelength optical
modes the reduced mass M where

M1 and M2 are the masses of the two atoms. The right-hand side of eqn
(3.5) follows from the properties of simple harmonic wavefunctions and
depicts the well-known property of single-phonon absorption or emission:
a linear dependence of Hep on the normal coordinate entails that the
scattering of an electron by a given lattice wave is accompanied by the
absorption or the emission of one phonon.

The matrix element also contains an electronic component which
consists of a sum of terms, each term being associated with an individual
lattice wave having the form

where the integral over the crystal has been factorized into an integral
over a unit cell, which is the same for all unit cells because of the periodic
properties of the Bloch functions and of the interaction, and an integral
over all the unit cells over the volume V. The interaction constant Hq>b(r)
represents the electron-co-ordinate-dependent part of Hep for a given
mode which is independent of R for lattice-scattering processes. The
integral over all the unit cells can be performed immediately, and the
electronic part of the matrix element becomes simply

where K is a reciprocal-lattice vector. Scattering events in which K = 0 are
termed normal processes. In them, crystal momentum is conserved:

If K = 0, the scattering event is an umklapp process. In either case only
one mode of a given branch can effect the transition for a given initial and
final electronic state. Consequently, in a single lattice scattering event
only one mode is involved. The minus sign is taken for emission and the plus
sign for absorption.
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The integral Cq,bl(k, k') provides a final selection rule depending on the
symmetries of the interaction and the Bloch functions of initial and final
states. For the polar, optical, and piezoelectric interactions the macro-
scopic fields produced are essentially long-range fields which vary slowly
over a unit cell, and thus Hq,b (r) is approximately constant over the unit
cell. The integral is then zero unless the Bloch functions belong to the same
valley. Moreover, because the cell periodic part of the Bloch function does
not vary rapidly with k over those states near the band edge most occupied by
electrons (or holes), we can often take unk=M,,^^, and consequently
obtain 7(k, k') = 1. This will be valid unless non-parabolicity is marked.
Where non-parabolicity is present I(k, k) is less than unity. In the central
conduction valley of III-V compounds the cell periodic part of the Bloch
function contains an admixture of a |p)-like component deriving from the
valence band, and this leads to the non-parabolic form

It can be shown that in this case (Fawcett, Boardman, and Swain 1970)

For holes within heavy or light bands (Wiley 1971)

where 6* is the angle between the initial and final state vectors.
Because of the long-range nature of the polar interaction, polar optical

and piezoelectric scattering are basically intra-valley scattering events.
Both intra-valley and inter-valley scattering are possible through the
deformation-potential interaction. In either case we can take Hq,b(r) =
Cq>b for an allowed transition and zero for a transition forbidden by
symmetry.

We can summarize these general features in the following formulae for
the matrix element and transition rate for an allowed process:

where ft«qib is the phonon energy and Cq>b is a coupling parameter which
in general depends upon the magnitude and direction of q. The number



86 Lattice scattering

of final states in an elementary volume of k-space denoted by dk is
dkV/(27r)3, and so we obtain

The upper sign in these equations is for absorption and the lower
is for emission of a phonon. The integral over k' is equivalent to an
integral over q (because of eqn (3.10)) and often the latter is more
convenient. We cannot proceed further without a more detailed investiga-
tion of the form of the interaction and of the consequences of the
conservation of energy and momentum.

The above equations describe the rate of scattering of an electron
occupying a Bloch state |k). In many situations we are interested in
calculating phenomenological quantities which are properties of an en-
semble of electrons rather than of a single electron, and in these cases we
must introduce statistical elements and concepts and graft them onto the
basic quantum-mechanical results discussed above. For example, we often
need to know how the occupation probability f(k) of the state |k) changes
with time because of scattering, and this is given by the so-called collision
integral which for non-degenerate statistics is as follows:

where W(k, k') is the integrand of eqn (3.15) apart from the delta
function representing the transition k-»k' and W(k',k) represents the
reverse case. Our primary concern in this chapter and elsewhere is with
the elementary quantum processes and so we shall not be concerned
much with elements of statistical physics. Our emphasis will be on the
response of an individual electron rather than on solving the Boltzmann
equation in order to obtain the distribution function of the ensemble.

3.2. Energy and momentum conservation

3.2.1. Spherical parabolic band

Consider a normal process in which crystal momentum is conserved in a
scattering event within a spherical parabolic band.
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FIG. 3.1. Absorption of a phonon.

3.2.1.1. Absorption. The absorption of a phonon is determined by (Figs.
3.1 and 3.2)

whence

Let us denote the right-hand side of eqn (3.19) by f(q):

According to eqn (3.19) energy and momentum conservation imposes the
constraint -1< f(q) < l.

Absorption of acoustic phonons. For acoustic phonons w = vsq whence,
since hk = m*v,

If v > vs the minimum value of q is clearly zero, and the maximum value

FIG. 3.2. Absorption of acoustic and optical phonons.
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FIG. 3.3. Limitations on q for the absorption of an acoustic phonon.

of q is given by f(q) = —1. If v < vs the minimum value of q is obtained by
putting f(q) = +l (Fig. 3.3). In summary, for absorption

The average group velocity at room temperature is typically of order
107 cms-1, whereas the velocity of sound is typically of order 105 cms-1;
thus most electrons can absorb phonons with wavevectors q satisfying
0 < q < 2k. The range of energy change involved is from zero to 2hvsk.
With an average k of order 107 cm-1, 2hvsk = 1 meV. This energy is small
compared with thermal energies kBT = 25 meV, and so scattering by
absorption of acoustic phonons is approximately elastic (Fig. 3.2). The
direction of k can change appreciably but its magnitude changes very
little. In the limit of very slow electrons only one value of q is possible for
all 0:

We have assumed that the velocity of an acoustic mode is independent
of direction but this is not strictly true (see Appendix, Section 3.9).
Usually the variation is neglected and an average velocity is assumed.

Absorption of optical phonons. For T point optical phonons w = w0,
where w0 is insensitive to the magnitude of q for small q very much less



Energy and momentum conservation 89

FIG. 3.4. Limitations on q for the absorption of an optical phonon.

than the zone-edge wavevector. In this case (Fig. 3.4)

which has the solution

Since q is a positive quantity only the plus sign is relevant. Thus with

In the limit of small k only one value of q is possible for all 8:

Unlike the case of acoustic phonons, optical phonon scattering is mar-
kedly inelastic because of the appreciable magnitude of hw0 which is
typically several tens of millielectronvolts (Fig. 3.3). However, as with
acoustic phonon scattering, the modes which may interact are those with
wavevectors near the zone centre, i.e. long-wavelength modes. In the case
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FIG. 3.5. Emission of a phonon.

of very energetic electrons, Ek »hw0 and the scattering is approximately
elastic.

3.2.1.2. Emission. The emission of a phonon (Figs 3.5 and 3.6) is
determined by

whence

Emission of acoustic phonons. For acoustic phonons (Fig. 3.7)

whence it follows from the limitation —1 < f(q) < 1 that no solution exists
for v < vS. An electron must travel with a group velocity in excess of the
sound velocity in order to emit a phonon. Provided that v > vs, the limits

FIG. 3.6. Emission of acoustic and optical phonons.
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FIG. 3.7. Limitations on q for the emission of an acoustic phonon.

on q are

Note that 0 < 0 < cos-1 (vs/v), i.e. forward emission only.
Emission of optical phonons. For optical phonons (Fig. 3.8)

FIG. 3.8. Limitations on q for the emission of an optical phonon.
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and

When

Once again only forward emission is allowed. Also for Xk to be real,
Ek > hw0; in order to emit an optical phonon the electron must have
sufficient energy.

3.2.2. Spherical non-parabolic band
In the case of a non-parabolic band we can assume (eqn (1.82))

For the case of acoustic phonon scattering it is sufficient to relate final and
initial states through a truncated Taylor expansion:

The group velocity v is given by

and hence it is easily shown that the form of the equations for the limits
on q (i.e. eqns (3.23)-(3.25) and (3.36)-(3.38)) remain unchanged.

A Taylor expansion cannot be employed successfully for optical pho-
non scattering unless

a condition which is often satisfied for hot electrons. When this condition
is not satisfied it is necessary to replace the ratio hw0lEk in the previous
formulae according to the prescription
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3.2.3. Ellipsoidal parabolic bands

In ellipsoidal bands the energy is no longer simply related to the mag-
nitude of k:

The trick here is to transform all vector components according to

where m*o is arbitrary (but usually chosen to be one of the m*i). Then

Unfortunately this means that the acoustic phonon energy hvsq becomes
dependent upon direction in the new vector space. However, since the
energy is small it is usually sufficient to perform an average over direction
and retain the simple form of the dependence of energy on phonon
wavevector:

The optical phonon energy is not affected by the transformation from
ordinary vector space to 'starred' vector space.

When this transformation has been made, the limits are obtained
exactly as before but with q and k replaced by q* and k*, and vs replaced
by <vs(m*/m0)1/2>.

3.2.4. Equivalent valleys

When the initial state is in valley 1 and the final state is in valley 2, where
valleys 1 and 2 are equivalent in energy, momentum conservation de-
mands a short-wavelength phonon (Fig. 3.9). In general an umklapp

FIG. 3.9. Inter-equivalent-valley scattering.
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FIG. 3.10. Inter-non-equivalent-valley scattering at k = 0.

process may be necessary. Thus if the valley extrema are situated at k1

and k2 we require

where k' and k are vectors relative to the respective extrema, q12 is a
phonon wavevector such that

and K is a reciprocal lattice vector. 'Intervalley' phonons have wavevec-
tors whose magnitudes are an appreciable fraction of the Brillouin-zone-
boundary vector. Dispersion for these modes, whether acoustic or optical,
is such as to allow us to neglect any dependence of frequency on
wavevector. Thus, inter-valley scattering, once eqn (3.54) is satisfied, then
proceeds exactly like intra-valley optical phonon scattering.

3.2.5. Non-equivalent valleys

Scattering from T to X, T to L, or X to L proceeds as for equivalent-
valley scattering in that zone-edge phonons are involved, but the differ-
ence of energy between extrema has to be taken into account and also the
difference of effective mass.

Non-equivalent valleys at the same point in the zone entail a treatment
more akin to intra-valley scattering in that acoustic phonons and optical
phonons have to be treated separately since only long-wavelength modes
are involved (Fig. 3.10).

In either type of non-equivalent-valley scattering the treatment of
energy and momentum conservation is only a little complicated by the
energy gap and by the mass difference, and we shall not treat these cases
explicitly.

3.3. Acoustic phonon scattering

Energy and momentum conservation restricts intra-valley scattering by
acoustic phonons to long-wavelength modes. Such modes cannot change
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the energy of an electron other than through the elastic strain associated
with them. A long-wavelength acoustic displacement cannot affect the
energy since neighbouring unit cells all move by almost the same amount;
only the differential displacement, namely the strain, is of importance. The
interaction is described in terms of deformation potentials as discussed in
Section 1.13. For electrons in a conduction band

where Eij are the deformation potentials and Sij, are the strain components:

where u is the displacement and R(x1x2x3) is the position vector of the
unit cell. When u is expanded in terms of travelling plane waves (eqn
(3.3) and Appendix, Section 3.9),

where N is the number of unit cells, a is the unit polarization vector, q is
the wavevector and Qq is the normal coordinate. Hence

Table 1.7 (p.39) lists the deformation potentials for T, L and X valleys.
In the case of intra-valley scattering in a T valley, shear strains produce
no energy change and consequently

where Ed is the deformation potential associated with pure dilation. The
appearance of the scalar product a.q denotes that only longitudinal
modes interact with electrons.+

In the case of L and X valleys it is convenient to consider longitudinal
and transverse modes separately. Because of elastic anisotropy the situa-
tion is very complicated. Shears may contribute to the energy shift; the
effective elastic constants which determine the velocity of the wave vary
with direction and so do the polarization vectors (Appendix). Strictly
speaking, it is necessary to consider each direction of q separately in
calculating the transition rate, and this was done by Herring and Vogt
(1956) in their pioneering paper. However, it is possible to adopt a
simpler approach which involves an implicit averaging over the azimuthal

+ This is true only for elastically isotropic crystals. In general, LA and TA modes have mixed
polarizations.
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angle of q and regarding elastic anisotropy as small. In this scheme we
define an effective deformation potential for longitudinal modes

and for the sum of both branches of the transverse modes

where 0q is the angle between q and the principal axis of the spheroidal
valley (Fig. 3.11). Thus, if E(0q) denotes either of the above deformation

FIG. 3.11. Angular dependence of the deformation potential: (a) longitudinal modes; (b)
transverse modes.
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potentials (or Ed in the case of a T valley) we can write generally

This means that the coupling coefficient C2
q in eqn (3.15) is given by

Having obtained the q dependence of the coupling strength it is
necessary to exhibit the q dependence of the remaining terms in eqn
(3.15), namely wq and n(wq). In the spirit of the azimuthal average
approximation we can take

where vs is the velocity of the mode averaged over direction. As regards
n(wq) there are two simple cases to consider. The most commonly
applicable is the case of equipartion:

Since energy and momentum conservation limit q to 2k, a typical phonon
energy is hvsk. For electrons obeying non-degenerate statistics at thermal
equilibrium and for a parabolic band

Thus

Typically 3m*v2
s/kB= 0.2 K, and so equipartition can be assumed to

hold for all temperatures above 1 K as regards the scattering of thermal
electrons. For hot electrons at low temperatures this assumption may
break down, in which case n(wq) « 1 is usually assumed. We shall consider
this situation later, and at present continue to assume that equipartition
holds good.

3.3.1. Spherical band: equipartition
When n(wq) » 1 the rates for absorption and emission become almost
identical. Substituting from eqns (3.63)-(3.65) into eqn (3.15) gives, for a
spherical band, and with M' = pV/N where p is the mass density and
I(k,k') = l,
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where vsL is the velocity of longitudinal modes. We can replace pv2
sL by

the average elastic constant CL for longitudinal modes (see Appendix). It
is convenient to use the one-to-one correspondence between k' and q to
convert the integral to one over q. Thus

The Kronecker symbol merely reminds us that crystal momentum is
conserved. The Dirac delta function is a function of polar angle 6 (which
we choose to be the angle between q and k) through the dependence of
its argument on the magnitude of q through wq. For a parabolic band

where k' is replaced according to eqns (3.17) or (3.33). (The upper sign is
to be taken for absorption, the lower for emission.) Thus, integrating over
0 and cos 0 we obtain

where the limits on q arise from the delta function, and they are those
given in eqns (3.23) and (3.24) for absorption and in eqns (3.37) and
(3.38) for emission. Now the thermal average group velocity vth is given
by kinetic theory as

and is typically of order 106 cm s-1 at temperatures around 1 K. Thus for
situations in which equipartition can be assumed, it is usually possible to
take v » vsL and hence take qmin = 0 and qmax = 2k. Consequently, for
absorption or emission

The density of states of a given spin N(Ek) per unit energy in the band is
given by
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and thus

Returning to eqn (3.68) we see that this result could have been obtained
directly by neglecting the phonon energy hwq in the delta function, thus
removing the angular dependence of the integrand, for then

Note that phonon scattering does not flip the spin.
It follows that eqn (3.75) is valid for spherical non-parabolic bands,

provided that N(Ek) is the appropriate density of states per unit energy,
namely

where y(Ek) is defined in eqns (3.44) and (1.82), and provided that the
departure of the overlap integral I(k, k') from unity can be neglected.

The total scattering rate is the sum of absorption and emission rates.
Since these are nearly equal for equipartition, we have

which is the final result (see Fig. 3.14).
The free path l between scattering events is given by v/Wtot, namely

(e.g. from eqns (3.73) and (3.46)

In a parabolic band l is independent of energy.

3.3.2. Spherical band: zero-point scattering

In the case of hot electrons at low temperature, the assumption of
equipartition fails. Instead n(wq) « 1 for the phonons most involved in the
scattering. This means that scattering by absorption or by stimulated
emission is negligible, and only emission triggered by zero-point oscilla-
tions is important. Thus in place of eqn (3.68) we obtain
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The integration follows the path of eqn (3.69) et seq., and we obtain

For a parabolic band W(k) a Ek. The ratio of zero-point rate to
equipartition rate is 2m*vvsL/3kBT.

3.3.3. Spheroidal parabolic bands
In the case of L or X valleys we have to evaluate, in the case of
equipartition,

for longitudinal modes and for transverse modes, E(0q) being given by
eqns (3.60) and (3.61) and c being chosen appropriately. For a given
magnitude of k', Ek, varies with direction in the spheroidal band and thus
the delta function is very much dependent on angle. It is therefore
convenient to transform the integration to one in 'starred space' (see
Section 3.2.3) and over the phonon wavevector. All vectors transform
(Fig. 3.12) as

FIG. 3.12. Transformations to starred space: (a) energy surface; (b) vector. k*x =
(m*1/m*1)1/2kx;k*y = ky ; k*z = kz.
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FIG. 3.13. Angle transformations to starred space.

and the energy becomes independent of direction, namely

The angle between q and the principal axis p transforms as follows (Fig.
3.13):

and since

then

Putting m* = m*1, where m* is the longitudinal component of the effec-
tive mass, and m* = m* = m*t, where m*t is the transverse component, we
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obtain

where Km is the mass anisotropy coefficient m*1/m*1.
With this transformation E2(0q) becomes dependent on the azimuthal

angle 0*q as well as the polar angle 0*q, but the delta function is now only
weakly dependent on 6*. The integrations can be carried out in a
straightforward way, first over 0*q, then over cos 0*q, and finally over q*
between the limits 0 and 2k*. Integrals of the type

appear, and they are standard.
The final result can be expressed in terms of a longitudinal rate Wl(Ek)

and a transverse rate Wt(Ek):

where

In the above expressions for the deformation potential 3/4 E1 and 3/4 Et are
equal to unity when elastic anisotropy is neglected, n1 and nt depend
upon Km, and fl and ft depend upon Km and the ratio cL/cT of the
averaged elastic constants.

Explicit expressions have been obtained by Herring and Vogt (1956)
for the momentum relaxation rates in germanium and silicon (Table 3.1).

TABLE 3.1
Coefficients for deformation potentials

E1 n1 Et nt nt Et

Si 1-40 2-40 1-62 1-33 1-15 1-07
Ge 1-24 2-32 1-22 1-31 1-61 1-01

After Herring and Vogt 1956.

Si
Ge

6

1-40
1-24

nl

2-40
2-32

fl

1-62
1-22

Et

1-33
1-31

nt

1-15
1-61

ft

1-07
1-01
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The distinction between momentum relaxation rate and scattering rate is
discussed later, but for the present it is sufficient to note that the
magnitude of these rates are within a factor of order unity of each other.
For germanium it is found that the ratio of the longitudinal and transverse
components is close to unity, whereas for silicon it is about f according to
Long (1960).

The scattering rate for zero-point scattering can be calculated in the
same way. We obtain

where

Explicit expressions for the momentum relaxation rate of germanium
have been obtained by Budd (1964) and Gurevitch (1965):

These results suggest that the ratio of longitudinal to transverse rates is
about 3 in that material.

3.3.4. Momentum and energy relaxation

The rates explicitly dealt with in the foregoing, apart from the im-
mediately preceding expressions, are simple scattering rates. In the de-
scription of the response of electrons to fields the more important rates
are the momentum relaxation rate and the energy relaxation rate. These
are rates which are derived from the scattering rate by weighing the latter
by the appropriate change in momentum or energy.

The change of momentum is equal to the change of crystal momentum
in the transition from k to k':

where W(k,k')S(Ek--Ek+hwq) is the integrand of eqn (3.15), k' = k is
assumed for acoustic scattering, and 0k is the scattering angle. Conserva-
tion of energy and momentum entails that
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The appropriate weighting factor for the scattering rate is 1 - cos 0k, and
this factor must be inserted in the integration of eqn (3.15) to obtain the
momentum relaxation rate. From eqn (3.100) it is clear that this is
equivalent to multiplying the integrand by q2/2k2. This does not change
the energy dependence of the scattering rate, but it introduces an extra
numerical factor of the order of unity. Thus

where Tm is the momentum relaxation time and W(k) is the scattering
rate. The factor is of order unity because q varies between 0 and 2k,
corresponding to a scattering angle between 0 and 180°. Taking an
average scattering angle of 90° implies that <q> = J2k, which makes the
weighting factor unity.

There is usually a net loss of momentum in a collision, but whether a gain
or loss of energy occurs depends upon the energy of the electron. The
rate of change of energy of the electron is given by

In a parabolic band energy is gained when Ek < 2kBT and lost when
Ek > 2kBT. When Ek » 2kBT energy is lost at the zero-point rate. This
latter result, which is of importance for hot electrons, can be obtained
very simply by observing that 1 in 2n(wq) + 1 collisions results in a loss,
and thus

Substituting for n(wq) and W(k) for equipartition, and taking <wq} =
V2vsk gives eqn (3.105). If an energy relaxation time for hot electrons is
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defined as

then for equipartition,

The energy relaxation time in this case is very much longer than the
momentum relaxation time since 2m*v2

s/kBT « 1.
The momentum relaxation rate in spheroidal parabolic valleys bears

the same relation to the scattering rate as in the case of spherical valleys
(eqns (3.101) and (3.102)). Thus, for equipartition eqns (3.90) are valid
for momentum relaxation. For zero-point scattering we obtain from eqn
(3.95) (see Fig. 3.14)

The energy relaxation rate is given by

Conwell (1967) has shown that the appropriate average deformation

FIG. 3.14. Scattering rate for optical phonon scattering.
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potential in this case is

The scattering of holes in the degenerate valence bands is somewhat
more complex, although no essential new features are present in the
problem. Interaction with both longitudinal and transverse modes is
allowed, with the strength given by the deformation potentials of Chapter
1, Section 1.13 (Bir and Pikus 1961; Lawaetz 1969, 1971).

3.4. Optical phonon scattering

As in the case of acoustic phonon scattering, energy, and momentum
conservation restricts intra-valley scattering by optical phonons to long-
wavelength modes. However, unlike the case of acoustic phonons, long-
wavelength optical displacement may affect the electronic energy directly.
Thus the electron-phonon interaction Hamiltonian takes the form

where D'o is an optical deformation potential constant (cf. Chapter 1,
Section 1.13) and a is the relative displacement of the two atoms in the
unit cell.

The optical deformation potential constant has been defined in many
ways, unfortunately, and that is why we have put a prime on the symbol
in eqn (3.113). Equation (3.113) is a natural way of defining the interac-
tion, but although this form has been used frequently following its
introduction by Meyer (1958) it has always been accompanied by the
assumption that the mass of the oscillator was the total mass of the unit
cell and not the reduced mass. (Meyer appeared to adopt a halfway
postiion by taking the mass to be that of a single atom. The use of the
total mass is explicitly condoned by Conwell (1967, p. 150), and this
approach has been universally adopted.) However, the use of the optical
displacement calls for the use of the reduced mass, as pointed out in eqn
(3.5), and the reduced mass is of course used in the theory of polar
interaction with optical modes, as we shall see. If the reduced mass is
used along with the accepted magnitude of the interaction constant, which
we denote by D0 without the prime, it can be shown to be equivalent to
assuming that the interaction in the case of germanium takes the form

This, indeed, was the form assumed by Lawaetz (1967), whose approach
was entirely consistent. If we adopt this form of interaction, it means that
D0 is not the energy per unit optical displacement but rather the energy
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per atomic displacement. (In the diamond lattice both atoms have identi-
cal masses and have the same displacement.) This has the virtue of
making it similar to the acoustic deformation interaction in that the latter
is also defined as proportional to the displacement of an individual atom
(equal in this case to the displacement of the unit cell). The adoption of
eqn (3.114) as the deformation of D0 therefore removes all difficulties in
this respect, but only as regards the diamond lattice. In other materials
the atoms in the unit cell are not identical and hence eqn (3.114) needs to
be generalized. The approach to be adopted here is to define the optical
deformation potential constant as the change of energy per unit equival-
ent acoustic displacement uac and to define the latter as the displacement
of the unit cell giving the same optical elastic energy as the optical
displacement u, namely

Thus we take the general optical deformation potential interaction to be

An advantage of this approach is that it retains the useful property that
the details of the lattice vibration, symbolized by the appropriate oscil-
lator mass M', cancel out of the final result.

In zero-order optical phonon scattering, D0 is non-zero. This turns out
to be the case for intra-valley scattering in L valleys and in the degenerate
valence bands at the zone centre, but for T1 and X valleys D0 is zero
(Table 3.2). When zero-order optical phonon processes are forbidden
because of symmetry restrictions, it is possible for first-order processes in
which the energy of interaction is proportional to the differential dis-
placement, i.e. strain, to occur. In this case deformation potentials
analogous to those for acoustic phonons can be introduced, and the
calculation of scattering rate follows that for acoustic phonon scattering

TABLE 3.2
Selection rules for zone-centre phonons

in intra -valley processes

Valley Phonons

T1 LA
X1 LA+TA
L1 LA+TA+LO+TO
F15 LA+TA + LO+TO

After Seitz (1948), Herring and Vogt (1956),
Harrison (1956), and Bir and Pikus (1961).

Valley

T1
X1
L1

T15

Phonons

LA
LA+TA
LA+TA+LO+TO
LA+TA+LO+TO
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except that the phonon energy cannot be neglected. Usually it is assumed
that at room temperature and below first-order optical phonon scattering
is negligible compared with acoustic phonon scattering. We consider this
type of scattering later.

In the case of the L valley Harrison (1956) has shown that D0 lies along
the principal axis. Thus for a longitudinal optical mode travelling in an
arbitrary direction such that its direction cosine with respect to the
principal axis is aq,

The coupling coefficient in eqn (3.15) is therefore

The coupling coefficients for the two transverse modes travelling in the
same direction are D2

oB
2

q and D2
o,y

2
q,where Bq and yq are the direction

cosines of the polarization vectors. The magnitude of the coupling
strength is thus the same for all polarizations.

The scattering rate (eqn (3.15)) depends upon the frequency of the
mode directly and indirectly through the number of phonons n(wq).
Strictly speaking, therefore, each mode has to be considered separately,
but usually the simplification of regarding all modes as having the same
frequency is made. In the diamond lattice there is no difference in
frequency at the zone centre, and so a single-frequency approximation for
q = 0 is a good one. In zinc blende longitudinally polarized optical
vibrations produce an electric polarization which increases the restoring
force and therefore the frequency over that for transversely polarized
modes. If wL and WT are the longitudinal and transverse angular frequen-
cies, and E and E8 are the static and high-frequency permittivities, then

a formula known as the Lyddane-Sachs-Teller relationship. Although
wL = wT even at the zone centre, the difference between the frequencies is
not very large in III-V compounds and it is still a reasonable approxima-
tion to adopt a single-frequency approach.

In a single-frequency approach the sum over the three modes allows us
to consider the interaction as one with a single mode of frequency w0 with
coupling coefficient

since a2
q + B2

q + y2
q = 1. Another approximation, just as irresistible, is ob-

tained by neglecting the dependence of w0 on q, for then the delta
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functions conserving energy in eqn (3.15) become independent of direc-
tion and the integral over final states can be simply carried out by
converting k' to energy as we did in eqn (3.76). Thus the scattering rate
is, with M' = M and I(k, k') = 1,

where for a parabolic band

and m* is the density-of-states mass (eqn (3.94) and Fig. 3.14)).
Equation (3.121) is also the expression for the momentum relaxation

rate. Multiplying the integrand in eqn (3.15) by (q/k)cos 0, the fractional
change in momentum, does not introduce any new factor because the
coupling is independent of direction. When it is summed over all final
states this factor gives a contribution of unity. (See discussion p. 117).

The energy relaxation (eqn (3.103)) is also simply obtained in the
constant-frequency approximation. The rate of increase of energy of the
electron is (Fig. 3.15)

Although these equations have been derived explicitly for L valleys
they are applicable to the degenerate valence bands. The valence band

FIG. 3.15. Rate of energy loss to acoustic and optical phonons in n-germaniurn at 300 K.
(After Conwell 1964.)
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optical deformation potential d0 replaces D0 in the manner mentioned in
Chapter 1 (Section 1.13) and the density-of-states factors must include
both light- and heavy-hole bands. However, the overlap factor is no
longer unity in this case.

3.4.1. Inter-valley scattering

These equations are also valid for inter-valley scattering processes since
the conservation of momentum entails that only short-wavelength pho-
nons at or near the zone edge are involved and these have frequencies
virtually independent of wavevector, whether they be optical or acoustic
modes. Which modes interact with the electrons depends upon the
symmetries of the initial and final states (see Table 3.3) and whether an
umklapp process is involved (as is the case for silicon). The rate for each
mode must now be considered separately. Thus the rate for an inter-
valley process between valleys i and j involving a phonon of frequency wij

with an inter-valley deformation potential constant Dij is

where AEij is the difference of energy of the valley minima and the
appropriate oscillator mass replaces M in the interaction eqn (3.116).

TABLE 3.3
Selection rules for phonons in inter-valley scattering processes

Initial Valley Final Valley Phonons

x1 x1 LO, MV > MIIIX, X, LA,Mx < MIII zinc blendeLA, Mv < MIII
(g-scattering LOa

A1 A opposite valley)
(f-scattering LA+TOa

non-opposite valleys)
L1 L1 LO + LA

LO, Mv > MIII}-zinc blende
T1 L1 LO + LA
L1 X1 LO + LA

After Birman, Lax, and Loudon 1966.
• Data from Streitwolf 1970.

Initial Valley

X1

A1

L1

T1

L1

Final Valley

X1
(g-scattering

opposite valley)
A1 (f-scattering

non-opposite valleys)
L1

x1

L1
X1

Phonons

LO, Mv>M I I ILA, Mv < MIII } zinc blendeLA, Mv < MIII}

LOa

LA + TOa

LO + LA
LO, Mv > MIII} zinc blende
LA, Mv < MIII}
LO + LA
LO + LA

3.4.2. First-order processes

In the case of inter-valley scattering between the A1 mimina in silicon
normal processes are ruled out and only umklapp processes are allowed
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FIG. 3.16. Brillouin zone for silicon showing positions of conduction band valleys. The
arrows indicate the two possible types of inter-valley scattering transitions.

(Fig. 3.16). Scattering between opposite valleys, i.e. <100) to < 100), is
denoted a g-process and that between non-opposite valleys, e.g. <100> to
<010>, an f-process. The reciprocal lattice vector involved in the g-process
is K100 and that for an f-process is K111. Momentum conservation then
entails a phonon for the g-process with q along the <100> direction and of
magnitude 0-30+ of the <100> zone-edge value, and a phonon for an
f-process with q only about 11° off a <100> direction (E1 symmetry) and of
exactly the zone-boundary value in that direction. Thus f-processes
involve phonons of short wavelength, but the g-process involves a phonon
of comparatively long wavelength. Selection rules imply that the latter is a
LO phonon (0D= 730 K, hw = 0.063 eV) and that the f-process phonons
are LA and TO (0D = 630 K, hw = 0.054 eV). Nevertheless, the experi-
mental results in silicon can be fitted satisfactorily only by assuming that
an additional scattering mechanism involving a 190 K (0.016 eV) phonon
is present. Such phonons exist. They are the LA and TA modes with
q = 0.30 of the zone boundary. However, if they contribute to the
scattering they must do so through a first-order process rather than a
zero-order process.

First-order process in this context means a process akin to acoustic
phonon scattering in which a deformation potential tensor is defined.
Thus the coupling coefficient has the general form

By taking an isotropic approximation we can write the rate as follows:

+ This value assumes that the valleys are situated at points 85 per cent towards the zone
boundary. If the valleys are at points 83 per cent towards the zone boundary, as has been
asserted by Hochberg and Westgate (1970), the value rises to 0.34. Both magnitudes are
found in the literature.
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Conversion to an integral over q and integration over angle, taking
account of the cos 6 dependence in the delta functions, leads to

where the limits to the integrals are those for optical phonons (Section
3.2.1). It follows that for parabolic bands (Ferry 1976)

This rate rises with energy more rapidly than in the cases of long-
wavelength acoustic mode scattering and short-wavelength modes (Fig.
3.17).

The energy relaxation rate is simply obtained from eqn (3.128):

The momentum relaxation rate is obtained from eqn (3.127) by multiply-
ing the first integrand by the factor q2 /2k2—hw1 /2Ek and the second
integral by q 2 /2k 2 + hw1/2Ek, each factor being the appropriate value of

FIG. 3.17. First-order scattering rate for optical phonon scattering.
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(q/k)cos 0. (See discussion p. 117). The result is

(As far as the author is aware expressions for the energy relaxation rate
and the momentum relaxation time have not been given before.)

Ferry used W(k) as an approximation for T-1
m in his analysis of the

mobility in silicon and obtained E1 = 5.6 eV. Using T-1
m, we obtain E1 =

4.7 eV. The inter-valley coupling constant for each allowed mode turns
out to be about 5 x 108 eV cm-1 (Ferry 1976; Ridley 1981).

3.5. Polar optical mode scattering

In polar materials the vibrations of oppositely charged atoms give rise to
long-range macroscopic electric fields in addition to deformation poten-
tials, and the interaction of the electron with these fields produces
additional components of scattering. Polar scattering is indeed the domin-
ant mechanism of scattering in pure III-V and II-VI compounds. First-
order polarization occurs in connection with the contrary motion of the
two atoms in the primitive unit cell characteristic of the longitudinally
polarized optical mode. Second-order polarization in connection with
acoustic strain is associated with the piezoelectric effect, and the scatter-
ing caused by this effect will be discussed in the next section. The major
scattering mechanism in polar materials at room temperature is that
associated with longitudinal optical modes, and this has been described by
Frohlich (1937) and Callen (1949).

The basic polar interaction energy is

where p(R) is the charge density of the electron and o(R) is the electric
potential associated with polarization in the unit cell at R. If e* is the
magnitude of effective charge on the atoms and V0 is the volume of a unit
cell, the polarization P is given by

where u(R) is the optical displacement in the unit cell at R. Such a
polarization is associated with a bound space-charge density equal to
-div P, and so if u is expanded in terms of plane waves div P is non-zero
for longitudinal modes only.
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In order to relate eqns (3.131) and (3.132) we transform the integral in
eqn (3.131) as follows:

where 9) (R) is the electric displacement associated with the electron and
E(R) is the electric field associated with the polarization. Since the
electric displacement associated with the latter is zero,

and thus

The bare electric displacement at R associated with an electron at r is

where e is the electronic charge containing its sign. In the presence of
screening caused by the motion of charges which is rapid enough to
respond to lattice vibrations we can assume a Thomas-Fermi potential
and take

where q0 is the reciprocal Debye screening length (see Appendix,
Chapter 4 and, more fully, Chapter 9 for a discussion of screening).

By substituting

in eqn (3.132) where aq is a unit polarization vector, since u(R) is a
long-wavelength optical displacement, we can integrate eqn (3.135) and
obtain

The coupling coefficient of eqn (3.15) is therefore
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and the scattering rate is given by

where we have put V = NV0. Note that since we are dealing with optical
displacement we retain the reduced mass M. Because the coupling
coefficient depends upon q and since the magnitude of q varies with the
direction of the final state wavevector, the scattering probability is direc-
tionally dependent and this means we must convert the integral over final
electronic states into one over phonon modes, as we have done in eqn
(3.141), and proceed to integrate following the same method as was used
for acoustic phonons (eqns (3.69) et seq.).

Integration over the azimuthal angle contributes a factor 2T. Integra-
tion over the polar angle is determined by the delta functions. Assuming
spherical parabolic bands, we obtain for the total rate

FIG. 3.18. Rate for polar optical mode scattering.
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where qmax and qmin, which are different for the absorption and emission
integrals, are given in eqns (3.30) and (3.31) and in eqns (3.42) and
(3.43). The integrals are straightforward but involve lengthy expressions.
Except for highly doped semiconductors screening is not very important,
and we can obtain simpler expressions which are still useful if we neglect
screening altogether. Then we obtain for the scattering rate, with q0 = 0,

and it is understood that the second term in the square brackets is zero if
Ek < hw0 (Fig. 3.18). (See Chapter 9 for a discussion on screening.)

3.5.1. The effective charge

The difference between the permittivities at low and high frequencies in
polar materials is related to the effective charge on the ions. At high
frequencies the contribution to the polarization made by ionic motion
vanishes, leaving only the electronic component, whereas in the static
case both contributions are present.

The equation of motion which describes a long-wavelength longitudi-
nally polarized optical mode is as follows:

where F is some applied force. Using eqn (3.132) we can recast this as an
equation for the time dependence of polarization associated with the ions
in the presence of an applied electric displacement

where E0 is the permittivity of free space. In the static case we have

but in general the total polarization Ptot(0) is given in the static case by

where E is the electric field, and at high frequencies the total polarization
is given by
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where E8 is the high-frequency permittivity, Thus the polarization caused
by ionic motion is

Relating eqns (3.149) and (3.146) leads to the expression for the effective
charge we require:

In the case of III-V compounds MV0w
2

0 is approximately a constant,
independent of material, and so a simple expression for the effective
charge is

where K8= and K are the high frequency and static dielectric constants
(Keyes 1962; Hilsum 1975; Ridley 1977).

3.5.2. Energy and momentum relaxation
The scattering rate of eqn (3.143) with e* substituted from eqn (3.150) is

where

The energy relaxation rate can immediately be written down, following
eqn (3.103), as follows:

The momentum relaxation rate is more complicated to obtain. We must
return to eqn (3.142) and weigh absorption and emission terms by the
respective changes in momentum. An absorption of a phonon travelling
at an angle 6 to k contributes a fractional increase of momentum of
(q/k)cos 6 in the direction of k. From energy and momentum conserva-
tion cos 0 is given by eqn (3.19). The fractional increase in momentum for
emission is —(q/k)cos 0, and cos 6 in this case is given by eqn (3.35). Thus
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the momentum relaxation rate is given by

Neglecting q0 again, we obtain

a result first derived by Callen (1949).+

Taking into account non-parabolicity in a spherical band leads to an
energy relaxation rate given by

and a momentum relaxation rate given by

These expressions were obtained by Conwell and Vassell (1968) (Fig. 3.19).

+ When hw/kBT is large, it is often more accurate to use solely the absorption rate. See eqn
(12.29) and subsequent discussion.



Piezoelectric scattering 119

FIG. 3.19. Relaxation times for electron scattering in the (0,0,0) valley of GaAs, corrected
for non-parabolicity, as a function of energy: Ta, acoustic relaxation time; Tpo, polar optical
relaxation time; T1_2, inter-non-equivalent-valley relaxation time. (After Conwell and

Vassell 1968.)

It is worth noting that the energy-independent parameters which com-
pose the term multiplying the curved brackets in eqn (3.156) can be sub-
sumed into a dimensionless coupling constant aep given by

which is the expression already given in eqn (2.109) in connection with
polarons (see also Section 3.7).

3.6. Piezoelectric scattering

In crystals whose lattice lacks inversion symmetry, such as those semicon-
ductors with sphalerite or wurtzite structure (but not those with rocksalt
structure), elastic strain may be accompanied by macroscopic electric
fields. This piezoelectric effect provides an additional coupling between
the electron and acoustic vibrations whose interaction energy is exactly
the electrostatic energy derived in the previous section (eqn (3.131)).
However, the electric polarization P(R) is now proportional to acoustic
strain and not to optical displacement, and can be obtained from the
following phenomenological equation relating electric displacement to
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electric field and strain in a piezoelectric crystal:

where D and E are the electric displacement and field, S is the strain, E is
the permittivity tensor, and e is the piezoelectric constant tensor. By
definition the polarization is given by the equation

The bare lattice polarization can be obtained from these equations by
putting D=0. For simplicity we shall assume that the dielectric is iso-
tropic. Consequently

where K is the dielectric constant, and the interaction energy is given by

where D(R) is given by eqn (3.137) and R is the position coordinate of
the unit cell. It is important to include the effect of electrical screening,
which is why eqn (3.137) rather than eqn (3.136) is used for D(R).

In the case of zinc blende crystals there is only one piezoelectric
constant. In reduced notation eikl -> eim, where m runs from 1 to 6 (Nye
1957). For zinc blende e14 = e25 = e36 and all other components are zero.
For wurzite e24 = e15, e31 = e32, e33 is non-zero, and all the rest are zero.
We now follow the calculation for zinc blende. Only the shear strain
components give rise to electric fields.

By expanding the displacement in plane waves we obtain

where a is a unit polarization vector and Qq is the normal coordinate
associated with the acoustic mode with wavevector q. The components P2

and P3 are of similar form. Performing the integration in eqn (3.163)
gives

where a, B, and y are the direction cosines with respect to the crystal axis
of the direction of propagation of the wave. The coupling constant of eqn
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(3.15) for a given mode is therefore

Piezoelectric coupling has a complicated directional dependence as
eqn (3.166) shows. The coupling is zero for modes travelling along a
principal crystal axis, whatever the polarization of the mode. Only trans-
versely polarized modes couple when the direction lies in a cube face (e.g.
a = 0, B = 0, y = 0). Longitudinally polarized waves couple when travel-
ling along a cube diagonal (a = B = y), but transverse modes do not
because of the cancellation of polarization vector components. Some
average over direction is clearly desirable. Meyer and Polder (1953) in
their treatment of piezoelectric scattering took averages over (100), (110),
and <111> directions of propagation and included in their averaging the
anisotropy of the elastic constants since these enter the final result.
Harrison (1956) calculated the scattering rates in these directions and
then took a weighted average. Hutson (1961) took a spherical average of
the piezoelectric constants separately for longitudinal and transverse
modes, and this approach was generalized and applied to ellipsoidal
bands by Zook (1964). We shall adopt the latter approach and make
separate spherical averages of piezoelectric and elastic constants in the
case of spherical bands.

For longitudinal waves eqn (3.166) is simply

Since the spherical average of (aBy)2 can readily be shown to be 1/105,
we obtain

For transverse waves, eqn (3.166) becomes

whence
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Taking the overlap factor 7(k, k') to be unity and assuming equiparti-
tion, we obtain the scattering rate for absorption or emission:

where v-2
s is the square of the spherical average velocity. For longitudinal

modes pv-2
sl = CL and for transverse modes pv-2

st
 = CT, where CL and CT are

the spherical average elastic constants (see Appendix):

The quantity c* is a measure of elastic anisotropy and is zero for an
isotropic crystal. We can lump longitudinal and transverse modes together
by defining an average electromechanical coupling coefficient Kav such
that

Thus

provided that the difference between longitudinal and transverse phonon
energies can be neglected. Note that the q dependence of the integrand is
exactly the same as for polar optical mode scattering (eqn 3.142). The
integration can be carried out along the lines of eqns (3.68)-(3.73) for
acoustic mode scattering. After integrating over direction we obtain for a
parabolic spherical band

where v is the group velocity of the electron. Integrating over q leads to
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FIG. 3.20. Rate for piezoelectric scattering.

The scattering rate remains finite at small energies only because the
reciprocal screening length q0 is non-zero. By multiplying by 2 to obtain
the total scattering rate for absorption and emission we obtain (Fig. 3.20)

(As far as the author is aware, this and the following expressions have not
been given before.)

The momentum relaxation rate can easily be obtained, following eqns
(3.100) and (3.101), by multiplying the integrand of eqn (3.177) by
q2/2k2. After multiplying by 2 to take account of absorption and emis-
sion, we obtain

The term multiplying the square bracket is identical in form to the rate
given by Meyer and Polder (1953) and Hutson (1961) who neglected
screening altogether.

The energy relaxation rate can be obtained from the scattering rate
following eqn (3.103). Thus, treating longitudinal and transverse modes
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separately and combining to give a. total energy relaxation rate, we obtain

Like polar optical mode scattering, piezoelectric scattering weakens
with increasing electron energy, except at very low energies where the
trend reverses because of screening. At low temperatures in pure
piezoelectric semiconductors it becomes the dominant scattering mechan-
ism for thermal electrons, but warm electrons will tend to be scattered
more via the deformation potential interaction. Since zero-point scatter-
ing finds its main application for warm and hot electrons at low tempera-
tures, we have little incentive to extend our description to the case when
the assumption of equipartition fails, and we shall not therefore consider
this situation although it presents no difficulties. The fact that piezoelec-
tric scattering is important for low energies makes a parabolic approxima-
tion a good one.

The foregoing calculation has relied heavily on there being electrical
screening. In the absence of screening (q0

 = 0) the scattering rate (eqn
(3.179)) diverges logarithmically but momentum and energy relaxation
rates remain finite. It is because the momentum relaxation rate remains
finite that previous calculations of mobility neglecting screening were
successful. Nevertheless, problems arise when screening is very weak. In
this respect piezoelectric scattering is similar to charged impurity scatter-
ing (see Chapter 4).

Although we have limited discussion explicitly to the case of sphalerite
lattices, the approach is readily applicable to wurtzite where a more
complicated averaging of the piezoelectric constants is necessary. Thus for
longitudinal waves

and for transverse waves

so that in the isotropic model (Hutson 1961)

Values of the piezoelectric coupling constants for some semiconductors
are given in Tables 3.4 and 3.5.
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TABLE 3.4
Piezoelectric coupling coefficients for III-V compounds

e14(Cm-2)a k (static) p (g cm-3) <vs>av (km s-1) K2
av

GaAs 0-160 13-18 5-36 4-03 0-00252
GaSb 0-126 15-69 5-66 3-35 0-00180
InP 0-035 12-35 4-83 3-85 0-000156
InAs 0-045 14-55 5-71 3-17 0-000274
InSb 0-071 17-72 5-82 2-78 0-000714

a From Rode 1970a.

TABLE 3.5
Piezoelectric coupling coefficients for II-VI compoundsa

Sphalerite e14 (C m-2) k cL(1010Nm-2) CT K2
av

ZnS 0-17 8-32 12-89 3-60 0-0060
ZnTe 0-027 9-67 8-41 2-48 0-00019
ZnSe 0-045 8-33 10-34 3-29 0-00047
CdTe 0-034 9-65 6-97 1-55 0-00047

Wurtzite e33 e31 (C m-2) e15 k CL CT K2
av

b

CdS 0-49 -0-25 -0-21 9-7 8-8 1-54 0-035
CdSe 0-32 -0-13 -0-15 9-4 7-4 1-72 0-014
ZnO 1-1 -0-16 -0-31 8-2 14-1 2-47 0-074

a Values derived from Zook (1964) and Rode (19706).
b Values for CdS and ZnO from Hutson (1961); the value for CdSe was calculated from

Hutson's formulae.

GaAs
GaSb
InP
InAs
InSb

e14(C m-2)a

0-160
0-126
0-035
0-045
0-071

k (static)

13-18
15-69
12-35
14-55
17-72

p (g cm-3)

5-36
5-66
4-83
5-71
5-82

<vs>av (km s-1)

4-03
3-35
3-85
3-17
2-78

K2
av

0-00252
0-00180
0-000156
0-000274
0-000714

Sphalerite

ZnS
ZnTe
ZnSe
CdTe

Wurtzite

CdS
CdSe
ZnO

e33

0-49
0-32
1-1

e14 (C m-2)

0-17
0-027
0-045
0-034

e31 (C m-2)

-0-25
-0-13
-0-16

K

8-32
9-67
8-33
9-65

e15

-0-21
-0-15
-0-31

cL(1010N m

12-89
8-41

10-34
6-97

K

9-7
9-4
8-2

-2)

CL

8-8
7-4

14-1

CT

3-60
2-48
3-29
1-55

CT

1-54
1-72
2-47

K2
av

0-0060
0-00019
0-00047
0-00047

K2
av

b

Kav

0-035
0-014
0-074

3.7. Scattering-induced electron mass

The electron-phonon interaction, besides causing transitions between
Bloch states in a band, mixes those states and produces energy shifts. The
effect can be described using second-order perturbation theory. The
perturbed energy of a Bloch state |k) is as follows

where Mq em and Mq abs are the matrix elements for the emission and
absorption respectively of a single phonon. Crystal momentum is con-
served, and so a state |k) is coupled via the electron-phonon interaction
involving a mode of wavevector q to a state |k±q). Since the second-
order process returns the electron to its original state, conservation of
energy does not impose any condition in which the state is coupled. In the
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notation of Section 3.1 we have (see eqn (3.14))

Thus energy shifts are induced which are in general temperature depen-
dent. Such temperature effects have already been mentioned in Chapter
1, Section 1.12. These shifts are also dependent on electron energy and,
as such, they can be described in terms of an addition to the effective
mass of the carrier. Scattering-induced mass of this sort is associated with
the electron being 'dressed' continually with a cloud of virtual phonons.
The lattice in the vicinity of the electron is distorted, and the movement
of the electron entails the movement of this lattice distortion with a
consequential increase in inertia.

