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Conversion of Units

Quantity SI Equivalence

English Equivalence

Mass 11b; — sec?/ft (slug) =14.5939 kg
=321741b_
11b,, = 0.45359237 kg

Length 1in. = 0.0254 m
1 ft = 03048 m
1 mile = 5280 ft = 1.609344 km

Area 1 in? = 0.00064516 m?
1 ft? = 0.0929030 m?

Volume lin’ =16.3871 X10™¢ n

1t =283168x107° mp

1 US galion = 3.7853 litres

=3.7853x10"*

Force or 11b; =4.448222 N
weight
Torque or 11b; — in. = 0.1129848 N-m
moment 1lb; — ft =1.355818 N-m
Stress, 1 Ib; /in® (psi) = 6894.757 Pa
pressure, or 1 Ib; /ft? = 47.88026 Pa
elastic
modulus
Mass density 1 1b,, /i’ = 27.6799 x 10* kg /o7’

11b,, /ft’ =16.0185 kg /n’

1 kg = 2.204623 Ib,,

= 0.06852178 slug
(Ib; — sec?/ft)

1 m = 3937008 in.
= 3.28084 f1
1 km = 3280.84 ft = 0.621371 mile

1 m?* =1550.0031 in?
=10.76391 f12

1 o’ =61.0237x10% in®
= 353147 ft’
=10~ litres = 0.26418 US gallon

1 N = 0.2248089 1b,

1 N-m = 8.850744 Ib, — in.
=0.737562 Ib, — ft

1 Pa =1.450377x10"* Ib, /in® (psi)
=208.8543x10"* b, /f1?

1 kg/m’ =36.127x10"%Ib_ /in®
~62.428x 1073 Ib,, /ft}




Quantity

SI Equivalence

Work or energy

Power

Area moment

. ’
TP P )

of inertia of
second moment
of area

Mass moment
of inertia

Spring constant:
translatory

torsional

Damping constant.

translatory
torsional

Angles

1in. —1b; =0.1129848 ]
1ft —1b; =1.355818]

1 Btu =1055.056 ]

1 kWh=3.6x10°]J

lin —Ib; /sec = 0.1129848 W
1 ft —Ib; /sec =1.355818 W

= 0.0018182 hp
1hp="T7457W
1in* =41.6231x10 %m*
1 ft4 = 86.3097 x10™* m*

1in — Ib; — sec? = 0.1129848 m’ kg

11b; /in. =175.1268 N/m
11b;/ft =14.5933 N/m

1in. — Ib, /rad = 0.1129848 m-N /rad

11b; —sec/in=175.1268 N-s/m
1in — Ib; — sec/rad
=0.1129848 m-N-s/rad

1 rad = 57.295754 degrees; 1 degree =

1 rpm = 0.166667 rev/sec = 0.104720 rad /sec;

[

=
._-_—_z— L ..
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Preface

This text is intended for use as an introduction to the subject of vibratio
engineering at the undergraduate level. The style of presentation from the pric
edition, of presenting the theory, computational aspects, and applications of vibr:
tions in a manner as simple as possible is retained. As in the first edition, computc
techniques of analysis are emphasized. Expanded explanations of the fundamental
emphasizing physical significance and interpretation that build upon previol
experiences in undergraduate mechanics are given. Numerous examples and prot
lems are used to illustrate principles and concepts.

This book was first published in 1986. Favorable reactions and friendly encou
agements from professors, students and my publisher have provided me with tk
impetus to come out with a new edition. In this second edition several new chapte:
have been added. Modifications and corrections to many topics have been mad
Most of the additions to the first edition were suggested by those who have used tt
text and by numerous reviewers.

Some of the important changes in this edition are:

Approximately forty percent of the problems are new.

Design type problems, identified by asterisks, are included in various chapter:

Project type problems are added at the end of several chapters.

The section on vibration measuring instruments has been expanded into a fu

chapter entitled, “ Vibration Measurement.”

* The chapter on further topics in vibration is now deleted.

* New chapters on finite element method, nonlinear vibration, and randor
vibration are added.

* All the examples in the book have been presented in a new format. Followin

the statement of each example, the known information, the quantities to b

determined, and the approach to be used are first identified and then th

detailed solution is given.

* * O *
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FEATURES

Each topic in Mechanical Vibrations is self-contained. All the concepts are ex-
plained fully and the derivations are presented with complete details for the benefit
of the reader. The computational aspects are emphasized throughout the book.
Several Fortran computer programs, most of them in the form of general purpose
subroutines, are given at the end of the chapters. These programs are given for use
by the students. Although the programs have been tested, no warranty is implied as
to their accuracy.

Problems, which are based on the use/development of computer programs, are
given at the end of each chapter. It is highly desirable that students solve these
problems to obtain exposure to many important computational and programming
details.

Some subiects are rpcpntpr‘ in a somewhat unconventional manner. The topics
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of Chapters 9, 10, and 11 fall in this category. Most textbooks discuss the topics of
1solators, absorbers, and balancing at different places. Since one of the main
purposes of the study of vibrations is to control vibration response, all the topics

directly related to vibration control are given in Chapter 9. The vibration measuring
instruments, along with vibration exciters and signal analysis procedures, are

presented in Chapter 10. Similarly, all the numerical integration methods applicable
to single- and multidegree-of-freedom systems, as well as continuous systems, are
unified in Chapter 11.

Specific features include:

* 23 Computer programs to aid the student in the numerical implementation of
the methods discussed in the text.

* Nearly 100 illustrative examples following the presentation of most of the
topics.

* More than 250 review questions to help students in reviewing and testing their
understanding of the text material.

* Over 600 problems, with solutions in the instructor’s manual.

* More than 290 references to lead the reader to specialized and advanced
literature.

* Biographical information about scientists and engineers, who contributed to the
development of the theory of vibrations, is given on the opening pages of
chapters and appendixes.

NOTATION AND UNITS

Both the SI and the English system of units have been used in the examples and

nroblems. A list of svmbols. along with the associated units in SI and Enchsh
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systems, is given at the beginning of the book. A brief discussion of SI units as they
apply to the field of vibration is given in Appendix C. Arrows are used over symbols
to denote column vectors and square brackets are used to indicate matrices.
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CONTENTS

Mechanical Vibrations is organized into 14 chapters and 3 appendixes. The material
of the book provides flexible options for different types of vibration courses. For a
one-semester senior or dual-level course, Chapters 1 through 5, portions of Chapters
6, 7, 8 and 10, and Chapter 9 may be used. The course can be given a computer
orientation by including Chapter 11 in place of Chapter 8. Alternatively, with
Chapters 12, 13 and 14, the text has sufficient material for a one-year sequence at
the senior level. For shorter courses, the instructor can select the topics depending
on the level and orientation of the course. It is hoped that the relative simplicity
with which the various topics are presented makes the book useful to students as
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and computer programs.

Chapter 1 starts with a brief discussion of the history and importance of
vibrations. The basic concepts and terminology used in vibration analysis are
introduced. The free vibration analysis of single-degree-of-freedom undamped trans-

lational and fr\rclcna] c\rctpmc is oiven n (‘hnnfpr 2 The effects of \ncr'nnc Coulomh
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and hysteretic dampmg are also discussed. The harmonic response of smgle-degree-
of-freedom systems is considered in Chapter 3. Chapter 4 is concerned with the
response of a single-degree-of-freedom system under general forcing conditions. The
roles of convolution integral, Laplace transformation, and numerical methods are
discussed. The concept of response spectrum is also introduced in this chapter. The
free and forced vibration of two-degree-of-freedom systems is considered in Chapter
5. The self-excited vibration and stability of the system are discussed. Chapter 6
presents the vibration analysis of multidegree-of-freedom systems. Matrix methods
of analysis are used for the presentation of the theory. The modal analysis proce-
dure is described for the solution of forced vibration problems. Several methods of
determining the natural frequencies of discrete systems are outlined in Chapter 7.
Dunkerley’s, Rayleigh’s, Holzer’s, matrix iteration, and Jacobi’s methods are dis-
cussed.

The vibration analysis of continuous systems including strings, bars, shafts,
beams, and membranes is given in Chapter 8. The Rayleigh and Rayleigh-Ritz
methods of finding the approximate natural frequencies are also described. Chapter
9 discusses the various aspects of vibration control including the problems of
elimination, isolation and absorption. The balancing of rotating and reciprocating
machines and whirling of shafts are also considered. The vibration measuring
instruments, vibration exciters and signal analysis are the topics of Chapter 10.
Chapter 11 presents several numerical integration techniques for finding the dy-
namic response of discrete and continuous systems. The central difference, Runge-
Kutta, Houbolt, Wilson, and Newmark methods are summarized and illustrated.
The finite element analysis, with applications involving one dimensional elements, is
given in Chapter 12. An introductory treatment of nonlinear vibration, including a
discussion of subharmonic and superharmonic oscillations, limit cycles, and systems
with time dependent coefficients, is given in Chapter 13. The random vibration of
linear vibration systems is considered in Chapter 14. Appendixes A, B, and C
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outline the basic relations of matrices, Laplace transforms, and SI units, respec-
tively.
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constants, lengths

flexibility coefficient

flexibility matrix
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balancing weight
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wave velocity

critical viscous damping
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k, spring constant of ith Ib/in. N/m
spring
k, torsional spring lb-in/rad N-m/rad
constant
k,, stiffness coefficient Ib/in. N/m
[k] stiffness matrix Ib/in. N/m
I, length in. m
m, m mass 1b-sec? /in. kg
m, ith mass Ib-sec?/in. kg
m,, mass coefficient Ib-sec? /in. kg
[m] mass matrix 1b-sec?/in, kg
M mass Ib-sec? /in. kg
M bending moment Ib-in. N -m
M. M. M,,... torque lb-in. N-m
M, aniplitude of M,(¢) lb-in. N-m
n an integer
n number of degrees of freedom
N normal force Ib N
N total number of time steps
pressure Ib/in? N/
p(x) probability density
function of x
P(x) probability distribution
function of x
P force, tension Ib N
q, Jjth generalized coordinate
g vector of generalized
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LIST OF SYMBOLS (continued)

Symbol Meaning English Units SI Units
2}‘ vector of generalized
velocities
0, Jth generalized force
r frequency ratio = w/w,
F radius vector in. m
Re() real part of ()
R(™) autocorrelation - —pz
function
R electrical resistance ohm ohm
R Ray'leigh"s dissipation 1b-in/sec N-m/s
function
R Rayleigh’s quotient 1/sec? 1/
s exponential coefficient,
root of equation
S, 8, S, acceleration, displacement,
velocity spectrum
S (w) spectrum of x
t time sec s |
!, ith time station sec s
T torque Ib-in N-m
T kinetic energy in.-1b J
T, kinetic energy of ith mass in.-lb J
T, transmissibility ratio
u,, an element of matrix [U]
Uy, axial displacement in. m
U potential energy in.-1b J
U unbalanced weight Ib N
[U) upper triangular matrix
v, v, linear velocity n./sec m/s
4 shear force Ib N
4 potential energy in.-lb 1
4 potential energy of ith in.-1b J
spring
W, Wy, Wy, W, transverse deflections in. m
Wy valveof watz =0 in. m
Wo valueof wat¢ =0 in./sec m/s
W, nin mode of vibration
w weight of a mass 1b N
w total energy in.-lb J
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Symbol Meaning English Units SI Units
w transverse deflection in. m
W, value of Watr =1, in. m
W(x) a function of x
X, ¥, Z cartesian coordinates, in. m

displacements
Xy, %(0) valueof x at ¢ =0 in. m
Xq, X(0) valueof x at £ =0 in./sec m/s
X, displacement of jth mass in. m
X, valueof x at # = ¢, in. m
X, valueof x at t = ¢, in. /sec m/s
X, homogeneous part of x(t) in, m
X, particular part of x(r) in, m
7 vector of displacements in. m
X, value of X at ¢t = ¢, in. m
X value of X at 1 = ¢, in. /sec m/s
X, valueof X at £ = ¢, in./sec? m/s?
XN ith mode
X amplitude of x(¢) in. m
X amplitude of x, (1) in, m
X ith modal vector in, m
X ith component of jth mode in. m
[X] modal matrix in. m
A_;, rth approximation to a

mode shape
y base displacement in. m
Y amplitude of y(¢) in. m
z relative displacement, x — y in. m
VA amplitude of z(r) in, m
Z(iw) mechanical impedance 1b/in, N/m
a angle, constant
B angle, constant
B hysteresis damping constant
Y specific weight ib /i’ N/
é logarithmic decrement
8,.8,,... deflections in. m
3, static deflection in. m
) Kronecker delta
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LIST OF sympotS (continued)
=151 OF sympoL> 1€9ntin

Symbol Meaning Engli Uu
A determinant
AF increment in F b N
Ax increment in x n m
At increment in time ¢ see S
Aw energy dissipated in 2 in.-lb J
cycle
€ a small quantity
€ strain
! damping ratio
b constant, angular displacement
6, ith angular displacement rad rad
4, valueof f att =0 rad rad
4, vatueof  at 1 = 0 rad /sec rad/s
e amplitude of 8(¢) rad rad
1} amplitude of é,(1) rad rad
A eigenvatue = 1/w? sec’ s
[A] transformation matrix
B viscosity of a fluud Ib-sec/in? kg/m
I coefficient of friction
" expected value of x
p mass density Ib-sec? /in’ kg,/m
7 loss factor
o, standard deviation
of x
o stress Ib/in? N/m'
T period of oscillation, sec s
time
T shear stress Ib/in? N/
¢ angle, phase angle rad rad
b, phase angle in ith mode rad rad
w frequency of oscillation rad/sec rad/s
W, ith natural frequency rad/sec rad/s
w, natural frequency rad/sec rad/s
wy frequency of damped rad/sec rad/s
vibration
SUBSCRIPTS cri critical value
eq equivalent value

i ith value
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Symbol Meaning English Units

L left plane

max maximum value

n corresponding to natural
frequency

R right plane

0 specific or reference value

t torsional

) %

. d=()

( ) dfz

) column vector ()

[1 matrnix

[ inverse of [ ]

[ transpose of [ ]

A() increment in ()

() Laplace transform of ()

£ '0)

inverse Laplace transform of ( )




Equivalent Masses, Springs and Dampers -

Equivalent masses

’ (N M Ma§s(M) attached at end of mo=M+™
spring of mass m 4 3
—>
. m M Cantilever beam of mass m
% ~—'-/____ D—l— carrying an end mass M Moy = M+ 023 m
m M Simply supported beam of
N [ mass m carrying a mass m,=M+05m
f*\_\;_,,/T M at the middle
Coupled translational and _ Jo
J,Q -—- rotational masses Moy =m+ Rr?
o Gans I J..=J, + mR?
m DMNNARAPAAE deq
m, m m Masses on a hinged bar 2

“—'12_.{'
5

Equvalent springs

«— D—> Rod under axial load K = EA
(1 = length, A = cross sectional area) eq ]

“—q_ L )— Tapered rod under axial load K = wEDd
(D, d = end diameters) ed 4l

+“—0000000000 — Helical spring under axial load Gd*
(d = wire diameter, D = mean coil ko, = nD’

n

diameter, n = number of active turns)

_ _ _ 192 EI
Fixed-fixed beam with load at the middle k., B

—

ANNAANY
=

l Cantilever beam with end load koy= Iz

AANNARAY
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Simply supported beam with load
at the middle

Springs in series

Hollow shaft under torsion
(! = length, D = outer diameter,
d = inner diameter)

Relative motion between parallel
surfaces
(A = area of smaller plate)

Dashpot (axial motion of a
piston in a cylinder)

Torsional damper

Dry friction (Coulomb damping)
(/N = friction force,

= = 1
w = frequency, X = ampli

of vibration)

48E1
k"‘l = 13
1 11 s
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Galileo Galiler (1564 - 1642), an Italian astronomer,
philosopher, and professor of mathematics at the
Universitigs of Pisa and Padua, in 1609 became the first
man 10 point a telescope to the sky. He wrote the first
treatise on modern dynamics it 1530. His works on the
oscillations of a simple penduium and the wvibration of
strings are of fundamental significance n the theory of
vibrations. (Courtesy of the Granger Coliection)

1.1 PRELIMINARY REMARKS

This chapter introduces the subject of vibrations in a relatively simple manner. The
chapter begins with a brief history of the subject and continues with an examination
of its importance. The various steps involved in vibration analysis of an engineering
system are outlined, and essential definitions and concepts of vibration are intro-
duced. There follows a presentation of the concept of harmonic analysis, which can
be used for the analysis of general periodic motions. No attempt at exhaustive
treatment is made in Chapter 1; subsequent chapters will develop many of the ideas
in more detail.

‘1.2 BRIEF HISTORY OF VIBRATION

People became interested in vibration when the first musical instruments, probably
whistles or drums, were discovered. Since then, people have applied ingenuity and
critical investigation to study the phenomenon of vibration. Galileo discovered the
relationship between the length of a pendulum and its frequency and observed the
resonance of two bodies that were connected by some energy transfer medium and
tuned to the same natural frequency. Further, he observed the interrelationships of
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the density, tension, length, and frequency of a vibrating string [1.1]. Although it
had long been understood that sound was related to the vibration of a mechanical
system, it was not clear that pitch is determined by the frequency of vibration until
Galileo found the result. At about the same time as Galileo, Hooke showed the
relationship between frequency and pitch.

Among mathematicians, Taylor, Bernoulli, D'Alembert, Euler, Lagrange, and
Fourier made valuable contributions to the development of vibration theory. Wallis
and Sauveur observed, independently, the phenomenon of mode shapes (with
stationary points, called nodes) in vibrating strings. They also established that the

an t Af tha Gret and tha f ft thai.d
fl%(‘.lbeﬂc_y' of the second mode is twice that of the first and the irequency ol the inirg

mode three times that of the first. Sauveur is credited with coining the term
fundamental for the lowest frequency and harmonics for the others. Bernoulli first
proposed the principle of linear superposition of harmonics: Any general configura-

tion of free vibration is made up of the configurations of individual harmonics,
acting independently in varying strengths [1.2].

After the enunciation of Hookes law of elasticity in 1676, Euler (1744) and
Bernoulli (1751) denived the differential equation governing the lateral vibration of
prismatic bars and investigated its solution for the case of small deflections. In 1784,
Coulomb did both theoretical and experimental studies of the torsional oscillations
of a metal cylinder suspended by a wire.

There 1s an interesting story related to the development of the theory of
vibration of plates [1.3]. In 1802, Chladni developed the method of placing sand on
a vibrating plate to find its mode shapes and observed the beauty and intricacy of
the modal patterns of the vibrating plates. In 1809, the French Academy invited
Chladni to give a demonstration of his experiments. Napoleon Bonaparte, who
attended the meeting, was very impressed and presented a sum of 3000 francs to the
Academy, to be awarded to the first person to give a satisfactory mathematical
theory of the vibration of plates. By the closing date of the competition in October,
1811, only one candidate, Sophie Germain, had entered the contest. But Lagrange,
who was one of the judges, noticed an error in the derivation of her differential
equation of motion. The Academy opened the competition again, with a new closing
date of October, 1813. Sophie Germain again entered the contest, presenting the
correct form of the differential equation. However, the Academy did not award the
prize to her because the judges wanted physical justification of the assumptions
made in her derivation. The competition was opened once more. In her third
attempt, Sophie Germain was finally awarded the prize in 1816, although the judges
were not completely satisfied with her theory. In fact, it was later found that her
differential equation was correct but that the boundary conditions were erroneous.
The correct boundary conditions for the vibration of plates were given in 1850 by
Kirchhoff,

After this, vibration studies were done on a number of practical mechanical and
structural systems. In 1877, Lord Rayleigh published his book on the theory of
sound [1.4]; it is considered a classic on the subject of vibrations even today.
Notable among the many contributions of Rayleigh is the method of finding the
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fundamental frequency of vibration of a conservative system by making use of the
principle of conservation of energy—now known as Rayleigh’s method [1.5]. In
1902, Frahm investigated the importance of torsional vibration study in the design
of propeller shafts of steamships. The dynamic vibration absorber, which involves
the addition of a secondary spring-mass system to eliminate the vibrations of a main
system, was also proposed by Frahm in 1909. Among the modern contributors to
the theory of vibrations, the names of Stodola, Timoshenko, and Mindlin are
notable. Stodola’s method of analyzing vibrating beams is also applicable to turbine
blades. The works of Timoshenko and Mindlin resulted in improved theories of
vibration of beams and plates.

It has long been recognized that many basic problems of mechanics, including
those of vibrations, are nonlinear. Although the linear treatments commonly adopted
are quite satisfactory for most purposes, they are not adequate in all cases. In
nonlinear systems, there often occur phenomena that are theoretically impossible in
linear systems. The mathematical theory of nonlinear vibrations began to develop in
the works of Poincaré and Lyapunov at the end of the last century. After 1920,
studies undertaken by Duffing and van der Pol brought the first definite solutions
into the theory of nonlinear vibrations and drew attention to its importance in
engineering. In the last 20 years, authors like Minorsky and Stoker have endeavored
to collect the main results concerning nonlinear vibrations in the form of mono-
graphs {1.6,1.7].

Random characteristics are present in diverse phenomena such as earthquakes,
winds, transportation of goods on wheeled vehicles, and rocket and jet engine noise.
It became necessary to devise concepts and methods of vibration analysis for these
random effects. Although Einstein considered Brownian movement, a particular
type of random vibration, as long ago as 1905, no applications were investigated
until 1930. The introduction of the correlation function by Taylor in 1920 and of the
spectral density by Wiener and Khinchin in the early 1930s opened new prospects
for progress in the theory of random vibrations. Papers by Lin and Rice, published
between 1943 and 1945, paved the way for the application of random vibrations to
practical engineering problems. The monographs of Crandall and Mark, and
Robson systematized the existing knowledge in the theory of random vibrations
[1.8,1.9].

Until about 25 years ago, vibration studies, even those dealing with complex
engineering systems, were done by using gross models, with only a few degrees of
freedom. However, the advent of high-speed digital computers in the 1950s made it
possible to treat moderately complex systems and to generate approximate solutions
in semi-closed form, relying on classical solution methods but using numerical
evaluation of certain terms that cannot be expressed in closed form. The simultane-
ous development of the finite element method enabled engineers to use digital
computers to conduct numerically detailed vibration analysis of complex mechani-
cal, vehicular, and structural systems displaying thousands of degrees of freedom
[1.10,1.11]. Figure 1.1 shows the finite element idealization of the body of a

bus [1.12].
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r Figure 1.1 Finite element 1dealization of the body of a bus [1 12]. (Reprinted with permission ©1974
| Socrety of Automotive Engineers. Inc.)

3 IMPORTANCE OF THE STUDY OF VIBRATION
h

| Most human activities involve vibration in one form or other.

because our eardrums vibrate and see because light waves undergo vibration.
Breathing is associated with the vibration of lungs and walking involves (periodic)
oscillatory motion of legs and hands. We speak due to the oscillatory motion of
larynges (tongue) [1.13]. Early scholars in the field of vibration concentrated their
efforts on understanding the natural phenomena and developing mathematical
theories to describe the vibration of physical systems. In recent times. many
investigations have been motivated by the engineering applications of vibration,
such as the design of machines, foundations, structures, engines, turbines. and
control systems.

Most prime movers have vibrational problems due to the inherent unbalance in
the engines. The unbalance may be due to faulty design or poor manufacture.
Imbalance in diesel engines, for example, can cause ground waves sufficiently
powerful to create a nuisance in urban areas. The wheels of some locomotives can
rise more than a centimeter ofl the track at high speeds due to unbalance. In
turbines, vibrations cause spectacular mechanical failures. Engineers have not yet
been able to prevent the failures that result from blade and disk vibrations in
turbines. Naturally, the structures designed to support heavy centrifugal machines.
like motors and turbines, or reciprocating machines, like steam and gas engines and
reciprocating pumps, are also subjected to vibration. In all these situations, the
structure or machine component subjected to vibration can fail because of material
fatigue resulting from the cyclic variation of the induced stress. Furthermore, the
vibration causes more rapid wear of machine parts such as bearings and gears and

3
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IS I
Figure 1.2 Tacoma Narrows bridge during wind-induced vibration. The
bridge opened on 1 July 1940 and collapsed on 7 November 1940

(Farguharson photo, Historical Photography, Collection, University of Wash-
ington Libraries.)

also creates excessive noise. In machines, vibration causes fasteners such as nuts to
become loose. In metal cutting processes, vibration can cause chatter, which leads to
a poor surface finish.

Whenever the natural frequency of vibration of a machine or structure coincides
with the frequency of the external excitation, there occurs a phenomenon known as
resonance, which leads to excessive deflections and failure. The literature is full of
accounts of system failures brought about by resonance and excessive vibration of
components and systems (see Fig. 1.2). Because of the devastating effects that
vibrations can have on machines and structures, vibration testing [1.14] has become
a standard procedure in the design and development of most engineering systems
(see Fig. 1.3).

In many engineering systems, a human being acts as an integral part of the
system. The transmission of vibration to human beings results in discomfort and
loss of efficiency. Vibration of instrument panels can cause their malfunction or
difficulty in reading the meters [1.15]. Thus one of the important purposes of
vibration study is to reduce vibration through proper design of machines and their
mountings. In this connection, the mechanical engineer tries to design the engine or
machine so as to minimize unbalance, while the structural engineer tries to design
the supporting structure so as to ensure that the effect of the imbalance will not be
harmful [1.16].



}DTER 1 Fundamentals of Vibration

e 1.3 Vibration testing of the space shuttle Enterprise (Courtesy of
i)

n spite of its detrimental effects, vibration can be utilized profitably in several
trial applications. In fact, the applications of vibratory equipment have in-
ed considerably in recent years [1.17]. For example, vibration is put to work in
tory conveyors, hoppers, sieves, washing machines and compactors. Vibration
0 used in pile driving, vibratory testing of materials, vibratory finishing
sses, and electronic circuits to filter out the unwanted frequencies (see Fig.
Vibration has been found to improve the efficiency of certain machining,
g, forging, and welding processes. It is employed to simulate earthquakes for
ical research and also to conduct studies in the design of nuclear reactors.

1.4 Vibratory fimshing process. (Reprinted courtesy of the Society of Manufacturing
ers, ©1964 The Tool and Manufacturing Engineer )
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4.4 BASIC CONCEPTS OF VIBRATION

1.41
Vvibration

1.4.2

Elementary Parts
of Vibrating
Systems

Any motion that repeats itself after an interval of time is called wvibration
oscillation. The swinging of a pendulum and the motion of a plucked string
typical examples of vibration. The theory of vibration deals with the study
oscillatory motions of bodies and the forces associated with them.

A vibratory system, in general, includes a means for storing potential energy (spr
or elasticity), a means for storing kinetic energy (mass or inertia), and a means
which energy IS gradually lost (damper)

The vibration of a system involves the transfer of its potential energy to king
energy and kinetic energy to potential energy, alternately. If the system is damp
some energy is dissipated in each cycle of vibration and must be replaced by
external source if a state of steady vibration is to be maintained.

As an example, consider the vibration of the simple pendulum shown in 1

1.5, Let the hob of mass m be released after giving it an angular displacement 8.

LW/ ALY

position 1 the velocity of the bob and hence its kinetic energy is zero. But it ha
potential energy of magnitude mgl(1 — cos #) with respect to the datum positior
Since the gravitational force mg induces a torque mgl! sin# about the point O,

bob starts swinging to the left from position 1. This gives the bob certain ang.
acceleration in the clockwise direction, and by the time it reaches position 2, all
its potential energy will be converted into kmetlc energy. Hence the bob will

stop 1n position 2, but will continue to swing to position 3. However, as it passes
mean position 2, a counterciockwise torque starts acting on the bob due to gras
and causes the bob to decelerate. The velocity of the bob reduces to zero at the

extreme position. By this time, all the kinetic energy of the bob will be convertec
potential energy. Again due to the gravity torque, the bob continues to attai
counterclockwise velocity. Hence the bob starts swinging back with progressiv

\31’

'C'»L__ .
Datym — —  — " el

.
I(1 — cos 0)

Figure 1.5 A simple pendulum.



4.3

egree
f Freedom

CHAPTER 1 Fundamentals of Vibration

NN

717771777/7747777447777774

Ll

1

(a) Stider -crank - (b) Spring - mass system (c) Torsional system
spring mechanism

Figure 1.6 Single degree of freedom systems

increasing velocity and passes the mean position again. This process keeps on
repeating, and the pendulum will have oscillatory motion. However, in practice, the
magnitude of oscillation (#) gradually decreases and the pendulum ultimately stops
due to the resistance (damping) offered by the surrounding medium (air). This
means that some energy is dissipated in each cycle of vibration due to damping by
the air.

The mintmum number of independent coordinates required to determine completely
the positions of all parts of a system at any instant of time defines the degree of
freedom of the system. The simple pendulum shown in Fig. 1.5, as well as each of
the systems shown in Fig. 1.6, represents a single degree of freedom system. For
example, the motion of the simple pendulum (Fig. 1.5) can be stated either in terms
of the angle 8 or in terms of the cartesian coordinates x and y. If the coordinates x
and y are used to describe the motion, it must be recognized that these coordinates
are not independent. They are related to each other through the relation x? + y? =
I, where ! is the constant length of the pendulum. Thus any one coordinate can ,
describe the motion of the pendulum. In this example, we find that the choice of 8
as the independent coordinate will be more convenient than the choice of x or y.
For the slider shown in Fig. 1.6(a), either the angular coordinate # or the coordinate
x can be used to describe the motion. In Fig. 1.6(b), the linear coordinate x can be
used to specify the motion. For the torsional system (long bar with a heavy disk at
the end) shown in Fig. 1.6(c), the angular coordinate # can be used to describe the
motion,

Some examples of two and three degree of freedom systems are shown in Figs.
1.7 and 1.8, respectively. Figure 1.7(a) shows a two mass—two spring system that is
described by the two linear coordinates x, and x,. Figure 1.7(b) denotes a two rotor
system whose motion can be specified in terms of 8, and #,. The motion of the
system shown in Fig. 1.7(c) can be described completely either by X and 8 or by x,
», and X. In the latter case, x and y are constrained as x> + y* = I? where { is a
constant.
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Figure 1.7 Two degree of freedom systems
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Figure 1.8 Three degree of freedom systems.

For the systems shown in Figs. 1.8(a) and 1.8(c), the coordinates x, (i = 1,2, 3) and

8, (i = 1,2,3) can be used, respectively, to describe the motion. In the case of the
system shown in Fig, 1.8(b), 8, (i = 1,2, 3) specifies the positions of the masses m,
(i = 1,2,3). An alternate method of describing this system is in terms of x, and y,
(i = 1,2,3); but in this case the constraints x? + y?> = [? (i = 1,2,3) have to be

considered.
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Figure 1.9 A cantilever beam (an infinite
number of degrees of freedom system).

The coordinates necessary 1o describe the motion of a system constitute a set of
generalized coordinates. The generalized coordinates are usually denoted as gy, g,, ...

and may represent cartesian and /or noncartesian coordinates,
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A large number of practical systems can be described using a finite number of
degrees of freedom, such as the simple systems shown in Figs. 1.5 to 1.8. Some
systems, especially those involving continuous elastic members, have an infinite
number of degrees of freedom. As a simple example, consider the cantilever beam
shown in Fig. 1.9. Since the beam has an infinite number of mass points, we need an
infinite number of coordinates to specify its deflected configuration. The infinite
number of coordinates defines its elastic deflection curve. Thus the cantilever beam

has an infinite number of degrees of freedom. Most structural and machine systems

ha\rn defarmahls lnlochn\ moamhare and tharafara hava an infinite numhar Af dagreac
ave geiormacic SUC; memoers andg therefore nave an inhinite numoer of ac gIees

of freedom.

Systems with a finite number of degrees of freedom are called discrete or
lumped parameter systems, and those with an infinite number of degrees of freedom
are called continuous or distributed systems,

Most of the time, continuous systems are approximated as discrete systems, and
solutions are obtained in a simpler manner. Although treatment of a system as
continuous gives exact results, the analysis methods available for dealing with
continuous systems are limited to a narrow selection of problems, such as uniform
beams, slender rods, and thin plates. Hence most of the practical systems are
studied by treating them as finite lumped masses, springs, and dampers. In general,
more accurate results are obtained by increasing the number of masses, springs. and
dampers—that is, increasing the number of degrees of freedom.

SSIFICATION OF VIBRATION

tion

Vibration can be classified in several ways. Some of the important classifications are
as follows.

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its own,
the ensuing vibration is known as free vibration, No external force acts on the
system. The oscillation of a simple pendulum is an example of free vibration.
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Forced Vibration. If a system is subjected to an external force (often, a repeating
type of force), the resulting vibration is known as forced vibrarion, The oscillation
that arises in machines such as diesel engines is an example of forced vibration.

If the frequency of the external force coincides with one of the natural
frequencies of the system, a condition known as resonance occurs, and the system
undergoes dangerously large oscillations. Failures of such structures as buildings,
bridges, turbines, and airplane wings have been associated with the occurrence of
resonance.

If no energy is lost or dissipated in friction or other resistance during osciliation, the
hnd vibration is known as wundamped vibration. If any energy is lost in this way, on the
jration  other hand, it is called damped vibration. In many physical systems, the amount of

damping is so small that it can be disregarded for most engineering purposes.

However, consideration of damping becomes extremely important in analyzing

vibratory sysiems near resonance.

If all the basic components of a vibratory system—the spring, the mass, and the
damper—behave linearly, the resulting vibration is known as linear vibration. On
the other hand, if any of the basic components behave nonlinearly, the vibration is
called nonlinear vibration. The differential equauons that EOVern the behavior of
linear and nonlinear vibratory systems are linear and nonlinear, respectively. If the
vibration is linear, the principle of superposition holds, and the mathematical
techniques of analysis are well developed. For nonlinear vibration, the superposition
principle is not valid, and techniques of analysis are less well known. Since all
vibratory systems tend to behave nonlinearly with increasing amplitude of oscilla-
tion, a knowledge of nonlinear vibration is desirable in dealing with practical
vibratory systems.

If the value of the excitation (force or motion) acting on a vibratory system is
icand known at any given time, the excitation is called dererministic. The resulting
Lration vibration is known as deterministic vibration,

In some cases, the excitation is nondeterministic or random; the value of the
excitation at a given time cannot be predicted. In these cases, a large collection of
records of the excitation may exhibit some statistical regularity. It is possible to
estimate averages such as the mean and mean square values of the excitation.

Force
m_Q_A_M_A 0 aa h S m__.
J U CJ u U Tlme q
Time
{(a) A deterministic (periodic) excitation {b) A random excitation
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Examples of random excitations are wind velocity, road roughness, and grot
motion during earthquakes. If the excitation is random, the resulting vibration
called random vibration. In the case of random vibration, the vibratory response
the system is also random; it can be described only in terms of statistical quantit
Figure 1.10 shows examples of deterministic and random excitations.

1.6 VIBRATION ANALYSIS PROCEDURE

A vibratory system is a dynamic system for which the variables such as t
excitations (inputs) and responses (outputs) are time-dependent. The response of
vibrating system generally depends on the initial conditions as well as the exterr
excitations. The analysis of a vibrating system usually involves mathematical mod

lllg, UCI l-lelUIl Ul tut: BUVCIIIIIIB cquauuua bUlullUIl Ul I.II.C t:quauuub dl.'lU llllCI'plCl
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represent all the important features of the system for the purpose of deriving
mathematical (or analytical) equations governing the behavior of the system.
mathematical model should include enough details to be able to describe the sys;j
in terms of equations without making it too complex. The mathematical model

ha linsar ar nanlinanr dananding an tha hahaviar Af tha camnanante Af the cucta
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Linear models permit quick solutions and are simple to handle; however, nonling
models sometimes reveal certain characteristics of the system that cannot
predicted using linear models. Thus a great deal of engineering judgment is need
to come up with a suitable mathematical model of a vibrating system.

Sometimes the mathematical model is gradually improved to obtain md
accurate results. In this approach, first a very crude or elementary model is used
get a quick insight into the overall behavior of the system. Subsequently, the moc
is refined by including more components and /or details so that the behavior of t
system can be observed in more detail. To illustrate the procedure of refinem
used in mathematical modeling, consider the forging hammer shown in Fig, 1.11(
The forging hammer consists of a frame, a falling weight known as the tup, an anv
and a foundation block. The anvil is a massive steel block on which material
forged into desired shape by the repeated blows of the tup. The anvil is usual
mounted on an elastic pad to reduce the transmission of vibration to the foundatici
block and the frame [1.18]. For a first approximation, the frame, anvil, elastic pa
foundation block, and the soil are modeled as a single degree of freedom system ¢
shown in Fig. 1.11(b). For a refined approximation, the weights of the frame an
anvil and the foundation block are represented separately with a two degree ¢
freedom model as shown in Fig. 1.11(c). Further refinement of the model can b
made by considering eccentric impacts of the tup, which cause each of the masse
shown in Fig. 1.11(c) to have both vertical and rocking (rotation) motions in th
plane of the paper.

Step 2: Derivation of Governing Equations. Once the mathematical model is avai
able, we use the principles of dynamics and derive the equations that describe th
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Figure 111  Modeling of a forging hammer.
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vibration of the system. The equations are usually in the form of a set of ordinary
differential equations for a discrete system and partial differential equations for a
continuous system. The equations may be linear or nonlinear depending on the
behavior of the components of the system. Several approaches are commonly used
to derive the governing equations. Among them are Newton'’s second law of motion,
d’Alembert’s principle, and the principle of conservation of energy.

Step 3: Solution of the Governing Equations. The equations of motion must be
solved to find the response of the vibrating system. Depending on the nature of the
problem, we can use one of the following techniques for finding the solution:
standard methods of solving differential equations, Laplace transformation meth-
ods, matrix methods,* and numerical methods. If the governing equations are

nanlinaar thav cran caldam ha enluad in ~lacad farm Farthar tha calivtinn Af nartial
neninear, iy Cail sCi1GOIMNI OC SCiVED 1 L0644 0L, Uil Ul S5U1URICI Ui pailiai

differential equations is far more involved than that of ordinary differential equa-
tions. Numerical methods, using computers, can be used to solve the equations.
However, it will be difficult to draw general conclusions about the behavior of the
system using computer results.

Step 4: Interpretation of the Results. The solution of the governing equations gives
the displacements, velocities, and accelerations of the various masses of the system.
These results must be interpreted with a clear view of the purpose of the analysis
and the possible design implications of the results.

.7 SPRING ELEMENTS

A linear spring is a type of mechanical link which is generally assumed to have
negligible mass and damping. A force is developed in the spring whenever there is
relative motion between the two ends of the spring. The spring force is proportional
to the amount of deformation and is given by

F = kx (1.1)

where F is the spring force, x is the deformation (displacement of one end with
respect to the other), and k is the spring stiffness or spring constant. If we plot a
graph between F and x, the result is a straight line according to Eq. (1.1). The work
done in deforming a spring is stored as strain or potential energy in the spring,

*

The basic definitions and operations of matrix theory are given in Appendix A.
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Figure 1.12 Nonlineanty beyond proportionahty limit

Actual springs are nonlinear and follow Eq. (1.1) only up to a certain deforma-
tion. Beyond a certain value of deformation (after point A in Fig. 1.12), the stress
exceeds the yield point of the material and the force-deformation relation becomes

nanlinaar [1 M 1 201 In manv nractical annlicatinane we acenma the daflantinne ta he
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small and make use of the linear relation in Eq. (1.1). Even if the force-deflection
relation of a spring is nonlinear, as shown in Fig. 1.13, we often approximate it as a
linear one by using a linearization process [1.19, 1.20]. To illustrate the linearizatior.
process, let the static equilibrium load F acting on the spring cause a deflection of
x*_ If an incremental force AF is added to F, the spring deflects by an additiona
quantity Ax. The new spring force F + AF can be expressed using Taylor’s serie:
expansion about the static equilibrium position x* as

dF 1 d*F

F+ AF= F(x*+Ax)*F(x*)+— (Ax) + 5= il (Ax)2+--- (12

Force (F)
4

F+ AF = F(x* + Ax)

F=F(x*)

—» Deformation (x)

\
Figure 1.13 Lineanzation process
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Figure 1.14 Cantilever with end mass.

For small values of Ax, the higher order derivative terms can be neglected to obtain

F+ AF = F(x*) . I (Ax) (1.3)
Since F = F(x*), we can express AF as
AF = kAx (1.4)
where & is the linearized spring constant at x* given by
r = 9F|
T dx |

We may use Eq. (1.4) for simplicity, but sometimes the error involved in the
approximation may be very large.

Elastic elements like beams also behave as springs. For example, consider a
cantilever beam with an end mass m, as shown in Fig. 1.14. We assume, for
simplicity, that the mass of the beam is negligible in comparison with the mass m.
From strength of materials [1.21], we know that the static deflection of the beam at
the free end is given by

wi3
8, = 3E] (1.5)
where W = mg is the weight of the mass m, E is Young’s modulus and, / is the
moment of inertia of the cross section of the beam. Hence the spring constant is

W  3EI
k = L= (1.6)

Similar results can be obtained for beams with different end conditions,

In manv

W 1s the welgh of ;m, we have for equlhbnum
W=k, + kb, (1.7)
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where §, is the static deflection of the mass m. If k,, denotes the equivalent spring
constant of the combination of the two springs, then for the same static deflection
d,,, we have

W= k.3, (1.8)
Equations (1.7) and (1.8) give
keq =k, + k, (1.9)

In general, if we have » springs with spring constants k|, k,,..., k, in parallel, then
the equivalent spring constant k., can be obtained:

keq=k +ky+ -+ +k, (1.10)

Case (ii): Springs in Series. Next we consider two springs connected in series, as
shown in Fig. 1.15(b). Since both the springs are subjected to the same force W, we
have for equilibrium

1.11
W= k262} (1.11)
where 8, and §, are the elongations of springs 1 and 2, respectively. As the total
elongation is equal to the static deflection 4,

8, +8,=18, (1.12)
If k,, denotes the equivalent spring constant, then for the same static deflection,
W= k.8, (1.13)



CHAPTER 1 Fundamentals of Vibration

or
k.0 k.0
_ Teqlsi _ reqUsl ;
Substituting these values of &§, and §, into Eq. (1.12), we obtain
k.0 k.0
eq st eq sl
A
that 1s,
1 1 1 ’
k_ = E + E (1‘.15)
¥
Equation (1.15) can be generalized to the case of n springs in series:
1 _1 .1, .1 16
k_ = k + k A k (%-16)‘

In certain applications, springs are connected to rigid components qud‘h as
pulleys, levers, and gears. In such cases, an equivalent spring constant can be fqund
using energy equivalence, as illustrated in Example 1.2.

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever begm as!

ahuwu in FI.B 116\0’ D»tbluuu» thb eq‘dl‘v'aleﬁ{ apﬂug constant ¢ of the "}m“’m “'h‘& 'hp

suspended length of the wire rope is /. Assume the net cross-sectional diameter of the. wu'e!
rope as d and the Young’s modulus of the beam and the wire rope as £.

Given: Dimensions of the cantilever beam: length = b, width = 4, and thickness = . Young's,
modulus of the beam = E. Wire rope: length = /, diameter = 4, and Young’s modulus = E{

Find: Equivalent spring constant of the system.
Approach: Series springs.
Solution. The spring constant of the cantilever beam is given by

k=" = \129) = 47

. The stiffness of the wire rope subjected to axial loading is

AE wd’E
= —_——= — E'2

ko= al (E2)

The cantilever beam and the wire rope can be considered as series springs (Fig, 1.16b) whose

equivalent spring constant k., is given by '
4p®> 4l

s
Ear*  wd’E

.l_
k,

or
A

- f .1 12

E mai°d-

ke = 2| ———s E3,
“a 4 ( nd?b® + lar3) (



1.7 Spnng Elements

‘/"‘“\' . Ty
/ T (I
7 : +
é ! b *} —a

'/Jzégm LLLLLS L L
ks

Figure 1.16 Hoisting drum.

[

[__Equivalent k of a Crane

[

The boom 4B of the crane shown in Fig. 1.17(a) is a uniform steel bar of length 10 m and
area of cross-section 2500 mur’. A 1000 kg mass is suspended while the crane is stationary.
The cable CDEBF is made of steel and has a cross-sectional area of 100 mm?. Neglecting the

effect of the cable CDEB, find the equivalent spring constant of the system in the vertical
direction,

Given: Steel boom: length = 10 m, cross-sectional area = 2500 mm’, and material = steel.
Cable FB: material = steel and cross-sectional area = 100 mm’. Base: FA = 3 m.

Find: Equivalent spring constant of the system.
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(b) (o)

Figure 1.17 Crane lifting a load.

Solution. A vertical displacement x of point B will cause the spring k, (boom) to dt

form by an amount x, = x cos45° and the spring k, (cable) to deform by an amount x, *
x ¢0s(90° — ). The length of the cable FB, {, is given by (Fig. 1.17b)

12 . 22 L 1n2 74 f o~ 17 WNEE
ll o L AV ) SELY = L& . JVUID I

-~

The angle 8 satisfies the relation

12432 -2())(3)cos# =102, cosf = 038184, & =1350736°
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The total potential energy (U) stored in the springs &, and k, is given by

U = Lk,(x cos45°)? + 1k,[x cos(90° ~ )] (E.1)
where
ky = A}IE‘ (100 1‘12?557‘27 X10%) _ 16822 x 106 Ny/m
and
k, = A;zEz _ (2500 x 10—163(207 X 10%) - 51750 x 10" N/m

Since the equivalent spring in the vertical direction undergoes a deformation x, the potential
energy of the equivalent spring (U,,) is given by

Uy = 3kegx’ (E.2)

By setting U = U,

q» We obtain the equivalent spring constant of the system as

ke = 26.4304 X 10° N/m

INERTIA ELEMENTS
The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic
energy whenever the velocity of the body changes. From Newton's second law of
motion, the product of the mass and its acceleration is equal to the force applied to
the mass. Work is equal to the force multiplied by the displacement in the direction
of the force and the work done on a mass is stored in the form of kinetic energy of
the mass.

In most cases, we must use a mathematical model to represent the actual
vibrating system, and there are often several possible models. The purpose of the
analysis often determines which mathematical model is appropriate. Once the model
is chosen, the mass or inertia elements of the system can be easily identified. For
example, consider the cantilever beam with a tip mass shown in Fig. 1.14(a). For a
quick and reasonably accurate analysis, the mass and damping of the beam can be
disregarded; the system can be modeled as a spring-mass system, as shown in Fig.
1.14(b). The tip mass m represents the mass element, and the elasticity of the beam
denotes the stiffness of the spring. Next, consider a multistory building subjected to
an earthquake. Assuming that the mass of the frame is negligible compared to the

maccee nf the ﬂnorc tha l‘\llllflll‘lﬂ can ha madalad as a multideoree of freedom
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system, as shown in Fig. 1.18. The masses at the various floor levels represent the
mass elements, and the elasticities of the vertical members denote the spring
elements.
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Figure 1.18 Idealizaton of a multistory building as a
multidegree of freedom system,
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In many p
analysis, we can replace these masses by a
[1.22].

Case (i): Translational Masses Connected by a Rigid Bar. Let the masses be
attached to a rigid bar that is pivoted at one end, as shown in Fig. 1.19(a). The
equivalent mass can be assumed to be located at any point along the bar. To be
specific, we assume the location of the equivalent mass to be that of mass m,. The
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Figure 1.19 Translational masses connected by a rigid bar.
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velocities of masses m, (X,) and m, (x,) can be expressed in terms of the velocity
of mass m, (X,), by assuming small angular displacements for the bar, as

, _ b . _ b,
x2=7%xl, x3=fxl (1.17)

and
)2 = )21 (1.18)

eq

By equating the kinetic energy of the three mass system to that of the equivalent
mass system, we obtain
1 1 1 , 1 .5

jm,)'c,z + §m2x§ + ymyis = 3m kg, (1.19)

This equation gives, in view of Eqs. (1.17) and (1.18),
m, =m + 'ig‘zm + £-3-2m (1.20)
eq 1 ll 2 Il 3 .

Case (ii): Translational and Rotational Masses Coupled Together. Let a mass m
having a translational velocity X be coupled to another mass (of mass moment of

nartia having n ratatianal valaniter ﬂ tha earl and miniAn arsangama

I.I.I.Cl lia |I0} uavuxs lUldllUllal VClULll.y v, aa in lllc 1dwvih aliu PllllUll allausculcﬁl.
shown in Fig. 1.20. These two masses can be combined to obtain either 1) a smg]e
equivalent translational mass m,  or 2) a single equivalent rotational mass J,,, as
shown below.
1. Equivalent translational mass. The kinetic energy of the two masses is given
by
1

= smi? + 1510492 (1.21)

and the kinetic energy of the equivalent mass can be expressed as

(1.22)

Pinion, mass moment of inertia J,

AVAVAVAYAVAVA G &V
Rack, mass m —

Figure 1.20 Translational and rotational masses n a rack
and pimon arrangement.
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Since %., = % and ¢ = %/R, the equivalence of T and T, gives

1 ) 1 ., 1, (%)
—2-mmx2 = zmi* + —Z-JO(—R)
that is,

J,
M, =m + R% (1.23

2. Eguivalent rotational mass. Here B'W = 6 and % = R, and the equivalence o
T and T, leads to

1 1 2
'ifqul = 'im(dR) + 51002

or ,
Jg=Jo + mR? (1.24)

— ——r- mnm— - —mn
Cam-roliower Mechanism, R —

A cam-follower mechanism (Fig. 1.21) is used to convert the rotary motion of a shaft into the
osciilating or reciprocaiing motion of a valve, The foliower system consists of a pushrod of
mass m,, a focker arm of mass m,, and mass moment of inertia J about its C.G., a valve of
mass m,,, and a valve spring of negligible mass {1.23, 1.24, 1.38]. Find the equivalent mass

]

R Rocker arm

0, (mass moment of inertia, J,)
L B
— @ T e

A
Pushrod /Z
(mass m,) Valve X,
\ spring
Valve
] {mass m,)
Roller
follower
)
Cam N

Shaft. ~—

Figure 1.21 Cam-follower system
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(mgq) of this cam-follower system by assuming the location of m

i € as (i) point A4 and
u) point C.

cq

Given: Mass of pushrod = m - mass of rocker arm = m,, mass moment of inertia of rocker

arm = J,, and mass of valve = m,. Linear displacement of pushrod = x,,.

Find: Equivalent mass of the cam-follower system (i) at point A, (ii) at point C.
Approach: Equivalence of kinetic energy.

Solution. Due to a vertical displacement x of the pushrod, the rocker arm rotates by an angle
6, = x /1, about the pivot point, the valve moves downward by x, = 8./, = x/, /I, and the
C.G. of the rocker arm moves downward by x, = 8./; = x/,/I,. The kinetic energy of the
system (T) can be expressed as'
1, | 1 |
T= jmpr, + jm,‘xlz‘ + jJ’,ﬂ,z + jm,.x2 (E.1)

r

where %,, X,, and x,_ are the linear velocities of the pushrod, C.G. of the rocker arm and the

valve, respectively, and 4, is the angular velocity of the rocker arm.

it If m denotes the eanivalent mass nlaced at noint 4. with ¥ = ¥ the kinetic enerov of
(i} If m., denotes the equivalent mass placed at point A4, with %, = %, the kinetic energy of
the equivalent mass system T, is given by
T = lm il (E2)
eq = 2 eqreq =2/
By equating T and 7, , and noting that
xl, Xl T
X,=%, k=5, %=, and 0,=l—
1 1 1
we obtain
J, ;3 i
me = m, + F + "F + m,ﬁ (E3)
1 1 i
(ii) Similarly, if the equivalent mass is located at point C, %, = %, and
1o, 1,
Teq = _jmeqxeq = jmcqxv (E4)
Equating (E.4) and (E.1) gives
2 2
Jr Il 13
Meq = 11, + 1—22 + m, 1—2' + m, 7; (E.S)

ELEMENTS

In many practical systems, the vibrational energy is gradually converted to heat or
sound. Due to the reduction in the energy, the response, such as the displacement of
the system gradually decreases. The mechanism by which the vibrational energy is

gradually converted into heat or sound is known as damping. Although the amount

L |
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+
kinetic energy of the valve spring will be }
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of energy converted into heat or sound is relatively small, the consideration of
damping becomes important for an accurate prediction of the vipration response of
a system. A damper is assumed to have neither mass nor elasticity, and damping
force exists only if there is relative velocity between the two ends of the damper. It
is difficult to determine the causes of damping in practical systems. Hence damping
is modeled as one or more of the following types [1.25].

Viscous Damping. Viscous damping is the most commonly used damping mecha-
nism in vibration analysis. When mechanical systems vibrate in a fluid medium such
as air, gas, water, and oil, the resistance offered by the fluid to the moving body
causes energy to be dissipated. In this case, the amount of dissipated energy

depends on many factors, such as the size and shape of the vibrating body, the
viscosity of the fluid, the frequency of vibration, and the velocity of the vibrating
body. In viscous damping, the damping force is proportional to the velocity of the
vibrating body. Typical examples of viscous damping include (1) (luid film between
sliding surfaces, (2) fluid flow around a piston in a cylinder, (3) fluid flow through an
orifice, and (4) fluid film around a journal in a bearing.

Coulomb or Dry Friction Damping. Here the damping force is constant in magni-
tude but opposite in direction to that of the motion of the vibrating body. lt is
caused due to friction between rubbing surfaces that are either dry or have

insufficient lubrication.

Material or Solid or Hysteretic Damping. When materials are deformed, energy is
absorbed and dissipated by the material [1.26]. The effect is due to friction between
the internal planes, which slip or slide as the deformations take place. When a body
having material damping is subjected to vibration, the stress-strain diagram shows a

hysteresis loop as indicated in Fig. 1.22. The area of this loop denotes the energy
lost per cycle due to damping,.

A wviscous damper can be constructed using two parallel plates separated by a
distance A, with a fluid of viscosity p between the plates (see Fig. 1.23). Let one
plate be fixed and the other plate be moved with a velocity v in its own plane. The
fluid layers in contact with the moving plate move with a velocity v, while those in
contact with the fixed plate do not move. The velocities of intermediate fluid layers
are assumed to vary linearly between 0 and v as shown in Fig. 1.23. According to
Newton’s law of viscous flow, the shear stress (7) developed in the fluid layer at a
distance y from the fixed plate is given by

du

T=p— 0 1.25

KL dy ( )

whe — tha ol it ouadiamt Tho chasx ~r rocicting farne [ )

wicre uu/ uy U/ " la e vcnwu_y duleiil 111C oliCdl 1 IOSISLE IVILC (1)

developed at the bottom surface of the moving plate is

,u.Aii

F=1A="5= = (1.26)



1.9 Damping Elements 27

Stress (force)
*
Loading
Hysteresis

loop
E Unloading
/ - Strain

; (displacement)
/

h Viscious
l fluid

ﬁi{’@%

{
TIT77777 777 T T,

Figure 1.23 Paralle! plates with a viscous tluid In between

where A is the surface area of the moving plate and

¢ = Eifi (1.27)

is called the damping constant.

If a damper is nonlinear, a linearization procedure is generally used about the
operating velocity (v*), as in the case of a nonlinear spring. The linearization
process gives the equivalent damping constant as

_dr
S|,

When dampers appear in combination, they can be replaced by an equivalent
damper by adopting a procedure similar to the one described in Secs. 1.7 and 1.8
(see Problem 1.20).
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(AMPLE 1.4 ...

Develop an expression for the damping constant of the dashpot shown in Fig. 1.24(a).

Given: Diameter of cylinder = D + 2d, diameter of piston = D, velocity of piston = V.|
axial length of piston = /, and viscosity of fluid = p.

Find: Damping constant of the dashpot.
Approach: Shear stress equation for viscous fluid flow. Rate of fluid flow equation.

