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PREFACE

Engineers apply mathematics and science to solve problems. In a traditional un-
dergraduate engineering curtriculum, a student begins an academic career by taking
courses in mathematics and basic sciences such as chemistry and physics. A student
begins to develop problem-solving skills in basic engineering science courses. For a
mechanical engineering student, these courses include statics, dynamics, mechanics
of solids, fluid mechanics, and thermodynamics. In such courses, students learn to
apply basic laws of nature, constitutive equations, and equations of state to develop
solutions to abstract engineering problems.

Vibrations is one of the first courses where students learn to apply the knowledge
obtained from mathematics and basic engineering science courses to solve practical
problems. Indeed the problem-solving skills developed in a vibrations course are as
valuable as the knowledge of the subject of vibrations. Solution of practical problems
in vibrations requires modeling of physical systems. A system is abstracted from its
surroundings. Assumptions appropriate to the system are made. Basic engineering
science and mathematics are applied to derive a mathematical model. The resulting
solution is used to learn about system behavior that could be used in applications
such as design. The reader of this text will learn about vibrations by using such a
problem-solving approach.

An application of vibration analysis is in engineering design. Design princi-
ples are developed using analysis of model one-degree-of-freedom systems. Design
applications are presented for multi-degree-of-freedom systems and continuous sys-
tems. Many examples and homework problems have a design flavor.

This book is intended as a text in a junior or senior level undergraduate course in
vibrations. It could be used in a course populated by both undergraduate and begin-
ning graduate students. The prerequisites for such a course should include courses
in statics, dynamics, mechanics of materials, and mathematics through differential
equations. Some material usually covered in a fluid mechanics course is used, but
this material can be omitted without loss of continuity.

An overview of the modeling procedure is presented in Chap. 1 (This material
can be omitted if students have background in system dynamics). Two methods
of dynamic analysis are presented and used throughout the book. The free-body
diagram method is based on D’ Alembert’s principle. Anenergy method thatincludes
the effect of nonconservative forces is presented as an alternative and is preferred in
modeling multi-degree-of-freedom systems.

Chapters 2 through 4 focus on vibrations of linear one-degree-of-freedom sys-
tems while Chaps. 5 through 7 focus on vibrations of multi-degree-of-freedom sys-
tems. Chapter 8 presents methods of reducing unwanted vibrations of discrete linear
systems. Chapter 9 provides a brief overview of continuous systems. Chapter 10
introduces the reader to the finite element method, while Chap. 11 focuses on non-
linear vibrations.
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White the structure of the second edition is similar to that of the firstedition, there
is much new in the second edition. The use of complex algebra in the analysis of the
forced response of discrete systems has been added. Free and forced vibrations of
multi-degree-of-freedom systems with a general damping matrix are now presented.
Many new examples are presented. Approximately one-third of the end-of-chapter
problems are new for this edition. An appendix containing answers to selected
problems has been added.

Chapter 10, “Finite-Element Method,” is new. Engineering students are usually
exposed to the finite-element method during undergraduate studies, but rarely are
exposed to its application to vibrations problems. This chapter is a welcome addi-
tion for those who have previously studied the finite-element method, although it is
self-contained in that the method is developed by using the assumed modes method
and Lagrange’s equations.

Examples throughout the book use MATLAB for numerical computation, sym-
bolic computation, and visualization of results. MATLAB script files are consistent
with the Student Edition of MATLAB, Version 5. The accompanying CD, titled
VIBES II, contains all script files presented in the text as well as other script files
used for a variety of vibrations applications. Problems using MATLAB are presented
at the end of each chapter. Many problems require use of the VIBES II files to solve
vibrations problems while others require the development of a MATLAB script file.
Users are encouraged to explore the files and develop their own applications. A list
of files summarizing their applications is available by printing the text file LIST.TXT.

MATLAB and similar software are used as tools in vibration analysis. Indeed,
they are powerful tools, easy to use for computation and visualization. While it is
important to understand how the mathematics used in solving a problem is performed,
complex computations often obscure the use of the results. The use of MATLAB
allows the focus to be on the modeling, analysis, and design aspects of a problem,
rather than computational considerations.

The author acknowledges the support and encouragement of Johnatan Plant,
Senior Sponsoring Editor, during preparation of the second edition and the help of
John Corrigan, formerly of McGraw-Hill, during preparation of the first edition. The
help of former students Ken Kuhlmann, Mark Pixley, and Ashish Choski is greatly
appreciated. Many valuable comments and suggestions were provided during prepa-
ration of the first and second editions by Donald Adams, University of Wyoming;
Atila Ertas, Texas Tech University; Andrew Hansen, University of Wyoming; Eu-
gene I. Rivin, Wayne State University; S. C. Sinha, Auburn University; Robert
Steidel, University of California-Berkeley; J. Kim Vandiver, Massachusetts Insti-
tute of Technology; Dr. Aldo Ferri, Georgia Institute of Technology; Peter Philliou,
Wentworth Institute of Technology; Richard Alexander, Texas A&M University; H.
Nayeb-Hashemi, Northeastern University; Bala Balachandran, University of Mary-
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1.1 THE STUDY OF VIBRATIONS

Vibrations are fluctuations of a mechanical or structural system about an equilibrium
position. Vibrations are initiated when an inertia element is displaced from its
equilibrium position due to an energy imparted to the system through an external
source. A restoring force or moment pulls the element back toward equilibrium.
When work is done on the block of Fig. 1.1a to displace it from its equilibrium
position, potential energy is developed in the spring. When the block is released
the spring force pulls the block toward equilibrium with the potential energy being
converted to kinetic energy. In the absence of nonconservative forces, this transfer
of energy is continual, causing the block to oscillate about its equilibrium position.
When the pendulum of Fig. 1.15 is released from a position above its equilibrium
position the moment of the gravity force pulls the particle, the pendulum bob, back

toward eguilibrium with oot al a ; ha ad ta Lrinat Tn tha
cquiilorum wili yuu.’uual Cneigy oeing converted {o Kinetic eneigy. i uie

absence of nonconservative forces the pendulum will oscillate about the vertical
equilibrium position.

We will develop mathematical models of the systems of Fig. 1.1. Solution
of the mathematical problems leads to information about the vibrations. Using

CPﬂRII‘I assumntione the accillatione of tha cuctame naf Rio 1 1 ara dacerihad ac ermmnle
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harmonic motion. The time history of the vibrations of a system undergoing simple
_harmonic motion is illustrated in Fig. 1.2. Simple harmonic motion is characterized
by periodic oscillation about the equilibrium position. Each oscillation is one cycle.

For simple harmonic motion the time it takes to execute one cycle, the period, is
constant. The frpnuonrv of motion is the number of cvcles executed in a fixed

et = 23w MTORL ) VA RdAVRAVAL AD WUV LWURUWL Wi VW WIWD VAW WL

period of time, usually 1 second. The amplitude, the maximum displacement from
equilibrium, is also constant in simple harmonic motion.

Vibrations occur in many mechanical and structural systems. If uncontrolled,
vibration can lead to catastrophic situations. Vibrations of machine tools or machine
tool chatter can lead to improper machining of parts. Structural failure can occur
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Figure 1.1 (a) When the block is displaced from equilibrium, the force developed in the
spring as a result of stored potential energy pulls the block back toward its
equilibrium position; (b) when the pendulum is rotated away from the vertical
equilibrium position, the moment of the grovity force about the support pulls the
pendulum back toward the equilibrium position.

x(®)
3

Figure 1.2  Simple hormonic
motion with period T
and amplitude A.

because of large dynamic stresses developed during earthquakes or even wind-
induced vibration. Vibrations induced by an unbalanced helicopter blade while ro-
tating at high speeds can lead to the blade’s failure and catastrophe for the helicopter.
Excessive vibrations of pumps, compressors, turbomachinery, and other industrial
machines can induce vibrations of the surrounding structure, leading to inefficient
operation of the machines while the noise produced can cause human discomfort.

Vibrations can be introduced, with beneficial effects, into systems in which
they would not naturally occur. Vehicle suspension systems are designed to protect
passengers from discomfort when traveling over rough terrain. Vibration isolators
are used to protect structures from excessive forces developed in the operation of
rotating machinery. Cushioning is used in packaging to protect fragile items from
impulsive forces.



CHAPTER 1 . INTRODUCTION

Our study of vibrations begins with the mathematical modeling of vibrating sys-
tems. Solutions to the resulting mathematical problems are obtained and analyzed.
The solutions are used to answer basic questions about the vibrations of a system as
well as to determine how unwanted vibrations can be reduced or how vibrations can
be introduced into a system with beneficial effects. Mathematical modeling leads to
the development of principles governing the behavior of vibrating systems.

1.2 MATHEMATICAL MODELING

Solution of an engineering problem often requires mathematical modeling of a phys-
ical system. The modeling procedure is the same for all engineering disciplines,
although the details of the modeling vary between disciplines. The steps in the
procedure are presented and the details are specialized for vibrations problems.

1.2.1 PROBLEM IDENTIFICATION

The system to be modeled is abstracted from its surroundings, and the effects of
the surroundings are noted. The information to be obtained from the modeling is
specified. Known constants and variable parameters are identified.

1.2.2 ASSUMPTIONS

Assumptions are made to simplify the modeling. If all effects are included in the
modeling of a physical system, the resulting equations are usually so complex that a
mathematical solution is impossible. When assumptions are used, an approximate
physical system is modeled. An approximation should only be made if the solution
to the resulting approximate problem is easier than the solution to the problem if the
assumption were not made and that with the assumption the results of the modeling
are accurate enough for the use they are intended.

Certain implicit assumptions are used in the modeling of most physical systems.
These assumptions are taken for granted and rarely mentioned explicitly. Implicit
assumptions used throughout this book include:

1. Physical properties are continuous functions of spatial variables. This contin-
uum assumption implies that a system can be treated as a continuous piece of
matter.

2. The earth is an inertial reference frame, thus allowing application of Newton’s
laws in a reference frame fixed to the earth.

3. Relativistic effects are ignored.

4. Gravity is the only external force field. The acceleration due to gravity is 9.81
m/s? (32.2 ft/s?) on the surface of the earth.
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5. The systems considered are not subject to nuclear reactions, chemical reactions,
external heat transfer, or any other source of thermal energy.

6. All materials are linear, isotropic, and homogeneous.

7. The usual assumptions of mechanics of material apply (i.e., plane sections re-
main plane for beams in bending, circular sections under torsional loads do not
warp).

Explicit assumptions are those specific to a particular problem. An explicit
assumption is made to eliminate negligible effects from the analysis or to simplify
the problem, while retaining appropriate accuracy. An explicit assumption should
be verified, if possible, on completion of the modeling.

All physical systems are inherently nonlinear. Exact mathematical modeling of
any physical system leads to nonlinear differential equations which often have no
analytical solution. Since exact solutions of linear differential equations can usu-
ally be easily determined, assumptions are often made to linearize the problem. A
linearizing assumption leads either to the removal of nonlinear terms in the gov-
erning equations or to the approximation of nonlinear terms by linear terms. The
exact differential equation governing the oscillations of the pendulum of Fig. 1.1
contains several nonlinear terms. A geometric nonlinearity occurs as a result of
the system’s geometry. If the maximum angular displacement of the pendulum bob
from its equilibrium position is small enough, the nonlinear term in the differential
equation due to the geometric nonlinearity can be approximated by a linear term.
As the pendulum oscillates it encounters friction in the form of aerodynamic drag.
If included in the analysis, the drag force leads to a nonlinear term in the governing
differential equation. In certain cases the drag may be neglected.

When analyzing the results of mathematical modeling, one has to keep in mind
that the mathematical model is only an approximation to the true physical system.
The actual system behavior may be somewhat different than that predicted using
the mathematical model. When aerodynamic drag and all other forms of friction
are neglected in a mathematical model of the pendulum of Fig. 1.1b, then perpetual
motion is predicted for the situation when the pendulum is given an initial displace-
ment and released from rest. Such perpetual motion is impossible. Even though
neglecting aerodynamic drag leads to an incorrect time history of motion, the model
is still useful in predicting the period, frequency, and amplitude of motion.

Once results have been obtained by using a mathematical model, the validity of
all assumptions should be checked.

1.2.3 Basic Laws OF NATURE

A basic law of nature is a physical law that applies to all physical systems regardless
of the material from which the system is constructed. These laws are observable, but
cannot be derived from any more fundamental law. They are empirical. There exist
only a few basic laws of nature: conservation of mass, conservation of momentum,
conservation of energy, and the second and third laws of thermodynamics.
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Conservation of momentum, both linear and angular, is usually the only physical
law that is of significance in application to vibrating systems. Application of con-
servation of mass to vibrations problems is trivial. Applications of the second and
third laws of thermodynamics do not yield any useful information. In the absence
of thermal energy, the principle of conservation of energy reduces to the mechanical
work-energy principle which is derived from Newton’s laws.

1.2.4 CoONSTITUTIVE EQUATIONS

Constitutive equations provide information about the materials of which a system is
made. Different materials behave differently under different conditions. Steel and
rubber behave differently because their constitutive equations have different forms.
While the constitutive equations for steel and aluminum are of the same form, the
constants involved in the equations are different. Constitutive equations are used to
develop force-displacement relationships for mechanical components that are used
in modeling vibrating systems.

1.2.5 GEOMETRIC CONSTRAINTS

Application of geometric constraints is often necessary to complete the mathemat-
ical modeling of an engineering system. Geometric constraints can be in the form
of kinematic relationships between displacement, velocity, and acceleration. When
application of basic laws of nature and constitutive equations lead to differential
equations, the use of geometric constraints is often necessary to formulate the reg-
uisite boundary and initial conditions.