We shall estimate this effect at the absolute zero of temperature only.
The results will serve to provide a comparison of the intrinsic strengths of
the four interactions we have been considering, namely acoustic phonon,
optical phonon, polar mode, and piezoelectric. The calculation with polar
modes, leading to the concept of the polaron, is perhaps most familiar. In
the cases of the other types of interaction we arrive at similar concepts,
which we might name as the acouston, the opticon, and the piezon.

At T = 0 only spontaneous emission is possible; thus we need only
M2

q em for n(wq) = 0. For simplicity, we shall take the overlap factor
I(k, k') to be unity and take spherical averages of Cq and wq. The squared
matrix elements are given in Table 3.6.

The sum in eqn (3.185) can be converted to integral form by taking a
spherical approximation for the Brillouin zone:

where the limitqD = (6T2N/V)1/3 is chosen such that the number of modes
in the sphere is equal to N. In eqn (3.187) we have used the conservation
of momentum and the parabolic approximation to transform the de-
nominator into a function of q. Since the density of phonon modes is high
towards large q, it is convenient to simplify by expanding the reciprocal of

TABLE 3.6
Zero-point isotropic electron-phonon squared matrix elements M2

q em

Acoustic Optical Polar Piezoelectric

E2hq D2
oh e2hw0 e2<e2

14>avh
2NMvs 2NMw0 2NV0Epq

2 2NME2vsq

Acoustic

E2hq
2NMvs

Optical

D2
0h

2NMw0

Polar

e2hw0

2NV0Epq
2

Piezoelectric

e2<e2
14>avh

2NMEzvsq
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the denominator in powers of cos 0 and to retain terms up to and
including the quadratic. Thus, after integrating over the solid angle we
obtain

This takes the form

where AEep is an energy shift and aep is a dimensionless coupling strength
which causes an increase in effective mass:

The results are given in Table 3.7.
Since AEep merely shifts all the energy states it is not of much interest.

The quantities of most interest are the coupling strengths. For perturba-
tion theory to be applicable aep must be less than unity. Taking typical
values for the deformation potential parameters (E = 10 eV, D0 = 5 x
108 eV cm-1, m* = 0.2m) and polar parameters typical of III-V com-
pounds, we obtain aep(ac) = 0.03, aep(op) = 0.03, aep(pol) = 0.1, and
aep(piez) = 0.l. These values are small enough to justify the use of
perturbation theory in the electron-phonon interaction. For highly polar
materials aep exceeds unity. In these materials the electron is virtually
trapped in the potential hole it has dug for itself and perturbation theory
is no longer valid. In non-polar and weakly polar semiconductors the total
coupling constant lies roughly between 0.1 and 0.3, which corresponds to
a contribution to the electron effective mass of a few per cent.

TABLE 3.7
Energy shifts and electron-phonon coupling strengths

Acoustic Optical Polar Piezoelectric

E2m*qD D2
0m*qD e2(m*hw0)

1/2 e2<e2
14>m* (hqD)

ep 4T2havs 2T2hpw0 25/2TEph 2T2E2hpvs log(2m*vs)

8E2m*2 (hqD) D2
0(2m*)3/2 e2m*1/2 e2K2

av

aep T2h3pvs (2m*vs) Thp(hw0)3 / 2 25/2TEph(hw0)
1/2 T2Ehvs

Note: qD = (6T2N/V)1/3.

AEep

«ep

Acoustic

E2m*qD

4T2hpvs

8E2m*2 ( hqD)
T2h3pvs log (2m*vs)

Optical

D2
0m*qD

2T2hpw0

D2
0(2m*)3/2

Thp(hw0)
3/2

Polar

e2(m*hw0)
l/2

25/2TEph

e2m*1/2

25/2TEph(hwo)
1/2

Piezoelectric

e2<e2
14>m* (hqD )

2T2E2hpvs log (2m*vs)
e2K2

ave Kav

T2ehvs
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3.8. Mobilities

The scattering rate for an electron with a well-defined energy is scarcely
ever directly observable. In almost all situations in practice, what is within
the reach of experiment are .phenomenological quantities such as mobil-
ity, diffusion coefficient, and the various galvanomagnetic coefficients
which are properties of a population of electrons rather than of a single
electron and which are only indirectly related to the scattering rate. To
infer a scattering rate from one of these phenomenological quantities
requires a knowledge of how the electrons are distributed in energy. In
the case where there are weak fields this distribution can be taken to be
substantially that at equilibrium, but slightly perturbed, and the
Boltzmann equation can be solved in a straightforward way to obtain the
required relation. Where fields are strong, as occurs in hot-electron
experiments, the distribution function is quite difficult to compute. Such
experiments are useful for providing information about energy relaxation
and about scattering processes at high energies. It would take us too far
from our discussion of basic processes to go into such cases, and we shall
limit our account to the low-field case and further limit it to a summary of
low-field mobilities.

The basic statistical relation between mobility u, and the momentum
relaxation time Tm is given by elementary transport theory in the case of a

TABLE 3.8
Momentum relaxation times in a simple band

Scattering
mechanism Momentum relaxation times Tm

Acoustic phonon
(equipartition)

Zero-order
optical phonon

First-order
optical phonon

Polar optical
phonon

Piezoelectric
(equipartition)
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spherical band:

where, for thermal equilibrium non-degenerate statistics and parabolic
bands, oo

For an ellipsoidal band three tensor components of mobility occur:

with (EkTmi) defined as in eqn (3.192). In Table 3.8 we summarize the

FIG. 3.21. Mobility of electrons in silicon, (a) The solid curve is the experimental result; the
points are the theoretical results for mixed acoustic, inter-valley zero-order (630 K), and
first-order (190 K) phonon scattering. The experimental curve is from Long (1960). (b)

Individual contributions to scattering. (After Ferry 1976.)
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FIG. 3.21. (b)

momentum relaxation times associated with lattice scattering in simple
bands. The complicated energy dependences in these expressions lead to
some impressive looking integrals for the mobility, but some of them can
be reduced to standard functions.

Some calculations and observations of mobility in the Group IV
semiconductors germanium and silicon and in the group III-V semicon-
ductors GaP, InSb, GaAs, InAs, InP, and GaSb are shown in Figs.
3.21-3.28.

The degree of agreement between theory and experiment is generally
satisfactory in pure materials.

3.9. Appendix: Acoustic waves in the diamond lattice

The six independent strain components can be denoted by Si (i =
1, . . . . 6) in reduced notation, the six independent stress components by
TJ (j = 1, . . . , 6). Cubic symmetry restricts the number of elastic stiffness
constants to three, namely c11 (= c22 = c33), c12 (=cij, i = j, i, j = 1, 2, 3)
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FIG. 3.22. Mobility in germanium: (a) electrons; (b) holes. The points are experimental
data from Morin (1954). The lines are theoretical. uac, acoustic phonon contribution. (After

Conwell 1959.)

FIG. 3.23. Electron mobility in GaP. (a) Solid curve theory; points experimental results, (b)
Individual contributions. (After Rode 1972.)
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FIG. 3.23. (b).

and c44 (= c55 = c66). The relations between stresses and strains are

The strain components are related to the displacement u at R by
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FIG. 3.24. Electron mobility in InSb: solid curve, non-parabolic band; broken curve,
parabolic band; dotted curve, experimental data of Hrostowski, Morin, Geballe, and

Wheatley (1955). (After Ehrenreich 1957.)

FIG. 3.25. Electron mobility in GaAs: solid curve, theory; points, experimental data. (After
Rode 1970a.)
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FIG. 3.26. Comparison of effects on electron mobility in InSb and GaAs. (a) The role of
piezoelectric scattering: solid curve, without piezoelectric scattering; broken curve, with
piezoelectric scattering, (b) The role of non-parabolicity: solid curve, non-parabolic; broken

curve, parabolic. (After Rode 1970a.)

The equation of motion for one crystallographic axis is

FIG. 3.27. Electron mobility in InSb and GaAs. (After Rode 1970a.)



Appendix: Acoustic waves in the diamond lattice 135

FIG. 3.28. Electron mobility in GaAs, GaSb, and InP. (After Rode 1970a.)

where p is the density. The general equation of motion is therefore

where il, i2, and i3 are unit vectors along the axes and c* = c11 - c12-2c44
is a measure of the anisotropy of the solid. By substituting the wave
solution

we obtain

For acoustic waves the velocity vs of the wave is given by

Equation (3.199) can then be written as three simultaneous equations
from which we can obtain the values of • and us for any direction of
propagation. The equations are, in terms of the direction cosines (a, B, y)
for q,
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There are solutions provided the determinant of the coefficients of a1, a2,
and a3 vanishes. This condition leads to three values for v2. Each value of
u2 corresponds to two waves travelling in opposite directions.

Consider propagation in the (100) direction, i.e. a = 1, B = 7 = 0. The
equation for v2 is

Labelling the solutions v2, v2, and u2 we have

If we put v2 back into eqn (3.201) we obtain a2 = a3 = 0 and a1 undeter-
mined. Consequently this case corresponds to a pure longitudinal wave.
Performing the same operation with v2 and v2 we see that these solutions
correspond to pure transverse waves.

For propagation along the (110) direction we again obtain pure lon-
gitudinal and transverse waves. Labelling the solutions v2, v2, and v2 we
have

where the directions are the directions of polarization.
The corresponding values for the (111) direction, in which we again

obtain pure longitudinal and transverse waves, are

Generally, for other directions of propagation each mode is a mixture of
longitudinal and transverse components.

For the purpose of calculating scattering rates the angular dependence
of usL and usT can be neglected and the following average quantities for
the elastic constants can be used to define (vsL) = (cl/p)112 and (vsT) =
(cT/p)1/2, namely
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4. Impurity scattering

4.1. General features

THE scattering of electrons by the change in potential introduced by an
impurity into the lattice differs from lattice scattering in a number of
ways. In our simple idealized picture of a semiconductor an electron state
and a vibrational state both spread uniformly over the crystal volume.
The interaction between them takes place in all unit cells and there is no
picture of them being in any degree localized in the theory that we have
outlined in the previous chapter. When an impurity is introduced into the
lattice its interaction with the electron possesses a more local character,
and scattering will occur with appreciable probability only in the vicinity
of the impurity site. The same is true of other defects such as vacancies,
and we shall use the term impurity to cover all such defects provided that,
like an impurity atom, they occupy only one isolated lattice site. This
local character means that we must envisage the incoming electron as a
wavepacket, at least partially localized in the vicinity of the scattering
centre. This aspect of localization means, among other things, that it is
possible to speak of a scattering cross-section for the collision as well as a
rate. Such a geometric attribute cannot usefully be invented for scattering
by phonons.

However, the scattering of a Bloch-wave electron by an impurity is
never a truly localized event. The scattering potential of an individual
impurity has infinite range and, moreover, there are always many impur-
ity sites present in the crystal. Strictly speaking, we ought to consider the
electron as being continually scattered; in other words we must consider
the electron to have dynamic properties different from those of the Bloch
wave particle—different effective mass for instance. If the impurities were
regularly arrayed in a superlattice, we could describe a superband struc-
ture with energy gaps at the superzone boundaries and associated
negative-mass behaviour—a conduction band structure associated with
the impurity band of bound electrons (Chapter 2, Section 2.12). A
random array of impurities also possesses a superband structure, albeit
with blurred gaps and edges. Whatever the impurity distribution, non-
local characteristics of this sort will be present in addition to close-
encounter scattering events and a full description requires quantum
transport theory.

The analogue in classical physics is the motion of a body in a random
array of field sources, such as a star moving and gravitationally interacting
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with other stars or an electrical particle moving in a plasma. The variation
of gravitational or electric fields which the particle experiences is de-
scribed by the Holtsmark distribution (Holtsmark 1919; Chandresekhar
1943), and in many situations it is possible to describe the motion of the
particle satisfactorily in terms of the tail of the distribution which corres-
ponds to high fields. Since this tail is very largely determined by two-body
collisions involving relatively short-range interactions we are led to the
division of all collisions into two categories: infrequent strong two-body
interactions and very frequent weak many-body interactions. In a simple
quantum-mechanical picture a time-average of the very frequent weak
collisions determines a set of time-independent states, and transitions
between these states are induced by infrequent strong two-body colli-
sions. We shall adopt this model for the electron in the conduction band
of a semiconductor, and we shall adopt the further simplification that the
impurity density is so low that the time-independent states are satisfac-
torily described by Bloch waves. As we shall see, a rigorous distinction
between two-body and three-or-more-body collisions is necessary for
dealing with coulombic centres.

The close approach of an electron to an impurity site often implies
large perturbations of the electron's motion which renders the usual
approach based upon first-order time-dependent perturbation theory
rather inaccurate. Consequently it is generally necessary to solve the
time-independent Schrodinger equation and find solutions of the form of
a Bloch plane wave plus a scattered wave, using the concept of the phase
shifts of partial waves (e.g. Schiff 1955). The simpler Born approximation
can only be adopted . for fast electrons. A criterion based on some
characteristic radius rT associated with the impurity centre is that for the
Born approximation to be applicable we must have k2r2»l. When
k2r2y« 1 the method of phase shifts produces rather simple results. For
coulombic centres, for example, rT = a* where a* is the effective Bohr
radius, whereas for neutral centres rT is not likely to be much greater than
the order of a unit cell dimension. Since impurity scattering is usually
strongest at low temperatures where the electrons have low thermal
energy, it is not usually practical to make the Born approximation.

It is useful to have a quantitative idea of the magnitude of the electron
wavevector. In a parabolic band

with Ek in eV. Thus for m*/m = 0-l and Ek=0-01eV we obtain k =
l-620 x l08 m-1 which corresponds to a wavelength of 388 A. For an
impurity core of radius 10 A, (krT)2= 0.026, and so the phase-shift
method is the only alternative for neutral centres and for calculating the
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effects of the core in a charged centre. However, the coulombic compo-
nent of scattering by a charged centre can be described by either the Born
approximation or the phase-shift method.

The general solution of the Schrodinger equation describing positive
energy states in a spherically symmetrical potential is (e.g. Schiff 1955)

where A is a normalizing constant, l the angular momentum quantum
number, F l(kr) is the regular and Gl(kr) the irregular radial wavefunction,
Pl(cos 9) is the Legendre spherical harmonic, and 8l is the phase shift
determined by fitting w(r) to the internal solution in the core r < rT in
both value and slope. This form encompasses both neutral and charged
centres.

The asymptotic form of eqn (4.2) is, for a non-coulombic potential,

whence it follows that the differential cross-section for scattering into the
solid angle defined by the polar angle 9 is given by

Since

where jl(kr) is the regular spherical Bessel function, and since Fl(kr) and
Gl(kr) can be expressed in terms of regular and irregular spherical Bessel
functions, it can be shown that

A coulomb potential presents well-known difficulties since its effect is
felt even in the asymptotic solution, which never becomes a plane wave.
Nor can the incident wave be other than an asymptotic coulomb wave in
form. Given an incident coulomb wave one obtains

where R* is the effective Rydberg energy, whence
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which diverges as 6 -» 0. This problem will be discussed in detail in the
next section.

When the coulomb potential does not continue inwards to r = 0, and
this is the case in a semiconductor where core deviations always occur,
the scattering wave becomes a mixture of coulomb and core scattering,
and one obtains

where fc(8) is the pure coulomb term given in eqn (4.7), and the sum is
the contribution from the core which is eqn (4.6) with an extra phase shift
2nt. In this case the functions Fl(kr) and Gl(kr) in eqn (4.2) are the
regular and irregular coulomb wavefunctions (Abramowitz and Stegun
1972). Equation (4.10) with eqn (4.4) is a useful general form for
describing two-body impurity scattering by either charged or neutral
centres to which we shall have recourse when we consider central-cell
modifications of charged-impurity scattering in Section 4.4.

When the constant-energy surfaces of the band containing the scatter-
ing particle are not spherical the theory of impurity scattering becomes
rather difficult. In what follows we shall generally assume that spherical
energy surfaces prevail. Where the mass is anisotropic it is possible to use
the fact that small-angle scattering dominates charged-impurity scattering
to define diagonalized tensor components of the scattering rate (Ham
1955), and a similar result can be obtained for neutral-impurity scatter-
ing, this time by virtue of its isotropy (Brooks 1955), with the effective
Bohr radius given by the theory of shallow impurity levels (Kohn 1957).

Inter-valley scattering may conceivably occur by a capture-emission
process involving effective-mass impurity states in which an electron is
captured from one valley and emitted into another (Weinreich, Sanders,
and White 1959). Otherwise, the large change in crystal momentum
involved makes direct inter-valley scattering by impurities an extremely
weak process. In what follows we shall always assume that impurity
scattering is intra-valley scattering.

4.2. Charged-impurity scattering

A purely coulombic potential, i.e. one which is inversely proportional to r,
distorts a plane electron wave at all distances, and consequently the
scattering cross-section is effectively infinite. There are four ways to
overcome this problem and these are associated with the following names
and terms: (1) Conwell-Weisskopf, (2) Brooks-Herring, (3) uncertainty
broadening and (4) third-body exclusion.
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4.2.1. Conwell-Weisskopf approximation

The approach adopted by Conwell and Weisskopf (1950) was based on
the classical picture of Rutherford scattering in that the electron was
regarded as a reasonably well-localized wave packet whose path could be
described by a classical orbit with a well-defined impact parameter b.
From classical theory the relation between impact parameter and scatter-
ing angle 0 is (Fig. 4.1)

where k is the electron wavevector and u is defined in eqn (4.8). The
Conwell-Weisskopf approximation consists of limiting the impact
parameter to half the average separation distance of the impurities:

where NI is the impurity concentration. Though this is an arbitrary
prescription, it is in the spirit of regarding scattering as essentially a
two-body process: in this case the electron and the nearest impurity
centre.

As a consequence of eqn (4.12) a minimum angle of scattering is
defined:

The total cross-section is then

FIG. 4.1. Rutherford scattering.
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Substituting o-(0) from eqn (4.9) we obtain, not surprisingly,

Usually, we are interested in momentum and energy relaxation. Since the
mass of the impurity embedded in the lattice greatly exceeds that of the
electron, the collisions are very close to being elastic. There is therefore
no energy relaxation associated with impurity scattering. A momentum
relaxation cross-section can be defined as follows:

where u =Z(R*H/Ek)
1/2.

This cross-section remains finite for small energies of incidence, and
approaches 2nb2

max as k approaches zero. In this limit am = 2o. However,
in most applications b2max(k/u)2»1, and the cross-section decreases
rapidly with increasing energy. Writing om as an explicit function of
electron energy, we obtain

4.2.2. Brooks-Herring approach

Since electrons in the bands of semiconductors, and even in localized
states given sufficient time, may move in response to electric fields,
screening of the coulomb field may occur and this has the effect of causing
the potential experienced by an electron in the band to drop off more
rapidly with r. The simplest form which contains the effect of screening is
the potential

where q0 is the reciprocal screening length (see Appendix). (See Debye
and Huckel (1923) for electrolytes, Mott (1936) for metals, and Dingle
(1955) and Mansfield (1956) for semiconductors.)

The effect of screening on scattering can be calculated simply in the
Born approximation. The scattering rate is given by
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where k and k' are the initial and final state wavevectors and V is the
volume of the cavity. The matrix element is, taking the origin of coordi-
nates at the impurity centre,

FIG. 4.2. Conservation of crystal momentum.

Since conservation of energy ensures that k' = k, we have (Fig. 4.2)

The scattering rate is thus

Replacing k'2 dk'/8n3 by {N(E k ' ) /4n} dEk', where N(Ek,) is the density of
final states per unit energy, we obtain the scattering rate per unit solid
angle as follows:

The relation between rate and cross-section is simply

where v is the group velocity of the electron. Consequently
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(We are assuming that the band is parabolic.) The divergence at 0 = 0 has
been removed by the screening.

The total cross-section is now

and the momentum relaxation cross-section is

or, as a function of energy (Brooks 1951),

Though this formulation solves the problem of infinite cross-sections
in a less arbitrary way than the Conwell-Weisskopf approximation, it
does so not by going to the heart of the matter but by mixing in a
separate and distinct physical process, namely electrical screening. There
is no necessity in a real situation for screening to be present or sufficiently
strong to limit the cross-section to plausible magnitudes. Once screening
is too weak to limit the cross-section to the geometric value determined by
the average separation of impurities (which is the Conwell-Weisskopf
cross-section), it is not possible to consider the scattering process as a
simple two-body collision and the whole approach breaks down.

However, where screening is appreciable the Brooks-Herring result is
useful, and there have been several treatments of the screening problem
which illuminate the screening process and introduce more sophisticated
models (e.g. Takimoto 1959; Hall 1962; Moore 1967; Falicov and
Cuevas 1967; Csavinsky 1976). The Thomas-Fermi potential, on which
the Brooks-Herring treatment is based, is calculated in a self-consistent
way (see Appendix), but its validity in a scattering event relies on the
assumption that the approaching electron does not perturb the field by its
presence. During the scattering event an electron can repel screening
electrons and attract screening holes, and so the amount of screening can
vary throughout the process. Such effects can occur only if the screening
charges can interact rapidly enough. The characteristic response time for
screening is the dielectric relaxation time rf = €p, where e is the permittiv-
ity and p the resistivity. Modifications to the screened potential will occur
only if

where W is the scattering rate. In such a situation screening becomes a
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FIG. 4.3. Screening function. The broken line represents a step-like approximation. (After
Takimoto 1959.)

complicated many-body process involving electron correlation effects and
plasma collective motion. Takimoto (1959) modified the Thomas-Fermi
potential by including correlation, and obtained essentially the same
result as that which he obtained using the many-body treatment of
Nakajima (1954) and that which he obtained using the collective motion
approach of Bohm and Pines (1951, 1952, 1953). For non-degenerate
semiconductors Takimoto showed that q2 should be replaced by qoF(y),
where F(y) < l and is given by (Fig. 4.3):

McIrvine (1960) showed that when F(y) is small (y large) the correspond-
ing potential has spatial oscillations of the form

where

Takimoto's result lies near that of the Brooks-Herring approximation at
low to moderate carrier concentrations (n < 1017 cm-3) but falls between
the predictions of the Brooks-Herring and Conwell-Weisskopf approxi-
mations towards higher concentrations (see also Hall 1962).

Another problem connected with scattering by a screened potential is
the failure of the Born approximation towards low incident energies.
Blatt (1957) performed a numerical phase-shift analysis and showed that
the Born approximation overestimated the cross-section at low energies
and that differences between negatively and positively charged centres
became discernible. We shall pursue the phase-shift approach in Section
4.4.
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obtain, after changing variables to q, x, and o, where (see Fig. 4.2)

and allowing q to range from 0 to °°,

Thus

This expression was first given by Fujita et al. (1976). For comparison, the
momentum relaxation rate in the Conwell-Weisskopf approximation is
vomNI, i.e.

The rate with uncertainty broadening (eqn (4.45)) exceeds that predicted
by the Conwell-Weisskopf formula and differs significantly in its depen-
dence on energy and impurity concentration.

The fact that the uncertainty broadening rate exceeds the Conwell-
Weisskopf rate means that the effective cross-section is so large that, as in
the case of the Brooks-Herring approach with weak screening, the simple
two-body collision process envisaged by the theory breaks down.
Moreover, the inclusion of uncertainty broadening removes the di-
vergence only for momentum relaxation—the scattering rate itself is still
infinite. Thus, this approach, although self-consistent, does not solve the
basic problem associated with the coulomb potential.

4.2.4. Statistical screening

A reconciliation of the Conwell-Weisskopf and Brooks-Herring ap-
proaches can be effected by the simple device of weighting the scattering
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4.2.3. Uncertainty broadening

In quantum mechanics energy levels are never precisely defined. The
transition between two states involving photons, as is well known, takes
place over a range of photon energies given by the natural line width
Lorentzian

where E is the emitted energy, E0 is the energy separation of the two
states, and F is the transition rate. The uncertainty in the energy of the
transition is hT which corresponds to a lifetime of F-1. Since

it is permissible when F is very small to make the replacement

and in fact this is usually done in scattering theory. Fujita, Ko, and Chi
(1976) have made the useful point that uncertainty broadening removes
the divergence in pure coulombic scattering as regards momentum trans-
fer. (That uncertainty broadening also softens the transition between the
emission of phonons being forbidden to being allowed was noted by
Morgan (1963).) Thus an extension of the theory of charged impurity
scattering to include uncertainty broadening removes the necessity for
screening to be present, at any rate for momentum transfer.

The scattering rate is the expression of eqn (4.21) with the energy-
conserving delta function replaced by F(E), namely

For a pure coulombic potential

which still diverges for small-angle scattering. The total momentum
relaxation rate for NI impurity centres per unit volume is

F can be identified with l/Tm, and the term Ek-—Ek in the denominator
can be neglected since the integrand still peaks sharply at k' = k. We
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event with the probability of its being a truly two-body nearest-scatterer
process (Ridley 1977). If a consistent one-centre scattering approximation
is to be adopted, as has been the case in all treatments of this problem in
semiconductors, then it is logically necessary to exclude the possibility of
there being a second scattering centre closer to the particle being scat-
tered. If only the closest impurity scatters and the interaction with all
others averages to zero, such a procedure is called for and entailed by the
demands of consistency.

The weighting factor we require can be obtained by using the idea of a
classical trajectory for which the impact parameter is b (Fig. 4.1). If p
denotes the probability of there being no second scattering centre for
which the impact parameter would lie between b and b + db, then

where Nr is the density of impurities and a is their average separation
distance, and this follows because 2nNIab db is the probability that such
a centre exists. If P(b) is the probability that no scattering centre exists
with an impact parameter less than b, and if P(b+db) is the probability
that no scattering centre exists with an impact parameter less than b + db,
it follows that

Consequently

and since P(0) = 1 it follows that C = 1, and therefore

The impact parameter is related to the differential cross-section o(0) as
follows:

where 0 is the scattering angle, dfl is the element of solid angle, and b = 0
when 0 = n. Thus the probability P(b) of there being no third body can be
related to the two-body cross-section. The latter must then be weighted
by P(b) in order to include in the overall scattering process only two-body
processes. P(b) can be referred to as the third-body exclusion factor or, in
an obvious analogy, the third-body screening factor. This exclusion factor
has to be applied to all two-body scattering processes in which the
bodies are localized. It is applicable to all impurity scattering in principle,
by neutral as well as by charged centres.

Its application to charged-impurity scattering removes the divergence
inherent in coulomb scattering simply by building into the theory the
decreasing probability of there being two-body scattering events with



150 Impurity scattering

scattering angles tending to zero. From the Brooks-Herring expression
for the differential cross-section (eqn (4.28)) and from eqn (4.51) we have

whence the weighted differential cross-section becomes

Even when screening is weak this cross-section no longer diverges at
small angles. Thus the total cross-section is

which tends to (NIa) -1 in the limit of weak screening (q0 -> 0). This is
exactly the Conwell-Weisskopf result provided that we take the average
separation to be given by

(According to Chandresekhar (1943) the average separation should be
taken to be (2nNI)-1/3; see Appendix 4.10.) The Brooks-Herring result
(eqn (4.29)) is obtained in the limit NI-»0 (Fig. 4.4).

The momentum relaxation cross-section is given by

where

Here E1(X) is the exponential integral:

In the limit NI—>0, L(Ek) goes to the Brooks-Herring value:
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In the limit of weak screening

which replaces the logarithm in the Conwell-Weisskopf expression (eqn
(4.18)) and gives the same cross-section in the limit of small electron
energy.

This theory of statistical screening (so-called) successfully reconciles
the two approaches and provides a criterion for deciding when screening
is decisive and when it is not. If we define a dimensionless quantity n
such that

it is evident that the following criteria apply for the use of the two
formulae (Fig. 4.4):

Although statistical screening is useful in making an analytic bridge
between the two most useful formulae, it is only another step forward in
providing a clear conceptual picture of the physical reality of charged-
impurity scattering which is essentially a many-body phenomenon. Quan-
tum transport theories which explicitly treat such many-body phenomena
as coherent scattering from pairs of centres and dressing effects of
impurities have tended to be too opaque to have found general applica-
tion in describing semiconductor phenomena, and they have predicted
corrections whose magnitudes are not much larger than those introduced

FIG. 4.4. Cross-over from Brooks-Herring (B-H) to Conwell-Weisskopf (C-W) scattering
with decreased screening based on third-body exclusion. L(E) is given by eqn (4.57) and n
by eqn (4.61). The parameter defining C-W scattering is nNIa(u/k)2. (After Ridley 1977.)
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by uncertainties in the assessments of impurity concentration and the
strength of accompanying scattering mechanisms and have been conse-
quently regarded with reservation. However, even when such theories
convincingly and clearly describe physically distinguishable elements
beyond the screened two-body interaction, the Conwell-Weisskopf and
Brooks-Herring formulae and their reconciliation through third-body
exclusion continue to provide a useful quantitative conceptual framework
for the experimentalist.

4.3. Neutral-impurity scattering

4.3.1. Hydrogenic models

Non-ionized shallow donors and acceptors at low temperatures provide
an important class of neutral impurities. It is not surprising that scattering
by these centres was the first to be treated theoretically, especially as
these impurities resemble neutral hydrogen in their electronic structure.
Pearson and Bardeen (1949) were the first to point out that the cross-
sections of neutral hydogenic impurities and of ionized centres are
comparable for slow electrons. The theory of slow collisions with neutral
hydrogen was developed by Massey and Moisewitch (1950) and their
results were applied to the analogous situation in semiconductors by
Erginsoy (1950).

Since slow electrons are involved the basic approach has been via the
phase-shift method. For very slow electrons such that k2a*2« 1, where
aH is the effective Bohr radius, only the zero-order phase shift (l = 0) is
appreciable and the scattering is spherically symmetrical. From eqns (4.4)
and (4.6) we have

and since there is spherical symmetry the total cross-section is

where d0 is the l = 0 phase shift. The calculation of d0 is quite difficult
since it must include the effect of the static field of hydrogen and also the
dynamic effects of electron exchange and the polarization of the atom by
the incident electron. All these components were included in the calcula-
tion of Massey and Moisewitch, and Erginsoy pointed out that for
energies such that ka*H < 0.5 their results could be expressed in the simple
analytic form

Even at the upper end of the range of applicable energies (ka* = 0.5) this
cross-section is about ten times the cross-sectional area of the Bohr orbit,
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i.e. typically of the order 10-12 cm2. Note that because of the spherical
nature of the scattering this cross-section is also that for describing
momentum transfer.

Erginsoy's formula has always had rivals. Mattis and Sinha (1970),
applied the results of an elaborate calculation for hydrogen and found a
cross-section that was a factor of 2 smaller than Erginsoy's. However,

FIG. 4.5. (a) Relaxation time versus energy for neutral-impurity scattering based on
hydrogenic models: solid curve, McGill and Baron 1975; broken line, Erginsoy 1950. Time
is in units of 8ireRgm*/NIhe2. (b) Mobility versus temperature: solid curve, McGill and
Baron 1975; broken line, Erginsoy 1950; chain line, Sclar 1956. (c) Ratio of Hall to drift

mobility versus temperature. (After McGill and Baron 1975.)
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quite different dependences on energy were predicted by Anselm (1953)
and Sclar (1956) who based their approaches on scattering by a spheri-
cally symmetrical square-well potential. Sclar's approach illuminated the
role of the weakly bound negative-ion state, and we shall discuss this in
Section 4.3.2. More recently, McGill and Baron (1975), basing their
approach on the results of the polarized-orbital calculation of Temkin and
Lamkin (1961), obtained numerical results more akin to those predicted
by Sclar than by Erginsoy (Fig. 4.5).

Evidently the problem of scattering by hydrogenic impurities is still an
open one, though a measure of agreement as to magnitude does exist
within a factor of 2 or so between the various models for energies
between 0.01 and 1.00 times the ionization energy.

4.3.2. Square-well models

Scattering from spherically symmetrical square-well potentials can be
treated analytically, and the results ought to be applicable to deep-level
impurities as well as to core scattering by charged impurities. Their-
application to scattering by neutral hydrogenic impurities has already
been mentioned. Thus the square-well model for neutral impurity scatter-
ing offers a useful description which illuminates a great many practical
situations (El-Ghanem and Ridley, 1980).

We shall assume that only l = 0 scattering is important and compute the
phase shift of the J = 0 wave from the internal ( 0 « r < r T ) and external
( r T « r ) wavefunctions w i n t ( r ) and wcxt.(r). For a square-well these
wavefunctions are as follows:

where j0(p) is the spherical Bessel function and n0(p) is the spherical
Neumann function, namely

and a is given by

where m* is the effective mass within the square well and V0 is the depth
of the well. Fitting the slope and the value at r = rT leads to
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In the limit of small energies such that cot krT=(krT) -1 we obtain

All the characteristics of the potential are contained in the terms a and
rT. Phase shifts for partial waves with angular momentum (l= 0) are much
smaller when k2r2|« 1 except in those cases where resonances exist. We
shall assume in what follows that resonances associated with l > 0 do not
exist and continue to explore only scattering with zero angular
momentum.

Three principal cases can be identified. The first is defined by the
condition

whence (since k2r2« 1)

and

This case corresponds to scattering by a sphere, and is often referred to as
hard-sphere scattering. Since rT for neutral centres will be of order of the
unit cell dimension, i.e. two or three angstroms, the cross-section will not
much exceed 10-14 cm2, which is small compared with other electron
scattering cross-sections. Consequently, there exists a class of neutral
impurities, for which the condition of eqn (4.71) is satisfied, which do not
scatter electrons appreciably.

The second case is the special one defined by

which gives a zero cross-section. This corresponds to the Ramsauer-
Townsend effect for slow electrons and defines a second class of neutral
impurities which do not scatter electrons appreciably.

The third case is one in which

whence

The cross-section can be particularly large in this circumstance. This case
is referred to as resonant scattering because it depends upon
arT cot(arT)»0 which is the condition for the appearance of a bound
state. The neutral impurity potential is such that it can actually bind an
electron to form a netatively charged ion, or it can nearly do so. The first
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alternative forms the basis of the Sclar formula, and the second forms the
basis of resonant scattering analogous to Breit-Wigner scattering in
nuclear physics.

4.3.3. Sclar's formula

Let us suppose that the square-well potential of the neutral impurity can
bind an electron into a state ET below the conduction band. This means
that (Schiff 1955)

where

If ET is assumed to be very small compared with the depth of the well, we
can replace a in eqn (4.76) by aT without much error. Moreover, if ET is
small, it is plausible to adopt an effective-mass approximation and replace
m* by the conduction band mass. We then arrive at Sclar's result:

Sclar applied this to the hydrogenic centre and took ET as the observed
binding energy for a second electron on hydrogen reduced by a factor
(m*/m)(e/e0)-2 (the factor scaling the Rydberg energy):

which is approximately 5 x 10-4 eV in germanium and 2 x 10-3 eV in
silicon. This formula gives a cross-section similar in magnitude to that of
Erginsoy (1950) but different in energy dependence, the latter being more
akin to the dependence found by McGill and Baron (1975) (Fig. 4.5).

If we apply Sclar's formula (eqn (4.80)) to any neutral impurity which
can capture an electron, it is clear that small scattering cross-sections will
be obtained unless ET is small. Thus neutral impurities which can bind an
electron into a deep level will not act as strong scattering centres.

4.3.4. Resonance scattering

Returning to eqn (4.76), we see that if the potential is such that at an

energy Ek = Er arrT cot(arrT) = 0 (4.82)

we obtain a resonant form of scattering. This will occur when the impurity
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potential is just not strong enough to bind an electron. Let us put
&E = Ek—Er and expand arTcot(arT) about the resonance:

Taking arrT = n/2 at resonance, we obtain

whence

where

This has the form of a resonance with a width F which is energy
dependent. It is proportional to the density of states per unit energy in a
parabolic band, and if F2 = E0Ek, E0 can be regarded as a characteristic
energy for the scattering process.

Resonance scattering will be readily detectable only if the width is not
so small that it spans very little of the thermal distribution of electrons in
the band, for then only a few electrons will have the right energy (Fig.
4.6). Even so, its effect is likely to be evident in transport properties,
mainly in the Hall factor because of its comparatively rapid energy
dependence.

In non-degenerate material the resonance energy must lie no more
than a few tens of millielectronvolts above the band edge for it to
influence thermal electrons. The resonant level in a multi-valley conduc-
tion band structure may lie lower than one or more sets of minima. For
example, a resonant level 10 meV above the bottom of the conduction
band in GaAs would lie well below both the L and X sets of minima. In
such a case the impurity potential relative to the upper valleys may be
deep enough to produce metastable bound states associated with these
upper minima at energies which overlap the lower F band. Such states
will act as resonant scattering states. (The simplest examples of these are
effective-mass states characteristic of particular minima, the higher lying
of which are degenerate with band states though such states are not
usually associated with neutral centres). Resonant scattering states can
thus arise from the many-valley band structure of semiconductors as well
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FIG. 4.6. Resonance scattering of electrons in n-type GaAs: (a) cross-section ac for Breit-
Wigner resonance versus energy and its dependence on the width E0 of the resonant level
(Er = 5 meV); (b) mobility times NT versus temperature and its dependence on E0 (Er =
5 meV); (c) Hall scattering factor rH versus temperature T and its dependence on E0

(Er = 5 meV) (After El-Ghanem and Ridley 1980.)

as from properties of the impurity potential, and of course they may be
associated with partial waves with l greater than zero. However, whatever
their origin, they must lie close to the band edge in non-degenerate
material to be effective scatterers. Although high-lying resonant states
may influence hot electrons, the effect is not likely to be great because the
typically large breadth of the electron distribution in the band will
provide few carriers at the resonant energy.

In that Sclar's solution can be regarded as an approximate zero-energy
resonance, we can conclude that neutral-impurity scattering is important
in non-degenerate material only for resonance or quasi-resonance scatter-
ing, and then only if the impurity potential provides a resonant level ET

which satisfies the rough criterion
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the lower limit being an order of magnitude deeper than the negative
hydrogen ion centre (binding energy about 0.06R*) and the upper limit
being roughly the average thermal energy of electrons at room tempera-
ture.

4.3.5. Statistical screening

Viewing neutral-impurity scattering as a strictly two-body process
means multiplying by the statistical screening factor P(b) of eqn (4.50).
Since a(6) for neutral-impurity scattering is independent of the angle,
eqn (4.51) yields

whence

The two-body differential cross-section is now angle dependent with the
consequence that the total cross-section now differs from the momentum
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transfer cross-section. Thus

where

and for the momentum relaxation cross-section

For low concentrations and small intrinsic differential cross-sections we
have

whereas for high concentrations and large intrinsic differential cross-
sections we have

and a=NI-1/3. The cross-sections of eqn (4.95) are purely geometric
limits independent of the scattering process.
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FIG. 4.7. Neutral impurity scattering: uNi versus temperature T and its dependence on the
neutral impurity concentration NI and the level depth ET. Broken curve, Sclar theory
without third-body screening; solid curve, Sclar theory with third-body screening (NI =
1017cm-3); chain line, Erginsoy theory with third-body screening (NI values of 1017, 1016,

and 1015 cm-3) (After El-Ghanem and Ridley 1980.)

The effect of the third-body exclusion in n-type GaAs is depicted in
Fig. 4.7 for both the Sclar and the Erginsoy mobilities. The effect
becomes significant at concentrations of 1016 cm-3 and above for neutral
hydrogenic models.

4.4. Central-cell contribution to charged-impurity scattering

Neither the screened nor the pure coulomb potential surrounding a
charged impurity extends to the core. The permittivity, which is deter-
mined by the polarization of the surrounding lattice, does not remain
constant with radius, and electronegativity and size differences between
the host atoms and the impurity lead to short-range deviations in poten-
tial which can be very marked. Core, or central-cell, effects of this sort
are responsible for chemical shifts in the ground-state energies of shallow
donors and acceptors, and for the existence of deep levels (Section 2.9).
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FIG. 4.8. The model potential.

They also introduce additional features into the scattering of electrons by
charged impurities.

The simplest model (Fig. 4.8) is to assume the existence of a square-
well at 0 < r < rT which adds to the scattering of a Conwell-Weisskopf
impurity. Thus in eqn (4.4) we take

where fc(0) is the coulomb term (eqn (4.7)) and fN(6) is the 'neutral' term
arising from the square-well. Retaining only the l = 0 contribution we
obtain for the differential cross-section
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The first term is the pure coulomb result (eqn (4.9)), the second is the
result for a short-range spherically symmetric potential, and the third is
an interference term. The momentum transfer cross-section derived from
this expression has been given by El-Ghanem and Ridley (1980).

The phase shift for the l = 0 wave can, as usual, be obtained by
matching the internal and external solutions at r = rT. The internal
solution is

where J0(ar) is the zero-order spherical Bessel function. The external
solution is

where F0(kr) is the regular and G0(kr) is the irregular l = 0 coulomb
wave. When differentiation with respect to r is denoted with a prime we
obtain

In the case of a small radius core such that 2 |u| » krT and krT—» 0

where the coulomb factor C0 is

The condition 2 |u|» krT is also a condition on the energy of the incident
electron, namely for a parabolic band

where R*H is the effective Rydberg energy and aH is the effective Bohr
radius. Since rT« a* the condition holds for Ek < R*H. The phase shift is
given by

As in the neutral-impurity case, three specially simple cases can be
recognized:
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Resonance occurs when arT cot arT = 0.
These expressions are just generalizations of the neutral-impurity re-

sults which are recovered by putting u = 0, whence C0 = 1. As for neutral
impurities, core scattering is important only in the third case where a
bound state or a nearly bound state exists near the band edge.

Equations (4.97) and 4.107), which describe the effective central-cell
contribution, show that negatively charged centres scatter less strongly
than positively charged centres. The latter enhance the electron charge
density at r = 0 by the coulomb factor C0, which for positive centres and
low energies is approximately equal to 2nu, and this allows more core
scattering to take place. Negatively charged centres repel the incoming
electron and diminish its charge density at r = 0 by the coulomb factor,
which is now approximately — 2nu exp(2nu,), i.e. very small; thus little
core scattering is possible. If core scattering is weak, i.e. sin do = 0, then
the distinction between opposite charges is correspondingly weak. If core
scattering is strong, then it will enhance the scattering from positive
centres but only weakly affect scattering from negative centres. Nega-
tively charged centres will therefore tend to scatter as pure (or screened)
coulombic without any central-cell correction.

Positively charged centres, however, always possess a bound state near
the band edge, and therefore the central-cell contribution is potentially
important. Provided that the bound state is not too deep it is possible to
model the resonant case by using a quantum-defect wavefunction for the
localized state:

where RH is the effective Rydberg energy, a*H is the effective Bohr radius
and A is a normalizing constant. Following the argument which led to the
Sclar formula, we can write the condition for a bound state to be

where V0 is the depth of the well. Equation (4.109) reduced to eqn (4.77)
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for the neutral case when u = 0. When rT = 0 there is no central well and
the solution of eqn (4.109) is uT = 1, i.e. ET = Z2R*H, which is the pure
coulombic solution. Provided (Ek+Er)/V0« 1, a in eqn (4.104) can be
replaced by aT, whence the phase shift for positively charged centres is
given by

Since C0krT is small by hypothesis, a resonance occurs when ur = rT/va*H

FIG. 4.9. Charged-impurity scattering of electrons by deep-level impurities in GaAs. (a)
Scattering cross-section oc(E) versus energy E and its dependence on the charge at the
centre for v = 0.l and ro/a* = 0.05: broken curves, repulsive centre, Z = —1, -2, -3; solid
curves, attractive centre, Z = +l, +2, +3. oc for Z = 0 is also shown, (b) Mobility times N,
versus temperature and its dependence on the charge Z. (c) Hall scattering factor rH versus
temperature and its dependence on the charge at the centre: broken curves, repulsive
centre, Z = -1, -2, -3; solid curves, attractive centre, Z = +1, +2, +3. (After El-Ghanem

and Ridley 1980.)
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or equivalently

This condition corresponds to a bound-state energy exactly equal to the
effective Rydberg energy of a ground state of Bohr radius rT instead of
a*H. Typically a*H/rT = 10, so a strong central-cell contribution might be
expected for single positively charged centres which can bind an electron
into a state some 10J?H from the band edge. As far as the author is aware
such an effect has not been observed to date.

The phase shift in eqn (4.111) reduces to Sclar's result (eqn (4.79)) for
neutral centres (C0=l, uT = 0) with narrow wells (rT/va*H « 1). The
momentum relaxation cross-section for a deep-level charged impurity is
shown in Fig. 4.9(a), and the corresponding mobility and Hall factor are
shown in Figs. 4.9(b) and 4.9(c). In the case of negatively charged centres
there is little contribution from the core. The cross-section approaches
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the limiting value set by the cut-off radius a at low energies, whereas for
positively charged centres it continues to rise because of enhanced core
scattering. The latter effect suggests that third-body exclusion ought to be
taken into account at low energies in the case of positively charged
impurities, and this would diminish the difference between the two
polarities. Towards high energies the effect of core scattering is evident,
manifesting itself in the disparity between cross-sections for opposite
polarity. In this example the disparity is of moderate proportions. Large
differences are expected only for near-resonant core scattering.

Equation (4.111) and eqn (4.97) are useful model expressions which
describe in simple analytic form all the principal features of charged- and
neutral-impurity scattering. A more sophisticated approach to central-cell
corrections using Green's functions has been made by Ralph, Simpson,
and Elliott (1975) and applied to the case of silicon and germanium at
300 K (Fig. 4.10).
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FIG. 4.10. Calculated drift mobility of electrons in (a) silicon and (b) germanium versus tempera-
ture for an impurity density of 1018 cm-3. The upper solid curve C is for the coulomb potential;
the other curves are for the following donor species: , bismuth; , phosphorus; ,

arsenic; — • •-, antimony. (After Ralph et al. 1975.)

4.5. Dipole scattering

Oppositely charged impurities in compensated (or just plainly impure)
semiconductors may associate themselves into pairs and these will scatter
electrons like dipoles. In practice one may expect there to be a distribu-
tion of dipole moments depending on the separation of the atoms and the
charges they bear. If the electric dipole moment is M then the scattering
potential is
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In the Born approximation, the matrix element is

Conserving energy ensures that k' = k and |k'-k|2 = 4k2 sin2(0/2), where
9 is the angle through which the electron is scattered. For a random
distribution of dipole orientation we can make the replacement

The scattering rate is then (eqn (4.21))
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FIG. 4.11. Dipole scattering contribution to the electron drift mobility in compensated
germanium: curves A, acoustic phonon plus point charge scattering; curves B, with dipole

scattering. Compensation ratio (ND-NA)/(ND + NA) = 0.01. (After Stratton 1962.)

