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Preface

This book is intended primarily for students specializing in electro-optics.
However, it is hoped that it will also serve engineers and R&D professionals,
who, while not engaged directly in optics, are nevertheless involved with any of
the numerous applications of optical methods of analysis.

The growing interest in electro-optics during last three decades has been accom-
panied by a rich literature, enlightening students and professionals in many topics
of this wide-ranging field. So, why one more book on electro-optics? I have been
involved in optics for more than 30 years, in both research and development and
teaching of optical engineering. My deep involvement in the field has brought
to my attention the gap between the theoretical study of optics and the ability
of students and young engineers to solve practical problems arising in different
applications. In this book I have tried to close this gap. For this reason the main
focus I put is on solving the problems encountered in a variety of engineering and
scientific applications.

All problems are original. Most of them serve not only for teaching purposes,
but also provide useful information on specific applications: optical configura-
tion for automatic inspection in industry, surveying systems, robot navigation,
X-ray imaging, computerized radiography, microscopy vision and measurements,
laser Doppler technique and flow study, non-contact measurement of tempera-
ture, acousto-optical scanners, spectral analysis, and many others. The solutions
of problems are very detailed and include not only the theoretical approach and
assumptions, but also the calculation procedure and units of measurements.

xi



xii Preface

Each chapter starts with the theoretical background related to the topic. The
background comprises all relevant information and formulas required for the
solution of the problems. In this regard the book is self-contained and very seldom
it is necessary to consult additional references (these cases are clearly indicated
in the text). Obviously, such an approach does not allow for detailed explanations
of theoretical material or demonstration of the derivation procedure, but it makes
the studying process easier, and, in my opinion, more effective.

The structure of the book reflects my understanding of the basic required knowl-
edge in the field of electro-optics. The material in the book covers the theory of
imaging, including geometrical optics, aberration theory and aspects of physical
optics, a description of radiation sources and radiation detectors, spectroscopy sys-
tems, color measurements, and optical systems from different application areas.
What is not included in the book is waveguide optics and communication systems –
both topics are extensively covered in the existing literature.

I would be grateful for any comments, either related to the book’s structure or
to the solution of a specific problem.

The material included in this book served as a basis for the two-semester course
on optical engineering which I have been teaching for a number of years. In
teaching this course I was helped by many assistants to whom I am very much
obliged. I am also grateful to my colleagues participating in numerous projects
in industrial, military, and medical fields confronting me with problems many of
which are included in this book. My special gratitude is to my wife, Irene, for her
assistance in this work and for her endless patience, without which this book could
not have been written.

Naftaly Menn
December 2003



Chapter 1

Geometrical Optics in the
Paraxial Area

1.1. Ray Optics Conventions and Practical Rules. Real and
Virtual Objects and Images

Electro-optical systems are intended for the transfer and transformation of radiant
energy. They consist of active and passive elements and sub-systems. In active
elements, like radiation sources and radiation sensors, conversion of energy takes
place (radiant energy is converted into electrical energy and vice versa, chemical
energy is converted in radiation and vice versa, etc.). Passive elements (like mir-
rors, lenses, prisms, etc.) do not convert energy, but affect the spatial distribution
of radiation. Passive elements of electro-optical systems are frequently termed
optical systems.

Following this terminology, an optical system itself does not perform any trans-
formation of radiation into other kinds of energy, but is aimed primarily at changing
the spatial distribution of radiant energy propagated in space. Sometimes only
concentration of radiation somewhere in space is required (like in the systems for
medical treatment of tissues or systems for material processing of fabricated parts).
In other cases the ability of optics to create light distribution similar in some way
to the light intensity profile of an “object” is exploited. Such a procedure is called
imaging and the corresponding optical system is addressed as an imaging optical
system.

Of all the passive optical elements (prisms, mirrors, filters, lenses, etc.) lenses
are usually our main concern. It is lenses that allow one to concentrate optical
energy or to get a specific distribution of light energy at different points in space
(in other words, to create an “image”). In most cases experienced in practice,

1



2 1 ♦ Geometrical Optics in the Paraxial Area

Figure 1.1 Optical beams: (a) parallel, (b,c) homocentric and (d) non-homocentric.

imaging systems are based on lenses (exceptions are the imaging systems with
curved mirrors).

The functioning of any optical element, as well as the whole system, can be
described either in terms of ray optics or in terms of wave optics. The first case is
usually called the geometrical optics approach while the second is called physical
optics. In reality there are many situations when we need both (for example, in
image quality evaluation, see Chapter 2). But, since each approach has advantages
and disadvantages in practical use, it is important to know where and how to exploit
each one in order to minimize the complexity of consideration and to avoid wasting
time and effort.

This chapter is related to geometrical optics, or, more specifically, to ray optics.
Actually an optical ray is a mathematical simplification: it is a line with no thick-
ness. In reality optical beams which consist of an endless quantity of optical rays
are created and transferred by electro-optical systems. Naturally, there exist three
kinds of optical beams: parallel, divergent, and convergent (see Fig. 1.1). If a beam,
either divergent or convergent, has a single point of intersection of all optical rays
it is called a homocentric beam (Fig. 1.1b,c). An example of a non-homocentric
beam is shown in Fig. 1.1d. Such a convergent beam could be the result of different
phenomena occurring in optical systems (see Chapter 2 for more details).

Ray optics is primarily based on two simple physical laws: the law of reflection
and the law of refraction. Both are applicable when a light beam is incident on a
surface separating two optical media, with two different indexes of refraction, n1

and n2 (see Fig. 1.2). The first law is just a statement that the incident angle, i, is

Figure 1.2 Reflection and refraction of radiation.
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equal to the reflection angle, i′. The second law defines the relation between the
incident angle and the angle of refraction, r:

sin(i)/sin(r) = n2/n1. (1.1)

It is important to mention that all angles are measured from the vertical line per-
pendicular to the surface at the point of incidence (so that the normal incidence of
light means that i = i′ = r = 0).

In the geometrical optics approach the following assumptions are conventionally
accepted:

(a) radiation is propagated along a straight line trajectory (this means that
diffraction effects are not taken into account);

(b) if two beams intersect each other in space there is no interaction between
them and each one is propagated as if the second one does not appear (this
means that interference effects are not taken into account);

(c) ray tracing is invertable; in other words, if the ray trajectory is found while
the ray is propagated through the system from input to output (say, from
the left to the right) and then a new ray comes to the same system along the
outgoing line of the first ray, but propagates in the reverse direction (from
the right to the left), the trajectory of the second ray inside and outside of
the system is identical to that of the first ray and it goes out of the system
along the incident line of the first ray.

Normally an optical system is assumed to be axisymmetrical, with the optical
axis going along OX in the horizontal direction. Objects and images are usually
located in the planes perpendicular to the optical axes, meaning that they are along
the OY (vertical) axis. Ray tracing is a procedure of calculating the trajectory of
optical rays propagating through the system. Radiation propagates from the left to
the right and, consequently, the object space (part of space where the light sources
or the objects are located) is to the left of the system. The image space (part of
space where the light detectors or images are located) is to the right of the system.

All relevant values describing optical systems can be positive or negative and
obey the following sign conventions and rules:

ray angles are calculated relative to the optical axis; the angle of a ray is positive
if the ray should be rotated counterclockwise in order to coincide with OX,
otherwise the angle is negative;

vertical segments are positive above OX and negative below OX;
horizontal segments should start from the optical system and end at the relevant

point according to the segment definition. If going from the starting point
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Figure 1.3 Sign conventions.

to the end we move left (against propagated radiation), the segment is nega-
tive; if we should move right (in the direction of propagated radiation), the
corresponding segment is positive.

Examples are demonstrated in Fig. 1.3. The angle u is negative (clockwise rotation
of the ray to OX) whereas u′ is positive. The object Y is positive and its image Y′
is negative. The segment S defines the object distance. It starts from the point O
(from the system) and ends at the object (at Y). Since we move from O to Y against
the light, this segment is negative (S < 0). Accordingly, the segment S′ (distance
to the image) starts from the system (point O′) and ends at the image Y′. Since
in this case we move in the direction of propagated light (from left to right) this
segment is positive (S′ > 0).

The procedure of imaging is based on the basic assumption that any object
is considered as a collection of separate points, each one being the center of
a homocentric divergent beam coming to the optical system. The optical system
transfers all these beams, converting each one to a convergent beam concentrated in
a small spot (ideally a point) which is considered as an image of the corresponding
point of the object. The collection of such “point images” creates an image of the
whole object (see Fig. 1.4).

Figure 1.4 Concept of image formation.
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An ideal imaging is a procedure when all homocentric optical beams remain
homocentric after traveling through the optical system, up to the image plane
(this case is demonstrated in Fig. 1.4). Unfortunately, in real imaging the outgoing
beams become non-homocentric which, of course, “spoils” the images and makes it
impossible to reproduce the finest details of the object (this is like a situation when
we try to draw a picture using a pencil which is not sharp enough and makes only
thick lines – obviously we fail to draw the small and fine details on the picture). The
reasons for such degradation in image quality lie partially in geometrical optics
(then they are termed optical aberrations) and partially are due to the principal
limitations of wave optics (diffraction limit). We consider this situation in detail
in Chapter 2. Here we restrict ourselves to the simple case of ideal imaging.

In performing ray tracing one should be aware that doing it rigorously means
going step by step from one optical surface to another and calculating at each
step the incident and refraction angles using Eq. (1.1). Since many rays should
be calculated, it is a time-consuming procedure which today is obviously done
with the aid of computers and special programs for optical design. However,
analytical consideration remains very difficult (if possible at all). The complex-
ity of the procedure is caused mainly by the nonlinearity of the trigonometrical
functions included in Eq. (1.1). The situation can be simplified drastically if we
restrict ourselves to considering small angles of incidence and refraction. Then
sin(i) ≈ i; sin(r) ≈ r; r = i/n and all relations become linear. Geometrically this
approximation is valid only if the rays are propagated close to the optical axis of
the system, and this is the reason why such an approximation is called paraxial. A
paraxial consideration enables one to treat optical systems analytically. Because
of this, it is very fruitful and usually is exploited as the first approximation at the
early stage of design of an optical system.

Even in the paraxial approach we can further simplify the problem by neglecting
the thickness of optical lenses. Each lens consisting of two refractive surfaces
(spherical in most cases, but sometimes they could be aspherical) separated by
glass (or other material) of thickness t is considered as a single “plane element”
having no thickness, but still characterized by its ability to concentrate an incident
parallel beam in a single point (called the focal point or just focus). In such a
case the only parameter of the lens is its focal length, f ′, measured as the distance
between the lens plane and the focus, F′. Each lens has two focuses: the back (F′)
and the front (F), the first being the point where the rays belonging to a parallel
beam incident on the lens from the left are concentrated and the second being
the center of the concentrated rays when a parallel beam comes to the lens from
the right. Obviously, if the mediums at both sides of the lens are identical (for
example, air on both sides or the lens being in water) then f ′ = −f . In the case
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when the mediums are different (having refractive index n and n′ correspondingly)
the relation should be

nf ′ = −n′f . (1.2)

The optical power of a lens, defined as

� = 1/f ′, (1.3)

is used sometimes in system analysis, as we shall see later.
Imaging with a simple thin lens obeys the two following equations:

1

S′ − 1

S
= 1

f ′ (1.4)

V = S′/S = y ′/y (1.5)

where V is defined as the optical magnification. These two formulas enable one to
calculate the positions and sizes of images created by any thin lens, either positive
or negative, if all values are defined according to the sign conventions and rules
described earlier in this section. A number of thin lenses which form a single
system can also be treated using expressions (1.4) and (1.5) step-by-step for each
component separately, the image of element i being considered as a virtual object
for element (i + 1). An example of such a consideration with details for a two-lens
system is presented in Problem 1.7.

The next step in approaching the real configuration of an optical system is to take
into account the thickness of its optical elements. Still remaining in the paraxial
range one can describe the behavior of a single spherical surface (see Fig. 1.5) by
the Abbe invariant (r is the radius of the surface):

n

(
1

r
− 1

S

)
= n′

(
1

r
− 1

S′

)
. (1.6)

Figure 1.5 Refraction of rays at a single spherical surface.
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Figure 1.6 Ray tracing between two spherical surfaces.

Then, the ray tracing for an arbitrary number of surfaces can be performed with
the aid of the following two simple relations (see also Fig. 1.6):

uk+1 = nk

nk+1
uk + hk

rknk+1
(nk+1 − nk) (1.7)

hk+1 = hk − uk+1dk (k = 1, 2, . . . , N). (1.8)

Given the radii of the spherical surfaces, the refraction indexes on both sides, and
the distances between them, all angles, uk , and heights, hk , can be easily found,
starting from initial values u1, h1.

To apply Eqs. (1.7) and (1.8) to a single lens defined by two spherical surfaces
of radii r1 and r2 separated by the segment d, we first have to remind ourselves
of the definition of the principal planes, H, H′ and the cardinal points. As is seen
from Fig. 1.7, the real ray trajectory ABCD can be replaced by ABMM′CD in such
a way that they are identical outside the lens, but inside the lens the rays intersect
two virtual planes H and H′ at the same height (OM = O′M′). Actually these
principal planes, H, H′, can represent the lens as far as ray tracing is considered.
Furthermore, the focal distances, f , f ′, are measured from the cardinal points O,
O′ to the front and back focuses, F and F

′
. The terms “back focal length” (BFL)

and “front focal length” (FFL) are related to the segments SF′ , SF from the back and
front real surfaces to F′ and F, respectively (see Fig. 1.7). Calculation of BFL and
FFL enables one to determine the location of both principal planes with regard to
the lens surfaces. Leaving the details of calculation to Problem 1.5 we just indicate
here the final results:

SF ′ = f ′
[

1 − d

r1n
(n − 1)

]
(1.9)

SF = −f ′
[

1 + d

r2n
(n − 1)

]
(1.10)
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Figure 1.7 Principal planes of a thick lens.

and for the focal distance

1

f ′ = (n − 1)

(
1

r1
− 1

r2

)
+ d(n − 1)2

r1r2n
. (1.11)

In many cases the second term of the last formula can be neglected since it is much
smaller than the first one.

Problems

1.1. Find the image of the object OA in Fig. 1.8 using the graphical method.

Figure 1.8 Problem 1.1 – Imaging by the graphical method.

1.2. Find the image of the point source A and direction of the ray AB after the
positive lens L1 (Fig. 1.9a) and the negative lens L2 (Fig. 1.9b).

1.3. Ray tracing in a system of thin lenses. Find the final image of a point source
A after an optical system consisting of thin lenses L1, L2, and L3 ( f ′

1 = f ′
2 =

15 mm; f ′
3 = 20 mm) if A is located on the optical axis 30 mm left of the lens L1
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Figure 1.9 Problem 1.2 – Imaging by the graphical method: (a) with a positive lens; (b)
with a negative lens.

and the distances between the lenses are d12 = 40 mm, d23 = 60 mm. [Note: Do
this by ray tracing based on Eq. (1.4).]

1.4. Method of measurement of focal length of a positive lens. An image of an
object AB created by a lens is displayed on a screen P distant from AB at L =
135 mm (Fig. 1.10). Then the lens is moved from the initial position, 1, where
the sharp image is observed at magnification V1, to the position 2 where again the
sharp image is observed on the same screen, but at magnification V2 = 1/V1. The
distance between positions 1 and 2 is a = 45 mm. Find the focal length of the lens
and estimate the uncertainty of the measured value if the lens thickness, t, is about
5–6 mm.

Figure 1.10 Problem 1.4 – Method of focal length measurement.

1.5. Location of the principal planes of a thick lens. Find the positions of two
principal planes H and H′, BFL, and FFLof a lens made of glass BK-7 (n = 1. 5163)
having two spherical surfaces of radii R1 = 50 mm and R2 = −75 mm and thickness
t = 6 mm.



10 1 ♦ Geometrical Optics in the Paraxial Area

Figure 1.11 Problem 1.6 – Consideration of a parallel plate.

1.6. Violation of homocentricity of a beam passed through a flat slab. A flat slab
of glass is illuminated by a homocentric beam which fills the solid angle ω =
1. 5 sr with the center at point A, 30 mm behind the slab (Fig. 1.11). The thickness
of the slab t = 5 mm and refractive index n = 1. 5. Find the location of the point
A′ after the slab as a function of incident angle, i, and estimate the deviation of the
outgoing beam from homocentricity.

1.7. A two-lens system in the paraxial range. A lens L1 of 100 mm focal length is
followed by a lens L2 of 75 mm focal length located 30 mm behind it. Considering
both lenses as a unified system find the equivalent optical power and position of
the focal plane.

1.8. A ball lens. Find the location of the principal planes of a ball lens (a full
sphere) of radius r = 3 mm and its BFL.

1.2. Thin Lenses Layout. Microscope and Telescope Optical
Configurations

We will consider here the following basic configurations: (i) magnifier; (ii) micro-
scope; and (iii) telescope. All three can be ended either by a human eye or by an
electro-optical sensor (like a CCD or other area sensor).

The Human Eye

Although the details of physiological optics are beyond the scope of this book, we
have to consider some important features of the human eye (for further details, see
Hopkins, 1962) as well as eye-related characteristics of optical devices. Usually
the “standard eye” (normal eye of an adult person) is described in terms of a
simplified model (so-called “reduced eye”) as a single lens surrounded by the air
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from the outside, and by the optically transparent medium (vitreous humor) of
refractive index 1.336 from the inside. As a result, the front focal length of the
eye, f, differs from the back focal length, f ′ (see Eq. (1.2)). The front focal length
is usually estimated as 17.1 mm whereas f ′ is equal to 22.9 mm. The pupil of the
eye varies from 2 mm (minimum size) to 8 mm (maximum size) according to the
scene illumination level (adaptation). The lens creates images on the retina which
consists of huge numbers of photosensitive cells. The average size of the retina
cells dictates the angular resolution of the eye (ability of seeing two small details
of the object separately). The limiting situation is that the images of two points are
created at two adjacent cells of the retina. This renders the angular resolution of a
normal eye to be 1 arcminute (3 × 10−4 rad). The lens curvature is controlled by
the eye muscles in such a way that the best (sharp) image is always created on the
retina, whether the object is far or close to the eye (accommodation process). The
distance of best vision is estimated as 250 mm, which means that the eye focused
on objects at distances of 250 mm is not fatigued during long visual operation and
can still differentiate small details.

Three kinds of abnormality of eye optics are usually considered: myopia, hyper-
opia, and astigmatism. The first one (also called near-sightedness) occurs when a
distant object image is not created on the retina but in front of it. A corrective nega-
tive lens is required in such a situation. In the second case (called far-sightedness)
the opposite situation takes place: the images are formed behind the retina and,
obviously, the corrective lens should be positive. Astigmatism means that the lens
curvature is not the same in different directions which results in differences in focal
lengths, say in the horizontal and vertical planes. Correction is done by spectacles
with appropriately oriented cylindrical lenses.

The other properties of the eye related to visual perception are considered in
Chapter 10.

Magnifications in Optical Systems

Generally, four adjacent magnifications can be defined for any optical system:
(i) linear magnification, V , for objects and images perpendicular to the optical axis;
(ii) angular magnification, W ; (iii) longitudinal magnification, Q (magnification
in the direction of the optical axis); and (iv) visible magnification, � (used only
for systems working with the human eye).

Linear magnification, defined earlier for a single lens by Eq. (1.5), is still appli-
cable for any complete optical system. Angular magnification can be defined for
any separate ray or for a whole beam incident on a system. For example, for the
tilted ray shown in Fig. 1.12 W is calculated as follows:

W = tan(u′)/ tan(u). (1.12)
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Figure 1.12 Imaging of vertical and horizontal segments.

Figure 1.13 Explanation of visible magnification.

As can be shown, the product VW is a system invariant: it does not depend on the
position of the object and image, but is determined by the refractive indexes on
both sides of the optical system (n and n′). If n = n′ then VW = 1.

Considering the segment l along the optical axis and two pairs of conjugate
points, A and A′, C and C′ (Fig. 1.12), we can find the longitudinal magnifica-
tion, Q:

Q = l′/l. (1.13)

It can be shown that for small segments l, l′ one can use the formula Q = V2.
Finally, visible magnification is related to the size of images on the retina of

an eye. It is defined as the ratio of the image created by the optical system to the
image of the same object observed by the naked eye directly. Since the image size
is proportional to the observation angle (see Fig. 1.13), � is determined as follows:

� = tan(γ ′)/ tan(γ ). (1.14)

A Simple Magnifier

This is usually operated with the eye. While observing through a magnifying
glass an object is positioned between the front focus of the lens and the lens
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Figure 1.14 A simple magnifier.

itself (Fig. l.14). The image is virtual and its position corresponds to the distance
of best vision of the eye (250 mm). The closer the object to F, the higher the
magnification. Therefore, approximately, we can define that s ≈ f (of course
s < 0; f < 0), and for visible magnification of the magnifier we have

� = 250

f ′ . (1.15)

Since the distance of best vision is much greater than the focal distance of the eye,
the rays coming to the eye pupil are almost parallel. In most cases they can be
treated just as a parallel beam (or beams).

The Microscope

Figure 1.15a demonstrates the basic layout of a microscope working with the eye
and Fig. 1.15b shows a microscope working with an electro-optical detector (like
a CCD or other video sensor). In both cases the first lens L1 (called the objective)
is a short-focus well-corrected lens creating the first real magnified image of the
object (AB) in the plane P. The second lens is the eyepiece (Fig. 1.15a) or the
relay lens (Fig. 1.15b). The eyepiece L2 functions like a simple magnifier and its
visible magnification obeys Eq. (1.15). Magnification of the objective, V1, can
be found from Eq. (1.5). Usually the object distance S1 is very close to f1 and
the distance S′

1 = T from the lens L1 to the plane P is chosen as one of several
standardized values accepted by all manufacturers of microscopes (160 mm or
180 mm or 210 mm). Therefore, for the total magnification of the microscope
working with eye we get:

VM = V1V2 = T

f ′
1

× 250

f ′
2

. (1.16)



14 1 ♦ Geometrical Optics in the Paraxial Area

Figure 1.15 Layout of a microscope working with (a) the eye and (b) an area detector.

If instead of an eyepiece a relay lens is exploited its actual linear magnification,
V2, should be taken into account, and then

VM = T

f ′
1

V2. (1.17)

If the microscope is intended for measurements and not only for observation
then a glass slab with a special scale (a ruler, a crosshair, etc.) called a reticle is
introduced in the plane P. In such a case the eye observes the image overlapped
with the scale.

In Fig. 1.15 the rays originating from two points of the object are drawn – from
the center of the object (point O) and from the side (point A). As can be seen from
Fig. 1.15a, each point gives a parallel beam after the eyepiece: one is parallel to
the optical axis and the other is tilted to OX. Intersection of the beams occurs in
the plane M (exit pupil of the microscope) where the operator’s eye should be
positioned.

For the convenience of the operator the optical layout in most cases is split
after the plane P in two branches, each one having a separate eyepiece. Such an
output assembly is called binocular and observation is done by two eyes. It should
be understood, however, that binocular itself does not render stereoscopic vision,
since both eyes are observing the same image created by a single objective L1. To
achieve a real stereoscopic effect two objectives are required in order to observe the
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Figure 1.16 Microscope with a trinocular assembly.

Figure 1.17 Layout of a microscope with ICS optics.

object from two different directions. Each image is transferred through a separate
branch (a pair of lenses L1 and L2).

The architecture shown in Fig. 1.16 is actually the combination of the two
layouts presented in Fig. 1.15 and its output assembly is called trinocular – it
creates images on the area sensor as well as in the image plane of both eyepieces.
The beam splitter, BS, turns the optical axis in the direction of the relay lens L3.

In the last few years microscopes have been designed as infinity color-corrected
systems (ICS) which means that the object is located in the front focal plane of the
objective, its image is projected to infinity, and an additional lens L4 (the tube lens)
is required in order to create an intermediate image in the plane P. Such a layout
is demonstrated in Fig. 1.17. One of the important advantages of ICS optics is
that the light beams are parallel between L1 and L4 enabling one to introduce here
optical filters with no degradation of the optical quality and without relocation of
the image plane P.

The Telescope

Telescopic systems are intended for observation of remote objects. If the distance
between the object and the first lens of the system is much greater than the focal
length of L1 all light beams at the entrance of the system can be considered as
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parallel, whether they are coming from the central point of the object or from the
side.

Again, as in the above consideration of a microscope, the central point beam
is parallel to the optical axis whereas the side point generates an oblique parallel
beam. All incident beams are concentrated by the objective in its back focal plane
(passing through the back focus F′

1). The second lens L2 is positioned in such a
way that its front focus F2 coincides with F′

1. Obviously all beams after lens L2

become parallel again, but the exit angles of the oblique rays are different from
those of the corresponding beams at the entrance (see Fig. 1.18) and this causes
the angular magnification of the telescope to be (see Eq. (1.12))

W = tan(β ′)/ tan(β) = f ′
1/f ′

2. (1.18)

As follows from Eq. (1.18), the longer the focal length of the objective, the greater
the magnification. However, along with this the necessary size of the lens L2 also
increases, which might cause a limitation of the visible field of view (the part of
the object space visible through the system). To solve this problem an additional
lens L3 (the field lens) is introduced in the system (see Fig. 1.19). This lens allows
one to vary the vertical location of the oblique beam incident on L2.

The configurations shown in Figs. 1.18 and 1.19 are built of positive lenses.
In the Galilean architecture the eyepiece L2 is negative (Fig. 1.20). As a result,

Figure 1.18 Basic layout of a telescope.

Figure 1.19 Telescope with a field lens.
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Figure 1.20 Galilean telescope.

the total length of the system is shortened. However, the intermediate image is
virtual (both focal points F′

1 and F2 are behind the eyepiece) and there is no way
to introduce a measurement scale, if necessary. However, as it turns out, this
shortcoming becomes very useful if the Galilean configuration is exploited with
high-power lasers (for beam expanding).

Problems

1.9. If the angular resolution of the eye is 3 × 10−4 rad, what is the average size
of the retina cells?

1.10. A microscope is intended for imaging an object located in the plane P simul-
taneously in two branches: one for observation by eye and the other for imaging
onto a plane area sensor (CCD). The objective of the microscope serving the two
branches is of 20 mm focal length and provides linear magnification V = −10
to the image plane of the eyepiece where a reticle M of 19 mm diameter is posi-
tioned (Fig. 1.21). The CCD sensor is 4.8 mm (vertical) × 5.6 mm (horizontal)

Figure 1.21 Problem 1.10 – Two-branch microscope.
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in size. In front of the CCD at a distance of 20 mm an additional relay lens L3

is introduced in order to reach the best compatibility of the field of view in both
branches. Assuming the eyepiece L2 to be of 25 mm focal length and neglecting
the thickness of the lenses, find:

(a) the working distance (location of the object plane P with regard to the
objective);

(b) the total magnification in the branch to the eye;

(c) the optical power of lens L3. [Note: Find two solutions and choose the one
which provides the shortest distance between P and the CCD.]

1.11. Dual magnification system with negative relay lens. Such a system is widely
used in the microelectronics industry where automatic processing of wafers is a
main concern. The object (usually a wafer) is located in the plane P and imaged
onto a CCD either at low magnification V1 = −3 (through the right branch of the
arrangement, exploited for initial alignment) or at high magnification V2 = 2×V1

(fine alignment through the left branch where lens L2 and retroreflector R are intro-
duced). While switching the system between two alignment procedures no optical
element should be moved, except the aperture D (Fig. 1.22). The retroreflector R
allows one to vary the high magnification of the system with minimum effort –
just replacement of R and L2, with no other changes in the arrangement. Thus,
lens L2 serves as a negative relay lens of the system. Neglecting the thickness of
the lenses and taking all necessary distances from Fig. 1.22, find:

(a) the focal length of L2 and its position with regard to the CCD and the other
elements of the arrangement;

(b) the relocation of the retroreflector and the relay lens L2 from their initial
positions required to increase the magnification in the left branch by 10%.

Figure 1.22 A dual magnification system.
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1.3. Diaphragms in Optical Systems. Calculation of
Aperture Angle and Field of View. Vignetting

The size of each optical element of a system should be considered properly, since
it influences: (i) the quantity of radiant energy passing through the system; (ii) the
quality of images; and (iii) the cost of the system. Among all the geometrical
parameters the working diameter is of primary importance (remember that we
assume that the system is rotationally symmetric) – it acts as the transparent part
of the element.

Sometimes an additional diaphragm (a physical element called a stop which
has a final size aperture and negligible thickness) is introduced in the system. An
aperture stop is a diaphragm which actually limits the size of light bundles passing
through the system and consequently it is responsible for the amount of energy
collected at each point of the image. The aperture stop is illustrated in Fig. 1.23.
Assume that the system consists of a number of elements (of which the first and
the last curved surfaces are shown in the figure) and also includes the stop cd.
The boundaries of each optical surface are also considered as diaphragms. First
we “transfer” all the diaphragms into the object space (e.g., we find the size and
location of the image of each diaphragm through the rest of the optical elements
to the left of it, as if the light beams are propagated from right to left). Such an
image of the stop cd is c′d′; the image of the first diaphragm ab is ab itself, since
there is no element left of it; the third diaphragm shown in the figure is the image
of some other optical surface, etc. Then we connect the ray from the central point
O of the object to the side of each image and find the angle of each ray with the
optical axis. The smallest angle (in our example it is the angle of the ray Oc′) is
called the aperture angle, αap, and the corresponding physical diaphragm is called
the aperture stop (cd in the case of Fig. 1.23). Its image in the object space is called

Figure 1.23 Aperture stop and entrance and exit pupils.
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the entrance pupil and its image to the image space is called the exit pupil (c′d′ and
c′′d′′, respectively). Obviously, the aperture angle defines the maximum cone of
light rays emerging from point O and passing through the system with no obstacle
up to point O′ in the image plane. The corresponding angle α′

ap is the aperture angle
in the image space. Drawing the rays that connect any other point of the object
with the entrance pupil we find the corresponding cone of light participating in
imaging of that point. The ray connecting the oblique point A with the center C of
the entrance pupil is called the chief ray (shown by the dotted line in Fig. 1.23).
Its position in the image space is C′A′.

Now we consider the entrance pupil, ab, together with any other diaphragm
(or its image, gh) in the object space (Fig. 1.24). It is understood that the conical
bundle originating from point O of the object is not affected by gh at all. The same
is true for any other point of the object plane between O and A where the last one
is found with the ray passing through the sides a and g of both diaphragms. For
remote points above A (point B, for example), the light cone filling the entrance
pupil is cut partially by the diaphragm gh (the dotted line originating in B cannot
be transferred). This means that the active cone of light passing through the system
is reduced gradually until we achieve finally the point C from which no ray can
pass the system. The rays emerging from any point above C cannot achieve the
image plane at all. Therefore, image formation can be performed only for a part of
the object plane (the circle of radius OC). This part of the object plane is called the
field of view and the diaphragm gh is called the field aperture. If gh is the image of
a real physical diaphragm GH located somewhere in the system then GH is called
the field stop.

Reduction of the light cones while moving out from the optical axis causes a
decrease of the image brightness in the corresponding parts of the image plane.
Even if the object plane is equally illuminated we get a reduction of the brightness
in the image plane, as is illustrated by the graph of intensity, I(r), in Fig. 1.24.

Figure 1.24 Field of view and vignetting.
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Figure 1.25 Finding the field aperture.

This phenomenon is known as vignetting, and it should be carefully investigated
if a new optical system is designed.

To find the field aperture it is necessary to image all physical diaphragms of the
system into the object space, to calculate the sizes and location of each image, and
then to draw a ray connecting the center of the entrance pupil with the side point
of each image and to calculate the corresponding angle with the optical axis. The
minimum angle defines the field aperture (and consequently the field stop). The
procedure described is illustrated by Fig. 1.25 where g2h2 serves as the field aper-
ture. It is useful to take into account the fact that to avoid vignetting it is necessary
to position the field stop at the plane of the intermediate image of the system.

Problems

1.12. The system of two thin lenses L1 (focal length 100 mm, diameter 20 mm)
and L2 (focal length 50 mm, diameter 20 mm) shown in Fig. 1.26 forms an image
of the object plane P on a screen M at magnification V = 3. The distance between
P and L1 is 200 mm.

Figure 1.26 Problem 1.12 – Imaging with two lenses.
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(a) How can the field stop ab of the system be positioned in order to get imaging
with no vignetting?

(b) What should be the size of the field stop if the field of view is 10 mm?

(c) Find the location of all elements of the system and calculate the aperture
angle and position of the entrance pupil.

1.13. In the system of Problem 1.10, find the minimum size of lens L3 which
enables one to get images on the CCD with no vignetting.

1.4. Prisms in Optical Systems

Prisms serve three main purposes in optical systems: (i) to fold the optical axis;
(ii) to invert the image; and (iii) to disperse light of different wavelengths. The latter
is discussed in detail in Chapter 5. Here we will consider the first two purposes.
It is quite understandable that both are achieved due to reflection of rays on one
or several faces of the prism. So, it is worth keeping in mind how the system of
plane reflectors (plane mirrors) can be treated (e.g., see Problem 1.14).

A great variety of prisms are commonly used in numerous optical architectures.
Only a few simple cases are described below.

Right-angle prism. This is intended for changing the direction of the optical
axis through 90◦. The cross-section of this prism is shown in Fig. 1.27a. The rays
coming from the object (the arrow 1–2) strike the input face AB at 90◦ and after
reflection from the hypotenuse side emerge along the normal to the face BC. It
can be seen that beyond the prism the object is inverted. The shortcoming of this
prism is revealed if the incoming light is not normal to the prism face. In this case
the angle between incoming and outgoing rays differs from 90◦. Another issue is
concerned with the total reflection of rays on face AC: it might happen that for

  

Figure 1.27 Layout of different prisms: (a) right-angle prism; (b) penta-prism; (c) Dove
prism.
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Figure 1.28 Amici prism.

some tilted rays total reflection does not occur. In such a case a reflecting coating
on AC is required.

Penta-prism. This prism has effectively four faces with an angle of 90◦ between
AB and BC and 45◦ between the two other sides (Fig. 1.27b). The shortcoming
of the right-angle prism does not occur here, i.e., the outgoing beam is always at
90◦ to the input beam, independent of the angle of incidence. Also, the object is
not inverted. This results from a double reflection in the prism and is evidence of
the common rule for any prism or system with reflectors; namely, the image is not
inverted if the number of reflections is even.

Dove prism. The angles A and D are of 45◦ and the input and output beams
are usually parallel to the basis face AD (Fig. 1.27c). While traveling through
the prism the beams are inverted. Another feature of this prism is its ability to
rotate an image: when the prism is inserted in an imaging system rotated around
the input beam with angular speed ω the image in the system will be rotated at a
speed 2ω.

If it is necessary to invert beams around two axes a combination of prisms, like
the Amici prism shown in Fig. 1.28, can be exploited. This prism is actually a
right-angle prism with an additional “roof” (for this reason it is also called the
roof-prism). As a result the beams are inverted in both directions: upside-down
and left–right.

In general, any prism inserted in an imaging system makes the optical path
longer. This effect should be taken into account if a system designed for an unbent
configuration has to be bent to a more compact size using prisms and mirrors. With
regard to its influence on image quality and optical aberrations the prism acts as
a block of glass with parallel faces. As was demonstrated earlier (see Problem 1.6
where the propagation of a divergent–convergent beam through a glass slab of
thickness t was considered) the block of glass causes a lengthening of the optical
path by (n − 1)t/n compared to the ray tracing in air. Therefore instead of tracing
the rays through the slab and calculating the refraction at the entrance and exit
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Figure 1.29 Unfolded diagram for (a) the right-angle prism, (b) the penta-prism, and
(c) the Dove prism.

surfaces one can replace a real plate by a virtual “air slab” of reduced thickness,
t/n, and perform ray tracing for air only. To apply this approach to prisms we
have to find the slab equivalent to the prism with regard to the ray path inside the
glass. This can be done by the following procedure based on unfolded diagrams
(see Fig. 1.29). We start moving along the incident ray until the first reflection
occurs. Then we build the mirror image of the prism and the rays and proceed
moving further along the initial direction until the second reflected surface is met.
Then again we build the mirror image of the configuration, including the ray path,
and proceed further until the initial ray leaves the last (exit) face of the prism.
Details of the procedure can be seen in Problem 1.15.

Creating unfolded diagrams is aimed at calculating the thickness, te, of the
equivalent glass block. For the cases depicted in Fig. 1.29:

(a) right-angle prism with an entrance face of size a: te = a;
(b) penta-prism with the same size a of the entrance face: te = a(2 + √

2);
(c) Dove prism of height a and 45◦ angles between faces: te = 3. 035a.

Once te is known, the apparent thickness in air is calculated from te/n.
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Figure 1.30 Problem 1.14 – Imaging in a mirror corner.

Problems

1.14. Imaging in systems of plane mirrors. An object AB is positioned as shown in
Fig. 1.30 in front of a mirror corner of 45◦. Find the location of the image beyond
the mirrors.

1.15. Find the reduced (apparent) thickness of a 45◦ rhomboidal prism of 2 cm
face length. The prism is made of BK-7 glass (n = 1. 5163).

1.16. Alens L of 30 mm focal length transfers the image of an objectAB positioned
40 mm in front of L to a screen P. A penta-prism with 10 mm face size is inserted
20 mm beyond the lens. Find the location of the screen P relative to the prism if it
is made of BK-7 glass (n = 1. 5163).

1.17. Dispersive prism at minimum deviation. Find the minimum deviation angle
of a prism with vertex angle β = 60◦. The prism is made of SF-5 glass with
refractive index n = 1. 6727.

1.5. Solutions to Problems

1.1. We are looking for a solution in the paraxial range and assume the lens is
of negligible thickness. To find the image of point A we use two rays emerging
from A: ray 1 parallel to the optical axis and ray 2 passing through the center of
the lens (Fig. 1.31). Ray 1 after passing through the lens goes through the back

Figure 1.31 Problem 1.1 – Graphical method of finding the image.
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Figure 1.32 Problem 1.2 – Graphical method of finding the image with (a) a positive lens
and (b) a negative lens.

focus F′. Ray 2 does not change its direction and continues beyond the lens along
the incident line. The intersection of the two rays after the lens creates the image
A′ of point A. Once the image A′ is found, the image O′ of point O is obtained as
the intersection of the normal from point A′ to the optical axis.

It should be noted that instead of ray 1 or 2 one can use ray 3 (dotted line) going
through the front focus F in the object space (in front of the lens) and parallel to OX
after the lens. Intersection with the two other rays occurs, of course, at the same
point A′. Also note that in our approximation of the paraxial range the homocentric
beam also remains homocentric in the image space.

1.2. In both cases, Figs. 1.32a and b, we draw the ray (dotted line) parallel to AB
and passing through the center of the lens. The ray crosses the back focal plane at
point C. Since the ray and AB belong to the same parallel oblique bundle and all
rays of such a bundle are collected by the lens in a single point of the back focal
plane, this must be point C. Therefore, the ray AB after passing through the lens
goes from B through C to point A′ at the intersection with the axis. This point is
the image of A. In the case of Fig. 1.32b the focus F′ and corresponding back focal
plane are located to the left of the lens. Hence, not the ray itself but its continuation
passes through point C. The intersection with OX is still the image of the point
source A which becomes virtual in this case.

1.3. First we will derive the ray tracing formula valid for the paraxial approxi-
mation. By multiplying both sides of Eq. (1.4) by h (see Fig. 1.33) and denoting
h/S = tan(u) ≈ u and h/S′ = tan(u′) ≈ u′ we get

u′ − u = h�

which yields for a number of lenses (k = 1, 2, . . . , N):

uk+1 = uk + hk�k (A)
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Figure 1.33 Problem 1.3 – Ray tracing through a single lens.

Figure 1.34 Problem 1.3 – Ray tracing through a system of three lenses.

with the additional geometrical relation

hk+1 = hk − uk+1dk,k+1. (B)

Expressions (A) and (B) enable one to calculate the ray trajectory in a system of
thin lenses. To start the calculation we need the values u1, h1. Usually these values
can be arbitrarily chosen, as they do not affect the final results. Going back to the
numerical data of the problem, we choose u1 = −0. 1 and then proceed as follows
(see Fig. 1.34):

u1 = −0.1; h1 = S1u1 = (−30)(−0.1) = 3.0

u2 = −0.1 + 3.0

15
= 0.1; h2 = 3.0 − 0.1 × 40 = −1.0

u3 = 0.1 − 1.0

15
= 0. 0333; h3 = −1.0 − 0.333 × 60 = −3.0

u4 = 0.0333 − 3.0

20
= −0.1167; S′

3 = h3

u4
= −3.0

−0.1167
= 25.71 mm.

It can be easily checked that exactly the same result will be obtained if we choose
another initial value of u1 (say, u1 = −0. 2). Of course, this results from the
linearity of the expressions (A) and (B).

1.4. Measurement of the optical power of a lens or its focal length is often required
in the practice of optical testing. The method described here is particularly use-
ful because it is based only on measurements of linear distance (L) and linear
displacement (a) which can be easily and accurately realized.
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We start with a derivation of working formulas. Combining Eqs. (1.4) and (1.5)
gives

S′ = VS;
1

f ′ = 1

VS
− 1

S
= 1 − V

VS
; S = f ′ 1 − V

V
; S′ = f ′(1 − V ).

Therefore

S′ + S = f ′(1 − V2)

V
= a; S′ − S = −f ′ (1 − V )2

V
= L

(remember that V < 0, S < 0, and S′ > 0 in both positions 1 and 2 of the lens).
Solving the last equations for V and for f ′ we get

f ′ = aV

1 − V2
= − LV

(1 − V )2
; V = −L + a

L − a
; f ′ = L2 − a2

4L
= L

4
− a2

4L
.

It is understood that linear magnifications V1 and V2 in positions 1 and 2 are
reciprocal values (V1 = 1/V2), and the segments S, S′ are just replacing each other
while moving from position 1 to 2.

In deriving the above expressions we did not take into account the thickness
of the lens, or, more exactly, the distance � between the principal planes. The
rigorous relation is L = S′ − S + �. Actually � is unknown and therefore it is the
origin of uncertainty in the value of L. Differentiating the above expression for f ′
with regard to L and denoting dL = � we obtain

df = �

4

(
1 + a2

L2

)
.

Now for the numerical data of the problem we have

f ′ = 135

4
− 452

4 × 135
= 30. 0 mm.

If the thickness of the lens is about 6 mm then the distance between its principal
planes is about 2 mm (approximately one-third of the lens thickness). Hence, for
the uncertainty of the focal length we have

df = 2

4

[
1 +

(
45

135

)2
]

= 0. 56 mm.

1.5. Consider the layout of the thick lens shown in Fig. 1.35. We use Eqs. (1.7)
and (1.8) and apply them to two surfaces of the lens. We choose an arbitrary value
for h1 and start with u1 = 0, remembering that in our case n1 = n3 = 1; n2 = n.
Since we are looking for a solution in the paraxial range, where the heights of all
rays are small, one can neglect the segments x1, x2 (the latter is not shown in the
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Figure 1.35 Problem 1.5 – Finding the location of the principal planes in a thick lens.

figure) assuming that the distance between h1 and h2 is equal to the lens thickness,
t. Then we get

u2 = 1

n
u1 + h1

R1n
(n − 1) = h1

R1n
(n − 1); h2 = h1 − u2t = h1 − h1t

R1n
(n − 1);

u3 = nu2 + h2

R2
(1 − n) = h1

R1
(n − 1) − h1

R2
(n − 1) + h1t

R1R2n
(n − 1)2

which enables one to calculate the focal length and SF′ (BFL):

1

f ′ = u3

h1
= (n − 1)

(
1

R1
− 1

R2

)
+ t(n − 1)2

R1R2n

SF′ = h2

u3
= f ′

[
1 − t(n − 1)

R1n

]
.

To find the segment SF (FFL) we should repeat the same procedure, but to assume
that the ray which is parallel to OX is incident on the surface R2 of the lens from
the right. Then the exit ray intersects the optical axis in the front focus F (left of
the lens) and replacing f ′ by f and R1 by R2 in the above expression for SF′ we
finally get

SF = f

[
1 + t(n − 1)

R2n

]
.

Here we should remember that in our problem f < 0 and R2 < 0, hence the value
of SF is negative. Using the numerical data of the problem we obtain

� = 1

f ′ =
[

0. 5163

(
1

50
+ 1

75

)
− 6(0. 5163)2

1. 5163 × 50 × 70

]
× 103 = 16. 92 dioptry
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Figure 1.36 Problem 1.6 – Ray tracing through a parallel plate.

f ′ = 1

�
= 59. 1 mm; SF′ = 59. 1

[
1 − 6 × 0. 5163

50 × 1. 5163

]
= 56. 69 mm;

SF = −59. 1

[
1 − 6 × 0. 5163

75 × 1. 5163

]
= −57. 49 mm.

As we see, the principal planes H and H′ are located 1.61 mm and 2.41 mm,
respectively, inside the lens.

1.6. Consider the ray incident on the slab at a height h1 along the direction of the
angle i (see Fig. 1.36). We have h2 = h1 − t × tan(r) where the refraction angle r is
calculated from Eq. (1.1). Since the incident angle at point 2 is also r, the refraction
angle here (found again from Eq. (1.1)) is equal to i, meaning that the exit ray is
parallel to the incident one. Then O′A′ = h2/ tan(i) = h1/ tan(i) − t tan(r)/ tan(i);
OA = h1/ tan(i); and therefore AA′ = O′A′ − (OA − t) = t − t[tan(r)/ tan(i)]

AA′ = t


1 −

√
1 − sin2(i)

n2 − sin2(i)


 .

As we see, AA′ depends on i, which means that each ray of the homocentric
incident beam intersects the optical axis after the slab in another point A′. In other
words, the homocentricity of the beam is violated. As the measure of this violation
one can choose the value δ = (AA′)i max. Since imax is related to the given solid
angle, ω, as ω = 2π [1 − cos(imax)], we obtain

cos(imax) = 1 − ω

2π
= 1 − 1. 5

2π
= 0. 761; sin(imax) = 0. 649

δ = 5

[
1 −

√
0. 761

2. 25 − 0. 421

]
= 1. 775 mm; O′A′ = 31. 775 mm.

[Note: The above expression for AA′ is rigorous, it is valid for any angle i. For
small angles i (paraxial approximation) we have sin i ≈ i; sin2(i) � 1 < n2;
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Figure 1.37 Problem 1.7 – Ray tracing through a system of two thin lenses.

AA′ ≈ t(1 − 1/n); and AA′ does not depend on i. If n = 1. 5 then AA′ = t/3.
This means that in the paraxial approximation the center of the incident beam is
just relocated with regard to initial point A by one-third of the glass slab thickness
(1.667 mm in our case).]

1.7. Considering a two-lens system in general, and referring to Fig. 1.37 one
obtains

S2 = f ′
1 − d;

1

S′
2

= 1

f ′
2

+ 1

S2
= f ′

1 − d + f ′
2

f ′
2(f ′

1 − d)
; S′

2 = 1 − �1d

�1 + �2 − �1�2d
;

h2 = h1
S2

f ′
1

= h1(1 − �1d)

f ′
e =S′

2
h1

h2
= 1−�1d

�1+�2−�1�2d
× h1

h1(1−�1d)
= 1

�1+�2−�1�2d
= 1

�e
. (A)

Now, by substituting the problem data in expression (A) we get

�e = 1

100
+ 1

75
− 30

100 × 75
= 0. 01933 mm−1 = 19. 33 diopter;

f ′
e = 1

0. 01933
= 51. 72 mm; S′

2 = 1 − 0. 01 × 30

0. 01933
= 36. 2 mm.

Thus, the two lenses could be considered as a single system with 51.72 mm focal
length and the focal point positioned 36.2 mm behind the second component.
[Note: Replacing two lenses by a single equivalent lens is useful only if a parallel
beam strikes the system. If imaging is performed for an object positioned at a final
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distance from the first lens then Eq. (A) above becomes useless and calculations
should be done according to Eqs. (1.4) and (1.5), first for the first element and then
for the second one.]

1.8. For a ball lens of radius r the Eqs. (1.9) and (1.11) are transformed as follows
(d = 2r; r1 = −r2):

SF′ = f ′
[

1 − 2(n − 1)

n

]
= f ′ 2 − n

n
;

1

f ′ = 2(n − 1)

r
− 2(n − 1)2

rn
= 2(n − 1)

nr
(A)

and therefore

a′ = f ′ − SF′ = f ′
(

1 − 2 − n

n

)
= nr

2(n − 1)
× 2(n − 1)

n
= r. (B)

Thus, the principal plane H′ is located at the center of the ball. Due to the symmetry
of the lens one can state that the front principal plane is located at the same
point. From the data of the problem, using the glass data from Appendix 2 (nD =
1. 67270), we find

SF = 2 − 1. 6727

2 × 0. 6727
3 = 0. 73 mm; f ′ = 3 × 1. 6727

2 × 0. 6727
= 3. 73.

As we see, the focus is distant from the lens surface by 0.73 mm.

1.9. The angle in air between two chief rays directed to two separate object points
still distinguished by the eye is 3 × 10−4 rad. Taking into account the “reduced
eye” properties, in particular the refractive index of the medium between the eye
lens and the retina as n = 1. 336 and the back focal length as 22.9 mm, we get
that the limiting angle in the vitreous is 3 × 10−4/1. 336 = 2.25 × 10−4 rad. The
corresponding distance between two images on the retina is 2.25×10−4 ×22. 9 =
5. 15 × 10−3 mm and they should fall on two different cells. This means that the
retina cell size is about 5µm.

1.10. (a) The intermediate image in the branch to the eye is formed in the plane of
the reticle M of size 19 mm. As linear magnification of the objective is V1 = −10,
it yields

S′
1 = −10S1;

1

−10S1
− 1

S1
= 1

20
; S1 = −22 mm

and this is the working distance of the system. The corresponding field of view is
1.9 mm.

(b) The eyepiece has visual magnification determined from Eq. (1.15): � =
250/25 = 10 and therefore the total magnification in the branch to the eye is
Vtot = V1� = 100.
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Figure 1.38 Problem 1.10 – Formation of an image onto the CCD plane.

Figure 1.39 Problem 1.10 – Formation of image on CCD, the second case.

(c) The optimal imaging in the CCD branch is the one which enables one to
see the maximum part of the image created on the circular reticle M. Such a
situation shown in Fig. 1.38 means that the maximum image size on the CCD
is y′ = √

(4. 82 + 5. 62) = 7. 4 mm and therefore the relay lens L3 provides an
optical magnification V3 = 7. 4/19 = 0. 388. This can be realized in two possible
arrangements. The first is demonstrated in Fig. 1.38 and the second in Fig. 1.39.
In both cases S′

3 = 20 mm, but S3 = S′
3/V3 = 20/0. 388 = 51. 5 mm in the first

case and S3 = −51. 5 mm in the second case. Evidently the shortest configuration
is that of Fig. 1.38. In this case

1

f ′
3

= 1

20
− 1

51. 5
; f ′

3 = 32. 7 mm

and the distance between P and the CCD is 22 × 10 − 51. 5 = 168. 5 mm. In the
second case

1

f ′
3

= 1

20
+ 1

51. 5
; f ′

3 = 14. 4 mm

and the distance between P and the CCD is 220 + 51. 5 = 271. 5 mm.

1.11. (a) From the numerical data of Fig. 1.22 we have S1 = −70; S′
1 = (−70) ×

(−3) = 210. Therefore, the distance between the CCD and the last beam splitter
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is 210 − (10 + 100 + 70) = 30 mm and the focal length of L1 should be

f ′
1 =

(
1

210
+ 1

70

)−1

= 52. 5 mm.

In the high-magnification branch the image created by lens L1 (the same size and
position as in the low-magnification branch) serves as the virtual object for the
second lens, L2 (negative relay lens). Magnification of L2 is V2 = 2 × (−3)/V1 =
2. Since the distance along the optical axis between L1 and the CCD is l =
10 + 70 + 2 × (10 + 15) + 100 + 30 = 260 mm and taking into account that
S′

2 − S2 = l − S′
1 = 50 mm and S′

2 = 2 × S2, we get S2 = 50 mm and S′
2 =

100 mm and therefore the location of L2 is 70 mm below the last beam splitter. Its
focal length is

f ′
2 =

(
1

100
− 1

50

)−1

= −100 mm.

(b) Increasing the high magnification by 10% requires V2 = 2. 2 (V1 remains
the same as before). Hence,

S′
2 = 2. 2S2;

1 − V2

V2S2
= 1

f ′
2

;

which yields S2 = 54. 54 mm and S′
2 = 120 mm. In other words, the relay lens

should be relocated to 90 mm below the last beam splitter. Since in this case
S′

2 −S2 = 120−54. 54 = 65. 46 mm it is necessary to add the length 15.46 mm to
the optical path of the left branch. This is done by moving down the retroreflector
by the segment �z = 15. 46/2 = 7. 73 mm.

1.12. (a) To get an image with no vignetting it is necessary to position the field
stop in the plane of the intermediate image created by the first lens. Referring to
Fig. 1.40 we get

S1 = −200; S′
1 =

(
1

f ′
1

+ 1

S1

)−1

=
(

1

100
− 1

200

)−1

= 200 mm; V1 = −1;

and therefore the field stop should be of the same size as the field of view, i.e.,
dab = 10 mm, and positioned 200 mm behind L1. The total magnification V =
3 = V1 × V2 requires V2 = −3, which enables one to find the position of L2

and M:

1 − V2

S2V2
= 1

f ′
2

; S2 = 50
1 + 3

(−3)
= −66. 67 mm; S′

2 = S2V2 = 200 mm.

(b) The field stop size, as we saw above is 10 mm.
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Figure 1.40 Problem 1.12 – Imaging system with the field stop.

(c) To find the entrance pupil we should build the image of all diaphragms (L2

and ab in our case) in the object space, e.g., to create their images through L1

at reverse illumination (as if radiation propagates from right to left). Since ab is
conjugated with the object plane P, one has to find only the image of L2 through
the first lens. We have:

S21 = −266. 67 mm; S′
21 =

(
1

100
− 1

266. 67

)−1

= 160. 0 mm;

d′
L2

= 20 × 160

266. 67
= 12 mm.

Calculating the angle of the margin ray coming from the on-axis point of the object
to the side point of the lens L1 gives α1 = 10/200 = 0. 05. The corresponding angle
of the image of L2 is α2 = 6/(200 − 160) = 0. 15 > α1 and therefore the entrance
pupil is the lens L1 and the aperture angle of the system is αap = α1 = 0. 05.

1.13. Referring to the solution of Problem 1.10 and Fig. 1.41, we first find the
size of the lens L1 using NA = 0. 2 and the distance to the object S1 = −22 mm:
DL1 = 2 × 22 × tan(arcsin 0. 2) = 9. 0 mm. Then we proceed with the margin

Figure 1.41 Problem 1.13 – The margin ray tracing through lenses L1 and L3.
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Figure 1.42 Problem 1.14 – Two approaches to finding the image: (a) without unfolded
diagram; (b) with unfolding.

ray originating in the off-axis point of object A. This ray comes to the side point
A′ of the intermediate image (O′A′ = 19/2 = 9. 5 mm) and it is this ray which
determines the active size of lens L3. Geometrical consideration of the figure gives

DL3 = 2 × (O′
1N + ND) = 2 ×

[
DL1/2 + 168. 5

220
(9. 5 − 4. 5)

]
= 16. 66 mm.

1.14. To demonstrate the advantage of the unfolded diagram we describe two
approaches in solving the problem: first without the diagram and then using unfold-
ing. In the first case we start with imaging through mirror M1 (see Fig. 1.42a) and
find the image point A′ using the triangle AO1A′, where AO1 = (80 − 20) =
60 mm = A′O1. Obviously the second image point, B′, is on the horizontal line
passing through A′. Then, referring to A′B′ as a new object we find its image in
mirror M2: A′′O2 = A′O2 = 80 mm and B′′ is again located on the horizontal
line passing through A′′.

In the second case (Fig. 1.42b) we create the image of the mirror corner in mirror
M1. Then mirror M2 image, M′

2, is vertical and A′B′ is parallel to AB and distant
from M′

2 by 80 mm. Going back to the real mirror M2 we just put A′′B′′ beneath
M2 at the same distance 80 mm and 20 mm to the right of the vertex. As we see,
the second approach is significantly shorter and easier.

1.15. We build an unfolded diagram for the prism, as demonstrated in Fig. 1.43,
and consider the principal ray MNPQ striking the entrance face AB at the height
AM = (a×sin 45◦)/2 = 0. 707 cm. This is the center of a beam passing through the
prism. Obviously MN = AM = PQ = P1Q1 = 0. 707 cm, NP1 = a = 2 cm, and
te = MN + NP1 + P1Q1 = 3. 414 cm. Hence, the apparent (reduced) thickness is

te
n

= 3. 414

1. 5163
= 2. 251 cm.
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Figure 1.43 Problem 1.15 – Unfolded diagram of a rhomboidal prism.

Figure 1.44 Problem 1.16 – Imaging through a penta-prism.

1.16. We refer to Fig. 1.44 and assume that the lens is working in the paraxial
range. Without the prism the distance from the lens to the screen P would be

S′ =
(

1

30
− 1

40

)−1

= 120 mm.

The thickness of the glass block which is equivalent to the prism is te = 3. 41a =
34. 1 mm. The prism makes the ray trajectory longer by the segment � = te(1 −
1/n) = 34. 1(1 − 1/1. 5163) = 11. 61 mm. Finally, from the geometry of the
figure we get for the distance between the screen P and the exit face of the prism
x = 120 − 20 − 34. 1 + 11. 61 = 88. 39 mm.

1.17. The prism ABC of refractive index n has a vertex angle β and an input ray
strikes the side AB at point O1 at an incident angle i1 (see Fig. 1.45). The deviation
angle ϕ is defined as the angle between the input direction and the output direction
of the ray. Geometrical consideration of the triangles O1BO2 and O1DO2 yields

ϕ = (i1 − r1) + (r2 − i2); r1 + i2 + γ = 180◦ = β + γ

r1 + i2 = β (A)

ϕ = i1 + r2 − β. (B)
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Figure 1.45 Problem 1.17 – Deviation of a ray traveling through a prism ABC.

Snell’s law gives i1 = arcsin(n sin r1) and r2 = arcsin(n sin i2) = arcsin[n sin(β−
r1)]. By substituting these expressions in (B) we get

ϕ = arc(n sin r1) + arcsin[n sin(β − r1)] − β. (C)

To find the minimum deviation angle we calculate the derivative dϕ/dr1 and find
the angle at which it has a zero value, as usual:

dϕ

dr1
= n cos r1√

1 − n2 sin2 r1

− n cos(β − r1)√
1 − n2 sin2(β − r1)

= 0;

cos r1

√
1 − n2 sin2 ψ = − cos ψ

√
1 − n2 sin2 r1 = 0

where the new variable ψ = β − r1 is introduced. From the last equation we have

cos2 r1

cos2 ψ
= 1 − n2 sin2 r1

1 − n2 sin2 ψ
;

and denoting z = sin2 r1 we proceed as follows:

1 − z

cos2 ψ
= 1 − n2z

1 − n2 sin2 ψ
;

z = 1/ cos2 ψ − 1/(1 − n2 sin2 ψ)

1/ cos2 ψ − n2/(1 − n2 sin2 ψ)

= sin2 ψ × (1 − n2)

1 − n2
= sin2 ψ .

The last equation is satisfied if r1 = ψ and therefore r1 = β − r1; and r1 = β/2.
With this value we have from (C):

ϕ = 2 arcsin

(
n sin

β

2

)
− β (D)
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and

i1 = arcsin

(
n sin

β

2

)
. (E)

The last two expressions allow one to calculate the angle of minimum deviation of
the prism and the incidence angle corresponding to such a deviation. Going back
to the problem, we find ϕ = 2 arcsin(1. 6727 × sin 30◦) − 60◦ = 53. 51◦ and the
incidence angle i1 = arcsin(1. 6727 × sin 30◦) = 56. 76◦.
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Chapter 2

Theory of Imaging

2.1. Optical Aberrations

2.1.1. General Consideration. Ray Fan and Aberration Plot. Concept
of Wave Aberrations

We will proceed by considering the concept of imaging as described in Section 1.2
of Chapter 1 and pay most attention to the real imaging situation experienced in
practice. Figure 2.1 demonstrates the basic difference between ideal imaging and
real imaging. Let the rays originating in a point source A come to the system, each
one at a different angle u. If the medium is homogeneous (has the same refrac-
tive index everywhere) the wavefront W in the object space is a sphere. If in the
image space all rays intersect at a single point A′ then the beam remains homo-
centric, with a spherical wavefront W′, and A′ is a stigmatic (ideal) image of A.
However, in most situations this does not happen and the rays of different angles u′
come to different points on the axis OO′ (or, for tilted beams, to different off-axis
locations). As a result, the real wavefront in the image space is not spherical, the
homocentricity of the output beam is violated, and instead of a sharp point image
there is a blurred spot. Such violation of stigmatic imaging is defined as optical
aberrations.

Numerically aberrations are characterized by the deviation of a real image A′
from the ideal image A′

0 obtained in the paraxial range. This deviation can be
determined either by the horizontal segment, δs′, along the optical axis, as in
Fig. 2.2 (and then it is called the lateral aberration) or it can be related to the
vertical segment ρ (then it is called the transverse aberration). The geometrical

41
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Figure 2.1 (a) Ideal imaging and (b) real imaging.

Figure 2.2 (a) Lateral and transverse aberration and (b) the aberration diagram.

relation between lateral and transverse aberrations is quite obvious:

ρ = δs′ × tan u ≈ δs′ h

S′ (2.1)

in which the fact is taken into account that δs′ � S′. Since for each ray aberrations
depend on the height of the ray on the last refractive surface, and consequently on
the whole optical path while it travels through the optical system, it is commonly
accepted to represent the aberrations by a diagram like that shown in Fig. 2.2b. The
graph always passes through the zero point, meaning that at very small heights,
e.g., in paraxial range, there are no aberrations (there is an exception to this rule,
which is considered in Section 2.2).

There is a great variety of reasons why aberrations happen in optical systems.
Some of them are relevant in a specific application whereas some others are not.
It was understood at a very early stage of the development of aberration theory that
it is worth classifying aberrations in three groups and consider each one separately.
These groups are:

(a) chromatic aberrations – chromaticity of location (the only aberration
existing also in the paraxial area) and chromaticity of magnification;

(b) monochromatic aberrations of wide beams (spherical aberration and coma);
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(c) field aberrations or monochromatic aberrations of tilted beams (astigma-
tism, field curvature, and distortion).

We will address each group in following sections of this chapter.
To characterize the image quality it is not enough to consider aberrations of

several rays coming from an on-axis point. It is necessary to analyze a great number
of rays coming from on-axis as well as from off-axis points of the object and to do
this for three wavelengths at least if the system is intended for imaging with white
light. Usually the ray tracing analysis is carried out for rays propagating in the
vertical plane passing through the optical axis (this plane is called the tangential
or meridional plane) and for rays propagating in a tilted plane where an off-axis
point of the object and horizontal diameter of the entrance pupil are located (this
is called the saggital plane). More specifically (see Fig. 2.3), a number of points
on the vertical and horizontal diameters of the entrance pupil are chosen and the
meridional fan of rays (all in the plane TP) and the saggital fan of rays (all in
the tilted plane SP) are analyzed aiming at the location of the final destination
of each ray in the image plane. Then the meridional plot and the saggital plot,
like the two graphs shown in Fig. 2.3b, are created followed by the calculation,
if necessary, of some other integral parameters of the image (like spot diagrams,
energy distribution, vignetting rate, modulation transfer function, etc.).

With regard to the integral characteristics of imaging, one more issue should
be considered here. Image blurring can be characterized not only in terms of the
geometric parameters of the rays but also in terms of wavefront distortion or wave
aberrations (also termed optical path differences, OPDs). Referring to Fig. 2.1b,
consider the real wavefront W′ and the virtual reference sphere (dotted line) of
radius S′ centered at the point A′

0. The distance l between W′ and the reference
sphere along the radius passing through A′

0 and tilted to the axis at an angle u′′

Figure 2.3 (a) The fan of rays in the entrance pupil and (b) the meridional and saggital
plots.
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is called the wave aberration, or OPD. The difference between the angles u′ and
u′′ is small, so that the local wave aberration in terms of lateral aberration can be
expressed as

l = n × δs′ × (1 − cos u′) (2.2)

and the overall (cumulated) wave aberration is defined by the integral

l = n

u∫
0

δs′ × sin u′du′. (2.3)

The OPD value can be calculated if aberrations δs′ are known for all angles from
0 to u. The expression for lateral aberrations in terms of wave aberration is of
great importance and allows one to obtain analytical expressions for lateral and
transverse ray aberrations in a closed form as far as a third-order approximation is
considered (Seidel’s formula, discussed in following sections of this chapter).

There exists an important Rayleigh’s criterion of acceptable degradation due to
aberrations: the image quality is acceptable if the wave aberration l is not greater
than 0. 25λ.

Problems

2.1. A lens L of 10 mm diameter and 100 mm focal length working in the paraxial
range builds a sharp image at magnification V = −2 in the plane P where the
observation screen is located. If L is replaced by another lens of the same nominal
focus but manufactured with 5% tolerance, what blurring could be expected on
the screen?
[Note: Calculate the meridional plot of rays in the plane P.]

2.2. A lens of 40 mm size designed to form an image at a distance of 125 mm
in air was used in a laboratory set-up where the optical axis was turned through
90◦ by a penta-prism of 30 mm entrance face positioned 35 mm behind the lens.
Assuming the prism is made of BK-7 glass (n = 1. 5163) find the meridional ray
plot of the additional aberration introduced by the prism.