1.2.6 MATHEMATICAL SOLUTION

The mathematical modeling of a physical system results in the formulation of a math-
ematical problem. The modeling is not complete until the appropriate mathematics
is applied and a solution obtained.

The type of mathematics required is different for different types of problems.
Modeling of many statics, dynamics, and mechanics of solids problems leads only
to algebraic equations. Mathematical modeling of vibrations problems leads to
differential equations.

Exact analytical solutions, when they exist, are preferable to numerical or ap-
proximate solutions. Exact solutions are available for many linear problems, but for
only a few nonlinear problems.

1.2.7 PHYSICAL INTERPRETATION OF RESULTS

After the mathematical solution is complete, the results are formulated. Physical
mterpretation of the results is an important final step in the modeling procedure. In
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certain situations this may involve drawing general conclusions from the mathemat-
ical solution, it may involve development of design curves, or it may require only
simple arithmetic to arrive at a conclusion for the specific problem.

3.3 GENERALIZED COORDINATES

Mathematical modeling of a physical system requires the selection of a set of vari-
ables that describes the behavior of the system. Dependent variables are the variables
that describe the physical behavior of the system. Examples of dependent variables
are displacement of a particle in a dynamic system, the components of the velocity
vector in a fluid flow problem, the temperature in a heat transfer problem, or the
electric current in an AC circuit problem. Independent variables are the variables
with which the dependent variables change. That is, the dependent variables are
functions of the independent variables. An independent variable for most dynamic
systems and electric circuit problems is time. The temperature distribution in a heat
transfer problem may be a function of spatial position as well as time. The dependent
variables in most vibrations problems are the displacements of specified particles
from the system’s equilibrium position while time is the independent variable.

The number of degrees of freedom for a system is the number of kinematically
independent variables necessary to completely describe the motion of every particle
in the system. Any set of n kinematically independent coordinates for a system
with n degrees of freedom is called a set of generalized coordinates. The choice of
generalized coordinates used to describe the motion of the system is not unique. The
generalized coordinates are the dependent variables for a vibrations problem and are
functions of the independent variable, time. If the time history of the generalized
coordinates is known, the displacement, velocity, and acceleration of any particle in
the system can be determined by using kinematics.

A single particle free to move in space has three degrees of freedom, and a
suitable choice of generalized coordinates is the cartesian coordinates (x, y, z) of
the particle with respect to a fixed reference frame. As the particle moves in space,
its position is a function of time. An unrestrained rigid body has six degrees of
freedom. A suitable choice for a system of generalized coordinates is the cartesian
coordinates of the body’s center of mass and the angular measure of an axis fixed to
the body with respect to each of the cartesian coordinate axes fixed in space. The
number of degrees of freedom is reduced if a particle or a rigid body is subject to
constraints. A particle constrained to move in a plane has at most two degrees of

freedom, while a rigid body undergoing planar motion has at most three degrees of
freedom.

Each of the systems of Fig. 1.3 is in equilibrium in the position shown and undergoes
planar motion. All bodies are rigid. Specify, for each system, the number of degrees of
freedom and recommend a set of generalized coordinates.
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Figure 1.3  Systems for Example 1.1. One possible choice of a set of generalized
coordinates is illustrated for each system.

Solution:

(a) The system has one degree of freedom. If 8, the clockwise angular displacement
of the bar from the system’s equilibrium position, is chosen as the generalized coordinate,
then a particle initially a distance / from the fixed support has a horizontal position ! cos 8
and a vertical displacement / sin .

(b) The system has two degrees of freedom, assuming it is constrained from side-
to-side motion. If 9, the clockwise angular displacement of the bar measured from its
equilibrium position, and x, the displacement of the bar’s mass center measured from
equilibrium, are chosen as generalized coordinates, then the displacement of a particle a
distance d to the right of the mass center is x -+ d sin @. Another choice for the general-
ized coordinates is x;, the displacement of the right end of the bar, and x5, the displace-
ment of the left end of the bar, both measured from equilibrium.

(c) The system has one degree of freedom. If 6, the clockwise angular displace-
ment of the pulley measured from the system’s equilibrium position, is chosen as the
generalized coordinate, then, assuming no slip between the pulley and the cables, the
displacement of the block of mass m, is r6 upward and the displacement of the block
of mass m; is 2r6 downward.

(d) The system has three degrees of freedom. Since an elastic element is placed
between the pulley and the blocks, no kinematic relationship exists between the
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displacement of either of the blocks and the angular rotation of the pulley. A suit-
able choice of generalized coordinates is 6, the clockwise angular rotation of the pulley,
x1, the upward displacement of the block of mass 7, and x,, the downward displace-
ment of the block of mass m, all measured from the equilibrium position of the system.

The systems of Example 1.1 are assumed to be composed of rigid bodies. The
relative displacement of two particles on a rigid body remains fixed as motion occurs.
Particles in an elastic body may move relative to one another as motion occurs.
Particles A and C lie along the neutral axis of the cantilever beam of Fig. 1.4 while
particle B is in the cross section obtained by passing a perpendicular plane through
the neutral axis at A. Because of the assumption that plane sections remain plane
during displacement, the displacements of particles A and B are the same. However
the displacement of particle C relative to particle A depends on the loading of the
beam. Thus the displacements of A and C are kinematically independent. Since A
and C represent arbitrary particles on the beam’s neutral axis, it is inferred that there
is no kinematic relationship between the displacements of any two particles along
the neutral axis. Since there are an infinite number of particles along the neutral
axis, the cantilever beam has an infinite number of degrees of freedom. In this case
an independent spatial variable x, the distance along the neutral axis to a particle
when the beam is in equilibrium, is defined. The dependent variable, displacement,
is a function of the independent variables x and time.

Figure 1.4  The displacements of particles A and B
are related through the assumptions of
elementary beam theory. However, no
kinematic relationship exists between
the displacements of particles A and

C. Thus the cantilever beam is
modeled as a continuous system.

1.4 ReviEw oF DYNAMICS

A brief review of rigid-body dynamics is presented to familiarize the reader with
notation and methods. The reader is also encouraged to review the basic concepts of
mechanics of solids and the solution of second-order ordinary differential equations.
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1.4.1T KINEMATICS

The location of a particle on a rigid body at any instant of time can be referenced
to a fixed cartesian reference frame, as shown in Fig. 1.5. The particle’s position

vector is given by
r=x(i+y@®)j+z()k [1.1]

from which the particle’s velocity and acceleration are determined

V= % =x@Wi+y@)j+ z(0)k [1.2]
a= % =xX@i+yO)j+z@k [1.3]

where a dot above a quantity represents differentiation of that quantity with respect

to time.

In general, a rigid body is rotating and translating. Assume that at an arbitrary
instant of time the rigid body is rotating about an axis defined by a unit vector e with
an angular speed w. The angular velocity vector is

w = we [1.4]

from which the angular acceleration vector is calculated
o= dw
T odt

Consider two particles, A and B, fixed to the same rigid body. Let rg,4 be the
position vector of B relative to A. The velocity of B relative to A is

[1.5]

VB/A = @ X Tg/a [1.6]

r=xi+yj+zk

P(x,y,2)

Figure 1.5  Position vector of a
particle, P, on a rigid
body, in a cartesian

: reference frame.
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The acceleration of B relative to A is
Qg4 = o XTg/a+ ® X (W XTg/4) [1.71

Consider a particle on a rigid body rotating about a fixed axis with an angular
displacement §, measured in a plane normal to the axis of rotation. Every particle
on the rigid body travels on a circle centered on the axis of rotation. The velocity of
a point of the rigid body, a distance r from the axis of rotation, is

v = réi, [1.8]

where i, is a unit vector instantaneously tangent to the circle. The particle’s accel-
eration is given by

a = rfi, — ro%i, [1.9]

where i, is a unit vector instantaneously normal to the circle directed away from the
axis of rotation, as shown in Fig. 1.6.

Y
Y

(@ ®

Y

(c)

Figure *.6 {a) The particle P is on a rigid body rotating about a constant axis
defined by the unit vector, @. P moves in a circle of radius r about the
axis. in is instantaneously normal to the circle, directed away from the
axis of rotation. i is instantaneously tangent fo the circle, in the
direction of rotation; (b) v, = réi; (c) @p = réiy — r6? i,.
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1.4.2 Basic PRINCIPLES OF RiGID-BoDY KINETICS
FOR PLANAR MOTION

A rigid body undergoes planar motion when its mass center moves on a plane and
the body rotates about a fixed axis. The principles governing rigid-body kinetics of
a body undergoing planar motion are obtained by applying the basic laws of particle
kinetics to a system of particles and taking the limit as the number of particles in
the system grows large. Applying Newton’s second law for a particle and using the
limiting process, it can be shown that for a rigid body in plane motion

):F=m5 [1.10]

and ZM(}:I_O! [1.11]

where I is the moment of inertia of the body about an axis through its mass center
and parallel to the axis of rotation. In general, a bar above a quantity refers to the
quantity being evaluated for the body’s mass center, G.

Recall that a system of forces and moments acting on arigid body can be replaced
by a force equal to the resultant of the force system applied at any point on the body
and a moment equal to the resultant moment of the system about the point where the
resultant force is applied. The resuitant force and moment act equivalently to the
original system of forces and moments. Thus Egs. (1.10) and (1.11) imply that the
system of external forces and moments acting on a rigid body is equivalent to a force
equal to ma applied at the body’s mass center and a resultant moment equal to Jo.
This latter resultant system is called the system of effective forces. The equivalence
of the external forces and the effective forces is illustrated in Fig. 1.7.

The previous discussion suggests the solution procedure for rigid-body kinetics
problems that is used throughout this book. Two free-body diagrams are drawn for
arigid body. One free-body diagram shows all external forces and moments acting
on the rigid body. The second free-body diagram shows the effective forces. If

ma
M,
Ia '
F,
F;
M;
External forces Effective forces

Figure 1.7  The system of external forces and moments
acting on a rigid body in plane motion is
equivalent to a force ma applied at the body's
mass center and a moment la.
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the problem involves a system of rigid bodies, it may be possible to draw a single
free-body diagram showing the external forces acting on the system of rigid bodies
and one free-body diagram showing the effective forces of all of the rigid bodies.

Equations (1.10) and (1.11) are equivalent to

ZFexl=ZFeff [1.12]

and ZMON = ZMO,ﬁ [7.13]
taken about any point O on the rigid body.

The slender rod (I = liszz) AC of Fig. 1.8 of mass m is pinned at B and held
horizontally by a cable at C. Determine the angular acceleration of the bar immediately
after the cable is cut.
Solution:
Immediately after the cable is cut, the angular velocity of the haris zero. Equation (1.9)
is used to determine the acceleration of the mass center in tt%j of the bar’s angular
acceleration, o, a = (L/4)x

Summing moments abo@, using the free-body diagrams of Fig. 1.8b, gives

2 Ms.=3 Ma

mé—- m£a L +1mL2a
84 =\"3%)\7) " 12

12
a= =L
7L
A ~—\B D
i c
e L . 3L ,
: ¥ T 1
(a)
CEE— D = | 3)
]R l l 1
mg ~—mL2a
b= L —f L —] L 2
4 ) "2
External forces Effective forces

O]

Figure 1.8 (a) Slender rod of Example 1.2 is pinned at B and held by cable ot ¢;
(b) free-body diagrams immediately after cable is cut.



Administrator
Note
here acceleration of mass center w.r.t B is angular acceleration * distance.

Administrator
Note
cutting of cable induces acceleration
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petermine the angular acceleration of the pulley of Fig. 1.9.

Solution:

Consider the system of rigid bodies composed of the pulley and the two blocks. If « is
the counterclockwise angular acceleration of the pulley, then, assuming no slip between
the pulley and the cables, block A has a downward acceleration of r4a and block B has

an upward acceleration of rpa.
Summing moments about the center of the pulley, neglecting axle friction in the
pulley, and using the free-body diagrams of Fig. 1.9b yields

L) Ll
+ +
2 Mou=3_ Mou
magra —mpgrg = Ipa + maria + mpria

Substituting given values leads to & = 7.55 rad/s2.

Ta
Ts ry=30cm
rB=20crn
I, = 0.6kg - m?

mg=3kg

(] [

(a)

P
(@) (c

|
mug mgg myr o mprpa
External forces Effective forces

(b)

Figure 1.9 (a) System of Example 1.3; (b} free-body
diagrams of pulley and blocks at an arbitrary
time.

Example
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1.4.3 PRINCIPLE OF WORK-ENERGY

The kinetic energy of a rigid body is

= im#® + 1 1e? [1.14]

The work done by a force, F, acting on a rigid body as the point of application
of the force travels between two points described by position vectors r, and rp is

rs
UA_,B=/ F.dr [1.15]

TA
where dr is a differential position vector in the direction of motion. The work done
by a moment acting on a rigid body in planar motion is
]
Upsp = Mde [1.16]
6a
If the work of a force is independent of the path taken from A to B, the force
is called conservative. Examples of conservative forces are spring forces, gravity
forces, and normal forces. A potential energy function, V (r), can be defined for
conservative forces. The work done by a conservative force can be expressed as a
difference in potential energies

UA-—->B=VA_VB [1.17]

Since the system of external forces is equivalent to the system of effective forces,
the total work done on a rigid body in planar motion is

rs 93 -

T4 6

When integrated, the right-hand side of Eq. (1.18) is equal to the difference in the
kinetic energy of the rigid body between A and B. Thus Eq. (1.18) yields the
principle of work-energy,

TB_TA=UA—)B ['o‘,l

If all forces are conservative, Eq. (1.17) is used in Eq. (1.19) and the result is
the principle of conservation of energy

Ty 4+ Va=T5+ Vs [1.20]

Express the kinetic energy of each of the systems of Fig. 1.3 in terms of the specified
generalized coordinates. The slender bars of Fig. 1.3a and b are uniform and of mass m
and length L.