When k'2dk'/8n3 is replaced by N(Ek') dEk./4n, where N(Ek.) is the
density of final states, we obtain the scattering rate for a single dipole per
unit solid angle:

corresponding to a differential cross-section

which diverges towards small scattering angles. In this expression u2 =
R*H/Ek and M = er0. The ratio of this cross-section to that for coulombic
scattering is

Since r0 is of order of the nearest-neighbour distance, this ratio is very
small in most situations.

The divergence towards small angles disappears when screening and
third-body exclusion are taken into account. The latter has not been
treated. Screening was taken into account by Stratton (1962) who used a
screened potential of the form

where q0 is the reciprocal Debye length. Fortunately, the momentum
relaxation cross-section does not diverge, and so we shall limit further
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discussion of this scattering mechanism to quoting that result. Thus

Stratum's calculation of mobility in compensated germanium is shown in
Fig. 4.11.

4.6. Electron-hole scattering

A scattering mechanism closely related in essence to charged-impurity
scattering is that between an electron in the conduction band and a hole
in the valence band. Electron-hole scattering can be a significant factor in
determining the resistivity of narrow-gap intrinsic semiconductors, such as
InSb at room temperature.

We can approximate the interaction by a screened coulombic force
between two point particles and obtain the rate in the Born approxima-
tion as in the Brooks-Herring approach (eqns (4.20) and (4.21)). The
matrix element which determines the rate of transition when particle 1,
wavevector k1, collides with particle 2, wavevector k2, and ends the
collision with wavevector k1 with particle 2 having a wavevector k2 (Fig.
4.12) is

FIG. 4.12. Collision between two particles.
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where I(k1,k1), I(k2, k2) are the overlap integrals over the unit cell
involving the cell-periodic parts of the Bloch functions:

Both normal and umklapp processes are theoretically possible, but for
semiconductors only the former are normally of interest. For scattering
events in which all wavevectors lie close to the band edges the integrals in
eqn (4.124) are usually assumed to be unity. In general, they are less than
unity.

The interaction depends only on the separation distance of the parti-
cles, so it is convenient to transform to a frame of reference in which the
centre of mass of the two particles is at rest. The transformation (non-
relativistic) to the centre-of-mass frame is effected by converting k to K
where

whence

The corresponding transformation of spatial coordinates is

whence

The integral in eqn (4.123) splits into a product of two integrals, one over
Fcm and the other over r12. The former gives unity and entails the
conservation of momentum, and the latter is

The problem is exactly analogous to the collision of a particle of mass m*,
equal to the reduced mass of the two particles, with a fixed centre.
Conservation of energy and momentum in normal processes entails that
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where 9 is the angle between K12 and K12. The relative momentum
relaxation cross-section analogous to eqn (4.31) is therefore, when the
overlap integrals are unity,

All the discussion of Section 4.2 related to small-angle scattering,
third-body exclusion, etc. in the case of charged-impurity scattering
applies to electron-hole scattering. However, if electron-hole scattering
cannot be neglected in a given situation it is likely that electrical screening
by free carriers cannot be neglected either, and so eqn (4.131) is a
reasonably good formula.

The step from relative to absolute momentum relaxation is usually
facilitated in practice by the disparity between electron and hole masses.
In many cases the hole mass exceeds the electron mass significantly, and
consequently the hole can be considered to be at rest. Equation (4.131)
then describes the absolute momentum relaxation cross-section for elec-
trons with m* = m* and E12 = Ek, where Ek is the electron energy, as in
the Brooks-Herring formula (Ehrenreich 1957; see Fig. 3.24). If
m*h > m*e the conversion from the centre-of-mass frame to the laboratory
frame has to be carried out in detail (Schiff 1955; Chapman and Cowling
1958). In most cases, fortunately, m*h » m*e and the problem of electron-
hole scattering reduces to that for charged-impurity scattering.

4.7. Electron-electron scattering

Electrons and holes are distinguishable particles. The matrix element in
eqn (4.129), which we label M12, implies that particle 1 and particle 2 are
distinguishable. In electron-electron collisions the particles are identical
and no observable effect would occur if the particle emerging with
wavevector k1 were exchanged for one emerging with k2. In this case the
matrix element would be M21, identical to M12 except that K12 would be
replaced by K21 = (k2-k1)/2, whence for normal processes (umklapp pro-
cesses are usually expected to make insignificant contributions)

If the two electrons have identical spins the two processes, which occur
with amplitudes M12 and M21, interfere and the squared matrix element is
|M12—M21|p, whereas if the spins are of opposite sign they do not
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interfere and the squared matrix element is M212 + M212. The net squared
matrix element describing the collision rate of an electron is therefore

The factor 1/2 arises because in half of the collisions the spins are aligned
and in the other half they are opposed. The minus sign arises because the
total electron wavefunction changes sign on the interchange of two
particles.

Following the argument in the Brooks-Herring approach (Section
4.2.2) we can obtain the net differential cross-section in the centre-of-
mass frame (taking the overlap integrals I(k,k') to be unity):

where 0 is the angle between K12 and K12, K12 = (k1-k2)/2, and E12 =
h2K212/2m*(m* = m*/2 in this case). This is the Mott formula for proton-
proton scattering suitably modified by screening (see Messiah 1966, p.
608).

The total cross-section derived from eqn (4.135) is

Since we have integrated over all directions, this expression is also the
total cross-section in the laboratory frame.

A relative momentum relaxation rate can be calculated by multiplying
the first term in eqn (4.135) by 1-cos 0, the second by 1+cos 0, and the
third by {(1+cos 0)(l-cos 0)}1/2, and one obtains

This rate measures the rapidity with which relative momentum attenuates
when there is one electron in the cavity of volume V. The total rate is
obtained by summing over all electrons, but this requires a knowledge of
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the distribution of electrons over the initial states. In the case of a fast
incident electron such that K12 = k1/2 the energy E12 associated with the
relative motion is insensitive to the electron distribution, and hence we
can simply replace 1/V in eqn (4.137) by the electron density n.
Moreover, for a stationary target E12 = Ek/2, where Ek is the energy of
the incident electron. Thus for a fast electron eqn (4.137) becomes

where L(Ek, q0) stands for the square bracket in eqn (4.137).
The total momentum is of course conserved, and so electron-electron

collisions cannot relax the momentum gained from external fields or
incident fast particles. However, they do randomize momentum and
attempt to eliminate relative motion at a rate given approximately by eqn
(4.138).

The energy relaxation rate is most easily obtained in the case where
particle 2 is stationary and the masses of the two particles are equal. In
such a case it is easy to show that the angle between k1 and k2 is a right
angle and

The energy lost by particle 1 is h2k2
2/2m* associated with M212 and

h2k12/2m* associated with M2. The energy relaxation rate is therefore
obtained from eqn (4.135) by using exactly the same weighting factors as
were used to calculate the relative momentum relaxation rate. The result
is, for n electrons per unit volume,

which is the result due to Pines (1953).
The physically significant rate for electron-electron scattering is there-

fore that for relaxing relative momentum. For fast incident electrons it
can be calculated from eqn (4.138). If we take L(Ek, q0) as unity and
Ek = 0.1 eV we obtain, roughly,

with n in units of cm-3. Thus for rm to be a picosecond or less, and
therefore competing equally with typical scattering times, the carrier
density must be of order 1017 cm3 or more. Typical mean free paths in
metals are in the range 400-1000 A corresponding to scattering times of
order 10-13 s. In non-degenerate semiconductors electron-electron scat-
tering rates are usually negligible.
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Equation (4.138) is based upon the Born approximation for a fast
incident electron. As such it overestimates the electron-electron scatter-
ing rate in populations at thermal equilibrium by a factor of about 4, as
compared with the rate derived numerically on the basis of a phase-shift
analysis (Abrahams 1954). Taking Ek = 0.l eV rather than |kBT to
obtain the estimate of eqn (4.141) was an attempt to compensate for this
effect.

4.8. Mobilities

The phenomenological quantity most closely associated with scattering
rate is the drift mobility, which is obtained from the momentum relaxa-
tion time by averaging over the electron distribution as discussed in

TABLE 4.1
Momentum relaxation times for impurity scattering in non-degenerate

material

Scattering mechanism Momentum relaxation time

Charged impurity scattering

(1) Conwell-Weisskopf

(2) Brooks-Herring

(3) Takimoto

(4) Uncertainty broadening

(5) Third-body exclusion

(6) Central-cell contribution

Neutral impurity scattering

(1) Erginsoy

(2) Sclar

(3) Resonance

(4) Third-body exclusion

Dipole scattering
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Chapter 3, Section 3.8. The momentum relaxation tunes are summarized
in Table 4.1. Many of these contain logarithmic or more complicated
dependences on energy and numerical methods are necessary to evaluate
the corresponding mobilities. All refer to non-degenerate semiconduc-
tors. In degenerate material, as well as the necessity for using Fermi-
Dirac statistics, there are considerable complications associated with
electrical screening and other many-body effects which are beyond the
scope of this book. Generally speaking, in non-degenerate material
agreement between theory and experimentally determined mobility is not
as convincing as it is for lattice scattering. This is partly because drift
mobility is not easy to measure, and many investigations have depended
on a measurement of the Hall mobility which is greater than the drift
mobility by the well-known scattering factor rH. El-Ghanem and Ridley
(1980) have recently shown that in the presence of a small amount of
resonance scattering rH can be surprisingly high (Fig. 4.13), and this effect has
not been considered in previous work. Other complications such as the

FIG. 4.13. The Hall scattering factor rH versus temperature for mixed scattering between
Erginsoy and Breit-Wigner types of resonance and its dependence on the width E0 of the

resonance level in n-type GaAs: Nr = 9 x l016 cm-3; Nn = 3 x l015 cm-3; Er= 0.01 eV.
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non-uniform distribution of impurities, impurity pairing and complexing,
and the effects of band-tailing at low temperatures no doubt also
account for the difficulty of achieving the sort of agreement we have in
the case of pure lattice scattering.

Figure 4.14, which shows the variation of the Hall mobility with the
reciprocal Hall constant for silicon, is a typical representation of the
variation of mobility with impurity concentration in semiconductors.
Equally typical, this time of the form of variation of mobility with
temperature, are the curves of Fig. 4.15 which show the electron drift
mobility in GaAs nominally containing oxygen.

FIG. 4.14. The Hall mobility of electrons at 300 K versus the reciprocal of the Hall coefficient
for uncompensated silicon. The upper curve represents the combined effects of phonon and
coulomb scattering in anisotropic bands. The lower curve includes the central cell scattering
calculated for phosphorus. The experimental points and curves are as follows: D, arsenic
(Morin and Maita 1954); A, phosphorus (Brinson and Dunstan 1970); A, antimony
(Brinson and Dunstan 1970); A, arsenic (Brinson and Dunstan 1970); D, phosphorus
(Granacher and Czaja 1967); V, antimony (Wolfstirn 1960); V, arsenic (Wolfstirn 1960); •,
phosphorus (B. J. Goldsmith and F. Berz, unpublished); broken curve, antimony (Furukawa

1961); chain curve, arsenic (Furukawa 1961). (After Ralph et al. 1975.)
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FIG. 4.15. Electron drift mobility versus temperature in n-type GaAs: O: •, dark; O, low;
A, medium; D, high background illumination with silicon-filtered light. (After Arikan,

Hatch, and Ridley 1980.)

4.9. Appendix: Debye screening length

At thermodynamic equilibrium the density of electrons occupying an
energy level Ei when the solid is neutral is given by

where Ni is the density of levels and f(Ei) is the occupation probability.
When an electrical potential V(r) is present the density of occupied levels
changes to

where the symbol e, as usual, contains the sign of the charge. As a result
there exists a space charge density

Poisson's equation describes the spatial variation of potential

As long as eV(r) is small compared with Ei, the right-hand side can be



180 Impurity scattering

approximated by a truncated Taylor series and we obtain

We can now define a reciprocal screening length q0 as follows:

If the occupation probability of a level with degeneracy gi is assumed to
be

where F is the Fermi level, we can put

whence

where ni and pi are the densities of filled and empty levels respectively in
neutral material. Note that only partially filled levels contribute and that
the sum includes localized states as well as band states.

In the case of spherical symmetry eqn (4.147) with eqn (4.148) be-
comes

the solution of which for V(r) —» 0, r —> °° and V(r) -> Ze2/4ner, r —> 0 is

Two examples of screening are (1) by free electrons in the conduction
band, present in non-degenerate density n («NC), when

and (2) by a combination of free electrons obeying non-degenerate
statistics and electrons trapped in a compensated donor level, denisty Np,
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when

where NA is the density of acceptors.

4.10. Appendix: Average separation of impurities

Let the probability of there being a nearest neighbour situated between
radii r and r + dr be Q(r) dr. Then if P(r) is the probability of there
being no neighbour closer than r it follows that

where N is the average density of impurities. The quantities Q(r) and
P(r) are also related, through their definitions, as follows

Substituting P(r) from eqn (4.156) and differentiating, we obtain

from which, after integration,

(with Q(r) = 0 when r = 0 as boundary condition). The mean distance
apart is then

The numerical factor multiplying N -1/3 is 0.55396, which is close to
(2n)-1/3 (=0.54193), so for convenience we take

4.11. Appendix: Alloy scattering

The band structure of an alloy of the form AxB1_xC is described using
the virtual-crystal approximation, in which an average of the component
pseudo-potentials is assumed, corresponding to a uniform distribution of
A and B over the cation lattice sites. Fluctuations from uniformity are
then seen to give rise to local changes in the potential experienced on
average by the electron, and hence to scattering. This perturbing
potential can be written:
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The Fourier amplitude is taken to be the root mean square deviation
from the average energy and the same for all q. If Va and Vb are the
potentials associated with cations A and B respectively the average is

In a region where the fractional occupancy of A is x' the deviation is

and the rms deviation is standard for a binomial distribution, namely:

where Nc is the number of cation sites, equal to the number of unit cells.
the matrix element for scattering is then

and the scattering rate becomes

whre N(E) is the density of states for a given spin:

and Q0 is the unit cell volume. The collisions are elastic.
The interaction potential Va — Vb has been variously interpreted as the

difference of psuedo potentials, the difference of band edge energies in
the two component binary compounds, and the difference of electron
affinities. However, elastic strain will also add a deformation-potential
component, so it is probably prudent to regard Va — Vb as a quantity to be
determined empirically, though this is not easy to do.

Alloy scattering can also be treated as scattering from spherically
symmetrical islands of deviant potential. If the spheres are regarded as
'hard' then the energy dependence is entirely determined by the velocity
of the particle, which gives the same dependence as eqns (4.167) and
(4.168).
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5. Radiative transitions

5.1. Transition rate

The disturbance of an electron by an electromagnetic field with a
Lorentz-gauge vector potential A and a scalar potential equal to zero can
usually be treated as a small perturbation which induces transitions
between unperturbed states at a rate given by first-order perturbation
theory:

where (see eqn (2.72))

The relation between the vector potential and the photon number nv in
a monochromatic wave can be derived as follows. We now take

where a is a unit vector parallel to A and note that A is related to the
electric field S and magnetic field ff as follows:

where u is the permeability. We can now derive the Poynting vector S
thus:

The time-average vector is therefore

with wv = vv. qv where vv is the phase velocity.
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Provided that we have a physical situation in which there is little
absorption of energy and the group velocity and phase velocity of the
wave can be identified with each other, which is the usual case, we can
express the energy density (Ev) of the radiation as follows:

In terms of photons the energy density is just nvhwv/V, where V is the
volume of the crystal and nv is the number of photons. Furthermore, the
magnitude of the velocity is (uev)-1/2 where ev is the optical permittivity.
Consequently we can write

which is the desired relationship.
When we rewrite eqn (5.3) as

and investigate the time dependence of the transition probability in the
usual way, we find that the second term in eqn (5.10) induces stimulated
emission of photons and only the first term induces absorption. Thus for
absorption

and for emission, including spontaneous emission,

where the time dependence is considered to have been absorbed in the
delta function of eqn (5.1) which expresses conservation of energy.

It is well known that a transition rate can be defined only if there is a
spread of states in energy or, where the transition is between discrete
states, there is a finite bandwidth of incident radiation. Usually in
semiconductors we are interested in transitions to and from conduction
bands, and we shall assume that in the case of absorption a spread of final
states always exist (Fig. 5.1).

It is usually possible to ignore the momentum associated with the
photon since hqv is small for visible and infrared light. As a consequence
the delta function conserving energy can be regarded as independent of
direction, and the sum over final states, regarding these as band states of
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FIG. 5.1. Scheme of radiative transitions: (a) absorption; (b) emission.

given spin with density between E and E+dE given by N(E), can be
replaced by an integral:

where V is the volume of the periodic crystal. By expressing the rate in
terms of the fine-structure constant a, the Rydberg energy RH and the
Bohr radius aH+ we obtain for the photoionization rate,

where, taking qv = 0,

In the reverse transition an electron in a definite band state is radia-
tively captured by a definite final state (Fig. 5.1). In this case a spread of
final states does not exist and we must sum over a bandwidth of emitted
radiation. If the density of photon states lying between hwv and hwv +
d(hwv) is pv(hwv), then

By counting the modes of one type of polarization in our periodic crystal
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cavity we obtain

so that

where vv is the velocity of light in the crystal. Unless light of high
intensity is present it is usually permissible to take nv« 1 in eqn (5.16).

Where absorption of a photon causes a transition between two well-
defined states, the rate is obtained by summing over the energy spectrum
of the incident radiation. The number of radiation modes of a given
polarization with wavevectors in a solid angle dQ and with magnitudes
between qv and qv + dqv is

and so

where pv(hwv) J nv dQ/4n is just the spectral density of photons in the
beam with frequency w>v = (Ef - Ei)/h.

5.1.1. Local field correction

In deriving the foregoing rates in terms of photon number, we have tacitly
assumed that it is directly related to the incident intensity of the beam
through eqns (5.7) and (5.9). This assumption will be valid provided that
the centre absorbing or emitting photons experiences the electromagnetic
wave present in the rest of the cavity. However, this will not be so if the
centre scatters light. Scattering will occur whenever the polarizability at
and near the centre differs from the rest of the medium, and so in general
the field experienced in the absorption and emission process differs from
the average value. This effect is usually introduced into all the above
expressions by means of a rate multiplication factor (&eff/&0)

2 where eeff is
the effective electric field at the centre and e0 is the average field. We can
expect this factor to be near unity for all transitions in which both the
initial and final electronic states are extended appreciably over many unit
cells. In contrast, for tightly bound electrons the ratio may be appreciably
greater than unity. In the simple case of a centre entirely within a
spherical cavity the local field is given by the Lorentz relationship (see
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Dexter 1958):

where nr is the refractive index. In semiconductors this ratio would be
about 5 and hence the local field correction would amount to a factor of
25! More realistically, a weighting should be introduced to reflect the
extent of the initial electron state sampling the average field. For exam-
ple, if VT is the volume of the state and VA is the volume of an atom in
the lattice, then one can take

to be a plausible ratio. Even for deep-level states the ratio VA/VT is likely
to be no greater than 10-2, and hence (geff/g0)

2 < 2.
In what follows we shall assume the ratio to be unity and not include it

explicitly in the formulae.

5.1.2. Photon drag

In all optical transitions the small momentum of the photon is given up to
or contributed by the charged particle which interacts with the light. As
we have mentioned this can usually be ignored in calculations, but where
mobile carriers are involved the momentum of the photon may manifest
itself in charge motion which is detectable by the production of either an
electric current or a voltage. This effect is known as photon drag, and it
has received considerable attention in connection with the fast detection
of laser light (see Gibson and Kimmitt 1980). The size and sign of the
effect depends upon the band structure and on the details of conduction
processes and their energy dependence. Only in the simplest cases is it
found that photon drag behaves classically as the result of radiation
pressure. One important conclusion which has emerged from the study of
photon drag is that the momentum of a photon in a dielectric medium of
refractive index nr is indeed the Minkowski (1910) expression

where q0 is the wavevector in free space and qv is the wavevector in the
dielectric. The wavevector conservation law which appears in optical
processes involving electrons in bands is thus equivalent to momentum
conservation.

5.2. Photo-ionization and radiative capture cross-sections

Transition rates involving photons depend upon ambient light intensity.
To obtain a measure of the radiative processes which is independent of
light intensity it is convenient to define a cross-section for the process.
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Let us suppose that in our volume V there is a density of centres nT

which can obsorb a photon and lose an electron to a band, and that each
centre presents an effective area rv, which we shall call the photo-
ionization cross-section, to the photon flux. The number of photons
absorbed per second is therefore the photon flux nvvv/V times the total
area nTVav presented by the centres. Since this rate is the photo-
ionization rate for nTV centres, the rate for one centre is

Thus, from eqn (5.14), we obtain for the photo-ionization cross-section

where nr is the refractive index which is equal to (ev/e0)1 provided that
the crystal is transparent.

In the case of radiative capture we can define a capture cross-section
such that

where uk is the group velocity associated with the band state |k>. Assum-
ing spontaneous emission only, we obtain

In general we have

and, from eqn (5.18),

whence we obtain the simple relationship

For a transition energy of about 0-6 eV, wv is about 1015 s-1 and hence qv

is roughly 105 cm-1. States near the band edge are associated with values
of k around 107 cm-1, and so the ratio q2/k2 is of order 1(T-4. It turns out
that typical values of av range around 10-17 cm2, and thus we can predict
that radiative capture cross-sections are only of order 10-21 cm2.

It is often useful to work with the capture rate per unit density ck,
which is alternatively called the volume capture rate. From eqn (5.26)
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5.3. Wavefunctions

In order to evaluate the matrix element we need to know the form of the
wavefunctions of the initial and final states. In a photo-ionization process
the final state is in general a superposition of a Bloch wave of the band
and a spherical scattered wave:

This is also the appropriate form for electron-hole generation across the
gap, since the electron and hole scatter off one another. Where the
scattering potential is slowly varying over a unit cell, as it is at long range
from a charged centre, the wavefunction contains no appreciable compo-
nents from other bands; thus

or alternatively

where Sk(r) is an envelope function associated with k, e.g. a coulomb
wavefunction. Near an impurity centre the potential may vary rapidly and
there could be strong core effects. Such core effects would influence the
wavefunction in the band only if the scattering were strong—a tautologi-
cal remark meant to emphasize that modifications of the Bloch function
are associated with scattering strength. Since cores are short range by
nature they present a small collision cross-section to electrons unless
there exists a resonance. In the absence of resonant scattering the
envelope function is determined primarily by coulomb scattering. Where
resonances exist the effect of the core is felt far from the centre, and it
adds to any coulombic effects. However, whether resonances exist or not,
the short-range effect of the core is a difficult problem to solve and in
working out matrix elements implicit reliance is usually placed on the
greater weight thrown on the region of space outside of the core by the
three-dimensional integration, and the wavefunction outside the core is
considered to be an adequate form to take for the purposes of computing
the transition rate. We intend to follow this approximation. Thus we take
the form given in eqn (5.34) where, in general, Sk(r) is determined by
coulomb and resonant scattering.

For the case of spherical scattering
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where o1 is a phase factor, Fl(kr) is the regular and Gl(kr) the irregular
coulomb function, 8t is the phase shift of the lth wave induced by the
core, and Pl(cos 0) is a Legendre polynomial of order I. Strictly, Sk(r)
never achieves the form of a pure plane wave at large distances because
of the long-range character of the coulomb field, but this is highly
artificial. Many other influences enter at large distances and randomize
the phase of the wave, so at sufficiently large distances from the scattering
centre it is reasonable to assume that Sk(r)->exp(ik.r).

The principal spatial domain of the matrix element is governed by the
overlap of the initial and final wavefunctions. If the domain is large, as it
is in the case of electron-hole pair production or even in the case of
excitation from an effective-mass centre with its large ground-state orbit,
it is a reasonable approximation over most of the final energy range to
neglect scattering effects and take

However, if the domain is small, as it is in the case of a deep-level
impurity with its tightly bound ground state, it is simplest, if somewhat
crude, to take the form of the wavefunction at r = 0. This implies selecting
only the l = 0 term in eqn (5.35) (kr « 1):

If 2 |x| » kr,

where

and

If 2 \u\ > kr, |u| is so small that the centre acts as a neutral centre (C0= 1
in eqn (5.38)) Sk(r) denotes the enhancement of the electron wavefunc-
tion at positively charged (Z > 0) sites, or the attenuation at negatively
charged (Z < 0) sites. For neutral sites the coulomb factor C0 is unity.

Whether or not one takes scattering into account therefore depends
upon the extent of the domain in which overlap occurs. However, it also
depends upon electron energy in the final state. In the absence of core
resonance at energies above zero, scattering is appreciable only for
low-energy electrons, specifically for electrons with kr < 1. If the effective
radius of the overlap is rT then scattering effects will be important when
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the final state wavevector obeys 0< krT < l. Thus even in the case of
electron-hole production or the photo-ionization of a hydrogenic state,
scattering effects will be important very close to threshold. Indeed,
coulomb scattering affects the final wavefunction when ka* < 1, where aH
is the effective Bohr radius, equivalent to Ek < RH where R^ is the
effective Rydberg energy. If the core is considered to scatter resonantly,
the phase shift can be written in the form

where Er is an energy for resonance (which may be negative correspond-
ing to a bound state) and F(Ek) is the bandwidth of the resonance. For
non-resonant scattering So ~ 0. Equation (5.41) is a useful form for all
core scattering.

In general, the wavefunction of a localized state can be expressed in
terms of a sum of Bloch functions <£pk(r):

where the sum is over all bands and all k in the first Brillouin zone.
Shallow states can be regarded as being composed of Bloch functions
drawn from the nearest band only. Thus

However, if the level is deep we may expect many bands and many k
states to contribute. Consequently the general expansion in terms of
Bloch functions must be retained. If we consider the effective radius of
the state to be rT, inside which we have a sum of cell-periodic Bloch
functions, the spread of k involved is roughly

and so for these states

where VT is the volume of the state. Thus an approximate 'billiard-ball'
model wavefunction for a deep-level ground state can be written

In this way we separate the effect of band mixing produced by the
impurity potential which determines the coefficients cp0 from the effect of
the spatial extent of the state as measured by the effective volume VT.
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We can now proceed to calculate the momentum matrix elements and
the rates and cross-sections for the following transitions:

(a) valence band to conduction band;
(b) shallow acceptor to conduction band;
(c) shallow donor to conduction band;
(d) deep level to conduction band.

5.4. Direct interband transitions

Since both the initial and the final states are extended it will be sufficient
to ignore scattering corrections for Ek^R^ and take Bloch functions.
Thus for the conduction band state

and for the valence band state

where the subscripts c and v refer to conduction and valence states. Since
p is an operator with odd parity and the cell-periodic components of the
Bloch functions are |s) like and |p) like, the momentum matrix element is
non-zero and largely independent of k near k = 0. The sum over unit cells
in the matrix element as usual leads to the conservation of crystal
momentum, i.e. (neglecting the photon momentum) (Fig. 5.2)

Thus there is no spread of final states, but we can still use eqn (5.13) with
VN(Ef) replaced by dE-1 and eventually sum over initial states. Also
Pif = Pcv where pcv is the momentum matrix element between conduction
and valence band at the zone centre (see k.p approximation). A sum over
initial states with wavevector magnitude kv gives the total photo-
ionization cross-section from a given energy, corresponding to the expres-
sion in eqn (5.25). Since pcv is, to a first approximation, independent of

FIG. 5.2. Vertical transitions between bands.
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energy, the rate is simply proportional to the density of states determined
by the exciton reduced mass.

If the bands are parabolic N(Et) is proportional to (hwv—Ecv)1/2. If we
put x = hwv/Ecv we obtain the spectral dependence of the photo-
ionization cross-section of the form

which maximizes at x = 2. Long before this energy is reached, the bands
become highly non-parabolic, and the true maximum will be largely
determined by points in the zone where the density of states maximizes.
This transition is termed 'allowed' because pcv is non-zero at threshold.

Near threshold we must include the effects of coulomb scattering.
Effectively, that means enhancing the matrix element by the coulomb
factor C0 for the exciton. By putting Z = +l in eqn (5.40) and taking
Ek < Eex, where Eex is the binding energy of the exciton, we can write

whence

The enhancement of the wavefunction caused by the coulombic attraction
between electron and hole exactly balances the diminution of the density
of states towards zero energy. There is thus a sudden onset of photo-
ionization at threshold (Fig. 5.3). Figure 5.4 shows the effect of excitonic
absorption in GaAs.

The expression for the photo-ionization cross-section for direct inter-
band transitions not too near threshold is, for unpolarized light,

where we have used

FIG. 5.3. Photo-ionization cross-section for direct-gap electron-hole pair production. The
dotted portion of the curve represents the plane-wave final state.
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Fig. 5.4. Exciton absorption in GaAs: (a) O, 294 K; D, 186 K; A, 90 K; •, 21K. After
Sturge 1962.) (b) Fine detail in epitaxial material at 1.2 K. The n = 1 peak is limited by
luminescence. Also shown are impurity lines (DoX) from excitons bound to some 1015 cm-3

donors (After Weisbuch 1977).
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and we have assumed that the bands are parabolic such that

whence

whence m* is the reduced effective mass of electrons and holes and we
have included spin degeneracy.

The appearance of the arbitary volume V in eqn (5.53) indicates that
when both initial and final states are non-localized plane-wave states, the
concept of a cross-section has limited application. The physically mean-
ingful quantity in this case is the photo-ionization rate, and so using eqn
(5.24) (or returning to eqn (5.14)), we have

Alternatively, we can convert the rate into an absorption constant Kv.
The one-dimensional continuity equation for photons is

If n» = n,,0 exp(-JK,,x) in the steady state, then

whence

(Strictly, we should subtract the contribution from stimulated emission (see
Section 5.12).)

The reverse process is the radiative recombination of an electron and a
hole. The rate associated with spontaneous emission is given by eqns
(5.16) and (5.54):

As regards magnitudes, aa^ = 2-044x10 19cm2, RH/h<i>v is approxi-
mately 10 when h<av is about 1 eV, p2v/2m is Eg/2, and N(Ek) is typically
1019eV"1cm~3 at Ek=0-01eV. The refractive index is about 4, and so
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from eqn (5.56) the rate of photo-ionization per photon is about 2x
1012s~1, corresponding via eqn (5.59) to an absorption constant of
4xl02cm~1. The rate and absorption constant are very large as a
consequence of the high density of states and strong matrix element. The
capture rate per hole from eqn (5.60) is about 2xl07s~1. This is a
substantial rate, but it assumes that the final state is unoccupied. When
the statistical average rate is computed, Wem has to be weighted with the
probability of a hole occupying the state. Statistical factors of this sort will
generally be ignored for the present. For the purposes of comparison a
volume capture rate associated with the capture of an electron by a
valence band state can be defined by dividing Wem by the effective density
of states Nv in the valence band which is typically of order 1018 cm-3.
Thus cn=10~n cm3s-1 for interband radiative capture.

5.4.1. Excitonic absorption
Sharp absorption peaks on the long-wavelength side of the functional
absorption edge are observed at low temperatures (Fig. 5.4) and are
associated with the formation of excitons. In the effective-mass approxi-
mation the final state wavefunction (Chapter 2, Section 2.6) for the
electron is

where for simple bands the ground-state |s) function is given by

where a* is the effective Bohr radius of the exciton, R is the centre-of-
mass co-ordinate and reh is the separation of the electron and the hole.
The energy of the exciton is

It is necessary that ksx = 0 (neglecting the photon's momentum), and that
the electron and hole be created on the same atom. The probability of
this, using eqn (5.62), is V0Ma*3, where Va is the volume of a unit cell so
that, from eqn (5.25),

where

giving an infinitely sharp absorption line. In reality the line is broadened
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by collisions and the delta function replaced by

where T is the scattering rate. The exciton is created with zero spin and
so to accommodate the angular momentum of the photon it ends up in
the triplet state. Radiative annihilation entails the same conditions.

A full treatment of excitonic absorption has been given by Elliot (1957)
in which forbidden as well as allowed transitions are considered, and the
influence of anisotropic masses has been discussed by Altarelli and Lipari
(1976).

5.5. Photo-deionization of a hydrogenic acceptor

The excitation to the conduction band of an electron from the valence
band in the vicinity of a hydrogenic acceptor is exactly equivalent to the
excitation of a hole from the conduction band to one of the localized
effective-mass states of the acceptor centre. In the process the negative
charge on the acceptor is lost, and so the process is one of deionization.

As in Section 5.4 the conduction band state is assumed to be a Bloch
function but, unlike the previous case, there is no coulombic scattering to
be taken into account since the acceptor is neutral when the electron is in
the conduction band. (Really, we are assuming that the acceptor remains
neutral for times which are long compared with the period associated with
the transition under consideration. This assumption would break down if
thermal ionization were too rapid.)

The localized state is described by the effective-mass wavefunction

where uv(1) is the cell-periodic part of the valence-band Bloch function
and FT(r) is the envelope function. If there is no resonant scattering of the
electron by the neutral acceptor, the momentum matrix element is, in the
long-wavelength limit,

where pcv, as before, is the interband momentum matrix element which is
assumed to be insensitive to k for the final states of interest. For the
ground state we shall ignore the degeneracy of the valence band and take
the simple-band form
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FIG. 5.5. Photo-deionization of an acceptor.

whence

In the case of a parabolic conduction band and unpolarized light we
obtain for the photo-deionization cross-section from eqn (5.25)

This function peaks sharply at Ek = R*/7 (Fig. 5.5). The magnitude is
determined by the effective volume of the state, characterized by a*3.

The reverse process—radiative trapping of an electron by a neutral
acceptor—is described by the cross-section <rk related to ov via eqn (5.30)
with av given by

where R* is the hydrogenic ground-state binding energy for the valence
band. Thus

or, in terms of volume capture rate (eqn (5.31)),

The capture cross-section becomes very large as E± approaches zero, but
since the velocity of the electron approaches zero the capture rate
remains finite as eqn (5.74) shows (see also Dumke 1963).

Near the maximum av is typically of order 10-15 cm2 and, since qv is
about 105 cm-1, the radiative capture cross-section is only some 102 tunes
smaller, i.e. 10-17 cm2, and ck is about 10-10 cm3 s-1. The latter is of the
same order of magnitude as that associated with direct interband transi-
tions.
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5.6. Photo-ionization of a hydrogenic donor

In the photo-excitation of an electron from the ground state of a
hydrogenic donor to a scattering state in the conduction band the initial
state wavefunction is

or equivalently

In the spirit of the effective-mass approximation we can neglect the
variation of the envelope function over a unit cell and, provided that k for
the final state is small compared with a reciprocal lattice vector, the
variation of the wave factor over a unit cell can also be neglected. The
cell-periodic part of the Bloch function varies slightly with k according to
k.p perturbation theory as functions from other bands become mixed
with «„,(!•), but to a good approximation this variation can be neglected if
it is not too large. Thus

where

Thus pj* is the expectation value for the momentum of a Bloch state in
the conduction band. This is simply given by

where vk is the group velocity, and in this formulation it includes all the
effects of k.p mixing. This approximation is equivalent to that applied in
the case of photo-deionization of an acceptor as a comparison of eqns
(5.78) and (5.68) shows: pCT has been replaced by p,̂ . However, unlike

where FT(r) is the radial hydrogenic function (eqn (5.69)) and the final
state wavefunction is a Bloch function except near the threshold. In the
latter case coulombic scattering enhances the wavefunction by the
coulomb factor. Let us first take the final state to be adequately described
by a Bloch function.

In the long-wavelength limit the momentum matrix element is given by
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that case p^ is zero when k = 0, whereas pCT is independent of k. The
inter-band momentum is non-zero and optical transitions are allowed, but
in the present case the intra-band momentum is zero at k = 0 and the
optical transition at threshold is forbidden. In that respect the photo-
ionization of a donor differs significantly from the photo-ionization of a
free hydrogen atom, which does have an allowed transition at k = 0 even
when the final state is taken to be a plane wave. Calculating the transition
momentum to a higher order of approximation adds terms of order m*/m
and restores this property to the hydrogenic donor, but since m*/m is
typically of order 0-1 we can neglect this effect in most cases.

Therefore after integration eqn (5.78) becomes

and hence the photo-ionization cross-section from eqn (5.25) for un-
polarized light and a parabolic band is

The magnitude is determined by the effective volume of the state which is
proportional to a*3. By putting J3k = ha>v — R^ we can easily show that av

peaks at h<av = 10R*/7.
Near threshold we must include the coulomb factor:

Multiplying the right-hand side of eqn (5.81) by C0 shifts the peak to
hwv = 10R*/9 which is only R&/9 from threshold. Thus the inclusion of
C0 is justified for estimating the position of the peak (Fig. 5.6).

According to eqn (5.30) the radiative capture cross-section is given by
<rv multiplied by (qjk)2:

Because of the small photon energies involved qv is small. Roughly,
2m*(c/T]r)

2= 104eV, so with E^R^/IO and R£=0-01 eV the factor is

FIG. 5.6. Photo-ionization of a donor.
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10-5. Since crv near the maximum is of order 10-15 cm3, we obtain a
capture cross-section of order l(T20cm2. This is quite negligible in
comparison with non-radiative processes.

It is of interest to compare the strength of this transition, which is
forbidden at threshold, with that associated with de-ionization of an
acceptor, which is allowed. The ratio of the interaction energies is

From k.p theory (eqn (1.90)) for simple bands

Hence

Thus forbidden transitions have smaller intrinsic strengths than those of
allowed transitions, but the difference is not large except very near
threshold (Ek=0). This small difference is because the k.p interaction has
already mixed |p)-like states into the conduction band.

5.7. Photo-ionization of quantum-defect impurities

When core effects increase the depth of a donor state, or are the reason
for binding into a shallow state associated with a neutral centre, we have
to deal with quantum-defect centres as distinct from hydrogenic centres.
We still assume the effective-mass approximation and we take the
quantum-defect form of the ground-state wavefunction (see Section 2.9)
(Bebb and Chapman 1971):

The normalizing constant A has been obtained by normalizing to unity,
even though this procedure, by neglecting the change in form of the
wavefunction near and in the core, underestimates the amplitude outside
the core. The effect in most cases turns out to be less than 10% for
positively charged or neutral centres, but for negatively charged centres
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FIG. 5.7. Photo-ionization cross-sections associated with the deep levels in GaAs contain-
ing oxygen at 100 K. The solid curves are theoretical and are based on the Lucovsky model.

(After Grimmeiss and Ledebo 1975.)

(Z<0) the error is too large to be neglected. We therefore restrict
attention for the moment to relatively shallow levels associated with
neutral or positively charged centres. When Z = 1, p, = vr, and when
further vT=l, the quantum-defect wavefunction transforms to the hyd-
rogenic form. When Z = 0, and consequently n = 0, the quantum-defect
wavefunction transforms to that assumed by Lucovsky (1965). The latter
model has been commonly used to describe experimental results even for
deep-level impurities (Fig. 5.7).

The momentum matrix element with the final state described by a
Bloch function is

which correctly reduces to eqn (5.80) when u = vt = 1. For unpolarized
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light and a parabolic band the photo-ionization cross-section becomes

The capture cross-section can be obtained from av in the usual way by
using eqn (5.30). Near threshold, and this is particularly germane to the
capture process, the right-hand side of eqn (5.91) should be multiplied by
the coulomb factor if the centre is charged. We are tacitly assuming that
core-resonant scattering is absent.

The peak of av for a hydrogenic centre is at hwv » 10R*/9. As the level
deepens the maximum moves further away from threshold and in the
limit reaches hwv = 2ET. This is most exactly seen by noting that u,
diminishes as the level deepens, and the difference between charged and
neutral centres becomes smaller. If u is neglected relative to unity we
obtain the cross-section for a neutral centre:

This is essentially the expression first derived by Lucovsky (1965), though
he meant it to apply to deep-level centres. The maximum of the response
for a neutral centre, whatever its depth, is at hwv = 2ET.

The quantity (vTa*)3 measures the effective volume of the localized
state. The effective-mass approximation invariably relates tighter orbits
with deeper levels, and since the overlap integral involving plane-wave
states peaks near fcvTa* = 1 the maximum is thrown towards excitation
into shorter wavelength states as the level deepens (Fig. 5.8).

FIG. 5.8. Photo-ionization of quantum-defect centres.
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FIG. 5.9. (a) Electron charge density near an impurity centre. The numbers on the curves
are the values of v; r0, radius of square well, (b) Ratio of electron charge density inside the

core to that outside: rja* = 0-05; v = (R*/^)112.

The case of photo-ionization of centres with multiple negative charges,
i.e. centres whose photo-excited electron finds itself in a long-range
repulsive potential, cannot be satisfactorily treated by assuming a
quantum-defect wavefunction normalized to unity and neglecting the
form at the core. However, if the level is shallow, an effective-mass
approach using a model potential can be used along the lines described in
Section 2.9 and as discussed for example by Amato and Ridley (1980).
When u -2 the spectral dependence is given reasonably well by the
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quantum-defect wavefunction but the magnitude of the cross-section is
not, for the reason mentioned previously. Normalization of the quantum-
defect wavefunction to unity is not possible when /x=s~2» and conse-
quently the core cannot be neglected for shallow levels. Figure 5.9 shows
the electron charge density for a model potential and the ratio of the
charge in the core to that in the tail for various charges. This ratio is small
in the case of neutral and positively charged centres with shallow levels,
but it is always significant in the case of a negatively charged centre.

Shallow negatively charged centres therefore form a special subclass of
shallow-level impurities. To treat the photo-ionization of such centres
within the effective-mass approximation it is necessary to adopt models
for both core and tail, fit them appropriately, and normalize the total
wavefunction. When this is carried out the spectral dependence turns out
to have a maximum beyond hu>v = 2ET with a trend towards h<av » 2ET as
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FIG. 5.10. Model photo-ionization cross-sections for (a) plane-wave and (b) coulomb wave
final states. (After Amato and Ridley 1980.)
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the level becomes shallower. The shift of the maximum away from the
neutral value is to be expected, as the discussion of deep-level impurities
in the next section will show, as the wavefunction concentrates at the core
to avoid the repulsive potential. The spectral dependence of the photo-
ionization cross-section of shallow negatively charged impurities is there-
fore expected to be similar to that for deep-level impurities. It should also
be noted that the action of the coulomb factor is to lower the cross-
section near the threshold and to push the maximum towards higher
energies or to eliminate it entirely. The net appearance is to make the
photo-ionization cross-section approach saturation towards high energies
(Fig. 5.10).

5.8. Photo-ionization of deep-level impurities

The effective-mass approximation breaks down entirely for deep-level
impurities. In this situation the impurity potential is strong enough to
bind deeply into a ground state whose wavefunction is highly localized.
An expansion of this wavefunction in terms of Bloch functions is in
general not very useful since many bands contribute. Nevertheless, since
the final state is one of the bands, a formal expansion of the impurity
wavefunction in Bloch functions is useful in order to clarify the qualitative
features of the transition. The final state will also in general involve the
Bloch functions of other bands but provided that no long-lived resonant
positive-energy state is involved, i.e. if there is no resonant scattering, it
will be sufficient to describe the final state by the single Bloch function
belonging to the band with a slowly varying coulombic envelope at low
energies if the excited centre is charged.

In the case of a neutral centre let us express the initial state as

and the final state in the conduction band as

Then the momentum is

The first term on the right is the 'forbidden' component associated with
the conduction-band contribution to the localized state wavefunction. The
second term represents the momentum matrix elements between the
conduction band and all other bands at k' = k (neglecting the photon
momentum). This sum can be split into two sections, one in which p^ is
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zero at k = 0 and another in which pcnk is non-zero at k = 0. We can
rewrite eqn (5.95) as

where the subscript s denotes forbidden component and the subscript t
denotes allowed components. Since bands contribute in inverse propor-
tion to their remoteness in energy, we can adopt a two-band approxima-
tion and retain contributions only from the conduction and valence
bands:

where the subscripts c and v denote conduction and valence bands
respectively. A deep-level impurity state can then be classified as having
either |s)-like or |p>-like symmetry, and the appropriate term taken.
Though rough, this approach is a useful conceptual step in the interpreta-
tion of spectra.

The coefficients cnk depend on the potential and energy of the state. In
the previous cases we have considered the wavefunction, either hyd-
rogenic or quantum defect, was known and the cck could be obtained as
Fourier components. If rT denotes the effective radius of the wavefunc-
tion, the form of cck is roughly (VT/V)1/2, where VT is the effective volume
of the state, and is independent of k for fc2r|« 1 but falls off rapidly with
k for fc2/-T» 1. For deep-level states rT will be of the order of 10 A, and
therefore k2rx« 1 for excitations not too far above threshold. When
k^r\*s\ the final state is far above the conduction-band minimum and in
a region where the conduction band may be quite complex. Interpretation
of the spectrum in this region is likely to involve details of band structure
which are as problematic as the details of the deep-level state. If the
elucidation of the structure of the impurity state is the prime motivation,
the region which is most useful is that in which the band structure is well
known, i.e. when k2r2 « 1. Near the threshold, Et./ET« 1 and we can
therefore take for an |s)-like impurity (Ridley 1980)

Taking a parabolic approximation for the band we obtain for the photo-
ionization cross-section for unpolarized light

For a |p)-like impurity
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and

When aa& = 2xl(r19cm2, R^jh^^W, 17,« 4, p2
v/2m = 0-5 eV, and

(2m*/ft2)3/2£i/2«1021eV-1cm-3 at Ek«0-leV, the photo-ionization
cross-section is about 103VTcm2. Since VT is about 10^21 cm3, ov =
1(T18 cm2.

Near threshold <rv is about 10~18 cm2 multiplied by the coulomb factor
if the centre is charged. The radiative capture cross-section for a level
about 0-6 eV below the conduction band is therefore only about
l(T22cm2.

Note that it is only near to threshold that a distinction between allowed
and forbidden transitions can be made. Far above threshold the energy
dependence of the matrix element blurs that distinction since the bands
become non-parabolic and overlap bands with different parities. Thus the
expressions in eqns (5.99) and (5.101) are applicable in just the region
which provides most information about the centre. Neither expression
predicts a maximum—a consequence of neglecting the tail of the localized
wavefunction. However, since a maximum must occur well above
threshold (if not as far as predicted by effective-mass theory, still far
enough), its position may be significantly affected by the shape of the
density-of-states function at high energies and consequently the interpre-
tation of an observed peak several tenths of an electronvolt above
threshold may be quite difficult to perform.

5.9. Summary of photo-ionization cross-sections

The expressions for the cross-sections derived in the previous sections
have been collected together in Table 5.1.