2.1.2. Chromatic Aberrations: Principles of Achromatic Lens Design

As we mentioned earlier, chromaticity caused by chromatic aberration of location
is the only aberration (except defocusing) experienced even in the paraxial range.
The origin of chromaticity is in the dispersion of light inside optical elements
(made of glass or crystals).
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It is well known that the refractive index of optical glasses varies with
wavelength and its spectral behavior can be approximately described by the
formula

n(λ) = A + B

(C − λ)2
(2.4)

where A, B, and C are constants characterizing a specific material. Usually the
refractive index is considered for three main wavelengths, λD = 0. 589 µm; λF =
0. 486 µm, and λC = 0. 656 µm, and the corresponding values nD, nF, and nC are
also included in the parameter of dispersion called the Abbe number (or the Abbe
value):

vD = nD − 1

nF − nC
. (2.5)

Selected data for several optical glasses are presented in Appendix 2.
Since the focal length of a lens is directly related to its refractive index by

Eq. (1.11), it is quite understandable that if the lens is operated simultaneously
at several wavelengths (or with white light illumination) significant chromatic
aberration might occur in the system. Usually chromatic aberration is defined as
the difference between the focal length at the selected wavelength relative to that
of line D:

δCh = f ′
λ − f ′

D. (2.6)

In more general cases δCh is related to the distances between the lens and
the image, δCh = S′

λ − S′
D, and apparently varies with the magnification of the

system.
Chromatic aberration of a single lens is demonstrated in Fig. 2.4 (curve 1) and

explained by the ray diagrams of Fig. 2.5 separately for positive and negative
lenses. As can be seen, the aberration plots in these two cases are opposite and
this fact is widely exploited for the correction of chromaticity. The lens is divided
in two components, one positive and one negative, which are designed according
to the rules described below and then brought in contact and cemented in a single
element called a doublet lens, or achromat.

From the variety of available optical glasses we choose two different materials –
one for the positive component (Abbe value vD1) and another for the negative part
(with Abbe value vD2). Neglecting the thickness of the components we have for
the total optical power, �, of the achromat

� = �1 + �2. (2.7)
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Figure 2.4 Chromaticity of a single lens.

 

  

 

 
 

Figure 2.5 Chromatic aberration of (a) positive and (b) negative lenses.

Each component obeys the single lens equation (1.11) which we rewrite in the
form

�k = (n − 1)ck (2.8)

where ck = (1/rk1 − 1/rk2) is the bending parameter independent of wavelength.
Considering the variation of the optical power as the wavelength is changed from
λF to λC, we have

d�k = �k

vDk
. (2.9)
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Although d�1 and d�2 both have finite values, we require that the variation of the
total optical power be zero: d� = d�1 + d�2 = 0, which yields the following
equation:

�1

vD1
= − �2

vD2
. (2.10)

Resolving Eq. (2.10) together with Eq. (2.7) gives the following formula for the
optical power of both components of the achromat:

�1 = vD1

vD1 − vD2
�; �2 = − vD2

vD1 − vD2
�. (2.11)

To complete the design of the achromat we have to find the bending parameters.
Since we have only two conditions (2.11) for four independent radii, r1, r2, r3, and
r4, there are two degrees of freedom here. One degree can be reduced if we require
that the contacting surfaces of both lenses have the same shape, e.g., r2 = r3. An
additional degree of freedom is one of the two remaining radii. Indeed, we can
arbitrarily choose one of them (e.g., r4 = ∞) and then complete the design in the
following manner:

r3 = nD2 − 1

�2
= r2; r1 = nD1 − 1

�1
.

Or, choose the first surface of the positive lens to be plane and then calculate the
rest of the shapes. Several possible forms of doublet lens are shown in Fig. 2.6. All
of them, however, represent a cemented pair (the adhesive used is of a refractive
index very close to that of glass).

There also exists the possibility of designing an achromatic lens with an air
spacing between the components (e.g., see the detailed explanation in Kingslake,
1979). In any case the achromatic lens provides two focuses to coincide, FF and FC.
The remaining difference between these two and the focus of the line D is called
the secondary spectrum (it is shown by curve 2 in Fig. 2.4). In some situations the
residual chromatic aberration of the doublet lens is too large and further correction
is required. This is realized in triplet lenses or in more complex configurations. The
remaining chromatism is called the tertiary spectrum (curve 3 in Fig. 2.4). It can
be seen that the three focuses coincide in such a case and the residual aberration
is very small.

Figure 2.6 Doublet lenses of different shapes.
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Problems

2.3. Find the chromatic aberration introduced by the penta-prism in Problem 2.2
and build the aberration plot.

2.4. Find the doublet lens of 13.33 diopters optical power if the components are
made from BK-7 and F-1 glasses and calculate the residual chromatic aberration
(the secondary spectrum).

2.1.3. Spherical Aberration and Coma

These two types of aberrations are monochromatic aberrations of a wide beam.
Consider first the spherical aberration (see Fig. 2.7). Due to the geometry of a
spherical shape the rays originating in an on-axis point A and incident on the lens
at different distances h from the optical axis are not concentrated in a single point
behind the lens, but create images at separate locations (A′

1, A′
2, A′

3, etc.). The lateral
spherical aberration δs′

Sph(hi) is defined as the distance between the image in the
paraxial range (A′

1) and the image corresponding to the height hi (e.g., the point
A′

i). The corresponding transverse spherical aberration δy′
Sph defines the size of

the light spot created in the plane perpendicular to the axis (e.g., on an observation
screen). At any position along the axis the spot on the screen has a finite size, but
at some location the size is a minimum and this is the point of the best imaging,
as far as spherical aberration is concerned.

Figure 2.7 Spherical aberration of (a) a single positive lens and (b) a single negative lens.
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To describe the spherical aberration analytically it is usually expanded in a power
series

δs′
Sph(h) = a3h2 + a5h4 + · · · (2.12)

(it can be easily shown that the terms with coefficients a0 and a1are equal to zero).
If only the first term of Eq. (2.12) is considered then the solution can be derived
in a closed form. Such an approximation is called a third-order aberration and it is
commonly known as Seidel’s formula. We describe it here as follows (for further
details, see Born and Wolf, 1968):

δs′
Sph = −1

2

h2S′2

(1 − ξ )2f ′

[
A + B

1 − ξ

r1
+ (1 + 2ξ )

(
1 − ξ

r1

)2
]

(2.13)

where

A = 3

S′ C1 + 1

f ′2 − ξ (2 + ξ )C2C1 + ξ2(1 + 2ξ )C2
1

B = 2ξ (1 + 2ξ )C1 − (2 + ξ )C2

C1 = 1

S′ − 1

f ′ ; C2 = 2

S′ − 1

f ′ ; ξ = 1

n
.

Expression (2.13) can be used to estimate the spherical aberration at any position
of the object and the image. For the special case of the object in infinity, S′ = f ′
and Eq. (2.13) is transformed to

δs′
Sph = −1

2

h2f ′

(1 − ξ )2

[
1

f ′2 − (2 + ξ )

f ′
(1 − ξ )

r1
+ (1 + 2ξ )

(
1 − ξ

r1

)2
]

. (2.14)

As the aberration value depends explicitly on the shape of the lens (radius r1), one
might minimize aberration by optimizing the shape. δs′

Sph achieves its minimum
value

(δs′
Sph)min = −1

8

ξ

(1 − ξ )2

(4 − ξ )

(1 + 2ξ )

h2

f ′ (2.15)

when its radii obey the relations:

r1 = 2(1 − ξ )
1 + 2ξ

2 + ξ
f ′; r2 = 2

(1 − ξ )(1 + 2ξ )

2 − ξ − 4ξ2
f ′. (2.16)

For instance, assuming n = 1. 5 and keeping in mind that hmax = D/2 we get from
Eqs. (2.15) and (2.16)

δs′
Sph = −0. 268

D2

f ′ ; r1 = 7

12
f ′; r2 = −3. 5f ′. (2.17)
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One should remember that in the aberration blur the radiation energy is not
equally distributed. For this reason half the size of the maximum spot caused by
aberration and calculated from Eqs. (2.13)–(2.17) is exploited as an aberration
measure. It should also be mentioned again that the above formulas enable one
to estimate the spherical aberration of a single lens approximately. To get more
rigorous results the ray tracing procedure is inevitably required.

As can be seen from Fig. 2.7, the lateral spherical aberrations of a positive lens
are negative whereas the aberrations of a negative lens have the opposite sign.
This fact allows one to reduce drastically the spherical aberration if the single lens
is replaced by a doublet (like the achromat described in Section 2.1.2).

Coma is an aberration of a wide tilted beam originating in an off-axis point of
the object. This aberration is caused by the fact that the magnification of the system
is not constant, but varies with the height of the incident ray: V = F(h).

Figure 2.8 demonstrates the formation of coma and explains the parameter, δk,
chosen as its numerical measure:

δk = 1
2 (y′

1 + y′
2) − y′

C (2.18)

where y′
C is the vertical coordinate of the chief ray of the beam at the image plane P

and y′
1 and y′

2 are the vertical coordinates of the upper and the lower rays 1 and 2 on
the same plane. The ray bundle starting in the off-axis object point A and coming
to the entrance pupil is not symmetrical with regard to the optical axis, so it is not
surprising that the spot in the plane P is also not symmetrical. The conditions and
methods of coma correction are discussed later in this chapter.

Figure 2.8 Formation of coma.
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Problems

2.5. (a) Find the optimal shape of a lens of 30 mm diameter and f # = 2. 0
(f -number, f #, defined as the ratio f ′/D of a lens focus to its diameter) intended
for imaging from infinity if it is made of (i) BK-7 glass and (ii) SF-11 glass,
and calculate the maximum transverse aberration in both cases (for imaging in
monochromatic light of wavelength D). (b) How will the results be changed if the
lens is turned by 180◦?

2.6. Spherical aberration of a cylinder rod or a sphere: a rigorous ray tracing.
(a) Calculate the plot of transverse spherical aberration of a cylinder rod of 7 mm
diameter made of BK-7 glass working with a point light source (laser diode of
0.59 wavelength) located 2 mm in front of the rod. (b) How will the results of the
calculation be affected if the rod is replaced by a lens having the shape of a full
sphere of 7 mm diameter (a ball lens)?

2.7. Spherical aberration of a plano-convex cylindrical lens: a rigorous ray
tracing. How will the plot of spherical aberration calculated in Problem 2.6 be
changed if the cylinder rod is replaced by a plano-convex cylindrical lens of the
same radius (3.5 mm) made of BK-7 glass? The plane P remains at the same
location as in Problem 2.6. The size of the new lens is shown in Fig. 2.9.

Figure 2.9 Problem 2.7 – Plano-convex cylindrical lens and the image plane.

2.1.4. Aberrations of Tilted Beams (Field Aberrations)

This group of aberrations includes astigmatism, curvature of field, and distortion.

Astigmatism

This aberration occurs if a pencil of tilted rays originating in an off-axis point of
the object strikes the entrance pupil of the system. Astigmatism is illustrated in
Fig. 2.10. For a tilted beam (which is initially homocentric) the optical axis is not
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Figure 2.10 Astigmatism of a single lens: (a) imaging by meridional and saggital rays;
(b) cross-section of the light spots along the optical axis.

an axis of symmetry any more and the behavior of the rays in the meridional plane
(rays 1 and 2) differs from that of the saggital rays (rays 3 and 4). As a result the
lens concentrates the tangential rays and the saggital rays in two different points,
A′

t and A′
s. Both are out of the plane P of the paraxial image (point A′

0). Aberration
of astigmatism is measured as the distance between the meridional and saggital
images originating in the same point of the object (in Fig. 2.10a δs′

Ast = S′
t − S′

S).
Obviously the greater the height of point A the larger the difference S′

t − S′
S , and

for the on-axis point O aberration of astigmatism is approaching zero. The cross-
section of the light bundle behind the lens is not homocentric anywhere but varies
in a manner demonstrated in Fig. 2.10b.

Astigmatic aberration appears not only in elements with optical power (lenses
or mirrors), but features also in a parallel plate. In this case the aberration can
be described analytically. Referring to Fig. 2.11, we consider the tangential and
saggital images A′

t and A′
S of a point A having a (virtual) image A′

0 (e.g., the image
that would be created in air, without a parallel plate of thickness d). The distance
a between the two images is determined by the formula

a =
(

1 − cos2 u

cos2 u′

)
d

n cos u′ (2.19)
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Figure 2.11 Astigmatism in a parallel plate.

and the astigmatic aberration becomes

δs′
Ast = δ = (n2 − 1)

tan3 u′

tan u
d ≈ (n2 − 1)

n3
u2d. (2.20)

Curvature of Field

Going back to the astigmatism of a lens-based system as shown in Fig. 2.10, one
may note the fact that both the tangential and saggital images are not segments of
straight lines but rather have noticeable curvature. Furthermore, it is reasonable to
assume that the image created simultaneously by tangential as well as by saggital
rays is located on a curved surface passing somewhere between the meridional
and saggital images, as depicted in Fig. 2.12. This is commonly defined as an

Figure 2.12 Occurrence of curvature of field.
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additional aberration called the curvature of field and is estimated as the radius
of curvature, ρ, of the best image. It can be shown that the value of ρ obeys the
following expression (Petzval’s theorem):

1

ρ
= −n′ ∑

i

1

ri

(
1

ni
− 1

ni−1

)
(2.21)

where n′ is the refractive index in the image space and the summation is carried
out over all refraction surfaces of the system.

Distortion

It is assumed in paraxial optics that linear magnification between two conjugate
planes is defined solely by the location of the planes along the optical axis (in
other words, by the distance of the object to the lens). In reality this assumption is
violated and linear magnification, V , depends not only on the location of the plane
along OZ, but also on the distance of the point of interest from the optical axis
(distance in the radial direction). Violation of the above condition causes distortion
of images, as illustrated in Fig. 2.13. The object shown is a regular square of size
a with its center O positioned on the optical axis. Since the radial distances from
O to points A and B are different, a/2 and a/

√
2, respectively, their images A′ and

B′ are determined by different magnifications, VA and VB, and the whole image
of the square is deformed. Distortion is characterized numerically as follows:

� = y′ − y′
0

y′
0

100% (2.22)

Figure 2.13 (a) Distortion and (b) positive and negative distortion of images.
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Figure 2.14 Distortion in a parallel plate.

where y′
0 and y′ are the radial displacement (or height) of the paraxial image and

the real image of the same point. The value defined by Eq. (2.22) is sometimes
called the fractional distortion.

Two kinds of distortion can be experienced in imaging systems, positive and
negative. In the first case linear magnification in the image plane is increased
with radial distance. In the second case the larger the distance the lower the
magnification. Both cases are shown in Fig. 2.13b.

Distortion might originate not only in lenses or mirrors, but also in prisms or
parallel glass plates. Such a case is shown in Fig. 2.14 where the off-axis image,
y′, created by the system is transferred by the parallel plate of thickness d into the
final image y′′. Distortion can be expressed in terms of the thickness and refractive
index of the plate and the skew angle u and the distance p from the entrance pupil
to the image plane:

� = −n2 − 1

2n3

d

p
u2. (2.23)

Aberration of distortion might be very critical in some applications, for example
in optical systems for mapping.

Problems

2.8. A lens of 30 mm focal length operates in an angular field of view of ±30◦
and creates an image at magnification V = −2. Behind the lens, at a distance of
20 mm from it, a right-angle prism of 30 mm × 30 mm size is positioned in order
to bend the optical axis by 90◦. Find the diagram of astigmatism and distortion
across the field of view.
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2.9. A flattener element in the imaging system. A bi-convex symmetrical lens of
40 mm focal length made of BK-7 glass performs imaging of distant objects to
the plane P in a wide field of view. Is it reasonable to expect that the image quality
of the off-axis areas will be of the same grade as images close to the optical axis?
Find the flattener which is capable of improving image degradation for off-axis
points (assume that it is made of SF-11 glass).

2.1.5. Sine Condition and Aplanatic Points

Once we realize that imaging in general is accompanied by aberrations, it is quite
understandable that finding locations where aberrations are small or even can be
avoided completely is of great importance not only from a theoretical point of
view but also for practical reasons. It can be shown that such locations do exist for
a single surface with curvature, either a reflective or refractive surface, aspherical
or spherical. Obviously the latter is more attractive, since manufacturing spherical
optics is much easier and cheaper than fabrication of aspherical elements.

Let us consider a refraction surface Q separating media of refractive index n and
n′, as illustrated in Fig. 2.15, and let the conjugate pair A and A′ be the points of
stigmatic imaging (imaging with homocentric beams, with no aberrations). This
means that any ray emerging from A comes to A′, no matter what the ray angle u,
and in terms of aberration it is equivalent to zero spherical aberration. Furthermore,
the small object, dy, is imaged by the surface Q into dy′, both the object and the
image being perpendicular to the optical axis and starting in the stigmatic points
A and A′. If linear magnification V = dy′/dy is independent of the ray angle, u, and
remains constant it means that the following relation is valid:

V = n sin u

n′ sin u′ = S′

S
= const. (2.24)

Figure 2.15 The sine condition.
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This relation is known as the sine condition and violation of it is usually called
offence against the sine condition (OSC). Obeying the sine condition actually
means that the small object dy is imaged with no aberration and the off-axis side of
dy′ is not blurred (it is a point and not a spot, i.e., there is no coma aberration here).

The pair of conjugate points where the spherical aberration is zero and the sine
condition is kept valid are known as aplanatic points of the surface Q. If the object
(and the front aplanatic point) is located at infinity the sine condition is transformed
into following relation:

f ′ = h

sin u′ (2.25)

for any height h at which the ray strikes the surface Q. Then

OSC = δf ′ = h

sin u′ − f ′.

Needless to say, aplanatic points of the surface are of great significance, since in
the vicinity of these points imaging occurs with no aberration, even for a beam of
a wide solid angle.

A spherical surface has at least three pairs of aplanatic points, two of them being
trivial, like the point, C, where the surface crosses the optical axis or the center,
O, of the sphere curvature (see Fig. 2.16a). The third aplanatic point pair, A, A′
(shown in Fig. 2.16b), is defined by the relations

S = CA = n + n′

n
r; S′ = CA′ = n + n′

n′ r (2.26)

where r is the radius of curvature of the surface. Magnification at these points
obeys the expression

V =
( n

n′
)2

(2.27)

Figure 2.16 Aplanatic points of a spherical refraction surface: (a) in the center of
curvature; (b) off-center points.
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Figure 2.17 Aplanatic points of (a) positive and (b) negative lenses.

while magnification of the center point, O, is

VO =
( n

n′
)

. (2.28)

Combination of two spherical surfaces with two kinds of aplanatic points enables
one to create lenses where imaging is performed with no aberration (theoretically).
Two such examples, one of a positive lens and another of a negative one, are
depicted in Fig. 2.17 (see also details in Problem 2.11).

Problems

2.10. A ball lens. Find the OSC plot for a sapphire ball lens of 3 mm diameter
working with an object at infinity and calculate the maximum diameter of the
beam which can be concentrated behind the lens. The refractive index of sapphire
is 1.77.

2.11. How does one design the aplanatic objective of a microscope if the required
magnification is V = −6 at least and it is known that the gap of 0.7 mm between
the object plane and the first lens surface is filled with immersion oil of n = 1.8?
[Note: The objective should be constructed from two lenses. The first, which is
a hemispherical lens, is 1 mm distant from the second lens of 3 mm thickness. The
first component is made of SF-57 glass and the glass for the second lens can be
chosen using the data of Appendix 2.]

2.1.6. Addition of Aberrations

In practical situations when an imaging system comprises several elements (some-
times consisting of ten or more components), estimating the contribution of each
element to the total aberration balance is quite useful. There are several rules
allowing one to add aberrations of separate elements and to calculate their impact
at different locations along the optical axis. One should keep in mind, however, that
the main goal is to reveal how aberrations of each element affect the final image.
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Addressing the procedure of addition of aberrations we suppose that the i-th
element (or a group of elements) performs imaging from its object space to the
image space with some linear magnification, Vi, and the image built by the i-th
element serves as a virtual object for the next (i + 1)-th element. The following
rules should be followed:

● the lateral aberrations δs′
i−1 while being transferred from the object space to

the image space of the i-th component are multiplied by V2
i , so that the total

lateral aberration at the image space of the i-th element becomes

δs′
tot = δs′

i−1 × V2
i + δs′

i; (2.29)

● the transverse aberrations while being transferred from the object space to
the image space of the i-th component are multiplied by Vi, so that the total
transverse aberration at the image space of this component becomes

δs′
t, tot = δs′

t, i−1 × Vi + δs′
t, i; (2.30)

● if the i-th element transfers images to infinity it should be treated as if radiation
propagates in the opposite direction and the aberrations computed in such a
manner should be added to the aberrations of the image space of the (i −1)-th
element (δ←′

Si
with its sign, and δ←′

St,i
with the opposite sign);

● if a parallel beam is created between two subsequent elements they should be
considered as a group with a single magnification and aberrations are treated
as if they are transferred from the object space of the first element of this
group to the image space of the second element of the group;

● addition of aberrations should be done separately for aberrations along the
chief ray and for aberrations along the marginal ray.

These simple rules assist in the analysis and synthesis of imaging systems as far
as aberrations are concerned.

Problems

2.12. In a two-lens imaging system (Fig. 2.18) initially aligned to get a sharp
image of an object of 0.25 mm on a CCD of size 5 mm × 5 mm, a scale reticle
R of 2 mm thickness is introduced in the plane P where the intermediate image is
formed at magnification V1 = −5. Both lenses are of 8 mm diameter and 15 mm
focal length and they are properly corrected (the lens aberrations can be neglected).
Find the impact of the reticle on aberrations in the CCD plane and the way to make
a correction.
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Figure 2.18 Problem 2.12 – Two-lens imaging system with reticle.

Figure 2.19 Problem 2.13 – (a) Residual lateral aberration of a lens and layouts with
bending by (b) a mirror and (c) a penta-prism.

2.13. A lens of 40 mm in size and f # = 1. 2 performs imaging of a distant object to
the detector plane P and has the residual aberration shown in the plot of Fig. 2.19a.
The optical axis should be turned through 90◦ and two possible configurations are
compared: one with a plane mirror and the other with a penta-prism (see Figs. 2.19b
and 2.19c, respectively). What is the advantage of the second layout and what is
the optimal size of the prism?

2.14. A two-lens condenser. An illumination system (Fig. 2.20) aiming to con-
centrate radiation from a halogen lamp with 3 mm filament into an optical fiber
bundle of 6 mm in size consists of two lenses: L1 of 30 mm diameter and 60 mm
focal length and L2 of the same diameter and 120 mm focal length, both made

Figure 2.20 Problem 2.14 – Configuration of a two-lens condenser.
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of BK-7 glass. Find the optimal shape of the condenser lenses and estimate the
spherical aberration at the bundle entrance.

2.2. Diffraction Effects and Resolution

2.2.1. General Considerations

Diffraction effects result from the wave nature of radiation participating in imaging.
In general diffraction is caused by the secondary waves generated in the substance
of an obstacle on which electromagnetic waves impinge while traveling in space.
An obstacle can be a body of any shape, either transparent or opaque. Interference
of the secondary waves changes the spatial distribution of the propagated radiation
in such a way that light energy appears not only in the direction of the initial
propagation but also to the side of it. Because of this, for example, an ideal lens
with no aberration is not capable of concentrating light in a single point of the
image plane and some energy is always revealed in a small but finite vicinity of
the image. Thus, diffraction is a basic limitation in imaging optics which cannot
be avoided. Other effects, like aberrations considered in the previous section,
which also “spoil” the image quality appear together with diffraction and cannot
neutralize it in any way. If all other effects become negligible diffraction remains
a single factor affecting the system performance. In such a case the optical system
is termed diffraction limited.

Diffraction occurs at any stop through which light passes. It could be a real
aperture, or the mounting of a lens, prism, or mirror, or just the boundaries of
an optical element of the system. We shall consider a simple case of propagation
of monochromatic light of wavelength λ through a circular non-transparent stop
of radius a followed by a lens (see Fig. 2.21). It can be shown that the intensity

Figure 2.21 Diffraction on (a) a circular stop and (b) the intensity distribution in the
diffraction spot.
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distribution of light in the spot created in the image plane P due to diffraction is
governed by the following function (Airy’s function):

I(r) = I0

[
2J(x)

x

]2

; where x = 2π

λ
n′r′ sin u′

max, (2.31)

n′ is the refractive index in the image space, r′ is the radial coordinate in the
plane P, u′

max is the maximum angle of the direction from the stop boundary to the
center of the spot, and J1(x) is the Bessel function of the first order.

Expression (2.31) is an oscillating function with a strong central maximum
followed by dark and light rings of decreasing intensity. It is commonly accepted
that most of the energy of the spot is concentrated in the central maximum limited
by the first dark ring which corresponds to the value x(1)

min = 3.8317 in Eq. (2.31).
Hence, the relevant size of the spot in the plane P obeys the relation

δdif = 1.22λ

n′ sin u′
max

. (2.32)

In the case when P is the focal plane of a lens of diameter D = 2a, Eq. (2.32) is
transformed into the well-known expression

δdif = 2.44λ

D
f ′ (n′ = 1).

The diffraction spot has a direct impact on limiting resolution which is one of the
basic features of any imaging system. Consider two very close images in the plane
P, each one generating a diffraction spot. If the distance between the two images
is large enough the spots are well separated and an observer looking on the image
plane P is capable of perceiving them easily. The smaller the distance, the closer
the spots, and at some stage they become overlapped. The question is, what is the
minimum distance at which two partially overlapping spots are still recognized as
two separate objects? Such a minimal distance is called the limiting resolution and
it is defined, according to the Rayleigh criteria, as the situation when the minimum
of one spot coincides with the maximum of the second. Figure 2.22 demonstrates
the situation when two images, one centered at point A′ and the other centered
at B′, are still resolvable. The dotted line in Fig. 2.22b shows the distribution of
energy after summation of both spots. The “valley” between the two maxima is
about 70% of the maximum intensity (i.e., about 30% reduction of energy).

What is usually important in practical applications is the distance in the object
plane between two points A and B corresponding to limiting resolution in the
image plane. Referring to Fig. 2.22a, suppose an entrance pupil of size Dp is
located at a distance p from the object plane. Taking into account that the product
n×sin u×r is the system invariant (it remains constant while transferring through
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Figure 2.22 (a) System resolution and (b) two spots according to the Rayleigh criteria.

each refraction surface) and using Eq. (2.32), one can transform the distance δdif

into the corresponding distance AB and resolvable angle β in the object plane:

AB = 1. 22λ

nDp
p; tan β = AB

p
= 1. 22λ

nDp
(2.33)

or, using the expression in angular seconds, β = 120′′/Dp for λ = 0. 5 µm and
n = 1.

If aberrations of the system are significant then the diffraction spot should be
considered together with the aberration spot. The common practice is to use the
square root rule for getting the total spot as follows:

δsum =
√

δ2
dif + δs2

ab. (2.34)

Apparently the resolution limit is affected by Eq. (2.34). A simple way to define
resolution with the spot enlarged by aberrations is demonstrated in Fig. 2.23. To
find the resolution in the object plane in this case one should divide the value δsum

calculated from Eq. (2.34) by the magnification of imaging.

Figure 2.23 Resolution limit caused by aberrations and diffraction.
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2.2.2. Diffraction Theory of Imaging in a Microscope

Considering microscopic imaging in terms of diffraction allows one to understand
the basic limitations existing in this kind of instrument and to determine relations
governing the maximum achievable resolution.

In Abbe’s theory of the microscope the object is referred to as a transparent
diffraction grating (see Chapter 5) of a spatial period d. This approach is based
on the assumption that a real object described by an arbitrary intensity distribu-
tion function which can be expanded in a Fourier series of separate harmonics
is considered as a collection of sine periodic spatial waves, each one acting as
a diffraction grating. Being illuminated by a parallel beam, the grating generates
several fans of beams corresponding to different diffraction orders. The zero-order
beam is concentrated by the microscope objective at the back focal point whereas
the other diffraction orders are collected at other points of the same back focal
plane (Fi+1; Fi; . . .). The aperture stop located in the back focal plane comprises
all focused centers of diffracted beams (see Fig. 2.24). Light of each order pro-
ceeds further as a divergent fan to the plane of the field stop positioned in the focal
plane of the eyepiece. Here the fans overlap and interfere. The resulting fringe
pattern with a constant spacing, d′, constitutes an image of the initial grating of
the object plane and both are related through the system magnification: d′/d = V .

To create the fringe pattern at least two divergent beams and therefore two
diffraction orders must be present simultaneously in the aperture stop. The location
of the diffraction maxima, Fi, in the focal plane of the objective is dictated by
the diffraction grating equation (Eq. (5.18); see Chapter 5): sin u(i)

max = iλ/d for
i = 0, ±1, ±2, . . .. The aperture stop size, Das, is related to the numerical aperture
of the system in the object space: n sin umax = Das/(2f ′). These last two expressions
allow one to find the minimum diffraction spacing, d, which can be imaged by the
microscope.

Two possible methods of illumination should be considered separately: direct
illumination when the zero-order diffraction is focused in a point on the optical axis

Figure 2.24 Diffraction in microscope imaging.
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Figure 2.25 Location of diffraction maxima in an aperture stop: (a) on-axis illumination;
(b) oblique illumination.

and oblique illumination when the focus of the zero-order diffraction is located in
an off-axis point. Fig. 2.25 illustrates both situations. The limiting condition for
direct illumination requires that the zero-order maximum as well as the 1st and
the (−1)st order maxima are inside the aperture stop whereas the corresponding
limit for oblique illumination can be realized if the zero-order and only one of the
first-order diffraction maxima are inside the circle of diameter Das. As can be seen,
the limiting resolution is related to the numerical aperture (NA) of the system as

d = λ

n sin umax
= λ

NA
; d = λ

2n sin umax
= λ

2NA
(2.35)

for direct (on-axis) and oblique illumination, respectively. In the real practice of
microscopy illumination is supplied by a wide-angle condenser coming at both
direct and oblique directions. It can be shown that in such a case the limiting
resolution of the microscope is determined as

d = λ

NA + NAC
(2.36)

where NAC is the numerical aperture of the condenser.

Problems

2.15. Find the minimum required active diameter of the well-corrected imaging
optics for visible wavelengths operating at a working distance of 30 mm and
providing a resolution of 0.5 µm.

2.16. A microscope for the visible range is supplied with three objectives: 10 ×
0.25 NA, 40 × 0.65 NA, and 100 × 1.2 NA, and a condenser of 0.96 NA. Find
the maximum resolution in all three possible configurations.
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2.17. A microscope objective of magnification ×10 has a focal length of 16 mm
and is operated with an aperture stop of 5 mm diameter. At which angle of oblique
illumination should one expect the resolution to be twice that of normal (on-axis)
illumination? Which resolution (in the visible) will be available in this case and
how will the resolution be changed if the illumination angle is held at 5◦?

2.3. Image Evaluation

Evaluation of images is carried out (i) at the design stage when it is checked
whether the configuration designed is capable of delivering the system perfor-
mance requirements; and (ii) at the end of manufacturing when a real system with
all the tolerances of component fabrication and assembling is aligned and prepared
for final testing. Image evaluation at the design stage is performed theoretically, by
analyzing aberrations of the system and also by calculating some integral param-
eters enabling one to estimate the expected image quality. Image evaluation at the
manufacturing stage is done with special hardware allowing one to measure reso-
lution, contrast, and other parameters related to the system performance, usually
determined in a procedure specific for each tested architecture.

Theoretical evaluation of image quality is usually based on ray tracing of a
great number of rays, originating in on-axis and off-axis points of the object and,
if necessary, related to several representative wavelengths (mostly, the lines C,
D, and F) of the illuminating radiation. Obviously computing is carried out with
special software allowing one to calculate and display the location of the rays in
the image plane (a spot diagram), energy distribution in a spot, frequency response
of the system (modulation transfer function, see below), position of the best focus,
and other useful parameters. Diffraction effects are also taken into account while
computing the relevant parameters and convolution between geometrical optics
results (ray tracing) and the diffraction pattern at each and every image point is
accurately calculated.

Examples of spot diagrams for on-axis and off-axis points are depicted in
Fig. 2.26. Each diagram is calculated by tracing the rays striking the entrance
pupil as a uniformly distributed fan and indicating the points of intersection of
the rays with the image plane. Apparently for a perfect lens the spot diagram
is transformed in a single point located in the paraxial image of a corresponding
object point. The on-axis spot is usually symmetrical whereas the off-axis spot
might be strongly asymmetric (as shown in Fig. 2.26b) which is an indication of
strong field aberrations.

The size of the spot, δ, can be used as a simple evaluation parameter. In
some cases this value can also be estimated analytically, using expressions for
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Figure 2.26 Spot diagram for (a) an on-axis point and (b) a field (off-axis) point.

the third-order aberrations (e.g., Eqs. (2.14) and (2.15)) or for the diffraction spot
(Eq. (2.32)).

Once the spot diagram is found it is possible to count the number of rays inter-
secting the image plane inside a circle of a chosen size. With the assumption
that each ray bears the same amount of energy such a procedure (performed sev-
eral times, for circles of different diameter, d) gives another parameter called the
“encircled energy distribution” (see Fig. 2.27). The circle diameters can be taken
in absolute units or in relative units, in terms of the unit z = d/δdif , where δdif is
the spot of a diffraction-limited system, as per Eq. (2.32).

The distributions shown in Fig. 2.27c illustrate the action of a perfect lens
(curve 1) compared to a real lens with aberrations (curve 2). As can be seen, in the
first case there are some oscillations on the graph which are evidently related to the
interference rings of Airy’s function. Curve 1 can be found analytically. Denoting
the relative energy inside the circle d(E(d)/Etot) as L(d), one finds the following
expression (for details, see Born and Wolf, 1968):

L(d) = 1 − J2
0 (z) − J2

1 (z); z = πDpd

2λp
(2.37)

Figure 2.27 Encircled energy distribution: (a) schematic of rays inside different cir-
cles; (b) relative energy distribution vs. circle size in absolute units; (c) relative energy
distribution vs. circle size in units of z.
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where Dp is the exit pupil size located at a distance p from the image plane. The first
minimum occurs at z = 3. 8317 and the corresponding encircled energy is about
84%. Aberrations influence significantly the energy distribution and therefore this
distribution can be used as a tool for image quality evaluation.

The most common way to evaluate images is based on the modulation transfer
function (MTF). To explain this approach we consider the basic relation between
an object T(x, y) and its image I(x′, y′) created by an optical system. The system
is characterized by the point spread function (PSF) S(x, x′, y, y′) which is actually
the pattern created in the image space resulting from a single point object. Then
the image of an arbitrary object T can be represented as follows:

I(x′, y′) =
∫∫

S(x − x′, y − y′)T(x, y) dxdy (2.38)

which is the convolution between the object and the PSF. By performing the Fourier
transform of Eq. (2.38) we get

R(kx , ky) = Q(kx , ky) × H(kx , ky) (2.39)

where the term on the left-hand side, called the frequency response in the image
space and given by

R(kx , ky) = 1

2π

∫∫
I(x′, y′)exp[i(kxx′ + kyy′)] dx′dy′, (2.40)

is related through the system optical transfer function (OTF),

Q(kx , ky) = 1

2π

∫∫
S(x, y)exp[i(kxx + kyy)] dxdy (2.41)

to the harmonics of the object, H(kx , ky). In the above expressions k = 2π /v,
where v is the spatial frequency in cycles/mm.

Since the OTF is generally a function in a complex space characterized by its
amplitude and phase, it is valuable to consider its modulus (a real function) called
the MTF. MTF(v) = |Q(v)|. The MTF does not depend on the object, but only
on the system properties and this is the reason why it is widely used for image
quality evaluation. The MTF also can be interpreted in terms of modulation, which
is a feature related to the intensity of light and can be easily measured in practice.
Let the light intensity in the object vary from Imax to Imin. Then the contrast revealed
in the object plane can be characterized by the modulation Mo:

Mo = Imax − Imin

Imax + Imin
(2.42)
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and the contrast in the image plane is described by the corresponding modulation
Mi. The ratio between the two modulations is governed by the MTF:

Mi(v)/Mo(v) = MTF(v) (2.43)

if all three values are determined for the same spatial frequency v.
Another attractive feature of the MTF is that the MTF of an imaging system is just

the product of the MTFs of the separate components constituting the system. This
results from linearity and other features of the Fourier transform. Thus, adding or
replacing an element can be easily analyzed with regard to the new image quality.

Computation of MTF(v) is a cumbersome and time-consuming procedure which
in most cases is performed by special software. However, there are a few cases
when it can be expressed explicitly, in analytical form. For example, for a
diffraction-limited system, with no aberration, the PSF isAiry’s function described
by Eq. (2.31). Its OTF and MTF can be found analytically as follows (e.g., see
Smith, 1984):

MTF(v) = 2

π
(F − sin F cos F)(cos β)n; F = arccos

(
λv

2NA

)
(2.44)

where β is half of the full-field angle, NA is the numerical aperture in the image
space (NA = n′ sin u′), and the power n = 1 or n = 3 for radial or tangential
directions, respectively. Obviously MTF = 0 at F = 0, meaning that the spatial
frequency

vc = 2NA

λ
(2.45)

is the maximum frequency transferred by the system from the object to the image
space (it is called the cut-off frequency).

Figure 2.28 illustrates theoretically calculated MTFs. The diffraction-limited
system (curve 1) features the highest MTF at any spatial frequency. It can also

Figure 2.28 Modulation transfer functions for a diffraction-limited system (1) and for
systems with aberrations (2 and 3).
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Figure 2.29 (a,c) Input square waves and (b,d) the corresponding output patterns.

be seen that the influence of aberrations is more significant at higher frequencies
(difference between curve 1 and curves 2 and 3). Curve 3 also shows that in some
cases the MTF might have negative values, which means a 180◦ phase inversion
(black zones become white and vice versa).

According to the explanation above, the MTF (and OTF), strictly speaking,
refers to the harmonics, or sine waves, in the object space. In reality, however, the
same approach is also exploited for “square wave” objects, like a bar code. As is
demonstrated in Fig. 2.29, the contrast and the modulation Mi in the image plane
decrease when the spacing (period) of the object square wave, T(x), decreases.

Using a target bar code with several groups of well-defined spatial frequencies as
the system object and measuring the modulation Mi of the corresponding images
at the system output allows one to find the MTF (see Eq. (2.43)). This method
is commonly exploited in image quality evaluation at the final testing stage. The
limiting resolution of the system is defined as the spatial frequency of the group still
visible at the image plane with a minimum contrast of 3–5% (which is considered
as the limit of the perception capability of a human eye).

Problems

2.18. What could be concluded about imaging optics if an analysis of the encircled
energy revealed 45% of the total energy of the spot corresponding to an on-axis
image point is inside the circle diameter which is half the size of the whole spot?

2.19. Imaging optics operated with monochromatic illumination of 0.6 µm and
having NA= 0.25 in the object space is ended by a CCD area sensor. What should
be the minimum pitch of the CCD in order to acquire all spatial frequencies
transferred by the optics?
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2.20. MTF measurements are carried out with a square-wave target of variable
frequencies made of chrome on glass in a bar code pattern. Data are collected
for low spatial frequency (v1 = 10 cycles/mm) and for high spatial frequency
(v2 = 200 cycles/mm) and the respective measured modulations are 70% and
20%. Assuming that the reflectance of chrome is 70% and the reflectance of glass
is 4% and also keeping in mind that the contrast of images is slightly degraded by
the background light scattered inside the measurement set-up, find the true MTF
value at higher spatial frequency.

2.21. A diffraction-limited optical system operated in the visible range and having
NA= 0. 15 creates an image on a CCD sensor followed by a video monitor. The
MTF of CCD + monitor is 60%. Could we expect to see on the screen the tiny
details of an object corresponding to the spatial frequency of 575 cycles/mm?

2.4. Two Special Cases

2.4.1. Telecentric Imaging System

This kind of architecture is usually exploited in measurement systems where errors
caused by the third dimensions (along the optical axis) of an object have to be
minimized. To explain this error (sometimes called the parallax error, or per-
spective error) we refer to Fig. 2.30a where simple imaging with a single lens is
depicted. Two objects, O1A and O2B, having the same height and located at differ-
ent distances from the lens, after imaging are transformed into images O′

1A′ and
O′

2B′ of different heights. The error �y′ might cause problems if the defocusing
�x′ is small (not revealed by the system observer). The telecentric imaging system
shown in Fig. 2.30b is free of this error. The system is configured as an afocal lens

Figure 2.30 Imaging with (a) parallax error and (b) the telecentric configuration.
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pair where the back focal plane of the first lens coincides with the front focal plane
of the second. What is also important is that the aperture stop ab is located in this
plane P. As a result, the entrance pupil and the exit pupil are both located at infinity
(one on the object space side and the other on the image space side) and the chief
rays originating in points A and B are parallel to the optical axis in both spaces.
Hence the images O′

1A′ and O′
2B′ are of the same size and the parallax error does

not occur.
If the system is operated with a video area sensor (like a CCD) it should be

positioned in such a way that both images are sharp enough. Aberration of defo-
cusing (like the other aberrations) strongly depends on the active lens size, but a
reduction in the lens diameter is accompanied by the increasing impact of diffrac-
tion, as discussed in Section 2.2, and also a decrease in the image illumination.
Therefore, a compromise should be found. In any case, symmetrical configurations
are preferred where the shapes of the lenses are equally positioned with regard to
the plane P (or one of them is scaled in a symmetrical manner, if magnification/
minification is required). Estimation of aberrations can be carried out by the method
described in Section 2.1.6 and Problem 2.14.

2.4.2. Telephoto Lens

There are numerous situations where the effective focal length of the objective has
to be long while the actual size of the lens should be kept as small as possible.
A possible architecture in such a case is a two-lens configuration, one of positive
and the other of negative optical power (see Fig. 2.31). Usually what is known
is the equivalent focal length, f ′

e , and the desired length of the configuration, l.
The optical power of each component and their locations with regard to the image
plane should be found.

Figure 2.31 Configuration of a telephoto lens.
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Considering the system in terms of first-order optics (paraxial approximation)
we have for this two-lens system (see Problem 1.7)

� = 1/f ′
e = �1 + �2 − �1�2d (2.46)

and taking into account that d + S′
F = l we also get

�1d = 1 − �(l − d). (2.47)

Equations (2.46) and (2.47) for three unknowns, �1, �2, and d, allow one to
introduce an additional condition to optimize the configuration with regard to
aberration. This could be either the requirements for a minimum optical power of
the second element (which in general might result in lower residual aberrations)
or the requirements for a configuration with minimal (better zero) curvature of the
image surface. In the first case the best results, as can be shown, are obtained with
d = 0.5l and the corresponding focal lengths of the elements are

f ′
1 = lf ′

e

2f ′ − le
; f ′

2 = − l2

4(f ′ − l)
. (2.48)

In the second case a zero Petzval’s sum (see Section 2.1.4) is required which is
achieved with �2 = −�1. By introducing this condition in Eqs. (2.46) and (2.47)
we have

l = 0.75f ′
e ; f ′

1 = −f ′
2 = 0.5f ′

e ; S′
F = 0.5f ′

e . (2.49)

The latter approach is widely used in the design of telephoto lenses intended for
imaging in large angular fields of view.

Problems

2.22. How does one design a telecentric imaging system which is operated at
magnification V = −3 in an angular field of view of ±5◦ and provides a resolution
of 2 µm in the visible spectral interval?
[Note: Assume the system is free of aberration.]

2.23. A telephoto lens forms images with negligible curvature at a distance of
60 mm from the first (front) element. What are the focal lengths and the distance
between the lenses?

2.5. Solutions to Problems

2.1. Since the lens is working in the paraxial range (f # = 10) we can find the
distance to the plane P where an ideal image is formed by the lens with nominal
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Figure 2.32 Problem 2.1 – (a) Defocusing in the plane P and (b) the meridional aberration
plot.

focal length:

1 − V

S′ = 1

f ′ ; S′ = 100 × (1 + 2) = 300 mm.

If the lens is manufactured with 5% tolerance the focal length might be as long
as 315 mm, and in this case blurring due to defocusing occurs in the plane P,
as demonstrated in Fig. 2.32a. The maximum lateral aberration of defocusing,
δs′

l = 15 mm, gives the corresponding transverse aberration calculated as in
Eq. (2.1): δs′

t = ρmax = δs′
l × tan umax = 15 × 5/315 = 0. 238 mm. Obviously

this aberration is a linear function of the height, y, of the ray at the entrance pupil.
In the plot shown in Fig. 2.32b the relative vertical coordinate is exploited, y/hmax,
which varies in the range from 1.0 to (−1.0).

2.2. We start by calculating the thickness of the glass block equivalent to the
penta-prism (see Section 1.4). We have te = 3. 41a = 3. 41 × 30 = 102. 43 mm
and the prism makes the optical path of a chief ray longer by te(1 − n)/n =
102. 4(1 − 1. 5163)/1. 5163 = 34. 87 mm. Figure 2.33 demonstrates the divergent
beam traveling through the slab of thickness te and explains the appearance of
lateral aberration δs′ as a function of the incidence angle u. Using the rigorous
formula from Problem 1.6, one can find the aberration δs′ as a difference between
lateral segments calculated for the paraxial range and for any final angle u:

δs′ = te


(1 − 1/n) −


1 −

√
1 − sin2 u

n2 − sin2 u





 = te

n


1 − n

√
1 − sin2 u

n2 − sin2 u


 .

For the maximum angle defined as tan umax = 20/125 we get from the above
equation δs′ = 0. 48 mm and for half of the maximum height we obtain tan u =
10/125; δs′ = 0. 11 mm. The final plot of aberration introduced by the prism is
presented in Fig. 2.33b.
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Figure 2.33 Problem 2.2 – (a) Geometry of rays traveling through an unfolded prism and
(b) the aberration plot.

Figure 2.34 Problem 2.3 – Chromatism of a penta-prism: (a) the ray diagram; (b) the
aberration plot.

2.3. Proceeding with the penta-prism considered in Problem 2.2, we refer to
Fig. 2.34a and calculate the displacement segment AA′ = L separately for three
main wavelengths, C, D, and F. Chromatic aberration is determined as Lc − Ld

and LF − LD.
Keeping in mind that for BK-7 glass (see Appendix 2) nD = 1. 5168, nC =

1. 51432, and nF = 1. 52238, and starting with the simplified expression for L
valid in the paraxial range we have

δs′
Ch =LC−LD = te

[(
1− 1

nC

)
−

(
1− 1

nD

)]
=102.43

(
1

1.5168
− 1

1.51432

)

=−0.111 mm.
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Before proceeding further, we compare the result obtained above with the cal-
culation by the rigorous formula for the maximum angle of incidence, imax =
arctan (10/125) = 9.09◦:

δ′
Ch = te

[(
1 −

√
1 − sin2 imax

n2
C − sin2 imax

)
−

(
1 −

√
1 − sin2 imax

n2
D − sin2 imax

)]
= −0. 112 mm.

As we see, the difference between exact solution and the paraxial approximation is
very small in our case, so that we proceed with the simplified formula and calculate

δs′(2)
Ch = LF − LD = te

[(
1 − 1

nF

)
−

(
1 − 1

nD

)]

= 102. 43

(
1

1. 5168
− 1

1. 52238

)
= 0. 248 mm.

The plot of the chromatic aberration of the prism is shown in Fig. 2.34b.

2.4. Using the glass data from Appendix 2, we get for the components of the
doublet lens (achromat) the following (see Eq. (2.11)):

�1 = �
vD1

vD1 − vD2
= 0. 01333

64.12

64.12 − 33. 686
= 0. 028084

�2 = −�
vD2

vD1 − vD2
= 0. 01333

33. 686

64.12 − 33. 686
= −0. 014751.

Assuming the first surface is plane (r1 = ∞), we can find the second radius from
Eq. (1.11) for a thin lens: r2 = −(0. 5168/0. 028084) − 18. 40 mm and this is also
the first radius (r3) of the second element. Hence the last radius can be calculated
as follows:

1

r4
= 1

r3
− �2

nD2−1
=− 1

18.4
+ 0.014751

0.62588
=−0.0307794; r4 =−32.489 mm.

To find the residual aberration we calculate the focal length of the doublet in
all three main wavelengths using Eq. (2.8). We have for the positive component

�1C = 0. 51432

18. 40
= 0. 027952; �1D = 0. 028084; �1F = 0. 52238

18. 40
= 0. 02839

and for the negative component:

�2C = −0. 62074

(
1

18. 40
− 1

32. 49

)
= −0. 14630; �2D = −0. 014751;

�2F = −0. 63932 × 0. 023568 = −0. 015067.
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Figure 2.35 Problem 2.4 – (a) The doublet lens and (b) its secondary spectrum.

Then

�C = �1C + �2C = 0. 027952 − 0. 014630 = 0. 013322; f ′
C = 75. 06 mm

�F = �1F + �2F = 0. 02839 − 0. 015067 = 0. 013323; f ′
F = 75. 06 mm

and the residual aberration (secondary spectrum) is δs′
Ch = f ′

C − f ′
D = 0. 06 mm

(see the plot depicted in Fig. 2.35b).

2.5. From the problem data it follows that the focal length of the lens is f ′ =
f # × D = 60 mm.

(a) Starting with the lens made of BK-7 glass and data from Appendix 2 we
have ξ = 1/nD = 1/1. 5168 = 0. 6593. By substituting this value in Eq. (2.16) we
get the radii of the lens of the optimal shape:

r1 = 2(1 − 0. 6593)
2. 319

2. 6593
60 = 35. 65 mm;

r2 = 2 × 0. 3407 × 2. 319

2 − 0. 6593 − 4 × 0. 65932
= −238. 2 mm

and the lateral spherical aberration at the maximum height h = D/2 = 15 mm, as
per Eq. (2.15), is

δs′
Sph = −1

8
× 0. 6593

0. 34072
× 3. 3405

2. 319
× 152

60
= 3. 84 mm.

This yields the transverse spherical aberration as δs′
t = δs′

Sph ×15/60 = 0. 96 mm.
If the lens is made of SF-11 glass the optimal shape is different. Doing just

as above, but with nD = 1. 78472, we obtain r1 = 2 × 0. 43969 × 2. 1206 ×
(60/2. 5603) = 43. 7 mm and the corresponding value for the second radii becomes

r2 = 2 × 0. 43969 × 2. 1206 × 60

2 − 0. 5603 − 4 × 0. 56032
= 608. 2 mm.

As we see, the second radius in this case is also positive so that the optimal shape
is a meniscus with a very large second radius. The value of the lateral spherical
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aberration, if the lens stands optimally, is

δs′
Sph = −1

8
× 0. 5603

0. 439692
× 3. 4397

2. 1206
× 152

60
= 2. 20 mm

which gives the transverse aberration as δs′
t = 0. 55 mm.

(b) If the object is at infinity, but the lens does not stand optimally (e.g., the
second radius, r2, is directed to the object, meaning that the lens is turned by 180◦),
the calculations should be based on the more general formula (Eq. (2.14)) which
gives for the BK-7 lens

δs′
Sph = −1

2
× 225

0. 34072

(
1

60
− 2. 6593 × 0. 3407

238. 2
+ 2. 319 × 60 × 0. 34072

238. 22

)

= −12. 75 mm

and δs′
t = −3. 19 mm. For the SF-11 lens δṡ′

Sph = −10. 77 mm and δs′
t =

−2. 69 mm. As we see, optimization of the lens position causes an about three
times reduction of the spherical aberration for the BK-7 lens and an about five
time reduction for the SF-11 lens.

2.6. (a) Let us find first the paraxial parameter of a cylinder lens (a rod). Since
r1 = −r2 = 7/2 = 3. 5 mm and d = 7 mm, we obtain from the lens formula
(Eq. (1.11))

1

f ′ = (1. 5168 − 1)
2

3. 5
− 7 × (1. 5168 − 1)2

3. 52 × 1. 5168
= 0. 1947; f ′ = 5. 136 mm

and using this value in Eq. (1.10) we find the location of the principal planes:

a′ = f ′ − S′
F = 5. 136 × 7 × 0. 5168

3. 5 × 1. 5168
= 3. 5 mm.

Therefore, both principal planes are located in the center of the lens and the distance
to the object is S = −(3. 5 + 2) = −5. 5 mm. Then the distance to the paraxial
image is S′ = (1/S + 1/f ′)−1 = (1/5. 136 − 1/5. 5)−1 = 77. 83 mm, i.e., the
plane P passing through the paraxial image is located at a distance l′0 = 74. 33 mm
from the lens. It is the plane P where we should calculate the transverse spherical
aberrations.

Before proceeding further, we will consider the general case of ray tracing
through a full cylinder lens. Referring to Fig. 2.36, we find the segment �1 from

two triangles, AA1B and OA1B: �1 = ρ −
√

ρ2 − y2
1 = (y1/ tan u) − l, where

ρ = D/2 is the radius of the lens. By dividing both sides by ρ and denoting

a = 1 + l/ρ; b = 1/ tan u; sin ϕ = z (A)
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Figure 2.36 Problem 2.6 – Ray tracing through a cylindrical rod.

we have the following equation with regard to z:

1 − z2 = a2 − 2abz + b2z2. (B)

Solving this one can find the angle ϕ as follows:

sin ϕ = z = ab − √
a2b2 − (a2 − 1)(b2 + 1)

b2 + 1
. (C)

This yields further i1 = u +ϕ; r1 = arcsin(sin i1/n) and from the triangle A1OA2,
taking into account that r1 = r2; and i1 = i2, we have 180◦ = ϕ+β+(180◦−2r1)
which gives

β = 2r1 − ϕ; γ = i1 − β. (D)

As y2 = ρ sin β and �2 = ρ − ρ cos β, we finally obtain

l′ = y2

tan γ
− �2 = ρ

(
sin β

tan γ
− 1 + cos β

)
. (E)

The lateral spherical aberration for each ray angle u is found as the difference
between l′0 and the value l′ from Eq. (E). The corresponding transverse spherical
aberration is determined as

δs′
t = tan γ × (l′ − l′0). (F)

To build the aberration plot we should repeat the procedure as per Eqs. (A)–(F) for
several angles u. The whole range of u can be found as the following: sin umax =
ρ/(l + ρ) and according to the data of the problem we find umax = 39. 52◦. If the
entrance pupil is located at the distance l = 2 mm from the light source ( the object)
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the maximum coordinate in the pupil plane is ymax = l×tan 39. 52 = 1. 65 mm and
the relative coordinate of a point in the entrance pupil is calculated as ỹ = y/1. 65.

We start with u1 = 35◦. This gives y01 = 2 tan 35◦ = 1. 4009; ỹ1 = 0. 849.
Then from Eqs. (A)–(E) we find step-by-step: a = 1. 5714; b = 1. 428;
z = sin ϕ = 0. 490; ϕ = 29. 33◦; i1 = u1 + ϕ = 64. 33◦; sin r1 = 0. 5942;
r1 = 36. 46◦; β = 43. 58◦; γ = 20. 75◦; l′ = 5. 403 mm. This leads to
δs′

Sph = 5. 403−74. 33 = −68. 93 mm; δs′
t = − tan 20. 75◦×68. 93 = −26. 11 mm.

Choosing u2 = 25◦ we get y02 = 2 tan 25◦ = 0. 9326; ỹ2 = 0. 565. Then
a = 1. 5714; b = 2. 1445; z = sin ϕ = 0. 2862; ϕ = 16. 63◦; i1 = u1 + ϕ = 41. 63◦;
sin r1 = 0. 4380; r1 = 25. 97◦; β = 35. 32◦; γ = 6. 31◦; l′ = 17. 65 mm. This leads
to δs′

Sph = 17. 65−74. 33 = −56. 68 mm; δs′
t = − tan 6. 31◦×56. 68 = −6. 26 mm.

Choosing u3 = 10◦ we get y03 = 2 tan 10◦ = 0. 3527; ỹ1 = 0. 214. Then
a = 1. 5714; b = 5. 671; z = sin ϕ = 0. 1017; ϕ = 5. 835◦; i1 = u1 + ϕ = 15. 835◦;
sin r1 = 0. 1798; r1 = 10. 36◦; β = 14. 893◦; γ = 0. 942◦; l′ = 54. 59 mm. This
leads to δs′

Sph = 54. 59 − 74. 33 = −19. 73 mm; δs′
t = − tan 0. 942◦ × 19. 73 =

−0. 324 mm.
Finally the aberration plot is as shown in Fig. 2.37 (we take into account that the

rays incident on the lower half of the entrance pupil are going up at the exit, so that
the transverse aberrations here are positive and the diagram is anti-symmetric).

(b) Let the lens be a full sphere (a ball lens) and the object is an on-axis point.
Tracing any ray coming to the lens, we consider the plane of incidence which
includes the ray and the optical axis. Such a plane is a meridional plane and it is
similar to the one shown in Fig. 2.36 for the cylindrical rod. Therefore Eqs. (A)–(F)
remain valid and the results will be identical to those obtained in (a) above.

2.7. As was done in Problem 2.6, we find the parameters of paraxial imaging.
Referring to Fig. 2.9, we find the focal length and location of the principal planes

Figure 2.37 Problem 2.6 – Transverse spherical aberration plot.
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of a new lens from Eqs. (1.9)–(1.11), keeping in mind that r1 = 3. 5 mm and
r2 = ∞:

1

f ′ = 0. 5168

3. 5
; f ′ = 6. 772 mm;

a′ = f ′ d(n − 1)2

r1n
= 6. 772

4 × 0. 51682

3. 5 × 1. 5168
= 2. 637 mm.

To get the paraxial image in the plane P it is necessary to locate the object A at the
distance

S = −
(

1

S′ − 1

f ′

)−1

= −
(

1

74. 33 + 2. 637
− 1

6. 772

)−1

= −7. 43 mm

from the front surface of the lens. We choose also the entrance pupil to be 7.43
mm distant from A and assume its size Dp = 4. 4 mm (to ensure that any ray
incident on the entrance pupil will pass the lens and proceed to the plane P). We
calculate the aberration plot by performing rigorous ray tracing (see Fig. 2.38).
Consideration of the first (bended) surface gives exactly the same expressions
(A)–(C) as in Problem 2.6 and the same formulas for the angles i1 and r1:

i1 = u + ϕ; r1 = arcsin

(
sin i1

n

)
.

The rest is different. That is,

r2 = ϕ − r1; y2 = ρ sin ϕ − [t − ρ(1 − cos ϕ)] tan(r2);

γ = arcsin(n sin r2); l′ = y2

tan γ
. (G)

Once the value of l′ is found the transverse aberration is calculated from Eq. (F)
of Problem 2.6.

Figure 2.38 Problem 2.7 – Transverse spherical aberration plot (plano-convex cylindrical
lens).
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We apply the above approach choosing first u1 = 15◦. We get step-by-step:
y01 = 7. 43 × tan 15◦ = 1. 99; ỹ1 = 1. 99/2. 2 = 0. 88. Then a = 3. 123; b = 3. 732;
z = sin ϕ = 0. 6284; ϕ = 38. 43◦; i1 = u1 + ϕ = 53. 43◦; sin r1 = 0. 4143; r1 =
31. 97◦; r2 = 38. 43 − 31. 97 = 6. 46◦; γ = 9. 824◦; y2 = 1. 833; l′ = 10. 58.
Therefore, δs′

Sph = 10. 58 − 74. 33 = −63. 74 mm; δs′
t = −11. 03 mm.

Choosing then u2 = 10◦ we have y01 = 7. 43 × tan 10◦ = 1. 31; ỹ1 =
1. 31/2. 2 = 0. 596. Then a = 3. 123; b = 5. 671; z = sin ϕ = 0. 388; ϕ = 22. 83◦;
i1 = u1 +ϕ = 32. 48◦; sin r1 = 0. 3574; r1 = 20. 94◦; r2 = 22. 83−20. 94 = 1. 89◦;
γ = 2. 86◦; y2 = 1. 235; l′ = 24. 70; and δs′

Sph = −49. 63 mm; δs′
t = −2. 48 mm.

For the angle u2 = 5◦ we obtain y01 = 7. 43× tan 5◦ = 0. 65; ỹ1 = 0. 65/2. 2 =
0. 295. Then a = 3. 123; b = 11. 43; z = sin ϕ = 0. 1873; ϕ = 10. 795◦; i1 = u1 +
ϕ = 15. 795◦; sin r1 = 0. 180; r1 = 10. 338◦; r2 = 10. 795 − 10. 338 = 0. 457◦;
γ = 0. 694◦; y2 = 0. 626; l′ = 51. 68; and finally δs′

Sph = −22. 65 mm; δs′
t =

−0. 274 mm.
The resulting aberration plot is presented in Fig. 2.38. Comparing this dia-

gram with that of Fig. 2.37 makes very clear that the full rod has a much greater
aberration than the plano-convex lens.

2.8. Assuming the lens performs ideal imaging we find the location of the object
and the image from paraxial relations:

S = 1 − V

V
f ′ = −3

2
30 = −45 mm; S′ = 90 mm.

The right-angle prism located 20 mm behind the lens can be unfolded as a par-
allel glass slab of thickness te = 30 mm (the dotted line in Fig. 2.39a). So, we
can estimate the astigmatism introduced by the prism using Eq. (2.20) for the
plate with d = te. Doing the calculation for several incidence angles u < 30◦
we find

u = 10◦: u′ = arcsin(sin 10◦/1. 5168) = 6. 574◦;

δ′
Ast = (1. 51682 − 1)

tan3 6. 574

tan 10◦ 30 = 0. 338 mm

u = 20◦: u′ = arcsin(sin 20◦/1. 5168)13. 03◦;

δ′
Ast = (1. 51682 − 1)

tan3 13. 03◦

tan 20◦ 30 = 1. 32 mm

u = 30◦: u′ = arcsin(sin 30◦/1. 5168) = 19. 25◦;

δ′
Ast = (1. 51682 − 1)

tan3 19. 25◦

tan 30◦ 30 = 2. 88 mm.

The astigmatism plot is shown in Fig. 2.39b.
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Figure 2.39 Problem 2.8 – (a) Layout of the imaging system and (b) astigmatism and,
(c) distortion of the right-angle prism.

As to distortion, we have to find first the location of the exit pupil. Since imag-
ing is done by the lens only and the prism is big enough and does not affect the
angular field of view, we can assume that the lens itself is the aperture diaphragm
and the exit pupil. Then the distance p appearing in Eq. (2.23) is equal to 90 mm.
Calculation for several incident angles, u, using Eq. (2.23), yields

for the angle u = 10◦, � = 1. 51682 − 1

1. 51683
×

(
10

180
π

)2

= 0. 189%

for the angle u = 20◦, � = 0. 76%

for the angle u = 30◦, � = 1. 71%.

The distortion plot is depicted in Fig. 2.39c.

2.9. We should address here the curvature of field, and, more specifically, check
Petzval’s condition, as in Eq. (2.21). To find the radii of the lens we use the lens for-
mula in the paraxial range, remembering that the lens is symmetrical (r1 = −r2):

r1 = 2f ′(n − 1) = 2 × 40 × 0. 5168 = 41. 34 mm = −r2.

Now Petzval’s sum is as follows:

1

ρ
= − 1

41. 34

(
1

1. 5168
− 1

)
+ 1

41. 34

(
1 − 1

1. 5168

)
= 0. 01648
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Figure 2.40 Problem 2.9 – The flattener and the image plane.

and the curvature of Petzval’s surface is ρ = 60. 67 mm, i.e., the image will suffer
significant degradation since off-axis areas have sharp images not in the plane P
but rather on the surface of curvature ρ.

The flattener is a negative lens, usually plano-concave, positioned with its plane
surface just in the image plane (in the plane P in our case) in a manner demonstrated
in Fig. 2.40. Because the flattener practically coincides with the image it does not
affect the image magnification. On the other hand, its contribution to Petzval’s
sum might improve the field curvature. Denoting the first radius of the flattener as
r3, we rewrite Eq. (2.21) in the following manner:

1

ρ
= − 2

r1

(
1

n
− 1

)
+ 1

r3

(
1

nFl
− 1

)

where nFl is the refractive index of the flattener glass. Optimization of r3 might
cause zero curvature (ρ → ∞) of Petzval’s sum (i.e., the image plane becomes
flat). This occurs if r3 is as follows:

r3 = 1/nFl − 1

2(1 − 1/n)
r = 1/1. 78477 − 1

2(1 − 1/1. 5168)
41. 34 = −26. 67 mm.

2.10. To calculate the OSC we use the formulas for rigorous ray tracing derived
in Problem 2.6. For the case relevant here when the incident rays are coming from
infinity and therefore u = 0 we rewrite the expressions of Problem 2.6 as follows:

i1 = ϕ = arcsin(h/ρ); r1 = arcsin(sin ϕ/n); β = 2r1 − ϕ; γ = 2(ϕ − r1)
(A)

where h is the height of the ray striking the lens and ρ is the ball radius. The OSC for
any chosen value h is calculated from Eq. (2.25) by substituting the angle u′ with
γ found from Eq. (A) and the focal length, f ′, as per Eq. (1.11) in a complete form:

1

f ′ = 2(n − 1)

ρ
− 2ρ(n − 1)2

ρ2n
= 2 × 0. 77

1. 5
− 2(0. 77)2

1. 5 × 1. 77
= 0. 580;

f ′ = 1. 724 mm.
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,

Figure 2.41 Problem 2.10 – (a) OSC of a sapphire ball lens and (b) definition of the
maximum ray height.

For h = 0. 25 mm: sin ϕ = 0. 25/1. 5 = 0. 1667; ϕ = 9. 59◦; r1 = 5. 40◦; γ =
8. 38◦; and

OSC = 0. 25

sin 8. 38◦ − 1. 724 = −8. 59 × 10−3 mm.

For h = 0. 5 mm: sin ϕ = 0. 5/1. 5 = 0. 333; ϕ = 19. 47◦; r1 = 10. 854◦; γ =
17. 232◦; and

OSC = 0. 5

sin 17. 232◦ − 1. 724 = −0. 0362 mm.