Soivtion:
(a) From Eq. (1.6) the velocity of the mass center is expressed as

é

N~

v=
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The kinetic energy is calculated from Eq. (1.14) as

T = %m (%é)z + % (l—lz-mLZéz) = émmé2
(b) The kinetic energy of the two-degree-of-freedom system is expressed as
T = imi? + L (LmL2%?)
(¢) Thekinetic energy of the system is the sum of the kinetic energies of the three bodies:
T = 11,62 + 1m (r6)? + 1my(2r6)? = 5, + myr? + 4myr?)6?
(d) The kinetic energy of the three-degree-of-freedom system is

V72 1, 22, 1
T = 11,07 + jmyx} + smax}

1.4.4 PRINCIPLE OF IMPULSE AND MOMENTUM

The impulse of the force F between ¢, and f; is defined as
L
1]

The total angular impulse of a system of forces and moments about a point O is

n
Joo., = f Y Modt [1.22]
n

The system momenta at a given time are defined by the system’s linear momen-
tum

=mv [1.23]

and its angular momentum about its mass center

H; = /o [1.24]

Integrating Eqs. (1.10) and (1.11) between arbitrary times ¢, and £, leads to
Li+1i,2=L, [1.25]
and HG] + '](;[__}2 — Ilc;2 [' -26]
Using an equivalent force system argument similar to that used to obtain Eqgs.
(1.12) and (1.13), it is deduced from Egs. (1.25) and (1.26) that the system of
applied impulses is equivalent to the difference between the system momenta at t;

and the system momenta at £,. This form of the principle of impulse and momentum,
convenient for problem solution, is illustrated in Fig. 1.10.
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[? Fl dt
my
2 M d 2
- mv,
I wy I-wl
" M, dt /
fz
F2 dt
" F, dt
External impulses applled _ System momenta - System momenta
between ¢, and ¢, at t, at t,
Figure 1.10 lllustration of the principle of impulse and momentum.

The slender rod of mass m of Fig. 1.11 is swinging through a vertical position with an
angular velocity w) whenitis struck at A by a particle of mass m /4 moving with a velocity
v,. Upon impact the particle sticks to the bar. Determine (a) the angular velocity of the
bar and particle immediately after impact, (b) the maximum angle through which the
bar and particle will swing after impact, and (c) the angular acceleration of the bar and
particle when they reach the maximum angle.

Solution:

(a) Let #; occur immediately before impact and #, occur immediately after impact.
Consider the bar and the particle as a system. During the time of impact, the only
external impulses are due to gravity and the reactions at the pin support. The principle
of impulse and momentum is used in the following form:

External angular Angular momentum Angular momentum
impulses about O | = about O - about O
between ¢ and #, att, at

Using the momentum diagrams of Fig. 1.115, this becomes
L L m 1
0=(m= - —mL%w,
(mzwz) (2) + (400)2) (@) + smL
L L m 1 2

which is solved to yield
4L%w; — 3vpa
4L2 + 3q?

(b) Let 13 be the time when the bar and particle assembly attains its maximum angle,
Gravity forces are the only external forces that do work; hence conservation of energy

a}z:
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[R, a
f
12
R, dt
b]T J R () M
L L
m a m= w, m 5 @,
4 l
2 = i —_— ]
Up O Ale l j; ) mgdt ] —_—
m m
W ikdat) —y
4 p
\ m l ftz _ﬂi g dt 4
1 4
\_/ \_/ ~ /. y .
‘_/ 5 mL%w, = mL%w,
@
(a) External impulses = System momenta — System momenta
during impact after impact before impact
b)
R,
RX
| nye [/
| 2 :
| - m [
Omax - ?aa Onax
mg
il 1
4 4 i J -1—2- mLza
External forces Effective forces
(e)

Figure 1.11 (a) Slender rod of Example 1.5 is swinging through vertical with angular velocity
@1 when struck at A by parficle moving with horizontal velocity ve; (b) impulse
and momentum diagrams between the time immediately before impact and the
time immediately after impact; (c) free-body diagrams of bar as it swings through

maximum angle.

applies between 1, and #;. Thus from Eq. (1.20)
L4+ Va=Ta+Vs

The pptential energy of a gravity force is the magnitude of the force times the distance
1ts point of application is above a horizontal datum plane. Choosing the datum as the
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horizontal plane through the support, using Eq. (1.14) for the kinetic energy of a rigid
body, and noting 73 = 0 yields
L 1

1 | 1m L
= = - L2 2 - 2 _ = _T5
2m(2w2) +212m w2+24(aw2) mg— 18

L m
= —mgi COS Bmax — Zga €OS Omax

which is solved to yield
_ (4L? + 3a?)w?
_ 1 - 2
e = 008 [1 g(12L + 6a)

(¢) The bar attains its maximum angle at #3, w3 = 0. Summing moments about O
using the free-body diagrams of Fig. 1.11c gives

Z }20“!—7— Z A}Oeﬂ
L

—(mg) (—2- sin Bmax) - (ﬂf-) (a sin 6,,)

N GRE

which is solved to yield

(6L + 3a)g Sin Omax
N 4L? + 3a?

1.5 CLASSIFICATION OF VIBRATION

The method of analysis used to solve the mathematical problem resulting from a
mathematical model of a vibrating system depends on a number of factors. A system
with a finite number of degrees of freedom is a discrete system. The vibrations of
a one-degree-of-freedom system are governed by an ordinary differential equation
in which time is the independent variable and the chosen generalized coordinate is
the dependent variable. The vibrations of a multi-degree-of-freedom system (MDOF
system) are governed by a system of n differential equations, where n is the number of
degrees of freedom. The dependent variables are the chosen generalized coordinates
while time is the independent variable. The differential equations for an MDOF
system are, in general, coupled.

A system with an infinite number of degrees of freedom is called a continuous
system or distributed parameter system. The vibrations of a continuous system
are governed by partial differential equations. The displacement of a particle is
a continuous function of time and the particle’s location when the system is in
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equilibrium. Spatial coordinates are used to d_escrib? the dis_tn'bution of inertia when
the system is in equilibrium. All systems are, in reahty_, continuous systems. Particle
and rigid body assumptions are often made to approximate a continuous system by
a discrete system. A vibrations problem may be formulated for a continuous system
but a discrete approximation method like the finite-element method is used to solve
the problem.

A system is undergoing free vibrations when the vibrations occur in the absence
of an external excitation. The vibrations are initiated by developing an initial kinetic
energy or potential energy in the system. In the absence of nonconservative forces,
free vibrations sustain themselves and are periodic. Vibrations which occur in the
presence of an external excitation are called forced vibrations. If the excitation force
is periodic the excitation is said to be harmonic. Forced nonperiodic vibrations are
called transient vibrations.

A system is /inear if its motion is governed by linear differential equations. A
system is nonlinear if its motion is governed by nonlinear differential equations.
Under certain conditions the vibrations of a nonlinear system subject to a periodic
excitation may not be periodic. Such systems are said to be chaotic.

If the excitation force is known at all instants of time, the excitation is said
to be deterministic. If the exXcitation force is unknown, but averages and standard
deviations are known, the excitation is said to be random. In this case the resulting
vibrations are aiso random, and cannot be determined exactly at any instant of time.

1.6 SPRINGS

1.6.1 INTRODUCTION

A spring is a flexible mechanical link between two particles in a mechanical system.
In reality a spring itself is a continuous system. However, the inertia of the spring is
usually small compared to other elements in the mechanical system and is neglected.
Under this assumption the force applied to each end of the spring is the same.

The length of a spring when it is not subject to external forces is called its
unstretched length. Since the spring is made of a flexible material, the applied force
F that must be applied to the spring to change its length by x is some continuous
function of x,

F — f(x) [|o27l

The appropriate form of f(x) is determined by using the constitutive equation for
the spring’s material. Since f(x) is infinitely differentiable at x = 0, it can be
expanded by a Taylor series about x = 0 (a MacLaurin expansion):

F=ko+ kix + kpx* + kax> + - - - [1.28]

Since x is the spring’s change in length from its unstretched length, when x = 0,
F = 0. Thus kg = 0. When x is positive, the spring is in tension. When x is
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negative, the spring is in compression. Many materials have the same properties
in tension and compression. That is, if a tensile force F is required to lengthen
the spring by 8, then a compressive force of the same magnitude F is required to
shorten the spring by 8. For these materials, f(x) must be an odd function and
cannot contain even powers. Thus Eq. (1.28) becomes

F=kix+ksx®+ksx’ +--- [1.20]

All springs are inherently nonlinear. However in many situations x is small enough
that the nonlinear terms of Eq. (1.29) are small compared with k1x. A linear spring
obeys a force-displacement law of

F = kx [1.30]

where k is called the spring stiffness or spring constant and has dimensions of force
per length.

The force in a spring whose force-displacement law is given by Eq. (1.29) is
conservative; the work done by the spring force between two arbitrary displacements
is independent of the path taken between the two displacements. Thus a potential
energy function exists and for a linear spring is determined as

Vix) = %kx2 [1.31]

A torsional spring is a link in a mechanical system where application of a torque
leads to an angular displacement between the ends of the torsional spring. A linear
torsional spring has a relationship between an applied moment M and the angular
displacement 6 of

M =kb [1.32]

where the forsional stiffness k, has dimensions of force times length. The potential
energy function for a torsional spring is

V = 1k6? [1.33]

The numerical values for the parameters in the system of Fig. 1.3c are m; = 20 kg,
my = 10kg, I, = 0.4kg - m?, r = 10 cm, k = 1300 N/m. (a) Determine the potential
energy in the spring when the system is in equilibrium. (b) Develop an expression for the
potential energy in the spring when the pulley is rotated 8 clockwise from the equilibrium
position.
Solution:

(a) Let A be the static deflection of the spring, its change in length from its un-
stretched length when the system is in equilibrium. The static deflection is determined
by applying the equations of equilibrium to the free-body diagram of Fig. 1.12.

3" ito =0

mig(r) + kAQ2r) —myg2r) =0
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m,g
2r
R
{ m28| Figure 1.12  Free- diagram of static equilibrium
I 9 g eq
| position of system of Fig. 1.3c and
mg T kA Example 1.6.

m
A @ma—m), _ [210kg) — 25 kg] (9.81 s—z)
* 2 (1300 E)

m
= —0.0188 m = —18.8 mm

The free-body diagram shows that it was assumed that the spring is compressed when the
system is in equilibrium. The negative sign indicates that the spring is actually stretched.
Its potential energy when the system is in equilibrium is

1 N
V= lch2 =~ (1300 —-) (—0.0188 m)> = 0.230N-m
2 2 m

(b) When the pulley is rotated through a clockwise angle 6 from the system’s
equilibrium position, the spring is shortened in length 2r@ from its length when the
system is in equilibrium. Thus the total change in length of the spring is

x=A+2r6
and the potential energy in the spring is
V = Lk(A +2r9)?

1 N
=3 (1300 In') [-0.0188 m + 2(0.1 m)8)?

= 0.230 ~ 4.890 + 260> N - m

1.6.2 HEewLicaL COIL SPRINGS

The helical coil spring is used in applications such as industrial machines and vehicle
Suspension systems. Consider a spring manufactured from a rod of circular cross
Section of diameter D. The shear modulus of the rod is G. The rod is formed into a
coil of N turns of radius r. It is assumed that the coil radius is much larger than the
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F ~ s T~ Fr Figure 1.13 Frge-body diagram of cut
W coil spring exposes resultant
F shear force and resultant
forque.

radius of the rod and that the normal to the plane of one coil nearly coincides with
the axis of the spring.

Consider a helical coil spring when subject to an axial load F. Imagine cutting
the rod with a knife at an arbitrary location in a coil, slicing the spring in two
sections. The cut exposes an internal shear force F and an internal resisting torque
Fr, asillustrated in Fig. 1.13. Assuming elastic behavior, the shear stress due to the
resisting torque varies linearly with distance from the center of the rod to a maximum
of

FrD 16Fr

max =7 T wD
where J = (7 D*)/32 is the polar moment of inertia of the rod. The shear stress
due to the shear force varies nonlinearly with distance from the neutral axis. For
r/D > 1 the maximum shear stress due to the internal shear force is much less than
the maximum shear stress due to the resisting torque, and its effect is neglected.
Principles of mechanics of materials can be used to show that the total change
in length of the spring due to an applied force F is
AP N [1.35]
X = —— .
GD*
Comparing Eq. (1.35) with Eq. (1.30) leads to the conclusion that under the assump-
tions stated a helical coil spring can be modeled as a linear spring of stiffness

_ GD*
" 64Nr3

[1.3a]

k [1.36]

1.7|

A tightly wound spring is made from a 20-mm-diameter bar of 0.2% C-hardened steel
(G = 80 x 10° N/m?). The coil diameter is 20 cm. The spring has 30 coils. What is the
largest force that can be applied such that the elastic strength in shear of 220 x 10° N/m?
is not exceeded? What is the change in length of the spring when this force is applied?