5.10. Indirect transitions

Because of the small momentum associated with photons whose fre-
quency lies in the visible or infrared regions of the spectrum, transitions
in which both initial and final states are band states are allowed only if
crystal momentum is conserved. Such processes are depicted by vertical
lines in the E-k diagram and are termed direct transitions. For non-
vertical transitions to occur momentum has to be supplied from another
source such as an impurity centre or the pervasive phonon gas. Transi-
tions involving a photon and a phonon or impurity are termed indirect.
Two important examples of indirect radiative transitions are the inter-
band transition from the top of the valence band to a conduction band
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TABLE 5.1
Summary of photo-ionization cross-sections*

(1) Direct interbandb 2er0V

(2) Hydrogenic acceptor 64waHv
(to conduction band) ° {1 + (E^Rgv)}4

ftt HvHrnarnir dnnnr T Ek<m/m*> 64ira£3
c(3) Ilydrogcmc donor u0 ̂ ^ {l + (EJR^)}4

(4) Quantum defect B*("1/«*> 8ir22-(vTa£)3 sin2{(^ + D^-^EJB,)^
(4) Quantum defect uop ,v / 2 m (Ek/ET){l + (Ek/ET)K«

P fm/m*^
f tl\ r»(-f-n 1i-i«-lc fl^ lilrr-^ yr ^kv"*/"1 1 v(D) UCCp ICVCI (\S> IIKCJ <T0 VT(pj,,/2m)
(6) Deep-levelc(|p> like) o-0VT

2 /RH\ 1 Pcv /2fn*\3/2
Bi,2

^^"""fe)^^^) E"

e2/4TT€0

"" *c
e2/4ireo

KH t*2aH

ft2/m
JH e2/4lreo

* Not including scattering or local-field correction. Where a coulomb field exists the above
expressions are multiplied by the coulomb factor C0 for transitions near threshold.

b Includes spin degeneracy of the initial state.
° Includes shallow negatively charged centres.

FIG. 5.11. Indirect transitions.
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valley at or near the zone boundary, and the intra-valley transition
responsible for free-carrier absorption (Fig. 5.11). Indirect transitions
involving localized states are also possible, but since the defect centre can
accommodate momentum differences without the help of a phonon such
processes are usually in competition with direct processes which have a
higher probability of occurring. In general, indirect transitions can occur
alongside direct inter-band transitions and may contribute observable
features in the sub-threshold region associated with the absorption, for
example, of a long-wavelength optical phonon. We shall not discuss in
detail all these possibilities but limit outselves to describing the transition
rate in processes which without the phonon or impurity would be forbid-
den. For the sake of brevity we shall treat explicitly only the phonon case.

The transition rate is given by second-order perturbation theory (Schiff
1955):

The optical perturbation Hv (eqns (5.1), (5.11), and (5.12)) induces a
transition from the initial state |i> to a virtual intermediate state |n), often
conserving crystal momentum but not energy. The phonon perturbation
Hep (Chapter 3) completes the transition by taking the system from |n) to
the final state |f), conserving momentum and overall energy. Alterna-
tively, the first step can be accomplished by the phonon perturbation and
the second step by the optical perturbation. Since we are not concerned
with either two-phonon processes (Hep active in both steps) or two-
photon processes (Hv active in both steps), the two alternatives are the
only possible ways of making the transition. The intermediate state in
each case is limited by the conservation of crystal momentum when all
states considered are described by Bloch functions.

Let the initial state be a Bloch state of band a denoted by |ak) and the
final state be a Bloch state of band b denoted by |bk'>. Consider the
absorption of a photon of energy ho>v and of a phonon of energy hwq and
crystal momentum hq. The initial and final energies are (normal
processes)

If the phonon is absorbed first the intermediate energy is given by
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FIG. 5.12. Virtual processes in indirect transitions with the absorption of a photon: (a)
accompanied by the absorption of a phonon; (b) accompanied by the emission of a phonon;

(c) accompanied by impurity scattering. The SJ!t refer to matrix elements.

and if the photon is absorbed first

(neglecting the photon momentum). Processes (a) and (b) are mutually
distinct only when the initial and final states are in different bands. When
this is the case the optical transitions for processes (b) are forbidden, since
they depend upon a matrix element of the form <ak| Hv |ak> or <bk+
q| Hv |bk+q), whereas processes (a) may entail allowed transitions, and so
we need not consider processes (b) further (Fig. 5.12).

The sum Sn over intermediate states is therefore

If Egk is the direct energy gap between bands a and b at k we can use eqn
(5.104) in the first denominator to write the sum thus:

To obtain the total rate associated with the absorption of a photon we
must add two further terms to the sum, similar in form to those in eqn
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(5.108) which describe the emission of a phonon. If the two terms in eqn
(5.108) are labelled respectively S1+ and S2+ and the equivalent terms
associated with phonon emission S1_ and S2_, the rate for an indirect
transition is given by

Second-order perturbation theory leading to eqn (5.109) must be
modified when any of the denominators are zero or when, more gener-
ally, a virtual intermediate state can become a real final state. Direct
transitions then dominate anyway, so we shall assume that the photon
energy is not large enough for this situation to occur.

The above expressions are also valid for impurity scattering if Hep is
interpreted as the appropriate interaction and hq is the crystal momentum
change in the elastic process.

5.11. Indirect interband transitions

In silicon the optical absorption edge is associated with a transition
between the top of the valence band and one of the six A valleys, and in
germanium between the top of the valence band and one of the four L
valleys. Both of these are indirect transitions (Fig. 5.13). The full calcula-
tion of the transition rate is rather long since it involves eight matrix

FIG. 5.13. Virtual transitions to real states in indirect inter-band absorption. Because of the
larger band gap at the zone boundary S1 processes are somewhat weaker than S2 processes.
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elements (two for each S). We shall limit ourselves to a calculation of the
partial rate arising from the more important contributions which we
assume to be embodied in the terms. S2+ and S2_. We choose S2+ and S2_
because they have smaller denominators. In silicon Eg0 = 3-4eV and in
germanium Eg0

=:0-81eV, whereas in both materials Egx = EgL= 4 eV.
Thus E^—ho)v is typically smaller than E^+9-h(av in semiconductors,
and in the case of germanium it is appreciably so. Since cross terms
between S2_ and S2+ do not contribute to the rate, we can write

where c stands for the conduction band and v for the valence band.
The optical matrix element is identical to that for a direct transition.

Thus in the long-wavelength approximation (eqn (5.11))

Hence for non-polarized light, ignoring electron-hole scattering correc-
tions close to threshold and neglecting any k dependence of the matrix
element,

where a is the fine-structure constant, aH is the Bohr radius, J?H is the
Rydberg energy, n» is the number of photons in the cavity of volume V,
and pCT is the interband momentum matrix element.

Compared with the rate for a direct optical transition at the zone
centre, everything else being equal, the indirect transition rate is lower by
a factor equal to the square of the phonon-scattering matrix element
divided by (Eg0-hwv)

2. The phonon matrix element is that for an
inter-valley scattering event in the conduction band, the valleys being
non-equivalent. As such the phonons involved obey group theory selec-
tion rules (Table 3.3, p. 110). For example, in the case of germanium only
the zone edge LO and LA phonons may participate.

According to eqn (3.14) the square of the phonon matrix element for a
given q has the following general form
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In the case of inter-valley scattering (generalizing from eqn (3.120))

where M1 + M2 is the total mass in the unit cell and Dij is a deformation
potential constant. Thus

where p is the mass density and wij is now the angular frequency of the
appropriate phonon. (If more than one type of mode participates we must
add the M2). We assume, as usual, that inter-valley scattering is isotropic
and independent of q.

In the case of direct inter-band transitions only one final state was
coupled to a given initial state by k conservation, and a finite transition
rate existed only for the band of states lying between ET and Er+dEr with
density JVCV(Er) given by eqn (5.55) where Er = h2c2/2m* and m* is the
reduced electron-hole mass. For indirect transitions the situation is
different. Corresponding to a given initial state |vk) there is a spread of
final states in the conduction band brought about by phonon scattering,
and hence a transition rate exists given by

where Nval is the number of equivalent conduction band valleys contain-
ing final states, NC(E) is the density of states for a given spin (the
transition does not flip spin) in a given valley, and

where Eg is the indirect gap and Ek is the hole energy of the initial state
measured from the top of the valence band.

As far as the electron in state |vk) is concerned eqn (5.117) is the
probability of making an indirect transition in unit time, and that is the
end of the calculation. (Actually the end of the calculation should be a
photo-ionization cross-section using eqn (5.24) because the square of the
optical matrix element contains the arbitrary volume of the cavity.)
However, we are usually interested more in the total rate induced by a
given photon energy since this determines the absorption coefficient. We
have therefore to sum all the W2(k) which correspond to allowed proces-
ses, keeping hwv constant. This means summing over all possible initial
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states from £k = 0 to Ek max, where

Thus we multiply W2(k) by 2VVv(Ek)dEk, where Nv(Ek) is the density
of states of a given spin per unit energy interval in the valence band and
the factor 2 accommodates spin degeneracy, and integrate between the
appropriate limits. In the case of parabolic bands we note that

and hence we obtain

Note that the cavity volume disappears from the expression (see eqn
(5.113)). The absorption coefficient can then be obtained using eqn
(5.58). Each type of allowed phonon contributes a rate as in eqn (5.121)
with Dij and wij characteristic of the mode. Further contributions to the
total rate come from the alternative route depicted by S1+ and Si_ in eqn
(5.109).

Indirect inter-band absorption differs significantly from direct inter-
band absorption in its dependence on photon energy. Near the threshold

FIG. 5.14. Vector diagram for free-carrier absorption.
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FIG. 5.15. Low-level absorption spectrum of high-purity silicon at various temperatures.
The inserts indicate the accuracy with which the experimental points define the curves.

(After MacFarlane, McLean, Roberts, and Quarrington 1958: Crown copyright.)

energy Eth, the former varies as (h<av - E^)2 while the latter varies as (eqn
(5.59)) (hwv - Eth)1/2 (as does excitonic absorption). A plot of the square
root of the absorption coefficient versus photon energy near the threshold
should give a straight line. Experimental results for silicon and ger-
manium are shown in Figs. 5.14 and 5.15. Sharp rises which disrupt the
general trend of the curves are associated with excitonic absorption.
Indirect transitions to excitonic states have been discussed by McLean
and Loudon (1960).

5.12. Free-carrier absorption
An electron in the conduction band of a semiconductor cannot absorb a
photon and conserve energy and momentum without making a transition
to another band, simultaneously absorbing or emitting a phonon, or
simultaneously scattering off an impurity centre. The first process is the
direct radiative transition already discussed in Section 5.4. The second
and third are indirect processes involving a transition from a state |k) to a
state |k') in the same band, and it is such processes which are at the heart
of the phenomenon of free-carrier absorption.
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The transition rate is given by eqn (5.109) which we shall write in the
following form:

Since the energy gaps which appear in expressions like eqn (5.108) for S+
are now zero we have

where Hs is the scattering interaction.
The optical matrix elements, as we saw in Section 5.6, involve the total

momentum of the Bloch states:

where vk is the group velocity. Thus, from eqn (5.11)

Summing over the final states is equivalent to a sum over q, and so

The integrand requires the band structure and the scattering process to be
defined. For simplicity we shall assume that the band is spherical and
parabolic. In this case

whence

Let us choose spherical polar coordinates with the polar axis along k
(Fig. 5.14). Then if the angle between a and q is a, the angle between a
and k is B, and the angle between q and k is 0, we have
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FIG. 5.16. Low-level absorption spectrum of high-purity germanium at various tempera-
tures. The inserts illustrate the accuracy with which the experimental points define the

curves. (After MacFarlane, McLean, Roberts, and Quarrington 1957: Crown copyright.)

where <f> is the azimuthal angle. Nothing in the integrand other than
(a.q)2 depends upon $, and so the integration over <f> can be carried out
immediately. We obtain

Limits on q are determined by conservation of energy and momentum.

5.12.1. Energy and momentum
Let the change in momentum ftq be accompanied by a change in energy
fttoq. The equations for momentum and energy conservation are as
follows:
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where the plus sign denotes absorption, and the minus sign emission.
Following the steps of Chapter 3, Section 3.2.1, we obtain

Let us assume that o>, is either very much less than «„ or, if not
negligible, independent of q. The former case will be a very good
approximation for impurity scattering and generally useful for acoustic
phonon and piezoelectric scattering; the latter case will be applicable to
optical phonon scattering. Therefore both cases

where

is independent of q. Solutions exist provided that

The argument of the delta function can be changed as follows:

5.12.2. Scattering matrix elements
In general the scattering matrix element depends upon the magnitude of
q and its direction relative to k. However, it is usually possible to take
angular averages of parameters such as deformation potentials, elastic
constants, and so on, and thereby to confine the angular dependence of
the integral in eqn (5.130) to the effect of optical polarization and to the
delta function. We shall therefore assume that the scattering matrix
element contains no angular dependence.

Integration over cos 0 gives
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and we have used eqns (5.133) and (5.136) together with the identity

In all the cases of phonon scattering (acoustic, optical, polar, and
piezoelectric) and in some approximations of impurity scattering, the
scattering element depends upon q in the form of a simple power law. We
shall limit our discussion to situations where this simplification can be
assumed. Thus we take

where As± is a factor characteristic of the scattering process (Table 5.2).
For acoustic phonon (equipartition) and optical phonon (including inter-
valley phonon) scattering r = 0, for polar optical and piezoelectric
(equipartition) scattering r = —2, and for charged-impurity scattering r =
-4. (Scattering by neutral impurities does not appear to have received
much attention in this context.)

TABLE 5.2
Scattering matrix elements

Scattering process l<k±q| Hs |k>|2 = As±qr

Acoustic phonon (equipartition)

Optical phonon

Intervalley phonon

Polar optical phonon (unscreened)

Piezoelectric (unscreened, equipartition)

Charged impurity (unscreened)

S2kBT
2VcL

Dlfi ( n(<a0) |
2Vp6)0ln(<a0) + lJ
Dfh ( it(o>0) 1

2Vpo)iln(w0) + l|
e2tua0 ( n(a>0) 1

2Vepq2U(a)o) + lJ

e2K2
vkBT

2Veqz

ZVN:

VcV

5.12.3. Electron scattering by photons

Integration over q gives
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where

In this expression the subscript m stands for max or min; also 8rK = 1 if
r = x and 0 otherwise, and (1 —S r x)/(r-x) = 0 if r = x and l/(r — x)
otherwise.

If the light is unpolarized or if we average over the direction of the
electron's motion we can replace cos2/3 by |. This simplifies matters
considerably, and we obtain

and hence for the three cases

The rates are then given by
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These are the transition rates for an electron in a state |k) absorbing a
photon and either absorbing a phonon (+), emitting a phonon (—), or
scattering off an impurity (in which case the ± sign can be dispensed
with). The photon absorbed is one of the nv which inhabit the cavity V.
Since the As± are proportional to V-1 the rates are conveniently nor-
malized for a radiation energy density nv hwv/ V, in which case rates per
unit energy density are inversely proportional to the fourth power of the
frequency. In this property free-carrier absorption is similar to Rayleigh
scattering of light by bound electrons. The two processes are fairly closely
related so it is not surprising that the characteristic dependence on
frequency appears in both cases.

Unless the energy density of radiation is unusually high the above rates
are very small in comparison with ordinary scattering rates associated
with phonons and impurities. For example, in the case of acoustic phonon
scattering (eqn (3.73), Chapter 3) the rate for absorption or emission is
given by

and hence

where ct0 is the fine-structure constant, Ev is the energy density, and <wv is
the angular frequency of radiation, and we have neglected the acoustic
phonon energy in relation to the photon energy. Taking typical values for
€„ and m* and regarding the brackets as contributing a factor of order
unity, we calculate that for «„ »1013 s"1 the ratio is of order unity only
for an energy density about 100 J m"3 which is equivalent to an intensity
of about 10 GW m~2. Therefore in most situations the presence of light in
the semiconductor does not affect the mobility of electrons. The interest-
ing physical quantity is usually not the rate at which electrons are
scattered by photons but the rate at which photons are absorbed.

5.12.4. Absorption coefficients
The rate for all transitions involving the absorption of a photon of energy
ftov is obtained by summing over all initial electron states. Thus, for
non-degenerate statistics
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where /(£k) is the occupation probability, N(Ek) is the density of states in
d.Ek for a given spin, and the factor of 2 reflects the spin degeneracy. The
limits of the integration constitute a reasonable approximation provided
that /(.Ek) falls off exponentially with energy. At thermodynamic equilib-
rium we can take the expression

where Nc is the effective density of states for the non-degenerate gas of
electrons and n is the electron density. Assuming a parabolic band we can
take

and hence

For r=0 the integral over energy is (Gradshteyn and Ryzhik 1965)

where 3t"2(z) is a modified Bessel function of the second kind. For r = - 2
the integral is (Gradshteyn and Ryzhik 1965)

For r = - 4 (Gradshteyn and Ryzhik 1965)
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These expressions are valid even if ha>± is negative provided that the
modulus of tio)± is taken as shown.

Finally we take into account the stimulated emission of photons by
changing the sign of ha>v in h<a± to obtain the rate WJ™. The net
absorption rate is the difference between WJ±S and W*™. By using the
relation between the absorption constant Kv and Wv (eqn (5.58)) we
obtain

The total absorption coefficient is obtained by summing the effects of
phonon absorption and emission, where phonons are involved.

The results from Table 5.2, eqns (5.146)-(5.148), and eqns (5.154)-
(5.158) are as follows. Although we have not followed the usual path in
deriving these absorption coefficients, we can be gently gratified by the
fact that we obtain the same expressions (cf. Seegar 1973).

Acoustic phonons

where a is the fine-structure constant and rjr is the refractive index
(e,,/e0)

1/2. The classical frequency dependence is obtained by letting h(ov

tend to zero. We use the fact that

and obtain

The absorption coefficient is inversely proportional to the square of the
frequency. It also has the classical dependence on mobility, ju,ac and
indeed is identical to the classical expression provided that a factor 32/97T,
which is about 1.13, is equated to unity. The expression is invalid for very
small frequencies since we have assumed that the photon energy greatly
exceeds the phonon energy.

Optical phonons
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where we have used the relation

and ca+ = <av + <a0, <u_ = «„ - <*>0. A similar expression is obtained for
inter-valley phonons.

Polar optical phonon

where aep is the polar coupling coefficient (see Table 3.7, p. 127) and
€p =€00 — € .

Piezoelectric

Charged impurity

5.13. Free-carrier scattering of light

The Hamiltonian describing interaction of a (non-relativistic) electron and
the electromagnetic field is (see Chapter 2, Section 2.4)

The first part of the interaction has been used throughout this chapter to
describe absorption processes of one sort or another, while the second
part has been tacitly assumed to be negligible. Without a third entity
being present to conserve momentum, neither term can induce the
absorption of a photon by a free electron. However, both terms are
capable of inducing the scattering of a photon by a free electron, the first
term through a second-order process and the second term through a
first-order process. It turns out that for free electrons the scattering rate
produced by the A.p interaction is smaller than the scattering rate
produced by the A2 interaction by a factor of order (u/c)2 where u is the
group velocity of the electron and c is the velocity of light. Thus, the A2

term is dominant for free electrons. We might expect the effective-mass
approximation to be applicable for electrons in a conduction band, and
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that the A2 term, with m replaced by m*, would be a good approximation
to the interaction. This indeed turns out to be the case, but only for
photon energies well below the energy gap between bands. The A.p
term, far from being negligible, is of vital importance in converting eqn
(5.167) to the effective-mass form (see Appendix, Section 5.14):

In discussing the scattering of light by an electron in a conduction band
we shall assume that the photon energy is far removed from any inter-
band separations, and therefore that scattering can be satisfactorily de-
scribed by the A2 term in the effective-mass approximation.

The scattering rate is thus

where k and k' are respectively the wavevectors of the electron before
and after scattering a photon. If the incident photon has angular fre-
quency <av and wavevector qv and the scattered photon has angular
frequency wj, and wavevector q'v, the vector potential can be written

Consequently

and hence the interaction has d.c., second-harmonic, sum, and difference
components. The d.c. components leave the state unchanged and conse-
quently produce zero rate. The second-harmonic components attempt to
induce the electron to absorb or emit photons of energy 2htav or 2h<a'v but
this is forbidden by simultaneous conservation of momentum and energy.
The latter also forbids the absorption or emission of sum-frequency
photons, and so only the difference-frequency photons are left.

For the incident wave (see eqn (5.9))

and for the scattered wave, which is assumed to be spontaneously
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emitted,

The scattering rate is therefore

with momentum conservation

If a is the angle between k and Aq, then for a parabolic band (Fig.
5.17)

FIG. 5.17. Scattering diagram.
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whence, for Aqv « fc,

where v is the group velocity of the electron. However,

where vv is the velocity of light in the semiconductor, and thus

or since v/vv is very small, qv *= q'v. Now

where 6 is the angle through which the light is scattered, and so

From eqn (5.178) the fractional change of frequency on scattering is

which is very small in practice. Consequently, the delta function conserv-
ing energy in eqn (5.174) can be taken to be independent of direction in
an elastic scattering approximation. By putting

we obtain, after integrating over energy,

where O is the solid angle.
In order to work out a.a' we consider the plane containing qj, and a.

Now if a' is perpendicular to this, a.a' = 0 and the scattering is forbidden.
Thus we take a' to be in this plane. By taking the azimuthal angle <f> to be
in the plane perpendicular to qv (Fig. 5.17) we obtain

or, if the angle between qj, and a is /3,

Thus
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and

The scattering rate is therefore

where r* is the effective classical electron radius. The scattering cross-
section corresponding to this rate is

which is the solid state analogue of the classical Thomson scattering
solution and is rather small, although generally in semiconductors it is
much larger than for free electrons.

According to eqn (5.183) the frequency shift of the scattered light is
proportional to the group velocity, and a measurement of this can yield
information about the electron distribution in hot-electron experiments.
Perhaps more promising for the future is that the scattering of high-power
coherent radiation may in principle yield information about the band
structure.

5.13.1. Scattering of laser light

A high-power coherent laser beam in the infrared can be depicted as a
classical electromagnetic wave with an electric field at a given position
equal to

For simplicity we regard the dimensions of the semiconductor to be small
compared with the wavelength. This electric field accelerates the electron
through the band, and if it is large enough and if the frequency is high
enough so that collisions are unlikely in any one cycle the electron will
traverse up and down the band and radiate light the spectrum of which
will be indicative of the band structure.

If all collisions and all inter-band transitions are ignored, the electron
motion will be determined by
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and the classical scattered intensity at an angle 6 and distance r is

The acceleration u is obtained from

In an isotropic band

with a constant effective mass

and we return to the Thomson scattering solution. However, the mass is
not a constant throughout the band and the scattering is no longer
classical.

For simplicity let us assume an isotropic band with a minimum at k = 0
and of shape given by

where a is the unit cell dimension. If the electron starts at fc = 0, then
from eqns (5.192) and (5.193)

in the direction of the field.
From eqns (5.196) and (5.198)

where wz is the Bloch-Zener frequency. In terms of the frequency of
scattered light, Fourier analysis gives
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where J2,+i(zn) is a Bessel function. The square of this acceleration
determines the spectrum of the scattered light, which consists of har-
monics of the incident beam. The intensity of a harmonic is determined
by the intensity of the incident beam through o>z and hence zn, and also
by the band structure through Fn. In principle, therefore, we could 'look'
at a band structure by examining the frequency distribution of scattered
radiation from a high-powered laser the frequency and intensity of which
satisfy the conditions

where T is a scattering time constant and wv is well below the absorption
edge. As far as the author is aware experiments of this sort have not been
proposed hitherto, but with the increasing availability of high-power
lasers and associated measuring devices and techniques they may soon be
attempted.

5.14. Appendix: Justification of effective-mass approximation in
light scattering

The total rate is (ignoring the momentum of light)

where

Ei and Eint are the initial and intermediate energies respectively, and the
bands are labelled by n with 0 denoting the initial band. The time-
dependent factors have been subsumed in the delta function, and we have
anticipated momentum conservation in labelling the states. Since no light
corresponding to the scattered beam is incident, there can be no corres-
ponding stimulated processes but only spontaneous emission. Conse-
quently there are only two possible virtual transitions. The first involves
the virtual absorption of an incident photon of energy hwv (the electron
makes a virtual 'vertical' transition to any state denoted by |nk)) followed
by the spontaneous emission of a photon in the scattered beam with the
electron returning to its initial state. The second process places the
spontaneous emission first and the absorption second.
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The matrix element is thus

If the photon energies are negligible

However, from k.p theory (Chapter 1, Section 1.11) we know that the
term in parentheses can be replaced by m/m* (assuming for simplicity an
isotropic band). Consequently

which shows that the effective-mass approximation is justified provided
that hwv is small.
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6. Non-radiative processes

6.1. Electron-lattice coupling

The one-electron Schrodinger equation including the electron-lattice
interaction is

Hep is the interaction energy responsible for lattice scattering of electrons
in band states and is a function of optical and acoustic strain in the lattice.
The lattice displacements can be expanded in terms of dimensionless
normal coordinates Qi where

Xj is a normal co-ordinate for the ith vibration mode, we is its angular
frequency, and M is the mass of the unit cell for acoustic vibrations or the
reduced mass for optical vibrations. We assume, as usual, that the
electron-lattice interaction is linear in Qj:

where V is the interaction energy 'vector'.
Usually, we are interested in Hsp as an interaction inducing transitions

between conduction band states at a rate determined by first-order
time-dependent perturbation theory. This time we are interested in the
time-independent perturbation of the electronic state since this reveals
the dependence of the state on lattice distortion. Perturbations add to any
one state components from all other states to a degree which, other things
being equal, falls off with energy difference. For simplicity we shall
consider a system in which only two states are mixed together. To obtain
a first-order correction to energy we need wavefunctions to zero order
only:

where subscripts 1 and 2 label the states, subscript zero labels the solution
in the absence of perturbation, and
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where |1) and |2> refer to the unperturbed states. In order to obtain the
effect of the perturbation on the wavefunctions we must go to second-
order perturbation theory for energy, whence

and similarly for level 2, where E11 = E10+H11 and

Carrying this procedure to infinite order one can obtain for the wavefunc-
tion (Kovarskii 1962)

where E21= E20 + H22, and for energy

Therefore

The double solution in eqn (6.10) indicates a crossing of levels when
EH —E21 (Fig. 6.1). Except near this crossing El and E2 vary linearly
with Q provided that the transition energy H12 is small. These energy
shifts are determined by the interaction energies Hu and H22 respec-
tively.

These shifts feed back on the lattice dynamics. In terms of dimension-
less normal co-ordinates the lattice Hamiltonian is

FIG. 6.1. Crossing of two levels by electron-lattice interaction.
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The full adiabatic one-electron Schrodinger equation for the electron in
level 1 is

where Et is the electron energy in level 1, O are the harmonic oscillator
wavefunctions, and Etot is the total energy, vibrational plus electronic. E1

is now a function of Q through the electron-lattice interaction. Substitut-
ing for E1 from eqn (6.9) gives

Now Hn = Vu .Q = I, ViiA, and H12 = £, Vi2iQj. The term in H2 intro-
duces a frequency shift through its introduction of Q2. If H12j/H12« hwi

this shift will be negligible, even near cross-over, when E1-E21«H12.
Since H12i is associated with one mode and H12 is the sum for all modes
it is usually permissible to neglect frequency shifts entirely. Only if the
interaction is strong for a few modes, e.g. local modes, will this neglect be
questionable. The linear term Hlli introduces a displacement of the
oscillator. In terms of displaced oscillators the equation becomes

where

Qil is the displacement for mode i when the electron is in level 1. When
it is in level 2 the displacement changes to Qi2 = - V22j /hwi (Fig. 6.2).

An important quantity is the vibrational energy associated with the
shift from displacement Q(1 to displacement QJ2, since this will be excited

FIG. 6.2. Displacement of oscillator: vibrational plus electronic energy.
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whenever the electron makes a transition from level 1 to level 2 or vice
versa. This quantity is often called the Franck-Condon energy, and it is
given by

When all modes have the same frequency it is useful to express this
energy in terms of the number of phonons involved:

The factor S was first introduced by Huang and Rhys (1950).
The main effect of electron-lattice coupling is to displace all the lattice

oscillators and to introduce energy shifts of the electronic levels. With an
interaction which is linear in the lattice co-ordinate, these shifts are linear
also (except near cross-over). Although we have discussed a system
with only two electronic levels, it is clear that our results for displacement
and shift apply to any number of levels since they depend only on
first-order perturbation and this does not mix states.

The total energy thus consists of three components: (a) a purely
electronic energy Ew, (b) a strain energy — \ho> £, Qfj, and (c) the
vibrational energy.

6.2. The configuration co-ordinate diagram

A useful fiction is to regard the energy of the system as depending only
on a single normal co-ordinate Q known as the configuration co-ordinate.
The correspondence with reality of this picture depends on how many
vibrational modes contribute to the total energy. In the case of a diatomic
molecule or an impurity centre with a strongly coupled local mode, a
single co-ordinate may be a reasonable assumption. Generally, however,
Q has to stand as a one-mode model co-ordinate for a real N-mode
system where N is the order of the number of atoms in the material (Figs.
6.3 and 6.4).

The energies of the ground and excited states are

assuming that the vibrational frequency is unchanged and the interaction
at cross-over is negligible. The energy differences at Ox and Q2 are
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FIG. 6.3. Configuration-co-ordinate diagram.

where E0 is the difference in energy between the ground and excited
states and involves the strain energy of the distortion as well as a purely
electronic part.

In an optically induced transition in which an electron moves from the
ground to an excited state the movement of ions can be neglected to a
good approximation because they are so much heavier. This approxima-
tion is usually referred to as the Franck-Condon principle. It implies that
the favoured optical transitions on the configuration co-ordinate diagram
occur vertically. Thus for absorption and emission

FIG. 6.4. Non-degenerate cross-over.
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and the difference 2Shw is known as the Stokes shift. Such a shift
between absorption and luminescent frequencies is well known in lumi-
nescent materials. The absorption of a photon excites the electron and
causes the appearance of S phonons. The emission of a photon de-excites
the electron but still results in the emission of S phonons.

Non-radiative excitation may occur only if sufficient vibratory energy is
present. At least E0/hw phonons must be absorbed. Classically, enough
energy to reach the cross-over is required. It can easily be shown that at
cross-over

Non-radiative de-excitation can occur even in the absence of vibratory
energy, and phonons are emitted. Classically, enough vibratory energy
must be present to overcome the barrier EB given by

The classical expectations are more likely to be fulfilled at high tempera-
tures when many phonons are excited.

The configuration co-ordinate diagram can therefore help to explain
how optical transitions occur with the involvement of many phonons and
how multi-phonon processes can explain thermal generation and capture.
It is possible to obtain very simply semi-classical expresssions for the
thermal generation and capture rates, as we shall show in the next
section. We then go on to give the quantum theory of thermally
broadened radiative transitions and to outline the quantum theory of
thermal generation and capture.

6.2.1. Semi-classical thermal broadening
The thermal broadening of optical absorption bands can be described on
the basis of the configuration co-ordinate diagram in a semi-classical way.
If hw is the quantum of vibrational energy, the probability of there being
vibrational energy Ev in the ground state is given at thermodynamic
equilibrium by statistical mechanics as
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A vibrational energy Ev corresponds to an amplitude Qv given by

Given that optical transitions occur without change of Q, the energy in
the excited state at Q = Qv is

A transition from the vibrating ground state to the excited state requires a
photon of energy given by

Solving for Ev we obtain

and thus the probability of absorbing a photon hwv is proportional to

which describes a Gaussian absorption band. Emission can be similarly
treated, and E 0 —Shw replaces E0 + Shw in the exponent.

6.3. Semi-classical thermal generation rate

Before embarking on the semi-classical argument let us look at how
classical physics might be used to calculate the thermal rate of generation
of an electron from an impurity centre. The only possibility of transition
in the classical viewpoint occurs at cross-over (see Fig. 6.3). Now the
system, if it vibrates with just the right amplitude, reaches cross-over once
every cycle, i.e. at the rate of the frequency /. Let Px be the probability of
making the transition when the system is at threshold, and P(EX) be the
probability of the system having energy Ex. Then the rate is

In the phonon picture P(EX) is given at thermodynamic equilibrium by
statistical mechanics as follows (eqn (6.27)):

To obtain the classical result we can put hw = AE and let AE become
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very small:

If we take the probability for the transition to be just 1 we obtain

In the limit AE -> 0 the rate is zero. Thus, if the energies of the two states
are defined with classical precision there is no possibility of a transition.

In the semi-classical model we relax this precision and consider the
cross-over to be the close approach of two levels over a range AE. We
can picture the vibration as one in which the system swings through the
'cross-over' in a time At. Time-dependent perturbation theory gives the
transition rate at cross-over as

where V2 is a squared-matrix element and N(E) is the number of final
states per unit energy. Let us take one final state; then

State 1 decays exponentially in time as the system transits through
cross-over, and thus the probability of a transition is 1—exp(-w Af).
However, there is always the possibility of a back transition. The proba-
bility that this does not occur is just 1—exp(-wAf) multiplied by
exp(-w At). Consequently the net probability is

and since this applies as the system oscillates back through cross-over we
finally obtain the net probability of a transition, given that the system at
least reaches cross-over, of

This result was obtained by Zener (1932) (see also Landau and Lifshitz
1965).

We now express At and AE in terms of the shape of the energy curves
in the configuration co-ordinate diagram. In fact, since w At <* Af/AE we
require their ratio. We can express this ratio as follows:
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Now

Therefore

and

The net probability of a transition maximizes at 1 when exp(—w At) = 1.
This occurs when w At is of order unity. (To be precise w At = log 2).
Since Vx is a perturbation V2 is a small quantity, and hence the
maximum corresponds to the case when E ~ Ex. This is the semi-classical
analogue of the classical situation. The transition rate at high tempera-
tures is therefore simply

The subscript r denotes that this rate occurs only for the resonant case
E = EX.

Thus a semi-classical approach can yield a transition at cross-over
provided that w At = log 2. However, since the vibrational energy E must
change by at least one quantum hw, a resonance is possible only if
-n-Vx/S1/2(ftft))3/2 is at least of the order of (tua)in, i.e. if (Vx/ftw)2^
S1/2/ir. In practical cases of interest it turns out that 1« S < 20, and so for
resonance to be plausibly attainable (Vx//uo)2^l. However, in the great
majority of applications in solid state physics Vx, being associated with a
perturbative electron-lattice interaction, is small compared with tua and
the chance of a resonance is correspondingly small. Therefore in most
cases we can rule out the resonant transition at cross-over as the principal
mechanism. In this respect the semi-classical result agrees with the
classical conclusion.

There are many other possibilities of transitions corresponding to
E > EX. In these cases w At« 1 and
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By weighting each vibratory state with P(E) and summing over all
E ̂  Ex we obtain

where the subscript nr denotes the non-resonant case. This result was first
obtained by Henry and Lang (1977).

The thermal capture rate is obtained from detailed balance at ther-
modynamic equilibrium:

where g1 and g2 are the degeneracy factors for the ground and excited
states respectively. (The occupation probability for a state is {1 +
g~1exp(E-F)/fcBTr1 where F is the Fermi level.) Thus

where £B is the vibrational barrier height. The capture cross-section is
defined by

where V is the volume of the cavity and uk is the group velocity of the
electron.

6.4. Thermal broadening of radiative transitions

In the absence of an electron-lattice interaction radiative processes could
proceed without the oscillator states being disturbed. With a finite
electron-lattice interaction as described in Section 6.1 the oscillator states
cannot avoid being disturbed because the oscillators become displaced
when the electron changes its state. Even when the perturbation which
causes the electronic transition does not act directly on the lattice modes,
phonons are absorbed or emitted because of the displacement. The
electromagnetic perturbation acts on the electron only (provided that the
radiation frequency is far from the lattice absorption bands) but the
transition matrix element must contain vibrational as well as electronic
wavefunctions.

In a first-order radiative transition where the perturbation is Hv the
rate is given by the expression (cf. Chapter 5, eqn (5.1))



Thermal broadening of radiative transmissions 245

In the adiabatic approximation we can express the state ket-vector as

where |ie) is the electronic vector and |iL) the lattice vector. As we saw in
Section 6.1 |i«.) is a function of the oscillator co-ordinate Q, although to
first order it is not. The electromagnetic interaction is not a function of Q,
and so a simplification can be made by neglecting all Q dependence of
the matrix element. This has been commonly termed the Condon approx-
imation. Its validity rests on the Q dependence of the electron wavefunc-
tion being weak and on the initial and final states being close to the
minima of the vibrational curves, so the spread of Q is small. What the
Condon approximation allows us to do is to separate the matrix element
into a purely electronic component and a purely vibratory component
involving nothing more than the overlap of oscillator wavefunctions:

If the oscillator were not displaced <fL | IL) would be unity provided that
no phonons were absorbed or emitted and zero otherwise. Because they
are displaced any one mode contributes a factor less than unity even if no
phonon is absorbed or emitted, and it contributes a non-zero factor if
phonons are absorbed or emitted.

With the possible change of phonon number taken into account,
conservation of energy entails that, for the absorption of a photon tuav,

where nt is the number of phonons in mode i initially, and n' is the
number finally. Let us specify hwv and Et and work out the rate
involving a given amount of phonon energy Ep emitted:

where

It is convenient to replace the delta function by its integral representa-
tion
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and to express the overlap element in terms of oscillator wavefunctions
<£m(Qi) where n is the number of quanta excited:

There are several ways of computing the broadening factor J(EP). A
convenient approach is to use the Slater sum:

Thus we can put

where the prime denotes final state quantities and Qf is the displaced
co-ordinate, and sum over the initial states, weighting each state with its
probability P(Ei) where Et = (n+1)hwi (see eqn (6.34)):

We can also convert the integral over energy in eqn (6.56) to a sum over
n' by replacing dE by hwi. Thus

Substituting from eqn (6.60) and using the Slater sums leads to
straightforward integrations over Q; and Q,, and we obtain

where
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and Q0 and QQ are the co-ordinates of the centre of the oscillations in the
initial and final states respectively (see eqn (6.15)). If the centres of
oscillation coincide, wp = 0 and J(Ep) = l. Otherwise, a simple analytic
expression for J(EP) can be obtained only if a single-frequency approxi-
mation is adopted. For this case

where S is the Huang-Rhys factor (eqn (6.17)), ph<a = h<Dp (eqn (6.64)),
Ip(z) is a modified Bessel function of order p, and n is the Bose-Einstein
factor (Fig. 6.5).

Some properties of the broadening function are worth noting. It is a
maximum for p = S at all temperatures. For absorption of phonons p
changes sign, which affects the exponential but not the Bessel function

Flo. 6.5. The thermal broadening function J(EP): T* = fcBT/n<u. S = 3.
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since 7p(z) = I_p(z). It is sometimes useful to note that

and that

Simple expressions for the modified Bessel function can be obtained in
the limiting cases of (a) low temperature-weak coupling and (b) high
temperature-strong coupling:

Thus at low temperatures such that 2S{n(n + l)}1/2«p and n« 1

which is a Poisson distribution about a mean at p = S. The probability of a
zero-phonon process is exp(-S) (which is true even though the condition
2S{n(n + l)}1/2«p is not satisfied). Thus, transitions without phonon
participation are positively discouraged for S2>1. The most probable
process is one in which S phonons are emitted. This is in accord with the
Franck-Condon principle and with our discussion of optical processes on
the basis of the configuration co-ordinate diagram.

At high temperatures we approach the classical condition when n »1.
Provided that 2S{n(n + l)}1/2»p we obtain, with n~kBT/h<a,

which again maximizes at p = S. This is now a Gaussian distribution over
energy with a half-width (k^TStua)1'2.

Any electronic transition caused by a given photon is thus dependent
on phonon participation. To obtain the total rate we must sum over all
possible phonon emissions and absorptions:

A finite rate will now be found even for hwv < E0, where E0 is the phonon-free
threshold, since phonons can be absorbed. Whether or not phonons can be
absorbed or emitted is determined by the density of final states being
non-zero. The most probable case is for S phonons to be emitted. For
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transitions such that htav >E0+Shw we can approximate the sum in eqn
(6.73) by using the normalizing property depicted in eqn (6.68) and
taking the density of states to be that corresponding to S phonons having
been emitted. In this way we return to the rates computed for the
phonon-free case but with an effective threshold at

i.e.

Figures 6.6 and 6.7 illustrate the validity of this viewpoint for photo-
ionization cross-sections. At and below this effective threshold we must

FIG. 6.6. Photo-ionization cross-section for neutral donor centre: solid curve, S = 3,
T = 0-lfK0p/fcD and T = 0-4faop/kD; dotted curve, S = 0; broken curve, S = 0 shifted by

Sfttap; x = feo/Er; ET = 20 hate. (After Ridley 1980.)
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FIG. 6.7. Photo-ionization cross-section for charged donor centres: solid curves, S = 3;
dotted curves, S = 0; broken curves, S = 0 shifted by Stuap; x = fei>/Br; E, = 20fcop;

i>(Z<0) = 0-l. (After Ridley 1980.)

evaluate the sum explicitly in order to describe the spectral form. This
approximation is also inadequate for describing apparent shifts of
threshold with temperature. Usually, one has to compute the sum numer-
ically to describe temperature dependence accurately (Fig. 6.8).

For optical transitions involving two discrete levels no sum over p is
necessary since only one p satisfies energy conservation. The basic optical
rate is given by eqn (5.20), Chapter 5. In this case J(EP) determines the
form of the absorption (or emission) band—Poissonian at low tempera-
tures, Gaussian at high.

Broadening affects radiative capture by reducing the frequency of the
most probable light emission to
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FIG. 6.8. Fit of theory to experiment in GaAs: Cr: points, experiment: curve, theory;
ETO = 0-66eV; B,. = 0-75eV; phonon energy, 0-03 eV. (After Amato et al. 1980)

which reduces the transition rate by a factor E0-Shw/E0 from the
phonon-free rate. Relative to the photo-ionization cross-section, the
capture cross-section becomes

which replaces eqn (5.30), Chapter 5. Here ql** and q°m are the wavevec-
tors in the medium of the absorbed and emitted light for the most
probable transitions, i.e. those in which S phonons are emitted.
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A single-frequency model is clearly valuable in generating analytic
expressions, and a surprisingly smooth dependence on photon energy can
be generated in all cases. In reality, however, many frequencies will be
involved. Even so, because either there is strongly coupled local mode or
there is strongest coupling to the lattice modes which have the highest
density of states, a single-frequency approximation can be expected to be
plausible. In either case the frequency of importance will be roughly that
at the zone edge for the given type of mode. Given equal coupling
strengths V and zero symmetry restrictions, the most important contribu-
tion will come from the transverse acoustic (TA) modes since they have
the smallest energy and are therefore the most readily excited thermally.
However, centres with largely spherical symmetry are unlikely to couple
strongly to transverse modes but are more likely to interact with longitud-
inal modes, and so the frequencies involved are likely to be close to that
for LA and LO modes. Selection rules for coupling to phonons will be
discussed in Section 6.7.

6.5. Thermal generation and capture rates

When photons are not involved in the transition a new form of perturba-
tion is required. The electron-phonon interaction which induces scatter-
ing of electrons between band states and which has been shown in Section
6.1 to introduce displacements of the lattice oscillators cannot be invoked
since its effect is already accounted for. What remains is the perturbation
caused by the breakdown of the adiabatic approximation. This problem
has been discussed by Huang and Rhys (1950), Kubo (1952), Lax (1952),
Kubo and Toyozawa (1955), Rickayzen (1957), Gummel and Lax (1957),
Kovarskii (1962), Pryce (1966), Engelman and Jortner (1970), Passler
(1974), Stoneham (1975), and Ridley (1978a).

In Section 1,2, Chapter 1 the perturbation was shown to be of the form

In terms of a one-electron wavefunction and the displaced normal modes
of the lattice this can be cast in the form

where t/>(r, Q) is the one-electron wavefunction—a function of electron
position and of the normal co-ordinates through the linear adiabatic
electron-lattice interaction—and <t>(Q) represents the product of har-
monic wavefunctions, each a function of its displaced normal co-ordinate
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Qi. The transition rate can be expressed as follows:

where we have expressed the delta function in its integral representation.
The non-adiabatic perturbation is non-zero by virtue of the Q depen-

dence of the electronic wavefunction. This dependence is linear in the
lowest order of approximation which still contains Q as eqn (6.6) shows.
Taking this linear dependence makes the last term in eqn (6.79) vanish
and causes the Q dependence of the electronic part of the matrix element
to disappear through the differentiation. Thus we obtain the Condon
approximation, in which the electronic component of the matrix element
is taken to be independent of the lattice co-ordinate. Such an approxima-
tion was adopted by Huang and Rhys in their pioneering calculation.
Although the Condon approach may be valid when vertical photon
transitions are involved, it cannot be a good assumption for purely
thermal transitions in which relatively large amplitudes of vibration are
required. Instead of a linear dependence of «K'> Q) on Q we shall
therefore take the wavefunction to be of the form

with the subscript notation of Section 6.1. The Q dependence in the
numerator is

and that in the denominator is given by

(see eqns (6.4), (6.5), and (6.15)). Taking the denominator to be linear in
Q is the natural next step in order of approximation, and it is valid to
infinite order except close to cross-over. This approach was first adopted
by Kovarskii (1962) and recently illuminated by Huang (1981) (see
section 6.10).

To perform the calculations it is convenient to express the denominator
as

and follow the method of the Slater sum which was used to describe



254 Non-radiative processes

thermal broadening. The calculation is extremely laborious and we shall
not follow it in detail. The adoption of a single-frequency model leads to
the result for the thermal generation rate:

where S is the Huang Rhys factor, n the Bose-Einstein factor, and R is a
complex sum of terms containing modified Bessel functions.

Essentially, the terms in eqn (6.85) represent the contributions from (a)
the overlap of displaced oscillator functions which decreases with increas-
ing S, (b) thermal weighting of initial vibrational energy, and (c) the
probability of emitting and absorbing phonons such that overall p pho-
nons are absorbed. The non-adiabatic interaction induces any given mode
to absorb or emit up to four phonons and the overlap of the unaffected
modes provides the balance. Stoneham (1975) has termed the mode being
directly operated on by the perturbation as the promoting mode—the
others react passively as they did in the thermal broadening problem.

In the limit of low temperatures and weak coupling such that

we obtain the simplified result (Ridley 1978)

where

In this equation

and we have introduced the N-dimensional vector A whose components
are given by

so that

and for S«p, R0~Q-26 and R1 = 0-18.
From detailed balance the rate for capture is simply
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These rates exceed those calculated on the basis of the Condon
approximation by a factor (p/2)2. Such an enhancement is a direct
consequence of the increased mixing of the two electronic states induced
by taking into account the Q dependence of the denominator.

In the limit of high temperatures and strong coupling such that

we obtain the simplified result (Ridley 1978)

where Ex is the cross-over energy defined in eqn (6.24).
How does this result, which is derived rigorously within quantum

mechanics, compare with the semi-classical result of eqn (6.47)? It is
identical, provided that the semi-classical Vx is identified by

Such an identification can indeed be made, since at cross-over the matrix
element connecting the two states is in the quantum model

and from eqn (6.25), for weak coupling,

Thus

which can be equated with the semi-classical interaction energy at cross-
over. Thus the identification between the quantum-theoretical and semi-
classical results is complete. It is not surprising that the agreement is with
the non-resonant solution. Our model specifically deals with arbitrary
vibrational energies not to near cross-over and is therefore a non-
resonant model from the outset.

The capture rate at high temperatures is given by

where EB is the height of the vibrational barrier.



256 Non-radiative processes

The resonant case has been considered by Kovarskii and Sinyavskii
(1963), but their result does not appear to agree with the semi-classical
formula (eqn (6.45)). If we take the semi-classical formula to be valid, the
ratio of non-resonant to resonant rates is

where Vx is the semi-classical interaction energy at cross-over (eqn
(6.94)). We saw in Section 6.3 that for the resonant solution to be possible
(Vx/hw)2 had to be greater than or of order unity. Even if this were so,
the non-resonant solution dominates in the high-temperature regime
since kBT»h<a.