Solution. As shown in Fig. 1.24(a), the dashpot consists of a piston of diameter D, and length
/, moving with velocity v, in a cylinder filled with a liquid of viscosity u [1.20,1.27). Let the
clearance between the piston and the cylinder wall be d. At a distance y from the moving,

surface, let the velocity and shear stress be v and 7, and at a distance (y + dv) let the
velocity and shear stress be (v — fln\ and (r + Ild" rPcnPr‘tIVPlv {see Fig. 124(13)) The

AL a i ] Sun S 2Lapliil wee 135

negative sign for dv shows that the veloc:ty decreases as we move toward the cylinder wall,
The viscous force on this annular ring is equal to

dr
F=aDldr = WDI'Z,;dy (E1)
But the shear stress is given by
dv
T= —-pE (E2)
where the negative sign is consistent with a decreasing velocity gradient [1.28]. Using Eq.
P P
ﬁca <)
F\\ r\\
?—— Cylinder Cylinder
% 7
L ¥
. H'l;
l % dy
T v Z v ﬂ Z
{ Vo . Piston Vi f Piston
| 7z 7
. 4 — )
d fp———D——f d — d o [ | f [
Z . v . 2
T Viscous T e Viscous

ftuid fluid

{a)
i)

Figure 1.24 A dashpot
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(E.2) in Eq. (E.1), we obtain
2

F= —nDldy p{’dy—‘; (E3)
The force on the piston will cause a pressure difference on the ends of the element, given by
p= ,”;2 = :Dpz (E4)
&
Thus the pressure force on the end of the element is
p(nDdy) = 42 4 (E:5)

Where (wDdy) denotes the annular area between y and (y + dy). If we assume uniform
mean velocity in the direction of motion of the fluid, the forces given in Egs. (E.3) and (E.5)
must be equal. Thus we get

4P = —aDlayptl
dy
or
d* 4P
G = — (E.6)
dy mDlu
Integrating this equation twice and using the boundary conditions v = —y, at y =0 and
v=20at y=d, we obtain
-\
0= 1321 (yd-y?) = w1~ %) (E.7)

The rate of flow through the clearance space can be obtained by integrating the rate of flow
through an element between the limits y = 0 and y = 4:
2Pd? 1
Q= f vaDdy = 'nD[ 67D -3 Uod} (E.8)
The volume of the liquid flowing through the clearance space per second must be equal to the
volume per second displaced by the piston. Hence the velocity of the piston will be equal to
this rate of flow divided by the piston area. This gives

U = ('”QDZ) (Eg)
F)
Equations (E.9) and (E.B) lead to
31TD31(1 + -23‘1)

By writing the force as P = cy,, the damping constant ¢ can be found as

e = | 3722 (, , 2d)] (E.11)
| 4d D

Y




30 CHAPTER 1 Fundamentals of Vibration

1.10 HARMONIC MOTION

Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum,
or may display considerable irregularity, as in the case of ground motion during an
earthquake. If the motion is repeated after equal intervals of time, it is called
periodic motion. The simplest type of periodic motion is harmonic motion. The
motion imparted to the mass m due to the Scotch yoke mechanism shown in Fig .
1.25 is an example of simple harmonic motion {1.29,1.30,1.20]. In this system, a
crank of radius A rotates about the point O. The other end of the crank P slides in -

-

S+

x(1)
%
A._
O R
r’ x
|
0 a4
n 2n 3n 0= w
—Al
A L
17
R 5 -
7 B 7
AV
Slotted rod
& ’/‘F—"‘: P
l/ - 7 \\. I _
{ OA "Xe =t x = Asin wt

Figure 1.25 Scotch Yoke mechanism.
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a slotted rod, which reciprocates in the vertical guide R. When the crank rotates at
an angular velocity w, the end point S of the slotted link and hence the mass m of
the spring-mass system are displaced from their middle positions by an amount x
(in time ¢) given by

x = Asin8 = Asin wi (1.28)

This motion is shown by the sinusoidal curve in Fig. 1.25. The velocity of the mass
m at time ! is given by

%—i—f— = wA cos wt (1.29)

cycle
of motion

——-bx

Angular
displaceme

0=

L}
:
L One cycle of motion

Figure 1.26 Harmonic motion as the projection of the end of a rotating vector.
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and the acceleration by

d’x

_d.t—zﬂ = —wAsinwl = —wlx (1.30)

It can be seen that the acceleration is directly proportional to the displacement,
Such a vibration, with the acceleration proportional to the displacement and
directed towards the mean position, is known as simple harmonic motion. The
motion given by x = Acos wt 15 another example of a simple harmonic motion.
Figure 1.25 clearly shows the similarity between cyclic (harmonic) motion and
sinusoidal motion.

Harmonic moiion can be represenied convenienily by means of a vecior OF of
magnitude A rotating at a constant angular velocny w. In Fig. 1.26, the projection of
the tip of the vector X = OF on the vertical axis is given by

y = Asin wt (1.31)
and its projection on the horizontal axis by

x = Acos wt (1.32)

Any vector X in the xy plane can be represented as a complex number:
X=a+ib (1.33)

where i = V=1 and @ and b denote the x and y components of X, respectively
(see Fig. 1.27). Components a and b are also called the rea/ and imaginary parts of
the vector X. If A denotes the modulus or absolute value of the vector X, and ¢
represents the argument or the angle between the vector and the x-axis, then X can
also be expressed as

X=4 cos¢ + iAdsind = Ae*® (1.34)
Y4
bbb — — ———__ ?=a+ib
/'; = Ae?
[
/( ;
0 a >

Figure 1.27
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Im
4
=~ —t " - - - X(.‘)
X = inX — - - -—
”-’2 Y y ( ) .A. ,lﬁ
\Nx(e
mi2 w! \ ./ I)\‘
Re 0 X -+ 3 wt
Y . \ - ”
3 )y N\ ,’
X=-0'X |- ) . I N
-

[ . .
Figure 1.28 Displacement, velocity, and accelerations as rotating vectors,

with
12
A={(a’+b?) (1.35)
and
b
¢ =tan”' - (1.36)

The rotating vector X of Fig. 1.26 can be represented as a complex number:

—

X = 4e'*! (137)

The differentiation of Eq. (1.37) with respect to time gives

dX d, e
E— = E‘(Ae"‘”) = [wAe™ = jwX (138)
d’X d,. Y "
e = (iwde™) = —wl e = - X (1.39)
Thus the displacement, velocity, and acceleration can be expressed as*
displacement = Re[ Ae'“'] = A cos wt (1.40)
velocity = ReliwAde™'] = — wAsinwt
= wA cos(wt + 90°) (1.41)
acceleration = Re[ — w?de™'] = — w?4 cos wt
= w’4 cos(wt + 180°) (1.42)

"I the harmonic displacement is originally given as x(t} = A sin wt, then we have
displacement = Im[ 4e'“'} = A sinwt
velocity = Im[iwde' | = w4 sin(wet + 90°)
acceleration = Im| ~w’de™’| = w4 sin(wt + 180°)

m denotes the imaginary part,
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Y
1?
1m
wa’T\
&= R
o Re' *
A cos (wt+a)

Figure 1.29 Vectorial addition of harmonic functions.

where Re denotes the real part. These quantities are shown as rotating vectors in

Fig. 1.28. It can be seen that the acceleration vector leads the velocity vector by 90°,

and the latter leads the displacement vector by 90°. ~
Harmonic functions can be added vectorially, as shown in Fig. 1.29. If Re( X,)

= Ajcos wt and Re(Xz) = A,cos(wt + @), then the magnitude of the resultant
vector X is given by

A = (A, + Ax0s8)% + (A,sin6)> (1.43)
and the angle a by
A,sin @
= tan-! 2
a = tan (A1+A2 Sa) (144)

Since the original functions are given as real components, the sum Xl + X is given
by Re(X ) = Acos(wt + a). The sum of X and X2 can also be found using complex
numbers:
X=X + X, = A" + A0t = (A, + Ae?)er
= (A, + Axos 8 + iA,sin8@)e™!
= Ae'%'! = Aea(w+a) (1.45)

where 4 and «a are given by Egs. (1.43) and (1.44).

Addition of Harmonic Motions

Find the sum of the two harmonic motions x,(#) = 10 cos wt and x,(t) = 15cos(wt + 2).
5

Given: Two harmonic

S~

motions., x
mouons, x

Find: Sum of harmonic motions.

A ) .

PR J mam £
Approach: Equation f
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14.1477 \
N\

N\
\

N.@ \\\
wi + 10 ;“(t)
114.6°
iﬁ}&wt } » Re

O

Figure 1.30

Solution

Method 1: By using trigonometric relations: Since the cir

x,(7) and x,(¢), we express the sum as
x(1) = Acos(wt + a) = x, (1) + x,(t) (E.1)
that is,

A{cos wt cos a — sinwt sina) = 10cos wt + 15cos( wt + 2)
= 10cos wt + 15(cos wrcos2 — sinwrsin2)  (E.2)

that 1s,
cos wi{ Acos a) — sinwt(Asina) = cos wr(10 + 15c0s2) — sinwt(15sin2) (E.3)
By equating the corresponding coefficients of cos wt and sin wt on both sides, we obtain

Acosa =10 + 15¢co0s2
Asina = 15sin2
A = (10 + 15c0s2)* + (15sin2)>
= 14.1477 (E.49)

and
15sin2

— -y ___ - = )} = o
a = tan (10+ 15%82) 74,5963 (E.5)

Method 2: By using vectors: For an arbitrary value of wt, the harmonic motions x,(z) and
x,(z) can be denoted graphically as shown in Fig. 1.30. By adding them vectorially, the
resultant vector x(¢) can be found to be

x(1) = 14.1477 cos( wt + 74.5963°) (E.6)

Method 3: By using complex number representation: The two harmonic motions can be
denoted in terms of complex numbers:

x,(1) = Re[ 4,¢'] = Re[10e*]

x;(1) = Re[ 4, * D] = Re[15e"“* D] (E.7)
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The sum of x;(¢) and x,(t) can be expressed as
x(1) = Re[ Ae'(wi* ] (E.8) i

where A and a can be determined using Eqs. (1.43) and (1.44) as A4 = 14.1477 and’
a = 74.5963°.

itions

The following definitions are useful in dealing with harmonic motion.

Cycle. The movement of a vibrating body from its undisturbed or equilibrium

position to its extreme position in one direction, then to the equilibrium position,
then to its extreme pncitinn in other direction, and back to equilibrium position is

called a cycle of vibration. One revolution (i.e., angular displacement of 27 radians)
of the pin P in Fig. 1.25 or one revolution of the vector OF in Fig. 1.26 constitutes

a cycle.

Amplitude. The maximum displacement of a vibrating body from its cquilibrium
position is called the ampiitude of vibration, In Figs. 1.25 and 1.26 the amplitude of
vibration is equal to A.

Period of Osciiiation. The time taken to compiete one cycie of motion is known as
the period of oscillation or time period and is denoted by 7. It is equal to the time
required for the vector OP in Fig. 1.26 to rotate through an angle of 2« and hence

27
T= —w— (1.46)
where w is calied the circular frequency.
Frequency of Oscillation. The number of cycles per unit time is called the frequency

of oscillation or simply the frequency and is denoted by f. Thus

1 w -

f= Py = L (1.47) ‘

Here w is called the circular frequency to distinguish it from the linear frequency
f=w/2m. o denotes the angular velocity of the cyclic motion; f is measured 1n

cycles per second (Hertz) while w is measured in radians per second.

Phase Angle. Consider two vibratory motions denoted by
x, = A,sin wt (1.48)
x, = A,sin(wt + ¢) (1.49)

The two harmonic motions given by Eqs. (1.48) and (1.49) are called synchronous
because they have the same frequency or angular velocity w. Two synchronous
oscillations need not have the same amplitude, and they need not attain their
maximum values at the same time. The motions given by Egs. (1.48) and (1.49) can
be represented graphically as shown in Fig. 1.31. In this figure, the second vector OP;
leads the first one OP; by an angle ¢, known as the phase angle. This means that the
maximum of the second vector would occur ¢ radians earlier than that of the first
vector. Note that instead of maxima, any other corresponding points can be taken
for finding the phase angle. In Eqgs. (1.48) and (1.49) or in Fig. 1.31, the two vectors
are said to have a phase difference of ¢. -
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»0=uwt

Figure 1.31 Phase difference between two vectors.

Natural Frequency. If a system, after an initial disturbance, is left to vibrate on its
own, the frequency with which it oscillates without external forces is known as its
natural frequency. As will be seen later, a vibratory system having n degrees of
freedom will have, in general, » distinct natural frequencies of vibration.

AONIC ANALYSIS?

Although harmonic motion is simplest to handle, the motion of many vibratory
systems is not harmonic. However, in many cases the vibrations are periodic— for
example, the type shown in Fig. 1.32(a). Fortunately, any periodic function of time
can be represented by Fourier series as an infinite sum of sine and cosine terms
[1.31, 1.32].

If x(t) is a periodic function with period 7, its Fourier series representation is given
by

a : :

x(1) = —2—0 + a,cos wt + a,cos 2wt + +-- +b;sinwt + bysin2wt + - -
4y
2

o0
+ Y (a,cos nwt + b,sin nwt) (1.50)

n=1

where w = 2#/7 is the fundamental frequency and aq, g, a,,..., by, by,... are
constant coefficients. To determine the coefficients a, and b,, we multiply Eq. (1.50)
by cos nwt and sin nwt, respectively, and integrate over one period 1 = 27 /w, for

AU A QLIRS 2230 LR A 2 QI /I G VRS M3 F

example from 0 to 2#/w. Then we notice that all terms except one on the

*The harmonic analysis forms a basis for Section 4.2.
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(1) x(r) 4 One-term approxlmatlen ' Actual functi q
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Figure 1.32 A periodic function.

right-hand side of the equation will be zero, and we obtain

aq = %j:ﬂ/mx(t) dt = %—j:x(t) dt (1.51)
a/w 2 T
a,= %f: / x(t)cos nwtdt = jr-j(;x(t)oosrlwtdt (1.52)
w f2r/w . 2 (7 .
b, = ;j(; x(1t)sin nwtdt = ;r—j(;x(t)sm nwt dt (1.53)

The physical interpretation of Eq. (1.50) is that any periodic function can be
represented as a sum of harmonic functions. Although the series in Eq. (1.50) is an

nfinita cum we can annravimate mnact narndic functinne with the “\pln nF anly a
IINRe sum y VYO LALL ul}l}lul\.llllat\.r most Priiviiy iuinvuaiJiio wiil g ot Cip U1t Uiy a

few harmonic functions. For example, the triangular wave of Fig. 1.32(a) can be
represented closely by adding only three harmonic functions, as shown in Fig.
1.32(b).

Fourier series can also be represented by the sum of cosine terms only:

x(1) = ¢y + ccos{wt — ¢,) + cc0s(20t — ¢,) + ¢+ - (1.54)
where
o = ag/2. (1.55)
¢, = (a2 +52)"” (1.56)
and
o, = tan“(g—") (1.57)

The Fourier series can also be represented in terms of complex numbers by writing

Eq. (1.50) as

MO TR 3 P i YK
S O S B WY

The harmonic functions a,cos nwt or b,sin nwt in Eq. (1.50) are called the
harmonics of order n of the periodic function x(¢). The harmonic of order »n has a

—e ™) (1.58)
/]

nw=]
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Figure 1.33 Frequency spectrum of a typical periodic function of time
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amplitude (a, and b, or ¢, and ¢,) versus frequency ( ) called the frequency
spectrum or spectral diagram. Figure 1.33 shows a typical frequency spectrum.

An even function satisfies the relation

Fan ¥ 3} v 22 2222 L]

x(=1) = x(1) (1.59)
In this case, the Fourier series expansion of --(t) contains only cosine terms:
x(t) == + E a,cos nwt (1.60)
n=}

where a, and a, are given by Egs. (1.51) and (1.52), respectively. An odd function
satisfies the relation
x(—=1t) = —x(1) (1.61)

In this case, the Fourier series expansion of x(¢) contains only sine terms:

[>9]
x(t) = Y bsinnwt (1.62)
n=1
where b, are given by Eq. (1.53). In some cases, a given function may be considered
as even or odd depending on the location of the coordinate axes. For example, the
shifting of the vertical axis from (a) to (b) or (c) in Fig. 1.34(i) will make it an odd or
even function. This means that we need to compute only the coefficients b, or a,
Similarly, a shift in the time axis from (d) to (¢) amounts to adding a constant equal
to the amount of shift. In the case of Fig. 1.34(ii), when the function is considered as
an odd function, the Fourier series expansmn becomes (see Problem 1.40)

x,(t) = E (2 ysi 2”(2"; L (1.63)

On the other hand, if the funcuon is considered as an even function as shown in Fig

1.34(iii), its Fourier series expansion becomes (see Problem 1.40)

-1 2m(2n - 1)t

x,(1) = E (2 ) 0s n (1.64,
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Figure 1.34 Even and odd functions.

Since the functions x,(¢) and x,(t) represent the same wave, except for the location
of the origin, there exists a relationship between their Fourier series expansions also.
Noting that

xl(t + ) = x,(1) (1.65)
we find from Eq. (1.63),

a(i+§)= 4 £ Gy (4 )
_ T gl o l)sin{ 217(2;:— l)t 21r(2n )} (1.66)

Using the relation sin(4 + B) = sin Acos B + cos Asin B, Eq. (1.66) can be ex¥
pressed as

xl(t + I) _M 5 {(2 1 )Sinl'rr(2n 1)y 29(2n - 1)

T T 4
n=]

217(2117— l)tSin 27(2n — 1)} (1.67)

+cos

4
Qince cac?miVy — INV/Al =N far 0 — 1 7 2 ad i 1IN sA 4 1ant]
SIMCE CO51emienn — 1)/5]=Vidor # = 1,2,5,..., anasinf2@{ln — 1}/4]={(—1)
for n =1,2,3,..., Eq. (1.67) reduces to
(LTy_ 443 (=" 2a(2n— 1)1 )
X (l + —) = cos 1.68
! 4 7 )3 (2n - 1) T (
n=1 -
hirh fran hha 1. 3am#i8ad 6 Lo b o cnnn me T £1 £ A
wiliCil Cail O€ 1aCnuica 10 pe une samnie as (1.04)
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In some practical applications, the function x(z) is defined only in the interval O to
r as shown in Fig. 1.35(a). In such a case, there is no condition of periodicity of the
function since the function itself is not defined outside the interval 0 to 7. However,
we can extend the function arbitrarily to include the interval —r to 0 as shown in
either Fig. 1.35(b) or Fig. 1.35(c). The extension of the function indicated in Fig.
1.35(b) results in an odd function x,;(7), while the extension of the function shown
in Fig. 1.35(c) results in an even function x,(¢). Thus the Fourier series expansion
of x,(t) yields only sine terms and that of x,(t) involves only cosine terms. These
Fourier series expansions of x,(¢) and x,(¢) are known as half range expansions
[1.40). Any of these half range expansions can be used to find x(¢) in the interval 0
to 7.

For very simple forms of the function x(t), the integrals of Egs. (1.51) to (1.53) can
be evaluated easily. However, the integration becomes involved if x(¢) does not
have a simple form. In some practical applications, as in the case of experimental
determination of the amplitude of vibration using a vibration transducer, the
function x(t) is not available in the form of a mathematical expression; only the
values of x(f) at a number of points ¢,, t,,..., fy are available, as shown in Fig,

x(t)
(a) Original N
function o T !
x(t)

(b) Extension as an
odd function

(c) Extension as an
even function

Figure 1.35 Extension of a function for half-range expansions.
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evaluated by using a numerical integration procedure like trapezoidal or Simpson’s
rule [1.33].

If 1), 1,,..., ty are assumed to be an even number of equidistant points over the
period 7 (N = even) with the corresponding values of x(¢) given by x, = x(1,).
xy = x(13),..., xy = x(ty), respectively, the application of trapezoidal rule gives
the coefficients a, and b, as' (by setting = = NA¢):

2 )’f )
a,= 5 ) X, (1.69
N i]=vl
2 2nwt
= = ! 70
a,= %5 E,lx,cos - (1.70)
N
2nmt,
b, = %— Y x,sin —— (1.71)
i=1
— ]
MPLE 1.6 Fourier Series Expansion R

Find the Fourier series expansion of the function shown in Fig. 1.32(a).
Given: Saw-1ooth type periodic function (Fig. 1.32a).

Find: Coefficients a, and b, in the Fourier series expansion of Eq. (1.50).

*N needs to be an even number for Simpson’s rule, but not for the trapezoidai rule. Equations (1.69) 0
(1.71) assume that the periodicity condition, x, = x,, holds true.
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Approach: Fourier series expansion of a periodic function,

Solution. The function x(t) can be represented within the first cycle as
t
x(t)=A_,0<t<7 (E.1)

where the period is given by 7 = 27 /w. To compute the Fourier coefficients a, and 5,, we
use Eqgs. (1.51) to (1.53):

a0=—f2"/“’ (1) dt = “’fz”/‘“ (7)0 =4 (E2)

2n/w _w 2n/w 1 .
a, = ;L x(t)cos nwt - dt = Wf A — Cos nuwt dt
A

-H-u
I

Aw 2 177
=—-f"/“’tcosnwt-dt= S + ]
n n

T ) 2 [/ d

——)
]
Q
@
3
&
3
L.
=]
=
E

i
>
~3
i
Y
]
<
o~
i
L8]
N’

_ Qe ot dt= 2 [ 4 n noot -
b, = '”fo x(t)sin nwt - dt = 'rr./(; A - sin nwt - dt
Aw (/0 . A [sinnwt  wtcos nwt]*™™
—;—;L tsin nwt - dt = 2’”2[ 3 ~ o ]0
A
=--——.n=L2.. (E.4)
Therefore the Fourier series expansion of x(t) is
A4 A4 .
x(t) = 5 — —sinwt — 3-sin2wt -
A= . 1., . 1. 11 e ey
=<3 ismwt+ism2wr+-§sm3wt+ ” (E.)5)

The first three terms of the series are shown plotted in Fig. 1.32(b). It can be seen that the
approximation reaches the sawtooth shape even with a small number of terms.

Numerical Fourier Analysis

The pressure fluctuations of water in a pipe, measured at 0.01 second intervals, are given in
Table 1.1. These fluctuations are repetitive in nature. Make a harmonic analysis of the
pressure fluctuations and determine the first three harmonics of the Fourier series expansion.

Given: Pressure fluctuations of water in a pipe at 0.01 second intervals.
Find: First three harmonics of the pressure fluctuation (i.e., a,, a,, @5, a1, by, by, by).

Approach: Fourier series expansion of a periodic function using numerical method [Eqs.
(1.69) through (1.71)].

Solution. Since the given pressure fluctuations repeat every 0.12 sec, the period is * = 0.12
sec and the circular frequency of the first harmonic is 27 radians per 0.12 sec or w = 27/0.12
= 52,36 rad/sec. As the number of observed values in each wave (N) is 12, we obtain from

.~ 11 Z[\\

- \1.07)

E

N
Q=% & P =g L p = 681667 (E.1)
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TABLE 1.1

Time Station, i Time (sec), {, Pressure (kN / m’), p;

0 0 0
1 0.01 20
2 0.02 34
3 0.03 42
4 0.04 49
5 0.05 53
6 0.06 70
7 0.07 60
8 0.08 36
9 0.09 22
10 0.10 16
11 0.11 7
12 0.12 0
= _
n=1 ne=2 n=3
g_ 2mt, . 2mt, 4mt, . 4, 6, )
! t; P; PiOSgTa Pismﬁ]“j P;cos g1 PiSNGT3 pPicOS gy  Pisin
E 1 0.01 20000 17320 10000 10 000 17320 0
0.02 34 000 17000 29444 - 17000 29444 -34000 . '
0.03 42 000 0 42000 — 42000 0 0 — 47
0.04 49000 —24 500 42 434 - 24500 —-42434 49 000
5 0.05 53 000 — 45 898 26 500 26 500 - 45 898 0 5§
6 0.06 70 00G — 70000 0 70 000 0 - 70000 U
7 0.07 60 000 - 51 960 -30000 30000 51960 0 ~ 60000
8 0.08 36 000 - 18000 —-31176 -~ 18000 31176 36000 0
9 0.09 22000 0 -22000 —22000 0 0 22000
iO 0.10 16 000 8000 —13 856 — 8000 -13 856 -16000 0
1 0.11 7000 6062 - 3500 3500 - 6062 0 — 7000
2 0.12 0 0 0 0 0 0 0

() 409 000 —161976 49 846 8500 21650 - 35000 —14000

12
Z () 68166.7 —26996.0 8307.7 1416.7 3608.3 — 58333 ~23333
=1

]
|
|




1.13 Computer Program

The coefficients a, and b, can be determined from Eqgs. (1.70) and (1.71):

p R 2nmi, 1 12 2nmt,

G =N E:l pcos—— = ¢ Z P, COS—mT7 0. 12 (EZ)
2 ¥ 2nm, 1 . 2nmt,

b, = N h p,sm———,r =% Z P SIS (E.3)

l-l

L
i
—

The computations involved in Eqs. (E.2) and (E.3) are shown in Table 1.2. From these
calculations, the Fourier series expansion of the pressure fluctuations p(t) can be cobtained

fsee Eq. (1.50)):
p(1) = 34083.3 — 26996.0 cos 52.36¢ + 8307.7sin 52.36¢

+ 1416.7cos104.72¢t + 3608.3 sin 104.72¢
— 5833.3 cos 157.08t — 2333.35in157.08¢

+ oo N/m? (E.49)

The literature on vibrations is large and diverse. Several textbooks are available

t
{1.34], and dozens of technical periodicals regularly publish papers relating to

vibrations. This is primarily because vibration affects so many disciplines, from
science of materials to machinery analysis to spacecraft structures. Researchers in
many fields must be attentive to vibration research.

The most widely circulated journals that publish papers relating to vibrations
are Journal of Vibration, Acoustics, Stress, and Reliability in Design; Journal of
Applied Mechanics;, Journal of Sound and Vibration, AIAA Journal, ASCE Journal
of Engineering Mechanics;, Earthquake Engineering and Structural Dynamics, Bul-
letin of the Japan Society of Mechanical Engineers;, International Journal of Solids
and Structures; International Journal for Numerical Methods in Engineering; Journal
of the Acoustical Society of America; Sound and Vibration; Vibrations, Mechanical
Systems and Signal Processing, International Journal of Analytical and Experimental
Modal Analysis; and Vehicle System Dynamics. Many of these journals are cited in
the chapter references.

In addition, Shock and Vibration Digest and Applied Mechanics Reviews are
monthly abstract journals containing brief discussions of nearly every published
vibration paper. Formulas and solutions in vibration engineering can be readily
found in references {1.35-1.37)].

D RN/ rARa
n ravanAam
A FORTRAN computer program, in the form of subroutine FO ER, is given for
thae harmimanin amaolucis ~F Fraem i f4Y Th. senrisviomic ~F thic il ou it o ao
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follows:

N = Number of equidistant points at which the values of x(7) are
known. Input data.

M = Number of Fourier coefficients to be computed. Input data,

TIME = Time period of the function x(1). Input da1a.

X = Array of dimension N, containing the known values of x(y),
X(1) = x(t,). Input data.

T = Array of dimension N, containing the known values of ;.
T(I) = 1,. Input data.

AZERO = a, of Eq. (1.69). Output.

A = Array of dimension M, containing the computed values of a, of
Eq. (1.70). Output.

B = Array of dimension M, containing the computed values of b, of

Eq. (1.71). Output.

To illustrate the use of subroutine FORIER, consider Example 1.7 with M = §
instead of M = 3. Thus we have N =12, M =5, and TIME = 0.12. The main

program that call

SRR R saiks

§ 8
of the program are given below.

-_v a2 v.. .-. ANSasaN

utine FORIER, subroutine FORIER itself, and the out

PROGRAM 1
MAIN PROGRAM FOR CALLING THE SUBROUTINE FORIER

OO0O0O00Nn

FOLLOWING 6 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION X(12),T(12),XSIN(12),XC08(12),A(5),B(5)
DATA N,M,TIME /12,5,0.12/
DATA X /20000.0,34000.0,42000,0,49000.0,53000.0,70000.0,60000.0,
2 36000.0,22000.0,16000.0,7000.0,0.0/
DATA T /0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10,0.11,
2 0.12/
C END OF PROBLEM-DEPENDENT DATA
CALL FORIER (N,M,TIME,X,T,AZERO,A,B,XSIN,XC0S)
PRINT 100
100 FORMAT (//,46H FOURIER SERIES EXPANSION OF THE FUNCTION X(T),//)
PRINT 200, N,M,TIME
200 FORMAT (6H DATA: ,//,37H NUMBER OF DATA POINTS IN ONE CYCLE =15,
2 /,42H NUMBER OF FOURIER COEFFICIENTS REQUIRED =,15,/,
3 14H TIME PERIOD =,E15.8)
PRINT 300, (T(1),I=I,N)
300 FORMAT (/,334 TIME AT VARIOUS STATIONS, T(I) =,/,(4E15.8,1X))
PRINT 400, (X(1),I=I,N)
400 TFORMAT (/,31H KNOWN VALUES OF X(I) AT T(I) =,/,(4E15.8,1X))
PRINT 500
500 FORMAT (//,29H RESULTS OF FOURIER ANALYSIS:,/)
PRINT 600, AZERO

600 I-‘GRHAT \on AZERO =,2X,E15.8,//,31H VALUES OF I, A(I) AND B(I) ARE
2.,/)
DO 700, I =I,M
700 PRINT 800, I,ACI),B(I)
800 FORMAT (I5,2X,Ei5. 8,2X,Ei5.8)

STOP
END
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SUBROUTINE FORIER

aOoOOo0O0

SUBROUTINE FORIER (N,M,TIME,X,T,AZERO,A,B,XSIN,XCOS)
DIMENSION X(N),T(N),A(M),B{(M),XSIN(N),XCOS(N)
PI=3.1416
SUMZ=0.0
DO 100 I=1,N
100 SUMZ=SUMZ+X(I)
AZERO=2.0*SUMZ/REAL(N)
DO 300 II=1,M
SUMS=0.0
SUMC=0.0
DO 200 I=I,N
THETA=2. 0%PI*T (I )*REAL(I1)/TIME
XCOS(1)=X(I)*COS(THETA)
XSIN(1)=X(I)*SIN(THETA)
SUMS=SUMS+XSIN(I)
SUMC=SUNC+XCOS(I)
200 CONTINUE
A(II)=2.0*SUMC/REAL(N)
B(II)=2.0*SUMS/REAL(N)

P T 3

RETURN

NUMBER OF DATA PQINTS IN ONE CYCLE = 12
NUMBER OF FOURIER COEFFICIENTS REQUIRED = 5
TIME PERIOD = 0.12000000E+00

TIME AT VARIOUS STATIONS, T(I) =

0.99999998E-02 0.20000000E-01 0.29999999E-01 0.39999999E-01
0.50000001E-01 0.5999999%9E-01 0.70000000E-01 0.79999998E-01
0.90000004E-01 0.10000000E+00 0.11000000E+00 0.12000000E+00

KNOWN VALUES OF X(I) AT T(I) =

0.20000000E+05 0.34000000E+05 0.42000000E+05 0.49000000E+05
0.53000000E+05 0.70000000E+05 0.60000000E+05 0.36000000E+05
0.22000000E+05 0.16000000E+05 0.70000000E+04 0.00000000E+00

RESULTS OF FOURIER ANALYSIS:
AZERO =  0.68166664E+05
VALUES OF I, A(I) AND B(I) ARE

-0.26996299E+05  0.83075869E+04
0.1416634BE+04  0.36084932E+04
~0.58332480E+04 -0.23334373E+04
-0.58340521E+03  0.21650562E+04
-0.21702822E+04 -0.64117188E+03
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REVIEW QUESTIONS

1.1. What was Galileo’s contribution to the development of vibration theory?

1.2. Give the names of two early investigators who derived the governing equation for the
lateral vibration of prismatic bars.

13. Give two examples each of the bad and the good effects of vibration.

14. What are the three elementary parts of a vibrating system?

1.5. Define the degree of freedom of a vibrating system.

1.6. What is the difference between a discrete and a continuous system? Is it possible to
solve any vibration problem as a discrete one?

1.7. What is the difference between free and forced vibration?

1.8. In vibration analysis, can we always disregard damping?

19. Can we identify a nonlinear vibration problem by looking at its governing differential
equation?

1.10. What is the difference between deterministic and random vibration? Give two practical

examples of each.
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1.11, What methods are available for solving the governing equations of a vibration problem?
1.12. How do you connect several springs to increase the overall stiffness?

1.13. Define spring stiffness and damping constant.

1.14, What are the common types of damping?

1.15. What is the difference between harmonic motion and periodic motion?

1.16. State three different ways of expressing a periodic function in terms of its harmonics.

1.17. Define these terms: cycle, amplitude, phase angle, linear frequency, period, and natural
frequency.
1.18. How are 7, w, and f related to each other?

’

1.19. How can we obtain the frequency, phase, and amplitude of a harmonic motion from the
corresponding rotating vector?

1.20. How do you add two harmonic motions having different frequencies?
1.21. Suggest two methods for finding the time derivative of a harmonic motion.
1.22. What is harmonic analysis?

1.23. Give the names of two technical journals and two abstract journals for vibration
research,

1.24. What are half range expansions?

PROBLEMS

The problem assignments are organized as follows:

Section
Problems Covered Topic Covered

1.1-13 1.6 Vibration analysis procedure
14-1.16,1.21 1.7 Spring elements
1.10,1.16-1.19 18 Mass elements
1.20,1.22,1.23 1.9 Damping elements

1.24-1.37 1.10 Harmonic motion
1.38-1.49 1.11 Harmonic analysis
1.50-1.53 1.13 Computer program

LL* A study of the response of a human body subjected to vibration /shock is important in
many applications. In a standing posture, the masses of head, upper torso, hips, and

*The asterisk denotes a design type problem or a problem with no unique answer.



Problems

1.2.*

1.3+

51

legs, and the elasticity /damping of neck, spinal column, abdomen, and legs influence
the response characteristics. Develop a sequence of three improved approximations for
modeling the human body.

A reciprocating engine is mounted on a foundation as shown in Fig. 1.37. The
unbalanced forces and moments developed in the engine are transmitted to the frame
and the foundation. An elastic pad is placed between the engine and the foundation
block to reduce the transmission of vibration. Develop two mathematical models of
the system using a gradual refinement of the modeling process.

An automobile moving over a rough road (Fig. 1.38) can be modeled considering (a)
the weight of the car body, passengers, seats, front wheels, and rear wheels; (b) the
of tires lsl_J,sI_')ensim;)i main springs, and seats; and (c) da_mping of the seats,

S Liia3iAL A2agiil opA2 228 Qlill aLdia, Al % LA NS L | et 4

i i wa =

shock absorbers, and tires. Develop three mathematical models of the system using a
gradual refinement in the modeling process.

——— Frame

Reciprocating

engine

Bolts

< .9

oo

Q
» o

' o

Elastic pad

ure 1.37 A reciprocating engine on foundation

1.4.
1.5.
1.6.
1.7.

1.8.

o e ) !
o RGN A U » SHIE &
N \\\\\\\\R\\\\\\\\K\\\\

O " Mo g
0 ° & QD.{Q:.. Foundation
Qg g KO block
NENNSNNNNNN
Soil

Figure 1.38 An automobile moving on a rough road

Determine the equivalent spring constant of the system shown in Fig. 1.39.
In Fig 1.40, find the equivalent spring constant of the system in the direction of 8.
Find the equivalent torsional spring constant of the system shown in Fig, 1.41.

A machine of mass m = 500 kg is mounted on a simply supported steel beam of
length / = 2 m having a rectangular cross-section (depth = 0.1, m, width = 1.2 m) and
Young’s modulus E = 2.06 X 10" N/m’. To reduce the vertical deflection of the
beam, a spring of stiffness k is attached at the mid-span, as shown in Fig. 1.42.
Determine the value of k needed to reduce the deflection of the beam to one-third of
its original value. Assume that the mass of the beam is negligible.

Four identical rigid bars—each of length a—are connected to a spring of stifiness k

to form a

ctrnatiira far Aareed il 1
<L LI a Suul

ture lor carrying a vertical load P, as shown in Figs. 1.43{a) and (b).
Find the equivalent spring constant of the system k.., for each case, disregarding the

eq*
masses of the bars and the friction in the joints.

The t_ripod shown in Fig. 1.44 is used for mounting an electronic instrument that finds
the distance between two points in space. The legs of the tripod are located symmetri-
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Problems

(a)

Figure 1.43

1.10.

.

Figure 1.44
mnller ate oot blaa cnld e gl 1 avia ansh las avaliicon ne awmal S RO Ny A.J T.
\'d.lly avout iNnc miag-vertcai 3y Cdlll ICE Mldklllg all an BIC & With 1n¢ verticai. 1.
leg has a length of / and axial stiffiness of k, find the equivalent spring stiffness .

tripod in the vertical direction.

Find the equivalent spring constant and equivalent mass of the system shown i
1.45 with reference to 6.
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1.11. Find the length of the equivalent uniform hollow shaft of inner diameter « ang
thickness ¢ that has the same axial spring constant as that of the solid conical shaft
shown in Fig. 1.46.

1.12. The force-deflection characteristic of a spring is described by F = 500x + 2x* where
the force (F) is in Newtons and the deflection (x) is in millimeters. Find (1) the
linearized spring constant at x = 10 mm, and (ii) the spring forces at x = 9 mm apnq
x =11 mm using the linearized spring constant. Also find the error in the \Pring
forces found in (ii).

mn

1

$

[ ’-____/
. . . . - — d Cross sectional ___|
‘ —& area=A Air A

volume = v

pressure = p ‘

Figure 1.47

1.13. Figure 1.47 shows an air spring. This type of spring is generally used for obtaining
very low natural frequencies while maintaining zero deflection under static loads. Find
the spring constant of this air spring by assuming that the pressure p and volume v
change adiabatically when the mass m moves.
Hint: pv* = constant for an adiabatic process, where y is the ratio of specific heats.
For air, y = 1.4.

1.14. Find the equivalent spring constant of the system shown in Fig. 1.48 in the direction
of the load P.
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1.15.*% Design a steel helical compression spring to satisfy the following requirements:
Spring stiffness (k) > 8000 N/mm
Fundamental natural frequency of vibration ( f;) > 0.4 Hz
Spring index (D/d) > 6
Number of active turns (N) > 10.
! The stiffness and fundamental natural frequency of the spring are given by [1.41]:

Gd* kg
= 8D3N and fl = 1/2 W

where G = shear modulus, d = wire diameter, D = coil diameter, W = weight of the

LRLLIS -~ L4 a2 SRR 2, wiips

spring, and g = acceleration due to gravity.

k

1.16. Two sector gears, located at the ends of links 1 and 2, are engaged together and rotate
about O, and 0, as shown in Fig. 1.49, If links 1 and 2 are connected to springs k, to
k, and k, and k,, as shown, find the equivalent torsional spring stiffness and
equivalent mass moment of inertia of the system with reference to 8,. Assume (a) the
mass moment of inertia of link 1 (including the sector gear) about O, as J; and that of
link 2 (including the sector gear) about O, as J,, and (b) the angles 8, and 8, to be
small.

jo-——— 2 "

re 1.49

1.17. In Fig. 1.50, find the equivalent mass of the rocker arm assembly, referred to the x
coordinate.
1.18. Find the equivalent mass moment of inertia of the gear train shown in Fig. 1.51, with

reference to the driving shaft. In Fig. 1.51, J and n, denote the mass moment of
inertia and the number of teeth, respectively, of gear i, i = 1,2,...,2N.

1.19. Two masses, having mass moments of inertia J, and J, are placed on rotating rigid
shafts that are connected by gears, as shown in Fig. 1.52. If the number of teeth on



CHAPTER 1 Fundamentals of Vibration

Z
7
I
Z
Z

PP PP PP PP '

Z

’// J'u o
; “~

Z

Z ia x

7z Z

7 4

4 k

T—wWW— m -+
4

7 @)

Figure 1.50 !

gears 1 and 2 are n, and n
corresponding to 8,.
1.20. Find a single equivalent damping constant for the following cases:
i. When three dampers are parallel.
ii. When three dampers are in series.

iii. When three dampers are connected to a rigid bar (Fig. 1.53), and the equiva]enq
damper is at the site ¢,.

Driving
MOtO!’, Shaft 1
] 1 ]..n.
motor —
] Shaft 2
I IT7I7777777777 Iy, my |2 3| 15, ns Shaft N
- e Shaft 3
/ a —y Gear 2N - 1
I~ 1, -
Jon |4 N -1y My - .
_‘ —

——

Shaft N + 1
Load.
Tt

£ e DIAT —
ucdl 4iv |

Jon, Moy
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Problems

ls

R

Pivot
Cy Tx'l (%) I)Ea Cy X‘l

Gear2, n, 277 77 777,

lre 1.52

Rotational masses on geared shafts Figure 1.53 Dampers connected to a ngid bar.

iv. When three torsional dampers are located on geared shafts (Fig. 1.54), and the
equivalent damper is at the location ¢,,.

Hint: The energy dissipated by a viscous damper in a cycle during harmonic motion is

given by mcw X2, where ¢ is the damping constant, w is the frequency, and X is the

amplitude of oscillation.

Figure 1.54 Dampers located on geared shafts

1.21.* Design an air spring using a cylindrical container and a piston to achieve a spring
constant of 75 1b/in. Assume that the maximum air pressure available is 200 psi.

1.22.* Design a shock absorber (piston-cylinder type dashpot) to obtain a damping constant
of 10° Ib-sec/in. using SAE 30 oil at 70° F. The diameter of the piston has to be less
than 2.5 inches.

1.23. Develop an expression for the damping constant of the rotational damper shown in
Fig. 1.55 in terms of D, d, [, h, w, and u, where w denotes the constant angular
velocity of the inner cylinder, and 4 and h represent the radial and ax:al clearances
between the inner and outer cylinders.

1.24. Express the complex number S + 2/ in the exponential form Ae.

1.25. Add the two complex numbers (1 + 2i) and (3 — 4/) and express the result in the
form Ae'.

1.26. Verify that the harmonic functions x,(t) = A cos(wr + ¢) and x,(r) = A,sin(wt + ¢)
satisfy the differential equation d2x/dr® + w’x = Q.
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machine is subjected to the motion x(¢) = A cos(50¢ + a) mm. The imtial condi-
pns are given by x(0) = 3 mm and x(0) = 1.0 m/s.
Find the constants 4 and a.

xMrace ation i o faY A e oo A iz mmd Ao lifl
th t form x{¢) = Ajcos wt + A,sinwt, and identify th

I = PRy ol
LAPICSS UWIC LIuudunll 111 ur

constants 4, and 4,.

o

how that any linear combination of sinwt and cos wt such that x(7) = A,cos wt +
Lsin wt (A, A, = constants) represents a simple harmonic motion.

ind the sum of the two harmonic motions x;(t) = Scos(3t + 1) and x,(¢) =
}cos(3t + 2). Use:

trigonometric relations

vector addition

complex number representation

one of the components of the harmonic motion x(¢) = 10sin(w? + 60°) is x,(¢) =
sin(w? + 30°), find the other component.

’onsider the two harmonic motions x,(f) = cos%t and x,(¢) = sin#s. Is the sum
1(#) + x,(¢) a periodic motion? If so, what is its period?

nsider two harmonic motions of different frequencies: x,(¢) = 2cos2t and x,(¢) =
s3t. Is the sum x,(¢r) + x,(¢) a harmonic motion? If so, what is its period?

onsider the two harmonic motions x,(¢) = ‘cos3t and x,(t) = cos nt. Is the differ-
ace x(¢) = x;(f) ~ x,(t) a harmonic motion? If so, what is its period?

Vhenever two harmonic motions x,(f) and x,(t) having slightly different frequencies
re combined, the amplitude of the resulting motion x(z) varies between a maximum
nd a minimum value. Every time the amplitude of x(¢) reaches a maximum, there is
1ud to be a beat. What are the maximum and minimum amplitudes of the combined
1otion x(¢) = x,(1) + x,(¢) when x,(¢) = 3sin30¢ and x,(¢) = 3sin29%? Also find
ie frequency of beats corresponding to x(t).



Problems

1.35.

1.36.

1.37.

1.38.

-
(o
o

1.40.

1.41.

A harmonic motion has an amplitude of 0.05 m and a frequency of 10 Hz. Find
period, maximum velocity, and maximum acceleration.

An accelerometer mounted on a building frame indicates that the frame is vibra:
harmomically at 15 cps, with a maximum acceleration of 0.5 g. Determine
amplitude and the maximum velocity of the building frame.

The maximum amplitude and the maximum acceleration of the foundation c
centrifugal pump were found to be x,,, = 0.25 mm and ., = 04 g Find
operating speed of the pump.

Express the complex Fourier series expansion of Eq. (1.58) in the form

o0
x( t) = Z clle'"wt

= —00

and identify the expression for c,.

Prove that the sine Fourier components (b,) are zero for even functions, that is, w
x(—1t) = x(t). Also prove that the cosine Fourier components (a, and a,) are z

for odd functions, that is, when x(—1t) = — x(¢).

Find the Fourier series expansions of the functions shown in Figs. 1.34(ii) and (
Also, find their Fourier series expansions when the time axis is shifted down b
distance A.

The impact force created by a forging hammer can be modeled as shown in Fig. 1
Determine the Fourier series expansion of the impact force.

x(1) x(1) 4
A Al
0 > 0
3 T Eu 2t 5; t T Zt
Figure 1.56 Figure 1.57

1.42-1.44. Find the Fourier series expansions of the periodic functions shown in Figs. 1.5

x(t) ¢

N A

1.59. Also plot the corresponding frequency spectra.

/\ ot

N ~N
0 \ r i 3\ y 4 \ >
\ /t \ /ZI \ ! \\ \ \
AV v | d > e
Figure 1.58 Figure 1.59
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1.45.  Conduct a harmonic analysis, including the first three harmonics, of the function gjvg

below:

002 004 006 008 010 012 014 016 018

9 13 17 29 43 59 63 57 49

020 022 024 026 028 030 032

35 35 41 47 41 13 7

1.46. In a centrifugal fan (Fig. 1.60a), the air at any point 1s subjected to an impulse eac
time a blade passes the point, as shown in Fig. 1.60(b). The frequency of thesﬂ
impulses 1s determined by the speed of rotation of the impeller n and the number of
blades N in the impeller. For » = 100 rpm and N = 4, determine the first lhreg
harmonics of the pressure fluctuation shown in Fig. 1.60(b).

( )

Pressure (psi)

Il

Impeller
0 T T 5t T Yt Kl
4 4 3
{a) Centrifugal fan (b) Ideal pressure fluctuation at a point
Figure 1.60

1

1.47. The torque (M,) variation with time, of an internal combustion engine, is given i

Table

1.3. Make a harmonic analysis of the torque. Find the amplitudes of the firs*

three harmonics.

TABLE 1.3

s) M(N-m) Hs) M(N-m) ts) M(N-m)

LA

770 0.00450 1890 0.00850 1050
810 0.00500 1750 0.00900 990
850 0.00550 1630 0.00950 930
910 0.00600 1510 0.01000 890
1010 0.00650 1390 0.01050 850
1170 0.00700 1290 0.01100 810
1370 0.00750 1190 0.01150 710

1610 0 00800 1110 0.01200 750

vvvvvv V.U A LU A




Problems 61

1.48.*% A shider crank mechanism is shown in Fig. 1.61. Derive an expression for the motion
of the piston P in terms of the crank length r, connecting rod length /, and the
constant anguiar velocity of the crank w.

i. Discuss the feasibility of using the mechanism for the generation of harmonic
motion.

ii. Find the value of //r for which the amplitude of every higher harmonic is smaller
than that of the first harmonic by a factor of at least 25.

40

30 // ’\-1,’

S
™

e —~10

-20 \ 1

. A
AV,

0 01 0.2 0.3 0.4 0.5 0.6

Lo LR R TR
LITNE (SeCONUs)

Force {newions)
o

Figure 1.62

2

/

£ f
g, ][
E
1
a8 1

-2

0 005 0.10 0.15 020 025 030 035
Time (seconds)

.
e
B

Figure 1.61 Figure 1.63

1.49. Make a harmonic analysis of the function shown in Fig. 1.62, including the first three
harmonics.

1.50. Solve Problem 1.47 using subroutine FORIER.
1.51.  Solve Problem 1.45 using subroutine FORIER

18 Lacorasming ~8 sla £
Bediee l lllu UIC lllbl bm itaril Ul-l.l\-a Ul

FORIER.

1.53. Use subroutine FORIER to conduct a harmonic analysis of the function shown in Fig.
1.63, including the first ten harmonics.
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Sir Isaac Newton (1642-1727) was an Enghish naturai
philosopher, a professor of mathematics at Cambridge
University, and President of the Royal Society. His
“prncipla Mathematica™ (1687), which deais with the laws
and conditions of motion, is considered to be the greatest
scientific work ever produced. The definitions of force,
mass, and momenium, and his three laws of motion Crop
up continually in dynamics. Quite fitingly, the unit of force
named "Newton' in Si units happens to be the approximate
weight of an average apple, which inspired tim to study
the laws of gravity (Courtesy of the Granger Collection)

2.1 INTRODUCTION

Figure 2.1(a) shows a spring-mass system that represents the simplest possible
vibratory system. It is called a single degree of freedom system since one coordinate
(x) 1s sufficient to specify the position of the mass at any time. There is no external
force applied to the mass; hence the motion resulting from an initial disturbance
will be a free vibration. Since there is no element that causes dissipation of energy
during the motion of the mass, the amplitude of motion remains constant with time;
it is an undamped system. In actual practice, except in a vacuum, the amplitude of
X free vibration diminishes gradually over time, due to the resistance offered by the
surrounding medium (such as air). Such vibrations are said to be damped. The study
of the free vibration of undamped and damped single degree of freedom systems is
fundamental to the understanding of more advanced topics in vibrations.

Several mechanical and structural systems can be idealized as single degree of
freedom systems. In many practical systems, the mass is distributed, but for a
simple analysis, it can be approximated by a single point mass. Similarly, the
elasticity of the system, which may be distributed throughout the system, can also
be idealized by a single spring. For the cam-and-follower system shown in Fig. 1.21,
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1

0 "—-b +x I'-Free= le:gth—ti—x—-.i |_\.

Y, kx
- awww—  m —

N 'v—-Stretched length—<| ’
(b) . H

Figure 2.1. A spring-mass system in horizontal position.

LA
~

for example, the various masses were replaced by an equivalent mass (m,,) in
Example 1.3. The elements of the follower system (pushrod, rocker arm, valve, and
valve spring) are all elastic but can be reduced to a single equivalent spring of
stiffness k... For a simple analysis, the cam-and-follower system can thus be

:Annl;-nrl no n (‘I-\l"ln I'Iﬂf"‘ﬂﬂ A“ c—nnrlnm ﬂnn..n l‘“’\“fﬂ

IMLallivGg ao a DIHBIC UCEIW Ul 11O uulIl apuus'luaaa byblclll’ aa QUiIVUWII lll I. 15 é/.
Similarly, the building frame shown in Fig. 2.3(a) can be idealized as a spring-mass;
system, as shown in Fig. 2.3(b). In this case, since the spring constant k is merely
the ratio of force to deflection, it can be determined from the geometric anf
material properties of the columns. The mass of the idealized system is the same

that Af tha Alanr if we acenmea + em

f the snliimne tn ha naaliothla
viigy Ui uu. HUVUL 11 VWL AdJuliiv Ll 1 LW A

WLWLLLIIO W Uv LVELIRIVIL.

q

.
@

Figure 2.2. Equivalent spring-mass system for the cam-and-follower system of Fig 1.21.
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Rigid floor

x(t) (mass = m) x(t)
— >
T H H HHH iy

Elastic columns
{mass is neohmhlp\

v N

x(1)

777777 o 777, (b) Equivalent spring —
(a) Building frame mass system

Figure 2.3. Idealization of a building frame

N UNDAMPED
ONAL SYSTEM

It W I W T

A
Tl

F
TRANSLA

[ Rt t R

Spring-mass System in Horizontal Position. Consider the undamped single degree

of freedom svstem shown In pla 2 1[5:\ The mass 1s sunnorted on frictionless rollers

3y uwvnn; JALARS VY 2a L) o wid 4 AW LIRsRAL

and can have translatory motlon in the horizontal direction. The unstretched length
of the spring is /;. Let the mass be displaced a distance + x from its rest position.
This results in a spring force kx, as shown in Fig. 2.1(c). Newton’s second law states
that

mass X acceleration = resultant force on the mass (2.1)

The application of Eq. (2.1) to the mass m yields the equation of motion

mi = —kx
or
mxi+ kx =20 (2-2)

2
where ¥ = % is the acceleration of the mass.

Spring-mass System in Vertical Position. Consider the configuration of the spring-

mass system shown in Fig. 2.4(a). The mass hangs at the lower end of a spring,
which in turn is attached to a rieid sunnort at its unner end. At rest the mass will

VY LLIA QL RER RWARSS SW it <« 12 S WFLL AL AR Wil WEAME, § AL A WIL ViAW AARiaUWw
o i of of had of o

hang in a position called the static equilibrium position, in which the upward spring
force exactly balances the downward gravitational force on the mass. In this
position the length of the spring is /, + 8, where §,, is the static deflection—the
elongation due to the weight W of the mass m. From Fig. 2.4(a), we find that, for
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k IO + 65! I
kg :
!
o I Static equilibrium
y - position
BE §
1 —————-1— -~ -¥_ Final position
1 1 +x
+x
K(By + 1) Spring force

—

Potcnual
m energy
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i.__—b“ ~d TStaticequilibrium
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=
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A
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Figure 2.4. A spring-mass system in vertical position.

static equilibrium,

W = mg = ké§, (2.
where g is the acceleration due to gravity. Let the mass be deflected a distance +a,
from its static equilibrium position; then the spring force is —k(x + d,,), as shown

in Fig. 2.4(c). The application of Newton’s second law of motion to the mass m
gives

mi= —k(x+8,)+ W

and since k§, = W, we obtain

mi+ kx =0 (2.4)

innl Thin inAdinntas that sdha ss .
. 118 ingicates tnat wnen a ma :

eight, provided we measure x from

0©
=]
—
a9
=
Q ..
"|
= o
U'l
i

its static equilibrium posmon.
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Equation (2.2) can also be derived by using the conservation of energy principle. To
apply this principle, first note that the system shown in Fig. 2.1(a) is conservative,
since there is no energy dissipation due to damping. During vibration, the energy of
the system is partly kinetic and partly potential. The kinetic energy T is stored in
the mass by virtue of its velocity, and the potential energy U is stored in the spring
by virtue of its elastic deformation. Due to the conservation of energy, we have

T + U = constant

or
d(r+v)- (2.5)
The kinetic and potential energies are given by
T = imx? (2.6)
and*
U= 1kx? 2n
Substitution of Eqs. (2.6) and (2.7) into Eq. (2.5) yields the desired equation
mi + kx =0 (2.2)

The solution of Eq. (2.2) can be found by assuming
x(t) = Ce" (2.8)

where C and s are constants to be determined. Substitution of Eq. (2.8) into Eq.
(2.2) gives

C(ms®+k)=0

Since C cannot be zero, we have

ms?+ k=0 (2.9)
and hence

& \1/2
s = j:(—;!') = tiw, (210)
where i = (-1)/? and
k\1/2
w, = (—n-;) (2.11)

Equation (2.9) is called the auxiliary or the characteristic equation corresponding to

* Equation (2.7) can also be derived by considering the weight of the mass (Fig. 2.4). Since the sDnna
force is mg at x = 0, the potential energy of the spring under the deformation x will be mgx + 1kx as
shown in Flg 2.4(d). The potential energy of the system due to the change in elevation of the mass (note
that +x is downwards) is —mgx. Thus the net potential energy of the system about the static

equilibrium position is given by

U = potential energy of the spring + change in potential energy due to change in elevation of the mass m
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the differential Eq. (2.2). The two values of s given by Eq. (2.10) are the roots of the
characteristic equation, also known as the eigenvalues or the characteristic values of
the problem. Since both values of s satisfy Eq. (2.9), the general solution of Eq. 22
can be expressed as

x(t) = Cle'n + Cye™'ent (2.12)
where C, and G, are constants. By using the identities

et = cosat + isinat
Eq. (2.12) can be rewritten as

x(t) = Acos w,t + A,sinw,? (213)

where 4 and A. are new constants. The constants C. and C, or A, and A. can he
¥ AAWE W 111 CALANG 1:2 A W LAWYY WRLLORUALLLT, L liWw WULIUUERliWw \,l [ 3 FA VY \..2 i 111 CLLAL 112 Al Ul

determined from the initial conditions of the system. If the values of displacement
x(¢) and velocity x(¢) = (dx/dt)(t) are specified as x4, and X%, at 1 = 0, we have,
from Eq. (2.13), |
x(1=0) = 4 = x, |
(1=0)

— 3 fY 14
\

A
~.19)

X
x(1) = xqos w,t + =Csinw,¢ (2.15)

Equations (2.12), (2.13), and (2.15) are harmonic functions of time. The motion is
symmetric about the equilibrium position of the mass m. The velocity is a maximum!
and the acceleration is zero each time the mass passes through this position. At the
extreme displacements the velocity is zero and the acceleration is a maximum. Since
this represents simple harmonic motion (see Sec. 1.10), the spring-mass system itself
is called a harmonic oscillator. The quantity w,, given by Eq. (2.11), represents the
natural frequency of vibration of the system.