For h = 0. 75 mm we get in a similar manner OSC = −0. 0822 mm and for
h = 1. 0 mm OSC = −0. 147 mm. The plot of OSC is presented in Fig. 2.41a.
The horizontal coordinate on the diagram, ỹ = h/hmax, is defined as the ratio of the
real height to the maximum possible height dictated by the refractive index n. To
determine hmax we refer to the limiting situation shown in Fig. 2.41b. Considering
geometry of the ray we obtain

ϕ = 2r1;
sin ϕ

sin r1
= sin ϕ

sin ϕ/2
= 2 cos

ϕ

2
= n

and further ϕ = 2 arccos(n/2) = 2 arccos(1. 77/2) = 55. 5◦; hmax = 1. 5 sin 55. 5◦ =
1. 236 mm. Therefore, the maximum diameter of the beam which is concentrated
by the lens somewhere behind the ball is 2.472 mm. The rest of the rays striking
the ball cross the optical axis inside the lens and cannot be exploited for imaging
or any other application related to energy concentration.

2.11. The design of the objective will be based on aplanatic points of spherical
surfaces. Choosing the concept depicted in Fig. 2.42, we start with the relations
for the first component. Since the immersion oil has practically the same refractive
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Figure 2.42 Problem 2.11 – Aplanatic objective consisting of two components.

index as that of the first lens (nD1 = 1. 84666), the ray originating in object point
A travels to point B with no change in direction and S2 = (−t0 + r2). On the other
hand, if point A is the aplanatic point of the second (spherical) surface one may
use Eq. (2.26) and to get

S2 = n′
2 + n2

n2
r2 = r2 − t0 (A)

which gives

r2 = −t0
n2

n′
2

= −0. 7 × 1. 84666

1
= −1. 29 mm.

Then S2 = −1. 29 − 0. 7 = −1. 99 mm and Eq. (2.26) yields

S′
2 = S2

n2

n′
2

= −1. 99 × 1. 84666 = −3. 67 mm.

Magnification of the first component is governed by Eq. (2.27): V1 = 1. 846662 =
3. 41. Then the magnification of the second lens should be Vt2 = 6/3. 41 = 1. 76.
According to the schematics of Fig. 2.42, point A′ which is the image of A created
by the first lens serves as a center of curvature of the third (spherical) surface (e.g.,
the first surface of the second component). This point is also aplanatic, but there
is no bending of rays here and the magnification is determined from Eq. (2.28):
V3 = 1/nD2. The ray travels further to point C of the fourth surface for which A′ is
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the aplanatic point and the image after refraction is point A′′. Here again the mag-
nification is determined by Eq. (2.27): V4 = (nD2)2. Thus the entire magnification
of the second element becomes Vt2 = V3 × V4 = (nD2)2/nD2 = nD2. As we see
above, this value should be 1.76. The closest glass from the data of Appendix 2 is
SF-11 with nD = 1. 78472. We choose this for the second element of the objective.

Going back to the radii of the second lens, for the third surface we have
r3 = S′

2 − d2 = −3. 67 − 1 = −4. 67 mm. Keeping in mind that S4 = r3 − d3 =
−4. 67 − 3 = −7. 67 mm we get, again using Eq. (2.26)

r4 = −7. 67
1. 78472

1. 78472 + 1
= −4. 912 mm

and S′
4 = 1. 78472×S4 = −13. 69 mm. Thus, the objective is a compound of two

elements performing imaging around the aplanatic points only. The total magnifi-
cation is Vtot = V1 × Vt2 = 3. 41 × 1. 78472 = 6. 085, i.e., 1.4% deviation from
the required value (such a tolerance is usually acceptable).

It should be mentioned that the design presented here is for demonstration and
teaching purposes only. In reality many more ray tracing operations followed by
image quality analysis are required.

2.12. We start with the positioning of the system components and use the paraxial
formulas for thin lenses. As total magnification V = 5/0. 25 = 20 and V1 = −5,
we get

S′
1 = f ′(1 − V1) = 15 × 6 = 90 mm; V2 = V

V1
= 20

(−5)
= −4;

S2 = 15
1 + 4

−4
= −18. 75 mm; S′

2 = S2 × V2 = 75 mm.

The reticle of thickness d = 2 mm makes the optical path longer by d(1 − 1/n) =
0. 67 mm (see Problem 1.6). This causes the defocusing aberration in the plane P,
as depicted in Fig. 2.43. Assuming the active size of the first lens is dictated by its
diameter, we have for the coordinate of the plot in the plane P

δs′
1,t = − y1

S′
1
δR = −0. 67

90
y1; δs′

1,t max = −0. 67

90
4 = −29. 6 µm.

Transferring this aberration to the CCD plane, we obtain the corresponding
straight line on the plot, with the maximum deviation δs′

2,t max = δs′
1,t maxV =

29. 6 × (−4) = 118. 4 µm. This means there is a noticeable defocusing on
the CCD. Correction can be done by displacement of the CCD to a new posi-
tion where the aberration has the same value, but with opposite sign (shown
by the dotted line in Fig. 2.43b). To calculate the displacement required to get
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Figure 2.43 Problem 2.12 – (a) Defocusing caused by reticle and (b) the aberration plot
in the CCD plane.

the defocusing of (−118.6) µm we first find the active size of the second lens:
h2 = h1S2/(−S′

1) = 0. 83 mm, which gives the necessary displacement as follows:

δs′
2 = x = 0. 1184 × 75/0. 83 = 10. 84 mm.

Instead of referring to the transverse aberration we could consider the lateral
aberration. In such a case we get x = 0. 67 × 42 = 10. 8 mm which is actually the
same result.

Of course, the case considered in the problem is quite trivial, but it demonstrates
the principle of aberration transfer and summation.

2.13. Considering the on-axis point we find the angular range of rays creating
the image as ±β = ± arctan(D/2S′) = ± arctan(1/2f ) = ±23◦ (it is assumed
here that the difference between S′ and focal length is small while imaging distant
objects). As is evident from the aberration plot, the residual (uncorrected) aberra-
tions of lens L are significant and cannot be neglected. Correction by additional
elements of the system is desirable. This can be realized in a layout with a penta-
prism and cannot be done if a mirror is used for bending. The prism introduces
additional spherical aberration described by Eq. (A) of Problem 2.2. By substi-
tuting in that expression different values of u, from 0◦ to 23◦, we obtain the plot
shown in Fig. 2.44a by the solid line. Comparing this to the residual aberration of
the lens, shown by the dotted line, we find that they have opposite sign and there-
fore noticeable correction can be done if the size of the prism is properly chosen.
We will do a full correction for the maximum angle u = 23◦ where aberration of
the lens is as high as 1.1 mm. Since the penta-prism is equivalent to a parallel glass
slab of thickness te = 3. 414a, where a is the entrance face size (see Section 1.4
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Figure 2.44 Problem 2.13 – an aberration plot: (a) for separate elements (1, lens; 2,
penta-prism); (b) residual values after correction.

for unfolded diagram of the prisms), we get

3. 414a

n

(
1 − n cos umax√

n2 − sin2 umax

)
= 3. 414a × 0. 031 = 1. 1 mm; a = 10 mm.

Calculating the aberration of the prism for different angles and subtracting the
results from the plot of the lens aberration we obtain the plot of the final residual
aberrations of the system after correction (Fig. 2.44b).

2.14. In general it can be stated that a symmetrical configuration with a paral-
lel trace between two components yields the best results with regard to residual
aberrations. In our case each lens is optimized for imaging from infinity to its
focal plane. Then, according to the rules described in Section 2.1.6 we should find
the aberrations of lens L1 in reverse operation mode (light propagating from the
right to the left) and transfer them, keeping in mind the linear magnification of
the system, to the focal plane of lens L2 where they are added to the aberrations
of the second lens. Obviously the smaller the aberration of separate elements the
lower the total sum of aberrations in the bundle entrance.

Optimization of the first lens can be done using Eqs. (2.15) and (2.16). For
nD = 1. 5168 we get the radii of the lens as follows (r1 is going towards the
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parallel beam, i.e., inside the condenser; h = D/2 = 15 mm):

ξ = 1/1. 5168 = 0. 6593; r1 = −2 × (1 − 0. 6593)
2. 319

2. 6593
60 = −35. 65 mm;

r2 = 2
0. 3407 × 2. 319

2 − 0. 6593 − 1. 739
= 238. 2 mm.

Similar calculations for the second lens give

r3 = −r1
f ′
2

f ′
1

= 71. 3 mm; r4 = −r2
f ′
2

f ′
1

= −238. 2 × 2 = −476. 4 mm.

Now, using Eq. (2.15) we find the transverse aberrations of separate components:

δs′
t1 = −1

8

0. 6593 × 3. 3407

0. 1161 × 2. 319

h3

f ′2
1

= −0. 959 mm;

δs′
t2 = −1

8

0. 6593 × 3. 3407

0. 1161 × 2. 319

h3

f ′2
2

= −0. 24 mm

and the total transverse aberration in the plane of the bundle entrance:

δs′
tot,t = −δs′

t1V + δs′
t2 = 0. 959 × 2 − 0. 24 = 1. 68 mm.

It is interesting to mention that if two components were identical (f ′
1 = f ′′

2 ) then
δs′

t1 = δs′
t2; |V | = 1; and the total transverse aberrations of the condenser would

approach zero.

2.15. Expression (2.33) defines the minimum resolvable spot as follows:

δdif = AB = 1. 22λp

Dp
= 0. 5 µm.

Assuming the entrance pupil is located at the mounting of the imaging lens we
have p = 30 mm. Then, taking also λ = 0. 5 µm, we get the necessary size of the
lens (the entrance pupil) as

Dp = 1. 22 × 0. 5 × 30

0. 5
= 36. 6 mm.

2.16. We use Eq. (2.36), keeping in mind that the illumination angle cannot be
greater than that defined by the numerical aperture of the objective. Therefore for
the first two objectives only a fraction of NAC can be exploited and the resolution is

R1 = λ

2NA
= 0. 5

2 × 0. 25
= 1 µm; R2 = λ

2NA
= 0. 5

2 × 0. 65
= 0. 38 µm.

The NA of the last objective is greater than that of the condenser and in this case
from Eq. (2.36) we get

R3 = λ

NA + NAC
= 0. 5

1. 2 + 0. 96
= 0. 23 µm.
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2.17. The key equation here is

sin β − sin β0 = mλ

d
(A)

where β0 is the illumination angle and β is the angle of the diffraction maximum of
order m. If m = −1 and β = −β0 we have the situation depicted in Fig. 2.25b and
the resolution is improved by a factor of 2. This occurs if the following condition
is obeyed:

tan β0 = D/2

f ′ = 2. 5

16
= 0. 156; β0 = 8. 9◦.

Expression (2.35) renders resolution in this case: d = 0. 5/2 sin 8. 9◦ = 1. 6 µm.
If the illumination angle is smaller than 8.9◦ we still can improve the resolution,
as follows from the geometry shown in Fig. 2.45. In this case the position of the
zero order is determined by y0 = f ′ tan β0 = 16 × tan 5◦ = 1. 4 mm whereas the
(1)st order comes at the side of the aperture stop:

tan β = 2. 5/16 = 0. 156; β = 8. 9◦.

Then, from Eq. (A) one obtains the resolution as follows:

d = 0. 5

sin 5◦ + sin 8. 9◦ = 2. 07 µm.

2.18. For a diffraction-limited system the parameter z in Eq. (2.37) becomes

z = πDd

2λp
= 3. 8317

d

ddif

where ddif , determined from Eq. (2.32), is almost the full spot size. For a cir-
cle of d = 0. 5ddif we get z = 1. 91 and Eq. (2.37) yields L = 60%. This means
that if our system is limited by diffraction only up to 60% of the full energy

 
 
 
 

  

 

 

 

Figure 2.45 Problem 2.17 – (a) Oblique illumination in a microscope objective and
(b) location of diffraction maxima in the aperture stop.
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of the spot will be collected inside 50% of its diameter. Since this differs from
what was actually found (45%), one can draw the conclusion that the system has
noticeable aberrations.

2.19. The maximum spatial frequency transferred by the system (the cut-off
frequency) is determined from Eq. (2.45):

vC = 2NA

λ
= 2 × 0. 25

0. 6 × 10−3
= 833 cycles/mm

which corresponds to a period of 1.2 µm in the object space or 12.0 µm in the CCD
plane (after ×10 magnification). According to the Nyquist theorem the sampling
frequency has to be two times higher than the tested frequency, i.e., two pixels
of the CCD are necessary for one period of 12 µm. Therefore the CCD elements
(pixels) should be arranged with a 6 µm pitch (center-to-center distance).

2.20. We start with the calculation of modulation, Mo, in the object space. Let the
illumination intensity be I0 and it be spread uniformly on the target. The square
wave segments of the target coated with chrome reflect 0. 7I0 whereas the target
segments with no coating reflect 0. 04I0. This gives the following value for the
modulation of the object:

M0 = 0. 7I0 − 0. 04I0

0. 7I0 + 0. 04I0
= 0. 89.

We denote the background scattered light as IS and assume that it is the same at all
locations (uniformly spread in the system). Therefore the true modulation in the
image plane, Mi, and the apparent modulation registered with the scattered light,
M ′

i , are related as follows:

1

M ′
i

= Imax + Imin + 2IS

Imax − Imin
= 1

Mi
+ 1

MS
= 1

MTF′ × M0
(A)

where MTF′ is the measured MTF value when the scattering is present. The influ-
ence of the scattered light, 1/MS, can be found from Eq. (A) and we will find it
separately for low frequencies and for high frequencies. Since scattering does not
depend on the frequency chosen for measurement we can write:

1

MS
= 1

M ′
iH

− 1

MiH
= 1

M ′
iL

− 1

MiL
;

1

MiH
= 1

M ′
iH

− 1

M ′
iL

+ 1

MiL
= 1

M ′
iH

− 1

M ′
iL

+ 1

M0
(B)

where it is taken into account that at very low spatial frequency MTF is close to
100% ( if no scattering is present in the system): MiL = M0. Using in Eq. (B) the
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definition of MTF as per Eq. (2.43), we get for the true MTF at high frequency

MTFH = MiH

M0
=

(
1

MTF′
H

− 1

MTF′
L

+ 1

)−1

(C)

and by substituting the problem data in Eq. (C) we have

MTFH =
(

1

0. 2
− 1

0. 7
+ 1

)−1

= 0. 22.

Obviously, if there is no scattering MTF′
L approaches unity and MTFH = MTF′

H.

2.21. We accept that the minimum overall MTF of the system, optics + CCD +
monitor, should be 5% at least for a spatial frequency which can be observed.
Since the total MTF is the product of the MTFs of separate elements, we
obtain the minimum requirements for the MTF of the imaging optics: MTFo =
MTFtot/MTFCCD = 0. 05/0. 6 = 0. 083. As our system is diffraction limited its
MTF obeys Eq. (2.44) with cut-off frequency (Eq. (2.45)) given by

vC = 2NA

λ
= 2 × 0. 15

0. 5 × 10−3
= 600 cycles/mm

where MTF = 0. Although the graph of MTF(v) described by Eq. (2.44) is a curve,
its deviation from a straight line is not very noticeable. Then, approximating the
graph by a straight line we find the frequency which corresponds to MTF =
0. 083. This frequency is v = 600(1 − 0. 083) = 550 cycles/mm. Therefore, it is
impossible to see on the monitor the details originating in a spatial frequency of
575 cycles/mm in the object plane.

2.22. We choose the architecture of the telecentric configuration as that of
Fig. 2.30b and restrict ourselves to the paraxial range. Then we have

f ′
1 + f ′

2 = 100 mm; f ′
2 = f ′

1 × |V | = 3f ′
1; f ′

1 = 25 mm; f ′
2 = 75 mm.

To find the size of the aperture stop we should calculate the required NA in the
object space. Suppose the system is free of aberration. Then, using the first relation
of Eq. (2.35) and keeping in mind that the required resolution should be equal to
2 µm, we obtain

d = λ

NA
= 2 µm; NA = 0. 5/2 = 0. 25 = sin umax; umax = 14. 5◦.

This yields the size of the aperture stop as follows (see Fig. 2.46): Dab =
2f ′

1 tan umax = 2×0. 258×25 = 12. 9 mm. By considering further the angular field
of view and taking into account that the marginal chief ray should pass through
the center of the aperture stop, we get y = f ′

1 tan β = 25 × tan 5◦ = 2. 2 mm and
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Figure 2.46 Problem 2.22 – A telecentric system.

the size of the first lens becomes D1 = 2h1 = 2( f ′
1 tan β +Dab/2) = 2(25 tan 5◦ +

12. 9/2) = 17. 3 mm. The size of the second lens is calculated in a similar way:
D2 = 2h2 = 2(f ′

2 tan β + Dab/2) = 26 mm. The object is positioned 25 mm in
front of lens L1 and the image is created at a distance of 75 mm behind lens L2.

2.23. Referring to the system depicted in Fig. 2.31, we use the second approach
and Eq. (2.49) which gives for the configuration with a distance l = 60 mm
between the first lens and the image

f ′
e = 60/0. 75 = 80 mm; f ′

1 = −f ′
2 = 40 mm; S′

F = 40 mm

and therefore the distance between the lenses is 20 mm. Obviously Petzval’s sum
is equal to zero and therefore the image curvature is negligible.



Chapter 3

Sources of Light and
Illumination Systems

3.1. Thermal Radiation Sources for Visible and IR

Thermal radiation sources, like filament lamps or Nernst rods, have been exploited
for many years and are still in use in many optical systems, primarily in those
intended for imaging. The modern quartz tungsten halogen (QTH) lamps and IR
emitters are just technologically improved versions of the older sources.

The operation of these sources is based on thermal radiation laws described in
detail in Chapter 6. We will address here some specific features of thermal sources
that affect their use in practice.

A QTH lamp has an electrically heated tungsten filament positioned inside a
transparent bubble made of fused silica and filled with halogen gas. This gas causes
a chemical reaction between the tungsten atoms evaporated from the filament and
deposited on the bubble wall and the halogen molecules improving in such a
manner both the lifetime of the lamp and the transparency of the QTH envelope.

A QTH lamp is a source of broadband radiation: actually the tungsten itself
emits at all wavelengths, but the transparency of the envelope limits the useful
emission to visible and near-IR wavelengths (up to about 2.5 µm). Actually some
UV radiation is also available, in the wavelength interval from 240 to 400 nm,
although this is of low intensity.

Usually the “optical strength” of the light source is characterized by its irradi-
ance, Eλ, measured as the radiation flux, per 1 nm wavelength band, incident on an
area of 1 m2 at a distance of 0.5 m from the source. The second important feature of

95
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Figure 3.1 Spectral irradiance of QTH lamps (The Book of Photon Tools, Oriel
Instruments (2003), with permission of Spectra Physics Ltd).

the lamp is its color temperature, Tc (see definition in Section 6.2). There exist QTH
lamps with color temperatures of 2,850 K and of 3,200 K (even up to 3,400 K).
Although the emissivity of tungsten is strongly selective, it increases rapidly in
the visible where it achieves a value of 0.8, providing continuous radiation which
is close to that of a black body. A typical graph of irradiance of QTH lamps of 100
and 250 W is shown in Fig. 3.1. The radiated spot in a QTH lamp usually has the
shape of a rectangular (lower power) or a coiled filament (larger lamps) of several
millimeters in size.

The lifetime of the lamps varies from 50 to 1,000 hours and it is evidently a
critical parameter. One can improve it significantly by reducing the voltage (which
is accompanied by decrease of the temperature). A voltage reduction of 6% might
result in a doubling of the lifetime. However, a reduction of more than 10%
becomes problematic as it could spoil the halogen cycle inside the lamp bubble.

Much more intense radiation than that of QTH lamps is produced by arc lamps
where an electrical discharge arc is created in surrounding xenon, mercury, deu-
terium, or other inert gas. The color temperature of such lamps can be 4,000 K
and even as much as 6,000 K (xenon lamp). Another important feature is a great
number of spectral lines in the UV. With a deuterium arc lamp wavelengths as
short as 160 nm can be obtained. The brightest portion of the arc is usually of
several millimeters in size, but its location might be unstable.
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If mid- or far-IR wavelengths are required then special IR emitters should be
exploited. The Nernst rod made of zirconium ceramics and heated to a color tem-
perature of about 2,000 K was one of the first wideband sources. Another kind of
IR emitter in use is the silicon carbide ceramic element of 1,300 K color temper-
ature. In both sources the radiating element is a cylinder of several millimeters in
diameter heated by a DC electric current of about 4–5 A. In the wavelength range
from 1 to about 28 µm IR emitters have a smooth continuous spectrum.

Problems

3.1. A QTH lamp operated at 12 V DC has a filament of 4. 2 × 2. 3 mm heated to
a temperature of 3,234 K. Assuming a tungsten emissivity of 0.8, find the spectral
irradiance for a wavelength of 0.5 µm: (a) at nominal voltage; (b) after the voltage
is reduced by 5%.
[Note: For the given source the temperature and the voltage supplied are related
to each other as follows: d(T /T0)/d(U/U0) = 0. 4.]

3.2. The lamp described in Problem 3.1 is used as the source of a linear illumination
system. At a distance of 60 mm from the lamp filament a plane convex cylindrical
lens is positioned. The lens is made of BK-7 glass, its refraction surface is of
20.65 mm radius and its size is 20 mm (height) by 100 mm (width). Find the
location of the illuminated line and the intensity distribution along it.

3.2. Lens-based Illumination Systems

In a variety of optical architectures illumination is generated inside the system by
a module or sub-assembly, which is an integral part of the whole configuration.
We will consider such a module as a separate illumination system.

All illumination systems are intended either for the creation of stratified light (a
pattern of a special shape, like a straight line, or a ring, or a more complex form) or
for illuminating an object in an imaging arrangement. Examples of systems from
the first group are considered in Problems 3.2 and 3.12. In this section we discuss
illumination for imaging optics.

In general, uniform illumination of the field of view is of our main concern.
To achieve this goal the principal rule is to avoid the creation of the light source
image in the object plane or in the image plane (and also not in the vicinity of these
planes). There exist several ways to do this. An illumination system with a single
lens is shown in Fig. 3.2. The lens L transfers the image of the light source S into
the entrance pupil of the imaging optics (objective Lob in this case) which builds
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Figure 3.2 Single-lens illumination system.

Figure 3.3 Two-lens illumination system.

the image of the object y in the plane y′. Illumination on lens L is of the highest
uniformity since each part of the source S contributes light to each point in the
plane L (in the figure the rays originating in the center of the source are drawn as
solid lines whereas the dotted lines are related to points A and B at both sides of
the filament). The object is positioned very close to lens L and therefore it is not
affected by non-uniformity of the source S.

The configuration depicted in Fig. 3.3 comprises two lenses, L1 and L2, for
illuminating the object y. The source image is transferred by the first lens into
the plane of the second lens where a diaphragm of variable size is positioned.
Changing the diaphragm enables one to select illumination from a different part
of the source. Lens L2 builds the image of lens L1 in the object plane y. Again, the
highest uniformity is achieved here because all points of the source S contribute
radiation to each point of the object. The drawback of the configuration becomes
evident if we consider the side rays coming to the imaging objective Lob: some
rays originating in the source S are cut by the final size of the objective lens which
might result in considerable vignetting. This problem is eliminated in the three-lens
architecture shown in Fig. 3.4. The first two lenses and the source S are located
and function as in the previous case of the two-lens system. An additional lens
L3 transfers the image of S further into the plane of the entrance pupil P of the
imaging optics objective, Lob, providing in such a way that all relevant rays from
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Figure 3.4 Three-lens illumination system.

Figure 3.5 Illumination system of a microscope.

the source, either from the on-axis point or from the filament sides, participate in
the creation of the image in the plane y′. The object y should be positioned very
close to lens L3 where illumination is uniform.

The principles explained above are implemented in the microscope illumina-
tion module depicted in Fig. 3.5, which is applicable in the situations where the
observed object, y, is not transparent (opaque illuminator). This frequently occurs
in metallography, the semiconductor industry, and other important applications.
The microscope objective, Lob, creates the image of y in the plane y′ at mag-
nification V and the cubic beam splitter, BS, is introduced in order to provide
illumination of the object from above, through the same objective lens. The aper-
ture stop D1 limits the size of the light source S exploited for illumination and its
image is transferred by lenses L1 and L2 into the aperture diaphragm D3 of the
microscope. The stop D2 serves as a field diaphragm: its location is conjugate with
the object plane y. By varying the size of D2 one can choose the field of view under
illumination.
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Problems

3.3. In the arrangement shown in Fig. 3.3 an object y of 10 mm in size is illuminated
by a radiation source S of 3 mm by 3 mm followed by two identical lenses of 30 mm
in diameter. The total length of the arrangement is fixed as l = 250 mm (assuming
the thickness of the lenses can be neglected).

(a) What should be the optical power of the lenses and where should they
be located in order to ensure maximum illumination level and maximum
uniformity of illumination at y?

(b) What is the maximum useful size of the source S in this configuration?

3.4. In the microscope illumination system shown in Fig. 3.5 the source S is a
fiber bundle of 6 mm diameter and numerical aperture NA = 0. 25. The bundle
is positioned in the focal plane of lens L1. Lens L2 of 50 mm focal length is
followed by the beam splitter installed in the imaging branch of the instrument,
where the objective Lob of 40 mm focal length projects the magnified image (linear
magnification V = −2) of the object y onto an area sensor of 4 mm by 4 mm. Stop
D3 of 12 mm diameter acts as the aperture diaphragm of the imaging optics. Find:

(a) the optimal size of the field diaphragm D2 positioned in the middle of the
distance between L2 and L3;

(b) the minimum diameter of each lens of the illumination system.

3.5. In a luminescent microscope operated with an objective of ×10 magnification
and NA = 0. 185 illumination is carried out by a mercury lamp of 28 mW/m2/nm
irradiance at a 240 nm wavelength followed by the three-lens configuration shown
in Fig. 3.4. The field of view (FOV) of the objective is 1.8 mm and its entrance
pupil P is positioned 18 mm from the observed object. Lens L1 is of 10 mm in size
and is of 13 mm focal length. The active spot of the lamp a = 1. 0 mm.

(a) Find the parameters of the illumination system (sizes, focal lengths, location
of the elements).

(b) Calculate the number of photons per second incident on a cell of 6 µm in
size located in the FOV of the microscope.

3.3. Lasers

3.3.1. Main Characteristics of a Laser Beam

Lasers differ significantly from all other sources of radiation, primarily due to
the fact that lasers generate stimulated radiation in strongly non-equilibrium
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Figure 3.6 Schematic of laser light generation.

conditions, in contrast to thermal radiation sources, for example, which emit
spontaneous radiation in a thermal equilibrium state (or close to it). As a result,
laser light (i) is highly coherent; (ii) is highly monochromatic; (iii) propagates
as a highly parallel beam (very small divergent angles); and (iv) usually has a
well-defined polarization.

How do lasers work? There are many books devoted to these fascinating light
sources which have become so popular in the last 40 years (e.g., see Young, 1984;
Yariv, 1982). We have no intention of discussing here the details of laser design
and operation and will concentrate only on those features of laser radiation which
are important for applications.

In practice a laser is configured as a Fabry–Perot etalon (see Section 5.4) where
the spacing between two mirrors (M1 and M2 in Fig. 3.6) is filled by an optically
active material – a medium in which a reverse population of excited atoms can be
achieved for a relatively long period of time. Starting with a single photon emitted
spontaneously in the direction normal to the mirrors an avalanche of secondary
photons is generated (stimulated radiation). Most of the photons are reflected by
the mirrors back to the laser cavity, but a portion is transferred through the mirror
out of the device and it is this portion which constitutes the beam of light emitted
by the laser. The basic idea of laser light generation is depicted in Fig. 3.6.

A great variety of lasers are available for optical use. They cover the spectral
interval from UV to mid-IR, can be operated either in continuous or in pulse
mode (duration of each pulse varies from microseconds to femtoseconds), and can
supply optical power from several microwatts to megawatts. The schematic shown
in Fig. 3.7 relates to all these types of lasers.

We consider a laser cavity (sometimes referred to as an optical resonator) of
length L with two identical plane mirrors of high reflectivity R and negligible
absorptivity. The resonator is assumed to be axially symmetric with the optical
axis OZ centered at the middle of the cavity. It can be shown that the electric field
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Figure 3.7 (a) Laser cavity and laser beam parameters and (b) radial profile of the laser
light intensity.

of the electromagnetic wave generated in the resonator and propagating outside is
described by the following expression:

E(r, z) = E0
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and k = 2π /λ is the wavenumber. Of the three terms on the right-hand side of
Eq. (3.1) only the first (called the amplitude phase) is relevant for calculation of
light intensity, I , as the others (the longitudinal phase and the radial phase) are
eliminated while computing the real values:

I(r, z) = E × E∗ = |E|2 = I0 exp(−ar2);

[
a = 2

w2(z)

]
. (3.2)

Hence, the light beam is not of constant intensity, but has a radial profile of
a Gaussian function at any cross-section perpendicular to the optical axis (for
each chosen coordinate z). The Gaussian is overspread to infinity (in the radial
direction), but, in order to define anyhow the beam radius, it is usually accepted to
address only the part of the beam where the light amplitude is reduced as 1/e, e.g.,
intensity is reduced to 1/e2 = 0. 135 of the on-axis value. The corresponding radial
coordinate is w(z) (see Fig. 3.7b) and in the middle of the resonator, at z = 0, it is
denoted as w0. This is the smallest achievable value for a given resonator and this
cross-section is defined as the laser beam waist. The parameter ρ(z) from Eq. (3.1)
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represents the curvature of the wave front at coordinate z. Obviously at the beam
waist (z = 0) the curvature is equal to infinity.

Connecting all points of w(z) we get two curves shown by the dotted lines in
Fig. 3.7a. Calculating the derivative dw/dz, using Eq. (3.1), we find the slope of the
graph, or actually two straight lines passing through the center of the coordinate
system, z = 0, to which the curves asymptotically approach (full lines on the
figure). The angle, 2θ , between these two lines defines the divergence of the laser
beam:

2θ = 2
dw

dz
= 2

λ

πw0
. (3.3)

The waist radius, w0, is related to the resonator size and the wavelength as

w0 =
√

λL

2π
. (3.4)

Regarding the beam size at the exit from the cavity, it can be shown that w(L/2) =√
2 × w0.
Returning to the intensity distribution of Eq. (3.2) we should define the value I0.

We express it in terms of the full optical power of the beam, P, which remains the
same at any cross-section z. By integrating I(r, z) along the radius up to infinity,
at a given z we obtain

P = 2π I0

∞∫
0

exp(−ar2)rdr = π I0

a
(3.5)

and therefore

I0(z) = 2P

πw2(z)
. (3.6)

The parameters defined in Eqs. (3.2)–(3.6) are the main features of a laser beam
required for most applications.

As to the polarization of a laser beam, it should be mentioned that, in general,
radiation coming out of the cavity is linearly polarized. However, although each
avalanche of photons at any short time interval is constituted from photons of the
same polarization, it might vary randomly if a longer period of time is involved.
Special measures should be undertaken to preserve the polarization of the specific
kind required (usually linear polarization in the vertical plane).
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Figure 3.8 Problem 3.7 – A laser surveying system.

Problems

3.6. A He–Ne laser comprises a resonator of 300 mm in length which generates a
continuous beam of 0.6328 µm wavelength. Find the beam size and the divergence
angle at the exit of the laser.

3.7. A laser surveying system (see Fig. 3.8) comprises a transmitter with a He–Ne
laser of 30 cm length and 2 mW power and a receiver with a detector of 1.5 mm in
size, a dynamic range of 104, and a minimum detectable power (NEP) of 10−7 W.
What is the minimum and maximum working range of the system?

3.3.2. Beam Expansion and Spatial Filtering

Beam expansion and spatial filtering are related to operation with additional optical
elements attached to a laser. Since laser beams have a Gaussian shape, as explained
above, and propagation of such a beam through a system of lenses has some specific
features, we consider first the rules governing the propagation of a Gaussian beam.
The beam waist in front of the lens has a size 2w1 and after propagation through
the lens it is 2w2 (see Fig. 3.9). The distances S and S′ between the lens and the

Figure 3.9 Propagation of a Gaussian beam through a lens.
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Figure 3.10 Configuration of a beam expander.

beam waists are related to each other as follows:

1

S′ − 1

S
× 1

1 + z2
R

S(S + f ′)

= 1

f ′ (3.7)

where zR = πw2
0/λ and w2 = w1(S′/S).

Beam expansion becomes important in situations where (i) the laser beam is
to be transmitted over a large distance, as in optical communication systems, for
instance; or (ii) the laser light is to be concentrated in a very small spot, as in
material processing procedures. In the first case the divergence angle of the laser
beam has to be reduced significantly in order to keep the light energy concentrated
in a small size spot even after traveling a distance of hundreds or thousands of
meters. In the second case the beam diameter should be increased drastically to
reduce as much as possible the diffraction limit of the lens concentrator. Both
goals can be achieved by inserting an inverted telescope just after the laser. An
example is shown schematically in Fig. 3.10. Radiation coming from the laser is
collected by the first lens, L1, in the vicinity of the mutual focus of both lenses
of the telescope and then proceeds to the second lens, L2, where it is defocused.
Remembering that the angular magnification of a telescopic system is defined as
W = f ′

1/f ′
2 (see Eq. (1.18)), we have

β ′ = βW ; and D′ = D/W (3.8)

and the diameter of the laser beam after traveling the distance l is

D̃ = D/W + lβW . (3.9)
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The configuration shown in Fig. 3.10 sometimes might cause problems in prac-
tical applications. For example, if a high-power laser beam is traveling through the
beam expander of Fig. 3.10 all the optical power is inevitably concentrated in the
vicinity of the focal plane of the lenses, inside the expander. The energy density
here might become very high, even to a level capable of destroying the system
elements. To avoid such an undesirable situation a beam expander with a Galilean
telescope (see Section 1.2) is exploited, with the negative lens towards the laser,
so that the focus becomes a virtual point and there is no dangerous concentration
of energy inside the system.

Spatial filtering is actually the procedure of “cleaning” a laser beam. To explain
what can be “cleaned out” consider again the basic laser cavity, keeping in mind
that it acts as a resonator and like any other resonator it can be characterized by
eigen values and eigen functions. These eigen functions are oscillations which
can be self-generated, in a sporadic manner, by the resonator. As far as an optical
resonator is concerned such eigen functions are different modes of electromagnetic
waves developed in the laser cavity. Due to the vectorial nature of electromagnetic
fields these modes constitute a two-dimensional array of functions usually indexed
like a tensor, Tij, where i, j = 0; 1; 2; . . .. The first mode, called TEM00 (transverse
electromagnetic mode of zero–zero order), is the basic one and it is this mode that
has a radial distribution of intensity described by the Gaussian function (Eq. (3.2)),
with the maximum energy density on the optical axis. Other possible modes, like
TEM10, TEM01, TEM11, and others, have an intensity distribution which differs
from Eq. (3.2) – they might have several points of maximum intensity (in each
cross-section perpendicular to OZ), or points of maximum intensity arranged as a
ring shape, and so on. To be accurate, we should also mention that as well as the
TEM modes in the resonator there are also longitudinal modes (for further details,
see Yariv, 1982).

The generation of higher-order modes might be caused by impurities in the
laser cavity or just by particles on the laser resonator mirrors or by many other
causes emerging unpredictably in the laser. All of them cause random variations
(fluctuations) in the laser beam intensity, sometimes called spatial noise. There are
numerous applications where the spatial noise and the higher-orders modes are not
desirable and have to be eliminated (“cleaned out”) from the laser beam. This is
done by spatial filtering (see Fig. 3.11). Aspatial filter is actually a lens followed by
a very small pinhole positioned in the location of the beam waist (which is close,
as we remember, to the focus of the lens). The size of the pinhole, dsf , is dictated
by the properties of the beam incident on the lens (if the lens is large enough and
does not truncate the Gaussian profile of the beam):

dsf = c2θ f ′ (3.10)
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Figure 3.11 Configuration of (a) a spatial filter and a laser beam profile (b) before and
(c) after spatial filtering.

where f ′ is the lens focal length, 2θ is the beam divergence at the entrance to the
filter, and c > 1 is a factor introduced in order to be on the safe side in eliminating
truncation of the beam (usually the recommended factor is c = 1. 3–1.5). To be
more accurate, it is necessary to replace f ′ in Eq. (3.10) by the value S′ as in
Eq. (3.7) describing correctly the propagation of a Gaussian beam, but in practice
the approximation of Eq. (3.10) is good enough for most spatial filters.

Problems

3.8. An optical set-up (Fig. 3.12) includes a He–Ne laser (wavelength 0.63 µm,
cavity size 300 mm) and a lens of 80 mm focal length positioned first at a distance
a1 = 5 mm from the laser exit and then moved along the optical axis to a distance
a2 = 100 mm. Calculate:

(a) the distance which moves the beam waist beyond the lens;

(b) the maximum achievable distance between the lens and the beam waist.

3.9. A laboratory laser-guided robot (see Fig. 3.13) comprises a He–Ne laser of
5 mW power and 500 mm length followed by a beam expander with two lenses

Figure 3.12 Problem 3.8 – A laser followed by a lens.
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Figure 3.13 Problem 3.9 – Schematic of a laser-guided robot.

(f ′
1 = 8 mm; f ′

2 = 80 mm). On the detector side there is a lens of 10 mm in diameter.
Calculate the optical power registered by the robot detector when it is 3 m from
the laser source.

3.10. An argon laser generates a light beam of 514 nm wavelength and with beam
waist radius w0 = 0. 7 mm. This is followed by a beam expander built of two lenses:
L1, diameter = 4 mm, f ′

1 = 8 mm; and L2, diameter = 40 mm, f ′
2 = 100 mm.

(a) Find the beam divergence in front of the beam expander and behind it.

(b) For cleaning the beam a spatial filter comprising a lens L3 (10 mm diameter,
20 mm focal length) and a pinhole is added to the system. Calculate the
pinhole size for two cases: when the spatial filter is positioned after the
laser, in front of the beam expander; and when the filter is positioned just
after the beam expander.

(c) Find the relative amount of energy of the laser passing through the pinhole
in the second case of (b).

3.11. On a construction area a laser transmitter transfers a reference beam to a
distance of S = 200 m. The laser is operated at an IR wavelength of 0.83 µm and
the divergence at the exit of the transmitter sub-assembly M (see Fig. 3.14) is

Figure 3.14 Problem 3.11 – Schematic of a laser reference system for a construction area.
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2θ = 10−3 rad. The beam diameter here is D0 = 3 mm and lens L1 is of 10 mm
focal length. On the transmitter side there is a detector of 5 mm in size. What lens
should be added to lens L1 of M in order to ensure that the beam diameter will not
be greater than the detector size at all distances?

3.3.3. Laser Diodes

These are the smallest lasers commercially available at the present time. Due to
very compact design and ruggedness they have been introduced in a great variety
of application areas, such as reading heads of DVD players, optical pumping of
high-energy lasers, communication systems, and medical uses.

From the physical point of view a laser diode is a small resonator located in a
central part of a semiconductor p–n junction arrangement (see Fig. 3.15) where
a DC electric current is directly transferred into coherent radiation. Most laser
diodes are made of AlGaAs or other semiconductor substrates with similar optical
properties. As a result, the operating wavelengths are in the near-infrared and
visible (mainly red) intervals.

Figure 3.15 Layout of a laser diode.

A great advantage of laser diodes is the low power consumption needed for
normal operation. This results from the high efficiency of direct energy transfor-
mation from electrical to optical power. An efficiency of 30% is usually achieved
when the total available optical power can be as high as tens of watts (even up to
kilowatts in a laser stack configuration). In addition, direct energy transformation
enables one to modulate easily the output optical power, just by changing the input
electric current at a desired frequency.

Laser diodes feature some properties which make them different from other
lasers and some special measures are required to fit the lasers to specific
applications. We briefly describe some of them here.
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Figure 3.16 Optical layout with a laser diode.

Because of the small size of the laser cavity the divergence angle of radiation
emitted by a laser diode is much greater than that of other laser sources. Divergence
of up to 40◦ is usual. As a result, such a laser should be followed by collimating
optics aimed at reducing the divergence of the laser beam drastically before trans-
ferring it for further use. Another feature to be kept in mind is astigmatism of
radiation at the laser exit. As can be seen from the schematic in Fig. 3.15, the laser
diode cavity is not axially symmetric and the output spot sizes in the vertical and
horizontal planes are not equal. This means that the beam waists in OX and OY
differ one from another and even are not located at the same point at the laser cavity
(astigmatism). Consequently the divergence angles and the beam radius in vertical
and in horizontal directions, still obeying Eqs. (3.3) and (3.4), are also different.
Usually 2θV is two or three times greater than 2θH which results in an elliptical
shape of the beam generated by a laser diode. To perform “circularization” of the
beam radial intensity profile either a cylindrical lens or a pair of prisms (called
an anamorphic prism pair) should be introduced somewhere after the laser exit.
In both cases the beam size is reduced along one axis and remains unchanged in
the other direction. The operation of an anamorphic prism pair is considered in
more details in Problem 3.13. The general layout of optics with a laser diode as a
radiation source is presented in Fig. 3.16.

Other features which should be addressed are related to the multiple electromag-
netic modes generated in the cavity. The spectral output of a laser diode comprises
usually a central peak accompanied by a number of smaller peaks of other (although
close to each other) wavelengths. The cause of this is a number of modes, espe-
cially longitudinal modes, of relatively high intensity which are more significant in
the small resonator of a laser diode than in other situations. The total optical power
is evidently spread between all generated modes. There exist applications where
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such a multi-mode operation is acceptable, but there are many others where a sin-
gle mode is required. Special measures, like diffraction gratings, index grading,
and some others, are involved in single-mode laser design in order to ensure that
a single spectral line (one mode) is generated while all the others are suppressed.
However, the wavelength of this single spectral line can vary with temperature.
This phenomenon, called frequency hopping, might affect significantly the over-
all performance of a system with a laser diode. Transfer between different modes
(hopping) can cause a change of the output wavelength of 1–2 nm for each 5◦C
temperature change (typical values).

Problems

3.12. A laser diode-based system for measuring the ground profile (Fig. 3.17)
comprises a light line generator and imaging optics. The line generator consists of
a cylindrical lens L1, made of a glass rod of 7 mm in diameter, which follows a
10 mW laser diode operated at λ = 680 nm and having an astigmatic divergence
of 2θH = 7◦; 2θV = 30◦. The line generator is optimized in such a manner that it
provides the maximum intensity and the maximum length of the line of light on
the zero level of the ground (the plane K) 1,500 mm distant from the lens.

The line of light created on the ground is imaged by a spherical lens L2 onto
an area sensor (CCD) and transferred further for image processing and calculation
of the profile. The angle α between the optical axes of the two branches is small
enough so that its influence can be neglected.

Figure 3.17 Problem 3.12 – Laser diode-based system for ground profiling.
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In order to improve the image contrast with regard to the surroundings, espe-
cially in bright sunlight, an interference filter F (coating reflectivity R = 95%,
FWHM δλ = 10 nm) is introduced in the imaging branch.

(a) Find the intensity distribution in the generated line of light.

(b) Assuming the sun illumination at sea level is ES = 1, 350 W/m2 and the
sun temperature is 6,000 K, calculate the image contrast at the center and
at the side of the light line.

3.13. A laser beam generated by a laser diode followed by a collimator has an
elliptical cross-section with principal diameters of 4 mm and 8 mm. Find the
anamorphic prism pair capable of correcting the ellipticity of the beam.

3.4. Light Emitting Diodes (LEDs)

In general, LEDs, like laser diodes, transform electrical energy directly into optical
energy. They also comprise a semiconductor p–n junction fed by a DC current,
but there is no resonator and photons are emitted spontaneously generating non-
coherent radiation. The wavelengths available are not only in the IR and red
regions, but also in the green and blue regions. A step in their development was a
combination of several semiconductor sources generating different wavelengths in
a single housing to create white light radiation. Indeed, white LEDs have become
widely available in the last few years.

The spectral properties of monochromatic LEDs are inferior to those of laser
diodes. Usually the bandwidth of LEDs is about 30–50 nm.

LEDs are usually operated at low voltage (2–5 V) and low current (20–100 mA)
and their efficiency in energy transformation is as high as in laser diodes (up
to 30%).

LEDs are manufactured in two basic configurations (see Fig. 3.18) with a flat
window and with the lens incorporated as a part of the casing.

a) b)

Figure 3.18 LED with (a) a flat window and (b) a lens.
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a) b)

Figure 3.19 Angular diagrams of a LED intensity distribution: (a) LED with a front
window; (b) LED with a lens.

In applications of LEDs as light sources the angular distribution of the emit-
ted radiation is a main concern. Examples of angular diagrams are presented in
Fig. 3.19 for both types of LED design. It also should be mentioned that radiation
emitted by a LED suffers from low uniformity in a cross-section perpendicular to
the chip. This feature is especially noticeable at small distances from the source.
Setting a diffusing glass in front of the source or even grinding the LED itself
allow one to obtain much more homogeneous radiation in a wide spatial angle (an
example of such an approach is given in Problem 3.14).

Problems

3.14. Dark field illumination with a single LED. Imaging of an opaque object in
dark field illumination means that the whole field of view remains black except
for some details which, due to their specular reflectivity, appear as white.

In the system depicted in Fig. 3.20 lens L1 of 12 mm diameter and 25 mm focal
length performs imaging of an object P onto an area sensor (1/2′′ CCD, size 4.8 mm
× 6.4 mm) at magnification V1 = − 0. 25. The working distance (WD) defined
as the free space between the object and the system has to be 16 mm at least.
The illumination branch of the system which provides on-axis illumination for
dark field consists of a LED followed by a condenser lens L2 (diameter 45 mm,
f # = 1. 0). The LED front surface was grinded until a flat diffuse area of 3 mm in
diameter was created.

Aiming at the most compact architecture, find the location of all elements of the
system and a minimum size of the beam splitter, BS, required for operation in the
full field of view if acceptable vignetting everywhere should not exceed 50%.

3.15. Oblique illumination with a LED array. Providing a minimum working
distance of 16 mm, how does one incorporate in the system in Problem 3.14 a LED
ring array for oblique illumination of the object P in two colors (red and green)?
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Figure 3.20 Problem 3.14 – Configuration with on-axis dark field illumination.

What should be the illumination angle of each LED and what is the maximum
number of LEDs in a single line ring array?

3.5. Solutions to Problems

3.1. (a) The radiation flux emitted by the filament can be calculated as follows:

Pλ = ελeB(λ, T ) × S
ω × 
λ

2π

where S = 4. 2×2. 3×10−6 = 9. 96×10−6 m2 is the filament irradiated surface,
ω = 1/0. 52 = 4 sr is the solid angle of irradiance measurement, 
λ = 1 nm, and
eB(λ, T ) is the hemispherical black body radiation at a wavelength of 0.5 µm. To
calculate the last value we use tables of black body radiation (Appendix 3). Since
λT = 0. 5 × 3, 234 = 1, 617 we should use two lines of the table, of λT = 1, 600
and λT = 1, 700, and also take into account the factor σT5. Then finally we get
eB(λ, T ) = 81. 7 × 5. 668 × 10−8 × 3. 2345 × 1015 = 163, 814 × 107 W/m3 and
eB(λ, T ) × 
λ = 1, 638. 14 W/m2, which results in Pλ = 0. 8 × 1, 638. 14 ×
9. 96 × 10−6 × 4/2π = 8. 06 mW (at 0.5 m for 1 nm spectral bandwidth).

(b) For 
U/U0 = 0. 05 we have 
T /T = 0. 4(
U/U0) = 0. 4 × 0. 05 = 0. 02
and therefore the new temperature is T = 3, 169 K. Then we proceed using the
table of Appendix 3 exactly in the same way as in (a) above and finally obtain
Pλ = 6. 73 mW.

3.2. The optical configuration addressed in this problem is presented in Fig. 3.21.
Starting with the cylindrical lens we find first its optical power in the vertical plane:

1

f ′ = (n − 1)/R1 = 0. 5163/20. 65; f ′ = 40 mm
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Figure 3.21 Problem 3.2 – A line generator with a QTH lamp.

and then the location of the line of light along the OZ axis and its height y′:

S′
1 = 40 × 60

(60 − 40)
= 120 mm; V = −120/60 = −2; y′ = 4. 2 × 2 = 8. 4 mm.

Obviously in the horizontal plane the lens has no optical power and the ray bundle
of 1 mm width on the line has a width 
x = 60/(60+120) = 0. 33 mm in the plane
of the lens. Hence, all rays concentrated by the lens in the segment of area B of the
line are those which are transferred by the lens strip A = 20 × 0. 33 = 6. 67 mm2.
They constitute the solid angle � = A cos ϕ/ρ2, where ρ = 60/ cos ϕ. For the
light intensity along the created line we get

I(x) = εeB(λ, T ) × 
λ × s × �(x)

2πB
cos ϕ(x)

= εeB(λ, T ) × 
λ × s
20 × 
x

2πB × 602
cos4 ϕ(x) = I0 cos4 ϕ(x).

To calculate I0 we use the data from Problem 3.1:

eB(λ, T ) × 
λ = 1, 628. 14 W/m2/nm; s = 9. 96 × 10−6 m2

and also keep in mind that B = 1 × y′ = 8. 4 × 10−6 m2; tan ϕmax = 150/180;
cos4 ϕmax = 0. 348. Therefore, the intensity along the line varies from the max-
imum value I0 = 0. 439 W/m2/nm (in the center) to the minimum value I =
0. 348 × I0 (at the side).

3.3. (a) As explained in Section 3.2, the two-lens configuration enables one to get
a uniform illumination of the object if the first lens, L1, creates the image of the
source S on the second lens, L2, and the image of lens L1 coincides with the object
plane. Such a configuration is shown in Fig. 3.22. To optimize the system with
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Figure 3.22 Problem 3.3 – (a) Optimized illumination with two lenses and (b) configu-
ration with the maximum useful size of the light source.

regard to illumination power incident on the object y we should pay attention to
the fact that the magnifications of both lenses are reciprocal to each other:

S′
1 = −S2; S′

2 = −S1; V1 = S′
1

S1
= −S2

−S′
2

= 1

V2
(A)

and that limitation of the total length, l, yields

l = −2S1 + S′
1 = −2S1 + V1S1; S1 = l

V1 − 2
. (B)

Furthermore, the solid angle of radiation transferred from S to y is given by

� =
(

D(1)
eff

)2 /
(S1)

2

where D(1)
eff is the effective working diameter of the first lens (see Fig. 3.22a).

We should keep in mind that this value is maximized if the object y imaged back
through L2 covers all of L1, which occurs if V2 = y/D; V1 = D/y. By substituting
this value in Eq. (B) and then proceeding with the expression of the solid angle
we obtain

�max = D2

(S)2
min

= y2

l2
[(V1)2

max(V1 − 2)2
max] =

[
D

l

(
D

y
+ 2

)]2

.

Therefore, V1 = −30/10 = −3 and from Eq. (B) we get

S1 = 250

−3 − 2
= −50 mm; S′

1 = 150 mm;

f ′
1 = f ′

2 = (1/150 − 1/50)−1 = 37. 5 mm.
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Figure 3.23 Problem 3.4 – (a) Imaging of the field stop D2 and (b) the rays defining the
actual size of the lens.

(b) Obviously the larger the source size h the greater the illumination level
on the object y. An increase of h is accompanied by an increase of the effective
working diameter of the second lens, as becomes apparent from Fig. 3.22a. Since
the maximum effective size is D, the corresponding size of the source can be
calculated as follows: hmax = D/|V1| = 30/3 = 10 mm. This case is shown in
Fig. 3.22b. It is understandable that any additional part of the source, above the
size hmax, will be imaged outside of lens L2 and consequently will be useless.

3.4. (a) The central issue in this problem is the location and size of the field stop D2.
To find it we first consider the imaging branch. Using the paraxial approximation
for the thin lens of f ′ = 40 mm we have S′

ob = −2 × Sob, and therefore Newton’s
formula yields Sob = −60 mm; S′

ob = 120 mm. Then, taking into account that
(i) the fiber exit is positioned in the focal plane of L1and therefore the rays between
L1and L2 are parallel; and (ii) the two lenses build the image of the bundle in the
aperture D3 with magnification V21 = − 12/6 = − 2, we draw the conclusion that
the distance between D3 and L2 is equal to f ′

2 = 50 mm and f ′
1 = 50/2 = 25 mm.

Furthermore, since the aperture D2 is conjugate with the object plane its image
created by lens L2 should be at the same distance from LOb (and D3) as the
sensor plane y′, i.e., at 120 mm from D3 or 70 mm from L2 (see Fig. 3.23a).
Hence

S′
2 = 70 × 50

120
= 29. 17 mm; V2 = 29. 17

70
= 0. 417;

D2 = D′
2V2 = 4 × √

2 × 0. 417 = 2. 35 mm.

(b) The uppermost tilted beam passing through D2 is determined by the angle
β corresponding to the side point of the fiber bundle. A geometrical consideration
of Fig. 3.23b gives DL1 = 2h = 2(D2/2 + 29. 17 tan β) = 9. 35 mm = DL2.
What remains to check is that the whole segment 2h is illuminated by the fiber.
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Figure 3.24 Problem 3.5 – Illumination in a luminescent microscope.

Indeed, the lowest point M illuminated by the fiber has the vertical coordinate
yM = 3 + 25 tan(arcsin 0. 25) = 9. 45 mm, which is greater than h.

3.5. (a) We choose the configuration shown in Fig. 3.24, and perform calculations
in the paraxial approximation. Beginning with the magnification of the second
lens, we get

V2 = −FOV

D1
= −0. 18.

Then the geometry of the principal ray yields:

tan α = tan[arcsin (NA)] = − a

S1
× S′

1

S′
2

= a

S1V2

which results in

S1 = a

tan α × V2
= 0. 5

0. 185 × (−0. 18)
= −15. 0 mm;

S′
1 = S1f ′

1

f ′
1 + S1

= 97. 5 mm = −S2.

Therefore, the focal length of the second lens is

f ′
2 = S2V2

1 − V2
= 14. 9 mm

and S′
2 = S2V2 = 17. 55 mm; D2 = 2aV1 = 1 × 97. 5/15 = 6. 5 mm. Finally,

taking into account that S3 = −S′
2 and that L3 images lens L2 and the source S into

the entrance pupil P which is 18 mm from the object, we obtain the focal length
of L3:

f ′
3 = 18 × 17. 55

18 + 17. 55
= 8. 9 mm.
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(b) The fraction of the source radiation which is transferred by the illumination
system is dictated by the solid angle ω = (D1/S1)2 = 0. 444 sr. Since irradiance
Eλ is usually measured at a distance of 0.5 m and averaged over 1 m2 area, e.g., in
the solid angle � = 1/0. 25 = 4 sr, we can calculate the optical power Pλ incident
on the full FOV in the spectral range of 1 nm as follows:

Pλ = Eλ

ω

�
= 28 × 0. 444/4 = 3. 1 mW/nm.

The cell of 6 µm in size obtains the portion (6/1, 800)2 = 11. 1 × 10−6 of that
power, i.e., 3. 45 × 10−8 W. Since each photon of radiation of 240 nm transfers
the energy

EPh = hc

λ
= 6. 625 × 10−34 × 3 × 108

0. 24 × 10−6
= 0. 83 × 10−18 J

one can calculate the number of photons per second incident on the cell: N =
Pλ/EPh = 4. 16 × 1010 photons/s.

3.6. Using Eq. (3.4) one can obtain

w0 =
√

0. 6328 × 10−3 × 300

2π
= 0. 174 mm

at the waist of the beam in the middle of the cavity. Hence, the full diameter at
the exit of the laser is D = 2w = 2

√
2w0 = 0. 49 mm. The angle of divergence is

calculated from Eq. (3.3) as follows:

2θ = 2λ

πw0
= 2. 32 mrad.

3.7. First we consider the general expression for radiation power incident on the
area of the detector positioned at a coordinate z. Denoting the radius of the detector
as rd and P0 = 2 mW we have from Eq. (3.5)

Pz = π I0

rd∫
0

2r exp

(
−2r2

w2
z

)
dr = 2

P0

w2
z

r2
d∫

0

exp

(
− 2x

w2
z

)
dx

= P0

[
1 − exp

(
−2r2

d

w2
z

)]
.

Therefore

2r2
d

w2
z

= − ln

(
1 − Pz

P0

)
. (A)
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Taking into account that

w2
z = w2

0

[
1 +

(
θz

w0

)2
]

= w2
0 + θ2z2 (B)

and calculating from Eqs. (3.3) and (3.4)

w0 =
√

0. 63 × 10−3 × 300

2π
= 0. 173 mm; θ = 0. 63 × 10−3

π0. 173
= 1. 16 × 10−3,

we get w2
z = 0. 03 + 1. 346 × 10−6z2 and after substituting in Eq. (A):

0. 03 + 1. 346 × 10−6z2 = − 2r2
d

ln(1 − Pz/P0)
. (C)

The maximum distance zmax is related to Pz = NEP = 10−7 which yields (2r2
d =

1. 125 mm2): z2
max = 1. 68 × 1010 mm2; Smax = zmax − L/2 = 129. 85 m. The

minimum distance is related to the value Pz = NEP × 104 = 10−3 and again by
substituting in Eq. (C) we get z2

min = 1. 184 × 106 mm2; Smin = zmin − L/2 =
938 mm.

3.8. (a) Let us find first the beam waist radius, w0, and the Rayleigh length, zR,
using Eq. (3.4):

w0 =
√

λL

2π
=

√
0. 63 × 0. 3

2π
= 0. 174 mm; zR = πw2

0

λ
= 150 mm.

Taking into account the Gaussian profile of the laser beam we use Eq. (3.7) to
find the distance S′ between the lens and the beam waist. In the first case S =
−(150 + 5) = −155 mm:

1

S′ = 1

f ′ + 1

S + z2
R/(S + f ′)

= 1

80
− 1

155 + 1502/(−155 + 80)
; S′ = 97 mm.

In the second case S = −(150 + 100) = −250 mm; and the same calculation of
S′ as above gives S′ = 101 mm. Hence, the distance that the waist moves is 4 mm
greater than that of the lens moving.

(b) To consider the general situation we introduce the function

q(x) = x + z2
R

x + f ′

and find its maximum, as usual, by analyzing the derivative

dq

dx
= 1 − z2

R

(x + f ′)2
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which has a zero value at x + f ′ = −zR. Therefore S = x = −(zR + f ′) =
−230 mm corresponds to the maximum achievable distance S′:

S′
max =

(
1

80
− 1

230
× 1

1 + 1502/(230 × 150)

)−1

= 101. 32 mm.

3.9. We begin with a calculation of the laser beam parameters and use Eqs. (3.3)
and (3.4):

w0 =
√

0. 63 × 10−3 × 500

2π
= 0. 224 mm; 2θ = 0. 63 × 10−3

π0. 224
= 1. 79 × 10−3.

The beam diameter at the exit of the laser (and also at the entrance of the beam
expander) is 2w = 2w0

√
2 = 0. 632 mm. Now, by substituting in Eq. (3.9) the

values W = 10−1 and l = 3, 000 one can find the beam diameter at the side of the
robot detector:

D′ = 0. 632 × 10 + 3, 000 × 1. 79 × 10−3

10
= 6. 87 mm.

Since this value is smaller than the robot lens diameter, the optical power registered
by the detector will be determined by the actual size of the lens:

P = P0{1 − exp[−2 × (10/6. 87)2]} = 5 × 0. 986 = 4. 92 mW.

3.10. (a) The divergence angle at the laser exit, before the beam expander, can be
found from Eq. (3.3):

2θ = 2
λ

πw0
= 2

0. 514 × 10−3

π × 0. 7
= 0. 468 mrad.

Hence, after the beam expander of angular minification W = (100/8)−1 = 12. 5−1

we get 2θ ′ = 37. 4 × 10−6.
(b) If the spatial filter is positioned just after the laser the pinhole size is calculated

from Eq. (3.10) (we choose the factor c = 4/3 which is commonly accepted):

d(1)
SF = 4

3
2θ f ′ = 12. 5 µm.

In the second case the beam diameter just after the beam expander is (assuming
lens L2is large enough) D2 = 2w0

√
2/W = 2 × 0. 7 × √

2 × 12. 5 = 24. 7 mm,
which is larger than the spatial filter lens of 10 mm. Therefore, the pinhole size
should be calculated by considering diffraction of the Gaussian beam truncated by
lens L3, namely:

d(2)
SF = 4

3
× 1. 22λ

D3
f ′
3 = 4

3
× 1. 22 × 0. 568 × 20

10
= 1. 7 µm.
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Figure 3.25 Problem 3.11 – Influence of a second lens on beam divergence.

(c) The optical power P3 transferred by the spatial filter in the second case is
calculated by integrating Eq. (3.5) from 0 to D3/2 = 5 mm. This yields

P3 = P0{1 − exp[−2(D3/D2)2]} = P0 × 0. 28.

Thus, only 28% of the total power of the laser will pass the spatial filter.

3.11. The divergence of the exit beam from the transmitter with a single lens L1

is 1 mrad which gives, after traveling a distance of 200 m, a beam size of about
200 mm, i.e., much greater than the receiver detector (see Fig. 3.25). If the second
lens, L2, is added to the transmitter the angle of the side ray has to be limited by
the detector size as follows:

D = l = D0 − 2α′S; α′ = − l − D0

2S
= − 50 − 3

400 × 103
= −1. 175 × 10−4.

Remembering the relation between the angles before and after the simple lens (see
Section 1.1) and keeping in mind the sign convention, we get

�2 = α′ − α

h
= (−1. 175 + 5) × 10−4

1. 5
= 2. 55 × 10−4; f ′

2 = 3, 922 mm.

3.12. (a) We should first locate the laser diode with regard to lens L1. As an initial
approximation one can start with the OYZ plane (see Fig. 3.26a) and use the
paraxial formula for the lens which is a complete circle of 7 mm in diameter in
this plane, and therefore f ′ = 5. 136 mm (assuming n = 1. 5 for the glass). Each
principal plane, H and H′, is 3.5 mm inside the lens. This gives lp = 5. 136−3. 5 =
1. 636 mm, if the laser output is just in the paraxial focus. We choose lp = 1. 5 mm
to start a trial and error procedure aimed at obtaining the minimum achievable
radius of the beam, wy, in the plane K. Exploiting the precise ray tracing formula
for a cylindrical lens as in Problem 2.6, one can use for u = 3. 5◦ the results
obtained in the solution of that problem: y′ = wy = 4. 57 mm. Then we proceed in
the same way, but trying the value l = 2. 0 mm. The ray tracing procedure gives
wy = −4. 2 mm. Then, for l between the two previous trials, e.g., l = 1. 75 mm,
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Figure 3.26 Problem 3.12 – Ray tracing of the line generator in (a) the OYZ plane and
(b) the OXZ plane.

the ray tracing yields wy = 0. 11 mm and we stop the trial and error procedure at
this value which is very small.

Now we consider the beam in the second plane, OXZ (Fig. 3.26b). Since the
cylindrical lens here acts like a slab of glass with no optical power one can find for
the angle u = 15◦: wx = 1, 500 × tan 15◦ = 401. 9 mm. The intensity distribution
in plane K is described by Eq. (3.2) where two terms, that of OX and that of OY,
are separated (due to ellipticity of the laser diode beam):

IL(x, y) = I0 exp

[
−

(
2x2

w2
x

+ 2y2

w2
y

)]
(A)

where

I0 = 2P

πwxwy
= 2 × 10

π × 0. 11 × 401. 9
= 0. 144 mW/mm2.

(b) We define the contrast in plane K, CK, and in the plane of the CCD, CCCD,
as follows:

CK = IL + ISun

ISun
; CCCD = CKτF (B)

where τF is the transmittance of the interference filter (see Eq. (5.36) of Chapter 5).
Assuming that the filter has maximum transmittance at 680 nm (wavelength of
the laser) for the rays which are normal to its surface, we calculate the shift in
the maximum wavelength for the side direction (u′ = 15◦): λ′ = λ cos 15◦ =
670 nm. This means that the transmittance curve of the filter is moved left along
the wavelength scale, as demonstrated in Fig. 3.27. Since the laser wavelength
remains the same for the center point as well as for the side, it is apparent that one
has to find the value τF for the point located 10 nm to the side of the maximum.
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Figure 3.27 Problem 3.12 – Transmittance curve at normal incidence and for a tilted
beam.

From Eq. (5.36) we have

�

2
= π

λ
2nt cos r = π

λ
mλ′ = πm

(
1 − 
λ

λ

)
;

sin2
(

�

2

)
=

(
πm


λ

λ

)2

=
(

π
λ

δλ × Ne
× 
λ

λ

)2

and therefore

τF = τmax
1

1 + 4R

(1 − R)2

(
π

Ne

)2 (

λ

δλ

)2
= τmax

1

1 + 4 ×
(


λ

δλ

)2

= τmax
1

1 + 4

(
10

10

)2
= τmax

5

(we also used in the last transformation Eqs. (5.38) and (5.39) from Chapter 5).
Now we have to compute the sun radiation coming to plane K at the bandwidth

of 10 nm. We proceed as in Problem 3.1, using the table of black body radiation
at T = 6, 000 K, and finding for λT = 0. 68 × 6, 000 = 4, 080 that eBλ/σT4 =
17. 689 × 10−5 × T = 1, 061. 34/µm. Keeping in mind that at the earth’s surface
only a portion (1, 350/σT4) of all radiation emitted by the sun is received, we
find for the sun radiation at sea level for a bandwidth of 1 µm: ẽBλ = 1, 350 ×
1, 061. 34 = 1. 433 mW/mm2/µm; and finally for the bandwidth of 10 nm: ẽBλ ×

λ = 1. 433 × 10−2 mW/mm2 = ISun. By substituting this value in Eq. (B) we
get the contrast at the CCD plane at the center point:

CCCD(0) = CK = 14. 4 + 1. 433

1. 433
= 11. 05
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and the contrast at the CCD plane at the side point (obviously the amount of sun
radiation transmitted by the filter remains the same for normal incidence and for
the tilted rays):

CCCD(wx; 0) = I0 exp(−2) × τmax/5 + ISun × τmax

ISun × τmax
= 1. 95/5 + 1. 433

1. 433
= 1. 27.