6.6. Bectron-lattice coupling strength

The quantities which govern the strength of multi-phonon processes are
the displacement factor A; = 2~1/2(Q2—Qi)f and the matrix element V12i

between ground and excited states. In order to calculate these we require
the explicit form of the energy factor Vf(r) in the electron-phonon
perturbation. Continuation with the single-frequency model implies that
the electron-phonon interaction should be taken to be of the form
associated with long-wave optical phonons or zone-edge phonons, which
means assuming that the principal electronic energy change is propor-
tional to displacement rather than strain, as it is in the scattering problem:

where a is the displacement and U is the energy change per unit
displacement. By expanding u in plane waves we can transform eqn
(6.100) to

where q* is the wavevector of mode i and N is the number of modes. In
the case of deformation potential coupling to optical modes and zone-
edge phonons we can assume that

where D is the deformation potential constant and M is the mass in the
unit cell. This form of coupling is the one used in the theory of lattice
scattering of electrons (Section 3.4 and eqn (3.116)). Higher-order coupl-
ing proportional to acoustic strain is also possible, but we shall assume
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that for some modes D is non-zero and that these modes make the
greatest contribution. Coupling to longitudinal optical modes is also
possible through the polar interaction. In this case

where M is the reduced mass, V0 is the volume of the unit cell and is
equal to a3 where a0 is 4-1/3 times the lattice constant in zinc blende
lattices, €a and € are the high frequency and static permittivities, and q0 is
the reciprocal Debye screening length. Piezoelectric coupling, which
depends upon acoustic strain, is also possible but it is likely to be much
weaker.

Let the final electronic state be one of the Bloch states |k) in the
conduction band and let the initial state be a localized state |T) at the
defect. The three matrix elements we must calculate are

The matrix element Q2i in eqn (6.104) is zero unless qf is a reciprocal
lattice vector. Since only a very small fraction of all modes can satisfy this
criterion Q2i can be regarded as negligible, and indeed infinitesimal as N
tends to infinity. Thus the electron-lattice coupling does not displace
oscillators when the electron is in a Bloch state. Even when a scattering
state is taken instead of a simple Bloch state, the displacement will be
small since most of the contribution to the matrix element comes from
distant regions of space where the Bloch function is a good approxima-
tion.

The other matrix elements depend upon the localized wavefunction. In
order to illuminate the principal features of the problem without becom-
ing involved in the uncertainties which attend the assignation of a defect
wavefunction, we shall follow the approximation used for the photo-
ionization of deep-level impurities and assume a billiard-ball-like form
for the wavefunction characterized by an effective radius rT and a volume
VT. This means that integrations over space involving localized state are
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limited to radii between zero and rT:

Rapidly varying parts of the localized wavefunction, which are equivalent
to the cell-periodic part of a Bloch function, are subsumed in the strength
of the coupling constant.

The coupling between states is given by

Strictly (3>i(q^) in this case is different from the equivalent term in eqns
(6.107) and (6.108) since different rapidly varying components are in-
volved, but for simplicity we shall assume them to be identical. Usually
we are interested in states near a band edge and for most cases we can
neglect k in the definition of the limits to qt.

To perform the sums over the phonon modes we approximate the
Brillouin zone by a sphere of radius qD = (6ir2AT/V)1/3 where V is the
volume of the cavity. The Huang-Rhys factor is then given by eqn (6.17):

For deformation coupling

For polar coupling, neglecting screening,

Maximum values of SD and SP occur when qDrr = TT. These are shown in
Table 6.1 for LO modes. (The radius qD of the zone can be obtained by
putting V = Ndo where a0 is 4-1/3 times the lattice constant, whence
<foa0 = (6Tr2)1/3.)
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TABLE 6.1
Limiting Huang-Rhys factors associated with the LO mode for some

semiconductors

a0(A) fto>LO (meV) ej«o e/e0 (MuLo/ftr^A) S a
d SP

GaAs
InP
InAs
InSb
GaSb
GaP
Ge
Si

3-55
3-70
3-82
4-08
3-84
3-43
3-56
3.42

30
39
20
16
23
50
30
55

10-9
9-52

11-8
15-7
14-4
9-04

16-0
11-9

13-18
12-35
14-55
17-72
15-69
11-1
16-0
11-9

0-06212
0-06629
0-06790
0-06649
0-06402
0-06243
0-06196
0-07355

53
35

142
212
95
19
26
11

2-66
2-98
3-75
1-99
1-15
2-14
0
0

" It is arbitrarily assumed that D = 5 x 108 eV cm"1.

Because the polar coupling is stronger at longer wavelengths and
because the sum over modes weights short wavelengths heavily, the
Huang-Rhys factor for polar coupling is relatively small even when a
modest deformation coupling strength is assumed. In the case of inter-
valley scattering in silicon D is effectively of order 1 x 109 eV cm"1!, and
if this value were assumed the values for SD would rise by a factor of 4.
However, SP is less sensitive to the radius of the localized state and so will
be larger than SD for extended states, though in absolute value it will be
small. Practical strengths of coupling therefore rely mainly on deforma-
tion potential coupling.

Extended localized states such as those which can be described by
effective mass theory—whether hydrogenic or quantum defect is
unimportant—are only weakly coupled to the lattice. For such states qDrT

may be 10rr or more and SD will be reduced from its maximum value by
the order of 103 to a small value. Figures 6.9(a) and 6.9(b) illustrate this
effect for quantum-defect centres. In contrast, deep-level impurities will
have qDrT» 3ir and significant magnitudes for SD and SP will be obtained.
In that rT can be expected to vary only weakly among deep-level
impurities in a given semiconductor, the strength of coupling ought not to
differ very significantly from one deep-level centre to another provided
that the same modes are involved.

The magnitude of SD is sensitive to the phonon energy of the mode.
The values in Table 6.1 are for LO modes. They would be higher for LA
modes and especially so for TA modes, given equal coupling strengths.

+ This figure is not the deformation potential constant for a single mode but rather a
quantity describing the result of three modes scattering to five equivalent silicon valleys.
When this is taken into account it turns out that the average D associated with a single
mode of high frequency is 5 x 108 eV cm-1.
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FIG. 6.9. Huang-Rhys factor (as a ratio of maximum value) as a function of level depth for
quantum-defect states for a£/a0 = 20 (solid curves) and a£/a0= 10 (broken curves) and for
centres with charge +1, 0, and —1. OH is the effective Bohr radius, a0 is the unit cell
dimension and is 1/41/3 times the lattice constant. (a) Deformation potential interaction; (b)

polar interaction. (After Ridley 19786.)

From eqn (6.110) and summing over the modes, we obtain the transi-
tion factor for deformation coupling:

The latter equality assumes that the same modes contribute to both V2
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and to SD. For polar coupling

Finally, the transition factor |V12.A|2 is, for deformation coupling,
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FIG. 6.10. Temperature dependence of the capture rate: E0 = 0-4eV; S = 6; fta> = 0-03eV;
p = 13; rT/ag = 0-05. (After Ridley and Amato 1981)

where again the latter equality assumes that the same modes contribute to
both V12 and A. For polar coupling

We have expressed these elements in terms of the Huang-Rhys factor,
since it is this factor which is most easily obtained from measurement.
However, it should be noted that in our simple model V?2 does not
depend upon the extent of the localized wavefunction in the case of
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deformation potential coupling, which can be seen by substituting VT =
4irrT/3 in eqn (6.114). Moreover, both elements are infinitesimal because
of the factor VT/V, which rules out any sort of resonant transition.

Substituting these model values for Vf2 and |Vi2.Ap in eqn (6.88) gives

with w = 5xl013s"1 (hw ~ 0-033 eV), S = 3, p = 20 (E0 = 0-66eV), and
VT=10-21cm3, the volume rate W0V is 1-5 x 10-15 cm3 S-1 which is
insignificant, but if S = 6 the rate is about 10-10 cm3 s-1 which is signific-
ant. This demonstrates how sensitive the rate is to S. If p = 15
(E0 = 0-50eV) the volume rate with S = 3 becomes 6-4 x 10-12 cm3 s-1

and the volume rate with S = 6 becomes 1-0 x 10-8 cm3 s-1, both of which
are significant rates. This demonstrates how sensitive that rate is to the
depth of the level. Note that the corresponding cross-sections (obtained
by dividing by the thermal velocity of the electron, i.e. about 107 cm s-1)
lie between about 10-22 and 10-15 cm2. Such magnitudes are commonly
observed in experiments. Figure 6.10 shows the temperature dependence
of the volume capture rate based on the above model.

If the final state is an extended excited state of the same centre the
treatment follows through as before, but with V replaced by Vex in the
matrix elements where Vex is the volume of the excited state and is
assumed to be much larger than VT. Equation (6.118) then becomes

Thus, with Vex ~ 10-18 cm3, p = 20, and the other parameters as before,
W0 is 103 s-1 for S = 3 and 108 s-1 for S = 6. With p = 15 the correspond-
ing rates are about 106 s-1 and 1010 s-1 respectively.

6.7. Selection rules for phonon-impurity coupling

In our discussion of the squared matrix elements S, V2, and |V12.A|2 we
have implicitly assumed that any selection rule for phonon participation
applies equally to all three parameters. Moreover, we have seen that the
magnitudes of these quantities, and of the transition rate, are very
sensitive to phonon energy, and therefore it is very important to deter-
mine which phonon interactions are allowed and which are forbidden in
the case of deformation potential coupling. The density of states throws
emphasis on phonon modes near the zone edge, and that has been used to
justify a single-frequency approach. A guide to which phonons can
participate can be obtained from group-theoretic arguments involving
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zone-edge phonons at the high symmetry points L and X (Loudon 1964;
Birman, Lax, and Loudon 1966; Amato and Ridley 1980).

Table 6.2 gives the space-group representations of phonons, and Tables
6.3 and 6.4 show how these can be reduced to a sum of point-group
representations at a cubically symmetric site in diamond and zinc blende
lattices. Matrix elements involving a substitutional impurity in a tet-
rahedral site can then be examined using elementary group theory. For a
transition to be allowed the matrix element (t\H|i) must contain the

TABLE 6.2
Phonon symmetries in diamond and zinc blende lattices.

Lattice r X L

Diamond

Zinc blende

r25(o)+r15(A)
2P4(A,0)

X1(LO, LA) + X3(TA) + X4(TO)

X^A or LO) + X3(LO or LA)
+ 2X5(TA,TO)

Lr(LO) + L3.(TA)
+ L2(LA) + L3(TO)

2L!(LA, LO)
+ 2L3(TA,TO)

With the origin at the A site in compound AB, LA has Xt symmetry and LO has X3
symmetry if MA<MB and vice versa if MA>MB (M is the mass).

TABLE 6.3
Space-group to point-group reduction coefficients for phonons in

diamond

PMi) P2(A2) P3(E) P4(T2) PjCTO

r25'
TIS
x,
X3
X4
L!
L2
L3
L,

1

1
1

1

1
1

1
1
1
1
1
1
1
1
1

1
1

1
1

TABLE 6.4
Space-group to point-group reduction coefficients for phonons in

zinc blende

Pi P2 P3 ?4 P5

x,
X3
X5
L!
L,

1

1

1

1

1
1
1
1

1

1
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TABLE 6.5
Character table for Td

E 8C3 3Cj 6<rd 6S4

PiCAO
P2(A2)
P3(E)
P4(T2)
PsCT!)

1
1
2
3
3

1
1

-1
0
0

1
1
2

-1
-1

1
-1

0
1

-1

1
-1

0
-1

1

From Koster 1957.

totally symmetrical representation P1. If the symmetries of |f), H, and |i>
are Pt, PH, and Pi respectively, then that requirement implies that the
direct product PH x Pi must contain Pf. The direct products can be worked
out from Table 6.5 which is the character table for the site group Td of
the diamond and zinc blende lattices. The results for the principal matrix
elements A and V12 are given in Table 6.6 for some simple cases. If a
given mode is allowed at both X and L points it is a good indication that
it will participate at other points in the zone, but if a mode is forbidden at
both X and L its participation is almost certainly weak or negligible.

Table 6.6 shows that the assumption made in eqns (6.114) and (6.116)
that the same phonon modes contribute to both matrix elements is true
only if the initial and final states have the same symmetry. Where these
symmetries are different, different phonons contribute. Thus, in a Pt —» P4

ionization, only the LO phonon or the LA phonon contributes to both A
and V12, and hence it is the only mode to contribute to V12.A. Another
general point which emerges is that a localized state with P4 symmetry (|p)
state) couples to more modes than a P1 (|s)) state and is therefore likely to
be more strongly coupled. However, it may be expected that in many
cases the ground state of the impurity centre has the spherically symmet-
ric P1 symmetry, in which case the important phonons are the LA and LO
phonons and possibly only those with Xt symmetry. If the latter is the
case a determination of the energy of the phonon most strongly coupled
would indicate whether the impurity resided preferentially on the A site
or the B site in a compound semiconductor.

6.8. Phonon-cascade capture

Capture cross-sections associated with radiative transitions are only of
order 10-21 cm2 (Chapter 5, Section 5.2). Those associated with multi-
phonon transitions span many orders of magnitude depending on coupl-
ing strength, depth of level, and temperature, but they are not expected



TABLE 6.6
Selection Rules for X and L phonons in multiphonon coupling

Symm<

Localized
ID

state

P!

PI

P4

P4

Jtry

Band
state

|b>

P!

P4

P!

P4

MV>M

A

LO + LA (L
only)

LO + LA (L
only)

LA+LO+
TA+TO

LA+LO+
TA+TO

Impurity c

m

V

LO+LA (L
only)

LA+LO (L
only) +
TA+TO

LA + LO (L
only) +
TA+TO

LA+LO+
TA+TO

Phonons allo1

on site V

Mnl>

A

LA+LO (L
only)

LA + LO (L
only)

LA+LO+
TA+TO

LA+LO+
TA+TO

wed in matrix elei

•Mv

V

LA + LO (L
only

LA (L only) +
LO+TA+
TO

LA (L only) +
LO+TA+
TO

LA+LO+
TA+TO

ments

MV>M

A

LA+LO (L
only)

LA + LO (L
only)

LA+LO+
TA+TO

LA+LO+
TA+TO

Impurity on s

m

V

LA + LO (L
only)

LA (Lonly) +
LO+TA+
TO

LA (L only) +
LO+TA +
TD

LA+LO+
TA+TO

ite III

Mm>&

A

LO + LA (L
only)

LO+LA(L
only)

LA+LO+
TA+TO

LA+LO+
TA+TO

fv

V

LO + LA (L
only)

LA + LO (L
only) +
TA+TO

LA + LO (L
only) +
TA+TD

LA+LO+
TA+TO

Amato and Ridley 1980.
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to exceed, say, 10-14 cm2. Neither mechanism can explain the observations
made in germanium by Koenig (1958) and by other workers in silicon of cross-
sections at low temperatures associated with the capture of electrons by
shallow hydrogenic donors which range in magnitude from 10-13 cm2 to
10-11 cm2 as the temperature is reduced from about 10 K with a temperature
variation of roughly T~"(\ < n < 4). Such giant cross-sections are explained in
terms of an electron sequentially emitting phonons and cascading down
through the excited states of the hydrogenic centre. This theory was first pro-
posed by Lax (1960), whose essentially classical treatment was subsequently
extended by Hamann and McWhorter (1964), and quantum-mechanical for-
mulations have been made by Ascarelli and Rodriguez (1961), Brown (1966),
and Smith and Landsberg (1966). The phonon-cascade mechanism is fraught
with statistical and quantum-mechanical problems (Abakumov et al. 1991).
Here we shall merely outline the essential elements.

Lax's approach was an adaptation of the theory of recombination in gases
developed by Thomson (1924). The essential idea is that an electron whose
energy is greater than 3 kB T will on average lose energy in a phonon collision.
An electron will gain energy by being accelerated by the coulomb field of the
ionized donor, so all collisions within a critical radius r0 defined by

will be energy losing. The cross-section ac is then just Tr2 weighted by the
probability that an energy-losing collision occurs every r0/A, where A is an
appropriate length. Energy and momentum conservation limits the amount of
energy an electron can lose in a single collision, which can be accounted for by
using the concept of the energy-relaxation mean free path /E, i.e. A = /E. If / is
the collision mean free path (eqn 3.79) then the energy-relaxation mean-free
path is IE = l(k^ T/2m*v%), which is energy and temperature independent. With
4r0/3 as the average distance across the sphere, the cross-section becomes

Thus, ac is proportional to T-3. (Note that Lax's result is incorrect in pre-
dicting a T~4 dependence (Abakumov et al. 1991). With an energy-relaxation
mean free path for acoustic phonons estimated to be about 10-3 cm at 10 K,
Z= l, and e = 16e0, this cross-section turns out to be about 10-12 cm2, which is
indeed the right order of magnitude. The emission of an optical phonon of
energy hw0 is possible within a radius rop defined by

whence the cross-section becomes
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Since fop is usually larger than the acoustic phonon mean free path at low
temperatures and since hw0 » kBT, the contribution from optical modes is
not expected to be the dominant one. In piezoelectric materials collisions
with acoustic modes via the piezoelectric interaction will be important at
low temperatures.

This classical theory is defective in a number of ways. It assumes the
availability of a continuum of bound states. It takes no account of the
energy of the incident particle, it assumes that scattering into a bound
state occurs with the same probability as scattering into a free state, and it
assumes that once a collision occurs the electron becomes bound. A more
complete theory must take into account quantum-mechanical transition
rates into and between hydrogenic excited states, and it must calculate a
sticking probability for the electron in a given state. From the experimen-
tal point of view it is enough that the electron be removed from the
conduction process: how it gets into the ground state is another matter.
Yet that means that the theory must take account of impurity conduction
mechanisms. It is not surprising, therefore, that phonon-cascade theories
have hitherto resorted to numerical outputs.

Though very large cross-sections are predicted by the phonon-cascade
process, it is interesting to note that they could in principle be even
larger. The energy-loss mechanism associated with what is the sequential
emission of single phonons is as fast, or almost as fast, as scattering events
allow, but in practice it is still the factor which limits the capture rate.
However, suppose this scattering rate to increase such that many colli-
sions occur as the electron moves towards the centre. In such a case the
rate of capture is limited not by the energy-loss process but by the rate at
which the electrons move. This situation is described by a theory due to
Langevin (1903). The electrons drift with velocity vd given by the product
of the mobility and field:

The rate of influx through a spherical surface of radius r per unit electron
density is just the capture rate per unit density, or in alternative nomen-
clature the volume capture rate cc:

Dividing by the thermal velocity vth gives the capture cross-section: thus

With Z = 1, e = 16e0, Vth = 106 cm s-1, and u = 104 cm2 V-1 s-1 we obtain
a cross-section of 1 x 10-9 cm2. Observed capture cross-sections are at
least two orders of magnitude smaller than this, which indicates that the
capture process is not drift-limited.
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6.9. The Auger effect

The idea that a two-electron collision in which a substantial energy
change occurs could be a recombination or capture mechanism in non-
metals goes back to the suggestion of Frohlich and O'Dwyer (1950). Five
basic processes are depicted in Fig. 6.11. In process (1) two electrons
collide in the vicinity of a hole, one recombines with the hole, and the
energy released is absorbed by the other electron. We speak of a direct or
an indirect Auger effect depending on whether the energy gap is direct or
indirect. Process (2) incorporates a phonon whose momentum helps to
relax conditions on the energy and momentum of the colliding particles.
In processes (3) and (4) a localized state is involved, and process (5)
describes an internal transition in a donor-acceptor pair. The inverse of
each process corresponds to an impact-ionization mechanism, which in
semiconductors is usually the mechanism which brings about electrical
breakdown at high electric fields, no matter how low the carrier concent-
ration may be. However, under normal conditions a high concentration is
necessary for the Auger effect to compete significantly with other recom-
bination processes.

The rate for the direct Auger effect is closely related to the electron-
electron scattering rate discussed in Chapter 4, Section 4.7. The differ-
ence is that one of the electrons ends the collision in another band. The
rate is given by

In the case of electron-electron scattering we were interested in obtaining
a net collision cross-section which incorporated the effects of spin and
exchange, and |M|2 was obtained accordingly (see Chapter 4, eqn
(4.134)). In computing the rate for the Auger effect we shall employ the
matrix elements for each distinct situation without taking an average.

FIG. 6.11. Five basic Auger processes. Five more exist in which a hole carries away the
energy. The reverse of these processes leads to ten basic processes of impact ionization.
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FIG. 6.12. Four types of two-electron collision with conservation of spin for an incident
electron of a given spin.

We shall suppose that an incident electron in the conduction band,
which has wavevector k1 and a defined spin, collides with a second
electron in the conduction band, which has a wavevector k2 and either an
identical spin or its opposite. The four possibilities for the collision in
which spin angular momentum is conserved are shown in Fig. 6.12. Let
the wavevector k' refer to the valence band state and the wavevector k'
refer to the high-energy state in the conduction band.

The matrix element for process (1), the direct collision of two electrons
of identical spin, is

where we have assumed a screened coulomb interaction. Transformation
to the centre-of-mass frame of reference following the procedure of
Chapter 4, Section 4.6, leads to

for normal processes (umklapp processes are also possible but we shall
assume their contribution to be negligible here) and (cf. eqn 4.129)
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where

are overlap integrals, and we have used the fact that in the notation of
Section 4.6, Chapter 4, in which K1 = (k1 - k2) (see eqn (4.129)) the
following is true as a consequence of momentum conservation:

For process (2) (the exchange collision) the matrix element is given by

where the overlap integrals are

Since the particles have identical spins they are indistinguishable and
processes (1) and (2) interfere. The rate for the two processes therefore
involves the difference M12 - M21 since the exchange of an electron
changes the sign of the wavefunction.

Process (3) involves M12 and its exchange partners; process (4) involves
M21. Since the spins are opposed, processes (3) and (4) are distinguishable
and no interference occurs. Thus

(Note that Landsberg (1966) multiplies the right-hand side by 2 to take
into account the fact that there are two ways of choosing the spin of the
incident particle. We prefer not to incorporate that aspect at this point
since it more rightly belongs to a different calculation, that of the total
rate for the electron population. Here our primary concern is to calculate
the rate for a single electron which has one or other spin, but cannot have
both.)

We cannot avoid bringing in statistics at this point for it is necessary to
weigh the rate with the probability that state |k2) is full, |ki) is empty
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(occupied by a hole since it is in the valence band), and |k2) is empty. (The
incident electron state is full by hypothesis!) Assuming non-degenerate
statistics we can take the weighting factor P(k2, k') to be

where for near thermodynamic equilibrium

where n and p are the electron and hole densities, Nc and Nv are the
effective densities of states in the conduction and valence bands, Eck2 is
the energy of state |k2) measured from the conduction band edge, and
Evk1, is the hole energy of the state |ki) measured downwards from the
valence band edge. Thus

where Eg is the band gap. P(k2, k') provides the major part of the
temperature dependence of the transition rate.

If an additional weighting factor of f ( k 1 ) is added to take into account
the probability of there being an incident electron in state |k1), it can be
shown in the case of parabolic bands that for the most probable transition
as determined solely by these weighting factors, which is denoted by
P(k1, k2, k'), the following are true:

whence (Beattie and Landsberg 1959)

Also

The most probable transition therefore involves incident electrons and a
hole, each of energy given by eqn (6.140), which for u = 1 is Eg/6, and
the surviving electron is lifted to an energy given by eqn (6.142), which
for u = 1 is 3Eg. Equation (6.142) is the threshold energy for the reverse
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process of impact ionization. Usually u < l. In GaAs u = 0.1 and so the
incident energy is about 0.01 Et (~ 0.015 eV) and the threshold for
impact ionization is 1-1 Eg.

Several important simplifications can be made by exploiting the condi-
tions for the most probable transition and the fact that the probability
factor varies rapidly. To begin with, the overlap integrals vary compari-
tively slowly and so we can put

As a consequence of these equalities and of k1 = k2 we can further take

This means that we can neglect collisions between like spins, which is a
considerable simplification. Thus we assume

and take

In this approximation the transition rate for a given electron (although
now our incident electron must have properties not too far removed from
average thermal equilibrium ones) is

and each integration is over the states of a given spin.
Where all states in a scattering problem lie in a single band we can

approximate the overlap integrals by equating each to unity. In the Auger
effect this can be done in the case of r(k2,k2) (eqn (6.131)), but it
certainly cannot be done in the case of I(k1, ki). Because of the orthogon-
ality of the uk(r) for different bands but the same k, I(ki,ki) is, in the
crudest approximation, zero. By using k.p theory we can obtain I(ki, ki)
to the first order in the form

where pcv is the momentum matrix element for the conduction and
valence bands and m is the mass of the free electron. Unfortunately,
simple k.p theory is not adequate to describe the heavy-hole band (see
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Section 1.11, Chapter 1), but by using the f-sum rule we can express the
squared overlap integral in terms of the heavy-hole mass m* as follows
(see eqn (1.90), Chapter 1):

With the further simplification that screening is negligible we obtain

The integrations are rather awkward and some simplifying assumptions
are usually made in order to obtain analytic results. We shall assume that
the effective mass in the conduction band is much smaller than that in the
valence band, and that ki » ki. The latter assumption is consistent with
the former for the most probable transition, and in many direct-gap
semiconductors the conduction band mass is much smaller than the
valence band mass so the approximation has a practical application.

If the angle between k2 and ki - ki is 02 (Fig. 6.13) the argument of
the delta function can be written

Integration over the azimuthal angle of k2 yields a factor of 2rr, and
integration over cos 02 puts limits on the magnitude of k2 through the
delta function. Integrating over k2 finally converts the double integral in
eqn (6.150) to the following:

Fig. 6.13. Wavevectors in an Auger collision.
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We now use our approximation ki » k1 which makes the integration
over ki straightforward. We obtain

where X0(z) is a zero-order modified Bessel function of the second kind.
Since Eg/kBT is usually large, we can approximate H0(z) by its asympto-
tic form. If in addition u « 1, we obtain finally for the integration

and for the rate (with m*/m « 1 and substituting for np)

As far as the author is aware this simple expression has not been given
before. Although some fairly crude approximations have been used in its
derivation, it provides a useful expression for estimating the direct Auger
rate and for exhibiting the dependence upon band gap and temperature.
Thus for GaAs at 300 K (Eg = l-43 eV) the rate is about 5 x 10-17 s-1

which is entirely negligible, but for InSb (Eg = 0.18 eV) the calculated
rate at 300 K is 8 x l06 s-1 which is very significant. Equation (6.155)
exhibits the same functional dependence on material parameters as the
expression for recombination rate given by Beattie and Landsberg (1959).

Auger recombination is an important loss process in semiconductor
lasers in which carrier densities are of order 1018 cm-3, particularly at
room temperature or above. In order to recombine, excess carriers have
to surmount the energy barrier imposed by momemtum and energy
conservation, and this becomes increasingly difficult to do towards low
temperatures. Ultimately the Auger recombination rate becomes deter-
mined by phonon-assisted processes which allow the carriers to bypass
the energy barrier.

The theory of Auger recombination and impact ionization has been
extended to indirect-gap transitions by Hill and Landsberg (1976), and
there are several treatments of the Auger effect involving traps (e.g.
Landsberg 1970; Robbins and Landsberg 1980). A comprehensive treat-
ment of impact ionization including phonon-assisted processes has been
given by Robbins (1980). It is clear that Auger processes can be impor-
tant non-radiative processes in narrow-gap semiconductors at room tem-
perature and at higher temperatures. This is mainly due to the high carrier
concentrations which are present in such materials at elevated tempera-
tures. When the concentration of electron and end state—whether the
latter be hole or trap—reaches or exceeds about 1016 cm-3 Auger proces-
ses may become significant. However the trapping rate via the Auger
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effect at a hydrogenic centre is, according to Landsberg, Rhys-Roberts,
and Lal (1964) (recasting their expression)

where a* is the effective Bohr radius, n is the electron density, and pT is
the density of empty hydrogenic centres. In the case of GaAs for instance
a* = 100 A and thus Wtrap = 3.2 X 10-20npT s-1. Significant rates are thus
predicted for densities of order only 1014 cm-3 or even less, but they
would have practical significance only at exceedingly low temperatures.
Equation (6.160) can be generalized heuristically to apply to capture at
an impurity with a bound-state radius rT:

For levels much deeper than hydrogenic, rT in GaAs is likely to be of
order 10 A and thus Wtrap ~ 3.2 X 10-26 Densities of order
1016 cm-3 are required to obtain significant rates in such a case.

6.10. Impact ionization

The inverse process of Auger recombination is impact ionization.
Statistical factors are no longer necessary since the electron wavevector
k2, to be excited across the gap, is deemed with certainty to be in the
valence band, and the final states k' and k' are deemed to be entirely
empty, in a non-degenerate semiconductor. Thus

and incorporating the approximations of eqns (6.144) to (6.146) we
obtain

At threshold, all wavevectors lie along the same direction and

and for spherical parabolic bands

where as before u = m*/m*. Regarding the matrix element as virtually
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constant near threshold, we remove it from the integrand, and using the
above relationships, we obtain

Where we have put I2 = I2(k, k') and I2 = I2(k2,k'). The integrals can be
evaluated exactly (Robbins 1980),+ viz:

whence

where

The quadratic relation on energy was first obtained by Keldysh (1960).
In the simplest approximation of the overlap integrals IC = 1 and, for

heavy holes IV = 0. Using k.p theory and f-sum rules to estimate /, as we
did in the previous section, (eqn (6.149)) yields at threshold,

For GaAs, the magnitude of I2 is 0.38, on this basis. This is high
compared with the result of calculations using a 15-band k.p model and
a wavevector difference of 0.15 (2rr/a), which yields Iv ~ 10-2 (Burt and
Smith 1984; Burt et al. 1984) so, unfortunately we cannot take eqn
(6.166) as reliable. For light holes, straightforward k.p theory gives
IV = 0.91 for GaAs. Weighting this with the density of states ratio for the
light holes gives I2 ~ 0.06. With Ic ~ 1 then for GaAs,

The smallness of the overlap integrals make the impact ionization rate
rather small compared with the lattice scattering rates. It is usual to write
the ionization rate, following Keldysh, as follows

(The difference between having ET instead of Es is not large.) The factor
P measures whether the threshold is hard or soft, P » 1 being very hard.

f Equation (6.163) is derived assuming a parabolic band. For a simple generalization that does not
make this assumption for the impacting electron, see Ridley (1998).
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Since phonon scattering rates at high energies are of order 104 s-1, eqn
(6.165) suggests that the threshold is very soft, with P = 5 x 10-3.
However it has been pointed out that what matters is a comparison with
the energy relaxation rate rather than with the scattering rate (Ridley
1987), viz.

The relation between PE and P is obtained assuming optical-phonon
scattering is dominant, viz.

whence

Thus for GaAs PE ~ 50P, i.e. PE ~ 0.3. The observed value for electrons
is 3 (Ridley 1987). In view of the large uncertainties in our estimation of
I2 and of the phonon scattering rate, agreement within an order of
magnitude is to be regarded as satisfactory. We may conclude that the
ionization threshold is certainly not hard. Using the Keldysh criterion it is
soft, but using the energy-relaxation criterion it is neutral.

Beattie (1988) has recently analysed the energy dependence near
threshold for ellipsoidal bands and obtains a more rapid variation with
energy. The same author has also pointed out a method for tackling
awkward multidimensional integrals without making simple approxima-
tions (Beattie 1985).

6.11. Appendix: The multiphonon matrix element

Recently Huang (1981) has shown how the calculation may be simplified
without sacrifice of accuracy. Let

If the diagonal elements of the electron-phonon interaction, i.e. Hn and
H22, are incorporated into the zero-order electronic hamiltonian, and the
off-diagonal element H12 is regarded as the perturbation, then

exactly as in eqn (6.81). The diagonal element in each case merely shifts
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the energy in the zero-order electronic equation, viz.

and similarly for the excited state. So far nothing is different. The
simplification occurs in the calculation of the matrix element, for it turns
out that

where HNA is the non-adiabatic operator, i and f refer to initial and final
states, electronic (e) and vibrational (v).

The proof of eqn (6.165) is simple. We first observe that (eqn (6.79))

Using the fact that

we may recast eqn (6.166) in the form

whence

The trick is to observe that the operator Ei (a2/aQ2) is Hermitian and
so

But this operator is (apart from a constant factor) the squared-momentum
operator. From the Schrodinger equation for the displaced oscillators
(eqn (6.13)) we may therefore infer that, neglecting frequency shifts,
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and hence

Conservation of energy entails that Etot 2 = Etot 1, and therefore the
energy term in eqn (6.172) exactly cancels the energy denominator in the
expression for f(Q) in eqn (6.163). Thus

In this form, the matrix element is much simpler to calculate.
As pointed out by Huang, it is identical to the transition matrix element

assumed in the so-called static coupling theory of Helmis (1956), and
Passler (1974). Huang's proof shows that Kovarskii's non-Condon ap-
proximation and the static coupling scheme are entirely equivalent.
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7. Quantum processes in a magnetic field

7.1. Introduction

IN A strong magnetic field an electron is constrained to move in orbits in the
plane perpendicular to the field, though its motion parallel to the field is
unaffected. If the orbital field is comparable or much shorter than the
scattering time, the motion is coherent and, as described in Section 2.4, is
quantized into Landau levels. Scattering is then no longer a matter of
transitions between plane-wave states, but rather a transition in which the
electron can jump from one orbit to another and it can also change its kinetic
energy associated with the motion parallel to the field. The effect of the field
is to localize the electron in the transverse plane and scattering takes on
many of the attributes of a hopping mechanism. Indeed, in the transverse
configuration in which an electric field is applied perpendicular to the
magnetic field, transport of charge can occur only through the scattering
mechanisms. This state of affairs is diametrically opposed to the situation in
the absence of a quantizing magnetic field, in which charge transport occurs
in spite of the scattering mechanisms. In the longitudinal configuration, in
which the fields are parallel, transport is normal except that because of the
transverse confinement, the motion is quasi-one-dimensional. In both con-
figurations, however, magnetic quantization changes the wavefunction of the
electron and hence changes the scattering matrix elements.

We will begin by looking at the collision-free situation and go over
some of the ground of Section 2.4 in order to obtain the eigenfunctions
that will be used to determine scattering rates, and to familiarize
ourselves with the parameters that enter the physics, and their order of
magnitude. The transverse configuration will be treated first, since it
contains all the new physics that appears when a quantizing magnetic
field is present. In order to understand more fully the peculiar new
properties that appear we will not follow the usual treatments of the
problem, which tend to be rather inaccessible mathematically and very
often opaque. Instead we will reduce the description to its simplest
component—that of a single-electron scattering between levels with the
same quantum number—before introducing (a) statistics and (b) many
quantum levels. In doing so we will discover that under certain
circumstances the electron can behave highly anomalously in that it can
drift the wrong way, an effect completely obscured if equilibrium
statistics are introduced too early in the calculation, which is what is
conventionally done.
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The many-level situation is best illustrated theoretically and ex-
perimentally by the Shubnikov-de Haas effect, which is the appearance
of oscillations in the magnetoresistance as a function of magnetic field.
The theory of the Shubnikov-Haas effect is unavoidably complex
mathematically, but an attempt has been made to simplify the calculation
as far as possible and to clarify obscurities found in the literature.

Most of the discussion will assume that the scattering mechanisms are
elastic, a not unrealistic assumption for low temperatures where most of
the effects of magnetic quantization have been observed. The case of
scattering by optical phonons is deferred to our discussion of the
magnetophonon effect.

7.2. Collision-free situation

7.2.1. Quantum states in a magnetic field
We begin by solving Schrodinger's equation in order to describe
one-electron states in the presence of a magnetic field B and electric field,
viz:

where we assume that the condition discussed in Section 2.4 applies, and
that the effective-mass equation is valid. In eqn (7.2) A is the vector
potential and o is the scalar potential of the electromagnetic field, and e
is the elementary charge containing the sign. (As usual the symbol e
without the bar will be used to denote magnitude only.) Expanding the
bracket in eqn (7.2) we obtain

In order to illustrate that the gauge chosen in Section 2.4 is not unique,
we choose the gauge

which still makes V. A = 0, and H0 may be written as follows:

where e is the electric field, taken to be along the x direction (Fig. 7.1) in
the transverse configuration. (We will look at the longitudinal configura-
tion later.)
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We can show that, in this gauge, py and pz are constants of the motion.
The equation of motion is

Integration gives the time-dependence of the three components of the
momentum. (Here, as elsewhere, we assume that the effective mass is
scalar.) Thus

Since px = m*vx, py = m*vy + eBx, pz = m*vz, it is clear that px is not a
constant of the motion, but py and pz are constants. Motion along the z
direction is unaffected by the magnetic field, and so pz is determined, as
usual, by the relation

which determines C2. To determine Cy we return to eqn (7.6) and note
that in the x direction

We may define a position at x = X where dvx/dt is zero, and hence

This is the Hall velocity, which we denote VB. Thus we can identify the

FIG. 7.1. Field directions.
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constant of motion Cy with position X and velocity uB as follows

Inserting this relationship into the expression for H0, eqn (7.5), we
obtain

With the introduction of the cyclotron frequency

we obtain finally

The solution of Schrodinger's equation is now straightforward viz:

where On (x — X) is a harmonic oscillator wavefunction. The energy is

and ky and X are related by

In the extreme quantum limit (E.Q.L.) only the ground state (n = 0) is of
importance. The oscillator wavefunction is given by

where

The general expression for o is given in eqn (7.133).

7.2.2. Magnitudes
The characteristic energy is
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The characteristic length is

Note that R is independent of the properties of the material. The energy
has usually to be compared with kBT, which is given by

and with the voltage drop over the characteristic length,

For example, if m*/m = 0.067 (GaAs), hwc = 1.72B meV. In a field of
1 tesla this energy corresponds to a temperature of 20 K, or to an electric
field of 669 V cm-1.

7.2.3. Density of states
Magnetic quantization changes the distribution of states over energy from
the three-dimensional variation proportional to E1/2 to the one-
dimensional variation proportional to E -1 /2 . In a single magnetic state of
a given spin there are two variables, kz and ky. The number of states
associated with a given magnitude of kz in the interval dkz is

where Lz is the cavity length and kz is quantized as usual by periodic
boundary conditions. The factor 2 arises because we have to count states
with +kz and -kz. The number of states associated with ky in the interval
dky is

where again periodic boundary conditions are assumed, but now the
range of ky is determined by eqn (7.19), and hence

Since the energy is independent of ky when there is no electric field we
can add up all allowed states and obtain

Another way of calculating this degeneracy factor is to follow the method
used in Section 2.4 and sum all free-electron states with wave vector k^
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in the plane perpendicular to B whose energies lie over the range tuoc.
This number is

with

whence

and thus, as before,

The total number of states with a given kinetic energy of motion along
the z direction, Ez, is therefore

Converting to energy using eqn (7.18) we obtain finally the density of
states of a given spin in unit energy range

The form of the energy dependence of the density-of-states function gives
rise to problems connected with the divergence at zero energies in
subsequent calculations. In reality collisions broaden the states and thus
produce a smooth transition at Ez = 0 (Fig. 7.2).

7.2.4. 5pm
In addition to the energy components in eqn (7.18) there exists a
magnetic component associated with spin, i.e.

where uB is the free-electron Bohr magneton (eh/2mc), and the g factor is
2 for free electrons, but its magnitude can be much larger in semiconduc-
tors because of strong spin-orbit coupling, viz. (Lax et al. 1958):



288 Quantum processes in a magnetic field

FIG. 7.2. Density of states. Without broadening N(E) would be infinite at E = (n + 1/2)hwc.
The chained line indicates the density of states when B = 0.

where A0 is the spin-orbit splitting and Eg is the energy gap. In most
cases EB is small compared with other components, and we shall forget
about splitting due to spin for the moment.

7.2.5. Phenomenological quantities
What we measure is the conductivity tensor, depending upon the
experimental arrangement. Looking first at the conductivity tensor, viz.

we can conclude from the foregoing theory that the only current which
flows is the Hall current, proportional to VB. This means that, with k in
the x direction

where n is the carrier density. Quite often, but rather confusingly, a^ is
referred to as transverse conductivity. It deviates from zero only when
collisions are introduced into the description. Thus, collisions, which in
the conventional situation limit the current, in this case actually initiate
it.

A conductivity tensor component is measured whenever the direction
of field is well-defined, but in the usual experimental arrangement for
measuring the Hall effect and magnetoresistance it is the current
direction which is well-defined. Consequently it is the resistivity tensor
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that is measured. In the situation envisaged the resistivity components
are related to the conductivity components as follows:

from which it is straightforward to show that

In the absence of collisions p^ = 0, pxy = oxy. Where collisions produce
a finite conductivity, but so small that a2^ « oly,

7.3. Collision-induced current

7.3.1. Expression for the scattering rate in the extreme quantum limit
If the scattering mechanism is weak we can regard the transition rate as
being given by first-order perturbation theory. The scattering rate is thus

where the integral is over final states. The interaction hamiltonian can be
taken to be of the form

whence

To evaluate M±l| we substitute the magnetic state wavefunction (eqn
(7.17)) and perform the integration. We will consider the E.Q.L. and
deal only with ground states (eqn (7.20)). In this case
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where the integration extends over the cavity Lx . Ly . Lz. Primes denote
final-state quantities. The quantity R is the characteristic dimension of
the quantum state given by eqn (7.21). The integrations over y and z give
zero unless crystal momentum is conserved (umklapp process can be
neglected here), i.e.

Thus

where the overlap integral between the two magnetic states is readily
shown to be

Using the relation between X and ky, eqn (7.19), to eliminate X we see
that

where the last step follows from eqn (7.47).
The sum over the final states is effectively a sum over k'y and k'z. But

because of eqns (7.47) and (7.48) there is only one choice for each value
of qy and qz. Thus we need only sum over q to encompass all
possibilities. Converting this to an integration, we obtain

where V is the volume of the cavity

7.3.2. Energy and momentum conservation
Where phonons are responsible for scattering, the upper sign corresponds
to the absorption of a phonon of energy tiotv the lower sign to an
emission. Elastic scattering can always be recovered by restricting
attention to the upper sign only and putting fteu, = 0. Thus

In the case of E.Q.L. under consideration, n' = n = 0. Using eqns (7.48)
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and (7.51) we obtain

Conservation of energy implies that Ef — Ei = 0, and this imposes limits
on the components of q.

The general case is quite complex, and it is worthwhile looking for
simplifying features at this stage. One problem is the q-dependence of
to,. In the case of impurity scattering collisions are elastic so we can put
fto>q = 0 and the problem disappears. In the case of acoustic modes,
<o<l

=:vsq = vs(ql + q* + q*) (for an isotropic solid). If we can regard
fteo, as negligible, the problem again disappears. The upper limit to the
magnitude of phonon wavevector which can produce appreciable scatter-
ing is going to be determined by the overlap integral. Roughly we can
expect that

where

On the other hand, provided \e%qyR
2\ and ftco, are small compared to

h2kz
z/2m*

Thus if

we can neglect the dependence of phonon energy on qz. Equation (7.58)
is equivalent to

which is certainly consistent with the condition for E.Q.L. We may
therefore assume that for acoustic modes <wq is cuqi, independent of qz.

However we must satisfy ourselves that \e%qyR \ and ft<w9l for acoustic
modes are indeed small compared with, effectively, kBT. Since qyR *£ 1,
eqn (7.25) shows already that the field term is small, and in most cases
very small compared with kBT. A typical sound velocity is 3 x 105 cms-1,
and consequently

For B = 9T the maximum phonon energy would be as high as kBT at
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about 3.5 K. In many situations, therefore, the assumption that wq is
largely independent of qz is not going to be seriously invalidated.

In the case of optical phonons hwq, can be taken to be independent of
q, so the problem once again disappears.

We may conclude therefore that the principal dependence of the
energy on qz in eqn (7.54) is the term in the square brackets. Thus

where Ez = h2kl/2m*. The signs in brackets i.e. (±) apply to both
absorption and emission possibilities and they correspond to maximum
and minimum values for qz in each case. In situations where the change
in potential energy in the electric field is negligible, and where the
collisions are elastic or nearly so, the limits of qz are 0 and T2Jkz.

7.3.3. Integrations
It is convenient to adopt cylindrical coordinates q±, qz, 6 in the
integration over q in eqn (7.52), viz.

where the subscript D denotes maximum wavevectors in the spherical-
Brillouin-zone approximation. Integration over qz gives

where the limits ensure that the square-root remains real, corresponding
to conservation of energy.

The integration over direction depends upon the angular dependence
of the interaction strength V, as well as the explicit dependence
associated with the applied electric field. Frequently V, can be taken to
be isotropic, or if not strictly so, an angular average can be taken. We
will assume that |Vq|

2 is independent of angle. Unless the electric field is
high, or the energy is very low, the angular dependence under the
square-root sign will be very weak, and we will neglect it. Thus the
integration over angle yields a factor of In, viz:
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where we have assumed that the electric field term is negligible, and the
limits of q± are as shown.

Another simplification can be made in the spirit of the approximation
in which qz is considered small compared with q±, namely

whence

This as far as one can go without knowing the q-dependence of Vq.
Before discussion of explicit scattering mechanisms we investigate the
scattering-induced current.

7.3.4. General expression for the drift velocity

A particle in the initial state scatters, and changes its average coordinate
in the electric field direction by an amount (X1 — X) as shown in Fig. 7.3.
If the average value of (X' — X) is non-zero over all scattering pos-
sibilities the particle possesses a velocity. The velocity can readily be
calculated by inserting (X1 - X) into the integrand for the scattering rate.

The quantity (X' —X) is not dependent on qz as eqn (7.51) shows, but
it does depend upon angle. Thus we insert (X' — X) into eqn (7.63) and
incorporate the approximation of eqn (7.65), and obtain

FIG. 7.3. Transport by scattering from one state to another.
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Because of the density-of-states dependence on total energy (kinetic
energy plus potential energy in the electric field), as quantified by the
term in the electric field in the denominator, the scattering rate is not
isotropic, and therefore a drift velocity exists, though it turns out to be
highly anomalous. To show this we expand the denominator and retain
terms up to those linear in field. Thus

Integrating over 8 we obtain a negative drift velocity viz.

This is an extraordinary result. It predicts that carriers drift up the
potential gradient. It clearly arises from the greater density of states—
and therefore greater scattering probability- -upstream than downstream
at constant total energy (Ridley 1983), as shown in Fig. 7.4.

FIG. 7.4. Elastic scattering between ground-state Landau levels in the presence of an
electric field. 1. Higher density of states upstream. 2. Scattering particle. 3. Lower density

of states downstream.
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Such anomalous behaviour disappears at low fields when an average is
performed over a carrier population at thermodynamic equilibrium. In an
elastic scattering event the probability has to be weighted by the factor
/(Wi) (1 -/(£/)), where /(£,) and f ( E f ) are the occupation probabilities
of the initial and final states. The net drift is then computed by weighting
the integrand by half of the difference between the probabilities of the
scattering event and its reverse, that is, by the factor

The factor 1/2 is necessary to avoid counting each hopping twice (Davydov
and Pomeranchuk 1940). Usually the occupation probabilities are a
function only of the kinetic energy of motion in the z direction and

so if the electric field is small

and

For the case of inelastic phonon collisions, see Section 7.4.4. Returning
to eqn (7.67) we can obtain the drift velocity for an energy Ei by
weighting the integrand by F(Ei), and retaining only terms linear in the
electric field:

Since df(Eiz)/dEz is negative at thermodynamic equilibrium the drift
velocity is no longer anomalous. Integration over 6 gives

This is as far as it is possible to go without consideration of the specific
form of the scattering.
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7.3.5. Diffusion
Weighting the scattering integrand by the distance (X1 — X) to obtain the
drift velocity was first done by Davydov and Pomeranchuk (1940), but a
different approach was made by Adams and Holstein (1959). Using a
density-matrix approach they showed that the expression obtained for
conductivity was equivalent to the Einstein relation between diffusion
and drift. A diffusion constant D(Ei) can be defined in terms of the mean
square hopping distance < (X 1 — X ) 2 > . Thus

Weighting the integrand of eqn (7.63) with 1/2(X' — X)2, expressed in
terms of q following eqn (7.51), we obtain the following expression for
the diffusion constant

In the limit of small electric fields

Comparing eqns (7.75) and (7.78) we can obtain the Einstein relation
between mobility, u(Ei) = v(E1)/a, and diffusion coefficient

7.4. Scattering mechanisms

7.4.1. Acoustic phonon scattering
In the case of scattering by acoustic modes via the unscreened deforma-
tion potential, the interaction strength is given by

where 3 is the deformation potential, M is the mass of a unit cell, N is
the number of cells, and the upper and lower signs refer to absorption
and emission of a phonon respectively. For simplicity, we assume
isotropic scattering, which is true only for spherical bands.