Equation (2.13) can be expressed in a different form by introducing the notation

A, = Acos¢
A, = Asing (2.16)

where A and ¢ are the new constants which can be expressed in terms of 4, and 4,
as

Wy,

. 212
x
A= (a2 +a42) = [xg + ( 0) l = amplitude

A X
= -1 —2 = -1 0 = 7
¢ = tan ( 7, ) tan ( xo‘*’n) phase angle (2.17)

Introducing Eq. (2.16) into Eq. (2.13), the solution can be written as
x(1) = Acos(w,t — ¢) (2.18)
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Figure 2,5, Graphical representation of the motion of a harmonic oscillator.

By using the relations

A; = Aysin ¢,
2 = A0S ¢ (2.19)
Eq. (2.13) can also be expressed as
x(1) = Agsin(w,? + ¢,) (2.20)
where
) 1,2
Ag=A= [x§+ (:’9)] (2.21)
and
¢ = tan"'(m) (2.22)
X0

The nature of harmonic oscillation can be represented graphically as in Fig.
2.5(a). If A denotes a vector of magnitude 4 which makes an angle w,t — ¢ with
respect to the vertical (x) axis, then the solution, Eq. (2.18), can be seen to be the
projection of the vector 4 on the x-axis. The constants 4, and 4, of Eq. (2.13),
given by Eq. (2.16), are merely the rectangular components of A along two

el o 1 avag malking analac & anAd th racmant ¢t tha vantae A Cinca

(8]} lllUBUlldl AAVO 1llanillg allpivo W aliud _\2 = !P} Wllll ICDPC\'I. 0 I.llC VoL Llul 1. Jllive
the angle w,’ — ¢ is a linear function of time, it increases linearly with time; the
entire diagram thus rotates anticlockwise at an angular velocity w,. As the diagram
(Fig. 2.5a) rotates, the projection of A onto the x- axis varies harmomcally so that

the motion repeats itself every time the vector A4 sweeps an angle of 2. The
projection of A namelv x(t), is shown lv!! d in Fig. 2.5(b) as a function of ti time,

(LIS LSS § 2 Q2L & a2 a . Lo V7 2



o ]
CHAPTER 2  Free Vibration of Single Degree of Freedom Systems

The phase angle ¢ can also be interpreted as the angle between the origin and thel
first peak.
Note the following aspects of the spring-mass system:

1. If the spring-mass system is in a vertical position, as shown in Fig. 2.4(a), the
circular natural frequency can be expressed as

k 1/2
w, = (-r;;) (2.23)
The spring constant k can be expressed in terms of the mass m from Eq. (2.3)
as
1!) mg
k= = == 2.24
5, = 3, 12:24)
Substitution of Eq. (2.24) into Eq. (2.11) yields
1/2
w, = (£) (2.25) |
"0y !

Hence the natural frequency in cycles per second and the natural period are
given by

1/2
_1[8) (2 26)

L 27\ 0,] R
1 58172

T, = 7 = 2w(-gi") (2.27).1!

Thus, when the mass vibrates in a vertical direction, we can compute the natural*
frequency and the period of vibration by simply measuring the static detiection
§,,. It is not necessary that we know the spring stiffness & and the mass m.

2. From Eq. (2.18), the velocity %(¢) and the acceleration X(¢) of the mass m a‘
time ¢ can be obtained as

x(1) = Z—f(t) = —w,Asin(w,t — ¢) = w"Acos(w,,t - ¢+ %)
X(t) = d — (t) = —w?dcos(w,t — ¢) = widcos(w,t — ¢ +m) (2.28)

Equation (2.28) shows that the velocity leads the displacement by § and the
acceleration leads the displacement by .

3. If the initial displacement (x,) is zero, Eq. (2.18) becomes
x(t) = gqcos(w,,t - %) = —sinw,t (2.29)

On the other hand, if the initial velocity (X,) is zero, the solution becomes 1

x(1) = x,co8 w,! (2.30)
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21 Natural Frequency of Hoisting System - L < g
Find the natural frequency of vibration in the vertical direction of the hoisting system shown
in Fig. 1.16(a).
Given: Hoisting system of Fig. 1.16(a) with cantilever, rope, and weight.
Find: Natural frequency of vibration of the system in the vertical direction.
A nnenrrnh c;ﬂnln Aanrans Af froadAm idanlizatiAn
I'!}I TUULTS Ullls.l\. us.s.u.\.. Vi 1iveJauill 1dvanLauivil.
(
Solution: The equivalent spring constant of the system (cantilever beam and rope) was
derived in Example 1.1:
k,k E 2d?
kcn=._”%=7{—#ﬁ\ (E.1)
T Rp TR, T\7wbd’ + lat’ ] R
The cantilever, rope, and the weight being lifted can now be modeled as a single degree of
freedom system, as shown in Fig. 1.16(c). This leads to the natural frequency of the system:
(kea\'?  (kea8\? [ Eg{ wmad® \1'? (E2)
W, = —_— = —— = —_— e e R
=) \" W) l4W\ﬂb2d3+Iat3”
\E 2.2 Natural Frequency of Pulley System B

Determine the natural frequency of the system shown in Fig. 2.6. Assume the pulleys to be
frictionless and of neghgible mass.

Pulley |

Figure 2.6
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Given: System consisting of two pulleys and a mass as shown in Fig. 26,
Find: Natural frequency of vibration of the mass.
Approach: Single degree of freedom idealization.

Solution. Since the pulleys are frictionless and massless, the tension in the rope is const

and is equal to the weight W of the mass m. Thus the upward force acting on pulley 1 is 2%,
and the downward force acting on pulley 2 is 2W. The center of pulley 1 moves up by a
distance 2W/k,, and the center of pulley 2 moves down by 2W/k,. Thus the total movemeng

of the mass m is
2w 2w
Z(Tr * Tz)

as the rope on either side of the pulley is free to move the mass downward. If k.q denotes the
equivalent spring constant of the system,

weight of the mass
equivalent spring constant

= pet displacement of the mass

W (1 1) AWk + k)
VRS N
keq = 4—(;% (E.1)
If the equation of motion of the mass is written as ]
mi + koyx = 0 (E2)
the natural frequency is given by
1/2 1/2 !
w, = (%ﬂ) = [—4—’-1-1(—:—;!%’(—2) ’ rad/sec (E3)
or
172
L= %’I = ‘tl_w[_——m(kljlizkz) ’ cycles/sec (E4)

FREE VIBRATION OF AN UNDAMPED
TORSIONAL SYSTEM

If a nigid body oscillates about a specific reference axis, the resulting motion is
called torsional vibration. In this case, the displacement of the body is measured in
terms of an angular coordinate. In a torsional vibration problem, the restoring
moment may be due to the torsion of an elastic member or to the unbalanced
moment of a force or couple.

Figure 2.7 shows a disc, which has a polar mass moment of inertia J,, mounted
at one end of a solid circular shaft, the other end of which is fixed. Let the angular
rotation of the disc about the axis of the shaft be §; ¢ also represents the angle of

e oLy — ol o fao sha
twist of the shaft. From the theory of torsion of circular shafts | {2.1], we have the
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Figure 2.7. Torsional vibration of a disc.

relation

M = G.IIB
where M, is the torque that produces the twist 8, G is the shear modulus, / is the
length of the shaft, J is the polar moment of inertia of the cross section of the shaft
given by

(2.31)

wd*
32
and d is the diameter of the shaft. If the disc is displaced by @ from its equilibrium
position, the shaft provides a restoring torque of magnitude M,. Thus the shaft acts
as a torsional spring with a torsional spring constant

M, G «Gd*

J = (2.32)

I

I

|
—
)
o
<o
j ——

The equation of the angular motion of the disc about its axis can be derived by
using Newton’s second law or the principle of conservation of energy. By consider-
ing the free body diagram of the disc (Fig. 2.7b), we can derive the equation of
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motion by applying Newton’s second law of motion:
Jf + k=0 (2.34

which can be seen to be identical to Eq. (2.2) if the polar mass moment of inertia J
the angular displacement 6, and the torsional spring constant &, are replaced by t}
mass m, the displacement x, and the linear spring constant &, respectively. Thus lhj
natural circular frequency of the torsional system is

k, 1,2
= (Tn) (2.35

and the period and frequency of vibration in cycles per second are

J
T, -211(12) (2.36

RNIAY
f,.—z—,,;(J—O) (2.37

Note the following aspects of this system:

1. If the cross section of the shaft supporting the disc is not circular, an appropm
ate torsional spring constant is to be used [2.4, 2.5].

2. The polar mass moment of inertia of a disc is given by
phnD*  WD?
32 = 8g

where p is the mass density, A& is the thickness, D is the diameter, and W' is thas:
weight of the disc.

3. The torsional spring-inertia system shown in Fig. 2.7 is referred to as a torsional
pendulum. One of the most important applications of a torsional pendulum is in
a mechanical clock, where a ratchet and pawl convert the regular oscillation of a
small torsional pendulum into the movements of the hands.

JO=

The general solution of Eq. (2.34) can be obtained, as in the case of Eq. (2.2):
(1) = A,cos w,! + A,sin w,! (2.38);

where w, is given by Eq. (2.35), and A, and 4, can be determined from the initial
conditions. If

0(1=0)=6, and @(1=0)=—"7(r=0)=4, (2.39)°

!\J
(S
S

A — A r i
A2 = Y/ w, {

Equation (2.38) can also be seen to represent a simple harmonic motion.
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ME~ Natural Frequency of Compound Pendulum

Any rigid body pivoted at a point other than its center of mass will oscillate about the pi
point under its own gravitational force. Such a system is known as a compound pendul
(Fig. 2.8). Find the natural frequency of such a system.

Given: Rigid body oscillating about the pivot point O under gravity.
Find: Natural frequency of angular oscillations.
Approach: lIdealize the system as a single degree of freedom torsional system,

Solution. Let O be the point of suspension and G be the center of mass of the compou
pendulum, as shown in Fig. 2.8. Let the rigid body oscillate in the xy plane so that

noanediemnta O nnm o craad ta Aacneiha $to mane T oas 1 donnta tha dlotnmnns hate nan P |

COOIainailc v caim oc [Yh1=lV SuiV ) QesCrioe llb l.llUuUl.l L.Cl “ Jcliuic Luc U]Dld.llbc UCLWCCI.I O auu
and J, the mass moment of inertia of the body about the z-axis (perpendicular to both x z
y). For a displacement 6, the restoring torque (due to the weight of the body W)
(Wd sinf) and the equation of motion is

J§ + Wdsin8 =0 (E
For small angles of oscillation, sin @ = 8. Hence Eq. (E.1) can be expressed as
Job + wdb =0 (E

This gives the natural frequency of the compound pendulum:

E

_—

. Wd 1/2= ﬂgﬂ”z
A

B

VAR a3k
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Comparing Eq. (E.3) with the natural frequency of a simple pendulum, w, = (8/! Y2 (see
Problem 2.27), we can find the length of the equivalent simple pendulum:

-’o

d (E.4)
If J, is replaced by mk? where k, is the radius of gyration of the body about 0O, Egs. (E3)
and (E.4) become
1/2
gd
o, = (k_g) (E5)
k2
| = (7") (E.6)
If k; denotes the radius of gyration of the body about G, we have
ki = k% + d? (E7)
and Eq. (E.6) becomes
{ k%
\ _CT ) (E.8)
If the line OG is extended to point A4 such that
kg
GA = vl (E.9)
Eq. (E.8) becomes
I=GA +d= 04 (E.10)

Hence, from Eq. (E.5), w, is given by

172 1
) -9 - g

This equation shows that, no matter whether the body is pivoted from O or 4, its natural
frequency is the same. The point A is called the center of percussion.

Center of Percussion. The concepts of compound pendulum and center of percus-
sion can be used in many practical applications:

1. A hammer can be shaped to have the center of percussion at the hammer head
while the center of rotation is at the handle. In this case, the impact force at the
hammer head will not cause any normal reaction at the handle (Fig. 2.9a).

2. In a baseball bat, if the ball is made to strike at the center of percussion while
the center of rotation is at the hands, no reaction perpendicular to the bat will
be experienced by the batter (Fig. 2.9b). On the other hand, if the ball strikes
the bat near the free end or near the hands, the batter will experience pain in
the hands as a result of the reaction perpendicular to the bat.

3. In Izod (impact) testing of materials, the specimen is suitably notched and held
in a vice fixed to the base of the machine (see Fig. 2.9¢). A pendulum is released
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Pivot O

(©) (d)

Figure 2.9

from a standard height, and the free end of the specimen is struck by the
cmmem A e fd smmccme tleen el el Vo e atat e Ll Akl e nem ] Lo A
pcuumum ad 1L Pas>ey UHOUUEL 1L IOWOHSL pumuuu. 1 1IC AC1Ul1IIalUuVll dlld UCllUlllg
of the pendulum can be reduced if the center of percussion is located near the
striking edge. In this case, the pivot will be free of any impulsive reaction.

4. In an automobile (shown in Fig. 2.9d), if the front wheels strike a bump, the
passengers will not feel any reaction if the center of percussion of the vehicle is
located near the rear axle. Similarly, if the rear wheels strike a bump at point A4,
no reaction will be felt at the front axle (point O) if the center of percussion is
located near the front axle. It is desirable, therefore, to have the center of
oscillation of the vehicle at one axle and the center of percussion at the other
axle [2.2].

STABILITY CONDITIONS

Consider a uniform rigid bar that is pivoted at one end and connected symmetri-
ca]]y by two springs at the other end, as shown in Fig 2. lO(a) Assume that the mass
of the bar is m and that the springs are unstretched when the bar is vertical. When
the bar is displaced by an angle 8, the spring force in each spring is &/sin 8; the
total spring force is 24/ sin 8. The gravity force W = mg acts vertically downward
through the center of grav1ty, G. The moment about the point of rotation O due to

the angular acceleration § is Jy# = (mi?/3)§. Thus the equation of motion of the
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! {sin O
7 k A k :klsine ki sin ©
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Figure 2.10

bar, for rotation about the point O, can be written as

mi? . ) [ .
0+ (24l sin @)l cosf — Wsin8 = 0 (2.41)
For small oscillations, Eq. (2.41) reduces to

ml? . ,y WI
"—5—0+2k10—'—2—0—0

or
i+ (12k12 — 3wl
2mi?
The solution of Eq. (2.42) depends on the sign of (12k/2 — 3WI)/2mi?, as discussed
below.

Case 1. When (124/% — 3W1)/2mi? > 0, the solution of Eq. (2.42) represents stable
oscillations and can be expressed as

)0 =0 (242)

8(t) = Ajcos w,t + A,sinw,t (2.43)
where A, and A, are constants and
_ [ 12ki2 - 3wt\'* 5 44)

“\ T
Case 2. When (12k/2 ~ 3WI)/2ml* = 0, Eq. (2.42) reduces to § =0 and the
solution can be obtained directly by integrating twice as

8(t) = Ct + G, (2.45)
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For the initial conditions #(t = 0) = 8, and #(¢ = 0) = §,, the solution becomes

Equation (2.46) shows that the angular displacement increases linearly at a constant
velocity 8,. However, if d, = 0, Eq. (2.46) denotes a static equilibrium position with
g = 6, that is, the pendulum remains in its original position, defined by & = 4,

Case 3. When (12ki% — 3W1)/2mi? < 0, we define
‘ W~ 12k Y/Z
a = e e e ———

\ 2mi?
and express the solution of Eq. (2.42) as
6(t) = Be™ + Bye ™™ (2.47)

where B, and B, are constants. For the initial conditions 8(¢ = 0) = 8, and
d(t = 0) = §,, Eq. (2.47) becomes

1
\ 1 [( 0

af, —= s i ot
U\l} 2a vy T

)
0

e’

e + {a8 — 8 e ] (7 49)

T Qv T vpje \£.90)
Equation (2.48) shows that #(¢) increases exponentially with time; hence the motion
is unstable. The physical reason for this is that the restoring moment due to the
spring (2k/%8), which tries to bring the system to equilibrium position, is less than
the nonrestoring moment due to gravity [ — W({/2)8], which tries to move the mass
away from the equilibrium position. Although the stability conditions are illustrated
with reference to Fig. 2.10 in this section, similar conditions need to be examined in
the vibration analysis of many engineering systems.

¥ METHOD

For a single degree of freedom system, the equation of motion was derived using the
energy method in Section 2.2.2. In this section, we shall use the energy method to
find the natural frequencies of single degree of freedom systems. The principle of
conservation of energy, in the context of an undamped vibrating system, can be
restated as

T, + U =T+ U (2.49)
where the subscripts 1 and 2 denote two different instants of time. Specifically, we
use the subscript 1 to denote the time when the mass is passing through its static
equilibrium position and choose U; = 0 as reference for the potential energy. If we

let the subscript 2 indicate the time corresponding to the maximum displacement of
the mass, we have T, = 0. Thus Eq. (2.49) becomes

,+0=0+10, (2.50)

If the system is undergoing harmonic motion, then 7| and U, denote the maximum
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values of T and U, respectively, and Eq. (2.50) becomes

The application of Eq. (2.51), which is also known as Rayleigh’s energy method,
gives the natural frequency of the system directly, as illustrated in the followinﬁ
examples. .

\MPLE 2.4 Manometer for Diesel Engine

The exhaust from a single-cylinder four-stroke diesel engine is to be connected to a silencer,!
and the pressure therein is to be measured with a simple U-tube manometer (see Fig. 2.11).,
Calculate the minimum length of the manometer tube so that the natural frequency of
oscillation of the mercury column will be 3.5 times slower than the frequency of the pressure‘
fluctuations in the silencer at an engine speed of 600 revolutions per minute. The frequency ofl

pressure fluctuations in the silencer is equal to

number of cylinders X speed of the engine
2

Given: U-tube manometer, engine speed = 600 rpm, and natural frequency of oscillation =

3.5 times slower than the frequency of pressure fluctuations. |

Find: Minimum length of the manometer tube.
Approach: Use energy method to find the natural frequency.
Solution

1. Natural frequency of oscillation of the liquid column. Let the datum in Fig. 2.11 be taken ay
the equilibrium position of the liquid. If the displacement of the liquid column from thd

- ~=1 -—1— Datum

Figure 2.11
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equilibrium position is denoted by x, the change in potential energy is given by
U = potential energy of raised liquid column + potential energy of depressed liquid
column
= (weight of mercury raised X displacement of the C.G. of the segment) + (weight of
mercury depressed X displacement of the C.G. of the segment)
= (Axy)-)-zc- + (Axy)% = Ayx? (E.1)

where A4 is the cross sectional area of the mercury column and y is the specific weight of
mercury. The change in kinetic energy is given by

1 B . . <2
T = 5 (mass of mercury)(velocity)”

1A1~,
- 5*—( x)?

(E.2)

where / is the length of the mercury column. By assuming harmonic motion, we can write

x(1) = Xcosw,t (E.3)
where X is the maximum displacement and w, is the natural frequency. By substituting Eq.
(E_3) into Eas. E nd (E.2), we gbtain
N bt b ang (Z.z2), we ot

U = U,cos%w,t (E.4)

T = T, sinfw, (E.5)
where

l-max = A.sz (‘E 6)
and
1 Aylw?
Toax = 5 p —2x? (E.7)
By equating U, to T, .. we obtain the natural frequency:
y) 1/2
w, = (—,5) (E.8)
2. Length of the mercury column: The frequency of pressure fluctuations in the silencer
_ 1 x600
B 2
= 300 rev/min
= 10—0—;8—%1 = 107 rad/sec (E.9)

Thus the frequency of oscillations of the liquid column in the manometer is 107 /3.5 = 9.0
rad/sec. By using Eq. (E.8), we obtain

2
{_5\/ 90 (E.10)
\ [] \ ’
or
2.0 x 981 . X
l=———=—=0243m (E.11)

(9.0)°
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— ]

xzt) |

LE 2.5

Effect of Mass on «, of a Spring

Determine the effect of the mass of the spring on the natural frequency of the spring-masg
system shown in Fig. 2.12.

Given: Spring-mass system.
Find: Effect of mass of the spring on w,,.

Approach: Add the kinetic energy of the spring to that of the attached mass and use the|
energy method to find the natural frequency.

Solution. Let | be the total length of the spring. If x denotes the displacement of the lower
end of the spring (or mass m), the displacement at distance y from the support is given by
y(x/1). Similarly, if x denotes the velocity of the mass m, the velocity of a spring element
located at distance y from the support is given by y(x/1). The kinetic energy of the spring

element of length dy is
_Lym, (%Y
ar, = 5 (7 dY)( 1) (E1)

where m, is the mass of the spring. The total kinetic energy of the system can be expressed as
T = kinetic energy of mass (7,,) + kinetic energy of spring (7,)

1 . to1(m, yix?
Lt [ () 25)
2

1 m
=§m5c2+ %T’ (E2)
The total potential energy of the system is given by
U= tkx? (E3)

By assuming a harmonic motion

x(t) = Xcos w,t (E4)
where X is the maximum displacement of the mass and w, is the natural frequency, the
maximum kinetic and poteniial energies can be expressed as

T, = l(m + %)szg (E.S)

[

3
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1

Unax = 5 kX? (E.6)
By equating T,,,, and U, ,,, we obtain the expression for the natural frequency:
1,2
k
w, = | ——mr (E7)
m+ T’

Thus the effect of the mass of the spring can be accounted by adding one third of its mass to
the main mass [2.3].

where ¢ is the damping constant or coefficient of viscous damping and th

sign indicates that the damping force is opposite to the direction of velocity. A
single degree of freedom system with a viscous damper is shown in Fig. 2.13. If x is
measured from the equilibrium position of the mass m, the application of Newton’s

law yields the equation of motion:

mi = —cx — kx
or
mi + ck + kx =0 (2.53)
SIS A SIS LIS S SIS,
kx cx
k c
o
m m
+Xx
System Free body diagram
(a) (b)

Figure 2.13. Single degree of freedom system with viscous
damper
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To solve Eq. (2.53), we assume a solution in the form
x(t) = Ce* (2.54)

where C and s are undetermined constants. Inserting this function into Eq. (2.53)
leads to the characteristic equation

ms:+cs+ k=0 (2.55)
the roots of which are

o N o
LI LI ¥

—c + Yt — dmk _ c :t\/( c )2 i (2.56)

51,2

These roots give two solutions to Eq. (2.53):
() =Ce™ and  x,(1) = G (2.57)
Thus the general solution of Eq. (2.53) is given by a combination of the two
solutions x,(z) and x,(¢):
x(1) = Cje™ + Gy &

where C, and C, are arbitrary constants to be determined from the initial condi-
tions of the system.

= (, e{ + Cye

Critical Damping Constant and the Damping Ratio. The critical damping c, is
defined as the value of the damping constant ¢ for which the radical in Eq. (2.56)
becomes zero: '

c,. \? k
(2m) —7n_—0

¢, =2m) ~kn-g— = 2Vkm = 2mu, (2.59)

For any damped system, the damping ratio { is defined as the ratio of the damping
constant to the critical damping constant:

or

{=c/c. (2.60)
Using Eqs. (2.60) and (2.59), we can write
c c C ,
Tm = Im = S (2.61)
and hence
- __:[__s'..lbz__-\_ (Y £7)
S22 =\ "8 Vs 1w, \2.64)

Thus the solution, Eq. (2.58), can be written as
x(t) = Cle(—g'*JEz———l—)"’"’ + Cze(‘f—vfz———l—)“’"' (2.63)

The nature of the roots s, and s, and hence the behavior of the solution, Eq. (2.63),
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depends upon the magnitude of damping. It can be seen that the case { = 0 leads to
' the undamped vibrations discussed in Section 2.2. Hence we assume that { # ( and
consider the following three cases.

Case 1. Underdamped system ({ < lorc <c.orc/2m < ‘/k/m ). For this condi-
tion, (¢2 — 1) is negative and the roots s, and s, can be expressed as

si=(-¢+i1-)a,
«5‘2 = (—‘f - iV]. - gz)w"
and the solution, Eq. (2.63), can be written in different forms:

. _ 0 _ 2
X(I) — Cle(—g‘-l—r l-_('z)w,,:_‘_ Cze( $—iyf1-{%)w,r

~Swntf o i1~ § eyt — 1= w,r
=e "{C,eV "+ Ce Y ~}

= e"“""'{(C, + Gy)cosyl — $2wt + i(Cy — C,)sinyl — §2wnr}
= e Cloosf1 — 2wt + Cfsingl - {2,

= Xe"f“’"'sin(‘/l - 2wt + qb)
= Xge~$ntcos(y1 — {2yt — $o) (2.64)
where (C{, C7), (X, ¢), and ( X, ¢,) are arbitrary constants to be determined from
the initial conditions.
For the initial conditions x(¢t = 0) = x, and x(1 = 0) = x,, C{ and C; can be
found:

(o +
Cl=x, and cy=ot8uX (2.65)

V1~ ¢,

and hence the solution becomes

x(1) = e““’"'{xocos‘/l - lat+ msin\/l - §2w,,t} (2.66)
V1 —$w,

The constants ( X, ¢) and ( X, ¢,) can be expressed as

X=X, = (i) + (G5) (2.67)
¢ = tan"1(C[/C3) (2.68)
¢$o = tan~ (= C;/C}) (2.69)

The motion described by Eq. (2.66) is a damped harmonic motion of angular

frequency {1 — {?w,, but because of the factor e f“~/, the amplitude decreases
exponentially with time, as shown in Fig. 2.14. The quantity

wy =yl — ¢, (2.70)

is called the frequency of damped vibration. It can be seen that the frequency of
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x{t)
4

-
—
——

e Eq. (2.66)

Figure 2.14. Underdamped solution.

damped vibration w, is always less than the undamped natural frequency w,. The
decrease in the frequency of damped vibration with increasing amount of damping,
given by Eq. (2.70), is shown graphically in Fig. 2.15. The underdamped case is very
important in the study of mechanical vibrations, as it is the only case which leads to

an oscillatory motion [2.10].

Case 2. Critically damped system ({ = 1 or ¢ = ¢, or ¢/2m = \Jk/m). In this casd
the two roots s, and s, in Eq. (2.62) are equal:

$=485= - 2C = —w (271)):

0 1

Figure 2.15. Vanation of w, with damping.
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Undamped (£ = 0)

Overdamped (§ > 1)

Critically
S~ damped (T =1)

b

Underdamped (§ < 1)

-~ (w4 is smaller
\\/ than w,)
\
\

X

Figure 2.16. Comparison of motions with different types ot damping

Because of the repeated roots, the solution of Eq. (2.53) is given by [2.6]*

v =(C. + 1Yo~ wnt (27N
J"\" \\.tl L) \/2‘,‘ \H'lh’

The application of the initial conditions x(¢ = ) = x, and x(¢ = 0) = X, for this

case gives
Cl = xo
C, =X, + w,xg (2.73)
and the solution becomes
x(1) = [xq + (%o + wpxo)t] e (2.74)

It can be seen that the motion represented by Eq. (2.74) is aperiodic (i.e., non-peri-
odic). Since e™“~ — 0 as t = oo, the motion will eventually diminish to zero, as
indicated in Fig. 2.16.

Case 3. Overdamped system ({ > 1 or ¢ > ¢, or ¢/2m > \Jk/m). As {{* = 1 > G,
Eq. (2.62) shows that the roots s, and s, are real and distinct and are given by

s,=(-§+ \/ﬁ)w”<0
s=(-t-*-1)0,<0

* Equation (2.72) can also be obtained by making { approach unity in the limit in Eq. (2.66). As
{ = 1, w; — 0; hence cos w,t — 1 and sinw,r — w,r. Thus Eq. (2.66) yields

x(1) = e 9 (] + Clwyt) = (C) + Gyr)e™ =

where C, = C{ and C, = Cjw, are new constants,
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with 5, < s,. In this case, the solution, Eq. (2.63), can be expressed as
x(1) = Cle"‘”/‘z_”“’"' + Cel =5 V81w, (275

For the initial conditions x(f = 0) = x, and x(! = 0) = X,, the constants ' apq_

C, can be obtained:
c xown(§'+\/§2*l)+x'0 _
t 20,02 — 1 j
—xqn(§ = 2 - 1) = %
— (2.76)
20y/t2 -1

aY v

G

Equation (2.75) shows that the motion is aperiodic regardless of the initial cond;-
tions imposed on the system. Since roots §; and s, are both negative, the motion
diminishes exponentially with time, as shown in Fig. 2.16.

Note the following two aspects of these systems:

1. The nature of the roots s, and s, with varying values of damping c or { can be
shown in a complex plane. In Fig. 2.17, the horizontal and vertical axes are’
chosen as the real and imaginary axes. The semicircle represents the locus of the
roots s, and s, for different values of { in the range 0 < { < 1. This figure
permits us to see instantaneously the effect of the parameter { on the behavior
of the system. We find that for { = 0, we obtain the imaginary roots s, = 1w,

Imaginary axis

Real axis
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and s, = —iw,, leading to the solution given in Eq. (212). For 0 < { < 1, the
roots s, and s, are complex conjugate and are located symmetrically about the
real axis. As the value of ¢ approaches 1, both roots approach the point —w,, on
the real axis. If { > 1, both roots lie on the real axis, one increasing and the
other decreasing. In the limit when { = o0, §; = 0 and s, = —o00. The value
{ =1 can be seen to represent a transition stage, below which both roots are
complex and above which both roots are real.

2. A critically damped system will have the smallest damping required for aperi-
odic motion; hence the mass returns to the position of rest in the shortest
possible time without overshooting The property of critical damping is used in
many practicai appucations For t:an‘I‘lplc, large guns have uaSnpOtb with critical
damping value, so that they return to their original position after recoil in the
minimum time without vibrating. If the damping provided were more than the

critical value, some delay would be caused before the next firing.

The logarithmic decrement represents the rate at which the amplitude of a free
damped vibration decreases. It is defined as the natural logarithm of the ratio of any
two successive amplitudes. Let t; and t, denote the times corresponding to two

consecutive amplitudes (displacements), measured one cycle apart for an under-
damped system, as in Fig. 2.14. Using Eq. (2.64), we can form the ratio

f_l_ — Xoe::w",lCOS(wdtl — ¢0) (2'77)
Xy Xge tunicos(wyty — @)

But ¢, =1, + 7, where 1, =27/w, is the period of damped vibration. Hence
cos(wyt; — ¢g) = cos(2m + wyt; — ¢g) = cos(wyt; — @), and Eq. (2.77) can be
written as
—$w, !
0o €T ten (2.78)

X, e—i'wn(fx’rfd)

The logarithmic decrement 8 can be obtained from Eq. (2.78):

X 2n 27 _ 27 ¢
8=ln b =fus = to, L T op a (2.79)
For small damping, Eq. (2.79) can be approximated:
§=2%{ if t =1 (2.80)

N A ab . oa.

Eqs. (2.79) and (2.80). It can be noticed that for values up to { = 8.3, the iwo cu
are difficult to distinguish.

The logarithmic decrement is dimensionless and is actually another form of the
dimensionless damping ratio {. Once § is known, { can be found by solving

Figure 2,18 shows the variation of the logarithmic decrement § with { as given by
urve
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14
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10 Eq. (2-79)~—/!—‘
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- Eq. (2.80)
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Figure 2.18. Varation of logarithmic
decrement with damping

Eq. (2.79):

V= 7

¢ = 8 (2.31)|

V@27) + 82

If we use Eq. (2.80) instead of Eq. (2.79), we have

_ 8

" 27

If the damping in the given system is not known, we can determine it experimentally

by measuring any two consecutive displacements x, and x,. By taking the natural

logarithm of the ratio of x, and x,, we obtain 8. By using Eq. (2.81), we can

compute the damping ratio ¢. In fact, the damping ratio ¢ can also be found by’

measuring two displacements separated by any number of complete cycles. If x;

and x,, ., denote the amplitudes corresponding to times ¢, and ¢, ., =1, + MY
where m 1s an integer, we obtain

N kB X

Xm+l X2 X3 Xgq Xm+1

(2.82)‘

(2.83)

Since any two successive displacements separated by one cycle satisfy the equation

AT etenta (2.84)
x_[+]
Eq. (2.83) becomes |
x1 = (e"“’n‘rd)m = emgwnfd (285) |

Xm+1
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Equations (2.85) and (2.79) yield

_Lp(x
= mln( xm+l) (2.86)
which can be substituted into Eq. (2.81) or Eq. (2.82) to obtain the viscous damping
ratio ¢.

In a viscously damped system, the rate of change of energy with time (dW /dt) is
given by

2
gdtg = force X velocity = Fv = —cv? = —C(%) (2.87)

using Eq. (2.52). The negative sign in Eq. (2.87) denotes that energy dissipates with
time. Assume a simple harmonic motion as x(t) = Xsinw,t, where X is the
amplitude of motion and the energy dissipated in a complete cycle is given by*

2
AW = f(zﬂ/w“') (cﬁx\ dt = J[zchzwdcoszwart ' d(‘*’d’)

Yi=0 \atj 0
= 7cw, X? (2.88)

This shows that the energy dissipated 1s proportional to the square of the amplitude
of motion. It is to be noted that it is not a constant for given values of damping and
amplitude, since AW is also a function of the frequency w,.

Equation (2.88) is valid even when there is a spring of stiffness k parallel to the
viscous damper. To see this, consider the system shown in Fig. 2.19. The total force
resisting motion can be expressed as

F=—kx—cv= —kx —cx (2.89)
If we assume simple harmonic motion
x(1) = Xsinwyt (2.90)

as before, Eq. (2.89) becomes
= — kX sinwy? — cwy X cos wyl (2.91)

The energy dissipated in a complete cycle will be

aw = ["“Fy 4y
t=0
/e 2w /0y,
_ ]‘2 / "‘szwdsin wyl - €OS Wyl - d(wdt) + f / dechoszwdt ’ d(wdt)
0
= 7cw, X? (2.92)

which can be seen to be identical with Eq. (2.88). This result is to be expected, since

* In the case of a damped system, simple harmonic motion x(r) = Xcosw,? is possible only when
the steady-state response is considered under a harmonic force of frequency w, (see Section 3.4). The loss

of energy due to the damper is supplied by the excitation under steady state forced vibration [2.7].
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the spring force will not do any net work over a complete cycle or any integy,
number of cycles.

We can also compute the fraction of the total energy of the vibrating systey
that is dissipated in each cycle of motion (AW /W), as follows. The total energy o
the system W can be expressed either as the max1mum potential energy (34X ?) or a
the maximum kinetic energy (imvl, = jmX2%w32), the two being aPPFOleateLy
equal for small values of damping. Thus

AW mew, X2 27 ¢
772l dez = 2(:’;)(m) = 28 = 47{ = constant (2,931

2'

using Egs. (2.79) and (2.8 ) The quantity AW /W is called the specific dun) Mping

capacity and is useful in comparing the damping capacity of engineering, matebials

e fE i RES2PRAS .l 222

Another quantity known as the loss coefficient is also used for comparm the

damping capacity of engineering materials. The loss coefficient is defined af tha.

ratio of the energy dissipated per radian and the total strain energy:
(AW /27)

loss coefficient = 17
y

jp P 4
LUy

ath A fite A fn Candimnan N£1 stheans £ Far liaane aluwnss o 8. 4L
LICLIIOUUD plc itca lu OC\—U.UHD £.,0,1 uuuusn t—U 1Vl LAl VIULAUUILD W]

viscous damping can be extended directly to viscously damped torsional (angular)
vibrations. For this, consider a single degree of freedom torsional system with a
viscous damper as shown in Fig. 2.20(a). The viscous damping torque is gwm by
(Fig. 2.20b):

= —¢f (2.95)

where c, is the torsional viscous damping constant, § = df/dt is the angular
velocity of the disc, and the negative sign denotes that the damping torque 1§
opposite the direction of angular velocity. The equation of motion can be derived as

Jf+cl+ k=0 (2.96)

where J, = mass moment of inertia of the disc, k, = spring constant of the system
(restoring torque per unit angular displacement), and 6 = angular displacement of
the disc. The solution of Eq. (2.96) can be found exactly as in the case of linear
vibrations. For example, in the underdamped case, the frequency of dnmpeda

vibration is given by
=1 -¢o, 12,97}

! {2.98)

where

and

(= S GG 12.99)

G 2o, 2k, 0y

where ¢,, is the critical torsional damping constant.
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. Shock Absorber for a Motorcycle G

An underdamped shock absorber 1s to be designed for a motorcycle of mass 200 kg (Fig.
2.21a). When the shock absorber is subjected to an initial vertical velocity due to a road
bump, the resulting displacement-time curve is to be as indicated in Fig. 2.21(b). Find the
necessary stiffness and damping constants of the shock absorber if the damped period of
vibration is to be 2 sec and the amplitude x, is to be reduced to one-fourth in one half cycle
(i€, x; 5 = x,/4). Also find the minimum initial velocity that leads to a maximum displace-
ment of 250 mm.

YTl ~a

Given: Mass = 200 kg, dispiacemeni-time curve of the system (Fig. 2.21b); damped period of
vibration = 2 sec, x, s = x;/4; and maximum displacement = 250 mm.

maximum displacement of 250 mm.

Find: Stiffness (k), damping constant (¢), an
AN rn | (=] Al ) |

[~%
3
=
ji—
<!
o
&
-
e
—
3
o’

Approach: Equation for the logarithmic decrement in terms of the damping ratio, equation
for the damped period of vibration, time corresponding to maximum displacement for an
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Figure 2.21

=]
— X25
—
///
-
----------- /'/
L~

underdamped system, and envelope passing through the maximum points of an underdamped

system.

Solution. Since x, s = x,/4, x; = x,5/4 = x,/16. Hence the logarithmic decrement becomeﬁ

2m¢

8= 1n(3'-) = In(16) = 2.7726 =
Xy 1 - ;«2

(E1)

from which the value of { can be found as ¢ = 0.4037. The damped period of vibration &

given to be 2 sec. Hence

Y= 2T 2T
d wd w” /1 _ §2
w, = 2 = 3.4338 rad/sec

"1 - (0.4037)

The critical damping constant can be obtained:

¢, = 2maw, = 2(200)(3.4338) = 1373.54 N-s/m

'y . U O U . S

o a A ..
LHUS T UdllIplllp COUILSLAIIL 1> RIVED UY

¢ = tc = (0.4037)(1373.54) = 554.4981 N-s/m
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and the stiffness by

k = ma? = (200)(3.4338)" = 2358.2652 N/m
The displacement of the mass will attain its maximum value at time ¢,, given by
\ sinw, f; = \/’1-—{2

(See Problem 2.45.) This gives

Sinw,t, = sinwy = \/1 - (0.4037)* = 0.9149

or
1/ ~a -~
sin ‘{U.Y14Y
= { ) - 0.3678 sec
T
The envelone nassing throush the maximum noints fsee Problem 2.45) is given hy
The PeE D g through the maxi pomts (see Frobiem 2.40) 18 given by

x =1 = {2 Xe fwu (E.2)
Since x = 250 mm, Eq. (E.2) gives at

0.25 = ’1 _ (0_4037)2 Xe ™ (0 4037%3 4338K0.3678)

or
X = 0.4550 m.

The velocity of the mass can be obtained by differentiating the displacement

() = Yo twnlain o .t
xLf) Xe sin e, {

x( ) = Xe ten'( = {uy, sinwyt + wycos wyt) (E3)
When ¢ = 0, Eq. (E.3) gives

(t=0) =5, = Xa, = X1 - ¢ = (0.4550)(3.4338)(\/1 - (04037)°)

= 1.4294 m/s

The schematic diagram of a large cannon is shown in Fig, 2.22 {2.8]. When the gun is fired,
high-pressure gases accelerate the projectile inside the barrel to a very high velocity. The
reaction force pushes the gun barrel in the opposite direction of the projectile. Since it is
desirable to bring the gun barrel to rest in the shortest time without oscillation, it is made to
translate backward against a critically damped spring-damper system called the recoil
mechanism. In a particular case, the gun barrel and the recoil mechanism have a mass of 500
kg with a recoil spring of stiffness 10,000 N/m. The gun recoils 0.4 m upon firing. Find (1)

the critical damnmo coefficient of the damner {’)\ the 1nitial recoil velacity of the gun, and 13\

=2 il gl L&l WAICIIIAL IS UL AT RBaAIIpPN A, SRRRQL IRRASLL WRAORARS

the time taken by the gun to return to a posmon 0.1 m from its initial position.

Given: Critically damped recoil mechanism with m = 500 kg, k = 10,000 N/m, and recoil
distance = 0.4 m.
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Projectile

Gun barrel

Recoil mechanism
(spring and damper)

Figure 2.22

Find: Critical damping coefficient, recoil velocity, and time taken by the gun to returti to /

position 0.1 m from its initial position.
Approach: Use the response equation of a critically damped system.

Solution. 1. The undamped natural frequency of the system is

k / 10,000
w, = i,/; =Y —5-’0—6— = 4.4721 rad/sec

and the critical damping coefficient (Eq. (2.59)) of the damper is
c. = 2maw, = 2(500)(4.4721) = 4472.1 N-s/m
2. The response of a critically damped system is given by Eq. (2.72):
x() = (Cy + Gt)e o (E1)

where C, = x, and G, = X; + w,x,. The time ¢; at which x(¢) reaches a maximum value can
be obtained by setting x(¢) = 0. The differentiation of Eq. (E.1) gives

K1) = Ge™ = 0,(G + Grye™™

fy = (i - El) (E2)

Hence x(?) = 0 yields

w, G

In this case, x, = C, = 0; hence Eq. (E.2) leads to t;, = 1 /w,. Since the maximum valve of

x(t) or the recoil distance is given to be x_,, = 0.4 m, we have

- ".‘0 -
= -— -— W, I 1 - U
X _x(t_tl)_( tle Il = —p¢ =

R

or
Xg = Xpaxtse = (0.4)(4.4721)(2.7183) = 4.8626 m/s

3. If 1, denotes the time taken by the gun to return to a position 0.1 m from its initial
position, we have

01 = Cztze—w,,l; = 4-8626t28_4'472“1 (E'_’,)
The solution of Eq. (E.3) gives ¢, = 0.8258 sec.
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RATION WITH COULOMB DAMPING

In many mechanical systems, Coulomb or dry-friction dampers are used because of
their mechanical simplicity and convenience [2.9]. Also in vibrating structures,
whenever the components slide relative to each other, dry-friction damping appears
internally. As stated in Section 1.9, Coulomb damping arises when bodies slide on
dry surfaces. Coulomb’s law of dry friction states that when two bodies are in
contact, the force required to produce sliding is proportional to the normal force
acting in the plane of contact. Thus the friction force F is given by

F=puN (2.100)

where N is the normal force and p 15 the coefficient of friction. The friction force
acts in a direction opposite to the direction of velocity. Coulomb damping is
sometimes called constant damping, since the damping force is independent of the
displacement and velocity; it depends only on the normal force N between the
sliding surfaces.

Consider a single degree of freedom system with dry friction as shown in Fig.
2.23(a). Since the friction force varies with the direction of velocity, we need to
consider two cases, as indicated in Figs. 2.23(b) and (c).

Case 1. When x 1s positive and dx/dr is positive, or when x is negative and dx/dt
is positive (i.e., for the half cycle during which the mass moves from left to right),
the equation of motion can be obtained using Newton’s second law (see Fig. 2.23b)

mi=—kx—pN or mk¥+kx= —pN (2.101)

This is a second order nonhomogeneous differential equation. The solution can be
verified by substituting Eq. (2.102) into Eq. (2.101).

x(1) = Acosw,t + Aysinw,l — p_kf\_/_ (2.102)

f—=

F—> +x l

§ W " e m fsi kxe—{ m p—
N IITITIITIIIITITT. uN < T I > uN
N N
(a) () (©
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x(1)
4

Xy

Figure 2.24. Motion of the mass with Coulomb damping |

where w, = k/m is the frequency of vibration, and 4, and A4, are cons|
whose values depend on the initial conditions of this half cycle. 1

Case 2. When x is positive and dx /dt is negative, or when x is negative and
is negative (i.e., for the half cycle during which the mass moves from right to
the equation of motion can be derived from Fig. 2.23(c) as !

—kx + uN=mx  or mi + kx = uN (2‘{
The solution of Eq. (2.103) is given by
x(t) = Acosw,t + A sinw,t + Ekl (21

where 4, and A4, are constants to be found from the initial conditions of this
cycle. The term pN/k appearing in Eqgs. (2.102) and (2.104) is a constant repre
ing the virtual displacement of the spring under the force uN, if it were applied !
static force. Equations (2.102) and (2.104) indicate that in each half cycle the mo
is harmonic, with the equilibrium position changing from uN/k to —(uN/k) eV
half cycle as shown in Fig. 2.24.

To see the motion characteristics of the system more clearly, let us assume the init
conditions to be

x(t=0) = x,
(r=0)=0 (2.10

That is, the system starts with zero velocity and displacement x, at ¢ = 0. Sin¢
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x = x, at ¢ = 0, the motion starts from right to left. Let x,, x,, x,,... denote the
amplitudes of motion at successive half cycles. Using Eqs. (2.104) and (2.105), we
can evaluate the constants 4, and A,

Thus Eq. (2.104) becomes

x(1) = (xo— ﬁk’lv-)cos w0+ EY (2.106)

This solution is valid for haif the cycle only, i1.e,, for 0 <1 < 7/w,. When 1t = 7/w,.
the mass will be at its extreme left position and its displacement from equilibrium
position can be found from Eq. (2.106):
N N 2uN
—-X; = x(t = wl) = (xo - E',z--)cos'rr + EE— = —(xo - “T-) (2.107)

Since the motion started with a displacement of x = x, and in a half cycle the value
of x became —(x, — (2uN /k)), the reduction in magnitude of x in time 7 /0w, i
2uN/k.

In the second half cycle, the mass moves from left to right, so Eq. (2.102) is 1c
be used. The initial conditions for this half cycle are

. N
x(t = 0) = value of x at ¢t = = in Eq. (2.106) = —(xo _ 2“T)

and

#(t = 0) = value of & at t = - in Eq. (2.106)

= {value of — w”(xo - Elév—)sinw”{ att = .1} =0
w”

Thus the constants in Eq. (2.102) become

N
—A, = —xy + 3“T A,=0
so that Eq. (2.102) can be written as
N
x(1) = (xo - %M)cos ot — 5= (2.108

This equation is valid only for the second half cycle, that is, for 7 /0, < 1 < 27 /w,
At the end of this half cycle the value of x(t) is

) 4uN

X, = x(t = wi) in Eq. (2.108) = x, — ”T

n

and

#lt=")inEq. (2.108) = 0
Ve,

These become the initial conditions for the third half cycle, and the procedure cai
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be continued until the motion stops. The motion stops when x, < WN/k sing
the restoring force exerted by the spring (kx) will then be less than the frictiop
force pN. Thus the number of half cycles () that elapse before the motion ceageg is
given by

that s,
(, _ BEN)
0 k
r> {—-—————ZPN } (2809)
I
A " /

Note the following characteristics of Coulomb damping:

1. In each successive cycle, the amplitude of motion is reduced by the amount
4uN sk, so the amplitudes at the end of any two consecutive cycles are rclated:

4N
X, =X, _, - = (2.110)

2. As the amplitude is reduced by an amount 4puN/k in one cycle (i. 3 .in
time 27 /w, ), the slope of the enveloping straight lines (shown dotted) il&ig.;

' () -2 .

The final position of the mass is usually displaced from equilibrium (x? 0]
position and represents a permanent displacement in which the friction force Is
locked in. Slight tapping will usually make the mass come to its equilibeiun]
postition.

3. The natural frequency of the system remains unaltered in Coulomb damping, in
contrast to the viscous damping,

4. With viscous and hysteresis damping, the motion theoretically continues for-|
ever, perhaps with an infinitesimally small amplitude. In the case of Coulomb,
damping, however, the system comes to rest after some time.

If a constant frictional torque acts on a torsional system, the equation governing
the angular oscillations of the system can be derived, similar to Egs. (2.101) and
(2.103), as

Jb +kb=-T (2.111)

and
JO+k0=T (2 112)
where 7 denotes the constant dampnng torque (similar to p,N for linear Vl'l‘n“'a'ut’)ﬂs)‘
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The solutions of Eqgs. (2.111) and (2.112) are similar to those for linear vibrations. In
particular, the frequency of vibration is given by

k,
w, = ‘/ A (2.113)

and the amplitude of motion at the end of rth half cycle (8,) is given by
0 = 00 —r4o- (2.114)

where 6, is the initial angular displacement at t = 0 (with § = 0 at ¢ = 0). The

motion ceases when

T
[90 - ,’T, ]
r> ﬁ——ZT——? (2.115)
A _,(_'_ r
-P'illey Subjected to Coulomb Damping RN

A steel shaft of length 1 m and diameter 20 mm is fixed at one end and carries a pulley of
mass moment of inertia 25 kg-m? at the other end. A band brake exerts a constant frictional
torque of 400 N-m around the circumference of the pulley. If the pulley is displaced by 6°
and released, determine (i) the number of cycles before the pulley comes to rest and (ii) the
final settling position of the pulley.

Given: Steel shaft: length =1 m, diameter = 20 mm, J, of pulley = 25 kg-m’, frictional
torque = 7' = 400 N-m, and 6§, = 6°.

Find: (1) number of cycles before motion ceases and (i) final settling position of pulley.
Approach: Torsional system with Coulomb damping.

Solution. (i) The number of half cycles that elapse before the angular motion of the pulley
ceases is given by Eq. (2.115).

—_— (E.1)

where 6, = initial angular displacement = 6° = 0.10472 rad, k, = torsional spring constant
of the shaft given by

o (B 1010){3—”2(0.07)"}

k=~ = 1 = 62,832 N-m/rad




CHAPTER 2 Free Vibration of Singie Degree of Freedom Systems

and T = constant friction torque applied to the pulley = 400 N-m. Equation (E.1) gives
400
N 0.10472 - (m
re 800
62832

Thus the motion ceases after 8 half cycles.
(ii) The angular displacement after 8 half cycles is given by Eq. (2.114).

400 o
6 = 0.10472 - 8 X 2(@) = (.002861 rad = 0.16393

Thus the pulley stops at 0.16393° from the equilibrium position on the same side of the initid
displacement.

) = 7.72494

£

Consider the spring-viscous damper arrangement shown in Fig. 2.25(a). For thj‘

Aremiaramant »I¢Y 1
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F=kx+ cx (2.116‘
For a harmonic motion of frequency w and amplitude X, '
x(t) = Xsin wt (2.117‘

Equations (2.116) and (2.117) yield |
F(t) = kX sin ot + ¢Xw cos wt
=kx + cm\/X2 — (X sinwt)?

=kx + cwVX? — x? (2-118b

When F versus x is plotted, Eq. (2.118) represents a closed loop as shown in Fig
2.25(b). The area of the loop denotes the energy dissipated by the damper in a cycle
of motion and is given by

2n/w
AW = ¢Fdx = f / (kX sinwt + ¢Xw cos wt)(wX cos wt ) dt = mweX? (2.119I
0

Equation (2.119) has been derived in section 2.6.4 too [see Eq. (2.92)].

As stated in Section 1.9, the damping caused by the friction between the
internal planes that slip or slide as the material deforms is called hysteresis (or sol{d
or structural) damping. This causes a hysteresis loop to be formed in the stress-straif
or force-displacement curve (see Fig. 2.26a). The energy loss in one loading and
unloading cycle is equal to the area enclosed by the hysteresis loop [2.11-2.13]. The
similarity between Figs. 2.25(b} and 2.26(a) can be used to define a hysteres®
damping constant. It was found experimentally that the energy loss per cycle duc ©
internal friction is independent of the frequency, but approximately proportional ©
the square of the amplitude. In order to achieve this observed behavior from Ed-
(2.119), the damping coefficient ¢ is assumed to be inversely proportional to the
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frequency as
c=t (2.120)
@ \ /

where h is called the hysteresis damping constant. Equations (2.120) and
give

—_—
.t\)
Pk
[
D

Nougr’

AW = 7hX? (2.121)



CHAPTER 2  Free Vibration of Single Degree of Freedom Systems

Complex Stiffness. In Fig. 2.25(a), the spring and the damper are connected in
parallel and for a general harmonic motion, x = Xe', the force is given by

F = kXe'' + cwiXe'' = (k + iwe)x (2.122)

Similarly, if a spring and a hysteresis damper are connected in parallel as shown in
Fig. 2.26(b), the force-displacement relation can be expressed as

F={(k+ih)x (2.123)
where \
k+ih=k(1 +i%) = k(1 +iB) (2.124)
is called the complex stiffness of the system and B = h/k is a constant indicating a
dimensionless measure of damping.
Response of the System. In terms of B, the energy loss per cycle can be expressed as
AW = 7kBX? (2.125)

Under hysteresis damping, the motion can be considered to be nearly harmonic
(since AW is smail), and the decrease in amplitude per cycle can be determined
using energy balance. For example, the energies at points P and Q (separated by
half a cycle) in Fig. 2.27 are related as

KX} wkBX?  mkBXlios _ KX[ios

2 4 4 -2
X; 2+ 7P
I = 2.126
X0 2 - 7B ( )
Similarly, the energies at points Q and R give

X; 2 + 7B
J¥03 _ 2127
X 2 — 7B ( )

x(8)
b

P WY A VN 4 A o

e
-

Figure 2.27
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Multiplication of Egs. (2.126) and (2.127) gives
X, 2+a8  2-—aB+ 248

X =3"m = R 1 + @8 = constant (2.128)
The hysteresis logarithmic decrement can be defined as
X
§=In =1In(1 + #8) = =B (2.129)
X_[+l

Since the motion is assumed to be approximately harmonic, the corresponding
frequency is defined by {2.10]

[k
0= (2.130)

The equivalent viscous damping ratio {,, can be found by equating the relations for
the logarithmic decrement &.

7o)
o0
=]
I
(87
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Thus the equivalent damping constant ¢, is given by

ceq=cc-§m=2M-§=BM=—B§=% (2.132)

Note that the method of finding an equivalent viscous damping coefficient for a
structurally damped system is valid only for harmonic excitation. The above
analysis assumes that the system responds approximately harmonically at the
frequency w.

___Estimation of Hysteretic Damping Constant

The experimental measurements on a structure gave the force-deflection data shown in Fig.

2.28. From this data, estimate the hysteretic damping constant 8 and the logarithmic
decrement §.

Given: Experimental force-deflection curve.
Find: Hysteresis damping constant 8 and logarithmic decrement 8.

fflpproach.- Equate the energy dissipated in a cycle (area enclosed by the hysteresis loop) to
AW of Eq. (2.121).

‘‘‘‘‘

;yau‘:resis curve. Each square in Fig. 2.28 denotes 100 X 2 = 200 N-mm. The area enclosed
Y the loop can be found as arca ACB + area ABDE + area DFE = }(ABXCG) +
(ABYAE) + J(DEYFH) = $(1.25)(1.8) + (L25)(8) + +(1.25)(1.8) = 12.25 square units.
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This area represents an energy of 12.25 X 200/1000 = 2.5 N-m. From Eq. (2.121), we |
AW = 7hX? = 2.5 N-m (1

Since the maximum deflection X is 0.008 m and the slope of the force-deflection curve (gi
approximately by the slope of the line OF) is k = 400/8 = 50 N/mm = 50,000 N/m,
hysteretic damping constant 4 is given by

AW 2.5

h= = = 12433.95
7X>  7(0.008) a
and hence
h .
g LTRSS o
The logarithmic decrement can be found
8 = nf = #(0.248679) = 0.78125 (1

2.9 COMPUTER PROGRAM

A FORTRAN computer program, in the form of subroutine FREVIB, is given
the free vibration analysis of a viscously damped single degree of freedom syst
The system may be underdamped, critically damped, or overdamped. The ar
ments of this subroutine are as follows:

M = Mass. Input data.

K = Spring stiffness. Input data.

C = Damping constant. Input data.

X0 = Value of displacement of mass at time 0. Input data.

XDo0 = Value of velocity at time 0. Input data.

N = Number of time steps at which the value of x(7) is tc
printed. Input data.