Assuming the shear stress due to the shear force is negligible, the maximum shear stress
in the spring when a force F is applied is

r— FrD — F(O.l m)(0.02 m)

_ 4
27 =6.37 x 10°F

2n 4
Thus the maximum allowable force is

Tmax 3
Fmax = ——————— — 345 x 10° N
6.37 x 10¢ 3
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The stiffness of this spring is calculated by using Eq. 1.36:
(80 x 10° N/m?)(0.02 m)*
=TT (69H(30)(0.1 m)>
The total change in length of the spring due to application of the maximum allowable
force 1S

N
= 6.67 x 10° —
m

=0.517m

acF
Tk

1.6.3 ELASTIC ELEMENTS AS SPRINGS

Application of a force F to the block of mass m of Fig. 1.14 results in a displacement
x. The block is attached to a uniform thin rod of elastic modulus E, unstretched
length L, and cross-sectional area A. Application of the force results in a uniform
normal strain in the rod of

F X
R [1.371
*TAET L

E
The total strain energy developed due to the work of the force in stretching the rod
is

S=31EALe* = jFx [1.38]

If the force is suddenly removed, the block will oscillate about its equilibrium posi-
tion. The initial strain energy is converted to kinetic energy and vice versa, a process
which continues indefinitely. If the mass of the rod is small compared to the mass
of the block, then inertia of the rod is negligible and the rod behaves as a discrete
spring. From strength of materials, the force F required to change the length of the
rod by x is

= Tx [' .3’]
A comparison of Eq. (1.39) with Eq. (1.30) implies that the stiffness of the rod is
AE
k=— [1.40]
L
AE p— X
7 £
z m
F— L s

Figure 1.14  Longitudindl vibrations of mass attached
to end of uniform thin rod can be modeled
as a linear mass-spring system with k =
AE/L.
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The motion of a particle attached to an elastic element can be modeled as a par-
ticle attached to a linear spring, provided the mass of the element is small compared
to the mass of the particle and a linear relationship between force and displacement
exists for the element. In Fig. 1.15 a particle of mass m is attached to the midspan
of a simply supported beam of length L, elastic modulus E, and cross-sectional
moment of inertia /. The transverse displacement of the midspan of the beam due
to an applied static load F is

L3
~ 48EI
Thus a linear relationship exists between transverse displacement and static load.
Hence if the mass of the beam is small, the vibrations of the particle can be modeled
as the vertical motion of a particle attached to a spring of stiffness
48E]

L3

In general the transverse vibrations of a particle attached to a beam can be
modeled as those of a particle attached to a linear spring. Let w(z) represent the
displacement function of the beam due to a concentrated unit load applied at z = a.
Then the displacement at z = a due to a load F applied at z = a is

x [1.41]

k=

[1.a42]

x=w@F [1.43]
Then the spring stiffness for a particle placed at z = a is
1
k = [1.44
w(a) :
m
Ay | A
| L2 I L2 —
(a)
i = BEL
L3

()

Figure 1.15  The transverse vibrations of a block attached to a
simply supported beam (a) are modeled by the
mass-spring system of (b}, provided the mass of the
beam is small compared to the mass of the block.
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J,.G

g:: Figure 1.16  The torsional stiffness

fe— L = of the shaft is JG/L.

Torsional oscillations occur in the system of Fig. 1.16. A thin disk of mass
moment of inertia I is attached to a circular shaft of length L, shear modulus G,
and polar moment of inertia J. When the disk is rotated through an angle 6 from its
equilibrium position, a moment

M=—28 [1.45]

develops between the disk and the shaft. Thus, if the polar mass moment of inertia
of the shaft is small compared with I, then the shaft acts as a torsional spring of

stiffness
JG
ky = T [1.a6]

A 200-kg machine is attached to the end of a cantilever beam of length L = 2.5 m, |Exampl
elastic modulus E = 200 x 10° N/m?, and cross-sectional moment of inertia 1.8 x 1076

m*. Assuming the mass of the beam is small compared to the mass of the machine, what

is the stiffness of the beam?

Solution:

From Table D.2 the deflection equation for a cantilever beam with a concentrated unit

loadatz = L is
1 1, L,
w(z)——EI( 6z +§z)

The deflection at the end of the beam is
1 L} L L3
Ly=—[-=+21?)=—
w(k) EI( 6 2 ) 3EI
The stiffness of the cantilever beam at its end is
3EI  3(200 x 10° N/m?) (1.8 x 1075 m*)

N
k= = = 4 "
E 25 m)? 6.91 x 10 =

1.6.4 SpPRINGS IN COMBINATION

Often, in applications, springs are placed in combination. It is convenient, for pur-
pOSCS of modeling and analysis, to replace the combination of springs by a single
Spring of an equivalent stiffness, keq. The equivalent stiffness is determined such
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that the system with a combination of springs has the same displacement, x, as the
equivalent system when both systems are subject to the same force, F. A model one-
degree-of-freedom system consisting of a block attached to a spring of an equivalent
stiffness is illustrated in Fig. 1.17. The resultant force acting on the block is

F = Kkegx [1.47]

The springs in the system of Fig. 1.18 are in parallel. The displacement of each
spring in the system is the same, but the resultant force acting on the block is the
sum of the forces developed in the parallel springs. If x is the displacement of the
block, then the force developed in the ith spring is k; x and the resultant is

n
F=k1x+k2x+'-~+k,.x=(2k,-)x [1.a8]
i=1
Equating the forces from Eqs. (1.47) and (1.48) leads to
n
ke =Y _ ki [1.a9]
i=1

The springs in Fig. 1.19 are in series. The force developed in each spring is the
same and equal to the force acting on the block. The displacement of the block is
the sum of the changes in length of the springs in the series combination. If x; is the
change in length of the ith spring, then

n
x=x1+x2+---+x,,=2x,- [1.50]
i=1

—>x Figure 1.17  Combination of springs is replaced by a single
k spring such that the behavior of the system with

eq
g—'\/\/\/— m an equivalent spring is identical to the behavior of
the original system.

ALETITRAILALARRRRRRRRRNRRRAY
3

Figure 1.18 FEachofthe  Figure 1.19  The n springs in the series combination
n springs in parallel has the same  each have the same force, but the total displacement is the
displacement, but the resultant sum of the changes in length of the series springs.

force acting on the block is the

sum of the spring forces.
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gince the force is the same in each spring, x; = F/k; and Eq. (1.50) becomes

“\F
X=ZE [1.51]
i=1

Since the series combination is to be replaced by a spring of an equivalent stiffness,
Eq. (1.47) is used in Eq. (1.51), leading to

! [1.52]

keq = 1
i=1 ki

Electrical circuit components can also be placed in series and parallel and the
effect of the combination replaced by a single component with an equivalent value.
The equivalent capacitance of capacitors in parallel or series is calculated like that
of springs in parallel or series. The equivalent resistance of resistors in series is the

sum of the resistances, whereas the equivalent resistance of resistors in parallel is
calculated by using an equation similar to Eq. (1.52).

Model each of the systems of Fig. 1.20 by a mass attached to a single spring of an
equivalent stiffness. The system of Fig. 1.20c is to be modeled by a disk attacked to a
torsional spring of an equivalent stiffness.

Solvtion:

(a) The steps involved in modeling the system of Fig. 1.20a by the system of Fig.
1.17 are shown in Fig. 1.21. Equation (1.49) is used to replace the two parallel springs
by an equivalent spring of stiffness 3k. The three springs on the left of the mass are then
in series and Eq. (1.52) is used to obtain an equivalent stiffness.

If the mass in Fig. 1.21b is given a displacement x to the right, then the spring on
the left of the mass will increase in length by x, while the spring on the right of the mass
will decrease in length by x. Thus each spring will exert a force to the left on the mass.
The spring forces add; the springs behave as if they are in parallel. Hence Eq. (1.49) is
used to replace these springs by the equivalent spring shown in Fig. 1.21c.

(b) The deflection of the simply supported beam due to a unit load at x = 2m is
calculated using Table D.2

: 2L\ 4L
=2 = —_— | =
iz =2m) "’( 3 ) 2431

from which the equivalent stiffness is obtained
_ 243EI _ 243(210 x 10° N/m?*)(5 x 10~% m*)
413 4(3 m)3

The displacement of the block of mass m equals the displacement of the beam at the
location where the spring is attached plus the change in length of the spring. Hence the

ki

N
=236 x 108 —
m
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2k
k 3k 2k
m 'V \Y} \Y; E
k
(a)
. 2m , im | E =210 X 10° N/m?
0 1
il I=5x%10"* m?
”@” gk S 3 k=1x108N/m
m
(b)
= . 1 ____ AB: Steel shaft
30 cm T 20 cm with aluminum core
__________________ PN 1L S
% In f2 17 BC: Hollow steel
a- ————————————————————— 1 shaft
A B C
ry = 20 mm r; =18 mm G, = 80 x 10° N/m?
ry = 25 mm ry = 30 mm G, = 40 X 10° N/m?

hy = 20 mm
_________ hy = 25 mm

h 1
mo| I i

E = 210 x 10° N/m?

et
T
S
1

(&)

Figure 1.20 Systems for Exomple 1.9.

beam and spring act as a series combination. Equation (1.52) is used to calculate the
equivalent stiffness

1 ;N
keg = i : =7.02x 10" ~

336 < 10° N/m T 1 x 10° N/m

(c) The aluminum core of shaft AB is rigidly bonded to the steel shell. Thus the
angular rotation at B is the same for both materials. The total resisting torque transmitted
to section BC is the sum of the torque developed in the aluminum core and the torque
developed in the steel shell. Thus the aluminum core and steel shell of shaft AB behave
as two torsional springs in parallel. The resisting torque in shaft AB is the same as the
resisting torque in shaft BC. The angular displacement at C is the angular displacement
of B plus the angular displacement of C relative to B. Thus shafts A B and BC behave
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—x
k 3k 3k 2k
g,r\/\/\,—o—’vv\r*’\/\/\f- m —-’\N\/—E
(a)
e X
3k/S 2k
3N m —AWE
(b)

Figure 1.21 Steps in replacing
fo— X the combination of
13k /5 springs of Fig. 1.20a
a—'\/\/\l— m by a single spring of
an equivalent

(o) stiffness.

as two torsional springs in series. In view of the preceding discussion and using Eqgs.
(1.49) and (1.52), the equivalent stiffness of shaft AC is

1

kg = —7 i
—_— +

kt,m., + kt,m,, ktsc

where the torsional stiffness of a shaft is k; = JG/L and

r 4 o N
25004 m) (40x10 mz)

N-m
ky, = =33 10*
“ABu 03m 3-35> 10 rad
x 4 _ 4 o N
.3 [(0.05 m) (0.04m)](80x10 m2) Coesn ot N
42 0.3 m T rad
T 4 _ 4 o N
35 [0:06 m)* — (0.036 m)*] (80 x 10 mz) JN-m
kige = =443 x 10° ——
0.2m rad

Substitution of these values into the equation for keq gives

N-m
rad
(d) Under the assumption that the rate of taper of the bar is small the following

mechar.lics of materials equation is used to calculate the change in length of the bar due
to a unit load applied at its end:

ki, = 1.01 x 10?

L 4z

A= —_—
o AE
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where the cross-sectional area A is given by

hy—h
A(z)=( 2 lz+h1)b
Substituting and integrating yields
L h;
=————In{=)=327x10"%
A= Ebtn =) “(h,) x 107 m

Since A is the displacement of the end of the bar due to a unit axial load, the displacement
due to an axial load of magnitude F is x = FA. Thus

k=—1—-=3.06><107§
A m

1.6.5 INERTIA EFFECTS OF SPRINGS

When a force is applied to displace the block of Fig. 1.17 from its equilibrium
position, the work done by the force is converted into strain energy stored in the
spring. If the block is held in this position and then released, the strain energy is
converted to kinetic energy of both the block and the spring. If the mass of the spring
is much smaller than the mass of the block, its kinetic energy is negligible. In this
case the inertia of the spring has negligible effect on the motion of the block, and
the system is modeled using one degree of ffeedom. The generalized coordinate is
usually chosen as the displacement of the blpck.

If the mass of the spring is comparable to the mass of the block, the one-degree-
of-freedom assumption is not valid. The particles along the axis of the spring are
kinematically independent from each other and from the block. The spring should
be modeled as a continuous system. '

If the mass of the spring is much smaller than the mass of the block, but not
negligible, a reasonable one-degree-of-freedom approximation can be made by ap-
proximating the spring’s inertia effects. The actual system is modeled by the ideal
system of Fig. 1.22. The spring in Fig. 1.22 is massless. The mass of the block in
Fig. 1.22 is greater than the mass of the actual block to account for inertia effects
of the spring. The value of mq is calculated such that the kinetic energy of the
system of Fig. 1.22 is the same as the kinetic energy of the system of Fig. 1.17,
including the kinetic energy of the spring, when the velocities of both blocks are
equal. Unfortunately, calculation of the exact kinetic energy of the spring requires

—_x

k

g_/\ AN— Meq
Figure 1.22 An equivalent mass of m + m,/3 is used to

1TTITITTITNT, approximate inertia effects of the spring.
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a continuous system analysis. Thus an approximation to the spring’s kinetic energy

is used. ,
¢ Let x () be the generalized coordinate describing the motion of both the block

of Fig. 1.17 and the block of Fig. 1.22. The kinetic energy of the system of Fig. 1.17
is
T =T, + %m;ﬂ [1.53]

where T, is the kinetic energy of the spring. The kinetic energy of the system of Fig.
1.22 is
T = imex? [1.54]
The spring in Fig. 1.17 is uniform, has an unstretched length / and a total mass
m,. Define the coordinate z along the axis of the spring, measured from its fixed
end, as defined in Fig. 1.23. The coordinate z measures the distance of a particle
from the fixed end in the spring’s unstretched state. The displacement of a particle
on the spring, #(z), is assumed explicitly independent of time and a linear function
of z such that u(0) = 0 and u(l) = x,

u(z) = §z [1.55]

Equation (1.55) represents the displacement function of a uniform spring when it is
statically stretched. Consider a differential element of length dz, located a distance
z from the spring’s fixed end. The kinetic energy of the differential element is

1 1 ]
dT, = 5112(z)atm = Eaz(z)ﬁz— dz [1.56]

The total kinetic energy of the spring is

! . 2 3¢l

img (xz 1m; ,z
I, = dT; = (== =———s'2— =
‘f‘fozl(z)dz 2% 3

b ! T x
dz
W
(a)

W) =0 wW(z) = fz u(l) = x Figure 1.23 {a) The coordinate z is
I measured along axis of
2——’\/\/\/’\/\/\/\/\/\,_ spring from its fixed end;
(b) the displacement in the
spring is assumed as a linear
® function of z.
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Equating T from Eqs. (1.53) and (1.54) and using 7; from Eq. (1.57) gives
mg
Meg =m + 3 [1.58]

Equation (1.58) can be interpreted as follows: The inertia effects of a linear
spring with one end fixed and the other end connected to a moving body can be
approximated by placing a particle whose mass is one-third of the mass of the spring
at the point where the spring is connected to the body.