The simplest case is to assume equipartition i.e. hwq «kBT. Since the
average value of Ez is k B T / 2 we can assume that Ez » hwq. Noting that
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(wq = v,q, and MN/V = p, the mass density we obtain for the scattering
rate from eqn (7.66),

where the factor of 2 arises from the sum of absorption and emission
processes, and the effective limits of q± are those shown. Thus

The last form is exactly the form for three-dimensional and two-
dimensional scattering. In all cases, the equipartition acoustic-phonon
scattering rate is proportional to the density of states with the same
constant of proportionality. In the particular case under consideration,
the scattering rate is proportional to the magnetic field.

The anomalous drift velocity associated with a single particle, eqn
(7.69), becomes

which is independent of magnetic field. (This expression has not been
reported previously). The drift velocity in the case of a distribution at
thermal equilibrium, eqn (7.75), is

whence the diffusion constant, via eqn (7.79), is simply

Equation (7.85) shows that the average hopping distance is R/^/2.
However eqn (7.84) shows that the equilibrium drift velocity is, like the
anomalous drift velocity, independent of magnetic field. Their ratio is

which has a magnitude of order unity for a non-degenerate distribution.
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The conductivity for a thermal distribution of carriers is obtained from
an integration of eqn (7.84) over initial states. Thus

In the case of a non-degenerate distribution of n carriers per unit volume,

Note that 'a' is a constant by virtue of the energy dependence of the
density of states (eqn (7.34)). The factor 2 in eqn (7.88) accounts for spin
degeneracy. The upper limit of energy can safely be taken to be °°, but
the lower limit cannot be taken to be zero on account of the logarithmic
divergence of the integral. This is a general problem of a one-dimensional
density of states. In the situation under consideration the divergence
arises in the case of absorption only because we have neglected the finite
phonon energy, through it still remains for emission, even if we
re-introduce hwq,. What is usually done is to cut off the integration at

whence

This result agrees with that of Gurevitch and Firsov (1961), but is a factor
2 greater than that quoted by Kubo et at. (1965) who, perhaps, did not
take into account the two allowed values of qz. According to eqn (7.41)
the corresponding resistivity is given by

The dependence on B and T agrees with that given by Adams and
Holstein (1959).

At low temperatures and high magnetic fields the assumptions of
equipartition and quasi-elasticity break down. The orbital radius R
becomes small and the favoured phonon wavevector becomes large. Only
emission processes are important, and then only for sufficiently energetic
particles. As the temperature is lowered fewer phonons are around to
initiate transitions and fewer particles have energy sufficient to spon-
taneously emit the short wavelength phonons which are most effective in
causing transitions. Consequently the contribution made by acoustic



Scattering mechanisms 299

phonons falls off roughly exponentially at temperatures below Tc, where
Tc is given by (cf. eqn (7.60)):

The approximate temperature range in which the assumptions of equi-
partition, quasi-elasticity and E.Q.L. all apply is therefore given by

where the upper limit is determined by the condition for E.Q.L., which is
roughly hwc » 3kBT (see eqn (7.22)).

7.4.2. Piezoelectric scattering
In the case of scattering by acoustic modes via the piezoelectric
interaction, which occurs whenever the crystal lattice lacks a centre of
inversion symmetry, the interaction strength is given by

where <e14> is an effective piezoelectric coefficient obtained by suitable
averaging over direction (see Section 3.6), and q0 is the reciprocal
screening length. We will again assume equipartition and quasi-elasticity
and E.Q.L.

The scattering rate, eqn (7.66), is

Once again, we have ignored the contribution of qz to q. In the absence
of screening the integral diverges (as it does in the classical regime). In
the limit of small screening (q%R2 «1),

where we have introduced the averaged electromechanical coupling
coefficient K, which is dimensionless. (This expression has not been
reported previously.)

The anomalous drift velocity, eqn (7.69), is
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which does not diverge in the absence of screening. Ignoring screening
we obtain,

an expression not reported previously.
The drift velocity at thermal equilibrium, eqn (7.75), is

This is no longer expressible in terms of the scattering rate, which
depends critically on the degree of screening. From eqn (7.79) the
diffusion coefficient is

The conductivity for non-degenerate distribution is

where the cut-off energy is hvs/R, as before. And, as before, this is just a
factor 2 greater than the expression of Kubo et al. (1965), presumably for
the same reason as before. The resistivity is, from eqn (7.41),

and the dependence on B and T agrees with that given by Adams and
Holstein (1959). Whereas in the case of deformation-potential scattering
the resistivity is proportional to B2, for piezoelectric scattering it is
proportional to B.

These results are valid in the regime roughly given by eqn (7.94).

7.4.3. Charged-impurity scattering

In the case of a point-charge at r the screened interaction energy is

or, alternatively,

where
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Here V is the volume of the cavity, and q0 is the reciprocal screening
length. Equation (7.105) is an appropriate form to use eqns (7.66),
(7.69), and (7.75) for, respectively, the scattering rate, the anomalous
velocity, and the thermal drift velocity, taking into account that the
scattering events are elastic, and only 'absorption' processes are to be
taken into account. We are therefore working in the Born
approximation, and we will ignore statistical screening.

Accordingly, the scattering rate is given by

where Ei(x) is the exponential integral and NI is the density of charged
impurities. In the limit of weak screening, i.e.

The scattering rate is very sensitive, to screening as it is in the normal
regime.

The anomalous drift velocity from eqn (7.69) is

In the small screening limit

Equations (7.110) and (7.113) have not been reported before.
The equilibrium drift velocity, from eqn (7.75), is in the same limit.

All of these expressions entail the assumption that qz«q±, but
although that assumption simplifies matters in the case of scattering by
phonons, it is not at all useful in the case of impurity scattering. If the
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assumption is not made the integrals split into two components, one in
which qz — 0, and the other in which qz = 2kz. The modified expressions
for the scattering rate and drift velocities in the limit of weak screening
are as follows:

In these expressions we have introduced a screening energy, thus

Thus, for a non-degenerate distribution,

In the derivation of this expression the kinetic energy Ez appearing in the
logarithm has been replaced by &B T, and the integration over energy has
been curtailed at an energy Ec, as yet undefined. The corresponding
resistivity, according to eqn (7.41), is

which is independent of magnetic field. This expression has the same
dependence of temperature, magnetic field and screening as that quoted
by Adams and Holstein (1959).

In the case of phonon collisions a cut-off energy was prescribed by the
magnitude of the phonon energy. Where no energy is exchanged, the
cut-off energy may be taken to be of magnitude of the level-broadening
induced by collisions. Sharply defined energies are replaced according to

which has the effect of defining the cut-off energy as

Since according to the uncertainty principle T =* hW(Ef), where W(E{) is
the scattering rate, and when W(Ei) = W0E~lf2 * W0r~

1/2
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This approach was made by Davydov and Pomeranchuk (1940) to
estimate broadening. If collisions are dominated by impurity scattering
W(Ei) = W0E~2 as eqn (7.115) indicates, whence

This is exactly the argument used in the non-quantum situation to avoid
the notorious divergence associated with small-angle scattering (see
Section 4.2.3.) In that case it is known that the approach leads to a
cross-section too large for the two-body collision processes envisaged by
the theory to be valid, so it is not clear how useful the collision-
broadening theory is in obtaining finite expressions.

Another criticism which may be levelled is that the theory is based on
the Born approximation, whereas a partial-wave treatment may be more
appropriate, as Kubo et al. (1965) discuss.

7.4.4. Statistical weighting for inelastic phonon collisions
In the case of inelastic phonon scattering we have to distinguish
absorption processes and emission processes when the statistical weight-
ing is carried out. The interaction term [Vy2 contains the factor n((oq) for
absorption and (n(o>,) + 1) for emission and these must be incorporated
into the factor F(E,) which, for absorption, becomes

where now

whence

with A/ representing the field term. The corresponding expression for
emission is

At thermodynamic equilibrium we can use the identity

to eliminate the field-independent terms—basically, an example of
detailed balance. We have finally



304 Quantum processes in a magnetic field

This expression will be useful in our discussion of magnetophonon
oscillations later

7.5. Transverse Shubnikov-de Haas oscillations

7.5.1. Magnetoconductivity in the presence of many Landau levels
In degenerate material the electrical resistance oscillates with magnetic
field—the Shubnikov-de Haas effect. This phenomenon is caused by the
changing occupation of the Landau levels in the vicinity of the Fermi
level. The description is quite complex since the effect is one involving
many magnetic states. However, no new physical concepts additional to
those already encountered in our discussion of conductivity in the
extreme quantum limit are required.

The squared matrix element that describes the transition from an initial
state \ky,kz, n) to a final state \k'y,k'z,m) is a generalization of eqn
(7.49), namely,

where

and

where Hn[(x — X)/R] is a Hermite polynomial and R is, as before,
(h/eB)ia. Using eqn (7.51) to relate X' - X to qy, and putting q\ =
ql + q*, we obtain [see Gradshtein and Ryzhik (1965) 7.377, p. 838]

where LJJ, m(q2
±R2/2) is a Laguerre polynomial. [This comparatively

Straightforward result is not found in the foundation literature of the
subject, e.g. Titeica (1935), Adams and Holstein (1959)].

For simplicity we will restrict discussion to elastic scattering. The
conductivity can then be expressed in terms familiar from eqn (7.75):
thus
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where Nn(E() is the density of states for a given spin. The connection
with eqn (7.75) becomes clear when the E.Q.L. conditions are imposed,
i.e. n = m = 0, L%(q2

±R2/2) = 1.
The integration in eqn (7.135) is straightforward only in the case for

acoustic phonon scattering for which \Vg\
2 is independent of q. Limiting

attention to this case we obtain [Gradshtein and Ryzhik (1965) 7.414 No.
12, p. 845]

This result, hitherto obtained explicitly only for the case of large
quantum numbers, is exact, independent of the magnitudes of n and m
(as asserted by Adams and Holstein without proof). The conductivity
becomes

In the degenerate case with hwc « EF and T <** 0 we can take

where EF is the Fermi level, and substituting

we obtain

The sums are taken over m and n such that the denominators remain
real.

This expression predicts an oscillatory variation with magnetic field of
over-dramatic proportions, being of infinite amplitude! The infinities
arise as usual from the density of states function, in this case com-
pounded by having the product of the density of final states and the
density of initial states. The conductivity is infinite when

Expressed in a form suitable for use in experiment, the condition,
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FIG. 7.5. Shubnikov-de Haas oscillations in transverse Configuration. Experimental
recordings of resistance against magnetic field showing the Shubnikov-de Haas effect for
sample of InSb at various angles of the magnetic field with respect to the current direction.

(Staromylnska et al. 1983.)

rewritten, is

A plot of B-1 versus oscillation number will give a straight line of slope
en/m*EF, from which the carrier density ne can be extracted since at
T = 0

Thus the Shubnikov-de Haas effect provides a direct measure of carrier
density.

Needless to say infinite amplitude oscillations are not observed (Fig.
7.5). The oscillations are not even spiky. Moreover, the amplitude of the
oscillations decreases with increasing temperature, but eqn (7.140) does
not describe this effect. Finally, it is possible to distinguish spin-splitting
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in some of the oscillations, and again eqn (7.140) is deficient. These
deficiencies can be rectified by including collision broadening, thermal
broadening, and spin energy into the description. But before discussing
these aspects we observe that eqn (7.140) as it stands reduces to the
classical conductivity:

in the limit hwc/EF—»0, when the sums can be replaced by integrals. The
proof is straightforward, and the scattering time r is just the reciprocal of
the rate given in eqn (3.78). We may therefore regard the conductivity as
consisting of a non-oscillatory component a0, which is just the classical
conductivity, and an oscillatory component a, viz.

where the oscillatory component arises from the movement of the
uppermost occupied Landau level.

7.5.2. The oscillatory component
In order to describe this component we express the conductivity as
follows:

where n = Evlh(oc. If we assume that rj »1 we can exploit the Poisson
sum formula in the form used by Dingle (1952):

Thus

Neglecting products of the summations we obtain finally
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The leading term in the summation is that given by Adams and Holstein
(1959). (Note that the factor 5/2 is often left out erroneously in
descriptions of the transverse Shubnikov-de Haas effect.) The second
term is much smaller and should be neglected since it is even smaller than
some of the cross-product terms. Thus we end up with

7.5.3. Collision broadening
Without collision broadening we would require all terms in the infinite
sum to describe the oscillations, since the density of states goes to infinity
at small energies of motion along the z direction. To incorporate collision
broadening we note that the most rapidly varying functions of energy in
eqn (7.151) are the cosines in the sum. We may regard them as having
come about as follows

We now replace the delta function as follows (cf. eqn (4.37))

where T is the scattering rate. The integration is straightforward and we
obtain

All terms in the sum are multiplied by the last exponential factor in eqn
(7.154).

Broadening is often described by the Dingle temperature defined by

Thus with collision broadening only the first few terms in the sum will be
important. Indeed usually only the first is used.

7.5.4. Thermal broadening
In order to describe the temperature dependence of the oscillations it is

necessary to relax our prescription of eqn (7.138). Once again only the
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oscillating functions need be considered. Thus instead of effectively
taking

we take

where Te is the electron temperature, perform the integration, and obtain

This temperature-dependent factor must also be incorporated into the
summation.

7.5.5. Spin-splitting
So far we have neglected the effect on the energy of a state caused by the
spin of the electron. All previous energies become

In particular,

where we have substituted fnB = eh/2mc for the Bohr magneton.

7.5.6. Shubnikov -de Haas formula
Incorporating collision broadening, thermal broadening, and spin-
splitting, we obtain finally

Collision broadening weakens the effect of harmonics higher than the
fundamental while thermal broadening reduces the amplitude of the
oscillations with increasing temperature. This relationship of amplitude
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FIG. 7.6. Hot-electron Shubnikov-de Haas oscillation. Oscillatory component of the
longitudinal magnetoresistance of In As; left-hand side: measurement under Ohmic condi-
tions and different lattice temperatures between 4.2 and 12.5 K; right-hand side: measure-
ments at a constant lattice temperature of 4.2 K and different electric fields between 2 and

320 mV/cm. (Bauer and Kahlert 1972.)

with temperature is exploited in hot-electron experiments to obtain the
electron temperature as a function of electric field by comparing the
amplitude as a function of electric field with the amplitude as a function
of lattice temperature (Fig. 7.6), an approach that relies on the
distribution function remaining a Fermi-Dirac one.

The amount whereby each oscillation is split by spin depends on the g
factor. In semiconductors, in which the effect of remote bands can be
neglected, the g factor is given by

where Eg is the band gap and A0 is the spin-orbit splitting at the zone
centre. For GaAs g = 0-32, compared with 2 for free electrons.

7.6. Longitudinal Shubnikov-de Haas oscillations

When the magnetic field and the electric field are parallel, both along the
z-direction, the Hamiltonian becomes
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The magnetic part is as before since we have not changed gauge.
Integration of the equation of motion, as before, now gives

Since px = m*vx, py = m*vy + eBx, and pz = m*vz, only py remains a
constant of the motion. Putting cy = eBX allows us to write the
Hamiltonian as follows:

Solutions of the Schrodinger equation are then

Classically, the electrons execute a spiralling motion along the field axis.
Unlike the crossed-fields case, the electron is accelerated along the field
axis in the normal way. Its motion is no longer dependent upon scattering
from one Landau level to another down the potential gradient; instead its
motion is impeded by scattering events, as is the usual case in the absence
of a magnetic field.

The current is then described in the usual way in terms of the axial
perturbation of the distribution function. Thus if the latter is taken to be
of the form

where 6 is the angle k makes with the electric field, then the current
density is given by

where the integral is over all allowed states. Solving the Boltzmann
equation yields
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where rm(E) is the reciprocal of the mommentum relaxation rate Wm(E),
which for elastic processes can be written (see eqn (7.44))

where 6k is the angle between k and the scattered wavevector k', and
|M±q|

2 is given by eqn (7.131), viz.

with \Inm(X' - X)\2 given by eqn (7.134).
For acoustic-phonon scattering via an unscreened deformation poten-

tial the integration in eqn (7.177) is straightforward. In the crossed-field
case we were presented with the integral

(see eqn (7.136)). This time the integral is easier viz:

and we obtain, finally,

Note that this reduces properly to the extreme-quantum-limit form given
in eqn (7.82).

Returning to the current density, we can obtain the conductivity in the
form

At low temperatures with Fermi-Dirac statistics prevailing this becomes

which shows oscillating behaviour (Fig. 7.7). When hwc/EF« 1, Argyres
(1958) has shown that
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FIG. 7.7. Shubnikov-de Haas oscillation in longitudinal configuration. Experimental
recordings of the resistance and its second derivative against magnetic field for sample of

InSb. (Staromylnska et al. 1983.)

Incorporating collision broadening and spin splitting leads finally to

where

with n = EF/hwc. Note that the conductivity aOL is quite different from
the corresponding conductivity in the transverse configuration.

7.7. Magnetophonon oscillations

In the previous two sections we have discussed oscillations in the
magnetoresistance which arise as a result of the beating together of the
cyclotron frequency and that associated with the Fermi level. The latter
component entails that the Shubnikov-de Haas effect is fundamentally a
property of a degenerate electron gas. Oscillations in the magnetoresis-
tance can, however, occur in a non-degenerate electron gas if the
dominant scattering mechanism is via optical phonons, for then the
phonon energy hw replaces EF. This phenomenon is known as the
magnetophonon effect, and it is useful in providing an experiment to
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determine the optical phonon energy [see for example Stradling and
Wood (1968) and Harper et al. (1973)]. It was first proposed by
Gurevitch and Firsov (1961) for the transverse configuration. Since the
magnetophonon effect turns out to be much weaker in the longitudinal
configuration we will concentrate on the transverse case.

The conductivity expressed in eqn (7.135) was derived for the case of
elastic scattering but it can readily be modified to describe inelastic
scattering via absorption or emission of a phonon of energy hw with the
help of eqn (7.54), which describes energy conservation, and eqn (7.130),
which describes the statistical weighting factor. In the case of a
non-degenerate gas and small electric field we may write

where for absorption

and for emission

and \Inm(X' — X)\2 is given by eqn (7.134). For deformation-potential
scattering

and for polar scattering (unscreened)

The dependence of the latter on wavevector makes the calculation for
this case difficult. To begin with we will therefore deal with deformation-
potential scattering.

Considering only the case n(w) « 1 and absorption [in the
statistical factor of eqn (7.130)] we obtain, using the integration involved
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in eqn (7.136) and

where ne is the electron density, and mmax + hw/hwc. This given on
integration

where K0(x) is the zero-order modified Bessel function. A divergence
occurs for

This divergence is logarithmic since K0(x)-> —ln(x/2) as x—>0. In order
to obtain a finite result broadening must be incorporated at the outset.

A similar result can be obtained for polar scattering if it is assumed
that qz«q±. In this case the dependence on q is no problem and we
obtain

Use of the Poisson formula leads to the form (Barker 1972)

where F is the scattering rate associated with the broadening of the
energy levels near Ez = 0.

In view of the uncertainties and difficulties that enter the theory it is
usually assumed that eqn (7.197), if not totally accurate, provides a good
empirical formula to describe the effect, and this indeed appears to be
borne out in experiment (Fig. 7.8).



316 Quantum processes in a magnetic field

FIG. 7.8. Experimental recordings of magnetophonon peaks observed in the second
derivative of the transverse magnetoresistance of germanium at about 120 K. (a) A p-Ge,
B || <100>; B p-Ge, B || (111); C p-Ge, B || <110>; D n-Ge, B \\ <100>; E n-Ge, B \\ <110>;
(b) pulsed field measurements on p-Ge with B || <100> showing that N = 6 peak splits into
three components; (c) pulsed field measurements with p-Ge with B \\ <111>. (Harper et at.

1973.)



References 317

When the electric field is taken into account the magnetoresistance
peaks split into two, one above and one below the small-field position.
According to Mori et al. (1987) the expression becomes, for small electric
fields

where
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8. Scattering in a degenerate gas

8.1. General equations

MANY of the foregoing sections on scattering have dealt with the
situation in which the occupation probability of the final state in a
scattering process is negligible. Above a concentration of carriers
determined by the effective density of states in the band the situation is
changed radically by the operation of Pauli exclusion. Scattering rates
become dependent on the probability of occupancy of the final state, and
statistics cannot be ignored in calculating them. But if high concentra-
tions produce this complexity they also allow us to assume that in many
cases carrier-carrier interactions are strong enough for the distribution
function to maintain the Fermi-Dirac form, even for a temperature
above that of the lattice in the case of hot electrons. This allows
scattering rates to be formulated in terms of electron temperature rather
than electron energy.

For degenerate systems eqn (3.16) becomes

Expanding the distribution function in spherical harmonics and retaining
the first two terms we obtain

where 6 is the angle between k and the force applied to the electron by
external fields. If 9' is the corresponding angle for k' we may effectively
make the substitution

where a' is the angle between k and k'. In eqn (8.3) the term involving
sine has been suppressed since it will give zero contribution in subsequent
integrations.

Substitution of the f(k) using eqns (8.2) and (8.3) splits eqn (8.1) into
two equations (since spherical harmonics are mutually orthogonal func-
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tions), viz.

Equation (8.4) is related to energy relaxation and eqn (8.5) to momen-
tum relaxation. Thus, the power input per unit volume, P, is given by

which, at steady state, equals the energy relaxation rate. From the
Boltzmann equation for a uniform system with electric field § at steady
state

we can obtain for the momentum balance

where e is the elementary charge containing the sign of the charge, and
v(E) is the group velocity of the particle.

Finally, we may assume that electron-electron scattering is strong, and
that the spherical part of the distribution function maintains the
Fermi-Dirac form:
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where EF is the Fermi energy and Te is the electron temperature. As a
consequence of this form it is useful to note that

and that this strongly peaked at the Fermi surface and small elsewhere,
especially at low temperatures.

8.2. Elastic collisions

Strongly inelastic collisions such as those involving optical and zone-edge
phonons are affected by degeneracy in a fairly straightforward way. To a
good approximation, the better the lower the temperature. Absorption
processes are possible only for electrons lying no deeper in the Fermi sea
than hwq from the Fermi level, and emission processes are possible for
electrons only with energies at least hwq above the Fermi level. The rates
are then given by the expressions derived in Chapter 3. Elastic and
approximately elastic processes, however, cannot be treated in this way
since both initial and final states are close to the Fermi surface, and it is
to these processes we turn.

Truly elastic processes such as impurity scattering are easy to deal with.
The right-hand side of eqn (8.4) is then clearly zero and eqn (8.5)
becomes

This defines a momentum-relaxation time thus:

which is the same as for a non-degenerate system. Equation (8.8)
becomes

When the current is worked out the peakiness of df0(E)/dE constrains all
other energy dependent, but less rapidly varying, quantities to take their
values at the Fermi surface. Thus the formulae for elastic scattering
worked out for a non-degenerate system can be used with k = kF, the
Fermi wavevector, and E = EF.
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8.3. Acoustic phonon scattering

Collisions with acoustic modes involve an energy exchange. If this energy
exchange is small compared with kBTe, such collisions can be treated like
impurity scattering and the rates are just those at the Fermi surface. But
at low temperatures kBTe becomes comparable with the energy ex-
changed and the situation becomes more complicated. Acoustic phonons
which scatter electrons right across the Fermi surface have wavevectors
around 2kF. These may be substantial enough for the corresponding
phonon energy to be greater than kBTe, with the result that, for emission,
Pauli exclusion tends to inhibit the transition, and for absorption few
phonons are excited (Fig. 8.1). The effect introduces an added tempera-
ture dependence into the scattering rate—as the temperature lowers
there is an increasing tendency for large-angle scattering to disappear,
with the result that momentum relaxation becomes strikingly weaker.

As in the case of truly elastic scattering we resort to the calculation of
the rates averaged over the Fermi-Dirac distribution and rely on the
peaky quality of functions like /(E)(1 —/(£)) at the Fermi surface to
allow the integrals to be approximately evaluated. Since the collisions are
nearly elastic we can define a momentum relaxation time as was done in
eqn (8.13) and substitute for the f1(£) in eqn (8.5). We then, as a first
step, integrate over E', exploiting the delta function, and then over E

FIG. 8.1. Inelastic scattering by acoustic phonons. The shaded circle is the Fermi surface in
the kx ky plane. States to which the particle at P scatters by absorption and emission are
depicted by the upper and lower circles respectively. (The energies of the acoustic phonons

have been exaggerated enormously for clarity of presentation.)
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using the identities

We rely on the form of the functions like f(E ± ftco)(l -/(E)) to allow
the limits of the integration to be ±00, and take all other functions of
energy in the integrand to have their values at the Fermi surface.
Equations (8.5) and (8.6) with eqn (8.13) then provide expressions for
the momentum and energy relaxation rates

Small differences in the contributions associated with scattering from
above and scattering from below have been ignored. (For convenience
the subscript on w has been dropped.)

From section 3.1 we have

where Cz(q) is the coupling parameter, 72(k, k') is the squared overlap
integral, and p is the mass density. Substituting in eqns (8.15) and (8.16)
and taking the phonon occupation to be determined by thermal equi-
librium at a lattice temperature 7L, we obtain
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Note that eqn (8.19) can be derived directly (with change of sign) from
the energy relaxation rate, defined as follows:

where A represents all the other parameters which enter. Conservation of
crystal momentum entails that

In general these integrals have to be solved numerically. However it is
useful to obtain explicit expressions by making certain approximations.
For parabolic, spherical bands we can take the overlap integral to be
unity and

Thus, using eqn (8.21), we obtain

In the absence of screening the coupling parameters are (Sections 3.3 and
3.6)

Evaluation of the integral can be carried out analytically in the
low-temperature limit, i.e. hw / k B T c >l , and in the high-temperature
limit hw/KB7i,< 1, and Te ̂  TL is implied.

8.3.1. Low-temperature limit

At low temperatures we can approximate the hyperbolic sine in the
denominator by the exponential function and use the identities
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We obtain for deformation-potential scattering

and for piezoelectric scattering

When Te = T^, eqn (8.26) exhibits the Gruneisen-Bloch T5-dependence
familiar in metal physics (see Ziman (1963); also Kogan (1963)).

The low-temperature regime is entered as soon as the maximum allowed
phonon energy equals kBTe, viz:

In the case of GaAs for an electron density of 5 x 1017cm 3 the above
equality holds when Te ~ 18 K.

8.3.2. High-temperature limit

For temperatures much higher than the demarcation implied by eqn (8.30),
but not so high that degeneracy is significantly weakened, the integration
becomes straightforward.

For deformation-potential scattering we obtain

and for piezoelectric scattering:

The temperature-dependence of the Fermi wavevector is given by
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and kF(0) is related to carrier density via

The momentum relaxation rates are identical in form to the non-degenerate
expression of eqns (3.78) and (3.180), the latter in the limit of large energy. In
other words, in the high-temperature limit the collisions can be regarded as
elastic as far as momentum relaxation is concerned and treated as discussed in
Section 8.2. The same is true of energy relaxation. For instance, if eqn (3.110) is
averaged over a Maxwell-Boltzmann distribution characterized by a tem-
perature Te the equivalent of eqn (8.32) is recovered.

8.3.3. Strong screening

The effect of screening by the mobile carriers will increase towards low tem-
peratures, as scattering of acoustic modes involves smaller and smaller
wavevectors. In this case the coupling parameters become

where q0 is the reciprocal screening length in the static screening approxima-
tion (see Sections 4.9 and 9.5). Repeating the calculation for the non-polar
interaction gives

and the polar interaction

In these equations

(see eqn (4.149)). Taking the sum over band states only we can exploit
the delta-function quality of df[E,)/dE/ by replacing the sum with an
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FIG. 8.2. Fermi energy, Fermi wavevector, and screening wavevector for electrons in GaAs at
T = 0, assuming a parabolic band.

integral, viz.

and obtain the Thomas-Fermi screening parameter.
Figure 8.2 shows how kF and q0 compare in magnitude for the case of

«-GaAs at r=OK. Clearly, screening cannot be neglected at very low tem-
peratures. At elevated temperatures typical wavevectors will be of order
107 cm~* and screening can then be ignored. At moderately low temperatures
we may note that in the general case when the unscreened coupling parameter
varies as q", the strong-screening result may be obtained by multiplying the
unscreened result by the factor

where the upper sign is taken for the momentum-relaxation rate, the
lower for power. The condition for strong screening implies the S<s:l.
Thus S is a measure of effective screening strength for the degenerate,
low-temperature case. The phonon energy hvsq0 is typically 0.5 meV,
corresponding to a temperature of about 6 K, but the numerical factor
effectively reduces this temperature to about 1 K. Strong screening is thus
expected to be effective only at temperatures below 1 K. Measurements,
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for example of the Shubnikov-de Haas effect, are normally carried out
over a temperature range above 1 K, and so we would not expect
screening to have a major effect in that case.

8.4. Energy relaxation time

An energy-relaxation time TE can be defined within the energy balance
equation as follows:

where (E) is the average energy of an electron, P/n is the power input
per electron, and (E0) is the average energy at equilibrium. Standard
theory for a degenerate electron gas gives

where EF(0) is the Fermi energy at T = 0 K, and consequently

At steady state we may obtain TE from

where we have used n = (2/3)N(EF(0))EF(0), N(EF(0)) is the density of
states at the T = 0 K Fermi level. The power, P, may be substituted from
eqns (8.27) or (8.29) in the low-temperture limit, from eqns (8.32) or
(8.34) in the high-temperature limit, or from eqns (8.39) or (8.41) when
screening is strong.
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9 Dynamic screening

9.1. Introduction

THE scattering of electrons in a semiconductor by a polar interaction is
one of the most important physical processes in the subject. The principle
sources of polar scattering are charged impurities, piezoelectric modes,
holes, other electrons, and optical phonons. All are susceptible to
electrical screening by the mobile electron gas. Hitherto in our discussion
of these processes we have assumed that screening is effectively instan-
taneous, any time-dependence of the scattering potential being assumed
to be slow enough for the electron gas to respond and form a screening
pattern. In other words, the screening has been assumed to be what it
would be for a static potential. But no physical effect happens instan-
taneously. In order to screen, the electrons must move under the
influence of the electric field, which is the raw source of the scattering,
and because they have inertia, this takes time. Whenever the scattering
potential varies in time, screening becomes a dynamic process.

The assumption of static screening is, of course, valid for charged-
impurity scattering since the potential is truly static. It turns out that
static screening is an adequate description for the screening of the
piezoelectric interaction, since the frequencies of acoustic phonons which
can interact with electrons are quite low. (This is of course also true for
screening the deformation-potential interaction.) It is usually assumed
that because carrier-carrier scattering is describable in the static centre-
of-mass frame of reference, static screening is also applicable in this case.
Where the assumption of static screening truly breaks down is in the
description of the interaction between electrons and polar optical
phonons, since the frequency of the latter is high. We therefore need to
revise critically our previous discussion of scattering by polar optical
phonons.

But the dynamic aspect of screening is not the only factor. Screening
becomes important only when the density of the electron gas is high, e.g.
1017 cm-3 and above in GaAs. At such densities the collective motion of
the electron gas cannot be ignored. Thus dynamic screening and plasma
effects become inextricably mixed and have to be treated together. The
screening of a polar optical mode involves the forced oscillation of
electrons at the phonon frequency w, which in general is different in
magnitude from the natural frequency of the electron gas, i.e. the plasma
frequency, wp. If w > wP phase lags occur which produces an anti-
screening effect, with the electrons piling up on the potential peaks
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instead of the troughs, and the interaction between the polar optical
mode and an electron is actually enhanced; whereas if w < wp the
electrons respond more rapidly, and an approach to the static screening
limit can be made. In both cases the screening effect modifies the
restorting forces involved in the lattice vibration and leads to a change in
frequency. In effect, we have to deal with coupled plasmon/polar-optical-
phonon modes.

The problem thus boils down to describing the scattering of an electron
by either of two coupled modes, one of them phonon-like, the other
plasmon-like. The situation is quite complex, and made more so by the
strong electron-plasmon interaction, which blurs the definition of distinct
modes in the regime where this interaction is allowed, i.e. the regime of
Landau damping. In what follows we will attempt to describe the
essential physics of the situation without getting too involved with the
inevitably complex theory, some of it fairly impenetrable, which is to be
found in the literature of the field. A good account of screening can be
found in Harrison's book (1970), and a useful review of coupled modes
has been given by Richter (1982).

9.2. Polar optical modes

Following the general approach of Born and Huang (1956) we can write
down the equation of motion for ions in the primitive unit cell as follows:

where UL is the relative (optical) displacement of the ions, w0 is the
natural angular frequency (determined by non-polar force constant and
mass), ei is the charge on the ion, M is the reduced mass of the ions, and
f|, is the electric field in the unit cell. The latter is a superposition of an
average field f plus a local component associated with the average ionic
polarization, PL, and the shape of the cavity containing the ions, viz.

where V is a numerical factor determined by cavity shape. (For a
spherical cavity a = 3). The average ionic polarization is determined
partly by electronic polarization and partly by ionic displacement, viz.

where x is the susceptibility and V0 is the volume of the unit cell. As usual
e0 is the permittivity of free space.



330 Dynamic screening

These equations describe ionic vibrations with no dependence on
wavevector. They are therefore appropriate for describing optical modes
with wavevectors near the zone-centre, i.e. long-wavelength modes,
which are the ones with which electrons can interact with via the polar
interaction. To specify that the modes are longitudinally polarized we
must impose the condition that the electrical displacement vanish, viz:

We need a relationship between | and P to insert in eqn (9.4) and
describe the allowed modes. This can readily be obtained by putting
»L = »u> exp(ia>f) in eqn (9.1) and eliminating & and UL from eqns (9.1),
(9.2) and (9.3) to obtain

where eo? = eJ/MV0e0. The quantities (O0, a, x> and <*>,• can now be related
to the high-frequency and the low-frequency permittivities, €„ and es

respectively, using D = 6^ for a>—x*> and D = es| for o>-»0, with
P = PL in each case. We obtain

Denning

we convert eqn (9.5) to the desired relationship

It is now useful to introduce the lattice permittivity eL denned by
D = ejj, which implies that PL = (eL — CQ)!- From eqn (9.8) we there-
fore obtain

in which we have introduced the frequency wL, defined by

The condition D = 0 applied to this purely lattice vibration is satisfied
by eL = 0, whence w = wL. Thus wL is the angular frequency of the
longitudinally polarized polar optical phonon. The condition | = 0
describes the transversely polarized optical phonon, satisfied when
w = wT for then eL = U. The relation between longitudinal and transverse
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frequencies embodied in eqn (9.10) is the Lyddane-Sax-Teller formula.
Note that the relationship between field and spatial displacement, which
may be derived from eqns (9.1)-(9.7) is,

where

is the effective charge introduced to describe scattering strength in
Chapter 3, as may be seen by putting a> = <WL in eqn (9.11).

9.3. Plasma modes

Continuing the spirit of the previous section we can describe plasma
modes by an equation of motion as follows

where ue is the electron displacement, m* is the effective mass, FD is a
damping force, and FP is the pressure force of the electron gas. In a
relaxation-time approximation

where F is a reciprocal time-constant, whose significance we will discuss
later. The pressure force is

where n0 is the uniform density and p is the pressure. Kinetic theory gives
for the latter

where v2 is the mean square velocity of the electrons, to be regarded as a
spatially uniform quantity. The gradient of density, n, can be related to
the electron field via Gauss's theorem, and for a plane wave, wavevector
q aligned along §, we may express the pressure force as follows

where we have introduced the plasma frequency
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and the high-frequency dielectric constant K^ = ej€0. Equation (9.13)
then yields

where we have introduced the frequency co^ = v q /3ic<*.
The electronic polarization is given by Pe = — en0ue and so

whence an electronic contribution to the permittivity may be derived viz.

For pure undamped plasma modes (r = 0), ee = 0, and so

For long wavelengths (9—»0)<a2—»e2w0/e0m*, which is the free-space
plasma frequency.

The parameter T, which describes the damping, will in general be
dependent on wavevector. For plasma modes whose frequency and
wavevector are such that they cannot interact with individual electrons,
interaction being forbidden by the conditions of momentum and energy
conservation described in Section 3.2, T is the scattering rate associated
with scattering via impurities and acoustic phonons, etc. Well-defined
plasma modes are possible provided to > F, a condition normally satisfied
for the moderate to high carrier densities envisaged here. On the other
hand, when single-particle excitation is possible, the modes can be
severely damped. In this case F is high and well-defined modes with a
plasma character cease to exist.

9.4. Coupled modes

Let us now couple together the plasma and polar-optical modes. The
total permittivity is given by

which, for longitudinal modes, must vanish. Substituting from eqns (9.9)
and (9.21) and setting F = 0, we obtain

Figure 9.1 illustrates the solutions for q = 0. At low electron densities
to+ » <OL and to_ = cop(e00/es)

1/2 corresponding to a pure optical mode
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FIG. 9.1. Coupled-mode frequencies in the long-wavelength limit for electrons and LO
phonons in GaAs.

plus a pure low-frequency plasma mode. At high densities, ew+ » <up and
o>_ = (OT, corresponding to a pure high-frequency plasma mode and a
totally screened optical mode which, as consequence of screening,
oscillates at the transverse-mode frequency. At intermediate densities the
modes assume a mixed plasma/optical-mode character.

The scattering strength of these coupled modes can be obtained using
the usual concept of effective charge plus a new concept, namely, the
effective displacement. Thus we may put

where e* is the coupled-mode effective charge and u is the effective
displacement. The latter may be chosen so that the mechanical energy is
the sum of the ionic and electronic components. Thus

We have taken the mass of the effective oscillator to be that of the ion
oscillator, ignoring the small contribution of the electrons. The displace-
ments ML and ue are related through their dependencies on § as in eqns
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FIG. 9.2. Phonon (S(a>)) and charge (Q(m)) factors for n-GaAs when wP = wL.

(9.11) and (9.19). Eliminating ue in favour of uL we can write

where S is a factor measuring the phonon content of the coupled mode,
given by

Figure 9.2 depicts S for q = 0. S is unity (pure phonon) only for w = wT

and falls away rapidly as w departs from wT. This expression reduces to
that derived by Kim et al. (1978) in the limit of q —» 0 when the condition
which determines the frequency, i.e. eqn (9.24), is used.

The effective charge is obtained using P = e0| in eqn (9.25), the
relation between § and UL i.e. eqn (9.11), and the relation between UL
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and M, i.e. eqn (9.27). The result is

where Q is a scaling factor measuring the amount by which the effective
charge is increased. It is given by

and depicted in Fig. 9.2.
The scattering rate for an electron interacting with a coupled mode is

given by

from which it may be seen that the coupling strength factor measuring the
increased coupling is given by

This is shown in Fig. 9.3 for q = Q as a function of electron density for
GaAs. The coupling strength of the w_ mode is comparable with that for
the bare phonon up to densities at which strong screening occurs
(~1018cm-3).

FIG. 9.3. Interaction strengths in the long-wavelength limits for n-GaAs. The subscript +
refers to the higher frequency mode, the subscript - to the lower frequency mode.
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That for the w+ mode rises monotonically with density—a marked
anti-screening effect. The result of increasing the wavevector will be to
increase the frequencies of the two modes and this will modify the
coupling strength, causing an enhancement for the w+ mode and a
reduction for the w_ mode in the regime where w_ < wT. Interaction
with electrons occurs in general at wavevectors large enough for
dispersion to be an important factor. Nevertheless, depictions of the
situation at long wavelengths are useful in illustrating trends without
involving complicated expressions.

We can draw a few conclusions from the above analysis. Note first of
all that the coupling strength, R_, remains significant even at low
densities, where the frequency of the plasma-like mode is more than an
order of magnitude less than the phonon frequency. This implies that in
the single-particle excitation regime the plasma wave will be relatively
heavily damped, i.e. w_T_ < 1, where T_ is the lifetime of the mode. In
these circumstances the mode cannot be well-defined and its power to
exchange momentum and energy thereby weakens, along with its
importance as a scattering mechanism. Similar remarks apply to the
upper branch. The enhanced coupling strength, R+, implies that heavy
damping of plasma-like modes at high densities will occur in the
single-particle excitation regime, once again leading to loss of mode
identity, and of scattering power.

It is clear, therefore, that any valid description of coupled modes in the
single-particle excitation regime must incorporate damping in a self-
consistent way. Outside this regime the situation is reasonably well
described by our simple model, but it is exactly the situation within this
regime which is of importance in determining scattering. Before seeing
what our model can say about this situation let us remind ourselves of
how the single-particle excitation regime is defined.

The interaction of a quantum ftco with an electron in a spherical,
parabolic band is determined by the conservation of crystal momentum
and energy. As pointed out in Section 3.2 absorption of a quantum
entails the following equality

where q is the wavevector of the quantum, k is the wavevector of the
electron and 9 is the angle between them. For emission,

The single-particle excitation regime in each case is defined as the area in
(w, q) space which satisfies the condition for energy and momentum
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FIG. 9.4. Regimes for single-particle excitation: (a) absorption (b) emission. At T = 0 in
the case of degenerate material k can be taken to be kF, the Fermi wavevector.

conservation. These are shown in Fig. 9.4. In the case of a degenerate
electron gas, at T = 0, the intercept along the q axis occurs at q = 2kf.

If a mode in the absorption regime is heavily damped, that implies that
the scattering rate of the electron is high as a consequence. We can
describe this situation crudely by making F, the damping rate for electron
motion, high. (In principle we could choose F in a self-consistent way.)
Incorporating F in the equation eT = 0 leads to a dispersion relation in
place of eqn (9.24) given by

In general the allowed frequencies are now complex. However if F is
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large an undamped solution of eqn (9.35) exists, viz.

Obviously, if electrons cannot move freely the phonon mode emerges
undressed. In this case screening does not occur at all. Thus we would
expect that as the coupled modes enter the absorption region both will be
increasingly heavily damped as more and more electrons find themselves
able to interact. Eventually the w+ mode converts into pure phonon
mode while the w_ mode disappears, as shown in Fig. 9.5. It turns out
that this picture is reasonably close to the prediction of more sophisti-
cated theories, as we will see.

The classical model we have developed in the previous sections is
adequate only for the lattice component. As regards the electronic
contribution to the dielectric constant, it takes no account of the
distribution of electrons over the available energy states, nor does it
describe screening in the presence of single-particle excitation. Finally, its
insistence on defining precise modes makes it incapable of dealing with
the situation when Landau damping is strong and modes are not
well-defined. In order to deal with the electronic contribution to the
dielectric constant we use Lindhard's theory to replace the discussion of
Section 9.3, and we invoke the dissipation-fluctuation theory to general-
ize our description of scattering and of mode definition in the excitation
regime.

FIG. 9.5. Dispersion of coupled modes. In the single-particle excitation regime for
absorption (shaded) the modes become ill-defined, and this is depicted by dashed lines.
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9.5. The Lindhard dielectric function
We need to describe the response of the electron system to a weak
potential of the form V0exp[i(q.r — wt)]. We assume that the response is
linear and so the electron density varies spatially and temporally as does
the potential, with an amplitude given by

where F(q,w) is the density-response function. This variation of density
gives rise to a screening potential Vsexp[i(q.r — wt)]> according to
Poisson's equation, and so

The total potential seen by the electrons is therefore

The linear response to this potential is, say

and a dielectric (strictly permittivity) function ee(q, w) can be defined such that

whence

The function G(q,w) can readily be calculated using the Liouville
equation for the tune evolution of the quantum mechanical density matrix,
and we arrive at the Lindhard formula (Lindhard 1954)*

where V is the cavity volume and a is a collision-damping parameter which is
usually allowed to approach zero. An often more convenient form is

t See Section 11.2 for the derivation of this important formula.
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In these equations f(Ek) is the distribution function. This equation
replaces eqn (9.21) as the electronic contribution to the total dielectric
function.

The sum can be replaced by an integral and an analytical solution
found for the case of a degenerate electron gas at T = 0 K. The result is

where n = q/2kF, y = (ftco + ia)/4EF, EF = Fermi energy and N(EF) =
density of states at the Fermi surface. (=m*kF/Ji2h2).

When q —> 0, and a = 0, this reduces (after much algebra) to

The quantity 3u|/5 is the mean square velocity of the Fermi distribution.
Putting co x cop in the bracket leads to the result obtained in our simple
model, if allowance is made for the difference in statistics. The condition
under which eqn (9.46) is valid is qvp« w, or, if vq is the phase velocity,
vF«vq. Under this condition electrons cannot respond quickly enough
to bunch in the troughs of electrical potential, which would produce
screening; instead they lag 180° out of phase, bunch on the potential
peaks and produce anti-screening, as indicated by the minus sign in eqn
(9.46).

In the opposite limit when q —> oo, e —>e0, corresponding to no
screening at all. More precisely, this condition occurs when q » 2kF and
q2 » q2,, where q0 is the wavevector at which uq equals the group velocity
of the electron, a situation which occurs for h2qo/2m* = hw. In many
cases q0 = kF, and so the two inequalities imply the same restriction.

We should note in passing that the static screening limit (w —> 0) gives

The frequency must satisfy the conditions implied by y « 1/2 and y «
n (l + ri). In the limit q—>0 the permittivity reduces to the usual
Thomas-Fermi screening solution.

The Lindhard function has singularities of the form x In x near where
y = (n2 ± n) and y = (n; — n2). These correspond to the boundaries of the
single-particle excitation regime, the former associated with absorption,
the latter with emission, as eqns (9.33) and (9.34) show. Because
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FIG. 9.6. The Lindhard dielectric function.
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j cmx—»0as ; t—»0 the dielectric function remains continuous, but a sharp
change occurs at these boundaries.

Figure 9.6 illustrates the variation of ejee(q, to) with q for a
frequency co = wL. Large anti-screening can occur for q < q0, where q0 is
the wavevector such that H2qo/2m* = hwL, corresponding to the wave-
vector at which the phase velocities of the electron wave and the optical
mode are equal. When q<q0 the phase velocity of the electron is less
than that of the optical mode and the phase of the response is therefore
to produce anti-screening. The anti-screening effect becomes weaker and
more diffuse towards higher temperatures. It nevertheless remains
important in producing heavy damping of the w+ mode as it crosses the
low q boundary of the single-particle excitation regime.

If collision damping (e.g. caused by charged impurity or acoustic
phonon scattering) is to be incorporated we can interpret the parameter
a in eqn (9.44) as the damping rate. In this case the Lindhard formula
has to be adjusted to conserve particle number and we have to use the
Lindhard-Mermin dielectric function (Mermin 1970):

where ex(q, to) is the Lindhard function. This turns out to be useful for
describing dispersion and line-shapes of the coupled mode system
observed by Raman spectroscopy.