Therefore, the contrast of the image at the side point is reduced drastically
compared to the center.

3.13. Two prisms, identical to each other with regard to their shape, size, and
deviation angle α, are arranged as depicted in Fig. 3.28 in the path of a collimated
elliptical laser beam. Suppose AB is the minimum principal diameter of the beam
before the prism pair and MN is the same segment after the prisms. To simplify
the consideration we choose the spatial position of the first prism in such a manner
that the rays refracted at the first surface propagate in the direction normal to the
second surface and therefore both incident angle and refraction angle here are
equal to zero. The same is true for the last surface of the second prism.

Our goal is to find the incident and the refraction angles at all surfaces of the
prism pair (i1, r1, i2, r2, i3, r3, i4, r4) and to calculate the ratio R = MN/AB which
evidently can be expressed as follows:

R = MN

AB
= MN

KL
× CD

AB
= cos r1 × cos r3

cos i1 × cos i3
=

(
cos r1

cos i1

)2

= R2
1. (A)

We take into account here that cos i2 = cos r2 = cos i4 = cos r4 = 1 and therefore

r1 = α. (B)

Thus,

R1 = √
R = cos α

cos i1
(C)

Figure 3.28 Problem 3.13 – Anamorphic prism pair.
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where i1 is defined by Snell’s law of refraction, i.e., sin i1 = n sin α. Therefore,
Eq. (C) is the non-linear equation with regard to α for any given value R. We
choose n = 1. 5 and use the trial and error approach in order to solve the equation
R1(α) = √

2. 0. Starting with α = 30◦ (which yields R1 = 1. 31) we proceed
further until the final value α = 32. 3◦ obeys the equation with proper accuracy.
The corresponding value of the first incident angle is i1 = 53. 3◦ and the same
is true for i3 which defines the spatial position of both prisms with regard to the
horizontal axis.

3.14. Starting with the imaging optics, we use the paraxial approximation formula
for lens L1:

1 − V1

S1V1
= 1

f ′
1

; S1 = −25
1. 25

0. 25
= −125 mm; S′

1 = 31. 2 mm

and the field of view (FOV) in the plane P is 25.5 mm × 19.2 mm with the diagonal
(maximum size) of 32 mm. Therefore, the illumination branch should provide light
to any point inside the circle of 32 mm.

The dark field effect will be achieved if radiation coming to the plane P is
reflected specularly and collected by lens L1 on the CCD. Correct illumination
requires that the image of the light source (LED) will be obtained in the plane
of L1. Taking into account that the maximum illumination angle is dictated by
the condenser diameter (45 mm) and that the focal length of L2 is also 45 mm
(f # = 1. 0), we consider the ray trajectories in the system as shown in Fig. 3.29a
where the unfolded version of the illumination branch is shown by dotted lines.

Figure 3.29 Problem 3.14 – (a) Layout of imaging and illumination optics and (b)
unfolded diagram of the illumination branch.
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Then, keeping in mind the required working distance, we have

S′
2 = 45 + 16 + 125 = 186 mm; S2 = −45 × 186

141
= −59. 4 mm;

V2 = −3. 13; a = 186 − 125 − 45/2 = 38. 5 mm; y′
2 = 3 × 3. 13 = 9. 4 mm

where y′
2 is the active size of lens L1. Thus, the location of all elements is determined

and to find the size of the beam splitter, AB, we proceed further with Fig. 3.29b as
follows: AO + OB = (22. 5 + z)

√
2; where for z we have

z − 4. 7

125 + 38. 5 − z
= 22. 5 − 4. 7

186
; z = 18. 57 mm and AB = 60 mm.

Finally, we have to estimate vignetting. From Fig. 3.29b it becomes evident that
the rays from all points of the source are transferred through each point of the
segment DD1 (no vignetting) and up to 50% of the rays are transferred through
each point of the segments CD and C1D1 (vignetting of 50% or less). This means
that at full FOV (segment CC1 = 32 mm) vignetting does not exceed 50%.

3.15. To ensure that no additional vignetting will be added to the system described
in Problem 3.14, we introduce a stop ST at a distance of 16 mm from the object
and find the size of ST using the unfolded version of the illumination branch (see
Fig. 3.29b):

DST = 32 × (125 + 16)/125 = 36 mm.

Figure 3.30 Problem 3.15 – (a) Layout of LEDs in oblique illumination and (b) arrange-
ment of the ring array.
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Furthermore, we choose LEDs with embodied lenses, the outer diameter of each
LED being 5 mm and operating at a wavelength of 535 nm for green illumination
and 630 nm for red. The viewing angle will be found later.

All LEDs should be located on a circle of diameter 46 mm at least and each
one should be tilted towards the object P by an angle ϕ, as depicted in Fig. 3.30a.
Assuming that the source from the left side illuminates the left part of the field of
view (FOV) and the corresponding LED from the right side illuminates the right
part of the FOV, we get from the geometry shown in the figure: (i) the viewing
angle of a single LED

β = ψ2 − ψ1 = arctan

(
46/2

16

)
− arctan

(
46/2 − 16

16

)
= 32◦;

and (ii) the angle of tilting

ϕ = arctan

(
46/2 − 8

16

)
= 41. 3◦.

Also, choosing the spacing between two adjacent LEDs to be 4 mm (LED pitch
of 9 mm along the ring circle), we can calculate the number of LEDs in the ring:
N = int (π46/9) = 16.



Chapter 4

Detectors of Light

4.1. Classification of Radiation Detectors and Performance
Characteristics

As was mentioned earlier, radiation detectors act as transformers converting energy
of incident photons into energy of electric carriers or, simply, into electrical signals
(current or voltage). There exists a great variety of radiation detectors differ-
ent in their physical basis, hardware realization, and performance characteristics.
Each electro-optical system requires detectors which optimally suit the specific
application.

Commonly used radiation detectors can be classified as follows:

(a) physical process of signal generation

● electro-optical detectors
single electro-optical cells
photomultipliers

● semiconductor detectors
photoconductive detectors (photoresistors)
photovoltaic detectors (photodiodes)

● thermal detectors (bolometers)

(b) a number of detectors in a single housing

● single detectors
● detector arrays

line detectors (one-dimensional arrays)
area sensors (two-dimensional arrays).

129
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It should be mentioned that there exist optical sensors of different kinds and con-
figurations not presented in the above classification – we address here only the
most popular radiation detectors.

There are a number of parameters characterizing each and any detector. We
describe here the most important of them.

Responsivity, Rλ = did/dE, is measured in A/W, i.e., current of the detector,
id (in amperes) per watt of incident optical power. Obviously responsivity is a
spectrally dependent value since a detector is sensitive (meaning it is capable of
absorbing photons and generating a corresponding amount of electrons) to radi-
ation within some finite interval of wavelengths. The wavelength interval where
Rλ is still noticeable is called the working spectral range of the detector.

Quantum efficiency, η = Ne/Nph, is defined as the ratio of the number of gen-
erated electrons, Ne, to the number of incident photons, Nph. Usually η < 1
and of course it also depends on wavelength. Quantum efficiency and respon-
sivity are evidently related to each other. Indeed, if we take into account that
Ne = id/e = RλEλdλ/e (e is the electrical charge of a single electron) and
Nph = Eλdλ/(hc/λ), then, by inserting hc/e = 1. 240 × 10−6 Wm/A, one can
obtain from the definition of quantum efficiency

ηλ = 1. 24

λ
Rλ (4.1)

where the wavelength λ should be in µm.
Noise equivalent power (NEP). In order to define NEP we have to consider

the noise which always occurs in the detector itself and in the detector’s electric
circuitry. The reasons for and nature of noise will be considered later. What is
important here is the fact that any useful signal generated in the detector is always
accompanied by randomly varying noise. Signal-to-noise ratio (SNR) determines
how strong is the signal compared to noise. The SNR should be as high as possible.
For weak signals the SNR is of the order of 3:1 or 2:1 and as a limiting situation it is
chosen that SNR = 1:1. The incoming power corresponding to such a limiting case
is called the NEP. Hence, NEP is the minimum radiation still capable of detection.
It is obviously measured in watts.

Detectivity, D, is defined just as the reciprocal of NEP:

D = 1/NEP (measured in W−1) (4.2)

or, keeping in mind that NEP is related to noise, in, which is a random function of

time and therefore is characterized by its mean value,
√

ī2n, we get

D = Rλ√
ī2n

. (4.3)
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Figure 4.1 Detector signal resulting from an impulse of incident radiation.

Specific detectivity, D∗, is similar to detectivity, but, in addition to NEP, it also
takes into consideration the detector active area, A, and the bandwidth, �f , i.e.,
the range of frequencies to which the detector and its electric circuitry are capable
of responding:

D∗ =
√

A × �f

NEP
, cm1/2Hz1/2W−1. (4.4)

Obviously A is measured in cm2 and the bandwidth in Hz. The value D∗ (also called
“D-star”) is useful when a comparison of detectors of different sizes operated at
different frequencies is required. Values of D∗ of 1010 to 1013 are usual for this
parameter.

Time response. Detection of radiation that varies in time requires that the detector
circuitry will be fast enough, or, in other words, will be of suitable frequency
bandwidth. Several parameters are related to the time response of the detector, as is
evident from Fig. 4.1. Radiation is incident on the detector during a very short time
interval, δ. Due to electrical inertial processes in the detector and in the elements of
its circuitry the generated current has a finite speed of growth characterized by the
rise time, τRise, as well as a finite speed of decay characterized by the fall time, τFall.
Both values, τRise and τFall, are determined with regard to half the maximum of
the generated signal, as is shown in Fig. 4.1, and the maximum working frequency
can be calculated as

fmax = 1

2(τRise + τFall)
.

Dark current, id.c.. Even if no radiation is incident on a detector connected to
some electrical circuitry, the output of the circuitry is not equal to zero but has
some finite value called the dark current. This results from physical processes
inside the detector and elements of the circuitry. Since dark current is a fluctuating
process it can be characterized by a DC component, but also by mean fluctuation
value, ī2d.c..
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Dynamic range (DR) is defined as the ratio between the maximum and the
minimum detectable radiation:

DR = Emax

Emin
= id max

id min
(4.5)

(it is assumed that the detector is operated in its linear range when id is proportional
to the incident radiation power). The maximum value in Eq. (4.5) is dictated by
the saturation of the detector, meaning that at some level of radiation all avail-
able mobile carriers of charge (electrons) are already generated and no additional
electrons can be created if additional photons arrive at the detector. The minimum
value in Eq. (4.5) is governed by the detector noise and usually it is equal to NEP. In
the right-hand term of Eq. (4.5) the dark current is often exploited as the minimum
detector signal.

Problems

4.1. Find the responsivity of a photodetector made of GaAs which has maximum
sensitivity at a wavelength of 0.83 µm with a quantum efficiency of 10%.

4.2. Which one of two detectors available for a laboratory set-up will generate
greater current for the same illumination conditions and measured frequencies?

Detector 1: η = 0. 3; NEP = 2 × 10−14 W/Hz1/2

Detector 2: η = 0. 5; NEP = 4 × 10−15 W/Hz1/2

Both detectors are equivalent with regard to figure of merit (specific
detectivity).

4.3. Calculate the detectivity and specific detectivity of a silicon photodetector of
3 mm2 area for maximum response wavelength (λ = 0. 86 µm; ηλ = 0. 83), if the
measured noise is 2 × 106 e/ms at an operation bandwidth of 100 kHz.

4.4. Investigating the dynamic features of a detector it is found that the rise time
is 2.5 times less than the fall time, both being measured at a response to very short
radiation pulses (of duration δ). The time constant of the detector output circuitry
is estimated as t0 = 0. 5 ns. Find the operation bandwidth of the system.

4.2. Noise Consideration

There are a number of reasons for an output detector signal not being constant, but
varying randomly (fluctuating) with time. These random fluctuations, defined as
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the detector noise, are superimposed on the useful signal and obviously influence
the performance of the device, especially its ability to detect weak radiation or to
differentiate between two very close levels of radiation intensity.

From the mathematical point of view noise is considered as a random function
and should be characterized by statistical parameters, as is usual in such a case
(mean value, mean square value, standard deviation, correlation functions, etc.).
We will address here three main kinds of noise: shot noise, thermal (Johnson)
noise, and read-out noise.

Shot Noise

This results from the discrete nature of carriers of radiation energy (photons) and
carriers of electric charge (electrons or holes) generated in a detector.

Since photons are created by a light source in a random manner, the number of
photons, Nph, arriving at the detector during the time interval T is not constant,
but varies from one time interval to another. The probability of finding N photons
coming to the detector obeys the Poisson distribution law:

P(Nph) = (Nph)Nph

Nph! (e−Nph ) (4.6)

where Nph is the mean value (averaged over time T ) and it can be shown that for
the mean fluctuation of the process the following relation is valid:

σ 2
ph = (Nph − Nph)2 = Nph. (4.7)

It is important to notice that the Poisson distribution (Eq. (4.6)) appears as a result
of considering a situation where the probability of a single event p = n1dt and,
therefore, if dt is approaching zero (infinitesimally small time interval) the number
of independent statistical tests, N , in time T is increasing to infinity. The value n1

(the number of photons in a time unit) remains constant, as does the mean number
of photons in time T : Nph(T ) = n1T .

Since the number of photons impinging on the detector, Nph, limits the number
of statistical tests in the consideration of generated charge carriers (electrons or
holes), the statistics in this case obeys the Bernoulli distribution:

P(Ne) = Nph!
Ne! × (Nph − Ne)! pNe (1 − p)Nph−Ne (4.8)

with standard deviation (mean fluctuations) expressed as

σ 2
e = (Ne − Ne)2 = Ne(1 − p). (4.9)
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The probability p in this case is just the quantum efficiency of the detector (p = η)
and also Ne = ηNph. Hence, for the total fluctuation of carriers caused by both
processes, variation of incoming photons and variation of generated electrons for
each given number of photons, we have

(Ne−Ne)2
total = (Nph−Nph)2×η2+(Ne−Ne)2 =Nphη

2+Nphη(1−η)=Ne.
(4.10)

Keeping in mind that the fluctuation of a number of carriers is related directly to
the detector current noise as

i2Sn = (Ne − Ne)2
total × e2

τ 2
= (Nee/τ )

e

τ
= ide/τ

and converting the time interval τ to the corresponding frequency bandwidth �f =
1/2τ one obtains the well-known formula for shot noise:

iSn =
√

i2Sn = √
2ide × �f (4.11)

where e is the electron charge and the detector current id should include the signal
and also the dark current.

Thermal (Johnson) Noise

This is caused primarily by temperature fluctuations in the electrical resistance of
the detector and/or the load resistor of the detector circuitry. Denoting the relevant
resistance as RL the corresponding expression for thermal noise is

iTn =
√

i2Tn =
√

4kT

RL
�f (4.12)

or in terms of voltage measured on the load resistor (see Fig. 4.2)
√

V2
Tn = √

4kTRl × �f . (4.13)

Figure 4.2 Schematic of a detector load resistor.
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If both shot noise and Johnson noise are present simultaneously in the system
the optimal load resistance is usually defined as the one which causes both noise
components to be equal.

Read-out Noise

This kind of noise occurs in detector arrays, like CCD or CMOS sensors, where the
signals of separate elements are transferred to a single output from which they are
read out sequentially, one by one. There are several origins of noise in such a read-
out procedure. First of all, it results from the dark current caused by thermally
generated electrons in each element of the array. This process is exponentially
dependent on temperature

id.c. = const × exp

(
−UGe

2kT

)
(4.14)

where UG is the gap in the energy diagram of the pixel material (usually silicon
semiconductor) and e is the electron charge. There is a special read-out protocol
allowing one to avoid the influence of the (averaged) dark current on the signal
pattern registered by the array, but differences between elements, which inevitably
exist in any array of detectors, result in so-called fixed pattern noise and dark
current non-uniformity. Both have an impact on the read-out noise, as well as
several other sources acting in the electrical circuitry of the device.

It is the read-out noise r.m.s. value that limits the low end of the registered
radiation power and it is this value that is frequently used in the calculation of the
dynamic range of the detector array. Read-out noise r.m.s. is measured usually as
the number of electrons per read-out sequence. Obviously effective cooling of a
device is capable of reducing drastically the dark current and the read-out noise.

Problems

4.5. (a) Find the minimum flux of photons which can be detected by a sensor of
NEP = 10−9 W in visible light operated at a frequency of 50 MHz. (b) Might a
fluctuation of 20% be reasonably observed in this flux?

4.6. Assuming the gap of silicon to be UG = 1.1 V, calculate the possible reduction
in dark current of a CCD if it is cooled from room temperature (25◦C) to 0◦C.

4.7. A CCD array of 7 × 7 µm pixel size is operated at a video rate (30 frames
per second). It has saturation exposure Esat = 0. 2 µJ/cm2, quantum efficiency
η = 0. 2, and read-out noise of 50 electrons. What is the dynamic range of the
CCD?
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4.3. Single Electro-optical Detectors (Photocells,
Photomultipliers, Semiconductor Detectors,
Bolometers)

Photoelectric Cells

A photoelectric cell consists of two electrodes, cathode and anode, placed in an
evacuated vessel (tube) transparent for incoming radiation (see Fig. 4.3). An
external voltage source provides an appropriate voltage drop, V , between the
electrodes. Operation of the cell is based on the photoelectric effect obeying
Einstein’s equation:

Eph = hν = Wes + mV2

2
(4.15)

which states that the incident photon energy is equal to the sum of the photoelectric
work function (work of escape), Wes, necessary for an electron to escape from the
photocathode and the kinetic energy of the electron just after leaving the electrode.
The work function depends on the properties of the photocathode material (for
example, for Cs it is 1.8 eV whereas for Ge it is 4.5 eV). It is understandable that
Wes causes a limitation on the wavelengths at which the photoelectric effect (and
therefore the electron current in the cell) can be obtained, namely: (Eph)min = Wes.
As a result, a maximum wavelength (sometimes called the threshold wavelength)
exists that is still capable of releasing the electron:

λmax = hc

Wes
= 1. 240

Wes
(4.16)

(Wes in eV and wavelength in µm). This means that for any wavelength larger than
the value of Eq. (4.16) there is no way to get a photocurrent, neither by increasing
the voltage drop nor by concentrating more photons on the photocathode.

Figure 4.3 Schematic of a photocell.
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Figure 4.4 Typical graph of photocurrent vs. voltage of a photocell at different radiation
fluxes.

Obviously it is easier to construct cells for UV or violet wavelengths. However,
there are a number of photocathodes enabling one to register radiation in the yellow
or red part of the visible range (Cs–Sb deposited on lime glass or quartz) or even
radiation in the near infrared (Cs–O–Ag cathode deposited on polished lime glass,
for instance).

The quantum efficiency of photoelectric cells is usually in the range of 10 to
25%. The main noise mechanism is evidently the shot noise. A typical graph of
cell current vs. voltage supplied is shown in Fig. 4.4. As is evident from this graph
there is a linear zone which is followed by a zone of saturation (all generated
electrons are participating in the cell current and a further increase of voltage
cannot pull more electrons to the anode). The higher the radiation intensity (the
flux �) the larger the number of electrons and the higher the saturation current in
the cell.

Photomultipliers

The main disadvantage of a single photocell is its low-level photocurrent. The
situation can be improved drastically if one adds to the cell a process of electron
multiplication. This process is based on acceleration of the photoelectrons by an
appropriately adjusted electric field and conversion of the excess kinetic energy in
secondary emitted electrons. The secondary electrons are further accelerated and
cause more electrons to appear, and so on, until the required level of output current
is achieved. The number of repeated stages of amplification is usually 8 to 12, and
all of them are embedded in a single device, together with the primary photocathode
section, comprising the complete photomultiplier tube. The electrodes emitting the
secondary electrons are called dynodes and obviously the voltage drop should be
set between each two adjacent pairs of dynodes.

A schematic of a typical photomultiplier is depicted in Fig. 4.5. The photocath-
ode is made of a material of appropriate quantum efficiency and is followed by
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Figure 4.5 Schematic of (a) a photomultiplier and (b) the voltage supply to the dynodes.

the electron focusing and acceleration section and then by the section of dynodes,
ending with the anode electrode. The output signal is created as a voltage on a load
resistor RL. The main parameter of the photomultiplier is its total gain, Gtot = Gn,
where n is the number of dynodes and G is the gain of a single dynode. The anode
current is related to the photocathode current as

ia = iph.c.G
n. (4.17)

The dominant noise in the photomultiplier is shot noise. It can be shown that
fluctuations of the anode current can be described by a formula similar to Eq. (4.11):

i2a.Sn = 2eia × �f × Gn+1/(G − 1) (4.18)

and consequently the signal-to-noise ratio at the output is lower than that of the
photocathode:

SNRPhM = SNRPhc × G − 1

G
(4.19)

The rise time and fall time of the photomultiplier signal are very small, so that
these devices enable one to handle information at a rate of up to 100 MHz. As
to the saturation level of incident radiation, one should keep in mind that usually
photomultiplier electrodes, cathode or dynodes or anode, work properly if the
current density does not exceed 100–150 nA/cm2.

Semiconductor Detectors

With regard to the primary processes in the material, semiconductor detectors act
in a way opposite to that which occurs in laser diodes and LEDs as described
in Chapter 3. Namely, they convert directly radiation energy into an electric
current generated in the semiconductor material. Energy diagrams of typical semi-
conductors exploited for detecting radiation are depicted in Fig. 4.6. In a pure
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Figure 4.6 Energy diagrams of (a) intrinsic and (b) extrinsic semiconductor detector
materials.

semiconductor substance (intrinsic case) charge carriers (electrons) become free
while absorbing energy of incident photons if this energy is enough to promote
the electrons from the valence band to the conduction band. Again, as in the case
of photocathodes explained earlier, there is a principal limitation of the photon-to-
electron conversion process: the gap of the forbidden zone. The photon energy must
be greater than Eg and therefore there exists a limiting (maximum) wavelength at
which detection of light occurs in the semiconductor:

λmax = 1. 240

Eg
(4.20)

where the wavelength is in µm and Eg is in eV. For Ge, for example, the gap is
0.66 eV and for Si it is 1.09 eV, both semiconductors evidently being suitable for
IR radiation detection as well as for visible radiation detection.

In extrinsic semiconductors an additional energy level might occur inside the
forbidden zone as a result of impurities inserted (deliberately) in the crystal lattice.
This level can be close to the conduction band or close to the valence band. The
first case is referred to as a donor level and the second one as an acceptor level. The
donor level might lose electrons which accept additional energy from the incident
photons and jump into the conduction zone yielding an excess of free negative
carriers (this case is presented in Fig. 4.6b). The acceptor level might receive
electrons from the valence band, again as a result of absorbing photons, and then
a lack of electrons (holes) is created in the substance. Due to internal processes in
the material these holes move like electrons, but in the opposite direction, as an
external electric field is applied. These two kinds of extrinsic semiconductors are
commonly addressed as n-type (negative carriers) and p-type (positive carriers).
Examples of the n-type are Cd–S (Eg = 2.4 eV) and Cd–Se (Eg = 1. 8 eV)
and of the p-type are Ge:Hg and Ge:Cd. If two semiconductor materials, one of
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Figure 4.7 Schematic of a photoconductive detector.

n-type and the other of p-type, are put in contact with each other a p–n junction is
created where carriers of both types are generated when the junction is exposed to
radiation of an appropriate wavelength. These p–n junctions are widely exploited
in semiconductor detectors.

A great variety of architectures have been developed for semiconductor devices.
We will mention here two main groups: photoconductive detectors and photo-
voltaic detectors. A schematic of the first type is presented in Fig. 4.7. Electric
current in a circuit comprising a source of DC voltage, V , and a load resistance,
RL, connected in sequence with the detector of resistance Rd, is affected by the
electrons liberated into the conduction band by incident photons. The short current
of the detector illuminated by radiation of power Pλ is determined as follows (see
Keyes, 1977):

iSc = Pλ

λe

hc
ηµτ

V

a2
(4.21)

where η is the quantum efficiency of the detector material, τ and µ are the carrier
lifetime and mobility, and a is the size of the detector in the direction of cur-
rent propagation. Assuming Rd � RL one can get from Eq. (4.21) the following
expression for the output signal (voltage on the load resistor):

VL = Pλ

λ

hc
ητ

V

abtn
(4.22)

where a, b, and t are dimensions of the detector and n is the volume concentration
of the charge carriers.

Photovoltaic detectors (also called the photodiodes) consist of a p–n junction
which actually creates the electric field and excess of moving carriers while it is
exposed to the incoming radiation. Hence, in general, such a detector is capable of
generating an output signal without being connected to an external voltage source
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Figure 4.8 Schematic of a photovoltaic detector: (a) without an external voltage source;
(b) with a load resistor; (c) typical current vs. voltage characteristics.

(see Fig. 4.8a). In practice, however, a circuit with a voltage source and a load
resistor is often exploited (Fig. 4.8b). Moreover, usually photodiodes are operated
at a negative voltage bias. On a photocurrent vs. voltage graph, like that shown
in Fig. 4.8c, the horizontal section defines the operating range and each curve is
related to a corresponding radiation flux.

Both shot noise and thermal noise are experienced in semiconductor detectors
and frequently the working range is chosen around the point where the r.m.s. values
of both noises become equal. As to the time characteristics, these detectors can be
operated at high frequencies up to hundreds of MHz and even sometimes in the
GHz range.

Thermal Detectors

In thermal detectors there is no generation of photoelectrons. Instead they are based
on the increase of resistance with temperature resulting from absorption of incident
radiation. Such a detector, called a bolometer, is shown schematically in Fig. 4.9.
The key element of the device is a thin layer (B1) of a conductor material with a

Figure 4.9 Schematic of (a) a bolometer and (b) a Winston bridge with a two-layer
detector.
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high temperature dependence of resistance and an as low as possible heat capacity.
This layer is usually deposited on a small glass substrate positioned in a vessel
transparent to the measured radiation. High sensitivity to temperature variation can
be achieved if layer B1 is appropriately designed. However, the selectivity of a
single-layer device is very poor, since any variation of temperature, both as a result
of incoming radiation and of changes of the surrounding temperature, will cause
a change of the output signal. To overcome this shortcoming usually two identical
layers, B1 and B2, are deposited on two opposite sides of the glass substrate and
both are connected to a Winston bridge (see Fig. 4.9b). Since only the first layer
is exposed to incoming photons while any other fluctuation affects both layers,
the measured signal originates from the incoming radiation only (obviously if the
bridge is initially set to zero).

Bolometers enable one to detect radiation powers of as low as 10−10 W. The
main advantage of the device, however, is its ability to operate in very wide spectral
range, usually from the visible to far infrared (up to 20–25 µm), this range being
limited by the transparency of the housing input window.

Problems

4.8. A photomultiplier comprises a photocathode made of K–Cs–Sb (quantum
efficiency of 25%) and eight stages of secondary amplification, each with a single
dynode of 2.5 gain. The device is designed for measurement of radiation of 10−9 W
at 400 nm wavelength. Assuming the circuitry is operated at room temperature,
find the optimum load resistance of the device.

4.9. A photomultiplier cathode is of 2 cm in size and 50 mA/W responsivity.
Assuming that the maximum permissible photocurrent density is 120 nA/cm2,
find the saturation optical power.

4.10. Find the maximum voltage drop and the maximum dissipated electric power
on a load resistor of 10 k	 incorporated in the output circuitry of a detector
with the following performance parameters: η = 0. 17 for λ = 400 nm; NEP =
10−15 W/Hz1/2; DR = 1011; �f = 10 kHz.

4.11. Two detectors made of the same optically sensitive material, but of different
active size, A1 = 10A2, are examined for some application. The optical system
is corrected according to the size of the detector, so that the whole light spot of
incident radiation is concentrated on the active area of the detector in either case.
What benefit, if any, can be gained by using one of the detectors rather than the
other?
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4.4. Detector Arrays (One-dimensional Arrays and CCD and
CMOS Area Sensors)

Simple Arrays

There are several reasons why embedding a number of sensors in a single housing
might be attractive for many applications. One of the main reasons is the ability
to analyze the spatial distribution of incoming radiation without having to move
the detector. The simplest case is a two-element detector (see Fig. 4.10a) allowing
one to find the center of a light spot in the direction OX. Another example is a
four-quadrant detector (Fig. 4.10b) capable of finding the center of a light spot in
both the OX and OY directions. This is done by registering and comparing first
the A+B signals vs. C+D signals and then the A+C signals vs. B+D signals.
Due to the simplicity of signal processing this type of detector was realized first in
analog electronic circuitry and such a configuration was exploited for many years
in various optical navigation systems.

New features arise if more than two elements in one line are configured. In
this case advanced signal processing might be applied allowing one to find the
characteristic points of a light spot (a maximum or a median of the spot intensity
distribution), providing the uncertainty is smaller than the pitch p of the array
of elements (see Fig. 4.10c; details of this approach are explained in Problems
4.16 and 4.17). Usually a multi-line detector is composed of a number of pho-
todiodes separated mechanically (by grooves) on a common substrate, each one
having separate wires for voltage supply and signal output. At present detec-
tors are commercially available with 8, 16, 32, to 128 elements. Evidently
a disadvantage of such an array is the great number of wires to be handled.
This problem is solved by applying the technology of charge coupled devices
(CCDs).

Figure 4.10 Simple detector arrays: (a) two-element detector; (b) four-quadrant detector;
(c) multi-element line detector.
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CCD Detectors

A CCD is an integrated circuit (chip) built of a silicon substrate above which a
number of polysilicon transparent electrodes are located (Fig. 4.11a). The elec-
trodes, isolated from the substrate by a SiO2 layer, are divided in several groups
(three in the figure), each group being connected to a separate wire having one of
three electric potentials, �1, �2, or �3. Photons of the incident radiation travel
through the electrodes and are absorbed in the upper part of the substrate generat-
ing photoelectrons. During the time, τexp, to which the chip is exposed to radiation
the photoelectrons are collected in the vicinity of the electrodes where the electric
field creates potential wells (shown by dotted lines in Fig. 4.11a). As the exposure
time is ended a fast read-out procedure begins (τread � τexp) during which the
potentials �1, �2, and �3 vary in such a way that the electrons collected under
each electrode are transferred (shifted) in a three-step process to the adjacent ele-
ment, all together as one block, as depicted in Fig. 4.11b where potential wells in
three sequential time intervals, t1, t2, and t3, are shown.

The variation of the wire potentials is then repeated, pushing the electrons
further along the array, until they finally come to the output diode and are read
out to the external electronic circuit. Thus, at the output of the CCD arrange-
ment photoelectrons are emerging as charge pulses, sequentially, one by one,
through a single wire, no matter how many elements there are in the array. The
charge values represent the spatial distribution of light intensity along the CCD line
(Fig. 4.12).

The type of detector discussed above is a one-dimensional (1-D) array. Further
development of the CCD approach results in two-dimensional (2-D) arrays widely
exploited as area sensors capable of capturing a full image in a single shot. Avariety
of possible architectures have been implemented: one of them is shown schemati-
cally in Fig. 4.13a. The image area is a 2-D array of elements (picture elements, or

a) b)

Figure 4.11 CCD detector: (a) schematic of a basic configuration; (b) potential wells and
charge transfer.
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Figure 4.12 CCD output charge signals.

pixels), each one is like that of Fig. 4.11a and altogether they are arranged in rows
and columns connected horizontally to wires having potentials �V1, �V2, or �V3

(vertical shifting) and vertically to the elements of the line readout shift register
(horizontal shifting guided by potentials �H1, �H2, and �H3). As in the case
of a line array, the sensor is first exposed to incident radiation (exposure time)
followed by a read-out procedure governed by the timing of switched vertical and
horizontal potentials. That is, first the lowest horizontal line is transferred at once
to the line shift register and read out there, then all the lines go vertically down
one step and the next line (initially second from the bottom) is read out through
the same line shift register, and so on, until all the horizontal lines are read out
in sequence. Again, the exposure time should be much greater than the read-out
time, in order to minimize additional noise caused by incident photons while the
previously collected charges are still on the chip.

Modern technology allows one to manufacture CCD chips with a tremendous
number of pixels (usually hundreds of thousands, but in some cases, like in high-
resolution digital cameras, up to several millions). Special measures should be
undertaken in order to handle so many output charge pulses, to relate properly
each one to a corresponding pixel of the CCD matrix, and to reveal in such a
manner the incoming image incident on the chip during the exposure time period.
The way this is done is to convert the CCD output to a standard video signal
exploited for many years in TV engineering and communication. This becomes
even clearer if one keep in mind that our final goal is to reverse the output electric
signals of the CCD into variation of brightness and represent them using a standard
display device, either a video monitor or a computer terminal. A CCD area sensor
followed by electronic circuitry where conversion of CCD pulses into a video
waveform is carried out in real time constitutes the complete device called a video
CCD camera. We will mention here only a few features of video signals which
are important for applications from the optical point of view. More details can be
found, for example, in Inglis (1993).
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Figure 4.13 (a) 2-D CCD array and (b) output video signal.

There are several commonly used standards for video signals. All of them are
based on the main approach that a display device performs a scanning of the screen
area of the monitor, line by line, creating a raster, and the incoming video signals
have built-in information at the beginning and ending of each line (synchronizing
pulses, or simply “sync”). Near each sync there is a blanking pulse during which
the display tube (screen) is darkened and the electron beam of the tube jumps to the
starting point of the next line. Thus, the useful information on each line (l1, l2, l3,
etc.) is between the sync and blanking pulses of two adjacent lines, as shown in
Fig. 4.13b. It should also be taken into account that the black level (BL) signals
are usually represented by a higher voltage than the white level (WL) (maximum
illumination).

The total number of lines corresponding to a full screen is either 525 (USA
standard) or 625 (European standard). However, in order to reduce the bandwidth
requirements of the monitor the full image is displayed in two parts, first all even
lines and second all odd lines. Hence, the full image signal (called the frame) com-
prises two half-image signals called the first and the second fields (even lines and
odd lines, respectively). This method of image display is referred to as interlaced
images. In the last few years, however, the bandwidth available has noticeably
improved and CCD video cameras outputting non-interlaced images (called also
progressive scan) have become more popular. In any case the standard video frame
rate is 30 frames/s forAmerican standard (exposure time of about 30 ms for a single
frame) and 25 frames/s for European standard (τexp ≈ 40 ms).
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Returning to CCD sensor features, the spectral responsivity of most CCDs is
from 400 nm to 1,100 nm, with a maximum at 600 to 850 nm. To keep the CCD
spectral response as close as possible to that of the human eye an IR cut-off filter is
commonly inserted in front of the CCD chip, reducing the overall sensitivity to IR
wavelengths almost to zero. The saturation level of most CCDs is about 0.2µJ/cm2.
For higher illumination levels the number of electrons generated under a single
electrode (pixel) exceeds the ability of the potential well to retain them locally
and the photoelectrons start traveling along the silicon substrate interfering with
the charge transfer process. However, there are commercially available CCDs
designed specially for high dynamic range and their potential well is saturated
by 300,000 or even 600,000 electrons. On the other hand, low-intensity signals
are limited by dark current (for long exposure) and by read-out noise. Both can
be effectively reduced by cooling the CCD chip (see also Section 4.2). With no
special adaptations the dynamic range of a CCD is about 200–300. The spatial
resolution is dictated by the pixel size. For 1-D arrays a pixel size as small as 3–
5 µm is not unusual. 2-D arrays vary significantly in chip size (from 1/6′′ up to
2′′) as well as in single pixel size (from 5 to 50 µm).

It should also be mentioned that some area matrix sensors are based on pho-
todiode arrays (CCPD). They are usually faster than CCDs with potential wells
and enable one to get a higher frame rate (up to 1,000 frames/s). Arrays of CMOS
elements are also available and are becoming more and more popular. They are
also based on photodiode elements, but have a higher level of integration than
CCPDs or CCDs and therefore can be more compact in size. However, the noise
level of CMOS sensors is higher and the sensitivity is lower than that of CCD
sensors.

2-D detector arrays intended for color imaging have special features with regards
both opto-mechanical architecture and video signal formats. These are discussed
in Chapter 10.

Problems

4.12. Optical tracking. A robot equipped with a four-quadrant detector for nav-
igation performs tracking of a target object. At time t1 the readings of the
quadrants are S(1)

A = 10; S(1)
B = 60; S(1)

C = 5; S(1)
D = 20 (in relative units). Then

the motion correction system is activated and the new readings (at t2) become
S(2)

A = 15; S(2)
B = 40; S(2)

C = 65; S(2)
D = 70. Is correction carried out properly?

4.13. If two CCD area sensors having the same number of pixels and working at
the same video standard rate but of different size (e.g., the first with a 1/3′′ chip
and the second with a 2/3′′ chip) are available for some application, is there any
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advantage of one of them over the other? If yes, what performance parameter is
affected by this choice?

4.14. An optical system of 4 cm entrance pupil and 50 mm focal length creates
an image of an object plane 10 m distant from the system onto a CCD area sensor
of 7 × 7 µm pixel size, 25% quantum efficiency, 100 electrons read-out noise,
and saturation exposure Esat = 0. 2 µJ/cm2. Assuming that the reflectivity of the
object plane is R = 0. 6 and the transparency of optics T = 90%, find the mini-
mum illumination level required for proper differentiation of objects at minimum
contrast C = 5%.

4.15. An optical system creates an image of 1.2 mm field of view on a CCD area
sensor at magnification V = −10. The required resolution of imaging is 200 lp/mm
(in the object plane). Find the minimum required number of pixels in each line of
the CCD and the size of a single pixel.

4.16. Image location with sub-pixel accuracy. A line CCD detector built of 10 µm
pixels is located in the output plane of a spectrometer. The spot of a spectral
line captures three sequential pixels and the corresponding readings are S1 = 33;
S2 = 127; S3 = 80 in relative units (called gray levels; they are integer numbers
resulting from analog-to-digital conversion and digitization of the CCD output
signals). Assuming the light distribution inside the spot to be a symmetrical func-
tion: (a) find the location of the spot relative to the center of the second pixel;
(b) how precise is the result if SNR of the CCD output is 30:1?

4.17. Sub-pixel accuracy in 2-D space. A light spot is incident on a CCD area
sensor built of pixels of 10 × 10 µm in size and captures a 3 × 3 pixels area. The
corresponding readings of the sensor pixels constitute the following matrix:

20 110 57

30 150 80

12 70 35

Assuming the spot is symmetrical in both the OX and OY directions, find the
location of the spot center with regard to the center of pixel S00 where the reading
is 150 relative units.

4.5. Solutions to Problems

4.1. Substituting the wavelength and the quantum efficiency in Eq. (4.1) yields

R = η × λ

1. 24
= 0. 1 × 0. 83

1. 24
= 66. 9 mA/W.
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4.2. As the figures of merit of both detectors are equal, we get from Eq. (4.4)

D∗ =
√

A1 × �f

NEP1
=

√
A2 × �f

NEP2
; and A1 = A2

(
NEP1

NEP2

)2

= A2

(
2 × 10−14

4 × 10−15

)
= 25A2.

Denoting the level of illumination as E we obtain from Eq. (4.1) between
responsivity and quantum efficiency:

idet 1

idet 2
= EA1R1

EA2R2
= A1

A2
× η1

η2
= 25

0. 3

0. 5
= 15.

Therefore, using the first detector will cause 15 times greater current under the
same illumination conditions.

4.3. Keeping in mind the charge of a single electron e = 1. 6 × 10−19 C we
calculate the average noise current as in = 2×106×1. 6×10−19/10−3 = 0. 32 nA.
From Eq. (4.1) we get the responsivity of the detector R = (0. 86 × 0. 83)/1. 24 =
0. 576 A/W which enables one to find the NEP and detectivity: NEP = in/R =
0. 32 × 10−9/0. 576 = 0. 556 × 10−9 W; D = 1/NEP = 1. 8 × 109 W−1. Finally,
by substituting the calculated values in Eq. (4.4) we obtain:

D∗ = D
√

A × �f = 1. 8 × 109
√

3 × 10−2 × 105 = 9. 86 × 1010 cmHz1/2 W−1.

4.4. If a constant optical power P is incident on the detector active area its current
finally will achieve the value PR amperes (where R is the responsivity of the
detector). However, due to electrical inertia of the detector circuitry the current
increases from zero to the maximum level gradually and this gradual growth can
be described as

iout(τ ) = RP

[
1 − exp

(
− τ

t0

)]
.

Since the rise time is defined as the time duration required for the detector
current to rise to 90% of the maximum value, we get RP[1 − exp(−τrise/t0)] =
0. 9RP; τrise = t0(− ln 0. 1) = 2. 3 × 0. 5 = 1. 15 ns. Also, τFall = 2. 5 × τrise =
2. 645 ns. Hence, the maximum working frequency (and the bandwidth) of the
circuitry responding to the pulse of infinitesimal duration δ → 0 is

fmax = 1

2(τrise + τFall)
= 109

2(1. 15 + 2. 645)
= 124 MHz.
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4.5. (a) For 50 MHz maximum frequency the corresponding sampling time is

τ = 1

2�f
= 106

2 × 50
= 10−8 s.

Keeping in mind that a single photon in the visible (λ = 0. 5 µm) has energy hc/λ =
4 × 10−19 J we calculate the average number of photons coming to the detector at
time τ at minimum illumination level as follows: N = NEP × τ /(4 × 10−19) =
25 photons.

(b) By substituting this value in the Poisson distribution (Eq. (4.6)) we find the
corresponding probability:

P(N) = 2525e−25

25! = 7. 95 × 10−2 ≈ 8%.

A fluctuation of 20% from the average value means that the number of photons
may be reduced to as low as N = 20 and the same expression (Eq. (4.6)) in this
case yields

P(20) = 2520e−25

20! = 5. 19 × 10−2 = 0. 65P(N).

Assuming the fluctuations in the range (+/−)Pmax/e = (+/−)0. 37Pmax around
the maximum value Pmax occur frequently enough to be observed, we draw the
conclusion that 20% fluctuation in our case (i.e., variation of the number of photons
from 25 to 20) will appear in a reasonable time interval.

4.6. Expression (4.14) allows for the calculation of the dark current at both
temperatures:

T1 = 25◦C = 298 K: i(1)
d.c. = const × exp

(
− 1. 1 × 1. 6 × 10−19

2 × 1. 386 × 10−23 × 298

)

= const × exp(−21. 306)

T2 = 0◦C = 273 K: i(2)
d.c. = const × exp

(
− 1. 1 × 1. 6 × 10−19

2 × 1. 386 × 10−23 × 273

)

= const × exp(−23. 257)

and therefore

i(1)
dc

i(2)
dc

= exp(1. 951) = 7. 04.

This means that cooling by 25◦C causes the dark current to decrease by a factor
of about 7.
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4.7. Saturation exposure multiplied by the pixel size and divided by the exposure
time of a single frame (1/30 s) gives the saturation optical power:

Psat = 0. 2 × 10−6 × 0. 49 × 10−6

1/30
= 3 × 10−14 W/px.

Or in photons per pixel

Psat = 3 × 10−14

4 × 10−19
= 75 × 103 photons/s/px

(taking into account that a single photon of 0.5 µm wavelength has an energy of
4 × 10−19 J). Furthermore, the maximum current from a single pixel is imax =
Psatη = 15, 000 electrons/px and therefore the dynamic range can be found from
Eq. (4.5) as follows: DR = imax/in = 15, 000/50 = 300.

4.8. We start with the calculation of the responsivity of the cathode from Eq. (4.1):

R = ηλ

1. 24
= 0. 25 × 0. 4

1. 24
= 0. 0774 A/W

and proceed further to the cathode current: icth = R × 10−9 = 7. 74 × 10−11 A.
Since the total gain is Gtot = 2. 58 = 1, 526, the current on the anode found from
Eq. (4.17) is ian = 7. 74 × 10−11 × 1, 526 = 1. 18 × 10−7 A.

We define the optimal point as that where the mean values of the shot noise
current and the Johnson noise current become equal, meaning iSn = √

2eian�f =
iTn = √

4kTRL�f , which yields

RL = 4kT

2eian
= 4 × 1. 381 × 10−23 × 300

2 × 1. 6 × 10−19 × 1. 18 × 10−7
= 439 k	.

4.9. The maximum current from the whole area of the cathode is

imax = 120 × 10−9 × π × 22

4
= 377 nA.

This current is caused by radiation of the following power: P = 377×10−9/(50×
10−3) = 7. 54 µW.

4.10. Since the responsivity of the detector is R = (0. 17 × 0. 4)/1. 24 = 54. 8 mA/W
and the maximum acceptable radiation power is Pmax = DR × NEP × �f 1/2 =
1011 × 10−15 × 102 = 10−2 W, the corresponding current generated by the detec-
tor will be imax = PmaxR = 10−2 × 54. 8 × 10−3 = 548 µA. Then the voltage
drop on the load resistor is 5.48 V and dissipated electric power is estimated as
Pel = imax × VL = 548 × 10−6 × 5. 48 = 3 mW.
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4.11. Assuming the shot noise is the dominant noise of the detector circuit and
taking into account that the dark current is proportional to the square root of
the active area, id.c. ∝ √

A, on one hand, and that the useful generated current
is is the same for both cases (all energy is captured by the active area), on the
other hand, one can draw to the conclusion that replacing a smaller detector by a
larger one will cause the mean fluctuation to increase, as follows from Eq. (4.11):√

i
2
n = √

2eid�f = √
2e(is + id.c.)�f . Hence, the signal-to-noise ratio will be

higher for a smaller detector:

SNR = is√
i
2
n

= is√
2e(is + id.c.)�f )

.

Therefore, the smaller the detector the higher the selectivity of the system, i.e.,
the ability to differentiate between two cases of close (but still different) radiation
intensity.

4.12. We describe the current position of the tracking object (the target) by the
vector

−→
T (TX , TY ) with two components referred to the coordinate system with

origin in the center of the detector (see Fig. 4.14). Components of this vector are
related to the readings of the detector quadrants as follows:

TX = (B + D) − (A + C)

A + B + C + D
; TY = (A + B) − (C + D)

A + B + C + D
.

The goal of the tracking navigation is evidently the zero vector and correction at
each step is aimed at reducing the modulus of the vector relative to its previous
value.

At time t1 we get from these formulae TX = (80 − 15)/95 = 0. 684; TY =
(70 − 25)/95 = 0. 474 and the vector length is 0.832.After correction, at time t2, the
corresponding values are TX = (110 − 80)/190 = 0. 158; TY = (55 − 135)/190 =
−0. 421;

∣∣−→T ∣∣ = 0. 450. As we see, the target vector is indeed closer to the origin,
meaning that the correction works properly.

Figure 4.14 Problem 4.12 – The target vector plane.
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Figure 4.15 Problem 4.14 – Low-contrast imaging with a CCD.

4.13. If the total number of pixels remains the same for both CCDs the size of a
single pixel is greater for a bigger chip. Therefore a larger number of photoelectrons
can be collected in the pixel potential well, meaning that the saturation level is also
increased. Thus, using the CCD with the larger chip allows for operation at higher
illumination level. Furthermore, assuming the read-out noise remains the same
in both cases, we may expect the bigger chip is also better with regards dynamic
range.

4.14. Let two points, A and B, in the object plane P have slightly different reflec-
tivities RA and RB which yield the intensity of the reflected light to be (see
Fig. 4.15)

IA = E0s′
pxRA

ω

2π
; IB = E0s′

pxRB
ω

2π

where E0 is the illumination level, measured in lx, on the plane P and s′
px is the

area conjugate with a single pixel of the CCD. The contrast C of the object defined
as C = (IA − IB)/(IA + IB) will cause a corresponding difference in the electric
charges of the CCD pixels: C = (NeA − NeB)/(NeA + NeB) = �Ne/2Ne = 0. 05.
Since the difference between the number of electrons in two relevant pixels should
be greater than the read-out noise, �Ne = 0. 05 × 2 × Ne ≥ 100 electrons, we can
state that the signal charge on the pixel should be equal to 1,000 electrons at least. To
find the corresponding illumination level E0 we should take into account that: (i) the
optical magnification (actually minification) of the imaging optics is V = S′/S =
f ′/S = −(50/104) = −1/200; (ii) the active area of a single pixel spx = 49 ×
10−12 m2; (iii) the solid angle ω = π (402)/(4 × 108) = 12. 56 × 10−6 sr; (iv) the
exposure time at standard video rate is τexp = 1/30 s; (v) the conversion factor
from photometric units to radiometric units in the visible is K = 683 lm/W (for
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simplicity we neglect the spectral dependence of luminous efficacy, see details in
Chapter 10); and (vi) a single photon in the visible has an energy of 4 × 10−19 J.
Then we get for the number of electrons generated in a single pixel of the CCD by
incoming light:

Ne = E0

K
× ω

2π
× spx

V2
× τexp × ηRT

4 × 10−19
= 1, 000

which gives

E0 = 103 × 4 × 10−19 × 0. 25 × 10−4 × 683

2 × 10−6 × 49 × 10−12 × 0. 033 × 0. 25 × 0. 6 × 0. 9
= 15. 64 lx.

What remains to check is that this illumination level does not cause saturation of
the CCD. At saturation a single pixel of the CCD receives a number of photons
Nph.sat:

Nph.sat = 0. 2 × 10−6 × 49 × 10−8

4 × 10−19
= 2. 45 × 105 photons/px

which creates 61,000 electrons (η = 0. 25), i.e., illumination level E0 generates
less than 2% of the number of electrons at saturation.

4.15. A spatial frequency of 200 lp/mm is equivalent to a periodic object with
period T = 1/200 = 5 µm. In the CCD plane the corresponding period is T ×V =
50 µm and it should be equal twice the pixel size (Nyquist sampling theorem).
Therefore, a single pixel is 25 µm and the number of pixels in one line of the
CCD is

N = 1. 2 × 10

25 × 10−3
= 480 px.

4.16. Let the light intensity distribution on the CCD look like that of Fig. 4.16.
(a) We assume that all pixels are of the same size p and that the gap between

pixels can be neglected. We also choose the coordinate system XOY with origin
in the center of the second pixel and assume that the function F(x) describing
the intensity distribution of the incident spot is symmetrical, it is spread over the
interval (−r < x < r), and its maximum is at a distance a from the point x = 0.
To determine location of the spot one should choose some characteristic point in
the spot and find its coordinate. Intuitively such a point might be the point of
maximum intensity inside the spot. However, it turns out that better results can be
obtained by choosing the median, m, which is defined as the center of symmetry
of F(x):

m∫
−r

F(x′) dx′ =
r∫

m

F(x′) dx′.
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Figure 4.16 Problem 4.16 – Light spot incident on three sequential pixels.

If the function is absolutely symmetrical the median, of course, coincides with the
point of the maximum, otherwise these points have slightly different coordinates.
In the case shown in Fig. 4.16 our goal is to find the point x = a. Keeping in mind
that the light intensity incident on the pixel is just averaged over the pixel area and
denoting

S1 =
0.5p∫

−1.5p

F(x − a) dx; S2 =
0.5p∫

−0.5p

F(x − a) dx; S3 =
1.5p∫

0.5p

F(x − a) dx

we have for the median

S1 +
a∫

−0.5p

F(x − a) dx =
0.5p∫
a

F(x − a) dx + S3

or

S1 + S2 = 2

0.5p∫
a

F(x − a) dx + S3. (A)

The integral in Eq. (A) can be expressed as follows:

I =
0.5p∫
a

F(x − a) dx = F̃(x − a) × (0. 5p − a). (B)

Expression (B) is a precise one, but the value F̃(x − a) from the interval [a; 0. 5p]
is not known. We substitute it with the value F∗ = S2/p, then Eqs. (B) and (A)
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Figure 4.17 Problem 4.17 – Light spot incident on 3 × 3 pixels of a 2-D array.

yield S1 + S2 − S3 = 2S2(0. 5 − a/p) and finally

a

p
= 0. 5

(
S3 − S1

S2

)
. (C)

It should be mentioned that the same approach can be exploited if the spot captures
more than three pixels. In such a case instead of Eq. (C) one gets

a

p
= 0. 5

(
�3 − �1

S2

)

where �1 and �3 are the sums of the signals on the left and on the right from the
center pixel, respectively. By substituting the data of the problem in Eq. (C) we
get a/p = (80 − 33)/(2 × 127) = 0. 185 and therefore the spot center is shifted
1.85 µm right from the center of the second pixel.

(b) To estimate the accuracy of Eq. (C) we denote z = a/p and proceed as
follows:

�z

z
= �(S3−S1)

S3−S1
+ �S2

S2
; �z = 2�S

2S2
+ �S2

S2
z = (1+z)

�S

S2
= (1+z)

1

SNR
. (D)

In our case we have �z = (1 + 0. 185)/30; �a = �z × p = 0. 40 µm.

4.17. We use the same approach as in Problem 4.16 to treat the function
F(x, y) of two coordinates and denote the matrix of the relevant pixels as
Sij (i = −1; 0; 1, j = − 1; 0; 1) (see Fig. 4.17). Let the pixel size in the OX
or OY direction be p. Aiming to find the segments ax and ay we define again the
median, as in the 1-D case, but separately for the OX and OY direction. Then for
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the location of ax we have
∫ ax

−1.5p

∫ 1.5p

−1.5p
F(x − ax , y − ay) dx dy =

∫ 1.5p

ax

∫ 1.5p

−1.5p
F(x − ax , y − ay) dx dy

which can be written in the following manner:

∑
j

S−1,j +
ax∫

−0.5p




−0.5p∫
−1.5p

F +
0.5p∫

−0.5p

F +
1.5p∫

0.5p

F


 =

0.5p∫
ax




−0.5p∫
−1.5p

F +
0.5p∫

−0.5p

F +
1.5p∫

0.5p

F




+
∑

j

S1, j. (A)

Substituting again the integrals of F with the average value of the corresponding
pixel: ∫∫

F = Si, jp
2

we obtain from Eq. (A):

∑
j

(S−1, j − S1, j) +
∑

j

S0, j = 2p(0. 5p − ax)

p2
{S0,−1 + S0,0 + S0,1}

and finally

ax = p

2

∑
j

(S1, j − S−1, j)

∑
j

S0, j
. (B)

The median in the OY direction can be treated in a similar way:

ay = p

2

∑
i

(Si,1 − Si,−1)

∑
i

Si,0
. (C)

Thus, the numerical data of the problem give

ax

p
= (57 + 80 + 35) − (20 + 30 + 12)

2(110 + 150 + 70)
= 0. 166;

ay

p
= (20 + 110 + 57) − (12 + 70 + 35)

2(30 + 150 + 80)
= 0. 135

and therefore the center of the spot is located 1.66 µm to the right and 1.35 µm
upwards of the center of the pixel (0,0).
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Chapter 5

Optical Systems for Spectral
Measurements

5.1. Spectral Properties of Materials and Spectral
Instruments

Wavelength-dependent features specific to a material and related to the generation
or propagation of electromagnetic radiation are called the spectral properties of
the material. There are spectral properties corresponding to emission, absorption,
and scattering of electromagnetic waves.

Emission Spectra

The simplest case is spontaneous radiation of a material in the atomic state. It is
well known that each kind of atom is characterized by a specific energy diagram
(Fig. 5.1a): each horizontal line represents the possible level of energy which the
atom, being excited, might possess. Each transition from a higher level (say, 1
or 2) to a lower level (say, 0) is accompanied by emission of a photon of energy:

E1 − E0 = hν1; E2 − E0 = hν2

and this is represented on the wavelength scale (or optical frequency scale, see
Fig. 5.1b) by a corresponding peak (delta-function) called the spectral line. The
height of each peak represents the intensity of the radiation, I , at a specific optical
frequency. This depends on the probability of the transition between corresponding
energy levels (which is described in terms of the number of atoms at each energy
level, the lifetime of the atoms at each level, and some other properties of atoms).
A graph like that of Fig. 5.1b is called the emission spectrum.

159
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Figure 5.1 (a) Energy diagram and (b) emission spectrum.

The main features of the emission spectrum are the location of the spectral
lines and their relative intensities. These features are very specific for each kind
of atom and this is the main reason why the emission spectrum is widely used
for the identification of different atoms present in a compound to be tested. Of
course, the energy diagram and the emission spectrum of many atoms are much
more complicated than the examples shown in Fig. 5.1. This is also true for ions or
molecules where the number of degrees of freedom are significantly higher than
in a simple atom. As a result, the energy diagram has many more possible energy
levels and the corresponding emission spectrum is rich in spectral lines widely
spread not only in the visible, but also in the IR wavelength region.

It should be mentioned that in the numerical and graphical presentation of spectra
three types of units are widely used: (i) wavelength λ (usually in micrometers, µm,
or nanometers, nm, or angstroms, Å); (ii) optical frequency ν = c/λ ( in Hertz, Hz);
(iii) wavenumber N = 1/λ (sometimes also denoted as ν; in cm−1; if λ is in µm
then N = 10, 000/λ cm−1).

In reality each spectral line is far from being a delta-function (Fig. 5.2). It
has a finite width, δλ, and a specific shape, I(λ), governed by several physical
mechanisms of which we will mention here the following basic three:

(a) Attenuation of the atom oscillations while emitting the photons. This causes
a slight, but finite broadening of energy levels; the corresponding width of
the spectral line is called the natural width, δλn, and it is estimated by the
value 1.2 × 10−4 Å (1 Å = 10−8 cm).

(b) Broadening of spectral lines due to collisions between atoms of a radiating
gas, δλc. This can be estimated by the expression

δνc = 2ρ2p√
2πkTm

(5.1)
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Figure 5.2 Spectral lines of finite width and different shapes.

where ρ is the distance between centers of colliding particles of equivalent
mass m and p is the gas pressure of the atom mixture. Its shape is governed
by the formula

Iν = δ

π [δ2 + (ν − ν0)2] (5.2)

where ν0 is the line center frequency and δ is the line width of an infinitely
thin radiating layer.

(c) Broadening due to thermal motion of atoms (Doppler broadening, δλD).
This is described as

δλD = 7. 18 × 10−7λ0

√
T

M
(5.3)

with the spectral line shape as

Iλ = I0 exp

[
−

(
λ − λ0

δλD

)2
]

(5.4)

where T is the absolute temperature and M is the atomic or molecular
weight. Usually the Doppler width is much more significant than the other
broadening factors, especially at high temperatures (see Problems 5.3–5.5).

In practice, in order to observe the emission spectrum of a material (e.g., a metal
alloy) a sample of it (a slab or a rod) is introduced into an electrical discharge arc
where, due to the high temperature, the solid alloy is disassembled into separate
atoms and ions which are energized and start to emit radiation. The arc with the
sample is used as the radiation source positioned at (or projected to) the entrance
plane of a spectral instrument and the emission spectrum of the compound is
created and analyzed in the output plane of the device. Usually an entrance slit is
positioned in the entrance plane of the spectral device. It is the images of this slit
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Figure 5.3 Example of an emission spectrum.

appearing at separate locations corresponding to each active wavelength that create
the emission spectrum in the output plane. An example of such a spectrum created
at the exit of a spectrometer is shown in Fig. 5.3. Different wavelengths appear at
different positions in the horizontal direction. If the spectrum is photographed on
a film then the intensities of the spectral lines are related to the optical density of
the corresponding images on the photograph.

The emission spectra of all chemical elements and many molecules are well
known and tabulated, so that the spectral analysis of an unknown compound
requires careful comparison of the observed emission spectrum with tabulated
data. The concentration of the elements in the compound (which are also usually
unknown) evidently affects the relative intensity of the spectral lines and should
also be taken into account.

Another example of the usefulness of emission spectra comes from astrophysics.
Here valuable information is obtained not only from the position and intensity of
spectral lines (which allow one to identify different elements in the atmospheres
of stars and planets), but also from analysis of the shapes of spectral lines enabling
one to understand different physical processes occurring in the universe.

Absorption Spectra

In the terminology of quantum mechanics absorption of radiation by atoms or
molecules is described in a manner very similar to that of emission of electro-
magnetic waves. It is demonstrated in Fig. 5.4a where absorption of two photons,

Figure 5.4 (a) Energy diagram and (b) absorption spectrum.
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Figure 5.5 Absorption spectrum of solar radiation at the earth’s surface.

the energy of which fits exactly transitions between energy levels 0–1 and 0–2, is
shown. Fig. 5.4b demonstrates the corresponding change in the intensity distribu-
tion of incoming continuous-wavelength radiation from an external source, IS (say,
black body radiation). Obviously, the decrease of intensity of the incoming radia-
tion passing through a mixture of atoms due to absorption phenomena depends on
the number of atoms at various energy levels and, therefore, is influenced by the
concentration of atoms and the optical path of radiation in the absorbing media.

Absorption spectral lines have in reality a finite width governed by the same
conditions and rules as that of emission spectra, as described above.

An example of a real absorption spectrum is presented in Fig. 5.5, which is
the spectrum of solar radiation at sea level on earth (after passing through the
atmosphere). Absorption lines related to oxygen, water, and CO2 are clearly
identified.

Scattering Spectra

A medium transparent to electromagnetic waves is illuminated by radiation of an
external source having a few spectral lines (of frequencies ν1, ν2, etc.). The pho-
tons of the incident radiation are scattered by molecules of the medium according
to the laws of quantum mechanics which take into account not only quantiza-
tion of energy but also quantization of moments of moving particles (rotation
and vibration of molecules and radicals). If the frequencies corresponding to the
molecule motion are ν

(m)
1 , ν(m)

2 , . . . , ν(m)
i , etc., the scattered light comprises all

possible combinations of incident frequencies with those of the molecules, e.g.,
in the scattered radiation spectrum new frequencies appear: ν1

′ = ν1 − ν
(m)
1 ;
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Figure 5.6 (a) Raman spectrum of CCl4 molecules and (b) the spectrum of incident
radiation of a mercury lamp.

ν2
′ = ν1 − ν

(m)
2 ; . . . νk

′ = νk − ν
(m)
i ; etc.; and also ν′

k+1 = ν1 + ν
(m)
1 ; ν′

k+2 = ν1 +
ν

(m)
2 ; . . . ν′

2k = νk + ν
(m)
i , etc. These two groups of new lines are called the vio-

let and red satellites of the corresponding lines of the incident spectrum and the
phenomenon itself is called Raman scattering.

The violet satellites are usually weaker than the red ones, but this difference
is reduced with increasing temperature of the scattering media. In general, inten-
sities of the satellite’s lines are much lower than those of the incident spectral
lines and this leads to difficulties in the observation of Raman spectra in practice.
In spite of this, analysis of Raman spectra has become a powerful tool in the
study of the molecular structure of materials. This is especially true for complex
organic compounds when other (chemical) methods become ineffective or even
useless.

An example of a Raman spectrum is shown in Fig. 5.6. The upper part of the
figure is the spectrum of the incident radiation and the lower part is the spectrum
of scattered radiation. Both kinds of satellites are clearly distinguished.

Luminescence Spectra

Luminescence is defined as the ability of a substance to emit radiation after it is
excited by some kind of incident energy, either radiant or non-radiant, provid-
ing that the excitation is not thermally originated. Luminescent light is definitely
different from thermal radiation – it is governed by different physical laws and
conditions from those mentioned in Chapter 6 (e.g., Kirchhoff ’s law is valid for
thermal radiation of any body but is not applicable to luminescent light). In other
words, luminescence is a property related to a medium which is not in a thermal
equilibrium state.
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Figure 5.7 (a) Absorption and (b) luminescence processes.

The creation of luminescence in a substance excited by some incident radia-
tion is demonstrated in Fig. 5.7. A typical energy spectrum of a substance with
molecular structure is presented in Fig. 5.7a. The energy levels constitute a num-
ber of groups (called the spectrum bands) each one having several lines close to
each other. An incident photon of high energy (UV radiation or X-rays) absorbed
by the molecules of the substance causes the energy to increase from one of the
levels of band 1 to one of the levels of band 3. Another photon of slightly different
energy can be also absorbed causing a transition to another energy level of the same
band. As a result, an absorption band of a certain width is created (see the lower
part of Fig. 5.7a). A small part of the absorbed energy of each incident photon
is lost by the molecule (due to mechanical motion or collisions with other parti-
cles). Then the molecule comes to the lowest energy level of this spectral band.
From here the molecule undergoes a transition to one of the levels of the lower
spectral band, 1, while the corresponding photons are emitted. In a collection of
molecules all possible transitions are realized and the emitted spectrum (spectrum
of luminescence) is a collection of spectral lines typical for given substance (and
practically independent of the kind of excitation photons). Obviously the lumines-
cent radiation has greater wavelength (less energetic photons) than the excitation
radiation (Stokes’ rule):

hνL < hνE

(this effect is indicated in the lower part of Fig. 5.7b).
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An important characteristic of luminescence is the quantum efficiency of the
luminescence process, ηL, defined as the ratio of luminescent energy to the
absorbed energy of the excitation photons:

ηL = EL

Ea
. (5.5)

If a single photon of high energy (short wavelength, λa) causes emission of a num-
ber of photons of different wavelengths, λi, inside the luminescence spectrum, the
following expression is related to the number of photons obtained:

∑
i

Ni

λi
= ηL

λa
. (5.6)

Other important characteristics of luminescence are the time delay between
absorption and emission of radiation and the duration of luminescence. Long-
duration luminescence is usually termed phosphorescence and the short-duration
process is called fluorescence. The latter is widely used in biology and medicine
(e.g., analysis of live cells in fluorescence microscopy or X-ray imagers).