The preceding statement is true for all springs where use of a linear displacement
function of the form of Eq. (1.55) is justified. This is valid for helical coil springs,
bars that are modeled as springs for longitudinal vibrations, and shafts acting as
torsional springs.

1.10 [The springs in the system of Fig. 1.24a are all identical, with stiffness k and mass m;.
Calculate the kinetic energy of the system in terms of 8(¢), including the inertia effects
of the springs.

Solution:
Each spring is replaced by a massless spring and a particle of mass m; /3 at the point on
the bar where the spring is attached as shown in Fig. 1.24b. The total kinetic energy of

L L L
kS 7 | 7 i 3 i \
1 < Bar of
T D ~<Js Buot
k % k
(a)
m,/3 m,/3

my/3

(b)

Figure 1.24 {a) System of Example 1.10; {b) inertia effects of springs
are approximated by placing porticles of mass ms/3 ot
locations on bar where springs are attached.
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the system of Fig. 1.24b is the kinetic energy of the bar plus the kinetic energy of each
of the particles

1-.
T=%m52+5192+T1+T2+T3

L\ 11 . 1mg (L) lms(L-z 1m, (3L \?

= - RN i (=6 B (22
”‘(49) it (3%) Y23 \3f) tar WP
Tm + 11mg

48

L2§?

= =

The simply supported beam of Fig. 1.25 is uniform and has a total mass of 100 kg. A| Exampl
machine of mass 350 kg is attached at B, as shown. What is the mass of a particle that
should be placed at B to approximate the beam’s inertia effects?

Solution:

Since the exact expression for the dynamic beam deflection is not known, an approximate
displacement function must be used in the calculation of the beam’s kinetic energy.
Let z be a coordinate along the beam’s neutral axis. Assume that the time-dependent
displacement of any particle can be expressed as

y(z, 1) = x(t)w(z)

where x(t) is the deflection of B. An appropriate approximation for w(z) is the static
deflection of the beam due to a concentrated load, P, applied at B, such that B has a unit
deflection.

i 2m pe 1m

350 kg

iy A

: |
o~ 1)

(b)

N

Figure 1.25 {a) System of Exomp|e 1.11; (b) static deflection
of beam due 1o concentrated load at B.
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By using the methods of App. D, the static deflection due to a concentrated 1oad at
B is found to be

I;Iz(%—‘i—zz) OSZS%E
wO=1p w8\ 2L
Té-E—I(Z —-6ZL+3ZL—§L) —S—SZSL
The load required to cause a unit deflection at z = 2L /3
P 243E1
4L3

Consider a differential element of length dz, located a distance z from the left support
The kinetic energy of the element is

dT = 1y%(z,t)pAdz

where p is the mass density of the beam and A is its cross-sectional area. The beam’s
total kinetic energy is calculated by integrating dT over the entire beam. Substituting
the previous results for w(x, ¢) in this integral leads to

1 (2N L] 2,8l L)
=5P"(§‘ﬁ) * U z (T‘z) dz

L 44 8 .\?
+/ (223 —6z°L + —zL?* - —L3) dz
2L/3 9 9

which after considerable algebra gives
=1 2
T = 30.586pALx

Noting that the total mass of the beam is pAL, a particle of mass 58.6 kg should be
added at B to approximate the inertia effects of the beam. The system of Fig. 1.25a is
modeled as a one-degree-of-freedom system with a particle of 408.6 kg located at B.

1.7 Viscous DAMPERS

Viscous damping occurs in a mechanical system because of viscous friction that
results from the contact of a system component and a viscous liquid. The damping
force produced when a rigid body is in contact with a viscous liquid is usually
proportional to the velocity of the body

F=cv [1.59]

where c is called the damping coefficient and has dimensions of mass per time.
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vViscous damping can occur naturally, as when a buoyant body oscillates on the
qurface of a lake or a column of liquid oscillates in a U-tube manometer. Viscous
damping is often added to mechanical systems as a means of vibration control. Vis-
cous damping leads to an exponential decay in amplitude of free vibrations and a
reduction in amplitude in forced vibrations caused by a harmonic eXcitation. In ad-
dition, the presence of viscous damping gives rise to a linear term in the governing
differential equation, and thus does not significantly complicate the mathematical
modeling of the system. A mechanical device called a dashpot is added to me-
chanical systems to provide viscous damping. A schematic of a dashpot in a one-
degree-of-freedom system is showninFig. 1.26a. The free-body diagram of the rigid
body, Fig. 1.265, shows the viscous force in the opposite direction of the positive
velocity.

A simple dashpot configuration is shown in Fig. 1.27a. The upper plate of the
dashpot is connected to a rigid body. As the body moves, the plate slides over a
reservoir of viscous liquid of dynamic viscosity . The area of the plate in contact
with the liquidis A. The shear stress developed between the fluid and the plate creates
a resultant friction force acting on the plate. Assume the reservoir is stationary and
the upper plate slides over the liquid with a velocity v. The reservoir depth # is
small enough that the velocity profile in the liquid can be approximated as linear, as
illustrated in Fig. 1.27b. If y is a coordinate measured upward from the bottom of
the reservoir,

Y

u(y) = vy [1.60]
The shear stress developed on the plate is determined from Newton’s viscosity law
T = Y [1.61]

=HT =M .

2
-

(@)

Plate of area A4

k — x

g b
m N
— CcX ~t——

c

Viscous fluid

T)’
P K

|e—— 3« —>

e

() (b) )

>

Figure 1.26 (a) Schematic of one-degree- Figure 1.27 () Simple dashpot model where plate s

of-freed

“reedom mass-spring-dashpot system. (b) Dashpot  a fixed reservoir of viscous liquid. (b} Since h is small, a linec

force is ex and opposes the direction of positive x. profile is assumed in the liquid.
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The viscous force acting on the plate is

A
F=rA=uTv [1.62]

Comparison of Eq. (1.62) with Eq. (1.59) shows that the damping coefficient for this
dashpot is

c=— [(1.63]

Equation (1.63) shows that a large damping force is achieved with a very viscous
fluid, a small A4, and a large A. A dashpot design with these parameters is often
impractical and thus the device of Fig. 1.27q is rarely actually used as a dashpot.

The above analysis assumes the plate moves with a constant velocity. During
the motion of a mechanical system the dashpot is connected to a particle which has
a time-dependent velocity. The changing velocity of the plate leads to unsteady
effects in the liquid. If the reservoir depth /4 is small, the unsteady effects are small
and can be neglected.

A piston-cylinder design for a dashpot is illustrated in Fig. 1.28.- As the piston
moves with a velocity v into the cylinder containing viscous liquid, shear stresses
develop on the side of the piston and a pressure force develops on the surface of the
piston. Both effects lead to a force proportional to the velocity of the piston.

A torsional viscous damper is illustrated in Fig. 1.29. The shaft is rigidly
connected to a point on a body undergoing torsional oscillations. As the disk rotates
in a dish of viscous liquid, a net moment due to the shear stresses developed on the
face of the disk acts about the axis of rotation. The moment is proportional to the
angular velocity of the shaft

M=cb [1.64]
where c; is the torsional viscous damping coefficient and has dimensions of force-
length-time.

A piston and cylinder device that serves s~ Figure 1.29  Disk rofates in a dish of viscous liquid,
a dashpot. producing a moment about the axis of the shaft and acting

as a torsional viscous domper.
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5.8 FLOATING AND IMMERSED BODIES

vibrations of a body immersed in a liquid or floating on the interface of a lig-
uid and a gas can be modeled by using the methods of this chapter with special

considerations.

1.8.1 Buoyancy

When a solid body is submerged in a liquid or floating on the interface of a liquid and
air, a force acts vertically upward on the body because of the variation of hydrostatic
pressure. This force is called the buoyant force. Archimedes’ principle states that
the buoyant force acting on a floating or submerged body is equal to the weight of
the liquid displaced by the body.

1/“

A sphere of mass 2.5 kg and radius 10 cm is hanging from a spring of stiffness 1000 N/m| Exampl
in a fluid of mass density 1200 kg/m>. What is the static deflection of the spring?

Solution:
The spring force must balance with the gravity force and the buoyancy force as shown
on the free-body diagram in Fig. 1.30.

kAg + Fg —mg =0
Archimedes’ principle is used to calculate the buoyant force as
Fp = $pgnr’ = $(1200 kg/m*)n (9.81 m/s?)(0.1 m)> = 493N
The static deflection is calculated as
mg— Fp _ (2.5kg)(9.81 m/s’) —49.3N

Ay = = = —24.8 mm
" k 1000 N/m
kA,
mg
Y
)
Fy Figure 1.30  Free-body diagram of sphere, attached to spring, and

submerged in @ liquid.
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Consider a body floating stably on a liquid-air interface. The buoyant force
balances with the gravity force. If the body is pushed farther into the liquid, the
buoyant force increases. If the body is then released, it seeks to return to its equilib-
rium configuration. The buoyant force does work, which is converted into kinetic
energy and oscillations about the equilibrium position ensue.

The circular cylinder of Fig. 1.31 has a cross-sectional area A and floats stably
on the surface of a fluid of density p. When the cylinder is in equilibrium, it is subject
to a buoyant force mg and its center of gravity is a distance A from the surface. Let x
be the vertical displacement of the center of gravity of the cylinder from this position.
The additional volume displaced by the cylinder is xA. According to Archimedes’
principle, the buoyant force is

Fp=mg + pgAx
Calculations show that the work done by the buoyant force as the cylinder’s center
of gravity moves between positions x; and x; is
U2 = 108A%; — 308 AX]

and is independent of path. Hence the buoyant force is conservative. Its effect on the
cylinder is the same as that of a linear spring of stiffness pg A. The oscillations of
the cylinder on the liquid-gas interface can be modeled by a one-degree-of-freedom
mass-spring system.

1.8.2 ADDED Mass

Consider a mass-spring system immersed in an inviscid fluid, as shown in Fig. 1.32.
The spring is stretched from its equilibrium configuration and the mass released.
The ensuing motion of the mass causes motion in the surrounding fluid. The strain
energy initially stored in the spring is converted to kinetic energy for both the mass

Figure 71.31 Oscillations of circular cylinder on free surface
can be modeled by a one-degree-of-freedom

mass-spring system.
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Figure 1.32  Oxcillafions of o submerged body create
kinetic energy in a fluid. The inerfia of the
fuid can be approximated with added mass
to the body.

and the fluid. Since the fluid is inviscid, energy is conserved
Ln+Tr+V=C [1.65]

The inertia effects of the fluid can be included in an analysis by using a method
similar to that used in Sec. 1.6 to account for the inertia effects of springs. An
imagined particle is attached to the mass such that the kinetic energy of the particle
is equal to the total kinetic energy of the fluid. If x is the displacement of the mass,

the total kinetic energy of the system is Jmeqx2, where

Meg = m + my, [1.661

The mass of the particle is called the added mass.

The kinetic energy of the fluid is difficult to quantify. The motion of the body
theoretically entrains fluid infinitely far away in all directions. The total kinetic
energy of the fluid is calculated from

Tf:%f//pvde [1.671

where v is the velocity of the fluid set in motion by the motion of the body. The
Integration is carried out from the body surface to infinity in all directions. If the
Integration of Eq. (1.(_57) is carried out, the added mass is calculated from

T
ma = l_% [' —681

ix
‘ Potential flow theory can be used to develop the velocity distribution in a fluid
ora boc.iy moving through the fluid at a constant velocity. This velocity distribution
gused in Egs. (1.67) and (1.68) to calculate the added mass. Table 1.1 is adapted
om Wendel (1956) and Patton (1965) and presents the added mass for common

body shapes.
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able 1.1 Added gc:;s Fo:;:omm_on | Table 1.2 Added moments of inertia for common bodies
Ewoz-i :sn(p isrfhe; ,L:?::j::;ty (o is the mass density of the fluid)
id
of the fid) Body Added moment of inertia
ody Added Mass Sphere 0
phere of LmpD? Circular cylinder 0
diameter D Any body rotating about 0
*hin Circular ioD? axis of symmetry
disk of diameter D Thin plate of length L, 0.0078125xpL*
"hin square plate 0.11957 ph? rotating about axis
of side h in the plane of the surface
“ircular cylinder of inpD’L area of plate, perpendicular
P ngth L, diameter D 4 to direction for which
© 1 . 2f L is defined
hin flat plate e Y . . L s
s v et A
guare cylinder of 0.3775pnh*L
side A, length L
“ube of side 2.33pm°

Rotational motion of a body in a fluid also imparts motion to the fluid resulting
in rotational kinetic energy of the fluid. The inertia effects of the fluid are taken into
account by adding a disk of an appropriate moment of inertia to the rotating body. If
o is the angular velocity of the body, the added mass moment of inertia is calculated
from

I, = -ilf—

1.2
W

[1.69]

Note that the added mass moment of inertia is zero if the body is rotating about
an axis of symmetry. Both the added mass and added moment of inertia terms are
negligible for bodies moving in gases. Table 1.2 presents added moments of inertia
for a few common bodies. It is adapted from Wendel (1956).