DELT = Time interval between consecutive time steps (A¢). In
data.

X, XD, XDD = Arrays of dimension N each, which contain comput

values of displacement, velocity, and acceleration. X(I
x(1,), XD(I) = x(¢,), XDD(I) = x(t,). Output.

T = Array of dimension N which contains the values of ti
T() = t,. Output.

To illustrate the use of the subroutine FREVIB, we consider an example v
m = 450 kg, k = 26519.2 N/m, ¢ = 1000 N-s/m, x, = 0.539567 m, %, = 1.0
At = 0.25 s, and N = 10. The main program which calls FREVIB, the subrou!
FREVIB, and the output of the program are given below.
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OO0

PROGRAM 2
MAIN PROGRAM FOR CALLING FREVIB

@]

100

200

400
300
500
600
700
800
900

REAL M,K
THE FOLLOWING 3 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION X(10),XD(10),XDD(10),T(10)

DATA M,K,C,X0,XDO,N,DELT/

2 450.0,26519.2,1000.0,0.539567,1.0,10,0.25/

END OF PROBLEM-DEPENDENT DATA

CALL FREVIB (M,K,C,X0,XDO,N,DELT,X,XD,XDD,T,II)
PRINT 100

FORMAT (/,24H FREE VIBRATION ANALYSIS,/,

2 37H OF A SINGLE DEGREE OF FREEDOM SYSTEM,//,5H DATA)
PRINT 200, M,K,C,X0,XDO,N,DELT

FORMAT (/,7H M =,E15.8,/,7H K =,E15.8,/,7H C =,E15.8,/,

2 7H X0 =,E15.8,/,7H XDO =,E15.8,/,7H N =,15,/,7H DELT =,
3 E15.8)

IF (ITI .EQ. 1) PRINT 500

IF (II .EQ. 2) PRINT 600

IF (II .EQ. 3) PRINT 700

IF (II .EQ. 4) PRINT 800

PRINT 900

DO 300 I=1,N

PRINT 400, I,T(I),X(I),XD(I),XDD(I)

FORMAT (I5,4E15.6)

CONTINUE

FORMAT (//,19H SYSTEM IS UNDAMPED)

FORMAT (//,23H SYSTEM IS UNDER DAMPED)

FORMAT (//,28H SYSTEM IS CRITICALLY DAMPED)

FORMAT (//,22H SYSTEM IS OVER DAMPED)

FORMAT (//,9H RESULTS:,//,3X,2H I,3X,8H TIME(I),7X,5H X(I),10X
2 6H XD(I),9X,7H XDD(I),/)

STOP

END

ll

o000

SUBROUTINE FREVIB

SUBROUTINE FREVIB (M,K,C,X0,XDO,N,DELT,X,XD,XDD,T,II)
DIMENSION X(N),XD(N),XDD(N),T(N)
REAL M,K

OMN=SQRT (K/M)

UNDAMPED SYSTEM

IF (ABS(C) .GT. 1.0E-06) GO TO 100
I1=1

OMN=SQRT(K/M)

A=SQRT (X0#**2+(XD0/OMN)*+2)
PHI=ATAN(XDO/ (XO*OMN))

DO 10 I=1,N

IF (I .GT. 1) GO TO 20
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c

c

20
30

10

100

[
(=]
o

120
130

110

300

220
230

210

400

T(I)=DELT

GO TO 30

T(I)=T(I-1)+DELT

TT=T(I)

X (I)=A*COS (OMN*TT-PHI)

XD (I )=A%OMN*COS (OMN*TT-PHI+1.5708)
XDD(I)=-(C*XD(I)+K*X(I))/M
CONTINUE

GO TO 500

CCRIT=2.0%SQRT (K*M)

VAT 10D TM
Nl w/ Vel 1

IF (XAI - 1.0) 200,300,400
UNDERDAMPED SYSTEM

TT=%
OMD=SQRT (1.0~ (XAI**2))*OMN
CP1=X0
CP2=(XDO+XAI*0OMN*X0)/OMD
A=SQRT (CP1##*2+CP2##2)

PHI=ATAN(CP1/CP2)

DO 110 I=1,N

IF (I .GT. 1) GO TO 120

T(I)=DELT

GO TO 130

T(I)=T(I-1)+DELT

TT=T(I)

X (I)=A*EXP (-XAI*OMN*TT)*SIN(OMD*TT+PHI)

XD (I )=A*EXP ( -XAI*OMN*TT )* (OMD*COS (OMD*TT+PHI ) - XAI*OMN*S IN (OMD*
2 TT+PHI))

XDD(I)=- (C*XD (I)+K*X(I))/M

CONT INUE

GO TO 500

CRITICALLY DAMPED SYSTEM

I1=3

DO 210 I=1,N

IF (I .GT. 1) GO TO 220

T(I)=DELT

GO TO 230

T(I)=T(I-1)+DELT

TT=T(I)

X(I)=(XO0+(XDO+OMN*X0)*TT)*EXP( -OMN*TT)

XD (I )=- (XO+(XDO+OMN:X0)*TT ) *OMN*EXP ( ~-OMN*TT )+ (XDO+OMN*X0 ) *

2 EXP(-OMN*TT)

XDD(I)=-(C*XD(I)+K*X(I))/M

CONTINUE

GO TO 500

OVERDAMPED SYSTEM

II=4
X1=SQRT(XAI#*2-1.0)
C1=(XO0*OMN* (XAI+X1)+XDO0)/ (2 .0*OMN*X1)
C2=(~XO0*OMN* (XAI-X1)-XD0)/ (2 .0*OMN*X1)
DO 310 I=1,N

IF (I .GT. 1) GO TO 320

T(I)=DELT

GO TO 330

109
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T(I)=T(I-1)+DELT
TT=T(I)

X(I)=C1*EXP ((-XAI+X1)*OMN*TT)+C2*EXP ((-XAI~-X1)*OMN*TT)

XD(I)=C1*(-XAI+X1)*OMN*EXP ( (-XAI+X1)*OMN*TT)

2 +C2%(-XAI-X1)*OMN*EXP((-XAI-X1)*OMN*TT)

XDD(I)=-(C*XD(I)+K*X(I))/M
310 CONTINUE
500 RETURN

END

FREE

VIBRATION ANALYSIS
SINGLE DEGREE OF FREEDOM SYSTEM

X(I)

.192649E-01
.318985E+00
.144699E+00
.112365E+00
.137887E+00
.285633E-02
.777184E-01
.395868E-01
.252620E-01
»350478E-01

XD(I)

—-0.335069E+01
0.106230E+01
0.140377E+01

-0,129493E+01

-0.173140E+00
0.827508E+00

-0.304712E+00

-0.326002E+00
0. 334008E+00
0.239573E-01

XDD(I)

0.631066E+01
0.164376E+02
-0.116468E+02
-0.374428E+01
0.851065E+01
-0.200724E+01
-0.390293E+01
0.305736E+01
0. 746487E+00
-0.211866E+01

2.1. R. W. Fitzgerald, Mechanics of Materials (2nd ed.), Addison-Wesley, Reading, Mass-

OF A
DATA
M = 0.45000000E+03
K = 0.26519199E+05
C = 0.10000000E+04
X0 = 0.53956699E+00
XDO = 0.10000000E+01
N = 10
DELT = 0.25000000E+00
SYSTEM IS UNDER DAMPED
RESULTS:
I TIME(I)
1l 0.250000E+00
2 0. 500000E+00
3 0.750000E+00
4 0.100000E+01
5 0.125000E+01
6 0.150000E+01
7 0.175000E+01
8 0. 200000E+01
9 0.225000E+01
10 0.250000E+01
REFERENCES
1982,
2.2, R.F Steidel, Ir., An !
York, 1979.
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REVIEW QUESTIONS

2.1.

2.2,

23.
24,
2.5.
2.6.
2.7.
2.8.

™
(—h
=

Suggest a method for determining the damping constant of a highly damped vibrating
system that uses viscous damping.

Can you apply the results of Section 2.2 to systems where the restoring force is not
proportional to the displacement, that is, where k is not a constant?

State the quantities corresponding to m, ¢, k, and x for a torsional system.

What effect does a decrease in mass have on the frequency of a system?

What effect does a decrease in the stiffness of the system have on the natural period?
Why does the amplitude of free vibration gradually diminish in practical systems?
Why is it important to find the natural frequency of a vibrating system?

How many arbitrary constants must a general solution to a second order differential
equation have? How are these constants determined?

Can the energy method be used to find the differential equation of motion of all single
degree of freedom systems?

. What assumptions are made in finding the natural frequency of a single degree of

freedom system using the energy method?
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2.1L

2.12.
2.13.
2.14.
2.15.
. What is equivalent viscous damping? Is the equivalent viscous damping factor 3

. Define the hysteresis damping constant.
. o

(rive three nractica
. Live three practic

Is the frequency of a damped free vibration smaller or greater than the natura}
frequency of the system?

What is the use of logarithmic decrement?

Is hysteresis damping a function of the maximum stress?
What is critical damping and what is its importance?
What happens to the energy dissipated by damping?

constant?

. What is the reason for studying the vibraiion of a singie degree of freedom system?
. How can you find the natural frequency of a system by measuring its static deflection?

D
3

(ive two nractica nlicatione of a torsional nendulum
{ive two practical apphiications of a torsional penauium,

. Define these terms: damping ratio, logarithmic decrement, loss coefficient, and specific

damping capacity.

. In what ways is the response of a system with Coulomb damping different from that of

systems with other types of damping?

EEE

P TN PURLY. S
. YWIAL 1S COMPICX SUNNCSS !

1 applications of the concept of center of percussion.

e bt of

PROBLEMS

The problem assignments are organized as follows:

Section

Problem covered Topic covered
2.1-2.25 2.2 Undamped translational systems
2.26-2.35 2.3 Undamped torsional systems
2.36-2.42 2.5 Energy method
2.43-2.54,2.66 2.6 Systems with viscous damping
2.55-2.62 2.7 Systems with Coulomb damping
2.63-2.65 2.8 Systems with hysteretic damping
2.67-2.70 29 Computer program
2.71-2.73 — Projects

2.1

An industrial press is mounted on a rubber pad to isolate it from its foundation, If the
rubber pad is compressed 5 mm by the self-weight of the press, find the natural
frequency of the system.



Problems 1 1 3

22.

23.

24.

2.5.

2.6.

A spring-mass system has a natural period of 0.21 sec. What will be the new period if
the spring constant is (i) increased by 50% and (ii) decreased by 50%?

A spring-mass system has a natural frequency of 10 Hz. When the spring constant is
reduced by 800 N/m, the frequency is altered by 45%. Find the mass and spring
constant of the original system.

A helical spring, when fixed at one end and loaded at the other, requires a force of 100
N to produce an elongation of 10 mm. The ends of the spring are now rigidly fixed,
one end vertically above the other, and a mass of 10 kg is attached at the middle point
of its length. Determine the time taken to complete one vibration cycle when the mass
is set vibrating in the vertical direction.

The maximum velocity attained by the mass of a simple harmonic oscillator is 10
cm/sec, and the period of oscillation is 2 sec. If the mass is released with an initial

displacement of 2 cm, find (a) the amplitude, (b) the initial velocity, (¢) the maximum
acceleration, and (d) the phase angle.

Three springs and a mass are attached to a rigid, weightless, bar PQ as shown in Fig,
2.29. Find the natural frequency of vibration of the system.

[2 m
Iy 1
Figure 2.29 Figure 2.30
27.  An automobile having a mass of 2000 kg deflects its suspension springs 0.02 m under
static conditions. Determine the natural frequency of the automobile in the vertical
direction by assuming damping to be neghgible.
28. Find the natural frequency of vibration of a spring-mass system arranged on an
inclined plane, as shown in Fig, 2.30.
29. Find the natural frequency of the system shown in Fig. 2.31 with and without the
springs k, and k, in the mddle of the elastic beam.
210 Find the natural freauency of the nullov svstem shawn in Fig 7271 by nogleating tha
-ieawr A LMW M1IL Rlalulal u\.\.ll.l»u\._y Vil u I.le.c'y a_yau.ul SLIUJWLL 111 ) 15- L2TRe 41 Uy uc&lc&uus L
friction and the masses of the pulleys.
2.11. A rigid block of mass M is mounted on four elastic supports as shown in Fig. 2.33. A

mass m drops from a height / and adheres to the rigid block without rebounding. If
the spring constant of each elastic support is &, find the natural frequency of vibration
of the system (a) without the mass m, and (b) with the mass m. Also find the resulting
motion of the system in case (b).
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Figure 2.33 Figure 2.34

2.12. Derive the expression for the natural frequency of the system shown in Fig. 2.34 Note
that the load W is applied at the tip of beam 1 and midpoint of beam 2.

2.13. A heavy machine weighing 9810 N is being lowered verticaily down by a wmchl atd
uniform velocity of 2 m/sec. The steel cable supporting the machine has a diamcter of
0.01 m. The winch is suddenly stopped when the steel cable’s length is 20 m. Find the
period and amplitude of the ensuing vibration of the machine.

2.14. The natural frequency of a spring mass syslem is found to be 2 Hz. When
addiiional mass of 1 kg is added io the original mass m, the natural frequency

reduced to 1 Hz. Find the spring constant X and the mass m.

2.15. Four weightless rigid links and a spring are arranged to support a weight W in tWO
different ways as shown in Fig. 2.35. Determine the natural frequcncies of vibration of
the two arrangements.

6. Ficure 2.36 shows 2 sm
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which has an unstretched length /, and an angle of orientation of 4 th CSpCCl to
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Figure 2.35

2.17.»

Figure 2.37

the x-axis. Determine the equation of motion for small displacements of the mass in
the x direction.

A mass m is supported by two sets of springs oriented at 30° and 120° with respect to
the X axis, as shown in Fig, 2.37. A third pair of springs, with a stiffness of k, each, is
to be designed so as to make the system have a constant natural frequency while
vibrating in any direction x. Determine the necessary spring stiffness k, and the
orientation of the springs with respect to the X axis.

A mass m is attached to a cord which is under a tension T, as shown in Fig. 2.38.

wasaia Yraa i &

Assuming that the tension T remains unchanged when the mass is displaced normal to

netam kd notes a

uemgn problcm or a problem with no umque answer.
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Figure 2.38 Figure 2.39

2.19.

2.20.

the cord, (a) write the differential equation of motion for small transverse vibrati,
and (b) find the natural frequency of vibration.

each rod is /, the mass of each ball is m and the free length of the spring is 4. If
shaft speed is w, determine the equilibrium position and the frequency for snf
oscillations about this position.

The schematic diagram of a centrifugal governor is shown in Fig. 2.39. The lengt:I

A square platform PQRS and a car which it is supporting have a combined mass
M. The platform is suspended by four elastic wires from a fixed point O, as indica
in Fig. 2.40. The vertical distance between the point of suspension O and
horizontal equilibrium position of the platform is h. If the side of the platform i
and the stiffness of each wire is k, determine the period of vertical vibration of |
platform. r

0
Z

7///{'// 2 T
Flywheel | a
{
P Q Shaft —+ |
! h=I—a
—o d J—
S ¢ Y /[ ! g ]
P4 a —J/R TA7 ‘}'-_L)H

Figure 2.40 Figure 2.41
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A flywheel is mounted on a vertical shaft, as shown in Fig. 2.41. The shaft has a
diameter d and length / and is fixed at both ends. The flywheel has a weight of W and
a radius of gyration of r. Find the natural frequency of the longitudinal, the
transverse, and the torsional vibration of the system,

2.22. A building frame is modeled by four identical steel columns, of weight w each, and a
rigid floor of weight W, as shown in Fig. 2.42. The columns are fixed at the ground
and have a bending rigidity of EI each. Determine the natural frequency of horizontal
vibration of the building frame by assuming the connection between the floor and the
columns to be (a) pivoted as shown in Fig. 2.42(a), and (b) fixed against rotation as
shown 1n Fig, 2.42(h). Include the effect of self weiohts of the columns
shown in Fig, 2.42(b). Include the effect of self weights of the columns,

LX) Xl LE L.
> = | >
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e ﬂ. — ,._.._._____;ﬂ__
1/ ! I,///% s /7 /’I= I:/ :lll /'ﬁ
frw Sy
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J_‘LT " d l’/ /
il //7 "";— El 7, El ] 77‘&—5; 77/ EI |
// /7 \{g 1 1y (LE— l
/ // h /1 4 h
/ / l | // /_// |
L—EI — £/ l K— 1 iﬁ* El
N AN\N < <
(a) (b)
Figure 2.42
2.23. A helical spring of stiffness & is cut into two halves and a mass m is connected to the

two halves as shown in Fig. 2.43(a). The natural time period of this system is found to
be 0.5 sec. If an identical spring is cut so that one part is 1 and the other part 3 of the
original length, and the mass m is connected to the two parts as shown in Fig. 2.43(b),
what would be the natural period of the system?

N i 4 N 3 ! \

g 2 2 % S q 'i_l s
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Figure 2.43

2.24.* Figure 2.44 shows a metal block supported on two identical cylindrical rollers rotating

in opposite directions at the same angular speed. When the center of gravity of the
block is initially displaced by a distance x, the block will be set into simple harmonic
motion. If the frequency of motion of the block is found to be w, determine the
coefficient of friction between the block and the rollers.
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2.25.% If two identical springs of stifiness k each are attached to the metal block of Problem °
2.24 as shown in Fig. 2.45, determine the coefficient of friction between the block and

the rollers.
A pulley 250 mm in diameter drives a second pulley 1000 mm in diameter by means of
a belt (see Fig, 2.46). The moment of inertia of the driven pulley is 0.2 kg-m*. The belt
connecting these pulleys is represented by two springs, each of stifiness k. For what
value of k will the natural frequency be 6 Hz?

2.26.

B

“—

Figure 2.46
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Problems

2.27. Derive an expression for the natural frequency of the simple pendulum shown in Fig,
1.5. Determine the period of oscillation of a simple pendulum having a mass m = 5 kg

and a length /= 0.5 m.

2.28. A mass m is attached at the end of a bar of negligible mass and is made to vibrate in
three different configurations, as indicated in Figs. 2.47(a) to (¢). Find the configura-
tion corresponding to the highest natural frequency.
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Connecting bar
\\ /(mass m, length /)
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(a) (b) (c)

-
-
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2.47 [ S PR ”naB
al Figure 2.40

2.29. Find the natural frequency of the pendulum shown in Fig. 2.48 when the mass of the
connecting bar is not negligible compared to the mass of the pendulum bob.

230. A steel shaft of 0.05 m diameter and 2 m length is fixed at one end and carries at the
other end a steel disc of 1 m diameter and 0.1 m thickness, as shown in Fig. 2.7. Find
the natural frequency of torsional vibration of the system.

231. A uniform slender rod of mass m and length [ is hinged at point 4 and is attached to
five springs as shown in Fig. 2.49. Find the natural frequency of the system if
k = 2000 N/m, k, = 1000 N-m/rad, m = 10 kg, and / = 5 m.
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Figure 2.50 Figure 2.51 I
232. A cylinder of mass m and mass moment of inertia J; is free to roll without slipping

but is restrained by two springs of stiffnesses &, and &, as shown in Fig. 2.50. Find i
natural frequency of vibration. Also find the value of a that maximizes the natural
frequency of vibration.

2.33. If the pendulum of Problem 2.27 is placed in a rocket moving vertically with an
acceleration of 5 m/s?, what will be its period of oscillation?

2.34. Find the equation of motion of the uniform rigid bar OA of length / and mass m
shown in Fig, 2.51. Also find its natural frequency.

2.35. A uniform circular disc is pivoted at point O as shown in Fig, 2.52. Find the natural
frequency of the system. Also find the maximum frequency of the system by varying
the value of b.

Figure 2.52 Figure 2.53

236. Solve problem 2.6 using Rayleigh’s method.
2.37. Solve problem 2.10 using Rayleigh’s method.

1 10

2.38. Find the natural frequency of the system shown in Fig, 2.36.
2.39. Solve problem 2.18 using Rayleigh’s method.

240. Solve nroblem 2.31 ucino Ravleioh’s method
p 21 using Ravyleigh ethod.

2.41. Solve problem 2.34 using Rayleigh’s method.

2.42. A wooden rectangular prism of density p,, height # and cross-section a X b is initia!ly
depressed in an oil tub and made to vibrate freely in the vertical direction (see Fig
2.53). Find the natural frequency of vibration of the prism using Rayleigh's method.
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2.43.

2.4.

2.45.

2.46.

247.

2.48.

2.49.

Assume the density of oil as py. If the rectangular prism is replaced by a unifor
circular cylinder of radius r, height h and density p, , will there be any change in tt
natural frequency?

A simple pendulum is found to vibrate at a frequency of 0.5 Hz in vacuum an
0.45 Hz in a viscous fluid medium. Find the damping constant assuming the mass «
the bob of the pendulum as 1 kg.

The ratio of successive amplitudes of a viscously damped single degree of freedo
system is found to be 18:1. Determine the ratio of successive amplitudes if th

amount of damping is (a) doubled, and (b) halved.

Assuming that the phase angle is zero, show that the response x(¢) of an underdampe
single degree of freedom system reaches a maximum value when

sinw, s = {1 — {2

and a minimum value when

v o= a1 — 2 Vo Swut
A v& ) N

Derive an expression for the time at which the response of a critically damped syster
will attain its maximum value. Also find the expression for the maximum response,

A shock absorber is to be designed to limit its overshoot to 15% of its initia
displacement when released. Find the damping ratio §, required. What will be th
overshoot if { is made equal to (i) 3§, and (ii) 3§,?

For a spring-mass-damper system, m = 50 kg and & = 5000 N/m. Find the follow
ing: (a) critical damping constant ¢, (b) damped natural frequency when ¢ = ¢ /2
and (c) logarithmic decrement.

A locomotive car of mass 2000 kg traveling at a velocity v = 10 m/sec is stopped a
the end of tracks by a spring-damper system as shown in Fig, 2.54. If the stiffness o
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2.50.

2.51.

2.52.*

2.53.

2.54.

2.55.

2.56.

2.57.

2.58.

2.59.

2.60.

the spring is kK = 40 N/mm and the damping constant is ¢ = 20 N-s/mm, determine
(a) the maximum displacement of the car after engaging the springs and damper ang
(b) the time taken to reach the maximum displacement.

A torsional pendulum has a natural frequency of 200 cycles/min when vibrating i,
vacuum. The mass moment of inertia of the disc is 0.2 kg-n’. It is then immersed in o)
and its natural frequency is found to be 180 cycles/min. Determine the dflmping
constant. If the disc, when placed in oil, is given an initial displacement of 2°, find i -
displacement at the end of the first cycle.

A body vibrating with viscous damping makes 5 complete oscillations per second, and
in 50 cycles its amplitude diminishes to 10%. Determine the logarithmic decremen

and the dampine ratio, In what proportion will the period of vibration be decreased ¢
t 1n Inw p p

i S | ol - Binla bt TV RANAS SWpR wARSEL YR sRE= TesRE s SRR VR MMM asU 1)
damping is removed?
The maximum permissible recoil distance of a gun is specified as 0.5 m. If the initja}
recoil velocity is to be between 8 m/sec and 10 m/sec, find the mass of the gun and
the spring stiffness of the recoil mechanism. Assume that a critically damped dashpot
is used in the recoil mechanism and the mass of the gun has to be at least 500 kg,

A viscously damped system has a stiffness of 5000 N /m, critical damping constant of
0.2 N-s/mm, and a logarithmic decrement of 2.0. If the system is given an initial

o la P S, PP, = oriods

velocity of 1 m/sec, deiermine the maximum displacement of the sysiem.

Explain why an overdamped system never passes through the static equilibrium
position when it is given (i) an initial displacement only and (i) an initial velocity
only.

A single degree of freedom system consists of a mass of 20 kg and a spring of stiffness
ANNNA W] 7oe Tl mcm Ve A _f oo oonten ol o P 2 Lo &N AL AN L ma e
AUUV IN /LD LHC dallIpHude O1 S3UCCOSIYE CYLICS aic 1ould W v Jv, 49, 49, JJ, .., LI
Determine the nature and magnitude of the damping force and the frequency of the
damped vibration.

A mass of 20 kg slides back and forth on a dry surface due to the action of a spring
having a stiffness of 10 N/mm. After four complete cycles, the amplitude has been
found to be 100 mm. What is the average coefficient of friction between the two
surfaces if the original amplitude was 150 mm? How much time has elapsed during the
four cycles?

A 10-kg mass is connected to a spring of stiffness 3000 N/m and is released after
giving an initial displacement of 100 mm. Assuming that the mass moves on a
horizontal surface as shown in Fig, 2.23(a), determine the position at which the mass
comes to rest. Assume the coefficient of friction between the mass and the surface 10
be 0.12.

A weight of 25 N is suspended from a spring that has a stiffness of 1000 N /m. The
weight vibrates in the vertical direction under a constant damping force. When the
weight is initially pulled downward a distance of 10 cm from its static equilibrium
position and released, it comes to rest after exactly two complete cycles. Find the
magnitude of the damping force.

A mass of 20 kg is suspended from a spring of stiffness 10,000 N /m. The vertical
motion of the mass is subject to Coulomb friction of magnitude 50 N. If the spring i
initially displaced downward by 5 cm from its static equilibrium position, determin¢
(a) the number of half cycles elapsed before the mass comes to rest, (b) the time

elapsed before the mass comes to rest, and (c) the final extension of the spring.

The Charpy impact test is a dynamic test in which a specimen is struck and broken by
a pendulum (or hammer) and the energy absorbed in breaking the specimen 1S
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measured. The energy values serve as a useful guide for comparing the impact
strengths of different materials, As shown in Fig. 2.55, the pendulum is suspended
from a shaft, is released from a particular position, and is allowed to fall and break the
specimen. If the pendulum is made to oscillate freely (with no specimen), find (a) an
expression for the decrease in the angle of swing for each cycle caused by friction, (b)
the solution for #(r) if the pendulum is released from an angle 6,, and (c} the number
of cycles after which the motion ceases. Assume the mass of the pendulum as m and
the coefficient of friction between the shaft and the bearing of the pendulum as p.

Bearing of
penduium PN
/ '\\
haf ,-«-“'"{ IQJ N
Shaft T T A v
L ’___—-—’ \L L/’

NS

/ Striking edge
Pendulu /
- N >
/ Zl

Test

specimen
Striking ed
| riking edge - ||
Anvil \
{support for

test specimen)

(a) (b)

Figure 2,55

2.61.

2.62.

2.63.

Find the equivalent viscous damping constant for Coulomb damping for sinusoidal
vibration.

A single degree of freedom system consists of a mass, a spring, and a damper in which
both dry friction and viscous damping act simultaneously. The free vibration ampli-

tnde ic found ta dacrance hy 1% noer rucla whan tha amnlirndas 1¢ 20 mm nnrl hv 7?\ ner
LULIL 15 IVMLG (U ULLICaoh UY LU Pl LyLIL WL UIC AQlHPLLUMUC 15 LU MM GG V) &Y ped

cycle when the amplitude is 10 mm. Find the value of (pN/k) for the dry friction
component of the damping.

The experimentally observed force-deflection curve for a composite structure is shown
in Fig. 2.56. Find the hysteresis damping constant, the logarithmic decrement and the
equivalent viscous damping ratio corresponding to this curve,
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2.64. A panel made of fiber-reinforced composite material is observed to behave as a single

2.65.

2.66.

b XS
-

i=

degree of freedom system of mass 1 kg and stiffness 2 N/m. The ratio of successive
amplitudes is found to be 1.1. Determine the value of the hysteresis damping constant
B, the equivalent viscous damping constant c.,, and the energy loss per cycle for an
amplitude of 10 mm.

A built-up cantilever beam having a bending stiffness of 200 N/m supports a mass of
2 kg at its free end. The mass is displaced initially by 30 mm and released. If the
amplitude is found to be 20 mm after 100 cycles of motion, estimate the hysteresis
damping constant S of the beam.

The rotor of a dial indicator is connected to a torsional spring and a torsional viscous
damper to form a single degree of freedom torsional system. The scale is graduated 10
equal divisions and the equilibrium position of the rotor corresponds to zero on the
scale. When a torque of 2 X 107? N-m is applied, the angular displacement of the
rotor is found to be 50° with the pointer showing 80 divisions on the scale. Wheo
the rotor is released from this position, the pointer swings first to — 20 divisions in 0f¢

second and then to 5 divisions in another second. Find (a) the mass moment of inerti
of the rotor (b} the nndamped natural time pprinrl of the rotor, (c) the torsional

AVSRnsa g iin eadwrdiass 128522 &2 22123 LI 2

damping constant, and (d) the torsional spring stiffness.

2 0
e § W

Find the free vibration response of a viscously damped single degree of frcedom
system with m = 4 kg, k = 2500 N/m, x, = 100 mm, %, = —10 m/s, A¢ = 0.01 %



pProblems 125

and N = 50 using the subroutine FREVIB for the following conditions:
@c=0

() ¢ = 100 N-s/m

(c) ¢ =200 N-s/m

(d) ¢ = 400 N-s/m

Projects:

271

2.72.

2.73.

A water turbine of mass 1000 kg and mass moment of inertia 500 kg-m’ is mounted
on a steel shaft as shown in Fig. 2.57. The operational speed of the turbine is 2400
rpm. Assuming the ends of the shaft to be fixed, find the values of I, 4, and d, such
that the natural frequency of vibration of the turbine in each of the axial, transverse,
and circumferential directions is greater than the operational speed of the turbine.

Design the columns for each of the building frames shown in Figs. 2.42(2) and (b) for
minimum weight such that the natural frequency of vibration is greater than 50 Hz.
The weight of the floor (W) is 4000 Ib and the length of the columns (/) is 96 in.
Assume that the columns are made of steel and have a tubular cross section with outer

diameter d and wall thickness !.

One end of a uniform rigid bar of mass is connected to a wall by a hinge joint O
and the other end carries a concentrated mass M, as shown in Fig. 2.58. The bar
rotates about the hinge point O against a torsional spring and a torsional damper. It is
proposed to use this mechanism, in conjunction with a mechanical counter, tO control
entrance to an amusement park. Find the masses m and M, the stiffness of the
torsional spring (k,), and the damping force (F,) necessary to satisfy the following
specifications: (1) A viscous damper or a Coulomb damper can be used. (2) The bar

has to return to within 5° of closing in less than 2 sec when released from an initial
position of 8 = 75°.

Amusement park

Bar (mass m)

Figure 2.58
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Charles Augustin de Coulomb (1736 - 1806) was a French
miltary engineer and physicist His early work on statics
and mechanics was presented in his great memoir ~* The
Theory of Simple Machines™ in 1779, which describes the
ettect of resistance and the so-called “Coulomb’'s law ot
proportionalhty ~ between frichhon and normal pressure In
1784, he obtained the correct solution to the problem of
the small oscillations of a body subjected to torsion He s
well known for his laws of force tor electrostatic and
magnetc charges His name s remembered through the
unit of eiectric charge (Courtesy of Brown Brothers)

3.1 INTRODUCTION

A dynamic system 1s often subjected to some type of external force or excitation,
called the forcing or exciting function. This excitation 1s usually time-dependent. It
may be harmonic. nonharmonic but periodic, nonperiodic. or random 1n nature. The
response of a system to a harmonic excitation is called harmonic response. The
nonperiodic excitation may have a long or short durauon. The response of a
dynamic system to suddenly applied nonperiodic excitations is called transient
response.

In this chapter, we shall consider the dynamic response of a single degree of
freedom system under harmonic excitations of the form F(r) = Fe'™™'*® or
F(r) = Fycos(wr + ¢)or F(r) = Fysin(wt + ¢). where F; is the amplitude, w 1s the
frequency, and ¢ is the phase angle of the harmonic excitation. The value of ¢
depends on the value of F(r) at r = 0 and 1s usually taken to be zero. Under a
harmonic excitation, the response of the system will also be harmomnic. If the
frequency of excitation coincides with the natural frequency of the system. the
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response of the system will be very large. This condition, known as resonance. IS to
be avoided to prevent failure of the system. 1

EQUATION OF MOTION

If a force F(r) acts on a viscously damped spring-mass system as shown in Fig. 3.1,
the equation of motion can be obtained using Newton’s second law:

mx + cx + kx = F(t) (3.1)

Since this equation is nonhomogeneous, its general solution X(f) is given by the sum
of the homogeneous solution, x (t) and the particular solutnon x ,(1). The homo-
gCI!COUb SOIUIIOH Wﬂl(..ﬂ |5 lﬂC bOlUll no ati

mi + cx + kx =0 (3 2)

represents the free vibration of the system and was discussed in Chapter 2. As scen’
in Section 2.6.2, this free vibration dies out with time under each of the three
possible conditions of dammnc (underdamping, critical da mnme and overdamping).
and under all possible mmal conditions. Thus the general solution of Eq. (3.1)
eventually reduces to the pamcular solution x (1), which represents the steady- state
vibration. The steady-state motujon is present as long as the |orc1ng function lb
present. The variations of homogeneous, particular, and general solutions with time
for a typical case are shown in Fig. 3.2. It can be seen that x,(t) dies out and x(r)
becomes x (1) after some time (7 in Fig. 3.2). The part of the motion that dies out
due to damping (the free vibration part) is called transient. The rate at which the
transient motion decays depends on the values of the system parameters k, ¢, and
m. In this chapter, except in Section 3.3, we ignore the transient motion and derive
only the particular solution of Eq. (3.1), which represents the steady-state response,
under harmonic forcing functions.

At o\
m
m
+r F(n
Fn
(a) {b) Free body diagram
Ciritra 2 1 A enrinn.m PP
v lsulc e N > J'll ||'S

e Tl )
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Figure 3.2 Homogeneous. particular and general solutions of Eg
(3 1) tor an underdamped case

RESPONSE OF AN UNDAMPED SYSTEM
UNDER HARMONIC FORCE

Before studying the response of a damped system, we consider an undamped system
subjected to a harmonic force, for the sake of simplicity. If a force F(t) = Fjcos wt
acts on the mass m of an undamped system, the equation of motion, Eq. (3.1),
reduces to
mxX + kx = F,cos wt (3.3)
The homogeneous solution of this equation is given by
x,(1) = C cosw,t + C,sinw,! (3.4)
where w, = (k/m)'/? is the natural frequency of the system. Because the exciting

force F(r) is harmonic, the particular solution x,(1) is also harmonic and has the
same frequency w. Thus we assume a solution in the form

x,(t) = Xcos wt (3.5)

where X is a constant that denotes the maximum amplitude of x,(1). By substitut-
ing Eq. (3.5) into Eq. (3.3) and solving for X, we obtain

F
X = g 3.6
k ~ mw? (3.6)
Thus the total solution of Eq. (3.3) is
F,
x(t) = Cycos w,t + C;sinw,t + ———cos wt (3.7)
- muw
Using the initial conditions x(r = 0) = x, and x(r = 0) = X%, we find that
F X
Cl = Xg = 9 C":’ L (3'8)

30 2
k — mw- W,
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Figure 3.3

and hence

F, X
x(t) = (xo— -———0**—2-)(:05«:"! + (Uo)sinwnt + (

k-—mw n

F,
——Q—g)cos wt (3.9)

k— mw
The maximum amplitude X in Eq. (3.6) can also be expressed as

1
L. QU - (3.10)

e

wﬂ
where 8, = Fy/k denotes the deflection of the mass under a force F, and 1s
sometimes called “static deflection™ since F, is a constant (static) force. The
quantity X/8,, represents the ratio of the dynamic to the static amplitude of motion
and is called the magnificanon factor, amplification factor. or amplitude ratio. The
variation of the amplitude ratio. X/8,, with the frequency ratio r = w/w, [Eq.
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F() = Fycosun
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x(1) = Xcosui
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Figure 3.4

(3.10)] is shown in Fig. 3.3. From this figure, the response of the system can be
identified to be of three types.

Case 1. When 0 < w/w, < 1, the denominator in Eq. (3.10) is positive and the
response is given by Eq. (3.5) without change. The harmonic response of the system
x,(t) is said to be in phase with the external force as shown in Fig. 3.4.

Case 2. When w/w, > 1, the denominator in Eq. (3.10) is negative, and the
steady-state solution can be expressed as

x, (1) = — Xcos wt (3.11)

where the amplitude of motion X is redefined to be a positive quantity as

X = ——— (3.12)

The variations of F(¢) and x,(t) with time are shown in Fig. 3.5. Since x (1) and
F(t) have opposite signs, the response is said to be 180° out of phase with the
external force. Further, as w/w, —» 00, X — 0. Thus the response of the system to a
harmonic force of very high frequency is close to zero.

infinite. This condition, for which the forcing frequency w is equal to the natural
frequency of the system w,, is called resonance. To find the response for this

n*

Case 3. When w/w_ = 1, the amplitude X given by Eq. (3.10) or (3.12) becomes
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ondition. wé rewrite Eq. (3.9) as

Xg . CoS wl — CoS w,!
x(t) = xpcos w,t + ;—smwﬂt+8s! >

LR
w’!
ince the last term of this equation takes an indefinite form for w = w,, we apply
"Hospaital’s rule [3.1] to evaluate the limut of this term:

(3.13)

_ COS W! — COS W, f . m(cos w! — Cos w,!)
lim 5 = lim
W= w, W} W W, d wz
L dotl~ =
”n | w w"
. tsin wt w!l
= lm |—F— = 2" sinw,t. (3.14)
w =W, 2_2

hus the response of the system at resonance becomes

(1) = S, L2

x(t) = x5c0s w,t + o S w,! + —5 sinw,! (3.15)
t can be seen from Eq. (3.15) that at resonance, x(¢) increases indefinitely. The last
erm of Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response
an be seen 10 increase Linearly with time.
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(1) = Acos(w,t — ¢) + ’ > COS w! for — <1 (3.16
w n
1 - (—
w'!
6si i 3
x(t) = Acos(w,t — ¢) — —————cos wt; for;— > 1 (3.17)
W n
1 -
w

n

where A and ¢ can be determined as in the case of Eq. (2.18). Thus the complete
motion can be expressed as the sum of two cosine curves of different frequencies. In
Eq. (3.16), the forcing frequency w is smaller than the natural frequency, and the
total response is shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is greater
than the natural frequency, and the total response appears as shown in Fig. 3.7(b).

If the forcing frequency is close to, but not exactly equal to, the natural frequency of
the system, a phenomenon known as beating may occur. In this kind of vibration,
the amplitude builds up and then diminishes in a regular pattern. The phenomenon
of beating can be explained by considering the solution given by Eq. (3.9). If the
mnitial conditions are taken as x, = X, = 0, Eq. (3.9) reduces to

F
x(t) = (zo/mZ(cos wl — cos w,!)
(.0 - W
+ —_
_ Fo/m) ot o, sinwz w‘] (3.18)
w —(.d

Let the forcing frequency w be slightly less than the natural frequency:
w, —w=2¢ (3-19)
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where € 1s a small positive quantity. Then w, = w and

W+ w, =2 (3.20)
Muluplication of Eqs. (3.19) and (3.20) gives
Wl - w? = dew (3.21)
Use of Eqs. (3.19) to (3.21) in Eq. (3.18) gives
F,
x(t) = ( 205/: sin et)sinw: (3.22)

ince ¢ is small, the function sin et varies slowly; its period, equal to 27 /¢, is large.
hus Eq. (3.22) may be seen as representing vibration with period 27 /w and of
arlable amplitude equal to

Fo/m
( 2ew
It can also be observed that the sin wt curve will go through several cycles, while the
Sin ef wave goes through a single cycle, as shown in Fig. 3.8. Thus the amplitude
builds up and dies down continuously. The time between the points of zero
amplitude or the points of maximum amplitude is called the period of beating (1,)

)sin et
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and 1s given by
27 27
T Ny T T (3.23)
s = W" w
with the frequency of beating defined as
FRY —3 ’ o /== 4.% . 4.9
EXAMPLE 3.1 Plate Supporting a Pump =~ ™ '~ -.ier R S e
A reciprocating pump, weighin o 150 Ib. 15 mounted at the middle of a steel n!ngp of thickness

Al welst .... LV LV e a SRACLIT LV 4 oL L3 b ]

05 in., width 20 in. and length 100 1n., clamped along two edges as shown in Fig. 3.9. During

operation of the pump, the plat is subjected 1o a harmoruc force, F(¢) = 50 cos62.832 ¢ Ib.
Flﬂf‘ the qmn'l'l!An r\f wibke

nn f\r f"\.ﬂ '\'Qf.ﬂ
U LI aliyiiiuus U o -

UL v piay

Given: Pump weight = 150 Ib; plate dimensions: thickness (¢) = 0.5 in., width (w) = 20 in,,
and length (/) = 100 in.; and harmonic force: F(r) = 50c0s62.832 ¢ Ib.

Find: Amplitude of vibration of the plate, X

Approach: Find the stiffness of the plate by modeling it as a clamped beam. Use the equation
for the response under harmonic excitation.

AANNNNN

ANNNNRNN

Figure 3.9
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Solution. The plate can be modeled as a fixed-fixed beam having Yolung‘s modulus ( E) = 30

x 10® psi, length (/) = 100 in, and area moment of inertia (/) = ﬁ(20)(0.5)3 = 0.2083 in*

The bending sufiness of the beam is given by

192E/  192(30 x 10°)(0.2083)
I8 - (100)1

The amplitude of harmomuc response is given by Eq. (3.6) with F, = 50 b, m = 150/386.4

Ib-sec?/in. (neglecting the weight of the steel plate), A = 1200.0 Ib/in., and w = 62.832
rad/sec. Thus Eq. (3 6) gives

F,
X = 0 _ 30 = - 0.1504 in. (E 2)

k- ma’ 12000 - (150/386.4)(62.832)°

The negative sign indicates that the response x(¢) of the plate is out of phase with the

excitation Fit)
xcitation £(1).

L= = 1200.0 Ib/in. (E1)

4 RESPONSE OF A DAMPED SYSTEM
UNDER HARMONIC FORCE

[f the forcing function ts given by F(r) = Fycos w!, the equation of motion becomes
mi + cx + kx = Fycos wi (3.24)

The particular solution of Eq. (3.24) is also expected to be harmonic; we assume 1t
in the form*

Y VIR Y — [ VR s o ) fv e
Xp\l} AC b\UI (p} \.).LJ}

where X and ¢ are constants to be determined. X and ¢ denote the amplitude and
phase angle of the response, respectively. By substituting Eq. (3.25) into Eq. (3.24),
we arrive at .
X[(k - mw?)cos(wt ~ ¢) — cwsin(wl — q))] = F,cos wi (3.26)
Using the trigonometric relations
cos(w! — ¢) = COs wI Ccos ¢ + sinw! sin ¢
sin(wf — ¢) = sinwf cos¢ — €Os wf sin ¢
in Eq. (3.26) and equating the coefficients of cos wr and sin wr on both sides of the
resulting equation, we obtain
X[(k - mw?)cos ¢ + cwsin¢] = F
X[(k - mw?)sing — cw cos¢] =0 (3.27)
Solution of Eqgs. (3.27) gives
£

X =
[(k - ma?) + czwzll/z

(3.28)

*  Aliernauvely, we can assume x,(1) to be of 1he form x,(1) = C,cos w1 + C, sinwi. which also

mvolves two consiants C; and G, But the final result will be the same 1n both the cases
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and

= tan () 3.29
¢ =tan o (3.29)
By inserting the expressions of X and ¢ from Eqgs. (3.28) and (3.29) into Eq. (3.25)
we obtain the particular solution of Eq. (3.24). Figure 3.10 shows typical plots of the
forcing function and (stead:-state) response. Dividing both the numerator and
denomunator of Eq. (3.28) by A and making the following substitutions

£
|
|

= undamped natural frequency,

8, = ;k_o deflection under the static force F,. and
[A)

\
]
I

frequency ratio

we obtain

X 1 1
5" 3 (3.30)

i V(= r2) + (207 )

and

|

As stated in Section 3.3, the quantity X/8, s called the magnfication factor.
amplification factor, or amphtude ratio. The variations of X/8, and ¢ with the
frequency ratio r and the damping ratio ¢ are shown in Fig. 3.11. The following
observations can be made from Egs. (3.30) and (3.31) and from Fig. 3.11:

¢ = 1an” (3.31)

1. For an undamped system ({ = 0), Eq. (3.31) shows that the phase angle ¢ = 0
(for r < 1) or 180° (for r > 1) and Eq. (3.30) reduces to Eq. (3.10).

2. The damping reduces the amplitude ratio for all values of the forcing frequency.

3. The reduction of the amplitude ratio in the presence of damping is very
significant at or near resonance.

4. With damping, the maximum amplitude ratio (see Problem 3.11) occurs when

R e T S [y T2 (3:32)

which is lower than the undamped natural frequency w, and the damped
natural frequency w, = w1 — ¢2.
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Figure 3.11 Vanation of X and ¢ with frequency ratio r.

5. The maximum value of X (when r = {1 -~ 2{?) is given by
1

(é;)max T B3

and the value of X at w = w, by

(3—) = 71— (3.34)

Equation (3.33) can be used for the experimental determination of the measure
of damping present in the system. In a vibration test. if the maximum amplitude
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of the response ( X).., is measured, the damping ratio of the system cun he
found using Eq. (3.33). Conversely, if the amount of damping is known, one can
make an estimate of the maximum amplitude of vibration.

6. For { > 1/ V2. the graph of X has no peaks and for { = 0, there 1 a
discontinuity at r = 1.

7. The phase angle depends on the system parameters m, ¢. and k and the forcing
frequency w. but not on the amplitude F, of the forcing function.

8. The phase angle ¢ by which the response x(r) or X lags the forcing function
F(1) or F, will be very small for small values of r. For very large values of r. the
phase angle approaches 180° asymptotically. Thus the amplitude of vibration
will be in phase with the exciting force for r < 1 and out of phase for r > 1.
The phase angle at resonance will be 90° for all values of damping ({).

9. Below resonance (w < w ) the phase angle increases with increase in damping.

ACs T Sneon oo e increase P S

Above resonance ((-J > w, ) the pndbt dnglc decreases with increase in aamping.

The complete solution is given by x(¢) = x,(¢) + x,(1) where x,(1) is given by Eq.
(2.64). Thus

x(1) = Xpe 8 cos(wyt — &) + Xcos(wr — ¢) (3.35)
where
w -1 -¢ o, (3.36)
w
r= '(..T,, (337)

X and ¢ are given by Eqgs. (3.30) and (3.31), respectively, and X, and ¢, can be
determined from the initial conditions.

For small values of damping ({ < 0.05), we can take

(). (a). - m e o0

st

The value of the amplitude ratio at resonance 1s also called Q factor or quahty factor
of the system, in analogy with some electrical-engineering applications, such as the
tuning circuit of a radio, where the interest lies in an amplitude at resonance that is
as large as possible [3.2]. The points R, and R,. where the amplification factor falls
to Q/ V2. are called half power points because the power absorbed (AW) by the
damper (or by the resistor in an electrical circuit), responding harmonically at a
given frequency. is proportional to the square of the amplitude [see Eq. (2.88)}:

AW = mcw X’ (3.39)

sociated with the half power points R, and

The difference hetween the frenuencleq a

as
R, is called the bandwidth of the system (see Fig. 3.12). To find the values of R, and
R, weset X/8, = Q/ V2 in Eq. (3.30) so that
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{hc solution of Eq. (3.40) gives

! Re1-2 -1+, Re1-te e g

or small values of {. Eq. (3.41) can be approximated as
2 2
rt=R:= (—:’—') =1-2 r2=Ri=- (%) =1+ 2
here @, = w|g and w, = w|z,. From Eq. (3.42),
0} - wf = (0 + &)@y — @) = (R} - R})w] = 4§

sing the relation

Wy, + w, = 2w,
Eq. (3.43), we find that the bandwidth Aw is given by

Aw = w, — w, = 2{/w,

)mbining Eqgs. (3.38) and (3.45), we obtain

1 w,

Q:—.z—{:wz_w]

—
E...)
8

N

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)



It can be seen that the quality factor Q can be used for esumatmg the equivalent
viscous damping in a mechanical system.?

3.5 RESPONSE OF A DAMPED SYSTEM

UNDER F(t) = Fje'™'

Let the harmonic forcing function be represented in complex form as F(¢) = Fye'*
so that the equation of motion becomes

mi + cx + kx = Fe'' (3.47)

Since the actual excitation is given only by the real part of F(«), the response will
also be given only by the real part of x(s) where x(r) 1s a complex quantity
satisflying the differential equation (3.47). F, in Eq. (3.47) is, in géneral. a complex
number. By assuming the particular solution x,(1)

x,(1) = Xe™' (3.48)

we obtain. by substituting Eq. (3.48) into Eq. (3.47),*
o Fy 3.49)
X = (3.49)

(k - mw?) +icw

Multiplying the numerator and denominator on the night side of Eq. (3.49) by
[(k — mw?) - icw] and separating the real and imaginary parts, we obtain

[ 73 Al [ k - mwz cw ] Iy N
(k - mw?)" + c%? (k— mw?) + c%?
Using the relation, x + iy = de'® where 4 = {x2 + y? andtan¢ = yp/x, Eq. (3.50)
can be expressed as
F,
X= " e (3.51)
[(k - mw?) + czwz]
where
- cw
= an-t( ) (.52)
k- mw
Thus the steady-state solution, Eq. (3.48), becomes
Fy _
x,(1) = ' # (3.53)

[(k - mmz)2 + (cw)zll

-

' The determination of the system parameters (m. c. and A) based on half-power pomts and other

response charactenstics of the system is considered 1n Section 10.8.

* Equation (3 49) can be written as Z(1w)X = K, where Z(1w) = —mw? + rwe + A 15 called the
mechancal impedunce of the system [3 8).



CHAPTER 3 Harmonically Excited Vibraton

Frequency Response. Equation (3.49) can be rewntten in the form

kX 1 .
-t — = 3.54
K 1 -r2+12¢r H(iv) ( )

where H(iw) is known as the complex frequency response of the system. The
absolute value of H(/w) given by

. kX 1
lH(“")llel: ; 7 (3.55)
ol -y o
denotes the magmﬁcatnon factor defined in Eq. (3.30). Recalling that e¢'* = cos ¢ +
i sin ¢, we can show that Egs. {3.54) and (3.55) are related:
H(w) = |H(iw)le™"* (3.56)
where ¢ is given by Eq. (3.52), which can also be expressed as
¢=tan"'( 202) (3.57)
1-r

Thus Eq. (3.53) can be expressed as
F,
x,(1) = —k—°|H(iw)|e"“’"‘” (3.58)

It can be seen that the complex frequency response function, H(:w), contains both
the magnitude and phase of the steady state response. The use of this function in the

pvnpnmpnfrxl rlpfnrmnnr)hnn of the system pa atare { m and LY ic diem ad
P 1a: Gee I@auen G uid Sysim parameiers (m, ¢, andg r\) 1S QISCUSsSEd 1n

Section 10.8. If F(f) = Fycos wi, the corresponding steady-state solution is given by
the real part of Eq. (3.53):

_ fo o
v [(k = ma?)’ + (cw)Z]mm( o

F,
Re[ H(fw)e""'] = Re[f|H(1’w)|e"“’"“ (3.59)
which can be seen to be the same as Eq. (3.25). Similarly, if F(1) = F,sinw!, the
corresponding steady-state solution is given by the imaginary part of Eq. (3.53):

K i
x,(1) = 0 l/zsm(c..n - ¢)

[(k - mmz)2 + (c‘w)Z]

im| 22 i) e (3.60)

Complex Vector Representation of Harmonic Motion. The harmonic excitation and
the response of the damped system to that excitation can be represented graphically
in the complex plane, and interesting interpretation can be given to the resulung
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Figure 3.13 Representation of Eq (3 47) in a complex plane

diagram. We first differentiate Eq. (3.58) with respect to time and obtain
F
velocity = % ,(1) = inO|H(iw)|e"“” * = 1wx,(1)

,F ) i
acceleration = %,(1) = (iw)" P|H(iw)|e™"* = ~w’x (1)  (3.61)

Because ! can be expressed as
1= cos% + r'sin% =e'" (3.62)

we can conclude that the velocity leads the displacement by the phase angle /2
and that it is multiphed by . Similarly, — 1 can be written as

| —1=cosm+isinm =¢" (3.63)

Hence the acceleration leads the displacement by the phase angle 7, and it is
multiplied by w?.

Thus the various terms of the equation of motion (3.47) can be represented in
the complex plane, as shown in Fig. 3.13. The interpretation of this figure is that the
sum of the complex vectors mi(r), cx(r), and kx(r) balances F(¢), which is
precisely what is required to satisfy Eq. (3.47). It is to be noted that the entire
diagram rotates with angular velocity w in the complex plane. If only the real part

| of the response is to be considered, then the entire diagram must be projected onto
the real axis. Similarly, if only the imaginary part of the response is to be
considered, then the diagram must be projected onto the imaginary axis. In Fig.
3.13, notice that the force F(r) = Fye'™' is represented as a vector located at an
angle wf to the real axis. This implies that F; is real. If Fy is also complex. then the
force vector F(r) will be located at an angle of (wf + ¢). where ¢ is some phase
'angle introduced by F;. In such a case, all the other vectors. namely, m¥, cx, and kx
will be shifted by the same angle . This is equivalent to multiplying both sides of

Eq. (3.47) by e'¥.
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RESPONSE OF A DAMPED SYSTEM
UNDER THE HARMONIC MOTION OF THE BASE

Sometimes the base or support of a spring-mass-damper system undergoes harmonic
motion, as shown in Fig. 3.14(a). Let y(r) denote the displacement of the base and
x(t) the displacement of the mass from its static equilibrium position at ume ¢,
Then the net elongation of the spring is x — y and the relative velocity between the
two ends of the damper 1s x — y. From the free-body diagram shown in Fig. 3 14(bh).
we obtain the equation of motion:

mi+c(x—yp)+k(x—y)=0 (3.64)
If y(1) = Ysinwt, Eq. (3.64) becomes
mi + cx + kx = Asinw! + Bcos wf (3.65),

where 4 = kY and B = cwY. This shows that giving excitation to the base s’
equivalent to applying harmonic force of magnitude (kY sin wf + cwY cos wt) to the
mass. By using the solutions given in Egs. (3.59) and (3.60), the steady-state

nnnnnnnn nf tha ance Ao

+ ag o Avemeacscad as
TOSPUTIDG Ul LT TTHads Call 00 CAPTLSSEU as

kYsin(wr — ¢,) weYcos(wt — ¢,)

. P I R . 2 2, 212
[(k ~ mw?) + (cw) l {(k - mw’) + (cw) ]

x, (1) = (3.66)

The phase angle ¢, will be the same for both the terms because it depends on the
values of m, ¢, k, and w, but not on the amplitude of the excitation. Equation (3.66)
can be rewntten as

{4

v — Yol car — & _
Xpui A COO Wi

Y — o)

] had ¥ 2/

y k2 + (cw)?
(k — mc.)z)2 + (cm)2

12
] cos(wt — ¢, — ¢;) (3.67)

v(t) = Ysinun
Base

k(r~y) c(x~y)

| )

(a) (&)

>~

Figure 3.14 Base exciauon
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where the ratio of the amplitude of the response x () to that of the base motion
(1) is given by

+(e) |7 [ 1+ 17 (368)
2 I TR Tt '

_ W . 2¢r
) = fan l(k—mmz)zmn l(l—rz)
(

¢, (3.69)

I
—
oo
=
1
| =~
—
I
—
=]
=
1
=
—
#

The ratio X/ Y is called the displacement transmissibility.
Note that if the harmonic excitation of the base is expressed in compiex form as
y(1) = Re(Ye'®), the response of the system can be expressed as

N

([ 1+ i2r
= R — Y | Ye'! 3.70
%p(1) e{(l-—r2+52§r) ¢ } (3.70)
and the transmussibility as
X s e A o (371}
Y ll T \‘-&l } l lll\lw’l v l’

where |H(iw)| 1s given by Eq. (3.55).

In Fig. 3.14(b), the force carried by the support F must be due to the spring and
dashpot which are connected to it. It can be determuned as follows:

F=k(x—yp)+c(x-p)=—mi (3.72)
From Eq. (3.67), Eq. (3.72) can be written as
F=mw’Xcos(wf — ¢, — ¢,) = Freos(wi — ¢, — $,) (3.73)
where Fr 1s the amplitude or maximum value of the transmutted force given by

St B R0 " (3.74)
(1= r2)" + (2¢r)° '

ol

The ratio ( Fr/kY ) is known as the force transmissibility.” It can be noticed that the
transmitted force 1s in phase with the motion of the mass x(r). The variation of the

" The use of the concept of transmissibility in the design of vibration 1solation systems 1s discussed 1n
Chapler 9
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force transmitted to the base with the frequency ratio r is shown in Fig. 3.15 for

different values of {.