Some important applications (like computed radiography, see Problems 5.9
and 5.10) are based on photostimulated luminescence (PSL). This phenomenon
is realized mainly in solids of complex compounds doped with ions of rear earth
elements (like BaFBr doped with Eu3+ or KBr doped with In2+). In the vicinity of
the doping ions additional energy levels with very long lifetime are created. Such
areas, called F-centers (see Fig. 5.8), enable the energy of incident high-energy
photons to be stored for a long time (level 2), until absorption of additional photons
resulting from an external radiation source (like a laser) stimulates transition to
a new energy level (3) with very short lifetime so that the further transfer to lower
energy levels (4) occurs immediately, accompanied by emission of new photons
of luminescent radiation. Usually the stimulated photons possess less energy than
the luminescent ones and therefore λL < λSt.

Figure 5.8 Schematic of photostimulated luminescence (PSL).
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Reflectance and Transmittance of Condensed Media

Propagation of electromagnetic waves in solids and liquids as well as transfer
of radiation from one media to another are significantly affected by the refrac-
tive index of materials (which is actually the main parameter characterizing
electromagnetic phenomena in condensed media):

n = n0 − iχ (5.7)

where the real part n0 determines the group velocity of the waves (related to the
speed of the energy transfer and direction of propagation) and the imaginary part
χ is related to the decay of radiation due to true absorption in the substance. Both
n0 and χ (often called the optical constants of a material) depend on the wavelength
of the propagated radiation. For instance, the refractive index of optical glasses,
as pointed out in Chapter 2, varies as n ∝ (λ)−2. In dielectric materials usually
χ � n0, except in the regions of strong absorption bands, so that χ can be
neglected and n = n0. As a result, refraction in dielectrics obeys simple relations,
like the basic formula of refraction Eq. (1.1). Reflectance R in this case is governed
by Fresnel’s formula:

R = 1

2
(Rs + Rp) = 1

2

[(
sin(i − r)

sin(i + r)

)2

+
(

tan(i − r)

tan(i + r)

)2
]

(5.8)

where i and r are the incident and refractive angles (see Fig. 1.2), and Rs and Rp

are related to S and P polarization components of the incident radiation. As can be
easily shown, for small angles i the Fresnel’s formula gives

R = (n − 1)2

(n + 1)2
. (5.9)

In metals and most semiconductors both optical constants are of the same order
or magnitude and therefore χ cannot be neglected. In this case reflectance R is
governed by a much more complicated expression than Eq. (5.8) (see Born and
Wolf, 1968, Chapter 13), but for normal incidence (i = 0) a simple formula can
still be obtained:

R = (n0 − 1)2 + χ2

(n0 + 1)2 + χ2
. (5.9a)

Since n0 andχ both depend on wavelength, reflectance also is spectrally dependent.
The same is true for transmittance, T , defined as the ratio of the intensity of
radiation Id passing through a slab of a given thickness, d, to the intensity at the
entrance of the slab, I0: T = Id /I0; and it obeys Bouguer’s law:

Id = I0 exp(−αd) (5.10)
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_

_

Figure 5.9 Absorption of fused silica glass at temperatures of 300 K (1), 700 K (2),
and 1,100 K (3).

where the absorption factor, α, is related to the optical constant, χ , as

α = 4πχ

λ
. (5.11)

Dimensions of α are m−1 (or cm−1) and because λ is very small the absorption
factor becomes significant even at very low values of χ . For example, if χ = 10−4

for a wavelength of 0.42 µm the intensity of light is reduced 20 times (to only 5%)
after propagation through a slab of material of 1 mm in thickness.

The absorption factor is frequently used in order to describe the spectral behavior
of the absorption properties of a substance. An example is shown in Fig. 5.9 where
the absorption of fused silica glass in the near IR at different temperatures is
presented.

Classification of Spectral Instruments

Although there exists a great variety of spectral instruments they can be clas-
sified with regard to: (i) destination; (ii) type of dispersive elements and main
architecture; and (iii) ability with regards spectral resolution.

With regard to destination, there are monochromators (intended for the creation
of monochromatic radiation of a chosen wavelength), spectrometers (intended
for registration and measuring the entire spectrum of a sample), and spec-
trophotometers (intended for measuring transmission and absorption factors of
solids and liquids). With regard to the main architecture of the instrument,
there are devices with prisms and with diffraction gratings, and devices of
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interferometric configuration. As to the spectral resolution ability, there are
systems of low resolution, of high resolution, and of super high resolution. We
address in this chapter all classes of instruments.

No matter which dispersive element is exploited in a device or what architecture
is chosen, the following parameters serve as basic characteristics of the instrument:

● Angular dispersion of the dispersive element, dϕ/dλ (rad/nm).
● Linear dispersion at the exit plane (the spectrum plane), dl/dλ (mm/nm).

More frequently the reciprocal value is used (reciprocal liner dispersion):
dλ/dl (nm/mm) which is the spectral interval incident on a 1 mm segment of
the exit plane.

● Spectral resolution, � = λ/δλ (dimensionless), where δλ is the minimum
resolvable spectral interval. For low-resolution devices � is usually about
103–104 whereas in super high-resolution systems � can achieve a value of
106 or more.

Problems

5.1. Find the wavenumber and the energy of transition (in eV) corresponding to a
radiated green line of λ = 5, 460. 75 Å.

5.2. Find the physically limited width (the “natural width”) of the spectral line
centered at 6,000 Å in terms of wavenumbers and in terms of frequencies.

5.3. The spectrum of iron in the atomic state has a typical triplet (three very close
spectral lines) in the UV: 3,100.67 Å, 3,100.31 Å, and 3,099.97 Å. Assuming that
iron is present in an arc discharge of 10,000 K, calculate the Doppler broadening
of the lines and show that the triplet is still resolvable.

5.4 It is known that in the spectrum of the sun’s corona the Fraunhoffer absorption
lines are hardly detectable and some of them do not appear at all. Show that
this effect can be explained by scattering of the photons emitted by very fast
electrons present in the corona. The estimated temperature of the corona’s electrons
is Te = 600, 000 K and Doppler broadening is related to the mass of the electron,
me, as follows:


νD = ν0

c

√
2kTe

me
.

Perform the calculation for the spectral absorption line at 3,934 Å.

5.5 Find the Doppler width of the main line of a He–Ne laser (λ = 6, 328 Å) if it
originates in the motion of the Ne atoms and the temperature of the laser is 350 K.
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5.6. If monochromatic light of wavelength λ = 5, 000 Å is perpendicularly inci-
dent on a pure and smooth metallic surface of Au, Ag, Cu, or Ni, what is the
percentage of reflected energy in all four cases? Use the optical constants, n0, χ ,
from the following table:

Au Ag Cu Ni

n0 0.37 0.18 0.64 1.79
χ 2.82 3.64 2.62 3.32

5.7. In a study of the Raman spectrum of toluene the spectral lines with the fol-
lowing wavenumbers were registered: 3,067 cm−1; 3,054 cm−1; 3,032 cm−1;
2,981 cm−1; 2,920 cm−1; 2,870 cm−1; 1,605 cm−1. Find the location of each line
relative to the line of the shortest wavelength in the exit plane of the spectrometer
with reciprocal linear dispersion of 50 nm/mm.

5.8. Alow-resolution system used for demonstration purposes is exploited in order
to demonstrate the ability to separate two close spectral lines, like a typical doublet
of cooper (violet doublet) where λ1 = 4, 062 Å and λ2 = 4, 022 Å. In the exit
plane of the system a line CCD detector array with 10 µm pixel pitch is positioned.
Calculate the system resolution and the minimum required linear dispersion.

5.9. Computed radiography (CR). In CR for mammography applications (testing
of X-ray images for the early detection of breast cancer) a photostimulated lumi-
nescent (PSL) effect in a plate made of BaFBr doped with Eu is frequently used.
Such a plate, being first exposed to X-rays and then undergoing excitation by
a He–Ne laser, has a luminescent line of 390 nm. X-rays in mammography sys-
tems are usually of 20 keV (soft X-rays). Assuming that the energetic efficiency
of the PSL plate is ηe = 2. 5%, find its quantum efficiency (defined as the number
of generated light photons per single absorbed X-ray photon).

5.10. System for CR. The CR approach mentioned in Problem 5.9 can be realized
in a number of configurations, one of which is shown in Fig. 5.10. X-rays from a
sourceAare transmitted through a test object B and then are incident on a PSL plate
where the rest of the X-ray energy is absorbed and stored as a latent image. Each
element of this latent image is actually a collection of F-centers generated in the
PSL plate and proportional to the local energy of the incident X-ray beam. Reading
out of the latent image is performed sequentially, point-by-point, when an excita-
tion laser beam of wavelength λex, after expansion and focusing by the optics SO in
a small light spot, causes the F-centers present in the spot area to generate lumines-
cence photons of wavelength λL. The luminescence is transmitted through a beam
splitter BS and collected by a collection lens L2 on a photomultiplier tube PhM.
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Figure 5.10 Problem 5.10 – Configuration of a computed radiography system.

An X–Y scanner SC directs the laser beam to the PSL plate and allows one to get
information from all points of the relevant area. The BS has high reflection for
λex and high transmittance for λL (see the graph to the top right of Fig. 5.10).
The output signal of the PhM is digitized and processed very fast and stored in
a memory buffer, each cell of the buffer corresponding to a separate point of the
scanned PSL plate. The contents of the buffer are transferred to a display, creating
on the screen a black-and-white pattern of the latent image.

During the read-out process of each spot the number of activated F-centers
is reduced until all of them disappear. Suppose that each absorbed photon of
λex interacts with a single F-center and there is no delay between excitation and
luminescence radiation. Then we can state that the dynamic of this process is
governed by the simple relation dN = −σ INdt which yields N = N0 exp(−σ It),
where N0 is the initial number of F-centers, I is the intensity of the laser radiation
(in photons/cm2), t is the exposure time, and σ is the absorption cross-section of
a single F-center (in cm2). It is evident that the smaller the value N /N0 the more
effective is the read-out process and the higher the PhM signal. On the other hand,
there is a limitation of the read-out time which results in limited exposure, t, per
single spot ( pixel of the final pattern). Assuming that: (i) the X-ray radiation is of
20 keV; (ii) the absorption cross-section of a single F-center, is σ = 10−16 cm2;
(iii) the maximum read-out time for the whole PSL plate of size 250 mm × 250 mm
should not exceed 5 min; (iv) the spatial resolution required is 10 lp/mm; and (v) the
reflectance of the BS for the laser wavelength is 0.75, find the minimum required
laser power in such a system.
[Note: The read-out is satisfactory if up to 90% of F-centers are converted into
light photons at each spot.]
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5.11. (a) Assuming the shape of the spectral line in the exit plane of a spectrometer
obeys the expression

Iϕ = I0
sin2 v

v2
, where v = π

λ
sin(ϕ − ϕ0)

and I0 and ϕ0 are the intensity and the angular location of the center of the line, find
the contrast, C, in the mutual pattern of two lines, λ and λ + δλ, corresponding to
the Rayleigh criterion of limiting resolution (minimum resolvable spectral interval
δλ) and having equal intensities in their centers.
[Note: Definition of the contrast C in this case is C = 1 − Imin/Imax; i.e., it differs
from the definition of Chapter 2 related to MTF.]

(b) Suppose that the minimum contrast which is still resolvable in the pattern is
5%. How much could one line be weaker than the second one if they are analyzed
in the same instrument as in (a)?

5.2. Prism-based Systems

An architecture of a spectral system with a prism as a dispersive element is depicted
in Fig. 5.11. Radiation from a light source A (which is analyzed or used for the
generation of monochromatic light) is concentrated by the illumination optics
(elliptical mirror M in this example) onto an entrance slit S positioned in the
front focal plane of a collimator objective lens L1. The parallel beam incident
on the prism P, is dispersed by it (separated according to the wavelength) while
passing through and the output monochromatic beams are focused by an output
objective L2 in the plane T where an output slit S′ (monochromator) or output
detector array (spectrometer) are located. The slits S, S′ are special diaphragms
of several millimeters in length and of very small variable width (precisely set, at
sub-micrometer accuracy).

If the system works as a monochromator and slit S′ is positioned permanently,
the prism should be rotated in order to bring different wavelengths to the output.

Figure 5.11 Basic configuration of a prism-based spectrometer.
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Alternatively, the prism might be fixed and slit S′ moved along the T plane. If the
system is arranged as a spectrometer slit S′ is removed and the whole spectrum is
created simultaneously on the elements of the output detector array (usually a line
CCD detector, like those described in Section 4.4).

The prism is made of a transparent material with dispersion power dn/dλ and is
usually oriented in such a way that the medium working wavelength corresponds
to the angle of minimum deviation (see Problem 1.17 for details). The refraction
angle β of the prism affects the angle ψ between the incident and the output beams
in the following manner:

ψ = 180◦ + β − 2 sin−1
(

n sin
β

2

)
. (5.12)

We now consider the minimum resolvable spectral interval and optimal width
of the entrance slit. The spectral resolution of the instrument is the main feature
of the system. This is defined, as we saw, by the minimum resolvable spectral
interval, δλ, which is determined according to the Rayleigh criterion. Namely,
two wavelengths, λ and λ + δλ, can be still resolved (i.e., registered separately) if
their intensity distributions in the output plane correspond to the graph of Fig. 5.12
(the distance between the central points is at least as small as half of the spectral
line width).

Obviously the resolution is strongly affected by the width and shape of the
spectral line. Both are limited by several physical phenomena, as explained in the
previous section. However, they are also dependent on the instrument parameters,
in particular on the width of the entrance slit. Besides this, the illumination condi-
tions at the entrance of the device as well as aberrations of the imaging optics are
also important.

The optics of the device creates a geometrical image of the entrance slit of
width s in the output plane. For ideal optics the size of such an image obeys the
expression

s′ = s
f ′
2

f ′
1

(5.13)

Figure 5.12 Rayleigh’s criterion of spectral resolution.
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where f ′
1 and f ′

2 are the focal lengths of the collimator and output objectives,
respectively. However, the true width of the line in the plane T is also governed
by: (i) aberrations of the lenses and the prism; (ii) diffraction at the entrance slit; and
(iii) diffraction at the working apertures of the objectives and the prism. Aberrations
of imaging systems are described in detail in Chapter 2. As to diffraction, we will
summarize here, for the reader’s convenience, some facts and formulas relating to
diffraction phenomena. As is well known (e.g., see detailed explanation in Born
and Wolf, 1968) diffraction of light on a rectangular aperture of width b causes light
waves to propagate in different directions after the aperture, even if the incident
radiation constitutes a parallel beam. Figure 5.13 demonstrates the phenomenon
and the light intensity as a function of diffraction angle ϕ. This function is governed
by the formulas:

Iϕ = I0
sin2(u)

u2
;

u = πb sin ϕ

λ

(5.14)

which has a maximum at u = ϕ = 0 and the first minima at sin(ϕ1) = ±λ/b.
Between two minima, +ϕ1 and −ϕ1, there is about 93% of the total energy
transferred through the aperture.

If a circular aperture of diameter d is set in the parallel beam the diffraction
pattern is similar to the one shown in Fig. 5.13, but its analytical description
differs from Eq. (5.14): the function sin(u) is substituted by Bessel functions
of the first order and the first minima appear at the angle sin(ϕ1) = 1. 22λ/d.
If a lens of focal length f ′ is positioned after the aperture it concentrates the
diffracted beams in its focal plane, each ray of direction ϕ coming to the point with

Figure 5.13 Diffraction at a rectangular aperture: (a) propagation of light; (b) angular
distribution of intensity.
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radial coordinate r = f ′ tan(ϕ) so that the intensity distribution I(r) is an axially
symmetrical function (the so-called Airy function mentioned in Chapter 2).

Returning to the spectral instrument shown in Fig. 5.11 and supposing the
entrance slit of infinitesimal width and both objectives and the prism working
with a beam of effective aperture D and being diffraction limited, one can expect
that due to diffraction at D a spot of size s′

dif = 2 λ/Df ′
2 is the minimum spot size

in the output plane T achievable in the system (for a single wavelength). If the
entrance slit has finite width s each part of s creates the same diffractive spot s′

dif
centered in a slightly different coordinate, each one being the geometrical image
of the corresponding point of the entrance slit. Altogether they create a spot of
a finite width with an intensity distribution like that shown on the left-hand side of
Fig. 5.14 (curve 1). The smaller the entrance slit width the narrower the output spot
(curves 2 and 3). The maximum intensity in the spot center remains unchanged,
until the geometrical size becomes equal to s′

dif (curve 3). A further reduction of the
entrance slit is accompanied by a decrease of the spot intensity (curves 4 and 5).
This can be explained by taking into account diffraction at the entrance slit itself.
That is, if the cross-section of the diffracted beams in the plane of L1 is larger than
the effective size D of the objective, then part of the energy is lost. Therefore,
with regard to energy transfer the best situation is achieved when 2λ/bf ′

1 = D.
However, the highest spectral resolution requires a smaller size of spot. A com-
promise is achieved when the geometrical size of the image b′ is equal to half of
s′

dif – in this case about 83% of the energy transferred through the entrance slit par-
ticipates in the creation of spectral lines and the maximum spectral resolution is
still obtained (minimum δλ according to the Rayleigh criterion). Such a case is
presented in Fig. 5.15 and the corresponding value

b = λ

D
f ′
1 (5.15)

is usually chosen as the optimal size of the entrance slit.
Since the effective working diameter D is determined by the prism size and

refractive angle, the resolution � of the prism-based device with diffraction-limited

Figure 5.14 Light intensity of the entrance slit image obtained in the output plane T.
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Figure 5.15 Optimal size of entrance slit.

optics is determined, as can be shown, by the expression

� = B
dn

dλ
(5.16)

where B is the base of the prism and dn/dλ is the dispersion of the prism material.
In practice, very often aberrations of the optics as well as the final angular

size of the light source illuminating the entrance slit, rather than diffraction phe-
nomena, govern the spot size s′. In such a situation the intensity distribution
across the exit spot is similar to curve 1 of Fig. 5.14. Then the minimum resolv-
able spectral interval and resolution of the system can be calculated from the
real size of the spot and the reciprocal linear dispersion of the system (e.g., see
Problem 5.15).

Problems

5.12 Find an analytical expression for the angular dispersion of a prism working
around the minimum deviation angle.

5.13. The dispersion element of a spectrometer is a 40◦ prism made of BK-7 glass
(nd = 1. 5163, nF − nC = 0. 008054) with a base of 30 mm. The instrument
is intended for visible wavelengths. The optics of the device is diffraction lim-
ited and it comprises two identical lenses of 40 mm diameter and 200 mm focal
length.

(a) Find the resolution of the spectrometer and the minimum resolvable spectral
interval.

(b) Calculate the optimal size of the entrance slit.

(c) If a stop of 30 mm diameter is positioned in front of L1 how will it
affect the resolution? What happens to the spectrum if the entrance slit
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_1

Figure 5.16 System for testing pollutants in water.

remains unchanged? What should be the optimal width of the slit if the
stop is present?

5.14. The spectral system shown in Fig. 5.16 is exploited for revealing pollutants
in water supplied through a transparent vessel M. The system is configured around
a prism P made of BK-7 glass (see the glass data in Problem 5.13) and having
a refraction angle α = 60◦ and base B = 60 mm. Also included in the system
are two identical lenses, L1 and L2, of focal length 300 mm (diffraction limited)
and a line detector array T with pixels of 10 µm pitch. Illumination originates in
a source S of a narrow angular size and it is projected onto an entrance slit b. The
source has a high-intensity spectral line of N1 = 16, 800 cm−1.

(a) Calculate the resolution of the system for a given spectral line.

(b) Is it possible to detect a pollutant having a typical spectral line of N2 =
16, 790 cm−1?

(c) If the prism is replaced by another one of the same geometry but made of
SF-5 glass (nd = 1. 6727; nF − nC = 0. 020884), how will this influence
the answer to (b)?

5.15. The system shown in Fig. 5.16 works with a light source of a finite angular
width and imaging optics with aberrations that cannot be neglected. As a result, the
minimum spot in the output plane T is of 30 µm. Calculate the system resolution
for the wavenumber given in Problem 5.14 and check the answers to the last two
questions of that problem.
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5.3. Diffraction Gratings and Grating-based Systems

5.3.1. Plane Diffraction Gratings and Related Configurations

In most spectral instruments a diffraction grating is used as a dispersive element.
To explain its features and operating mode we will start with the simplest case
of a plane transparent grating made of N parallel narrow slits of precisely equal
width b illuminated by a parallel monochromatic light beam. The slits are separated
by non-transparent areas of size a, so that a periodic structure of spatial period
d = b+a is established. An example of such a periodic transparent–non-transparent
structure is the so-called Ronchi rolling plate, although usually these plates are
less accurate than the real diffraction gratings used in spectral instruments.

A lens of focal length f ′ is positioned after the grating (see Fig. 5.17). Due to
the diffraction phenomenon numerous diffracted beams are created after each slit
and rays of the same direction are concentrated by the lens in a single point in the
lens focal plane (separate points for each diffracted angle ϕ). A pair of two such
rays propagating in the same direction and belonging to two adjacent slits have an
optical path difference AB = 
 = d sin ϕ, as shown in Fig. 5.17a. N pairs coming
to the same point in the focal plane are coherent with each other and therefore
a multi-beam interference pattern is created here. As a result, the light intensity in
the lens focal plane is described by the function

I(x) = I0 f ′ sin2 u

u2
· sin2(Nv)

(sin v)2
(5.17)

_

_ _ _

_

Figure 5.17 (a) Diffraction of a plane diffraction grating and (b) intensity distribution of
diffracted light.
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where u is the same as in Eq. (5.14) for a single slit of width b, u = πb sin(ϕ)/λ,
and v = πd sin(ϕ)/λ is determined by the grating period, d. Figure 5.17b demon-
strates the intensity distribution as a function of diffraction angle ϕ. The following
features are of importance:

(a) The second term on the right-hand side of Eq. (5.17) reaches maximum
values when sin v = 0 and sin(Nv) = 0 simultaneously, which correspond
to discrete directions ϕ

(m)
max obeying the following conditions:

sin(ϕ(m)
max) = mλ/d (m = 0; ±1; ±2; . . .). (5.18)

These maxima are called the principal maxima of diffraction order m (m = 0
yields the “zero-order maximum” corresponding to ϕ

(0)
max = 0; m = 1

and m = −1 yield the “first-order maximum” and the “minus first-order
maximum” corresponding to directions sin(ϕ(1)

max) = λ/d and sin(ϕ(−1)
max ) =

−λ/d; etc.).
(b) The width of each principal maximum is determined by the two closest

minima, one on the left and the other on the right of the maximum, each
minimum being related to the increment δ
 = ±λ/2 in the optical path
difference between two rays 1 and 2 (increment of ±π in the argument of
sin(Nv)). In terms of diffraction angle this gives:

δ sin(ϕ) = ±λ/(Nd). (5.19)

(c) The first term on the right-hand side of Eq. (5.17) is related to diffraction
at a single slit of width b and it determines the envelope (dotted line in
Fig. 5.17b) of the light intensity of the principal maxima. The minimum of
the envelope corresponds to the directions

sin(ϕmin) = ±λ/b (5.20)

and therefore all significant principal maxima are concentrated inside the
cone of diffraction angles given by Eq. (5.20).

If the grating is illuminated by non-monochromatic light each wavelength cre-
ates a separate diffraction pattern. Conditions (5.18)–(5.20) remain valid, and
therefore the zero-order direction (m = 0) is common for all wavelengths (all of
them come to the focus of the lens) whereas the location of the principal maxima
in any other diffraction order (m �= 0) depend on λ. Hence the wavelengths are
separated in the focal plane of the lens and monochromatic light can be obtained by
using, for instance, a narrow slit moving in this plane from one position to another
in the vicinity of principal maximum of order m. The higher the diffraction order
exploited, the greater the separation of a pair of wavelengths: mλ1/d − mλ2/d.
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_ _ _

C

Figure 5.18 (a) Diffraction of a reflective plane grating and (b) intensity distribution of
diffracted light with energy concentration in the second order.

Very close wavelengths are overlapped and the resolution ability of the grating is
again defined according to the Rayleigh criterion (see Fig. 5.12).

In reality reflection diffraction gratings are used instead of transparent ones.
Such a grating is shown in Fig. 5.18a. In this case N identical parallel grooves,
instead of N parallel slits, constitute the grating. Each groove is characterized by
three parameters: d, the total width of the groove, b, the width of a single reflective
element (a mirror); and γ , the inclination angle of each small mirror (sometimes
called the “blazing angle”). It is these parameters which enable one to improve
significantly the efficiency of the diffraction grating, as explained below.

To understand the operation and advantages of a reflection grating we will
address again the optical path difference between two parallel rays, 1, and 2, of
two adjacent grooves:


21 = AD − BC = d(sin ϕ − sin ψ)

for any chosen incident angle ψ and diffraction angle ϕ. In Fig. 5.18 ψ > 0 and
ϕ > 0, but, in general, one should keep in mind that while doing calculations
for reflective gratings the sign conventions for all considered angles have to be
applied with care (see examples and explanation in Problem 5.16).

Expression (5.17) is also valid for a reflective grating, although the directions
of the principal maxima, instead of Eq. (5.18), are governed by the formula

sin(ϕ(m)
max) = sin(ψ) ± mλ/d. (5.21)
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The width of these maxima still obey Eq. (5.19). Instead of Eq. (5.20) we have the
following expression describing the diffraction minimum of a single mirror:

b(sin β − sin α) = ±λ. (5.22)

The low efficiency of a transparent grating for spectral measurements results
from the fact that the maximum of energy is concentrated in the zero order (see
Fig. 5.17b) which is useless for spectral resolution. A reflective grating enables
one to optimize the distribution of energy between the diffraction orders. That
is, it can be designed in such a manner that maximum energy will go into the
diffractive order chosen for normal operation of an instrument and the zero order
is minimized. To do this one can optimize the parameters of the grating grooves.
Taking into account that maximum energy is concentrated around the direction
of specular reflection of each small mirror which corresponds to the condition
α = −β and also obtaining from Fig. 5.18a

ψ = α + γ ; ϕ + γ = β (5.23)

we use both conditions in Eq. (5.21) to obtain for a chosen value m:

2 sin(−γ ) cos(ψ − γ ) = mλ/d. (5.24)

This equation allows one to calculate the optimal angle of the grooves inclina-
tion, γ .

Furthermore, substituting α and β from Eq. (5.23) in Eq. (5.22) and keeping in
mind that for the zero-order direction ϕ

(0)
max = ψ , we get

2 cos ψ · sin γ = λ/b. (5.25)

Equation (5.25) allows one to calculate the active size of each mirror of the
grooves, b. If γ and b obey Eqs. (5.24) and (5.25) the maximum energy in
reflected light is concentrated in a chosen diffractive order m and the zero order is
minimized. Such an example is presented in Fig. 5.18b for the case of m = −2.

An architecture of a spectral instrument where a plane reflective grating is used
as a dispersive element is shown in Fig. 5.19. Radiation of a light source A is
directed by a mirror M towards an entrance slit S. Since S and the output detector
array, T, are positioned in the focal planes of lenses L1 and L2, the grating G is
obviously operating with parallel beams.

The main characteristics of the device can be calculated in the following manner.
The angular dispersion is found by differentiation of the condition of the principal
maxima (Eq. (5.21)) at any given ψ = const:

dϕ

dλ
= m

d cos ϕ
. (5.26)
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Figure 5.19 Basic configuration of a spectrometer with a plane reflective grating.

Hence, for the linear dispersion we have

dl

dλ
= m

d cos ϕ
f ′
2. (5.27)

Using Eq. (5.17) for the width of a principal maxima and taking into account,
as usual, the Rayleigh criterion, one can find the minimum resolvable spectral
interval:

δλ = (λ/Nd)f ′
2

dl/dλ
= λ cos ϕ

mN
(5.28)

which gives for the resolution

� = λ

δλ
= mN

cos ϕ
. (5.29)

This is actually a theoretical limit for an aberration-free system and with the whole
grating participating in producing the diffraction pattern.

The optimal width of the entrance slit can be found in exactly the same way as
in the case of a prism-based configuration (see Section 5.2, Eq. (5.15)), providing
the effective diameter of the lenses, D, is compatible with the total width of the
grating:

D = B cos ψ = Nd cos ψ (5.30)

and the imaging optics is diffraction limited (aberrations can be neglected).
If optical aberrations and illumination conditions are taken into account

Eqs. (5.28) and (5.29) are not useful and the resolution and limiting spectral
interval should be based on the actual size of the spot in the output plane, as
explained in Section 5.2.

A cost-effective configuration for a grating-based instrument is demonstrated
in Fig. 5.20. Such an architecture, known as an autocollimating scheme, exploits
a single lens L for both illumination of the reflective grating G and production
of the spectrum in the output plane T where either a detector array or an exit
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Figure 5.20 Architecture of an autocollimation spectrometer with reflective grating.

slit is positioned. A small prism (or mirror) P tilts the incident beam coming from
the entrance slit S towards the lens L and the grating G.

Problems

5.16. Show that the optical path difference (OPD) between two parallel rays 1 and
2 incident on a reflective diffraction grating (see Fig. 5.18a) obeys the expression

21 = d(sin ϕ − sin ψ) for any incident angle ψ and diffraction angle ϕ.
[Note: Consider positive and negative angles using the sign convention described
in Chapter 1.]

5.17. Find the relation between the working order of diffraction, m, and the total
spectral interval, 
λ = λmax − λmin, of a spectrometer or a monochromator
allowing one to avoid overlapping between adjacent diffraction orders.

5.18 Optimization of reflective grating. Find the optimal parameters of a reflective
grating of 25 mm total size working in the second diffraction order in visible
wavelengths and providing a minimum resolvable spectral interval of 0.2 Å. The
grating is illuminated by a parallel beam incident at an angle ψ = −15◦.

5.19. Spectrometer with autocollimation architecture. A schematic configura-
tion of an instrument is presented in Fig. 5.20. Assuming that the grating G of
300 lp/mm and 1′′ size is tilted at 15◦ to the optical axis and located 100 mm from
lens L (diameter D = 100 mm, focal length of 1,200 mm), and supposing the
system is intended for operation in the red and near-infrared wavelengths (from
600 nm up), find:

(a) the maximum achievable (theoretical) spectral resolution and the free
spectral range without overlapping;

(b) the location of the detector array, the size of a single pixel, and the maximum
useful number of pixels.

5.20. A monochromator designed for visible wavelengths comprises a reflec-
tive diffraction grating of 1,200 lp/mm illuminated at 10◦ and a camera lens
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of 150 mm focal length. The grating is optimized for the first diffraction order.
Assuming the exit slit is 20 µm in width, find the spectral interval of radiation
emerging from the device when it is set for λ = 500 nm.

5.21. A spectrometer with a 1′′ reflective grating of 600 lp/mm is chosen as a tool
for investigating the stability of a diode laser of 0.83 µm working wavelength.
The laser beam is collimated, so that the spot incident on the grating is 2 mm in
size. Find the minimum achievable spectral width of the line at the exit of the
spectrometer. Does the instrument suit the purpose of the study?

5.3.2. Systems with Concave Diffraction Gratings

A concave diffraction grating is actually a combination of the reflective grating
described in Section 5.3.1 and a concave mirror. Spectral devices with mirror
imaging optics instead of lenses are usually exploited if spectral measurements
are to be done at UV or IR wavelengths where absorption of the lens material
might affect significantly the propagation of radiation. Use of a concave grating
allows for further simplification of the system since it reduces the overall number
of elements.

One of the simplest configurations is presented in Fig. 5.21. The image of an
entrance slit S is created by a grating G in location S′ where an exit slit or a detector
array can be positioned. The grating is imposed on the surface of a spherical mirror
of curvature ρ. It can be shown that both S and S′ are located on the same circle
(the so-called Rowland circle) of diameter ρ and the distances r and r′ from S to
G and from G to S′, respectively, are calculated for a chosen incident angle ψ and
diffraction angle ϕ as follows:

r = ρ cos(ψ); r′ = ρ cos(ϕ). (5.31)

All relations governing the behavior of a plane diffraction grating also remain valid
for a concave grating as well: the angular position of the principal maxima and

Figure 5.21 Configuration of a monochromator with a concave diffraction grating.
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their widths are defined by Eqs. (5.21) and (5.22); the optimal parameters of the
grating grooves are calculated from Eqs. (5.24) and (5.25); and angular dispersion
and resolution are as in Eqs. (5.26), (5.28), and (5.29). As to the linear dispersion
of a concave grating, we have to take into account the linear magnification, V ,
existing in the configuration shown in Fig. 5. 21:

V = r′

r
(5.32)

and therefore

dl

dλ
= mr′

d cos ϕ
= mρ

d
. (5.33)

If a simple configuration like that of Fig. 5.21 is used in the design of a UV
monochromator it should be taken into account that variation of wavelength will
require not only movement of the grating (it should be rotated around the vertical
axis parallel to the grooves), but also will require displacement of the exit slit – this
should remain on the Rowland circle which is moved together with the grating.
This leads to difficulties in the mechanics of the system and is one reason why other
configurations have become more popular. One of them is shown in Fig. 5.22. Here
a slit S is located in the focus of a spherical mirror M which generates a tilted parallel
beam incident on a concave grating G. The spectrum is created on a cylindrical
surface of radius

r′ = ρ cos2(ϕ)

cos ψ + cos ϕ
. (5.34)

This value should be taken into account while calculating the optical magnification
of the system and the optimal width of the entrance slit.

Problems

5.22. A monochromator for UV wavelengths (2,000–4,000 Å) includes a concave
grating of 2,400 lp/mm made on a mirror surface of 50 cm curvature and optimized

Figure 5.22 Concave grating in a parallel beam.
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for diffraction order m = −1. The grating is illuminated by a beam incident from
a direction ψ = 30◦. Find the positions of the entrance and the exit slits with
regard to the grating and calculate the width of the exit slit if the entrance slit is
0.2 mm in size.

5.23. AUV spectrometer has a concave grating of 600 lp/mm grooves and 250 mm
curvature. The entrance slit is 125 mm aside from the center of the grating. At the
output plane a CCD line detector of 1,024 pixels, 15 µm each, is positioned. The
spectrometer is aligned in such a way that a wavelength of 300 nm in the diffraction
order m = −2 is concentrated at the center of the detector array. Find:

(a) the location of the CCD array relative to the grating;

(b) the theoretical spectral resolution and the total spectral range covered
by the device.

[Note: Theoretical values are calculated assuming that the imaging is aberration
free and the grating is ideal.]

5.4. Interferometry-based Spectral Instruments

5.4.1. Interference Filters and Fabry–Perot Interferometer

Spectral instruments designed according to interferometry architecture constitute
the group of super high-resolution systems. We start with a simple interference
filter and then describe a system with a Fabry–Perot etalon.

An interference filter is usually a flat slab of glass coated on both sides with
highly reflective coatings with very low absorption. Due to the high reflectivity
on both sides any incident beam passing through the coating is multiply reflected
inside the slab, each reflection being accompanied by the generation of a new ray
going out of the slab, as shown in Fig. 5.23. The optical path difference between
two adjacent rays, say 1′ and 2′, is expressed as


 = AB + BC − AD = 2tn cos(r) (5.35)

where t is the thickness of the slab, n is its refractive index, and r is the angle of
refraction inside the slab (related to the incident angle, i, as usual, by Eq. (1.2)).

Let the slab be illuminated by a parallel monochromatic beam of wavelength λ.
Since all rays emerging from the slab originate from the same incident ray 1
(i.e., from the same incident wave front) they all are coherent with each other
and therefore when gathered by a lens they will interfere. Denoting the coating
transmittance and reflectivity as τ and R, respectively, one obtains the follow-
ing intensity distribution of the resulting interference pattern (see Fig. 5.23b; for
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Figure 5.23 (a) Generation of multiple rays in an interference filter and (b) intensity
distribution of transmitted light.

details, see Born and Wolf, 1968):

I(r; λ) = I0
τ 2

(1 − R)2 + 4R sin2(�/2)
(5.36)

� = 2π

λ

 = 4π

λ
tn cos(r).

Given the thickness and refractive index of the slab, the intensity variation as a
function of wavelength (if the incident angle is constant) or as a function of incident
angle i (and r) if the wavelength is not changed can be calculated. In Fig. 5.23b
the graph of intensity according to Eq. (5.36) is presented. The maximum and
minimum values of Eq. (5.36) are

Imax = τ 2

(1 − R)2
; Imin = τ 2

(1 + R)2
. (5.37)

Evidently there are a number of maxima, obeying the condition 
 = mλ (m =
1; 2; 3 . . .). What is important for spectral measurements is the width of the graph
around the maximum. This value, δλ, is usually defined as the segment where
I ≥ 0. 5Imax and is called the bandpass or FWHM (full width at half maximum).
For a chosen angle of incident radiation (i) this means that the spectral interval,
δλ, is described as

δλ = λ

mNe
(5.38)

where

m = 
/λ = 2tn cos r

λ
; Ne = π

√
R

1 − R
. (5.39)
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The value Ne is called the effective number of rays participating in interference
and m is the interference order. The higher the coating reflection R, the greater the
number of relevant rays Ne and the smaller the spectral interval δλ transmitted by
the filter.

To achieve better spectral resolution it is possible to put several interference
filters in sequence, one after another. Each ray emerging from the first filter (called
sometimes a first cavity) generates in the second filter (second cavity) a multi-
reflection pattern like that shown in Fig. 5.23a. The total transmitted intensity
distribution can be described, approximately, as Eq. (5.36) in power k, where k
is the number of cavities in the sequence. Hence, the greater the value of k the
smaller the value of δλ that can be achieved. In practice all cavities are arranged
as a multi-layer coating on a single substrate and such an arrangement is called
a multi-cavity interference filter.

A Fabry–Perot etalon is actually two mirrors of very high reflectivity precisely
parallel to each other and separated either by air or by a transparent solid (usually
glass or quartz). If radiation is transmitted through the etalon a multiple-ray inter-
ference pattern is created, just as in the case of the interference filter described
above. Specific features of the etalon are exploited in order to establish a spec-
tral system of extremely high resolution. The configuration of such a system is
presented in Fig. 5.24a. Two lenses, L1 and L2, build the image of the entrance
aperture S in the exit plane with aperture S′. The etalon is positioned in the parallel
beams propagating between the two lenses.

The inner sides of the etalon plates are precisely aligned. The outer surfaces are
tilted to the optical axis in order to avoid the influence of undesirable reflections
from these surfaces. The tested light source A and its optics M illuminate the
entrance aperture with radiation of some kind of monochromaticity (see below).
Since the mirror separation, t, is much greater than the wavelength, the order of
interference, m, is very high. It is evident that mmax corresponds to the beam parallel

Figure 5.24 (a) Configuration of a spectral system with a Fabry–Perot etalon and (b) the
interference pattern at the exit aperture S′.
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to the optical axis (r = 0) and originates from the central point of aperture S.
The next maximum of the same wavelength λ is obtained at m1 = mmax − 1
corresponding to the beam tilted at some angle r1 and originating from a point
displaced from the optical axis. All points displaced symmetrically constitute in
the output aperture S′ a ring of light corresponding to the order m1. This procedure
is valid also for all other interference orders and the whole picture looks like that
in Fig. 5.24b. The radius of the k-th ring, ρk , can be calculated as follows (we
assume here n = 1):

ρk = f ′
√

2k

m
= f ′

√
kλ

t
. (5.40)

As we see, the distance between adjacent rings decreases on moving away from
the axis.

The minimum resolvable spectral interval, δλ, is defined by Eq. (5.38). Thus,
for the resolution of the spectral instrument we have

� = λ

δλ
= mNe. (5.41)

It is evident from Eq. (5.40) that the location of interference rings depends on
λ and in order to avoid overlapping of interference patterns belonging to adjacent
interference orders the total spectral interval, 
λ, of the light source participating
in the creation of the rings should obey the following condition:


λ = λ2

2t
. (5.42)

Problems

5.24. An interference filter is built around a transparent dielectric layer of 0.2 µm
width and refractive index n = 1. 4. An optical coating provides equal reflectivity
on both sides of R = 0. 95. Find the wavelength of maximum transmittance and
the FWHM of the filter.

5.25. How much will the maximum transmittance and FWHM be affected if the
interference filter of Problem 5.24 is tilted at 20◦ to the incident radiation? Or
even 30◦?

5.26. Is it possible to get an interference filter with 0.6 µm working wavelength
and 1 nm bandpass?

5.27. An interference filter designed for a wavelength of 0.5 µm and bandpass
FWHM of 5 nm is illuminated by a convergent beam. The convergent angle is
20◦. What is the effective bandpass for transmitted radiation in such a case?
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5.28. An investigation of physical processes in an electric discharge arc is based
on the detection, with a Fabry–Perot etalon, of the shape of the two closest spectral
lines of the iron triplet: ν1 = 32, 258 cm−1 and ν2 = 32, 255 cm−1. What should
be the air spacing between the mirrors of the instrument and what is the spectral
resolution achievable in the system?

5.29. The spectral analysis system shown in Fig. 5.24 comprises a Fabry–Perot
etalon with glass spacing of 1.7 mm, two lenses of 200 mm focal length, and two
apertures, S and S′, of 7 mm diameter each. The etalon mirror coating provides
a reflection of 95% in the visible region. Calculate:

(a) the order of interference and the spectral resolution for λ = 0. 5 µm;

(b) the radius and the width of the first and second interference rings in the
output plane;

(c) if there is any wavelength in the visible for which two rings can be observed
in the aperture S′.

5.4.2. Fourier Spectrometer

A Fourier spectrometer combines the advantages of a highly sensitive interfer-
ometric system with an advanced signal processing technique. Basically it is
a dual-beam interferometer with variable optical path difference, a single light
detector, and digital electronic circuitry for fast Fourier transform computations.
In describing the main principle we consider the Michelson interferometer archi-
tecture shown schematically in Fig. 5.25. Radiation of the tested light source, A,
is concentrated by an illumination lens L1 on an entrance stop S which is located
in the focal plane of lens L2. After lens L3, also in its focal plane, an exit stop
S′ is positioned followed by a detector D. Between the two lenses parallel light
beams are propagated. The beam coming from L2 is split by a beam splitter BS,
one part going to mirror M1 and the other to mirror M2. After reflection by the
mirrors, both parts meet each other in the plane of BS and proceed further to lens
L3 and to detector D. Interference takes place in the plane of BS and thereafter,
and its result depends on the optical path difference between the two branches of
the interferometer.

Initially the distance from BS to M2 is equal exactly to the distance from BS
to M1, and there is no phase difference between two monochromatic beams (of
wavelength λ) coming to D. The light intensity, Iλ, and the detector signal, iD, will
achieve the maximum value at this moment. Then mirror M2 starts moving along
the horizontal axis at a constant speed V . This results in a change of the optical
path difference between the two branches and therefore the light intensity and
the detector signal will vary accordingly. Since radiation passes each additional
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Figure 5.25 Configuration of a Fourier spectrometer.

segment twice, moving the mirror by a quarter of a wavelength will reduce the
interference intensity to a minimum and further moving an additional λ/4 will
increase the intensity again to the maximum, and so on. Hence, the optical path
difference, 
, varies in time as 
(t) = 2Vt and the interference intensity at the
exit stop is

Iλ(t) = 2I0λ

[
1 + cos

(
4π

λ
Vt

)]

and therefore the variable (AC) detector signal will be

iD(t) = 2�I0λ cos(ω0t) (5.43)

where � is the detector responsivity (see Section 4.1), ω0 = 4πVN0, and N0 is the
wavenumber of propagated monochromatic radiation (dimensions of V are cm/s
and N0 are cm−1).

Let M2 move between two extreme positions, P1 and P2, with coordinates
x1 = a − Vl/2 and x2 = a + Vl/2 during the time interval, T :

T = l/V . (5.44)

Therefore iD(t) is a finite function obeying Eq. (5.43) in the time interval [0;T ]
and it can be prolonged by a zero value outside of this interval. It is well known
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that the Fourier transform of such a function is expressed as follows:

F(ω) = 2�I0λ

∞∫
−∞

cos(ω0t) exp(−jωt) dt

= const

{
sin[(ω0 − ω)T /2]

ω0 − ω
+ sin[(ω0 + ω)T /2]

ω0 + ω

}
. (5.45)

The graphical representation of Eq. (5.45), called the Fourier transform spec-
trum, for positive frequencies is a single spectral line of the shape shown in
Fig. 5.26a. It corresponds to a single wavenumber of monochromatic radiation. If a
number of wavelengths are emitted simultaneously by the light source A each one
generates a separate interference pattern, but all of them arriving simultaneously
at the detector cause the complex signal

iD(t) = 2
∑

n

�nI0n cos(4πνnVt) (5.46)

and the corresponding Fourier transform is

F(ω) =
∑

n

Cn
sin[(ωn − ω)T /2]

ωn − ω
. (5.47)

The case shown in the Fig. 5.26b demonstrates the spectrum of the propagated
beams and relates to all n wavelengths presented there.

Calculation of the Fourier transform is a cumbersome and time-consuming
procedure, but since the advent of the FFT (fast Fourier transform) algorithm
this operation is easily done using digital electronic circuitry which processes the
output detector signal.

Figure 5.26 (a) Fourier spectrum of single-wavelength and (b) multiple-wavelength
radiation.
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The resolution of the system depends on the width of a single spectral line as
described by Eq. (5.45). The half width of the line shape is defined by the first
minimum for which we have (ω0 − ω)T /2 = π and therefore

N0 − N = 1

2VT
= 1

2l
. (5.48)

This means that the minimum resolvable spectral interval depends on the range of
movement of mirror M2.

Problems

5.30. AFourier spectrometer is operated in the near-IR wavelength range from 1 to
5 µm and provides a spectral resolution (minimum resolvable spectral interval) of
δλ = 0. 2 nm for all wavelengths. Find the spectral resolution in wavenumbers for
minimum and maximum wavelengths; and the maximum optical path difference
(OPD) and the range of the scanning mirror movement.

5.31. The Fourier spectrometer mentioned in Problem 5.30 exploits an InSb detec-
tor with electronic circuitry of 20 kHz bandwidth. Assuming that the spectral
resolution is 0.2 nm for a wavelength of 5 µm, find the scanning speed required
for normal operation of the apparatus.

5.5. Spectrophotometry

Spectrophotometers are devices for investigating the transmission or reflection of
samples of materials at different wavelengths, primarily with the aim of measuring
the concentration of some components in complex mixtures of liquids, gases, or
solids. They are widely used in biological and medical applications as well as in
chemical technology and industrial laboratory testing.

As mentioned in Section 5.1, the intensity of radiation propagated through
a slab of material characterized by an absorption factor α is reduced exponen-
tially according to Bouguer’s law (Eq. (5.10)). If the absorption centers are spread
in a transparent medium (like a dilute solution) and the volume concentration of
absorbing particles in the medium is C then the absorption factor of the medium,
αM , is governed by Beer’s law:

αM = αC. (5.49)

This rule of linear proportion between absorption of the medium and concentration
of absorbing species has been examined in many studies and verified for a wide
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Figure 5.27 Configuration of a two-channel spectrophotometer.

range of concentrations. Thus, an unknown concentration of absorbing particles
can be found from Eq. (5.49) if αM is measured and α of a single absorption center
(a particle or collection of identical molecules) is known in advance.

Numerous configurations can be used for spectrophotometric measurements. An
example of a two-channel spectrophotometer is presented in Fig. 5.27. Monochro-
matic light originating in a system monochromator M is split into two beams by a
beam splitter and then, after transmission through two samples of a test material,
S1 and S2, is focused on detectors D1 and D2. Let the thickness of the samples
be t1 and t2. Then the intensity of light coming to the detector in each channel is
described as

I1 = I01(1 − R)2 exp(−αMt1)

I2 = I02(1 − R)2 exp(−αMt2)

where R is the reflection on each side of the sample. Assuming that the radiation
is divided equally between two channels (I01 = I02) and all optical elements
and the detectors in both channels are also identical, we derive from the last two
expressions:

I1/I2 = T1/T2 = T21 = exp[−αM(t1 − t2)] (5.50)

which gives

αM = 1

t2 − t1
ln(T21). (5.51)

To use the measured value αM in Eq. (5.49) we should also keep in mind
that α is related to the optical constants of the substance as in Eq. (5.11). In the
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case that the optical constants for the absorbing centers are not known at least one
calibration experiment has to be carried out prior to using the instrument for routine
measurements. In this calibration experiment the concentration of the absorbing
particles should be known and be identical for both channels. This enables one to
measure αM and then to find from Eq. (5.49) the value of α which can be used in
further measurements.

Problems

5.32. A two-channel spectrophotometer, like that of Fig. 5.27, was used for
measurement of the concentration of Ag particles homogeneously dispersed in
a partially transparent solution. Two cuvettes filled with the solution were intro-
duced in the device. The thickness of the liquid was t1 = 1. 0 mm in the first
vessel and t2 = 3. 5 mm in the second. The ratio of the detector signals measured
in both channels for a wavelength of 0.59 µm was iDet2/iDet1 = 0. 05. Calculate
the concentration of Ag in the solution.
[Note: Refractive index ofAg particles in the spectral interval of the measurements
is n = 0. 18 − 3. 64j.]

5.6. Solutions to Problems

5.1. According to the definition of wavenumber, we obtain for the given spectral
line N = 10, 000/0. 546075 = 18, 312. 50 cm−1 and the optical frequency

ν = c

λ
= 3 × 1010 cm/s

0. 546075 × 10−4 cm
= 5. 493751 × 1014 Hz.

Taking into account Plank’s constant h = 6. 625 × 10−34 J s and the conversion
factor between J and eV (1 eV = 1. 6022 × 10−19 J) we obtain the energy of the
transition as 
E = hν = 2. 2716 eV.

5.2. The natural width of the spectral line is 1. 27 × 10−4 Å (see Section 5.1).
From the definition of wavenumber one obtains 
N /N = 
λ/λ and therefore


N = 10, 000

λ2

λ = 1. 27 × 10−4

0. 36
= 3. 5278 × 10−4 cm−1.

Since ν = c/λ we also find


ν = c

λ2

λ = 3 × 1010 cm/s

0. 36 × 10−8 cm2
× 1. 27 × 10−12 cm = 10. 58 MHz.
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5.3. Expression (5.3) yields for iron (atomic weight 56) at temperature 10,000 K:

δλD = 7. 18 × 10−7 × 3, 100 ×
√

10, 000

56
= 0. 0297 Å.

This value is significantly smaller (more than twice) than the wavelength differ-
ences of the triplet: (
λ)12 = 0. 36 Å; (
λ)23 = 0. 34 Å. Therefore, the triplet is
still resolvable (if an appropriate spectral instrument is exploited).

5.4. Calculation of the Doppler broadening due to scattering on the electrons in
the corona is done according to the relation presented in the problem (electron
mass me = 9. 11 × 10−31 kg; k = 1. 3806 × 10−23 JK):


νD/ν = 1

3 × 108

√
2 × 1. 3806 × 10−23

9. 11 × 10−31

√
600, 000 = 0. 014175.

Since 
λD/λ = 
νD/ν, we obtain 
λD = 55. 76 Å which is about five orders of
magnitude greater than the normal (“natural”) width of the spectral line. Therefore
absorption of photons occurs in wide spectral interval and this fact definitely can
explain why Fraunhoffer absorption lines in the corona are so weak that they are
hardly detectable.

5.5 Using Eq. (5.3) for Ne atoms (atomic weight 20) and remembering that the
main line of a He–Ne laser is 6,328 Å, we get


λD = 7. 18 × 10−7 × 6328

√
350

20
= 0. 019 Å

which is about 200 times greater than the natural width of the spectral line.

5.6. The reflectance of each surface can be found from Eq. (5.9a) which yields the
following: for Au, R = 84. 9%; for Ag, R = 94. 5%; for Cu, R = 73. 2%; and for
Ni, R = 61. 9%.

5.7. The shortest wavelength corresponds to the greatest wavenumber, hence,
using the definition of wavenumber, we find the reference wavelength as λ1 =
10, 000/3, 067 = 3. 2605 µm. The other wavelengths are λ2 = 3. 2744 µm;
λ3 = 3. 2982 µm; λ4 = 3. 3546 µm; λ5 = 3. 4247 µm; λ6 = 3. 4843 µm.
Denoting the coordinate of each wavelength λi in the output plane as xi, one can
calculate them with regard to the shortest wavelength as follows: 
xi = xi − x1 =
(λi − λ1)/(dλ/dl), where dλ/dl = 50 nm/mm. This gives 
x2 = 0. 278 mm;

x3 = 0. 754 mm; 
x4 = 1. 882 mm; 
x5 = 3. 284 mm; 
x6 = 4. 476 mm.

5.8. Assuming that the wavelength difference between the two lines of the vio-
let doublet represents the minimum resolvable spectral interval of the system,
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δλ = 40 Å, and calculating the resolution for wavelength of 4,022 Å, we get
� = λ/δλ = 101. 5.

To register properly two adjacent spectral lines incident on the CCD detector
array we should require that the distance 
l between the wavelength centers will
be equal to twice the pixel size at least – this requirement corresponds to the spatial
sampling rate obeying the Nyquist theorem. In our case 
l = 20 µm and therefore
dl/dλ = 
l/δλ = 0. 5 mm/nm is the required linear dispersion of the system.

5.9. Each X-ray photon is of 20,000 eV energy in this case. Calculating the energy
of generated light photons in eV gives:


E = hc

λ
= 6. 625 × 10−34 × 3 × 108

0. 39 × 10−6 × 1. 6 × 10−19
= 3. 185 eV

and proceeding using the definition of the quantum efficiency, we get

η = 0. 025
20, 000

3. 185
= 157 electrons/X-ray photon.

5.10. The required spatial resolution of 50 lp/mm dictates that the laser spot size
will be as small as 50 µm. Therefore, the total number of spots and the read-out
sequences is (250/0.05)2 = 25 × 106. Since the total read-out time is no greater
than 5 min, this means that a single spot read-out process must be finished after
τ = 12 µs. Assuming that up to 90% of the F-centers of a single spot are read out
(N /N0 = 0. 1 at the end of the read-out process), we get ln(0. 1) = −σ Iτ which
results in the following:

I = 2. 303

10−16 × 12 × 10−6
= 1. 919 × 1021 photons/s/cm2 = 602. 6 W/cm2

where we take into account that a single photon of the laser wavelength of 6,328 Å
possesses energy of 3. 14 × 10−19 J. Keeping in mind that a single spot area is
1. 963 × 10−5 cm2 and only 75% of the laser photons achieve the PSL plate, we
finally get the required power of the laser: P = 602. 6 × 1. 963 × 10−5/0. 75 =
15. 7 mW.

5.11. Two spectral lines overlapping one another and obeying the Rayleigh crite-
rion are shown in Fig. 5.28. Horizontal line coordinate, v, describes the location, x,
in the output plane of the spectrometer (v is proportional to x and the proportional-
ity factor depends on the focal length of the output lens of the system). We choose
the origin of the variable v in the center of the first wavelength and the center of
the second one is at the point v0. Then the total intensity, It , at each point is

It = I1(v) + I2(v) = I01
sin2 v

v2
+ I02

sin2(v − v0)

v − v0
.
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Figure 5.28 Problem 5.11 – Spectral lines of (a) equal intensity and (b) different intensity.

(a) Since according to the Rayleigh criterion v0 should correspond to the
minimum of the function I1(v), obviously ν0 = π . In the case that I01 = I02

(Fig. 5.28a):

It(0) = I01 = It(v0) = It max;

It(v0/2) = It(π /2) = I01

(
4

π2
+ 4

π2

)
= 0. 81I01 = It min

and therefore the contrast C = 0. 19.
(b) Let the intensity in the center of the first line be greater than that of the second

line and their positions be the same as in (a) above (the minimum of the first line
coincides with the maximum of the second one). Denoting the ratio I01/I02 = q,
we obtain from the previous expression for total intensity

It(0) = I01; It(v0) = I02; It(v0/2) = It(π /2) = I02

(
4q

π2
+ 4

π2

)
= It min.

Calculation of the limiting contrast C which is equal to 0.05 yields 1 − C =
0. 95 = It min/I02 = 4(1 + q)/π2, and therefore q = 1. 344. This result means that
if the intensity of the second line is less than 74.4% of that of the first one, the
two lines cannot be resolved (registered as separated) although they are positioned
according to the Rayleigh criterion.

5.12. For a prism with refraction angle β and refractive index n the minimum
deviation angle ϕmin was derived in Problem 1.17 where we found

ϕmin = 2 arcsin

(
n sin

β

2

)
− β.

From this expression one can get sin[(ϕmin + β)/2] = n sin(β/2). Differentiating
with respect to λ gives

1

2
cos

(
ϕmin + β

2

)
dϕmin

dλ
= dn

dλ
. sin

β

2
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from which we finally get

dϕmin

dλ
= dn

dλ
× 2 sin(β/2)√

1 − n2 sin2(β/2)
.

This is the expression for the angular dispersion of the prism working around the
direction of minimal deviation, ϕmin.

5.13. (a) Since the refractive index difference, 
n = nF − nC, is known for two
wavelengths, denoted as F and C, we use these wavelengths, λC = 656. 27 nm;
and λF = 486. 13 nm, in order to estimate the dispersion power of the prism made
of BK-7 glass:

dn

dλ
= 
n


λ
= 0. 008054

170. 14 nm
= 4. 734 × 10−5 nm−1.

Then we use Eq. (5.16) to find the resolution (dimensionless):

� = dn

dλ
B = 4. 734 × 10−5 × 30 × 106 = 1, 420

and therefore the minimum resolvable spectral interval at a representative
wavelength of 500 nm in the visible is δλ = 500/1, 420 = 0. 352 nm.

(b) As the optics is supposed to be diffraction limited, we should find the max-
imum size of the aperture defining the diffraction limit of the system. From the
geometry of rays refracted by the prism (see Fig. 5.29) we find

Ddif = AK cos i = AM cos i

sin β/2
= B cos i

2 sin β/2
.

Since for minimum deviation the incident angle i = arcsin(n sin 20◦) = 31. 24◦,
we can calculate Ddif = 30 cos(31. 24◦)/2 sin(20◦) = 37. 5 mm. This value is less

Figure 5.29 Problem 5.13 – Refraction of rays in a prism.
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than the diameter of the lens (40 mm), and hence the prism and not the lens will
cause the diffraction limit. Then the optimal size of the entrance slit can be found
from Eq. (5.15):

b = 0. 5

37. 5
200 = 2. 67 µm

(of course, this is a theoretical value for the system with no aberration).
(c) If the stop of 30 mm is set in front of the lens then the actual diameter of

the beam passing through the optics is limited by the stop and not by the prism.
Therefore

Ddif = 30 mm; Beff = 2 × 30 × sin 20◦

cos 31. 24◦ = 24 mm; � = 1, 136;

δλ = 0. 44 nm; b = 0. 5

30
200 = 3. 33 µm.

If the entrance slit remains as in (b) above the spectrum will be of lower resolution
(lower contrast) and all spectral lines will be of significantly lower intensity.

5.14. (a) As in Problem 5.13 we find first the dispersion power of the prism made
of BK-7 glass: dn/dλ = 4. 734 × 10−5/nm. We then use Eq. (5.16) to calculate
the system resolution: � = 60 × 106 × 4. 734 × 10−5 = 2, 840.

(b) We find the wavelength difference between the spectral line of the source
and that of the pollutant. For the source we have λ1 = (10, 000/16, 800) × 103 =
595. 24 nm and for the pollutant λ2 = (10, 000/16, 790) × 103 = 595. 59 nm, so
that 
λ = 0. 35 nm. Now we calculate the angular dispersion of the prism, Dϕ ,
using the analytical expression found in Problem 5.12:

Dϕ = 4. 734 × 10−5.
2 sin 30◦

√
1 − 1. 51632(sin 30◦)2

= 7. 26 × 10−5/nm.

Hence, the linear dispersion in the output plane is Dl = Dϕ f ′ = 7. 26 × 10−5 ×
300 × 103 = 21. 78 µm/nm, which yields for two lines at 0.35 nm the separation

l = 21. 78 × 0. 35 = 7. 6 µm. This value is less than a single pixel (10 µm) of
the detector array. Therefore, in this case the pollutant cannot be detected.

(c) Replacing the dispersion element by the prism made of SF-5 glass will
increase the dispersion power and the line separation in the output plane. We
obtain in this case

dn

dλ
= 0. 020884

170. 14
= 12. 27 × 10−5/nm;

Dϕ = dn

dλ
.

2 sin 30◦√
1 − 1. 67272(sin 30◦)2

= 22. 38 × 10−5/nm;

Dl = 67. 14 µm/nm; 
l = 67. 14 × 0. 35 = 23. 5 µm.
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This means that the two spectral lines are separated by more than twice the pixel
size and the sampling requirements of the Nyquist theorem are satisfied, so that
the pollutant can be detected in such a configuration.

5.15. Find the spectral interval corresponding to the minimum spot in the output
plane:

δλ = 
l

dl/dλ
= 30

21. 78
= 1. 377 nm; � = 595

1. 377
= 432.

Here it is assumed that the prism is made of BK-7 glass (see Problem 5.14).
Since δλ > 0. 35 nm, the system cannot reveal the pollutant mentioned in
Problem 5.14. Replacing the prism by another one made of SF-5 glass still cannot
solve the problem: δλ = 30/67. 14 = 0. 447 nm > 0. 35 nm.

5.16. In considering the OPD between two rays 1 and 2, 
21, we will address it
as a delay of the second ray with regard to the first and we will also assume that
ray 1 is always located to the left of ray 2. We should also keep in mind that the
incident angle ψ obeys the regular sign conventions described in Section 1.1 (it is
positive if the optical axis, or the normal to the grating, should be rotated clockwise
in order to coincide with the ray and it is negative if rotation is counterclock-
wise) whereas the angle of diffraction, ϕ, concerns the rays after reflection and
therefore the signs are opposite (the angle is negative if the normal is rotated
clockwise and it is positive if rotation is counterclockwise). Furthermore, we
will divide the whole OPD into two parts, 
21 = 


(i)
21 + 


(d)
21 , where the first

is related to the incident beam and the second describes the rays after reflection
(diffraction).

(a) The beam incident on the grating from the right, as depicted in Fig. 5.18a.
In this case ψ > 0 and 


(i)
21 = BC = −d sin ψ is negative since ray 2 reaches

the grating earlier than ray 1 (“negative” delay). For diffraction directions left of
the normal ϕ > 0 and the delay 


(d)
21 = AD = d sin ϕ is positive (ray 2′ passes

further than ray 1′). Hence, the overall delay is 
21 = d(− sin ψ + sin ϕ). For
diffraction directions right of the normal ϕ < 0 and the corresponding delay 


(d)
21

is also negative, so that the same expression for 
21 as above describes correctly
the total OPD.

(b) The beam incident on the grating from the left. In this case ψ < 0, but the
delay 


(i)
21 = BC = −d sin ψ is positive (ray 2 is behind ray 1). For diffraction

directions right of the normal ϕ < 0 and the corresponding delay 

(d)
21 is also

negative. The overall OPD is positive for diffraction angles smaller than ψ and is
negative if |ϕ | > |ψ |. For diffraction directions left of the normal ϕ > 0 and the
delay 


(d)
21 = AD = d sin ϕ as well as the overall OPD are positive and again the

same expression for 
21 remains valid.
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5.17. From Eq. (5.21) one obtains

sin ϕ
(m)
λ max = sin ψ + m

d
λmax; sin ϕ

(m+1)
λ min = sin ψ + m + 1

d
λmin.

Subtracting the second expression from the first we obtain the (angular) difference
between two corresponding directions. The overlapping starts when this difference
is equal to zero, which yields

m(λmax − λmin)

d
= λmin

d
or 
λ = λmin

m
.

The greater the working diffraction order the smaller the spectral interval available
without overlapping.

5.18. We will perform the calculation for the wavelength λ = 5, 000 Å and start
from Eq. (5.29) where we first assume cos ϕ = 1 in order to estimate the total
number of grooves, N , of the grating. Taking into account that the required resolu-
tion of the system is � = 5, 000 Å/0. 2 Å = 25, 000, we get N = �/m = 12, 500
which enables one to find the period, d, of the grating: d = 25 mm/12, 500 =
2 µm. Therefore, the grating spatial frequency is 500 lp/mm. The parameters of the
grating grooves can be obtained from Eqs. (5.24) and (5.25). We rewrite the first one
using the data of the problem as follows: 2 cos(−15◦ − γ ) × sin(−γ ) = p, where
p = mλ/d = −0. 5; and furthermore: cos 15◦ sin(2γ ) − 2 sin 15◦ sin2(γ ) = −p.
Replacing sin(2γ ) and 2 sin2(γ ) by appropriate expressions with tan γ in a
standard way and denoting x = tan γ we get the following second order equa-
tion with regard to x: x2(p − 2 sin 15◦) + 2x cos 15◦ + p = 0. This gives
x = tan γ = 0. 3092; γ = 17. 18◦. With this value of the groove inclination
angle we get from Eq. (5.25) the active size of the groove mirror:

b = 0. 5

2 cos 15◦ × sin 17. 18◦ = 0. 876 µm.

Finally, using Eq. (5.21) we calculate the diffraction angle where most energy
is concentrated: sin ϕ

(−2)
max = − sin 15◦ − 0. 5; ϕ

(−2)
max = 49. 36◦. This also yields

the corrected value of the system resolution: � = (2 × 12, 500)/cos 49. 36◦ =
38, 385.

5.19. The grating period is d = 1/300 × 103 = 3. 33 µm. Substituting this value in
Eq. (5.21) which describes the conditions of diffraction for the principal maxima
and keeping in mind that in autocollimated architecture the incident beam is parallel
to the optical axis and therefore the tilted angle is the incident angle ψ of the
grating, we draw the conclusion that the system is capable of operating in different
diffraction orders. As is evident from Eq. (5.29), the higher the order m the greater
the resolution. However, this is true only if there is no vignetting in the diffracted
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Figure 5.30 Problem 5.19 – Geometry of diffracted rays between a grating and lens.

light (all rays leaving the grating and participating in the production of the spectrum
pass through the lens L). The geometrical consideration of this requirement is
demonstrated in Fig. 5.30. As we see, in order to avoid vignetting the following
limiting condition should be satisfied: y1 + y2 < D/2; or in terms of the system
parameters:

s tan(ϕ + ψ) + G

2

cos ϕ

cos(ψ + ϕ)
<

D

2

where G and D are the grating size and the lens diameter, respectively. Besides
this, it is understandable from the system architecture that the detector array should
be positioned above the optical axis and therefore the useful diffraction beams
propagate only upward, meaning that (−ϕ) < ψ .