1.9 SUMMARY

The solution of vibrations problems requires mathematical modeling of the vibrating
system. Itis necessary to make certain assumptions regarding the elements compos-
ing the system. In addition to the assumptions listed in Sec. 1.2, unless otherwise
specified the following assumptions will be used throughout the text:

1. All springs are linear with a force-displacement relation F = kx
2. Inertia effects of discrete springs are negligible.
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Inertia elements of discrete systems are particles or rigid bodies.

3.

4. All dashpots are linear with a force velocity relation F = cv
5. Mechanical systems are undergoing planar motion.

6. All forms of friction besides viscous damping are neglected.
PROBLEMS

1.5

1.1. A vibrating body is undergoing simple harmonic motion with an amplitude of 3 mm ar

frequency of 30 cycles/s.
(a) What is the maximum velocity of the particle?

(b) What is the maximum acceleration of the body?

1.2. The maximum velocity of a vibrating body undergoing simple harmonic motion is 3.2«

The period of motion is measured as 0.15 s.
(¢) What is the amplitude of motion?

(b) What is the maximum acceleration of the body?

1.3. A particle is traveling in a circular path of radius 30 cm at a constant angular speed of

rad/s, as illustrated in Fig. P1.3. The particle starts at 8 = 30° att = 0. Determine x (7

‘\30 rad/s

FIGURE P13

1.4. A particle starts at the origin of a cartestan coordinate system and moves with a veloc

vector
v =3cos2ti + 3sin 2tj + 0.4tk m/s

where 7 is in seconds.
(@) What is the magnitude of the particle’s acceleration at t = 7 s?

(b) What is the particle’s position vector at f = 7 s?
The displacement of a particle undergoing free underdamped vibrations is

x(t) = 0.5¢7 "% sin (15t + 0.24) m

What is the maximum acceleration magnitude of the particle?

1.6. At = 0 a particle of mass 1.2 kg has a velocity of zero but its speed is increasing a

constant rate of 0.5 m/s?. After the particle travels 3 m, the local radius of curvature of t
particle’s path is 25 m.

(@) What is the speed of the particle after it travels 3 m?

(b) What is the magnitude of the particle’s acceleration after it has traveled 3 m?

(c) How long does it take the particle to travel 3 m?



FUNDAMENTALS OF MECHANICAL VIBRATIONS

1.7. At the instant shown, the slender rod of Fig. P1.7 has a clockwise angular velocity of 5
rad/s and a counterclockwise angular acceleration of 14 rad/s?. What is the acceleration of

the particle at P?

P% rady

2
14rad/s*  goURE PLT

1.8. Anautomobile is traveling with a horizontal velocity of 40 m/s when it encounters a pothole
whose depth is approximated by

y(x) = 0.02(x* — 6x) m

where x is the distance from the leading edge of the pothole. When the driver encounters
the pothole, he begins a constant deceleration of 10 m/s?. What is the maximum vertical
velocity and acceleration attained by the automobile as it traverses the pothole?

1.9. The contour of a bumpy road is approximated as
¥(x) =0.03sin (0.125x) m

What is the amplitude of the vertical acceleration of the wheels of an automobile as it
travels over this road at a constant horizontal speed of 40 m/s?

1.10. The machine of Fig. P1.10 has a vertical displacement x (¢). The machine has a component
that rotates with a constant angular speed o relative to the machine. The center of mass
of the rotating component is a distance e from its axis of rotation. If the center of mass is
shown at ¢ = 0, determine its vertical component of acceleration as a function of time.

‘\m

Tx(t)

FIGURE P1.10
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1.11. A 2-ton truck is traveling down a 10° icy hill at 50 mi/h when the driver sees a car stalied
at the bottom of the hill, 250 ft away. Because of icy conditions, a braking force of only
2000 Ib is generated when the driver applies the brakes. Does the truck stop before hitting
the car?

1.12. Figure P1.12 shows the schematic of a one-cylinder reciprocating engine. If the piston has
a velocity v and an acceleration 4, determine the angular acceleration of the crank in terms
of v, a, the crank radius r, the connecting rod length [, and the crank angle 6.

1.13. The helicopter of Fig. P1.13 has a horizontal speed of 110 f/s and a horizontal acceleration
of 3.1 ft/s?. The main blades rotate at a constant speed of 135 rpm. At the instant shown
determine the velocity and acceleration of particle A.

FIGURE P1.12 FIGURE P1.13

1.14. The mechanism of Fig. P1.14 is in equilibrium in the position shown. The horizontal
displacement of the collar from this position is

x(t) = 0.05sin 20t m

Determine the angular velocity and angular acceleration of bar AB as functions of time.

ANNNANNNA\Y

FIGURE PL.14
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1.15. A 60-1b block of Fig. P1.15 is connected by an inextensible cable through the pulley to the
fixed surface. A 40-1b weight is attached to the pulley which is free to move vertically. A
force of magnitude P = (70 + 30e~*) 1b tows the block. The system is released from rest
att = 0.

{a) What is the acceleration of the 60-1b block as a function of time?

(b) How far will the block travel up the incline before it attains a velocity of 4 ft/s?

40 Ib

FIGURE P1.15

1.16. Repeat Prob. 1.15 if P(r) = 200¢ Ib.
1.17, Determine the angular acceleration of each of the disks of Fig. P1.17.

4 kg - m? 4 kg m?
60 cm

20 kg 30 kg 180 N 270 N

(a) b) FIGURE P1.17
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1.18. Determine the reactions at A for the two-link mechanism of Fig. P1.18. The roller at C
rolls on a frictionless surface.

FIGURE P1.18

1.19. The slender bar of Fig. P1.19 has a mass of 50 kg. Determine the applied moment M and
the reactions at the pin support at the instant shown.

\7\%\/ ) ) )a=14md/sz

w = 5rad/s FIGURE P1.19

i

1.20. The disk of Fig. P1.20 rolls without slip. Determine the acceleration of the mass center of
the disk if P = 18 N.

1.21. The coefficient of friction between the surface and the disk of Fig. P1.20 is 0.12. What is
the largest value of P such that the disk rolls without slip?

1.22, The coefficient of friction between the surface and the disk of Fig. P1.20is 0.12. Determine
the angular acceleration of the disk if P = 15 N.

1.23. What is the maximum angular velocity attained by the disk of Fig. P1.23 if the 3-kg block
is displaced 10 mm and released?

0.25 kg - m?

1.8 kg

4000 N/m

FIGURE P1.20 FIGURE P1.23
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1.24. The five-blade ceiling fan of Fig. P1.24 operates at 60 rpm. What is its tota] kinetic energy?

m=47kg
I=514kg m?

FIGURE P1.24

1.25, The U-tube manometer of Fig. P1.25 rotates about axis A-A at a speed of 40 rad/s. At
the instant shown, the column of liquid moves in the manometer with a velocity of 20 m/s
relative to the manometer. Calculate the total kinetic energy of the column of liquid at this
instant.

40 rad /s v=20m/s
Specific gravity = 1.4

Area =3 x 10~ m?

20em ~—~— 60 cn ——

FIGURE P1.25

1.26. The displacement function for the simply supported beam of Fig. P1.26 is

o x 2 EI
¥(x,1) = csin (nL)cos (Jt /-——-pAUt

Where ¢ = 0.003 m and ¢ is in seconds. Determine the total kinetic energy of the beam,
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je— 3im |
X

Y

E=200x10% N/m?

I=173%x107 m*

p = 7400 kg/m’

A=16x10"*m? FIGURE P1.26

1.27. The block of Fig. P1.27 is given a displacement & and then released.
(a) What is the minimum value of § such that motion ensues?
(b) What is the minimum value of § such that the block returns to its original equilibrium
position before stopping?
1.28. The center of the thin disk of Fig. P1.28 is displaced 15 mm and released. What is the
maximum velocity attained by the center of the disk, assuming no slip between the disk
and the surface?

k
20,000 N/m
g vV VV m A r=25cm
m =2kg
[T77777777/77.
7
FIGURE P1.27 FIGURE P1.28

1.29. The slender bar of Fig. P1.29 is moved to the horizontal position and then released. When
the bar is horizontal the spring is compressed 22 mm. What is the mmaximum angle through
which the bar will swing?

b= 30cm — 70 cm k = 2000 N/m

A N $)
it N
m =23 kg FIGURE P1.29

1.30. The block of Fig. P1.30 is displaced 1.5 cm from equilibrium and released.
{a) What is the maximum velocity attained by the block?

(b) What is the acceleration of the block immediately after it is released?

12,000 N/m

65 kg

FIGURE P1.30
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1.31. The slender rod of Fig. P1.31 is released from the horizontal position where the spring

attached at A is stretched 10 mm and the spring attached at B is unstretched,
(a) What is the angular acceleration of the bar immediately after it is released?

(b) What is the maximum angular velocity attained by the bar?

1.32. Let x be the displacement of the left end of the bar of Fig. P1.32. Let 6 be the clockwise

200 N/m

angular rotation of the bar. Express the kinetic energy of the system in terms of x and 8.

B 1000 N/m f—— % S F(t)

Oyt

L
o ion Ji i" ~J

FIGURE P1.32

1.33. Express the potential energy of the system of Fig. P1.32 in terms of x and 8.
1.34. Let 8 be the clockwise angular displacement of the pulley of the system of Fig. P1.34 from

g A ATAVAVAVAVAVAVA e B
r 1

the system’s equilibrium position.
(a) Express the potential energy of the system at an arbitrary instant in terms of 6.
(b) Express the kinetic energy of the system at an arbitrary instant in terms of §.

Y‘
k 2r

2m

2k

FIGURE P1.34

1.35. A 20-ton railroad car is coupled to a 15-ton car by moving the 20-ton car at 5 mph toward

the stationary 15-ton car. What is the speed of the two-car coupling?



1.36.
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The 15-kg block of Fig. P1.36 is moving with a velocity of 3 m/s at ¢+ = 0 when the force
F(¢) is applied to the block.
(a) Determine the velocity of the block atf = 2s.

(b) Determine the velocity of the block att = 4 s.

F()
15ke —_—v 30N
- p=0.08
77777
777777077 3 { FIGURE P136
1.37. A 400-kg forge hammer is mounted on four identical springs, each of stiffness k = 4200

1.38.

'

139,

N/m. During the forging process, a 110-kg component is dropped from a height of 1.4 m
onto an anvil. What is the maximum displacement of the machine after the impact?

The motion of a baseball bat in a ballplayer’s hands is approximated as a rigid-body rotation
about an axis through the player’s hands (Fig. P1.38). The bat has a centroidal moment of
inertia 7. The player’s “bat speed” is w and the velocity of the pitched ball is v. Determine
the distance from the player’s hands along the bat where the batter should strike the ball to
minimize the impulse felt by the player’s hands.

: FIGURE P1.38

A playground ride has a centroidal moment of inertia of 17 slug - ft>. Three children of
weights 40 1b, 50 1b, and 55 1b are on the ride, which is rotating at 110 rpm. The children
are 20 in from the center of the ride. A father stops the ride by grabbing it with his hands.
What angular impulse is felt by the father?

1.40~1.46. How many degrees of freedom are required to model the systems? Identify a set of

generalized coordinates which can be used to analyze the systems’ vibrations.

m, I

i

3

FIGURE P1.40
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f:_zw\,_E

P AVAVAY
_ L) A
VWAV U
tE P1.41 FIGURE P1.42
G) s
RE P1.43 FIGURE P1.44
*) @ o
Rigid link
C (1 D)
]
RE P1.45 FIGURE P1.46

1.47. A 5-kg block is attached to the end of a spring with a cubic nonlinearity with F = kjx +
kesx3, where ky = 3 x 10° N/mand ks = 1 x 108 N/m?®. The other end of the spring is fixed.
The block, which slides on a frictionless surface, is displaced 22 mm and released from
rest. Calculate the maximum velocity attained by the block during its subsequent motion.



1.48.

1.49.

1.50.

1.51.

CHAPTER 1 . INTRODUCTI

If the coefficient of friction between the block of Prob. 1.47 and the surface is 0.15, calcul
the maximum compression of the spring if it is initially stretched 22 mm.

The block of Prob. 1.47 is hit by a 20-g particle traveling at 100 m/s After impact the parti
becomes embedded in the block. What is the maximum compression of the spring?

A 10-kg mass is hung from a spring whose force-displacement relationship is F = (2
10%)x — (4 x 107)x3 N, where x is in meters. What is the static deflection of the spriny
The ends of a 20-kg bar are connected to collars which slide along tracks as shown
Fig. P1.51. The coefficient of friction between the collars and the tracks is 0.15. 1T
collar sliding on the vertical track is to be attached to a spring such that the system is
equilibrium when @ = 30° and the spring is compressed 10 cm when 8 = 0°. Desi
a steel spring (G = 80 x 10% N/m?) to meet these specifications. The coil radius of |
spring should be 5 cm. Specify the radius of the bar from which the spring is made and |
number of active turns. If the maximum displacement from equilibrium of the collar is
cm, what is the maximum shear stress developed in the spring?

}, y 777
20 cm
D,
0 =
\
/ m =20 kg
1
! =40 cm
1 =015
8 = 30°
FIGURE P1.51
1.52. A 150-kg fan is to be placed in an industrial plant. The fan must be mounted on

1.53,

isolator in order to protect the plant floor from large forces generated during its operatic
Calculations show that the fan is to be placed on four springs in parallel, each with a stiffne
of k = 4x 10° N/m. During operation the fan will have a displacement from its equilibrit
position given by x(f) = 0.003sin (50¢) m. Design a steel spring (G = 80 x 10° N/m
by specifying N, r, and D such that it has a stiffness of k and the maximum shear stre
(Tmax = 200 x 10° N/m?) is not exceeded during operation of the fan.