The Lindhard formula (or the Lindhard-Mermin formula) is powerful
enough to describe coupled modes at all wavevectors, including those in
the single-particle excitation regime without having to introduce arbitrary
damping parameters. It remains now to tackle the problem of ill-defined
modes and the interaction of electrons with them.

9.6. Fluctuations

The Coulombic coupling between a polar disturbance and an electron, as
we saw in Chapter 3, is described by the interaction energy

Instead of using the concept of effective charge we concentrate on the
electric field and the power spectrum of the electric field fluctuations. To
do this we turn to the dissipation-fluctuation theorem, which states that
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in thermal equilibrium the power spectrum of fluctuations of a quantity X
is connected with the linear response function Tin the following way:

where n(u) is the Bose-Einstein function and Im T stands for the imaginary
part of T. The linear response function, T, is defined such that under the
influence of an external force F,

From the point of view of the electric field the external force is the polariza-
tion and

for longitudinally polarized waves. Consequently

We therefore obtain for the scattering rate in a parabolic band

and it is understood that crystal momentum is conserved. This expression is
entirely equivalent to eqn (9.31).

To show that eqn (9.55) yields the standard result when plasma coupling is
absent we use the lattice permittivity given by eqn (9.9), expressed in the
following form

Using

we obtain
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Kiel. 9.7. Coupled-mode strengths in n-GaAs at 300 K for n-1017 cm

Integration over w; gives the usual result. (Note that«(-w)+ 1 = -n(w).)
Modes can now be defined in general by the maxima of Im(— \/t(q,u)}

with

where eL is given by eqn (9.56) and ee is given by eqn (9.44) (or eqn
(9.48)). Examples of mode patterns are shown in Figs. 9.7 and 9.8,

The results support the genera! conclusions of our simple model. At
small q the two modes are well-defined with maxima moving up in frequency
with increasing q, as expected from the dispersion introduced by the plasmons.
For the case of n = 10'B cm~3 the LJ _ mode is rather weak and the W + modeis
very strong, just as our plot ofR in Fig. 9.3 predicted. On entering the damping
zone both modes rapidly lose amplitude and there is the growth of a mode at
the longitudinal phonon frequency. This phonon-like mode is anti-screened
over much of the interaction range at the lower electron density, but screened
heavily over much of the range at the higher electron density. For q > 2qa

(fi2ql/2m+ ~ fiujL) the mode is essentially unscreened.

* The author is indebted to F. A, Riddoch for the data in Figs, 9,7 and 9.8.
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FIG. 9.8. Coupled mode strengths in n-GaAs for n = 10'8cm-3, (a) T = 77K (b)
T = 300K. ' W



346 Dynamic screening

9.7. Screening regimes

Complex screening effects are important when the carrier density is such
that wp is within an order of magnitude on either side of WL. In the case
of n-GaAs this defines a range of electron densities roughly from
5 x 1016cm-3 to 5 x 1018cm-3. Below this range screening is negligible;
above it, it is well-nigh total for moderate wavevectors. (It is always
negligible for large wavevectors.) The regime in which wp = wL can be
roughly subdivided into two—a lower density range in which wp < wL

with anti-screening as its characteristic feature, and an upper region in
which wP > wL and screening becomes dominant.

We can therefore summarize dynamic screening effects in terms of four
regimes, as follows.

1. Weak-screening regime (WP << wL). Screening and coupled-mode
effects are negligible. What screening there is, is anti-screening.

2. Anti-screening regime (<wp < WL). The response of the electrons is
too slow to screen at wavevectors such that q<q0 and, instead,
anti-screening occurs. The interaction with the electrons is therefore
enhanced in exactly the range of wavevectors where it is strongest.
Coupled-mode effects are relatively weak, but become important as
(Op approaches wL. As a result the 'phonon' energy becomes less
well-defined as the density increases. In particular, the w- mode
introduces a lower 'phonon' energy which may become important in
determining energy relaxation at low temperatures.

3. Screening regime (wP > wL). The electrons now move faster and
screening becomes dominant. Coupled-mode effects are strong with
a large spread of frequencies involved in the interaction with
electrons.

4. Strong-screening regime (wP >> wL). The LO frequency disappears
(except at high q) and is replaced by <WT. Interaction with electrons
by phonon-like modes vanishes. Such interactions that do occur are
entirely plasmon-like.
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10. Phonon processes

10.1. Introduction

INTEREST in semiconductor physics generally focuses on properties
consequent on the quantum transitions made by electrons and holes, but
many of these transitions involve the emission of phonons, and therefore
it is pertinent to ask what happens to these phonons. In Chapter 3 all the
rates were calculated assuming that the phonon population was
effectively described by the thermodynamic equilibrium distribution, but
this implicitly assumes that any disturbances created by carrier emission
processes decay instantaneously, which, of course, is unrealistic. Where
electron and hole populations are dense, the emission of phonons can be
rapid enough to create serious departures from equilibrium in those
modes which interact most strongly, and when this occurs we often speak
of 'hot phonons', metaphorically relating the increase in phonon numbers
to an elevated temperature. The concept of a phonon temperature is
sometimes valuable, even if it has to be limited to modes lying in a small
section of the Brillouin zone, but 'temperature' implies randomization,
and to justify its use it is necessary to know how rapidly phonon-phonon
interactions occur. The presence of hot phonons will always slow down
the rate of energy relaxation of carriers through the process of re-
absorption, and so it is vital to know how long emitted phonons live. An
emitted phonon in a normal process stores not only energy but also
momentum. It is important to know how fast this momentum is relaxed
since this determines thermal conductivity, but it is also important for
electrical conductivity, for if momentum relaxation of the phonon is slow
then re-absorption restores the momentum initially lost by the carriers
(provided the same type of carrier is involved) and, in that case, hot
phonons do not affect the drift of the carriers. It is clear, therefore, that
even if our main interest is directed towards electronic or optoelectronic
properties, we cannot avoid studying the processes that determine
phonon lifetime and scattering rates.

Except at temperatures below roughly 40 K the most important
electron-phonon interaction in semiconductors is that involving optical
phonons. Compared with the literature on acoustic phonons, that on
optical phonons is minuscule, and as a consequence the approach offered
here has had to be rather unsophisticated, and for reasons of brevity the
same approach has been adopted for the treatment of processes involving
acoustic phonons. More rigorous and comprehensive accounts of proc-
esses involving acoustic phonons can be found in the books mentioned in
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the references at the end of this chapter. The aim here is to present the
basic elements of phonon processes and so we adopt some simplifications
such as assuming that elastic isotropy prevails and that all interactions are
a consequence of a frequency shift induced by anharmonicity.

The Hamiltonian for the lattice vibrations is taken, following Klemens
(1966), to be, in lowest order,

Here r is the position coordinate of the unit cell, Mi,j is the mass of the
oscillator (total mass in the primitive unit cell for acoustic modes,
reduced mass for optical modes), wi,j is the angular frequency, and ui,j is
the displacement (of the unit cell for acoustic modes, relative for optical
modes). Expanding the spatial dependence of the displacement in a
Fourier series we obtain

where N is the number of unit cells, q is the wavevector and eq is the unit
polarization vector. The convenient notation of second quantization can
be exploited by the usual coordinate transformation

where aq, a+q are the annihilation and creation operators which operate
on the eigenstate op consisting of a product of simple harmonic oscillator
functions:

where O0 is the vacuum state. The displacement of eqn (10.2) becomes
the operator

We assume most interactions are small perturbations which change
frequencies by an amount 6w << CD, so that
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Rates are then given by

where f, i denote final and initial states and N( is the number of final
states. The only other type of interaction we will deal with is a Frohlich
interaction of longitudinally polarized optical modes with charged im-
purities which alters the energy electrostatically via the scalar potential of
the mode.

The usual shorthand notation for vibrational modes will be adopted,
namely LO, TO for longitudinally and transversely polarized optical
modes and LA, TA for the equivalent acoustic modes.

10.2. Three-phonon processes

10.2.1. Coupling constants

Phonons interact via the lattice anharmonicity. The simplest approach is
to assume that a fractional change of frequency is proportional to strain,
in the case of acoustic modes, and to displacement, in the case of optical
modes. This scheme is thus directly analogous to the deformation
potentials introduced to describe the electron-phonon interaction. For an
acoustic mode,

where Srs are components of the strain tensor in reduced notation and yrs

are the corresponding coupling constants. For optical modes,

where T is the anharmonic coupling vector. As in the case of deformation
potentials the yrs and T are hard to obtain from ab initio calculations. A
mode-independent parameter, y, the Gruneisen constant, can be ob-
tained from the thermal expansion of the crystal and from frequency
shifts; it has a magnitude typically between 1 and 2. A simplification of
eqn (10.10) is therefore, for a travelling wave,

In this approximation the wave produces the same anharmonic effect
whatever its direction of polarization. For a travelling wave S ~ qu and so
we might expect r ~ qy with q ~ nlaQ, where a0 is the dimension of the
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primitive unit cell. Thus with y = 1 and a0 = 3 A we expect F ~ 108 cm-1.
An equivalent simplification for optical modes is to take the magnitude of
T to be independent of direction, that is

The optical coupling constant, F, incorporates all modifications to the
anharmonic Hamiltonian associated with the presence of an optical
mode, and includes the effect due to the difference of force constants of
the two atoms in the unit cell (which was manifested as a reduction
factor, introduced by Klemens (1966)). In practice, we regard y and T as
phenomenological parameters to be determined by experiment.

10.2.2. Selection rules for acoustic phonons

When the fractional frequency change of eqn (10.12) is substituted in the
interaction Hamiltonian, eqn (10.8), the triple product of displacements
allows three-phonon events to occur. Thus

Note that our simplifying assumption that the anharmonic effect is
independent of the polarization means that we distinguish between the
mode inducing the transition and the two modes which are thereby
affected. Products consisting of all creation or all annihilation operators
describe processes which violate energy conservation and so can be
discarded. The rest describe processes of two types. In type 1 a phonon
annihilates and creates two other phonons and in type 2 a phonon
interacts with another with the result that both are annihilated and one
phonon is created (Fig. 10.1). The phonon may or may not be the mode
inducing the anharmonic frequency shift—the promoting mode, in brief.

It is sometimes helpful to make a distinction between those transverse
modes with polarization vectors perpendicular to the plane containing the
three wavevectors involved, the so-called s-modes, and those whose
polarization lies in the scattering plane, the so-called p-modes (Fig. 10.2).
The polarization vectors of the longitudinal modes always lie in the
scattering plane. The following are the possible three-phonon processes
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FIG. 10.1. Types of three-phonon processes.

of type 1 or type 2 involving only s and p TA modes and LA modes:

The number of processes in each case is given in brackets, 21 in all. This
number is drastically reduced when the necessity of conserving energy

FIG. 10.2. Polarizations of TA modes.
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and crystal momentum in normal processes is considered. (Note that
conservation of momentum arises in the usual way from the sum over the
lattice sites.) Labelling the wavevectors and frequencies with numerical
subscripts 1, 2, 3 from left to right in one of the above equations we
obtain the equations:

where 023 is the angle between q2 and q3. In the absence of dispersion,
w = vq, and hence

If all three modes belong to the same branch, vt = v2 = v3, and
cos 023

 = 1. This means that the process is allowed, but only if the modes
are collinear; but this condition ensures that the normal rate is in-
finitesimal. Thus the processes Ts = Ts + Ts, Tp=Tp+Tp, L = L + L are
ruled out. In the absence of elastic anisotropy, so that the velocities of s
and p polarization are equal, all processes involving transverse modes of
orthogonal polarization (e.g. Ts= Ts+ Tp) are also ruled out. In this way
we can get rid of 9 of the 21 interactions depicted in eqn (10.15). A
second culling can be made by noting that if u, is smaller than either v2

or v3 then cos 0 > 1, which is impossible. This rules out all processes with
Ts p on the left, and so the only allowed processes with finite rates are
(with arbitrary TA polarizations):

These turn out also to be the only allowed umklapp processes. To see this
it is sufficient to replace g, in eqn (10.16b) by |q1 —g | , where g is a
reciprocal lattice vector. All three vectors now lie in the first zone and
provided it is assumed that dispersion can still be neglected the argument
leading to eqn (10.18) proceeds as before.

When neither dispersion nor anisotropy is ignored the situation is very
much complicated and the interested reader is referred to the books of
Ziman (1960), Reissland (1973) and Srivastava (1990).

10.2.3. Rates for LA modes via normal processes

Let us now give a few examples of calculating rates. We begin with the
three-phonon lifetime of an LA mode associated with type 1 processes,
and suppose first of all that it is the promoting mode. The interaction
Hamiltonian (eqn (10.14)) is now
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With w = vq, and noting that the annihilation operator introduces a
factor n1/2 and the creation operator a factor (n + 1)1/2, we obtain for the
absorption rate,

and it is understood that the wavevectors are governed by a Kronecker
delta. There will also be a reverse rate, We, identical to the above except
for the phonon factor, which will be (n1 + I)n2n3. The net absorption
rate will involve

We are usually interested in the rate at which a departure from
thermodynamic equilibrium relaxes, and so we assume n2 and n3 are the
equilibrium values, which we denote n2 and n3. But at equilibrium the
net rate must be zero and thus

It follows that the relaxation rate which determines the lifetime of a
disturbance involves the following phonon factor:

The reciprocal lifetime is thus

When equipartition prevails, n2 k sT/hw2 , n 3 = k B T / h w 3 and n2 +
n3 >>1. Putting in these approximations and exploiting eqn (10.16a) leads
to

The delta function can be transformed to eliminate, say, w2 and the
integration taken over mode 3. Thus, for normal processes,
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This approach is convenient for L = T + T, when v2 = v3 = VT, for then

Putting dN = (V/8n3)q23 dq3 d(-cos 013) do, performing the integrations,
and replacing |e2* . e3||2 by unity for s-polarized modes gives

When p-polarized TA modes are involved the polarization factor
produces a more complicated angular dependence. This is also true for
the transition L = L+ Tp, and for all cases in which the LA mode is the
passive rather than the promoting mode. Summing all the rates for type 1
normal processes leads to the form

where F(vT/wL) is a portmanteau function of VT/VL whose magnitude is
of order unity and which conceals the results of the integrations of the
polarization factors over the spherical angles, for arbitrary polarizations.
(Note that, typically, uT/uL=«0.5.)

Type 2 processes involve the simultaneous absorption of two modes
and the creation of a third. Instead of eqn (10.21) the net absorption rate
for mode 1 is therefore

or with n2 and n3 taking thermodynamic equilibrium values, we end up
with the factor

The calculation for L = L + T proceeds as before and the result can be
added to eqn (10.29) to give a rate of the same form. Thus the total rate
for normal processes can be expressed as

where FL(vT/vL) includes the results for both types of normal process.
LA phonons emitted by non-degenerate electrons in a semiconductor

have wave vectors around 2 x l06cm-1 corresponding to angular fre-
quencies around 1012s-1. The lifetime of these phonons with p~
5gcm-3, vL = 5 x l05cms-1, vT = 2.5 x cms-1 and y = 2, according
to eqn (10.32), is of order 3 us, at room temperature, which is very long
and reflects the weakness of coupling of comparatively low-frequency LA
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modes to the thermal bath of other phonons via normal processes.
Umklapp processes, however, prove to be stronger, provided the
temperature is not too low, as we will see.

At low temperatures when equipartition fails, type 2 processes cannot
proceed and only type 1 survives. In this situation r-1 a w5.

It is worth noting that our assumption of a directionally independent
anharmonic effect merely simplifies the angular dependence from one
involving all three polarization vectors to one involving |e2 . e3|

2 but does
not affect the result other than by a numerical factor of order unity. In
view of uncertainties attending the assumption of a mode-independent
Griineisen constant our approach seems reasonably sensible.

10.2.4. Rates for TA modes via normal processes

The selection rules mean that TA modes are absorbed only via type 2
processes. In the interaction T + T = L the frequencies of the modes are
of comparable magnitude and the calculation of the rates proceeds along
familiar lines, with the result which can be expressed as

which is a larger rate than for LA modes, but still rather small for
low-frequency modes.

A different result is obtained for the process T + L = L because in this
case both of the LA modes can have much higher frequencies than the
frequency of the TA mode, and there is consequently a much higher
density of states available for the scattering process. With the TA mode
as the promoting mode we can write the rate as

and

Restricting our attention to relatively small TA frequencies we can regard
q1, as small compared with either q3 or q2 and approximate eqn (10.35) as
follows:

and also |e2. e*|2 = 1. Substituting eqn (10.36) into the delta function and
integrating over the azimuthal angle and over cos 012 reduces eqn (10.34)
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to

Because both LA modes often can be much higher in frequency than the
typical TA mode involved in electron-phonon interactions we can make
the approximation

and use the integration

where T(z) is the gamma function and E(z) is Riemann's zeta function
(C(4) = 1.0823). The rate is then

which is appreciable—at room temperature, TT = 10 ps. This curious
property, that only TA phonons can relax rapidly to 'thermal' phonons,
was noted first by Landau and Rumer (1937), and the interaction
described above is usually referred to as the Landau-Rumer process.

When one of the LA modes is promoting, the TA mode is p-polarized
and this introduces some angular dependence. Approximating the
polarization factor in each case by its spherical average leads to

At room temperature, TT for a mode with wavevector 2 x l06 cm-1 is
about 10 ps. This is to be compared with 3 us for an equivalent LA mode!

At low temperatures the approximation leading to the integration in
eqn (10.39) fails. In fact n2 and n3 become negligible and the type 2
process cannot proceed and t-1T—>0.

10.2.5. Rates for umklapp processes

In a type 1 process a phonon converts into two other phonons, and all the
wavevectors must lie in the first Brillouin zone. Clearly, for modest
wavevector this can never be an umklapp process. However, in a type 2
process phonons of large wavevector can be created and umklapp
processes become possible (Fig. 10.3).
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FIG. 10.3. Umklapp process.

Adding a reciprocal lattice vector g to the wavevector of the created
mode in a type 2 process (which is always an LA mode) and ignoring
dispersion allows us to write the conservation equations as follows:

Restricting interest once more to the lifetime of comparatively low-
frequency modes we can assume that maximum rates occur when
q2 = /q3 + gl >>q1, i.e. when there is a large density of final states. Hence

and therefore, approximately, q2 = |q3 + g| = g/2. The rate is thus

where the subscript p denotes the promoting mode and the polarization
vector subscripts denote the passive modes. Because w1 is small we can
use

giving

and finally
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This rate, at high temperature, is bigger than that for LA normal
processes (eqn (10.32)) by a factor (vLg/w1)2(vL/vT), and so umklapp
processes allow LA modes to thermalize more rapidly. Rates for TA
modes can be calculated in a similar way, and are of comparable
magnitude, but because normal processes already give appreciable rates,
umklapp rates are not as important as for LA modes. For the latter, with
hvTg /2k^T=\ and w1 = 1012s-1, TL is about 200 ps. Obviously umklapp
processes cannot proceed effectively at low temperatures.

10.2.6. Higher-order processes

The general features of third-order processes stem from the proportionality of
\H3|2 to w3 and that of the density of states to w2, thus giving a basic rate
proportional to w5. Some of the frequencies are replaced by kBT/h, say n of
them, and so the three-phonon rate is of the general form

Fourth-order processes have \H4\ proportional to u; , and the phase-
space integrals add w5 (volume plus surface). Thus, in this case,

Such processes actually contribute to the LA rate as significantly as
third-order normal processes, but in most cases they can be ignored, and
we will not consider them further.

10.2.7. Lifetime of optical phonons

Long-wavelength phonons decay by converting into two acoustic modest

(Fig. 10.4). This is always a type 1 process. With the optical phonon (LO
or TO) as the promoting mode, the Hamiltonian is

where M is the mass of the unit cell. The reciprocal lifetime is therefore

The factor of 2 appears as a consequence of the reduced mass of the optical
mode. Conservation of crystal momentum entails that

'LO modes can also decay into TO + LA or TO + TA. In GaN, for example, the process
LO = LA + LA is impossible, because energy cannot be conserved.
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FIG. 10.4. Conversion of an optical phonon into two LA modes.

and since q0 is small we can take q2 = q3, which also implies that w2 ~ w3 =
w0/2. When dispersion of the acoustic branches is taken into account it is
usually the case that energy conservation can be satisfied only by LA modes.
Since cos 023 = - 1 we can take |e2.e3|

2=l. The integrations are straight-
forward and we obtain, taking the optical oscillator mass to be M/2,

The equation is the expression derived by Klemens (1966) if F is put
equal to (4/3)l/2ywo/vL.

When one of the LA modes is promoting, the interaction is practically
ruled out for LO modes because the polarization factor is negligible, but
it survives for TO modes. For this case we can replace the polarization
factor by its spherical average and exchange F2 for y2w20/4v2L. Thus, for
TO modes, eqn (10.53) holds but with F2 replaced by F2 + y2w20/12v2

L,
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amounting to an increase over the LO rate by a factor of roughly (1 + 1/12).
The lifetime is typically a few picoseconds at room temperature.

Type 2, quasi-elastic processes involving an acoustic mode are also
possible provided the dependence of w0 on q is taken into account, but
the rates are very small.

10.3. Scattering by imperfections

Deviations from the perfect periodicity of the crystal lattice can scatter
phonons by virtue of the frequency shift induced by differences in mass
and force constants. Very often the difference in force constants can be
neglected. Basically the interaction is a two-phonon process in which an
incoming phonon is absorbed and an outgoing one is created (Fig. 10.5).
From eqns (10.5) and (10.8) the perturbation is

in which we take 6w = 0 except at r = 0. Crystal momentum in this case is
not conserved. The net scattering rate is

For LA and LO modes |e1. ei*|2 = cos2 0ij, for s-polarized TA and TO
modes |ei.ej|2 = l, and for p-polarized TA and TO modes |ei.ej|2 =
sin2 0ij. Introduction of the group velocity, vgj = dwj/dqj allows us to
recast eqn (10.55) as follows:

where V is the volume of the cavity.

FIG. 10.5. Elastic scattering from an imperfection with mass difference AM.
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Let us suppose that scattering sites are scattered randomly so that in
fact we have an alloy of the chemical form AxB1-x. The mean square
perturbation on each site is therefore

and so, taking 2/3 for the integral, and with V0 equal to the volume of a
unit cell,

This equation describes alloy scattering as well as dilute impurity
scattering. Thus, A«wAB is the difference of frequencies between the two
pure materials in an alloy, and it is related to a small mass difference 6M
in the case of impurity or isotope scattering according to (AwAB)2 =
w2(6M/2M)2 .

A momentum-relaxation rate can be defined in the usual way for
elastic collisions by weighting the integral in eqn (10.56) by the factor
(1 — cos 0 i j ) , but because the scattering is random the factor averages to
unity. There is no distinction between scattering and momentum-
relaxation rates.

In the case of acoustic modes scattering off isolated imperfections
whose density is N1, eqn (10.58) is

which has the characteristic frequency dependence of Rayleigh scattering.
For optical modes the group velocity is not, as in the case of dispersion-
less acoustic modes, equal to the phase velocity. Taking a quadratic
dependence of frequency on wavevector near the zone centre, namely

where v is of order of the acoustic velocity, we get

and hence

This rate is much bigger than that for an acoustic mode of similar
wavevector, but even so it is small compared with the reciprocal lifetime
of an optical phonon for impurity concentrations of order 1018 cm-3 and
less. Substantial rates ( > 1 0 1 1 ) generally require the large concentra-
tions found in alloys or associated with isotopes, but large rates can also
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occur in the presence of impurity clusters. Clustering, in fact, can
increase the rate by a factor equal to the number of atoms in the cluster.

Apart from mass and force-constant differences introduced by im-
purities one might think that there may be effects associated with the
strain caused by the disparity in radii. A static displacement field
surrounding the impurity is of the form (Love 1927, Landau and Lifshitz
1986)

provided the effect of the impurity is like applying hydrostatic pressure to
a spherical surface around the impurity. This field has the property
div u = 3A, i.e. its divergence is a constant everywhere, which means the
volume change is constant everywhere. Consequently this can have no
effect on travelling elastic waves.

10.4. Scattering by charged impurities

An interaction quite different from the anharmonic interaction can occur
in polar materials when the imperfection carries a charge and the phonon
is an LO phonon (Fig. 10.6). Scattering occurs in a way analogous to the
electron-LO phonon case, i.e. via the Frohtich interaction (Ridley and
Gupta 1991). The charge on the unit cell containing the impurity is the
sum of the basic impurity charge, Ze, and the surface charge associated

FiG. 10.6. Frohlich scattering from charged impurity and from surrounding polarization.
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with the surrounding polarization, that is,

Taking a spherical cavity of radius r0 we can write the surface charge as
es = 4hr20os where os is the surface density of charge. Standard theory
equates this to —P, where P is the normal component of the polarization.
Now P is related to the electric displacement D in the usual way, i.e.
D = E0E + P, and D = Zel4nr2, E = Ze/4jiesr

2, where Es is the static
permittivity. Thus P - (Ze/4hr2)(l - E0/Es) and hence es=-Ze(l-
E0/Es), and it follows that

Since V . P = 0, there is no bulk charge in the surrounding medium and so
the interaction energy is simply eIo), where O is the scalar potential
associated with the LO mode, namely,

where e* is the Callen effective charge (see Section 3.5).
The rate, to first order, is zero, because we assume that no energy can

be transferred to the impurity. An elastic scattering process is allowed
only in second order, thus

The initial state contains our LO mode of wavevector q, the intermediate
state corresponds to the phonon being absorbed, and the final state
contains an emitted LO phonon of wavevector q'. For a density N1 of
charged impurities the scattering rate is

As usual for polar interactions, the rate diverges at q ->0. This
divergence disappears in the presence of screening electrons. For GaAs
with Z = l and q=2 x l06cm-1 (the typical wavevector involved in
electron-LO interactions) the rate is about 10-7N, s-1, NI in cm-3.
Compared with the electron-scattering rate this is small, but compared
with the LO phonon lifetime it is appreciable when NI > 1018 cm-3.
However, the rate increases rapidly as q diminishes.

A similar interaction will be present for piezoelectric modes, but the
effect is likely to be much weaker.

Associated with the polarization in a displacement field surrounding
the impurity. The total polarization has electronic and ionic components,
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the electronic part being (Ze/4nr2)(1 — E0/E8). Thus the ionic component
is (Ze/4hr2)(E0/E8 - E0/Es). where E8, Es are the high-frequency and
static permittivities, and since this is related to the relative ionic
displacement via e*u(r)/V0 (see Section 3.5), we have a displacement
field given by

This field promotes an anharmonic interaction via a radially varying
frequency shift 8w/w = Fu(r) which gives rise to first-order elastic
scattering with the Hamiltonian given by eqn (10.54). Carrying out the
sum over the lattice sites reduces the Hamiltonian to

where qi, qj are the incident and scattered wavevectors and 6 is the
scattering angle. Attempting to compute the rate in the usual way we run
into a familiar problem—associated with Coulombic fields—that is, the
rate is infinite because of the preponderance of small-angle scattering.
This problem was encountered in the context of charged-impurity
scattering of electrons, and the discussion of Section 4.2 is immediately
relevant. Fortunately, the situation here is not as severe because the rate
involves |qj— qi/-2 rather than |qj —qi/-4 . The divergence can be re-
moved by weighting the rate by the factor (1 — cos 0), since \qj — qi|2 =
2q2(l — cos 0), and so using eqn (3.150) to substitute for e*, and
assuming a quadratic form for the dispersion (eqn (10.60), we obtain a
momentum relaxation rate given by

For GaAs with Z = 1 and q = 2 x 106 cm-1, r-1m = 5.7 x 10-9N1 s-1, NI in
cm-3, which is an order of magnitude less than the direct Frohlich rate.
This rate will be sensitive to screening by free carriers and by statistical
screening (Section 4.2.4). The anharmonic interaction also allows TO
modes to be scattered by charged impurities.

10.5. Scattering by electrons

The interaction of phonons with electrons and holes has been described
in Chapter 3, with specific rates derived from the point of view of the
electron. To obtain the equivalent rates for a phonon it is only necessary
to integrate Over the electron population, including spin degeneracy,
instead of over phonon states, taking into account energy and momentum
conservation. Here we will limit ourselves to quoting the result for the
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unscreened Frohlich interaction (Section 3.5), which is

where TO is the characteristic time-constant for LO-phonon emission,
given by

and

and f ( E ) is the distribution function for electrons. When the latter is a
Maxwellian characterized by an electron temperature Te we obtain

where n is the carrier density and Nc is the effective density of states. At
low temperatures ( k B Te << hw) this rate maximizes when Eq = hw. Note
that when the phonon occupation number, n(q), is given by the

FIG. 10.7. LO phonon emission rate (arbitrary units) from a non-degenerate electron gas
as a function of wavevector.
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Bose-Einstein expression for a temperature Te, the rate vanishes.
Equation (10.72) is used in the description of hot-phonon effects in a
polar semiconductor. As in the case of the Frohlich interaction with
charged impurities (eqn (10.68)) the basic rate is inversely proportional
to the cube of the wavevector. Figure 10.7 shows the dependence on
wavevector of the rate in eqn (10.74).

10.6. Other scattering mechanisms

In doped semiconductors phonons can interact with electrons bound in
impurity levels in three ways. The phonon can be scattered elastically in a
second-order process analogous to that discussed in Section 10.4, say via
the deformation potential. Inelastic scattering may occur accompanied by
a transition of an electron from one state to another—another second-
order process. The phonon can interact with a second phonon as well as
the electron in the impurity. The interaction can be particularly strong in
the case of magnetic impurities such as Fe2+ which have a spread of levels
allowing resonant phonon scattering to occur. The same is true of
molecular impurities which can have vibrational levels which can interact
resonantly with microwave phonons. One-phonon resonance rates are of
the form

where T is the level width and hw0 is the energy separation of the levels.
In the purest materials at low temperatures scattering is eventually

determined by boundary scattering (Fig. 10.8). The efficacy of boundary
scattering depends upon the particular properties of the surfaces—
essentially how rough they are, a measure of which is not easy to obtain
and in any case it will depend upon wavelength. Specular reflections do
not count. However, boundary conditions, such as the requirement that a
free surface is stress free, entail the phenomenon of mode conversion in
which, say, an LA mode incident on a perfect surface triggers a TA
mode, as well as reflecting non-specularly. This combination of surface
roughness and mode conversion makes the detailed treatment of bound-
ary scattering somewhat involved. The problem is often bypassed by
simply equating the phonon mean free path to a suitable dimension of the
specimen.

Dislocations induce elastic strain fields each of which have the
approximate form
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FIG. 10.8. Boundary scattering.

where b is the Burgers vector, and induce frequency shifts according to
dw/w = yS(r). Computation of the first-order scattering rates for acous-
tic modes runs into the same difficulty as we have in Section 10.4 in that
the rate diverges as /qj — qi|2, which forces us to look at the momentum-
relaxation rate. This is of the form

where Nd is the areal density of dislocations and C is a numerical constant.
Note that this simple formula arises only by virtue (if it is a virtue) of
neglecting the differences between edge and screw dislocations, between
dilatation and shear strains, and between LA and TA phonons. It also
neglects the fact that at the core of the dislocation the atomic displace-
ments are so large that they fall outside of elasticity theory. Core effects
might be expected to add a rate of the form (Ziman 1960).

where a is the core radius.
Stacking faults and grain boundaries also scatter phonons but are not

likely to be present in experiments on semiconductor physics, given the
remarkably high quality of crystals which are typically thought worth
studying.
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11. Quantum transport

11.1. The density matrix

In practice, by far the majority of cases encountered are describable in terms of
so-called 'pure' quantum states. Hitherto, in our description of scattering
processes we have assumed that the electron begins in a well-defined initial
state and ends up in an equally well-defined final state, and that the scattering
process conserves energy and crystal momentum and occurs at a rate given by
Fermi's Golden Rule. The transition rates involved Planck's constant, which
made them quantum-theoretic, but otherwise the processes were basically
classical, involving well-defined dynamic states. Such states can only be
approximations to true quantum states, and we need to understand what their
validity is. Moreover, for the most part we have focused on individual events
and ignored the behaviour of populations. But we seldom observe individual
events. We measure, for example, the electrical resistance of a piece of semi-
conductor that contains anything between, typically, 1010 and 1020 electrons or
holes per cubic centimetre. These are huge numbers, implying huge numbers
of dynamical states among which the carriers are distributed. As we can never
know precisely the dynamic state of each particle, we need to resort to the
concepts of statistical physics in order to describe the observable properties of
the system. It is therefore necessary to incorporate both quantum and statis-
tical concepts into our description of semiconductor physics. This can be
achieved via the concept of the density matrix.

A comprehensive treatment involving many-body effects is beyond the
scope of this book. Here we limit our account to the description of systems that
can be reasonably well described in terms of single-particle states. A con-
venient shorthand for these states is the bra and ket notation, so that the
Schrodinger equation can be written

The state |a) can be taken to be a member of a normalized, orthonormal set
that may describe, for example, the electronic eigenstates of a simple two-level
system or, at the other extreme, the Bloch states of a conduction band.

We can introduce a statistical element by relating the probability of occu-
pation, fa, of the state |a) to pa, where
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Obviously, in this case p and/are identical: p is the expectation value of the
probability of occupation. This is fine for pure states, but it is a formalism that
cannot deal with mixed states; i.e. when the electron in some non-classical
sense occupies two states at once. In such a case we have to generalize the
concept of occupation probability as the expectation value of some prob-
ability operator:

This probability operator is what we call the single-particle density matrix
element, and we define it as follows:

The diagonal terms in this matrix give the occupation probabilities, but
what do the non-diagonal terms mean? These are non-classical quantities
whose nearest classical referents are the dipole moments associated with
electrons oscillating between two states. They can be expected to assume
importance at very short time intervals during which states couple coherently,
and before that coherence is destroyed by perturbations within the system or
by interactions with the rest of the universe.

The Schrodinger equation defines the time dependence:

with, in general, H =H0 + H1, where H0 is a time-independent Hamiltonian
and H\ is a perturbation. Note that in the absence of any perturbation the
states can be depicted by \k) and

where Ek and Eki are eigenvalues of the unperturbed system. Furthermore,
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i.e. the density matrix reduces to its diagonal terms. At this point, a connection
can be made with the electron density:

where fi is the cavity volume.
Now consider the case when there exists a perturbation H1 such that

H1<<H0. We expand the perturbed states in terms of the unperturbed states
(labelled r):

and put

It is straightforward to show, and the reader may care to verify, that the
equation of motion for expectation values becomes

Note that the sum consists of second-order terms. These are important to
retain, because for k' = k the first-order terms vanish. Equation (11.11) can
therefore be decomposed into two equations, one for the off-diagonal elem-
ents and one for the diagonal elements:

The first of these equations describes the rate of change of the polarization of
the electron population—a first-order effect—while the second describes the
rate of change of occupancy—a second-order effect. The first response to a
perturbation is therefore a mixing of states, which manifests itself in a
polarization of the electron gas. Transitions from one state to another, the sort
of scattering that we have been mostly concerned with, is a much weaker affair.
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11.2. Screening

We gave an outline of the dielectric response of an electron gas in Section 9.5.
Here we use the single-particle density-matrix approach to derive the
Lindhard function.

Consider a model perturbation of the form

The polarization or, in other words, the dielectric response, of the system is
obtained from the first of eqn (11.12) and is given by

where hw 'k = Ek' — Ek. We can relate this to a perturbation of the electron
density as follows:

If we imagine that there exists a fixed background positive charge that keeps
the system neutral in the absence of the perturbation, this disturbance in the
electron density gives rise to a space charge density and hence to a screening
potential energy Fs related through Poisson's equation:

where £ is the permittivity of the lattice. If V0 is the unscreened perturbation,
we have

where Vs is linearly dependent on V.
We now specialize to the important case when the unperturbed states are the

Bloch functions of the conduction band of a semiconductor. Making a Fourier
expansion of the perturbation leads to a connection of states through the
conservation of crystal momentum:



Screening 373

Also

and hence, at t = 0,

which is the Lindhard expression used in eqn (9.43).
This can be evaluated with 6 —>0 using

where P stands for the principal part, and the dielectric function has a real and
an imaginary component:

In general, the temperature dependence of these components precludes
expressing them in simple analytical form; however, an informative analytical
expression for the real part can be obtained for the case of a degenerate gas at
T=OK:

where N(EF) is the density of states at the Fermi level, n = q/2kF, kF is
the Fermi wavevector, and 7 = hw/4Ef . For slowly varying or static
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potentials 7 —>0 and

This has the long-wavelength limit:

where q0 is the reciprocal of the Thomas-Fermi screening length. On the other
hand, for w finite, the long-wavelength result is (after carefully expanding the
logarithms)

from which it may be seen that the dielectric function vanishes when w = wp,
the plasma frequency.

For a non-degenerate electron gas at finite temperatures, the calculation of
the dielectric response function is much more difficult. The distribution
function in eqn (11.20) can be taken to be the usual Maxwell-Boltzmann form
and the dielectric function for electrons in a spherical, parabolic band can be
expressed in the following terms:

where y = (h2/2m*kBT) and Z(w) is the plasma dispersion function:

The complex arguments of Z are given by

The properties of Z(w) have been explored in depth (Fried and Conte 1961).
In numerical work Z(w) is usually taken to be adequately represented by a
so-called Fade approximant, which consists of a ratio of two polynomials:
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The trick is to choose the coefficientsp0,p1, q1, and q2 to match the properties
of the exact function as closely as possible. One such choice which has been
shown to give good results (Lowe and Barker 1985) is

Screening is basically a coherent process in which no energy is exchanged
between the perturbing field and the system. However, the appearance of an
imaginary component in the dielectric response alerts us to the inevitability of
incoherent processes entering. The strength of these processes is usually fairly
weak, so screening is not materially affected. Before looking at the rate at
which incoherent processes occur it is useful to remain in a state of quantum-
coherent bliss in order to briefly study the important case of the two-level
system.

11.3. The two-level system

Consider two levels, labelled a and b, with equal probabilities of occupancy in
the unperturbed state. (This will ensure that the system remains coherently
connected to the perturbation.) Equation (11.12) becomes

with a pair of similar equations with a and b interchanged. Converting the
density matrix elements back into probability amplitudes ca and cb, i.e.
(b/p1ab/a] — cac*b, and taking the perturbation to be of the form

we obtain
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We now suppose that a is the state with the lower energy, so that wba is positive.
At and near the resonant condition w = wba we need retain only the first term in
the bracket, a choice known as the rotating-wave approximation, the name
deriving from the study of magnetic resonance in which one component of the
perturbation stays in phase with the Larmor precession. Thus

From this and the equivalent equation for level b we can deduce that

with equivalent expressions for the complex conjugates. The equation of
motion for the occupation probability is therefore

where wR is the Rabi frequency, after Rabi (1937). What this means is that the
occupation of the levels oscillates at a frequency determined by the strength of
the perturbation. Thus, if ca = 1 at t = 0,

A resonant perturbative pulse that lasts for a time t such that wRt =
h/2—called a h/2-pulse—produces a mixed state; a h-pulse flips the occu-
pancy.

Two-level systems are of interest to the fields of quantum information,
quantum cryptography, quantum teleportation, and quantum computing,
where they are known as qubits. Manipulation is effected by using h/2- and
h-pulses, but such manipulation is severely restricted to times less than the
decoherence time. Decoherence occurs via the interaction with the system's
surroundings; for example, via collisions with photons, phonons' or other
electrons. As a result, information about phase is irretrievably lost.
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11.4. Fermi's Golden Rule

To quantify the rate of decoherence we return to eqn (11.12). Substituting
from eqn (11.14) into the second equation of eqn (11.12), and dispensing with
second harmonic components that give negligible amplitude on integration,
we obtain

In the limit 6 —> 0, we can use eqn (11.21) to obtain

which is Fermi's Golden Rule (Fermi 1950). It quantifies the rate at which the
occupation of the state k changes through transitions involving all other states
in the system for which energy is conserved.

The symbol 6 has been used as a mathematical convenience. The underlying
assumption has been that the perturbation switches on at t = 0 and (with
6 —> 0) stays on for ever. But in reality, other collisions occurs so any one
interaction, if it is to have individuality, can have only a limited duration. A
more physically meaningful time dependence would be to replace 6 with - F,
so that the interaction switches on at t = 0 and decays exponentially with a time
constant equal to F-1. But this means that we cannot use eqn (11.21). Instead,
we must replace the delta function by a Lorentzian:

Energy conservation becomes somewhat fuzzy.
It is clear that Fermi's Golden Rule will work only if F is very small. If F-1 is

interpreted as being of order of the time between collisions, tc, the condition is
that it must be much longer than the duration, td, of the collision. A collision
duration time can be defined as the time required for the effect of the energy
uncertainty on the squared matrix element, O ( = |Vk,k|2), to be small. This
puts the focus on the energy dependence of O. Thus, if O0 is the squared matrix
element for the case of perfect energy conservation, the value of O when there is
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an energy uncertainty of AE is

The expansion assumes that the variation with energy is not large. The
uncertainty in the energy will not matter provided that the second term in the
brackets is much smaller than unity. The Uncertainty Principle can be invoked
to estimate the uncertainty in the energy within the average time between
collisions, i.e. A.E=h/tc. The Fermi Golden Rule will be valid provided that

where we have identified an expression for the collision duration time. This the
expression quoted in eqn (3.2). It turns out that the condition in eqn (11.43) is
usually well-satisfied.

11.5. Wannier-Stark states

One of the most important interactions experienced by electrons in a semi-
conductor is with a uniform electric field associated with either an applied
voltage or a long electromagnetic wave. In order to describe the quantum
theory of this interaction, we must choose an appropriate gauge to describe the
modification to the electron Hamiltonian brought about by the electric field.
There are two obvious choices, either (1) to modify the kinetics via a vector
potential A, with O, the scalar potential, equal to zero and V. A = 0, or (2) to
modify the potential energy via a scalar potential with A = 0. We have already
described the latter approach in Section 2.2, regarding the scalar potential as a
perturbation. We will first adopt the kinetic approach, especially as this will
apply to all field strengths.

The electric field is described in terms of a time-dependent vector potential:

and the Schrodinger equation is
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Here m is the free-electron mass, F(r) is the periodic potential of the lattice and
n is a band index. This equation actually has an exact solution:

This shows that the field does not affect the band structure, but merely adds a
phase to the Bloch function. The Bloch function for, say, the conduction band,
has its usual periodic form:

In this formulation k is a good quantum number, independent of the electric
field, but it is now associated with the total momentum p. However, the
velocity of the electron is given by

An electron remaining in the state p0 will appear to move as if it had made the
transition from a field-free state k0 to a field-free state k given by

This is the acceleration theorem, and it is clearly true for all field strengths. It
predicts that unfettered motion of the electron in a conduction band will result
in Bloch oscillations as described in Section 2.3 provided that the tunnelling
probability to other bands is reasonably small. This in turn implies that the
electron becomes localized about a particular unit cell in a Wannier-Stark
state whose wavefunction will be a combination of time-dependent, free-field,
Bloch states:

where k0 = k(t0)- For fields low enough for Zener tunnelling to other bands to
be negligible, a Wannier-Stark (W-S) wavefunction for the Bloch oscillation
state in a given band can be obtained from eqn (11.50) for an eigenvalue EkTn
by distinguishing motion parallel and perpendicular to the field:
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converting time dependence to k|| dependence and solving for the ck:

where n now labels the W-S state in the ladder of states each separated from its
neighbour by the energy eFa, where a is the lattice constant:

To the best of the author's knowledge, Wannier-Stark states have never
been observed in bulk material. There are perfectly good reasons why this is
the case, not least is the stringent condition on the scattering time T.

where wB is the Bloch angular frequency (see Section 2.3). The necessity for the
field to be very high means that electrical breakdown is not avoidable in most
semiconductors. The increasing purity of wide-bandgap materials such as
A1N, GaN, ZnO, ZnS, and so on may allow W-S states to be observed. At the
time of writing they have been observed only in the miniband of a semi-
conductor superlattice. A good account of this and related topics can be found
in the book edited by Scholl (1998).

11.6. The intracollisional field effect

As discussed in Section 11.4, the duration of a collision is usually short
compared with the period between collisions. Nevertheless, we have just seen
that in the presence of an electric field the field-free Bloch functions become
time-dependent, so that during a collision the initial and final states are not
constant. The influence of this on the scattering rate is known as the intra-
collisional field effect.

There are two significant changes induced by the presence of a field. One is a
change of energy of the electron during the collision which, for example, may
enable an electron to emit an optical phonon or transfer to an upper valley
even though its initial energy was too low. The second is that, inevitably,
energy conservation becomes fuzzy. As a result, the energy-conserving delta
function in the expression for the transition rate must be replaced by
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Alternatively, one may use Wannier-Stark wavefunctions instead of time-
dependent Bloch functions, in which case the intracollisional field effect would
be automatically accounted for.

If it is supposed that td = 10-15 s it would require fields of at least 1M V/cm
for there to be significant effects.

11.7. The semi-classical approximation

The physics of phenomena with characteristic time scales much longer than
the decoherence times of the underlying quantum phenomena can be very
satisfactorily dealt with using the concept of long-lived pure states. Mixed
states can be ignored and the Fermi Golden Rule, accomodating level
broadening if necessary, can be used to describe interactions in which the
collision duration time is much shorter than the average time between colli-
sions. The common feature that is retained (common at any rate in our
random-phase, one-particle theory, described in the previous sections) is the
statistical nature of the description involving the Markovian approximation
that collisions are uncorrelated. It is also assumed that only binary collisions
occur.

One advantage that these simplifications afford is that spatially non-
uniform systems can readily be treated, provided that the distribution function
does not vary too rapidly over an electron wavelength.
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12. Semi-classical transport

12.1. The Boltzmann equation

As we have seen in Chapter 11, a comprehensive account of the response of
electrons in semiconductors to external fields has to take into account their
quantum nature. This is particularly necessary in order to describe phenom-
ena at ultrashort length and time scales and high field strengths, when the
electron cannot be regarded as being in an eigenstate of the unperturbed
crystal, and when the effects of the uncertainty principle blur momentum and
energy conservation. There is, however, a vast range of conditions over which
the behaviour of electrons can be treated semi-classically, quantum effects
entering only through band structure and through scattering, and this is what
we will assume in what follows. This means that we can take the electron to be
in one of the Bloch states of the conduction band with a well-defined energy, E,
and a well-defined wavevector, k, as we have done throughout the book, and
we can exploit all the scattering rates discussed in previous chapters.

What we have to do that is different is to take account of the fact that in all
experiments involving bulk material, typically, a large number of electrons is
involved and only average quantities are ever measured. Statistics therefore
enters. Electrons move between states in response to applied fields and scat-
tering mechanisms, and it is necessary to have a book-keeping operation to
follow the net occupancy of states. The Boltzmann equation provides just such
a book-keeping operation. If f(k) is the probability that the state is occupied,
then its rate of change with time is determined by a conventional continuity
equation consisting of a volume rate and a divergence of a probability current:

where v(k) is the group velocity. The volume rate is the sum of individual rates
associated with applied fields, scattering, generation, and recombination, viz.:

The field term can be related to a probability current flow in k-space:
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The rate of change of wavevector is just proportional to the force, F:

where the force in the presence of an electric field, F, and a magnetic field, B is

In addition to the accelerating effect of the applied fields, there is also a
polarizing effect that mixes states with the same k in different bands and
induces inter-band transitions, such as occur in the Zener Effect. We will
assume that the field strength is too small for tunnelling between bands to be
important. Once more, we define e to carry the sign of the charge.