(a) Calculation of ϕ for different m can be done with Eq. (5.21). The results
show that only two values, m = −1 and m = −2, obey both limiting conditions:
for the first we get ϕ = 4. 52◦; (y1 + y2) = 48. 65 mm; and for the second
ϕ = −5. 81◦; (y1 + y2) = 28. 77 mm. For m = −3, m = −4, etc., the diffraction
beams are directed downward and cannot be accepted. Therefore, the optimal
order is m = −2. The system resolution found from Eq. (5.29) becomes � =
2 × 300 × 25. 4 = 15, 240 and the minimum resolvable spectral interval is δλ =
600/15, 240 = 0. 04 nm. Exploiting the results of Problem 5.17, we find the free
spectral interval without overlapping: 
λ = 600/2 = 300 nm.

(b) The location of the detector array is related to the angle ϕ
(−2)
max of the chosen

principal maximum. In our case it is −5. 81◦, so that the first pixel of the array
should be positioned at a height H = f ′ tan(ψ + ϕ

(−2)
max ) = 1, 200 × tan(15◦ −

5. 81◦) = 194. 1 mm above the optical axis. The angular and linear dispersion of
the system are calculated from Eqs. (5.26) and (5.27):

Dϕ = 2

3. 33 × 103 × cos 5. 81◦ = 6 × 10−4/nm; Dl = Dϕ f ′ = 0. 72 mm/nm.
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Hence, the minimum resolvable spectral interval needs in the output plane the
segment 
l = Dl × δλ = 0. 72 × 103 × 0. 04 = 28. 8 µm. Therefore, the size
of a single pixel should be half of this value, i.e., 14. 4 µm, and the total number
of pixels in the detector array should be M = (300/0. 04) × 2 = 15, 000 (if
registration of all possible wavelengths in the full spectral range is desirable;
usually the detector array is much shorter – very seldom does M exceed 4,000).

5.20. We find the period d of the grating d = 1000/1, 200 = 8. 333 µm and
proceed to Eq. (5.21) for the diffraction angle of the first principal maximum:
sin ϕ

(1)
max = sin 10◦ + 0. 5/0. 8333 = 0. 7736; ϕ

(1)
max = 50. 68◦. Then the linear

dispersion is

Dl = Dϕ f ′ = f ′

d cos ϕ
(1)
max

= 150

0. 833 cos 50. 68◦ = 284 µm/nm

and finally 
λ = b′/Dl = 20/284 = 0. 0704 nm.

5.21. Theoretically the resolution of the grating in the problem is high enough
(� = mN = 15, 240 even for the first diffraction order which potentially enables
one to register spectral variations as small as 830 nm/15, 240 = 0. 056 nm).
However, since the laser illuminates only a portion of the grating this increases
the minimum diffraction spot achievable in the output plane of the spectrometer.
The corresponding diffraction angle of this spot is


θ = λ

Nd
= 0. 83

2 × 103
= 4. 15 × 10−4

and all the wavelengths propagating inside of this angle cannot be separated from
one another. This defines the real spectral resolution, δλ, achievable in the system.
As the angular dispersion of the grating Dϕ = m/d cos ϕ ≈ 6 × 10−4 m, one can
estimate the spectral uncertainty as follows: δλ = 
θ /Dϕ = 0. 69/m nm. There-
fore, if the spectrometer is operated at the first diffraction order the minimum
width of a spectral line is 0.69 nm; if the instrument is set for m = 2 the width is
0.345 nm, etc.

It is well known that laser diode instability might be significant. Due to the
variation of temperature, for example, the wavelength of the laser diode might
increase 1 nm for every 5◦C. To be able to reveal such variations the testing
spectrometer should have at least twice as high a spectral resolution. This means
that the spectrometer mentioned in the problem does not suit the study if it is set
for the first diffraction order – it has to be operated at m = 2 at least.

5.22. With the grating period d = 1, 000/2, 400 = 0. 417 µm we get from
Eq. (5.21) sin ϕ

(−1)
max = sin 30◦ − (0. 3/0. 417) = − 0. 2194 and therefore the direc-

tion to the exit slit is determined by the angle ϕ
(−1)
max = − 12. 68◦. As this angle
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is negative, it means that both the entrance slit and the exit slit are positioned
on the Rowland circle on the same side with regard to its diameter normal to
the grating. The distances to the slits are calculated from Eq. (5.31) which yields
r = 500 cos 30◦ = 433 mm; and r′ = 500 cos 12. 68◦ = 488 mm. As a result, the
optical magnification of the grating, V (see Eq. (5.32)), is equal to 1.1266 and the
exit slit is 0.225 mm.

5.23. (a) The entrance slit as well as the center of the CCD line detector should be
positioned on the Rowland circle. From the first relation of Eq. (5.31) we find the
illumination angle ψ : cos ψ = 0. 5; ψ = 60◦. Now we can proceed to Eq. (5.21)
to find the angle of diffraction:

sin ϕ
(−2)
max = sin 60◦ − 2 × 0. 3

1, 000/600
= 0. 506; ϕ

(−2)
max = 30. 4◦.

The second relation of Eq. (5.31) gives r′ = 250 cos 30. 4◦ = 215. 6 mm. This is
the distance to the CCD detector center along the segment r′. The detector itself
should be perpendicular to the segment r′.

(b) Using Eq. (5.33) we find the linear dispersion of the grating:

Dl = mρ

d
= 2 × 250

1, 667
= 300 µm/nm.

Hence, the minimum resolvable spectral interval is δλ = 2s/Dl = (2 × 15)/300 =
0. 10 nm and the total spectral range is 
λ = 1, 024 × 0. 1 = 102. 4 nm.

5.24. If not specified, the incident radiation is supposed to be normal (perpendic-
ular) to the filter surfaces. Therefore, using r = 0 in Eq. (5.35) one can find the
wavelength for which the interference maximum will occur: λ = 
 = 2tn =
2 × 0. 2 × 1. 4 = 0. 56 µm. Then we obtain from Eq. (5.39)

m = 1; Ne = π
√

0. 95

1 − 0. 95
= 61

and finally from Eq. (5.38) FWHM = δλ = 0. 56/61 = 9 nm.

5.25. Tilting of the filter with regard to the incident radiation will change the
optimal wavelength and, slightly, the FWHM. Indeed, proceeding as in Problem
5.24, but now taking into account that r �= 0, we obtain for the incident angle
20◦ sin r = sin 20◦/1. 4 = 0. 2443; r = 14. 1◦. Expression (5.35) gives λ =
2 × 0. 2 × 1. 4 × cos 14. 1◦ = 543 nm. Since Ne remains the same as in Problem
5.24 we get for FWHM: δλ = 543/61 = 8. 9 nm. A similar calculation for the
tilting angle 30◦ yields λ = 523 nm; δλ = 8. 6 nm.

5.26 We first estimate the effective number of rays, Ne, required for achieving
a FWHM as small as 1 nm in a single cavity filter: Ne = λ/δλ = 600 (m = 1 in an
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Figure 5.31 Problem 5.27 – Spectral intensity distribution in a convergent beam.

ordinary interference filter). At high reflection, R, one may use the approximate
expression Ne ≈ π /(1 − R). Hence, the necessary reflection should be R = 1 −
(π /600) = 0. 995 which is technologically impossible and this is the reason why
a multi-cavity architecture is used if a very narrow bandpass (characterized by
FWHM) is required.

5.27. The convergent beam mentioned in the problem can be considered as a com-
bination of parallel beams of different incident angles, from 0◦ to ±10◦, each one
contributing to the overall intensity distribution a fraction similar to that shown
in Fig. 5.23b, but centered at the wavelength λ′ dependent on the angle of inci-
dence. Proceeding as in Problem 5.25 we get for the maximum angle of 10◦:
λ′ = 2tn cos r = 2tn cos[arcsin(sin 10◦/1. 4)] = 496 nm. Assuming that all tilted
beams are of the same intensity as the central one, we find the total intensity
distribution shown in Fig. 5.31, which gives FWHM = 9 nm.

5.28. The wavelengths which correspond to the spectral lines of the prob-
lem are λ1 = 3, 100 Å and λ2 = 3100. 29 Å and the resolution required is
� = 3, 100/0. 29 = 10, 690. For an air-spaced Fabry–Perot etalon we get from
Eq. (5.35) mλ = 2t which together with Eq. (5.41) gives

t = m�
2

δλ = �2

2Ne
δλ.

The effective number of rays depends on the reflectivity of the coating, according
to Eq. (5.39), and therefore the air spacing is also related to R. For R = 0. 85 we
obtain from the above expression t = 0. 8 mm. For R = 0. 90, 0.92, and 0.95 we
obtain t = 0. 534 mm, 0.427 mm, and 0.269 mm, respectively.
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5.29. (a) We rewrite Eq. (5.35) for the first (on-axis) maximum to calculate the
interference order:

2tn = mλ; m = 2 × 1. 7 × 1. 5

0. 5 × 10−3
= 10, 200.

For reflectivity R = 0. 95 Eq. (5.39) yields Ne = 61. By substituting this value
in Eq. (5.38) we find δλ = 8 × 10−3 Å and therefore � = (5, 000/8 × 10−3) =
625, 000.

(b) We use Eq. (5.40) to find the radii of the first and the second rings:

ρ1 = 200

√
2

10, 200
= 2. 8 mm; ρ2 = 200

√
4

10, 200
= 3. 96 mm.

(c) As the output aperture S′ is of 3.5 mm radius, the second ring of the wave-
length 0.5 µm is already outside of S′. The wavelength λ for which the second
ring is still observed can be calculated from Eq. (5.40) as follows:

3. 5 = 200 ×
√

2λ̄n

1. 7
; λ̄ = 0. 174 µm

which is out of the visible region. Therefore, any wavelength from the visible
region can be represented in S′ by a single ring only.

5.30. We perform calculations for both limits of the working interval. For the
smallest wavelength, using the definition of wavenumber one can obtain

δN = δλ

λ2
= 2 × 10−8

10−8
= 2 cm−1.

Then, by substituting this value in Eq. (5.48) we get the range of the scanning
mirror movement as l = 1/(2 × δN) = 0. 25 cm. A similar procedure for the
largest wavelength gives

δN = 2 × 10−8

25 × 10−8
= 0. 08 cm−1; l = 1

2 × 0. 08
= 6. 25 cm.

5.31. From the data of Problem 5.30 we draw the conclusion that a resolution
of 0.2 nm through the whole working spectral interval of 4 µm requires 2 ×
4, 000/0. 2 = 40, 000 sampling points (we also take into account the sampling
conditions according to the Nyquist theorem). Since the detector bandwidth is
20 kHz, the sampling in the time domain can be performed at time intervals
τ = 1/(2 × 20 × 103) = 25 µs. For the FFT digital algorithm the number of
sampling points in the time domain and in the frequency domain should be the
same, so the full time of scanning is T = 25×10−6 ×40, 000 = 1 s which requires
for a scanning range of 6.25 cm (found in Problem 5.30) a scanning velocity of
V = 6. 25 cm/s.
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5.32. First we should find the absorption factor of the silver particles. From
Eq. (5.11) we have

αAg = 4π × 3. 64

0. 59 × 10−3
= 7. 75 × 104 mm−1.

Then, by substituting this value in Eq. (5.51) as well as the ratio of the detector
signals, T21 = 0. 05, one can obtain the absorption factor of the media:

αM = − ln(0. 05)

(3. 5 − 1. 0)
= 1. 198 mm−1

and finally the concentration C of the silver particles in the solution (see Eq. (5.49)):

C = 1. 198

7. 75 × 104
= 1. 546 × 10−5 = 15. 46 ppm (parts per million).



Chapter 6

Non-contact Measurement
of Temperature

6.1. Thermal Radiation Laws and Surface Properties

Thermal radiation is a collection of electromagnetic waves emitted by a substance
and results from the random motion of microparticles (atoms, molecules, ions, and
electrons) constituting the radiating body. The motion of microparticles is a char-
acteristic of matter and it occurs at any time and anywhere in all substances, either
in the condensed phase (solids or liquids) or in the gaseous forms. If a moving
particle has an electric charge that moves (randomly oscillates or randomly jumps
from point to point) together with the particle mass, such a motion is inevitably
accompanied by the generation of electric and magnetic fields propagated as waves
in all directions. Since the motion of one particle is not correlated with that of oth-
ers, the emitted electromagnetic waves are also not correlated with each other, but
radiate spontaneously, in a chaotic manner. Thus, thermal radiation is completely
different from the “well-organized,” coherent light of lasers and different from
the radiation of other sources converting electrical, biological, or chemical energy
into emitted electromagnetic waves (some of them are described in Chapter 3).

As the thermodynamic temperature, T , is the basic measure of the kinetic energy
of randomly moving particles, it is quite understandable that thermal radiation
is governed primarily by the temperature of a radiating substance. Measuring
thermal radiation allows one to estimate the temperature of a thermal source,
once the relation between the temperature and radiation power is known and well
established. However, as will be explained later, radiation depends not only on T
but also on other properties of a radiating body.

209
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Figure 6.1 External radiation incident on a surface.

To explain the laws of thermal radiation we first discuss a very simple and general
case when radiation of an external source is incident on a surface separating two
media: the first being fully transparent (it could also be a vacuum) from which the
radiation comes and the second being the body under consideration (see Fig. 6.1).
As is well known, some of the incident energy is reflected back into the first
medium while the rest is propagated inside the body and finally fully absorbed
there (if the body is semi-infinite) or emerges on the other side of it. Considering
the spectral values related to a specific wavelength λ and denoting the incident
energy as Eλ and the reflected and absorbed energies E′

λ and E′′
λ , respectively, one

obtains from the energy conservation law

Eλ = E′
λ + E′′

λ ; 1 = E′
λ

Eλ

+ E′′
λ

Eλ

= Rλ + Aλ (6.1)

where the spectral reflectance Rλ and the spectral absorptance Aλ are introduced.
Furthermore, assuming that the second medium (the body) has temperature T and
emits thermal radiation characterized by spectral emittance eλ(T ), we can express
Kirchhoff’s law as follows:

eλ(T )

Aλ(T )
= const = eBλ(T ) (6.2)

which states that the ratio of spectral emittance to spectral absorptance is a universal
function for all bodies (all thermal sources). This ratio varies when the temperature
and/or chosen wavelength vary, but it does not depend on the body material. The
universal function eBλ(T ) in Eq. (6.2) is obviously the emittance of a substance for
which Aλ = 1. Such a body is called a black body and it has the maximum possible
emittance for a given wavelength and temperature. The radiation properties of real
surfaces are usually defined relative to this maximum emittance by the value ελ

called emissivity:

ελ(T ) = eλ(T )

eBλ(T )
. (6.3)
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By substituting Eq. (6.3) in Eq. (6.2) and then in Eq. (6.1) yields

ελ = Aλ = 1 − Rλ (6.4)

and this expression is strictly valid for any surface (if all three values are related
to the same temperature T and the same wavelength λ, of course). It should be
noted, however, that sometimes the emissivity, reflectance, and absorptance used
in practice are determined as averaged values over a rather wide spectral interval,
or even over all wavelengths in some cases. Then the last equality is no longer valid
and the averaged values cannot be related to each other as simply as in Eq. (6.4),
but should be estimated separately.

The universal function eBλ(T ) appearing in Kirchhoff’s law is defined by
Planck’s law:

eB(λ, T ) = C1λ
−5

exp

(
− C2

λT

)
− 1

(6.5)

where C1 = 3. 740 × 10−16 W m2 and C2 = 1. 4387 × 10−2 m K are universal
constants and Eq. (6.5) is related to the radiation power emitted from a surface of
1 m2 in all directions of a hemisphere (2π sr). This function is shown in Fig. 6.2 for
three different temperatures. As can be seen, the wavelength of maximum emis-
sion (λmax) moves to shorter wavelengths as temperature increases. The relation
between T and λmax is governed by Wien’s law (it can also be derived directly
from Eq. (6.5)):

λmaxT = 2, 898 µm K. (6.6)

Figure 6.2 Black body radiation function (Planck’s function) at different temperatures
(T1 > T2 > T3).
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If we are interested in radiation emitted by a body at all wavelengths, Eq. (6.5)
should be integrated from zero to infinity, which results in the following formula:

eB(T ) =
∞∫

0

eB(λ, T )dλ = σT4 (6.7)

where σ = 5. 668 × 10−8 Wm−2 K−4 is the Boltzmann constant and Eq. (6.7) is
known as the Stefan–Boltzmann law.

The radiation properties of radiating surfaces are characterized by emissivity,
ε. Since these properties depend not only on wavelength and temperature but also
on the surface shape and roughness, it is common practice to introduce the angular
spectral emissivity defined as the following:

eλ,T (θ , ϕ) = Iλ(θ , ϕ)

IB(λ, T )
(6.8)

where instead of hemispherical characteristics eλ and eB the radiation intensities
are used. Intensity is defined as the radiation power radiated by a unit surface
perpendicular to the direction of observation (defined by angular coordinates θ , ϕ)
in a solid angle of 1 sr around the direction of observation. Sometimes such val-
ues are termed surface brightness. A black body surface has constant brightness
independent of observation direction (Lambert’s law) and this is the reason why
angular coordinates in Eq. (6.8) appear in the numerator only. If a black body sur-
face is of constant area S and located in a plane which is not changed (not turned
together with the observation angle), then intensity IB measured at different angles
θ varies as cos(θ ) (according to the projection of S on the plane perpendicular to
the observation).

Examples of directional emissivity of two surfaces, dielectric and metal, are
shown in Fig. 6.3. As can be seen, at small observation angles (up to about 45◦) both
surfaces behave as lambertian surfaces (emissivity is almost constant). However,
at greater angles the emissivity of the dielectric decreases monotonically while for
the metal it increases and only at very large angles does it decrease rapidly. Data
on the emissivity of different surfaces are presented in Appendix 4.

Problems

6.1. An optical system comprising a collection lens (diameter 30 mm, focal length
50 mm) and a silicon detector of 3 mm in size is set in a furnace window at a
distance of 5 m from the furnace inner wall for measuring the wall temperature.
The detector responsivity is 0.28 A/W and its maximum current is 1 mA.
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Figure 6.3 Spatial distribution of emissivity of a radiating surface: (a) a dielectric
material; (b) a metal.

(a) Assuming that the emissivity of the wall ε = 0. 8 and its temperature
T = 1, 750◦C, find the attenuation of a neutral density filter which should
be inserted in front of the system if the spectral interval of the detector
sensitivity is from 0.4 to 1.1 µm and normal measurement is to be done in
the middle of the system dynamic range. [Note: The emissivity of the wall
can be assumed to be spectrally independent.]

(b) How will the detector reading be changed when the system is moved aside
and its optical axis is tilted 60◦ to the wall normal?

6.2. In the course of temperature measurement of a glass sheet in a tin bath the
measurement assembly, located 1 m above the glass, is slightly rotated in order
to measure the temperature at several points (A, B, and C) along the sheet. The
distances AB = BC = 70 cm. Assuming that the refractive index of the glass is n =
1. 5 and the glass temperature is about 500◦C, find the measurement uncertainty
due to rotation of the system.

6.3. It is well known that classic thermodynamics failed in predicting the spectral
behavior of black body radiation at short wavelengths (λ → 0) and instead of
Planck’s law (Eq. (6.5)) the classic approach resulted in Wien’s formula:

eB(λ, T ) = C1λ
−5 exp

(
− C2

λT

)
(6.9)

where the constants are the same as in Eq. (6.5). This expression is still very
useful, due to its simplicity, in many applications. Keeping in mind that in most
practical cases temperature varies from 300 K to 3,000 K and assuming that at each
temperature the useful spectral range is λmax/2 < λ < 2λmax, estimate the accuracy
of Wien’s formula relative to the precise expression (Eq. (6.5)).
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Figure 6.4 Problem 6.4 – Model of a black body.

6.4. A good model of a black body is a hollow sphere with a small aperture (see
Fig. 6.4). Due to the geometry of the model the aperture absorbs practically any
incident beam so that absorptance is very high. On the other hand, emittance
remains practically independent of the reflectivity of the wall material because
of multiple reflections inside the sphere. Assuming the size of the aperture is 5%
of the sphere diameter and the wall is fully diffusive with reflectance R = 80%,
estimate the accuracy of the model.

6.2. Optical Methods of Temperature Measurement

Optical instruments for temperature measurement (often called pyrometers) are
based on universal laws of thermal radiation described in Section 6.1. As explained
earlier, additional information required for the correct interpretation of measure-
ment data is the emissivity of the surface under study. The basic configuration
of a pyrometer is presented in Fig. 6.5. The device comprises radiation collecting
optics, L, and a detector, D. In some methods (see below) an optical filter F (shown
by dotted lines) is inserted in front of the detector. In general, the measuring pro-
cess consists of two steps: measurement of radiation of the studied body, M, and
a calibration procedure with a black body model, usually equipped with electrical

Figure 6.5 Basic configuration of an optical pyrometer: (a) measurement of radiation
emitted by an object being studied; (b) calibration with a black body model.
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measures enabling one to control and to change its temperature, TB. Of course,
calibration can be done in advance, from time to time, independent of the mea-
surement of the body being studied. What is important is that all the geometrical
parameters, distances and collecting angle ω, be equal in the measurement and in
the course of calibration.

Three kinds of temperature are usually defined and correspondingly three dif-
ferent approaches are commonly used. We will consider all of them, keeping in
mind that in any case our goal is to find the true (thermodynamic) temperature, T .

Radiation Temperature

Let a detector be capable of registering radiation in a wide spectral range (theoret-
ically at all wavelengths) and let the integral emissivity of a body (averaged over
all wavelengths) be ε. Then the radiation power incident on the detector during the
measurement and originating in emission of the segment dS of the tested object
M is defined by the Stefan–Boltzmann law (Eq. (6.7)) as E1 = εσ t4ω dS. While
calibrating with a black body, the power registered at each temperature TBis equal
to E2 = σT4

Bω dS. The radiation temperature of the body M is defined as the tem-
perature TBR of the black body that gives an optical power equal to that registered
with the body M, i.e., E1 = E2, and therefore

σT4
BR = εσT4; T = TBR

4
√

ε
. (6.10)

Obviously our aim is the true temperature, T . As we see, once the radiation tem-
perature, TBR, is found and emissivity is known the true temperature, T , of body
M is calculated from Eq. (6.10).

Color Temperature

A device registers radiation in two wavelengths, λ1 and λ2, and the corresponding
spectral emissivities, ε1 and ε2, of a studied surface are known. Also, the process is
performed separately for each wavelength by using appropriate narrow-band filters
F1 and F2 in both measurement and calibration processes. Consider the ratio Q
of registered data at these two wavelengths and define the color temperature of
the studied body M as the temperature of a black body, TBC, which yields a value
Q equal to that obtained in measurements with the object M. According to this
definition one obtains

ε1eB(λ1, T )

ε2eB(λ2, T )
= eB(λ1, TBC)

eB(λ2, TBC)
. (6.11)

By substituting in Eq. (6.11) Planck’s formula (Eq. (6.5)) we get the non-linear
algebraic equation with regard to T . This strict result may be further simplified if
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we take into account the consideration made in Problem 6.3 and replace Planck’s
expression by Wien’s formula (Eq. (6.9)) which is a good approximation for many
cases, as shown earlier. Then we have

ε1C1λ
−5
2 exp

(
− C2

λ1T

)

ε2C1λ
−5
1 exp

(
− C2

λ2T

) =
C1λ

−5
2 exp

(
− C2

λ1TBC

)

C1λ
−5
1 exp

(
− C2

λ2TBC

) .

Finally, after taking the logarithm of both sides of the equation:

1

T
= 1

TBC
− ln(ε1/ε2)

C2

(
1

λ2
− 1

λ1

) (6.12)

In the last expression wavelengths are in micrometers, temperatures in Kelvin, and
C2 = 14, 388.

As we see, the color temperature can be smaller or larger than the true temper-
ature of a body M, depending on the ratio of the emissivities ε1/ε2 related to the
two wavelengths of measurement.

Brightness Temperature

This case is similar to radiation temperature, but equalization of measured radiation
quantities is performed for the spectral values related to a single wavelength, λ.
Assuming again that the spectral emissivity ελ is known and defining the brightness
temperature as the temperature TBS of a black body at which the measured spectral
radiation at calibration is equal to that of the measurement with a body M, we have

ελeB(λ, T ) = eB(λ, TBS) (6.13)

which is again the non-linear algebraic equation with regard to T . Further
approximation with Wien’s formula (Eq. (6.9)) yields the following:

ελC1λ
−5 exp

(
− C2

λT

)
= C1λ

−5 exp

(
− C2

λTBS

)
.

The final result is

1

T
= 1

TBS
+ ln ελ

C2/λ
. (6.14)

The last expression shows that the thermodynamic temperature T of a surface is
always higher than its brightness temperature TBS (since ελ < 1 in all cases).
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Problems

6.5. The color temperature of a surface is measured with two wavelengths, λ1 =
0. 45 µm and λ2 = 0. 55 µm. The spectral emissivity of the surface is 0.3 and 0.4,
respectively.

(a) Find the true temperature of the surface if the measured color temperature
is 2,200 K.

(b) Calculate the brightness temperature of the surface at both given wave-
lengths.

6.6. In a pyrometer of equal brightness intended for operation with the naked
eye a filter F1 (made of glass 20 mm thick with n = 1. 6 and absorption factor
K = 0. 5 cm−1) is set in front of a light source S (see Fig. 6.6) while a narrow-band
filter F2 transparent for a wavelength of 0.5 µm is positioned in front of the eye.
If the emissivity of body M is ελ = 0. 5 and the brightness temperature of source
S is 2,850 K, what is the true temperature of the body?

Figure 6.6 Problem 6.6 – Configuration of a pyrometer of equal brightness.

6.7. The radiation temperature of the refractory wall in a furnace is 2,700◦C.
Calculate the heat flux emitted by the wall in the visible spectral interval, assuming
the wall emissivity is 0.8 for all relevant wavelengths.

6.8. In manufacturing window glass by the float process, liquid glass is run out
from a furnace onto the surface of liquid tin in a tin bath. The temperature of the
tin surface is controlled at several points along the bath. Measurements are per-
formed by an optical pyrometer where radiation is registered at two wavelengths,
λ1 = 0. 52 µm and λ2 = 0. 45 µm, and the resulting color temperature is found
as 1,000◦C near the furnace and 650◦C near the bath outlet. Assuming the tin
reflectance varies with wavelength as R = 1 − (const/

√
λ), find the difference

between the measured values and the true temperature of the tin surface at both
locations.
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6.3. Measurement of Temperature Gradients

Optical methods for the measurement of gradients inside a test object are evidently
concerned with materials transparent to radiation. We will consider here the method
based on an interferometic configuration.

Measurement of gradients is a much more complicated task than the mea-
surement of temperature in some predetermined locations. Generally speaking,
gradients are revealed as a result of interferogram interpretation which takes into
consideration that the shape of the interference fringes depends on the temperature
and variation of the refractive index along the optical path. Since optical path dif-
ferences (OPDs) which give the final interference pattern accumulate numerous
local variations of n, it might occur that different spatial distributions of n(x, y, z)
yield the same final result. From a mathematical point of view this means that
the corresponding inverse problem might have no unique solution. To avoid such
a situation we will restrict our consideration to cases where the refractive index
along any optical trajectory does not vary noticeably, but an OPD exists between
different (even adjacent) optical rays. In other words, we will consider the case
when refractive index is a function of a single coordinate, n(y), and the gradients
are not too large.

Figure 6.7 demonstrates the basic architecture for measuring temperature gra-
dients. It is a dual-beam interferometer where a test object B is positioned in one
branch and the reference branch either contains the same object, but at uniform
temperature (B1 shown by the dotted line), or has no object at all. A source S fol-
lowed by lens L1 provides monochromatic illumination for both channels. Lens L2

Figure 6.7 (a) Basic configuration of an interferometer for measurement of temperature
gradients and (b) schematic of the ray trajectories.
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creates an image of the output surface of object B and reference B1 onto the plane
P where an interference pattern is generated.

The temperature gradients are supposed to be in the vertical direction. For
example, a heater is positioned above sample B generating a one-dimensional
heat flux Q so that the higher temperatures (and therefore the lower refractive
index) are in the upper part of the object. As a light beam is traveling through the
medium with variable refractive index the beam trajectory is no longer a straight
line, but a trajectory with a curvature which depends on the derivative dn/dy
(see Fig. 6.7b). To find the beam trajectory we begin with a differential equation
describing the vertical coordinates of the beam, y(x), starting at height y0 at x = 0
in the horizontal direction:

d2y

dx2
=

[
1 +

(
dy

dx

)2
]

d ln n

dy
(6.15)

and assume that the gradient of n is constant along the trajectory:

dn

dy
= const = K . (6.16)

Then Eq. (6.15) is transformed to a new one

y′′

1 + (y′)2
= 1

n0

dn

dy
= K

n0
(6.17)

which has the exact solution

y(x) = −n0

K
ln cos

(
Kx

n0

)
+ y0. (6.18)

By expanding Eq. (6.18) in a series one obtains

y(x) = y0 + Kx2

2n0

(
1 + K2

6n2
0

x2 + · · · +
)

. (6.19)

Hence, the first approximation is the parabolic function

y(x) − y0 ≈ Kx2

2n0
. (6.20)

Once the beam trajectory function is known, we can find the optical paths, S1 and
S2, related to two separate starting points 1 and 2 along OY (see Fig. 6.7):

S1 =
l∫

0

n1

√
1 + (y′

1)2 dx; S2 =
l∫

0

n2

√
1 + (y′

2)2 dx. (6.21)
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By calculating y′(x) either from Eq. (6.18) or from Eq. (6.20) and then substituting
the obtained functions in Eq. (6.21) we can compute the OPD between these two
paths.

Furthermore, taking into account

dn

dy
= dn

dT
× dT

dy
(6.22)

where dn/dT is usually about 10−4 − 10−6 we draw the conclusion that if the
temperature gradients are not very large a good approximation for the OPD is

�21 = S2 − S1 = l(n2 − n1) = �nl = dn

dy
× �y × l. (6.23)

Now let optical paths 1 and 2 create two adjacent fringes in P. Then the OPD is
equal to λ and the distance between fringes is expressed as follows:

�y21 = λ

l
dn

dy

= λ

l
dn

dT
× dT

dy

. (6.24)

This expression is the basis for converting the fringe spacing to temperature gra-
dients. An example of a fringe pattern and the corresponding temperature profile
is depicted in Fig. 6.8.

Problems

6.9. Find the accuracy of a parabolic approximation of the optical path in a layer
of 70 mm in length with maximum temperature gradient dT /dy = 20◦/mm if it is
made of transparent material of n = 1. 6; dn/dT = 1 × 10−4.

Figure 6.8 (a) Interference pattern and (b) corresponding temperature distribution.
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6.10. In the optical configuration shown in Fig. 6.7a the imaging lens has a focal
length of 100 mm and creates an interference pattern at magnification V = −1/3.
Assuming the test object is of 50 mm in length and 15 mm in height and the
maximum temperature gradient in it is 25◦C/mm, find the minimum required
diameter of the lens.
[Note: The refractive index of the object material is n = 1. 3; and dn/dT = 10−4].

6.11. The temperature profile in an object of 160 mm in length and 38 mm in
height made of transparent material with n = 1. 5 and dn/dt = 10−6 is measured
using the interferometric system shown in Fig. 6.7a. The interference pattern cre-
ated at optical magnification V = −0. 5 in the plane P includes 18 fringes with the
following spacing: d1 = 0. 12 mm; d2 = 0. 20 mm; d3 = 0. 27 mm; d4 = 0. 41 mm;
d5 = 0. 63 mm; d6 = 0. 76 mm; d7 = 0. 94 mm; d8 = 1. 39 mm; d9 = 1. 56 mm;
d10 = 1. 80 mm; d11 = 1. 82 mm; d12 = 1. 88 mm; d13 = 1. 80 mm; d14 =
1. 74 mm; d15 = 1. 74 mm; d16 = 1. 04 mm; d17 = 0. 48 mm; d18 = 0. 48 mm. Find
the temperature profile in the sample if the minimum temperature (at the bottom)
is 600◦C.

6.4. Solutions to Problems

6.1. (a) The optical system is operated at magnification V = S′/S ≈ f ′/S =
−50/5, 000 = −0. 01. Hence the area of the wall from which radiation reaches
the detector is determined as

A = π (ddet)2

4V2
= 9π

4 × 10−4
= 0. 0707 m2.

Due to the final size of the lens only a fraction of radiation emitted by A enters the
detector and this fraction is

ω

2π
= πD2

2π × 4 × S2
= 302 × 10−6

8 × 52
= 4. 5 × 10−6.

The total energy emitted by each 1 m2 of the wall of T = 1, 750 + 273 = 2, 023 K
in the spectral interval 0.4–1.1 µm can be calculated using the black body radiation
table presented in Appendix 3:

E = ε

1.1∫
0.4

eB(λ, T )dλ = ε




1.1∫
0

eB(λ, T )dλ −
0.4∫
0

eB(λ, T )dλ


 = ε(I2 − I1)

where I1 corresponds to λ1T = 0. 4 × 2, 023 = 809 µm K and I2 correspo-
nds to λ2T = 1. 1 × 2, 023 = 2, 225 µm K, so that interpolation between the
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table data yields I2 − I1 = σT4 × 10−5 × (1, 057 − 0. 172) × 10−4 = 5. 668 ×
10−4(2, 025)41, 056. 8×10−4 = 100, 721 W/m2. The power incident on the optical
system is found as follows:

P = E
ω

2π
A = 0. 8 × 100, 721 × 4. 5 × 10−6 × 0. 0707 = 2. 562 × 10−2 W.

The detector maximum current of 1 mA originates from a power P′ = idetR =
10−3/0. 28 = 3. 54 × 10−3 W. Therefore, the attenuator is required and the filter
transmittance should be τ = 0. 5 × 3. 54 × 10−3/2. 562 × 10−2 = 0. 069 (the
factor of 0.5 takes into account that operation should be performed in the middle
of the dynamic range).

(b) When the system is moved to the side the aperture angles of distant points
will decrease whereas those of closer points will increase relative to the case of
normal imaging, but on average we should not expect the geometry to change
noticeably the detector reading. The same is true with regard to the projection
of the wall segment imaged on the detector (projection of the radiated area on
the direction perpendicular to the optical axis remains unchanged). However, the
emissivity of the wall at 60◦ to the normal line for refractory materials is about
10% lower than the emissivity in the normal direction, and therefore the detector
readings will be changed accordingly.

6.2. In temperature measurements at different angular positions the emissivity
variation affects the amount of radiant energy registered by the detector. To estimate
how much the emissivity can be changed we keep in mind Eq. (6.4) and calculate
the reflectance of the smooth glass surface using Fresnel’s formula (see Chapter 5).
At the initial position (the incident angle ϕ = 0◦) we have R0 = (n−1)2/(n+1)2 =
0. 04; ε0 = 0. 96. At the first and the second angular positions the incident (and
observation) angles are ϕB = arctan(0. 7) = 35. 0◦; ϕC = arctan(1. 4) = 54. 5◦.
Calculating the corresponding refraction angles (from Snell’s expression (1.2))
one obtains rB = 22. 48◦; rC = 32. 9◦ and proceeding further with Fresnel’s
formula we obtain RB = 0. 0429 and RC = 0. 068 which gives εB = 0. 957;
εC = 0. 932. Now assuming that �T /T = �ε/ε and keeping in mind that T =
773 K, we can conclude that the change of emissivity from ε0 to εB causes the
error �TB = 773 × (3 × 10−3/0. 96) = 2. 3◦ and the change from ε0 to εC results
in �TC = 773 × (3 × 10−2/0. 96) = 23. 0◦.

6.3. Let us define the accuracy of Wien’s formula (Eq. (6.9)) relative to the precise
expression of Planck (Eq. (6.5)) by the ratio

q = e(W)
B (λ, T )

e(P)
B (λ, T )

=
exp

(
− C2

λT

)
[

exp

(
C2

λT

)
− 1

]−1
= 1 − exp

(
− C2

λT

)
= 1 − �
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which is obviously a monotonic function of a single parameter, λT : the greater
this parameter the greater the relative error �. According to Wien’s law (Eq. (6.6))
the wavelength of maximum emittance λmax = 2, 898/T varies from 9.66 µm
to 0.966 µm for the temperature range 300–3,000 K. In the relevant spectral
interval (λmax/2) < λ < 2λmax the parameter λT varies from 1,449 to 5,796 for
all temperatures and therefore �min = exp(−14. 388/1, 449) = 4. 87 × 10−5 and
�max = exp(−14, 388/5, 796) = 0. 0835. Thus, the maximum error of Wien’s
formula in the chosen spectral and temperature intervals is about 8.4%.

6.4. Referring to Fig. 6.4 we consider the absorptance of the black body model
for incident radiation Eλ directed at an angle ϕ. The incident beam illuminates a
segment ds of the inner surface of the sphere which irradiates (reflects) radiation
in all directions diffusively (uniformly). The fraction (R cos ϕ)E(ω/2π ) is lost due
to reflection back to the entrance aperture (the factor cos ϕ takes into account that
the normal to ds is not directed along the solid angle of emerging radiation) and
the rest is absorbed completely inside the model. Therefore, the absorptance Aλ

can be defined as follows:

Aλ =
Eλ − Rλ cos ϕ × Eλ

ω

2π

Eλ

= 1 − Rλ cos ϕ × πd2 cos ϕ

4ρ2
× 1

2π

= 1 − Rλ cos ϕ × πd2 cos ϕ

4(D cos ϕ)2
× 1

2π
= 1 − Rλ

(
d

D

)2

× 1

8
.

For R = 0. 8 and (d/D) = 0. 05 we have Aλ = 1 − 2. 5 × 10−4 = 0. 99975. This
result is correct if we assume that the model is of uniform temperature and its inner
surface is Lambertian (fully diffusive).

6.5. (a) From Eq. (6.12) we get

1

T
= 1

2, 200
− ln(0. 3/0. 4)

14, 388 ×
(

1

0. 55
− 1

0. 45

) ; T = 2, 468. 8 K.

(b) For the calculation of the brightness temperature at both wavelengths one
can use Eq. (6.14):

For λ = 0. 45 µm : 1

TBS1
= 1

T
− ln(0. 3)

14, 388
× 0. 45; TBS1 = 2258. 8 K

For λ = 0. 55 µm : 1

TBS2
= 1

T
− ln(0. 4)

14, 388
× 0. 55; TBS2 = 2272. 3 K.

Thus, the brightness temperature in both cases is significantly lower than the true
temperature.
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6.6. Referring to Fig. 6.6 we assume that both lenses L1 and L2 provide the same
collection angle while imaging the test object M and the source S into the plane
P observed by the eye through lens L3. Then the condition of equal brightness of
both images in the plane P is expressed as

ελeB(λ, T ) = eB(λ, TBS) × τF1 (A)

where the transmittance of the filter F1 is determined as follows (see also
Section 5.1):

τF1 = (1 − R)2 exp(−Kt); R = (n − 1)2/(n + 1)2 = (0. 6/2. 6)2 = 0. 05325

τF1 = (1 − 0. 05325)2 × exp(−0. 5 × 2) = 0. 3297.

By substituting this value in Eq. (A) and using Wien’s function (Eq. (6.9)) we have

1

T
− 1

TBS
= ln(ελ/τF1)

C2
λ;

1

T
= 1

2,850
+ ln(0.5/0.3297)

14,388
0.5; T =2737.1 K.

6.7. Taking into consideration that the radiation temperature of the wall is 2,973 K
and proceeding further with Eq. (6.10) we have

T = 2, 973
4
√

0. 8
= 3, 143. 6 K.

Then for the heat flux emitted by the wall in the hemisphere we get

P = ε

0.7∫
0.4

eB(λ, T )dλ = ε




0.7∫
0

eB(λ, T )dλ−
0.4∫
0

eB(λ, T )dλ


 = ε(I2 − I1)

and then calculating the integrals just as we did in Problem 6.1 we finally obtain
P = 0. 8 × 539. 9 × 103 = 432 kW/m2.

6.8. The absolute color temperatures at the points of measurement are (TBC)A =
1, 273 K and (TBC)B = 923 K. The ratio of the spectral emissivities required for
Eq. (6.12) can be calculated as follows: ελ = 1 − Rλ = const/

√
λ; ε1/ε2 =√

λ2/λ1 = √
0. 52/0. 45 = 1. 075. Then at each point the true temperature can be

computed from Eq. (6.12) as

1

TA
= 1

TBCA

− ln(1. 075)

14, 388(1/0. 52 − 1/0. 45)
; TA = 1, 247. 6 K

1

TB
= 1

TBCB

− ln(1. 075)

14, 388(1/0. 52 − 1/0. 45)
; TB = 909. 3 K
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6.9. We characterize the accuracy of the approach by the error in finding the
coordinates of the ray trajectory at the exit plane of the object, y(l). Assuming for
simplicity y0 = 0 we have for the parabolic approximation

K = dn

dT
× dT

dy
= 10−4 × 20 = 2 × 10−3 ◦C/mm;

y(l) = Kl2

2 × 1. 6
= 2 × 10−3 × 702

2 × 1. 6
= 3. 063 mm.

More accurate result can be obtained if the second term in the expansion (6.19)
is taken into account. This term is K2l2/6n2 = (4 × 10−6 × 4, 900/6 × 1. 62) =
1. 276×10−3 mm which is obviously very small relatively to unity (the main term
in the bracket on the right-hand side of Eq. (6.19)).

We can also estimate the error of the parabolic approximation by comparing the
numerical result with that obtained from the precise solution (Eq. (6.18)). This
accurate formula yields in our case

y(l) = − 1. 6

2 × 10−3
ln cos

(
2 × 10−3 × 70

1. 6

)
= 3. 066 mm

which differs from the parabolic approximation result by about 0.1%.

6.10. We suppose that the test sample is positioned symmetrically with regard to
the optical axis of the interferometer imaging branch (see Fig. 6.7a). We also define
the minimum diameter of lens L2 as that which allows all rays leaving the exit of
the test body to participate in creating the interference fringes in the plane P. Using
the parabolic approximation (Eq. (6.20)) one can find the inclination angle of the
rays at the exit from the sample:

y′(l) = 2Kl

2n
= 10−4 × 25 × 50

1. 3
= 0. 0962.

Since lens L2 builds the image of the sample exit into the plane P at magnification
V = −1/3, we can find the distance from the sample to the lens as follows
(see Chapter 1):

S = f ′ 1 − V

V
= −100

1. 333

0. 333
= −200 mm

which enables one to determine the active size of the lens: D2 = 2[−y′(l) × S +
H/2] = 2 × (200 × 0. 0962 + 7. 5) = 53. 4 mm.
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6.11. To find the temperature profile from the interference pattern we rewrite
Eq. (6.24) in the following manner:

dT

dy
= λ

l
dn

dT
× �y

(A)

which enables one to find the temperature at the location of the k-th fringe if the
temperature at location yk−1 is known:

Tk = Tk−1 +
(

dT

dy

)
k
× �yk ; (�yk = dk). (B)

Starting from T (0) = 600◦C = T0, we find (dT /dy)1 from Eq. (A) with�y = d1/V ,
then calculate T1 from Eq. (B) and proceed further until all fringes are interpreted.
The numerical results are as follows:(

dT

dy

)
1

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 12
= 15. 63◦C/mm;

T1 = 600◦ + 15. 63 × 0. 12/0. 5 = 603. 8◦; y1 = 0. 24 mm

(
dT

dy

)
2

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 2
= 9. 375◦C/mm;

T2 = 603. 8◦ + 9. 375 × 0. 20/0. 5 = 607. 6◦; y2 = 0. 64 mm

(
dT

dy

)
3

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 27
= 6. 94◦C/mm;

T3 = 607. 6◦ + 6. 94 × 0. 27/0. 5 = 611. 3◦; y3 = 1. 2 mm

(
dT

dy

)
4

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 41
= 4. 57◦C/mm;

T4 = 611. 3◦ + 4. 57 × 0. 41/0. 5 = 615. 0◦; y4 = 2. 02 mm

(
dT

dy

)
5

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 63
= 2. 98◦C/mm;

T5 = 615. 0◦ + 2. 98 × 0. 63/0. 5 = 618. 8◦; y5 = 3. 28 mm

(
dT

dy

)
6

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 76
= 2. 47◦C/mm;

T6 = 618. 8◦ + 2. 47 × 0. 76/0. 5 = 622. 6◦; y6 = 4. 80 mm
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(
dT

dy

)
7

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 94
= 2. 00◦C/mm;

T7 = 622. 6◦ + 2. 00 × 0. 94/0. 5 = 626. 4◦; y6 = 6. 68 mm

(
dT

dy

)
8

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 39
= 1. 35◦C/mm;

T8 = 626. 4◦ + 1. 35 × 1. 39/0. 5 = 630. 2◦; y8 = 9. 46 mm

(
dT

dy

)
9

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 56
= 1. 2◦C/mm;

T9 = 630. 2◦ + 1. 20 × 1. 56/0. 5 = 633. 9◦; y9 = 12. 58 mm

(
dT

dy

)
10

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 80
= 1. 04◦C/mm;

T10 = 633. 9◦ + 1. 04 × 1. 80/0. 5 = 637. 6◦; y10 = 16. 18 mm

(
dT

dy

)
11

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 82
= 1. 03◦C/mm;

T11 = 637. 6◦ + 1. 03 × 1. 82/0. 5 = 641. 4◦; y11 = 19. 82 mm

(
dT

dy

)
12

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 88
= 1. 00◦C/mm;

T12 = 641. 4◦ + 1. 88/0. 5 = 645. 0◦; y12 = 23. 58 mm

(
dT

dy

)
13

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 80
= 1. 04◦C/mm;

T13 = 645. 0◦ + 1. 04 × 1. 80/0. 5 = 648. 7◦; y13 = 27. 18 mm

(
dT

dy

)
14

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 74
= 1. 08◦C/mm;

T14 = 648. 7◦ + 1. 08 × 1. 74/0. 5 = 652. 5◦; y14 = 30. 65 mm

(
dT

dy

)
15

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 74
= 1. 08◦C/mm;

T15 = 652. 5◦ + 1. 08 × 1. 74/0. 5 = 656. 3◦; y15 = 34. 12 mm
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(
dT

dy

)
16

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 1. 04
= 1. 80◦C/mm;

T16 = 656. 3◦ + 1. 80 × 1. 04/0. 5 = 660. 0◦; y16 = 36. 20 mm

(
dT

dy

)
17

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 48
= 3. 91◦C/mm;

T17 = 660. 0◦ + 3. 91 × 0. 48/0. 5 = 663. 8◦; y17 = 37. 16 mm

(
dT

dy

)
18

= 0. 6 × 10−3 × 0. 5

160 × 10−6 × 0. 47
= 3. 99◦C/mm;

T18 = 663. 8◦ + 3. 99 × 0. 47/0. 5 = 667. 6◦; y18 = 38. 10 mm.



Chapter 7

Optical Scanners and Acousto-optics

7.1. Electro-mechanical Scanners

Optical scanners are instruments that cause a light beam to pass sequentially a
number of spatial positions and to do so repeatedly, in a periodic manner. In most
cases the scanning light is a laser beam.

There exists a great variety of opto-mechanical configurations capable of cre-
ating the scanning process. We will consider briefly four of them. The first is a
simple plane mirror rotated around the axis normal to the plane of incident light
(see Fig. 7.1). The scanning ray rotates in the plane of the figure and the angular
velocity is twice the velocity of the rotating mirror: ωS = 2ω (if a mirror is turned
by an angle ϕ the reflected ray is turned by 2ϕ). To convert the angular scanning

Figure 7.1 Single-mirror scanner: (a) incident and reflected rays; (b) location error along
the scanning line.

229
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Figure 7.2 Fast-rotating scanner: (a) basic configuration; (b) location of sources of error.

to parallel motion of the light beam a lens is sometimes added after the mirror,
providing the focus of the lens coincides with the rotation axis.

The optimal operation of the mirror scanner requires that the axis of rotation be
in the reflection plane of the mirror, otherwise an error in the beam displacement
along the scanning line might occur. The explanation of this error is demonstrated
in Fig. 7.1b (segment �) and details of its calculation are presented in Problem 7.1.
The other error of this simple scanner is related to the variation of linear velocity
of the light spot along the scanning line. Due to this error the time interval in
which a point on the scanning line is exposed to radiation is not equal for different
locations along the line (exposure error, �Eexp). Details of this error are discussed
in Problem 7.2.

A single mirror is also exploited in fast-rotating scanners like that shown in
Fig. 7.2. In this case the rotation axis and the incident light beam coincide with
each other and the mirror surface is tilted at 45◦ to both of them. The scanning
beam moves (rotates) in the plane normal to the rotation axis. However, because
of misalignment errors the scanning plane might be tilted or even transformed
into a conic surface. The three main sources of errors are pointed out in Fig. 7.2b.
As can be understood from a simple geometrical consideration, displacement and
tilt misalignments cause tilting of the scanning plane whereas an error in the 45◦
angle changes the shape of the scanning surface. Numerical results can be found
in Problem 7.3.

Another architecture of a fast scanner is a polygon (a mirror drum) where a
number of mirrors are rotated together around a single axis. The example depicted
in Fig. 7.3 shows the creation of a two-dimensional (2-D) raster on a sheet of paper
or film. Scanning in the OX direction is performed by the mirror drum while motion
in the OY direction results from the mechanical motion of the sheet itself. Transfer
from one mirror of the drum to another constitutes the sequential horizontal lines
of the raster. The most significant error is “wobbling” of the raster lines: since the
mirror surfaces are not exactly parallel to the rotation axis, each mirror reflects
the incident beam in a slightly different way. As a result, the spacing of the raster
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Figure 7.3 (a) Polygon (mirror drum) scanner and (b) 2-D raster with spacing error �S .

lines is not constant, but varies according to the wobble angles of the mirrors (see
Fig. 7.3b). Additional tilt of some raster lines might also occur. The number of
mirrors together with the distance to the scanning surface dictate the length of the
raster lines: the greater this number the faster the scanning process, but the shorter
the raster lines (see the calculation in Problem 7.4).

A galvanometer scanner converts directly input electric signals into the angular
position of a scanner element – a small mirror M coupled to a moving coil or
to a solid iron rotor (magnetic driver, see Fig. 7.4). Compared to other mirror-
based scanners the galvanometer device enables one to address any location of
the scanning path independent of the previous position of the light beam. This
great advantage allows the creation of complex trajectories (latent “picture”) on
a scanning surface exposed to radiation in any predetermined manner (like char-
acters, maps, etc.). Although the mirror is small and light, mechanical inertia
is still a problem and standard scanners perform a sawtooth of the raster or
random stepping traveling at a frequency of up to 1 kHz. Faster operation is
achieved in resonant scanners which produce a sinusoidal scanning motion at
frequencies of about 5–10 kHz. Since the mirror motion (oscillation) is limited

Figure 7.4 Galvanometer scanner.
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Figure 7.5 Basic configuration of a 2-D galvanometer scanner.

by the maximum excursion angle of about 30–60◦, the angular velocity is not
constant, but varies along the oscillation trajectory. This results in the exposure
error, �Eexp, mentioned above. The wobble caused by random fluctuations of the
moving electro-mechanical parts is kept at a level of 1–10 arcseconds.

Due to their relatively compact design galvanometer scanners are commonly
used in pairs in systems intended for 2-D scanning procedures. Such a configuration
is depicted in Fig. 7.5.

Problems

7.1. A single-mirror scanner located 1 m from a scanning surface provides a
scanning line of 80 cm in length. Assuming the incident light angle in the zero
(reference) position is 30◦ and the rotation axis is 2 cm behind the mirror surface,
calculate the maximum location error along the scanning line.

7.2. In a single-mirror scanner the rotation speed is 120 rpm, the excursion angle
2ϕmax = 60◦, and the distance to the scanning surface L0 = 1 m. Find the exposure
and the maximum exposure error along the scanning line if the scanner is operated
with a laser beam of 5 mW total power, 0.5 mm waist, and divergence angle:
(a) 2θ = 2 × 10−5; (b) 2θ = 4 × 10−3.

7.3. In a fast-rotating scanner followed by a lens (60 mm active diameter, 120 mm
focal length) and working with a laser beam of very small cross-section, the fol-
lowing misalignment is revealed: (a) parallel displacement of 0.5 mm; (b) tilt of
0.5◦. Find the location errors in both cases and determine which misalignment is
more critical.
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7.4. A mirror drum scanner (a polygon scanner) with six parallel mirrors provides
raster scanning on a paper sheet of 1 m in length.

(a) Find position of the scanning area relative to the drum if a laser beam
incident on the mirrors in its medium position is parallel to the paper surface.

(b) Calculate the raster errors if the wobble angles of the mirrors are in the
region of 2 arcseconds.

7.2. Acousto-optics and Acousto-optical Scanners

7.2.1. Acousto-optical Effect and Acousto-optical Cell (AOM)

The subject of acousto-optics is concerned with the interaction of light with acous-
tic waves. If electromagnetic waves propagate through a medium where acoustic
waves are generated the spatial distribution of light becomes noticeably depen-
dent on the parameters of the acoustic waves. This phenomenon, frequently termed
light scattering on acoustic waves or simply as the acousto-optical effect, is widely
exploited in numerous optical systems including optical scanners.

The physical basis of the phenomenon is the fact that acoustic waves which
are actually periodic variations of the density of the medium cause corresponding
periodic variations of the refractive index affecting the propagation of electromag-
netic waves. The relation between refractive index, n, and density, ρ, is governed
by the Gladston–Dale formula which for the simple case of gases has the form

n − 1

ρ
= K (7.1)

resulting from the well-known and more general Lorentz–Lorenz formula (e.g.,
see Born and Wolf, 1968)

n2 − 1

n2 + 2
× 1

ρ
= A/W = const (7.2)

where A is the molar refraction and W is the molecular weight of the substance.
As far as dynamic phenomena (like wave propagation) are concerned variations

of refractive index are related to the mechanical strain components in a material,
Sj (a detailed description can be found in Yariv, 1984):

�

(
1

n

)
i
= pijSj; (i, j = 1, 2, 3) (7.3)

where material properties are described by the tensor pij. It is quite understand-
able that in some materials the refractive index varies noticeably in response to
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mechanical stresses and in some others it does not. Also, in the same material
the reaction to shear stresses could be much greater than to longitudinal ones, so
that the usefulness of the material for the generation of the acousto-optical effect
depends on how the sample is prepared and operated.

Of the numerous parameters characterizing acoustic properties of a material
the most important for acousto-optics is acoustic velocity, Vs. This varies from
620 m/s for TeO2 (for shear stresses mode) to 5,000–6,000 m/s for LiNbO3 and
quartz. The combination of all relevant properties of acousto-optical materials are
arranged in a single figure of merit, M, and this parameter solely characterizes the
acousto-optical behavior of a material as far as the efficiency of acousto-optical
cells is concerned.

In general, an acousto-optical cell (more frequently termed an acousto-optical
modulator, AOM, and sometimes also called a Bragg cell) is a slab of optically
transparent material coupled acoustically (mechanically) to a transducer T (usually
piezoelectric) which converts incoming electrical signals of high frequency into
acoustic oscillations propagating in the slab. The cell is illuminated by a parallel
light beam, in most cases – from a laser source. The basic arrangement of an AOM
is shown in Fig. 7.6. A monochromatic beam of wavelength λ is incident at an
angle θ on the slab from the left and an acoustic wave of wavelength � propagates
in the direction OY. This wave is generated by a transducer T fed by an RF signal of
frequency f originating in an external driver: � = VS/f . Usually f is in the range
30–1,000 MHz, and � is from several micrometers to several tens of micrometers,

Figure 7.6 Basic configuration of (a) an AOM and (b) diagrams of up-shifted and down-
shifted beams.
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depending on the material used. On the upper (opposite to T) side of the cell special
measures are taken (like acoustic absorbers, etc.) in order to reduce the reflection of
the acoustic waves back to the slab, sinceAOMs are mostly operated with free trav-
eling waves (not with standing waves, although this is also theoretically possible).

The diameter of the light beam, D, has to be significantly greater than the acoustic
wave period, �. Then, for a beam traveling through the AOM the cell operates like
a phase diffraction grating (see explanation of diffraction gratings in Chapter 5).
This means that not the amplitude (transparency) but the phase of the propagating
beam is changed periodically, according to the variation of the optical path, nL,
while moving across the beam. As a result, the light at the output is unequally
distributed in space, with some directions of strong maxima followed by intervals
of negligible intensity. These maxima are called the first, second, etc., diffraction
orders, the zero order being the unshifted incident beam. There also exist beams of
(−1)st, (−2)nd, etc., diffraction orders on the other side of I0. It is the diffraction
orders (usually only the first one or two) that are exploited in AOM applications,
and the higher the intensity of the diffraction orders the higher the efficiency of
the cell. It can be shown that the best condition (the highest efficiency) is achieved
if the incidence angle obeys the Bragg condition (Bragg incidence angle):

θ = θB = λ

2 × �
= λ

2VS
f . (7.4)

There are two possible ways to obey this condition, with the up-shifted and down-
shifted beams, as shown in Fig. 7.6b where the wave vectors

−→
K0,

−→
K1,

−−→
K−1, and−→

KS

(∣∣∣−→K ∣∣∣ = 2π /λ;
∣∣∣−→KS

∣∣∣ = 2π /�
)

are depicted. As we see, in both cases the first-

order diffraction beam is separated by the angle 2θB from the zero order. It should
also be noted that the wavelengths in the diffraction orders are different from each
other and from the zero order, so that there is no way to get an interference pattern
if these beams are overlapped anywhere after leaving the AOM.

The efficiency of an AOM calculated for the first diffraction order is
governed by

η = I1

I0
= sin2

(
π

2

√
2LMPac

λ2H

)
(7.5)

where M is the figure of merit of the AOM material, H is the height of the cell
(in the direction perpendicular to the plane of Fig. 7.6), and Pac is the acoustic
power transferred by the transducer to the cell. In most cases the value under
the square root is small enough so that the sine term can be replaced just by the
argument. This leads to a linear relation between the applied acoustic power and
the AOM efficiency, i.e., the intensity of light in the first diffraction order becomes
proportional to Pac.
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Problems

7.5. A laser beam of 0.5 µm wavelength strikes a Bragg cell made of LiNbO3

(VS = 3, 400 m/s) and energized by an RF signal of 100 MHz. Find the angular
separation between the first order and the (−1)st order diffracted beams.

7.6. What is the maximum rate of input signal variation if it is processed by an
acousto-optical system with a Bragg cell of 15 mm in length made of TeO2 (shear
mode, VS = 620 m/s) illuminated by a laser beam of 5 mm in diameter?

7.7. Dual-path arrangement. For improving the contrast of the diffracted beam
with regard to the background light, a double-path arrangement has been sug-
gested where the laser beam travels twice through a Bragg cell crystal. Assuming
an AOM of 3 mm (H) × 6 mm (L) size made of PbMoO4 (VS = 3, 400 m/s;
M = 10−6) is energized by acoustic power Pac = 0. 03 W and illuminated by
a laser beam of 10 mW power, 1 mm diameter, and 0.6 µm wavelength, find the
optimal configuration of the system and calculate the light intensity of the first
order diffracted beam.

7.8. Spectral imaging. A transparent object P illuminated by a white light source
is imaged into a plane M by two identical lenses L1 and L2, as shown in Fig. 7.7.
When an AOM (made of TeO2; VS = 620 m/s) located between the lenses is
energized by an RF signal of 80 MHz the images of different wavelengths are
angularly separated and only those which correspond to wavelengths of max-
imum transparency of filters F1 and F2 reach the area sensors CCD1 and CCD2

(2.4 mm × 1.8 mm each). In such a way images from a chosen pair of wavelengths,
λ1 and λ2, are compared in real time. Choosing new wavelengths is accompanied
by moving the CCDs and the filters to a new (optimal) position and changing the RF
frequency.

(a) Assuming the minimum spacing between the CCDs to be 2 mm and the cho-
sen wavelengths are λ1 = 0. 65 µm, and λ2 = 0. 55 µm, find the minimum

Figure 7.7 Problem 7.8 – Optical system for spectral imaging.
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possible focal length of the lenses and the location of the sensors in the
plane M. [Note: Imaging is carried out in the first diffraction order.]

(b) How different should the output signals in both channels be expected for the
same radiation level in the plane P if the CCDs are made of silicon having
a spectral quantum efficiency of 32% and 21% for the two wavelengths,
respectively?

7.2.2. Two Operation Modes: AOM as Modulator of Light and AOM
as Deflector of Optical Beams

Depending on the geometry of the Bragg cell and the angle of the incidence beam
an AOM can be operated in two different modes: as a modulator or as a deflector.
In the first case the intensity of light (usually of the first diffracted beam) is mod-
ulated by changing the input acoustic power, with no change of the RF signal
frequency and consequently with no change of the spatial location of the receiver
(detector assembly). Sometimes information is transferred simultaneously to sev-
eral receivers (e.g., one is illuminated by the first diffraction order and another
by the (−1)st diffraction order), but again the position of the receivers in space
remains constant. Examples of Bragg cells operated in the modulation mode are
considered in Problems 7.5–7.8. It should be noted that varying the light intensity
can obviously be done by changing the optical power: if a laser diode or even a
LED are used as the light source, the optical power is easily controlled by changing
the electric current supplied to the source. However, modulation by acoustic power
has some significant advantages which become crucial in a number of applications
(an important example is considered in Section 7.2.3).

When a Bragg cell is used as a deflector the carrier of the acoustic wave supplied
to the AOM is changed, usually in some specific manner, like a sawtooth for line
scanners, for instance. Then the direction of the diffracted beam is varied accord-
ingly and the light beam travels along the scanning axis, with no involvement of
mechanical or electro-mechanical moving parts, as it was in the cases described
in Section 7.1.

The variation of RF frequency, �f , is related to the change of the diffraction
angle, �θ , as

�θ = �f × (λ/VS). (7.6)

This does not mean, however, that any desirable spatial position can be precisely
achieved. There is a basic limitation of the angular spatial resolution caused by
diffraction. That is, if a light beam of size D is propagated through the AOM,
diffraction not only rearranges the light into diffraction orders, but also changes
the specific shape of each diffracted beam, so that the main diffraction spot has
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Figure 7.8 Deflection of light by an AOM.

an angular width of δθ = λ/D and the radial intensity distribution is described by
the Airy (or Gaussian-like) function (see details in Chapters 2 and 5). Therefore,
the whole range of angular variation is subdivided into spots of finite width (see
Fig. 7.8). The number of resolvable spots, N , can be determined in terms of a
time–bandwidth product, TBW = τ × �f , if we take into account that the time
needed for an acoustic wave to pass the light beam is τ = D/VS and substitute this
expression in Eq. (7.6):

N = �θ

δθ
= (λ/VS) × �f

λ/D
= τ × �f . (7.7)

Usually for a good-quality system TBW is of the order of 104.
A line scanner with an AOM in the deflection mode is presented in Fig. 7.9. A

laser beam moves in the OX direction and is controlled by a signal generated in
an RF driver. The time history of a typical signal shows a frequency variation in

Figure 7.9 (a) Line scanner with AOM and (b) time history of the RF signals.
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the range from fminto fmax which is dictated by the properties of the Bragg cell
crystal. It is obvious that while moving from A to B the light can also be modulated
with regard to its amplitude or even switched on and off according to a program
prepared in advance and enabling one to expose the paper or film to radiation in
any desirable manner and at very high speed.

Problems

7.9. An optical communication system comprises an AOM and Nd:YAG laser
(wavelength 1.064 µm, beam diameter 1 mm). The AOM is made of TeO2 (VS =
620 m/s) and operates around a 50 MHz RF signal. Information is transferred to
two receivers located 100 m from one another each at a distance of 2 km from the
transmitter.

(a) Find the range of RF signals required for communication.

(b) How many receivers can be simultaneously treated by the system without
cross-talk between them?

7.10. Calculate the number of resolvable angular locations of an AOM deflector
operated with a PbMoO4 crystal (VS = 4, 200 m/s) and illuminated by a He–Ne
laser beam expanded to 5 mm in diameter if the crystal acoustic efficiency varies
with frequency as shown in Fig. 7.10.

7.2.3. AOM Architecture for Spectral Analysis

Acousto-optical architecture can be exploited for the spectral analysis of fast elec-
trical signals. An example of such a system is shown in Fig. 7.11. A laser beam
is expanded by a standard beam expander and strikes an AOM at the Bragg angle
corresponding to a frequency fC of the carrier acoustic wave. An RF driver com-
prises a carrier oscillator and a mixer which supplies an RF frequency modulated
by a test signal S(t) to the AOM.

Figure 7.10 Problem 7.10 – Bragg cell efficiency vs. RF frequency.
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Figure 7.11 AOM architecture for spectral analysis.

Propagation of the acoustic waves of modulated amplitude is equivalent to prop-
agation of a collection of sinusoidal signals simultaneously through the Bragg cell
and each harmonic generates a separate diffracted beam the intensity of which is
dictated by the harmonic amplitude. The procedure is equivalent to expanding
S(t) into Fourier components, each component being focused by the collec-
tion lens in its focal plane where the detector array (photodiodes or CCD) is
located.