If z = x — y denotes the motion of the mass relative to the base. the equation of

motion, Eq. (3.64), can be rewritten as
mz + ¢+ kz= -mj=mw’Ysinw
The steady-state solution of Eq. (3.75) is given by

maw?Y sin(wt — ¢,)

[(k - m(.:z)2 + (Cw)zl

z(1) = 77 = Zsm(wt — ¢,)
where Z, the amplitude of z(r). can be expressed as

muwlyY r?

=Y
J(k - mat) + (co) (1= r2) + ()

and ¢, by Eq. (3.69). The ratio Z/Y is shown graphically in Fig. 3.16.

zZ =

(3.75)

(3.76)

(3.77)
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Figure 3.16 Vanaton of (Z/ Y) or (MX / me} wilh
trequency ratio r = (w/w,).

XAMPLE 3.2

Vehicle Moving on a Rough Road

Figure 3 17(a) shows a simple model of a motor vehicle that can vibrate 1n the vertical
et oaaabe iV a2 i o oL o1 TLo oo bioale b o e af 1TWWY L. TLo
dirceuion wirlic iraviing ovel a TOUgs J1odd. 10 VOHCIC fjdd a4 IHddy UL 14V Rg. 1nc
suspension system has a spring constant of 400 kN /m and a damping ratio of { = 0.5 If the
vehicle speed i1s 100 km/hr, determine the displacement amplitude of the vehicle. The road

surface vanes sinusoidally with an amplitude of ¥ = 005 m and a wavelength of 6 m

Grven. Vehicle model: m = 1200 kg, k = 400 kN/m, { = 0.5. and speed = 100 km/br.
Road surface: sinusoidal with ¥ = 0.05 m and period = 6 m.

Find: Displacement amplitude ( X) of the vehicle.

Approach: Model the vehicle as a single degree of freedom system subjected to base motion
as shown in Fig. 3 17(b)

Solution. The frequency w of the base excitation can be found by dividing the vehicle speed
by the length of one cycle of road roughness:

100 % 1000)1

w = 21l'f= 21!( 3600 3

= 29.0887 rad/sec

The natural frequency of the vehicle is given by

= 18 2574 rad /sec

_ [k (400 x 10*)'
“ Y m T 1200
and hence the [requency ratio r is

_w 29087
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Figure 3.17 Vehicle moving over a rough road

The amplitude ratio can be found from Eq. (3.63):

X _ { 1+ (20r)° }VZ _ { 1 + (2 x 0.5 x 1.5933) }

Yl -y + @) (1 - 1.59332)" + (2 x 0.5 x 1.5933)"
= 0.8493

Thus the displacement amplitude of the vehicle is given by

X = 0.8493Y = 0.8493(0.05) = 0.0425 m

1/2

PLE33

~Machine on Resilient Foundation

A heavy machine. weighing 3000 N, is supported on a resilient foundation. The stauc
deflection of the foundation due 1o the weight of the machine is found to be 7.5 ¢m It s
observed that the machine vibraies with an amphtude of 1 ¢m when the base of the
foundation is subjected to harmonic oscillation at the undamped natural frequency of the
system with an amplitude of .25 ¢cm. Find (1) the damping constant of the foundauon, (2)
the dynamic force ampiniude on the base, and (3) the amplitude of the displacement of the
machine relative to the base



Grreen. Machine weight (W) = 3000 N, static deflection under W = 7.5 ¢m, and X = | ¢m,
when y(f) = 0.25sinw, ¢ cm.

Find. ¢, F,. and Z.

Approach: Specialize the equations for X/Y. F,, and Z for the case w = w,

Solution. (1) The stiffness of the foundation can be found from 1its static deflection:
A = weight of machine/8, = 3000/0.075 = 40,000 N/m

At resonance (w = w, or r = 1), Eq. (3.68) gives

X 0.010 . 1+ (20)° i .
v-o 25_4_[ 20)° (F0
The solutzon of Eq. (E.1) gives { = 0.1291. The damping constant is given by
p= P = W = 01701 w Y v SADONN w 20N /0 Q1Y — G NSII N /e (T N
i 3 <, b AL V.LLTZE N LA V"VU,U\JU NIy 7.01) FUIVILL IN"2/ 11 L. o)

23
F,=w¢l—l:4§] = kX = 40.000 x 001 = 400 N (E1)

(3) The amplatude of the relative displacement of the machine at r = 1 can be obtained
from Eq. (3.77):

Y 0.0025

— _— — NNNLY

Z= o= 0 = (00%8 m (E 4)
2 T 2x0.1291

It can be noticed that X = 0.01 m, Y = 0.0025 m_and Z = 0 00968 m: therefore. Z # X - ¥

TLic fe diem s b Lo ATErL L b -1
LIS 1D QU 1O UIE phnasce gHierendces oeiween x, y, and -2

3.7 RESPONSE OF A DAMPED SYSTEM
UNDER ROTATING UNBALANCE

Unbalance in rotating machinery is one of the main causes of wvibration. A
stmplified model of such a machine is shown in Fig. 3.18. The total mass of the
machine is M, and there are two eccentric masses m/2 rotating in opposite
directions with a constant angular velocity w. The centrifugal force (mew?®)/2 due to
each mass will cause excitation of the mass M. We consider two equal masses m/2
rotating in opposite directions in order to have the horizontal components of
excitation of the two masses cancel each other. However, the vertical components of
excitation add together and act along the axis of symmetry A — A in Fig. 3.18. If
the angular position of the masses 1s measured from a horizontal position, the total
vertical component of the excitation is always given by F(7) = mew?sinwi. The
equation of motion can be denved by the usual procedure:

Mi + cx + kx = mew? sin wt (3.78)

The solution of this equation will be identical 10 Eq. (3.60) if we replace m and £,
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Figure 3.18 Rotaing unbaianced masses

by M and mew? respectively. This solution can also be expressed as

x,(1) = Xsin{wt — ¢) = lm[’""( @) [H(iw)]e'™~ w] (3.79)
g [M\w, ] |

where w, = \/k M and X and ¢ denote the amplitude and the phase angle of

vibraiion given by

me w? m
X= S - ,j(%\ H(10)] (3.80)
[(k - M) + (c‘w)l Vo
and
= tan Y —£9
6= tan () (3.81)1
By defining { = ¢/c. and ¢, = 2Muw,, Eqgs. (3.80) and (3.81) can be rewritten as
MX r? 5
= 75 = rllH(iw)]| (3.82)
me [(1 _ r2)2+ (2{")2] l
and :
b = tan-‘(lzf’rz) (3.83) |

The variation of MX/me with r for different values of { is shown in Fig. 3.16. On
the other hand, the graph of ¢ versus r remains as in Fig. 3.11(b). The following
observations can be made from Eq. (3.82) and Fig. 3.16:

1. All the curves begin at zero amplitude. The amplitude near resonance (w = w,)
is markedly affected by damping. Thus if the machine is to be run near
resonance. damping should be introduced purposefully to avoid dangerous
amplitudes.
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2. At very high speeds (w large). MX/me is almost unity. and the effect ol
damping is negligible.
3. The maximum of MX/me occurs when
d{MX
dr( ) =
The solution of Eq. (3.84) gives

(3.84)

1
L’] . 2{2

r= > 1

Accordingly, the peaks occur to the right of the resonance value of r = 1.

:XAMPLE 3.4

Francis Water Turbine

The schematic diagram of a Francis water turbine is shown in Fig, 3.19 in which water flows
from A into the blades B and down into the 1ail race €. The rotor has a mass of 250 kg and
an unbalance (me) of 5 kg-mm The radial clearance between the rotor and the stator 1s
5 mm. The turbine operates in the speed range 600 to 6000 rpm. The steel shaft carrying the
rotor can be assumed 1o be clamped at the bearings. Determine the diameter of the shaft so
that the rotor is always clear of the stator at all the operating speeds of the turbine. Assume

damping to be negligible.

Beaning —— &4 A —

Shaft ——

Rotor

e\ L e

A—> -4
w Cﬂ)f

T <nl race

Figure 3.19



Giwen: Turbine: mass (M) = 250 kg, unbalance (me) = 5 kg-mm, and speed range =
600- 6000 rpm. Shali- length = 2 m and maximum radial deflectzon = 5 mm.

Find. Diameter of the shaft

Approach. Equate the maximum amplitude (radial deflection) of rotor 1o 5 mm. Use thet
expression for the suffness of a cantilever beam.

Solution. The maximum amplitude of the shaft (rotor) due to rotating pnbalance can bc
obtained from Eq. (3 80) by setting ¢ = 0 as

2 2
mew mew (E 1 )

T (k- M) k(1-1Y)

X

where me = § kg-mm, M = 250 kg, and the limiting value of X =5 mm. The value of w

o]
L9

ranges from

600 pm = 600 X ﬁ = 207 rad /sec
r w 4
to
27
6000 rpm = 6000 x W - 2007 rad /sec

while the natural frequency of the system is given by

w, = V A% = ]/ % = 0.0625Vk rad /sec (E.2)

if k isin N/m. For w = 207 rad/sec, Eq. (E.1) gives

0% 10°3) x (207) 2
0.005 - (3:0X10°%) (er) _m
(20m) k- 107
kIl - po0a &
k = 10.04 x 102 N/m (E 3)

For «w = 2007 rad/sec, Eq. (E.1} gives

(5.0 X107%) x (2007)° 20072

0.005 = -
«h (2001:)2 k - 10°w
~ 0.004 k
k = 10.04 X 10522 N /m (E 4)

From Fig. 3.16, we find that the amplitude of vibration of the rotating shaft can be minimized
by making r = w/w, very large. This means that w, must be made small compared to
w—that s, k must be made small. This can be achieved by selecting the value of k as
10.04 X 10°7r? N/m. Since the stiffness of a cantilever beam (shaft) supporting a load (rotor)
at the end is given by

(E.5)
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the diameter of the beam (shalt) can be found:

4= 64kl’ _ (64)(10.04 x 10%7°)(2")
InE 37(2.07 x 10')

= 2.6005 x 10 * m'

or
d=01270m = 127 mm (E6)

3.8 FORCED VIBRATION WITH
COULOMB DAMPING

For a single degree of freedom system with Coulomb or dry friction damping.
subjected to a harmonic force F(¢) = F,sinws as in Fig. 3.20. the equation of
motion is given by )

mi + kx + uN = F(1) = F,sin w1 (3.85)
where the sign of the fricuon force (pN ) 1s positive (negative) when the mass moves
from left to right (right to left). The exact solution of Eq. (3.85) is quite involved.
However, we can expect that if the dry friction damping force is large, the motion of
the mass will be disconunuous. On the other hand, if the dry friction force is small
compared to the amplitude of the applied force F,. the steady state solution is
expected to be nearly harmonic. In this case, we can find an approximate solution of
Eq. (3.85) by finding an equivalent viscous damping ratio. To find an equivalent
viscous damping ratio, we equate the energy dissipated due to dry friction to the
energy dissipated by an equivaient viscous damper during a fuii cycie of motion. if
the amplitude of motion is denoted as X. the energy dissipated by the friction force
uN in a quarter cycle is uNX. Hence in a full cycle, the energy dissipated by dry
friction damping is given by

AW = 4uNX (3.86)

If the equivalent viscous damping constant is denoted as ¢, the energy dissipated
during a full cycle [see Eq. (2.92)] wiil be

AW = ncequz (3.87)
By equating Eqgs. (3.86) and (3.87), we obtain
4u N

€4 puX

C

(3.88)

,————0 1)

—"WWWWWA—roA . P (1) =
SN\ NN NN\ NN NN

/4417,

Figure 3.20
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Thus the steady-state response is given by

x,(1) = Xsin(wr ~ ¢) (3.89)
where the amplitude X can be found from Eq. (3.60):

Fo (FO/k)

X = Vi = 12 (3.90)
[k — ma?)" + (¢ o] W\ 0\
A 1 - -z + (2 eq;'
w; L]
with
_Ceq_ Ca _ AN - 2eN (3.91)
S T o 2mw, 2megeX  smwe,X o
Substitution of Eq. (3.91) into Eq. (3.90) gives
(Fo/k)
X= > RIV2 (3.92)
| — i"_i 4p.N)‘
o)t ( 7k X
The solution of this equation gives the amplitude X as
- qi/2
()
E aF
x=3 g (3.93)

2
R
RN
As stated earlier, Eq. (3.93) can be used only if the friction force is small compared

to F,. In fact. the limiting value of the friction force uN can be found from Eq.
(3.93). To avoid imaginary values of X, we need to have

-

Fy
kN~

1_(4p.N

2
‘"Fo) >0 or

a|n

If this condition is not satisfied, the exact analysis, given in Ref. [3.3]. is 10 be used.
The phase angle ¢ appearing in Eq. (3.89) can be found using Eq. (3.52):

xq_“l 4u N
C, W 9w, L Y
¢ = lan"(;—j——;) = tan ! 5 | = tan’ ! ﬂkX, (3.94)
vk — mw ] ] - w” | - w
l w, J l wZJ

”
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Substituting Eq. (3.93) into Eq. (3.94) for X, we obtain

du N
nk,

{1 (2]

Equaton (3.94) shows that tan ¢ is a constant for a given value of F,/pN. ¢ is
discontinuous at w/w, = 1 (resonance} since il takes a positive valve for w/w, < 1
and a negative value for w/w, > 1. Thus Eq. (3.95) can also be expressed as

¢ = tan ! (3.95)

172

+ 4ﬂpFN
- 0
¢ = tan ! — (3.96)

(- (=)

Equation (3.93) shows that friction serves to limit the amplitude of forced
vibration for w/w, # 1. However, at resonance (w/w, = 1). the amplitude becomes
infinite. This can be explained as follows. The energy directed into the system over
one cycle when it is excited harmonically at resonance s

aw = [ Foa=[FZa
"cyclc "0 dt
T=27n/w .
= Jf Fysinwt - [wXcos(wi — ¢)] dr (3.97)
0

Since Eq. (3.94) gives ¢ = 90° at resonance, Eq. (3.97) becomes
AW = FOwah/wsinz widi = nF, X (3.98)
0

The energy dissipated from the system is given by Eq. (3.86). Since nFy X > 4pNX
for X to be real-valued, AW’ > AW at resonance (see Fig. 3.21). Thus more energ)

(’

Figure 3.21
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is directed into the system per cycle than is dissipated per cycle. This extra energy 1
used 1o build up the amplitude of vibration. For the nonresonant condition
(w/w, # 1), the energy input can be found from Eq. (3.97):

AW’ = wﬁ,xfz"/”sinw: cos(wt — ¢) di = mF, X sin ¢ (3.99)
[§]

Due 1o the presence of sin¢ in Eq. (3.99). the input energy curve in Fig. 3.21 1s
made to coincide with the dissipated energy curve. o the amplitude is limited. Thus
the phase of the motion ¢ can be seen to limit the amplitude of the motion.

The periodic response of a spring-mass system with Coulomb damping sub-
Jected to base excitation is given in Refs. {3.10. 3.11).

Spring-Mass System with Coulomb Damping

LE 3.5
LE

A spring-mass system, having a mass of 10 kg and a spring of stffness of 4000 N/m, vibrates
on a horizontal surface The coefficient of friction 1s 0.12 When subjecied to a harmonic force
of frequency 2 Hz, the mass is found to vibrate with an amplitude of 40 mm. Find the
amplitude of the harmonic force applied to the mass.

Gwen. Spring-mass system with Coulomb fnction—m = 10 kg, k = 4000 N/m, g = 0.12,
harmonic force with frequency = 2 Hz, vibration amplitude = 40 mm

Find- Amplitude of the applied force.
Approach: Use Eq. (3 93).
Solution. The vertical force (weight) of the mass 1s N = mg =10 X 9.81 = 981 N. The

natural frequency 1s
[k { 4000
“ =V =V = 20 rad/sec

and the frequency ratio 1s

w 2 X 27w
o R 0.6283
The amplitude of vibration X is given by Eq. (3.93): :
, P2
1~ du N\
X = %o ——————-——”ﬂ
== —
(-]
w”
, 12
- { 4(0.12)(98.1)}"

40001 (1~ 06283)

The solution of this equation gives £, = 97.9874 N
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3.9 FORCED VIBRATION WITH
HYSTERESIS DAMPING

Consider a single degree of freedom system with hysteresis damping and
to a harmonic force F(7) = Fysinwz, as indicated in Fig. 3.22. The eq
motion of the mass can be derived, using Eq. (2.132). as

y k .
mx + -%-x + kx = F sinwt

where (Bk/w)x = (h/w)x denotes the damping force.* Although the so
Eq. (3.100) is quite involved for a general forcing function F(¢). our inte.
find the response under a harmonic force.

The steady-state solution of Eq. (3.100) can be assumed:

x, (1) = Xsin{(wt ~ ¢)
By substituting Eq. (3.101) into Eq. (3.100), we obtain

v FO
A= 2 172
wz 2
k 1 -— *w—z' + ﬁ
LA " ]
and
r ]
i B

Equations (3.102) and (3.103) are shown plotted in Fig. 3.23 for several value
A comparison of Fig. 3.23 with Fig. 3.11 for viscous damping reveals the foll

1. The amplitude ratio
X

(Fork)

attains its maximum value of Fy/kf8 at the resonant frequency (w = w,)
case of hysteresis damping, while it occurs at a frequency below resc
(w < w,) in the case of viscous damping,. ‘

2. The phase angle ¢ has a value of tan '(B) at w = 0 in the case of hys
damping, while it has a value of zero at w = 0 in the case of viscous dar
This indicates that the response can never be in phase with the forcing fu.
in the case of hysteresis damping.

* In conirasi 10 viscous damping, this damping force here can be seen 10 be a funcuon of the
frequency w (see Section 2.8)
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Note that if the harmonic excitation is assumed to be F(r) = Fe™' in Fig,
3.22, the equation of motion becomes

mx + %x + kx = Fge'™ (3.104)

In this case, the response x(r) is also a harmonic function involving the factor
e'“". Hence x(1) is given by iwx(¢), and Eq. (3.104) becomes

mi + k(1 + i) x = Fe'' (3.105)

where the quantity k(1 + iB) is called the complex stiffness ot complex damping
{3.7]. The steady-state solution of Eq. (3.105) is given by the real part of

twi
Foe

X(f) = T P (3]06)

kll*k

\2 1
J +iBJ

e

£

n
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3.10 FORCED MOTION WITH OTHER
TYPES OF DAMPING

Viscous damping, is the simplest form of damping to use in practice, since 1t leads to
linear equations of motion. In the cases of Coulomb and hysteretic damping, we
defined equivalent viscous damping, coefficients to simplify the analysis. Even for a
more complex form of damping, we define an equivalent viscous damping coefhi-
cient, as illustrated in the following examples. The practical use of equivalent
damping is discussed in Ref. {3.12].

Quadratic ot veloaty squared damping 1s present whenever a body moves in a turbulent fluid
flow.

Gwen: Veloaty squared damping,

Find: Equivalent viscous damping coefficient and amplitude of steady state vibration of a
single degree of freedom system having quadrauc damping.
Approach. Equate energies dissipated per cycle during harmonic motion.
Solution. The damping force is assumed to be
b
Fy= ra{x) (E.)

where a 1s a constant, x is the relative velocity across the damper, and the negative (positive)
sign must be used in Eq. (E.1) when x 15 positive (negative). The energy dissipated per cycle
dunng harmomc motion x(f) = Xsinw! is given by

X 2 w/2 3 N
AW = 2[ a(x) dx = 2X‘f % aw? cos’ wrd{wt) = %w'axl (E2)
-X -n/2
By equating this energy to the energy dissipated in an equivalent viscous damper [see Eq.
(2.92)}:
AW = mc w X? (E.3)
we obtain the equivalent viscous damping coefficient (¢, ):
8
Ceq = —371'an (E.4)

It can be noted that c,, is not a constant but varies with w and X The amplitude of the
steady-state response can be found from Eq (3.30):

X i

A E.5)
3 (
w1 ) (2 )
where r = w/w, and
Ceq Ceq .
g = = = Tmo (E.6)
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Using Eqs. (E.4) and (E.6), Eq (E.5) can be solved to obtain

o dm (1 - ‘/(1 - P (sarzs,, )2 (E7)

8ar?

CITATION AND STABILITY ANALYSIS

The force acting on a vibrating system is usually external to the system and
independent of the motion. However, there are systems for which the exciting force
is a function of the motion parameters of the system, such as displacement, velocity,
or acceleration. Such systems arc called self-excited Vlblullng systems since the
motion itself produces the exciting force (see Problem 3.46). The instability of
rotating shafts, the fiutter of turbine blades, the fiow induced vibration of pipes, and
the automobile wheel shimmy and aerodynamically induced motion of brnidges are
typical examples of self-excited vibrations.

A system is dynamically stable if the motion (or displacement) converges or
remains steady with time. On the other hand, if the amplitude of displacement
increases continuously (diverges) with time, it is said to be dynamically unstable.

The motion diverges and the system becomes unstable if energy is fed into the

system through self-excitation. To see the circumstances that lead to instability, we
consider the equation of motion of a single degree of freedom system:

mi+cx+ kx=0 (3.107)

If a solution of the form x(1) = Ce®, where C is a constant, is assumed, Eq. (3.107)
leads to the characteristic equation

2

sty S Koy (3.108)
m

¢
m

The roots of this equation are

(&) - (&) 1)

ution is assumed o be x{7) = Ce®, the mouon wili be diverg]ng and
aperiodic if the roots 5, and s, are real and positive. This situation can be avoided if
¢/m and k/m are positive. The motion will also diverge if the roots s, and s, are

I+

- o=
T2
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complex conjugates with positive real parts. To analyze the situation, let the roots s,
and s, of Eq. (3.108) be expressed as

s, =p+iq, s,=p-iq (3.110)

where p and ¢ are real numbers so that

(s = s){s ~s5,) =5 = (s, +5,)5+ 55, =5+ i—s + 71:; =0 (3.111)
Equations (3.111) and (3.110) give
c k
— = (s, +5) = ~2p, -,-n—=s[sz=p2+q2 (3.112)

Equations (3.112) show that for negative p. ¢/m must be positive and for positive
pt + g%, k/m must be positive. Thus the system will be dynamically stable if ¢ and
k are positive (assuming that m is positive).

EXAMPLE 3.7

instability of a Vibrating System TS

Find the value of free stream velocity w at which the arrfoil section (single degree of freedom
system) shown 1n Fig. 3.24 becomes unstable.!

Gwen: Single degree of freedom arrfoil section in fimd flow
Find: Velocity of the fluid which causes instability of the airfoil (or mass m).

Approach: Find the vertical force acting on the airfoil (or mass m) and obtain the condition
that leads to zero damping.

Solution. The vertical force acting on the arrfoil (or mass m) due to fluid flow can be
expressed as [3.4]

|

= 3pu"DC, (E.1)

where p = density of the fluid, u = free stream velocity, D = width of the cross section

normal to the fluid flow direction, and C, = vertical force coefficient, which can be expressed
as

b

iy

=(C; cosa + Cpsina) (E.2)

C =

where w,, is the relative velocity of the fAluid, C; is the lift coefficient, C, is the drag

The same analysis 1s vahd for a vibrating structure such as a water tank (Fig 3 25a) or galloping of
an ice-coated power hne (Fig 3 25b) under wind loading [3 4-3 6]
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Blade
_l( snffness and

damping

N\

Figure 3.24

coeflicient, and a is the angle of attack (see Fig 3 24):

)

==

a = —tan ’(

For small angles of a(tack,

)

I

I
8| =

and C, can be approximated, using Taylor’s series expansion about a = (. as

ac,
C=C|, " Fa

|

a=0

where, for small values of a, u,, = v and Eq. (E.2) becomes

C, =C cosa+ Cpsina

f
T Cable
stiffness and
x(1) damping
— Water tank l
"> (m)
—_— Cabte
t
Column
A stiffness Ice
'3 and damping
1
N\
(a) (b)

Figure 3.25

(E3)

o~
m
i~

-

(E.5)

(E6)
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Equation (E.5) can be rewritten, using Egs. (E.6) and (E 4), as

N ac; ) aC,
C, =(C cosa + Cpsina) - + a[—a,-&— cosa — C sina + Fa S0C

+CDc03a]
a=l)
aq
= ( + a—=—
o da [,y
xf 4G
=G T E{W - + Cpla-o} (E.7)
Substitution of Eq. (E.7) into Eq. (E.1) gives
1 1 aC, :
F= ipulDC,' . 3 puD—— "-Ox (E8)
The equation of motion of the airfoil (or mass m) 1s
ac,
mx'+c.i+kx=F=-l,;pu2DC,! - .l,puD—m! X (E 9}
< a-=D il PO ’

The first term on the right-hand side of Eq. (E.9) produces a static displacement and hence
only the second term can cause instability of the system The equation of motion, considering
only the second term on the right-hand side, 18

o

]5{+kx=0 (E.10)
Ga { )

mi + ¢x + kx = mx+[c+ S pul——
a=0

Note that m includes the mass of the entrained fluid. We can see from Eq (E.10) that the
displacement of the airfoil (or mass m) will grow without bound (1.e . the system becomes

,,,,,,

unstable) if ¢ is negative. Hence the minimum velocity of the fluid for the onset of unstable
oscillanons is given by ¢ = 0, or,

u= -

(E.11)

ac,
The value of 7‘;‘- = — 2.7 for a square section in a steady flow [3.4].

a=(Q

3.12 COMPUTER PROGRAM

A FORTRAN computer program, in the form of subroutine HARESP, is given for
finding the steady-state response of a viscously damped single degree of freedom
system under the harmonic force Fycosw: or Fysinwi. The arguments of the
subroutine are as follows:

XM = Mass. Input data.

XC = Damping constant. Input data.

XK = Spring stiffness. Input data.
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FO = Amphtude of the force. Input data.

oM = Forcing frequency. knput data.

iC = Integer for idenufying the nature of the force. IC = 1 for
cosine variation and IC = 0 for sine variation. Input data.

N = Number of time steps in a cycle at which the response is
to be printed. Input data.

X. XD, XDD = Arrays of dimension N each. which contain the computed
values of displacement. velocity. and acceleration. X(1) =
A1) XD = x2(1,). XDD(]) = X(¢,). Output.

XAMP = Amplitude of the response (Eq. (3.51)). Output.

XPHI = Phase angle of the response (Eq. (3.52)). Output.

To lustrate the use of subroutine HARESP. an example is considered with
m=5kg ¢ =20 N-s/m, k=500 N/s F,=250N.w=40rad/s. N =20, and
F(1) = F,sinwt. The main program. which calls HARESP. subroutine HARESP,
and the output of the program are given below.

PROGRAM 3

c
C
C
C MAIN PROGRAM WHICH CALLS HARESP
c
c
c

FOLLOWING 2 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION X(20),XD(20),XDD(20)
DATA XM,XC,XK,FO,0M,N,I1C/5.0,20.0,500.0,250.0,40.0,20,0/

o]

END OF PROBLEM-DEPENDENT DATA

CALL HARESP [XM,XC,XK,FO,OM,IC,N,X,XD,XDD,XAMP,XPHI)
PRINT 100

100 FORMAT (//,6OH STEADY STATE RESPONSE OF AN UNDERDAMPED,/,
2 53H SINGLE DEGREE OF FREEDOM SYSTEM UNDER HARMONIC FORCE)
PRINT 200, XM,XC,XK,FO,0M,IC,N

200 FORMAT (//,12H GIVEN DATA:,/,5H XM =,E15.8,/,5H XC =,E15.8,/,
2 SH XK =,E15.8,/,5H FO =,E15.8,/,5H OM =,E15.8,/,5H IC =,12,/,

3 5HN

=,12)

PRINT 300 .
300 FORMAT (//,10H RESPONSE:,//,5H I ,3X,5H X(I),12X,6H XD(I),
2 11X, 7H XDD(I),/)
DO 400 I=1,N
400 PRINT 500,1,X(I1),XD(1),XDD(I)
500 FORMAT (14,2X,E15.8,2X,E15.8,2X,E15.8)

STOP
END

L ¥
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c

c

C SUBROUTINE HARESP

c

o = _
SUBROUTINE HARESP (XM,XC,XK,F0,0M,IC,N,X,XD,XDD,XAMP,XPHI)
DIMENSION X{N),XD(N),XDD(N)
OMN=SQRT{XK/XM)

V XAI=XC/(2.0%XM*OMN)

DST=FO/XK
R=0M/OMN
XAMP=DST/SQRT ( (1.0-R%%2)#%2+ (2. 0*XAI*R)**2)
XPHI=ATAN(2.0*XAI*R/(1.0-R%*2))
DELT=2.0%3.16416/(OM*REAL(N))
IF (IC .EQ. 0) GO TO 20
TIME=0.0
DO 10 I=1,N
TIME=TIME+DELT
X (1)=XAMP*COS (OM*TIME -XPHI )
XD (I )=-XAMP~OM*SIN(OM*TIME-XPHI)

10 XDD(I)=-XAMP* (OM**2)*C0S (OM*TIME -XPHI)
RETURN

20 TIME=0.0
DO 30 I=1,N
TIME=TIME+DELT
X (1)=XAMP*SIN (OM*TIME -XPHI)
XD ( I)=XAMP*OM*COS (OM*TIME -XPHI )

30  XDD(I)=-XAMP*(OM**+2)=SIN(OM*TIME -XPHI)

RETURN

END

STEADY STATE RESPONSE OF AN UNDERDAMPED
SINGLE DEGREE OF FREEDOM SYSTEM UNDER HARMONIC FORCE

GIVEN DATA:

XM = 0.50000000E+01

XC = 0.20000000E+02

XK = 0.50000000E+03

FO = 0.25000000E+03

0M = 0.640000000E+02

IC =0

N =20

RESPONSE :
I X(I) XD(I) XDD(I)
1 0.13528203E-01 0.12103568E+01 -0.216451264E+02
2 0.22216609E-01 0.98389733E+00 -0.35546574E+02
3 0.28730286E-01 0.66112888E+00 -0.65968460LE+02
4 0.32631632E-01 0.27364409E+00 -0.51890614E+02
5 0.32958329E-01 0.14062698E+00 -0.52733330E+02
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6 0.30258821E-01 -0.54113245E+00 -0.48414116E+02
7 0.24597352E-01 -0.88866800E+00 -0.39355762E+02
8 0.16528117E-01 -0.11492138E+01 -0.26444986E+02
9 0.68409811E-02 -0.12972662E+01 -0.10945570E+02

10 -0.35157942E-02 -0.13183327E+01 0.56252708E+01

11 -0.13528424E-01 -0.12103508E+01 0.21645479E+402

12 -0.22216786E-01 -0.98389095E+00  0.35546856E+02

13 -0.28730409E-01 -0.66112041E+00 0.45968655E+02

14 -0.32431684E-01 -0.27363408E+00 0.51890697E+02

15 -0.32958303E-01 0.14063700E+00 0.52733284E+02

16 -0.30258721E-01 0.54114151E+4+00 0.48413952E+02

17 -0.24597190E-01 0.88867509E+00 0.39355507E+02

18 -0.16527895E-01 0.11492189E+01 0.26444633E+02

19 -0.68407385E-02  0.12972684E+01  0.10945182E+02

20 0.35160405E-02 0.13183316E+01 -0.56256652E+01
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REVIEW QUESTIONS

3.1

3.2

33

RX: 3

35

3.6.

3.15.

3.16.

318
3.19.
3.20.

3.21.
3.22.
3.23.

How are the amplitude, frequency, and phase of a steady-siate vibrauon related to
those of the applied harmonic force?

Explain why a constant force on the vibrating mass has no effect on the steady-state
vibration.

Define the term niagnification factor -‘How 1s the magnification factor related to the
frequency ratio?

What will be the frequency of the applied force with respect to the natural frequency of
the system if the magnification factor is less than unity?

What are the amplitude and the phase angle of the response of a viscously damped
system in the neighborhood of resonance”

Is the phase angle corresponding to the peak amplitude of a viscously damped system
ever larger than 90°7

Why is damping considered only in the neighborhood of resonance in most cases?
Show the various terms in the forced equation of motion of a viscously damped system
in a vector diagram.

What happens to the response of an undamped svstem at resonance?

Define these terms: heatin vality factor, transmussibility. complex stifiness. quadratic

ol [T A L R o\ Q 5 BN LR SIS I". g any LASTA S SEELEA
(=D | b |4

damping.

. Give a physical explanation of why the magnification factor is nearly equal 1o 1 for

small values of r and 1s small for large values of r

. Will the force ransmitted 1o the base of a spring-mounted machine decrease with the

addiuon of damping?

. How does the force transmitied 10 the base change as the speed of the machine

increases”

. If a vehicle vibrates badly while moving on a uniformly bumpy road, will a change in

the speed improve the condition?

Is it possible 1o find the maximum amplitude of a damped forced vibration for any
value of r by equating the energy dissipated by damping to the work done by the
external force?

What assumptions are made about the motion of a forced vibration with nonviscous
damping in finding the amplitude?

. Is it possible 1o find the approximate value of the amplitude of a damped forced

vibrauon without considering damping at all? If so. under what circumstances?
Is dry friction effective in limiting the reasonant ampliwde?
How do you find the response of a viscously damped system under rotating unbalance”

What is the frequency of the response of a viscously damped system when the external
force is F,sinwr? Is this response harmonic?

What is the difference between the peak amplitude and the resonant amplitude?
Why is viscous damping used in most cases rather than other types of damping?
What is self-excited vibration?
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PROBLEMS

The problem assignments are organized as follows:

Section

Problems Covered Topic Covered

31-39 33 Undamped systems

3.10-3.16 34 Damped systems

3.17-3.22 3.6 Base excitation

3.23-332 3.7 Rotating unbalance

3.33-3.35 3.8 Response under Coulomb damping

3.36-3.3.37 39 Response under hysteresis damping

3.38-341 3.10 Response under other types of
damping

346 31 Self excitation and stability

3.42-345 312 Computer program

3.47-348 — Projects

3.1. A weight of 50 N is suspended from a spring of stiffness 4000 N/ m and is subjected to

3.2

33.

34.

3.5.

3.6.

3.7.*

38

a harmonic force of aﬁ‘:‘putuuc 60 N and ucqucm,y 6 Hz. Find u) the extension of the
spring due to the suspended weight, (ii) the static displacement of the spring due to the
maximum applied force, and (iii) the amplitude of forced motion of the weight.

A spring-mass system is subjected to a harmonic force whose frequency is close to the
natural frequency of the system. If the forcing frequency is 39.8 Hz and the natural
frequency is 40.0 Hz, determine the period of beating.

A spring-mass system consists of a mass weighing 100 N and a spring with a stiffness
of 2000 N/m. The mass is subjected to resonance by a harmonic force F(r) =
cos wt N. Find the amplitude of the forced motion at the end of (i) 1 cycle, (ii) 23
cycles, and (iti) 53 cycles.

A mass m 1s suspended from a spring of stifiness 4000 N /m and is subjected to a
harmonic force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude
of the forced motion of the mass is observed to be 20 mm. Find the value of m.

A spring-mass system with m = 10 kg and k = 5000 N /m is subjected to a harmonic
force of amplitude 250 N and frequency w. If the maximum amplitude of the mass is
observed to be 100 mm, find the value of w.

In Fig. 3.1(a), a periodic force F(r) = F,cos wr is applied at a point on the spring that
is located at a distance of 25% of its length from the fixed support. Assuming that
¢ = 0, find the steady state response of the mass m.

Design a solid steel shaft supported in bearings which carries the rotor of a turbine at
the middle. The rotor weighs 500 Ib and delivers a power of 200 hp at 3000 rpm. In
order to keep the stress due to the unbalance in the rotor small, the critical speed of
the shaft is to be made one-fifth of the operating speed of the rotor. The length of the
shaft is to be made equal to at least 30 times its diameter.

A hollow steel shaft, of length 100 in., outer diameter 4 in. and inner diameter 3.5 in.,
carries the rotor of a turbine, welghmg 500 Ib, at the middle and is supported at the
ends in bearings. The clearance beiween the rotor and the staior is 0.5 in. The rotor
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3.10.

3.13.

3.14.

3.15,
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has an eccentricity equivalent to a weight of 0.5 Ib at a radius of 2 in. A limit switch is
installed to stop the rotor whenever the rotor touches the stator. If the rotor operates
at resonance, how long will it take to activate the limit switch? Assume the initial
displacement and velocity of the rotor perpendicular to the shaft to be zero.

A steel cantilever beam, carrying a weight of 0.1 Ib at the free end, is used as a
frequency meter.! The beam has a length of 10 in., width of 0.2 in., and thickness of
0.05 in. The internal friction is equivalent to a damping ratio of 0.01. When the fixed
end of the beam is subjected to a harmonic displacement y(¢) = 0.05cos we, the
maximum tip displacement has been observed to be 2.5 in. Find the forcing frequency.

A spring-mass-damper system is subjected to a harmonic force. The amplitude is
found to be 20 mm at resonance and 10 mm at a frequency 0.75 times the resonant
frequency. Find the damping ratio of the system.

Find the frequency ratio r = w/w, at which the amplitude of a single degree of
freedom damped sysiem attains the maximum vaiue. Aiso find the value of the
maximum amplitude.

For the system shown in Fig. 3.26, x and y denote, respectively, the absolute
displacements of the mass m and the end Q of the dashpot ¢,. (i) Derive the equation
of motion of the mass m, (ii) find the steady state displacement of the mass m, and

{1i} find the force transmitted to the sunnort at D whon the end f) i¢c enhiantad tn tha
QLML 3311W LAV IWEWL LEGRARSALILRE W oLl MppuUIL ac WYY RIL LI LEBL LlIW I SULTJLWLLU VU LIV

harmonic motion y(r) = Y cos wt.

L) r-b x(1) ) = Y cos ot
] a
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v
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Figure 3.26

Show that, for small values of damping, the damping ratio { can be expressed as

¢~ 2

Wy + wy
where w, and w, are the frequencies corresponding to the half power points.

A torsional system consists of a disc of mass moment of inertia J, = 10 kg-n?, a
torsional damper of damping constant ¢, = 300 N-m-s/rad, and a steel shaft of
diameter 4 cm and length 1 m (fixed at one end and attached to the disc at the other
end). A steady angular oscillation of amplitude 2° is observed when a harmonic torque
of magnitude 1000 N-m is applied to the disc. (i) Find the frequency of the applied
torque. (ii) Find the maximum torque transmitted to the support.

For a vibrating system, m = 10 kg, k = 2500 N/m, and ¢ = 45 N-s/m. A harmonic
force of amplitude 180 N and frequency 3.5 Hz acts on the mass. If the initial

I F DR elocity of the mass are 15 mm and 5§ m/s. find the camnlete
uidplatcineiit d.ﬂu VCIULlly O1 thc mass are i> mm dang o iy o, nnag une CULLp

solution representing the motion of the mass.

The use of cantilever beams as frequency meters is discussed in detail in Section 10.4.
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3.16.

3.17.

3.18.

3.19.

3.20.

321
322

323.

The peak amplitude of a single degree of freedom system, under a harmonic excita.
tion, is observed to be 0.2 in. If the undamped natural frequency of the system is 5 H,
and the static deflection of the mass under the maximum force is 0.1 in., i) estimat.;
the damping ratio of the system, and (ii) find the frequencies corresponding to th,
amplitudes at half power.

A single story building frame is subjected to a harmonic ground acceleration as showp
in Fig. 3.27. Find the steady state motion of the floor (mass m).

Find the horizontal displacement of the floor (mass m) of the building frame shown i
Fig. 3.27 when the ground acceleration is given by ¥, = 100 sin ws mm/sec’. Assume
m = 2000 kg, k=01 MN/m, w=25 rad/sec, and X (1=0)=x(1=0)=
x(r=0)=x(t=0)=0.

If the ground is subjected to a horizontal harmonic displacement with frcquency
w = 200 rad/sec and amplitude X, =15 mm in Fig. 327, find the amplitude of
vibration of the floor (mass m). Assume the mass of the floor as 2000 kg and the
stiffness of the columns as 0.5 MN /m.

§——>x(l) a——b ()

m ' - m i
[
(
|
£l
=1
k k k £d k
i
!
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it) = A cos wi y(t) = Y cos ot
. |
Figure 3.27 Figure 3.28

An automobile is modeled as a single degree of freedom system vibrating in the
vertical direction. It is driven along a road whose elevation varies sinusoidally. The
distance from peak to trough is 0.2 m and the distance along the road between the
peaks is 35 m. If the natural frequency of the automobile'is 2 Hz and the damping
ratio of the shock absorbers is 0.15, determine the amplitude of vibration of the
automobile at a speed of 60 km/hour. If the speed of the automobile is varicd, find
the most unfavorable speed for the passengers.

Derive Eq. (3.74).

A single story building frame is modeled by a rigid floor of mass m and columns of
stifiness k as shown in Fig. 3.28. It is proposed to attach a damper as shown in Fig.
3.28 to absorb vibrations due 1o a horizontal ground motion y(?) = Ycos wt. Derive
an expression for the damping constant of the damper that absorbs maximum power.

One of the tail rotor blades of a helicopter has an unbalanced mass of m = 0.5 kg at a
distance of ¢ = 0.15 m from the axis of rotation, as shown in Fig. 3.29. The tail section

has a lencgth of 4 m. a mass of 240 ko a flexural stiffness IV of 258 MN — m- anda
H IRl VL F Llly & IGO0 VI LTV Dy & HICAULAN SUIILILYY | SoF UL Lo AVELN il , QAL

damping ratio of 0.15. The mass of the tail rotor blades, including their drive system,
is 20 kg. Determine the forced response of the tail section when the blades rotate at

1 ENN e evn
10UV 1 il
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Tatl rotor blades

Figure 3.29

3.24.

3.25.

wt

When an exhaust fan of mass 380 kg is supported on springs with negligible damping,
the resulting static deflection is found to be 45 mm, If the fan has a rotating unbalance
~F N1E tra_cav Haad thn norenlitisda AF S 1‘7((\ - 1. Vs B tha Faco~
Ul W10 RE-L, nna \l} lllC a.u:putuuc O1 vioration at Vv 1Pl and \u) LIIC 1ULLC

transmitted to the ground at this speed.

A fixed-fixed steel beam, of length S m, width 0.5 m, and thickness 0.1 m, carries an
electric motor of mass 75 kg and speed 1200 rpm at its mid-span, as shown in Fig.
3.30. A rotating force of magnitude Ff, = 5000 N is developed due to the unbalance in
the rotor of the motor. Find the amplitude of steady-state vibrations by disregarding
the mass of the beam. What will be the amplitude if the mass of the beam is
considered?

Fy Fy

wi

326.*

3.27.

3.28.*

/
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{
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Figure 3.31

If the electric motor of Problem 3.25 is to be mounted at the free end of a steel
cantilever beam of length 5 m (Fig. 3.31), and the amplitude of vibration is to be
limited to 0.5 cm, find the necessary cross-sectional dimensions of the beam. Include
the weight of the beam in the computations.

A centrifugal pump, weighing 600 N and operating at 1000 rpm, is mounted on six
springs of stifiness 6000 N /m each. Find the maximum permissible unbalance in order

to Limit the steady-state deflection to 5 mm peak-to-peak.

An air compressor, weighing 1000 Ib and operating at 1500 rpm, is to be mounted on a
suitabie isolator. A helical spring with a stiffness of 45,000 1b/in., another helical
spring with a stiffness of 15,000 Ib/in., and a shock absorber with a damping ratio of
0.15 are available for usc. Select the best possible isolation system for the compressor.
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3.29. A variable speed electric motor, having an unbalance, is mounted on an isolator.
the speed of the motor is increased from zero, the amplitudes of vibration of the moto
have been observed to be 0.55 in. at resonance and 0.15 in. beyond resonance. Fin
the damping ratio of the isolator.

3.30. An electric motor weighing 750 1b and running at 1800 rpm is supported on four ste
helical springs, each of which has 8 active coils with a wire diameter of 0.25 in. and
coil diameter of 3 in. The rotor has a weight of 100 1b with its center of mass located a
a distance of 0.01 in. from the axis of rotation. Find the amplitude of vibration of th
motor and the force transmitted through the springs to the base.

3.31. A small exhaust fan, rotating at 1500 rpm, is mounted on a 0.2 in. steel shaft. Th
rotor of the fan weighs 30 Ib and has an eccentricity of 0.01 in. from the axis o
rotation. (i) Find the maximum force transmitted to the bearings. (ii) Find the hor:
power needed to drive the shaft.

A einid iching 1NN 1L hinand alang an adgae 1 DY and ic PN ,l,...,
~ TIgla plau:, Weigning 100 (108 I.b ningea a.lqu dii CUEe (1) diil 18 aupy €a on

dashpot with ¢ = 1 1b-sec/in. at the opposite edge (Q) as shown in Fig, 3.32. A smal
fan weighing 50 lb and rotating at 750 rpm is mounted on the plate through a sprin
with k = 200 1b/in. If the center of gravity of the fan is located at 0.1 in. from its axi
of rotation, find the steady state motion of the edge Q@ and the force transmitted to th

point S.
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Figure 3.32

3.33. Derive Eq. (3.99).
~ 1
3.34. Derive the equation of motion of the mass m shown in Fig. 3.33 when the pressure in
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Figure 3.33
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3.35.

3.36.
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3.38.

3.39.

3.40.

341,

3.42.
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the cylinder fluctuates sinusoidally. The two springs with stiffnesses k, are initially
under a tension of T, and the coefficient of friction between the mass and the
contacting surfaces is u.

A spring-mass system is subjected to Coulomb damping. When a harmonic force of
amplitude 120 N and frequency 2.5173268 Hz is applied, the system is found to
oscillate with an amplitude of 75 mm. Determine the coefficient of dry friction if
m = 2kg and k = 2100 N/m.
A load of 5000 N resulted in a static displacement of 0.05 m in a composite structure.
A harmonic force of amplitude 1000 N is found to cause a resonant amplitude of
0.1 m. Find (i) the hysteresis damping constant of the structure, (ii) the energy
dissipated per cycle at resonance, (iii) the steady state amplitude at one-quarter of the
resonant frequency, and (iv) the steady state amplitude at thrice the resonant fre-
quency.
The energy dissipated in hysieresis damping per cycie under harmonic excitation can
be expressed in the general form

AW = nBkX” (E.1)

where v is an exponent (y = 2 was considered in Eq. (2.125)), and B is a coefficient of
dimension (meter)2™Y. A Spring-mass system having k = 60 kN/m vibrates under
hysteresis damping. When excited harmonically at resonance, the steady-state ampli-
tude is found to be 40 mm for an energy input of 3.8 N-m. When the resonant energy
input is increased to 9.5 N-m, the amplitude 1s found to be 60 mm. Determine the
values of B and y in Eq. (E.1).

When a spring-mass-damper system is subjected to a harmonic force F(r) = 5cos 3nt
1b, the resulting displacement is given by x(r) = 0.5 cos(37r — 7 /3) in. Find the work

done (i) during the first 1 second, and (ii) during the first 4 seconds.

Find the equivalent viscous damping coefficient of a damper that offers a damping
force of F, = ¢(X)", where ¢ and n are constants and X is the relative velocity across
the damper. Also, find the amplitude of vibration.

Show that for a system with both viscous and Coulomb damping the approximate
value of the steady-state amplitude is given by

2572
S,u,Ncw +(16;:.]\/' _E)z)=0

712

Xz[kz(l - rz) + czwzl + X
The equation of motion of a spring-mass-damper system is given by

mx £ pN + ci® + kx = Fycos wt

Derive expressions for (i) the equivalent viscous damping constant, (ii) the steady-state
amplitude, and (iii) the amplitude ratio at resonance.

Use subroutine HARESP to find the steady-state response of a torsional system with
JO= 6 kg-n?, ¢, = 210 N-m-s/rad, k, = 14000 N-m/rad, and F(r) = 450sin10¢
N-m

lata calution fhomoeeneous
13 LW JOWVEL LIV LL \ lllllll b vvvvv

Write a subhroutine called TOTALR for findin e
freedom system. Use this program to

part plus particular integral) of a single degree o
find the solution of Problem 3.15.

Find the steady-state solution of a single degree of freedom system with m = 10 kg,
¢ =45 N-s/m, k = 2500 N/m, F(t) = 180cos20r N, x, =0, and %, = 10 m/s,
using subroutine HARESP.



3.45.

3.46.

Write a computer program for finding the total response of a spring-mass-viscous
damper system subjected to base excitation. Use this program 10 find the solution of a
problem with m = 2 kg, ¢ = 10 N-s/m, k = 100 N/m, »(r) = 0.1 5in25r m, x, % 10
mm, and %, = 5 m/s.

Consider the equation of moyon of a single degree of freedom system:

mi+ cx + Ax = F
Dentve the condition that leads 10 divergent oscillations in each of the following cases:
(a)When the forcing function is proportional 10 the displacement, F(¢) = F,a(r)
(b)When the forcing function is proportional to the velocity, F(r) = F,&(r).
(c)When the forcing function is proportional 10 the acceleration, F(r) = F,X(1).

Projects:

The arrangement shown in Fig 3.34 consisis of w0 ecceniric masses roiating in
opposite directions at the same speed w. [t is 10 be used as a mechanical shaker over
the frequency range 20 10 30 Hz. Find the values of w, e. M, m, k, and ¢ 10 satisfy
the following requirements: (i) The mean power output of the shaker shouid be at least
I hp over the specified frequency range. (i1) The amplitude of vibration of the masses
should be between 0.1 and 0.2 in. (i) The mass of the shaker { M) should be at least

50 umes that of the eccentric mass (n1).
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Figure 3.34 Figure 3.35

3.48.

Design 2 minimum weight, hollow circular steel column for the water 1ank shown in
Fig. 3.35. The weight of the 1ank (W) is 100,000 b and the height is 50 fi. The stress
induced in the column should not exceed the yield strength of the material, which is
30.000 psi, when subjected to a harmonic ground acceleration (due 10 an earthquake)
of amplitude 0.5 g and frequency 15 Hz. In addition. the natural frequency of the
water tank should be greater than 15 Hz. Assume a damping rauo of 0.15 for the
column,
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Jean Bapuste Joseph Founer (1768 - 1830) was a French
mathemal:cian and a prolessor al Ihe Ecole Polylechnique
n Pans. His works on heal llow, published in 1822 and on
Ingonomelric series are well known The expansion ol a
pernodic lunchon in lerms ol harmonic lunchions has been
named aller hum as the “Fourier seres ~ (Courlesy The
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Vibration
under General

Forcing Conditions

ak

This :hapler deals with the vibration of a viscously damped single degree of

freedom system under general forcing conditions. If the excitation is periodic but

not harmonic, it can be replaced by a sum of harmonic functions using the

harmonic analysis procedure discussed in Seetion 1.11. By the principle of superpo-
sition, the response of the system can thén be determined by superposing the
responses due to the individual harmonic forcing functions. On the other hand. if
the system is subjected to a suddenly applied nonperiodic force, the response will be
transient, since steady-state vibrations are not usually produced. The transient
response of a system can be found using what is known as the convolution integral.

3.2 RESPONSE UNDER A GENERAL PERIODIC FORCE

* When the external force F(¢) is periodic with period 7 = 27 /w, it can be expanded
in a Fourier series (see Section 1.11):

1 X x
F(r) =5+ Y a,cos jur + L bsin ur (4.1)

1=1 =1
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where
2 v
a,= ;ju F(t)cos jordi,  j=0,1,2,... (4.2)
and
2 ¢ .. .
b/= ;[()F(r)sm Jjwt dt, J __1,2““ (4.3)
The equation of motion of the system can be expressed as
e o fe ol
mﬁr’+ci+k.\'=F(r)=%9+ za,cosjw1+ Zb,sinjw! (4.4)

7=1 =1
The right-hand side of this equation is a constant plus a sum of harmonic functions.

Using the principle of superposition, the steady-state solution of Eq. (4.4) is the sum
of the steady-state solutions of the following equations:

mi + cX + kx = 5 et o (4.5)

my 4+ oy 4+ by = 4 coc o - {4 )

L P 8 L} ATl L NS ul\r\ld le “'IV’

mi + cx + kx = bsin jw! (4.7)
Aating that tha cr\llli;nﬂ r\f ':n {4 8Y ic givan hay
I‘Ullllb LHIUYL LW JUISLIVUEE U Ld\il ‘—'nJl 1> 5. il Uy

a

0

x (t) =357 4.8

1) =57 (4.8)

and using the results of Section 3.4, we can express the solutions of Egs. (4.6) and
(4.7), respectively, as

ox,(r) = ‘G'/:“” cos( jwt — ¢,) (4.9)
ST =) e gy ’
' b /k
xp(1) = ( '/, ) =sin( jwt - ¢,) (4.10)
V(-2 + gir)?
where
. _ 2{ ‘r .
¢, = tan l(‘f‘f‘j“a‘r_z) (4.11)
and
r== (4.12)

n

Thus the complete steady-state solution of Eq. (4.4) is given by

Xp(’)=zi£"+ i (tjl/zk) >
=Y = )+ ()
N i (b/k)

SO - e @)

cos( jwr — ¢/)




42 Response under a General Periodic Force 177

It can be seen from the solution, Eq. (4.13), that the amplitude and phase shift
corresponding to the ;th term depend on ;. If j« = w,. for any j. the amplitude of
the corresponding harmonic will be comparativelv large. This will be particularly
true for small values of ; and {. Further. as ; becomes larger, the amplitude
becomes smaller and the corresponding terms tend to zero. Thus the first few terms
are usually sufficient to obtain the response with rcasonable accuracy.

The solution given by Eq. (4.13) denotes the steady-state response of the system.
The transient part of the solution arising from the imtal conditions can also be
included to find the complete solution. To find the complete solution, we need to
evaluate the arbitrary constants by setting the value of the complete solution artd its
derivative to the specified values of initial displacemcm x(0) and the initial velocity
x{0). This resulis in a complicaied expression for the transient pari of the total
solution.

:XAMPLE 4.1

Periodic Vibration of a Hydraulic Valve

In the study of vibrations of valves used in hydraulic control systems, the valve and its clastic
stem are modeled as a damped spring-mass system as shown in Fig. 4.1(a). In addition to the

cpnno force and d'\mnlno force. there ig a fluid prescure force on the valve that :I-mngpx with

ShAL QIO LSyt PR, IS @ MY pivaasuE s FEnN RaE il Vs

the amount of opening or closing of the valve. Find the steady-state response of the valve
when the pressure in the chamber varies as indicated in Fig. 4.1(b). Assume k = 2500 N/m,

c=W¥Ns/m. and 51 = 025 ke
T AWV LY D/ Ill’ (28] e V.o l\sv

Gwen: Hydraulic control valve with m = 025 kg. A = 2500 N/m, and ¢ = 10 N-s/m and
pressure on the valve as given in Fig. 4.1(b).

Find: Steady-state response of the valve, x,(¢).

Approach: Find the Fourier series expansicn of the force acting on the valve Add the
responses due to individual harmonic force components.

Solution. The valve can be considered as a mass connected to a spring and a damper on one
side and subjected to a forcing function F(r) on the other side. The forcing function can be
expressed as

F(1) = Ap(1) (E.1)

where A is the cross sectional area of the chamber. ginen by

0)° . .
A= "(i Y 6257 mm® = 0.0006257 (E.2)

and p(t+) is the pressure acting on the valve at any instant ¢, Since p(r) is periodic with
period v = 2 seconds and A is a consiant, F(r) 1~ also a periodic function of period v =2
seconds. The frequency of the forcing function 1» « = (2%/7) = % rad/sec. F(r) can be
expressed in a Fourier series as:

a
L
F(1) = 5 t acoswi + o dwr + -

+ hsinwt + bosin 2er - (E3)
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where ¢, and b, are given by Egs. (4.2) and (4.3) Since the function F(1) 15 given b

S0000A1 for0 €1 <
F(1) = . (E )
S00004(2 — 1) fori <I1<€T

NI =

the Founer coctlicients « and b can be computed with the help of Eqs (4 2) and (4 3):

2 k)
0y =3 f'smx)omm + f‘souooA(z — 1) di| = 00004 (E $)
! 2 0 |
21 n 2
a = 5[[ 3000041 cos me dr + f SO000A(2 - 1)cos md:]
L0 1
- 2x 104 (E6)
2 1. . 2 . |
by = 5| [ 500004 sinmedi + [7500004(2 - .')sm-rrtdt] =0 (E7)
L0 !
7 ﬁ% JIISOW\}A:CGS'Zm'di + {Zsemnm,a,m - :}co:-.Zw.‘d:} =0 (E®)
) L 70 1
2{ : 2 :
b= 51 [ 5000041 sin2midi + ["500004(2 - ()sin2midi| = O (E9)
bl V) <1 ]
2[ n 2
a.=3 f 50 000At cos 3mt di + f 500004(2 - .')cos}mdtl
L70 1
% 10°
- 2xlos (E10
2[ £ . r2 . ]
b, = 5“ 5000041t sin3msch + ] 50 0004(2 — 1)sm3mdrl =0 (E.11)
0 1
Likewise. we can obtain a, = a4, = -+ =h, = h = h = --- = 0. By considering only 1he
first three harmonics. the forcing function can be approximated:
x 10° 2 x 10°
F(1) = 250004 - wcosw — “‘—“‘9-'}—;0—ACOS3UI (E.12)
2 e

The steady-state response of the valve 1o the forcing function of Eq. (E 12) can be expresscd
as

5 ,”3

. x,,(r)=250,?0/' _ (2x10{/(k ))’ cos{ o1 — .)
(- 2) + (atry?