A helical coil spring is made of a steel with a shear modulus of 80 x 10° N/m? and
elastic shear strength of 200 x 10° N/m?. The spring is to have a coil radius of 20 cm.
10-kg block is to be suspended from the spring. The block is subject to a displacement 1
to exceed 20 mm. Design a spring (specify the diameter of each coil and the number
active turns) such that the spring’s elastic strength is not exceeded.

1.54. To achieve effective isolation, a 100-kg loudspeaker system is to be mounted on springs

three locations. From the vibration control theory of Chap. 8 it has been determined tt
the minimum static deflection of each spring should be 2.5 mm. What is the maximu
allowable stiffness of each element?
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1.55-1.59. Determine the deflection of each spring from its unstretched length when the system
shown is in equilibrium.

ks
n k
3’_’ VVV—] m, ‘hq
/2 K
;

77777
FIGURE P1.55 FIGURE P1.56
5% 10° N/m

A—wn—F

12m
m=20kg

B

| Spring is stretched
0.4 m 20 mm when bar

1 U s vertical

FIGURE P1.57
l~02m -+ 08 m |

L

5% 10* N/m 3% 10* N/m

m = 40 kg
FIGURE P1.58
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Suspension
spring

Wheel
stiffness

FIGURE P1.59 FIGURE P1.60

1.60. A simplified one-degree-of-frcedom model of a vehicle suspension system is shown in
Fig. P1.60. The vehicle mass is 1000 kg, which is much greater than the axle mass. The
suspension spring has a stiffness of 80,000 N/m. The wheel is modeled as a spring placed
in series with the suspension spring. When the vehicle is empty, the wheel deflection is
measured as 4.1 cm.

(a) Determine the stiffness of the wheel, k,,.
(b) Determine the equivalent stiffness of the spring combination.

1.61. Determine the static deflection of each of the springs in the system of Fig. P1.61.

1 x 10° N/m
2x 10°N/m
k —x
120 kg : k
m 3k k k/2
| m AN~
2% 10°N/m
2k
FIGURE P1.61 FIGURE P1.62

L.62-1.66. Calculate the equivalent stiffness of a linear spring when a linear one-degree-of-
freedom mass-spring model is used to model the system shown and x is the chosen gener-
alized coordinate.
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-

i
e

1m T 1m

E =200 x 10° N/m?
20 kg I=115x10"%m*

AN

L o

FIGURE P1.63

k

AR

<« Massless beam

E, I gk

"1
x FIGURE P1.64

60 cm } 40 cm —— 40 cm —+

+

20 kg E, I Massless beam

e

—

0

FIGURE P1.65

—x
|
i‘ L 1 kl k2
VWA m A
A, Ep FIGURE P1.66

1.67. Calculate the torsional stiffness of a solid aluminum shaft (G = 40 x 10° N/m?) of length
1.8 m and radius 25 cm.

1.68. Calculate the torsional stiffness of an annular steel shaft (G = 80 x 10° N/m?) of length
2.5 m, inner radius 10 cm, and outer radius 15 cm.

1.69. The disk attached to the end of the circular beam of Fig. P1.69 has three degrees of freedom.

The longitudinal displacement, transverse deflection, and angular rotation are kinematically
independent. In fact, the degrees of freedom are also kinetically independent. For example,
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application of a torque does not induce longitudinal or transverse displacement of the disk.
Calculate the longitudinal stiffness, torsional stiffness, and transverse stiffness for this

beam.

u ®r=10mm

—
E =200 x 10° N/m?
. G = 80 x 10° N/m?

AVLARAY

jpe———"—"— 65 cm —
FIGURE P1.69

1.70. The propeller shaft of a ship is a tapered circular cylinder, as shown in Fig. P1.70. When
installed in the ship, one end is constrained against longitudinal motion relative to the ship
while a 500-kg propeller is attached to the other end.

(a) Determine the equivalent stiffness of the shaft for a one-degree-of-freedom model.

(b) Assuming a linear displacement function along the length of the shaft, determine the
equivalent mass of the shaft to use in a one-degree-of-freedom model including inertia
effects of the shaft.

T l ry = 30 om

ry=20cm

- - - E = 210 x 10° N/m?
T p = 7850 kg /m®

b

I
10m | FIGURE P1.70

L.71. A tightly wound helical coil spring is made from an 1.8-mm-diameter bar of 0.2 percent
hardened steel (G = 80 x 10° N/m?, p = 7600 kg/m®). The spring has 80 active coils
with a coil diameter of 1.6 cm. A 100-g particle is hung from the spring. Determine:

(@) The static deflection of the spring.
(b) The equivalent mass of the system, including an approximation for inertia effects of
the spring.

1.72. One end of a spring of stiffness k; and mass my, is attached to a wall while its other end
is connected to a spring of stiffness k, and mass m,,. The end of the second spring is
connected to a block of mass m which has a displacement x(r). Determine the equivalent
mass of these two springs in series.

L73. A block of mass m is attached to two identical springs in series. Each spring has a mass
m; and a stiffness k. Determine the mass of a particle that should be added to the block to
approximate the inertia effects of the springs,

L74. Show that the inertia effects of a torsional shaft of mass moment of inertia Jn can be
approximated by adding a thin disk of mass moment of inertia J,,/3 to the free end of the
shaft,
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1.75. Use the static deflection function of a simply supported beam to determine the mass of
a particle that should be added to the mass of a machine at the midspan of the beam to
approximate inertia effects of the beam.

1.76. Determine the kinetic energy of the system of Fig. P1.76 at an arbitrary instant in terms of
% including inertia effects of the springs.

2m
c Ip
— (A
g:z/\(/\r/ "
k, m,
No slip

k, my

FIGURE P1.76

1.77. The time-dependent displacement of the block of mass m of Fig. P1.76 is x(t) = 0.03e~ 13
sin (4¢) m. Determine the time-dependent force in the viscous damper if c = 125N - s/m,
1.78. Calculate the work done by the viscous damper of Prob. 1.77 betweent =0 and t = 1s.
1.79. Determine the torsional viscous damping coefficient for the torsional viscous damper of
Fig. P1.79. Assume a linear velocity profile between the bottom of the dish and the disk.
1.80. Determine the torsional viscous damping coefficient for the torsional viscous damper of

Fig. P1.80. Assume a linear velocity profile in the liquid between the fixed surface and the
rotating cone.

Oil of density p,

viscosity p

Come of base radius r,
height A

Gap width, d

Disk of radius r
Oil of density p, viscosity
Depth of 0il = h

1EP1L.79 FIGURE P1.80
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1.81. Shock absorbers and many other forms of viscous dampers use a piston moving in acylinde
of viscous liquid as illustrated in Fig. P1.81. For this configuration the force developed o
the piston is the sum of the viscous forces acting on the side of the piston and the force du
to the pressure difference between the top and bottom surfaces of the piston.

(a) Assume the piston moves with a constant velocity v,. Draw a free-body diagram of th
piston and mathematically relate the damping force, the viscous force, and the pressur
force,

(b) Assume steady flow between the side of the piston and the side of the cylinder. Sho
that the equation governing the velocity profile between the piston and the cylinder i

dp a?
ax Par

() Assume the vertical pressure gradient is constant. Use the preceding results to dete;
mine the velocity profile in terms of the damping force and the shear stress on the sid
of the piston.

(d) Use the results of part (c) to determine the wall shear stress in terms of the dampin

force.

() Note that the flow rate between the piston and the cylinder is equal to the rate at whic
liquid is displaced by the piston. Use this information to determine the damping forc
in terms of the velocity and thus the damping coefficient.

(f) Use the results of part (¢) to design a shock absorber for a motorcycle that uses SA

1040 oil and requires a damping coefficient of 1000 N - my/s.

—dj— l 1
x h
k D [
F - l‘ T
"~ Oil of viscosity u,

density p FIGURE P1.81

1.82. The spring of Fig. P1.82 (see page 58) is unstretched in the position shown. What is tt
deflection of the spring when the system is in equilibrium?

1.83. A 20 mm x 20 mm x 80 mm block is attached to a spring of stiffness 5 x 10* N/m. Tl
assembly is immersed in a liquid of specific gravity 1.05. What is the added mass require
to approximate the inertia of the liquid?
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NN o

500N/m§ 20 cm

70
/ks

lm/

) —L Flat plate 1m x 0.5 m x 20 mm

20 mm
e e e

Liquid of specific gravity 0.95

FIGURE P1.82

1.84.

1.85.

1.86.

A wedge is floating stably on the interface between a liquid of mass density p, as shown

in Fig. P1.84. When the wedge is disturbed from equilibrium, let x be the displacement of

the wedge’s mass center.

(a) What is the buoyant force acting on the wedge?

(b) What is the work done by the buoyant force as the mass center of the wedge moves
from x; to x,?

{(c¢) Can the oscillations of the wedge on the surface be modeled as a mass attached to a
linear spting?

A bar of length L and cross-sectional area A is made of a material whose stress-strain

diagram is shown in Fig. P1.85. If the internal force developed in the bar is such that

a < a,, then the bar’s stiffness for a one-degree-of-freedom model is given by Eq. (1.40).

Consider the case where o > o,. Let P = 6,A + § P be the applied load which results in

a deflection A = o, L/E + §A.

(a) The work done (W = P A /2) by the applied force is equal to the strain energy devel-
oped in the bar. The strain energy per unit volume is the area under the stress-strain
curve. Use this information to relate 6P to §A.

(b) What is an approximation to the linear stiffness for small §A?

length of wedge = L -
mass density of 4
h wedge = p, o =f(E)
%

FIGURE P1.85

Consider a solid circular shaft of length L and radius ¢ made of an elastoplastic material
whose shear stress—shear strain diagram is given in Fig. P1.86. If the applied torque is
such that the shear stress at the outer radius of the shaft is less than 7,, a linear relationship
exists between the torque and the angular displacement resulting in Eq. (1.46). When the
applied torque is large enough to cause plastic behavior, a plastic shell develops around an
elastic core of radius r < ¢. Let T = wt,c3/2 + 8T be the applied torque Which results
in an angular displacement of 8 = 7,L/(cG) + 86.
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(a) The shear strain at the outer radius of the shaft is related to the angular displacement
by @ = y.L/c. The shear strain distribution is linear over a given cross section. Show
that this implies

g 2k
rG

(b) The torque is the resultant moment of the shear stress distribution over the cross section
of the shaft,

T=f 2ntp’dp
0

Use this to relate the torque to the radius of the elastic core.
(¢) Determine the relationship between 67 and 86.
(d) Determine a linear approximation to the stiffness for small 6.

J Elastic
core
7,

G

y Plastic

shell

(a) (b)

FIGURE P1.86

1.87. A gas spring consists of a piston of area A moving in a cylinder of gas. As the cylinder

moves, the gas expands and contracts changing the pressure exerted on the piston. If the
process occurs adiabatically (without heat transfer), then

p=Cp"

where p is the gas pressure, p is the gas density, y is the constant ratio of specific heats, and

C is a constant dependent on the initial state. Consider a spring where the initial pressure

is po at a temperature Tp. At this pressure the height of the gas column in the cylinder is

h. Let F = ppA + 8 F be the pressure force on the piston when the piston has displaced a

distance x into the gas from its initial height.

(a) Determine the relation between 8 F and x.

(b) Linearize the relationship of part (a) to approximate the air spring by a linear spring.
What is the equivalent stiffness of the spring?

(c) What is the required piston area for an air spring (¥ = 1.4) to have a stiffness of 300
N/m for a pressure of 150 kPa (absolute) with 4 = 30 cm?

MATLAB PROBLEMS

ML1.1. File VIBES_1A.m provides the solution of Example 1.5 in terms of the parameters of

the problem. Use the program to

(a) Investigate the dependence of 6y, and @ ona/L.

(b) Investigate the dependence of Omax and @ on m,/m where m, is the mass of the
particle.
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M1.2.

M1.3.

M14.

M1.5.

M1.6.

M1.7.

ML1.8.

A 500-kg machine is to be mounted on four identical helical coil springs in parallel.
The static deflection of each spring is required to be 3.6 mm. As the machine vibrates,
its maximum displacement from its equilibrium position will be 10 mm. Design the
sptings such that the ratio of the coil diameter to the rod diameter is at least 10 and
the maximum yield shear stress of the spring is not exceeded during operation of the
machine. Use file VIBES_1B.m to design the spring by specifying the material from
which the spring should be made, the coil diameter, the rod diameter, and the number
of active turns.
File VIBES_1C.m provides the stiffness of a fixed-free beam at a location a distance a
from the fixed support. Use VIBES_1C.m to
(a) Design the cross section of a fixed-free steel beam of length 4.5 m such that its
stiffness is between 1 x 10° and 4.5 x 10° N/mata = 1.8 m.
(b) Plot the stiffness of the beam designed in (a) as a functionof a for0.5m < a < 4 m.
File VIBES_1D.m provides the equivalent mass of a fixed-free beam at a location a
distance a from the fixed support. Use VIBES_1D.m to design the cross section of a
fixed-free steel beam of length 4.1 m such that the equivalent mass of the beam is less
than3 kgata = 1.5m.
Write a MATLAB program to determine the maximum acceleration of a particle whose
displacement is

x(t) = 0.003¢™" sin (14t + 0.14) m

Plot the displacement of the particle, the velocity of the particle, and the acceleration of
the particle as functions of time.

Write a MATLAB program to determine the stiffness of a simply supported beam of
length L, elastic modulus E, and cross-sectional moment of inertia 7, at a distance a
from the left support. Use the program to design a simply supported aluminum beam of
length 5 m that has a stiffness between 4 x 10* and 1 x 10° N/m when a 500-kg machine
is mounted on the beam a distance 2 m from the left support.