More specifically, let the carrier oscillation be A cos(2π fCt) and the test signal
be a single harmonic of frequency f : S(t) = mA cos(2π ft). Then, the signal after
the mixer is A[1+S(t)]× cos(2π fCt) and the corresponding acoustic wave U(x, t)
in the Bragg cell becomes

U(x, t) = C0 cos

[
2π fC

(
t − x

VS

)]
+ C1 cos

[
2π ( fC + f )

(
t − x

VS

)]

+ C2 cos

[
2π ( fC − f )

(
t − x

VS

)]
. (7.8)

Thus, a single harmonic acts as three waves propagating simultaneously through
the AOM: the first is of the carrier frequency fC and it corresponds to the center of
the first diffraction order; the second is of frequency ( fC + f ) and it is tilted by an
angle θ ′ = (λ/VS)f from the center of the first diffraction order; and the third of
frequency ( fC − f ) and it is tilted by an angle (−θ ′) from the direction of the first
diffraction order. Therefore, a single harmonic results in three light spots in the
detector plane (the focal plane of the lens), and this is also true for any other Fourier
component of the signal S(t). Actually to reveal the presence of any frequency
f in the test signal it is enough to analyze half of the first diffraction interval
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(either up-shifted or down-shifted). The length of the detector array should be
defined accordingly.

The spectral resolution (the minimum resolvable frequency interval, δf ) depends
on the minimum size of the light spot in the detector plane and it evidently depends
on the diffraction limit of the system. The number of resolvable spectral compo-
nents, N = �f /δf , is defined in the usual manner (see Eq. (7.7)). Obviously the
pitch of the detector array (or the size of a single element) has to be compatible
with the spectral resolution (diffraction spot size).

It is worth pointing out that we have addressed here the spectral analysis of
electrical signals only. The spectral analysis of optical signals is discussed in
detail in Chapter 5.

Problems

7.11. An optical system like that of Fig. 7.11 is built around an AOM made of
TeO2 (VS = 620 m/s, f = 40–80 MHz) and operated with a Ga–As laser diode
(wavelength of 0.83 µm) followed by an anamorphic collimator providing a light
beam of elliptical shape with maximum size of 10 mm.

(a) Find the spectral resolution of the system if the Bragg cell length is 20 mm.

(b) The Ga–As laser is replaced by another one which generates a beam of
0.6 µm wavelength. How does this affect the system performance?

7.12. A resolution of 30 kHz is required from an acousto-optical system for spec-
tral measurement. An available detector array is a line CCD of 1,024 elements,
0.015 mm × 2 mm each. How should the rest of the system be configured?

7.3. Solutions to Problems

7.1. Referring to Fig. 7.12, we assume that the scanning lineAB = 80 cm is normal
to the reflected ray OC corresponding to the zero position of the mirror. Hence,
AC = BC and the mirror is rotated in the range of±ϕmax = (1/2) arctan(BC/OC) =
0. 5 arctan 0. 4 = 10. 9◦. Furthermore, because the point of light incidence moves
along the mirror surface from O to M the reflected beam also moves from position
OB to its real position MN, so that the location error on the scanning line is
�l = BN. To calculate BN we first find the segment �0 perpendicular to the
reflected beam:

�0 = OM sin[180 − 2(i + ϕ)] = OM × sin[2(i + ϕ)]. (A)
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Figure 7.12 Problem 7.1 – Geometry of location error.

Taking into account that in triangle QOM the side OQ is equal to z = (R/ cos ϕ)−R
and therefore

OM = z
sin(180◦ − 90◦ + ϕ)

sin[180◦ − i − (180◦ − 90◦ + ϕ)] = z
cos ϕ

cos(ϕ + i)
= R

(1 − cos ϕ)

cos(ϕ + i)
,

we have from Eq. (A):

�0 = R
1 − cos ϕ

cos(ϕ + i)
× sin[2(ϕ + i)] = 2R(1 − cos ϕ) × sin(ϕ + i) (B)

and finally the location error �l = �0/sin α = �0/cos(2ϕ). By substituting in
Eq. (B) the data of the problem and the found value of ϕmax, we get �0 =
2×20×(1−cos 10. 9◦)×sin(30◦+10. 9◦) = 0. 47 mm; �l = 0. 47/ cos(21. 8◦) =
0. 506 mm.

7.2. The geometry of scanning is depicted schematically in Fig. 7.13. We define
the exposure Eexp of an element �x × �y by the following integral:

Eexp = �x × �y ×
τ∫

0

I[x(t), y]dt (A)

where τ is the exposure time (the time interval in which the point of interest, M(x),
is exposed to the radiation of the scanning beam traveling through M). We also
suppose that the angular velocity of the rotation, ω, is constant (no noise or random
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Figure 7.13 Problem 7.2 – Scanning beam at two angular positions.

oscillations) so that the linear velocity, V , is determined as follows:

x = L × tan ϕ; V = dx

dt
= L

cos2 ϕ

dϕ

dt
= Lω

cos2 ϕ
. (B)

For simplicity we will consider first the situation when the scanning beam is
of constant light intensity, I0, across the beam diameter D0 = 2w0 as well as at
different distances L from the mirror. Then, keeping in mind that I0 = 4P/πD2

0
and τ0 = D0/V0, we get from Eq. (A) the exposure at the initial position of zero
angle (ϕ = 0):

Eexp 0 = �x × �y × I0τ0 = �x × �y × 4P

πD0
× 1

ωL

= �x × �y × 4 × 5 × 10−3

π × 1 × 2 × 103
= 3. 184 µJ/element.

To calculate the exposure for angular position ϕ we should remember that the light
intensity incident on the element �x × �y is I0 cos ϕ and the length of the light
spot traveling through point M is D0/ cos ϕ. Then, using Eq. (B) we obtain

Eexp ϕ = �x × �y × Iϕτϕ = �x × �y × 4P cos ϕ

πD2
0

× D0/ cos ϕ

ωL/ cos2 ϕ
= Eexp 0 cos2 ϕ

and the maximum exposure error is

�exp = Eexp 0 − Eexp ϕ = Eexp 0(1 − cos2 ϕmax) = 3. 184(1 − 0. 75)

= 0. 8 µJ/element

that is, about 25%.
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Returning to the general case we consider a laser beam with a Gaussian light
distribution, as per Eq. (3.2), with intensity in the middle point defined by Eq. (3.6)
and the beam waist size as in Eq. (3.1) (see also Eq. (B) of Problem 3.7). We also
assume that the light spot is symmetrical, so that the exposure in Eq. (A) can be
calculated as twice the integral from 0 to τexp/2. Expression (A) yields

Eexp = �x × �y × 2P

πw2
L

cos ϕ × wL√
2V cos ϕ

× 2

τexp/2∫
0

exp

(
−2V2 cos2 ϕ

w2
L

t2

)
dt

= �x × �y × cos ϕ
P

wL
×

√
2/π

V cos ϕ
erf

(
V cos ϕ

wL
√

2
τexp

)

≈ �x × �y ×
√

2/πP

ωL × wL
cos2 ϕ (C)

where the error function is taken as unity because of the relatively large value of
its argument. Proceeding to cases (a) and (b) of the problem, we should remember
that w2

L = w2
0 + (θL/ cos ϕ)2.

(a) θ = 10−5:

wL =
√

0. 25 + (10−4/ cos2 ϕ) ≈ 0. 5;

Eexp = const

√
2/π × 5 × 10−3

2 × 103 × 0. 5
cos2 ϕ = E0 cos2 ϕ.

Hence, the exposure error varies as 1 − cos2 ϕ increasing again to about 25% for
ϕmax = 30◦.

(b) θ = 2 × 10−3:

wL =
√

0. 25 + (4/ cos2 ϕ); wL(0) = 2. 062 mm; wL(30◦) = 2. 36 mm

�Eexp/Eexp(0) = 1 − cos2(30◦) × 2. 06

2. 36
= 0. 345 or about 35%.

7.3. The misalignment errors for both cases are demonstrated in Fig. 7.14.
(a) As shown in Fig. 7.14a, the parallel displacement of the incident laser beam

causes the reflected beam to cross the lens along the curve (dotted line shown in
the figure). This results in both a horizontal displacement 2�x = 2� sin α (where
tan α = D/2f ′ = 60/240 = 0. 25; α = 14◦ therefore 2�x = 0. 24 mm) and a tilt
of ψ = arctan(�/f ′) = arctan(0. 5/120) = 4. 17 × 10−3.

(b) The tilt misalignment of 0.5◦ causes inclination of the scanning plane, so that
the reflected beam will cross the lens along the curve shown in Fig. 7.14b. Since
in any case the beam striking the lens comes from its focal point, there is no tilting
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Figure 7.14 Problem 7.3 – Location errors of a fast-rotating scanner originating from
(a) displacement and (b) tilt of the incoming laser beam.

behind the lens (at any position the beam is parallel to the lens axis). However,
parallel displacement will occur, reaching the value �h = θ f ′ = 30 × 3 × 10−4 ×
120 = 1. 08 mm in the horizontal plane and increasing further while moving to
point A on the periphery of the lens (for more accurate results a consideration of
the geometry of a cone crossing the lens should be carefully carried out).

Therefore, the misalignment tilt yields a location error which is more than four
times greater than the error caused by the parallel displacement.

7.4. (a) Referring to Fig. 7.15, we see that the polygon rotation by an angle ϕ =
360◦/N = 60◦ (N is the number of mirrors) results in beam travel over the whole
scanning lengthAB. This obviously yields the distance L = H/2 tan ϕ = 1/2

√
3 =

0. 29 m. As the incident beam should be parallel to AB and the reflected beam at
the middle position is perpendicular to AB, we get the angle of incidence i = 45◦.

(b) A wobbling angle θ causes a raster spacing error �S = Lθ = 0. 29×2×5×
10−6 = 2. 9 µm. The raster tilt error is equal to zero in this case because all raster
lines remain parallel to the incident beam which is parallel to the paper surface.

7.5. The optimal angle of light incidence on the AOM is calculated from the Bragg
condition (Eq. (7.4)):

θB = λ

2Vs
f = 0. 5 × 10−6

2 × 3, 400
100 × 106 = 0. 0073.
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Figure 7.15 Problem 7.4 – Geometry of a six-mirror scanner.

This angle determines the direction of the zero order (unshifted beam). Then, the
first diffraction order is shifted up from the zero order by 2θB and the (−1)st
diffraction order is shifted down by the same angle, yielding an angular separation
4θB = 0. 0292 = 1. 673◦ between these two diffraction beams. As we see, the
angles are very small, meaning that precise alignment of the AOM and related
optics is required.

7.6. Since the length of the AOM is larger than the light beam size, the limitation
in signal variation rate originates from a minimum time interval required for the
acoustic waves to pass through the laser beam: τmin = D/VS = (5 × 10−3/620) =
8. 06 µs. Therefore, the maximum frequency (the maximum rate) is defined by
reciprocal of twice of minimum time interval:

fmax = 1

2τmin
= 106

2 × 8. 06
= 62 kHz.

7.7. A possible dual-path arrangement allowing for an increase of the contrast
ratio is shown schematically in Fig. 7.16. The initial horizontal light beam strikes
an AOM at the Bragg angle θB and the first order diffracted beam is defined by
the vector

−→
K1 tilted at 2θB to the horizontal axis. This beam is incident on a

retroreflector, R, and is then reflected back to the AOM at the same angle. Hence,

the vector
(
−−→

K1

)
strikes theAOM for the second time, again at the Bragg angle. As

a consequence, the new up-shifted beam (the first diffraction order of the inverted
first-order beam) is defined by the vector −−→

K11 which is parallel to the initial beam.
This latter beam (reflected aside from the arrangement by a mirror M, for instance)
can be used in further applications. Diaphragms can be used in order to prevent the
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Figure 7.16 Problem 7.7 – Dual-path arrangement with an AOM.

background light originating in the zero-order beam of each path from propagating
in the outgoing direction and hence to improve the contrast ratio.

To calculate the intensity of the outgoing beam we first find the intensity of the
initial beam using Eq. (3.6) and keeping in mind that w = D/2 = 0. 5 mm:

I0 = 2P

πw2
= 2 × 10

π × 0. 25
= 25. 47 mW/mm2.

Then we proceed to the first-order beam in the single path and use the definition
of AOM efficiency (Eq. (7.5)):

η = sin2


π

2

√
2 × 6 × 10−6 × 0. 03

0. 62 × 10−6 × 3


 = sin2(0. 907) = 0. 62;

I1 = I0η = 15. 8 mW/mm2.

Finally for the second path we have I11 = I1η = 9. 80 mW/mm2.
In these calculations we take into account that the argument of the sine term in

Eq. (7.5) is not small enough for a linear approximation (the device is operated in
the non-linear range with regard to the acoustic power).

7.8. (a) Since the AOM is operated simultaneously at two wavelengths we choose
the optimal alignment according to the Bragg condition related to the average
wavelength λ = (0. 65 + 0. 55)/2 = 0. 6 µm which gives

θB = 0. 6 × 10−6 × 80 × 106

2 × 620
= 0. 0387.

The first diffracted beam corresponding to λ1 is directed at the angle

α1 = θB + λ1f

Vs
= 0. 0387 + 0. 65 × 10−6 × 80 × 106

620
= 0. 12257
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and the same consideration for the second wavelength yields

α2 = θB + λ2 f

Vs
= 0. 0387 + 0. 55 × 10−6 × 80 × 106

620
= 0. 1097.

These two angles define the distance between the CCD centers in the image plane
M behind lens L2. Hence, assuming the light is parallel between two lenses and the
plane M is the focal plane of L2, we have for the lens focal length �α×f ′

2 = (2. 4+
2) = 4. 4; f ′

2 = 4. 4/(0. 12257 − 0. 1097) = 341 mm. Therefore, the locations of
both CCDs in M are as follows: H1 = α1 × f ′

2 = 0. 12257 × 341 = 41. 80 mm;
H2 = α2 × f ′

2 = 0. 1097 × 341 = 37. 41 mm.
(b) We assume that the AOM is operated in the linear range and therefore the

ratio of the efficiency for both wavelengths is η1/η2 = (λ2
2/λ2

1) = (0. 55/0. 65)2 =
0. 716 = I1λ1 /I1λ2 . The output CCD signals can be found as id1/id2 = (I1λ1 R1/I1λ2 R2),
where R1 and R2 are the responsivity of the CCDs at both wavelengths. To calculate
them we use Eq. (4.1) which gives R1/R2 = (0. 65 × 0. 32)/(0. 55 × 0. 21) = 1. 8
and therefore id1/id2 = 0. 716 × 1. 8 = 1. 29.

7.9. (a) Referring to Fig. 7.17, we find first the angle between the two receivers:
�α = l/L = 100/2, 000 = 0. 05, and the frequency variation required for scanning
at this angle: �α = (λ/VS)×�f ; �f = (0. 05×620/1. 064×10−6) = 29. 13 MHz.
Hence, communication is operated at RF signals of 50 ± 14. 57 MHz.

(b) Due to diffraction of the laser beam inside the AOM the minimum angular
width of a single Gaussian beam is

δθ = 1. 22
λ

D
= 1. 22

1. 064 × 10−3

1
= 1. 298 mrad.

Hence, to avoid cross-talks between two close receivers the angular distance
between them should be equal to δθ and therefore the number of independent
receivers is N = �α/δθ = 0. 05/(1. 298 × 10−3) = 38.

Figure 7.17 Problem 7.9 – Schematic of communication system with two receivers.
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7.10. From the efficiency graph shown in Fig. 7.10 we choose the interval where
the efficiency is at least 50% of the maximum value. This gives �f = (120−40) =
80 MHz and therefore the full angular range is

�θ = λ

VS
× �f = 0. 6 × 10−6

4, 200
80 × 106 = 0. 0114.

The diffraction limit yields δθ = (1. 22×0. 6×10−3/5) = 0. 1464×10−3. Finally
we get

N = �θ

δθ
= 0. 0114

0. 1464 × 10−3
= 78.

7.11. (a) We are interested in the maximum light beam size in the direction of the
traveling acoustic wave, and therefore the laser diode optics should be positioned
in such a way that the maximum diameter of the elliptical shape is parallel to
the Bragg cell crystal. Then the 10 mm beam size dictates the time of interaction
between the acoustic wave and the light, and the TBW is determined as follows
(see Eq. (7.7)):

TBW = D

VS
�f = 10 × 10−3

620
× 40 × 106 = 645.

Therefore, the maximum resolvable number of separated light spots is N = 645
and the minimum resolvable spectral interval is �f /N = (40×106/645) = 62 kHz,
which is the spectral resolution of the system.

(b) Changing the light source does not affect the TBW if the shape of the beam
at the Bragg cell entrance remains the same as with the original laser. Hence, the
spectral resolution of the system after replacement of the laser will also remain the
same, 62 kHz.

7.12. In the system for spectral measurement the location of the detector can be
adjusted in such a way that each element of the array is responsible for a separate
spectral interval, so that the total spectral range of the tested signals is�f = 1, 024×
30 kHz = 30. 7 MHz. The time of interaction of light with the acoustic wave can
be found from TBW = N = 1, 024: τ = N /�f = 1, 024/(30. 7 × 106) = 33. 35 µs.
This value dictates the size of the light beam inside the Bragg cell, if the acous-
tic velocity is known. Trying first PbMoO4 material with VS = 4, 200 m/s we
obtain D = VS × τ = 4, 200 × 33. 35 × 10−6 = 140 mm, which is not realistic.
For the same reason a great number of acousto-optical materials with relatively
high acoustic velocity cannot be exploited in the system. From those that have
a low VS we try TeO2 in shear operation mode: Vs = 620 m/s. The corre-
sponding size D becomes D = 620 × 33. 35 × 10−6 = 20. 7 mm, which is quite
possible.
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The next step is to choose a light source and lens. The diffraction limit of the
system should result in a spot as small as a single pixel of the CCD, at least.
Denoting the focal length of the lens as F, we have

δθ × F = λ

D
F = 0. 015 mm; λF = 0. 015 × 20. 7 = 0. 3105 mm2.

Trying a laser of 0.6 µm wavelength (He–Ne laser or a laser diode), we get F =
0. 3105/(0. 6×10−3) = 517. 5 mm. If a Ga–As laser diode of 0.83 µm wavelength
is chosen then F = 0. 3105/(0. 83×10−3) = 374 mm. We prefer the latter case since
it gives a shorter optical path.

The last step is to choose the anamorphic collimation optics. As discussed in
Chapter 3, an anamorphic ratio of 1:3 to 1:6 can be easily achieved by using an
anamorphic prism pair. Depending on the ellipticity of the beam at the laser diode
output one can vary the prism pair in order to get the reasonable ratio of 1:5 after the
collimation lens, just at the entrance to the AOM. Hence, the Bragg cell required
for the system should be a TeO2 crystal of 21 mm in length by 4 mm in height. It
is followed by a lens of 374 mm focal length and is illuminated by a Ga–As laser
diode with anamorphic collimation optics providing a 1:5 elliptical beam.



Chapter 8

Optical Systems for Distance and
Size Measurements

8.1. Laser Rangefinders

Rangefinders are instruments intended for distance measurements, usually (but
not necessarily) in the open air. A schematic of a simple configuration is depicted
in Fig. 8.1. The concept of measurement is quite simple. The light pulses of a
laser source travel over a range S to a target and then, after reflection on the target
surface, come back to the transmitter optics where they are received and analyzed
by the detector circuitry in order to measure the total time of flight, tf . The range
S is then calculated as

S = vtf
2

= c

n

tf
2

(8.1)

where v is the velocity of light propagation in the medium (in the air), c =
3 × 108 m/s is the velocity of electromagnetic waves in a vacuum, and n is refrac-
tive index of air. Lenses L1 and L2 provide a means of expanding the laser beam
and reducing the beam divergence (see Section 3.3.2). As is evident from Eq.
(8.1), the accuracy of measurement as well as the limitations on maximum and
minimum measured range depend on: (i) the processing ability of the detector cir-
cuitry; (ii) the variation of refractive index (due to temperature change, gradients
of density, wind, etc.); and (iii) the variation of the optical path (due to random
fluctuations in the atmosphere).

When an emerging laser pulse leaves the transmitter a synchronizing pulse is
registered by the processing electronics. Then, the time interval tf is measured
by comparing with the circuitry clock the rise front of the synchronizing pulse

251
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b)a)

Figure 8.1 (a) Schematic of a laser rangefinder and (b) a sequence of light pulses.

and the rise front of the detector signal originating in the light pulse returned from
the target. The shorter the laser pulses and the greater the electronic bandwidth
the smaller the uncertainty in the time of flight measurement. Another important
issue is related to the reflective properties of the target. Usually it is assumed that
the target surface is an ideal diffuser scattering the reflected light uniformly in a
hemisphere. Details related to the detector signals are considered in Problems 8.1
and 8.2.

The refractive index of air as a function of density obeys the Gladston–Dale
formula (Eq. (7.1); see Section 7.2.1) (n − 1)/ρ = K with the constant K =
0. 226 cm3/g. Since the density, ρ, of air varies with temperature asρ = ρ0(1+βt0

C),
where ρ0 = 0. 001293 g/cm3 is the density under normal conditions (t0

C = 00
C;

P = 760 mmHg), we have for the refractive index

n = 1 + Kρ0(1 + βt). (8.2)

Furthermore, assuming that air obeys the ideal gas relations which yields β = 1/T0
K,

one obtains the variation of refractive index with temperature in the following form:

dn = Kρ0βdT = 0. 000292
1

T
dT . (8.3)

As to the optical path variation caused by the random fluctuations of the atmo-
sphere (turbulence), we mention here that the light pulses propagating through
the turbulent atmosphere do not strictly travel along a straight line connecting the
transmitter and the target, but travel according to randomly variable trajectory the
total length of which depends on statistical parameters of the turbulence. This is
quite a complicated phenomenon the description of which is beyond the scope of
this book.
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Problems

8.1. Find the minimum distance which can be measured by a rangefinder operated
with laser pulses of 20 ns duration and detector electronics of 100 MHz bandwidth.

8.2. A laser rangefinder comprises a Nd:YAG laser (wavelength 1.06 µm) which
generates light pulses of 0.5 mJ energy and 20 ns duration at a repetition rate of
10 pulses/s, a silicon detector (quantum efficiency 0.58) with electronic circuitry of
10 MHz bandwidth and 1 nAdark current, and transmitting optics of 3 cm diameter.
Assuming the target reflectance is 0.4, find the maximum range measured by the
device.

8.3. At 6:00 in the morning a distance S is measured using a laser rangefinder and
the result is 8,100 m. At 13:00 when a temperature rise of 15◦ is experienced a
repeat measurement of S is carried out. Assuming the laser generates light pulses
of 30 ns and the uncertainty in the measurement of the flight time is 2% of the
pulse duration, check if the measurement results are affected by the temperature
change.

8.2. Size Measurement with a Laser Scanner

Of numerous possible architectures we consider a configuration with a fast-rotating
mirror (like the scanner depicted in Fig. 7.2). The arrangement of a system intended
for the measurement of linear dimensions is illustrated in Fig. 8.2. The object to
be tested is a rod of diameter D. A mirror M is rotated around the horizontal axis
at constant rotation speed, ω. A laser beam is aligned along the axis of mirror
rotation in such a manner that point A where the beam strikes the mirror remains

Figure 8.2 (a) Schematic of size measurement with a fast-rotating scanner and (b) the
time history of the detector signal.
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unchanged and does not move along the mirror surface. This point A is the front
focus of lens L1 and, as a consequence, the scanning beam reflected by the rotating
mirror moves in the vertical plane and behind the lens it remains parallel to the
lens axis. Lens L2 collects the incident light and transfers it to a detector S located
at the back focus of the second lens.

The scanning range of the beam between the lenses is larger than the measured
size (diameter D). Thus, the detector signal varies during beam scanning from its
maximum value, imax, to zero, when it is obstructed by the test body, and then
it returns to its initial (maximum) value. The processing electronics measure the
time interval, τ , when the beam is obstructed (see Fig. 8.2b) giving the diameter
size as D = Vτ , where V is the linear speed of the beam motion between the
lenses. Since V = f ′

1ω, one can finally get the working formula

D = f ′
1ωτ . (8.4)

The accuracy of the measurement depends on the detector properties, on the
speed errors, and on the laser beam shape and stability. Details of accuracy con-
siderations are given in the solution to Problem 8.4.

Problems

8.4. An optical system for rod size measurement includes a fast-rotating scanner
(rotation speed ω = 6,000 rpm), a He–Ne laser of 2 mW power, 2 mrad diver-
gence angle and 0.6 mm beam size at the cavity exit, two identical lenses of 100
mm focal length and f # = 2.0, and a silicon p–i–n photodiode with NEP =
7 × 10−6 W/Hz−1/2 and η = 0.8. The laser stability is 1% and signal processing
is performed by 8-bit digital electronic circuitry (255 discrimination levels).

(a) Find the linear dynamic range required for the detector.

(b) Assuming that the instability of the rotation speed is 1% and the uncertainty
of the focal lengths is 2% calculate the overall accuracy of the rod diameter
measurement.

(c) Show how the accuracy can be improved by calibration of the device using
a rod of well-known diameter D1 = (5 ± 0.002) mm.

8.3. Interferometric Configuration

A laser interferometer is one of the most accurate tools for linear displacement
measurement. Although a great number of possible configurations have been
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Figure 8.3 Displacement measurements with a laser interferometer.

developed and successfully explored, the same basic approach is always utilized.
That is, the displacement to be measured causes an optical path difference between
the reference branch and the working branch of the interferometer which results
in an oscillation of interference intensity registered by the detector circuitry. Each
period of oscillation corresponds to a very small displacement of a half wavelength,
so that simple counting of the number of sequential oscillations can be easily and
precisely interpreted as an overall accumulated displacement. A schematic of a
typical laser interferometer is illustrated in Fig. 8.3.

The key part of the system is an interferometer, T, which consists of a cubic
beam splitter with a 90◦ prism. A laser beam is split inside this interferometer into
two parts: one goes to the prism and then back to the beam splitter and further to a
detector D (the reference branch); the other goes to a retroreflector, R, connected
to a test object moving along a surface A (displacement branch) and then goes back
to the beam splitter and proceeds to the detector where it undergoes interference
with the reference beam. The measured displacement S is traveled twice by the
laser beam and therefore the total number of oscillation, N , of the detector signal
is related to the displacement, S, and the laser wavelength, λ, as follows:

S = λ

2
N . (8.5)

The measurement errors can be of different origins. We address here the errors
caused by misalignment of the laser beam to surface A. Let a small tilt, θ , exist
between the traveling path and the laser optical axis (Fig. 8.4). Then a retroreflec-
tor, R, connected rigidly to a moving body, B, participates simultaneously in three
motions: (i) translation along the horizontal axis (apparent measured displacement,
S); (ii) translation, δ, in the vertical direction; and (iii) rotation around the horizon-
tal axis perpendicular to the cross-section of the system (not shown on the figure).
The third motion is not important, since the incident beam and the exit beam of
the retroreflector are always parallel to each other (as long as the retroreflector
vortex angle does not differ from 90◦). The first two motions cause the so-called
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Figure 8.4 Misalignment of a laser beam to a motion surface A: (a) origin of the cosine
error; (b) origin of the signal contrast reduction.

“cosine error,” which is the difference between the calculated distance S and the
real translation S′:

	S = S′ − S = S(1 − cos θ ). (8.6)

Besides this, translation δ in the vertical direction reduces the overlapping fraction
of the interfering beams by an amount 2δ (see Fig. 8.4b). As a result, the contrast
of the detector signal oscillations (defined as C = (i(max)

det − i(min)
det )/(i(max)

det + i(min)
det ))

is also reduced. Consideration of the above errors in more detail can be found in
the solutions to Problems 8.5 and 8.6.

Problems

8.5. An interferometric system for distance measurements like that of Fig. 8.3 is
operated with a He–Ne laser beam expanded to 30 mm in size and transferred
through a stop of 10 mm in diameter located at the entrance of the interfer-
ometer (in order to minimize the influence of intensity reduction in the radial
direction).

(a) Calculate the number of counts registered by the system electronics when
the measured displacement is S = 1,200 mm.

(b) A 75% reduction of the signal contrast is experienced when the retro-
reflector is displaced to the far end of the measured range. Find the
misalignment of the laser to the motion surface and calculate the cosine
error in this case.

8.6. The light source exploited in the system shown in Fig. 8.3 is a He–Ne laser
of 400 mm cavity length. Assuming the aperture stop near the detector is large
enough (does not truncate the laser beams) and the minimum acceptable contrast
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Figure 8.5 (a) Schematic of 3-D shape measurements with stratified light and (b) the grid
image in the CCD plane.

of the detector signal is Cmin = 10%, what is the maximum displacement that can
be measured with the system?

8.4. Stratified Light Beam and Imaging Measuring Technique

Measurement of the 3-D shape of a body is a frequently encountered problem in
numerous application areas. In many cases, especially in industrial environments
where productivity is a crucial issue, methods based on imaging can be good
solutions. Two approaches can be effectively realized. The first exploits point-by-
point scanning of a measured surface by a laser beam. At each location the point
of intersection of the beam with the studied surface is imaged on a 2-D detector
(usually a CCD) and analyzed by an image processor. Actually what is involved
here is a simple triangulation (see details in Problem 8.7).

The other approach is based on so-called stratified light illumination when the
illumination beam creates on the measured surface a line of light or a 1-D or 2-D
grid of light lines. The main idea is demonstrated in Fig. 8.5. A surface P described
as z = F(x, y) is illuminated by radiation emitted from a light grid generator (1)
and a set of vertical and horizontal lines is projected on the surface. An imaging
module (2) creates the image of the surface with the light grid in the plane of a
CCD. Deformation of the grid image lines (clearly seen in Fig. 8.5b) reflects the
influence of the variation of the heights z along the x and y coordinates of the
surface P. The interpretation of the image structure (again, based on the triangu-
lation principle) allows for the restoration of the function F(x, y). The accuracy
of measurement is determined by the restoration procedure and image processing
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Figure 8.6 Problem 8.7 – Geometry of rays in a system for vertical distance measurement
(optical profiler).

with sub-pixel accuracy (see explanation in Chapter 4, Problems 4.16 and 4.17) is
required very frequently.

Problems

8.7. A distance measurement system based on imaging comprises a He–Ne laser,
a lens L of 10 mm focal length, and a CCD detector with 640 × 512 pixels,
7 × 7 µm each. The basis segment B (see Fig. 8.6) is of 30 cm and the observation
angle α = 18◦.

(a) Calculate the maximum and minimum distances which can be measured
by the system.

(b) Assuming that image processing allows one to reveal minimum variations
of a pixel size, find the accuracy of the vertical distance measurement.

8.8. Gear teeth testing is performed with a light grid of 3 by 3 lines, 0.5 mm
width each, and 1.5 mm spacing. The imaging branch includes a lens L of 40 mm
focal length and a CCD detector of 4.8 mm × 5.6 mm area, 8.3 µm pixel size. The
maximum size of the gear tooth is 5 mm by 10 mm (see Fig. 8.7) and it is measured
in a single shot (one frame of the CCD). Is it possible to achieve an accuracy of
measurement of as high as 0.01 mm? How should the system be arranged in such
a case?
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a) b)

Figure 8.7 Problem 8.8 – (a) Configuration of a system for gear profile measurement and
(b) grid image in the CCD plane.

8.5. Solutions to Problems

8.1. The minimum time of flight tf is achieved if the outgoing pulse is followed
immediately by the back reflected pulse, i.e., tf = τ = 20 ns. The bandwidth of
100 MHz means that the minimum time interval between two events which can
be processed separately by the system electronics is 	t = 2/(100 × 106) = 20 ns,
i.e., compatible with tf . Hence, from Eq. (8.1) we get

Smin = ctf
2

= 3 × 108 × 20 × 10−9

2
= 3 m.

8.2. We find first the number of photons in the laser pulse. As a single photon of
1.06 µm wavelength has an energy of

hc

λ
= 6.63 × 10−34 × 3 × 108

1.06 × 10−6
= 1.88 × 10−19 J

the total number of photons in the pulse is Np = 5 × 10−4/1.88 × 10−19 =
2. 66 × 1015 photons. Of that amount a fraction RNp = 0.4Np is reflected by the
target in all directions (in a solid angle of 2π ) of which the fraction

πD2

4S2

1

2π
= D2

8S2

is reflected in the direction of the rangefinder and captured by its optics. If we also
take into account the transmittance of the atmosphere while the light travels twice
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the distance S, T = exp(−2αS), we find the total number of photons, Nd, striking
the system detector as follows:

Nd =0.4Np
D2

8S2
e−2αS =0.4×2.66×1015 9×10−4

8S2
e−2αS = 1.19×1011

S2
e−2αS .

Keeping in mind the quantum efficiency of the detector, η = 0. 58, we find also
the number of electrons generated in the detector by radiation reflected from the
target:

Ne = 0.58Nd = 0. 69 × 1011

S2
e−2αS .

As the minimum time interval registered by the electronic circuitry is τ = 1/	f =
10−7 s, one can find the detector signal (current), idet, originating in the captured
pulse:

idet = 0.69 × 1011

S2
e−2αS 1.6 × 10−19c

10−7 s
= 0.11

e−2αS

S2
A.

Furthermore, we assume that the minimum signal-to-noise ratio (SNR, see Section
4.1) should be 3:1 at least and that the noise of the detector is due to dark current
primarily, id.c. = 1 nA. Then we get the following equation for the maximum
range S: SNR = 3 = idet/id.c. = 1.1 × 108(e−2αS/S2) or, remembering that
α = 0.1 km−1 = 10−4 m−1 and taking the square root and the logarithm of both
sides:

S = e−αS0.609 × 104; ln S = 8.714 − 10−4S. (A)

Since the last term is small, the transcendental equation (A) can be easily solved
by iteration (or by a trial and error method) which finally yields Smax = 4,100 m.

8.3. From Eq. (8.3) we get the change of refractive index due to a temperature rise
of 15◦: dn = 0.000292× (1/300)×15 = 1.46×10−5. Then, taking the logarithm
derivative of both sides of Eq. (8.1) and assuming that tf remains the same in the
morning and in the afternoon, we have

	S = −S
	n

n
= 5,000

1.46 × 10−5

1.000292
= 0.1168 m.

This change of the calculated range S is equivalent to a change of the flight time of

	tf = 2 × 	S

c
= 2 × 0.1168

3 × 108
= 0.78 ns

which is greater than the uncertainty of the laser pulse duration (0.6 ns) and there-
fore can be resolved by the system processor. Thus, the measurement result is
affected by the temperature variation, meaning that a correction from the environ-
ment temperature is required.
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8.4. (a) We address the system configuration as presented in Fig. 8.2 and assume
that the waist of the laser beam is 0.6 mm and it is located on the rotating mirror
surface. Then after lens L1 the laser beam waist remains of the same size, w, and
it is located at a distance S′ = f ′ behind the lens (see explanation in Section 3.3.2,
Eq. (3.7)). The same consideration is also valid for the second lens and therefore
the two lenses should be positioned 200 mm from one another and detector S is to
be located 100 mm behind lens L2.

The dynamic range of the detector is defined as follows (see Eq. (4.5)):

DR = idet.max

idet.min
= Pmax

Pmin
(A)

where Pmax is the maximum radiation power incident on the detector when it is
not saturated and the light beam is not shaded by the studied body and Pmin is the
minimum detected radiation power (this is achieved when the light beam is almost
totally shaded by the measured body). It is apparent that Pmax = 2 mW. As to the
second value, Pmin, one can calculate it in terms of noise equivalent power (NEP)
and the system bandwidth (	f ): Pmin = NEP

√
	f . To find 	f we consider the

dynamics of the laser beam motion relative to the measured rod (see Fig. 8.8a),
keeping in mind that the full size of the beam is about three times larger than
the beam waist, 3 × 0.6 = 1.8 mm, and the linear velocity of the beam moving
between two lenses is V = ωF (where ω is the angular velocity of rotation and
F = 100 mm is the focal length of each lens). Hence

τtr = 1.8

ωF
= 1.8 mm

100 s−1 × 100 mm
= 180 µs.

Thus, for 8-bit electronic circuitry the minimum resolvable time interval
should be τm = τtr /255 = 0.706 µs and the Nyquist theorem gives the necessary
bandwidth as

	f = 1

2τm
= 106

2 × 0. 706
= 0. 708 MHz.

Therefore, Pmin = 7 × 10−16
√

0.708 × 106 = 5.89 × 10−13 W. By substituting
this value in Eq. (A) we finally get DR = (2×10−3)/(5.89×10−13) = 3.33×109.

(b) Given the angular velocity of the scanner and the focal length of the lenses,
measurement of the rod diameter D is based on measurement of the transition time
interval, τ , shown in Fig. 8.8a:

D = Vτ = ωFτ . (B)

From Eq. (B) one can estimate the accuracy of measurement in a standard way:

	D

D
= 	τ

τ
+ 	ω

ω
+ 	F

F
. (C)
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Figure 8.8 (a) Motion of a laser beam and corresponding signal of a detector and
(b) geometry of the beam at the measured rod.

The last term in this expression is constant for a given system and it can be avoided
by proper calibration or measuring the lens focal distance. The second term on the
right-hand side does not depend on electro-optical elements and can be treated
by electronic and electro-mechanical means. The first term on the right-hand side
is dictated by the random noise of the laser and of the detector and it is our
main concern here. Referring to the upper graph of Fig. 8.8a, we realize that the
uncertainty in the measurement of τ is affected by the transition function of the
system, �(t) = idet(t), and by its derivatives at the time moments t1, and t2, since
δτ = δi/(d�/dt)t=t1 (we assume that the same relation is valid for the time moment
t2). To find the function �(t) we consider the radiation power, E, incident on the
detector when the center of the laser beam is at a distance y from the rod wall and
a fraction of the beam is shaded by the rod (for simplicity we consider the rod wall
as a straight surface because its radius of curvature is much greater than that of the
light beam). Considering Figure 8.8b, we get

E = Pmax − 2I0

α∫
0

R∫
y/cos ϕ

exp
(
−2r2

w2

)
r drdϕ

= Pmax + I0α
w2

2
e−(2R2/w2) − I0

w2

2

α∫
0

exp
(
− 2y2

w2 cos2 ϕ

)
dϕ.
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In this expression we use the laser beam profile described by Eqs. (3.1) and (3.2)
with the center light intensity I0 as per Eq. (3.6). Taking into account that � = RλE,
where Rλ is the responsivity of the detector defined in Section 4.1 and equal in our
case to ηλ/1.24 = 0.8 × 0.63/1.24 = 0.4 A/W, we obtain

d�

dt
= d�

dy/V
= RλωF

dE

dy
= RλωFI0

w2

2

α∫
0

d

dy

[
exp

(
− 2y2

w2 cos2 ϕ

)]
dϕ

= 2RλωFI0yU (D)

where the following integral is introduced:

U =
α∫

0

exp
(

− 2y2

w2 cos2 ϕ

) dϕ

cos2 ϕ
=

tan α∫
0

exp
[

− 2y2(1 + z2)

w2

]
dz

=
√

π

2

w

2y
e
− 2y2

w2 erf
(√

2
y

w
tan α

)
(E)

expressed in terms of the error function

erf (z) = 2√
π

z∫
0

e−x2
dx.

By substituting U in Eq. (D) and keeping in mind that

y

w
tan α = y

w

√
R2 − y2

y
=

√
R2 − y2

w
(F)

we obtain (
d�

dt

)
t1

= RλωFI0

√
π

2
werf

(√
2

R

w

)
(G)

where it is taken into account that at t = t1 y = 0. Investigating the behavior of
the error function term in Eq. (G) at different ratios R/w we find: for R/w = 1,
erf (

√
2) = 0. 953; for R/w = 2, erf (2

√
2) = 0.99992; for larger R/w it is equal

to 1.000. Hence, Eq. (G) gives
(

d�

dt

)
t1

= RλωFPmax

√
2

π

1

w
= 0.798

RλωFPmax

w

and therefore

δτ = w

0.798RλωFPmax
δi = 1.25w

RλωFPmax
δi (H)

where Eq. (3.6) is used for I0.



264 8 ♦ Optical Systems for Distance and Size Measurements

The uncertainty in the detector current due to shot noise of the detector is gov-
erned by Eq. (4.11). We apply it for the current value idet max/2 (see Fig. 8.8a) where
the maximum current of the detector is defined as idet max = RλPmax = 0. 4A/W ×
2mW = 800µA.Thus,δiSn = √

2 × 1.6 × 10−19 × 400 × 10−6 × 0.708 × 106 =
9.5 × 10−9 A. The uncertainty of the detector current due to the laser intensity noise
iscalculatedasfollows:δiL = Rλ × 	P = 0.4 × 0.01 × 2 × 10−3 = 8 × 10−6A.
ThusδiL definitelydominatesovertheshotnoise.Hence,fromEq.(H)weget

δτ = 1.25 × 0.3 × 8 × 10−6

800 × 10−6 × 104
= 0.375 µs.

The total uncertainty of time measurement is 	τ = 2 × δτ = 0. 75 µs. By sub-
stituting this value in Eq. (C) we find

	D = 	τ × ωF + D

(
	ω

ω
+ 	F

F

)
= 0.75 × 10−6 × 104 + D(0.01 + 0.02)

= 7.5 µm + 0. 03D

which renders for the maximum measured diameter (D = 48.8 mm) 	D =
1. 47 mm; 	D/D = 3.0%.

(c) A rod of well-known diameter D1 is used for calibration of the system.
Since the product ωF remains the same in both situations, in calibration and
in normal operation, one can improve measurement accuracy by performing a
relative measurement procedure: D/D1 = τ /τ1; 	D/D = 	D1/D1 + 	τ /τ +
	τ1/τ1. For D1 = 5 mm we get τ1 = 5 × 10−4 s; and 	τ1/τ1 = 0.75 × 10−6/5 ×
10−4 = 0.15% and therefore 	D = 0.002(D/D1) + 0.0075 + 0.0015D which
yields for the maximum diameter D = 48.8 mm 	D = 0.1mm; 	D/D = 0.2%.

8.5. (a) Using Eq. (8.4) one can find the number of counts registered by the
detector while the test body is displaced by S = 1,200 mm: N = 2S/λ =
2,400/0.63 × 10−3 = 3,809,523 counts.

(b) We refer to Fig. 8.4 and assume that the total power of the laser, P, is
divided equally between two interfering channels, P/2 each. Due to misalignment
error only a fraction of the power in each channel participates in interference
(we denote this fraction as q(δ) and it is related to the shaded area indicated in
Fig. 8.4b). Hence, the oscillating part of the power incident on the detector is
changed from the maximum value of Pmax = 2Pq to the minimum (zero) value
of Pmin = 0. The rest of the power from both channels, P(1 − q), comes to the
detector with no oscillation. Therefore, the maximum total power coming to the
detector is Itot.max = 2Pq + P(1 − q) = P(1 + q) and the minimum total power is
Itot.min = P(1 − q), and the contrast of the detector signal can be expressed
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as follows:

C = Itot.max − Itot.min

Itot.max + Itot.min
= P(1 + q) − P(1 − q)

P(1 + q) + P(1 − q)
= q. (A)

Since the intensity variation inside the beam is negligible, one can assume that the
total power incident on an area is a linear function of the area size. The shaded
area shown in Fig. 8.4b depends on translation δ caused by misalignment error,
or, more specifically, on the angle α (shown in the figure) and the ratio δ/R, where
R is the radius of the system stop. A simple geometrical consideration yields

A = αR2 − R2 sin α × cos α = αR2 − δR
√

1 − (δ/R)2 (B)

where cos α = δ/(R) and therefore

q = A

πR2
= 1

π

[
α − δ

R

√
1 − (δ/R)2

]
= C. (C)

Given the contrast value, Eq. (C) is a non-linear equation with regard to δ. In our
case we have C = q = 0.25 and by trial and error (or using a simple iteration
process) we obtain δ/R = 0.4 which gives δ = 0.4 × 5 = 2.0 mm. Thus, the
misalignment angle, θ , is calculated as θ = δ/S = 2/1,200 = 1.7×10−3 = 0. 09◦
and the cosine error is 	S = 1,200(1 − cos 0.09◦) = 0.0016 mm.

8.6. We start with the calculation of the laser beam parameters using expressions
of Section 3.3.1. From Eq. (3.4) we find the beam waist inside the cavity:

w0 =
√

λL

2π
=

√
0.63 × 10−3 × 400

2π
= 0.2 mm

which enables one to calculate the divergence angle of the beam as per Eq. (3.3):
2θ = 2(0.63 × 10−3)/(π × 0.2) = 2 × 10−3. The beam size at the entrance of the
laser is 2w1 = 2w0

√
2 = 0.566 mm and it is supposed to be very close to the inter-

ferometer. Thus, the first channel provides to the detector practically a beam of size
2w1. The second channel projects on the detector a significantly larger beam, since

it is divergent, after traveling twice the distance L, of size 2w2 = 2
√

w2
0 + 4θ2L2

(see Eq. (3.1)). The intensity of both interfering beams is also different. The
values at the center of the beams, I01 and I02, obey Eq. (3.6) and therefore are
related as follows: I01/I02 = (w2/w1)2. The above discussion is summarized in
Fig. 8.9 where two beams are shown at the entrance to the detector aperture stop.
Keeping in mind that the oscillating signal of the detector is caused by the fraction
of the area where the two beams interfere with one another, i.e., inside the circle
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Figure 8.9 Problem 8.6 – Two beams as they arrive at a system detector. D′ (dotted line)
is the aperture stop.

indicated as I1, we can find the maximum and minimum of the oscillating power as
follows:

Emax = πw2
1

(√
I1 + √

I2

)2 = πw2
1I2(k + 1)2;

Emin = πw2
1

(√
I1 − √

I2

)2 = πw2
1I2(k − 1)2

where the ratio k = w2/w1 = √
I1/I2 is introduced. Outside the area of I1 there is

no interference, but only a fraction of the second-channel beam (which we assume
be equally spread over the area) is present, so that the optical power here is E′ =
π (w2

2−w2
1)I2. Hence, the contrast of the detector signal can be expressed as follows:

C = Emax − Emin

Emax + Emin + 2E′ = πw2
1I2[(1 + k)2 − (1 − k)2]

πw2
1I2[(1 + k)2 + (1 − k)2] + 2π I2w2

1(k2 − 1)

= 2k

2k2
= 1

k
. (A)

In our case C = 0.1; and k = 10 = w2/w1 and therefore

w2 = 10w1; w2
0 + 4θ2L2 = 100w2

1 = 200w2
0;

L = w0
√

199

2θ
= 0. 2

√
199

2 × 10−3
= 1,411 mm.

8.7. (a) Keeping in mind that |S| � S′ we can replace in the calculation S
′

by f ′
and find the half-field angle, β, as follows (N is the total number of pixels in a line



8.5. Solutions to Problems 267

Figure 8.10 Problem 8.7 – Consideration of measurement error in the vertical direction.

of the CCD):

tan β = N

2

δ

f ′ = 640 × 7 × 10−3

2 × 10
= 0.224; β = 12.62◦.

Furthermore, from the triangle O1OQ (see Fig. 8.6) we get |S| = B/ sin α and
from the triangle O1OO2 O1O2 = |S| sin β/sin(α + β) which gives

Lmin = O1Q − O1O2 = B

sin α

[
cos α − sin β

sin(α + β)

]

= 30

sin 18◦

(
cos 18◦ − sin 12.62◦

sin 30.62◦

)
= 50. 7 cm

Lmax = O1Q + O1O3 = B

sin α

[
cos α + sin β

sin(α − β)

]

= 30

sin 18◦

(
cos 18◦ + sin 12.62◦

sin 5.38◦

)
= 319.0 cm.

(b) To find the error of measurement consider Fig. 8.10 where the segment
M2M1 has a size of a single pixel, δ. Therefore, the angle ϕ which defines the error
	z in the vertical direction is calculated as tan ϕ = δ/f ′ = 7 × 10−4 and from
the triangle T1T2O1 (where the angle O1T2T1 = α + ϕ and the second angle
T2O1T1 = 90◦ − α): T1O1 = δ/V = δB/( f ′ sin α) and

	z = δ

V

sin(90◦ − ϕ)

sin(α + ϕ)
= 7 × 10−3 × 300

10 × sin 18◦
cos ϕ

sin 18. 04◦ = 2. 19 mm.

8.8. Measurement of a whole tooth in a single shot requires that the image of a
tooth be no larger than the CCD size. This dictates the magnification of the imaging
optics and positioning of the lens (the distance S):

V = −5.6

10
= −0.56; S = f ′ 1 − V

V
= 40

1 + 0.56

−0.56
= −11. 4 mm.
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Illuminator IS is tilted in the ZOY plane by an angle ψ and this angle does not
affect the accuracy (it influences the width and spacing of the grid lines which are
assumed to be on the measured surface as specified in the problem, i.e., 0.5 mm
width and 1.5 mm spacing). The angle α in the ZOX plane determines the posi-
tion of the imaging optics and it does influence the accuracy of measurements, as
shown in Problem 8.7: 	z = δ/(V sin α). Obviously the greater the angle α the
less the error 	z that can be achieved for a given pixel size (δ = 8.3 × 10−3 mm)
and magnification V . However, one should keep in mind that all lines of the grid
have to be imaged with no overlapping in the CCD plane. In other words, two
adjacent lines should be incident on two different lines of the CCD which means
that lmin = 8.3×10−3 mm = (1.5−2×0.25)V cos α. This requirement dictates the
maximum acceptable value of angle α: cos αmax = (8.3 × 10−3)/0.56 = 0.01482;
αmax = 89◦ and therefore 	z = (8.3 × 10−3)/(0.56 sin 89◦) = 14.8 µm, which
does not meet the requirements of the problem. To achieve better results an image
processing procedure with sub-pixel accuracy should be applied (see descrip-
tion in Section 4.4, Problem 4.17). In such a case the image of a single line of
the grid (of 0.55 mm width) has to be projected on three sequential pixels at
least. Then, we get 0.5V cos α′ = 3 × 8.3 × 10−3; cos α′ = 0.0249/0.28 =
0.0889; α′ = 84.9◦ and a sub-pixel accuracy of 0.5 pixel (which can be easily
achieved) is enough in order to get the measurement error smaller than 0.01 mm:
	z = (0.5 × 8.3 × 10−3)/(0.56 × sin 84.9◦) = 7.4 µm.



Chapter 9

Optical Systems for Flow
Parameter Measurement

9.1. Principles of Laser Doppler Velocimetry (LDV)

Laser Doppler velocimetry (LDV; also called laser interferometric anemometry)
has been widely used over the last 40 years as an effective method for measure-
ments in flows of very different origins. Due to the ability to perform measurements
with no intervention in the studied flow by a material sensor, like in other measure-
ment methods, the LDV technique is exploited in numerous applications – from
aeronautics and turbomachinery to ophthalmology and other medical fields.

Of all the flow parameters the velocity vector −→q (u, v, w) is of main concern. If
a laminar flow is investigated the steady-state velocity distribution is measured.
A turbulent flow is a much more complicated situation characterized by a number
of parameters. Turbulent flow velocity is a fluctuating vector, namely u = u + u′,
v = v + v′; w = w + w′, where u, v, w are the time-averaged values of X, Y ,
Z-components of velocity and u′, v′, w′ are their fluctuations (randomly changing
instantaneous values). As is well known, it is fluctuations that allow one to calculate
the turbulent intensity (defined as ε = √

(u′)2/ u, etc.) and to estimate the Reynolds
stresses of the flow in terms of correlation functions u′v′, v′w′, u′w′. Evidently all
this requires a special approach which enables one to carry out very fast, numerous
measurements.

Generally, LDV works as follows. Very small particles (tracers) are introduced
(seeded) into a fluid. These particles should be small enough in order to follow
the flow properly. The particles are illuminated by a laser beam and the scattered
light parameters are measured by a remote detector yielding information about the

269
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Figure 9.1 Fringe pattern in a probe volume.

particle velocity. It is postulated that the velocity of the particles at any chosen
point in space represents the fluid velocity at that point.

The optical principle of measurement is demonstrated in Fig. 9.1. A laser beam
is split initially into two parts which then cross each other in a probe volume
(a small area around the point of measurements). Interference occurs in the probe
volume and the spacing δ between interference fringes is governed by the angle,
2θ , between the two split beams:

δ = λ/2 sin(θ ) (9.1)

where λ is the wavelength of the laser beam. As a particle of velocity u (perpen-
dicular to the direction of the fringes) travels through the measurement volume
the scattered light intensity varies with frequency.

f = u

δ
(9.2)

causing detector signal oscillations of the same frequency. By processing the detec-
tor signal its frequency f is found and then the velocity of the particle is calculated
as follows:

u = λ

2 sin(θ )
f . (9.3)

An optical arrangement for the realization of the above approach is illustrated
in Fig. 9.2. A laser beam is divided by a beam splitter BS into two beams separated
by a distance l and parallel to one another. These beams are collected by lens L1

in a probe volume M which is located around the back focus of the lens. While
a particle of velocity q(u, v) moves through the probe volume it scatters radiation
in all directions, including the direction of the collecting optics (lens L2 followed
by diaphragm D and detector Ph, usually a photomultiplier or a photodiode). When
the particle is approaching the maximum of the interference pattern the amount of
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Figure 9.2 Optical arrangement for measurement of a single component of velocity.

light transmitted to the detector is increased. Conversely, if the particle approaches
the minimum of the interference pattern the amount of radiation collected by the
detector is reduced. As a result, the detector photocurrent is an oscillating function
of time, as far as the transit time of the particle in the measurement volume is
concerned. An example of the detector signal burst (a signal caused by a single
particle) is shown in Fig. 9.3. As we see, the burst is a periodic function with
variable amplitude. The amplitude variation results from the fact that the light
intensity of the laser beam is not constant across the beam, but rather Gaussian
(see Section 3.3):

I ∼= I0 exp

(
−x2 + y2

r2
0

)
(9.4)

Figure 9.3 LDV signal burst.



272 9 ♦ Optical Systems for Flow Parameter Measurement

where r0 is the beam radius. Since two Gaussian beams interfere in the probe
volume, the corresponding interference pattern is described as

I ∼= I0 exp

(
−x2 + y2

r2
0

)
cos2

(πx

δ

)
. (9.5)

Assuming that: (i) the particle velocity is perpendicular to the fringes (x = ut);
(ii) radiation scattered by the particle is proportional to the intensity of light at the
instantaneous location of the particle; and (iii) the detector is linear (idet = kI),
we get

idet = CSkI0 exp

[
−u2(t − tC)2 + y2

r2
0

]
cos2[π f (t − tC)] (9.6)

where CS is the cross-section of scattering of the particle and tC is the time of
arrival of the particle at the center of the probe volume (x = 0). Expression (9.6)
describes the ideal signal burst shown in Fig. 9.3. Once the transit time, τS,
between two adjacent fringes separated by a distance δ is measured, it can be
immediately converted to frequency, f = 1/τS, and then the velocity is calculated
from Eq. (9.3).

The other values characteristic of arrangements like that of Fig. 9.2 and useful
for the design of LDV systems are the size of the probe volume and the full number
of fringes. Actually the measurement volume consists of two cones touching each
other by their circular bases. The maximum diameter, dm, of the volume with
fringes is related to the focal length of lens L1 (we denote it here as F ′

1) and the
divergence angle, ϑ , of the laser beam:

dm = 2ϑF ′
1 = 2λ

πw0
F ′

1 (9.7)

(w0 is the laser waist radius, see Section 3.3). The length of the probe volume,
lm, depends on the angle 2θ between two beams (see Fig. 9.1) determined by the
separation distance l after the beam splitter BS:

lm = dm

2 tan(θ )
= dm

l
F ′

1. (9.8)

Evidently the maximum number of fringes, N , in the probe volume can be found as

N = dm/δ. (9.9)

In the configuration shown in Fig. 9.2 the collection optics is positioned along
the optical axis of the illumination system. In such a case (known as forward
scattering architecture) the direct beams should be closed by a non-transparent
stop with an opening which allows only the scattered light to come to the detector.
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Shown by the dotted lines in Fig. 9.2 is the back scattering arrangement: this
includes an additional beam splitter which reflects the scattered light gathered by
lens L1 to lens L3 followed again by an aperture D and a detector. The advantages
of the second arrangement become evident in situations where measurements have
to be performed in different areas of the studied flow. The forward scattering mode
requires a realignment of the collecting optics any time the probe volume M is
moved whereas the back scattering assembly remains unchanged.

In a highly turbulent flow the velocity vector of the seeded particle can be
arbitrarily directed. Two particles with velocity components u and −u will cause
the same burst (Eq. (9.6)) and therefore cannot be distinguished. To solve this
problem (known as directional ambiguity) an additional element is introduced in
the arrangement shown in Fig. 9.2. An acousto-optical modulator (AOM) (see
detailed description in Section 7.2) is introduced in one of the beams incident on
lens L1. The AOM is aligned in such a manner that the first order diffracted beam
emerging from the AOM is parallel to the second (undisturbed) beam leaving the
beam splitter BS. Since the beam passing through the AOM is frequency shifted
(say, by a value fac) with regard to the second one, a beat frequency occurs between
the two beams and the fringe pattern in the probe volume is not steady, but moves
in the direction normal to the fringes (direction OX). As a result, a particle moving
in direction OX causes a signal burst with oscillating frequency f − fac whereas
a particle moving in the opposite direction creates a burst of frequency f + fac.
Hence, these two particles can be easily distinguished by the signal processor.

It should also be noted that the optical arrangement of Fig. 9.2 allows one to
measure only one component (u) of the velocity vector. 2-D and 3-D measurement
architectures are described in numerous publications devoted to the LDV tech-
nique (e.g., see references in Brown, 1986, Chapter 12). Some configurations are
considered in Section 9.2.

Problems

9.1. Velocity measurements are carried out in a highly turbulent (ε = 0. 3) tran-
sonic air flow (Umax = 1 Mach) using an LDV system capable of creating a probe
volume with fringe spacing δ = 10 µm. The system includes anAOM allowing for
a frequency shift of 50 MHz (to avoid ambiguity in the interpretation of captured
signals).

(a) What range of working frequencies (bandwidth) of the signal processing
unit is required in order to investigate the statistics of the flow completely?

(b) What happens if the AOM is limited to 40 MHz shifting?
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9.2. What are the minimum and the maximum velocities which can be measured
with the 1-D LDV system shown in Fig. 9.4 if the laser is operated at a wavelength
λ = 0. 63 µm and has a waist diameter 2w0 = 0. 8 mm, and the signal processor
operates with frequencies up to 30 MHz?

Figure 9.4 Problem 9.2 – 1-D LDV system.

9.3. LDV with side scattering (off-axis) operation mode. Velocity measurements
by an LDV system with large fringe spacing requires a small intersection angle θ

which results in a very long measurement volume. To reduce the effective probe
volume the side scattering mode is exploited. Assuming that collecting optics
consists of two lenses (L1 of F ′

1 = 250 mm and L2 of F ′
2 = 350 mm) separated

by 40 mm, a pinhole, and a photodetector (the other geometrical parameters are
shown in Fig. 9.5), calculate the diameter of the pinhole D required for optimal
measurement configuration.
[Note: The system operates with an argon laser (λ = 0. 514 µm) and the probe
volume size is 0.5 mm.]

Figure 9.5 Problem 9.3 – LDV with side scattering.

9.4. An LDV system is designed for the investigation of the velocity field, V ,
across a tube of diameter 2l = 20 cm having a transparent segment in the wall
(see Fig. 9.6). The flow is laminar and its velocity obeys the equation

V = 5 + 10

[
1 −

(x

l

)2
]

m/s.



9.1. Principles of Laser Doppler Velocimetry (LDV) 275

Figure 9.6 Problem 9.4 – LDV system for measurement of the velocity field in a tube.

The following elements are available for the system. (i) Laser: He–Ne; (ii)
lenses: L1, positive, F ′

1 = 100 mm; L2, negative, F ′
2 = −30 mm; (iii) beam

splitter with beam separation of 20 mm; (iv) detector assembly (with lens, pin-
hole, and photomultiplier).

(a) How should one arrange the system so that it is capable of performing
measurements at all points of the cross-section of the tube with a minimum
of moving elements?

(b) What changes in detecting signals are expected while the probe volume is
moved from point A to B and C?

[Notes: (i) Due to constraints of the system mechanics the maximum distance
between L1 and L2 cannot exceed 80 mm; (ii) the thicknesses of both lenses can
be neglected.]

9.5. When the scale of turbulence in a flow is investigated a spatial correlation
u(A)u(B) between velocities at different points along OZ is measured by the LDV
system shown in Fig. 9.7. This includes an AOM made of TeO2 (VS = 600 m/s)
and activated by RF signals of frequency fac = 30–50 MHz. The AOM is aligned
in such a manner that the zero order and the first order diffracted beams have
almost the same intensity. If no RF is applied to the AOM only the zero-order
beam (actually the initial radiation of the laser) is transferred through it and is
split thereafter by beam splitter BS1 and mirror M into two beams separated by
10 mm and concentrated by lens L1 at point A in the flow. As the AOM is energized
by RF power of frequency fac the first order diffracted beam arises in a direction
different from the zero order and therefore the corresponding new pair of beams
are concentrated by L1 in another point, B. The location of B in the flow varies, as
different frequencies are introduced in the AOM. The receiving optics, configured
as a back scattering arrangement, consists of lens L2, two pinholes, and two
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Figure 9.7 Problem 9.5 – LDV system for measurement of spatial correlation of velocity.

photodiodes Ph A and Ph B, each one collecting signals of corresponding points
A or B and transferring them to the signal processor where finally the correlation
function is calculated. While B is moved along OZ the position of Ph B (and
the pinhole) should be moved accordingly. The focal lengths of L1 and L2 are
500 mm and 250 mm, respectively, and the system works with a He–Ne laser with
λ = 0. 63 µm and 2θ = 2 × 10−3.

(a) What is the correlation length AB if fac = 40 MHz and 50 MHz?

(b) How should one arrange the pinhole and Ph B in order to avoid cross-talk
(influence of signals from A on B and vice versa)? Is it enough to put
interference filters in front of each detector?

(c) Assuming the reflectance of mirror M is 100%, what is the optimal ratio R/T
(reflectance/transmittance) of the beam splitter exploited in the system?

9.2. Measurement of Velocity in 2-D and 3-D Flow Geometry

In many real situations a studied flow cannot be described in terms of 1-D geom-
etry. In such cases the measurement of two or even three components of velocity
becomes essential.

In order to measure two components, u and v, of velocity vector −→q usually
two interference patterns are created simultaneously in a probe volume. Figure 9.8
demonstrates one possible architecture of such a system. The light source is a laser
generating two wavelengths, λ1and λ2 (usually an argon laser with green (514 nm)
and blue (488 nm) spectral lines). One of them is reflected by beam splitter BS1,
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Figure 9.8 Optical configuration of LDV system for measurement of two components of
velocity.

filtered out by interference filter F1, and arranged by mirrors M1 and M2 and beam
splitter BS2 as two parallel beams incident on lens L1 in the vertical plane. The
second wavelength is transmitted by BS1, filtered out by F2, and split by BS3 into
two parallel beams striking lens L1 in the horizontal plane. The lens focuses all four
beams into the probe volume, M, of the flow where two sets of interference fringes
are created: one is horizontal enabling one to measure the vertical component, u, of
velocity and the second is vertical allowing for the measurement of the horizontal
component, v. When a sampling particle moving with the flow crosses the probe
volume it scatters simultaneously both wavelengths in all directions. Part of the
scattered energy is collected by lens L2 followed by filter F3 (identical with F1)
and is transferred to detector Ph1. Another part of the scattered energy is collected
by lens L3 and then passes through filter F4 (identical to F2) to the second detector,
Ph2. The signal of each detector is transferred to a separate processor where it is
processed in a way similar to that described in Section 9.1 for a single velocity
component. Hence, finally one obtains

u = f1δ1; v = f2δ2 (9.10)

where δ1 and δ2 are the fringe spacing at wavelengths λ1 and λ2, respectively,
and f1 and f2 are the oscillation frequencies of the corresponding detector bursts.
The receiving optics shown in Fig. 9.8 (lenses L2, L3, filters F3, F4, and detectors
Ph1, Ph2) is arranged in a side scattering (off-axis) operation mode (see details in
Problem 9.3). This is not essential and in some cases it is more convenient to use
the back scattering configuration (like that depicted by the dotted lines in Fig. 9.2).
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Figure 9.9 Optical configuration of LDV system for measurement of three components
of velocity.

Measurement of all three components of the velocity vector, u, v, and w, requires
either three wavelengths or two wavelengths and two polarizations. An example
is presented in Fig. 9.9 where a light beam emerging from a laser is divided by
a polarizing beam splitter, BSP, into two polarization components, P and S, for
both wavelengths λ1 and λ2. The P component creates in a probe volume M two
interference patterns using a 2-D optics channel while the S component creates in
the same location M an additional (the third) interference pattern related to one
of the working wavelengths. The optical axis of the S-component channel creates
in the horizontal plane an angle α with the axis of the first channel. The fringes
of the third pattern have to be arranged vertically. Obviously three detectors are
operated simultaneously in the system, and the receiving optics of both channels
can be arranged either in the side scattering mode (this case is demonstrated in the
figure) or in the back scattering mode.

A particle traveling through the probe volume M scatters simultaneously radia-
tion of both wavelengths and both polarizations. Part of the scattered light related
to the P component is collected by lens L3, filtered out by polarizer P1, and split
to detectors Ph1 and Ph2. Another part of the scattered light is collected by lens
L4 followed by polarizer P2 (which transmits only the S component of radiation
scattered by the particle) and proceeds further to detector Ph3. The signal proces-
sor of this detector reveals the horizontal component v′ of the velocity vector −→q
as it is projected on the plane XOY′ constituting an angle αwith the plane XOY.
Since usually α is much smaller than 90◦ additional consideration of the vector
components is involved.
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Figure 9.10 (a) Geometry of velocity vector projection on two vertical planes and
(b) relations between v, v′, and w.