_ (2 x10%4/(%n?))

V(1 - 9r%) + (6¢r)

The natural frequency of the valve is given by

[ k /2500
@, =Vm Vo35 - 100 rad /sec (E.14)

and the forcing frequency w by

cos(3wt — ¢,) (E.13)

27 2@
-— = 5 =@ rad/sec (E 15)

W=
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Figure 4.1
Thus the frequency ratio can be obtained:
w ”
r= ‘“",: =100 = 0.031416
and the damping ratio:
¢ ¢ 10.0

0.2

$ =" Tma, = 2(0.25)(100)

The phase angles ¢, and ¢, can be computed as follows:

¢, = tan ;( 2;:3) - tan ,( 2 x 0.2 X 0.031416

h ) = 0.0125664 rad
1 — 0.031416°

e &
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(E.16)

(E.17)

(E.18)
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and

= 00380483 rad (E.19)

. = tan n( _6ir ) - 1( 6 X 0.2 X 0.031416

1 -9’ I - 9(0.031416)°
In view of Egs. (E.2) and (E.14) to (E 19), the solution can be written as
x,(1) = 0.019635 - 0015930 cos( =t — 0 0125664)

- 0.0017828 cos(3nt - 0.0380483) m (E 20)
RESPONSE UNDER A PERIODIC FORCE
OF IRREGULAR FORM

In some cases, the force acting on a system may be quite wregular and may be

rlntnrmlnnrl r\nlu experimentally. Examples of such forces include ||nnl‘|_'.‘lnf| earth-
r’ lllll ‘,lll\‘ll] L-I\ulll'.ll\r\, i DLl Wil TVIvLY lll\-luu" VY ILENWE (43

quake-induced forces. In such cases. the forces will be available 1n graphical form
and no analytical expression can be found to describe £(¢). Sometimes. the value of
F(1) may be available only at a number of discrete poimts 1. 1,...., 1. In ali these
cases. 1t is possible to find the Fourier coefficients by using a numerical integration
procedure, as described in Section 1.11. If F, F,, ..., F, denote the values of F(1)
at 1.1y, ..., 1. respectively, where N denotes an even number of equidistant points
in one time period 7 (v = NAr), as shown in Fig. 4.2. the application of trapezoidal

rmla 14 1) o1vac
LI ) ) l‘- -j a.'\rn’

2 \
do = N Z F, (4 14)
yJad 2wt
a,~ % ¥ Feos=2 j=1.2... (4.15)
1=1
2 X 2 mt
bl=~ﬁ§F,sm —, J=12.... (4.16)
£
/ 2
’I \\ - I/ \\\ l'-"\
\ -—
! ,l \\\
N\ A F AR At ~
¢ !
4»—-}.——4 H \
r . ,’{ }\\ ;’ \A‘ i >
4 e r,,: : F\‘R Jrl\ I' N2
A S / \\
e AN
vy . . [ -
T= NA = >

Figure 4 2
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Once the Fourier coeflicients a,. «,. and b, are known. the steady-state response of
the svstem can be found using Eq. (4.13) with

( 27 )
r =
TW,

EXAMPLE 4.2

Steady-State Vibration of a Hydraulic Valve

Find the steady-state response of the valve 1n Example 4.1 1f the pressure fluctuations in the
chamber are found to be penodic. The values of pressure measured at 0.01 second intervals in
one cycle are given below.

time. ¢, 0 00Ft 002 003 004 005 006 007 008 009 010 011 012
(seconds)

p=pit) -0 20 34 4 49 53 70 60 36 22 l6& 7 0
(kN/n')

Given: Arbitrary pressure fluctuations on the valve, shown in Fig. 4.1(a).
Find: Steady state response of the valve.

Approach: Find Fourier serics expansion of the pressure acting on the valve using numencal
procedure. Add the responses due to individual harmonic force components.

Solution. The Founer analysis of the pressure fluctuations (sce Example 1.7) gives the result

p(1) = 34083.3 - 26996.0 cos 52.361 + 8307.7 sin 52.364
+ 1416.7¢cos 104.721 + 3608.3 sin104.72
~ $833.3¢cos 157.08 + 2333.351n157.08 + --- N/’ (ED)

Other quantities needed for the computation are

2 2
w= —TZ = O—;TZ = 52.36rad/sec
w, = 100 rad /sec
r=— =05236
wu
{=02

A = 0.0006257 m’

o = tan 2§r,_) . ,(2x0~2x0~5’236)216’10
1 -2 1 - 05236
¢y = tan"! afr ’)___lan ,(4><02x0.523’6)= _77.01°
-4, I - 4 x 05236
6t (6X02X05236) o
= ta 5] =1 -~} = —23.18°
¢y = tan | 50 | = tan ll—9x0.5236-}
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The stcady-state response of the valve can be expressed. using Eq. (4 13). as

(1) - 34081(3.3.4 L 269%04/K) 52360 - 4,)

J(l -ty o+ (2tr)
(8309.74 /k )
V- ) 2
(1416.74 /k)
V(1 - 4r7) + (agr)
(3608.34 /k)
V(1 - 457+ (4tr)
_ (5833.3A/k)
V(- 9,1 4 (8gr)
(2333.3;4/’:':)
V(1 - 9r2) + (6¢r)

sin(52 361 — ¢,)

cos( 104,721 — ¢,)

sin(104.72¢ - ¢,)

cos(157.081 — ¢;)

-+

Siﬂ(|57 081 - )

ESPONSE UNDER NONPERIODIC FORCE

We have seen that periodic forces of any general wave form can be represented by
Fourier series as a superposition of harmonic components of various frequencies.
The response of a linear system is then found by superposing the harmonic response
to each of the exciting forces. When the exciting force F(r) is nonperiodic. such as
that due to the blast from an explosion, a different method of calculating th
response 1s required. Various methods can be used to find the response of the system
to an arbitrary excitation. Some of these methods are as follows:

1. by representing the excitation by a Fourier integral;
2. by using the method of convolution integral;

3. by using the method of Laplace transformation;

4

. by first approximating F() by a suitable interpolation model and then using 2
numerical procedure; and

5. by numerically integrating the equations of motion.

We shall discuss Methods 2, 3, and 4 in the following sections and Method 5 is
Chapter 11.

FONVOLUTION INTEGRAL

A nonperiodic exciting force usually has a magnitude that varies with time: it act
for a specified period of time and then stops. The simplest form of such a force ij
the impulsive force. An impulsive force is one that has a large magnitude £ and acti
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O x(ry = g(r)
? {I
F |

m
0 — ¢
— —as
Fln)
{a) {0} {©)
Figure 4.3

for a very short period of time A/. From dynamics we know that impulse can be
measured by finding the change in momentum of the system caused by it {4.2]. If X,

and x, denote the velocities of the mass m before and after the application of the
impulse, we have

Impulse = FAr = mx, — mx, (4.17)
By designating the magnitude of the impulse FAs by F, we can write, in general,
t+Ar
F=[""Far (4.18)
M
A unit impulse ( f) 1s defined as
. t+4Ar
f= lim [ Fdi = Fdr = 1 (4.19)
-~ Ar—=0 Y,

1t can be seen that in order for Fdr to have a finite value, F tends to infinity (since
d: tends to zero). Although the unit impulse function has no physical meaning, it is
a convenient tool in our present analysis.

We first consider the response of a single degree of freedom system to an impulse
excitation; this case is important in studying the response under more general
excitations. Consider a viscously damped spring-mass system subjected to a unit
impulse at ¢ = 0, as shown in Figs. 4.3(a) and (b). For an underdamped system, the
solution of the equation of motion

mi+cx+kx=0 (4.20)
15 given by Eq. (2.66) as follows:

oy — - fw )

1(!}'—8 {XOCOS(Jdt'T

1%
=
(3
=
S—,
—
S
b
[
——
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where
¢ = =~ (4.22)
2muw,
k 2
wi= oyl = ¢t =y - (2_";) (4.23)
w, = % (4.24),

1

If the mass is at rest before the unit impulse is applied (x = x = 0 for ¢+ < 0 or at|
t =0 ), we obtain, from the impulse-momentum relation,

Impulse = f=1=mx(t =0) ~mx(t =07) = mx, (4.25)

Thus the initial conditions are given by
x(t=0)=x,=0 |

1
(r=0)= %, = ; (4.26)
In view of Eq. (4.26), Eq. (4.21) reduces to
fw,l
x(1) = g{1) = "mwd sin w,f (4.27)

Equation (4.27) gives the response of a single degree of freedom system to a unit
impulse, which is also known as the impulse response function. denoted by g(t). The
function g(¢), Eq. (4.27), is shown in Fig. 4.3(c).
If the magnitude of the impulse is F instead of unity, the initial velocity X, is{
F/m and the response of the system becomes
Fe S
x{t) = ~mwd sinw,t = Fg(r) (4.28)1

If the impulse F 1s applied at an arbitrary time ¢ = 7, as shown in Fig. 4.4(a). it will
change the velocity at 1 = 7 by an amount F/m. Assuming that x = 0 until th
impulse is applied, the displacement x at any subsequent time 7, caused by a chang
in the velocity at time 7, is given by Eq. (4.28) with ¢ replaced by the time elapsed
after the application of the impulse, that is, + — 7. Thus we obtain

x(t) = Fg(r—7) (4.29)
This is shown in Fig. 4.4(b).

Now we consider the response of the system under an arbitrary external force F(¢),
shown in Fig. 4.5. This force may be assumed to be made up of a series of impulseq
of varying magnitude. Assuming that at time 7, the force F(7) acts on the system
for a short period of time A7, the impulse acting at 1 = 7 is given by F(7)Ar. At
any time ¢, the elapsed time since the impulse is 1 — 7, so the response of the system
at 1 due to this impulse alone is given by Eq. (4.29) with F = F(r)Ar:

Ax(1) = F(7) Arg(r — 1) (4.30)
The total response at time ¢ can be found by summing all the responses due to the
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v

elementary impulses acting at all times 7:

x(t) = Y F(v)g(r - 7)ar (4.31)
Letting A7 — 0 and replacing the summation by integration. we obtain
x(1) =f’F('r)g(!—'r)d'r (4.32)
0 -
By substituting Eq. (4.27) into Eq. (4.32), we obtain
x(t) = L.[IF('r)e'f‘"-“'”sinw (t—1)dr (4.33)
mw, J d

which represents the response of an underdamped single degree of freedom system
to the arbitrary excitation F(t). Note that Eq. (4.33) does not consider the effect of
initial conditions of the system. The integral in Eq. (4.32) or Eq. (4.33) is called the
convolution or Duhamel integral. In many cases the function F(r) has a form that
permits an explicit integration of Eq. (4.33). In case such integration is not possible.
it can be evaluated numerically without much difficulty. as illustrated in Section 4.8

"lnt‘l Chantar 11 An alamantary dicenceinn onf t
ALENS \.—ll(cllJlL,l 1 1. 2k \.l\.lll\.lll“lj VIWBOIIIVEE UL L3

analysis is given in Ref. {4.6].

ral in vibration



1.5.3 If a spring-mass-damper system is subjected to an arbitrary base excitation de-

jesponse to scribed by its displacement. velocity. or acceleration. the equation of motion can be !

3ase Excitation expressed in terms of the relative displacement of the mass 2 = x — vy as follow s |
(see Section 3.6.2)

mi + ¢+ kz= —myi (4 34)

This equation is similar to the equation
mi +¢x + kx=F (4.35)
with the variable z replacing x and the term — mi’ replacing the forcing function F
Hence all of the results derived for the force-excited system are applicable to the

base-excited system also for - when the term £ is replaced by —mj. For an

underdamped system subjected to base excitation, the relative displacement can he
found from Eq. (4.33):

1 rr. -
2(r) = ‘“-fy(r)e o= ginw,(t — 7) dr (4.36)
Wiy
L
IXAMPLE 4.3 Step Force on a Compacting Machine

A compacting machine, modeled as a wingle degree of freedom system, 1s shown in Fig 4 6(a)
The force acting on the mass m {m ncludes the masses of the piston, the platform, and the
matenal being compacted) due to a sudden application of the pressure can be idealized as a
step force, as shown in Fig 4.6(b). Determine the response of the system.

Gwen: Compacting machine subjected 10 a step force.
Find: Response of the system.

Approach: Evaluate the Duhamel integral with F(r) = F,.

Solution. Since the compacting machine is modeled as a mass-spring-damper system. the
problem is to find the response of a damped single degree of freedom system subjected 10 a
step force. By noting that F(r) = F,, we can write Eq. (4.33) as

F
x(1) = '&%,fo"’ eatt sin w,(1 - 7) dr
_h e_m“_”{ Y, sinw, (¢ - 7)’ + w.,cos’w‘,(! - T)} ‘
M ($w,)” + (wy) eb
k, 1
= 2|1 - === - e $*'cos{ w,t — ¢) E.l
k [ V- §2 / st { }
where
¢ = lan ! ~—-§—-— (E2)
yi-1¢°

This response is shown in Fig 4 6(c) If the system is undamped (¢ = 0 and w, = w,). Eq
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Figure 4.6

(E.1) reduces to
(E.3)

F
x(t) = 7“-'[1 ~ cos w,!]

Equation (E.3) is shown graphically in Fig. 4.6(d). It can be seen that if the load i
instantaneously applied to an undamped system. a maximum displacement of twice the static

displacement will be attained, that is. x,,,, = 2 F,/k
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:XAMPLE 4.4

TIme—DeIayedjStep Force

Find the response of the compacting machine shown in Fig. 4 6(a) when 1t 18 subjected to the
force shown n Fig. 4.7

Guen Compacuing machine, modeled as a damped single degree of freedom svstem, sub-
jected to the force shown in Fig 4.7

Find: Response of the system

|
Approach: Since the step force is lime-delayed. subsutute r ~ ¢, for 1 in the solution of
Example 4.3

Sofution. Since the forcing funchion slaris al ¢ = #, inslead of at r = 0. the response can b
obtained from Eq. (E.1) of Example 4.3 by replacing 1 by ¢+ ¢, Ths gives

(1) = —R [T - e weos{agr - o)) (ED)
k1 -1¢°

If the system 1s undamped, Eq. (E-1) reduces to

—
m
(%)

et

FERRN E)f. . vl
x(r) = ‘l“"‘[l —cosw, (- 1,)]

EXAMPLE 4.5

Rectangular Pulse Load

If the compacting machine shown in Fig. 4 6(a) 1s subjected to a constant force only during
the tme 0 < ¢ < 1, (Fig. 4.8a), determine the response of the machine

() |

Figure 4.7
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Gwen: Compacting machine, modeled as a spring-mass-damper system, subjected to a
rectangular pulse type of load.

Find: Response of the machine.

Approach. Consider the rectangular pulse as a sum of a positive step function applied at
r = 0 and a negative step function applied at ¢ = 1,,.

Solution. This forcing function can be considered as the sum of a step function of magnitude
+ F, beginning at ¢ = 0 and a second step function of magnitude - K, starting at time
r = 1,. Thus the response of the system can be obtained by subtracting Eq. (E.1) of Example
4.4 from Eq (E.1) of Example 4.3. This gives

Fye™ $w!
X(f).= ;;OG—__—-—F —cos( wyt — ¢) + e“"-’ocos{ wy(r—tg) — ¢>}] (E1)
with
: o= tan o[ S| (E2)
Wl -3
i) ¢
F
» ¢
0 o
(n 4 (a)
h>3
o <3
N Y
\\ \ 1
0 >
\\ t';/, \ 2tn "
-~ s
(b)

Figure 4.8
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To see the vibration response graphically, we consider the svstem as undamped, so that Eq
(E.1) reduces to

F,
x(1) = -f[cosw"(l - 1y) - co.sw,,:] (E.3)

This response is shown n Fig. 4.8(b) for two cases: (1) 1, > 1,/2. and (2) 1, < 7,/2 where ¢,
1 the duration of the rectangular pulse and 7, is the natural ume penod of the system. It can
be seen that the peak occurs during the forced vibrauon cra (that s, prior to ¢,) for ¢, > 1,/2
while the peak occurs in the residual vibration era (that . after ¢,) if 1, < 1,/2.

. EXAMPLE 4.6

., Compacting Machine Under. Linear Force.. - -5 P

e
. TR ey e N . r&

Deternine the response of the compacting machine shown in Fig 4 9(a) when a hinearly
varying force (shown in Fig 4 9b) is applied due to the motion of the cam

\ N
Motwon of _
cam
p Cam
Follower — TR
I
C ]
> - Material
being compacted
x(1) L A A% Jo—— Platform
k72 l'_J:j ki
c
N
(a)
A 1)
‘} 4
Ve
”~
4 '
5F o
&
| ” l
(9] > ¢) Zlﬂ -llz f_!ln !
v, w, o,
(h) (c)

Figure 49
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Gven: Compacling machine, modeled as a single degree of freedom system. subjecte
ramp function.

Find- Response of the system.
Approach: Evaluate the Duhamel integral with F{1) = 8F -1

Solution. The linearly varying force shown in Fig. 4.9(b) is known as the ramp functior
forcing function can be represented as F(7) = 5F - 1. where 8F denoles the rate of ir
of the force F per umt tume. By substituting this into Eq. (4 33). we obtain

8F

muy,

x(r) = ]lfe fo. Nginw, (1~ 1) dT

0

U ! TR I
-—-j (r—t)e ‘>smu{,(.’—f)(-d:r)
muw,y 0

i

- 8F 1 {'p todt " ginw, (s - 1)( - d7)

mwy; Jy

These integrals can be evaluated and the respons¢ expressed as follows (Sce Problen

C o2 g2 20 \ i
x(l) = §£ [ - E + e Swal g«g-cosw,r - -‘i’——;i“w— Sinw,,l
k w” w,, ! w",h)‘,

For an undamped system, Eq. (E.1) reduces 10

x(r) = éf;[_w,,r - sinw,!)

(13

o

Figure 4.9(c) shows the response given by Eq. (E-2).

XAMPLE 4.7

Blast Load on a Building Frame . . o

A building frame 1» modeled as an undamped single degrec of freedom system (Fig
Find the response of the frame if iU 1S subjected 1o a blast loading represented
triangular pulse shown in Fig. 4.10(b).

Gwen: Building frame subjected to a triangular-pulse type blast loading.

Find- Displacement of the frame.

(1) Fﬁ(:)
—“‘. Fn
F() m
LS [
A .

0 e
(a) ()]

<

-
N

&

Figure
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Approuch: Model the building frame as an undamped single degree of freedom system and
evaluate the Duhamel integral for the given load

Solution. The forcing function is given by
F(T)=F[,(1—’l) for0gs <1, (E1)

H

F(r) =0 for s, < v (E 2)

Equation (4.33) gives, for an undamped system.
x(z)=mi%jn‘p(f)sm,,(,—f)df (E 3)

Response during 0 < 1 < 1,: Using Eq. (E.1) for F(1) in Eq. (E.3) gives

]

P {. \ . :
x(1) ] ll Il)lSIHU,ICOSw"T ~ cosw,rsinw,r| d{w,r)
= —Siuw"ij [1 - —jcosw,T - d{w,T)
k ol )
- Lcosw,t {l X \smuﬁ,r -d(w,r) (E a)
K \ fo/

By noting that ntegration by parts gives

1
jTCOS wT d(w7) =1sinwr + S Cosw,T (E5)

"

: l .
ff sinw,t  d(w,7) = —1cosw,T + —osinar (E.6)

"

Eq. (E4) can be written as

ol . . r . 1 1
x(t) = Z \SR@sine =SSl - —Cosw, I + ——
y A w,ly

t |
ty " w, Iy g ]} (E7)

~cos w,!

Simplifying this expression, we obtain

0 !
X(l)=7 l—'——~cosw,,1+
| 0 ey

sin w,,l] (E8)

Response during 1> 1,: Here also we use Eq. (E.1) for F(t). but the upper limit of
integration in Eq. (E.3) will be +,. since F(r) = 0 for T > 1,. Thus the response can be found
from Eq. (E.7) by setting s = 1, within the square brackets. This results in

x(tr) = )sinw,t - (w1, — sin, 1, )cos }

—
m
el

T

A

W,

it e
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|
.6 RESPONSE SPECTRUM

The graph showing the vanation of the maximum response (maximum displace-
ment, velocity, acceleration, or any other quantity) with the natural frequency (or
natural penod) of a single degree of freedom system to a specified forcing function
is known as the response spectrum. Since the maximum response is plotted against
the natural frequency (or natural period), the response spectrum gives the maximum
response of ail possible single degree of freedom systems. The response spectrum is
widely used in earthquake engineering design {4.2.4.5]. A review of recent literature
on shock and seismic response spectra 1n engineering design is given in Ref. {4.7].

Once the response spectrum corresponding to a specified forcing function is
available, we need to know just the natural frequency of the system to find its
maximum response. Example 4.8 illustrates the construction of a response spectrum.

XAMPLE 4.8 Response Spectrum of Sinusoidal Pulse

Find the undamped response spectrum for the sinusoidal pulse force shown in Fig 4.11(a)
using the imtial conditions x((0) = x(0) = 0

r‘n-on' Sin

a o
AV AL B B )

soidal force.
Find: Response spectrum.

Approach. Find the response and express its maximum value in terms of its natural time

period.
(x(r))
"¢ Jmax
'y
Il e e s A bt
N
F(n) |
T‘
Fol————=

0

(a) (b)

Figure 4.11
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Solution. The equation of motion of an undamped system can be expressed as

Fsinwt, 0ty

E 1
0. > (E1)

nl)'c'+!\\=F(l)={

where
w= = (E2)

Iy

The solution of Eq (E.1) can be oblained by superposing the homogencous solution a (1)
and the particular solution x,, (1) as

v(1) = x (1) + x,(r) (E3)

F;' -,-)sinwr (E 4)

v(1) = Acosw,t + Bsinw,1 + (
=~ mw

where A and B are conslants and w, 1s the natural frequency of the system:

c..)..=21r=\/I (ES)

“ 1 Vv m

it

Using the initial conditions x(0) = 1(0) = 0 in Eq. (E.4), we can find the constants 4 and B

as
F
A=0, B=——¥0 (E 6)
w,(k ~ mw')
Thus the solutton becomes
F./k
x(t) = ———-——"Z——,!sinm—ﬁsinwﬂ;\: 0<r<i, (E7)
1~ (w/w,)’ | “n J
whuch can be rewritien as
x(1) 1 L m T, . 2m _
5\' = l y :{sxn’—”-—z—,‘;sm-?"—}. Oslﬁl" (E8)
(%
where
F
8, = (E9)

The solution given by Eq. (E8) is valid only during the period of force application,
0 < 1 < 4. Since there 1s no force applied for ¢ > 1,, the solution can be expressed as a fred
vibration solution:

x(1) = A'cosw,t + B sinw,i, L=, (E_]()il

where the constants A’ and B° can be found by using the values of x(s = t,) and x(r = 1)
given by Eq. (E.8). as iniual conditons for the duration r > r,,. This gives

,
2m4,

x(t=1,) = a in——"{ = A'cos w,1, + B'sinw,1, (E11)

._.\,___._.,
!

=~ I:"
=

I » n
AL i) o

p—

—w, A stnw, 1 + w, B’ cosw,r (E 12)
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where

S

sl

a = ——e———e (E.13)
. e
( 21.,)
Equations (E.11) and (E.12) can be solved 1o find A4’ and B’ as

A= P na. B = =214 cova,i) (E14)
nty

Equations (E.14) can be substituted into Eq (E.10) to obtain

x£!) - (1./14) __ [Sinzﬂ{? - TI-\ - sin2ﬂjl-]. rz14, (E1S5)
o 21 - (/) Vh T KR

Equatons (E.8) and (E.15) give the response of the system in nondimensional form, that is_
x/6, 1s expressed in terms of /7, Thus for any spectfied value of 1,/1,, the maximum value
of x/8, can be found This maximum value of x/8, when plotted against 1,/7,, gives the
response spectrum shown in Fig 4.11(b). It can be observed that the maximum value of

(v/8,)m. = 175 occurs at a value of ¢,/7, = 0.75.

6.1

esponse

pectrum
for Base
Excitation

In Example 4.8, the input force is simple and hence a closed form solution has
been obtained for the response spectrum. However, if the input force is arbitrary, we
can find the response spectrum only numerically. In such a case, Eq. (4.33) can be
used to express the peak response of an undamped single degree of freedom system
due to an arbitrary input force F(r) as

x(1)

- [F(x)sine, (¢~ =) dr (4.37)

max

max

In the design of machinery and structures subjected to a ground shock. such as that
caused by an earthquake, the response spectrum corresponding to the base excita-
tion is useful. If the base of a damped single degree of freedom system is subjected
to an acceleration ¥(r), the equation of motion, in terms of the relative displace-
ment z = x — y, is given by Eq. (4.34) and the response z(r) by Eq. (4.36). In the
case of a ground shock, the velocity response spectrum is generally used. The
displacement and acceleration spectra are then expressed in terms of the velocity

spectrum. For a harmonic oscillator (an undamped system under free vibration), we
notice that

. _ 2 ) . _
xlmax - _w-:xlmax and xlmax - wuxlmax

Thus the acceleration and displacement spectra S, and S, can be obtained in terms
of the velocity spectrum (S ):

©

”
i
1]

L C — .. C {4 1)
‘ \

Jd = N Ry

€1

To consider damping in the system. if we assume that the maximum relative
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displacement occurs after the shock pulse has passed, the subsequent motion must
be harmonic. In such a case. we can use Eq. (4.38). The fictitious velocity associated
with this apparent harmonic motion is called the pseudo velocity and 1ts response
spectrum. S, . is called the pseudo specirum. The velocity spectra of damped systems
are used extensively in earthquake analysis.

To find the relative velocity spectrum, we differentiate Eq. (4.36) and obtuin*

| Y .
Ht)= = —}§(r)e w0 —fw,sinw,(r ~ 1)
( wdj(;)( ) [ !

+w,cos w, (1 — 1)| dr (4.39)
Equauon (4.39) can be rewritten as
e S ms—
gy = & 2 - 4 40
) \,/l-i'_l‘y'P + @ sin(w, - ¢) (4 40)
where
) g
P= f’j‘(f)e‘:”*'cos wyrdr (441}
0 '
0= ['¥(+)e5sinw,rdr (4 42§
70
and
P S ‘
S =P =3 + 0t)
¢ = tan > (4 421
(Pt - 01 - )
The velocity response spectrum, S,. can be obtained from Eq. (4.40):
= S, f :
Se = 1)l = | === P + @7 (4 4a)
l - §2 max
Thus the pseudo response spectra are given by
Sl' . I
S(I = |z|"].l‘ = ;-: S‘ = Izlﬂl.lﬁ; Sﬂ = |:|I‘HJ‘ = w"S' (4'45

EXAMPLE 49

Water Tank Subjected to Base Acceleration -

J
The water tank, shown in tig 412(a), 1s subjected to a hinearly varying ground acceleranon
as shown in Fig 412(b) due 10 an earthquake. The mass of the tank 1 m. the stiffness of the

column is A, and damping is negligible Find the response spectrum for the relativd
displacement, : = x — y, of the water tank ‘

-

The following relanon is used 1n deriving Eq (4 39) from kq (4 36)

d rdf
d—l[“](.'.f)(h - f,,m"-’)"’ T,
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Figure 4.12

Grreen- Water tank subjected to the base acceleration shown in Fig. 4.12(b).
Find: Response spectrum of relative displacement of the tank.

Approach: Model the water tank as an undamped single degree of freedom system Find the
maximum relative displacement of the tank and express it as a function of w,

Solution. The base acceleration can be expressed as

V( t) = ,j'}max(l - 7") forO I 2'0 (El)
0
#r)=0 for 1 > 21, (E2)

Response during 0 < 1 < 21,: By substituting Eq. (E.1) into Eq. (4.36). the response can be
expressed, for an undamped system, as

1 .
2(t) = - -w—"ynm [j(;’(l - tl")(sin w, ! COS w,T — COS w,!$in w,T) dr] (E.3)

This equation is the same as Eq. (E.4) of Example 4.7 except that { — #,,,. ) appears in place of
Fy/m. Hence z(r) can be written, using Eq. (E.8) of Example 4.7, as

¥ ! |
(1) = _ﬂ;—"[l - T oSw,l+ ———sin w,,t] (EA4)
[A) o (T 1]

"
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To find the maximum response z_ . we set

i(r)y = —2map_y 4 g psinw,t + cosaw,r] =0 (E5)
oWy

This equation gives the time ¢, at which z,,, occurs:

m

!, = %—tan w,ty) (E6)

]

By substituting Eq. {E.6) into Eq. (E.4). the maximum response of the tank can be found. |

|
ymax ﬁ _ _1- . F 7 |
Zpas = 73 ll l, cos w,t, + ol sinw,r,, (ED

I3 a1

Response during t > 2t,: Since thereé is no excitation during this time, we can use the solution’
of the free vibration problem (Eq. (2.15)):

2(1) = zyc08 w,t + (—Eﬂ)sin w, ! (E8)
el {
provided that we take the initial displacement and initial velocity as ’
o =2(1r=121,) and 2, =:i(t=21,) (E.9)

using Eq. (E.7). The maximum of z(r) given by Eq. (E.8) can be identified as

r 5 Lap2
Zpan = lz& + (UO—) I (E.10)

where z, and #, are computed as indicated in Eq. (E.9).

4.7 LAPLACE TRANSFORMATION

The Laplace transform method can be used to find the response of a system under'}
any type of excitation, including the harmonic and periodic types. This method can
be used for the efficient solution of linear differential equatons, particularly those,
with constant coefficients [4.3]. It permits the conversion of differential equatons
into algebraic ones, which are easier to manipulate. The major advantages of the
method are that it can treat discontinious functions without any particular difficulty
and that it automatically takes into account the inital conditions.
The Laplace transform of a function x(r), denoted symbohcally as x(s) =

ZLx(t), is defined as

%(s) = Lx(1) = [Te ux(r) dr (4.46):

0

where s is. in general, a complex quantity and 1s called the subsidiary variable. The
o in & em n -8 m o P o x s

funcuion ¢ * is calied the kerne! of the transformation. Since the integration is with
respect to £, the transformation gives a function of s. In order to solve a vibration
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problem using the Laplace transform method, the following steps are necessary:
1. Write the equation of motion of the system.
2. Transform each term of the equation, using known initial conditions.
3. Solve for the transformed response of the system.
4. Obuain the desired solution (response) by using inverse Laplace transformation.
In order 10 solve the forced vibration equation
mx + cx + kx = F(t) (4.47)

by the Laplace transform method, it is necessary to find the transforms of the
derwvatives

dx 2x
X(l)gw(!) and X(I)=W([)
These can be found as follows:
dx © dx
.?’E([) =f e E(l)dl (4.48)

0
This can be integrated by parts to obtain

a0

SAX < ] L . . .
.‘t’g;(t) = e x(t)l + s.]” e x(l)Jdt = sx(s) — x(0) (4.49)
0

where x(0) = x, 1s the nital displacement of the mass m. Similarly, the Laplace
transform of the second derivative of x(¢) can be obtained:

1’27 ke o} I’zv
yu e = __‘.lu A — 2—_ _ — . .
s (¢) -’u et (1) dr = s*x(s) — sx(0) — %(0) (4.50)

where %(0) = x is the inital velocity of the mass m. Since the Laplace transform of
the force F(r) is given by

F(s) = %F(1) = fwe"”F(t) dt ' (4.51)

Y

we can transform both sides of Eq. (4.47) and obtain, using Eqs. (4.46) and (4.48) t0
(4.51),
mPi(t) + c&x(1) + kLx(1) = LF(1)

or
(ms? + cs + k)x(s) = F(s) + mx(0) + (ms + ¢)x(0) (4.52)

where the right-hand side of Eq. (4.52) can be regarded as a generalized transformed
exciation.

For the present, we take x(0) and x(0) as zero, which is equivalent to ignoring
the homogeneous solution of the differential equation (4.47). Then the ratio of the
transformed excitation to the transformed response Z(s) can be expressed as

;l ('\ oy
el Y}

- 2 4 .

4 1.
T K

{A&12)
\%.0J)
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e function Z(s) is known as the generahzed tmpedunce of the system. The
ciprocal of the function Z(s) is called the adnuttance or wransfer functin of the
stem and 1s denoted as Y(s):

x(s) _ 1 1

T(s) = s I
(s) F(s) ms?+es+k  m(s+ w,s + )

(4.54)

Z(s)

can be seen that by letting s = 1w in ¥(3) and muluplying by &. we obtain the
ymplex frequency response H{iw) defined in Eq. (3.54). Equation (4.54) can also
¢ expressed as

X(s) = Y(s)F(s) (4.55)

‘hich indicates that the transfer function can be regarded us an algebraic operator
hat operates on the transformed force to yield the transformed response.

To find the desired response x(t) from X(s). we have to take the inverse
.aplace transform of x(s). which can be defined symbolically as

x(1) =% '%(s) = 'Y(s)F(s) (4.56)

n general, the operator ¥ ' involves a line integral in the complex domain.
4.9,4.10]. Fortunately, we need not evaluate these integrals separately for each
sroblem; such integrations have been carried out for various common forms of the
function F(r) and tabulated {4.4]. One such table 1s given in Appendix B. In order
to find the solution using Eq. (4.56). we usually look for ways of decomposing {s)
into a combination of simple funcuons whose inverse transformations are available
in Laplace transform tables, We can decompose x(s) conveniently by the method of
partial fractions.

in the above discussion, we ignored the homogeneous solution by assuming
v(0) and x(0) as zero. We now consider the general solution by taking the initial
conditions as x(0) = x, and ¥(0) = x,,. From Eq. (4.52). the transformed response
v(s) can be obtained:

_ F(s) s + 2w, i .
x(s) = 5 v+ X0 T 3 - X0
m(s + w5 + @) 5T+ s + @ 57+ Qw,s +

(4.57)

We can obtain the inverse transform of x(s) by considering each term on the right
side of Eq. (4.57) separately. We also make use of the following relation [4 .4

£ () fa(s) = f(:fl(f)fz(t— r) dr (4.58)

By considering the first term on the right side of Eq. (4.57) as f,(s)fz(s ), where

jl(s) = F(S) and fz(s) = m(.s'z . 2;w i~ wz)



47 Laptace Transtormation

and by noting that f (1) =% 'f(s) = F{t). we obtain*

L Yi(s)fx(s) = l f'F(T)e"“’"“ Mane,(r - 1) dr {4.59)
}

mw, J,

Considering the second term on the right side of Eq. (4 37). we find the inverse
transform of the coefficient of x,, from the table in Appendin B:

o s + 28w, ) _ 1 g o 460
where
¢, = cos "'(¢) (4.61)

Finaily, the inverse transform of the coefficient of X, in the third term on the right
side of Eq. (4.57) can be obtained from the table in Appendix B:

[ 1 1
P! . = —¢ unew,s (4.62)
' -
(52 + 2tw,s + w?) Wy
Using Egs. (4.57). (4.59), (4.60), and (4.62), the general solution of Eq. (4.47) can be
expressed as
x(1) = o e S isin{w, i + ¢, ) + i‘-’e el sinw i
- o | ) 1
(1-¢2)"" o ‘
i ‘ .
_Y(:J; ,’[ F(T}c’." fwytr ”Si"i wd(:' - T) dv (4611}
0

EXAMPLE 4.10

Response of a Compacting Machine

tind the response of the compacting machine of Example 4 5 assuming the system to be
underdamped (1.e.. { < 1).

Green: Compacting machine (spring-mass-damper system) subjected to a step force.
Find: Response of the system. ‘

4pprouach: Use Laplace transformauon technique.

Solution. The forcing function is given by

Fpb forO0<r<g, X
F(l)={0 fort >4, (E1)

By taking the Laplace transform of the governing differential equation, Eq. {4.47). we
obtain Eq. (4.57). using Appendix B, with

Fa( ~ e ")

F(s) = 2F(1) = . (E.1)

* The inverse transform of /,(s) is oblamned from the Laplace rransform fable in Appendix B



Thus Eq. (4.57) can be written as
F(l-e ™)

v anut utraer aerieral rorcing Conditions

s+ Quw,

X = ~ 3 X
¥(s) ms(s? + 2{w,s + w) 57+ Aas+ w "
1
—_—— i,
st + Ao, + u
_ A R ew
muw;, s(j-, +§E +l) RIW; 3(; + 2Us +1)
Y W, ﬁ)‘; n
T s . (2{\,, x.,) 1 )
2 ) -
w"-s—,+£5-+1) “n ‘3—,+—2£+1)
7 W, = Q..
\ @n . / \ @ " /

The inverse transform of Eq. (E.2) can be expressed by using the results in Appendes By

tl.l

- A
“—Sln{ wil -8 +¢,}J

mw, ll —;'

F r e fw e ) —_— \]
A e G TR (- ) e
"'U" \l --{'

/‘:H[L"ie swa! { Ay -l
"Eljf"“_;??“"l it = "MJ

l:‘{ e ""'-sm\ ,,VI ' r]] (i

where ¢, is given by Eq. (4.61) Thus the response of the compacting machine «an be
expressed as

F Lo
x(1) =;ﬁ‘a’3—\:-i—n7—'§—;[—e """Sm( wyl - & I+¢)

e ‘uat! ’-r’sin{ wyl - f (r—1)+ ¢'}]

Yo -
- e “siffwyl =8 r—¢
YT Lo |
2 . »‘”
( g"":‘:t() + :"’ ) ""-’sm(w,,ﬂ _K ) (t 4)
w’,vl - ;‘

Although the first part of Eq. (E.4) is expected to be the same as Eq. (E.1) of Example 4 5.1

is difficult to see the equivalence in the present form of Eq (E.4). However, (or the und aaped

system, Eq (E.4) reduces to
£

(N =—
mu

—sm(w.,' * %) * Si"{“’"(' T )t %}]

7 Xy .
- fj) + —sinw,!

"

- \,,.u'n( w, !

(E 3)

._![ qu(l'l)—cnﬁwl]-i»\‘os +‘\',,,
,\ CO L 1) S W, e (u)ul 'J sin m"[
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The first or steady-state part of Eq (E 5) can be seen to be identical to Eq. (E.3) of Example
4.5.

—

.8 RESPONSE TO IRREGULAR FORCING CONDITIONS
USING NUMERICAL METHODS

In the previous sections, 1t was assumed that the forcing functions F(r) are available
as functions of time in an explicit manner. In many practical problems, however. the
forcing functions F(r) are not available in the form of analytical expressions. When
a forcing function is determined experimentally, F(r) may be known as an irregular
curve. Sometimes only the values of F{r) = F, at a series of points r = r, may be
available. in the form of a diagram or a table. In such cases, we can fit polynomials
or some such curves to the data and use them in the Duhamel integral, Eq. (4.33). to
find the response of the system. Another, more common, method of finding the
response involves dividing the time axis 1nto a number of discrete points and using a
simple varianon of F(t} during each ume step. We shall present this numerical
approach in this section, using several types of interpolation functions for F(r) 4.8

The direct numerical integranon of the equations of motion is discussed in Chap.
11
| 3

Method 1. Let the function F(f) vary with time in an arbitrary manner. as
indicated 1n Fig. 4.13. This forcing function can be approximated by a series of step
functions having different magnitudes starting at different instants, as shown in Fig.
4.14. In this figure, the first step function starts at time =1 =0 and has a
magnitude of AF), the second step function starts at ume ¢ = ¢, and has a
magnitude of AF,, and so forth. The response of the system in any time interval
t,.y <1 <t,dueto the step functions AF, (i = 1.2... .. j = 1) can be found. using
the results of Example 4.3:

-1

x(t) = % Y Aﬁ[] — o Swatr 1)

=]

X{cos w,(t—1)+ %sin w,(r~ t,)}] (4.64)

o

Thus the response of the system at f = t, becomes

1/
Y

=1

{w,
x{cos w,(r, =)+ ", Sin w,(1,-1,) (4.65)
Notice that the step function AF, of step 1 1s positive if the slope of the F-versus-t
curve is positive, and it is negative if the slope of the F-versus-f curve is negative, as
indicated 1n Fig. 4.14. For higher accuracy. the time steps taken shouid be smaii. in
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addition, it is desirable to make the force steps start, after the first one, at instants
when the ordinates of the F(r) curve are at the midheights of the sweps, as shown in
Fig. 4.14. In this case, the errors involved in approximating the F(r) curve will be
self-compensatory; that is. the areas lying above the F(r) curve will be approxi-
mately equal to the areas lying below the F(r) curve.

Method 2. Instead of approximating the F(t) curve by a succession of step
functions, we can approximate it by a series of rectangular impulses F,, as shown in
Fig. 4.15. These impulses F, are positive or negative, depending on whether the
curve F(r) lies above or below the time (¢) axis. As in the previous case, the
magnitudes of F, should be selected as the values of F(¢) at the midpoints of
the time intervals Az, as shown in Fig. 4.15, to make the errors self-compensating.
The response of the system in any time interval ¢ | <t < ¢, can be found by
adding the response due to F, (applied in the interval At)) 10 the response existing
at t = ¢, (initial conduon). This gives

F .
X([) = —/?1[1 — e';ﬂn(f-’,-l){coswd(t - tj—l) + %Slnwd(t - ‘j‘])}]
o

X + {w x
~twa (-1, ) J-1 nAt -1 . _
+ e ' xj_lcos%,(t I}_]) + w, sme(I g 1)
. (4.66)
D, c::lucsisiibima # — ¢ v Do A LAY el oo ol il o ciicbmna b sl o] f tha
by subsiituting { = 7, in £q. (4.00) ine€ response OI the sysiem at the ena oOf thc
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interval Azl can be obtained:

=
i

F W, .
; 7(’-[1 - e““’n“’:{coswd- Ar, + gw—:smud- A:j}]
X, + 8w, x _
ul lsinwl,-At,} (4.67)

1-1

- $w, A1 .
+e t{xj_,coswd Ar, + "y

By differentiating Eq. (4.66) with respect to ¢ and substituting ¢ = t,, we obtain the
velocity x, at the end of the interval Ar

Fuw §2w2'
. o . i
%, = =g bl ¢ 2 lsinw, - Af, + wye 8
J k w2 i
o
x + {w, x,_
. -1 " 1
x{—x,_131nwd~At,+ oy cos w, - Ar,
. r - I A, IR
gw” J'j—l T MWK,
- —lx,_,cosw, - At + sinw, - At (4.68)
w, -1 d 1 Wy 7
Equations (4.67) and (4.68) represent recurrence relations for computing the re-

sponse at the end of jth time step. They also provide the imtial conditions of x, and
x, at the beginning of step j + 1. These equations may be sequentially applied to
find the vanations of displacement and velocity of the system with time.

Method 3. In the piecewise-constant types of approximations used in Methods 1
and 2, it 1s not always possibie to make the areas above and below the F(r) curve
equal and make the errors self-compensating. Hence it is desirable to use a higher
order interpolation, such as a piecewise linear or a piecewise quadratic approxima-
tion, for F(¢). In the piecewise linear interpolation, the variation of F(r)in any time
interval is assumed to be linear as shown in Fig. 4.16. In this case, the response of
the system in the time interval t,_| < 1 < 1, can be found by adding the response
due to the linear (ramp) function applied during the current interval to the response
existing at 1 = ¢ _, (imtial condition). This gives

AF 2
x(1) = “ ey g et
1 n
28
x{w—”coswd(t ~1,.4)
w2 _ §2w2
~ L ———Zsinw, (-1, ,)
W,y

F 9
1-1 — e - wn .
+ —k—[l — e Suatt r,-.i{coswd(t —1,,)+ —Esmwd(r - tl_l)}

x 4+ {w,x
- Swalt~t,_ ) _ -1 n
+ e -t [xj_,coswd(t tj_l) +

Wy

-1

sinw,(r—1,.,)

\ND  ——————

iA £0)
\"!.U ’
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where AF, = F, - F,_|. By setting ¢ = ¢, in Eq. (4.69), we obtain the response at th:
end of the interval Ar

AF, ple ple Wl — LA}
1 et - {w,Ar d n .
= Ar, - + e 9B cos w,Ar, - ————"sinw,At
A YY; P v, W, =N 2y J !
F {w
) —{w,-A L
+ ] — et -',{cos w, Al + P sin wdAtj}

x;—l + g"“Jnx_;—-l

+ e—“‘"“"[x]_,cos w,Ar, + sin wdAt]] (4.70

Wy

By differentiating Eq. (4.69) with respect to 1 and substituting r = f,, we obtain th
velocity at the end of the interval:

AF {w
. —{w,br, Rt
X, = 7(-"5—[-; [1 — e {COS wdAI] + Ry sin UdAf]}]

F _ w?
+ _'j:__l' et M ginw, - Al + e wn 8,
k wy d i
w w
x[i]_icosua.é.l - $ "{__ ot 5x _I\sin_._)a.A_r ] (4.71
Y wy \ 7/ § -y "J
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Equations (4.70) and (4.71) are the recurrence relations for finding the response of
the system at the end of ;th time step.

Damped Response Using Numerical Methods -

Find the response of a spring-mass damper svatem subjected to the forang function

F(r)=l-;,(l —sin;—:) (El)1

1]

in the nterval 0 € 1 < t,, using a numerical procedure. Assume F, =1, k=1 m=1
{ =01, and 1, = 1,/2, where 1, denotes the natural period of vibration given by

3]

A SR . (E2)

.= 7
W, (k/m)l/l

The values of x and x at r = 0 are zero

Gieen, Spring-mass-damper system subjected to the force given by Eq (E1). m =1, k = L.
{=01 F=11,=ma x(0)=x(0) =0

Fa']

Fi)

{i
1.0 —
11,0000
N\ AF =10
0.8 ; _-—}0-8436 AF, =0.8436 - 1.0000
' AN AF, = 0.6910 - 0 8436
) '\
f o “70.6910
| [ N\ AFyg = 0.01231 - 0.04894
ooF + 1\ 0 = 001
Voo - A= Li=2.11
b 705400
™ ! i i ]
1 t t t
F O S NS
Finy=Fo{i - wnp) AN
F e oy K TT0.2929
0o=1 P !
'+ L } ] | H }
hET 028 o T 001910
I t ] ] ! — - 0.64894
T R A ‘“_'9?‘,’/? 0.01231
T 00 | TR S J, Il Lo 1 ,
Ty LA S 1 ty Iy Iy oy I,
2 Sy 7 "
S j 4 N . N "
i 7 3z ndl
! : 4 4 Ar Al
Ire 4.7

Figure 4.18
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Find. Response of the system.
4pprouch: Use numerical methods.

Solution. Figure 4.17 shows the forcing function of Eq. (E.1) For the numencal compy
tions, the time interval 0 to 1, is divided into ten equal steps with

Lond P
SIS

- 2.
- 10

At i=23. .11 (E

Four different methods are used to approximate the forcing functuon F(r). In Fig. 418, F
1s approximated by a series of rectangular impulses, each starting at the beginning of
corresponding time step. A similar approximation, with the magnitude of the impulse at
end of the time step, is used in Fig. 4.19. The value of F{1) at the middle of the time stej
used as an impulse in Fig. 4.20. In Fig. 4.21, piecewise linear (trapezoidal) impulses are u
to approximate the forcing function F(1). The numerical results are given n Table 4.1,
can be expected from the idealizations, the results obtained bv i1dealizations 1 and 2 (F
4 18 and 4.19) overestimate and underestimate the true response. respectively The resi
given by idealizations 3 and 4 are expected to lie between those given by idealizations 1 :
2. Further, the results obtained from idealization 4 will be the most accurate ones

F(r)
N K
0 1.0000 1.0
: AF' = 0.843’6 . F‘ = 0 92'5
B AF. = 0.6910 - 0.8436 10.9215 Fi - 0‘7666
7 N 0.8436 AF. = 05460 - §.6910
Ydr— . I
] 081 5
L | 1IN 768 Fin = 0.027630
: h 069'0 AFq = 00[23[ - 004894 = 1 F” = Om}OS}
- : : AF,, ="(),W - 0.01231 (}6-' i ‘ ' A= 24=211
o i-— \0.5460 aL=Gir=2,11 . | : ] :
- 1
. :'- | b :
bar | ! TN 4122 1
| E b E 0‘4L| l} | -
- ]
tol F=ONg-2929 L | E | |
! ) ) 1 ) 1 1 .
oo L1 FTINO1910 [ 0.04894 o,z-l ! l ! l | i ,0.0761
Lo F N0 1000 /4 0-01231 BEE | } | | L 0.0276:
0 P T ~ 0.00000 Anianian | 0.0030¢
I 1 ) i 1 ! b~ o
L obohof ke ty 6 4 by Iy [1X1] Wl il Bl Wil '1 § ' | ' 1 = IL__,
Q & 22 = 4 Sm 6@ Tz Ba O o hijl} I 'al‘lul’]’s vln- "
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hd 1] 1]} LI 1 T T 11 A 1 DO O 1 L 1O B
igure 4.19 Figure 4.20
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H1)

4
AF_T = F: - F| = 08416 = 1 0060
Y LRLLLY AFy = Fr— F: = 1.6910 — 0 8436
T\ 0.8436 A,c” = Fy = Fy = (1.00000 - 0.0123)
1] S AI,=%ZI=2.||
| -
- 0 6910 RN
0.6k |l : Fy=1034%
: : 0 5460
_— ! :
| ! ! =
! F=001231
aafb 1o 1 €12 Fr = 0 o000
| i
L ! i ! i 0.2929
ok 4 ] ; LN 1910
IS S T S N S N ([T
B R s L O TP=
00 1 1 i 1 1 1 1 L b‘. !
[ N Y PO PO R ;7\ Lot o \
i 7 RE] " 8= n .
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x(¢;) Obtained According to
Fig. 4.18 Fig. 4.19 Fig. 4.20 Fig. 4.21
f 1, (Idealization 1) (1dealization 2) (Idealization 3) (Idealization 4)
1 0 0.00000 0.00000 0.00000 0.00000
2 0.17 0.04794 0.04044 0.04417 0.04541
3 0.27 0.17578 0.14729 0.16147 0.16377
4 0.3n 0.35188 0.29228 0.32190 0.32499
5 049 0.54248 0.44609 0.49392 0.49746
6 0.57 0.71540 0.58160 0.64790 0.65151
7 0.6 0.84330 0.67659 0.75906 0.76238
8 0.77 0.90630 0.71578 0.80986 0.81255
9 0.87 0.89367 0.69214 0.79142 0.79323
10 0.9x 0.80449 0.60717 0.70403 0.70482

11 4 0.64730 0.47152 0.55672 0.55647
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4.9 COMPUTER PROGRAMS

4.9.1 A Fortran computer program. in the form of subroutine PERIOD. is given for
Response under  finding the dynamic response of a damped oscillator exaited by any periodic
an Arbitrary external force applied to the mass. The arguments of the subroutine are as follows:
Periodic
Forcing Function XM = Mass of the system. Input data.
XK = Stiffness of the spring. Input data.
XAl = Damping ratio {. Input data.
N = Number of equidistant points at which the values of the force
F(t) are known. Input data.
M = Number of Fourier coefficients to be considered in the solution.
Input data.
TIME = Time period of the function F(r). Input data.
F = Array of dimenston N which contatns the known values of F(¢).
F(1} = F(t,). Input data.
T = Array of dimension N which conuuns the known values of time
t. T(I) = ¢,. Input data.
FZERO = F,. Output
FC = Array of dimension M. FC(J) = F,. Output.
X = Array of dimension N which contains the computed response at

ttme ¢. X(I) = x,. Output.

A sample problem and the ltsting of the program are given below.

PROGRAM &

c
c
c
C MAIN PROGRAM WHICH CALLS PERIOD
C
C
c

FOLLOWING 10 LINES CONTAIN PROBLEM-DEPENDENT DATA

DIMENSION F(24),T(24),XSIN(20),XC0S(20),PSI(20),PHI(20),FC(20),
2 X(24),XPC(20),XPS(20)

DATA XM,XK,XAI /100.0,100000.0,0.1/

DATA N,M,TIME /24,20,0.12/

DATA F/24000.0,48000.0,72000.0,96000.0,120000.0,96000.0,72000.0,
2 48000.0,24000.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
3 0.0,0.0,0.0,0.0/

DATA T/0.005,0.010,0.015,0.020,0.025,0.030,0.035,0.040,0.045,
2 0.050,0.055,0.060,0.065,0.070,0.075,0.080,0.085,0.090,0.095,
3 0.100,0.105,0.110,0.115,0.120/
C END OF PROBLEM-DEPENDENT DATA
CALL PERIOD (XM,XK,XAI,N,M,TIME,F,T,XSIN,XC0S,PSI,PHI,FZERO,FC,

2 X,XPC,XPS)
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OO0 00

PRINT 100, XM,XK,XAI,N,M,TIME
100 FORMAT (/,56H RESPONSE OF A SINGLE D.O.F. SYSTEM UNDER PERIODIC FO
2RCE,//,6H XM =,E15.6,/,6H XK =,E15.6,/,6H XAI =,E15.6,/,
36H N =,13,/,6HM =,13,/,6H TIME=,E15.6,/)
PRINT 200
200 FORMAT (/,27H APPLIED FORCE AND RESPONSE,//,3H [,3X,5H T(I),10X,
2 SH F(I),10X,5H X(I),/)
DO 400 I=1,N
400 PRINT 500, I,T(I),F(I).X(I)
500 FORMAT (I3,3E15.6)
STOP
END

SUBROUTINE PERIOD

SUBROUTINE PERIOD (XM,XK,XAI,N,M,TIME,F,T,XSIN,XCOS,PSI,PHI,
2 FZERO,FC,X,XPC,XPS)

DIMENSION F(N),T(N),XSIN(M),XCOS(M),PSI(M),PHI(M),FC(M),X(N)
2 ,XPC(M),XPS(M)

OMEG=2.0%3.1416/TIME

OMEGN=SQRT (XK/XM)

CIMZ=0 0O
- U

OVIlLT v

DO 100 I=1,N
100 SUMZ=SUMZ+F(I)
FZERO=2.0%SUMZ/REAL(N)
DO 300 J=1,M
SUMS=0.0
SUMC=0.0
DO 200 I=1,N
THETA=REAL (J)*OMEG*T(1)
FSIN=F (I)*SIN(THETA)
FCOS=F (1)*COS(THETA)
SUMS=SUMS+FSIN
SUMC=SUMC+FCOS
200 CONTINUE
AJ=2.0%SUMC/REAL(N)
BJ=2.0*SUMS/REAL(N)
R=OMEG/OMEGN
PHI(J)=ATAN(2.0*XAI*REAL(J)*R/ (1.0~ (REAL(J)*R)**2))
CON=SQRT((1.0- (REAL(J)*R)**2)**2+ (2. 0*XAI*REAL(J)*R)**2)
XPC(J)=(AJ/XK)/CON
XPS(J)=(BJ/XK)/CON
300 CONTINUE
DO 400 I=1,N
X(1)=FZERO/ (2.0¥XK)
DO 500 J=1,M
500 X(I)=X(I)+XPC(J)*COS(REAL(J)=OMEG=T(I)-PHI(J))
2 +XPS(J)*“SIN(REAL(J)*OMEG*T(I)-PHI(J))
400 CONTINUE
RETURN
END




43 Computer Programs

213

RESPONSE OF & SINGLE D.0.F. SYSTEM UNDER PERIODIC FORCE

0.100000E+03
0.100000E+06
0.100000E+00

492

wowaonuwon

-]
—
o 4
i

24
20

0.120000E+00C

APPLIED FORCE AND RESPONSE

1 T F(I) X(I)
1 0.500000E-02 0.240000E+05 0.393129E+00
2 0.100000E-01 0.480000E+05  0.451156E+00
3 0.150000E-01 0.720000E+05 0.496753E+00
4 0.200000E-01 0.960000E+05 0.523363E+00
5  0.250000E-01 0.120000E+06  0.525113E+00
6 0.300000E-C1  0.960000E+0S  0.497451E+00
7 0.35000CE-01 0.720000E+05 0. 447280E+00
8 0.400000E-01  0.480000E+05  0.382350E+00
9 0.450000E-01 0.240000E+05 0.310534E+00
10 0.500000E-01 0.000000E+00 0.239646E400
11 0.550000E-01  0.000000E+00  0.17698.E+00
12 0.600000E-01  0.000000E+00  0.124139E+00
13 0.650000E-01 0.000000E+00 0.321526E-01
14 0.700000E-01  0.000000E+00  0.517493E-01
15  0.750000E-01  0.000000E+00 0. 333252E-0
16 0.800000E-01 0.000000E+00 0.269447E-01
17 0.850000E-01 0.000000E+00  0.323697E-01
18 0.900000E-01 0.000000E+00 0.490896E-01
19 0.950000E-01 0.000000E+00 0.763507E-01
20 0.100000E+00  0.000000E+00  0.113176E+00
21 0.10500C0E+00 0.000000E+00 0.158378E+00
22 0.110000E+00 C.000000E+00 0.210580E+00
23 0.115000E+00  0.000000E+00  0.268249E+00
24 0.120000E+00 0.000000E+00 0.329747E+00

A Fortran computer program 1s gtven for finding the response of a viscously
damped single degree of freedom system under arbitrary forcing function using the
methods outltned tn Section 4.8. For illustration, the data of Example 4.11 is used.