Write a MATLAB program to determine the equivalent mass of a simply supported beam
of length L, mass density p, cross-sectional area A, and elastic modulus E, at a distance
a from the left support. Use the program to design an aluminum beam of length 5 m
that has an equivalent mass of less than 5 kg when a 150-kg machine is mounted on the
beam a distance 2 m from the left support.

The damping coefficient of a piston-cylinder type damper is

_ 3 D1 2d
cC=U W 1+3

where y is the dynamic viscosity of the fluid, D is the piston diameter, d is the clearance
between the piston and the cylinder, and [ is the length of the piston head. Write
a MATLAB program that determines the damping coefficient of the piston-cylinder
damper, given values of the parameters. Use the program to design a shock absorber
using SAE 1040 oil to provide a damping coefficient of 1000 N - m/s. The maximum
piston diameter is 8 cm.
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2.1 INTRODUCTION

Free vibrations are oscillations about a system’s equilibrium position that occur in
the absence of an external excitation. Free vibrations are a result of a kinetic energy
imparted to the system or of a displacement from the equilibrium position that leads
to a difference in potential energy from the system’s equilibrium position.

Consider the model one-degree-of-freedom system of Fig. 2.1. When the block
is displaced a distance x from its equilibrium position, a potential energy kxg /2
is developed in the spring. When the system is released from equilibrium, the
spring force draws the block toward the system’s equilibrium position, with the
potential energy being converted to kinetic energy. When the block reaches its
equilibrium position, the kinetic energy reaches a maximum and motion continues.
The kinetic energy is converted to potential energy until the spring is compressed a
distance xo. This process of transfer of potential energy to kinetic energy and vice
versa is continual in the absence of nonconservative forces. In a physical system,
such perpetual motion is impossible. Dry friction, internal friction in the spring,
aerodynamic drag, and other nonconservative mechanisms eventually dissipate the
energy.

Examples of free vibrations of systems that can be modeled using one degree of
freedom include the oscillations of a pendulum about a vertical equilibrium position,
the motion of a recoil mechanism of a firearm once it has been fired, and the motion
of a vehicle suspension system after the vehicle encounters a pothole.

Free vibrations of a one-degree-of-freedom system are described by a homo-
geneous second-order ordinary differential equation. The independent variable is
time, while the dependent variable is the chosen generalized coordinate. The chosen
generalized coordinate represents the displacement of a particle in the system or an
angular displacement and is measured from the system’s equilibrium position.
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Figure 2.1 (a) When the mass-spring system is at rest in

equilibrium the spring has an unstretched length
I; (b) when the mass is displaced a distance xg,
a force kxg and potential energy Jkx2 develops
in the spring.

Two methods are introduced to derive the differential equation governing the
motion of a one-degree-of-freedom system: the free-body diagram method intro-
duced in Chap. 1 and the equivalent systems method, which is based on the principle
of work and energy. If a system is nonlinear, a linearizing assumption will be made.

The general solution of the second-order differential equation is a linear com-
bination of two linearly independent solutions. The arbitrary constants, called con-
stants of integration, are uniquely determined on application of two initial conditions.
The necessary initial conditions are values of the generalized coordinate and its first
time derivative at a specified time, usually t = 0.

The form of the solution of the differential equation depends on system param-
eters. For example, the mathematical form of the solution for an undamped system
is different from the solution for a system with viscous damping. Solutions are
examined for all possible values of the parameters. Examples and applications are
presented.

F 2.2 FreE-Bopy DiAGRAM METHOD

Newton’s laws, as formulated in Chap. 1, are applied to free-body diagrams of
vibrating systems to derive the governing differential equation. The following steps
are used in application to a one-degree-of-freedom system.

1. A generalized coordinate is chosen. This variable should represent the displace-
ment of a particle in the system. If rotational motion is involved, the generalized
coordinate could represent an angular displacement.

2. Free-body diagrams are drawn showing the system at an arbitrary instant of time.
In line with the methods of Sec. 1.4, two free-body diagrams are drawn. One
free-body diagram shows all external forces acting on the system. The second
free-body diagram shows all effective forces acting on the system. Recall that
the effective forces are a force equal to ma, applied at the mass center and a
couple equal to /«.
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The forces drawn on each free-body diagram are annotated for an arbitrary
instant. The direction of each force and moment are drawn consistent with
the positive direction of the generalized coordinate. Geometry, kinematics,
constitutive equations, and other laws valid for specific systems can be used to
specify the external and effective forces.

3. The appropriate form of Newton’s law is applied to the free-body diagrams.

4, Applicable assumptions are used along with algebraic manipulation. The result
is the governing differential equation.

perive the differential equation governing the motion of the block of Fig. 2.24.

Solution:

Let x(z) represent the displacement of the block, measured positive downward, from
its static-equilibrium position. Free-body diagrams showing the external and effective
forces acting on the block at an arbitrary instant of time are given in Fig. 2.2b. Thus the
force developed in the spring is given by Eq. (1.30) where x, in that equation, represents
the change in length of the spring from its unstretched length. Since x is measured from
the static-equilibrium position of the system, the spring force developed for the system
of Fig. 2.2 is

Fi =k(x + Ag)

where Ay is the static deflection of the spring.

Note that since x is measured positive downward, when x is positive the spring is
stretched further from its equilibrium position and pulls on the mass, as illustrated on
the free-body diagram of external forces. The effective force is drawn downward to be
consistent with the choice of positive x.

The appropriate form of Newton’s law for this problem is

Z Fexy = Z Feg

k(x +Ay)
m =
{ ]
I+ e e
External Effective
forces forces
(a) ()

Figure 2.2 () Mass-spring-dashpot system of Example 2.1; (b) free-body diagrams at an
arbitrary instant, Directions of external and effective forces are consistent with
positive direction of generalized coordinate x.
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which when applied to the free-body diagrams of Fig. 2.2b gives
mg —k(x + Ay) —cx =mi

Analysis of the static-equilibrium position reveals
mg
M=

When this result is substituted into the previous equation, the static-deflection term
cancels with the gravity term leaving
mi+cx+kx=0

The time history of motion of the system in Fig. 2.2 is obtained by solving the preceding
second-order linear homogeneous ordinary differential equation subject to appropriate
initial conditions.

Lnlo 2.2 , Derive the differential equation governing the angular oscillations of the compound
pendulum of Fig. 2.3a.

Let 8(t) be the counterclockwise angular displacement of the rod measured from its

vertical equilibrium position. Summing moments about O using the free-body diagrams

of Fig. 2.3b,
N T
(Z Mo) =( Mo)
ext eff
L ) X L.L
ield —mo—sinh = m— Z5=
yields mg28m9 m1249+m2t92

L .
m E 62
L §
= m-—
L 2
1
—mL*
t 2™
I S
External Effective
forces forces
(a) (b)

Figure 2.3  (a) Compound pendulum of Example 2.2 is a slender rod pinned at
one end. The generalized coordinate ¢ is the counterclockwise
angular displacement from equilibrium; (b} free-body diagrams at an
arbitrary instant of time.
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which becomes
2

o L
m-3—6 +mg-i- sind =0

The differential equation obtained in Example 2.2 is a second-order nonlinear
ordinary differential equation. While an exact solution of this equation exists in
terms of elliptic integrals, exact solutions for most nonlinear equations have not
been found.

Approximations for solutions of problems governed by nonlinear differential
equations are obtained by one of two approaches. An approximate solution of the
exact equation can be obtained by a numerical method, or, if conditions are right, the
differential equation can be approximated by a linear equation whose exact solution
is easily obtained. The latter approach is used here.

Consider the Taylor series expansion for sin 6 about 8 = 0:

For small 6,
sinf ~ 6
Similar truncations of the Taylor series expansions for cos 6 and tan 6 for small 6
lead to
cosé~1 tand~@

The small-angle approximations of the Taylor series expansions are used to linearize
nonlinear differential equations. When the small-angle assumption is made for
Example 2.2, the resulting linearized differential equation is

38

O+ —0=0
+tar

A flywheel of mass moment of inertia / is attached to the end of a solid circular shaft
Qf radius r, length L, shear modulus G, and mass 2, as shown in Fig. 2.4a. A moment
1s applied to the disk, rotating it from its static-equilibrium configuration. The disk
18 released and torsional oscillations about the equilibrium position ensue. Derive the
fllfferential equation governing the torsional oscillations. Include an approximation for
Inertia effects of the shaft.

Let 6(¢) be the angular displacement of the disk from its equilibrium position. The shaft
acts as a torsional spring. As the disk oscillates, a moment

JG
= —0
M L
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Figure 2.4  (q) The system of Example 2.3 is a flywheel of mass moment
of inertia | attached to the end of a shaft of length L, radius r,
and mass m; (b) free-body diagrams at an arbitrary instant.

is developed between the shaft and the disk. The moment acting on the shaft is in the
direction of the rotation. From Newton’s third law, the moment from the shaft on the
disk resists the rotation.

Using the results of Sec. 1.6.5, the inertia effects of the shaft are approximated by
adding a disk at the end of the shaft whose mass moment of inertia is one-third of the
mass moment of inertia of the shaft.

ID| = %mrz

Summing moments about the center of the disk

(2 - (),

using the free-body diagrams of Fig. 2.4b leads to
JG mr?\ ..
——O0=\1+-—)0

ro=(1+%)

. JG
or §+ —"-—6=0

mrz
I+ —1}L
(+6)

5

A slender rod of length L and mass m is pinned at O, as shown in Fig. 2.5. A spring
of stiffness k is connected to the rod at point P while a dashpot of damping coefficient
¢ is connected at point Q. Assuming small displacements, derive a linear differential
equation governing the free vibrations of this system. Use x, the displacement of particle
P, measured from the system’s equilibrium position, as the generalized coordinate.
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Figure 2.5 {a) System of Example 2.4; {b} free-body diagram of static equilibrium position;
(¢) free-body diagrams at an arbitrary instant.

Solution:

Summing moments about O on the free-body diagram of Fig. 2.5b leads to the following
equation defining the equilibrium position of the system.

L L

Consistent with the assumption that x is small, the lines of action of the damping force
and the spring force are assumed to be vertical. From the geometry of Fig. 2.5,

3L
= "Zsin6
X 4Slll

Using the small-angle approximation, for siné gives

~ 229
¥
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The appropriate equation for summation of moments about O is

(2) - (i),

which, when applied to the free-body diagrams of Fig. 2.5¢, gives

L 4x kG + A )3L cos 4x )ELC . 4x
mg g CS\3L 7y 3L 34 3L

mL? 4% XL

123 "3%

The small-angle approximation is used to approximate the cosine terms by one. The
static-equilibrium condition is used to cancel the static-deflection terms with the gravity
terms. The resulting differential equation becomes

P C'+3kx—0
TR TR

2.5]

Using x, the displacement of the block measured positive downward from its equilibrium
position as the generalized coordinate, derive the differential equation governing the free
vibrations of the system of Fig. 2.6a.

Solution:
The static-equilibrium position of the system is analyzed and yields the following relation
between gravity and static deflection of the spring:

2kAy —mg =0

k kQx + Ay) \i,

2r
]P
= TLm | ' | |
mg mx
External Effective
forces forces
(a) (€)]

Figure 2.6 {a) System of Example 2.5; (b} free-body diagrams at an arbitrary instant.
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Free-body diagrams showing the external and effective forces acting on the mass-
pulley system at an arbitrary instant of time are shown in Fig. 2.6b. No slip is assumed
between the pulley and the cables, and friction is neglected. Kinematics is used to express
the relation between x and the change in length of the spring.

The appropriate form of Newton’s law is

(2) = (2),

which, applied to the free-body diagrams, gives
I . .
—k(2x + Ag)2r + mgr = Py + mir
’

The static-equilibrium condition is used to eliminate gravity and static deflection from
the equation resulting in

I
(7p+mr)§+4er=0

A sphere of radius r and mass m is attached to a spring of stiffness k (Fig. 2.7). The
assembly is placed in a highly viscous fluid of dynamic viscosity 1 and mass density
p. The sphere is displaced from its equilibrium configuration and released from rest.
Derive the differential equation governing the resulting oscillations about the equilibrium
position. Note that the drag force on the sphere from the fluid is D = 6xruv, where v
is the velocity of the sphere.

Solution:

When the system is in equilibrium, a balance exists between the gravity force, the buoyant
force, and the spring force

mg—Fg —kAyg =0

As the sphere oscillates, fluid surrounding the sphere is set in motion. Using the
results of Sec. 1.7 and Table 1.1, the kinetic energy of the fluid can be taken into account
by adding a particle of mass m, = %Jr,or3 to the sphere. Let x(r) be the displacement
of the sphere from its equilibrium position. Application of Newton’s law

Z Fexq = Z Fest
to the free-body diagrams of Fig. 2.7b gives
—(kx + Ag) — 6T purx +mg — Fg = (m + %pﬂrs)f

Use of the static-equilibrium condition eliminates gravity, buoyancy, and static spring
force terms and leads to

(m+ 3pnr)% +6mprk +kx =0




FUNDAMENTALS OF MECHANICAL VIBRATIONS

kKx+ Ay)

1 D = 6mruk

T FB = %pqrr:" (m + %'ﬂ'prs)f

T x External Effective
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Figure 2.7 (o) Solid sphere of radius r is suspended from spring of stiffness
k in a fluid of mass density p and viscosity w; (b} free-body
diagrams at an arbitrary instant. Effective force includes added
mass to account for inertia effects of entrained fluid.

A static deflection is developed in a spring whenever a spring force is required
to balance an external force such as gravity or buoyancy for the system to exist in
equilibrium. A static analysis of the equilibrium condition leads to a static equilib-
rium condition relating the static deflection and the external force that is the cause
of the static deflection. In the previous examples, and for all linear systems, the
static equilibrium condition is replicated in the differential equation derived from
applying conservation laws to the free-body diagrams drawn for an arbitrary instant.
The static 