The 3-D geometry of vector projections on both vertical planes (perpendicu-
lar to the optical axis of both channels) is shown in Fig. 9.10a and Fig. 9.10b
demonstrates the relation between two horizontal components, v, v′, and the third
component, w, of the velocity vector. It can be easily seen that the following
relations exist between the velocity vector components:

w = v × tan ϕ; tan ϕ = k − cos α

sin a
; k = v′

v
. (9.11)

As we see, all three components are measured simultaneously. More details on
LDV system configurations and signal processing techniques can be found in
Brown (1986) and Durst (1982).

Problems

9.6. Flow parameters are measured with a 2-D LDV system operated at two wave-
lengths, λ1 = 0. 55 µm and λ2 = 0. 48 µm. The system (see Fig. 9.11) includes
two plano-convex cylindrical lenses, L1 with a radius of 200 mm and thickness of
5 mm and L2 with a radius of 100 mm and thickness of 7 mm, both made of glass
with refractive index n = 1. 5. Two beam splitters enable one to separate beams
by 20 mm in the vertical and in the horizontal planes.

(a) Find the location of the probe volume and the distance between the lenses.

(b) Find the direction of the flow velocity if the measured frequencies of the
detector signals are f1 = 0. 5 MHz and f2 = 0. 3 MHz.
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Figure 9.11 Problem 9.6 – 2-D LDV system with cylindrical lenses.

(c) What is the maximum velocity the system is capable of measuring if the
maximum frequency processed in each channel can be as high as 10 MHz?

9.7. A 2-D LDV system (depicted in Fig. 9.12), working with two wavelengths,
λ1 = 515 nm and λ2 = 430 nm, includes lens L of radii R1 = −R2 = 100 mm and
thickness t = 5 mm made of BK-7 glass (n1 = 1. 519; n2 = 1. 523), two beam
splitters with beam separation b1 = b2 = 20 mm each, and receivers with two
detectors operated in the back scattering mode. In the probe volume the velocity
of flow is V = 10 m/s and the velocity vector is tilted 45◦ to the horizontal axis.

(a) Calculate the frequencies measured at each channel.

(b) Due to chromatic aberration of the lens the measurement points O1 and O2

in both channels do not coincide with one another. Calculate the distance
O1O2.

(c) In order to perform measurements at the same (single) point in the flow
it is decided to exploit the spherical aberration of the lens. Assuming that

Figure 9.12 Problem 9.7 – 2-D LDV system with two beam splitters and a single lens.
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the lateral spherical aberration obeys the relation δs = 11. 1 × 10−3r2, find
how to change the beam separation in one of the channels.

9.8. A 3-D LDV system is operated with two wavelengths, λ1 = 0. 488 µm and
λ2 = 0. 514 µm, with P-polarization in two of the branches and wavelength
λ = 0. 514 µm and S-polarization in the third branch. The angle between P and
S branches is α = 25◦. The system comprises three identical beam splitters, with
beam separation l1 = l2 = l3 = 50 mm, and two lenses of focal length 1 m each.
RF frequencies measured in the first branch are f1 = 5. 0 MHz, f2 = 3. 0 MHz and
in the second branch f3 = 2. 85 MHz. Calculate the magnitude of the velocity in
the probe volume of the flow.

9.3. Two-phase Flow and Principles of Particle Sizing

Two-phase flow is usually a mixture of a gas with liquid or solid particles or a liquid
where solid particles or gas bubbles are present. In many practical applications
the measurement of the velocity profile of a two-phase flow is accompanied by
measurement of the statistics of particles with regard to their size. Numerous
methods of particle sizing have been known for many years. Here we mention
only those which are related to the LDV technique described above.

If a particle moving with a flow is much smaller than the fringe spacing δ in the
probe volume the signal burst originating from the scattering of light by the particle
has the shape presented in Fig. 9.3. However, if the particle size approaches δ or is
even greater then the situation is different: the minima of the signal burst cannot
approach zero, even if two interfering beams have equal intensities, since at any
moment some portion of the particle is illuminated by light of the fringe maxima.
As a result, the LDV burst becomes an oscillating function with two envelopes:
the first related to the maxima and the second related to the minima. This situation
is demonstrated in Fig. 9.13 where a large particle (d > δ) is shown at three
sequential moments when it moves through the fringes. The larger the particle the
smaller the difference between the upper and lower envelopes of the signal burst
(both envelopes are characterized by their amplitudes, Imax and Imin, shown in
Fig. 9.13b).

Of course, the amount of radiation energy scattered by the particle and collected
by the receiving optics is strongly dependent on the particle size, so that the
amplitude Imaxcan be used as a measure of the particle diameter. The dependence
Imax = F(d) can be described by a square power law

Imax = Cd2 (9.12)
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a) b)

Figure 9.13 (a)Alarge particle moving through a probe volume and (b) the corresponding
signal burst.

and this simple formula remains valid over a wide range of particle sizes (from
several micrometers to tenths of millimeters). The constant C, however, depends
on the parameters of the measurement system (like laser power, detector sensitiv-
ity, collecting optics configuration, etc.) and also on the location of the particle
trajectory inside the probe volume (see Problem 9.9). All this causes difficulties
in exploiting Eq. (9.12) in practice. Naturally normalized values independent as
much as possible of optical configuration would be much more convenient for
practical applications. A method widely used is based on the measurement of vis-
ibility function, V , defined as the ratio of the AC to DC components of the signal
burst generated by a particle. In terms of Imax and Imin shown in Fig. 9.13 the
visibility function can be described as

V = Imax − Imin

Imax + Imin
. (9.13)

For a spherical particle traveling through an ideal fringe pattern the visibility
function can be approximately expressed in terms of a Bessel function of the first
order:

V = 2J1(ka)/ka (9.14)

where a is the radius of the particle and k = 2π /δ. The corresponding graph is
presented in Fig. 9.14. For any registered signal burst generated by the studied
particle the values Imax and Imin are measured and visibility V is calculated from
Eq. (9.13). Then, using Eq. (9.14) or the graph of Fig. 9.14, the corresponding
value of the parameter p = d/δ is found and the particle diameter d = pδ is easily
calculated if the fringe spacing δ is known. As can be seen from Fig. 9.14, the
fringe spacing should be appropriately chosen in order to ensure that visibility is
in the range 1. 0 < V < 0. 15, where V is a monotonic function of p and where
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Figure 9.14 Visibility function for forward scattering mode (solid line) and for off-axis
scattering mode (dotted line).

each measured value of V corresponds to a single possible value of the parameter
p and therefore to a unique particle diameter d.

In reality the simple function of Eq. (9.14) is not always valid, especially if
the off-axis configuration of an LDV system is exploited. The reason is the com-
plexity of scattering phenomena. Indeed, scattering of radiation even by a particle
of the simplest shape (spherical) is described by Mie formulas which are very
complex and cumbersome (see the rigorous description in Born and Wolf, 1968).
Mie’s solution of the Maxwell equations predicts correctly the angular distribu-
tion of scattered radiation for spherical particles of any size and refractive index.
Examples of such distributions, depicted in Fig. 9.15, demonstrate that the inten-
sity of scattered light can vary significantly with observation angle. This is due

Figure 9.15 Angular diagrams of scattered radiation by (a) a small particle and (b) a large
particle. The parameter q = πd/λ.
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to interference of secondary waves generated by the particle illuminated by inci-
dent radiation. The larger the particle the more complex the interference pattern
accompanying scattering of radiation.

The amount of scattered light absorbed by the receiving optics of an LDV
system depends on both observation angle and collection angle, as well as on the
refractive index of the particles. As a result, visibility also becomes dependent
on these parameters and can vary noticeably, as can be seen from the dotted line
shown in Fig. 9.14 (this curve and other cases are considered in detail in Bachalo
et al., 1980; a rigorous consideration taking into account the actual radiation field
of scattered light when a moving particle is illuminated by two coherent light
beams can be found in Durst, 1982).

Problems

9.9. A1-D LDV system comprising a He–Ne laser with beam waist w0 = 0. 2 mm,
a beam splitter giving 30 mm beam separation, and a lens of 200 mm focal distance
is used for the measurement of particle size in a two-phase flow. The particles to
be measured are in the range 20–100 µm. Choose an appropriate method of mea-
surement and estimate the error resulting from the fact that the particle trajectory
is perpendicular to the optical axis, but crosses the probe volume 1 mm to the side
of the center point.

9.10. An LDV signal burst generated by a spherical particle of unknown size has
two envelopes, an upper one and a lower one, and their maximum values are
related to each other as 2:1. Assuming the LDV system is operated in the forward
scattering mode and the fringe spacing is 15 µm, find the size of the particle.

9.11. How should one choose the fringe spacing in an LDV system exploited for
particle sizing based on visibility if the particle diameter in the flow can be as large
as 50 µm?

9.4. Solutions to Problems

9.1. (a) The maximum average velocity umax in the studied flow is 1 Mach, which
corresponds to 330 m/s in air at normal conditions. Turbulence causes fluctuation
changes as high as 30% of the average value:

√
(u′)2 = ε(u) = 0. 3 × 330 = 99. 9

m/s. Therefore, the maximum instantaneous velocity which might occur in the
measurement volume is as high as 430 m/s. From Eq. (9.2) it follows that the
maximum detector signal oscillation frequency, with no frequency shift, would be
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430/(10 × 10−6) = 43 MHz. Taking into account the frequency shift of 50 MHz
we draw the conclusion that for particles traveling through the probe volume in
the direction of moving fringes the maximum measured frequency could be (50 −
43) = 7 MHz and for the particles traveling in the opposite direction (relatively to
the fringes they “move” faster) the maximum measured frequency might achieve
(50 + 43) = 93 MHz. Hence, finally, the range of working frequencies is from 7
MHz up to 93 MHz.

(b) If the available frequency shift is 40 MHz it might occur that some particles
traveling in the direction opposite to the moving fringes will be interpreted as those
moving slowly with the fringes. That is, the particles of velocity u = 40 MHz ×
10−5 m = 400 m/s and of higher velocities (up to 430 m/s) moving in reality in
the negative direction (against the fringes) will be interpreted as traveling in the
positive direction (with the fringes). Therefore, the frequency shift of 40 MHz is
unacceptable since the statistics of the flow will be treated incorrectly.

9.2. First one should find the size of the probe volume and the fringe spacing. As
shown in Fig. 9.4, the focal length of the illumination lens is 700 mm which gives
from Eq. (9.7)

dm = 2 × 0. 63 × 10−3

3. 141 × 0. 8
700 = 0. 351 mm.

Since the beam separation is 20 mm the angle of intersection of two beams in
the probe volume is 2θ = 2 × tan−1(10/700) = 1. 64◦. Then from Eq. (9.1)
we get δ = 0. 63/[2 sin(0. 82◦)] = 22 µm. The number of full fringes in the
measurement volume is N = int[351/22] = 15. The maximum velocity which
could be measured (actually the maximum component normal to the fringes) is
found from Eq. (9.2): umax = 30×106×22×10−6 = 660 m/s. The minimum value
of u is theoretically approaching zero. However, if the velocity vector of a particle
is directed in such a way that it crosses the probe volume with no intersection of
any fringe (like the vector q shown in Fig. 9.16) then the tracer cannot be revealed
by the system. The limiting direction is ϕ = tan−1(22/351) = 3. 59◦. Therefore,
the range ±3. 59◦ is beyond the capability of the system.

Figure 9.16 Problem 9.2 – Limitation in measurement of a velocity vector direction.
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Figure 9.17 Problem 9.3 – Geometry of probe volume.

9.3. The length of the probe volume is related to its maximum diameter, dm, as

lm = dm

tan(θ )
= 0. 5

tan(5◦)
= 5. 7 mm.

Then, from the geometry of the probe volume (see Fig. 9.17) we can calculate the
size of the segment AB which is imaged by the collecting optics to pinhole D:

AB = dm
sin(85◦)

sin(180◦ − 85◦ − 45◦)
= 0. 5

sin(85◦)

sin(50◦)
= 0. 65 mm.

Using the paraxial approximation for collecting optics we find first the image of
AB through L1 and then through L2:

S1 = −400;
1

S′
1

= 1

250
− 1

400
; S′

1 = 666. 7 mm; V1 = −666. 7

400
= −1. 67

S2 = 666. 7 − 40 = 626. 7 mm;
1

S′
2

= 1

350
+ 1

626. 7
; S′

2 = 224. 6 mm;

V2 = 224. 6

626. 7
= 0. 358

Vtot = V1V2 = −0. 598.

Therefore, D = AB×Vtot = 0. 65×0. 598 = 0. 389 mm at a distance of 224.6 mm
behind lens L2.

9.4. (a) The system should be designed according to the back scattering configu-
ration and the only moving element should be the negative lens L2 (see Fig. 9.18).
As the rays between L1 and L3 are parallel, changing the measuring point and cor-
responding movement of the negative lens do not affect the position of the pinhole
in the receiving assembly.

(b) Consideration of pointA.The velocity at this point is 5 m/s (since x = −1). To
find the fringe spacing we take into account that h1 = 10 mm and that the distance
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Figure 9.18 Problem 9.4 – Relocation of the second lens in a 1-D LDV configuration.

between the two lenses in this position is a maximum and equal to 80 mm. This
yields

h2 = h1
(100 − 80)

100
10 = 2 mm; S2 = 20 mm;

1

S′
2

= 1

−30
+ 1

20
; S′

2 = 60 mm.

Therefore, the intersection angle between two beams at point A is θ =
tan−1(2/60) = 1. 91◦ and the fringe spacing (from Eq. (9.1)) is δ = 0. 63/2
sin(1. 91◦) = 9. 45 µm, which gives for the frequency of the detected signals
fA = 5/9. 45 × 10−6 = 0. 53 MHz.

Consideration of point B. The velocity at this point is 15 m/s (since x = 0). To
move the intersection point from A to B (100 mm to the right) we have to move
lens L2 closer to L1, i.e., to move it left by segment z. Therefore S2 = 20 + z;
S′

2 = 60 + z + 100, and we get the following equation with regard to z:

1

160 + z
− 1

20 + z
= 1

−30
.

Solving this equation we find z = 5. 4 mm. Then, as in the case of point A, we find
the height of the side ray at L2, h2 = 10(25. 4/100) = 2. 54 mm, and calculate the
new fringe spacing δ = 0. 63/2(2. 54/165. 4) = 20. 5 µm, and finally the signal
frequency is fB = (15/20. 5) × 106 = 0. 73 MHz.

Consideration of point C. The velocity at C is 5 m/s since x = 1. The intersection
point moves right an additional 100 mm. Proceeding as in the previous case we get

S2 = 20 + z; S′
2 = 260 + z;

1

260 + z
− 1

20 + z
= 1

−30
; z = 7 mm.
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Then the height on lens L2 is h2 = (27/100)10 = 2. 7 mm, the fringe spacing
at point C is δ = 0. 63/2(2. 7/267) = 31. 15 µm, and the signal frequency is fC =
(5/31. 15) × 106 = 0. 16 MHz.

9.5. (a) The correlation length AB is dictated by the direction of the first order
diffracted beam originating in theAOM. Using for theAOM the relations explained
in Section 7.3 we define deviation of the first order from the zero order as

α = (λ/VS)fac. Therefore, if the RF frequency activating the AOM is 40 MHz
the corresponding deviation is (0. 63 × 10−6)/3, 600 × 40 × 106 = 7 × 10−3 and
the distance (AB)1 = 7×10−3 ×500 mm = 3. 5 mm. In the second case, when the
RF frequency is 50 MHz the correlation length (AB)2 = (0. 63 × 10−6)/3, 600 ×
50 × 106 × 0. 5 = 4. 375 mm.

(b) PointsAand B are imaged by the illumination optics and receiving optics into
the plane of the pinholes located in front of detectors Ph A and Ph B. Since the rays
are parallel between L1 and L2, the optical magnification in the imaging is equal to
the ratio of focal lengths: V = 250/500 = 0. 5. The location of point A in the flow
does not vary because the zero-order direction is constant. Consequently, detector
PhAand its pinhole should remain on the optical axis of L2 while the measurements
are carried out. To determine the size of the pinhole we first calculate the size of
the probe volume. Using Eq. (9.7) we get dm = 2 × 10−3 × 500 = 1. 0 mm and
the corresponding diameter of the pinhole DA = dmV = 0. 5 mm. The size of the
second pinhole, DB, is also 0.5 mm, but its center should be moved aside from the
optical axis of the receiving optics by (AB)′ = V × (AB), which gives 1.75 mm
and 2.19 mm for 40 MHz and 50 MHz, respectively.

To avoid the necessity of moving the second pinhole as fac varies, a method
enabling one to distinguish between radiation coming from points A and B is
required. Although radiation in these two points is of different wavelengths, this
difference originating in the wavelength shift of the diffracted beam with regard to
the incident beam of the AOM is very small and undistinguishable for interference
filters.

(c) The optimal situation is achieved when the interfering beams have the same
light intensity: in this case the interference pattern has the maximum achiev-
able contrast of fringes. Assuming the light intensity after the AOM (in the first
diffraction order) be Id, we get for the two beams striking lens L3: I1 = IdT and
I2 = Id(1 − T )T which gives the ratio I2/I1 = 1 − T . Therefore, the smaller
the transmittance T of the beam splitter the better the contrast of the interference
fringes in the probe volume. Practically, however, we cannot decrease T very much
since radiation scattered by the particles moving through the probe volume should
be powerful enough. As a compromise one should choose R/T = 80%/20% which
yields I1 = 0. 2Id; I2 = 0. 16Id.
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9.6. (a) Obviously the point of measurement (the probe volume) has to be located
in a position where all four beams cross each other, i.e., the mutual focus of both
lenses. Lens L2 has optical power in the vertical plane and its focal length is found
from Eq. (1.12) (keeping in mind that r1 = ∞):

1

f ′
2

= n − 1

−r2
= 0. 5

100
; f ′

2 = 200 mm.

Since the back principal plane of L2 is a tangent to the lens, one can state that the
probe volume is located at a distance of 200 mm from the L2 curved surface. In
the horizontal plane only L1 possesses optical power and the second lens acts as
a parallel slab of glass. Calculating the focal length of L1 again from Eq. (1.12)
gives

1

f ′
1

= 0. 5

200
; f ′

2 = 400 mm

and taking into account that the parallel slab of thickness t2 = 7 mm (the second
lens) causes additional displacement 
 = t2(n − 1)/n = t2/3 of the point of
intersection of the beams leaving L1 (see Problems 1.6), we get from the geometry
of rays (shown in Fig. 9.19) for the distance d between two lenses

d = f ′
1 + t2

3
− f ′

2 − t2 = 400 − 200 − 14/3 = 195. 3 mm.

(b) Using Eq. (9.1) we calculate the fringe spacing in each channel. For the
channel where lens L1generates fringes (wavelength λ1 = 0. 55 µm) we have

δ1 = λ1

2 sin θ1
; θ1 = arctan(10/400) = 1. 43◦; δ1 = 0. 55

2 sin(1. 43◦)
= 11. 0 µm

Figure 9.19 Problem 9.6 – Geometry of rays in the horizontal plane.
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and for the second channel

δ2 = λ2

2 sin θ2
; θ2 = arctan(10/200) = 2. 855◦; δ2 = 0. 48

2 sin(2. 855◦)
= 4. 8 µm.

Therefore, the measured components of velocity, u and v, are as follows: u =
δ1f1 = 11 µm×0. 5 MHz = 5. 5 m/s; v = δ2f2 = 4. 8 µm×0. 3 MHz = 1. 44 m/s
and the direction of the vector q is defined by the angle ϕ = arctan(v/u) =
arctan(1. 44/5. 5) = 14. 7◦.

(c) The maximum measured values at each channel limited by the processing
module are calculated in a similar way: umax = δ1 fmax = 11 µm × 10 MHz =
110 m/s; vmax = δ2 fmax = 4. 8 µm×10 MHz = 48 m/s, which gives the maximum
absolute value of velocity as q = √

(110)2 + (48)2 = 120 m/s.

9.7. (a) Using Eq. (1.12) we first calculate the focal length of lens L at two given
wavelengths:

1

f ′
1

= (1 − 1. 519)
2

100
− 5(1. 519 − 1)2

1002 × 1. 519
= 0. 01029; f ′

1 = 97. 17 mm

1

f ′
2

= (1 − 1. 523)
2

100
− 5(1. 523 − 1)2

1002 × 1. 523
= 0. 01037; f ′

2 = 96. 43 mm

and then find the convergence angle between two beams at each channel and the
corresponding fringe spacing, as per Eq. (9.1):

tan θ1 = 10

97. 17
; θ1 = 5. 88◦; δ1 = 0. 515

2 sin(5. 88◦)
= 2. 52 µm

tan θ2 = 10

96. 43
; θ2 = 5. 92◦; δ2 = 0. 43

2 sin(5. 92◦)
= 2. 08 µm.

This enables one to calculate the measured frequencies in both channels:

fac1 = u

δ1
= 10 cos 45◦

2. 52 × 10−6
= 2. 81 MHz;

fac2 = v

δ2
= 10 sin 45◦

2. 08 × 10−6
= 3. 40 MHz.

(b) The distance O1O2 is equal to the difference between the two focal lengths
corresponding to the two wavelengths: O1O2 = 97. 17 − 96. 43 = 0. 74 mm.

(c) Due to spherical aberration of the lens the intersection of the beams in
each channel occurs not in the focus but in the point located closer to the lens
by the segment equal to the lateral spherical aberration. As the beams strike the
lens at a distance r = 10 mm from the optical axis the corresponding spherical
aberration is δ′

Sph = 11. 1 × 10−3 × 102 = 1. 11 mm. Hence, point O1 is located
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at a distance 97. 17 − 1. 11 = 96. 06 mm from the lens and point O2 at a distance
96. 06 − 0. 74 = 95. 32 mm. In order to cause all four beams to cross each other
in a single point it is necessary to reduce the spherical aberration of the second
channel by 0.74 mm, i.e., the spherical aberration in this channel should be 1. 11−
0. 74 = 0. 37 mm. This will occur if each beam is distant from the optical axis by
r = √

0. 37/(11. 1 × 10−3) = 5. 77 mm. Therefore, it is necessary to change the
beam separation of the beam splitter BS2 to 11.54 mm (instead of 20 mm).

9.8. Using Eq. (9.1) we calculate the fringe spacing in the first channel for the
wavelength λ1:

δ1 = λ1

2 sin θ1
= 0. 488

2 sin[0. 5 arctan(50/1000)] = 9. 77 µm

and then the fringe spacing for the wavelength λ2 in the second and third channels:

δ2 = δ3 = 0. 514

2 sin[0. 5 arctan(50/1000)] = 10. 3 µm.

This yields the following values for the measured components u, v, v′ in all three
channels: u = δ1 f1 = 9. 77 × 5 = 48. 9 m/s; v = δ2 f2 = 10. 3 × 3 = 30. 9 m/s;
v′ = δ3f3 = 10. 3 × 2. 85 = 29. 36 m/s. Furthermore, using Eq. (9.11) we get

k = v′

v
= 29. 36

30. 9
= 0. 95; cos α = cos 25◦ = 0. 906; sin α = 0. 4226

tan ϕ = 0. 95 − 0. 906

0. 4226
= 0. 104; w = v tan ϕ = 30. 9 × 0. 104 = 3. 21 m/s

and finally q = √
u2 + v2 + w2 = √

48. 92 + 30. 92 + 3. 212 = 57. 93 m/s.

9.9. First we check if the method based on visibility can be applied in this problem.
To do this we calculate the fringe spacing δ as described in Eq. (9.1):

tan θ = l/2

f ′ = 15

200
= 0. 075; θ = 4. 29◦; δ = 0. 63

2 sin(4. 29◦)
= 4. 2 µm.

Hence, for the particles to be measured the ratio p = d/δ varies from p1 = 20/4. 2 =
4. 76 to p2 = 100/4. 2 = 23. 8. Both values are much greater than the value pmin

corresponding to the first zero point of Eq. (9.14) ((ka)(1)
min = 1. 22π ; pmin =

dmin/δ = 1. 22), so that visibility cannot be used in this case and therefore the
measurement should be based on Eq. (9.12).

To estimate the error caused by the location of the particle trajectory in the
probe volume one should take into account that Imax is proportional to the light
intensity at the axial point at which the trajectory crosses the optical axis. In
our case this point is removed 1 mm from the center of the probe volume, or, in
terms of radial displacement 
r in each of two interfering beams, it is equivalent to
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r = 1×sin θ = 0. 075 mm. The intensity of each laser beam in radial coordinate

r is governed by the Gaussian function (see Eqs. (3.1) and (3.2)):

I = I0 exp

(
−2
2

r

w2

)
= I0 exp

[
−8

(

r

dm

)2
]

(A)

where we also take into account that w = dm/2 with the probe volume size dm

defined as in Eq. (9.7): dm = (2 × 0. 63 × 200)/0. 2π = 0. 4 mm. By substituting
the values of 
r and dm in Eq. (A) and keeping in mind that the interference
maximum is four times higher than the intensity of each interference beam we
draw the conclusion that Imax for the trajectory which passes through the probe
volume center is 4I0 and for the trajectory passing 1 mm to the side Imax = 4I
r ,
and therefore the ratio of both values is I
r /I0 = exp[−8(0. 075/0. 4)2] = 0. 755.
Therefore, using Eq. (9.12) with the reduced intensity I
r yields the reduction in
the calculated diameter d: d
r /d = √

0. 755 = 0. 869 which means a reduction of
13% (the error) of the measured size of the particle.

9.10. We rewrite the visibility definition (Eq. (9.13)) dividing the numerator and
denominator by Imin:

V = (Imax/Imin) − 1

(Imax/Imin) + 1
= 2 − 1

2 + 1
= 0. 333.

For this value we find from the graph (solid line) of Fig. 9.14 that p = 0. 87.
(Of course, it is also possible to solve by trial and error the nonlinear Eq. (9.14) –
it yields the same result.) Therefore, d = pδ = 0. 87 × 15 = 13. 1 µm.

9.11. The visibility approach can be exploited as long as V is greater than 0.15.As is
evident from Fig. 9.14, the corresponding value of p = d/δ should be less than 1.05
and therefore the fringe spacing should be δ = dmax/pmax = 50/1. 05 = 47. 6 µm
at least.



Chapter 10

Color and its Measurement

10.1. Color Sensation, Color Coordinates,
and Photometric Units

Color Vision

Color has not only a physical meaning: it is a combination of physical effects and
the physiology of human sensation. Seeing is a physiological process originating in
photochemical reactions in two kinds of cells, rods and cones, present in a human
eye retina. The optics of the eye creates an image on the retina, simultaneously in
all wavelengths incident on the eye pupil. The rod cells comprise a photopigment,
rhodopsin, which is sensitive only to light intensity, regardless of its spectral
composition, and for this reason the rods do not detect color. The cone cells can be
divided into three groups, each one having a different photopigment: erythrolabe,
chlorolabe, and cyanolabe. The first has maximum absorptivity in the wavelengths
of the red part of the spectrum and the second and third have maximum absorptivity
in the green and the blue parts of the visual spectrum, respectively. Therefore, the
cone cells are responsible for color sensation.

The cones and rods from different parts of the retina are not fully identical, but
vary in their morphological structure. The concentration of cones and rods also
varies. As a result, for instance, the sensation of the central part of the retina differs
from that of the periphery. Despite these differences it is commonly accepted that
color sensation is characterized by three spectral curves, regardless of the location
of the photoreceptor in the retina. The curves are shown in Fig. 10.1 (these data
are presented in Buchsbaum (1981) and also in another form in Boynton (1979),
the latter being based on the measurements of Smith and Pokorny (1972)). It is

293
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Figure 10.1 Relative spectral sensitivity of three kinds of photoreceptors: 1, R(λ), cones
with erythrolabe; 2, G(λ), cones with chlorolabe; 3, B(λ), cones with cyanolabe.

important to notice that any wavelength as well as any combination of wavelengths
from the visual range (0.4–0.7 µm) cause a photoreaction of all three kinds of
cells, but with different “strength.” Thus, the sensation of color originates from
a combined reaction of the three kinds of photoreceptors (cones) present in the
retina.

Three-stimulus Generalization

Mathematically the above physical and physiological description of color can be
expressed in the following manner. Any light source S with spectral radiometric
flux P(λ) generates three main stimuli in a human eye: red (r), green (g), and blue
(b). The relative “strength” of each can be estimated by the integrals

r =
∫

P(λ)R(λ) dλ; g =
∫

P(λ)G(λ) dλ; b =
∫

P(λ)B(λ) dλ (10.1)

where R(λ), G(λ), and B(λ) are the spectral sensitivity of the three pigments of
the eye shown in Fig. 10.1 (we term them natural primaries). Perception of all
three stimuli creates the feeling of color, Q, of the light source S. This color can
be represented by its vector

Q = rR + gG + bB (10.2)

and by a corresponding point Q(r, g, b) in the 3-D color space (see Fig. 10.2a).
Hence, r, g, and b are considered as color coordinates of the color Q and therefore
of the light source S.
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Figure 10.2 (a) 3-D color space and (b) its 2-D presentation in a single plane.

If two colors, Q1 and Q2, are mixed together then

Q1 + Q2 = (r1 + r2)R + (g1 + g2)G + (b1 + b2)B. (10.3)

The tristimulus theory establishes that any color can be generated by taking three
basic colors (called primaries) in an appropriate proportion. If the basic colors are
chosen as three terms of Eq. (10.2) based on the integrals of Eq. (10.1) then the
primaries are the natural red, green, and blue colors. However, this is not the only
choice and not the most convenient choice in some situations (e.g., it turns out
that in creating some colors the natural primaries have to be not only added but
also subtracted from one another). For this reason another set of primaries was
suggested and adopted by the International Commission on Illumination (CIE).
These primaries are based on the standardized color mixture curves, sometimes
termed color matching functions (Inglis, 1993). The curves, shown in Fig. 10.3,

Figure 10.3 Color mixture curves (standardized by the CIE).
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are not physically realized in any sensor, but constitute a convenient computa-
tional tool.

In terms of color mixture curves the tristimulus values related to the light source
S are as follows:

X =const

0.77∫
0.38

P(λ)x(λ)dλ; Y =const

0.77∫
0.38

P(λ)y(λ)dλ; Z =const

0.77∫
0.38

P(λ)z(λ)dλ

(10.4)

and they are usually converted to the normalized color coordinates x, y, and z:

x = X

X + Y + Z
; y = Y

X + Y + Z
; z = Z

X + Y + Z
. (10.5)

Evidently x + y + z = 1, so that only two coordinates, say x and y, are enough
to characterize the color of an object. The corresponding x, y-diagram is shown in
Fig. 10.4. The “gray” color, or no color at all, is defined as a situation when all
three normalized color coordinates are equal: X = Y = Z . In terms of x, y, and z
this means:

xg = yg = zg = 0. 33. (10.6)

This case is related to point O in Fig. 10.4. All gray levels, from black to white,
are represented in this point.

Figure 10.4 x, y-diagram of colors (the CIE chromaticity diagram).
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Two colors are called complementary colors if, being mixed, they cause a gray
(colorless) sensation. Using the summation rule (Eq. (10.3)) one can state for
complementary colors

x1 = 0. 33 − x2; y1 = 0. 33 − y2; z1 = 0. 33 − z2. (10.7)

Consideration of white (or gray) color also has an important additional meaning.
Each color can also be considered as a mix of white and some pure color. These
pure colors could be related to monochromatic light, as shown by the color curve
(1) of Fig. 10.4. This graph indicates some limits on where the points representing
color could be. Moving from point O in some chosen direction towards the color
curve (1) means a transition from the colorless (gray) situation to a pure color
characterized by a specific wavelength. More details can be found in Wiszecki and
Stiles (1982) and Inglis (1993).

Different Coordinate Systems

From a physical point of view it is preferable to use color coordinates which
have physical meaning and not just physiologically originated parameters like
red, green, and blue primaries. One can create another type of color coordinates,
separating the brightness (or light intensity), the relative fraction of white (or
saturation), and a color itself (called hue). There exist different ways to define
H , S, I (hue, saturation, intensity). We consider one of them (see Fig. 10.5) where
hue is defined as an angle, ϕ, in the plane ABC of Fig. 10.5b; saturation is defined
as an angle, ϑ , between the vector Q and the line OO1 perpendicular to ABC and
passing through the points of gray color; and intensity is defined as a distance along
OO1 from the origin O to the plane ABC passing through point Q. The relations
between H, S, I and r, g, b are as follows:

H =120◦+arctan

[√
3(b−g)

2r−b−g

]
; S =arctan

[√
3(b−g)2+(2r−b−g)2

√
2(r+g+b)

]
;

I = r+g+b√
3

. (10.8)

There are numerous examples where the use of Q(H, S, I) with color coordinates
H , S, I from Eq. (10.8) is preferable over a description of color in terms of r, g, b.
It should also be mentioned here that r, g, b values in Eq. (10.8) could be replaced
by X , Y , Z from Eq. (10.4) or by any other primaries if they are properly defined
(see, for example, the primaries described in Section 10.2 and accepted for video
devices).
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Figure 10.5 (a) H, S, I color coordinate system and (b) detail of plane ABC.

Photometric Units vs. Radiometric Units

Special features of the human eye made it necessary to develop a special system of
units (photometric units) in order to characterize adequately the light-related values
and to take into account the spectral sensitivity of the eye. Of all the photometric
units the two most frequently used are lumen (lm), which is the unit of the energy
flux, and lux (lx), which is the unit of illumination generated by a flux of one lumen
incident on an area of 1 m2 (1 lx = 1 lm/m2).

The relations between the photometric units and the radiometric (standard) units
are based on the spectral sensitivity of the human eye shown in Fig. 10.6 (this is
related to the rodopsin pigment present in the rod cells of the retina). It is com-
monly known that a normal human eye achieves maximum sensitivity at 0.555 µm

Figure 10.6 Relative spectral sensitivity of a human eye.
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wavelength and the full range of wavelengths where the sensitivity of the eye dif-
fers from zero is from 380 nm to 770 nm. Monochromatic light flux of 1 W power
at λ = 0. 555 µm is equivalent to 683 lm. Luminous efficacy, K(λ), is the function
which establishes the relation between the photometric flux (FV) and radiometric
flux (FE) and it is measured in lm/W:

K(λ) = FV(λ)/FE(λ). (10.9)

Luminous efficiency, V (λ), is a dimensionless function defined as a normalized
luminous efficacy:

V (λ) = K(λ)/K(0. 555) = K(λ)/683. (10.10)

It is V (λ) that describes the relative spectral response of the human eye (shown in
Fig. 10.6). Obviously, 1 W of red light causes less of a visual sensation than 1 W
of yellow-green radiation.

Luminous efficacy K and luminous efficiency V can be calculated over any
chosen spectral interval. For instance, a source of light illuminating radiation
power of P(λ) in the interval (λ1, λ2) can be characterized by the total efficacy, K ,
expressed by the formula:

K =
0.77∫

0.38

FV(λ)dλ
/ λ2∫

λ1

P(λ) dλ = 683

0.77∫
0.38

P(λ)V (λ) dλ
/ λ2∫

λ1

P(λ) dλ. (10.11)

Problems

10.1. Find the energy flux (in radiometric units) corresponding to a monochromatic
luminous flux of 100 lumen at λ = 0. 67 µm and to a flux of 50 lumen at λ =
0. 5 µm.

10.2. What is the luminous efficacy and the luminous efficiency of a black body
at temperature T = 2, 000 K exploited as a light source for the visible range?

10.3. If a minimum illumination level of a CCD is declared as 0.3 lx with a
F/# 1.2 lens and saturation is achieved when the power density is as high as
8.4 µW/cm2, what is the actual dynamic range of this sensor?

10.4. The color of an object is characterized by normalized color coordinates
x = 0. 2; y = 0. 15. Find the complementary color for this object.

10.5. Find the color coordinates H, S, I for an object with normalized coordinates
x = 0. 2 and y = 0. 5.
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10.2. Color Detection and Measurement

Configuration of Color Detectors

Since no photosensitive material has a spectral sensitivity identical to that of
a human eye, any electro-optical sensor for color detection should comprise not
only a detector sensitive in the visible range, but also a filter (actually a set of fil-
ters) allowing for spectral correction of sensitivity. In most color detection devices
a silicon detector is exploited, with spectral sensitivity covering both the visi-
ble and near-IR ranges (see Fig. 10.7, solid line). An IR cut-off filter, which
is usually added to a black and white CCD detector, makes the spectral prop-
erties of the detector to be more similar to that of the eye (compare the solid
and dashed lines in Fig. 10.7), but this is definitely not enough if correct color
measurements is necessary. According to the discussion in Section 10.1, three
different detectors are required for color measurements, each one for a separate
basic component of color (red, green, and blue). To each detector an appropriate
filter is attached in order to provide spectral correction of the detector (silicon) to
red, green, or blue sensitivity function of the eye. Denoting the spectral response
of the detectors as D(λ) and the transmittance of the correction filters in red,
green, and blue channels as TR(λ), TG(λ), and TB(λ), we can define the detector
primaries as

RD(λ) = D(λ)TR(λ); GD(λ) = D(λ)TG(λ); BD(λ) = D(λ)TB(λ). (10.12)

Figure 10.7 Spectral sensitivity (quantum efficiency) of a silicon detector without IR
cut-off filter (1) and transmittance of the IR cut-off filter (2).
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Then the color coordinates of a light source S, with spectral density distribution
P(λ) are

iR = const

λ2∫
λ1

P(λ)RD(λ) dλ; iG = const

λ2∫
λ1

P(λ)GD(λ) dλ;

iB = const

λ2∫
λ1

P(λ)BD(λ) dλ (10.13)

and for the normalized color coordinates we have

xD = iR
iR + iG + iB

; yD = iG
iR + iG + iB

; zD = iB
iR + iG + iB

. (10.14)

For video cameras the primaries of Eq. (10.12) are standardized by an interna-
tional committee (NTSC). The corresponding functions, presented in Fig. 10.8,
provide compatibility with the CIE chromaticity diagram and with video display
devices, the latter having primaries defined as brightness of three components,
BR(λ), BG(λ), BB(λ), at equal input electrical signals.

It should be mentioned here that the negative sections of the camera primary
functions cannot be realized optically, but they can be achieved by camera elec-
tronics where the signals are processed prior to output. In many practical cases,
however, the negative parts of the primaries shown in Fig. 10.8 are not taken into
consideration (just replaced by zero).

Figure 10.8 Primaries of CCD video cameras (NTSC standard): 1, RD(λ), red channel
function; 2, GD(λ), green channel function; 3, BD(λ), blue channel function.
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Figure 10.9 Schematic of a three-CCD color sensor.

Area detectors for color imaging can be arranged in two configurations:

(a) Three spatially separated black and white detectors are combined with an
appropriate set of filters enabling transmittance of R, G, and B components
to different sensors (a three-CCD camera is arranged in this manner, see
Fig. 10.9). The beam splitter BS1 in Fig. 10.9 reflects red light onto sensor
D1 and transmits the rest (green and blue), whereas BS2 reflects green light
to sensor D2 and transmits the rest (blue) to sensor D3.

(b) A configuration is used with a single black and white CCD detector to
which a mosaic of filters is attached, each filter being the size of a single
pixel and positioned accordingly. Figure 10.10 demonstrates two kinds
of mosaic (other kinds of mosaic are also used in practice). Since “red,”
“green,” and “blue” pixels become spatially separated, an actual unit of
resolution is at least twice that of a black and white CCD. Hence, a color
CCD with a mosaic of filters is characterized by a degradation of spatial
resolution and this is a noticeable shortcoming of single-CCD color sensors

Figure 10.10 Arrangement of a mosaic of filters in a color CCD sensor.
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compared to three-CCD devices. However, the latter are more complex and
correspondingly more expensive.

Configuration of Output Signals

CCD sensors are usually followed by electronic circuitry where the signals of
red, green, and blue are arranged either in three separate channels or combined in
a single composite video signal when each video line comprises three sequential
sections corresponding to red, green, and blue pixels of that line.

No matter how the pixel signals are arranged, they undergo an additional trans-
formation before output. To understand this transformation we should keep in
mind that, in general, color video signals are used in two ways: (i) creation of
color images on a video monitor display where they are visually observed; and
(ii) digital processing and measurement of color image parameters (like color
coordinates, light intensity, etc.). In the first case the display features and opera-
tion functions should be taken into consideration. Display screens are made of
three layers of phosphors (materials emitting light) with well-specified display
primaries (mentioned earlier) and the corresponding color coordinates related to
the CIE chromaticity diagram (points SR, SG, and SB indicated in Fig. 10.4). Since
1982 these coordinates have been standardized as follows (see detailed description
in Inglis, 1993): red primary, x = 0. 635, y = 0. 34; green primary, x = 0. 305,
y = 0. 595; blue primary, x = 0. 155, y = 0. 07. Electrical signals coming to the
monitor are converted into electronic beams of the corresponding intensities which
strike the phosphors which are energized accordingly and emit a mixture of their
primary colors in a proportion governed by the video signal at the display input.
Besides this, the brightness of the display screen, BS, is a non-linear function of
the input electrical signal. This function is usually expressed as a power γ :

BS = const × iγ (10.15)

where γ = 2. 2 in most practical cases. As a result, the relation between the
color primaries displayed by the screen differs from that received at the device
input. To avoid this effect a gamma-correction procedure is performed by the
CCD electronic circuitry where all pixel signals undergo transformation of (1/γ )
power before output.

In reality color video signals are arranged according to one of three internation-
ally accepted standards and CCD electronics organizes the pixel signals according
to a specified standard. A description of these standards is beyond the scope of this
book; details can be found in Inglis (1993) and other books on video engineering.

Another issue which should be mentioned here is the white balance of color
detectors. Since red, green, and blue channels have separate electronics, the ampli-
fication factors AR, AG, and AB can be different, which might affect the relative
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fraction of color components in the output signals. The procedure of white bal-
ancing is just on equalization of red, green, and blue signals (iR, iG, iB) while the
white (colorless) background is imaged on the detector. This procedure is espe-
cially important if an image is not only observed on a display but also processed
with the aim of color measurement.

Problems

10.6. Which color will be displayed on the screen of a video monitor if the signals
at the input of red, green, and blue channels are related as 0.8 : 0.3 : 1.0?
[Note: The screen is made of phosphors fulfilling the requirements of SMPTE
standard C (1982).]

10.7. A scene background illuminated by a narrow-band LED of 595 nm wave-
length is imaged on a color CCD camera which has variable gamma correction and
primaries conforming to the requirements of NTSC standard. The white balance of
the camera is performed with an illumination source of color temperature 3200 K.
Which color of the scene will be measured by the camera? (Find the x, y color
coordinates and calculate the corresponding value of hue.)

10.3. Solutions to Problems

10.1. Using the definition of luminous efficacy and luminous efficiency from
Eqs. (10.9) and (10.10), we have for the radiometric flux, FE: FE = FV/K(λ) =
FV/[683 × V (λ)]. The value of V can be found from the graph of Fig. 10.6.
At a wavelength of 0. 67 µm this value is 0.03 and for λ = 0. 5 µm we have
V = 0. 32. This gives

(FE)1 = 100

683 × 0. 03
= 4. 88 W; (FE)2 = 50

683 × 0. 32
= 0. 229 W.

10.2. We use the definition of luminous efficacy for the wide-band light source
from Eq. (10.11) which in our case (radiation of a black body) yields

K = 683

0.77∫
0.38

eB(λ, T ) × V (λ) dλ

∞∫
0

eB(λ, T ) dλ

= 683
I1

I2
(A)

where we denote by eB(λ, T ) the spectral radiation of the black body, referred to in
Section 6.1 and inAppendix 3. Of the two integrals, I1 and I2, the latter is governed
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by the Stefan–Boltzmann law (see Chapter 6): I2 = σT4. We calculate the former
integral numerically, by dividing the visual range into 18 spectral intervals of
�λ = 0. 02 µm width each and exploiting the table and notation of Appendix 3.
In doing this we first rewrite Eq. (A) as follows:

K = 683

�λ
18∑

i=1
aiVi

σT4
10−5σT5 = 683 × T × 10−5�λ

18∑
i=1

aiVi (B)

where ai are the values from the second column of Appendix 3 calculated for
each (λi, T ) using interpolation and Vi are the corresponding values of the spectral
sensitivity of the eye taken from Fig. 10.6. After calculation we finally get K =
683 × 0. 02 × 10−5 × 2, 000 × 6. 196 = 1. 69 lm/W. With this value one can find
the total luminous efficiency of the light source:

η = K

683
% = 1. 69

683
100 = 0. 25%.

As we see, the black body heated to a temperature of 2,000 K is not efficient as
a light source for the visible range. In reality, however, as mentioned in Chapter 3
(Section 3.1), thermal sources have a color temperature of about 3,000 K, which
of course improves the luminous efficiency, but it is still very low.

10.3. The actual dynamic range, DR, can be defined as the ratio between the
maximum illumination level, Emax (when saturation of the camera is achieved) and
the minimum illumination level, Emin, indicated in the problem (0.3 lx). Evidently
both illumination levels should be expressed in the same units (watts).

Let the area of a single pixel of the CCD be A′ and the corresponding area of
the illuminated scene be A, both areas being related as A′ = A(S′/S)2, where S is
the distance from the camera lens to the object and S′ is the distance from the lens
to the CCD sensor. The latter can be replaced by the focal length of the lens, f ′,
because usually S � S′. Then the energy coming from area A to a single pixel of
the CCD is expressed as follows:

Epx,min = EminA
ω

2π
= EminA′

(
S

S′

)2
πD2

4S2

1

2π
= EminA′ 1

8( f /#)2
. (A)

To express Emin in radiometric units (watts) we calculate the luminous efficacy,
K , defined by Eq. (10.11) where the source radiant power in the integrals is rela-
ted to sun radiation (sun color temperature T = 6, 000 K) and the integral in
the denominator covers the spectral range of the CCD sensitivity (0.4–1.1 µm).
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We then have

K = 683

0.77∫
0.4

eB(λ, T )V (λ) dλ

1.15∫
0.4

eB(λ, T ) dλ

= 683

�λ
8∑

i=1
aiVi

�λ
16∑

i=1
ai

where ai are the spectral values from the second column of Appendix 3, Vi are
the corresponding values of the eye spectral sensitivity from Fig. 10.6, and �λ =
0. 05 µm for both integrals. The calculation yields K = 132. 98 lm/W. With this
value we get finally

DR = Emax

Emin
= 8. 4 × 10−2 × 1. 22 × 8 × 132. 98

0. 3
= 429.

10.4. From the definition of complementary colors, we have, using Eq. (10.7)

xc = 0. 33 − 0. 2 = 0. 13; yc = 0. 33 − 0. 16 = 0. 17; zc = 1 − xc − yc = 0. 7.

This gives for the R, G, B components of an object with complementary color the
following relations: r/b = xc/zc = 13 : 7; g/b = yc/zc = 17 : 7.

10.5. Calculation of H, S, I coordinates should be done according to Eq. (10.8).
Before doing this it is useful to calculate the ratio of the R, G, B components of the
object: r/b = x/(1− x − y) = 0. 2/(1−0. 2−0. 5) = 2/3; g/b = y/(1− x − y) =
0. 5/(1 − 0. 2 − 0. 5) = 5/3. By substituting these values in Eq. (10.8) we obtain:

H = 120◦ + arctan

[ √
3(1 − g/b)

2(r/b) − 1 − (g/b)

]
= 120◦ + arctan

[ √
3(1 − 5/3)

4/3 − 1 − 5/3

]

= 160. 89◦ = 0. 894π

S = ϑ = arctan

√
3(1 − 5/3)2 + (4/3 − 1 − 5/3)2

√
2(2/3 + 1 + 5/3)

= arctan

√
68

10

= 39. 5◦ = 0. 219π .

Therefore, the hue and saturation of the object are defined uniquely. As to intensity,
it obviously depends on illumination level:

I = b
r/b + g/b + 1√

3
= b

10

3
√

3
= 1. 925b.

10.6. The standard C phosphors are characterized by color coordinates x, y, z
mentioned in Section 10.2. Therefore, each phosphor emits not a pure color but a
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mixture of red, green, and blue. Let the brightness of the red phosphor be denoted
as B(r)

R , B(g)
R , B(b)

R for these three colors. The symbols for the brightness of the green
and blue phosphors are similar. Furthermore, if the signals on the monitor input
are iR, iG, and iB for the three color channels the tristimulus values of radiation
energized by these signals can be expressed as follows: XR = iRB(r)

R ; YR = iRB(g)
R ;

ZR = iRB(b)
R and therefore

xR = XR

XR + YR + BR
= iRB(r)

R

iRB(r)
R + iRB(g)

R + iRB(b)
R

= B(r)
R

B(r)
R + B(g)

R + B(b)
R

;

yR = B(g)
R

B(r)
R + B(g)

R + B(b)
R

.

A similar relation can be evidently written for the two other phosphors. When all
three phosphors of the screen are activated simultaneously the overall brightness
is just the sum of that of the separate channels, and this is true for red and green
and blue. Hence, the normalized color coordinates of the screen, xS and yS, are
expressed in the following manner:

xS = BR

BR + BG + BB
= B(r)

R + B(r)
G + B(r)

B

B(r)
R + B(r)

G + B(r)
B + B(g)

R + B(g)
G + · · · + B(b)

G + B(b)
B

= xRiR + xGiG + xBiB
iR + iG + iB

yS = yRiR + yGiG + yBiB
iR + iG + iB

.

By substituting the problem data in these two formulas we find the color coordinates
of the screen as follows:

xs = (0. 635 × 0. 8) + (0. 305 × 0. 3) + 0. 155

2. 1
= 0. 359;

yS = (0. 34 × 0. 8) + (0. 595 × 0. 3) + 0. 07

2. 1
= 0. 248.

10.7. Since the imaging of the color scene on the CCD sensor is aimed at direct
color measurement, with no involvement of any observation of the display, gamma-
correction of the CCD signals is not required and we should choose γ = 1 for the
camera electronics. The signals at the camera output will be determined from Eq.
(10.13) where integration over the spectrum is reduced to the single values related
to the monochromatic wavelength of 0. 595 µm. From the graphs of Fig. 10.8 for
the camera primaries we find RD(0. 595) = 1. 665; GD(0. 595) = 0. 5; BD = 0
and therefore iR = 1. 665AR; iG = 0. 5AG; iB = 0 where AR and AG are the
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overall amplification factors of the camera electronics in red and green channels.
These amplification factors are dictated by the camera calibration for white balance,
i.e., the camera signals are equalized when the scene is illuminated by the light
source of 3,200 K temperature:

i(R)
WB = AR

0.7∫
0.4

eB(λ, T )RD(λ) dλ = i(G)
WB = AG

0.7∫
0.4

eB(λ, T )GD(λ) dλ.

To find the amplification factors one should calculate the integrals in the above
equation using the black body radiation function from Appendix 3 and the cam-
era primaries from Fig. 10.8. Numerical integration performed with 15 spectral
intervals of 0.02 µm each yields IR : ID = 85. 98 : 57. 37 = AG/AR. Hence

iR
iG

= 1. 665AR

0. 5AG
= 1. 592; x = iR

iR + iG + iB
= 1. 592

1. 592 + 1
= 0. 614;

y = iG
iR + iG + iB

= 1

2. 592
= 0. 386.

The last two values represent the measured color coordinates of the scene. In
order to find the H-coordinate of the scene one should use the first expression of
Eq. (10.8) which can be rewritten here as follows:

H = 120◦ + arctan

(
−

√
3iG

2iR − iG

)
= 120◦ − arctan

[ √
3

2(iR/iG) − 1

]

= 120◦ − arctan

√
3

2 × 1. 592 − 1
= 81. 6◦ = 0. 453π .
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Appendices

Appendix 1. Physical Constants

Constant Symbol Value Units

Planck’s constant h 6. 6262 × 10−34 J s
Boltzmann’s constant k 1. 3806 × 10−23 J K−1

Stefan–Boltzmann constant σ 5. 6696 × 10−8 W m−2 K−4

Speed of light in vacuum c 2. 999 × 108 m s−1

Electron charge e 1. 602 × 10−19 C
Electron mass me 9. 110 × 10−31 kg
Energy of 1 electron volt eV 1. 602 × 10−19 J
Energy of a photon Eph 3. 973 × 10−19 J

at wavelength 0.5 µm
Avogadro’s number N 6. 0222 × 1023 mol−1

Volume of 1 gram-molecule Vµ 22.42 l
Universal gas constant R 8.3170 J K−1mol−1

311
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Appendix 2. Selected Data for Schott Optical Glasses

Glass type nD nF nC v

BK7 1.5168 1.52238 1.51432 64.12
K5 1.52249 1.52910 1.51982 56.30
F1 1.62588 1.63932 1.62074 33.686
SF5 1.67270 1.68876 1.66661 30.37
SF11 1.78472 1.80645 1.77599 25.76
SF57 1.84666 1.87425 1.83651 22.434
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Appendix 3. Black Body Radiation

λT
eB(λ, T )

σT5 105 λT
eB(λ, T )

σT5 105

µm.K (µm.K)−1

λT∫
0

eB(λ, T ) dλ

σT4 µm.K (µm.K)−1

λT∫
0

eB(λ, T ) dλ

σT4

800 0.03117 0.00001 5,500 10.342 0.6909
900 0.12767 0.00009 5,600 9.940 0.7011

1,000 0.3727 0.0003 5,700 9.553 0.7108
1,100 0.8559 0.0009 5,800 9.183 0.7202
1,200 1.6474 0.0021 5,900 8.827 0.7292
1,300 2.7757 0.0043 6,000 8.486 0.7378
1,400 4.223 0.0078 6,100 8.159 0.7462
1,500 5.9353 0.0129 6,200 7.845 0.1542
1,600 7.8294 0.0198 6,300 7.544 0.7618
1,700 9.8149 0.0286 6,400 7.257 0.7692
1,800 11.804 0.0394 6,500 6.981 0.7764
1,900 13.721 0.0524 6,600 6.717 0.7832
2,000 15.504 0.0668 6,700 6.464 0.7898
2,100 17.122 0.0831 6,800 6.220 0.7961
2,200 18.532 0.1009 6,900 5.987 0.8022
2,300 19.727 0.1202 7,000 5.766 0.8081
2,400 20.707 0.1404 7,100 5.553 0.8138
2,500 21.468 0.1615 7,200 5.349 0.8193
2,600 22.038 0.1832 7,300 5.153 0.8245
2,700 22.419 0.2055 7,400 4.966 0.8295
2,800 22.63 0.2280 7,500 4.787 0.8344
2,900 22.696 0.2506 7,600 4.614 0.8391
3,000 22.634 0.2733 7,700 4.451 0.8437
3,100 22.457 0.2959 7,800 4.291 0.8480
3,200 22.184 0.3182 7,900 4.141 0.8522
3,300 21.832 0.3402 8,000 3.995 0.8564
3,400 21.413 0.3618 8,500 3.354 0.8747
3,500 20.947 0.3830 9,000 2.832 0.8901
3,600 20.433 0.4036 9,500 2.404 0.9032
3,700 19.893 0.4237 10,000 2.0522 0.9143
3,800 19.325 0.4434 10,500 1.7606 0.9238
3,900 18.75 0.4624 11,000 1.5182 0.9320
4,000 18.161 0.4809 11,500 1.3153 0.9391
4,100 17.571 0.4987 12,000 1.145 0.9452
4,200 16.977 0.5160 12,500 1.000 0.9506
4,300 16.39 0.5327 13,000 0.878 0.9553

continued
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Appendix 3. continued

λT
eB(λ, T )

σT5 105 λT
eB(λ, T )

σT5 105

µm.K (µm.K)−1

λT∫
0

eB(λ, T ) dλ

σT4 µm.K (µm.K)−1

λT∫
0

eB(λ, T ) dλ

σT4

4,400 15.814 0.5488 13,500 0.773 0.9594
4,500 15.239 0.5643 14,000 0.684 0.9630
4,600 14.683 0.5793 14,500 0.607 0.9662
4,700 14.138 0.5937 15,000 0.540 0.9691
4,800 13.607 0.6075 20,000 0.196 0.9857
4,900 13.093 0.6209 25,000 0.0869 0.9923
5,000 12.594 0.6337 30,000 0.0441 0.9954
5,100 12.11 0.6461 35,000 0.0247 0.9911
5,200 11.643 0.6580 40,000 0.0149 0.9981
5,300 11.192 0.6694 45,000 0.00949 0.9986
5,400 10.758 0.6804 50,000 0.00634 0.9990



Appendix 4. Emissivity of Selected Materials 315

Appendix 4. Emissivity of Selected Materials

Material Temperature (◦K) Emissivity, ε (normal, total)

Metals
Aluminum 1,000 0.054
Copper 1,000 0.018
Platinum 1,000 0.107
Gold 1,000 0.025
Nickel 1,000 0.128
Iron 700 0.28–0.5
Tungsten 1,300 0.131

3,300 0.4–0.8
Refractories

Brick 300 0.93
Alumina 300 0.5
Asbestos 400 0.96
Concrete 1,000 0.63

Dielectrics
Glass 300 0.92
Fused silica 300 0.93
Water 300–400 0.95
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Index

A
Abbe invariant, 6

number, 45
Aberration, 5

Astigmatism, 51–52, 82
chromatic, 44, 75, 280
distrortion, 54
field curvature, 53
lateral, 41
offense against sine condition

(OSC), 57, 84
plot, 43
rules of addition, 59
spherical, 49, 280

of cylinder lens, 51
third order, 49
transverse, 41
wave, 43

Absorptance, 210, 223
Absorption factor, 168, 208
Accuracy, sub-pixel, 148
Achromat (doublet lens), 45, 76
Acousto-optical cell (AOM), 233, 273, 275

deflector, 237, 238
effect, 233
modulator, 237

for spectral analysis, 239–241, 249–250
Airy’s function, 62, 175
Anamorphic prism pair, 110, 125

Aperture angle, 19
stop, 19

Aplanatic points, 57, 85–87
Approach paraxial, 5

B
Ball lens, 10, 32, 58, 85
Bandpass, 187
Beam, optical, 2

convergent, 2
divergent, 2
Gaussian, propagation, 104
homocentric, 2

Beam expansion, 105
Beer’s law, 193
Bending parameter (of a lens), 46
Bernoulli distribution, 133
Black body, 210, 214
Blazing, 180

angle, 180
Bolometer, 141
Bouguer’s law, 167
Bragg cell, 234

condition, 235
Brightness, 212

C
Charge Coupled Device (CCD),

144–147

317
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Color, complementary, 297, 306
coordinates, 296, 297, 301
detectors, 300
mixture curves, 295
perception, 294
x-y diagram, 296

Computed Radiography (CR), 170–171
Condenser, 60
Cone cells, 293
Cosine error, 256
Cross talk, 256
Cylinder lens, ray tracing, 78–82

D
Dark current, 131
Dark field illumination, 113, 126
Defocusing, 74
Detectivity, 130

specific (D-star), 131
Detectors, array, 143

CCD, 144–147
CMOS, 147
four quadrant, 143
semiconductor, photoconductive, 140

photovoltaic (photodiode), 140
thermal, 141
two-element, 143

Diffraction, 61, 174
angle, 174
limiting system, 61
grating, plane, 178

reflective, 180
optimization, 183

concave, 184
Directional ambiguity, 273
Dispersion, angular, 169

linear, 169
Display screens, 303

phosphors, 303, 306–307
primaries, 303

Doppler broadening of spectral lines, 161
Dual path arrangement (for AOM), 236, 246
Dynamic range, 132
Dynodes, 137

E
Emissivity, 210
Emittance, 210
Encircled energy distribution, 67
Error, location, 242

Eye, human, 10–11
angular resolution, 11, 32
spectral sensitivity, 248

F
F-center, 166
f-number, f#, 51
Fabry-Perot interferometer, 188, 206
Field lens, 16
Field of view, 20
Field stop, 20
Filter, interference, 186, 205

multi-cavity, 188, 206
IR cut-off, 147, 300

Flattener lens, 56, 84
Flow, laminar, 274

turbulent, 269
two-phase, 281

Focal length, 5
back, 5
front, 5
measurement, 9, 28

Focus, 5
Fourier spectrometer, 190–193, 207
Fresnel’s formulas, 167
Frequency, cut-off, 69

hopping, 111
shifting, 273, 285

Fringe pattern, 270, 277
spacing, 270, 285

Full width at half maximum (FWHM), 187,
205, 206

G
Galvanometer scanner, 231–232
Gamma-correction procedure, 303
Gear profile measurement, 258–259
Gladston–Dale formulae, 233
Geometrical optics assumptions, 3

signs convention, 3

H
Homocentricity violation, 10, 30

I
Illumination system, lens-based, 97

single lens, 98
two-lens, 98, 116
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three-lens, 99, 118
oblique, 113, 127
of a microscope (opaque illuminator), 95, 117

Image formation, 4
Image, ideal, 5
Imaging, 1

by graphical method, 8, 25–26
Inclination angle, 180
Intensity (of radiation), 212
Interference, multi-beam, 178
Interferometer, dual beam, 218

Fabry-Perot, 188, 206
laser, 254–255

Irradiance, 95

K
Kirchhoff’s law, 210

L
Lambert’s law, 212
Lamp, arc, xenon, 96

Deuterium, 96
Quartz Tungsten Halogen (QTH), 95–96

Laser beam, divergence angle, 102
Gaussian profile, 102
waist, 102

Laser diode, 109
system for ground profiling, 111, 123–125

Laser Doppler velocimetry (LDV), 269
signal burst, 271, 272, 281–282

Laser-guided robot, 108
Laser light, 101

modes, 106, 110–111
Laser reference system for construction, 109
LDV arrangement, Forward scattering, 272

Back scattering, 273, 276
Side scattering, 274, 278

Light Emitting Diode (LED), 112
Line generator, 115
Line scanner, 238
Luminescence, 164–166

photostimulated (PSL), 166, 170
Luminous efficacy, 209, 304, 306
Luminous efficiency, 299, 304

M
Magnification, optical, 6

angular, 11
linear, 11

longitudinal, 12
visible, 12

Magnifier, simple, 12–13
Microscope, 13

magnification, 14
diffraction theory of imaging, 64
trinocular, 15
with ICS optics, 15

Modulation, 68
Modulation Transfer Function (MTF), 68–69,

92–93
Monochromator, 168, 172

N
Nernst rod, 95, 97
Noise, read-out, 135

shot, 133
thermal (Johnson), 134

Noise Equivalent Power (NEP), 130

O
Optical constants, 167, 170
Optical path difference (OPD), 43–44, 180,

183, 218
Optically active material, 101
Optical resonator, 101, 106
Optical tracking, 147, 152

P
Paralax error, 71
Particle sizing, 281
Petzval’s theorem, 54
Photoelectric cell, 136
Photomultiplier, 137
Photopigment, 293
Plane, principal, 7, 9, 29
Plank’s law, 211
p-n junction, 140
Point Spread Function (PSF), 68
Poisson distribution, 133
Polygon, 230–231, 233, 245–246
Primaries, natural, 294

of the detectors, 300, 307
Prisms, 22

Amici (roof prism), 23
dispersive, 173
Dove, 23
minimum deviation angle, 38
penta, 23
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Prisms (continued)
rhomboidal, 37
right angle, 23
unfolded diagram, 24, 36

Probe volume, 270, 277, 285, 286
Pupil, Entrance/Exit, 19
Pyrometer, 214, 217

Q
Quantum efficiency, 130

of luminescence, 166, 170

R
Rangefinder, 251, 259
Reflectance, 167, 210
Reflection law, 2–3
Refraction law, 3
Refractive index, spectral behavior, 45

of air, 252
Ray, optical, 2
Ray tracing, 3, 7, 26–27

for cylinder lens, 51
Raster, 231
Rayleigh’s criteria, wave aberration, 44

limiting resolution, 62
spectral resolution, 169

length, 120
Relay lens, 13–14
Resolution, 62

spectral, 169
Responsivity, 130
Reticle, 87
Retroreflector, 255
Reynolds’ stresses, 269
Rod cells, 293
Rodopsin, 293
Rowland circle, 184, 205

S
Saturation, 132
Scanner, mirror, 229, 232, 242

fast rotating, 230, 232, 245, 253, 261–264
galvanometric, 231
acousto-optical, 237

Scanning error, exposure, 243
location, 242, 245
misalignment

Scattering angular diagram, 283
Seeing, 293
Seidel’s formula, 49
Signal-to-noise Ratio (SNR), 130
Slit, entrance, 172

optimal width, 173
Solar radiation, 163
Spatial filter, 106
Spectral analysis of electrical signals

(RF), 239–241
Spectral imaging, 236, 247–248
Spectral resolution, 173
Spectrum, absorption, 162

of fused silica, 168
emission, 159
luminescence, 164
secondary, 47, 77
tertiary, 47

Spectrometer, 168
autocolimating, 183
Fabry-Perot, 188
Fourier, 190–193
prism-based, 172
with diffractive grating, plane, 182

concave, 184
Spectrophotometer, 168, 194
Stefan-Boltzmann law, 212
Stoke’s rule, 165
Stratified light, 97, 257, 267–268
Surveying system, 104

T
Telecentric system, 71, 93
Telephoto lens, 72, 94
Telescope, 15–16

Galilean, 17
Temperature, brightness, 216, 223

Color, 96, 215, 223
radiation, 215–216

Temperature gradients measurement, 218
Thermal radiation, 209

laws, 210–211
sources, 95, 305

Three-CCD color sensor, 302
Time response, 131
Time-Bandwidth product (TBW),

238, 249
Transmittance, 167
Tristimulus generalization, 294–295
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U
Units, photometric, 298

V
Video signal, standard, 145
Vignetting, 21
Visibility function, 282

W
Wave number, 160
White balance, 303, 308
Width, natural, of spectral line, 160
Wien’s law, 211
Wien’s formula, 213, 222–223
Wobbling error, 230
Work function, 136
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