Response under
Arbitrary Forcing

Gunction The following input data is required for this program.
sing th . .
Methgodse F = Array containing the values of the forcing function at various time
of Secti stations according to the idealization of Fig. 4.14 (Fig. 4.18 or 4.19
ion 4.8
for Example 4.11).
FF = Array containing the values of the forcing function at various ttme
stations according to the tdealization of Fig. 4.16 (Fig. 4.20 or 4.21
for Example 4.11).
XAl = Damptng factor.
OMN = Undamped natural frequency of the system.
DELT = Incremental tume between consecutive ttme stations.
XK = Spring stiffness.
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The program prints the values of x(r,) and x{¢,) given by four different methods at
ttme SIattons fy, f5,..., fy,. Although the program uses the data of Example 4.11
directly. it can be generalized to find the response under any arbitrary forcing
funcuon of any stngle degree of freedom system.

PROGRAM 5

USING THE METHODS OF SECTION 4.8

C
c
c
C RESPONSE OF A SINGLE D.0.F. SYSTEM UNDER ARBITRARY FORCING FUNCTION
c
C
c
c

FOLLOWING 10 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSION F(11),FF(11),DELF(11), T(11) X{(11), XD(11),X1(11),
2 XD1(11),X2(11),XD2(11),X3(11),XD3(11),X4(11), XDL(ll)
DATA F/0.0,1,0,0.84356554,0,69098301,0.54600950,0.41221475,
2 0.29289322,0.19098301,0.10899348,0.04894348,0.01231166/
DATA FF/1.0,0.92154090,0.76655464,0.61731657,0.47750144,
2 0.35055195,0.23959404,0.14735984,0.07612047,0.02763008,
3 0.00308267/ )
DATA XAI,OMN,XK /0.1,1.0,1.0/
DELT=3.14159265/10.0
DATA NP,NP1,NP2 /11,10,9/
€ NP = WUMBER OF POINTS AT WHICH VALUE OF F IS KNOWN, NP1=NP-1, NP2=NP-2
C END OF PROBLEM-DEPENDENT DATA
XN=XAI*OMN

Dn nM‘M-&CQDTf\ 0- VAT:‘".:’)\

£ L

C SOLUTION ACCORDING TO METHOD 1 USING THE IDEALIZATION OF FIG. 4.18
T(1)=0.0
po 10 I=2,NP
10  T(I)=T(I-1)+DELT
DO 20 I=1,NP1
20 DELF(I)=F(I+1)-F(I)
DO 40 J=2,NP
X(J)=0.0
XD(J)=0,0
JM1=J-1
DO 30 I=1,JM1
X(J)=X(J)+(DELF(I)/XK)*(1.0-EXP(-XN*{T(J)-T(I)))*(COS(PD*(T(J)-
2 T(I)))+(XN/PD)*SIN(PD*“(T(J)-T(I)))))
C XD(J) OBTAINED BY DIFFERENTIATING EQ.{(4.64)
XD(J)=XD(J)+(DELF (I)/XK)*EXP(-XN*(T(J)-T(I)))*SIN(PD*(T(J)-
2 T
30 CONTINUE
40  CONTINUE
pO 50 I=2,NP
X1(I)=X(I)
50 XD1(I)=XD(I)
C SOLUTION ACCORDING TO METHOD 1 USING THE IDEALIZATION OF FIG. &.19
DO 60 K=2,NP2 )
60 DELF(K)=DELF(X+1)
DELF(1)=F(3)
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70
80

90

DELF(NP)=F(NP)

Do 80 J=2,NP

X(J)=0.0

XD(J)=0.0

JM1=J-1

pO 70 I=1,JM]
X(J)=X(J)+(DELF(I)/XK)*(1.0-EXP(-XN*(T(J)-T(1)))*(COS(PD*(T(J)-
2 T(I)))+(XN/PD)*SIN(PD*(T(J)-T(I)))))
XD(J)=XD(J)+(DELF(I)/XK)*EXP(-XN*(T(J)-T(I)))*SIN(PD*(T(J)-
2 T(I)))

CONTINUE

CONTINUE

DO 90 I=2,NP

VATV ITY
ALNLJ=ALL)

XD2(1)=XD(I)

C SOLUTION ACCORDING TO METHOD 2 USING THE IDEALIZATION OF FIG. &4.20

X(1)=0.0

XD(1)=0.0

DO 100 J=2,NP

DEL=DELT
X(J)=(FF(J)/XK)*(1.0-EXP(-XN*DEL)*(COS(PD*DEL)+(XN/PD)*

2  SIN(PD®*DEL)))+EXP(-XN*DEL)*(X(J-1)*COS (PD*DEL)+((XD(J-1)

3 +XN*X(J-1))/PD)*SIN(PD*DEL))
XD(I)=(FF(J)*PD/XK)*EXP(-XN*DEL)* (1. 0+XN**2/ (PD**2))*SIN(PD*DEL)
2 +PDHEXP (-XN*DEL)*(-X{(J-1)*SIN(PD*DEL)+ ((XD(J-1)+XN*X(J-1))/PD)*
3  COS(PD*DEL)~-XN*(X(J-1)*COS (PD*DEL)+((XD(J-1)+XN*X(J-1))/PD)*
& SIN(PD*DEL))/PD)

100 CONTINUE

DO 110 I=2,NP

VAL T YV TN
AJLL JZALL )

110 XD3(I)=XD(I)
C SOLUTION ACCORDING TO METHOD 3 USING THE IDEALIZATION OF FIG. 4.21

120

X(1)=0.0

XD(1)=0.0

DO 120 J=1,NP1

F(J)=F(J+1)

F(NP)=0.0

DO 130 J=2,NP

DELF (J)=F(J)-F(J-1)

X(J)=(DELF (J)/ (XK*DEL))*(DEL-{2.0*XAI/OMN)+EXP( -XN*DEL)*
((2.0%XAI/OMN)*COS(PD=DEL) - ( (PD**2-XN#**2)/ (OMN*OMN*PD))*
SIN(PD*DEL)))+(F(J-1)/XK)*(1.0-EXP(-XN*DEL)* (COS(PD*DEL)

2
3
4  +(XN/PD)*SIN(PD*DEL)))+EXP(-XN*DEL)* (X (J-1)*COS (PD*DEL)
5

+((XD(J-1)+XN*X(J-1))/PD)*SIN(PD*DEL))

XD(J)=(DELF (J)/ (XKDEL))*(1.0-EXP (-XN*DEL)* (( (XN**2+PD**2)/
(OMN**2) )*C0OS ( PD*DEL) + ( (XN**3+XN*PD*PD)/ (PD* (OMN**2) ) )*
SIN(PD*DEL)))+(F(J-1)/XK)*EXP (- XN*DEL)* ( (XN**2/PD)+PD)*

2
3
4  SIN(PD*DEL)+EXP(-XN*DEL)*(XD(J-1)*COS(PD*DEL) - ((XN*XD(J-1)
5

+XN*XN*X (J-1)+PD*PD*X(J-1))/PD)*SIN(PD*DEL))

130 CONTINUE

140

DO 140 I=2,NP
X&(1)=X(I)
XD4 (1)=XD(1)
PRINT 150
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150 FORMAT (//,6H VALUE,6X,10H METHOD #1,7X,10H METHOD #1,7X,
2 10H METHOD #2,7X,10H METHOD #3)
PRINT 160
160 FORMAT (3X,3H OF,5X,11H (FIG.4.18),6X,11H (FIG.4.19),6X,
2 11H (FIG.4.20),6X,11H (FIG.4.21),/)
PRINT 170
170 FORMAT (3X,2H I,7X,5H X(I),12X,5H X(I),12X,5H X(I),12X,5H X(I),
2 N
Do 180 I=2,NP

180 PRINT 190,1,X1(I),X2(I),X3(I),X4(I)
190 FORMAT (I5,2X,E15.6,2X,E15.6,2X,E15.6,2X,E15.6)
PRINT 200
200 FORMAT (//,3X,2H I,6X,6H XD(I),11X,6H XD(I),11X,6H XD(I),11X,
2 6H XD(I),/)
DO 210 I=2,NP
210 PRINT 190,1,XD1(I),XD2(1),XD3(I),XD4(I)
STOP
END
VALUE METHOD #1 METHOD #1 METHOD 42 METHOD #3
OF (FIG.4.18) (FI1G.4.19) (FIG.4.20) (FIG.4.21)
I X(I) X(I) X(I) X(I)
2 0.479360E-01 0.404372E-01 0.441750E-01 0.454151E-01
3 0.175781E+00 0.147294E+00 0.161471E+00 0.163773E+00
4 0.351883E+00 0.292277E+400 0.321877E+00 0.324989E+00
5 0.542483E+00 0.44609 1E+00 0.493842E+00 0.497464E+00
6 0.715396E+00 0.581603E+00 0.647699E+00 0.651514E+00
7 0.843296E+00 0.676586E+00 0.758676E+00 0.762379E+00
8 0.906301E+00 0.715783E+00 0.809225E+00 0.812552E+00
9 0.893674E+00 0.692145E+00 0.790486E+00 0.793231E+00
10 0.804490E+00 0.60716 7E+00 0.702788E+00 0.704820E+00
11 0.647299E+00 0.469170E+00 0.555198E+00 0.556465E+00
I XD(I) XD(I) XD(I) XD(1)
2 0.298008E+00 0.251389E+00 0.276010E+00 0.275640E+00
3 0.502976E+00 0.418148E+00 0.462605E+00 0.461687E+00
4 0.602270E+00 0.491876E+00 0.549249E+00 0.547683E+00
5 0.595174E+00 0.474576E+00 0.536630E+00 0.53440SE+00
6 0.492171E+00 0.377744E+00 0.435845E+00 0.433036E+00
7 0.313187E+00 0.220601E+00 0.266613E+00  0.263378E+00
8 0.850188E-01 0.276649E-01 0.547668E-01 0.513272E-01
9  -0.161754E+00  -0.174042E+00  =0,170711E400  -0.174093E+00
10 -0.396047E+00  -0.357870E+00  =0.380784E+00  -0.383830E+00
11 -0.589414E+00  -0.507466E+00  -0.549289E+00  -0.551730E+00
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REVIEW QUESTIONS

4.1. What 1s the basis for expressing the response of a system under peniodic excitation as a
summation of several harmonic responses?

4.2. Indicate some methods for finding the response of a system under nonpenodic forces
43. What s Duhamel integral? What is its use?

4.4. How are the inital conditions determmned for a single degree of freedom system
subjected 10 an impulse at ¢ = 0?

4.5. Derive the equation of motion of a system subjected to base excitation.
4.6. What 1s a response spectrum?

4.7. What are the advantages of the Laplace transformauon method?

4.8. What is the use of the pseudo spectrum?

4.9. How 1s the Laplace transform of a function a(¢) defined?

4.10. Define these terms: generahzed impedance and admuittance of a system.

4.11. State the interpolation models that can be used for approximating an arbitrary forcing
function

4.12. How many resonant conditions are there when the external force 15 not harmonsic?
4.13. How do you compute the frequency of the first harmonic of a penodic force”

4.14. What is the relation between the frequencies of higher harmonics and the frequency of
the first harmonic for a peniodic excitation?
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PROBLEMS

The problem assignments are organized as follows:

Section

Problems Covered Topic Covered

41-45 42 Response under general
periodic force

46-48 43 Perif)dic force of irregular
form

49-421 45 Convolution integral

4.22-426 46 Response spectrum

4.27-4.29 47 Laplace transformation

4.30-4.33 4.8 Irregular forcing conditions
using numerical methods

4.34-439 49 Computer program

440-4.41 — Projects

4.1-4.4. Find the steady-state response of the hydraulic control valve shown in Fig, 4.1(a) to

45.

4.6.

4.7.

48.

the forcing functions obtained by replacing x(¢) with F(¢) and A4 with F, in Figs,
1.56-1.59.

Find the steady-state response of a viscously damped system to the forcing function
obtained by replacing x(t) and A with F(¢) and F,, respectively, in Fig. 1.32(a).
Find the response of a damped system with m = 1 kg, kK = 15 kN/m, and { = 0.1
under the action of a periodic forcing function, as shown in Fig. 1.62.

Find the response of a viscously damped system under the periodic force whose values
are given in Problem 1.47. Assume that x, denotes the value of the force in Newtons at
time ¢, seconds. Use m = 0.5 kg, k = 8000 N/m, and { = 0.06.

Find the displacement of the water tank shown in Fig. 4.22(a) under the periodic force
shown in Fig. 4.22(b) by treating it as an undamped single degree of freedom system.
Use the numerical procedure described in Section 4.3.

3

X0 F(t), kN
1— $ )
F(t)—-ﬁ m=10Mg
400
k=5 MN/m
777777 0 006 0.150.31 0.30 0.35 " (seconds)
(a) (b)

Figure 4.22
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Sandblasting is a process in which an abrasive material, entrained in a jet, is directed

onto the surface of a casting to clean its surface. In a particular setup for sandblasting,
the casting of mass m is placed on a flexible support of stifiness k as shown in Fig,
4.23(a). If the force exerted on the casting due to the sandblasting operation varies as
shown in Fig. 4.23(b), find the response of the casting.

Jet of abrasive
material

i F()
A AN T
Casting. m L
. F——- T
Flexible i
support, k '
’ o o
(a)
Figure 4.23

(b}

4.10. The frame, anvil, and the base of the forging hammer, shown in Fig. 4.24(a), have a
total mass of m. The support elastic pad has a stifiness of k. If the force applied by
the hammer is given by Fig. 4.24(b), find the response of the anvil.

J - Hammer
v
Y — Frame
F(&)
Anvil
1 L‘/
Al
) Base 1-
< I 1 11 Elastic
i i i i i i i pad. k
(@)

e e e —— —

fa 54

(b)
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the displacement of a damped single degree of freedom system under the forcing
tion F(t) = Fye~® where a is a constant.

the transient response of an undamped spring-mass system for t > 7/« When the
s is subjected to a force

F, 7
70(1 —coswt) for0 << —

F(t) =
fort >

£l

£

ume that the displacement and velocity of the mass are zero at ¢t = 0.

Use the Dahamel integral method to derive expressions for the response of an
amped system subjected to the forcing functions shown in Figs. 4.25(a) to (¢).

Sy SRL TR 1L 14

4 4

[ F(9 F(t)

- pus
Fua(1 - cos 3

Fy F_—_——_—"_'}I Fobb———c———-a"

» S

| O . L,
¢

O l(l { 0 !u {
(a) (b) (c)

re 4.25

ure 4.26 shows a one degree of freedom model of a motor vehicle traveling in the
izontal direction. Find the relative displacement of the vehicle as it travels over a

d bump of the form y(s) = Ysinzs/8.

m

)
w3 T Sw

h<_‘

iqure 4.26
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4.17.

01pw—-———— A

An automobile, having a mass of 1000 kg, runs over a road bump of the shape shov
in Fig. 427. The speed of the automobile is 50 km/hr. If the undamped natural peric
of vibration in the vertical direction is 1.0 second, find the response of the car |

assuming it as a single degree of freedom undamped system vibrating in the vertic
direction.

Camcorder
(m)

é L_l:] é .’ l«—Containe

\ » Distance along

0 0.25
Figure 4.27
4.18.
4.19.

Figure 4.29

050  road (m) R T mTmEEETETEE S =)

Figure 4.28

A camcorder of mass m is packed in a container using a flexible packing material. T}
stiffness and damping constant of the packing material are given by k and
respectively, and the mass of the container is negligible. If the container is dropp:
accidentally from a height of h onto a rigid floor (see Fig. 4.28), find the motion of
camcorder.

An airplane, taxiing on a runway, encounters a bump. As a result, the root of the wii
is subjected to a displacement that can be expressed as

¥(1) ={

Find the response of the mass located at the tip of the wing if the stiffness of the wi
is k (see Fig. 4.29).

Y(£2/83), O0<t<i
0, t>t,

N Wing kA

ing root

£
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4.20.
4.21.

Derive Eq. (E.1) of Example 4.6.

In a static firing test of a rocket, the rocket is anchored to a rigid wall by a
spring-damper system, as shown in Fig. 4.30(a). The thrust acting on the rocket
reaches its maximum value F in a negligibly short time and remains constant until the
burnout time ¢, as indicated in Fig. 4.30(b). The thrust acting on the rocket is given
by F = mgv where my, is the constant rate at which fuel is burnt and v is the velocity
of the jet stream. The mmal mass of the rocket is M, so that its mass at any time ¢ is
givenbym =M — myt,0 <t < t. If thedataare k = 7.5 X 10°* N/m, ¢ = 0.1 x 108
N-s/m, my, = 10 kg /s, v = 2000 m/s, M = 2000 kg, and ¢, = 100 s, (1) derive the
equation of motion of the rocket, and (2) find the maximum steady-state displacement

of the rocket by assuminge an averasge fnnncfnnﬂ mass of ( M - lm
il AV WwERAWwL UJ I WAARAL b vnuaw AZuT LUAEE L ALAVRAILT A 0'0’

= x(1) . E

@}

0
o/
J—

~
Q perecage——

(a) (b)

422,

4.23.

4.24.

4.25.

4.26.*

4.27.

&
8

:Fn
b

4.30.

Figure 4.30

Derive the response spectrum of an undamped system for the rectangular pulse shown
in Fig. 4.25(a). Plot (x/8,,),..x With respect to (2,/7,).

Find the displacement response spectrum of an undamped system for the pulse shown
in Fig. 4.25(c).

The base of an undamped spring-mass system is subjected to an acceleration excita-
tion given by a,[1 — sin(wt/2¢,)]. Find the relative displacement of the mass z.
Find the response spectrum of the system considered in Example 4.7. Plot ( k;) ™
0 m
Versus w,?, in the range 0 < w,f, < 15.
A building frame is subjected to a blast load and the idealization of the frame and the
load are shown in Fig. 4.10. If m = 5000 kg, K, =4 MN, and ¢, = 0.4 s, find the
minimum stiffness required if the displacement is to be limited to 10 mm.

Find the steady state response of an undamped single degree of freedom system
subjected to the force F(t) = Fye'“' by using the method of Laplace transformation.

Find the response of a damped spring-mass system subjected to a step function of
magnitude F, by using the method of Laplace transformation.

Find the response of an undamped system subjected to a square pulse F(r) = F, for
0 <1<t and 0 for ¢t > ¢, by using the Laplace transformation method. Assume the
initial conditions as zero.

Determine the expression for the velocity %, for the damped response represented by

Eq. (4.64).
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4.31. Derive Eqgs. (4.68) and (4.71).

432. Compare the values of X, given by Egs. (4.68) and (4.71) in the case of Example 4.1]

4.33. Derive the expressions for x, and X, according to the three interpolation functior
considered in Section 4.8 for the undamped case. Using these expressions, find th
solution of Example 4.11 by assuming the damping to be zero.

434. A damped single degree of freedom system has a mass m = 2, a spring of stiffne:
k = 50, and a damper with ¢ = 2. A forcing function F(t¢), whose magnitude
indicated in the following table, acts on the mass for one second. Find the response
the system by using the piecewise linear interpolation method described in Section 4.

Time (¢;,) F(z;)

0.0 -80
0.1 -120
0.2 —-15.0
0.3 -13.0 '
04 -11.0
0.5 -1.0
0.6 —4.0
0.7 30
0.8 10.0
0.9 15.0
1.0 18.0

435. The equation of motion of an undamped system is given by 2x + 1500x = F(1) wher
the forcing function is defined by the curve shown in Fig. 4.31. Find the response o
the system numerically for 0 < 7 < 0.5. Assume the initial conditions as xo = Xg =
and the step size as At = 0.01.

F(r)(N)
s

20 |--——-

I
1
/|
| - [, SEC

0 0.10 0.25

Figure 4.31
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4.36.

F(
&

100 i~
60
30
{ ] —p |
0 0.05 0.10 0.15
Figure 4.32

Solve Problem 4.35 if the system is viscously damped so that the equation of motion js
2% + 10% + 1500x = F(1).

4.37. Write a computer program for finding the steady-state response of a single degree of
freedom system subjected to an arbitrary force, by numerically evaluating the Duhame]
integral. Using this program, solve Example 4.11.

4.38. Find the relative displacement of the water tank shown in Fig. 4.22(a) when its base is
subjecied 1o the earihquake acceleration record shown in Fig. 1.63, by assuming the
ordinate 1o represent acceleration in g’s. Use the program of Problem 4.37.

4.39. The differential equation of motion of an undamped system is given by 2x + 150x =
F(t) with the initial conditions x, = %, = 0. If F(¢) is as shown in Fig. 4.32. find the
response of the problem using the computer program of Problem 4.37.

Projects:

4.40. Design a seismometer of the type shown in Fig. 4.33(a) (by specifying the values of «,
m and k) to measure earthquakes. The seismometer should have a natural frequency
of 10 Hz and the maximum relative displacement of the mass should be at least 2 cm
when its base is subjected to the displacement shown in Fig. 4.33(b).

y(1), em
Y

Rigid bar (mass negligible
Cage (mass 5 ( gligible)
negligible)

P %k/z }’_)
o) ? -Or
' ; ki2 n '
'
N o . & 1, SEC

(b)

Figure 4.33



Problems

441. The cutting forces developed during two different machining operations are shown in
Figs. 4.34(a) and (b). The inaccuracies (in the vertical direction) in the surface finish in
the two cases were observed to be 0.1 mm and 0.05 mm, respectively. Find the
equivalent mass and stiffness of the cutting head (Fig. 4.35) assuming it to be an
undamped single degree of freedom system.

+ [, SeC

L/ | — 1, sec 4
. 0

Figure 4.34

/ | l +——Cutting head

|
b

Figure 4.35



CHAPTERS

pDarwel Bernoulh (1700- 1782) was a Swiss who became a
professor of mathematics at St. Petersburg in 1725 after
receving his doctorate in medicine for his thesis on the
action of lungs. He later became professor of anatomy and
botany at Basel. He developed the theory of hydrostatics
and hydrodynamics and ‘‘Bernoulli's theorem™ 1s well
known to engineers, He derved the equation of moton for
the vibration of beams (the Euler-Bernoulli theory) and
studied the problem of vibrating strings. Bernoulll was the
first person to propose the principle of superposition of
harmonics in free vibration. {Courtesy Culver Pictures)

5.1 INTRODUCTION

Systems that require two independent coordinates to describe their motion are
called rwo degree of freedom systems. Some examples of systems having two degrees
of freedom were shown in Fig. 1.7. We shall consider only two degree of freedom
systems in this chapter, so as to provide a simple introduction to the behavior of
systems with an arbitrarily large number of degrees of freedom, which is the subject
of Chapter 6.

Consider the system shown in Fig. 5.1, in which a mass m is supported on two
equal springs. Assuming that the mass is constrained to move in a vertical plane, we
find that the position of the mass m at any time can be specified by a linear

, coordinate x(t), indicating the vertical displacement of the center of gravity (C.G.)
of the mass, and an angular coordinate 6(t), denoting the rotation of the mass m
about its C.G. Instead of x(¢) and #(¢), we can also use x,(7) and x,(7) as
independent coordinates to specify the motion of the system. Thus the system has
two degrees of freedom. It is important to note that in this case the mass m is not
treated as a point mass, but as a rigid body having two possible types of motion. (If
it is a particle, there is no need to specify the rotation of the mass about its C.G.)
The system shown in Fig. 5.2 does have one point mass m but is a two degree of
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x(1) -

y() "—]

Figure 5.1 Figure 5.2

freedom svstem. hecause the mass hag two nncclhlp tvna
L WwwllW/iil u-’ub\tlll, W G W W L8 & ARACA I ALLGAD .w GRS AW L 9 '

along the x and y directions). The general ru]e for the computation of the number
of degrees of freedom can be stated as follows:

Number of masses in the system X
= number of possible types of motion of
each mass

Number of degrees of freedom of the

There are two equations of motion for a two degree of freedom system, one for each
mass (more precisely, for each degree of freedom). They are generally in the form of
coupled differential equations—that is, each equation involves all the coordinates. 1f
a harmonic solution is assumed for each coordinate, the equations of motion lead to
a frequency equation that gives two natural frequencies for the system. If we give
suitable initial excitation, the system vibrates at one of these natural frequencies.
During free vibration at one of the natural frequencies, the amplitudes of the two
degrees of freedom (coordinates) are related in a specific manner and the configura-
tion 1s called a normal mode, principal mode, or natural mode of vibration. Thus a
two degree of freedom system has two normal modes of vibration corresponding to
the two natural frequencies.

If we give an arbitrary initial excitation to the system, the resulting free
vibration will be a superposition of the two normal modes of vibration. However, if
the system vibrates under the action of an external harmonic force, the resulting
forced harmonic vibration takes place at the frequency of the applied force. Under
harmonic excitation, resonance occurs (i.e., the amplitudes of the two coordinates
will be maximum) when the forcing frequency is equal to one of the natural

frequencies of the system.
As is evident from the systems shown in Figs. 5.1 and 5.2, the configuration of a

LRIt ARl LA 2223 QLLNIWY A QEANE oy Vi WRSRaR D

system can be specified by a set of independent coordinates such as length, angle, of
some other physical parameters. Any such set of coordinates is called generalized
coordinates. Although the equations of motion of a two degree of freedom system
are generally coupled so that each equation involves all the coordinates, it is alwaySi

|
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possible to find a particular set of coordinates such that each equation of motion
contains only one coordinate. The equations of motion are then uncoupled and can
be solved independently of each other. Such a set of coordinates, which lead to an
uncoupled system of equations, is called principal coordinates.

NS OF MOTION FOR FORCED VIBRATION

Consider a viscously damped two degree of freedom spring-mass system, shown in
Fig. 5.3(a). The motion of the system is completely described by the coordinates

v {tl and v {1\ whirh dafine the nacitinne af thae maccae . and »_ at any tima ¢
Al\l’ CllinNg /‘2\‘}’ YVALlWll Wiwillivw Uil FUOI‘IUIIO WL LI 111000 "‘1 A1ig "‘2 “aL ml] Lilliw &

from the respective equilibrium positions. The external forces F,(z) and F,(2) act on
the masses m, and m, respectively. The free-body diagrams of the masses m, and
m, are shown in Fig. 5.3(b). The application of Newton’s second law of motion to
each of the masses gives the equations of motion:

m% + (€ + c) %) — %y + (ky + ko) xy — kyxy = Fy

A
mayiy = ¢y + (e + ¢3) %y — koxy + (ky + k3)x, = R 2

p— g
LV IV ]
S’ Nenmm”

It can be seen that Eq. (5.1) contains terms involving x, (namely, —c,%, and
—k,x,), whereas Eq. (5.2) contains terms involving x; (namely, —c,%, and
—k,x;). Hence they represent a system of two coupled differential equations. We
can therefore expect that the motion of the mass m, will influence the motion of the
mass m,, and vice versa. Equations (5.1) and (5.2) can be written in matrix form as

[m]x(1) + [c]R(1) + [k]%(1) = F(1) (5.3)

where [m), [¢], and [k] are called the mass, damping, and stiffness matrices,

x(1) x:(1)
k, Fi(n ks 5@ g,

7, ‘ %
Vs my m, L~
7] ' o

Vy Cy 2 3

4 0 @ RERENO)

T T Z 77777777 2777720 2P R PR PP P Pt Pt LS S S

N

(2)

X, X t:-. X3, X
F, F

KiXi o 5(xy — X1) N F-— kix>
. m . 2 .
CiX| et l e 5% — Xi) C1X)
Spring k&, under tension Spring &, under tension Spring fc; under
for +x, for +(x; — xy) compression for +x;

(b)

Figure 5.3 A two degree of freedom spring-mass-damper system.
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respectively, and are given by

[m, 0
[m] - i 0 m,
_ -Cl +C2 _Cz
[c] = | e ot
[k] — rkl + kz _kz
| _k2 k2+k3

and x(¢) and f(t) are called the displacement and force vectors, respectively, and
are given by
[ x,(1))
x(1) =
{ x,(1) }

and

‘E—"lr\ = [Fl(t)l
R

It can be seen that the matrices [m], [c], and [k] are all 2 X 2 matrices whose
elements are the known masses, damping coefficients, and stiffnesses of the system,
respectively, Further, these matrices can be seen to be symmetric, so that

[m]"=[m], L) =[e),  [K]7 = [&]
where the superscript T denotes the transpose of the matrix.

Notice that the equations of motion (5.1) and (5.2) become uncoupled (indepen-
dent of one another) only when ¢, = k, = 0, which implies that the two masses m,
and m, are not physically connected. In such a case, the matrices [m], [¢}, and [k]
become diagonal. The solution of the equations of motion (5.1) and (5.2) for any
arbitrary forces Fi(¢) and F,(?) is difficult to obtain, mainly due to the coupling of
the variables x,(7) and x,(z). We shall first consider the free vibration solution of
Egs. (5.1) and (5.2).

3 FREE VIBRATION ANALYSIS OF AN UNDAMPED SYSTEM

For the free vibration analysis of the system shown in Fig. 5.3(a), we set F\(¢) =
F,(1) = 0. Further, if damping is disregarded, ¢, = ¢, = ¢; = 0, and the equations
of motion (5.1) and (5.2) reduce to

m k(1) + (ky + ky)x (1) — koxy(1) =0 (5.4)
myis(1) — kox (1) + (ky + k3)x,(2) = 0 (5.5)

We are interested in knowing whether m, and m, can oscillate harmonically with
the same frequency and phase angle but with different amplitudes. Assuming that it
is possible to have harmonic motion of m, and m, at the same frequency w and the
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same phase angle ¢, we take the solutions of Eqgs. (5.4) and (5.5) as

x,(t) = X cos(wt + &)

x(1) = Xycos(wt + ) (5.6)
where X, and X, are constants that denote the maximum amplitudes of x,(¢) and
x,(1), and ¢ is the phase angle. Substituting Eq. (5.6) into Egs. (5.4) and (5.5), we
obtain

[{_mlw2+(kl+k2)} '_k X2]COS((A)I+¢) =0
[ kX+{ —myw +(k-.+k”¥~]c'0§(¢._at+dx\—ﬂ (5,7)

72 ) TTELYTTUVT

Since Egs. (5.7) must be satisfied for all values of the time ¢, the terms between
brackets must be zero. This yields

{—me? + (ky + ky)} X, — ky X

2
v o[ _ .. .24 f1r LY\ v

0
0 (5.8)
which represent two simultaneous homogeneous algebraic equations in the un-

1rem v ned V. Tt mnm ha cann that BAac € O\ aea cntichad ; tha teierial cqls
KiiOwilis Al ana A, kL Cail o€ SEcn Lllal LA{>. {7.0) alv sausnca Uy Ui I..IlVlal 001uuuu

X, = X, = 0, which implies that there is no vibration. For a nontrivial solution of
X, and X,, the determinant of the coefficients of X; and X, must be zero:

d {_mlwz + (kl + kz)} _kz l 0
et —L (ot (k. + ]
L L] \ ffigw T (g 7 "’3’_’]

or
(mumy)o® — {(ky + ky)my + (ky + k3)m, }o?
+{(ky + ko) (ky+ k3) —k3} =0 (5.9)
Equation (5.9) is called the frequency or characteristic equation because solution of

this equation yields the frequencies or the characteristic values of the system. The
roots of Eq. (5.9) are given by

2 2 _ l{(kl + ky)my + (ky + k})ml}
Wi, Wy = 5

mym,

mym,

2y 12
_4{ (ky + kz)(kz + ks) — k3 }] (5.10)

%[{ (ky + ky)my + (ky + ks)m, }2

mym;,

This shows that it is possible for the system to have a nontrivial harmonic solution
of the form of Egs. (5.6) when w is equal to w, or w, given by Eq. (5.10). We call o,
and w, the natural frequencies of the system.

The values of X; and X, remain to be determined. These values depend on the
natural frequencies w, and w,. We shall denote the values of X; and X, correspond-
ing to w, as X{V and X{V and those corresponding to w, as X{® and X§®. Further,
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since the Eqgs. (5.8) are homogeneous only the ratios n={x/XxP} and r, =
{ X{2/X{P} can be found. For w? = w? and w? = w3, Egs. (5.8) give

Xz(l) _ml‘*’f + (kl + k,) _ k,
= X - k, B —mywi + (ky + k) (3.1)
X(z) _mlwg + (kl + kz) k2
= = = 5.

Notice that the two ratios given for each r, (i = 1,2) in Egs. (5.11) and (5.12) are

identical. The normal modes of vibration corresponding to w? and w3 can be

and
2) 2 |

)?(2)={Xl( 1={Xl()}

| X 1)

The vectors XV and X®, which denote the normal modes of vibration, are known
as the modal vectors of the system,
The free vibration solution or the motion in time can be expressed as

(1) X +
xM(1) = x:l)(t) = l(l)oos(wlt ¢) = first mode (5.13)
x$P(1) nX{Vcos(w,z + ¢,)

x(¢ X®cos( w1 +
x®(1) = :2)( ) = 1(2) (ot + 02) = second mode  (5.14)
x$(1) ry X9 cos(w,t + ¢)

where the constants XV, X{? ¢,, and ¢, are determined by the initial conditions.

Initial Conditions. Since each of the two equations of motion, Egs. (5.1) and (5.2),
involves second-order time derivatives, we need to specify two initial conditions for
each mass. As stated in Section 5.1, the system can be made to vibrate in its ith
normal mode (i = 1,2) by subjecting it to the specific initial conditions

x)(t = 0) = X{ = some constant,  X%,(t=0) =0

4( = O I'Xl(,)’ '1':
However, for any other general initial conditions, both modes will be excited. The

reqnlhno mnhnn which is gl""“a b; the beﬂeral ouluhuu of E\.la ’5 4) and (55), can

be obtamed by superposing the two normal modes, Eqgs. (5.13) and (5.14):

{ Y — Ty o DS
V)= X277+ X))

|
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that is,
x, (1) = xP(1) + xP(1) = XPcos(wt + ;) + XP cos(wyt + ¢,)
x (1) = xP(1) + xP(1) = XM cos(wyt + ¢) + r, XPcos(wat + ¢,) (5.15)
Thus if the initial conditions are given by
xi(t=0) = x,(0), X%(1=0)=%/(0),
x,(t =0) = x,(0), x,(r=0)=x,(0) (5.16)

the constants XV, X, ¢,, and ¢, can be found by solving the following equations
(obtained by substituting Egs. (5.16) into Eqgs. (5.15)):

x,(0) = XV cos ¢, + X cos ¢,

v (DY = 4y M) cin &
ot R w1l bt |

x5(0) = n, XVcos ¢, + r, X cos ¢,
%2(0) = —wr XV sin ¢y — w,r, X sin ¢, (5.17)
Equations (5.17) can be regarded as four algebraic equations in the unknowns

XM cos ¢, X{Pcos ¢y, XV sing,, and X sin ¢,. The solution of Egs. (5.17) can
be expressed as

ryx,(0) — x,(0) } —rx,(0) + x,(0) }

XMcos ¢, = { X®cos ¢, = {

n—n r,—n
W _ | =0%(0) + %,(0) @ i o _ [ 1%1(0) — %,(0)
X\ sin ¢, { 0 (r, — 17) , X{“ sin ¢, o (r =)

from which we obtain the desired solution
12
x® = [{ X cos ¢, }2 + { X sin ¢, }2]

-1
(r,—r)

. . 2 11/2
[{rle(ﬂ) - x2(0)}2 + {_fle(()zo;' x2(0)} }
X® = [{XPcos ;) + (X2 sin¢2}2]l/2

. . 2 172
_ oo XOsing, - tan~! —r%,(0) + %,(0)
b=t { X{V cos 4’1} t {“’1[’2)‘1(0) ~ x,(0)] }

X® sin ¢2} _ tan"{ ri%,(0) — %,(0) } (5.18)

_ -1
$, = tan {Xl(z)cos% ‘*’2[_’1"‘1(0) + 12(0)]
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k; = k
m =m !
v
x() ky = nk

-

1 my = m
x0) é =k

-

Figure 5.4

Frequencies of Spring-Mass System

Find the natural frequencies and mode shapes of a spring-mass system, shown in Figg‘5.4
which is constrained to move in the vertical direction only. Take n = 1.

Given: Two degree of freedom spring-mass system shown in I}ig. 54.
Find: Natural frequencies and mode shapes.

Approach: Assume harmonic solution for free vibration and solve the resulting equations. |

Solution. 1f we measure x; and x, from the static equilibrium positions of the masses m, and
m,, respectively, the equations of motion and the solution obtained for the system of Fig
5.3(a) are also applicable to this case if we substitute m;, = m, = m and k, = k, = k, = k.
Thus the equations of motion, Eqgs. (5.4) and (5.5), are given by

mil +2kx1 - kx2 =O

mi, — kx, + 2kx, = 0 (E1)
By assuming harmonic solution as .
x(t) = X cos(wt + ¢);i=1,2 (E.2)
the frequency equation can be obtained by substituting Eq. (E.2) into Eq. (E.1):
(—mw? + 2k) (-k)
(k) (—ma?+2%)|

or
m*w* ~ 4kmw? + 3k2 = 0 (E.3)
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The solution of Eq. (E.3) gives the natural frequencies

1/2
4km — [16k2m? — 12m*k?]""? k
m
1/2
akm + [16k2m? — 12m*k2]""”? 3k
w, = > =\ = (E.5)
2m m
From Eqgs. (5.11) and (5.12), the amplitude ratios are given by
Xé” -maw’ + 2k k
= = = = 1 E.6
n X" k —mwl + 2k (E.6)
X3 - mws + 2k k
- = = - -1
"2 X k —mwl + 2k (E7)
The natural modes are given by Eqgs. (5.13) and (5.14):
X(l) __n__{ . /__-If_— P \ \
1 LUD\V m i T (pl}
First mode = x'(¢) = (E.8)
(VE:+4,)
\ I/

Second mode = X®(¢) =

\
? (E.9)
/

It can be seen from Eq. (E.8) that when the system vibrates in its first mode, the amplitudes
of the two masses remain the same. This implies that the length of the middle spring remains
constant. Thus the motions of m, and m, are in phase (see Fig. 5.5a). When the system
vibrates in its second mode, Eq. (E.9) shows that the displacements of the two masses have
the same magnitude with opposite signs. Thus the motions of m;, and m, are 180° out of

Ve Y V22 S

(a) First mode (b) Second mode

Figure 5.5
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phase (see Fig. 5.5b). In this case the midpoint of the middle spring remains stationary for all
time . Such a point is called a rode. Using Eqs. (5.15), the motion (general solution) of the
system can be expressed as

x (1) = Xl‘”cos(\/ —'ﬁ- t+ q')l) + X cos(\/ %‘ 1+ ¢2)
x,(1) = X cos(‘/ -'E- t+ ¢1) - X cos(\/ —%k !+ ¢2) (E.10)

vl

m

!.ll'l

N
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-
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=
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Find the initial conditions that need to be applie
t vibrate in I'I\ the first mnr‘e an h.

1
i 1V} Gale (A ) wub dipol wava cns

Given: Two degree of freedom spring mass system shown in Fig. 5.4.
Find: Imtial conditions needed to make the system vibrate in one of the modes.

A pproach Specify the solution to be obtained for the first or second mode from the general

onls fr % enn 2w P PO, [ S atoa o
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Solution. For arbitrary initial conditions, the motion of the masses is described by Egs.
(5.15). In the present case, r, = 1 and r, = —1, 50 Egs. (5.15) reduce to

T pEEEEEST BEEEy 71 sr e il At

x (1) = XI(I)COS(\/ - ) + X‘z’cos( -'%k t+ ¢2)
x,(1) = Xl‘”cos(\f —IE- ) x» cos(‘/ %‘ t+ ¢2) (E.1)

Assuming the initial conditions as in Eq. (5.16), the constants X{", X{?, ¢,, and ¢, can be
obtained from Eqs. (5.18), using n =l and , = —1:

XD = = 3{[x(0) + %O + F[5(0) + 5O} (E2)

X? = = 3{[-x(0) + %OF + [0 - £OF} " E3
I 7 EXORERC)

ho { KI5 (0) + (0] } =

V3k[ - x,(0) + x,(0)]
(1) The first normal mode of the system is given by Eq. (E.8) of Example 5.1:

(X{I’COS(I/ZI + cpln
v m }

F0(1) = \ (E6)

i X‘”cos(‘/ k t+ ¢1) ?
\ 7

Comparison of Eqgs. (E.1) and (E.6) shows that the motion of the system is identical with the

6, = tan-l{ JI;[).CI(O) — J.CZ(O)] } (ES)
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first normal mode only if X{2 = 0. This requires that (from Eq. (E.3))
x1(0) = x,(0) and  %,(0) = %,(0) (E7)
(2) The second normal mode of the system is given by Eq. (E.9) of Example 5.1:

X cos(\/ 3—”1: t+ qbz)

(1) = (E.8)
——X‘z’cos(\/ 3k t+ ¢ )
Comparison of Eqgs. (E. 1) and (E.8) shows that the motion of the system coincides with the
second normal lUd e only if X" = 0. This implies that {from Eq. (E.2))
x(0) = —x,(0) and %,(0) = - x,(0) (E9)

Consider a torsional system consisting of two discs mounted on a shaft, as shown in
Fig. 5.6. The three segments of the shaft have rotational spring constants k,, &,,,
and k,,, as indicated in the figure. Also shown are the discs of mass moments of
inertia J, and J,, the applied torques M,, and M,,, and the rotational degrees of
freedom 8, and 8,. The differential equations of rotational motion for the discs J,
and J, can be derived as follows:

Jlg‘.l = —k,0, + k,2(92 - Bl) + M,
ngz k:z(az - 31) - k,302 + Mrz (5-19)

S IS
r
B

VA A

Figure 5.6
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which upon rearrangement become
Jlﬂl + (kll + k12)0l - k,202 = Ml
S = kb + (kg + k;3) 0, = M,y

(5.20)

Find the natural frequencies and mode shapes for the torsional system shown in Fig. 5.7 for

Jo=Jy, L =2Jy,and k,, = k,, = k,.
Given: Two degree of freedom torsional system shown in Fig. 5.7.

Find: Natural frequencies and mode shapes.

Approach: Assume harmonic solution for free vibration and solve the resulting equations,

Solution. The differential equations of motion, Eq. (5.20), reduce to (with M, = M,, =k, =

0, k,=k,o=k, J =Jy,and J, = 2J):
Joby +2k0, — k8,=0
24,0, - k.0, + k,0,=0
Rearranging and substituting the harmonic solution
0,(¢t) =8, cos(wt + ¢); i=1,2
gives the frequency equation:
20Y¢ - Sk, + k7 =0

The solution of Eq. (E.3) gives the natural frequencies:

wl=\/4i‘;0(5—1/1_7) and w2=\/2%(5+\/1—7)

2 Lle
kll
Y

Jl g \\\_/el
ki
™

I, =S \/02

Figure 5.7

(E.2)

(E.3)

(E4)
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The amplitude ratios are given by

952=2_(5_‘/ﬁ)
4

= 80
e (5 + V17)

RDINATE COUPLING AND PRINCIPAL COORDINATES

As stated earlier, an » degree of freedom system requires » independent coordinates
to describe its configuration. Usually, these coordinates are independent geometrical
quantities measured from the equilibrium position of the vibrating body. However,
it is possible to select some other set of » coordinates to describe the configuration
of the system. The latter set may be, for example, different from the first set in that
the coordinates may have their origin away from the equilibrium position of the
body. There could be still other sets of coordinates to describe the configuration of
the system. Each of these sets of »n coordinates is called the generalized coordinates.

As an example, consider the lathe shown in Fig. 5.8. An accurate model of this
with lumped masses attached to it [5.1-5.3). However, for simplified vibration
analysis, the lathe bed can be considered as a rigid body having mass and inertia,
and the headstock and tailstock can each be replaced by lumped masses. The bed
can be assumed to be supported on springs at the ends. Thus the final model will be
a rigid body of total mass m and mass moment of inertia J, about its C.G., resting
on springs of stiffnesses k, and k,, as shown in Fig. 5.9(a). For this two degree of
freedom system, any of the following sets of coordinates may be used to describe

Headstock Live center Dead center Tailstock

/

L

Filgure 5.8
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k, J
J k|X| = k.(x - I.B)

FOIRN L o — L (.. . P
(aj KXy = KX + 1)

P MR Y - Mt
3 P 1 k, C.G. i
BI

\ N r ‘," r_ ‘llz

kl(y_[le) 2()""" 0)

(b)

Figure 5.9
the motion;

1. Deflections x,(¢) and x,(¢) of the two ends of the lathe AB
2. Deflection x(¢) of the C.G. and rotation 6(¢)
3. Deflection x,(¢) of the end A4 and rotation 8(¢)

4. Deflection y(t) of point P located at a distance e to the left of the C.G. and
rotation 8(t), as indicated in Fig. 5.9(b).

Thus any set of these coordinates—(xl,\xz), (x, 8), (x,, 8), and ( y, §)—represents
the generalized coordinates of the system. Now we shall derive the equations of
motion of the lathe using two different sets of coordinates to illustrate the concept
of coordinate coupling.

{8y FErnn tha fean hnad . h
{Zj). r'rom tne ITCC-00QYy unagr 1 SNOW

Wl 1
Fig. 5.9(a), W1th the posmve values of the motion variables as 1nd1cated, the force
equilibrium equation in the vertical direction can be written as

. .
) NP tinnn n

=
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and the moment equation about the C.G. can be expressed as
Job = ky(x = 1,8)1 — ky(x + 1,8)1, (5.22)

Equations (5.21) and (5.22) can be rearranged and written in matrix form as

[m 0]{5&}+ (ky + k3) = (ki) ~ kyly) {x}={0} (5.23)
0 W6 " | -(kh - kaly)  (kiff + ko3) \OS 0]

It can be seen that each of the Eqgs. (5.23) contain x and 4. They become
independent of each other if the coupling term (k,/; - k,/,) is equal to zero— that
is, if kJy = kyl,. If k) # k,l,, the resultant motion of the lathe AB is both
translational and rotational when either a displacement or torque is applied through
the C.G. of the body as an initial condition. In other words, the lathe rotates in the

vertical plane and has vertical motion as well, unless k,/; = k,/,. This is known as
elastic or static coupling.

Equations of Motion using y(¢) and 8(¢). From Fig. 5.9(b), where y(¢) and 8(¢) are
used as the generalized coordinates of the system, the equations of motion for
transiation and rotation can be wriiten as

mj = —k(y - 1{8) - ky(y + 130) — meb
T8 = k(y - L8)I — ko(y + L)1} — mej (5.24)

These equations can be rearranged and written in matrix form as

me Sy NG T | (=kydi + kol3)  (kdi? + kol3?) |\ O of
Both the equations of motion represented by Eq. (5.25) contain y and 8, so they are
coupled equations. They contain static (or elastic) as well as dynamic (or mass)
coupling terms. If k,l{ = k,/;, the system will have dynamic or inertia coupling
only. In this case, if the lathe moves up and down in the y direction, the inertia
force my, which acts through the center of gravity of the body, induces a motion in
the @ direction, by virtue of the moment mye. Similarly, a motion in the 8 direction

induces a motion of the lathe in the y direction due to the force mef.
Note the following characteristics of these systems:

1. In the most general case, a viscously damped two degree of freedom system has
equations of motion in the following form:

[’"11 le] X + i 512] Xy + ki ki {xl} _ {0} (5.26)
mp mMpllx, ‘2 x|l x, ki, kol X2 0 '

This equation reveals the type of coupling present. If the stiffness matrix is not
diagonal, the system has elastic or static coupling. If the damping matrix is not
diagonal, the system has damping or velocity coupling. Finally, if the mass

matrix is not diagonal, the system has mass or inertial coupling. Both velocity
and mass coupling come under the heading of dynamic coupling.
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2. The system vibrates in its own natural way regardless of the coordinates used. |
The choice of the coordinates is a mere convenience.

3. From Egs. (5.23) and (5.29), it is clear that the nature of the coupling depends
on the coordinates used and is not an inherent property of the system. It is
possible to choose a system of coordinates ¢,(¢) and ¢,(¢) which give equations
of motion that are uncoupled both statically and dynamically. Such coordinates
are called principal or natural coordinates. The main advantage of using
principal coordinates is that the resulting uncoupled equations of motion can be
solved independently of one another.

The following example illustrates the method of finding the principal coordi-
nates in terms of the geometrical coordinates.

m
IUII
&

Principai Coordinates of Spring-Mass System

Determine the principal coordinates for the system shown in Fig. 5.4.
Given: Two degree of freedom spring-mass system shown in Fig. 5.4.
Find: Principal coordinates.

Approach: Define two independent solutions as principal coordinates and express them in
terms of the solutions x,(¢) and x,(1).

Solution. The general motion of the system shown in Fig. 5.4 is given by Eqs. (E.10) of

Example 5.1:
x{(t) = B, cos(]/ _.:_1 t+ ¢1) + Bzcos(‘/ —:%k t+ ¢2)
x,(t) = B, cos(]/ {:—l t+ ¢1) - B, cos(\/ —%k t+ ¢2) (E.1)

where B, = X{V, B, = X{®, ¢, and ¢, are constants. We define a new set of coordinates

q,(1) and g,(t) such that
k
a(t) = B COS(\/ — 1+ ¢1)

9,(t) = B, gos(\/%t + ¢2) (E2)

Since g (t) and g,(t) are harmonic functions, their corresponding equations of motion can be
written as*

. k
G+ (;)‘h =0

)fh = (E-3)

* I;Tote that the equation of motion corresponding to the solution g = Bcos(wt + ¢) is given by
g+ wqg=0.
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These equations represent a two degree of freedom system whose natural frequencies are
w, = yk/m and w, = {/3k/m. Because there is neither static nor dynamic coupling in the
equations of motion (E.3), ¢,(¢) and g¢,(¢) are principal coordinates. From Egs. (E.1) and
(E.2), we can write

x (1) = q(1) + g, (1)

xz(’) =q(t) - g,(t) (E4)
The solution of Eqs. (E.4) gives the principal coordinates:

1
a(1) = j[xl(‘) + x,(1)]
a:(1) = 31x(0) - x(0)] (ES)

™ Frequencies and Modes of an Automobile PR "

Determine the pitch (angular motion) and bounce (up and down linear motion) [requencics
and the location of oscillation centers (nodes) of an automobile with the following data (sce
Fig. 5.10):

mass = m = 1

radius of gyration = r = 09 m

distance between front axle and C.G. =/, = 1.0 m

distance between rear axle and C.G. =/, = 1.5 m

front spring stiffness = k, = 18 kN/m

rear spring stiffness = k, = 22 kN/m
Given: Two degree of freedom automobile model, Fig. 5.10, with m = 1000 kg, r = Gllln
L =10m, [, =15m, k, = 18 kN/m, and k, = 22 kN/m.

Bounce

? Pitch
Ca ) -
k; E' C.G P E=

> f &

WAL 724 2274 7424

{1,

1= . Reference

:.b‘—-:}_t—
k3 CG. /8 l‘k -

<
<

AA

P77 777777 Il PSS
IS IS S S

Figure 5.10
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Find: Natural frequencies and mode shapes.
Approach: Assume harmonic solution for free vibration and solve the resulting equations.

Solution. 1f x and 8 are used as independent coordinates, the equations of motion are given
by Eq. (5.23) with k, = k,, k;=k,, and J, = mr?, For free vibration, we assume 2
harmonic solution:

x(t) = Xcos(wt + ¢), 0(z) = Ocos(wt + ¢) (E.1)
Using Egs. (E.1) and (5.23), we obtain
2 2 2 { e} = { } (E2)
For the known data, Eq. (E.2) becomes
[(—1000:.02 + 40,000) 15,000 ]{ x} ~ {0}
18 NN {__01n..2 1 £7 &nn) ef 1o (E3)
L 10000V \ T olvw TUI,JUU}J“’I A
from which the frequency equation can be derived
B.lw* — 999w? + 24,750 = O (E.4)
The natural frequencies can be found from Eq. (E.4)
w, = 5.8593 rad/sec, w, = 9.4341 rad/sec (E.5)
With these values, the ratio of amplitudes can be found from (E.3)
bl Y
| = —2.6461, 8] = (.3061 (E.6)

The node locations can be obtained by noting that the tangent of a small angle is
approximately equal to the angle itself. Thus, from Fig, 5.11, we find the distance between the

2.6461

]

CG.--—"
=T
+x g =218/

A7 727 777777

0.3061

Figure 5.11
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C.G. and the node as —2.6461 m for w, and 0.3061 m for w,. The mode shapes are shown by
dotted lines in Fig. 5.11.

IBRATION ANALYSIS

The equations of motion of a general two degree of freedom system under external
forces can be written as

rmy, mo1(%) Ten el Tk ky Lx {_ )
11 12 1 + l 11 ll] 1 + 11 i (5 27

My My || X, €12 Cnf|x, k2 k22 F,
Equations (5.1) and (5.2) can be seen to be special cases of Eq. (5.27), with

my, = m,, My =m,, and m, = 0. We shall consider the external forces to be

F(1) = Fe™, j=1.2 (5.28)

x (1) = Xe™,  j= 1,2 (5.29)

where X, and X, are, in general, complex quantities which depend on « and the
system parameters. Substitution of Egs. (5.28) and (5.29) into Eq. (5.27) leads to

[3) - {Fe 50

As in Section 3.5, we define the mechanical impedance Z,  (iw) as

F(-wzmll + iwc" + kll) (—w2m12 + iwclz + kl2)

(-w2m12 + iwclz + klz) (—‘wzmzz + ’wC'zz + k22)

Z (ivw) = —w’m, +ivc,, + k,;,, r,s=1,2 (5.31)
and write Eq. (5.30) as
[Z(iw)] X = F, (5.32)
where
Z, (i Z,5(i
[Z(iw)] = “(’_w) lz(l_w)} = impedance matrix
Zy(iw) Zy(iv)
. (X
= { Xz}
and
= [ Fo)
F
°T\ Fnf

Equation (5.32) can be solved to obtain
X=[z(iw)] 'F, (5.33)
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where the inverse of the impedance matrix is given by

. -1 1 Zzz(iw) ~Zy(iw) t
[Z(M)] - Z(i0) Zyp(iw) — ZGH(iw) | —Zp(iv) Zy(iw) (534)

Equations (5.33) and (5.34) lead to the solution

Zzz(iW)Fw - le(iw)l:zo

le(iw)Zn(iw) - lez(i‘*’)

_ _ZIZ(iw)FlQ + le(iw)on
le(iw)Z22(iw) - Zfz("w)

Xi(iw) =

and x,(t).