The volume scattering rate is given by eqn (8.1), which for convenience we
reproduce here:

The integrals are over the final electron states, with conservation of crystal
momentum having been taken into account. This rate describes the situation
when a quantum of energy hwq is absorbed or emitted during the scattering
event. For elastic processes such as charged-impurity scattering, alloy scat-
tering, and so on, the energy of the quantum can be put to zero and the second
integral eliminated. Equation (12.6) is also the form for radiative generation
and recombination processes. It does not, however, describe carrier-carrier
scattering, Auger, or impact ionization rates. The net rate for carrier-carrier
scattering will be described later.

Here, we will focus on charge transport in the presence of an applied electric
field, with the aim of describing some of the non-linear effects that make
semiconductors so fascinating. (Transport in a magnetic field was discussed in
Chapter 7.)

In the absence of non-uniformity in the carrier distribution, the steady-state
Boltzmann equation is
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The presence of the field will induce both symmetric and antisymmetric dis-
turbances to the distribution function. In order to model this analytically, we
first expand the distribution function in Legendre polynomials:

where Pj (x) is the Legendre polynomial of order j and x — cos 0, where 6 is the
angle between k and F. The components of Ak/(k) are

Thus

where v(E) is the magnitude of the velocity. Using the relations

we obtain

As long as the field is not too strong, and as long as the scattering rate is
reasonably high, we can expect the antisymmetric and non-spherical parts of
the distribution function to be relatively small in amplitude. Thus, retaining
only the zero-order symmetrical component of the distribution function,
fo(E), and the first-order antisymmetrical component, f1(E), we obtain
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The second-order Legendre function, P2(x), can be averaged over all direc-
tions to convert it into a spherically symmetrical form.

The scattering rate can likewise be expanded in Legendre polynomials, and
only terms in f0(E) and f1(E) retained. Then, equating symmetric and anti-
symmetric coefficients, we obtain

The products of the antisymmetric components have been assumed to be
negligibly small. Here x' = cos 0' where 0' is the angle between k' and F, and
similarly x". Now, in general,

where O is the azimuthal angle which is to be integrated over, and a' is the
angle between k' and k. Nothing in the integrand depends upon O except for
the second term in eqn (12.16). Integration over O between the limits 0 and 2h
gives zero; thus, effectively, x'/x = cos a' and x"/x — cos a". Both energy and
momentum are conserved. Therefore, for a parabolic band,
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In eqn (12,17a) q1<q< q^, and in eqn (12.17b) q3 < q < q4, where

and it is understood that the integral involving q3 and q4 vanish if E < hwq.
These relations are familiar from our discussion in Chapter 3. Note that if hw is
a function of q, as it is for acoustic modes, the limits on the phonon wavevector
will be modified (unless hw << E, in which case the collisions are quasi-elastic).
The cosine factors are

Finally, in the 3-D spherical symmetry assumed, one can take <P2(x)> = 0.
(Keeping this average explicit in the equation is useful for making extensions
to low dimensionality (Ridley 1997).) In general, the scattering coefficients,
W(k', k), have a dependence on crystallographic direction—an example
being the piezoelectric interaction. When this is the case, it is convenient to
take a spherical average so that the integration over the azimuthal angle
can be carried out straightforwardly. It is usually convenient to convert
the integration over final electron states to an integration over phonon states,
exploiting the one-to-one correspondence between k' and q via the con-
servation of crystal momentum, and to carry out the integration over cos 0q

with the help of the energy-conserving delta function. The result is as follows:

where the collision integrals are given by
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and i= 1 or 3 (eqn 12.18), with cos a' chosen appropriately (eqn 12.19) and
E'= E±-h2q .

The solutions now depend on the particular scattering mechanisms and on
the strength of the field.

12.2. Weak electric fields

In the absence of a field and with thermodynamic equilibrium prevailing, it is
clear that

for all scattering mechanisms, vfiihf0(E) given by the Fermi-Dirac function.
When there is a weak electric field, f1 (E) is non-zero but it is of the same order
as the field and so the left-hand side of eqn (12.20a) is of second order and can
be neglected. This means that the spherical component of the distribution
function is unaffected by the field and eqn (12.22b) continues to hold good.
Exploiting this in eqn (12.20b), we obtain

In the case of elastic collisions, E' = E and qi = 0, qt+1 = Ik (from
eqn (12.18), and we obtain

leading to the definition of a momentum relaxation time in the familiar way
(see Chapter 4). Table 4.1 lists the momentum-relaxation times for impurity
scattering. A momentum relaxation time can also be defined for acoustic-
phonon scattering in the quasi-elastic approximation (hwq -c E) (see
Chapter 3). If the momentum relaxation time is tm then the solution of the
Boltzmann equation can be expressed as follows:

When the collisions are inelastic, a relaxation time cannot always be defined.
It is nevertheless useful to define an effective relaxation time, r"(E), using the
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form of eqn (12.25), which just means replacing Tm by T*. Noting that

the collision integral is then

The effective time constant for each energy must be obtained from eqn (12.20b):

The important case here is that for optical-phonon scattering, in which a
q-independent frequency can be assumed. Equation (12.28) is awkward in that
the effective time constant at energy E is related to the time constants at
energies E ± hw, except for an energy less than the phonon energy, in which
case the only connection is with the state at E + hw. Nevertheless, an exact
solution is possible for non-polar modes in the general case and for polar
modes provided that we know T * ( E ) at energies such that E » hw; that is,
where a relaxation time can be defined. Such a relaxation time is then
straightforward to obtain for non-polar and for polar optical mode scattering
(Table 12.1). Working backwards down the ladder of states (Fig. 12.1) even-
tually allows us to establish the effective time constant in the intervals of E
where E is less than or of the order hw with arbitrary accuracy. This method,
originally devized by Delves (1959), is superior to variational methods of
solution, in that it is exact and illustrative of the quantum nature of the
scattering process (Fig. 12.2). A good account can be found in Fletcher and
Butcher (1972).
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One of the striking features of optical-phonon scattering is the sudden
decrease of the effective time constant at the first threshold of emission. At
temperatures low enough for the population of states above this threshold to
be small, this rapid decrease allows us to define an approximate relaxation
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FIG. 12.2. Exact solutions of the Boltzmann equation, (a) Effective relaxation time in GaAs:
continuous lines, polar mechanisms; upper curves at 100 K, lower at 300 K (after Fletcher and
Butcher 1972). (b) Effective relaxation time in GaN at 300 K for three electron densities as
measured by the Fermi level relative to the conduction bandedge. The exact solution is

compared with the standard and drifted models W0 = 1.2 x 1014s-1 (after Ridley 1998a).

time as that associated solely with the absorption process. Basically, this
assumes that T* (hw) = 0. Thus we can obtain

where N(E) is the density of states and the various quantities are denned
in Table 12.1.
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FIG. 12.3. Ratio of averaged momentum relaxation times for the drifted and standard models in
3-D and in 2-D (drifted time divided by standard time). (After Ridley 1998b).

The momentum relaxation rate for polar optical-phonon scattering just
quoted can be contrasted with that derived by Callen (1949) (eqn 3.156). The
latter turns out to be valid in the limit of rapid electron-electron scattering
when a drifted Fermi-Dirac distribution function is established. This has the
effect of transferring momentum back to the low-energy states by the emission
process, thereby reducing the overall momentum relaxation rate. A compar-
ison of the two rates is shown in Fig. 12.3. For hw « kBT, as is the case for
GaAs at room temperature, the predictions of the two models coincide, but
when hw » kBT, as is the case for GaN at room temperature, the 'drifted'
model predicts a significantly longer momentum relaxation time.

12.3. Electron-electron scattering

It is appropriate at this point to consider the role of electron-electron scat-
tering. By itself it cannot, of course, relax momentum or energy gained from
the field, since interelectronic collisions conserve both quantities, but it can
redistribute them over the electron states. Thus, both the symmetric and
antisymmetric components of the distribution function can be affected.

The kinetics of carrier-carrier scattering were described in Sections 4.6 and
4.7. The net scattering rate associated with the state with wavevector ki and
energy E1 is
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where k', + k'2 - k1 - k2 = 0, and

Following the same procedure as before, we obtain the following scattering
integrals:

For brevity, we have quoted the antisymmetric scattering integral only for the
case when the symmetric integral is zero, which allows us to simplify the
expression considerably. This corresponds to the situation when the sym-
metric component of the distribution is of the form of a Fermi-Dirac function,
which occurs either in the weak-field case or when electron-electron scattering
is strong enough to randomize the energy and to define an electron tempera-
ture. These, in fact, are just the cases when it is interesting to look at the
antisymmetric contribution of electron-electron scattering.

The permittivity that enters these equations is the appropriate dielectric
function for the collision. This is the sum of a lattice term and a screening term
(Chapter 9):
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The frequency is q.Vcm, where q = K'12 - K12 and vcm is the velocity of the
centre of mass. An assumption often made is that since the coulombic inter-
action favours small exchanges of momentum a static-screening approxima-
tion can be made, and so

where q0 is the reciprocal screening length. A restriction of the collisions to
purely binary encounters should also be made (Section 4.2.4). (For an example
of the application of statistical screening to electron-electron scattering see
Ridley (1998a).)

Conservation of crystal momentum converts the triple integral of eqn
(12.33) to a double integral over k2 and either k'1 or k'2, but little further pro-
gress can be made without resorting to numerical techniques. Nevertheless,
some general observations can be made regarding the effect of electron-
electron collisions on momentum relaxation:

1. The occupation factors favour collisions in which all of the electrons are
within k B T o f the band-edge in the non-degenerate case, or within kBT of the
Fermi level in the degenerate case.

2. Small momentum changes are favoured.

3. Electron-electron scattering acts to redistribute momentum among the
energy states. Unless the momentum relaxation in the absence of electron-
electron collisions is heavily energy-dependent, the effect of redistributing
momentum will be small. Charged-impurity scattering in a non-degenerate
population at low temperatures does produce a momentum relaxation time
that is markedly energy-dependent and the corresponding mobility is found to
be affected significantly. Other elastic processes are only weakly affected.

4. In optical-phonon scattering, the variation with energy of momentum
relaxation is large only at the emission threshold. It follows that any significant
effect can come from those less frequent electron-electron collisions involving
at least one electron with energy above hw. An estimate of the collision rate for
these processes can be made which gives, ignoring screening

where n is the electron density and v (hw) is the group velocity of electrons at
the phonon energy.

5. In a fully drifted distribution the effective relaxation times at each energy
are equal to one another, so the net electron-electron scattering rate vanishes.
This will occur when momentum redistribution dominates everything, which
will be a rare occurrence.
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6. On the other hand, the rate of energy redistribution at high electron
concentrations can be an important factor, since the rate of energy relaxation
is often much smaller than the rate for momentum relaxation. In this case the
spherical part of the distribution is Fermi-Dirac with an electron temperature
usually larger than the lattice temperature. If this can be assumed it makes the
quantitative description of transport at high fields much simpler.

Carrier-carrier scattering also includes electron-hole scattering, but this is a
very different affair, since this always contributes to the energy and momentum
relaxation of the particular population, electron, or hole. Electron-hole
scattering is treated in Section 4.6.

12.4. Hot electrons

With increasing strength of electric field the electrons become hot in the sense
that their mean energy rises above that at thermodynamic equilibrium. Of
course, that happens at all field strengths, but it becomes experimentally
noticable by measurements of mobility, and by more spectacular manifest-
ations such as negative differential resistance (NDR) effects and breakdown.

Theoretical work on hot electrons dates back 1930s. The prime motive was
to understand electrical breakdown in insulators—so-called dielectric
breakdown—and that is still a problem of some topical interest for large-gap
semiconductors such as ZnS and GaN. Why the study of hot electrons should
begin with the study of conduction processes in insulators is not hard to
explain. The cause of breakdown was seen to have its origin in either a thermal
runaway through excessive Joule heating or in purely electrical effects. The
most straightforward way of creating hot electrons is to apply a strong electric
field, but if that is done to a metal—or even a semiconductor—it simply melts,
Joule heating being very powerful. Having very few electrons, an insulator
does not get hot, although the few electrons might get very hot indeed. The
study of the purely electrical effects in steady, high electric fields can be done
only in insulators, and then only up to the breakdown field (106-107 V/cm).

An early theory of breakdown was that of Zener (1934), who described it in
terms of quantum-mechanical tunnelling between valence and conduction
bands, but the breakdown fields predicted proved to be much larger than any
observed in the alkali halides. Other mechanisms proposed drew on the
familiar field of breakdown in gases and emphasized impact ionization and
subsequent avalanching.

The principal energy-relaxing mechanism for electrons in a solid is the
emission of optical phonons, and the analysis by Frohlich (1937) of the col-
lision rate via the polar interaction stands today. Not quite as equally valid
today is the idea of von Hippel (1937) that breakdown is associated with
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electrons gaining more energy from the field than they can dissipate via
inelastic collisions, until they initiate an avalanche. This concept of runaway
stems from the character of the polar interaction, whose strength weakens
with increasing electron energy. Above a critical field no energy balance is
possible with this particular scattering mechanism, so an energy runaway
occurs and this was thought to be the cause of breakdown. Now we know that
there are non-polar interactions that stop this runaway, so the mechanism of
breakdown is not so simple, but the idea is interesting in providing the first
example of a possible instability associated with hot electrons.

As in the case of a good deal of solid-state physics, a tremendous boost came
with the advent of the transistor around 1947. If it were true that the study of
hot electrons in metals was difficult, this was not the case for semiconductors,
provided that fast electrical pulses were used. In those days, microsecond
pulses were fast and were sufficient. In non-degenerate semiconductors, as in
insulators, the thermal energy of the electron is (3/2 kBT, a matter of 25 meV at
room temperature, and far less than the Fermi energy of a typical metal. Thus,
even though semiconductors had higher electron concentrations than insu-
lators, it was just as easy to engineer changes in the average energy as it was in
insulators, and moreover, the higher electron concentration facilitated the
observation of hot-electron effects. In fact, semiconductors were the ideal
materials, and as the control of impurities improved, quantitative studies
began to emerge.

A significant difference between the study in insulators and that in semi-
conductors was that the paradigm material for transistors was germanium,
which is, unlike most insulators that were studied, non-polar. The Frohlich
interaction did not apply, but, rather, the deformation-potential interaction.
Consideration of non-polar scattering by acoustic phonons led to the quan-
titative prediction of a deviation from Ohm's Law by Shockley (1951) and,
ultimately, a saturation of drift velocity at around 107cm/s, which was
determined primarily by the interaction with optical modes. These effects were
observed in germanium, first by Ryder (1953) and in more detail by Gunn
(1956). Shibuya (1955) predicted that the spheroidal valley structure of the
group IV semiconductors would lead to anisotropic conduction at high fields
as electrons in some valleys became hotter than those in others, and this was
observed by Sasaki, Shibuya, and Mizuguchi (1958). The same effect was also
responsible for the crystals becoming birefringent. These developments were
reviewed by Gunn (1957), Reik (1962), Schmidt-Tiedermann (1962), Paige
(1964) and Conwell (1967).

In order to account theoretically for hot-electron effects it is necessary to
tackle the problem of the electron distribution function, which deviates from
the thermodynamic-equilibrium Maxwell-Boltzmann or Fermi-Dirac forms
in the presence of a high field. This can sometimes be done analytically by
solving the Boltzmann equation. Solutions were obtained when non-polar
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phonon scattering is dominant: for acoustic phonons, Davidov (1937); and,
for optical phonons, Reik and Risken (1961). Assuming electron-electron
scattering to be dominant, Frohlich and Paranjape (1956) used a drifted
Maxwellian characterized by an electron temperature. In many cases, how-
ever, an electron temperature cannot be defined and only the average energy is
meaningful. Nevertheless, where an electron temperature can be defined its
value can be determined by a number of techniques, such as, for example,
measuring the spectral dependence of photoluminescence or at low tem-
peratures, relating the lattice-temperature dependence to the field dependence
of Shubnikov-de Haas oscillations. The topic has been reviewed by
Bauer (1974). The more general approach to obtaining the distribution
function using the numerical techniques of the Monte Carlo simulation fol-
lowing Kurosawa (1965) have been increasingly used by Fawcett, Boardman,
and Swain (1970), Rees (1972) and, more recently, Jacoboni and Reggiani
(1983).

The increase in energy of an electron in the presence of an electric field is
heavily influenced by the scattering mechanisms and, since these are depend-
ent upon electron energy, the dynamic situation is fundamentally non-linear
and possibly unstable.

That this is so can be most simply illustrated by the basic dynam-
ical equations that describe the momentum and energy conservation of a
representative electron:

where m* is the effective mass, v is the velocity, F is the electric field, E is the
energy, EQ is the energy at zero field, rm is the momentum relaxation time, and
TE is the energy relaxation time, and we overlook the problem that in some
cases relaxation times cannot strictly be defined (most notoriously in the
important case of polar-optical-mode scattering). These equations are directly
coupled through the velocity and indirectly coupled through the energy
dependences of m* (non-parabolicity) and the time constants. In the steady
state,

where p, is the mobility, which is field-dependent through the energy depend-
ences of the momentum relaxation time and the effective mass. An estimate
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of the threshold field for hot-electron effects to appear is therefore

Typical values are n = 1 m2/Vs, TE = 1 ps and E0 = 25 meV, giving Fth =
1 kV/cm.

The field dependences of energy and drift velocity can most simply be
illustrated by assuming that the conduction band remains parabolic and that
the energy dependence of the time constants can be represented by

We then obtain

There are two things to note here. One is that the field dependences are cru-
cially determined by the energy dependences of the scattering time constants.
The other is that no steady-state solution is possible unless

For the polar interaction with phonons at high enough energies for the
momentum and energy time constants to be well defined, both p and q are
positive quantities and this condition is violated; consequently, there is no
steady state. However, as the polar interaction weakens towards high energies
non-polar interactions, always present, take over if they have not been domi-
nant before and, as for these? is negative and q = 1 +p for optical modes and
q=p for equipartitioned acoustic modes, the stability condition can be met.

The non-polar interaction with phonons, particularly with optical and
short-wavelength acoustic phonons, is therefore of great importance for
determining the behaviour of very hot electrons. Usually, the energy depend-
ence of the momentum relaxation time is that of the density-of-states function
of the electronic band structure. For a simple parabolic band in 3-D this means
that p= — 1/2 and q=1/2. Equation (12.42) then predicts that the energy
increases with the square of the electric field and the drift velocity saturates.

The time dependence of hot-electron effects can best be appreciated by
imagining an electron being accelerated from zero velocity in an electric field.
Figure 12.4 gives a schematic picture of the various zones of behaviour deli-
neated by imaginary vertical lines for the non-polar interaction.
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12.5. Hot electron distribution functions

The quantitative problem is to establish the distribution function as a function
of applied electric field for arbitrary field strengths by solving the Boltzmann
equation. It is usually reasonable to assume that the distribution of hot elec-
trons is non-degenerate, so that classical statistics can be used. For the present
we will assume that electron-electron scattering is too weak for a Fermi-Dirac
distribution to be formed. The problem, in practice, is usually solved
numerically using Monte Carlo techniques, but there are a few cases when
analytical solutions can be found. As these are of considerable importance for
understanding the consequences of the complex dynamics of energy and
momentum input and energy and momentum relaxation, they are worth
describing here, even though they generally involve the unrealistic assumption
that only one scattering mechanism is operative. And, of course, if only one
scattering mechanism is operative it has to be associated with phonons, since
phonon mechanisms provide the necessary passage of energy to, ultimately,
the thermal bath which determines the lattice temperature. In this case, the

FIG. 12.4. A schematic 'phase' diagram for hot electrons: non-polar phonon scattering time
versus electric field. I, Ohmic; II, warm electron; III, hot electron; IV, streaming; V, saturation
drift; VI, impact ionization. 1T = m*vt/ef = m*v0/eF; VT is the average thermal velocity
and v0 is the group velocity of the electron when its energy equals the optical phonon energy.

(After Ridley 1986.)
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collision integrals take the form

where, for unscreened interactions,

Except at very low temperatures in non-degenerate material, the acousti-
phonon scattering can be taken to be quasi-elastic in the sense that hw << E
for most collision processes. The validity of this assumption improves as the
electrons get hot, and for extremely hot electrons it can even apply to the case
of optical-phonon scattering. In the case when we can adopt the quasi-elastic
approximation it is possible to expand the distribution function in a Taylor
series and retain only the leading terms, i.e.
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After some manipulation, we obtain the quasi-elastic collision integrals:

We have already seen from our simple model that a steady state at
high fields is possible only for non-polar scattering (eqn 12.43). Thus we
need only investigate solutions of the Boltzmann equation for non-polar
interactions.

12.5.1. Scattering by non-polar acoustic phonons

Because acoustic-phonon scattering is the dominant energy-relaxing process
at low temperatures, we will not assume that the distribution is non-degen-
erate. We will, however, assume that the phonon occupation obeys classical
equipartition, i.e. n(w) = kBT/hw >> 1, and that the long-wavelength disper-
sion relation w = vsq applies. Putting W= Wa, we obtain:

Equating these to the corresponding field terms in eqn (12.20), we obtain the
following equation for the distribution function:



Hot electron distribution Junctions 401

Here, A is the energy-independent mean-free path. Liboff and Schenter (1986)
(see also Schenter and Liboff 1987) have shown that the solution is (Fig. 12.5)

For zero field (s = 0), the distribution function becomes the Fermi-Dirac
expression, as it should. For the case of non-degeneracy (u < 0),

This is the form first given by Davidov (1937). A is essentially a field-
dependent normalizing constant maintaining a constant electron density. At
high fields, the distribution becomes Gaussian:

a distribution known as the Druyvestyn distribution (Druyvestyn 1930).
These results were obtained with the assumption of equipartition, but this

can fail at low temperatures and high fields when there are few phonons of high
enough energy to participate in scattering processes with high-energy elec-
trons. As we noted in Section 3.3.2, the scattering rate is modified when
n(u) n(w)<< 1, with the momentum relaxation time being given by eqn (3.109).
When this is the case, the equation for the spherical component becomes

FIG. 12.5. Schecter-Liboff distribution function (see text).
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the solution of which (Stratton 1957) is

Note that 0 is independent of lattice temperature, since s is inversely pro-
portional to T3.

12.5.2. Scattering by non-polar optical modes

An analytical solution can be found only for the high-energy regime where the
quasi-elastic approximation can be made and n(w) is no longer very much
greater than unity. The collision integrals then become

At high energies it is a good approximation in most situations to assume a non-
degenerate distribution, i.e. fo(E)<<C 1. For high fields the equation for the
spherical component is

This has the solution (Reik and Risken 1961)

The distribution is Maxwelliain, with an electron temperature Te. It is
straightforward to show that this distribution function is associated with a
current that is field-independent. It should be noted that the above treatment
is applicable to inter-valley scattering involving modes, both optical and
acoustic, in the region of flat dispersion with wavevectors near the zone edge.



Hot electron distribution junctions 403

72.5.3. The drifted Maxwellian

The analytical solutions of the Boltzmann equation just described were
obtained with the assumption that the conduction band was spherical and
parabolic. An extension to the case of spheroidal valleys is straightforward
using the transformations described in Chapter 3, but any non-parabolic
energy dependence invalidates the solutions. A different analytical approach
to the hot-electron problem is to bypass the Boltzmann equation and assume a
form for the distribution function which satisfies momentum and energy-
balance equations. This can then be used even in the case of non-parabolic
bands to describe hot-electron transport. The simplest choice is the drifted
Maxwellian:

where kD is the shift in wavevector, common to all electron states, due to the
field, and Te is the electron temperature. This is physically possible only if
electron-electron collisions are extremely frequent, so that drift momentum is
randomized. Extra energy picked up from the field will also be randomized
and will lead to the Maxwell-Boltzmann form. Since the rate of energy
relaxation in phonon collisions is smaller than the rate of momentum
relaxation, it is easier for electron-electron scattering to randomize energy
than it is to randomize momentum. Thus, it is often possible to justify the use
of an electron temperature at electron concentrations typically of 1017cm-3

and above. Justifying a common wavevector shift is less easy, but because a
sum over all states is always involved, choosing a common shift, and regarding
it as a kind of pre-emptive averaging, might be expected to produce little error.
At high electron concentrations the drifted Maxwellian distribution is there-
fore a reasonable choice, even though complete momentum randomization is
not to be expected.

The quantities kD and Te are derived from equations describing the
momentum and energy balance:

where the angular brackets denote averages over the distribution function of
the loss rates associated with the scattering mechanism. General expres-
sions for these averages have been obtained for the case of spheroidal, non-
parabolic bands, with scattering dominated by non-polar acoustic phonons
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obeying equipartition or by polar optical phonons (Harris and Ridley 1973).
The non-parabolicity is taken to be of the form

where E*g is an effective bandgap, and the subscripts 1 and t denote longitudinal
and transverse.

For acoustic-phonon scattering,

where Ea, E0 and m*d are defined in Section 3.3.3, B = kBTe/E*g, and the M
factors are the Maxwellian limits of the non-parabolic integrals (Kolodziecjak
and Zukotynski 1964):

where x = E/kB Te.
For polar optical modes,

where

and the anisotropy factors are
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The other parameters are the integrals

where

The mobility can be expressed in terms of kD via the current density:

From eqns (12.59), (12.61), and (12.63), kD is proportional to the field, and so
the field can be eliminated from eqn (12.68): we obtain the mobility as a
function of electron temperature. Putting vDa = uaFa in eqn (12.59), we can
obtain from the energy rate equations the relation between field and tem-
perature. The variation of mobility and field with temperature can be deduced
for either scattering mechanism or a mixture of both provided that the rates
can be regarded as additive. Figure 12.6 shows the results for a few cases in
which the ratio of optical to acoustic scattering rates and the non-parabolicity
is varied. The runaway for purely polar mode scattering is exhibited, and it is
also shown that a small degree of non-parabolicity removes this feature
entirely, but it also produces a negative differential resistance (NDR) above a
certain threshold field. This feature (NDR) remains when there is an equal
amount of acoustic phonon scattering, even when the band is parabolic.

In a real material such as GaAs the role of the L and X valleys in the con-
duction band becomes important. Electron transfer to one or more of these
valleys reduces the average mobility and produces a strong NDR (Ridley and
Watkins 1961, Hilsum 1962), which is the basis of the Gunn effect (Gunn
1963). In general, NDR at high fields can be caused by a combination of mixed
scattering, non-parabolicity, and inter-valley transfer.
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FIG. 12.6. Variation of mobility, electron temperature and drift velocity with field for different
ratios of acoustic to optical phonon mobilities (W) assuming a drifted Maxwellian. A=hw/kBT.
Continuous lines, non-parabolic model; broken lines, parabolic model. u(O) is the mobility at
zero field; Fs is the field at which the ohmic drift velocity equals the average velocity of sound.

In the case of spherical, parabolic bands the anisotropy factors are all unity
and the integrals in eqns (12.62) and (12.66) are standard:
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where Kn(x) is the modified Bessel function. For acoustic-phonon scattering,

For polar optical-phonon scattering,

Even after the adoption of a simple form for the distribution function and a
simple form for the band structure, we are still faced with finding the mobility
as a function of field from the transcendental equations that describe
momentum and energy balance, which requires numerical work. In view of
this and the unsatisfactory feature of estimating the form of the distribution
function, it has become common practice to deal with the problem numerically
right from the start using Monte Carlo techniques. This has the advantage that
the best model band structure can be used and it can be applied to inhomo-
geneous semiconductors with all scattering mechanisms included. It has the
disadvantage that understanding how the result conies about is more difficult
than in a quasi-analytical approach. The Monte Carlo method usually pro-
duces a particular result for a particular system more accurately than an
analytical method. The analytical method, although less accurate for a given
system, produces a result that encompasses an infinite number of situations,
and it therefore provides a general insight into the problem. The two methods
are complementary to one another and, ideally, should be used side by side.

The Monte Carlo method was first used by Kurosawa (1965). There are
several general accounts of the method (see Price 1979, Jacoboni and Reggiani
1983, Binder 1984).
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13. Space-charge waves

13.1. Phenomenological equations

THE time constants that describe energy and momentum relaxation are typi-
cally picoseconds or less. At times longer than this, one can often assume that
average energies and drift velocities have become established and measurable
quantities, such as the mobility and the diffusion constant, have become well-
defined. At even longer times the generally slower processes of trapping and
recombination become characterized by time constants typically longer than a
nanosecond. These distinctions based on characteristic times can frequently
be made, but there are situations where this would be invalid; for example, in
the case of an injection laser, where thermalization and stimulated emission
times may be comparable. Such cases apart, it is possible to describe the vari-
ous phenomena of charge transport in terms of average, rather than micro-
scopical, quantities, relating the two through equations such as eqn (12.68),
with electric and magnetic fields described by Maxwell's equations.

Defining statistical averages and moments from the Boltzmann equation
leads to the so-called hydrodynamic model of transport, which is very often
used in device simulation. In many practical cases the speed of momentum and
energy relaxation is relatively so fast that simple phenomenological quantities
such as the mobility and the diffusion constant can be used. This leads to the
simplest transport model—the drift-diffusion model (Fig. 13.1). In what fol-
lows, we look at a selection of special transport phenomena amenable to
a drift-diffusion model description, and limit our discussion to the case of
non-degenerate distributions of electrons in a conduction band and holes
in a valence band of a piezoelectric semiconductor. Our selection has taken
into account that stable transport has been adequately treated by the drift-
diffusion model in a number of standard texts; we therefore focus on
phenomena that involve some kind of instability, since they are more exciting.
(Certainly, the experimental investigation of transport instabilities can be
regarded quite often as a complicated way of destroying specimens!)

We begin with Maxwell's equations, which take the form
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FIG, 13.1. A hierarchy of theoretical models of transport phenomena.

We limit our discussion to cases in which there is an absence of temperature
gradients and flow of energy and focus on charge and particle transport. Since
we will not need to refer specifically to energy in what follows, we use the usual
convention of using E to denote the electric field. The electric displacement is
related to the field and to the local elastic strain via the permittivity and piezo-
electric tensors, and the field is related to the elastic strain and the stress tensor
via the piezoelectric and the elastic-constant tensors;

The current density, with B = 0 for simplicity, is composed of drift and dif-
fusion components:

where e is the magnitude of the electron charge, n and p are the electron
and hole concentrations, un,pi is the mobility tensor, and Dn_pij is the
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diffusion-constant tensor. (Note that the presence of the subscript n or p will
distinguish the diffusion constant from the electric displacement.) The space-
charge density is composed of deviations from equilibrium concentrations of
electrons and holes in bands and traps:

where nt is the electron concentration in the trap, and the subscript zero
denotes equilibrium values. The particle continuity equation for electrons is

where the superscript denotes a tensor quantity. A similar equation can be
written down for holes, with appropriate sign changes. The capture/gener-
ation rate for electrons has four components:

Auger processes are carrier-carrier interactions that include recombination,
trapping, and impact ionization; radiative processes involve the emission and
absorption of a photon; excitonic processes are the formation and disruption
of excitons; and trapping is the capture into and generation out of one or more
localized states. All of these processes are comprehensibly described in the
book by Landsberg (1991). Here we will limit our attention to the trapping of
electrons at a single deep level. (For an account of trapping at a spread of
trapping levels, see Rose (1951) and Ridley and Leach (1977).) The trapping
rate is

where cn is the volume trapping rate and eD is the volume emission rate; JVC is
the effective density of states in the conduction band (non-degeneracy
assumed), and JVt is the density of traps.

We now apply these equations to some cases in which the transport is
anomalous, but interesting.
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13.2. Space-charge and acoustoelectric waves

The first and fourth of Maxwell's equations can be combined to give the
equation for current continuity in the form

which, for one type of carrier in the case that spatial variations are limited to
one dimension, becomes

where v is the drift velocity and, to avoid possible confusion arising out of the
convention for sign of current and field, we use the symbol for electron charge
which implies that it carries the sign of the charge. Effectively, we regard the
electrons in the manipulation as positively charged and leave the insertion of
the sign to the end of the calculation. Within the time hierarchy assumed here,
v is an instantaneous function of the field; thus

where ud is the differential mobility at the field E. If the deviations of electron
density, and therefore space charge, are small, ud can be taken to be a constant
and we can therefore ignore the spatial variation of Dn, since it is related to the
mobility by the same scattering mechanisms at the same average energy. The
field is related to the electric displacement, and hence to the space-charge
density via eqn (13.2) but, in piezoelectric materials, the relationship involves
the strain and hence the stress. The latter can be eliminated by using the
equation of motion of the lattice (see eqn 3.196). For variations in one
direction only, the equation of motion reduces to

where pm is the mass density, and T and 5 are the components that vary along
that direction. From eqn (13.2), we obtain
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where us is the velocity of sound, K2 is the dimensionless electromechanical
coupling coefficient, and c, ep, and e are the appropriate components of the
elastic-constant, piezoelectric, and permittivity tensors. For a travelling plane
wave of the form exp{i(kx — w t)} the relation between S and E is

and this allows us to define an effective permittivity as follows:

For semiconductors that crystallize in the sphalerite structure, the electro-
mechanical coupling coefficient is rather small (see Tables 3.4 and 3.5), so
unless the velocity of the wave is extremely close to the velocity of sound, the
effective permittivity can be replaced by its usual value. Piezoelectric effects are
significantly stronger in wurtzite structures, so a larger range of wave velocities
is affected.

We obtain the general relation between field and space charge:

Equation (13.9) becomes

This is a non-linear equation through the first term on the right-hand side.
For small deviations from space-charge neutrality, n can be replaced by n0, and
the linearized equation can be solved in terms of travelling space-charge
waves:

where wc is the differential conductivity frequency. We can cast the solution in
terms of temporally attenuating travelling waves, by letting w —> w —>w -- i/T, or in
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terms of spatially attenuating waves, by letting k —»k + ia, and equating real
and imaginary quantities. The frequency dependence of the effective permit-
tivity generates three distinct solutions: a simple space-charge wave; and two
acoustoelectric waves, one travelling forwards and the other backwards.

To be specific, we will give the solutions in terms of spatially attenuating
waves. The space-charge wave is obtained when the condition v = vs is met:

In the Ohmic regime, any space-charge fluctuation dissipates at a rate deter-
mined by the conductivity and by diffusion. In the hot-electron regime, the
differential conductivity can be negative, i.e. wc < 0. In this case, the waves
grow when wc + DnK

2 < 0 and the system is electrically unstable.
When v=w vs one obtains the acoustoelectric solutions:

Here, L is the Debye screening length. The waves attenuate when they travel
against the drift, i.e. vs < 0. They grow when v > vs (Fig. 13.2). (Actually, the
condition for amplifying acoustic waves is more stringent than this, since the
non-electronic losses described in Chapter 10 have to be overcome.) The
acoustoelectric effect was first described by Hutson and White (1962), White
(1962), and Gurevitch (1962). The gain is a maximum for k2L2 = 1 and TL = 2,
in which case 2aL = K2/4.

In the presence of a negative differential resistance (NDR), L2 is negative
and the conditions for acoustic amplification are reversed. Since NDR
depends on hot-electron non-linearities which appear at drift velocities well
above the velocity of sound, the effects are generally expected to be small.
However, it is not the drift velocity of the carriers that matters but, rather, the
drift velocity of the space charge. In the presence of trapping, these two
velocities are not the same; in fact, the drift of trapped space charge can be
much slower. There exists, therefore, the possibility of NDR when the drift
velocity of space charge is in the vicinity of the velocity of sound.
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FIG. 13.2. Acoustoelectric gain versus field (eqn 13.19) for the frequency of maximum gain.

The trapping rate is given by eqn (13.7) and the space-charge density by eqn
(13.4). The total rate of change of free electron density is therefore

where N is the total electron density free and trapped. Equation (13.7) is
recovered if the total density remains fixed, but this is not the case when there is
space-charge build-up. Without trapping the rate of change of free electron
density would equal that of the total. Introduction of the frequency of the
wave leads to the following relation between free and total densities:
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Here, T is the trapping time constant, rg is the generation time constant and
/is the trapping factor. With p = e(N - N0), the attenuation coefficient is
(Uchida et al. 1964)

where

In the absence of trapping (T —> oo), a = 0, and b = 1/f, and we return to eqn
(13.19). In the case of fast trapping T—»0, a = 0, and b=1, we obtain
eqn (13.19) once again, but this time the effective drift velocity is fv, which can
be much less than typical hot-electron drift velocities. Thus, it is possible for
NDR and acoustoelectric effects to be coincident (Ridley 1974). As far as the
author knows, this situation has never been investigated.

13.3. Parametric processes

In eqn (13.16), the non-linear term consisting of the product of carrier density
and space-charge deviations from equilibrium was ignored. When there is an
instability, this term cannot be neglected. Its effect is to modify the wave being
amplified by engendering a second-harmonic component and producing a fre-
quency shift. This self-interaction is not as important as the principal effect of the
non-linearity, which is to couple waves to one another via parametric processes.
A parametric process involves the transfer of energy from one wave, termed the
pump, to two other waves, known (unpoetically) as bucket modes, which are
phase matched to the pump. The pump is typically one of the waves whose
growth is favoured by the amplification process, and the bucket modes are waves
that may not be amplified very much, or even at all, in the linear regime.

If p1 is the amplitude of the space-charge of the pump and p2 and p3 are the
corresponding amplitudes of the bucket modes, the set of equations describing
growth, neglecting diffusion for simplicity, is as follows:
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plus corresponding equations for the complex conjugates. The waves obey the
phase-matching conditions:

In the case of the acoustoelectric effect, the growth coefficients (in time) in the
weak activity regime (F small) are

The linear growth coefficient differs from that in eqn (13.19) in describing the
growth of amplitude, not intensity (which accounts for the factor of 2), growth
in time rather than space (which accounts for the appearance of the velocity of
sound, and it includes a lattice-loss term. Parametric acoustoelectric pro-
cesses have been treated by Ganguli and Conwell (1969), Reik, Schirmer, and
Hinkelmann (1969), and Ridley (1971). The expression for the parametric gain
is taken from the last reference.

The process described above can be described as (p,bb) in obvious notation,
and it is a downconversion process; that is, energy is transferred to lower
frequencies. The rate of downconversion maximizes for the subharmonic,
w2 = w3 = w1/2. Another downconversion process is (p,pb). Upconversion
processes are (pp,b) and (pb,b), the latter being weak.

We have described the interaction between three waves but, in reality, there
are many waves, and a bucket mode will receive energy from a wide spectrum.
The net result, as revealed experimentally by Brillouin scattering, is a huge
shift in frequency downwards (Fig. 13.3).

13.4. Domains and filaments

Ultimately, the situation becomes determined by the inherent non-linear
dynamics of the growth process, and new physical features emerge. In the case
of NDR-generated growth, the emergent phenomenon is either a propagating
high-field domain or a stationary high-current filament (Ridley 1963). In the
case of the acoustoelectric effect, it is a domain of both high field and high
acoustic flux that propagates at the speed of sound.

The high-field domain is a creature of so-called N-type NDR. The latter is
characterized by the current falling beyond a certain field—to be distinguished
from the S-type NDR, in which the field falls beyond a certain current
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FIG. 13.3. The frequency distribution of acoustic flux in n-GaAs as a function of time for an
applied field of 573 V/cm. (a) p = 3.6 Hem. Time in us 2.5; A, 2.8; +, 3.1; o, 3.48; a, 3.7; x ,
4.2. (b) p = 2.6ncm. Time in us: 2.7; A, 2.9; +, 3.1; o, 3.38; [], 3.47; v, 3.66; x , 4.2. Full

curves are linear theory curves. (Sussmann and Ridley, 1974)

(Fig. 13.4). The domain is a dipole layer propagating from cathode to anode;
that is, in the direction of the electron drift, with a leading depletion layer and a
trailing accumulation layer. Whereas accumulation is unlimited, depletion is
limited by the electron density. In a completely depleted layer the space charge
is constant and the field drops linearly, giving a triangular shape to the field
profile (Fig. 13.5). When the domain reaches the anode it collapses: a new one
is formed near the cathode and the process is accompanied by a current spike.
Thus, current pulses are produced with a period equal to the transit time of the
domain and these can be exploited as a source of microwave power. Domain
formation requires that there be sufficient electron density in the sample to
form a dipole layer. This imposes a criterion on the product of electron density
and sample length, l: in GaAs, nl> 10n cm-2. When this is not satisfied, a
stationary domain forms at the anode. If situated in a resonant cavity, space-
charge build-up can be controlled to inhibit domain formation. In this way,
microwave frequencies up to 100 GHz can be generated, the limit being the
rate at which electrons return from the upper valley to the central valley.

There are a number of mechanisms that produce a NDR, the main ones
being electron transfer to an upper valley (Ridley and Watkins 196la),
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FIG. 13.4. Negative differential resistance (NDR). (a) Voltage-controlled NDR with equal-
areas rule shown; (b) current-controlled NDR.

FIG. 13.5. The field and density profiles of a dipole domain propagating to the right.

scattering induced (Hilsum and Welborn 1966; see also Fig. 12.6), field-
enhanced capture over an impurity barrier (Ridley and Watkins 1961b),
impact ionization (Scholl 1981), and double injection (Stafeev 1959). For a
survey of these mechanisms in 3-D and in 2-D, see Ridley (1993).
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The acoustoelectric domain is also a high-field dipole layer, but its structure
is determined by its intense acoustic flux, which acts simply as a high resis-
tance, limiting the current to that corresponding to a drift velocity near to and
just above the velocity of sound.

S-type NDR is associated with impact ionization and it produces more
complicated behaviour involving both longitudinal and transverse charge
instabilities. Ultimately, a high-current filament is formed from cathode to
anode.

To treat these non-linear effects properly would require another book.
Individually, they have been discussed by a number of authors. A far from
complete bibliography might include: for transferred-electron NDR and
domains, Carroll (1970) and Bulman, Hobson, and Taylor (1972); for fila-
ments, Gaa, Kunz, and Scholl (1996) and Scholl (1998); and for the acousto-
electric effect, Meyer and Jorgensen (1970). Here, we focus our attention on a
simple model of a propagating field domain (Fig. 13.3) associated with an
N-type NDR.

The equation for current continuity is

In a stable space-charge structure propagating with velocity VD, a conversion
to a moving coordinate system, x —> x — v0t, will remove all time dependence.
Thus,

The integration constant is just the drift-current density in the regions on
either side of the domain where there is no space charge. The current-density
equation can be written thus:

Replacing d/dx by (dE/dx)d/dE and using Gauss's equation, we obtain

Assuming that the diffusion coefficient is field-independent, the equation can
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be integrated to give

Now n — n0 on either side of the domain where the field is E0 and both sides of
the equation vanish. But n = n0 also in the interior of the domain when the field
is at its. maximum value ED, and since the left-hand side again vanishes, so
must the integral with the upper limit equal to ED- But this integral can be
performed over either the acumulation layer or over the depletion layer, and
the only way it can be zero in both cases is if VD = v0. Thus the domain velocity
is the same as the drift velocity of electrons outside the domain. But VD must
also be such that (Butcher 1965)

In other words, the domain velocity is such that the area under the curve of
drift velocity and field above VD must be equal to that below it (Fig. 13.4). This,
in turn, determines VQ.

The domain dynamics can be repeated in the presence of fast trapping.
Similar results are obtained with n replaced by the total electron density, free
and trapped, N, and all velocities reduced by the trapping factor T/Tg.
Domains in the Gunn effect travel at around 107 cm/s, but the velocity of slow
domains that have been observed can be as low as 10-4cm/s. NDR domains
(as distinct from acoustoelectric domains) that travel near the velocity of
sound have not been observed, to the author's knowledge, but they are pre-
dicted to have interesting properties (Ridley 1974).

13.5. Recombination waves

So far, we have considered processes involving a single type of carrier; we now
look at an instability involving the recombination of electrons and holes. We
need all the equations from eqns (13.1)-(13.8) but we do not need to consider
Auger, radiative, or excitonic processes. Writing these explicitly, we have
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wp,n and gp>n are capture and generation rates averaged over the traps, and AT is
the total electron density, free and trapped. We also have D = e*E. Linearizing
in the usual way, we obtain four equations for the four unknowns dE, dp, dn
and dN, each considered to be small compared with equilibrium value, and to
vary as exp{i(kx — wt)}.

Solutions exist provided that a certain dispersion relationship is satisfied.
Deriving this dispersion relationship in the general case involves a tedious
amount of algebra. In the situation we are interested in, certain approxima-
tions are allowable. We assume that the conductivity frequencies associated
with the electrons and holes are much larger than the frequencies associated
with the single deep centre through which the recombination traffic proceeds.
Additionally, we regard the centre to be deep enough for the generation rates
gp,n to be negligible. These approximations are actually applicable to most
practical situation, so there is not a great loss in generality.

Applying them allows us to express the dispersion relationship as follows:

where wc = e(upp0 + unn0)/e* is the conductivity frequency. In the second
bracket, the terms u, and Da are the ambipolar mobility and ambipolar dif-
fusion constant respectively:

The terms in the last internal bracket are

The first bracket of eqn (13.34) equated to zero describes an ambipolar
space-charge wave:
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Since the conductivity frequency is large (and here assumed to be positive), this
solution describes heavily damped space-charge waves travelling with velocity
vp — vn. The slower solutions described by the second bracket of eqn (13.34)
therefore describe waves in which electrical neutrality pertains, thereby
accounting for the appearance of the ambipolar transport coefficients.

The character of these slower solutions is easily established for the case
k = 0, viz. w== — iwp or w = — iwn. Fluctuations simply decay at the trapping
rate for the individual carrier. However, for k = 0 and for large enough fields
so that drift dominates diffusion, at least over some range of k, a fluctuation
may grow. For example, in n-type material transport is determined by the
minority carrier, as eqn (13.35) shows. In such a case it is also likely that the
capture of holes is much more rapid than for electrons (since the deep centres
will tend to be well-occupied by electrons).

We can explore this case by assuming that

Inserting these into the second bracket of eqn (13.34) and equating to zero
gives two solutions, which are

where vp is the drift velocity of holes. These are the solutions obtained by
Konstantinov and Perel (1965). The first describes a damped hole wave trav-
elling in the direction of the hole drift. The second describes an electron wave
travelling in the direction of the electron drift, which grows in time if
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This condition implies that the hole concentration and the drift length should
both be high enough such that

If these conditions are satisfied, then there will exist a range of wavelengths
that are unstable. Current oscillations in silicon that may be caused by a
recombination instability have been observed, for example, by Holonyak and
Bevacouva (1964). One of the problems in identifying this instability is that it
has to be distinguished from the instability caused by field-enhanced capture.
In principle, there is no difficulty, since the latter is a hot-electron effect, but in
practice a distinction may not be easy.

Physically, what is happening is that the instability is triggered off by a local
increase, say, in the electron density which reduces the field (since the electrons
are the majority carriers). As a result, holes pile up on the anode side of the
fluctuation and get trapped rapidly. The resultant space-charge attracts more
electrons which do not get trapped quickly, and this results in an enlargement
of the field trough and a movement of the fluctuation towards the anode, i.e. in
the direction of electron drift. Ultimately, stability will be established when the
hole traps are so full that the electron trapping rate increases. A fuller dis-
cussion can be found in Konstantinov, Perel, and Tsarenkov (1967) in which
the possibility of fast recombination waves, as distinct from the slow recom-
bination waves that we have been considering, is explored. These waves travel
in the direction of the minority holes and satisfy the condition

which can be satisfied only if the trapping of holes is extremely slow.
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