The analysis of a two degree of freedom system used as a vibration absorber is
given in Section 9.10. Reference [5.4] deals with the impact response of a two degree
of freedom system, while Ref. [5.5] considers the steady-state response under
harmonic excitation.

Find the steady-state response of the system shown in Fig. 5.12 when the mass m, is excited
by the force F (1) = F|,cos wt. Also, plot its frequency response curve.

Given: Two degree of freedom undamped spring-mass system subjected to the foling
function F((r) as shown in Fig. 5.12.

Fi(t) = Fyy cos wt

Ky
I FWWWWA 3

x
AAANAA
\AAAAAS

W a4 dd L

Figure 5.12
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r

Find: Steady state response of the masses.

Approach: Assume harmonic solution and use the concept of mechanical impedance to find

the response.

Solution. The equations of motion of the system can be expressed as

[m 0] X, +[2k —k] [\ _ [ Focoswt
0 m X2 "k Zk x2 0
Comparison of Eq. (E.1) with Eq. (5.27) shows that
m” = m22 =m, mlz = 0, C” = C12 = C22 = 0,
k“ =k22=2k, k12 = _k, Fi =choswt, F|2=0
We assume the solution to be:*
x,(¢) = X cos wt; j=1,2

Z(0) = Zp(w) = —ma? + 2k, Zy(w) = —k

Hence X; and X, are given by Egs. (5.35):

I\

2 {(—wlm + 2k) Fy

(2. FAN ]
LW+ eK)Fy

Hilw) = (—w’m+ Zk)2 -k’ B (—me? + 3k)(—ma? + k)

kFq kR

Hale) = (~me? + 2k)° — &2 T (—me? + 3Kk)(—mat + k)

By defining w? = k/m and w3 = 3k/m, Eqs. (E4) and (E.5) can be expressed as

X(w) = > —3 3
T T

Fo _

SN YTy | AT

(E1)

(E2)

(E3)

(E4)

(E.5)

(E.6)

(E.7)

The responses X, and X, are shown in Fig. 5.13 in terms of the dimensionless parameter
@/w,. In the dimensionless parameter w/w,, w, was selected arbitrarily, w, could have been
selected just as easily. It can be seen that the amplitudes X; and X, become infinite when
W = w? or w? = w3. Thus there are two resonance conditions for the system: one at w, and
another at w,. At all other values of w, the amplitudes of vibration are finite. It can be noted

X, coswe, j =1,2. It can be verified that X, are real for an undamped system. !

Since Fjgcos wt = Real( Fge'®’), we shall assume the solution also 10 be x, = Real( X ety =
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Figure 5.13. Frequency response curves of Example
56

from Fig. 5.13 that there is a particular value of the frequency w at which the vibration of the
first mass m,, to which the force F (1) is applied, is reduced to zero. This characteristic forms
the basis of the dynamic vibration absorber discussed in Chapter 9.

SEMI-DEFINITE SYSTEMS

Semi-definite systems are also known as unrestrained or degenerate systems. An
example of such a system is shown in Fig. 5.14. This arrangement may be
considered to represent two railway cars of masses m, and m, with a coupling
spring k. The equations of motion of the system can be written as

For free vibration, we assume the motion to be harmonic:
x;(t) = X; cos(wt + ¢;), j=1,2 (5.37)

Substitution of Eq. (5.37) into Eq. (5.36) gives
(Zmy? + k)X, — kX, = 0
— kX, + (—m? + k)X, =0 (5.38)

bz !—o £(0)

m, ‘v‘v‘v‘v‘v‘v‘v‘v‘v‘v n;
e} r o o 2 1

Figure 5.14
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By equating the determinant of the coefficients of X, and X, to zero, we obtain the
frequency equation as

W [mymyw? = k(my + m;)] =0 (5.39)

from which the natural frequencies can be obtained:

\/k(ml + m;)

mym,

w,=0 and w,= (5.40)

that the system is not oscillating. In other words, the system moves as a whole
without any relative motion between the two masses (rigid body translation). Such
systems, which have one of the natural frequencies equal to zero, are cailed
semi-definite systems. We can verify, by substituting w, into Eq. (5.38), that X{® and
X{? are opposite in phase. There would thus be a node at the middle of the spring.

It can be seen that one of the natural frequencies of the system is zero, which means

JITATION AND STABILITY ANALYSIS

In Section 3.11, the stability conditions of a single degree of freedom system have
been expressed in terms of the physical constants of the system. The procedure is
extended to a two degree of freedom system in this section. When the system is
subjected to self-exciting forces, the force terms can be combined with the damp-
ing /stiffness terms, and the resulting equations of motion can be expressed in
matrix notation as

[m“ ml2] xl +[Cu Clz] ’:‘1 + ki ki {x1}={f}} (5.41)
myn Mmnjlx, tn x| x, kay  kos |\ X2 0
By substituting the solution

x;(t) = X,e*, j=12 (5.42)

in Eq. (5.41) and setting the determinant of the coefficient matrix to zero, we obtain
the charactenstic equation of the form

aps* + ais* +a,s?+as+a,=0 (5.43)

The coefficients a,, a,, a,, a,, and a, are real numbers, since they are derived from
the physical parameters of the system. If s,, s,, s,, and s, denote the roots of Eq.
(5.43), we have

(s - 51)(3 - 32)(-" - 33)(5 —5,) =0

o)
=

st = (5 + Sy + 534 54)87 + (515, + 5153 + 5154 + 5,85 + 5,5, + 535,)8°

A ' f h oo L e o e N fo o o oY N & AA)
AT Sy T OSSN, T SISy T 923304 )3 T ISy ) TV \7.5)
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A comparison of Eqgs. (5.43) and (5.44) yields

a,=1

ay= —(s; + 5, + 53+ 5,)

ay = 5187 + 5153 + 5154 + 5554 + 5,5, + 535,

as = —(sls2s3 + 515,84 + 51538, + s2s3s4)

g = 51525354 (5.45)

The criterion for stability is that the real parts of s, (i = 1, 2, 3,4) must be negative
to avoid increasing exponentials in Eq. (5.42). Using the properties of a quartjc
equation, it can be derived that a necessary and sufficient condition for stability is
that all the coefficients of the equation (a,, a,, a,, a;, and a,) be positive and that
the condition

2 2
a,a,a, > agai + a,a; (5.46)

be fulfilled [5.8, 5.9]. A more general technique, which can be used to investigate the
stability of an n degree of freedom system, is known as the Routh-Hurvitz criterion
[5.10]. For the system under consideration, Eq, (5.43), the Routh-Hurvitz criterion
states that the system will be stabie if all the coefficients a, a,,..., a, are positive
and the determinants defined below are positive:

_ -~ { -

Ty=|a| >0 (5.47)
a, 4as

T2 = do a2 = ala2 - a0a3 > O (5.48)

a4 as O

= — 2 2
7?{ - aO az a4 - ala2a3 - a|a4 - a0a3 > 0 (5.49)
0 a a,

Equation (5.47) simply states that the coefficient @, must be positive, while the
satisfaction of Eq. (5.49), coupled with the satisfaction of the conditions a, > 0 and
a, > 0, implies the satisfaction of Eq. (5.48). Thus the necessary and sufficient
condition for the stability of the system is that all the coefficients a,, a,, a5, a,, and
a, be positive and that the inequality stated in (5.46) be satisfied.

COMPUTER PROGRAMS

The determination of the natural frequencies of a damped two degree of freedom
system involves the solution of a fourth order polynomial equation. Similarly, a
damped degenerate two degree of freedom system requires the determination of the
roots of a cubic equation. An undamped system, on the other hand, requires the
solution of a quadratic equation. This section presents three Fortran subroutines
(QUADRA, CUBIC, and QUART) for the solution of quadratic, cubic, and quartic
equations, respectively. The listing of these subroutines and typical main programs
for calling them are given below. The input data required and the output of the
programs are explained in the comment lines of the programs.
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PROGRAM 6
MAIN PROGRAM WHICH CALLS QUADRA

SO0

¢ FOLLOWING 2 LINES CONTAIN PROBLEM-DEPENDENT DATA
¢ EXAMPLE X*%2 - 2.0*X + 5.0 = 0.0

DATA Al,A2,A3/1.0,-2.0,5.0/
¢ END OF PROBLEM-DEPENDENT DATA

CALL QUADRA (Al,A2,A3,RR1,RRZ,RI1,RI2)

PRINT 10, Al,A2,A3
10 FORMAT (/,2X,28H POLYNOMIAL COEFFICIENTS ARE,/,3E15.6,//,

2 2X,10H ROOTS ARE,//,4X,5H REAL,14X,10H IMAGINARY)

PRINT 20, RR1,RI1l

PRINT 20, RR2,RI2
20 FORMAT (4X,E15.8,4X,E15.8)

STOP

END

SUBROUTINE QUADRA

SOLUTION OF QUADRATIC EQUATION Al1®(X**2)+A2*%(X)+A3 = 0
Al1,A2,A3 ARE INPUT, (RR1,RI1) AND (RR2,RI2) ARE ROOTS (OUTPUT)
Al MUST NOT BE EQUAL TO ZERO
SUBROUTINE QUADRA (A1l,A2,A3,RR1,RR2,RI1,RI2)
RAD=A2%%2-4  0%A1*A3
IF (RAD) 20,10,10
10  SRAD=SQRT(RAD)
RR1=(-A2-SRAD)/(2.0%A1)
RR2=(-A2+SRAD)/(2.0*Al)
RI1=0.0
RI2=0.0
RETURN
20  SRAD=SQRT(-RAD)
RR1=-A2/(2.0*Al)
RR2=RR1
RI1=SRAD/(2.0*Al)
RI2=-RI1
RETURN
END

QOO0

POLYNOMIAL COEFFICIENTS ARE
0.100000E+01 -0.200000E+01  0.500000E+01

ROOTS ARE
REAL IMAGINARY
0.10000000E+01 0.20000000E+01

0.10000000E+01  -0.20000000E+01

NN W WA T WA
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PROGRAM 7
MAIN PROGRAM FOR CALLING THE SUBROUTINE CUBIC

10

20

30

40
50

DIMENSION A(4),RR(3),RI(3)

DATA A/1.0,0.0,6.0,20.0/

PRINT 10

FORMAT (//,24H ROOTS OF CUBIC EQUATION,//,

2 51H GIVEN POLYNOMIAL COEFFICIENTS A(1),A(2),A(3),A(4):,/)
PRINT 20, (A(1),I=1,4)

FORMAT (4E15.6)

CALL CUBIC (A,RR,RI)

PRINT 30

FORMAT (//,38H ROOTS (REAL PART AND IMAGINARY PART):,/)
DO 40 I=1,3

PRINT 50,RR(1),RI(I)

FORMAT (2E15.6)

STOP

END

SUBROUTINE CUBIC

=

10

21

22

23

_—— P

ROOTS OF CUBIC EQUATION A(1)®(X**3)+A(2)* (X**2)+A(3)*X+A(4)=0
SUBROUTINE CUBIC (A,RR,RI)

DIMENSION A(4),RR(3),RI(3)

DO 10 I=1,3

RR(I)=0.0

RI(1)=0.0
A0=A(1)
A1=A(2)/3.0

2=A(3)/3.0
A3=A(4)
G=(A0**2)*A3-3,0%A0%A1*A2+2 . 0% (A1**3)
H=A0*A2-A1%%2
Y1=G#*#2+4 . 0% (H**3)

IF (Y1 .LT. 0.0) GO TO 100
Y2=SQRT(Y1)

Z1=(G+¥2)/2.0
22=(6-¥2)/2.0

IF(21 .LT. 0.0) GO ToO 21
Z3=21%*(1.0/3.0)
Go ToO 22
Z3=(-21)*%(1.0/3.0)

IF(Z2 .LT. 0.0) Go TO 23
Z4=22%%(1.0/3.0)

Go TO 24
Z4=(-22)*%(1.0/3.0)
Z4=-24
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24 CONTINUE
RR(1)=-(A1+Z3+24)/A0
RR(2)=(-2.0%A1+23+24)/ (2.0+A0) —
RI(2)=SQRT(3.0)*(24~23)/(2.0%A0)
RR(3)=RR(2)
RI(3)=-RI(2)
GO TO 200
100 SH=SQRT(-H)
XK=2.0+*SH
THETA=ACOS (G/(2.0*H*SH))/3.0
XY1=2.0*SH*COS (THETA)

DT=7 1,1
Lo e A "

XY2=2.0*SH*COS (THETA+(2.0%PI1/3.0))
XY3=2.0*SH*COS (THETA+(4.0%PI/3.0))
RR(1)}=(XY1-A1)/AD

AMI A JTNEML 4 SR g AV

RR(2)=(XY2-A1)/A0
RR(3)=(XY3-A1)/A0
RETURN

END

[
(]
o

ROOTS OF CUBIC EQUATION
3IVEN POLYNOMIAL COEFFICIENTS A(1),A(2),A(3),A(4):

ly . il 2 LA 7538

0.100000E+01  0.000000E+00  0.600000E+01  0.200000E+02

ROOTS (REAL PART AND IMAGINARY PART):

-0.200000E+01  0.000000E+00
0.100000E+01 -0.300000E+01
0.100000E+01  0.300000E+01

PROGRAM 8
MAIN PROGRAM FOR CALLING THE SUBROUTINE QUART

SOLUTION OF: A(1)*(X**4)+A(2)*(X**3)+A(3)* (X**2)+A(4)*X+A(5)=0
DIMENSION A(5),RR(4),RI(4)
FOLLOWING LINE CONTAINS PROBLEM-DEPENDENT DATA

i s ava

DATA A/1.0,0.0,0.0,-8.0,12.0/
C END OF PROBLEM- DEPENDENT DATA
PRINT 10,(A(I),I=1,5)

QOO0

[o]
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2

FORMAT (//,31H SOLUTION OF A QUARTIC EQUATION,//,6H DATA:,/,

7H A(1) =,E15.6,/,7H A(2) =,E15.6,/,7H A(3) =,E15.6,/,
7H A(4) =,E15.6,/,7H A(S5) =,E15.6,/)

CALL QUART (A,RR,RI)
PRINT 20
FORMAT (/,7H ROOTS:,//,9H ROOT NO.,3X,10H REAL PART,5X,

15H IMAGINARY PART,/)

Do 30 I=1,4

PRINT 40,I,RR(I),RI(I)

FORMAT (15,3X,E15.6,3X,E15.6)
STOP

END

SUBROUTINE QUART

10

20

30

40

SUBROUTINE QUART (A,RR,RI)

DIMENSION A(5),RR(4),RI(4),B(4),RRC(3),RIC(3)
DO 10 I=2,5

A(I)=A(I)/A(1)

B(1)=1.0

B(2)=-A(3)

B(3)=A(4)*A(2)-4.0%A(5)

B(4)=A(5)% (4.0%A(3)-A(2)**%2)-A(4)**2
CALL CUBIC (B,RRC,RIC)

IF (RIC(2) .NE. 0.0) GO TO 20
X=AMAX1(RRC (1) ,RRC(2),RRC(3))

RRC(1)=X

X=RRC(1)/2.0

IF ((X**2-A(5)) .GT. 0.0) GO TO 30
¥=0.0

Z=SQRT((A(2)/2.0)**2+2 . 0%X-A(3))

TO ABOVE EQUATION

GO TO 40

Y=SQRT (X**2-A(5))
=-(A(4)-A(2)*X)/(2.0%Y)

C1=1.0

C2=A(2)/2.0+2Z

C3=X+Y

CALL QUADRA (C1,C2,C3,QR1,QR2,QI1,QI2)
RR(1)=QR1

RR(2)=QR2

RI(1)=QI1

RI(2)=QI2

C1=1.0

C2=A(2)/2.0-2Z

C3=X-Y

CALL QUADRA (C1,C2,C3,QR1,QR2,QI1,QI2)
RR(3)=QR1

RR(4)=QR2

RI(3)=QI1
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RI(4)=QI2
RETURN
END

SOLUTION OF A QUARTIC EQUATION

DATA:

A(1) = 0.100000E+01

A(2) = 0.000000E+00

A(3) = 0.000000E+00

A(4) = -0.800000E+01

A(5) = 0.120000E+02

ROOTS

ROOT NoO. REAL PART IMAGINARY PART
1 -0.137091E+01 0.182709E+01
2 -0.137091E+01 -0.182709E+01
3 0.137091E+01 0.648457E+00
4 0.137091E+01 -0.648457E+00
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How do you determine the number of degrees of freedom of a lumped-mass system?

. . . . .
connline velacityv connline and olactic counhin
\-Uuyullb, "‘W‘LJ a4 l‘l‘&, GARLEVE WAL LA N ‘Uuyul‘b,

53. Is the nature of the coupling dependent on the coordinates used?

5.4. How many degrees of freedom does an airplane in flight have if it is treated as la\ ‘
rigid body, and (b) an elastic body?

5.5. Whaut are principal coordinates? What is their use?

5.6. Why are the mass, damping, and stiffness matrices symmetrical?

5.7. What is a node?

-

5.8. What is meant by static and dynamic coupling? How can you eliminate coupling of th
equations of motion?

5.9. Define the impedance matrix.
5.10. How can we make a system vibrate in one of its natural modes?

5.11. What is a degenerate system? Give two examples of physical systems that are degener|
ate,

5.12. How many degenerate modes can a vibrating system have?

PROBLEMS

The problem assignments are organized as follows:

Section Topic
Problems covered covered

51-5.19 33 Free vibration of
undamped systems
5.20-5.23 5.4 Torsional systems
5.24-5.28 55 Coordinate coupling
5.29-541 5.6 Forced vibrations
5.42-5.46 5.7 Semi-definite systems
5.47 5.8 Stability analysis
5.48-5.50 5.9 Computer programs

5.51 — Project
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512

53.

Find the natural frequencies of the system shown in Fig. 5.15, with m, = m, m, = 2m,
k) =k, and k, = 2k. Determine the response of the system when & = 1000 N/m,
m = 20 kg, and the initial values of the displacements of the masses m, and m, are 1
and -1, respectively.

Base
Iy "W"—
kl }’1
s
m,
x(t)
> v
K, 9

Figure 5.15 Figure 5.16

Set up the differential equations of motion for the double pendulum shown in Fig,

516. using the coordinates x;. and x. and assumine small amnhlitudes. Find the
LAD, using the coorgmnates x; ang x, ang assuming small ampituges. g the

natural frequencies, the ratios of amplitudes, and the locations of nodes for the two
modes of vibration when m, = my =m and /, = [, = /.

I

Determine the natural modes of the system shown in Fig. 5.17 when k, = k, = k; = k.

Figure 5.17

A ol lemn & 1 s o eeace AL 2 10NN PR P
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§S.

5.6.

I |

T m, J('

— AW~
>

b 'AAA A
=

Figure 5.18 \

stiffnesses of the supports are given by k, = 3000 N/mm, and k, = 2000 N /mn, and
the supports are located at /, = 0.5 m and /, = 0.8 m, find the natural frequenciri and
mode shapes of the machine tool.

An overhead traveling crane can be modeled as shown in Fig. 5.19. The beam an
area moment of inertia (/) of 0.02 m* and modulus of elasticity (E) of 2.06 > 10!
N/m?, the truck has a mass (m, ) of 1000 kg, the load being lifted has a mass (,) of
5000 kg, and the cable through which the mass (m,) is lifted has a stiffness (k) of

30 X 10° N/m. Determine the natural frequencies and mode shapes of the sylitem

Assume the span of the beam as 40 m.

LLLLLl !
kbv I |
m
1 :E
Sk
<
<
<
‘D
4b
<k
:. —ly m
qb
m; k
ms
(a) (b)
A Y
Figure 5.19

One of the wheels and leaf springs of an automobile, traveling over a rough road, is
shown in Fig. 5.20(a). For simplicity, all the wheels can be assumed to be identical and
the system can be idealized as shown in Fig. 5.20(b). The automobile has a mass of
m, = 1000 kg and the leal springs have a total stiffness of k, = 400 kN/m. The
wheels and axles have a mass of m, = 300 kg and the tires have a stiffness of
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m, (Automobile) —_—

k; (Leaf springs)

m; (Wheels and axles)

k; (Tires)

(b)

Figure 5.20

k, = 500 kN /m. If the road surface varies sinusoidally with an amplitude of Y =
0.1 m and a period of / = 6 m, find the critical velocities of the automobile.

5.7. Derive the equations of motion of the double pendulum shown in Fig. 5.16, using the
coordinates 8, and 8,. Also find the natural frequencies and mode shapes of the
system for my =m, =mand I, =1, =1L

5.8. Find the natural frequencies and mode shapes of the system shown in Fig. 5.15 for
my =my=m and k, = k, = k.
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59.

5.10.

511

5.12.

5.14.

515

The normal modes of a two degree of freedom system are orthogonal if
X7 [m] X® = 0. Prove that the mode shapes of the system shown in Fig. 5.3(a) are

orthogonal.

Find the natural frequencies of the system shown in Fig. 54 for &, = 300 N,

ky, = 500 N/m, k; = 200 N/m, m, = 2 kg, and m, = 1 kg.

Find the natural frequencies and mode shapes of the system shown in Fig. 5.15|
m, = my = 1 kg, k, = 2000 N/m and &, = 6000 N/m.

Derive expressions for the displacements of the masses in Fig. 54 when nige
25 lb-sec?/in, i = 1,2 and k, = 50,000 Ib/in, i = 1,2,3.

For the system shown in Fig. 5.4, m, = 1 kg, m, = 2kg, k, = 2000 N/m, &, = 1§
N/m, k; = 3000 N/m, and an initial velocity of 20 m /s 1s imparted to mass m,. Ffad
the resulting motion of the two masses.

For Problem 5.11, calculate x,(f) and x,(1) for the following initial conditik:
@) x,(0) = 0.2, %,(0) = x,(0) = £,(0) = 0; and (b) x,(0) = 0.2, £,(0) = x,(0)

v MMy — &N
AZ\U} AT R

A two-story building frame is modeled as shown in Fig. 5.21. The girders are assu
to be rigid, and the columns have flexural rigidities Ef, and EJ,, with negliglt;:

masses. The stiffness of each column can be computed as

: i=1,2

Fy(1) = \\.\\\\\\\\\\\\\\\\\\ .

.- T
] ]
! !
El, ! El Ik + o m,
! ,' l
i !

L
10 T ¢ SNV SANNANANANNANNNNANN

[ '

I3 i

! !
]

7
—e
3

Eq |ff Enfli &,

; l L
7777 77277 777
Figure 521 Figure 5.22

5.16. Figure 5.22 shows a system of two masses attached to a tightly stretched string, fixed

at both ends. Determine the natural frequencies and mode shapes of the system for

. =mi-=mand . =1. =1, =1}
1 iy frri and ll iy i3 i.

5.17. Find the normal modes of the two-story building shown in Fig. 5.21 when m, = 3m,

my, =m, ky =3k, and k, = k, where k, and k, represent the total equivalent
stiffnesses of the lower and upper columns, respectively.
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5.18. A hoisting drum, having a weight W,, is mounted at the end of a steel cantilever beam
of thickness 1, width a, and length b as shown in Fig. 5.23. The wire rope is made of
steel and has a diameter of d and a suspended length of /. If the load hanging at the
end of the rope is W,, derive expressions for the natural frequencies of the system.

t T

/ A

' Ll

ﬂ b jo—2a »|

d —f—
Wz WZ

Figure 5.23
E10 % T clrem thae anemeilos o becma oot o oabin Boloel o Ao ol abon oot e Ll
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1
the load in Problem 5.18 in order to have the natural frequencies of the system great
than 10 Hz when W, = 1000 1b and W; = 500 Ib, » = 30 in,, and / = 60 in.

5.20. Determine the natural frequencies and normal modes of the torsional system shown
Fig. 5.24 for k,, = 2k, and J, = 2J,.

RNNNANNNN

LS w <

[P
5.24 Figure 5.25

5.21. Determine the natural frequencies of the system shown in Fig. 5.25 by assuming
the rope passing over the cylinder does not slip.
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5.22. Find the natural frequencies and mode shapes of the system shown in Fig. 5.6(a) by
3SSumlng thal Jl = Jo, Jz = 2J0, and kll = k,z kl3 = k'-.

5.23. Determine the normal modes of the torsional system shown in Fig. 5.7 when k,; = &
k{l = Sk,, Jl Jo, and Jz 5"0 1 )

5.24. A simplified ride model of a military vehicle is shown in Fig, 5.26(b). This model cay’

- be used to obtain information about the bouace and pitch modes of the vehicle. If the

total mass of the vehicle is m and the mass moment of inerta about its C.G. is By,
derive the equations of motion of the vehicle using two different sets of coordinates, as
indicated in Section 5.5.

W J
ehicle body) mass " “

7~ rr:e:r—F

r-}——l Jnsprung (running gear) mass ——r\\

’
2 =
AAAAA

/WYY

\n)

a

=

R )

asprings —/ \— Shock absorbers

(a) Military vehicle (b) Simplifed ride model

.26

5.25. Find the natural frequencies and the amplitude ratios of the system shown 1y

Fig. 5.27.
A\
! + | —
o
AN\ k '
SANN P 2m
] "NIeG) L =l
()
k
b
11
k (1) Sk
my m,}y —=—
r.27 Figure 5.28

E 5.26. A rigid rod of negligible mass and length 2/ is pivoted at the middle point and is
{ constrained to move in the vertical plane by springs and masses, as shown in Fig. 5.28.

Find tha natniral fraqnias neiae and mads chames ~F thae cyote
4 LAENE GRAL llﬂtulm llcqukll\'l\'o GLIVL LRI b-l‘awb vl Lu(: byblcl‘l
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5.27. An airfoil of mass m is suspended by a linear spring of stifiness & and a torsional
sPﬁng of stiffness k, in a wind tunnel, as shown in Fig. 5.29. The C.G. is located at a
dlstgnce of ¢ from point O. The mass moment of inertia of the airfoil about an axis
passing through point O is J;. Find the natural frequencies of the airfoil.

Tup

le—— Frame

Anvil

Elastic pad

»fe——— Foundation block
S 0

PO PV R\ P
() N NONOINRNNRIETETETETETETET@: @ T ®>T S S ‘__ Soil

Q’P——- Tup

L)
I
1

+

Anvil

and frame 1

1 .
Damping of elastic pad ———|— r_j %h——-«— Stiffness of elastic pad

Foundation block -—;

X2
Damping of soil ————{--| ——— Stiffness of soil
(b) TR
Figure 5.30

5.28. The expansion joints of a concrete highway, which are located at 15 m intervals, cause
a series of impulses to affect cars running at a constant speed. Determine the speeds at
which bounce motion and pitch motion are most likely to arise for the automobile of
Example 5.5.

5.29. The weights of the tup, frame, anvil, and the foundation block in a forging hammer
(Fig. 5.30) are 5000 Ib, 40,000 Ib, 60,000 Ib and 140,000 Ib, respectively. The stiflnesses
of the elastic pad and the soil underneath the foundation block are 6 X 10° Ib/in. and
3 X 10°® Ib/in., respectively. If the velocity of the tup before it strikes the anvil is 15
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5.30.

5.3

W
W
™

5.33.

ft/sec, find (i) the natural frequencies of the system, and (ii) the magnitudes of
displacement of the anvil and the foundation block. Assume the coefficient of
restitution as 0.5 and damping to be negligible in the system.

Find (i) the natural frequencies of the system, and (ii) the responses of the anwvil and
the foundation block of the forging hammer shown in Fig. 5.30 when the time history
of the force applied to the anvil is as shown in Fig. 5.31. Assume the following data

Mass of anvil and frame (m,) = 200 Mg

Mass of foundation block (m,) = 250 Mg

Stiffness of the elastic pad (k,) = 150 MN/m

Stiffness of the soil (k,) = 75 MN/m

F,=10°Nand T=05s

m:
C%L‘TI__-I K+
o) T ! WWWEW

Figure 5.31 Figure 5.32

Derive the equations of motion for the free vibration of the system shown in Fig. 5.32.
Assuming the solution as x,(t) = Ce™, i = 1,2, express the characteristic equation in
the form

ags* +a;s* +ayt+as+a,=0

Discuss the nature of possible solutions, x,(¢) and x,(?).

Find the displacements x,(¢) and x,(¢) in Fig. 532 for m; =1 kg, m, =2 kg,
ky = ky = k; = 10,000 N/m, and ¢, = ¢, = ¢; = 2000 N-s /m using the initial condi-
tions x,;(0) = 0.2 m, x,(0) = 0.1 m, and x,(0) = x,(0) = 0.

A centrifugal pump, having an unbalance of me, is supported on a rigid foundation of

mass m, through isolator springs of stiffness k,, as showa in Fig, 5.33, If the soil
stiffness and damping are k; and c,, find the displacements of the pump and the
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foundation for the following data: mg = 0.5 1b, e = 6 in., m, g = 800 Ib, &, = 2000

ib/in., m,g = 2000 ib, &, = 1000 ib/in., ¢, = 200 Ib-sec/in., and speed of pump =
1200 rpm.

S3M4. A rec.jiprocating engine of mass m, is mounted on a fixed-fixed beam of length /, width
a, thickness ¢, and Young’s modulus E as shown in Fig. 5.34. A spring-mass system

N
@ Centrifugal pump
(mass, my) my

mi
Isolator
) springs k,
s

6, o © 0\0',‘_’. 09 ‘s o - Foundation
.o . o * (mass, m;) Ka ‘;

0 o n n‘-_ . . P
02 .0 o % . o .

e 0 0 o7 4 L8
0 R Y T

=B
o .. “
YLl ’777757777777&777,
— o
Soil

...........

damping, ¢;)

L AL LIS L LA
~ e
— ~
Vs

Figure 5.34
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(k,, m,) is suspended from the beam as indicated in the figure. Find the relation
between m, and k, that leads to no steady-state vibration of the beam when 3
harmonic force, F(f) = F,cos wt, is developed in the engine during its operation.!

535. Find the steady-state response of the system shown in Fig. 5.15 by using the
mechanical impedance method, when the mass m, is subjected to the force F(¢) =
F, sin wt in the direction of x,(¢).

5.36. Find the steady-state response of the system shown in Fig. 515 when the base jg
subjected to a displacement y(t) = ¥;cos wt.

5.37. The mass m, of the two degree of freedom system shown in Fig. 5.15 is subjected to a
force E coswt. Assumine that the gurroundine air dambine is equivalent to -~ —
AW W x 0 WA WL 4 mouuu.l..lb TARLL Y CRAG, oullvullulllb b AL P ‘lb \'\iul‘ SAAL LA LA L -
200 N - s/m, find the steady-state response of the two masses. Assume m, = m, = |
kg, k, = k, = 500 N/m, and w = 157!

5.38. Determine the steady-state vibration of the system showa in Fig. 5.3(a), assuming that
¢ =¢,=1c¢;=0, F(1) = Fgcoswt, and F(1) = Fycos wt,

5.39. In the system shown in Fig. 5.15, the mass m, is excited by a harmonic force having a
maximum value of 50 N and a frequency of 2 Hz. Find the forced amplitude of each
mass for m = 10 kg, m, = 5 kg, k, = 8000 N/m, and &, = 2000 N/m.

5.40. Find the response of the two masses of the two-story frame shown in Fig. 5.21 under
the ground displacement y(t) = 0.2sinw¢ m. Assume the equivalent stiffness of the
lower and upper columns to be 800 N/m and 600 N/m, respectively, and m, = m, =
50 kg.

5.41. Find the forced vibration response of the system shown in Fig. 5.12 whea F(f)is a
step force of magnitude 5 N using the Laplace transformation method. Assume
x,(0) = %,(0) = x,(0) = %,(0) = 0, m = 1 kg and k = 100 N/m.

5.42. Determine the equations of motion and the natural frequencies of the system shown in
Fig. 5.35.

X, X2
i, J()
Figure 5.35 Figure 5.36

5.43. Two identical circular cylinders, of radius r and mass m each, are connected by a
spring as shown in Fig. 5.36. Determine the natural frequencies of oscillation of the
system. .

5.44. The differential equations of motion for a two degree of freedom system are given by

aX, + bx, + ¢x, =0

Derive the condition to be satisfied for the system to be degenerate.

§

The spnng-mass system (k,, /m,) added to make the amp]nude of the first mass zero is known as a

*vibration absorber.” A detailed discussion of vibration absorbers is given in Section 9.10.
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5.45.

5.46.

547.

5.48.

5.49.

Find the angular displacements 8,() and 6,(¢) of the system shown in Fig. 5.37 for
the initial conditions ,(t = 0) = 8,(0), 8,(t = 0) = 6,(0), and ﬁ,(t =0) = 92(1 =0)
= 0.

J2

Ji

2

Figure 5.37

Determine the normal modes of the system shown in Fig. 5.7 with k,; = 0. Show that
the system with k,, = 0 can be treated as a single degree of freedom system by using

LA IQlAlaS

The transient vibrations of the drive line developed durnng the application of a cone
(friction) clutch lead to unpleasant noise. To reduce the noise, a flywheel having a
mass moment of inertia J, is attached to the drive line through a torsional spring k,,
and a viscous torsional damper c,, as shown in Fig. 5.38. If the mass moment of
inertia of the cone clutch is J;, and the stiffness and damping constant of the drive line
are given by k, and ¢, respectively, derive the relations to be satisfied for the stable
operation of the system.

Cone Flywheel, J;
clutch, J;
I"'"""—A_"ﬁ
kp IJ-I"'_CIZ
>
. pa T
pi Prime { Load
mover _L
3 BT
7
Drive line \ 0-
Figure 5,38

Find the response of the system shown in Fig 5.3(a) using a numerical procedure
when k, =k, k, =2k, ky=k, m, =2m, my=m, F(t)=0, and F(¢t) is a
rectangular pulse of magnitude 500 N and duration 0.5 sec. Assume m = 10 kg,
¢ =c¢=¢ =0, and k = 2000 N/m.

(a) Find the roots of the frequency equation of the system shown in Fig. 5.3 using
subroutine QUART with the following data: m, = m, = 0.2 Ib-s?/in., k, = k, =
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18 Ib/in.,, ky =0, ¢, = ¢, = ¢, = 0 (b) If 1he ininal conditions are x,(0) = x,(0) =
2in., %,(0) = x,(0) = 0, determine the displacemenis x,(¢) and x,(f) of the masses.

3.50. Wnie a compuiler program for finding the sieady-siale response of a iwo degree of
freedom sysiem under the harmonic excitation F (1) = Fge™". j = 1,2 using Eqs.
(5 29) and (5.35). Use this program 10 find the response of a sysiem with m,; = m,, =
0.1 Ib-s’/in., my =0, ¢, =10 lb-s/in., ¢, =y =0, k,, =40 Ib/in., Ay, =
201b/in, k, = =201Ib/in, F,=11b, F,y =21Ib, and w = 5 rad/s

Project:

5.51. A siep-cone pulley with a beli dnve (Fig 5.39) 15 used 10 change the cuiling speeds |£1

a lathe. The speed of the dnving shafi 1s 350 rpm and 1he speeds of the ouipui shafi

are 150, 250, 450, and 750 rpm The diameiers of the driving and the dnven pulicys,

corresponding 10 150 rpm ouipui speed. are 250 mm and 1000 mm, respeciively. The

center disiance beiween the shafis 1s 5 m The mass momenis of inertia of the driving

and driven siep cones are 01 and 0 2 kg-nr', respectively. Find the cross sectional arca

of 1the bel1 10 avoid resonance with any of the inpui/oulpul speeds of the svsicm.
Assume 1he Young’s modulus of 1he beli maierial as 10'° N/m”

)
- |
]
. RN
1 4 M } —
¢ - i .
N =750
- N_v = 450
- IV\ = 250
N, = 150
w w w, W

Figure 5.39
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‘Y 4

asaph Lows Lagrange (1736~ 1813) was an {tahan-born
nathematician famous for his work on theoretical
nechamcs He was made professor of mathematics in

1 755 at the Artiliery School at Tunin Lagrange's
nasterprece his Méchamque, contains what are now
<nown as "'Lagrange’s equations,”” which are very usefui
n the study of vibrations His work on elasticity and
sirangth of materials, where he considered the strength
and detlection of struts, is less weli-known (Courtesy
Brown Brothers)

Multidegree of
Freedom Systems

INTRODUCTION

All the concepts introduced in the preceding chapter can be directly extended to the
case of multidegree of freedom systems. For example, there is one equation of
motion for each degree of freedom; if generalized coordinates are used, there is one
generalized coordinate for each degree of freedom. The equations of motion can be
obtained from Newton’s second law of motion or by using the influence coefficients
defined in Section 6.3. However, it 1s often more convenient to derive the equations
of motion of a multidegree of freedom system by using Lagrange’s equations.

There are n natural frequencies, each associated with its own mode shape, for a
system having n degrees of freedom. The method of determining the natural
frequencies from the characteristic equation obtained by equating the determinant
1o zero also applies to these systems. However, as the number of degrees of freedom
increases. the solution of the characteristic equation becomes more complex. The
mode shapes exhibit a property known as orthogonality, which often enables us to
simplify the analysis of multidegree of freedom systems.

6.2 MULTIDEGREE OF FREEDOM SPRING-MASS SYSTEM

Consider a simple n degree of freedom system, as shown in Fig. 6.1(a). With
reference to the free-body diagram of a typical interior mass m,, the equation of
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motion can be derived:
mxi = —k(x,—x_)+k (x, —x)+F; i=23,...,n-1
or
mx —kx_, +(k +k, )x ~k, %, =F;
i=213,..., n—1 (6.1)

The equations of motion of the masses m, and m,, can be derived from Eq. (6.1) by
setting ¢ = 1 along with x, = 0 and ¢ = n along with x,,, = 0, respectively:

n+1
a2 fL L L Yy L v —F (£ N
flllj.l T \ﬂ.l T ﬁ.z].ll ﬂz.l-z ‘1 \Ul—[
mi —k,x, ,+ (k +k,}x,=F, (6.3)
Equations (6.1) to (6.3) can be expressed in matrix form as
[m)x+ (k)X =F (6.4)

where (m] and (k] are called the mass matrix and the stiffness matrix, respectively.
and are given by

- =

mg 0 O 0 0
N s N N Y
v '"2 v v v
{m]=1]0 0 my 0 O (6.5)
] 0 0 0 e 0 m, |
[ (k, + k) k, 0 0 0 |
[k]= 0 =k, (ky+ ky) - 0 0
L 0 0 0 T -—k'l (kn+kn+l)
(6.6)
and X, ).?.'. and F are the displacement, acceleration, and force vectors, given by
xy(1) X (1) F(1)
x,(t X, - F,(1 ‘
O A A S N A L (6.7)
x,(t) X,(1) F,(1)

The spring-mass system considered above is a particular case of a general n degree

CELUw

of freedom spring-mass system. In their most general form, the mass and stiffness
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D () F(1) F(n _ F.n
—_— — —_— —_— —_— —_—

kl kZ k' k/ kn kn -
§-—MN— m WA m, WA m WA —WA— m, L m, '—W‘E
X Xz X, X, X,
Point 1 Point 2 Point : +—> Point; Point n

(a)

+x,, + 1
F(n)

k.‘ (I,—I,_g) ——t m, — ki ' (xﬂ-' -x)

(b)
Figure 6.1
matrices are given by
[my  my my my, |
My My My o0 My,
(m]=| - (6.8)
[mlln Min mj, mnnJ
and
ki ki ky ki
k k k
12 22 23 2n
kln kzn k3n knn

b.a INFLUENCE COEFFICIENTS

The equations of motion of a multidegree of freedom system can also be written in
terms of influence coefficients, which are extensively used in structural engineering.
For a linear spring, the force necessary to cause a unit elongation is called the spring
constant. In more complex systems, we can express the relation between the
displacement at a point and the forces acting at various other points of the system
by means of influenge coefficients. There are two types of influence coefficients:
flexibility influence coefficients and stifiness influence coefficients. To illustrate the
concept of an influence coefficient, consider the multidegree of freedom spring-mass
system shown in Fig. 6.1.

Let the system be acted on by just one force F, and let the displacement at
point i (i.e., mass m, ) due to F, be x, . The ﬂeijililir influence coefficient, denoted
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by a,,. is defined as the deflection at point ¢ due to a unit load at point ;. Since the
deflection increases proportionately with the load for a linear system. we have

xu=a”FI (6.10)

If several forces F (j=12,...,n) act at different points of the system. the total

deflection at any point 7 can be found by summing up the contributions of all forces
F:
n n
x, = qu= Za”F:,. i=1.2..... n (6.11)
TR

)=

Equation {6.11) can be expressed in matrix form as
%= (alF (6.12)

where ¥ and F are the displacement and force vectors defined in Eq. (6.7) and [a]
the flexibility matrix given by

[a“ @, a4,

¢ P 2 N Coee 7 -
bl § ha-P “In

(a) = (6.1%)
anl a,» nu |

The stiffness influence coefficient, denoted by k,,. 1s defined as the force at point
t due to a umit displacement at point j when all the points other than the point
are fixed. The total force at point 7, F,, can be obtained by summing up the forces
due to all displacements x(y=12,...,n)

F=DYkx, i=12..n (6.14)

=1

Equation (6.14) can be stated in matrix form as

F=[k]x (6.15)
where [k] is the stiffness matrix given by
ky ki ok,
(k] = k:“ Kk (6.16)
b Ky K,

An examination of Eqs. (6.12) and (6.15) indicates that the flexibility and <uffness
matrices are related. If we substitute Eq. (6.15) into Eq. (6.12). we obtain

% ={alF=lallk]x (6.17)
from which we can obtain the relation
[a)[k]} =[] (6.15)
where [ /] denotes the unit matrix. Equation (6.18) 15 equivalent to

[€)=[a] ", [a)=[4]" (6 19)
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That is, the stuffness and flexibility matrices are the inverse of one another. The use
of dynamic stifiness influence coefficients in the vibration of nonuniform beams 1s
discussed in Ref. [6.10}].

Note the following aspects of influence coefiicients:

1. Since the deflection a1 point i due to a unit load at point j is the same as the
deflection at point ; due to a unit load at point ¢ for a linear system (Maxwell's
reciprocity theorem [6.1]). we have a, = a, By a similar reasoning, we have
k, =k,

2. The flexibility and sufiness influence coefficients can be calculated from the
principles of solid mechanics.

3. The influence coeflicients for torsional systems can be defined in terms of unit
torque and the angular deflection it causes. For example, in a multirotor
torsional system, a, can be defined as the angular displacement of point
(rotor ) due to a unit torque at point .

EXAMPLE 6.1 Fiexibility influence Coefficients

Find the flexibility influence coetficients of the system shown in Fig. 6.2(a)

Giwen: Three degree of freedom spring-mass system. Fig. 6.2(a).

Ll

(a) (b) (c) (d)

Figure 6.2
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Find. Flexibility influence coefficients. a,,.
Approach: Use the definition of a,,

Solution. Let 1, \., and x, denote the displacements of the masses m,. m.. and m;.
respectively The flexibility influence coefficients a,, of the system can be determined m terms
of the spring stiffnesses k,. k., and k, as follows. If we apply a unil force at mass m, and no
force a1 the other masses (F, = 1, F, = F, = 0), as shown in Fig. 6.2(b). the deflecuon of the
mass m, 1s equal 10 8, = 1/k, = «a,;. Since the other two masses m, and m, mov¢ tundergo
rigid body translation) by the same amount of deflecuon §,. we have. by definitnon.

1
u21=u.‘1:81=k—r

Nex1. we apply a unit force al mass m, and no force at masses m, and m,.as shownn Fig
6.2(c) Since the two springs k, and k, offer resistance. the deflecuon of mass »1, 1< given by

l —_—
L= r. Tk TR T Rk U

The mass m, undergoes the same displacement 8. (rigid body transiation) while the mass »r,
moves through a smaller distance given by 8§, = 1 /k; Hence

ky + k, i
u = = ——— a u = = —
w2 = 8 kK. nd 12 = 8 :
F nally, when we apply a unit force to mass n1, and no force to masses 1, and 1. as shown
Fig 6 2(d). the displacement of mass m; is given by
5 1 1 4 1 4 1 kiky + k ki + kqk,
= — = — _ —_— = = ¢
Yok K k, kK, k kyk, A

while the displacements of masses m, and m, are given by

8_i+i_k,+k2“
TR TR T Tk, 9
and
1
According to Maxwell's reciprocity theorem, we have
a,, = a,
Thus the flexibility matrix of the system is given by
[ 1 ! 1 ]
k, k, k,
1 ] 1 1 1
el = & PR (E 1)
b k ' 2
1 1
| A LK “: Vg Ky Ky

The suffness mainx of the syslcm can be found from the relation [k] = [4] ' or can be
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derived by using the defimtion of k,, (see Problem 6.8):

(kl +k2) _k2 O
[x] = —k; (ka+ ki) -k (E2)
0 'k] k]

EXAMPLE 6.2

Fiexibility Matrix of a Beam

Denve the flexabiity matnx of the weightiess beam shown in Fig. 6.3(a) The beam is aumply
supported at both ends. and the three masses are placed at equal intervals. Assume the beam
10 be uniform with stiffness EJ.

Gven: Beam carrving three masses, Fig. 6.3(a).

Approuch: Use the definition of «,, along with beam deflection formula.

Solution. Let . x,, and x, denote the 101al transverse deflection of the masses m1,. m,, and
m., respecuvely From the known formula for the deflection of a pinned-pinned beam [6 2],
the influence coeffictents «;, (; = 1,2, 3) can be found by applying a unit load at the location
of m; (see Fig. 6 3b):

768

L
76

(= =
1<

(E1)

¥

Similarly. by applying a unit load at the locations of m, and m, separately. we obtain

_, i r (E.2)
177 368 Fi» Y27 BB E] 907 768 EI '
F, = ll
<T ¥ ¥ P
~ ! !
\\\-_la” Ia“ ‘Lai"//
'-..,_‘___J-___,_—
Fz = ]L
< .
} m; m, ms \\\\ :lhz a2 :af’/,
C - | J\‘-‘—‘ _‘-”,"’
<R | BN (1) | ¥ @ 1& =1
] i b < T i -
3 4_"'_4 e \‘\\ 1 ;a,‘ I:"Js -~
I \\L [ _ ’/
_____ -L__,_-
(a) (b)

Figure 6.3
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and
1P 1 9 P
anw=an = JEE “nTOn= g v~ g Er (B
Thus the flexibility matrnix of the system 1s given by
1 9 11 7
[a] = T63E] I1 16 11 (E 4)
7 11 9
= A Anirw trimsrmesian FEa PR AL, YD SR
0.9 AND KINETIC ENERGY EXPRESSIONS
IN MATRIX FORM
Let x, denote the displacement of mass m, and F, the force applied in the direction

of x, at mass m, in an n degree of freedom system similar to the one shown n Fig.
6.1. The elastic potential energy (also known as stramn energy or energy of deforma-
tion) of the ith spring is given by

V,= 3 Fx, (6.20)
The total potential energy can be expressed as
V- LV - 2T Ex (6.21)
Since - -
k= Z k,x, (6.22)
J=1

Eq. (6.21) becomes

1 ) n ] " "
V=13 )3 ( z k,jxj)x, =17 )ID k, xx, (6.23)

=1\ ;=1

Equation (6.23) can also be written in matrix form as*
1. . .
V=35x"[k]x (6.24)

where the displacement vector is given by Eq. (6.7) and the stiffness matrix is given
by '

kn kxz kln
k2| kzz kza

[k]=| (6.25)
k’ll kn! T knu

* Since the indices 1 and ) can be interchanged 1n Eq (6 23). we have the relation k,, =

i
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The kinetic energy associated with mass m, is, by definition. equal to

T = %m,f? (6.26)

The total kinetic energy of the system can be expressed as

H

T=YT-= % Y m i (6.27)

=1 i=1
which can be wnitten 1n matnx form as
1 .

T= 55 [m]% (6.28)
where the velocity vector Tis given by
(1)
. ifz?
X={.
\Xa)

and the mass matrix [m] is a diagonal matrix given by

{m]J'"' m ° ] (
Lol

If generalized coordinates (g,), discussed in Section 6.5, are used instead of the
physical displacements (x,), the kinetic energy can be expressed as

[

[y

=
—

T %ér[mlé (6.30)
where c}' 1s the vector of generalized velocities, given by
q.]
7= ":2 (6.31)
4,

and [m] is called the generalized mass mairix, given by

my My oMy,

My My o0 My,
[m]=1] - (6.32)

mnl m,, o m, .
with s = The gcenaralizad mace o bl minm b, Do (£ 19V Jo £::11 o ~wmemmcad
'":j '“jf' ULV gULHLTAILLCU 1HAdD 1HalliA BIVCII Uy Lq. AU .JZ4) 1> 1Ull, d> UppuUovu

to the diagonal mass matrix of Eq. (6.29).
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It can be seen that the potential energy is a quadratic function of the displace-
ments, and the kinetic energy is a quadratic function of the velocities. Hence they‘
are said to be in quadratic form. Since kinetic energy, by definition, cannot be
negative and vanishes only when all the velocities vanish, Egs. (6. 28) and (6.30) are
called positwe definite quadratic forms and the mass matrix [m] is called a posinve
definite matrix. On the other hand, the potential energy expression, Eq. (6.24), is a
positive definite quadratic form, but the matrix [k] is positive definite only if the
system is a stable one. There are systems for which the potential energy 1s zero
without the displacements or coordinates x|, x,...., x, being zero. In these cases
the potential energy will be a positive quadratic function rather than positive
definite; correspondingly, the matirx [k] is said to be positive. A system for which

(k] is positive and [m] is positive definite is called a semi-definite system (see
Section 6.11).

GENERALIZED COORDINATES AND GENERALIZED FORCES

The equations of motion of a vibrating system can be formulated 1n a number of
different coordinate systems. As stated earlier, n independent coordinates are:
necessary to describe the motion of a system having n degrees of freedom. Any set
of n independent coordinates is called generalized coordinates, usually designated
by 4,, 4,..-., g, The generalized coordinates may be lengths, angles, or any other
set of numbers that define the configuration of the system at any time uniquely.
They are also independent of the conditions of constraint,

To illustrate the concept of generalized coordinates, consider the triple pendu-
lum shown 1n Fig. 6.4. The configuration of the system can be specified by the six

coordinates (x,9) j= 1,2, 3. However, these coordinates are not independent
but are constrained by the relations

ey =1
(xz - x1)2 + ()’2 _)’|)2 = I%
(x5 = )2 4 (3= ) = 2 (6.33)

Since the coordinates (x, y,), J = 12,3 are not independent, they cannot be called
generalized coordinates. Without the constraints of Eq. (6.33), each of the masses
m,, m, and m, will be free to occupy any position in the x, y plane. The
constraints eliminate three degrees of freedom from the six coordinates (two for
each mass) and the system, thus, has only three degrees of freedom. If the angular
displacements 8 (_] = 1,2, 3) are used to specify the locations of the masse m =
1,2,3) at any tlme there will be no constraints on 6. Thus they form a set of
generalized coordinates and are denoted as ¢, = 6, ; = 1,2,3.

When external forces act on the system, the configuration of the system
changes. The new configuration of the system can be obtained by changing the
generalized coordinates g, by 8q,, j=1.2,..., n, where n denotes the number of
generalized coordinates (or degrees of freedom) of the system. If UJ denotes the :
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|

{
!r—xz—‘l' 8

m) ——

I s st
&
—

Figure 6.4

work done in changing the generalized coordinate g, by the amount 8q,, the
corresponding generalized force Q , can be defined as

0, =5y J=L2Z...n (6.34)

where @ will be a force (moment) when g, is a linear (angular) displacement.

}.6 LAGRANGE’S EQUATIONS

The equations of motion of a vibrating system can often be derived 1in a simple
manner in terms of generalized coordinates by the use of Lagrange’s equations [6.3].
Lagrange’s equations can be stated, for an n degree of freedom system, as

_d_( BT) 3 3T av
a4, aql aq,

=0, j=12...n (6.35)

where ¢, = dq /dt is the generalized velocity and Q"” is the nonconservative
Qenerah?ed force corresponding to the generalized rnnrdmalp q, The forces repre-

sented by Q(’" may be d|3$|pat|ve (dampmg) forces or other extema] forces that are
not denVab]e from a potential function. For example if F,, F‘,‘, and F,, represent

sl o a1 O

the exiernal forces acting on the kth mass of the system in the x. y, and 2
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directions, respectively, then the generalized force Q" can be computed as follows:

dx dy dz,
(n) _ F =% 4 F =% 4 F,5— (6.36)
Q, Z*‘,( *“Jq, v 3gq, L aq,

where x,. y,, and z, are the displacements of the kth mass in the x, y, and -
directions. respectively. For a conservative system, Qj"’ = 0, so Egs. (6.35) take the
form

%(HT) o7 aV=0, j=12.....n (6.37)

o +
a4.] dq,  dq,

Equations (6.35) or (6.37) represent a system of n differential equations, one
corresponding to each of the n generalized coordinates. Thus the Pqua!lom of

motion of the vibrating system can be derived, provided the energy expressions are
available.

The arrangement of the compressor, turbine, and generator 1n a thermal power plant is shown
in Fig 65 This arrangement can be considered as a torsional system where J, denote the
mass moments of inertia of the three components (compressor, turbine, and generator). M,
indicate the external moments acting on the components, and k,, represent the torsional
spring constants of the shaft hetween the components as indicated in Fig. 6.5, Derive the

equations of motion of the system using Lagrange’s equations by treating the angular
displacements of the components 8, as generalized coordinates.

Gen: Compressor-turbine-generator arrangement with known mass moments of inertia (/).
external moments (M,,), and stiffnesses (k,,).

Find. Equations of motion.
Approach: Use Lagrange’s equations.

Solution. Here q, = 8,, g, = 8,, and q; = 6, and the kinetic energy of the system is given by

S0+ 303+ 2 af (E1)

I~ o~

7/dl////
]

4
4\
|

<

Compressor (1)) Turbire (J:) Generator (1)

Figure 6.5
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For the shalt, the potential enecrgy 15 equal to the work done by the shaft as it rewurns fro
the dynamic configuration to the reference equilibrium positon Thus 1f & denotes 1
angular displacement, for a shaft having a torsional spring constant k,. the potential energy
equal 10 the work done in causing an angular displacement @ of the shaft:

S _ Ll
} _f"(k,a) b = k.8 (E.
Thus the total potenual encrgy of the system can be expressed as
| - v s
V=‘~"2‘l\”8|"§k,_1(03 '0,)_+ j‘,‘(a"—g:)_ (E
There are external moments applied 10 the components, so Eq. (6 36) gives
i 38, i 38,
Q" = Mygo = Mi3g (E
I L=1 dq, h=1 99,
from which we can obtain
'"'—M%+M%+M%—M
[T 3g| .2 3gl i 39[ = M
Q""=M%+M%+Mﬂ=w
2 il 88:‘ ’2 30} R 30_‘ 2
Q""=M%+M%+M%=M (E
3 il 381 12 391 Rl 39‘ 1

Substituting Eqs. (E.1), (E.3), and (E.5) in Lagrange’s equations. Eq. (6.35). we obtain
= 1, 2,3 the equations of motion:
56, + (kg + k)0 - k8 =M,
J'ﬁ} + (Kt k3 )0, — k8, - kb, = M,

+2

.130'3 + kb, - ka0, =M, (E
which can be expressed in matnx form as
Jo 0o o6 (k, + k,5) ~k,, 0 g, M,,
0 L O(6)+ -k,» (k- + k) -k {(6)=(M,) (E
0 0 J |6 0 -k, k. |16, M,,

B.7 GENERAL EQUATIONS OF MOTION IN MATRIX FORM

We can derive the equations of motion of a multidegree of freedom system in mat
form from Lagrange’s equations.*

d|aT aT aVv ) :
E(a—x;)—a—x;+3_x,=l:' i=1.2,.. .. n (6..

* The generalized coordinates are denoted as v, instead of ¢, and the gencrahized forces as £ ins

N N Y r
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where F, is the nonconservative generalized force corresponding to the 1th general-
1zed coordinate x, and x, is the time derivative of x, (generalized velocity). The
kinetic and potennal energies of a multidegree of freedom system can be expressed

in matrix form as indicated in Section 6.4:

_ %;r[m]; (6.39)
- SET[K]F (6.40)
where X is the column vector of the generalized coordinates

[

x5
X= { :“$ (6.41)

\x”} )

From the theory of matrices, we obtain, by taking note of the symmetry of [m].

aT 1., LR G < 7 .,

a—x'—ia [m]x+ 2X [m]8~6 [m]x
A%, i=12...n (6.42)
where 8 is the Kronecker delta (§